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Abstract While conducting analysis related to a DARPA-
funded project to evaluate possible structure of the energy
density present in a Casimir cavity as predicted by the
dynamic vacuum model, a micro/nano-scale structure has
been discovered that predicts negative energy density distri-
bution that closely matches requirements for the Alcubierre
metric. The simplest notional geometry being analyzed as
part of the DARPA-funded work consists of a standard par-
allel plate Casimir cavity equipped with pillars arrayed along
the cavity mid-plane with the purpose of detecting a transient
electric field arising from vacuum polarization conjectured to
occur along the midplane of the cavity. An analytic technique
called worldline numerics was adapted to numerically assess
vacuum response to the custom Casimir cavity, and these
numerical analysis results were observed to be qualitatively
quite similar to a two-dimensional representation of energy
density requirements for the Alcubierre warp metric. Subse-
quently, a toy model consisting of a 1 µm diameter sphere
centrally located in a 4µm diameter cylinder was analyzed to
show a three-dimensional Casimir energy density that corre-
lates well with the Alcubierre warp metric requirements. This
qualitative correlation would suggest that chip-scale experi-
ments might be explored to attempt to measure tiny signatures
illustrative of the presence of the conjectured phenomenon:
a real, albeit humble, warp bubble.

1 Background

Work being conducted under a DARPA DSO1 grant is inves-
tigating the implications of the dynamic vacuum model for

1 Defense Advanced Research Projects Agency Defense Science Office.

a e-mail: sonny@limitlessspace.org (corresponding author)

the possibility of structure to the Casimir energy distribu-
tion manifested in a parallel plate cavity. The dynamic vac-
uum model predicts that the negative vacuum energy density
present in the parallel plate cavity is not isotropic, rather
there is a varying energy density field present in the cavity
with an average value that corresponds with that predicted
by the traditional equation for parallel-plate Casimir energy
density. The structure predicted to be manifest in the cav-
ity takes the form of a larger magnitude negative vacuum
energy density concentrated along the cavity mid-plane that
relaxes non-linearly to the unperturbed state at the cavity
boundaries. Based on detailed studies of the atomic orbitals
of the hydrogen atom, and deriving the acoustic wave equa-
tion from the Schrödinger equation [1,2], it is speculated that
the energy density structure in a Casimir cavity is coupled to
a small polarization field in the vacuum fluctuations resulting
in a small but non-zero electrostatic field originating along
the cavity mid-plane and terminating at the grounded cav-
ity walls. It has been further reasoned in the literature that
it may be possible to construct a customized Casimir cav-
ity equipped with small pillars placed at the mid-plane as
depicted in Fig. 1 such that when the pillar channel is sampled
by a high impedance oscilloscope, the scope would detect a
transient non-zero voltage signal2 that would rapidly go to
zero as the stored energy in the polarization field is depleted
from the measurement process [4].

2 A recently published paper [3] details an experimental campaign
using an asymmetric Casimir cavity arrangement where one cavity has
a small separation and the other cavity has a much larger effective sep-
aration. This experimental campaign observed a current flow from the
larger cavity electrode to the smaller cavity electrode. Our cavity is
analogous in that the two parallel plates define a large cavity and the
plate-pillar system plays the role of the smaller cavity.
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Fig. 1 Parallel plate cavity design with pillar-like features along the
mid-plane – the dynamic vacuum model predicts that the scope will
measure a small but non-zero transient voltage pulse from the pillars
once connected to the cavities as shown. The anticipated geometry of
each cavity is approximately 4 µm wide with each plate measuring
40 µm by 40 µm. The pillars are expected to be approximately 1 µm
in diameter

If these cavities can be made small enough and arrayed
together in large enough numbers to increase the stored
energy, the magnitude and duration of this predicted tran-
sient voltage signal may be detectable in a laboratory set-
ting. The equation that predicts the magnitude of this small
but non-zero electrostatic field was derived in [4] and takes
the following form: E = √

�cπ2/1080ε0d4. A quick calculation
for a Casimir cavity with a 4 µm gap predicts a magnitude
of the electrostatic potential arising from the polarization
of the vacuum fluctuations along the mid-plane of the cav-
ity to be ∼ 0.7 mV. Figure 2 shows some examples of the
current nanofabrication trian runs that are ongoing as part
of the effort. The left panel in the figure depicts a recent
result obtained utilizing a Nanoscribe 3d printer to evaluate
a range of cavity gaps and pillar sizes. The material being
used in the manufacture is SU-8 2025 permanent epoxy neg-
ative photoresist. After printing and curing, the cavities then
undergo electroless plating to add a layer of Ag to the outer
surfaces. The right panel shows recent etching results using
Deep Reactive Ion Etching (DRIE) equipment to etch the
high-aspect ratio cavity planes into a silicon wafer substrate.
This approach uses standard SiO2 wafer materials with the
expectation that the final concepts will have a metallic layer
added by means of evaporation. The results depicted were
focused on achieving the high-aspect ratio etch, and future
work will incorporate the masking necessary to produce pil-
lars. A technical concern with the proposed design imple-
mentation is how the presence of pillars might affect the pre-
dicted Casimir energy density distribution within the cavity
- would there be self-screening that occurs within the pillar

Fig. 2 Initial results from current nanofabrication trian runs: the left
panel in the figure depicts a recent result obtained utilizing a Nanoscribe
3D printer to evaluate a range of cavity gaps and pillar sizes; the right
panel shows recent etching results using Deep Reactive Ion Etching
(DRIE) equipment to etch the high-aspect ratio cavity planes into a
silicon wafer substrate

that minimizes the magnitude of the negative vacuum energy
density present inside the pillar, and hence the magnitude of
the detectable signal? It was during the analysis process seek-
ing to address this screening question that an unanticipated
intersection with the Alcubierre metric was found.

2 Introduction

The literature search phase of this DARPA project discovered
a numerical methods approach known as worldline numerics
[5–9] that can be used to study and quantify the Casimir
energy density and force. The curious aspect of this modeling
approach that makes it of high interest to the DARPA project
is that it predicts that there is structure (spatial variation)
to the negative vacuum energy density in a Casimir cavity
analogous to the predictions of the dynamic vacuum model.
The primary value of considering an implementation of this
model technique is that it provides a high fidelity prediction
of the perturbed vacuum state insidemodel geometry (e.g. the
evanescent fields in structure) along with predictions for the
perturbed vacuum state within the cavity gaps. An additional
benefit of the worldline numerics method3 for studying the
Casimir effect is that it can be used to address any type of
geometry with effectively no restrictions on curvature or lack
of smoothness.

Due to the similarities with the dynamic vacuum model
and its computational flexibility coupled with maturity, this
worldline numerics technique has been implemented to con-
sider the custom Casimir cavities and determine the predicted
negative vacuum energy density distribution in the cavities
and within the pillars. Figure 3 depicts the numerical analysis
results from our implementation of the worldline approach

3 Also referred to as the loop cloud method [10].

123



Eur. Phys. J. C (2021) 81 :677 Page 3 of 10 677

Fig. 3 Panel (a) shows a 2 dimensional section cut of a sphere-plate
case using the numerical worldline technique. The approach was imple-
mented using Open MPI-enabled c-code and the analysis was run on
100 2.40 GHz Intel Skylake CPUs. The model grid was a 50 × 50 × 50
grid with a 2000 unit-loop ensemble. The bottom plot shows a vector
plot of forces normal to model surfaces and was created by importing
the worldline numerics results into COMSOL

considering a 3 dimensional sphere with a radius of 4 µm
separated from an infinite flat plate by a separation of 4 µm.
The approach was implemented using Open MPI-enabled c-
code and the analysis was run on 100 2.40 GHz Intel Skylake
CPUs. The model grid was a 50 × 50 × 50 grid with a 2000
unit-loop ensemble. The top panel shows a 2 dimensional sec-
tion cut of the predicted distribution to the negative vacuum
energy density between the two bodies where it should also

be noted that the field gradients extend into both the body of
the sphere and the flat plate in the form of evanescent fields.
The bottom panel shows the distribution of forces across the
surfaces of the model and was generated using COMSOL.
The following section provides a brief summary of the details
behind the worldline numerics analytic approach.

3 Synopsis of Casimir worldline numerics

The string theory inspired worldline numerics approach to
determine the Casimir effect is developed in detail in [5],
and the critical aspects of the analysis technique are briefly
summarized here for convenience. With the objective of eval-
uating the Casimir interaction energy ECasimir (e.g. normal-
ized) arising from the coupling of a real scalar quantum field
φ of finite massm with a background potential V (x) that rep-
resents the Casimir geometry, the key equation from Section
2.1 of [5] is the effective action shown in Eq. (1).

Γ [V ] = − 1
2(4π)2

∫ ∞

1/�2

dT
T 3 e−m2T

∫
d4x

×
[〈

WV [y(t); x]
〉

y
− 1

]
(1)

The expectation value in Eq. (1) is the average of the loop
ensemble over all closed loops with Gaussian walks:

〈
WV [y(t); x]

〉

y
=

∫
y(0)=y(1)

D y WV [y(t); x] e− ∫ 1
0 dt ẏ2/4

∫
y(0)=y(1)

D y e− ∫ 1
0 dt ẏ2/4

,

(2)

where the following “Wilson loop” identity has been intro-
duced with y representing the (unit) loop path4, x represent-
ing the position shift of the unit loop in model space, and T
denoting the proper time and serves to scale the unit loops:

WV [y(t); x] = exp

[
−T

∫ 1

0
dt V (x + √

T y(t))

]
. (3)

Equipped with this information, one can calculate the
(unrenormalized) Casimir energy as E = Γ/

∫
dx0 where

the integral represents the “volume” in the time direction.
When considering the Casimir force, the portion of the
Casimir energy that has a dependency on the relative posi-
tions of the bounding geometries can be obtained by subtract-
ing the energies of the single objects from the total Casimir
energy.

ECasimir:=EV1+V2+··· − EV1 − EV2 −· · · (4)

4 y : [0; 1] �→ R and unit proper time t ∈ [0, 1].
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The Casimir force can be obtained by taking the negative
spatial derivative of this interaction energy, and further, this
process has removed any UV divergences. In the Dirichlet
limit λ → ∞ and for a massless scalar field with Dirichlet
boundaries in D = 3+1, the worldline representation of the
Casimir interaction energy boils down to5:

ECasimir = − 1
2(4π)2

∫ ∞

0

dT
T 3

∫
d3xCM 〈�Σ [x(τ )]〉x (5)

The worldline functional �Σ [x(τ )] = 0 if the re-scaled
unit loop does not intersect any Casimir geometry and
�Σ [x(τ )] = 1 − n if the re-scaled loop intersects n ≥ 1
Casimir geometry. The numerical evaluation process requires
two discretization steps. The first is the discretization of the
path integral into an ensemble of nL random paths x�(τ ),
� = 1, . . . , nL with each path forming a closed spacetime
loop. The second is the discretization of the proper time inter-
val τ ∈ [0, T ] into N steps such that an individual closed
loop consists of N points per loop: x�k :=x�(k · T/N ), k =
1, . . . N . Transporting and rescaling the ensemble of unit
loops to a point xCM in the model takes the following form:
x�k = xCM + √

T y�k . Applying these two discretizations to
the Casimir interaction energy in Eq. (5) yields the following
form:

ECasimir = − 1
2(4π)2

∫ ∞
0

dT
T 3

∫
d3xCM

1

nL

nL∑

�=1

�Σ [xCM+√
T y�].

(6)

As the worldline numeric approach for the Casimir phe-
nomenon is based on (massless) scalar fields, the technique
can currently only assess idealized behaviour for bounding
geometry and cannot assess any frequency dependence of
materials. Additionally, the approach developed to date in
the literature does not account for the impacts of temperature.
However, it is still a very capable and appealing technique in
that it can provide quick and fairly accurate assessments for
very complicated geometries where analytic techniques are
not practical.

3.1 Generating unit loops, computational approach, and
implementation validation

The developers of the worldline numerics for the Casimir
phenomenon explored numerous ways [5] to generate ensem-
bles of unit loops with Gaussian distribution ranging from a
heat bath kernel to random walks, and finally landing on a
technique denoted as the “v-loop” algorithm. The curious

5 A thorough articulation of the renormalization process is detailed in
Section 3.2 of [8].

(a) 100 point unit loop (b) 500 point unit loop

(c) 1000 point unit loop (d) 5000 point unit loop

Fig. 4 Gaussian distributed closed unit loops representative of scalar
field fluctuation generated using v-loop methodology. Algorithm will
generate ensemble of nL unit loops to be scaled and applied at each
geometric point of interest in a physical model

reader is encouraged to review the referenced manuscript for
a thorough discussion of the benefits and shortfalls of the
different techniques explored. The “v-loop” technique was
selected as it can computationally generate an ensemble of
nL each having N points per loop without having to perform
multiple iterations on each loop to realize a closed random
walk/worldline with the required statistical characteristics.
Figure 4 shows several examples of unit-loops generated by
the v-loop methodology ranging from a 100 point unit loop
to a 5000 point unit loop. A summary of the computational
procedure steps are provided here to facilitate the reader’s
understanding of the “v-loop” approach:

1. generate N − 1 numbers wi (i = 1, . . . , N − 1) with
a Gaussian distribution e−w2

i (e.g. using Box–Müller
method);

2. calculate N − 1 numbers v̄i by normalizing wi :

v̄1 =
√

2

N
w1,

v̄i = 2√
N

√
N + 1 − i

N + 2 − i
wi , i = 2, . . . , N − 1; (7)
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3. calculate vi for i = 2, . . . , N − 1 with the following:

vi = v̄i − 1

N + 2 − i
vi−1,1,

where vi−1,1 =
i−1∑

j=2

v j ; (8)

4. a unit loop y can now be created by using:

y1 = 1

N

(

v̄1 −
N−1∑

i=2

(
N − i + 1

2

)
vi

)

,

yi = yi−1 + vi , i = 2, . . . , N − 1,

yN = −
N−1∑

i=1

yi ; (9)

5. this procedure is repeated nL times to create the unit loop
ensemble y� with � = 1, . . . , nL.

The benefit of this numeric worldline approach is that it
can be used to address any type of geometry while other
approaches such as Proximity-Force Approximation (PFA)
are not as flexible. Additionally, the approach has no depen-
dency on the choice of model grid spacing or grid choice.
The answer for a single point of interest in space does not
have any interdependency on any other model grid points and
may be calculated in total isolation if that is all that is needed.
Figure 56 provides a pictoral representation of the analysis
process for a parallel plate Casimir cavity. As indicated in
the figure, once the loop ensemble has been generated the
computational process to calculate the Casimir interaction
energy follows the below enumerated steps:

1. The loop ensemble is moved to each model grid point of
interest and scaled using proper time until 2+ bodies in
the model are pierced;

2. the scale at which an individual loop pierces 2+ bod-
ies defines the integral limits for the Casimir interaction
energy integral;

3. the energy at the geometric point of interest in the model
is increased based on wavelength (loop scale) and loop
weight factor;

4. this scaling process is repeated for each loop in the ensem-
ble at a geometric point of interest in the model;

5. the above steps are repeated for each geometric point of
interest in the model.

6 While the figure depicts a regularized model grid for communication
purposes, the computational result at an individual model point is not
dependent on adjacent points making the technique independent of grid
choice.

Validation of our implementation of the numeric worldline
approach was done on a plate-plate case and a corresponding
plate-sphere case and was compared to documented results
in the literature [5]. For the reader’s awareness, the work doc-
umented in [5] conducts extensive analysis to compare ana-
lytic results to the numeric results produced by the worldline
technique for the simple plate-plate scenario and plate-sphere
scenario. The referenced study explored the impact of num-
ber of points per unit loop, number of unit loops in an ensem-
ble, separation distance of geometries, coupling, and mass. It
is not the intention of this paper to duplicate the viability of
the overall worldline numerics approach as this has already
been done in the literature as noted, rather the intention of this
paper is to apply this very powerful and flexible technique to
fairly complicated geometries where only numerical methods
can effectively be used. In our validation effort, we confirmed
that our model predict the correct Casimir force for a given
plate-plate or sphere place scenario, and subsequently com-
pared their Casimir interaction energy density results from
their numeric worldline algorithm to our interaction energy
density results from our numeric worldline algorithm. The
subsequent more complicated geometries we consider forth-
with as part of this work do not have trivial analytic solutions
which is why the numeric worldline technique is employed.

A plot of the results from our implementation is provided
in Fig. 6 for the two cases and the plot also includes a plate-
blade case. The geometry of all three cases is such that the
closest point of separation between all three cases is iden-
tical allowing for comparison of the results to evaluate the
effects of curvature. The plots reflect the energy density as
measured along a line normal to the plate-plate geometry
and these geometric points of interest are the same for the
plate-sphere and plate-blade cases. The colors of the Casimir
energy density plots correspond to the colors of the toy geom-
etry also overlayed on the plot facilitating comparison of the
results and to clearly see the impact of curvature. Comparing
our results to those in literature indicates that our algorithms
are functioning properly.

4 Analysis results and unanticipated findings

As discussed in the opening of the manuscript, the critical
concern for this project is if the presence of a pillar in the
Casimir cavity would serve to screen itself in such a way that
it would be unable to see the negative vacuum energy density
gradient predicted to be present in the cavity if the pillars were
not present. A model was built to assess a 4 µm cavity with
a 1 µm diameter pillar placed in the middle of the cavity.
The model discretization was a 35×35 grid running ± 4 µm
in both the x and y axis. The x-axis is the vector normal to
the parallel cavity plates, and the y-axis is orthogonal to the
x-axis and defines the 2D surface for the energy density plot.
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Fig. 5 Panel (a) shows the unit
loop ensemble being moved to a
geometric point of interest in
model. Panel (b) shows scaling
of one of the unit loops from the
ensemble to the point that it
intersects 2+ bodies of model.
This establishes the support S�

to be used in integration and
determine the weighted
contribution of the loop to the
Casimir energy density of the
vacuum at this point in the
model

Generate ensemble of random nL unit
loops with each having np points in
loop

Transport the ensemble of
unit loops to each point of in-
terest in geometric model

1 2 3 nL

For each loop in the ensemble, trans-
port to a grid point, scale loop to de-
termine proper time for which loop
pierces 2+ bodies

This defines the support, S�, of the
loop that sets the integral limits for
integration

The energy density at the point is then
increased by a loop-weighted amount

(a) transporting unit loop ensemble to geometric point of interest

(b) scaling of an individual loop of the ensemble so that it inter-
sects 2+ bodies of the model

The origin of the coordinate system is at the center of the
pillar. The analysis results are shown in Fig. 7 with a two
dimensional representation of the energy density depicted in
the left panel and a log of the energy density levels in the right
panel. Inspecting the log-plot on the right shows that while
the presence of the pillar in the cavity does perturb the field,
it actually serves to slightly increase the effective negative
vacuum energy density seen in the pillar by a factor of 3–
5 compared to the density level present without the pillar in
the cavity. These analysis results would suggest that the pillar
does not adversely self-screen itself in a manner that prevents
it from seeing the field magnitude in the cavity with no pillar
present. Rather, due to the slightly elevated state, it could
be reasoned that the pillar seems to focus the gradient in a
manner that would at most allow the pillar to drain the stored
energy in the cavity at a quicker rate once it is connected to
a high impedance oscilloscope.This effect might result in a
need for more cavities to provide enough stored energy such

that the duration of the transient voltage signal will last long
enough for detection.

While the analysis results discussed above are encourag-
ing for the project objective of attempting to measure the
presence of structure in the negative vacuum energy density
within a customized Casimir cavity, the implications of this
particular predicted negative vacuum energy density distri-
bution is quite intriguing for an altogether different reason.
As it so happens, the structure of the field around the pillar
in the two dimensional plot is qualitatively very similar to
a plot of the negative vacuum energy density necessary for
the Alcubierre warp metric.7 Figure 9 shows a zoomed view
on the numeric worldline analysis of the plate-pillar case on

7 The Casimir phenomenon was first discussed as an alternative source
to exotic matter for the idea of a wormhole in [11,12] and later expanded
on in a book[13] on wormholes by Visser. It was also identified by
Alcubierre[14] in his seminal paper as an alternative source to exotic
matter for the manifestation of a warp bubble. The Casimir phenomenon
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Fig. 6 Plot of validation runs for plate-plate and plate-sphere cases.
The plot also includes a plate-blade case. The geometry elements are
represented by a thick vertical black line for the left Casimir cavity
plate, a thick vertical cyan line for the right plate, a thick gray quarter
circle to show the location of the sphere, and an orange horizontal
line representing the blade. The colors of the plots of energy density
distribution match the color of the corresponding geometry overlayed in
the plot. The magnitude of the energy density distribution clearly shows
a decrease in magnitude as the cases go from plate-plate to plate-blade.
Additionally, the plots show that there is a shifting of the peaks to the
right due to the curvature effects

the top, and the energy density field for the Alcubierre met-
ric on the bottom. Before fully exploring the implications of
this unanticipated intersection between these two models, the
critical elements of the Alcubierre model will be identified
and discussed that lead to the energy density that allows the
“trick” to work. The motivation for the Alcubierre metric [14]
was to develop a model within the context of general relativ-
ity that would mathematically encapsulate the idea of a space
warp that would allow for hyper fast travel between arbitrar-
ily distant stellar objects. The metric and shaping function
are provided in Eq. (10) (with G = c = 1 where vs is the
speed of the craft, f (rs) is the shaping function, σ is the shell
thickness parameter that controls the thickness of the warp
bubble wall, and R is the radius of the warp bubble.

ds2 = −dt2 + (
dx − vs f (rs)dt

)2 + dy2 + dz2

f (rs) = tanh
(
σ(rs + R)

) − tanh
(
σ(rs − R)

)

2 tanh(σ R)
(10)

The critical element of the model that enables stellar hyper
fast transit is conjectured to be the York Time which is a
measure of the expansion and contraction of space associated
with the metric.8 A plot of the York Time is provided in

Footnote 7 continued
has more recently been explored by Garattini in [15,16] as a sourcing
material for “benign” wormholes.
8 It was shown in [18] by putting the metric into canonical form that the
catalytic mechanism was not the York Time, rather it was the boost field

−4 −2 0 2 4

·10−6
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−2

0

2

4
·10−6

−4 −2 0 2 4

·10−6

−4

−2

0

2

4
·10−6

(a) linear plot of energy density

(b) log plot of energy density

Fig. 7 The white lines represent a 4 µm Casimir cavity, and the circle
represents the 1µm pillar located at the midplane of the cavity. Panel (a)
shows the linear 2D plot of the energy density and panel (b) shows the
log 2D plot. The bright yellow regions show the impact of the presence of
the pillar on the energy density, and the log plot shows that the pillars do
not self-screen themselves from the background field gradient resulting
from the presence of just the plates (lime-green color)

Fig. 8 [17]. The York Time field is depicted as a grid that
has a wave-like appearance with a simple representation of
a notional craft overlayed on top of the field to show the
connection between the spacetime disturbance and the source
of the negative vacuum energy density. The York Time plot
indicates that space is expanding behind the spacecraft and
contracting in front of the spacecraft. The craft depicted in

Footnote 8 continued
serving as a multiplier of the ship’s initial velocity, akin to watching
a movie in fast-forward. With the canonical form of the metric, the
expansion and contraction of space is viewed as a response of spacetime
as the hyperfast craft transits through space – space piles up in front of
the craft and stretches out behind the craft.
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the plot has a central part located in the center of the warp
bubble in the region where the spacetime is flat, the proper
acceleration α is zero, and local clocks are synchronized with
external clocks on earth. The craft is equipped with a ring
structure that represents an encapsulation of exotic matter or
negative vacuum energy density distributed throughout.

The York Time, θ , and the energy density distribution T 00,
are shown in Eqs. (11) and (12) respectively. The vs term
again represents the velocity of the craft, xs represents the
position of the center of the craft (and hence the fields), and
the y2 and z2 just define a radial distance ρ from the central
x-axis. Anecdotally, a sensitivity analysis of the field equa-
tions conducted in [19,20] showed that by varying the shell
thickness parameter, σ , one could reduce the magnitude of
the York Time, and as a result the total energy required to
make the concept work. The analysis effort created two ani-
mations available online that show the response of the York
Time field [21] and the energy density field [22] to variation
of the shell thickness parameter. The animations show that
as the warp bubble wall thickness increases the peak energy
density decreases significantly, and as the warp bubble wall
thickness decreases the peak energy density increases. The
reasoning behind this response is that the York Time can be
viewed as a sort of 3-dimensional strain of space, and as
the shell thickness increases, the amount of 3-dimensional
strain needed to manifest a target speed vs decreases which
is accompanied by a decrease of energy density, and thus a
reduction in total energy. This is not without a cost – as can
be seen in the online animation of the York Time field, the
region of flat spacetime available for the critical portions of
the craft, say for a crew or science instruments, is decreased
as the bubble wall thickness is increased. So the energy opti-
mization process has a competing constraint in the form of
the required size, R, for the warp bubble to adequately encap-
sulate sensitive cargo within the flat spacetime region inside
the bubble wall.

θ = vs
xs
rs

d f (rs )
drs

(11)

T 00 = − 1
8π

v2
s (y

2+z2)

4r2
s

(
d f (rs )
drs

)2
(12)

Now that the Alcubierre metric has been introduced and
the critical elements have been identified and discussed, a
comparison between the exotic matter requirements of the
warp concept and the numeric worldline analysis results for
the custom Casimir cavity may now be made. The top panel
of Fig. 9 shows a close up view of the predicted response of
the quantum vacuum within the custom Casimir cavity, and
the bottom panel shows a 2-dimensional representation of the
energy density necessary for the Alcubierre model. The con-
centrations in the negative vacuum energy density due to the
presence of the pillar in the Casimir cavity are qualitatively
very similar to the 2D representation of the T 00 for the Alcu-
bierre model. It should be noted that the 2-dimensional plot

expanding
space

contracting
space

exotic
matter
ring

York
Time

�v

spacecraftvelocity

Fig. 8 Plot of York Time θ for Nature [17] - the plot shows the expan-
sion and contraction of space associated with the Alcubierre metric. The
plot also includes a simple representation of craft overlayed to illustrate
the alignment of the exotic matter ring (T 00) with the expansion and
contraction of space. It should be noted that the flat region at the mid-
dle of the York Time plot represents the region of flat spacetime in the
middle of the warp bubble where coordinate time is the same as proper
time, and proper acceleration α is zero. This would be where sensitive
spacecraft systems/instruments and possibly crew would be located.
The effective velocity of the spacecraft is overlayed as a red vector

for the Casimir cavity is in effect a linear extrusion extend-
ing up from the surface of the paper meaning the lenticular
shaped concentration is rod-like, while the Alcubierre plot is
a revolution which yields a toroidal distribution.

Based on the custom Casimir cavity results for the parallel
plate cavity with a cylindrical pillar at the mid-plane, a toy
model comprised of a 1 µm diameter sphere suspended in
the middle of a 4 µm diameter cylinder was implemented
and the numeric worldline analysis technique was used find
the predicted Casimir energy density. Figure 10a shows a sec-
tion cut of the toroidal Casimir energy density for the sphere-
cylinder system which correlates well with the toroidal Alcu-
bierre energy density requirements. If one could manufacture
a chip with these types of nano structures (nano-spheres sus-
pended in nano-tubes), an experiment might be designed and
attempted to conduct a test to measure transit time of say a
current (alternately a photon or electron) through a tiny con-
ductor (alternately open bore) routed through the center of
the sphere(s). This transit time could be compared to the time
it takes for a current (photon/electron) to run through a mir-
ror system that has no external tube (control test). If need be,
many of these nano structures could be arranged in parallel
to increase the time resolution of the notional experiment
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Fig. 9 Comparison of energy density for the numeric worldline assess-
ment of the custom Casimir cavity and and the Alcubierre model energy
density requirement

(see Fig. 10b). If a difference in transit time were observed,
this would be an empirical confirmation of the generation of
a real nano scale warp bubble on a chip.9 To be clear, this

9 It could be speculated that a nano sphere might be made to trans-
late through a nano cylinder as a more direct implementation of the
Alcubierre model with the provision that it may be viewed as a space
warp/wormhole hybrid with the cylinder serving as the connecting

Fig. 10 The top panel depicts a section cut of predicted toroidal
Casimir energy density distribution for sphere-cylinder system com-
prised of a 1 µm diameter sphere suspended in the middle of a 4 µm
diameter cylinder. The approach was implemented using Open MPI-
enabled c-code and the analysis was run on 660 2.40 GHz Intel Skylake
CPUs. The model grid was a 100 × 100 grid with a 2000 unit-loop
ensemble. The bottom panel depicts a notional experimental setup that
comprises an array of sphere-cylinder constructions arranged such that
a pulse of electrons or photons may be routed through the test device in
an attempt to measure a change in transit time for an equivalent pulse
routed through free space

would not be some simple analogue or proxy representation
of a space warp phenomenon, rather it would be a genuine
implementation of the idea in physical fact with observable
consequences in the laboratory – just not in the dramatic form
of a craft bound for a distant stellar destination.

Footnote 9 continued
pathway between two points and also enabling the formation of the
necessary negative vacuum energy density around the sphere to boost
the effective velocity.
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5 Conclusions

The impetus for the work discussed in this manuscript was
to explore the implications of the dynamic vacuum model as
applied to a custom Casimir cavity geometry. The dynamic
vacuum model suggests that the state of the negative vacuum
energy density in the cavity is not just an isotropic value that
is constant throughout the enclosing geometry, rather it has
spatial variation and can manifest complicated structure. In
the process of the team exploring the literature, a technique
called worldline numerics was discovered that also predicts
that there is structure to the perturbed vacuum state that is
predicted to exist in a notional Casimir cavity. This tech-
nique was used to evaluate the predicted state of the vacuum
in response to the presence of small pillars placed at the mid-
plane of a Casimir cavity. The analysis showed that the pillar
would not adversely screen itself from the predicted back-
ground field that exists in response to just the presence of
the plates. The analysis also showed a possible intersection
with a model developed in the context of general relativity to
understand how hyperfast stellar travel might be manifested
mathematically. The qualitative correlation would suggest
that a chip-scale experiment might be explored to attempt to
measure a tiny signature illustrative of the presence of the
conjectured phenomenon.
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