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A B S T R A C T

The shape of a rotating electric solar wind sail under the centrifugal force and solar wind dynamic pressure is
modeled to address the sail attitude maintenance and thrust vectoring. The sail rig assumes centrifugally
stretched main tethers that extend radially outward from the spacecraft in the sail spin plane. Furthermore, the
tips of the main tethers host remote units that are connected by auxiliary tethers at the sail rim. Here, we derive
the equation of main tether shape and present both a numerical solution and an analytical approximation for
the shape as parametrized both by the ratio of the electric sail force to the centrifugal force and the sail
orientation with respect to the solar wind direction. The resulting shape is such that near the spacecraft, the
roots of the main tethers form a cone, whereas towards the rim, this coning is flattened by the centrifugal force,
and the sail is coplanar with the sail spin plane. Our approximation for the sail shape is parametrized only by the
tether root coning angle and the main tether length. Using the approximate shape, we obtain the torque and
thrust of the electric sail force applied to the sail. As a result, the amplitude of the tether voltage modulation
required for the maintenance of the sail attitude is given as a torque-free solution. The amplitude is smaller than
that previously obtained for a rigid single tether resembling a spherical pendulum. This implies that less
thrusting margin is required for the maintenance of the sail attitude. For a given voltage modulation, the thrust
vectoring is then considered in terms of the radial and transverse thrust components.

1. Introduction

The electric solar wind sail is a propulsion system that uses the
solar wind proton flow as a source of momentum for spacecraft thrust
[1]. The momentum of the solar wind is transferred to the spacecraft by
electrically charged light-weight tethers that deflect the proton flow.
The sail electrostatic effective area is then much larger than the
mechanical area of the tethers, and the system promises high specific
acceleration up to about 10 mm/s2 [2]. As the tethers are polarized at a
high positive voltage they attract electrons that in turn tend to
neutralize the tether charge state. However, only a modest amount of
electric power of a few hundred watts is required to operate electron
guns to maintain the sail charge state, and the sail can easily be
powered by solar panels [3,4]. The main tethers are centrifugally
deployed radially outward from the spacecraft in the sail spin plane
(Fig. 1). To be tolerant to the micro-meteoroid flux each tether has a
redundant structure that comprises a number (typically 4) of 20–
50 µm metal wires bonded to each other, for example by ultrasonic
welding [5]. As a baseline design, the tips of the main tethers host
remote units that are connected by auxiliary tethers at the sail
perimeter to provide mechanical stability to the sail [6].

As the electric sail offers a large effective sail area with modest

power consumption and low mass, it promises a propellantless con-
tinuous low thrust system for spacecraft propulsion for various kinds of
missions [7]. These include fast transit to the heliopause [8], missions
in non-Keplerian orbit such as helioseismology in a solar halo orbit [9],
space weather monitoring with an extended warning time (closer to the
sun than L1), multi-asteroid touring mission. Using the electric sail,
such missions can typically be accomplished without planetary gravity
assist maneuvers and associated launch windows. If planetary swing-
bys are planned during the mission, each solar eclipse has to be
carefully considered to avoid drastic thermal contraction and expan-
sion of the sail tethers [10]. In addition to scientific missions, the
electric sail can be used for planetary defense as a gravity tractor [11]
or an impactor [12] and to rendezvous with such Potentially Hazardous
Objects that cannot be reached by conventional propulsion systems
[13]. The electric sail has also been suggested as a key method of
transportation for products of asteroid mining [14]. Specifically, water
from asteroids can be used for in-orbit production of LH2/LOX by
electrolysis to provide a cost efficient way of transporting infrastructure
associated with manned Mars missions [15].

The electric sail has an intrinsic means for its flight control, i.e.,
spin plane attitude control, maintenance, and maneuvers. These can be
realized by applying differential voltage modulation to the sail tethers
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synchronously with the sail spin [16]. Thus the flight control is similar
to the helicopter rotor flight control based on the blades’ angle of
attack. Furthermore, the sail can fully be turned off for orbital coasting
phases or proximity maneuvers near light weight targets such as small
asteroids. The coasting phases are also central to optimal transfer
orbits between circular, for example, planetary orbits [18] (when
reaching a target in an elliptical orbit such as the comet 67P/
Churyumov–Gerasimenko coasting phases are not needed [19]). Note
that these coasting phases are not associated with the planetary gravity
assist maneuvers. Navigation to the target is also feasible, in spite of
the variable nature of the solar wind [20].

In this paper, we derive an integral equation for the sail main tether
shape under the solar wind dynamical pressure and the centrifugal
forces in Section 2.1. The resulting equation of the tether shape is then
solved numerically (Section 2.2) and an analytical approximation for
the shape is then obtained (Section 2.3). Using this approximation, we
obtain general expressions for the thrust (Section 3.1) and the torque
(Section 3.2) arising from the solar wind transfer of momentum to the
sail. In Section 4.1, we introduce a tether voltage modulation that leads
to a torque-free sail motion. Finally, in Section 4.2, we consider the sail
thrust vectoring in terms of both the radial and transverse thrust.

The reference frames used in this paper are illustrated in Fig. 1. One
of the frames x y z( *, *, *) is the orbital reference frame with the z*-axis
pointing to the sun, the y*-axis being in the direction of the negative
normal of the orbital plane, and the x* completing the triad in the
direction of the orbital velocity vector. In the other system x y z( , , ), z is
aligned with the sail spin axis, and x is chosen so that the solar wind
nominal direction is in the xz plane. These two systems are related by a
rotation around y*-axis by the sail angle α. In the xyz system, the
circular cylindrical coordinates (ρ ϕ z, , ) are used.

The reference frames introduced above are local in the following
sense: they rotate with respect to the distant stars while the sail is
orbiting around the sun; however, the sail itself keeps its orientation
with respect to the distant stars; and thus the sail spin axis is slowly
rotating (360°/yr) in these non-inertial local frames in terms of the
Coriolis effect. In order to maintain the sail orientation with respect to
the sun, an additional tether voltage modulation has to be introduced.

The amplitude of this modulation is, however, much smaller compared
to the modulation associated with the inclined sail [16], and the
Coriolis effect can be neglected in this work. It is noted, however, that
the Coriolis effect can only be partially canceled by the main tether
voltage modulation and it leads to a secular variation in the sail spin
rate [16]. This is a topic considered in a future study that addresses the
electric sail spin rate variations and control using the model developed
in this paper.

2. Tether shape

2.1. Equation of tether shape

The electric sail tether shape under the solar wind forcing can be

Fig. 1. Electric sail flight configuration and two coordinate systems: x y z( *, *, *) is the

orbital frame of reference; and x y z( , , ) is rotated around the y*-axis by the sail angle

alpha.

Nomenclature

a voltage modulation torque-free
c cosine function
e unit vector
F electric sail force

total sail thrust
G centrifugal force
g voltage modulation general

integral
k force ratio
L main tether length
l coordinate along the main tether
M total mass
N number of main tethers
m single main tether mass
s sine function
T main tether tension
T electric sail torque

total sail torque
u local tether tangent
v solar wind velocity
v solar wind speed
x y z( , , ) Cartesian coordinates
α sail angle
γ local tether coning angle

tΔ rotation period
μ linear mass density
ψ thrust angle
ρ ϕ z( , , ) circular cylindrical coordinates

τ angular torque density
ξ electric sail force factor
ω sail spin rate

Subscripts

0 tether root
i index
L tether length
mt main tether
q vector component index
ru remote unit
s sail
x y z( , , ) Cartesian coordinates
α sail angle
γ local tether coning angle
ρ ϕ z( , , ) circular cylindrical coordinates

Superscripts

j summation index
* orbital frame of reference
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obtained by writing an integral equation similar to that of a catenary
[17]. Fig. 2 shows the electric sail force and the centrifugal force
influencing the tether shape. Local unit vectors parallel and perpendi-
cular to the tether can be written in terms of sine and cosine of the local
coning angle γ as

e e e= c + sγ ρ γ z (1)

e e e= s − c .γ ρ γ z⊥ (2)

According to Fig. 2, the total force T F G= + that equals the tether
tension can be split into ρ and z components as

T
T

γ dz
dρ

u ρ= tan = ≡ ( ),z

ρ (3)

where we have introduced the local tether tangent u ρ( ). An equation for
the tether shape can then simply be written as

u
F

G F
=

+
.z

ρ (4)

Note that the forces present here are the total forces integrated over the
tether from the reference point ρ to the tether tip at ρL.

For a tether segment dl with a mass of dmmt, the centrifugal force
(dG ω ρdm= 2

mt) can be written in terms of the tether linear mass
density μ (dG μω ρdl= 2 ). As the length of the tether segment reads as

⎛
⎝⎜

⎞
⎠⎟dl dz

dρ
dρ u dρ= 1 + = 1 + ,

2
2

(5)

the total centrifugal force is

∫G μω ρ u dρ m ω ρ= 1 + + ,
ρ

ρ

L
2 2

ru
2L

(6)

where the last term is the centrifugal force exerted by the remote unit
including the auxiliary tether mass.

The electric sail force per unit tether length is directed along the
solar wind velocity component perpendicular to the tether direction as

d
dl

ξF v= ⊥ (7)

where v⊥ is the solar wind component perpendicular to the main tether
direction and ξ is a force factor arising from the electric sail thrust law
[3]. Similar to the centrifugal force above, the electric sail force can be
integrated to give

∫ ξ u dρF v= 1 + .
ρ

ρ
⊥

2L

(8)

As the solar wind velocity is assumed to be radial, it can be written as

vv e e= (s + c )α ρ α z (9)

in terms of the sail angle and solar wind speed with typical values of
about 400 km/s. The component perpendicular to the tether direction
can be expressed in terms of the unit vector of Eq. (2) as

v vv v e e e e= ( · ) = (s s − c s c ) + (c c − s s c ) .α γ α γ γ ρ α γ α γ γ z⊥ ⊥ ⊥
2 2

(10)

Using trigonometric identities to express sγ and cγ in terms of γtan
(with γ utan = ), ρ and z components of the electric sail force (8) can be

written as

∫F ξv u u
u

dρ= − (c − s )
1 +

ρ
ρ

ρ
α α

2

L

(11)

and

∫F ξv u
u

dρ= c − s
1 +

z
ρ

ρ
α α

2

L

(12)

Finally, inserting the integral force terms in Eq. (4), the equation of
shape of the tether can be written as

∫

∫ ∫
u

ξv u
u

dρ

μω ρ u dρ m ω ρ ξv u u
u

dρ
=

c − s
1 +

1 + + − (c − s )
1 +

ρ

ρ α α

ρ

ρ
L ρ

ρ α α

2

2 2
ru

2
2

L

L L

(13)

In addition, the tether extent in ρ, ρL is determined by the tether length
and shape as

∫L u dρ= 1 + .
ρ

ρ
2L

0 (14)

The shape of the tether can then be solved using Eqs. (13) and (14).

2.2. Numerical solution

Numerical solution to Eq. (13) can be found by considering z ρ( )
being locally linear as z u ρ c= +i i i at ρ ρ= i. All integrals in Eq. (13)
depend only on u and ρ, and we are left to find a recurrence relation
only for ui. To do so, an integral of any general function h ρ u( , ) can
be written as

∫ h ρ u dρ h ρ u ρ= ( , ) = ( , )Δ + .i
ρ

ρ

i i i i−1
i

L

(15)

An equation for ui can be obtained by substituting all integrals in Eq.
(13) with Eq. (15), accordingly. After some algebra, ui can be written as

u
ξv L F

ξv μ ω ρ L G m ω ρ F
=

c Δ +
( s + )Δ + + −

.i
α i

z

α t i i R L i
ρ

−1
2

−1 −1
2

−1 (16)

Given an initial starting point ρL, a numerical solution can be found
recursively using Eq. (16) over the tether length. As ρL is unknown,
depending on the initial guess of ρL, the process is iterated until the
solved tether root distance equals the actual tether attachment point at
the spacecraft. Fig. 3 shows the tether shape z ρ( ) and the local tether
tangent u. Parameter values used are L=20 km, ξv = 0.5 mN/km, α=45°,

Fig. 3. Tether shape (top), tether tangent (middle), and the force terms of the equation
of tether shape (bottom) for a slowly rotating sail with low tether tension of 1.5 g. Red
(blue) curve corresponds to the tether azimuth angle, ϕ = 0 (ϕ π= ). (For interpretation

of the references to color in this figure caption, the reader is referred to the web version of
this paper.)

Fig. 2. Electric sail tether (thick solid curve), remote unit (black dot).
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μ=10 g/km, m = 1 kgru , tΔ = 125 min. These values are motivated as
follows: a baseline sail assumes hundred tethers with a length of 20 km
each; the thrust per tether length of 0.5 mN/km translates to a baseline
thrust of 1 N; tether linear mass density is about 10 g/km [5]; a remote
unit with a dry mass of about 0.5 kg was developed and qualification
tested in an EU/FP7/ESAIL project [6]; and the rotation period of
125 min is used here for a prominent tether coning to visualize the
tether shape. Note that the solution can be easily verified by calculating
the force integrals in Eq. (13) as shown in the bottom panel of Fig. 3
and equating these against u as in Eq. (13).

2.3. Analytical approximation

An analytical approximation for the tether shape can be obtained
for a weakly coning sail (u ≈ 0). Fig. 4 shows the numerically obtained
tether shape with a maximum tether tension of 5 g. As the tether can
tolerate a tension of about 13 g at maximum [5], the tension of 5 g
leaves a clear safety margin to 13 g. The parameter values are the same
as in Fig. 3 except the sail spin is faster, and the rotation period,

tΔ =70 min. In general, an approximation for the equation of shape (13)
can be found as an expansion of ρ b b u b u= + +0 1 2

2. After solving the
coefficients (b b b, ,0 1 2) using Eqs. (13) and (14), u can be solved from
the expansion above. However, for the purposes of this paper we
simplify the analysis and consider only the linear terms so that u can be
written as

⎛
⎝⎜

⎞
⎠⎟u u ρ

ρ
= 1 −

L
0

(17)

As it can be seen in Fig. 4, this is well justified, and u u= 0 at ρ = 0 and
u=0 at ρ ρ= L as it is the case. The tether shape can then be integrated
(dz dρ u/ = ) to give

⎛
⎝⎜

⎞
⎠⎟z u ρ ρ

ρ
= 1 −

2
.

L
0

(18)

To finalize our model for the tether shape we are left to solve ρL and
u0 as functions of the sail and solar wind parameters. Using Eq. (14),
expanding u1 + 2 as a power series in u, and integrating ρL can be
expressed in terms of the total tether length as

⎛
⎝⎜

⎞
⎠⎟ρ L u= 1 − 1

6L 0
2

(19)

The equation of shape (13) at ρ = 0 can be written as

∫
∫ ∫

u
ξv u dρ

μω ρ dρ m ω ρ ξv udρ
=

(c − s )

+ − c

ρ
α α

ρ
r L

ρ
α

0
0

2
0

2
0

L

L L
(20)

by excluding terms higher than first order in u0 ( u1 + ≈ 12 ). Noting
that ∫ udρ ρ u= /2

ρ
L0 0

L , one can solve u0 to obtain

u k α
k α

= 2 cos
2 + sin

,0 (21)

where

k ξv
m m ω

= 2
( + 2 )mt ru

2 (22)

is the ratio of the electric sail force to the centrifugal force. Fig. 4 shows
the approximations for the shape for the sail angles of −α and α
corresponding to the tether azimuth locations of ϕ = 0 and ϕ π= ,
respectively.

2.4. Sail shape

The shape of the model sail is parametrized by the radial extent of
the sail (ρs) and the tangent of the sail coning angle (us) at the
spacecraft. The sail radial extent is trivial and it equals the single
tether length up to second order in us as in Eq. (19), and we are left to
only determine us.

Here, we present two estimates for us based on the results shown
above. One solution is to use Eq. (21) to give the sail coning tangent as
an average of tether tangents at α± ,

u k α
k α

= 4 cos
4 − sin

.s 2 2 (23)

The other solution is to consider the solar wind vector to be rotated
around the z-axis in sail coordinates to the locations of the individual
tethers. Then, as the solar wind components in the sail plane cancel
when averaging over the tethers, we are left with an effective solar wind
z component v v α= coseff . Then, using Eq. (21) with the zero effective
sail angle, the sail coning tangent is given as

u k k α= = cos .s eff (24)

As the centrifugal force is typically much larger than the electric sail
force (k⪡1), Eqs. (23) and (24) are essentially equal.

3. Sail thrust and torque

3.1. Thrust

The total sail thrust is calculated by summing over the number of
tethers (N) and integrating over the single tethers as

∫∑ dF
dl

dl=q
j

N L q
j

=1 0 (25)

By changing variables (l ρ u→ → ), the integral in Eq. (25) can be
written as

∫∑ ρ
u

dF
dl

u du= 1 +q
j

N u
L q

j

=1 0 s

2
s

(26)

Next, we assume that the sail comprises such a large number of tethers
(i.e., N ≳ 12) that the summation over the tethers in Eq. (25) can be
replaced by integration over the tether azimuthal locations in ϕ as

∫∑ F ϕ N f ϕ dϕ( ) → ( ) ,
j

N

j

π

=1 0

2

(27)

where f ϕ F ϕ π( ) = ( )/2 can be considered as the angular thrust density.
The total thrust is then an integral of the thrust density and it can be
written as

Fig. 4. Tether shape (top), tether tangent (middle), and the force terms of the equation
of tether shape (bottom) for a sail with maximum tether tension of 5 g. Red (blue) curve
corresponds to the tether azimuth angle, ϕ = 0 (ϕ π= ). Dashed lines show the

corresponding analytical approximations and black line is the sail shape. (For inter-
pretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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∫ ∫N
ρ
u

df
dl

u dudϕ= 1 + .q
π u

L q

0

2

0 s

2
s

(28)

According to the electric sail force law of Eq. (7), the thrust on a line
segment dl is given as

d
dl

g ξF v= ,ϕ ⊥ (29)

where we have added the tether voltage modulation gϕ. The modulation
is scaled to the maximum voltage with g ∈ [0, 1]ϕ . We also assume for
simplicity that the solar wind velocity is given as

v vv e e= + .x x z z (30)

Its component perpendicular to the tether reads then as

v vv v v e e v e= − ( · ) = − ( c c + s ) ,x γ ϕ z γ⊥ (31)

where the unit vector parallel to the tether is given by e e e= c + sγ ρ γ z as
in Eq. (1). Since e e e= c + sρ ϕ x ϕ y in the circular cylindrical coordinate
system, the thrust components per line segment can be expressed as

dF
dl

g ξ v v v
dF
dl

g ξ v v
dF
dl

g ξ v v v

= [ − ( c c + s )c c ] = − ( c c + s )c s

= [ − ( c c + s )s ].

x
ϕ x x γ ϕ z γ γ ϕ

y
ϕ x γ ϕ z γ γ ϕ

z

ϕ z x γ ϕ z γ γ (32)

The next step is to integrate over the tether length, i.e., from zero to us
in terms of u. Using the shape of the sail tethers as given by Eq. (17)
with u u=0 s we determine the thrust to the second order in us. This can
be accomplished by using any computer algebra system such as
Maxima [21], and the angular thrust density can be given as

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

f
g ξL

π
v v u v u f

g ξL
π

v u v u f

g ξL
π

v u v u

=
2

− 1
2

c − 1 − 1
3

c

= −
2

1
2

s + 1 − 1
3

s c

=
2

1 − 1
3

− 1
2

c .

x
ϕ

x z ϕ x ϕ y

ϕ
z ϕ x ϕ ϕ z

ϕ
z x ϕ

s s
2 2

s s
2

s
2

s
(33)

Note that to obtain the total force to the entire sail Eq. (33) has to be
integrated over the sail in ϕ for a given voltage modulation. In Section
4.2, this will be done for the modulation that results in torque-free sail
dynamics.

3.2. Torque

By definition, the torque on a tether segment dl generated by the
electric sail force Eq. (32) is given as

d
dl

g ξ r v= [ × ] .q
ϕ q⊥

T

(34)

Writing v⊥ as in Eq. (31) and ρ ρ zr e e e= c + s +ϕ x ϕ y z, the cross product
r v× ⊥ can be calculated and the torque per line segment can be written
as

d
dl

g ξ ρv v v ρ z
d
dl

g ξ zv ρv v v ρ z
d
dl

g ξρv

= [ s − ( c c + s )( s − c )s ]

= [ − c + ( c c + s )( s − c )c ] = − s .

x
ϕ z ϕ x γ ϕ z γ γ γ ϕ

y

ϕ x z ϕ x γ ϕ z γ γ γ ϕ
z

ϕ x ϕ

T T

T

(35)

The angular torque density can then be obtained by integration over
the tether length as in Eq. (33), and the torque density reads as

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

τ
g ξL

π
v u v u τ

g ξL
π

v u v u v u τ

g ξL
π

v u

=
4

1 − 1
6

s + 1
3

c s

=
4

2
3

− 1 − 1
6

c − 1
3

c

= −
4

1 − 1
4

s .

x
ϕ

z ϕ x ϕ ϕ y

ϕ
x z ϕ x ϕ z

ϕ
x ϕ

2

s
2

s

2

s s
2

s
2

2

s
2

(36)

Note that Eq. (36) has to be integrated over the sail in ϕ for a given
voltage modulation to obtain the total sail torque.

4. Results

4.1. Torque-free sail dynamics

In order to find torque-free dynamics for the sail, we apply a
modulation given as

g a= 1 − (1 ± c ).ϕ ϕ (37)

where ± corresponds to α± . After integrating Eq. (36), only the y
component of the total torque is different from zero and it can be
expressed as

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥NξL v u a v u v v u= 1

4
− ∓ ( − 1

6
) .y x x z z

2
s s s

2

(38)

Setting y equal to zero, the amplitude a can be solved and it is seen
that with the modulation given in Eq. (37), the sail dynamics is free of
torque when

a u α u α u= − tan (1 + tan + ( )),s s s
2 (39)

where v v/x z is replaced with α± tan . For a non-inclined (α = 0°) or fully
planar (u = 0s ) sail, the efficiency equals 1 as no voltage modulation is
needed for the sail attitude control. Otherwise, a portion of the
available voltage is required for the sail control which decreases the
sail efficiency as shown in Fig. 5. Here, the efficiency of the tether
voltage modulation, and below, the rest of the results are shown as
contour plots as a function of the sail angle and the ratio of the electric
sail force to the centrifugal force as given in Eq. (22). Note that the
second order terms in Eq. (39) and expressions below are given in
Table 1 merely as estimates for the validity of the power series
expansions, and any geometric interpretations based on these terms
are conceivably irrelevant.

As a comparison, for a rigid tether model without auxiliary tethers,
the modulation amplitude equals Λ α3 tan tan [16], where Λ is the rigid
tether coning angle. The percentage difference between these two
models is shown in Fig. 6. For this model, the angular velocity of the
tether varies as the tethers are not mechanically coupled, and the tether

Fig. 5. Efficiency of the tether voltage modulation.
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angular velocity varies over the rotation phase enhancing the amplitude
of the voltage modulation. Also a model with rigid tethers and auxiliary
tethers can be considered (the sail resembles the Asian conical hat).
The analysis of such a model is similar to the one carried out in this
paper, and the modulation amplitude for such a model equals

Λ α2 tan tan . It can be seen that both the mechanical coupling and the
realistic tether shape increase the sail efficiency as shown by Eq. (39).

4.2. Thrust vectoring

Using the voltage modulation (37) in Eq. (33), the total thrust can

be integrated over the tethers in the case of the torque-free sail flight
orientation determined by the sail angle α,

NξLv α u α u= ∓ 1
2

sin (1 + tan + ( ))x s s
2

(40)

NξLv α u α u= − cos (1 + tan + ( )).z s s
2 (41)

The thrust components can then be rotated by the sail angle α to give
the transverse and radial thrust components as

NξLv α u α u= ± 1
4

sin 2 (1 + tan + ( ))s s
2

(42)

⎛
⎝⎜

⎞
⎠⎟NξLv α u α u= − 1 − 1

2
sin (1 + tan + ( )).⊥

2
s s

2

(43)

Fig. 7 shows the dimensionless transverse thrust component of the sail
thrust. Naturally, the transverse thrust is enhanced as the sail angle
increases reaching the maximum of about one-fourth of the total
electric sail force at α = 45°. As a comparison, the decay of the
transverse thrust in k is somewhat slower than that of the single tether
model. This is clarified in Fig. 8 that shows the percentage difference in
transverse thrust magnitudes between these two models.

Finally, the tangent of the thrusting angle can then be written as

ψ α
α

utan = ∓ sin 2
2(2 − sin )

(1 + ( )).2 s
2

(44)

It can be seen that the thrusting angle (Fig. 9) has only a weak
dependence on the sail root coning tangent us. Thus the thrusting angle

Table 1
Terms of second order in uS.

Var. Eq. u( )s
2 Value

a (39) α u(tan + )2 1
6 s

2 0.026

x (40) α u−(tan − )2 1
6 s

2 −0.019

z (41) α u( tan − )3
4

2 1
3 s

2 0.009

(42) α u(tan − 1)1
2

2
s
2 0.000

⊥ (43) αutan2
s
2 0.023

ψtan (44)
− α u

α
(3 tan2 + 2) s2

6(2 − sin2 )

−0.013

Values of the second order terms are evaluated at α = 45° and u = 0.15s .

Fig. 6. Percentage difference in sail efficiency between the realistic sail model and a
single mechanically uncoupled tether model [16].

Fig. 7. Transverse thrust component normalized to the maximum available electric sail
force.

Fig. 8. Percentage difference in transverse thrust between the realistic sail model and
single mechanically uncoupled tether model.

Fig. 9. Thrusting angle given in degrees.
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can be computed by assuming that the sail is fully planar
( ψ α αtan = ∓ sin 2 /(4 − 2 sin )2 ).

5. Discussion and conclusions

In this paper, we assumed that the solar wind is nominally flowing
radially from the sun. This served the purposes of this paper which was
to estimate the effects of the actual sail shape to the efficiency of the sail
control and thrust vectoring. When solar wind temporal variations are
considered, the y component of the solar wind must be added in the
sail torque components in order to write a complete rigid body
simulation for the electric solar wind sail. Furthermore, the Euler
equations require also the moments of inertia in addition to the torques
given in this paper. However, both the general thrust components in
the sail body frame and moments of inertia can be attained with a
reasonable effort by following the analysis of this paper, especially,
when using a computer algebra. Such a complete Euler description of
the electric solar wind sail can then be used, for example to address the
effects of the solar wind variation to the sail navigation, and spin rate
control and evolution in sail orientation maneuvers.

In this paper, we derived the equation of tether shape, solved it by a
simple numerical iteration, and presented an analytical approximation
for the single tether shape. Our approximation is parametrized by the
tether root coning angle and the tether length. The latter is a free
parameter whereas the former depends both on the ratio of the electric
sail force to the centrifugal force and the sail angle with respect to the
sun direction. This ratio then depends on the tether voltage, solar wind
density and speed, sail spin rate, and total mass of the tether and
remote unit combined. The sail coning angle at the spacecraft is
essentially the tether root coning angles averaged over the tether
locations in the sail rig. The resulting sail shape is such that the coning
decreases and the sail surface tangential to the tethers approaches the
sail spin plane towards the perimeter of the sail.

Having obtained the model for the sail, we derived expressions for
the angular thrust and torque densities. Introducing a tether voltage
modulation that results in torque-free sail dynamics, we solved the
amplitude of the modulation. This amplitude has to be reserved for the
sail control and correspondingly the voltage available for thrusting is
less than the maximum designed voltage increasing the sail efficiency.
We showed that this amplitude is 3 times smaller for the sail model
introduced here than for that derived using a single tether model [16].
Finally, the total thrust to the sail was obtained for the torque-free sail
motion. The transverse thrust is somewhat larger (up to about 10%)
than that of the single rigid tether model. The reason is that a portion of
the sail near the perimeter of the sail is coplanar with the sail spin
plane. The thrusting angle was shown to be essentially equal to the fully
planar sail being about 20° at sail angles higher than 45°.
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