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CHAPTER 1

INTRODUCTION

But there was one Elephant ~ an Elephant's Child —
who was full of 'satiable curtiosity, and that means
he asked ever so many questions.

R. Kipling, The Elephant's Child

1-1: Introduction

It has been obvious for many years that, because of the great energy

release in nuclear reactions as compared with chemical reactions, nuclear

power has potential advantages in rocket propulsion. Many proposals for

nuclear powered rockets have been made. A complete bibliography and

o
historical background has been prepared by R. W, Bussard of LASL.

In this report, a type of nuclear reactor for rocket propulsion is

described and the theoretical principles necessary for its design are de-

veloped. This reactor has a hydrogen moderated metallic core and utilizes

laminar flow in the heat exchanger. An unusual feature of its design is

the utilization of the heat-exchanger wall as a thermal barrier which

protects the cold moderator regions of the reactor from the extremely

high temperature of the effluent propellent gas.

The reactor has been described in its embryonic stage in LAMS-I887

("Dumbo — A Pachydermal Rocket Motor"). The very encouraging conclusions

of that study led to the further and more detailed investigation of this



Chapter 1 Introduction

report, which describes a low mass rocket reactor of high performance

and reliability using metals whose physical, chemical, and nuclear prop-

erties are desirable and whose technology is largely understood.

The development of this reactor has proceeded along several lines:

(a) Theoretical development of energy transfer relations and gas

flow behavior in laminar flow heat exchangers. Theae studies lead to

the design of the Dumbo heat exchanger.

(b) Study of the effects of fabrication errors, and the methods by

which those effects may be reaaced.

(c) Assessment of nuclear design requirements for fissionable mate-

rial and moderator. Uniform power generation throughout the reactor is

achieved, utilizing unifo.m standardized fuel elements.

(d) Investigation of the hydrodynamics of the propellant ir., the

main Dumbo flow channels, leading to conditions for the uniform delivery

of propellant ic the whole heat exchanger.

(s) An experimentsJ. program to explore the feasibility of producing

fuel elements to the specifications required by the theoretical results.

(f) Coordination of the studies a to e to obtain specific reactor

designs.

These studi.es form the body of this report.

1-2: General Description

A nuclear rocket requires a reactor capable of heating a propellent

gas to a high temperature. Dioibo is such a reactor, and consists of an

10



General Description Section 1-2

array of metal tubes whose vails are made permeable to gas flow by

myriads of tiny, regular channels. These walls contain the fissionable

material which is the source of the heat for the propellent gas. The

flow of gas through the tube walls effectively insulates the central

region of each tube. This permits hydrogenous moderator in the form of

plastic to be placed there. The tubes serve one other function: to pro-

vide the main flow path for the cold gas. This entire assembly is

surrounded by a neutron reflector of beryllium.

Figure 1-1 shows a typical Dumbo reactor. The flow paths are as

follows: The liquid hydrogen propellant flows first through the beryl-

lium reflector, preventing it from being overheated by inelastic

processes involving ganma rays and neutrons. The liquid hydrogen (27°K)

is converted ir this process to a low temperature gas (lOO°K). The path

oi" the gas is then through a nuclear preheater (not shovn, but described

later in Sees. 7-2 and 9-3) at the cold gas entrance of a tube. This

adjusts the gas temperature to the proper moderator inlet value (220°K).

The gas then fiovj through the polystyrene moderator and is heated to

300°X in this process. On leaving the moderator, the gas passes through

the Dumbo metal wall, where the fissionable material is confined, and is

heated to the final exit temperature (25O0°K). The flow path is then

down the outside of the tube, through the gas exit ports in the bottom

of the beryllium reflector, then-e to the nozzle.

11



Chapter 1 Introduction

Fig. 1-1: Typical Dumbo Reactor. This diagram is essentially to scale
with the exception of the nozzle, which has been distorted
for clarity.



Dumbo Tube Design Section 1-3

1-3: Dumbo Tube Design

In order to make clear thj construction of the heating surface, the

following step-by-step development is used. This development closely

parallels the actual conception cf the heat-exchanger design.

A thin metal strip is corrugated in a regular fashion (Fig. 1-2).

Fig. 1-2

To form channels, the foils are placed together in the following manner

(Fig. 1-3).

Fig. 1-3

To eliminate the problem of nesting, a flat strip is placed between the

corrugated strips, thereby doubling the number of gas passages

(Fig.
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Fig. 1-1+

To provide some flow impedance in the entering part of each gas passage,

a deformation is needed in the cold leading edge of the flat strip.

Since the flat strip must provide impedance for two channels, as shown

in Fig. 1-5,

Pig. 1-5

the strip is made of two pieces, each of half thickness. These pieces

are shown in Fig, 1-6.

Fig. 1-6

The assembly of fully corrugated and flat, partially corrugated, strips
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are shown in Fig, 1-7.

Fig. 1-7

In order to make the heat source as uniform as possible, alternate rows

are shifted half a wave length (Fig. 1-8),

Fig. 1-6

The corrugated and flat sections are stamped from refractory metals,

such as tungsten or molybdenum, which are impregnated with U0 2 (uranium

dioxide). Shown in Fig. 1-9 are linearized components of a molybdenum

wall sample. In Fig. 1-10 are shown photomicrographs of the assembled

components, viewed from both the entrance and exit sides. The light

areas are the gas passages. These components were made for fabrication

studies.

The Dumbo reactor requires circular rings or washers, convoluted

similarly to the corrugated foils described above. An assembly of con-

voluted washers is shown schematically in Fig. 1-11. The Dumbo metal

W L/ii:-i^>.'-iihMt^*^^
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Fig. 1-9: Linearized Components of a Molybdenum Wall Sample

16



Dumbo Tube Design Section 1-3

GAS ENTRANCE

GAS EXIT

A^/ X-/_\,/

10.020 cm

0,075 cm

Fig. 1-10: A Photomicrograph of Assemblied. Wall Components. Microscopic
study shows the irregular edges in the photomicrograph to be
foreign matter, deposited by previous handling, and not con-
structional irregularities.

17
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Fig. 1-11: A Dumbo Metal Tube. A schematic drawing distorted for clarity



Flow in the Heat Exchanger Section

tubes consist of such assemblies.

The moderator serves two purposes. Primarily, it moderates the

reactor. Secondarily, it prevents hot .spotting of the metal wall. De-

tails of this scheme are discussed in Chaps, k and 9. Moderator geometry

is shown in Fig. 1-12. The moderator consists of polystyrene washers

{flat rings) which are alternately stacked with Dural separator washers.

The Dural washers, in conjunction vith vertical ridges molded into the

plastic, form a small box or "mosaic cell" •which serves as a manifold to

kO channels of the Dumbo wall. Radial ducts are molded into the plastic

washers as shown. In order to improve the thermal conductivity of the

moderator, magnesium is distributed through the plastic.

1-h: Flow in the Heat Exchanger

The heat transfer process in Dumbo is novel, in that the gas flow

in the heat exchanger is laminar. This is the first seripus attempt to

transfer large amounts of energy to a gas moving in a ;ion-turbulent or

smooth manner. The laminar type of flow and the short length of flow

path in the heat exchanger, 1 cm, results in a small pressure drop,

typically 0.3 bar, across the heat exchanger. This type of heat ex-

changer has the following desirable features:

(l) It is made of thin metal foil, which has the advantages that:

*1 bar = 106 dynes/cm2 = 0.98692 atmospheres.

19
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\ Vj T^' ;\^.

Fig. 1-12: A Dumbo Tube Assembly (not to scale)

20



Flow In the Heat Exchanger Section 1-4

(a) The surface temperature of the foil differs from the

maximum interior temperature by less than one degree.

(b) The heat capacity is so small that the response time of

the e^c^anger is about one nr.ci-osecond.

(c) The heat-exchanger walls are chemically inert to hydrogen

or ammonia propellants.

(d) The heat transfer surface is 5,900,000 cm2 and the

exchanger is 75$ gas passage.

(2) It has a small pressu, : drop, which has the advantages that:

(a) The tensile strength requirements are modest, permitting

operation close to the melting point of the usable metals

(2923 - 3623°K).

(b) The choice of operating pressure is flexible throughout

the range, 10 - 100 bar.

(c) Other flow impedances may serve to assure proper flow

uniformity throughout the reactor. The flow through the

heat exchanger is regulated by the larger impedance of

the moderator region where the pressure drop is 1.9 bar.

(3) Its performance is calculable from basic hydrodynamic princi-

ples, which has the advantage that:

(a) The heat exchanger is designed without experimental heat-

transfer tests.
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(t>) The stability of the flows Is examined theoretically, and

the conditions assuring this stability are obtained with-

out empirical tests.

(k) It is an efficient heat exchanger, which has the advantages

that:

(a) The gas is heated to temperatures within 200 degrees of the

maximum working temperatures of the refractory metals.

(b) Design of the reactor is not limited by optimization of

the heat exchanger.

(5) It has a folded gas flow path, which has the advantages that:

(a) There are cool regions throughout the reactor into which

plastic moderator is placed.

(b) Space is efficiently used, resulting in a compact, light-

weight reactor of high power density.

(c) No local adjustment of flows is necessary.

(d) The flow area of the heat exchanger is great, and the

channels of the metal wall are small. Consequently, a

small sample of this wall of only 0.03 cm3 volume is

representative in performance tests. Tests of the heat

exchanger require only 1200 watts power.

1-5: Choice of Propellant

Two attractive nuclear rocket propellants, compatible with metal

reactors, are hydrogen and ammonia. In this report, hydrogen is used

22



Neutron!cs Section 1-6

for the following reasons:

(a) The chemical and physical properties of hydrogen are well

understood over the range of temperature employed."" Ammonia is ther-

mally decomposed in the heat exchanger, and data are not available to

predict the kinetics of this reaction. The methods used to compute the

transport properties for hydrogen ' could be used to predict the vis-

cosity, the thermal conductivity, and diffusion coefficients of three-

component mixture H2, Mg, and Nib.

(b) In the last few years the technology for handling large quan-

tities of liquid hydrogen has been highly advanced and large-scale use

of liquid hydrogen is no longer a formidable problem.

Both hydrogen and ammonia should work in Dumbo systems since neither

of these materials presents a chemical corrosion problem with the refrac-

tory metals.

1-6: Neutronics

The Dumbo reactor has uniform power generation (+7$) as well as

uniform neutron flux, using uniform loading and construction. This is

achieved by adjusting the reflector thickness, amount of U0 2, and amount

of polystyrene moderator. The amount of hydrogenous propellant in the

reactor does not change the reactivity appreciably, since the system is

already highly moderated. The Doppler broadening of the neutron reso-

nances of the refractor;/ metals acts as a built-in negative temperature
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coefficient and helps control the reactivity.

The damage to the refractory metals, as well as to the polystyrene,

by neutrons and gamma rays is considered.

1-7: The Report

The analysis of Dumbo is given in sufficient detail to show the

degree to which such a system may be designed, starting from well-known

physical principles. The calculations are complete aside from interme-

diate steps of a routine nature. Much of the mathematical material of

the report, while oriented toward the development of Dumbo, is equally

applicable to a wide variety of rocket reactor designs. For the most

part, this material is new and is presented in a general manner.

In Chap. 2 the subject of laminar-flow heat exchange for a steady

state is developed. The basic physical equations are presented and from

them are developed practical expressions for the flow of propellant and

transfer of heat. The relations between channel geometry, pressure drop,

and heat transfer are investigated, and methods of high precision are

given for calculations involving particular geometries.

In Chap. 3 the stability of flow in the heat exchanger is consid-

ered. The requirements for stability are given, means of insuring

stability are presented, and a design is given which is intrinsically

stable.

In Chap, h the temperature distribution in the heat exchanger is

considered. The temperature distribution is worked out for (a) a Dumbo

24



The Report Section 1-7

wall which is perfectly constructed, (b) a Dumbo wall with one blocked

channel, (c) a Dumbo wall with random construction errors, and (d) a

Dumbo wall segmented into mosaic cells.

In Chap. 5 it is shown that effects due to the evaportion of hot

metal into the flowing stream of pro-oellant are negligible.

In Chap. 6 the device is considered as a nuclear reactor. The

conditions are worked out for a uniform power generation in all fuel

elements, which are of a single standard construction with uniform ura-

nium loading. Calculations of crlticality are presented for such

reactors, involving reactor cores containing large quantities of refrac-

tory metals.

In Chap. 7 the hydrodynamic and heat-exchange problems not covered

in Chap. 2 are considered. Conditions are found which give a highly

uniform flow of propellant through the whole exchanger.

In Chap. 8 the properties of the materials from which Dumbo is built

are considered, under the conditions of operation. The methods involved

in fabricating the Dumbo wall are also discussed.

In Chap. 9 complete numerical designs of four models that satisfy

the requirements of heat transfer, neutronics, and hydrodynamics are

presented.

Chapter 10 is of a concluding nature. It lists several variants on

the Dumbo design and some other possible used of reactors of this type.

A potential developmental program for Dumbo is described.
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There are five appendices of material supplementary to the main body

of the report.
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CHAPTER 2

FLOW AND HEAT TRANSFER

He asked his tall uncle, the Giraffe, what made his
skin spotty, and his tall uncle, the Giraffe,
spanked him with his hard, hard hoof.

R. Kipling, The Elephant's Child

2-1: Introduction

In determining the performance and design requirements of a laminar-

flow heat-exchanging system, three quantities are of particular interest:

(l) The total flow Q, or the average flow density J

Q = / JdA

J = 4- / JdA
A J WVJ" (2.1)

where A is the cross-sectional area of the channel and J is the flux.

(2) The average temperature T over a cross section

(2-2)

(3) The weighted gas temperature T whose value satisfies the rela-
S

tion Q*c T (z) equals the transport of internal energy, where z measures
6

distance from the cold end of a duct of length w and c is the specific

heat of the gas at constant pressure. Thus T (w) will be the final
O

29



Chapter 2 Flow and Heat Transfer

temperatvire of gas delivered from the exchanger. Summing the energy flow

density over the cross-sectional area, Me have

QcTg = / JcTdA
(2-3)

Hence

Tq - - i - / JTdA
(2J0

These integrated quantities evidently may be determined if we know the

flow and temperature functions, J and T, which in turn must be determined

from the basic relations which they satisfy.

In this chapter we derive methods of evaluating these quantities.

Section 2-2 presents the necessary equations in a form which is exact

but intractable for calculation except by numerical methods. In Sec. 2-3

the familiar linearized equations of fluid flow and heat transfer are

derived. The subsequent sections present analytic methods of evaluation:

an exact solution, a more general solution for limiting cases, an itera-

tive technique, and a set of variational methods.

2-2: Basic Relations

Laws governing the flow and energy transport of a fluid have been

formulated by Hirschf elder et al. The equation of continiz-»+:' xs

*< ' * ' V * (2-5)
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where p Is the density, t is the time, and V is the n-component of the

velocity, V. The tensor convention of summation over repeated Indices

is assumed. The equation of motion of the fluid is

(a-6)

where the stress tensor ? is given by

Here p Is the hydrostatic pressure, rj the coefficient of shear viscosity,

and k the coefficient of bulk viscosity.

The equation of energy balance is

where u is the internal energy per gram, and a and B are the components

of q and R, the energy fluxes conducted and radiated, respectively.

Although it Is not appropriate to reproduce the development of

these relations here, it is worthwhile to realize their origin. Equa-

tion 2-7 comes from the linearity and symmetry relations that arise from

the thermodynamics of irreversible processes, based upon Onsager's

"reciprocal relations" theorem. One important restriction here is -chat

the microscopic thermodynamic situation be not too far removed from

equilibrium. Equation 2-6 is a restatement of the second law of
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classical mechanics for a hydrodynamic medium. Equations 2-5 arid 2-8

are formalized statements of matter and energy conservation.

The equations may be simplified at once in three respects: in a

steady-state situation all time derivatives venish; and in a gas such as

hydrogen, which is both non-polax and transparent, both k and d B

vanish also.

2-3: Physical Approximation of the Equations

The functions T and J = pV are determined in principle by these

equations together with the equations for p, r\, u, and q. With a

specified geometry and specified rates of power generation and fluid

flow, the quantities of interest to us should be obtainable to any

desired accuracy by solving these equations numerically. However, for

purposes of a general investigation, numerical results are far less use-

ful than explicit analytic relationships. For this reason we will make

some approximations to bring these equations to a form which is analyt-

ically more tractable, without heavily sacrificing physical accuracy.

At the outset we confine our attention to channels of uniform cross

section, and of length very large compared to the wall to wall distance.

In such a case the flow is constrained to be substantially parallel to

the axis of the channel, the z axis. Thus V = V = 0 . Moreover, if
x y

the total change in V takes place slowly over a very long tube, then
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SV /Sz = 0, and Eq, 2-6 reduces to

_i_ P + _i_ P + A. P =o
ax z* ay z» oz zz (2-9)

Under the same conditions the stress-tensor (Eq. 2-7) similarly simpli-

fies to
z * ' V dy

dx

PZ2 = P (2-10)

Combining Eqs. 2-9 and 2-10 yields

ax dx d y ^ d y "

If we now limit ourselves to the more usual cases, the relative varia-

tions in T) and p over distances of the order of a channel diameter are

small. Equation 2-11 may be brought to the final form

V2j = -£- ASL
V te (2-12)

where V 2 involves only the variables x and y.
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From Eq. 2-7 we may form the quantity

where

Here the positive quantity <t, the dissipation function, is the power-

density due to viscous effects, its two terms corresponding, respectively,

to work done against shearing forces and congressional viscous effects.

By use of Eq. 2-13, Eq,. 2-8 may be recast into vector notation,

A rearrangement of terms gives

(215)

The quantity u + *- is the enthalpy per gram of the gas. For hydrogen

this quantity is insensitive to pressure and may he regarded as a func-

tion of temperature only. Hence

"• + -T =/ CP ( r ) dT'= cp(T-To)
p T (

where T is some reference temperature. The heat-flow vector is given oy

q' =- XVT.

(2-17)
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where X is the therml conductivity of the gas. Substituting these

expressions back into Eq. 2-15 and specializing to our channel geometry

as before gives

We limit our consideration to exchangers where the heat transfer per

second is very large compared either to the dissipation function * or

to the rate of work due to moving material across a pressure gradient,

so that V -s*- + $ will be negligible. Let us also make the same assump-
z oz

tions for C (=c) and X as we have for T] and p above. Then Eq. 2-l8

becomes

(2-19)

The temperature may be written in terms of its boundary value, T. .

T = Tw (z) •+

If 9 is small compared to T, then the z dependence of T must lie primarily

in T j further, if the power distribution in the channel is uniform, T.

depends nearly linearly on z, and Eq. 2-19 becomes

v 2 s =/-£- ilk=/ c dj*

^ ^ / (2-21)
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where Vs now only involves the variables x and y ae was the case in

Eq. 2-12.

To summarize, our problem has been reduced to solving the two-

dimentional equations

V 2 J * - *

where

' VC (2-22)

and

V2 0 = /9j
where

c d TL
Z (2-23)

with the conditions that both J and 8 vanish at the boundary of the

channel. These are particular cases of Poisson's equation in two dimen-

sions. Once a solution has been obtained we may check back on the

validity of our approximations.

2-U: The Circular Channel

Flow and heat transfer results can be obtained exactly for a

circular channel (to within the approximations of Eqs. 2-22 and 2-23)

2 3
and have often been presented previously. 'J They are developed here



The Circular Channel Section 2-J+

as an illustrative preliminary example, and to present the results

within the framework of our present notation.

In radial coordinates Eq. 2-22 becomes

± JL r

r dr dr
whose solution for a channel of diameter a will be

K a*

- - -4- (r - -5- ) (2_25)

which gives

n ir K a*
128

3 2 (2-26)

Similarly by Eq. 2-23, the temperature distribution is given by

J L i® . _ jc£ . . _ _af.
r dr dr 4 ^ 4 ' #

(2-27)
from which

" " 6 4 L r a f " 1 " jg J
(2-28)
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whence

760

6!44

3/3 K a4

,024

(2-29)

These results are considered further in Sec. 2-5.

2-5: The Thin Channel Approximation

A convenient approximation for the flow problem is the "thin

channel" approximation, in which Eq̂ . 2-22 written as

a2j t a
2j

ax 2 ay 2 (2-30)

is simplified by neglecting the x derivative. The resulting relation

is to be solved subject to the condition that J shall vanish at the

boundaries, Yx(x) and Y2(x). (See Fig. 2-1.) The solution of Eq.. 2-31

is immediate.

J= - f (y-Y,)(y-Yt)

(2-32)
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Ysix)

-v/t

Y2(x)

Fig. 2-1

Note that the local parabolic flow distribution is inherent in this

treatment. This result is an exact solution of Eq. 2-22 for parallel

plates. We may thus regard this approximation as a local fit to the

parallel plate result.

The total flow defined by

y/z Y,

= / / J (x,
U/2

y) dy dx
-U/2 Y,

(2-33)

is given by

v/t

Q= j§ J (Y,-Yf)
3 dx

-U/2 (2

These results become simplified for thin channels bounded below by a
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flat plate, so that Y2 = 0. In this case

viz

-v% (2-36)

Using the same approximation for the temperature distribution, Eq. 2-23

becomes

^ y (2-37)

which may be integrated at once if J is known. We substitute the value

of J obtained from Eq. 2-35 to obtain

e(x,o) = eu.vo - 0 ( 2. 3 8 )

which integrates to

0(x}y) = - (^«/24)y(y-Y1)(y
2-Y|y -Y,

2)

Integration of 8 yields for the average temperature

6 = - (£K/I20A) J Y* dx
-v/z

i+o

\i. a
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where

U/2

A = / Y, dx
-VIZ

The value of 6 may be obtained similarly
o

JJ/2

®g = - ( I 7 K V 2 0 , I 6 0 Q) / Y,rdx
- « " * (2Jn)

where Q is given by Eq. 2-36. Another temperature that is interesting

for comparison purposes is 0 . , the extreme temperature difference

between fluid and wall on the given cross section.

We will consider as examples (Fig. 2-2) three channel shapes, all

of height a and width u to be treated in this manner. For comparison

a circular channel of diameter a has been solved exactly. Of course,

the solutions of Example 1 are also exact.

For all t'iie thin channels considered here this temperature is

located at x = 0, y = a/2. Inserting these coordinates into Eq.. 2-39

gives the value

/3* a4 = -0.0130 £*a4

For the various geometries considered here we obtain the following

results:

Table 2-1 indicates the values of A, Q, and J for specified dimen-

sions, a and x>, and the "pressure drop", K. Thus for the same values of
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Y, = a

- VIZ

EXAMPLE i

PARALLEL PLATES OR
THIN RECTANGULAR CHANNEL

x>o

EXAMPLE 2

TRIANGULAR CHANNEL
(THIN)

- viz

Y, = -|-(I+COS Zirt.lv)

viz

EXAMPLE 3

SINUSOIDAL CHANNEL
(THIN)

EXAMPLE 4

CIRCULAR CHANNEL

Fig. 2-2: Examples of Channel Shapes
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these parameters the flow density J is largest for the parallel plates

(or thin rectangle). J is smallest in the circular channel. For thin

triangular and sinusoidal channels J is intermediate.

Table 2-2 presents values of the temperatures 8 , 9, and 8 for

specified values of K, P, and a. In terms of these parameters,9^^

possesses the same value for the three thin channels, but © . is much

less for the circular channel. 8 and © show this same pattern in com-
5

paring the thin channels with the circular one. The temperatures of the

shaped thin channels are more uniform, however, than the temperatures of

the thin rectangular one.

Table 2-3 presents the temperatures © . , 0, and 0 in terms of the

J results of Table 2-1, allowing the physical dimension a to be eliminated.

These quantities thus relate general heat exchange relations of pressure

drops and temperature drops in terms of channel shapes but not of chan-

nel size. The quantities listed in this table are of order unity.

Table 2-h presents the ratios ©/© . , 8 /© . , and ©_/©. The
min g; min' g

latter ratio is particularly surprising in that the values for shaped

thin channels are not intermediate between the thin rectangle and the

circular channel results. These results allow little hope that 0 may

be predicted accurately from the simpler quantity © for shaped channels.

Table 2-5 considers the case when the pressure drop, K, is not of

interest, but presents © and 0 in terms of P, a, and J. Thus, for
o
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TABLE 2 - 1

FLOWS AND AREAS IN TERMS OF K,a,L>

Ex

I

2

3

4

SHAPE

PARALLEL PLATES

TRIANGULAR CHANNEL

SINUSOIDAL CHANNEL

CIRCULAR CHANNEL

AREA,
A

a v

au/2

au/2

•wa2/4

TOTAL FLOW,
Q

iea3u/l2

Kd3u/48

5Ka3u/|92

ir/ca4/l28

AVG. FLOW
DENSITY,
3/KQ*

1/12
(0.0833)

1/24
(0.0416)

5/96
(0.0521)

1/32
(0.0313)

TABLE 2 - 2

TEMPERATURES IN TERMS OF K, £ , a

Ex

1

2

3

4

SHAPE

PARALLEL PLATES

TRIANGULAR CHANNEL

SINUSOIDAL CHANNEL

CIRCULAR CHANNEL

5 /384
(0.0130)

5/384
(0.0130)

5/384
(0.0130)

3/1024
(000293)

1/120
(0.00833)

1/360
(0.00278)

21/5120
(0.00410)

1/760
(0.00131)

-®g / /3Ka4

17/1680
(0.0101)

J7/3360
(0.00506)

2431/358,400
(0.00679)

li/6144
(0.00179)
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TABLE 2 - 3

TEMPERATURES IN TERMS OF

Ex

1

2

3

4

SHAPE

PARALLEL

TRIANGULAR

SINUSOIDAL

CIRCULAR

PLATES

CHANNEL

CHANNEL

CHANNEL

K

0
1.20

1.60

1.51

1.35

e
r ~TTZ

1.46

2.91

2.50

1.83

_ TABLE 2 - 4
emin»®. ®a I N TERMS OF EACH OTHER

Ex

1

2

3

4

SHAPE

PARALLEL PLATES

TRIANGULAR CHANNEL

SINUSOIDAL CHANNEL

CIRCULAR CHANNEL

Qmin

0.64

0.21

0.32

0.45

@min

0.78

0.39

0.52

0.61

e

1.21

1.82

1.65

1.37
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TABLE 2-5
TEMPERATURES IN TERMS OF J, £, a

Ex

1

2

3

4

SHAPE

PARALLEL PLATES

TRIANGULAR CHANNEL

SINUSOIDAL CHANNEL

CIRCULAR CHANNEL

©

O.IOO

0.066

0.079

0.042

0.121

0.121

0.130

0.057



Higher Approximations Section 2-6

fixed values of these parameters, Q is sensibly equal for all three thin

channels but is much less for the circular channel.

2-6: Higher Approximations

The thin channel results may be refined to obtain more precise

results i-n the following way. Consider the differential recursion for-

mula

= — AC — X

= J(n)(Y2) = ( 2 J + 3 )

by which J may be determined if J ~ is already known. If, as

n -* «, the sequence of J converges to a limiting function J with

sufficient uniformity, then evidently J will be a solution of Eq. 2-22.

For J the thin channel approximation may be used.

The technique is well demonstrated by the case of a semi-infinite

duct for which Yi = ex, Y 2 = -ex. Following the program outlined above
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/»• o

2 ,(D
= - K

J(1) = I K (c2x2-y2)

A.
y

J(CO) - JL

I o C
Mj

—c*
(c2x2-y2)

The function Ĵ  ' is indeed the solution of Eq.. 2-22 with the imposed

boundary conditions. Notice, however, that the sequence of J con-

verges only if c < 1.

Returning to the more general case, and considering only problems

with Y 2 = 0, Yi = Y, one finds
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i ( ' ) - K

2"

(3) . K

y i y - Y ) - i j-y(y^-Y^)

f Y" Y""Y 2 Y"Y'Y /Y"\2V
V(W_Y\-IC — + - — I ' T Y . (Y ) Y

yiy T; K [ 1 2 + 72 + 18 + 36

(3)

where primes indicate differentiation with rsspect to x. Q is

obtained as in Eq. 2-33.

v/z

Q ( 3 )=

-V/2

jL Y 3 , x
l2 Y +4 120

(YW)2Y

A similar procedure may be applied to Eq. 2-23

a2 8(n)

ay2- ax2
( 2 J + 7 )

This procedure requires some approximate function for j(x,y). We have

chosen J of Eq. 2-45. Neglecting the term yields the result

24

72

& Yy(y2-Y2) -

r"Y2y(y2-Y2)

240

(2-1+8)
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For the next approximation we obtain

24
Y

2
5Y'Y2 Y'2Y

24 4 720

7Y"Y'Y3 _ 7Y"Y'2Y2 7(Y")2Y3

90 60 180 20
_Y" , Y*"Y2

6 72

"Y'Y Y"Y'2 . Y^T2 (Y")2Y'
36 36 36 36 10,080

Q is obtained by averaging over the region. 0 is obtained by averaging

the product J*8 as given by Eqs. 2-k$ and 2-49.

For sinusoidal channels of the form

Y= ~ I + COS 2Z*. 1
C L J (2-50)

performing the indicated operations of Eq. 2-46 yields

= 0.026042 K^V \\ -3.4544 (-JjV 19.9690 (-fj
5-5D
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Prom Eqs. 2-1+5 and 2-1+9 for sinusoidal channels there results

0 = -0.0041015a4 $* [ 1-7.7553 (£)+ 48.786(-^f

efl = -0.0067829 a4/9 K [I -9.7287 (-£)* ( 2_ 5 3 )

For the other examples considered in Sec. 2-5, the parallel plate

result was exact and the corrections involving derivatives of Y(x) thus

vanish. The triangular channel, hovever, is such that Y'1 and higher

derivatives are zero except at the apex (x = 0), at -which point they

become infinite. Hence Eqs. 2-45 and 2-49 are not usable directly and

the method is inapplicable.

2-7: The Variational Method

In a situation involving unusual boundaries, where Poisson type

partial differential equations are difficult to solve exactly, integrated

quantities may frequently be estimated accurately by means of some varia-

tional principle. The flow and temperature problems have been treated

by such a variational approach to -ivestigate the general usefulness of

the variational techniques. It will b,'1 shown that these techniques

allow evaluation of the desired integrated quantities Q, T, and T .
O

Total Flow: The problem is to find the total flow Q through the

area A where the mass flow J(x,y) satisfies

V J = - K (2-22)
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with the boundary condition

Jlb - 0

The variational principle depends on guessing a flow function

j = J + S J (2-54)

which is close to the actual (unknown) function J.

Proceed in the following way: By dropping small terms beyond the

lowest order, one has

/ ( V j ) 2 dA = / [ ( V J ) 2 + 2 7 J - V S j ] dA (2_55)

which is identical to

/(Vj)2dA = / v - [JVJ+28JVJ] dA-/[JV2J +28jV2J]dA

(2-56)

The first integral on the right may be transformed to the boundary by

using the divergence theorem, and the second may be simplified by using

the differential equation 2-22 for J, to obtain

/(Vj)2dA = /[JVJ +2SJVJ ] • dT + K / [ J +28j ] dA

(2-57)

Here ds is normal to the boundary. If we choose a j which vanishes at

the boundary, then 6j will also vanish at the boundary, and so will the
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whole surface integral. This gives

/(7j)2dA = K(Q +28q) {^Q)

From this a variational expression may be constructed as follows

q(j) = KUl*tiL
/(Vj)2dA (2-59)

To the first order

2
q ( J + 8 j ) = * C/JdA-f/8jdA]

*(Q +28q)

Q2 + 2Q 8q

Q + 2 ^ " Q (2-60)

Thus, q(J + 8,)) departs from the true flow Q only by higher order terms,

and a good estimate of J should lead to a proportionately much better

estimate of Q. For the correct J, of course, the value of Q will be

exact.

A feature of the variational principle should be noted. One may

multiply j by an arbitrary constant without affecting the value of q.(j).

Thus one need guess only the shape of the function j. The size is taken

care of automatically.

*This variational principle was suggested by J. Tiemann, who credits it
to L. I. Schiff.
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In order to get a tight-fitting trial function, one may pick a

j = j(e) depending on a parameter e. Then, due to the variational prin-

ciple's stationary property, Sq_( J) I __ = 0, the fit will be optimized

when

= 0
««<?o (2-51)

This is an equation which may be solved for e .

Average Temperature: As shown in Eq. 2-20 the temperature is given

by T(x,y,z) = T. (z) + ®(x,y). The average temperature drop between the

wall and the gas is given, from analogy with Eq. 2-2, by

Let

0 = 4" / © dA

A = - 4r ©
(2-62)

Then

- • • • *

where

H = / AdA
(2-63)
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and the differential equation 2-23 becomes

n

V A = - J (2-64)

If we take the Laplacian of this equation, we obtain from Eq_. 2-22

with the boundary conditions,

and

V A = K (2_65)

A|b = 0

V2A|b = 0

The integral to be estimated is H of Eq. 2-63. Closely following

the procedure for the flow integral, with h = H + &h and X = A + 6\, one

may demonstrate that the proper variational expression is

[/XdA]!
h{ X) =

The value of the denominator of this expression is, to first order terms

(VzX)2dA =/(V2A)2dA +2/(V2A)(V28X) dA

This equation may be transformed to

(2-67)
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/(V2X)2dA=*H +2/(V2A)V8X-cl?-2/SXV(V2A).ds + 2*8h

(2-68)

The second term of Eq. 2-68 vanishes due to ̂ Al. = 0, while the third

vanishes due to SAL = 0. Thus while it is necessary that Xj, = 0 for

the trial function, V^x need not vanish at the boundary. Expanding the

numerator of Eq, 2-66 to first order terms yields

h / u H2 + 2H8hMX) = K = u
K H + 2 8 I I (2-69)

Weighted Gas Temperature: The weighted gas temperature T is given
6

by

Tg = Tb(2)+©g

where

®g | / j A d A |Q 0 J 0 (2.70)

The integral to be estimated is

¥ =/jAdA (2-71)

To obtain a variations! principle for this quantity define a function F

V2F = - A ; Fl = 0 .
1 'b (2-72)
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so that

V 4F = -7 2A= J

V6 F = V2J = - K (2.73)

Applying the divergence theorem as before yields

¥ = / (V2F)(V4F) dA

= - / FV6FdA = K / FdA

or

/ FdA = ¥ / K
^ (2-75)

To obtain the variational expression for f let

and

f = F + Sf

then

/ [V(7 z f ) fdA (2.76)

The value of the denominator to first order terms is given by
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/[v(V2f)]2dA = /[v(V2F)]2dA +2/(VV2Sf).(VV2F)dA

(2-77)

This reduces to

/ [ w 2 f ] dA = ¥ + 2/(V2Sf )VV2F-d? - 2/(V4F)VSf- dT

-dr + 2 8 * (2_78)

Here the third term vanishes due to V*F| = Jl, = 0; the fourth due to

of], = 0. However, the first integral is equivalent to 2 / (Vs6f)VA«d^,

which will not vanish unless a trial function is chosen such that

V^I. = 0. While often this is not easy to do in practice, it is some-

times possible to satisfy this Laplacian condition approximately on some

boundaries while doing so exactly on others. If, however, this term

does vanish, then expanding the numerator of Eq. 2-76 to first order

•feerms yields

V+2 8+ (2_79)

Boundedness: It may be shown that the exact function gives a max-

imum value in any of these variational expressions. Thus, a variational

estimate also establishes a lower bound for the true value. The proof

will be shown in the case of the flow integral Q. The others are simi-

lar.
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The proof depends on the relations q(cj) = q(j) and ̂ J = -K. De-

fine the function

e- Si — sJ

where

s = —

This function possesses the properties that

J £ dA = 0

= 0

Now

q(J+8j) =q = q ( J

Retaining all terms in Eq. 2-59 and applying Eq. 2-8l

(2-80)

(2-81)

(2-82)
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[/ jdA

/(VJ)2dA V£dA +/(V£)2dA

Hence

= K

/(VJ)2 dA +2K/^dA+/(VC)2dA

/(Vj)2dA /(VJ)2dA
(2-83)

q ( J +&j) < 0 (2-84)

Comparison with Exact Results: To estimate the accuracy of the var-

iational treatments, these methods are applied to some problems which can

"be done exactly. The approach usually is to pick as a trial function a

polynomial of the right general shape, which satisfies the boundary con-

ditions of the problem.

Square channel — An exact solution of Vs0(x.,y) = p(x,y) or

V*0(x,y) = p(x,y) may be set up in terms of the proper Green's function.

The Green's function may be expressed as an expansion in the eigenfunc-

tions of the differential operator with the appropriate boundary

conditions. For a square channel with an edge dimension a the
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eigenfunction problem may be solved, yielding sinusoidal solutions. The

rest of the program amounts to standard integrations. The results are

4_2_6 y i / i
KQ TT6 I _ , mz+nz \ mn

odd m,n

= 3.509x10 2 *a 4

H ̂  l e
odd m,n

(mz-i-n2) I mn = l.7O3xlO"3
(2-85)

In the variational principle for Q use the trial function

(2-86)

since the flow profile may be expected to be roughly parabolic. The

result is

Q(j ) = ( 3.472 xlO"2) K Q 4

(2-87)

This estimate differs from the exact result by about 1$.

If J is chosen to be

j = cos(7r/a )x cos(7r/a)y (ZJBB)

which is a less parabola-like function, one obtains

Q(j) = (3.329xiO'2) KQ4 (2_g9)

which is still within 5$ of the exact result. X also may be chosen as

X = cos (7r/a)x cos (ir/a)y (o o M
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This satisfies V2X = 0 on all boundaries. Though V2x|. = 0 is not

demanded by the variational principle for the temperature, fulfilling

this condition will give a better fitting trial function. The operations

are very simple to perform in this case, giving

H(X) = ( 1.686 xlO"3) K Q 6
 (2_91)

which is only about 1$ away from the exact result.

Parallel plates — To illustrate the variational evaluation of 0

consider flow between parallel plates which are long enough to make end

effects negligible. The exact expression is given by Table 2-2 and is

®q = -(17/1680) £*a
4 =-0.0101191 /3*a4

Exact solutions in parallel plate geometry are polynomials. If the

approximate trial function f = sin 7ry/a is chosen the integrations of

Eq. 2-76 become trivial, giving

<Mf)=(8/7T8)*2a6A (2.92)

so that

=-(96 /ir8) $K a4 = -0.0101175 £xa4
( 2_ 9 3 )

which is correct to 1.5 parts in 10,000.

In the remainder of this section the variational techniques are

applied to sinusoidal and triangular channels. Values of Q, Q, and Q
6
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are computed for these two shapes in Example 1 (Sinusoidal Channel Calcu-

lations) and Example 2 (Triangular Channel Calculations) which follow.

These shapes appear typical of the forms encountered in the Dumbo metal

wall.

Example 1: Sinusoidal Channel Calculations

The variational approach may be used for a channel with cross-

sectional length 'o and height a bounded below by a flat surface and above

by a sinusoidal one. Let the upper bounding surface satisfy the equation

In the case of the flow integral, a one-parameter trial functior

used. Suppose some linear combination of two trial functions, ji and

js, may be expected to be a good approximation of the actual flow. Let

/, = /j.dA

j2 dA

(2-95)
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12

•22 -it
Then if

j = (I

it follows from Eq. 2-59 that

A +

•which is optimized as in Eq. 2-6l for

In ~

(2-96)

(2-97)

•2-98)

1»" C 1« T 1« (2-99)

The form of j(e) (Eq. 2-97) is chosen to make € the solution of a lineal

equation when Eq. 2-6l is used.

For the trial function ji choose the thin channel approximation

(Eq. 2-35).
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j , = f - y [Y(X)-y ] (2-100)

The effect of the correction j 2 should be to reduce c^j/dy
2 where d2,j/dx2

is largest. The proper admixture of J2 should do this if

j2 = j, COS 2 - ^ (2_10i)

The y-integrations can now be done at once, bringing all the final x-

integrations to the form

a

cos2n 9 d 6

-1T/Z

The r e s u l t s are

I Fill

•• ' , ' , ' ,? • •

1 !2 6!!

(2-102)

T - 48
7 ! ! ( 6 ! ! ) 2 I
10!! (5!!)

I
^T3 + l 2

6!! I
"5M ^ J

,2
(I2!!)(5!!)(7!!) ay

6!1 I12 — -V
5 ! i o3u

T = 7 4 4 2 ( l l ! ! ) ( 8 i ! ) I , .„ ( 9 ! !
a i r a3v

(2-103)
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which upon subsitution give

o

q [ j U ) ] = K Q 3 U / { 3 8 . 4 0 +1.0972 e ^ - ^ [ 132.65(1- «)2 +

284.24* ( | -c ) +316.47 c2]}
(2-lOlf.)

= - 1/(0.11579 -^ -I- 17.401)
(2-105)

Note that e -»0 as a/u -• 0. Thus, q. reduces exactly to the thin chan-

nel value.

If e = 0 in Eq,. 2-104, then the thin channel flow function is the

trial function. It is interesting to compare the results of the varia-

tional method with those of the successive approximation technique. The

quantity (8 / K O 3 U ) Q is shown in Table 2-6 for the realistic value

a/u = 0.2.

TABLE 2 - 6

THIN CHANNEL APPROXIMATION

FIRST ORDER APPROXIMATION

SECOND ORDER APPROXIMATION

VARIATIONAL METHOD USING € = 0

VARIATIONAL METHOD USING e = €e

0.2083

0.1795

0.1862

0.18300

0.18312

Optimizing j introduces about a 5$ admixture of j 2 . However, the

value of Q is altered by orJ_y 0.0'j'$, Since the parabolic flow shape is
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expected to be quite a good approximation, and since optimizing j must

improve the estimate, the variational value of Q should be very accurate.

Table 2-6 indicates that the crudest variational approximation is prob-

ably a bit better than the second order successive approximation.

Because of the success of the thin channel trial function in the

case of the total flow, a sim: lar approximation is considered sufficient

for the case of the average temperature integral H. The trial function

used is that of Eq.. 2-39 and is

X = y
4+ Y3y - 2y sY (2-io6)

where X is the approximation to A as defined by Eq. 2-62.

The denominator integrand in Eq. 2-66 involves

(V2X) =y [-67^(5 cos* ̂ - 6 cos6 ̂ _ , _ l2 a C0S2 ZJLj

+ I2y2 + y 3 [ 4 ^ 2 ( 2 c o s
2 ^ -I)]

(2-107)

Upon squaring Eq. 2-107 and performing the y-integration only terms of

the form cos (-—) remain, though 2n goes up to 18. Evaluation is

straightforward but tedious, yielding the result

H =0.0020508 a5 v/ [ I +77578 {-^-f + 57. 214 (-£-f]

(2-108)
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It is interesting to compare this result with that of the successive

approximations method. Returning to Eq. 2-52

H =0.0020508 a5 v [ I -77553(-£)*+ 48.786(-f)4] (2_1Q9)

The first couple of terms are very close to the corresponding terms in

the binomial expansion of Eq. 2-108. Thus, this is very close to the 'bi-

nomial expansion of H obtained by the variational technique.

The variational calculation for the weighted gas temperature T has

not been performed, since the expressions become quite cumbersome. In

analogy to what has been done, the procedure would be to pick as a trial

function the solution of

dy (2-110)

with boundary conditions f = 0, d2f/dy2 = 0, d4f/5y4 = 0 at y = 0 and

y = Y(x). Then the condition that v^fl, = 0 will be satisfied exactly

at the lower boundary, and approximately at the upper one, with the

approximation becoming exact as (a/o) -* 0.

2: Triangular Channel Calculations

These methods have been applied to the problem of the triangular

channel bounded below by a surface Yz = 0 and above by the surface
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r « ( i - n r ) ; o < x < |
Y|(x) =

 ?,
^ a ( I + — • ) ; _ IL < x < o

2 (2-111)

The thin-channel expressions for the approximate flow and temperature

distribution functions j and X which were used in Example 1, above, are

used for the triangular channel calculations.

Total Flow, Q

The variational value, q, of the total flow

For any thin channel with Y 2 = 0 , Yi = Y(x), it has been shown

j =- -f (y-Y)y
d (2-35)

Performing the indicated operations yields

M 12 yn . ,2
/ Y^Y+Ddx

-y/z

(2-112)

For the triangular channel described above, the flow is
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48 I +4aVu2 (2-113)

Average Temperature, ®

To obtain 0, the thin channel result for 0 (x,y) is transformed to

the function

with 0 being given by

where H is estimated by

X =- 0//9

© =- $ H/A

= AC
(/XdA)J

/(V2X)2dA

For any thin channel with Y2 = 0, Yx = Y, the result

( y 4 + Y 3 y - 2 Y y 3 )

yields

/ XdA = jg= J Y5dxf
-v/z

a n d , i f Y " = 0 ,

(2-63)

(2-66)

(2-111+)

(2-115)
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/(V2X)2dA - y ~ / (5Y'4-5Y'2 + 2) Y5dx
C U -v/2 (2-116)

For the triangular channel

h = * " "
(dXJ | _ i o a z /y2 + 4 0 a 4 / v (2-117)

Hence

§ ._ 360 | - I O a 2 / u 2 + 4 O a 4 / u 4 (2-118)

Weighted Average Temperature, 8

As previously described, Q. is obtained from an expression such that

©0 *~ P*/Q (2-TO)

and a function F where

Fl =0

V 2 F = - A (2-72)

with the variational expression

/[v(V2f)]2dA (2-76)
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Using the thin channel result for X (Eq. 2-11I+) let

K

~2A -2Yy3)

Thus

Neglecting multiplying constants for Y " = 0 one has

(2-119)

(2-120)

r 17 rm i
^ T a A 840 l._

(2-121)

'2 / 4= ^ H (l7-9Y'2+l29Y / 4+34IY/ 6

For the triangular channel

17
161,280 ^§ _af . 2064

17 y2 17

Hence

-v/z
Y7dx

(2-122)

21.824 ae

17

(2-123)

17
3360 36. _af , 2064 _a_4 21.824 _a^

17 v* 17 17
(2-1210
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CHAPTER 3

TEMPERATURE-FLOW STABILITY

One fine morning in the middle of the Precession of
the Equinoxes, this 'satiable Elephant's Child
asked a new fine question that he had never asked
before.

R. Kipling, The Elephant's Child

3-1: Statement of the Problem

The uniform channels described in Chap. 2 have large differences

in the absolute temperatures of their two ends. The pressure gradient

dp/dz changes considerably with distance along the duct and is sensitive

at every point to changes in the total mass flow because these modify

the temperature distribution. This situation can lead to peculiar oper-

ating conditions in which any transient perturbation of the steady-state

conditions does not die away with time but tends to build up to cata-

strophic proportions.

The flow law for any of these channels may be considered to be of

the form

o = _B JL dp.
(3-1)

where B, the geometric conductance, is a cross-sectional geometry factor

having the dimensions (cm4). This relation determines the pressure drop
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Chapter 3 Temperature-Plow Stability

Ap =QJ "̂  dz

where

Ap=p(O)-p(w) (3_2)

The quantity T]/p is related to its value at the channel entrance by

" H o / ' / ' o H l / l 0/ (3.3)

where the subscript o refers to entrance values and where it is assumed

that T « T11. For E2, n = O.678. T(z) in turn is given by

T(z)=T0+(l/cQ)/Vclz (3-4)

where a is the power per unit length of channel. Thus the dependence of

the pressure drop &p on the flow rate Q is complicated. Nevertheless

the following general statements are evident: The pressure drop will be

large if the mass flow is very high or if very high gas temperatures are

involved. The latter condition, due to the temperature dependence of

viscosity and density, will occur when the flow rate Q is very low. As

shown in Fig. 3-lj> & given pressure drop and power density may result

in a large flow rate, slightly heated, or else in a small flow rate,

strongly heated.



(

Statement of the Problem Section 3-1

Ap

Q

Fig. 3-1

Within the framework of the steady-state equations 3-2 and 3-3,

either mode of flow is consistent with a given value of £p.

C. L. Longmire of LASL has considered the case of viscous flow through

a uniform tube of uniformly distributed power density. In this case he

has shown that operation under conditions where

dAp
< 0

d Q (3-5)

corresponds to a state of unstable equilibrium. The quantity involved

in Eq. 3-5 is called the resistance of the channel. Unless this quantity

is non-negative, the flow will either shift to the stable point or tend

to shut off entirely, resulting in excessively high temperatures. It

should be noted that this instability problem exists only for fixed /2p

but disappears for problems in which either Q or T(z) is held constant

in time.

Longmire's argument is generalized in App. E. The same criterion

for stability is established for any flow law (viscous, turbulent, or
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mixed as in porous media) for any shape of channel, and for any power

distribution function, so long as the temperatures of the gas and of the

exchanger are not too different.

It is shown in Sec. 3-2 that viscous flow through a uniformly

heated channel of uniform cross section will be unstable when the ratio

of the final temperature to the initial temperature is greater than

3.6CA-. Such instability may be overcome by appropriately constricting

a portion of the channel at the gas entrance end, r?he specifications

for this constriction are developed in Sec. 3-3.

3-2: Viscous Flow Through a Uniform Channel with Uniform Power Density

In this case, Eq. 3-2 may be written

PoJO o/o
Ap =

fcSAJ« JL
(3-6)

For uniform power density cr = 2/w, where Z i s the to ta l power per chan-

nel, and Eq. 3-^ becomes

(3-7)

Substituting T(z) into Eq. 3-6 and integrating yields
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where

X r

cQTo
(3-9)

The function of x in Eq. 3-8 is indeed double-valued, having a minimum

for x = 2.6O4 when n = O.678, the value of n for hydrogen. For values

of x larger than 2,60k the system is unstable while for smaller values

it is stable.

3-3: Viscous Flow Through a Constricted Channel with Uniform Power

Density

Stable operation of the uniform-bore heat exchanger discussed in

Sec. 3-2 is limited to a temperature gain factor of 3.6CA-, as seen

above. However, a uniform-power exchanger which is stable at higher

temperature gains is shown in Fig. 3-2. The enhanced stability of this

device comes from the increased channel drag at the cold end, where the

density and viscosity of the gas are less influenced by the mass-flow

rate.

4

— — — • ^

— w

B2

Fig. 3-2
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For this problem let the channel be composed of an initial region

of length Wi (Fig. 3-2) and a "geometrical conductance" Bx while beyond

this point the conductance is B2. Equation 3-7 still applies, but

Eq. 3-6 must be divided over two intervals 0 £ 2 § w-i. and Wi § z S w.

The total pressure drop is given by

/ I I \/w, \2+n I 1

1 * ^ W ' '•' (3-10)

where x is given by Eq. 3-9. The minimum of this function of x is given

8, Ba

Equation 3-H

where

w
i
J B,

(3-11)

rewritten as

£ 2 _ F(w,x/w) -F(x)
B, " F(w,x/w) - I
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F ( e ) t f H ) ^
2 (3-12)

Some values of F(|) are shown in Table 3-1 for n = 0,678. An important

characteristic of this function is the existence of the maximum at

I = 1,5, It may be shown that this is given by | = l/n = l.kj. If, for

a desired x, (wix)/w = l/n, then Bg/Bi is at a minimum value for typical

temperatures used for the Dumbo design. Figure 3-3 shows Eq.. 3-12 in.

parametric form.
TABLE 3-1 THE FUNCTION F(f)

0

0.5

1

1.5

2.0

2.5

F it)
1.00

1.64

2.!2

2.28

2.08

1.32

t
3

4

5

10

20

F ( * >
-0.17

- 5 . 3

-13.6

-130

-965

In design application one would select a temperature ratio x in

excess of desired operating temperatures, presumably corresponding to

the melting point of the metals. The system would then be stable under

fluctuations of temperature up to this disaster condition.

Considering the composite channel to have been stabilized according

to the foregoing method, the overall pressure drop of Eq. 3-10 may be

expressed in terms of the desired flow Q and the expected temperature
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5,000

Temperature-Flow Stability

1,000 -

5 00 -

J3*
B,

100 -

0.2 0.3 0.4
w,/w

Fig. 3-3= Introductory Impedance Tube for Borderline Stability
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rat io x as

Ap =
B2/>0(2+n) x I v

(3-13)
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CHAPTER h

WALL TEMPERATURE DISTRIBUTION

Then he went away, a little warm, but not at all
astonished.

R. Kipling, The Elephant's Child

k-1: Introduction

To understand the temperature distribution throughout the metal

wall structure requires the solution of several problems. Some of these

problems concern the behavior of a perfectly constructed wall under nor-

mal operation. Others deal with abnormalities of operation due to

fabrication errors, blocking of channels, etc. In this chapter the

processes affecting the temperature distribution are studied, and the

expected temperature variations are evaluated.

Section k-2 deals with the gross temperature profile in the wall.

The temperature is shown to rise linearly through the wall. The "dynamic

insulation" property of the wall is demonstrated. The process of convec-

tion, the bodily transport of internal, energy in the flowing gas, is

shown to strongly predominate over heat conduction. Conduction parallel

to the gas flow is ignored in the subsequent sections.

The sections which follow treat various perturbations and their

effects on the overall temperature distribution. These perturbations are
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so small that their interaction effects may be neglected, and the

various temperature variations may be superimposed. Because the primary

object of this investigation is to keep the wall material below the

failure temperature, the calculations particularly concern the tempera-

ture distribution of the hottest part of the wall. Although various

approximations are made in these sections, they are approximations jus-

tified by the Dumbo wall geometry; a more lengthy and detailed analysis

would furnish only small corrections to the temperature deviations cal-

culated here.

Section 4-3 investigates the temperature distribution over the

walls of the individual flow channels. These temperatures are affected

by the channel shape because of the manner in which power from a wall

divides itself between neighboring channels. From this standpoint the

temperature variations are found for normal operating conditions.

Section k-k discusses the effect of thermal conductivity normal to

the gas flow direction, under conditions of aberrated flow. The basic

equations are developed for analyzing such situations.

Section l*-5 deduces the result of upsetting the flow in a singls

channel.

Section k-6 deals with the more general problem of distributed

errors in the Dumbo wall, including the effects of channel interactions,

temperature-flow interaction, and the effect of temperature on thermal

conductivity. The effect of sectioning the Dumbo wall into individual
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"mosaic cells," each with a fixed total flow, is included. Numerical

results are presented on the basis of experimental wall error measure-

ments on a sample section of Dumbo wall.

Section k-"J deals briefly with other heat-transfer mechanisms which

will tend further to equalize the temperature distribution.

k-2: Overall Temperature, and the Dynamic Insulation Effect

The one-dimensional problem of combined convection, thermal oonduc-

1 2
tion, and power generation has been presented previously. ' It will be

shown that for the Dumbo device the heat conducted to the cooler inlet

region is small compared to that added to the gas; this will justify

neglect of heat conduction in the z direction in the following sections.

To do this one needs the temperature distribution of the gas

assuming intimate temperature equilibrium with the walls. For a uniform

power density with the gas issuing from a source at a temperature T the

distribution is given by

"I

where

4> = c Jo w/X

and X is an average linear thermal conductivity of the wall structure,

Jo is the flow per unit total area, v is the wall thickness, and c is
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the specific heat of the gas. This relation applies only for 0 § z S w.

Beyond the heating region T = T . Thus the temperature T(0) at the en-

trance to the heating region is given by

T(0) =TV(Tw-T*)[-^?l
L Y J (4-2)

The value of 0 encountered in this relation is typically so large that

the functional dependence of Eq. k-2 is l/0, and the temperature distri-

bution from Eq. k-1 is linear. The conducted heat flow Io at the gas

entrance (z = 0) is given by

l e )w ll e )JZg w
A quantity of interest is the ratio of heat conducted into the incoming

region to the total heat to be added to the stream. When 0 is large

this ratio is

i ]
cJe(Tw-T*)

This relation indicates 0 to be a true indicator of the insulating abil-

ity of a permeable wall through which fluid is flowing. For typical

values in the Dumbo designs proposed here 0 « 100 so that the preheating

predicted by Eq. k-2 is circa 25° for a temperature increase of 2500°.

This represents an approximately 1$ conducted heat loss to the upstream

region immediately preceding the metal grill-work structure. The energy



Temperature and dynamic Insulation Section U-£

• *

transport by convection strongly dominates over that by conduction.

It is worth noting that if a wall does not contain a power source

but serves only to insulate from an upstream temperature T the func-

tional form of Eq. k-1 is modified to be

In this case the entering temperature T(o) is given by

T(O)-T«+(T.-T*)e-*

"For a•comparable insulation:..t,o the preceding example,.#.v-^n an arrange-
• • - • - * • 4 • - • •

ment would require e"1* « 10 " 2 or 0 « k.6. Thus sifcti*" a 'wall may have a

far greater thermal conductivity and still insulate effectively.

In summary:

(1) The temperature rise through the wall is effectively linear.

(2) The presence of gas flow through the wall leads to the dynamic-

insulation effect. Back conduction can raise the temperature of the

cold side of the wall about 25° only.

(3) Energy transport in the direction of flow is so predominantly

by convection that thermal conduction parallel to the flow can be neg-

lected in the analysis of the subsequent sections.

(k) The flow of gas through a non-power-generating region, such as

the space preceding the Dumbo wall, brings about an extreme improvement

in the insulating effectiveness of that region in comparison with a
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similar but power-generating region.

4-3: Temperature Distribution in the Periodic Wall for Normal Operation

Previously there have been considered only problems in which the

wall temperature profile for a fixed z is uniform. This corresponds to

the assumption of infinite transverse thermal conductivity of the channel

walls. However, with finite metallic thermal conductivity and with the

channels proposed here, there must be some variation in this transverse

temperature profile. In this section the locations of the "hot" and

"cold" spots of this wall and the magnitude of these variations are

estimated. To do this one may obtain the normal derivative of T into

the gas from the wall, from which the heat flow in the wall and the wall

temperature distribution follow.

For this purpose, the limiting form of the thin channel geometry is

used in three different ways:

(l) The differential equations governing the gas flow and tempera-

ture within the channels as previously developed are applied (see

Sec. 2-5). ^

dy2 = *

J(X,Y) = J(X,O) = 0

(4-7)

(4-8)
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(2) The heat flux I from any wall to the gas is given by

an (4-9)

where n is the normal surface vector to the wall and X is the local
g

thermal conductivity of the gas. Because of the thin channel geometry,

conduction along the x component of this gradient is neglected so that

for the upper surface of the wall

T i -- X 2J.77 bt (4-10)

while for the lower surface

i7
(4-11)

(3) Because of the thin channel geometry the channel boundaries

may assumed to be so nearly parallel that only their relative separa-

tior i of significance. This corresponds to assuming T, to be a

fiction of x only and hypothesizes the same wall temperature distribu-

tion T (x) for both flat and convoluted plates, as shown In Fig. 4-1.
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Chaoter 4 Wall Temperature Distribution

Fig. 4-1

The energy dissipation per unit wall area is given by

<T =-

where a is the power generated per unit area of the wall, r is the wall

thickness, and X is the local thermal conductivity of the metal.

First I | is evaluated at y = Y, From the symmetry implied in

assumption (3) it is evident that

aj = _
ay ot ^y

Equation 4-8 i s integrated once, applying Eq. 4-13

(4-13)
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dy = +if'-*Yl *" Jo "9 (U-14)

In Eq. 4-14 Y is the local channel height (bounded by y =• 0 below).

To evaluate «j— = - •?— a similar treatment of the region
"y y\ oy ~j

Y S y s a may be performed, yielding

Combining Eqs. 4-14 and 4-15 with Eq. 4-12 then yields the differential

equation for T, (x)

— <T

(4-16)

The last term of this expression may be transformed by the energy

relation

to give

_ cQ_ dj_ _ PAg
v dz v

d2Tb

dit5"

(4-17)

(4-18)
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To solve this equation, a function

• /

a

J(x) = / J d y

is defined. This function has the property that

0- j

The differential equation 4-18 becomes

(̂ -20)

(4-21)

This relation is integrated twice, using the condition that from

symmetry,

dx
= 0

X - 0

yielding

f
"0

Equation h-f is integrated as before to yield

J _-_ - |y(y-Y )

(4-22)

(4-23)
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and Eq. 4-19 becomes

J -if,y ( y - Y ) d y - f ( y - c . ) ( y - Y ) dy

I2v
[3Y2-3aY + a2]

from Eq.

J ' 7
K Q 3Y(Y-o) dx + *±

Equation 4-21)- is subtracted from Eq. k-25 to yield

J -J -
KQ

r i°v

-V Jn
a)dx-Y (Y-o]

(4-25)

(4-26)

For any channel shape this expression may be used in Eq. 4-22 to obtain

For a sinusoidal channel in which

Y = + cos

Eq, 4-26 becomes

J ~ J = 'i$\T "cos •

(4-27)

(4-28)
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and from Eq. 4-22

Wall Temperature Distribution

oT —Equation 4-29 may be written in terms of <r- and J whereoz

(4-29)

J = (5/96) «af
(4-30)

and Eq,. 4-29 becomes

The location of the temperature extremes as predicted by this formula is

shown in Pig. 4-2. The difference between these two extremes A3?, is

given by
A T > =

cJ
Am

(4-32)

A numerical example may be computed using the following typical values

c = 3.5 cal/gm -deg a = 1.5x10 cm

J = l gm/cm f -sec v - 7.5x10 cm

Xm= O.f cal /cm-sec-deg T = 2.5x10 cm

dz = 2500 degrees/cm
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with the result

AT b = 11.2 degrees

4-4: Wall Temperature Distribution Under a Flow Aberration

In this section the effect of some isolated irregularities on the

temperature profile is investigated. The approach is to replace the

complicated mesh of heat-flow paths at right angles to the stream by a

continuous and homogeneous, though nonisotropic, medium with thermal

conductivities X and X in its horizontal and vertical directions, re-
st y

spectively, normal to the flow. The validity of this approximation will

be discussed with a specific example.

The energy flow through the system is given by

where e and e are unit vectors. If the power density is CT, the diver-
x y

gence of Eq. 4-33 becomes

o- - cJ d T \ d*T \ d*T

An equation of this form will be satisfied by T whether the power den-

sity is that intended in the design or not. If the power density is

perturbed in a small local region, then outside that region both the

original temperature T° and the new perturbed temperature T° + T1 satisfy
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Eq. k-ih, so that the perturbation in temperature satisfies

C j — — ~ X« - Ay j = 0

(U-35)

A perturbation of the flow distribution is clearly equivalent to the

power perturbation formulated here.

In some cases there will be important variations in the conductiv-

ities in passing from the cold to the hot regions of the wall. However,

the two conductivities are in a fixed proportion

-^ • - j * -A(z)

where the subscript zero denotes the value at the cold side of the wall.

It is convenient to introduce the dimensi.onless quantities

7 = £
„/ — d , ~- d

where T o is the temperature at which gas enters the wall. In terms of
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these expressions, Eq. k-35 becomes

T » dl (1,-38)

The conductivities X. and X may be estiinated in the following way:
A y

The heat conduction in the metal opJLy is considered, neglecting for the

moment gaseous conduction effects. In situations where the slope of the

channel boundary is always small, X is given by

because 2 — is the proportion of the horizontal flow path which is metal-

lic. The value of X is obtained by the same general method: For Dumbo

wall geometry two flat plates separated by a height a enclose a single

sinusoidal plate. For one sinusoidal channel of length u this provides

two metallic conduction paths of length 0/2 and thickness •» connecting

upper and lower plates. In each path the temperature gradient is only

a/(u/2) times the vertical average gradient. Combining these factors

gives

v _ 4 T Q »

w

The conductivity of the gas will tend to increase these values to some

extent. It may be argued that
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will still underestimate the conductivities, as these are the values one

would arrive at if the heat flows in the metal and gas were somehow

magically isolated from one {mother. In actual cases of interest the

metallic part 01' the conduction seems to predominate.

U-5: The Single Channel Aberration

Consider in detail the case for constant conductivities, A = 1,

which brings Ea. U —38 to the form of a standard diffusion equation. In

this ease, a solution everywhere except at the point e = p ' , z = z ' i s

' - I 0
, e T T for z > 2 '

z-Z e
 TOT z > z

fof Z < Z '

where the coefficient has been chosen to make

This is the usual Green's function for a point source at p', z'. How-

ever, in this problem a unit point source will yield a solution G such

that

/ Gdxdy = I,
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f.
so that

Hence

r - °"
6 " T*

l

y<>

G (x,y,z,z() = -=f=j e Z2'
2-2'

where

r *

and

the point source 1? specialized to the z axis (p' = 0).

The temperature distribution resulting from any source now may be

expressed as a superposition of solutions for elementary sources. The

remainder of Sec. 4-5 is devoted to consideration of the extreme situa-

tion where one channel is blocked. There will be an amount of power

£• OflJwo1 generated in this region which must be dissipated to neighboring
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channels and hence must be carried by the rest cf the gas stream. This

power will constitute a uniform line source, so that the total tempera-

ture perturbation will be of the form

T'(x,y,z ) = B / G (x.y.z.z') dz'

The constant B is determined from the total power delivered due to the

perturbation, whence

i - a a u w = c j j T'(x,y,w) dxdy

= c J B / d z ' / GU,y:w,z') dxdy

d z > * C J B W

so that

3 ' 22 cJ
(k-k8)

There remains the job of performing the integral in Eq. k-h6

e "-*'dz'=J y e« de= E(fl/w)

where E(fi/w) is the exponential integral, which is a tabulated function.

Thus the temperature perturbation is given by
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T'Uy.w ) = By E(Xi/w)

The same procedure may be used to obtain a formal solution in the

case of variable A(z). In Iq. U-38 the substitution of variables is

made

zz
t = / A(2') 62'

°
The equation becomes

v'V = cToJ aT<
* d t (4-52)

which is the form dealt with earlier in this section. However, the power

density will not be distributed uniformly in the new variable t so that

the transformation is inclined to lead tc unpleasant integrals at the

stage equivalent to Eq. K-k9. The remainder of this section is confined

to the case of constant conductivities.

The expression for T'(x,y,w) given by Eq. U-50 defines two charac-

teristic lengths
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x° - / cJ

4wX y o

CJ (U-53)

which are the semi-mr^jor and semi-minor axes of an ellipse on which the

exponential integral assumes the value E(l). From symmetry considera-

tions the temperature distribution would be of the same form as that of

Eq. 4-50 if the perturbing power were generated not in a line source but

in an ellipsoidal cylinder whose axes were in the ratio Xo/yo»

The average conductivity approximation should be good provided the

heat flow distributes itself over a large number of channels. This will

be true if the dimensions u and a of the channels are, respectively, much

smaller than the dimensions xo and yo of the characteristic ellipse.

The ratio of total energy transport to energy transport through the

characteristic ellipse will be the ratio of the two integrals

00

/ r E ( r ) d r = •£•

,o rE(r)dr - ± [ E ( l ) + ,-2 e"
1]

= -̂  (0.4736)

105



Chapter it- Wall Temperature Distribution

so that slightly more than half the energy transport takes place outside

the characteristic ellipse.

The results of a pilot calculation give an indication of the extent

to which this method may be trusted. The following typical values are

assumed:

T = 2.5xlO"3cm

a = l.5xlO"2cm

v - 7.5xlO"2cm

Xm = O.I cal / cm - sec - d e g

Xg = I xlO~3cal /cm - s e c - d e g

c = 3.5 cal / gm -deg

J = I gm / c m 8 —sec

w = I cm

<TV ~ 4.92 cal/cm2-sec

The thermal conductivity components from Eq. k-ki are

XXo= 3.3x10 cal/cm-sec-deg

Xy<>= 3.60xl0~scal/cm-sec-deg

which give characteristic lengths (Eq. 4-53) °f
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xo = i 95 x !O"'cm

y0 = 6.48 x lO~2cm

These valuer; indicate that

X

v/Z

a/2. ' b b

The number of channels contained ir. the characteristic ellipse is

-70.2

This indicates that the approximation .-hould be accurate enough for es-

timation purposes, though spectacular precision is not expected.

The temperature perturbation as given by Eq. 1+-50 is

T'(x,y,w) = 35.6 E(^-) degrees
where

-£- = 26.5 x2 +239y 2

(U-55)

Values of this teraperature increase are rapped in Fig. 4-3«
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=25.= 50

50 22

FIG. 4-3: WALL TEMPERATURE INCREASES ABOVE NORMAL
FROM ONE BLOCKED CHANNEL.

While the average conductivity approach might seem to become rapidly

worse as x,y -» 0, due to large temperature varia.tions over distances

comparable to channel dimensions, evidently the temperature in this re-

gion is largely determined by the extent of heat diffusion outward

through the more distant regions, where the approximation is on firmer

ground. It is easy to get a rough upper limit on the expected tempera-

tures as follows: Only about half "che power generated in the blocked

channel remains within the characteristic ellipse. Suppose this much

power were given up to the four channels only which share walls with

the blocked channel. Since the pover of one tube would raise the gas

flow of one channel some 2500 degrees, half that power will raise these

four gas flows l/8 as much, or about 300 degrees. It is reasonable to

suppose that the other 6.5 channels within the characteristic ellipse
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share at least 1/3 of that power, which would bring the hottest tempera-

ture down to about 200 degrees.

Isolated partial channel blockages and actual fluctuations in power

generations may be treated in the same manner as for the case of a

totally blocked channel.

One assumption is implicit throughout this analysis: The flow

through the open channels is fixed and remains unchanged by the tempera-

ture perturbation. Actually, the flow will be influenced to some extent

by the temperature change, through changes in the density and viscosity

of the flowing gas. From Fig. 4-3 it may be noted that the average tem-

perature deviation within a channel adjacent to the blocked channel will

be less than 100 degrees, or k$. This corresponds to a change of k$ in

density and 3$ in viscosity at the hot end of the channel, with smaller

percentage deviations elsewhere. The uniform flow assumption seems con-

sistent to within the accuracy of other approximations in this treatment.

Further justification of this approximation is given in Sec. k-6, which

investigates a situation where the interaction between temperature and

gas flow can become very important.

h-6: Effects of Channel Fabrication Errors

The most important fabrication errors in the Dumbo wall design are

likely to be in the introductory channel constrictions, since that is

where the structure is most fine-grained. The Dumbc wall is divided
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into a mosaic array of rectangular cells, each consisting of a cluster

of single channels. Through each cell of this structure gas flows from

a relatively high Impedance source so that the flow through a cell is

insensitive to conditions within the metal wall. Since the flow is

fixed, the average temperature within the cell is unaffected by channel

fabrication errors. However, distributed channel errors will lead to

nonuniformities of flow and consequent temperature variations within a

cell. It is such variations that are investigated in the present sec-

tion. The problem differs from that of Sec. k-5 in that a clustering of

errors may conspire to nullify the effect of thermal conductivity to

such an extent that temperature-induced changes in viscosity and density

become very important. It is shown that the size of the mosaic cell

serves to limit the extent of temperature deviations therein. A suffi-

ciently small cell results in a smoothed temperature distribution due to

increased thermal conduction within the cell. The approach is to solve

the problem for particular patterns of errors, which subsequently can be

superimposed in order to obtain the temperature distribution from an

arbitrary error pattern.

The heat flow is described by Eq. *i-3^. This equation may be trans-

formed to dimensionless variables, given by
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t = z/w

6 = II To

q = - ^ L

which using the definitions in Eq.. 4-36 and 4-37 brings Eq. 4-34 to the

form

q-ff -A7*..

where 9 is a function of 5, T\, and t, and where V 2 refers to £ and T} only

(i.e., ::he V 2 notation of Sec. 4-5 has beeu replaced by V 2 ) . According

to Eq. 3-1 the gas flow for a single channel is determined by an equation

of the form

4f • T >
(4-58)

where A is the total area allotted to one channel. The geometric con-

ductance function B(z) is given, as shown in Fig. 3-2, by

f B, for 0 < z < w,

1 B2 for w, < z < wi2 for w, < z < w (4-59)

and the viscosity-density rat io is given by

P P° (4-60)
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In terms of the dimensionless quantities

OJ - W./W

^ C T»

Eg. k-5& becomes

(k-62)

A two-dimensional array of such channels is governed by a general flow

law of the form

^ fr-63)

which is more convenient to use in the following analysis. The following

conventions are used:

9« ^ ~^~

ge ae

In any realistic flow situation g, g , and g are positive.

1.12
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Within a cell the pressure across the wall must be constant

i

A7r = - j g d £ = const

That is, it must not depend on p, in spite of variations in q and 3.

Equation h-65, together with Eq. U-57., determines the problem.

The variables are expressed as a sum of tin unperturbed part and a

small perturbation

g = go(q,0,£) +g,(q,0,C,/S')
9 -- 0 O(O +6>(i,J)
q = qo + q,(/> )

(1.-66)

The channel errors appear in the drag perturbation gx. If there Is no

perturbation, then V29 = 0 and Eq. 4-57 may be solved to obtain

q° (h-67)

which is the solution of the unperturbed problem and also gives a con-

venient evaluation of q0 in terms of the fir.nl ' emperature ratio. The

expressions of Eq. k-66 are substituted i:.tc E.\s. U — 5T &nd ^-65. For

small perturbations the following perturbation, equations are obtained.

(U-68)
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goq (Qo, #o, I )-q,

= 0

The arguments of g0 , gog, and Si are 0O(£) and q0, so that these are

known functions. Although the perturbation affects A, it enters into

Eq. h-68 in the form AV29o only.> which vanishes.

As Eqs. k-68 and h-69 constitute only "cwo relations among the three

perturbation variables, the p dependence of gi may be specified as de-

sired and the equations solved for qi and Q\. Because the relations are

linear in qj., Q\, and gi, a linear combination of solutions is also a

solution. An arbitrary problem may be solved entirely in terms of a

complete set of choices of gi, each of which may be chosen for analytical

convenience. Now any drag function P(£,p) may be expressed as a Fourier

series in complex exponentials of the variable p, and this dependence is

reflected in g. This leads to perturbations of the form

q, (7) = q,e'
-p
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which on substitution into Eqs. 4-68 and 4-69 yield

_ T + A k 8 , = --L.q,

J { 9oq Q, + Qoe #, + g, } d £ - 0
(4-72)

Equation 4-71 may be solved for B\ in terms of the yet undetermined con-

stant qi

(fc-73)

where

This has the proper initial value, 0i(O) = C, showing the inlet gas tem-

perature to be unaffected by the perturbation. This result now may be

substituted into Eq. 4-72 to give

i

/ {g°q q, - 4 ? MI) Qoe q,+gj d C = o
ft-75)

or
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-JVC

o

(h-76)

The integrations of Eq. h-76 all involve known functions, so that qi is

determined. Substitution into Eq. U-73 gives the temperature perturba-

tion.

To recapitulate: According to Eqs. h-62 and 4-63 the functional

form of g is given by

a-77)
where the function 3 according to Eqs. k-39 and *t--6l is given by

for 0 < £ < o>

for (i) < £ < I

In the formulas above, the expressions for q and b(t,) to be used in the

various partial derivatives of g are q0 and 60(£)
 a"' given by Eq. k-6f.

Of course, the differentiations are to be done before the substitutions.

The drag perturbation gi is the result of a perturbation 5Pi in the in-

let impedance, and hence is given by

1 (u-79)

which vanishes for £ > w. Substituting into Eqs. U-76 and 4-73 gives

finally
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/a
/

(1,-80)

The integrals are elementary except the one involving I. The only de-

pendence on k2 is through I.

The specific form of l(£) is determined by the conductivity function

A(£). TWO cases are of particular interest:

For tungsten

KU) ~- '
(4-81)

For molybdenum

* (4-82)

The corresponding expressions for l(£) are

q

(4-83)

where t, is defined by Eq. 4-82,
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(4-85)

and

erf(x) = -pkr- f e'^du
Vir o (4-86)

Equation 4-86 defines the error function, which is tabulated. With

the values of these functions the remaining integrals of Eq. 4-80 may be

evaluated numerically. In fact, for the tungsten case the integral in-

volving l(£) may be expressed in terms of incomplete gamma functions,

which are tabulated. In Figs. 4-' and 4-5 the function f2(k2) is plotted

against k2, in connection with specific cases investigated below.

The procedure for finding the temperature distribution produced by

a given impedance distribution is straightforward. If the impedance

perturbation is expressed as the Fourier expansion

8/3, (?) = I ekp 8)8,(7)
" (4-87)

then the temperature perturbation is given by

e f(IO 8/S,(k)

(4-88)

According to the usual theory of Fourier series, the values assumed by
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10 —

10

Fig. k-h: The Function f^Ck*) for Tungsten
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Fig. 1+ —5: The Function f2(k2) for Tungsten and Molybdenum
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k = kx * x + k y €y (14.-89)

are determined by the condition that the exponentials must be periodic

on the boundary of the cell. If Xo and y 0 are the two dimensions of the

mosaic ceil, this determines two fundamental expansion modes.

For the x mode

or

C = 4 "* —
XO g-

For the y mode

°

or

= 4 T
2 Tc

= 4 T

All values of k are given by

k = n.
(̂ -92)

lowest

modes will be "fundamental" only to within complex conjugates. The mode

where n and n may assume all positive and negative values. The lowest
x y
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corresponding to n = n - 0 will be absent because the total flow

through the cell is fixed. As may be seen from Eq, k-92, k2 is given by

2 2 u 2 i _ Z \ i Z

k = nx k x 0 + ny Ky0 ^

There are four values of k leading to the same k2 unless one component

of k vanishes. In the actual Dumbo designs the relative dimensions of

a cell are very close to those of a characteristic ellipse, as given in

Eq. -U-53j s 0 that fortuitously

2 2 .2
k x o = kyo - Ko

In this case the number of modes belonging to a value of k2 is doubled

unless n 2 = n2.
x y

In Eqs. k-76 and ^-80 there is no mathematical reason to expect a

given sign for the denominator. However, a negative denominator is in-

dicative of unstable flow, according to the general theory of flow

stability developed in App. E. For k2 = 0 the vanishing of the denomi-

nator is equivalent to the condition of borderline stability without

thermal conductivity. Since lit,) is a decreasing function of k2, the

effect of thermal conductivity is to enhance the stability of the higher

modes of flow.

If the continuous wall approximation is to be used down to wave-

lengths which are not large compared to channel diameters, it is

important to get an idea of what sort of errors the approximation
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introduces. The shortest meaningful wavelength is that for which

alternate adjacent channels possess flow deviations which are equal and

opposite. Equation 4-80 always predicts finite temperature deviations.

However, from physical considerations there can be no wall temperature

deviations, because high and low flows are on opposite sides of each

wall common to adjacent channels, and the walls of each channel are con-

fronted with the same situations. Tims at the shortest wavelengths the

continuous wall approximation will over-estimate temperature deviations.

For design evaluation purposes Eq. 4-88 is not as convenient as a

relation between expected temperature variations and overall fabrication

tolerances. Such a relation will now be developed. The mean-square

value of a real-valued function

h(?> =E e i W h(t)
k (4-95)

is given by

^ o /o K

(4-96)

This may be seen at once by integrating the product h(p) h (p) as given

by Eq. 4-95. Using Eq. 4-96 on Eq. 4-88 gives
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If all the channel errors within a mosaic cell are independent of one

another (i.e., random), and all arise from the same probability distri-

bution, then 5Pi(k) will have a probability distribution independent of

k until the wavelength corresponding to k gets close to the diameter of

a single channel. The reason for this is that by Eq, kSj

i
^° (4-98)

is, until k gets large, a sum of complex numbers, one from each channel,

whose magnitudes all derive from a fixed probability distribution, and

which are systematically arranged not to point in any preferred direction

on the complex plane. For wavelengths shorter than channel dimensions,

Eq. I4--98 gives cancellation within each channel, and so automatically

imposes a cut-off where the continuous wall approximation becomes mean-

ingless. This cut-off may be approximated by treating all modes alike

up to a number N, but assuming that the coefficients of all higher modes

are negligible. The number N should be close to the number of channels

through the mosaic cell-

This same approximation appears in the Debye theory of crystalline

specific heats, where its justification is evident: the number of degrees

of freedom of the system is independent of choices of coordinates. More

rigorous justification is given below.
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Applying Eq. 4-96 to Eq. 4-87, indicates that on the average

(SA) =N[S/3|(k)] {k_9
where k is any one of the low modes. Substitution into Eq. 4-97 gives

?= ±(l f2(k2))(W
(4-100)

This may be restated as a ratio between percentage root-mean-square de-

viations in temperature and in introductory channel height ax. The

geometrical conductance factor B for the thin channels described in

Chap. 2 is proportional to a3. Hence

H{ (4-101)

which with Eq. 4-100 defines a multiplication factor R relating rms

deviations of temperature and fabrication errors, where

1/2

' k (4-102)

This is a convenient form for evaluation. The maximum temperature devi-

ation is larger than the rms value. The ratio of values is 1.4l for a

sinusoidal deviation. To exceed this value by an appreciable amount

requires a function involving sharp variations, or "spikes." However,

such spiked functions are discriminated against by the effect of thermal
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conductivity. They have large Fourier components of short wavelength,

and these are suppressed by the small value of f (k2) for large k.

A great deal of what has been developed here does not depend on the

continuous wall approximation. To better justify some features of the

formulation already given (e.g., treatment of the shorter wavelengths

and cut-off point), a more rigorous and elegant approach which assumes

an array of discreet channels at the outset is outlined briefly. The

set of functions defined at the II channel positions may be regarded as

a vector space of N dimensions. The transformation from an impedance

deviation pattern to the corresponding temperature deviation pattern is

linear for small deviations, and may be regarded as a linear operator

upon the vector space, which may be called the "temperature operator."

"Translation operators," which shift the position of a deviation pattern,

may also be defined. Since temperature and impedance deviations are re-

lated in a manner that does not depend on the location of the impedance

pattern, the temperature operator and translation operators commute.

Hence they have the same set of eigenvectors. But translations ar-3 uni-

tary operators, so that their eigenvectors (a) span the vector space,

and (b) are orthogonal. From (a) there must be just N eigenvectors.

This justifies the previous heuristic procedure of keeping only N modes.

The eigenvectors of translations are complex-exponential functions of

the position points, which justifies the functional form that was chosen

ad hoc in Eq. k-fO. Moreover, the translation eigenvectors must be both
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periodic or, the boundary, and, due to (b), orthogonal over the mosaic

array. Either of these conditions restricts k to the values given by

Eq. it-93- Thu^ the eigenfunctions of the expansion given in Eq. U-95

are exact. The continuous wall approximation is an approximate method

of evaluating the eigenvalues of the temperature operator, substituting

n differential equation for a nore exact and more difficult system in-

volving difference equations. The approximation should be asyc.ptotically

correct for the highest eigenvalues (long wavelengths) and, as has been

mentioned, gives too high a value for the smallest eigenvalues which

should, in fact, drop to zero.

Thi> fourfold eigenvalue degeneracy mentioned with Eq. h-9l is a

consequence of the property that the temperature operator also commutes

with the unitary operators of reflection about horizontal and vertical

central axes — which is a fairly ornate way of saying something quite

plain. The exceptional cases arise when a reflection operator maps an

eigenvector back into itself. The further degeneracy arising from the

fortuitous choice of the mosaic cell's boundary shape depends on the

continuous wall approximation. It would be expected to arise from a

further symmetry of the temperature operator under 90° rotations. Since

the sinusoidal geometry of the detailed wall structure does not have

this symmetry one may expect a "fine structure splitting" of these degen-

erate eigenvalues. This splitting should be slight down to quite short

wavelengths, since the degeneracy would be exact if the sinusoidal
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geometry were replaced by either a very nearly similar array of diamond-

shaped channels of the appropriate relative dimensions, or any one of

several other properly symmetric geometric forms. Although it is inter-

esting to note what general features of the temperature operator can be

predicted in advance, the more exact calculation of the actual eigen-

values would involve some rather heavy mathematical work.

The rms deviation ratio given by Eq. !j--102 is evaluated numerically

for three different cases. Data given in Table h-1 are typical for

Dumbo designs described in Chap. 9. Problems 1 and 2 are concerned with

metal walls assuming constant thermal conductivities of 0.1 and 0.2

cal/cin-sec-deg, respectively. Both of these values of thermal conduc-

tivity are less than that of tungsten given in Table B-l (0.2^ cal/cm-

sec-deg). The presence of U0 2 or of possible alloying metals may

decrease the thermal conductivity to that chosen in problems 1 or 2. In

problem 3 "the empirical values of the thermal conductivity of molybdenum

as a function of temperature are used. These data are given in App. B.
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TABLE 4 - I

THREE TYPICAL PROBLEMS

PROBLEM

at =0.134

A = 134
qo= 0.120
a =0.015 cm

v - 0.075 cm

I

Xo = 0.300 cm

y0 = 0.100cm

c = cp = 3.85cal/gm-deg

w = 1.00 cm

J = I.OOgm/cmz-deg

Xo

r
ko

R(Eq 4-100)
= 1°/

0.100 0.200 0.389 cal/cm-sec-deg
— — 1.121
0.4468 0.8936 1.738
0.130 0.346 0.288

9.7 3.6 8.1 degrees

The function f2(k2) is shown in Figs, 4-4 and 4-5 for the two

metals. The values of k2 are determined by Eqs. 4-91, 4-93, and 4-94.

From Eq.. 4-91

" " CJ < (U103)

The value of X is obtained from Eq. 4-4l.

Actual measurements of fabrication errors have been made on a sample

section of- Dumbo wall. /This section is shown in Fig, 1-10. Although it
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was made without excessive heed for uniformity and was measured after

considerable handling, the measured rms deviation in ai was only 12$.

Use of the results of problem 3 together with the assumption that

6T =1.5 6T indicates that 8T = 1U5 degrees. This extreme tem-max rms max

perature increment within a mosaic cell is tolerable, and might be

decreased by improved fabrication and handling techniques. In the numer-

ical designs of Chap. 9 two extreme assumptions are made regarding this

uniformity. As the pessimistic extreme, a 12$ rms error is assumed,

while the assumed optimistic extreme is a 1$ rms error.

k-7: Ciher Heat Transfer Mechanisms

Thus far the transfer of heat only by thermal conduction of the

metal and of the molecular hydrogen has been considered. Two other heat

transfer mechanisms are now considered: namely, the effects of thermal

radiation and the influence of molecular dissociation.

Thermal radiation manifests itself in two ways:

(1) Radiative transfer along the x or y direction (see Fig. k-6)

serves primarily to smooth out the temperature distributions developed

in Sees, k-3 and k-h.

(2) Radiative transfer along the z direction distorts the linear

temperature distribution along this axis as developed in Sec. h-2.

It is shown that both effects are small.

*A large portion of the rms value was due to a few channels, not shown
in Fig. 1-10, damaged by excessive handling.
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. lit. •*-

For effects of thermal radiation in the x-y plane the hot end of tx

channel may be considered to be filled with black-body radiation at the

average temperature T of this region. A wall at a temperature T, flows

energy into this region with a flux I_ given by

R b (U-KA)

where e is the eciissivity of the surface and u is the Stefan-Boltzman

constant having the value 1.355 x 10 cal/cm -sec-deg4. To a first

approximation, Eq. 4-10i+ may be written

I R= 4eaT
3(Tb-T)

If radiation effects are not present the distribution T. (x) for a

sinusoidal channel is given by Eq. -̂-31 as

*Not to be confused with wall power density also denoted by a.
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at>* 3c dT CQS 47rx
T ^m dZ V (k

The term of Eq. 4-12 corresponding to the influence of the metallic

thermal conductivity X on this distribution is given by

m dx* 5 dz u

Because the x variation of these two quantities is the same, one may form

their ratio and regard the radiation effect as introducing an apparent

additional metallic thermal conductivity. Because both faces of the

wall are involved, the ratio of interest is

= 47*

The following +ypical values are used

T = 2800°K

\) = 7.5 x 10"2 cm

\ =0.1 cal/cm-sec-deg

T = 2.5 x 10"3 cm

The ratio given in Eq.. 4-108 is 0.017e where € < 1. Thus radiative

transfer in the x-y plane contributed less than 2$ to the total thermal

conduction.

The problem of radiative heat transfer along the z axis may be

handled similarly. Since each channel is very long compared to its
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height (— = 65), it may be assumed that in every region the temperature

of black-body radiations is affected by the local wall temperature

distribution only. If two parallel walls are separated by a distance a

with a constant temperature gradient, it may be shown that the radiation

received at a point z from another point z1 is maximized when z1 - z = a,

i.e., along a 45° angle. The temperature difference between these two

AT
points is gl/en by — a so that the temperature of the local radiation

Am

may be regarded as approximately T(z) + — a, thus causing a radiative

transfer to the wall given by Eq. 4-105 as

I = 4€o-T(z)* -^-a cal/cm*-sec .,
R w (

Hence for a lenp-' u of the wall with cross sectional perimeter 2x> the

radiative heat received is

£ M . cal/sec
w

This may be compared to the total heat, added by nuclear heating to the

AT
gas causing a temperature rise of — a, given by

AT
c J a v - —— a cal/secw

The ratio of the radiative heating to the total heat is

8CQ-T3

cJ (4-110)
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For T = 2500°K, c = 3.5 cal/gm-deg, and J = 1 gm/cm2-sec, this ratio is

O.Cft-e, which indicates a power modification at the hottest end of the

channel of less than k$. Because of the T3 dependence of the above

quantity this value decreases strongly at any cooler location.

From simple solid angle considerations it may be argued that negli-

gible thermal radiation reaches the moderator.

Another heat-transfer mechanism is due to the partial dissociation

of hydrogen at high temperatures to atomic hydrogen in the hottest re-

gions and the subsequent recombination of the diffusing atoms in cooler

regions. This phenomenon has been studied by I. Langmuir and still

earlier by W. Nernst. Potentially this effect may be dominant over nor-

mal thermal conduction processes in H 2 gas at high temperatures because

of the large heat of dissociation which is involved. However, because

realistic theoretical studies and experimental information are lacking,

its influence has been neglected in this report. It can serve only to

decrease the value 8 . However, the dissociation and recombination of

hydrogen may greatly enhance rocket performance, as is shown in App. D.
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CHAPTER '•)

LOSS OF REACTOR MATERIAL- BY EVAPORATION

The Elephant's Child sat there for three days waiting
for his nose to shrink. But it never grew any
shorter.

R. Kipli-g, The Elephant's Child

5-1: Statement of the Problem

The role of the process of evaporation of the refractory metals

from the hot regions of a metal rocket motor requires investigation,

particularly when the channel walls are constructed of thin foil as in

the Dumbo design. Since molybdenum is the most volatile cf the various

refractory metals considered in this design, it will be used as an

example in the discussion that follows.

At first glance it might appear that, because of the low vapor pres-

sure of the metal (less than 10 microns) and the large amounts of

hydrogen flowing through the Dumbo wall, metal vapor would be exhausted

by the propellant stream at a rate limited by the molecular evaporation

process. However, it may easily be shown that this molecular evaporation

process is sufficient to maintain a partial pressure at the metal sur-

faces which is effectively that of thermodynamic equilibrium. Therefore

the rate of loss requires solution of a problem of diffusion of the

metal atoms into the moving stream. It is with this diffusion problem
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that this chapter is concerned.

numerical results for typical design values are presented which show

that the material losses are negligible.

5-2: Calculation of the Evaporation Loss

In this problem J denotes the molar flow density of the gas, Jx

that of the molybdenum vapor, and c the molybdenum concentration. The

flows satisfy the familiar continuity equations

(5-1)

{ 5. 2 )

and are also related by a diffusion equation of the form

Jt = c 7- nDVc (5.3)
where n is the total molar density, D is the diffusion coefficient of

molybdenum in hydrogen gas, and c is the mole fraction of molybdenum.

If the flow is along the z axis of a heat-exchange passage

(Fig. 5-l), then J has a z component only. Combining Eqs. 5-1, 5-2, and

5-2 gives

J, -— - nDVc =0
(5-4)

z dz
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A /
-a

A A

A A

A A

•w

Fig. 5-1

If the problem is further specialized to the case of flow between par-

allel plates this equation becomes

dz dz'
= 0

(5-5)

The boundary condition on the y boundaries of the differential

equation 5-5 is that the vapor at the metal surface must be saturated.

The vapor pressure of molybdenum is given by a relation of the form

-E/RT
P = Re (5-6)
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However, the evaporation is important only where the temperature is

close to its maximum. In this region one may make the linear approxima-

tion

I ^ I / j -T \

' m \ 'm / , .
(5-7)

which brings Fq. 5-6 to the form

E T -T

P = P<*e * ? m (5-8)

where the subscripts m stand for maximum values. In the Dumbo wall the

temperature increase is linear with distance z, so that if the z origin

is chosen at the hot end of the flow passage (for purposes of this

problem), it follows that

T -T
T m-T -- " "w ° <~

z )
 (5.9)

which brings Eq. 5-8 to the form

P = Pm e (5-10)

where

Thus, the y boundary condition on c in Eq. 5-5 is
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c(a,z) =c(-a,z) =c me

(5-12)

The approximation used in Eq. 5-7 is good in the case of actual interest,

since the exponential term of Eq. 5-12 drops rapidly as z -» -w, where w

is the length of the flow passage.

The boundary condition given by Eq.. 5-12 leads to a fortuitous sim-

plification in the solution of Eq. 5-5. This solution is of the form

c(y,z) = c m / (

which reduces Eq. 5-5 to the ordinary differential equation in F(y)

The boundary condition imposed on F by Eqs. 5-12 and 5-13 is

F(a) = F(-a) = I (5_15)

The rate at which molybdenum vapor flows through the heat exchanger

is given by the area integral normal to the flow

dA" = / JIZ dxdy
(5-16)

so that the loss rate per centimeter of plate edge will be

where the last form follows from Eq. 5-3 and the integration extends
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across the channel. By Eqs. 5-13 ar»d 5-1^ it follows that at the hot

side of the Dumbo wall, where z = 0,

cJz-nD — = •̂ m~ nD -~

so that Eq. 5-17 becomes

* = "a" nD / -a-is dy = 2 - ^ nD -5-t-

P dy P dy I. . .
B (5-19)

where dF/dyL is evaluated at the boundary. The problem is reduced to

performing this evaluation, which involves solving Eq. 5-1^.

The flov distribution through the channel is given by

i i ( y ) t ̂
d * (5-20)

where J is the mean flow rate. Substituting into Eq, 5-1̂ - gives

(f y . v
dy2 U 2 nD " ) 2 nDa2 V (5_a)

This differential equation may be reduced by use of dimensionless quan-

tities defined by
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1

^ *

c* --

X =

F(XX) =

3 J/3
2 nDo2

2

y/x

f ( x )

Eq. 5-21 then becomes

with the boundary conditions

=0

The required value is

(5-22)

(5-23)

(5-24)

dF
dy

8 (5-25)

It may be shown that there are two power series which satisfy Eq. 5-23,

consisting respectively of odd and even powers of x. Because the

boundary conditions given by Eq. 5-24 and the symmetry of the problem

require an even function of x, the desired solution is that consisting

of even powers

00
f(x) = b( I + Z

(5-26)
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The successive terms of the summation are given by the recursion relation

a2x
2=

anx
n=

n(n-l
J (5-27)

which may be summed for x = a/x to obtain the value of b from Eqs. 5-24

and 5-26. Tha value of f'(a/x) may be obtained from

CO
'(x) = -£- I (2k)

kS| (5-28)

which may be evaluated from the terms used in the summation indicated by

Eq. 5-26.

5-3: Numerical Results

For the Dumbo problem reasonable values of the necessary parameters

are

J

n

a

w

= 1 mole /cm -sec

= 4 xlO"4 moles/cm3

= 0.625 xlO"2cm

= 1 cm

E =

T m =

To =

D =

14x10 cal/mol

2800° K

300° K

0.27 cm2/sec

The value of E is derived from Dushman and the value of D was estimated

from the semi-empirical Lennard-Jones intermolecular potential between
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2
hydrogen and mercury according to the method described by Hirschfelder.

The resulting values of the intermediate parameters of interest are

cm = l.3xlO'? € = 1.857

y9 = 22.3 cm" b = 0.09718

* = 3.365xl0"3cm f'(^)= 1.057

Here c was again obtained from Dushman, using a partial pressure of

10 microns in 100 bar.

Of the two terms constituting e2, according to Eq. 5-22, the second,

Xap2, is responsible for only 0.1$ of the total value. That this term

is negligible is not surprising, since it arises from the upstream diffu-

sion term nDdc/dz of Eq. 5-3. From Eqs. 5-19 and 5-25 the value of $ is

8.O6xlO-'°moles/cm-sec
(5_29)

For gas saturated with molybdenum vapor the loss rate $ per centimeter
s

of plate edge is

<£s= Zac^J =3.25x10 moles/cm-sec

(5-30)

Thus the ratio is

$/$s = 0.284
(5-31)

In the Dumbo design 1 cm of hot heat-exchanger edge forms one

bounding edge of 1 cm2 of 0.0025 cm thick molybdenum foil, or
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2.5^7 x 10~4 moles. According to Eq. 5-^9 this sustains a loss of

5.07 x 10 moles in one second, or 16.11+ x 10 moles in 200 seconds.

This corresponds to a total loss of 0.027$, which is not serious. Equa-

tion 5-50 indicates a loss of 0.11$ for complete saturation.

3-^ : A Rapid Approximation Method

A rapid method may be used for estimating dF/dy _, avoiding the

summations of equations 5-26 and 5-28, which constitute the major job in

the procedure just given. According to Eq. 5-20, the value of the flow

derivative at the boundary is

d ... __ 3 J_
dy -"' „

(5-32)

If the y origin is moved to the boundary and the condition y « a is

assumed, then

Jz(y) = 3 -^-y
(5-33)

is a reasonable approximation. Thus for large a (or small D, which would

confine the molybdenum vapor to a layer close to the boundary) the

problem is that for a channel of semi-infinite width, which may be solved

with the actual width appearing only in the expression given by Eq. 5-33

for J (y). The resulting value of dF/dy L is an overestimate for two

reasons: The mass flow rate J at a particular value, of y is overstated

by Eq. 5-33, and the inhibiting influence of diffusion from the opposite

Ikk
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wall is neglected.

Neglecting the upstream diffusion term 5>z?, Eq. 5-1^ becomes

-3 -*£ /F • o
n D a (5-*)

This equation may be reduced by the use of dimensionless quantities

defined by

3/8 J . J_

n Da ' X3

x = y/X

F(Xx) = f(x)
(5-35)

which reduces Eq. 5-3^ "to

±'•-'•0
(5-36)

with the boundary condition

f ( 0 ) = l (5-37)

from Eq. 5-15. The other boundary condition is

f - 0 as x - oo (5_38)

Because Eq. 5-38 makes solution by power series awkward, it is more con-

venient to seek a solution of the form

f (x) = /K(x , t ) g(t) dt
J (5-39)
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Substitution of this form into Eq. 5-3*5 gives

/ ( 4" K x x - K ) gdt = 0
(5-40)

It is identically true that

and in particular for n = 3, if

K ( x ,t) = f* e
2 J. Xs

* e" * T
(5-42)

then

which brings Eq,, 5-40 to the form

(5-43)

/ ( 3 K , - K ) gdt = 0
(5-44)

Choice of 0 and «> as the limits of the t integration allows Eq. 5-44 to

be integrated by parts, jielding

CO

K(3g T + g ) dt = 0
0 (5-45)

where the integrated terms at the limits vanish by Eq. 5-42 unless g(t)

behaves unreasonably at these limits. Equation 5-45 is evidently solved

by
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g •" b e

which together with Eq. 5-*+2 brings Eq. 5-39 to the form

(5-46)

x) =b

•=:•: b t o be given by

dt

(5-4?)

(5-48)

transformation t = X 3 T , differentiation,In Ji'q, '"-V,7, .Ujui-.'jai-i--::;.

and specialization to x •- 0 -c;'.'/•= s

00 2

f'(0) = b / r'Te"^"? dr = 37^ ( 2 / 3 ) = 0.72905

(5-^9)

Thus, in Eq. 5-U9, f' has been evaluated definitively as a number inde-

pendent of design parameters. For the numerical example, this method

shows that

f'/X = 3 356 x IO2cm"'
(5-50)

This result is to be compared to the better value f'/\ = 3.114-1 x 102 cm"1

obtained by the long method. The difference of only 7$ in the two re-

sults suggests that the short method is sufficiently accurate whenever

it indicates loss that is much less than that from saturated vapor.

147



Chapter 5 LOSB of Reactor Material by Evaporation

REFERENCES

1. Saul Dushman, Scientific Foundation of Vacuum Technique, John Wiley
and Sons, Inc., New York, 191+9.

2. Joseph 0. Hirschfelder, Charles F. Curtiss, and R. Byron Bird,
Molecular Theory of Gases and Liquids, John Wiley and Sons, Inc.,
JJev York, 1954.



CHAPTER 6

NUCLEAR REACTOR CONSIDERATIOIIS

Then the Elephant's Child felt his legs slipping,
and he said through his nose, which was now nearly
five feet long, "This is too butch for be."

R. Kipling, The Elephant's Child

6-1: The Problem

In u nuclear rocket motor design there are uwo reactor considera-

tions of great importance: the quantity of fissionable material required

and the distribution of power density in the heat exchanger. The second

point is naturally of particular interest in these devices because some

of the materials operate under conditions not far removed from thermal

failure. In this chapter these two questions are investigated theoret-

ically. Because the theory becomes rather involved, some approximations

must be made. The uncertainties due to these approximations are dis-

cussed in Sec. 6-9. For the purpose of this report there is less

interest in several-place accuracy than in a reasonably tractable pencil-

and-paper method for obtaining <?stimates accurate enough to determine

whether a device is practical or not. Also, for a preliminary investi-

gation an approximate and largely analytic approach has evident

conceptual advantages over more accurate numerical machine methods.
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6-2: Slowing-down Leakage Through a Moderating Reflector

The life history of a reactor neutron born at fission energy

involves three important sorts of events: degradation, leakage, and

capture. The slowing-duwn process in systems in which capture is unim-

portant at energies above thermal is investigated initially.

The system contemplated here is a hydrogen moderated reactor core

with a beryllium reflector. The hydrogen moderated core region is de-

noted by the subscript H and the reflector region by the subscript R.

D,. and IV are the transport mean free paths in the two regions, and ZL.

ar.d ZL. are the slowing-down macroscopic cross sections for these regions.

The slowing-down equation for the neutron flux in the reflector is

according to the usual Fermi age approach where

E ° / E ) (6.2)

is the logarithmic energy decrement or "lethargy", E o is the fission

energy of a neutron, jS is the neutron flux, and g is the average change

in u per collision. In beryllium | is 0.209.

The slowing-down equation for the hydrogenous core states that at a

given lethargy the rate of loss by degradation and by diffusion balances

the appearance rate of neutrons degraded from higher energies. This

equation is
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= /du'eu'-u IH(i
(6-3)

This is the basic equation of Bell's "Simple Method of Calculating Crit-

2
ical Masses of Proton Moderated Assemblies." A function

which is dimensionally neutrons/cm3-sec, is defined. Equation 6-3

becomes

(l--^-V 2) q ( u ) --/du'e
u'u q(u')

Zu or
H (6-5)

The neutron source intensity at fission energy must be equal to the loss

rate of Eq. 6-3 at that energy. Therefore, the fast neutron source in-

tensity is

(IH(o)-DH(o)V
2)tf>(o)= (I- l ^ 7 2 ) ^ 0 )

H (6-6)

On the other hand the source intensity at thermal energy is derived from

contributions at all energies. From Eq. 6-3 the thermal energy source

intensity is

where the subscript th denotes thermal energy. Differentiating Eq. 6-5
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with respect to u gives

-*- ( l - - ^ - V 2 ) q = q - / d u ' euLuq(u')
du 2,H o

^H (6-8)

where Eq. 6-5 is used a second time in the final step. Now D_. and l/2rr

are transport distances characteristic of the moderator composition. The

result of the V s operation on q is similar to twice dividing q by a

length comparable to the geometric dimensions of the moderating region,

provided q has no sharp space fluctuations within the core. Further, D-.

and l/̂ tij which are transport distances characteristic of the moderator

composition, are small compared to the dimensions of the core. There-
DH

fore, the effect of the dimensionless operator =— V 2 upon q is to

multiply it by a quantity much smaller than 1, and this term may be

dropped from Eqs. 6-6, 6-7, and 6-8. This is equivalent to the Bell

2
approximation: this approximation has been used to predict critical

masses to within the 5$ accuracy of experimental data.

This approximation is applied to Eqs. 6-6, 6-7, and 6-8 with the

result that the fast source intensity is given by q(0), the slow source

intensity is given by q(u , ) , and the slowing-down equation is given by

V2q = £« I±
D H du

(6-9)
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To this approximation q is a bona fide slowing-down density in the core

region. The ratio q(u, )/q(o) is the slowing-down nonleakage

probability.

The preceding development parallels Bell's treatment of hydrogen

moderated assemblies. The following approximation may be used to extend

the theory to a system with a moderating reflector: In the reflector £

and D are in a fixed proportion to their values in the core, i.e.,

and DR/D are independent of u. This is a good approximation over most

of the range of u (see Ref. 3) and errs in the direction of conservatism

(see concluding paragraph of Sec. 6-2). Equation 6-k is substituted into

Eq. 6-1 and this approximation is applied, yielding

V2q = £
DR du

R (6-10)

in the reflector. On the interface between core and reflector there is

continuity of current, which gives

D R V q • N I = DHVq • N
(6-11)

where N is normal to the interface. It is necessary that q vanish on

the extrapolated boundary of the reflector. Specification of q(o) is

enough to determine the solution of the problem.

A change of variables, from the lethargy u to the Fermi age T in

the moderator, is introduced, where
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u DH("') du1

Equations 6-9 and 6-10 become

(6-12)

(6-13)

(6-lO

for the moderator and reflector regions, respectively. Two functions,

S(x) and w(x), are defined by

for 7 in H

S(7) =
I

= S, for 3T in R

-

for 7 in H

for 7 in R

Using these definitions Eqs. 6-13 and 6-lh are combined to give

dq

(6-15)

(6-16)

Here the form SVq has been used because it is continuous across the

moderator-reflector interface as rhown by Eq. 6-11.
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The slowing-down equation 6-16 is now in a tractable form. Solu-

tions of Eq. 6-16 are assumed to be of the form

qBCx,T)

Substitution into Eq. 6-16 yields

This is an eigenvalue problem leading to eigenvalues B 2 and to corre-

sponding eigenfunctions q^(x) which represent neutron flux buckling modes

for the system. The slowing-down nonleakage probability for the nth

* • " ^mode is e

Equation 6-l8 leads to an orthogonality property. It is seen that

=- / qnV.SVqmdV =

(6-19)

where the divergence theorem is used in the usual way in the last step.

A similar result follows if B 2 is replaced by B2. If B 2 * B 2 it
m J n m n'

follows that

/ 7 = 0
(6-20)

Thus the functions q^(x) are orthogonal with respect to the weighting

function w(x). If the completeness of the set of q functions is
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assumed, they may be used as a basis for the expansion of arbitrary

functions

f (x) = I n an qn (x)

where

(6-21)

and where the functions <3LW are normalized

/ q * (7)W(7) dV =1
V (6-22)

The proper initial condition is applied by expanding the fast neu-

tron source in terms of the buckling modes of the system by using

Eq. 6-21. The quantity l/B is a measure of the nodal separation dis-

tance for the nth eigenfunction. Hence B 2 is rapidly increasing with n,

~B?Tth
and consequently e is rapidly decreasing. Leakage becomes very

severe in the higher modes, and it is a reasonable approximation that

leakage is soon complete in all modes except the lowest. The profile of

the thermal flux in the core region is close to that of the thermal

source. The fast source in turn has the same profile within the core,

but vanishes in the reflector, where no fissions take place. Thus the

shape of the distribution in which new fission neutrons appear is not

that of a normal mode but is of the form
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q0 (x") for 7 in H

H I o for T in R
(6-23)

• > • {
Substituting f(x) = qR(x) in Eq. 6-21 gives

v ° (6-24)

where the denominator is included to make the expression hold whether q

is normalized or not. ao is the probability that a neutron does not

leak out of the reactor in spite of the contribution of higher modes to

the fast source. The total slowing-down nonleakage probability for the
-B2T

actual distribution is a e
0

It is interesting to note that, from Eqs. 6-15 and 6- 24, a -* 1 as

£ -• 0. This implies that no high-mode leakage correction is necessary

for a nonmoderating reflector in a steady state situation. Physically,

this is plausible in that such a reflector cannot act as a neutron sink

at any energy. Mathematically, it is plausible in that the modes in

this case are orthogonal within the moderating region alone, because in

this case Eq. 6-11 is a self-adjoint boundary condition, and the inter-

face is regarded as the boundary of the problem.

The same treatment may be used to find slowing-down leakage at any

energy, so long as the corresponding Fermi age is large enough to allow

complete leakage from the higher modes.
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Determination of slowing-down leakage is reduced to determining the

proper Fermi age at thermal energies and solving an eigenvalue problem.

2
There is a simple prescription for calculation of Fermi ages. Solution

of the eigenvalue problem depends on the geometry of the reactor. If a

cylindrical geometry is used, the solution is in terms of Bessel func-

tions. The solution of the present eigenvalue problem is not completed

in detail, because the preceding development is modified by slowing-down

capture. However, straightforward mathematics leads quickly to the fol-

lowing results: For a reactor, which is shielded on the top and sides

but not on the bottom, the interface condition from Eq. 6-11 yields two

equations for the top and sids interfaces. If the eigenvalue is

B =
(6-25)

then the side equation is

(6-26)

and the top equation is

1/2 l"2

|

(6-27)

where L o is the core height, RQ the core radius, Li the external height,
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and Ri the external radius. In Eqs. 6-26 and 6-27 the trigonometric co-

tangent should be chosen if the absolute bars contain a positive

quantity, and the hyperbolic cotangent otherwise. In these equations

the approximation is made that the side reflector, is so thin, compared

to the core diameter, that the radial solution in the side reflector may

be expressed as a sinusoidal function. Equations 6-25 and 6-26 must be

solved simultaneously for a and p to determine the eigenvalue B. The

following substitutions are made

° " L

(6-28)

= JL
R ° (6-29)

= X

R,-Ro
~RT'P

= h

(6-30)
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= e
(6-31)

whereupon Eqs. 6-26 and 6-27 become

g U > = - f - g ( | l , ! )

Equations 6-32 and 6-33 are to be solved for r\ and £. In the thin re-

flector limit, as p -* 0 and X -• 0, these equations become

(6-3k)

X (6-35)

which are just the equations one would obtain by fitting the flux in the

core to the outside boundary by a naive linee.r extrapolation. The eigen-

value is obtained by first solving for approximate values of TJ and £ from

Eqs. 6-3I+ and 6-35- These values are substituted into the right-hand

sides of Eqs. 6-32 and 6-33 to obtain better values. The process may

then be repeated until a stable result is obtained. The routine is quick

and convergence is rapid.

The approximation of proportional nuclear parameters implicitly

assumes that the diffusion rate in the reflector increases with
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increasing neutron energy as rapidly as it does in the hydrogenous core.

Thus leakage thr̂ v.gh the reflector is overestimated at high energies, and

the approximation is conservative.

6-3: Effect of Slowing--lawn Capture and Self-shielding: The Conditions

for Flat Flux

A term is introduced into Eq, 6-3 to include captur°, yielding

u

= /du'eu'u I

Application of the same steps as before gives, instead of Eq. 6-8,

/ H

(6-36)

Transforming to the Fermi age variable gives

J L ( 1 +
H

For a well moderated reactor without strong capture resonances

Zfi/Ert « 1, so that this term as well as the Laplacian term on the left

hand side of Eq. 6-38 may be dropped, yielding

q . !a
(6-39.
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For an unreflected reactor Eq. 6-39 is reduced to the form of Eq. 6-13

by the substitution

r s.
q = q' eo 'H

(6-40)

where q' is a solution of Eq. 6-13, and hence q is a solution of

Eq. 6-39. The correct solution to Eq. 6-39 at thermal energies is ob-

tained by solution of the equation

which has the simplicity of an equation with constant coefficients.

Since Eq, 6-39 does not treat resonance capture properly the con-

stant coefficient is modified in such a way that an expression is

obtained which takes account of resonance absorption as in the more exact

equation 6-38. As given by Eq, 6-40, the slowing-down noncapture proba-

bility is

Jth

(6-42)

which should be substantially correct for good moderation and no reso-

nances. In an infinite hydrogenous moderator the slowing-down noncapture

probability may be calculated exactly. It is
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dj

(6-1+3)

The exact equation 6-38 is replaced by the simpler approximate equation

q - coq - -^

where

(6-1+5)

and which is obtained from Eqs, 5-lfl, 6-1+2, and 6-1+3. The effect of the

approximation is discussed in Sec. 6-9. Fince Eq, 6-hh gives an exact

result at thermal energies for an infinite core where there are no neu-

tron currents, it is approximate in its treatment only of the effect of

capture on neutron transport.

As in Eq, 6-15, a function

f C* for 7 in H

L 0 for x in R
(6-h6)

i s defined. Combining Eqs. 6-1+1+ and 6-15 gives

(V • SV-SC 2) q =oi

(6-1+7)

in close correspondence to Eq. 6-l6. The substitution
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yields

(V-SV-SC8) qn= -B
Z
n<oqn (6-1*8)

This eigenvalue equation clearly has a close mathematical kinship with

Eq. 6-18. In particular it has the weighted orthogonality property.

The slowing-down nonleakage probability is still given by a e ° f

which now includes effects of reflector moderation, slowing-down capture,

and slowing-down self-shielding. The eigenvalue equation becomes

Sl (6-50)

for the moderator and reflector regions, respectively. The solution to

Eq.. 6-^9 depends on two considerations: the boundary conditions on the

surface of the core, and eigenvalue B2. Both of these depend on the ex-

ternal boundary of the reactor. If a reflector is chosen giving B§ = C§

and a constant value of qo over the core surface, then the slowing-down

density satisfying Eq. 6-49 is constant throughout the core, and the

condition of uniform power generation is achieved. The physical require-

ment for the flat flux condition is that capture loss in the core and

leakage loss in the reflector proceed at the same rate, so that the flux
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level sinks uniformly across the whole reactor as energy degradation

goes on, without requiring neutron currents in the core.

For a cylindrical geometry the solution of Eq, 6-49 is in terms of

Bessel functions. If there is little reflection and low slowing-down

capture., then C§ - B§ is large and negative, and the solution is the

familiar humped Jo flux distribution as shown in Fig, 6-1-a, indicative,

of neutrons leaking out.

(b)

Fig. 6-1

If, on the other hand, poisoning is large and moderation is accomplished

in the reflector primarily, C§ - B§ is large and positive and the flux

profile is a Bessel function of imaginary argument, of maximum size at

the surface of the core, as shown in Fig. 6-1-b. The neutron current is

directed inward in this case. For some reflector thickness intermediate

between the two extreme situations is a transition between the two types

of flux profile corresponding to the flat flux situation, as shown in

Fig. 6-1-c. Achievement of all the conditions necessary for flat flux

requires both moderation in the reflector and slowing-down absorption in

165



Chapter 6 Nuclear Reactor Considerations

the core.

The expressions given in Eqs. 6Ah and 6-45 represent an approxima-

tion in the treatment of neutron current effects. However, in the flat

flux situation neutron currents are reduced to a low value, making the

approximation most valid under these conditions.

The solution of Eq. 6-48 for the case of a cylindrical reactor re-

flected on the top and sides is quite straightforward when the flat flux

condition is imposed. The z coordinate is measured downward from the

top of the core. Since the flux profile is flat radially within the

core, it follows that In this region

where y is determined by the bottom boundary condition. Because some

reflection takes place at the bottom boundary, a probability-of-return

or "albedo" boundary condition is used, i.e.,

q " "eft
Z ~ L ° (6-52)

where p is the probability of return, D __ is the effective diffusion

coefficient of the core, and Lo is the location of the lower boundary.

The numerical critical masses are insensitive to p and D __. Substitu-
eff

tion of Eq. 6-51 into Eq. 6-52 gives
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x tan x = -f- - ^ ±
c ueff '

•where

y0

(6-53)

which determines y. Substitution of Ec1.. 6-51 into Eq. 6-U9 gives
P 2 _ Z 2

In the top reflector Eq. 6-50 becomes

(6-55)

giving

(6-56)

If the thickness of the top reflector is Li (notational change from

Sec. 6-2), then the vanishing of Eq. 6-56 gives

' ' Z V "• B« (6-57)

The treatment of the side boundaries is similar. Equation 6-50 is

written in cylindrical coordinates as

\ ' (6-58)
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The solution fitting that of the core at the core boundary is

, N J 0(Er)-aY 0(Er)
q(r,z) = cos yz -* 9

J o(ERJ-aY B(ERJ

where

(6-59)

The constant a is determined such that

dq
dr

= 0

and

q(R,,2) =0

(6-60)

(6-61)

(6-62)

where RQ is known and Ri is to be found. Substitution of Eq. 6-59 into

Eq. 6-61 gives

J, (E Ro) .
Y,(ERo)

(6-63)

which evaluates a. The substitution

ER, = y

reduces Eq.. 6-62 to

Jo(y)
Y«(y) = a

(6-6k)

(6-65)
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which now may be solved for y to determine Ri. For a reactor with a

typical reflector, the value of Ri - Ro obtained in this way is quite

close to Li, but is a bit larger.

The high mode nonleakage probability is evaluated by substitution

of Eqs. 6-51, 6-56, and 6-59 into Eq. 6-2k, yielding

° ° = 1+eMH + K) (6-66)

where

L,
K =

Lo+ y sin2yL,

H a -5ft - I

Zo= Jo(ERo)-oYo(ERo)

Z, = J.

A more compact approximate expression for a 0 may be obtained by

considering the asymptotic behavior of Bessel functions. This is

a = !

2 V« (6-68)

where V^ is the volume of the core and VR that of the reflector. Equa-

tion 6-68 is of value chiefly for intuitive understanding of reactor

design considerations, and is not used for the numerical results of this
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report. As a rapid method of estimating reflector thickness and higher

mode nonleakage, the approximation that B o = C o may be made in Eg. 6-57

to obtain the reflector thickness, and a 0 may be obtained from Eq. 6-68.

6-4: Calculation of Critical Conditions

The methods developed thus far are used in this section to examine

the whole neutron economy of a reactor. The procedure is to divide the

neutrons into energy groups, and to determine how many neutrons each

energy range adds to, or subtracts from, the total neutron balance.

At the outset of the slowing-down process, higher-mode leakage is

severe. It is assumed to be complete immediately, so that the probabil-

ity that a neutron ever gets well embarked on the slowing-down process

is ao.

If the reactor is reflected in such a manner that the flux is flat

in all directions, then, after the initial higher-mode leakage, slowing

down proceeds just as in an infinite reactor. For an infinite reactor,

if in the process of slowing down to a given lethargy there are F fis-

sions per initial fission neutron, and N neutrons per initial neutron

survive, then

dF IF

d N

where IL is that part of the capture cross section which results in fis-

sion. From Eq.. 6-h3
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-J
N{u) = e

Differentiating Eq. 6-J0 and combining with Eq. 6-69 yields

(6-70)

dF
du

du'

= ~v—v e

H + C (6-71)

Thus the number of fissions occurring in the lethargy interval between

u. and u.,. is

U

AR = e'
.

(4

-f
u, "H "C

du

(6-72)

Now

u Ui-H

du

-e

since the integrand is an exact differential, so that Eq. 6-72 may be

written as
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AF, -

" 2r

uj H C

(6-73)

This expression is exact. However, if the lethargy interval is not too

large, the exponential weighting factor in the integrands is always close

to unity. Furthermore, this factor has a similar effect on both tue

numerator and denominator integrals in Eq. 6-73 so that the approximation

"i+i
2C

v -V du " / T7T du

AF ; = e "'„,., H ° d-e ' )

z+frdu

(6-7^)

may be made. This expression is exact if £_ and £_, are in constant pro-

portion throughout the lethargy interval. The interpretation of Eq. 6-73

or Eq.. 6-74 is as follows: The first term is the probability that a

neutron survives to lethargy u., the last term is the subsequent proba-

bility that the neutron is captured before reaching lethargy u. , and

the middle term is the probability that capture results in fission. The

virtue of Eq. 6-7^ is that it is readily evaluated from tabulated nuclear

data.
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The total number of second-generation neutrons per initial neutron

is

where V is the number of neutrons released per fis.iion, and

tl\

> (6-76)

is the contribution of fissions which are caused by thermal neutrons.

Since in a finite reactor the proportion ao of the initial fission neu-

trons are not transferred to the reflector at the outset of the slowing-

down process, the actual criticality is given by

k = Qo K~ (6-77)

where k = 1 is the condition for a critical reactor.

In a reactor which is not thoroughly reflected on the bottom, the

thermalizatlon probability is given by

-B?rth _ -tcf + rVth
6 = 6 (6-78)

-C2T -72T

instead of e ° X which is given by Eq. 6-43. The factor e t h

arises from neutron leakage from the bottom. The effect of bottom leak-

age is effectively to increase the rate of neutron capture by a factor
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(6-79)

The term (y/C ) 2 typically is quite small. The only effect on the pre-

vious analysis is to replace the exponential terms in Eq. 6-fh and 6-76

by exponentials of the form

e H ° (6-80)

The overall calculation procedure is to assume a core composition,

calculate reflector dimensions, and obtain a value of k from Eq, 6-77>

The composition is then modified and a new k calculated. This process

is repeated until a composition is found which gives k = 1.

To recapitulate, the steps of the calculation are:

(1) Core composition and dimensions are specified,

(2) An albedo value g is assumed. An effective diffusion coeffi-

2
cient D is obtained by the Bell prescription. y is determined by

Eq. 6-53.
p

(3) The Fermi age T,. is found by the Bell prescription.
"til

{k) The integrals appearing in Eqs. 6-76 and 6-80 are evaluated

from tabulated nuclear data.

(5) Co is evaluated from (k) and (3), using Eq. 6-^5. Bo is evalu-

ated from Eq. 6-%, using (3). E is evaluated from Eq. 6-60.

(6) The reflector dimensions, top and side, are determined from
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Eq.. 6-57 and from Eqs. 6-63, 6 -6k, and 6-65.

(7) The value of a0 is obtained from Eq. 6-66.

(8) The various other terms of the form of Eq_. 6-80 are evaluated

from the integrals already calculated in (h), and the value of k is de-

termined.

It is convenient, when searching for the condition k = 1, to vary

the amount of moderitor and leave other core compositions fixed. This

approach leaves much of tire preliminary arithmetic for the Integrations

unchanged.

6-5: Effects of Lumping and Doppler Broadening

When a neutron passes a capture resonance in the process of slowing

down to thermal energy, two effects modify the capture probability from

that predicted from the raw nuclear data. These are the effects of self-

shielding in the interior finite lumps of core materials and of resonance

broadening caused by the thermal motion of capturing nuclei. A precise

treatment of these effects is difficult, particularly for a lump of cap-

turing material in which there is a strong temperature gradient.

Approximations are made which yield to simple analysis and which are

realistic enough to give reasonable estimates.

For a homogeneous reactor the capture integral for a resonance is

given by
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(6-81)

vhere

-c ~ Pc °c fc ~m

(6-82)

at 0°K. Here p is the capture atom density, cr the microscopic cross

section peak value, 6 the half-width in lethargy units. The moderating

cross section IL. is assumed constant. The integral is extended to -«

for analytical convenience, and the lethargy origin is moved to the cen-

ter of the peak.

The capture cross section within a metallic lump is

V M U (6-83)

where V.. is the volume of metallic lumps and V.. the volume of the core.

The capture rate is proportional to the product of flux and capture

cross section 011. at any point. At the center of a lump, where the flux

is reduced, the capture process is less effective by a factor 0/0o,

where 0O is the flux outside the lump. The effective capture cross

section is

Y* - T •+-c c vM
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The lumps are chosen to be slabs of thickness 2w. Scattering in the

lumps is assumed negligible, and all neutrons are assumed to enter rormal

to the face of the slab. Both assumptions should underestimate the

effect of lumping. Equation 6-8^ becomes

/
-w

• £ • t a n h w

- i - tanh ZMw
H w M

(6-85)

The capture integral with the effect of lumping is

G
-CD

177

du

(6-86)
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vH w*,H

€ ~

(6-87)

(6-88)

( 6 - 8 9 )

are made. Using Eq.s. 6-82 and 6-83 the capture integral Eq. 6-86 becomes

G = a I (a)
(6-90)

where

00

Ua) =

For small e the approximation

tanh

a +coth
dx

(6-91)

I * tanh -^
(6-92)

may be made, which is valid for all x and for e up to about 1/3. With

this simplification Eq.. 6-91 becomes

178



Lumping and Doppler Broadening Section 6-5

I (a)
• / «
-co

a +coth 4-s
dx

-co

.00
! I

a +coth y2 y !

oo

-co

sinh y*
a sinh y2+cosh y* y*

(6-93)

Equation 6-93 may t>e simplified by

a sinh y* + cosh y2 = V I - a 2 cosh ( yz+y8 )

and

s i n h s i n h

(6-95)

where

i8 = - i - log 1+ o
I - a (6-96)

so chat

CO

I (a ) = T=?/{
- c o

a + tanh(y2+/3)| -L dy

(6-97)
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It is clear from Eq. 6-93 that the integrand has no singularity at the y

origin, hence the path of integration may be deformed to run above the

origin on the complex y plane, as shown in Fig. 6-2. However, l/y2

/ X

Fig. 6-2

integrates to zero over such a path, so that

I (a) = ~pp f y2tanh(y2+j8)dy
c (6-98)

The integral may be evaluated by lifting the contour to i °° and evalu-

ating the residues. The poles are taken in pairs by making use of the

relation

tanh £ = 2 f —z ^
n=° £ +(7r/2)(2n+l)2

(6-99)
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giving

1(01 "
where

2 ? f '

cn = -f- (2n

A
d y

(6-100)

(6-101)

Evaluating the integral gives

(a) = - a
|8

where

g (x) =
(6-103)

For small x Eq. 6-IO3 becomes

g (x) s i - -J- x

which is valid for x smaller than 0.2. The convergence of Eq. 6-102 is

slow. However, Eq. 6-102 may be written as

A portion of the summation is evaluated in terms of the Riemann Zeta-

function which is
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CO

from which

CO

(6-106)

Equation 6-105 may he written as

CO

(6-107)

where the first of the three terms is a closed expression for l(o). The

Zeta-function is a tabulated function and the remaining summation ini-

tially converges very rapidly, due to Eq.. 6-104. For l(a) see Fig. 6-3.

The development following Eq, 6-90 evaluates the resonance capture

integral between infinite limits. However, in actual numerical work the

integral is performed analytically over only a finite region £11 about

the peak, and is continued numerically outside this region. Hence the

correction

G' =

(6-108)
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Ha) -

2.60
0.700 0.800 0.900

Fig. 6-3: The Function I (a )
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needs to "be subtracted from G. In all cases Au is chosen so large that

and that Ep has a negligible effect on the denominator of Eq. 6-108.

The integral of Eq.. 6-108 is

G' =4 ^c m S2 —
" (6-110)

which gives a proper expression for the resonance capture

This differs typically from the value of Eq. 6-90 by several percent.

In an unlumped core at uniform temperature the effect of Doppler

broadening may be treated without difficulty. A resonance peak which is

a delta function at 0°K is broadened at a finite temperature to a shape

given by a normalized Gaussian distribution A(u). A resonance peak

O"o(u) of finite width at 0°K has, when raised to the same temperature,

a cross section given by the convolution

co
cr(u) = / cro{u, + u)A(u,) du,

- ® (6-112)

The function cro(u) is given by the Breit-Wigner formula as in Eq. 6-82,

and the integration of Eq.. 6-112 may be performed to obtain a result

18J+



Lumping and Doppler Broadening Section 6-5

expressible in terms of the error function. An approximation is made,

however, in order to obtain an analytic form for subsequent operations.

A normalized distribution which is short-tailed compared to the Breit-

Wigner function is substituted for t' 3 Gaussian function. It is fitted

to the Gaussian function over most of the range of integration. This

distribution function is given by

A(U)-- -^ ; '

where b is chosen to fit the proper Gaussian function at half-height.

Equations 6-II3 and 6-82 are. substituted into Eq. 6-112, yielding

00

<r(u) = IS"a™ I v+iu^uf ^ T J Y d U i

"°° (6-111.)

With the substitutions

x =u/b

w = S/b
(6-115)

Eq. 6-11^ becomes

00

( | ) ^^r dx,
-00

w(u/b)2

(6-116)
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The Doppler-broadened cross section equation 6-116 is substituted

into Eq. 6~8l, and the integration is performed, yielding

where
r - °"H PH

+w)4+a

a =

7 " ' "'• (6-117)

Correction of this equation for the finite range of integration is given

by Eq. 6-110.

6-6: Numerical Procedure

The calculational steps described in Sec. 6-^ separate naturally

into two parts: determination of nuclear parameters, and subsequent cal-

culation of reflector dimensions and criticality.

Evaluation of the nuclear constants consists primarily of the eval-

uation of the integral
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p = / 2 % du

0 H C (6-118)

and the similar integrals over the individual energy groups. The inte-

grand expressions are obtained from the nuclear data given in App. A.

The trapezoidal rule is used for integration except at the resonances,

for which the effects described in Sec. 6-5 are considered. Nine energy

groups are used, ranging from 106 ev to 0,025 ev.

In integrating over the resonances one must remember that each reso-

nance peak stands above a finite "plateau," i.e.,

Z° = I R + * (6-119)

where IL is the resonance capture cross section as given in Sec. 6-5 and

K is the plateau value of the cross section. The integration may be re-

duced to a form not involving a plateau by means of the identity

(6_120)

where £„ and K are regarded as constants. The change introduced by the

finite value of K is small.

The Doppler-broadening correction makes only a slight difference in

the critical conditions. Since the small detrimental effect of Doppler-

broadening is masked by the conservative method of estimating the lumping

correction, this correction is not applied to the bulk of the
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calculations. In molybdenum systems the lumping correction may be

omitted.

Integration over a set of resonances involves e sum of terms of the

form of Eq. 6-111

z GR =o
R R R I R R R J

(6-121)

The only dependence of this expression on the hydrogen concentration is

through a. Because the procedure is to obtain criticality by adjusting

the hydrogen concentration, it is convenient to replace k/l(a) in the

bracketed term by an average value. This step is justified both by the

insensitivity of I_ to a, as shown in Fig. 6-3, and by the smallness of

this term. *

The second portion of the computation is complicated by the rela-

tions involving the Bessel functions of ER0 and EEi. Inspection of the

equations 6-63 to 6-66 indicates that ERx is a function of ER0 only, and

that H, occurring in ao, is similarly determined by ER0. These two func-

tions are shown in Fig. 6-4 and 6-5.

The preceding developments are summarized as two separate procedures

for reactor calculation: The first is used when the albedo condition is

assumed at the bottom of the cylindrical reactor. The second procedure

is used for a symmetric reactor with equal top and bottom reflection,

and which has no axial flux variation.
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Procedure I. Albedo Assumption

(1) Assume trial reactor core dimensions Ro and Lo, densities N.

(moles/liter), and an albedo p.

(2) Compute £ .

(3) Compute Si, given by

V ^ V D =DB,2tf = 1.340 2tr

{k) Compute E_ using the full ~20 barn cross section for hydrogen.

Then evaluate wi, given by

w, = £2B e /ZH =O.I56O/SH

(5) Compute D __ by Bell's criterion, given by

Deff = 1010/? ^ N ,

(6) Compute T,. by Bell's criterion, given by

0.51 x IQg

T

(7) Solve the transcendental equation

x tan x =

and compute

y =

2D e f f
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(8) Compute P, from Eq, 6-118, and C§ from

(9) Compute B2, Li, E, A, and ER0 from the relations

L s JL /3TX
Li 2 V w, I s

A - I

(10) From Figs. 6«4 and 6-5 and the value of ER0 determine H(ER0)

and ERi(ER0). Compute Ri.

(11) Compute K and ao from the relations

L,
K = -^ sin 2x

I
I + cu, {H + K )

(12) Compute kM as described previously and the criticality k from

k = koo a o

Procedure II. Bottom Reflector

(1) Assume trial reactor core dimensions Ro and Lo, and densities

TH± (moles/liter).

(2) Compute Z .
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(3) Compute Si, given by

S, =DB./D = DB, £* = 1340 2fr

(k) Compute Sg using the full ~20 barn cross section for hydrogen

and evaluate wj., given by

«. = £ 2 B t / 2 H = 0.1560/IH

(5) Compute T.. by Bell's criterion, given by

0.51X10*T t h s

(2 i?,N,)(^,N,

(6) Compute P from Eq. 6-118, and B2, given by

B* = P / T .th

(7) Compute E, Li, and K, given by

K = L,/Lo

(8) From Figs. 6-4 and 6-5 and the value of ER0 determine H(ERO)

and ER1(ER0). Compute Ri.

(9) Compute ao , given by
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do =

H-w,(l

(10) Compute k^ as described previously and the criticality k,

given by

k = k<jo Oo

6-7: Some Sample Results

The foregoing numerical procedures are applied to a family of pre-

liminary and exploratory problems in which the geometry and composition

of the reactor core are specified arbitrarily, in contrast to the motor

design problems of Chap. 9 which require consistency of nuclear design

with hydrodynamic considerations, etc.

The values of k^ for two typical metallurgical compositions and

various degrees of moderation are shown in Figs. 6-6a and 6-^b. On the

molybdenum curve the condition of optimum moderation is eventually

passed. Thermal neutron capture by hydrogen becomes an important effect

for H/U > 100.

The major group of preliminary reactor studies is shown in Table 6-1

and Pig. 6-7. These reactors have a core of radius 30 cm and length

60 cm. A concentration of U0 2 in the refractory metal is specified,

where the volume of this impregnated metal is chosen to be 7720 cm3.

The amount of CH is varied to obtain a criticality of 1, and the beryl-

lium reflector dimensions appropriate to the flat flux condition. Each
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Fig. 6-6a: Values of k^ for Sample Molybdenum Beactors
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reactor is assumed to include 111.2 kg of aluminum. Refractory metals

were taken to be (a) pure Mo, Ob) 50:50 Mo and W (denoted by MoW), and

(c) pure W.

Details of the neutron economy are shown in Fig, 6-8 for typical

tungsten and molybdenum reactors. The severity of fast leakage and the

importance of epithermal neutron capture are indicated by this figure.

The results given in Table 6-1 and Figs. 6-6, 6-7, and 6-8 are

indicative of those encountered in a rocket motor. Several conclusions

are evident: From the standpoint of uraniuci conservation the preferable

motor is a highly moderated molybdenum heat exchanger. However, re-

sulting reflector thickness is large, and in a realistic motor design the

core volume needs to be increased in order to accomnodate the large

amount of moderator; this in turn increases the reflector mass even more.

As a result the motor which shows the most economy in fissionable mate-

rial is large and heavy. In addition, the refractory metals exhibit a

certain perversity between their nuclear and their thermal properties,

so that the motor designed to operate at the highest temperature is the

most demanding of active material. From these considerations it seems

likely that economy of active material should not be the primary consid-

eration in the selection of a motor design. To the contrary, it seems

that one should be as lavish with uranium as is consistent with good

metallurgical properties of the metal-U02 system.
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Fig. 6-8: Neutron Survival Probabilities for Sample Reactors
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Two conclusions are evident from the results shown in Fig. 6-7a

and b.

(a) For a given metal the addition of excess U0 2 gives great

savings in CH requirements and in reflector thickness.

(b) Similar savings are available when it is sufficient to use

molybdenum instead of tungsten, with a given amount of U02.

The data of Table 6-1 are plotted parametrically in Fig. 6-7c and d

to show the effects of various Mo-W alloy compositions. It is remarkable

that this variation produces no more structure than this figure depicts.

Figure 6-9 shows the moderator requirements corresponding to various

core shapes. These curves suggest that there is considerable flexibility

in the core geometry, and that fairly large departures from the best core

shape necessitate a modest increase in moderation.

6-8: Reflector Design Variations

The flat flux condition is determined by the requirement that in the

slowing-dovn process there is no net neutron current across the interface

between reflector and core. For a reflector of given composition the

determination of the reflector thickness is independent of the critical-

ity. The dimensions specified in this way may be undesirable on the

basis of other design considerations. A reflector yielding a flat flux

may make a practical core design highly super-critical. The reflector

may also be excessively massive. In this section it is shown that there
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200

kg CH

0/L

Fig. 6-9: Effect of Core Shape. The sudden rise of the molybdenum curve
at D/L = 3 is due to the breakdown of the approximation of
total fast leakage from higher buckling modes for a reactor
which is very well moderated and surrounded by a large
reflector.
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can be considerable flexibility in choice of reflector, between effec-

tiveness in neutron reflection and lightness in weight. This flexibility

arises from the fact that reflector thickness is basically determined by

the ability of ths reflector to moderate neutrons, and that this ability

may be regulated by incorporating a layer of hydrogeneous material in. the

reflector.

The theory developed in Sec. 6-2 is applied to a reactor with a two-

layer reflector. If the inner hydrogenous layer region is called A and

the outer beryllium layer region B, Eq. 6-50 becomes

V*q s - -y* B*q
B (6-122)

for regions A and B, respectively. An additional boundary condition that

q must be continuous across the new interface is

q |= q|
'* B (6-123)

and the neutron current continuity condition is

A dn I ^ dn |
A B (6-12U)

In the top reflector the solution which has a zero derivative at the core

boundary and vanishes at the extrapolated boundary is of the form
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q = cos

q *

Bz

B ( L, - z )
(6-125)

for regions A and B, respectively. The A - B interface is at z = L',

Equation 6-125 is applied to Eqs. 6-123 and 6-12^, which become

cos SA
BL' = B(L-L')

(6-126)

A A s B

(6-127)

which are simultaneous equations determining the total thickness Li and

the interface matching constant M in terms of the parameter L'. If the

thickness of a pure beryllium reflector is assumed to be L l o (the value

of Li when L1 = 0), then the following dlmensionless quantities may be

defined:

r =

X, = L./LO

x' = L7 L10
(6-128)

^t.-.^.vJa-.^.-.^-...-
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Equations 6-126 and 6-127 are combined to give

! = tan - | (X.-X')

SBf °n 2 ' (6.129)

cos "5- r A
M = ±

s i n T < X " X ) (6-130)

Equation 6-129 is solved for Xi which then determines the value of M in

Eq. 6-130.

The value of a0, as given by Eq. 6-24, depends on the overall reac-

tor dimensions and also on the value w in the reflector: hence it is a

function of X1. However, its only dependence on X1 is from the part of

the denominator integration which involves the reflector. For the gener-

alization of Eq. 6-66, which is for the case X1 = 0, the denominator

must be modified such that

w, ( H + K) =
J» ° (6-131)

In the general case of variable X1, it is the numerator of this ratio

that depends on X1. In the side reflector the Bessel functions are like

the trigonometric functions in the top reflector, so that approximately
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J qJU'MX'HV / q*(X')w(X')dz
R(A) 0

L.

0

dV f q*(O)w{O)dz

WT sin»rX')+M*(X')[x,-X'- -I-

where the integrals are evaluated using Eq, 6-125. Combining Eq. 6-132

with Eq. 6-131 gives the generalization of Eq. 6-66t

aD(X')

where H and K are determined as in Eq. 6-66. This approximation is more

accurate than simple substitution of trigonometric functions for the

corresponding Bessel functions because Eq. 6-133 becomes exact for

X' - 0 .

The variables Xi, Xx - X', and J(x') are plotted as functions of X1

in Fig. 6-10. The function Ji(x') which is the contribution of the hy-

drogenous region to J(x') is also plotted. For a given reactor core a

critical reactor is achieved by adjusting X' such that
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These results are applied to actual motor design problems in

Chap. 10. The effect of the use of diffusion theory upon the accuracy

of these results is discussed in Sec, 6-9.

6-9J Effects of the Approximations

It is pointed out throughout this chapter that the theory developed

here makes a number of approximations. The major approximations are as

follows:

(a) Treatment of the neutron economy by finite groups.

(b) Method of correcting for lumping effects.

(c) Accuracy of nuclear data.

(d) Use of diffusion theory.

(e) Use of average capture approximation (Eqs. 6-44 and 6-1*5).

(f) Achievement of flat flux condition.

(g) Methods of treatment of the bottom reflector,

(h) Neglect of higher modes.

(i) Neglect of thermal neutron diffusion.

Item a: From the study of the numerical examples the use of nine

groups seems adequate. Item b: On the basis of numerical results of

test problems where lumping was neglected, the lumping correction is neg-

ligible in molybdenum reactors and typically results in an 8$ increase in

k for tungsten reactors. Refined methods of applying this correction are

expected to increase k by an additional small amount. Item c: The
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presence of large amounts of moderator, most of the neutron capture takes

place in the thermal, and epithermal groups where the cross section data

are best known.

Approximations d and e are intimately linked, and their accuracy

depends largely on the achievement of flat flux within the reactor core.

The error in these approximations is mainly in the simplifying assump-

tions they make about the flow of neutrons. If the core flux is flat,

there is no net neutron current and these methods may become quite accu-

rate. In the reflector, item e does not apply, but the question of item

d on the validity of diffusion theory is pertinent. The diffusion ap-

proximation is valid in regions a few diffusion lengths in thickness.

The beryllium reflector thicknesses typically range from six to twenty

diffusion lengths, so that the use of diffusion theory is justified. On

the other hand, the special reflector calculations of Sec. 6-fl must, be

regarded as somewhat qualitative because of the short-distance limita-

tions of diffusion theory.

Item f: The possibility of obtaining an approximately flat flux is

independent of the approximations made previously: for some degree of re-

flection the flux must be the same at the center as at the surface of the

core. The calculations yield a flux which is perfectly flat because of

*In the flat flux situation the diffusion coefficient of the core would
disappear from the analysis except for the convenience of using the
Fermi age variable which carries a concealed and cancelling dependence
on the diffusion coefficient.
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the approximation e, but the actual flux variation can not be very large.

This is seen as follows: When, in a typical reactor, the flux-flattening

effect of slowing-down capture is neglected, the flux may be calculated

by the methods of Sec. 6-2. The radial flux profile in the core,

actually a Bessel function, may be well represented by a parabola falling

at the edge to 0.6 of the central value, i.e.,

(6-135)

If it is assumed that the effect Of the proper reflector is to add a

fourth power term of proper value, a flux distribution of the form

is obtained, as shown in Fig. 6-11. Modifying 4 in this way implies that

the smoothing effect of the reflector does not flatten the flux profile

at the center of the core. This is a pessimistic assumption. This flux

density has an extreme value

•„,,„ =0.900 *(0) (

with the mean value

• = 4" /*dA = 0.933 *(0)
A ' (6-138)

Thus, these considerations indicate a maximum flux intensity 7$ above

the mean.
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Fig. 6-11

Items g, h, and i all involve diffusion effects.* Item g: The use

of an albedo boundary condition for treating the bottom reflector yields

results insensitive to the albedo. When symmetric end reflectors are

assumed, slightly lover values of k are found, due to approximation h.

In the fully reflected symmetric geometry a larger fraction of the

slowing-down flux is represented by higher buckling modes, so that the

complete neglect of these modes is more pessimistic in this case than

for the albedo geometry. Item 1: In these calculations the diffusion of

thermal neutrons is neglected. Since the thermal neutron source, within

the core, is flat, any effects due to thermal neutron diffusion are seen

at the core surface. Since there is no significant thermal capture in

the beryllium reflector, the neutron current flows from the reflector to
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the core. These neutrons are ignored in the calculations and thus tend

to make the reactor more critical. However, they also tend to make the

fission density less flat. Readjustment of the reactor parameters may

be performed in order to recover flux uniformity. If necessary the re-

turn flow of thenaal neutrons may be inhibited by introduction of a

thermal poison such as boron into the reflector.
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Note added in proof: It has been pointed out by K. H. Baker that

the recoil of beryllium nuclei introduces an anisotropy into the neutron

scattering by beryllium, and as a result somewhat modifies the neutron

transport cross section in the reflector. For neutrons of energies high

compared to chemical binding energies (~5 ev), the modification in the

cross section amounts to circa 8$. Thus an 8$ increase in reflector

thicknesses should be applied throughout this report. Actually the &f>

correction is an overestimate, since the recoil effect vanishes in the

lowest three ^pithermal neutron groups.
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CHAPTER 7

HYDRODYNAMIC IESIGN CONSIDERATIONS

Rash and inexperienced traveller, we will now seri-
ously devote ourselves to a little high tension,
because if we do not, it is my impression that
yonder self-propelling man-of-war with the armour-
plated upper deck (and by this, 0 Best Beloved, he
meant the Crocodile), will permanently vitiate your
future career.

R. Kipling, The Elephant's Child

7-1: Introduction

This chapter is devoted to the hydrodynamic and heat-exchanger

problems associated with Dumbo, exclusive of thooe already treated in

Chap. 2 which involve the primary heat-exchange process occurring in the

metal wall.

In Sec. 7-2 the equations governing the turbulent heat exchangers of

Dumbo are developed. These exchangers serve to transfer a few percent of

the reactor power to the hydrogen as it passes through the reflector, the

preheater, and the moderator before entering the metal wall.

In Sees. 7-3 through 7-9 the hydrodynamics governing the gas flow

through the main supply and exhaust channels of Dumbo is studied. These

problems of flow in a channel whose walls act as a source or sink for

fluid are unique to the Duabo design and their solution plays a most Im-

portant role in the performance of Dumbo. It is shown that the flows
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through the metal wall at different heights may be made highly uniform

without sacrificing uniformity of construction. •

7-2: Turbulent Heat Exchangers

In the flow of propellant through the reflector, the preheater, and

the moderator there is involved exchange of a few percent of the total

power to low temperature hydrogen. These regions are characterized by

turbulent flow. The design of such heat exchangers amounts to the pre-

diction for a given geometry, flow rate, and power dissipation, of three

quantities:

(a) The resulting temperature increment ST between the gas and the

wall, corresponding to the 8 of Chap, 2.

(b) The pressure drop £ap experienced by the gas in passing through

the exchanger.

(c) The maximum temperature occurring in the exchanger walls.

The first two of these quantities are determined from empirical cor-

relations of dimensionless parameters. The dimensionless quantities

involve the density p, the viscosity TJ, the thermal conductivity X, the

specific heat c , and the pressure P of the gas moving with velocity v in

the direction z. They are:

(a) The Reynolds number,

R • pvD/i)

where D is the hydraulic diameter of the channel(s).

c
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(b) The Prandtl number of order unity for gases,

Pr=cp17/X

(c) The friction factor,

' 2/ov"

(d) The Stanton number,

kH=h/cpyov

where h is the heat transfer coefficient given by

and U is the energy transferred per second to the gas, A is the wall

surface area, and ST is the temperature increment between gas and wall.

The first problem, that of determining 5T, assumes an empirical rela-

tion krr(R) which is applicable to the system. For a total flow Qo the

flow density pv is given by Qo/Ao> where A o is the open cross sectional

flow area. The total energy transfer rate U is related to the flow by

U = QO /
fcp(T)dT =Qo(Hf-H.)

Ti (7-1)

where H is the enthalpy of the gas and the subscripts f and i refer to

final and initial values, respectively. The power is uniformly distrib-

uted along the length z, whence
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- Qo(Hf-Hj)
L (7-2)

where L is the total flow distance. Hence, the Stanton number is written

as
dT

(7-3)

The hydraulic diameter D for noncircular channels is given in terms of

the channel perimeter A /L by

giving a final expression for the Stanton number,

DKu ~ ——« dT
dz

This problem is concerned with the 6T occurring at the hottest point.

The gradient dT/dz|_ at this point is determined from Eq. 7-2,

d Z t C P f L (7-5)

which in conjunction with Eq. 7-4 gives 6T|„ in terms of kg.

The second problem, that of the pressure drop occurring across a

heat exchanger, is not obtained in quite so direct a manner. The fric-

tion factor 7 for flow through a channel gives the pressure gradient

dp/dz for fluid undergoing drag only, and does not include those forces

causing changes in the momentum of the stream. For flow which is subsonic
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and nearly isobaric, the inclusion of terms for both drag and momentum

change yields

dz D 7 P dz ^̂
(7-6)

If it is assumed that pv = <J = const, and 7 = const., Eq. 7-6 becomes

2 J* _ ,e_d_ _|_
dz Dp dz ^ (7-7)

If the pressure variation is small, p may be regarded as dependent on the

temperature only, which is approximately linear -through the exchanger.

Thus — is linear in z and may be written

_L=(-L _J_) JL + -L

Substitution of Eq. 7-8 into Eq. 7-7 and integration yields the general

heat-exchanger relation for gases, given by

The first term in this expression corresponds to the momentum change and

is a stress required to accelerate the gas to its higher velocity, while

the second term is a drag contribution.

The third problem, that of conduction within the solid exchanger

walls in which power is generated, is solved approximately by the heat

conduction relation for one-dimensional heat flow, i.e.,
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where ff is the power density (cal/cm3-sec) in the walls. Thus

2* (7-n)

To U3e the results of the first two problems, it is necessary to

select the function y(B.) and K,(P*, R)« Of the several functions which

have been suggested the simplest is the Blasius formula,

0.08

R (7-12)

For kg a corresponding approximate form may be developed from the Reynolds

analogy, given by

In Justification of such an arbitrary choice of forms it should be noted

that:

(1) In these exchangers the momentum term of Eg.. 7-9 is dominant.

(2) The temperature increment 8T determines the wall temperature of

the exchanger. The gas temperature is determined by the power input and

not by the exchanger efficiency. Further, the materials of the exchanger,

except in the case of the plastic moderator, are far below any disas-

trously high temperature limit and the value of 5T is not of great

consequence.
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(3) To compute these temperatures accurately it is necessary to

know the power dissipation from these several regions. However, this

aspect of reactor performance is only roughly known and awaits either

good experimental measurement or refined and detailed computation. The

values indicated in Fig. 7-1 are used throughout for purpose of consist-

ency. Some thennodynamic properties of H 2 which are of concern in

heat-exchanger design are shown in Fig, 7-2.

7-3: Flow Uniformity Through the Composite Dumbo Wall

A hydrodynamic problem is now considered which is more intimate to

the primary heat-exchange process occurring within the Dumbo wall. As

shown in Fig. 7-3, hydrogen flows from a comparatively cold central

region A at a pressure varying along the length as P«(z). After passage

through the wall it enters a region B of hot gas at a lower pressure

P-n(z). The net flow rate Jo(z) through the wall is determined by the

values of P. and P B and the impedance of the composite wall. The compos-

ite wall consists of moderator channels plus the metal wall structure.

Due to the hydrodynamics which occur in regions A and B these pressure

distributions may cause severe differences in the flow Jo at different

heights z. The remainder of this chapter is devoted to the determination

of the pressure distributions PA(Z) and Pg(z)» and of the resulting degree

of uniformity in J0(z).

J
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7-1)-: Turbulent Floy in the Main Duets

The behavior of the gas in the major passages on either side of the

Dumbo heat-exchanger wall is now investigated. The purpose of the present

section is to develop expressions for the pressure and the temperature of

the cold gas in region A which supplies the moderator, and of the hot-gas

region B through which the gas passes from the wall to the nozzle.

The proper equation of motion for the Dumbo flow problem is not

obvious. Experience suggests that a plausible equation of motion is the

one-dimensional hydrodynamic equation
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dv . _ dP
p "ay " 17 {

IThis equation is true if shearing forces are negligible. In ordinary

duct flow at Reynolds numbers comparable to those of Dumbo designs, the

frictional work of the shearing forces is slight compared to the total

energy transport rate of the stream. This supports the correctness of

Eq. 7-14. However, considerations of momentum conservation indicate a

different equation, as follows: If fluid flows through a duct of area A

and circumference C with velocity v and if the fluid is supplied from

the walls with velocity u, then a section of fluid of length By, moving

with the stream, is governed by the force equation

F (7-15)

or

v ^- /»A8yv = - A ^ 8y
dy d * (7-16)

Continuity demands

d C nT7 />v - j pn = 0
Uy M (7-17)

and

v 4: (/>A8y) = p\i C 8y
y (7-18)
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Combining Eqs. 7-l6, 7-17, and 7-18 gives the equation of notion

** ^ " ** (7-19)

Integration of Eq. 7-19 gives

pv*+P * const.

(7-20)

If Eq. 7-14 is integrated with constant p Bernoulli's lav results, which

is given by

•=• /»V*+P r const. , .
2 (7-21)

This equation is In contrast to Eq. 7-20. This suggests that the equa-

tion of motion required for this problem is of a general character,

including Eqs. 7-14 and 7-19 as particular cases.

The one-dimensional equation of motion is developed from the full

three-dimensional theory. As developed In Sec. 2-1, the three-dimensional

continuity equation is

(7-22)

and the equation of motion i s

*V*S- d
M

 PM» (7-23)

•where
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is the stress tensor. The presence of turbulence, as in the ncaentua

transport theory, is regarded as modifying the effective viscosity tj.

The divergence theorem is used on Eq. 7-22 to give

d<£ /»vM
 s 0

(7-25)

where a is a closed mathematical surface within the fluid. Combining

Eqs. 7-22 and 7-23 yields

(7-26)

so that the divergence theorem gives the relation

= 0J
(7-27)

This equation states tha* the net momentum flux across a surface balances

the net force from surface stresses.

It is assumed that cr bounds a very short section of the duct, con-

sisting of two flat ends normal to the axis and the intervening duct wall.

It is further assumed that the flow velocity is effectively constant over

the duct cross section and vanishes suddenly at the wall. Equation 7-25

reduces to Eq. 7-17. If the slight compressional friction term in P is
yy

neglected, Eq. 7-27 similarly reduces to

A. au P

dy py ' dy A r*n (7.28)
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where P is the shearing stress on the fluid In the y direction at the

channel wall. This is the equation of notion, with P yet to be

evaluated.

To deteraine P , it is necessary to consider in detail the thin

region In which the axial velocity of the stream increases from zero to

the full flow velocity, x Is a coordinate measuring from the wall Into

the stream, ranging to the value xi, at which place v assumes its final

value vi. Although xi and vi change along the axis of the duct these

variations are slow compared to the variations across the boundary layer.

Such slowly changing quantities are regarded as constants for purposes of

locally evaluating P . Because the boundary layer does not retain an

appreciable portion of the fluid entering it, the condition that

is assumed throughout the boundary layer. Equation 7-22 becomes

fi + ^ , 0
dx dy (7-30)

-giving

V = V(X> (7-3D

Because the effective viscosity due to turbulence is determined by the

flows, it follows that
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The x component of Eq. 7-23 is

(7-33)

every term of which now vanishes except SP/Soc. Hence,

or

P=P(y)

Thus there can be no pressure gradient across the boundary layer. The y

component of Eq. 7-23 is

(7-35)

which reduces to

ou *L . J_( dv \
pu ax • W Itr

_dv\_ _dP_
( (7-36)

The terms not involving P are functions of x only, so the same must be

true of dP/dy. Together with Eq. 7-314- this gives

where P o and P
1 are constants. Equation 7-36 is integrated once, to give
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(7-38)

can be regarded as a special case of Eq. 7-27, and shows that the

shearing stress must increase sufficiently to balance the effect of pres-

sure P'x and the momentum flux puv. The transformation

=• dx

(7-39)

is made. Equation 7-38 is integrated, to give

A
-I) p-f;- d

(7-J+O)

Equation 7-40 is solved algebraically for the wall stress at x

'

° * (7-41)

This expression is substituted into Eq, 7-28. In the Dumbo ducts the

boundary layer Reynolds number, represented by | pu£i|, is about 10 or 20.

In this case Eq. 7<4l is reduced to two asymptotic forms.
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Case I: For pu|i » 1,

Case II: For puSi « -1,

-P -
o

In the Dumbo ducts, the,boundary pressure term P1 is not significant com-

pared to the momentum flux term. This leads to the following expressions:

Case I: For u > 0,

y

Case II: For u < 0,

where the subscript 1 has been dropped in conformity with earlier

notation.

For channel Reynolds numbers of the order of 105, as in typical Dumbo
p

designs, the boundary layer is laminar and Xi is given approximately by

fVjX, /i} - R c

where the critical Reynolds number R is circa 2100. In this case, the

integral of Eq.. J-hl may be performed and compared with the asympototic

equations 7-W- and 7"J*-5« The comparison verifies the asymptotic results.
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For the hot gas duct u > 0, and Eq. 7-28 together with Eq.

gives Eq. 7-19 as the equation of motion. For the cold duct u < 0, and

Eqs. 7-28 and 7-45 give

Multiplying Eq. 7-I7 by v and subtracting from Eq. J-h6 gives Eq. f-lk

as the equation of motion.

To sum up the physical content of these equations, when gas enters

the stream it picks up momentum from the stream. The momentum transfer

subjects the stream to internal stresses, but the only influence

affecting the overall momentum is the pressure gradient. Hence, Eq. 7-19

is the equation of motion. On the other hand, when gas leaves the stream

it carries momentum with it to the wall where the momentum is transferred

out of the system by shearing stress. Although momentum is not conserved,

the shearing stress is confined to the boundary, and the stress-free main

stream is governed by Eq. "J-lk,

The peculiar two-valued relationship between pressure and flow is

more general than the assumptions that have gone into the development

above. In App. C the problem of incompressible laminar flow through a

channel is solved exactly, and it is shown that in the limit of large

Reynolds numbers pv5 + F is a constant for material entering, and

ppv^ + P is a constant for material leaving the stream.
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7-5: The Expected Hydrodynamics in Djmbo

The results of the preceding section show the one-dimensional equa-

tion of motion for the cold gas region to be

* dz dz (7-aA)

whereas that for the hot gas region is

dz p dz (

The assumptions are that:

(1) The flow profile of each region is substantially flat with the

vertical velocity component v a function of z only.

(2) Turbulent drag may be neglected at this stage of analysis and

later added as a perturbation of these relations.

Are these assumptions likely to be true of a physical model?

The second of these assumptions is quickly Justified insofar as the

magnitude of the pressure drop due to drag is much less than that due to

dynamic terms in typical problems.

The first assumption is supported in the case of cold gas flow, in

which gas leaves the duct and enters the wall, by the following arguments:

In turbulent channel flow the nearly flat profile is characteristic. Due

to the removal of the h-undary layer by the walls of this region the pro-

file flatness is emphasized. Further, the deceleration experienced by

the stream produces more than normal instability and turbulence. Finally,
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the stream enters the duct from the preheater plates vith uniformly

distributed, well-established turbulence.

For the hot gas region these arguments are largely reversed. Gas

enters the region from the viscous channels of the Dumbo wall. The

acceleration experienced by the stream enhances the stability. The

interaction of the stream with the wall is cushioned by the steady out-

flow of gas along the walls. With a length of only 10 hydraulic diam-

eters, it is not clear that the stream would exhibit well-established

turbulence even though its maximum Reynolds number is 105. If laminar

flow existed in this hot region, the flat velocity-profile model would

be inaccurate. As is shown in App. C, a cosine velocity profile is

obtained for two-dimensional laminar flow at very low viscosity.

Without a detailed theoretical understanding of the problem of the

onset of turbulence or without experimental testing of this peculiar

hydrodynamic problem, one must contemplate for this hot gas one of three

conditions:

(1) Well-established turbulent flow with a flat velocity profile.

(2) Laminar flow with a cosine-like velocity profile.

(3) A flow which Is laminar in the low velocity regions and which

as it accelerates becones turbulent.

In Sees. 7-6, 7-7, and 7-8 the existence of condition 1 is assumed.

In Sec. 7-9 it is shown that a comparatively minor design modification

adapts the designs to the existence of condition 2. Deviations resulting
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from the existence of condition 3 may be estimated and are presented in

Sec. 7-9.

7-6: Energy Relations for Compressible Floy in Dumbo

To determine the behavior of a compressible gas, it is necessary to

have a relation between mechanical and total energy. The energy eqviation

is developed in this section.

The conservation of energy is stated by the equation

The divergence theorem gives

dffM {v< 2

Specializing to a slice of the duct yields

£ v (y/»v*+?cvT + P) + £ u'(/>'cvT'+P) =0

The quantities evaluated at the duct wall are explicitly indicated by a

prime. The side-flow kinetic energy ^ p'u'2 is negligible and is omitted

for the sake of notational simplicity. The "stagnation enthalpy" 0 is

defined as

Equation 7"49, written in terms of 0, is
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f "TT p'\}'4>' ~ 0
A (7-51)

The continuity equation 7-17, which is equally valid for pu or p'u', is

applied, giving

J L , V < M * , V

7 7 (7-52)

This is the equation of energy balance. The value of 0' depends on

whether gas is leaving or entering the wall.

For gas leaving, 0 1 is specified in terms of the wall temperature,

i.e., for u > 0

f - cpr
(7-53)

T1 is assumed to be constant, and Eq. 7-52 is integrated to give

- < £ ) S const. =A
(7-510

However, if v(y) vanishes at any point Trtiile p and 0 remain finite, it is

necessary that A = 0. Therefore, the energy condition governing the hot

gas stream is

* = f=cpT'= const. (?_55)

For gas entering the wall (cold gas), the value of 0' is determined

by the state of the stream. It is evaluated by applying Eq. 7-^8 to a

region bounded by the duct wall and by the inner surface of the boundary

c.
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layer at distance xx into the stream. From Eqs. 7-38 and 7-^5, P . is
xy

small at Xi, and Eq. 7—14-8 becomes

W Z P**4>- (7.56)

From Eq. 7-29, p'u1 = pu, so that for u < 0

•'= • (7-57)
Thus in both cases flow across the boundary layer is isenthalpic.

7-7: Solution of the Flow Equations

For either type of channel it is necessary to satisfy four simulta-

neous relations in or̂ .er to predict the flow characteristics for a

compressible fluid, as follows:

(a) The appropriate one-dimensional equation of motion.

(b) The appropriate one-dimensional equation of energy balance.

(c) The equation of state of the gas.

(d) The one-dimensional equation of continuity.

There are two types of main channels as shown in Fig. 7-4. Region A is

the cold gas region in which fluid enters the wall at the boundary. Re-

gion B is the hot gas region in which fluid leaves the wall and enters

the stream. The equations governing the flow in each of these regions

are shown in Table 7-1. The solution of these equations is now developed.
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Z«O -

COLD GAS
REGION

I
HOT GAS
REGION

IB
Fig. 7-1+

TABLE 7-1

EQUATIONS FOR THE MAtN CHANNELS

( a ) E Q . of MOTION

(b) EQ. of
ENERGY BALANCE

(c)EQ. of STATE

(d) EQ.of CONTINUITY

COLO GAS REGION A

dv do
pV -r— - — .

dz dz

V* /
CpT+7r =cpT =const

p =pRT/M

r AL

HOT GAS REGION B

c p T + Y = cpT'= const.

p = pRT/M

" - &*

It is convenient to reduce these relations to dimensionless form by

the substitutions
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= P/P.

9 -- in

= z/L

Cp-R/M
(7-56)

These seven quantities are made dimensionless by use of the initial

(z = 0) values of p and p, the constant wall temperature T, the channel

length L, the total flow handled by the channel Qo, the cross sectional

area of the channel A, and the thermodynamic quantities c and R.

Although Qo and L are the same for the two regions, the quantities p o,

Po, T1, and A are not. The resulting dimensionless quantities R and P

must assume initial values of 1 at £ = 0 where the range of £ is given by

0 £ £ S 1. There is a difference in the value of the dimensionless param-

eter it for the two regions, and also in its sign. In the cold gas region

A, K assumes negative values, in region B it is positive. The dimension-

less formulation of the equations of Table 7-1 is shown in Table 7-2.

The difference between the dimensionless formulation of the two problems

lies in the equations of motion only. The exact solution of the two

problems is easily obtained and is presented in Table 7-3.

239



Chapter 7 Hydrodynamic Design Considerations

TABLE 7-2

DIMENSOMLESS FLOW EQUATIONS

(o) EO. of MOTION

(b) EQ. of
ENERGY BALANCE

(c)EQ.of STATE

(d)EQ. of CONTINUITY

COLD GAS REGION A

ow t»V . dP
RVdr~dr

P= R0

RV = K £

HOT GAS REGION B

^-(RVf+P)«O

i-v+^^-o.-o

P= R0

RV = K£

It is seen from Table 7-3.that although the equations for region B

may be explicitly solved for V(£), P(£), and e(0> this is not possible

for region A. Instead, the solutions in region A are presented as £(V),

P(V), R(v), and 9(v), so that the functions V(£), P(£), etc., are only

implicitly expressed.

The function V(£) for the cold region is double-valued in V for

0 S £ < £ and possesses no real solutions for V •when (; > £ , where £ is

the maximum value of £. A feature of interest is that at £ the velocity

is Mach 1. One 'branch of the double-valued curve predicts supersonic

flow while the other predicts subsonic flow. However, only the subsonic

2!+0
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p

R

9

V

P

R

9

SOLUTIONS

• v ( -

• ( ' -

• ( -

= 1 -

. Y

r+i

i
1+7

= T

= 1 +

TABLE 7 - 3

OF THE FLOW

COLD GAS REGION

- -£y V

HOT

* { '

I,

• ) *

2

GAS REGION

V ' " 74'

/ l - 2 - ^ i K2

bl r T i l 2k S

7+1 ^ P V

EQUATIONS

A

B

*v}

r->
}

9

•
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branch satisfies the imposed boundary conditions. The function V(£) for

region B possesses real solutions only in the case of subsonic or exactly

sonic velocities. At the transition point, Mach 1, the variables assume

the values shown in Table 7-lu Specific values are given for y = 7/5 as

TABLE 7-4

SONIC VALUES OF THE SOLUTIONS

COLO GAS REGION A HOT GAS REGION B

•-O.685 Vi 0.540

1.080 V y +1 1.080

vy+i 0.530 y+i 0.417

0.634 J_
2 0.500

0.833 0.833

in the case of diatomic gases. It is interesting to note that these

values become the same for both regions for a hypothetical gas where

7 = 1 , in which case

21*2
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=P =R = ~

* * * *
The values of V , P , R , and 9 shown in Table 7-M- for the region A

are exactly those resulting from conventional one-dimensional nozzle

theory. The entire formulation for region A is strongly analogous to

the nozzle problem if the variable £ is regarded as the inverse of the

nozzle area. The maximum value £ corresponds to the nozzle throat area.

Because the flov dynamics of the hot region are different from those

generally occurring in compressible flow, it is well to investigate the

thermodynamic consistency of the two flow laws. If s is the entropy of

a gram of gas in one of the channels, does the gas move into a region in

which it has a greater entropy as is required by thermodynamics? To in-

vestigate this question, use is male of the usual expression for the

entropy of an ideal gas, which is

s= c In T - -g- In P
M (7-59)

A dimensionless entropy S is defined by

S = r^r- In 9 - In P
X~' (7-60)

An immediate check on this question for the cold channel is found from

Table 7-3, since for region A

(7-61)
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Substitution into Eq. 7-60 yields the result that S = 0 everywhere,

therefore there is no change at all and the cold flow is isentropic.

For the hot region B, it is convenient to introduce a new variable

E, defined by

or

(T-62)

In terms of % the change of entropy at successive locations of a gram of

gat is given by

dj " L y-i 0 de " p fdf J / «

This quantity, dS/d£, must be positive for thermodynamic consistency. P

and 9 are given by

= 2

Substitution into Eq.. 7-60 yields the result that

(7-65)

(7-66)
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where K > 0, 7 > 1, and 0 < 5 < 1. Thus rr- > 0 and the flow law is

thermodynamically consistent.

7-8: The Balancing of Pressures

The interaction of the pressures of regions A and B affect the uni-

formity of the flow density J0(z) through the wall. This effect is

considered in this section.

The developments of Sec. 7-7 are based upon three assumptions:

(1) That the flow in either channel A or B is turbulent, obeying

the equations of motion developed in Sec. 7-4.

(2) That, as assumed in Eqs. 7-44 and 7-45, the influence of the

viscosity of the gas outside the boundary layer is negligible.

(3) That the flow density Jo is uniform and constant.

The influence of assumptions 1 and 2 is considered in Sec. 7-9.

Assumption 3 is of the nature of a perturbation treatment. Jo is

assumed to be constant and the pressure distributions P«(z) ̂ d Pt>(z)

are developed. The parameters K. and Kg of these distributions are then

adjusted to give a high degree of uniformity to Jo in accordance with

the assumed flow law through the wall governing the relation between

Jo(z), PA(z), and Pg(z). It is shown that this uniformity of Jo is in-

deed excellent. If this were not the case, the perturbations in Jo(z)

about its average value could be inserted into the original equations to

arrive at the corresponding perturbations in the functions p«(z) and

p,,(z) and the process continued.a
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It is convenient to write the functions P(£)> given in Table 7-3,

as power series in £. For the cold gas region A the function is

y AQy (7_67)

while for the hot gas region B it is

8 B d r B

The pressure drop from region A to region B at a height z is the sum

of the pressure change through the moderator, where pressure and flow are

related "by a law of the form

A(p2)oc Jo
2

and the metal wall pressure drop, which proves to be insensitive to small

changes in Jo. The combination yields a flow-pressure relation of the

form

p* - of = a Jo2 + b
A B (7-69)

As a numerical example the design data for Model A Dumbo are chosen.

These data, taken from Chap. 9, are given in Table 7-5. By the use of

the data given in Table 7-5, the expression for PB(£) from Eq̂ . 7-68

*In Sees. 7-7, 7-8, and 7-9 the symbol p represents the dimensional
pressure and "P" represents the dimensionless pressure defined in
Eq. 7-58. r
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TABLE 7-5
BASIC DATA FOR NUMERICAL EXAMPLE

Oo =4x10 gm/sec

= 1.22 gm/cma-sec

Po° = 2 9 . 2 bar
D

/>B°=2.845xl0"*gm/cm

KB°= 0.1475

PA°= 31.4 bar

FLOW LAW FOR COMPOSITE WALL

becomes

PB = 29.20 [l -0.14750£8-0.01864 £4-Q00472£6]
(7-70)

Two values are used for K., each yielding its own expression for P«(

from Eq.. 7-67:

Case I:

KJ =0.25650

PA(C) =31.40 [l -0.12825 £*-0.01762 £4 -0.00484 £*

Case I I :

= 0.24936

PA(C)= 31.40 [l -0.12468 e*-O.OI666£4-0.00444£* ]
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The value of K? selected for approximate design purposes in Chap. 9,

given by 2K?, is O.295« The resulting pressure distributions and varia-

tions in Jo are shown in Fig. 7-5•

The Case II result is an example of the degree of uniformity to be

expected in Jo when the flows are well balanced. The extremes of Jo

differ by 0.66$ only with even better balancing attainable by further

adjusting K.. The comparison of the results of Case I and Case II indi-

cate the degree of sensitivity of flow uniformity to variations of K.

in the vicinity of the balanced condition.

The phrase "variation of K " is meant to imply two types of adjust-

ments. As defined previously

A A V ^ A ^ A A (7_?1)

so that its value is affected by both the temperature and the area of

the cold region A. The area of the cold region is most easily adjusted

by filling up unwanted space with structural material as dictated by

detailed calculations, such as those of this chapter or by any available

experimental data. Adjustment of K. by the temperature T. is made by

properly varying the degree of the preheating of the gas before it enters

the cold region A. The specific motor designs given in Chap. 9 allow for

flow nonuniformities appropriate to a device in which there is no pre-

heater adjustment after assembly. However, very precise flow uniformity

might be achieved by neutronic controls in the preheaters, actuated by a
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FLOW 125
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differential temperature input between two points zi and z 2 of region B.

The differences between the it. of Cases I and II is l.kf. This re-

sults in shifting the extremes of Jo from a Case II difference of 0.66$

to a Case I difference of l+.6#. The rms deviation is much less, being

+l.ki for Case I.

7-9: Effects of Other Flow Laws

The relations used in Sec, 7-8 for P(£) as a power series in £ may

be interpreted physically as follows. The first two terms (including

£2) are due to dynamic effects not dependent upon the compressibility of

the fluid. It may be shown that these terms above express the hydrody-

namics of an incompressible fluid. The remaining terms (£4 and higher)

are corrections for compressibility. By this type of approach the

approximate relation K? = 2K? is developed, which implies that to order

PJC) = const.
A O

(7-72)

If the flow laws are modified, it is plausible that the new functions

P(£) may be written as a sum of terms of the form

P((;) = [new flow law of incompressible fluidj

+ I compressibility correction terms from Sec. 7-8J

The purpose of this section is to show that although there may be some

doubt as to the proper flow law of the regions A and B, nevertheless a
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high degree of uniformity can he obtained in Jo without major readjust-

ments in K..

The first modification of the flow laws of regions A and B results

from the distributed eddies of the assumed turbulent flow. Locally

(i.e., in the vicinity of some particular z) it is tempting to assert

that the stream, moving with some average velocity v with respect to the

walls, exercises the same drag as in ordinary channel flow. However, as

discussed in Sec. 7-5, the degree of turbulence is expected to be

strongly influenced by the flows at the porous walls. For these reasons

the following treatment gives only the magnitude of such drag terms.

From Sec. 7-2, the pressure gradients due to drag are

d2 r D (7-73)

where the friction factor y is an insensitive function of the Reynolds

number and is taken as constant, and D is the hydraulic diameter of the

channel. In the notation of Sec. 7-8, Eq.. 7-73 introduces an added term

of the form

(7-7*0

For the preceding numerical example this adds to Eq, 7-70 a term

- 0.0029 £*

contributing at most 0.08 bar to the pressure pg. A similar term
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characterizes the cold region A. Terms of such magnitude are easily

balanced out.

A more serious effect than such drag corrections arises from the

state of ignorance as to the exact hydrodynamics of the hot region B.

As discussed in Sec. 7-5, there are two cases in which the treatment

given in Sec. 7-8 are inapplicable. The flow law assumed in Sec. 7-7,

when specialized to an incompressible fluid, is given by

PB + ^ s PB (7-75)

If the hot region B is laminar and not turbulent, the distributed veloc-

ity profile causes this flow law, for the special geometry described in

App. C, to be

So that Eq.. 7-68 becomes

rBV!>; ' 8 B*» 2 X B5* 2 V 7 / B
(7-77)

If this relation applies, the approximation

is modified by matching quadratic terms in Eqs. 7-67 and 7-77, to become

K * S -f-2 ir1 * 2.47 K*
A 4 B B (7-78)
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This value of K. requires an 11$ smaller area in the cold region A. The

degree of uniformity in Jo, upon rebalancing, is about as computed pre-

viously.

A final possibility regarding the hot region B flow law is that a

transition from laminar to turbulent flow occurs as the gas progresses

through this region. The effect of such a transition upon the uniformity

in Jo(z), after balancing, is assumed to give an incompressible flow law

of the form

PB+(l.23-O.23£)/>v*= ft*
B B (7.79)

This relation reduces to Eq. 7-76 as £ -* 0 but to Eq, 7-75 as £ -»1.

From Eq. 7-79

(7-80)

Substitution of the data of Table 7-5 gives

PB (t) = 29.20 [ I -0.18035 £*+ 0.03447 £8-0.01864 £4

- 0 0 0 4 7 2^] (7-81)
whilst PA(£) is still given by Eq. 7-68. A good balance is obtained for

K? = 0.247314-, giving values of Jo whose extreme variation is k.Vf> and

whose rms variation is +1.5#«
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Thus despite the lack of knowledge of the exact hydrodynamics

governing the flow in the hot region B, it appears that an adequate

balance is obtained by a value of *., whose uncertainty is within reason-

able limits, which yields a good uniformity in Jo.
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CHAPTER 8

FABRICATION METHODS AND MATERIALS*

.. .he schlooped up a schloop of mud from the banks
of the great grey-green, greasy Limpopo, and
slapped it on his head, vhere it made a cool
schloopy-sloshy mud-cap all trickly behind his
ears.

R. Kipling, The Elephant's Child

8-1: Introduction

In this chapter some practical problems associated with Dumbo are

considered.

Section 8-2 describes pertinent physical properties of the refrac-

tory metals. In Sec. 8-3 several methods for incorporating U0 2 into

refractory metals are given. Sections 8-l(- and 8-5 consider radiation

damage to the metal and the moderator. Sections 8-6 and 8-7 are devoted

to metallurgical and engineering problems associated with the fabrication

of the metal wall structures. Section 8-8 considers the problems asso-

ciated with the incorporation of magnesium powder into the polystyrene

moderator.

8-2: Metallurgical Considerations

Five refractory metals and their alloys are considered for

*This chapter was prepared in collaboration with D. K. Gestson, J. B.
Lilienthal, and F. J. Miller of the Los Alamos Scientific Laboratory.
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construction of the Dumbo wall. These metals and some of their pertinent

physical properties are listed in Table 8-1. More complete data are

given in App. B.

TA8LE 8-1

METAL

TUNGSTEN

TANTALUM

MOLYBDENUM

COLUMBIUM

RHENIUM

MELTING POINT

3623 °K

3273

2923

2723

3440

THERMAL CAPTURE
CROSS SECTION

19.2 barns

23.3

2.4

I . I

84.0

SINGLE CRYSTAL
TENSILE STRENGTH
AT 2 8 0 0 ° K

350 kg/cm*

21

The Dumbo models do not require great tensile strength. The calcu-

lated hoop stress on the metal wall for a typical Dumbo model is circa

5 kg/cm2. This value is much less than the tensile strength of either

molybdenum or tungsten at the operating temperature. The main stresses

occur where the material is cold and has the highest tensile strength.

Tungsten and molybdenum form a continuous series of solid solutions,

so that one may draw a straight line between the two melting points to

obtain a melting point versus composition curve. The workability of the

solid solutions is better than that of the pure metals.

R. B. Gibney, Lee Richardson, and J. M. Dickinson of LASL have sug-

gested an alloy of circa 20$ rhenium and 80$ molybdenum. This alloy is
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reputed to have excellent workability and a higher melting point than

molybdenum, forming an ideal solid solution. The nuclear properties of

this alloy approximate those of pore tungsten. No data on tensile

strength are available.

Colvanbium and tantalum also form a continuous series cf solid solu-

tions but data are lacking on their tensile strengths.

It is known that tungsten, molybdenum, and rhenium are chemically

inert to both hydrogen and ammonia at temperatures typically found in

Dumbo.

8-3: Methods for Addition of Uranium to the Refractory Metals

Five methods for adding uranium to the refractory metals are:

(a) Making cermets of U0 2 and the metal or alloy by various tech-

niques of powder metallurgy,

(b) Mixing uranium metal with the metal or alloy by powder metal-

lurgy.

(c) Forming true alloys with uranium.

(d) Coating the surfaces of the metal with U02.

(e) Laminating a layer of U0 2 between foils of refractory metal.

Method (a) requires techniques that are similar to those used in

the manufacture of tungsten filaments. In the tungsten lamp industry,

as much as 5$ ThO2 has been added to tungsten in order to Improve its

physical properties by inhibition of crystal growth. Since U0 2 is sim-

ilar to ThO2 in its chemical and physical properties, no difficulty
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should be experienced in replacing ThO2 by U02.
p

Battelle Memorial Institute has recently made mixtures of U0 2 and

molybdenum containing 25 volume percent of U0 2 and has rolled the re-

sulting cermet to a 0.01 cm foil.

An advantage of this method is that the melting points of the sub-

stances remain unchanged since the materials are mutually insoluble.

The presence of UO2 in the refractory metal retards crystal growth at

high temperatures, thereby maintaining R high tensile strength.

Method (b) has the disadvantage that alloys are formed which are liq-

uids trapped in a solid matrix at the temperatures encountered in Dumbo.

Method (c): Solid solutions are formed in the columbium-uranium

system. In the interesting region of composition the melting point is

about 257O°K only. Farther, in any method involving metallic uranium,

the formation of UH3 with the propellant gas is a possibility.

Method (d): Electrophoretic techniques have been employed by

W. J. McCreary of LASL to deposit thin uniform coatings of U0 2 on refrac-

tory metals. No chemical bonding occurs, but the coatings withstand mild

abrasion and considerable distortion.

Method (e) consists of folding longitudinally a U02-coated refrac-

tory metal strip to form a sandwich. This strip is fabricated into a

linearized wall (see Sec. 8-7).

Methods (d) and (e) possess certain advantages in common. These

are:
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(1) Higher loadings of U0 2 are possible than with cermets.

(2) Commercial refractory metal foil can be used.

(3) In special wall structures, such as linearized models, portions

may be unloaded or of graded loadings.

8-h: Radiation Damage to the Metal Structure

Typically, the metal core structure of a Dumbo reactor receives an

integrated flux of 8,3 x 10 l a neutrons/cm2. Nucleonics, p. 56, December,

1951*-, states:

Molybdenum in.,its commerically pure form is embrittled to
such an extent'after reactor irradiation to 1.9 - 5.9 x IO 2 0

thermal neutrons/cm2 that it is unsafe for use inuload
carrying reactor components at low temperaturesj' according
to tests by KAPL. ' , ./'

No other data are given. However, the neutron irradiation levels

for Dumbo are only a few percent of that used in the KAEL tests. Thus

there is no indication that such embrittlement would occur in Dumbo.

8-5: Radiation Damage to-the Moderator

The moderator in'Dumbo is typically irradiated to 3.8 x 10 2 4 ev/gm.

Sisman and Boppvhave made an extensive sttidy of the physical properties
/''

of irradiated'plastics. Irradiation levels up to 6.7 x 10 2 3 ev/gm were
/

studied... For styrene polymers little change except darkening was noted.

The radiation level for Dumbo is about 5-7 times the maximum levels used

by Sisman and Bopp. Since darkening was the only observed change, it is

reasonable to hope that the moderator material will withstand 3.8 x 10s*

ev/gm.
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: Fabrication of Dumbo Rings

The engineering work to date has been directed toward the fabrica-

tion of the metal elements of Dumbo tubes. This work is largely that of

D. K. Gestson and F. J. Miller. The experience gained in fabricating

and assembling a linearized section of Dumbo wall was valuable in de-

signing and building the three dies for the circular wall. The dies

are: (l) A die, shown in Fig. 8-1, for blanking the parts to be corru-

gated. (2) A corrugating die, shown in* Fig. 8-2, for partially

corrugating the spacers. (3) A corrugating die, shown in Fig. 8-3, for

forming the channel rings.

In lieu of 0.0025 cm molybdenum or tungsten foil, the dies were

tested using 0.0025 cm braas foil. A preliminary investigation indicated

that the depth of corrugations at the Impedance section could be held to

+0.00025 cm for any given ring. The depth of corrugations across the

width of the ring surface can be held to +0.0005 cm for any given ring.

No attempt was made to /control the forming pressure so that some varia-

tion in amplitude froA ring to ring was noted. However, this amplitude

variation appears easy to reduce. Figure 8-4 shows some of the typical

washers blanked and corrugated by the dies. Enough rings were corrugated

to assemble a stack approximately 1 cm high.
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Fig. 8-1: A Blanking Die
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Fig. 8-2: A Corrugating Die for Partially Corrugating the Spacers
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Fig. 8-3: A Corrugating Die for Forming the Channel Rings
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Fig. 8-4: Washers Blanked and Corrugated by the Dies
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8-7: Metallurgical Fabrication Problems

The known fabrication problems that present the greatest difficulty

are as follows:

(a) Preferred orientation of the rolled out sheets of molybdenum.

Kings of the refractory metals have not been made. However, it is known

from work on linearized wall sections that corrugating a sheet of molyb-

denum with the grooves running parallel to the rolling direction tends

to produce pieces whichxcrack along the ridges of the corrugations. Cor-

rugating normal to the direction in which the sheet was rolled produces

pieces which do not crack.

A. C. Briesmeister and P. J. Pallone of LASL have shown for linear-

ized sections of Dumbo wall that the orientation problem may be avoided.

To do this, the corrugations are made by rolling the foil through meshed

gears, so that bending of the metal without stretching occurs. Figures

8-5 and 8-6 show successfully corrugated foils of molybdenum and tungsten

and the dies used for this technique.

There are metallurgical methods for coping with preferred orienta-

tion difficulties, but no particular work has been done in this problem

for Dumbo.

(b) Rolling of sheets of refractory metal impregnated with U02.

Metallurgical studies are necessary before cermets containing U0 2 can be

rolled out to the foil thickness specified in Chap. 9.
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Chapter 8 Fabrication Methods and Materials

This problem could be made easier by rolling sheets to smaller

width, such as would be used in designs involving linearized wall sec-

tions. In these cases it is necessary to roll a ribbon of only about

1 cm width.

8-8: The Moderator Material

The moderator consists of molded polystyrene into which magnesium

powder has been incorporated to improve the thermal conductivity. Pre-

liminary samples of this plastic, incorporating 10 to 50$ magnesium

powder, have been made by J. S. Church of LASL. Thermal conductivity

measurements of these samples are given in Table 8-2. These measurements

TABLE 8 - 2

VOLUME PERCENT
MAGNESIUM IN
POLYSTYRENE

10

20

30

40

50

THERMAL
CONDUCTIVITY

watt/cm -deg

4 xlO"3

5xlO"3

6 x K T 3

I 3 X K > " 3

45xlO~3
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are due to R. L. Powell of the National Bureau of Standards, Boulder,

Colorado. The thermal conductivity of the 50$ sample is satisfactory.

With more experimental work it should be possible to achieve this thermal

conductivity with less magnesium.

REFERENCES

1. C. J. Smithells, Tungsten, p. 129, Fig. 101, Chem. Pub. Co,,
Brooklyn, 1953. \

\
2. Battelle Memorial Institute, BME-889, November 25, 1953.

3. 0. Sisman and C. D. Bopp, Physical Properties of Irradiated Plastics,
Oak Ridge National Laboratory,/QRNL-928, June 29, 1951.

\
\
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CHAPTER 9

NUMERICAL IESIGN OF SOME SELECTED MOTORS

The rest of the tine he picked up the melon finds
that he had dropped on his vay to the Limpopo —
for he was a Tidy Pachyderm.

R. Kipling, The Elephant's Child

9-1: Introduction

An extensive and largely complete array of theoretical tools

pertaining to the design of rocket motors of the Metal Dumbo type are

developed and presented in previous chapters. The utility of these de-

velopments in practical motor designs may be obscured not only by the

necessary mathematical detail bui; also by the large number of subjects

which it is necessary to treat. Nevertheless, these many lines of attack

do converge upon a practical and attractive type of nuclear rocket motor

whose features and behavior are shown in this chapter.

A few distinctive models of the Dumbo type are presented in this

chapter as typical. Each model is considered as completely as current

understanding permits insofar as performance tinder various conditions is

concerned.

9-2: Description of Models A - D

The four models described in this chapter are:

Model A: This Dumbo motor is constructed of nineteen Dumbo tubes
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Chapter 9 Numerical Design of Some Selected Motors

with normal flow path for the hydrogen. The Dumbo heat exchanger is

constructed of molybdenum foil 0.0025 can thick, corrugated into washers

of k cm inner radius and 5 cm outer radius. The molybdenum is impreg-

nated with 25 volume percent UOg. The tubes are 55 cm long within a

reflector having a cavity 60 cm high. Moderation is provided by poly-

styrene (CH) Impregnated with 20$ magnesium. This mixture is assumed to

have a thermal conductivity of 0.01 eal/cm-sec-deg or more. This model

is capable of 1.5 x 10 9 watts power, heating H 2 gas to 25OO°K with an

operating pressure of 25 atmospheres. The power density is flat and

temperature uniformity of the hottest parts of the metal wall is main-

tained to +200°. This model is perhaps the simplest of the Dumbo type

to construct and test and has good performance characteristics. Detailed

analysis is treated in Sec. 9-3•

Model B: This motor, described in Sec. 9-h, is designed to be in

the 10 begawatt class and is constructed of 169 tubes of the dimensions

described in Model A. It is larger, heavier, and more powerful than

Model A. It is constructed similarly of molybdenum.

Model C; This motor, described in Sec. 9-5, is distinguished from

Model A by use of a tungsten heat-exchanger material containing 25 volume

percent UO2. The higher temperature properties of the tungsten may be

used either to produce a higher gas temperature, or to allow less inti-

mate heat transfer in the Dumbo exchanger, or to allow a larger factor of

*TOiroughout this report "uranium" or "U" refers to pure Ueo=J.
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safety when operated as Model A. This motor requires inverted geometry

and flow patterns. The nineteen tubes are constructed with similar di-

mensions to those of ModelVA, although the small introductory impedances

in the metal wall are located at the outer edge of the tubes.

Model D: This motor, described in Sec. 9-6, is a large version of

the tungsten Dumbo (Model C) with 169 tubes and appropriately larger

power.

A comparison of these four models is given in Sec. 9-7 •

9-3: Model A Design Features \

This "domestic size" motor is composed of nineteen Dumbo tubes with

their moderating cores, the entire reactor core being reflected by beryl-

lium on all sides. The lower reflector contains exit ports for the

heated hydrogen as well as supply ducts for very cold supply hydrogen.

Design features are developed in the following order:

(a) Moderator and reflector requirements, i

(b) Energetics, flow, Mid pressure design. \

Considerable construction detail of the metal Dumbo wall is Imposed

from the start on the basis of preliminary design. \ This information is

compiled in Table 9-1. A drawing of this wall is shown in Fig. 9-1.

The moderator and reflector design is associated "•rf.th the hydrody-

namic problems discussed in Chap. 7» As shown in Sec. 7-8, it is

possible to approximately satisfy the condition for flow uniformity by
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TABLE 9 - 1 MODEL A METAL WALL

DIMENSIONS

FULLY CORRUGATED PIECES

FOIL THICKNESS, T 0 .0025 cm

INNER RADIUS 4 . 0 0 cm

OUTER RADIUS 5.00 cm

NO. of CORRUGATIONS 336.

CORRUGATION PERIOD, u
AT INNER RACMUS 0 . 0 7 5 cm
AT OUTER RADIUS 0.09375cm

CORRUGATION HEIGHT,
a , 0.015 cm

CORRUGATION LENGTH 1.00cm

CALL ONE "UNIT" A STACK OF
WITH ONE FULLY CORRUGATED

Total No. Units for 19 tubes

Total Mass Mo for 19 tubes
Total Volume Metal in Wall

/

/

WRTIALLY CORRUGATED PIECIES

FOIL THICKNESS, T / 2 0.00125 cm

INNER RADIUS 4.00 cm

OUTER RADIUS 5.00 cm

NO. of CORRUGATIONS 336

CORRUGATION PERIOD, u
AT INNER RADIUS 0.075 cm
AT OUTER RADIUS O.O937S cm

CORRUGATION HEIGHT,
( a r a , ) 0.01193 cm

CORRUGATION LENGTH 0.147cm

2 PARTIALLY CORRUGATED
PIECE .

52,250
57.06 kg

7.388 li
Mo 5.541 I)

J02 1.847 li
ASSUME PREHEATER REQUIREMENTS TO CORRESPOND TO
2.22 cm EXTRA WALL PER TUBE.

Total Mass Mo in Motor

Total Mass UOt in Motor

Total Mass U in Motor

59.4 kg

21.1 kg
18.6 kg

(CONTINUED)
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TABLE 9 -

Number of channels per unit

Total

Heat

Heat

Total

Total
Total

v =

a2 =

Cross

(Total

number of channels in motor

exchange surface per unit

exchange surface per channel

heat exchange surface in motor

outer tube area
inner tube area

CONT.

672

35x10*
113 cm*

0.169 cm1

5.90 x Kfcm*

32.8 xio*cm*
26.3 xKfcm*

CHANNEL GEOMETRY

AT EXIT
(OUTER RAOIUS OF TUBE)

0.09375 cm.

0.015 cm

sectional area =1/2 a , u

= 0.70x10*01?
open area, 24.5xio*cmz)

AT ENTRANCE
(INNER RADIUS OF TUBE)

V =

a l =

Cross

(Total

0.075 cm.

0 .00307 cm

sectional areas 1/2 a, v

*O.II5xK5*cm*

open area, 4.03x10* cirfy
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adjusting the areas of hot gas and cold gas flow, given by A_ and A.,

respectively, such that

' • • *
(9-1)

For T B = 2500°K and T A = 255°K the ratio becomes

= 4.427
(9-2)

As shown in Chap. 7, it is possible to readjust T. as a vernier control

for purposes of balancing the flow nonuniformities along a Dumbo tube.

The simple relation of Eq. 9-2 is that chosen for the nuclear phase of

the design problem. Table 9-2 presents the reactor design characteris-

tics of the Model A Dumbo motor. Figs. 9-2 and 1-1 are drawings of the

reactor design of Dumbo Model A.

Another aspect of this motor is the temperature to which it heats

the hydrogen. If heat transfer were perfect and all regions behaved

uniformly, then the gas temperature would be chosen as the highest pos-

sible working temperature of the metal wall. Because of the extensive

investigations of the preceding chapters it is possible to take account

of deviations from this ideal condition. Corrections are made for the

following effects:

Effect a: Imperfect heat transfer, resulting in a temperature dif-

ference 9 between the gas and the metal wall, as developed in Chap. 2.
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TABLE 9-2

NUCLEAR DESIGN AND MATERIALS OF

MODEL A MOTOR

Materials

Mo

CH

Mg
UO2

U
Be (reflector)

Total moss

kg

59.4

28.6
18.5
21.1

(18.6)

577.6

705.2

moles

619

2200
762

79

79

N.,moles/li

3.91
13.90
4.82
0.50
0.50

REFLECTOR DESCRIPTION

Inside radius 28.97 cm Inner height 60.00 cm
Outer radius 42.22 cm Outer height 84.08 cm

Volume of Be 312.2 li

• <* MOTGSfc GE3GRIPT10N

Height, L o *€0.G& cm Hydraulic" Diameter^ •-• "..':. ."*, .

Radios, Ro 28.97 cm Hot region * *7.09r cm»

Volume, Vo 158.2 li Cold region 4.42 cm

AREAS
Moderator region
Cold gas flow
Structural brociru
Metal wall
Hot gas flow
Total area

663.3 cm
2 58.5

3 33 .3*
537.2

1 144.4
26 36.7 cm

2

2

MODERATOR REGION
(For metal wall see table 9-1)

Volume distribution Effective densities
CH 68.4 % CH 0.719 gm/cm*
Mg 26 .8% Mg 0.466 gm/cm*
Void 4 . 8 %

NM9 = 0.347 NCH
Outer radius 4.0 cm
Inner radius 221 cm

* N O T E : •Structural allotmint tquivaltirt to or* 1.5 cm diamntw rod p«r Dumbo tub*.
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SECTION BB

HOT GAS OUTLET
COLD GAS INLETB
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Effect b: Deviations from the flat flux condition -which is approx-

imately satisfied by the design methods of Chap. 6.

Effect c: Variations of flow through the wall at various heights

along a tube, resulting in temperature variations, as described in

Chap. 7.

Effect d: Hot and cold spots along the wall due to aonuniformities

of wall construction, as described in Chap. k.

In order to predict these several corrections estimates regarding

nonuniformities must be assumed. The authors have attempted to assign

two extreme values to each of three quantities, representing the opti-

mistic W and pessimistic \s) extremes, as follows:

Maximum working temperature of \
the wall 2923°K (M.P.) 2700°K

#
Maximum flux intensity above

the mean 3% Tf>

rms deviations in aj. Vf> 12$

Effect a: From Eqs. 2-105 and 2-53 Q Is expressed in terms of the

average flow density Jo issuing from the outside of the Dumbo tubes as

99 =181 J« • 0.552x10** Qo
9 (9-3)

•It is expected that flow variations from effect c are dominated by flux
nonuniformities. Such variations are regarded as lumped into this
figure.
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Effects b and c: Effects of local power variations are Interpreted

In terms of the gas heat capacity c at the high temperature and the

enthalpy increase ££. of the gas In passing through the wall, so that each

1$ power variation about the mean results in a temperature increase 81T,

given "by

where c is If.3 cal/gm-deg and £S. is 8^00 cal/gm.

Effect d: Relations involving the wal1 construction are complicated

but computations for this model fit the linear empirical relation

for each Vf> rms deviation in Oi. These relations predict the results

shown in Fig. 9-3 for the final gas temperature corresponding to various

flow densities Jo or total flows QQ. AS a rough practical index of the

performance of the motor one may consider the thrust occurring from a

nozzle whose exit velocity is twice the velocity of sound at the chamber

temperature (~0.9 that for complete expansion). The performance is shown

in Fig. 9J*-« Conversions to power levels are shown in Fig. 9-5.

All the preceding design results are independent of the choice of

operating pressure for the Model A Dumbo motor. Within the motor, it is

generally desirable to maintain the pressures sufficiently high so that

flows are sub-sonic. For the Model A motor the rule that
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FIG. 9 - 3
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THRUST

10 6 gms.

0 20 40 60 80 100

Qo kg / s e c of HYDROGEN

Fig. 9-1)-: Performance of Model A Motor

283



Chapter 9 Numerical Design of Some Selected Motors
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p =6xlO"4Q (bar)
9 (9-6)

insures that the hot gas velocity does not exceed Mach O.k (referred to

2500°K). AS an example, for Qo = k x 10
4 gm/sec (power approximately

1500 megawatts) the operating pressure is 2k bar, according to this rule.

This value is consistent with the pressure distribution given in Fig. 7-5

and Table 7-5. This distribution is computed for the Model A Dumbo

motor.

Relations of Chap. 3 are used to obtain the pressure drop across

the metal wall. For the Model A motor the rule that the pressure drop

through the moderator is six times that of the metal wall insures reason-

able lack of sensitivity of performance to variations in the metal wall

construction between different gross regions of a tube. With this factor

of six each 1$ error in the introductory height c&i, causes ~5.k degrees

change in the output temperature due to the modified flow through the

wall.

If larger operating pressures are selected, all pressure variations

within the motor are reduced proportionately. Since pressures in the

range of 100 bar are technically feasible, comparatively minor consider-

ations might justify the choice of larger pressures.

Table 9-3 lists dimensions of the plastic moderator wafers and some

flow data from the numerical example of Table 7-5 and Fig. 7-5. Each
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(Q)

TABLE 9-3

DETAILS QF PLASTIC WAFERS

INNER RADIUS
OUTER RADIUS

SEMI-CIRCULAR
(in plastic)
DIAM.
LENGTH

2.21 cm
4.00cni

HOLES

0.025cm
1.79 cm

NUMBER HOLES ptr WAFER
336

THICKNESS 0.0975 cm

MOSAIC CELL TABS every 3mm

NUMBER CELLS per WAFER 8 4

(b) MOSAIC CELLS

WIDTH 0.30cm «\4 v
HEIGHT 0.10 cm = 5 ( a 2

NUMBER OF METAL CHANNELS per CELL 4 0
NUMBER OF SUPPLY HOLES IN PLASTIC per CELL

(c) TYPICAL FUDW DATA THRU WALL

ENTERING
PLASTIC

ENTERING
METAL WALL

LEAVING
METAL WALL

TEMPERATURE
PRESSURE
VELOCITY
MACH NO.
REYNOLDS NO?

220° K
31.4atm

2.19 x IO4cm/sec
0>17

8700

305° K
29.5 atm

133

2 5 0 0 • K
29.2 atm

0.57 xl04cm/sec
0.015

69

« REYNOLDS NO. AT W , ( F I G . 9 - I ) IS 1 6 3 .
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plastic wafer alternates with a 0.0025 cm thick Dural wafer as shown in

Fig. 1-12.

Some aspects of the Dumbo motor are not peculiar to pachydermalates

but are found in most nuclear rocket motor designs. Solutions of this

type of problem are avoided in this study as far as possible although

two plauaible details, the beryllium reflector and the preheater design,

are described at this point.

The beryllium reflector: Although this reflector is computed as a

circular cylindrical shell, the Dumbo tube array suggests an equivalent

hexagonal geometry, as shown in Figs. 1-1 and 9-2. A hexagonal geometry

allows the reflector to be made of many flat slabs yielding a laminated

type of structure. Controlled spacing between these plates provides flow

paths for the "liquid H2" feed as coolant for the reflector. All inte-

rior surfaces of the reflector are thermally insulated from the hot gas

in order to protect the metal from excessive temperatures and to avoid

losses of energy from the surfaces. This is accomplished with thin

tungsten or molybdenum foil to which 0.05 cm ZrO2 is bonded. The com-

posite foils are used with the ZrO2 adjacent to the beryllium surfaces

and with the refractory metal backing exposed to the hot gas.

A particular construction problem arises at the lower plate in which

thirty-six holes of 6 cm diameter are required for exhausting the hot

*Such a bonding which is highly tenacious and withstands strong thermal
shocks- has been accomplished by W. J. McCreary at Los Alamos.
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gas. The area of these holes equals the total hot area JL. of the
a

chamber, and represents kQ/fa of the total lower plate area. The resulting

loss of neutron reflection presumably can be compensated by making a

correspondingly thicker reflector plate. However, the open area may be

reduced if the operating pressure is increased to insure that the gas

velocities remain sub-sonic.

Preheater design: Although some heating of the hydrogen occurs in

the Be reflector, the exit temperature of this gas is only approximately

100°K so that some added heating of this gas will be necessary to arrive

at the 220°K temperature required for the cold gas duct. For this pur-

pose the lowest 3 cm of each Dumbo tube is devoted to a low power

turbulent heat exchanger. Table 9-̂ - gives the energy requirements of

TABLE 9 - 4

HOTTEST GAS

GAS ENTERS
DUMBO WALL
GAS ENTERS
MODERATOR
GAS ENTERS
PREHEATER
GAS ENTERS
REFLECTOR

LIQUID ( H2)

TEMPERATURE*

2500° K

305

220

97.5

27

20.3

ENTHALPY

9475col^m-

1025 •

744

344

110

90.23 %

• 3.00

4.27

2.50

100.00 %
(63)

* COMPUTED ON BASIS OF 100BAR PRESSURE.
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Model B Design Features Section

the gas at each stage of its flow on the basis of Fig. 7-1. No detailed

design of the preheater is proposed, but channels of hydraulic diameter

0.03 cm with a pressure drop of 0.3 bars are typical. Power density is

similar to that of the major portion of the reactor so that no serious

neutronic coupling problem with the lower portion of the Dumbo tubes is

expected,

9-4: Model B Design Features

This enlarged version of the Model A motor consists of 169 Dumbo

tubes with their moderating core. The metal wall of each tube is iden-

tical with that of Model A, as described in Table 9-1. The description

of the nuclear design of this motor is given in Table 9-5. Fig. 9-6

presents a drawing of the Model B motor. The temperature performance for

a given Jo is identical to that of Model A. However, the total flow Qo

and the thrust indicated in Figs. 9-3 and 9-k must be multiplied by 8.895

due to the larger number of tubes. For example, the temperature perform-

ance characteristics obtained when Model A operates at 1.5 begawatts are

obtained by Model B at 13.3 begawatts.

Operating pressure may be less in the Model B Dumbo motor than that

of Model A because of the 63$ larger gas flow area for each tube. For

this model the rule

*Since the Dumbo motors always operate above the critical pressure of
H2 (12.8 bar) there is no discontinuous phaae transition from liquid to
gas. (See Fig. 7-2.)
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Chapter 9 Numerical Design of Some Selected Motors

TABLE 9 - 5

NUCLEAR DESIGN AND MATERIALS OF

MODEL B MOTOR

Materials

Mo

CH

Mg

UOt

U

Be (reflector)

Total mass

Inside radius
Outer radius

Height, Lo

Radius, Ro

Volume, Vo

kg

528.3

135.8

87.8
187.7

(165.4)

1820.2

2759.8

moles

5,506

10,446

3,610
703

703

t

REFLECTOR DESCRIPTION

97.53 cm Inner height
106.66 cm Outer -height

Volume of Be 983.3 li

MOTOR DESCRIPTION

60 .00 cm Hydraulic Diameter

97.53 cm Hot region

1793 li Cold region

AREAS
Moderator region 3,148 cm*
Cold gas flow 3,752^
Structural bracing 1,595
Metal wall 4,778
Hot gas flow 16,610

Total area 29,883 cm*

tlj, moles/li

3.07

5.83

2.01
0.39

0.39

60.00 cm
77,68 cm

11.22 cm

2.88 cm

MODERATOR REGION

Outer radius 4.0 cm Inner radius 3.175 cm

* N O T E : Structural olfotm«nt «quhral«nt to on* 1.74 cm radio* rod par Dumbo tub*.
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Chapter 9 America! Design ot Soee Selected Motors

p =0.4UI0""Qo bar

» (9-7)

insures gay velocities to be less than Mach 0.'.. For exaraple, if Q o is

35.6 x 104 ga/see then pg is 1U.6 bar by Eq. 9-?.

Model B aoderator wafers require o;j.ly half as nany aeai-cireuinr

holes as those of Model A, and only two such holes supply each mosaic

cell of the Model 3 net&l wall. Thia occurs because the inner nidiiu

of the Model B wafers is larger than for Model A. Otherwise the co:>

structior. and perfomanee of the Model A aotc-r apply. Reflector

construction and preheater denig:; ia stsilar to that of Model A.

9-5: Model C Design Features

The Model C sotor uaes nineteen IKaabo tub«s ss»«ts of 0,0025 «s thick

foil. The tungsten is iajjregswtted with 25 voluws percent U<^, Due in

the increased so4firator requirements of tt tungsten reactor, thia ssodel

uses the inverted Itebo geoetetry !-••; which the aoderator surrounds the

aetal wall. The gas flow passes through the plastic and the aetal wail

in turn, with the hot gas flowing down the inside of each Dumbs tube.

The metal wall geometry is that of fable 9-1 and ?i«. 9-1 except that the

partially corruft&ted pieces fora the stabilising i«ped*rsee along the

outer radius of the aetal wall ar.d produce a different channel geoesetry.

Table S>-o and Figs. 9-7 and 9-3 present the nuclear design of this Rotor.

Compared to the Model A ootor this node! possesses a large beryllium
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TABLE 9-6

NUCLEAR DESIGN AND MATERIALS OF
MODEL C MOTOR

Materials

w
CH

MQ
UO,

u
Bt (rtflector)

Total moss

112.3
123.6
79.9
21.1

(«a6)
)755.l

2092.0

moles

610

9507

3285
79

79

REFLECTOR DESCRIPTION

inside radius 38.02 cm inner height
Outer radius 61.58 cm Outer height

Volume of Be 946.7 II

Nj , moles /li

2.24

34.89
12.06

0.29

0.29

60.00 cm
102,54 cm

MOTOR DESCRIPTION

Height, L . 60 .00 cm Hydraulic Diameter

Rodlus, R. 38.02 cm Hot region 10.0 cm

Volume, V. 272.5 li Cotd region 0.633cm

AREAS
Moderotor region 2 8 0 3 . 2 cm
Cold gas flow 215 .7
Structural bracing 30 .0
Metal woll 537.2
Hot gas flow 955.1
Total area 4541 .2 cm

t

MODERATOR REGION
<SM figure 9-7)

Effective density
CH 0.735 gm/cm*
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FIGURE 9 - 7

MODEL C DUMBO
SCALE i
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Be REFLECTOR <
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FIGURE 9 - 8

MODEL C DUMBO
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Chapter 9 Numerical Design of Some Selected Motors

reflector and is consequently much heavier.

The temperature performance of this motor is analyzed in a manner

like that for the Model A. The following quantities are assumed:

Maximum working temperature of
the wall 3&0°K (M.P.) 33OO°K

Maximum flux intensity above """"'
the mean 3$ T?»

rms deviation in 0!! 1$ 12$

Values of 9 for this model are given by

6g. - 287 Jo =1 093 x l0"*Qo

where Jo is the flow per cm2 of interior tube surface. The effects of

power variations, flow variations, and wall construction variations are

similar to those described for Model A. The performance for this motor

is shown in Fig. 9-9.

For the Model C motor, the rule that

insures gas velocities to be less than Mach O.U. Thus p_ is 28$ larger

than in Model A.

The reflector of the Model C rocket might be made as shown in

Fig. 9-8. However, the feasibility of such construction with beryllium

has not been investigated. Preheaters are similar to those of Model A.
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Chapter 9 Numerical Design of Some Selected Motors

9-6: Model D Design Features

This device is a tungsten motor having 169 Dumbo tubes. It is an

inverted Dumbo model, like Model C. Its nuclear design is described in

Table 9-7 • Operating temperatures for a given Jo are the same as those

for Model C, as shown in Pig. 9-8, although the corresponding total flow

Q o is 8.895 times greater.

For the Model D motor, the rule that

p = 0.87xlO"*Qo bar
B (9-10)

insures gas velocities to be less than Mach O.U.

9-7: Comparison of the ̂ our Models

A comparison of some features of the previous four models is shown

in Fig. 9-10. The comparison of mass, size, and shape is evident from

the figure. Performance is evaluated in terms of the hydrogen flow 4 0

required to produce an arbitrary thrust. This thrust is 8.895 tines

greater for the large motors (Models B and D) than for the small ones

(Models A and C). The performance is computed on the basis of molecular

hydrogen of constant specific heat, as was described for Fig. 9-^. This

assumption underestimates the thrust. According to the chart, Fig. 9-10,

the tungsten motors show so small an improvement over the corresponding

molybdenum motors that their ranges of uncertainty overlap. However,

the presence of hydrogen dissociation, due to the high temperatures
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of the Four Models Section 9-7

TABLE 9 -7

NUCLEAR DESIGN AND MATERIALS OF
MODEL D MOTOR

Materials

W
CH
Mg
UOt

u
Be (reflector)

Total mass

kg

998.9
421.3
272.4
187.7

(165.4)

2646.0

4526.3

moles

5,429

32,408

11,201
703
703

N., moles/li

3.57
21.32
7.37
0.46
0.46

REFLECTOR DESCRIPTION

Inside radius 89,80 cm inner height 6 0 . 0 0 cm
Outer radius 103.79 cm Outer height 87.18 cm

Volume of Be 1430.3 li

MOTOR DESCRIPTION

Height, Lo 60 .00 c.n Hydraulic Diameter

Radius, Ro 89.80 cm Hot region 10.0 cm

Volume, y» 1520.0 li Cold region 0.6 cm

AREAS
Moderator region 9,76 7 cm
Gold gas flow 1,0 2 0
Structural brccina 3 6 9
Metal wall ~ 4,778
Hot gas flow 8,500
Total area 25,334 cm*
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Vpriants on the Designs Section 9-8

attainable by tungsten, can prove so advantageous In several ways that

the comparison given by Fig. 9-10 is grossly affected. '•The possible

improvements from these dissociation effects are discussed in App. D.

9-8: Variants on the Designs

Several variations of these designs possess attractive features.

Among these are the following:

(1) The number, arrangement, and size of tubes may be adjusted as

desired,

(2) The degree of loading the metal wall with UO2 may be adjusted

over a considerable range which is consistent with nuclear demands and

metallurgical properties.

(3) Alloys of molybdenum with tungsten or rhenium, having inter-

mediate thermal properties and better fabrication properties than either

pure metal, may be used.

Of) It is interesting to consider the effect of making the Dumbo

wall of heavier gauge foil, which may ease fabrication problems.

Table 9-8 shows that this procedure, keeping the moderator construction

the same, allows reduction in the reflector thickness and in the total

mass of the motor. Changes in the eritieality k are shown for this

variant.

(5) The composite CH-Be reflector described in Sec. 6-& may be

applied with success to the large Model B motor, although it presents no
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TABLE 9 - B

THE USE OF THICKER FOILS IN

19 TUBE DUMBO DESIGNS
(a) Molybdenum, Regular Flow

PLY

CRITICALITY, k
CORE RADIUS, Ro
CORE HEIGHT, Lo

REFLECTOR RADIUS
REFLECTOR HEIGHT
REFLECTOR MASS
UO2 MASS
TOTAL MASS

1 *

1.000
27.9cm
60.0cm
40.2 cm
82.7 cm

507.2 kg
21.1 kg

632.7 kg

* THESE DATA ARE SIMILAR TO, BUT

2

1.049
279
60.0
36.4
76.1
315.0
42.2

521.0

NOT IDENITICAL

3

1.066
27.9

60.0
34.6
72.9

237.2
63.3

523.7

TO, MODEL A

(b) Tungsten, Inverted Flow

PLY

CRITICALITY, k
CORE RADIUS, Ro

CORE HEIGHT, Lo

REFLECTOR RADIUS
REFLECTOR HEIGHT
REFLECTOR MASS
U02 MASS
TOTAL MASS

1 *

1.000
38.0 cm
60.0 cm
6i.6cm

102.5 cm
1755.2 kg

21.1 kg
2092.0 kg

2

1.012
38.0
60.0
54.6
90.6

1065.0
42.2

1535.2

3

0.987
38.0
60.0
51.9
85.9

841.5
63.3

1445.2

* MODEL C DATA



Variants on the Designs Section 9-8

advantage with the large Model D motor. Some indication of the utility

of this modification is seen in Table 9-9. Hovever, the details of how

to protect plastic or other hydrogenous moderator which is arranged in-

side the Be reflector are not covered in this report.

CORE RADIUS
CORE HEIGHT
REFLECTOR RADIUS
REFLECTOR HEIGHT
MASS Be
MASS CH In REFLECTOR
TOTAL MASS

TABLE 9 - 9

MODEL B
WITH Bt REFLECTOR

97.5 cm
60 cm

106.7 cm
87.7 cm

1820 kg
— kg

2760 kg

MODEL B'
WITH COMPOSITE

REFLECTOR

82.8
60
88.9
69.8

498
173

1787

It should be pointed out that no attempt has been made to obtain

optimum designs. Many of the parameters are chosen either arbitrarily

or for convenience. With the material of this chapter as a background,

optimization of design obviously can be carried out. Similarly, the

choice of hydrogen for the propellant is to some extent arbitrary, and

some other propellants can be considered in optimization,
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CHAPTER 10

CONCLUDING TOPICS

At last things grew so exciting that his dear fami-
lies went off one by one in a hurry to the banks of
the great grey-green greasy Limpopo River, all set
about by fever trees, to borrow new noses from the
Crocodile. When they came back nobody spanked any-
body any more,

R. Kipling, The Elephant's Child

10-1: Introduction

The preceding chapters of this report are devoted to consideration

of the theory and practical information relating to a specific type of

rocket reactor. These considerations culminate in the numerical designs

of Chap. 9. In Sec. 10-2, variants of Dumbo are considered which depart,

more-or-less radically, from the standard Dumbo motors of Chap. 9- In

Sec. 10-3, other uses of Dumbo-type reactors are mentioned. In

Sec. 10-4, topics are listed which are salient to the Dumbo design, and

for which more information is required.

10-2: Variants of Dumbo

Many variants of this type of reactor are possible which still pre-

serve its basic features. Some of these variations are in the fine

structure of the heat-exchanger wall, the geometry of the cold regions,

and the materials in the wall.
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Chapter 10 Concluding Topics

Some of the changes that can be made in the wall which still allow

laminar flow and dynamic insulation are:

(a) Porous metal walls, of either sintered metal powder or fine

wire. These possess extremely efficient heat-transfer characteristics.

Design cf these heat exchangers must include consideration of three-
#

dimensional temperature-flow stability.

(b) Walls which have regular channels and which are stabilized in

the same fashion as the regular Dumbo walls. Concentric layers of uni-

form wire mesh, concentric perforated cylinders, or a combination of

these two methods are examples. An advantage of this type of design is

that it allows the use of materials of small neutron cross section for

the initial portion of the heating channel, and tungsten for the high

temperature regions.

(c) Linearized versions of the conventional Dumbo wall. These

offer the following advantages: The narrow width of the foil allows the

rolling process to be easier and more accurate. Virtually no wastage

occurs in the fabrication of the foil. The simple and accurate method

of forming the heating channels discussed in Sec. 8-7 is permitted. The

linearized version allows the use of the laminated foil described in

Sec. 8-3.

*This subject has been treated in part by B. W. Knight, Jr. and is to be
issued at a later date. It can be shown that no 3-dimensional flow
effects unstabilize an exchanger which is stable according to the
1-dimensional criterion of Eq. 3-5.
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Other Uses Section 10-3

A possible modification in the basic geometry of Dumbo is the con-

centric cylinder model, shown in Fig. 10-1. The hot and cold gas flow

passages are the annuli between adjacent Dumbo walls and between adjacent

moderator regions, respectively. Several advantages of this model are

suggested by its radial symmetry. Linearized walls can be used either

in polygonal Dumbo tubes or in polygonal versions of the concentric

cylinder model.

Another variant is a metal wall which is constructed of fully corru-

gated rings made of Mo-U02 and flat (partially corrugated) rings maoie of

W-U02. The W-U02 rings extend about 15$ further than the Mo-U02 rings.

This heat exchanger heats the gas above the molybdenum temperature, and

gives the high-temperature performance of a tungsten motor with half the

nuclear poisoning.

10-3 '• Other Uses of Dumbo-Type Reactors

The properties of Dumbo-type reactors that make other applications

feasible are:

(1) The flow impedance of the heat exchanger is small compared with

turbulent types.

(2) Moderator is distributed throughout the reactor, yet is main-

tained at a low temperature. This allows the use of high temperature

materials that could not be used in unmoderated reactors.

(3) The flat flux distribution, which is obtained by proper
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-MODERATOR DUMBO METAL WALL-

Fig. 10-1: Concentric Cylinder Model
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Other Uses Section 10-3

adjustment of moderator and reflector, permits uniform power distribu-

tion, even though both the construction and the U02-loading are kept

uniform.

(k) These reactors have low mass.

(5) The small size of the reactor permits the use of small gamma

ray shields.

There are several types of aircraft that could be driven by a Dumbo

reactor. Among these are rocket and ramjet aircraft.

The Dumbo reactor, without major changes, may be applied to rocket

aircraft. The small size and mass of the reactor and of the gamma ray

shields are important for this application. These reactors may be de-

signed to be smaller than those described in Chap. 9.

Ramjet applications require several changes in the reactor design

to avoid oxidation of the heat exchanger by the air. Thus, oxidation

resistant metals must be used for the heat exchanger. The low stresses

encountered in the Dumbo reactor may permit operation at higher tempera-

tures than normally used for these metals. The uniformity of the power

density, low heat-exchanger impedance, lightness, and small size are

valuable for this type of application.

Since these reactors are designed to heat gases to high tempera-

tures, they might be adaptable to driving closed-cycle turbine power

plants.
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Chapter 10 Conceding Topics

10-1*: A Research and Development Program for Dumbo

The material of this report suggests several research and develop-

ment projects. Some of these are necessary to the engineering of a Dumbo

reactor. These are as follows:

(1) Single channel temperature-flow stability investigations. This

work is complete and confirms the theory as given in this re-

port, A report will be issued covering this investigation,

(2) Tests on an electrically heated wall sample. Full scale tests

of a sample of heat-exchanger wall are possible. Since such

a piece may be very small, a few kilowatts power are enough to

do the necessary heating. From these tests information may be

obtained on the following:

(a) Multi-channel temperature-flow stability.

(b) Temperature uniformity of the metal wall within a mosaic

cell.

(c) Heat transfer data.

(d) Demonstration and measurement of the Nernst effect.

(e) Measurement of the performance of a small nozzle to obtain

information on super-Dumbo operation.

(f) Studies of the effectiveness of dynamic insulation.

(g) Strength of materials under a range of operating

conditions.

(h) Effects of system vibration.
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(i) Effects of thermal cycling,

(j) Chemical and thermal behavior of UO2 and the refractory

metals.

(3) Hydrodynamic studies. These would reveal the flow law in the

hot gas region. While this knowledge is not crucial to the

engineering of Dumbo it is of direct scientific interest. The

theory of the flow balance over the length of a Dumbo tube

could be confirmed,

(h) Metallurgical studies. Such studies would consist of the

following:

(a) Studies of the preparation and rolling of cermets of U0 2

and the refractory metals in the region of interesting

concentration.

(b) Physical properties of the cermets.

(c) Radiation damage to the cermets.

(d) Studies of the fabrication of the Dumbo heat exchanger.

(5) Plastics studies. These include

(a) Impregnation of polystyrene and other plastics with mag-

nesium or other metals.

(b) Molding of the impregnated plastic.

(c) Studies of radiation damage to moderating plastics.

(6) Nuclear studies. These include

(a) Experimental critical assemblies for reactor mock-up.
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(b) Zero-power operation of these assemblies to yield the flux

distribution and the temperature coefficient of the

reactor.

(c) Numerical machine calculation of the preceding quantities

as well as the reactor dynamics for start-up and control

problems.
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Appendix A

NUCLEAR CONSTANTS

This appendix tabulates certain data that are necessary to the

nuclear design of the Dumbo reactors. Table A-2 and Figs. A-l through

A-9 present capture cross section data for molybdenum and tungsten. The

Doppler broadening widths A are given for 300°K. These data are new and

have been assembled for this report by J, J. Devaney of LASL, to whom

the authors ar<; greatly indebted. The job of obtaining capture cross

sections from raw nuclear data is a formidable one from the standpoints

of both theory and computation.

Table A-l presents certain general properties of the reactor mate-

rials. Table A-3 presents averaged cross- section data on the basis of

J. J. Devaney's values.
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TABLE A - l

SUBSTANCE

Mo
W
Mg

U

UO,

C

H
CH

MOL.WT

95.95

183.9
24.3

235
267

12
1

13

DENSITY

10.2
19.3
1.74

10.9
—
—

1.05

°tr
SCATTERING

CROSS SECTION
7barns

II
3.4
20

27.6

4.7

6.67

11.37

0.20
0.20
0.0
4
4.08

0.065

1.00
1.065

1.7
1.5
l.3_

2.0
4.0
1.20

1.00
2.20

TABLE A - 2

CAPTURE CROSS SECTION DATA
for

MOLYBDENUM

ENERGY RANGE

0.0253-400ev.

4 0 0 - 7 1 0 ev.

4 0 0 - 1 0 ev.

Eo
(ev)

a
(barm) • r

(ev)

A
(ev)

SEE FIGURE A - l

4 0 6 *

440

480
510
570
580

L 700

55.4
88.0

183.7

251.8

158.1

78.7

43.4
55.2

0.34
0.29

0.37

1.0

0.37
0.38
0.93
1.0

} 0.66

0.69

0.71

0.74

0.79

0.79

0.87

SEE FIGURE A - 2

ACCURACY

IO%-3O%

~30%

SEE
FIGURE A- l

~ 6 0 %
* TWO PEAKS AT THE SAME E.
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TABLE A - 3

AVERAGE CROSS SECTIONS OVER ENERGY
SUBSCRIPTf -F ISS ION CROSS SECTION (barn*)

SUBSCRIPT c -CAPTURE CROSS SECTION (barm)

SUBSCRIPTg — SCATTERING CROSS SECTION (bams)

ENERGY
RANGE

10" -10 6

I04 - 10 *
10' -10*
10*-10'
10 -10*

1 -10
O.I - 1
0.025-0.1
THERMAL

uF

1.4
2.5
5.8

156
49.6

39.8
145.1
402
580

uF+c
1.67
3.28
8.35

23.4
63.0

51.7
174.1
474.4
687

HS+C

78
16.3

20
20
20

20.5

23.6

30.2
—

HC

0
0
0
0
0

0.03

O.I
0.2
0.33

Moc

0.085

0.22

0.26

1.0**

3.0**

0.25

0.75

1.72

2.5

wc

0.06
0.32
0.91
1.45*
0.6*

2.5*
6.06

14.0
19.2

cs

3.5
4.6
4.7
4.7
4.7

4.7
4.8
4.8
—

« AVERAGE <TC OVER INTERVAL WITHOUT RESONANCES.

« « AVERAGE crc OVER INTERVAL INCLUDING RESONANCES.
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FIGURE A - 4

TUNGSTEN
CAPTURE CROSS SECTION

vs.

NEUTRON ENERGY
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(•AIMS)

FIGURE A-5
TUNGSTEN

CAPTURE CROSS SECTION
vs.

NEUTRON ENERGY
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FIGURE A - 7
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H-H- j-H-f ' ' ' r

FIGURE A-8
TUNGSTEN

CAPTURE CROSS SECTION
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Appendix B

PHYSICAL PROPERTIES OF REFRACTORY METALS
by R. B. Gibney

B-l: Introduction

Because of the current interest in refractory metals, a brief survey

of the literature on thermal conductivity, coefficient of thermal expan-

sion, and strength properties of the common high melting metals has been

made. In general, the data are sketchy, contradictory, and are useful as

qualitative information only.

B-2: Thermal Conductivity

The thermal conductivities of molybdenum and tungsten have been

measured in the temperature range 1100 - 1900°K. The electrical resis-

tivities have been measured at temperatures up to 2800°K. Shown in

Fig. B-l are the experimental data for the thermal conductivity of molyb-

denum and the linear extrapolation of these data to higher temperatures.

Also shown are points calculated from the experimental electrical resis-

tivity data for molybdenum by judicious use of the "Lorenz constant."

These points agree with the extrapolated values, and have been used to

compile the data given in Table B-l. Also given in this table are values
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Coefficient of Thermal Expansion Section B-3

of the thermal conductivity of tungsten obtained in the same manner.

TABLE B- l

THERMAL CONDUCTIVITY OF

TUNGSTEN AND MOLYBDENUM
(watt/cm -deg)

T(°K)
1100
1200
1300
1400
1500
1700
1900
2100
2300
2500
2700

TUNGSTEN

.17

.15

.14

.12

.11

.07
1.04

1.01
0.98
0.94
0.91

MOLYBDENUM

1.08
1.02
1.96

0.90
0.79
0.67
0.54
0.42
0.30
0.17

It should be pointed out that the values for thermal conductivity

of tungsten found in Smithell's book Tungsten are probably wrong. These

are old values by Worthing (191̂ -) who found a positive slope for both
2

molybdenum and tungsten. The work was repeated by Osborn in 19^1 with

an improved apparatus. The later results are the ones given in Table B-l.

B-3: Coefficient of Thermal Expansion

Equations for the thermal expansion of molybdenum, tungsten, and

tantalum, as obtained by Worthing, are given by Eqs. B-l, B-2, and B-3,

327



Appendix B Physical Properties of Refractory Metals

respectively. For molybdenum,

L " L o s5.OOxlO"6(T-3OO)+ 10.
Le

for tantalum,

Lo
= 6.6x!O"6(T-3OO) + 5.2xlOH°(T-3OO)2

for tungsten,

4.44 -300) +4.5XIO"II{T-3OO1?

2.2xlO'l5(T-3OO)3

(B-l)

(B-2)

(B-3)

L o is the length at 300°K.

B-k: Tensile Strength

The available data on tensile strength at elevated temperature are

meager. Since the only work above 2000°K has been on single crystals of

molybdenum and tungsten and on some special tungsten wires, the data prob-

ably are not applicable to this report. These data are given in Table B-2.

TABLE B - 2
TENSILE STRENGTH (ps i )

TEMPERATURE
TUNGSTEN

TUNGSTEN

MOLYBDENUM*

I5OO°K

12,000

2,200

8000°K

10,000
7,500

900

25OO°K
6,000
3,500

550

2800° K
5,000

300
(ttYIELD STRENGTH)



Tensile Strength Section B-1+

The single crystal of molybdenum had a room temperature yield strength

of 8000 psi as compared to 81)-,000 psi for rolled sheet.
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Appendix C

LAMINAR INCOMPRESSIBLE FLOW IN
CHANNELS WITH POROUS WALLS

by B. K. Knight, Jr. and B. B. Mclnteer

C-l: Introduction

In recent years attention has been given to solutions of the Navier-

Stokes hydrodynamic equations (or of the boundary-layer equations which

approximate them) for problems in vhich a breathing surface is placed in

a stream. Such a surface represents a distributed source or sink of

fluid, such a porous wall whose pores are so small and frequent that they

may be regarded as continuously distributed. A further characteristic

usually applied to these walls is that their flow is specified as a

boundary condition of the problem. In other words, for a sufficiently

high wall impedance, the flow is determined externally and is not

affected by the surface distribution of pressure. It is the purpose of

this appendix to present solutions to the problem of steady two-

dimensional flow through a channel bounded by porous walls which supply

or remove an incompressible fluid with a uniform normal velocity.

*This restriction is not necessary to such problems.' Recently Taylor has
presented a study of an example in which the flow mechanics within a
porous wall was intimately linked to the external hydrodynamics.
Proc. Roy. Soc. 23M, If56 (1956).
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Appendix C Laminar Plow Problem

This problem has a number of unusual features of general interest:

(1) The task of solving the problem is reduced to the integration

of a single ordinary differential equation; in this sense the problem is

solved exactly.

(2) A solution to the problem, satisfying all boundary conditions,

is found for the case of vanishing viscosity. This is in contrast to

usual boundary-layer analysis, in which wall slippage is avoidable only

because of viscosity-dependent terms in the equations.

(3) When the wall is a fluid source the finite-viscosity solutions

converge uniformly to that for zero viscosity. However, when the wall is

a fluid sink the finite-viscosity solutions do not converge to the zero-

viscosity solution but, instead, converge nonuniformly to a flow

involving wall slippage in the typical boundary-layer fashion.

(k) The zero-viscosity solution furnishes the basis of a perturba-

tion method which yields results of great precision in the case where the

wall is a source. However, when the wall is a sink the same method

yields completely erroneous results. For sufficiently small viscosity

the perturbation solutions satisfy the exact equations to an arbitrary

degree of accuracy, but there is no_ nearby exact solution. This fur-

nishes a striking counter example to the heuristic justification of

perturbation methods in general.
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Formulation of the Problem Section C-2

C-2: Formulation of the Problem

Fluid of density p and viscosity T) is supplied or removed by two

porous walls at a uniform steady rate. The channel width is 2a with the

coordinate axes defining planes of symmetry, as shown in Fig. C-l. The

y

Fig. C-l

velocity components, u and v, and pressure p are related by the Navier-

Stokes equations and the equation of continuity, as given by

(C-l)

(C-2)
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Appendix C Laminar Flow Problem

dx dy (c.3)

The boundary conditions are

u(a,y) * -u(-a,y)= Uo

v(a,y)=v(-a,y) = 0

It is convenient to reduce the problem to dimensionless form by using

the dimensionless variables

P = p/p\ll

X=x/a

Ysy/a

Us"U/Uo

V = -v /u o

and the dimensionless constant

€ r -

The transformed equations are

aulx
d'u , au
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Formulation of the Problem Section C-2

(C-5)

These equations are of the same form e.s Eqs. C-l, C-2, and C-3 with unit

density and a viscosity e. Boundary conditions for X are

It is plausible that when Y becomes large the flow profile is of

the form

V = Yf'(X)
(C-7)

where f is the derivative of a function f(x). The continuity equation

C-6 then requires that

U =-f(X)

(c-8)

The form of Eqs. C-7 and C-8 leads to exact solutions for all values of

Y. This is demonstrated as follows: Substitution of these forms into

Eq. C-k indicates each term to be a function of X only, indicating 3P/9X

is a function of X only. Therefore, P must be of the form

P = Po(X) + P,(Y)

Similarly, substitution in Eq. C-5 reveals each term to be of the form
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Appendix C Laminar Flow Problem

Y-F(X), so that dPi/dY must be of this form, or

df^/dY* yY

where y is a constant. Therefore, assigning to P(X,Y) the form

P= ^yY+Po(X) , v
2 (C-9)

allows Eqs. C-k and C-5 to be reduced to two ordinary differential equa-

tions :

(C-10)

«f-f'+ff*. y

(C-ll)

Solutions of these two equations which satisfy the proper boundary condi

tions yield an exact solution of the problem. These solutions, hinging

upon the arbitrary assumption of Eq. C-8, are not necessarily exhaustive

but represent an interesting and informative type of solution.

Equation C-10 is integrated to give

P9 = - 4-f*+«f'+ const.
2 (C-12)

The solution of the problem has new been reduced to the solution of

Eq.. C-ll.

The function f(X) satisfying the differential equation C-ll must

satisfy the four boundary conditions
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Formulation of the Problem Section C-2

fin = -n-i)= i

f ' " > ' f ' ( - " = 0 (o-n.)

The four boundary conditions thus stated are to be satisfied by choice

of the three constants of integration and the proper value of /.

Equation C-ll is therefore a third order non-linear ordinary differential

eigenvalue equation for y as a function of e.

Among the solutions to Eq. C-ll are those which have the symmetry

property

f(X) =-f(-X)

since each term of Sq. C-ll is unchanged under this transformation. This

odd symmetry in U and tve resulting even symmetry in V and P about X = 0

allow the four boundary conditions to be restated as

MM = I

f'(D=O

MO)«f*(O)«O
(C-llb)

All solutions presented here satisfy this more restrictive although more

convenient combination of boundary conditions. Only the range 0 S X S 1

needs to be considered.

Equation C-ll with the boundary conditions (Eq. C-llb) may be trans-

formed into an initial value problem. This is advantageous, particularly

337
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Appendix C Laminar Flow Problem

for purposes of numerical integration. The initial value equation is

a-(*>••. a-c
with the initial conditions g(o) = g"(o) = 0. Assigning an initial slope

g'(0) and a value to the parameter C determines a function g(z). If

g'(z) vanishes at some point where z = zo and g assumes the value g0,

then the variables X and f are defined as

X =

Equation C-13 then becomes

V r f"-f'* + ff"sc -fi
9° # 9 ° (C-lfc)

which is of the fonn of Eq. C-ll and satisfies the boundary conditions

(Eq. C-llb), when

(C-15)

The parameter C is eliminated by a further scaling property of Eq. C-13.

Multiplying z by any constant a, and g by l/a, yields the same differen-

tial equation but with Ca4 replacing C. The choice |c| = l/a4 reduces
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Some Qualitative Features Section C-3

Eq. C-13 to either

g--g'*+gg

or

g g + gg
(c-17)

These equations give gd and z 0 a? functions of g'(0) only, and together

with Eq. C-15 specify y(e) by giving 7 and e parametrically in (terms of

g'(0). Positive values of 7 are obtained by Eq. C-16, negative values

by Eq. C-17.

C-3: Some Qualitative Features

A few remarks of a physical nature should be made before proceeding

with the solution of the formal mathematical problem. On physical

grounds, the qualitative behavior of the functions f(X) and y{e) is

examined.

In the limit of high-viscosity creeping flow (|e| » l) the flow

profile f'(X) should resemble the familiar Poiseuillian parabolic flow.

The low-viscosity limit is less easily pictured. If fluid is flowing

from stream to wall, a flat profile as in potential flow might be main-

tained throughout the duct, perhaps reverting to shearing flow only in a

thin boundary layer, where the fluid approaches very near to the wall and

the slight viscosity becomes important. On the other hand, for flow from

wall to stream no boundary-layer type of profile is expected, since the

339
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Appendix C Laminar Flow Problem

boundary layer is continually being carried into the stream.

The function y(e) is proportional to the pressure gradient and is

determined by the joint effects of viscosity and inertia. When the

viscous drag dominates (|e| » l) the pressure gradient is proportional

to the viscosity, and in a direction opposite to the flow, giving

However, the inertial effect is to establish a pressure gradient in a

direction opposite to that of fluid acceleration. Since, regardless of

the flow direction the fluid acceleration is toward larger values of Y,

for |e| « 1 a negative value of y is expected. At some negative value

of e the inertial and viscous effects just balance and there is an inter-

cept where y = 0,

These general features are verified in the next section.

C-4: Methods of Solution

Four types of solution of Eqs. C-ll and C-llb are used:

A. Exact solutions for special cases.

B. Perturbations upon these solutions.

C. Solutions from a variations! method.

D. Machine integration by a Runge-Kutta method.

These types are considered separately.

A. Solutions in Closed Form

Exact analytical solutions of Eq.. C-ll are obtained for two special

3
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Methods of Solution Section C-k

cases only. Further analysis of these cases is made in Sec. C-5.

Case I: In this case l/e = Q. If all terms not involving e are

omitted from the l.h.s. of Eq. C-ll it simplifies to

The solution of this equation satisfying the boundary conditions is

f = — x — —!— Xs

I » A « A
Z Z (C-20)

r z ~ 3 e (c-2i)

This result corresponds to viscous creeping flow without momentum terms.

Differentiation of Eq. C-20 yields the familiar parabolic flow distribu-

tion for V.

Case II: For this case e = 0. As is well known, caution must be

exercised in omitting all terms involving viscosity e in the hydrodynamic

equations to obtain solutions describing slightly viscous fluids.

Formally, this omission reduces the order of the differential equations

and might not allow all boundary conditions to be satisfied. Physically,

the fluid must not slip on the walls even though its viscosity is

vanishingly small.

In this problem, however, the dropping of the term involving e in

Eq. C-ll leaves an equation which may be solved satisfying all boundary

conditions. The modified differential equation is
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Appendix C Laminar Flow Problem

A set of eigenfunctions and eigenvalues that form solutions -co this

problem are given in Table C-l. The second and higher functional forms

f

y

sin T x

4

TABLE
SOLUTIONS OF

- s i n

-

2

C - l
EQ.

X

C-22

sin

-

for f, shown in this table, are startling since the corresponding veloc-

ity profile V is positive for some values of X and negative for others.

The first function is physically plausible and is not greatly different

front the parabolic profile considered in Case I.

In summary, exact analytic solutions of Eq. C-ll are obtained only

for cases in which certain terms vanish.

It is interesting that the e = 0 situation gives rise to an infinite

set of solutions, while for — = 0 the solution is unique. This suggests

that for finite e there are several solutions, corresponding to counter-

flow situations, until e exceeds some critical value.

B. Perturbation Methods

Perturbation solutions are obtained about the Case I solution and

the first of the Case II, solutions.

Case I Perturbation Solutions: If R = l/e, the previous exact



Methods of Solution Section C-k

solution, given by Eqs. C-20 and C-21, is that for R = 0. This solution

is denoted by f0. It is assumed that f may be expanded as

Since y = -3e is the eigenvalue of the exact solution, a quantity X = y/e

is defined. It is assumed that X may also be expanded as

X = X0+X,R +X,R
8+ X,R*+ .- (c_2̂

where Xo = -3- Inserting these expressions into Eq. C-ll and equating

the coefficient of each power of R to zero yields the perturbation equa-

tions given by

t'" - \
To - A o

C =X,+f'+2fo'fa'-«,"f2-f1f1'
/- W , M

'. (C-25)

vlth the boundary conditions, for n > 0,

fn(i) f n ( i ) o % (c26)

Each equation equates the third derivative of the unknown solution to a

known function of X involving previously obtained solutions. All solu-

tions are polynomials. Carrying out this procedure through the second
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Appendix C Laminar Flow Problem

order perturbation yields for f

f = X(l.500 +0.007I428R - 0.0005434 R2)

-X*(O.5OOO + O.OIO7I42R -0.0006772 R*)

+ X7(0.0035714 R + 0.0001530 R2)

- 0.0002976 R Y + 0.0000108 R Y + • • • ( C 2 7 )

with additional terms being of the order B 3 and higher. The corres-

ponding expression for y is

\ y = - 3 « - 2 . 3 1 4 2 8 5 7 - 0 . 0 1 7 3 6 5 5 / e + • • • ( c_2 8 )

Ca^e 11 Perturbaxion Solutions: A similar procedure is followed for

obtaining\perturbation solutions about the Case II exact solution. It is

convenient to make the substitutions

and Eq. C-ll becomes

77f'"-f'2+ff"=X

with the boundary conditions
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Methods of Solution Section C-k

f(0) =f"(0) .f'(X) ao; f(f)= I

where primes denote differentiation with respect to £. Assuming that

f = fo + i ? f | + -"7af2+ •••

X = Xo + T7X,+ i72X2+'»»

yields the perturbation equations, given by

fof,"-2f:f;+ti .<*

with the boundary conditions, for n > 0,

(C-30)

The previous solution of the zeroth order equation is

fo - sin i

X ° = " ' (C-3

The remaining equations are linear with variable coefficients, having

the form

693 H15



Appendix C Laminar Flow Problem

sine fn"-2cos£ f̂  -sine fn = Xn+

The solution of the first order perturbation equation is given by

f, =-^X,ecose--5- sineintane/2 + ̂ -cose/ln tan (JZ d£'
0 (C-32a)

or, alternatively,

k «vtn (C-32b)

where

l n 4
i*-r,,xM? s -0 .5290

ktvtn
(C-33)

This gives

y = - 2.46741 - 2.053 « + 0 (cf)

Figure C-2 shows a plot of y versus e. For large e, y(e) is asymp-

totic to the straight line y - -3e - 2.3114.. For small e the perturbation

solution is given by 7 - -2.05e - 2.1*67. The similarity of these func-

tions suggests that they might merge smoothly to form the primary

&Wm Q03



Methods of Solution Section C-h

1 i r
-0.5

i r

y -- -2.467-2.05*

\ i r
0.5

y = - 3« -2.3I4 -.0174/t

-3« -2.314

- t- - 4

Fig. C-2: Perturbation Results
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Appendix C Laminar Flow Problem

structure of the complete curve. The modified parabolic (large e) and

the modified cosine (small e) flow profiles also might blend smoothly,

lending weight to this possibility. However, this suggested behavior

does not occur, as is shown by the variational and numerical solutions

which follow.

C. The Variatifoal Method

As a numerical method of determining y(e) with only moderate compu-

tational effort, a variational method is applied to this problem as

follows: A trial function f, which satisfies the boundary conditions,

is assumed to contain a variational parameter a. Then Eq.. C-ll is not

satisfied unless f is an exact solution. Functions F and I are defined

by

F =cf-f'f+ff"-y

(C-35)

and

I (ct,y,«) = f F*dX

(C-36)

A least squares fit is obtained when I is minimized, requiring that

41=0.
da

* 0 (c-37)

018



Methods of Solution Section C-h

The pair of relations, given in Eq.. C-37, between a, y, and e are solved

for y{e).

The trial functions used for this computation are

f' = a(l-X*) -X) (c.38)
where n = 2, k, 8, and 16, and P is expressed in terms of a by using

Eq, C-lll>. The case where n = 2 is degenerate, with no real variational

parameter included in f. The resulting functions y(e) are shown in

Fig. C-3. Table C-2 lists the values of y(0) and the limiting asymptotes

EXACT
n =2
n =4
n =8
n =16

RESULTS OF THE

y(O)

-2.46741
-2.4000
-2.46712
- 2.4559
-2.34

TABLE C-2

VARIATIONAL

LIMITING

y = - 3 c

y - — 3*

y = - 3«
y = - 3 «

y = - 3 «

METHOD

ASYMPTOTE ( « - « )

- 2.314286
- 2.40000
- 2.314284
- 2.310200
- 2.43158

of 7(e) for large e. For very large and very small |e|, the values for

n = \ and 8 are in close agreement with the exact solutions already ob-

tained. Only a few spot checks of the actual values of I have been made

on these two cases. The poorest fit is found along the sharp drop exhib-

ited by both these functions as they change from above the asympototic
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-t—i—i—i—t-
-.5

n -- 2

-2

-.5

M

n = 4

H 1—< 1 1 «
.5

- 2

I I I—I—t-
-.5

M

n = 8 n = 16

• H — «
.5

- 3

Fig. C-3: Variational Results
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Methods of Solution Section C-4

straight line to below it, at the point M, as shown in Fig. C-3. Near

the point M the trial function for n = 8 is a better fit than for n * It-.

For n = k and n = 8 the corresponding flow profiles for values of e

immediately to the left of the point M are of the flattened boundary-

layer type, mentioned in Sec. C-3. Crossing the point M causes an abrupt

transition to a cosine-like profile.

D. Exact numerical Solutions

Equation C-ll is integrated numerically, for various values of €,

in the forms given by Eqs. C-16 and C-17. An h* Runge-Kutta method has

been used on the Los Alamos fOk digital computor. The resulting y(e)

curve is shown in Fig. C-k and some of the corresponding flow profiles

are given in Fig. C-3. Table C-3 presents numerical results for 7 U )

obtained by all methods.

The y(e) curve which is obtained by numerical integration consists

of several branches, denoted by A, B, and C in Fig. C-J+. The curve A

is obtained from Eq. C-17 with -» < g'(0) < -1. The curve C is obtained

from Eq. C-17 with 0 < g'(o) < 1.

Two unexpected brashes of the y(e) curve were uncovered by these

computations. One is curve B of Fig. C-h, which is obtained from

Eq. C-17 when -1 < g'(o) < 0. A second unexpected branch is generated

by Eq. C-16 when 0 < g'(o) < 1. It consists of small positive values of

y for positive c, and is not shown in the figure. Solutions yielding

this remarkable behavior are hard to imagine, since a vanishing y implies

351
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-t 1 1 1 1-
-5

- I

- 2

-I h

Fig, C-k: Machine Integration Results
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Methods of Solution Section C-K

X=-l X=l

8
Ul

e -- -.15

e =-.047

e = -.026

Fig. C-5: Flow Profiles for Negative e
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Appendix C Laminar Flow Problem

Table C-3

Values of 7 Obtained by Different Methods

.50

.40

.35

.30

.25

.20

.18

.16

.14

.12

.11

.10

.09

.08

.07

.06

.05

.04

.03

.02

.01

.0

.02

.04

.06

.08

.1

.15

.20
•25
.30
.35
.40
• 45
.50

Large 6
Perturbation

-0.780
-0.926
-1.071
-1.215
-1.356
-1.495
-1.623
-I.678
-1.726
-1.770
-1.810
-1.826
-1.841
-1.851
-1.957
-I.856
-1.845

-2.784
-2.771
-2.788
-2.880
-3.001
-3.134
-3.272
-3.414
-3.558
-3.703
-3.849

Small e
Perturbation

-2.365
-2.385
-2.406
-2.426
-2.447
-2.467
-2.509
-2.550

Variational
n = 4

-
-I.I80
-1.307
-1.438
-1.608
-1.754
-1.997
-2.213
-2.303
-2.316
-2.322
-2.331
-2.342
-2.353
-2.366
-2.381
-2.396
-2.412
-2.430
-2.4^9
-2.468
-2.510
-2.556
-2.603
-2.653
-2.704
-2.836
-2.973

Method
n = 8

- .787
- .935
-1.079
-1.218
-1.352
-1.481
-1.589
-1.622
-1.639
-1.628
-1.592
-1.648
-1.845
-2.295
-2.417
-2.431
-2.422
-2.414
-2.412
-2.417
-2.425
-2.438
-2.454
-2.494
-2.538
-2.585
-2.636
-2.688
-2.827
-2.970
-3.118
-3.265
-3.411
-3.556
-3.703
-3.848

Runge-
Kutta

- .774
- .917
-I.O63
-1.207
-1.342
-1.465
-1.574
-1.612
-1.647
-I.676
-I.678
-1.668
-1.647
-I.615
-1.567
-1.502
-1.410
-1.300
-1.197
-1.083
-1.030
-1.007
-1.000
-2.510
-2.553
-2.603
-2.653
-2.692
-2.823
-2.973
-3.118
-3.265
-3.411
-3.556
-3.703
-3.8U8
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Three Limiting Results Section C-5

zero pressure drop. Unfortunately no provision for exhibiting the cor-

responding flow profiles was made in the computer program.

Other solutions could be found by integrating to further zeros of

g1. These would lead to other branches of the-/(e) curve shown in

Fig. C-4. However, these physically questionable solutions have not been

investigated.

Except in the region -0.3 < e < 0, the numerical results are in

excel3.ent agreement with the approximate results already given. When

e -* 0+ the flow profile is a cosine function and y equals Tr2/^, as pre-

dicted previously. However, when e -• 0- the flow assumes the boundary-

layer type of profile, shown in Fig. C-5, and y equals -1. The

perturbation and variational results in this range are misleading.

C-5: Three Limiting Results

Among the solutions which have been presented here, three merit

special attention as limiting forms of practical physical solutions.

Special Result 1: Strongly viscous flow (c -» +»)

This case of highly viscous flow is presented as Case I of the exact

solutions. Its existence and that of its perturbation is verified by the

numerical integrations. It is convenient to average V = Y f'(X) over X,
_ _ _ I

so that V = Y and v = u<>y since f' = / f'dx = 1.

355



Appendix C Laminar Flow Problem

Solutions

u = jXJ-{x

V = - | - Y ( I - X 2 )

P = - - | « Y 2 + j «

p = "2 ~a~ ~u7 2~ "^o3

u = - u 0 x ( ^-x2- -g)

Special Result 2: Fluid entering channel from walls (e -» Of)

The solution obtained as Case II of the exact solutions is shown

by machine integration to be the limiting form for e -• 0 from the posi-

tive side. It is an unusual flow pattern for a fluid of vanishingly

small viscosity, and has none of the characteristics predicted by

boundary-layer assumptions.
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Solutions

f = sin -|- X

r = - ( W 2 ) 1

U = -sin - J

V = Y - f cos - | -X

"• -iffP-i-'f

- ir ir x
v = v ¥ cos T -

u = uo sin •£ —

The coefficient of pvs in p is 1.234 and is exactly pv5. If a naive one-

dimensional Bernoulli law approach is used on this problem without

analysis, only half this pressure variation is predicted. Along a

streamline, however, the Bernoulli relation p + -r pv2 = const, applies.

Special Result 3: Fluid leaving channel through walls (e •* 0-)

When e -* 0 from the negative side a squared-off profile is attained

as indicated by machine results. Except near the boundaries the solution

is given by
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f =X

y- - I

U= - X

V= Y

p - _ —. v — —- yr - 2 i 2 A

I * I <> y z

p = - 4 - / ) V - 4 - /OUo " ^

V = V

The velocity components U and V in Special Result 3 may be obtained from

the potential function $ = p- (Y2 - X 2 ) , and thus the flow is irrotational.

Irrotational flow at large values of Y insures that the flow is irrota-

tional everywhere, because in a non-viscous fluid the vorticity is

constant along a streamline. On the other hand, in Special Result 2 the

fluid enters the channel from the wall with a finite vorticity, and

potential flow can never be established.

C-6: Some Unanswered Problems

Certain gaps are evident in the foregoing analysis and results.

1. It is not clear whether skewed solutions of Eq. C-ll may exist

which satisfy the boundary conditions given by Eq. C-lla but not the

symmetry requirements of Eq. C-llb. No evidence for such skewed solu-

tions has been found.
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2. No analytical development of the limiting functional fora for f

as e •* 0- has been performed.

3. There has been found no rigorous analytic prediction of the non-

uniform convergence of f for e -» 0-. The discontinuities in f and y

occurring about this point should be evident from analysis of the differ-

ential equation. A perturbation treatment of Eq. C-13 with C = -1 and

g'(0) = +1 - S is suggestive of the machine results. It is shown that

if the positive sign is chosen all orders of perturbation are well

behaved, but choosing the negative sign yields a second order perturba-

tion behaving asymptotically like e 2 . Although this gives the observed

sharp break in the flow profile, it also invalidates the perturbation

assumptions. No mAthematical proof of this profile shape has yet been

achieved.

A problem related to the solutions for the steady state flow is a

stability analysis of the various types of flow predicted here. However,

this problem is not considered in this report.

C-7: Other Channel Shapes

The general procedure of Sec. C-2 is applied to arbitrary uniform

channel cross sections, resulting in a non-linear partial differential

eigenvalue equation of the fourth order with one dependent and two inde-

pendent variables.
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The three-dimensional Navier-Stokes equations for time-independent

incompressible flow are

7«v" = 0

(C-39)

The normal flow-velocity at the walls is uo. If the channel area is A

and its perimeter S, then the length

«- " A/s (cJ,o)

may be defined. The dimensionless quantities

\7 = V/Uo

P = p//>u|

R = 7/L

reduce Eq. C-39 to

(\7.V)7- evV = -VP
V-V = 0

(C-lf2)

Henceforth, vector notation is used to signify vector components in the

X-Y plane only, where Z measures along the axis of the duct. The

assumptions

fiS3
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V2 =Z g(X,Y)

and

bring Eq. C-42 to the form

7 c7*\7 =-7P
(C-Wa)

(\?.7)g+g*-«7fg =- ̂  ^

Since Eqs. C-lt4a and C—I4-I4-IJ are independent of Z, they demand that P be of

the form

P= 4- yZf + H(X,Y)

The identity

(V-7)V = V-|V-VX(7 X V)

brings Eqs. C-Mm and C-lt-̂ b to the form

V^V-VX (V X V)-«V*\7 =-VH
(C-lf6a)
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The r.h.s. of Eq. C-^6a is the gradient of a sealer. Thus \f must

be a vector such that the curl of the l.h.s. of Eq.. C-l»-6a vanishes.

This is satisfied if $ is derivable from a potential

When v* is of this form, Eq. C-k6a may be solved for H. Substitution of

Eqs. CJ+J+b and C-l*7 into Eq. C-k6b gives the eigenvalue equation

7% - (v^ )f )• r

with boundary conditions analogous to those in the two-dimensional

problem.

In the case where e = 0, Eq. C-h6b may be written

7«g7+2g* = - y

The requirement of no wall slippage gives g = 0 at the boundary, and the

divergence theorem may be applied to Eq. C-^9 to give

2/g'dA =-yA

or

whence

P-H(X,Y)-y? (c.50)
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or, using dimensional quantities

The second term of Eq. C-51 differs by a factor of 2 from that obtained

by a naive application of Bernoulli's law. This result is a generaliza-

tion of the conclusions of Sec. C-1+. When ̂  satisfies Eq.

Eq. C-^6a is integrated for H and Eq. C-50 becomes

—[i(vx
2+v;)+v«

(C-52)

In the case of a circular channel Eq.. C-l+8 becomes an ordinary

differential equation. For e = 0 the integration is easily performed.

The equation is

(C-53)
<JR \ R dR R dR R dR R dR

If the substitutions

« • * • * •

d R

are made, then Eq. C-53 becomes

f'-ff'+f'V y = 0
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where primes indicate differentiation with respect to £. This is

fq. C-22 which is solved in Sec, C-k, In terms of the dimensionless

transformation equations C-VO and C-lt-1, the boundary of the channel is

at R * 2, or £ « 1. The boundary conditions again become those of

Eq. C-llb, and the solution proceeds as before, giving the eigenvalue

y * -(ir/2j^, and v^/v£ * 1^/8. However, the flow profile in terms of R

ia given by

V, =f-Ycos-f-R8

which is a flatter profile than that given in Table C-l. For the general

case of finite viscosity, the transformation given by Eq. C-5l». does not

reduce the circular duct problem to the two-dimensional flow problem

treated in Sec. C-k.

C-8: Smanary

Some solutions of the non-turbulent flow problem are developed.

Among these is the family in which, for negative e approaching zero, v

changes continuously from the parabolic profile to the squared-off

boundary-layer profile; and in which, for positive e approaching zero,

v changes from the parabolic shape to a cos § functional form. The

family of solutions so described appear to present a physically consist-

ent and plausible answer to the problem.
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C-9: Note on Previous Work

Since the completion of this work several earlier papers have been

brought to the attention of the authors.

An equation of the form of £q. C-ll was investigated by Hiemenz

in 1911 and the reduction to the form of Eq. C-17 was performed. How-

ever, the boundary conditions were different and the problem considered

was not an eigenvalue problem.

The formulation of the two-dimensional porous wall flow problem
2

appearing in Sec. C-2 is given by Berman through the derivation of

Eq. C-ll. Berman's subsequent analysis of the equation is confined to

perturbations about the high viscosity limit, and is similar to the

treatment given by Eqs. C-23 through C-28, inclusive. Berman mentions

the inherent difficulty of treating the low viscosity limit of Eq. C-ll.

A similar analysis for a cylindrical duct is presented by Yuan and

Finkelstein.J The analysis is confined to perturbation results, but the

investigation includes perturbations about zero viscosity. However, no

distinction is made between small positive and negative values of the

parameter corresponding to €. Although the Yuan-Finkelstein geometry is

different from that of this report, the non-uniform convergence encoun-

tered here for small negative e would seem to cast doubts on the validity

of the low viscosity perturbation solutions for stream-to-wall flow.

365

633 035



(

Appendix C Laminar Flow Problem
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Appendix D

THE SUPER-DUMBO

D-l: Introduction

The thermal energy which is added to the propellant in the heat

exchanger of a nuclear rocket motor is transformed, during expansion

through the nozzle, to kinetic energy in the exhaust stream, thereby

lowering the temperature of the gas. The dissociation of hot gas in the

heat exchanger and subsequent recombination in the nozzle offers possi-

bilities for improved performance. Although the step-by-step analysis

of this process may be complicated, the simple relation

H + vf/2 = const.

contains the basis of the transformation process, vhere H is the enthalpy

per gram of the stream and v is the hydrodynamic velocity. This relation

is developed in Sec. 7-6 for flow in either the hot region or cold region

of the reactor, and applies to flow through the nozzle under very

*That great gains are to be made by utilizing dissociation-recombination
reactions of the type discussed in this appendix was pointed out to the
authors by R. W. Spence of LASL.



Appendix D The Super-Dumbo

general conditions, including the case of a stream which is chemically

reacting. If H is the enthalpy of the heated stream in the chamber of

the rocket, H the enthalpy of the exhaust stream, and v the exhaust

velocity, then Eq. D-l for negligible chamber velocity, states that

" Hc-He

This equation relates the exhfiust velocity to the change in the enthalpy

of the stream between conditions in the chamber and the exhaust.

The chamber enthalpy H is increased for a given chamber temperature

by the presence of a dissociation reaction in the propellant, whereas the

exhaust enthalpy H is decreased by a corresponding recombination reac-

tion. Thus, when both reactions are present the exhaust velocity is

increased. If the stream, between the chamber and the end of the nozzle,

is caused to react chemically with a second stream, a further lowering of

H may occur, although the enthalpy of the second stream must be included

as an effective contribution tending to lower H , concomitantly.

These ideas are applied in this appendix to evaluate the possible

improvement in the performance of Dumbo by utilizing the dissociation and

subsequent recombination reactions. Section D-2 considers the effects of

dissociation-recombination reactions of H2 in hydrogen or decomposed am-

monia (Ha and N 2 ) . Section D-3 treats the two stream systems, where one

stream is assumed to be thermally dissociated Ha in hydrogen or decomposed

ammonia. These variants are classed as "super-Dumbo" because of their
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K 2 Dissociation-Recombination Section D-2

potentially superior performance. Both sections are based on the assump-

tion of local thermodynamic equilibrium in the reactions involved. It

should be emphasized that the effects considered here may be limited not

by thermodynamics but by slow recombination rates which may reduce or

vitiate the performance improvements.

For appreciable hydrogen decomposition to occur, it is necessary

that chamber temperatures be higher and pressures lower than in the

designs described in Chap. 9. The necessary modifications to the Dumbo

design are considered in Sec. D-4.

I>-2: H g Dissociation-Recombination Applications

The Dumbo models given in Chap. 9 heat the propellant to a tempera-

ture in the range 25O0-3O5O°K at operating pressures in the range

15-100 bar. Since the heated gases are either hydrogen or decomposed

ammonia (H2 and Ng), the large amounts of energy that may be added to

hydrogen via the dissociation reaction

H a — * 2H ; AH =52.1 Kcal/gm at 0°C (D_3)

should be considered. Figure D-l shows the equilibrium enthalpy of

hydrogen as a function of temperature with the pressure P as a parameter.

The curve P = °° shows the enthalpy of hydrogen with no dissociation. As

an example, at 3000CK the enthalpy increase of the gas as indicated by

the P = oo curve is 10.8 Kcal/gm. This may be compared with the enthalpy

increase for complete dissociation at 3000°K, given by 66 Kcal/gm. Thus,
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H 2 Dissociation-Recombination Section D-2

the enthalpy of the gas at a given temperature in the chamber is greatly

increased by the dissociation reaction.

The reaction given by Eq, D-3 is governed by the familiar law of

mass action, from which It follows that

(DJO

where Pr, and P_ are the partial pressures of H and Hs> respectively,

and K(T) is the equilibrium constant. The fraction x of the originally

totally nondissociated hydrogen which has dissociated is given by

(D-5)

where P is the total pressure. Values of K are presented by Woolley,

et al., and are used in Fig. D-2 to show the degree of dissociation

occurring at various temperatures and pressures. This figure shows that

increased dissociation results from increased temperature or decreased

pressure.

The dissociation which is indicated in Fig. D-2 results in an in-

creased enthalpy of the gas, which is computed by methods given in Ref. 1.

The resulting data are given in Fig. D-l. For example, this figure shows

the enthalpy for dissociated hydrogen at 10 bar to be 21 Kcal/gm at

3623°K, which is equal to the enthalpy of nondissociated hydrogen at

5000°K! At lower pressures this effective temperature is still higher.
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These data are used in Pig. D-3 to predict the exhaust velocity vg

from Eq.. D-l, with the exhaust enthalpy H equal to 1.0 Kcal/gm which

corresponds to an exhaust temperature of 300°K. The potential gains

available by use of the tungsten melting temperature at low pressures are

evident when compared with 2500°K performance.

D-3: Ammonia Systems

In this section, a system is considered in which ammonia is heated

nuclearly and burned with nuclearly heated oxygen, and the products ex-

panded by means of an ideal nozzle. Also considered is the case where

ammonia alone is heated and expanded. Local thermodynamic equilibrium

is assumed throughout.

A previous treatment of this problem is given by Anderson and
2

Cotter of LASL. Because they chose the maximum preheating temperature

to be 3000°K and the minimum pressure to be 33 l/3 atm, they observed no

major increases in exhaust velocity due to H 2 dissociation. The fol-

lowing is an extension of this type of system into the regions of

temperature and pressure where dissociation plays a more important role.

Oxygen nuclearly preheated to 2000°K is stoichiometrically burned

with ammonia nuclearly preheated to various pressures and temperatures.

The products of this combustion are isentropically expanded to zero pres-

sure. The ideal exhaust velocity is calculated by means of Sq.. D-2 where

H = 0. H is obtained from a simplified analysis of the thermochemistry.
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Comparison in the case of a specific problem shows good agreement with

the work of Anderson and Cotter, A similar treatment is presented in

which ammonia alone is nuclearly heated, so that the effects of the addi-

tion of oxygen may be shown. The results are presented in Fig. D-1+.

D-k: Dumbo Design Modifications

The utilization of these reaction effects requires a Dumbo design

of very high gas temperature and low operating pressure. The requirement

of high temperature clearly suggests a tungsten weM operated near its

maximum working temperature. This temperature probably exceeds the

melting point of U0 2 (3113°K). Since there is a question as to whether

a cermet retains its tensile strength when--*hs .'JOĝ inolwsiipns _ar«. liquid,

the lamination technique, described in Sec. 8-3, may be preferable for

the super-Dumbo motor.

Although numerical designs suitable for super-Dumbo operation have

not been developed, several features of this type of motor may be pre-

dicted. Attainment of the highest possible gas temperature imposes the

following demands on the designs:

(a) The tensile strength of the metal wall in the hottest regions

is low.

(b) The difference between gas and wall temperature Q must be very

small.

(c) The temperature variation within a mosaic cell 8j.T, caused by

constructional errors, must be made small.
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(d) The flow Jo(z) through the wall must be maintained very

uniform.

(e) The power density must be made very uniform.

These requirements, along with that of low operating pressure, might

appear to be ominously stringent. However, th: high performance of the

motor and the presence of dissociation processes introduce several com-

pensating effects. The lowered flow rate increases temperature

uniformity within a mosaic cell and tends to reduce the pressure drop

across the wall, thereby permitting reduced tensile strength. The disso-

ciation process gives rise to the Nernst effect in the heat exchanger

(see Sec. k-f) which effectively increases the thermal conductivity of

the gas by a large factor, and reduces 6 and 8jT correspondingly.

The requirement of low operating pressure applies throughout the hot

gas region, so that the pv2 effects in this region must be made small,

which tends to insure a uniform Jo(z). The implied low velocity requires

short tubes which are widely spaced.

The neutronics of the super-Dumbo reactor suggest higher loadings

with U0 a (a) because of the flattened shape, and (b) because of the

larger flow areas. Since the power density through the super-Dumbo reac-

tor must be made highly uniform, it may be advantageous to make local

small adjustments of either U02-loading, or moderator, or both.
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Appendix E

HEAT EXCHANGE INSTABILITY*
by B. W. Knight, Jr.

E-l: Introduction

In dimensionless form, the equation relating heat and mass flow is

where 9 is temperature, T time, q mass flow, £ length, and cr power den-

sity per unit length. The Inlet temperature boundary condition is 9 = 1

at £ = 0> and the heat exchanger extends from £ = 0 to £ = 1. The three

terms of Eq. E-l represent energy accumulation, energy flow, and energy

production. The dimensionless pressure TT is given by

K (E-2)

which states that the dimensionless pressure gradient dir/d£ depends in

*This investigation resulted from a conjecture by J, L. Tuck and was
carried on with C. L. Longmire and B. B. Mclnteer. This presentation
generalizes the results given by Longmire in a LASL memo on the
Poiseullian flow problem. (Stability of Viscous Flow Heat Exchange,
July 11, 1955•) Appendix E has been taken from the notes of a seminar
talk given by B. W. Knight, Jr. at LASL on December 28, 1955.
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some fashion on the mass flov, local temperature, and the local specifi-

cations of the heat exchanger. It is necessary that

% 9 ' 0

The first of these conditions is evident; the second is generally correct

for gases, and is vhat makes the theory lead to interesting results.

Equations E-l and E-2 involve several assumptions: (a) the specific

heat of the gas is constant, (b) inertial forces are small compared to

frictional forces, that is, acoustical effects may be ignored, (c) in any

region A£, the heat capacity of the exchanger is large compared to that

of the gas it contains, (d) the temperature of the gas is always the same

as that of the exchanger at a given £, and (e) there is no thermal conduc-

tion along the £ axis.

E-2: Equilibrium Conditions

The integrated power is defined as

(EJ0

The time independent solution of Eq.. E-l is then

*«>•*.«<»+•
(E.5)
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Equilibrium quantities are denoted hereafter by the subscript zero. The

total pressure drop is obtained from Eq. E-2, whence

I

Awo(qo) =- J g[qo #<>(£)] d{
0 (B-6)

From here on the explicit t, dependence of g is not mentioned. The gen-

eral character of £nb(<lo) is seen by differentiating Eq, E-6, giving

For large flows, the negative term dominates. For low flows, the posi-

tive second term dominates. Thus AJTo(qo) is of the form given in

Fig. E-l. The slope of this curve, given by Eq. E-7, is interpreted

-A To

«.

Fig. E-l
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physically as a hydrodynaoic impedance. There exists a critical flow q.

"below which this impedance becomes negative. It is a plausible conjec-

ture that if the pressure drop across the heat exchanger is fixed then

the flow in the negative-impedance region is unstable. This is similar

to the case for negative-impedance electric circuits. This implies that

there is a critical temperature 9 above which the exchanger cannot

deliver gas in a steady manner. In the next sections this conjecture is

proven.

E-3: Effect of Perturbations

If the equilibrium situation, given by Eq,. E-5, is perturbed, solu-

tions to En. E-l may be expected to be of the form

q = qo+q, (T)

(£,)
(E-8)

where 9i and q,i are small. The boundary pressures are assumed to be

constant, and given by

A IT = ATT 0

(E-9)

Substituting Eq.. E-8 into Eq. E-l yields the first order perturbation

equation

(E-10)

The pressure condition, given by Eq,. E-9, yields



Effect of Perturbations Section E-3

C O

(E-II)
vhich is reduced to a first order perturbation relation

(E-12)

This relation must be satisfied by qi and 0i.

The solution of Eqs. E-10 and E-12 may be reduced to the solution of

an eigenvalue problem by assuming that

ax

(E-13)

Direct substitution into Eqs. E-10 and E-12 yields

and

(E-15)

h to

expand the arbitrary initial perturbation 9i(£,0). Cccqaleteness of the

Equation E-13 may be used only if the 9 form a set complete enough to
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eigenfunctions in Eq. E-13 has been demonstrated by J. Lehner for the

case of Poiseullian flow through a uniform channel with uniform power

generation. The same method may be applied to more general situations.

The condition of stability demands that all the a's of Eq. E-13 have

real parts which are negative. Instability implies that there is at

least one a with a positive real part. It will be demonstrated that the

question of stability depends on the sign of d£iro/<lq.o«

EJ+: The Stability Criterion

Equation E-lU integrates to

(E-16)

This is substituted into Eq. E-15 to obtain an explicit eigenvalue equa-

tion for a.

There is always exactly one real a which solves Eq. E-15. This is

demonstrated as follows: By Eq. E-16, 9 is continuous and monotonic in

a, with the limits 0^ = 0 and 9 m = -00, Thus the right hand side of

Eq. E-15 must be monotonically continuous in a, ranging from 0 to +°°,

and for the entire range of a the value of the left hand side of Eq. E-15

must occur only once.

^Completeness of the System of Eigenfunctions in a Problem of Viscous
Flow Heat Exchange." LASL memo by J. Lehner, March 9, 1956.
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A relationship between a and d£gro/<iq.o is now demonstrated. A new

eigenvalue relation is obtained by combining Eqs. E-15 and E-7, given by

l-e

where the last step follows from Eqs. E-16 and E-4.

It is shown that if dAn"o/dqQ is positive, the flow is unstable.

For, by Eq. E-17, if a is real then [l - e-ta/ioKIX1)j mast be positive

as must dAiro/dqo. Since £ - £' > 0 , this implies a > 0, which is the

condition for instability.

Similarly it may be shown that if aArro/dqo is negative then the flow

is stable. For, in general,

(E-18)

which gives for the real part of the bracketed term in Eq. E-17

I - e cosy (£-£')
(E-19)

which must be negative. However, if |3 > 0 this expression is intrinsi-

cally positive. Thus p, and the real part of any a, must be negative,

and the flow is stable.
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