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Abstract

The Electric Solar Wind Sail is an innovative propulsion system concept that gains propulsive acceleration

from the interaction with charged particles released by the Sun. The aim of this paper is to obtain analytical

expressions for the thrust and torque vectors of a spinning sail of given shape. Under the only assumption

that each tether belongs to a plane containing the spacecraft spin axis, a general analytical relation is found

for the thrust and torque vectors as a function of the spacecraft attitude relative to an orbital reference

frame. The results are then applied to the noteworthy situation of a Sun-facing sail, that is, when the

spacecraft spin axis is aligned with the Sun-spacecraft line, which approximatively coincides with the solar

wind direction. In that case, the paper discusses the equilibrium shape of the generic conducting tether as

a function of the sail geometry and the spin rate, using both a numerical and an analytical (approximate)

approach. As a result, the structural characteristics of the conducting tether are related to the spacecraft

geometric parameters.
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Nomenclature

A, B, C, D = components of the total force, see Eq. (23), [N]

b = dimensionless (shape) coefficient

d = position vector of ds, [m]

E , F , G = components of the total torque, see Eq. (32), [ N m]

f = distance of ds from (x, y) plane, [m]

F = total force, with ||F || , F , [N]

h = dimensionless abscissa

î = unit vector of x-axis

îk = unit vector of xk-axis

ĵ = unit vector of y-axis

k̂ = unit vector of z-axis

K = dimensionless shaping parameter, see Eq. (58)

L = tether length, [m]

mp = proton mass, [kg]

n = solar wind number density, [ m−3]

n̂ = spin velocity unit vector

N = number of tethers

r̂ = Sun-spacecraft unit vector

s = curvilinear abscissa, [m]

S = spacecraft center-of-mass

ŝ = unit vector tangent to the tether

T = total torque, [ N m]

u = solar wind relative velocity vector, with ||u|| , u, [ m s−1]

V = tether electric potential [V]
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Vw = solar wind ions electric potential, [V]

(x, y, z) = axes of the body reference frame

αn = pitch angle, [rad]

β = aperture angle of the right circular cone, [rad]

δn = clock angle, [rad]

ε0 = vacuum permittivity, [ F m−1]

ζk = angle between planes (̂ik, n̂) and (̂i, n̂), [rad]

ρ = tether linear mass density, [ kg m−1]

σ = constant, see Eq. (10), [ kg m−1 s−1]

τ = tether tension force, [N]

ω = spacecraft spin velocity, with ||ω|| , ω, [ s−1]

Subscripts

c = conic

k = generic tether

l = logarithmic

max = maximum

p = parabolic

r = root

s = due to solar wind flux

t = tip

ω = centrifugal

Superscripts

′ = derivative with respect to x
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1 Introduction

The Electric Solar Wind Sail (E-sail) is an innovative propulsion system that exploits the solar

wind particle momentum to generate a propulsive acceleration in the interplanetary space [1].

The incoming ions interact with an artificial electric field generated on board by means of

an electron emitter, which charges a grid of long tethers at a high voltage level, on the order

of some tens of kilovolts [2]. The tethers are deployed and maintained stretched by spinning

the spacecraft and, in a simplified model, they can be assumed to belong to the same plane

orthogonal to the spin axis [3,4], see Fig. 1. Along with the more classical solar sail, the E-Sail

is one of the most promising propellantless propulsion systems, even though it needs electric

power to produce the required electric field. Unlike a solar sail, whose propulsive force varies

as the inverse square distance from the Sun, a very interesting property of an E-sail is that its

maximum thrust modulus is inversely proportional to the heliocentric distance [5].

A non-negligible portion of the current research is intended for investigating how the geometric

features of such a propulsion system may affect its in-flight performance in terms of thrust and

torque vectors [6,7,8]. However, the E-sail propulsive characteristics are quite complex to model,

as the thrust (or torque) vector and the sail shape are mutually affected by each other. To

get preliminary simulation results, the thrust vector is often modelled through the simplified

assumption of a sail shape resembling that of a rigid disc of given radius [9,10,11,12,13]. In some

cases such an approximation may be inaccurate, as the actual shape of each tether depends

on the combined effects of the centrifugal force and the solar wind dynamic pressure acting

on it. Moreover, it is known that the actual geometric characteristics of the sail shape may

significantly affect the performance of an E-sail-based spacecraft. Nevertheless, in a preliminary

phase of mission design the mathematical model adopted to describe the sail shape must

be simple enough to be successfully implemented within a simulation code, especially when

optimal trajectories are investigated [14,15]. Indeed, in the latter case, a number of transfer
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trajectories need to be simulated to minimize a scalar performance index, such as the flight

time [16,17,18,19].

In this context, Toivanen and Janhunen [8] have studied the shape of a rotating E-sail using

a numerical approach, stating that the tether arrangement forms a cone near the spacecraft,

while each tether is flattened near the tip by the centrifugal force. More recently, Huo et

al. [20] have obtained a compact and analytical description of the E-sail thrust vector using a

geometric approach and assuming an axisymmetric grid of tethers belonging to the same plane

(the so-called “flat case”). The aim of this paper is to obtain an analytical expression of both

thrust and torque vectors generated by a spinning E-sail of a given (three-dimensional) shape,

under the main assumption that each tether belongs to a plane containing the spacecraft spin

axis. The analytical results are then applied to the noteworthy case of a Sun-facing spinning

E-sail [21,22], thus obtaining a set of analytical (compact) relations.

The problem of describing the actual E-sail equilibrium shape has indeed a substantial simpli-

fication when the spacecraft spin axis is aligned with the solar wind velocity vector, the latter

being nearly parallel to the Sun-spacecraft direction, see Fig. 2. In that case each tether can be

thought of as being aligned with the force field and belonging to a plane containing the space-

craft spin axis. In particular, this paper shows that an approximate, analytical, solution to the

E-sail equilibrium shape may be found under the assumption of cylindrical symmetry, that is,

when all tethers are the same angle apart from each other. The corresponding tether equilib-

rium shape is accurately described by a logarithmic arc whose geometric characteristics are

related (in an analytical form) to the combined effects of centrifugal and solar wind-induced

forces. This result is consistent with the numerical simulations discussed by Toivanen and

Janhunen [8]. As such, the new mathematical relations represent an useful improvement over

existing models, as they allow the influence of tether arrangement on the propulsion system

performance to be quantified without the use of numerical algorithms.
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The paper is organized as follows. The resultant force and torque vectors acting on an E-sail

of given shape are firstly analyzed in analytical form, starting from the mathematical model

discussed in Ref. [2]. The obtained equations are then applied to the important case of a

Sun-facing, axially symmetric, E-sail. The approximate form of the tether equilibrium shape is

then analytically derived, and the resultant root force is calculated as a function of the tether

geometric characteristics and the spacecraft spin rate. Finally, some concluding remarks are

given in the last section.

2 Mathematical description of E-sail thrust and torque

Consider an E-sail-based spacecraft that spins about a body-fixed axis with unit vector n̂ at

an angular velocity ω = ω n̂ of constant modulus ω. The E-sail propulsion system consists of

N ≥ 2 tethers, each one being modelled as a planar cable belonging to the plane (̂ik, n̂), where

îk (with k ∈ {0, 1, . . . , N − 1}) is a unit vector orthogonal to n̂, see Fig. 3.

The displacement of the generic tether with respect to the spacecraft main body can be eval-

uated by introducing a body reference frame T (S; x, y, z) with origin S at the spacecraft

center-of-mass, and unit vectors {̂i, ĵ, k̂} defined as

k̂ , n̂ , î , î0 , ĵ , n̂× î0 (1)

Note that the plane (̂i, k̂) contains the first tether, labelled with k = 0, whereas the unit vector

îk can be written as

îk = cos ζk î + sin ζk ĵ (2)

where ζk is the angle, measured counterclockwise from the direction of î, between the x-axis and

the xk-axis with unit vector îk, see Fig. 3. In other words, ζk is the angle between planes (̂i, k̂)

and (̂ik, k̂), that is, the planes that contain the first and the (k + 1)-th tether, respectively.
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2.1 E-sail shape model

Assume that the shape of the generic tether can be described, in the plane (̂ik, k̂), through a

continuously differentiable function fk = fk(xk) : [xrk , xtk ]→ R, where xrk ≥ 0 (or xtk) is the

distance of the tether root (or tip) from the spacecraft spin axis z, see Fig. 4. The position

vector dk of a generic infinitesimal arc-length dsk of the conducting tether is given by

dk = xk îk + fk k̂ (3)

with

dsk =
√

1 + (f ′k)2 dxk (4)

where f ′k , dfk/dxk. From Eqs. (3)-(4), the expression of the (local) unit vector ŝk tangent to

the generic tether at point (xk, fk) is

ŝk ,
ddk

dsk
=

dxk îk + dfk k̂√
1 + (f ′k)2 dxk

≡ îk + f ′k k̂√
1 + (f ′k)2

(5)

which can be rewritten, using Eq. (2), as a function of {̂i, ĵ, k̂} as

ŝk =
cos ζk î + sin ζk ĵ + f ′k k̂√

1 + (f ′k)2
(6)

2.2 Force acting on tethers

The total force dF k acting on the infinitesimal arc-length dsk is the sum of the centrifugal

force dF ωk
, and that arising from the solar wind dynamic pressure dF sk , viz.

dF k = dF ωk
+ dF sk (7)

Recalling that xk is the distance of dsk from the spacecraft spin axis z, the term dF ωk
can be

written as

dF ωk
= ρ dsk xk ω

2 îk ≡ ρ dsk xk ω
2
(
cos ζk î + sin ζk ĵ

)
(8)
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where ρ is the tether (linear) uniform mass density, and îk is given by Eq. (2) as a function of

{̂i, ĵ}. Also, according to the recent works of Janhunen and Toivanen [3,6,8], the thrust dF sk

gained by dsk, when the Sun-spacecraft distance is on the order of 1 au, is given by

dF sk = σk u⊥k dsk (9)

with

σk , 0.18 max(0, Vk − Vw)
√
ε0mp n (10)

where Vk is the tether voltage (on the order of 20–40 kV), Vw is the electric potential corre-

sponding to the kinetic energy of the solar wind ions (with a typical value of about 1 kV), ε0

is the vacuum permittivity, mp is the solar wind ion (proton) mass, n is the local solar wind

number density, and u⊥k is the component of the solar wind velocity u perpendicular to the

direction of ŝk given by Eq. (5).

Assuming a purely radial solar wind stream, that is, u = u r̂ where r̂ is the Sun-spacecraft

unit vector and u is the solar wind velocity modulus, the term u⊥k in Eq. (9) is given by

u⊥k = u (ŝk × r̂)× ŝk ≡ u [r̂ − (r̂ · ŝk) ŝk] (11)

In particular, according to Fig. 5, the Sun-spacecraft unit vector r̂ can be written as a function

of {̂i, ĵ, k̂} as

r̂ = sinαn cos δn î + sinαn sin δn ĵ + cosαnk̂ (12)

where δn ∈ [0, 2π] rad is the clock angle, measured counterclockwise from the direction of î,

between the x-axis and the projection of r̂ on the plane (x, y), while αn ∈ [0, π] rad is the sail

pitch angle, defined as the angle between r̂ and k̂ ≡ n̂, viz.

αn , arccos(r̂ · k̂) (13)
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Taking into account Eqs. (6) and (12), the dot product r̂ · ŝk in Eq. (11) becomes

r̂ · ŝk =
r̂ · îk + f ′k r̂ · k̂√

1 + (f ′k)2
=

cos(δn − ζk) sinαn + f ′k cosαn√
1 + (f ′k)2

(14)

Therefore, with the aid of Eqs. (6), (11) and (14), the thrust dF sk given by Eq. (9) can be

rewritten as

dF sk = σk u dsk

[
r̂ − cos(δn − ζk) sinαn + f ′k cosαn

1 + (f ′k)2

(
cos ζk î + sin ζk ĵ + f ′k k̂

)]
(15)

Substituting Eqs. (8) and (15) into Eq. (7), and bearing in mind Eq. (4), the compact form of

the total force dF k acting on the infinitesimal arc-length dsk of the generic tether is

dF k = dAk r̂ + dBk î + dCk ĵ + dDk k̂ (16)

where

dAk , σk u
√

1 + (f ′k)2 dxk (17)

dBk ,
(
ρ xk ω

2 − σk u
cos(δn − ζk) sinαn + f ′k cosαn

1 + (f ′k)2

)
cos ζk

√
1 + (f ′k)2 dxk (18)

dCk ,
(
ρ xk ω

2 − σk u
cos(δn − ζk) sinαn + f ′k cosαn

1 + (f ′k)2

)
sin ζk

√
1 + (f ′k)2 dxk (19)

dDk , −σk u f ′k
cos(δn − ζk) sinαn + f ′k cosαn√

1 + (f ′k)2
dxk (20)

Note that such a decomposition is not unique. Finally, the force F k acting on the conducting

tether is

F k =
∫ xtk

xrk

dF k = Ak r̂ + Bk î + Ck ĵ +Dk k̂ (21)

with

Ak =
∫ xtk

xrk

dAk , Bk =
∫ xtk

xrk

dBk , Ck =
∫ xtk

xrk

dCk , Dk =
∫ xtk

xrk

dDk (22)

whereas the total force F acting on the E-sail (composed of N ≥ 2 tethers) is given by

F =
N−1∑
k=0

F k ≡ A r̂ + B î + C ĵ +D k̂ (23)
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where

A ,
N−1∑
k=0

Ak , B ,
N−1∑
k=0

Bk , C ,
N−1∑
k=0

Ck , D ,
N−1∑
k=0

Dk (24)

2.3 Propulsive torque

The torque dT k given by an infinitesimal arc-length dsk of the generic tether is

dT k = dk × dF k (25)

where the symbol × denotes the cross product. Taking into account the expressions of dk and

dF k given by Eqs. (3) and (16), respectively, and using Eq. (12), dT k may be written in a

compact form, as a function of {̂i, ĵ, k̂}, as

dT k = dEk î + dFk ĵ + dGk k̂ (26)

where

dEk ,
{
xk sin ζk

[
σk u cosαn −

f ′k σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)2

]
+

−fk sin ζk

[
ρ xk ω

2 − σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)2

]
− fk σk u sinαn sin δn

} √
1 + (f ′k)2 dxk

(27)

dFk ,

{
−xk cos ζk

[
σk u cosαn −

f ′k σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)2

]
+

+fk cos ζk

[
ρ xk ω

2 − σk u (sinαn cos(δn − ζk) + f ′k cosαn)

1 + (f ′k)2

]
+ fk σk u sinαn cos δn

} √
1 + (f ′k)2 dxk

(28)

dGk , σk uxk sinαn sin(δn − ζk)
√

1 + (f ′k)2 dxk (29)
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The torque T k acting on the generic tether is

T k =
∫ xtk

xrk

dT k = Ek î + Fk ĵ + Gk k̂ (30)

with

Ek =
∫ xtk

xrk

dEk , Fk =
∫ xtk

xrk

dFk , Gk =
∫ xtk

xrk

dGk (31)

whereas the total torque T acting on the E-sail is

T =
N−1∑
k=0

T k ≡ E î + F ĵ + G k̂ (32)

where

E ,
N−1∑
k=0

Ek , F ,
N−1∑
k=0

Fk , G ,
N−1∑
k=0

Gk (33)

Equations (21) and (32) are the expressions of the total force and torque acting on the E-sail

with a given tether shape, length, and angular separation between tethers. However, some

simplifying assumptions need to be introduced to get a more tractable form of both F and T ,

as is thoroughly discussed in the next section.

3 Case of a Sun-facing E-sail

The previous general results are now specialized to the noteworthy case of a Sun-facing E-

sail [21,22], which corresponds to when the spacecraft spin axis z coincides with the Sun-

spacecraft line (i.e., k̂ ≡ r̂). In this case the pitch angle αn is zero by construction, whereas δn

can be set to zero without loss of generality, because r̂ is orthogonal to the plane (x, y), viz.

αn = 0 , δn = 0 (34)

Assuming all tethers to have the same length L and the same voltage Vk (that is, the same

value of σk, see Eq. (10)), the E-sail may reasonably be assumed to have a cylindrical symmetry

around the z-axis. The notation can be therefore simplified by dropping the subscript k in the
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variables {xk, fk, xrk , xtk , σk}. Accordingly, all tethers have the same shape (i.e., they are

described via the same mathematical function f = f(x)), and are arranged at the same angle

apart from each other, viz.

ζk =
2π

N
k (35)

with k = 0, 1, . . . , (N − 1).

Taking into account Eqs. (34)–(35), and bearing in mind that k̂ ≡ r̂, from Eq. (23) the total

force F becomes

F =

σ uN ∫ xt

xr

1√
1 + (f ′)2

dx

 r̂+

+

ρω2
∫ xt

xr

x
√

1 + (f ′)2 dx− σ u
∫ xt

xr

f ′√
1 + (f ′)2

dx

 [̂
i

N−1∑
k=0

cos
(

2π

N
k
)

+ ĵ
N−1∑
k=0

sin
(

2π

N
k
)]

(36)

and the total torque (32) is

T = î

∫ xt

xr

σ ux− ρω2 x f [1 + (f ′)2] + σ u f f ′√
1 + (f ′)2

dx

N−1∑
k=0

sin
(

2π

N
k
)

+

− ĵ

∫ xt

xr

σ ux− ρω2 x f [1 + (f ′)2] + σ u f f ′√
1 + (f ′)2

dx

N−1∑
k=0

cos
(

2π

N
k
)

(37)

whereas the single tether length L can be written, as a function of {xr, xt, f ′}, as

L =
∫ xt

xr

√
1 + (f ′)2 dx (38)

According to Ref. [20], when N ≥ 2 the summations in Eqs. (36)-(37) are

N−1∑
k=0

sin
(

2π

N
k
)

=
N−1∑
k=0

cos
(

2π

N
k
)

= 0 (39)

and the final form of the total force and torque given by a Sun-facing E-sail reduces to

F =

σ uN ∫ xt

xr

1√
1 + (f ′)2

dx

 r̂ , T = 0 (40)
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Note that the result T = 0 is consistent with the assumption of an E-sail with cylindrical

symmetry with respect to the spin axis, whereas the actual expression of the total force F

(that is, the E-sail propulsive thrust) depends on the tether shape via the analytical function

f ′ = df/dx. Some noteworthy cases are now discussed to better investigate the impact of the

tether shape f = f(x) on the E-sail total force F .

3.1 Flat shape

When all the tethers are arranged on a flat surface that, in this case, coincides with the E-sail

nominal plane, the condition f ′ = 0 is to be enforced in the first of Eqs. (40). The total force

becomes

F = σ uN L r̂ (41)

where L = (xt−xr), see Eq. (38). In particular, Eq. (41) is consistent with the result discussed

in Ref. [20] for a Sun-facing E-sail (i.e., when αn = 0).

Actually, the case of a purely flat E-sail is only a first approximation of the real sail shape. In

fact, all tethers tend to move away from the E-sail nominal plane (x, y) and to take a three-

dimensional arrangement, while keeping, according to the previous assumptions, a cylindrical

symmetry.

3.2 Conic shape

An interesting approximation of the actual E-sail three-dimensional arrangement is given by a

conic shape. In that case, each tether may be analytically described as

f(x) = bc xr

(
x

xr
− 1

)
with x ∈ [xr, xt] (42)
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where bc > 0 is a (constant) dimensionless coefficient, whose value depends on the aperture

angle β of the right circular cone that approximates the E-sail shape through the formula

β = π − 2 arctan(bc) (43)

Since f ′(x) = bc, from the first of Eqs. (40) the total force results

F =
σ uN L√

1 + b2c
r̂ (44)

where L = (xt − xr)
√

1 + b2c is the tether length. Equation (44) is similar to Eq. (41), where a

sort of “effective” tether length (equal to L/
√

1 + b2c) is considered in place of the actual length.

Note that L/
√

1 + b2c is the tether length when projected on the E-sail nominal plane (x, y).

3.3 Parabolic shape

A simple way to take the tether curvature into account is to consider a parabolic shape. Each

tether is modelled as

f(x) = bp xr

(
x

xr
− 1

)2

with x ∈ [xr, xt] (45)

where the (constant) dimensionless coefficient bp > 0 depends on the tether curvature. In this

case

f ′(x) = 2 bp

(
x

xr
− 1

)
(46)

and, bearing in mind the first of Eqs. (40), the total force becomes

F = σ uN
xr
2 bp

arcsinh
[
2 bp

(
xt
xr
− 1

)]
r̂ (47)

where {xr, xt, bp} are related to the tether length L according to

L =
xr
4 bp

arcsinh
[
2 bp

(
xt
xr
− 1

)]
+ bp xr

(
xt
xr
− 1

) √√√√(xt
xr
− 1

)2

+
1

4 b2p
(48)
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3.4 Logarithmic shape

An interesting case is obtained when the tether shape f(x) is described through a logarithmic

function of the distance x. Indeed, as will be shown in the next section, the tether equilibrium

shape of a Sun-facing E-sail under the action of the external forces just follows a logarithmic

function provided the spin rate ω is sufficiently large.

Therefore, let the shape function be

f(x) = bl xt ln
(
x+ xt
xr + xt

)
with x ∈ [xr, xt] (49)

from which

f ′(x) =
bl

1 +
x

xt

(50)

where the dimensionless coefficient bl > 0 is a given parameter. Substituting Eq. (50) into the

first of Eqs. (40), the resultant force vector becomes

F = σ uN xt

[√
4 + b2l −

√
b2l + (xr/xt + 1)2

]
r̂ (51)

where {xr, xt, bl} are related to the tether length L through the equation

L = xt

[√
4 + b2l − bl arcsinh

(
bl
2

)
−
√
b2l + (xr/xt + 1)2 + bl arcsinh

(
bl

xr/xt + 1

)]
(52)

The expression (51) is very useful from a practical viewpoint, as is now thoroughly discussed.

4 Tether equilibrium shape of a Sun-facing E-sail

The analytical, approximate, equilibrium shape of a generic tether of a Sun-facing E-sail can

be obtained using the approach discussed in Ref. [8]. Assuming a rotating E-sail, Toivanen and

Janhunen [8] describe the equilibrium tether shape with an integral equation, which is solved

numerically. In particular, using an analytical approximation of the tether shape, Toivanen
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and Janhunen [8] also obtain closed-form expressions for both the thrust and torque arising

from the solar wind momentum transfer to the E-sail. Their results essentially state that the

tethers form a cone near the spacecraft, while they are (substantially) flattened around the

tip region by the centrifugal force. Note that Toivanen and Janhunen [8] consider a mass at

the tether tip (that is, a mass that models the presence of a remote unit), whereas this work

considers the tether only, without any tip mass.

It will be shown now that the exact tether slope at the tip can be found analytically. An

accurate approximation of the tether equilibrium shape can also be obtained, using the model

discussed in the last section. To that end, enforcing the Sun-facing conditions αn = 0 and

δn = 0 into Eqs. (16)–(20), the total force dF k acting on the infinitesimal arc-length dsk

becomes

dF k =

[(
ρω2 xk
σk u

− f ′k
1 + (f ′k)2

)
îk +

1

1 + (f ′k)2
k̂

]
σk u

√
1 + (f ′k)2 dxk (53)

where îk, given by Eq. (2), is the unit vector obtained from the projection of dF k on the E-sail

nominal plane (x, y).

Without loss of generality, the notation may be simplified by dropping the subscript k in the

variables {xk, f ′k, σk, îk} of Eq. (53). Assume the generic tether to have no bending stiffness,

so that only an internal tension acts tangential to its neutral axis. In this case, according to

Toivanen and Janhunen [8], the direction of the vector tangent to the tether at the generic

point P of abscissa x ∈ [xr, xt] is parallel to the direction of the integral of dF from x to xt

(i.e., the integral of the total force from P to the tether tip). Therefore, from Eq. (53), the

tether slope f ′ at point P is the solution of the following integro-differential equation

f ′(x) =

σ u

∫ xt

x

dy√
1 + (f ′)2

ρω2

∫ xt

x

y
√

1 + (f ′)2 dy − σ u

∫ xt

x

f ′ dy√
1 + (f ′)2

(54)
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where the numerator (denominator) in the right-hand side is the component along the z-axis

(x-axis) of the resultant force acting on the tether arc between P and the tip, that is

Fx(x) , ρω2

∫ xt

x

y
√

1 + (f ′)2 dy − σ u

∫ xt

x

f ′ dy√
1 + (f ′)2

(55)

Fz(x) , σ u

∫ xt

x

dy√
1 + (f ′)2

(56)

Introduce the dimensionless abscissa h , x/xt, with h ∈ [hr, 1], where hr , xr/xt ≥ 0 is the

value at the root section. Equation (54) can be conveniently rewritten as

f ′(h) =

∫ 1

h

dy√
1 + (f ′)2

K

∫ 1

h

y
√

1 + (f ′)2 dy −

∫ 1

h

f ′ dy√
1 + (f ′)2

(57)

where K > 0 is a dimensionless “shaping parameter” defined as

K ,
ρω2 xt
σ u

(58)

which relates the tether equilibrium shape of a Sun-facing E-sail to the ratio of electric (σ u)

to centrifugal (ρω2 xt) effects.

The tether slope at the tip, that is, the exact value of f ′(h = 1) , f ′t can be obtained from

Eq. (57) using a limit procedure, viz.

f ′t = lim
h→1

f ′(h) =
1

K [1 + (f ′t)2]− f ′t
(59)

which can be rewritten as (
f ′t −

1

K

) [
(f ′t)

2 + 1
]

= 0 (60)

whose only real solution is

f ′t =
1

K
≡ σ u

ρω2 xt
(61)
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As expected, the tether slope at the tip sharply reduces as the E-sail spin rate increases.

The variation of f ′t with {xt, ω}, when σ = 9.3 × 10−13 kg/m/s, ρ = 10−5 kg/m and u =

400 km/s, is shown in Fig. 6. In particular, f ′t ≤ 0.1 (or K ≥ 10) when ω ≥ 5 rph and

xt ≥ 5 km, which implies a tether slope at the tip less than 6 deg. Having obtained the exact

value of f ′t , it is now possible to calculate the function f ′(x) (or f ′(h)). To that end a recursive

procedure is necessary, which, starting from the tether tip and backward proceeding toward

the root, numerically solves Eq. (57) for a given value of K. The results of such a procedure

are summarized in Fig. 7 for some values of the shaping parameter K. The figure shows that

f ′t = 1/K, in agreement with Eq. (61). Also note that in the ideal case hr = 0, which amounts

neglecting the main body width and assuming the tether to be attached to the z-axis, the

tether slope at root is f ′(0) ' 2 f ′t ≡ 2/K when the shaping parameter is sufficiently large,

that is, when K ≥ 5. In that case 1/K ≤ f ′ ≤ 2/K, or

K2 + 1

K2
≤ 1 + (f ′)2 ≤ K2 + 4

K2
(62)

which implies

1 + (f ′)2 ' 1 (63)

The tether shape may be obtained by means of a numerical integration, and the results are

summarized in Fig. 8 assuming hr = 0. Notably, an accurate analytical approximation may

also be obtained, as is discussed in the next section.

4.1 Tether shape analytical approximation

An accurate analytical approximation of the tether shape can be obtained for a sufficiently

large value of the shaping parameter, for example when K ≥ 5. In that case, substituting
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Eq. (63) into Eq. (57), the result is

f ′(h) '

∫ 1

h
dy

K
∫ 1

h
y dy −

∫ 1

h
f ′ dy

=
2 (1− h)/K

1− h2 − 2
[ft − f(h)]

K xt

(64)

Since max{2 [ft − f(h)]/(K xt)} ' 0.11, see Fig. 8, the last relation may be further simplified

as

f ′(h) ' 2

K (1 + h)
(65)

Notably, the approximation of Eq. (65) gives the exact value at tether tip, f ′t = 1/K, and also

it captures the approximate value at tether root, f ′(0) = 2/K, in agreement with the estimate

obtained in the last section.

Figure 9 compares the analytic approximation given by Eq. (65) (dash line) with the numer-

ical solution (solid line) and shows that the two results are nearly coincident when K ≥ 5.

Accordingly, an accurate analytical solution of the tether shape can be found from Eq. (65).

Indeed, using a variable separation and integrating both sides, it may be verified that

f(h) =
2xt
K

ln

(
1 + h

1 + hr

)
with h ∈ [hr, 1] (66)

or, using Eq. (58)

f(x) =
2σ u

ρω2
ln
(
x+ xt
xr + xt

)
with x ∈ [xr, xt] (67)

The latter coincides with Eq. (49) when

bl =
2σ u

ρω2 xt
≡ 2

K
(68)

Equation (67) proofs the importance of a logarithmic shape for describing the equilibrium

configuration of a Sun-facing E-sail. Its actual accuracy is better appreciated with the aid of

Fig. 10, which plots Eq. (66) with hr = 0.01. The obtained results are nearly coincident with

those reported in Fig. 8, which correspond to a numerical integration of the actual tether slope.
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5 Tether root force

Due to the E-sail rotation, each tether experiences a tension force τ with a maximum value τr,

which occurs at the root section, that is, when x = xr (or h = hr). The value of τr is obtained

by imposing the equilibrium condition of all forces acting on the tether at the root, that is

τr =
√
F 2
xr

+ F 2
zr , where Fxr , Fx(xr) and Fzr , Fz(xr), see Eqs. (55)-(56). The tension at the

root section is therefore

τr =

√
1 + (f ′r)

2

f ′r
Fzr (69)

where

Fzr = σ u

∫ xt

xr

dy√
1 + (f ′)2

(70)

and f ′r ≡ f ′(xr) = Fzr/Fxr is the tether slope at the root section. Equation (69) can be

rewritten in a dimensionless form as

τr
σ uxt

=

√
1 + (f ′r)

2

f ′r

∫ 1

hr

dy√
1 + (f ′)2

(71)

whose numerical solution is obtained, for a given value of K, using the function f ′ = f ′(h)

calculated through the iterative procedure described in the last section. For example, assuming

hr = 0, the dimensionless value of τr is shown in Fig. 11 as a function of K. Note that τr/(σ uxt)

has a nearly linear variation with K, with an angular coefficient equal to 1/2. This same result

will now be confirmed by an analytical approximation.

5.1 Analytical approximation of τr

Assuming a shaping parameter K ≥ 5, the tether slope is well approximated by Eq. (65),

therefore ∫ 1

hr

dy√
1 + (f ′)2

=
2
√
K2 + 1−

√
K2 (1 + hr)

2 + 4

K
(72)
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Substituting this last relation into Eq. (71) in which f ′r ' 2/K/(1 + hr), the result is

τr
σ uxt

=

√
K2 (1 + hr)

2 + 4

2K

[
2
√
K2 + 1−

√
K2 (1 + hr)

2 + 4
]

(73)

In the limit as hr → 0, the last relation may be further simplified taking into account that

K2 � 1. The compact and elegant solution is

τr
σ uxt

=
K

2
≡ ρω2 xt

2σ u
(74)

which is in agreement with the plot shown in Fig. 11. This last relation allows the value of τr

to be related with the tether length L, when its equilibrium shape is a logarithmic function. In

fact, assuming xr = 0 and substituting Eq. (74) into Eq. (68) and then into Eq. (52), it may

be verified that

L

xt
=

√
4 +

(
σ uxt
τr

)2

−
√

1 +
(
σ uxt
τr

)2

+
(
σ uxt
τr

) [
arcsinh

(
σ uxt
τr

)
− arcsinh

(
σ uxt
2 τr

)]
(75)

which is drawn in Fig. 12 when K ∈ [5, 100]. The tension at the root can be expressed

as a function of the pair of design parameters {ω, L} by combining Eqs. (74) and (75). Its

maximum value cannot exceed the tether yield strength, which is about 0.1275 N for a µm-

diameter aluminum tether, with a linear mass density ρ approximately equal to 10 grams per

kilometer [23].

For example, assuming V = 20 kV [23], Fig. 13 shows how the tension τr varies with the

tether length L and spin rate ω when xr = 0. Note that each level curve breaks down when

the yield strength τmax is achieved (i.e., when τr = τmax). According to Fig. 13, the tension τr

roughly exhibits a parabolic behaviour with the spacecraft spin rate ω for a given value of L. In

particular, the figure shows that the maximum allowable spin rate for a baseline tether length

of 20 km is about ω = 4.57 rph, whereas the value of xt is 19.983 km. In this case, K ' 34 and

the dimensionless root tether is τmax/(σ uxt) ' 17, in agreement with the numerical results

shown in Fig. 11.

21 of 39



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 Conclusions

The thrust and torque vectors provided by a spinning electric solar wind sail of given shape

have been calculated in a fully analytical form as a function of the spacecraft attitude. This

analysis is based on the hypothesis that each tether is deformed by the external forces such

that its shape belongs to a plane passing through the E-sail spin axis. The general expressions

of the thrust and torque vectors have been then specialized to the case of a Sun-facing sail,

with a tether arrangement assumed to be axially symmetric with respect to the spacecraft spin

axis.

The results have been applied to some noteworthy tether shapes, including the flat and the

logarithmic cases. In particular, the equilibrium shape of any tether, when the electric sail

axis is parallel to the Sun-spacecraft direction, is close to a logarithmic arc, in agreement with

the numerical results of the recent literature. The discussed mathematical model allows the

geometry of an axially-symmetric Sun-facing sail to be related to the yield strength of the

cable. The problem is that the generation of a high thrust level requires the tethers to be

maintained stretched, but the spin rate must account for the tether structural load resulting

from the centrifugal force.

A natural extension of this work consists in the analysis of the effects of a pitch angle different

from zero, that is, when the sail produces an off-axis thrust. The latter assumption breaks the

axial-symmetry condition and, therefore, requires a different approach to analyze the coupling

effects between the sail geometry and the spacecraft attitude. In particular, the actual tether

shape can only be checked by simulation through a finite element analysis, which is left to

future analysis.
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Figure 1. Spinning E-sail conceptual sketch.
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Figure 2. Electric solar wind sail artistic impression. Courtesy of Alexandre Szames, Antigravite
(Paris).
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Figure 6. Tip slope f ′t as a function of the spin rate ω and the spin axis-tip distance xt, see Eq. (61).
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Figure 7. Tether slope f ′ as a function of the dimensionless abscissa h = x/xt and the shaping
parameter K, see Eq. (58).
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Figure 8. Tether shape as a function of h = x/xt and K obtained through numerical integration.
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Figure 9. Tether slope f ′ as a function of h and K: numerical (solid line) vs. analytical approximation
(dash line).
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Figure 10. Tether approximate shape as a function of the dimensionless abscissa h = x/xt and K
when hr = 0.01, see Eq. (66).
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Figure 11. Dimensionless tension at tether root as a function of K when hr = 0, see Eq. (66).
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Figure 12. Dimensionless tether tension at root as a function of the dimensionless tether length when
hr = 0.
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Figure 13. Root tension τr as a function of L and ω when ρ = 10 g/km, xr = 0, and τmax = 0.1275 N.
Data adapted from Ref. [23].
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