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Preface 

This book is an outgrowth of material covered in a graduate course on 
ionospheric radio propagation offered since 1959 by the Department of 
Electrical Engineering, University of Illinois at Urbana-Champaign. Some 
material was also used in a special problems course on propagation in 
inhomogeneous media. The book is intended primarily as a graduate text 
for students in radio science, plasma physics, wave propagation, ionospheric 
physics, and atmospheric science. As such, theories and ideas are stressed 
more than engineering practice. Problems have been included to illustrate 
and amplify these theories and ideas. Some of these problems have been 
taken from the published literature and are by no means trivial; some 
others are fairly simple. We anticipate that the book may be of interest as 
well to researchers in  the field. For their benefit, a list of references are 
attached at  the end of each chapter; this list is far from being complete. 
We wish to apologize to those authors upon whose work we may have 
drawn but neglected to acknowledge because of oversight. 

The reader is assumed to have background in elementary electro- 
magnetic theory and complex analysis. Some understanding of matrix 
theory is helpful. An understanding of time series is desirable for Chapter 6 ,  
but not necessary. 

Tn the process of writing this book we have received assistance from 
many people. All the graduate students who took our course over the years 
have been a constant source of inspiration to us. It is fair to say that we 
have learned as much from them as they have from us. We would also like 
to thank all of the researchers who have contributed to the field. At times, 
keeping abreast of developments has been frustrating; there are always un- 
expected turns before we are able to see the light at the end of the dark 
tunnel. Many colleagues have provided us with encouragement. Special 
mention should be made of Professors G .  W. Swenson, Jr., and G .  A. 

xiii 
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Deschamps of the University of Illinois at  Urbana-Champaign, and Pro- 
fessor 0. G .  Villard, Jr., of Stanford University. We would like to take 
this opportunity to thank our wives who have provided us with their 
loving support. Portions of the manuscript were typed by Mrs. Marilena 
Stone, Audrey Owens, and Diana Poole. 



1. Introduction 

A wave can be broadly defined as a phenomenon whereby the spatial 
distribution of energy travels from one point of the space to another point 
of the space. As such, the wave can be thought of as a means by which energy 
and information can be transmitted from a source to an observer and user. 
This definition of wave is more restrictive than the usual concept of wave 
since it excludes a class of waves known as the standing waves. The restric- 
tion in definition does not necessarily indicate a handicap however since, 
for example, standing waves can be decomposed into traveling waves in a 
linear medium. Figuratively speaking, waves can be likened to “fingers” 
since both can “stretch out” and “feel” the environment. In this sense a 
wave can be considered as a device which is capable of remote sensing. 
Indeed, man’s knowledge about the ionosphere was derived almost ex- 
clusively up to the 1950’s from probing with radio waves on the ground. 
These wave-probing techniques are still being used not only in connection 
with ionospheric studies but also in the laboratory plasma diagnosis. 

According to the IEEE Standard (1969) the ionosphere is defined as 
“that part of a planetary atmosphere where ions and electrons are present 
in quantities sufficient to affect the propagation of radio waves.” Therefore, 
the ionosphere is defined from the viewpoint of its effect on radio waves. 
This definition is quite adequate for this book and shall be adopted. How- 
ever, the same standard defines the ionospheric wave as the sky wave. We 
prefer to adopt a broader definition and define ionospheric waves as those 
wave motions, natural or driven, that can be sustained in the ionosphere. 
This broader definition would include waves that are reflected, refracted, 

1 



2 1. Introduction 

scattered, and guided as well as those forced into oscillation by a source 
such as excitation of traveling ionospheric disturbances by the propagating 
internal acoustic-gravity waves. 

1.1 Nature of the Ionosphere 

The ionosphere is a part of the upper atmosphere. To discuss it, we 
must start with a brief discussion of the properties of the upper atmosphere. 
Workers in  the atmospheric studies like to use words such as zones, belts, 
spheres, and regions to classify the physical space of interest. This is neces- 
sary because of the large variation of parameters involved. In terms of thermal 
structure the atmosphere is classified into, in the order of increasing altitude, 
troposphere, tropopause, stratosphere, stratopause, mesosphere, meso- 
pause, and thermosphere. In terms of composition it is classified into 
homosphere (up to 85 km height) in which the mean molecular mass is con- 
stant due to mixing and heterosphere (above 85 km) in which the mean 
molecular mass varies due to diffusive separation. In terms of the escape 
properties of neutral particles, the atmosphere is called the exosphere. 
A brief discussion on the structure of the atmosphere can be found in Sec- 
tion 8.1. More detailed treatment can be found in Ratcliffe (1960) and 
Hines et al. (1965). 

The atmospheric mass density varies over large orders of magnitude. 
For example, the mass density is I .2 kg/m3 at the ground level and this value 
is reduced to 4.1 x lo-' kg/ms at a height of 10 km, to 5.0 x lo-' kg/m3 
at  100 km height, to 3.6 x lo-' kg/m3 at 300 km height, and to 1.5 x 
kg/m3 at  700 km height. Therefore, in a height range of 700 km the density is 
reduced by thirteen orders of magnitude. This reduction is caused mainly by 
gravity. Its static distribution can be discussed by solving the hydrostatic 
equation if the temperature profile is known. 

When the solar radiation falls on the atmosphere, there may be creation of 
electrons and ions through the photoionization process. The rate of produc- 
tion of electron-ion pair per unit volume is given by 

Q = anS (1.1.1) 

where a is the effective ionization cross section of a given constituent gas, 
n its number density, and S the local intensity of the ionizing solar radiation. 
The solar radiation has the highest intensity when it is outside the atrnos- 
phere. When the radiation penetrates into the atmosphere, the rate of pro- 
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duction increases due to increasing n. When the number density is increased 
further the absorption of radiation by the overlaying atmosphere may 
become appreciable and S starts to  decrease. The rate of production, being 
proportional to the product of n and S, must therefore exhibit a peak. This 
problem was first worked out in a classical paper by Chapman (1931) in 
an isothermal atmosphere. If the atmosphere is a nonisothermal mixture, 
and the radiation spectrum is not monochromatic, the computation of Q 
can be very tedious and is usually carried out on an electronic computer. 
Once created, the ionization is subjected to  control by many physical and 
chemical processes. The ionization may be transported due to collision with 
other moving particles or due to the presence of electric field. Ioniza- 
tion of a particular kind may appear or disappear through chemical pro- 
cesses. In general, for each ionization species there is an equation of con- 
tinuity of the form 

a N / a t  + V * ( N v )  = Q - L (1.1.2) 

where N is the ionization density, v its velocity, Q the rate of production 
per unit volume, and L the rate of loss per unit volume through chemical 
processes. Rishbeth and Garriott (1969) have discussed in  detail the solution 
of such an equation. 

The terrestrial ionosphere is usually classified into three regions. The 
lowest region is called the D region which extends in  height from about 
40 km to 90 km. This region is responsible for absorption of radio waves. 
Its electron density is about 2.5 x 10g/m3 by day and diminishes to negligible 
value at  night. The middle region is called the E region. It is the region of the 
ionosphere between about 90 km and 160 km altitude. The electron density 
in this region behaves regularly so far as its dependence on the solar zenith 
angle and the solar activity are concerned. The density can have a value 
2 x IO1l/m3 in the daytime and this value is high enough to reflect radio 
waves with a frequency of several megahertz. At night the E region electron 
density is more than one order of magnitude lower. Above the E region 
is the F region. The F region behavior is fairly irregular and is usually 
classified into a number of anomalies such as equatorial anomaly and 
seasonal anomaly. The electron density at  the peak has an average value 
2 x 1012/m3 by day and 2 x 1011/m3 by night. This region is responsible 
for reflection of radio waves. In some literature the F region stops at about 
800 km above which is called either a protonosphere if classified according 
to its composition or a magnetosphere if classified according to its dynamic 
property. But according to the IEEE definition, the F region extends all 
the way to the magnetospheric shock boundary at several earth radii away. 
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Two idealized ionization profiles, one for daytime and one for nighttime, 
are shown in Fig. 1.1-1. 

The ionosphere is an extremely interesting medium for purposes of study- 
ing wave propagation. As shown in Fig. 1.1-1, the electron density varies over 
four orders of magnitude. In going from the D region to the upper Fregion, 
the medium changes from a collision-dominated behavior (electron collision 
frequency 8 x 107/sec) to a collisionless behavior so that the frozen-in 
magnetic field concept is applicable. Additionally, the medium is inhomo- 
geneous and anisotropic. Its nonlinear properties can also be revealed easily; 
the outstanding example is the well- known cross-modulation or Luxem- 
bourg effect. 

Historically, Heaviside and Kennelly postulated the existence of a “con- 
ducting” layer in 1902 to explain the reflection of radio waves. Such a layer 
was called, at that time, the Kennelly-Heaviside layer. The first demonstra- 
tion that proved the existence of the ionosphere was carried out by Appleton 

50 t 
loe 10’ lolo Id’ Id2 1 0 ‘ ~  

Electron density/m3 

Fig. 1.1-1. Idealized ionization profiles of the terrestrial ionosphere at temperate lati- 
tudes near sunspot maximum. 
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and Barnett in 1925. They used the method of interference between the ground 
wave and the sky wave. Their conclusion was verified the next year by Breit 
and Tuve by measuring the time of flight of a radio pulse reflected vertically 
from the ionosphere. This technique is in principle retained even at  present 
and becomes one of the most powerful tools in modern ionospheric in- 
vestigation. 

1.2 Progress in the Study of Ionospheric Waves 

Like many fields, the progress in the study of ionospheric waves has been 
uneven. As is often the case, a massive effort in one field speeds up the 
progress in many related fields. Ionospheric research is no exception. 

The chief interest in ionospheric research in the 1930’s was motivated by 
the capability of the ionosphere to reflect radio waves. The existence of the 
ionosphere extended the frequency to the short wave spectrum and changed 
the mode of propagation from ground waves to sky waves. It was soon 
realized that the earth’s magnetic field played an important role in in- 
fluencing wave propagation and the magnetoionic theory was developed. 
It is interesting to note that Appleton developed the theory by using 
Lorentz’s results (1915) applicable to light propagation in solids, and 
generalized it to arbitrary propagation angle with respect to the magnetic 
field. Several other fields also helped. The work in electric discharges showed 
how the transport coefficients can be computed (Loeb, 1961). The work in 
astrophysics showed how the guiding center approach can be used to describe 
the dynamic properties of an ionized gas (AlfvCn and Falthammer, 1963). 

In addition to electric discharges and astrophysics, the recent massive 
efforts in space research and thermonuclear containment problems have 
helped ionospheric research directly or indirectly. Through these efforts, 
plasma physics has become a fullblown discipline. A chronology of plasma 
physics has been prepared by Allis (1962) and he went back as early as 
1733. As if to complete the circle started by Lorentz, these processes have 
assisted and have now extended back to the solid-state plasma. A non- 
mathematical review on this subject can be found in Chynoweth and 
Buchsbaum (1965). 

Steady progress has been made in the study of ionospheric waves since 
the development of the magnetoionic theory. In addition to the obvious 
interest in connection with the long range communication, research in 
ionospheric waves has long been proven to be very fruitful in gaining in- 
formation about the upper atmosphere. More sophisticated mathematical 
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techniques in wave theory and better understanding of the properties of 
waves in plasma from plasma research have helped in this area. In the 
last decade or so, more and more evidence pointed to the fact that the 
dynamics of the neutral atmosphere is coupled closely to that of the iono- 
sphere. Ionospheric waves play an important role in this relationship both 
as a participant in the coupling process and as a probing tool in the ob- 
servation. This adds a new aspect to the study of ionospheric waves. 

1.3 Scope of the Book 

The book starts in Chapter 2 with a review on electromagnetics, especially 
those aspects essential in a nonisotropic medium. The discussion is centered 
on the dielectric constant, although parallel treatment on the permeability 
can be done similarly. These discussions are approached from a fairly 
general point of view and do not have any specific medium in mind. Several 
concepts in temporal and spatial dispersion are brought out, depending on 
the time scale and spatial scale of the electromagnetic process. Restrictions 
on the form of dielectric tensor due to symmetry properties, causality, 
passitivity are elucidated next. It is then seen that in a uniform aniso- 
tropic medium, there exist characteristic waves which can propagate without 
change in their states of wave polarization. Energy considerations show 
that wave energy propagates with the group velocity in a transparant me- 
dium. This velocity can be interpreted geometrically by relating it to the 
refractive index surface. Such an interpretation is useful in  evaluating 
asymptotic Green’s functions which have applications on radiation and 
scattering problems. Even though the discussion in this chapter is centered 
on the electromagnetic waves, the mathematical techniques and the in- 
terpretations can be equally applied to other waves. As a matter of fact, 
some of the points were first developed by fluid dynamists in studying 
magnetohydrodynamic waves, ocean waves, and atmospheric waves. 

In exploring the ionospheric waves in subsequent chapters, we can find 
that there are essentially five areas: waves in plasmas, inhomogeneous 
media, random media, nonlinear media, and interaction with atmospheric 
waves. Because of the possible existence of many kinds of particles, a plasma 
may have a large degree of freedom. Consequently, as a medium, the plasma 
is extremely rich in sustaining wave motions. These are discussed in Chapters 
3 and 4. When the medium becomes inhomogeneous, as in the iono- 
sphere, the discussion on wave propagation depends on our ability to 
solve the partial differential equations with variable coefficients. In the high 
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frequency limit the ray concept can be used and the medium may be said 
to be locally homogeneous. When this is not the case-the phenomena of 
reflection+oupling can be treated most easily by choosing a horizontally 
stratified model. 

When the medium has many irregularities, the structure becomes ex- 
tremely complicated. In this case it is convenient to introduce a statistical 
approach and treat the medium as a random function of position. Phenom- 
ena discussed include scattering, fluctuations of amplitude and phase, 
and propagation of coherent waves. As is well known, the nonlinear 
wave is extremely complicated to treat. Several problems discussed in Chap- 
ter 7 are wave breaking, cross modulation, and wave-wave interaction. The 
last chapter starts with the propagation of acoustic-gravity waves. The 
interaction of these waves with the ionosphere is treated next. 

Two appendixes are included a t  the end of the book. These appendixes 
deal with techniques of asymptotic expansion. In Appendix A, the method 
of steepest descents is discussed briefly. Appendix B is devoted to the topic 
of asymptotic evaluation of radiation field due to localized source. The 
results are used at various places throughout the book. 

It should be remarked that throughout the book the boundary effect on 
wave propagation is not emphasized. This is so because we wish to confine 
our attention mainly to ionospheric applications. We also do not bring in 
the propagation of discontinuity and shock since it seems to be more 
properly a province of fluid dynamics. 

1.4 Notations 

In concluding this chapter we wish to say a few words about notations. 
We have found it convenient to use dyadic notations for several 

reasons. In the more elementary texts on electromagnetic theory vector 
notation is almost universally adopted. It seems to us that dyad is a natural 
extension of a vector. Fortunately, we usually stop at  dyadics, since triadics 
and tetradics are seldom needed. A dyad is nothing but a Cartesian tensor 
of rank two. Let x?~, i = 1, 2, 3, be three unit vectors, mutually orthogonal 
so that f, x f2 = 3 , .  For any two vectors A = A i f i ,  B = Bifi where 
repeated indices are summed from 1 to 3, the scalar and vector products are 
defined, 

A B = AiBi 
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where cijk is 1 if i, j ,  k are in cyclic order l,, 2, 3;  - 1 if i, j ,  k are in anti- 
cyclic order 1, 2, 3 ; and 0 if i ,  j ,  k are not all different. Let P be a dyad; then 

p = P..f.f. 
23 z 3 

We note that a unit dyad is 

1 z d..f.f.  

The dot product between two dyads or between a dyad and a vector can be 
defined by natural extension of vector dot product. For example, 

23 2 3 

The cross product can be defined similarly. Note the parallel of dot products 
with matrix multiplication. In matrix notation if P is a 3 x 3 matrix and A 
a three-dimensional column vector, the post multiplication of P by A is 
PA, but in order to make matrix multiplication conformable the premulti- 
plication of P by A requires A to be transposed, i.e., ATP. In dyadic nota- 
tion it is not necessary to take transposition. Operations involving dyad 
can be defined by writing 

P = Pi& 

where Pi = Pijfj and is a vector. Then 

A full discussion of dyadic analysis can be found in Morse and Feshback 
(1953). 
In order to avoid flooding the text with an unnecessary number of notations, 

we find it convenient to use the argument to distinguish the transform pair. 
A Fourier transform pair is denoted by the same symbol but distinguished 
by their arguments. For example, F(r, w )  is the Fourier transform in time 
of F(r, t )  and F(k, w) is the Fourier transform in space of F(r, w) .  For an 
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electromagnetic process starting at t = 0, we have 

F(k, w )  = J:w Jm F(r, t)e-j(wt-k”) dt dr 
0 

and its inversion 

The contour c is sometimes referred to as the Laplace contour and is parallel 
to the real w-axis and below all singularides of F(k, w )  in co-space. 
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2. Review of 
Electromagnetic Theory 

In this chapter we review electromagnetic theory, especially those as- 
pects that deal with propagation in an anisotropic medium. The presence 
of the electromagnetic field in the medium is to induce polarization charges 
and magnetization currents. If the electromagnetic process is slow in time, 
the medium can respond instantaneously. However, if the process is fast, 
the response is no longer instantaneous and in such a case, the medium is 
said to possess temporal (or frequency) dispersion. Similarly the absence or 
presence of spatial dispersion depends on whether the thermal effects are of 
importance. These different ways of classifying the medium are discussed in 
fairly general terms in this chapter. We also note that the medium may 
possess physical properties such as causality and passiveness. The presence of 
these physical properties means that the Hermitian and anti-Hermitian part 
of the dielectric tensor are not arbitrary, they must be related through the 
Kramers-Kronig relations. Further, irreversible thermodynamic considera- 
tions show that the dielectric tensor must possess certain symmetry prop- 
erties known as the Onsager relation which implies that only six of the nine 
elements in the dielectric tensor are independent. 

The propagation of plane waves in a general anisotropic medium is 
discussed next. It is found that only those waves called characteristic waves 
can propagate without change of wave polarization. Energy considerations 
show that in a lossless medium the group velocity can be interpreted as the 
velocity of energy flow. The group velocity is also seen geometrically related 

11 
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to the refractive index surface. The geometric relation is further amplified 
when excitation of radiation field is considered. 

No specific medium is discussed in this chapter. The emphasis is on the 
general techniques. The basic idea in the approach adopted in this book is 
that the medium is described macroscopically by the dielectric tensor. The 
excitation and propagation of waves in this medium are then discussed 
accordingly. 

2.1 Maxwell’s Equations 

We shall accept Maxwell’s equations as a set of physical laws which 
govern the behavior of the macroscopic electromagnetic fields. Historically 
these laws were established from a consistent induction of a vast wealth 
of experiments with notable contribution from Coulomb, Ampere, Faraday, 
and many others. The reader is supposed to be familiar with such an ap- 
proach from a more elementary course. 

The physical quantities dealt with in this macroscopic theory are smoothed 
over a volume in which the density function is meaningful. This is necessary 
because of the discrete nature of the charged particles. 

Maxwell’s equations deal with the interdependence of four field vectors: 
E (electric field vector), H (magnetic field vector), D (electric flux den- 
sity), and B (magnetic flux density), and their dependence on the sources. 
In the limit of static case the electric fields and the magnetic fields become 
decoupled, the electric charge is the source only of the electric field, and the 
current is the source only of the magnetic field. This is no longer the case 
when the sources are time dependent. The time-dependent electric field and 
magnetic field become coupled and it is more conventional to speak of 
electromagnetic fields. 

In the international system of units Maxwell’s equations are written as 

V X E = - B  (2.1. l a )  

V X H = J + D  (2.1.1 b) 

V . D = e  (2.1.1c) 

I 7 . B  = O  (2.1. Id) 

where an overdot is used to denote the partial differentiation in time, 
apt.  The first equation is the Faraday’s induction law which states that 
electric field may be induced by the time-varying magnetic field. The second 
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equation was originally due to  Ampere but generalized to  the time-varying 
case by Maxwell by adding the displacement current, b; it expresses the 
fact that the source of the magnetic field is current and that the magnetic 
field is coupled back to  the electric field. The third equation is known as 
Gauss’s theorem and states that electric flux starts and ends on charges. 
The fourth equation shows that magnetic flux lines are closed. 

Since the current is manifested by the motion of charged particles it may 
be expected that J and e must be related in some way. In fact that this is so 
may be seen by taking the divergence of Eq. (2.1.1b) and making the 
substitution of Eq. (2.1.1~). The resulting equation is 

ap/8t + V * J = 0 (2.1.2) 

which is known as the equation of continuity. The physical meaning of Eq. 
(2.1.2) is quite clear. It says that the time rate of increase of charge density 
a t  any point must be equal to  the inward flow of current density to  the same 
point, which is consistent with the law of conservation of charge. 

Actually the current and charge appearing in Eqs. (2.1.1) deserve some 
comment. A more thorough discussion on them can be found in a later 
section. For the moment it is sufficient to say that the current in Eq. (2. I.lb) 
includes the externally applied current, the conduction current (if the me- 
dium is a conductor), and the convection current. The charge in Eq. (2.1.1~) 
includes the externally applied charge and the free charge. In  a material 
medium there may be other currents and charges. 

Now, Maxwell’s equations (2.1. l a )  through (2.1. Id) are equivalent (at 
most) to  eight equations for twelve scalar unknowns even if the current and 
charge are assumed given quantities. Other relations between the fields are 
needed if the system of equations is to be determinate. These subsidiary 
relations are called material equations and they are supposed to  describe 
completely the behavior of the matter in the electromagnetic field. In free 
space the material equations take the simplest forms 

D = cOE, B = p0H (2.1.3) 

where the dielectric constant and the permeability of free space are given, 
respectively, by .~ 

c0 = (poc2)-1 F/m 

p0 = 4 n  x lo-’ H/m 
(2.1.4) 

The velocity of light in free space appearing in the first equation of (2.1.4) 
has been measured to a high degree of accuracy. The most recent value 
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adopted by URSI is 

c = 299,792.5 f 0.4 km/sec 

N 3 x lo8 mlsec 
(2.1.5) 

Substituting the approximate value of c into the first equation of (2.1.4) 
gives 

Eg N (1/36n) x lop9 F/m (2.1.6) 

to a high degree of approximation. 

2.2 Vector and Scalar Potentials 

As mentioned in the last section Maxwell’s equations alone are not enough 
to solve for all the unknown quantities, and there is need of subsidiary 
relations. In free space these relations are given by (2.1.3). The two vector 
equations in (2.1.3) are equivalent to six scalar equations. When added to 
the eight equations due to Maxwell we have a total of fourteen equations 
for twelve scalar unknowns. Therefore, it seems that we may be over- 
specifying our system. In order to resolve this question let us suppose that 
the fields are excited by the given charge and current sources in free space. 
For this case Maxwell’s equations take the form 

(2.2.1 a)  

(2.2.1 b) 

(2.2. lc) 

(2.2. Id) 

By vector identity, the divergence of curl of a vector is identically zero. 
If we take divergence of the entire equation (2.2.la) and apply this vector 
identity, we obtain 

(a/at)V B = 0 (2.2.2) 

Integration of (2.2.2) with respect to  time tells us that the divergence of 
B is a temporal constant which, according to (2.2.ld), must be zero. There- 
fore, Maxwell’s equation (2.2.ld) can be viewed as the initial condition on 
div B, i.e., if the magnetic fields is initially solenoidal, it must be so for all 
times as indicated by (2.2.2). Similarly, by taking the divergence of (2.2.1 b) 
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and applying the equation of continuity (2.1.2), we obtain 

(a/at)(V * E - e / E o )  = 0 (2.2.3) 

In the same vein, Gauss's theorem (2.2.1~) can also be viewed as the initial 
condition of (2.2.3). 

Now we wish to relate the field directly to sources. The simplest approach 
makes use of vector and scalar potentials. We proceed in the following. 

The magnetic field is seen to be solenoidal by (2.2.ld). There then must 
exist a vector potential A whose curl is B. That is 

B = V % A  (2.2.4) 

Substitution of (2.2.4) in (2.2.la) tells us that E + A is irrotational so that 
we can define a potential function whose negative gradient is equal to this 
vector, i.e., 

E = - v v - A  (2.2.5) 

The fields when defined by potentials through (2.2.4) and (2.2.5) satisfy 
the homogeneous equations (2.2.1 a) and (2.2. Id) automatically. However, 
we note that B and E are unchanged by the transformations 

A + A - V v  

v-. v + ay/at 
(2.2.6) 

where y is an arbitrary function of coordinates and time. The transformation 
(2.2.6) is known as the gauge transformation and the invariance of fields 
under such a transformation is called gauge invariance. Evidently B and E 
defined by (2.2.4) and (2.2.5) are gauge invariant. 

So far we have made use only of the two homogeneous Maxwell's equa- 
tions (2.2.la) and (2.2.ld). Substitution of (2.2.4) and (2.2.5) in the in- 
homogeneous Maxwell's equations (2.2.1 b) and (2.2. Ic) gives 

V2A - A/c* - V(V * A + T/c') = -poJ 

A + T/C') = - p / E 0  

(2.2.7) 

(2.2.8) V2V - V/c2 + (a/at)(V 

where the vector identity V x V % A = V(V A )  - V2A has been used. 
The velocity of light in free space is related to the dielectric constant and 
the permeability through (2.1.4). According to Helmholtz's theorem of 
vector analysis any vector field which is finite, uniform, and continuous and 
which vanishes at infinity, is uniquely specified only when both its curl and 
its divergence are known. The curl of A is defined by (2.2.4). But the diver- 
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gence of A is yet undefined. Inspection of (2.2.7) and (2.2.8) indicates that 
it is convenient to define it by a relation known as the Lorentz condition 

(2.2.9) * A + V/c2 = 0 

Introduction of the Lorentz condition in (2.2.7) and (2.2.8) reduces the 
equations for vector potential and scalar potential to a symmetric form 

V2A - Ale2 = p0J 

v*v- v/c2 = -@/Eo 

(2.2.10) 

(2.2.1 1 ) 

This condition also requires that the gauge in (2.2.6) satisfy the homogeneous 
wave equation 

VZY, - q/c2 = 0 (2.2.12) 

The inhomogeneous wave equations (2.2.10) and (2.2.11) can be solved 
by several different methods, among them the Fourier transform technique. 
This is done in books on electromagnetic theory and the reader should con- 
sult these books for detailed step-by-step derivation. The particular solu- 
tions are expressed in terms of integrals over sources. They are 

where r = (x,  y, z )  are the coordinates of the observational point and 
r’ = ( x ’ ,  y ’ ,  z’) the coordinates of the source point. The integration is carried 
out over the volume of all sources. Note that the potential at time r depends 
on the behavior of the source at times t f to(r, r’) where to is the time re- 
quired for the wave to travel from the source point to the observation point. 
Mathematically, both signs are valid. Physically, because of principle of 
causality, we expect the cause to  precede the effect. The study of waves in 
free space has shown that perturbations in fields travel with a velocity c. 
It is, therefore, reasonable to  expect that the field measured at present is 
caused by the behavior of the source at a time ro(r, r’) = I r - r’l/c earlier. 
This means that we take the lower sign in (2.2.13a) and (2.2.13b). Solutions 
with the minus (lower) sign are known as the retarded solutions and those 
with the plus sign the advanced solutions. The advanced solution appears 
to have no physical significance, except occasionally it is used as a mathe- 
matical aid. 
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If the source functions J and e are known, the integrations (2.2.13a) and 
(2.2.13b) give us the vector and scalar potentials. The electromagnetic fields 
can be computed when these potentials are substituted into (2.2.4) and 
(2.2.5). 

2.3 Electric and Magnetic Polarizations 

In free space the material equations take particularly simple forms given 
by (2.1.3) and Maxwell’s equations simplify to (2.2.1). In a material medium 
such simple relations are generally not valid. Under the influence of electro- 
magnetic fields, microscopic charge distributions associated with molecules 
and atoms are distorted, producing electric and magnetic dipole moments. 
To describe the effects on the medium, we introduce the electric and magnetic 
polarization vectors as quantities of departure from those given by (2.1.3) 
I.e., 

(2.3.1) P = D - EOE, M == B/,LL~, - H 

In free space both P and M vanish. The presence of P and M must, therefore, 
indicate the effect of medium. 

Let us substitute (2.3.1) into Maxwell’s equations (2.1.1). By a slight 
rearrangement, the equations can be put in a form 

V X E + B = O  

(2.3.2) 

The form (2.3.2) for material media is identical to  form (2.2.1) for free 
space, except that total current and total charge have been used here instead 
of free charge and free current in (2.2.1). The total current and total charge 
are defined, respectively, by 

J ~ =  J + V  X M + P  (2.3.3) 

@T = @ - v * P (2.3.4) 

Maxwell’s equations written in the form (2.3.2) is not useful in obtaining 
solutions since the total current and charge given by (2.3.3) and (2.3.4) 
involve the polarization and magnetization which depend on the unknown 
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fields E and B. The form is useful to  physically interpret the origin and 
meaning of terms appearing in (2.3.3) and (2.3.4) in a material medium. 
So far we only know that V X M and P have dimensions of a current 
density and -V - P that of a charge density. We can also show by substitu- 
tion that when defined this way the equation of continuity 

is satisfied. We must still show the physical significance of such a definition. 
This is done in the following, 

We note the similarity in  form of Maxwell’s equations (2.3.2) i n  material 
media and those equations (2.2.1) in free space. As before define a vector 
and a scalar potential by 

B = V X A  

E = - V V -  A 
(2.3.6) 

(2.3.7) 

If again the Lorentz condition is prescribed, i.e., 

V * A + V / C 2  = 0 (2.3.8) 

a set of inhomogeneous wave equations can be obtained in an identical 
manner. They are 

(2.3.9) 

(2.3.10) 

V2A - A / C 2  = -poJT 

P V -  v/cz = - eT/% 

The retarded solutions to these equations are, respectively, 

dv’ (2.3.11) 
JT(r’, t - I r - r’ I/c) 

1 r -  r’[ 

The expressions (2.3.1 1) and (2.3.12) show very clearly that equivalent 
sources of the field in a material medium consist of not only free charges 
and free currents but also other quantities arising from polarization of the 
medium. Our purpose is to identify the physical meaning of these other 
quantities. To do  this we introduce the square brackets to  indicate a quan- 
tity at the source coordinates and evaluated at a retarded time. The po- 
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tentials given by (2.3.1 I )  and (2.3.12) in this new notation can be written as 

[JI + [V’ x MI + R-) [PI dv‘ (2.3.13) 
R 

R 
1 

V(r, t )  = - 

where 
R = r - r ’  

(2.3.14) 

(2.3.15) 

and V‘ operates on the source coordinates rr. 
By using the chain rule in differential calculus we obtain 

17’ X [MI = [V’ X MI + R x @I]/cR 

17’ - [PI = [V’ * PI + R * [P]/cR 

Substituting these identities into expressions (2.3.13) and (2.3.14) results in 

R 
1 1 
R cR 

f” J,, {$ + - V r  X [MI - 7 R X [MI + A(r, t )  = -2- 

(2.3.16) 

(2.3.17) 1 1 1 
V r  - [PI + R - [PI dd 

1 
V(r, t )  = - 4n&, J,,{+- 
The second term i n  the integrands of (2.3.16) and (2.3.17) can be reexpressed 
through the use of vector identities 

Integrate these equations and make use of Gauss’s theorems 
volume integrals to surface integrals 

M 
Jv ,Vr  x ($) dv’ = - JsR x dS 

s,,V’ (g) dv’ = 1,; a dS 

to change 

(2.3.18) 

(2.3.19) 
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We obtain, after rearrangement of terms, the following relations 

du' = I,, M X Vr(+) du' - jky $ x dS J,. " 

du' = - jv, P V'(f)  du' + jay . dS 

The surface integrals in these relations vanish if we choose the surface of the 
integration so that the material substance lies inside of the region. Replace 
the second terms of (2.3.16) and (2.3.17) by using these relations. The 
result is 

R 
1 

A(r, t )  = - :' J V , { T + [ M ] x V ' -  ( :) ---RX cR2 [ M I + -  

(2.3.20) 

1 1 
4 ~ ~ 0  v' R ( A )  c R  

V(r, t )  = - J {m + [ P I  - (7' - + 7~ [P]}du' (2.3.21) 

The expressions (2.3.20) and (2.3.21) are in convenient forms for physical 
identification. We shall do this first for the scalar potential. 

The first tern1 in the integrand of (2.3.21) is [ @ ] / R .  It represents the usual 
Coloumb potential of free charges in vacuum given by (2.2.13b). The 
next two terms show the effect of the material medium to the potential. 
Their physical significance can be investigated by considering a dipole 
arrangement of charges. 

Let two point charges of equal magnitude but of opposite sign be placed 
a small distance 5 apart as shown in Figure 2.3-1. The potential due to 
this dipole arrangement can be written simply as 

( x ,  Y, 2) 

Fig. 2.3-1. A dipole arrangement of 
two charges. 

-4 
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Since 5 is small, we may expand the second term in Taylor series and obtain 

4(t - I R + 5 I/c) - 40 - R/c) 
- 

4n% I R + 5 I 4nEoR 

- 1415 ’ V’(l/R) - ([91/cR2)R * 5 
+ higher order terms (2.3.23) 

In the limit of vanishing E ,  we can define 

lim [415 = [PI 
P O  

(2.3.24) 

where p is the dipole moment. The potential arising from such a dipole 
arrangement is then obtained from substituting (2.3.23) back to (2.3.22), 
giving 

(2.3.25) 

This is the potential due to a single dipole. Suppose such dipoles are dis- 
tributed throughout the volume with a density P. We must then find the 
resultant contribution by integrating over the volume, i.e., 

1 
{[PI - V’(R) 1 + cRz 1 R [PI} dv’ (2.3.26) Vn(r, t )  = - 

4nE0 

Comparing (2.3.26) with (2.3.21), we see that the last two terms of (2.3.21) 
are identical to (2.3.26). Therefore, the scalar potential in  material sub- 
stances given by (2.3.21) is arising from two sources of contributions: the 
free charge e as the case in free space and a distribution of dipole moments 
of volume density P. Due to presence of the electric field, microscopic 
charge arrangements are perturbed. These perturbations set up equivalent 
dipole moments as shown in Figure 2.3-1. When the electric field is weak, 
the dipole moment P is usually linearly dependent on  E. When the field 
is strong the relation may become nonlinear. Our purpose is to derive such 
relations for plasmas under different conditions. 

The terms appearing in (2.3.20) for the vector potential can be physically 
identified in the same manner. The first term [J]/R is the usual contribution 
from the free current and is the only term in free space. The remaining three 
terms indicate contributions associated with the material medium. Micro- 
scopically a molecule or an atom has electrons orbiting about a nucleus. 
Effective current may result on a macroscopic scale if there exists imperfect 
orbit cancellation on an atomic scale. Such a current is called the magne- 
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tization current and is the origin of the second and third terms in the in- 
tegrand of (2.3.20). In a plasma the magnetization effect is negligible and we 
shall not choose to discuss this in  detail here. The interested reader should 
consult books on electromagnetic theory for a more complete discussion. 
The last term in (2.3.20) is related to the time rate of change of the electric 
polarization. Microscopically, it comes from the motion of dipole moments. 
We proceed to prove it in the following. 

The microscopic dipole moment is given by 

P = e p 4  (2.3.27) 

where eP is the microscopic polarization charge and 5 the separation between 
the negative charge and the positive charge. Since (2.3.27) is a microscopic 
expression it is highly irregular on an atomic scale. The time rate of change 
of the microscopic dipole moment may be caused by the motion of these 
dipoles or  by changes in the separation distance. Hence, 

where the equation of continuity has been applied to  obtain the last ex- 
pression in (2.3.28). The quantity u is the velocity of the polarization charge. 
The vector identity 

50 (epu) = 17 * (epu4) - epu n 
= 17 ' ( Q P U 4 )  - epu 

can be used to recast (2.3.28) into the following form: 

a p i a t  = -v - + ePu + ept (2.3.29) 

The expression (2.3.29) is still for microscopic quantities. The macroscopic 
expression can be obtained by integrating (2.3.29) over a volume A V 
which is large compared with the atomic scale but small compared with the 
macroscopic scale. The integration of the divergence term vanishes since 
there is no surface charge density in  the medium. The time rate of change of 
the macroscopic polarization density is then given by this integral divided 
by the volume LIP', i.e., 

(2.3.30) 
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where the angular brackets are used to  denote the averaging process. The 
expression (2.3.30) states that the time rate of change of polarization density 
arises from transport of polarization charges and change in the separation 
of polarization charges. 

In  summary we see that Maxwell’s equations in a material medium can be 
written in a form identical to that in  free space, provided we take into 
account all sources. These sources include true current, magnetization cur- 
rent, and polarization current as current sources, and true charge and polar- 
ization charge as charge sources. Comparing (2.1.1 c) with the third equation 
of (2.3.2) we see that the source for the electric flux density is free charge 
alone while that for the electric intensity is the total charge. For this reason 
D is referred to as the partial field sometimes. However, it should be men- 
tioned that the Maxwell’s equations in the form (2.3.2) are useful only to 
provide physical insights and not convenient for problem solving purposes. 
As a matter of fact (2.3.13) and (2.3.14) are not true solutions since P 
and M are related t o  the unknown electromagnetic fields. What we need 
are material equations. A general discussion on these relations is carried 
out in the next three sections. 

2.4 Slow and Fast Processes 

The material equations in free space are particularly simple. They are 

(2.4. I ) 

given by 

D(r, f) = E o E ( ~ ,  t ) ,  B(r, t )  = ~oH(r ,  t )  

Such relations are linear, nondispersive, isotropic, and local. These adjec- 
tives are used very often in describing material equations. We shall explain 
their meaning more carefully in the following. 

Consider a certain medium in which there exists a relation between D, 
and E l .  The relation may be that given by (2.4.1) or one that is more 
complicated. Similarly for the same medium we find that there exists a 
relation between D, and E,. The relation is said to be linear if D, + D, 
and El + E, satisfy the relation. The medium is defined as a linear medium 
if linear relations exist between D, B and E, H. Obviously material equations 
(2.4.1) are linear. The relations (2.4.1) are the simplest linear relations since 
they are algebraic. A more complicated linear relation would be one in which 
E,, in (2.4.1) is replaced, for example, by a linear operator. We shall have 
occasion to discuss some of these cases later on in this section. 
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In a material medium the relations (2.4.1) are in general no longer valid. 
The difference is caused by the electric polarization and magnetization of the 
medium. The presence of the electromagnetic fields distort the charge dis- 
tribution on a molecular scale. This distortion is the origin of the electric 
polarization charges, magnetization currents, etc. If the fields vary in time 
sufficiently slowly the establishment of the polarization effect is nearly 
instantaneous. This means that the electric polarization at  time t depends 
only on the electromagnetic field a t  the same instant 1. In this case the 
medium is said to be nondispersive. 

The material relations in a nondispersive medium (as well as linear, 
isotropic, and local) are expected to be similar to (2.4.1). Since the response 
of the medium is instantaneous, we have 

P(r, 0 = ~ ~ x ( W r ,  0, W, t>  = x,(r)H(r, 0 (2.4.2) 

where x and xm are, respectively, electric and magnetic susceptibility. They 
depend on the thermodynamic state of the medium. Substitution of (2.4.2) 
into (2.3.1) gives 

D = t o (  1 + x)E = E O K E ,  B = PO( 1 + xm)H = pOK,H (2.4.3) 

where K and K,,, are, respectively, the relative dielectric constant and relative 
permeability. 

However, as the time variation of the electromagnetic fields increases 
this instantaneous dependence is no longer expected. Due to finite mass of 
these charges, there always exists at least one frequency, w,, which charac- 
terizes the speed of establishing the polarization state. As the frequency 
of the fields approaches or exceeds w,, the response of the medium cannot 
keep up with the change in the fields. The instantaneous relations such as 
those given by (2.4.1) are no longer valid. The medium is then said to be 
time dispersive. 

The material equations (2.4.1) are isotropic because they are invariant 
under rotational transformations about any axis. This is no longer true, 
for instance, in a magnetoplasma in which must be replaced by a tensor 
and the medium is said to be anisotropic. 

In  most cases, material equations are derived by averaging over a volume 
whose linear dimension is large when compared with the characteristic 
length A, of the medium and small when compared with the wavelength 
A of the electromagnetic field in the medium. Suitable choices of charac- 
teristic length are the atomic dimensions, lattice constant, and Debye length. 
The wavelength in the medium is related to wavelength in free space, A,, 
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by the relation il = I,/n = c/nf, where n is the refractive index, c the velocity 
of light in free space, and f the frequency. Therefore, our requirement 
AJil < 1 becomes 

;2enflc < 1 (2.4.4) 

When the inequality (2.4.4) is valid, the polarization of the medium is 
expected to depend on the electromagnetic fields at  the same location. The 
resulting material equations must be local since D at r is related to E at the 
same rand  similarly between B and H. Inspection of (2.4.4) shows that there 
are two cases in which (2.4.2) may be violated: (i) the frequency f is suf- 
ficiently large or (ii) the refractive index becomes very large. The violation 
of (2.4.2) means that the material equation cannot be a local one. The 
vector D at r depends not only on E at r but. also on E at points in the 
neighborhood of r. If this is the case, the medium is said to be spatially 
dispersive. The local and nonlocal relations can also be looked at  from a 
different point of view. When the medium is cold, the particles are essentially 
stationary. The effect imparted by the fields is not likely to be carried to a 
neighboring point. Therefore, the material equation is expected to be a 
local relation. However, as the temperature of the medium increases thermal 
agitation may start to carry the effect felt at  a point to a neighboring point. 
This is then the beginning of spatial dispersion. 

The consideration of more and more general material media will be carried 
out in steps. In plasma media the permeability is nearly always that of the 
free space while the dielectric constant may take different forms. In order 
to simplify our discussion in the following we shall consider the dielectric 
constant only, although similar arguments and reasoning can be applied to 
permeability. We proceed to consider the time dispersion first. 

For sufficiently weak fields we may assume a linear relation between P 
and E. As the time variation increases the instantaneous relation between P 
and E is no longer expected. The polarization of the medium will depend 
on the value of the electric field at  present as well as at  previous times. 
The principle of causality is a very basic physical principle and it states that 
the effect must always come after the cause. This is essentially the basis for 
adopting the retarded potentials in (2.2.13a) and (2.2.13b) as the solutions 
of the inhomogeneous wave equations. The application of this principle in the 
present case indicates that P a t  t must depend on E at all times previous to t .  

Let the field be applied at r = 0; the most general such relation we can write is 

P(r, t )  = E, X(r, t ,  t)E(r, t) dt s1 
+ (contribution related to initial conditions) (2.4.5) 
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The polarization density depends on the value of the electric field from the 
initial time t = 0 to the present t .  The contribution is integrated over this 
time interval with a weighting function x(r, t ,  t). In general there is also a 
contribution related to the initial state of polarization. For t large the 
initial conditions may have decayed sufficiently with time in a lossy medium. 
We shall assume that this is the case and ignore the contribution due to 
initial conditions. 

If the property of the medium does not change with time the weighting 
function x(r, t ,  t) should be invariant with respect to the time translation, 
i.e., 

~ ( r ,  t ,  t> = ~ ( r ,  t + t ,  , z + td (2.4.6) 

In particular if t ,  = -t, the third argument reduces to 0 which can be 
suppressed and we have 

x(r7 t ,  t) = x(r, t - t) (2.4.7) 

Substitute (2.4.7) into (2.4.5), giving 

P(r, t )  = X(r, t - t)E(r, Z) dt 1: (2.4.8) 

Here we have assumed that the electric field has been applied for a time of 
sufficient length so that initial conditions do not contribute. When (2.4.8) is 
substituted into the Maxwell's equations, we have a set of integrodifferential 
equations. To solve them, we note that (2.4.8) is in the form of a convolu- 
tion integral and we shall therefore apply the convolution theorem in the 
theory of Fourier transform. In order to avoid flooding the text with an 
unnecessary number of notations we shall use the argument to distinguish 
the transform pair. For example, 

c 
(2.4.9) 

E(r, t )  = (1/2n) E(r, w)ejwt do J, 
Therefore, E(r, t )  and E(r, w )  form a Fourier transform pair. Similar 
notations are used for other quantities. The contour c in the second equation 
of (2.4.10) is sometimes referred to as the Laplace contour and is parallel 
to the real w-axis and below all singularities. In the transformed domain, 
(2.4.8) can be written as 

w, w )  = &OX(', o ) W ,  w) (2.4.10) 
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This in turn gives, through (2.3.1), 

D(r, w) = E(r, w)E(r, w) 

where the dielectric constant is given by 
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(2.4.1 1 ) 

(2.4.12) 

where K(r, w) is the relative dielectric constant and is given by 

(2.4.13) 

The integration is from zero to +m because of the causality principle. 
With the application of Fourier transform, the original set of Maxwell’s 
equations becomes a set of partial differential equations which will be studied 
in detail. But before we go into the discussion of the solution of the set of 
equations, we shall first consider the properties of more general materials. 
As mentioned above, the property of the medium may be anisotropic such 
that the polarization is not in the same direction as the electric field, as in 
most crystals as well as magnetoplasmas. Furthermore, if the condition 
(2.4.4) is not satisfied,a nonlocal relation may exist between D and E. 
Under these conditions, the most general linear relation between the com- 
ponents of the polarization and electric field can be written as 

Pi(r, t )  = E~ dt xij(r, r‘, t, T)Ej(r’, t) dr’ (2.4.14) s: s 
where xij is the ijth component of a tensor and summation must be carried 
out over all subscripts that occur twice. Contributions from initial condi- 
tions are neglected as before. If the medium is temporally stationary and 
spatially homogeneous so that its property is invariant under translation in 
time and space, then 

xij(r, r’, t ,  t) = xil(r - r’, t - t) (2.4.15) 

and (2.4.14) becomes 

Pi(r, t )  = E~ dt xij(r - r‘, t - t)Ej(r’, t) dr’ (2.4.16) Sb s 
which is again in the form of a convolution integral. When time and space 
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Fourier transform is applied to (2.4.16), we obtain 

The Fourier transform pair is defined as 

(2.4.17) 

(2.4.18) 

where the contour c is the same as that in (2.4.9). Similar expressions exist 
for other quantities. From (2.4.17) and (2.3.1), we have 

Here 6, is the Kronecker delta. Equations (2.4.19) and (2.4.20) may be 
thought of as the definition of the dielectric tensor Eij(k, w )  and relative 
dielectric tensor Kij(k,  w). This is the general material equation relating the 
two field quantities D and E in  a linear, stationary, and homogeneous 
medium. Similar consideration will lead to the corresponding relation 
between B and H. We shall not discuss it here. 

We note that in the limit k + 0, Ki,(w, k + 0) becomes the relative dielec- 
tric tensor for a medium in the absence of spatial dispersion. If furthermore, 
the medium is isotropic, then Ki j (w)  = di jK(w) .  In general, for an isotropic 
medium with spatial dispersion, the relative dielectric tensor should be 
symmetric and invariant under rotational transformation about the vector 
k .  Under these conditions, it can be shown that (see problem at the end 
of this chapter) 

Kij(k, 0) = KL(k2, w)(Sij - kikj/k2) + K,,(k2, w)kikj/k2 (2.4.21) 

where KL and K,, are functions of w and k2  only. They are referred to as the 
transverse and longitudinal relative dielectric constants in an isotropic 
medium. We will come back to this in a later section. 
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2.5 Kramers-Kronig Relations 

In this section we shall discuss some important general properties of the 
relative dielectric tensor Kij(k, w )  based on its definition and certain very 
general physical laws. 

Kij(k, w )  by its definitions is, in general, a complex function of the two 
independent variables k and w. The dependence on w indicates the time 
dispersion of the medium while the k dependence indicates the spatial 
dispersion. From the principal of causality we see that xij(r, r) = 0 for 
t < 0. Also xi&, t )  is finite and approaches zero when t -+ 03. This simply 
means that the establishment of the polarization at  present cannot be 
appreciably affected by the electric field at  the remote past. Further, for an 
electric field given by Ej(r, t )  = Ejo 6(r - rl) 6(t  - tJ, Ejo a constant, the 
polarization given by (2.4.16) is EOxi,(r - r,, t -- tI) Ejo.  Therefore, 
xij(r - r’, t - t) can be interpreted as the response of the medium to an 
impulse applied at  time t = t and position r = r’. In a passive medium on 
physical ground, we expect this “impulse” response to decay with increasing 
time for t > t and with increasing distance I r - r‘ I .  Alternatively, we 
expect xij(r, t )  to be a monotonically decreasing function of t and 1 r I. 
From the definition (2.4.20) it follows that xij(k, w )  and hence also Ki,(k, w )  
must be regular in the lower half-plane of the complex w = w’ + jw” 
plane. This can be seen easily by letting 0’’ < 0 in the integrand in (2.4.20). 
In the upper half-plane of w the definition of Kij(k, w )  has to be extended 
by analytical continuation and in general it does have singularities. As 
I w I + 03 in any manner in the lower half-plane, Kij tends to the unity 
tensor dij as can be seen easily from (2.4.20). For w 4 0, Kzj is finite for 
dielectric material but has a simple pole for a conducting medium. 

Kij(k, w )  is a regular function of k in the whole region of the complex 
variable k since in general xij(r - r‘, t - t ’ )  approaches zero as r - r’ 
increases to infinite. 

In Maxwell’s equations (2.1.1), the fields E(r, t ) ,  etc., are all physical 
quantities and hence are all real. It follows from (2.3.1), and (2.4.14) and 
(2.4.20) that Eij(r, t )  must also be real. However, its transform Eij(k, w )  
is in general not real. The properties of Eij(k, w )  can be found by noting 
(2.4.20) which gives 

K&*, o*) = K;(-k, -0) (2.5.1) 

where * is used to denote complex conjugate. We denote the relative dielec- 
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tric tensor by its Hermitian and anti-Hermitian parts as 

Kij(k, W )  = K&(k, O )  - j K { ( k ,  0 )  (2.5.2) 

(2.5.3) 

are both Hermitian tensors ( jK i j  is anti-Hermitian). From (2.5.2), we have 

Re Kij = Re K& + Im K$ 

Im K i j  = Im K!. - Re K&’ 23 

(2.5.4) 

where Re denotes real part and Im denotes imaginary part. 

it is easy to see from (2.5.1) that 
If the medium is not spatially dispersive, i.e., K i j  is independent of k, 

Re K i j ( o r )  = Re Kij(-w’), Im Kij(w’) = -1m Ki j ( -wr )  (2.5.5) 

which means that the real part of Kij  is an even function while the imaginary 
part of Kij is an odd function on the real axis of the complex w-plane and 
Kij is real on the imaginary axis of the w-plane. 

From the analytic properties of Kij discussed above, it is possible to derive 
some general relations between the Hermitian and anti-Hermitian parts of 
the tensor. To see this, let us consider the following integration in the 
complex w-plane. 

&(k, W )  - Sij 
dw 

c 0 - - 0  

(2.5.7) 

where the contour c is shown in Fig. 2.5-1. Here we shall assume that Kij  
may have a simple pole at the origin but otherwise it is analytic on the 
real axis and the lower half-plane. The simple pole at the origin is to take 
care of the case where the medium may possess a dcconductivity. The integral 
is zero since the integrand is regular inside the contour. The contour can be 
broken into several parts: the principal part integrating from --oo to $00 

on real axis, the small indentation about the pole at  w,,, the small indenta- 
tion about the pole at  the origin, and the big semicircle. The contribution 
from the big semicircle vanishes at the limit. The remaining contributions 
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w“ 

Fig. 2.5-1. The contour c for the integral in (2.5.7). 

can be evaluated by using the residue theorem in complex variables, giving 

where we have changed w, to w’. The symbol P i n  front of the integral sign 
denotes the Cauchy principal value which means in our case 

+m &j(k, X) - Sij 
dx ps-, x - w ’  

oij(k, 0) is the dc conductivity of the medium defined as 

aij(k, 0) = j e ,  lim w’Kij(k, 0’) (2.5.10) 
O’+O 

Equating real and imaginary parts of (2.5.8), we obtain 

+m Im Kij(k, x )  
Re Kij(k, 0’) - 6, = - P dx 

- l  n s --m x - w ‘  
(2.5.1 1) 

- oii(k’ ‘’1 dx (2.5.12) 
1 Re Kij(k, x )  - 6, Im Kij(k, w ’ )  = - P 
n JI,[ x - w l  E O d  

These relations are known as Kramers-Kronig relations first derived by 
them in 1927 for an isotropic medium without spatial dispersion so that 
Kij(w, k) = 6$(w). These relations follow directly from the analytic 
property of Kij that it is regular in the lower half-plane of w. Therefore 
we can conclude that the Kramers-Kronig relations are the consequence of 
the principle of causality. 
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Since Kij  and K; given by (2.5.3) are both Hermitian, we have 

K& = Re KG + j Im K& = (&:)* = Re Kii - j Imh;  
(2.5.13) K!! - Re K!! + j Im K!! - (K!!)* = Re Kj; - j Im K;; 

a3 - Y 23 - 3% 

Therefore Re K& and Re K/i are symmetric tensors while Im K& and 
Im K/i are antisymmetric. Substituting (2.5.4) into (2.5.1 1) and making 
use of the symmetric and antisymmetric properties of the tensors, the 
Kramers-Kronig relations can be put into the form 

dx 
1 S+m ReK$(k,x) Re K,>(k, w’) - 6.. = - P 

a3 7c -- x - w f  

a& 0) - - 1 +m Re K;(k, x )  - dij 

+m Im K&(k, x )  

Re Klj’(k, of)  - E O O f  --PI x x -  0’ dx 
-m 

(2.5.14) 

Im Kij(k, 0‘) = - P dx 
--I x s -m x - o r  

1 j+w I m K i # c , x )  dx 
Im K&(k, of)  = - P 

7c -m x-wO‘ 

where aij(k, 0) is taken as a real symmetric tensor. Equation (2.5.14) can 
also be written as 

K! . (k ,w‘ ) -  d . . = - P  1 

1 

J+m K:j(k,x) dx 
aJ 7c --Do x - w f  23 

(2.5.15) 
+m K g k ,  x )  - 6.’  

a3 dx 
- p  7c J -m x - w f  

- _ -  a&, 0) 
E O d  

Kii(k, 0‘)  - 

which relates the Hermitian and anti-Hermitian parts of the relative dielectric 
tensor. For the special case of an isotropic medium without spatial disper- 
sion so that Kij = 6,K(o), we have 

K$(w’) = IS,[K(w’) + K*(w’)] = dij Re K(w‘) 

Kl$’(o’) = $jS,[K(w’) - K*(w’)] = -6, Im K(w’) 
(2.5.16) 

Equation (2.5.15) can then be written for K(w’) as 

Re K(o’)  - 1 = 
7c 

Im K(w’) + - - - 
Eow’ n 

x Im K(x)  
x2 - w’2 dx 

(2.5.17) 
Re K ( x )  - 1 

x2 - w’2 
dx 
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where o(0) is the corresponding dc conductivity and (2.5.5) has been used. 
In an isotropic medium, the loss of electromagnetic energy is characterized 
by the anti-Hermitian part of the dielectric tensor (this will be discussed in 
detail in Section 10). Therefore, from absorption experiments, it is often 
possible to obtain approximate values of K&' for all frequencies. Then from 
(2.8.15) K& can be computed. On the other hand, if K& is known K,$' may 
also be computed, but here care must be taken as it is possible that if K,$ 
is known only approximately, we may obtain a physically unstable condi- 
tion in the computation of K&'. We will come back to this point in a later 
section. 

If in addition to the principle of causality, we also take into account the 
fact that all interactions are propagated at  finite velocities, then for the 
spatial dispersive medium, additional relations between the Hermitian and 
anti-Hermitian parts of the dielectric tensor can be derived. 

2.6 Onsager Relation 

If an external magnetic field is applied to the medium, then the polariza- 
tion and, hence, the dielectric property of the medium will depend on the 
external field, as in  the case of a plasma in a static magnetic field. From 
the very general irreversible thermodynamic principle, the Onsager recip- 
rocal relations, we can show that for any nonactive medium in an external 
static magnetic field B,, 

If in addition the medium also satisfies the relation (corresponding to the 
so called nongyrotropic medium), 

Suppose we first choose a Cartesian coordinate such that B, is in the z- 
direction and k in the xz-plane (Fig. 2.6-la). According to the Onsager 
relation (2.6.1) the dielectric tensor for the coordinates shown in Fig. 
2.6-la is the transpose of the dielectric tensor for the coordinates shown in 
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(a) (b) 

Fig. 2.61. Coordinate system showing the relative directions of k and Be. 

Fig. 2.6-i b in which both directions of B,and k have been reversed. Reversing 
directions of B, and k is equivalent to reversing the x and z coordinates in 
the original coordinates shown in Fig. 2.6-la. The new coordinates are 
shown in Figure 2.6-2 and the dielectric tensor expressed in them must be 
the transposed dielectric tensor expressed in the coordinates shown in 
Fig. 2.6-la. Note that the new coordinate system Fig. 2.6-2 is still right- 
handed. In each coordinate system (Figs. 2.6-la and 2.6-2) we have 

(2.6.4) 

where the primed system is related to the original system through the trans- 
form A. 

D ’ = A - D ,  E ‘ = A - E  (2.6.5) 

Fig. 2.6-2. Transformed coordinate system. 
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where 

and with an inverse 

-1 0 
A = [  0 

1 :] 0 0 -1 

-1 0 
A - I = [  0 1 ,”] 

0 0 -1 
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(2.6.6a) 

(2.6.6b) 

Therefore, 
EZZ -&zy 

E g  -&zw Ezz 

g ’ = A . & . A - I =  (2.6.7) 

But or is obtained by reversing k and B,; therefore, from the Onsager 
relation, we have 

t ’ (k ,  W ,  B,) = ET(k, W ,  B,) (2.6.8) 

where tT denotes the transpose of the tensor t. From (2.6.7) and (2.6.3), 
it follows 

Eq = - Eyz 

4 = -%g (2.6.9) 

EZZ = EZZ 

Hence, in general, the Onsager relation reduces & to six independent ele- 
ments. For the original Cartesian coordinates (Fig. 2.6-1 a), the dielectric 
tensor must have the form 

(2.6.10) 

If, in addition, the medium is lossless so that E is Hermitian, then E ~ ~ ,  

E ~ ,  E ~ ~ ,  and cZz are purely real, E~ and E~~ are purely imaginary. Also, since 
&-(BO) = -E~~(B,) ,  E ~ ~ ( B , )  = -eW(BO) and E~,(B,)  = EAB,) from (2.6.9), 
and according to the Onsager relation E ~ ~ ( B , )  = E ~ ~ ( - B , ) ,  we may conclude 
that E,,, E ~ ,  E,, and E, are even in B, while cq and are odd in B,. 

If the medium is not spatially dispersive the only axis of symmetry is the 
z-axis along which is the external magnetic field B, (see Fig. 2.6-la). For 
such coordinates t must be rotationally symmetric about z-axis. This 
requires that E= = eyz = 0 and eZz = E~ (see problem at the end of this 
chapter). 



36 2. Review of Electromagnetic Theory 

2.7 Plane Waves 

In the above, we have discussed the material equations for a homogeneous, 
stationary medium. With the help of these relations, we are ready to proceed 
to solving the set of Maxwell's equations for the case of unbounded region. 
As mentioned earlier, because of the spatial homogeneity and temporal 
stationarity in the medium, it makes it possible to apply the Fourier trans- 
form to the problem. This actually is equivalent to the method of plane 
wave solution. The Fourier components of the field quantities such as 
E(k, w), D(k, w), etc., are the corresponding amplitudes of the different 
plane waves, E(k, o)&("'-~'~), D(k, w)ej(wl-k'r). 

Let us apply the Fourier transform of the type in (2.4.18) to (2.1.1a) 
and (2.1.Ib). We have 

-jk x E(k, o) = --jwB(k, w) 

-jk X H(k, O) = J(k, O) + jwD(k, W) 

(2.7. la)  

(2.7.1 b) 

In this section, we shall study the system in the absence of external current 
so that J = 0 in (2.7.1 b). We observe first the following relations between the 
Fourier components of the field quantities. From (2.7.la), (2.7.1 b), we have 

1 
H(k, W) = - k X E(k,w) 

UP0 
(2.7.2a) 

(2.7.2b) 
1 

D(k, W )  2 - - k X H(k, W) 
w 

In general all vectors appearing in (2.7.2a) and (2.7.2b) are complex even 
for a real angular frequency o. If the medium is unbounded and lossless, 
the vector k is real in  the propagating region (see proof in  Section 10). 
For this case these equations tell us that R e H  I k, R e D  I ReH,  
Re D I k;  and k, Re D and Re H form a right-handed rectangular coor- 
dinate system. Similar relations also exist among k, Im D, and Im H. Also, 
since Re H I k, Re H I Re D, Re H I Re E, the three vectors k, Re D 
and Re E must be in the same plane, the plane perpendicular to Re H. 
In Fig. 2.7-1, we demonstrate these relations graphically. Similar diagrams 
can be drawn for k, Im E, etc. For a medium there may exist relations 
between Re E and Im E. If such a relation exists, it describes completely 
the state of polarization of the wave. Such a polarization is called the 
characteristic polarization and is discussed in Section 9. Waves with the 
characteristic polarization are called normal modes or characteristic waves. 
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Fig. 2.7-1. Vector relation of plane waves in 
the nonisotropic medium. 

In characteristic waves the energy flow is given by the Poynting vector 

S = Re 4E X H* = [Re E X Re H + Im E X Im H]/2 (2.7.3) 

We see that in general S is not in the same direction as k. In an isotropic 
medium without spatial dispersion, D and E are in phase and in the same 
direction and hence k and S must be parallel. 

With the help of the material equations, we can eliminate H from (2.7.la) 
and (2.7.lb) and obtain 

k X (k X E) + (w2/C2)K E = 0 (2.7.4) 

Or, in component form 

[k2 6 ,  - (w2/C2)Kij -- kikj]Ej = 0 (2.7.5) 

This is a set of three homogeneous algebraic equations. We shall study them 
in detail in the following. Define the index of refraction 

n = k/k, = kc/w = n3 (2.7.6) 

where k, = w/c is the free-space wave number and 3 is a unit vector in  the 
direction of k. Since it is for an infinite medium, we shall consider only 
homogeneous plane waves such that 3 is a real vector. Consider the equation 

(2.7.7) 

Equation (2.7.7) has a nontrivial solution if and only if the determinant 
1 L,(  vanishes. This condition 

L..a.  b3 3 = [n2(S. .  23 - s.3.) 2 3 - K..]a.  ?1 3 = 0 

I Lij I =; I n2(Sij - sisj) - K . .  13 I = 0 (2.7.8) 

is the dispersion relation which gives the relations between w and n (or w 
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and k) for which (2.7.7) has a nontrivial solution. More than one relation 
between w and n may exist which correspond to more than one solutions 
of (2.7.7). Each of these solutions is defined as one normal mode or charac- 
teristic mode. We have, for the solution of (2.7.8) 

na2 = na2(w), a = 1,2,  . . . (2.7.9) 

where the subscript a denotes the different modes. The corresponding solu- 
tion of (2.7.7) is then of the form aiaXd[Wbka"l Physically, this corresponds 
to one particular mode of plane waves that can propagate in the medium. 
A general wave in the medium can then be expanded in terms of these normal 
plane waves. In the following we shall discuss some general properties of 
these modes for arbitrary Kii.  Let us consider (2.7.7) again for the ath 
mode 

[n,2(Sii - sisi) - Kii(na , w)]aj,  = 0 (2.7.10) 

Since the determinant of LT is the same as that of L itself, we can 
introduce the following system of equations for the conjugate vectors b* 

[np2(S, - s L s ~ )  - K.,]b* 3% 38 - - 0 (2.7.11) 

where the set of values n is obtained from equation I LT I = 0 and is the 
same as shown in (2.7.9). We note that if K is Hermitian, then a and b 
are the same. Multiplying (2.7.10) by brp and (2.7.11) by aia,  we have 

na2(6.. 23 - a 3 s.s.)b*a. zp l a  - K..b.  a3 $ a i a  - - 0 (2.7.12) 

np2(dii - sisj)b$aia - KjibTpaia = 0 (2.7.13) 

Interchanging the indices i a n d j  in (2.7.13) and subtracting it from (2.7.12), 
we obtain 

(2.7.14) 

If (2.7.8) has distinct roots, then for a # ,!I, na2 # np2, the factor multiplying 
(na2 - nt) in (2.7.14) must be zero. For a = ,!I, this factor can be any 
arbitrary number since a and b are only determined within some constant 
factor. We shall choose the constant factor by the following orthonormality 
relation 

( 6 ,  - sisj)b$aia = Sap (2.7.15) 

(na2 - np2)(dii - sisi)b$aja = 0 

and from (2.7.12) it follows that 

Kijaj,b$ = na2 Sap (2.7.16) 
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Equations (2.7.15) and (2.7.16) are important relations between the dif- 
ferent characteristic modes of (2.7.7). They will be used later on in the 
computation of fields generated by external sources in an anisotropic me- 
dium. These normalization relations are obtained on the assumption that 
the dispersion equation has distinct roots. In an isotropic medium, multiple 
roots do exist. Then, instead of the normalization procedure described 
above, some other means must be used. 

2.8 Refractive Indices 

In order to study the characteristic modes of (2.7.7), we must first obtain 
the relations npr of (2.7.8). When (2.7.8) is expanded, the following algebraic 
equation results 

Kijsisjn4 - [(Kijsisj)Kkk - KikKkjsisj]n2 + I Kij I = 0 (2.8.1) 

where I Kij 1 denotes the determinate for the tensor Kij and once again the 
reader is reminded that repeated subscripts represent summation. From 
(2.8.1), we note that if there is no spatial dispersion so that K i j  does not 
depend on n, then (2.8.1) is quadratic in n2 and will yield two independent 
solutions for n2 in general which correspond to two characteristic modes in 
the medium. If spatial dispersion is taken into account, however, (2.8.1) 
will have more than two roots for n2. 

Before we go into the solutions of (2.8.1) for some specific examples, 
we want to point out one important general property of n2. If the tensor 
K is Hermitian which corresponds to a Iossless medium (see Section 10) 
so that Kij  = K$, then from (2.7.7) we have 

ai*[n2(8ij - ~ i ~ j )  - K..]u.  23 3 1 0  

(2.8.2) 

Also, taking the complex conjugate of (2.7.7), we have 

where the Hermitian property of K has been used. Multiplying (2.8.3) 
by a j ,  we obtain 

(n2)>*(a2 - s i ~ j a i * ~ j )  = K i j ~ i * ~ j  (2.8.4) 
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Comparing (2.8.2) with (2.8.4), we conclude that 

n2 = (n2)* (2.8.5) 

so that for a lossless medium, n2 must be real. Consequently, n must be 
purely real (propagating mode) or purely imaginary (evanescent mode). 
The wave number being given by k = k,n must be similarly purely real 
(propagating mode) or purely imaginary (evanescent mode). 

Now, let us consider some special cases for (2.8.1) which will be of in- 
terest to us later on. First, for an isotropic medium without spatial dispersion 
so that Ki j  = SijK(w), Eq. (2.8.2) becomes 

n4 - 2K(w)n2 + K 2  = 0 (2.8.6) 

The equation has double roots: 

n2 = K ( o )  (2.8.7) 

Second, for an isotropic medium with spatial dispersion, the relative dielec- 
tric tensor can be written in the form given by (2.4.20a): 

For this case, (2.8.1) reduces to 

Kii(n4 - 2KLn2 + KL2) = 0 (2.8.8) 

If Kl does not depend on n2, (2.8.8) again yields two double roots: 

n2 = K,(o) (2.8.9) 

We will see in Section 9 that both (2.8.8) and (2.8.9) correspond to prop- 
agation of waves with electric field perpendicular to the direction of 
k(E I S), called the transverse waves, in an isotropic medium. The other 
solution of (2.8.8) is 

Ki,(n2, a) = 0 (2.8.10) 

which corresponds to longitudinal waves (E 11 S) in the medium. We shall 
discuss this point again in Section 9. 

Finally, let us study the anisotropic case. We shall orient the coordinates 
such that the vector k is in the xz-plane and the external magnetic field is in 
the z-direction. The angle between k and B, is 8 (Fig. 2.6-la). The dielectric 
tensor is given by (2.6.10). Substituting the components of (2.6.10) into 
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(2.8.1), the following equation is obtained : 

a4n4 + u2n2 + a, = 0 

where 
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(2.8.11) 

a4 = Kxx sin2 8 + 2Kx, cos 8 sin 8 i- K,, cos2 8 

u2 = - KxxK,, + K,2, - (K,K, i- K&) sin2 8 
(2.8.12) + 2(K,Kyz - K,,&) cos 8 sin 8 - (K& + K,K,,) cos2 8 

a o = I K l  

and the relations s1 = sin 8, s2 = 0, s3 = cos 8 have been used. 

independent of n. The solutions to (2.8.11) can be written as 
For a medium without spatial dispersion, the components K i i s  are all 

n2 = --a, f (a22 - 4a4a,)”2 2% (2.8.13) 

or 

(2.8.14) 

As discussed at  the end of Section 6 ,  for the spatially nondispersive case, 
K,, = Kyz = 0 and Kxx = Inspection of the coefficients given by 
(2.8.12) shows that the refractive index has the same value at 180’ - 8 
as at 8. Equations (2.8.13) and (2.8.14) represent two independent solutions 
of the dispersion equation and correspond to  two characteristic waves that 
can propagate in the medium. For spatial dispersive media, as mentioned 
earlier, there may exist more than two solutions for (2.8.11). 

The condition for which n = 0 is called cutoff because it divides the pro- 
pagating region from the attenuating region in the lossless case. The phase 
velocity up of the plane wave for this case becomes infinite. From (2.8.11) 
we see that cutoff occurs when a, = I K I = 0. At cutoff, H = D = 0. 
Since the determinant 1 K I is invariant under rotation of transformation 
of the coordinates, the cutoff condition does not depend on the direction of 
propagation. 

The condition for which n2 + 03 is called resonance. It occurs when a4 = 0 
in (2.8.13). At resonance, up = 0. Since a4 in (2.8.12) depends on 8, the 
resonance condition depends on the direction of propagation. From (2.8.12), 
we obtain. for resonance 

Kxx tan2 8, + 2Kx, tan 8, + K,, = 0 (2.8.15) 
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which represents in general two resonance cones. For angles near O, ,  the 
phase velocity is much below the velocity of light in  free space and the 
Cerenkov radiation is possible. 

2.9 Characteristic Polarizations 

We have seen that for plane waves, Maxwell’s equations can be written in 

(2.9.1 a) 

(2.9.lb) 

3 D(k, 0) = 0 (2.9.1~) 

3 * B ( k , w ) = O  (2.9. Id) 

D@, w) = n2Eo[E - 3(3 E)] (2.9.le) 

the form 
D(k, w )  = -(n/c)3 x H(k, w )  

H(k, w) = (eo/po)l’z& X E(k, 0) 

Sometimes for specific media, for certain directions, it is possible to have 
independent transverse modes or longitudinal modes propagating in the 
media. For transverse modes, E 1 3 ,  so that 3 - E = 0. From (2.9.le), 
we have 

D = nZEoE (2.9.2) 

Hence, D and E are in the same direction. For these modes to exist, D and E 
must simultaneously satisfy the condition 3 E = 0 and Eq. (2.9.2) as 
well as the material equation Di = E ~ ~ E ~  which amounts to four equations 
(3 - E = 0, n2eoEi = E ~ ~ E ~ )  for the three components E,, E2/ ,  and E,. 
Therefore, in general there is no solution. Only for special cases, purely trans- 
verse modes can occur. 

For longitudinal modes, E 1 1  3, so that E = (E 3)3. From (2.9.le) 
and (2.9.lb), we have 

D = 0 ,  H = O  (2.9.3) 

The condition D = 0 can be written as 

D = E = 0 (2.9.4) 

Therefore in order to have nontrivial longitudinal modes, it is necessary to 
require 

I K I = O  (2.9.5) 
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Note that (2.9.5) is also the condition for cutoff. It should be emphasized 
that the condition (2.9.5) is only a necessary condition but not a sufficient 
condition. When (2.9.5) is satisfied, it guarantees that D vanishes, but it 
does not necessarily follow that E is longitudinal. In a nonisotropic, spatially 
dispersive medium, strict longitudinal waves may not exist. In this case, 
we can expect the waves to be, at best, approximately longitudinal. This is 
discussed at  the end of this section. 

Now, let us study the characteristic modes for an isotropic medium. In 
this case it is possible to decompose the field into transverse and longitudinal 
components 

(2.9.6) a = a, + a,, 

Then for Kij given by (2.4.20a), (2.7.7) can be reduced to 

(nz - K,)a, = 0 

K,,a,, = 0 
(2.9.7) 

We see that in an isotropic medium, it is possible to have independent 
transverse and longitudinal modes. The dispersion relation for the transverse 
modes is 

n2 - K, = 0 (2.9.8) 

and the dispersion relation for the longitudinal modes is 

K , , k  0)  = 0 (2.9.9) 

We note that (2.9.9) also satisfies the necessary condition (2.9.5). We now 
turn to the case of anisotropic media. 

In an anisotropic medium the normal modes are neither transverse nor 
longitudinal in general. This can be seen by substituting (2.9.6) into (2.7.7) 
for general Kij. It is no longer possible to separate a, and a,, in this case. 

Let us now find the characteristic modes for general anisotropic media. 
A characteristic or normal mode is defined as a wave whose polarization 
remains the same as propagating in the homogeneous medium. To derive 
an expression for the wave polarization, it is more convenient to change to 
a coordinate system in which k coincides with the z-axis. This is done by 
rotating the coordinate system in Fig. 2.9-la about the y-axis by an angle 0 
in the clockwise sense. The transformation is represented by the matrix 

C O S ~  0 -sin8 

sin 8 0 cos0 
T = [  0 1 0 ] (2.9.10) 
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jB0 I i/j::,/O Y' 

X' 

X 

( a )  ( b) 

Fig. 2.9-1. Coordinate systems. 

In the primed system the relative dielectric tensor is obtained by applying 
the transformation to K in (2.6.10) 

K' = T .  K .  T-1 (2.9.1 1 ) 

Its components are given by 

K& = Kxx cos2 8 + K,, sin2 8 - 2Kz, sin 8 cos 8 

K& = - KLx = Kw cos 8 + &, sin 8 

KL, = Kix = (Kzx -- K,,) sin 8 cos 8 + KX2(cos2 8 - sin2 8 )  (2.9.12) 

K:, = Kxx sin2 8 + KLz cos2 8 + 2Kxz sin 8 cos 8 
Kiy = &, K;, = - Kiy = &, cos 8 - Kq sin 8 

Equations (2.8.1 l) ,  (2.8.12), and the solutions for the refractive indices 
are unchanged in the primed system. The wave equation (2.7.7) becomes 

KLz - n2 
-K& G - n 2  (2.9.13) 

In the following we shall study the case without spatial dispersion. Let us 
write the characteristic mode in the form 

a' = ay'(R,'$' + d' + R,',?') (2.9.14) 

where 
R,' = a,'/ay', R,' = a,'/a,' (2.9.15) 

Substituting (2.9.14) into (2.9.13), the third equation gives us 

R,' = (-R;KL, 4- Ki2)/Kz (2.9.16) 
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R,' can be eliminated from the first two equations of (2.9.13) by using 
(2.9.16). They give, respectively, 

Each of these two equations gives us a relation connecting the refractive 
index to the transverse polarization of the wave. They are 

n2 = KL,, + GEIKA - ( K A  + ~ z K 2 K 3 G '  

Setting the two expressions in (2.9.18) equal to each other, we obtain an 
equation for R,' 

The two roots of (2.9.19) for R,' are referred to as characteristic polariza- 
tions for the two normal modes. They also correspond to the two values 
of n. From (2.9.19), it follows that 

&,Ri2 = 1 (2.9.20) 

The transverse part of the characteristic modes is 

a, = %'(Ria' + 9') (2.9.2 I ) 

Since for lossless medium, K&, K A ,  KL and KL, are real and K& and KLL 
are imaginary, R,' is purely imaginary, the vector a,' is elliptically polarized 
in the x'y'-plane. The sense of rotation and the ratio between the major 
axis to minor axis of the ellipse depend on the value of R,'. Since RL,RL2 = 1, 
the two ellipses for the two characteristic modes are perpendicular to each 
other, one with major axis aligned with the x'-axis, one with major axis 
aligned with the y'-axis, and they have opposite senses of rotation. In 
fact, the two polarization ellipses are mirror images about a line making 45' 
with respect to the x'-axis. 

Similar arguments show that R,' must be purely imaginary for both 
characteristic modes. 

The two solutions of (2.9.19) can be expressed in terms of the components 
of K i j .  Since the medium is assumed to be without spatial dispersion, the 
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tensor Kij in the unprimed system must be invariant under rotation about 
the external magnetic field Bo, which is the z-axis. Therefore, K, = K,,, 
Krz = qz = 0. Under these conditions 

(2.9.22) 
K,,K,, cos e 

R,’ = 
n2(K,, sinz 8 + K,, cos2 0)  - K,,K,, 

(2.9.23) K,  sin 8 (K ,  - nz) 
n2(Kzx sin2 0 + K ,  cos2 0) - KzxK, 

R ’ C  

It is interesting to note that in an isotropic medium, K,, = Kyu = K,, 
and all the off-diagonal components vanish; also n2 = Kzz. Then (2.9.22) 
and (2.9.23) become indeterminant. Physically, this implies that any polar- 
ization is a characteristic polarization in an isotropic medium which certainly 
is what one would expect. 

Next, we want to find the amplitude of the characteristic modes that 
satisfy the orthonormal condition (2.7.15). To do this, we make use of the 
orthonormal relations derived in Section 7. We first must find the conjugate 
vectors b* in (2.7.11). This can be done in a manner similar to the case 
for finding the vectors a. In the primed system, solutions of (2.7.1 1)  can be 
written in the form 

b‘* = ~ i ( - R i f  + 9‘ - R,‘?‘) (2.9.24) 

where R,’ and R,‘ are given in (2.9.22) and (2.9.23). Substituting (2.9.14) 
and (2.9.24) into (2.7.15), and remembering that k is parallel to z’-axis 
the following is obtained: 

(2.9.25) 

This orthonormal relation is automatically satisfied for a # Bas it should be, 
since R;,R& = 1. For a = @, we have 

U; = 1/(1 - Rk2)l/’ (2.9.26) 

Therefore, the normalized characteristic modes are given by 

a,’ = (R;$’ + 9’ + R;,Z’)/(l - RLt)l’z, w = 1, 2 (2.9.27) 

This formula is valid for a lossy anisotropic medium in the absence of spatial 
dispersion. In the original unprimed system, the characteristic modes can be 
obtained from (2.9.27) by coordinate transformation. 

a, = T-I a,’ 

= [(z. cos 0 + R:, sin 0)a + p + (R; ,  cos 8 - R;, sin 0>i]/(l - R;%)’12 
(2.9.28) 
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In the following we demonstrate the utility of the expressions just derived, 
by considering two special cases for a lossless medium. 

(i) Parallel Case (k 1 1  B,). In this case 0 = 0. The coefficients in the 
dispersion relation are given by (2.8.12) and they simplify to 

a4 = K,,, a2 = -2KmKzz, a, = Kzz(K& + K&) (2.9.29) 

The solutions of the refractive index equation (2.8.1 1) become 

n?,z = K, f j K W  (2.9.30) 

where K,, f 0 is assumed. If K,, = 0, the electric field is polarized in the 
z-direction corresponding to the longitudinal mode. 

Equations (2.9.22) and (2.9.23) yield the polarizations for the charac- 
teristic modes in the primed system. 

R' 21 - - - j  Y R' 22 - - J ,  ' R:, = Ri2 = 0 (2.9.3 1 ) 

In the unprimed system, we have 

Therefore the two characteristic modes are 

(2.9.32) 

(2.9.33) 

Both are circularly polarized. The first one is in the left-handed sense while 
the second one is right-handed. The two modes are both pure transverse 
waves. 

(ii) Perpendicular Case (k I B,). The angle between the external mag- 
netic field and the wave vector is 90'. The refractive indices are now 

(2.9.34) 

For a12 = K,, , (2.9.22) shows that R,' becomes indeterminant. Actually, 
for this case the formulas derived are no longer valid. Since (2.9.14) assumed 
that the y'-component of the wave does not vanish, while in this case, it 
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does. To find the correct characteristic mode corresponding to nI2 = K,, 
we have to go back to (2.9.13). Under the present conditions, (2.9.13) 
becomes 

0 0 
(2.9.35) 

which implies ad and a,’ are zero and a,’ is arbitrary. The wave is linearly 
polarized in the 3’-direction (the direction of the external field B,,). This 
is sometimes referred to as the ordinary mode. The fact that the wave is 
polarized along the magnetic field indicates that it is not affected by the 
magnetic field so that the refractive index is just K,,. 

For the second mode given by (2.9.34) we have, 

Ri2 = R,, = 0 

Therefore, the normalized expression is given by 

8 2  = -(K,lKm)f + 9 (2.9.37) 

Since this is a lossless medium, K, is purely imaginary, K,, is purely real. 
The second wave given by (2.9.37) is therefore elliptically polarized in the 
xy-plane, rotating in a left-handed sense. 

We summarize the discussion in this section as follows. In an isotropic 
medium with spatial dispersion, there exist independent transverse and 
longitudinal characteristic modes. While in an anisotropic medium, this is 
not true in general. For anisotropic media in the absence of spatial dispersion 
there are two independent characteristic modes. The transverse components 
of these characteristic waves are in general elliptically polarized. These two 
characteristic polarization ellipses form mirror images about a line making 
a 4 5 O  angle with the magnetic meridian plane. Even though the exact longi- 
tudinal wave may not be obtainable in a nonisotropic medium, it is possible 
that the component of the electric field transverse to k is so small when 
compared with the longitudinal component, the wave is then approximately 
longitudinal. Let 

E = Ell + EL (2.9.38) 

where El, is parallel to k and EL is perpendicular to k. Substitute (2.9.38) 
in (2.7.4) to obtain 

k2EL = (m2/C2)K (Ell + EL) (2.9.39) 
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The wave is approximately longitudinal if 
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(2.9.40) 

It follows from (2.9.39) that (2.9.40) can be so only if 

Equation (2.9.41) implies that approximate longitudinal waves are associated 
with the large values of the refractive index for which the propagation ve- 
locity is slow. When referenced with (2.9.39), the condition (2.9.40) also 
implies that 

k - K . k = O  or a,=O (2.9.42) 

where a4 is given by (2.8.12). This condition is used in Section 4.20 where 
longitudinal waves in a warm magnetoplasma are discussed. 

2.10 Energy and Power 

One of the most important topics in electrodynamics is the relation for 
energy conservation. In order to discuss it, we shall first derive the fun- 
damental Poynting's theorem. 

Let us take the scalar products of H with (2.1.1a) and E with (2.1.1b) 
and subtract one from the other. Applying the vector identity V (E x H) 
= H * V X E - E V X H, we obtain 

V .  (E x H) = - ( H .  B + E  h ) - ~  J (2.10.1) 

Integrating over the volume V and applying the divergence theorem, we 
have 

1" (H - h + E D) dv = - (E X H) dS - E . J dv (2.10.2) 
s s, 

We note that E X H = S is the instantaneous Poynting vector which defines 
the flux of electromagnetic energy. Equation (2.10.2) is referred to as the 
Poynting theorem which essentially is the statement of the principle of 
conservation of energy. In the absence of loss, the two terms in the left- 
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hand side represent the instantaneous rates of change of magnetic and 
electric energies, respectively. And the two terms on the right-hand side 
represent the power carried away by the wave and the power supplied 
by the source, respectively. But in a time-varying field in the presence of 
absorption, the meaning of each term in (2.10.2) is in general not clear. 
Let us now first discuss (2.10.2) for monochromatic plane waves of the form 

etc., where o and k are both assumed to be real. The plane waves are assumed 
to be sustained by the external source. Let the volume in (2.10.2) increase 
to infinity, then the surface integral in (2.10.2) can be neglected with respect 
to the volume integrals. Averaging (2.10.2) over a time interval large com- 
pared with the period of the wave (2n/w), the left-hand side of (2.10.2) 
can be identified as the average heat dissipation of the fields in the medium 
per unit time which is supplied by the average power - J J - E dv of the 
external source. If we define the average heat dissipation per unit time per 
unit volume as Q ,  then 

Q = (+J (H B + E  D)dv  
V 

where the material relations and Hermitian properties of &ij and &:; have 
been used. On time averaging, terms involving e*jzot all vanish. 

From (2.10.4), we see that the heat dissipation or energy loss for plane 
waves in the medium is given by the anti-Hermitian part of the dielectric 
tensor. For a stable medium from second law of thermodynamics, Q must 
be greater then zero. Therefore, 

~ijE$Eoj > 0 (2.10.4a) 

or E:; must be positive definite. If the medium is isotropic (i.e., E;; = ~ " 6 ~ ~ )  
and E = E' - j ~ " ,  the condition (2.10.4a) reduces to E" > 0. For a lossless 
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medium, E:; = 0. In an unstable medium, Q may be less than zero and the 
converse of (2.10.4a) is true. If the unstable medium is also isotropic, then 
E" < 0. 

The discussion above for plane waves is in general not realistic in  most 
practical situations. Plane waves are infinite in time duration and spatial 
extent while all observed waves are turned on for a finite time and exist in 
finite spatial domain. Besides, the average energy in a plane wave is inde- 
pendent of spatial coordinates and hence there is no way to follow its mo- 
tion and measure, for example, its velocity. It is, therefore, necessary to 
consider the propagation of a wave packet. Assuming the fields are of the 

type 
E(r, t )  = i[E,(r, t)&oo'-ko'r) + c.c.] 

= g[Eo(r, t)ei(oo'-ko'*r) + C.C.] 

= [ 1 / ( 2 ~ ) ~ ]  J [E(k, w)ej(ot-k.r) + c.c.] do dk (2.10.5) 

where 
E,(r, t )  = Em@, t)e-kL"r 

& = &' - jld' (2.10.6) 

and C.C. denotes complex conjugate of the preceding term. The Fourier 
transform is used in writing the third line. If we assume that E,(r, t )  is a 
slowly varying function both in time and space with respect to (2n/w0) 
and (l/k), (2.10.5) represents a real wave packet with the carrier frequency 
w,. E(k, w) therefore has a sharp peak at  w = w, and k = k,. Similar 
expressions can be written for other quantities. From (2.10.5) we have 

Applying the material relation, we have 

D(r, t )  = - * [c(k, w) - E(k, w)ej(ot-k*r) + c.c.] dw dk (2.10.8) 
(2n)4 

We note that because of the fact that the signal is no longer monochromatic 
we have to take into account the dispersive effects of the medium in (2.10.8). 
For the wave packet we are now considering, since E(k, w) is highly peaked 
at  w = w, and k = k,, it is possible to expand any function of w and k 
under the integral sign (integrals over w and k) about the values w, and &. 
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For instance 

where Q = o - w,, q = k - 16, the subscript 0 indicates that values at  
w = oo, k = k, are taken. We note that only first-order terms are retained. 

Let us now consider (2.10.2) for this quasi-monochromatic wave packet. 
We first examine the term 

Taking the average in time, the interval being large compared to (2n/wo) 
but small compared to the characteristic time for E,(r, t), (2.10.10) can be 
written approximately in the form 

where the transformations Q, = o, - o,, SZ, = o, - w o ,  q1 = k, - k,, 
q2 -- k, - k, have been used. When (2.10.9) is substituted into (2.10.11), 
we obtain 

(2.10.12) 
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Using (2.10.7), it is easy to show the following relations: 

Using the first of (2.10.13), we see that the first term in (2.10.12) can be 
written as 

The second term in (2.10.12) can be written as 
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and the third term becomes 

(2.10.16) 

Combining (2.10.12)-(2.10.16), we have the time averaged (E i  dDi/dt). 
Similar computation can be applied to the other terms in (2.10.2). The energy 
relation, after time averaging for the wave packet of the form in (2.10.5), 
can then be written as 

-I- f ( w  %)I& (E8iEoj) + 2k&E3iE0j)] (2.10.17) 

Recall that EOi(r, t )  = Emi(r, t ) e ~ ~ ; ' . ' ,  we can reduce the last term on the 
right-hand side of (2.10.17) to  the form 

- e-2k;'*'(d/dXn)Sp 

where 
Sp = - t ( w  a&;j /akn)o(E~,~E, i )  (2.10.18) 

We note that for a monochromatic plane wave where E, = constant, 
integration of (2.10.17) throughout the volume gives us the same result as 
(2.10.4). 

Equation (2.10.17) is the general equation for the conservation of energy 
for electromagnetic waves in an anisotropic, dispersive medium. To see the 
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physical significance of this equation, we first consider several special cases. 
For a lossless medium (& = 0) in the absence of external sources, (2.10.17) 
may be put in the form 

a( w y a t  = -17 . [(sy + (s(l))l (2.10.19) 

where we have defined 

(w) = &[E,* . ( a w E ' / a w ) ,  . E, + . H,] (2.10.20) 

(S'O') = &[Eo* x Ho + Eo X Ho*] (2.10.21) 

(S")) = -&Eo* * (coV~E') Eo (2.10.22) 

W js the time average (with respect to 24w0) of the energy density in the 
medium. The first term in ( W )  contains the usual electric energy density and 
the portion of the kinetic energy of the particles in the medium which is 
associated with the coherent wave motion while the second term is the 
magnetic energy density. (S'O') is the usual Poynting vector which represents 
the average energy flux of the electromagnetic field and (S")) is the average 
energy flux connected to the spatial dispersion of the medium. Physically 
(S'") represents the energy flux transferred by the motion of the particles 
in the medium. In a cold medium where there is no spatial dispersion, S"' 
vanishes. For the case where the medium has no spatial nor temporal 
dispersion, (2.10.19) reduces to the familiar form of Poynting's theorem. 

For a general medium with loss and dispersion, (2.10.17) is rewritten as 

= -V * [(S'O') + (S'")] - (E * 3) (2.10.23) 

where ( W),  (S'O') and (S")) are the same as defined in (2.10.20), (2.10.21) 
and (2.10.22), respectively. However, it is no longer possible now to identify 
( W )  as the energy density, nor is it possible to define +w.$E&Eoj as the 
heat dissipation in the medium. To see this we first show that ( W )  may be 
negative in the case of lossy medium. Let us consider the simple case of 
an isotropic plasma with collisional loss. The relative permittivity is given 
by (see Chapter 4) 

WP2 
E ( O )  = 1 - 

w(w - jv) 
(2.10.24) 
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where w p  is the plasma frequency and Y is the collision frequency. Simple 
calculation shows that for this medium 

"') ]EO2 + poHo2} (2.10.25) 
1 wp2(oo2 - 

<W>=-{[ l+  4 (wo2 + Y 2 l 2  

which can become negative for large collision frequencies. 
Similar computation shows that $pixijE$Eoj is not equal to the heat dis- 

sipation caused by the collisions. 
Thus, we see that in general we do not have distinct physical interpretation 

attached to each of the terms appearing in (2.10.23), even though as a whole, 
(2.10.23) is a general statement of conservation of energy. 

2.11 Group and Energy Velocities 

In Section 6 we have shown that for characteristic waves, the following 
equation is valid 

D E = (kk- k2Z + ko2K) E = 0 (2.11 . l )  

For lossless medium and real values of w and k (transparent region), the 
tensor D is Hermitian. Now consider the case in which small perturbations 
take place in k (due to attenuation), in w (due to damping or because of 
our consideration of a wave packet), and in K (due to loss or change of 
parameters in the medium), then the tensor D becomes D, and the corre- 
sponding electric field becomes El , satisfying 

D1 El = 0 (2.1 1.2) 

where 0, can be written approximately as 

D l = D + 6 w ~ + 6 k - V k D + k o 2 S K  am (2.1 1.3) 

From (2.11.1), since D is Hermitian, we have 

E * - D = O  (2.1 I .4) 

Multiply (2.1 1.2) on the left by E* and (2.1 1.4) on the right by El and 
subtract, we obtain 
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Since only first-order terms are considered, we can approximate El in 
(2.11.5) by E. We shall discuss the individual terms of (2.11.5) in the 
following. 

The first term 

= po6w[E* - W E  - E + WE* * - am E ]  

=pow 6w[E* D + E* - E] (2.1 1.6) aw 

But from Maxwell's equations 

Therefore 
1 

@ % H) = - -Ha (E X k) = poH H* E* . D = - -E* . 1 
w 0 

Substituting the last equation into (2.1 1.6), we obtain 

E + p0H* - H = 4 Swp0w( W) (2.11.7) 1 a w E  
= 6wp0w[E* - 

a W  

where Wis defined in (2.10.20). The second term in (2.1 1.5) is, in component 
form, 

aDij 

ak, 
Ei* 6kn- Ej = (dinkj + dj,,k, - 2kn 6ij + k,2(aK@kn))Ei*Ej 6kn 

= En*(dkn)kjEj + En(6kn)k;Ei* - 2kn 6kn Ei*Ei 

+ k,2Ei*(bkn)(aKiilak,)Ej 

= 6kn[(E k)En* + (E* * k)En - 2kn(E . E*)] 

a&.. + ~~p~ 6kn Ei* 13 Ej 
akn 

Put into vector form, the second term becomes 

-4wp0 6k - [(S'O') + (S"))]  (2.11.8) 
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where (S'O') and (S'") are defined in (2.10.21) and (2.10.22), respectively. 
The third term in (2.11.5) can be written as 

ko2E* * BK * E = w2poE* - B E  - E 

= w2poE* - BE' E - jw2poE* BE" . E (2.1 1.9) 

where we have assumed that 

SE = BE' - j BE" (2.1 1.10) 

The first term on the right-hand side of (2.1 1.9) is related to the change of the 
average energy stored in the electric field due to change in E' while the second 
term is related to the change of heat dissipation in the medium, BQ. 

Combining (2.11.5), (2.11.7), (2.11.8) and (2.11.9), we have 

S w ( W ) -  Bk. [ ( S ( o ) ) + ( S ( l ) ) ] - & j S Q + w S ( ~ ) = O  (2.11.11) 

where 

SQ = $WE* BE" E, 6 ( g )  = &E* BE' * E 

We shall interpret the terms in (2.11.11) for different cases. 

(i) Lossless Medium without Change of Parameters in the Medium, 
i .e. ,  SQ = 6 ( g )  = 0. From (2.11.11) 

- V,w(k) (2.1 1.12) 
( S O ' )  + (W) - 6 0  

( w> Bk 
vw = 

vR is the energy velocity, the velocity that the energy propagates in the 
medium. We now define a group velocity 

which is the velocity a wave packet propagates without distortion in the 
medium. This can be seen by considering a characteristic wave packet with 
"carrier" frequency w, and wave vector k,. The field can be expressed as 

(2.1 1.14) 

where the dispersion relation for the characteristic waves w = w(k) has 
been used. For the wave packet, E(k) has a sharp peak at k,; therefore we 
approximate (2.11.4) by expanding the exponential about oo and k, and 
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take the first-order terms 

where A is the amplitude of the wave packet; in (2.1 1.1 5) we see that this 
packet propagates with velocity vg = Vko without changing its shape. The 
same result can be obtained by applying the stationary phase method to 
(2.1 1.14). More about the geometrical interpretation of the group velocity 
will be discussed in a later section. 

From (2.11.12), we see that in a lossless medium for real values of o 
and k (transparent medium), the energy velocity and group velocity coincide. 

In a lossy or lossless but nontransparent medium, k is complex or purely 
imaginary; the definition of group velocity looses its physical meaning. In 
many practical cases, however, if the loss is small the definition may still 
be used. 

(ii) Lossy Medium with Sd = 0, Forced Monochromatic Oscillation 
So = 0. In this case (2.1 1 . 1  1) becomes 

6k * [(S'O') + (S'l')] 1 - &j SQ (2.11.16) 

Equation (2.1 I .  16) gives the spatial rate of decay of the signal for positive 

SQ. 

(iii) Lossy Medium with Sr' = 0, Initial Value Problem for  Wave Prop- 
agation, 6k = 0. Equation (2.1 1.11) becomes 

SO( W )  = & SQ (2.11.17) 

which gives the time rate of decay of oscillation for positive SQ. 

2.12 Geometric Interpretation of Group Velocity 

In a lossless, transparent medium, we have seen that the energy propagates 
along the direction of the group velocity vg. This direction is called the ray 
direction. In general in an anisotropic medium the ray direction is different 
from that of the wave vector k. To see this, let us recall the definition of the 
group velocity 

vg = Vkw(k) (2.12.1) 



60 2. Review of Electromagnetic Theory 

From this equation, it is obvious that vI is normal to the surface w(k) 
=constant which is the solution of the dispersion relation for a fixed 
frequency. This surface can be plotted in k-space by solving for k, = k,(k,, 
k,, a). The surface then contains the endpoints of the wave vector k = I k I 
and is called the wave vector surface, or the dispersion surface. Sometimes 
it is more convenient to introduce the refractive index surface through 
the definition 

n = kc/w 

which contains the same information as does the wave vector surface at a 
fixed frequency. 

Let us write the dispersion relation in the form 

f(k, o) = k - nwlc = 0 (2.12.2) 

Applying the formula for differentiation of implicit functions we obtain 

The expression for the refractive index n appearing in (2.12.2) can be 
related to the dielectric tensor as discussed in Section 8. In the absence of 
spatial dispersion the refractive index satisfies a certain biquadratic algebraic 
equation (2.8.1 1)  where the coefficients are expressed in terms of angles of 
the wave vector with the coordinate axes and the angular frequency. Let 
8 and 4 be the polar and azimuthal angles, respectively; then n = n(e,+,w). 
Since B = arccos kZ/[kz2 + ky2 + k,2)'j2 and $ = arctan k,Jk,, we can show 
that 

an dn dB an a$ +-- - ---- 
ak, ae ak, a+ ak, 

=(-&+o~eco~~- - an - sin $ ( k a+ )( sin e ) 
The x-component of the group velocity is obtained, by using the above 
formula (2.12.2) and (2.12.3), 

am dklak, - (o/c)(an/akz) 
[-a(nw>/aa Ilc = - = - dk, 

[ n (ae  a+ an s in4 ) l  sln8 
sin B cos $ - - - cos B cos $ - - - 

a(nw)/aw 
I an C 

- - 

(2.12.4a) 



2.12 Geometric Interpretation of Group Velocity 61 

Similarly, we can derive expressions for the y-  and z-components of the 
group velocity, 

n 
C - - aw 

ak, a(nw)/aw 
vw = - 

(2.12.4b) 

and 

1 an  
n a0 

cos 8 + - - sin 8 
C - aw 

ak, a(nw)/aw 
vgz = - - (2.12.k) 

The magnitude of the group velocity is just the square root of the sum of 
the squares of (2.12.4a-c), giving 

v g  = a(nw)/aw [ I + ? ( = )  1 an + n2sinZe ($)"1"" (2.12.4) 
C 

Sometimes it is desirable to express the group velocity components in spher- 
ical coordinates. We list the resulting expression in the following for later 
reference. 

(2.12.5a) 

(2.12.5b) 

(2.12.5~) 

Fig. 2.12-1. 

We see from (2.12.5) that the group velocity is parallel to k if the medium is 
isotropic. Further, the expression for group velocity along k is unaffected by 
the fact the medium may be anisotropic. The anisotropy comes in through 
the appearance of the 8- and +-components of the group velocity. Suppose 
that there is an axial symmetry in the medium and we orient the z-axis 
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to coincide with this axis. The refractive index for such a case is no longer 
a function of 4. Let a be the angle between k and vg as shown, then 

vgk = v g  cos a, v@ = v g  sin a 

The angle a can be related to the refractive index by taking the ratio of the 
above two expressions and making use of (2.12.5a) and (2.12.5b) 

The magnitude of the group velocity as given by 
reduces to 

C 
v =  

cos a (anwpw) 

(2.12.6) 

(2.12.4d) in this case 

(2.12.7) 

The foregoing discussion shows that the group velocity and the wave vector 
in general do not lie in the same direction unless both anla8 and an@ 
vanish. When this happens, the refractive index does not have angular 
dependence and the refractive index surface becomes the surface of a 
sphere. This corresponds to the isotropic case. 

For a transparent medium without spatial dispersion, we have seen that 

(S‘O’) = wv, (2.11.12) 

But by definition [Eq. (2.10.21)] 

(S‘O’) = fwo* X Ho + Eo X Ha*] 

Therefore 

[2k2(E0 * Eo*) - 2(E0* - k)(Eo - k)] 2 0 (2.12.8) 
1 k * (S‘O’) z ~ 

4 w 0  

From (2.12.8) we see that the angle between k and (S‘O’) is acute. But in 
(2.11.12), we have the relation that the group velocity in a transparent 
medium without spatial dispersion is in the same direction as the average 
Poynting vector (SO). Therefore, we can conclude that the angle a between 
vg and k is acute for this medium, [ a 1 < 742. Since vg in this medium 
actually coincides with the energy velocity, it follows from the theory of 
relativity that I vg I 5 c. From (2.12.7), we have 

h’(wn)/h’o 2 l/cos a > 1 (2.12.9) 
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If there is spatial dispersion, however, the above conclusions are no longer 
valid. Since for this case, 

vg = (I/W)[(S‘O’) + (S(l’)] (2.11.12) 

vg is no longer in the direction of (SO). 
The geometrical relations between vg , k and the refractive index surface for 

a transparent medium without spatial dispersion are shown in Fig. 2.12-2. 

We see that depending on the shape of the refractive index surface, there 
may be focusing or defocusing effect on the rays. Also, in some cases, the 
normals to the surface at  more than one point may lie in the same direc- 
tion. In this case, the observer in the given direction will find waves with 
different wave vector directions in a given mode. 

The concept of group velocity can also be elucidated with a kinematic 
approach. This approach is very general and can be used to study all types of 
waves, including electromagnetic waves. As it turns out, insights gained in 
such an approach are useful in understanding the asymptotic behavior 
of waves, especially in radiation problems such as the evaluation of the 
asymptotic dyadic Greens’ function to be discussed in Section 14 of this 
chapter. The approach starts with the assumption that the wave function 
can be written in the form 

A expjyr (2.12.10) 

where A is the amplitude assumed slowly varying, and y the phase. In a 
uniform medium, the uniform plane wave solution is required to have a 
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constant amplitude and a phase given by 

y = yo + ot - k - r (2.12.1 1) 

where yo is a constant reference phase. Such a wave extends to all space 
and exists for all time and hence is a highly idealized situation. An arbitrary 
wave, of course, does not possess these properties. In many cases these 
arbitrary waves may be described as locally plane, i.e., the plane wave 
properties can be applied only locally. This is generally the case for any 
arbitrary wave as t + co or the case of radiation field from a localized source. 
When this is the case, we assume that the wave function still has the form 
(2.12.10) except now both A and y are functions of the coordinates and 
time with A varying very slowly as compared with y. The surface 

y(r, t )  = constant (2.12.12) 

defines the surface of constant phase or phase front. Define the local (an- 
gular) frequency w and wave number vector k by 

= awlat, k = -vw (2.12.13) 

The fact that k is expressible as a gradient implies that k is irrotational. 
Consequently, by making use of Stokes’s theorem, we arrive at 

$ k . d l = O  (2.12.14) 

where the integration is along an arbitrary closed path. Since k gives the 
number of waves per unit length, the above relation is a statement of the 
conservation of number of waves. It implies that if there exists a phase 
function y to describe the wave, the total number of waves along any closed 
stationary curve must be zero. 

The wave front surface (2.12.12) is generally not stationary. In order for 
an observer r(t) to stay on the same phase front, he must move with a velocity 
drldt to satisfy the relation 

dy/dt = ay/at + i . v y  = o (2.12.15) 

The phase velocity is defined as the velocity of travel of the phase front and 
its direction is normal to the phase front. Hence (2.12.15) immediately 
produces the well-known result for the velocity. 

vP = h / k  (2.12.16) 
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where 3 = k/k. A phase ray is a streamline obtained by integrating vp in 
r-space. As seen in (2.12.16), the phase rays are straight lines only in a homo- 
geneous medium but these rays are not necessarily parallel. When the 
medium is inhomogeneous, phase rays are generally curved. 

The definition (2.12.13) implies 

ak/at + Vw = 0 (2.12.17) 

We shall discuss the implication of this relation first in a homogeneous 
medium and later in an inhomogeneous medium. 

In a homogeneous medium, the dispersion relation 

w = w(k) (2.12.1 8) 

is assumed to have been obtained for a certain wave in a given mode. 
Substituting (2.12.18) in (2.12.17), we obtain 

ak/at + ( V ~ O )  * (Vk)T = 0 (2.12.19) 

where the superscript T denotes a transposition. In our case, because of 
(2.12.13) Vk is symmetric (i.e., (Vk)T = Vk) and (2.12.19) reduces to 

ak/at + V, - Vk = 0 (2.12.20) 

The group velocity v, = Vkw in the homogeneous medium is uniform. The 
group rays in r-space obtained by integrating i = v, are therefore straight 
lines, but they are not necessarily parallel. According to (2.12.20) an 
observer moving along the group ray with a speed v ,  sees waves with the 
same wave number and consequently, through the dispersion relation 
(2.12.8), the same frequency. Hence k and w propagate with v,, while the 
phase front propagates with vp. As we have shown earlier in this section, 
the two velocities do not in general have equal magnitude nor equal direc- 
tion. These kinematic properties of group velocity are very important and 
their usefulness can be demonstrated by looking at the following two 
examples. In the first case we assume the initial wave perturbation or equiv- 
alently, the initial distribution in k, is known. Then the future distribution 
in k can be obtained by letting each value of k be displaced by a vector 
v,t. In the second case let us consider a radiation problem. In this problem 
waves of various k are continuously created by the source and they propa- 
gate out with a velocity v,. These ideas are further amplified in Section 14. 
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If the medium is inhomogeneous, we shall assume that a local dispersion 
relation for each mode 

w = w(k, r) (2.12.21) 

still exists. In this case (2.12.17) reduces to 

The group velocity in this case varies with r and the group rays are generally 
curved. Along these group rays, values of k are not conserved as in the 
homogeneous medium; its change is prescribed by (2.12.22). But it is 
interesting to note that w is still constant along the group ray. This can be 
proved by premultiplying (2.12.17) by vg and by noting vg 8k/at = awlat 
to produce 

(2.12.23) awlat + vg . vw = o 

Hence w is convected with the group velocity. 
In concluding this section we wish to draw an analogy between the above 

treatment of wave propagation and the study of mechanics. For this purpose 
we note that (2.12.22) is 

dkldt = -awlar, drldt = dwlak (2.12.24) 

which are just Hamilton’s equations with k analogous to momentum and 
w to Hamilton’s function. 

The kinematic approach to wave propagation problems will be discussed 
in more detail in Chapter 5 when we introduce the method of geometric 
optics. 

2.13 Excitation of Fields 

Up to this point, we have confined our discussions to the propagation of 
characteristic plane waves in the absence of external sources. In this section 
we shall take up the subject of excitation of the electromagnetic fields by 
external sources. From Maxwell’s equations for a homogeneous medium, 
after the application of the Fourier transform, we obtain the wave equation 

(k21 - kk - ko2K) E(k, W) = --jpowJ(k, W) (2.13.1) 

where J(k,w) is the Fourier component of the external current density. 
Note that J must satisfy the charge continuity equation. 
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Let us first consider the case for an isotropic medium in which 

K = Kl(I - kk/k2) + K,,kk/k2 

Substituting into (2.13.1), we obtain 

[(k' - ko2K,)I + (K,ko2 - kO2Kii - k2)kk/k2] . E = jpo"J (2.13.2) 

We decompose E into 

E = El + Eli (2.13.3) 

where El - k = 0, El, - k = kE,, are the transverse component and longi- 
tudinal component, respectively. Substituting (2.13.3) into (2.13.2), we have 

(k2 - ko2Kl)EL - ko2KlIE,, = - jpo~J  (2.13.4) 

Decomposing (2.12.4) to the two components, the electric field now 
can be solved in terms of the current. We obtain 

where J = J, + J,, has been used. 
As we have mentioned earlier, in an isotropic medium, there exist inde- 

pendent longitudinal and transverse modes. The electric field E(r, t) can then 
be expressed as the inverse transform of (2.13.5). 

The explicit form of the electric field depends on our ability to evaluate the 
fourfold integral. We discuss certain asymptotic techniques in the next 
section. Other field quantities such as H, D, B can be computed from 
(2.13.6) through Maxwell's equations. 

Next, we consider a general anisotropic medium. In Section 6, we have 
seen that in such a medium, there exist in general several characteristic 
modes, a,, and we have derived an orthonormality relation among the 
different modes in a coordinate system with k in the direction of the z-axis, 
the primed system; i.e., 

( 6 ,  - si'sj')b:X aj, = 6,, (2.7.15) 
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(2.7.16) 

Since in later calculation of the inverse transform, we will integrate over 
k space, we must express the characteristic modes in a system with 
B,, in the fixed z-axis and the wave vector in an arbitrary direction (sin8 
x C O S ~ ,  sin8 sin4, cos8). 

X' i -Yl 
i" z 

x.4.- + ',' 

I n m 

Fig. 2.13-1. Three coordinate systems. 

As shown in Fig. 2.13-1, the new coordinate system is obtained from the 
primed system by two rotational transformations. First, for a rotation about 
the y'-axis in a left-handed sense by 8, the transform is governed by 

cos8 0 sin 8 
TI=[ 0 

1 0 1  -sin 8 0 cos8 
(2.13.7) 

This transformation is followed by a rotation about the z,-axis in a right- 
handed sense by an angle #, for which the transform is 

(2.13.8) 1 
C O S ~  -sin 4 0 

0 1  

The characteristic mode in the new coordinates (shown as 111) is given by 

a, = cos # cos 8 a,' - sin 4 a,' + cos 4 sin 8 a,' 

av = sin # cos 8 a,' + cos 4 a,' + sin 4 sin 8 a,' (2.13.9) 

a, = -sin 8 a,' + cos 8 a,' 
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where the components a;, a;, and a,' are given in Section 6. The relative 
dielectric tensor in the new system is given by 

K = Te TI * K' TT1 * Ti' (2.13.10) 

which will have the same form as Kin a 11-coordinate system if the medium 
does not have spatial dispersion. 

Since all the transformation is orthogonal, the characteristic values n 2  
in the new system will not be changed. The orthonormal relations are also 
valid for the new system, i.e., 

(6, - sisj)bTaajb = dab (2.13.11) 

(2.1 3.12) 

Now, in the new coordinates, we expand the solution of (2.13.1) in terms 
of the normal modes 

(2.13.13) 

Substituting (2.13.13) into (2.13. l), the equation becomes in component 
form 

(k2 dij - kikj - ko2Kij) c Eaaja = -j,uowJi (2.13.14) 
a 

Multiplying (2.13.14) by b:b and applying the orthonormality conditions 
(2.13.11) and (2.13.12), we have 

(k2/ko2 - n2)Ea = ( - j /o~~)(J  ba*) (2.13.1 5 )  

The total electric field in the transform domain is the sum of all the charac- 
teristic modes as given by (2.13.13). Each of these characteristic modes 
can be solved in (2.13.15). Our result is 

-j(J ba*)aa 
oE0(k2/ko2 - n2) E(k' O) = (2.13.16) 

The total electric field in the space-time domain is just the inverse transform 
of (2.13.16) given by 
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where, for any spatially nondispersive medium, n,@, o) is a function of o 
and the direction of k but not I k 1. For the case of forced monochromatic 
sinusoidal oscillations, the current density is given by 

J(r, t )  = J(r)ejwot (2. 

with transformed current 

J(k, W) = 2nd(o - oo)J(k) (2. 

where 

3.18) 

3.19) 

J(k) = 2k'r J(r) dr (2.13.20) s 
Substituting (2.13.20) into (2.13.6) results in 

(2.13.21 ) 

for isotropic media. Similarly for the anisotropic case with force oscillations 
we obtain from (2.13.17) 

We want to point out here that the method we used in deriving (2.13.21) 
and (2.13.22) is equivalent to the Green's function method. It can be 
shown, for example, that the dyadic Green's function r(r, r r )  satisfying 
the equation 

I7 x P x r - ko2K r = IS(r - r') (2.13.23) 

is given by 
a b * eik-(r-r') 

dk (2.13.24) a u  r(r, r r )  = - (k)3 s k2 - kO2n2(k7 oo) 

In (2.13.23) K is the relative dielectric tensor operator in  the sense discussed 
in Section 4. Therefore the solution for the original wave equation after 
the Fourier transform in time 

V X V X E - ko2K E = -jpoooJ(r) (2.13.25) 
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can be written as 
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E(r, coo) = -jpowoT(r, r’) J(r’) dr‘ s 

which combining with the time variation ejaot is identical with (2.13.22). 
The analytic computation of (2.13.6) and (2.13.22) in general is very 

complicated if not impossible. Approximate methods developed for some 
special cases are usually employed. One of the most important approxima- 
tion procedures is the asymptotic evaluation of the fields a t  large distances, 
or the far field computation. A general asymptotic technique is given in 
Appendix B. In the next section we shall apply this technique to (2.13.22). 

If the time variation is not monochromatic, then we have to go back to 
(2.13.6) and (2.13.17) to include the inverse Fourier transform in time as 
well as in space (see Appendix B). 

2.14 Dyadic Green’s Functions 

As mentioned in the last section, the normal mode expansion method of 
computing the excitation of fields due to external sources is equivalent to the 
technique of the Green’s functions. In many radiation and scattering prob- 
lems it is useful to have explicit expressions of the Green’s function in an 
infinite region. In the following, we shall discuss the general procedure of 
evaluating these integrals asymptotically. 

In general, the dyadic Green’s function for the wave equation in a medium 
without spatial dispersion satisfies the equation (time variation ejcut) 

17 x 17 x T(r, r’) - kO2K r(r, r f )  = + I 6(r - r f )  (2.14.1) 

where T(r, r’) is the dyadic Green’s function and for homogeneous medium 
is a function of R = r - r‘. 

Let us first consider the case of the isotropic medium so that K = IK(o). 
Equation (2.14.1) then becomes 

p v  - [P + k O 2 ~ ( o ) ]  I } . r = I S(r - r f )  (2.14.2) 
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Equation (2.14.2) can be written in the form 

But from (2.14.1) for the present case, we have 

Equation (2.14.3) then becomes 

(VZ + ko2K)r = -(I + ( l / k o 2 ~ )  1717) 6(r - rr) (2.14.5) 

Now define a function C(r, r’) such that 

(Vz + koZK)G(r, r’) = - 6(r - r’) (2.14.6) 

Operate on both sides of (2.14.6) by ( I  + (l/ko2K) 1717); since the operators 
commute with each other, we have 

(17’ + ko2K)  

Comparing with (2.14.5), we obtain 

( I  + (l/ko2K) VV)G(r, r‘) = -(I + (l/ko2K) 1717) d(r - r‘) 
(2.14.7) 

r(r, r’) = [I + (1717/kozK)]C(ry r‘) (2.14.8) 

Therefore the procedure of obtaining the dyadic Green’s function in an 
isotropic medium is to solve (2.14.6) for G(r, rr) first, then substitute it 
into (2.14.8). Here we note that generalized functions have been used in 
our derivation since G(r, rr) is singular at  r = r’. 

Equation (2.14.6) can be solved by many different methods. The method 
of Fourier transform has proved to be a powerful method to deal with 
equations more complex than (2.14.6). We shall use this method to dem- 
onstrate its technique. The transformed equation of (2.14.6) is 

( -k2 + ko2K)G(k) = -1 (2.14.9) 

The Green’s function G(r, r r )  is obtained by taking the inverse transform, 

G(r, r’) = - dk (2.14.10) 

The solution of (2.14.6) is defined uniquely only if we apply the radiation 
condition which requires that for a localized source, the excited waves must 
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be outgoing away from the source. If the medium is lossy, then radiation 
condition requires that the wave decay away from the source region. In 
evaluating (2.14.10) this condition must be used. 

In the following we shall discuss two different approaches in this evalua- 
tion. First, the integral will be computed in a spherical coordinate system. 
Let the coordinates be so directed that the polar axis is in the direction of R. 
Equation (2.14.10) becomes 

2n e-jkRcoaO 

0 k2 - kO2K 4 
1 

G(r, r’) = ~ (2n)3 Jr k2  dk Jr sin e dB J 

k dk 

dP (2.14.11) 

where the third line is obtained by substituting p = kR and rs2 = kO2KR2. 
The p-integration is carried out by contour integral method. The integral 
can be written in the form 

pejP 1 +- pe-iP 
L 2 j  S+ni p 2 -  rs2 d P - - - J  2 j  --m p 2 -  g2 dp (2.14.12) 

In the integrand, there are two poles, g = & k , R f i =  &a,. For a 
lossy medium K has a negative imaginary part. Choosing the branch such 

t h a t 4 K a l s o  has a negative imaginary part, the positions of the two poles 

Fig. 2.14-1. Location of poles -l 

in the complex p-plane for the in- 
tegrand of (2.14.12) when the me- 
dium is lossy. 

c R e p  
0 

of the integrand in (2.14.12) are shown in Fig. 2.14-1. They approach 
the real axis as shown by arrows for the lossless case. The first integral can 
now be integrated by completing the contour as shown in Fig. 2.14-2. 
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lm P 

The second term on the right-hand side of the above equation vanishes as 
the radius of the contour approaches infinity. The contribution from the 
first term of (2.14.12) comes from the pole at  -0,. 

It gives us 

[pejp/(pz - 02)] dp = (2nj/2)e-jui = nje-jkofiR (2.14.13) SI, 
which is in a form of outgoing waves. 

We note that either by including some loss in the medium as in Fig. 2.14-1 
or by choosing the contour as in Fig. 2.14-2 for lossless case, the radiation 
condition is satisfied. For the second term in (2.14.12), the contour is 
shown in Fig. 2.14-3, and we obtain 

- 
[ pe-jp/(p2 - a”] dp = - (2nj/2)e-j‘1 = -nje-jkodER (2.14.14) 1:: 

Fig. 2.14-3. Contour for the second 
integral of (2.14.12). 

Substituting (2.14.12), (2.14.13), and (2.14.14), into (2.14.11), we obtain 
the well-known result, 

(2.14.15) 

Next, we apply the technique discussed in Appendix B to obtain the 
asymptotic form of the Green’s function in (2.14.10). The idea of the 
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asymptotic technique is based on the fact that the major contribution to 
the integral (2.14.10) at  a large distance comes from those groups of plane 
waves with group velocity in the direction of R (see discussion in Section 
2.12). The asymptotic form of (2.14.10) is written as (see B.1.17) 

where 
D = k2 - ko2K (2.14.17) 

and D = 0 corresponds to the wave vector surface (or dispersion surface). 
The summation is over those k(i) on the wave vector surface such that the 
group velocities there are along the direction of R. is the Gaussian 
curvature of the wave vector surface at  kti) (not to be confused with the 
relative permittivity K). For the isotropic medium, a case of concern at 

the moment, the wave vector surface is a sphere defined by k = k o f i  
Therefore the Gaussian curvature is just l/k2, and 

VkD 2k (2.14.18) 

which is also the direction of the group velocity for this case (see Section 
12). This means that for a given R, only one group of waves contributes 
to the far field, the group that centered around k where k 11 R. Hence k(*’ . 
R = k,,l/KR in (2.14.16). The constant takes the value $1 since the 
spherical surface is convex to the direction VkD, or k (see Appendix B). 

Substituting all these into (2.14.16), we obtain immediately 

(2.14.19) 

which happens to agree with the exact expression (2.14.15). Thus we see 
that for this particular case the asymptotic evaluation yields an exact solu- 
tion. This, of course, is not to be expected in general. 

We can now substitute (2.14.15) or (2.14.19) into (2.14.7) to obtain the 
dyadic Green’s function r(r, r’). But we note that G(r, r’) is singular at the 
source point 1 R 1 = 0; any differentiation makes the resultant dyadic 
Green’s function even more singular at the source point. Therefore if 
r(r, r’) is used to compute the field inside the source region, we have to be 
careful about the operations. For this purpose let us define the principal 
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value of a volume integral as 

lim s J(r‘) T(r, r‘) dr’ 
r+O lRl>e 

(2.14.20) 

where r is singular at  I R I = 0. It can be proved that when defined this 
way, the principal value is uniquely determined. It is now convenient to 
separate the dyadic Green’s function into two parts: a regular part and a 
singular part in the sense of generalized functions. Let us consider the 
ikth component of the dyadic Green’s function Ti,. In the sense of general- 
ized functions the inner product is given by 

= lim {I ri,(R)#(R) dR + I rik(R)+(R) dR 
E+O IRI>E IRl<e 

where # is in the space of the so-called test functions. The integral is sep- 
arated into two parts. The first part involves integration outside of an 
infinitesimal sphere centered at  1 R I = 0. The singularity of the Green’s 
dyadic is not in the region of integration and the result is just the principal 
value of the integral. The second part of the integral involves integration of 
the singularity. We proceed to evaluate it by first defining a Fourier trans- 
form: 

Fik(R) = - Tik(k)e-jkaR dk (2.14.22) 
(2nI3 

Substituting (2.14.22) into the second term of (2.14.21), we have 

J Ilik(k) = lim +(O) - 
e+O 2n2 

R sin kR dR 
dk s’ 

sin ke - ke cos ks rik(k) dk .- 1 
-- 

k2 k 
- l i m + ( ~ )  j 

2n2 S- 

.- dk (2.14.23) - #(O) lim e2 j sin ke - ke cos ke -- 
S+O k 
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product (2.14.21) becomes 

rik(R)$(R) dR 

n 

(2.14.24) sin kE - kE cos kE Fik(k) m( 9(0) .- 
k + lim - 

e+O 2n2 “s  (ke)2 

In the sense of generalized functions, the dyadic Green’s function can be 
expressed as 

where P denotes the principal value. Equation (2.14.25) is a general and 
useful formula which separates the regular and singular parts of the dyadic 
Green’s function. 

We wish now to apply (2.14.25) to the case of isotropic media. From 
(2.14.7) and (2.14.8), we have in the transformed domain 

1 
(2.14.26) 

Substituting (2.14.26) into the integral in (2.14.25), it is easy to show 
that all components except the diagonal ones of the second term in (2.14.25) 
vanish due to integration over the angle. The diagonal components are 

d(R) (2.14.27) 
- dij 

dv = - 
V 3k02K 

- 
2x2 

Therefore, the Green’s dyadic in an isotropic medium is given by 

I d(R) 
vv 

T(R) = P I + - ( ko2K )G(R) - 3k,21Y (2.14.28) 

When this dyadic Green’s function is applied outside the source region, it 
yields the usual result. When it is applied to the source region, the singularity 
at  the origin is taken care of by the delta function part, and the principal 
value defined by (2.14.20) must be used to all integrals involving the first 
term of (2.14.28). Therefore by admitting the generalized functions in our 
solution, (2.14.28) gives a standard procedure for taking care of the sin- 
gularity. 

We next consider the case for an isotropic medium with spatial dispersion. 
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For this case, the relative dielectric tensor is given by 

Equation (2.14.1) may be solved by the Fourier transform technique, and 
the dyadic Green’s function can be put in the form (2.14.22) with 

Integration of (2.14.22) with (2.14.29) as its integrand depends on the 
explicit forms of Kl and K,, . Asymptotic technique may be used to compute 
the far field. 

On the other hand, from the discussion in Section 13, we know that for 
the isotropic medium, it is possible to decompose the field into independent 
transverse and longitudinal modes. Therefore, we can define independent 
transverse and longitudinal Green’s functions. As a matter of fact, from 
(2.13.6) and the definition of the Green’s function, it is obvious that 

dk 
1 exp(-jk - r) 

GI,@, r’) = - (2.14.30) 

dk (2.14.31) 
exp(-jk - r) 

GL(r, r’) = - 
ko2Kl(k, w )  - k2 

where GI, and Gl are the longitudinal and transverse Green’s functions, 
respectively. Again, the evaluation of these two integrals depend on the 
functions K,,(k, o) and K,(k, w).  Such an evaluation for the warm plasma 
is carried out in Chapter 3. 

Finally we consider the problem of finding the dyadic Green’s function 
for an anisotropic medium with no spatial dispersion. The dyadic Green’s 
function is given by (2.13.24) 

where a, and b, are the polarization vectors and n, is 

dk (2.14.32) 

the refractive index 
for the ath characteristic mode. For the lossless medium without spatial 
dispersion b, = a, and nu depends only on the direction but not the mag- 
nitude of the wave vector k. The exact evaluation of (2.14.32) in general is 
not possible. In the following, the asymptotic technique discussed in Ap- 
pendix B is applied to find the far field expression for the dyadic Green’s 
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function. We have, for (2.14.32) 

where 
D = k2  - kO2n,2 (2.14.34) 

K:) is the Gaussian curvature of the dispersion surface D = 0 at the point 
k = kp). Again, the summation is over those points kp)  on the dispersion 
surface such that its corresponding group velocity is in the direction of R. 
Only those groups of waves centered around k?) will contribute to the far 
field at R. 

Since the medium is anisotropic, the group velocity at  k$ is in general 
not in the same direction as k$. Let us assume that the angle between them 
is aii) (Fig. 2.14-4). 

I 

Fig. 
vector 

2.14-4. Angle a between the wave 
and the group velocity. 

Od 

For the case in which the medium has a symmetry axis along z-direction, 
the angle a is given by (2.12-6) 

1 an 
t a n a  = - - - 

n ae (2.12.6) 

for each mode. In general, it may be found once the refractive index is 
given. Therefore, for a given R, kLi) may be obtained by solving simulta- 
neously the dispersion relation D = 0 and (2.12.6) or its equivalent. 

The exponential in (2.14.33) now may be expressed in terms of a$) as 

k$) . R k 9 ) R  cos (2.14.35) 

where kgJ = I k i  1 .  
The factor I Vk D lkg)  can be evaluated in the following manner. Since 

nu does not depend on k = I k I ,  the derivative of D with respect to k is 
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just 2k. This is the component of Pk D along the direction k. From Fig. 
2.14-4 it is obvious that 

I Vk D I = 2k sec a (2.14.36) 

Therefore, when evaluated at  e), we have 

Substituting (2.14.35) and (2.14.37) into (2.14.35), we obtain 

The value of the constant Cp) is determined in the following way. For 
KC) > 0, it takes the values f l  where the dispersion surface D = 0 is 
convex to the direction f V k  D. For Ni) < 0, it takes the values * j  ac- 
cording as the direction Pk D is parallel or antiparallel to R. 

Equation (2.14.38) gives the asymptotic expression for the dyadic Green’s 
function for an anisotropic medium with no spatial dispersion. Further 
reduction of the formula can be made only when the relative dielectric tensor 
of the medium is given explicitly. 

Thus, in this section, we have derived the dyadic Green’s functions for 
three different media: the isotropic with no spatial dispersion (2.14.15); 
the isotropic with spatial dispersion (2.14.29), (2.14.30), and (2.14.31); 
and the anisotropic with no spatial dispersion given by (2.14.38). These 
expressions will be used in later chapters for the discussion of various 
different topics. 

Problems 

1. 

2. 
transformation about the z-axis, prove that 

From (2.5.11) and (2.5.12), derive (2.5.15) and (2.5.17). 

For the dielectric tensor E in (2.6.10), if it is invariant under rotational 

E,, = cyz = 0 and E~~ = E ~ .  

3. If a tensor K(k) is symmetric and invariant under rotational trans- 
formation about the vector k, prove that 
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(a) for k in the direction of the z-axis, the tensor can be written as 

(b) for k in any arbitrary direction, the tensor can be put into the form 

K,i(k) = Kl(k2)(6ij - kikj/k2) + K,,(k2)kikj/k2 

where K,(k2) and K,,(k2) are arbitrary functions of k2. 

4. Given the relative dielectric constant for a cold, homogeneous, iso- 
tropic plasma K(w) as 

K(w) = 1 - w,”w(w - iv)  

where w p  and Y are constants, verify that Kramers-Kronig relations [Eq. 
(2.5.17)] are satisfied by this function K(w). 

5. For a uniaxial medium, the dielectric tensor is given by 

0 

O i  I 0  0 E d W )  

EI(W) 0 
E(O) = 0 E 1 ( 0 )  

(a) Find the refractive indices for plane wave propagation in this 
medium. 

(b) Find the normal modes and discuss their polarizations. 

6. In the coordinate system shown, the dielectric tensor for a magneto- 
plasma can be written as 

Ezz EW 0 

0 Ezz 
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(a) Find the principle axes for this tensor. (The principle axes are ob- 
tained by solving the eigenvalue problem. 

E A" = A,A", 01 = 1 ,2 ,3  

where Aa is the eigenvalue for the ath eigen vector A". The A" are the principle 
axes.) 

(b) In the new coordinate system where the principle axes are the 
new coordinate axes, what is the form of the dielectric tensor? Also find the 
form of the wave equation [Eq. (2.7.5)] in the new system. 

7. If A % K = K % A where K is symmetric and A is any given vector, 
in what form must K be? 

8. In a lossless anisotropic medium the relative dielectric tensor is given by 

K = Re K + j I m  K 

where Re denotes real part and Im denotes imaginary part. 

(a) Show that Re K is symmetric and Im K is antisymmetric. 
(b) Since the antisymmetric tensor is equivalent to some axial vector, 

the relation between the electric displacement vector and the electric field 
can be written in the form of 

where g, is a real vector called a gyration vector. A medium in which D 
and E are related this way is sometimes called a gyrotropic medium. How 
is g, related to Im K? 

(c) If the inverse of K exists and letting r = K-l. r must have the 
same properties as K. By a similar argument we can write 

E& = Re r - D + j(D x gJ. 

Now how is g, related to Im r? And to Re K and g,? Also, how is Re r 
related to Re K and g,? 

9. 
mode can be expressed by a scalar potential 

In an isotropic dispersive medium, the electric field for the longitudinal 
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In the static limit, i.e., as w -+ 0, show that 

(a) for a point source 

e(r) = e S(r - ro) 

the potential is given by 

where K,,(k, 0) is the zero frequency limit of the longitudinal relative 
dielectric constant. 

(b) For K,,(k, 0) of the form 

and using the Fourier inverse transform, prove that 

where r,,, is the screening distance. 

10. Consider a lossy anisotropic medium. In the frequency region in which 
the medium is transparent, the time-averaged electric energy stored in a 
wave packet is 

(UE), = gE* * ( d w ~ / d w )  * E 

Show that this energy is equal to or greater than the energy in free space of 
a wave packet with the identical electric field. 
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3. Waves in Fluid Plasma 

3.1 Introduction 

We have seen in Chapter 2 that because of principles of causality and 
Onsager relation, the dielectric tensor must satisfy certain properties. These 
properties are general and must be satisfied by almost all media. When we 
come to derive a dielectric constant expression, it is necessary to know the 
response of a given medium to electromagnetic fields. One of the tasks in 
this chapter and the next is to obtain the dielectric tensor for various plasmas. 

A plasma is a collection of free electrons and various ions. The spatial 
distribution of electrons and ions may be homogeneous, inhomogeneous, or 
irregular. A steady magnetic field may exist to influence the motion of 
charged particles. There may be neutral molecules with which the electrons 
and ions make collisions. In order for the plasma to exist without a strong 
external force, it is necessary that the plasma be electrically neutral to a high 
degree of approximation. When forced into an electrically nonneutral state, 
the plasma has a tendency to recover the neutral state and consequently 
may lead into oscillations. 

There is a hierarchy of equations that can be used to describe plasma 
kinetics. The choice of equations depends on the nature of the plasma and the 
accuracy with which we wish to describe the plasma response. Because of the 
long-range nature of Coulomb force, the plasma may be described as a col- 
lection of noninteracting charged particles except through the self-consistent 
electric field. Such a plasma may be referred to as being “cold” since the 
pressure force is ignored. When thermal effects are important, hydrody- 
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namic equations can be used. The inclusion of the pressure force in hydro- 
dynamic equations brings in plasma waves. The existence of plasma waves 
implies that a “warm” plasma is in constant agitation, giving rise to density 
as well as velocity fluctuations. The hydrodynamic description of a plasma 
is adequate if the thermal speed is small in comparison with wave speed. 
If this is not so, it is then necessary to use the distribution function approach. 
The exact description of the many-particle system is given by the BBGKY 
hierarchy or equivalently by the generalized stochastic equations. These 
equations are extremely difficult to work with and besides they are not closed. 
Generally, approximations can be used by ordering some parameters. 
Equations such as the kinetic equation, Boltzmann equation, Fokker- 
Planck equation, and Vlasov equation can be obtained, depending on ap- 
proximations. 

In this book, we assume that the hydrodynamic plasma model is good 
enough for our purposes. As a result, phenomena such as wave-particle 
interaction that lead to Landau damping are excluded. The hydrodynamic 
model is adequate for wave studies except near the region of refractive index 
poles. When the refractive index approaches the infinite value, the phase 
velocity of the wave is reduced to zero and is hence comparable with the 
thermal velocity. This is the condition for strong wave-particle interaction, 
and the problem can be dealt with conveniently only by using the distribu- 
tion functions. 

3.2 Charge Neutrality 

A plasma is a collection of charged particles. The forces involved are 
Coulomb forces. We shall demonstrate that if charge neutrality is not 
fullfilled macroscopically, potential energy due to Coulomb forces can be 
enormous when compared with the thermal energy of the particle. Unless 
there is a strong external force to maintain this potential, charged particles 
will move in such a way as to reduce the potential difference and to restore 
electrical neutrality. A semiquantitative estimate on this problem can be made 
by considering a simple one-dimensional problem. Let there be a plasma 
occupying the space z 2 0. It is initially neutral, and we wish to compute 
the energy required per particle to deplete all positive ions in a planar 
region. In the depleted region we have just electrons of density N .  The 
electric potential produced by these electrons satisfies the Poisson’s equation 

d2V/dz2 = Net&,, (3.2.1) 
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Integrating (3.2.1) twice and making the simplifying assumptions V = dV/dz 
= 0 at z = 0, we obtain 

V = Nez2/2c0 (3.2.2)  

The potential given by (3 .2 .2)  increases without limit like z2. The energy 
required to move a positively charged particle through such a potential 
hill is 

U = e V  = Ne2z2/2&, = &T(z2/Ao2) (3.2.3) 

This energy can be compared with the thermal energy of each particle 
&T as done in (3.2.3). In order to avoid confusion all temperatures will be 
expressed in energy units since k is reserved as a symbol for wave number. 
Equation (3.2.3) also defines the Debye length AD given by 

A,, = (&oT/Ne2)1/2 N 69.0(T/N)1/2 m (3 .2 .4)  

Note that this quantity depends only on temperature and density but not 
on the mass of particles. 

The Debye length just defined has the meaning of a distance for which the 
energy required to deplete the positive charge is equal to the thermal energy. 
If external perturbations are not violent on the plasma, the energy per 
particle associated with random motions in the z-direction must still be 
approximately )T. This means that the perturbation on the plasma, such as 
by introducing a boundary, cannot extend much beyond a distance of the 
order of Debye length. Accordingly, near any boundary in a plasma, we 
would expect a sheath region of the order of Debye length within which the 
charge neutrality condition need not be maintained. Beyond the sheath 
region is the plasma region where charge neutrality is maintained to a 
good degree. 

The tendency to maintain charge neutrality also gives rise to other inter- 
esting properties in  a plasma. We list them and discuss them very briefly 
in the following. 

(i) Oscillation. Suppose that an external force is applied and it produces 
charge separation in some region. Then suddenly this external force is 
removed. Immediately charged particles will be set into motion to restore 
charge neutrality and convert all its potential energy into kinetic energy. 
This kinetic energy will continue to  drive particles away from charge neutral 
condition even when restored. As a result oscillation about the charge neutral 
condition occurs in the absence of any damping mechanism. We will discuss 
this problem more fully with a concrete example in the next section. 
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(ii) Screening. If we introduce a charged particle in the plasma, the 
potential due to the charged particle will alter the distribution of plasma 
particles. The result is that the potential will decay much faster than the 
Coulomb potential and we say that the particle is screened. This problem is 
discussed in Section 4. 

(iii) Ambipolar Dzyusion. For a plasma of equal electron and ion tem- 
peratures electrons will diffuse faster than ions due to  difference in mass. 
As electrons diffuse away and leave ions behind, an electric field is set u p  
due to  space charge. This electric field is so strong as to  maintain quasi- 
neutrality condition. As a result the plasma diffuse as a whole with an 
effective mass equal to the average of electron and ion mass. We shall 
not discuss this problem further since we are more concerned with waves. 
Readers should consult some books on plasma physics on this subject. 

(iv) Scattering. The screening idea advanced in (ii) also applies t o  
particles in the plasma. Since ions are very massive neutrality is maintained 
by electrons forming shielding clouds about ions. As ions move so d o  the 
shielding clouds. These shielding clouds have a radius of the order of 
Debye length. If a strong electromagnetic wave is incident on the medium, 
scattering will take place. The nature of the scattering depends on the 
wavelength of the wave. If the wavelength is much larger than the Debye 
length, the scattering is from the shielding cloud and the Doppler broadening 

Thermonuclear 
Dlasrna 

Electron density, N/m’ 

Fig. 3.2-1. Density, temperature, and Debye length of a few sample plasmas. 
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corresponds to  the ionic thermal speed. If the wavelength is much smaller 
than the Debye length, the scattering is from individual electrons. 

In  Fig. 3.2-1 the dependence of Debye length on temperature and num- 
ber density is shown. Also indicated are regions of typical plasmas. 

3.3 Oscillation 

We mentioned in Section 2 that the tendency to  restore the charge neu- 
trality condition is also the mechanism for producing oscillations. To illustrate 
this let us consider a slab of plasma. When in equilibrium the plasma is 
electrically neutral. Suppose we apply an external force which uniformly 
displaces all electrons by a small distance E .  The excess charge at two par- 
allel faces sets up an electric field. Since is small, the excess surface charge 
density is given approximately by N e t  where N is the charge density. 
The uniform electric field so produced is then given by 

E = Net/&,, (3.3.1) 

Fig. 3.3-1. A slab of plasma. Oscillations 
are possible if all electrons are displaced by a 
small distance relative to ions. 
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The situation is illustrated by Fig. 3.3-1. Now let us suppose that this external 
force is removed. Under the influence of the electric field charged particles 
must begin to  move. Since ions are so massive, we shall ignore entirely 
their motion. The equation of motion for each electron is given by 

mt = -eE (3.3.2) 

Substituting the expression for the electric field given by (3.3.1) into 
(3.3.2), we obtain 

t = -  wp2E (3.3.3) 
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Equation (3.3.3) is an equation describing a simple harmonic motion. It 
predicts oscillations at  an angular frequency 

(3.3.4) 

Numerically the plasma frequency squared is proportional to the density 
through a relation 

fp2 = 80.6N (3.3.5) 

Plasma frequency is the characteristic frequency of the medium. The in- 
verse of plasma frequency gives the rate at which the electrostatic restoring 
forces in a plasma tend to eliminate deviations from neutrality. I t  is through 
this restoring force that modifies transmission of electromagnetic energy from 
the free-space condition and gives rise to frequency dispersion phenomenon. 
Actually the frequency of oscillation depends on the geometric configura- 
tion of the plasma as well as on the modes. For example, one of the oscilla- 
tion modes of a cylindrical plasma column has an angular frequency 
up/@ (see problem at the end of the chapter). 

We observe that there are several interesting properties in the plasma 
oscillation just described. The electric field given by (3.3.1) is in the same 
direction as the displacement of particles and hence the oscillation is 
longitudinal. For longitudinal oscillations we obtained l7 x E = 0 and so 
it is often referred to as electrostatic oscillations even though the electric 
field may be time dependent and not strictly static. The fact that the electric 
field is irrotational also means that there is no associated magnetic field. 
Consequently the Poynting’s vector vanishes for longitudinal waves. In a 
medium which is not spatially dispersive this also means that the energy 
velocity is zero. That is, that any perturbation introduced in the region will 
not propagate away as waves but only oscillate locally. This is the case for 
the present model since the dispersion relation obtained by taking the 
Fourier transform of (3.3.3) is 

(3.3.6) 

which is not k dependent. Studies in Chapter 2 showed that the dispersion 
relation is obtained by setting the dielectric constant to zero. Therefore, 
the dispersion relation (3.3.6) must be the condition of vanishing dielectric 
constant for our simple model. Later as we allow for thermal effects the 
dispersion relation (3.3.6) is modified and becomes k dependent. The 
medium then is spatially dispersive. Even though the Poynting’s vector is 
still zero, due to spatial dispersion, there is energy flux associated with the 
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coherent motion of particles and hence perturbations on the plasma can 
then propagate away as waves. 

It is convenient to define vT by the relation 

yT = mvTa (3.3.7) 

Here vT2 differs from the usual definition of thermal velocity squared if 
y is different from 3. The use of y in (3.3.7) is purely for later notational 
convenience. When defined as (3.3.7), we find immediately from (3.2.4) 
and (3.3.4) the useful relation 

vT = I D o p  fi (3.3.8) 

Equation (3.3.8) states that a particle with a velocity vT (roughly thermal 
velocity) travels one Debye length in l / m p f i  sec. 

3.4 Screening 

Consider a plasma with different species of positive and negative ions. 
The charge on crth species is Z,e. We shall use the convention that e is the 
magnitude of charge on an electron and hence is a positive constant. The 
sign of charge is carried by Z ,  so that 2, may take values f l ,  1 2 ,  etc. 
When the plasma is unperturbed, the particle density of crth species is Nao. 
The condition for charge neutrality is then given by 

(3.4.1) 

Into this plasma we introduce a positive test charge of charge e at the origin. 
As a result the distribution of charged particles will be changed slightly 
and a cloud of electrons will form to effectively screen out the Coulomb 
potential produced by the test charge. The particles are distributed ac- 
cording to the Boltzmann distribution, 

N = Naoe-Z,eV/Ta 

= Nu,# - Z,eV/T, + * . - )  (3.4.2) 

where T,  is the temperature, in energy units, of ath kind particles. In (3.4.2) 
we have also assumed that the exponent is small so that we may expand as 
shown. We shall ignore higher order terms. This is effectively equivalent 
to linearization and is certainly convenient mathematically. The physical 
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interpretation of such an approximation will be taken up later on in this 
section. 

Equation (3.4.2) gives us a relation showing the dependence of density 
on potential. The dependence of potential on density is through the Poisson’s 
equation 

V 2 V  = (-l/Eo)[eS(r) + e C NaZ,] (3.4.3) 
m 

Substituting (3.4.2) in  (3.4.3) and making use of the neutrality condition 
(3.4. l ) ,  we obtain 

V2V - kD2V = -eS(r)/so (3.4.4) 

The Debye wave number appearing in (3.4.4) is defined by 

(3.4.5) 

which simplifies to the inverse Debye length given by (3.2.4) if all ions are 
ignored except electrons. Our interest is to solve (3.4.4). We note that 
(3.4.4) is identical in  form to the scalar wave equation satisfied by the 
Green’s function discussed in Section 14 of the last chapter if -kD2  is 
replaced by ko2K. As before, the transform method can be used to solve it. 
However, because of spherical symmetry, (3.4.4) can also be solved more 
simply as it reduces to 

kn2V = 0 
1 d2rV 
r dr2 

(3.4.6) 

for r + 0. Equation (3.4.6) can be integrated easily. The solution that is 
finite at r + co is 

V = (A/r)e+Dr (3.4.7) 

The constant A can be determined by substituting (3.4.7) back to the 
original differential equation and integrating over an infinitesimal sphere 
centered at the origin. Here V behaves like A/r and the left-hand side of 
(3.4.4) integrates to 

j d x V 2 V =  $ V V -  dS = V(A/r) dS $ 
= - A  d l 2 - 4 n A  s 
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where dl2 is a solid angle element. The integration of the right-hand side of 
(3.4.4) gives -e/Eo which determines the constant A .  Finally the potential 
is found to be 

(3.4.8) 

We see that for an observer inside the Debye sphere (r < l / k D )  he sees a 
potential of a unit positive charge. However, this Coulomb potential of a 
unit charge is screened for distances larger than the Debye length. This 
screening comes about from an electron cloud with charge density - E ~ ~ ~ ~ V  
= -(kD2e/4nr)e-kDr as can be seen from (3.4.4). 

We would like now to reexamine the linearization procedure in (3.4.2) 
and interprete the physical meaning attached to such an approximation. In 
the following we list these physical interpretations which seem to be different 
on the surface but actually are all equivalent. They all refer to weak 
interactions. 

(i) eV < T. In order to expand the exponent in  (3.4.2), we require that 
the potential energy be much less than the thermal energy of particles. 
This means that motions connected with thermal fluctuations must dom- 
inate. Such a requirement is certainly resonable, for otherwise electrons 
would simply fall into ions and we no longer have a plasma left. 

(ii) (6N/No) < 1. As can be seen from (3.4.2), the fractional change 
in density SN/No is just eV/T which is small from (i). Therefore, we require 
density fluctuations be small when compared with the background value. 

(iii) 4nA&Ne> 1. We take r = AD in (3.4.8) as the value of potential. 
The requirement (i) now becomes (e/4naOLD) < T. Making use of the 
expression (3.2.4) for Debye length, we obtain the desired expression 
4nAD3Nc> 1. Let us imagine a sphere of radius An as the Debye sphere. 
Then approximately our requirement is that there be a large number of 
particles in  the Debye sphere. Stated in a different way, the approximation 
involved requires that the interparticle distance be small as compared 
with the Debye length. 

The potential given by (3.4.8) is singular at r = 0. For r small the potential 
may be so large that the linearization procedure is no longer valid. Examina- 
tion of the potential behavior in this small region requires use of nonlinear 
analysis. 
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3.5 Electron and Ion Plasma Waves 

The use of basic equations to describe the plasma depends on the degree 
of accuracy and sophistication we wish to have. For example the individual 
particle model used in Section 3 assumes that the particle-particle interac- 
tion takes place only through the macroscopic electric field. Such a model is 
valid only for extremely tenuous plasma. We wish now to improve our model 
by adopting a fluid description. For many purposes a fluid model is satis- 
factory because of its simplicity and ease of getting physical insights. But 
we should be reminded that the fluid model is not valid for waves with phase 
velocity near the thermal velocity of particles. 

The basic equations in a fluid model can be interpreted as conservation 
laws. They are particle conservation 

aNa/at + div(N,v,) = 0 (3.5.1) 

and momentum conservation 

rn,N,&,/at + maNava grad v, = - grad p a  + Z,eNaE (3.5.2) 

where Nu is the number density of ath kind of particles with charge Zae, 
fluid velocity v ,  , and pressure p a .  These equations are supplemented by the 
ideal gas law 

P ,  = NUT, (3.5.3) 

the equation of state 

D(p,NZ)/Dt  = 0 

and the Maxwell equation E,$ + JT = (l/pO) curl B = 0 or 

E,,& + 2 N , Z a ~ ,  = 0 
a 

(3.5.4) 

(3.5.5) 

The symbol D/Dt  in (3.5.4) stands for convective derivative and is equal to 
d/dt + v ,  grad. The value of the specific heat ratio y in (3.5.4) has always 
been a sore spot in the fluid theory. Physically we would expect the process 
to be adiabatic if the phase velocity of the wave is much faster than the 
thermal velocity of the particles and to be isothermal if the opposite is 
true. This means y = 3 for fast one-dimensional plasma waves and y = 1 
for slow ionic plasma waves. However, when in doubt, the more accurate 
approach of distribution theory must be used. 



3.5 Electron and Ion Plasma Waves 95 

As mentioned earlier, for longitudinal waves there is no associated mag- 
netic field and thus one of the Maxwell’s equations takes the particularly 
simple form given by (3.5.5). 

Consider a plasma which is spatially uniform, time stationary, and elec- 
trically neutral. Each species is allowed to have its own temperature, but 
each temperature is assumed to be constant throughout the space. This 
plasma is perturbed so that 

N, = N r ’  + N i ,  pa = p f ’  4- P,’ 
(3.5.6) 

v = 0 + v,, E = O + E  

Our convention is that each of the first terms on the right of (3.5.6) represents 
the unperturbed quantity and each of the second terms on the right represents 
the perturbed quantity. According to our assumptions (uniform and sta- 
tionary when unperturbed) NiO) and pio) are constants. If the perturbations 
are small, we may then linearize our equations about perturbed quantities. 
Linearization of the equation of state (3.5.4) gives 

pa‘ = ./TUN,’ (3.5.7) 

The linearized equations of (3.5.1), (3.5.2), and (3.5.5) are 

aN,‘/at + Nio) div v, = 0 (3.5.8) 

m,N$O) av,/at = - yT, grad N,’ + Z,eNpE (3.5.9) 

~~k + c N:)Z,ev, = 0 (3.5.10) 

Equations (3.5.8)-(3.510) are our basic equations of interest. We shall 
show in the following that they yield an expression for energy conservation. 
Solve for E in (3.5.9) and dot with (3.5.10). We obtain 

a 

E + c [N:’m,v, i, + yT,v, - grad N,’] = 0 (3.5.11) 

By vector identity and (3.5.8) the last term of (3.5.1 1) can be manipulated 
to give 

a 

yT,v, - grad Nu’ = yT,[div(N,’v,) - N,‘ div v,] 

= yT,, div(Nu‘va) + (yT,N,’/N$O))aN,t/at (3.5.12) 

Substituting (3.5.12) back to (3.5.11), we get 

a 
(3.5.13) 

a 
at [ , ( 2NL0) div(2 yT,N,‘v,) + - C NL2 + &NFmav,2 
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Equation (3.5.13) can be interpreted as energy conservation. The divergence 
term represents the energy flux while the terms in the square bracket rep- 
resent energy density. 

We wish now to derive the longitudinal dielectric constant for our model. 
Since our equations (3.5.8)-(3.5.10) are linear in perturbed quantities, we 
may Fourier analyze and work in the transformed domain. This is equivalent 
to assuming a dependence ej(ot-k'') if initial conditions can be ignored. 
Such an assumption reduces (3.5.8) and (3.5.9), respectively, to 

joN,' - jNio)k  - v ,  = 0 

jom,Nio)va = jyT,N,'k + Z,eNio)E 

(3.5.14) 

(3.5.15) 

Tnspection of these equations shows that both v ,  and E can be decomposed 
into a component perpendicular to k and a component parallel to k. This 
means that for our present model the longitudinal waves and transverse 
waves can propagate independently. Later we shall see that this is no longer 
true if there is a steady magnetic field. The component of v ,  perpendicular 
to k can be used to drive an expression for the transverse dielectric constant. 
Inspection of (3.5.14) also shows that for transverse waves there are no as- 
sociated density fluctuations. Discussion of the transverse dielectric constant 
and transverse waves is carried out in a separate section. We, therefore, 
turn our attention to the longitudinal dielectric constant and longitudinal 
waves. 

For the longitudinal case v ,  and E are parallel to k. We can eliminate 
N,' i n  (3.5.14) and (3.5.15) to obtain 

The electric polarization density can be obtained by using the above rela- 
tion. 

P = (ZaN~O)e/jco)va 
a 

(3.5.16) 

where the angular plasma frequency of the ath species, w P z ,  is defined by 
the relation 

W p a  2 - - "0)Z a a 2 e 2 lmaco (3 .5 .17)  

We note that the plasma frequency squared is proportional to number den- 
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sity and inversely proportional to  the mass. Because of the light mass, the 
electron plasma frequency is usually much larger than the ion plasma fre- 
quency. 

The factor multiplying cOE on the right-hand side of (3.5.16) is by def- 
inition, the longitudinal electric susceptibility of the medium, i.e., 

The longitudinal dielectric constant is ~ ~ ( 1  + ,yll), or 

(3.5.18) 

(3.5.19) 

The dielectric constant (3.5.19) is both w-dependent and k-dependent. 
This means that the medium is frequency dispersive as well as spatially 
dispersive although the medium is isotropic. We have discussed in Chapter 
2 that the dispersion relation for longitudinal waves can be obtained by 
letting E~~ = 0. Setting (3.5.19) to  zero, we obtain the dispersion relation 

4 a  = o  
I - w2 - (yTak2/m,) 

(3.5.20) 

We note that in the limit of zero temperature, (3.5.20) reduces effectively 
to  co2 = m& which is no longer k-dependent. This simple case has been 
discussed in Section 3. Taking thermal effects into account makes w k- 
dependent. Inspection of (3.5.20) shows that there are as many modes as 
there are species of particles. For simplicity let us concern ourselves with 
the case of a two-component plasma in which there are electrons and 
singly charged neutralizing positive ions. The dispersion relation in this 
case is given by 

2 

= 0 (3.5.21) WPi 

w2 - (yTik2/mi) 
1 -  w;e - 

w2 - (yTek2/m,) 

The dispersion relation (3.5.21) is a biquadratic equation in w and can be 
solved easily. But the resulting expressions are rather complex. The ex- 
pression can be simplified if we note that there is at least two orders of 
magnitude difference between ionic mass and electronic mass. For the 
electronic branch we may assume that mi is a large parameter. This is 
equivalent to  assuming that ions form a neutralizing background and are 
inmobile. In this case the last term on the left-hand side of (3.5.21) can be 
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ignored and we obtain the dispersion relation 

o2 = oie f- yTek2/m,  (3 .5 .22)  

As before in (3.5.7) we may define a thermal velocity for electrons through 

rTe = mevh (3.5.23) 

The dispersion relation (3.5.22) can then be written in alternate forms 

The relation (3.5.22) or (3.5.24) with y = 3 is sometimes known as Vlasov 
dispersion or Bohm and Gross dispersion. The dispersion relation (3 .5 .24)  
can be reexpressed in terms of refractive index, giving 

(3 .5 .25)  

which shows that electron plasma waves are attenuated at  o < ope. We shall 
prove later strong damping occurs when kAD >" I which, from (3.5.24),  
gives the upper propagation limit as w N 2mpe. Therefore, electronic plasma 
waves can propagate only within a narrow frequency range ope to 2 o p e .  

The group velocity can be obtained by differentiating (3.5.24) with respect 
to k, yielding 

(3.5.26) v g  = 8w/ak = ~ $ ~ e f ~ ~  

where up = o/k  is the phase velocity. From (3.5.25) the product of the 
group velocity and phase velocity is related to the thermal velocity rather 
simply, 

VpVe = v&, (3 .5 .27)  

The average coherent kinetic energy flux is given by (see 2.10.22)  

I (Sl) I = --oE2a&/ak 

We differentiate (3.5.19) with respect to k and take into account only the 
electronic contribution. Then we substitute the dispersion relation (3 .5 .24)  
into the resulting expression to obtain 

I (Sl) I = w E ~ E , ~ v $ , / ~ w ~ , .  (3.5.28) 
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The internal energy in a wave packet is given by (see 2.10.20) 

( W )  = &E2 d(we)/dw 

Again by differentiation and use of the dispersion relation the energy 
density can be computed to be 

The energy velocity is the ratio of 1 (Sl) [ to (W) and from (3.5.28) and 
(3.5.29) it is 

1 (S1> I/(W> = kV$e/w = v g  (3.5.30) 

We have proven the equality of energy velocity to group velocity from very 
general considerations in Chapter 2. Equation (3.5.30) merely demonstrates 
that this is so for a specific model. We should note that for our longitudinal 
waves the transport of energy is carried entirely by streaming motions of 
charged particles. 

The ionic branch of our dispersion relation for the two-component 
plasma can be obtained by letting m e - + O  in (3.5.21). This is equivalent 
to ignoring the electron inertia in its equation of motion. The dispersion 
relation (3.5.21) simplifies to 

(3.5.3 1)  

If the wavelength of interest is much larger than the Debye length, (3.5.31) 
can be further simplified to 

w' = (yk'/rnJ(Ti + Te) (3.5.32) 

For this case there is no dispersive effect since both phase velocity and 
group velocity are equal to [y(Ti + Te)/mi]1/2.  These waves are sometimes 
known as ion sound waves. Using a distribution function approach, it is 
found that these waves are heavily damped unless the electron temperature 
is three times or larger than the ion temperature (Stix, 1964). 

3.6 Plasma Density Fluctuations 

We have seen that plasmas as fluids can sustain wave motions and these 
plasma waves have associated density fluctuations. It is then of interest to 
compute the spectrum of these fluctuations. As discussed earlier, the fluid 
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approach is not entirely satisfactory, but since it affords simplicity and phys- 
ical insights, we shall use it here. The derivation makes use of the theorem 
of equipartition of energy which is strictly valid for a plasma in thermal 
equilibrium and we shall assume this to  be the case in this section. 

Consider a large cube of side 2L of a plasma. Due to thermal agitations 
there are set up standing waves of many modes. For simplicity we assume 
that these standing waves are repeated outside of the cube so that Fourier 
series representation can be used. For the ith mode the spatial variation is 
given by the wave number ki = in/L, i = 1,2,3, . . . . The corresponding time 
variation is given by wi  which must be computed by the dispersion relation; 
i.e., w i  = o(ki).  The standing wave for density fluctuations of ath species 
corresponding to the ith mode can be written as 

N;(i) = A,(ki) cos ki - r cos wit + A,(ki) cos ki . r sin wit 

+ A3(ki) sin k, - r cos wit  + A4(ki) sin ki . r sin wit (3.6.1) 

Since the plasma is in thermal equilibrium, it must be statistically homo- 
geneous in space and stationary in time. Further, as N' is the fluctuating part 
of the density it must have vanishing mean. The necessary and sufficient 
conditions for (3.6.1) to satisfy all these requirements are 

(Am(ki)) = 0, m = 1,2, 3,4,  all i 

and 

(A,(k,)A,(kj)) = d,,, dij(A2(ki)), rn, n = 1, 2, 3, 4, all i, j (3.6.2) 

where angular brackets are used to denote statistical average. The total 
density fluctuation for nth species is obtained by summing up all the modes, 

Na'(r, t )  = [A,(ki) cos ki r cos wit + A,(ki)  cos ki  r sin wit  

+ A3(ki) sin ki  - r cos wit  + A,(ki)  sin ki . r sin w i t ]  (3.6.3) 

Making use of (3.6.2), the correlation function of the density fluctuation 
can be computed to be 

i 

B"5, 7) = war@ + 5, t + r)lva'(r, f ) )  

= C (A2(ki)) cos ki - 5 cos w i t  (3.6.4) 
i 

The spectral density of density fluctuations is just the Fourier transform of 
the correlation function, 
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Substituting (3.6.4) into (3.6.5), we find the spectral density 

SN(k, W )  = 4n4C (A2(ki)) S(W f mi) S(k f ki) (3.6.6) 
i 

In the interest of compactness the product of two 8-functions in  (3.6.6) 
actually represents sum of four terms with all combination of signs. The 
wave number of the ith mode is ki = in/L, i = 1,2, . . . . The change in wave 
number between the adjacent mode is d k ,  = n/L. For a large L,  dk, is small. 
We may therefore approximate the sum (3.6.6) by an integral as done in 
the following. 

SN(k, W )  = 4 ~ ‘ ( L / n ) ~  J (A2(k,)) S(W f mi) S(k f k,) dki 

= 8d3(A2(k))  [S(W + W(k))  + S(W - ~ ( k ) ) ]  (3.6.7) 

The average “power” in the density fluctuation (A2(k)) in (3.6.7) is an 
unknown quantity and it must be related to the thermodynamic parameters 
of the plasma system. Since the system is in thermodynamic equilibrium, 
the theorem of equipartition of energy tells us that the mean energy asso- 
ciated with each mode is T. (Note that we express the temperature T in  
energy units.) The energy associated with the wave has been derived and is 
given by the quantity in  the square bracket of (3.5.13). However, in  order to 
compute it we must specify our plasma and the region of interest. 

For simplicity we again assume that we have a two-component plasma 
with electrons and singly-charged positive ions both of density N o .  We 
shall be concerned first with fluctuations arising from electron plasma waves. 
For this case, ions just form a neutralizing background and do not provide 
density fluctuations while electron densities do fluctuate. If the electron 
density fluctuation has the form (3.6.1) for the ith mode, the associated 
velocity and electric field can be obtained by (3.5.8) and (3.5.10). They are 

I$) = (wi/kiNo)[A,(ki) sin ki  - r sin oit - A,(ki) sin ki r cos wit 

- A,(ki) cos ki - r sin wit + A4(ki) cos k i  - r cos wit]  (3.6.8) 

E(’) = (e/E,ki)[-A,(ki) sin ki - r cos wit - A,(ki) sin ki r sin wit 

+ A3(ki) cos k,  - r cos wit + A4(ki) cos ki  - r sin wit]  (3.6.9) 

Making use of conditions (3.6.2), the mean square values of velocity and 
electric field can be obtained. 

( ( u p ) ) ’ )  = ( ~ t / k , 2 N , 2 ) (  A2(ki)) (3.6.10) 

( ( E(i))2) = (ez/&,zkki2)( A 2( k,)) (3.6.1 1 )  
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The mean energy density associated with density fluctuations of the ith 
mode due to electron plasma waves is 

The total energy in a volume 
waves is then 

corresponding to the ith electron plasma 

According to the theorem of equipartition, (3.6.13) is also equal to T, i.e., 

(3.6.14) 
(2L)3(A2(ki)) mo.2 ' = T  

NO ki2 

where the dispersion relation (3.5.22) has been used. The expression (3.6.14) 
relates the average "power" of density fluctuation to thermodynamic 
parameters of the system, 

(3.6.15) 
Nh2T - NOT k2 -- 

(A2(k)) = 8L3meo2 8L3 me(@;, + yTk2/me) 

Substituting (3.6.1 5) into (3.6.7) we immediately get the spectral density 
for fluctuation in electron density caused by electron plasma waves as 

The result (3.6.16) indicates that for a given k the spectra are given by two 
lines at  o satisfying the dispersion relation (3.5.22). More accurate theory 
derived from kinetic considerations shows that there is some spread in the 
spectrum although rather sharp. 

Similar considerations can also be applied in deriving density fluctuations 
for the ionic branch. In this case the approximation is me + 0. Since both 
electrons and ions have velocities and density fluctuations, we must sum up 
all contributions to the energy density. Again making use of equipartition 
of energy, the electron density fluctuations corresponding to ionic plasma 
waves have a spectral density given by 
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where o(k) is given by the dispersion relation for ionic plasma waves in 
(3.5.31). We should note that because of the difference in oscillation fre- 
quency the contribution of density fluctuation spectrum from electron 
plasma waves given by (3.6.16) is near the electron plasma frequency 
while that from ion plasma waves given by (3.6.17) is near the ion plasma 
frequency. 

3.7 Two-Stream Instability 

In the derivation of plasma waves in Section 6 we have assumed that the 
equilibrium plasma fluids are not in motion. This can be seen in (3.5.6) 
where the unperturbed velocity is assumed to vanish. Now we wish to con- 
sider the possibility that the equilibrium plasma fluids may be in motion. 
Physically, this case is of interest because strong interaction is expected if 
the fluid is moving with a velocity nearly that of the wave. As a matter of 
fact if conditions are right, perturbations may grow in time. When this 
condition occurs, the medium is said to be unstable. The instability mech- 
anism can be explained by the charge bunching mechanism. Consider 
the density variation N,' as shown in Fig. 3.7-1 at some instant. There is 
an excess of electrons in the positive portion of the wave (points 1 to 3 
and 5 to 7 in the figure) and an excess of positive ions in the negative por- 
tion of the wave (points 3 to 5, etc.). If electrons are streaming in the 
z-direction with a velocity nearly equal to  the phase velocity of the wave, 
strong interaction between electrons and the wave through the electric 
potential is expected. The electrons see a retarding potential from 1 to 2, ac- 
celerating potential from 2 to 4, retarding potential from 4 to 6, etc. As a 
result they reach their minimum velocity at points 2,6,  etc., and maximum 
velocity at  points 4, etc. This has the effect of making electrons spend 

Fig. 3.7-1. An example of electron density perturbation showing possibilities for 
growth. 
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more of their time in regions of negative charge excess, making them more 
negative. Similarly the regions of positive charge excess is made more 
positive. Therefore, the initial perturbation may grow with time, causing 
instability. 

To approach this problem mathematically, we may go back to our basic 
equations (3.5.1) through (3.5.5) and replace the velocity assumption in 
(3.5.6) by 

v, = vp) + v,’ (3.7.1) 

and repeat the manipulations carried out in Section 5. However, the prob- 
lem can be more directly approached by noting that for nonrelativistic 
motions the main effect is that of a Doppler shift in frequency. The con- 
tribution of uth species to the longitudinal susceptibility in  a frame in which 
the ath fluid is stationary is given by (3.5.18) as 

XS. = -w;,/w2 (3.7.2) 

where for the moment we have ignored the thermal effect. Suppose in the 
laboratory frame the ath fluid is moving with velocity viol and the appro- 
priate susceptibility is (3.7.2) with the Doppler shift taken into account. 
Therefore, the longitudinal susceptibility in the laboratory frame is 

The corresponding dielectric constant is then 

(3.7.4) 

The dispersion relation for longitudinal waves is obtained by setting 
Ell(k, w )  = 0. For simplicity we shall assume that all beams are traveling 
in the same direction and study the case with k parallel to the beam direc- 
tion. The dispersion relation can be written in the form 

k2 = 1 wgx/(w/k - vLO’)’ F(w/k) (3.7.5) 
01 

where we have denoted the right-hand side by F(w/k). A typical term in the 
sum of F(w/k) has a behavior sketched in Fig. 3.7-2. The value of the 
term decays toward zero continuously as w / k +  f-co and the value ap- 
proaches to infinity as the phase velocity approaches to the beam velocity. 
A plot of F(w/k) for three beams is shown in Fig. 3.7-3. The dispersion 
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w / k  

Fig. 3.7-2. Diagram showing dependence of w&/(w/k - u:*')~ as a function of to/k. 

relation (3.7.5) has roots in w twice as many as number of beams. There- 
fore, for the three beam example shown in Fig. 3.7-3 we would expect 
six roots. These roots are given by F ( o / k )  = k2.  We consider the follow- 
ing two cases: 

F ( w / k )  

I I I t w / k  
0 

Fig. 3.7-3. Diagram showing dependence of F(w/k)  as a function of w / k  for a three- 
beam system. 

(i) Stability. For sufficiently large values of k ,  e.g., k larger than k ,  
such as k = k, in Fig. 3.7-3, the line intersects F(w/k) at six points, indicating 
there are six real roots in w.  As k + co, the roots w/k -+ vi"). The space-time 
behavior of perturbations becomes ej("'-kz) --j ejk-(v~''-z) which shows that 
perturbations travel with the beam. This is the regime where all beams 
behave individually and like free beams. 

(ii) Instability. As the value of k decreases and reaches k ,  in  Fig. 
3.7-3, two real roots coalesce. Fork  smaller than k, such as k, there are only 
four real roots, and the two remaining roots must be complex. For k = k ,  
there are two real roots and four complex roots. Since the dispersion rela- 
tion (3.7.5) has real coefficients, these complex roots must form complex 
conjugate pairs. The time behavior ejw' = e(j"'g-mit) shows that one of each 
complex conjugate pair of roots must give rise to exponential growth and 
the system is said to be unstable. Note that instability is caused by interac- 
tions among beams and hence represents a collective effect. 
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In the following let us consider the example of one streaming beam 
through a stationary beam. This can be the case of a streaming electron 
beam through stationary ions or of one streaming electron beam through 
another electron beam at rest with ions considered as neutralizing back- 
ground. Anyway, the dispersion relation for this example takes the form 

(3.7.6) 

The function G(w, k )  defined by (3.7.6) has a behavior represented by the 
curve of Fig. 3.7-4. As seen the curve reaches a minimum G(w,, k )  when 
w = 0,. According to the foregoing discussion, the plasma system under 
consideration is stable if G(w, , k )  < 1, marginally stable if G(w, , k )  = 1, and 
unstable if G(w, , k )  > 1. Therefore, it is crucial to find the value of G(w, , k). 
To find the threshold of instability, we set (6’G/6’w),o = 0 and obtain 

= o  4 1  4 2  

3 + (Oo - k v ‘ 9 3  

Fig. 3.7-4. Dependence of 
G(w, k )  on w. See Eq. (3.7.6). 

I 
I 

I 
= w  

0 wo kV‘O’ 

The real root for wo can be found easily by solving the above equation, 

(3.7.7) 

This is the value of w at which G(w, k )  is a minimum. Substituting (3.7.7) 
into (3.7.6), the resulting expression can be simplified to  

(3.7.8) 

The condition for marginal instability is that (3.7.8) has a value 1 or 

kV‘O’ = ( w 2 / 3  p l  + 4 L 3 ) 3 / 2  (3.7.9) 
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which divides the region of instability from stability. In k d 0 )  plane (3.7.9) 
represents a hyperbolic curve shown in Fig. 3.7-5. The condition for stability 
G(o,, k )  < 1 corresponds to the region above the hyperbolic curve, and 
the condition for instability G(o,, k )  > 1 corresponds to the region below 
the hyperbolic curve. These regions are clearly marked in Fig. 3.7-5. We 

k 

Fig. 3.7-5. Region of stability and instability in 
k - v ( 0 )  plane. 

ir 

0 

remark that these results are obtained by ignoring the thermal effects and 
certainly need corrections when the beam velocity do)  is close to the thermal 
velocity. Therefore, let us now include the thermal effects in our considera- 
tion. 

The longitudinal dielectric constant in a stationary plasma with thermal 
effects taken into account by using fluid equations has been derived in 
(3.5.19). When these plasma fluids are streaming with beam velocities vLo), 
the resulting dielectric constant is just (3.5.19) with a Doppler shift correc- 
tion, i.e., 

By setting (3.7.10) to zero, we obtain the dispersion relation 

(3.7.1 1) 

in place of (3.7.5). In (3.7.1 I), for simplicity, we again let all beams travel 
in the same direction as k. Comparing (3.7.11) with (3.7.5) we see that the 
number of roots are unchanged but the thermal effects are important when 
the phase velocity o / k  is near the beam velocity vF. Instead of Fig. 3.7-2 
the contribution of each term in F(w/k) has a behavior sketched in Fig. 
3.7-6. 
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Fig. 3.7-6. w;,/[(w/k - 
--I&] as a function of w/k .  

As an example let us return to the example considered earlier, remember- 
ing that in this example one beam is stationary and one beam is streaming 
with velocity do) .  Instead of (3.7.6) the dispersion relation is now, 

Let us consider the effect of reducing the beam velocity do)  from a very large 
value to a very small value through the thermal velocity v T .  When do)  > vTa ,  
F(w/k) has the behavior shown in Fig. 3.7-7. As far as the consideration 

Fig. 3.7-7. F(w/k) as a function of w/k  for a large beam velocity. 

for instability is concerned, the thermal correction for this case is not large. 
For a given value of k2 = kI2 ,  there are four intersections with F(w/k), 
indicating four real roots. The plasma system is stable for this value of k, . 
As the value of vo is reduced, the infinites are brought closer together as 
shown in Fig. 3.7-8. The minimum of the curve C marked in Fig. 3.7-7 
is raised until it is above kI2 as shown in Fig. 3.7-8 in which case there are 
two real roots and a pair of complex conjugate roots. The plasma is then 
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+rc 0 iyri yo-/+ ;yo+ yrz 
I 

unstable when perturbed by perturbations of wave number k,. As vo is 
reduced further, the situation becomes that given by Fig. 3.7-9. There are 
again four real roots and the plasma is stable. Therefore, the thermal 
motion tends to stabilize the plasma for beam velocity near the thermal ve- 
locity. 

Fig. 3.7-9. F(w/k)  as a function of w/k for a small beam velocity. 

3.8 Interaction of Charged Particles with Longitudinal Waves 

We have seen in Section 5 that there is an electric field associated with 
these longitudinal plasma waves. It is therefore possible for plasma particles 
to interact with plasma waves. The interaction may be strong if there are 
appreciable particles with thermal velocities approximating the phase 
velocity of the wave. This is particularly evident in Section 7 where two 
stream instability was discussed. In this section we shall discuss this inter- 
action problem and derive the Landau damping formula by using the one- 
dimensional equation of motion. 



110 3. Waves in Fluid Plasma 

In the absence of collisions and electric field a thermal electron will 

(3.8.1) 
move according to 

z = z, + vot 

where z, is its initial position and u0 its initial velocity. Let us imagine 
that we have an ensemble of such noninteracting electrons in a neutralizing 
ion background. Consequently both z, and tr, have certain probability 
distributions. In a uniform plasma the initial position zo must then be uni- 
formly distributed. For convenience we shall assume a velocity distribution 
f(V0). 

Now let us assume that there exists an electric field 

E(z, t )  = Eo COS(U~ - kz )  (3.8.2) 

excited by a plasma wave and turned on for t 2 0. The presence of the 
electric field (3.8.2) will modify the motion of electrons. The resulting 
equation of motion under the combined influence of thermal motion and 
the electric field is nonlinear and is difficult to solve. We approach it by 
a perturbation technique by treating the amplitude of the electric field 
E, as a small expansion parameter. The position of an electron is then given 

z = zo + v,t + z1 + z2 + . * .  (3.8.3) 
by 

where vof is the displacement induced by thermal motion and z, + z2 + = . . 
the displacement induced by the electric field (3.8.2) with z1 proportional 
to E,, z2 proportional to Eo2, etc. Our initial conditions z = zo at t = 0 
and i = v, at t = 0 become 

z 1 = z 2 = . . . = 0 ,  at t = O  

i l = i 2 = . . . = 0 ,  at t = O  
(3.8.4) 

The equation of motion for an electron is 

mi? = -eEo cos(wt - kz )  (3.8.5) 

Substitute (3.8.3) into (3.8.5) and expand to the second order in E,. The 
result is 

m(z, + ZJ = -eEo cos[(o - ktr,)t - kzo] - eE,kzl sin[(w - ktr,)t - kz,] 

+ WO3) (3.8.6) 

Equation (3.8.6) can be solved by equating terms of equal power in E,. 
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For terms proportional to E,, we obtain from (3.8.6) 

mz, = -eEo cos[(w - kv,)t - kz,] (3.8.7) 

Integrating and applying the initial condition (3.8.4) 

{sin [(o - kv,)t - kz,] + sin kz,} (3.8.8) eE0 
m ( o  - kv,) 

i, = - 

Integrating again 

z1 = - + t sin kz,} 
-cos [(o - kv,)t - kz,] + cos kz,  

m(w - kv,) w - kvo 
(3.8.9) 

eEo { 
For terms proportional to Eo2 in (3.8.6), we obtain 

zz = -(eE&z,/m) sin[(w - kv,)t - kz,] (3.8.10) 

where z1 has been found and given by (3.8.9). The time rate of increase of 
kinetic energy for each electron is given by 

d d - (K.E.) = - [$m( i ) z ]  
dt dt 

= miz = m(vo + i, + . . )(zl + z, + . . - ) 
= mu& + m21zl + mug2 + O(EO3) (3.8.1 1 )  

We substitute (3.8.8), (3.8.9), and (3.8.10) into (3.8.11) and take the 
ensemble average over the initial position. Remember that z, is uniformly 
distributed and hence terms periodic in z, vanishes on averaging. 

e2EO2kv, [ sin(w - kv,)t 
- t COS(O - kvo)t 

+ 2m(w - kv,) w - kv, 

1 kv,t 
cos(o - kvo)r - - e2E02 o sin(o - kv,)t 

- - 2m [ (w - kv,), w - kvo 
(3.8.12) 

We wish now to average (3.8.12) over the initial velocity distribution v,. 
We note that by means of 1’Hopital’s rule that the right-hand side of (3.8.12) 
is actually well behaved at w - kv, = 0. Hence in integrating over the 
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velocity space we may take the principal part of the sum, which is just the 
sum of the principal parts. Let the velocity distribution be so normalized 
that 

(3.8.13) 

We proceed to find the velocity average of terms in the square bracket of 
(3.8.12).  For large t, sin(w - kv,)t and cos(w - kv,)t are rapidly varying 
functions of v,  or more conveniently of w - kv,. The integration of any 
slowly varying function multiplied by these trigonometric functions has 
contribution coming mainly from the point w/k  = v,. Therefore, we expand 

f @ O >  =S(w/k)  - “0 - koo)/klf’(w/k) + . * ’ (3 .8 .14)  
f(v0). 

The average of the first term in square bracket of (3.8.12) is 

(3.8.15) 

where P in front of the integral sign stands for principal part andf’(w/k) the 
derivative of the distribution evaluated at v, = w/k .  The average of the 
second term in the square brackets of (3 .8 .12)  can be approached in the same 
manner. To the same accuracy as (2.8.15) it vanishes on averaging. Hence 
the rate of increase of kinetic energy per particle becomes 

(3.8.16) 
d wneZEoZ 

(z (K.E.)) 1 0  .%l = - 2mk I k I “(f-) 
Note that even though there is no collision, electrons gain energy from the 
wave if the slope of the velocity distribution is negative at  the phase velocity 
of the wave and that electrons lose energy to the wave if the slope is positive 
at the phase velocity of the wave. The dissipation of energy per unit volume 
from the wave to the particles is just (3 .8 .16)  multiplied by the electron 
density N,  i.e., 

(3 .8 .17)  



3.9 Excitation of Fields by a Test Particle 113 

The energy density in electron plasma waves has been found in (3.5.29) as 

U = ~ E , , E ~ ~ C O ~ / W ~ ,  (3.8.18) 

The change in frequency in the dispersion relation due to  dissipation (3.8.17) 
can be computed through do = j dQ/2U as shown in Chapter 2. Carrying 
out the ratio, we obtain 

(3.8.19) 

The above formula indicates that by taking particle-wave interaction into 
account the modification in the dispersion relation is the appearance of the 
imaginary part of cc). If the imaginary part of w is positive, the wave is 
damped exponentially with time. This occurs when f ' (wlk)  is negative or 
when there are more particles traveling at  a velocity slightly slower than 
the phase velocity of the wave than faster. On the other hand when there are 
more particles traveling at a velocity faster than the phase velocity of the 
wave than slower, the wave gains energy from the particles and its amplitude 
grows exponentially with time. The formula (3.8.19) is often referred to  as 
the formula for Landau damping although it differs slightly from the original 
formula. 

3.9 Excitation of Fields by a Test Particle 

It was shown in Section 5 that there exist longitudinal waves in a plasma. 
The origin of these waves was not discussed although it was shown that such 
waves exist in association with thermal fluctuations in Section 6. In  this 
section we shall consider the problem of exciting such waves by a test particle 
of charge Ze moving through the plasma at  a constant velocity v o .  We have 
seen in Section 4 that a stationary test particle is surrounded by a polariza- 
tion cloud which acts to screen its interaction with other particles outside 
of the Debye sphere. If the test particle is in motion, the shape of the polariza- 
tion cloud is expected to  be modified. We note from Section 3.5 that plasma 
waves have phase velocity of the order of thermal velocity. The test particle 
can therefore have a velocity larger than the phase velocity of the wave. 
When this is the case Cerenkov radiation is possible. 

The response of a plasma to  a test charge is completely contained in the 
dielectric constant. However, in the derivation of the dielectric constant, 
certain approximations may have been made. For example, the formula 
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(3.5.19) was derived by using fluid theory and hence is valid only for wave- 
lengths much larger than Debye length. This should be kept in mind as 
(3.5.19) is used in the following. 

At present we are interested in the excitation of only the longitudinal part 
of the fields. These fields are described by the electrostatic equations 

Here ep  is the polarization charge induced by the test charge et. For the longi- 
tudinal field the electric field is derivable from the gradient of a potential 
function 

E(r, t )  = -VV(r, t )  (3.9.3) 

Substitute (3.9.3) into (3.9.1) and (3.9.2), respectively, and take the Fourier 
transform with respect to r and t on the resulting equations, giving 

Take the ratio of these two equations and solve for the polarization charge, 

(3.9.6) 

For a test particle traveling at a constant velocity vo and with charge Ze, 

et(r, t )  = Ze 6(r - vot) (3.9.7) 

where we have assumed that the particle is at  r = 0 when t = 0. The 
corresponding test charge density in  the transformed domain is given by 

e,(k, o) = 2nZe d ( o  - k . vo) (3.9.8) 

Substituting (3.9.8) into (3.9.6), we obtain 

ep(k, o) = 2nZe d(w - k - Vn) 1 - 11  (3.9.9) 

The induced polarization density due to passage of a test charge moving at  a 
constant velocity vo is obtained by an inverse transformation of (3.9.9). 
The integration in o is helped by the presence of &function in (3.9.9), 
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giving 

Note that the relative dielectric constant KII in (3.9.10) is evaluated at 
w = k 6 v,. The use of (3.9.4) and (3.9.5) can yield other physical quantities 
of interest, such as the potential and electric field. We give them in the follow- 
ing for later reference. 

We note that the electric field in (3.9.12) may be obtained directly by using 
(2.13.6) or the dyadic Green's function (2.14.30). Equations (3.9.10), 
(3.9.11), and (3.9.12) show that the response of the plasma depends on 
the dielectric constant of the medium. The expression given by (3.5.19) is 
valid only for small k (long wavelength). For large k, comparable to Debye 
wave number, plasma waves in a thermal equilibrium plasma are damped 
through particle-wave interactions as discussed in Section 8. Therefore, we 
may introduce an arbitrary cutoff at  k = kD for the upper limit if the in- 
tegral is to diverge. 

The approach used in arriving at (3.9.10), (3.9.1 I) ,  and (3.9.12) make use 
of the dielectric constant. It is equally valid if we start with the fluid equations 
and Maxwell's equations discussed in Section 5 with the appropriate inclusion 
of sources to  take into account the test charge. After the equation is 
linearized about the perturbed quantities, the induced density perturbation 
is found to satisfy the inhomogeneous Klein-Gordon equation. This equa- 
tion can be solved by the transform method. The integrals involved in the 
inversion are exactly identical to those considered here [see (3.9.14) below] 
and the results are also identical. 

In the following we shall treat two cases separately, depending on the 
magnitude of the test particle velocity v, smaller or larger than the thermal 
velocity v T .  For convenience the test charge is assumed to be moving along 
the z-axis for both cases. The relative dielectric constant is given by 

K,,(k, W )  = 1 - W ~ ' / ( W ~  - k2vzv2) (3.9.13) 

where contributions from ions have been ignored. 
Let us first treat the slow test particle case in which u, < I+. Substitutine 
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(3.9.13) into (3.9. lo), the polarization charge density is found to be 

d3k 1 ,j k * (rOt-r) ep(rr t )  = - ____ ztg ./ kS2 + k,2 + k,2(1 - p2)  + kD2 
(3.9.14) 

where /3 = vo/vT and is less than 1 for the present case and kD2 = wp2/vT2. 
Let us make the following simultaneous substitutions in  (3.9.14), 

k,' = k,, 

x' = x, 

k,' = k,, k,' = ( 1  - p) ' /2kz  
(3.9.15) 

y' = y, z' = (z  - vot)/(l - /9")'/2 

We obtain 

e-jk'.r' d3k' (3.9.16) 
1 

kD2 + kt2 s ZekD2 
(27~)~(1 - B2)1'2 ep@,  t )  = - 

We note that the induced polarization charge is spherically symmetric in the 
new coordinates. We note also that (3.9.16) is identical in form to the 
transform of (3.4.4) for which a solution has been given in (3.4.8). Therefore, 
we can immediately write down the expression. Since Fourier inversion can 
be carried out rather easily, we shall proceed to evaluate the integral for the 
purpose of illustrating the technique. (Also, see Chapter 2, Section 14.) 
Rewrite (3.9.16) by using spherical polar coordinates in  k-space with polar 
axis aligned with r'. The integrations with respect to azimuthal angle 4 
with limits 0 and 2n and with respect to polar angle 6 with limits 0 and 7c 
can be carried out easily. 

ki2  sin 6 dk' d8 d# 
ZekD2 

( 2 ~ ) ~ ( l  - p2)1'2 @p@, t )  = - 

(ejk'r' - e-jk'") dk' (3.9.17) 
ZekD2 

- - - 
(2~)~ (1 - f i~ ) "~ j r '  

The integrand in (3.9.17) is even in k' and therefore can be written as 

which can be integrated by contour integration. For pp to remain bounded as 
r' --f co, we close the contour in the upper half-plane and pick up the con- 
tribution from the simple pole at  k' = j k , ,  yielding 

(3.9.18) 
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We note that in the transformed coordinates (3.9.18) is identical to the 
Debye screen cloud discussed in Section 4. When we transform it back to 
the original coordinates, we obtain the result 

Zeku2 exp{ -kD[x2  + y2  + (z - uot)2/(1 - fi2))1”*) 
4n(l - p2)1/2 ep“, f )  = - 

[ X Z  + y2 + (z  - U O t ) ” ( l  - p2)>1”2 
(3.9.19) 

The induced polarization charge (3.9.19) is in the form of a screening cloud 
that comoves with the test particle. From the point of view of fluid theory the 
screening comes about because of Coulomb forces which displace the 
fluid until the electrostatic force is balanced by the pressure force. The 
screening cloud has an oblate spheroidal form centered at  the test charge 
and being compressed in the direction of motion by the ratio 1 to (1 -- pz)l’z. 
For the case of a stationary test charge, (3.9.19) should reduce to the results 
discussed in Section 4. These results are comparable if we set y = 1. 

As we have seen, for uo < vT the perturbed fields are evanescent. 
However, when the test particle is suprathermal,viz., uo > u T ,  radiation fields 
are expected due to Cerenkov radiation. This is the case we wish to consider 
at present. The starting point is still (3.9.14) which is now written as 

@p@, t )  = - ~ 1 e-jk.r’ d3k (3.9.20) :;:y3‘ D(k, k2uo) 

where 
D(k, W) = k2 + ku2 - w 2 / y T 2  (3.9.21) 

r‘ = r - vat (3.9.22) 

The inversion in (3.9.20) can be carried out exactly, but it is long and tedious. 
In the following this integral will be evaluated asymptotically by using the 
method given in Appendix B. It so happens in this case that the asymptotic 
expression is exact. The asymptotic evaluation of (3.9.20) produces the 
following 

e-jk-r‘ (3.9.23) 
zey c C 

e P = - T  

I Vk m, kP0) I dIK( 
where r‘ = I r’ I and K is the Gaussian curvature of the dispersion surface. 
The summation is carried out over all values of k which has a corresponding 
group velocity along r’. 

We note from (3.9.21) that D(k, w )  = 0 is the dispersion relation (3.5.25) 
for electron plasma waves. The relation 

D(k, kpo) = kD2 + kZ2 + k,2 - k,’@’ - 1) = 0 (3.9.24) 
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is just the Doppler shifted dispersion relation as seen by an observer moving 
with the particle velocity vo along z-axis. The effect of motion is to distort 
the otherwise spherical dispersion surface into the surface of hyperbolid of 
two sheets when > 1. The surface is axially symmetric with respect to 
k,-axis and its intersection with k, = 0 plane is shown in Fig. 3.9-1. Since 

Fig. 3.9-1. The dispersion surface in a moving plasma as given by (3.9.24). 

the group velocity is normal to the dispersion surface, it is now pointing in 
a direction different from that of k. The normal to the dispersion surface is 
in the same direction as 

The group velocity is either parallel or antiparallel to the vector given by 
(3.9.25). A decision on the choice can be made by noting that vg = Vkw 
and therefore, vg must be in the direction of increasing w. In applying this 
method to the problem at hand, we need to examine the dispersion surface 
with a small increase in w ,  that is the following surface. 

where S is a small positive parameter. The dispersion surface (3.9.26) is 
approximately the same as that given by (3.9.24) except that both surface 
branches are shifted downward slightly. Consequently, the group velocity 
for both branches of the surface has a negative z-component. 

According to the asymptotic theory, the observer at r' sees those waves 
with those wave numbers whose corresponding group velocities all point 
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toward the observer at r'. Suppose now a certain observer is at r', which is 
parallel to vgl with a corresponding wave vector k, (See Fig. 3.9-1). Because 
of the symmetry of the dispersion surface and the foregoing discussion in 
regard to the correct choice of normal to the dispersion surface as the direc- 
tion of vg ,  the observer also sees a wave with wave vector k, = -k, since 
its corresponding group velocity vg2 is parallel to vgl as shown in Fig. 3.9-1. 
Therefore, for the dispersion surface the radiaton field at  any point r' 
has contributions coming from either two points on the surface or none 
at  all. An examination of Fig. 3.9-1 shows there is field only when the ob- 
server is inside a cone which is identified as the Cerenkov cone later on in 
this section. 

Let the observer be at r' = (x', y ,  z'). Based on these discussions and 
(3.9.25), we must have 

X' : y' : Z' = k, : ky : - kzu2  - 1) (3.9.27) 

Making use of the Doppler shifted dispersion relation (3.9.24), Eq. (3.9.27) 
can be solved to produce 

[ax' + j y '  - fZ' / ( j3Z - - y'2)l/2 
k D  

( z ' 2 / ( p 2  - 1) - 
k = f  l ) ]  (3.9.28) 

where the upper sign applies to the upper branch of the dispersion surface of 
Fig. 3.9-1 and the lower sign to the lower branch. The Gaussian curvature 
is found to be 

K = kD'(j3' - 1 ) / [ k Z 2  + ky2 + kz2(B2 - 1)'12 (3.9.29) 

for both branches, where the Doppler shifted dispersion relation has been 
used. We note that the Gaussian curvature is positive, the constant C of 
(3.9.23) is 1 if the surface is convex to the direction of V k  D(k, k , v o )  and is 
-1 if convex to the opposite direction. For our case, C = 1 for both 
branches. Putting (3.9.25), (3.9.28), and (3.9.29) in (3.9.23) and using 
(3.9.28) to reexpress k in terms of r', we obtain 

pp(r, t )  = - ~ ZekD2 - 1 (e-jk-r' + g k - r ' )  

lww(K( 
2nr' 

When transformed back to the original coordinates, the induced polarization 
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density is therefore given by 

Zekn2 
2 4 9 2  - 1)”2 

cos k,[(z - vot)2/(p2 - 1) - x2 - y2]’/2 

[ (z  - v,t)2/@2 - 1) - x2 - y2]”2 e& t> = - 

(3.9.30) 

where the unit step function u comes from the following considerations. The 
dispersion surface (3.9.24) has asymptotes which make an angle 8 with the 
horizontal axis so that 

tan 8 = 1/(B2 - 1)lI2 (3.9.31) 

These asymptotes in k&, - plane are shown by dotted lines in Fig. 3.9-1. 
The normals to  these asymptotes form a cone with a n  apex angle equal 
to  0. Within the cone a polarization charge density is induced; outside of 
the cone the charge density is unperturbed. The cone of spherical cross 
section with an apex angle 8 serves as the shock boundary and is sometimes 
referred to  as the Cerenkov cone. The coordinates of the cone are given by 

(3.9.32) 
(x2 + y2)’/2 - - tan 8 = - (Xf2 + Y’2)‘/2 - 

Z’ z - vat 

Eliminating tan 8 between (3.9.31) and (3.9.32), the Cerenkov cone is found 
to  be given by 

A point (x, y,  z )  inside the cone must satisfy the inequality 

- (z  - vat) < [ ( B Z  - 1)(x2 + y2)1’/2 (3.9.33) 

which clearly shows that the argument of the unit step in (3.9.30) is correct. 
From (3.9.31) the apex angle 8 also satisfies the following relation 

sin 8 = 1/p = vT/v, (3.9.34) 

The complimentary angle of 0 is then given by 8, = COS-~(V~/V, )  and is 
referred to  as the Cerenkov angle. The field vanishes outside of the well- 
known Cerenkov cone with the apex at  the moving particle and the apex 
angle 8. The faster the velocity of the test particle v, , the smaller is the apex 
angle 8. Far behind the Cerenkov cone and nearly on the axis, (3.9.30) 
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can be approximated by 

kD(z - z < vat (3.9.35) 
-ZekD2 

( p 2  - 1 ) l I Z  ' cos 
24.2 - v a t )  e& t )  = 

Note that the field decays as inverse distance. The field given by (3.9.35) 
is the radiation field brought about by the electrostatic interaction between 
the test particle and the fluid plasma particles. This radiation is indicative 
of energy transfer from test particle to  plasma waves which then propagate 
away. Unless there is external force to  maintain the velocity, the test particle 
must slow down and be stopped eventually. It is therefore of interest to 
consider the energy loss through radiation per unit distance of travel of the 
test particle. This energy loss is known as the stopping power. 

For a test particle given by (3.9.7) moving with a velocity v , ,  the cor- 
responding current density is 

J(r, t )  = Ze 6(r - v,t)v, (3.9.36) 

The power dissipated per unit volume by the test particle is just J(r, t )  
E,(r, t )  which when integrated over the volume gives the total power dis- 

sipation. The use of (3.9.36) reduces the volume integral to 

dW/dt = Zev, - Ep(vof, t )  (3.9.37) 

The electric field E, in  the power dissipation expression (3.9.37) is the field 
generated by polarization charges and is evaluated at the position of the 
test charge. Due to passage of the test charge, a polarization field is induced 
and it reacts back on the test particle. The induced field can be obtained by 
substracting the self-field from the total electric field given by (3.9.12). 
The self-field is the electric field that exists in free space and can thus be 
obtained from (3.9.12) by simply setting KII to  1. These remarks enable us 
to write explicitly the expression for the power dissipation as 

- 1 (3.9.38) 1 dW - .i(ze)2v0 J, k, dk, JW 1 -- 
dt (2n)'~, --m 

where we have assumed, as before, that the test particle is moving along z- 
axis. Also the volume integral in k-space is written in cylindrical coordinates 
and it is assumed that KII does not depend on the azimuthal angle. As dis- 
cussed in Section 5 of Chapter 2, K,,(k, w) + 1 as w + co. Hence the in- 
tegrand in (3.9.38) vanishes as k, + 03 and we may close the integral with 
a large semicircle. The question of interest here is whether the large semi- 
circle is above or below the real axis. In Section 5 of Chapter 2 we have 
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found that K(k, w )  must be regular in the lower half o-plane if the medium 
is stable. The argument makes use of the principal of causality with the eIec- 
tric field intensity viewed as the excitation and the electric displacement 
viewed as the response of the system. If we switch their roles and view the 
electric displacement as the excitation and the electric field intensity as the 
response, we must similarly conclude that l/Kl,(k, o) must be regular in the 
lower half o-plane in a stable and causal medium. As a matter of fact the 
transform technique used here cannot be used to define functions in the 
upper o-plane because the integral diverges and they can be defined in the 
upper w-plane only as analytic continuation from the lower half o-plane. 
In the integral (3.9.38) the argument o of Kl, is replaced by k,vo. If the 
medium is not spatially dispersive, the foregoing remarks indicate that 
l/K,l(k,vo) must be regular in the lower half k,-plane. Of course there may be 
poles in the upper half k,-plane, but they are outside of the contour and 
shall make no contribution to the integral. In the limit of the lossless case 
the poles of l/K,,(k,v,,) move down from the upper k,-plane to the real axis. 
The contour integral along the real k,-axis must be indented downward at  
these poles. These poles are still outside the contour and hence still make no 
contribution to the integral. For a spatially dispersive medium we can no 
longer make such general statement about the regularity of l/Kll(k, k,vo) 
in the lower half k,-plane because KII depends on k, through its dependence 
on k and on o (in this case since we set o = k,v,). However we shall assume 
that this is the case and it is certainly so for the longitudinal dielectric 
constant of the plasma given by (3.9.13) which reduces to 

(3.9.39) 

Because of the assumed regularity of KII in the lower half k,-plane and the 
indentation of the integral in the lossless case, the only contribution to the 
contour integral is from the pole at  k, = -jk, in (3.9.38). Carry out the 
contour integration with respect to k,, yielding 

(3.9.40)t 

For the lossless case, the k, integration of (3.9.38) can also be carried out by writing 
it as the sum of a principle part of the integral and the contributions from the small semi- 
circle indentations at the two poles of l/K,l(k, k,vo) on the real k,-axis. The principle 
part integration vanishes because the integrand is an odd function of k,. Therefore 
the only contribution is from the two poles. The result is the same as (3.9.40). Here 
we can see that the energy loss of the test particle is due to the excitation of the plasma 
waves, corresponding to Kl, = 0. 
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where (3.9.39) has been used in simplifying the expression. The integral 
(3.9.40) diverges logarithmically at  the upper limit. We recall from the dis- 
cussion in the beginning of this section that the dielectric constant expression 
such as (3.9.34) is applicable only for k less than k D .  Therefore, we arbi- 
trarily introduce kD as the upper limit in the integral (3.9.40). This has the 
effect of including the collective interactions between the test particle and the 
wave but close collisions that have individual particle behavior are ignored. 
The time rate of loss of energy by the test charge is then 

(3.9.41) 

We note that kD enters only logarithmically and hence its exact choice is 
not very critical. The stopping power is defined as the energy loss by the 
test particle per unit distance of travel and is just (3.9.41) divided by v o ,  
i.e., 

(3.9.42) 

The stopping power (3.9.42) can also be derived by integrating over the 
surface of a large sphere of radiation energy per unit distance of travel of 
the test particle (see problem at the end of the chapter). Therefore, all of 
the energy computed in (3.9.42) is transferred from the test particle to the 
wave and radiated away. We note that the slower suprathermal test charge is 
more efficient in  producing plasma waves than the faster one because of 
the approximate inverse square dependence on vo in (3.9.42). 

In the above discussion, the effect of ions in the plasma is neglected. If 
in (3.9.39), we include the terms corresponding to the effect of ions, similar 
computation can be carried out. One finds that in addition to the energy loss 
due to the excitation of electron plasma waves, there will be contribution 
from the excitation of ion plasma waves. But this contribution is small com- 
pared to the electron contribution simply because of the large mass of the 
ions. 

Problems 

1. Consider a sphere of radius R containing electrons with uniform density 
N, and singly charged ions with uniform density Ni not necessarily equal 
to N , .  
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(a) Find the expression of the electrostatic potential a t  the surface of the 
sphere, assuming the potential a t  r = 00 is zero. 

(b) Solve for the potential inside the sphere. What is the potential a t  
r = O? 

(c) Take R = 100 km, a dimension certainly small as compared with the 
whole of the ionosphere. Take N,  = IOl2/m3, a typical value for the F 
region of the ionosphere. Calculate the surface potential for a number of 
percent departures of ion density. 

2. I t  has been found that the natural frequency of oscillation of the 
plasma parallel slab is just the plasma frequency. This is somewhat accidental 
since the natural frequency of oscillation depends not only on the density 
but also on the geometry of the problem. Consider an infinite circular cy- 
lindrical column with radius a and uniform electron density N,  and singly 
charged positive density Ni . When unperturbed, the cylindrical column is 
electrically neutral with N ,  = N i .  Displace all electrons by a small identical 
distance in a direction normal to  the axis. Find the natural frequency 
of oscillation [L. Tonks, Phys. Rev. 37, 1458 (1931); 38, 1219 (1932); 
N. Herlofson, Ark. Fys. 3, 247-297, (1951)l. 

3. This problem is concerned with distribution of charged particles in 
a uniform gravitational field in a highly idealized manner. When in thermo- 
dynamic equilibrium the electrons and positive ions are distributed ac- 
cording to  the Boltzmann distribution 

N = N &m,$IZ*v)/T 
e eo 

N~ = N .  e(-mlgz+eV)/T 
20 

where g is the constant gravitational acceleration, the coordinate z is pointed 
vertically upward and the temperature of electron and ion are identical, 
and both are T expressed in energy units. The electrical potential V satisfies 
the Poisson's equation 

d2V/dz2 == - e (  Ni - Ne)/E0 

(a) Assume strict charge neutrality. Show that the electric field in the 
medium must be uniform and has a value (mi - rne)g/2e. This electric 
field arises from charges at  the surface of the boundaries. Show that both 
electron and ion densities are distributed exponentially with a scale height 
H = 2Z'/(rn, + mJg, i.e., they are distributed as if the plasma has the 
average mass of electron and ion. 
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(b) In general the charge neutrality condition may not be tenable in 
some regions of the atmosphere. The problem is prescribed by some as- 
sociated boundary conditions. However, due to the nonlinear character of 
the equations, they become very difficult to solve exactly. We must then 
resort to asymptotic methods. Let 

Eo = (mi - m,)g/2e 

be the electric field when there is strict charge neutrality. Define # as the 
potential departure (with a normalizing factor) from the case considered in 
(a), i.e., 

# = (elO[v + Eo(z - Z0)l 

where zo is the height at which electrons and ions would have equal density 
if they were not influenced by the presence of electric potential, i.e., 

The Poisson's equation may be transformed into the following nonlinear 
differential equation 

d2#/dE2 = a2ed sin h# 

with the following substitutions: 

Let the associated boundary conditions be V(0) = 0, E(0) = E ( m )  = 0. 
Then they transform to 

The nonlinear equation given above is now appropriate for the discussion 
of asymptotic solutions in the limit p > 1 .  
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(i) In the region 4 < 1, we have the approximate solution 

4 - (--,uAD/H)e-”’D 

and the distribution found in (a) is approximately valid. Show this. 
(ii) In the region 4 > 1, the electrons and ions are distributed according 

to their respective scale heights He = T/meg and Hi = T/mig. Show this. 
(iii) Discuss the solution in the transition region [(J. E. Allen, S .  E. 

Segre, and A. Turrin, Nuovo Cimento 31, 402413 (1964)l. 

4. Generally there are two classes of problems of interest. The first class 
of problems is the forced oscillation case in which the angular frequency 
of oscillation w is given and is thus real while the wave vector k may be 
complex showing absorption of the wave. The second class of problems is 
the initial value problems in which an oscillation is set up with a definite 
wavelength and hence k is given and real while the angular frequency w 
is allowed to take complex values showing temporal damping of the oscilla- 
tion. Show that in a slightly lossy isotropic medium the negative imaginary 
part of k for a given real w is related to the imaginary part of w for a real k 
by the relation 

w” = vg k” 

where vg is the group velocity. 

5. Suppose the electron-neutral collisions in the form of a frictional force 
cannot be ignored entirely in the consideration of electron plasma waves 
as done in Section 5 .  Derive the complex longitudinal dielectric constant 
for this case. The appearance of the imaginary part of the dielectric constant 
shows that plasma waves will be damped in time if initiated. Find the shift 
in the frequency and the damping time constant in the limit of small colli- 
sions. 

6. 
in Section 5 of Chapter 3 .  

7. Show that the average force per particle in a uniform plasma with 
initial distribution functionf(v,) due to a longitudinal wave Eo cos(wt - kz) 
is 

Derive Eq. (3.7.4) in Chapter 3 from the fluid equations as carried out 

[T. H. Stix, Bull. Amer. Phys. SOC. [2],  5 ,  530 (1960)l. 
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8. For a Maxwellian distribution 

compute the Landau damping rate. 

9. 
sion relation for longitudinal waves can be expressed as 

n4 - [(I - w;,/w2)/6,2 + (1 - wii/w2)/6iqn2 

For a two-component plasma, electrons and ions, show that the disper- 

+ [ l  - <w;, + w;Jw2]/6,26i2 = 0 

where n is the refractive index and 6,2 = v$,/c2, di2 = vgi/c2, c is the velocity 
of light. 

For wpi > wpi, sketch the solution n2 as a function of w. 

10. Flow of a charged plasma in a metallic conductor of variable cross 
section leads to the appearance of the so-called configuration emf. Consider 
the flow of steady current through a conductor whose cross section decreases 
abruptly at  some point. Show that associated with the cross-section change 
there must be a jump in electric potential given by (Zzm/2Ne3)(S;2 - K2) 
where Z is the total current, S,  and S,  the cross-sectional areas of the con- 
ductor. Note that in a conductor the charged carriers are conduction elec- 
trons which have constant density [configuration emf is discussed by 
A. A. Vedenov, Sou. Phys. Usp. 7, 809-822 (1965); M. Chester, Phys. 
Rev. A 133, 907 (1964)l. 

11. The interaction of a solid-state plasma particle with lattice vibrations 
may lead to modification of velocity of sound. The propagation of sound 
waves induces plasma motion which in turn modifies deformation force 
and changes the velocity of sound. Let be the deformation, s the velocity 
of sound, M and N the mass and density of lattice atoms, qa the interac- 
tion constants between the lattice and ath kind of plasma particles, and n, 
the plasma particle density. Then the d’Alambert equation for the deforma- 
tion is 

(azglatz) - s2 l72g = - (1 /MN,)q ,  Vn, 

The equation of motion of the ath kind plasma particles is coupled back 
through 

m dv/dt = q V 2 g  - (l/n) V p  + 2,eE - mv,v 

Suppose the plasma is electrically neutral and composed of singly charged 
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particles of electrons and holes a t  temperatures TI and T, (in energy units). 
Assume inertia and frictional forces are negligible and the unperturbed 
plasma is homogeneous. Show that the modified velocity of sound is s’ 
and satisfies 

[A. A. Vedenov, Solid state plasma, Sov. Phys. Usp. 1, 809-822 (1965); 
G. Weinreich, Phys. Rev. 104, 321 (195611. 

12. The response of the plasma to  a test charge can be treated by using 
fluid equations (3.5.1) through (3.5.4) and the Poisson’s equation. Assume 
that the plasma is composed of electrons and neutralizing background ions. 
Into this plasma a test charge of density el is introduced. Show that the 
perturbed electron density must satisfy the linearized equation 

An equation of this form is known as the inhomogeneous Klein-Gordon 
equation in the quantum field theory. Show also that this equation is con- 
sistent with (3.9.14) by taking the Fourier transform of the equation. The 
test charge can be assumed to  be moving along the z-axis with a constant 
velocity as was done in (3.9.7) [M. H. Cohen, Radiation in a plasma I, 
Cerenkov effect. Phys. Rev. 123, 711-721 (1966)l. 

13. Assume the electron distribution function satisfies the simplified 
Boltzmann equation 

where fo is the equilibrium distribution function and is independent of 
position and time. Use the perturbation approach and let 

f(r, V, r) = fn(v) + f’(r, V, f) 

with f ‘ < < f o .  

(a) Assume a complete degeneracy so that 

O v h  = - ( v / v )  Nl v - vn 1). 

Find the longitudinal dielectric constant. 
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(b) Find the self-energy of the charged particle moving at  a constant 
velocity vo in this degenerate gas. Introduce a lower cutoff at  the Debye 
wave number to prevent the integral from diverging. 

Find the stopping power of this charged particle [J. Lindhard, Kgl. 
Dan. Vidensk. Selsk. Mat. Fys. Medd. 28, No. 8 (1954)l. 

(c )  
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4. Waves in Fluid Plasma 
with a Steady Magnetic 
Field 

Chapter 3 was concerned exclusively with longitudinal waves in a plasma 
in the absence of a steady magnetic field. But this is not the only possible 
wave that can exist in the medium. Even in the absence of a steady magnetic 
field, we may have transverse electromagnetic waves. When there is an 
external magnetic field, the waves are in general neither strictly longitudinal 
nor strictly transverse. We shall find that the medium is extremely rich in 
sustaining many types of wave motions. Because the plasma state is described 
by a large number of parameters and the parameters may vary over a wide 
range, it has been found useful, convenient, and almost essential to define 
a parameter space. The refractive index surfaces are classified in the param- 
eter space. This is helpful in visualizing the transformation of refractive 
index surfaces as a given parameter varies. Such a classification is first 
done on cold plasmas and later extended to the warm plasma case. 

4.1 Transverse Dielectric Constant and Index of Refraction 

The fluid equations (3.5.1) through (3.5.4) used to describe longitudinal 
plasma waves can still be used to describe transverse waves, but now the 
particle velocity is perpendicular to the propagation vector. The equa- 
tion of continuity immediately deduces that the associated particle density 

130 
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is not perturbed (see Eq. 3.5.14). Consequently, the pressure force in the 
equation of motion does not come in (see Eq. 3.5.15) and we may speak 
of force on an “average” electron. 

The equation of motion for an “average” electron is then 

m t  = -eE (4. I .  1) 

where 5 is the displacement of the electron from its equilibrium position due 
to the presence of electric field and m the mass of an electron. Here the 
Lorentz force, e t  X B, has been ignored because we are assuming in this 
section the absence of external magnetic field and because we are linearizing 
the equation of motion. For sinusoidal forced oscillations of dependence 
expjwt, the displacement can be solved in terms of the electric field, 

5 = eE/w2m (4.1.2) 

The dipole moment of a dipole arrangement of charges is given by (2.3.27). 
In a volume of charge density N,  the resulting electric polarization density is 

P = - Nec = - (wp2/w2)eOE = ~ e J 3  (4. I .3) 

where wp is the angular plasma frequency given by (3.3.4); i.e., 

cop2 = Ne2/rnEo (4.1.4) 

In the ionospheric literature it is conventional to adopt the notation X 
for the normalized plasma frequency squared, 

In this notation, the electric susceptibility is 

x = -x (4.1.6) 

Here we have ignored entirely the ionic contribution to the susceptibility 
because of their large mass. The corresponding expressions for the dielectric 
constant and the refractive index are 

E(O) = Eo(l  - X )  = E O ( l  - Op2/wZ) (4.1.7) 

n = k / ( o / c )  = (1- X)’/2 = (1 - wp2/w2)1/2 (4.1.8) 

Here, the dielectric constant is real and w-dependent but not k-dependent. 
Equation (4.1.8) shows that for w > wp the propagation is nearly unaffected 



132 4. Waves in Fluid Plasma with a Steady Magnetic Field 

by the presence of the medium since the medium can not respond to such 
a high frequency. As w is decreased, the polarization current density, 
P = -jwNes = -jwp2~,,E/w, is increased. Since the polarization current 
is 180’ out of phase from the displacement current, the total current is ef- 
fectively reduced. This shows the frequency dispersive nature of the medium. 
When o = wp, the polarization current and the displacement current have 
equal magnitude and the resulting total current is zero. When w < w p ,  the 
total current is negative corresponding to the region of imaginary refractive 
index. This is the region of evanescence where the wave is attenuated ex- 
ponentially. The division of propagation and evanescence occurs at  w = w p  
at which n = 0. For convenience, the condition of vanishing refractive index 
shall be called the cutoff condition. 

From (4.1.8), we can obtain the expressions for the phase velocity and 
group velocity as 

vp = w/k = c/(l - ( O ~ / W ) ~ ) ) ” ~  = c/n (4.1.9) 

and 
V ,  = dw/dk = ~ ( l  - ( w ~ / w ) ~ ) ) ” ~  = CII (4.1.10) 

It is interesting to note that the product of the phase velocity and the group 
velocity is equal to the square of the velocity of light in free space, i.e., 

vpv, = c2 (4.1.11) 

In the ionospheric literature a group refractive index is occasionally used. 
It is defined by 

n, = c/v, (4.1.12) 

Substitution of (4.1.10) in (4.1.12) immediately gives 

n, = ljn (4.1.13) 

The time-averaged energy in a wave packet can be computed by using 
(4. I .7) and (2.10.20). 

The first term of Eq. (4.1.14) represents the energy stored in the correspond- 
ing free space electromagnetic fields. The second term represents the addi- 
tional energy stored in the material medium and in the present case it is 
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actually the kinetic energy of the electrons. The time-averaged kinetic energy 
per unit volume is given by 

( T )  = &Nmt t* = ) ( O , ~ / / U ~ ) ~ , ~  E l 2  (4.1.15) 

where Eq. (4.1.2) has been used. We see that the average kinetic energy 
density (4.1.15) is just the last term of Eq. (4.1.14). 

In writing the equation of motion (4.1 . I ) ,  the collisional effects are ignored 
entirely. A rigorous consideration of the collisional dynamics is outside 
the scope of this book. We shall only describe it by using a very simple 
model. Collisions between two hard spheres of different masses will result 
in a transfer of momentum from the light sphere (electron) to the heavy 
sphere (molecule) of an amount 

d(mv) = mv(1 - cos x8)  (4.1.16) 

where xs  is the scattering angle through which the electron is deflected. 
(Note: x = electric susceptibility and x s  = scattering angle.) Average 
(4.1.16) over all scattering angles and assume that all scattering angles are 
equally probable; we obtain 

(d(mv)) = mv (4.1.17) 

Therefore, on the average each collision results in a transfer of electron 
momentum equal to its initial momentum. We shall assume that such 
collisions take place v times per second. The net rate of transfer of mo- 
mentum from electrons to molecules is then mvv. We note that this collisional 
force, like frictional force, is proportional to velocity. In some literature 
this force is referred to as the Langevin force. The collisional frequency is 
related to the particle density, collisional cross section, and thermal velocity 
through 

v == NCVT (4.1.1 8 )  

In a weakly ionized gas, collisions occur mainly between electrons and 
neutral particles. In this case the particle density in  (4.1.18) should be 
neutral particle density and the cross section the neutral particle cross 
section. For ionospheric studies we may adopt the electron neutral collisional 
frequency as [Nicolet, 19591 

Y = 3.3 x 10-16fi[N(0,) + N(N,) + 2N(0)] sec-' (4.1.19) 

where N(O,), N(N,) and N(0) are number densities in  m-3, respectively, 
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of 0, , N,, and 0 in the atmosphere. The factor 2 is used to account for the 
experimental observation that the scattering cross section of electrons by 
atomic oxygen is 32a.u., about twice the accepted cross section for air. 

The effect of collisions is to introduce an additional frictionlike term in 
the equation of motion (4.1.1). For forced oscillations, it becomes 

-w2m(l - jv/w)p = -eE (4.1.20) 

Comparison of (4.1.20) with (4.1.2) indicates that the collisional effect 
can be taken into account simply by replacing m in the collision-free case 
by m(1 - jv/w).  This is equivalent to replacing cop2 or X by cup2/(1 - j v /w)  
or X/(l - jv /w) ,  respectively. Such replacements in  (4.1.7) and (4.1.8) give 
us the dielectric constant and refractive index, now with collisions taken 
into account, as 

cop2/w2 ) = EO(l - X / U )  (4.1.21) 
1 - jv /w 

n = (1 - X/U)”2 (4.1.22) 

where 
U = 1 - jv /w (4.1.23) 

We note from (4.1.21) and (4.1.22) that both the dielectric constant and 
the refractive index are in general complex. For a real frequency w ,  the 
real part and the negative imaginary part of the dielectric constant are, 
respectively, 

1 ( 1 + v2/wz 
wp2v/w3 

E”(W)  = &o 

(4.1.24) 

(4.1.25) 

These formuias show that the E’(w) is even and E”(w)  is odd in (real) w, in 
agreement with (2.5.1). Further, we can show that they satisfy the Kramers- 
Kronig relations (2.5.15) (see problem at the end of the chapter). The 
presence of the simple pole at  w = 0 merely indicates that the medium has 
a dc conductivity given by (2.5.10) 

a(0) = j lim oa(w)  = Ne2/mv (4.1.26) 
O+O 

For a real frequency w ,  the real part and the negative imaginary part 
of the refractive index can be obtained from Eq. (4.1.22). They are given 



4.2 Reflection of Plane Wave from Plasma Half-Space 135 

by the following relations: 

2(n’)’ = 1 - (X /UU*)  + [l - X(2 - X) /UU*]1 /2  (4.1.27a) 

2(n”)’ = 1 + ( X / U U * )  + [l - X(2 - X)/UU*]”’ (4.1.27b) 

These expressions are rather involved for hand computational purposes. 
Graphical methods do exist if only moderate accuracy is needed (Deschamps 
and Weeks, 1962). 

It should be mentioned that for a time it was not certain whether the 
Lorentz polarization term should be included. The inclusion of the Lorentz 
term has very large effect if a propagation technique is used to measure the 
electron density (see problem at the end of this chapter). However, the 
refined theory [Darwin (1943); its modern version is given by Theimer 
and Taylor (1961), Kadomtsev (1958)l indicates that the effective electric 
field in  a gaseous plasma with free electrons is just equal to the applied 
electric field and thus the Lorentz polarization term should not be included. 

4.2 Reflection of a Plane Transient Wave from the Plasma Half-Space 

We have seen in Section 3.3 that a plasma has a natural frequency of 
oscillation at  the plasma frequency up. Therefore, it is reasonable to expect 
that in some way this resonance effect will be revealed in transient behavior. 
If so, it can be very useful in diagnostic applications to determine the 
electron density in a plasma. 

Let us consider a plane wave incident normally from free space on a 
plasma half-space. Part of the incident energy is reflected and the remaining 
part transmitted, but both signals are affected by the dispersive properties 
of the medium. We shall postpone our discussion on transmitted signal 
till the next section and only treat the reflected signal in this section. 

The reflection of an incident sinusoidal plane wave by a plane boundary 
is described by Fresnel formulas. For the case of normal incidence the 
reflection coefficient reduces to 

(0 - ( 0 2  - O P 2 ) 1 ’ 2 }  

(0 + ( 0 2  - OP2)1’2} 
R(w) = (4.2.1) 

If the incident wave is E,(r) with Fourier transform Ei(w), the reflected wave 
can be found by inverting R(w)Ei(w).  Since the reflected wave is propagat- 
ing in free space which is not dispersive, we shall assume that both the inci- 
dent and reflected waves are found at  the interface. If these waves are at  
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some nonvanishing distance from the interface, we need only to take ap- 
propriate time delays into account. 

To be specific, let us assume that the incident wave (at the interface) 
is an impulse whose transform is unity, i.e., 

E,(t)  = d(t), E,(w) = 1 (4.2.2) 

The reflected wave (also at the interface) is then just the Fourier inverse of 

E,(o) = R(o)E,(o) = wp2/[o + (WZ - o,yy (4.2.3) 

This expression has the exact inverse, giving 

W )  = - (2/t)J,(w,t)u(t) (4.2.4) 

where u( t )  is a unit step and J, is the Bessel function of the first kind of order 
two. For a time large compared with the inverse plasma frequency, we 
may use the asymptotic expression of the Bessel function for large argument. 
It reduces (4.2.4) to 

We see that the reflected wave tends to  oscillate with an angular frequency 
equal to plasma frequency. The time behavior of (4.2.4) can be found in 
Fig. 4.2-1. Analogous to system analysis we may speak of (4.2.4) as the 
impulse response of the system. As is well known in system analysis, the 

-0.4 I I I I I I 

0 10 20 
UP‘ 

Fig. 4.2-1. Time behavior of the reflected wave on a lossless plasma half-space for an 
impulse incident wave. [After Wait (1969).] 
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response of a general input can be obtained by convolving the impulse 
response with the input, i.e., 

rt 
E,(t) = - J (2/t)J2(w,t)Ei(t - t) dt 

0 
(4.2.6) 

For example, if the input wave is a unit step, Ei( t )  = u(t ) ,  the reflected 
wave is then 

= [(2/wpt)J,(wpt) - 1 I u W  (4.2.7) 

where the integration formula, 

x - p + l J , ( ~ )  dx = -x-P+'J p-&) s 
with p = 2, has been used. We note again that the reflected wave has a 
tendency to oscillate at w p .  As w,t approaches infinity, the reflected wave 
given by (4.2.7) tends to -1 asymptotically, showing that, for these long 
times, the plasma is behaving like a perfect conductor. 

As another example, it can be shown that if the incident field is a turned- 
on sinusoidal wave 

(4.2.8) E,(t)  = u ( t )  sin w0t 

the reflected wave is found to be (see Problem 5 at the end of chapter) 

EAt) = -2 c (- l )na,J2n+,(wpt)u(t)  
m 

(4.2.9) 
fl=O 

where 
= c0s(2n + lie, C O S ~  = wo/wp if o0 f 0, 

and 
a,, = cosh(2n + l)e, cosh 0 = w,/w, if w0 2 w P  (4.2.10) 

These results can be generalized to the case of square-wave-modulated 
sinusoids by applying the principle of superposition. 

4.3 Signal Propagation in Lossless, Isotropic Plasma 

The problem of propagation of a time-dependent signal in a dispersive 
medium interested Sommerfeld and many others [see Brillouin (1960)) 
For the case of lossless plasma, an exact solution expressed as a series can 
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be obtained by using the method similar to that used in the last section. 
However, the series is found to converge extremely slowly if the observer 
is far away from the interface (Knop, 1964). Therefore, we shall use the 
method of saddle point to find the asymptotic behavior (Haskell and Case, 
1967). 

Let us now consider a uniform, lossless, isotropic plasma in an infinite 
half-space for z > 0. An electromagnetic signal E(z, t )  is assumed to prop- 
agate in the plasma in the z-direction. From the discussion in Chapter 2 
we can write the signal in terms of a superposition of plane waves in the 
form of an inverse Fourier transform 

(4.3.1) 

where E(0, w )  is the Fourier transform of the signal at  the plane z = 0 
and n(w) is the refractive index. For the lossless, isotropic plasma, n(w) 
is given by (4.1.8) as 

n(w) = (1 - wp2/w2)1’2 (4.3.2) 

where wp is the electron plasma frequency. Since only high frequency waves 
will be considered, the effect of ions can be neglected. The contour C in 
(4.3.1) is chosen such that it is parallel to the real w-axis and below all 
singularities of the integrand. Let the appIied signal at z = 0 be a turned-on 
sinusoidal wave of frequency wo , 

E(0, t )  = u(t)  sin wot (4.3.3) 

which has the Fourier transform E(0, w )  = wo/(wo2 - w2).  The applied 
signal at  z = 0 given by (4.3.3) has a frequency spectrum which is peaked 
at w = w o .  Since the medium is dispersive, each frequency component of 
this signal will propagate with a different velocity in the plasma; hence there 
will be distortion to the signal. In the following, we shall study this transient 
response of the signal. 

Introducing the following dimensionless variables 

(4.3.1) can then be written in the form 

(4.3.5) 
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-1 -P 0 
w w s : :  c 

P 1 €t 

5 
Fig. 4.3-1. Locations of poles and zeros and path of integration for the integral given 

by (4.3.5). 

where C, is the contour shown in Fig. 4.3-1. The integrand has two poles at 
6 = f l  and two branch points at 5 = fP. A branch cut is drawn between 
SP and -P. 

We note first that by closing the contour with a large semicircle in the lower 
half &plane, we obtain from (4.3.5) E ( [ ,  t) = 0 for t - 5‘ = w,(t - z /c )  
< 0. This agrees with the principle of causality. At any position z in the 
plasma, no signal arrives prior to the time t = z/c which is the time it takes 
for the signal to travel from the origin to z in  free space. Physically this can 
be explained by the fact that the dispersive property of the plasma is due to 
the induced motion of charged particles. Therefore, prior to the arrival 
of the signal, the medium is electromagnetically void like a vacuum. The 
very first portion of the signal always sees a vacuum in front, hence it 
always travels with the vacuum speed c. 

For t - z jc  > 0, the integral (4.3.5) has to be investigated in detail. 
First, we consider the so-called Sommerfeld solution (Brillouin, 1960). 
We deform the original path C, in Fig. 4.3-1 into a semicircle of very large 
radius R in the lower half &plane plus the segments of the real E-axis as 
shown in Fig. 4.3-2. 

On the real t-axis, the integrand of (4.3.5) goes to zero as l / P ,  while 
on the semicircular path of radius R in the upper half &plane it vanishes 
exponentially as R --f co for t - [ = o,(t - z /c )  > 0. Therefore we can 
add to the original path a path shown by the dotted line in Fig. 4.3-2 without 
changing the value of the integral. The original path is then replaced by a 
circle of very large radius R, and E ( 5 , t )  is expressed by 

(4.3.6) 
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Fig. 4.3-2. Deformed path of integration for Eq. (4.3.5). 

Since on this path I 6 I > 1, the integrand can be approximated by expand- 
ing the exponent in Taylor’s series and keeping only terms up to the first 
order, and by neglecting the unity in the denominator. We have then 

(4.3.7) 

(4.3.8) 

on the circle of radius R;  then (4.3.7) becomes 

This integral can be put into a standard form if we require 

[ rXo/2( t  - 5)]”2 = R (4.3.10) 

This is a special case whose corresponding physical condition shall be dis- 
cussed shortly. Substitution of the special condition (4.3.10) in (4.3.9) gives 

(4.3.1 1 )  

where J l (x )  is the Bessel function of order one. 
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If we define 

a = 2X0C(t - 5) = 2wp2(t - z/c)z/c (4.3.12) 

then the Sommerfeld solution can be written as 

E(C, = ( W 0 5 ) f i  J,(&@) (4.3.13) 

where u(a) is the unit step function. 
We note that to write the Sommerfeld solution in the form of (4.3.13), 

(4.3.10) must be satisfied. Since R >  1, we can deduce the range of validity 
of this solution from (4.3.10). The solution is valid for 

> (Z - 5 )  (4.3.14) 

At a fixed point z, if 5 is large, this solution works well right after the 
arrival of the signal, but becomes inapplicable as t increases. This portion 
of the transient signal is called “the precursors” by Sommerfeld (1914). 

To study the signal after the arrival of the “precursor,” let us go back to 
(4.3.5). The integral can be rewritten as the sum of two integrals, 

where 

(4.3.16) 

We note that although f ( 6 )  depends on 5, the condition that t - ( > 0 
indicates that t/[ can be taken as a time parameter which is equal to one 
at  the time of arrival of the signal and increases with time thereafter. We 
can therefore considerf(t) to be independent of 5 for the purpose in the 
present computation. Equation (4.3.16) is of the standard form discussed 
in Appendix A. It can be evaluated by the method of saddle point 
integration. 

The saddle points off([) can be found by settingf’(6) = 0 and are given 

(4.3.18) 
by 

t o  = &tt/4-)p/[(t/5)2 - 11’/2 

Thus we have two saddle points lying symmetrically on the real axis with 
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respect to the origin. They are functions of time. At t/C = 1 ,  they are 
at  f 03. As time increases, they move toward the origin and will approach 
the branch points f P  for very large time. The saddle points will pass through 
the poles of the integrand at  [ = f l  at the time z = tg = [/(l - P2)112. 

We shall see that this time corresponds to the time of arrival of the main 
signal. 

At the saddle points, the real and imaginary parts of the functionf([) 
are given by 

(4.3.19) 

The lines of steepest descent (or ascent) passing through saddle points are 
given by 

f 2 ( E )  = f i ( E o )  (4.3.20) 

In the vicinity of the saddle points, the steepest descent path can be easily 
found to be 

8, = nx/2 f a/2, n = 1 ,  3 (4.3.21) 

where OS = arg([ - to) and a = argf”(tO). These lines are shown in Fig. 
4.3-3 where the corresponding valleys off,([) in the vicinity of the saddle 
points are shown by hatched regions. 

Several cases must be considered separately. 

(i) 1 Eo I = ( t / 5 )P / [ ( z / t ) z  - 1]1’2> 1 .  The saddle points are far away 
from the poles at 6 = +1. For this case, the original path of integration 
C, can be deformed into SDP’s as shown by dashed lines in Fig. 4.3-3. 

t“ 

Fig. 4.3-3. Lines of steepest descent (or ascent) in complex &plane. 



4.3 Signal Propagation in Lossless, Isotropic Plasma 143 

The integrals Z* can then be evaluated by the method of steepest descent as 
discussed in Appendix A. We have 

(4.3.22) 

2nP 1 e-jtPA-jn/4 jCPA+jn/4 

'+ - (Tr2F [ 1 - tP /CA + 1 + zP/CA 

I-.- (Tr2F [ 1 + tP /CA -k 1 - tP /CA 

2nP 1 e-jtPA-jnl4 ejtPA+jx/4 

and 

where 
A = [ ( T / [ ) ~  - 1]"2 (4.3.24) 

The amplitude of E(C, t) increases with increasing z/C until A N tP/[, 
or t / 5  N 1/(1 - P2)1/2, the time at  which the saddle points move close to the 
poles. At this time, the expression is no longer valid, since when the saddle 
points are in the neighborhood of the poles, the method of saddle point 
integration used above is no longer applicable; it requires the use of a 
modified saddle point method by Van der Waerden (1950). This modified 
method is discussed in Appendix A.2. 

The range of validity for (4.3.23) is given by 

[ [(I - tP/CA)'A3/P 1 > 1 (4.3.25) 

(ii) I to - 1, Arrival of the Main Signal. This corresponds to z-+ tg; 
the saddle points are in the vicinity of the poles. In evaluating I,, the 
contribution from the saddle point in the right half-plane still is the same 
as in (i) while that from the saddle point in the left half-plane must be treated 
separately. Let us divide the integral Z+ into two parts: Z++ and I+-, where 
Z++ represents the contribution of the integral along that portion of the 
path C, which is in the right half E-plane while Z+- is the contribution from 
the remaining portion of the path. In the neighborhood of the saddle point 
t o -  = -( ~ / [ ) P / [ ( Z / [ ) ~  - 1 ] 1 / 2 ,  the integral Z+- along the SDP can be 
written as 

(4.3.26) 

where a = [f"(E,-)/2, CY = argf"(Eo-), and (4.3.21) has been used. 
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For [> 1, the limits of integration can be extended to f co without 
introducing significant error. Therefore, we have 

Equation (4.3.27) can be transformed to the form 

(4.3.27) 

(4.3.28) 

where the transform t = e2 has been used. 

and the result of the integration is [see Eq. (A.2.7)] 
Equation (4.3.28) is of the standard form discussed in Appendix A.2 

where 

erfc(x) = - Jme-u' dy 
d&- 

(4.3.30) 

is the complementary error function. 
In terms of the original variables, (4.3.29) can be written as 

where A is given by (4.3.24) 
Equation (4.3.31) is the asymptotic expression for I+- when the saddle 

point is near the pole. We note that it is finite when t P / S A  = 1, correspond- 
ing to I tol = 1. 

We can now write the asymptotic expression for the integral I + .  For 
t 5 tg so that the saddle point has not yet crossed the pole, the integral is 
equal to the contribution from the saddle point to+ plus that from to-. 
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From (4.3.22) and (4.3.31) we have 

exp[j(SPA + n/4)] 
1 + tP/SA 

-jn exp{-jSPA[I + A2(1 - tP/5‘A)2/2P2]) 

X erfc[-jCA3(1 - tP/SA)2/2P]’/2 for t 5 tg (4.3.32) 

For t 2 tg , the saddle point to- has already crossed the pole at  - 1. There- 
fore, in deforming the contour to SDP, the contribution from the pole must 

Fig. 4.3-4. Deformed path for t 2 t,. 

be included (Fig. 4.3-4). This contribution is easily calculated by the residue 
theorem. We have 

I- can be computed in exactly the same manner. We obtain 

exp[-j(SPA + n/4)] 

1 + W S ‘ A  

+jn exp{jSPA[l + P((1 - tP/CA)2/2P2]} 

x erfc[jCA3(1 - T P / S A ) ~ / ~ P ] ” ~  for t 5 tg (4.3.34) 

and 

I- - - 2njexp{jC[t/S - (1 - X0)1/2]} for T 2 tg (4.3.35) 



146 4. Waves in Fluid Plasma with a Steady Magnetic Field 

Substituting Eqs. (4.3.32)-(4.3.35) into (4.3.15), we have for the signal 

+ C.C.}, t 5 zg (4,3.36) 

and 

where C.C. in (4.3.36) represents the complex conjugate of the first term in the 
bracket. 

Equations (4.3.36) and (4.3.37) are the asymptotic expressions for the 
transient signal in the time range z - tg. For large 5, the first term in 
(4.3.36) is very small and can be neglected. The quantity 1 - tP/CA vanishes 
for t = to and is very small for t N zg. Therefore the term in the bracket 
of (4.3.36) can be approximated using Taylor’s expansions for the expo- 
nential and erfc functions. The amplitude of this term is approximately 
4. Therefore as time increases, the signal is building up to about half its 
steady state value and then, when t 2 tg, the main signal arrives, which is 
represented by the last term in (4.3.37). (See Fig. 4.3-5). 

(iii) I 5, 1 < 1. In this region, the saddle points are again far away 
from the poles; hence the result of (4.3.23) is valid. In addition to that, the 
contribution from the poles must also be included. Therefore, we have 

+ sin[z - (1 - X0)1’25] (4.3.38) 

The amplitude of the signal oscillates about the steady state value but as 
time increases, the first term in (4.3.36) diminishes and the amplitude 
approaches unity. 

To summarize the above discussion, a numerical example is plotted in 
Fig. 4.3-5. This is a plot of the envelope of the transient response of a 
turned-on sinusoidal signal which has propagated in a lossless, isotropic 
plasma under the condition 5 = k,z = lo4 and P = = op/oo = 0.8. 
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Prior to the time t = z/c ( t i 5  = l), no signal will arrive at  the position 
z. This is the consequence of the principle of causality. Right after t > z/c  
(t/C > I ) ,  the Sommerfeld solution is applicable. This solution is indicated 
by the region S in the figure. The amplitude of the signal is very small. As t/[ 
increases, solution (4.3.23) must be used and is indicated by the Region I in 
Fig. 4.3-5. Region I1 represents the main signal buildup solution of (4.3.36) 

+-m- 
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Fig. 4.3-5. Envelope of the transient response of a turned-on sinusoidal signal. [After 
Haskell and Case (1967).] 

and (4.3.37). When t = tg the saddle points cross the poles and the am- 
plitude increases to about half the steady state value. Region 111 i n  Fig. 
4.3-5 shows a small oscillation of the amplitude about its final value after 
the arrival of the main signal. The oscillation decays as time increases. 

The discussion in this section is for the special “turn-on’’ sinusoidal 
signal. The results can be used directly to study the response of a sinusoidal 
pulse of duration T. Since the pulse can be represented by 

E(0, t )  = u(t )  sin w,t - u(t - T )  sin w,(t - 7‘) (4.3.39) 

The results of this section can then be applied to the two terms of (4.3.39) 
separately. 

Finally, it is noted that the discussion in this section can be generalized 
without much difficulty to include the effect of collisional loss in the plasma 
on the signal transient response. Since the collisional effect is proportional 
to Y/O where Y is the collision frequency, additional distortion as well as 
damping of the signal is expected. 
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4.4 Gyrofrequency in the Ionosphere 

As discussed in Section 3.3, a plasma has a tendency to  oscillate at its 
plasma frequxcy. The presence of an external magnetic field introduces 
additional characteristic frequencies. It is known that a charge particle 
executes a spiral motion about the magnetic lines of force. For a particle 
of charge Ze and of mass rn moving perpendicular to the magnetic field B, 
with velocity v,, the equation of motion is 

mvL2/r = I Z levLBO (4.4.1 ) 

where the centrifugal force on the left-hand side of the equation is balanced 
by the magnetic force of Lorentz on the right-hand side. The radius of 
gyration about the magnetic lines of force is 

r = rnv,/l 2 leB, m (4.4.2) 

The time required to complete a circular orbit about the magnetic field 
line is called the gyration period Tand is given by (2nr/v,) = 2nm/I Z leB,. 
The angular frequency of gyration can then be computed, i.e., 

wB = 2n/T = I 2 I eBo/m rad/sec (4.4.3) 

For convenience, we shall always use the angular gyrofrequency (4.4.3) 
as a positive number. 

For ionospheric applications, the appropriate magnetic field is that of 
the earth. In many cases, the earth's field can be approximated by a dipole 
with south pole at 78.6ON, 70.1OW and with north pole at 78.6OS, 109.9OE. 
The magnetic moment of the earth's equivalent dipole is 

M = 8.06 x A-m2 (4.4.4) 

from which we can compute the magnetic intensity in  the magnetic north 
direction X and in the vertically downward direction 2. For the dipole 
approximation, the magnetic field does not have a component in the mag- 
netic east direction which has the symbol Y. We shall note that X ,  Y,  2 
are standard notations used in the study of terrestrial geomagnetism and 
they should not be confused with the X ,  Y, Z used in the theory of wave 
propagation in plasmas. Let A be the gzomagnetic latitude, positive in the 
northern hemisphere, and r the distance from the center of the earth; the 
components of magnetic field intensity are given by 

X = Mcos A/4nr3 A/m 

Z = 2M sin A/4nr3 A/m 
(4.4.5) 
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The angle between the total field and the local horizon is called the magnetic 
dip I. In the dipole approximation, the dip is related to the geomagnetic 
latitude through 

Z = tan-*(Z/X) = tan-’(2 tan A )  (4.4.6) 

As expected, the magnetic dip is 0’ at the magnetic equator and f90’, 
at the geomagnetic poles. We also note that Z is positive in the northern 
hemisphere and negative in the southern hemisphere. The total magnetic 
field strength is denoted by F and from (4.4.5) we obtain 

(1 + 3 sin2 LI)~’~ 
M F = -  

4nr3 
(4.4.7) 

The total field (4.4.7) decays like l / r 3  with r, characteristic for a dipole field. 
The field is strongest at the magnetic pole ( A  = 90°) at which the field 
is twice as strong as the field at the magnetic equator ( A  = 0’). Multiplying 
(4.4.7) by po we can compute the earth magnetic flux density on the surface 
of the earth (r = 6371 km) to be 3-6 x Wb/m2. The corresponding 
gyrofrequency for electrons varies from 0.85 MHz a t  the equator to 1.7 
MHz at the pole and that for protons from 460 Hz to 920 Hz. The electron 
gyrofrequency is right in the broadcast band and the propagation of broad- 
cast radio signals is expected to be influenced by the earth magnetic field. 
The proton gyrofrequency is very small and the ions can be ignored except 
for propagation of lowest frequencies. 

4.5 Dielectric Tensor of a Cold Magnetoplasma 

We have seen in Section 4.1 that in an isotropic plasma there were no  
associated density perturbations and consequently no associated pressure 
perturbations with the propagation of electromagnetic waves. In other 
words, the pressure force in the equation of motion contributes only to 
longitudinal waves and not to transverse waves in our fluid model. This is 
no longer the case when there is a steady external magnetic field in the 
plasma. As we shall find in a later section, the pressure term introduces 
complexities and intricacies that may not be easily untangled at the first 
reading. Therefore, we choose to ignore the pressure term altogether in this 
section. The neglect of the pressure term is justified if the thermal velocity 
of the particle is small when compared with the phase velocity of the wave, 
viz., u << v p .  When this is the case, we speak of the plasma as being “cold.” 
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The cold plasma model gives a satisfactory description except for waves 
with extremely slow phase velocity. 

The equation of motion for an average particle of ath kind with mass 
mar  charge Z,e is 

magz = Z,e(E + ta X B,) (4.5.1) 

where B, is the externally applied steady magnetic field and E the electric 
field of the wave. For the sinusoidal case of dependence ejot (4.5.1) can 
be rewritten in the form 

The electric polarization density due to ath kind of ions is related to its 
displacement from the equilibrium position by 

P a  = NaZAa (4.5.3) 

where N ,  is the density of ath kind of ions. It follows from (4.5.2) that the 
electric field and the polarization are related by 

Before we proceed further we need to clarify the notations used. We define 
angular plasma frequency and gyrofrequency by 

(4.5.5) 

(4.5.6) 

Note that the plasma frequency is always a positive number while the 
gyrofrequency given by (4.5.6) is a vector. Charges of opposite signs are 
gyrating about the magnetic field in opposite directions. With the negative 
sign in (4.5.6) the orbit of charged particles of either sign will gyrate about 
w ~ ,  in the right-hand sense. This is clearly demonstrated in Fig. 4.5-1. 
Again we define a set of normalized frequencies by 

Xu = o;,/02, proportional to Nu (4.5.7) 

Y, = wBa/w,  proportional to B, (4.5.8) 

To help to remind ourselves that (4.5.7) is the ratio of two frequencies 
squared and (4.5.8) is the ratio of two frequencies, it is useful to remember 
that Xu is proportional to Nu while Y ,  is proportional to B,. 
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“8 I 
Fig. 4.5-1. Orbits of oppositely 

charged particles in a magnetic field 
and their relation to gyrofrequency 
vector apd the magnetic vector. (a) 
2, < 0; (b) Z ,  > 0. 
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Equation (4.5.4) can be put in the form 

cOE = xcl * Pa (4.5.9) 

with the inverse susceptibility tensor of the ath kind of charged particles 
expressed as 

(4.5. lo) I 1 -jYuz j y a y  

1 

The determinant of (4.5.10) is found to be (1  - Ya2)/Xm3. The inversion of 
(4.5.10) gives the susceptibility tensor as 

X U  

I - Ya2 
x = -  

1 1 - Y f z  

- Y a z Y a z  + j y a ,  

- YazYa, + jyuz 

- Y a y  Y u z  - j y a z  

- Yzz  Y a z  - jya,  

1 - Y:z 
x - YazYuy - jy,, 1 - Y32Y - yu, y,i + jya* 

(4.5.1 1) 

The total electric polarization density due to all kinds of particles is just 
the sum of partial polarization densities, i.e., 

[ 

The total electric susceptibility due to  all kinds of charged particles is there- 
fore 

x = c x u  (4.5.13) 

with xa given by (4.5.1 1). The dielectric tensor of the medium follows from 
(4.5.13) and is 

a 

& = eo(l + X) = cOK (4.5.14) 
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where I is a unit tensor. We note that the susceptibility tensor (4.5.11) and, 
consequently, also the dielectric tensor are Hermitian showing that the 
medium is lossless. The Onsager relation as discussed in Section 2.6 is 
also satisfied. In the limit of vanishing magnetic field, all Y’s + 0 and thus 
x u  + -Xa. Correspondingly, the dielectric constant becomes isotropic and 
reduces to 

E == ~o(1  - C Xu) ,  Bo + 0 (4.5.15) 
U 

This is just the dielectric constant (4.1.7) derived earlier with contributions 
from all kinds of charged particles taken into account. Since ion plasma 
frequencies are negligibly small when compared with electron plasma fre- 
quency, (4.5.15) reduces to (4.1.7) for all practical purposes. 

The dielectric tensor takes a simpler form when B, is along the positive 
z-coordinate. In this case the nine elements of K are given by 

U 

01 Bo // Laxis (4.5.16) 
a 

K, = 1 - E X a  

Kw = - KUz = - j  C X,Ya/(l - Y 2 )  

Here K not only satisfies the Onsager relation but is also rotationally 
symmetric about z-axis. A word of caution about the sign of Y ,  for the 
element K,, and KUz in (4.5.16) is in order. As defined by (4.5.8) and (4.5.6) 
Y ,  is positive for negatively charged particles and negative for positively 
charged particles. It is helpful to remember that a negatively charged particle 
has a gyration vector parallel to the magnetic field and hence Ya is positive, 
while the gyration vector is antiparallel to the magnetic field for a positively 
charged particle and hence Y ,  is negative. An occasional reference to Fig. 
4.5-1 may be useful. 

In the literature of plasma theory several other tensors are used. One 
is the mobility tensor which for ath kind of particles is defined by the 
relation 

L = t% E (4.5.17) 

Comparison of (4.5.17) with (4.5.12) shows that the mobility tensor and the 
susceptibility tensor are related by 

(4.5.18) 
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For the lossless and cold magnetoplasma considered here, the mobility 
tensor is found to be 

, Bo// baxis (4.5.19) 
0 0 1-Y,2 

where the steady magnetic field is assumed to  be in the z-direction. 
Another tensor often used is the conductivity tensor. It can be related to 

the dielectric tensor by considering the total current on the right-hand side 
of the Maxwell equation 

V X H = J + D  

For the sinusoidal case with ejwt dependence the effect of the medium 
can be taken into account in  the form of a polarization current as done 
here and we obtain in this case j o r  - E for the right-hand side. However, 
the contribution to the total current may be equally treated by including 
a conduction current, and the right-hand side becomes u E + jw~, ,E.  Both 
methods give identical results and therefore 

u = j w ( r  - 801) 

= jwEOX (4.5.20) 

We note that for a lossless case x is Hermitian while u is not. 
So far in this section we have ignored entirely the collisional effect. 

Since collision is a loss process its inclusion will make the dielectric tensor 
non-Hermitian. We shall now turn to this question in the next section. 

4.6 Effect of Collisional Loss and DC Conductivity 

The collisional effect can be taken into account simply if it is frictionlike. 
Let Y ,  be the effective collisional frequency for momentum transfer of the 
ath kind of ions with neutral particles. The equation of motion becomes 

ma[, = Z,e(E + $, X Bo) - m,v,k (4.6.1) 

Comparing this equation with (4.5. I) we conclude that the frictional loss can 
be taken into account if we replace m, for the lossless case by m,(l - jv , /w)  
as we have done in Section 4.1 for the isotropic case. Equivalently if we re- 
place X ,  in the lossless case by X,/U, and Y, by Y,/U, simultaneously, 
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we obtain the case with collisional loss taken into account. Here U ,  is 
defined by 

U, = 1 - jv,/w (4.6.2) 

For example, for the case in  which B, is oriented along z-axis, such simul- 
taneous substitutions in (4.5.1 1 )  give the susceptibility tensor 

, Bo // 2-axis 

(4.6.3) 
1 u, j y ,  0 

- jY ,  u, 0 
0 0 ( U , z - Y Z  a )/Ua 

x u  

u,z- Y 2  
x = -  

Similarly, the elements of the relative dielectric tensor are obtained from 
(4.5.16) as 

a 1 K,, = K,, = 1 - C X,U,/(U,Z - Yp12) 

(I Bo // 2-axis (4.6.4) 
2 t K,, = 1 - c X,lU, 

Kzy = - Kvx = - j C Xu Y,/( U,2 - Yp12) 

K,, = KUL = K,, = Kzy = 0 1 
These formulas reduce to the corresponding lossless case if we let U ,  = 1. 
We note that X, and K are not Hermitian. But they satisfy the Onsager 
relation and they are rotationally symmetric with respect to z-axis. Further, 
the elements (4.6.4) satisfy the Kramers-Kronig relation. 

The susceptibility tensor given by (4.6.3) has a simple pole at  the origin 
of the complex w-plane. This indicates the presence of dc conductivity. 
The conductivity tensor is related to  the susceptibility tensor by (4.5.20). 
In the limit of w --f 0 we obtain 

OP OH 0 
cr(w = 0) = [ -0"" ;,j, Bo // i-axis (4.6.5) 

where 

(4.6.6) 

These conductivities are referred to as the parallel conductivity for u,, , 
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Pederson conductivity for u p ,  and Hall conductivity for uf l .  The parallel 
conductivity is the conductivity for the isotropic case [compare with 
(4.1.26)]. The Pederson conductivity shows the effect of the magnetic field 
and its associated current, called the Pederson current, flows in the same 
direction as the electric field. The presence of Hall conductivity gives rise 
to  a current flowing in a direction perpendicular to  the electric field. These 
conductivities are quantities of central importance in the study of the 
dynamo theory and ionospheric currents (Maeda and Kato, 1966). 

We note that the dc conductivity tensor in (4.6.5) may also be obtained 
from (4.6.4) by using the definition (2.5.10). 

4.7 Longitudinal Oscillations 

The electric field is parallel to the propagation vector for longitudinal 
oscillations. We deduce from Maxwell’s equations, as we have done in Sec- 
tion 2.9, that H = 0 and D = 0, i.e., 

- E = 0 (4.7.1) 

Eq. (4.7.1) has a nontrivial solution for E only when the determinant of the 
coefficient matrix vanishes, i.e., det I K I = 0. Let us orient our coordinate 
axes so that B,// Z-axis. It follows that the elements given by (4.5.16) 
may be used. To be explicit, the longitudinal waves are obtained in a cold 
lossless magnetoplasma by requiring 

det I K I = 

where B, // 2-axis. For later convenience let us define three “relative” 
dielectric constants by 

KO = I - X a  = K,, (4.7.3a) 
a 

= K,, + jKw (4.7.3b) xa x a  Yz 
KI = -; 1 - yaz +; 1 - Ya2 
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When the determinant is multiplied out the condition (4.7.2) reduces to 

KO = 0 (4.7.4a) 

KI = 0 (4.7.4b) 

KII = 0 (4.7.4c) 

For positive frequencies these three conditions give us three different modes. 
They are discussed in the following. 

(i) KO = 0 Mode. We deduce from (4.7.1) that 

E, = Ev = 0, E, f 0 (4.7.5) 

for this mode. That is, the electric field is polarized in the same direction 
as the external magnetic field. As the induced motion is uninfluenced by the 
magnetic field, the resulting dispersion relation (4.7.4a) reduces to 

(4.7.6) 

which is identical to the isotropic case. Because of the heavy mass of ions 
when compared with electrons, the sum of the square of plasma frequencies 
can be replaced by the square of electron plasma frequency with negligible 
error. Properties of such waves have been discussed in Chapter 3 and shall 
not be repeated here. 

(ii) KI = 0 Mode. The ratios of three components of electric field are 
obtained from (4.7.1). If 1 - Ca X a  # 0, then 

E, : Ev : E, 

For our mode, KI = 0, it simplifies (4.7.7) to 

E , : E , : E , = - j : l  : O  

(4.7.7) 

( A  7 !?I 
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The electric field (4.7.8) is in the plane transverse to the magnetic field. E, and 
Ev have equal magnitude and differ in phase by 90’ with Ev leading. The 
electric field is therefore left circularly polarized in the plane transverse to 
B,. The dispersion relation KI = 0 can be rearranged in several ways since 

KI = 1 - C xa/(l + Ya) 
a 

a 

In an electrically neutral plasma the last term vanishes and 

Therefore, the dispersion relation simplifies to 

We note here that the dispersion relation (4.7.10) is w-dependent but not 
k-dependent. Consequently, the group velocity for the wave is zero. Any 
perturbation introduced locally will not propagate away via this mode. 
This comes about because the dielectric tensor used is that for a cold plasma. 

The dispersion relation (4.7.10) yields as many roots for w as the number 
of species of charged particles. However, some of the roots may be negative, 
corresponding to the mode to be discussed in (iii). In general the total 
number of modes in a cold magnetoplasma is equal to the number of species 
plus the mode considered in (i). 

As an example, let us consider a two-component plasma with electrons 
and singly charged neutralizing ions. Remember that electron gyrofrequency 
is positive while that of ion is negative. The relation (w&/wBe) = - (w&/wsi) 

can be used in (4.7.10) to  give the dispersion relation 

1+A( 1 - 1 ) = 0  (4.7.1 1) 

When multiplied out, this is a quadratic equation in o. If we assume 
I wBe I > I wBi 1 , as is generally valid for gaseous plasmas, the positive root 
is found to  be 

w B e  w E e + m  w B i - k w  
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In the limit of vanishing magnetic field this mode degenerates to the ordinary 
plasma oscillation considered in (i). When wBe > cope, the oscillation occurs 
at LO = (w&/wB,), i.e., a small fraction of electron plasma frequency. 

The effect of collisional loss can be taken into account by replacing 
WE, by wBe/(l - jv,/w) and w& by w&./(l - jv,/w) in (4.7.12). For Y < o, 
we may expand and find that the real part of w is still given by (4.7.12) 
to the first order in v,/w but now there exists an imaginary part of w given by 

In (4.7.13) w’ is given by (4.7.12). The presence of the imaginary part 
of LO shows damping of the oscillation. 

(iii) K I ~  = 0 Mode. Similar considerations as (ii) result in 

E , : E , : E , = j : l  :O (4.7.14) 

The electric field is right circularly polarized in a plane transverse to B,. 
The dispersion relation in a neutral plasma is 

2 

%a = o  (4.7.15) 
+ W S a ( W E a  - w )  

For the example of a two-component plasma considered in (ii), the dis- 
persion relation yields one positive root, 

(4.7.16) 

The oscillation frequency (4.7.16) is larger than that given by (4.7.12). 
When wEe > cope, the oscillation occurs at approximately the electron gyro- 
frequency. The collisional effect can be considered similarly. 

In case there are streaming motions of plasma particles along the magnetic 
field, it is possible that the plasma may become unstable. The effect of 
streaming motion will not change any of the polarization relations (4.7.5), 
(4.7.8), and (4.7.14), but the dispersion relations will have to be modified 
to take Doppler shift into account. These discussions have been made in 
Section 3.7 for the isotropic plasma. Since so far our dispersion relations 
are not yet k-dependent we shall delay our discussion until we have the 
appropriate relations in a later section. 
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4.8 Refractive Indices and Polarizations 

One of the important properties of wave propagation in anisotropic media 
is the occurrence of characteristic waves or normal modes. A characteristic 
wave is a plane wave which can propagate in  a given uniform medium 
without changing its wave polarization. When defined in this way, a wave 
with an arbitrary polarization is a characteristic wave in any isotropic 
medium without spatial dispersion. This is no longer true for the anisotropic 
case. As we have seen in Chapter 2, there exist two characteristic waves when 
the anisotropic medium is not spatially dispersive. These two waves have 
two generally distinct polarizations and refractive indices. In a homogeneous 
and unbounded medium, the two waves propagate independently in the 
linear limit. Mode conversion is therefore expected if either the medium is 
inhomogeneous, or there exist boundaries or the nonlinear effects become 
important. 

Several forms for the expression of refractive index are in common use 
in the literature; each has the advantage over other forms in discussing 
certain properties of the wave. Some of these forms have been given in 
Sections 2.7 and 2.8 for general anisotropic media. The reader may wish to 
review these sections. We shall be more concerned with the cold magneto- 
plasmas here. 

The starting point of the derivation is the set of Maxwell’s equations. 
For plane waves with dependence ej(o‘-n’*r) , where d is a unit vector in the 
direction of the propagation vector, Maxwell’s equations reduce to  

D = - ( n / ~ ) . ?  X H 

(4.8.1) 

Eliminating H from the first two equations of (4.8.1) and making use of 
the dielectric tensor, we obtain the wave equation 

D * E = O  (4.8.2) 

with 
D = k21 - kk - ko2K (4.8.3) 

The symbol I in (4.8.3) stands for the unit dyad and k,  = w/c. By comparing 
(4.8.3) with (2.7.8), D and L are found to be related through D = kO2L. 
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det D = n2 - Kzz 0 = 0 (4.8.4) 

where we have used the polar coordinates with n = k/k,. The determinant 
(4.8.4) can be multiplied out and rearranged into the form 

(K, - nz)[Kzx(Kzz - n2) + K&] sin2 8 + K,[(K,, - n2)2 + K&] cos2 8 

= o  (4.8.5) 

The elements of the relative dielectric tensor are given by (4.5.16). They 
can be expressed in terms of three relative dielectric constants defined 
by (4.7.3) and their introduction simplifies our expression to 

(n2 - K,)[n2(KI + KII ) /2  - K I K I I ]  sin2 0 + K,(n2 - KI)(n2 - KII) cos2 0 

= o  (4.8.6) 

The form (4.8.6) was first used by Astrom (1950) and it is especially conve- 
nient for studying the special cases of parallel propagation (8 = 0") and 
perpendicular propagation (8 = 90"). These special cases shall be considered 
in a later section. 

The equation for the refractive index may also be given in a different 
form. For a cold plasma, K is not k-dependent and consequently is neither 
a function of n nor 0. In this case (4.8.5) is a quadratic equation in n2, 
representing two modes of propagation. As done in Section 2.8, the bi- 
quadratic equation in n can be represented by 

a4n4 + u2n2 + a, = 0 (4.8.7) 

with coefficients given by 

a, = K,, sin2 0 + K, cos2 8 

a, = -KzzKzz(l + cos2 0 )  - (K& + K&) sin2 0 

ao = det I K I = (GZ + K&)Kzz 

(4.8.8) 



, 4.8 Refractive Indices and Polarizations 161 

When compared with (2.8.12) we find that (4.8.8) is simpler because certain 
elements are zero in K. We note that the coefficients a4,  a2 ,  and a, are func- 
tions only of the polar angle 6, showing the axial symmetry about the 
magnetic field B,. Further, the coefficients (4.8.8) are unchanged when 8 
is replaced by 180” - 6. This shows that the refractive index has a plane 
symmetry about a plane perpendicular to the magnetic field B,. The two 
solutions of (4.8.7) may be written in two forms: 

(4.8.9) 

I n  the ionospheric literature the second form of (4.8.9) is usually used. 
For the general multicomponent plasmas, (4.8.9) does not lead to any 
simple forms when expressed in terms of plasma parameters except for the 
special case of parallel and perpendicular propagation. If the frequency 
is so high that we need to take only electrons into account, (4.8.9) simpli- 
fies to the Appleton-Hartree equation which shall be discussed in a later 

/’ 
/ 

Fig. 4.8-1. Coordinates for the evaluation 
of refractive indices. 

Y 

X 

section. The manipulation of (4.8.8) for the general case from one form to 
another form is sometimes very laborious and requires considerable al- 
gebraic dexterity. For this reason (4.8.9) is seldom used except for numerical 
computations. 

The characteristic polarizations for a general anisotropic medium have 
been discussed in Section 2.9. In the following, we obtain these polariza- 
tions for the magnetoplasma. 

The state of polarization of a wave is described by the ratios of three 
component fields. For the coordinate system of Fig. 4.8-1, these ratios can be 
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obtained from (4.8.2) as ratios of determinants of certain cofactors of 
D, i.e., 

E, : Eu : E, 

0 
n2 sin2 8 - KzL 

n 2 -  KZz 
0 

= (n2 - K,.)(n2 sin2 8 - K,) : -&(n2 sin2 0 - K,,) 

: (n2 - K,.) n2 cos 8 sin 8 (4.8.10) 

However, the polarization of the wave is commonly not discussed in the 
coordinates of Fig. 4.8-1 in which B, is parallel to  z-axis. The reason is 
simple. As seen from the last two equations of (4.8.1), the fields B and D 
are transverse fields even though E is not. In a coordinate system in which k 
is parallel to z-axis we expect B and D to be confined in the xy-plane. 
Therefore, let us rotate the coordinates shown in Fig. 4.8-1 about y-axis 
through an angle 8 to obtain Fig. 4.8-2a. Subsequently, we rotate about 
z'-axis through 90' to obtain Fig. 4.8-2b. We wish now to express all field 

zn 
I 

(a) (b) 

Fig. 4.8-2. Coordinates in which the polarization of the wave is expressed. 

components in the double primed coordinates. Note that the primed 
system Fig. 4.8-2a is the same as the one used in Section 2.9 while the double 
primed system is the one used more often in the ionosphere literature. 

From the first two equations of (4.8.1) we obtain 

D = n2e,(E - $3 - E) (4.8.1 1) 

When expressed in the double primed coordinates of Fig. 4.8-2b, (4.8.11) 
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becomes, in component form, 

Express the electric field of a given characteristic mode by 

The state of polarization of the electric field is completely defined by the 
complex ratios Rg and Q. Therefore 

Rg = EFlE; = D:lDk' z p:/PF 

Q = EL'/EL' = PL'(1 - n2)/PL' 

(4.8.14a) 

(4.8.14b) 

where (4.8.12) has been used. The state of polarization of the magnetic 
field can be related to that of the electric field by using the second equation 
of (4.8.1). Expressed in the double primed coordinates of Fig. 4.8-2, 

H = (&o/,u0)1'2n(-2''E~r + $"EL') 

which gives the relation 

The relation (4.8.15) is general and is applicable to the lossless as well as lossy 
case. It tells us that for a given characteristic wave the H-ellipse and the 
E-ellipse when projected on the wavefront are similar and both polariza- 
tion ellipses are rotating in the same sense but their major axes are perpen- 
dicular, Actually, in  a lossless medium n is real and hence from the second 
equation of (4.8.1) E and H must be perpendicular instantaneously. But 
if the medium is lossy, the instantaneous magnetic field and instantaneous 
electric field need not be perpendicular since n is complex. 

The double primed coordinates of Fig. 4.8-2b is obtained from the 
coordinates of Fig. 4.8- 1 through a coordinate transformation 

T = -cos8 0 sin8 I s:n 8 co2 (4.8.16) 

The dielectric tensor in the new coordinate system is related to that given by 
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(4.5.16), i.e., 
K" = T . K . T-1 (4.8.17) 

As the transformation (4.8.16) is linear and preserves orthogonality, its 
inverse T-' is equal to the transpose of T. Carrying out the matrix products 
in (4.8.17), the elements of K" are expressed in terms of the elements (4.5.16) 
and the angle 0 between the propagation vector and the steady magnetic 
field : 

K& = Kz2 
I f  K~~ = - K" = K cos e 

K;; = K 2 .  cos2 8 + K, sin2 0 

K;; = Kz2 sin2 8 + Kzz cos2 0 

liz zy 

K" = -K" - - K  sin8 XZ zz - zy 

K" vz = Kii = (- K,, + Kzz) sin 0 cos 8 

(4.8.18) 

The wave equation (4.8.2) in the new coordinates is 

n 2 -  KiL -KLi -Kk; E i f  
K& n 2 -  Ki i  --%;I [,Tif] = 0 (4.8.19) 
KZ -<: -Kii EL' 

By a procedure similar to that used in Section 2.9, we obtain equations for 
the polarization ratio as 

Q = ( K f r R f f  xz 2 - K")/K"R" ZZ z yz (4.8.21) 

These relations can also be reexpressed in terms of K in the coordinates 
of Fig. 4.8-1 by using (4.8.18). The results are 

RY2 + [(K:x - KxzKzz + K&) sin2 0/KwKZz cos 8]RF + 1 = 0 (4.8.22) 

(4.8.23) (-K,R; + K,, cos 8 - Kzz cos 0) sin 8 
(Kxz sin2 8 + K, cos2 8)R; Q =  

We note that the two roots of (4.8.22) satisfy the relations 

R" 21 R" 5% = 1 (4.8.24a) 

and 

RI.: + R;* = -(K$% - K,Kzz + K&) sin2 81KzyKzz cos 8 (4.8.24b) 
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Therefore, the two characteristic polarization E-ellipses when projected 
on the wavefront must be mirror images about a line making a 45' angle 
with respect to the x"-axis and they are counterrotating. If the medium is loss- 
less, Kxx, K, are purely real and KW is purely imaginary, making the right- 
hand side of (4.8.24b) and also Rgl and Rg2 purely imaginary. Thus the 
polarization ellipses have major axes aligned either along the x"- or y"-axis 
in a lossless medium. For the special case of propagation parallel to B, 
(i.e., 8 = O"), the middle coefficient of (4.8.22) and Q both vanish; both 
characteristic waves are purely transverse and circularly polarized. For the 
special case of perpendicular propagation (i.e., 8 = 90°), the middle co- 
efficient of (4.8.22) approaches to infinity and the two roots of (4.8.22) 
are zero which corresponds to a wave linearly polarized along the y"-axis 
and infinity which corresponds to a wave polarized in the x"y"-plane. These 
special cases are discussed more extensively in the next few sections. 

4.9 Propagation Parallel to Steady Magnetic Field 

The first special case we shall discuss is that when the propagation vector 
is parallel to B,. Setting 8 = 0' in (4.8.6), one of the following conditions 
must be satisfied, 

KO = 1 - C Xa = 0 
a 

nL2 = KI = KZz 4- jlu, 

(4.9.1) 

or 

nB2 = KI, = K ,  - jKz, 

The first equation (4.9.1) corresponds to longitudinal oscillations and has 
been discussed in Section 4.7. The remaining two equations, (4.9.2a) and 
(4.9.2b), are the desired dispersion relations. They give the refractive index 
for each characteristic mode of the medium. The corresponding polariza- 
tions are given by the ratios of (4.8.10) which reduces, in the present case, to 

Ex : Eg : E, = -K,,(n2 - Kxz) : K,K, : 0 (4.9.3) 
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If Kzy # 0, substitution of (4.9.2a) and (4.9.2b) in (4.9.3) gives 

E , : E , : E , = T j : l  : O  (4.9.4) 

Both characteristic waves are therefore transverse and circularly polarized. 
The upper sign of (4.9.4) is associated with (4.9.2a) and corresponds to a 
left-handed polarization while the lower sign of (4.9.4) is associated with 
(4.9.2b) and corresponds to a right-handed polarization. The subscripts 
L and R in (4.9.2a) and (4.9.2b) are used to denote left and right polariza- 
tion, respectively. If Kw = 0, we then 
the relations 

iz,2 = nZ2 = KZz 

E,: E,: E, = 0 :O :O 

deduce from (4.9.2) and (4.9.3) 

if K,, = 0 (4.9.5) 

i.e., both refractive indices are the same and the polarization of the wave is 
indeterminant. For this rather special case, we may deduce from (4.8.6) 
that one of the two modes actually becomes isotropic. The frequency at  
which Kzy = 0 is called a cross-over frequency. A wave propagating in a 
slowly varying medium can change its sense of polarization when the wave 
frequency becomes equal to the cross-over frequency. This interesting ob- 
servation has been used as a diagnostic tool in  measuring relative abundance 
of heavy ions in ionospheric research. We shall have more to say about its 
use and implication in Section 4.1 1. 

Comparison of refractive indices (4.9.2a) and (4.9.2b) with (4.1.8) for 
the isotropic case shows a marked difference in behavior. While the wave is 
propagating above the plasma frequency but not below in the isotropic case, 
the effect of a steady magnetic field opens up a series of “windows” in fre- 
quency bands in which propagation is possible. The number of windows for 
a left circularly polarized wave is in general equal to 1 + N+ where N+ is 
the number of species of positively charged particles, and the number of 
windows for a right circularly polarized wave is equal to 1 + N- where 
N-  is the number of species of negatively charged particles. Examination 
of (4.9.2a) and (4.9.2b) shows that propagation is possible even in the 
limit of w -+ 0. When w < I wBa I all u’s, both refractive indices are equal 
and given by 

n; = n 2  = 1 + 1 = 1 + (e/eoB:) (4.9.6) 
a 

where the mass density is given by 

e = c Numu 
d 

(4.9.7) 
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The meaning of the second term on the right-hand side of (4.9.6) can be 
clarified by using some concepts used in magnetohydrodynamics. The study 
of magnetohydrodynamics is concerned with the behavior of a conducting 
fluid in an electromagnetic field. When the fluid is infinitely conducting, the 
magnetic field lines are found frozen into the fluid, i.e., fluid particles co- 
move with magnetic field lines. A magnetic tube may therefore be thought 
of as possessing a mass of linear density equal to the mass density of the 
fluid. Analogous to the case of a vibrating string, when the magnetic field 
is perturbed, it tends to  oscillate with a phase velocity equal to (tension/den- 
sity)1/2. The tension associated with the magnetic field is B02/,u0 with an 
associated hydrostatic pressure BO2/2p0 as given by the Maxwell’s stress 
tensor. Putting the tension and density in the expression, we obtain the 
AlfvCn velocity as ( tension )lP2 = ( - BO2 ),I2 

density Po@ 
v.4 = (4.9.8) 

The use of AlfvCn velocity reduces (4.9.6) to  

In most cases the AlfvCn velocity is much smaller than the velocity of light 
in free space and thus the unity in (4.9.9) can be ignored. Actually the term 
unity has its origin in the displacement current and the term in the 
polarization current. For slow time variations the displacement current 
can be ignored as is usually done in magnetohydrodynamics. The ratio 
c2/vA2 can also be reinterpreted as 

(4.9.10) 
C2 1 rest energy 

v A 2  - 2 ( BoHo/2 ec2 ) - 2 magnetic energy 
____ -- 

Except in extremely tenuous plasmas and/or exceptionally strong magnetic 
fields, the rest energy is usually much larger than the magnetic energy. All 
these equivalent interpretations allow us to  write (4.9.9) in most cases, as 

(4.9.1 1) 

The phase velocity of the low frequency waves is then just equal to the 
Alfvtn velocity. 

As frequency increases a series of resonances occur at  gyrofrequencies 
of each species of ions. The total number of resonant frequencies is equal to 
the number of species of charged particles. These resonances are called 
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gyroresonances or cyclotron resonances. The gyrofrequency of positively 
charged particles is negative and hence contributes to poles of nL2, corre- 
sponding to a left-hand polarized wave. Remember from Fig. 4.5-1 that 
the positively charged particles themselves are also rotating in a left-handed 
sense. Therefore, at  resonance positively charged particles see a constant 
electric field in their own coordinate frame and considerable acceleration 
and transfer of energy between the wave and the resonant particles may re- 
sult. The situation is not unlike that of Landau damping discussed in Sec- 
tion 3.8. Similarly at  the gyrofrequency of negatively charged particles, a 
right circularly polarized wave interacts and exchanges energy with neg- 
ative resonant particles. The study of resonant interaction requires the use 
of distribution functions. The resulting damping of the wave is called the 
cyclotron damping. 

In a gaseous plasma, electrons are the'lightest charged particles and hence 
have the highest gyrofrequency, being 1836 times higher than that of protons, 
the next lightest charged particles. It is therefore possible to find a frequency 
range in which ionic contributions can be ignored all together. In a two- 
component plasma consisting of electrons and singly charged neutralizing 
positive ions, the ionic effect can be neglected if 

Let us assume that the required condition is 

(4.9.12) 

(4.9.13) 

which must be checked for consistency as done in the following. The use 
of the inequality (4.9.13) reduces (4.9.12) to 

which is equivalent to (4.9.13). Therefore, in a two-component plasma the 
ionic effects can be ignored if the frequency is much larger than the ionic 
gyrofrequency. Similar conclusion can be reached in a general multicompo- 
nent plasma as long as the electron concentration is of the same order as the 
ionic concentration. When this is true, the dispersion relations (4.9.2a) 
and (4.9.2b) reduce, respectively, to 

nLz = 1 - X/(l + Y )  

n R z  = 1 - X/(1 - Y) 

(4.9.14a) 

(4.9.14b) 
w >  1 w B i \  
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where the subscripts e on X and Y are omitted for simplicity because only 
electronic quantities remain and thus there is no danger for confusion. 
These refractive index expressions indicate that in the high frequency region 
there is only one resonance at  w = wB for the right circularly polarized 
wave and there is a cutoff frequency for each of the two modes at  

The upper sign applies to  the left circular wave and the lower sign to  the 
right circular wave. These expressions are identical to  those given by 
(4.7.12) and (4.7.16) as the cutoff condition is identical to the condition for 
longitudinal oscillations. 

When the wave frequency is much larger than the electronic gyrofre- 
quency and the electronic plasma frequency the refractive index of both 
waves approaches the free space value of 1. 

To illustrate the behavior of the refractive index dependence on wave 
frequency a concrete example is considered. Figure 4.9-1 shows n2 behavior 
for a three-component plasma of electrons neutralized by 60% protons 
and 40% singly charged oxygen ions. The refractive index is very large and 
equal for both characteristic waves in the extremely low frequency region. 
As frequency increases, the left circularly polarized wave goes through 
resonances at the oxygen gyrofrequency 1 wB1 1 and the proton gyrofre- 

nhz l f B l  I = 545 HZ 

nR2 foe == 10‘ HZ IfBZI = 3 4  Hz 

fpe = 0.5 X 10‘ HZ 
--- 

Fig. 4.9-1. Behavior of n2 as a function o f f  when propagating parallel to the steady 
magnetic field in a three-component plasma of electrons neutralized by 60% protons and 
40% atomic oxygen ions. 
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quency I wB2 I while the right circularly polarized wave has a resonance at 
the electron gyrofrequency wBe. There are two cutoffs at  which the refractive 
index vanishes for the left circular wave and one cutoff for the right circular 
wave. These resonances and cutoffs divide the frequency spectrum into a 
series of windows within which propagation is possible. Inspection of Fig. 
4.9-1 shows that there are three windows for the left circular wave and two 
for the right circular wave. When the frequency is very large the refractive 
index of both waves approaches to 1. Figure 4.9-1 also shows that there is a 
cross-over frequency wco at which both refractive indices have the same value. 

4.10 Faraday Effect 

It was discovered by Faraday in 1845 that certain substances become 
optically “active” when placed in a magnetic field parallel to the direction 
of propagation of the light wave. By optically active is meant that the plane 
of polarization undergoes a rotation that is found to be proportional to the 
strength of the magnetic field and the distance traversed. This phenomenon 
of the rotation of the polarization is known as the Faraday effect or Faraday 
rotation. In a magnetoplasma a similar phenomenon also occurs and is also 
known as the Faraday effect. 

It is known that the resultant of two equiamplitude, oppositely rotating, 
circularly polarized waves propagating in the same direction is a linearly 
polarized wave. The plane of polarization depends on the phase relationship 
between the two circular waves. As shown in Section 4.9, both characteristic 
waves are circularly polarized when propagating parallel to the steady mag- 
netic field. Let us assume that both waves are propagating in the z-direction 
with equal amplitude and at  z = 0 they are in phase. The resultant is then a 
linearly polarized wave with an amplitude twice of that of each circular 
wave and with the plane of polarization oriented as shown on the top of 
Fig. 4.10-1. Next we examine what happens as the wave propagates a small 
distance A z .  We have seen in Section 4.9 that the refractive indices for 
characteristic waves are in general different. This means that these waves 
will be no longer in phase even if they are initially at  z = 0. The phase 
shift for the left circular wave is -IconL A z  and that for the right circular 
wave is -IconR LIZ. The resultant of these two equiamplitude circular waves is 
still linearly polarized but the plane of polarization has been rotated through 
an angle AS given by 

A S  1 (k,/2)(ni - nR) LIZ (4.10.1) 
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Left  circular Right circular Resultant I S  lineorly polarized 

kanr A z  kanH A z  8' +a= 
Left circular Right circular Resultant IS sti l l  l inearly 

polarized but its plone of 
polarization has been 
rotated through on ongle A Q  

Fig. 4.10-1. Illustration of the rotation of the plane of polarization of the resultant 
wave as it propagates from z = 0 to z = dz  along the magnetic field. 

where a positive sign indicates a rotation in the right-handed sense. In a 
homogeneous medium we may integrate (4.10.1) to obtain the total angle 
of polarization rotation for a wave that has traveled a distance z ,  

9 = (k0/2)(nL - nR)z rad (4.10.2) 

For concreteness we have shown in Fig. 4.10-1 the case in which nL > nR 
so that the left circular wave undergoes a larger phase shift than the right 
circular wave. This results in  a polarization rotation that twists like a right- 
handed screw as the wave propagates. The opposite case nL < nR is also 
possible and the twist is in the left-hand sense. The regions in the frequency 
spectrum in which the respective case applies can be found from plots such 
as Fig. 4.9-1. 

The proof of Faraday rotation can also be approached mathematically. 
The equiamplitude left and right circularly polarized waves are given by 

EL = Eo[f  cos(wt - konLz) + 9 cos(wt - konLz + n / 2 ) ]  (4.10.3a) 

E R  = Eo[f cos(wt - konRz) + 9 C O S ( W ~  - k0nRz - n / 2 ) ]  (4.10.3b) 

where the waves are assumed to be in phase a t  z = 0. The resultant electric 
field is obtained by adding EL and ER, giving 

E = EL + ER 

= 2E0{f  cos[ko(nR - nL)z/2] + 9 cos[ko(nR - nL)z/2 + n / 2 ] }  

x cos[wt - k,(nL + nR)z/2] (4.10.4) 
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The expression (4.10.4) shows that the x- and y-components of the wave are 
in time phase and thus linearly polarized. The resultant electric vector 
makes an angle 52 with respect to the x-axis and 

or 
a = -(k,/2)(nR - nL)z rad (4.10.5) 

in an agreement with (4.10.2). The absolute value of the resultant wave is, 
from (4.10.4), 

1 E I = ( E 2  + EU2)ll2 

= 2Eo C O S [ ~ ~  - ko(nR + n,r,)~/2] (4.10.6) 

which shows a phase shift in an equivalent medium with the average re- 
fractive index (nR + nL)/2. 

There are several interesting properties connected with Faraday effect 
that ought to be elucidated. First is that the polarization rotation is cumula- 
tive. Therefore, even in the case of a very weak steady magnetic field the twist 
of the electric vector may become appreciable provided the wave has traveled 
a sufficiently long distance. Next we note that when the wave travels 
parallel to B,, the twist of the electric vector is right-handed if nR < nL 
and left-handed if nR > nL. On the other hand, if the wave travels antipar- 
allel to B,, the subscripts L and R in (4.9.2) must be interchanged. This 
results in a reversal of twist on reversing the direction of propagation. For 
a wave making a round trip in the medium the rotation on the return trip 
is in the same direction as that in the first trip, making the total rotation 
twice that of a one-way trip. 

Because of the sensitivity of Faraday rotation on the presence of electrons, 
the technique has been used in ionospheric research. Most experiments 
choose a frequency much higher than the electron plasma frequency and 
electron gyrofrequency so that we may approximate (4.9.14) by a binomial 
expansion, 

n&,R = [I - X/(I & Y)]'/2 E 1 - X(I $ Y)/2 (4.10.7) 

Substituting (4.10.7), we obtain the Faraday rotation 

a = (k0XY/2)z 

= wP2wBz/2cw2 rad (4.10.8) 
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The rotation is proportional to electron density, magnetic field intensity, 
and distance of travel and is inversely proportional to the square of fre- 
quency. The positive sign indicates a right-handed twist. Numerically, 
(4.10.8) reduces to 

$2 = 2.97 x 10-2NHozlf2 rad (4.10.9) 

where all quantities are expressed in the mks system. We note from the ap- 
proximate expression (4.10.7) that the average refractive index is just 1 - X/2 
which is equal to the refractive index of the medium in the absence of the 
steady magnetic field. Therefore, we may describe propagation of a linearly 
polarized wave as a right-handed twist in polarization given by (4.10.8) 
combined with a phase shift equal to the equivalent isotropic case. 

4.11 Electron and Ion Whistlers 

We have seen that one of the effects of a steady magnetic field in the plasma 
is that it opens up a series of windows in the frequency spectrum, in which 
one or both characteristic waves may propagate. These waves, especially in 
low frequency region, may be very slow and dispersive. This means that the 
frequency components of an initial impulse may spread out in arrival time 
after propagating through the medium. When such a signal is detected by a 
radio it produces a whistling tone and therefore is called a whistler. 

For frequencies much larger than all ionic gyrofrequencies, the effect 
of ions can be ignored when compared with electrons. The refractive index 
of a right circularly polarized wave is given by 

nR2 = 1 - X/(l - Y )  
= + f p 2 / ! f ( f B - f )  (4.1 1.1) 

The group velocity of the wave is given by 

v g  = dw/dk = c/(n + fdn/df )  (4.1 1.2) 

Substitute (4.1 1 . l) in (4.1 1.2) and carry out the differentiation. The following 
expression is obtained. 

(4.1 1.3) 

As is usually the case in ionospheric applications, the wave frequency is 
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much lower than the plasma frequency so that the inequalities fp2 > ffB, 
fp >fare  valid. These inequalities reduce the expression (4.11.3) for group 
velocity to 

The corresponding 

(4.1 1.4) 

(4.11.5) 

The ratio of group velocity to phase velocity can be found to be 

vglvp = 2(1 -flfd (4.1 1.6) 

which is a linear function of ffB. In the frequency range 0 < f < fB/2, 
the group velocity is greater than the phase velocity; and in the frequency 
range fB/2 < f < fB, the phase velocity is greater. It is interesting to note 
that the group velocity expression (4.11.4) has a maximum when f = fB/4 
at which the group velocity is given by 

(4.11.7) 

In a uniform plasma the signal at  a frequency of one-fourth the gyrofre- 
quency suffers a minimum time delay. Therefore, if the transmitting source 
is an impulse, the received spectrum as a function of time delay has the 
form shown in Fig. 4.1 1-1. The frequency that gives the minimum delay is 
called the nose frequency. In a uniform plasma, the nose frequency is equal 
to fB/4. 

The expression (4.1 I .4) simplifies to 

(4.11.8) 

Time delay, sec 

Fig. 4.11-1. Sketch showing group delay of a nose whistler. 
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when f < fB. The corresponding time delay is 

175 

(4. I 1.9) 

which predicts a I/dTdependence. 
The impulses that generate naturally occurring whistlers are ordinary 

lightning discharges. The history of the discovery of whistlers is very in- 
teresting. This history and the methods used by ionospheric researchers in 
obtaining electron density information in the magnetosphere can be found 
in the comprehensive book of Helliwell (1965). 

As the wave frequency is decreased the ions may become important so 
that instead of (4.11.1) we must go back to (4.9.2a) and (4.9.2b) (also, 
see discussion in Section 4.13). Of particular interest is the occurrence of 
cross-over frequencies. At the cross-over frequency the wave polarizations 
of both characteristic modes are indeterminant. A characteristic wave 
propagating in a slowly varying medium may couple energy into the second 
characteristic wave when the wave frequency becomes equal to the cross- 

Electron whistler 
right - c i  rcu lor polarization 

Proton whistler 
left -circular polarizotion 

Proton gyrofrequency 

Cross-over frequency 

0 1 2 3 
Time, sec 

Fig. 4.11-2. Electron and proton whistlers observed on a satellite at 2950 km. The 
calculated fractional abundance of H+ is 0.67 and O+ is 0.33. [After McEwen and Bar- 
rington (1968). By permission of North Holland Publishing Company.] 

over frequency. For example, in the ionosphere it has been observed that 
a right-handed circularly polarized electron whistler may couple part of 
the energy into the left-handed circularly polarized ion whistler (Gurnett 
et al., 1965). An example is shown in Fig. 4.1 1-2. The condition for cross- 
over is Kw= 0 or 

(4.1 1.10) 
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Let us consider a three-component plasma of electrons and two kinds of 
singly charged positive ions of fractional ionization A ,  and A ,  with A ,  + A ,  = 

1. Since the cross-over frequency is near the ion gyrofrequency, we may 
let Ye> 1 and (4.11.10) reduces to 

1 A, A ,  

Multiplying out all the factors, we obtain the cross-over frequency 

fC20 = &A1 + .fii,Az (4.1 1.1 1) 

It  is clear from (4.11.11) that the measurement of cross-over frequency 
can determine the fractional abundance of positive ions. 

If there are more kinds of positive ions, a cross-over frequency occurs 
between each ionic resonance. For example, in a three-ion plasma, there 
are two cross-over frequencies. Measurements of these cross-over frequencies 
can give the fractional abundance of all positive ions in the plasma. 

4.12 Propagation Perpendicular to Steady Magnetic Field 

The second special case we shall discuss is that when the propagation 
vector is perpendicular to B,. Setting 8 = n/2 reduces (4.8.6) to 

n o 2 = K  0 -  - 1 -  
(4.12.1) 

The use of (4.8.10) to find the polarization corresponding to the wave 
with refractive index no leads to indeterminacy and hence we must go 
back to (4.8.2). In the coordinates of Fig. 4.8-1 with 8 = 4 2 ,  we find that 
the electric field vector is entirely along z-axis, i.e., parallel to B,. The 
wave is purely transverse. Since the electric field is parallel to B,, the 
induced motion is not affected by the presence of a steady magnetic field. 
Consequently, the refractive index expression (4.12.1) is identical to that 
derived in the absence of a steady magnetic. Therefore, this characteristic 
wave is called the ordinary wave and a subscript 0 is used to designate its 
refractive index. 
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The remaining wave with the refractive index given by (4.12.2) is definitely 
affected by the steady magnetic field and is called the extraordinary wave. 
We use a subscript x t o  denote it. The corresponding polarization is given 

Ex : Ey : E, = -j(KI - K I I )  : (KI  + K I I )  : 0 (4.12.3) 
by 

which can be obtained from (4.8.10). The coordinate system is that given by 
Fig. 4.8-1 with 8 = n/2, i.e., k along the x-axis, Bo along the z-axis. The extra- 
ordinary wave (4.12.2) is thus in general not transverse. It is polarized ellip- 
tically in a plane perpendicular t o  Bo. I t  is interesting t o  note that the 
wave is purely longitudinal when KI + KII  = 0 for which the resonance for 
n, occurs. As o --f 0, no2 is large and negative, showing the evanescent 
nature of the ordinary wave. The refractive index of the extraordinary 
wave reduces to, as 0-0, 

nx2 = 1 + c2/vA2 (4.12.4) 

where vA is the AlfvCn velocity. 
The ordinary wave has just one cutoff at o = (Cuwu2)112 while the 

extraordinary wave has all the cutoffs of nL and nR discussed in Section 4.9. 
The ordinary wave has a single resonance at  o = 0. The resonant frequencies 
of the extraordinary wave are given by the condition KI + KII  = 0 or 

(4.12.5) 

which shows that there are as many positive resonant frequencies as number 
of species of charged particles. 

For concreteness let us consider a two-component plasma of electrons 
neutralized by singly charged positive ions. The resonance frequencies are 
given by the equation 

(4.12.6) 

This equation gives two resonant frequencies one of which is near the 
electron characteristic frequencies. For the high resonant frequency we 
may assume o2 > m i i ,  o& and thus (4.12.6) immediately yields a solution 

ot = o i e  + W& (4.12.7) 

This frequency is known as the upper hybrid resonant frequency and, as 
seen from (4.12.7), is independent of the ionic gyrofrequency and ionic 
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plasma frequency. Because of the smallness of the electron mass, the electrons 
contribute almost all the polarizability of the medium a t  the upper hybrid 
frequency. The remaining resonant frequency can be obtained by multiply- 
ing out (4.12.6) and solving it by assuming the smallness of the electron 
mass, obtaining 

d t t  = 1 ~ g i  I Q J ~ (  ~ g i  1 a B e  + W&)/(oBe + ~ i e )  (4.12.8) 

This frequency is known as the lower hybrid resonant frequency. In the 
low density limit the lower hybrid approaches the ionic gyrofrequency. 
In the high density limit, the lower hybrid becomes the geometric mean of 
the electron and ionic gyrofrequency, 

WL 1 w B i  I wB, , W;e > Wbe (4.12.9) 

At the lower hybrid resonance frequency, EV = E, = 0 as seen from (4.12.3), 
i.e., the electric field vector is parallel to k. The corresponding polarization 
density is given by P, = coxo: E with susceptibility tensor given by (4.5.1 1). 
Since at  the lower hybrid, Xi = X,(me/mi), Yi = - (me/mi)1/2, Ye = (mi/me)112, 
the polarization densities of electrons and ions are, respectively, 

We note that in the direction of the electric field, the displacements of the 
electron cloud and ionic cloud are in phase at the lower hybrid resonance 
so as to contribute vanishing total polarization density. In a direction per- 
pendicular to both the electric field and the steady magnetic field, electron 
and ion clouds are oscillating out of phase, giving rise to space charge effect. 

The behavior of n2 as a function of frequency in a three-component 
plasma identical to that of Fig. 4.9-1 is depicted in Fig. 4.12-1. It shows 
the presence of one upper hybrid and two lower hybrids. At the lowest 
hybrid resonance the electrons remain relatively motionless while the oscil- 
lations of two ion clouds perpendicular to the steady magnetic field is 
180' out of phase with each other (see problem at the end of this chapter). 

It is interesting to mention the topside sounding results in which some of 
these resonances have been observed. An ionospheric sounder, or ionosonde 
for short, is essentially a radar which measures the time delay of returned 
echos at  either a fixed frequency or as the frequency is swept over a wide 
frequency band. Ground based sounders throughout the world have been 
probing the ionosphere since 1926. More recently the sounder has been 
placed on the satellite to sound the ionosphere from above. The purpose is 
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Fig. 4.12-1. Behavior of n2 as a function offfor  the extraordinary wave when propa- 
gating perpendicular to B,. The plasma is identical to that of Fig. 4.9-1. The resonance 
occurs at  the upper hybrid frequency fub and two lower hybrid frequencies fihl and fin,. 

to obtain an ionization profile above the peak of the layer. The data of swept- 
frequency sounders are usually presented in the form of time delay or ap- 
parent range as a function of frequency. Such data are commonly called 
ionograms. Immediately after the launch of the satellite-borne sounder, it 
was observed that many ionograms show vertical spikes at some discrete 
frequencies. At these frequencies the energy transmitted by the sounder is 
stored in the plasma in the form of a stationary disturbance or as waves 
with group velocity comparable to that of the satellite. These spikes have 
been observed at  electron gyrofrequency and its harmonics, plasma fre- 
quency, upper and lower hybrid frequencies, and many other cutoffs and 
resonances. Note that the upper hybrid resonance gives a direct measure- 
ment of electron density when the electron gyrofrequency is known. Some of 
the satellite results have been summarized by Chapman and Warren ( 1  968). 

4.13 Hydromagnetic Waves-Low Frequency Approximation 

In the low frequency limit, i.e., w < 1 wBa I ,  wpa all a, we may expand KI 
and KIr given by (4.7.3b) and (4.7.3~) to  obtain 
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The harmonic mean of KI and KII accurate to the first order in u) is therefore 
just 

2K1K11 = 1 + c”va2 + O(02) (4.13.2) 
KII 

substituted, the dispersion relation (4.8.6) re- 

KI + 
When these relations are 
duces to 

[n2 - (1 + c”va”] 

[n2 - (1 + c2/vg2)]  cos2 8 = 0 

(4.13.3) 
I KO x (n2 - KO) sin2 8 + { 1 + C2/YA2 

which yields two roots for refractive index. They are given by 

n,2 = 1 + c2/vA2 (4.13.4) 

and 

(4.13.5) 

We note that the mode with refractive index given by n, is isotropic since it 
does not depend on the angle 8. The mode corresponding to n, is aniso- 
tropic. The resonance angle at  which the refractive index approaches 
infinity is given by the relation 

KO 
sin2 8 + KO cos2 8/(l + c2/vA2) 

nt2 = 

(4.13.6) 

For 8 go,, we may approximate (4.13.5) by 

n,2 - ( I  + c2/vA2)/cos2 e (4.13.7) 

In most cases Or departs only slightly from n/2; the approximate expression 
(4.13.7) is valid for nearly all angles except for a small cone near the exact 
perpendicular condition. The refractive index surface given by (4.1 3.7) is 
a plane surface perpendicular to B, as sketched in Fig. 4.13-1. The group 

Fig. 4.13-1. Sketch showing n,(@ The refractive index surface is obtained by revolving 
the solid line about Bo. The symmetric lower portion of the curve is not shown. 
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velocity is known to be perpendicular to the refractive index. Waves with 
the refractive index terminated on the plane surface portion of the refractive 
index surface have energy all channeled to the same direction, namely, 
parallel to B,. 

The characteristic wave polarization of these waves is given by the ratios 
of (4.8.10) in the coordinates of Fig. 4.8-1. In the low frequency approxi- 
mation 

Kxz = 1 + c'/vA', 1 Kw I = I j m  ,Z mg,/mbu I < Kzz 

For 8 # 0, we deduce 

(4.13.8) 
E x : E u : E z ~ { o : E u : o  corresponding to mode n, 

corresponding to mode n, Ex : 0 : 0 

Hence the electric field for these two modes are approximately linearly 
polarized for 8 not near 0'. The induced fluid velocity is related to the 
electric field by the equation of motion (4.5.1) which in the low frequency 
approximation reduces to 

E + v , X B , = O  (4.13.9) 

With the electric field given by (4.13.8), the fluid velocity, the electric field, 
and the steady magnetic field are mutually orthogonal in the present ap- 
proximation. The velocity corresponding to mode n, is 

v, Cc 3 &(d-k;c-&) (4.13.10) 

while that corresponding to mode nt is 

The velocity given by (4.13.10) is compressional and the mode is referred 
to as a compressional mode which accounts for the subscript c on the re- 
fractive index. The velocity given by (4.13.11) has a zero divergence and the 
corresponding mode is referred to as the torsional or shear mode. A sub- 
script t is used to denote it. We note that the compressional mode is 
isotropic and it reduces to the extraordinary wave when 8 = 4 2 .  The ani- 
sotropic mode (4.13.5) becomes the nonpropagation ordinary wave when 
8 = 742. When 8 = 0, both modes are circularly polarized. The transition 
from circular polarization to linear polarization as 8 departs from 0 can be 
investigated by using a better approximation. 

The dispersion relations (4.13.4) and (4.13.5) are essentially zero frequency 
limits of the general dispersion relation. As the frequency is raised the 
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approximations (4.13. la)  and (4.13.1 b) are no  longer valid especially when 
the frequency is approaching the ionic gyrofrequency. In the neighborhood 
of ion gyrofrequency, ions are expected to play an important role. Hence 
these waves are called ion whistlers or ion cyclotron waves. In a moderately 
dense magnetoplasma in which the electron plasma frequency and electron 
gyrofrequency have the same order of magnitude, KO is expected to be very 
large for ion whistlers because of the large ion-to-electron mass ratio, namely, 

We may also assume I KO [ > I KI [ , [ KII I if the frequency is not exactly 
equal to the ion gyrofrequency. These approximations reduce the dispersion 
relation (4.8.6) to 

n4 C O S ~  8 - n2(1 + C O S ~  O)(K, + K I I ) / 2  + KIKII = 0 (4.13.12) 

if f3 is not too close to 4 2 .  In the neighborhood of any ionic gyrofrequency 
1 KII or 1 KIrl may be very large, depending on the sign of the charge. 
For definiteness, let us assume the ion is positive and hence I K I  I > ] KII . 
The approximate roots of (4.13.12) are then 

These refractive indices are dependent on KI and KI1 whose properties 
have been discussed in Section 4.9 and on 8. The refractive index n, given by 
(4.13.13) is for the compressional wave in the neighborhood of an ion 
gyrofrequency of positive ion. I t  is now anisotropic by its dependence on 8. 
The compressional wave becomes a wave with right-handed circular polari- 
zation when 8 = 0. The wave satisfying the dispersion relation (4.13.14) 
is called the ion whistler wave or ion cyclotron wave. In the neighborhood 
of the gyrofrequency of the ith ion, we may approximate KI by 

2 
U J p i  

UJBi(wBi  + w >  
KI 

which has a pole at w = -wBi .  The ion whistler is polarized circularly 
with left-hand sense near the gyrofrequency of a positive ion when 0 = 0. 

Similar expressions can be obtained for frequencies in the neighborhood 
of a negative ion gyrofrequency. The refractive index expressions are still 
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given by (4.13.3) and (4.13.14) except that KI and KII must be interchanged. 
We note now KII has a pole a t  the gyrofrequency. In the limit of 8 = 0, 
both waves are still circularly polarized, but the compressional wave is 
left-handed and ion whistler right-handed. 

The angular dependence of the refractive index of ion whistler as given by 
(4.13.14) constrains wave energy to  propagate along a small cone centered 
about the steady magnetic field. It can be shown (see problem a t  the end of 
this chapter) that the angle y between the group ray and B, is given by 

tan y = sin 8 C O S ~  8/(l + C O S ~  8) (4.13.15) 

The largest value of y is 12.3'. Hence, the ray path of ion whistlers near the 
ion gyrofrequency is not more than 12.3' from along the steady magnetic 
field. 

When the frequency is above all the ion gyrofrequency no simplification 
of the dispersion relation (4.8.6) or  its equivalent is possible since all the 
ion terms as well as the electron term contribute to  the dispersion relation. 
However, in the frequency range w > I wBi I of all ions, only electrons con- 
tribute to  the polarizability of the medium. When this is the case we shall 
refer to  it as the high frequency approximation. The dispersion relation in 
the high frequency approximation is called the Appleton-Hartree formula 
which is discussed in the next section. 

4.14 Appleton-Hartree Formula-High Frequency Approximation 

When the frequency is much larger than all ionic gyrofrequencies, induced 
ionic motions are negligible because of their mass. Ions can therefore be 
viewed as forming a stationary neutralizing background. Only electrons 
contribute to  the polarizability of the medium, i.e., the relative dielectric 
tensor with elements given by (4.5.16) has only the electron component. 
The wave propagation in such a medium can be studied, in principle, by 
simplifying the dispersion relations (4.8.6) or  (4.8.7) or (4.8.9) and the 
wave polarization relations (4.8.10) or  (4.8.22) and (4.8.23). But, in practice, 
the algebra involved to put the results in  commonly used forms is very 
tedious (see problem at  the end of this chapter). We choose to  start our 
derivation from the beginning with the two Maxwell's curl equations. The 
derivation is very much simplified if the inverse susceptibility tensor is made 
use of. 
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Maxwell's curl equations for plane waves with dependence ejo(tns^.ric) are 

(4.14.1) 

(4.14.2) 

D = -(n/c)3 X H 

H = (&o/,uo)1'2 n3 X E 

The vector 3 is a unit vector in the direction of the propagation vector. 
When (4.14.2) is substituted into (4.14.1), we obtain 

D = nz&oP - 3(3 . E)] (4.14.3) 

Orient the coordinates so that 9 // z-axis and B, in the yz-plane as shown in 
Fig. 4.14-1. This is identical to the doubled primed coordinates of Fig. 

Fig. 4.14-1. Coordinate system. 

x' 

4.8-2b. Here, for simplicity, we shall denote our coordinates without primes. 
In this coordinate system, we can write (4.14.3) in component form 

D, = &f12E, = E ~ E ,  + P, (4.14.4a) 

D,, = &f12E,, = E ~ E , ,  4- P,, (4.14.4b) 

D, = 0 = &,Ez + P, (4.14.4~) 

The first two equations of (4.14.4) and (4.14.2) yield 

R = E,/E,, = P,/P,, = D,/D,, = - Hu/Hz (4.14.5) 

This is a relation obtained before [see (4.8.14a) and (4.8.15)]. Its implica- 
tions on the state of polarization have been discussed in Section 4.8 and 
shall not be repeated here. The electric field is also related to the polariza- 
tion density by 

&& = Xe-1 . p, = x-1 . p (4.14.6) 

where the last equality comes from the fact that only electrons contribute 
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to the polarizability in the high frequency approximation. Let us denote the 
elements of the inverse susceptibility tensor as Ti j ,  i.e., x-' = [rij]. In the 
coordinates of Fig. 4.14-1, these elements are, from (4.5. lo), 

(4.14.7) 

r,, = r, = o 

Since all quantities are referring to electrons, the subscript e is ignored 
on Xand Y as done in (4.14.7) and elsewhere in this section. The symmetry of 
x-' as indicated by (4.14.7) can be used to good advantage to simplify our 
derivation. In component form, (4.14.6) can be written as 

From (4.14.4~) and (4.14.8~) we eliminate E, to obtain 

P, = rxz P, 
1 + r z z  

(4.14.9) 

Substitute P, as given by (4.14.9) into (4.14.8a) and make use of (4.14.5); 
we can then rewrite (4.14.8a) and (4.14.8b), respectively, as 

EaEz = [ C Z  + CZl(1 + rxx)lRpu + ~ a P u  

E a ~ u  = -T,RP, + r,p, 

(4.14.1 Oa) 

(4.14.10b) 

Take the ratio of above two equations and again make use of (4.14.5). 
The resulting equation is a quadratic equation in R and it simplifies to 

(4.14.11) 

This equation has two roots, R, and R 2 .  The two roots are related by 

RIRz = 1 (4.14.12) 

Ri f R, = -rZ2zlCJl + rm) 
= jYuz/Yz(l - X )  (4.14.13) 
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where the elements (4.14.7) have been substituted. The polarization ellipses 
of the two characteristic waves in a plane transverse to S are similar, counter- 
rotating, and with the major axis aligned with either the x-axis or y-axis. These 
results are identical to those discussed in Section 4.8. The roots of (4.14.1 1) 
can be written down easily: 

R - j [ 'g2 

Y, 2(1 - X )  ' (4 (1  - X ) z  

- coso [ 2(1 - X )  ' ( 4(1 - X ) 2  
j Y sin2 8 Y 2  sin4 8 - 

We note that in the literature there is always confusion in determining 
the sign of Y,, depending on the conventions used. In the present case, Y 
is always positive in the second form of (4.14.14) as it refers to electrons. 

In the magnetoplasma there is, in general, a nonvanishing longitudinal 
electric field component. Hence in addition to R, we need a second complex 
ratio to express the full state of wave polarization. This ratio is defined by 
Q = EJE, and is obtained by first rewriting (4.14.4a) as 

where the second equality and third equality come from (4.14.9) and 
(4.14.4c), respectively. The equality of the first and last expressions of 
(4.14.15) gives 

Q = E d 4  = L ( 1  - n')>i(l + r Z Z )  

= j Y  sin O(l - n2)/(1 - X )  (4.14.16) 

This ratio is expressed in terms of the refractive index. 

obtain 
Now let us derive the Appleton-Hartree formula. From (4.14.4b) we 

(4.14.17) n2 = 1 + PJEoE, 

The ratio P,I&,E, is given by (4.14.10b), and when it is substituted into 
(4.14.17) we get 

1 
n 2 = 1 +  

= I -  

r z z  - Pz,R 
X 

1 + j Y R  cos 8 
(4.14.18) 

The refractive index (4.14.8) is still expressed in terms of R. The expression 
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is useful in determining the corresponding n and R for a given characteristic 
wave. When the polarization ratio (4.14.14) is substituted into (4.14.18) 
we obtain the Appleton-Hartree formula 

(4.14.19) 
X 

n 2 = 1 -  

+ ~2 cos2 e)l” 
Y 2  sin2 0 * ( Y4 sin4 0 

1 -  
2(1 - X )  4(1 - X)’ 

The upper sign of (4.14.14) and the upper sign of (4.14.19) refer to the same 
characteristic wave, similarly for the lower signs. In our convention Y is 
positive. I t  is also convenient to take the positive value of the square root 
in both (4.14.14) and (4.14.19). 

All expressions derived so far in this section are for the lossless case. 
If collisions cannot be ignored modifications are needed. When the collision 
is frictionlike with an effective collision frequency v for electrons, simulta- 
neous substitutions of X by X / U  and Y by Y / U  in (4.14.14), (4.14.16), 
and (4.14.19) give us the desired results. Here U is given by 

U = 1 - jv /w (4.14.20) 

For completeness we list the expressions in the following. 

+ cos2e)1’2] (4.14.21) 
j Y sin2 0 Y 2  sin4 0 

R = - [  case 2 ( u -  x) 7 ( 4 ( u -  x) 
Q = j Y  sin O(l - nz)/(U - X )  (4.14.22) 

(4.14.23) 
X 

Y2sin20 ( Y4 sindo 
U -  

2(U- X )  4(U- X)Z 

Since U is complex, all above quantities are in general complex. The com- 
putations of these quantities are very tedious but very essential in  under- 
standing the behavior of waves. We shall study some simple cases in the 
next section. 

The field components when referred to, for example, the amplitude Eoz 
in the coordinates of Fig. 4.14-1, can be found by using (4.14.4), (4.14.5), 
and (4.14.16). They are given by 

E = Eoz(2 + .9/R + 242) 

(4.14.24) 
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where the multiplying factor ej(ot-nzlc) common to all has not been written 
out explicitly and E,,, is the amplitude of E,. These expressions are appli- 
cable even when the medium is lossy since they are expressed in terms of 
R, Q, and n. If the medium is lossless, R and Q are imaginary and n is 
real. If the medium is lossy, all are complex in general. 

4.15 Some Properties of the Appleton-Hartree Formula 

The understanding of Appleton-Hartree formula and its associated polar- 
ization relations are very crucial to studies of wave propagation in the iono- 
sphere. There exist in the literature many papers that discuss properties of 
these equations. We shall discuss some of these. 

(i) Parallel Propagation. In this case the wave vector and the steady 
magnetic field are parallel and thus 0 = 0. Both waves are purely transverse 
as Q given by (4.14.16) vanishes. The refractive index (4.14.19) and the 
polarization relation (4.14.14) reduce to 

(4.15. la)  

(4.15.1 b) 

Both waves are circularly polarized; the wave corresponding to the upper 
sign is left-handed and the lower sign wave is right-handed. The square of 
refractive index depends linearly on X which is proportional to electron den- 
sity. The cutoffs at  which n = 0 occur a t  X = I + Y and 1 - Y. These 
properties are shown in Fig. 4.15-1. We see from Fig. 4.15.lb that when 
the frequency is less than the electronic gyrofrequency, the refractive index 

(01 (b) 

Fig. 4.15-1. Square of refractive index as a function of X ,  8 = 0. (a) Y < 1 orf > f ~ .  
(b) Y >  1 o r f < f s .  
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of the right circular mode stays real for any positive X.  This mode is just 
the electron whistler mode discussed in Section 4.1 1 and it can propagate 
in a plasma with any density. 

When the wave vector and the steady magnetic field are antiparallel, 
i.e., 8 = n, the wave with the refractive index given by the upper sign of 
(4.15.la) becomes right-handed and the lower sign becomes left-handed. 
That is, 

R = + j ,  8 = n  (4.15. lc) 

where the right-handed wave corresponding to the upper sign has the 
refractive index given by the upper sign of (4.15.la) and similarly the lower 
sign of (4.15.1~) corresponds to  the lower sign of (4.15.la). 

When the frequency is lowered to the ion gyrofrequency we must include 
ionic contributions. The effect of ions has been discussed in Section 4.9. 

(ii) Perpendicular Propagation. When 8 = 4 2 ,  the refractive index 
(4.14.19) and the polarization relations (4.14.14) and (4.14.16) reduce to 

no2 = 1 - X ,  Ro = 0, Q, = jXY/ ( l  - X )  (4.15.2a) 

and 

X(1- X )  
1 - x- Y2’  

nZ2 = 1 - R, == 00, Q, 1 j X Y / ( l  - X - Y 2 )  
(4.15.2b) 

The formulas (4.15.2a) are referred to a wave which is polarized linearly 
along B, (see Fig. 4.14-1 with 8 = 4 2 )  and whose refractive index is not 
influenced by the steady magnetic field. This wave is called the ordinary 
wave. The extraordinary wave given by (4.15.2b) is polarized in a plane per- 
pendicular to B, and in general is not a transverse wave like the ordinary 
wave. The cutoffs occur at X = 1 for the ordinary wave and at  X = 1 f Y 
for the extraordinary wave. The ordinary wave has no resonance and the 
extraordinary wave has a resonance at X = 1 - Y2 when Y < 1 but not 
when Y > 1. These properties are evident in Fig. 4.15-2. 

(iii) Genera2 Case. For a general angle 8, we must use the full Ap- 
pleton-Hartree formula (4.14.19). Typical curves for a given 8 are shown 
in Fig. 4.15-3. Dotted boundaries show regions in which the refractive index 
curves for any general 8 must lie. It is obvious that curves for the special 
cases of parallel and perpendicular propagation serve as boundaries. As 
expected, curves for any 8 pass through zero at  the same three points. 
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0 lnp+x 1-Y 1-Y2 I l+Y‘ p-\\ l+Y, X 

- I  -1 

(a) (b) 

Fig. 4.15-2. Square of refractive index as a function of A’, 0 = 4 2 .  (a) Y < 1 or 
f > f ~ ;  (b) Y >  1 or f < f s .  
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Fig. 4.15-3. Square of refractive index as a function of Y, arbitrary 0. (a) Y < 1 ,  
f>  f B ,  plotted for Y = 4; (b) Y > 1 ,  f < f s ,  plotted for Y = 2. [After Ratcliffe (1959), 
“The Magnetoionic Theory and its Application to the Ionosphere,” Cambridge Univ. 
Press. Reproduced by permission.] 
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This is because the cutoff condition is independent of 8. The three cutoffs 
are given by 

(i) X = 1 - Y, w = (w&) + [wp2 + f p 2  = f 2  - f f B  
(4.1 5.3a) 

(ii) X = 1, w = wp, fp2 = f 2  

(4.15.3b) 

(iii) X = 1 + Y,  w = -(wB/2) + [wp2 + ( 0 ~ / 2 ) ~ ] ~ ' ~ ,  f p 2  = f 2  + f f B  
(4.15.3c) 

We note that the conditions of cutoff in the second form of (4.15.3a-c) 
are just the dispersion relations of longitudinal oscillations (4.7.16), (4.7.6), 
and (4.7.12), respectively, The third form of (4.15.3) is sometimes useful 
in ionospheric investigations. The single resonance condition occurs when 

x = (1 - ~ 2 ) / ( i  - ~2 cos2 e) (4.15.4) 

whichdepends on 8. 
We note that the general case is much more complicated than the special 

case of perpendicular or parallel propagation. Under certain conditions 
the propagation can be described as quasi-perpendicular or quasi-parallel 
depending on the magnitude of the first term in relation to the second term 
of the two terms under the square root sign of (4.14.19). If it is smaller, 
the propagation is quasi-parallel. These conditions can be restated mathe- 
matically as 

f "fs2 sin4 8 
C O S ~  e g quasi-perpendicular condition (4.15.5) 

4Cf2 -fp">" ' 

quasi-parallel condition 
f "fs2 sin4 8 

cos2 e > 
4 ( f  -fp">" ' 

(4.15.6) 

Roughly, the quasi-perpendicular condition is expected to be valid for a 
large range of 8 when f is close to f p  or when both f and f p  are small when 
compared with fB .  On the other hand, the quasi-parallel condition is ex- 
pected to be valid for a large range of 8 when f is larger than both fB and 
f p  or when fp is larger than both f and f B .  Under these special conditions, 
the refractive index and polarization expressions can be simplified. 

nos = 1 - x, Ro = 0 (4.15.7a) 

Quasi-perpendicular condition: 

X(1- X )  
1 - X - Y2 sin2 8 ' n , z = 1 -  R, = j Y  sin2 8/(l - X )  cos 8, large 

(4.15.7b) 
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Quasi-parallel condition: 

(4.15.8) 

In the transverse plane, the quasi-perpendicular waves are still approximately 
linearly polarized, the quasi-parallel waves are still circularly polarized. 
With the exception of the ordinary wave, the refractive indices (4.15.7b) 
and (4.15.8) have important modifications when compared with their cor- 
responding expressions for 8 = 4 2  or 8 = 0. These modifications are im- 
portant in studying several phenomena. For example, the propagation of 
electron whistlers discussed in Section 4.1 1 can be studied in terms of the 
refractive index 

nR2 = I - x/(i - Y cos e)  (4.15.9) 

when the quasi-parallel condition (4.15.8) is met. This formula has the 
interesting property that the group ray must be within 19.5' of the direc- 
tion of the magnetic field (see problem at the end of chapter). Like ion 
whistlers, there is therefore considerable channeling of energy along the 
steady magnetic field. As another example, the Faraday rotation discussed 
in Section 4.10 must be modified by introducing the factor cos 8 in (4.10.8) 
when the propagation is quasi-parallel. The total twist of the electric vector 
of a linearly polarized wave in a uniform magnetoplasma is now 

Q = wp2wBz cos 8/2cw2 rad (4.15.10) 

Let us now turn our attention to the Poynting vector. The time-averaged 
Poynting vector shows the direction of energy flow and is given by 

(S) = 4 Re@ x H*) (4.1 5.1 1) 

In the coordinates of Fig. 4.14-1, we have H, = 0. The three components 
of the average Poynting vector therefore simplifies to, for the lossless case, 

(SJ = -4 Re(E,H,*) = -(EmE&/2cpo) Re Qn* = 0 

(S,)  = 4 Re(E,H,*) = -(EmE&/2cpo) Re(Qn*/R*) 

<SJ = 4 Re(E,H,* - E,H,*) = (EoxE&/2cpo) Re n*(l + l/RR*) 

- - - EmE&Qn/2cpoR* (4.15.12) 

= (EmE&n/2cp0)(l + l/RR*) 

where the field components given by (4.14.24) have been used. In the lossless 
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case the x-component of the Poynting vector vanishes. Therefore, the prop- 
agation of waves in a lossless magnetoplasma is accompanied by a lateral 
deviation of energy in the magnetic meridian and by an oscillation of 
energy perpendicular to the magnetic meridian. Let the angle between the 
wave vector and Poynting vector be a. The lateral deviation of energy is 
then given by 

(4.15.13) Q R  
1 -+ RR* 

tan a = - (S,>/(S,> = 

The quantity tan a is the lateral deviation of energy in the magnetic meridian 
plane away from k per unit distance of propagation along k. The reason 
for introducing the minus sign in (4.15.13) is that we wish to define a as 
positive if k and B, are on the same side of the group velocity. This definition 
is identical to that used in Section 2.12 in which 

1 an 
t a n a = - - -  

n a8 
(4.15.14) 

is obtained. It can be shown that (4.15.14) is equal to (4.15.13) by differ- 
entiating the Appleton-Hartree formula (see Problem 19 at the end of the 
chapter). The algebra is rather involved. 

When the medium is lossy, n, R, and Q are all in general complex. The 
Poynting vector is given by the next to the last expression of (4.15.12) 
times the amplitude attenuation factor c z ( I r n  nlc)z. All three components of 
the Poynting vector in general exist. The energy can therefore deviate out 
of the magnetic meridian plane as well as in the plane. 

4.16 Cutoffs and Resonances in Parameter Space 

We have seen that a characteristic wave in a cold anisotropic medium 
must have a specific polarization and a specific wave vector. The extremity 
of the wave vector must be on the dispersion surface 

det D(o, k) = 0 (4.16.1) 

where D is given by (4.8.3). In spherical coordinates the surface (4.16.1) 
for a given w is a plot of k versus the azimuthal and polar angles of k. When 
the plot is made for the refractive index n = k/k,, the surface is referred to 
as the refractive index surface or simply index surface. As pointed out in 
Chapter 2 the index surface not only depicts the magnitude of the refractive 
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index in a given direction including the possibilities of cutoffs and resonances, 
but more. For a given refractive index n terminated on the index surface, 
the normal to the index surface at  the terminal is parallel to the group 
velocity vector corresponding to the given n. Further, the Gaussian curvature 
of the index surface plays an important role in radiation problems. It is 
thus of interest to find the nature of these surfaces when parameters of the 
medium are varied. In this connection it has been found convenient to define 
a parameter space by using X ,  and Ye2 as coordinate axes. A point in the 
parameter space corresponds to a definite plasma whose parameters are 
specified by the location of the point. As the point moves about in the space 
the set of plasma parameters are changing continuously in some fashion. 
Since both X ,  and Y,2 are positive, only the first quadrant of the space is 
physically meaningful. For a fixed frequency, X ,  is proportional to electron 
density and Y,2 proportional to Bo2. For a fixed plasma, the change in fre- 
quency is equivalent to a radial motion on the parameter space. The infinite 
frequency is at  the origin. As the frequency is lowered from infinity, the 
parameters (X ,  , Y,2) move out radially. Therefore, the high frequency 
approximation in which only electrons contribute to the polarizability of the 
medium is expected to apply for the portion of the parameter space near the 
origin. As the frequency is lowered further, the ions begin to participate. 
The ions are expected to be important for the portion of the parameter 
space far away from the origin. The low frequency approximation of 
hydromagnetic waves occupies the space very far from the origin. We shall 
demonstrate these points with concrete examples in the following. 

The cutoff condition (Le., k = 0) is the vanishing of det K and is in- 
dependent of the direction of k. It is also the condition for longitudinal 
oscillations discussed in Section 4.7. The condition is given by 

KO =0,  KI = 0, or KIr = 0 (4.16.2) 

In the high frequency approximation in which only electrons need to be 
taken into account, (4.16.2) reduces to 

X = l ,  X = l + Y ,  or X = l - Y  (4.16.3) 

respectively. These curves are shown in Fig. 4.16-1 as dotted lines. When 
the frequency is reduced enough the ions may begin to contribute. For 
concreteness let us consider a three-component plasma of electrons neutral- 
ized by 60% protons and 40% singly charged atomic oxygen ions. The 
portion of the parameter space in which ions are important is very far 
away from the origin. It is therefore convenient to use logarithmic scale 
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Al I \ \ I I 

x w,2/w2 

Fig. 4.16-1. Contours of 0, in the parameter space for an electronic plasma are shown 
as solid lines. Dotted lines show conditions of cutoff. 

Fig. 4.16-2. Regions in which resonances may occur are shown shaded. The plasma 
is composed of electrons neutralized by 60% protons and 40% atomic oxygen ions. Dotted 
lines show conditions of cutoff. 
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for both Xe and Ye2. The cutoffs given by (4.16.2) are shown as dotted 
lines in Fig. 4.16-2. 

The condition for resonance is n ---f co which requires, as seen in (4.8.7), 
a, = 0. Setting u4 equal to zero in (4.8.8), it leads to an expression for 
the resonance angle O r ,  

tan2 8, = - K  :'? / K  xx 

The high frequency approximation of (4.16.4) is 

(1 - X ) ( 1  - Y2) 
tan2 Or = - 

1 - x- Y2 
(4.16.5) 

Since both Xand Y2 are positive, the real resonance angle given by (4.16.5) 
can occur only in two regions. They are 

(i) X - 1  1, Y 2 <  1, and 1 - X <  Y 2  

(ii) X >  1 and Y2 > 1. 

In the parameter space the two regions in which resonance occurs can be 
found easily. Contours of 8, have been computed by using (4.16.5). The 
results are shown in Fig. 4.16-1. The curves in the region X ,  Y2 > 1 ap- 
proach asymptotically to X =  sec20, when Y 2  is very large. Similarly, 
when X is very large, the curves approach to Y 2  = sec2 8,. The bounding 
curves of resonance regions are given by either 0, = 0 or 0, = 4 2 .  In Fig. 
4.16-1 we have 

8, = 4 2  on 1 - X =  Y 2  

e, = o on X =  1, or Y 2 =  1 
(4.16.6) 

For large values of X ,  and Ye ,  ion effects must be included. They introduce 
additional resonance regions. For the example considered earlier, regions 
in which resonance may occur are shown shaded in Fig. 4.16-2. The res- 
onance angles on the bounding curves are 

8, = 4 2  

8, = o on K , = O  or Y,2 = 1 

on KI + K,, = 2K, = 0 
(4.16.7) 

They are marked on the curves of Fig. 4.16-2. 
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4.17 Index Circle and Index Surface 

Systematic classification of index surfaces was first carried out by Clem- 
mow and Mullaly (1955) and Allis [see Allis et al. (1962)l. Hence, plots 
of index surfaces on the parameter space are called CMA diagrams by 
Stix (1962). The construction of the index surface can be done graphically 
as shown by Deschamps (1965). The method also assists in visualizing the 
transition of topological genera of the index surface in the parameter space. 
The method makes use of the index circle. Therefore, we shall first discuss 
the construction of index circle. 

An index circle is a circle of unit diameter, on which scales for the re- 
fractive index are calibrated. Since the medium is lossless, n is either purely 
real or purely imaginary. The real n going from 0 to 03 are calibrated on 
the right-hand half of the circle and the negative imaginary n going from 0 
to ca on the left-hand half. At the point n = 0 a tangent is drawn with linear 
scale in n2. The refractive index scale on the circle is then obtained by 
projecting any point on the tangent line to a point on the circle with the 
top point of the circle (i.e., n = co point) as the center of projection. The 
whole process is shown in Fig. 4.17-1. For 

m -  

illustration, a line is drawn be- 

Linear in n2 

Fig. 4.17-1. Graduation of index circle. 

tween the point 0.25 = (0.5)2 on the tangent and the point n = co on the 
circle. The line intersects the circle at n = 0.5. We note that the points for 
two reciprocal values of n are on the same vertical as the points 0.5 and 2. 
A fully calibrated index circle is shown in Fig. 4.17-2. 

The index circle can be used to construct index surfaces. The method is 
based on the special form of the dispersion relation (4.8.6) or 

&(n2 - ~ ~ ) ( n ~  - zcII) cos2 0 + ~ , ( n ~  - K,)(n2 - K,) sin2 0 = 0 (4.17.1) 

Stix actually plotted the phase velocity of the wave on the CMA diagrams. 
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0 30' 45O 60" 90" 
I I 

8-scale, linear in sin'e 

Fig. 4.17-2. Index circle. [Courtesy of G. A. Deschamps.] 

where .kj, = (KI + KII)/2, K, = KIKII/K,,. Equation (4.17.1) can also be 
written in the form 

(4.17.2) Ko(n2 - KI)(n2 - KII) + (K, - Ko)n2(n2 - K,) sin2 8 = 0 

where 
Km = (KIKII - KzzKo)/(Kzz - KO) (4.17.3) 

There are two basic rules that must be followed in order to construct 

(1) For any given 8 = arcsin@, the two roots of (4.17.1) for n can 
be located on the index circle. A line L, joining these two points can be 
drawn. The first rule is that all the lines L, for arbitrary real values of 
t = sin28 must pass through a fixed point J .  This applies for real values 
of 8 for which t 5 1 as well as for imaginary values of 8 for which t > 1. 

(2) A special line that can be drawn is L,. This line is drawn for t = 03. 

As seen from (4.17.2), the line L,  must pass through n = 0 and n = drm. 

the index surface. The two rules are: 
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The rule (1) must also apply to L,  so that it passes through the point J .  
Draw a line parallel to L,. The second rule is that the intersection of Lt 
with this parallel line describes a linear scale in t = sin2 8. 

These two rules can be used to construct the index surface. The method 
is as follows. Mark on the index circle nL = flI and nR = flI. The 
line joining these two points is Lo. Similarly, draw a line L, through the 
points no = fi0 and n, = dG. The lines Lo and L, meet at  a fixed point 
J. The line L, is obtained by drawing through the point n = 0 and J .  The 
line L,  intersects the index circle at  n = fl-. A scale linear in sin2 8 is 
placed parallel to L, with points t = 0 (or 8 = 0) and t = 1 (or 8 = n/2) 
on lines Lo and L, , respectively. The desired values of refractive index for 
any given t (or 0) can be found by joining the value t on the scale and J 
and then reading off the intersected values of the index circle with the line 
Lt.  As t varies, the line Lt sweeps through the shaded region as shown in 
Fig. 4.17-3. For convenience the scale linear in t = sin2 0 can be recali- 

Fig. 4.17-3. The use of index circle in constructing the index surface. The index sur- 
face is axially symmetric with respect to B,. Because of the symmetry of the dispersion 
surface only one quarter of its meridional section is given. The solid curves show the 
real refractive index and dotted curve shows the negative imaginary refractive index. 
[After Deschamps (1965).] 

brated in terms of 0 as shown in Fig. 4.17-2. The example of Fig. 4.17-3 
shows one closed sheet of the index surface and one open sheet with the 
resonance phenomenon. 

In the high frequency approximation for which only electron terms remain, 
(4.17.3) reduces to 

K, = 1 (4.17.4) 

The line L, in this case is a fixed line passing through the points n = 0 
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and n = 1 on the index circle. The line L,  is a useful line because the sweep 
of Lt for any real angle 0 from Lo to L, must not contain L,. The index 
circle representation of dispersion properties of electronic plasmas in the 
parameter space is shown in Fig. 4.17-4. The resulting meridional sections 
of the index surface at  different points in the parameter space are shown in 

2 

N3 
N' 

3Q 
N 
1 

x = w;/w2 

Fig. 4.174. Index-circle representation of dispersion properties irl the parameter 
space. The dot on the circle indicates the position of no. [After Deschamps (1965).] 

Fig. 4.17-5. The circle n = 1 is shown merely for reference purposes. The 
solid curve is used when the refractive index is real and dotted curve when 
it is negative imaginary. The steady magnetic field is in the vertical direction. 
To explain certain properties of the medium and the wave that propagates 
in the medium we divide the parameter space into eight regions by using 
bounding curves corresponding to cutoffs and resonances at  Or = 0 and 
n/2. These eight regions are numbered in Fig. 4.17-6. In discussing these 
regions, it is useful to refer to Figs. 4.17-4 through 4.17-6. 

Region I .  This is the region in which the frequency is high, the electron 
density low, the magnetic field weak. Both characteristic waves can propagate 
in all directions. Near the origin of the parameter space, both refractive 
indices are close to 1. As the cutoff X = 1 - Y is approached, both refrac- 
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Fig. 4.17-5. The refractive index surfaces in the parameter space. The unit circles are 
drawn to indicate the scale of the index surfaces. [Courtesy of G. A. Deschamps.] 

tive indices are reduced from 1, showing phase velocities larger than the 
free space velocity of light. The refractive index corresponding to the extra- 
ordinary wave is reduced at a faster rate than the ordinary wave and at the 
cutoff X =  1 - Y the ordinary wave can still propagate but the extra- 
ordinary wave has zero refractive index and stops propagating. 

Region II .  Only the ordinary wave can propagate in this region. The 
extraordinary wave is evanescent. The bounding curve between Regions I 
and I1 is the cutoff condition X = 1 - Y. In passing through the curve, the 
refractive index surface of the extraordinary wave becomes imaginary 
and is “destroyed” and therefore the transition is called a destructive 
transition for the extraordinary wave. The index surface for the ordinary 
wave deforms continuously from Region I to Region 11. The transition for 
the ordinary wave is an intact transition. 

Region III.  Both characteristic waves can propagate, but the extra- 
ordinary wave has a resonance angle within which it can not propagate. 
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The resonance angle decreases as the gyroresonance or plasma cutoff is 
approached. The transition at X =  1 - Y 2  between Regions I1 and I11 is 
a destructive transition for the extraordinary wave and intact transition 
for the ordinary wave. 

Region ZV. Only the extraordinary wave can propagate in this region. In 
going through the bounding surface X = 1, the resonance angle is reduced 
to zero so that the extraordinary refractive index surface is now closed. 
Because of this change in the surface, the transition from Region I11 to 
Region IV is called a reshaping transition for the extraordinary wave. The 
ordinary wave goes through a destructive transition on crossing X =  1. 

Region V. The value of the extraordinary refractive index in Region IV 
is continuously decreased as the cutoff X =  1 + Y is approached. On 
crossing X = 1 + Y the extraordinary wave no longer propagates. In Region 
V both characteristic waves are evanescent. The ordinary wave has the 
larger attenuation than the ordinary wave. 

Region VZ. In going from Region I11 to VI, the resonance angle of the 
extraordinary is reduced to zero at Y = 1 .  Therefore, the extraordinary 
wave has now a closed index surface. It is a reshaping transition for the 
extraordinary wave at Y = 1 .  The transition for the ordinary wave is intact. 

Region VZZ. On crossing the bounding curve X =  1 from Region VI 
to Region VII, the refractive index for the ordinary wave disappears at  the 
origin but reappears at infinity. The shape of the ordinary index surface is 

0 I 2 3 
X 

Fig. 4.17-6. The eight regions in the parameter space for an electronic plasma. 
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now changed; only waves within the resonance cone can propagate. The 
transition is a reshaping transition for the ordinary wave. The index surface 
of the extraordinary wave is intact. We note that the transition at  Y = 1 
from Region VII to Region IV is destructive for the ordinary wave and 
intact for the ordinary wave. 

Region VIZZ. Only ordinary waves propagate in this region. The transi- 
tion at X = 1 + Y from Region VII to Region VIII is intact for the ordinary 
wave and destructive for the extraordinary wave. The transition at Y = 1 
from Regions VIII to V is destructive for the ordinary wave. 

In summary, we see that both characteristic waves can propagate in 
Regions I, 111, VI, and VII of Fig. 4.17-6. In Regions I1 and VIII only 

1 U III E P  YDo T i T I a I X a  Xo 
b b b b  

10'0, I 1 

Fig. 4.17-7. Parameter space for a plasma containing electrons neutralized by 60% 
protons and 40% atomic oxygen ions. Representative index surfaces in each region are 
shown on the top. The right and left circular polarizations when propagating along the 
steady magnetic field are marked by R and L, respectively. Similarly, the ordinary (0) and 
extraordinary (X) indices are marked when propagating perpendicular to magnetic field. 
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ordinary waves can propagate, and in Region IV only extraordinary waves 
can propagate. Both waves do not propagate in Region V. In going from 
one region to another region, three types of transitions on the index surface 
may occur for a given characteristic wave. They are intact transition, re- 
shaping transition, and destructive transition. 

Complications arise for large values of X ,  and Ye due to presence of ions. 
The ions may give rise to hybrid resonances, ion gyroresonances, additional 
cutoffs, and a phenomenon called cross-overs. The cross-over occurs when 
Kw = 0 as discussed in Sections 4.9 and 4.11. In passing through the 
cross-over condition the index surfaces maintain their topological genera 
except that the right and left circular polarizations are interchanged. Such 
a transition is called a cross-over transition. Typical index surfaces in all 
regions of an example plasma are shown in Figure 4.17-7. A cross-over 
transition occurs in going from Region Xa and Region VIlb. The propaga- 
tion characteristics in each region and the type of transition in going from 
one region to the next can also be found by studying Fig. 4.17-7. 

4.18 Dielectric Tensor of a Warm Magnetoplasma 

We have so far in this chapter ignored the effects associated with plasma 
temperatures. The resulting theory is applicable to the cold plasma, i.e., 
a plasma in which the thermal velocity of plasma particles is negligibly small 
when compared with the phase velocity of the wave. This condition is violated 
in two cases: (i) The plasma waves discussed in Chapter 3 have velocities 
of the order of the thermal velocities. (ii) Near resonance the phase velocity 
of the electromagnetic wave is very small. To extend the cold plasma model, 
a pressure term in the equation of motion can be included. The plasma is 
still treated with a fluid model, commonly referred to as the warm plasma 
model because effects such as Landau damping arising from the velocity 
distribution of particles are not taken into account. 

The fluid equations are essentially a set of conservation equations. They 
have been used in Section 3.5 to study the electron and ion plasma waves. 
The equations are generalized here by inclusion of a Lorentz force term due 
to the presence of a steady magnetic field. The set of equations starts with 
the equation of continuity for the ath species of particles 

b’N,/& + div(N,v,) = 0 (4.18.1) 

Then we have the equation of motion 

rn,N,Dv,/Dt = -grad p a  + Z,eN,(E + v, x B,) (4.18.2) 
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the ideal gas law 
P, = NaTz (4.18.3) 

and the equation of state 

D(p ,Nly ) /Dt  = 0 (4.18.4) 

The symbol D / D t  = a/& + v, - grad is just the convective derivative. 
The temperature T, is expressed in energy units. As explained in Section 3.5, 
the adiabatic condition with y = 3 is predicted by the more exact calcula- 
tions for high frequency electron plasma waves. It is not expected to be 
valid for low frequency waves such as ion acoustic waves in which the 
electron thermal velocity may exceed the phase velocity of the wave. In 
this latter case we would expect any variation in temperature to be thermal- 
ized by the speedy electrons. Therefore, an isothermal condition with y = 1 
may exist for low frequency waves. For our purposes here, we shall not be 
too concerned with the exact value of y and let it take up whatever values 
demanded by the more exact theory. Experimentally, propagation studies 
have been carried out in the laboratory and y found to be close to 1 for ion 
sound waves in several plasmas (Alexeff and Jones, 1965). 

Let the homogeneous plasma be perturbed so that 

N ,  = NF’ + Nu’, P ,  = PIP’ + P,’ 
(4.18.5) 

v, = 0 + v,, E = O + E  

The first terms on the right-hand side of (4.18.5) denote the unperturbed 
quantities and they are constant in a homogeneous plasma. The second 
terms on the right-hand side of (4.18.5) denote perturbations. The impli- 
cation here is that under equilibrium the plasma is not in motion and is 
electrically neutral. For small perturbations, we may linearize all equations 
of concern. The linearization of the equation of state (4.18.4) with the help 
of the ideal gas law gives 

P,’ = YTUN,’ (4.18.6) 

Consequently, the linearized equations of continuity and motion are, re- 
spectively, 

aN;/at  + N?’ div v, = 0 (4.18.7) 

m,N,av,/at = -YT, grad N,‘ + NLo’Z,e(E + V, x 4) (4.18.8) 

For plane waves with dependence &(wt-k.r), the linear equations (4.18.7) 
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and (4.18.8) reduce to  

wN,' - Nio'k * V ,  = 0 (4.18.9) 

jcomaNava = jyT,N,'k + NAo)Z,e(E + v ,  X B,) (4.18.10) 

The electric polarization density is given by 

Pa = NA0)Z,eE, = NLo)Z,ev,/jw (4.18.11) 

Eliminating N,' from (4.18.9) and (4.18.10) and expressing v ,  in terms of the 
polarization density through the use of (4.18.1 1 ), we may obtain 

E,E = -(I/X,)[P, + jY, X Pa - 6,nn - Pa] (4.18.12) 

where by definition 

X ,  = o&/w2 = Nio)(Zae)2/ma&OW2 

Y, = t oBa /W = -Z,eB,/m,w 

6 ,  = yT,/m,c2 = &,/c2 
(4.18.13) 

n = k/ko  = k c / o  

Since this is a nonrelativistic theory we implicitly assume 6 < 1. Equation 
(4.18.12) is of the form 

E,E = x;' Pa (4.18.14) 

where the inverse susceptibility can be identified. Without loss of generality, 
choose a coordinate system in which B, is along the z-axis and n is in the 
xz-plane such as Fig. 4.8-1. That is, in  this coordinate system B, = IB, 
and n = i n  sin 8 + In  cos 8 where 8 is the angle between n and B,. The 
inverse susceptibility tensor is then 

1 )(;I - __ . [ j y a  1 0 
1 - n2 6 ,  sin2 8 

-n2 6, sin 8 cos 8 

- j Y ,  

0 

-n2 6 ,  sin 8 cos 0 

1 - n2 6, cos2 8 X a  

(4.18.15) 

The susceptibility tensor is obtained from (4.18.15) by a matrix inversion 
and is found to  be 

. I  

X a  x z- 
1 - Y 2  - n2 S,( 1 - YZ2 cos2 8 )  

1 1 - n2 6, cos2 0 
-jY,(I - n2 6 ,  cosz 8 )  

n2 6, sin 8 cos 0 

jY,(1 - n2 6 ,  cos2 8 )  
1 - n2 S, 

jY,n2 6, sin 8 cos 8 

n2 6, sin 8 cos 8 
- jY,n2 6, sin 0 cos 0 
1 - Ya2 - n2 6 ,  sin2 8 

(4.18.16) 
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The dielectric tensor for a warm plasma is then just 

In the limit n2 Sa + 0, the dielectric tensor (4.18.17) reduces to the cold 
plasma expression of (4.5.14) as expected. But this reduction is not possible 
near a resonance for which n + co, even though 6, is very small. The dielec- 
tric tensor (4.1 8.17) is w-dependent as well as k-dependent through its 
dependence on n. The medium is therefore both temporally and spatially 
dispersive. The form of the dielectric tensor is identical to that of (2.6. lo) 
which was derived from the Onsager relation. The propagation of plane 
waves is governed by the wave equation 

D * E = O  (4.18.18) 

with 

D = k21 - kk - k02K (4.18.1 9) 

The system of equations (4.18.18) has a unique nontrivial solution (outside 
of a multiplying constant) only if 

det D = 0 (4.1 8.20) 

The dispersion relation (4.18.20) is an algebraic equation of order three in 
n2. The finding of these roots does not present any difficulties in principle. 
However, because of the large number of parameters the systematic study 
of the behavior of these roots when the parameters are varied is more 
tedious than the cold plasma case. We shall only discuss the high frequency 
case and one special example of ion-acoustic waves in the following two 
sections. 

4.19 Warm Plasma Correction to the High Frequency Waves 

In the high frequency approximation only electrons contribute to the 
dielectric constant of (4.18.17). The dispersion relation (4.18.20) reduces 
to, after long and tedious algebra, 
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where 

KI = 1 - X/(1 + Y) ,  

KO = 1 - x, 
Kx, = 1 - X/(1 - Y) 

(4.19.2) 
K, = (KI + K1,)/2 = 1 - X/(1 - Y 2 )  

With the help of (4.19.2) the dispersion relation (4.19.1) can also be written 
in the form 

6(1 - Y 2  cos2 8)na 

+ [(-I + x + y2 - xy2 C O S ~  e) + 26(- 1 + x + ~2 C O S ~  ~ l n 4  

+ 12 - 4x + 2x2 - 2 ~ 2  + x y y i  + C O S ~  e )  
+ 6(1 - 2x + X2 - y2cos2 8)]n2 + (1 - X ) [ Y 2  - (1 - Q2] = 0 

(4.19.3) 

The form (4.19.1) is useful for studying special cases of 8 = 0 or 8 = 4 2 .  
When 6 = 0, the propagation vector is parallel to the steady magnetic 
field. In this case, (4.19.1) reduces to 

when 8 = 0 (4.19.4) 

The first two modes are the characteristic electromagnetic waves discussed 
in Section 4.9 and the last mode is just the electron plasma waves of Section 
3.5. We see that all three modes can propagate independently. 

When the propagation vector is perpendicular to the steady magnetic 
field, i.e., 8 = 4 2 ,  the dispersion relation (4.19.1) reduces to 

n 2 = l - X  (4.19.5a) 

(4.19.5b) 6n4 + [ ( X -  1)(1 + 6) + Y2]n2 + (1 - X)z - Y 2  = 0 

The refractive index given by (4.19.5a) is just that for the ordinary wave. 
But the extraordinary wave and the plasma wave are now coupled as 
clearly shown by (4.19.5b). The biquadratic equation (4.19.5b) has the 
form 

(4.19.6) an4 + bn2 + c = 0 

with a = 6 < 1. Since the discriminant is positive, 

b2 - 4ac = [ ( X -  1)(1 - 6) + Y2Iz + 4 6XY > 0 



4.19 Warm Plasma Correction to High Frequency Waves 209 

The wave either propagates (n2 > 0) or attenuates (n2 < 0). The roots of 
(4.19.6) are given by 

(4.19.7) 

We shall explain the reason for giving the condition b > 0. If the inequality 
b2 > 4ac holds, the solutions (4.19.7) can be approximated as follows. 

-(c/b)(l + acp  + * * * )  
-(b/a) + (c/b) + (ac2/b3) + - - n2 = { 

(x + - x, + O(6) extraordinary (4.19.8a) 
(1 - X)(1 + 6) - Y2 

- x- Y2)/6 + XY2/(1 - X -  Y2) + O(6) plasma (4.19.8b) 

In the limit 6 --f 0, (4.19.8a) reduces to that for the extraordinary wave 
in the cold plasma theory. Therefore, (4.19.8a) is defined as the expression 
for the extraordinary wave and (4.19.8b) as the expression for the plasma 
wave. When defined in this way, the upper sign in (4.19.7) corresponds to the 
extraordinary wave and the lower sign in (4.19.7) corresponds to the 
plasma wave only when b is positive. When b is negative the signs must be 
switched, i.e., 

(4.19.9) 
1 b 1 i (I b l 2  - 4ac)‘I2 

2a 
n2 = , b t O  

in which the upper sign refers to the extraordinary wave and the lower 
sign the plasma wave. The switch of expressions from (4.19.7) to (4.19.9) 
occurs when b passes from positive values through zero to negative values. 
Let us therefore examine the neighborhood of b = 0. We note that the 
condition b = 0 corresponds to 

(1 - X)(1 + 6) = Y2 (4.19.10) 

which shows 
1 - X > O  

Since 6 << 1, (4.19.10) is near 1 - X = Y2 which is just the upper hybrid 
resonance of the cold plasma and is shown in Fig. 4.16-1. When b = 0, 
we have 

c = (1 - X)Z - Y2 = -((1 - X ) X  + 6) < 0 
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and the refractive indices at  this point are given by 

n2 = ‘ i -c /S) ‘ ’ ’  = &[(I - X ) ( X  + ~3)/6]”~, b = 0 (4.19.11) 

The behavior of n2 as a function of b is depicted in Fig. 4.19-1. As seen 
from this figure coupling from the extraordinary to the plasma wave occurs 
when 1 - X -  Y 2  = 6 ( X -  1) ‘v 0 which can be called the quasi-resonance 
condition. This coupling of the extraordinary wave with the plasma wave 
is expected to modify the dispersion surfaces in Region 111 of the parameter 
space given by Fig. 4.17-6. Mathematically, n2 varies smoothly with b. 
The switch in designation occurs at b = 0 because we wish to identify the 
modes by using limiting expressions (4.19.8). 

Lower sign (4.19.8) 
plasma wave 

Upper sign (4.19.8) 
extraordinary 

Fig. 4.19-1. Coupling of the extraordinary wave with the plasma wave at  1 -X- Y B  
= 6 ( X -  1) and 0 = n/2.  

When 0 is arbitrary, we must go back to (4.19.1) or (4.19.3). The following 
several properties can be deduced from (4.19.3). The only resonance occurs 
when 

cos 0,, = 1/Y or tan2 OP7 = Y2 - 1 (4.19.12) 

which is for the plasma wave. When - 1 + X + Y2 - XY2 cos2 0 # 0 or 
when 

(1 - X)(1 - Y2) 
tan2 0 f - 

1 - x- Y2 
(4.19.13) 

the refractive index for the plasma wave which has the largest index is 
given by 

n2 = (I - x- ~2 + X Y ~ C O S ~ ~ ) / ~ ( ~  - Y ~ C O S ~ ~ )  (4.19.14) 
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We note that the right-hand side of (4.19.13) is just tan2 8, predicted by 
the cold plasma theory as indicated (4.16.5). Therefore, the plasma ex- 
pression (4.19.14) is valid when 8 is not equal to the resonance angle of 
the cold plasma theory. In the parameter space of Fig. 4.17-6, only Regions 
111, VII, and VIII have resonances. The coupling of the plasma wave to 
the electromagnetic waves is expected to occur in these regions a t  the cold 
plasma resonance angle. 

With the foregoing discussions we can go back to the parameter space 
and show the warm plasma modifications. Referring to Fig. 4.17-6 we 
make the following comments. 

Regions I and II. The electromagnetic waves have refractive indices less 
than 1 while those of plasma waves are much larger than 1. Hence, there is 
very little coupling between them. In Fig. 4.19-2, only the index surface for 
the plasma wave is shown. 

Region III. The extraordinary wave of the cold plasma theory has a 
resonance at  O1 given by (4.16.5), and at  Ot the coupling to plasma waves is 
expected from the warm plasma theory. The warm plasma resonance is 
given by (4.19.12). Since in this region Y 2  < 1, the surface must be closed 
as shown in Fig. 4.19-2. 

Fig. 4.19-2. Warm plasma additions and corrections of the dispersion surfaces in the 
parameter space. Surfaces unaffected are not shown. Coupling from the electromagnetic 
wave to the plasma occurs at the resonance angle 0,- The resonance angle OPT is that for 
the plasma wave. 
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Regions W a n d  V. The plasma wave attenuates as indicated by (4.19.14). 

Region VZ. Except near bounding curves of this region, the refractive 
indices of both electromagnetic characteristic waves are finite according 
to the cold plasma theory. There is therefore very little coupling with the 
plasma wave except near Y = 1. The refractive index for the plasma wave is 
(4.19.14) and has a resonance given by (4.19.12) as shown in Fig. 4.19-2. 

Regions VZI and VZII. The ordinary wave has a resonance and according 
to the cold plasma theory the resonance angle is [see (4.16.5)] 

tan-'((Y2 - l ) (X- I)/(X + Y 2  - < 8,, (4.19.15) 

Therefore, the ordinary wave is coupled to the plasma wave which has a 
larger resonance angle. The effect can be seen in Fig. 4.19-2. 

4.20 Plasma Waves and Two-Stream Instabilities 

The warm plasma corrections including the effects of ions are rather 
complicated and they also depend on the composition of the plasma. We 
shall not discuss the general case, but only concern ourselves with the plasma 
waves. The refractive index for the plasma wave is very large. When the 
dispersion relation (4.18.20) is written in the form 

a4n4 + a2n2 + a, = 0 (4.20.1) 

the approximate dispersion relation for the plasma wave is given by setting 
(See Section 2.9) 

a4 = 0 

or 

K,, sin2 8 + 2K,, cos 0 sin 0 + K,, cos2 6 = 0 (4.20.2) 

The expression (4.20.2) for a, has been found in (2.8.12). Because this is 
a warm plasma theory, the elements of the dielectric tensor are n-dependent 
as well as w-dependent. Substituting these elements as given by (4.18.17) 
into (4.20.2), we obtain the following dispersion relation for plasma waves 
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In the following, for simplicity, let us assume that the plasma is composed 

When 8 = 0, the dispersion relation (4.20.3) reduces to 
of electrons and singly charged positive ions. 

(4.20.4) 

The dispersion relation (4.20.4) is identical to (3.5.21) from which we de- 
duced expressions for electron plasma waves and ion sound waves. The 
reader is referred to Section 3.5 for details. 

When 8 = 4 2 ,  (4.20.3) reduces to 

The dispersion relation (4.20.5) is a biquadratic equation in n2 and can 
be solved easily. Because of the large ion-to-electron mass ratio, we can 
get approximate expressions by letting mi -+ co for electron plasma waves 
and m,+O ionic sound waves. The refractive indices in these limits are 

for electron plasma waves (4.20.6) n2 = (1 - X ,  - Y,2)/6, 

and 
Y,2(1 - YtZ - X i )  + x, 

si(Ye2 + Xe) 
n2 1 for ionic sound waves (4.20.7) 

We note that the electron plasma wave has a cutoff at the upper hybrid 
resonance and the ionic sound wave has a cutoff at  the lower hybrid res- 
onance. The hybrid resonances were discussed in Section 4.12. 

In ionospheric applications, one problem of special interest is the excita- 
tion of ion sound waves. We have already seen in Section 3.7 that the energy 
in the streaming motion may be fed to the growth of plasma waves. These 
waves have associated density perturbations. I n  radio science these density 
fluctuations are called irregularities because they scatter radio waves and 
they also cause radio signals to scintillate. These irregularities have been 
observed throughout the ionosphere for all latitudes and longitudes. But 
one type of irregularities which occur at a height 100 km near the equator 
in daytime has been convincingly proved experimentally as caused by 
two stream instabilities. 

Near the equator a strong current known as the equatorial electroject 
flows in a height range of 5 to 10 km centered about a height of 105 km and 
within 2-3' in latitude from the magnetic dip equator. The current in 
the electroject is driven by the electric field which is believed to be generated 
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by the tidal motion of the earth's atmosphere. Because of the large ion mass 
we may assume ions are stationary. The electroject current is then entirely 
caused by drifting electrons. Let the electron streaming velocity be v(O). 
In the nonrelativistic theory, the effect of motion is a Doppler shift in w 

and invariance in k when transformed from the rest frame to the moving 
frame of reference with respect to the medium. The electrons see a wave 
whose frequency is Doppler shifted to w - k . v(O). At the height of interest, 
typical parameters of interest are of the following orders. 

As seen the collisional effects are not negligible. The inclusion of frictionlike 
collisional effects in the equation of motion (4.1 8.2) is equivalent to replacing 
X, ,  Y, ,  and 6, in the collisionless theory by X,lU,, Y J U , ,  and 6,/U,, 
respectively. The inclusion of collisions and a Doppler shift for electrons 
but not for ions and the neglect of wBi in  comparison with vin and w modify 
the dispersion relation (4.20.3) which can be put in  the following form. 

= o  wii  
+ jw ( jw  + vin) + k2v2Ti 

(4.20.9) 

where wD is the Doppler shifted frequency, i.e., wD = w - k v(O). In 
general w is complex for a real k in (4.20.9). Remember that the assumed 
time dependence is ejot. When w has a positive imaginary part the wave is 
damped exponentially with time. But when w has a negative imaginary 
part, the wave will grow in time. The transition between damping and 
growth occurs when w is real for real k. This condition is known as the 
condition for marginal stability. In the following, we shall find this condi- 
tion. 

The parameters of interest have the magnitudes given by (4.20.8). We 
may assume wD2 < v:, < but for generality we allow 8 to take any 
values. The factor that appears in (4.20.9) may be then approximated. 
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We substitute this approximation into (4.20.9), and the imaginary part of 
the equation at  the marginal stability, for which w and hence wD are real. 
The following equation results 

(4.20.10) 

Because of the presence of collisions the Doppler shifted frequency per 
frequency for marginal stability must be negative. Equation (4.20.10) can 
also be reexpressed as 

v ( o )  

( w / k )  
-- - 1 + (vinven/l C O B ~  I 0 8 ~ )  + (w;eYin/O;jven) C O S ~  8 (4.20.1 I ) 

which states that the marginal stability occurs only when the streaming 
velocity of electrons is larger than the phase velocity of the wave. Because 
of the occurrence of the large factor w&/wii, the required streaming velocity 
is extremely large unless the angle 8 is very close to n/2. For moderate values 
of the streaming velocity, excitation of ion sound waves occurs only for 8 
near n/2. The phase velocity of the wave at the marginal stability can be 
found by substituting (4.20.10) back to the dispersion relation. After re- 
arrangement, we obtain 

(m/k)2 = 2v2,,/[1 + (wiev~n/wgivin) cos2 e - vtn/w;i - vtn/wBe I wBi I 1 
(4.20.12) 

Roughly, the phase velocity is of the order of ion thermal velocity for 
8 = 4 2 .  As the angle 8 departs from 4 2 ,  the phase velocity is reduced. 

The fact that the instability is most easily achieved when k is perpendicular 
to Bo means that the irregularities associated with the longitudinal ion sound 
waves are magnetic field aligned. The experimental verification of these 
theoretical predictions has been quite successful [see Buneman (1963); 
Farley (1963); Cohen and Bowles (1963)l. 

Problems 

1. In the absence of a steady magnetic field, the relative dielectric constant 
for a cold plasma is (4.1.14) which has the real part given by (4.1.17), the 
negative imaginary part by (4.1.18). Show by actually carrying out the im- 
proper integrals that they satisfy the Kramers-Kronig relations (2.5.15). 
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2. For some time there was a question whether the Lorentz polarization term 
should be included for the plasma case. The Lorentz polarization term comes 
about because the effective electric field a t  any point in the medium is the 
sum of the applied electric field and the electric field radiated by other 
dipoles in the medium. The inclusion of the Lorentz term is the addition on 
the right-hand side of the equation of motion (4.1.1) of a term -eP/3c0. 
Show that if this is done, the refractive index must now satisfy 

n2 = 1 - 3wp2/(3w2 + up2) 

which has a corresponding cutoff condition at cop2 = 3w2/2. Discuss its 
consequence on measuring electron density (viz., cop)  by using the propaga- 
tion technique. 

3. Let a uniform plane wave with electric field E = 2E, ej(wt-kor) strike 
normally on a slab of lossless isotropic plasma of thickness dz’ at z’. Find 
the scattered electric and magnetic fields from such a slab. 

4. Now let us assume that electrons are distributed uniformly throughout 
the space. Imagine that the space is made up of many thin slabs, each of 
which will scatter waves like that shown in the previous problem. We 
require that these infinitely many thin slabs scatter coherently in  a self- 
consistent manner so that the sum of all these scattered waves just makes 
up the originally assumed plane wave. Show that the condition of self- 
consistency requires the refractive index to satisfy n2 = 1 - wp2/w. 

5. Consider the normal incidence of a turned-on sinusoidal wave at the 
lossless, isotropic plasma half-space of the form given by (4.2.8), i.e., 

E,(t) = u(t)  sin wot 

Show that the reflected wave at  the interface is given by (4.2.9). The follow- 
ing identity will be helpful 

m 

sin(z cos 6 )  = 2 C (- l)nJ2n+l(~) cos[(2n + l)O] 
n=O 

in putting E,(t)  into a convenient form [C.  M. Knop, Further comments on 
“The transient phenomenon in an isotropic plasma without collisional 
loss.” Proc. ZEEE 53, 751-752 (1965)l. 

6. Verify the expressions (4.3.22) and (4.3.23) by applying the method of 
steepest descent. 
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7. Show that the equation of magnetic lines of force is given by 

r/sin2 A = constant 

for a dipole field. The lines orthogonal to the magnetic lines of force are 
constant potential lines. (Note that if the small contribution to the earth 
field from ionospheric currents is ignored, the magnetic field exterior to 
earth is irrotational and we may define a scalar potential whose negative 
gradiant is the magnetic field.) Show that the constant potential lines are 
given by 

r2/sin A = constant 

8. Find the expression for the dc conductivity tensor from (4.6.5) by a 
transformation of coordinates so that B, is in the xz-plane. 

In the study of dynamo theory, it is sometimes assumed that the vertical 
current is zero, i.e., i, = 0. This assumption comes from the vague inference 
that currents flow mainly in the E region of the ionosphere when conduc- 
tivity is appreciable and any vertical current is inhibited by the polarization 
field. Show that if this is the case we then have 

i, = 3,,E, i- 3xuEu 

iu = 3xuE, + gmEu 

Express the elements aXx,, ZWtr 3xu, and 3uyy in terms of a,, op, oH, and the 
polar angle of the magnetic field. 

9. Flow of a neutral plasma in a semiconductor in the presence of an 
external magnetic field can lead to the appearance of the magnetic moment 
of the plasma. Consider a cylindrical sample of radius R in which radial 
diffusion takes place such that the neutrality condition is maintained under 
the steady-state condition but an azimuthal current may be produced by 
unequal azimuthal velocities of electrons and holes. Suppose the cylindrical 
sample is situated in an axial external magnetic field. Find the average axial 
magnetic moment density [A. A. Vedenov, Solid state plasma. Sov. Phys. 
Usp. 1, 809-822 (1965); A. R. Moore and J. 0. Kessler, Phys. Rev. 132, 
1494 (1963)l. 

10. Consider a multicomponent cold magnetoplasma in which B,, k, and 
viol are all in the same direction. Here via) is the streaming velocity of ath 
kind of particles. Find the dispersion relations for all three longitudinal 
modes. Consider the special example of electrons streaming through positive 
ions at  rest. What is the condition for marginal instability? 
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11. In Section 4.10 we discussed the Faraday effect for characteristic waves 
propagating parallel to the magnetic field. Suppose there are equiamplitude 
ordinary and extraordinary waves propagating across the steady magnetic 
field. What happens to the transverse wave polarization of the resultant 
along the direction of propagation? Draw polarization ellipses to illustrate 
their change. 

12. In most of ionospheric experiments the total Faraday rotation from 
the transmitter to the receiver is not measured but only its time rate of 
change. Consider a transmitter (a beacon satellite) which moves parallel 
to the plane earth at  a constant velocity v. The plasma density between the 
transmitter and ground may be assumed homogeneous in a constant steady 
magnetic field. Show that the time rate of change of Faraday rotation of a 
high frequency signal is constant and is given by 

&/dt = 2.97 x 10-2NvH,ath/fz radlsec 

where Hpath is the component of the steady magnetic field resolved in the 
direction parallel to the path of the satellite. In the high frequency approxi- 
mation the refractive index is given by the quasi-parallel expression for almost 
all directions [S. A. Bowhill, The Faraday rotation rate of a satellite radio 
signal. J. Atmos. Terr. Phys. 13, 175 (1956)l. 

13. Consider a slab of plasma in a steady magnetic field as shown. Suppose 
that we displace a11 electrons by a small distance L?~ from their equilibrium 

I& slab 

0 B o = i  8, 
X 

positions. Show that the system will have a resonant frequency o satisfying 

This is just the upper hybrid resonance. 

14. Consider resonances for the special case of perpendicular propaga- 
tion in a three-component plasma consisting of electrons and two neutraliz- 
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ing positive ion species with masses Ml and M ,  (M2 > M , )  and fractional 
concentrations A ,  and A ,  ( A ,  + A ,  = 1). 

(a) Show that in the limit of low densities, resonances occur at  each of 
the gyroresonances. In the limit of high densities, the square of the angular 
resonant frequencies are 

mie 9 I w B i l  I f A ,  I WBi2 1 )  
and 

I wBilwBi2 I (A1 I @Biz I + I O B i l  [)/(Al I WBil  I + A ,  I WBiZ 1) 
Note that the third new resonance involves only the ion gyrofrequencies. 

(b) At the new resonance, the oscillations of two ion clouds perpendicular 
to the steady magnetic field are 180' out of phase, while electrons remain 
relatively motionless. Show that this is the case [S. 3. Buchsbaum, Phys. 
Fluids 3, 418420 (1960)l. 

15. Consider a two-component plasma with electrons and neutralizing 
positive ions. In the high density limit we find, in Section 4.12, a resonance 
wo at the geometric mean of electron and ion gyrofrequency when k is 
perpendicular to B, and when collisions are all ignored. 

(a) Take collisional damping in a form of a frictional force into account. 
Find the shift in resonance frequency from w, when Y / W ,  is much smaller 
than 1 and much greater than 1 .  

(b) Neglecting shift due to damping, find the real part and the imaginary 
part of the refractive index near w = w, still for k perpendicular to B,. 

(c) Neglecting damping entirely, discuss the dependence of resonant fre- 
quency on the direction of propagation which departs from the exact per- 
pendicular condition by a small angle [H. Schlitter and C. J. Ransom, 
Ann. Phys. (New York) 33, 360-380 (1965)l. 

16. The dispersion relation for ion whistlers near the ion gyrofrequency 
is given by (4.13.14). 

(a) Show that the angle y between the group ray and B, of an ion whistler 
is given by 

tan y = sin 0 C O S ~  0/( 1 + C O S ~  0) 

(b) From (a) show that the largest value of y is 12.3'. 
(c) Find the group velocity of an ion whistler propagating along B, 

[D. A. Gurnett and S .  D. Shawhan, Determination of hydrogen ion con- 
centration, electron density, and proton gyrofrequency from the dispersion 
of proton whistlers. J. Geophys. Res. 71, 741-754 (1966)l. 
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17. A special case which is sometimes of interest is the strong magnetic 
field case. When the steady magnetic field is strong, it is convenient to expand 
the expression in powers of l/Ya. 

(a) Expand the polarization density P a  in a cold magnetoplasma to the 
second order in l / Y a .  Show that Pa has contributions from three terms. 
The first term comes from the electric field induced motion along the steady 
magnetic field. The second term has the origin of E x B, drift and does 
not contribute to the total polarization since the drift is the same for charged 
particles of different masses. The third term comes from the polarization 
drift. In the orbit theory the polarization drift is given by (rna/ZaeBO2)dE/dt. 

(b) Show that the dielectric constant accurate to the second order in 
1 / Y  is diagonal and is given by 

0 0 

0 
1 + c2/0*2 

a 

(c) Find the refractive indices in this medium. 

18. Show that (4.8.9) reduces to the Appleton-Hartree formula (4.15.19) 
in the high frequency approximation in which only electrons contribute 
to the polarizability of the medium. 

19. 
(4.15.13) and (4.15.14) are identical. 

20. The propagation of electron whistlers under the quasi-parallel condi- 
tion is described by the refractive index (4.15.9). Show that the group ray 
must be within 19.5O of.the direction of the magnetic field [L. R. 0. Storey, 
An investigation of whistling atmospherics. Phil. Trans. Roy. SOC. London 
Ser. A 246, 113 (1953)l. 

21. Consider a wave incident normally on a stratified lossless magneto- 
plasma such as vertical sounding of an ionosphere. In  this case the direc- 
tion of the wave vector is known as the wave penetrates into the plasma. 
Hence knowing t a n g  would be sufficient to trace the group ray in the 
medium. Show that the reflecting ray at  X = 1 is perpendicular to the steady 
magnetic field. Also find the direction of a ray at the point of reflection when 
X =  1 -  Y and X =  1 + Y.  

22. 

Show by actually differentiating the Appleton-Hartree formula that 

Consider a medium in which the constitutive relations are given by 

D = & E + a H ,  B = f l E + p H  
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Find the polarization and the dispersion relation of a characteristic wave that 
can propagate in the medium. In this medium it is also possible to have 
Faraday rotation. How does the Faraday rotation in this medium differ 
from that in the magnetoplasma? Especially for waves making a round trip 
through the medium? 

23. The force acting on a moving charge by an electromagnetic wave can 
be written as 

F(r, t )  = e[E(r, t )  + v(r, t )  X B(r, t)l 

where E and B are the wave fields and v is the velocity of the charge. To the 
linear approximation, v can be taken as the unperturbed trajectory of the 
particle. The fields are plane waves of the form &(o‘-k.r). 

(a) For the case without static magnetic field, the unperturbed trajectory 
of the charge particle is r = r, + v,t, where r, and v, are the initial 
position and velocity of the charge, respectively. Find the condition such 
that the force acting on the charge remains constant in time. This is the 
resonance condition. Is it physically possible to have resonance under the 
present situation? 

(b) With a static magnetic field B, in the z-direction and the k vector in 
the xz-plane, find the resonance conditions. (The formula ek sin = 

J,(a)eim will be found useful.) 
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5. Wave Propagation 
in Inhomogeneous Media 

5.1 Introduction 

In previous chapters our. discussion on wave propagation in dispersive 
media in general and in plasmas in particular has been limited to homo- 
geneous structures. In reality, however, the phenomenon of wave propaga- 
tion in inhomogeneous media occurs quite often; in fact it occurs much more 
frequently than the phenomenon of propagation in homogeneous media. 
To name just a few examples, we list the following natural phenomena: 

(1) underwater propagation of acoustic waves; 
(2) acoustic-gravity waves in the ocean and the atmosphere; 
(3) multilayer optics; 
(4) seismic waves; 
(5) radio waves in the ionosphere. 

Therefore the problem of wave propagation in inhomogeneous media is 
indeed a very important one both theoretically and experimentally. As is 
the case for most real physical problems, the wave propagation problems 
under the most general inhomogeneous conditions are hopelessly compli- 
cated and usually no meaningful solutions (analytic or numerical) can be 
obtained. Therefore the first task in treating these problems is to isolate 
different classes of problems and to study various limiting conditions of 
real physical situations. The hope is that by setting up different models, 
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physical situations that are responsible for different behavior of the waves 
may be studied independently, and meaningful conclusions may be drawn 
from these investigations. In setting up these models, one has to be very 
careful, since in many cases oversimplifications may hide clues to solution 
of the real physical problem (Karbowiak, 1967). 

One of the limiting conditions for wave propagation in inhomogeneous 
medium is the geometrical optics approximation, the limit of zero wave- 
length. In Sections 5.2 to 5.7, we shall discuss various aspects of this partic- 
ular limiting case. A set of ray equations, which are suitable for numerical 
computations, will be derived for general inhomogeneous, anisotropic 
media. 

In many real physical situations, the properties of the medium may be 
taken as varying in only one particular direction. This type of media is 
called stratified media. Sections 5.8-5.20 are devoted to problems of wave 
propagation in such a medium. The WKB approximation technique which 
is valid for high frequency waves is discussed in Sections 5.9-5.11 and is 
applied to the stratified isotropic media in Sections 5.12 and 5.13. Another 
approximation method which is valid for the other extreme of very low 
frequency waves is discussed in Section 5.14. In Sections 5.15 and 5.16, 
the signal propagation problem is considered. In Sections 5.17-5.20, strati- 
fied anisotropic media are discussed. Although we have the application of 
ionospheric propagation in mind, the discussions are kept in fairly general 
terms so that the techniques are applicable to other problems of a similar 
mathematical nature but of entirely different physical situations. 

Since the problem of wave propagation in inhomogeneous media is 
already very complex, we shall not make the discussion even more difficult 
by introducing spatial dispersion. Throughout this chapter the relations 
between D and E fields will be assumed to be local. 

Finally, we mention in passing that there is another set of problems 
belonging to the general problems of wave propagation in inhomogeneous 
media, namely, wave propagation in random media. For these media, the 
inhomogeneities vary randomly. This problem will be considered in the 
next chapter. 

5.2 Foundations of Geometrical Optics-Isotropic Media 

One of the most successful ways of treating the problem of wave propaga- 
tion in an inhomogeneous medium is the method of geometrical optics. 
It is the branch of optics which is characterized by taking the limit of 
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zero wavelength in investigating propagation of electromagnetic waves. 
Physically, this amounts to neglecting the diffractional effects. The historical 
development of geometrical optics goes back to the nineteenth century 
and its relation to wave optics is analogous to the relation between classical 
mechanics and quantum mechanics. Recent advances of the theory have 
generalized the method a great deal and linked it closely to the technique 
of asymptotic expansions [see for example, Kline and Kay (1965)]. In this 
section we shall derive the fundamental equations of geometrical optics 
from Maxwell's equations and indicate the limitations and implications of 
the results. 

Let us consider a lossless, isotropic, spatially inhomogeneous medium. 
The medium is assumed to be frequency dispersive but with no spatial 
dispersion. For monochromatic harmonic time variation eiUt, the Maxwell 
equations for a source free region become 

F' X E(r, w )  = -jwp(r, w)H(r, w )  

V X H(r, w )  = jw&(r, w)E(r, w )  

(5.2. la)  

(5.2.lb) 

17 - k(r, w)E(r, w ) ]  = 0 (5.2. Ic) 

17 [p(r, w)H(r, w ) ]  = 0 (5.2.ld) 

where &(r, w )  and p(r ,  w )  are functions of spatial coordinates indicating the 
inhomogeneous properties of the medium. 

In the homogeneous medium, the plane wave solution of (5.2.1) is of the 
form 

(5.2.2) 

where k, = w/c and n is the refractive index defined by 

n = c ( ~ p ) " ~  (5.2.3) 

and j :  is the direction of propagation. e and h are two constant vectors. 
For the inhomogeneous medium, we can still define the refractive index as 
in (5.2.3) and write the solution of (5.2.1) as 

(5.2.4) 

where the function y(r) is a real scalar function of position and e(r) and 
h(r) are vector functions of position and may be complex. Note that the 
w dependence has been dropped to save unnecessary writing. 
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Substituting (5.2.4) into (5.2. I ) ,  we obtain 

V y  X e - cph = (V x e)/(jko) 

V y  X h + cee = (V x h)/(jko) 

(5.2.5) 

(5.2.6) 

e V y  = (e V In E + V - e)/(jko) (5.2.7) 

h V y  = (h V In p + V - h)/(jko) (5.2.8) 

The r dependence of the functions has been omitted in writing (5.2.5)- 
(5.2.8). Up to this point, no approximation has been made. For geometrical 
optics, we are interested in the case where the wavelength is approaching 
zero so that k, is approaching infinity. We can therefore neglect the right- 
hand side of (5.2.5)-(5.2.8) since they are of the order (l/ko). These equa- 
tions then reduce to 

V y  X e-  cph = 0 (5.2.5a) 

V y  x h + cEe = 0 (5.2.6a) 

e . V y = O  (5.2.7a) 

h - V y = O  (5.2.8a) 

We note that (5.2.7a) and (5.2.8a) can be derived from (5.2.5a) and 
(5.2.6a), respectively. Therefore we shall only concentrate on the two equa- 
tions (5.2.5a) and (5.2.6a). Substituting h from (5.2.5a) into (5.2.6a), we 
have 

( l /cp) [Vy  x (Vy x e)] + cee = 0 

(e - Vy)Vy - e(Vy)2 + c2pee = 0 (5.2.9) 

But the first term is zero from (5.2.7a). Since e is not identically zero, we 
obtain finally 

( V y y  = n2 (5.2.10) 

or 

where (5.2.3) has been used for the definition of n. 
The function y(r) is called the eikonal and (5.2.10) is called the eikonal 

equation. It is a fundamental equation in the discussion of geometrical 
optics. 

From (2.10.21), the time-averaged Poynting vector under the present 
approximation can be written as 

(S'O') = &P X H* + E* X HI = &(e x h* + e* X h) (5.2.11) 
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Using (5.2.5a), we can reduce (5.2.11) to 

(So') = c(ee2 + ph2) Vy/4n2 (5.2.12) 

Therefore the average power flows in the direction of Vy. Since V y  is 
normal to the wavefront surfaces y(r) = constant, we may now define 
the rays as the orthogonal trajectories to the geometrical wave-fronts y(r) = 
constant. If r(s) denotes the position vector of a point P on a ray, con- 
sidered. as a function of the arc length s, along the ray path, then the unit 
tangential vector, f, along the ray is defined by 

t" = dr/ds = Vy/l V y  1 = Vv/n (5.2.13) 

We note that according to our definition, the ray direction f is the same 
as the wave normal direction. This is because the medium is assumed iso- 
tropic. 

With the definition (5.2.13), (5.2.12) can be put in the form 

(SO) = a(ee2 + phZ)(c/n)f = (W>(c/n)t^ (5.2.12a) 

where ( W) = (ee2 + ph2)/4 is the average energy density for the monochro- 
matic wave [see (2.10.20)l. c/n can be taken as the velocity at  which the ray 
propagates. ( W ) ( c / n )  is defined as the intensity of the ray, I .  

In a lossless medium without spatial dispersion, the average energy 
density ( W )  is independent of time. From (2.10.19), we have 

v . S'O' = 0 

or 
v * (It') = 0 (5.2.14) 

Geometrically, the significance of (5.2.14) can be interpreted by using Fig. 
5.2-1. Let us take a narrow tube formed by all the rays proceeding from an 
element dS, of a wave point surface y = a. These rays intercept any other 
wave front in an element dS, as shown. This tube is defined as a tube of 
rays. 

Integrating (5.2.14) over the volume of the tube we find that the energy 

Fig. 5.2-1. Tube of rays. 
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flux flows into and out of the tube only through dS, and dS,.  This implies 
that the product ZdS along the tube of rays remains constant. As dS in- 
creases along the tube, I must decrease and vice versa. This is the intensity 
law of geometric optics. 

From (5.2.10) and (5.2.13), it is possible to eliminate V y  and obtain an 
equation for the rays. Differentiating (5.2.13) with respect to s, we have 

= ( l /n )Vy  - V(@) (by 5.2.13) 

= ( W )  V[vY)21 
= (1/2n) V(n2) (by 5.2.10) 

Therefore, 
(d/ds)(n dr/ds) = Vn (5.2.15) 

This is a vector equation for the ray. It is the basis for tracing rays in an 
isotropic, inhomogeneous medium. As an example, let us consider the rays 
in a homogeneous medium. Then (5.2.15) becomes 

d2r/ds2 = 0 (5.2.1 6) 

which has a solution 

r = a s + b  (5.2.17) 

where a and b are two constant vectors. The rays in a homogeneous, iso- 
tropic medium are straight lines, not a surprising result. 

5.3 Amplitude Variation along the Ray 

From (5.2.1), we can also derive a wave equation for the inhomogeneous 
medium. We have 

and 

V2H 4- 02&pH + (17 In E )  X (V X H) + V(H - V In p) = 0 (5.3.2) 
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These are wave equations for electric and magnetic fields in an inhomo- 
geneous medium and will be studied in detail in later sections for some 
special cases. 

If we substitute (5.2.4) into (5.3.1), we obtain the following equation: 

where 

L(e, Y ,  n, p)  = (Vy  - V In p - Py)e - 2(e v In n) ~y - 2 ( ~ y  . V>e  

M(e, y, n, p)  = (0  x e) x V In p - V2e - 0(e . 17 In 8 )  

(5.3.4) 

(5.3.5) 

A similar equation can be obtained from (5.3.2) for h. The geometrical 
optics approximation is obtained by neglecting terms of the order ( l / k o )  
and ( l / ko2)  in (5.3.3). We note that the eikonal equation n2 = ( V Y ) ~  is 
recovered immediately. 

If now we solve the eikonal equation for y and substitute it back into 
(5.3.3), we obtain an equation relating e and y. We can use this equation 
to derive the amplitude of the wave along the ray. The equation now 
becomes 

(5.3.6) 

Under the present approximation, the second term can be neglected, and 
we obtain L = 0 or 

where f = (Vy/n)  given by (5.2.13) has been used. 

ray. A similar equation can be derived for h which is 
Equation (5.3.7) is the transport equation for the variation of e along the 

+- -py-- - )h + (h V In n) i  = 0 (5.3.8) 
a In 

ds 2 n dS 

Next, we take the scalar product of (5.3.7) by e* and add the resulting 
equation to its complex conjugate equation; we obtain 

(5.3.9) as (f, a l n p )  as 
a - (e - e*) + ~ V 2 y  - - (e - e*) = 0 

where (5.2.7a) has been used. 
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Dividing (5.3.9) by (e - e*)  and combining the first and third term, we 
obtain 

(5.3.10) 

which yields a solution 

after it is integrated along the ray from a point A to a point B. Equation 
(5.3.1 1) gives the variation of the magnitude of the vector e along the ray. 

The next logical step would be to find the variation of the direction of the 
vector e. This actually will indicate the variation of the polarization of 
the wave along the ray. Let us consider the complex unit vector defined by 

li; = e / (e  . e* 1 112 (5.3.12) 

Dividing (5.3.7) by (e . e*)lI2 and using the definition (5.3.12), we obtain 

The second term vanishes on account of (5.3.9). Therefore we obtain the 

a$as = -(F . 17 In n)i (5.3.13) 

which governs the variation of the polarization of the wave along the 
ray. We note that for the homogeneous medium, V In n = 0, ,L remains 
a constant along the ray. 

Let us now consider a particularly simple situation as an example. Let 
the medium be horizontally stratified and nonmagnetic so that n = n(z) 
and p is a constant. For a vertically incident ray, the ray path will remain 
vertical. Therefore everything varies as a function of only z and hence 
ds = dz. Equation (5.3.11) now reduces to 

equation 

(e  ' e*)B = (e * e*)9[n(A)/n(B)1 (5.3.14) 

Therefore, we conclude from (5.3.14) that in a horizontally stratified 
medium, at any point along the vertically incident ray, the magnitude of the 
vector e is proportional to the inverse square root of the refractive index 
at  that point, i.e., 

I e I = C l f i  (5.3.15) 

where C is a constant of proportionality. 
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For this particular case, the eikonal equation also yields a simple solution 

where z is an arbitrary point along the path. Combining (5.3.15) and (5.3.16), 
we see that under the geometrical optics approximation, the electric field 
can be written as 

E(z) = [ E , / ( ~ ( Z ) ) ~ ~ ~ ]  exp[ -jk,  1: n(6) d l ]  (5.3.17) 

where E, is a constant vector. In later sections, we will see that (5.3.17) 
is also called the WKB solution of the wave equation. 

The discussion of this example can also be extended to the case of an 
obliquely incident wave; i.e., the wave propagates in directions other than 
vertical. 

We note that so far the computations are made by neglecting terms of 
the order (I/k,) and higher. An asymptotic series in ascending powers of 
(l/k,) can be obtained by considering the problem in more detail [see, for 
example, Kline and Kay (1965)l. 

Now, let us say a few words about the range of validity of the geometrical 
optics. Since the approximation is made by dropping the right-hand sides 
of (5.2.5)-(5.2.8), the method is valid only when the variations of the 
inhomogeneities of the medium and the changes in e and h are small in one 
wavelength. More exact conditions can be obtained by deriving higher 
order approximations to the wave equation. 

5.4 Fermat’s Principle 

The fundamental equations in geometric optics can also be derived from 
the Fermat’s principle of classical mechanics. For our purpose, the principle 
can be stated in the following manner. 

The time t it takes for the ray to travel from a point A to a point B can be 
expressed as 

t = J ds/(c/n) (5.4.1) 
B 

A 

where integration is along a certain ray path. 

the optical path length L. 
The distance a wave will travel in free space in this time period is called 

L = c t = J  n d s  (5.4.2) 
B 

A 
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Fermat's principle for our problem can be now stated as follows: When 
a ray travels from a point A to a point B, it travels along a path for which 
the optical path length L has a stationary value. 

Mathematically, this principle can be stated as 

6 j: n ds = 0 (5.4.3) 

where the symbol 6 represents the variation of the integral. 
If we express the path C from A to B by a set of parametric equations 

x = x(u), y = y(u),  z = z(u) (5.4.4) 

where u is some parameter along the path, then the element of the arc 
length along the path is given by 

d~ = [(dx)' + (dy)' + ( d ~ ) ~ ] " ~  

= [(dX/du)' + (dy/du)' + ( d ~ / d u ) ~ ] l ' / ~  du 

= ( i z  + j 2  + i 2 ) ' / 2  du (5.4.5) 

where an overdot is used to denote differentiation with respect to u. In 
terms of the parameter u, (5.4.3) becomes 

(5.4.6) 

From calculus of variation [see, for example, Courant and Hilbert (1953)], 
the Euler equations for the variation 

6 1: F(x ,  y ,  z, i, j ,  z )  du = 0 (5.4.7) 

can be derived in the following way. Let us suppose that there is some 
neighboring curve C' connecting A and B which is also defined by the same 
parameter u. The variation in F(r, i) in passing from a point P on the path 
C to a corresponding point P' on C' can be written as 

6 F = V F .  6 r + V i F -  6i  (5.4.8) 

where 
vi = (a/ai)a + (a/aj)j3 + (a/ai) f  
6r = 6 x 2  + Syj3 + 6 z I  

6i  = 6R2 + d j j 3  + 6.22 (5.4.9) 
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The variation in (5.4.7) can be now written as 

where d i  = d(dr/du) = (d/du)(dr) has been used. 
The second integral in (5.4.10) can be integrated by parts to yield 

Remember that Sr is the variation of r from C to C'. Since the two 
curves have common fixed end points A and B, the variations dr must 
vanish. Therefore the boundary term in (5.4.1 1) is zero and (5.4.10) becomes 

(5.4.12) 6 SP, F(r, i) du = [ V F -  (d/du)(~i~)] dr du 

Substituting (5.4.12) into (5.4.7), we have 

Since dr is any arbitrary variation, (5.4.13) can be satisfied only when 
the intergrand vanishes or 

(d/dU)(VfF) - V F  = 0 (5.4.14) 

This is the Euler equation for the variation integral (5.4.7). 

n(r) I i 1 ,  and the corresponding Euler equation now becomes 
For the present case, from (5.4.6), we have F = n(r)(iz + j 2  + z2)"2 = 

(5.4.15) 

If we choose du = ds such that (i2 + j 2  + i2)1'2 = I i I = 1, (5.3.9) 

(d/ds)(n drlds) = Vn (5.4.16) 
becomes 
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This is exactly the same equation for rays (5.2.15) derived from the 
eikonal equation in Section 2. Thus we see that the geometrical optics can 
be formulated from the Fermat’s principle. I n  fact, for anisotropic media, 
it is more convenient to discuss the fundamentals of the geometrical optics 
starting from the Fermat’s principle rather than from Maxwell’s equations. 
The next section is devoted to this problem. 

5.5 Ray Equations in Anisotropic Media 

In Chapter 2 we have discussed the refractive indices for different modes 
in a homogeneous, anisotropic medium. In general, for a spatially nondisper- 
sive medium, the refractive index is a function of the direction of the wave 
normal. As a consequence, the ray and wave normal have different directions 
in general. The angle between the two directions, a, is given by (2.12.5). 
Just as in the case for the isotropic medium, we can extend the definition 
of the refractive index to the inhomogeneous, anisotropic medium. The 
refractive index n will now be a function of position. At each point, the 
wave normal direction is orthogonal to the wave front passing through 
that point and the ray direction is the direction of energy flow at that point. 
We wish to find, for a particular mode, the trajectory of a ray in such a 
medium. 

Let the direction of the wave normal be 3 = (sz, sy, sz) and that of the 
ray be i = ( t z ,  f ,  fz). Both 3 and f are unit vectors. We define two vectors: 

a = n3 

5 = iln cos a 

(5.5.1 a)  

(5.5.1 b) 

Equation (5.5.lb) can also be written as 

5 = i/n, (5.5.1~) 

where n, = n cos a is the ray refractive index. The ray velocity is then 
defined as v, = c/n,. Following the discussion in Section 5.3, the Fermat’s 
principle for the ray in an anisotropic medium is just 

6 1; n, ds = 0 (5.4.2) 

Before we discuss this principle any further, let us consider first some 
important relations between the wave normals and rays. 
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At any point P(r), n(r) is given. If we trace the endpoint of the vector a 
for all possible directions of 3, we obtain a refractive index surface about 
P (Section 2.12). Since a depends on the direction 3 in an anisotropic me- 
dium, the surface in general is not spherical. In Fig. 5.5-1, we draw a portion 
of the cross section of-gis s 9 c e  in the (s,s,)-plane about P(r). 

Fig. 5.5-1. Construction of ray surface from refractive index surface. 

From the discussion in Section 2.12, we know that for each wave normal 
direction 3, the corresponding ray direction is normal to the refractive index 
surface at  that point. For example, in Fig. 5.5-1 for the point P, on the 
refractive index surface, we can obtain the corresponding ray direction by 
taking the normal to the refractive index surface at PI. If from the point P, 
we draw a perpendicular line to the plane which is tangent to the refractive 
index surface at  P,, we obtain the line PP,' which is in the ray direction. 
The angle between PP, and PP,' is a by our definition. If we now take 
PP, = I/n cos a, we obtain the vector 5 = PP,f. Corresponding to every 
point on the refractive index surface, we can construct the vector 5 in this 
manner. The end points of 5 then trace out a new surface. This is known as 
the ray surface. In Fig. 5.5-1, a portion of the ray surface is also drawn. 
Therefore at  each point P(r), we can construct the refractive index surface 
and the ray surface. 

We note that the two vectors a and 5 are reciprocal vectors since 

a . 5 = 3 .  i / cosa=  1 (5.5.3) 

Therefore, the refractive index surface and ray surface are called reciprocal 
surfaces. 

At any point P(r), let us now define the ray surface by the relation 

F(r, 5 )  = I 6 I 4 = 1 (5.5.4) 
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This is the right surface, since it implies that the magnitude of the vector 5 
is equal to l / ncosa  which is (5.5.lc), the ray surface. 

Similarly we define the refractive index surface by 

G(r, a) = I a I/n = 1 (5.5.5) 

The reciprocal properties of these two surfaces will be shown in the 
following. 

The ray refractive index n, is a function of position as well as the direction 
of the ray. Since we are interested in spatially nondispersive media, n, 
depends only on the direction of 5 but not on its magnitude. Similarly, the 
refractive index n is a function of position and direction of the wave normal 
3 but not the magnitude of a. We have 

(5.5.6) 

Mathematically, any function satisfying the relation (5.5.6) is a homo- 
geneous function of degree zero. The function F(r, E), however, is a homo- 
geneous function of degree one in the variable c since from (5.5.4) and 
(5.5.6), we have 

m, 3;4) = w, 5) (5.5.7) 

From the theory of homogeneous functions (Goursat and Hedrick, 
1959), we have the following theorem: For a function $(x) such that 

$(W = A"$(x) (5.5.8) 

then the following relation holds : 

Applying this result to the fraction F(r, c) ,  we have 

Similarly, G(r, a) is a homogeneous function of degree one for the 
variable a. Therefore, we have 

G(r, a) = a * VaG(r, a) (5.5.11) 

Using the general theorem of homogeneous functions, it is possible to 
derive certain relations among the derivatives of the functions F and G 
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and the vectors cr and 5. Let us consider the refractive index surface G = 1 .  
Referring to Fig. 5.5-1, the normal to the tangent plane passing through 
P, on this surface is given by V,G(r, a) at P, . But since this is also the direc- 
tion of the ray, we can write 

5 = w m ,  a) (5.5.12) 

where 1, is a proportionality constant. Similarly, for the ray surface F = I ,  
we have 

= 12VcF(r7 5) (5.5.13) 

where 1, is also a proportionality constant. Since a and 5 are reciprocal 
vectors. we have 

(5.5.14) 

But since G and F are homogeneous functions, (5.5.10) and (5.5.1 1) may 
be applied. We can then determine the two constantsl,and 1, from (5.5.14): 

1,G = 1 or 1, = 1/G 

L,F = 1 or 1, = 1/F 

Therefore, we obtain the relations 

(5.5.15) 

(5.5.16) 

Equation (5.5.16) indicates the reciprocal property of the two surfaces 

From (5.5.16) and (5.5.l), it is easy to prove the following relations: 

(5.5.17) 

F(r, 5) = 1 and G(r, a) = 1. 

F(r, W ( r 7  5) = F(r, a)G(r, a) = 1 

which is an alternative way of expressing the reciprocal relations of the 
two surfaces F = 1 and G = 1. 

Up to this point, we have discussed the geometrical relationships between 
the wave normal vector and the ray as well as the reciprocal properties 
between the corresponding surfaces. Let us now go back to the Fermat’s 
principle to discuss the equations of the ray. The mathematical statement of 
the problem is 

S sI n, ds = 0 (5.5.18) 
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\ Fig. 5.5-2. Relation between the 
wave front, the wave normal, and the 
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We first introduce the time parameter t which is a function of the path 
length s. In Fig. 5.5-2, we see that in a time dt the wavefront AA' has ad- 
vanced a distance ds along the ray direction f and the ray now is at  P'. 
The corresponding distance along the wave normal direction 3 is dl=ds cos a. 
But dl = up dt, where up is the phase velocity up = c/n. Therefore 

ds = dl/cos a = c dt/n cos a = (c/n,) dt (5.5.19) 

From (5.5.k) we have 
ds = c 15 I dt (5.5.20) 

Substituting (5.5.20) into (5.5.18), we obtain 

6 J: n, I 5 I dt = S F(r, 5) dt = 0 (5.5.21) s:: 
where t = ct. 

The corresponding Euler's equation is 

(d/dt)(ViF) - VF = 0 (5.5.22) 

where 
. dr dr ds r = - = - - -  d t  ds d t  - i lSI  = c  (5.5.23) 

Equation (5.5.22) is the ray equation in an anisotropic medium. From 
the definition of F, we see that the ray refractive index n, and the direction 
of the ray f are involved in this form of the ray equation. I t  can be put 
into a more convenient form for computation. From (5.5.16) and (5.5.17), 
we have 

ViF = VtF = Fa = a/G 

Therefore (5.5.22) can be written as 

(d/dt.)(a/G) - L'(l/G) = 0 (5.5.24) 
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The first term can be expanded: 

d a  1 d a  a d G  
d t  G G dt G2 d t  

- - - - - - - - - 

Since G = 1 along the ray, the total derivative dG/dt must then vanish. 
However the partial derivatives with respect to r, 5, and a are not neces- 
sarily zero. Therefore (5.5.24) reduces to 

da/dt = -VG(r, a) (5.5.25) 

Next, combining (5.5.16) and (5.5.23), we have 

dr/dt = VoG(r, a) (5.5.26) 

Note that the pair of equations (5.5.25) and (5.5.26) are equivalent to 
those given by (2.12.24) derived by using a kinematic approach. They are 
two first-order equations which describe the trajectory of the ray. They 
have the form of Hamilton’s canonical equations in mechanics with a 
playing the role of the generalized momenta. The integration of this set 
of equations determines the ray path in the parametric form r = r(t). 

While (5.5.22) is equivalent to the sets (5.5.25) and (5.5.26), the latter set 
is much more convenient for numerical computation, since only the phase 
refractive index n(r, a) is involved, while F depends on the ray refractive 
index n,. 

For an isotropic medium such that n = n, and is independent of a or 5, 
(5.5.22) becomes 

(d/dt)@/l5 1 )  - I5 I V n  = 0 

But 511 5 I = f = dr/ds and d t  = c dt = ds/l 5 I. Therefore we obtain 

(d/ds)(n dr/ds) = V n  

which is exactly the same as (5.4.16). 
The Hamilton’s equations for the ray, (5.5.25) and (5.5.26), were derived 

for Cartesian coordinates. I t  is possible, starting from (5.5.21), to derive 
the ray equations for any generalized coordinate system (Haselegrove, 
1954). For example, in a spherical coordinate system a point on the ray is 
given by P(r, 8, y ) .  The direction of the wave normal at the point P can be 
expressed by its components in the local spherical coordinate system as 
a(ur, u,, uo) where the magnitude of a is again n given by (5.5.la). The 
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Hamilton’s equations for rays in the spherical coordinates can be written 
as (Haselegrove, 1957) 

d6 - 1 ‘  ( a e - n - )  an 

d t  rn2 due 

-- da, 1 an d6 4 
a+ dt -- - + u6 - + sin 6 

d t  n dr dt 

(5.5.27) 

where the relation G = I u I/n = 1 has been used. 

on high speed computers by various authors. 
This set of equations has been used to trace the rays in the ionosphere 

5.6 Effect of Boundary on the Ray and Generalized Snell’s Law 

Up to this point, we have assumed that the ray propagates in a continuous 
medium without any boundary. It is of interest to see what will happen to 
the rays when they cross the sharp boundary between two different media. 
From elementary optics, we known that reflection and refraction will occur 
when rays meet the sharp boundary. Our problem now is to determine the 
ray path when reflection or refraction occurs in general anisotropic media. 
The answer can be obtained from the Fermat’s principle. 

Suppose now two different anisotropic media M I  and M ,  are separated 
by a boundary surface S. We want to find the ray path for a ray which starts 
from a point A in MI and ends a t  a point B in M,. The integral in the 
Fermat’s principle of (5.5.2) can be written in a slightly different form: 

B 

A 
n, ds = a . dr, with G(r, a) = 1 (5.6.1) 

The direction u at any point r on the ray must be found from the constrain- 
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ing condition G(r, a) = 1. We note that G(r, a) = I 0 I/n(r, a) is discon- 
tinuous at the boundary S since n is different for the two media. 

The variation of the integral in (5.6.1) can be expressed as 

6 1:: a dr = (60 - dr + a 6 dr) (5.6.2) J:: 
The second integral in (5.6.2) may be integrated by parts to yield 

B 
= a s &  IP-' + a 6r I B  - r-' 6r * da - 1 6r da (5.6.3) 

where P is a point on the surface S and E is a small parameter to be set 
equal to zero in the limit. The reason that the integral is divided into parts 
is that C(r, a) is different for the two media. At the end points A and B, 
6r vanishes. Therefore, combining (5.6.2) and (5.6.3), we obtain 

A Pfe A P+e 

6 J I a . d r = - a . s r  IP+' + JP-' (60 dr - 6r . da) 
P--E A 

B 

P f e  
+ 1 (6a dr - 6r da)  (5.6.4) 

Taking the limit E + O  in (5.6.4) and substituting it into (5.6.1) after 
the Fermat's principle is applied, we obtain 

-(az - a,) Sr + (6a - dr - 6 r .  do)  = 0 (5.6.5) 

6G = 176 . 6r + VoG - 6a = 0 (5.6.6) 

where a2 and aI correspond to the wave normal directions at the boundary 
in M ,  and M ,  , respectively, and (5.6.6) is obtained by taking the variation 
of the equation G = 1. 

Equation (5.6.5) must hold for all variations 6r with 6a given by (5.6.6). 
If we now define the so-called natural boundary condition 

(aZ - al) - 6r = 0 (5.6.7) 

then (5.6.5) and (5.6.6) yield 

da/dz = -VG(r, a), dr/dt = V0G(r, a) (5.6.8) 
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in both Ml and M , .  Thus the rays in M ,  and M ,  satisfy the Hamilton’s 
equations separately. At the boundary, the direction of the ray is determined 
by the natural boundary condition. Since E --t 0, Sr is an arbitrary variation 
of r on the boundary surface S, (5.6.7) states that the vector a, - a1 is in 
the direction of the normal to the surface S.  If we denote this normal direc- 
tion by the unit vector A, then (5.6.7) may be expressed as 

a, - aI = afi (5.6.9) 

where a is a proportionality constant. 
From (5.6.9) it follows that the components of u tangential to the surface 

S are continuous across the boundary. 
For a given incident ray in medium one, it is easy to get the vector a, 

from (5.6.4). Then using the Hamilton equation (drldt) = VDGz for the 
second medium we can find drldt. The unit vector along drldt is the ray 
direction t^ for the refracted ray. To obtain the reflected ray, the function 
GI for the first medium should be used instead of G, . Therefore we can find 
both the refracted and reflected rays at  the boundary surface. 

This method of finding the refracted and reflected rays is best carried 
out graphically. For a point P on the boundary surface S, let us draw two 
refractive index surfaces G, = 1 and G,  = 1 as shown in Fig. 5.6-1. The 

Fig. 5.6-1. Graphical construction of re- 
flected and refracted rays at a boundary 
surface. 

direction of the normal to S, A, is also drawn schematically in the same 
figure. Construct from P the vector a1 for the incident ray. The endpoint 

of u1 must lie on the surface G, = 1 by definition. Therefore we have PA, = 

a, in Fig. 5.6-1. The vector u, is found by constructing a line through A ,  
parallel to A and finding its intersection with the surface G, = 1, since the 
endpoint a, must lie on G, = 1. In the figure, we see that there is no inter- 
section with C, = 1, hence there is no refraction for this case. Instead, 

reflection can occur since the line intersects G, = 1 at  A , .  The vector PA2 = 

a, is the direction of the wave front normal for the reflected ray. The 

--f 

d 
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_3 

vector A,A, is equal to ari. To insure that reflection does occur, it must be 
shown that the reflected ray actually does emerge back in medium one. If 
this is the case, there is total reflection, since no refraction occurs. Other- 
wise neither reflection nor refraction occurs. 

For the other case shown in Fig. 5.6-1, the incident ray has the vector 

0, = PB, .  The line from B, which is parallel to ri intersects G, = 1 at C, 
and C,  and G, = 1 at B,. Hence we have two possible refracted rays and 
one reflected ray. The three possibilities must be considered separately to 
see if the refracted rays emerge in medium two and if the reflected ray 
emerges in medium one. We note that the ray direction can be obtained from 
the figure very easily. For example at  point A , ,  the ray direction is the direc- 
tion of the normal to the surface G = 1 at A , .  

The above discussion on the ray equation and the boundary condition 
between two media can be easily generalized to the cases where more than 
two media are present. 

In many practical cases where the medium is stratified, instead of solving 
the ray equation, it is possible to divide the medium into many layers and 
apply the graphical method described above to trace the ray in each layer. 
Poeverlein (1948) used the technique to trace the rays in the ionosphere. 
In the following, we shall discuss a simple example to indicate the procedure 
of this technique (Forsgren, 1951). 

Let us consider the earth's ionosphere. The electron density is assumed to 
be a function of height only. The refractive indices are therefore functions 
of height also. In Fig. 5.6-2, cross sections of the refractive index surfaces 
for the ordinary mode are drawn for different values of X, each representing 
the index surface at  certain level of the ionosphere. The inclination of the 
external magnetic field is also shown. The outmost curve is a circle of 
unit radius representing the free space below the ionosphere. A vertical line 

AA' is drawn a distance sin Bi away from the vertical axis where Bi is the 
incidence angle for a ray incident on the ionosphere from below. The direc- 

tion P A  is the direction of the wave normal as well as the direction of the 
ray since the medium is the free space at this point. At the point B, the 

magnitude I PBI of the vector PB is equal to the refractive index n at a 
certain level in the ionosphere. From the figure, we have 

d 

+ 

---+ 

* * 

d 

1 PB I sin 0: PBA' = sin Bi 

This is just Snell's law. Therefore, the direction of the wave normal at the 

level corresponding to point B is PB. Similarly we have the directions of the 
4 
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Direction of magnetic field + 

. 

f 
Fig. 5.6-2. Ray tracing in a stratified rnagnetoplasrna. [After Forsgren (1961).] 

wave normal at levels corresponding to points C, D, etc. At these points, 
the normals to the respective surfaces of refractive index are shown by small 
arrows. From our earlier discussion, we note that these are the directions 
of the rays at the respective levels. We see that energy propagates upward 
until the ray reaches the level corresponding to the point E at which the 
cross section of the refractive index surface is tangential to  the vertical 
line AA'.  At this point, the normal to the surface is in  the horizontal direc- 
tion. Beyond this level, the ray directions point downward as shown in the 
figure. The level corresponding to the point E is called the reflection level. 
Energy begins to be reflected downward at this level. Thus we have seen the 
graphical way of tracing the ray in an anisotropic medium. Better approxi- 
mations can be obtained if more refractive index surfaces are used, corre- 
sponding to finer division of the stratified medium. 

The above discussion is also closely related to the generalized Snell's 
law. If we substitute G = I a [ / n  into (5.5.24), we obtain 

(5.6.10) 
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If we define a vector ‘1 which is parallel to Vn, then (5.6.10) yields 

This is the generalized differential form of Snell’s law. In particular, if the 
medium is stratified horizontally so that n does not depend on x or y co- 
ordinates, then ‘1 is in the vertical direction and (5.6.10) reduces to the 
expression 

d - (n sin 8 )  = 0 
dt 

(5.6.1 1) 

where 8 is the angle the wave normal makes with the z-axis. Equation (5.6.1 1)  
states that along the ray path, the quantity n sin 8 at any point is a constant. 
This indeed is the ordinary form of Snell’s law. 

Thus far we have discussed the propagation of a monochromatic ray in 
an anisotropic medium. Since in general the medium is frequency dispersive, 
it is of interest to consider the propagation of a pulsed signal in the medium. 
From (2.12.6), the magnitude of the group velocity is given by 

vg  = c/[a(nw)/aw] cos a (5.6.12) 

The time it takes for the pulse to travel along the ray path from A to B 
is equal to 

u 

A 
t = J ds/v, (5.6.13) 

Now if we define a “group path” P‘ as the distance traveled by the pulse 
in free space in the time period f, we have 

P‘ = ct = cos a(nw)/aw ds (5.6.14) 11: 
But 

a(nw)/dw = n + w(an/ilw) = n + f(an/af) (5.6.15) 

Therefore we can define a “group index of refraction” n’ by 

n’ = n + f(an/af) (5.6.16) 

and (5.6.14) becomes 
B 

A 
PI = j n’ cos a ds (5.6.17) 
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But from (5.5.19), ds = (c/n cos a) dt. Thus (5.6.17) becomes 

P‘ = c (n‘ln) dt = c [l + (f/n)(an/af )] dt J: J: 
Or, putting it in the form of a differential equation, we have 

dP‘ 
dt 

(5.6.18) 

(5.6.19) 

The group path is a quantity which is relatively easy to measure in many 
experimental situations. It plays an important role in ionosphere studies 
since a knowledge of variations of the group path yields a great amount 
of information concerning the medium in which the ray propagates (see 
Sections 5.15 and 5.16). 

5.7 Reflection and Transmission of Waves at Sharp Boundaries 

In the previous sections we have discussed the geometric optics in a general 
inhomogeneous medium. The discussion is based on the approximation of a 
zero wavelength limit. This approximation breaks down in situations where 
the diffractional effects are no longer negligible, e.g., near a caustic. For 
these cases, one must go back to the exact wave equation. However, solu- 
tions of the exact wave equation for a general inhomogeneous medium 
are not obtainable in general. Only asymptotic solutions for short wave- 
length waves have been discussed as generalizations of geometric optics 
(Kline and Kay, 1965). Fortunately, in many natural situations in which 
wave propagation phenomena occur, the properties of the medium can be 
assumed to be constant throughout each plane perpendicular to certain 
fixed directions. This kind of media is called “stratified media.” The theory 
of wave propagation in stratified media has been well developed. Many 
situations in applied physics, such as optics of multilayers and underwater 
acoustics as well as ionospheric propagation, can be approximated by as- 
suming a stratification. In the remaining part of this chapter, we shall con- 
centrate on the study of the particular type of inhomogeneous media. 

The simplest kind of stratified medium is a system of two isotropic 
homogeneous media separated by a sharp plane boundary. Let us now 
consider wave propagation in such a system. Assuming the sharp boundary 
is at z = 0, the medium for z < 0 is characterized by and ,ul, the medium 
for z > 0 is characterized by c2 and ,uz (Fig. 5.7-1). 
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In a homogeneous, isotropic medium, it can be shown easily from the 
Maxwell equations that waves with two different polarizations propagate 
independently in the medium. One is called the horizontal polarized wave 
for which E, = E, = Hu = 0, and the other is called the vertical polarized 
wave for which H, = H, = Ev = 0 (Fig. 5.7-1). 

Let us first consider a horizontally polarized wave with unit amplitude in 
medium I incident upon medium TI with an incident angle Oi. Since the two 
media are homogeneous, the solutions of the wave equations (5.3.1) and 
(5.3.2) for the two media for horizontal polarization are easily obtained. 
They are 

Ev = E i  + E/  

= exp [--jk,,n,(x sin Oi + z cos OJ] 

+ Rl exp[-jk,yzl(x sin 8, + z cos O r ) ] ,  z < 0 (5.7.1) 

z > 0 (5.7.2) Eu = E,t = Tl exp[--jk,n,(x sin O t  + z cos O t ) ] ,  

H, = H: + H,‘ 

= (&l/pl)’/’[- cos 8 i E i  + cos 8,Evr], z < 0 (5.7.3) 

(5.7.4) H, = H,” = ( E ~ / , U , ) ’ ’ ~ [ -  cos 8tE,t], z > 0 

where n, = c ( ~ , p J ” ~  and n2 = c ( ~ , p ~ ) ’ / ~ ;  8, and Ot indicate the directions 
of the reflected and transmitted wave normals, respectively; and RL and Tl 
are the reflection and transmission coefficients, respectively. The subscript 
I indicates the horizontal polarization. 

At the boundary z = 0, the tangential components of the electric and 
magnetic fields are continuous for all values of x. This can be true only if 

n, sin Oi = n, sin 8, = n, sin 8, (5.7.5) 



248 5. Wave Propagation in Inhomogeneous Media 

Therefore 
e, = - ei 

and 
n, sin €Ji = n2 sin 8, (5.7.6) 

which is just the Snell's law. 
Next, matching the fields at  the boundary, we have 

1 + RL = Ti  

( & ~ ~ , ) 1 / 2  cos e, (1 - RJ = (&2/p2)1/2 cos 0, T~ (5.7.7) 

Solving for RL and T,, we obtain 

and 

(5.7.8) 

(5.7.9) 

For most cases, pL = p2 = pa, (5.7.8) and (5.7.9) can be written as 

n,  cos Oi - n, cos 8 ,  
n, cos Oi + n2 cos 0 ,  

2n, cos Bi 
n,  cos O i  + n2 cos 8,  

R, = (5.7. 

TL = (5.7. 

We note that R, = E,'/E,t given by (5.7.8) and Tl = E,"/E," given by 
(5.7.9) are referred to as the Fresnel formulas. 

Similarly, for vertical polarization, the Fresnel formulas can be obtained 
by matching the boundary condition at  z = 0 (see problem at the end of 
the chapter). We have 

Hyr - n2 cos Oi - n,  cos 0 ,  
H; n2 cos Oi + n,  cos 0, 

n,H,1 - 2n, cos Oi 
n2H7; 

R,, = - - 

TI1 = - - 
n, cos O i  + n,  cos 0, 

(5.7.12) 

(5.7.13) 

Note that the definitions for reflection and transmission coefficients for the 
vertically polarized wave are different from those for the horizontally po- 
larized wave. Also, we note that because of the boundary condition, there 
is no coupling between the two polarizations at the boundary. 

Suppose now that in the previous two media system, we let medium two 
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Fig. 5.7-2. Reflection at a sharp 
boundary between the free space and 

a magnetoplasma. I 
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be anisotropic. This situation occurs quite often in practice. From the 
discussion in Chapter 2, we know that in general in an anisotropic medium 
without spatial dispersion two characteristic modes can propagate. The 
polarization of these two modes is in general elliptical. Therefore, a linearly 
polarized incident wave may become elliptically polarized after reflection 
in order to satisfy the boundary conditions at  z = 0. Hence it is convenient 
to define four coefficients, IRL, LRl l ,  , ,R,, , IIRl to indicate the ratios of the 
various components of the reflected and incident electric fields. The first 
subscript denotes whether the incident electric vector is parallel (11) or 
perpendicular (I) to the plane of incidence, and the second subscript refers 
in the same way to the reflected electric vector. In exactly the same manner, 
we can define four transmission coefficients IT,, LT,, , IITII, and llTL. 

As a sample illustration for dealing with the problem of reflection and 
transmission of waves of this nature, let us consider a system where medium 
one is the free space and medium two is a magnetoplasma, with the external 
magnetic field perpendicular to the boundary surface as shown in Fig. 5.7-2. 

A linearly polarized wave in the x-direction in the free space is incident 
normally on the magnetoplasma from below. In the magnetoplasma, in 
general, the refracted wave will consist of two waves corresponding to the 
two characteristic modes in the medium. From (4.14.14), the polarization 
for the two modes are - l j ,  respectively. Therefore, just above z = 0, the 
field components may be written as 

(5.7.14) 
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(5.7.15) 

E,, and EZb are, respectively, the x-components of the two modes. 
Just below z = 0, the field components are 

E, = ( 1  + , , R , , ) E ~ )  

(5.7.16) 

H,  = ( E O / P O ) ~ ’ * ( ~  - i iR i i )~P  

where Eg’ is the incident wave and , ,R,, , , ,R, are the two reflection coeffi- 
cients. 

Matching the four field components at z = 0, we obtain four equations 
for the four unknowns E,,, Ezb, , ,R,, , and IIRl in terms of Eg’ and n,, nb. 
Solving them, we obtain 

E P  E 2 )  
1 + n, 
1 l - n a  1 - n b  1 

Ezb = ~ 

1 + nb 
E,, =-, 

1 + na 
“R” = 2 [ + -I7 =(-- ~ 

1 + nb 

Thus we see the splitting of the incident wave E:) into the two charac- 
teristic modes E, and Eb of the magnetoplasma at  the boundary. Also, the 
reflected wave consists of two polarizations, one , ,R,, E$) in the x-direction 
and one ,R,E$) in the y-direction. The resultant reflected wave mode is 
in general elliptically polarized. 

More general cases may be treated in the similar manner and results have 
been given by Budden (1961). 

5.8 Wave Propagation in Stratified Media-Isotropic Case 

We now turn to the more general case of stratified media, where the 
properties of the medium vary smoothly as functions of z. Let the medium 
be characterized by the permittivity and permeability 

E = E(Z) ,  p = p(z) (5.8.1) 



5.8 Wave Propagation in Stratified Media-Isotropic Case 251 

Consider now a plane, time-harmonic wave propagating through such a 
medium. Since the coefficients in the Maxwell's equations are functions of 
z only, the fields can be expressed as 

(5.8.2) 

respectively. Furthermore, without loss of generality, we can rotate the 
coordinate system about z-axis such that the wave normal vector is in the 
xz-plane, i.e., k, = 0. Substituting (5.8.2) into Maxwell equations, we have 

(a) dE,/dz = jopH, (d) -dH,/dz = jwsE, 

(b) dE,/dz + jk,E, = -jwpH, (e) dH,/dz + jk,H, = jwsE, (5.8.3) 

(c) jk$, = jwpff, (f) -jk,H, = jwsE, 

where the unknown fields E and H are functions of z only. As in the case 
of homogeneous medium, these equations can also be separated into two 
independent sets. One set involves (a), (c), and (e) of (5.8.3) for E,, H,, 
and H,  and is called the horizontally polarized wave (or transverse electric 
wave). The other set involves (b), (d), and (f) of (5.8.3) for E,, E,, and H, 
and is called the vertically polarized wave (or transverse magnetic wave). 
Since Maxwell equations remain unchanged when E and H and simultane- 
ously E and -p are interchanged, it is sufficient to study the horizontally 
polarized wave in detail in our general discussion. Any theorem relating 
to vertically polarized waves may be deduced from the corresponding 
result for the horizontally polarized wave by making the above-mentioned 
change. 

From (a), (c), and (e) of (5.8.3), we obtain, for the horizontally polarized 
wave, the following equations: 

dH,/dz = jw(s - kx2/w2p)E, (5.8.4a) 

dE,/dz = jwpH, (5.8.4b) 

(5.8.4~) k,E, - wpHZ = 0 

We note here the close resemblance of (5.8.4a,b) to the transmission line 
equations. From (5.8.4) we can derive equations for H, and E,: 

(5.8.5a) d2E, d(1np) dE, 
dzz dz dz 

+ (k,W - k,2)E, = 0 
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and 

+ (kO2n2 - k,”)Hz = 0 (5.8.5b) 
d2Hz d[ln(E - kz2/w2p)] dH, 
dz dz dz 

-_ 

where k, = w/c and n = C ( E ~ ) ” ~ .  

vertically polarized wave can be obtained easily. 
According to symmetry of the Maxwell equations, the equations for the 

dE,/dz = - jw(p - k,2/w2E)Hu (5.8.6a) 

dH,/dz = - jwEx (5.8.6b) 

(5.8.6~) kzH, + WEE, = 0 

and 

--___- d2Hu d(ln El dHv + (ko2n2 - kZ2)H, = 0 (5.8.7a) 
dz2 dz dz 

d2E, d[ln(,u - k,”/w%)] dE, -_ - + (ko2n2 - kZ2)Ex = 0 (5.8.7b) 
dz2 dz dz 

Equations (5.8.4)-(5.8.7) form the basis of our discussion in the next 
few sections on wave propagation in stratified media. 

5.9 The WKB Solution 

For a given E(Z) and p(z), (5.8.5) and (5.8.7) can be transformed into the 

(5.9.1) 

standard form 

d2u/dz2 + h2q2(z)u = 0 

where u is related to the components of the unknown fields E or H, q(z )  
is related to  the refractive index of the stratified medium, and h2 is related 
to kO2, the free space wave number. 

In general, the second-order ordinary differential equation (5.9.1) does 
not have closed form solutions in terms of known functions. Although 
series solutions can be obtained and numerical computation of the solution 
can be made, usually the slow convergence of the series prohibits these 
approaches. For the case where the parameter h is a large number, approxi- 
mation techniques have been developed to treat this equation in order to 
yield simple solutions. One of the techniques is the W K B  method which 
we are going to  discuss in some detail in  the following. But before we go 
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into the discussion of solving (5.9.1) analytically, let us consider a simple 
example which will reveal certain interesting aspects of the WKB technique. 
Let us assume that a stratified medium characterized by n(z) occupies the 
half-space z > 0. A horizontally polarized wave is incident normally from 
the free space z < 0. Assuming n(z) = 1 a t  z = 0, we wish to find the 
transmitted wave in the stratified region z > 0. Let us first replace the strati- 
fied region by a set of homogeneous layers 0 < z < z l ,  z, < z < z2,  
z2 < z < z3,  . . . , etc., with the successive refractive indices n , ,  n 2 ,  n 3 ,  . . . 
as shown in Fig. 5.9-1. This discrete medium can be made to approach the 

I 

Fig. 5.9-1. Waves in multilayer medium. 

continuous one by making the layers infinitely thin. For z < 0, the incident 
wave is given by 

~ , i  = E e-jkoz (5.9.2) 

The reflected and transmitted waves at  the boundary z = 0 are given, 
respectively, by 

and 
2n0 E e-jk,n,z E," = TI = 

no + n1 O 

(5.9.3) 

(5.9.4) 

where the reflection coefficient (5.7.10) and the transmission coefficient 
(5.7.1 1) have been used. 
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The wave T, propagates upward to z = z,. At this boundary, it will be 
split into a reflected wave R, and a transmitted wave T,. These waves are 
proportional to ejkonlz and e-jkonrz, respectively. This procedure is repeated 
at each boundary. At any arbitrary level z = z,, we have the relation 

The sequence of the transmitted waves TI, T, , T3,  . . . may be termed the 
principal wave. They are the upward traveling waves due to the transmission 
at each level of the primary incident wave. There are other contributions 
to the overall up-going wave. For example, in layer dz, , when R2 reaches 
z = 0 it will be split into reflected and transmitted waves. The reflected wave 
of R2 is actually up-going and contributes to the total up-going wave in 
layer dz,. As can be seen from Fig. 5.9-1, this wave is produced after two 
successive reflections. Similiar argument shows that there are contributions 
to the up-going wave from waves that have undergone multiple reflections. 
At this point, however, let us just concentrate on the principal wave. From 
(5.9.5) and the fact that T, is proportional to e-ikon8z in the sth layer, it is 
easy to show that just below the level z = z, the principal wave has the form 

This expression can be put in the following form 

where An, = n,,, - n, has been used. 
Passing to the limit of dz, --f 0, the second sum in the exponential is 

transformed into the integral -jko J-2 n(s) ds and the first sum is trans- 
formed to 

8=Zn 

dn,/2n, = - 4 In n(zn)/n(0) (5.9.8) 
- Lo 

Thus, by taking the limit of dz, -+ 0, the principal wave T a t  z is given by 

T(z) = Eo exp - 4 ln{n(z)/n(O)} -jk, j: n(s) ds} { 
= E,,[n,/n(~)]'/~ exp[ -jk, j: n(s) ds] (5.9.9) 
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Comparing (5.9.9) with (5.3.17), we see that the principal wave is identical 
to the wave we obtained by applying the geometrical optics. This is called the 
WKB solution of the wave propagation problem we posed in Fig. 5.9-1. 
From the discussion above, we see that physically the WKB solution can be 
interpreted as the principal wave which does not include any multiple 
reflected waves. By taking into account the contributions from the multiple 
reflections, higher order terms in the approximate solution can be obtained 
(Bremmer, 1951). Although our discussion here is for normally incident 
horizontally polarized waves only, similar investigation can be carried 
out for waves propagating in arbitrary directions and also for vertically 
polarized waves. 

5.10 The Matrix Method 

Having in mind the physical picture of the WKB approximation discussed 
in the previous section, let us now turn to the analytic aspects of the tech- 
nique. Historically, the mathematical technique known as the WKB method 
can be traced back to the nineteenth century [see Froman and Froman 
(1965) for a discussion on the historical development of the WKB method]. 
Modern developments of the theory started in 1915 (Gans, 1915; Jeffreys, 
1923; Kramers, 1926). In 1926, Brillouin, Wentzel, and Kramers introduced 
the method in quantum mechanics to treat Schrodinger’s wave equation. 
Since then, the name WKB method has been adopted by most authors 
(sometimes the name JWKB is also used to acknowledge the contribution 
by Jeffreys). Extensions of the theory have been developed in many respects 
and are closely related to the higher order geometrical optics. There are 
several different approaches in discussing this technique, each having its 
specific advantage. In what follows we shall adopt the so-called matrix 
method in our discussion. 

The second-order differential equation (5.9.1) can be put into a system 
of two simultaneous first-order differential equations by defining a column 
vector x 

Equation (5.9.1) can be written as 

(5.10.1) 

dxldz = A(z) x (5.10.2) 
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where the matrix A is given by 

[ -h2q2(z) O 0 ' I  A(z) = (5.10.3) 

We now change the dependent variable x by the transformation 

x = *(z)  y (5.10.4) 

where y is the new dependent vector and Q ( z )  is the transformation matrix 
yet to be determined. Substituting (5.10.4) into (5.10.2), we have 

Multiplying through by o-l, provided 0 is nonsingular, we obtain 

The idea here is to introduce a transform 0 such that the matrix 

D = a-1 A .  (5.10.6) 

becomes diagonal. If this is achieved, (5.10.5) becomes two uncoupled 
equations when the second term on the right-hand side is neglected. Solu- 
tions can then be obtained by direct integration. From matrix theory, we 
know that the diagonalization of the matrix A is achieved by choosing 
such that the columns in the matrix are the eigenvectors of the eigenvalue 
problem 

A . v = I v  (5.10.7) 

For A given by (5.10.3), the eigenvalues are obtained easily to  be 

I1 = -jhq , 1, = j h q  (5.10.8) 

The corresponding eigenvectors are 

Therefore the transform matrix has the form 

(5.10.9) 

(5.10.10) 
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Substituting (5.10.10) into (5.10.6), we obtain the diagonal matrix D: 

where 

(5.10.11) 

(5.10.12) 

has been used. 
The transformed equation (5.10.5) now has the form 

(5.10.13) 

Equation (5.10.13) is still a set of two coupled equations. But if under 
the condition that the off-diagonal terms on the right-hand side of (5.10.13) 
can be neglected (the exact condition will be shown in the following), 
then we obtain two uncoupled equations for y1 and y,: 

(5.10.14) 

The solutions can be obtained immediately by integration : 

1 - - 14 -ifze-ihp qds (5.10.15a) 

y, = C2q-ifzejhPqds (5.10.1 5b) 

where c1 and c, are constants and the lower limit of the integration depends 
on the phase reference level that one chooses. y 1  and y ,  may be termed the 
two independent characteristic waves in the stratified medium. Comparing 
(5.10.15a) with (5.9.9), we note that they are identical if ql/z  and h are set 
equal to n and k ,  , respectively, and the phase reference level in (5.10.15) is 
chosen at z = 0. Thus y ,  represents the principal wave propagating in the 
positive z-direction. Similarly, y ,  represents the principal wave propagating 
in the direction of decreasing z. Substituting (5.10.15) into (5.10.4), using 
(5.10.10), we obtain the general solution for the original equation (5.9.1) 
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y ,  and y ,  are the WKB solutions of (5.9.1). If we form the Wronskian of 
y, and y,, we have 

y ,  dy,/dz - y ,  dy,/dz = 2ihc,c, (5.10.17) 

provided the same lower limit is chosen for the integrals in  both y ,  and y,. 
Therefore, the WKB solutions are independent solutions for the equation 
(5.9.1). 

To see the exact condition for the validity of the WKB solution, let US 
assume that c, = 1 and c, = 0 in (5.10.15). This is legitimate since in the 
framework of WKB approximation y ,  and y ,  are uncoupled. Differentiating 
u(z) with respect to  z twice, we have 

Substituting this and (5.10.16) into (5.9.1), we have 

This equation is approximately satisfied only if 

which shows that h must be large and q must not be too close to  zero. 
Thus (5.10.19) gives the necessary condition for the WKB solution to  be 
valid. Only when (5.10.19) is satisfied, can we write the general solution for 
(5.9.1) as the sum of the two independent solutions y ,  and y,. The error 
that one makes in using the WKB solution can be roughly estimated from 
(5.10.19). 

From (5.10.13), an iterative procedure can be used to compute the higher 
order terms in the solution. Keeping all the terms in (5.10.13), we have 

dv, . / _. 1 dd\ 1 du + /hq+-'Y - - - y ,  
(c i n  71)) 

dz \ 2q d z )  - 2q dz 

t \--/nq + - A Y ,  = - -Y1 
29 d z )  2q dz 

The equations can be put into dimensionless form by letting z' = hz. 
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We have 
dq 
dz‘ y2 

dq 
dz’ y1  

(5.10.2 1 ) 

Let us now consider an example for which an up-going (increasing 2’) 
wave is incident vertically upon a stratified medium occupying the half- 
space z’ > 0 at z’ = 0. q is assumed to be continuous at z’ = 0 and q = 1 
for z < 0. This is the same problem we have studied in Section 5.9. The 
formal solutions for (5.10.21) can be obtained in a straightforward manner 
to yield 

where 

(5.10.23) 

The lower limit of integration in (5.10.22a) is obtained by using the con- 
dition that at  z‘ = 0, the up-going wave is the incident wave ylo. The lower 
limit of integration in (5.10.22b) is obtained by using the condition that as 
z r  --f 00 there is no reflected (down-coming) wave. In addition, since the 
incident wave is upgoing, there is no original down-coming wave. There- 
fore c2 in (5.10.23) must be zero. 

Equation (5.10.21) is now formally transformed into a set of coupled 
integral equations by substituting (5.10.23) into (5.10.22). We have 

e j f i ’ q d r  Yl(S) ds (5.10.24b) 

This set of integral equations can be used as the basis for an interative 
procedure to find a higher order solution for the problem. For 1 (l/q)dq/ds I 
< 1, the zeroth-order solution is yl,,(z’), up-going wave. There is no coupling 
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to the down-coming wave. It is the WKB solution or the principal wave 
discussed in the last section. The second-order solution can be obtained 
by substituting y,, into (5.10.24b): 

This represents the contribution from partial reflections of 

(5.10.25) 

the principal 
incident wave at  each level along the path of the wave. The third-order 
solution for y1 is obtained by substituting (5.10.25) into the integral of 
(5.10.24a). Each iterative step adds the contribution from multiple reflec- 
tions to the total solution. This is exactly the mechanism we discussed in the 
last section in regard to the physical picture depicted in Fig. 5.9-1. It can 
be shown that the iterative procedure will generate a series in ascending 
powers of (l/k). The first term of this series is the WKB solution. Thus, 
we have an analytic procedure of obtaining the WKB solution and higher 
order approximations. However, there are still certain important topics 
remaining to be considered in the theory of the WKB technique. First, let 
us turn back to (5.10.19) to take a closer look at the condition of validity 
for WKB solutions. Obviously, in the neighborhood of q = 0, the solution 
is not valid. In this neighborhood, the off-diagonal coupling terms in 
(5.10.13) are no longer negligible; y1 and y 2  are no longer independent. 
The points at  which q = 0 are called transition points or reflection points, 
or turning points. The behavior of a WKB solution when it passes through 
a transition point is one of the most important topics in the development 
of the WKB technique. Furthermore, if we extend the domain for the solu- 
tion to the complex z-plane, then from (5.9.1), the solution should be 
single valued in a domain where q(z) is free from singularities. But the WKB 
solutions y1 and y2  clearly are not single valued due to the presence of the 
roots of q in the expression. Therefore y, and y z  obviously can only be 
valid in some restricted domain of the complex z-plane. In the following 
section, we shall consider these questions via an example. 

5.11 The Stokes Phenomenon 

To study the behavior of the solution to (5.9.1) near a turning point we 
may expand q about this point. In the neighborhood of the turning point 
we may discard all higher order terms except the linear term provided it 
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does not vanish, i.e., the turning point is of first order (see definition on 
order of turning point given in Section 5.13). This leads directly to considera- 
tion of the Airy equation (or the Stokes equation) 

dzU/dz2 - zu = 0 (5.1 1.1) 

The series solutions of (5.11.1) may be obtained by the standard method 
to yield 

23 Z6 z9 [ 3 . 2 '  6 . 5 . 3 - 2  + 9 - 8 . 6 - 5 . 3 . 2  
u(z) = a, 1 + - 

2 4  27  

+al[Z+n+ 1 0 . 9 .  7 .  6 . 4 .  3 + . . . I  (5.1 1.2) 

where a, and a, are two arbitrary constants. The standard Airy functions 
are defined by setting (Jeffreys and Jeffreys, 1956) 

a, = 3-y r (2 /3 ) ,  a 1 -  - - 3 4 3  /r(1/3) for Ai(z) 

a, = 3-'/"/r(2/3), a, = 3'l6/I'(1/3) for Bi(z) 
(5.1 1.3) 

Ai(z) and W(z) are the two standard solutions for the Airy equation (5.1 I .  1 ). 
The behavior of Ai and Bi is plotted in Fig. 5.11-1. 

I 
Fig. 5.11-1. The behavior of Airy functions. 

For large values of z, instead of the series solution (5.1 1.2), WKB solu- 
tions are much more useful. The two WKB solutions that are valid for 1 z 1 
> 1 are readily obtained from (5.10.15). 

(5.1 1.4a) 

(5.1 1.4b) 
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Let us now extend the solution into the complex z-plane. To do this, we 
have to know the behavior of y ,  and y ,  in various regions of the z-plane. 
Since z = 0 is a branch point for both y ,  and y, , we take a branch cut OF 
as shown in Fig. 5.11-2 in the complex z-plane such that y1 and y ,  become 
single-valued functions in the proper manner. In addition we drawn the 
lines OB, OD, and OG which correspond to 

Re[z312] = 0 or arg z = n/3, n, --n/3 (5.11.5) 

Fig. 5.11-2. The Stokes and anti- 
Stokes Lines for Airy equation in the 
complex z-plane. 

A D 

respectively. These are called anti-Stokes lines along which the magnitude 
of the exponential function in (5.11.4) is unity. In Regions 1 and 7 where 
--n/3 < arg z < n/3, y ,  is much greater than y ,  for large values of I z I. 
Therefore in this region y ,  is termed dominant and denoted by yzd while y ,  
is a subdominant and denoted by y l s .  These notations are also used in the 
other regions to indicate a dominant or subdominant solution. Along an 
anti-Stokes line, it is not possible to distinguish which one of y ,  and y ,  
is dominant. The lines O A ,  OC, and OE correspond to 

Im[z312] = 0 or arg z = 0, f2n/3 (5.1 1.6) 

respectively. They are the Stokes lines along which a subdominant solu- 
tion has its minimum and a dominant solution has its maximum. 

The branch cut from z = 0 may be drawn anywhere as long as proper care 
is taken to assign values to the functions. If a WKB solution yzd is continued 
across the branch cut in the counterclockwise sense, just before it crosses 
the branch cut at arg z = 6, we have z = reid such that 

ysd = rl’* exp[--j6/4] exp [2r312 exp(3j6/2)/3] (5.1 1.7) 

In order that this solution is continuous across the branch cut it must be 
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changed to -jyld since across the branch cut z = rei(zn-s) = re-jzn ejd and 

-jyld = -jr-1/4 exp(jn/2) exp(-jS/4) exp [--2r312 exp(3jS/2) exp(-j3n)/3] 

(5.1 1.8) 

which is exactly the same as (5.11.7). Therefore, we have the rules of con- 
tinuing the two WKB solutions across the branch cut counterclockwise as 
follows 

y2  + -iyl , y1 + -jv2 (5.1 1.9) 

The property of dominancy or subdominancy of the solution is pre- 
served in the process. If the branch cut is crossed clockwise, - j  is replaced 
by j in (5.1 1.9). When a solution crosses the anti-Stokes line, dominant 
solution becomes subdominant and vice versa. 

The WKB approximation for the most general solution of the Airy 
equation may be written as the linear combination of y ,  and y ,  given by 
(5.11.4). We have 

- - rr114 exp(-j8/4) exp [2r312 exp(3jS/2)/3] 

4.1 = AYI(Z) + BY& 
= Az-l14e-%a’a/3 + ~ ~ - 1 / 4 ~ 2 2 ” ’ / 3  (5.1 1.10) 

where A and B are two arbitrary constants. In any region of the complex 
z-plane, except along anti-Stokes lines, one of the two WKB solutions in 
(5.11.10) is dominant and the other is subdominant. When the solution 
u(z) is traced about z = 0 in the complex z-plane, the dominancy and sub- 
dominancy of y ,  and y ,  will change according to the rules discussed above. 
In general, it can be shown that different values of A or B must be used in 
representing u(z) in different regions of the complex z-plane (Budden, 
1961; Heading, 1962; Jeffreys and Jeffreys, 1956). This is known in the 
asymptotic theory as “the Stokes phenomenon of the discontinuity of the 
arbitrary constants.” It is obvious that in a particular region, the change 
should occur on the coefficient of the term which is subdominant in this 
region so that the accuracy of the solution is not affected. The most logical 
place for this discontinuous change of subdominant coefficient to occur is 
on the Stokes line where the subdominant term is minimum. Stokes (1858) 
has shown that for maximum accuracy in the summation of an asymptotic 
series, the change of coefficients must take place on the Stokes lines. A 
formula may be written for this coefficient change when a solution is traced 
across a Stokes line in the counterclockwise sense. We write 

new subdominant coefficient = old subdominant coefficient 

+ A x dominant coefficient (5.1 1.1 1) 
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1 is called the Stokes constant associated with the particular Stokes line. 
To determine the Stokes constants, let us trace a WKB solution around the 
origin. In Fig. 5.11-2, let us assume that a solution is given on the anti- 
Stokes line OB by the expression 

where the dominancy and subdominancy of y I  and y2  are not determined. 
In Region 2, the solution is 

AYld  + (5.1 1.12) 

From Regions 2 to 3, a Stokes line is crossed in a counterclockwise sense. 
Applying (5.11.1 1 ), we have in Region 3 

where lC is the Stokes constant for the Stokes line OC. 
In Region 1, the solution is 

(5.1 1.14) 

In Region 7, we have 

where iiA is the Stokes constant for the Stokes line O A ;  the negative sign is 
due to the fact that the Stokes line is crossed in the clockwise sense. 

In Region 6, the solution is 

From Regions 6 to 5, the branch cut OF is crossed in clockwise sense. 
Applying (5.11.9), we have in Region 5 

(5.1 1.17) 

In Region 4, the solution is 

where 3LE is the Stokes constant for the Stokes line OE. 
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From (5.1 

From (5.1 

When this solution is traced across the anti-Stokes line OD, it should 
agree with the solution in Region 3 given by (5.1 1.13). Therefore we have 

(5.1 1.19) A = j [ B  - AE(A - L A B ) ]  

B + ;I& = j ( A  - L A B )  (5.1 1.20) 

These relations should be valid for arbitrary values of A and B. Therefore 
we may equate the coefficients of A and B in the two equations, respectively. 

.19), we obtain 

1 = -jn, , 1 + Lj& = 0 

.20), we have 

Lc = j ,  1 = -p, 

Therefore the Stokes constants are given by 

A A  = A, = AE = j (5.11.21) 

With the Stokes constants given, we can trace any WKB solution of 
(5.1 1.1) in the complex z-plane by applying rules (5.11.9) and (5.1 1.11). 
For example, a solution y1 in the Region 1 and 7 of Fig. 5.1 1-2 is subdomi- 
nant. When it is traced counterclockwise to the anti-Stokes line, we have 

Regions 7, 1 :  y,, 

Region 2: y ld  

Region 3: y l d  + jy2, 

Therefore on OD, the solution is y, and jy,. The same result is obtained 
if the solution is traced clockwise. Thus we have the procedure of extending 
the WKB solution to the whole complex z-plane. 

The asymptotic expressions for the two standard solutions Ai(z) and 
Bi(z) of the Airy equation can be related to the two WKB solutions y ,  
and yz by applying the above procedure. From the behavior of Ai(z), it 
can be shown that the WKB approximation for Ai(z) is given by 

(5.1 1.22) 
1 

Ai(2) - ~ Y d Z >  
24 ;  

in  Regions 1 and 7 of Fig. 5.11-2. 
On the positive real axis where arg z = 0, y, is subdominant and decreases 

exponentially. On the negative real axis where arg z = 180°, from the dis- 
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cussion above, we see that 

1 
Ai(- I z l )  -- (y1 + jy2) 

- n-l/2 
- I z cos(2 [ z I3I2/z - n/4) (5.1 1.23) 

2+ 

We could have started from (5.11.23) and continued it around z = 0 
and obtained (5.11.22) for the right asymptotic behavior of Ai(z) along 
positive z-axis. 

For Bi(z), however, we cannot start from the positive z-axis since Bi 
is unbounded for large positive z, corresponding to a dominant WKB 
solution. But in the limit of WKB approximation, there could also be a 
subdominant WKB term in this region and the constant multiplier in front 
of this subdominant term must be chosen in such a way that when continued 
around the origin, the WKB solution gives the correct asymptotic behavior 
of Bi(z). There is no way of determining this constant a priori; therefore 
we start from the negative z-axis. Along the negative z-axis, the WKB 
approximation for Bi(z) can be written as 

1 
Region 3: Bi(z) - - [jYld + Y2sl 

Region 2: Bi(z) -- [jYld + 2Y2sl 

Region 1:  Bi(z) - - [&18 + 2Y2dl 

Region 7: Bi(z) ,-- [ E j Y l S  + 2Y2dl 

Region 6: Bi(z) -- [FjYld  + 2Y2sl 

Region 5: Bi(z) -- l V 2 d  + j2YlSI 

Region 4: Bi(z) -- lVZd + j Y l S l  

2 6  

2+ 

2& 

2+ 

2+ 

2+ 

2+ 

1 

1 

(5.1 1.24) 
1 

1 

1 

1 

Along the positive real axis, the subdominant term can be neglected as 
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compared to the dominant term. Therefore 

Si(l z 1 )  - - 1 y z d = - I  1 z I -  112 21 z13/'/3 + + 
Bi is exponentially large along the positive real axis. 

From (5.1 1.24) and (5.1 I .25) we can write 

267 

(5.1 1.25) 

Z-l/4[je-2Z312/3 + e223/2/3] --t 2z-1/4e223/2/3 (5.1 1.26) 

to indicate the connection of the WKB solution on the negative real axis 
to that on the positive real axis. This is called the connection formula. We 
note that the arrow in (5.11.26) is one way indicating the fact that to go 
from +z to -z, a subdominant term should be added to (5.1 1.26), a fact 
we discussed above. Similarly, for Ai(z), the connection formula is given by 

z-1/4 [e-U3/2/3 + je2Zs/'/3] f3 z-1/4 e -2Z3/'/3 (5.1 1.27) 

A two-way arrow is used here since the connections in both directions are 
permissible. 

The asymptotic behavior of Ai and Bi on the real axis as given by (5.1 1.22), 
(5.11.23), (5.11.24), and (5.11.25) are evident in Fig. 5.11-2. 

Summarizing the essentials of this section, we note that we have shown 
a procedure to trace the WKB solutions of the Airy equation about z = 0, 
the turning point in the complex z-plane, such that when a WKB solution 
is known in certain domains in the z-plane, the form of this WKB solution 
in other regions of the z-plane can be obtained. The detailed behavior of the 
solution in the neighborhood of the turning point can not be obtained from 
the WKB solution. However after it has passed through the turning point 
and reaches a region where the WKB solution is again applicable, the solu- 
tion in this region is predicted by the connection formulas. 

The discussion on the Stokes phenomenon and connection formulas can 
be extended to asymptotic solutions of differential equations of other types 
where q(z) is an arbitrary function of z with higher order turning points 
(see Section 5.13 for definition). Some such general cases will be discussed 
in the following sections. 

5.12 An Example 

We now apply the results derived in the last section to study an example. 
Let us consider a horizontally polarized wave incident from free space 
upon a plasma. The electron density of the plasma is assumed to vary linearly 
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with z. From the discussion in Chapter 4, we have the refractive index 
for z > 0. 

(5.12.1) n2 = 1 - w2 pe/w2 = 1 - az, P = Po 

where the electron density is assumed to vary as az and where a = e2a/mEOw2 
is a constant. 

Substituting (5.12.1) into (5.6.5a), we have 

The generalized Snell’s law gives k, = k ,  sin O i  where Oi is the incident 
angle of the wave. Therefore, (5.12.2) can be written as 

d2E,/dz2 + kO2(cos2 Bi - az)E, = 0, z 2 0 
(5.12.3) 

d2E/dz2 + ko2 C O S ~  OiE, = 0, z 5 0 

Comparing (5.12.3) with (5.9.1), we see that E,, k ,  correspond to  p 
and h, respectively, and 

(5.12.4) 

The equation for z 2 0 can be transformed into the standard Airy 
equation by the following transformation: 

[ = (k02a)1/3(2 - cos2 eiia) (5.12.5) 

We have 

d2E,/dca - [ E ,  = 0, 6 2 -(k,,/~)~’~ cos2 Oi (5.12.6) 

Hence the general solution of E, for z 2 0 is a linear combination of 
Ai([) and Bi([). As z becomes very large, 6 also is large and positive. From 
our discussion in the previous section on the asymptotic behavior of A i  
and Bi,  we know that for E large and positive Bi([) is exponentially large 
while Ai(5 )  is exponentially small. Physical argument shows that for z - co 
we can not have infinite amplitude for the wave. Therefore, in the expression 
for E,, the term Bi(5) should not be included. Thus, we write 

E, = TAi(E), z 2 0 (5.12.7a) 
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The corresponding horizontal magnetic field H, can be obtained from the 
Maxwell equation (5.8.3~): 

H - - j -  -- dEz, - -j[k,za)1/3/wp]TAi‘(t) ,  
w p  dz 2 -  z 2 0  (5.12.7b) 

where A i r ( ( )  = dAi( t ) /d t .  
For z 5 0, the solution for (5.12.3) is easily found to be 

At the boundary z = 0, Ez, and H, must be continuous. Thus we obtain 
the relations 

TAi(t ,)  = 1 + R 

j T ( k , z ~ ) 1 / 3 A i ( ~ 0 )  = k, cos B i ( l  - R )  (5.12.9) 

where 
E, = t ( z  = 0) = - (ko/a>2/3 cos2 ei (5.1 2.10) 

Eliminating T i n  (5.12.9), we obtain the reflection coefficient R 

cos Bi A i ( t , )  - j ( ~ / k , ) ” ~ A i ’ ( t , )  
cos Bi Ai(E,) + j ( ~ / k , ) * ’ ~ A i ’ ( t , )  

R =  

The transmission coefficient T is obtained from (5.12.9) 

(5.12.11) 

(5.12.12) 

We note first that in the region E 2 0, or z 2 zo = cos2 BJa, the waves 
are evanescent. No power propagates into the region z 2 z,. This can 
be seen by forming the complex Poynting vector E x H* for z 2 z, and 
noting that Re(E X H*) = 0. Therefore, all the incident power is reflected. 
This is evident from the fact that I R I = 1 in (5.12.1 I ) ,  since the numerator 
and denominator are complex conjugates in  the expression for R.  

The expressions (5.12.1 1 ) and (5.12.12) are exact. If I to I = ( k , / ~ ) ~ / ~  cos2 B i  
> 1, then the WKB approximation for Ai t(5.11.23) for arg 6 = z)] can be 
used in (5.12.11). The WKB approximation for A i ‘ ( 5 )  is obtained by a 
direct differentiation of the expression for A i .  We have 

Ai‘(- I to 1 )  - r 1 I 2  1 to sin(2 1 to /3/2/3 - 4 4 )  (5.12.13) 
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Substituting (5.1 1.23) and (5.12.13) into (5.12.11) we obtain 

cos(2 I to l3l2/3 - 4 4 )  - j sin(2 1 Eo 13’*/3 - n/4) 
cos(2 I to 1 3/2/3 - n/4) + j sin(2 I Eo [ 3/2/3 - 4 4 )  

R- 

= expj[n/2 - 4 I to 13/2/3] 

= j exp [-j4 [ to I 3/2/3] 

= j exp [-j4ko C O S ~  Oi/3a] (5.12.14) 

The condition I Eo I > 1 implies that cos2 Oi should not be too small and 
I ko/a I > 1. This latter condition indicates that in order that the WKB 
approximation may be used, the electron density should vary slowly as com- 
pared to the wavelength of the wave. Or, in other words, in one wavelength, 
the electron density should not change much. Equation (5.12.14) indicates 
that the reflected wave has the same amplitude as the incident wave with 
a phase difference n/2 - 4k0 C O S ~  Oi/3a. We obtain this WKB approximation 
for the reflection coefficient by applying the WKB approximation to the 
exact expression of R. In the next section, we shall show that it is possible 
to obtain the WKB approximation for the reflection coefficient directly 
without knowing its exact expression. The technique is based on the connec- 
tion formula for the WKB solutions. 

We note that in  the exact formula for the reflection coefficient R [(5.12.1 l)]  
partial reflections from z = 0 to z = zo are included. In the approximate ex- 
pression (5.12.14), however, when WKB approximation is used, these partial 
reflections are neglected. 

5.13 Reflection Coefficients for Stratified Media-High Frequency 
Approximation 

In the following, we shall discuss the technique of obtaining the WKB 
approximation for the reflection coefficient directly without knowing its 
exact expression. 

As an illustrative example of the technique, let us consider the propagation 
of a horizontally polarized wave in a stratified plasma. This time, the elec- 
tron density varies arbitrarily as a function of z. The wave equation can be 
written in general as 

d2E,/dz2 + ko2q2(z)E, = 0 (5.13.1) 

q(z) is assumed to possess the following properties : 
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(i) q(z) is real on the real z-axis and approaches the value 1 as z + -co 

(ii) The point z = zo is a turning point of order unity for q(z).  By that 
along the real axis. 

we mean q2(z) can be expanded about z = z, by 

q2(z) = a,(z - zo) + al(z - z,)~ + u3(z - z,)~ + . - (5.13.2) 

where a, # 0. [If (z - z,,)" is the first nonvanishing term in the expansion, 
the turning point is defined to be of order n.] 

(iii) Consistent with the consideration of wave reflections the point 
z = z, is assumed to be the only turning point. Consequently we may 
assume q2(z) < 0 for z > z,, which requires a, < 0. Actually the technique 
to be discussed can be easily extended to cases of isolated turning points 
in the sense that between two neighboring turning points there exists a 
region in which WKB solutions are valid. 

If kO2 is large, the two WKB solutions of (5.13.1) are given by 

y, ~ q-~ize-jkoPqde (5.13.3) 

Y2 = 4 -  112 e ikoPgd8 (5.13.4) 

where y, represents a wave propagating in the direction of increasing z 
(see Section 5.10) and yz a wave propagating in the direction of decreasing 
z. The branch of q is chosen such that when q < 0, q is negative imaginary. 
Therefore y, becomes a decaying wave as z increases. These solutions are 
not valid near the turning point z = z,. 

Just as in  the discussion of the Airy equation, we can define the anti- 
Stokes lines radiating from the turning point z = z, by 

Re[j  slo q ds] = 0 (5.13.5) 

and the Stokes lines by 

Im[j  Sro q cis] = o (5.13.6) 

In the neighborhood of z = z,, q2 = al(z - z,), a, < 0; therefore the 
Stokes and anti-Stokes lines are the same as those shown in Fig. 5.11-2 
for the Airy function. In Fig. 5.13-1, we draw the circle b about the tur- 
ning point z = z,. Within this circle, the linear approximation of q is 
assumed to be valid; hence the Stokes and anti-Stokes lines are drawn 
exactly the same way as in Fig. 5.11-2. 
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--A Fig. 5.13-1. The Stokes and anti- 
Stokes lines in complex z-plane. 

The circle a is drawn to indicate the region in which the WKB solutions 
are not applicable. We assume that the region b (in which q can be assumed 
linear) is large enough such that at  the boundary of the b circle the WKB 
solutions of (5.13.15) can be used. The exact requirements on q and k, 
for this assumption to hold may be obtained analytically but will not be 
considered here [see, for example, Buddin (1961); Heading (1962)l. 

Physically, the solution of (5.13.1) for the electric field should be an out- 
going or decaying wave as z - +  +a. Therefore, the WKB solution for 
(5.13.1) should be y, in  Regions 1 and 7 and is subdominant. When this 
solution is traced about z = z, in the complex z-plane, the same technique 
discussed in the Section 5.1 1 can be used. We note that the Stokes constants 
derived in Section 5.1 1 are for WKB solutions with the “phase-reference” 
(the lower limit of the integral in  WKB solution) taken at the turning point. 
Therefore, in tracing the solution, we should write, in different regions, the 
following expressions. 

In Regions 1 and 7, 

I, 112 -ito J: qds 
YlS = [4- e 
- - e-&k qds [q-1/2e-& Is, qd8Is 

The term in the bracket has the phase reference level at the turning point 
z = z,,. It is this term that we shall trace in the complex z-plane about z,. 
Following the rules explained in Section 5.11, we obtain in Region 2, 
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Therefore on the anti-Stokes line OD, the WKB solution is 

(5.13.7) 

Hence, on the real z-axis for z < z,, , the WKB solution of the wave equa- 
tion (5.13. l )  is given by (5.13.7). This expression satisfies the boundary 
condition that as z + 00 the WKB solution is an outgoing wave. The 
first term in (5.13.7) is the incident wave and the second term is the reflected 
wave. The reflection coefficient is given by the coefficient of this second term. 
Thus, 

R = je-jzko $i? qds (5.13.8) 

This is the WKB approximation for the reflection coefficient. This tech- 
nique of computing the reflection coefficient is sometimes referred to as the 
“phase integral” method. The technique can be extended to cases where lossy 
media are considered. For those cases, q becomes complex. The phase 
integral method is still applicable provided a suitable contour path from 
0 to zo in the complex s-plane is chosen. Details of this method can be found 
in Heading’s monograph (1 962). 

As an example, let us use (5.13.8) to compute the approximate reflection 
coefficient for the case of plasma with linear electron density. q(z)  is given 
by (5.12.4); therefore. 

[ 1:: (5.13.9) 
R = j exp -j2k, (cosz 1 9 ~  -  US)^'^ ds 

= j exp[-j4ko c0s3 Oi/3a] 

where z,, = cos2 Oi/a has been used. Equation (5.13.9) is identical with 
(5.12.14) which is obtained from the exact expression. 

I n  general, we see from (5.9.22) that for lossless media such that q’/” 
is real for z < z,, 1 R I is unity. The incident energy is totally reflected. 
Equation (5.13.8) may be used to compute the reflection coefficient for 
any arbitrary stratified medium, the refractive index of which has an isolated 
turning point of first order provided the wavelength is short as compared 
to the typical dimension characterizing the inhomogeneity of the medium. 
For media having turning points of higher order, the formula (5.13.8) 
may no longer be applied. To study these more complicated cases, the 
starting point is the investigation of the Stokes phenomena about the higher 
order turning points. Some results are given by Heading (1962). 

Finally, we note that the above discussion for horizontally polarized 
waves may be easily extended to the case for vertically polarized waves. 
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Physically, as mentioned in the previous section, the WKB approximate 
expression for the reflection coefficient R [(5.13.8)] is the result of neglecting 
all partial reflections in the medium. For high frequency waves, this is a 
a good approximation in general. However, for the case where no turning 
point exists, there is no total reflection and according to WKB approxima- 
tion, the reflection coefficient is zero. In this case, partial reflections become 
important since they are the only contributions to the reflection coefficient. 
The iterative procedure discussed in Section 5.10 may be used to find the 
contributions from the partial reflections. Instead of treating the problem 
this way, however, an alternative technique is introduced in the following and 
explicit expression for the reflection coefficient will be found. 

Let us consider again 

d2E,/dz2 + ko2q2(z)E, = 0 (5.13.1) 

where q2 > 0 always and approaches one for z < 0, and some positive 
constant q+2 as z -  +co. 

In view of the partial reflections, the boundary conditions for E, at 

Now, define a new variable 

and construct a Green's function 

which satisfies the equation 

In the variable z,  (5.13.13) becomes 

(5.1 3.10) 

(5.13.1 1) 

(5.13.12) 

(5.13.13) 

(5.13.14) 

(5.13.1 5) 



5.13 Reflection Coefficients for Stratified Media 275 

and (5.3.14) becomes 

1 dq dG(z, z ' )  + ko2q2G(z, z ' )  = k,q(z) 6(z - z')  + - - d2G(z, z ' )  
dz2 q dz dz 

(5.13.16) 

Multiplying (5.13.1) by G(z, 2')  and (5.3.16) by E J z )  and subtracting 
one from the other, we obtain 

d2E, d2G(z, z ')  
G(z, 2') - dz2 - %') dz2 

= --k,q(z)E,(z) 6(z - z ' )  

(5.13.17) 
dG(z, 2') -- 3 E J z )  

4 dz dz 

Integrating (5.13.17) with respect to z from -co to $00, we have 

dz (5.13.18) 
dG(z, z ' )  

= -koq(z')E,(z') - ltm - E!/(z) dz 
-ce d z )  dz 

Using the boundary conditions (5.13,lO) and (5.13.1 I), we obtain from 
(5.1 3.18) 

Substituting (5.13.15) into (5.13.19), we have 

This is an integral equation for E, which is equivalent to the coupled 
integration (5.10.22) we derived in Section 5.10. The first term on the right- 
hand side is proportional to the WKB approximation for the incident 
wave. The additional two terms are due to multiple reflections in the medium. 
As z'+ -03, the second integral on the right-hand side vanishes and 
(5.13.20) has the form given by (5.13.10). Comparing the two equations, 
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we conclude that 

(5.13.21) 

This is an exact formal expression for the reflection coefficient. For the 
first-order approximation, we can substitute the WKB solution for Eu in 
(5.13.21) and obtain 

This is the contribution from the waves that have undergone partial 
reflection once in the medium. 

5.14 Reflection Coefficients for Stratified Media-Very Low Frequency 
Approximation 

Up to this point, the discussion has been concentrated on the WKB so- 
lutions of the wave equation for which the properties of the medium vary 
slowly as compared to the wavelength. In some practical situations, however, 
the properties of the medium may change significantly in one wavelength. A 
typical example in radio wave propagation problems is the propagation of 
very low frequency (VLF) radio waves around the earth. The frequency is 
so low that the wavelength is comparable to the typical dimension of the 
ionosphere. For these cases the WKB solution is no longer a good approxi- 
mation. In particular, the phase integral method of calculating the reflection 
coefficient is no longer applicable. In the following we shall introduce 
another approximation technique based on the very fact that the properties 
of the medium vary rapidly as compared to the wavelength (Brekhovskikh, 
1960; Wait, 1962). 

Let us consider a stratified medium characterized by E(z), and p(z) .  
As z + -a, E ( Z )  + so and p(z) + po. As z + +co, ~ ( z )  + el and p(z )  -+ 

pl, a horizontally polarized wave is incident from z = -a with an 
incident angle Oi. The electric field can be written as 

Eu = [A(z)  + B(z)]e-jko" sin ez (5.14.1) 

where A(z)  is the wave going upward and B(z) is the reflected wave. Since 
the medium varies rapidly, reflection takes place continuously in the medium. 
The Snell's law n sin O = sin Bi determines the angle 0. n2 = &pc2 is the 
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refractive index. The associated magnetic field components can be written 
in the following forms: 

H, = - ( ~ ( z ) / p ( z ) ) ~ / ~  cos 0 [ A ( z )  - B(z)]e-jkomsine 

H, = [k,  sin Oi/wp(z)] [ A ( z )  + B(z)]e-jkfl" 
(5.14.2) 

Equations (5.14.1) and (5.14.2) should satisfy the Maxwell equations. 
Substituting them into (6.8.3a) and (5.8.3e), we obtain 

' 

dA dB 
dz dz 
- + - = -jk, n cos B(A - B )  (5.14.3) 

ko2:2;2 ei ) ( A  + B )  (5.14.4) 
-jw( +)"' case 1 ( E  - 

Defining two functions, 

and 

d(z)  = - - - $ a;) 
Equations (5.14.3) and (5.14.4) may be put into the form 

dA/dz + j p A  + d(A - B )  = 0 

dB/dz - jbB + d(B - A )  = 0 

If now we define the reflection coefficient as 

(5.14.5) 

(5.14.6) 

(5.14.7) 

(5.14.8) 

(5.14.9) 

(5.14.7) and (5.14.8) are readily combined to yield an equation for R :  

dR/dz = 2jBR + d(1 - R2)  (5.14.10) 

This is a general equation for the reflection coefficient. Up to this point, 
i t  is exact. For different physical situations, it may be used to derive the 
reflection coefficients under different approximations. For example, the 
WKB approximation (5.13.22) derived in the last section may also be ob- 
tained from (5.14.10) if high frequency approximation is made. In the 
following, we shall consider the case of very low frequency. To obtain a 
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solution, let us write 

where 
g(z) = ( ~ / ~ , n ~ ) ( n ~  - sin2 0.J1/2 

(5.14.11) 

(5.14.12) 

g, = lim g(z) = ( ~ , / ~ ~ n , ~ ) ) ( n ~ ~  - sin2 Oi)1/2 (5.14.13) 

Since for z + 03, the reflection coefficient must vanish, it follows that 
limz+oo v(z) = 1. A differential equation for v(z) can be obtained by substi- 
tuting (5.14.1 1) into (5.14.10). We have, after some algebraic manipulation 

Z+*co 

(5.14.14) 

An iterative solution of (5.14.14) may be obtained in an ascending series 
in powers of k,.  The nth term has the form 

where the limit of integration corresponds to the boundary condition. 
The zeroth-order solution is v, = 1. Substituting this into (5.14.11), 

we have 

(5.14.16) 
g - g, - cos Oi - ( E ~ / E , ~ I , ~ ) ( ~ , ~  - sin2 Oi)1/2 
g + g, cos Oi + ( ~ , / ~ , , n , ~ ) ( n , ~  - sin2 O#I2 

R=-- 

This is the Fresnel reflection coefficient for the horizontal polarization at a 
sharp boundary [see (5.7.10) for comparison]. Therefore we see that in this 
iterative procedure, the zeroth-order approximation is the reflection coeffi- 
cient for a sharp boundary. This is to be expected in our formulation, since 
at the sharp boundary, the medium varies fastest; in fact, the properties 
have discontinuities there. The higher order terms in the ascending series 
in powers of k, account for the “gradualness” of the boundary. For a 
given medium, the properties of the medium vary more rapidly for lower 
frequency waves (waves with smaller values of k,); thus the iterative pro- 
cedure works better for these cases. This is exactly the opposite situation to 
that of the WKB method. 

The same technique can be generalized to vertically polarized waves by 
applying the duality between E and H and E and p. The reflection coefficient 
written in the form of (5.14.11) has been applied to the theory of normal 
modes propagation of VLF waves in the earth-ionosphere waveguide (Wait, 
1962). 
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5.15 Signal Propagation and Reflection in Stratified Media 

In the previous sections, we have only considered the propagation of 
monochromatic plane waves in a stratified medium. In practice, however, 
time-dependent signals in the form of pulses are often found in many 
experimental situations. In this section we shall discuss this problem by 
following essentially the same technique used in Sections 4.2 and 4.3 in 
the discussion of transient waves in homogeneous plasma. We shall only 
consider the high frequency signals so that WKB solutions are applicable. 

Let us consider a stratified medium occupying the half-space z > 0. 
Again, let us assume that a horizontally polarized signal is incident vertically 
on the medium. The Fourier transform of the incident signal at z = 0 is 
given by EJO, w ) .  The WKB approximation for the signal propagating 
upward into the stratified medium is given by [see (4.3.1) and (5.10.15); 
Budden (1961); Ginzberg (1964)l 

E(z, t )  = - J E(O, w)[n(z,  w>1-1/2 exp{ j w [  t - s’ n(s, w )  ds] }  dw 
237 c n 

(5.15.1) 

where the contour C is the Laplace contour discussed in Chapters 2 and 4. 
Equation (5.15.1) may be considered as the summation of all the WKB 
solutions; each corresponds to one frequency component of the original 
signal. 

If zO(w) is the turning point (of order one) for n(z, w )  at frequency w, 

then the WKB approximation for the reflection coefficient is given by 
(5.13.8) 

(5.15.2) 

Therefore, the WKB approximation for the reflected signal may be 
written as 

El.(z, 1 )  = - j E(0, w )  [1z(z, w)]-””(w) 
237 c 

x exp{jw[ t + & s’ 0 n(s, w )  ds] dw} 

- - J E(0, w)[n(z ,  ~) ] - l ‘~  exp 
2n c 

(5.15.3) 
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We note that in general the turning point zo depends on the frequency. 
Therefore, each harmonic component of the signal is reflected at  a different 
level. 

To carry out the Laplace inversions in (5.15.1) and (5.15.3) for a given 
refractive index function n(z, o), the technique described in Section 4.3 
may, in principle, be applied. Transient behavior of the transmitted and 
reflected signals may then be obtained. In the following, instead of studying 
the detailed transient behavior of the signals for some particular cases, we 
shall discuss certain general features of the transmitted and reflected signals 
which are found useful in many experimental situations. 

For a pulsed signal, E(0, o) is peaked at  the carrier frequency oo. For 
large values of coo, the major contributions to the integrals (5.15.1) and 
(5.15.3) come from the region where the phase in the integrand is stationary 
at  o = wo such that the harmonic components of the signal near w = wo 
all have the same phase. For (5.15.1), this requires 

-.!- [wt  - J n(s, o)o ds = o for o = o0 (5.15.4) a. 0 I 1 2  

Hence the position of the pulse at time t is given by 

1 a 
t - j; [ (no)] ds = 0 

w=wo 

and the upward velocity is 

This is the upward group velocity for the pulse. Comparing (5.15.5) 
with (2.12.4a) we see that the same expression for the group velocity applies 
for both homogeneous and stratified media. The quantity c/v, is defined 
as the “group refractive Index” (5.7.5) 

n’ = c/v,  = (a/ao)(no) = + anlaw (5.15.6) 

From (5.15.3), the reflected signal that reaches the level z = 0 is given by 

~ ~ ( 0 ,  t>  = ( j ~ )  J E(O, o>[n(o,  
C 

x exp{ j [  ot - $ r‘w) on($, o) ds ] }  dm (5.15.7) 
0 

The major contribution of this integral again comes from the neighbor- 
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hood where the phase in the integral is stationary at  w = w o .  Therefore, 
we have 

or 

(5.15.8) 

If at  time t = 0 the incident pulse is at  z = 0, (5.15.8) gives the time delay 
for the signal to travel up to the reflection level z = zo(wo) and come back 
to the level z = 0. Carrying out the differentiation of (5.1 5.8) and applying 
the relation n(zo) = 0, we obtain 

n‘(z, coo) dz (5.15.9) 

Half of this quantity is the time it takes the pulse to travel up to z = zo(wo). 

it will travel a distance 4 2 .  Thus we have 
During this length of time, if the signal is propagating in the free space, 

L g ( O )  

n’(z, wo) dz (5.15.10) So h’(w) = 4 2  = 

h‘(w) defined by (5.15.10) is called the equivalent distance of reflection, or 
virtual height in ionospheric terminology. The true distance of reflection 
is zo(wo) and is called the true height. 

Given a refractive index n(z, w) ,  zo(w) may be found and (5.15.10) yields 
the virtual height by integration. If, instead, the virtual height h’(w) is given 
as a function of frequency, is it possible from (5.15.10) to determine the 
refractive index uniquely? In general this problem belongs to a class of very 
difficult “inverse scattering” problems. Analytical solutions are possible 
only for very few special cases. In this following section, one such case shall 
be considered. 

5.16 The True Height Problem-Ionosonde 

Let us consider an isotropic, stratified plasma with electron density 
varying as a function of z. The refractive index is n = (1 - wp2/w2)1’2 where 
cop is the angular electron plasma frequency. The group refractive index 
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can be obtained from (5.15.6) and is found to be 

n‘ = 1/(1 - wp2/w2)1/2 (5.16.1) 

For this medium, the virtual height given by the formula (5.15.10) 
becomes 

We shall assume that w,(z) is a monotonic function of z .  Therefore there is 
a unique inverse z(wp).  For a given signal frequency wo , the reflection level 
zo is obtained by setting w p  = wo in the expression z ( o p )  as shown in Fig. 
5.16-1. 

Z 

t 

Fig. 5.16-1. Plasma frequency as a monotonic function of z. 

In (5.16.2), we change variables by letting 

u(z) = [wp(z)]2, v = w2 (5.16.3) 

and we have 
20 dz 
0 [u - u(z)]’/2 

(5.16.4) 

This is known as the Abel’s integral equation. It can be solved by the follow- 
ing procedure. Multiplying both sides by (I/n)(w-- v)-lI2 where w is a 
positive constant, and integrating in v from 0 to w, we obtain 

(I/n) v-ll2(w - V ) - - ~ / ~ ~ ’ ( U ~ / ~ )  dv 
0 

= (l/n) s: dv s” dz/(w - 11)l/~[v - U ( Z ) ] ’ / ~  (5.16.5) 
0 



5.16 The True Height Problem-Ionosonde 283 

Changing the order of integration in (5.16.5), we obtain 

= (l /n) s’(u) dz dv/(w - ~ ) l / ~ ( v  - u)1/2 (5.16.6) 
0 U 

where zo(w) is the value of z at  which u(z)  = w. We note that on the curve 
in Fig. 5.16-1, v = u. 

The v-integration in (5.16.6) may be carried out by first changing the 
variable : 

(5.16.7) v = w cos2 8 + u sin2 8 

Therefore s: dv/(w - Y ) ~ / ~ ( Y  - u)lI2 = 2 (5.16.8) 

and (5.16.6) becomes zo(w). Substituting this into (5.16.5), we have 

W 

zo(w) = (l/n) s ~ - ’ ~ ~ ( w  - ~ ) - ~ / ~ h ’ ( v ~ / ~ )  dv (5.16.9) 
0 

Changing the variable v = w sin2 a, (5.16.9) becomes 

zo(w) = (2/n) jn” h‘(w1I2 sin a )  da (5.16.10) 
0 

where h ’ ( ~ - ” ~ s i n a )  means that the argument w in the known function 
h’(w) is replaced by w1/2 sin a. 

This is the solution for the Abel‘s equation. Given a value w, the height 
at  which the plasma frequency is up = w1I2 is given by (5.16.10). This in 
turn yields the electron density as a function of height. 

If the electron density is not a monotonic function of z, then the analytical 
method just described cannot be applied. In general, for more complicated 
media, (5.16.2) can only be solved numerically. 

We have just described a technique to use electromagnetic waves as a 
probing tool to measure the electron density in a plasma. A device known 
as “ionosonde” has been used since the 1920’s (Breit and Tuve, 1926) to 
obtain worldwide electron density in the ionosphere. Simply described, an 
ionosonde is a device that consists of an automatically sweeping pulse 
transmitter and receiver. Pulses in the frequency band from about 1 to 20 
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MHz are sent to the ionosphere (vertically or obliquely) and the time delay of 
the reflected signal is recorded as a function of the pulse frequency. The 
graphical display of such a record with frequency as one axis and the 
equivalent height as the other axis is called the ionogram. This essentially 

Fig. 5.16-2. Typical ionogram. 

is the function h’(o) in (5.16.2). Electron density as a function of height 
can then be determined, usually by numerical methods. A typical iono- 
gram is shown in Fig. 5.16-2. The two traces correspond to ordinary mode 
and extraordinary mode, respectively. 

5.17 Wave Propagation in Stratified Magnetoplasma-Forsterling’s Coupled 
Equations 

In the remaining part of this chapter, we shall extend our discussion on 
wave propagation in stratified media to anisotropic cases. An immediate 
example of this type is the earth ionosphere where the medium is a stratified 
magnetoplasma. The general problem of propagation in such a medium is 
a fairly complicated one and will be discussed in a later section. In this sec- 
tion we shall first consider a special case, namely, the vertical incidence 
case. 

Let us consider a stratified plasma in a constant static magnetic field. 
The plasma density varies as a function of z. For vertical incidence, the wave 
propagate in the z-direction. Without loss of generality, the static magnetic 
field is assumed to be in the yz-plane. For high frequency waves, at  any 
level z the Appleton-Hartree formula (4.14.9) yields two values, no2 and 
nZ2, corresponding to the two characteristic modes, ordinary and extraordi- 
nary, respectively. For a homogeneous medium, the polarization of the 
wave is defined by 

R = E,/E, = D,/D, = -H,/H, (4.14.5) 
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and (4.14.14) gives the two characteristic polarizations Ro and R,, respec- 
tively: 

where 0 is the angle the static magnetic field makes with the z-axis. 
Equations (4.14.5) and (4.14.14) are used to define the characteristic 

polarizations for a stratified medium at any level z. From (4.14.12), we 
know that RoR, = 1 .  Therefore, from the definitions, we can write the 
components of the electric field for the characteristic modes, in the stratified 
magnetoplasma in the following way: 

ELO) = R E‘O) = E‘O) / R Z ,  EE’ = R,EF’ = EF’/Ro (5.17.1) O Y  

where the superscripts “0” and “x” indicate the two modes, respectively. 
Any wave may be expressed as the linear combination of the two charac- 

teristic modes. We have 

For the two characteristic modes at  any level z, the displacement vector 
is related to the electric field by (Chapter 2) 

(5.17.3) 

Therefore, the total displacement vector is written as 

D, = E ~ ( ~ ~ ~ E L ~ ’  + nZ2EP’) 
= E ~ ( ~ ~ ~ E A ~ )  + n,2R2EF’) (5.17.4) 

Dv = ~ ~ ( n ~ ~ E b ~ )  + n,2EF’) 

= E~(~~~R,E,CO’ + n Z Y  ‘E”’) (5.17.5) 

Starting from Maxwell equations 

% E = -jwp,,H 

o % H = j w D  
(5.17.6) 

and noting that for vertical incidence a/ax = a/ay = 0, (5.17.6) yields 
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immediately H, = D, = 0. Eliminating H, and Hy from the remaining four 
component equations, we obtain 

d2Ez ko2 
+-D,=O 

dz2 EO 

d2Ev ko2 
dz 80 

+ __ D?, = 0 

(5.17.7) 

The quantities defined in (5.17.3) and (5.17.5) should satisfy the Maxwell 
equations and hence (5.17.7). Therefore, substituting (5.17.3)-(5.17.5) into 
(5.17.7), we obtain 

d2Rx EF’ + k,2n02E, + ko2Rgz2Ep)  = 0 (5.17.8a) +d22 

+- d2Rz EJo’ + k,2n,2R,Ei0) + ko2n2EF) = 0 (5.17.8b) 
dZ2 

Thus by defining the characteristic modes in the stratified magnetoplasma 
as in (5.17.1), we obtain from the Maxwell equations the two coupled 
equations. They may be simplified if we define new dependent variables in 
the following manner: 

F + -  - ( R  2 2 - 1)”2E1p’, F- = (I?,” - 1)”’EF’ (5.17.9) 

where F+ and F- may be considered as the two characteristic modes. Further, 
let 

dR, - 1 d R, -  1 y = = ( R 2 -  1 1)-l’zx - - -In( ) (5.17.10) 
ko 2ko dz R, + 1 

Then (5.17.8) becomes 

(5.17.1 1) 
d2F+ dF- + ko2(no2 + y2)F+ = ko F- + 2 k o ~  7 dz2 dz 

d2F- + ko2(nz2 + y2)F- = ko Fi- + 2koY 7 dF+ (5.17.12) 
dz2 dz 

These are the Forsterling’s (1 942) coupled equations for vertical incidence. 
The terms on the right-hand side are coupling terms. The variable y is 
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called the coupling parameter. We note that in  general y # 0 and conse- 
quently the two characteristic modes are coupled. Equations (5.17.11) and 
(5.17.12) may be used as the basis for an iterative procedure to obtain 
approximate solutions in  cases where coupling is not too strong. 

A special case for the Forsterling’s coupled equations is for 8 = 0 in 
(4.14.14). For this case, the static magnetic field is also vertical. Equation 
(4.14.14) yields 

R, = - j ,  R ,=  j (5.17.13) 

which are constants throughout the stratified region. From (5.17. lo), the 
coupling parameter y for this case vanishes. Therefore (5.17.11) and 
(5.17.12) reduce to 

(5.17.14) 

(5.17.15) 

d2F+ldz2 + k02n02F+ = 0 

d2F-/dz2 + ko2nZ2F- = 0 

where, from (5.17.9) and (5.17.2), 

Also, from (4.14.19), we have 

Thus, we see that for this special case, the two characteristic modes are 
circularly polarized and propagate independently of each other. In the 
next section, an example will be considered for this special case. 

Finally, we note that the discussion in this section has been for lossless 
magnetoplasma. Collisional loss in the plasma may be taken into account 
in exactly the same manner as was done in Chapter 4. Instead of (4.14.14) 
and (4.14.19) in our discussion, (4.14.21) and (4.14.23) should be used, 
respectively. The rest of our discussion then follows. 

5.18 An Application of FSrsterling’s Coupled Equations 

As an example, let us consider a plasma with an exponential electron 
density profile. The magnetic field is vertical; the collision frequency is 
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assumed to be constant. Therefore 

X = exp(az) 

Y = constant (5.18.1) 

U = 1 - jvlw = constant 

A wave is incident vertically upon this plasma. For this case, (5.7.14) and 
(5.7.15) may be used. 

d2F+ 
dz2 

d2F- eaz + ko2[ I - -1 F- = 0 
dz2 u- Y 

(5.18.2) 

(5.18.3) 

For later convenience, we redefine F+ = E, + jEv,  F- = E, - jE,. This 
does not affect (5.18.2) and (5.18.3) since they are homogeneous equations. 

5' = azJ2 + c (5.18.4) 

Define a new variable 

where c is a constant to be determined. 
In the new variable, (5.18.2) and (5.18.3) become 

F+ = 0 (5.18.5) 
d2F+ 

4 U + Y  

F- = 0 (5.18.6) 

Equations (5.18.5) and (5.18.6) may be put into a standard form of 
Bessel's equation (Watson, 1944), 

d2y/dC2 + (e2C - p2)y  = 0 (5.18.7) 
by letting 

- a2k02 e-2C --- 
4 u 5 y - I  

and 
(a2/4)ko2 = -p2 

(5.18.8) 

(5.18.9) 

where the upper sign is for F+ and lower sign for F-. From (5.18.8) and 
(5.18.9) we have 

(5.18.10) 

p = 2jko/a 
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The general solutions of (5.18.5) and (5.18.6) are (Watson, 1944) 

(5.18.11) 

(5.18.12) 

where 2, is the Bessel’s function of any kind of order p .  
To choose the right kind of Bessel’s function for our solution, let us 

consider the boundary conditions. The wave should be a decaying solution 
for z + co. From the theory of Bessel’s function, we know 

lim H2)(reje) + 0 

where H$) and HAz) are Hankel functions of the first and second kind, re- 
spectively. The phase angles of the arguments of Z p  in (5.18.1 1) and (5.18.12) 
are given by 

-’ )‘I2 (5.18.14) e = arg(m)l’’ -1 = arg( 1 f Y - j z  

where Z = v/w. 

proximated by 
For low frequency propagation such that Y >  1, (5.8.14) may be ap- 

8 g[n -l tan-l Z / Y ]  (5.18.15) 

By convention, we can choose 

0 < tan-’Z/Y < n 

for either Y positive or  Y negative. Therefore 

o s e i n  (5.1 8.1 6) 

Hence for z -+ 00, the decaying solution is given by the Hankel function 
of the first kind. Therefore 

(5.1 8.17) 

where 1, = 1/(U f Y). 
We note that at the level z = z, such that 

e a z o =  u+ Y 
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where zo is complex, the incident F+ wave is reflected. To find the reflection 
coefficient, we compute the field at z --f -m. For this case, the argument of 
the Hankel function approaches zero. We can use the approximate expres- 
sion for small arguments for Hankel functions. By definition (Watson, 
1944) 

(5.18.18) Hk1)(x) = j csc(pn) [e - jpJp(x)  - L P ( x ) ]  

For x-0, 

J&) = ( x / 2 ) p / n  + 1) (5.18.19) 

where F(z) is the gamma function. 

we obtain after some manipulation 
Substituting (5.18.19) into (5.18.20) and applying the result to (5.18.17), 

The first term in the bracket represents the incident wave, the second term 
represents the reflected wave. We can define the reflection coefficient as 

The magnitude of reflection coefficient is 

I R, I = I I y k o l Q )  I (5.18.22) 

If the medium is lossless, i.e., Y = 0, I+ = 1/(1 + Y ) ,  then 

I R+I = 1 (5.18.23) 

F+ is totally reflected. For F- ,  we have I- = 1/ (1  - Y ) s  (I/Y)ej” for 
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As z 

where 

for a slowly varying medium (2nk,/a) > 1. Hence 1 R- I is very small. 
Most parts of F- propagate through the plasma. This corresponds to the 
whistler mode discussed in Section 4.1 1. This can also be seen from (5.18.3). 
The quantity 1 - e"/(U- Y )  does not vanish for any values of z for 
Y > 1-hence no total reflection for F-. 

- +-03, from (5.i8.20), we have 

E, = t (F+ + F-) = A[e-jkoz + &(R+ + R-)eikozl 

= A [e-jk+ + II RlleikoL] (5.18.25) 

The presubscript in the reflection coefficient denotes whether the incident 
electric vector is parallel or perpendicular to the x-axis, and the post- 
subscript refers in the same way to the reflected electric field (see Section 
5.7). 

It can be shown from (5.18.21) and (5.18.27) that for Y >  1 

and 

Equation (5.18.28) gives the magnitude of the reflected wave having 
the same polarization of the incident wave while (5.12.52) gives the mag- 
nitude of the reflected wave having a polarization perpendicular to that of 
the incident wave. Equations (5.18.28) and (5.18.29) have been used to 
interpret experimental data of absorption measurements at  long and very 
long wavelengths reflected by the ionosphere. Information about the elec- 
tron density profile and collision frequency in the I) region of the ionosphere 
can be obtained (Stanley, 1950). 
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5.19 Wave Propagation in Stratified Anisotropic Media-General Coupled 
Equations 

In the last two sections, wave propagation in striitified magnetoplasma 
under certain special conditions was studied. In this section, we shall treat 
the problem of propagation in general stratified anisotropic media. The 
technique we shall introduce is the so-called coupled equation method. 
This method may be applied to many other practical problems in addition 
to propagation in the ionosphere (see Chapter 8). 

Let us assume that for electromagnetic waves the medium is characterized 
by a dielectric tensor 

E ( Z )  = K ( z )  (5.19.1) 

The medium is nonmagnetic so that p = pa. Maxwell equations become 
(for ejwt dependence) 

G' % E = -jwp,,H 

l7 % H = jwo - E 
(5.19.2) 

Since the coefficients are functions for z only, we can assume plane 

, i(k$+k#) ,jot (5.19.3) 

wave solution of the form 

for the unknown components of the fields. Substituting (5.19.3) into 
(5.19.2) and putting it into component form, we have 

-jk,Ez - dE,/dz = - jwp 0 2  H 

dE,/dz + jk,E, = -jwpoH, 

-jk,E, + jk,E, = -jwpoHz 

-jk,H, - dH,/dz = jwso(KllE, + K1& + K&) 

dH,ldZ + jk,H, = jwEo(KzlEz + K&, + K23E2)  

-jk,H, + jk,H, = jwEO(K,,E, 4- K32Ey i- K33Ez) 

(5.19.4a) 

(5.19.4b) 

(5.19.4~) 

(5.19.4d) 

(5.19.4e) 

(5.19.4f) 

where the Kits are the elements of the relative dielectric tensor. 
It is now possible to eliminate E, and H, from (5.19.4) and obtain a set 

of four first-order differential equations. In matrix form, this set may be 
written as 

deldz = -jkoT - e (5.19.5) 
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where e is a column vector defined by 

(5.19.6) 

and T is a 4 x 4 matrix defined by Eq. (5.19.7). 7, = ( , U ~ / E ~ ) ' / ~  is the free 
space intrinsic impedance. 

To solve (5.19.5), we introduce a transformation 

e = R - f  (5.19.8) 

Substituting (5.19.8) into (5.19.5) and assuming that R is nonsingular, 
we obtain 

df/dz + jk,(R-l T R) f = - R-l dR/dz f (5.19.9) 

where R-I is the inverse of R. 
The idea here is to choose the transformation matrix R such that the 

matrix R-' T . R becomes diagonal. From the matrix theory, this can 
be done for any particular value of z, if the roots qi ( i  = 1,2,  3,4) of the 
quartic eigenvalue equation 

det[T - q l ]  = 0 (5.19.10) 

are distinct. In that case, 

In a homogeneous medium, the right-hand side of (5.19.9) vanishes; there- 
fore (5.19.9) becomes uncoupled and yields four solutions of the form 

tions are in general coupled. If, under certain conditions, I R-l dR/dz I 
is small, then (5.19.9) serves as the basis for an interative procedure to 
obtain approximate solutions. 

From the matrix theory, the condition (5.19.11) does not determine the 
matrix R uniquely. R is constructed by taking its ith column as the ith 
eigenvector vi of the eigenvalue problem 

e-jk oqi z each propagating independently. For a stratified medium, the equa- 

(T - qil) V< = 0 (5.19.12) 



(5.19.7) 
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The normalization of the vi is still arbitrary. One way to define them unique- 
ly is to require that the diagonal terms of the matrix R-l. dR/dz on the right- 
hand side vanish. This additional condition on R will make the choice of R 
unique. Equation (5.19.9) now becomes 

dfldz + jk ,A - f = -R-l dR/dz f (5.19.13) 

where A is the diagonal matrix given by (5.19.11). The right-hand side 
involves the coupling terms. The matrix -R-’ dR/dz is sometimes re- 
ferred to as the coupling matrix. Its elements indicate the strength of coupling 
between any two modes. The vanishing of the diagonal terms indicates that 
there is no self-coupling term. Without going into details, we shall indicate 
a way to solve (5.19.13) in successive approximation. Following the same 
technique as used in Section 5.10, (5.19.13) can be transformed into an 
integral equation 

f(z) = f,(Z) - F-’(z) [F(t)] * [R-’ dR/dt f(t)] dt (5.19.14) s’ 
where 

fni = e-jkn Jz q i ( d d i  

Fmn - - e+jkn$zq,(~)dr if ,,, = (5.19.15) 

= o  if m f n  

f, may be considered as the independent characteristic mode in the medium. 
Equation (5.19.14) may be used as the basis for the iterative procedure to 
obtain higher order solutions corresponding to coupled wave equations 
provided R-l. dR/dz is small. In the regions where R-’ dR/dz is not 
small, this procedure breaks down. Such regions exist in the neighborhood 
of those values of z (usually complex) for which the matrix R is singular. 
This happens, in particular, when two of the eigenvalues q i  are equal. These 
points in the complex z-plane are called “reflection” or “coupling” points. 
The solution of the coupled equation in the neighborhood of these points 
requires more detailed analysis and will not be considered here (Clemmow 
and Heading, 1954; Budden and Clemmow, 1957). 

If, under certain conditions in the quartic equation for q [(5.19.10)] the 
coefficients of q and q3 terms vanish, then (5.19.10) becomes quadratic in q2. 
Therefore at any level there exist two characteristic waves associated with 
two values of q which differ only in sign, corresponding to a pair of up-going 
and down-going characteristic waves. For this case, the four first-order 
equations in (5.19.5) can be combined to yield two second-order coupled 
equations. 
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- 1  1 0 0 -  
1 - 1 0  0 
0 0 1  1 

- 0  0 1 -1 -  

S =  

Let us suppose for this case that 

q 2  = -4119 9 4  = - q 3  (5.19.16) 

From (5.19.14) and (5.19.15), we see thatf ,  and fz correspond to up-going 
and down-going waves, respectively and so do f3 and f4. Let us now introduce 
new variables hi which are linear combinations of fl ,A and f3, f4, respectively. 
They can be written as, in particular, 

h = S * f  (5.19.17) 

(5.19.18) 

dh/dz + jk,(S * A * S-l) * h = -(S * R-' * dR/dz * S-l) - h (5.19.19) 

where 

To save some writing, let us define 

S R-' dR/dz - S-l= W 

and partition the matrices in (5.19.19) in the following manner 

(5.19.20) 

(5.19.21) 

(5.19.22) 

where wij)s are the elements of the matrix W. 
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Equation (5.19.19) can then be separated into two pairs: 

duldz + jkoQ v = - A  (5.19.23) 

duldz + jkoQ u = - C . u - - D . v  (5.19.24) 

u - B . v 

Solving (5.19.23) for v, we have 

v = - G-1 (d  u/dz + A - U )  (5.19.25) 

where, for brevity, we have written 

G = jkoQ + B (5.19.26) 

Substituting (5.19.25) into (5.19.24), we obtain finally the second-order 

dG 

coupled equations 

d2u/dz2 + ko2 Q - Q - u = - - G-l + G - D G-l]  - du/dz 

- G - C - j k o B . Q  - u  (5.19.27) I 
Similar equations can be derived for v. For homogeneous medium, the 

right-hand side vanishes. We have 

d2hl/dz2 + ko2q12hl = 0 

d2h3/dz2 + ko2q3'h, = 0 
(5.19.28) 

The equations become uncoupled. 

The coupled equation method discussed in this section is quite general. 
It can be used to solve many physical problems whenever the field equations 
can be put into the form (5.19.5). It is especially useful when solutions are 
being computed numerically. It also forms the basis for the analytical 
discussion on techniques of obtaining approximate solutions. In the next 
section, the coupled equation technique will be applied to the problem of 
wave propagation in a magnetoplasma under general conditions. 
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5.20 Application of the Coupled Equations Method to Wave Propagation 
in a Stratified Magnetoplasma 

In this section, we shall consider wave propagation in a cold magneto- 
plasma; the electron density is a function of z. The dielectric tensor for 
this medium can be obtained in the same manner as was done in Sec- 
tion 4.5 for homogeneous cold plasma by considering the motion of mutually 
noninteracting charged particles. The susceptibility tensor is given by 
(4.5.11) where now the Xa's are functions of z. 

X = C X a  
a 

1 1 - Y:z - Ymzyay + jyaz 
- Yaz Yay - jymz 1 - Y:y 
- YazYaz + jya, - Yay Yaz - jyaz 

- YazYaz - jya, 
- Yay Yaz + jyaz 

1 - Y:z 

- 
_ -  ?A[ 

(4.5.1 1 )  

X a  and Y are defined in Section 4.5. 

portant. Therefore, the relative dielectric tensor may be written as 
For high frequency waves, only the contribution from electrons is im- 

K = l + x  .(5.20.1) 

where the subscript a = e on x is omitted. 

xz-plane, the elements of the matrix T are obtained: 
Substituting (5.20.1) into (5.19.7) and for waves propagating in the 

Tll = 

Tl2 = 

T23 = 

T31 = 

7-32 = 

T34 = 

T42 = 

T44 = 

T14 = 

T41 = 

T13 = 
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where A is defined as 

A = [l - Y2- X(1 - Y$)]-' 

Substituting (5.20.2) into the quartic equation (5.19.10), we obtain 

q4 + aq3 + bq2 + cq + d = 0 (5.20.3) 

(5.20.4) 

Equation (5.20.3) is known as the Booker quartic equation (Booker, 1938). 
In general (5.20.3) yields four distinct roots for q.  At any level, (5.20.3) 
gives the four characteristic waves in the stratified magnetoplasma of which 
two are up-going waves and two are down-going waves. When these waves 
propagate in the stratified magnetoplasma, they are coupled through 
(5.19.14). The elements R-I dR/dz in (5.19.14) may be obtained by solv- 
ing the eigenvalue problem (5.19.12). They are given by Budden and Clem- 
mow (1957) and Budden (1961). Various numerical methods have been 
developed to solve the coupled integral equation (5.19.14) for wave propaga- 
tion in the ionosphere (Budden, 1969). 

As an illustrative example, let us consider the case of vertical incidence 
again, using the coupled equation method. For vertical incidence, k, = 0, 
and the magnetic field may be assumed to be in the yz-plane. Therefore 
in (5.20.2) TI,  = TI,  = T34 = T44 = 0 and T14 = 1. 

Equation (5.20.3) becomes 

(5.20.5) 

which yields two roots for q2. Using (5.20.2), it is not difficult to show that 
these two roots coincide with the two refractive indices no2 and nX2 obtained 
from the Appleton-Hartree formula (4.14.19). For this case, (5.19.1 1) 
becomes 

(5.20.6) 
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A ,  = A ,  = no2 - T41, A, = A4 = nZ2 - T41 
(5.20.8) 

F1 = -Fz = 2no(no2 - n2), F3 = -Fa = -2n,(~~,~ - n,') 

The matrix R is obtained by taking vI)s as its columns. Therefore, 

R = (vl, V Z ,  v 3 ,  v 4 )  (5.20.9) 

and 

fl' + j k f l O f l  = -(n,'/2hO)fi f (.j/2)kOW(n0 + '2)(n@Z)-1'?&3 

+ ikov(n0 - nz)(fl@z)-l?h 

fi' - i k @ O f Z  = (nO'/2jnOYl f !$kOv(nO - nZ)(n@Z)-'/y3 

-(j/2)kOv(n0 f n2)(n0%-1'?&4 (5.20.1 1 )  
f31 + i b z . 6 3  = (--i/2)kov(no + %)(~@z)-l'?&l - ikov(n0 - ~z)(~@z)-l~?&z 

+ (ni/2jnzY4 

f41- ikflz,ii = - ikov(n0 - ~ , > ( n ~ ) - " ? & ~  

+ (j/2)koy(no + nz)(n&-"?&z - h'/2&Y3 

where prime indicates d/dz. 
These are the coupled first-order equations for the new variable f. The 

function y is the coupling parameter defined in (5.17.10). The normalization 
of the vi's is such that there are no self-coupling terms on the right-hand 
side of (5.20.11). 
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When the coupling is weak, the right-hand side of (5.20.1 1) may be ne- 
glected and (5.20.12) becomes uncoupled. The solutions of this set of un- 
coupled equations gives the four independent characteristic waves and are 
sometimes referred to as the WKB solutions for the vertically incident 
waves (Budden, 1961). 

We note from (5.20.5) that for the vertical incidence case, the eigenvalue 
equation becomes quadratic in q2. For this case, from the discussion in the 
last section, it is possible to derive a set of second-order coupled equations. 
In fact, in Section 5.17 we have already derived the Forsterling coupled 
equations from the Maxwell equation directly. As an example, let us now 
apply the general technique discussed in the last section to derive the 
Forsterling equations from the set of coupled first-order equations (5.20.1 I). 
To do this, we first define a set of new variables 

g2 = jn-112 
0 fl (5.20.12) 

- f,, g4 = -n-1/2 

Substituting (5.20.12) into (5.20.1 l) ,  we obtain an equation for g(g, , 

dg/dz + jkoA - g = r g (5.20.13) 

g, = n;l/Yl, 

z f4 
g - -jn-1/2 

gz,g,, g4): 

where A is given by (5.20.6) and 

- n,' n,' 
2n0 -(%)( 1 + z) -(?)( 1 - 2)  
n,' 2n0 -(?)( 1 - 2) -(?)( 1 + 2) . -  

- n,' n,' 
2 4  

l-(F)( 1 - 2) -(?)( 1 + 2) 2n, n,' 
(5.20.14) 

Following the method discussed in Section 5.19, we define 

h = S - g  (5.20.15) 

where S is defined by (5.19.18). The matrix W in (5.19.21) is then given by 
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The matrices defined in (5.19.22) now become 

The matrix G in (5.19.26) now has a simple form 

G = j k o Q  + B = j k o  [II" (5.20.18) 

Using (5.20.17) and (5.20.18), we can compute 

Substituting (5.20.19) into (5.19.27), we obtain the matrix equation 

no2 0 hl - - [ti'] + ko2 [ 0  n 2 ]  [ h j  - [2k0y 0 h,' 

(5.20.20) 

where 

h, = g, + g2 = n,'/"(fi + 64) 

h, = g3 + g, = n;1/2(-643 -f4) 

= dT(R,' - 1)-'/2(Ex - R,E,) (5.20.21) 

= f i ( l  - Ro2)-1/z(E, - ROE,) (5.20.22) 

h, and h, may be related to the two characteristic modes F+ and F- defined 
in (5.17.9) by substituting (5.17.2) into (5.20.21) and (5.20.22). We have 

h, = d2<RZ2 - 1)'/2E$o' = 1 /ZF+ (5.20.23) 

h3 = d 2 ( R Z 2  - 1)1/2Ep' = 1/?F- (5.20.24) 
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Therefore (5.20.20) may now be written as 

d2F+/dz2 + kO2(nO2 + y2)F+ = k,(dy/dz) F- + 2koy dF-/dz (5.20.25) 

d2F-/dz2 + ko2(n,2 + y2)F- = k,(dy/dz) F+ + 2koy dF+ldz (5.20.26) 

which are exactly the Forsterling’s equations defined in Section 5.17. 

Problems 

1. 
index is spherically symmetric, i.e., n = n(r) .  

2. The curvature vector of a ray is defined by 

Find the equation of rays for an isotropic medium whose refractive 

where p is the radius of curvature and D is the unit principal normal at a 
typical point of the ray. From the ray equation (5.2.15),  prove that 

[ K I = l / p  = P -17 In n 

What does this relation imply in regard to the ray path? 

3. Derive the Fresnel’s formulas for reflection and transmission coefficients 
for vertically polarized waves. 

4. In Fig. 5.7-1, if medium 2 is a uniaxial medium characterized by 

0 0  

0 0 E2 

a vertically polarized wave in free space is incident upon the sharp boundary 
at  z = 0 with an incident angle Bi (Fig. 5.7-1). Find the reflection and trans- 
mission coefficients for this case. 

5. In a horizontally stratified ionosphere without the magnetic field, if 
an obliquely incident wave and a vertically incident wave are reflected at  the 
same level, prove 

fob = f v  sec 80 
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where fob and f, are respectively the frequency of the oblique wave and 
vertical wave and 8, is the incident angle of the oblique wave. This is known 
as the secant law (Fig. 5A-1). 

B' 
x------ 

/ B \  

Fig. 5A-1. Geometry of an 
obliquely reflected ray in a plane 
stratified isotropic ionosphere. 

U 
T -  D 'R 

6. In Fig. 5A-1 we assume the ionosphere is horizontally stratified. Ne- 
glecting the earth magnetic field, a ray propagates from the transmitter T 
to the receiver R via the ionosphere. The actual ray path is TABCR where 
the reflection occurs at B. However, if one observes only the angle a of the 
ray above the horizontal at T and R, the ray appears to follow the path 
TAB'CR. 

Prove: the length TAB'CR of the apparent path is equal to the group path 

TABCR, or TABCR = D/sin B,,. This is known as the theorem of Breit 

and Tuve. Therefore, one only needs to know the ground range D = TR 
and the angle of incidence 0, to determine the group path. 

- 

7. Again referring to Fig. 5A-1, prove that the height h" of the equivalent 
triangular vertex is the same as the virtual height measured at  the equivalent 
vertical incidence frequency. The equivalent vertical incidence frequency is 
defined as the frequency that is related to the frequency of an oblique 
ray through secant law. This is known as the equivalence theorem. 

8. The problem of wave propagation in isotropic stratified media in general 
can be reduced to the equation of the standard form 

d2uldz2 + h2q2U = 0 

For a lossless medium q is real. Starting from this equation, prove the follow- 
ing relation: 

Im[(du/dz) u*] = constant 

where Im indicates imaginary part and * indicates complex conjugate. 
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9. In a lossless isotropic plasma, the electron density varies as a function 
of z. For a horizontally polarized wave propagating in the direction of z, 
use the result of Problem 8 to prove 

Re@ x H*) = constant 

which indicates that the power flow is constant in the lossless medium. 

10. If the WKB solution of the equation 

dzu/dz2 + h2g2u = 0 

is given by 
u = Ayi + 

where 
-iize-jh$; a h  

Yl = 4 

yz = q - 1 / 2 & h . k r ~  

(a) within the accuracy of the WKB solution, does the law of the 
conservation of energy hold if q is real and positive (hint: compute 
Im(u* duldz)? 

(b) what will happen if A = fB? 
(c) discuss the results of (a) and (b) for the horizontally polarized wave 

in Problem 9. 

11. Discuss the same questions as in Problem 10 for the case of real and 
negative q. 

12. In the ionosphere, the electron density distribution as a function of 
height is given by 

N = ah2, h 2 0 

where a is a constant. For a pulse with carrier frequency fo transmitted ver- 
tically from the ground (h = 0) at t = 0, find 

(a) the true height; 
(b) the phase height; 
(c) the virtual height. 

13. The study of oblique ionospheric propagation invariably leads us to 
the study of the Booker quartic (5.20.3). The Booker quartic may also be 
derived by assuming in each homogeneous slab the wave function depen- 
dence of the form e-j(ks+kg). Here the wave is assumed to be propagating in 
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xz-plane and its incident angle from free space is 8. Due to Snell’s law 
k, = k, sin 8. Let k, = k,q. Then the Booker quartic can be derived by 
noting k2 = kz2 + k,2 or n2 = sin28 + q2 where n is the fractive index 
given by the Appleton-Hartree formula [H. G. Booker, Propagation of 
wave-packets incident obliquely upon a stratified refracting ionosphere. 
Phil. Trans. Roy. SOC. London, Ser. A 231, 411, (1938)l. 

14. 
meridian, that the Booker quartic results in the solution 

Show, for the special case of propagation perpendicular to the magnetic 

where c = cos 8, s = sin 8, and 8 = incident angle. The wave is propagat- 
ing in xz-plane. Note that the above relation reduces to the Appleton- 
Hartree formula for the special case of vertical incidence. 
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6. Wave Propagation 
in Random Media 

6.1 Mathematical Background 

In order to study wave propagation phenomena in a random medium, 
some knowledge of the theory of stochastic process is required. In this sec- 
tion, a brief introduction of the theory will be given. The discussion will be 
illustrative rather than mathematically rigorous. For more detailed dis- 
cussion, refer to the books by Papoulis (1965) and Yaglom (1962). 

Let us now consider the experiment of tossing a die. There are six dif- 
ferent outcomes from this experiment, namely, a “one” showing, a “two” 
showing, etc. Each experimental outcome is called an event. We denote the 
set of events by Q. To every event we assign a number [(Q). This number 
E ( Q )  is called a random variable. The probability for the occurrence of one 
event, say Q,, is denoted by P(Q,). This probability can be obtained ex- 
perimentally by repeating the experiment many times. For a discussion 
on the various definitions and developments of probability theory, the reader 
is referred to, for example, the book by Papoulis (1965). In each experi- 
ment, the random variable takes a particular value [(Qi) which we call a 
realization of the random variable E .  The repeated experiments then yield 
an “ensemble” of realizations. From this ensemble, the statistical charac- 
teristics of the random variable can be determined. For example, the 
simplest statistical characteristic of a random variable is the mean value. 

308 
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F, (x)  = 

This is obtained by 

( E )  = 2 E ( Q i ) W i )  (6.1.1) 

In the experiment of tossing the die, if we let &Qi) = i, then for a fair die 
such that P(Qi) = 116, we have 

i=l 

f0 x t l  
1/6 1 _ C x  < 2 
113 2 5 x < 3  

3 5 x < 4 
213 4 5 x < 5  
516 5 5 x < 6  

.I 6 5 x  

112 

( E )  = 3.5 (6.1.2) 

We next define the distribution function of the random variable 5 by 

F€(X)  = P{E i x }  (6.1.3) 

(6.1.4) 

(6.1.5) 

of the distribution function F,(x) is defined as the density function of the 
random variable E .  We note that in general the density function may 
contain Dirac delta functions. 

The following are certain important properties of the distribution and 
density functions: 

(i) F(-co) = 0, F(+co) = 1. 
(ii) F ( x )  is monotonically increasing, and f ( x )  is nonnegative. 

(iii) Strnf(x) dx = ~ ( ( o 3 )  - ~( -m)  = 1 
--oo 

(iv) F(x) = c" f(t) df, F(x2)  - F(x , )  = $f(t) df 

and 
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where in F(x) andf(x) the subscript E has been dropped. These properties 
can be proved from the definitions and the probability theory. 

We next introduce the conditional distribution and density. For an event 
Qm such that the probability P(Qm) # 0, the conditional probability of 
another event $2, assuming Q, is given by 

where P(Q,Qm) is the joint probability for the events Q, and Q, to occur. 
The conditional distribution function for the random variable E assuming 
52, is defined by 

The conditional density function for 6 assuming SZ, is 

Given a random variable 5, then any function of this random variable is 
also a random variable. For example, 

r = g ( 5 )  (6.1.9) 

is a new random variable with distribution 

(6.1 .lo) 

(6.1.11) 

The mean value of g(E)  can be obtained in terms of the density function 
of the random variable 6. 

J --m 

In particular, if 7 = 5, we have 

( E >  = J+w xft(x) dx 
-W 

(6.1.12) 

(6.1.13) 

We note that (6.1.13) reduces to (6.1.1) for the case of the die tossing experi- 
ment because of the Dirac delta functions in the density function &(x). 
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as the conditional mean value of g(E) assuming SZ,. 
If instead of one random variable, we are given two, then any function, 

of these two random variables is also a random variable. The joint distribu- 
tion of the two random variables E and q is defined by 

F&, Y )  = P{E 9 x ,  q 5 Y }  (6.1.1 5) 

and the joint density function is 

Then the mean value of a function 

Similar definitions hold for cases where we have functions of more than 
two random variables. 

Next, let us consider the notion of random functions. In an experiment, 
to every outcome L? we assign, according to a certain rule, a function t ( t ,  SZ), 
real or complex, which depends on the parameter t .  We have thus created 
a family of functions, one for each L?. These functions are random functions 
of the parameter t .  The family is called a “stochastic process.” A simple 
example is provided by considering the die tossing experiment. If we assign 
E ( t )  = sin t for SZ = odd and E(t) = t 2  for SZ = even, we have a stochastic 
process. 

For a specific t ,  [(t, L?) is a random variable. The distribution function is 
given by 

(6.1.19) F(x, t )  = P { t ( t )  5 X }  

and the density function is 

(6.1.20) 

which are, obviously, dependent on t. These are the first-order distribution 
and density of the process 6(t) .  
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For two different values t, and t ,  let us consider the two random variables 
[(t,) and [(t,). Their joint distribution is 

and density is 

f(X1 Y x, ; tl Y t z )  = d2F(X1 Y Xz ; tl 3 t,>/ax, ax, (6.1.22) 

These are the second-order distribution and density of the process, respec- 
tively. 

In the similar manner, higher order distribution and density functions 
of the process [ ( t )  can be defined. We see that the process is characterized 
by an infinite sequence of distribution and density functions. The determina- 
tion of these higher order functions is in general very difficult. In most 
part of what follows, we shall instead concentrate on the first two charac- 
teristics f(x, t )  and f(xl x,; 1, , tz)  of the process. 

The most important statistical property of the random process is its 
mean value 

(6.1.23) 
-m 

The next simplest quantity is the autocorrelation function 

J-co J - m  

which is a function of t, and t , .  
The autocovariance of the random variable [ ( t )  is defined by 

From (6.1.24) and (6.1.25), we see that 

In the above definitions, the random process is assumed to be real. 

its autocorrelation function depends on t, - t , :  
A process t ( t )  is said to be stationary if its mean value is a constant and 
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For a complex stationary process, we have in a slightly different form 

where the subscript 5 has been dropped. 
Clearly 

@€(-TI = @€*(TI 

for the complex process, and 

ed-4 = ea(4 
for the real process. 

The autocovariance for a stationary process is 

(6.1.29) 

(6.1.30) 

The power spectrum (or spectral density) St(w) of a stationary process 
t(t) is the Fourier transform of its autocorrelation 

St(w) = J+m e-jmrpC(z) dt  (6.1.32) 
-m 

From the Fourier inversion formula, we have 

+m 

ea(z) = (1/2n) St(w)ejor dw 
-m 

(6.1.33) 

With z = 0, (6.1.33) yields 

ee(0) = (1/2n) Strn SE(w)  dw = (I E ( t )  12) > 0 (6.1.34) 
-m 

Thus the integral J-z St(w) dw is nonnegative and is proportional to the 
average “power” of the random process E(t);  hence the name power spec- 
trum. 

The stationary random process E(t) itself can be represented in the form 
of a random Fourier-Stieltjes integral with random amplitude d#(w) : 

J -m 
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Substituting (6.1.35) into (6.1.28), we have 

Comparing (6.1.36) with (6.1.33), we can write 

which relates the random amplitude d+(o) to the power spectrum of the 
process. 

One important topic in the theory of random process is the ergodicity 
of the process, A process is said to be ergodic if time averages are equal to 
ensemble averages. In our discussion, we shall always assume that the 
processes are ergodic. 

On later occasions, we shall make use of the following theorem of auto- 
correlation functions for the stationary process. The theorem was formulated 
by Khinchin (1938). Let us define a random process by 

t T ( t )  = t ( t )  for -T L t 5 T 

t T ( t )  = 0 for other values of t (6.1.38) 

The Fourier transform of t T ( t )  is 

Then the theorem states that the power spectrum of the process t ( t )  can be 
written as 

To prove (6.1.40), let us introduce the function 

(6.1.4 1 ) 

We note that due to ergodicity of the process, limT+-m @ T ( r )  is the auto- 
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correlation function of the process [ ( t ) .  The Fourier transform of e T ( t )  is 

Now taking the limit T-co on both sides of (6.1.42), we have proved 
(6.1.40). 

Up to now, our implication in the discussion of stochastic process is 
that the parameter t is taken as time. However, the results discussed above 
are equally applicable to the random functions where the parameter is the 
spatial coordinate. More generally, if the random function depends not 
only on one but on several parameters, such as the three spatial coordinates, 
we define the random function as a random field. The definitions discussed 
above still hold. But instead of a stationary process, we define a homoge- 
neous field for which the mean value of the field is still constant and 
the autocorrelation 

is only a function of rl - r2 where rl and r2 are two arbitrary spatial points. 
Moreover, if the autocorrelation is a function of the distance between 
rl and r2 , I rl - rz 1, then the field is said to be homogeneous and isotropic. 

The power spectrum is defined again by the Fourier transform of the 
autocorrelation, 

+m 

S,(k) = (IJ e i k O R  eF(R) dR 
--m 

where R = rl - rz,  and its inverse transform 

(6.1.44) 

(6.1.45) 
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We note that in our discussion above we have used Greek letters such as 
5 and E(t)  to represent random variables and random functions. When 
they take specific values in some realization, they are represented by Roman 
letters such as x and x( t ) .  However, to simplify our notation, such distinc- 
tions are not followed in our later discussions. 

This concludes our brief introduction to the theory of random processes. 
In the following discussion on wave propagation in random media, we shall 
make use of the definitions and theorems frequently. 

6.2 Wave Propagation in Random Media 

By random medium, we mean a medium whose properties are random 
functions of time and position. The randomness may be due to the fluctua- 
tions of the thermodynamic quantities of the medium, or due to the presence 
of the irregular scatterers in the medium. The medium is characterized by 
its statistical properties. When a wave propagates through this medium, ran- 
dom scatterings take place and the scattered fields interfere with each other 
in a very complex way. The resultant field also becomes random. The 
problem of wave propagation in a random medium is the study of the statis- 
tical characteristics of the wave. Many physical problems such as scattering 
of sound waves by turbulent gas, underwater acoustic wave propagation, 
scattering of radio waves by tropospheric turbulence and by ionospheric 
irregularities, radio star scintillations, twinkling of stellar images, molecular 
scattering of light, radiative transfer, and fluctuations of energy levels in a 
semiconductor all belong to this category. Our discussion will concentrate 
on the radio waves. However, the same techniques used in our discussion 
can be applied immediately to other physical problems. 

There are two different aspects in  the investigation of wave propagation in 
a random medium. One is to consider the medium as a continuum. The 
properties of the medium are characterized by their dielectric permittivity. 
The other is concerned with the scattering of waves by randomly distributed 
discrete scatterers. Our discussion will be mainly on the first aspect. In most 
cases, we shall only talk about high frequency electromagnetic waves such 
that the period of the wave is much shorter than the typical time constant 
of the random variation of the medium. Therefore, we shall take the per- 
mittivity of the medium as a random function of position only. 

The major task we shall be concerned with is to solve a partial differential 
equation with random coefficients. This indeed is a difficult problem. For- 
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tunately in practice in most situations the randomness of the medium can be 
considered as weak, i.e., the random part of the dielectric permittivity is 
small compared with its average value. For those cases, we can apply some 
perturbation techniques to obtain approximate solutions for the problem. 
In the following sections, we shall first study the “Born approximation” 
solution for the various aspects of the problem. This approximation is also 
called the single scattering approximation because it only takes into account 
the effect of waves being scattered once. In this context, we shall discuss the 
power scattered by irregularities, fluctuations, and correlations of phase and 
amplitudes of the waves in random media. Some applications will also be 
discussed. Higher order approximations correspond to taking multiple 
scattering into consideration. We shall discuss certain techniques in dealing 
with multiple scatterings. In particular, a diagram technique borrowed 
from field theory will be used to study the propagation of coherent waves 
in the random medium. The technique is still in its developing stage. Lots 
of unanswered questions still exist. We shall keep our discussion to the 
well-developed elementary part of the theory. 

6.3 Scattering of Electromagnetic Waves by Irregularities 

Suppose in a uniform medium, irregular scatterers are randomly distrib- 
uted in a localized region. Due to the presence of irregularities, the dielectric 
permittivity of the medium in the irregular region is expressed as 

(6.3.1) 

where c0 (K) is the average dielectric permittivity and is the fluctuating 
part, and is a random field of position. Note that the quantities in general 
will depend on the frequency o for dispersive medium. dE(r) will be assumed 
to be a homogeneous random field with zero mean value. We also assume 
throughout our discussion that I de I < eO(K) ,  corresponding to weak 
random irregularities. The susceptibility for this region is given by 

The dielectric polarization is related to the electric field through x .  We 
have (Chapter 2) 

P(r> = &oX(r)E(r) 
= [EO((K) - 1) + d m l w  (6.3.3) 



318 6. Wave Propagation in Random Media 

The average and fluctuating parts of the polarization are, respectively, 

(6.3.4) 

dP(r) is due to the presence of the irregularities. In (6.3.4) we have taken the 
electric field E as the incident field in the absence of the irregularities since 
the scattering due to the fluctuating part of the electric field is of second 
order and is neglected. This corresponds to the so-called Born approxima- 
tion. 

Fig. 6.3-1. Geometry showing transmitter at T, receiver at R and scatterer at S 
in a volume v'. 

Let us now consider the geometry shown in Fig. 6.3-1. A linearly polarized 
spherical wave radiated from the transmitter T falls on the localized region 
of irregularities, volume v'. We like to calculate the scattered power received 
at a point R. To do this, we first need to know the scattered field generated 
by the polarization dP(r). The incident field at  a scatterer S(r') is given by 

E = (Eo/r,)ePrl (6.3.5) 

where k = d ( K ) k ,  is the propagation constant of the medium in the 
absence of the irregularities and rl is the distance between the transmitter T 
and the scatterer S. The fluctuating part of the polarization is obtained by 
substituting (6.3.5) into (6.3.4) 

dP(r) = ds(Eo/rl)e-jkrl (6.3.6) 

The corresponding polarization current is jodP. Hence the vector potential 
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at the receiving point R due to this fluctuating polarization current is given 
by the integral (Chapter 2); 

where ( E )  = E ~ ( K )  and r2 is the distance between the scatterer and the 
receiver. The integral is over the volume d. 

We shall assume that rIo and r20, the distances of T and R from the origin 
0, respectively, are much greater than the dimension of the region where 
irregularities exist. From Fig. 6.3-1, we can make the following approxima- 
tions for the distances. 

(i) l /rlr2 N l/rlorzo 

(ii) rI = r10 + (rl - rlo) N rIo - PIo r' 

r2 = r20 + (r,  - r20) N r20 - PZo * r' 

(6.3.8) 

where PIo and P20 are the unit vectors along the direction OT and OS, respec- 
tively. 

Using (ii) of (6.3.8), we have 

rl + r,  = rIo + rzo - (PZo + Plo) r' (6.3.9) 

where Plo + P20 is the vector that bisects the angle TOR. 
Substituting (6.3.9) into (6.3.7), we obtain 

where ki  and k, are the wave vectors of the incident wave and the scattered 
wave propagating in the direction TO and OR, respectively. This is 

ki = -kPlo and k, = kP,O (6.3.1 1 ) 

The corresponding magnetic field and electric field of the scattered wave 
can be obtained through the relation B = l7 X A and the Maxwell's equa- 
tions. Since the time-averaged scattered power at the receiver is due to the 
far field components of B and E, we only need these expressions. We 
have, for far field, the electric field in the &direction (with z-axis taken 
along Ed, 

e-jk(rlo+rzo) 

Z 
k2Eo 

E , = - -  sin 0 
4n rlorZ0 

(6.3.12) 
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where 
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z = J (d&(r')/(&)) ejb*r' dv' (6.3.13) 

and b = k, - ki.  

V' 

and p is the angle between Eo and the unit vector 
The scattered power density at  R is 

(6.3.14) 

where 7 = (,uo/(&))1/2 is the intrinsic impedance of the medium in the 
absence of the irregularities. The power scattered per unit solid angle in the 
direction of R is therefore 

The power density of the incident field is 

Therefore the power scattered per unit solid angle, per unit incident power 
density, per unit volume is 

(6.3.15) I 112 n2 sin2 p 
sin2p I = v,i14 

k4 a=---- 
(4n)Zv' 

where il is the wavelength in the medium. 
The quantity a is called the scattering cross section and is a measure of 

the strength of the scattered power in the direction of R. 
We note from (6.3.13) that the integral I is the Fourier transform of the 

homogeneous random field de(r)/(&) in the limit of u' --f co. Applying 
Khinchin's theorem, we have 

(6.3.16) S,(b) = lim vI I Z(b) l 2  

where S,(b) is the power spectrum for the random field A&(r)/(e), evaluated 
at  b. 

1 

v'+m 

Therefore, (6.3.15) becomes approximately 

CY = {n2 sin2 /3/i14})s,(b) (6.3.17) 

The direction b is called the mirror vector since it reflects the incident 
direction to the receiving direction. We see then from (6.3.17) that the 
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power scattered in a particular direction depends on the components of the 
spectrum of the irregularities in the associated mirror direction. 

In the particular case of back-scattering such that @ = 4 2  and k, = -ki , 
(6.3.17) reduces to 

a B  = (n2/124)~,(2k,) (6.3.18) 

If we assume an autocorrelation function of the form 

e b ,  Y ,  z )  = 

where ( ( A E ) ~ )  is a constant. The power spectrum is 

S,(2k,) = ( 2 ~ ) ~ ' ~  ( 1 $ I ') abd exp[-2(kz2a2 + k,2b2 + kZ2 d2)] (6.3.20) 

where (kz ,  k, ,  k,) = k,. Substituting (6.3.20) into (6.3.18), the back- 
scattering cross section for this case is given by 

UB = ( 2 7 ~ ) ~ ' ~  7 ( I 0 I ) ubd exp[-2(kz2a2 + k,2b2 + k,' d2) ]  (6.3.21) 
n2 As 

Let us now apply (6.3.21) to a homogeneous, isotropic plasma of density 
N,  the dielectric permittivity is 

& = EO(1 - wp2/w2) 

If the plasma density has a fluctuating part due to the presence of the 
irregularities, N = No + AN(r) ,  then the dielectric permittivity is given by 

E = ~ 0 ( 1  - w$,/w2) - EO(W&/O~)(AN/NO) (6.3.22) 

where opo is the plasma frequency corresponding to No.  Comparing (6.3.22) 
with (6.3.1), we have 

( K )  = 1 - wio/w2, ds(r) = - so(w~o/w2)(AN/No)  (6.3.23) 

Therefore, (6.3.21) can be written for this plasma medium 

x exp[-2(kz2a2 + k,2b2 + kZ2 d2) ]  

- - do ( 1 $ 1 ') abd exp[-2(k,2a2 + k,2 b2 + k,2 d2) ]  (6.3.24) 
4 6  c4 
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We note that (6.3.24) is valid for w # wpo .  
For the special case in which the irregularities are of spherical shapes, 

a = b = d = L, (6.3.24) reduces to  

This is the back-scattering cross section which is the back-scattered energy 
flux per unit solid angle, per unit incident power density, per unit volume, 
from an  isotropic plasma having isotropic irregularities whose correla- 
tion function is given by (6.3.19) with a = b = d = L. 

Hence, in this section, using Born's approximation, we have derived the 
scattering cross section of electromagnetic waves due to  random irregulari- 
ties. The back-scattering cross-section formula has been used in the inter- 
pretation of radar reflection data from the aurora (Booker, 1956) and many 
other experiments. 

Next, as an example of applying (6.3.17), let us calculate the scattering 
cross section for electromagnetic waves scattered by the thermal fluctuations 
in an  isotropic plasma. For the plasma, (6.3.17) can be written as 

(6.3.26) 

where S,@) is the power spectrum for the plasma density fluctuation 
(ANIN,). In Chapter 3, we have computed the plasma density fluctuation 
due to plasma waves using some simple model. The power spectral for the 
density fluctuation due to  electron plasma wave alone is given by ' 

where w(p) is the dispersion relation for the plasma wave. For  high fre- 
quency incident waves, we can neglect the time variation of the density 
fluctuation. Hence, we take the inverse Fourier transform of (3.6.16), and 
setting the time interval equal t o  zero, we have 

(6.3.27) 

When the motions of ions are included, the total electron density fluctuation 
is the sum of the fluctuation due to  electron plasma wave and that due to  
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ion plasma wave. The total power spectrum can be obtained by adding 
(3.6.16) and (3.6.17). We have 

(6.3.28) 

where AD is the Debye length defined by AD = (&oT/Noe2)*’2. In deriving 
(6.3.28), we have taken y = 1 to make our formula coincide with that 
derived from kinetic theory. 

Substituting (6.3.28) into (6.3.26), we obtain the scattering cross section 
for electromagnetic waves due to the density fluctuation of the plasma 

(6.3.29) 
n2 sin2 , ~ ( w , , / o ) ~  
~ ~ ( 1  - w;/co2)>” 

I + 10’ I b 1’ No 
2 + AD2 I b 1’ a =  

Since I b I = 4nk’ sin(B/2) where 6 is the angle between the incident direc- 
tion and scattered direction, and 1 = 2n/[k0(l - w ~ ~ / w ~ ) ~ / ~ ] ,  (6.3.29) can be 
put in the form 

[4nAn sin(B/2)]2 + A2 
[4nAD sin(B/2)]2 + 2A2 

a = a,No (6.3.30) 

where 

a, = b 0 e 2  sin a/47~rn,)~ = 8 x sin2 a (m)z (6.3.31) 

is the classical scattering coefficient for a single free electron. 
For il < 4nAD sin(B/2), (6.3.30) reduces to  a = Noo,. Since the wave- 

length is very small compared to  the Debye length, the wave sees individual 
electrons in the plasma as if they are independent scatterers; hence the 
cross section is the sum of individual free electron cross sections. For 
sufficiently large values of 1, (6.3.30) reduces t o  (T = &a,N. Due to the col- 
lective action of the electrons in the plasma, the cross section is thus reduced. 

An experiment that takes advantages of the above scattering process is 
called the “incoherent scattering” experiment. Essentially the experiment 
involves the following procedure. A strong electromagnetic wave is sent 
into the plasma; then the scattered signal in certain directions is received. 
From the power spectrum of the received signal, certain parameters of the 
plasma such as density, temperature, velocity, etc., can be determined. The 
technique has been used successfully in probing the ionosphere. The theory 
behind the experiment is essentially described in the preceding paragraph, 
although one important modification must be made. In deriving a scattering 
cross-section formula, the time variation of the fluctuating density must 
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be taken into account. We shall not go further into this subject here and 
interested readers are referred to various papers (Farley and Dougherty, 
1960; Fejer, 1960; Sitenko, 1967). 

In previous discussions of this section, the background medium was 
assumed to be isotropic. It is now of interest to generalize the results to 
include the case of anisotropic background. The mathematical technique 
to be used is fairly general and can be used to study scattering from ir- 
regularities imbedded in any anisotropic medium. However, in order to be 
specific, the background is supposed to be a homogeneous magnetoplasma. 
This is the case of interest in ionospheric studies and laboratory plasma 
experiments. Due to the presence of irregularities, the dielectric tensor devi- 
ates from the mean value and becomes a random function of position; i.e., 

E = (E) + do (6.3.32) 

where in a weakly random medium I d r  I is small when compared with 
1 (E) 1. The dielectric tensor in a cold, lossless, electronic plasma is given by 
(4.5.14). The ionic contributions can be ignored if the radio frequency is 
high when compared with ionic plasma frequencies. Let us also assume that 
the perturbations in E are caused entirely by fluctuations in electron density. 
Then 

dc(r) = e0 dX(r) = dX(r) (6.3.33) 

According to (6.3.32), LIE and consequently dx and dX have zero mean. 
The deterministic tensor M is given by 

1 - YXZ 

- Y,Yz + jY, 
- YxYu + jY, 

1 - Yu2 
- YuYz - jY, 

- YxYz - jY, 
- YJZ + jyx 

1 - Y> 
(6.3.34) 

1 M = -  

With reference to Fig. 6.3-1, let a spherical wave be transmitted at T with a 
given characteristic polarization propagating toward the scattering volume 
1.". At the scatterer S, the electric field of the incident wave is given by 

Ei(r') = (Ao/rl)aie-jki"l (6.3.35) 

where ai is the normalized characteristic vector of mode i. It should be 
cautioned that ki is the propagation vector of ith mode and its corresponding 
energy propagation is along rl . The angle between ki and vg (11 rl) is denoted 
by ai which is zero in any isotropic medium but not necessarily zero in an 
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anisotropic medium. The phase factor of (6.3.35) can be alternately written 
as 

ki rl = kir, cos ai (6.3.36) 

The incident electric field (6.3.35) at S induces a polarization density due to 
electron density fluctuations. 

dP(r') = so dx(r') Ei(r') (6.3.37) 

The associated polarization current density is jo LIP, or 

d J(r') = jws,  dX(r') Ei(r') 

= jws,,Ao dX(r')(M ai/rI)eiki"1 (6.3.38) 

The induced current (6.3.38) in the volume d radiates and gives rise to a 
scattered field at  R.  The scattered field, like the incident field, is assumed to 
propagate in the background homogeneous medium. Such an assumption 
is identical to the first scatter or Born solution to be discussed later on and 
is valid when the medium is weakly random. The problem of excitation of 
fields in an anisotropic medium was discussed in Section 2.13. Making 
use of these results, the scattered field at  R can be expressed as 

Es(rzo) = -imp,, r(r,O, r') . d J(r') dr' (6.3.39) 1.. 
where the dyadic Green's function in a lossless magnetoplasma is given by 

* 
e-jk-(raO-r') (6.3.40) 

1 
r(rZo, r') = - 

( 2 7 ~ ) ~  5 k2 - ka2 

The evaluation of the integral in (6.3.40) in general is very difficult. Since in 
our case the receiver R is very far away from the scattering volume v', the 
inversion in k-space may be carried out asymptotically. The result is, ac- 
cording to Section 2.14, 

The summation is carried out over all characteristic modes and those 
saddle points of the dispersion surface whose normal is in the direction 
r20 - r'. In a cold magnetoplasma, there are only two modes, but there 
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may be as many as three saddle points on the dispersion surface whose 
corresponding group velocities are parallel. The exponential phase factor 
in (6.3.41) must be interpreted in the same manner as that of (6.3.351, 
i.e., k,'s of (6.3.41) must be those values of the propagation vector whose 
corresponding group velocities are all parallel to the vector r20 - r'. There- 
fore, k, as well as a,, K ,  , and a, all depend on r'. If the angle subtended by 
the scattering volume v' is small at T and R, we may assume k,,  a,, K,, 
a,, ai, and ki to take constant value. Making such an assumption, the 
scattered electric field (6.3.39) now becomes 

e-jk,.(r80-r')-jk*.r, dr/ 
4n , ka(l K ,  sec a, s zl, rl I r20 - r' 1 

ko2Ao C,a,(a,* - M - ai) 
EAr2O) = - c 
The approximations (6.3.8), (6.3.9) can be used again in the above expres- 
sion to produce 

For later convenience, we write (6.3.42) as 

Es(r2O) = c aaEu(rzO) 
0: 

(6.3.42) 

(6.3.43) 

The associated scattered magnetic field is 

where the symbol 17 operates on r20 coordinates. Carrying out the operation, 

(6.3.44) 

The scattered time-averaged power flow density at  R is just the Poynting 
vector. Let the process A X  be stationary with the correlation function B, 
i.e., 

B(rl' - r i )  = (AX(rl') AX(rz'))/((AX)z) (6.3.45) 

Let the difference of two propagation vectors of two scattered modes be h: 

h = k, - kp (6.3.46) 
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Then, the statistically averaged Poynting vector involves a double volume 
integral of the form 

g(6) ei(ku-k3.5 . e j h * q e  dq 

where coordinate transformations 6 = rl’ - r2’, q = r,’ have been in- 
troduced. If the dimension of the scattering volume is much larger than 
l/h, the integral with respect to q vanishes unless h = 0, i.e., k, = k,. 
Physically then if the differential phase shift of the two scattered modes is 
large over the scattering volume, the total scattered energy flow is equal to 
the sum of the partial energy flows in the individual ordinary and extraordi- 
nary modes. When this is the case, the statistically averaged Poynting vector 
reduces to 

where S, is the power spectrum of the process A X  defined by 

Sx(k) = J B ( S )  eik.6 dg 

The power density of the incident field is 

Re[~02/2~/4r~0)21 I ai X O r i  X ai*) I 

(6.3.48) 

The scattered power density per unit solid angle is just (r20)2S. The scattering 
cross section is defined as the scattered power density in ath mode per unit 
solid angle per unit incident power in the ith mode per unit volume, or 

kO4 Re I a, x (k, X a,*) I I a,* M ai l 2  
( 4 ~ ) ~  k,2 I K ,  1 sec2 a, 

.o = - 
Re I at X (ki X at*) 1 l a  

(6.3.49) 

We note that the vector 

Re[a, X (k, X a,*)] = (a, - a,*)k, - Re(a, k,)a,* (6.3.50) 

is parallel to the ath mode Poynting vector. We wish now to evaluate 
this vector. The characteristic vector au is normalized so that its magnitude 
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transverse to k, is unity. In a coordinate system in which k, is along the 
z-axis and B,, is the steady magnetic field vector in the yz-plane (see Fig. 
4.14-1), it is given by 

a, = (l /[ l  + I R ,  1'l1'')[~R, + 9 + %Q,l (6.3.51) 

where R and Q are both pure imaginary and are given by (4.14.14) and 
(4.14.16), respectively. The second term on the right-hand side of (6.3.50) 
is then computed to be 

W a ,  k,)a,* = [ k , N  + I R,12)lUQ,Ru + 2 I Q, 1' I Ru 1'1 

Using this expression, (6.3.50) can be reduced to 

Re 1 a, x oC, x a,*) 1 = I --EQ,R,k,/U + 1 R,  12)  i- fkU 1 
= k, sec u, (6.3.52) 

The last equality is obtained because the angle between k, and the Poynting 
vector is a,. Similar computations for the incident wave yield 

Re I ai x (ki x ai*) I = ki sec ui (6.3.53) 

Substituting (6.3.52) and (6.3.53) in (6.3.49), we obtain finally 

This is the scattering cross section for an ith incident mode scattered into the 
ath mode. The quantity a,* - M . a, can be viewed as the projection of the 
scattered mode on the induced polarization and is in general complex, 
but it becomes real if scattering takes place in the magnetic meridian 
plane. It should be remembered that ki is the wave vector of the incident 
wave whose energy propagates from T to 0 of Fig. 6.3-1 and k, is the 
wave vector of the scattered wave whose energy propagates from 0 to R.  
However, the direction k, - ki can still be identified as the mirror direc- 
tion since a perfect reflector normal to this vector will reflect energy incident 
from the transmitter at T to the receiver at R.  Consequently, the scattering 
is still dependent on the Fourier content in the spectrum of N in the mirror 
direction. The scattering process effectively picks out those irregularities 
in the fluctuation Fourier spectrum that are in the mirror direction ; all other 
irregularities are ineffective as far as the scattering is concerned. The ex- 
pression (6.3.54) is rather involved and has been studied numerically in 
detail by Simonich and Yeh (1971). 
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6.4 Fluctuation of Electromagnetic Waves in Random Media-Geometrical 
optics 

In the previous section, the power scattered by localized random irreg- 
ularities has been calculated in the limit of Born’s approximation. In many 
cases, the fluctuations of the other propagation parameters of the wave 
such as amplitude, phase, direction of arrival, and frequency are of prac- 
tical importance. On the one hand, these are pertinent parameters in de- 
signing a transmitting or a receiving device; on the other hand, they may 
yield valuable information about the statistical characteristics of the me- 
dium. Therefore, a large portion of the literature of wave propagation in 
random media has been devoted to this area. In the next three sections, we 
shall discuss the theory as well as some applications of this topic. 

Let us consider a random medium occupying the infinite half space 
z > 0. Again we assume the medium is characterized by the dielectric 
permittivity given by (6.3.1). Starting from the Maxwell’s equations, as- 
suming time dependence ejat, we can write the wave equation for the 
electric field in the form 

Before we go into the discussion of fluctuations of waves, we note that (6.4.1) 
can be taken as the starting equation in the discussion of scattering from 
irregularities instead of the procedure described in the last section. From 
(6.4.1), scattered electric field can be obtained directly. 

We now come back to the problem of this section. Let us assume that the 
wavelength il is small compared to the typical dimensions of the irregularities, 
1. l n  this case we can neglect the last term of (6.4.1 ) and we obtain instead of 
the vector wave equation three scalar wave equations, 

c72u + k02(&/E,)U = 0 (6.4.2) 

where u is any one of the components of E. This assumption is equivalent to 
neglecting the effect of depolarization. 

Setting 
u(r) = ~(r)e+(’) (6.4.3) 

and substituting it into (6.4.2) under the assumptions of geometrical optics 
(Chapter 5 )  we obtain 

(6.4.4) 
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Again we assume in E = E,(K)  + da(r) ,  1 LIE 1 < s,(k). We then set 

s = so i- s, 
l n A = l n A , + x  

(6.4.5) 

where S,  and x are of the order of As .  

smallness, we obtain for the zeroth order 
Substituting (6.4.5) into (6.4.1) and equating terms of the same order of 

(OS,)’ = k 2 ( K )  = k2 

02So + W In A ,  . OS, = 0 
(6.4.6) 

and for the first order 

2VS0 - VSl = k O 2 [ d ~ ( r ) / e o ]  

V2S,  + W In A,  - OS, + 2Vx - VS,  = 0 
(6.4.7) 

where I OS, 1 < 1 VS, I or I OS, I < k has been assumed. This implies that 
the change of phase in one wavelength is very small. 

We now consider a plane incident wave in the z-direction. Thus the so- 
lutions of (6.4.6) are So = kz and A ,  = constant. Equation (6.4.7) becomes 

as,/az = 4k[dE(r)/(E)I 

PS, + 2k aX/az = o 

where ( E )  = E ~ ( ( K ) ) ~ / ~  as before. Integrating (6.4.Q we have 

(6.4.8) 

(6.4.9) 

where 

Equations (6.4.9) and (6.4.10) relate the fluctuations of the phase and 
amplitudes of the wave to the fluctuating part of the dielectric permittivity. 
Obviously, (S, )  = ( x )  = 0 since (LIE) = 0. In the following we shall com- 
pute the mean square fluctuation of the phase. To do this, we first derive the 
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expression for the autocorrelation of S,  in the plane z = L. We have, 
from (6.4.9) 

es(x1 - x2 7 Y ,  - Y , ;  L )  = (Sl(X1 Y Y1 Y L)Sl(XZ > Yz 9 L ) )  

x dz, dz, (6.4.12) 

The notation es(x,  - x,, y, - y , ;  L )  indicates that the correlation is com- 
puted at the plane z = L. For the case dE(rj is a homogeneous field, the 
autocorrelation is a function of r, - r2, (6.4.12) can be written as 

Changing the variables of integration in (6.4.13) 

we have 

Changing the order of integration and carrying out the z,-integration, we 
obtain after some algebra 

(6.4. i7) 

where e,(t,q, 5') = e,(t, qy - 5 )  has been used. 
Since e,(E, 7, 5 )  becomes very small as 5 increases beyond the correla- 

tion length, (6.4.17) can be approximately written for large value of L as 
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If the power spectrum of e,(E, q, 5 )  is S,(K, , K 2 ,  K J ,  then 

tm 

-CU 

We can define a two-dimensional spectral density in the plane z = 5 by 

Fe(Kl ,  K , ,  5 )  = JJ e,(5', q, 5)ej(glE+gprl) d5 dq 

+- 
(6.4.20) 

-03 

Therefore, from (6.4.19) and (6.4.20), we have 

and 

Applying this definition to (6.4.1 8), the two-dimensional spectral density 
of es(X, Y , L )  becomes 

(6.4.23) 

Equations (6.4.18) and (6.4.23) relate the autocorrelation and two- 
dimensional power spectrum of the phase fluctuation of the wave in the 
plane z = L to the autocorrelation and power spectrum of the dielectric 
permittivity, respectively. 

Now, a few words about the range of validity for the geometric optics. 
First of all, in order to apply this method, we should have 

A < l  (6.4.24) 

where 1 is the dimension of the irregularities. This length is closely related to 
the correlation length of e,(r). In addition, we should be able to neglect 
the diffraction effects. For an obstacle of dimension I ,  the angle of divergence 
of the diffracted wave is of the order of 8 N l / l .  At a distance L from the 
obstacle the size of the diffracted image will be of the order of OL - LA/L 
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In order for the geometrical shadow of the irregularity not to be appreciably 
changed, we require 

L1/1< I 

or 
(1L)"Z < I (6.4.25) 

Equations (6.4.24) and (6.4.25) give the range of validity of the applica- 

The'mean square fluctuation of the phase is obtained by setting 5 = 9 = 0 
tion of geometric optics. 

in (6.4.18): 

We note that this fluctuation increases with the distance the wave has trav- 
eled in the medium. 

Similar computation can be made for the amplitude function x.  

6.5 Fluctuation of Electromagnetic Waves in Random Media-Wave Theory 

We now turn to the wave theory of propagation in random media. The 
starting point of this section is again the scalar wave equation 

PU + ko2(&/so)u = 0 (6.4.2) 

Let us define a new function y(r) by 

u(r) = uo(r)eV(') (6.5.1) 

where uo(r) satisfies (6.4.2) with ko2 replaced by 

k2  = k02(E)/&0 (6.5.2) 

It is the solution of the wave equation in the absence of the random ir- 
regularities. 

We note by comparing (6.4.3) and (6.5.1) that 

(6.5.3) 

where x(r) and S,(r) are the fluctuations of the logarithmic amplitude and 
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phase of u(r), respectively. Substituting (6.5.2) into (6.4.2), we obtain for y 

V2y + (Vy)2 + 2 3 -  * VY, + k 2 ( e )  - 0  - (6.5.4) 
A& 

u0 

Setting 
y = vw (6.5.5) 

and substituting it in (6.5.4), we obtain 

v P2w + (V2v)w + (Vv)2w2 + 2(Vu,/u0) * V ( v w )  

+ (v2 VW + ~ V W  VV + 2 VV) VW + k*(d&/(&)) = 0 (6.5.6) 

Since now instead of y, we have two functions v and w, we have an 
additional freedom in choosing v and w. In particular if we require 

v Vw + w Vv + 2(Vv/v) + 2(VUO/UO) = 0 (6.5.7) 

then (6.5.6) becomes 

V 2 w  + [V2 In v - (17 In v ) ~ ] w  + k2(A&/(&)) /v  = 0 (6.5.8) 

which is void of the term Vw. Equation (6.5.7) yields after integration 

2 1 n v + v w = - 2 2 n u 0  (6.5.9) 

Equations (6.5.8) and (6.5.9) are equivalent to (6.5.4). They are two 
coupled nonlinear partial differential equations. The first-order approxima- 
tion gives the so-called Rytov’s solution. To derive it, we neglect the non- 
linear term vw in (6.5.9) and obtain 

In = - In uo or v = l /uo (6.5.10) 

Substituting (6.5.10) into (6.5.8), we have 

V 2 w  + k2W = -k2(dE/(&))U0 (6.5.1 1 )  

where (6.5.2) has been used. The soIution of (6.5.11) can be written in 
terms of the Green’s function (2.14.15) 

w(r) = k2 [Aa(r‘)/(&)]u0(r’)G(r, r’) dr‘ (6.5. J 
where 

G(r, r’) = I e-jk 1 1-1‘1 
4 7 c l r - r ’ (  (6.5. 
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Combining (6.5.5), (6.5.10), and (6.5.12), we obtain for the Rytov’s ap- 
proximation 

y ( r )  = (k2/4n) dr[u,(r’)/u,(r)][d~(r’)/(~)]e-j~I~-~‘I/) r - r’ I (6.5.14) 

Higher order approximation can be obtained by integrating (6.5.8) and 
(6.5.9). The function uo(r) is the incident wave, It can be a plane wave, a 
spherical wave, or even a beam wave, depending on the source and boundary 
conditions of the problem. In this section, we shall discuss the amplitude 
and phase fluctuations of a plane wave propagating in the positive z-direc- 
tion. For this case 

uo(r) = A,e-j“ (6.5.15) 

and (6.5.14) becomes 

where the X’ and y‘ integration extend to i c o  while the z’ integration is 
from 0 to z. 

In the case we are interested in, b < 1. As discussed in the last section, the 
angle of scattering by the irregularities is of the order of A / l  which is very 
small. Therefore we can make the so-called “forward scattering” assumption 
under which the contribution of the scattered field at an observation point r 
comes mainly from the scattering from irregularities in a small cone with 
vertex at r, with axis directed towards the scatterer, and with aperture 
8, = 1/1, Q 1. Therefore, in the integrand of (6.5.16), we can approximate 

in the denominator and 

I r - r’ 1 = (z - z’)(l + [(x - x ’ )~  + (y - y’)’I/(z - z ‘ ) 2 ) 112 

(z - z’) + [ (x  - X’y + 0, - y’)21/2(z - z’) 

in the exponential. With these approximations, (6.5.16) becomes 

To study the fluctuations of the phase and amplitudes of the plane wave, 
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we take the real and imaginary parts of (6.5.17). We have 

S,(r) = Im y(r) 

= (k2/4n)  1 dr‘ sin{k[(x - x’), + (y - y’)’]/2(z - z’)} 

x [ M r ’ ) / ( & > l / ( z  - z‘) (6.5.19) 

The autocorrelations for x and S, are then easily formed from (6.5.18) 
and (6.5.19): 

x @ , ( e l 9  z1 - z1’)@2(ez Y z2 - z2’) (6.5.20) 

where 

sin [@/2(z - z‘)] 
1 1 

Gl(@, z - 2‘)  = - - 
4 n  z -  z‘ 

(6.5.22) 
COS[@2/2(Z - z‘)] @,(&I, z - 2’)  = - ___ 

1 1 
4 n  2 -  2‘ 

In (6.5.20) and (6.5.21) we have normalized distance with respect to the 
wavelength such that k x  -, x, k y  -+ y ,  k z  + z,  and k 3  d x  dy dz + d x  dy dz. 

TO evaluate (6.5.20) and (6.5.21), let us introduce relative coordinates 

E = XI‘ - x,’, 17 = y,’ - y2‘, 5 = z,‘ - z z  ’ (6.5.23) 

and center of mass coordinates 
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Then 

For the case where the observation point is at (0, 0, L)  such that x1 = y ,  = 0 
and z1 = L, (6.5.20) and (6.5.21) become the mean square fluctuations of 
amplitudes and phase of the wave at  z = L, respectively. We have 

x Jr JI iJ dE dq dX dY dz: dz,’ 

Since e. is not a function of X and Y, the X ,  Y integration of (6.5.26) and 
(6.5.27) can be integrated immediately to yield 

where 
+m 

--m 
(6.5.30) 

Z2 = s,” 1: dz,’ dz,’ df dy Q1 [ (P  + qz)1/2, 2L - (z,’ + z i ) ]  

--m 
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In deriving (6.5.28) and (6.5.29), the formula 

and 

-m 

x @ * [ ( ( X -  5/2)2 + ( Y  - q / 2 ) 2 ) " 2 ,  L - z,'] dXdY 

= S{@l[(P + q Y ,  Zl' - ZZ'I - @ , [ ( E 2  + q Y 2 ,  2 L  - (Zl '  + z,')l} 

(6.5.33) 

have been used. 

to C and 2. Since ee is not a function of Z, we have 
Il and Z, can be simplified further by changing the variables zl' and 2,' 

-m 

-m 

and 
+m 

-m 

But 

sin[ E2 - k q 2  
2(2L - 2 2 )  ] d Z  
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where 

in Random Media 339 

(6.5.37) 

is the sine integral. 
Therefore (6.5.35) becomes 

+W 

For the random medium with an isotropic random field, QJt, q, 5 )  is a 
function of r' = ( P  + q2 + 52)1'z only. Therefore (6.5.34) and (6.5.38) can be 
integrated over the angular dependence in a cylindrical coordinate system 
(e ,  8 ,  q). We obtain 

11 = 8 L jr d5 Jr$- sin(e2/25)e,(r') e de (6.5.39) 

(6.5.40) 

The inner integral of (6.5.39) can be approximated further in the following 
manner. Let q = e2/25; then by integration by parts, 

(6.5.41) 

The integrand is proportional to (l/12)ee where I is the correlation length. 
Since the size of the irregularities is assumed to be much greater than the 
wavelength, the normalized correlation length I > 1. Therefore the integral 
in (6.5.41) can be neglected as compared to e,(O,  0, 5) .  With this approxi- 
mation, (6.5.39) becomes 

(6.5.42) 

Substituting (6.5.40) and (6.5.42) into (6.5.28) and (6.5.29), we have the 
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fluctuations in amplitudes and phase at  the point (0, 0, L ) :  

(6.5.43) 

(6.5.44) 

If we change back to the original length, we have 

where 
t = ke2/4L (6.5.47) 

We now introduce a wave parameter defined by 

D = 4L/klz (6.5.48) 

where I is the correlation length of e&(r'). 

hofer diffraction region. Since the major contribution to the integral 
First, let us consider the case for which D > 1 ; this is called the Fraun- 

03 

I = 1 Si(t)p&(r') dt 
0 

comes from e 5 1 (since the correlation will decrease rapidly for distance 
greater than I), the corresponding value of t is 5 k12/4L = 1/D Q 1. 
Therefore Si(f) in the integrand can be approximated by 

Si(t) --7c/2 for t Q 1 

The integral becomes 

which can be neglected as compared to the first term in (6.5.45) and (6.5.46). 
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Hence for this case, (6.5.45) and (6.5.46) reduce to 

J o  

For a Gaussian correlation e8(0, 0, 5 )  = e-t2/z2, 

(x’) = (SI2) = 2/7d/8(1 A&/(&)  [‘)k2Ll, D > 1 (6.5.50) 

The amplitude and phase fluctuations are the same and both increase with 
the distance the wave has traversed in the medium. 

Next, we consider the other extreme case for which D < 1. This is the 
case where (4L/k) < l2 which corresponds to the range of applicability 
of geometrical optics. For this case, the diffractional effect is not important. 
We integrate the integral Z by parts 

Z = [t Si(t) + cos t]e,(r’) >, - Jw [t Si(t) + cos t] ( ~ ~ , ( r ‘ ) / a t )  dt c 0 

00 

= -e,(O, 0, 5 )  - 1 [t Si(t) + cos t ]  (ae,(r’)/at) dt 
0 

The derivative de,/at is of the order DeE(O, 0, 5 ) ;  therefore the integral 

Jrn [t Si(t) + cos t] (@&(r’)/at) dt 
0 

[t Si(t) + cos t ]  (&,(r’)/at) dt 

5 &,((I, 0, 5 )  f i D  [t Si(t) + cos t]  dt 
0 

Since (l/D) > 1, the asymptotic expansion for Si(x) can be used. We have 

cosx  s inx  
Si(x) = - - - - 

X 

Therefore (6.5.51) becomes 

Srn [t Si(t) + cos t] (ae,(r’)/at) dt 5 D2e,(0, 0, 5 )  (6.5.52) 
0 
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Hence we have 

I N -ee(O, 0, 5 )  for D < 1 (6.5.53) 

The fluctuation in phase can now be written as 

Comparing (6.5.54) with (6.4.26), we see that they are identical. Thus the 
result agrees with that derived from geometric optics. This is expected since 
the diffractional effect is neglected in deriving (6.5.54). 

As for the amplitude fluctuation, we see that if (6.5.53) is substituted into 
(6.5.45), (x') = 0. We must then compute the integral I to a higher order 
to obtain a nontrivial expression. This can be done in a manner similar to 
that outlined above. We will only write the result 

where VTz = aZ/aE2 + d2/dq2 is the transverse Laplacian. 
For the intermediate range of the wave parameter, no general expressions 

can be obtained for (SI2) and (xz) other than those shown in (6.5.45) and 
(6.5.46). However, for a Gaussian correlation function 

(6.5.56) 

we can evaluate (x') and (9) explicitly. They are 

( f )  = di@(l LIE/(&) Iz)k21L[1 - (1 /D)  tan-' D ]  

(9) = dn/8(1 A&/(&)  12)k21L[1 + ( I / D )  tan-' D ]  

(6.5.57) 

(6.5.58) 

Thus, we have derived the amplitude and phase fluctuations of a plane 
wave propagating in a homogeneous, isotropic random medium. The 
fluctuations are expressed in terms of the autocorrelation of the dielectric 
permittivity function of the medium. Similar computations can be made for 
the case where the medium is statistically homogeneous but anisotropic. 
Furthermore, the derivation can be extended to cover the cases for spherical 
incident wave or beam wave propagations. The comparison of the amplitude 
fluctuations for the three cases are shown in Fig. 6.5-1. 

From (6.5.50), (6.5.54), (6.5.55), (6.5.57), and (6.5.58), we see that the 
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-Distance the wave traveled 

Fig. 6.51. Comparison of the mean square amplitude fluctuations for plane, spherical, 
and beam waves. 

fluctuations of the wave increase without limit as the distance the wave has 
traveled in the medium, L, increases. From experiment, however, the 
fluctuations always seem to level off to some saturation value for some 
finite value of L. This apparent discrepancy between theory and experiment 
comes about because of the inadequacy of our model. The computations 
we have made are still based on just a single-scattering model. Since satura- 
tion occurs mainly because of the interference between multiple scattered 
waves, our model can not expIain this phenomenon. Some recent work in 
which multiple scattering is taken into account shows good agreement be- 
tween theory and experiment (DeWolf, 1968; Tatarskii, 1966). 

One way of approaching the problem is to start from (6.5.58) and (6.5.59) 
and iterate them to the next higher order. The computation becomes very 
involved and is beyond the scope of this book. 

6.6 Correlations of Fluctuations and Application to the Ionosphere 

In the last section, we derived the mean square fluctuations of the phase 
and amplitude of an electromagnetic wave propagating in a random medium. 
The next step in our plan to understand the statistical characteristics of the 
wave field is to study the various correlation functions of the amplitudes 
and the phase. By studying the dependence of these correlation functions 
on the properties of the medium, more information about the medium 
itself can be obtained. There are many possible correlations between the 
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phase and amplitudes, and phase or amplitudes themselves. Only some of 
them will be discussed here. The main purpose is to show the general method 
of approach, as well as to make use of the results in discussing some prac- 
tical problems. 

Instead of treating the problem for a plane wave, we shall assume a 
spherical incident wave. This on the one hand is closer to real experimental 
situations and on the other hand illustrates some new techniques in the 
computation. The starting point is (6.5.14) of the last section. The geometry 
of the problem is depicted in Fig. 6.6-1. The origin of the coordinates is at 
the transmitter T, which emits a spherical wave 

0 -  - A 0 &kr Ir (6.6.1) 

T 

Fig. 6.6-1. 
propagation 
regularities. 

Geometry showing 
through a slab of ir- 

The receiver is at B. From (6.5.14), the scattered field at  B is 

(6.6.2) 

where the integration is over the whole region where the random irregulari- 
ties exist. Note that the factor k ( R  + r ' -  r )  in the exponential is the 
phase difference between the direct path TB and the scattering path TSB. 
The phase and amplitude of the scattered wave are then given by 

ds(r') 1 . 
S,(r) = - sin[k(R + r' - r ) ]  (6.6.3) 

4n 

rk2 ds(r') 1 

< E )  Rr 
X(r) = J dr' ~ I cos[k(R + r' - r ) ]  (6.6.4) 
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The autocorrelations at  two points rl and r2 are easily formed from (6.6.3) 
and (6.6.4) 

sin[k(R, + r,‘ - r , ) ]  sin[k(R, + r,‘ - r,)]  
X (6.6.5) 

rlfRl rzfR2 

Let us consider the case rl = ( -d /2 ,0 ,  L) ,  r2 = (d/2,0,  L) .  For I > 1, 
the forward-scattering approximation can be applied. Under this approxima- 
tion, in the denominator r‘ N z’, R = z - z f  while in the phase 

R ,  + rl’ - rl = biz + (xlf - d~, ’ /2L)~1/2q~’  

R, + r2’ - r2 = biz + (xi + d~,’ /2L)~]/2q,’  

(6.6.7) 

(6.6.8) 

where 9: = z i ( L  - z i ) / L ,  
Define two integrals: 

i = 1,2.  

(6.6.9) 

Substituting (6.5.5) and (6.6.6) into (6.6.9) and (6.6.10), and normalizing 
distance with respect to the wavelength, we obtain 
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Using the relative coordinates defined in (6.5.23) and center of mass coor- 
dinates defined in (6.5.24), the X and Y integration can be carried out first 
without any difficulty. 

1 

m 2(91’ + 92’) 2(91’ + 92’) 1 

ee(r1’ - r2’) sin[ q2 + ( E  + dZ/LI2 
E=-m 2(9,‘ - 92‘) 2(91’ - 42’) 

x df dq dC dZ (6.6.13) 

x dE dr] d5 dZ (6.6.14) 

where the limits of integration correspond to the configuration shown in 
Fig. 6.6-1. 

Further integration of Zl and Z2 depends on the explicit expression of the 
autocorrelation e,(R). In the following, we shall assume a Gaussian correla- 
tion of the form shown in (6.5.56): 

pe(rl’ - r2‘) = e-(€a.trla+ta)lla (6.5.56) 

Substituting (6.5.56) into (6.6.13) and (6.6.14) and carrying out the E and 1;1 
integration, we obtain 

where Im indicates imaginary part and 

D = 4Z(L - Z)/L12 (6.6.17) 

is the equivalent wave parameter. 
The limits for the 5‘ integration can be extended to foo since b > 1. 

Also since 13 1, terms like 25(2Z/L - l)/P and C2/LI2 in the integrand 
can be neglected compared to unity., With these simplifications, we have 

n2 LIZ 
2 d  

Zl = - - (erf[(d/lL)(a + b) ]  - erf[(d/fL)a]} (6.6.18) 
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If now we assume that the slab of irregularities is thin such that a > b, 
then D in (6.6.19) can be taken as a constant average value 6. In this 
approximation, I,  can be integrated. 

I,  = (n2I2L/2d) 

(6.6.20) 

The correlations for phase and amplitudes can now be calculated from 
(6.6.9), (6.6.10), (6.6.18), and (6.6.20). We have 

(6.6.21) 

(6.6.22) 

Two limiting cases will now be considered. 

(i) D > 1 .  Expending (6.20) and keeping only the leading terms, we 
have for d I IL/a, 

Both the phase and amplitude are initially Gaussian; the “scale” of the 
random waves is a factor (L/a)  times the “scale” of the fluctuations in the 
dielectric permittivity. 

(ii) 6 < 1. Again keeping only leading terms, we have 

es(rl, r2) = (nl/z<l A & / ( & )  12)1b/4)e*’~’/’l’~’ (6.6.24) 

and 

e,(rl, r,) = (n1l2(1 A&/(&)  12)Ib62/8) [l - (2a2 d2/L2f2) + (a4 d4/2L414)] 

e-u*d*/l*L2 (6.6.25) 

The correlation in phase is Gaussian while the correlation in amplitude is 
not. However, for (ad/LI) < 1, ex also approaches the Gaussian. For inter- 
mediate values of 6, es and ex must be computed numerically. 

We see immediately that from es and e, , we can obtain information about 
the correlation length I about the medium which is closely related to the 
size of the irregularities. 
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es and e, calculated above are sometimes called the transverse correla- 
tions since they are correlations between two points in the plane z = con- 
stant. Longitudinal correlations for two points (0, 0, z,) and (0, 0, z2)  can 
be computed in a similar manner. In addition, correlations between phase 
and amplitudes sometimes are also computed. The basic procedure for all 
these computations are the same. We shall not discuss them in detail. 
Also, the derivation we made was based on isotropic irregularities. The 
results can be generalized to cases where the irregularities are anisotropic 
(Yeh, 1962). 

We now turn to the problem of application of the theory to various 
experimental situations. Specifically, let us consider the application to the 
ionosphere. In the ionosphere, at certain periods of time, there exist ir- 
regularities in electron density. Hey et al. (1946) first discovered that the 
intensity of the radiation from radio stars fluctuate on certain occasions in 
the VHF band. At first it was thought that this was due to the variation of 
the power output of the source. Subsequent spaced-receiver experiments by 
Smith (1950) and by Little and Love11 (1950) gave convincing proof that the 
cause of these fluctuations is in the ionosphere. With artificial satellites, 
more and more data have been recorded for the scintillation of radio signals 
passing through the ionosphere. It is now generally believed that there exist 
in the ionosphere blobs with excesses or deficiencies of electrons which 
scatter waves randomly. These irregularities in electron density are elongated 
along the earth’s magnetic field lines. The mechanism for generating them is 
still uncertain. By studying the statistics of the fluctuating radio signals, 
it is hoped that we may obtain critical information about these irregularities 
and eventually understand the mechanism behind the phenomenon. 

The first important statistical quantity is the mean square value. We shall 
define ((S,2))1’2 and ( ( x ~ } ) ” ~  as the scintillation indices of the phase and 
amplitudes, respectively. Measurements of scintillation index may yield 
information about the seasonal, diurnal, and regional variations of the ir- 
regularities. Furthermore, by measuring the scintillation index when the 
transmitter (satellite) is at different heights, it is possible to determine the 
height and the thickness of the irregularity slabs (Yeh, 1962). 

Figure 6.6-2 indicates the configuration of an idealized satellite -spaced- 
receiver experiment. Signals received at station B, when the satellite is at  
position A ,  are correlated with signals received at station B, when the 
satellite is at position A , .  It has been shown (Liu, 1965) by a similar pro- 
cedure discussed earlier in this section that the correlations for both the 
amplitude and phase of the signals at B, and B, are maximum when the 
two paths A,B, and A,B2 cross each other at the center of the irregular slab. 
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The correlation length of the wave is a factor (L/a)  times that of the ir- 
regularities as discussed earlier. Therefore by properly choosing the satellite 
path, it is possible from this experiment to determine the height and the 
thickness of the slab as well as the size of the irregularities (McClure and 
Swenson, 1964). 

Fig. 6.6-2. Geometry showing 
receivers at B1 and Bz . The idealized 
transmitting satellite moves along Irregulority slab 

the dotted line. A maximum cor- 
relation is obtained when AIB, and 
A& crosses at the center of the 
slab of irregularities. 

The formulas we derived are based on the assumption that the irregular- 
ities are imbedded in a homogeneous isotropic medium. In the ionosphere, 
however, the background electron density is not homogeneous and the 
Earth’s magnetic field makes the medium anisotropic. Therefore, strictly 
speaking, the formulas derived are not applicable. Nevertheless, for high 
frequency signals, they are very good approximations. I t  has been shown 
that when the Earth magnetic field is taken into account, there will be some 
modifications to the formulas for mean square fluctuations and correlations. 
The new feature is that there will be depolarization in the scattered field. 
When the background electron density is taken as a function of height, 
it has been shown that the fluctuations of the waves are maxima when the 
irregular slab is at the height of maximum electron density. 

6.7 Higher Order Approximations-Perturbation Techniques 

In this section, we shall introduce some perturbation techniques to in- 
vestigate the problem of electromagnetic waves propagating in random 
media beyond the scope of the single scattering model of Born’s approxi- 
mation. The main interest will be on the average wave itself, sometimes 
referred to as the theory of the propagation of coherent waves. 
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We start with a more general random medium characterized by a dielectric 

(6.7.1) 
tensor c(r): 

E(r) = E O V O  + K,(r)l 

where KO is a constant tensor and K, is a tensor with elements which are 
random functions of position. In particular, for the isotropic medium in 
the last four sections, KO = (K)I and K(r) = [d~(r)/s,,]I where I is the 
identity matrix. 

For the general medium, the wave equation can be written as 

L - E(r) = {PI - VV + ko2[Ko + K,(r)]} - E(r) = jopoJ(r) (6.7.2) 

where k, = W ( E ~ ~ , ) ’ / ~  is the free space wave number and J(r) is the external 
current source. In an infinite medium, (6.7.2) plus the radiation condition 
determine the fields uniquely. We note that here we are treating the full 
vector wave equation. Equation (6.7.2) can be put into component form 

(Loij + L1ij)Ej = jwpoJi (6.7.3) 

where 
Lo, = dij V2 - (VV), + k02KOij 

Llij = kO2K,,(r) 
(6.7.4) 

b is a deterministic operator while L, is a random one. 

written as an integral equation 
With the help of dyadic Green’s function (Chapter 2), (6.7.3) can be 

(6.7.5) 
J 

where r is the dyadic Green’s function for L,, (2.14.2) satisfying Lo - r = 

-I 6(r - r‘) and 

Eo = -jwpo r(r, r‘) * J(r‘) dr‘ (6.7.6) 

Equation (6.7.5) is the starting point in most calculations for wave propaga- 
tion in random media. For example, (6.3.7) and (6.5.14) are of this type. 

Let us consider first for a moment the scalar wave equation in a random 
medium. For this case, (6.7.2) and (6.7.5) become, respectively, 

(V2 + ko2)U(r) + ko2K,(r)4r) = 4 (6.7.2a) 

u(r) = uo(r) + Go@, r’)Ll(r’)u(r’) dr’ (6.7.5a) J 
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where u(r) is the scalar wave function, q is the source, and Go(r, r‘) = 

exp[-jk, I r - r’ 1]/(4n ] r - r’ I )  is the free space Green’s function. In 
(6.7.5a) 

uo(r) = - Go(r, r‘)q(r’) dr‘ s 
Ll(r’) = kO2K,(r‘) = ko2[~ds(r)/soJ 

Equation (6.7.5a) can be solved by iteration and we 

P m 

(6.7.7) 

obtain 

u(r) = uo(r) + J Go@, r’) 2 #n(r‘) dr’ (6.7.8) 
n=1 

where 

It  can be shown that if I L, I < M where M is some large positive number, 
then a sufficient condition for the convergence of the series solution (6.7.8) is 

3Md2 < 1 (6.7.10) 

where d is the upper bound of the dimension of the random region (Frisch, 
1968). 

We see that if +Md2 < 1, the series (6.7.8) will converge rapidly and only 
the first term in the series will be needed to describe the field, the well- 
known Born’s approximation, and is exactly the formula we used in the 
previous sections. However, in an infinite random medium, even if M < 1, 
(6.7.10) will never be satisfied and the series becomes divergent. This di- 
vergence difficulty is intrinsic in this perturbation procedure and the series 
solution (6.7.8) breaks down when the wave is far away from the source. 
This is the reason why ( x 2 }  and (SI2) increase without limit with L in the 
last two sections. Similar difficulty arises for the case of vector waves. To 
avoid this difficulty, we discuss next an alternate perturbation procedure, 
the so-called diagram technique. 

The diagram method was first developed in quantum field theory and has 
been used successfully in nonequilibrium statistical mechanics. It was first 
introduced to the study of wave propagation in random media by Bourret 
followed by Tatarskii. [See reference list in the paper by Frisch (1968).] 
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We shall develop this method for the vector wave equation for an isotropic 
background medium. For this case, the dyadic Green’s function is given 
by (2.14.28) 

d(r - r‘) (6.7.11) 
1 e-&R I 

k02 4nR 3kO2 
r(r,r’) = pv[ I + -w] -- - 

where R = I r - r’ I and PV means principle values will be taken in integrals 
involving that term. For simplicity, we have taken ( K )  = 1.  Also L1 = 

Iko2Kl(r). We shall assume K,(r) to be statistically homogeneous and 
isotropic with zero mean. Therefore 

Equation (6.7.5) can still be solved formally by iteration. We have 

where the vectors 1,2, . . . represent rl ,  r2 ,  . . . , respectively. Substituting 
the expression L, = kO2Kl(r)I into (6.7.13), we obtain 

We now introduce the p-point correlation function for the centered random 
function Kl(r) by means of the cluster expansion as the following. From 
(6.7.12), we have the two-point correlation function e(rl , r2) = e2(l, 2) .  
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The higher-order correlation functions are defined through the moments 

(6.7.15) 

where the summation in the last equation is extended over all possible 
partitions of the set 1,2, . . . , p into clusters of at  least two points and 
e3, e4, . . . , ep  are the higher order correlation functions. For a centered 
Gaussian random function, only the two-point correlation function e2 is 
different from zero. 

The general property of the correlation function pp(l, 2, . . . , p) is that it 
vanishes whenever the points 1,2, . . . , p are not inside a common sphere of 
diameter I ,  the correlation distance. 

Let us now take the average of (6.7.14). With the definitions in (6.7.15), 
we obtain 

Equation (6.7.16) can be represented by diagrams defined by the following 
conventions : 

(i) The dyadic Green's function rnp(2, 1) is represented by a solid line 
whose end points correspond to points 2 , l  and indices n, p ,  respectively. 

(ii) Points belonging to a given cluster (same correlation function) are 
connected by dotted lines. 

(iii) The factor ko2 is represented by a vertex point at  which a single 
dotted line and two solid lines meet. 

(iv) EOj(r) is represented by double solid lines. 
(v) Integrations are performed over the coordinates of all internal ver- 

tices of the diagram. Summations are performed over the indices of all 
internal vertices. 
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With these conventions, (6.7.16) can be written as 

(6.7.17) +. . . 
Next we introduce the following definitions. 

(i) A diagram is said to be weakly connected if it can be divided into 
two or more diagrams without cutting through any dotted lines. Diagrams 
of the type 

can be divided into 

and are therefore weakly connected. 

type 
(ii) The remaining diagrams are strongly connected. Diagrams of the 

are strongly connected. 
(iii) The mass operator is the sum of all possible strongly connected 



6.7 Higher Order Approximations-Perturbation Techniques 355 

diagrams in (6.7.17). It is denoted by M or the symbol 0. Its first few 
terms are 

(6.7.18) 

(iv) The average field is represented by a broad solid line 
Let us now consider the Dyson equation defined as follows 

(6.7.19) -- - - - + - @ -  

This equation can be expanded into 

+-@= 

+-€3-€3= 

+ . . . . . . . . 

-- - - 
(6.7.20) 

Substituting (6.7.18) into (6.7.20)’ it is easy to show that (6.7.19) is 
equivalent to (6.7.17). Therefore, by resuming the terms in the perturbation 
series (6.7.16)’ we derive a new integral equation for the average field where 
the mass operator M is the kernel. Explicitly (6.7.19) is written as 

<Ej(r>> = ~ ~ ~ ( r )  + J rjk(ry 2Wh(2, 1)<~,(1) )  dl  d2 (6.7.21) 

where 

M d 2 , 1 >  = kO4rkn(2, 1)e2(2, 1 )  

The Dyson’s equation is first introduced in the study of quantum field 
theory. For the isotropic homogeneous random medium we are discussing 
the mass operator and the dyadic Green’s function are both convolution 
operators. Equation (6.7.21) can then be solved by the Fourier transform 
technique. Taking the Fourier transform of (6.7.21)’ we have 
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where 
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(6.7.24) 

To avoid new symbols, the transformed functions are represented by the 
same original functions with argument replaced by p. Equation (6.7.23) 
can be put in the form 

The set of algebraic equations (6.7.25) can be solved if Mk,(p) is known. 
Then the average field may be obtained from the inverse Fourier transform. 
If we set the determinant of the matrix I - r - M to zero, the roots of the 
equation 

det[l - r * MI = 0 (6.7.26) 

determine the behavior of the average field (Ej(r)) as I r 1 - co. Equation 
(6.7.26) may be defined as the dispersion relation for the average field and 
the roots are the effective wave numbers, or effective propagation constants, 
for the different modes of the average field in the random medium. 

From (6.7.22) we see that the exact computation of the mass operator 
M is just as difficult as the computation of the original perturbation series 
(6.7.16). The convergence of the series is not assured in this case either. 
However, finite order approximations for M correspond to partial summa- 
tions of the complete perturbation series up to terms of any order in I L, ], 
and may therefore be considered as better approximations than the Born’s 
solution. A necessary condition for convergence of the series for the mass 
operator is given by 

I L, IW 1 (6.7.27) 

where I L, I is the norm of the random operator L, and I is the correlation 
length. 

The simplest approximation of the Dyson equation is to take only the 
first term in the mass operator. Therefore in diagram form (6.7.19) becomes 

(6.7.28) 
,--. + I \  - -- - - - - 

Or, explicitly 
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Now apply the operator Lo, on both sides of (6.7.29). Since r is the in- 
verse of Lo, we have 

where (6.7.6) has been used. 
Equation (6.7.30) is an equation for the averaged field and was also derived 

by Keller using a nondiagrammatic approach. 
Although we have derived the Dyson equation for the vector wave equa- 

tion in a homogeneous, isotropic background, the results can be used for 
scalar wave equations just by changing the dyadic Green’s function r i i s  
to Go and using the corresponding Lo and Ll for scalar wave equations. 
The results can also be generalized to describe the more complicated 
case where the background is anisotropic. 

As an example, let us consider (6.7.30) for a scalar wave u(r). From (6.7.2a), 
Lo = V 2  + k,2. Taking the Fourier transform on both sides, we have 

where Lo(p) = ko2 - p2 and Go(p) = -(ko2 - p2)-’. 

in the bracket equal to zero. We have, 
The dispersion relation for (6.7.31) is obtained by setting the quantity 

(6.7.32) 

This is in general a transcendental equation for the wave numberp. Further 
computation depends on the explicit form of the correlation function e2.  
The value p obtained from (6.7.32) is called the effective propagation con- 
stant (or wave number). It is the propagation constant for a plane average 
wave (u(r)) of the form e-%fA’’ propagating in the iz-direction in this 
random medium. Let us consider a special case for which 

e2(R) = (K12)e-R/z (6.7.33) 

where ( K 1 2 )  = ( 1  A&/(&)  1 2 )  in our early notations. The dispersion rela- 
tion (6.7.32) now becomes 

ko2 - p2 + ko4(K12)/[p2 - (k ,  - j/Z)’I = 0 (6.7.34) 
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The simplest way of solving (6.7.34) for p is by iteration. Since ( K I 2 )  < 1 ,  
we can write 

ko4(Kl2) 
Po2 - (ko - l./OZ 

kO4(Kl2> 

I2ko4( K,2)  

p2 = kO2 + 

N kO2 + 

= ko2 + 
ko2 - (k ,  - j / / ) 2  

1 + j2k01 
(6.7.35) 

The real part of the effective propagation constant is greater than k, and 
there is a negative imaginary part. This indicates a decrease of phase velocity 
for the coherent wave and damping of the coherent wave as it propagates 
into the random medium. Although these results are derived from a specific 
correlation function e2(R), they are also true for general cases. Physically 
a wave propagating in a random medium is continually scattered by the 
random inhomogeneities. A fluctuating component of the field is generated 
by incoherent scattering. Energy is continually transferred from the coherent 
to the incoherent wave via the scattering process. Hence the coherent wave 
will be damped. The damping constant is given by the imaginary part of 
peff. The reciprocal of Im peff sometimes is defined as “coherent distance” 
for the field. The decrease of the phase velocity of the coherent wave is 
also reasonable since the wave has gone through multiple scattering. 

In the Born’s approximation, the averaged plane wave is proportional to 
e-jkodSr. Comparing the solution e-jpeffa.r with the Born’s solution, we see 
the effects of multiple scattering on the wave. 

6.8 Effective Dielectric Tensor for Coherent Waves 

We shall now make use of the results derived in the last section to discuss 
some general features of coherent vector waves in random media with 
isotropic background. For this purpose, it is convenient to  introduce two 
new functions as follows 

where K(r)  = &(r)/e,, is the relative dielectric permittivity of the medium 
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and KO is a quantity to be defined below. For the isotropic, homogeneous 
background medium, (6.7.2) can be written as 

[Vz - VV + koZK(r)lE = jopoJ 

Let us now define a field E, satisfying the equation 

[Vz - VV + ko2Ko]Eo = jopoJ 

Subtracting (6.7.2b) from (6.7.2a) we have 

[Vz - VG‘ + ko2KOI(E - E,) = -kO2[K(r) 

which can be put into an integral equation 

(6.7.2a) 

(6.7.2b) 

Ko]E (6.8.2) 

(6.7.11a) 

Note that rjk in (6.7.1 la)  is the same as that in (6.7.1 1) except for the wave 
number koz/Ko.  Substituting (6.7.1 la)  into (6.8.3) and using the definition 
(6.8.1) it is easy to show that 

Fj(r) = EOj(r) + k$K, Tik@, r’)t(r’)Fk(r‘) dr‘ (6.8.4) s 

Let us now define an operator pff by 

< t ( r ) ~ ~ r ) )  = J EE (r, ~w,w) dr’ (6.8.6) 

Equation (6.8.4) becomes 
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which is an integral equation for (Fj (r ) ) .  To complete our derivation, we 
need to derive ti:@’, r”) and define KO. This can be done by applying 
the diagram technique to (6.8.4) in the same manner as in the last section. 
We obtain an integral equation similar to (6.7.21) 

where 

The condition (6.8.10) is required in our derivation of (6.8.8) and can be 
taken as the defining equation for the quantity KO. The functions ec2, 
pas, etc. are the correlation functions for the random function t(r). 

Comparing (6.8.8) with (6.8.7), we have 

ti:(r’, r r r )  = Mkn(r’, r”)/ko2Ko (6.8.1 1) 

If we now define the relative effective dielectric tensor Keff by 

(K(r)E(r)) = Keff(E(r)) = Keff(r, r’) (E(r’)) dr‘ (6.8.13) 

where Keff is a tensor integral operator defined by the second equality of 
(6.8.13), then (6.8.12) can be written as 

J 

(F i )  = [K:j’f/3K0 + 2 6ij/3](Ej) 
(6.8.14) 

( t F i )  = i$ff(Fi) = [Cj’f/Ko - Sij](Ej) 
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For a statistically homogeneous medium, both 5'" and K'ff are convolution 
operators. Therefore, taking the Fourier transform of (6.8.14), we obtain 

From (6.8.15) it follows that 

Since the medium is assumed to be also statistically isotropic, Kiff(p) and 
Ei:(p) must be rotational symmetric with respect to p .  From the discussion 
in Chapter 2 [(2.4.20a)], we can write Kiff(p) and t f ( p )  in the following 
forms : 

Substituting (6.8.17) into (6.8.16), we obtain the relations 

(6.8.18) 

The Fourier transform t:"<p) can be obtained in principle from (6.8.11). 
Hence we note that once again, we return to the problem of computing the 
mass operator. In the following, we shall discuss the simplest case of re- 
taining only the first term in (6.8.9). This approximation is valid if 

1 t [ ko2K012 < 1 (6.8.19) 

where I is the correlation length for 6 and I 5 I is the upper bound of the 
magnitude of 6. Under this approximation, we have 

t:y(r', r") = ko2Ko( t2)>rij(r', rr')CE(r', r") (6.8.20) 

where eE2(r, r') = ( t2)CE(r,  r') has been used and C&, r') is the normalized 
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correlation function. The Fourier transform of (6.8.20) is 

t : y ( p )  = k t K o ( t 2 )  J rA(R)C,(R)ejp'R dR (6.8.21) 

From (6.8.17), we see that the longitudinal and transverse components of 
pff are given by 

(6.8.22) 
t;"(P> = (P iP j /P2>t : j fb )  

tY(P> = (6, - PiPj/P"t:jf(P) 

respectively. 

carry out the angular integration to give 
Substituting (6.8.21) into (6.8.22) with I';(R) given by (6.7.11a), we can 

t;"(p> = 2(E2)Q(p, kod% (6.8.23) 

c f f ( p )  = - ( E2)Q(p, ko&) - (ko2Ko/p)( t2) Iw C t ( x ) e ~ k ~ d ~ '  sin p x  dx 
0 

(6.8.24) 

where 

- j- k~a sinpx Q ( p ,  ko&) = PVJ- Ct(x)e-jkodF+[ ko2Ko cos p x  
0 P 2  P 

1 
sin p x  - - sin p x  ko2Ko -- 

P 2  P X  

cos p x  
3- 

ko& cospx -3j- ~- 
P P X  p2x2 

ko& sinpx + 3 -]x-I sin p x  dx 
p3x3 + 3 j p  ~ p2x2 

(6.8.25) 

Equations (6.8.23), (6.8.24), and (6.8.25) permit us to compute pff for a 
given correlation function of the random medium; (6.8.18) then gives u s  
the effective dielectric tensor K". But we must first find KO from the defini- 
tion (6.8.10). For the case I Kl I < ( K )  where Kl is the fluctuating part of 
the relative permittivity, we have from (6.8.10) 

Also, under the same approximation, 
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Equation (6.8.18) then becomes 

(6.8.28) 

(6.8.29) 

Substituting (6.8.28) and (6.8.29) into (6.8.17), we obtain the effective dielec- 
tric tensor Keff for this medium under the present approximation. 

Therefore, as far as the average field is concerned, we can treat the random 
medium as a dispersive medium with an effective dielectric tensor given 
by (6.8.17), (6.8.28), and (6.8.29). The discussions in Chapter 2 on dispersive 
media can be applied directly to  the present problem. For example, from 
the discussion in Section 2.6 we obtain the dispersion relations for transverse 
mode 

K:ff(p) - p2/ko2 = 0 (6.8.30) 

and longitudinal mode 

Kiff(p) = 0 (6.8.31) 

Also the average dyadic Green’s function for the dyadic Green’s func- 
tion for the average field is expressed by 

(Tik(P)) = ( 8 i k  - PiPk/P”Gl(P) + (PiPk/P2)GII(P) (6.8.32) 

where 
GdP) = l/ko2K17ff(p> (6.8.33) 

is proportional to the Green’s function for the longitudinal mode and 

G,(p) = l/p2 - ko2K:ff(p) (6.8.34) 

is proportional to  the Green’s function for the transverse mode as can be 
seen by comparison with (2.13.6). 

The dyadic Green’s function is obtained by taking the inverse Fourier 
transform of (6.8.32). 

It has been shown (Ryzhov et al., 1965) that in general if the background 
medium in the absence of irregularities does not admit a longitudinal mode 
(for example, a cold plasma), then the longitudinal mode for the average 
field generated by the random scattering will not be a propagating mode. 
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The method we discussed above can be used to find the effective static 
dielectric constant for a mixture (Finkelberg, 1964). 

There are many unsolved problems concerning the propagation of wave 
in random media. For example, the convergence of the perturbation series, 
especially for large correlation length; how to go beyond the first term in the 
mass operator; the formulation for a finite random medium or a medium with 
inhomogeneous background ; and so forth-these are all outstanding prob- 
lems yet to be attacked. As far as the application of the theory is concerned, 
a variety of problems are of both theoretical and practical interests. To 
name just a few, we have the problem of finding the radiation pattern and 
radiation resistance of an antenna imbedded in a random medium, the 
energy loss and radiation of energetic particles passing through a turbulent 
plasma, the propagation of waves in interplanetary medium and their effects 
on outer space probing via electromagnetic waves. 

Problems 

1. For a real stochastic process E(t) ,  

(a) derive 

(“( t  + z) 4I E W I 2 )  = 2[e@> Ik ee(t)l 

(b) prove that 

I e e ( 4  I 5 e m  
i.e., ee( t )  has a maximum at the origin. 

2. In Section 6.3 we discussed the back-scattering cross section. For 
axially symmetrical irregularities in which the axis of symmetry is the 
z-axis, we put a = b = L, and d = L, in (6.3.24). 

Prove that the back-scattering cross section can be written as 

provided that the direction of incidence (l ,  m, n) is almost perpendicular 
to the axis of symmetry. Where n2 = sin2 y ,  l2 + m2 = cos2 y .  

3. Prove the relations (6.5.32) and (6.5.33). 

4. Derive (6.6.15) and (6.6.16) from (6.6.11) and (6.6.12). 
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5. Using the definitions (6.8.1), prove that the wave equation can be put 
into an integral equation of the form shown in (6.8.4). 

6. Prove (6.8.22). 

7. Derive (6.8.23), (6.8.24), and (6.8.25). 
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7. Nonlinear Wave 
Propagation 

7.1 Introduction 

In the last two chapters we extended our discussion on wave propa- 
gation to inhomogeneous and random media. In the discussion we assumed 
that the amplitude of the waves are small so that the properties of the 
media are not affected by the passage of the waves. When the amplitude 
of the waves increases, we may find in many situations that this is no longer 
true. Properties of the medium may become dependent on the wave am- 
plitude and the propagation problem becomes nonlinear. In the ionosphere, 
for example, nonlinear phenomena such as cross-modulation are observed 
even for waves of moderate strength. Other nonlinear phenomena such as 
self-interaction, detuning, mixing, harmonic generation, wave-wave inter- 
action, wave breaking, and shock formation have been observed and studied 
in one form or another in various material media. In this chapter we shall 
address ourselves to some of these problems. The main purpose is to 
introduce the different physical ideas behind these phenomena and to demon- 
strate the techniques to deal with them. Therefore instead of treating specific 
examples, we shall use simple models in our discussion. 

The first step in the study of nonlinear wave propagation is to find in a 
self-consistent way the effects of the medium due to the waves. This in gen- 
eral involves the investigation of the various microscopic processes, classi- 
cally or quantum mechanically. Many of the useful results, however, may 
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be obtained from some nonrigorous elementary considerations. This is the 
route we shall follow in our discussion. 

One of the most significant features in linear wave propagation is the fact 
that arbitrary perturbation can be expressed as a superposition of inde- 
pendent normal modes. When the medium becomes weakly nonlinear one 
would expect that any arbitrary perturbation may still be expressed as a super- 
position of the linear normal modes. But now due to the nonlinearity, inter- 
actions among these modes occur. Energy exchange takes place among the 
waves. The amplitudes of these modes will vary slowly in time and eventually 
assume values quite different from those predicated by the linear theory. 
This essentially is what happens in the wave-wave interaction process. We 
shall study this in detail via a simple example. 

When the nonlinearity is strong, the superposition picture becomes in- 
valid. The waveform changes rapidly and discontinuities in the wave profile 
may occur. One example of these types of phenomena is the breaking of the 
wave, and this is the first topic in our discussion. 

7.2 Breaking of Waves 

One of the important features of nonlinear wave propagation is the 
breaking of wave profiles. A ready example of this phenomenon is the 
“breakers” of water waves on a sloping beach. Another example occurs 
when the finite amplitude sound wave in a gas propagates in the direction of 
decreasing density of the gas: discontinuity of the wave profile will occur 
and the wave breaks. Essentially, wave breaking is a nonlinear phenomenon. 
The cause can be traced to redistribution of the wave energy spectrum 
through nonlinear effects. What starts out as a signal consisting of the 
superposition of a few waves, feeds energy into waves with higher and 
higher wave numbers. The wave profile will change and eventually result in 
the breaking of the wave. In this section, we shall discuss this phenomenon by 
considering the problem of the breaking of finite amplitude plasma waves. 
The main purpose is to demonstrate the idea of wave breaking rather than a 
rigorous pursuit of the theory. Therefore, our model will be a very simple one. 

Let us consider a homogeneous cold plasma of infinite extent with density 
N.  In Chapter 3 we have studied the one-dimensional longitudinal electron 
oscillation of small amplitude for this model. As was done in Chapter 3, 
we consider the electrons in a plane with equilibrium position denoted by 
x,,. Suppose we displace this plane by a finite distance E = [(x,), say, to 
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the right of xo such that E(x,) > 0. 5(xo) will in general be a single-valued 
continuous function of the equilibrium position xo. In moving this plane 
by a distance E(xo), we pass over an amount of positive charge eNQxo) 
per unit area. If the ordering of the electrons is maintained, i.e., electrons 
to the right of xo at equilibrium are still to the right of the plane after the 
displacement, then there will be an excess positive charge of eN5(xo) per 
unit area to the left of this plane and a negative charge of -eNE(xo) per 
unit area to the right of this plane. Applying Gauss’s law across this plane, 
we have for the electric field 

The equation of motion for the electrons becomes 

which has the solution 

where top = (Ne2/m&o)1’z is the plasma frequency defined in Section 3.3 
and ll(x0), E,(x,) are initial conditions for the displacement. 

Let us now consider an initial disturbance in the plasma of the type 
characterized by El(xo) = 0 and E2(xo) = A sin kx,.  That is, at time t = 0, 
the electrons are displaced from their equilibrium planes sinusoidally with 
amplitude A and wave number k. The corresponding electric field generated 
by this disturbance is given by (7.2.1). 

E = (eN/&,)A sin kx, cos opt (7.2.4) 

To find the field E as a function of spectral coordinate x, we may use 
the relation 

x = xo + EbO) 
= xo + A sin kx, (7.2.5) 

For small amplitude (A < l/k), x is approximately equal to x, and the 
field E will behave approximately as sin kx with the maximum occurring 
at kx r n/2 (mod 2n). As the amplitude A increases, the field E as a func- 
tion of x will change its shape, The maximum of the field occurs at kx  = 

n / 2  + A and is displaced towards kx = n. When the amplitude becomes 
larger than l/k, there is a crossover as shown in Fig. 7.2-1. The E field is 
double valued here and the wave profile begins to break. At this point, the 
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X 

Fig. 7.2-1. The breaking of waves. 

electron planes begin to cross each other, violating the original assumption 
of no crossover. The analysis beyond this point becomes impossible and 
further discussion must resort to numerical techniques. We shall not go 
into the details of the numerical results. Interested readers are referred to 
the paper by Dawson (1959). 

Thus, by considering this simple model of plasma longitudinal oscilla- 
tion, we have seen how the shape of the electric field changes when the 
amplitude of oscillation increases. Eventually, when the amplitude is greater 
than some critical value, the wave profile begins to break. Fourier analysis 
of the power spectrum of the wave shows that energy is being fed to modes 
of higher wave numbers from the initial mode in the process of wave 
breaking. 

7.3 Nonlinear Effects in a Plasma in an Electromagnetic Field 

Another important aspect of nonlinear wave propagation in a material 
medium is the phenomenon of wave interaction. This includes self-inter- 
action, mixing, harmonic generation, and cross-modulation of the waves. 
Basically what happens is that when the amplitude of the wave becomes 
large, the properties of the medium are changed by the presence of the 
wave. The propagation parameters of the wave therefore depend on the 
amplitude of the wave and nonlinear interactions occur. In order to discuss 
these phenomena, the first step is to calculate the changes of the properties 
of the medium due to the field. In this section, such a calculation will be made 
for a plasma in an electromagnetic field. In a plasma, due to slowness of 
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energy transfer from electrons to heavy particles, electrons may acquire 
considerable amounts of energy from the wave field even for relatively small 
amplitude waves. Consequently the electrons are heated and the complex 
dielectric tensor L becomes dependent on the field strength. To obtain this 
dependence we use an elementary model for computation in the following. 

The equation of motion for electrons in an electromagnetic field is 
[see (4.6.1)] 

(7.3.1) mu = -e(E + u x B,) - mv(T,)u 

where u is the directed velocity of the electrons due to the presence of the 
field; Bo, the external dc magnetic field; E, the electric field of the wave; 
and v, the effective collision frequency for the electrons. v depends on the 
electron temperature T, , hence, on the electric field if it is strong. In writing 
(7.3.1), the magnetic field associated with the wave is neglected. This is a 
good approximation for nonrelativistic electrons. The totaI velocity of the 
electrons is the sum of the directed velocity u and the random thermal 
velocity v, .  The random velocity is related to the temperature through the 
relation 

%Te = 4m<voz> (7.3.2) 

where the angular brackets indicate an averaging process and the tem- 
perature is expressed in energy units. (Note the difference in definition of the 
velocity yo and the thermal velocity vT defined in Section 3.3.) 

The energy balance for the electrons in the presence of the field may be 
considered as follows. The electric field induces an electron current J = 

-eNu in the plasma. Therefore the field does an amount of work J * E = 

-eNu E on the plasma per unit time, where N is the electron density. 
On the other hand, an electron loses an average energy f 6v(T, - T )  per 
unit time in collisions with heavy particles. Here T is the temperature of the 
electrons in the absence of the field and 6 is the mean fraction of energy 
transferred by the electron in a collision with heavy particles. In elastic 
collisions, the fractional energy transfer is 6 2m/M, where M is the 
mass of the heavy particle. Since A4 > m, 6 is very small and electrons keep 
most of the energy at each collision with heavy neutral particles. The 
energy balance equation for electrons can therefore be written as 

(d/dt)(f  NT,) = -eNu - E - Q 6vN(T, - T )  

or 

dT,ldt = -6eu E - 6v(T, - T )  (7.3.3) 
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Equations (7.3.1) and (7.3.3) are the basic equations to solve for u and 
T, as functions of the field E. Before we proceed, however, let us consider the 
solutions of (7.3.1) and (7.3.3) in the absence of the fields. In this case, 
solutions are simply given by 

u ( t )  = u(0)e-vt (7.3.4) 

(7.3.5) T, - T = (T, - T),,,e-dvt 

In obtaining ( 7 . 3 3 ,  8v = constant has been assumed. We see from (7.3.4) 
and (7.3.5) that the momentum relaxation time 1/v is much shorter than the 
temperature relaxation time 1/dv since 6 < 1 in general. 

Let us now solve (7.3.1) and (7.3.3) with the electric field given by E = E, 
x cos wt. For simplicity, we first assume that B, = 0. Both v and 6 may 
depend on Te but are assumed to be independent of time. Under these 
conditions, (7.3.1) yields after straightforward integration 

- eEo 
u(t) = - (v cos wt + w sin w t )  + ce-vt 

m v2 + w2 
(7.3.6) 

where the last term is the initial transient and becomes negligible for t 
greater than the relaxation time I/v.  

Substituting (7.3.6) into (7.3.3), we have the equation for the temperature 

e2E02 
(v + v cos 2wt + w sin 2wt) + BvT 

dt 
(7.3.7) 

This equation is difficult to solve in general since v and 6 are functions of 
the unknown T,. In the following, we shall consider a limiting case of prac- 
tical interest. We shall seek the first-order solution of (7.3.7) under the 
assumption that w > 6u and 6 << 1. 

The formal solution of (7.3.7) can be written as 

1 
x 1 eavr(v + y cos 2wz + w sin 2 0 2  + 6vT) dt + cI] (7.3.8) 

where c1 is constant. 

forward integration 
For w > BY, the first order-solution is obtained from (7.3.8) by straight- 

.d 

e2EO2 
3m6(v2 + w2)  

T e -  T I  (7.3.9) 

where the transient has been neglected. 
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Therefore, to the first order, for w > 6v and 6 > 1, the electron tempera- 
ture is independent of time and is proportional to Eo2. Physically, this result 
is what one would expect, since the temperature relaxation time I / &  is 
much greater than the period of the wave 2 4 w .  Under our assumption, 
w > Sv, the temperature just simply cannot keep up with the fast variation 
of the field. Instead, it takes some constant mean value given by (7.3.9). 

Equation (7.3.9) may be written in another form 

e2E02 Eo2 0.3 + v? 
T - ' + 3rnT 6(v2 + w 2 )  = ' + (x) 02 + v2 

(7.3.10) Te -- 

where 
Ep = (3Tm 6(vo2 + w2)/e2)1/2 (7.3.1 1) 

is called the plasma field and v, is the effective collision frequency in the 
absence of the field. 

We see from (7.3.10) that the plasma field Ep is a measure of the im- 
portance of nonlinear effects of the field E,. The quantity Ep depends on 
the properties of the medium and the frequency of the wave. When Eo > E p ,  
we get Te > T ;  the electrons are intensely heated. Therefore changes in col- 
lisional frequency and hence the conductivity and dielectric constant are 
important. Nonlinear effects are profound. If the converse is true, the 
nonlinear effects are unimportant. 

In the presence of an external dc magnetic field we can proceed in a 
similar manner and obtain 

3 = 1 + (&2 E02 + vo2) T 

cos2 /9 sin2 /? sin2 /? { o2 + v2 + 2[ (w  - O B ) 2  + v2] + 2[ (w + ws)2 + v2] 
x 

(7.3.12) 

where /? is the angle between the field E and B,. 
The dependence of the effective collision frequency on the temperature 

may be obtained by considering the collision processes between various 
particles. For example, for collision between electrons and molecules, the 
effective collision frequency is given by 

Y(T,) = v,(T,/T)"~ (7.3.13) 

For collisions with ions, 

v(T,) = V~(T/T , )~"  (7.3.1 4) 
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Substituting (7.3.10) or (7.3.12) into (7.3.13) and (7.3.14), we obtain the 
dependence of the effective collision frequency on the field E,. Since the 
temperature does not depend on time, in the absence of the dc magnetic 
field, the dielectric constant is given by (4.1.24) and (4.1.25). 

&(W)  = &‘(W) - j&” (W)  (7.3.15) 

where 

[ 1 wp2/w2 + V Z / d  I &‘(W) = &, 1 - 

wp2v/03 

1 + v 2 / o 2  
&“(W) = &, 

(4.1.24) 

(4.1.25) 

The dependence of the dielectric constant on the field is obvious through 

If external dc magnetic field is included, the dielectric tensor derived in 
(7.3.13), (7.3.14), and (7.3.10). 

Section 4.6 should be used. 

7.4 Self-Interaction of Waves 

From the discussion of the previous section, we have seen that when the 
condition co> BY holds, the electron temperature in a field of any strength 
is constant in time to the first order of approximation. Consequently the 
polarization current J varies with the same frequency as the field E. There- 
fore, the dielectric constant discussed in Chapter 4 may be used directly 
to study wave propagation under this approximation. Two related non- 
linear phenomena may be discussed under the present assumption. One is 
the self-interaction effect and the other is the cross-modulation of waves. 
In this and the next section, we shall discuss these two topics with the 
ionospheric propagation condition in mind. 

Let us consider a plane monochromatic electromagnetic wave propagating 
in a horizontally stratified isotropic plasma medium. For simplicity, we 
assume the wave to be normally incident. At the boundary of the plasma, 
say, z = 0, the electric field is given by E,(O) cos wt. From the discussions 
in Chapter 5 and the previous section, we know that under the assumption 
o > BY, the electric field inside the plasma is governed by the scalar wave 
equation 

#E/d.? + ko2&(o, Z, E,)E = 0 (7.4.1) 
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where E(W, z, E,) is given by (7.3.15). For a weak field, E does not depend on 
Eo and (7.4.1) reduces to the wave equation that has been studied extensively 
in Chapter 5 .  For a strong field, E depends on the amplitude E, of the field 
and (7.4.1) is nonlinear. If the properties of the medium are slowly varying, 
we may write the formal WKB solution of (7.4.1) in the form 

E = ce-% ffi d r e - h  f fi (7.4.2) 

where to the first order C is a constant and 

E(O, Z ,  Eo) = (n - j ~ ) ~  (7.4.3) 

n and x are the real and imaginary parts of the refractive index, respectively, 
and both depend on o, z, and E,. Note that in writing (7.4.2) we have 
neglected factor [~ (O) /e (z> ] ' /~  in the amplitude. For our present purpose 
this factor is not essential. 

From (7.4.2) we note that the amplitude of the field is 

E 0 -  - ce-'o Is x(m,r.&,)dr (7.4.4) 

Or, in another form 

dE,/dz + k,x(o, Z ,  Eo)Eo = 0 (7.4.5) 

This is a nonlinear differential equation for the amplitude of the field in 
the plasma. For a given x it will yield the amplitude as a function of z. 

To obtain the explicit expression for x ,  we substitute (4.1.24) and (4.1.25) 
into (7.4.3) and solve for n and x.  Under the condition that 1 E' I >> I E" I 
(this condition is satisfied in most cases for high frequency waves except 
at the reflection level where E = 0), we obtain 

(7.4.6) 

where Y and Y, are the effective collision frequencies with and without 
strong field, respectively, and x,(z) is the absorption coefficient in a weak 
field and is given by 

x,(z) = w,2vo/2w(w2 + Yo2)[1 - ope(w2 + Y02)]1/2 (7.4.7) 

In the following we also assume that Y, and the equilibrium electron tern- 
perature T are independent of z. We first consider the solution of (7.4.5) 
for the case where the dominant role is played by the electron-molecule 
collision. For this case Y/Y, = [Te(Eo)/T11'2 as given by (7.3.13). 
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Defining a new variable 

we may write (7.3.10) as 

(7.4.8) 

(7.4.9) 

Using (7.4.9), we may combined Eqs. (7.4.5) and (7.4.6) to yield an 
equation for t: 

(7.4.10) 2y02 ) + k,x,(z) = 0 

Its solution is 

where 

and 

K(z)  = k, [ x,(T) dt 
0 

(7.4.12) 

(7.4.13) 

(7.4.14) 

is the total absorption at the level z. 
It is seen from (7.4.1 1) that z0 is the maximum value of T. With increasing 

z, hence K(z) ,  t diminishes monotonically. Deep into the plasma where 
K(z )  > 1, 'G tends to unity. From (7.4.9), this means the amplitude of the 
wave becomes very small. 

With the solution for T given by (7.4.1 l), the amplitude of the field may be 
obtained from (7.4.9). It is best represented in the form 

E0(4 = ~ ~ ( 0 ) e - ~ ( z ) ~ [ E o ( O ) / E p ,  w / y 0 ,  K(z)l (7.4.15) 

where P is called the self-interaction factor and in general is a function of 
Eo(0) /Ep,  o / v o ,  and K(z).  Obviously, P is very close to unity for a weak 
field SO that the wave is attenuated in the plasma according to the ordinary 
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absorption law. Deep into the plasma where K ( z )  > 1, we obtain a simple 
expression for P 

P = 2 -  (to- 1)) (7.4.16) 

For high frequency strong waves such that w2 > vO2t0 and to > 1 the factor 
P is independent of to and the amplitude deep in the plasma becomes 

Eo(z) = 2Epe-K(Z) (7.4.17) 

which is independent of Eo(0), the amplitude at the boundary. 

such that to> 1, the amplitude deep in the plasma becomes 
If the opposite condition o2 <vo2to is satisfied, then for a very strong field 

which increases exponentially as Eo(0) increases. Thus we see that for the 
low frequency waves, deep into the plasma, the absorption of the wave is 
very much reduced for a strong field. This is due to the effects of self-inter- 
action. At low frequencies, the absorption coefficient of the wave in a 
plasma decreases as the electrons are heated. 

The general expression for the self-interaction factor P for arbitrary 
values of z may be obtained from (7.4.9) and (7.4.11), but is very com- 
plicated. A simple expression may be derived for the high frequency case 
for which o2 > vO2t.  We have 

(7.4.19) 
P=-( 2Ep to - 1 ) 1/2 1 

EO(0) t o  + 1 1 - [(to - l)/(to + l)]e-2E(z) 

We see that for a very weak field, to 1 as 
expected. 

The above discussion is for electron-molecule collisions. For the case 
where electron-ion collisions are dominant, similar types of analysis can 
be made and will not be discussed here. 

Up to this point, we have assumed that the incident wave is monochro- 
matic. If instead the wave is amplitude-modulated at a low frequency 0, 
then the self-interaction effect in the plasma may change substantially the 
modulation of the wave. If the modulation frequency 0 is very low (much 
less than Byo),  the problem of propagation of an amplitude-modulated 
wave in a plasma is essentially identical with the one considered above, 
that of propagation of an unmodulated wave. At the boundary z = 0, 

1 + 4[E0(0)/Ep]2 and P 
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the modulated wave is E,,(O, t )  = Eo(0)(l + M cos Qt) ,  where M is the 
modulation index. All expressions derived above will be valid with the 
substitution of Eo(O, t )  for Eo(0). In particular, the amplitude of the wave 
in the plasma may be written as 

Eo(z, t )  = Eo(O, t)e-"(*) P [ ''E; t ,  , w, K ( z ) ]  (7.4.20) 
YO 

Because of the nonlinear interaction, not only the modulation index is 
changed but also harmonics with frequencies 29, 3 9 ,  . . . are introduced. 
The wave shape is hence changed. An example showing the form of strong 
waves deep in the plasma is shown in Fig. 7.4-1. 

t 

u2 >> v,' r,' Fig. 7.4-1. The effect of self- 
interaction on an amplitude-mod- 
dated wave. [From Ginzburg and 
Gurevich (1960).] 

O 0 lr 27r 31r 

If the modulation frequency is not small compared with SY,,, then the 
discussion given is not valid. One has to go back to (7.3.3) and (7.4.5) 
to solve the problem over again. 

To summarize the results of this section, we note that for very strong 
waves, with amplitudes much greater than the plasma field, the absorption 
of the wave in the plasma differs from that of a weak field even qualitatively. 
This is due to the self-interaction of the strong wave. For an amplitude- 
modulated wave, the modulation form can be affected tremendously. 
Finally, our discussion has been on the amplitude of the wave only. The 
effects of self-interaction on the phase of the wave may also be discussed 
in a similar manner. 
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7.5 Cross-Modulation Phenomenon 

In the last section we have seen that when a strong electromagnetic 
wave propagates through a plasma, the perturbation it causes in the plasma 
affects the propagation of the wave itself. Obviously, if other waves prop- 
agate at the same time through the perturbed region, they will also be 
affected. If the intense wave is amplitude-modulated with a low frequency 
0, the perturbation in the plasma is also modulated as discussed in the 
previous section. When a second wave propagates through this perturbed 
region, it will also be modulated. This is the well-known Luxembourg 
effect in the ionosphere, also called the cross-modulation phenomenon. 
In this section, we shall treat this problem in an elementary fashion. 

Let us assume that an amplitude-modulated wave is propagating in the 
z-direction. In the approximation of geometric optics (Chapter 5 ) ,  the 
field may be written as 

x cos[wlt - k ,  sI n, dr ]  . P (7.5.1) 

where k,  = w,/c, K,(z) is the absorption at z for wl, and P is the self- 
interaction factor. The amplitude of the wave is given by 

For simplicity, in the following computation of the perturbation of the 
plasma we shall neglect the self-interaction effect and set P = 1. At first 
glance, this seems to be contradictory, since the wave is assumed to be 
strong and the self-interaction certainly is important. But it so happens 
that in a plasma cross-modulation can be easily observed even for (T, - T)/  
T < 1. Therefore the case we shall consider is the one in which the wave is 
strong enough to cause perturbation in the plasma-yet at the same time 
weak enough so that self-interaction may be neglected. This case includes 
many practically observable situations, especially in the ionosphere. 

For a very small modulation frequency 52, the amplitude of (7.5.1) may be 
considered as quasi-steady. Since the momentum relaxation time is very 
short, in computing the velocity u(t) (7.3.6) may be used directly 
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with the substitutions of E, by the amplitude in (7.5.1) and wt by w,t 
- k,  J: n, dt, respectively. For the temperature T, , a better approximation 
must be made since T, relaxes much more slowly. For o >Q, (7.3.7) 
may be written as 

where v, is used since self-interaction is neglected and E,,(z, t )  is given 
by (7.5.2). 

Solving (7.5.3), we see that the part of the temperature perturbation 
AT, = T, - T which varies with frequencies Q and UZ is given by 

x [A ,  cos(Qt - f$l) + A ,  cos(2Qt - I#,)] (7.5.4) 

where 
C = M,e2E,2,(0)/3Tm6 

A ,  = + Q2)112, A ,  = M , S V , / ~ ( ~ ~ V ~ ~  + 4Q2)1/2 (7.5.5) 

dl = tan-1(Q/8vo), 42 = tan-1(2Q/6vo) 

The change in temperature in turn causes a change in the collision fre- 
quency. Again, let us consider the case where electron-molecule collisions 
are dominant, For this case v = V,(T~/T)~’~. Therefore 

A v  E v0AT,/2T (7.5.6) 

Now suppose a weak, unmodulated plane wave with frequency w, propa- 
gates through the perturbed region. The amplitude of this wave in the 
geometric approximation is given by 

where the absorption is given by 

(7.5.7) 

(7.5.8) 

As is shown in (7.4.7), the absorption coefficient x2  depends on the colli- 
sion frequency. Therefore in the perturbed region x2 is modified. For small 
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Av, we may write 

381 

(7.5.9) 

The amplitude of the second wave may now be written as 

Substituting (7.5.4) into (7.5.10), we obtain 

Eo,(z, t )  = constant x [l - Mn cos(S2t - - MZn cos(2SZt - &)] 
(7.5.1 1 ) 

where 

We see that due to the modulation of the collision frequency caused 
by the passing of the first modulated wave, the second wave is also ampli- 
tude-modulated at  frequencies 52 and 252. The modulation indices are given 
by M n  and Mzn for the two frequencies, respectively. The depth of modula- 
tion (indicated by Mn and MZn) and also the phase depend on the param- 
eters of the plasma as well as the geometry of the problem. Here we just 
note that both A ,  and A ,  decrease as SZ increase. Since Mn and MZn are 
proportional to A ,  and A , ,  respectively, the depth of the cross-modulation 
decreases as 52 increases. Also, in general the modulation of the second 
harmonic is smaller than that of the first harmonic. This is evident by 
examining the following relation obtained from (7.5.12) and (7.5.13). 

(7.5.14) 

In our computation, we have assumed normal incidence for both waves. 
The case of oblique incidence can be treated in the similar manner. When 
the external dc magnetic fields are present, the computation becomes more 
complicated. However results similar to those obtained above for isotropic 
plasma may also be obtained. 
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7.6 Wave-Wave Interaction 

In the previous two sections we have discussed the nonlinear effects of 
wave propagation in a plasma where collisions play a significant role. 
The dependence of the effective collision frequency on the electromagnetic 
fields causes the self-interaction as well as cross-modulation of waves. 
Other phenomena such as harmonic generation, demodulation, etc., may 
also occur due to a similar mechanism. In this section we shall discuss 
another aspect of the problem of nonlinear wave propagation. We shall study 
in general the nonlinear phenomena that arise independent of the collisional 
effects. The physical processes underlying this type of nonlinear phenomena 
may be divided into two catagories. The first one is the resonant interaction 
of waves in which the energy and momentum of the interacting waves are 
conserved. The second is the resonant interaction between waves and par- 
ticles in which the total energy and total momentum of waves and particles 
are conserved. In the following we shall concentrate on the discussion of the 
first class. Since our purpose is mainly to indicate the ideas and demonstrate 
the techniques rather than to study a specific physical problem, we choose to 
investigate the following dimensionless nonlinear partial differential equa- 
tion 

(7.6.1) 

This equation may represent a dispersive wave system with the nonlinear 
term given on the right-hand side. We shall assume in the following that E 

is a small parameter corresponding to weak interactions. Using (7.6.1), 
we shall first indicate qualitatively the physical processes underlying the 
wave-wave interaction phenomenon; then we shall introduce one of the 
mathematical techniques that are used to study such problems. The main 
reason for choosing (7.6.1) is just because it represents one of the simplest 
nonlinear dispersive wave systems for which three-wave resonant interaction 
is possible. Armed with ideas and results obtained from considering (7.6.1) 
we can then go on to discuss some wave-wave interaction phenomena that 
may occur in the real physical world. 

Let us first consider (7.6.1) without the nonlinear term on the right- 
hand side. This is a one-dimensional linear dispersive wave system and from 
the discussion in Chapter 2 we know that for plane waves of the form 
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to exist, w and k must satisfy the dispersion relation 

d ( k )  = 1 - k2 + k4 (7.6.3) 

In the linear system, plane waves satisfying the dispersion relation will 
propagate in the medium independently with constant amplitudes; there is 
no energy exchange between the modes. When the nonlinear term on the 
right-hand side is included, however, interaction among the waves occurs. 
Energy exchange between the modes does exist. Therefore the amplitudes 
of the waves will change as time goes on. For weak nonlinearity one would 
expect to see a slow change in the amplitudes as compared with the fast 
changing phase. The interaction becomes most important when two waves 
beat together such that their sum or difference frequency and wave number 
just match the frequency and wave number of a third wave. We shall call this 
case 
tion 

resonant wave-wave interaction. Mathematically the resonant condi- 
may be written as 

(7.6.4) 

If one interprets o and k as the energy and momentum of a quantum 
associated with the wave, (7.6.4) may be regarded as the principles of 
conservation of energy and momentum in the process involving the three 
quanta. 

Let us now consider the case of three-wave interaction for the system 
(7.6.1). Assume a solution of the form 

3 

y(x, t )  = C [a(k,, t)e-jknz + a(-k, ,  i ) e j k n z ]  (7.6.5) 

where a*(kn, t )  = a(-k, ,  t )  for real y(x, t ) .  This is a combination of 
three interacting waves with wave numbers satisfying the condition 

n=l 

k ,  + k2 + k3 = 0 (7.6.6) 

Substituting (7.6.5) into (7.6.1) and equating the terms on both sides 
with the same exponential factor, we obtain 

d2a(k,, t ) /dt2 + wn2a(k,, t )  = E C 
mfn,m- l ,2 ,3  

a*(k,, t)a*(-k, - k,, t ) ,  
n = 1,  2, 3 (7.6.7) 

where 
w," = W2(k,) = 1 - kn2 + kn4, n = 1,2, 3 (7.6.8) 
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A similar set of equations may be obtained for u(-k, ,  t ) .  
We note that for E = 0, there is no nonlinear interaction and the a(ki , t)’s 

are independent of each other. The solutions are exp(&jw, t )  for this case 
and (7.6.5) represents three independent waves. 

For E # 0, (7.6.7) represents three coupled nonlinear equations. In general 
they are difficult to solve. For weak nonlinearity such that E < 1, approxi- 
mate solutions can be obtained by several different techniques. The central 
idea behind all these techniques is that for weak nonlinearity, the function 
a(ki ,  t )  can be expressed as the product of a slowly time-varying amplitude 
function and the exponential exp( &jwi 1) .  Therefore two different time scales 
exist, a slow one on which the amplitude varies and a fast one on which 
the phase changes. In the following we shall introduce one of the techniques, 
the so-called “method of averaging,” to solve (7.6.7). 

To apply the method of averaging we first transform (7.6.7) into the so- 
called “standard form” (to be defined later) by defining a vector 

(7.6.9) 

Then (7.6.7) can be put into the form 

4 l d t  + A - = EX(kn, t ,  g )  (7.6.10) 

where 

and 

(7.6.1 1) 

In order to transform (7.6.10) into the standard form, we introduce the 

(7.6.13) 

transformation 

‘(k 9 t )  = w, Y t )  ’ q(k, 9 t )  

where Q(k,,  t )  is a 2 x 2 matrix and q is a column vector. If we choose 
Q to be 

then by substituting (7.6.13) and (7.6.14) into (7.6.10) 

n dq(k,, t)/dt = &-‘(k,, t )  - X(k,, t ,  Q q), 

(7.6.14) 

we have 

= I ,  2, 3 (7.6.15) 
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which is the standard form of the equation. @-I is the inverse of @ and is 
given by 

@ is called the fundamental matrix for the homogeneous equation 

and we note that the columns of Q are vector solutions of this equation. 
Using (7.6.12), (7.6.14), and (7.6.16), we can write (7.6.15) explicitly in 

its component form. For example, for n = 1, we have 

Similar equations for ql (kz ,  t ) ,  qz(k2, t ) ,  q , (k3 ,  t ) ,  and q,(k3, t )  can be 
derived. They all have the same form. The subscripts on k and w are cyclicly 
symmetric. Thus we have six coupled nonlinear equations in the standard 
form for the vector q(k,, t).  Once q is solved, the solution a(k, ,  t )  is 
obtained through (7.6.13). We have 

a&,, t )  = 5,(k,, I )  = ql(kn, I)eknt + q2(kn, t)e-iont (7.6.19) 

For small E ,  from (7.6.17) and (7.6.18) we see that q1 and q2 vary slowly 
with respect to time. The expression of a(k,,  t )  is then in the form of the 
product of a slowly varying amplitude and a fast varying exponential as 
previously mentioned. To obtain the solution q from the set of nonlinear 
differential equations, the method of averaging will be used. This method 
essentially is based on the fact that q varies on a much slower time scale 
than the time scale of the exponential function. It can be shown that the 
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I I  
I I  

I 

-1  0 

asymptotic solutions for (7.6.17) and (7.6.18) to the first order of the 
small parameter E satisfy the equations obtained by taking the average of 
the original equations over the fast time scale. In taking this average, 
ql and qz are kept constant. When this averaging method is applied to 
(7.6.17) and (7.6.18), we note that the terms on the right-hand side vanish 
identically except for the various resonant conditions w1 + w2 + w3 = 0, 
w1 + w3 - w 2  = 0, w1 + w2 - w3 = 0, or w 2  + w, - w1 = 0. Each con- 
dition corresponds to one particular physical situation. In the following we 
shall study in detail the case where three traveling waves interact with 
each other such that all qz’s are absent. For this case, the equations after 
averaging become 

:k 
‘ I  

(7.6.20) 

with the resonant conditions 

Two possible resonant trios for the dispersion equation w, = 1 - ka2 
+ kn4 are shown in Fig. 7.6-1. Before we solve (7.6.20) in detail, let us first 

w 

I 

Fig. 7.61. Two possible resonant 
trios for we(k)  = 1 - ka + k4. Waves 
traveling in positive x-direction are 
represented by dots; waves traveling 
in negative x-direction are represented 
by crosses. [From F. P. Bretherton 
(1964). Resonant interaction between 
waves. J.  Fluid Mech. 20,457479. By 
permission of Cambridge Univ. Press]. 
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combine them with their respective complex conjugate equations. We can 
write 

where Im indicates the imaginary part. 
For col and w2 both positive, w 3  must be negative according to the resonant 

condition. (7.6.21) then indicates that when the amplitudes of waves 1 and 2 
increase with time, that of wave 3 must decrease with time. In general, if 
one amplitude is increasing with time, then at  least one of the other am- 
plitudes must be decreasing. 

To solve (7.6.20), we write 

ql (kn,  t )  = a,ejb, n = 1 , 2 , 3  (7.6.22) 

where a, and $n are real functions of k, and t .  

parts, we obtain 
Substitute (7.6.22) into (7.6.20) and equating the real and imaginary 

da,/dt = - ( E / W ~ ) G L ~ U ~  sin 8 

da2/dt = ( ~ / w ~ ) a ~ a ~  sin 8 

daJdt = ( E / W ~ ) C I ~ ( T ~  sin 8 

(7.6.23) 

and 
d$,/dt = - (Ea2a3/w1al) cos 8 

d$,/dt = - (Eala3/w2a2) cos 8 

d#$dt = - ( ~ a ~ a ~ / w ~ a ~ )  cos 8 

where 

0 = $1 + $2 + $3 

From (7.6.24), we obtain immediately 

dO/dt = cos O(d/dt) In(ala,a3) 

which yields a relation after integration 

ala2a3 cos 8 = F = constant 

(7.6.24) 

(7.6.25) 

(7.6.26) 

(7.6.27) 
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From (7.6.23), we have 

o, da12/dt - o2 daZ2/dt = 0 

o1 da12/dt - o3 da,2/dt = 0 

o2 daZ2/dt - o3 da,2/dt = 0 

(7.6.28) 

Integrating (7.6.28) with respect to t, the following can be obtained 

w1a12 - o2aZ2 = m, 

w p 1 2  - w3a32 = m2 

w2aZ2 - 03a32 = m3 

(7.6.29) 

where m,,  m 2 ,  and m3 are constants. 

(7.6.29), we can write 
Let us now consider the first equation of (7.6.23). Using (7.6.27) and 

da12/dt = - (2~/o,)(r ,a~a~ sin 0 

= - (~E/w,) [a1za22a32( 1 - cos2 O)]l/z 

= - (~E/o,) [a12(w1a12/w2 -m1/02)(w1a12/03 - m2/w3) - Yz]1/2 
(7.6.30) 

Defining 

a12 = n , ,  aZ2 = n 2 ,  a2 = iz3 (7.6.31) 

(7.6.30) may be put in the form 

dn,/dt = -(2~/o,)[(n, - nlu)(n, - nlb)(n, - n1c)]1/2 (7.6.32) 

where n,,, nib, and n,, are the roots for the equation 

nl(olnl/w2 - m,/w2)(w,n,/w3 - m2/w3) - rz = 0 (7.6.33) 

and are arranged in the following manner 

Equation (7.6.32) may be integrated formally to give 
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This equation can be transformed into the standard elliptic integral by 
the following change of variable. Let 

(7.6.35) 

(7.6.36) 

Substituting the new variable y into (7.6.34), we may reduce it to an el- 
liptic integral, 

(7.6.37) & dY J:) ((1 - y2)(1 - B”2))”2 
- (to - t)(nlc - nla)ll2 = 
0 1  

where y( to)  = 0 has been assumed. This relation may be taken as the 
definition for to .  

The solution of (7.6.37) is given by the so-called Jacobian elliptic func- 
tion sn(u, p )  (Gradshteyn and Ryzhik, 1965). 

(7.6.38) 

and, by the definition of y,  the solution for nl(t), hence a12(t), is given by 

1 & 
a12(t) = nl(t) = n,, + (nlb - nla) sn2[ - (n,, - nla)1/2(to - t ) ,  p (7.6.39) 

0 1  

The amplitude functions az and a3 may be obtained from (7.6.29). Once 
a1 , az, and a3 are known, (7.6.27) determines 8 and (7.6.24) may be used to 
to calculate r,hI ,  r,hz, and r,h3. The general solutions q l (kn ,  t )  are then obtained 
through (7.6.22). The elliptic function sn(u, /I) is a tabulated special func- 
tion. It reduces to the common trigonometric function sin u when = 0. 

To visualize the physical significance of our derivation we consider 
the following example. At t = 0, let us assume that the amplitude of the 
first wave a,(O) = 0. Also, we assume that a22(0) > a32(0); the second wave 
has dominating amplitude at t = 0. Without loss of generality, we can 
put r = 0 in (7.6.27). From (7.6.29), we have 

m, = --o,n,(O), m2 = --wgn,(0) (7.6.40) 
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Substituting (7.6.40) into (7.6.33), for T = 0, we have 

(7.6.41) 

n,, = 0 

For this case, since n,(O) > n,(O), /I is very small. Therefore the elliptic 
function sn(u, p )  may be approximated by sin u. The solutions are therefore 
given by 

a12(t) = n l ( t )  = 
w2 + w3 0 2  + 0 3  

w 
aZ2(t) = n2( t )  = n2(0) - 3 n,(O) sin2 

a,”(t) = n,(t) = n,(O) cos2 

w2 w2 + 0 3  

(7.6.42) 

In Fig. 7.6-2, the functions aI2, a22, and a2 are plotted against time. 
We see that although initially the wave with frequency w1 has zero amplitude, 
through the interaction of waves 2 and 3, the wave with frequency w, is 
generated. 

t 

Fig. 7.62. Amplitudes of the three interacting waves. 

Thus, using the relatively simple equation (7.6. I), we have demonstrated 
one of the techniques in treating the problem of wave-wave interaction. 
The example is for one-dimensional waves but it can be extended im- 
mediately for the case of three-dimensional waves. The resonant conditions 
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then become 

(7.6.43) 

and the rest of the above discussion applies. Furthermore, our discussion 
has been on the simplest case of a three-wave system. Similar consideration 
may be made for multiwave systems. In some media where more than one 
type of wave can exist, then ol, 02, and w3 in (7.6.43) may satisfy the dif- 
ferent dispersion relations corresponding to the different modes, respectively. 

The technique we discussed above can be used to study various wave- 
wave interaction phenomena that occur in real physical systems. For instance, 
in a plasma there may exist many types of waves as discussed in Chapters 3 
and 4. The technique may be used to study the resonant interactions among 
these waves. It is possible under certain conditions that two transverse 
waves will interact to generate a longitudinal plasma wave or ion acoustic 
wave; or two transverse waves may generate another transverse wave propa- 
gating in different direction with the beat frequency. It has been suggested 
(Harker and Crawford, 1969) that resonant interaction among the whistler 
modes may be the source of low frequency noise in the magnetosphere. 
The technique has also been used successfully in the study of weak turbulence 
in a plasma as well as surface waves in the ocean. In both cases, large 
numbers of waves interact with each other resonantly in a random fashion. 

A special case in the resonant interaction phenomenon is when one wave 
has very low frequency as compared with the other two waves. For this 
case, in some physical systems, the resonant interaction may serve as a 
mechanism in trapping the waves. The low frequency wave does not par- 
ticipate in the energy exchanging process; rather it acts as some sort of cat- 
alyst to promote the interaction of the two high frequency waves. They 
interact in such a way that the energy is exchanged from one wave to 
another continuously and the propagation is confined in a spatial duct. 
This type of interaction may occur in the ocean for internal gravity waves 
(Phillips, 1968), or in the atmosphere for acoustic-gravity waves (Yeh and 
Liu, 1970). 

We mentioned in the beginning of this section that another type of 
nonlinear phenomenon involves the resonant interaction among both waves 
and particles. This type of interaction occurs quite often in plasma. The 
well-known Landau damping is a linear example of the phenomenon. 
Techniques such as the kinetic equations for waves have been developed 
to study these problems. Interested readers are referred to the book by 
Sagdeev and Galeev (1969). 
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7.7 An Averaged Variational Principle 

In closing this chapter, we wish to discuss briefly one of the recently 
developed techniques in treating nonlinear wave propagation problems. 
The technique was developed by Whitham (1965) for studying changes of 
a wave train governed by nonlinear partial differential equations. I t  cor- 
responds to the Krylov-Bogliubov method of averaging for the ordinary 
differential equations as discussed in the previous section. The key to this 
approach is to realize that for many nonlinear problems the governing 
nonlinear equations admit elementary “wave train” solutions given by 

y(r, t )  = a cos(wt - k . r) (7.7.1) 

where a, k, and w = w(k) are slowly varying functions of r and t. The 
averaged variational method indicates a way to obtain equations that de- 
scribes the variations of these quantities. 

Let us consider a system for which the dynamic equations can be derived 
from a variational principle such as the Fermat’s principle discussed in 
Chapter 5. We shall assume that the system admits wave train solutions as 
given by (7.7.1). The simplest case occurs when there is only one single 
dependent variable y(r, r )  and the system is described by the Lagrangian 

yt = ay,lat, +r = v y  (7.7.2) 

L(Yt 9 +r 7 y )  where 

The variational principle takes the form 

(7.7.3) 

Following the discussion in Section 5.4, we derive the Euler equation for the 
system as 

aL,/at + v . L, - L, = o (7.7.4) 

L, = aL/ayt, L, = v v r ~ ,  L, = aLpY (7.7.5) 

where 

Equation (7.7.4) in general is a nonlinear partial differential equation for 
the unknown function y .  Since we have assumed that a wave train solution 
for the system exists, we may write the solution in the form 

Y = Yo(& 4 (7.7.6) 
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where 
8 = wt - k . r (7.7.7) 

and a is the amplitude and yo is periodic in 8. 

order that (7.7.6) satisfy (7.7.4), a dispersion relation must exist such that 
The three slowly varying parameters w, k, a are not independent. In  

D(k, w, a) = 0 (7.7.8) 

We note that for linear problems the dispersion relation does not involve 
the amplitude a. Such linear examples were amply discussed in earlier chap- 
ters. When the problem is nonlinear, the dispersion relation becomes 
dependent on the amplitude as shown in (7.7.8). 

The wave number k and the frequency w may be written, for the general 
case, as 

0 = aelat, k = -ve (7.7.9) 

as defined in Section 2.12. The aim now is to derive equations for the 
slowly varying parameters k, w, and a. To achieve this, let us assume that 
the period of the wave train solution y = yo(@, a) is normalized to 2n. 
We define the averaged Lagrangian of the system by 

2n 

9 ( k ,  w, a) = (1/2n) J L d8 
0 

(7.7.10) 

The calculation of (7.7.10) is carried out in the following manner. We 
first substitute y = yo(8, a)  in the expression for L ;  then the integration in 
(7.7.10) with respect to 8 is carried out holding k, w, and a constant. The 
dependence of 9 on k and w arises from the substitution of yt = wy;, 
V y  = -ky; into L;  the prime indicates differentiation with respect to 8.  
The average variation principle states that the equations for (k, w, a) follow 
from 

6 J J 9 ( k ,  w, a> dt dr = 0 (7.7.1 1) 

The quantities k and w are related to the phase function 8.  Therefore the 
variation of 9 comes from variation of 8 and variation of a. Hence, we 
must derive the Euler equations for (7.7.11) for independent variations 68 
and 6a. Again, following Section 5.4, we have, from variation 6a 

Pa(k, w, a) = 0 (7.7.12) 
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from variation 60 

(a/at)LZ - v V k 9  = 0 (7.7.13) 

where the subscripts indicate differentiations as defined earlier. 
Equation (7.7.12) is a functional relation between (k ,  w ,  a) which is just 

a nonlinear dispersion relation (7.7.8). Equation (7.7.13) together with the 
consistency equations 

describe the variation of k and w. The consistency equations are derived 
from (7.7.9). Thus, we see that by applying the averaged variational prin- 
ciple, we obtain the equations for k,m, and a. Whitham (1970) has shown that 
this averaged variational principle may be derived as the first term in a formal 
perturbation expansion. In the following we shall show this for the one- 
dimensional case; extension to higher dimensional case is straightforward. 

The derivation makes use of the so-called “two-timing” technique which 
recognizes explicitly the fact that the solution of the problem varies on two 
different scales: the fast oscillation of the wave train and the slow variations 
of the parameters (k, w, a). The main idea is to express the solution in the 
form 

y(x,  t )  = !w, x, T, E )  (7.7.15) 

where 
e = E-w(x, r>, x = Ex, T = &t (7.7.16) 

and E is a small parameter that indicates the ratio between the fast and 
slow scales. The wave number and the frequency are now expressed by 

o(X, T )  = = QT, k(X,  T )  = -6, = -0, (7.7.17) 

The independent variables x ,  t represent the fast scale variation and X, T 
represent the slow scale variation of the solution. The t and x derivatives 
now can be written as 

a a d a a - = 0, - + & - = w - + & - 
at ae dT ae dT 

a a a d 0 - + & - = % - + & -  
a 
ax - ae ax ae ax 

(7.7.18) 
_ -  

where the notation x = -k  has been used. 
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When we apply (7.7.18), Eq. (7.7.4) becomes 

a aL1 aL 
ae aT ax - (OL, + X L J  - L, + E - + E 2 = o (7.7.19) 

This equation combining with the relation 

For later convenience, the conservation equation is re written as 

aRlae + aPIaT + aQlax = o (7.7.22) 

where 
R = (oL, + zL2)Yo- L 

P = !POL, (7.2.23) 

Q = YeL2 

We now formally expand the solution !P in a power series in E ,  

m 

Y = 1 E"Yn 
0 

(7.7.24) 

and substitute it into the expressions for R, P, and Q. Each of them will 
also have a power series expansion of the form 

Equating the terms of equal powers in 
are 

a R y a e  = o 

etc. (7.7.25) 

E in (7.7.22), the first two terms 

(7.7.26) 

a R y a e  = - a P y a T  - ap'lax (7.7.27) 

Equation (7.7.26) may be integrated once to yield 

R'O' = ( w L ~ O '  + XLAO')Y~ - L'O' = A(X,  T )  (7.7.28) 
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where A is the integration constant (with respect to 0) .  This equation can be 
solved for Yo. The next order equation, (7.7.27), has to be solved for !PI. 
A solution uniformly valid in 8 requires Y, and hence each Yn, to be pe- 
riodic in 0 with period 232. This is only possible in (7.7.27) if the integral 
of the right-hand side with respect to 8 over one period is zero. That is, 
to avoid secular terms in !PI, we must demand 

~- a ( I s[’ Po) do) + &(& sr Q ( O )  do)  = 0 (7.7.29) 
aT 2n 

From (7.7.23), Eq. (7.7.29) becomes 

Using the definition of the averaged Lagrangian (7.7.10), the secular 
condition (7.7.30) can be written as 

a L q a T  + ayx/ax = o (7.7.3 1) 

Or, going back to the original wave number k,  

a ~ ~ l a ~  - apk/ax = o (7.7.32) 

which is just the one-dimensional equivalent of (7.7.13) derived from the 
averaged Lagrangian principle. Thus, we have shown that the averaged 
Lagrangian principle may be derived as the first term in a formal perturba- 
tion expansion. Higher order terms may be formally obtained from the 
expansion of (7.7.22). 

From (7.7.28), we can solve for L‘O’ in terms of other variables and obtain 

L‘O’ = ( O L p  + XLJO’ )Y&q - A 

= (aLco)/aYo,)Yo, - A (7.7.33) 

The averaged Lagrangian can now be written as 

(7.7.34) 

where the integration is over one complete period of Yo. 
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Using this form of 9 in the variational principle, the Euler equations 
are 

YA = 0, d Y m / d T  + a P x / d X  = 0 (7.7.35) 

Whitham (1970) has shown that for many nonlinear problems, (7.7.34) 
and (7.7.35) are most effective to use to obtain the dispersion relation 
D(k,  o, A )  as well as the equation for w and k .  We note that A in (7.7.35) 
is related to the amplitude as defined in (7.7.1). 

We conclude this section by applying the averaged variational principle 
to a simple nonlinear problem. The equation is the general nonlinear Klein- 
Gordon equation 

Yttt - Yzz + V'(Y) = 0 (7.7.36) 

The Lagrangian is 

L = t y t2  - tYZ2 - V(Y) (7.7.37) 

where V(y)  is a function of y .  
The lowest order approximation yields 

L'O' = &(w2 - k2)Y& - V(Y0) (7.7.38) 

Therefore 
dL.'O'/dYo, (w2 - k2 ) Y o e  (7.7.39) 

Substituting (7.7.39) into (7.7.33), we obtain 

Comparing (7.7.38) with (7.7.40), we have 

We note that the purpose of this manipulation is to eliminate Yo, in favor 
of dL(O'/d!Po,. Solving (7.7.41) for dL'O'/dlV,,, we obtain 

Substituting (7.7.42) into (7.7.34), we obtain the averaged Lagrangian 

[2(w2 - k2)]'/2 [ A  - V ( Y o ) ] ' / ~  dYo - A (7.7.43) $ 9=- 
2n 



398 7. Nonlinear Wave Propagation 

The Euler equations (7.7.35) become 

2n = [$(02 - k2)]’l2 d Y o / [ A  - V(Yo)l1/2 (7.7.44) 4 
and 

4 [ A  - V(Yo)]1/2 d Y o  
w 

$ [ A  - V(Yo)]1/2 dYo 
+-{- a 1  

ax 272 (a2 - k2)lI2 

Equation (7.7.44) gives the dispersion relation between o, k, and A while 
(7.7.45) together with the consistency equations (7.7.14) describe their slow 
variations. 

For the linear case such that V(Y)  = y2/2, the integral in (7.7.43) may be 
evaluated explicitly. We have 

$ ( A  - $Yo2)’/2 d Y o  = 2 Jd” ( A  - $Yo2)1/2 d Y o  = (2A)1/2 n 
4 2 2  

Equation (7.7.43) then becomes 

Similarly, (7.7.44) and (7.7.45) may be evaluated to yield, respectively, 

(02 - k2)”2 = 1 (7.7.47) 

a(Aw)/aT + a(Ak) /aX = 0 (7.7.48) 

The consistency equation (7.7.14) becomes 

dk@T + ao/aX = 0 (7.7.49) 

Combining (7.7.47), (7.7.48), and (7.7.49), we obtain 

ak/aT + v,(k) dk/aX = 0 

aA/aT + v,(k) aA/dX + Av,‘(k) ak/dX = 0 

(7.7.50) 

(7.7.5 1 ) 

where v,(k) is the group velocity defined by 

v,(k) = do/dk (7.7.52) 
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For a periodic solution of the form 

u,(e) = a cos e (7.7.53) 

we see from (7.7.28) that the amplitude a is related to A through 

A = a2/2 (7.7.54) 

Therefore A is proportional to the energy density of the wave. 
We note that the curve 

dX/dT = dx/dt = v,(k) (7.7.55) 

is a double characteristic for the two equations (7.7.50) and (7.7.51). 
Along this characteristic, 

dk/dT = 0, dA/dT = -v,l(dk/dX)A on dxldt = v,(k) (7.7.56) 

That is, the wave number remains constant for an observer moving 
with group velocity v,(k). This is the same result as in Chapter 2 when we 
discussed the kinematics of the waves. Equations (7.7.50) and (7.7.51) give 
the slow variations for the amplitude and the wave number of the wave 
train. The solutions depend on the initial and boundary conditions cor- 
responding to the physical situations. 

Thus, in this section we have introduced the averaged variational prin- 
ciple for treating general problems of dispersive waves. The main results 
are included in the three equations (7.7.12)-(7.7.14). These equations have 
been used by many authors to  study a wide variety of problems, including 
the extension of the concept of group velocity to nonlinear problems, 
nonlinear instability, resonant wave interaction, dispersive waves in in- 
homogeneous media, in moving media, etc. Interested readers may consult 
the paper by Whitham (1970) for the references on the various topics. 

Problems 

1. In Section 7.3 we have derived the expression for the electron tempera- 
ture T, in the limit of w > Sv, and found it to be independent of time. In 
the opposite extreme of low frequencies such that o < Sv, find the electron 
temperature T, (assuming 6 and v are constants). 



400 7. Nonlinear Wave Propagation 

2. In the high frequency approximation (w > yo) ,  assuming the incident 
wave to be amplitude-modulated with the amplitude given by Eo(l + M 
x cos Qt) ,  Q < avo, find the absorption coefficient for the wave. The 
dominant collisional process is between electrons and molecules. 

3. In the resonant wave system (7.6.20) if one of the waves, say wave 
1 ( k , ,  w,) ,  is excited initially with an amplitude much greater than that 
of waves 2 and 3, (7.6.20) may be solved by the usual linearization procedure. 
We start by linearizing (7.6.20) with respect to q l ( k 2 ,  t )  and ql (k3 ,  t )  but 
not with respect to qL(kl, t ) .  

(a) Prove that to this order ql remains constant in  time. 
(b) Prove that the conditions for effective transfer of energy from wave 

1 to waves 2 and 3 are 

4. The internal gravity waves of the form ej(ot-k.r) in a uniformly stratified 
fluid satisfy the dispersion relation 

where cr)b is the Brunt-Vaisala frequency and is a constant and 0 is the 
angle between the wave vector k and the horizontal plane. The resonant 
conditions for wave-wave interaction are written in the form equivalent 
to but slightly different from the ones in the text: 

For the case in which w3 = 0, find k,, k, , k, , wl, and w 2  that satisfy the 
resonant conditions. 
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8. Interaction of 
Atmospheric Waves 
with the Ionosphere 

The previous chapters were concerned exclusively with the propagation 
of electromagnetic waves in plasmas although the mathematical techniques 
developed in studying such waves can be equally applied to studies of other 
waves. We have seen that in response to the incident electromagnetic energy 
the plasma particles irradiate in such a manner that propagation of the 
total electromagnetic energy can be described in terms of characteristic 
waves. 

The terrestrial ionosphere is known to be a weakly ionized plasma. The 
plasma-neutral-density ratio is at most 1 : 100. If the neutral atmosphere is 
capable of wave motions of its own, the plasma must respond to it through 
collisions. One outstanding example of wave motions in the neutral gas is 
the propagation of sound. In the atmosphere, the gravitational force causes 
the density to be vertically nonuniformly distributed. For waves of suf- 
ficiently low frequency the buoyancy force plays an important role in mak- 
ing otherwise ordinary sound waves anisotropic. In fact, the modification 
is so drastic that the resulting wave is called the acoustic-gravity wave. 
This chapter is concerned with the propagation of acoustic-gravity waves 
and their interaction with the ionosphere. Because of space limitation, we 
will discuss propagation in the unbounded atmosphere only. Most experi- 
mental observations at ionospheric heights tend to support free waves and 
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not guided waves. It should be pointed out that many observed acoustic- 
gravity waves in the troposphere are guided. 

The earth rotational effects are ignored as tides form a special topic of 
their own. 

8.1 Structure of the Atmosphere 

The primary properties of the atmosphere are its density, pressure, tem- 
perature, composition, and motion. Conventional meteorology deals mainly 
with these properties in the lower ten to twenty kilometers. These regions 
are accessible by kites (as first used in about 1900), balloons, and aircrafts. 
As experimental techniques improved, the probing of the atmosphere also 
extended in height. Recently, rockets and satellites have been making direct 
in situ measurements in addition to observing, at a distance, naturally 
occurring events such as meteors, noctilucent clouds, etc. One of the most 
striking features of the earth’s atmosphere is its vertical diminution of 
density with height. Therefore, to the first order, the atmosphere may be 
assumed to be horizontally stratified. The cause of this stratification is the 
strong gravitational force. The balance of the gravitational force by the 
pressure gradient force is given by the hydrostatic equation 

(8.1.1) 

Here p is the pressure, g the gravity, e the mass density, and z the height. 
For an ideal gas, the pressure is related to the number density N and tem- 
perature T through 

p = NT (8.1.2) 

For convenience, T is expressed in energy units. Divide (8.1.1) by (8.1.2); 
the following equation is obtained. 

dp/p = -dz/H (8.1.3) 

where H is called the scale height and is given by 

H = T/mg (8.1.4) 

In (8.1.4), m is the mean molecular mass at a given height. Integrating (8.1.3) 
from a reference height zo at whichp = po to an arbitrary height z, we obtain 

(8.1.5) 
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The distribution of number density with height can be obtained from (8.1.5) 
and the ideal gas law (8.1.2) yielding 

(8.1.6) 

where No and To are, respectively, the number density and temperature at  z,. 
It is clear by examining (8.1.5) and (8.1.6) that a knowledge of the scale 
height variation with height is very crucial in understanding the pressure 
and density distributions. In the following, we will consider two highly 
idealized cases, i.e., the isothermal case and the adiabatic case. 

We first discuss the isothermal case. If the atmosphere is allowed to reach 
a thermal equilibrium, the atmospheric temperature eventually will reach a 
constant value for all heights. Such an atmosphere is called an isothermal 
atmosphere. Of course, isothermality nearly never happens in the real 
atmosphere. But in the region of the upper thermosphere above about 
300 km the temperature profile shows very little height variation. This is 
because of the large thermal conductivity which tends to smooth out any 
temperature gradient. At these heights, there is very little mixing. The 
atmosphere, being a mixture of gases, is then distributed with partial 
pressure given by its constituent gas. Let the scale height of the ith gas be 

Hi = T/mig (8.1.7) 

Over a limited region of the atmosphere, the gravity can be assumed to be 
constant. The height distribution of partial pressures in an isothermal 
atmosphere is therefore given by 

Similarly, the density distribution is 

(8.1.8) 

(8.1.9) 

In an isothermal atmosphere the meaning of scale height is very clear: It is 
the e-folding distance for pressure and density. A light gas has a large scale 
height. It is therefore expected that the light gas will predominate at  suf- 
ficiently great heights. 

Next, we wish to discuss the adiabatic case. In the lower atmosphere the 
thermal conduction is extremely slow. Convective motions are set up when 
the atmosphere is heated from below. These motions also mix the gas suf- 
ficiently so that the average mass m is nearly unchanged with height. Be- 
cause of the slow conduction, the gas, when transported from one place to 
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another, expands and contracts nearly adiabatically. The pressure and mass 
density in an adiabatic atmosphere must then satisfy 

p = Aey (8.1.10) 

or 
dp = Ayey-l de (8.1.11) 

where A is a constant and y the ratio of the specific heats. Eliminate p 
from the hydrostatic equation (8.1.1) and the adiabatic equation (8.1.1 1 ) 
and integrate the resulting equation to find 

e = [ex-' - - 1 ) /Ay) (z  - zO)ll '(y-l)  (8.1.12) 

The mass density (8.1.12) decreases continuously as height increases and it 
is reduced to zero when 

where we have made the substitution A = po/eoY. This means that an adia- 
batic atmosphere must have a limited height. As an example, let us take 
po = 1.01 x 155 N/m2, eo = 1.23 kg/m3, y = 1.4 and g = 9.80 m/sec2. We 
get 29.4 km as the limit of the adiabatic atmosphere. The corresponding 
temperature profile can be obtained by using the ideal gas law (8.1.2) and 
the adiabatic law (8.1.10). 

T = Arne7-l = Arne;-' - (rng(y - l)y-'/y)(z - z0) (8.1.14) 

where the density profile (8.1.12) has been used. The temperature gradient 
is easily obtained from (8.1.14), 

dT/dz = -mg(y - l)/y (8.1.1 5) 

The temperature given by (8.1.15) decreases with height at  a constant rate. 
The magnitude of the gradient is often referred to as the lapse rate. If we 
take the mean molecular weight to be 29, g = 9.80 m/sec2, y = 1.4, the 
lapse rate comes out to be 136 x J/km or 9.84'K/km. Except for the 
first two kilometers above the earth's surface, the troposphere lapses at an 
average rate of 6.5'Klkm. Consequently, the troposphere is not in perfect 
adiabatic equilibrium, 

The behavior of the average temperature profile in the atmosphere is 
shown in Fig. 8.1-1. Also shown are main names for different atmospheric 
regions classified according to the temperature behavior. It is obvious that 
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the real atmosphere is much more complicated than the highly idealized 
cases discussed here. The reader should consult specialized books for a 
detailed discussion [see, for example, Ratcliffe (1  960)]. Our interest here 
is to study the wave propagation in the atmosphere. The background ma- 
terial discussed so far will serve to remind us that the real atmosphere is 
quite complicated. 
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Fig. 8.1-1. Average temperature profiles in the atmosphere. 

It is well known that any sufficiently rapid perturbation in the homoge- 
neous atmosphere will propagate away as a sound or acoustic wave. Being 

The pressure and density variations for an adiabatic process are related 
through (8.1.11). The use of (8.1.11) and (8.1.10) reduces (8.1.16) to 

c2 = yp/e = yT/m (8.1.1 7) 

The speed of sound is seen proportional to the square root of temperature. 
Corresponding to the average temperature profile of Fig. 8.1-1, the speed 
of sound varies in a manner shown in Fig. 8.1-2. Because of its dependence 
on the temperature, the speed of sound will vary diurnally over a wide 
range in the thermosphere. It is interesting to note that there are two sound 
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ducts where the speed of sound is a minimum. The possibilities of such 
ducts to serve as wave guides have been studied by several authors [e.g., 
Pfeffer and Zarichny (1962)l. In most cases, these studies make use of 
numerical techniques. We will limit ourselves to analytic studies of simple 
and idealized problems in order to gain an understanding of the physical 
processes involved. 

8.2 Buoyancy Oscillations 

We have seen in Section 8.1 that the gravitational field is responsible, 
to a large extent, for making the atmosphere inhomogeneous. We will see 
now that the gravitational field is also responsible for making propagation 
of atmospheric waves anisotropic. In an ideal fluid, the motion of a small 
parcel of fluid along the equipotential surface does not require any energy. 
There is no restoring force involved as long as the parcel is displaced along 
the equipotential surface. This is no longer true when the displacement is 
away from the equipotential surface. A vertically displaced fluid parcel ex- 
periences a buoyancy force which tends to restore the original equilibrium. 
The rapidity with which the equilibrium is restored characterizes the atmo- 
spheric oscillation frequency. If the frequency of the wave motion is large 
compared with the characteristic frequency, the propagation is expected to 
be nearly isotropic and the gravity effect is minimized. Conversely, the wave 
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motion is expected to be anisotropic and the gravity plays an important 
role if the frequency is low. 

Consider a horizontally stratified fluid in hydrostatic equilibrium. An 
external force is applied to displace an element of fluid vertically upward by 
a small distance 5. Now remove the external force. In this position, this 
element of fluid experiences a force and starts to move according to the 
equation of motion 

@F = - g  A@ (8.2.1) 

The right hand of (8.2.1) is just the buoyancy force. The quantity de is the 
difference in density of the displaced fluid element from that of the new 
environment and is composed of two terms. The first term comes about 
because of the inhomogeneous nature of the atmosphere and its contribu- 
tion to de is 

- 5 de/dz (8.2.2) 

The second term comes from the change in pressure. If we assume that the 
change is taking place adiabatically, then the contribution to de is, ac- 
cording to (8.1.16), 

(8.2.3) 

where the hydrostatic equation (8.1.1) has been used in obtaining the last 
expression. Substitution of (8.2.2) and (8.2.3) into (8.2.1) results in the 
equation of motion 

t - ' = -  wb2 6 (8.2.4) 

with the angular buoyancy frequency (alternately called Vaisala frequency, 
Brunt frequency, or Brunt-Vaisala frequency) given by 

Lob2 = -g[d In e/dz f g/c2] = (y - l)g2/c2 f (g/c2)(dc2/dz) (8.2.5) 

The fluid element therefore executes a simple harmonic motion about the 
equilibrium position with an angular frequency wb provided that given 
by (8.2.5) is positive. If wb2 is negative, the initial perturbation will grow 
exponentially with time and the fluid is unstable. The condition of marginal 
stability occurs when wb = 0 or when 

dT/dz = -mg(y - l) /y (8.2.6) 

This is just the lapse rate of an adiabatic atmosphere given by (8.1.15). 
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Therefore, the atmosphere is unstable if its temperature lapses at a rate 
faster than the lapse rate of an adiatabic atmosphere. 

In an isothermal atmosphere with a constant mean molecular mass, the 
buoyancy frequency reduces to 

(8.2.7) 

which is a constant, at  least over the region within which g may be assumed 
constant. 

In the atmosphere, the buoyancy frequency is less than 1 Hz and it is 
therefore more convenient to speak of the period of the wave. The buoyancy 
period in the stratosphere is roughly 6 min; it increases to 12 min in the 
thermosphere. 

8.3 Acoustic Gravity Waves in an Isothermal Atmosphere 

The appearance of the buoyancy frequency brings in an entirely new 
mode of wave motion which does not have its counterpart in the study of 
ordinary sound in the homogeneous medium. This characteristic frequency is 
very small as the period is several minutes to ten minutes in the real atmo- 
sphere. Only comparably low frequency waves would be affected by the 
buoyancy force. I t  is for this reason that such waves are sometimes re- 
ferred to as infrasonic waves. We will call them acoustic gravity waves. 

In discussing the propagation of acoustic gravity waves, we will assume 
that the process is adiabatic. Its justification can be obtained by the follow- 
ing order of magnitude estimation. For our present purpose, the one- 
dimensional equation of heat conduction may be taken as 

(8.3.1) 

where c, is the specific heat at  constant volume and has a numerical value 
7.2 x 106erg/gm-deg in cgs units. The coefficient of heat conductivity x 
is proportional to the square root of temperature and is found to be given by 

x = (C AiNi/N)TIIe erg/cm-sec-deg (8.3.2) 
i 

where Ai = 360 for 0, and A i  = 180 for 0, and N,. Let the characteristic 
time of heat conduction be t and the characteristic length be the scale height 
If. The velocity of heat conduction has the order of magnitude, estimated 
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from (8.3.1), 
Vheat H/t = x/ec,H (8.3.3) 

On the surface of the earth, this velocity of heat conduction has a numerical 
value 4 x m/sec which is negligibly small when compared with the 
corresponding speed of sound, roughly 300 m/sec as seen from Fig. 8.1-2. 
Therefore, the adiabatic assumption is very good. Even at  a height of 200 
km, the speed of heat conduction is estimated to be 8 m/sec which is still 
small when compared with the corresponding speed of sound at 800 m/sec. 
For purposes of studying the propagation of acoustic gravity waves, the 
adiabatic assumption can be justifiably used up to a height of about 300 km. 
The effect of heat conduction in this height range is of the second order and 
it serves as a damping mechanism. 

The equations of concern are the fluid equations. For simplicity, the atmo- 
sphere is assumed to be nonrotating and stationary. The equations are 
the equation of continuity, the equation of motion, and the adiabatic equa- 
tion given, respectively, by 

ae/at + v . ev = o 
e Dv/Dt  1 -Vp + eg 

(8.3.4a) 

(8.3.4b) 

DplDt = C' DelDt (8.3.4~) 

where the convective derivative is DID2 = a/at + v V .  The gravity is 
directed downward, i.e., g = (0, 0, - g ) .  The last equation of (8.3.4) is 
applicable only to an adiabatic process and its justification has just been 
examined. For a static, motionless, isothermal atmosphere the mass density 
must be distributed exponentially as a function of height, 

eo = eooe-Z/R (8.3.5) 

where eo0 is the density at  z = 0. The corresponding pressure distribution is 

po = pooe-Z/R (8.3.6) 

with poo = eooT/m. Let the isothermal atmosphere be perturbed according to 
the following scheme: 

(8.3.7) 
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D =  

The first terms on the right-hand side of (8.3.7) are the equilibrium quantities 
and the second terms are the perturbations. Inserting (8.3.7) into (8.3.4) 
and linearizing the resulting equations, we obtain the following equations: 

(8.3.12) i 
j w  0 -jk, - jk,  - H-I 

0 -A j w  0 
g -jk, - H-I 0 im 

_- j o c 2  j a  0 ( r -  1)s 

+ @o v v + v veo = 0 

@o a v p t  = -Vp' + @' . (8.3.8) 

ap'/at + v ' vpo = cz(a@'/at + v Veo) 

Now assume the perturbed quantities to vary like 

(function of z)ej(ot-kfl) (8.3.9) 

By the judicious choice of coordinate axes, we have restricted ourselves to 
studying those waves that are not functions of y. In such a case, the y-compo- 
nent of the equation of motion shows that va, = 0. The remaining equations 
of (8.3.8) reduce to 

jw(@'/e0) - jk,v, + dv,/az - HP1vz = 0 

jwv, = jk,(p'/eo) 

jwv, = - ( a / W ( p ' / e o )  + H-'(p'/e0) - s(e'/eo) 
(8.3.10) 

j w m F ( p ' / e o )  - H-lv, = y uw(e'/eo) - H-'v,] 

The advantage of the isothermal condition is now clear. As seen in (8.3.10), 
the four differential equations for @'/Po, v,, and v, have constant coefficients 
in an isothermal atmosphere. This permits us to seek a solution with z 
dependence proportional to e--jkG. In matrix form, the set of equations can 
be written as 

D - F = O  (8.3.11) 

where F is the vector (@'/Po, $ / P o ,  v,, v,). The symbol D stands for a dyadic 
differential operator which reduces to an algebraic expression for plane 
waves in an isothermal atmosphere. In matrix form, it is given by 

The set of homogeneous algebraic equations (8.3.1 1) has a unique solution 
(outside of a multiplying constant) when the determinant of the coefficient 
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matrix vanishes identically, i.e., 

detl D I  = O  (8.3.13) 

Expand the determinant (8.3.13), and the following algebraic equation is 
obtained. 

o4 - w2c2(k22 + kz2) + g2(y - l)kZ2 + j d y g k ,  = 0 (8.3.14) 

Equation (8.3.14) is known as the dispersion relation. It is complex even 
for the lossless medium. The choice of real or complex o, k, , and k, depends 
on the problem at hand. For example, if the problem of interest is concerned 
with imperfect horizontal ducting, k, may become complex to show leakage 
of energy from the duct. Let us consider the forced oscillation case for which 
o is real. The wave is supposed to be incident on a horizontally stratified 
medium. Due to the kinematic boundary conditions at  interfaces, k, must be 
invariant from stratification to stratification and is therefore real. Since o 
and k, are real, k, must then be complex. Let 

k, = k,' - jki' (8.3.15) 

The real part and the imaginary part of (8.3.14) can be easily separated to 
give the following two equations. 

o4 - o2c2(kZ2 + kL2 - k r 2 )  + g2(y - l)k,2 + w2ygk:' = 0 (8.3.16a) 

o2k,'(2c2kr + yg) = 0 (8.3.16b) 

There are three possibilities resulting from (8.3.16b). We discuss them in 
turn. 

(i) Vertical Wind Shear Case. The first case we wish to discuss is when 
o = 0 for which k, = 0 and k, is arbitrary. For this time independent case, 
the perturbations in pressure and density, if any, must satisfy the hydro- 
static equilibrium, the vertical component of the velocity must be zero (i.e., 
v, = 0), while the horizontal component v, is 
can be easily obtained by examining (8.3.10). 

These properties 
of steady hori- 

zontal winds sheared in the vertical direction. 

(ii) Surface Wave Case. The second case of interest is when k,' = 0. 
The wave number k, is purely imaginary, indicating that the wave has no 
phase variation along z. The amplitude varies exponentially in the vertical 
direction, and it may become very large for some values of z. Such waves 
obviously have difficulty to exist in an unbounded region and they must 
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be confined to sharp boundaries on which properties of the atmosphere 
change drastically. There is some experimental evidence for the existence of 
such waves in the real atmosphere. The sharp boundary is thought to be the 
large temperature gradient in the lower thermosphere and the ground. 
These waves are occasionally referred to as the Lamb waves. 

(iii) Internal Wave Case. If k,' # 0 so that there is a phase variation 
along z, then, from (8.3.16b), kc must be a constant given by 

k:' = - yg/2c2 = - I / 2  H (8.3.17) 

The dependence on z of field quantities has the form 

@2He-jk.? (8.3.18) 

which grows exponentially with height. We note that the kinetic energy in 
a wave is proportional to eovv*. Since Po varies like e+lH while I v I varies 
like erlzH, the energy is kept constant as required in a lossless medium. 
The growth of the amplitude of internal waves shown by (8.3.18) accounts 
for the importance of such waves in the ionospheric height. Insertion of 
(8.3.17) in (8.3.16a) yields 

where k,  = w/c,  w, = yg/2c = c/2H (acoustic cutoff frequency), and 
wg = ( y  - 1)1'2g/c (buoyancy frequency). Equation (8.3.19) is the desired 
dispersion relation. Its properties as well as other relevant information of 
internal waves are discussed in the next section. For simplicity the prime on 
k, in (8.3.19) has been ignored so that k, in (8.3.19) is real. The exponentially 
growing factor shown in (8.3.18) must be remembered to apply to all com- 
ponents of F. 

8.4 Properties of Internal Waves 

We found in the last section that the wave components of the internal 
waves grow exponentially with height like eZlzH. The dispersion relation is 
given by (8.3.19) which is reproduced in the following: 
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and 

In an isothermal atmosphere, we have w, > wb since y is less than 2. In the 
atmosphere, we may take y = 1.4 for which wb = 0 . 9 0 4 ~ ~ .  As mentioned 
earlier, these frequencies are in the infrasonic range and we frequently 
use periods rather than frequencies. Typical values in the E region heights 
(about 100 km) are 4.5 min for the acoustic cutoff period and 5 min for 
the buoyancy period. The corresponding values in the F region (about 
250 km) are 13 min and 14.4 min, respectively. 

We now wish to discuss the properties of the dispersion relation (8.4.1) 
in different frequency ranges. 

nz 

- 
- 4  - "x 4 

Fig. 8.4-1. The refractive index 
curve for an internal gravity wave. 
T, = 13 min, T,  = 14.5 min, T = 
30 min. The resonance angle 6, is 
found to be 2 8 . 9 O .  The index surface 
is obtained by revolving the curve 
about the n,-axis. 

(i) Gravity Wave Branch. This is the low frequency branch in which 
0 < o < wb or T > Tb. The curve given by (8.4.1) in the n,n,-plane is a 
hyperbolic curve. An example is shown in Fig. 8.4-1. Since the vertical gravity 
provides the only axis of symmetry, the index surface can be obtained by 
revolving the hyperbola about the n, axis. The surface intersects the horizontal 
axis at  { (waz/wz - 1)/(w$/w2 - l)}ll2. The resonance at which n,, n, -+ 03 

occurs when the propagation has a polar angle 8, given by 

sin 8, = w/wb (8.4.2) 

In the gravity branch, the refractive index is always greater than 1, showing 
that the phase velocity of the wave is always less than the velocity of sound. 
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(ii) Cutoff Region. When wb < w < ma, either n, or n, has to be 
imaginary, contrary to initial assumption. Therefore, the internal waves 
cannot exist in this frequency range. It does not mean that other wave types 
cannot exist either. For example, the surface wave can certainly propagate 
in this frequency region since it has imaginary k,. In a nonisothermal atmo- 
sphere the buoyancy frequency defined by (8.2.5) may become larger than 
the acoustic cutoff frequency and the cutoff region of the form discussed for 
the i s o t h a  atmosphere no longer exists. 

(iii) Acoustic Branch. In the high frequency branch for which w > w,, 
the internal wave again can propagate. The curve given by (8.4.1) in the 
nS,-plane is an ellipse. The index surface obtained by revolving the ellipse 
about the n,-axis is then the surface of an ellipsoid whose major axis is 
along the n,-axis with a radius ((1 - wa2/w2)/(1 - wb2/w2))1’2 and whose 
minor axis is along the n,-axis with a radius (1 - w$/w2)1’2. Since the surface 
is closed, there is no resonance. In the high frequency limit when w >> coo, 

the dispersion relation (8.4.1) reduces to 

n2 = 1 (8.4.3) 

which is isotropic. The wave becomes just the ordinary sound except that the 
exponential growth with height of the form (8.3.18) is still present to assure 
continuity of energy flow. 

The regions of propagation of the gravity branch and acoustic branch 
are distinct in the wk space as shown by the shaded regions in Fig. 8.4-2. 

.$ 
z 
z 

/ Gravity branch 

0 1 2 3 

Normalized horizontal wave number, k, c/wb 

Fig. 8.42. Regions of propagation of the gravity branch and the acoustic branch in 
an isothermal atmosphere. 
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These two propagatbn branches are bounded by curves along which 
k, = 0. As k, -+ co, these bounding curves approach asymptotically to 
w = 01, for the gravity wave branch and k, = w/c for the acoustic branch. 
Curves corresponding to k, # 0 appear in the interior of the shaded regions. 

The remaining parts of this section are concerned with the group velocity 
and the polarization relations. We will take up the group velocity first. 

As discussed in Section 2.12, the group velocity has a direction normal 
to the index surface. For the gravity branch, the index surface has a cross- 
section shown in Fig. 8.4-1. An example is drawn for the refractive index 
vector and its corresponding group velocity in Fig. 8.4-1. It is interesting 
to note that even though the phase progression of this wave has a downward 
component, the energy propagation has an upward component. In general, 
the vertical components of the phase progression and energy progression 
have opposite signs for the gravity branch and the same signs for the acoustic 
branch. This can be seen by examining the character of the dispersion sur- 
face or by examining the analytic expression for the group velocity. The 
dispersion relation for the internal wave is (8.3.19) which can also be written 
as 

w4 - dC2(kz2 + k,2 + O a 2 / C 2 )  + Wb2C2k2 = O (8.4.4) 

Differentiating (8.4.4), we can obtain the horizontal and vertical components 
of the group velocity as 

vOz = aw/ak, = wc2k,(w2 - wb2)/(w4 - wb2k,2C2) (8.4.5a) 

(8.4.5 b) = aw/ak, = w3c2k,/(w4 - wb2kz2c2) 

For the gravity branch, the factors (w2 - cob2), (w4 - wb2k2c2) are both 
negative so that vgz has the same sign as k, while v,,, has the opposite sign 
as k,.  But these two factors are both positive in the acoustic branch so that 
vgz and v,,, both have the same sign as k, and k, , respectively. Of course, the 
waves are still anisotropic even in the acoustic branch except when w > cob. 

The system of linear equations (8.3.11) has a unique solution except for a 
constant multiplier. Therefore, we may solve three components of F in 
terms of the remaining component. The four equations are not linearly 
independent because of the dispersion relation. Let us eliminate the third 
equation of (8.3.1 1) and solve the field components in terms of v,. The 
resulting equations of interest can be expressed in matrix form as 

-jwc2 j w  -(Y - llsv, 



8.4 Properties of Internal Waves 417 

The above set of equations can be solved by a matrix inversion. The de- 
terminant of the coefficient matrix is found to be jw(wz - kZ2c2). The in- 
verted set of equations shows that the four components of the vector F 
must have the ratios 

The relations (8.4.7) are sometimes called the polarization relations for the 
internal waves. We note that the ratio v,/v, gives the orbits of the air parcels 
under the influence of internal waves. The air parcels move in the plane of 
the propagation vector. In general, the ratio v,/v, is complex, indicating 
that the orbit is elliptical. There are two limiting cases for which the air 
parcels oscillate linearly. In the high frequency limit, w > w,, we find 
that v,/v, = k,/k,. Therefore the air parcels oscillate along the propagation 
vector k, i.e., the wave is longitudinal. Near the resonance condition of the 
gravity branch, both k, , k, approach to infinity and we find v,/v, = - k,/kz,  
i.e., air parcels oscillate in a direction perpendicular to k. For other condi- 
tions, the orbit of an air parcel describes an ellipse. Define the right-handed 
and left-handed rotating vectors by 

P = (2 - jq, P = (2 + jq (8.4.8) 

The velocity of the air parcel can be expressed in terms of these unit rotating 
vectors, 

where A denotes the arbitrary amplitude and v,, vz are the relative complex 
amplitudes of the right-handed and left-handed rotating components, respec- 
tively. Their phase angles are denoted by 8, and OZ.  The elliptical orbit of 
the air parcel is generally characterized by ( 1 )  the tilt angle of the ellipse, 
(2) the sense of rotation, and (3) the axial ratio. They are all determined by 
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v, and vl and are given by 

tilt angle = (0, - 0J2  

right-handed if I v, I > I I 
left-handed if I v, I < I vz I (8.4.10) 

sense of rotation: 

As an example, let us inquire when is the air-parcel orbit circular. This 
requires that either v, = 0 or vz = 0. We can find that air parcels describe a 
right-handed circle when k, = 0 and w = (y/2)1/2wb (see problem at the 
end of this chapter). A few example orbits are shown in Fig. 8.4-3 in the 
k&-plane. 

Fig. 8.4-3. Sample air-parcel orbits associated with the propagation of internal waves 
(gravity branch) in an ideal gas. The plot is superimposed on the wave-number plane to 
show the relation between the orbits and the propagation vector. R = axial ratio, w = tilt 
angle, Y = wb/w, and 4 = tan-'kdk,. [After Chang (1969).] 
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8.5 Propagation in a Wind-Stratified Isothermal Atmosphere 

Winds of high magnitudes have been observed in the upper atmosphere. 
Measurements indicate that the E region winds can be reduced to a steady 
component, a tidal component, and a component that varies in a few hours 
(Spizzichino, 1968). In the F region the solar heating sets up a diurnal 
bulge, a few hours trailing the subsolar point. As a result, pressure gradients 
are induced and they together with other forces drive the neutral air to 
produce winds. These winds are mainly in the horizontal directions. Their 
magnitudes may be as high as 200 m/sec which is a large fraction of the ve- 
locity of sound. Consequently, the winds are expected to modify the propa- 
gation of acoustic gravity waves in a profound way. 

The effect of a constant horizontal background wind can be taken into 
account relatively simply by introducing a co-moving coordinate in which the 
background atmosphere is stationary. The wave properties are assumed 
known in the stationary atmosphere. The effect of wind can then be taken 
into account by an appropriate transformation. 

Let S be a stationary frame in which the observer is situated. Let S' be 
a frame moving with the medium with a constant horizontal velocity vo. 
All quantities dependent on the motion and expressed in S are unprimed 
and those expressed in S' are primed. For a nonrelativistic velocity v o ,  
the space-time transformation is given by the Galilean transformation 

r' = r - vat, 

t' = t ,  0' = o - k VO (8.5.1) 

k' = k 

Such a transformation is applicable to acoustic gravity waves when vo is 
strictly horizontal since the isothermal atmosphere is inhomogeneous in the 
vertical direction. Note the invariance 

which shows that if a wave is a plane wave in S' then it must be so in S 
and vice versa. Let us suppose that the dispersion relation in S' is given by 

w' = f(k') (8.5.3) 

with a corresponding group velocity 

v; = V k d  (8.5.4) 
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Through Galilean transformation (8.5. l), we find that the dispersion rela- 
tion in S becomes 

W' = w - k VO =f(k) (8.5.5) 

and the corresponding group velocity becomes 

vg = VkW = v, + vgl (8.5.6) 

The quantity o' is sometimes called the intrinsic frequency. It is the fre- 
quency Doppler shifted due to the relative motion and is observed in S'. 
Comparing (8.5.3) with (8.5.5) shows that the effect of a background wind 
on the dispersion relation can be easily taken into account by allowing 
for a Doppler shift in frequency. The wind also carries the wavepacket 
bodily with it as indicated by (8.5.6). Actually (8.5.6) is a direct consequence 
of the Galilean transformation (8.5.1). If we let r be the position of the 
wavepacket in S,  its position in S' is then r'. According to the first equation 
of (8.5.1), the wavepacket must move such that dr/df = v,, + dr'ldt, which is 
identical to (8.5.6). The formulas (8.5.5) and (8.5.6) can be directly applied 
to acoustic gravity waves whose dispersion relation has been derived in 
Section 8.3. 

When the background horizontal wind has a vertical shear, a multilayer 
model is often assumed. The whole region of interest is divided into hori- 
zontal layers and within each layer the wind is assumed constant. Such a 
procedure is valid if the wind shear is not too large. The foregoing results 
can then be applied to each layer. Appropriate boundary conditions must 
be applied at  the interface of each layer. In the following, let us consider 
the effect of horizontal winds on the propagation of internal waves in an 
isothermal atmosphere by using a multilayer model. 

Let us suppose that a plane internal wave of gravity branch is incident 
on a wind-stratified isothermal atmosphere. The effect of wind is to introduce 
a Doppler shift as indicated by (8.5.5). The dispersion curves plotted in 
k,k,-plane for gravity waves are shown in Fig. 8.5-1. Different curves cor- 
respond to different frequencies of the wave. Suppose the incident wave has 
a propagation vector indicated by the point A .  The corresponding energy 
ray is normal to the curve at A and is shown by an arrow. When the wave 
penetrates into the first layer, the Doppler shift given by (8.5.5) indicates 
that the dispersion curve corresponding to a Doppler shifted frequency 
must be used. Since the kinematic boundary condition requires that the 
horizontal propagation vector be the same for all layers, the propagation 
vector k can change from layer to layer only along a vertical path through 
A as shown by the dotted line in Fig. 8.5-1. If the wind has a positive com- 
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Fig. 8.5-1. Dispersion curves in an isothermal atmosphere with c = 850 m/sec, 
y = 1.4,g = 9.7 m/sec. The path of the k vector in a wind stratified isothermal atmosphere 
is along the vertical line through A which corresponds to the incident wave vector. If the 
horizontal wind is blowing with the wave, the path of k moves downward along the 
vertical line; while if the wind is blowing against the wave, the path of the k vector moves 
upward. [After Cowling, Webb, and Yeh (1971).] 

ponent along the propagation vector, the Doppler shifted frequency de- 
creases and the tip of the k vector moves downward along the dotted line. 
This downward motion continues if the wind is assumed to increase contin- 
uously in intensity with height. Eventually, the frequency is Doppler shifted 
to zero for which k - 03. The layer at  which o’ = 0 is known as the critical 
layer. At the critical layer the horizontal phase shows that the wave is 
severely damped if there is present ever so small a loss mechanism. As the 
operating point is moved downward along the dotted line through A, the 
slope of the group velocity and hence also the slope of the ray decreases 
until the ray becomes entirely horizontal at  the critical layer. A sample 
ray path is shown in Fig. 8.5-2. 
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Fig. 8.5-2. Group path of an internal gravity wave showing the effect of a critical 
layer. [After Cowling, Webb, and Yeh (1971).] 

Let us now consider the opposite case for which the wind has a negative 
component along the propagation vector and the magnitude of the wind 
increases steadily with height. The incident wave has k corresponding to 
point A in Fig. 8.5-1. As the wave penetrates into the atmosphere, the tip 
of the k vector moves upward along the vertical dotted line through A .  
The direction of the group velocity in S' steepens until the operating point 
reaches near the k,-axis at  which the group velocity in S' is entirely horizontal 
and the wave is reflected. To an observer in S,  the ray direction is given 
by the vector sum of the group velocity in S' and the horizontal wind vector 
as given by (8.5.6). For the present case, vgl and v, have opposite horizontal 
components. Near the reflection point, the horizontal component of vgl 
is very small and the ray bends backward and makes a characteristic loop 
as shown in Fig. 8.5-3. After reflection, the direction of the ray is still given 

Horizontal distance. krn 

Fig. 8.5-3. Group path of an internal gravity wave showing reflection in a wind strati- 
fied atmosphere. [After Cowling, Webb, and Yeh (1971).] 
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by v,, + vgl where vgl continues to be determined by the vertical operating 
line extending to the first quadrant of the k,k,-plane. The situation is similar 
to the incident case and is not shown in Fig. 8.5-1. 

If the background wind is not sufficiently strong to give rise to either 
the critical layer condition or the reflection, the ray must then penetrate 
the atmosphere. An example is shown in Fig. 8.5-4. 

It is therefore clear that background winds in an isothermal atmosphere 
have a very pronounced effect on the propagation of internal gravity waves. 
As a result we may classify rays into the following three types: critical trap- 
ping, reflection, and penetration, Examples are shown in Fig. 8.5-2 through 
Fig. 8.5-4 on the vertical plane. If there are present horizontal cross winds, 

Horizontal dislonce, krn 

Fig. 8.54. Group path of an internal gravity wave showing penetration in a wind 
stratified atmosphere. [After Cowling, Webb, and Yeh (1971).] 

these rays may deviate out of the vertical plane. Horizontal deviations are 
not shown in these figures. 

The theory of ray tracing of internal waves in a general, slowly varying 
medium can be developed along the line discussed in Chapter 5. Such a 
theory is available in the literature (Jones, 1969). 

8.6 Effect of Ion Drag 

So far in this chapter, our consideration of the propagation of acoustic 
gravity waves is restricted to the isothermal and ideal atmosphere in which 
all damping mechanisms have been ignored. We wish now to examine the 
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effect produced by the presence of ions. This case is of interest in the real 
upper atmosphere because of the presence of the ionosphere. 

The propagation of acoustic gravity waves in a coupled neutral atmo- 
sphere and ionosphere is rather complex because of the large number of 
equations. The mathematical problem can be simplified if we view the iono- 
sphere as responding to the propagation of such waves. As a result, the iono- 
sphere is set into motion and therefore the wave is damped. The damping of 
the wave due to the presence of the ionosphere is not the only effect on the 
wave. Since the ionosphere is inhomogeneous, there is also the possibility 
for partial reflection. The partial reflection problem requires solving a dif- 
ferential equation with variable coefficients. We will treat one such case in 
this section. 

In the F region heights, we have the following inequalities: 

wgi > Yin > w (8.6.1) 

The angular frequency of acoustic gravity waves is very small when com- 
pared with the ion-neutral collision frequency yin (approximately 1 /sec). 
The process is quasi-equilibrium and therefore ions and neutrals must 
move with the same velocity. However, since the angular gyrofrequency 
of atomic oxygen ions wBi is approximately 300 rad/sec which is much larger 
than vin, the ions essentially spiral about magnetic lines of force. The com- 
bined effect of inequalities (1 )  is that the wave-induced ionic velocity is 
along the magnetic field and its magnitude is equal to the component 
of the neutral velocity in the same direction. Mathematically, the ionic 
velocity is related to the neutral velocity through 

vi = (v * Bo)$ (8.6.2) 

where bo is a unit vector in the direction of the steady magnetic field. In 
a coordinate system in which B,, is in the xz-plane with z-axis vertically 
upward and with a dip angle I ,  the ionic velocity given by (8.6.2) can be 
written in component form as 

vi = (0, cos Z - v, sin Z)(3 cos I - 2 sin I )  (8.6.3) 

The basic equations are still those given by (8.3.4) except for the addition 
of a frictionlike ion drag term on the left-hand side of the equation of 
motion. The equation of motion now reads 

(8.6.4) 
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. j w  0 -jkz -jkv d/az - H-l - 

0 -jkz j w  + v sin2 I 0 v sin I cos I 

g alaz - H-1 v sin I cos I 0 j w  i- vcos21 
0 -jk,  0 j w  + v 0 

-jwc2 j w  0 0 (Y - 1)g - 

where ep  is the plasma mass density. The continuity equation and the 
adiabatic equation of (8.3.4) are still unchanged. It should be pointed out 
that strictly speaking, the wave motions are no longer adiabatic in the 
presence of loss. If the loss is small, the motions are approximately adiabatic 
and this we assume here. Going through the analysis similar to that carried 
out in Section 8.3 by linearizing perturbations about a windless, nonrotating 
isothermal atmosphere, we find that the following matrix equation results. 

D . F = O  (8.6.5) 

for wave solutions of the form f(z)ej(wt-kzz-kuY) The field vector F and the 
coefficient matrix operator are given, respectively, by 

F =  

D =  

where v = vinepo/po is the effective neutral-ion collision frequency. Note the 
obvious generalization of (8.6.6) when compared with (8.3.12). In general, 
in the ionosphere, v is height dependent. The operator D then has variable 
coefficients. We will consider one such case later on in this section. Let us 
first consider the simple case in which v is constant. For this case, the opera- 
tor D has constant coefficient and therefore we may seek solutions with z 
dependence given by e - j K z z .  For such solutions we may replace d/dz by - jKz 
and the matrix D becomes algebraic. The necessary and sufficient condi- 
tion to have nontrivial solution of (8.6.5) is the vanishing of the determinant 
of D. Setting 

det D(k,,  k,, K, ,  w )  = 0 (8.6.7) 

we obtain the desired dispersion relation. Since D is a 5 x 5 matrix, the 
algebra involved is rather lengthy and is left as a problem at the end of this 
chapter. For the special case I = 0, k,  = 0, corresponding to propagation 
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in the magnetic meridian plane at the magnetic equator, the dispersion 
relation reduces to 

K2 = ko2(1 - jYjw - w2/w2) - k,2(1 - jvjw - wb2/w2) (8.6.8) 

where K, = k,  + j/2H. In the absence of collisions, (8.6.8) reduces to 
(8.3.19). The presence of collisions is to make k,  complex since for a given 
incident wave, k, is real. 

When v is a function of height, we must go back to (8.6.5). For the special 
case of propagation in the magnetic meridian plane at  the magnetic equator, 
a single equation for the z component of the velocity can be obtained, viz., 

d2vJdzz - (I/H) dv,/dz + [ko2 - kZ2(1 - w2/w2)  - j(v/w)(ko2 - k , 2 ) ] ~ , = 0  
(8.6.9) 

v = UeZf211 (8.6.10) 
Let 

The differential equation (8.6.9) can be transformed into 

d2U/dz2 + k , 2 ( ~ ) ~  = 0 (8.6.11) 

Here, the vertical wave number k,(z) is given by (8.6.8) and is a function 
of z through the dependence of v on height. To proceed further analytically, 
we must assume an appropriate model for v that can lead to a solution in 
terms of known functions. One convenient form is the exponential function 

= e 4 - z o )  (8.6.12) 

Let us define a new height variable z' by 

The differential equation (8.6. 
Bessel's equation 

d2u 1 
d1;2+T 

1) can be transformed to the standard 

du vo-  m2 -+ 
dz' 

u = o  c2 (8.6.14) 

where the order of the Bessel's equation is given by 

m = (i/a)[k,(l - wa2/w2) - kz2(1 - w2/w2)]1f2 = (j/a) I k,(-m) I (8.6.15) 

Compare (8.6.15) with (8.3.19) and note that the expression in the square 
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bracket is just the vertical wave number in the absence of collisional loss; 
it occurs for our model collision frequency (8.6.12) when z --z -co. The 
two solutions of (8.6.14) are Hankel functions of the mth order of the 
first kind H ~ ) ( V : ' ~ [ )  and of the second kind H ~ ) ( V : / ~ [ ) .  The.complete de- 
termination of the solution depends on the boundary conditions. As men- 
tioned earlier, we are concerned with the incidence of an internal wave from 
below and the wave propagates upward. At ground level, v is negligibly 
small and the internal wave propagates with little loss. When the wave 
penetrates into the ionosphere, the collisions become more frequent, and 
because of the inhomogeneous nature of the collision frequency, there is 
partial reflection along the way. Therefore, at the ground, there is a reflected 
wave in addition to an incident wave. When z becomes very large, we require 
that u be finite on physical grounds. These boundary conditions are now 
applied to the following two cases: 

(i) Acoustic Branch. We found in Section 8.4 that when 1 - nz2 > 0, 
the wave belongs to the acoustic branch. The boundary conditions are 

where R is the reflection coefficient and k,(--co) is the vertical wave number 
of the incident wave. In this case, from (8.6.13), arg 5 = 3n/4. As z -+ 00, 

1 5 ' 1  +co. 
The asymptotic expressions for large arguments are 

For finite u as z + co, only H g )  can be taken as our solution. When z --f -m 
1 5 1 ---f 0 and we may use the approximate expression of H g )  for small argu- 
ment, 

Transforming the expression above back to variable z, we note that the 
first term is proportional to 



428 8. Interaction of Atmospheric Waves with the Ionosphere 

and the second term is 

The reflection coefficient 

(-m)! 
m! 

RE- 

Since k,(--co) is real if 

can be easily obtained as 

(.ym (jv,,/o)(l - nz2)me+z(-m)’o (8.6.17) 

the incident wave is a propagating mode, m is 
therefore purely imaginary. The magnitude of the reflection coefficient is 
then 

I R I = ( j ) m  = e-nkz(-m)/a (8.6.18) 

The collision frequency is constant when a = 0 for which the reflection 
coefficient vanishes. The upgoing and downgoing waves propagate in- 
dependently. This is the case studied earlier in this section. When v is not 
a constant, the reflection takes place because of the inhomogeneous nature 
of the medium. The magnitude of the reflection coefficient depends on the 
ratio k,(--co)/a. If k,(-m) < a, the collision frequency varies considerably 
in one vertical wavelength of the gravity wave, and the reflection is appre- 
ciable as expected. 

(ii) Gravity Branch. When 1 - n 2  < 0, the wave belongs to the 
gravity branch. The boundary conditions are now 

Here R is the reflection coefficient. As discussed in Section 8.4, a gravity 
wave with energy propagating upward has a negative vertical wave number. 
This accounts for the sign difference in the exponent between (8.6.16) for the 
acoustic branch and (8.6.19) for the gravity branch. In this case, arg 5 = 
5n/4 and the upper boundary condition requires that the solution be 
given by H ~ ) ( V : ’ ~ [ ) .  The magnitude of the reflection coefficient can be 
similarly found to be 

(8.6.20) 

Details are assigned as a homework problem. Again, the reflection is appre- 
ciable if the effect of neutral-ion collision frequency varies appreciably 
over one vertical wavelength. 
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8.7 Attenuation due to Thermal Conduction and Viscosity 

In the last section we saw that the effect of ion drag is to attenuate the 
wave. Additional loss processes such as thermal conduction and viscosity 
further attenuate the wave. To discuss these effects fully requires consider- 
able exposition. This is because (1) the wave motions are no longer adiabatic 
and (2) there exist additional modes. As shown in thermodynamics, the 
effect of a loss process is to increase the total entropy with time. This means 
that the adiabatic equation (8.3.4~) is no longer valid and that it must be 
replaced by the conservation of energy equation. The presence of loss pro- 
cesses also increases the order of equation, and as a result, a total of four 
modes may appear. They are acoustic gravity mode, thermal condition 
mode, ordinary viscosity mode, and extraordinary viscosity mode. In gen- 
eral, these modes are coupled and can be studied by the coupled mode 
technique discussed in Chapter 5. Such a formulation can be found in the 
literature, and interested readers should consult, for example, Volland 
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10 

Fig. 8.7-1. The attenuation of internal gravity wave amplitude in the upper atmo- 
sphere k = horizontal wavelength, T = period, 4 = azimuth angle of the wave measured 
from magnetic north. The ionization profile is as shown. [After Clark et at. (1970).] 
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(1969). The results are invariably very complicated, involving a large number 
of parameters. Interpretation of the results are difficult except through 
extensive numerical computations. In general, it has been found that the 
loss processes begin to have an effect at  a height of about 250 km. Figure 
8.7-1 is an example which shows the effect of loss to an otherwise exponen- 
tially growing amplitude. 

8.8 Effect of Internal Waves in the Ionospheric F Region 

We have seen that the presence of internal waves introduces perturbations 
in the neutral density, pressure, and velocity. These perturbations in the 
neutral atmosphere at ionospheric heights will further excite changes in 
the ionization density due to modifications in atmospheric processes. To 
discuss fully all effects requires a careful examination of these processes 
and is beyond the scope of this book. Fortunately, the inequality (8.6.1) 
is valid in the F region and thus the approximation (8.6.2) can be made. 

Let the electron density be given by 

N = No(z) + N'(r, t )  (8.8.1) 

where the unperturbed density No is horizontally stratified. The perturbed 
density N' satisfies the linearized equation 

aN'/at + V + (Nevi) = 0 (8.8.2) 

Equation (8.8.2) is drastically simplified since the only process that has been 
taken into account is the effect of induced ionization velocity which is as- 
sumed to be given by (8.6.2). In a lossless isothermal atmosphere, the per- 
turbed neutral velocity must grow exponentially. In the actual atmosphere, 
this growth is approximately balanced by the loss processes as seen in Sec- 
tion 8.7. We will assume, for simplicity, that this is the case, i.e., 

(8.8.3) 

Under these conditions, (8.8.2) can be solved for N' to produce 

N' = ( I/o)(v * B0)@ B,, + j &  i a/&)NO (8.8.4) 

We see from (8.8.4) that the ionization perturbation is proportional to the 
component of neutral velocity along the magnetic field. At the peak of 
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ionization where aNo/az = 0 or above the magnetic equator where B0 - 2  = 

0, the perturbed ionization density and the neutral velocity are in phase. 
In general, however, N' and v are out of phase and the phase lag depends on 
the scale of vertical gradient in background ionization relative to the vertical 
wavelength of the wave. 

More careful analysis shows that a term N'vd may be important. Here, 
vd is the diffusion velocity of the ionization. The inclusion of such a term 
introduces additional phase shift. I t  has also been discovered that on oc- 
casion, a wave of perturbation magnitude may induce large ionization 
changes not of perturbation magnitude. Figure 8.8- 1 shows iso-ionic con- 
tours computed by using (8.8.4) and more careful numerical technique. 
The phase difference is very apparent. 

Wave motions in the ionosphere have been studied fairly extensively 
by Munro (1950). These waves have been named as traveling disturbances. 
Evidence is strong that these traveling disturbances are actually driven by 
the passing internal waves in the manner discussed in this section. 
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Fig. 8.8-1. Iso-ionic density contour in the presence of an internal gravity wave. The 
dotted curves are computed by using (8.8.4) and the full curves are computed by 
numerically solving the equation of continuity. [After Clark et al. (1970).] 
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8.9 Impulse Response of an Isothermal Atmosphere 

The discussion of acoustic-gravity waves has been so far concerned with 
free waves. No attempt has been made to connect these waves with the 
source or to see the modification of the waves by the presence of boundaries. 
In the real atmosphere, sources of acoustic-gravity waves are many. In- 
terested readers are referred to papers in the literature [e.g., the Symposium 
Proceedings on Acoustic-Gravity Waves in the Atmosphere, edited by 
Georges (1968)]. In this book, we will be concerned only with the impulse 
response. The reasons for discussing the impulse response are: (1) The 
impulse response is the Green’s function which is the starting point in treat- 
ing more complicated sources. (2) Violent events that occur in the atmo- 
sphere may be approximated by impulses. One outstanding example is 
nuclear detonations .in the atmosphere. (3) Some approximate expressions 
for the Green’s function in fairly simple analytic forms can be obtained, 
and remarkable confirmations with experimental data have been found. 

Processes involved in a nuclear detonation in the atmosphere are very 
involved and certainly nonlinear in the vicinity of the explosion. Associated 
with these processes, equivalent sources of mass, momentum, and energy 
may be present. Effects of these processes are felt at  a distance as waves 
diverging from the region of explosion. If the distance is large, we may 
approximate the small source as a point source. 

The relevant linearized equations have been given by (8.3.8) except that 
now we must add source terms. Addition of source terms modifies (8.3.11) 
to the following set. 

(8.9.1 ) 

(8.9.3) 

The coordinate r is the horizontal distance in cylindrical coordinates. For 
plane solutions, the matrix operator (8.9.2) reduces to the algebraic matrix 
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given by (8.3.12). Let 6 be the adjoint matrix operator of D. Theelements 
of 6 are formed by the transposed cofactor of D. Let det D be the deter- 
minants of D and it is a differential operator. Then from (8.9.1) we have 

det D(V, a/at)F = D s (8.9.4) 

The response to any source S is obtained by solving (8.9.4). The differential 
operator det D is found from (8.9.2) to be 

det D V - ( 4) 

It reduces to the left-hand side of the dispersion relation (8.3.14) for plane 
wave solutions for which we replace V by -jk and d/at by jw .  

For concreteness, let us assume that the source is caused by the produc- 
tion of mass at  a rate of kg/m3/sec. For this case, the source function is 
S = (q/eo, O,O, 0). The equation for v,(r, t )  is then, from (8.9.4), 

det Du, = - c2 - a ( - + wb2)Q 
ar at2 e o  

(8.9.6) 

Equation (8.9.6) is the equation of concern; it can be solved by first taking 
the Fourier transform with respect to it. In the transformed domain, (8.9.6) 
reduces to 

(8.9.7) 

The term involving the first derivative with respect to z can be eliminated if 
we multiply both sides of (8.9.7) by and write the equation for v,.@. In 
an isothermal atmosphere, e,, is exponentially distributed and is given by 
(8.3.5). The relations such as 

ep- avr/az = a(u,e;/2)/az + (vg;/2)/2~ 

can be derived easily. The use of such relations reduces the resulting equa- 
tion to 

(8.9.8) 
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The operator on the left-hand side of (8.9.8) looks somewhat like the 
Helmholtz wave operator except for its cylindrical symmetry rather than the 
spherical symmetry. The operator can be made spherically symmetric by a 
scale change in z .  Let us introduce the coordinate transformation 

r f  = r , z’ = z(1 - ob2/w2)1/2 (8.9.9) 

In the primed coordinates, the differential equation (8.9.8) transforms to 

The operator is now reduced to the Helmholtz wave operator whose in- 
version in terms of Green’s function is known. Define a Green’s function 
to satisfy 

= - (1 - q,2/w2)1/2 S(z’) d(r’)/2nr’ (8.9.1 1 )  

The source on the right of (8.9.11) is an impulse point source at the origin. 
Equation (8.9.1 1) has the well-known retarded solution 

R‘] (8.9.12) 
(1 - wb2/02)1/2 o ( o 2  - o a 2 ) 1 / 2  

4n R’ 
G(r’, o) = 

The spherical radial distance R‘ in the transformed coordinates is given by 

R’ = [r2 + (1 - u ) b 2 / d ) z 2 ] 1 / 2  = ( R / o ) ( 0 2  - ~ 2 ) ~ ~ ~  

where 
R = (r2 + z2)1/2, w, = w g / R  5 (8.9.13) 

The Green’s function in the original coordinates is then 

C(r, o) = - 
1 o2 - wb2 1/2 R (w2 - w , ~ ) ( o ~  - 0:) 

4nR ( O2 - 0: ) exp[ -’c ( 0’ - Ob2 

(8.9.14) 

As discussed earlier, wb 5 w, for y 5 2. An examination of the exponential 
factor in (8.9.14) shows that the free propagation is permitted if either 
o > W, or o, < w < wb. For the special case of a homogeneous atmosphere 
in a zero gravity, w, = wb = w, = 0, and (8.9.14) reduces to 

G(r, w )  = ( 1/4nR)e-j(R/C’” (8.9.15) 
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which has the Fourier image in time domain 

G(r, t )  = (1/4nR) 6(t - R/c) (8.9.16) 

There is no distortion of the pulse as the medium is not dispersive. The 
causal nature of (8.9.16) is clear since the response is delayed by R / c  which 
is the time required by the ordinary sound to reach the observer. Causality 
is still expected to be valid when there is finite gravity. The initial arrival of 
the signal is called the precursor and its contribution comes mainly from 
the high frequency components of (8.9.14). Since (8.9.14) reduces to (8.9.15) 
in  the high frequency limit, the arrival of the precursor is still expected to be 
delayed by a time Rfc. The long time behavior of the impulse response de- 
pends on the lowest frequency that can propagate in the medium. For 
(8.9.14), the lowest propagation frequency is w, and so the response tends 
to oscillate with a frequency w, as t --f 03. This is significant as the behavior 
can be checked experimentally. In some experiments, the probing of the 
atmosphere is confined to a fairly narrow height region. This means that 
the farther the observer is from the source, the lower is the oscillation fre- 
quency in the decay portion of the response. [See (8.9.13) for the definition 
of w,.] This has been found to be true experimentally. 

The inversion of the Green’s function (8.9.14) is difficult in general. One 
special case that can be evaluated exactly is when the observer is directly 
over the source, i.e., r = 0 and thus w, = o b .  The Green’s function is now 

(8.9.17) 

This expression has an exact inverse; it is 

zwaJ1 [wa(t2 - 22 c2 1’2 
G(0, z, t )  = - 

4nz 
~ ( t -  :) (8.9.18) 

In addition to an impulse which propagates with the velocity of sound, there 
is an additional term in (8.9.18). For t > zfc, this additional term oscillates 
with a frequency 0,. The plane wave analysis of Section 8.4 has shown that 
for vertical propagation, only the acoustic branch can propagate. The acous- 
tic branch has a lower cutoff frequency wa which dictates the long time 
behavior. 

The exact inversion of (8.9.14) is difficult. Therefore, we will consider the 
following approximate case. Let us consider the long-time behavior for 
which the contribution comes mainly from integration for small o. Further, 
for observers far away from ground zero, the height of the atmosphere 
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(roughly 300 km) may be small compared to  the ground distance (several 
thousand kilometers), i.e., z /R  < 1. Hence w, Q wb. This means that as 
far as the integration around the branch cut from -w, to w, is concerned, 
we may approximately write w, - wb. Making such approximations re- 
duces (8.9.14) to 

This approximate expression (8.9.19) has known Fourier inverse 

G(r, t )  - - 
4n R 

where u is the unit step function. The zeroth-order Bessel function 

(8.9.19) 

(8.9.20) 

J, oscil- 
lates about the origin and zero crossings become periodic for large argument. 
Equation (8.9.20) shows that at a fixed height z, the farther is the observer, 
the slower is the oscillation. The expression (8.9.20) is not valid for t near 
R/c .  An improvement of (8.9.20) can be made so that the acoustic branch 
contribution is taken into account [see Row (1967) and the problem at the 
end of this chapter]. 

A very general consideration of the source problem in an isothermal 
atmosphere can be carried out by using asymptotic methods. Interested 
readers may wish to consult Pierce and Posey (1970) or Liu and Yeh 
(I97 1). 

8.10 Effect of a Wind Shear in the Ionospheric E Region 

Experimental observations have indicated that on occasions there exist 
in the E region very thin (several kilometers) and intense ionization layers. 
These layers are called sporadic E layers or E, layers. A certain type of 
E, layers in the temperate latitudes seems to correlate very well with the 
existence of wind shears. A critical review of experimental observations and 
theories can be found in Whitehead (1970). 

It was originally proposed that a shear in horizontal wind may push 
ionization along the field line which results in accumulation or diminution 
of ionization at the node. If this is so, the north-south wind would be most 
effective in producting E,. A full analysis shows that shears of east-west 
winds also produce polarization electric field which, through Lorentz force, 
is more effective in  redistributing ionization than the north-south winds. 
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The origin of the wind shear is presumed to come from propagating internal 
waves. 

Let us orient our coordinate axes so that x-, y-, z-directions are given re- 
spectively by northward, westward, and upward directions. The xz-plane 
thus contains the geomagnetic field vector B,. For simplicity, we assume 
steady state condition and horizontal stratification (i.e., a/& = a/ax 
= a/ay = 0). Then by Faraday’s law, 17 X E = -B = 0, we conclude that 
both E, and Ey are constant. The starting point is the equation of motion 
which for uth species of charged particles is given by 

0 = Z,e(E + v ,  x B,) + may,(vn - v,) (8.10.1) 

Here the pressure gradient term has been ignored; its inclusion leads to 
diffusion effect later and has control on the distribution of ionization 
density. The neutral wind is assumed to blow in the east-west direction but 
sheared vertically, i.e., v ,  = (0, V(z) ,  0). Such an assumption is not entirely 
consistent with properties of internal waves and is made to simplify analysis. 
The three component equations of (8.10.1) can be used to solve for v , .  
The resulting equation for vZ8 is 

v, , (Y,~ + w%,) = -Z ,W~,Y,V sin 8 + (Z,og,e/m,v,)Ex sin 8 cos 8 

-(ew,,/rn,)E, sin 6 + (Zae/mav,)(v,2 + og, cos2 8)Ez 
(8.10.2) 

where oBa is the angular gyrofrequency and 8 ,  the polar angle of the steady 
magnetic field. Equation (8.10.2) actually represents two equations, the 
electron equation when u = e and the ion equation when u i. For 
convenience, ions are assumed to be singly charged. The parameters ap- 
plicable to E region heights have orders of magnitudes given by (4.20.8). 
For electrons, we have wB, cos2 8 3 y,2 and thus (8.10.2) can be used to 
solve for E,, yielding 

E, = - (meve/e cos2 8)v,  + (m,y,2 sin 8/oB,e cos2 8 )  V 

- tan 8 E, - (Y, sin 8/o,, cos2 8)E,  (8.10.3) 

For ions, the inequality of < vi2 is valid and (8.10.2) reduces to 

viZyi2 = -oBiviVsin v + (evi/mi)Ez (8.10.4) 

Now we assume that the process does not introduce appreciable charge 
separation and vertical current. Charge neutrality requires Ni = N, = N .  
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Absence of vertical current and charge neutrality results in viz = tr,, = v, .  
Substitute (8.10.3) into (8.10.4) and make use of these approximate rela- 
tions; we obtain 

e sin 8 eve sin 8 
Ev (8.10.5) 

W B p p i  COSa e Ez - V sin 8 - mi 
V i  mivi cos 8 

1, =--  

As a result of winds, the ionization must move vertically according to 
(8.10.5). 

The ionization in the E region in the absence of wind shear satisfies the 
equation 

q = aNo2 (8.10.6) 

where q is the production function and a, the recombination coefficient. 
In the presence of wind shear, the continuity equation takes the form 

.a(v ,N)/az  = q - aN2 (8.10.7) 

where the production function is assumed to be unchanged. The difference 
of (8.10.6) and (8.10.7) is therefore 

d(v,N)/az  = a(No2 - N2) (8.10.8) 

The ionization profile can be obtained only by solving (8.10.8) and the 
solution depends on the nature of tr2(z). In the following, we will be con- 
cerned only with the stationary value of N .  

Let zo be used to denote the height at  which the ionization is either a 
maximum or a minimum. Then at  zo , dN/dz  vanishes and (8.10.8) reduces 
to an algebraic equation 

“(z0)/Nol2 - ~ “ ( Z O ) / N O l  - 1 = 0 (8.10.9) 

which has solutions 

The dimensionless parameter 

17 = - [ d ~ * I d z l , / ~ N o  (8.10.11) 

represents the ratio of the rate of accumulation of charge by transport 
process through wind shear to the rate of loss due to recombination. When 
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dvJdz is large and negative at  zo , the transport process dominates over the 
recombination process. When this happens, (8.10.10) simplifies to 

7 at maximum 
l/q at minimum 

(8.10.12) 

and the ionization is very large at  the maximum, and very small at  the 
minimum. 

The observed range of N(zo)/No varies from 1 to 10. With the use of E 
region data and observed horizontal wind shears, I dv,/dz I has an order of 
magnitude 0.01 sec-l. If No is taken to be 106/cm3, it will require Q to be 

cm3/sec. This value is lower by one order of magnitude than that inferred 
by the E region eclipse measurement. I t  is speculated that the discrepancy 
may be due to the presence of multiple ions with different reaction rates. 

Problems 

1. 
height increases linearly with height. 

2. Consider a thick isothermal atmosphere in which the gravity is given 
by g = goa2/(a + z ) ~ .  Find the height distribution of pressure and density 
in this atmosphere. Note that the density and pressure are both finite even 
at  infinite height. How can this difficulty be overcome? [See E. A. Milne, 
Trans. Cambridge Phil. SOC. 22, 483 (1922-1923).] 

3. Show that the Galilean transformation (8.5.1) is valid by deriving it 
from fluid equations (8.3.4) in an isothermal atmosphere. Can such a trans- 
formation be applied if there is a constant vertical wind in the isothermal 
atmosphere? 

4. Let the atmosphere be horizontally stratified and have a constant lapse 
rate y, i.e., T = To - yz where To is the temperature at  ground level and 
z is the height. Consider now the propagation of sound in such an atmo- 
sphere. 

(a) Show that the ray that makes a grazing incidence at ground is given 
by dx = ( T / ~ z ) “ ~  dz. 

(b) Apply the result to ray paths of sound generated by a thunder at a 
height h. Show that the “critical” ray that strikes the earth at grazing inci- 

Find the height distribution in pressure in an atmosphere whose scale 
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dence is approximately given by a parabolic curve. Note that because of 
refraction, observers beyond the critical ray cannot hear the thunder. 

(c) For a lapse rate of 7.5'C/km, temperature of 300"K, and height of 
thunder of 4 km, show that thunder should not be audible beyond about 
25 km. 

5. The orbits of air parcels perturbed by the propagation of internal 
waves in an ideal gas have been discussed in Section 8.4. The orbits can 
be circular only when k, = 0 and when w has some special values. Find the 
value of w when the orbit is right-circular and left-circular, respectively. 
Express answers in wb and wn. 

6. Derive the dispersion relation for an acoustic gravity wave in the 
presence of ion drag. This can be obtained by expending (8.6.7). Show that 
for the special case of propagation in the magnetic meridian plane at the 
magnetic equator, the dispersion relation reduces to (8.6.8). 

7. The effect of ion drag on the propagation of internal waves has been 
discussed in Section 8.6. Let the effective neutral-ion collision frequency be 
exponential given by (8.6.12). Find the reflection coefficient for an internal 
gravity wave incident at z = -m. Show that the magnitude of the reflec- 
tion coefficient is given by (8.6.20). 

8. Equation (8.8.4) is an approximate formula that gives the gravity wave 
induced ionization density perturbation. Suppose in a Faraday rotation 
experiment in which integrated ionization density along the path from, for 
example, a transmitting satellite to the ground station is observed, the 
satellite can be assumed to be outside the ionosphere. Compute the per- 
turbed integrated density along the ray path. Show that if the background 
ionization density is given by an a-Chapman model, i.e., 

z - z, 

H No(z)  = N ,  exp - 1 - ~ - 

then the fractional perturbation in the integrated ionization density is given 
by 

where kh is the horizontal wave number, x the zenith angle of the ray, P a 
unit vector along the ray from the transmitter to the receiver, and q the 
angle between ? and 12. 
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9. This problem is concerned with the impulse response of an isothermal 
atmosphere. A better approximation of (8.5.14) than that given by (8.5.19) 
is 

This Green's function is composed of two factors f i  and f z  defined by 

f i ( w )  = (wz - wb2)1/2 

Both have known Fourier inversion. Therefore, the Fourier inversion can be 
achieved by applying the convolution theorem to f i ( t )  and f z ( t ) .  Find 
G(r, t )  [R. V. Row, Acoustic-gravity waves in the upper atmosphere due to 
a nuclear detonation and an earthquake. J.  Geophys. Res. 72, 1599-1610 
(1 967)]. 

10. In Section 8.10 we discussed the formation of E, due to vertical shear 
of EW wind. If, in addition, there exists NS wind, how should (8.10.5) 
be modified? Show that at temperature latitudes, the NS wind is a factor 
wOi/vi smaller when compared with the EW wind. 
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Appendix A. The Method of Steepest 
Descents 

A.l The Method of Steepest Descents 

In this appendix we shall discuss briefly the essential practical aspects of 
what is known as the method of steepest descents in the asymptotic evalua- 
tion of integrals. 

Consider the integral 

in the complex E-plane, wheref(6) and F(6)  are arbitrary analytic functions 
of E and A is a large positive real parameter. There is no loss of generality 
in assuming that il is positive, since the sign may always be included in the 
function f(6). We shall assume that the path of integration C goes from 
-co to + co. The basic idea of this technique of asymptotic evaluation is to 
change the path C to a so-called “steepest descent” path such that along 
this new path the value of the integral is determined mainly by the contribu- 
tion from a short portion of the path. We should keep in mind that from the 
theory of complex variables the value of the original integral is not changed 
after the deformation of the path if there are no singularities between the 
two paths. Let us write 

f ( 6 )  =f1(6> + jf,(t> (A.1.2) 
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Hence, the exponential factor in the integrand of (A. 1 . 1  ) becomes 

ei.lJ&J1 (A.1.3) 

The steepest descent path is a path along which the function f ,  has a maxi- 
mum at some point on the path and decreases as fast as possible away from 
this point. 

Sincef, and f 2  are the real and imaginary parts of the analytic function f 
they have the property that in  the complex &plane, the lines of most rapid 
decrease or increase of f l  are the lines of constant values of f 2  and vice versa. 
This can be seen by considering the rate of change off along any path S 
which makes an angle a with the tI axis ( 5  = El  + j12). 

afl afl afl 

a s  3 El 362 
+ sin a - -- - cos a- (A.1.4) 

This rate will be stationary with respect to a if 

+ cos a- afl = o (A. 1.5) 
a62 

But sincef, and& are the real and imaginary parts of the analytic functionf, 
hence, according to the Riemann-Cauchy relations, 

aflla6, = a f 2 l a E 2  9 afllaE, = - a f 2 / a E 1  (A. 1.6) 

Therefore in (A.1.5) we have 

. a f 2  df2 - a f 2  

362 at1 a s  0 = - s1n a- - cos a- - - - (A. 1.7) 

which is satisfied on a path of constant f 2 .  Along this path, the stationary 
point of fl is at dfl /dS = 0. Since dJ2/aS also is zero on the path, from 
the Cauchy-Riemann relations, r3fl/i3n = a f /an  = 0 at  this stationary point 
for f i ,  where dn is the element normal to the path. Therefore this point can 
be found by setting 

dfldf = 0 (A. 1 .S) 

and is called the saddle point ofJ For a first-order saddle point to, we have 
f"(t,,) # 0; then in general the equation h(5) = f i([ ,)  corresponds to two 
curves. Along one of them fl has a maximum at to and decreases most 
rapidly away from it while along the other f ,  has a minimum at to and 
increases most rapidly away from the saddle point. Therefore for this case 
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there are two steepest descent directions and two steepest ascent direc- 
tions from t,. In Fig. A-1 we have shown the two constant phase lines 
(fi = constant) and the two constant amplitude lines (fi = constant) pass- 
ing through to. The height of this saddle point is fi(to). The hatched re- 
gions are called the valleys since the fi(t) in  these regions are smaller than 
fi(to). The two adjacent unhatched regions are called hills sincefi(t) there is 
greater than fl(to). t o A  and t o B  are the two steepest descent directions; 
to C and too, two steepest ascent directions. 

Fig. A-1. Constant phase lines and 
constant amplitude lines through a 
first-order saddle point. 

In general, for a saddle point to of order m - 1 such that ,f(n)(tO) is the 
lowest nonzero derivative off(t) at to,  there are 2m steepest directions from 
to ,  m directions of steepest ascent, and m directions of steepest descent. 
In the following, we shall concentrate first on the case where to is a first- 
order saddle point. 

Let us now return to the integral (A.1.1). Themost desirable path in our 
integration will be the one passing through the saddle point along which, 
for large A, the magnitude of the integrand decreases rapidly with distance 
from the saddle point; hence the value of the integral is determined ap- 
proximately by the portion of the path near the saddle point. The larger the 
value of 1, the faster the decrease of magnitude away from the saddle point. 
For Fig. A-1, this corresponds to the path At ,B .  This is the steepest descent 
path (SDP). Let us suppose that a saddle point is obtained from (A.1.8) 
as to and the path of integration C can be changed to the steepest descent 
path through to without crossing any singularities. Define the new variable 
of integration along the SDP by 

f ( t )  - c2 (A. 1.9) 

where C is the new variable and varies from --co to fcm. The saddle point 
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corresponds to ( = 0. The integral (A. 1.1 ) is now written in the new variable 

J --m 

(A.1.11) 

Since il is large, it is convenient to expand @(() in the integrand of (A.I.10) 
in a power series of [ 

@(O = @(O) + @’(O)C + S@‘(0)tZ + . * -  (A. 1.12) 

Equation (A.l.I@j I ~ ~ ~ :  can be evaluated as a series with terms involving 
inverse powers of ;, 

] (A.1.13) I = eif(€o)(n/A)1/2[ ~ ( 0 )  + 41 ~“(0) + - - 1 

The series (A.1.13) is generally not convergent but is asymptotic. For 
sufficiently large A the first term alone usually serves as a good approxima- 
tion of the integral (A. 1.1 ), and is called the asymptotic expression of I in 1. 

The expression (A.l.ll) in general does not have a closed form. The 
difficulty involved is to find 5 as a function of 5 from (A.1.9). In the follow- 
ing we shall indicate a method to obtain @(() in a power series of 5. Dif- 
ferentiating (A.1.9) with respect to 5, we have 

f ’ ( 5 )  = -25 dS/dt 

or f’(5) dE/d( = -25‘. Therefore 

@(5‘> = -25 F(tIlf‘(5) (A. 1.14) 

Expanding f ( 5 )  and F ( 5 )  in powers of 7 = 5 - to 

(A.1.15) 
f ( 5 )  =f(t0) + &f‘’(EO)rz + 8f”‘(50)73 + - - . 
F(E) = F(50)[1 + ?P’(50)/F(to)  + 472F”(50)/F(50) + - - * 1 

Then in (A.1.9) 

Sf”(50)q2 + 8f”’(E0)73 + - - = - C2 (A. 1. 

Inverting this series, we can represent T,I in terms of a power series in 
Let us set 

(A.1. 7 = [t/(-3f”(to))””(~ + 015 + azP + *..) 7) 
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and substitute it into (A.1.16). Equating the coefficients of like powers of 
5, we obtain 

a, = f ”’( 2 [- W’(t0) I3I2 (A.l. 18) 

etc. 
Substituting (A.1.15) into (A.1.14), we have 

When (A.1.17) is substituted in this expression, we can write @ ( 5 )  in  a 
power series of 5 after some manipulation. The result is 

(A. 1.19) 

The expressions we need in (A.I.13) are 

@(O) = (- L T F ( E o )  
f ” ( t o )  

@”(O) = 2@(0) - - F‘ +------- 1 ftV 5 ( f “ ‘ ) 2  [ (f’::;. F 4 (f”) 12 (f”)3 Ff ‘ I  

Higher order terms can be obtained in the similar manner. The asymptotic 
expression for the integral I now can be written as 

(A. 1.21) 

If there are more than one saddle point at the same height, then the contri- 
bution from each of them should be taken provided that the contour can be 
deformed to pass through each one of them without crossing any sin- 
gularity. When poles are crossed in deforming the path, their contributions 
must be taken into account by the usual residue method. 

We see that the method of steepest descents is often cumbersome because 
of the difficulty in expressing 5 as a function of t. A simpler procedure 
known as the saddle point method will be discussed briefly in the following. 

Instead of (A.1.9), let us expand the functionf(5) by a Taylor series about 
the saddle point 

(A.1.22) f ( E )  = f G o )  + f ” ( t o ) ( E  - t0)2/2 + * - 
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We now choose the path of integration near to to be a straight line on which 
the second term of (A.1.22) is real and negative. The direction of this line 
is tangent at E0 to the two directions of steepest descent from to.  For large 
1, we can expand F ( 5 )  in (A.l.1) about f o  and the first term of the integral 
becomes 

F(Eo)elf(to) jP e~[f”(Fo)((-%)2/2+.. .1 d t  (A. 1.23) 

where P is any path passing through the saddle point (assuming of course the 
original path C may be changed to P). Let us assume that near to the desired 
path is given by 

5 = E0 + ee@ (A. 1.24) 

Therefore 
f”(5,)(5 - 5 O l 2  = I f ” ( E 0 )  I e 2 e j ( z e + a )  

where a is the phase angle of f”(to). The requirement that (A.1.24) be 
real and negative results in 0 = -+a +n. Therefore in the neighborhood 
of to ,  along this desired path, (A.1.23) may be written as 

But for large 1, along the steepest descent path, the major contribution 
to (A.1.23) comes from the neighborhood of to.  Therefore, we can ap- 
proximate (A. 1.23) by (A. 1.25), which, after change of variable, becomes 

rq ecua du (A. 1.26) 
-11 

where 

For large 1, 11 is large and the limits of integration in (A.1.16) may be 
extended to *co, and we have 

(A.1.28) 

This is just the asymptotic expression for the integral Zas given by (A.1.21) 
Higher-order terms may be obtained by the same procedure. 
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For the case where the saddle point to is of the order rn, the asymptotic 
expression for the integral I may be obtained easily by the saddle point 
method 

where r (x )  is the Gamma function and on is the nth roots of unity. The 
proper choice of om in (A.1.29) depends on the direction of the steepest 
descent path through the saddle point. 

A.2 Modified Method of Saddle Point 

In some cases, the saddle point off(E) is close to  a pole of the function 
F ( t ) .  For these cases the Taylor series expansion of F(5) about to will no 
longer be valid in a sufficiently large region, and we cannot transform the 
integral as we have done in (A.1.28). Instead we must use the Laurent- 
series expansion for F(E). Assuming that Eo is a first-order saddle point, 
then along the steepest descent path defined by (A.1.24) the integral (A.l.1) 
may be transformed into the following form, except for a multiplying factor, 

I~ = Jw t=g(t)eat dt (A.2.1) 
0 

where t = 0 corresponds to  the saddle point to and Re a > - 1. g ( t )  is 
analytic at  t = 0 but has a pole of order p at t = to in the complex t-plane. 
Therefore g ( t )  is analytic in some sector (PI < arg t < (P2. We can expand 
g ( t )  by a Laurent series 

(A.2.2) 

where g l ( t )  is analytic for I t I < I I, I and I, is the next singular point of 
g(t) .  The function g l ( t )  may then be expanded about the origin in a Taylor 
series 

where 
P 

(A.2.4) 
1 dn 

n !  dt" s=1 t=o 
c --- n -  



450 Appendix A 

Substituting (A.2.2) and (A.2.3) into (A.2.1) and integrating term by 
term, we have 

where WJ 5 )  is Whittaker’s confluent hypergeometric function (Erdelyi, 
1953). 

In particular, 

where 

(A.2.8) 

is the complementary error function. 
Equations (A.2.5) to (A.2.8) are used in Chapter 4 in the computation of 

transient waves in a plasma. 
In certain situations the saddle point is close to a branch point or a zero 

of the integrand, or two or more saddle points are very close to each other. 
For all these cases the original saddle point method does not apply. Modified 
methods have been derived for the various cases. Interested readers are 
referred to the references. 
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Appendix B. The Distant Radiation 
Field from a Localized 
Source 

In this section we shall discuss a fairly general technique for asymptotically 
evaluating the radiation field from a localized source. The discussion es- 
sentially follows that by Lighthill (1965). 

Let us consider a system in which small disturbances to the undisturbed 
state are governed by a linear partial differential equation with constant 
coefficients, such as 

D@, a/dt)y(r, t )  = 0 (B.l.1) 

where D is a polynomial in the partial differential operators V and a/&; 
y(r, t )  is some function specifying the disturbance. For this system, a 
plane wave 

y(r, t )  = yOej(ol-k*r) (B.1.2) 

can exist if the dispersion relation 

D(k, w) = 0 (B. 1.3) 

is satisfied. We shall assume that the undisturbed state is stable such that 
no solution of (B. 1.3) exists with k real and the imaginary part of w negative. 

Equation (B.1.3) may be solved to yield 

w = o,(k) (B. 1.4) 
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where the subscript indicates the different characteristic modes in the system. 
For a given w ,  (B.14) represents a surface in the three-dimensional k-space. 
This is the dispersion surface. The group velocity is Vkw(k)  and is normal 
to the surface. 

Our problem is to find the expression for the disturbance, y(r, t ) ,  when 
the system is under the influence of a localized source. In particular, we 
first consider the case where the source is harmonic in time for which the 
right-hand side of (B.l .1) is replaced by 

ei*Otf(r) (B. 1.5) 

where f(r) vanishes outside a limited spatial region around, say, the origin. 
We shall present a technique to determine the form of y at distances from 
the source region large compared with its size. 

Sincef(r) is localized, it can be written as a Fourier integral 

+W 

--m 

where 

(B.1.6) 

(B. 1.7) 

is the Fourier transform off(r) and is a regular function of k, , k, , and k,. 
The equation 

D(V, d/d?)y = ej"otf(r) (B. 1.8) 

with the substitution of (B.1.6) on the right-hand side, then has the formal 
solution 

y(r, t )  = eiooty5(r, wo) (B.1.9) 

where 

(B. 1 .1  0) 

The problem is to find the asymptotic expression for (P for large values 
of I r I. Physically, what we want is to determine the wave numbers and 
amplitudes of the plane waves at large distances along a given direction 
away from the source region. However (B.I.10) as it stands, does not yield 
a unique solution that tends to zero at large distances, because in our 



Distant Radiation Field from Localized Source 453 

system plane wave solutions satisfying (B.1.3) exist for the homogeneous 
equation (B. l .1 )  and the denominator in (B. l .10)  can vanish for real values 
of k,, k,, and k,. For this case, many determinations of the integral (B. 1.10) 
are possible. Out of all these, only one is of physical interest, the one com- 
monly described as satisfying the “radiation condition.” Physically, this 
corresponds the the requirement that at any observation point the steady- 
state wave solution must be ‘‘arrivable at by switching on (the source) 
and waiting” [see Lighthill (1960)l. One way to derive this is to replace 
the right-hand side of (B.1.8) by ej(oo-ja)cf(r) where E is very small so that 
the source has been built up from zero to  its present strength gradually 
during all the time from t = -w. We then try to find a solution y also 
proportional to ej(wo-jE)t. Therefore in (B. 1 .lo), D(k, w,,) is replaced by 
D(k, wo - j c ) .  To facilitate the discussion let us first rotate the coor- 
dinates such that the observation point is in the direction of one of the axis, 
say k,. Then, (B.l.10) becomes 

(B.1.11) 

where we have dropped the subscript on w.  
The integration in k, may be carried out by contour integration in the 

complex k,-plane. As shown in Fig. B-1, let us displace the original path of 
integration to a new one on which the imaginary part of k, has a negative 
value --h. 

For large values of x,  the integrand in ( B . l . l l )  is vanishingly small on 
this new path (of the order ech2). Therefore the original integral may be 

---I--- Displaced path of integration 

Fig. B1. Displacement of path of integration. 
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estimated by the residues at  those poles of the integrand that lie between 
the two paths. Since F(k) is regular for a localized source, the poles of the 
integrand come from the zeros of D alone. Hence, for given values of 
o, k, and k, , we need to find those solutions k, of D(k, , k, , k, , w - j E )  = 0 
that have imaginary part with values between 0 and -/I. We know from the 
discussion below (B. 1.3) that for our system there are solutions of D(k, w )  = 

0 with real k, for given values of k,, k, , and w. By giving w a small nega- 
tive imaginary part k, for which D = 0 will acquire a negative imagi- 
nary part if 

awlak, > o (B. 1.12) 

where awlak, may be computed from (B.1.3) or (B.1.4) and is just the 
component of the group velocity along the observation direction. 

Although D = 0 may have zeros with negative imaginary parts of k, 
even when E is zero, we can take h to be so small that the contribution to 
the integral (B.1.11) comes only from those zeros that have been displaced 
to the lower half-plane from the real axis. Therefore we may conclude 
that the integral (B.l.ll) is nonzero only if the condition (B.l.12) is sat- 
isfied. This means that wave energy will be found along a particular ob- 
servation direction only if the component of the group velocity along that 
direction is positive. This is the physical significance of the radiation 
condition. 

In the limit of E --+ 0, the contribution to the k,-integration of (B.l.ll) 
from each pole may be written as 

(B.1.13) 

where k, satisfies D(k,, k,, k,, o) = 0 and awlak, > 0. The asymptotic 
expression for (B.l.ll) is then given by 

for each normal model, where the integration surface S is the portion of the 
dispersion surface on which aw/ak, > 0. The double integral in  (B.1.14) 
may be estimated by the method of stationary phase for large values of x. 
The stationary points may be found by solving 2k,(k,, k,, w)/dk, = 0 and 
dk,(k,, k,, o)/ak, = 0, or equivalently, aDlak, = 0 and dD/ak, = 0. This 
means that the phase k,x of (B.l.14) is stationary on the surface S at those 
points k'i' where the normal to S is parallel to the k,-axis. The major 
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contributions to the integral then come from the neighborhood of these 
stationary points. At each of these points, if we temporarily choose the 
ku and k, axes along the principal directions of curvature of the surface, 
then locally, the surface may be represented approximately by 

k, = k$’+ $K:’(k, - kt’)2 + &Kji’(k, - kF’)2 (B.1.15) 

where K$) = azk,/ak,2 and KP) = a2k,/ak: are the two associated curva- 
tures at the point k(i). The curvatures are taken as positive where the 
surface is concave to the positive k,-direction and negative when it is 
convex. 

Substituting (B. 1.15) into (B. 1.14), the integral may be approximated by 

where sgnx  means the sign of x. 

rotation of axes, viz, 
Equation (B.l.16) may be put into the form that is invariant under the 

where 

is the Gaussian curvature. The summation is cyclic over the three coordinate 
axes denoted by a, /?, and y. The factor comes from the additional phase 
factor. For K‘i’ > 0, it takes the values f l  where the dispersion surface is 
convex to the direction fG‘,D. For K‘i)  < 0, it takes the values fjaccording 
as the direction fVkD is parallel or antiparallel to r. 

To use (B.1.17), let us refer to Fig. B-2. We first draw the dispersion 
surface D(k,, k,, k,, o) = 0. At each point on this surface, we draw (or 
imagine) an arrow normal to the surface, choosing for its direction from 
the two normal directions the one pointing towards the surface 

D(k,, k,, k,, 0 + d) = 0 (B. 1.20) 

Then for a given observation point r, we find the wave vectors k(”’s in 
(B.l. 17) by taking those points on the dispersion surface D(k, o) = 0 where 



456 Appendix B 

Fig. B-2. Dispersion surface in k&-plane. The procedure to determine the wave 
vectors that contribute to the far field is demonstrated. 

the arrows are in the direction of r. This way the condition that (Vko) r > 0 
and the stationary phase requirement are satisfied. Using these values of 
k(i), Eq. (B.1.17) gives the asymptotic expression for the field q5 at a distance 
far away from the source region. Physically, we may interpret this result in 
the following way. Since the observation point is very far away from the 
localized source, we may consider the source to be concentrated at  the 
origin. The contribution to the far field only comes from those groups of 
waves in the source spectrum that have group velocity in the direction of the 
observation point. On the dispersion surface the normals from a small area 
dS around a point k(i) fill a cone whose cross-sectional area increases with 
distance like I Pi) I r2 dS (Fig. B-3). In the physical space, this is a cone of 
rays. The number of rays is conserved in the cone; hence the intensity is 
diminished by a factor I Pi)  as the rays propagate to the observation 
point. This accounts for the factor I Pi) 1-1/2r-1 in the amplitude. 

The expression (B.1.17) is valid if the Gaussian curvature IQi) # 0. For 
the case Pi) = 0, the technique may be modified to yield results that fall 

Fig. B-3. Physical interpretation of the amplitude factor in the asymptotic expression 
(B.1.17). 
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off less rapidly than r-l. Details of the modification may be found in 
Lighthill (1 960). 

Substituting (B. 1.17) into (B. 1.9), we obtain the steady-state far field 
expression due to a localized source. Using this result, we can also compute 
the asymptotic transient field for arbitrary time variation of the source. 
The transient field is given by 

(B.1.21) 

Substituting (B.1.17) into (B.1.21), y(r, t )  may be put in the form 

where 

q(i)(r,  w )  = wt - rE(i)(w) (B.1.24) 

(B.1.25) r[(i)(w) = k("(w) - r 

In general, E("(w) + w/u as w 4 co, where o is a characteristic speed for 
the system (e.g., light speed in vacuum, sound speed in the gas, etc). We 
shall assume that the system is quiescent for time t < 0. This requires that 
the path of integration in (B. 1.22) be below all singularities in the integrand. 
If the source is turned on at t = 0, then it is easy to show that at  a distance r 
from the source, the field y is zero for t < r /v ,  in accordance with the cau- 
sality principle. To show this, we only need to change the path of integration 
in (B.1.22) to one on which Im w goes to -m. 

For t > r / v ,  the field at r for large r may be computed using the saddle 
point technique discussed in Appendix A. 1. The saddle point w, is deter- 
mined by 

dq(i)/dw = 0 or dpi)/aw = t / r  (B. 1.26) 

Applying (A. 1.21) to (B. 1.22), we obtain the contribution from one saddle 
point 
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If there are more than one saddle points at the same height, we can compute 
the contribution in the same manner. Equation (B.1.27) then gives the 
asymptotic expression for the transient field for f > r/v.  It is possible, using 
modified saddle point techniques, to find the asymptotic expression for the 
transient signal at most observation times starting from the first arrival of the 
signal when r -+ rJv. Details of these computations may be found in Felsen 
(1969). 
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strongly connected, 354 
weakly connected, 354 

Dielectric tensor, 28, see also Relative die- 
lectric tensor 

for cold magnetoplasma, 151, 152 
for lossy magnetoplasma, 154 
principle axes, 81, 82 (6) 
for warm magnetoplasma, 207 

Dispersion, 25-28 
frequency, 25-27 
spatial, 27, 28 

for acoustic-gravity waves, 412 
for anisotropic media, 37 
for cold beam plasma, 104 
for cold magnetoplasma, 160, 161 
for fluid plasma, 98, 99 
for internal waves, 413 
for longitudinal waves, 40 
for nonlinear waves, 393 
for transverse waves, 40 
for warm beam plasma, 107 
for warm magnetoplasma, 207 

Dispersion relation, 37, 38 

Dispersion surface, 60, 193 

Dissipation of heat, 50 
Distant radiation field, 451458 

for anisotropic medium, 80 
Distribution function, 112 

Maxwellian distribution, 127 (8) 
Dominant solution, 262 
Doppler shifted frequency, 420 

for internal waves, 420 
for streaming plasmas, 104 
for streaming warm plasmas, 214 

Dyadic Green’s function, 71-80 
for anisotropic medium, 75, 80 
for isotropic medium, 74 
for longitudinal waves, 78 
for transverse waves, 78 

Dyadic notation, 7-9 
Dyson equation, 355 

E 
E region, 3 

Effective propagation constant, 357, 358 
Eikonal, 226 

Electric polarization density, 17-23 

effect of wind shear in, 436 

equation, 226 

for cold magnetoplasma, 151 
for fluid plasma, 96 

Elliptic integral, 389 
Energy conservation of electromagnetic 

fields, 55 
Energy density, 55 

Energy velocity, 56-58 
Equatorial electrojet, 213 
Equivalence theorem, 304 (7) 
Euler equations of calculus of variation, 

Extraordinary wave, 176, 177, 189 

for electron plasma waves, 99 

232,233, 392 

F 
F region, 4 

effect of internal waves in, 430 
Faraday rotation, 170-173, 220 (22) 

in ionospheric applications, 218 (12) 
when propagation is perpendicular, 218 

when propagation is quasi-parallel, 192 
(11) 

Fast process, 23-28 
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in plasma density, 99 

Fluctuations, 317 

Forsterling’s coupled equations, 286 
Forward scattering approximation, 335 
Fraunhofer diffraction region, 340 
Fresnel formulas, 135, 248 
Frozen-in magnetic field, 4, 167 
Fundamental matrix, 385 

G 

Galilean trasforniation, 419, 420 
Gauge transformation, 15 
Gaussian curvature, 79, 80, 455 

for moving plasma, 119 
Geometric optics, 224, 225 
Group index of refraction, 132, 245 
Group path, 245, 246 
Group velocity, 58, 59 

for electron whistlers, 173, 174 
geometric interpretation, 63 
for internal waves, 416 
kinematic properties of, 65, 66 
for plasma waves, 98, 99 
for transverse waves in a plasma, 132 

Gyrofrequency, 148, 149 
Gyroresonance, 167, 168 

H 

Hall conductivity, 154, 155 
Hamilton’s equations, 66, 239 
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Hydromagnetic waves, 179-183 
Hydrostatic equation, 403 

I 

Incoherent scatter experiment, 323 
Index circle, 197, 198 
Instability 
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two-stream, 103-109, 212 

Intact transition, 202 
Interaction of solid-state plasma with lat- 

Internal waves, 413 
tice vibrations, 127 (11) 

dispersion relation, 413 
group velocity, 416 
interaction with the ionosphere, 430,431 
ion drag effect, 423428 
polarization relation, 417, 418 
thermal conduction and viscosity effect, 

wind effect, 419423 
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Ion drag, 423 
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effects on acoustic-gravity waves, 423428 
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E region of, 3, 436 
F region of, 4, 430 
gyrofrequency in, 148 
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interaction of atmospheric waves with, 

irregularities in, 213 
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ray tracing, 243, 244 

402 

Ion sound waves, 99 
Ion whistler waves, 182, 219 (16) 
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scattering of electromagnetic waves by, 

317 
Isothermal atmosphere, 404, 439 (2) 

impulse response, 432436, 441 (9) 
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Khinchin theorem, 314 
Kinematic approach of waves, 6346 
Klein-Gordon equation, 128 (12), 397 
Kramers-Kronig relations, 29-33, 215 (I) 

L 
Lagrangian, 392 
Landau damping, 113 

for a Maxwellian plasma, 127 (8) 
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excitation of, 67 
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Lorentz polarization term, 135, 216 (2) 
Luxembourg effect, 379 
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M 

Magnetic dip, 149 
Magnetic moment, 17 
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of plasma, 217 (9) 

Magnetic polarization density, 17-23 
Magnetic pressure, 167 
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Mass operator, 354, 355 
Material equations, 13 
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in dispersive medium, 27 
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Maxwell's equations, 14 
Method of averaging, 384 
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Modified saddle point method, 143,449 
Momentum relaxation time, 372 
Multiple scattering, 317, 349-358 
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Nonlinear effects in plasma, 37@-374 

0 

Onsager relation, 33-35 
Optical path length, 231-232 
Ordinary wave, 48, 176, 181, 189 

P 

Parallel conductivity, 154, I55 
Parameter space, 194 
Pederson conductivity, 154, 155 
Phase velocity, 64, 65 

for plasma waves, 98 
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cold, 85 
fluid model, 94 
warm, 86 
waves, 98, 99, 213 

Plasma, 85, 86 
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124 (3) 

Plasma field, 373 
Plasma frequency, 90 , 

of ath species, 96 
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effect produced by collisional loss, 126 
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Polarization relations, 4446 
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Polarization variation along the ray, 230 
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Poynting theorem, 49 
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Probability, 309 
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density, 309 
distribution, 309 
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Propagation perpendicular to magnetic 
165-170, 188, 189,208 

field, 47, 176-179, 189,208,209 
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Quasi-resonance condition, 210. 
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Radiation condition, 453-454 
Random amplitude, 313 
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Random variable, 3 10 
Ray equation, 228 

for anisotropic medium, 239 
expressed in spherical coordinates, 240 
for isotropic medium, 228,233,234 
for spherically symmetric medium, 303 
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Rays, 65, 66 

curvature vector, 303 (2) 
effect of boundary, 240-246 
group, 65, 66 
for internal waves, 423 
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phase, 65 
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reflection and refraction at boundary, 
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Ray surface, 235 
Reciprocal vectors, 235 
Reflection coefficients, 249 

for magnetoplasma, 291 
Reflection level, 244 
Reflection point, 260 
Refractive index, 37, 39-42 
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for lossy plasma, 134, 135 
for plasma waves, 98 
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Relative dielectric tensor, 28 
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symmetry properties, 32, 35, 82 (8) 
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Scattering cross section, 320 

for magnetoplasma, 328 
for single electron, 323 
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Stokes constant, 263,264 
Stokes lines, 262 
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Temperature relaxation time, 372 
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Two-stream instability, 103, 104 

application to equatorial electrojet, 213- 

for isotropic plasma, 103-109 
for magnetoplasma, 212 

Two-timing technique, 394 

215 

U 

Uniaxial medium, 81 (3, 303 (4) 

V 

Velocity of heat conduction, 409, 410 
Velocity of light, 14 
Virtual height, 281, 282 
Viscosity, 429 

attenuation of acoustic-gravity waves due 
to, 429 

W 

Wave normal, 227, 234 
Wave packet, 58, 59 
Wave parameter, 340, 346 
Wave train solution, 392 
Wave vector surface, 60 
Whistlers, 173-176 

quasi-parallel propagation of, 192, 220 
(20) 

Wind-stratified atmosphere, 420 
WKB solution, 231, 252-260 



Volume 1 

Volume 2 

Volume 3 

Volume 4 

Volume 5 

Volume 6 

Volume 7 

Volume 8 

Volume 9 

International Geophysics 

Series 

Editor 

J. VAN MIEGHEM 

Royal Belgian Meteorological Institute 
Uccle, Belgium 

BENO GUTENBERG. Physics of the Earth’s Interior. 1959 

JOSEPH W. CHAMBERLAIN. Physics of the Aurora and Airglow. 1961 

S. K. RUNCORN (ed.). Continental Drift. 1962 

C. E. JUNGE. Air Chemistry and Radioactivity. 1963 

ROBERT C. FLEAGLE AND JOOST A. BUSINGER. An Introduction to 
Atmospheric Physics. 1963 

L. DUFOUR AND R. DEFAY. Thermodynamics of Clouds. 1963 

H. U. ROLL. Physics of the Marine Atmosphere. 1965 

RICHARD A. CRAIG. The Upper Atmosphere: Meteorology and 
Physics. 1965 

WILLIS L. WEBB. Structure of the Stratosphere and Mesosphere. 1966 

Volume 10 MICHELE CAPUTO. The Gravity Field of the Earth from Classical 

Voluine I1 S. MATSUSHITA AND WALLACE H. CAMPBELL (eds.). Physics of 

Volume 12 K. YA. KONDRATYEV. Radiation in the Atmosphere. 1969 

Volume 13 E. PALMEN AND c. W. NEWTON. Atmospheric Circulation Systems: 

Volume 14 HENRY RISHBETH AND OWEN K. GARRIOTT. Introduction to Iono- 

Volume 15 C. S .  RAMAGE. Monsoon Meteorology. 1971 

Volume 16 JAMES R .  HOLTON. An Introduction to Dynamic Meteorology. 1972 

Volume 17 K. c. YEH AND c. H. LIU. Theory of Ionospheric Waves. 1972 

and Modern Methods. 1967 

Geomagnetic Phenomena. (In two volumes.) 1967 

Their Structure and Physical Interpretation. 1969 

spheric Physics. 1969 


	Theory of Ionospheric Waves
	Copyright Page
	Contents
	Preface
	Chapter 1. Introduction
	1.1 Nature of the Ionosphere
	1.2 Progress in the Study of Ionospheric Waves
	1.3 Scope of the Book
	1.4 Notations
	References

	Chapter 2. Review of Electromagnetic Theory
	2.1 Maxwell's Equations
	2.2 Vector and Scalar Potentials
	2.3 Electric and Magnetic Polarizations
	2.4 Slow and Fast Processes
	2.5 Kramers-Kronig Relations
	2.6 Onsager Relation
	2.7 Plane Waves
	2.8 Refractive Indices
	2.9 Characteristic Polarizations
	2.10 Energy and Power
	2.11 Group and Energy Velocities
	2.12 Geometric Interpretation of Group Velocity 
	2.13 Excitation of Fields
	2.14 Dyadic Green's Functions
	Problems
	References

	Chapter 3. Waves in Fluid Plasma
	3.1 Introduction
	3.2 Charge Neutrality
	3.3 Oscillation
	3.4 Screening
	3.5 Electron and Ion Plasma Waves
	3.6 Plasma Density Fluctuations
	3.7 Two-Stream Instability
	3.8 Interaction of Charged Particles with Longitudinal Waves
	3.9 Excitation of Fields by a Test Particle
	Problems
	References

	Chapter 4. Waves in Fluid Plasma with a Steady Magnetic Field
	4.1 Transverse Dielectric Constant and Index of Refraction
	4.2 Reflection of a Plane Transient Wave from the Plasma Half-Space
	4.3 Signal Propagation in Lossless, Isotropic Plasma
	4.4 Gyrofrequency in the Ionosphere
	4.5 Dielectric Tensor of a Cold Magnetoplasma
	4.6 Effect of Collisional Loss and DC Conductivity
	4.7 Longitudinal Oscillations
	4.8 Refractive Indices and Polarizations
	4.9 Propagation Parallel to Steady Magnetic Field
	4.10 Faraday Effect
	4.11 Electron and Ion Whistlers
	4.12 Propagation Perpendicular to Steady Magnetic Field
	4.13 Hydromagnetic Waves—Low Frequency Approximation
	4.14 Appleton–Hartree Formula—High Frequency Approximation
	4.15 Some Properties of the Appleton–Hartree Formula
	4.16 Cutoffs and Resonances in Parameter Space
	4.17 Index Circle and Index Surface
	4.18 Dielectric Tensor of a Warm Magnetoplasma
	4.19 Warm Plasma Correction to the High Frequency Waves
	4.20 Plasma Waves and Two-Stream Instabilities
	Problems
	References

	Chapter 5. Wave Propagation in Inhomogeneous Media
	5.1 Introduction
	5.2 Foundations of Geometrical Optics—Isotropic Media
	5.3 Amplitude Variation along the Ray
	5.4 Fermat's Principle
	5.5 Ray Equations in Anisotropic Media
	5.6 Effect of Boundary on the Ray and Generalized Snell’s Law
	5.7 Reflection and Transmission of Waves at Sharp Boundaries
	5.8 Wave Propagation in Stratified Media—Isotropic Case
	5.9 The WKB Solution
	5.10 The Matrix Method
	5.11 The Stokes Phenomenon
	5.12 An Example
	5.13 Reflection Coefficients for Stratified Media—High Frequency Approximation
	5.14 Reflection Coefficients for Stratified Media—Very Low Frequency Approximation
	5.15 Signal Propagation and Reflection in Stratified Media
	5.16 The True Height Problem—Ionosonde
	5.17 Wave Propagation in Stratified Magnetoplasma—Försterling's Coupled Equations
	5.18 An Application of Forsterling’s Coupled Equations
	5.19 Wave Propagation in Stratified Anisotropic Media—General Coupled Equations
	5.20 Application of the Coupled Equations Method to Wave Propagation in a Stratified Magnetoplasma
	Problems
	References

	Chapter 6. Wave Propagation in Random Media
	6.1 Mathematical Background
	6.2 Wave Propagation in Random Media
	6.3 Scattering of Electromagnetic Waves by Irregularities
	6.4 Fluctuation of Electromagnetic Waves in Random Media—Geometrical Optics
	6.5 Fluctuation of Electromagnetic Waves in Random Media—Wave Theory
	6.6 Correlations of Fluctuations and Application to the Ionosphere
	6.7 Higher Order Approximations—Perturbation Techniques
	6.8 Effective Dielectric Tensor for Coherent Waves
	Problems
	References

	Chapter 7. Nonlinear Wave Propagation
	7.1 Introduction
	7.2 Breaking of Waves
	7.3 Nonlinear Effects in a Plasma in an Electromagnetic Field
	7.4 Self-Interaction of Waves
	7.5 Cross–Modulation Phenomenon
	7.6 Wave–Wave Interaction
	7.7 An Averaged Variational Principle
	Problems
	References

	Chapter 8. Interaction of Atmospheric Waves with the Ionosphere
	8.1 Structure of the Atmosphere
	8.2 Buoyancy Oscillations
	8.3 Acoustic Gravity Waves in an Isothermal Atmosphere
	8.4 Properties of Internal Waves
	8.5 Propagation in a Wind-Stratified Isothermal Atmosphere
	8.6 Effect of Ion Drag
	8.7 Attenuation due to Thermal Conduction and Viscosity
	8.8 Effect of Internal Waves in the Ionospheric F Region
	8.9 Impulse Response of an Isothermal Atmosphere
	8.10 Effect of a Wind Shear in the Ionospheric E Region
	Problems
	References

	Appendix A: The Method of Steepest Descents
	A.1 The Method of Steepest Descents
	A.2 Modified Method of Saddle Point
	References

	Appendix B: The Distant Radiation Field from a Localized Source
	References

	Subject Index



