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CHAPTER 1
INTRODUCTION

But there was one Elephant ~ an Elephant's Child -
who was full of 'satiable curtiosity, and that means
he asked ever so many questions.

R. Kipling, The Elephant's Child

1-1: Introduction

It has been obvious for many years that, because of the great energy
release in nuclear reactions as compared with chemical reactions, nuclear
power has potential advantages in rocket propulsion. Many proposals for
nuclear powered rockets have been made.l'8 A complete bibliography and
historical background has been prepared by R. W, Bussard9 of LASL,

In this repcrt, a type of nuclear reactor for rocket propulsion is
described and the theoretical principles necessary for its design are de-~
veloped. Thiz reactor has a hydrogen moderated metallic core and utilizes
laminar flow in the heat exchanger., An unususl feature of its design is
the utilization of the heat-exchanger wall as a thermal barrier which
protects the cold moderator reglons of the reactor from the extremely
high temperature of the effluent propellent gas.

The reactor has been described in its embryonic stage in LAMS-1887
{("Dumbo -- A Pachydermal Rocket Motor"”). The very encouraging conclusions

of that study led to the further and more detailed investigation of this




Chapter 1 Introducticn

report, which describes a low mass rocket reactor of high performance
and reliability using metals whose physical, chemical, and nuclear prop=-
erties are desirable and whose technology is largely understocd.

The development of this reactor has proceeded along several lines:

(a) Theoretical development of energy transfer relations and gas
flow behavior in laminar flow heat exchangers. These studies lead 1.2
the design of the Dumbo heat exchanger.

(b) Study of the effects of fabrication errors, and the methcds by
which those effects may be reuuced,

(¢c) Assessment of nuclear deslgn requirements far fiszionable mate-
riel and moderator. Uniform power generation throughout the reactor is
achieved, utilizing uniform standardized fuel elements,

{d) 1Investigation of the hydrodynemics of the propellant ir. the
main Dumbo flow chamnnels, leading to conditions for the uniform delivery
of propellant ic the whole heat exchanger,

{2) An experimentel program to explore the feasibility of producing
fuel elements to the specifications required by the thecretical resul‘s,

(f) Coordination of the studies a to e to obtain specific reactor
designs,

These studies form the body of this report.

1-2: Generel Description

A nuclear rocket requires a reactor capable of heating a propellent

gas to a high temperature, Dumbo is such a reactor, and consists of an
10
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General Descripticn Section 1-2

array of metal tubes whose walls are made permeabla to gas flow by
myriads of tiny, regular channels. These walls contain the fissionable
material which is the source of the heat for the propellent gas. The
flow of gas through the tube walls effectively insulastes the central
regicn of each tube, This permits hydrogenous moderator in the form of
plastic to be placed there. The tubes serve one other function: to pro-
vide the maln flow path for the cold gas., This entire assembly is
surrounded by a neutron reflector of berylllum,

Flgare 1«1 shows a typical Dumbo reactor. The Tlow paths are as
follows: The liquid hydrogen propellarit flows first through the beryl-
livm reflector, preventing it from being overheated by inelastic
processes involving garma rays and neutrons., The liquld hydrogen {27°K)
is converted ir this process to a low temperature gas (100°K). The path
or the gas is then through a nuclear preheater {not shown, but descrlbed
later in Secs, 7-2 and 9-3) at the cold gas entrance of a tube. This
adjusts the gas temperature to the proper moderator inlet value (220°%K).
The gas then flows through the polystyrene moderator zad is heated to
300°K in this process. On leaving the moderator,; the gas passes through
the Dumbo metal wall, where the fissionable material is confined, and is
heated to the final exit temperature (2500°K). The flow path is then
down the outside of the tube, through the gas exit ports in the bottom

of the beryllium reflector, then:e to the nozzle.
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Fig. 1-1: Typical Dumbo Reactor. This diagram is essentially to scale
with the exception of the nozzle, which has been distorted
for clarity.




Dumbo Tube Design Section 1=3

1-3: Dumbo Tube Design

In order to make clear th: construction of the heating surface, the
following step~by-step development is used, Thls development closely
parallels the actual conception cf the heat~-exchanger design.

A thir metal strip is corrugated in a regular fashion (Fig. 1-2).

Fig., 1-2
To form channels, the folls are placed together in the following manner

(Fig., 1-3).

Fig, 1=3

To eliminate the problem of nesting, a flat strip is placed between the

corrugated strips, thereby doubling the number cf gas passages

(Fig. 1-4).
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Fig. 1-4
To provide scme flow impedance in the entering part of each gas Passage,
a deformation is needed in the cold leading edge of the flat strip.

Since the flat strip must provide impedance for two channels, as shown

VAR
S

Fig- 1'5

in Fig. 1-5,

the strip is made of two pieces > each of half thickness, These pieces

are shown in Fig, 1-6.

Plg. 1-6

The assembly of fully corrugated and flat, partially corrugated, strips
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are shown in Fig., 1-7.

Fige 1.7
In order to make the heat source as uniform as possible, alternate rows

are shifted half a wave length (Fig, 1-8),

Fig. 1.8

The corrugated and flat sections are stamped from refractory metals,
such as tungsten or molybdenum, which are impregnated with U0s (uranium
dioxide). Shown in Fig. 1-9 are linearized components of a molybdenum
wall sample. In Fig. 1-10 are shown photomicrographs of the assembled
components, viewed from both the entrance and exit sides. The light
areas are the gas passages, These caomponents were made for fabrication
studies.

The Dumbo reactor requires circular rings or washers, convoluted
similarly to the corrugated foils described above. An assembly of con=-

voluted washers is shown schematically in Fig, 1-11, The Dumbo metsl

15
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FPig. 1~9: Linearized Components of a Molybdenum Wall Sample
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GAS ENTRANCE
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Fig. 1-10: A Photomicrograph of Assemblied Wall Components. Microscopic
study shows the irregular edges in the photomicrograph to be
foreign matter, deposited by previous handling, and not con-
structional irregularities.
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Fig, 1-11: A Dumbo Metal Tube, A schematic drawing distorted for clarity
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Flow in the Feat Exchanger Section 1=k

)

tubes consist of such assemblies,

The moderator serves two purposes, Primarily, it moderates the
reactor, Secondarily, it prevents hot spotting of the metal wall., De-
tails of this scheme are discussed in Chaps. 4 and 9. Moderator geometry
is shown in Fig, 1-12, The moderator consists of polystyrene washers
(flat rings) which are alternately stacked with Dural separator washers.,
The Dural washers, in conjunction with vertlcal ridges molded into the
plastic, form a small box or "mosaic cell” which serves as a manifold to
40 channels of the Dumbo wall. Radial ducts are molded into the plastic
washers as shown. In order to improve the thermal conductivity of the

moderator, magnesium is distributed through the plastic.

1-4: Flow in the Heat Exchanger

The heat transfer process in Dumbo 1s novel, in that the gas flow
in the heat exchanger is laminar., This is the first seripus attempt to
transfer large amounts of energy to a gas moving in a pon-turbulent or
smooth manner. The laminar type of flow and the short length of flow
path in the heat exchanger, 1 cm, results in a small pressure drop,
typically 0.3 bar,* across the heat exchanger. This type cf heat ex~

changer has the following desiraeble features:

(1) It is made of thin metal foil, which has the advantages that:

*1 bar = 10%® dynes/cm® = 0.98692 atmospheres.

—gsces
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Fig, 1-12: A Dumbo Tube Assembly (not to scale)
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Flow in the Heat Exchanger Section 1.4

(a) The surface temperature of the foil differs from the
maximum interior temperature by less than one degree,

{b) The heat cepacity is so small that the response time of
the evrhanger is about one microsécond.

{c) The heat-exchanger walls are chemicaily inert to hydrogen
or ammonia propellants.

(d) The heat transfer surface is 5,900,000 cm® and the
exchanger is 75% gas passage.

{2) It has a small pressu.: drop, which has the advantages that:

{a) The tensile strength reguirements are modest, permitting
operation close to the melting point of the usable metals
(2923 - 3623°K).

(b) The choice of operating pressure is flexible throughout
the range, 10 ~ 100 bar.

(¢} Other flow impedances may serve to assure proper flow
uniformity throughout the reactor. The flow through the
heat exchanger i1s regulated by the larger impedance of
the moderator reglon where the pressure drop is 1.9 bar,

(3) Its performance is calculsble from basic hydrodynamic princi-
ples, which has the advantage that:

(a) The heat exchanger is designed without experimental heat-

transfer tests,

e
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{(b) The stablility of the flows is examined theoretically, and
the conditions assuring this stability are obtained with-
out empirical tests.

(h) It is an efficient heat exchanger, which has the advantages
that:

(a) The gas is heated to temperatures within 200 degrees of the
maximm working temperatures of the refractory metals,

(b) Design of the reactor is not limited by optimization of
the heat exchanger.,

(5} I* has a folded gas flow path, which has the advantages that:

(a)} There are cool regions throughout the reactor into which
plastic moderator is placed.

(v) Space 1s efficiently used, resulting in a compact, light~
weight reactor of high power density.

{e) No local adjustment of flows is necessary,

(d) The flow area of the heat exchenger is great, and the
channels of the metal wall are small. Consequently, a
small sample cof this wall of only 0.03 e volume is
representative In performance tests, Tests of the heat

exchanger require only 1200 watts power.

1-5: Choice of Propellant

Two attractive nuclear rocket propellants, compatible with metal

reactors, are hydrogen and ammonia., In this report, hydrogen is used

22




Neutronics Section 1l-6

for the following reasons:

(a) The chemical and physical properties of hydrogen are well
understoud over the range of temperature employed.lO Ammonia is ther-
mally decomposed in the heat exchanger, and data are not available to
predict the kinetics of this reaction. The methods used to compute the
transport properties for hydrogenlo’ll could be used to predict the vis~-
cosity, the thermal conductivity, and diffusion coefficients of three-
comnonent mixture Hp, Nz, and NHa.

(b) 1In the last few years the technology for handling large quan-
tities of liguid hydrogen has been highly advanced and large=-scele use
of liquid hydrogen is no longer a formidable problem,

Both hydrogen and ammonia should work in Dumbo systems since neither

of these materials presents a chemical corrosion problem with the refrac-

tory metals.

1-6: Neutronics

The Dumbo reactor has uniform power generation (+7%) as well ss
uniform neutron flux, using uniform loading and construction. This is
achieved by adjusting the reflector thickness, amount of U0z, and amount
of polystyrene moderator. The amount of hydrogenous propellant in the
reactcr does not change the reactivity appreciably, since the system is
already highly moderated. The Doppler broadening of the neutron reso-

nances of the refractory metals scts as a built-in negative temperature

e3




Chapter 1 Introduction

coefficient and helps control the reactivity.

Tr- damage to the refractory metals, as well as to the polystyrene,

by neutrons and gamma rays is considered.

1-7: The Report
The analysis of Dumbo is given in sufficient detail to show the

degree to which such a system may be designed, starting from well-known
physical principles. The calculations are complete aside from interme-
diate steps of a routine nature, Much of the mathematical material of
the report, while oriented toward the development of Dumbo, is equally
applicable to a wide variety of rocket reactor designs. For the most
part, this material is new and is presented in a general manner,

In Chap. 2 the subject of laminar-flow heat exchange for a steady
state is developed. The basic physical eguations are presented and from
them are developed practical expressions for the flow of propellant and
transfer of heat. The relations between channel geometry, pressure drop,
and heat transfer are investigated, and methods of high precision are
given for calculations involving particular geometries.

In Chap. 3 the stability of flow in the heat exchanger is consid-
ered. The requirements for stability are given, means of insuring
stability are presented, and a design is given which is intrinsicaliy
stable,

In Chap. 4 the temperature distribution in the heat exchanger is

considered. The temperature distribution is worked out for (a) a Dumbo




==

The Report Section 17

wall which is perfectly constructed, (b) a Dumbo wall with one blocked
channel, (c) a Dumbo wall with random construction errors, and (d) a
Dumbo wall segmented into mosaic cells.

In Chap. 5 it is shown that effects due to the evaportion of hot
metal into the flowlng streem of pronellant are negligible.

In Chap. 6 the device 1s considered as a nuclear reactor, The
conditions are worked out for a unifoiw power generation in all fuel
elements, which are of a single standard construction with uniform ura-
nium loading. Calculations of criticality are presented Tor such
reactors, involving reactor cores containing large quantities of refrac-
tory metals.

In Chap. 7 the hydrodynamic and heat-exchange problems not covered
in Chap. 2 are considered. Conditions are found which give a highly
uniform flow of propellant through the whole exchanger.

In Chap. 8§ the properties of the materisls from which Dumbo is built
are considered, under the conditions of operation. The methods involved
in fabricating the Dumbo wall are also discussed.

In Chap. 9 complete numerical designs of four models that satisfy
the requirements of heat transfer, neutronics, and hydrodynemics are
presented,

Chapter 10 is of a coneluding nature. It lists several variants on
the Dumbo design and some other possible used of reactors of this type.

A potential developmental program for Dumbo is described.

T
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There are five appendices of material supplementary to the main body

of the report.

10,
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CHAPTER 2

FLOW AND HEAT TRANSFER

He asked his tall uncle, the Giraffe, what made his
skin spotty, and his tell uncle, the Glraffe,
spanked him with his hard, hard hoof.

R. Kipling, The Elephant's Child

2=1: Introduction

In determining the performance end design requirements of a laminar-

flow heat-exchanging system, three quantities are of particular interest

(1) Tne total flow Q, or the average flow density J = Q/A

[ uda

- _L )
J L [ uda (o1)

where A is the cross-sectlonal area of the channel and J 1s the flux.

Q

(2) The average tempersture T over a cross section

T = Tl\' deA (2-2)
(3) The weighted gas temperature Tg whose value satlisfies the rela-
tion Q*c Ts(z) equals the transport of internal energy, where z measures
distance from the cold end of a duct of length w end ¢ is the specific

heat of the gas at constant pressure. Thus Tg(w) will be the final

29




Chapter 2 Flow and Heat Transfer

temperature of gas delivered from the exchanger. Summing the energy flow

density over the cross-sectional area, we have

QcTy = [ JeTdA (o.3)

Hence

-
To® 5 [ uTda (2)

These integrated quantities evidently may be determined if we know the
flow and temperature functions, J and T, which in turn must be determined
from the basic relations which they satisfy.

In this chapter we derive methods of evaluating these quantities.
Section 2-2 presents the necessary equations in a form which is exact
but intractable for calculation except by numerical methods. In Sec. 2-3
the femiliar linearized equations of fluid flow and heat transfer are
derived. The subsequent sections present analytic methods of =valuation:
an exact solution, a more general solution for limiting cases, an itera-

tive technique, and a set of variational methods.

2-2: Basic Relations

Laws governing the flow and energy transport of a fluid have been

formulated by Hirschfelder et al.l The equation of continut+: .s

Q
©

= =0y pPVy

at

(2-5)




Basic Relations Section 2«2

vhere p 1s the density, t is the time, and Vu i3 the p-component of the
velocity, V. The tensor convertion of summation over repeated indices

is assumed, ‘The equation of motion of the fluid is

OVp.
rIa

wvhere the stress tensor ?uv is given by

R
+V,0,V, Tavpu.v (2-6)

2
Py =P Buy— n\av + 9 v) +(3n k)axvxsu,)
(2-7

Here p 1s the hydrostatic pressure, n the coefficient of shear viscosity,
and k the coefficient of bulk viscosity.

The equation of energy balance 1s

du_

St g us-t g R - LR

(2-8)
where u is the internal energy per gram, and qu and Ru are the components
of H end ﬁ, the energy fluxes conducted and radiated, respectively.

Although it is not appropriate to reproduce the development of
these relations here, i1t 1s worthwhile to realize their origin., Equa-
tion 2«7 comes from the linearity and symmeiry relations that arise from
the thermodynamics of irreversible processes, based upon Onsager's
"reciprocal relations” theorem, Cne important restriction here is that
the microscopic thermodynamic situation be not too far removed from

equilibrium. Equaetion 2-6 1s a restatement of the second law of

3
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classical mechanics for a hydrodynamic medium. Equations 2-5 and 2-8
are formalized statements of matter and energy conservation.

The equations may be simplified at once in three respects: in a
steady-state situation ell time derivatives venish; and in a gas such as
hydrogen, which is both non-polar and transparent, both k and auRu

vanish also.

2-3: Physical Approximation of the Equations

The functions T and J = pv are determined in principle by these
equations together with the equations for p, n, u, and E. With a
specified geometry and specified rates of power generation and fluid
flow, the quantities of interest to us should be obtainable to any
desired accuracy by solving these equations numericelly. However, for
purposes of a genera® investigation, numerical results are far less use-
ful than explicit analytic relationships. For this reason we will make
samne gpproximations to bring these equations to a form which is analyt-
ically more tractable, without heavily sacrificing physical accuracy.

At the outset we confine our attention to channels of uniform cross
section, and of length very large compared to the wall to wall distance,
In such a case the flow 1s constrained to be substantially parallel to
the axis of the chamnel, the z axls. Thus Vx =V _=0. Moreover, if

y
the total change in Vz takes place slowly over a very long tube, then
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aVz/az = 0, and Eq. 2-6 reduces to

3 d 3 .
ax ot dy Py + 9z P22 0 (2-9)

Under the same conditions the stress-tensor (Eq. 2-7) similarly simpli-

fles to dV
Pry =7 3‘;
. 9V,
Bx=—1 3;‘

Pp= P (2-10)

Combining Egqs. 2-9 and 2-10 yields
QM 9 % dp
ox Tax T ey Tay T o (2-11)

If we now limit ourselves to the more usual cases, the relative varia-
ticizs in 7 and p over distances of the order of a channel dismeter are

small, Equation 2-11 may be brought to the final form

VZJ = _ﬁ _a..E
7 oz (2-12)

where V2 involves only the varisbles x and Y.
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From Eq, 2-7 we may form the quantity

Puy O Vy = pa,V, —d

where

2
® = 99,V +0,v,)8,v,-($9-k) 3,v,)
7 .“'VV v F') BV 37 [l (2-13)
Here the positive quantity ¢, the dissipation funetion, is the power-
density due to viscous effects, its two terms correspeonding, respectively,

to work done agalnst shearing forces and compressional viscous effects.

By use of Eq. 2-13, Eq. 2-8 may be recast into vector notation,

vi | o~ | — [
V-V -tV qg—-—PV.V 4+ — @
{ )u 3 q > ) (2-28)

A rearrangement of terms gilves

— p - — —..
pV-V(u+—P-) =~Veq +V-Vp + & (2-15)
The quantity u + % is the enthalpy per gram of the gas. For hydrogen
thls quantity 1s insensitive to pressure and may be regarded as & func-
tion of temperature only. Hence
p T
wtF o [ e (T dT = & (T-Te)
T (2-16)

where TO is some reference temperature. The heat-flow vector is given by

g =— AVT.
(2-17)
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vhere )\ 1s the therml conductivity of the gas, Substituting these
expressions back into Eq. 2-15 and specializing to our channel geometry

as before gives

_ ap
PV, T"z T = V-(AVT) 4y, == +& -

We 1limit our consideration to exchangers where the heat transfer per
second 1s very large compared either to the dissipation function ¢ or
to the rate of work due to moving material across a pressure gradient,
so that Vz gs + ® will be negligivble, Let us also make the same assump-
tions for 5; (=c) and A as we have for n and p above. Then Eg, 2-18

becomes

e (L 9T
v T.(k Z)J
(2-19)

The temperature may be writter. in terms of its boundary value, Tb'

T = T, (2) + Blxy) (2-20)

If @ is small compared to T, then the z dependence of T must iie primarily

in Tb; further, 1f the power distribution in the channel is uniform, Tb

depends nearly linearly on z, and Eq, 2-19 becomes
2
ve=(% .QL)J

b
92 (2-21)
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where V° now only involves the variasbles x and y ac was the case in
Eq. 2-12.
To summarize, our problem has been reduced to solving the two-

diment.ional egquations

viy = -«
where
K(i’.):"-.,’i -@%
(2-22)
and
v2e = By
where
B(z)= -J;- J%i?L
(2-23)

with the conditions that both J and © vanish at the boundary of the
channel. These are particular cases of Polsson's equation in two dimen-
sions. Once a solution has been obtained we may check back on the

valldity of our aprroximations.

2-4: The Circular Channel

Flow and heat transfer results can be obtained exactly for a
circular channel (to within the approximations of Eqs. 2-22 and 2-23)

and have often been presented previously.2’3 They are developed here

36
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as an illustrative preliminary example, and to present the results
within the framework of ocur present notation,

In radial coordinates Eq., 2-22 becomes

9 r 94 - _
r or or (2-24)

whose solution for a channel of diameter « will be

2
L4 a
J == 7z (rt- —<
7 { 7 ) (2-25)
which glves
4
- TKAQa
Q* 38
J = kg
32 (2-26)
Similarly by Eq. 2-23, the temperature distribution is given by
19 28 | _ kB ._
r ar or 4 4
(2-27)
from which
-_“B a_ 2.2 3a°
@ = 3 [r a“ré+ e ]
(2-28)
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whence
63 - _ ﬁ?occx'
760
4
g -_lBxa
9 6144
e - 2B« a*
min 1024
(2-29)
These results are considered further in Sec. 2-5,
2-5: The Thin Channel Approximation
A convenient approximation for the flow problem is the "thin
channel" approximation, in which Eq. 2-22 written as
2 2
0°J 0°J
3 + S - TK
9 x dy (2-30)

is simplified by neglecting the x derivative. The resulting relation
92y .
. 2
y (2-31)
is to be solved subject tc the condition that J shall vanish at the
boundaries, Yi(x) and Ya(x). (See Fig. 2-1.) The solution of Eq. 2-31

1s immediate.
J= - % (y=Y) (y=Y,)
' (2-32)
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Y, {x)
_..\ ,
-v/z]\/ J U/t

Y, (x)

Fig., 2-1
Note that the local parabolic flow distribution is inherent in this
treatment., This result is an exact solution c¢f Eq. 2-22 for parallel
plates, We may thus regard this approximation as a local fit to the
parallel plete result.

The total flow defined by

v/2 Y,
Q - J (x,y) dy dx
TUR Y (2-33)
is given by
v/e
Q=é f(Yl-Yg)s dx
-v/2 (2_3},&)

These results become simplified for thin channels bounded below by a
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flat plate, so that Yo = O, In this case

==K -
J - 2 y (y Y|) (2_35)

v/2
K 3
= = Y,” dx
Q .zf .
-vs2 (2-36)
Using the same approximation for the temperature distribution, Eq. 2-23

becomes
2,
a—y9§=ﬁd
(2-37)

which may be integrated at once if J 1s known, We substitute the value

of J obtained from Eq., 2-35 to obtain

22©
T Bz" yly—")
@ (X,O) s @(X'YO = 0 (2-38)
which integrates to
© (x,y) = = (Bx/24)yly-Y)(y>=Y,y —Y7)

(2-39)

Integration of © yields for the average temperature

v/e

& - - (Bx/1208) [ Y? dx

-v/2

Lo
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where
v/2
A = Y, dx
‘-vlz (2_,4_0)

The value of @g may be cbteained similarly

2 v/2
® = - (176/20,160 Q) [ Y dx
~v/e (241)

where Q is given by Eq. 2-36. Another temperature that is interesting
for comparison purposes is ®min , the extreme temperature difference
between fluid and wall on the given cross section.

We will coasider as examples (Fig., 2-2) three channel shapes , all
of height @ and width v to be treated in this mamner. For comparison
a circular channel of diameter a has been solved exactly, Of course,
the solutions of Example 1 are also exact,

For all the thin channels considered here this temperature is
located at x = 0, y = /2. Inserting these coordinates into Eq. 2-39
gives the value

Opin = - 3%4 Brxa* = -0.0130 Bra®* ou2)
For the various geometries considered here we obtain the following

results:
Table 2-1 indicastes the values of A, Q, and J for specified dimen-

sions, @ and v, and the "pressure drop", x, Thus for the same values of

L1
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Y, =-8& x +a

X220

.
-use vs2 - V/2

v/2
EXAMPLE i EXAMPLE 2
PARALLEL PLATES CR TRIANGULAR CHANNEL
THIN RECTANGULAR CHANNEL (THIN)

Y, = %(I+COS 2wy /v)

-u/2 v/
EXAMPLE 3 EXAMPLE 4
SINUSOIDAL CHANNEL CIRCULAR CHANNEL
(THIN)

Fig. 2-2: Examples of Channel Shapes
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these parameters the flow density T is largest for the parallel plates
(or thin rectangle). T is smallest in the circular channel, For tr‘lin
triangular and sinusoidal channels J is intermediate,

Table 2-2 presents values of the temperatures @ nin? 8, and eg for
specified values of k, B, and a. In terms of these parameters, emin
possesses the same value for the three thin channels, but emin is much
less for the circular channel. © and ®g show this same pattern in com~
paring the thin channels with the clrcular one. The temperatures of the
shaped thin channels are more uniform, however, than the temperatures of
the thin rectangular one,

Table 2-3 presents the temperatures © min? (:5, and ®g in terms of the
J results of Table 2-1 , 8llowing the physical dimension @ to be eliminated.
These quantities thus relate general heat exchange relations of pressure
drops and temperature drops in terms of channel shspes but not of chan-
nel size, The quantities listed in this table are of order unity.

Table 2-4 presents the ratios G_B/@min, eg/emin’ and @g/é-. The
latter ratio is particularly surprising in that the velues for shaped
thin channels are not intermediate between the thin rectangle and the
circular channel results, These results allow little hope that Sg may
be predicted accurately from the simpler quantity & for shaped channels,

Tsble 2-5 considers the case when the pressure drop, x, is not of

interest, but presents ® and ®g in terms of B, @, and J. Thus, for
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TABLE 2-1
'FLOWS AND AREAS IN TERMS OF K,Q,U
AVG. FLOW
Ex SHAPE AREA, | TOTAL FLOW, } “pengiTY,
s 1712
| | PARALLEL PLATES av kadv/12 (0.0833)
TRIANGULAR CHANNEL vz xa®v/a8 \/24
2 av/z {0.0416 )
3 5/96
3 | SINUSOIDAL CHANNEL au/2 5ka*v/192 | 5 0821)
4 | CIRCULAR CHANNEL ra’/a rra'sizs 1732
{0.0313)
TABLE 2 -2
TEMPERATURES IN TERMS OF K,B, a
Ex SHAPE O/ Bra* |-B /Bra* -8/ Bxa*
5/384 17120 I7/1680
P T
' ARALLEL PLATES (0.0130) (0.00833) {0.0101)
5/384 1/360 17/3360
2 | TRIANGULAR GHANNEL (0.0130) (0.00278) (0.00506)
- 57384 2i/5120 |2431/358,400
3 | SINUSOIDAL GHANNEL (0.0130) (0.00410) (o.oos'r's)
3/1024 17760 11/6144
4 | CIRCULAR  CHANNEL {0.00293) (0.00131) {0.00179)
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TABLE 2-3 _
TEMPERATURES IN TERMS OF J, Kk, B
__x8 _ <9
Ex SHAPE R B3°
| PARALLEL PLATES .20 1.46
2 |TRIANGULAR CHANNEL [.60 2.91
3 SINUSOIDAL CHANNEL 1.51 2.50
4 CIRCULAR CHANNEL 1.35 .83
_ TABLE 2 -4
®nin .8, ®, IN TERMS OF EACH OTHER
; 8 &g o
Ex SHAPE Omin Omin
| | PARALLEL PLATES 0.64 0.78 .21
2 TRIANGULAR CHANNEL 0.21 0.3% 1.82
3 SINUSOIDAL  CHANNEL 0.32 0.52 .65
4 CIRCULAR CHANNEL 0.45 0.6l 1.37
b5
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Flow and Heat Transfer

TABLE 2-5
TEMPERATURES IN TERMS OF J, B, @
-8 _ |__ 8
Ex SHAPE et 5
! PARALLEL PLATES 0.100 0.121
2 | TRIANGULAR GHANNEL 0.066 0.121
3 | SINUSOIDAL CHANNEL 0.079 0.130
0.042 0.057

CIRCULAR CHANNEL

L6




Higher Approximations Section 2«6

fixed values of these parameters, @g is sensibly equal for all three thin

channels but is much less for the circular channel,

2-6: Higher Approximations

The thin channel results mey be refined to obtain more precise

results in the follcwing way. Consider the differential recursion for=-

mula
2 (n) 2., (n~1)
a_Jé_ s —x - L’_J_T_
ay d x
(a) - (n) - O
JUY) = J (YY) E ' (2-43)
by which J(n) may be determined if J(n-l) 1s already known., If, as
(n) \

n - =, the sequence of J converges to a limiting function J with

sufficient uniformity, then evidently J will be a solution of Egq. 2-22,

For J(l)

the thin channel approximetion mey be used.
The technique is well demonstrated by the case of a semi-infinite

duct for which Y3 = cx, Yo = -cx. Following the program outlined above

b7
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J(O): 0
g2yl
g Lo (B
2
2 ,(2)
2—'5-2 s~k (l+cd)
J@ - <+ x(1+cB) A% y?)

(15}

J(")___ _é_ x [z Czs] (szz— y2)

330

2.2 .2
5 —z (cx%-y7) (21)

The function J () is indeed the solution of Eq. 2-22 with the lmposed
boundary conditions. Notice, however, that the sequence of J (n) con-
verges only if ¢ < 1.

Returning to the more general case, and considering only problems

with Y2 = 0, Y1 = Y, one finds

18
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(n _ K
S E o5 yly-Y)
2 - _ x kY
J 2 YU Y= 5y (y5-Y?)

3 . _ « v [ YYE L YtY'Y vy
J 2 YU Y)"[uz 72t 8t 36

Y!Y) ] 2 2 K " 4 4
yy=Y) + =Yy (y—=Y")
36 240 (245)
(3) ,

where primes indicate differentistion with respect to x. Q is

obtained as in Eo. 2-33.

12 |20 18 36
-v/2 (26)

/2
r w2
0 [ fx v Y YO vty Py Y(Y)]Y4}

A similar procedure may be applied to Eq. 2-23

2 AN 2 h-n
ke e
3 y2 = BIGY) — e

(2-47)
This procedure requires some approximate function for J(x,y). We have

chosen J(z) of Eq. 2-45. Neglecting the term 0%8/3x® yields the result

\U) Bx ”
0z — 52 y(y3-Yd +f'—'2‘ Yy(y2-Y% - 2%’{— Yy (y4-v4

@K u 2 2 2
+ Yy -Y
72 y (y ) (2.8

49
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For the next approximation we obtain

5Y"Y2_ Y:2Y _ 7YMY4
2 720

(2) 2_y2
® :-25_4’5 y(y3_ Y3)_ éKY(ys Y ) I-_

Y_
i 2

EVIIVE| ' "
_rey'yd oaytydy? 7(Y)2Y3] _ Bryly*-v*) [ v, Y"y?

90 60 180 20 st T2

+ Y

e 1 ~N ’2 (L] 12 Ll 2 ’
LY 3Y6Y + Y3Y LY oy | Bryty®-Y®)
6 36 ' 36 10,080 (249)

& is obtained by averaglng over the region. Gg is obtained by averaging
the product J*© as given by Egs. 245 and 2-49.

For sinusoidal channels of the form

Y = —"2— [t+cos "’-’”‘]
(2-50)

performing the indicated operations of Eq. 246 ylelds

o - 855 ['-é%‘z’”z(%)z 25 2" (3 )4]

.

_I (2-51)

un

0.026042 xasu[ 34544( )+|99690( )
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From Eqs. 2-45 and 2-49 for sinusoidal channels there results

8 = - 0.00410154% Bx [ 1-7.7553 (%)2+ 48.786(%)4 liomso)

@y = —0.0067829 o* Bx [1-97287 (%)'] (2-53)

For the other examples considered in Sec. 2-5, the parallel plate
result was exact and the corrections involving derivatives of Y(x) thus
vanish, The triangular channel, however, is such that Y'' and higher
derivatives are zero except at the apex (x = O), at which point they
become infinite, Hence Eqs. 2-45 and 2-49 are not usable directly and

the method is inapplicable.

2-7: The Variational Method

In a situation involving unusual boundaries, where Polsson type
partial differential equations are difficult to solve exactly, integrated
quantities may frequently be estimated accurately by means of some varia-
tional principle. The flow and temperature problems have been treated
by such a variational approach to - 1vestigate the general usefulness of
the variational techniques. It will L. shown that these techniques
allow evaluation of the desired integrated quantities Q, T-, and Tg.

Total Flow: The problem 1s to find the total flow Q through the

area A where the mass flow J(x,y) satisfies

VZ

<
1]
!

x

(2-22)
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with the boundary condition

The varietional principle depends on guessing a flow function

j= J+3j (2-54)
which is close to the actual (unknown) function J.
Proceed in the followlng way: By dropping small terms beyond the
lowest order, one has
[wi? aa = [[(vo)?+27vs-V8j] da -
~55)

which 1s identical to

S17i?da = [v. [y +28jvd] dA-[[uv2s +28jv% Jda

(2-56)
The first integral on the right may be transformed to the boundary by
using the divergence theorem, and the second mey be simpiified by using

the differential equation 2-22 for J, to obtain

fwin®da = [[yvy +28jvy] - dF +« [[J+28]] dA

(2-57)
Here ds is normal to the boundary. If we choose a J which vanishes at

the boundary, then 8j will also vanish at the boundary, and sc will the
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whole surface integral, This gives

1 2 -
f(vi)?da = «(Q +28q) (.58)

From thls a variational expresslon may be constiructed as follows

atjy = «LLidAL

[(vj)éda (2-59)

To the first order

[fUdA +[8jda]®

qa(J +8j)
x(Q +238q)

Q®+2Q8q
Q +23q

(2-60)
Thus, q(J + 83) departs from the true flow Q only by higher order terms,
and a good estimate of J should lead to a proportlonately much better
estimate of Q. For the correct J, of course, the value of Q will be

»
exact.

A feature of the varilational principle should be noted. One may
multiply J by an arblyrary constant without affecting the value of q(J).
Thus one need guess only the ghape of the function j. The size is taken

care of automatically.

¥This variational principle was suggested by J. Tiemann, who credits it
to L, I, Schiff,
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In order to get a tight-fitting trial function, one may pick a
J = J(e) depending on a parameter ¢, Then, due to the variational prin-
ciple's staticnary property, Sq(j)ld=J = 0, the fit will be optimized

when

d .
—— afijte)
de ] €=€p {2-51)

n
O

This is an equation which may be solved for €0

Average Temperature: As shown in Eq., 2-20 the temperature is given

by T{x,y,z) = Tb(z) + 8(x,y). The average ‘temperature drop between the

wall and the gas is given, from analogy with Eq., 2-2, by

= _ |
& -4 [oeda
Let
A=—-+ 0
B (2-62)
Then
‘@=—@— :ﬁ
AfAdA A H
where

(2-63)
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and the differential equation 2-23 becomes

2
VoA = -1 (2-64)

If we take the Laplacian of this equation, we obtaln from Eq. 2-22

4

VA =k (2-65)
with the boundary conditioms,

Al =0

b
and

2 =

VEA| = 0

The integral to be estimated is H of Eq. 2-63. Closely following
the procedure for the flow integral, with h = H + 8h and A = A + B\, one

mey demonstrate that the proper variational expression is

. [rraal?

h(X)
[(92dA (2-66)

The value of the denominator of this expression is, to first order terms

2y 42 - 2,2 2 2
[ (9 Vaa = [(9%hFaA +2 [I9EA (VBB an

This equation may be transformed to
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J2dA =k H +2f (V) V8AdT - 2/ 8X7(V%A). T +2«8h
(2-68)
The second term of Eq, 2-68 vanishes due to VEA'b = 0, vhile the third
vanishes due to leb = 0, Thus while 1t is necessary that llb = 0 for
the trial function, VA need not vanish at the boundary, Expending the

numerator of Eq. 2-66 to first order terms yields

H2+2H8h

h(X) = =
xH+exsn M (2-69)

Weighted Gas Temperature: The welghted gas temperature Tg is given

by

T

g = Tb(2)+ ®9

where

B A . B
-0, = £ dA = — V¥
%" 9 IJ Q (2-70)

The integral to be estimated is

v = [uAdA (ou11)

To obtain a variational principle for this quantity define a function F

by

b (2-72)
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so that

VHF = -V 2A= g
VEF = VY = -«

Applying the divergence theorem as before ylelds
4 4
¥ = [ (VFF)VOF) dA

: - [ FV°FadA = « [ FdA
or

[ Fda =¥/«

To obtain the variational expression for ¢ let

v =¥ +8y
and
f=F + f
then
2
(f) = 2 (ffdA]
v © TIwvEnFaa

The value of the denominator to first order terms is given by

o7

o

(2-73)

(2=74)

(2-75)

(2-76)
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S[v(v*1)%aa = [[9(v?F)%da +2 [(V9%86)- (V9°F) dA
(2-77)

This reduces to

[[v9%] da = ¥ +2 [(v% )9 v%F- a5 — 2 [(vF VBt 4T

4 -
+2 [81VV*F-dT +2 38y (oon8)

Here the third term venishes due to V“Flb = Jlb = 0; the fourth due to
8f|, = 0. However, the first integral is equivalent to 2 [ (V%f)VA-ds,
which will not vanish unless a trilal function is chosen such that

Vef|b = 0. While often this is not easy to do in practice, it is some-~
times possible to satisfy this Laplacian condition approximately on some
boundaries while doing so exactly on others., 1I1If, however, this term
does vanish, then expanding the numerator of Eq. 2-T6 to first order

terms yields

K2 \yz/Kz‘" 2\1’ 8“’/"2

vi(f) = =
V+238y (2=79)

Boundedness: It may be shown that the exact function gives a max~
imum value in any of these variational expressions. Thus, a varlational
estimate also establishes a lower bound for the true value, The proof
will be shown in the case of the flow integral Q. The others are simi-

lar.
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The proof depends on the relattons g(ej) = gq(j) and V3J = -k, De-

fine the function

I +s
where
|
§= — 3jdA
Q f J (2-80)
This function possesses the properties that
feda =0
E’D:O (2-81)
Now
QI +8)) =q [(1+s)(J+8)] = gy +¢)
(2-82)

Retaining all terms in Eq, 2-59 and applying Eq. 2-81




Chapter 2 Flow and Heat Transfer

[[oda +[¢aa]®

(J+§&) =
W P vefve-vEan 1 [ Tan
_ [foan]’
- _[(w)2 dA +2.<f£dA+f(V€)2dA
[fada]® [f 4 aa]’
2 2 s
f(vu) dA +f(V€) dA f(VJ)sz (2-83)
Hence
gl J+38j) <0 (2-84)

Comparison with Exact Results: To estimate the accuracy of the var-

iational treatments, these methods are applied to some problems which can
be done exactly. The approach usually is to pick as a trial function a
polynomial of the right general shape, which satisfies the boundary con-
ditions of the problem.

Square channel -- An exact solution of ¥Pd(x,y) = olx,y) or

@ (x,y) = p(x,y) may be set up in terms of the proper Green's function,
The Green's function may be expressed as an expansion in the eigenfunc-
tions of the differential operator with the appropriate boundary

conditions. For a square chanunel with an edge dimension a the
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elgenfunction problem may be solved, ylelding sinusoldal solutions. The

rest of the program smounts to standard integrations., The results are

- 2
Q =xa4—1f—é Z m2|+n2 ( n:n ) = 3509x10 2x04
odd m,n
6 2
H o=xa® 2 2 (mzun,,z( niﬂ) = |.703x107> xa®
odd m,n (2-85)

In the variational principle for Q use the trial functlon

- [ter2* =47 [ior21"-
) [(0/2) X (a/2) =y (2-86)
since the flow profile may be expected to be roughly parabolic, The

result is

Q(j) = (3472 x10?) ka?

(2-87)
This estimate differs from the exact result by about 1%,
If J is chosen to be
j = cos{m/a)x cos(w/a)y (2-88)
vhich 1s & less parabola-~llke function, one obtains
. -2 4
Q(j) = (3329x 10 °) xa (2-89)

which is still within 5% of the exasct result, X also may be chosen as

X\ = cos (w/a)x cos (w/a)y (2-90)
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This satisfies V&) b= 0 on all boundaries., Though V& b - 0 is not
demanded by the variational principle for the temperature, fulfilling
this condition wiil give a better fitting trial function. The operations

are very simple to perform in this case, giving

) -3
H{XA) = (1686x10°) xaf (2-91)

which is only about 1% away from the exact result.

Parallel plates -~ To illustrate the variaticnal evaluation of @g

consider flow between parallel plates which are long enough to make end

effects negligible, The exact expression is given by Table 2«2 and is

@, =- (17/1680) Bxa* = -0.0101191 B«ra*

Exact solutions in parallel plate geometry are polynomials, If the
approximate trial function f = sin Wy/a is chosen the integrations of
Eq. 2~7€ become trivial, giving

Y (£) = (8/7%) 22 (2-92)

so that

®g =~ (96 /7% Bra* = —0.0101175 Bxa* (2-93)

which is correct to 1.5 parts in 10,000,
In the remainder of this section the variational *echniques are

applied to sinusoidal and triangular channels. Values of Q, éﬁ and eg




ot e -

LT TR e e ety e gt

Variational Method Section 2-7

are computed for these two shapes in Example 1 (Sinusoidal Channel Calcu-
lations) and Example 2 (Triangular Channel Calculations) which follow,
These shapec appear typical of the forms encountered in the Dumbo metal

wall,

Example 1: Sinuscidal Channel Calculaticns

The variational approach may be used for a channel with cross-
sectional length v and height o bounded below by a flat surface and above

by a sinusoidal one. Let the upper bounding surface satisfy the equation

m X
v (2-94)

Y(x) = —%[Hcos 2:"] = acos?

In the case of the flow integral, a one-parameter trial functior
used. Suppose some linear combinatlon of two trial functions, ;3 and

Jjo, may be expected to be a good approximation of the actual flow., Let

I, = [jdA
1,7 [ j,dA

2
7,= [(vj)® da

L= [ Vi Vi, dA

2
I, = Vi.) dA
22 f ( Jz) (2-95)
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and
Z
I, = —jl%
A
72
1 = A.g
® Ik (2-96)
Then 1if
. ] j
= (l—-€) =+ + =2
. 1 Ie (2-97)
it follows from Eq. 2-59 that
a[i@] =x/[(1- 2, +2e0-€) 1,421, ]
2-98)
which is optimized as in Eq. 2-61 for
€ = I, =1,
-}
I, -2I,+ 1,, (2-99)

The form of J(e) (Eq. 2-97) is chosen to make eo the solution of a linear

equation when Eq. 2-61 is used.

For the trial function Jji choose the thin channel approximation

(Eq. 2-35).
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s £ oy [Yoo—y] (2-100)

The effect of the correction J» should be to reduce 323/0y® where d%3j/oxZ

is largest. The proper admixture of Jjo should do this if

i =i 2 _TX
I, 7 cost 5 (2-101)

The y-integrations can now be done at once, bringing all the final x-

integrations to the form

/e
2n - 1-3-5--(2n-1) _ {(2n-1)!!
cos8d 8 = m S =T~ Gmh
-1/ (2-102)
The »esults are
_ 1 s
I == &n <
7, =-é ;:: xa3v
_ 711 (6192 6l
L, 48"210!!(5!!) aor T2 57 o
A H i it
I, =60 (968l | Lo 8
(i2us1 7)) av3 51t g3
. T44 , (l1)(8l) \ (91n(sm? |
L. 5 7 (ar)7!t)  aqud + 12 (101I)(T11)2 g3,

(2-103)
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whicl upon subsitution give

2
a[iter]= xab/{38.40 +1.0072 3+ 55 [132.65(1- e2+

28424 ¢ (I—¢) + 316.47 62]}( |
2104

ve
€, — l/ (0.11579 *'a—é + 17.401) (2-105)

Note that € -0 as afv - 0., Thus, g reduces exactly to the thin chan-

nel value.
If € = O in Eq. 2-104, then the thin channel flow function is the
It is interesting to compare the results of the varia-

The

trial function.

tional method with those of the successive approximation technique.

quantity (8/w®v)Q is shown in Table 2-6 for the realistic value

(1/\) = 0.2-
TABLE 2-6
THIN CHANNEL APPROXIMATION 0.2083
FIRST ORDER APPROXIMATION 01795
SECOND ORDER APPROXIMATION 0.1862
VARIATIONAL METHOD USING €:=0 0.18300
VARIATIONAL METHOD USING € = €, 0.18312

Optimizing J introduces about a 5% admixture of J». However, the

value of Q@ is altered by orly 0.07%. Since the parsbolic flow shape is
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expected to be quite a good approximation, and since optimizing J must
dmprove the estimate, the variational value of Q should be very accurate.
Tgble 2~6 indicates that the crudest varlational approximation 1s prob-
gbly a blt better than the second order successilve approximat.on,
Because of the success of the thin chamnel trlal function in the
case of the total flow, a siu’lar approximation 1s consldered sufficient

for the case of the mverage temmerature integral H., The trial function

used 1s that of Eq. 2-39 and is

- 4 3
Aoyt vy - 2y3y (2-106)
wilere \ 1s the approximation to A as defined by Eq. 2-62,

The denomirator integrand in Eq. 2-66 involves

3
2 - A 2a 4 WX _ 6 T X _ 2 mwX 1
(V°X) -y[61r 72 (9cos™ = -6 cos® 0= ) —12 acos ]
+l2y2+y3[41r2—va—2 (2 cos? "TX —I)]

(2-107)

Upon squaring Eq. 2-107 and performing the y-integration only terms of
the form coszn(%EJ remain, though 2n goes up to 18, Evalustion is

straightforward but tedlous, yielding the result

H =0.0020508 aSv/ [1+77578 (.:j-)z+ 57.2|4(%)"]

(2-108)




Chapter 2 Flow and Heat Transfer

It is interesting to compare this result with that of the successive

approximations method. Returning to Eq. 2-52

H =00020508 asv [1-7.7553(2Y+ 48.786(2)'] ()

The first couple of terms are very close to the corresponding terms in
the binomial expansion of Eq. 2+108, Thus, this is very close to the bi-
nomial expansion of H obtained by the varlational technique,

The variational calculation for the weighted gas temperature Tg has
not been performed, since the expressions become qulite cumbersome, In
analogy to what has been done, the procedure would be to pick as a trial
function the soluticn of

i

of L _ .
dy® (2-110)

with boundary conditions f = 0, 3%£/3y® = 0, 3*f/dy* = O at y = O and
¥y = Y(x). Then the condition that Veflb = 0 will be satisfied exactly
at the lower boundary, and approximately at the upper one, with the
approximation becoming exact as (a/u) = 0,

Exemple 2: Triangular Channel Calculations

These methods have been applied to the problem of the triangular

channel bounded below by a surface Yo = 0 and gbove by the surface
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2Xx , .
,Q(I——v—), OSXSLZJ
Yi(x) =
a(l+8X): -¥<xs<o

Section 2-7

(2-111)

The thin-channel expressions for the approximate flow and temperature

distribution functions j and A which were used in Example 1, above, are

used for the triangular channel calculations.

Total Flow, Q

The variational value, q, of the total flow

!

2
g =k & JidA)

F(9i)da

(2-59)

For any thin channel with ¥ = 0, ¥y = Y(x), it has been shown

A K
V== = ly =Y)y
Performing the indicated operations yields

« [ L2 v ]2

v/2 '
I YY) dx
-V/2

For the triangular channel described above, the flow is
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K QSU

48 | +4a%/ vt

q =

Average Temperature j

(2-113)

To obtain é_, the thin channel result for © (x,y) is transformed to

the function
A\ =-0/B
with ® being given by
® =- BH/A
where H 1s estimated by
( [2da)?

h = x ——2— "
f(v2x)2da

For any thin channel with Yo = 0, ¥; = Y, the result
- K 4 3

yields

and, 1If Y'' = 0,

(2-63)

(2-66)

(2-114)

(2-115)
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2 u/e2
JvAnPda = 5o [ (5Y'°=5v"2+2) vPax
-v/z (2-116)
For the triangular channel
h o= =K asv
720  1-10a%/v? +40 a%/v® (2-117)
Hence
5 - Br a®
360 | -10e%/v?+ 40aY 0 (2-118)

Weighted Average Temperature, _@g
As previously described, @.g is obtailned from an expression such that

@g : - B\I//Q (2_70)

T

and a function ¥ where

Fl.= 0

VZF =— A (2-72)

with the variational expression

e (ffcm)2

4
S [viv?s )]adA (2-76)

T1

.
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Using the thin channel result for A (Eq, 2-11k) let

9%f X
52 ° 3z Y3y —2vyd)
y (2-119)
Thus
. K 6 _ 5 3.3_2y5
f = =50 (y " —3Yy +5Y%y"-3Y%) (2-120)
Neglecting multiplying constants for Y'' = O one has
v/2
ffdA z - -8-'747'_6 f Y7dx
-v/z (2-121)
2 2 { Q "4 16 /2 7
JIvv*)] da = 35 17-9vReizov+341ve) [ via
-v/2
(2-122)
For the triangular channel
v - |7 kv a?
161,280 | _ 36 a* , 2064 o , 2,824 a°
17 vt 17 vt i7 v
(2-123)
Hence
0. - 17 B xa’
’ 3360 36 a® 2064 o 2,824 a°
{ 2 17 vt 17 ve
(2-124)

R A SR AL s ey o
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CHAPTER 3
TEMPERATURE -FLOW STABILITY

One fine morning in the middle of the Precession of
the Equinoxes, this 'satiable Elephant's Child
asked a new fine question that he had never asked
before.

R. Kipling, The Elephant's Child

3-1: Statement of the Problem

The uniform channels described in Chap. 2 have large differences
in the absolute temperatures of thelr two ends. The pressure gradient
dp/dz changes consideraebly with distence along the duct and is sensitive
at every point to changes in the total mass flow because these modify
the temperature distribution. This situation can lead to peculiar oper-
ating conditions in which any transient perturbation of the steady-state
conditions does not die away with time but tends to build up to cata-
strophic proportions.

The flow law for any of these channels may be considered to be of

the form

- P dp
Q=-B 7 dz
(3-1)

where B, the geometric conductance, 1s a cross-sectional geometry factor

having the dimensions (cm®*). This relation determines the pressure drop

P
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w
i
Ap = - dz
P=Q | B p
(4
wvhere

Ap = p(O)-plw) (3-2)

The quantity T]/p is related to its value at the channel entrance by

t+n

n/p AN /P MUT/Ty) (3-3)
where the subscript o refers to entrance values and where it is assumed

that n « T, For Hp, n = 0.678. T(z) in turn is given by

T(z)=T°+(l/cQ)[a-dz (5)

where o is the power per unit length of chamnel, Thus the dependence of
the pressure drop &p on the flow rate Q is complicated, Nevertheless
the following general statements are evident: The pressure drop will be
large if the mass flow is very high or if very high gas temperatures are
involved, The latter condition, due to the temperature dependence of
viscosity and density, will occur when the flow rate Q is very low. As
shown in Fig. 3-1, a glven pressure drop and power density may result

in a large flow rate, slightly heated, or else in a small flow rate,

strongly heated,
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UNSTABL
STABLE
.y

Q
Fig, 3«1

Within the framework of the steady-state equations 3-2 and 3-3,
either mode of flow is consistent with a given value of Ap.
C. L. Longmire of LASL has considered the case of viscous flow through
a uniform tube of uniformly distributed power density. In this case he
has shown that operation under conditions where
dAp
— <0
dQ (3-5)
corresponds to a state of unstable egquillbrium., The quantity involved
in Eq. 3~5 1s called the resistance of the channel., Unless this gquantity
is non-negative, the flow will either shift to tlie stable point or tend
to shut off entirely, resulting in excessively high temperatures. It
should be noted that this instability problem exists only for fixed Ap
but disappears for problems in which either @ or T(z) is held constant
in time.
Longmire's argument is generalized in App. E. The same criterion

for stability is established for any flow law (viscous, turbulent, or

7
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mixed as in porous media) for any shape of channel, and for any power
distrivution function, so long as the temperatures of the gas and of the
exchanger are not too different.

It is shown in Sec, 3-2 that viscous flow through a unifornly
heated channel of uniform cross section will be unstable when the ratio
of the final temperature to the initial temperature is greater than
3,604, Such instability may be overcome by appropriately constricting
a portion of the chamnel at the gas entrance end. '*he specifications

for this constriction are developed in Sec. 3=-3.

3=-2: Viscous Flow Through a Uniform Channel with Uniform Power Density

In this case, Eq. 3-2 may be written

Ap = _"—_-ﬁ f l n
BATo (3-6)

For uniform power density o = Z/w, where £ 1s the total power per chan-

nel, and Eq. 3-4 becomes

T(z) = To + 2
cQw (3~7)

Substituting T(z) into BEq. 3-6 and integrating yields

ZW 2+n _ ]

Ap= 7 cB(2+n) —2 [tx+0)

(3-8)
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where

BT} AU

(3-9)
The function of x in Eq, 3-8 is indeed double-valued, having a minimum
for x = 2,604 when n = 0,678, the value of n for hydrogen. For values
of % larger than 2,604 the system is unstable while for smaller values

it is stable.

3~3: Viscous Flow Through a Constricted Channel with Uniform Power

Density

Stable operation of the uniform-bore heat exchanger discussed in
Sec. 3-2 1s limited to a temperature gain factor of 3.A04, as seen
above. However, a uniform~power exchanger which 1s stable at higher
temperature gaine is shown in Fig, 3-2, The enhanced stability of this
device comes from the increased channel drag at the cold end, where the

density and viscosity of the gas are less influenced by the mass-flow

rate,

Fig, 3~-2
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For this problem let the channel be composed of an initial region
of length wy (Fig. 3-2) and a "geometrical conductance" B; while beyond
this point the conductance is Bz. Egquation 3~7 still applies, but
Eq, 3-6 must be divided over two intervels O £ = S wy, end Wy S z S W,

The total pressure drop is given by

oW ! i 2+n
Ap = —s — (x +!
P Po T, Cl24+0) X° [ Bz(x )

1\ |
+(B, Bz)(wx+l> —-gu
(3-10)

where x is given by Eq. 3-9. The minimum of this function of x is given

by
! ‘- 2+n (2+n)x L+n { I )
— L x4+ e o (x0T [ — - —
Bz L(x ) 2 (x ) ] <B| Bz
2+n 1+n
[(,ﬂ +.) _M(XL,) -1 .6

Equation 3-11 may be rewritten as

B:  Flwx/w) —F(x)

B, Flwx/w) = |

wvhere
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F(E)=(€+1)2FN- 2E0 g ey yt¥n
2 (3-12)

Some values of F(&) are shown in Table 3-1 for n = 0,678, An important
characteristic of this function is the existence of the maximum at

£ ~1,5, It may be shown that this is given by & = 1/n = 1.47, If, for
a desired x, {wix)/w = 1/n, then Bp/B; is at a minimum value for typical
temperatures used for the Dumbo design. Figure 3-3 shows Eq. 3-12 in

parametric form,

TABLE 3-| THE FUNCTION F(})
3 FL) | € £ (§)
0 .00 3 ~-0.17
05 1.64 4 -5.3
I 2.2 5 -13.6
1.5 2.28 10 -130
2.0 2.08 20 | -965
2.5 1.32

In design application one would select a tempersture ratlo x in
excess of desired operating temperatures, presumably corresponding to
the melting point of the metals. The system would then be stable under
fluctuations of temperature up to this disaster condition.

Considering the composite channel to have been stabilized according
to the foregoing method, the overall pressure drop of Eq. 3-10 may be

expressed in terms of the desired flow Q and the expected temperature
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Fig., 3-3:

Introductory Impedance Tube for Borderline Stebility
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ratio x as

wQ I 2+n
Ap=——ZL—7r :‘%x+02+n+(93-0<ﬁx-+0 —Ek]

{(3-13)




CHAPTER L
WALL TEMPERATURE DISTRIBUTION
Then he went away, a little warm, but not at all

astonished.
R. Kipling, The Elephant's Child

L-1: Introduction

To understand the temperature distribution throughout the metal
wall structure requires the solution of several problems. Some of these
problems concern the behavior of a perfectly constructed wall under nor-
mal operation, Others deal with abnormalities of operation due to
fabrication errors, blocking of channels, etc. In this chapter the
processes affecting the temperature distribution are studied, and the
expected temperature variations are evaluated.

Section 4-2 deals with the gross temperature profile in the wall.
The temperature is shown to rise linearly through the wall., The "dynemic
insulation"” property of the wall is demonstrated. The process of convec-
tion, the bodily transport of internal energy in the flowing gas, is
shown to strongly predominate over heat conduction. Conduction parallel
to the ges flow is ignored in the subsequent sections.

The sections which follow treat various perturbations and their

effects on the overall temperature distribution. These perturbations are
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so small that their interaction effects may be neglected, and the
various temperature varlations may be superimposed., Because the primary
object of this investigation is to keep the wall material below the
failure temperature, the calculations particulaerly concern the tempera-
ture distribution of the hottest part of the wall. Although various
approximations are made in these sections, they are approximations Jjus-
tified by the Dumbo wall geometry; a more lengthy and detailed analysis
would furnish only small correctioas to the temperature deviations cal-
culated here,

Section 4-3 investigates the temperature distribution over the
walls of the individual flow channels. These temperatures are affected
by the channel shape because of the mamner in which power from a wall
divides itself between neighboring channels. From this standpoint the
temperature variations are fouund for normal operating conditioms.

Section 4-4 discusses the effect of thermal conductivity normal to
the gas flow direction, under conditions of aberrated flow. The basic
equations are developed for analyzing such situations.

Section. 4=5 deduces the result of upsetting the flow in a single
channel.

Section 4-6 deals with the more general problem of distrihuted
errors in the Dumbo wall, including the effects of channel interactions,
temperature-flow interaction, and the effect of temperature on thermal

conductivity. The effect of sectioring the Dumbo wall into individual
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"mosaic cells," each with a fixed total flow, is included, Numerical
results are presented on the basils of experimental wall error measure-

ments on a sample section of Dumbo wall.
Section 4-7 deals briefly with other heat-transfer mechanisms which

" will tend further to equalize the temperature distribution.

4-2: Overall Temperature, and the Dynamic Insulation Effect

The one-dimensional problem of combined convection, thermal conduc-
tion, and power generatlon has been presented previously.l’2 It will be
shown that for the Dumbo device the heat conducted to the cooler inlet
region is small compared to that added to the gas; this will justify
neglect of heat conduction in the z direction in the following sectlons.

To do this one needs the temperature distribution of the gas
assuming intimate temperature equilibrium with the walls. For a uniform
power density with the gas issuing from a source at a temperature T* the
distribution is given by

-P{1-z/w)

$

T(z)= T" (T, -T" +Z

where

¢ = cJyw/A
and A is an average linear thermal conductivity of the wall structure,

Jdo is the flow per unit total area, w is the wall thickness, and c is
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the specific heat of the gas, This relation applies only for 0 £ z = w.
Beyond the heating region T = Tw' Thus the temperature T(0) at the en-

trance to the heating region is given by

—e®

T(O) = T"+(T,-TH 3

(4-2)
The value of @ encountered in this relation is typically so large that
the functional dependence of Eq. 4-2 is l/Q, and the temperature distri-

bution from Eq, 4-1 is linear. The conducted heat flow I, at the gas

entrance (z = 0) is given by

I°=_)"dl) : m“_e'ﬁb) 'M
\dz =0 w ¢>>Q w (1-3)

A guantity of interest is the ratio of heat conducted into the incoming

region to the total heat to be added to the stream. When @ is large

this ratio is

- .

»*
ciT, ~T") ¢ (1)
This relation indicates @ to be a true indicator of the insulating abil-
ity of a permeable wall through which fiuid is flowing. For typical
values in the Dumbo designs proposed here @ = 100 so that the preheating
predicted by Eq. 4-2 is circa 25° for a temperature increase of 2500°,
This represents an approximately 1% conducted heat loss to the upstream

region immediately preceding the metal grill-work structure, The energy
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Temperature and Dynamic Insulation

transport by convection strongly dominates over that by conduction,
It is worth noting that if a wall does not contain a power source

but serves only to insulate from an upstream temperature Tw the func-
(b=5)

tional form of Eq., 4-l is modified to be
T(z) = T (T, -T" e ®-2/w

In this case the entering temperature T(0) is given by
T(O) = T*+(T,-T%e®

v (4-6)

amplR, ##1°N. an arrange-

AR T b ¢
R ;
Thus such” a"Wall may have a

aticn.t2 the arecedi

¢ For a-cuuparsble
-2
~ 10 “or @~ k.6,
far greater thermal conductivity and still insulate effectively.

ingu]
X

ment would require e

(1) The temperature rise through the wall is effectively linear.

In summary:
(2) The presence of gas flow through the wall leads to the dynamic-
Back conduction can raise the temperature of the

insulation effect.
cold side of the wall gbout 25° only.
(3) Energy transport in the direction of flow is so predominantly
by convection that thermal conduction parallel to the flow can be neg-
lected in the analysis of the subsequent sections.
(4) The flow of gas through a non-power-generating region, such as
the space precefling the Dumbo wall, brings about an extreme imprcvement

in the insulating effectiveness of thnat region in comparison with a
89
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similar but power-generating regicn.

4-3: Temperature Distribution in the Periodic Wall for Normal Operation

Previously there have been considered only problems in which the
wall temperature profile for a fixed z is uniform. This corresponds to
the assumption of infinite transverse thermal conductivity of the channel
walls, However, with finite metallic thermal conductivity and with the
channels proposed here, there must be some varietion in this transverse
temperature profile. In this section the locations of the "hot" and
"eold" spots of this wall and the magnitude of these variations are
estimated. To do this one may obtain the normal derivative of T into
the gas from the wall, from which the heat flow in the wall and the wall
temperature distribution follow.

For thils purpose, the limiting form of the thin channel geometry is
used in three different ways:

(1) The differential equations governing the gas flow and tempera-~

ture within the channels as previously developed are applied (see

Sec. 2-5). 2%y

J{x,Y) = J(x,0) = O

(4-7)
2
—%—}2 = BJ

(4-8)
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(2) The heat flux I from any wall to the gas is given by

oT
I, = -\, 2L
n 9 dn b (1'__9)

where 1 is the normal surface vector to the wall and xg is the local
thermal conductivity of the gas. Because of the thin channel geometry,
conduction along the x component of this gradient 1s neglected so that

for the upper surface of the wall

)
v 8
bt (4-10)
while for the lower surface
In] =xqg—;€'”
(4-11)

(3) Because of the thin channel geometry the channel boundaries

may assumed to be so nearly parallel that only their relative separa-

tior ;s of significance. This corresponds to assuming Tb to be a
«iction of x only and hypotheslizes the same wall temperature distribu-

tion Tb(x) for both flat and convoluted plates, as shown in Fig. k-1.
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>

Fig. 4-1

The enexrgy dissipation per unit wall area is given by

d®T,
o =-TA ——2"- + I+ Ig)
m dx o . (4-12)

where o 1s the power generated per unit area of the wall, T 1s the wall
thickness, and Ay is the local thermal conductivity of the metal.
First In‘ is evaluated at y =Y, From the symmetry implied in

assumption (3) it is evident that

aT oT

dy ot ay vy (4-13)

Equation 4-8 is integrated once, applying Eg. 4-13
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Y
I
Y iy} b 9 (4-1k)

In Eq. 4-14 Y is the local channel height (bounded by y = O below).

To evaluate g% = - or a similar treatment of the region
Yt & al

Y £ y £ @ may be performed, ylelding

a
0T B Ini
- 2 o ——- J d el | LI
ay vi 2 v/,: y )‘9

Combining Egs. 4-14 and 4-15 with Eq, 4-12 then ylelds the differential

(4-15)

equation for T, (x)

d T B [°
TA —h-=+Xg—2— Jdy = o

m dx?
(4-16)
The last term of this expression may be transformed by the energy
relation
_cQ dT _ B)\Q
v dz v
(-17)
to give
2 a
4%% MB 1O L[y,
d x2 AT | v 2 A
(4-18)
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To solve this equation, a function

a
J (x) =fdd¥
(o

(4-19)
is defined. This function has the property that
pU -
| ; . Ju
Q= z J{x) dx = %5
° (4 -20)
The differential equation 4%-18 becomes
d’Ty -
L. LA
dx 2,7 (4-21)
This relation is integrated twice, using the condition that from
symmetry,
glb. =0
dx |
yielding
X X'
T, () = Tyfo) == 228 [ 4x f [7-(x7) ] dxe
3 W 4
-4
0 (o)
(k-22)

Equation k-7 is integrated as before to yleld

L
2 (1-23)
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and Eq. 4-19 becomes
Y -
K 5
J =-§fy(y—Yldy—%j {y —a)(y-Y) dy
0 Y
- ka 2 _ 2
58 [3Y°—3ar + o)
(4 -24)
from Eq. 4-2
v 3
T = X@ - xa
J 5 f?)Y(Y a) dx + 5
*a
(4-25)
Equation 4-24 is subtracted from Eq. L-25 to yield
v
J —-J = K—:— [:—L—fY(Y-—a)dx—Y (Y—a)}
0 (4-26)

For any channel shape this expression may be used in Eq. 4-22 to obtain

T, (x).

For a sinusoidal channel in which

Y = -é‘-[l +COS 2”]

v

(4-27)

Eq. &-26 becomes

(4-28)
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and from Eq. 4«22

— =1 AgBxaduv? dq
To 0 =Tylo) =imars (cos =Zx — )
(4-29)
Equation 4-29 may be written in terms of g—l‘g and J where
& o
B - A @z
J =(5/96) xa®
(4~30)
and Eq. 4-29 becomes
_ . 3 av? ¢cJ oT _ awx
LU-T(0 = =5 = 55 5 (008 A7)
(4-31)

The location of the temperature extremes as predicted by this formuwla is

shown in Fig. 4-2, The difference between these two extremes AT.D is

iven b
ghven by 3 cJ auvt oT
b gor® A\p v 3z (4-32)

A numerical example may be computed using the following typical values

¢ =35cal/gm -deg a = |.5x IO-zcm
J=1 gm/cm®-sec v = 75x10 cm
Am= O.f cul/cm ~sec -deg r = 25xi0 cm

0T/ az = 2500 degrees/cm
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with the result

AT, = 1.2 degrees

44: Wall Temperature Distribution Under a Flow Aberration

In this section the effect of some isoclated irregularities on the
temperature profile is investigated. The spproach is to replace the
complicated mesh of heat-flow paths at right angles to the stream by a
continuous and homogeneous, though nonisotropic, medium with thermasl
conductivities J\x and ly in its horizontal and vertical directions, re-
spectively, normal to the flow, The validity of this approximation will
be discussed with & specific example,

The energy flow through the system is given by

T

= cTJ =N -\ T

ax y

y (1-33)
where Z:’x and E’y are unit vectors. If the power density is o, the diver-
gence of Eg, 4=-33 becomes

2 2
AT _ , 2T _, &1

o= cd gy x9x2 "M aye

(%-34)
An equation of this form will be satisfied by T whether the power den-
eity is that intended in the design or not. If the power density is
perturbed in a small local reglon, then outside that reglon both the

original temperature T® and the new perturbed temperature TO + T! satisfy
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Eq., 4-34, so that the perturbation in temperature satisfies

(4-35)
A perturbation of the flow distribution is clearly equivalent to the
power perturbation formulated here,
In some cases there will be important variations in the conductiv-
itles in passing from the cold tc the hot reglons of the wall, However,

the two conductivitles are in a fixed proportion

A Ay
X =z I =
xlo xy. A(z )

(k-36)
where the subscript zero aenotes the value at the cold side of the wall.

It is convenient to introduce the dimensiunless quantities

(4-37)

where To 1s the temperature at which gas enters the wall., In terms of
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these expressions, Eq, 4-35 becomes

2 L. CToJ _Q_I_'
AV T == az (4-38)

The conductivities Ax and Ay may be estimated in the following way:
The heat conduction in the metal only 1s considered, neglecting for the
moment gaseous conduction effects. In situations where the slope of the

channel boundary is always sanll, xx is gilven by

:n X
Ai 22 g Am (4-39)

because 2 é is the proportion of the horizontal flow path which i3 metal-
lic., The value of Ay is5 obtained by the same general method: For Dumbo
wall gecmetry two flat plates separated by a height a enclose a single
sinusoidal plate, For one sinusoldal channel of length v this provides
two metallic conduction paths of length v/Z and thickness + connecting
upper and lower plates. In each path the temperature gradient is only

af(v/2) times the verticul averege gradient. Combining these factors

glives

(4-40)
The conductivity of the gas will tend to increase these values to some

extent. It may be argued that
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m g
. Qra
Ay = =T Aa t )y (k1)

will s5till underestimate the conductivities, as these are the values one
would arrive at 1f the heant flows in the metsl and gas were somehow
megically isolated from one another, In ectual cases of interest the

metallic part or the conduction seems to predominate,

L-5: The Single Channel Aberration

Consider in detnil the case for constant conductivities, A =1,
which brings Eq. 4-38 to the form of a standard diffusion equation. 1In

this case, a solution everywhere except at the point T = 3', z=2"'1ls

-

<l L1733

G = o ,
for 2<2Z
(bk2)
where the coefficient has been chosen to make
fG' d€ dn = | (z52)
(4=43)

This is the usual Green's function for a point source at 8', 2', How=
ever, in this problem a unit point source will yield a solution G such

that




Chapter 4 Wall Temperature Distritution

or
- |
Jedtan T .
so that - ‘ ,
G = = mx. ”G
(L lid)
Hence
. y -
G (x,y,2,2') = 525 e
where
- cJ
Y
ar xlox’o
and
. L cTed L. CJ x* ...!.f.
SA 2 ¥ W
(bhs)

where the point source ir specialized to the 2 axis (p' = 0),

The temperature distribution resulting from any source now may be
expressed as a superposition of solutions for elementary sources, The
remainder of Sec. 4-5 is devoted to consideration of the extreme situa-
tion where one channel is blocked. There will be an amount of power

% cowo genersted in this region which must be dissipated to neighboring
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channels and hence must be carried by the rest cf the gas stream. This
povwer will constitute a uniform line source, so that the total tempera-

ture perturbation will be of the form

T'(x,y,2) = B[ G(x,y,z,2') dz’
(4 L6)

The constant B is determined from the totsl power delivered dve *o the

perturtation, whence

S AT VW chT'(x,y,w) dxdy

w
cJdeZ'f Gix,y;w,2") dxdy
(]

w
=cyB [ dz = cyBw (i)
so that
_ | ave
B =7 <J
(L-48)

There remains the job of performing the integral in Egq. L-L6

(e}
w _ -
f —vjl-_z'e W-z:dZ,: %e£d£=E(ﬂ/w)

SYw (b49)

where E(Q/w) is the exponential integral, which is a tabulated function.

Thus the temperature perturbation is given by
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T(xy,w) =By E{&/w)
cloae gl (X,
- X‘ y 877 aw )"‘a Ayo
° e (4-50)

The same procedure may be used to obtain a formal soclution in the

case of varisble A(z). In Bq. 4-38 the substitution of variables is

nade

v [ Az az

° (4-51)

The equation becomes

V’zT‘ = ¢ ToJ _.a_I.’

which is the form dealt with earlier in this section. However, the power
density will not be distributed unifcermly in the new variable t so that
the transformation 1s inclined to lead tc unpleasant integrals at the
stage equivalent to Eq. L-4G, The remaindsr of this section is confined
to the case of constant conductivities,

The expression for T'(x,y,w) given by Eq. 4-50 defines two charac-

teristic lengths
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y 4wy,
° ¢ (1-53)
which are the semi-mnjor and semi-minor axes of an ellipse on which the
exponential integral assumes the value E(1). From symnetry considera-
tions the temperature distributicn would be of the same form as that of
Eq. 4-50 if the perturbing power were generated not in a liA; source but
in an ellipsoidal cylinder whose axes were in the ratio xo/yo.

The average conductivity approximation should be gocd provided the
heat flow distributes itself cover a large number of channels. This will
be true if the dimensions v and a of the channels are, respectively, much
smaller than the dimensions xgp and yo of the characteristic ellipse.

The ratio of total energy transport to energy transport through the

characteristic ellipse will be the ratio of the two integrals

@ '
E d =
‘{;r {r) dr 5

j(; r€(r) dr

= [EM+1-2e™]

L
5 (0.4736) o)
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so that slightly more than half the energy transport takes place ocutside

the characteristjc ellipse.

The results of a pilot calculation give an indication of the extent

to which this method may be trusted. The following typicael values are

assumed:
r = 2.5x1073¢m
a = 1.5x107%m
v = 7.5x107%m
Am = 0.1 cal/cm —sec —deg
Ag = I x1073¢cal /cm -sec —dey
¢ = 3.5 cal/gm—deg
J = | gm/cm® —sec
w = | cm

ov = 492 cal/cem® -sec

The thermal conéuctivity components from Eq. 4-ki are

Ay 3.3x 10 %cal /cm - sec -deg

Ay* 3.60x 10" ¢al /em-sec -deg

which give choracteristic lengths (Eq. %-53) of
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~{
Xo = 195 x 10 ‘cm
- ~2
y, =6.48x10"%m

These valuer indicate “hat

Xo -
- 5.2

Yo -
Y 8.6

The number of channels contuained ir the characteristic ellipse is

27 XoY,
av

=70.2

This indicates that the approximatior :hould be accurate enough for es-
timntion purposes, though spectuzcular precizion is not expected.

The temperature perturbation ns givern by Eq. 4~50 is

T (x,yw) =356 E(—‘%—) degrees

where

Q

o = 26.5x" +239y

(4=55)

Values of this temperature increase are rapped in Fig. 4=3,
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50 50 22

FIG. 4~3. WALL TEMPERATURE INCREASES ABOVE NORMAL
FROM ONE BLOCKED CHANNEL.

While the average conductivity approach might seem to become rapidly
worse as X,y = O, due to large temperature variations over distances
comparable to channel dimensicns, evidently the temperature in this re-
glon is largely determined by the extent of heat diffusi<.. outward
through the more distant regions, where the approximation is on firmer
ground. It is easy to get a rough upper limit on the expected tempera-
tures as follows: Only about half the power generated in the blocked
channel remains within the characteristic ellipse. Suppose this much
power were given up to the four channels only which share walls with
the blocked channel. Since the power of one tube would raise the gas
flow of one channel some 2500 degrees, half that power will raise these
four gas flows 1/8 as much, or about 200 degrees, It is reasonable to

suppcose that the other 65 channels within the characteristic ellipse
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share at leacst 1/3 of that power, whlich would bring the hottest tempera-
ture down to about 200 degrees.

Isolated partial channel blockages and actual fluectuations in power
generations may be treated in the same manner as for the case of a
totally blocked channel.

One assumption is implieit throughout this analysis: The flow
through the open channels is fixed and remains unchanged by the tempera-
ture perturbation. Actually, the flcw will be influenced to some extent
by the temperature change, through changes ir the density and viscosity
of the flowing gas. From Fig. 4-3 it may be noted that the average tem-
perature deviation within a channel adjacent to the blocked channel will
be less than 100 degrees, or 4%, This corresponds to a change of L% in
density and 3% in viscosity at the hot end of the channel, with smaller
percentage deviations elsewhere. The uniform flow assumption seems con-
sistent to within the accuracy of other approximations in this treatment.
Further justification of this approximation is given in Sec. L-6, which
investigates a situation where the interaction between temperature and

gas flow can become very important.

L-6: Hffects of Channel Fabrication Errors

The most important fabrication errors in the Dumbo wall design are
1likely to be in the introductory channel constrictions, since that is

where the structure is most fine-grained. The Dumbc wall is divided
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into a mosaic array of rectangular cells, each consisting of a cluster
of single channels. Through each cell of this structure gas flows from
a relatively high impedance source so that the flow through a cell is
insensitive to conditions within the metal wall. Since the fiow is
fixed, the average temperature within the cell is unaffected by channel
fabrication errors. However, distributed channel errors will lead to
nonuriformities of flow and consequent temperature variations within a
cell, It is such variations that are investigated in the present sec-
tion. The problem differs from that of Sec, 4-5 in that a clustering of
errors may conspire to nullify the erfect of thermal conductivity to
such an extent that temperature-induced changes in viscosity and density
become very important., It is shown that the size of the mosaic cell
serves to limit the extent of temperature deviations therein, A suffi-~
ciently small cell results in a smoothed temperature distribution due to
increased thermal conduction within the cell, The approach is to solve
the problem for particular patterns of errors, which subsequently can be
superimposed in order to obtain the temperature distribution from an
arbitrary error pattern.

The heat flow is described by Eq. 4-34. This equation may be trans-

formed to dimensicnless variables, given by




==

Fabrication Errors Section L-6

[ 4
"

zZ/w
8=T/To

c T,
g = —=(JA)

Tw (4-56)
which using the definitions in Eq. 4-36 and 4«37 brings Eq. 4-34 to the
form

q —g% - AVD =)

(4-57)
where 6 is a function of &, 71, and { and where V2 refers to ¢ and n only
(i.e., “he V'? notation of Sec. 4=5 has bee. replaced by V). According
1.0 Bq. 3~1 the gas flow for a single channel is determined by an equation

of the form

R —(9A)
(4-58)

where A is the total area allotted to one channel, The gecmetric con-

ductance function B(z) is given, as shown in Fig. 3-2, by

B, for 0<z <w
B(z) =
B, for w<z <w (4-59)

and the viscosity-density ratio is given by

L= 2 AT/T,

)n+|
Pe (L-60)
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In terms of the dimensionless Juantities

- 8.
BU) = Fuir
w =w/w
) Po CTo
T -Bz Mo Aawz
(4p1)
Eq. 4-58 becomes
d +
-d—E - —B 9i‘\ lq
(4-62)

A two-dimensional array of such channels is governed by a general flow

law of the form
o - - 9 ; ")
7§z' g (q1 y S5, P

which is more convenient to use in the following analysis. The following

conventions are used:

9

i

29
aq
929
3

ge
(L-6h)

In any realistic flow situation g, gq, and gy are positive.
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Within a cell the pressure across the wzll must be constant

(4-65)

That is, it must not depend on 3, in spite of variations in q and 3.
Equation L-65, together with Eq. 4-57, determines the problem.

The variables are expressed as a sum of an unperturbed part and =z

small perturbation

(=]
"

90(a,6,8) +q,(a,6,L,7)
8. (8)+6(8,5)
o +0,(7)

Lo o
] "

(L -56)

The channel errors appear in the dreag perturbation gi. If there s no

perturbation, then V22 = O and Eq. 4-57 may be solved to obtain

9°:|+..|_

o (b-67)

which is the solutisn of the unperturbed problem and also gives & con-

venient evaluvation of qg in terms of the firal ‘emperature ratio, The

expressions of Eq. L-66 are substituted intc Eis, k=37 and 4-35. For

small perturbations the following perturbatio: eguaticons are cbtai-ad,

a6 2 ]
Qo - AVE,: - — g
——t- Qo (4-68)

113




4% \f-:;,
S—

Chapter 4 Wall Temperature Distribution

[l{goq (Goy 80, §)-q, ()

+908 (qo, 90, C ). 9|(C,F)

1]
®)

+9,(de, o, §,7)} dt
(4-69)
The argumerts of goq, gogs and g are GO(C) and qo, so that these are
known functions. Although the perturbation affects A, it enters into
Eq. 4-68 in the form V29, only, which vanishes,

As Eqs. L4-68 and L~69 constitute only two relations among the thresz
perturbation variables, the ; dependence of g1 may be specified as de-
sired and the equations solved for q; and 9;1. Because the relations are
linear in q3, Gi, and g1, a linear combination of solutions is also a
solution, An arbitrary problem may he solved entirely in terms of a
complete set of choices of gy, each of which may be chosen for analytical
convenience., Now any drag function B(C,s) may be expressed as a Fourier
series in complex exponentials of the variable 3, and this dependence is
reflected in g. This leads to perturbations of the form

ik-p

g (a,6,8,8) = g(q,8) e
8,(LF) =6y e™?

oy
q e °

q (7
(4-70)
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which on substitution into Egs, L~68 and 4«69 yield

dé 1
Qo d§’ +Ak18|=——q-°q,

(%-71)

S {9ea a,+905 849} dt =0
° (4~72)

Equation k=71 may be solved for 8; in terms of the yet undetermined con-

stant q3
]
9, = - ? I (C) q|
° (4-73)
where
3 &
kz ; kz -
-— | Ml - Atg)e
I(C):eQ¢! feqoof dcl
° (l=74)

This has the proper initial value, 81(0) = ¢, showing the inlet gas tem=
perature to be unaffected by the perturbation. This result now may be

substituted into Eq. 4-72 to give

f{Qqul—*éE 1(8) goy q,+g'} dt = 0
) o (4-75)

or
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—f'g,dC

Q

f{goq-—;ax(mgoe}dﬁ

q,

(4-76)
The integrations of Eq. 4-76 all involve known functions, so that gqj is
determined. Substitution into Eq. 4~73 gives the temperature perturba-
tion.
To recapitulate: According to Egs. 4-62 and 4-63 the functional

form of g is given by

|
. Bn+
9B a (4-77)
where the function B according to Egs, 4-59 and L4-~AL is given by
B, for 0<f<w
By t for w<{<lt (4-78)

In the formulas above, the expressions for q and 4(f) to be used in the
various partial derivatives of g are qp and Go(g) as given by Eq. L4-67.
Of course, the differentiations are to be done before the substitutions.
The drag perturbation gi is the result of a perturbation 5B; in the in-
let impedance, and hence is given by
g - -aa—f; 3 B * g, 8B,

(4-79)

which vanishes for { > w, Substituting into Egs. 4-76 and 4=73 glves

finally
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|
-l y
8.(1) { ; * fgﬂ dc}83.=f(k‘)s,e,

|
[ 90qdt - 22 [ 1tl)gogdl 3
] q'l ]
(4~80)

The integrals are elementary except the one involving I. The only de-
pendence on k% is through I.

The specific form of I({) is determined by the conductivity function
A{t). Two cases are of particular interest:

For tungsten

Aw (C) =1
(4-81)
For molybdenum
'ANb(g) =1 - _éi g
(4-82)
The corresponding expressions for I{{) are
K2
q - ——
Ietb) = — (i-e %" )
(4-83)
ST ofie s ® - "
h0) = 2 e {erflat™-erflaft™¢] )} o

*
where { is defined by Eq. 4-82,
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—

/ K2
0 =
\/Qro*
(4-85)
and
X
2
erf(x) = —2— [ e du
T8 (4-86)
Equation 4-86 deflnes the error function, which is tabulated. With

the values of these functions the remaining integrals of Eq. %-80 may be
evaluated numerically. In fact, for the tungsten case the lntegral in-
volving I({) may be expressed in terms of incomplete gamma functionms,
which are tabulated, In Figs, 4-' and 4-5 the function £2(k®) is plotted
against k2, in connection with specific cases investigated below.

The procedure for finding the temperature distribution produced by
a given impedance distribution is straightforward. If the impedance

perturbation 1is expressed as the Fourier expansion

8B,(F) = T €F 38,(K)

" (4-87)
then the temperature perturbation is given by
- '.;'- —
87 =% e K 3B,(K)
K (4-88)

According to the usual theory of Fourler serles, the values assumed by

118



Fabrication Brrors Section L6

——————————

Al 1
n ~
N .
-
-1
10 }— —
107? —
.
-
10”? L —
B N
-
- -
-4
10 [— —
- .
r‘ -
L ~ -
~
N~
10 } A S
] 2 2

K

Fig. 4<4: The Function £2(k¥®) for Tungsten



LIRS

AL

|

1

10 —]
IO-3 —
' T
-4
0 k= —
- —
. ]
= -
-3
10 §— —
- 3
N ~ - -
i E
10~ ] | 1 J ] ] Ll { I 1 ] |
) 2 a4 6 8 10 a 18 8 20 22 26 26 28

2 [
kz

Fig. 4-5: The Function £2(k®) for Tungsten and Molybdenum




Fabrication Errors Section L-6
k =k €tk €, (1,-89)

are determined by the condition that the exponentials must be periodic
on the boundary of the cell, If xg and yo are the two dimensions of the
mosaic cell, this determines two fundamental expansion modes.

For the x mode

- _ c
2w = kxo eo - '\/TOX"O XoKyo

or

x0 o Xa
(L-90)
For the y mode
- - [22
em = k!ono" ~/ TJVO Yo kyo
or
2 2 To Xyo {
kyo' ar - ";;z
(L-91)
A1) values of k are given by
K = n ke, +n, k€
X “x0 X y "yo Ty
(4~92)

where n_ and n_ may assume all positive and negative values. The lowest

modes will be "fundamental" only to within complex conjugates, The mode
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corresponding to no=n_= 0 will be absent Uecause the total flow

through the cell is fixed. As may be seen from Eq. 4-92, k2 is given by

2 2. 2 2 2

k' = n, Kyt 0y Kyo ( |
4-93

There are four values of & leading to the same %% unless one component

of K vanishes. In the actual Dumbo designs the relative dimensions of

a cell are very close to those of a characteristic ellipse, as given in

Eq. 4-53, so that fortuitously

2 2
Kio? kyo = Kk

(b9l )

In this case the number of modes belonging to a value of k% is doubled
unless ni = ni.

In Egs. 4~76 and 4-80 there is no mathematical reason to expect a
gilven sign for the denominator. However, a negative denominastor is in-
dicative of unstable flow, according to the general theory of flow
stability developed in App. E. For kZ = O the vanishing of the denomi-
nator is equivalent to the condition of borderline stability without
thermal conductivity. Since I(f) is a decreasing function of k2, the
effect of thermal conductivity is to enhance the stability of the higher
modes of flow.

If the continuous wall approximation is to be used down to wave-
lengths which are not large compared to channel diameters, it is

important to get an idea of what sort of errors the approximation
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introduces. The shortest meaningful wavelength is that for which
alternate adjacent channels possess flow deviations which are equal and
opposite. Equation 4-80 always predicts finite temperature deviations.
However, from physical considerations there can be no wall temperature
deviations, because high and low flows are on opposite sides of each
wall common to adjacent channels, and the walls of each channel are con-
fronted with the same situations. Thus at the shortest wavelengths the
continuous wall approximation will over-estimate temperature deviations.
For design evaluation purposes Eq. 4-88 is not as convenient as a
relation between expected temperature variations and overall fabrication
tolerances. Such a relation will now be developed. The mean-square

value of a real-vglued function

hE) =3 e ' h(k
k (4-95)
is given by
- ] 2 —-
h = h(Z)dEdn = T1h(k)|2
(4-96)

* .
This may be seen at once by integrating the product h(ED h (ED as given

by BEq. 4-95. Using Eg. 4-96 on Eq, 4-88 gives

- — 12
6 _% fz(kz)ISBI(k)l (4-97)
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If =11 the channel errors within a mosaic cell are independent of one

another (i.e., random), and all arise from the same probability distri-
bution, then 561(§) will have a probability distribution independent of
k until the wavelength corresponding to ¥ gets close to the diameter cf

a single channel, The reason for this is that by Egq. L-87

AR = 5 [e™ 8B(F) atdy

(¥-98)
is, until K gets large, a sum of complex numbers, one from each channel,
whose magnitudes all derive from a fixed probability distribution, and
which are systematically arranged not to point in any preferred direction
on the complex plane. For wavelengths shorter than channel dimensions,
Eq. 4-98 gives cancellation within each channel, and so automatically
imposes a cut-off where the continuous wall approximation becomes mean=-
ingless. This cut-off may be approximated by treating all modes alike
up to a number N, but assuming that the coefficients of all higher modes
are negligible. The number N should be close t> the number of channels
through the mosaic cell.

This same approximation appears in the Debye theory of crystalline
specific heats, where its justification is evident: the number of degrees
of freedom of the system is independent of choices of coordinates. More

rigorous justification is given below.
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Fabrication Errors Section L=6
Applying Eq. %-96 to Eq. 4-87, indicates that on the average

— - a2
(8B) = N[8B(x) (1-99)

where X is any one of the low modes. Substitution into Egq. 4-97 gives

6" - & (;z_ f16)) (38"

(4-100)
This may be restated as a ratio between percentage root-mean-square de-
viations in temperature and in introductory chamnel height 1. The
geometrical conductance factor B for the thin channels described in

Chap. 2 is proportional to &®. Hence

_S_BJ = 3 _§QJ.
B, a
(4k-101)

which with Eq. 4-100 defines a multiplication factor R relating rms

deviations of temperature and fabrication errors, where

/e 2\ 12
R = BL ( (801) ) = 3 BI (Z fz( kz))
&’ Q, + N a E’
(4-102)
This is a convenient form for evaluation. The maximum temperature devi-
ation is larger than the rms value. The ratio of values is 1.41 for a
sinusoidal deviation, To exceed this value by an appreciable amount

requires a function involving sharp variations, or "spikes." However,

such spiked functions are discriminated against by +the effect of thermal
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conductivity. They have large Fourier components of short wavelength,
and these are suppressed by the small value of f(kZ) for large k.

A great deal of what has been developed here does not depend on the
continuous wall approximation. To better Justify some features of the
formulation already given (e.g., treatment of the shorter wavelengths
and cut-off point), a more rigorous and elegant approach which assumes
an array of discreet channels at the outset is outlined briefly. The
set of functions defined at the I channel positions may be regarded as
a vector space of N dimensions. The transformation from an impedance
deviation pattern to the corresponding temperature deviation pattern is
linear for small deviations, and may be regarded as a linear operator
upon the vector space, which may be called the "temperature operator.”
"Translation operators,” which shift the position of a deviation pattern,
may also be defined. S8ince temperature and impedunce deviations are re=-
lated in a manner that does not depgnd on the location of the impedance
pattern, the temperature operator and translation operators commte.
Hence they have the same set of eigenvectors. But translations ar= uni-
tary operators, so that their eigenvectors (a) span the vector space,
and (b) are orthogonal. From (a) there must be just N eigenvectors.
This Jjustifies the previous heuristic procedure of keeping only N modes.
The eigenvectors cf translations are complex-exponential functions of
the position points, which justifies the functional form that was chosen

ad hoc in Eq. 4-70. Moreover, the translation eigenvectors must be both
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pericdic cr the boundary, and, due to (b), srihogonal over the mosalc
array, Either of these conditions restricts ¥ to the values given by

Eq. &#-927. Thu: the eigenfunciions of the expensicn given in Eg, 4«95

are exact, The continuous wall spproximation iz o npproximate method

of zvaluatirg the eigenvalues of the temperature operatar, substituting

n differential eguation for 2 more exact nnd more difficult system in-
velving difference equations, The approximation zhouwld be asymptotically
correct for the highest eigenvalues (lorg wavelengthz) and, as has been
mentioned, gives too high & value for the smallest elgenvalues which
should, in fact, drop tc zero.

The fourfcold eigenvalue degeneracy menticned with Eg. 4-93% is a
consequence of the property that the temperature operator also commutes
with the unitary operators of reflection about horlzontal and vertical
central axes -- which is a fairly ornate way of saying something quite
plain. The exceptional cases arise when a reflection operator maps an
eigenvector back into itself. The further degeneracy arising from the
fortuitous choice of the mosaic cell's boundary shape depends on the
continuous wall approximation. It would be expected to arise from a
further symmetry of the temperature operator under 90° rotations. Since
the sinusoidal geometry of the detailed wall structure does not have
this symmetry one may expect a '"fine structure splitting” of these degen-
erate eigenvalues. This splitting should be slight down to gquite short

wavelengths, since the degeneracy would be exact if the sinusoidal

%{2 [
-
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geometry were replaced by either a very nearly similar array of diamond-
shaped channels of the appropriate relative dimensions, or any one of
several other properly symmetric geometric forms. Although it is inter-
esting to note what general features of the temperature operator can be
predicted in advance, the more exact calculation of the actual eigen~
values would involve some rather heavy mathematical work.

The rms deviation ratio given by Eq. 4-102 is evaluated numerically
for three different cases. Data given in Table 4-l are typical for
Dumbo designs described in Chap., 9. Problems 1 and 2 are concerned with
metal walls assuming constant thermal conductivities of 0.1 and 0.2
cal/cm-sec-deg, respectively. Both of these values of thermal conduc-
tivity are less than that of tungsten given in Table B-~l (0.2% cal/cm~
sec-deg). The pre::nce of UDp or of possible alloying metals may
decrease the thermal conductivity to that chosen in problems 1 or 2, 1In
problem 3 the empirical values of the thermal conductivity of molybdenum

as a function of temperature are used. These data are given in App. B.
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Fabrication Errorz Section LA
TABLE 4 - |
THREE TYPICAL PROBLEMS
w =0.134 Xo = 0300cm
Bl = 134 Yo = 0.100cm
go.= 0.120 C =cp = 3.85cal/gm-deg
a =0.015 cm woo= 1.00cm
v = 0075¢cm J = 100gm/cm’~deg
PROBLEM | 2 3
) 0.100 0.200 0.383 cal/cm-sec-deg
t* —_— —_— b121
ko 0.4468 0.8936 (738
R (Eq 4-100) 0.130 0.346 0.288
STfor 22=1%, 9.7 3.6 8.1 degrees

The function £2(k®) is shown in Figs. 4-! and 4-% for the two
metals. The values of kZ are determined by Eqs. 4-91, 4-93, and 4-9k4,

From Eq. 491

T A i Ay wq, |
2 = 2 Y9 Xo __ = 4 2 Mg o
ko = 4w o x* T cd %2

(4-103)
The value of Ao is obtained from Eq. 4-41.

Actual measurements of fabrication errors have been made on a sample
section of* Dumbo wall.‘/This section is shown in Fig, l;lO: Although it
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was made without excessive heed for uniformity and was measured after

*
considerable handling, the measured rms deviation in ) was only 12%.
Use of the results of problem 3 together with the assumption that

-~

5T =1,5 8T indicates that 5T = 145 degrees, Thils extreme tem-
max ms max
perature increment within a mosalc cell is tolerable, and might be
decreased by improved fabrication and handling techniques, In the numer-
ical designs of Chap. © two extreme assumptions are made regarding this

uniformity. As the pessimistic extreme, a 12% ms error is assumed,

while the assumed optimistic extreme is a 1% rms error.

k-7: Ciher Heat Transfer Mechanisms

Thus far the transfer of heat only by thermal conduction of the
metal and of the molecular hydrogen has been considered. Two other heat
transfer mechanisms are now conslidered: namely, the effects of thermal
radiation and thé influence of molecular dissoclation.

Thermal radiation manifests itself in two ways:

(1) Radiative transfer along the x or y direction (see Fig., L-6)
serves primarily to smooth ocut the temperature distributions developed
in Secs. 4-3 and Lk,

(2) Radiative transfer along the z direction distorts the linear
temperature distribution along this axis as developed in Sec, L4-2,

It is shown that both effects are small.

*A large portion of the rms value was due to a few channels, not shown
in Fig. 1-10, damaged by excessive handling.
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For effects of thermal radiation in the x-y plane the hot end of 2
channel may be considered to be filled with black-body radiastion at the
average temperature T of this region. A wall at a temperature Tb flows
energy into this region with a flux IR given by

.
I.=€0(T -T)
R b (b=104)
where € 1s the emissivity of the surface and o is the Stefan-Boltzman
* . o L -l 2 4 .
constant having the value 1.355 x 10 cal/cm -sec~deg”. To a first
approximation, Eq, 4-10k may be written
-3 —
l,= 4€c T (T -T)
R b
(L -105)
If radiation effects are not present the distribution Tb(x) for a

sinusoidal channel is given by Eq. 4-31 as

*Not. to be confused with wall power density also denoted by o.
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T-T:-.._L_.Qit.\]&%cosﬁﬂ

b IGOWa T km v (&-106)

The term of Eq. 4-12 corresponding to the influence of the metallic
thermal conductivity Hn on this distribution is given by

d"T 3 - QT amx

“ApT — = - =aJdc — cos —

dx 5 92 v (4-107)
Because the x variation of these twc quantities is the same, one may form
thelr ratio and regard the radlation effect as introducing an apparent
additional metallic thermal conductivity. Because both faces of the

wall are involved, the ratioc of interest is

’ a7 I eaTnH?
2L /It =] = .
R [ dx ] At A, T (4-108)

The following *+vvoical values are used

T = 2800°K
v =7.5%x10"2 em
A, = 0.1 cel/cm-sec-deg

2,5 x 10~ em

T
The ratio given in Eg. 4-108 is 0,017¢ where € < 1, Thus radiative
transfer in the x-y plane contributed less than 2% to the total thermal
conduction.
The problem of radiative heat transfer alcng the z axis may be

handled similarly. Since each channel is very long compared to its
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——

height (§~= 65), it may be assumed that in every region the temperature
of black-body radiations is af'fected by the local well temperature
distribution only, If two parallel walls are separated by a distance o
with a constant temperature gradient, it may te shown that the radiation
received at a point z from another point z' is maximized when 2' - z = q,
i.e., along a 45° angle. Tie temperature difference between these two
points is given by egva so that the temperature of the local radiation
may be regarded as approximately T(z) + eg-a, thus causing a radiative

transfer to the wall given by Eq. 4-105 as

) 5 AT -
Ip = 4eo T(2): &—a  cal/cm®~sec (4-209)

Hence for a leng” u of the wall wilth cross sectional perimeter 2V the

radiative heat received is

3
Beo T \AN—T.;‘w cal/sec

This may be compared to the total heat, added by nuclear heating to the

gas causing a temperature rise of sg-a, given bty
AT
cJav - ¢ cal/sec

The ratio of the radiative heating to the total heat is

Sech3
cJ (4=110)
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For T = 2500°K, ¢ = 3.5 cal/gm-deg, and J = 1 gm/cm®-sec, this ratio is
0.0ke, which indicates a power modification at the hottest end of the
channel of less than i%. Because of the T° dependence of the above
quantity this value decreases strongly at any cooler location,

From simple solid angle considerations it may be argued that negii-
gible thermal radiation reaches the moderator,

Another heat-~transfer mechanism is due to the partial dissociation
of hydrogen at high temperatures to atomic hydrogen in the hottest re-~
glons and the subsequent recombination of the diffusing atoms in cooler
regions, This phenomenon has been studied by I. Langmuir3 and still
earlier by W, Nernst. Potentially this effect may be dominant over nor-
mal thermal conduction processes in Hz gas at high temperatures because
of the large heat of dissociation which 1s involved. However, because
realistic theoreticsl studies and experimental 1nformation are lacking,
its influence has been neglected in this report. It can serve only to
decrease the value Bg. However, the dissociation and recombination of

hydrogen may greatly enhance rocket performance, as is shown in App. D.
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CIAPTER ¢
1L0SS OF REACTOR MATERIAI. BY EVAPORATIOH
The Elephant's Child sat there for three days waiting
for his nose to sirink. But it never grew any

shorter.
R. Kipling, The Elephant's Child

I

5~1l: Statement of the Problem

The role of the process of evaporation of the refractory metals
from the hot regions of a metal rocket motor rejquires investigation,
particularly when the channel walls are constructed of thin foil as in
the Dumbo design. Since molybdenum is the most volatile cf the various
refractory metals considered in this design, it will bte used as an
example in the discussion that follows,

At first glance it might appear that, because of the low vapor pres-
sure of the metal {less than 10 microns) and the large amounts of
hydrogen flowing through the Dumbc wall, metal vapor would be exhausted
by the propellant stream at a rate limited by the molecular evaporation
process, However, it may easily be shown thiat this molecular evaporation
process is sufficient to maintain a partial pressure at the metal sur-
faces which is effectively that of thermcdyrnamic egquilibrium. Therefore
the rate of loss requires solution of a problem of diffusion of the

metal atoms into the moving stream. It is with this diffusion problem
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Chapter 3 Loss of Reactor Material by Evaporation

that this chapter is concerned.
Jumerical results for typicai design values are presented which show

that the material losses are negligible,

Calculation of the Evaporation Loss

this prcblem J denotes the molar flow density of the gas, 31

In
The

the molybdenum vapor, and c the molybdenum concentration.

that of

flows satisfy the familiar ccntinuity equations

vy =0 (5-1)
V-J =0 (5-2)

ard are also related by a diffusion equation of the form

J, = ¢d-nDVc (5-3)

where n is the total molar density, D is the diffusion coefficient of
molybdenum in hydrogen gas, and c¢ is the mole fraction of molybdenum.

I the flow is along the z axis of a heat-exchange passage

(Fig. 5-1), then J has a z component oanly. Combining Eqs. 5-1, 5-2, and

5-% gives

d¢ 2
— - nDVec =0
¢z (5-4)
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—
i
>
o
w2

T

' -w

Fig. 5-1
If the problem is further specialized to the case of flow between par-
allel plates this eguation becomes
3¢ ot o%
J — -nD{ S5+ =5) =0
22 Iy dz
(5-5)
The boundary condition on the y boundaries of the differential

equation 5-5 is that the vapor at the metal surface must be saturated.

The vapor pressure of molybdenum is given by a relation of the form

p = pe ERT

' {5-6)
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However, the evapuration is important only where the temperature is
close to its maximum. In this region one may make the linear approxima-

tion

Lo (. 1Tq
T T

Tm
(5-7)
which brings Fq. 5-6 to the form
E TpT
P:Pye R Tm
m (5-8)

where the subscripts m stand for maximum values. In the Dumbo wall the
temperature increase is linear with distance z, so that if the z origin
is chosen at the hot end of the flow passage (for purposes of this

problem), it follows that

T,-T = JocTo (5

w (5-9)
which brings Eq. 3-8 to the form
Bz
P = Pme (5-10)
where
E Tm'Tb
A% ~wir
m (5-11)

Thus, the y boundary condition on ¢ in Eq. 5-5 is
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z
c(a,z) =c(-q,2) =cpe
(5-12)
The approximation used in Eg. 5-7 is good in the case of actual interest,
since the exponential term of Eq. 5-12 drops rapidly as z - -w, where w
is the length of the flow passage.
The boundary condition given by Eg. 5-12 leads to a fortuitous sim-
plification in the sclution of Egq. 5-5. This solution is of the form
Bz
c(y,z) = cme F(y)
(5-13)
which reduces Eg. 5-5 to the ordinary differential equation in F(y)
dF | ot
4ty BF -nD(§E+BF)= 0
(5-14)

The boundary condition imposed on F by Egs. 5-12 and 5-13 is
F(a) = F(_G) = | (5_15)

The rate at which molybdenum vapor flows through the heat exchanger

is given by the area integral normal to the flow

[ 3 d& = [ 4, dxdy 526)

so that the loss rate per centimeter of plate edge will be

d =f Jizdy = f(cdz -nD —3—92— ) dy (5.17)

where the last f'orm follows from Eq. 5-3 and the integration extends
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across the channel. By Egqs. 5-13 and 5-14 it foilows that at the hot

side of the Dumbo wall, where z = O,

4
Cdz_nD 29. = _cm.no .g_F

2
A dy (5-18)
so that BEq. 5-17 becomes
2
B dy B dy 8 (5-19)

where dF/dle is evaluated at the boundary. The problem is reduced to
performing this evaluation, which involves solving Eq. 5-14,

The flow distribution through the channel is given by

3
Jly) ==5 (y2~ad
: ¢ «@ (5-20)
where J is the mean flow rate. Substituting into Eq. 5-14 gives
d*F J J
£-{(38 -2 o
y nba (5-21)

This differential equation may be reduced by use of dimensionless quan-

tities defined by
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nDa
e _ a 2 n2
€ = —3 —AB
X
x = y/A
F(Ax)= f(x) (5-22)

Eq. 5-21 then becomes

f'-(e*-x®)f =0

(5-23)
with the boundary conditions
a
f(xt —) =1
(£ x) (5-24)
The required value is
dFE| . L g0
i A
8 (5-25)

It may be shown that there are two power series which satisfy Eq. 5-23,
consisting respectively of odd and even powers of x. Because the
boundary conditions given by Eq. 5-2k and the symmetry of the problem

require an even function of x, the desired solution is that consisting

of even powers
(va)
f(x) =b(1+3 a,x™)
k! (5-26)

1

==

eonnd
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The successive terms of the summation are glven by the recursion relation

2
2_ € a2
02)( = 2 X
n._ | n-2, 2 2 n-4
0, X" = a._x “)ex‘- 4
n atn-ny | O ) (0,.,x" ) x

(5-27)
which may be summed for x = a/k to obtain the value of b from Egqs. 5-24

and 5-26. The value of f'(a/)) may be obtained from

©
f{x) = —:’— u>-:| (2k) az“xz“
; (5-28)

which may be evalurted from the terms used in the summation indicated by

Eq. 5-26.

5-3: Numerical Results

For the Dumbo problem reasonable values of the necessary parameters

are
J = Imole/cm?-sec E = 14x10°cai/ mol
n = 4x10™" moles/cm® T, = 2800°K
a = 0.625xI0 °cm To = 300°K
w = lcm D = 027 cm/sec

The value of E is derived from Dushmanl and the value of D was estimated

from the semi-empirical Lennard-Jones intermolecular potential between

w2
//

o
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2
hydrogen and mercury according to the method described by Hirschfelder.

The resulting values of the intermediate parameters of interest are

cm = 1.3x1077 e = 1.857
B =223 cm’ b = 0.09718
X = 3365x10 cm f'(%‘)= 1.057

Here cm was again obtained from Dushman,l using a partial pressure of
10 microns in 100 bar.
Of the two terms constituting €2, according to Eq. 5-22, the seccnd,
k282, is responsible for only 0.1% of the total value. That this term
is negligible is not surprising, since it arises from the upstream diffu-

sion term nDdc/dz of Eq. 5-3. From Egs. 5-19 and 5-25 the value of & is

@ - 2labfE/), 8.06 x 10" moles / cm -sec
BX (5-29)

For gas saturated with molybdenum vapor the loss rate ¢S per centimeter
of plate edge is
- -9
®, = 2acyJ =3.25x10 moles/ cm-sec
(5-30)
Thus the ratio is

b/, = 0.284
(5-31)

Ir the Dumbo design 1 cm of hot heat-exchanger edge forms one

bounding edge of 1 cm® of 0.0025 cm thick molybdenum foil, or
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2.557 x 10™* moles. According to Eq. 5~29 this sustains a loss of

- -6
07 x 10 10 moles in ore second, or 16.1k x 10 moles in 200 seconds.

o

This corresponds to a total loss of 0.027%, which is not serious. Egua-

tion 5-30 indicates a loss of 0.11% for complete satlration.

S-Lk: A Rapid Approximation Method

A rapid method may be used for estimating dF/dyIB, avoiding the
surmations of equations 5-26 and 5-28, which constitute the major job in
the procedure just given. According to Eq. 5~20, the value of the flow

derivative at the boundary is

: L
dy Jz(y)u-3 a

(5-32)
If the y origin is moved to the boundary and the condition y << a is
assumed, then
4(y) =3 %y

(5-33)
is a reasonable approximation. Thus for large a (or small D, which would
confine the molybdenum vapor to a layer close to the boundary) the
problem is that for a channel of semi~infinite width, which may be solved
with the actual width appearing only in the expression given by Eq. 5-33
for Jz(y). The resulting value of dF/dle is an overestimate for two
reasons: The mass flow rate Jz at a particular value of y is overstated

by Eq. 5-33, and the inhibiting influence of diffusion from the opposite

1
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wall is neglected.

Neglecting the upstream diffusion term 52F, Eq. 5-14 becomes

d°F B

JF = 0
dy? nba ’ (5-34)

This equation may be reduced by the use of dimensionless quantities

defined by
380 |
nDa A
X = y/\
F(xx) = f(x)
(5-35)
which reduces Eq. 5-34 to
‘ n
— f'=f =0
(5-36)
with the boundary condition
F(O) =1 (5-37)
from Eq. 5-15. The other boundary condition is
f~-0 as x—-© (5-38)

Because Eq. 5-38 mekes solution by power series awkward, it is more con-

venient to seek a solution of the form

f(x) = J K(x,t)g(t) dt
X f x 9 (5-39)
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Substitution of this form into Eq. 5=3% gives

|
f(—x— Ky —K) gdt = 0O

{540)
It is identically true that
- 2 =n X"
<x2"a—a-i—nff-)t“ et =0
X (541)
and in particular for n = 3, if
IR
Kix,2t) =t3e 3%
(5-42)
then
= Kex = 3
X Kxx = SK,
(5-43)
which brings Eg. 5~40 to the form
3K, —-K dt = O
f( =K g (5-4ls)

Choice of O and » as the limits of the t integration allows Eq. S-4k to

be integrated by parts, jyielding

®

[ K(3g,+g)dt =0
° (5-45)

where the integrated terms at the limits vanish by Eg. 5-42 unless g(t)

behaves unreasonably at these limits. Equation 5-45 is evidently solved

by
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cpe ¥
g -obe (546)
which togsther witn Eq. 5-42 brings Bq. 5-39 to the form
an 3
- 2 .. X
-5 -3+ )
(x)=b6[1’e’ v gt
(547)
Lquaric 22 b to be given by
,D-g “_l_' iR
f¥e ¥ dt =373 I(1/3)
(5-48)
Taorg, Cdr7, duurcauacion . transformation t = x3r, differentiation,
and :pacialization to x = @ plves
(e 2] 2
.. 3 L 3T
10y = b [ 73 eTIT dr = 2323l . 072905
S 33 (1/3)
(5-49)

Trhus, in Eg. 5-49, f' has been evaluated definitively as a nuwber inde-
pendent of design parameters. TFor the numerical example, this method

shows that

£7% =3.356x10 cm
(5-50)

This result is to be compared to the better value f'/2A = 3.141 x 102 em™
obtained by the long method. The difference of only 7% in the two re=
sults suggests that the short method is sufficiently accurate whenever

it indicates loss that is much less than that from saturated wvapor.

7



Chapter 5 Loss of Reactor Material by Evaporation

o
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CHAPTER 6
NUCLEAR REACTOR CONSIDERATIOIIS

Then the Elephant's Child felt his legs slipring,
and he saild through his nose, which was now nearly
five feet long, "This is too butch for be."

R. Kipling, The Elephant's Child

6-1: The Problem

In @ nuclear rocket motor design there are two reactor considera-
tions of great 1mportance: the quantity of fissionable material required
and the distribution of power density in the heat exchanger. The second
point is naturally of particular interest in these devices because some
of the materials operate under conditions not far removed from thermal
failure. In this chapter these two questions are investigated theoret-
ically. Because the theory becomes rather involved, some appreximations
must be made., The uncertainties due to these approximations are dis-
cussed in Sec, 6-9. TFor the purpose of this report there is less
interest in several-place accuracy than in a reascnably tractable pencil-
and-paper method for obtrining estimates accurate enough to determine
vhether a device is practical or not. Also, for a preliminary investi-
gation an approximate and largely analytic upproach has evident

conceptual advantages over more accurate numerical machine methods.
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6-2: Slowing~-down Leakage Through a Moderating Reflector

The life history of a reactor neutron born at fission energy
involves three important sorts of events: degradation, icakage, and
capture. The slowing-down process in systems in which capture is unim~
portant at energles above thermal is investigated initially,

The system contemplated here is a hydrogen moderated reactor ccre
with a beryllium reflector. The hydrogen moderated core region 1s de-
ncted by the subscript H and the reflector region by the subscript R.
D,. and DR are the transport mean free paths in the two regions, and ZH

H

and Z_, are the slowing~down macroscoplc cross sections for these regions.

R
The slowing-down equation for the neutron flux in the reflector is

24 - ¢ 9
DpV'd = &350 Lo )

according to the usual Fermi age approachl where

u = log (Ey/E) (6-2)

is the logarithmic energy decrement or "lethargy", Eg is the fission
energy of a neutron, @ is the neutron flux, and ¢ is the average change
in v per collision, In beryllium & is 0.209.

The slowing~down equation for the hydrogenous core states that at a
given lethargy the rate of loss by degradation and by diffusion balances
the appearance rate of neutrons degraded from higher energies, This

equation is
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[Zutw) ¢ ()= Du(IVbw)] = [ du’ ¥ 50 ¢ ()

(6-3)
This is the basic equation of Bell's "Simple Method of Calculating Crit-
ical Masses of Proton Moderated Assemblies."2 A function
g(u) =X (u)d(u)
H (6-4)

which is dimensionally neutrons/cms-sec, is defined. Equation 6-~3

becomes

u
D 2 ‘L
(1-29%) q(u) =fdu'e"" q(u’)
z, y
(6-5)
The neutron source intensity at fission energy must be equal to the loss
rate of Eq. 6-3 at that energy. Therefore, the fast neutron source in-
tensity is
2 Dylo) 2
0)-D,(0)V (0)=(1- ==V (0)
(6-6)
On the other hand the source intensity at thermal energy is derived from

contributions at all energies. From Eq. 6-3 the thermal energy source

intensity is

th . ,
f du’ eu u"\ ZH(U) ¢(Ul) = ( = .sz—(u'.h)_ v!) q (u' )
(e h
° H (6-7)

where the subscript th denotes thermal energy. Differentiating Eq. 6-5
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with respect to u gives
d D 2 4 ‘
L (- V') g =q-fd & Uqu)
]

2

Vq

Du_
2y (6-8)
vhere Eq. 6~5 is used a second time in the final step. Now DH and l/ZH
are transport distances characteristic of the moderator composition, The
result of the V2 operation on q is similar to twice dividing q by a
length comparable to the geametric dimensions of the moderating region,
provided q has no sharp space fluctuations within the core. Further, DH
and l/ZH, which are transport distances characteristic of the moderator
composition, are small compared to the dimensions of the core, There-
fore, the effect of the dimensionless operator ;E-Ve upon q is to
multiply it by a quantity much smaller than 1, and this term may be
dropped from Eqs. 6-6, 6-7, and 6-8, This is equivalent to the Bell
approximation:2 this approximation has been used to predict critical
masses to within the S% accuracy of experimental data.

This approximation is applied to Egs. 66, 6-7, and 6-8 with the
result that the fast source intensity is given by q(0), the slow source
intensity is given by q(uth), and the slowing-down equation is given by

0. Zu 20

vq=DH ou (6)
-9
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To this approximation q is a bona fide slowing-down density in the core
region., The ratio q(uth)/q(o) is the slowing-down nonlezkage
protability.

The preceding development parallels Bell's treatment of hydrogen
moderated assemblies. The following approximation may be used to extend
the theory to a system with a moderating reflector: 1In the reflector Z
and D are in a fixed proportion to their values in the core, i.e,, ZR/ZH
and DR/DH are independent of u. This is a good approximation over most
of the range of u (see Ref. 3) and errs in the direction of conservatism
(see concluding paragraph of Sec. 6-2). Equation 6-4 is substituted into

Eq. 6-1 and this approximation is applied, yielding

2. ¢ Zr 99
Vq-EDR %

(6-10)
in the reflector. On the interface between core and reflector there is
continuity of current, wvhich gives

Dg Va-N R=DHVq- N "

(6-11)
where i is normal to the interface, It is necessary that q vanish on
the extrapolated boundary of the reflector. Specification of q(0) is
enough to determine the soluticn of the problem.

A change of variables, from the lethargy u to the Fermi age 7 in

the moderator, is introduced, where
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U]
DH(U') ]
z 24
T of T u

(6-12)
Equations 6-8 ana 6-10 become
0
(I~
(6-13)
. D, dq
vzq=623_’.'l___
w R 9T
(6-14)

for the moderator and reflector regions, respectively. Two functionms,

s(x) and w(gb, are defined by

| for X in H
S(X) = D
—D—R =S, forX in R
H
[ for X in H
w(x) = s -
§ —==w, forxin R
Zy (6-15)
Using these definitions Egqs. 6-13 and 6-14 are combined to give
0
v oSVq T w -_ai
v (6-126)

Here the form SVq has been used because it is contimuous across the

moderator-reflector interface as chown by Eq. 6-11.
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The slowing-down equation 6-16 is now in a tractable form. Solu-

tions of Eq. 6-16 are assumed to be of the form

2

— — "BT
X,T) = x)e "
q, (x,7) = q,(x) (6-17)
Substitution into Eq, 6-16 yields

2
VSV T~ Bywd, (6-18)

This is an eigeunvalue problem leading to eigenvalues Bi and to corre-
sponding eigenfunctions qn(§5 which represent neutron flux buckling modes
for the system. The slowing-down nonleakage probability for the nth

-BZr

mode is e © th.

Equation 6-18 leads to an orthogonality property. It is seen that

B dnanwdV <= [a,9-5Vq.av = [V, Va,dv
v v v
(6-19)

where the divergence theorem is used in the usual way in the last step.
A simllar result follows if B; is replaced by Bi. If B; ® Bs, it
follows that
[ 40 (%) a,(0) w K14V = 0
v
(6-20)

Thus the functions qn(§3 are orthogonal with respect to the welghting

function w(X). If the completeness of the set of q, functions is
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assumed, they may be used as a basis for the expansion of arbitrary

functions

(%) =%, 0, q, (%)

where

6, = [ a4 (0 @ (X) dv
Y (6-21)

and where the functions qn(;c’) are normalized
[ a2 P av =1
v (6-22)
The proper initial condition is applied by expanding the fast neu-
tron source in terms of the buckling modes of the system by using
Eq. 6-21., The quantity l/Bn is a measure of the nodal separation dis-
tance for the nth e%%enfUnction. Hence Bﬁ is rapidly increasing with n,
and consequently e- n'th is rapidly decreasing, Leakage becomes very
severe in the higher modes, and it is a reasonable approximation that
leakage is soon complete in all modes except the lowest. The profile of
the thermal flux in the core region is close to that of the thermal
source, The fast source in turn has the same profile within the core,
but vanishes in the reflector, where no fissions take place. Thus the

shape of the distribution in which new fission neutrons appear is not

that of a normal mode but is of the form
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Qo (X) for X in H

—

(x) = -
W 0 for X in R

(6-23)

Substituting £(X) = qH(§5 in Eq. 6~21 gives

!q:wdv

Qo =

fq:udv

v (6-24)

where the denominator is included to make the expression hold whether g
is normalized or not. agp is the probability that a neutron does not
ieak out of the reactor in spite of the contribution of higher modes to

the fast source, The total glowing-down nonleakage probability for the
-B=r
actual distribution is a.e ° th.

Tt is interesting to note that, from Eqs., 6-15 and 6- 24, a  ~1as
£ - 0, This implies that no high-mode leakage correction is necessary
for a nonmoderating reflector in a steady state situation. Physically,
this is plausible In that such a reflector cannot act as a neutron sink
at any energy. Mathematically, it is plausible in that the modes in
this case are orthogonal within the moderating region alone, because in
this case Eq., 6~11 is a self-sdjoint boundary condition, and the inter-
face is regarded as the boundary of the problem,

The same treatment may be used to find slowing-down leakage at any
energy, so long as the corresponding Fermi age is large enough to allow

complete leakage from the higher modes.
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Determination of slowing-down leakage is reduced to determining the
proper Fermi age at thermal energies and solving an eigenvalue problem.
There is a simple prescription for calculation of Fermi ages.2 Solution
of the eigenvalue problem depends on the geometry of the reactor. If a
cylindrical geometry is used, the solution ic in terms of Bessel func-
tions, The solution of the present eigenvalue problem is not completed
in detail, because the preceding development is modifled by slowing-down
capture. However, straightfcrward mathematics leads quickly to the fol-
lowing results: For a reactor, which is shielded on the top and sides
but nct on the bottom, the interface condition from Eq. 6-11 yields two
equations for the top and sids interfaces. If the eigenvalue is

B =,/a*+8%
{6-25)

then the side equation is

'}

\6-26)

JIBRY _lw A2 ; w zuz w 2
B IRy S R e RO B {‘R Ro’""** -I)a

and the top equation is

-

a cotal,: s,' o’ (g ~-1)A° ‘é‘(’,’fh{(u_ Lo) |2

(6-27)

where Lp 1s the core height, Ro the core radius, Ly the external height,
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and R, the external radius.

Section 6-2

In Eqs. 6-26 and 6-27 the trigoncmetric co-

tangent should be chosen if the absolute bars contain a positive

quantity, and the hyperbolic cotangent otherwise.

In these equations

the approximation is made that the side reflector, is so thin, compared

to the core diameter, that

be expressed as a sinusoidal function.

solved simultaneously for ¢ and B to determine the eigenvalue B.

the radial solution in the side reflector may

Equations 6-25 and 6-26 must be

following substitutions are made

The
Jol€)
t
ol6) =€ 501 { ¢ |
(6-28)
-5
a Lo
B=o
Ro (6-29)
LI"LO -
Lo = A
RF'RO-
R, °
Lo.
75:' h
(6-30)
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Y - e
S (6-31)
whereupon Egqs. 6-26 and 6-27 become
- .S 2 | 22
fln) = =+ g(plen*+ li-e)b

P 9(plen’+ 1 ) o)

- S 2 2 T,

gll) = 2 g(Mel?+ n¥(1-¢)n?|"
> a()| ")

Equations 6-32 and 6-33 are to be solved for n and . In the thin re-

flector limit, as p = 0 and A = 0, these equations become

S
f(n) = =
p {(6-34)
= S
9t = 3 (6-35)

which are just the equations one would obtain by fitting the flux in the
core to the outside boundary by a naive linesr extrapolation. The eigen-
value is obtained by first solving for approximate values of nf and f from
Eqs. 6-34 and 6-35. These values are substituted into the right-hand
sides of Egs. 6~32 and 6-33 to obtain better values. The process may
then be repeated until a stable result is obtained. The routine is quick
and convergence 1s rapid.

The approximation of proportional nucliear parameters implicitly

assumes that the diffusion rate in the reflector increases with
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increasing neutron energy as rapidly as it does in the hydrogenous core,

Thus leakage thrmigh the reflector is overestimated at high energies, and

the approximation is conservative.

6-3: Effect of Slowing-lown Capture and Self-shielding: The Conditions

for Flat Flux

A term is introduced into Eg, 6~3 to include capture, yielding

[Z (0 + Zetw) = 0, ("]t = [due™ T () ()
o]

(6-36)
Application of the same steps as before gives, instead of Eq. 6-8,
d 2¢ Dnu 2 Dy ot 2c
Z (14 &8 - B 9 = HVy- £
du ( Z, Zy )a Z, Z, 9
(6-37)
Transforming to the Fermi age variable gives
__Q._ | + z - _DH. vz q - Vz— _._Z_Q_ q
gt 2y 2y Dy
(6-38)

For a well moderated reactor withcut strong capture rescnances
ZC/ZH << 1, so that this term as well as the Laplacian term on the left

hand side of Eq. 6-38 may be dropped, yielding

(6-39)
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For an unreflected reactor Eq. 6~39 is reduced to the form of Eq. 6-13

by the substitution

(6-40)
where q' is a solution of Eq., 6-13, and hence q is a solution of
Bq. 6-39, The correct solution to Egq. 6-39 at thermal energies is ob-
tained by solution of the equation
vgq_(_l_ "“_ngr>q . 99
r"\ o DH or

(6-41)
which has the simpiicity of an equation with constant coefficients,

Since Eq, 6;39 does not treat resonance cgpture properly the cone-
stant coefficient is modified in such a way that an expression is
obtained which takes account of resonance absorption as in the more exact
equation 6-38, As given by Eq., 6-i0, the slowing-down noncapture proba=-
bility 1is

T, u
'jmi‘?dt -f "Zs g4

DH - 3 H
e (6-42)

which should be substantially correct for good moderation and no reso-

nances., In an infinite hydrogenous moderator the siowing-down noncapture

probability may be calculated exactly. It is
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Y]

-Sf S'~|+Ec du
© (6-43)

The exact equation 6-38 is replaced by the simpler approximate equation

2
qu - Coq = -g—g
(6-uk)
where
2 | th 2
Co * T :
° Tin b/uZH+Zc du
(6-45)

and which is obtained from Eqs. 5-41, 6-k2, and 6-43, The effect of the
approximation is discussed in Sec. 6-9. Ffince Eq, 6-b4 gives an exact
result at thermal energies for an infinite core where there are no neu-
tron currents, it is approximate in its treatment only of the effect of
capture on neutron transport.

As in Eg, 6-15, a function

fc: for X in H

G*(X) = + .
LO for x inR
(6-46)
is defined. Combining Egs. 6-44 and 6-15 gives
(V-8V-SC%)q =w g;"-
(6-L7)

in close correspondence io Eq. 6-16. The substitution
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2
- - -Bnr
q, (x,7) = q (X)e
yields
2 - 2
(V+SV~-SG*) q,= -B,wq, (648)

This eigenvalue equation clearly has a close mathematical kinship with
Eq. 6-18. In particular it has the weighted orthogonality propgrty.

-~ T
The slowing=-down nonleakage probability 1s still glven by a® ° th,

which now includes effects of reflector moderation, slowing=-down capture,

and slowing-down self-shielding., The eigenvalue equation becomes

vz - 2_ 2
17 (C-Blg (6-49)
qu 2 — —‘;—'- qu
' (6-50)

for the moderator and reflector regions, respectively, The solution to
Eq., 6-49 dspends on two considerations: the boundary conditions on the
surface of the core, and eigenvalue B, Both of these depend on the ex-
ternal boundary of the reactor. If a reflector i1s chosen giving B = C3
and a constant value of qp over the core surface, then the slowing-down

density satisfying Eq. 6-49 is constant throughout the core, and the

condition of uniform power generation is achieved. The physical require~

ment for the flat flux condition is that capture loss in the core and

legkage loss in the reflector proceed at the same rate, so that the flux

16k
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level sinks uniformly across the whole reactor as energy degradation
goes on, without requiring neutron currents in the core.

For a cylindrical geometry the solution of Eq, 6-49 is in terms of
Bessel functions. If there is little reflection and low slowlng-down
capture., then C3 - BS is large and negative, and the solution is the
familiar humped Jo flux distribution as shown in Fig. 6-l-a, indicative,

of neutrons leaking out.

L~ %
ci<pg? ci>ef 2
e
(@) (b)
Fig. 6-1

If, on the other hand, polsoning is large and moderation is accomplished
in the refleector primarily, C8 - B is large and positive and the flux
profile 1s a Bessel function of imaglnary argument, of maximum size at
the surface of the core, as shown in Fig, 6-1-b, The neutron current is
directed inward in this case., For some reflector thickness intermediate
between the two extreme situations is a transition between the two types
of flux profile corresponding to the flat flux situation, as shown in
Fig. 6-l-c. Achievement of all the conditions necessary for flat flux

requires both moderation in the reflector and slowing-~down absorption in
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the core.

The expressions g ven in Eqs., 6-#li and 6-45 represent an approxima=-
tion in the treatment of neutron current effects. However, in the flat
flux situation neutron currents are reduced to a low value, making the
approximation most valid under these conditionms.

The solution of Eq. 6-48 for the case of a cylindrical reactor re-
flected on the top and sides 1is quite straightforward when the flat flux
condition is imposed, The z coordinate 1s measured downward from the
top of the core, Since the flux profile is flat radielly within the

core, it follows that in this region

,2) = €cos yz
Bolrs? Y (6-51)

where y 1s determined by the bottom boundary condition, Because some
reflection takes place at the bottom boundary, a probabillity-of-return
or "albedo" boundary condition” 1s used, 1,e.,

409 | . _ -8

q v4 2D, | +8

Z=L0

(6-52)
vhere B is the probability of return, Deff 1s the effective diffusion
coefficient of the core, and Lo 1s the locatlon of the lower boundary,
The numerical critical masses are insensitive to B and Deff' Substitu-

tion of Eq. 6-51 into Eq. 6=52 gives
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| L | -8
xtan x = — —2 =
2 Deﬁ 1+
where
x=yl,
(6-53)
which determines y. Substitution of Ec¢, 6-51 into Egq., 6-49 gives
2 2 2
B.= C. -
2" Y (6-54)
In the top reflector Eq. 6~50 becomnes
02\ - [/ ]] 2
J2°'oz " 5 B9
(6-55)
giving
= /N
q, cos S, B,z
(6-56)

If the thickness of the top reflector is L, (notational change from

Sec. 6-2), then the vanishing of Eq. 6-56 gives

= T S, _L
L ® 3 —t

(6-57)
The treatment of the side boundaries is similar. Equation 6-50 is

written in cylindrical coordinates as
a° I d ) ( w 2)
il vl Rl oM A
2 ) S o
(dr r r I (6-58)
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The solution fitting that of the core at the core boundary is

Jo(Er)—aY, (Er)
Jo (ER)-aY, (ER,)

qfr,z) =cos yz

where

The constant ¢ 1s determined such that

al g

or Ry.2
and

q(R,,z) =0

(6-59)

(6-60)

(6-61)

(6-62)

where Ro i1s known and Ry is to be found. Substitution of Eq. 6=59 into

Eq. 6-61 gives

Ji (ERo)
Y, {ERo)

which evaluates &, The substitution
ER, =y
reduces Eq, 6-62 to

Joly)
Yo(Y)
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vhich now may be solved for y to determine R;. For a reactor with a
typical reflector, the value of Ri1 - Ro obtained in this way 1s quite
close to Ly, but is a bit larger,

The high mode nonleakage probability is evaluated by substitution

of Eqs. 6-51, 6-56, and 6-59 into Eq. 6-24, yielding

Qo = TH¥a(R+K) (6-66)
vwhere
- L,
Kz Lo"’LYSinZYLo
242
Hz —E!‘,—Z-!‘,- -1
ROZO
zo':‘ Jo(ERo)—aYo (ERO)
Z.EJ|(ER|)—QY|(ER|) (6-67)

A more compact approximate expression for ap may be obtained by

considering the asymptotic behavior of Bessel functions. This is

~ |

[+ 4 Yr
2 Vn (6-68)

Qo

where Vﬁ is the volume of the core and Vh that of the reflector. Equa-
tion 6-68 is of value chiefly for intuitive understanding of reactor

design considerations, and is not used for the numerical results of this
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report. As a rapid method of estimating reflector thickness and higher
mode nonleakage, the approximation that Bg = Co may be made in Eq. 6-57

to obtain the reflector thickness, and ap may be obtained from Eq. 6-68.

6-l4: Calculation of Critical Conditions

The methods developed thus far are used in this section to examine
the whole neutron economy of a reactor. The procedure is to divide the
neutrons into energy groups, and to determine how many neutrons each
energy range adds to, or subtracts from, the total neutron balance.

At the outset of the slowing-down process, higher-mode leakage is
severe, It is assumed to be complete immediately, so that the probabil-
ity that a neutron ever gets well embarked on the slowlng-down process
is agp.

If the reactor is reflected in such a manner that the flux is flat
in all directions, then, after the initial higher-mcde leakage, slowing
down proceeds Jjust as in an infinike reactor. For an infinite reactor,
if in the process of slowing down to a given lethargy there are F fis-
sions per initial fission neutron, and N neutrons per initial neutron

survive, then

dF I
diN 3,

(6-69)
where ZF is that part of the capture cross section which results in fis-

sion, From Egq. 6-43
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Niu)= e (6-70)

Differentiating Eq. 6-70 and combining with Eq, 6-69 yields

...fu Zc qy
_ ° 2t2,

LA 3
du I+
H 0 (6-71)

Thus the number of fissions occurring in the lethargy interval between

ui and ui+1 is
Ui 2 (7] 2
- —=C u - —_C ‘
y Sos du Vi 5 f EH"‘EC du
AF, =e Woe = el du
DN
Y (6-72)
Now
U ['H
P} D>
Ui - —=— d4u’ - —£e_
2c f Zyt3e ! f ZytZ; du
du_—‘ ' = l ~ g U'
L,
Y;

since the integrand is an exact differential, so that Eq, 6-72 may be

written as
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pX ,
. . - du .
_f" s, 0 f:: ZF i EH+EC -f“m 3. o
¢ 2wt . ZH+EC I AT,
AF, = e * S (1-e )
- c ’
fui-ﬂ Z : 2H+2Cd
du e
Ui DI
(6-73)

This expression is exact. However, if the lethargy interval is not too
large, the exponential weighting factor in the integrands is always close
to unity., Furthermore, this facter has a similar effect on both ilue

numerator and dencminator integrals in Eq. 6-73 so that the approximation

Yi Ui 41 Yid
_j’du—&; f —E_F__ du Lad zc du
g Zwhe DI & Tt
AF, = e Ut (1-e" )
_zﬁ_du

Tyt

i

(6=74)
mey be made. This expression i1s exact if ZF and ZC are in constant pro=-
portion throughout the lethargy interval. The interpretation of Eq, 6-73
or Bg, 6-Th is as follows: The first term is the probability that a
neutron survives to lethargy ui, the last term is the subsequent proba-
bility that the neutron is captured before reaching lethargy ui+1’ and
the middle term is the probability that capture results in fission. The
virtue of Bg. 6-74 is that it is readily evaluated from tabulated nuclear

data.

172




Calculation of Critical Conditions Section 6~k

The total number of second-generation neutrons per initial neutron
is

ko = v (2 AF +Fy)

(6-75)
where v is the number of neutrons released per fis.;ion, and
Uth
Z
1 Tt sy
c u

Fin = € H o —F_ _th

Zluy) (6-76)

1s the contribution of fissions which are caused by thermal neutrons.
Since in a finite reactor the proportion ag of the initial fission neu-
trons are not transferred to the reflector at the outset of the slowing-

down process, the actual criticality is given by

= Koo
k Go (6-77)

where k = 1 is the condition for a critical reactor,
In a reactor which is not thoroughly reflected on the bottom, the

thermalization probability is given by

2
-Bs Ty, ~(Cs + )Ty,
e i -1
. . (6-78)
-C<r T

instead of e ° th hich is given by Eq. 6-43., The factor e

arises from neutron leskage from the bottom. The effect of bottom leak-

age 1s effectively to increase the rate of neutron capture by a factor
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(6-79)
The term (7/CO)2 typically is quite small, The only effect on the pre-
vious analysis 1s to replace the exponential terms in Eq, 6-74 and 6-76
by exponentials of the form
—Af E_ff du
(€-80)

The overall calculatlon procedure is to assume a core composition,
calculate reflector dimensions, and obtain a value of k from Eq, 6-77.
The composition is +hen modified and a new k calculated, Thils process
is repeated until a composition is found which gives k = 1,

To recapitulate, the steps of the calculatison are:

(1) Core composition and dimenslons are specified,

(2) An slbedo value B is assumed. An effective diffusion coeffi-

clent D 1s obtained by the Bell prescription.2 v is determined by

eff
Eq. 6-53.

(3) The Fermi age T,y 1s found by the Bell prescription.2

(&) The integrals appearing in Egs. 6-76 and 6-80 are evaluated
from tebulated nuclear data.

(5) Co is evaluated from (%) and (3), using Eq. 6-45. By is evalue
ated from Eq. 6-54, using (3). E is evaluated from Eg. 6-650,

(6) The reflector dimensions, top and side, are determined from
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Eq. 6-57 and from Eqs, 6-63, 6-64, and 6-65,

(7} The value of ap is obtained from Eq. 6-66.

(8) The various other terms of the form of Eq. 6-80 are evaluated
from the integrals already calculated in (4), ard the value of k is de-
termined.

It is convenient, when searching for the condition k = 1, to vary
the amount of moderator and leave other core compositions fixed, This
approach leaves much of tle preliminary arithmetic for the integrations

unchanged,

6-5: Effects of Lumping and Doppler Broadening

When a neutron passes a capture resonance in the process of slowing
down to thermal energy, two effects modify the capture mrobability from
that predicted from the raw nuclear data, These are the effects of self-
shielding in the interior finite lumps of core materials and of resonance
broadening caused by the thermal motion of capturing nuclei, A precise
trestment of these effects is difficult, particularly for a lump of cap-
turing material in which there 1s a strong temperature gradient.
Approximations are made which yield to simple analysis and which are
realistic enough to give reasonable estimates.

For a homogeneous reactor the capture integral for a resonance is

given by
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4 2
6, [ =2 du
o sz+zc
- (6-81)

whare

. 3 |
2o % Pe% T PO 1+ (u/8)?
(6-82)

at 0°K, HerepC is the capture atom density, % the microscopic cross
section peak value, 3 the half-width in lethargy units., The moderating
cross section ZH is assumed constant. The integral is extended 1u -
for analytical convenience, and the lethargy origin is moved to the cen-
ter of the peak.

The capture cross section within a metallic lump is

Sw t T
M Wm c
(6-83)

where VM is the volume of metallic lumps and VH the volume of the core.
The capture rate is proportional to the product of flux and capture
cross section QZM at any point. At the center of a lump, wiere the flux
is reduced, the capture process is less effective by a factor ﬁ/ﬁo,

where @y is the flux outside the lump. The effective capture cross

section is

5o = T, o [ (dsdo) dv
M m (6.80)
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The lumps are chosen to be slabs of thickness 2w. Scattering in the

lumps 1s assumed negligible, and all neutrons are assumed to enter rnormal
to the face of the slab, Both assumptions should underestimate the

effect of lumping. Equation 6-84 becomes

% cosh & Mz
z - 2: I f dz

= P er—————————

: c 2W COSh ZM w

-W

Zy
VH w
(6-85)
The capture integral with the effect of lumping is
o *
G 2 d
¥ +3 -
- C H
© ]
L. S
( v, W ) tanh w2,
= du
- Vm
© (—\T -— tanh sz )+2H
H
@®
B f T e
Ho W _g M —-z-+cothwEM
H Wy (6-86)
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The substitutions

g = _ﬁﬁ__ |
Va WZ, (6-87)
- V, -1f2
€ = (‘” —C? F%:Cﬁn)
M (6-88)
X = (E/S)U (6-89)

are made. Using Egs. 6-82 and 6-83 the capture integral Eq. 6-86 becomes

G = —Aol(a)

€ (6-90)
where
L8]
@ = [ !
I{a) = d
] X
a +coth
-08/ €’ x?
(6-91)
For small € the approximation
tanh —— = tanh —=
€2+ x? x2 (6-92)

may be made, which is valid for all x and for € up to about 1/3. With

this simplification Eq. 6-91 becomes
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©

f ! ] dx
a t+coth X2

I (a)

0

i J[ ! | dy
- a +coth y2 y?
2 cothy? 'y

_f sinh y° L
) J a sinh y*+coshy®t yt 7

Equation 6-93 may be simplified by

o sinh y* + cosh y*=./T—a? cosh (y*+8)

and
. - a | .
sinh y® = W oo cosh{y*+B) + ST =52 Sinh (y+8)
where
. |+ a
B - 2 o [ -
so chat

®
I{a) = I_l? f{o +f0nh(y2+B)} —)I’Edy
-®
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It is clear from Eg., 6-93 that the integrand has no singularity at the y
origin, hence the path of integration may be deformed to run above the

origin on the complex y plane, as shown in Fig. 6=2. However, l/y2

Fig, 6-2

integrates to zero over such a path, so that

I(a) = llazf -Iy—ztanh(yz+[3)dy
¢ (6-98)

The integral may be evaluated by lifting the contour to i » and evalu-
ting the residues. The poles are taken in pairs by making use of the

relation

|Gn'| =

(6-99)
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giving
2 2 | yi4 B
I Q) Z — f —
( [ —a? nzz:oc y: (Y¥B)+c: dy
(6-100)
where
Cn = I (2n+1)
(6-101)
Evaluating the integral gives
®
! 9 ! (B
I(Q) = —= 7= X moxhwe 9\—)
(Rt T  neo {(2n+1) Cn (6-102)
where
(vT+x%—x} —x(\/l+x2+x)"2
g{x) = 2,32
tH+x) (6~103)
For small x Eq. 6-103 becomes
g(x) s1— —g— X
(6-104)

which is valid for x smaller than 0.2. The convergence of Eq, 6~102 is

slow, However, Eq, 6-102 may be written as

l@) = 2 {I(O) + T zo T [g(%)—']}

A portion of the summation is evaluated in terms of the Riemann Zeta=-

(6-105)

function whiéh is
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a8

£(z)=

| né
from which
® [
néom)z-(l'z—z)g(l)

(6-106)

Equation 6-105 may be written as

Ha) s o { 2 0- Ft (D) - Z0-Feat(2)8

2B 3 2B
+7=>: g | (mns) "t 2wy )
(6-107)

where the first of the three terms is a closed expression for I(0). The
Zeta-function is a tabulated function and the remaining summation ini-
tially converges very rapidly, due to Eq. 6-104., For I(a) see Fig. 6=-3.
The development following Eg, 6-90 evaluates the resonance capture
integral between infinite limits, However, in actual numerical work the
integral 1s performed analytically over only a finite region Au about
the peak, and is continued numerically outside this reglon. Hence the

correction

—® (6-108)
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needs to be subtracted from G. In all cases A is chesen so large that

*
~ ~S 2
ZC = z«: ‘—"Pcc"m(s/u) (6-109)
*
and that £, has a negligible effect on the denominator of Eq. 6-108,

C
The integral of Eq. 6-108 is

G' =4 .JﬁlghL SZ.J_
2 A
H u (6-110)
which gives a proper expression for the resonance capture
2
6(aw = a{ua £-4(2Y}
(6-111)

This differs typically from the value of Eq. 6-9C by several percent.

In an unlumped core at uniform temperature the effect of Doppler
broadening may be treated without difficulty. A resonance peak which is
a delta function at 0°K is broadened at a finite temperature to a shape
given by a normalized Gaussian distribution A{u). A rescnance peak
go(u) of finite width at 0°K has, when raised to the same temperature,

a cross section given by the convclution

o)

o (u) =f oolu, +u) A{y,) du,
-®© (6~112)
The functlon oo(u) is given by the Breit-Wigner formula as in Eq. 6-82,

and the integration of Eq. 6-112 may be performed to obtain a result

‘:::’/:EE;}‘ff’“’/
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expressible in terms of the error function. An approximation is made,
however, in order to obtain an analytic form for subsequent operations.
A normalized distribution which is short-tailed compared to the Breit-
Wigner function is substituted for t° : Gaussian function. It is fitted
to the Gaussian function over most of the range of integration. This

distribution function is given by
2 |

Au): — [t +(u/by¥]? (6-113)

where b is chosen to it the proper Gaussian function at half-height.

Equations 6-113 and 6-82 are, substituted into Eq. 6-112, yielding

. o)
23 f | | q
= u
olu) = O‘m_w F(utuf (bE+ud)®
(6-114)
With the substitutions
X=u/b
w=8/b
(6-115)
Eq, 6-114 becomes
0
o(u) = 2. om W2 ' ' dx
b m a w'q-(x|+x)7 (|+xﬁ2 '
e (W + 1+ (w +D2+w{u/b)?
m [(w+1)*+ (u/b)?]?
(6-116)
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The Doppler-broadened cross section equation 6-116 is substituted

into Eq. 6-81, and the integration is performed, yielding

w?, a
(E'*?)
Je2in+y)
where

c = SHPH

Om Pc

2= (1 +w)*+a

3
"

ic' [(w H) w4 )2]

2
2 W
Y (l+-w) 4"27;

(6-117)
Correction of this equation for the finite range of integration is given

by Eq. 6-110.

6-6: Numerical Procedure

The calculational steps described in Sec. 6-% separate naturally
into two parts: determination of nuclear parameters, and subsequent cal-
culation of reflector dimensions and criticality.

Evaluation of the nuclear constants consists primarily of the eval-

uation of the integral
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Yth >
P = S35 du
§ Iyt '
(6-118)

and the similar integrals over the individual energy groups. The inte-
grand expressions are obtained from the nuclear data given in App. A.
The trapezoidal rule is used for integration except at the resonances,
for which the effects described in Sec. 6~5 are considered. Nine energy
groups are used, ranging from 10° ev to 0,025 ev.

I; Integrating over the resonances one must remember that eaci: reso-

nance peak stands above a finite "plateau," i,e.,

2o = 2gtk (6-119)

where ZR is the resonance capture cross section as given in Sec, 6=5 and
k is the plateau value of the cross section. The integration may be re=-

duced to a form not involving a plateau by means of the identity

Sat K X z f K
———-B——- - L & '
f I, T du I, tK (ZH+K)+ERdu + 2H+Kd(; 120}

where ZH and k are regarded as constants., The change introduced by the
finite value of k is small.

The Doppler-broadening correction mekes only a slight difference in
the critical conditions., ©Since the small detrimental effect of Doppler=
broadening is masked by the conservative method of estimating the lumping

correction, this correction is not applied to the bulk of the
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calculations. In molybdenum systems the lumping correction may be
omitted.
Integration over a set of resonances involves & sum of terms of the
form of Eq, 6-111
2
Z G ollo)l [%ﬁ—%)z';R(%ﬂ)]

R R R (6-121)

The only dependence of this expression on the hydrogen concentration is
through a. Because the procedure i1s to obtain criticality by adjusting
the hydrogen concentration, it is convenient to replace 4/I(a) in the

bracketed term by an average value, This step is justif'ied both by the

insensitivity of I to a, as shown in Fig. ;6;3.‘, ,and by the smallness of

FI - . = - . -
this term. - LR e

The second pertion of the computation is complicated by the rela-
tions involving the Bessel functions of ERqp and ER;., Inspection of the
equations 6-63 to 6-66 indicates that ER; is a function of ERq only, and
that H, occurring in ap, is similarly determined by ERo. These two func-
tions are shown in Fig. 6~4 and 6-5.

The preceding developments are summarized as two separate procedures
for reactor calculation: The first is used when the albedo condition 1s
assumed at the bottom of the cylindrical reactcr. The second procedure
is used for a symmetric reactor with equal top and bottom reflection,

and which has no axial flux variation.
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FIGURE 6 -5
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Numerical Procedure Section 6-6

Procedure I. Albedo Assumption

(1) Assume trial reactor core dimensions Ro and Lg, Adensities Ny
(moles/liter), and an albedo P.
(2) Compute Etr'

(3) Compute Sy, glven by

S,=Dgy/D = Dp,Z, = 1.340Z,

(%) Compute ZH using the full ~20 barn cross section for hydrogen.

Then evaluate w;, given by
w = € Zg,/Zy =0.1560/5,

(5) Compute D by Bell's criterion, given by

eff

Dett = 'O'O/‘? PN

{6) Compute Ty, DY Bell's criterion, given by

ry = 20X 10°
@ 7N, )(“? PIN;)

(7) Solve the transcendental eguation

x tanx Lo -8

20y 1+

and compute

=x/Lo

~
'
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(8) Compute P, from Eq, 6-118, and C3 from

C: =P/,

(9) Compute B2, Ly, E, A, and ERq from the relations

l=c°!+rl
. X /5
L'- 2 wt-é!
- W, nt_ .2
E = -s-.LB V4
A = BY/Cs

(10) From Figs. 6<% and 6-5 and the value of ERy determine H(ERo)
and ER;(ERg). Compute Rj.

(11} Compute K and ag from the relations

Ll
| .
Lo + T sin 2x

K

|
I+ w (H+K)

(12) Compute k_ as described previously and the criticality k from

k= kp Qo

Procedure II, Bottom Reflector

(1) Assume trial reactor core dimensions Re and Lo, and densities
N, (moles/liter).

(2) Compute Z, .
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(3) Compute S, given by
S, = Dge/D=Dgy L, = 1.340 X,

(4) Compute Z‘H using the full ~20 bern cross section for hydrogen
end evaluate wy, given by

(5) Compute Ty, DY Bell's criterion, glven by

- 0.51x10°
($ i Ni)(}i: A% N

(6) Compute P from Eq, 6-118, and BZ, given by

B =P/t

(7) Compute E, Ly, and K, given by

- w 2
E:/% 8
L,=1r/2E.
K = L,/Lo

(8) From Figs. 64 and 6-5 snd the value of ERg determine H(ERg)
and ERI(ERo). Compute Rj.

(9) Compute ao, given by
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|
I+w.(H+K)

(10) Compute k_ as described previously and the criticality k,

glven by
k = km Qo

6~7: Some Sample Results

The foregoing numerical procedures sre applied to a family of pre-
liminary and exploratory problems in which the geametry and composition
of the reactor core are specified arbltrarily, in cantrast to the motor
design problems of Chap. 9 which require consistency of nuclear design
with hydrodynamic considerations, etc.

The values of k , for two typical metallurgical compositions and
various degrees of moderation are shown in Figs. 6-6a and 6-6b, On the
molybdenum curve the condition of optimum moderation is eventually
passed, Thermal neutron capture by hydrogen becomes an important effect
for H/U > 100,

The major group of preliminary reactor studies is shown in Table 6-1
and Fig, 6-7. These reactors have a core of radius 30 cm and length
60 cm, A concentration of U0z in the refractory metal is specified,
where the volume of this impregnated metal is chosen to be 7720 om®,

The amount of CH is varied to obtain a criticelity of 1, and the beryl-

1ium reflector dimenslions appropriate to the flat flux condition. Each
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Fig. 6-6a: Values of k  for Sample Molybdenum Reactors
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TUNGSTEN WITH 25% U0,
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Fig. 6-6b: Values of k_ for Sample Tungsten Reactors
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TABLE C-l

TYPICAL FLAT FLUX REACTOR CALCULATIONS

TOTAL VOLUME OF REFRACTORY METAL & UG,,7720cm’

ASSUMED ALUMINUM CONTENT, 14.2kg
Ro = 30cm Lo 260cm

waLt | voLswo, | gy ng CH" m’u‘.’:;:o: nercecTon | ngon? “usg&;o: REFLECTOR

Mo 10 144 749 2800 3340 -J 10.2 3365 4165
16 120 36.1 1605 1770 452 18.10 2045
25 186 242 TR n1s 0.2 12.50 14.05
367 228 18.0 8.55 8385 203 9.15 11.85

Mol 20 149 14 18.90 21.25 830 2040 2330
25 i86 5%.0 14.55 17.29 616 1525 16.25
307 228 42.0 12.70 13.2§ 508 1415 i7.85

v 20 49 130.1 24.35 2875 49.8 26.25 31.35
25 186 82.1 18.39 20.55 958 19.65 22.30
307 228 63.7 15.20 16.80 728 16 30 1845

”

1.

USING ALBEDO ASSUMPTION FOR BOTTOM LEAKAGE WITH 8 = 0.6
USING SYMMETRICAL END REFLECTORS

s3ins’y a1dwes awog

l=9 uotjoag
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Fig. 6-T: Some Results for Semple Reactors
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reactor is assumed to include 14,2 kg of aluminum, Refractory metals
were taken to be (a) pure Mo, (b) 50:50 Mo and W (denoted by MoW), and
(e) pure W,

Detalls of the neutron economy are shown in Fig, 6=8 for typical
tungsten and molybdenum reactors. The severity of fast leakage and the
importance of epithermal neutron capture are indicated by this figure.

The results given in Table 6-1 and Figs. 6-6, 6-7, and 6-8 are
indicative of those encountered in a rocket motor, Several conclusions
are evident: From the standpoint of u::anim conservation the preferable
motor is a highly moderated molybdenum heat exchanger. However, re-
sulting reflector thickness is large, and in a realistic motor design the
core volume needs to be increased in order to accommodate the large
amount of moderator; this in turn increases the reflector mass even more.
As a result the motor which shows the most economy in fissionable mate-
rial is large and heavy. In addltion, the refractory metals exhibit a
certain perversity between their nuclear and their thermal properties,
so that the motor designed to operate at the highest ‘temperature is the
most demanding of active materiml. From these considefgtions it seems
likely that economy of active material should not be the" primary consid-
eration in the selectlon of a motor design. To the contr;ify, it seems
that one should be as lavish with uranium as is consistent ;ith good

metallurgical properties of the metal-U0s system.,
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Two conclusions are evident from the results shown in Fig, 6-Ta
and b.

(a) For a given metal the addition of excess U0z gives great
savings in CH requirements and in reflector thickness.

{b) Simiiar savings are availeble when it is sufficient to use
molybdenum instead of tungsten, with a given amount of UOp,

The data of Table 6-1 are plotted parametrically in Fig, 6-Tc and 4
to show the effects of various Mo-W alloy compositions, It is remarkable
that this variation produces no more structure than this figure depicts.,

Figure 6-9 shows the moderator requirements corresponding to various
core shapes., These curves suggest that there 1s considerable flexibility
in the core geometry, and that fairly large departures from the best core

shape necessitate a modest increase in moderation,

6-8: Reflector Design Variations
The flat flux condition is determined by the requirement that in the

slowing=-down process there 1s no net neutron current across the interface
between reflector and core, For a reflector of given composition the
determination of the reflector thickness is independent of the critical-
ity. The dimensions specified in this way may be undesirable on the
basis of other design considerations., A reflector ylelding a flat flux
mey meke a practical core design highly super-critical. The reflector

may also be excessively massive. In this section it is shown that there
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Fig. 6-9: Effect of Core Shape. The sudden rise of the molybdenum curve
at D/L = 3 is due to the breakdown of the approximation of
total fast leakage from higher buckling modes for a reactor
which 1s very well moderated and surrounded by a large
reflector.
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can be considerable flexibility in choice of reflector, between effec-

tiveness in neutron reflection and lightness in weight. This flexibility
arises from the fact that reflector thickness is basically determined by
the abllity of the reflector to moderate neutrons, and that this ability
may be regulated by incorporating a layer of hydrogenecus material in the

reflector.

The theory developed in Sec, 6-2 is applied to a reactor with & two-
layer reflector. If the inner hydrogenous layer region is called A and

the outer beryllium layer region B, Eq. 6-50 becomes

v
viq = - ..s.! 8%q
8 (6-122)
for regions A and B, respectively. An additional boundary condition that

q mast be continuous across the new interface is

N
A8 (6~123)
and the neutron current continuity condition is
3q ; _ 2q
Sa an Se an I
A ® (6~124)

In the top reflector the solution which has a zero derivative at the core

boundary and vanishes at the extrapolated boundary is of the form
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q = cos /-—§A— Bz
A
q = Msin /—L';’BB(L.-z)

(6-125)
for regions A and B, respectively, The A - B interface is at z =L°',

Equation 6-125 is applied to BEqs. 6=123 and 6-12k, which become

coS. /—A_ BL’ =Msin —‘;—"3 8 (L-L")
. |

S
A (6-126)
/2 Bsing/ b g1 = 5, /2 /8 -1
A.\/;- Bsin 5 BL = S s.’BBMcos S, B(L-L)
(6-127)

which are simultaneous equations determining the total thickness L; and
the interface matching constant M in terms of the parameter L', If the
thickness of a pure beryllium reflector is assumed to be Lo (the value
of Ly vwhen L? = 0), then the following dimensionless quantities may be

defined:
L SE ) SE L SR [P
' Sa / Sa €gZg Y Oa

= L/ Ly

>
'

>
"

L'/ Lo

(6~128)

YL D athy Y




=

Reflector Design Variations Section 6-8
Equations 6-126 and 6-127 are combined to give

| : tan—lzr-()\,—)\')

Say qan o
Ssr tan 5 rA (6-129)
7 I
cos > ra

M = — -
sin 1 (A\~X) (6-130)

Equation 6-129 is solved for A3 which then determines the value of M in
Eq. 6-130.

The value of ag, as glven by Eq, 6-24, depends on the overall reac-
tor dimensior}s and also on the value w in the reflector: hence it is a
function of A', However, its only dependence on A' is from the part of
the denominator integration which involves the reflector. For the gener-
alization of Eq. 6-66, which is for the case A' = 0, the denominator

must be modified such that

! q:de
w, (H+K) =
L

q® wdv
° (6-131)

In the general case of variable L', it is the numerator of this ratio
thaf depends on A', In the side reflector the Bessel functions are like

the trigonometric functions in the top reflector, so that approximately
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Li
S aiNaeav [ atN w() az
R(A) - 0
B Lo
[ q(X=0)uX=0) dv [q:(O)w(O)dz
R{x=0)

s, l | ’ ’ ¢ s "
= —zﬁ()\+ 77 SinwrX) +Ma(x)[x,-x- —,:—smvr(x,—)‘)]

AR (6-132)

vhere the integrals are evaluated using Eq, 6-125, Combining Eq, 6-132

with Bq. 6-131 gives the generalization of Eq, 6~66,

%lX) = I+ Wyl H+K) J(X)

(6-133)
where H and K are determined as in Eq, 6~66, This approximation is more
accurate than simple substitution of trigonometric functions for the
corresponding Bessel functions because Eq, 6-133 becomes exact for
A =0,

The veriebles A1, M =~ A', and J(A') are plotted as functions of A'
in Pig. 6-10, The function J3{A') which is the contribution of the hy-
drogenous region to J(1') is also plotted, For a given reactor core a

critical reactor is achieved by adjusting A' such that

J{A) m)(kw—l) (6-134)




Reflector Design Varlatlons

Section 6-8

40

35

30

25

J(\)

20

or

(%)

L5

0.5

+ + +
: T p4
;
7 T
T
-
jou k! :
o =
L] 1T,
0s H T
3 : ;
& - gaa: :
} : o
T 1 T
b + -
i o :
; : ‘
: o T
: T
t : -
; :
LA T
I’ I
- 1
!
or ¥ e '
e
T "
T H !
37 T
HH L
M e
; T
0.6 :
s
A = . H
1 25, ;
HH
N
0S5 = i
= ns 1 ;
or =)
£8: TN e
’ T
A-X : :
e :
04 I
. =¥ :
o :
H t
. 1 [ERE atu
HH J (N) S :
F
!
‘o o
1t
03
HH Y )‘l—)\'i
mm
+H
a;
0.2 4
H
a5
X (N}
s
= w :
o :
:
{EEEED;
4 4 { 18 B T 1T
00 S

00

00 ol 0.2 03 0.4

xi

Fig. 6-10: Some Functions of A’




Chapter 6 Nuclear Reactor Considerations

These results are applied to actual motor design problems in
Chap. 10, The effect of the use of diffusion theory upon the accuracy

of these results is discussed in Sec, 6-9,

6-9: Effects of the Approximations

It is pointed out throughout this chapter that the theory developed
here makes a number of approximations. The major approximations are as
follows:

(a) Treatment of the neutron economy by finite groups.

(b) Method of correcting for lumping effects.

(¢) Accuracy of nuclear data.

(d) Use of aiffusion theory.

(e) Use of average capture approximation (Eqs. 6-ili and 6-45),

(£) Achievement of flat flux condition.

(g) Methods of treatment of the bottom reflector.

(h) Neglect of higher modes.

(1) Neglect of thermsl neutron diffusion,

Item a: From the study of the numerical examples the use of nine
groups seems adequate, Item b: On the basis of numerical results of
test problems where lumping was neglected, the lumping correction is neg-
ligible in molybdenum reactors and typically results in an 8% increase in
k for tungsten reactors. Refined methods of applying this correction are

expected to increase k by an additional smell amount. Item c: The

o
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Effects of the Approximations Section 69

presence of large smounts of moderator, most of the neutron capture takes
place 1n the thermal and epithermal groups where the cross section data
are best known,

Approximetions d and e are intimately linked, and their accuracy
depends largely on the achlevement of flat flux within the reactor core.
The error in these approximations 1s mainly in the simplifying assump-
tions they make about the flow of neutrons, If the core flux is flat,
there is no net neutron current and these methods may become quite accue
rate.* In the reflector, item e does not apply, but the question of item
d on the validity of diffusion theory is pertinent. The diffusion ap~
proximation is valid in regions a few diffusion lengths in thickness.

The beryllium reflector thicknesses typically range from six to twenty
diffusion lengths, so that the use of diffusion theory is Justified. On
the other haﬂd, the special reflector calculations of Sec. 6-8 must be
regarded as samewhat qualitative because of the short-distance limita-
tions of diffusion theory.

Item 1 The possibility of obtaining an approximately flat flux is
independent of the epproximations made previously: for gome degree of re-
flection the flux must be the same at the center as at the surface of the

core. The calculations yleld a flux which is perfectly flat because of

#Tn the Tlat flux situation the diffusion coefficient of the core would
disappear from the analysis except for the convenience of using the
Fermi age variable vhich carries a concealed and cancelling dependence
on the diffusion coefficient,
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the approximation e, but the actual flux variation can not be very large.
This is seen as follows: When, in a typical reactor, the flux-flattening
effect of slowing-down capture is neglected, the flux may be calculated
by the methods of Sec. 6-2. The radial flux profile in the core ,
actually a Bessel function, may be well represented by a persbola falling

at the edge to 0.6 of the central value, i.e.,

$tr) = $(0) {1-04 (&)}

If it is assumed that the effect of the proper reflector is to add a

(6-135)

fourth power term of proper value, a flux dlstribution of the form

2 4
®(n = ®(0) { 1-04 (& )04 (%) } (6156)
is obtained, as shown in Fig. 6-11. Modifying ¢ in this way implies that
the smoothing effect of the reflector does not flatten the flux profile
at the center of the core. This is a pessimistic assumption. This flux

density has an extreme value

®.n =0.900 $(0) (6-137)
with the mean value

® =L [dda=- 0933 90
A f (6-138)

Thus, these considerations indicate a maximum flux intensity 7% above

the mean.
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Fig. 6-11

Items g, h, and i all involve diffusion effects., Item g: The use
of an albedo boundary condition for treating the bottom reflector yields
results insensitive to the albedo. When symmetric end reflectors are
assumed, slightly lower values of k are found, due to approximation h.
In the fully reflected symmetric geometry a larger fraction of the
slowing~down flux is represented by higher buckling modes, so that the
complete neglect of these modes is more pessimistic in this case than
for the albedo geometry. Item i: In these calculations the diffusion of
thermal neutrons is neglected. Since the thermal neutron source, within
the core, is flat, any effects due to thermal neutron diffusion are seen
at the core surface. Since there is no significant thermal capture in

the beryllium reflector, the neutron current flows from the reflector to
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the core. These neutrons are ignored in the calculations and thus tend
to meke the reactor more critical. However, they also tend to mske the
fission density less flat., Readjustment of the reactor parameters may
be performed in order to recover flux uniformity. If necessary the re-
turn flow of thermal neutrons may be inhibited by introduction of a

thermal poison such as boron into the reflector,
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Note added in proof: It has been pointed out by N. H, Baker that
the recoil of beryllium nuclel introduces an anisotropy into the neutron
scattering by beryllium, and as a result somewhat modifies the neutron
transpoert cross section in the reflector, For neutrons of energies high
compared to chemical binding energies (~5 ev), the modification in the
cross section amounts to circa 8%. Thus an 8% increase in reflector
thicknesses should be applied throughout this report, Actually the 8%
correction is an overestimate, since the recoil effect vanishes in the

lowest three epithermal neutron groups.
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CHAPTER T
HYDRODYNAMIC DESIGN CONSIDERATIONS

Rash and inexperienced traveller, we will now seri-
ously devate ourselves to a little high tension,
because if we do not, it is my impression that
yonder self«propelling man-of =war with the armour-
plated upper deck (and by this, O Best Beloved, he
meant the Crocodile), will permanently vitiate your
future career,

R. Kipling, The Elephant's Child

T-1: Introduction

This chapter is devoted to the hydrodynamic and heat-exchanger
problems associated with Dumbo, exclusive of thoce already treated in
Chap. 2 which involve the primary heat-exchange process occurring in the
metal wall.

In Sec. T=2 the equations governing the turbulent heat exchangers of
Dumbo are developed, These exchangers serve to transfer a few percent of
the reactor power to the hydrogen as it passes through the reflector, thg;,
preheater, and the moderator before entering the metal wall.,

In Secs, T=3 through 7=9 the hydrodynamics governing the gas flow
through the main supply and exhaust channels of Dumbo is studied, These
problems of flow in a channel whose walls act as a source or sink for
fluid are unigue to the Dumbo design and their solution plays a most ime

portant role in the performance of Dumbo, It is shown that the flows

25
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through the metal wall at different heights may be made highly uniform

without sacrificing uniformity of construction, «

T7-2: Turbulent Heat Exchangers

In the flow of propellant through the reflector, the preheater, and
the moderator there is involved exchange of a few percent of the total
power to low temperature hydrogen. These reglons are characterized by
turbulent flow. The design of such heat exchangers amounts to the pre=
diction for a given geometry, flow rate, and power dissipation, of three
quantities:

(a) The resulting temperature increment 5T between the gas and the
wall, corresponding to the 68 of Chap., 2.

(b) The pressure drop &p experienced by the gas in passing through
the exchanger.

(¢) The maximum temperature occurring in the exchanger walls,

The first two of these quantities are determined from empirical cor-
relations of dimensionless parameters. The dimensionless guantities
involve the density p, the viscosity n, the thermal conductlvity 2, the
specific heat cp, and the pressure P of the gas moving with velocity v in
the direction z, They are:

(a) The Reynolds number,

R=pvD/n

where D is the hydraulic diameter of the chamnel(s).
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Turbulent Heat Exchangers Section T=2

(b) The Prandtl number of order unity for gases,
Pr=c,n/\
(¢) The friction factor,

D d
Y= Zpvt dz

(d) The Stanton number,

ky=h/Copv

where h is the heat transfer coefficlent given by

h = _y_

A*ST
*
and U is the energy transferred per second %o the gas, A 1is the wall
surface area, and 8T is the temperature increment between gas and wall.
The first problem, that of determining 8T, assumes an empirical rela-

tion kI-I(R) which is applicable to the system. For a total flow Qg the
flow density pv is given by QQ/AQ, where Ag is the open cross sectional

flow area. The total energy transfer rate U is related to the flow by

T
f
U=Qo [ cp(TdT = Qo(H,—H,)
K (7-1)
where H is the enthalpy of the gas and the subscripts f and i refer to
final and initial values, respectively, The power is uniformly distrib-

uted along the length z, whence
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daJ _ U dT _  QolH¢—H;))
dz -oonst. = T~ =Qo Cp g5 = L (7-2)

vhere L is the total flow distance., Hence, the Stanton number is written

as
k - A° L -d—T-
W™ AF BT dz

(7-3)

The hydraulic diameter D for noncircular channels is given in terms of

*
the channel perimeter A /L by

giving & final expression for the Stanton number,

k:J—DiT.
H™ 4 BT dz (7-4)

This problem is concerned with the 8T occurring at the hottest point.

The gradient dT/dz ' £ at this point 1s determined from Eq, T7-2,

dT| _ He-Hy
dzle Gl (7-5)

vhich in conjunction with Eq, 74t gives STI ¢ in terms of k.

The second problem, that of the pressure drop occurring across a
heat exchanger, is not obtained in quite so direct a manner, The friec-
tion factor ¥y for flow through a channel gives the pressure gradient
dp/dz for fluld undergoing drag only, and does not include those forces

causing changes in the momentum of the stream, For flow which is subsonic .

i
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and nearly isobaric, the inclusion of terms for both drag and momentum

change yields

d 2 vt dv
(7-6)

If it is assumed that pv = J = const, and y = const., Eq, 7-6 becomes

]
.!E. = - m - Jz.g_ _|-
dz Op dz p (7-7)

If the pressure varlation 1s small, p may be regarded as dependent on the
temperature only, which is approximately linear through the exchanger.
Thus %— is linear in z and may be written

LoL-tyr, L

P NP Pl L pe (7-8)
Substitution of Eq., 7-8 into Eq. 7-7 and integration yields the general

heat~exchanger relation for gases, given by

| | L [ l
e[ w) 45 ()]
P Pe pe Pl TTDN\RT pe (7-5)
The first term in this expression corresponds to the momentum change and

is a stress required to accelerate the gas to its higher velocity, while

the second term is a drag contribution.

The third problem, that of conduction within the solid exchanger
walls in which power is generated, is solved approximately by the heat

conduction relation for one-dimensional heat flow, i.e,,
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(7-10)
vhere ¢ is the power density (cal/cm®-sec) in the walls, Thus
To=T(x) = S5 **
(7-11)
To use the results of the first two problems, it is necessary to
select the function y(R) and kH(Pr, R). Of the several fungtions which

have been suggested the simplest is the Blasius formula,

Y- Re (7-12)

For k‘H a corresponding approximate form may be developed from the Reynolds

analogy, glven by

W= L - 004
o2 R™ (7-13)

In justification of such an arbitrary choice of forms it should be noted
that:

(1) In these exchangers the momentum term of Eq. 7=9 is dominant,

(2) The temperature increment 5T determines the wall temperature of
the exchanger. The gas temperature is determined by the power input and
not by the exchanger efficiency. Further, the materlals of the exchanger,
except in the case of the plastic moderator, are far below any disas-
trously high temperature limit and the value of 3T 1s not of great

consequence,

PN
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Flow Uniformity Through Wall Section 7=3

(3) To compute these temperatures accurately it is necessary to
know the power dissipation from these several regions, IHowever, this
aspect of reactor performance is only roughly known and awalts either
good experimental measurement or refined and detalled computation, The
values indicated in Fig, T=-1 are used throughout for purpose of consist~-
ency. Some thermodynamic propertiesl of Hp which are of concern in

heat=exchanger design are shown in Fig, 7-2,

T7-3: Flow Uniformity Through the Composite Dumbo Wall

A hydrodynamic problem is now considered which is more intimate to
the primary hest~exchange process occurring within the Dumbo wall., As
shown in Fig. 7-3, hydrogen flows from a comparatively cold central
region A at a pressure varying along the length as PA( z). After passage
through the wall it enters a region B of hot gas at a lower pressure
PB( z). The net flow rate Jo(z) through the wall is determined by the
values of PA and PB and the impedance of the camposite wall. The compos-
ite wall conslsts of moderator channels plus the metal wall structure,
Due to the hydrodynamics which occur in regions A and B these pressure
distributions may cause severe differences in the flow Jo at different
heights z. The remainder of this chapter is devoted to the determination
of the pressure distributions PA(z) and PB(z), and of the resulting degree

of uniformity in Jo(z).
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{INCLUDING B's)
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8.6Mev
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1763 Mev ESCAPE 46 Mev 51 Mev
Fig. 7-1: Assumed Distribution of Energy in Dumbo
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J\ | Jo(2z) gm/cm®-sec
e e
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Fig- 7-3

T=4: Turbulent Flow in the Main Ducts

The behavior of the gas in the major passages on either side of the
Dumbo heat-exchanger well is now investigated. The purpose of the present
section is to develop expressions for the pressure and the temperature of
the cold gas in region A which supplies the moderator, and of the hot-gas
region B through which the gas passes from the wall to the nozzle,

The proper equation of motion for the Dumbo flow problem is not
obvicus. Experience suggests that a plausible equation of motion is the

one=dimensional hydrodynamic equation

(.
=5
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Turbulent Flow in the Main Ducts Section T-4
dv dP
v ==
P dy dy (7-1%)

This equation is true if shearing forces are negligible. In ordinary
duct flow at Reynolds numbers comparable to those of Dumbo designs, the
frictional work of the shearing forces 1s slight compared to the total
energy transport rate of the stream, This supports the correctness of
Eq. 7-14. However, considerations of momentum conservation indicate a
different equation, as follows: If fluld flows through a duct of area A
and circumference C with velocity v and if the fluild is supplied from
the walls with velocity u, then a section of fluid of length by, moving

with the stream, is governed by the force equation

D -
ot mv=F (7-15)
or
d dP
v — pAdyv =- A == 3y
dy dy (7-16)
Continuity demands
d C
-— pv—— pu =0
dy A (7-17)
and
v de_ (pASy) = pu C Sy
(7-18)
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S t——

Combining Eqs. 7-16, 7-17, and 7-18 gives the equation of motion

d e dP
— Pv T o= —ves
dy dy (7-19)

Integration of Eq. 7-19 gives

pvi+ P =const.
(7-20)

If Bq. 7-14 is integrated with constant p Bernoulli's law results, which

is given by

L ov'4+pP = const.

2 (7-22)

This equation 1s in contrast to Eq., 7-20. This suggests that the equa~-
tion of motion required for this problem is of a general character,
including Bqs. 7-14 and 7-19 as particular cases,

The one-dimensional equation of motion is developed from the full
three-dimensional theory. As developed in Sec, 2-1, the three=-dimensional

continuity equation is

& pvn =0
(7-22)
and the equation of motion is
PY% OV == 0, By (7-23)
vhere
P = P 8,,_, n(dv, +9,v,) (7-2k)




=

Turbulent Flow in the Main Ducts Section T«h

is the stress tensor. The presence of turbulence, &s in the mcmentum
transport theory, is regarded as modifying the effectlive viscosity n,

The divergence theorem is used on Eq, T=22 to give

f do, pv, = 0
o (7~25)

vhere o is a closed mathematical surface within the fluid, Combining

Bgs, 7=22 and 7=23 ylelds

O { Py + P,.,} = 0 (1-26)

sc that the divergence theorem gives the relation

jda,, {pv,.v, + P,.,} =0

This equation states tha. the net momentum flux across a surface balances

(7-27)

the net force from surface stresses,

It is assumed that ¢ bounds a very short section of the duct, con-
sisting of two flat ends normal to the axlis and the intervening duct wall,
It is further assumed that the flow velocity 1s effectively constant over
the duct cross section and vanishes suddenly at the wall, Equation 7-25
reduces to Eq. 7-17. If the slight compressional friction term in Pyy is

neglected, Eq., 7-27 similarly reduces to

d 2 P , C

- ve= - = + = P

dy P dy ~ A ' (7-28)
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vhere Pyn is the shearing stress on the fluid in the y direction at the
channel wall, This is the equation of motion, with P’m yet to be
evaluated, .

- To determine Pyn’ it is necessary to consider in detail the thin
region in which the axial velocity of the stream increases from zero to
the full flow velocity. x is a coordinate measuring from the wall into
the stream, ranging to the value x;, at which place v assumes its final
value vy. Although x; and vy change ulong the axis of the duct these
variations are slow compared to the variations across the boundary layer,
Such slowly changing quantities are regarded as constants for purposes of
locally evaluating P__ . Because the boundary layer does not retain an

m
appreciable portion of the fluid entering it, the condition that

pu = const. (7-29)
is assumed throughout the boundary layer. Equation T-22 becomes
2&9 + .QE.! =0
ox dy (7-30)
-glving
vEvix) (7-31)

Because the effective viscosity due to turbulence is determined by the

flows, it follows that

7= n(x) (7-32)
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The x component of Eq, 7«23 is

.- 2 fp- _u L.
p(u%g +V33-)- I {P ")( )} +0x)}
(7-33)
every term of vhich now vanishes except dP/dx. Hence,
9P,
ox 0
or
P: Py
g (7-34)

Thus there can be no pressure gradient across the boundary layer. The y

camponent of Eq., 7=23 is

g r g )b+ G- P22 §))
(7-35)

which reduces to

a9
””ax ax"’ax

ov ) P
oy

(7-36)
The terms not involving P are functions of x only, so the same must be

true of dP/dy. Together with Eq. 7-34 this gives

P(Y) Po + P y (7-37)

vhere Pg and P' are constants, Equation 7-36 is integrated once, to give
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aV av _ ’
(35)-(13¢), = P +pun (7-38)

This can be regarded as a speclal case of Eq, 7-27, and shows that the

shearing stress must Increase sufficlently to balance the effect of pres=-

sure P'x and the momentum flux puv., The transformation
X
e H _' dx
n

3
x(§) =f'r;d€
¢ (7-39)

is made, Equation 7-38 is integrated, to give

ve o (M) (n ) wpr [£ D (&) ag

Equation 7-tO is solved algebralcally for the wall stress at x = x3.

(7-40)

| b g
~P ® ( %’;)o i o puv,-Ppuf—e.-;;g x( §)d¢

(7-41)
This expression is substituted into Eq, 7-28. In the Dumbo ducts the
boundary layer Reynolds number, represented by Ipugll » 1s about 10 or 20,

In this case Eq, 741l is reduced to two asymptotic forms,
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Turbulent Flow in the Main Duct Section T-4

Case I: For put; >> 1,

§ .

. -put S

-P, =P pu [P x(£) dE =- pu
° (7-42)

Case II: For pufy << -1,

3 . .
-Pyn="PUV| + P'Pu f enu(f. ﬂx(E) d€=’PUV' +Px,
° (7-43)

In the Dumbo ducts, the boundary pressure term P' is not significant com~
pared to the momentum flux term. This leads to the following expressions:

Case I: TFor u> 0,

"
o

P
y (7-44)

Case II: For u <0,

R, = puv
ym - P (7-45)
where the subscript 1 has been dropped in conformity with earlier

notation.

For channel Reynolds numbers of the order of 10°, as in typical Dumbo
designs, the boundary layer is laminar and x; is given approximately by2
PYX, /1= Re
where the critical Reynolds number R, is circa 2100, 1In this case, the
integral of Eg. 7-41 may be performed snd compared with the asympototic
equations T-44+ and T-45. The comparison verifies the asymptotic results,
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For the hot gas duct u > 0, and Eq. 7-28 together with Eq, T-l44
gives Eq. T-19 as the equation of motion. For the cold duct u < 0, and
Bqs. 7-28 and T-45 give

dl pvt= - %E + %puv
Y Y (7-46)

Multipiying Bq., 7-17 by v and subtracting from Eq, 7-=46 gives Eq. T-1k
as the equation of motion,

To aum up the physical content of these equations, when gas enters
the stream it picks up momentum from the stream, The momentum transfer
subjects the stream to internal stresses, but the only influence
affecting the overall momentum is the pressure gradient. Hence, Eq. T7-19
is the equation of motion, On the other hand, when gas leaves the stream
it carries momentum with it to the wall where the momentum is transferred
out of the system by shearing stress. Although momentum is not conserved,
the shearing stress is confined to the boundary, and the stress-free main
stream is governed by Eq. T-1l,

The peculiar two-valued relationship between pressure and flow is
more general than the assumptions that have gone into the development
above, In App. C the problem of incompressible laminar flow through a
channel 1s solved exactly, and it 1s shown that in the limit of large
Reynolds numbers p;é + P 1s a constant for material entering, and

%‘pw? + P 1s a constant for material leaving the stream,
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Expected Hydrodynamics Section T=5

7-5: The Expected Hydrodynamics in Dambho

The results of the preceding section show the one-dimensional equa=
tion of motion for the cold gas region to be

dv . _ dp
T dz (7-14)

whereas that for the hot gas region is

4 e _ dp
az PY dz (7-19)

The assumptions are that:

(1) The flow profile of each reglon is substantiaslly flat with the
vertical velocity component v a function of z ~nly.

(2) Turbulent drag may be neglected at this stage of analysis and
later added as a perturbation of these relations.

Are these assumptions likely to be true of a physical model?

The second of these assumptions 1s quickly Jjustified insofar as the
magnitude of the pressure drop due to drag is much less than that due to
dynamic terms in typical problems,

The first assumption is supported in the case of cold gas flow, in
vhich gas leaves the duct and enters the wall, by the following argumerts:
In turbulent channel flow the nearly flat profile is characteristic. Due
to the removal of the h-undary layer by the walls of this region the pro-
file flatness 1s emphasized. TFurther, the deceleration axperienced by

the stream produces more than normal instability and turbulence. Finally,
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the stream enters the duct from the preheater plates with uniformly
distributed, well-established turbulence.

For the hot gas reglon these arguments are largely reversed., Gas
enters the region from the viscous channels of the Dumbo well. The
acceleration experienced by the stream enhances the stability. The
interaction of the stream with the wall is cushioned by the steady out=-
flow of gas along the walls, With a length of only 10 hydraulic diam-
eters, it 1s not clear that the stream would exhibit well=-established
turbulence even though its maximm Reynolds number is 10°, If leminar
flow existed in this hot region, the flat velocity-profile model would
be inaccurate. As 1s shown in App. C, a cosine velocity profile is
obtained for two=dimensional laminar flow at very low viscosity.

Without a detailed theoretical understanding of the prcblem of the
onset of turbulence or without experimental testing of this peculiar
hydrodynamic problem, one must contemplate for this hot gas one of three
conditions:

(1) Well-established turbulent flow with a flat velocity profile,

(2) Leminar flow with a cosine-like velocity profile,

(3) A flow which is laminer in the low velocity regions and which
as it accelerates becates turbulent.

In Secs., 7-6, 7-7, and T-8 the existence of condition 1 is assumed.
In Sec. 7=9 it 1s shown that a comparatively minor design modification
adapts the designs to the exlstence of condition 2, Deviations resulting

e
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from the existence of condition 3 may be estimated and are presented in

Sec- 7"9-

T6: Energy Relations for Compressible Flow in Dumbo

To determine the behavior of a compressible gas, it is necessary to
have a relation between mechanicel and total energy. The energy equation
is developed in this section,

The conservation of energy is stated by the equation

| =
a“{v“(? PV Vv, + p CpT) +v, P,,.}-O (747)

The divergence theorem gives

f do, {v,.(-é—pv,v.+p cgl)+v, P,..}= 0

(7-48)
Specializing to a slice of the duct ylelds
v (Lpviepc, T+HP)I+ £ utprc,T+P) = 0
dy " "2 v ) (7-49)

The quantitics evaluated at the duect wall are explicitly indicated by a
prime. The side-flow kinetic energy ]2-; o'a'? is negligible and is omitted
for the sake of notational simplicity. The "stagnation enthalpy” & is

defined as

_ 1 2 P_ 1 .2
¢'?V+°VT+7' vV H T

(7-50)

Equation 7-49, written in terms of @, is
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_4_ _c_ I =
pve + = pu'd’ =0
dy A (7-51)

The continuity equation 7-17, which 1s equally valid for pu or p'u', is
applied, giving
a‘-’,— pve = ¢’ % PV
(7-52)
This is the equation of energy balance, The value of @' depends on
whether gas is leaving or entering the wall.
For gas leaving, @' is specified in terms of the wall temperature,

l,e., foru>0

¢'= cpT’
(7-53)
T' 1s assumed to be constant, and Eq., 7=52 1s Integrated to gilve
vi$-¢ )=const. = A
puid-¢ (7-54)

However, 1if v(y) venishes at any point while p and @ remain finite , 1t is
necessary that A = 0, Therefore, the energy condition governing the hot

gas stream is

¢=¢" = cpT = const. (7-55)

For gas entering the wall (eold gas), the value of @' 1s determined
by the state of the stream, It is evaluated by applying Eq. 7-48 to a

region bounded by the duct wall and by the inner surface of the boundary
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Solution of the Flow Equations Section T~7
layer at distance x; into the stream, From Eqs. 7-38 and 7-45, ny is
small at x;, and Eq. 7-48 becomes

"ot -
Pu'd'= pud. (7-56)
From Eq. 7=29, p'u' = pu, so that for u <0
{ -
¢'=¢ (7-57)

Thus in both cases flow across the boundary layer is isenthalpic,

T=7: Solution of the Flow Equations

For elther type of channel it is necessary to satisfy four simulta-
neous relations in orfer to predict the flow characteristics for a
compressible fluid, as follows:

(a) The appropriate one-dimensional equation of motion,

(b) The appropriate one-dimensional equation of energy balance,

(c) The equation of state of the gas.

(d) The one-dimensional equation of continuity,

There are two types of main channels as shown in Fig, 7<4. Region A is
the cold gas region in which fluid enters the wall at the boundary. Re-
gion B is the hot gas region in which fluid leaves the wall and enters
the stream. The equations governing the flow in each of these regions

are shown in Taeble 7-l. The solution of these equations is now developed,
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TABLE 7-}
EQUATIONS FOR THE MAIN GCHANNELS
COLD GAS REGION A | HOT GAS REGION B
(@) EQ. of MOTION R Lo 80
{b) EQ. of ve , ve ,
ENERGY BALANCE (o PT+? = ¢l =const cpT+ i cpT= const.
{c) EQ. of STATE p =pRT/M p = pRT/M
(d) EQ.of CONTINUTY vee Lo, vee B2,
' P AL P AL

It is convenient to reduce these relations to dimensionless form by

the substitutions

—
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(7-56)
These seven quantities are made dimensionless by use of the initial

(z = 0) values of p and p, the constant wall temperature T, the channel
length L, the total flow handled by the channel Qgp, the cross sectional
area of the channel A, and the thermodynamic quantities cp and R,
Although Qo and L are the same for the two regions, the quantities pq,
po, T', and A are not. The resulting dimensionless quantities R and P
must assume initial values of 1 at § = O where the range of { is given by
0=§ =1, There is a difference in the value of the dimensionless param-
eter k for the two regions, and also in its sign. In the cold gas region
A, k assumes negative values, 1n region B it is positive. The dimension-
less formulation of the equations of Table 7=l is shown in Table 7=2,

The difference between the dimensionless formulation of the two problems
lies in the equations of motion only. The exact solution of the two

problems is easily obtalned and is presented in Table 7-3,
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TABLE 7-2
DIMENSIONLESS FLOW EQUATIONS

COLD GAS REGION A HOT GAS REGION B

(0) EQ. of MOTION RV %‘é . a‘ig -ft-(Rv'-l-P) )

(b} EQ. of .
Y i | Y ]
ENERGY BALANCE Jz-v + 55 (8-1) =0 % V4 75 (8-0 =0

(¢) EQ.of STATE P=RE P= RO

(d) EQ. of CONTINUITY RV=x{ RV=xl

It is seen from Table 7-3.that although the equations for region B
may be explicitly solved for V({), P(f), and @(f), this is not possible
for region A, Instead, the solutions in region A are presented as (V) s
P(V), R(V), and 8(V), so that the functions V({), P(t), etc., are only
implicitly expressed.

The function V() for the cold region is double~valued in V for
0st< §* and possesses no real solutions for V when { > t_;*, vhere §* is
the maximm value of {. A feature of interest is that at g* the velocity
is Mach 1, One branch of the double-valued curve predicts supersonic

flow vwhile the other predicts subsonic flow. However, only the subsonic
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TABLE 7~

3

SOLUTIONS OF THE FLOW EQUATIONS

COLD GAS REGION A

~£=v(|—-27%'v=)7'—_o
P = (l—;—;'v‘)V"
G-l
. S
HOT GAS REGION B .
AR - (RVARES 2RSS
P # {1474/ 1-2 ZH g2}
e/ )
6 =+ I {i- J Ap(1-Vi-2 Bep)
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Chapter 7 Hydrodynamic Design Considerations

branch satisfies the imposed boundary conditions. The funetilon V({) for
region B possesses real solutions only in the case of subsonic or exactly
sonic velocities. At the transition polnt, Mach 1, the variables assume

the values shown in Table 7-4, Specific values are given for y = 7/5 as

TABLE 7-4
SONIC VALUES CF THE SOLUTIONS
COLD GAS REGION A HOT GAS REGION B

Y+l

{
»* -1
k; 44 (-'7.-%—').5 ' —»-0.685 ,‘/my—;r) o 0540

* —
v v —> 1080| /L~ —> 1080
* ( 2 )r-i ! 0.417

P 7—+T —> 0.530 —7_+T —

=
R* (y—fl—) ™' 5 0634 -é— —> 0500
8* yTzn' —> 0.833 7_‘_-2—‘ —>  0.833

in the case of diatomic gases, It is interesting to note that these
values beecme the same for both regions for a hypothetical gas where

7 =1, in vhich case
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2
The values of V*, P*, R*, and 9* shown in Table 7-4 for the region A
are exactly those resulting from conventional one-dimensional nozzle
theory. The entire formulation for region A is strongly analogous to
the nozzle problem if the variable { is regarded as the inverse of the
nozzle area., The maximum value Q* corresponds to the nozzle throat area,
Because the flow dynamics of the hot region are different from those
generally occurring in compressible flow, it is well to Investigate the
thermodynamic consistency of the two flow laws. If s is the entropy of
a gram of gas in one of the channels, does the gas move into a region in
which it has a greater entropy as is required by thermodynamics? To in-
vestigate this question, use 1s msde of the usual expression for the

entropy of an ldeal gas, which is

s= ¢, lnT—%lnp

(7-59)
A dimensionless entropy S is defined by
S= 5L 6 -mP
(7-60)

An immediate check on this question for the cold channel is found from

Table T7-3, since for regisn A

P71
(7-61)

243

S



Chapter 7 Hydrodynamic Design Considerations

Substitution into EBq. 7-60 ylelds the result that S = O everywhere,
therefore there is no change at all and the cold flow 1s isentropic.

For the hot region B, it is convenient to introduce a new variable

¢, defined by

€=/ 1-2 L

or

§= T"_«/E;% |_E!'

In terms of € the change of entropy at successive locations of a gram of

(7-62)

gas 1s given by

dS=[J_l_d9-L£] gt
d{ y-t 8 d¢ P d¢ dé (763)

This quantity, dS/dt;, must be positive for thermodynamic consistency, P

and 0 are given by

JOREEC A
(7-6%)

) 1+ €
AU U+ 1+6) (7-65)

Substitution into Eq. 7-60 ylelds the result that

(7-66)
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The Balancing of Pressures Section 7=-8

where k> 0, y > 1, and 0 < &£ <1l. Thus g‘—z->0and the flow law is

thermodynamically consistent,

7=8: The Balancing of Pressures

The interaction of the pressures of regions A and B affect the uni-~
formity of the flow density Jof z) through the wall, This effect is
considered in this section.

The developments of Sec. T~7 are based upon three assumptions:

{1) That the flow in either channel A or B is turbulent , Obeying
the equations of motion developed in Sec, T-4.

(2) That, as assumed in Eqs. 7-ih and 7-45, the influence of the
viscosity of the gas outside the boundary layer is negligible,

(3) That the flow density Jo is uniform and constant,

The influence of assumptions 1 and 2 is considered in Sec, T7=9,

Assumption 3 is of the nature of a perturbation treatment. Jg is
assumed to be constant and the pressure distributions pA(z) and pB(z)
are developed. The parameters Kp and Kg of these distributions are then
adjusted to give a higk degree of uniformity to Jp in accordance with

the assumed flcw law through the wall governing the relation between

Jo(z), py(2), and py(z). It is shown that this uniformity of Jo is in-
.deed excellent, If this were not the case, the perturbations in Jo(z)
about its average value could be inserted into the original equations to
arrive at the corresponding perturbations in the functions pA(z) and

pB(z) and the process continued.
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Chapter 7 Hydrodynamic Design Considerations

It is convenient to write the functions P(t), given in Table T7-3,

as power series in {., For the cold gas region A the function is

__Lzz__3_44_5(4+7) e __ ...
RE) =1- > it all- eyt mal e

while for the hot gas region B it is

s —gtl2e L YHL epe_ L [YHL -
F;(g)-' KBC 2 y Kag 2( 4 ) ;g (7-68)

The pressure drop from region A to region B at a height z is the sum
of the pressure change through the moderator, where pressure and flow are

related by a law of the form

Alp¥Ya Ut

and the metal wall pressure drop, which proves to be insensitive to small

changes in Jo. The combination ylelds a flow-pressure relation of the

form

t_pi=aJdd+b
Pa " Pg ° (7-69)

As a numerical example the design data for Model A Dumbo are chosen.

These data, taken from Chap. 9, are given in Table T-5, 3By the use of

3%
the data given in Table T7-5, the expression for PB( t) from Eq, 7-69

*In Secs. 777, 78, and T=9 the symbol "p~ represents the dimensional
pressure and "P" represents the dimensionless pressure defined in
Eq- 7-58‘ ;x"‘
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TABLE 7-5
BASIC DATA FOR NUMERICAL EXAMPLE
Qo = 4x10*gm /sec p,°= 2.845x10™*gm /cm®
(Joyg, ° |22 gm/cm®-sec | k2= 0.475
PC° = 29.2 bar P = 3.4 bar
FLOW LAW FOR COMPOSITE WALL
- | 2 _ 2
Jo = F77g L B, —P,— IT81)
becomes

p. =2920 | 1-0.14750 L*-00I864 L*~000472 *
B [ : : 0 Zc] (7-710)

Two values are used for x,, each ylelding its own expression for PA(Q)

from Eq. 7-67:
Case I:

K = 025650

p(£)=3140 [ 1-012825{*-00I762 £*~0.00484 (" ]

Case II:
k2 =0.24936
p(L)= 340 [ 1-0.12468 *-0.01666¢ *~0.00444 £ * ]
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Chapter 7 Hydrodynamic Design Considerations

The value of nj selected for approximate design purposes in Chap. 9,
given by _2;123, is 0,295. The resulting pressure distributions and varla-
tions in Jgo are shown in Fig. 7-5.

The Case II result is an example of the degree of uniformlity to be
expected in Jo vhen the flows are well balanced. The extremes of Jg
differ by 0.66% only with even better halancing attainable by further
adjusting ,. The comparison of the results of Case I and Case II indi-
cate the degree of sensitivity of flow uniformity to variations of Ky
in the vig¢inity of the balanced condition.

The phrase "variation of nA" is meant to imply two types of adjust-
ments. As defined previously
Q% o _.J_‘Vn
Aav/ Poa Fon Aa (7-72)

ol
>

n

|

so that its value is affected by both the temperature and the area of
the cold region A, The area of the cold region is most easlly adjusted
by filling up unwanted space with structural material as dictated by
detalled calculations, such as those of this chapter or by any available
experimental data, AdJjustment of Ka by the temperature TA 1s made by
properly varylng the degree of the preheating of the gas before it enters
the cold region A, The specific motor designs given in Chap, 9 allow for
flow nonuniformities appropriate to a deviece in which there 1s no pre-
heater adjustment after assembly., IHowever, very precise flow uniformity

might be achleved by neutronlc controls in the preheaters, actuated by a
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Chapter 7 Hydrodynamic Design Considerations

differential temperature input between two points 23 and zz of region B.
The differences between the Kp of Cases I and II is 1,4%, This re-
sults in shifting the extremes of Jo from a Case II difference of 0.66%

to a Case I difference of 4,6%, The rms deviation is much less, being

tl.)-l-% for Case I,

T7=-9: Effects of Other Flow Laws

The relations used in Sec, 7-8 for P({) as a power series in { may
be interpreted physically as follows. The first two terms (including
t2) are due to dynamic effects not dependent upon the compressibility of
the fluid. It may be shown that these terms above express the hydrody-
namics of an incompressible fluid. The remaining terms ({* and higher)
are corrections for compressibility. By this type of approach the
approximate relation ni = 2n§ is developed, which implies that to order
¢2

P(&)-p (L) = const.

A 8

(7-72)
If the flow laws are modified, it is plausible that the new functions
P( §) may be written as a sum of terms of the form
P(t) = [ne'w flow law of incompressible fluid]
+ [compressibility correction terms from Sec. 7-8]

The purpose of this section is to show that although there may be some

doubt as to the proper flow law of the regions A and B, nevertheless a
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Effects of Other Flow Laws Section 7-9

high degree of uniformity can be obtalned in Jo without major readjust-
ments in Kpo

The first modification of the flow laws of regions A and B results
from the distributed eddies of the assumed turbulent flow, Locelly
(i.e., in the vicinity of some particular z) it is tempting to assert
that the stream, moving with some average velocity v with respect to the
walls, exercises the same drag as in ordinary channel flow, However, as
discussed in Sec. 7-5, the degree of turbulence 1s expected to be
strongly influenced by the flows at the porous walls. For these reasons
the following treatment gives only the magnitude of such drag terms.

From Sec. 7-2, the pressure gradients due to drag are

d v
do . _ ., 2PV

dz D (7-73)

where the frictlon factor 7 is an insensitive function of the Reynolds
number and 1s taken as constant, and D is the hydraulic dlameter of the
channel. In the notation of Sec, 7-8, Eq. 7~73 introduces an added term
of the form
g™ £ § 7¢(5) ¢
(7-74)

For the preceding numericel example this adds to Eq, 7~70 a term

—o00029L®

contributing at most 0,08 bar to the pressure Ppe A similar term
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characterizes the cold region A, Terms of such magnitude are easily

balanced out,

.A more serious effect than such drag corrections arises from the
state of ignorance as to the exact hydrodynamics of the hot region B,
As discussed 1n Sec. 7-5, there are two cases in vwhich the treatment
given in Sec, 7-8 are inapplicable, The flow law assumed in See, T7-T,

when specialized to an incompressible fluid, is given by

2
+pV = pg
Pg TPV = Py (7-75)
If the hot reglon B is laminar and not turbulent, the distributed veloc=-

ity profile causes this flow law, for the special geometry described in

App. C, to be
w: _2_ 2 o
Pgt 8 PV =Py +1.23pV = Pg
So that Eq. 7~68 becomes

2
A - PR By (P

If this relation applies, the approximation
2_ 2
(KA = ZKB )
is modified by matching quadratic terms in Eqs. 7-67 and 7-T7, to become

kPx X5 . 2:047 k2
A 4 " ) (7-78)

asa

(7-76) -
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This value of a requires an 11% smaller ares in the cold reglon A. The
degree of uniformity in Jo, upon rebalancing, is about as computed pre-
viously,

A final possibillity regarding the hot region B flow law is that a
transition from leminar to turbulent flow occurs as the gas progresses
through this region. The effect of such a transition upon the uniformity
in Jo(z), after balancing, ic assumed to give an incompressible flow law
of the form

P, +I 7= pe
s +(1.23-0.238) o7 = P (779)
This relation reduces to Eq. 7-76 as { - O but to Eq. 7~75 as { = 1,

From Eq. 7-79

R == [F = (F-)e]ett- & Tusre- L (1) unte
(7-80)

Substitution of the data of Table T-5 gives

P, (L) = 29.20 [1-0.8035¢"+ 003447¢°-001864 L*

-0.00472 ¢ (1-81)

whilst PA(';) is still given by Eq. 7-68. A good balance is obtained for
ni = 0,24734, giving velues of Jo whose extreme variation is 4.0% and
whose rms varlation is 11.5%.
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Thus despite the lack of knowledge of the exact hydrodynamics
governing the flow in the hot region B, 1t appears that an adequate
balance 1s obtained by a value of Kps whose uncertainty 1s within reason=-

able limits, which yields a good uniformity in Jo.
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CHAPTER 8
*
FABRICATION METHODS AND MATERIALS

«+she schlooped up a schloop of mud from the banks
of the great grey-green, greasy Limpopo, and
slapped it on his head, wvhere it made a cool
schloopy=~sloshy mud«cap all trickly behind his

ears,
R. Kipling, The Elephant's Child

8-1: Introduction

In this chapter some practical problems assccisted with Dumbo are
considered.

Section 8-2 describes pertinent physical properties of the refrac-
tory metals., In Sec., 8-3 several methods for incorporating UOz into
refractory metals are given. Sections 8- and 8-5 consider radiation
damage to the metal and the moderator., Sections 8-6 and 8-7 are devoted
to metallurgical and engineering problems associated with the fabrication
of the metal wall structures. Section B-8 considers the prcblems asso-
clated with the incorporation of magnesium powder into the polystyrene

moderator.

8-2: Metallurgical Considerations

Five refractory metals end their slloys are considered for

¥This chapter was prepared in collaboration with D, K. Gestson, J. Rs
Lilienthal, and F. J. Miller of the Los Alamos Scientific Laborastory.
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Chapter 8 Fabrication Methods and Materials

construction of the Dumbo wall, These metals and some of their pertinent
physical properties are listed in Table 8-1, More complete data are

given in App. B.

TABLE 8-

METAL MELTING POINT z:eoggm_s gé:&jqng i%“%—,sfg:{ggg'eé—m
TUNGSTEN 3623 °K 19.2 bams 350 kg/cm®
TANTALUM 3273 23.3
MOLYBDENUM 2923 2.4 2!
COLUMBIUM 2723 1.4
RHENIUM 3440 84.0

The Dumbo models do not require great tensile strength, The calcu~-
lated hoop stress on the metal wall for a typical Dumbo model is circa
5 kg/em®, This value is much less than the tensile strength of elther
molybdenum or tungsten at the operating tempecrature. The main stresses
occur where the material is cold and has the highest tensile strength.

Tungsten and molybdenum form a continuous series of solid solutions,
sn that one may draw a straight line between the two melting points to
obtain a melting point versus composition curve. The workability of the
solid solutions 1s better than that of the pure metals.

R. B. Gibney, Lee Richardson, and J. M, Dickinson of LASL have sug-

gested an alloy of circa 20% rhenium and 80% molybdenum. This alloy 1s
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reputed tc have excellent workability and a higher melting point ‘than
molybdenum, forming an ideal solld solution. The nuclear properties of
this alloy approximate those of pure tungsten. No data on tensile
strength are avallable,

Columbium and tantalum also form a continuous series ¢f solid solu=-
tions but data are lacking on their tensile strengths.

It is known that tungsten, molybdenum, and rhenium ere chemically
inert to both hydrogen and ammonia at temperatures typically found in

Dumbo.,

8~3: Methods for Addition of Uranium to the Refractory Metals

Five methods for adding uranium to the refractory metals are:

(a) Making cermets of UO- and the metal or alloy by various teche-
niques of powder metallurgy.

(b) Mixing uranium metal with the metal or alloy by powder metal-
lurgy.

(¢) Forming true alloys with uranium,

(d) Coating the surfaces of the metal with UOp,

(e} Laminating a layer of UO between foils of refractory metal,

Method (a) requires techniques that are similar to those used in
the manufacture of tungsten filaments, In the tungsten lamp industry,

1 in order to improve its

as much as 5% ThOo has been added to tungsten
physical properties by inhibition of crystal growth, Since U0z is sim-

ilar to ThO> in its chemical and physical properties, no difficulty
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should be experienced in replacing ThOz by UOs.

Battelle Memorial Inst:l:t:ute"2 has recently made mixtures of U0z and
molybdenum containing 25 volume percent of U0z and has rolled the re-
sulting cermet to a 0,01 om foil,

An advantage of this method 1s that the melting points of the sub-
stances remain unchanged since the materials are mutually insoluble,

The presence of U0z in the refractory metal retards crystal growth at
high temperatures, thereby maintaining a high tensile strength,

biethod (b) has the disadvantage that alloys are formed which are lig~
uids trapped ir a solid matrix at the temperatures encountered in Dumbo.

Method (c): Solid solutions are formed in the columbium-uranium
system. In the interesting region of composition the melting point is
about 2570°K only. Further, in any method involving metallic uranium,
the formation of UHa with the propellant gas is a possibility.

Method (d): Electrophoretic techniques have been employed by
W. J. McCreary of LASL to deposit thin uniform coatings of U0, on refrac=-
tory metals. No chemical bonding occurs, but the cwatings withstand mild
abrasion and considerable dlstortion.

Method (e) consists of folding longitudinally a UOp-coated refrac-
tory metal strip to form a sandwich., This strip is fabricated into a

linearized wall (see Sec, 8-7).

Methods (d) and (e) possess certain advantages in common., These
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(1) Higher loadings of U0z are possible than with cermets.

(2) Commercial refractory metel foil can be used.

(3) 1In special wall structures, such as linearized models, portions

may be unloaded or of graded loadings.

8<4: Radiation Damase to the Metal Structure

Typically, the metal core structure of a Dumbo reactor recelves an
integrated flux of 8,3 x 10*® neutrons/em®, Nucleonics, p. 56, December,

1954, states:

Molybdenum 1h its commerically pure form is embrittled to
such an extent after reactor irradiation to 1.9 - 5.9 x 102°
thermal neutrons/cm that it is unsafe for use infload
carrying reactor components at low temperatures, according
to tests by KAPL, A,_,_/

No other data are given. ﬁ0wever » +he néutron irradiation levels
for Dumbo are only a few percant of that used in the KAPL tests., Thus

there is no indication that such em’brlttlement would occur in D.mbo.

-

8-5: Radiation Damage to.the Moderator

The moderator inDumbo is typlcally irradiated to 3.8 x 10®% ev/gm.
Sisman and Boppﬁzﬁfaﬁve made an extensive study of the‘physical properties
of irradiate;d'/;lastics. .Irradiation levels up to 6.7 quI;O23 ev/gn were
studied./.»’%ior styrene polymers little change except darkening was noted,
The redia.tion level for Dumbo is abcut 5.7 timeés the meximum levels used
by S:Lsman and Bopp. Since darkening was the only observed change, it is

reasonable to hope that the moderator material will withstand 3.8 x 102*

ev/enm,
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8-6: Fabrication of Dumbo Rings

The engineering work fo date has been directed toward the fabrica-
tion of the metal elements of Dumbo tubes., This work is largely that of
D. K. Gestson and F., J. Miller, The experience gained in fabricating
and assembling a linearized sectibn_ of Dumbo wall was valusble in de-
signing and building the three dies for the circular wall, The dies
are: (1) A die, shown in Fig. 8-1, for tqlankins the parts to be corru~
gated., (2) A corrugating die, shown in:Fig, 8-2, for partially
corrugating the spacers, (3) A corrué.tiqg die, shown in Fig, 8-3, for
forming the channel rings. » '

In 1lieu of 0,0025 cm molybdgﬁm or tmgsign foll, the dies were
tested using 0.0025 cm brasas fo'il A prel:l.m:l.h;‘ry investigation indicated
that the depth of corruga.tions at the impedance Section could be held to
+0. 00025 cm for any glven ring The depth of cormga.tions across the
width of the ring surfacg can be held to +0,0005 cm i:pr any given ring.
No attempt was made to-f“c!:ontrol the forming pressure sé".__.that some variae-
tion in amplitude frcm ring to ring was noted. However, this amplitude
varilation appears eg’éy to reduce, Figure 8<% shows somé of the typical

“!’
washers blanked aq.ei corrugated by the dies. Enough rings were corrugated

to assenble a stq’ck approximately 1 cm high,
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Fabrication of Rings

Fig' 8-1:

A Blanking Die
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Fig. 8-2: A Corrugating Die for Partially Corrugating the Spacers
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Fig., 8-3: A Corrugating Die for Forming the Channel Rings
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Fig. 8-4: Washers Blanked a:nd Corrugsted by the Dies
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8-7: Metallurgical Fabrication Problems

The known fabrication problems thet present the greatest difficulty
ere as follows:

(a) Preferred orientation of the rolled out sheets:jofi;mlybdemm.
Rings of the refractory metels have not been made, However, it is known
from work on liﬁegrized well sections that corrugat:ihg 2 sheet of molyb=-
denum with the grodve\s running parallel to the rolling direction tends
to produce pleces whici\\grack along the ri@ges of the corrugations., Cor-
rugating normal to the di;éqfion in which the sheet was rolled produces

\\.
pieces which do not crack.

A, C, Briesmeister and P, J .‘.\"'Pe.‘i‘l.lone of LASL have shown for linear-
ized sections of Dumbo wall that the 'c“:rj:entation problem may be avoided.
To do this, the cormgatiogs" *‘a.re made b}f "'ro_ll:l.ng the foil through meshed
gears, so that bending gf"')}the metal without "s‘t\retching occurs. Figures
8-5 and 8-6 show suc__cé;sﬁ:lly corrugated foils of molybdemm and tungsten
and the dies usedvfdor this technique,

There are metallurgical methods for coping with preferred orienta=-
tion difficulties, but no particular work has been done in this problem
for Dumbo,

(b) Rolling of sheets of refractory metal impregnated with UOa.
Metallurgicel studles are necessary before cermets containing UOo can be

rolled out to the foil thickness specified in Chap. 9.
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Chapter 8 Fabrication Methods and Materials

This problem could be made easier by rolling sheets to smaller
width, such as would be used in designs involving linearized wall sec=-

tions, In these cases it is necessary to roll a ribbon of only about

1 cm width.

8-8: The Moderator Material ‘

The moderator consists of molded -polyst;yrene into which megnesium
powder has been incorporated to improve the thermal conductivity. Pree
liminary samples of this plastic, incorpdfating 10 to 50% magnesium
powder, have been made by J. S, Chm.'cl,ly,_'of LASL. Thermsl conductivity

measurements of these samples are giveri in Teble 8-2. These measurements

TABLE e—é
VOLUME PERCENT THERMAL
MAGNESIUM IN CONDUGTMITY
POLYSTYRENE watt/cm-deg
I0 4 xl0~3
20 5x1073
30 6x10-%
40 13x1073
50 45x1073




The Moderator Material Section 8.8

are due to R, L, Powell of the National Bureau of Standards, Boulder,
Colorado. The thermal conductivity of the 50% sample 1s satisfactory.
With more experimental work it should be possible to achieve this thermal

conductivity with less magnesium.
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CHAPTER 9
NUMERICAL DESIGN OF SOME SELECTED MOTORS .=
‘The rest of the time he picked up the meloq,.~i:inda
‘that he had dropped on his way to the Limpopo ==

for he was a Tidy Pachyderm,
R. Kipling, The Eleghant's Child

9«1: Introduction

An extensive and largely complete array of theoretical tools
pertaining to the design of rocket motors of the Metal Dumbo type are
developed and presentéd in previous chapters, The utility of these de~-
velopments in practical moth designs may be obscured not only by the
necessary mathematical detail but a.lso by the large number of subjects
which it is necessary to treat. Never_theless, these many lines of attack
do converge upon a practical and attractive type of nuclear rocket motor
whose features and behavj.or are shown in this chapter.

A few distinctive models of the Dumbo type are presented in this
chapter as typical. Each model is coﬁsidered as completely as current

understanding permits insofar as performence under-various conditlons is

concerned.

9-2: Description of Models A = D

The four 4ni6dels described in this chapter are:

Model A: This Dumbo motor is constructed of nineteen Dumbo tubes

on

e
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Chapter 9 . Numerical Design of Some Selected Motors

with normal flow path for the hydrogen. The Dumbo heat exchenger is
constructed of molybd.ehum foil 0,0025 cm thick, corrugated into washers
of 4 cm inner radius and 5 cm outer radius. The molybdenum is impreg-
nated with 25 volume percent UOa.* The tubes ere 55 em long within a
reflector having a cavity 60 cm high. Moderation is provided by poly=
styrene (CH) impregnated with 20% magnesium, This mixture is assumed to
have a thermal conductivity of 0,01 cal/cmesec-deg or more. This model
is capable of 1.5 x 10° watts powei', heating Hz gas to 2500°K with an
operating pressure of 25 atmospheres. The power density is flat and
temperature uniformity of the hottgs% parts of the metal wall is maine
tained to +200°. This model is perhaps the simplest of the Dumbo type
to construct and test and has good performance characteristics, Detalled
analysis is treated in Sec. 9;-3.

Model B: This motor, described in Sec, 9-4, 1s designed to be in
the 10 begawatt class and is constructed of 169 tubes of the dimensions
described in Model A, :.It is larger, heavier, and more powerful than
Model A, It is constfucted similarly of molybdenum.

Model C: 'I'his motor, described in Sec., 9-5, is distinguished from
Model A by use pf a tungsten heat-exchanger mgteria.l containing 25 volume
percent UQp., f'.[:he higher temperature properties of the tungsten may be
used eitiler to produce a higher gas temperature, or tc allow less inti-

mate heat transfer in the Dumbo exchanger, or to allow a larger factor of

¥Tnroughout this report 'uranium” or "U" refers to pure U=oo,

g
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safety when operated as Model A, This motor requires inverted geometry
and flow patterns., The ﬁv:!.neteen tubes are constructed with similer die
mensions to those of Mode]f\‘\lf., although the small introductory impedsnces
in the metal wall are located‘ .at the outer edge of the tubes,

Model D: This motor, deséiai‘bed in Sec. 9-6, is a large version of
the tungsten Dumbo (Model C) with 169 tubes and appropriately larger
power, :

A comparison of these four models: 1s glven in Sec, 9«7,

9-3: Model A Design Features o ."\

This “domestic size" motor is 4c"’dmposed_\of nineteen Dumbo tubes with
their moderating cores, the ent:lgrr’é." reactor cZSx\'e being reflected by beﬁl-
liwm on all sides. The lower -’i:eflector cdnta:!iiqs exit ports for the
heated hydrogen as well as 's;;zpply ducts for verir cold supply hydrogen.

Deslgn features are developed in the followii;.ng order:

(a) Mpoderator and reflector requirements., 2

(b) Energetics, flow, -nd pressure design. .:‘»

Considerable construction detail of the metai‘-{ Dumbo wall is imposed
from the start on the basis of preliminai'y design, 1‘%‘\ This informetion 1s
compiled in Table 9-1, A drawing of this wall is siipwn in Fig, 9-1. |

The moderstor and reflector design is associatga with the hydrody-~
namic problems discussed in Chap, 7. As shm in Sec. 778, it 1s
possible to approximately satisfy the condition for flow uniformity by
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TABLE 9-1

Numerical Design of Some Selected Motors

MODEL A METAL WALL

DIMENSIONS

FULLY CORRUGATED PIECES

PARTIALLY CORRUGATED PIECIES

FOIL THICKNESS,T 0.0025cm
INNER RADIUS 4.00 cm

OUTER RADIUS 5,00 com
NO. of CORRUGATIONS

CORRUGATION PERIOD, v .

AT INNER RADIUS O 075 em

AT OUTER RADWUS O. 09§7sem
CORRUGATION HEIGHT, '

a, O. 0|5 cm

CORRUGATION LENGTH 1,00cm

FOIL THIGKNESS, T/2 0.00125cm

INNER RADIUS 400 cm
. OUTER RADIUS 5,00 cm
NO. of CORRUGATIONS 336

" CORRUGATION PERIOD, v

AT INNER RADIUS 0.075 ocm

AT OUTER RADIUS 0.09375cm
CORRUGATION HEIGHT,

(agaq,) '0.01193 cm

CORRUGATION LENGTH 0.47¢m

CALL ONE "UNIT" A/ 'STACK OF 2 PARTIALLY CORRUGATED

WITH ONE FULLY CORRUGATED PIECE .
Total No. Units ,for 19 tubes 52,250
Total Mass Mo for |19 tubes 57,06 kg
Total Volume Metal in Wall 7.388 i
5.541 h
__vo, 1.847 i

ASSUME PREHEATER REQUIREMENTS TO CORRESPOND TO
2.22 cm {EXTRA WALL PER TUBE.

Total Mqis Mo in Motor
Total Mdss UO, in Motor
Total Mass U in Motor

59.4 kg
21.) kg
18.6 kg

(CONTINUED )
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TABLE 9 -I

Number of channels per unit

Total number of chonnels in motor

Heat exchange surface per unit

Heat exchange surface per channel
Total heat exchange surface in motor

Total outer tube area
Total inner fube area

CONT.

672

3s5x10*

n3 cm?*
0.l69cm*
5.90 x I0°cm®

32.8 x10%cm®
26.3 x 10" cm®

CHANNEL GEOMETRY

AT EXIT
{OUTER RADIUS OF TUBE)

AT ENTRANCE
(INNER RADIUS OF TUBE)

v = 009375 cm.

a, = 0.015 cm

Cross sectional area =1/2a, v
=0.70XIG%m
(Total open area, 24.5x10%cm®)

0.075 cm.

<
"

q, = 0.00307 cm

Cross sectional area =1/2 @, v
20415%10 "em®
(Total open area, 4.03x10° cm)
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SCALE DRAWING OF MODEL A DUMBO METAL WALL
em scae L4 3
EXCEPT WHERE INDICATED

Fig. 9-1
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adjusting the areas of hot gas and cold gas flow, given by AB and AA’

()-e B

For T]3 = 2500°K and T, = 255°K the ratio beccmes

A
A8/ A, * 4.427

respectively, such that

(9-1)

(9-2)
As shown in Chap., 7, it is possible to readjust TA as a vernler control
for purposes of balancing the flow nonuniformities along a Dumbo tube,
The simple relation of Eq, 9-2 is that chosen for the nuclear phase of
the design problem. Table 9-2 p£é§ents the reactor design characteris=
ties of the Model A Dumbo motor, Figs. 9-2 end 1-1 are drawings of the
reactor design of Dumbo Model A, '

Another aspect of this motor is the temperature to which it heats
the hydrogen. If heat transfer were perfect and all regions behaved
uniformly, then the gas temperature would be chosen as the highest pos=
sible working temperature of the metal wall., Because of the extensive
investigations of the preceding chapters it is possible to take account
of deviations from this ideal condition. Corrections are made for the
following effects:

Effect a: Imperfect heat transfer, resulting in a temperature dif-

ference es between the gas and the metal wall, as developed in Chap. 2.
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TABLE 95-2

NUCLEAR DESIGN AND MATERIALS OF
MODEL A MOTOR

Materials kg moles N, moles /1{
Mo C 59.4 619 3.91
CH 28.6 2200 13.90
Mg 18.5 762 4.82
U0, 211 79 0.50

U (18.6) 79 0.50
Be ({reflector) $77.6

Total mass 705.2

REFLECTOR DESCRIPTION

Inside radius 28.97 cm inner height 60.00 cm
Outer radius 4222 cm Outer height 84.08 ¢m
Volume of Be 312.2 li
4y .1 MOTOSMQESCRETION
Height, Lo «60.0Gr cm ) H’y'dr'oug:”ai'a'rﬁéie?, B I
Radius, R, 28.97 cm Hot region ' ¥7.05 cme
Volume, Vo 158.2 h Cold region 442 cm
AREAS

Moderator region 6633 cm®

Cold gas flow 258.5

Structural bracing 333"

Meta!l wall 537.2

Hot gas flow 11444

Total area 2636.7 ¢m’

MODERATOR REGION
{For metal wali see table 9-1)
Volume distribution Effective densities

68.4 % CH Q719 ngCm:
Mg 26.8% Mg 0466 gm/cm
Void 4.8 %

Nyg = 0.347 Ngy
Outer radius 40 om
Inner radius 221 cm

*NOTEI Structural allotment equivalent to one 1.5cm diameter rod per Dumbo tube.
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FIGURE 9-2

SECTIONAL VIEWS

MODEL A DUMBO
SCALE =17

MATERIALS .

Ml Be REFLECTOR
I METAL WALL
8 MODERATOR

SECTION BB

HOT GAS QUTLET
COLD GAS NLET
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Effect b: Deviations from the flat flux condition which is approx-
imately satisfied by the design methods of Chap. €.

Effect ¢: Variations of flow through the wall at various heights
along a tube, resulting in temperature variations, as described in
Chap. T.

Effect d: Hot and cold spots along the wall due to nonuniformities
of wall construction, as described in Chap, 4.

In order to predict these several correctlions estimates regarding
nonuniformities must be assumed, The authors have attempted to assign
two extreme values to each of three quantities, representing the opti-
mistic @ and pessimistic @ e%tremes, as follows:

© @

kN

Maximum working temperature of

the wall . 2923°K (M.P.) 2700k
Maximm flux intensity* above B

the mean N 3% 7%
ms deviations in 1% 12%

Effect a: From Eqs. 2-105 and 2-53 eg 1s expressed in terms of the

average flow density Jo 1ssuing from the outside of the Dumbo tubes as

8, =181 Jo =0.552x10"* Qo

(9-3)

¥Tt is expected 't;hat flow variations from effect ¢ are dominated by fiux
nonuniformities. Such variations are regarded as lumped into this

figure.
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Effects b and ¢: Effects of local power variations are interpreted
in terms of the gas heat capacity cp at the high temperature and the
enthalpy increase AH of the gas in passing through the wall, so that each
1% power variation about the mean results in a temperature increase 5T,

given by
AH
8T = —— =20°
' 100¢,
(9-4)
where e, is 4.3 cal/gm-deg and AH is 8400 cal/gm.
Effect d4: Relations involving the wal®’ construction are complicated

but computations for this model fit the linear empirical relation

| (8T)m=|2.| Jo (9-5)

for each 1% rms deviation in 1. These relations predict the results
shown in Fig. 9-3 for the final gas temperature corresponding to various
flow densities Jg oi; total flows Qq. As & rough practical index of the
performance of the motor one may consider the thrust occurring from a
nozzle whose exit velocity is twice the velocity of sound at the chamber
temperature (~0.9 that for complete expansion). The performance is shown
in Fig. 9. Conversions to power levels are shown in Fig., 9-5.

All the preceding design results are independent of the choice of
operating pressure for the Model A Dumbo motor. Within the motor, it is
generally desirable to meintain the pressures sufficiently high so that

flows are sub-sonic, For the Model A motor the rule that
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{
' FIG. 9-3
FINAL GAS TEMPERATURE IN
MODEL A MOTOR
3000 ll
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Fig. 9-55 Totel Flow of Hp for Various Power Levels
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p =6xI0°'Q (bar)
8 (9-6)

insures that the hot gas velocity does not exceed Mﬁch 0.4 (referred to
2500°K). As an example, for Qg = 4 x 10* gm/sec (power approximately
1500 megawatts) the operating pressure is 24 ber, according to this rule.
This value is consistent with the pressure dis'b:ribution given in Fig. T=5
and Table 7-5. This distribution is computed for the Mcdel A Dumbo
motor,

Relatlons of Chap. 3 are used to obtain the pressure drop across
the metal wall. For the ModelA‘A__motor the rule that the pressure drop
through the moderator 1s six t:l.n;es that of the metal wall insures reason-~
able lack of sensitivity of perfom&gce to variations in the metal wall
construction between différent gross regions of a tube., With this factor
of six each 1% error in the introductory height @), causes ~5.4 degrees
change in the output temperature due to the modified flow through the
wall.

If larger operating pressures are selected,_ ell pressure varlations
within the motor are reduced proportionately. éince pressures in the
renge of 100 bar are technically feasible, comparatively minor consider-
ations might justify the cholce of larger pressureé_.

Ta.‘t_;ie 9«3 lists dimensions of the plastic modefator wafers and some

flow dg.fa. from the numerical example of Table T=5 a.nd' Fig. 7-5, Each
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-TABLE 9-3
{a) DETAILS_OF PLASTIC WAFERS

INNER RADIUS 2.2lcrhv THICKNESS 00,0975 cm
OUTER RADIUS 4,00cm MOSAIC CELL TABS every 3mm
SEMI-CIRCULAR HOLES NUMBER CELLS per WAFER 84

{in plastic) ;

DIAM. 0,025¢m

LENGTH 1,79 cm

NUMBER HOLES per WAFER

336

(b) MOSAIC GELLS

WIDTH  0.30cm ='4 v

HEIGHT 0.10cm = 5(a,+27)

NUMBER OF METAL CHANNELS per CELL 40
NUMBER OF SUPPLY HOLES IN PLASTIC per CELL 4

(c) TYPICAL FLOW DATA THRU WALL

ENTERING ENTERING | LEAVING

PLASTIC - METAL WALL- METAL WALL
TEMPERATURE 220° K 305°K | 2500° K
PRESSURE 31.4,atm 29.5atm 29.2 atm .
VELOCITY 2.19 x 10 cm/sec |- 0.57 x10*cm/sec
MACH NO. 07 _ 0.015
REYNOLDS NO. 8700 133 69

% REYNOLDS NO. AT W, (FIG.9~1) IS 163,
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plastic wafer alternates with a 0.,0025 cm thick Dural wafer as shown in
Fig, 1l-12,

Some aspects of the Dumbo motor are not peculiar to pachydermalates
but are found in most nuclear rocket moter designs, Solutions of this
type of problem are avolded in this study as far as possible although
iwo plausible details; tpe beryllium reflecto‘r.*'éhd the preheater design,
are described at this point, :

The beryllium reflector: Althougl;.this reflector is computed as a

circular cylindrical shell, the Dumbotube array suggests an equivalent
hexagonal geometry, as shown in F:lgs. }-l and 9«2, A hexagonal geometry
allows the reflector to be ma@he"'bbf ma.nyv flat slabs ylelding a laminated
type of structure., Controlled spacing between these plates provides flow
puths for the "liquid Hy" feed as coolant for the reflector, All inte~
rior surfeces of the refiector are thermally inéﬁ,].ated from the hot gas
in order to protect the metal from excessive tanpé‘xjatures and to aveoid
losses of energy frgn the surfaces. This 1s accomyi:’n_.shed with thin
tungsten or molybdénum foil to which 9,05 cm Zr0Os is i)_onded.* The come-
posite folls are ﬁsed wlth the Zr0, adjacent to the beryllium surfaces
and with the refractory metal backing exposed to the hot gas.

A partiéular construction problem arises at the lower plate in which

thirty-six holes of 6 cm Alameter are required for exhausting the hot

*Such a bonding which is highly tenacious and wilthstands stroug thermal
shock:~ has been acccmplished by W. J. McCreary at Los Alamos.
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gas. The area of these holes equals the total hot area A}3 of the
chamber, and represents Lo% of the total lower plate area. The resulting
loss of neutron reflection presumebly can be compensated bty maeking a
correspendingly thicker reflector plate. However, the open area may be
reducc.ad 1f the operating pressure is increased to insure that the gas
velocities remain subssonic.

Preheater design: Although some heating of the hydrogen occurs in

the Be reflector, the exilt temperature of this gas 1s only approximately
100°K so that some mdded heating of this gas will be necessary to arrive
at the 220°K temperature required for the cold gas duct, For this pur-

pose the lowest 3 cm of each Dumbo tube is devoted to a low power

turbulent heat exchanger., Table 9-i gives the energy requirements of

TABLE 9-4
TEMPERATURE"| ENTHALPY
Ny
HOTTEST GAS 2500°. K 9475calgm
: } 90.23 %
DUMBO WALL 3.00
GAS ENTERS 220 744 :
MODERATOR : 427
GAS ENTERS 975 344 .
PREHEATER . 550
GAS ENTERS 3 .
REFLECTOR 27 Ho -
100.00 %
LIQUID ( H,) 20.3 (63)
# COMPUTED ON BASIS OF IOOBAR PRESSURE.
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the gas* at each stage of its flow on the basis of Fig, 7-1. No detailed
design of the preheater is proposed, but channels of hydraulic diameter
0.03 em with a pressure drop of 0.3 bars are typical, Power density i1s
similar to that of the major portion of the reactor so that no serious

neutronic coupling problem wilith the lower portion of the Dumbo tubes is

expected,

gli: Model B Design Features

This enlarged version of the ModelhA motor consists of 169 Dumbo
tubes with their moderating core., The ﬁetal vall of each tube is iden-
tical with that of Model A, as described in Table 9-1, The description
of the nuclear design of this motor is gilven in Table 9-5. Fig, 9-6
presents a drawing of the Model B motor. The temperature performance for
a given Jo is identical tc that of Model A, Hoyever, the total flow Qo
and the thrust indicated in Figs. 9-3 and 94 mﬁ;t be multiplied by 8.895
due to the larger number of tubes, For example,.the temperature perform=-
ance characteristics obtained when Model A operates at 1.5 hegawstts are
obtained by Model B at 13.3 begawatts,

Operating pressure riay be less in the Model B Dumbo motor than thet
of Model A because of the 63% larger gas flow area for each tube, For

this model the rule

*¥Since the Dumbo motors always operate above the critical pressure of
Ho (12.8 bar) there is no discontinuous phase transition from liquid to

gas. (See Fig. 7-2.)

289

P -~ e



Chapter 9 Numerical Design of Some Selected Motors

TABLE 9-5
NUCLEAR DESIGN AND MATERIALS OF
MODEL B MOTOR

Materials kg moles N; , moles/li
Mo 528.3 5,506 3.07
CH 135.8 10346 5.83
Mg 87.8 3,610 2.01
Uo, 187.7 703 0.39

U - (1654 703 0.39
Be (reflector) 1820.2

Total mass 2759.8

REFLECTOR DESCRIPTION

inside radius 97.53 cm inner height 60.00 cm
Outer radiuvs 106.66 cm QOuter ‘height 77.68 cm
Volume of Be 9833 i

— = |
MOTOR DESCRIPTION

Height, Lo 60.00 cm Hydraulic Diameter
Radius, R, 97.53 com Hot region 11,22 cm
Volume, Vo 793 li Cold region 2.88 cm
| ———
AREAS

Modergtor region 3,148 cm®

Cold gas flow 3752

Structural bracing 1.595™

Metal wall 4778

Hot gas flow 16610

Total area 29,883 cm®

MODERATOR  REGION N
Outer radius 4.0 cm Inner radivs 3,175 cm

* NOTE : Structural cllotment equivaient to one 174 cm radius rod per Dumbo tube.
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Py :041x10°"°Q, bar

(97)
insures gar velocities to be less than Maech 04, For example, I Qo is
35.6 x 10* gn/sec then py is 1L.§ bar by Eq. 9-7.

Model B moderator wofers regquire only half as miy semiecicoular
holes as those of Model A, and only two such holes supply cach mosale
cell of the Model B metnd wall, This ocours because the inser radius
of the Model B wafers {: larger than for Model A, Othewrwlse the cone
struction and performance of the Model A motor apply. Reflector

construction and preheater design is similar to that of Model A,

9<5: NModel C Desigs Features

The MNodel € motor uses nineteen Dumbo tubes mude of 0,002% e thick
foil., The tungsten is tmpregnated with 25 volume pereent U0p, Due o
the increased moderator reguirements of s fungsten reactor, this sodel
uses the inverted Dumbo geometyy L which the muderator purrounds the
metial wall, The gas flow pssges through the plastic and the metal walil
in turn, with the hot gos flowing dowm the innide of euch Dumbo tube.
The metal wall gecmetry is thut of Table 9«1 and Fig. 9«1 except that the
partinliy corrugnted pieces furm the stabilizing impedance along the
cuter radiuz of the metal wall and produce u differcont channel geometry,
Table S-6 and Figs. 9«7 and Y9-8 present the nuelear design of this mostor.

Compared to the Model A motor this model poasesses a large beryllium
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TABLE 9-6
NUCLEAR DESIGN AND MATERIALS OF
MODEL C MOTOR

Materials kg moles N., moles/li
w 2.3 610 2.24
CH 123.6 9507 - 3489
Mg 79.9 3285 12.06
vo, 2].1 79 0.29

v (186) 79 0.29
Be ({reflector) 1755.1

Total mass 2092.0

REFLECTOR DESCRIPTION

ingide rodius 38.02 cm inner height 60.00 om
Outer rodins 61,58 cm Quter height 102.54 cm
Volume of Be 9487 li

MOTOR DESCRIPTION

Height, Lo 60.00 cm Hydroulic Diometer
Rodivs, R, 38.02 cm Mot region 10.0 cm
Volume, V, 2725 i Cold region 0.633cm
AREAS

Moderator ragion  2803.2 cm®

Cold gas flow 215.7

Structural bracing 300

Metal woll 537.2

Hot gas flow 959%.1

Tolal area 4%4 1.2 cm

MODERATOR REGION
{Ses figurs 9-7)
E ffective density
CH 0735 gm/cm’
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FIGURE 9-7

MODEL C DUMBO
SCALE =T
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reflector and is conseguently rmuch heavier,
The temperature performance of this motor is enalyzed in a manner

like that for the Model A. The following quantitles are assumed:

® O

Maximum working temperature of

the wall 3640°K (M.P.)  3300°%K
Maximum flux intensity above =

the mean 3% 7%
rms deviation in oy 1% 1%

Values of 6g for this model are given by

- -2
§,:-287 Jo =1093x107Q, (5.6)

where Jo is the flow ver em? of interior tube surface. The effects of
power variatlons, flow variations, and wall construction variations are
similar to those described for Model A. The performance for this motor
is sb~wn in Fig. 9-9.
For the Model C motor, the rule that
p_= 7.7 x107'Q, bor
8 (9-9)
insures gas velocities to be less than Mach O.L. Thus Py is 28% larger
than in Model A,
The reflector of the Model C rocket might be made as shown in
Fig., 9-8. However, the feasibility of such construction with beryllium

has not been investigated. Preheaters are similar to those of Model A,
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FIGURE 9-9 !
1

FINAL GAS TEMPERATURE IN MODEL C

4000

\@

\@

~—_
T~

3000

°K

Qo (ka/sec)
20 40 60
1000 I ] |
0

Jo gm/cmzsec.

297

o EBRET



Chapter 9 Numerical Design of Some Selected Motors

9-6: Model D Design Features

]

This device is a tungsten motor having 169 Dumbo tubes, It is an
inverted Dumbo model, like Model C. Its nuclear design is described in
Table 9-7, U(perating temperatures for a given J5 are the same as those
for Model C, as shown in Fig. 9-8, although the corresponding total flow
Qo 1s 8.895 times greater,

For the Model D motor, the rule that

= 0.87 x10™°Q. bo
pB X o or (9-10)

insures gas velocities to be less than Mach 0.4,

9-7: Comparison of the Wour Models

A comparison of some features of the previous four models 1s shown
in Fig. 9-1C. The comparison of mass, size, and shape is evident from
the figure., Performance is evaluated in terms of the hydrogen flow Qg
required to produce an arbitrary thrust. This thrust I1s 8.895 times
greater for the large motors (Models B and D) than for the small ones
(Models A and C). The performance is computed on the basis of molecular
hydrogen of constant specific heat, as was described for Fig, 9-4. This
assumption underestimates the thrust. According to the chart, Fig., 9-10,
the tungsten motors show so small an improvement over the corresponding
molybdenum motors that their ranges of uncertainty overlap. However,

the presence of hydrogen dissoclation, due to the high temperatures
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cemparlson of the Four Models Section 9-7

TABLE 9-7

NUCLEAR DESIGN AND MATERIALS OF
MODEL D MOTOR

Materials kg moles N, , moles /li
w 998.9 5429 3,57
CH 421.3 32,408 21.32
Mg 272.4 11,201 7.37
U0, 187.7 703 0.46

U (165.4) 703 0,46
Be ({reflector) 26460

Tota! mass 4526.3

—————-———-————————-—==
REFLECTOR DESCRIPTION

Inside radius 89,80 c¢cm inner height 60.00 cm
Outer radius 103,79 cm Outer height 87.18 cm
Volume of Be 14303 i

) MOTOR OESCRIPTION
Height, Lo 60.00 cin Hydraulic Diometer
Radius, Ro 89,80 c¢m Hot region 0.0 cm

Volume, Vo 15200 i Cold region 0.6 cm
AREAS

Moderator region 9,767 cm®

Gold gas flow 1920

Structural brecing 369

Metal woll 4778

Hot gas tlow 8500

Total area 25334 cmt
299
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MODEL A MODEL B MODEL C MODEL D
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Flow ® 52ug/sec(2550’n , @ 450 kg/sec(2550°K) s OMDg/ec(300N) | / ® 830xg/sec(3050°K)
of H, @mswsec(tsatb'l) 5% vg/secli9N™K) ( @mwsec(zwn/ Q/ @ $00kg/sec(2380°K) /’

THRUST 40meric ton 356 metric ton A0metric ton 356metric ton

Timetric ton=10"gm. =10" dyne] FIGURE 9-10

COMPARISON OF FOUR DUMBO MOTORS




Veviants on the Designs Section 9-8

attainable by tungsten, can prove so advantageous in several ways that
the comparison given by Fig., 9-10 is grossly affected. “The possible

improvements from these dissociation effects are discussed in App. D.

9-8: Variants on the Designs

Several variations of these designs possess attractive features,

Among these are the following:

(1) The number, arrangement, and size of tubes may be adjusted as
desired,

(2) The degree of loading the metal wall with UO may be adjusted
over a considerable range which is consistent with nuclear demends and
metallurgical properties,

(3) Alloys of molybdenum with tungsten or rhenium, having inter-
mediate thermal properties and better fabrication properties than either
pure metal, may be used. ‘

() Tt is interesting to consider the effect of making the Dumbo
wall of heavier gauge foil, which may ease fabrication prgblems.

Table 9-8 shows that thils procedure, keeping the moderator_construction
the same, allows reduction in the reflector thickness and in the total
mass of the motor. Changes in the criticality k are shown for this
variant.

(5) The composite CH-Be reflector described in Sec. 6-8 may be

applied with success to the large Model B motor, although it presents no
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Chapter 9 Numerical Design of Some Selected Motors
TABLE 9-8
THE USE OF THICKER FOILS IN
19 TUBE DUMBO DESIGNS
(a) Molybdenum, Regular Flow
PLY | * 2 3
CRITICALITY, k 1,000 1.049 L066
CORE RADIUS, Ro 27.9¢cm 279 279
CORE HEIGHT, Lo 60.0cm 60.0 60,0
REFLEGCTOR RADIUS 40.2c¢cm 36.4 34,6
REFLECTOR HEIGHT 82.7cm 76.1 729
REFLECTOR MASS 507.2kg 3150 237.2
U0, MASS 21t kg 42.2 633
TOTAL MASS 632,7 kg 521.0 5237
% THESE DATA ARE SIMILAR TO, BUT NOT IDENITICAL TO, MODEL A
——— e
{b) Tungsten, Inverted Flow

PLY % 2 3
CRITICALITY, k 1.000 1.012 0,987
CORE RADIUS, Ro 38.6cm 38.0 38.0
CORE HEIGHT, Lo 60.0cm 60.0 60.0
REFLECTOR RADIUS 61.6 cm 54.6 51.9
REFLECTOR HEIGHT 102.5¢cm 90.6 85.9
REFLECTOR MASS 1755.2 kg 1065.0 841.5
U0, MASS 211 kg 42.2 63.3
TOTAL MASS 2092.0 kg 1535.2 1445.2

* MODEL C DATA

3
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Variants on the Designs Section 9-8

advantage with the large Model D motor, Some indicastion of the utility
of this modification 1s seen in Table 9-9. However, the details of how
to protect plastic or other hydrogenous moderator which is arranged in-

side the Be reflector are not covered in this report.

TABLE 9-9
MODEL B MODEL B’
WITH Be REFLECTOR WITH COMPOSITE
REFLECTOR
CORE RADIUS 97.5 cm 82.8
CORE HEIGHT 60 cm 60
REFLECTOR RADIUS 106.7 cm 88.9
REFLECTOR HEIGHT 87.7cm 69.8
MASS Be 1820 kg 498
MASS CH in REFLECTOR — kg 173
TOTAL MASS 2760 kg 1787

It should be polnted out that no attempt has been made to obtain
optimum designs., Many of the parameters are chosen elther arbitrarily
or for convenience, With the material of this chapter as a background,
optimization of design obviously can be carried out. Similarly, the
cholce of hydrogen for the propella.nt' 1s to some extent arbitrary, and

some other propellants can be consldered in optimization,
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CHAPTER 10
CONCLUDING TOPICS

At last things grew so exciting that his dear fami-
lies went off one by one in a hurry to the banks of
the great grey-green greasy Limpopo River, all set
about by fever trees, to borrow new noses from the
Crocodile, When they came back nobody spanked any~

body any more,
R. Kipling, The Elephant's Child

10-1: Introduction

The preceding chapters of this report are devoted to considerstion
of the theory and practical information relating to a specific type of
rocket reactor. These considerations culminate in the numerical designs
of Chap. 9. In Sec. 10-2, varliants of Dumbo are considered which depart,
more-or=less radically, from the standard Dumbo motors of Chap., 9. In
Sec, 10-3, other uses of Dumbo-type reactors are mentioned. In
Sec, 10-4, topies are listed which are salient to the Dumbo design, and

for which more information is required.

10-2: Variants of Dumbo

Many varients of this type of reactor are possible which still pre-
serve its basic features. Some of these variations are in the fine
structure of the heat-exchanger wall, the geometry of the cold regions,

and the materials in the wall.
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Chapter 10 Concluding Topics

Some of the changes that can be made in the wall which still allow
laminar flow and dynamic insulation are:

( a) Porous metal walls, of either sintered metal powder or fine
wire. These possess extremely efficient heat-transfer characteristies.
Design of these heat exchangers must include consideration of three-
dimensionsl temperature-flow stability.*

(b) Walls which have regular channels and which are stabilized in
the same fashion as the regular Dumbo walls, Concentric lsyers of uni-
form wire mesh, concentric perforated cylinders, or a combination of
these two methods are examples. An advantage of this type of design is
that it allows the use of materials of small neutron cross section for
the initial portion of the heating channel, and tungsten for the high

temperature regions.

(c) Linearized versions of the conventional Dumbo wall. These
offer the following advantages: The narrow width of the foil allows the
rolling process to be easier and more accurate., Virtually no wastage
occurs in the fabrication of the foil., The simple and accurate method
of forming the heating channels discussed in Sec. 8~7 is permitted. The

linearized version allows the use of the laminated foil described in

Sec. 8-3.

¥This subject has been treated in part by B. W, Knight, Jr. and is to be
issued at a later date. It can be shown that no 3-dimensional flow
effects unstabilize an exchanger which is stable according to the
l-dimensional criterion of Eq. 3-5.



Other Uses Section 10-3

A possible modification in the basic geometry of Dumbo is the con=-
centric cylinder model, shown in Fig. 10-1., The hot and cold gas flow
passages are the annuli between adjacent Dumbo walls and between adjacent
moderator regions, respectively. Several advantages of this model are
suggested by its radlal symmetry. Linearized walls can be used either
in polygonal Dumbo tubes or in polygonal versions of the concentric
cylinder model,

Another variant is a metal wall which is constructed of fully corru-
gated rings mede of Mo«UOz and flat (partia.lly corrugated) rings mede of
W-UO2. The W-UOp rings extend about 15% further than the Mo-UOp rings,
This heat exchanger heats the gas above the molybdenum temperature, and
gives the high-temperature performance of a tungsten motor with half the

nuclear poisoning.

10-3: Other Uses of Dumbo-Type Reactors

The properties of Dumbo-~type reactors that make other applications

feasible are:

(1) The flow impedance of the heat exchanger is small compared with
turbulent types.

(2) Moderator is distributed throughout the reactor, yet is main-
tailned at a low temperature. This allows the use of high temperature
materials that could not be used in unmoderated reactors.

(3) The flat flux distribution, which is obtained by proper
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Fig. 10-1: Concentric Cylinder Model
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Other Uses Section 10«3

adjustment of moderator and reflector, permits uniform power distribu-
tion, even though both the construction and the UOz=loading are kept
uniform,

(k) These reactors have low msss,

(S) The small size of the reactor permits the use of small gamma
ray shields,

There are several typ;saof aircraft that could be driven by a Dumbo
reactor. Among these are rocket and ramjet aircraft.

The Dumbo reactor, without major changes, may be applied to rocket
aircraft. The smell size and mass of the reactor and of the gamma ray
shields are important for this aepplication. These reactors may be de=
signed to be smaller than those described in Chap. 9.

Ramjet applications require several changes in the reactor design
to avold oxidation of the heat exchanger by the air. Thus, oxidation
resistant metals must be used for the heat exchanger, The low stresses
encountered in the Dumbo reactor may permit operation at higher tempera-
tures than normelly used for these metals, The uniformity of the power
density, low heat-exchanger impedance, lightness, and smaell size are
valuable for this type of application.

Since these reactors are designed to heat gases to high tempera-
tures, they might be adaptable to driving closed-cycle turbine power

plants,

309

PN - =y




Chapter 10 Concluding Topics

10-k: A Research and Development Program for Dumbo

The material of this report suggests several research end develop-

ment projects. Some of these are necessary to the engineering of a Dumbo

reactor.

(1)

(2)

These are as follows:

Single channel temperature-flow stabllity investigations, This

work is complete and confirms the theory as given in this re-

port, A report will be issued covering this investigation,

Tests on an electrically heated wall sample, Full scale tests

of a sample of heat~exchanger wall are possible. 8ince such

a plece may be very small, a few kilowatts power are enough to

do the necessary heating. From these tests information may be

obtained on the following:

(a) Multi-channel temperature-flow stability.

(b) Temperature uniformity of the metal wall within a mosaic
cell,

(¢) Heat transfer data,

(a) Demonstration and measurement of the Nernst effect.

(e) Measurement of the performence of a small nozzle to cbtain
information on super~-Dumbo operation.

(£) Studies of the effectiveness of dynamic insulation.

(g) Strength of materials under a range of operating
conditions., .

(h) Effects of system vibration.




Research and Development Program Section 104

(1) Effects of thermal cycling.

(J) Chemical and thermal behavior of UOp and the refractory
metals.

(3) Hydrodynamic studies. These would reveal the flow law in the
hot gas region. While thics knowledge is not crucial to the
engineering of Dumbo it 1s of direct scientific interest. The
theory of the flow balance over the length of a Dumbo tube
could be confirmed,

() Metallurgical studies, Such studies would consist of the
followling:

(a.) Studies of the preparation and rolling of cermets of U0z
and the refractory metals in the region of interesting
concentration.

(b) Physical properties of the cermets.

(c) Radiation damage to the cermets.

(d) Studies of the fabrication of the Dumbo heat exchanger.

(5) Plastics studies. These include
(a) Impregnation of polystyrene and other plastics with mag-

nesium or other metals,

(b) Molding of the impregnated plastic.

(c) Studies of radiation damage to moderating plastics,

(6) Muclear studies, These include

(a) Experimental critical assemblies for reactor mock=-up.




Chapter 10 Concluding Toples

(v) Zero-power operation of these assemblles to yleld the flux
distribution and the temperature coefficlent of the

reactor.

{¢) Numerical machine calculation of the preceding quantities
as well as the reactor dynamics for start-up and control

problems.
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Appendix A

NUCLEAR CONSTANTS

This appendix tabilates certain data that are necessary to the
nuclear design of the Dumbo reactors, Table A-2 and Figs. A=l through
A-9 present capture cross section data for molybdenum and tungsten. The
Doppler broadening widths A are given for 300°K. These data are new and
have been assembled for this report by J. J. Devaney of LASL, to whom
the authors arv greatly indebted. The Job of obtaining capture cross
sections from raw nuclear data is = formidable one from the standpoints
of both theory and computation.

Table A-l1 presents certain general properties of the reactor mate=-
rials, Table A-3 presents averaged cross section data on the basis of

J. J. Devaney's values,
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Appendix A Nuclear Constants
TABLE A -l
Oy
SUBSTANGE| MOL.WT. | DENSITY | T Pt
'CROSS SECTION
Mo 9595 10.2 7barns 0.20 17
W 183.9 19.3 T 0.20 1.5
Mg 243 1.74 34 0.0 1.3
1] 235 —_ 20 20
vo, | 267 10.9 276 _ 408 4.0
c 12 —_ 47 0065 1.20
H | - 667 1.00 1.00
CH 13 105 137 1.065 2.20
TABLE A -2
CAPTURE CROSS SECTION DATA
for
MOLYBDENUM
ENERGY RANGE Eo o .r A ACCURACY
fev) (barns) {ev) {ev)
00253-400ev. SEE FIGURE A—1I 10%~30%
400 —-T10ev. 406* | 554 | 0.34 ~30%
880 | 0.29 } ose
440 | 1837 0.37 069
480 | 2518 LO om
510 158.1 0.37 0.74 SEE
570 787 038 | 0.79 | FIGURE A -I
580 434 | 093 0.79
700 55.2 10 0.87
400 —10 ev. SEE FIGURE A-2 ~60%

* TWO PEAKS AT THE SAME E,
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TABLE A-3

AVERAGE CROSS SECTIONS OVER ENERGY
SUBSCRIPT — FISSION CROSS SECTION (barns)
SUBSCRIPT . — CAPTURE CROSS SECTION (barns)
SUBSCRIPTg — SCATTERING CROSS SECTION (bams)

e | Ur Ursc | Hsec [ He | Mog | W Cs
10® -10° 1.4 1.67 78 o] 0.085 | 0.06 35
i0* —10° 2.5 328 | 16.3 o] 022 | 032 4.6
10® —-10* 5.8 8.35 |20 o) 0.26 | 09 47
0" —10° 156 |23.4 |20 0 LO%® | 145% | 47
0 -10" | 496 [630 |20 0 30*% [ o6* | 47
) 398 | 517 | 205 | 0.03 | 025 | 25% | a7
ol =1 1450  [i74. 236 | O. 075 | 606 | 48
0025-01 | 402 [4744 | 302 | 0.2 172 | 140 48
THERMAL | 580 687 — 033 | 25 19.2 _

# AVERAGE 0 OVER INTERVAL WITHOUT RESONANCES.
## AVERAGE O, OVER INTERVAL INCLUDING RESONANCES.
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Appendix B

PHYSICAL PROPERTIES CF REFRACTORY METALS
by R. B. Gibney

B-1: Introduction

Because of the current interest in refractory metals, a brief survey
of the llterature on thermal conductlvity, coefficient of thermal expan-
sion, and strength properties of the common high melting metals has been
made. In general, the data are sketchy, contradictory, and are useful as

qualitative information only.

B-2: Thermal Conductivity

The thermal conductivities of molybdenum and tungsten have been
measured in the temperature range 1100 - 1900°K., The electrical resis-
tivities have been measured at temperatures up to 2800°K, Shown in
Fig., B-1 are the experimental data for the thermal conductivity of molyb-
denum and the linear extrapolation of these data to higher temperatures.
Also shown are points calculated from the experimental electrical resis-
tivity data for molybdenum by judicious use of the "Lorenz constant."
These points agree with the extrapolated values, and have been used to

compile the data given in Table B-l., Also given in this table are values
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Coefficlent of Thermal Expansion Section B3

of the thermal conductivity of tungsten obtained in the same manner.

TABLE B-1
THERMAL CONDUCTIVITY OF
TUNGSTEN AND MOLYBDENUM
( watt/cm -deg)
T (°K) TUNGSTEN MOLYBDENUM
[[e]e) 117
1200 .15 1.08
1300 .14 1.02
1400 112 1.96
1500 K]} 0.90
1700 .07 0.79
1900 .04 0.67
2100 1.0l 0.54
2300 0.98 042
2500 0.94 0.30
2700 0.91 0.7

It should be pointed out that the values for thermal conductivity
of tungsten found in Smithell's book Tu.ngstenl are probably wrong. These
are old values by Worthing (1914) who found a positive slope for both
molybdenum and tungsten. The work was repeated by Osborn2 in 1941 with

an improved apparatus. The later results are the ones given in Table B-l.

B-3: Coefficient of Thermal Expansion

Equations for the thermal expansion of molybdenum, tungsten, and

tantalum, as obtained by Worthing,3 are given by Egs. B-l, B-2, and B-3,
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respectively. For molybdenunm,

L ~Lo .5 00xI08(T-300) + 105x1670(T-300)?
Le (8-1)
for tantalum,
L-L, -6 -0 2
s 6. T- 2xl T-300
Lo 6.6xI10 (T-300) + 52x10 ( ) (B-2)
for tungsten,
L- L!

: 4.44 xIT8(T-300) + 4.5x10(T-300)
+2.2x1073(T-300°

(B-3)
where Lo is the length at 300°K,

Bli: Tensile Strength

The available data on tensile strength at elevated temperature are
meager,

Since the only work above 2000°K has been on single crystals of

- - -
molﬁ)denum and tungsten and on some special tungsten wlres, the data prob-

ably are not applicable to this report, These data are given in Table B-2,

TABLE B-2
TENSILE STRENGTH (psi)
TEMPERATURE 1500°K | 2000°K 2500°K | 2800° K
TUNGSTEN — 10,000 6,000 5,000
TUNGSTEN 12,000 7,500 3,500 —_
MOLYBDENUM® | 2,200 900 550 300
{ RYIELD STRENGTH)




Tensile Strength Section Bk

The single crystal of molybdenum had a room temperature yleld strength
of 8000 psi as compared to 84,000 psi for rolled sheet,
REFERENCES

1. Colin J, Smithells, Tungsten, Chem. Pub, Co., Inc,, New York, 1953,
2. R. H, Osborn, J, Opt. Soc, Am, 31, 423 (1941).

3. A. G, Worthing, Phys. Rev, 28, 190 (1926),
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Appendix C

LAMINAR INCOMPRESSIELE FLOW IN
CHANNELS WITH POROUS WALLS
by B. K. Knight, Jr. and B, B, McInteer

C=1: Introduction

In recent years attention has been given to solutions of the Navier-
Stokes hydrodynemic equations (or of the boundary-layer equations which
approximate them) for problems in which a breathing surface 1s placed in
a stream, Such a surface represents a distributed source or sink of
fluid, such a porous wall whose pores are so small and frequent that they
may be regarded as continuously distributed, A further characteristic
usually applied to these walls is that their flow 1s specified as a
boundary condition of the problem. In other words, for a sufficiently
high wall impedance, the flow is determined externally and is not
affected by the surface distribution of pressure.* It is the purpose of
this appendix to present solutions to the problem of steady two-
dimensional flow through a channel bounded by porous walls which supply

or remove an incompressible fluid with a uniform normal velocity.

¥This restriction it not necessary to such problems. Recently Taylor has
presented a study »f an example in which the flow mechanics within a
porous wall was intimately linked to the external hydrodynamics.

Proc. Roy. Soc. 2344, 456 {1956).
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Appendix C Laminar Flow Problem

This problem has a number of unusual features of general interest:

(1) The task of solving the problem is reduced to the integration
of a single ordinary differential equation; in this sense the problem is
solved exactly.

(2) A solution to the problem, satisfying all boundary eonditions,
is found for the case of vanishing viscosity. This is in contrast to
usual boundary-layer analysis, in which wall slippage is avoidable only
because of viscosity-dependent terms in the equations.

(3) When the wall is a fluid source the finite-viscosit& solutions
converge uniformly to that for zero viscosity. However, when the wall is
a fluld sink the finite=-viscosity solutions do not converge to the zero-
viscosity solution but, instead, converge nonuniformly to a flow
involving wall slippage in the typlcal boundary-layer fashion.

(h) The zero-viscosity solution furnishes the basis of a perturba-
tion method which yields results of great precision in the case where the
wall is a source. However, when the wall is a sink the same method
yields completely erroneous results. For sufficiently small viscosity
the perturbation solutions satisfy the exact equations to an arbitrary
degree of accuracy, but there is no nearby exact solution. This fur-
nishes a striking counter example to the heuristic justification of

perturbation methods in general.
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Formulation of the Problem Section C=-2

C-2: Formulation of the Problem

Fluid of density p and viscosity 7 is supplied or removed by two
porous walls at a uniform steady rate. The channel width is 2a with the

coordinate axes defining planes of symmetry, as shown in Fig. C-1., The

y

Fig. C-1
velocity components, u and v, and pressure p are related by the Navier-

Stokes equations and the equation of continuity, as given by

2 2
Q.'. _a_v+22 (_a_l.".+ﬂ.)=o

pU PV A 2
ox dy dx ox oy (c-1)
v, ov, dp (a‘v v )
usstpv s+ st )= 0
PUax PV 3y T oy TN\ axeT 3yt (c-2)
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Appendix C Laminar Flow Problem

The boundary conditions are

ufa,y) = —uta,y)= w

via,y) =v{-a,y) =0

(c-3)

It 1s convenient to reduce the problem to dimensionless form by using

the dimensionless varilables
P = p/pus

X =x/a
Y=y/a
U=z~u/ue

Vs "V/uo

and the dimensionless constant

€ == 1/puoa

The transformed equations are

2
au 9y ﬁ_(a‘u v
Uax Yoy P ox ~\ o T ov

(C-k)
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AV ., 0V 9P _ (O'V 2'1/_)
U-x TVay Tay ~ ¢ 0

(c-5)
oU AV
—_—  — = (0]
9X Y (c-6)

These equations are of the same form es Eqs. C-l, C-2, and C-3 with unit

density and a viscosity €. Boundary conditions for X are

-ul= Ul-n-=1

vil)=v(-1)=0
It is plausible that when Y becomes large the flow profile is of

the form

V=Yf (X)
(c-7)

where f' is the derivative of a function f£(X). The continuity equation

C-6 then regquires that

U == f(X)
. (c-8)

The form of Eqs. C-7 and C-8 leads to exact solutions for all values of
Y. This is demonstrated as follows: Substitution of these forms into
Eq. C-4 indicates each term to be a function of X only, indicating OP/dX
is a function of X only. Therefore, P must be of the form

P = Po(X)+ PI(Y)

Similarly, substitution in Eq. C-5 reveals each term to be of the form

335

—SeeEE.



Appendix C Laminar Flow Problem

Y'F(X), so that dP;/dY must be of this form, or
dP /dY= yY

where y i1s a constant. Therefore, asslgning to P(X,Y) the form
Pz 5 yY+Pe(X)
(c-9)
allows Eqs. C-4 and C-5 to be reduced to two ordinary differential equa-

tions:

ft'+Po(X)-ef'=0
(¢-10)

e f 4t 4
(C-11)

Solutions of these two equations which satisfy the proper boundary condi-

tions yleld an exact solutlon of the problem. These solutions, hinging

upon the arbitrary assumption of Eq. C-8, are not necessarily exhaustive
but represent an interesting and informative type of solution.

Equation C~10 is integrated to give

Py =~ la-f'+ef'+ const.
(c-12)

The solution of the problem has ncw been reduced to the solution of
Eq. C-l1.

The function f(X) satisfying the differential eguation C-11 must

satisfy the four boundary conditions

-
Iy
o
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Formulation of the Problem Section C-2
f(t)=-f(-1)= |
’ - §'7. -
fi(t)y=f(-1)=0 (C-11a)

The four boundary conditions thus stated are to be satisfied by choice

of the three constants of integretion and the proper value of vy.

Equation C-11 is therefore a third order non-linear ordinary differential
eigenvalue equation for y as a function of €.

Among the solutions to Eq. C-11 are those which have the symmetry

property

f(X) =—-f(-X)

since each term of Eq. C-11 is unchanged under this transformation. This
odd symmetry in U and t‘e resulting even symmetry in V and P about X = O

allow the four boundary conditions to be restated as

f(ly=|
f()=0
- [
f{0)=£(0)=0
(C-11b)
All solutions presented here satisfy this more restrictive although more

convenient combination of boundary conditions. Only the range 0 $ X s 1

needs to be considered.
Equation C-11 with the boundary conditions (Eq. C-11b) may be transe

formed into an initial value problem. This is advantageous, particularly
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for purposes of numerical integration. The initial value equation is
3 e ]
g _ (g8 g L.
dz dz dz?
(c-13)
with the initial conditions g{0) = g"(0) = 0. Assigning an initial slope
g'(0) and a value to the parameter C determines a function g(z). If
g'(z) vanishes at some point where z = zg and g assumes the value go,

then the varilables X and f are defined as

X =2/2

f=9/9,
Bquation C-13 then becomes
]

| - .2 v b 4
GoZs f -f +ff=C —g-:r

(C-14)
which 1is of the form of Eq. C-1l and satisfies the boundary conditions

(Eq. C-11b), when

(c-15)
The parameter C is eliminated by a further scaling property of Eq. C-13.
Multiplying z by any constant a, and g by 1/a, yields the same differen-

tial equation but with Ca% replacing C. The choice |C| = 1/a* reduces

338




Rl

Some Qualitative Features Section C=3

Eq. C-13 to elther

g. _go‘ + ggn = | (0—16)
or

9" —g" +gg" =
(C-17)

These equations give ga and zg a¢ functions of g'(0) only, and together
with Eq. C-15 specify y(e) by giving y and € parsmetrically in iterms of
g'(O). Positive values of y are obtained by Eq. C-16 , negative values

by Eq. C-17.

C-3: Some Qualitative Features

A few remarks of a physical nature should be made before proceeding
with the solution of the formal mathematical problem. On physical
grounds, the qualitative behavior of the functions f(X) and 7(€) is
examined.

In the limit of high-viscosity creeping flow (lel >> 1) the flow
profile £'(X) should resemble the familiar Poiseuillian parabolic flow.
The low-viscosity limit 1Is iess easlly pictured. If fluid is flowing
from stream to wall, a flat profile as in potential flow might be main-
talned throughout the duct, perhaps reverting to shearing flow only in s
thin boundary layer, where the fluid approaches very near to the wall and
the slight viscosity becomes important. On the other hand, for flow from

wall to stream no boundary-layer type of profile is expected, since the
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Appendix C Leminar Flow Problem

boundary layer is continually being carried into the stream.

The function 7(e) is proportional to the pressure gradient and 1is
determined by the Joint effects of viscosity and inertia. When the
viscous drag dominates (Je| >> 1) the pressure gradient is proportional

to the viscosity, and in a direction opposite to the flow, glving

yx(-e) (c-18)
However, the lnertial effect is to establish a pressure gradlent in a
direction opposite to that of fluild acceleration. Since, regardless of
the flow direction the fluld acceleratlion is toward larger values of Y,
for Je} << 1 a negative value of y is expected, At some negative value
of € the inertial and viscous effects just balance and there 1s an inter-
cept where y = 0,

These general features are verified in the next section.

C-4: Methods of Solution

Four types of solution of Egqs. C-11 and C-11b are used:
A. ZExact solutions for special cases.
B. Perturbations upon these solutioas.
C. Solutions from & variational method.
D. Machine integration by a Runge-Kutta method.
These types are considered separately.

A, Solutions in Closed Form

Exact analytical solutions of Eq, C-11 are obtained for two special
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cases only. Further analysis of these cases is made in Sec. C-5.

Case I: In this case 1/e = 0. If all terms not involving € are

omitted from the 1l.,h.s. of Eq., C-11 it simplifies to

ef”=y
(c-19)

The solution of this equatiocn satisfying the boundary conditions is

3 | s

st = X=X
=2 2 (C-20)
Y s - 3‘ (C-El)

This result corresponds to viscous creeping flow without momentum terms,
Differentiation of Eq. C=20 yields the familiar parabolic flow distribu-
tion for V.

Case II: For this case € = 0. As is well known, caution must be
exercised in omitting all terms involving viscosity € in the hydrodymamic
equations to obtain solutions describing slightly viscous fluids.
Formally, this omission reduces the order of the differential equations
ard might not allow all boundary conditions to be satisfied. Physically,
the fluid must not slip on the walls even though its viscosity is
vanishingly small.

In this problem, however, the dropping of the term involving € in
Eq. C-11 leaves an equation which may be solved satisfying all boundary

conditions. The modified differential equation is
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2
! "_
' +ff'=y (c-22)
A set of eigenfunctions and eigenvalues that form solutions to this

problem are given in Table C-1. The second and higher functional forms

TABLE C-|
SOLUTIONS OF EQ. C-22
.mT . 3T . 57
f sin > X sin > X sin 5 X
- —1—r—2 - :9_1_,2 -— _2_§_17'2 X X )
14 ) ) 7)

for £, shown in this table, are startling slnce the corresponding veloc-
ity profile V is positive for some values of X and negative for others.
The first function is physicaslly plausible and 1s not greatly different
from the parebolic profile considered in Case I.

In summary, exact enalytic solutions of Eq. C=11l are obtained only
for cases in which certain terms vanish,

It is Interesting that the € = O situation gives rise to an infinite
set of solutions, while for % = 0 the solutlion is unique. This suggests
that for finite e there are several solutions, corresponding to counter-
flow situa%%ons, until € exceeds some critical value.

B. Perturbation Methods

Perturbation solutions are obtained about the Case I solution and
the first of the Case II solutions.

Case I Perturbation Solutions: If R = 1/e¢, the previous exact
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solution, given by Eqs. C-20 and C-21, is that for R = 0. Thie solution

is denoted by fo. It is assumed that f may be expanded as

2 3
f=fo+fiR+f,R +£,R + ooe (c-23)

Since ¥y = -3¢ is the eigenvalue of the exact solution, a quantity A = 7/e

is defined. It is assumed that A may also be expanded as

| 4 3
A= Ao +AR + AR AR+ ¢ (o)

where Ao = =3. Inserting these expressions into Eq, C-ll and equating
the coefficient of each power of R to zero yields the perturbation equa-
tions given by

CEEW

f.m s x.'i'fc'»!-fo o

£ = A 4200 £ — o

£ = N RAE — B = 1~ fof )

. (c-25)

with the boundary conditions, for n > 0,

fal0) = £(0) = foll) = f4(1) = O v (c-26)

Each equation equates the third derivative of the unknown solution to a
known function of X involving previously obtained solutions. All solu=

tions are polynomials. Carrying out this procedure through the second
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order perturbation yields for f
f = X(1.500 +0.0071428R - 0.0005434 R?)
-x10.5000 + 0.0107142R -0.0006772 R’)
+X70.0035714R + 0.0001530 R?)

- 0.0002976 R*X’ + 0.0000108 R°X"+ ¢ oo (.o

with additional terms being of the order R® and higher. The corres-~

pondling expression for y is

\ y =- 3€-2.3142857 —0.0173655/¢ + so (c-28)

Caé@ 1T Perturbation Solutions: A similar procedure is followed for
obtainin;\perturbation solutions about the Case II exact solution. It is

convenient to make the substitutions

£ Fx

.7
n: 5 €

and Eq. C-11 becomes
" 2 n_
n f -f +ff = A (0_29)

with the boundary conditions

344
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Methods of Solution Section C-4

fl0) = £°(0) =f'(F)=0; f(F)=1

where primes denote differentiation with respect to &. Assuming that

f = fo +nf + n°f,4eee

A= Ao+ PAFTAF eos
yields the perturbation equations, given by

- ;2+ fofo' = Xo
f.f = 2f.f + fof = A\ ~fo

LE =208 + 60, = A —f

. (c-30)

with the boundary conditions, for n > O,
=" - W\_qg!'[ 7
fl0) =£4(0) = folZ)=fa(F) = ©
The previous solution of the zeroth order equation is

fo =sin §

(c-31)
The remaining equations are linear with variable coefficients, having

the form
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sin€ f,-2cosé f, -sinf f,= A+ F(£)
The solution of the first order perturbation equation is given by
| | i § ‘ )
f, =3 \NEcosé - - sin§ Intan /2 + E-cosffln tan E/Z d¢
° (c-32a)

or, alternsatively,

==L\ Ecosé -2 qf ' '
) M Z, mg sin k&

k oven (c-32v)

where

A= %[l +[ﬂ|zn tan £/2 df]

kH X
.2 ) .8 Q Itk i
ez mm] 2L mamw  e-oseso

k:0 k=2
noen (c-33)
This gives
y =-2.4674] —2053¢ + O(e"
(c-34)

Figure C-2 shows a plot of y versus €. For large €, y(e) is asymp-
totic to the straight line y = =3¢ - 2,314, For small € the perturbation
solution is given by y = ~2,05¢ - 2.467. The similarity of these func-

tions suggests that they might merge smoothly to form the primary




=
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5

y* — 3e~2.314 -.0I74/¢

Fig. C~2: Perturbation Results
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structure of the complete curve. The modified parabolic (large €) and
the modified cosine (small €¢) flow profiles also might blend smoothly,
lending weight to this possibility. However, this suggested behavior
does not occur, as 1s shown by the variatlonal and numerical solutions
which follow.

C. The Variatiénal Method

As a numericel method of determining y(e) with only moderate compu-
tational effort, a vaeriational method is applied to this problem as
follows: A trial function f, which satisfies the boundary conditions,
is assumed to contain a variational parameter . Then Eq, C-l1 is not

satisfied unless f is an exact solution. Functions F and I are defined

by -
Feoef"—f +ff"-y
(c-35)

and

]
I(a,y,e) [ F'dx
(c-36)

A least squares fit 1s obtained when I is minimized, requiring that

ol . ¢
Q

(c-37)

9l .
dy 0
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The pair of relations, given in Eg, C-37, between a, 7, and € are solved
for y(e).

The trial functions used for this computation are

' =a(1-X%)+ B(1-X" (c-38)

where n = 2, 4, 8, and 16, and B is expressed in terms of ¢ by using
Eq. C-11b. The case where n = 2 is degenerate, with no real variational
parameter included in f. The resulting functions 7(6) are shown in

Fig. C-3. Table C-2 1lists the values of y(0) and the limiting asymptotes

TABLE C-2
RESULTS OF THE VARIATIONAL METHOD

y (0) LIMITING ASYMPTOTE (€-=®)
EXACT -2.4674| y =-3¢€-2.,314286
n=2 -2.4000 y = -3€ - 2.40000
n=4 -2.46712 y = - 3e-2.314284
n=8 - 2.4559 y = -3e¢-2.310200
n =16 -2.34 y = —3¢€~2.43158

of y{e) for large €. For very large and very small |el, the values for
n =4 and 8 are in close agreement with the exact solutions already ob=
tained. Only a few spot checks of the actual values of I have been made
on these two cases, The poorest fit is found along the sharp drop exhib-

ited by both these functions as they change from above the asympototic
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straight line to below it, at the point M, as shown in Fig, C-3. Near
the point M the trial function for n = 8 is a better fit than for n = &,

For n = 4 and n = 8 the corresponding flow profiles for values of €
immediately to the left of the point M are of the flattened boundary-
layer type, mentioned in Sec. C-3. Crossing the point M causes an abrupt
transition to a cosine-like profile.

D. Exact Numerical Solutions

Equation C-1ll is integrated numerically, for various values of e,
in the forms given by Eqs. C-16 and C-17. An h* Runge-Kutta method has
been used on the Los Alamos 704 digital computor. The resulting 7(6)
curve 1s shown in Fig. C-k and some of the corresponding flow profiles
are given in Fig. C-5. Table C-3 presents numerical results for 7(6)
obtalned by all methods.

The y(e) curve which is obtained by numerical integration consists
of several branches, denoted by A, B, and € in Fig. C-k. The curve A
is obtained from Eq. C-17 with =» < g'(0) < =1, The curve C is obtained
from Eq. C-17 with 0 < g'(0) < 1,

Two unexpected bra.-hes of the y(e) curve were uncovered by these
computations. One is curve B of Fig. C-4, which is obtained from
Eq. C-17 when -1 < g'(0) < 0. A second unexpected branch is generated
by Eq. C-16 when 0 < g'{(0) < 1. It consists of small positive values of
7 for positive €, and 1s not shown in the figure. Solutions yielding

this remarkable behavior are hard to imagine, since a vanishing 7 implies
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Table C-3
Values of y Obtained by Different Methods
Large € Small € Variational Method
€ Perturbation Perturbation n==4 n =28
- -50 -0.780 - - 0787
=45 -0.926 - - .935
-.40 -1.071 - «1.079
-.35 '10215 '10180 -1-218
-.30 -1.356 -1.307 -1.352
“25 -l .1&95 -l .I+38 -l -‘0-81
- 020 ‘l 1628 .l 0608 -l . 589
-.18 -1.678 <1.754 -1.622
-.16 -1.726 ~1.997 <1.639
~.14 =1.T70 «2.213 -1.628
~.12 -1.810 -2.303 =1.592
«.1l -1.826 -2.316 -1.648
-.10 -1.841 -2.322 -1.845
-.09 -1.851 -2.331 =2.295
‘008 'l -957 -2 0342 '2.)4'17
-.07 -1.856 =2.353 -2.431
- -% -l 18)4'5 .20366 "2. )4'22
'nos -2 0365 -20381 -2'1"1)4
-0l -2.385 -2.396 =2.412
-.03 -2.406 -2.412 -2.417
-.02 -2.426 -2.430 -2.425
-.01 -2.uk7 -2.449 -2.438
.0 -2.467 -2.468 -2.454
.02 -2.509 -2.510 -2.494
Ok -2.550 -2.556 -2.538
.06 -2.784 -2.603 -2.585
.08 -2.771 -2.653 -2.636
-l ‘2.788 -2.70)4' -20688
015 -20880 -2.836 '2'827
«20 -3.001 -2.973 -2.970
l25 -3 013)4' '3 0118
.30 -3.272 -3.265
«35 -3.414 -3.411
4o -3.558 -3.556
A5 23,703 -3.703
.50 -3 18)4'9 -3 0811'8
35k
663 r24

Runge -
Kutta

- .77“‘
- 0917
-1.063
-l -207
'l 031"2
-l .1665
-l . 57“‘
-1.612
-1.647
-1.676
-1 0678
-l -668
~1.647
-1.615
-1.567
~1.502
~1.410
-1.300
-1.197
-1.083
~1,030
~1.007
«1.000
~2.510
-2 . 553
-2.603
“2 0653
-2.692
-2.823
-2.973
-3.118
-3.265
-3.411
-3.556
=3.703
-3.848
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zero pressure drop. Unfortunately no provision for exhibiting the cor-
responding flow profiles was made in the computer progrem.

Other solutions could be found by integrating to further zeros of
g'. These would lead to other branches of the'y(e) curve shown in
Fig. C-4, However, these physically questionable solutions have not been
investigated.

Fxcept in the region =0.3 < € < 0, the numerical results are in
excellent agreement with the approximate results already given. When
€ - O+ the flow profile is a cosine function and y equals m2/4, as pre-
dicted previously. However, when € - Q- the flow assumes the boundary-
layer type of profile, shown in Fig. C-5, and y equals -1. The

perturbation and variational results in this range are misleading.

C-5: Three Limiting Results

Among the solutions which have been presented here, three merit
special attention as limiting forms of practical physical solutions.

Special Result 1: Strongly viscous flow (e - +x)

This case of highly viscous flow is presented as Case I of the exact
solutions. Its existence and that of its perturbation is verified by the
numerical integrations. It is convenient to average V = Y £'(X) over X,

- - - 1
so that V =Y and v = ugy since f' = [ £'dx = 1.
c
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Solutions

: 2x = Lx®

y = -3¢

U= 5X-3X

Vs 3Yu-xy

P =3 ¥+ 2 eX

p: 3 I (y-n)

b3 Hog s
v o3 v - )

= TUpX (‘2'_’(2" "%)

c
1

Special Result 2: Fluid entering channel from walls (e - O+)

The solution obtained as Case II of the exact solutions is shown
by machine integration to be the limiting form for € - O from the posi-
tive side. It is an unusual flow pattern for a fluid of vanishingly
small viscosity, end has none of the characteristics predicted by

boundary-layer assumptions.
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Solutions
f =sin % X
y = —(ws2)*
U = —sin 5 X
V=Y % cos %
2
P = -%(—2"— v? 'zsin' z X
- 1 [mw\ 2 T X
p= - 5 (F)pudlE) - & pus sin* T4
: _ ] T X
p-g(3) et -gedaty g
- —I oY _'_l
vV =V ? 0S 23
. o XX
U = Ue SIN 2 a

The coefficient of p¥2 in p is 1.23% and is exactly pve., If a naive one-
dimensional Bernoulli law approach is used on this problem without
analysis, only half this pressure variation is predicted. Along a
streamline, however, the Bernoulli relation p + L pV2 = const. applies.

2
Special Result 3: Fluid leaving channel through walls (e - 0-)

When € -+ 0 from the negative side a squared-off profile is attained
as indicated by machine results. Except near the boundaries the solution

is given by

357

TR 653 027



)
W

Appendix C Laminar Flow Problem
f=X
y=-!
= -X
V=Y
== yio Ly?
P- 2 2x
- | -2 | x2
P= - 5PV -5 pUs
Vv
vt

The velocity components U and V in Specilal Result 3 may be obtained from
the potential function ¢ = % (Y8 - X&), and thus the flow is irrotational.
Irrotational flow at large values of Y insures that the flow is irrota-
tlonal everywhere, because in a non-viscous fluid the vorticity is
constant along a streamline. On the other hand, in Special Result 2 the
fluid enters the channel from the wall with a finite vorticity, and

potential flow can never be established.

C-6: Some Unanswered Problems

Certain geps are evident in the foregoing analysis and results,

1. It is not clear whether skewed solutions of Eg. C-1ll may exist
which satisfy the boundary conditions given by Egq. C-1la but not the
symmetry requirements of Eq, C-11b, No evidence for such skewed solu-

tions has been found.
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2. No analytical development of the limiting functional form for f
as € -* O~ has been performed.

3. There has been found no rigorous analytic prediction of the non-
uniform convergence of f for € - O-. The discontinuities in f and ¥
occurring sbout this point should be evident from analysis of the differ-
ential equation, A perturbation trestment of Eq. C-13 with C = =1 and
g'(0) = tl - 8 is suggestive of the machine results. It is shown that
if the positive sign is chosen all orders of perturbation are well
behaved, but choosing the negative sign yields a second order perturba-
tion behaving asymptotically like e%zz. Although this glves the observed
sharp break in the flow profile, it also invalidates the perturbation
assumptions. No mathematical proof of this profile shape has yet been
achleved.

A problem related to the solutions for the steady state flow is a
stebllity analysis of the various types of flow predicted here, However,

this problem is not considered in this report.

C-7: Other Channel Shapes

The general procedure of Sec. C-2 is applied to arbitrary uniform
channel cross sectlons, resulting in a non-linear partial differential
eigenvalue equation of the fourth order with one dependent and two inde-

pendent variables,
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The three-dimensional Navier«Stokes equations for time-independent

incampressible flow are
pIV-V)V -9 VT = —Vp

Vo-:o
Y (C-39)

The normal flow-velocity at the walls 1s up. If the channel area is A

and 1ts perimeter S, then the length
may be defined., The dimensionless quantities

V =VIUO

P p/puf»

T/L

1]
"

€ = n/Lpu, (C-k1)

reduce Eq, C-39 to

(V-V)V - eVV = -VP

W =0
(c42)

Henceforth, vector notation is used to signify vector components in the
X-Y plane only, where Z measures along the axis of the duct. The

assumptions
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Other Channel Shapes Section C-7
V, =Z g(X,Y)
and
V = V(X,Y) (c3)

bring Eq. C-42 to the form

(V-9)V - e¥'V = -vp

(C-lka)
(V) g +¢* - vy =— 4 £
V'V +9:=0 (Clke)

Since Eqs. C-bla and C-ib are independent of Z, they demand that P be of

the form

P L yZ +H(X,Y)

(c-45)
The identity
(V-9)V = V5 V-V X (V X V)
brings Egs. C-lla and C-hhb to the form
V4 VEVX (VX V)-eVV = —VH
(C-46a)
(V-¥)g +¢*-ev'g =-y (C46b)
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Appendix C Laminar Flow Problem

The r.h.s. of Eq. C-liba is the gradient of & scaler, Thus ¥ must
be a vector such that the curl of the 1l,h.s. of Eq. C-lfa vanishes.

This is satisfied if v is derivable from a potential

v ¢ (c-47)
When ¥ 1s of this form, Eq, C-l6a may be solved for H, Substitution of

Eqs. C-i4b and C-47 into Eq. C-46b gives the elgenvalue equation

4 2 2 ]
- v . =
V- (VP)y+(Ve) V)= y (c48)
with boundary conditions analogous to those 1ln the two-dimensional

problem.

In the case where € = 0, Eq, C-~i6b may be written
VgV +2g*=-7y
(c-k49)

The requirement of no wall slippage gives g = O at the boundary, and the

divergence theorem may be applied to Eq. C-U9 to give

2 [g*dA =-yA

or

y=-2¢

whence

- Y] -
P - H(X,Y) VZ (0-50)
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Other Channel Shapes Section Ca7

or, using dimensional quantities

= pud HIX,Y) - pv7
P = plo { ) PV, (c-51)

The second term of Eq. C-~51 differs by a factor of 2 from that obtained
by a naive application of Bernoulli's law. This result is a generaliza-
tion of the conclusions of Sec, C<4, When ¥ satisfies Eq. C-h7,

Eq. C-bba is integrated for H and Eq, C=50 becomes

P~ [—;— (w2 + ) +v:]

In the case of a circular channel Eq. C-48 becomes an ordinary

(c-52)

differential equation. For € = O the integration is easily performed.

The equation is

() &k &n) + (ko) oo

dR dR dR dR
(c-53)
If the substitutions
- Lpt
L=2R
.1 o dd

f=5 R

2 dR (C-54)

are made, then Eq. C-53 becomes

“ft+f 4+ y =0
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Appendix C Laminar Flow Problem

vhere primes indicate differentiation with respect to {. This is

Bq. C=22 which 1s solved in Sec, C<4, In terms of the dimenslonless
transformation equations C-40 and C-il, the boundary of the channel is
at R =2, or { = 1. The boundary conditions again become those of

Eq. C-11b, and the solution proceeds as before, giving the eigenvalue
7 = -(1r/2\)€, and v2/¥2 = 12/8, However, the flow profile in terms of R

is glven by

N ]

V,

- X T
,--Z—Ycos?R

which is & flatter profile than that given in Table C-1, For the general
case of finite viscosity, the transformation given by Eq, C-54% does not
reduce the circular duct problem to the two-dimensional flow problem

treated in Sec. Cuk.

¢-8: Ty

Some solutions of the non~turbulent flow problem are developed.
Among these 1s the family in which, for negative € approaching zero, v
changes continucusly from the parabolic profile to the squared-off
boundary=-layer profile; and in which, for positive e approaching zero,
v changes from the parabolic shape to a cos & functional form. The
- family of solutions so described appeaxr to present a physically consist-

ent and plausible answer to the problem.



Note on Previous Work Section C=9

C-9: Note on Previous Work

Since the completion of this work several earlier pepers heve been
brought to the attention of the authors.

An equation of the form of Eg. C~ll was investigated by Hianenzl
in 1911 and the reduction to the form of Eq, C-17 was performed. How-
ever, the boundary conditions were different and the problem considered
was not an eigenvalue problem,

The formulation of the two~dimensional porous wall flow problem
appearing in Sec. C=2 is given by Be::'ma.n2 through the derivation of
Eq. C-1)1, Berman's subsequent analysis of the equation 1s confined to
perturbations about the high viscosity limit, and is similar to the
treatment given by Eqs., C-23 through C-28, inclusive, Berman mentions
the inherent difficulty of treating the low viscosity limit of Eq. C~ll.

A similar analysis for a cylindrical duct 1s presented by Yuan and
F:l.nkels-t;e:l.n.3 The analysls is confined to perturbation results, but the
investigation includes perturbations ebout zero viscosity. However, no
distinction is made between smsll positive and negative values of the
parameter corresponding to €. Although the Yuan-Finkelstein gecmetry 1is
different from that of this report, the non-uniform convergence encoun-

tered here for small negative e would seem to cast doubts on the validity

of the low viscosity perturbation solutions for stream-to=-well flow.
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Appendix D

THE SUPER-DUMBO

D-1: Introduction

The thermal energy which is added to the propellant in the heat
exchanger of a nuclear rocket motor is transformed, during expansion
through the nozzle, to kinetic energy in the exhaust stream, thereby
lowering the temperature of the gas. The dissoclation of hot ges in the
heat exchanger and subsequent recombination in the nozzle offers possi-
bilities for improved performance. Although the step~by=-step analysis

of this process may be complicated, the simple relation

H +v%/2 = const. (D-1)

contains the basis of the transformation process, where H 1s the enthalpy
per gram of the stream and v is the hydrodynamic velocity. This relation
is developed in Sec. T-6 for flow in either the hot region or cold region

of the reactor, and applies to flow through the nozzle under very

*That great galns are to be made by utilizing dissoclation~recombination
reactions of the type discussed In this appendix was pointed out to the
authors by R, W. Spence of LASL,
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Appendix D The Super-Dumbo

general conditions, including the case of a stream which is chemically
reacting. If Hc is the enthalpy of the heated stream in the chamber of
the rocket, He the enthulpy of the exhaust stream, and Ve the exhaust

velocity, then Eq, D=1 for negligible chamber velocity, states that

(D-2)
This equation relates the exhaust velocity to the change in the enthalpy
of the stream between conditions in the chamber and the exhaust.

The chamber enthalpy Hc is Increased for a given chamber temperature
by the presence of a dissocistion reaction in the propellant, wherees the
exhaust enthalpy He is decrease_d by a corresponding recombination reac-
tion. Thus, when both reactions are present the exhaust velocity is
increased. If the stream, between the chamber and the end of the nozzle,
is caused to react chemically with a second stream, a further lowering of
He may occur, although the enthalpy of the second stream must be included
as an effective contribution tending to lower Hc , concomitantly.

These ideas are applied in this sppendix to evaluate the possible
improvement in the performence of Dumbo by utilizing the dissociation and
subsequent recombination reactions. Section D=2 considers the effects of
dissociation-recombination reactions of Hs in hydrogen or deccmposed am-
monia (Hso and Na). Section D-3 treats the two stream systems, where one
stream is assumed to be thermally dissociated Hp in hydrogen or decomposed

armonia. These variants are classed as "super~Dumbo" because of their
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H, Dissociation~Recombination Section D=2

potentially superior performance. Both sections are based on the assump-
tion of local thermodynamic equilibrium in the reactions involved. It
should be emphasized that the effects considered here may be limited not
by thermodynamics but by slow recombination rates which may reduce or
vitiate the performance improvements.

For appreciable hydrogen decomposition to occur, it is necessary
that chamber temperatures be higher and pressures lower than in the
designs described in Chap. 9. The necessary modifications to the Dumbo

design are considered in Sec. D=4,

D-2: H- Dissociation-Recombination Applications

The Dumbo models given in Chap. 9 heat the propellant to a tempera-
ture in the range 2500-3050°K at operating pressures in the range
152100 bar, Since the heated gases are either hydrogen or decomposed
ammonia (Ho and Ng), the large amounts of energy that may be added to

hydrogen via the dissociation reaction
H, — 2H ; AH =52.1 Kcal /gm at 0°C (D-3)

should be considered. Figure D=1 shows the equilibirium enthalpy of
hydrogen as a function of temperature with the pressure P as a parameter.
The curve P = o shows the enthalpy of hydrogen with no dissociation. As
an example, at 3000°K the enthalpy increase of the gas as indicated by
the P = o curve is 10,8 Kcal/gm. This may be compared with the enthalpy

increase for camplete dissociation at 3000°K, given by 66 Kcal/gm. Taus,
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Ho Dissociation~Recambination Section D=2

the enthalpy of the gas at a given temperature in the chamber is greatly
increased by the dissociation reaction.
The reaction given by Eq, D=3 1s governed by the familiar law of
mass action, from which it follows that
Py/P. = KIT)
2 (Dk)
where PH and PHE are the partial pressures of H and Hz, respectively,
and K(T) is the equilibrium constant, The fraction x of the originally

totally nondissociated hydrogen which has dissociated is given by

X = Vv K+4P (D_s)

vhere P is the total pressure. Values of K are presented by Woolley,

et al.,l and are used in Fig. D-2 to show the degree of dissoclation
occurring at various temperatures end pressures, This figure shows that
Increased dissociation results from increased temperasture or decreased
pressure.,

The dissociation which is indicated in Fig, D«2 results in an in-
creased enthalpy of the gas, which 1s computed by methods given in Ref., 1.
The resulting data are given in Fig, D=1, For example, this figure shows
the enthalpy for dissociated hydrogen at 10 barx to be 21 Kcal/gn at
3623°K, which is equal to the enthalpy of nondissociated hydrogen at

5000°K! At lower pressures this effective temperature is still higher.
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Amnonia Systems Section D3

These data are used in Fig. D~3 to predict the exhaust velocity Ve
from Eq. D-1, with the exhaust enthalpy H_ equal to 1.0 Keal/gm which
corresponds to an exhaust temperature of 300°K. The potential gains
available by use of the tungsten melting temperature at low pressures are

evident when compared with 2500°K performence.

D-3: Ammonia Systems
In this section, a system is considered in which ammonia is heated

nuclearly and burned with nuclearly heated oxygen, and the products ex-
panded by means of an ideal nozzle. Also considered is the case where

ammonia alone is heated and expanded, Local thermodynamic equilibrium

is assumed throughout.

A previous treatment of this problem is given by Anderson and
Co‘t:‘t:er2 of LASL. Because they chose the maximum preheating temperature
to be 3000°%K and the minimum pressure to be 33 1/3 atm, they observed no
major increases in exhaust velocity due to Hp dissociation. The fol-
lowing is an extension of this type of system into the regions of
temperature and pressure where dissociation plays a more important role.

Oxygen muclearly preheated to 2000°K is stoichiometrically burned
with ammonia nuclearly preheated to various pressures and temperatures.
The products of this combustion are isentropically expanded to zero pres-
sure. The ideal exhaust velocity is calculated by means of Eq, D=2 where

He = 0, Hc is obtained from a simplified analysis of the thermochemistry.
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Dumbo Design Modifications Sectica D=k

Comparison in the case of a specific problem shows good agreement with
the work of Anderson and Cotter., A similar treatment is presented in
which ammonia alone is nuclearly heated, so that the effects of the addi.

tion of oxygen may be shown, The results are presented in Fig. D-4.

D-4: Dumbo Design Modifications

The utilization of these reaction effects requires a Dumbo design
of very high gas temperature and low operating pressure. The requirement
of high temperature clearly suggests a tungsten we'l operated near its
maximum working temperature. This temperature probably exceeds the
melting point of U0z (3113°K). Since there is a question as to whether
a cermet retains its tensile strength when.#he WOgdinolusigns are. liquid,
the lamination technique, described in Sec, 8;§,ﬁ£§}¢ge'preferaﬁle for "
the super-Dumbo motor.

Although numerical designs suitable for super-Dumbo operation have
not been develcped, several features of this type of motor may be pre=-
dicted. Attainment of the highest possible gas temperature imposes the
following demands on the designs:

() The tensile strength of the metal wall in the hottest regions
is low.

(b) The difference between gas and wall temperature Gg must be very
smuall.

(¢} The temperature variation within a mosaic cell 81T, caused by

constructional errors, must be made small.,
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Dunbo Design Modifications Section D«

(d) The flow Jo(z) through the wall must be maintained very
uniform.

(e) The pover density must be made very uniform,

These requirements, along with that of low operating pressure, might
appear to be cminously stringent, However, th. high performence of the
motor and the presence of dissociation processes introduce several com-
pensating effects., The lowered flow rate increases temperature
uniformity within a mosaic cell and tends to reduce the pressure drop
across the wall, thereby pérmitting reduced tensile strength. The disso=
ciation process gives rise to the Nernst effect in the heat exchanger
(see Sec. 4=7) which effectively increases the thermal conductivity of
the gas by & large factor, and reduces 9g and 5;T correspondingly.

The requirement of low operating pressure applies thxroughout the hot
gas region, so that the pvZ effects in this region must be made small,
which tends to insure a uniform Jo(z). The implied low velocity requires
short tubes which are widely spaced.

The neutronics of the super-Dumbo reactor suggest higher loadings
with UOz (a) because of the flattened shape, and (b) because of the
larger flow areas. Since the power density through the super-Dumbo reac-
tor must be made highly uniform, it may be advantageous to make local

small adjustments of either UOz-loading, or moderator, or both.
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kinetics in a dissociating-recombining stream of hydrogen and their in-
fluence on rocket nozzle design., Assuming chamber conditions of 3500°K
and 20 atm with a 1 atm exit pressure and a total flow of 10° gm/sec, he
finds performence closer to instantaneous equilibrium than the constant
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Appendix E

HEAT EXCHANGE DISTABILITY*
by B. W. Knight, Jr,

E-l: Introduction

In dimensionless form, the equation relating heat and mass flow is

1] a8 .
ot +q(r) 3;‘ o(t) (1)

where 9 1s temperature, T time, q mass flow, { length, and ¢ power den-

sity per unit length. The inlet temperature boundary condition is 8 =1

at { = 0, and the heat exchanger extends from £ = O to { = 1. The three

terms of Eq. E~1 represent energy accumilation, energy flow, and energy

production. The dimensionless pressure T is given by
%E =-g{ Q)aa; )

(B-2)

which states that the dimensionless pressure gradient b:r/bl; depends in

¥This investigation resulted from a conjecture by J. L. Tuck and was
carried on with C, L. Longmire and B, B. McInteer, This presentation
generalizes the results given by Longmire in a LASL memo on the
Poiseullian flow problem, (Stability of Viscous Flow Heat Exchange,
July 11, 1955.) Appendix E has been taken from the notes of a seminar
talk given by B, W. Knight, Jr. at LASL on December 28, 1955,
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Appendix E Heat Exchange Instability

some fashion on the mass flow, local temperature, and the local specifi-

cations of the heat exchanger. It 1s necessary that

d
-ég- zgq>0

= >0
5% % (E-3)

The first of these conditions 1s evident; the second is generally correct
for geses, and is what makes the theory lead to interesting results.
Equations E-1 and E-2 involve several assumptions: (a) the specific
heat of the gas 1s constant, (b) inertial forces are small compared to
frictional forces, that is, acoustical effects may be ignored, (c¢) in any
region AL, the heat capacity of the exchanger is large compared to that
of the gas it contains, (d) the temperature of the gas 1s always the same
as that of the exchanger at a given £, and (e) there is no thermsl conduc~-

tion along the ¢ axis.

E-2: Equilibrium Conditions

The integrated power ic defined as

4
o) = [ a1ty ot -
° E-4

The time independent solution of Eg, E-1 is then

8,(8) = 4 <L)+ )
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Equilibrium Conditions Section E-2

Equilibrium quantities are denoted hereafter by the subscript zero. The

total pressure drop 1s obtained from Eq., E-2, whence

}
Awe(qo) =“f g[Qan(C)] d;
° (8-6)

From here on the explicit { dependence of g is not mentioned. The gen-

eral character of Amo(qe) is seen by differentiating Eq, E-6, giving

(B-7)
For large flows, the negative term dominates. For low flows, the posi-
tive second term dominates. Thus Ao(qo) is of the form given in

Fig. E-1. The slope of this curve, given by Eq. E-7, is interpreted

f
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Appendix E Heat Exchange Instability

physically as a hydrodynamic impedance, There exists a critical flow 9
below which this Iimpedance becomes negative. It 1s a plausible conjec-
ture that if the pressure drop across the heat exchanger is fixed then
the flow in the negative-impedance region is unstable, This is similar
to the case for negative-lmpedance electric circuits. This implies that
there is a critical temperature Gc ebove which the exchanger cannot
deliver gas in a steady manner. In the next sections this conjecture is

proven,

E-3: Effect of Perturbations

If the equilibrium situation, given by Eq. E-5, is perturbed, solue

tions to Ea., E-l may be expected to be of the form

g=got+q,lv)

8 = 8(8) +6:(L7)
(E-8)

where 9; and g3 are small, The boundary pressures are assumed to be

constant, and given by

Ar =Am,
(E-9)

Substituting Eq. E-8 into Eq, E-1 yields the first order perturbation

equation
38, 36 . _ a
ar T e o Q o (£)

(E-10)

The pressure condition, given by Eq. E-9, ylelds
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Effect of Perturbations Section E-3

[9(qo+qu9o+91) df =-Aw,
(B-11)

which is reduced to a first order perturbation relation
J ‘
a [ 9t + [ gp8dL=0
o ° (E=12)

This relatlion must be satisfied by q; and 6;.

The solution of Egs. E=10 and E-12 may be reduced to the solution of

an elgenvelue problem by assumirng that
av
ac (;,‘l‘) = § Auoc(g)e

T

q,(r) =F A e

(E-13)
Direct substitution into Egs. E-10 and E-12 yjelds
db a .
it t g fa-gaold) (E-14)
and
[ t
!‘ gqdl= ‘[ ggea d{
(B-15)

Equation E-13 may be used only if the ea form a set complete ~mough to

expand the arbitrary initial perturbation 0,(f,0). Ccupleteness of the
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*
eigenfunctions in Eq. E-13 has been demonstrated by J. Lehner for the

case of Poiseullian flow through a uniform channel with uniform power
generation., The same method may be applied to more general situatioms.
The condition of stability demands that all the a's of Eq, E-13 have
real parts which are negative. Instability implies that there is at
least one @ with a positive real part. It will be demonstrated that the

question of stability depends on the sign of dATro/dqo.

EJi: The Stability Criterion

Equation E-1Y integrates to

¢ a .
o R RTAT
9a~"at[¢(§)e . d{
(E~16)

This 1s substituted into Eq. E-15 to obtain an explicit eigenvalue equa~

tion for .

There is always exactly one real @ which solves Eq, E=15. This is

demonstrated as follows: By Eq. E-16, Ga is continuous and monotonic in
@, with the limits 6 = 0 and 6__ = -, Thus the right hand side of
Eq. E-15 must be monotonically continuous in @, ranging from O to +w,

and for the entire range of « the value of the left hand side of Eq. E-15

must occur only once,

¥ Completeness of the System of Eigenfunctions in & Problem of Viscous
Flow Heat Exchange,” LASL memec by J, Lehner, March 9, 1956.




The Stebility Criterion Section B
A relationship between « and dATo/dqo is now demonstrated. A new

eigenvalue relation is obtained by combining Eqs, E-15 and E-7, given by

0

dAw., f 8,dL + q"’ f'gaedg
4]

C a 4,
y A -5 (5-8
- d d ‘ |-

where the last step follows from Eqs., E~16 and E,

(E-17,

It is shown that if AATo/dag is positive, the flow is unstable,

- -t
For, by Eq. E-17, if a 1s real then [l -e (0/a0) (¢~ )] must be positive
as must dATo/dqo. Since § = §' > 0 , this implies a > O, which is the
condition for instability.

Similarly it may be shown that if dATe/dgq is negative then the flow

is stable, TFor, in general,

= B+iy
e (E-18)

which gives for the reel part of the bracketed term in Eq. E-17

| - e—B(C—C) cos y (£-0")

which must be negative. Hcowever, if B > O this expression is intrinsie

(E-19)

cally positive. Thus B, and the real part of any @, must be negative,

and the flow is stable.




