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Preface to the Second Edition

The first edition of this book was published in 1987. Since that time new scientific

and practical results in application of Jacobi dynamics were obtained. The results,

which we include into the second edition, are as follows.

The oldest scientific problem of the origin and evolution of the Solar System

bodies on the basis of the Jacobi’s oscillating dynamics has found its resolution.

We discovered by calculation that the present day orbital velocity of each planet is

equal to the fist cosmic velocity of the contracting Protosun having its radius

reduced to the semi-major axis of the planet’s orbit. And also the orbital velocities

of the planet’s moons are equal to the first cosmic velocities of the corresponding

protoplanets having their radiuses successively reduced to the semi-major axes of

the moon’s orbits. It looks like the protoplanets and their protosatellites were

created from the separating upper shells of their contracting parents. The Sun itself

and the small bodies like the comets, asteroids, meteors and so on, have the same

history of creation.

The discovered mechanism of the Solar System body creation proves to be the

physical basis of the Kepler’s laws and the inverse square distance law of the outer

force field distribution of a self-gravitating body. It also proves the idea that the

‘heavens power of gravity’ of body’s orbital motion has the electromagnetic nature

and is induced by the parental body.
We succeeded in understanding physical meaning of the Jacobi’s virial equation

obtained from the Newton’s equations of motion written for a system of n interacting
mass-particles. It was found that in his n-body problem, Jacobi, while transforming

the initial equations, has converted the Newton’s forces and moments of the inter-

acting particles into their volumetric values, namely, into the energy and oscillating

moment of inertia. Doing like this, Jacobi has changed the force as a measure of the

particles interaction by energy of their interaction. From physical viewpoint Jacobi’s

approach opens the way to search the common nature for all the known physical

models of the matter interaction. In order to prove this idea, we show in the book that

the Jacobi’s virial equation, besides the Newton’s equations, is also derived from the

equations of Euler, Hamilton, Einstein and quantum mechanics. This allowed us to

put the subtitle of the book as a ‘Unified theory of the interacting matter motion’.
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We discuss in the book the main scientific discovery, made by the geodetic

artificial satellite study that the Earth and the Moon do not stay in hydrostatic

equilibrium. It puzzles us because the hydrostatics, up to now, is accepted as the

physical basis in dynamics of stars, planets and other celestial bodies. In addition to

this, we found that the Earth has no equilibrium between the kinetic and potential

energy (K/U� 1/300). This is because the existing theories in dynamics do not take

into account the kinetic energy of the body’s interacting mass particles. It makes

incorrect formulation of the problem of the equilibrium state. The conclusion is

made that the conditions of the dynamical equilibrium state, as an alternative to the

hydrostatics, in celestial mechanics, stellar dynamics and astrophysics should be

introduced.

We found that the above fundamental effects are well explained by the theory of

Jacobi dynamics which considers just self-gravitating, but not hydrostatically state

systems and where relationship between the energy and the polar moment of inertia

is the basic physical effect. In this connection this problem and physical meaning

of the Jacobi’s virial equation in the new Chapter 2 are discussed. In order to

demonstrate all new effects in dynamics of stars, planets and satellites, including

creation and evolution of the Solar system, Chaps. 6, 7, and 8 were revised

and updated by applying the above discoveries. Also, the new Chap. “The Nature

of Electromagnetic Field of a Celestial Body and Mechanism of Its Energy Gener-

ation” is introduced. The former Chaps. 1, 2, 3, 4, and 5 under new numbers were as

a whole preserved. The second edition was prepared by V.I. Ferronsky.

V.I. Ferronsky

vi Preface to the Second Edition



Preface to the First Edition

This book sets forth and builds upon the fundamentals of the dynamics of natural

systems in formulating the problem presented by Jacobi in his famous lecture series

“Vorlesung über Dynamik” (Jacobi 1884).

In the dynamics of systems described by models of discrete and continuous

media, the many-body problem is usually solved in some approximation, or the

behavior of the medium is studied at each point of the space it occupies. Such an

approach requires the system of equations of motion to be written in terms of space

co-ordinates and velocities, in which case the requirements of an internal observer

for a detailed description of the processes are satisfied.

In the dynamics discussed here we study the time behavior of the fundamental

characteristics of the physical system, i.e. the Jacobi function (polar moment of

inertia) and energy (potential, kinetic and total), which are functions of mass density

distribution, and the structure of a system. This approach satisfies the requirements

of an external observer. It is designed to solve the problem of global dynamics and

the evolution of natural systems in which the motion of the system’s individual

elements written in space co-ordinates and velocities is of no interest. It is important

to note that an integral approach is made to internal and external interactions of a

system which results in radiation and absorption of energy. This effect constitutes

the basic content of global dynamics and the evolution of natural systems.
From the standpoint of methodology, the integral approach has an important

advantage. In this approach the integral character of the principle of least action –

the basic philosophical principle of mechanics and physics – is fully realized. It is

achieved by using a canonical pair consisting of the Jacobi function and frequency

in writing the basic equation of global dynamics. The practical use of this pair in

Jacobi’s virial equation made it possible to farther generalize the forms of motion

and to show that the non-linear oscillations of a system is such a generalization.

We note that the ten well-known integrals of motion in the many-body

problem in its classical formulation should be regarded as historically the earliest

equations of the integral type. These integrals, however, reflects not the specific

nature of a system under consideration but the general properties of space and time,

i.e. homogeneity of space and time and isotropicity of space.
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The first non-trivial equation of dynamics in terms of the integral characteristics

of a system is Jacobi’s virial equation, which describes changes in the moment of

inertia (Jacobi function) as a function of time. The next step in this direction was

taken by Chandrasekhar (1969). He used and developed for solution of problems in

mechanics themethod of moments, so called in analogy to themethodwell known in

mathematical physics. However, the problem of non-trivial solution of the non-

linearized equations in terms of integral characteristics was not solved in either of

these cases.

Our work began in 1974. As a result, a number of articles on the theory of virial

oscillations of celestial bodies were published in the journal Celestial Mechanics

and other periodicals (Ferronsky et al. 1978, 1979a–c, 1981, 1982, 1984, 1985). The

theory was based on solution of Jacobi’s virial equation for conservative and

dissipative systems.

To solve Jacobi’s initial equation, we first used the heuristically found relation-

ship between the potential energy and moment of inertia of a system, which was

expressed in terms of the product of the corresponding form factors. It was found

that the product depends little on the law of distribution of mass density for a wide

range of formal, non-physical systems. It was then demonstrated that in the

asymptotic limit of simultaneous collision of the particles constituting a system,

the observed constancy of the product of form factors remained valid without any

restrictions within the framework of the Newton and Coulomb interaction laws. The

invariant found was also demonstrated to be valid for the widely used relativistic

and non-relativistic physical models of natural systems. It enabled us to derive from

Jacobi’s equation a simple form of the equation of virial oscillations with one

unknown function and to find its rigorous solution. The equation obtained describes

the dynamics of a wide class of physical systems ranging from empty space-time

and collapsing stars to the atom. Thus, it was established that the theory of virial

oscillations of celestial bodies was valid far beyond the limits of celestial mechan-

ics based on Newton’s law of equations.

The work was done on concepts of Professor V.I. Ferronsky and under his

supervision. Chaps. 1 and 7 were written by V.I. Ferronsky and S.A. Denisik;

Chaps. 2, 3, 4, 5, 6 and 8 were written by S.V. Ferronsky.

This book presents a systematic description of our research work. It is intended

for researchers, teachers and students engaged in theoretical and experimental

research in the various branches of astronomy (astrophysics, celestial and stellar

mechanics and radiophysics), geophysics (physics of the Earth, atmosphere and

oceans), planetology and cosmogony, and for students and postgraduates of classi-

cal, statistical, quantum and relativistic mechanics and hydrodynamics.

It is our pleasant duty to express sincere gratitude to Professor G.N. Duboshin

of the M.V. Lomonosov Moscow State University for his constant support

and encouragement. We are indebted to Professor E.P. Aksenov, Director of the

Sternberg Institute of Astronomy, Moscow, who organized helpful discussions

of our work at a number of seminars. We also wish to express our gratitude to

Dr. L. Osipkov from Leningrad University and Drs J. Schmidt, A. Lorenz,

M. Mehta and T. Akity from the Division of Research and Laboratories,

viii Preface to the First Edition



International Atomic Energy Agency, who read several chapters of the manuscript

and made editorial contributions, and to Miriam Lewis, who edited the final

manuscript. We also wish to thank Renate B. Blamhofer for assistance in preparing

the book. We are particularly indebted to the International Atomic Energy Agency

and its Division of Publications for support and assistance in preparation of the

camera-ready manuscript.

The authors
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Chapter 1

Introduction: General Principles
and Approaches in Dynamics

In 1842–1843, when Jacobi was a professor at K€onigsberg University, he delivered
a special series of lectures on dynamics. The lectures were devoted to the dynamics

of a system of n mass points, whose motion depends only on the distances between

them and is independent of velocities. In this connection, by deriving the law of

conservation of energy from the equations of motion of mass points for a conserva-

tive system, where the force function is a homogeneous function of space

co-ordinates, Jacobi gave this law an unusual form and a new content. In transform-

ing the equations of motion, he introduces an expression for the system’s center of

mass. Then, following Lagrange, he separated the motion of the center of mass from

the relative motion of the mass points. Making the center of mass coincide with the

origin of the co-ordinate system, he obtained the following equation (Jacobi 1884):

d2

dt2

X
mir

2
i

� �
¼� 2k + 4ð ÞU + 4E, (1.1)

where mi is the mass point i; ri¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i + y2i + z2i

p
the distance between the points and

the center of mass; k the degree of homogeneity of the force function; U the

system’s potential energy; and E its total energy.

When k ¼ –1, which corresponds to the interaction of mass points according to

Newton’s law, and denoting

1

2

X
mir

2
i¼ F;

Jacobi obtained

€F ¼ Uþ 2T ¼ 2E� U, (1.2)

where Ф is the Jacobi function (the polar moment of inertia).

This is the Jacobi’s generalized (nonaveraged) virial equation. In the Russian

scientific literature it is known as the Lagrange–Jacobi equation since Jacobi, in
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deriving it, used Lagrange’s method of separating the motion of the center mass

from the relative motion of mass points.

In the right hand side of the virial equation there is a classical expression of the

virial theorem, i.e. relation between the potential and kinetic energy. In the case of

constancy of its left hand side, when motion of the system happens with a constant

velocity, the equation acquires conditions of hydrostatic equilibrium of a system in

the outer force field. The left hand side of the equation, i.e. the second derivative with

respect to the Jacobi function expresses oscillation of the polar moment of inertia

of the system, which, in fact, is kinetic energy of the inner volumetric torques (oscilla-

tions) of the interacted mass points moving in accordance with the Kepler’s laws.

Jacobi hasn’t paid attention to physics of his equation, which expresses kinetic

energy of the interacted volumetric particles in the form of oscillation of the polar

moment of inertia. He used the equation for a quantitative analysis of stability of the

Solar System and noted that the system’s potential and kinetic energies should

always oscillate within certain limits. In the contemporary literature of celestial

mechanics and analytical dynamics the Jacobi’s virial equation is used for the same

purposes (Whittaker 1937; Duboshin 1975). Since this equation contains two

independent variables, it found no any other practical applications.

Our starting point for the farther development of Jacobi dynamics was the formal

and physical relationship that we found between the Jacobi function and the

potential energy in Eq. 1.2. This functional relationship enabled us to reduce it to

an equation with one unknown function and to obtain a rigorous solution. It then

appeared, as Jacobi had assumed, that the potential and kinetic energies and the

moment of inertia of a conservative system oscillating periodically according to the

law of conic sections. From the standpoint of physics, this means that as a result of

interaction (collision) of its component parts or particles the system manifests its

potential energy in the form of radiation. In a conservative system, the kinetic

energy radiated during the period of pulsation is absorbed by the system itself

and again converted into potential energy. In a dissipative system, a part of the

energy is radiated during each period of pulsation from its surface and is lost

irretrievably, entering into interaction with external systems. In this connection

Eq. 1.2 is valid for study of dynamics of systems in classical mechanics and the

dynamics of continuous media as well as in molecular physics, quantum mechanics

and electrodynamics.

We now turn to some principles of and approaches to dynamics related to the

results presented here in order to determine their place in solution of the general

problem.

1.1 Principle of Mutual Reversibility

The world by its nature is unique and we want to represent it in terms of unified

laws. For this purpose, out of the variety of observed natural objects and phenom-

ena, we try to identify those which are most general and which constitute the basis
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of the existence of the material world. The main obstacles to this end are, however,

the limited possibilities and subjective perceptions of the other world. Therefore,

the observed outer multitude of natural objects and phenomena continue to be

described by the different branches of physics.

In describing nature, physical objects and phenomena are represented in terms

of geometrical entities – scalars, vectors and tensors – and correspondingly the

representation of some sets are given in terms of others. Moreover, by generalizing

the results of experiments, physical laws are established and expressed in mathe-

matical models after excluding in advance subjective effects which are unavoidable

in experiments. The results of generalization of experiments should not, of course,

depend on the selection of the frame of reference of the observer, who is located

somewhere and is moving somehow. Nor should they depend on the choice of the

system of co-ordinates in his frame of reference, which is unlimited. In mathemati-

cal language this means that in generalizing experiments all assertions should be

unique for any observer – or that laws should be covariant with respect to the

corresponding classes of representation of sets of mathematical objects.

Vectorial quantities (co-ordinates, momenta, moments, etc.) and the functions

representing them, which remain vectorial in character, suffer from one substantial

defect: their components depend on the choice of the frame of reference and the

co-ordinate system. Scalar functions, however, which remain invariant during the

transformation of co-ordinates, are free from this defect. Therefore, we want to find

the representation of these scalars. It is then possible to present vectorial represen-

tations in the form of gradients of the corresponding scalar functions. However, the

transformation inverse to a given transformation remains a transformation which

should have its own scalar function. Since a direct representation has no advantages

over an inverse representation, its function should by its nature be symmetrical with

the initial one. Then the equation of mutual reversibility of representations in the

symmetric form can be written

L(r) + H(p) = rp, (1.3)

where r and p are vectors from the first and second set of vectors, respectively;

L and H are scalar functions defined in the set of vectors r and p, respectively.

Here the direct representation will be determined by the scalar function H as

r ¼> Hp(p), where Hp(p) is the gradient of function H(p) with respect to p. The

inverse representation is determined by the scalar function L as p ¼> Lr(r), where

Lr(r) is the gradient of the function L(r) with respect to r. The product of the vector

r and p will be a scalar quantity equal to

rp =
Xn
i¼1

ripi:

Functions of L and H will in this case have non-zero Hessians or matrices of the

second derivatives of functions with respect to the components of their vector

arguments. This condition is the condition of mutual reversibility of representations
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which, in other words, can be expressed in the following manner. The Hessian of

scalar function is a Jacobian of vector function of representations of r on p or p on r.

The condition of uniqueness of representations is a non-zero Jacobian of represen-

tations in the whole region of definition of the function.

We have so far mentioned two different sets of vectors of two representations.

To represent the unity of the world, we have to make a generalization. For this

purpose both the sets under consideration are combined into one, and the represen-

tation becomes an automorphism representing the vectors of a given set by vectors

of the same set. Hence, if before combination of the sets the representation has

transformed vector X into vector Y, it should, by transforming vector Y, transform

the latter into vector X. This is called an involute transformation. When applied

twice, it becomes an identical transformation of representations. The quantities

which are mutually transformed into each other during involution are called

associated quantities.

Anticipating what we are going to say later, we note that this property of

representations is reflected in the general theory of relativity in the Einstein

equations. There the fundamental tensors of Ricci (contraction of the tensor of

Riemann curvature of its spur) and Einstein are mutually associated.

The principle of mutual reversibility described above is the most general for

representing nature, and does not depend on nature’s internal structure. In its most

general term it reflects that the structure of nature is independent of who observes it

and how.

The corresponding transformations of the generalized co-ordinates of observed

objects will be canonical transformations. Following Wintner (1941), we should

point out that we are not writing about any specific types of equations of motion:

the basic general properties of transformation are established before these equations

are chosen.

During the implementation of this program, which was of course carried out in

a more complicated manner in practice, two mutually inverse matrices could be

constructed, expressed ultimately in terms of the Jacobian transformation matrix.

Historically, these matrices were found by Lagrange and Poisson and are called

Lagrange brackets and Poisson brackets. We emphasize that the main idea of the

Lagrange and Poisson brackets consists in obtaining the relations which are covari-

ant during the transformation of co-ordinates, i.e. relations which do not change

their form during the substitution of variables.

Derivation of the brackets can be started by writing the integral invariant of the

canonical transformation, the expression for which, according to the Poincaré

theorem (Goldstein 1980), will be

J =

ðð
s

X
i

dqidpi; (1.4)

where qi and pi are canonical variables and s is some surface.
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Here the integral invariant J is a scalar whose dimension cannot be obtained from

general considerations. We shall show that according to experimental data this

scalar has the dimension of action.

The Poincaré theorem for two pairs of canonical variables p, q and P, Q is written

in the form ðð
s

X
i

dqidpi ¼
ðð
s

X
i

dQidPi: (1.5)

If both pairs of variables p, q and P, Q are expressed in terms of a third pair u, v

on a surface s, we can write

dqidpi ¼
@ qi; pið Þ
@ u, vð Þ dudv,

dQidPi ¼ @ Qi; Pið Þ
@ u, vð Þ dudv:

Here all quantities are defined on the arbitrary surface s. The quantities dqdp,

dQdP, dudv are by definition areas on this surface. The quantities

@ qi; pið Þ
@ u, vð Þ and

@ Qi; Pið Þ
@ u, vð Þ

are the Jacobians of transformation from one co-ordinate system into another and

serve for conversion of scales.

Now the Poincaré equation can be rewritten in the form

ðð
s

X
i

@ qi; pið Þ
@ u, vð Þ dudv ¼

ðð
s

X
i

@ Qi; Pið Þ
@ u, vð Þ dudv: (1.6)

The expressions on the left- and right-hand sides of the equation are reduced to

common differentials. But since the region of integration is arbitrary, the equation

of the sums of the Jacobians follows, i.e.

X
i

@ qi; pið Þ
@ u, vð Þ ¼

X
i

@ Qi; Pið Þ
@ u, vð Þ ;

or, in the expanded form

X
i

@qi
@u

@pi
@v

� @pi
@u

@qi
@v

� �
¼
X
i

@Qi

@u

@P

@v
� @Pi

@u

@Q

@v

� �
: (1.7)

Equation 1.7 is theLagrange brackets, which are denoted by {qp}uv. This equation

shows that the Lagrange brackets are the invariants of canonical transformations.
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If as canonical variables (u,v) we successively take the pairs (qi, qj), (pi, pj),

(pi, qj), we obtain the system of fundamental Lagrange brackets:

fqi; qig = 0, fpi, pig = 0, fpi, qig = dijC, (1.8)

which are not dependent on the choice of canonical pair.

The mutually inverse matrix for the Lagrange brackets is called Poisson

brackets, which are written in the form

uv½ �p;q¼
X
i

@u

@qi

@v

@pi
� @v

@qi

@u

@pi

� �
: (1.9)

The expression (1.9) is also a canonical invariant conjugate to the Lagrange

brackets, and the following relation is valid for it:

X
uiuj
� �

uiuk½ � ¼ dik;

which holds even for non-canonical transformations.

It is important to emphasize here that if both these brackets were derived from

some earlier-existing mechanics, they would still axiomatically form the basis for

constructing at list the mechanics from which they were derived. From the mathe-

matical standpoint, these brackets are the so-called skew forms, with the property of

anti-symmetry. In our case, they take the form

fuvg ¼ �fvug, [uv] ¼ �[vu]:

For skew forms the mathematical apparatus of outer calculus or the method of

Cartan external forms has been developed, in which the operations of differentia-

tion are reduced to calculations performed along the contour of the region. Hence is

the name ‘outer calculus’.

For the Poisson as for the Lagrange brackets, the system of fundamental brackets

is written in the form

½qi; qi� ¼ 0; ½pi; pj� ¼ 0; ½pi; qj� ¼ dij: (1.10)

In quantum mechanics the Poisson brackets form the basis for directly writing

the equations of motion. There the commutator of two quantities multiplied by i/ħ
(where ħ is the Planck’s constant) corresponds to the brackets.

In classical mechanics we can write the equations of motion in the same form.

If, for example, the Hamiltonian H is taken as one of the quantities in brackets, we

obtain

qiH½ � ¼ @H

@pi
¼ _qi;
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piH½ � ¼ @H

@qi
¼ _pi:

Within the brackets, the Jacobi identity

u vw½ �½ �þ v wu½ �½ �þ w uw½ �½ � ¼ 0

well known also in the method of external forms since Grossman’s time, will

likewise be valid.

Thus, the principle of mutual reversibility forms the methodological basis for the

objective representation of nature. The practical method of covariant transforma-

tion of co-ordinates with the help of mutually invertable matrices or the Lagrange

and Poisson brackets is based on this principle. The entire mathematical apparatus

of classical mechanics, statistical physics and quantum mechanics is, in its turn,

built on the brackets as axioms.

1.2 Action and Integral Canonical Pairs

It was Kepler who, in his laws of motion along conic sections with a constant velocity

of sweep over surfaces, established the law of conservation of angular momentum

and thereby established the specific role of a quantity with the dimension of action.

The variational principles of constructing mechanics based on the special role of

this quantity were also developed quite a long time ago by Fermat and Maupertuis.

It is again to Kepler, and to his conic sections as orbits of motion of celestial bodies,

that we owe the second order of the corresponding differential equation describing

this motion. Although, as Bondi noted, the special role of acceleration for the Earth’s

motion and its relation to the position of the Sun could be established simply

by observation, it was sufficient to look in the direction of the vector of acceleration

of the Earth in order to see that the Sun is always in this direction. Thus, it was

established even than that the co-ordinates of position of a body in space and its

momenta were the necessary and complete set of parameters for describing the

motion of a system. Here a given pair of vectors is specified for each element

constituting the system so that there are many such pairs for the whole system.

The next important development in the formation of dynamics was associated with

the works of Clairaut and Legendre. The Clairaut equation is an example of an

involute system which, with the help of the general Legendre transform, establishes

the symmetry between the co-ordinates and momenta. The same Legendre transform

converts the co-ordinate function into the momentum function and vice verse. The

function performing this transformation is the Hamiltonian function of the system

whose integral over a time interval has the dimension of action. The relationship

between these functions resemble those between evolvent and evolute in mathemat-

ics. Here even their geometrical structure is preserved, which is seen in the shape of

the family of enveloping lines reflecting the integral properties of the system from

1.2 Action and Integral Canonical Pairs 7



the standpoint of the external observer. It is true that the analytical apparatus of

variational calculus then leads to the solution of a system of more equations with

partial derivatives, and the integral character of the relations is lost. The reason here is

that one wants to obtain a detailed description of the system, i.e. a description of the

motion of all its elements, but not a change of structure of a system as a whole.

Clairaut obtained his equation by studying the motion of the Moon, so that we

can consider his results to be based on observations of a natural system and

therefore verified. It is interesting to note that the Clairaut equation is of second

order since the first derivative is the second power. It resembles an equation with

two branches of an equation combining two independent equations, and is similar to

our first integral of the Jacobi virial equation. One branch of this equation is the

envelope of the right-hand family of semi-tangents and the other that of the left-

hand family. Thus, the idea of canonical conjugation of equations appeared in the

early works of astronomers long before it was fully developed in mechanics.

Further developed of mechanics took place in the direction of its axiomatization

and minimization of the number of initial postulates, where advances were made.

The main achievement was the reduction of the fundamentals of mechanics to one

general integral principle: the principle of least action. The fundamental nature of

this principle can be traced in both mechanics and physics. For example, in

quantum mechanics the Planck constant with the dimension of action is expressed

in terms of the Coulomb electric charge and the velocity of light. Combining these

quantities gives the expression known as the fine structure constant:

�hc

e2
¼ 1

a
¼ 137;

where a is a dimensionless constant.

In this fundamental relation, which is apparently simple but absolute in charac-

ter, gravitation, electrodynamics and quantum physics are connected through

Planck’s constant or the quantum of action.

Just as in the idea of variational calculus, the notion that there is some minimum

value characterizing the true course of events in nature has existed since ancient

times. However, it was only in 1662 that Fermat clearly formulated the principle of

the shortest path in geometrical optics, from which follow the laws of refraction of

light. This principle consists in requiring the value of the integral of reciprocal

velocity to be minimal with respect to the trajectory of light between two points.

A little later, in 1669, Leibniz in his treatise on the problems of dynamics intro-

duced the concept of action, which is expressed in terms of the product of mass,

velocity and path length. In other words, since path is the product of velocity and

time, the Leibniz action function is written:

S ¼
ðt2
t1

2Tdt

where T is the kinetic energy.
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Descartes also suggested the quantity m _qdq (where q is a co-ordinate) as an

elementary action. However, since m _qdq ¼ m _q _qdq ¼ 2Tdt; his action turned out

to be equivalent to the Leibniz action.

The principle of least action was developed further by Maupertius, Bernoulli and

Euler. Generalizing the results of Euler’s studies, Lagrange then extended the

principle to an arbitrary system of n mass points m interacting arbitrarily and

being situated in a field of central forces which are proportional to arbitrary powers

of distances. In this case, the motion of the system was determined by the require-

ment of the lowest or the highest value of the sum

S ¼
Xn
i¼1

mi

ð
vidr:

These studies were most closely connected with the development of variational

calculus, where the following two principles are of primary importance in dynam-

ics. The principle of virtual displacement states that a mechanical system is in

equilibrium only when the total infinitesimal work done by active forces during any

possible displacement of the system from a given position equals to zero:

X
i

Fidqi¼ 0;

where Fi is the active force and dqi the possible or virtual displacement which is

consistent at a given instant with the constraints imposed on the system.

The d’Alembert–Lagrange principle states that for the real motion of a system,

the total elementary work done by active forces and forces of inertia during any

possible displacements at any instant equals zero:

X
i

Fi �mi€qið Þdqi¼ 0:

On the basis of these principles, Hamilton derived his principle of least action,

which he further developed and generalized.

It is obvious that

€qidqi ¼
d

dt
_qidqið Þ � _qi

d

dt
dqið Þ ¼ d

dt
_qidqið Þ � _qi d _qið Þ ¼ d

dt
_qidqið Þ � 1

2
d _qið Þ2:

Then

X
i

Fi �mi€qið Þ dqi ¼ 0 ¼ >
X
i

Fi dqi ¼
X
i

mi€qi dqi

¼ d

dt

X
i

mi _qi dqi

 !
¼ dT + dA
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or

d

dt

X
i

mi _qi dqi

 !
= dT + dA, (1.11)

where T and A are the virtual work done by the reactions of constraints and external

forces, respectively.

If we integrate both the parts of Eq. 1.11 over t from t1 to t2,, in which dqi ¼ 0,

we obtain

ðt2
t1

d T + Að Þdt = 0:

For a conservative system dA ¼ – dU (where U is potential) and

ðt2
t1

dAdt = �
ðt2
t1

dUdt = � d
ðt2
t1

Udt,

where dt ¼ ddt since time does not vary.

Finally, the expression for Hamilton’s principle of least action will take the form

d
ðt2
ti

Ldt = d
ðt2
t1

T� Uð Þdt = 0; (1.12)

where L is the Lagrangian (free energy in thermodynamics).

Jacobi totally excluded time from the principle of least action. Since

T = E� U =
1

2

P
i

mi dqið Þ2

dtð Þ2

and

dt =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

mi dqið Þ2

2 E� Uð Þ

vuut

the principle itself can be written in the form

d
ðt2
t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 E� Uð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

mi dqið Þ2
r

¼ 0: (1.13)
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It must be emphasized that the principle of least action differs from other

variational principles by its integral character. It does not consider the differential

properties of motion (velocity at a given point and so on) characterizing it at

each point but the properties which characterize motion in a finite segment

measured by the integral over path. Hence it is possible in principle not to include

the co-ordinates of a point in formulating a problem of dynamics. That is why the

principle of least action characterizes motion independently of the choice of a

particular coordinate system.

All the basic equations of motion are derived from the principle of least action,

which is postulated as the basic principle. Thus, Lagrange equations of motion are

derived from the Euler-Lagrange variational principle. Hamilton’s equations are

obtained directly from the principle of least action. Here, a frame of reference and a

co-ordinate system associated with it are always chosen. Incorrect choice of co-

ordinate system and frame of reference may result in equations which we are unable

to solve. The problem of choosing the best frame of reference and co-ordinate

system and the interest in methods of transforming co-ordinates follows from here.

This has its own history, as described below.

The concept of relativity of motion was introduced in mechanics as long ago as

Galilei’s time, if we disregard ancient scientists. It reflected the need in astronomy

to compare the results of observations made at different places and times. This is

obvious in astronomy since the observers themselves are moving in relation to the

objects observed and in relation to each other. For the results of observation to have

any practical value, we should be able to convert them from one observation system

to another.

In mathematical models of the phenomena under investigation, transformations

of the appropriate quantities correspond to such a conversion. In mathematics,

however, unlike physics, conversions can be introduced most arbitrarily and at

one’s discretion. Therefore, from all conceivable transformations it is necessary to

select those, the methods of invariants have been developed; these are quantities

which do not change their values for some classes of transformation. At a more

abstract level, transformations are considered which retain the mathematical form

of the equations describing the laws of motion of mechanical systems, or covariant

transformations. These transformations, as applied to mechanics and to the princi-

ple of least action, are canonical transformations. As we have already pointed out,

canonical transformations do not depend on the equations of dynamics and can be

studied without them. Therein lies their fundamental strength.

We have already referred to the selection of groups of transformations of

co-ordinates or covariant transformations, which do not change the form of the

equations. In this case, the quantities enter into these equations as functions of their

variables can and generally do change during transformation. Here the question

may selects a class of covariant transformations. All kind of transformations could

be tried out until the best result is obtained. In physics all defined quantities have a

specific tensor rank – scalars, vectors, higher-rank tensor, spinors, etc. This is an

experimental fact. The laws of physics are written in the form of equations and it is

natural that all terms entering equations should have identical tensor dimensions.

1.2 Action and Integral Canonical Pairs 11



We cannot, for example, add a scalar and a vector and so on. Hence the requirement

of covariance. Returning to mechanics, we recall that the basic variables here are

the co-ordinates of momentum space. The latter space is abstract; we do not

perceive it by our sense organs. Therefore, the greatest general transformation

which does not go beyond the specific transformation is only an arbitrary function

of the co-ordinates of configuration space and time. These, known as point trans-

formations for, are covariant transformations for the Lagrangian equations. How-

ever, transformations which are usually the most general as functions of all

conceivable co-ordinates are covariant transformations for the Hamilton equations

and are called canonical.

The so-called generating function of transformation is introduced into the theory

of transformation of co-ordinates. It is interesting to note that for canonical trans-

formations the action is such a function.

We seek the generating function to solve the problem of finding a transformation

leading to a reference and co-ordinate system which is such that in it the equation of

motion will have the simplest form. For this, it is required that in the transformed

equations the Hamiltonian should generally be a constant and then, together with

the Hamiltonian, the particle co-ordinate system should automatically also be

constant. The system in such a co-ordinate system obtained after transformation

should be in equilibrium. There can obviously be no simpler form. Then we obtain

the equation for determining the generation function, known as the Hamilton-

Jacobi equation, in partial derivatives. It is also well known because it is the

classical limit of the Schr€odinger quantum equation. Since this generating function

is action, we again note that all the main branches of physics converge on the

concept of action.

We now briefly recall the main postulates of the theory of canonical transforma-

tions and the derivation of the Hamilton-Jacobi equation.

By j and c we denote the transformation functions of the co-ordinates of

configuration space and momenta q and p so that

q0 ¼ j q, p, tð Þ; p0¼ c q, p, tð Þ; (1.14)

where q0, p0 and q, p are the co-ordinates and momenta before and after their

transformation, respectively.

In the theory of canonical transformations, the theorem about the existence of

the conditions of canonicity of transformations is proven. A necessary and suffi-

cient condition for the canonicity of the transformations under consideration is the

condition of existence of function F(q, p, t), which is such that the following

equality will be satisfied:

X
i

cidjji � C
X
i

pidqi ¼� dFðq; p; tÞ; (1.15)

where the variation is performed for fixed time; C is some constant; and F(q, p, t)

the generating function of transformation.
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We shall not give the proof of this theorem. We only note that, for practical

purposes, a very simple and convenient method of verifying whether a randomly

chosen transformation is canonical is derived from this theorem. For this purpose,

it is sufficient to verify the validity of the following three equations:

qiqj

n o
¼ 0; pipj

n o
¼ 0; piqj

n o
¼ dijC,

where {. . ..} are the Lagrange brackets.

If the verification gives a positive result, the constant C or the valence of

transformation is calculated at once. Then the new Hamiltonian will be expressed

in terms of the old one in the following manner:

H = CH0þ @F

@t
þ
X
i

c
@ji

@t
; (1.16)

where the variables p0 and q0 are expressed in terms of the new p and q with respect

to transformations inverse to j and c.
Now if we do what we earlier wanted to do and require that the new Hamiltonian

be identically constant, p and q being constant, we shall obtain an equation for

generating a function S (according to Jacobi, it is action):

@S

@t
+ CH0¼ 0:

The quantities p and q entering into the formula for the old Hamiltonian can be

expressed in terms of the function S by the formula

@S

@qi
¼ Cpi:

If we introduce the relation Sn ¼ S/C, the equation will take the form

@Sn
@t

+ H
@Sn
@q

, t

� �
¼ 0: (1.17)

It is the first-order Hamilton-Jacobi equation in partial derivatives. After its solution

we obtain the equations

@S

@qi
¼ pi;

@S

@ai
¼�bi;
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where a, b are the constants we chose at first which determine in the old co-

ordinates the motions of the system in implicit form. These relations are integrals

of the initial Hamiltonian system of equations.

It is as the theory of canonical equations and their canonical transformations

that modern dynamics is developing. It is true – and we once again emphasize this –

that it is developing mainly on the basis of detailed description of the motion

of a system from an internal observer’s standpoint. Even when the method of outer

forms is used, these forms relate to individual elements constituting the system. So

for the whole system many forms are considered. However, the integral invariants

proposed by Poincaré (1965) and developed by Cartan are used rarely. In approaching

the dynamics of a system from an external observer’s standpoint, integral invariants

should be the main tool of the researcher.

We now come back to the general equation of the principle of mutual reversibil-

ity of representations (1.3):

L(r) + H(p) = rp:

We note once more that in it the canonical pair r and p have the dimension of

the scalar function H and L determining the transformation by its gradient.

As shown above, the scalar function itself has the dimension of action. Hence

the main canonical pairs in mechanics will be action-angle, energy-time and

Jacobi function-frequency. The powers with which time enters (to, t+1, t–1) in

the case of these pairs will be 0, +1, –1, respectively. Higher powers will not

be fundamental because of the Jacobi identity. Proof can be work of Misner and

co-workers (1973).

The pair used most extensively in mechanics is action-angle. It gives the

simplest description of a system and forms the basis for using the methods of

perturbation theory in mechanics.

The energy-time pair enables us to take into account processes with discontinu-

ous functions of state such as, for example, collisions and phase transitions.

However, neither of these pairs which use the most general properties of space-

time symmetry takes into account the specific effects of interaction. The Jacobi

function-frequency pair for systems with a high degree of symmetry retains the

merits of both those pairs and, in addition, takes into account the form of the law of

interaction of particles constituting a system. From the principle of mutual revers-

ibility one can already see the merits of this canonical pair, which is the basis of the

Jacobi equation (1.2).

We can refer to many literature sources where historical interest in this equation

has been noted. For example, Singh, in 1963, in his “Classical Dynamics”, called

Eq. 1.3 a striking result. Even Jacobi himself, in his “Vorlesung €uber Dynamik”

(1884), considered his equation to be exceptionally interesting.

We give another, most recent, example from the general theory of relativity,

which points to the importance of the Jacobi function-frequency canonical pair.

In this theory, as also in geodesy, the equation of derivation of geodesics is given in

the Riemannian form:
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r~ur~u~n + R ~n,~uð Þ~u = 0,

where r~u is the covariant derivative along the tangent; R ~n~uð Þ is the Riemannian

curvature operator and~n and~u are the unit vectors of the normal and the tangent to

the geodesic, respectively.

In the first term of this equation, differentiation operators are applied to the

vector ~n and the curvature operator is applied to ~u. However, when the Jacobi

curvature tensor

J
m
nab¼

1

2
R
m
anb + R

m
bna

� �
;

where R
m
anbis the Riemannian curvature tensor, was used, the equation of derivation

was written in the symmetric form

r~ur~u~n + J ~n,~uð Þ~u = 0,

where J ~n,~uð Þ is the Jacobi curvature operator.
The last equation can also be written as one operator:

r~ur~u~nþ J ~n,~uð Þ½ �~u = 0,

in which case we obtain a zero eigensolution problem.

It was these factors that aroused our special interest in the Jacobi function-

frequency canonical pair, which had not previously been utilized.

1.3 Integral Characteristics in the Study
of Dynamics of Natural Systems

Traditionally two approaches are used to solve the problems of dynamics. In the

first approach the object under study is regarded as a system of mass points

interacting in accordance with specific laws. In the second it is represented as a

continuum model in which the interactions are expressed in terms of volume fields

of forces also acting in accordance with physical laws.

In both cases the mathematical description of the dynamics of the object is based

on the latter’s fundamental integral characteristics – mass and energy – which have

a definite physical interpretation. Let us examine how these characteristics are used

and consider, first of all, the concept of energy of an object in the different

approaches to its dynamics.

In the mechanics of a system of mass points, energy, E, as we know, can be

expressed mathematically as follows:

E =
Xn
i¼1

p2i
2mi

+ U(q1;q2;:::;qnÞ; (1.18)
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where qi and pi are, respectively, the co-ordinates and moments of the mass points

mi, and U is potential energy.

The expression written in this form is, strictly speaking, a function of 2n arguments

pi and qi which has a wide range of values. Energy means only those values of this

function which, upon substitution into Eq. 1.18 of the definite arguments pi and qi as

function of time, are the solutions of the corresponding equations ofmotion. However,

for brevity, the same term ‘energy’ is commonly used to express also its corresponding

mathematical form and its magnitude by a narrower set of values of arguments. The

fact that the concept ‘energy’ is used in many senses does not, however, cause

ambiguities in describing the dynamics of a system in co-ordinates and velocities.

The variational approach is generally used in constructing the equations

of mechanics of mass points. For this purpose, the Lagrangian L with arguments qi,

_qi, t are introduced. Here, for brevity, _qi is called the velocity of the i-th particle.

Strictly speaking, this should be so understood that, if qi(t) as a function of time is

the solution of the corresponding equation of motion, _qi is the time derivative of

this function. Consequently, the differentiation of the function should be performed

only after the solution of the equation of motion has been found.

Thereafter, the procedure of variational calculus is used to find the class of

functions qi(t) satisfying the principle of least action. For this purpose, the func-

tional S is written and its extremum is found:

S =

ðt2
t1

L(qi; _qi;t)dt: (1.19)

We write the variation of action S:

dS =

ðt2
t1

L(qi; _qi;t)dt =

ðt2
t1

Xn
i¼1

@L

@qi
dqiþ

@L

@qi
d _qi

� �
dt:

Integrating in parts the second terms of the sum, we obtain

ðt2
t1

@L

_qi@
d

@qi
@t

� �
dt =

@L

@ _qi
d _qijt2t1 �

ðt2
t1

d

dt

@L

@ _qi

� �	 

dqidt:

The first term on the right-hand side of the equality is zero since, according to the

condition, we have:

@qijt1 ¼ @qijt2¼ 0:
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Then

dS ¼
ðt2
t1

Xn
i¼1

dL
dqi

� d
dt

dL
dqi

dqidt
� �

:

Since the variations dqi are independent, we obtain the Lagrangian system of

equations

dL
dqi

� d

dt

dL
d _qi

� �
¼ 0: (1.20)

Thus we have obtained the system of equations describing the motion of each point

of the system.

The function S in Eq. 1.19 has the dimension of action between fixed points on

the time axis. The function L is thus the time density of action, and the density of

the Lagrangian L (per unit volume) introduced into the modern field theories,

including quantum theory, finally symmetrize the functional S as the density of

action in four-dimensional space-time.

However, the variational principle enables the equations for the search functions

qi(t) to be found in the general case for an arbitrarily defined form of the Lagrang-

ian. Therefore, the form of the Lagrangian is not determined from the variational

principle. Moreover, even the set of its arguments is not determined. In this

connection, the functional is varied with the Lagrangian. Lðq; _q; €q;:::,t):
In this case, the principle of least action is applied and equations for determining

the co-ordinates qi are obtained. There are, of course, certain restrictions on the

form of the Lagrangian, but none whatever on the number of arguments from

the standpoint of mathematics. Here differential equations of an arbitrarily high

order may be obtained. The type of Lagrangian, and especially the number of its

arguments, are chosen from historical tradition from Kepler to Newton, who made

their choice from a careful analysis of empirical observations and generalization of

their results.

In such an approach we come back to where we started, i.e. to Newton’s

equations, while the general nature of the principle of least action seems to be

unused. As for Newton’s system of equations to describe the motion of mass points,

the system of equations to describe the motion of mass points, the system of

differential equations for three or more masses is unsolvable. Thus, there arose

the many-body problem which has had no satisfactory solution even until now,

while the mechanics of mass points, lacking a solution of the fundamental problem,

reached a dead end.

The main difficulty encountered by Newtonian mechanics in going over to the

integral approach was evidently the fact that the non-localizability of the energy of

interaction of mass points m1 and m2, proportional to m1m2/r
2 (where r is distance

between masses) cannot in any reasonable way be related to any region or point

in space, whereas, according to Einstein, energy is proportional to some mass.
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However, it is known where this mass is. According to the equivalence principle,

inertia is inherent in every mass, including mass defect occurring during their

interaction.

There was only one thing to do – to study the behavior of natural objects in terms

of integral (volumetric) characteristic and to write the virial equations with their

help. The main reason to do this is that the gravitational interaction of any quantity

of mass produces volumetric forces because any size of mass has volume. Jacobi

very easily obtained his equation (1.2) from Newton’s equations, noting its excep-

tionally interesting properties bud did not solve this equation in terms of integral

(volumetric) characteristics. A century later, in his fundamental and complete work,

Wintner (1941) frankly said that it was impossible in principle to solve this equation

in terms of integral characteristics. Here a negative role was apparently played by

the concept of non-localizability of potential energy in the mechanics of mass

points. Nobody seemed to want to approach the problem from the standpoint of

the external observer, where energy can be measured experimentally, since

the problem had already been formulated from the internal observer’s point of

view. It was considered that it should in any case be solved in the style in which it

had been formulated, without substituting one problem for another.Jacobi, how-

ever, who well understood the weak points of deriving the equations of motion of

mass points, suggested his variant of the principle of least action, which was written

in the form

d
ðt2
t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Uð Þds

p
¼ 0; (1.21)

where E and U are the total and potential energies and ds is a Riemannian linear

element. The geometric interpretation of this equation is as follows. The trajectory

is the geodesic of the configuration space in which the Riemannian linear element

ds is specified, the latter being equal to ds2 ¼ mikdqidqk, where mik is a coefficient

written in the form

Lðq; _q,t) ¼ 1

2
mik _q i _qk � U:

The Hertz-Gauss principle or the principle of least curvature follows at once

from the Jacobi principle since the geodesic is a curve of least curvature. This

principle reduces the many-body problem to the motion of one body along

the geodesic in a complex multidimensional configuration space. Moreover, it

determines there the trajectory of motion but not the law of motion along this

trajectory. This obviously explains why the given principle did not fully solve

the problem. However, it is important to note that attempts were made to go over

to the one-body problem.

We now consider how mechanics developed within the framework of the

continuummodel. In continuummechanics there are fields of forces, and the energy
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squared over these fields and the mass associated with it are localized over the

whole space. Electromagnetic interactions in relation to energy are localized by

introducing the concept of pressure. However, in mechanics, pressure is introduced

axiomatically and its internal structure is not determined. It is interesting to note

that pressure has the same dimension as the volume density of energy, and that,

since energy is the time density of action, pressure is the density of action which is

four-dimensional in space-time as is the Lagrangian density.

After introducing the distributed quantities, we can carry out integration over the

volume of the system and obtain the system’s integral parameters, which have

a clear physical sense since the corresponding physical quantities can be measured.

It is possible for this reason that the virial equations in cosmology are (and were)

easily and clearly obtained from the Einstein equations. However, there were more

integral parameters than equations here, and the so-called equations of state were

therefore used in order to close the system of equations of dynamics. These

equations directly connect the integral (or integrable, where is sufficient) quantities:

pressure and density (omitting co-ordinates and velocities). The equations of state

themselves are taken either from experiment or from auxiliary theories (simplified,

as in the molecular kinetic theory, or partly rigorous, like the Pauly principle in

quantum mechanics). In any case, these relations exist and demonstrate the validity

of the assertion that the virial equations can be solved in terms of integral

characteristics.

It was not always the case that after the virial equations were written they were

solved in terms of integral characteristics. Since there were more characteristics

then equations and since additional relations (of the type of equations of state in

continuum mechanics) cannot be found immediately, some authors did not stick to

the initially chosen integral direction and reverted to the ordinary differential

approach. An example is the work of Chandrasekhar (1969) referred to earlier,

where he developed the method of moments. After obtaining the system of virial

equations, he calculated for their solution the variations of the integral character-

istics for small shifts (or deformation) in order to linearize the virial equations.

Consequently, while calculating the variations, he abandoned the integral approach

and expanded the domain of definition of functions which expresses the

corresponding integral parameter. This work deserves serious attention, and we

shall return to it when we discuss the problem of moments.

It is interesting to dwell on the integral approach used in thermodynamics. We

have referred earlier to equations of state and noted that they were obtained both

experimentally and with the use of special theories. Let us consider one such

example. In the theory of non-ideal gases the following formula for the equation

of state for a gas is introduced by means of molecular kinetic theory methods:

P =
NT0

V
1þNC1 T0ð Þ

V
þN2C2 T0ð Þ

V2
þ::::

� �
:

Here P is the pressure of the gas; T0 its temperature; V/N the specific volume per

molecule and Ci(T0) coefficients independent of pressure.
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Each term here corresponds to a particular type of interaction of molecules: the

first term describes an ideal gas; the second defines pair interactions; the third

the three-body interactions of molecules, and so on. The coefficients Ci(T0) in this

theory are called virial coefficients. In statistical physics, the following parametri-

cally defined equations of state are derived for their determination:

P = T0

X1
n¼1

Jn

n!
xn

� �
;

N

V
¼
Xn
n¼1

Jn

n� 1ð Þ! x
n

� �
;

where x is a parameter which should be excluded; and Jn is a function dependent

only on temperature and calculated for n-fold interaction of molecules from their

given interaction function.

It should be noted that, at zero temperature, pressure in classical physics should

become zero. The velocity of sound should also become zero. The energy of

electromagnetic interaction of charges takes into account only the random motion

of these charges. The Madelung energy (the energy of formation of an atomic

lattice) determines the purely Coulomb interactions of charges and does not depend

on temperature.

We have so far discussed the problem of using the integral characteristics of a

system, which determine its behavior in time. It would be interesting to take a look

at the properties of the integral invariants derived at different times. As we have

already pointed out, the canonical representations retain some integral invariants

and this is the basic property. Among the forms which they retain, the most

important are Poincaré relative invariant and the forms associated with it.

The Poincaré integral invariant is

þ
pdq� Hdt

and the relative integral invariant is
H
pdq(where p and q are vectors).

It should be borne in mind that the invariant has the dimension of action and its

form

pdq� Hdt = p1dq1þ p2dq2 þ p3dq3 � Hdt,

taking into account that H/C is p4 and that cdt ¼ dq4, shows that it is simply a scalar

pseudo-Euclidian product of two four-vectors p(p1, p2, p3, p4) and q(q1, q2, q3, q4) –

four-momentum and four-radius of the particle vector. Such, for example, is the

eikonal determining the phase of a plane traveling wave:

kr� ot = k1X + k2Y + k3Z� k4ct,
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which represents the scalar product (pseudo-Euclidian) of two four-vectors:

k(k1, k2, k3 , k4 ¼ o/c) – wave four-vector and four-radius of vector q. In the given

case, this contraction is dimensionless. The Jacobi tensor, whose three-spur is the

Jacobi function, can be contracted once or twice with the wave four-vector. During

the first contraction we obtain a vector with the dimension of action so that the Jacobi

function-frequency pair is a canonical pair, while the second contraction dives the

Einstein function E ¼ mc2 (scalar). The Liouville theorem forming the basis of

statistical physics is associated with the Poincaré invariant from which it follows.

The integral invariants considered above are regarded in mathematics as external

forms of different orders and, as has been pointed out, they have been studied for a

long time by means of the Cartan external forms, so that a well-developed mathe-

matical apparatus for their study already exists.

From this brief description it can be seen that attempts have been made for a long

time to approach the description of the dynamics of natural systems in terms of

integral (volumetric) characteristics by means of the construction of virial equa-

tions. It is only required to introduce some concepts associated with the conditions

of the external observer. In particular, the integral characteristics from the external

observer’s standpoint are functions of time only and consequently they cannot be

subjected to partial differential operations. From the physical point of view this

means that these characteristics should be measured directly (even if only in

principle) and not calculated by formulae. For example, the potential energy in

Eq. 1.18 can be emitted during the time of the system’s formation. Mass as an

integral characteristic of the system should also be determined from measurements

performed externally. For example, the mass of the Sun is determined from the

parameters of motion of planets around it. In atomic physics the eigenmoment of

the atom can be measured, and this is easier to do than adding its eigen- and orbital

moments, which is a mathematical problem.

In the general theory of relativity, co-ordinates near singularities are introduced

similarly from the external observer’s standpoint. The length of the circle surround-

ing the singularity, divided by 2p, is introduced instead of the Euclidian radius-

vector. In this case, the chosen approach is a question of principle and not of

convenience.

We note that for application of the integral approach in dynamics we already

have the well-developed mathematical apparatus of external differentiation, dis-

cussed above, which is also used to study the contours surrounding the region

externally. The distinctive feature of this calculus is that it has only the first differ-

entials of function, the higher ones being absent. The parallels between the methods

in physics and mathematics from the external observer’s standpoint are obvious.

Another new concept is that natural systems from the external observer’s stand-

point are not conservative since they emit energy. The emitted energy is an integral

effect of all possible types of interaction. However, a specific type of interaction in

the system appears in the corresponding part of the emitted energy spectrum.

Finally, we introduce the concept of hierarchy of systems and sub-systems. We

note that it is not simply and not only a concept for study of motion in nature since

the very fact of the existence of such a hierarchy is empirical. For example, the
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chain: universe – galaxies – stars – planets – satellites – shells – plates – polycrystals

– molecules – atoms – nucleons – electrons, etc., really exists so that this approach to

the study of motion mirrors the structure of nature.

In studying motion inside a particular system, we should confine ourselves to the

study of the influence exerted on the bodies in our system by the nearest neighbors

only. We thus declare our system to be closed. Indeed, all laws of conservation are

written for closed systems. It is nevertheless possible to describe with some

accuracy the motion, say, of celestial bodies even prognostically (ephemeris) on

the basis of mechanics with second-order equations of motion (here we are not

going to take into account the co-ordinates-momenta parity). What may be the

reason for this? Even the stability of such systems (admittedly according to

Lyapunov and not according to Duboshin, i.e. with respect to variation of only

the initial conditions and not interactions) is also studied to second-order time

derivatives. From electrostatics we know both theoretically and experimentally

(Coulomb’s law and the Faraday cage) that a closed shell consisting of charges

shifting freely in it will, if given sufficient time, distribute these charges over itself

in such a way that the influence of charges external to the shell on the space inside

the shell will be fully balanced by its own charge distribution. It is important to note

that the potential inside the shell is not important since only its spatial gradient has

an influence. It is known that this potential satisfies a second-order differential

equation, the Poisson equation, so that Coulomb’s law from the external observer’s

standpoint can be formulated as the principle of possibility of shielding the inside

space of the shell from external actions. It was found that this approach automati-

cally gives Coulomb’s law: the law of inverse squares. Any deviation from two in

the exponent of this law deprives the shell of such a property.

Coulomb’s law is a static law. If it is to operate in the way indicated, the charge

in the external actions must be sufficiently slow in comparison with the time needed

for charge redistribution. Newton’s law of universal gravitation has the same form as

Coulomb’s law. If we consider that the time of propagation of gravitational waves is

the same as that of electromagnetic waves – this is just what the Einstein law states –

and if we take into account that the structure of the universe is hierarchical, we have

an analogy with electrostatics. The slowness of charges in the external actions of the

shell (the latter being the system nearest to us and enveloping our system, e.g., for the

Solar System it is our Galaxy) is ensured by the great distance of these outer bodies.

Thus, there appears to be justification for the possible rejection of the influence of

almost should be taken into account. The principle of shielding will itself give the

criterion for the choice of almost-closed system.

1.3.1 Method of Moments: Specific Features
in Integral Approach and First Moments

As we know, it is possible in mathematics under certain conditions to reconstruct

a continuous function by means of its moments with the help of a generating

function. Here each of the moments is an integral characteristic of the function
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and consequently, as applied to a physical system, is the external parameter of the

function. The parameter can be measured in the appropriate manner.

However, although the function can be reconstructed by means of moments, we

require for this purpose all moments, which are infinitely large in number. More-

over, in the detailed description of a system from the internal observer’s standpoint,

it is not possible to comprehend the results owing to the large number of the

system’s degrees of freedom even if number is finite. For this reason alone, one

resorts to describing a system by the moments of the function which is being sought.

Because of the artificial break in the infinite chain of moments, such a description

is not only incomplete but also inaccurate. The results obtained in this manner

require verification by experiment in order to demonstrate that the errors are not too

large. Errors do occur since the aim is to obtain a full description of the motion of

the whole system, i.e. the motion of each of its elements. Generally speaking, each

moment is in itself a characteristic of the system, indeed of the system as a whole,

and is a fully accurate quantity which is not determined with an error. For example,

the first moment of mass density determines the position of the center of mass of a

system and the zero moment determines its total mass. Both these characteristics

are its accurate integral characteristics and will not be charged by whether or not we

find still higher moments of the system. Since in the integral approach we are

searching for canonical equations, the corresponding description of the system’s

behavior will be accurate.

In statistical physics the break in the chain of linked equations occurs after

the introduction of some approximate relationship between the partial distribution

functions. Its sense lies in the distortion of the law of interaction of the elements of the

whole, since without introducing any law of interaction it is not possible to obtain a

full description of the system from the internal observer’s standpoint. This distortion

is, of course, towards simplification of the model. The first twomoments are the most

important. They characterize the average value over the total distribution and its

dispersion. The true distribution here is replaced by a Gaussian distribution with the

same average value and dispersion. Then the virial theorem is used in order to choose

the chain of linked equations, and the method of closure is order to choose is to

average the corresponding equation over time.

We found a way to close this chain for high-symmetry systems, not by an

approximate method but by a rigorous one. This will be discussed later. Here it is

sufficient to note that in the most fundamental general theory of relativity the metric

is determined quite rigorously either by one (Schwarzschild) or by two (Kerr)

moments, and this is natural for their symmetry because the metric considered is

external to the sources.

We now recall the basic postulates of the theory of moments in mathematics and

make some comments on them from the standpoint of the integral approach

considered here to the solution of the problems of dynamics of systems.

In mathematics there is the concept of characteristic function for a given

function F(x) which is determined by the expression

j(t) =
ð
O

eitxdF(x),
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where O is the domain of definition of the function and F and t belong to this

domain.

If the function F(x) has a derivative f(x) with a finite number of discontinuities of

the second kind then

j(t) =
ð
O

eitxf(x)dx,

where j(x) is simply the Fourier transform of the function f(x).

The given relation is single-valued and unique; it is a theorem of mathematics.

So is the inversion formula which enables us, with the help of the characteristic

function, to reconstruct the function itself

F(b)� F(a) = lim
c!1

1

2n

ðþc

�c

e�ita � e�1tb

it
j(t)dt:

it is simply the inversion of the Fourier transform.

In the theorem of moments, a function is reconstructed with the help of its

moments. Here it seems that this can be done, although in the general case the

solution is non-unique. However, under some sufficient conditions of the form

lim
n!1 l

ffiffiffiffiffi
mnn

p
n

<1;

where mn is the n-th moment of function f, the solution will be unique. In this case,

the problem is solved by the following procedure. At first the function

j(e) =
X1
n¼0

itð Þn
n!

mn

	 

:

is calculated with the help of specified moments. This function will be the charac-

teristic function f(x), or, in the more general case, of function F(x). Here, two

important points are usually to be noted: (a) if the function to be reconstructed is

given in a finite interval, the solution of the problem is generally unique; (b) the

condition on sufficiency for uniqueness in the case of an infinite domain of defini-

tion can be satisfied only for particular moments. We further note that this condition

itself can easily be fulfilled in physics so that we can consider that the problem of

inversion of moments in physics is always solved uniquely.

However, we are speaking about all moments of the function, and they are

infinitely large in number. In practice, the method of moments is used to find an

approximate and not an accurate solution since, as a rule, one rarely succeeds in

finding a general form of solution of the moment equation.

The moment method is used in the following manner. The initial equation for the

function being sought in integrated successively over the whole domain of

24 1 Introduction: General Principles and Approaches in Dynamics



definition after prior multiplication by successive power of the argument. In the

general case, we obtain an infinite chain on linked algebraic equations. If this

infinite system of equations can be solved in the general form, we obtain all the

moments and using the above formulae we find what we were looking for. As a rule,

however, this cannot be done because of mathematical difficulties. Then we

proceed as follows. We artificially break the chain of equations, so that the number

of equations will be smaller than the number of unknowns. To solve such a system,

we artificially supplement it by an equation constructed on the basis of some

considerations, and solve the shortened system obtained. It is considered that this

solution will be chosen closer to the truth.

We note the following, however. As will be seen from the above scheme of

reconstruction of a function by means of moments, when truncating the series of

moments we shell obtain a polynomial as the characteristics function. The polyno-

mial has a finite number of poles, and consequently even an approximate solution

will not be just inaccurate; it will not be specified in the whole domain of the

function sought.

Let us give an obvious example. We approximate a sine curve by a third-order

polynomial. The region where any approximation of the sine curve to a cubic

parabola is at all possible is that between the extreme roots of the third-order

equation, as shown in Fig. 1.1.

This is not the main point. The main point is that from the standpoint of

mathematics, in calculating moments by this method, integration is performed

over the whole domain of definition of the function, i.e. over all its arguments.

If we speak of physics, this means integration over space and time co-ordinates.

In this particular case, the moments will be constant or, more accurately, functions

of the parameters of the problem. This is the case for which all the rigorous

theorems of the theory of moments have been established in mathematics. In the

physical applications, however, the problem is approached differently, so there is a

new formulation of the problem itself. In the physical literature, integration over

time is not performed and the moments (now these are spatial moments) are

functions of time. The moment equations, which are obtained from the basic

equation by multiplying by the successive power of space co-ordinates followed

by integration over the whole configuration space, are ordinary differential equa-

tions. We further note that, in the case of multi-dimensional configuration space

(and this is precisely the general case), multiplication by the corresponding n-th

power of co-ordinates denotes multiplication by the product of the powers

of all spatial arguments, the sum of all exponents of which is equal to n with all

Fig. 1.1 Domain of

approximation of the sinusoid

to the cubic parabola
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such possible combinations, so that ultimately we shell obtain not one moment

of power n(mn) but a whole matrix of such values for each n, i.e. a tensor of the

n-th rank. Since this is only a matter of mathematical technique, later in this chapter

we shell understand by ‘moment’ the spur of the corresponding matrix, denoting it

by mn to avoid submerging the physical essence in less substantial details.

The method of moments was developed generally in order to solve problems

where insurmountable or almost insurmountable mathematical difficulties were

encountered and was not intended for problems which are in principle unsolvable

e.g. those in which the number of unknown functions exceeds that of equations for

their determination. In the latter case, the method of moments alone cannot help.

In this connection, let us see how Chandrasekhar (1969) evaluates the method.

He writes that the virial method is essentially the method of moments and that virial

equations of different orders are in fact nothing more than the moments of the

corresponding hydrodynamic equations. By moments of equations he means spatial

moments, as he makes clear when he says that all these quantities (including

volume, V) will, generally speaking, also be functions of time, to. So virial

equations are differential equations, and it is fortunate that they are only ordinary

differential equations and not partial derivatives.

The quantities (moments) entering into these virial equations are in fact integral

quantities if we regard them as unknown functions of time (which they are) and

do not try to linearize them. Unfortunately, there are more such functions then

equations and, possibly, therefore even Chandrasekhar does not see in the virila

equations anything new other then that the method of obtaining these equations is

identical with the method of moments, and this is obvious from his statements

quoted above.

To elucidate our idea, we return to Newton’s equations for a system of gravita-

tional mass points of hydrodynamic equations since, is this case, we can more clearly

see the role of the integral parameters. Newton’s system of equations in the above

case is a system of equations of the many-body problem. It is defined accurately and

should in principle be solved in the sense that the number of equations and the

number of functions sought coincide and that the equations are ordinary differential

equations. However, we are unable to solve them for lack of mathematical methods.

But when these equations are replaced by those of spatial moments, it is found

(Jacobi) that these equations contain only the integral characteristics of a many-

body system: Jacobi function, total energy (system mass) and potential energy

(mass defect of the system). They all appear as unknown functions of time. Taking

into account the law of conservation of energy, there is only one equation lacking

for solving the system (for finding these functions). We are not concerned here with

where the equation is to be taken from – this will be dealt with in due course – but

we now return with new ideas to the equations of hydrodynamics.

A number of questions arise at ones. The first is what are we seeking as unknown

functions in the equations of hydrodynamics before they are converted into the

moment form? It is the density fluid for a compressible fluid and the velocity vector

at each of its points. But this is indeed an infinite amount of information. Even if it

were possible to obtain this information by some unknown means, what more is to
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be done with it? It appears, just as in the theory of probability, for example, or in

quantum mechanics, that this information is used in an integral form. We are

seeking the probability density or the probability amplitude in order to find the

average values of the finite number of parameters of the system, the so-called

measurable or observable quantities. The functions we are seeking cannot be

used in their general form even if they existed (we mean precisely the general,

i.e. infinite-valued, solution). Then, in reply to the question of how to solve those

equations, we pose another question: what do the authors of those equations expect

to obtain? They do not in fact consider them unsolvable. It is clear, as they say in

mathematical physics, that solving an equation means obtaining it in the form of a

finite algebraic combination of either so-called elementary functions or a conver-

gent (although asymptotic) series of such functions, so that in practice, where the

criterion is accuracy, one can confine oneself to a finite number of such functions.

On the other hand, it may mean that one wants to reduce the solution to quadratures

where the methods of finite approximation can also be used.

The main conclusion is that the solution is expected to be obtained in the form of

a finite and not an infinite number of ‘images’. For example, if as the solution to this

kind of problem for a gaseous star we obtain the equation of its rotation (oscillation),

one parameter – the angular velocity – is one ‘image’. If a baroclinic rotation is

obtained, one law – the change in angular velocity (frequency of oscillation) along

the radius of the star, given by some elementary function or by their combination or at

least by a polynomial approximation – also represents an image, while this time is an

optical ‘image’. We may also mention, for example, honeycomb convection, where

there are more parameters then one to describe motion. But when, in practice, we

encounter the phenomenon of turbulence, where pulsations are infinitely large in

number, it is clear that they cannot be obtained from the equations of hydrodynamics.

Thus, even the authors of the hydrodynamic equations do not expect to obtain from

their equations arbitrarily general solutions, and this indicates from the very begin-

ning that these equations contain too much information even in their formulation. It is

also apparent that the method of moments can be stronger than the initial equations

themselves. This will be the case if the initial equations do not simply possess excess

information but also contain the entire integral information corresponding to the

given physical theory. This information will then appear, whereas the equations will

be accurate equations of the physical problem. Chandrasekhar evidently feels this. On

the page where the statements referred to earlier appear, he points out that the

advantage of these moment equations lies in the fact that the lowest-order equations

often allow a simple physical interpretation. Unfortunately, he immediately makes a

reservation to the effect that the purpose of using the moment equations. Later on, for

specific problems of equilibrium and stability of configurations of fluids, he himself

demonstrates how the method of moments (of finite number) gives a complete

solution of these problems. This is done, in principle, by bypassing solution of

the problem of obtaining full information on the distribution of density and motion

in a system. Moreover, he even states clearly elsewhere in the book that, for solution

of the Dirichlet problem, the second-order virial equations contain the necessary and
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sufficient conditions, and the virial equations therefore give all the necessary infor-

mation for the study of equilibrium and stability of the permissible ellipsoidal figures.

The actual problems of science and technology set specific tasks for specific

purposes rather than general speculative problems. For example, in the examples

quoted above, it is necessary to elucidate the conditions of equilibrium and stability

of real objects and not to speculate about finding some distribution function. In this

connection, it is clear that the virial method will always work.

It is interesting to consider where the classical physicists use the specific

formulation of a problem. The Dirichlet problem was first solved fully by Riemann,

who used it in selecting the law of dependence on the velocity field at a particular

time on the initial Lagrangian co-ordinates of the corresponding points. He selected

this law by intuition (which he could afford to do) and expressed it as a linear matrix

function with a matrix of coefficients of transformation dependent only on time.

Later Likhnerovich and Chandrasekhar specially studied this law in the Dirichlet

problem and established its compatibility with free boundary conditions, demon-

strating the uniqueness of the selection. Thus, in this case, the specific formulation

of the problem (the problem of equilibrium and stability of a given form of the

equilibrium figure) manifested itself in requiring certain boundary conditions.

These conditions, in their turn, determined the selection of the form of representa-

tion to describe internal motion in the system under study, and this form was the

linear matrix combination of Lagrangian co-ordinates as the permissible velocity

field of the fluid elements of the body

In this specific case it is possible to observe even at the classical level the

mechanism of the action of limitation which follows from the specific formulation

of the problem. In the general case, this is of course not required, nor is it always

possible, and we go over directly to virial equations and their solutions, which are

the solutions of the specific problem.

In summary, we emphasize once again that the sense of the virial equations in

physics is not the same as that of the method of moments in mathematics. In the

latter case, the purpose is to reconstruct the initial function but it is not important

what sort of function it is.

In physics, on the other hand, the function which generates moments is the

distribution function and it therefore has a precise role. If it is known, that is fine,

since with its help we can find other functions of measurable or observable

quantities. If it is not known, but if there is way of doing it, that is fine too. The

virial equations of provide the means of doing without the intermediate step – the

distribution function – but for this purpose, they must of course be correct. That

means the moment should be taken for the most general and universal equation such

as the Einstein equation in the general theory of relativity.

In concluding this chapter we note that scientific models describing nature are

being developed continually in the direction of greater generality and simplicity.

Galilei did not take into consideration the need for external causes for free motion;

he pointed out that free motion was the natural state of matter. Einstein went

further. He introduced motion along the geodesic, thereby excluding gravitation

as a force. His motion along the geodesic is now the new form of free motion.
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Acceleration of a body occurs only when it is prevented from moving along the

geodesic. So, nature has electro-weak and strong interactions.

As to the oscillatory motion of matter, it is also universal. In the absence of

forces of friction it also does not need an external force in order to exist since it is a

natural form of motion. If we take into account the results obtained recently for

empty space, where the oscillatory regime of metric changes also exists (Belinsky

et al. 1970), it will be clear that the oscillatory regime of motion is the most general

and natural property of nature. Energy is important for free motion, which is

described by equations based on the energy-time canonical pair. The action-angle

canonical pair is used to describe rotational motion. The Jacobi function-frequency

canonical pair is appropriate for describing oscillatory motion. Hence the interest in

the Jacobi equation (1.2), which makes practical use of this canonical pair.
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Chapter 2

Recent Observations and Understanding
Physical Meaning of Jacobi’s Virial Equation

Fundamentals of all the planetary and Solar System sciences are tested first of all by

the laws of the Earth movement, where the confidence limit to the laws can be

checked by observation. More over, all the sense of human being is connected with

this planet. As far as the techniques and instruments for observation were devel-

oped, then geodesists, astronomers and geophysicists have noticed that in the

planet’s inertial rotation some irregularities and deviations relative to the accepted

standard parameters and hydrostatic state conditions have appeared. Those irregu-

larities that are often called as inaccuracies, number of which is counted by more

than dozen, finally were incorporated into two problems, namely, variation of the

angular velocity in the daily, monthly, annually and secular time scale, and varia-

tion in the poles motion in the same time scales. Just after the problems became

obvious and have not find resolution in the frame work of the accepted physical and

theoretical conceptions of celestial mechanics the latter lost interest in the problems

of the Earth dynamics. In this connection the well known German theoreticians in

dynamics, Klein and Sommerfeld, stated that the Earth mechanics appear to be

more complicated than the celestial mechanics and represents “some confused
labyrinths of geophysics” (Klein and Sommerfeld 1903). In order to study irregular

velocity of the Earth rotation and the pole motion numerous projects of observation

and regular monitoring were organized by the planetary network. As it was always

in such cases, the cause of the observed effects was searched in the effects of

perturbations coming from the Moon and the Sun, and also in the influence of

dynamical effects of the own shells like the atmosphere, the oceans and the liquid

core, existence of which is considered by many researchers.

2.1 Dynamical Effects Discovered by Space Study

Artificial satellites, which made a start of space study in the second part of the

twentieth century, opened a new page in space sciences. It was determined that

the ultimate goal of this scientific program should be an answer to the question of
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the Solar system origin. Investigation of the near Earth cosmic space for solution of

geodetic and geophysical problems was in the beginning initiated.

The first geodetic satellites for studying dynamic parameters of the planet were

launched almost 50 years ago. They gathered vast amounts of data that significantly

improved our knowledge of the inner structure and dynamics of the Earth. They

made it a real possibility to evaluate experimentally the correctness of basic physical

ideas and hypotheses in astronomy, astrophysics, geophysics, geodesy and geology,

and to compare theoretical calculations with observations. Success in this direction

was achieved in a short period of time.

On the basis of satellite orbit measurements, the zonal, sectorial and tesseral

harmonics of gravitational moments in expansion of the gravitational potential by a

spherical function, up to tens, twenties and higher degrees were calculated. The

calculations have resulted in an important discovery having far-reaching effects.

The obtained results proved the long-held assumption of geophysicists that the

Earth does not stay in hydrostatic equilibrium, which, in fact, is the basic principle

of the theories of dynamics, figure and inner structure of the planet. The same

conclusion was made about the Moon.

This conclusion means that the physical conception of hydrostatic equilib-

rium state of the Earth which was applied for construction of model of the outer

and central force field does not satisfy the observed dynamic effects of gravita-

tional interaction of mass particles and should be revised. But the state of

scientific knowledge of this phenomenon has been found to be not ready to

cope with such a situation. The story of the condition of hydrostatic equilibrium

of the planet begins with Newton’s consideration, in his famous work Philoso-
phiae Naturalis Principia Mathematica, of the Earth’s oblateness problem. The

investigation based on hydrostatics was further developed by French astronomer

and mathematician Clairaut. Later on the hypothesis of hydrostatic equilibrium

was extended to all celestial bodies including stars. The authority of Newton was

always so high that any other theories for solution of the problem in dynamics

and celestial body structure were never proposed. But in current times the problem

has arisen of the cause of the discrepancy between theory and observation and a

moment has come to take over this crisis in the study of fundamentals of the Earth

sciences. A situation like this happened at the beginning of the twentieth century when

radioactive and roentgen radiation was discovered and the corpuscular-wave nature of

light was proved. This was the starting point for development of quantum mechanics.

We seem now to have a similar situation with respect to the planets motion.

We found a still more serious discrepancy related to the Earth hydrostatic equilib-

rium, which is as follows (Ferronsky and Ferronsky 2007). It is known that the

planet’s potential energy is almost 300 times more than the kinetic one represented by

the body’s rotation. This ratio between the potential and kinetic energy contradicts

the requirement of the virial theorem according to which the potential energy of a

body in the outer uniform force field should be twice as much of the kinetic one.

From point of view of the observed potential energy the Earth’s angular velocity

should be about 17 times as much as it is. However, the planet has remained for a

long time in an equilibrium state. In fact, the Earth appears to have been deprived of
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its kinetic energy. Some of the other planets, such like Mars, Jupiter, Saturn, Uranus

and Neptune, exhibit the same behavior. But for the Mercury, Venus, our Moon and

the Sun, the equilibrium states of which are also accepted as hydrostatic, the

potential energy exceeds their kinetic energy by 104 times. A logical explanation

comes to mind that there is some hidden form of motion of the body’s interacting

mass particles, together with their respective kinetic energy, which has not been

taken previously into account. It is known that the hydrostatic equilibrium condition

of a body, being stay in the outer force field, satisfies the requirement of the

Clausius virial theorem. The same requirement follows also from the Eulerian

equations for a liquid-filled uniform sphere. The virial theorem gives an averaged

relationship between the potential and kinetic energies of a body. A periodic

component of the energy change there during the corresponding time interval is

accepted as a constant value and eliminated from consideration. From this evidence

it was not difficult to guess that the hidden form of motion and the source of needed

kinetic energy of the Earth and the planets including the Moon and the Sun might be

found in that eliminated periodic component. In the problem considered by

Newton, that component was absent because of his concept of the central gravita-

tional force field, the total sum of which is equal to zero.

Taking into account the relationship between the Earth’s gravitational moments

and the gravitational potential observed by the satellites, we came back to deriva-

tion of the virial theorem in classical mechanics (see below) and obtained its

generalized form of the relationship between the energy and the polar moment of

inertia of a body. Doing so, we obtained the equation of dynamical equilibrium of a

body in its own force field where the hydrostatic equilibrium is a particular case of a

uniform body in its outer force field. The equation establishes a relationship

between the potential and kinetic energies of a body by means of energy of

oscillation of the polar moment of inertia in the form of the energy conservation

law. An analytical expression of the derived new form of the virial theorem, based

on the Newton’s laws of motion, appeared to be the Jacobi’s virial equation. In this

case the earlier lost of kinetic energy is found by taking into account the oscillating

motion of the interacting mass particles, the integral effect of which is expressed

through oscillation of the polar moment of inertia. That effect fits the relationship

between the potential and kinetic energies in the classical virial theorem. At the

same time a novel physical conception about gravitation and electromagnetic

interaction is appeared and mechanism of the energy generation becomes clear.

The nature of the gravity forces as a derivative of the body’s inner energy appears to

be discovered.

The obtained, on the basis of Jacobi dynamics, results related to the problem

of the Earth are as follows. We found that the new effect, which creates dynamics

of the Earth, is its own inner force field. Earlier, the sum of the inner forces and

their moments being effected by the outer central force field were considered

as equal to zero. We find that the mass forces of interaction being volumetric

ones created the inner force field which appears to be the field of power (energy)

pressure. That field, according to its definition, can not be equal to zero. The

resultant of the field pressure appears to be a space envelope. The envelope has a
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spherical shape for a sphere and an elliptic shape for an ellipsoid. It was found

that dynamic effects of the body’s force field occur in oscillation and rotation of

the shells according to Kepler’s laws. A body that has a uniform mass density

distribution realizes all its kinetic energy of the motion in the form of so-called

virial oscillations. It was assumed, earlier, that wave properties of this nature, like

oscillations for mass particles in mechanics of bodies, are unessential. We found

that virial oscillations of a body initiated by the force field of its own interacting

mass particles represent the main part of its kinetic energy. Theories based on

hydrostatics ignore that energy. But, as it was noted above, in this case the

potential energy of the Earth and other celestial bodies by two or more orders

exceeds their kinetic energy represented only in the form of axial rotation of the

mass. Such an unusual effect has a simple physical explanation. Still in the

beginning of the last century French physicist Louis de Broglie expressed an

assumption, proved later on, that any micro-particle including electron, proton,

atom and molecule, acquires particle-wave properties. The relationship, discov-

ered by the artificial satellites between changes of the Earth’s gravitational

potential and the moment of inertia, shows that interaction of the planet’s masses

takes place on their elementary particle levels. It means that the main form of

motion of the interacting mass particles is their oscillation. Continuous ‘trem-

bling’ of the planet’s gravitational field, detected by satellites as the gravitational

moments change, is another fact proving the de Broglie idea and extending it to

the gravitational interaction of celestial body masses.

The dynamical approach to solve the problem under consideration allowed the

authors to expand the body’s potential energy on its normal, tangential and

dissipative components. The differential equations that determine the main

body’s dynamical parameters, namely its oscillation and rotation, were written.

A rigorous solution of the equations was considered on the basis for bodies with

spherical and axial symmetry. The solutions of problems relating to rotation,

oscillation, obliquity and oblateness of a body’s orbit and itself was considered

on the basis of the general solution of dynamics of a self-gravitating body in its

own force field. It was found that precession and wobbling of the Earth and

irregularity of its rotation depends on effects of the polar and equatorial oblate-

ness and the separate rotation of the planet’s, the Sun’s and the Moon’s shells. The

induced outer force field of a body follows rotation of the resultant envelope of the

shells, but with some delay because of the finite velocity of the energy propaga-

tion in the induced outer force field. Also the problems of inner structure of the

Earth, the nature of the planet’s electromagnetic field and mechanism of the

energy generation were considered. The presented theory is applicable not only

to the planets and satellites, but also to the stars, where hydrostatic equilibrium is

considered as an equation of state. Finally, the theory opens a way to understand

the physics of gravitation as the internal power (energy) pressure which occurs at

mass interaction on the level of the molecules, atoms and nuclei and elementary

mass particles.

The obtained new results which have common relation to all celestial bodies are

presented in the corresponding chapters and sections of the book.

34 2 Recent Observations and Understanding Physical Meaning of Jacobi’s Virial Equation



2.2 Interpretation of Satellite Orbits and Failure of Hydrostatic
Equilibrium of the Earth and the Moon

We recall briefly the conditions of the Earth hydrostatic equilibrium. By definition

the hydrostatics is a branch of the hydromechanics, which studies the equilibrium

of a liquid and gas and the effects of a stationary liquid on immersed bodies relative

to the chosen reference system. For a liquid equilibrated relative to a rigid body,

when its velocity of motion is equal to zero and the field of densities is steady the

equation of state follows from the Eulerian and Navier–Stokes equations in the

form (Sedov 1970)

grad p ¼ rF; (2.1)

where p is the pressure; r is the density; F is the mass force.

In the Cartesian system of reference Eq. 2.1 is written as

@p

@x
¼ rFx;

@p

@y
¼ rFy; (2.2)

@p

@z
¼ rFz

If the outer mass forces are absent, i.e. Fx ¼ Fy ¼ Fz ¼ 0; then

grad p ¼ 0:

In this case, in accordance with the Pascal’s law the pressure in all liquid points

will be the same.

For the uniform incompressible liquid, when r ¼ const, its equilibrium can be

only in the potential field of the outer forces. For general case of incompressible

liquid and potential field of the outer forces from (2.1) one has

dp ¼ rdU; (2.3)

where U is the forces potential.

It follows from Eq. 2.3, that for an equilibrated liquid in the potential force field

its density and pressure appear to be a function only of the potential U.

For a gravity force field, when in the steady-state liquid only these forces act,

one has

Fx¼Fy¼0; Fz¼�g; U¼�gzþ const and p¼p zð Þ; r¼r zð Þ:
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Here the surfaces of constant pressure and density appear as horizontal planes.

Then Eq. 2.3 is written in the form

dp

dz
¼ �rg<0: (2.4)

It means that with elevation the pressure falls and with depth it grows. From here

it follows that

p� p0 ¼ �
ðz
z0

rgdz ¼ �rg z� z0ð Þ (2.5)

where g is the acceleration of the gravity force.

If a spherical vessel is filled in by incompressible liquid and rotates around its

vertical axis with constant angular velocity o, then for determination of the

equilibrated free surface of the liquid in Eq. 2.2 the centrifugal inertial forces

should be introduced in the form

@p

@x
¼ ro2x;

@p

@x
¼ ro2y; (2.6)

@p

@x
¼ �rg

From here, for the rotating body with radius r2 ¼ x2 þ y2, one finds

p ¼ �rgzþ ro2r2

2
þ C: (2.7)

For the points on the free surface r ¼ 0, z ¼ z o one has p ¼ po. Then

C ¼ p0 þ rgz0; (2.8)

p ¼ p0 þ rg z0 � zð Þ þ ror2

2
: (2.9)

The equation of the liquid free surface, where p ¼ po, has a paraboloidal shape

z� z0 ¼ o2r2

2g
: (2.10)

Above relations determine the principal physical conditions and equations of

hydrostatic equilibrium of a liquid. They remain a basis for the modern dynamics
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and theory of the Earth figure. The attempt to harmonize these conditions with

the planet’s motion conditions has failed, which was proved by observation. It will

be shown below that the main obstacle for such harmonization is rejection of

the planet’s inner force field without which the hydrostatics is unable to provide

the equilibrium between the body’s interacted forces as Newton’s third law

requires. The Earth is a self-gravitating body. Its matter moves in the own force

field which is generated by elementary mass particle interaction. The mass density

distribution, rotation and oscillation of the body’s shells result from the inner force

field. And the orbital motion of the planet is controlled by interaction of the outer

force fields of the planet and the Sun.

Let us look for more specific effects determining the absence of the Earth

hydrostatic equilibrium and more realistic conditions of its equilibrium based on

the results of the Earth’s satellite orbit motion.

The initial factual material for the problem study is presented by the observed

orbit elements of the geodetic satellites which move on perturbed Kepler’s orbits.

The satellite motion is fixed by means of observational stations located within zones

of a visual height range of 1,000–2,500 km, which is optimal for the planet’s gravity

field study. It was found that the satellite’s perturbed motion at such a close distance

from the Earth’s surface is connected with the non-uniform distribution of mass

density, the consequences of which are the non-spherical shape in the figure and the

corresponding non-uniform distribution of the outer gravity field around the planet.

These non-uniformities cause corresponding changes in trajectories of the satel-

lite’s motion, which are fixed by tracking stations. Thus, distribution of the Earth’s

mass density determines an adequate equipotential trajectory in the planet’s gravity

field, which follows the satellite. The main goal of the geodetic satellites launched

under different angles relative to the equatorial plane is in measurement of all

deviations in the trajectory from the unperturbed Kepler’s orbit.

The satellite orbits data for solving the Earth’s oblateness problem are interpreted on

the basis of the known (in celestial mechanics) theory of expansion of the gravity

potential of a body, the structure and the shape of which do not much differ from the

uniform sphere. The expression of the expansion, by spherical functions, recommended

by the International Union of Astronomy, is the following equation (Grushinsky 1976):

Uðr; ’; lÞ ¼ GM

r
1�

X1
n¼2

Jn

"
Re

r

� �n

Pn sinjð Þ

þ
X1
n¼2

Xn
m¼1

Re

r

� �n

Pnm sinjð Þ Cnm cosm lþ Snm sinm lð Þ
#
; (2.11)

where r, j and l are the heliocentric polar co-ordinates of an observation point; G is

the gravity constant; M and Re are the mass and the mean equatorial radius of the

Earth; Pn is the Legendre polynomial of n order; Pnm(sinj) is the associated

spherical functions; Jn, Cnm, Snm are the dimensionless constants characterizing

the Earth’s shape and gravity field.
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The first terms of Eq. 2.11 determine the zero approximation of Newton’s potential

for a uniform sphere. The constants Jn, Cnm, Snm represent the dimensionless gravita-

tional moments, which are determined through analyzing the satellite orbits. The

values Jn express the zonal moments, and Cnm and Snm are the tesseral moments. In

the case of hydrostatic equilibrium of the Earth as a body of rotation, in the expression

of the gravitational potential (2.11) only the even n-zonal moments Jn are rapidly

decreased with growth, and the odd zonal and all tesseral moments turn into zero, i.e.

U ¼ GM

r
1� J2

Re

r

� �2

P2 cos yð Þ �
X1
n¼3

Jn

"
Re

r

� �nþ1

Pn cos yð Þ
#
; (2.12)

where y is the angle of the polar distance from the Earth’s pole.

Here the constant J2 represents the zonal gravitational moment, which charac-

terizes the axial planet’s oblateness and makes the main contribution to correction

of the unperturbed potential. That constant determines the dimensionless coefficient

of the moment of inertia relative to the polar axis and equal to

J2 ¼ C� A

MR2
e

; (2.13)

where C and A are the Earth’s moments of inertia with respect to the polar and

equatorial axes accordingly, and Re is the equatorial radius.

For expansion by spherical functions of the Earth’s gravity forces potential, the

rotation of which is taken to be under action of the outer inertial forces, but not of its

own force field, the centrifugal force potential is introduced into Eq. 2.12. Then for

the hydrostatic condition with the even zonal moments Jn one has

W ¼GM

r
1� J2

Re

r

� �2

P2 cos yð Þ �
X1
n¼3

Jn

"
Re

r

� �nþ1

Pn cos yð Þ
#

þ o2r2

3
1� P2 cos yð Þ½ �;

(2.14)

where W is the potential of the body of rotation; o2r is the centrifugal force. The

first two terms and the term of the centrifugal force in Eq. 2.14 express the normal

potential of the gravity force

W ¼ GM

r
1� J2

Re

r

� �2

P2 cos yð Þ
" #

þ o2r2

3
1� P2 cos yð Þ½ �: (2.15)

The potential (2.15) corresponds to the spheroid’s surface which within oblate-

ness coincides with the ellipsoid of rotation. Rewriting term P2(cosy) in this equation
through the sinus of the heliocentric latitude and the angular velocity – through the
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geodynamic parameter q, one can find the relationship of the Earth’s oblateness e
with the dynamic constant J2. Then the equation of the dynamic oblateness e is

obtained in the form (Grushinsky 1976; Melchior 1972)

e ¼ 3

2
J2 þ q

2
; (2.16)

where the geodynamic parameter q is the ratio of the centrifugal force to the gravity

force at the equator

q ¼ o2R

GM=R2
: (2.17)

Dynamic parameter J2, found by satellite observation in addition to the oblate-

ness calculation, is used for determination of a mean value of the Earth’s moment of

inertia. For this purpose the constant of the planet’s free precession is also used,

which represents one more observed parameter expressing the ratio of the moments

of inertia in the form:

H ¼ C� A

C
: (2.18)

This is the theoretical base for interpretation of the satellite observations. But its

practical application gave very contradictory results (Grushinsky 1976; Melchior

1972; Zharkov 1978). In particular, the zonal gravitation moment calculated by

means of observation was found to be J2 ¼ 0.0010827, from where the polar

oblateness e ¼ 1/298.25 appeared to be short of the expected value and equal to

1/297.3. The all zonal moments Jn, starting from J3, which relate to the secular

perturbation of the orbit, were close to constant value and equal, by an order of

magnitude, to the square of the oblateness i.e., ~(1/300)2 and slowly decreasing

with an increase of n. The tesseral moments Cnm and Snm appeared to be not equal

to zero, expressing the short-term nutational perturbations of the orbit. In the case of

hydrostatic equilibrium of the Earth at the found value of J2, the polar oblateness e
should be equal to 1/299.25. On this basis the conclusion was made that the Earth

does not stay in hydrostatic equilibrium. The planet’s deviation from the hydrostatic

equilibrium evidenced that there is a bulge in the planet’s equatorial region with

amplitude of about 70 m. It means that the Earth body is forced by normal and

tangential forces which develop corresponding stresses and deformations. Finally,

by the measured tesseral and sectorial harmonics, it was directly confirmed that the

Earth has an asymmetric shape with reference to the axis of rotation and to the

equatorial plane.

Because the Earth does not stay in hydrostatic equilibrium, then the above

described initial physical fundamentals for interpretation of the satellite observa-

tions should be recognized as incorrect and the related physical concepts cannot

explain the real picture of the planet’s dynamics.
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The question is raised of how to interpret the obtained actual data and where the

truth should be sought. First of all we should verify correctness of the oblateness

interpretation and the conclusion about the Earth’s equatorial bulge. It is known

from observation that the Earth is a triaxial body (Grushinsky 1976). Theoretical

application of the triaxial Earth model was not considered because it contradicts the

hydrostatic equilibrium hypothesis. But after it was found that the hydrostatic

equilibrium is absent, the alternative with the triaxial Earth should be considered first.

Let us analyze Eq. 2.16. It is known from the observation data, that the constant

of the centrifugal oblateness q is equal to

q ¼ o2
3

GM=R3
¼ 1

17:01

� �2

¼ 1

289:37
: (2.19)

Determine a difference between the centrifugal oblateness constant q and the

polar oblateness e0 found by the satellite orbits, assuming that the desired value has

a relationship with the perturbation caused by the equatorial ellipsoid

e0 ¼ a� c

a
� b� c

a
¼ a� b

a
¼ 1

289:37
� 1

298:25
¼ 1

9720

¼ 1:713
1

289:37

� �2

; (2.20)

where a, b and c are the semi-axes of the triaxial Earth.

The differences between the major and minor equatorial semi-axes can be found

from Eq. 2.20. If the major semi-axis is taken in accordance with recommendation

of the International Union of Geodesy and Geophysics as a ¼ 6,378,160 m, then

the minor equatorial semi-axis b can be equal to:

a� b ¼ 6378160=9720 ¼ 656 m; b ¼ 6377504m:

There is a reason now to assume, that the value of equatorial oblateness

e0 ¼ 1/9,720 is a component in all the zonal gravitation moments Jn, related to

the secular perturbations of the satellite orbits including J2. They are perturbed both

by the polar and the equatorial oblateness of the Earth. Experimental result of

dependence of the satellite precession of equinoxes on the orbit angle to the

equatorial plane proves the above statement. This effect ought to be expected

because it was known long ago from observation that the Earth is a triaxial body.

If our conclusion is true, then there is no ground for discussion about the equatorial

bulge. And also the problem of the hydrostatic equilibrium is closed automatically

because in this case the Earth is not a figure of rotation; and the nature of the

observing fact of rotation of the Earth should be looked for rather in the action of its

own inner force field but not in the effects of the inertial forces. As to the nature of

the Earth’s oblateness, then for its explanation later on the effects of perturbation
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arising during separation of the Earth’s shells by mass density differentiation and

separation of the Earth itself from the Protosun will be considered. In particular, the

effect of heredity in creation of the body’s oblateness is evidenced by the ratio of

kinetic energy of the Sun and the Moon expressed through the ratio of square

frequencies of oscillation e˝ of their polar moments of inertia, which is close to the

planet’s equatorial oblateness:

e00 ¼ o2
c

o2
p
¼ 10�4

� �2
0:96576 � 10�2
� �2 ¼ 1

96:576

� �2
¼ 1:73

1

289:3

� �2
;

where oc ¼ 10�4 s�1 and oл ¼ 0.96576.10�2 s�1 are the frequencies of oscillation

of the Sun’s and the Moon’s polar moment of inertia correspondingly.

By observation the Moon is also a triaxial body. In addition, the retrograde

motion of the nodes of the Earth, the Moon and the artificial satellites is registered

and is explained by rotation of the bodies’ orbits. Later on it will be shown, that the

above remarkable phenomenon is explained by rotation of the body’s inner masses

together with their gravity fields, the periods of which are equal to the periods of the

precession of their oblique axes. The observed body rotation is valid only for the

upper shells, which were separated during mass density differentiation in their own

force fields and stay in that field in a suspended state of equilibrium.

The most prominent effect, which was discovered by investigation of the

geodetic satellite orbits, is the fact of a physical relationship between the Earth’s

mean (polar) moment of inertia and the induced outer gravity field. That fact

without exaggeration can be called a fundamental contribution to understanding

the nature of the planet’s self-gravity. The planet’s moment of inertia is an integral

characteristic of the mass density distribution. Calculation of the gravitational

moments based on measurement of elements of the satellite orbits is the main

content of satellite geodesy and geophysics. Short-periodic perturbations of the

gravity field fixed at revolution of a satellite around the Earth, the period of which is

small compared to the planet’s period, provides evidence about oscillation of the

moment of inertia or, to be more correct, about oscillating motion of the interacting

mass particles. It will be shown, that oscillating motion of the interacting particles

forms the main part of a body’s kinetic energy and the moment of inertia itself is the

periodically changing value.

Oscillation of the Earth’s moment of inertia and also the gravitational field is

fixed not only during the study by artificial satellites. Both parameters have also

been registered by surface seismic investigations. Consider briefly the main points

of these observations.

The study of the Earth’s eigenoscillation started with Poisson’s work on oscilla-

tion of an elastic sphere, which was considered in the framework of the theory of

elasticity. In the beginning of the twentieth century Poisson’s solution was

generalized by Love in the framework of the problem solution of a gravitating

uniform sphere of the Earth’s mass and size. The calculated values of periods of

oscillation were found to be within the limit of some minutes to 1 h.
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In the middle of the twentieth century during the powerful earthquakes in 1952

and 1960 in Chile and Kamchatka an American team of geophysicists headed by

Beneoff, using advanced seismographs and gravimeters, reliably succeeded in

recording the an entire series of oscillations with periods from 8.4 min up to

57 min. Those oscillations in the form of seismograms have represented the

dynamical effects of the interior of the planet as an elastic body, and the gravimetric

records have shown the “tremor” of the inner gravitational field (Zharkov 1978). In

fact, the effect of the simultaneous action of the potential and kinetic energy in the

Earth’s interior was fixed by the above experiments.

About 1,000 harmonics of different frequencies were derived by expansion of

the line spectrum of the Earth’s oscillation. These harmonics appear to be integral

characteristics of the density, elastic properties and effects of the gravity field, i.e.

of the potential and kinetic energy of separate volumetric parts of the non-uniform

planet. As a result two general modes of the Earth’s oscillations were found by the

above spectral analysis, namely, spherical with a vector of radial direction and

torsion with a vector perpendicular to the radius.

From the point of view of the existing conception about the planet’s hydrostatic

equilibrium, the nature of the observed oscillations was considered to be a property

of the gravitating non-uniform (regarding density) body in which the pulsed load of

the earthquake excites elementary integral effects in the form of elastic gravity

quanta (Zharkov 1978). Considering the observed dynamical effects of earth-

quakes, geophysicists came close to a conclusion about the nature of the oscillating

processes in the Earth’s interior. But the conclusion itself still has not been

expressed because it continues to relate to the position of the planet’s hydrostatic

equilibrium.

2.3 Imbalance Between the Earth’s Potential
and Kinetic Energy

We discovered the most likely serious cause, for which even formulation of the

problem of the Earth’s dynamics based on the hydrostatic equilibrium is incorrect.

The point is that the ratio of kinetic to potential energy of the planet is equal to

~1/300, i.e. the same as its oblateness. Such a ratio does not satisfy the fundamental

condition of the virial theorem, the equation of which expresses the hydrostatic

equilibrium condition. According to that condition the considered energies’ ratio

should be equal to 1/2. Taking into account that kinetic energy of the Earth is

presented by the planet’s inertial rotation, then assuming it to be a rigid body

rotating with the observed angular velocity or ¼ 7.29.10�5 s�1, the mass

M ¼ 6.1024 kg, and the radius R ¼ 6.37�106 m, the energy is equal to:

Te ¼ 0:6MR2 o2
r ¼ 0:6 � 6 � 1024 � 6:37 � 106� �2

7:29 � 10�5
� �2

¼ 7:76 � 1029J ¼ 7:76 � 1036erg:
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The potential energy of the Earth at the same parameters is

Ue ¼ 0:6 � GM2=R ¼ 0:6 � 6:67 � 10�11 � 6 � 1024� �2
=6:37 � 106

¼ 2:26 � 1032J ¼ 2:26 � 1039erg:

The ratio of the kinetic and potential energy comprises

Te

Ue

¼ 7:76 � 1029
2:26 � 1032 ¼

1

291
:

One can see that the ratio is close to the planet’s oblateness. It does not satisfy the

virial theorem and does not correspond to any condition of equilibrium of a really

existing natural system because, in accordance with the third Newton’s law,

equality between the acting and the reacting forces should be satisfied. The other

planets, the Sun and the Moon, the hydrostatic equilibrium for which is also

accepted as a fundamental condition, stay in an analogous situation. Since the

Earth in reality exists in equilibrium and its orbital motion strictly satisfies

the ratio of the energies, then the question arises where the kinetic energy of the

planet’s own motion has disappeared. Otherwise the virial theorem for the Earth is

not valid. Moreover, if one takes into account that the energy of inertial rotation

does not belong to the body, then the Earth and other celestial bodies equilibrium

problem appears to be out of discussion.

Thus, we came to the problem of the Earth equilibrium from two positions. From

one side, the planet by observation does not stay in hydrostatic equilibrium, and

from the other side, it does not stay in general mechanical equilibrium because there

is no reaction forces to counteract to the acting potential forces. The answer to both

questions is given below while deriving an equation of the dynamical equilibrium

of the planet by means of generalization of the classical virial theorem.

2.4 Generalization of Classical Virial Theorem

The main methodological question arises: in what kind state of equilibrium the

Earth exists? The answer to the question results from the generalized virial theorem

for a self-gravitating body, i.e. the body which itself generates the energy for its

own motion by interaction of the constituent particles having innate moments. The

guiding effect which we use here is the observed by artificial satellite functional

relationship between changes in the outer gravity field of the Earth and its mean

(polar) moment of inertia. The deep physical meaning of this relationship is as

follows. The observed planet’s polar moment of inertia is an integral (volumetric)

parameter, which represents not fixed interacted mass particles, but expresses

changes in their motion under the inner body’s energy. The Clausius’ virial theorem

represents relationship between the potential and kinetic energy in averaged form
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for a non-interacted (ideal) gaseous cloud of particles or a uniform body which stay

in the outer force field. In order to generalize the theorem for a uniform and non-

uniform body staying in the own force field we introduce there the volumetric

moments of interacted particles, taking into account their volumetric nature. More-

over, the interacted mass particles of a continuous medium generate volumetric

forces (pressure or capacity of energy) and volumetric moments, which, in fact,

produce the motion in the form of oscillation and rotation of matter. The oscillating

form of motion of the Earth and other celestial bodies is the dominating part of their

kinetic energy which up to now has not been taken into account. We wish to fill in

this gap in dynamics of celestial bodies.

The classic virial theorem is the analytical expression of the hydrostatic equilib-

rium condition and follows from Newton’s and the Euler’s equations of motion. Let

us recall its derivation in accordance with classical mechanics (Goldstein 1980).

Consider a system of mass points, the location of which is determined by the

radius vector ri and the force Fi including the constraints. Then equations of motion

of the mass points through their moments pi can be written in the form

_pi ¼ Fi; (2.21)

The value of the moment of momentum is

Q ¼
X
i

pi � ri;

where the summation is done for all masses of the system. The derivative with

respect to time from that value is

dQ

dt
¼
X
i

_ri � pi þ
X
i

_pi � ri: (2.22)

The first term in the right hand side of (2.22) is reduced to the form

X
i

_ri � pi ¼
X
i

mi � _ri � _ri ¼
X
i

miv
2
i ¼ 2T;

where T is the kinetic energy of particle motion under action of the forces Fi. The

second term in the Eq. 2.22 is

X
i

_pi � ri ¼
X
i

Fi � ri:

Now Eq. 2.22 can be written as

d

dt

X
i

pi � ri ¼ 2Tþ
X
i

Fi � ri: (2.23)
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The mean values in (2.23) within the time interval t are found by their integration
from 0 to t and division by t:

1

r

ðt
0

dQ

dt
dt ¼ dQ

dt
¼ 2Tþ

X
1

F1 � r1

or

2Tþ
X
i

Fi � ri ¼ 1

t
Qð tÞ � Qð0Þ½ �: (2.24)

For the system, in which the co-ordinates of mass point motion are repeated

through the period t, the right hand side of Eq. 2.24 after its averaging is equal to

zero. If the period is too large, then the right hand side becomes a very small

quantity. Then, the expression (2.24) in the averaged form gives the following

relation

�
X
i

Fi � ri ¼ 2T; (2.25)

or in mechanics it is written in the form

2T ¼ �U

Equation 2.25 is known as the virial theorem, and its left hand side is called the

virial of Clausius (German virial is from the Latin vires which means forces). The

virial theorem is a fundamental relation between the potential and kinetic energy

and is valid for a vide range of natural systems, the motion of which is provided

by action of different physical interactions of their constituent particles. Clausius

proved the theorem in 1870 when he solved the problem of work of the Carnot

thermal machine, where the final effect of the water vapor pressure (the potential

energy) was connected with the kinetic energy of the piston motion. The water

vapor was considered as a perfect gas. And the mechanism of the potential energy

(the pressure) generation at the coal burning in the firebox was not considered and

was not taken into account.

The starting point in the above-presented derivation of virial theorem in mechan-

ics is the moment of the mass point system, the nature of which is not considered

both in mechanics and by Clausius. By Newton’s definition the moment “is the
measure of that determined proportionally to the velocity and the mass”. The nature
of the moment by his definition is “the innate force of the matter”. By his

understanding that force is an inertial force, i.e. the motion of a mass continues

with a constant velocity.

The observed (by satellites) relationship between the potential and the kinetic

energy of the gravitation field and the Earth’s moment of inertia evidences, that the
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kinetic energy of the interacted mass particle motion, which is expressed as a

volumetric effect of the planet’s moment of inertia, is not taken into account. The

evidence of that was given in the previous Sect. 2.3 in the quantitative calculation of

a ratio between the kinetic and potential energies, equal to ~1/300.

In order to correct the contradiction, the kinetic energy of motion of the

interacted particles should be taken into account in the derived virial theorem.

Because of any mass has volume the momentum p should be written in volumetric

form:

pi ¼
X
i

mi _ri: (2.26)

Now the volumetric moment of momentum acquires the wave nature and is

presented as

Q ¼
X
i

pi � ri ¼
X
i

mi � _ri � ri ¼ d

dt

X
i

mir
2
i

2

 !
¼ 1

2
_Ip (2.27)

where Ip is the polar moment of inertia of the system of interacted particles (for the

sphere it is equal to 3/2 of the axial moment).

The derivative from that value with respect to time is

dQ

dt
¼ 1

2
€Ip ¼

X
i

_ri � pi þ
X
i

_pi � ri: (2.28)

The first term in the right hand part of (2.28) remains without change

X
i

_ri � pi ¼
X
i

mi � _ri � _ri ¼
X
i

miv
2
i ¼ 2T: (2.29)

The second term represents the potential energy of the system

X
i

_pi � ri ¼
X
i

Fi � ri ¼ U: (2.30)

Equation 2.28 is written now in the form

1

2
€Ip ¼ 2Tþ U: (2.31)

Expression (2.31) represents a generalized equation of the virial theorem for a

mass particle system interacted by the Newton’s law. Here in the left hand side of

(2.31) the ignored up to now inner kinetic energy of interaction of the mass particles

appears. Solution of Eq. 2.31 gives a variation of the polar moment of inertia within
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the period t. For a conservative (uniform with respect to density) system averaged

expression (2.28) by integration from 0 to t within time interval t gives

1

T

ðt
0

dQ

dt
dt ¼ dQ

dt
¼ 2Tþ U ¼ _Ip: (2.32)

Equation 2.32 at €Ip ¼ 0 (conservative system) gives _Ip ¼ E ¼ const:, where E is

the total system’s energy. It means that the interacted mass particles of the system

move. with constant velocity. In the case of dissipative system, Eq. 2.32 is not equal

to zero and the interacted mass particles move with acceleration. Now the ratio

between the potential and kinetic energy has a value in accordance with the

Eq. 2.31. Kinetic energy of the interacted mass particles in the form of oscillation

of the polar moment of inertia in that equation is taken into account. And now in the

frame of the law of energy conservation the ratio of the potential to kinetic energy

of a celestial body has a correct value.

Expression (2.31) appears to be an equation of dynamical equilibrium of a self-

gravitating body (star, planet, satellite). The hydrostatic equilibrium is absent here

because the interacted particles are continuously moving by use of inner energy.

Integral effect of the moving particles is fixed by the satellite orbits in the form of

changing zonal, sectorial and tesseral gravitational moments. For derivation of the

generalized virial theorem we used the potential energy generated by interacted

particles of the initial moment (2.26). The initial moments form the inner, or

“innate” by Newton’s definition, energy of the body which has an inherited origin.

Thus, we obtained a differential equation of the second order (2.31) which

describes the body dynamics and its dynamical equilibrium.

The virial Eq. 2.31 was obtained by Jacobi already one and a half century ago

from the Newton’s equations of motion in the form (Jacobi 1884)

€f ¼ Uþ 2T (2.33)

wher гдe Ф is the Jacobi’s function (the polar moment of inertia).

Jacobi has not considered physical meaning of his equation. He assumed that

because of two independent variables Ф and U in the equation it can not be

resolved.

We succeeded to find an empirical relationship between the two variables and

obtained at first an approximate and later on rigorous solution of the equation

(Ferronsky et al. 1978, 1987; Ferronsky 2005). The relationship is proved by

means of the satellite observation.

Let us tray to explain the cause of discrepancy between the geometric (static)

and dynamic oblateness of the Earth. The reason is as follows. The planet’s moment

of inertia (polar or axial) has changing in time value. The polar moment of inertia of

a self-gravitating body has a functional relation with the potential energy, the

generation of which results by interaction of the mass particles in regime of periodic

oscillations. The hydrostatic equilibrium of a body does not express the real
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dynamic processes because of loss of energy of the interacting particle oscillation.

Because of that it was not possible to understand the nature of the energy. The main

part of the body’s kinetic energy of the body’s oscillation was also lost. As to the

rotational motion of the body shells, it appears only in the case of the non-uniform

distribution of the mass density. The contribution of rotation to the total body’s

kinetic energy covers its very small part.

The cause of the accepted incorrect ratio between the Earth potential and kinetic

energy lies in the body’s hydrostatic equilibrium. Clairaut’s equation (1.20),

derived for the planet’s hydrostatic equilibrium state and applied to determine the

geometric oblateness, because of the above discussed reason, has no functional

relationship between the force function and the moment of inertia. Therefore for the

Earth dynamics problem the equation gives only a first approximation. In formula-

tion of the Earth oblateness problem, Clairaut accepted the Newton’s model of

action of the centripetal forces from the surface of the planet to its geometric center.

In such a physical conception the total effect of the inner force field becomes equal

to zero. Below in Sect. 2.5 it will be shown, that the force field of the continuous

body’s interacted masses represents volumetric pressure, but not a field of vector

forces. That is the cause, why the accepted postulate related to the planet’s inertial

rotation is physically incorrect. It was proved in electrodynamics that the force is

not acceptable to be a measure of particle interaction.

The question is raised about how was it happened, that geodynamic problems

and first of all the problem of stability of the Earth motion up to now were solved

without knowing the planet’s kinetic energy. The probable explanation of that

seems to lie in the history of the development of science. In Kepler’s problem and

in the Newton’s two body problem solution the transition from the averaged

parameters of motion to the real conditions is provided through the mean and the

eccentric anomalies, which by geometric procedures indirectly take into account

the above energy of motion. In the Earth figure problem this procedure of Kepler

is not applicable. Therefore, the so called “inaccuracies” in the Earth motion

appear to be the regular dynamic effects of a self-gravitating body, and the

hydrostatic model in the problem is irrelevant. The hydrostatic model was

accepted by Newton for the other problem, where just this model allowed

discovery and formulation the general laws of the planets motion around the

Sun. The Newton’s centripetal forces in principle satisfy the Kepler’s condition

when the distance between bodies is mach more than their size accepted as mass

points. Such model gives a first approximation in the problem solution. Kepler’s

laws express the real picture of the planets and satellites motion around their

parent bodies in averaged parameters. All the deviations of those averaged values

related to the outer perturbations are not considered as it was done in the

Clausius’ virial theorem for the perfect gas.

Newton solved the two body problem, which has been already formulated by

Kepler. The solution was based on the heliocentric world system of Copernicus,

on the Galilean laws of inertia and free fall in the outer force field and on Kepler’s

laws of the planet’s motion in the central force field considered as a geometric plane

task. The goal of Newton’s problem was to find the force by which the planet’s
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motion is resulted. His centripetal attraction and the inertial forces in the two body

problem satisfy Kepler’s laws.

As it was mentioned, Newton understood the physical meaning of his centripetal

or attractive forces as a pressure, which is accepted now like a force field. But by his

opinion, for mathematical solutions the force is a more convenient instrument. And

in the two body problem the force-pressure is acting from the center (of point) to the

outer space.

It is worth to discuss briefly the Newton’s preference given to the force but not

to the pressure. In mechanics the term “mass point” is understood as a geometric

point of space, which has no dimension but possesses a finite mass. In physics a

small amount of mass is called by the term “particle”, which has a finite value of

size and mass. But very often physicists use models of particles, which have

neither size nor mass. A body model like mass point has been known since ancient

times. It is simple and convenient for mathematical operations. The point is an

irreplaceable geometric symbol of a reference point. The physical point, which

defines inert mass of a volumetric body, is also suitable for operations. But the

interacted and physically active mass point creates a problem. For instance, in the

field theory the point value is taken to denote the charge, the meaning of which is

not better understood than is the gravity force. But it is considered often there, that

the point model for mathematical presentation of charges is not suitable because

operations with it lead to zero and infinite values. Then for resolution of

the situation the concept of charge density is introduced. The charge is presented

as an integral of density for the taken volume and by this way the solving problem

is resolved.

The point model in the two-body problem allowed reduction of it to the one-

body problem and for a spherical body of uniform density to write the main seven

integrals of motion. In the case when a body has a finite size, then not the forces but

the pressure becomes an effect of the body particle interaction. The interacted

body’s mass particles form a volumetric gravitational field of pressure, the strength

of which is proportional to the density of each elementary volume of the mass. In

the case of a uniform body, the gravitational pressure should be also uniform within

the whole volume. The outer gravitational pressure of the uniform body should be

also uniform at the given radius. The non-uniform body has a non-uniform gravita-

tional pressure of both inner and outer field, which has been observed in studying

the real Earth field. Interaction of mass particles results in their collision, which

leads to oscillation of the whole body system. In general if the mass density value is

higher then the frequency of body oscillation has also higher vale.

It was known from the theory of elasticity, that in order to calculate the stress and

the deformation of a beam from a continuous load, the latter can be replaced by the

equivalent lumped force. In that case the found solution will be approximate

because the beam’s stress and deformation will be different. The question is what

degree of approximation of the solution and what kind of the error is expected.

Volumetric forces are not summed up by means of the parallelogram rule. Volu-

metric forces by their nature can not be reduced for application either to a point, or

to a resultant vector value. Their actions are directed to the 4p space and they form
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inner and outer force field. The force field by its action is proportional to action of

the energy. This is because the force is the derivative of the energy.

The centrifugal and Coriolis’ forces are also proved to be inertial forces as a

consequence of inertial rotation of the body. And the Archimedes force has not

found its physical explanation, but it became an observational fact of hydrostatic

equilibrium of a body mass immersed into a liquid.

Such is the short story of appearance and development of the hydrostatic

equilibrium of the Earth in the outer uniform gravity field. The force of gravity of

a body mass is an integral value. In this connection Newton’s postulate about the

gravity center as a geometric point should be considered as a model for presentation

of two interacted bodies, when their mutual distance is much more of the body size.

It is shown in the next section, that the reduced physical, but not geometrical,

gravity center of a volumetric body is represented by an envelope of the figure,

which draws averaged value of radial density distribution of the body.

The problem of dynamics of the Earth as a self-gravitating body, including the

figure problem in its formulation and solution needs for a higher degree of approxi-

mation. Generalized virial theorem (2.31) satisfies the condition of the Earth

dynamical equilibrium state and creates a physical and theoretical basis for farther

development of theory. It follows from the theorem that hydrostatic equilibrium

state there is the particular case of the dynamics. Solution of problem of the Earth

dynamics based on the equation of dynamical equilibrium appears to be the next

natural and logistic step from the hydrostatic equilibrium model to a more realistic

model without loss of the previous preference.

Below we consider the problem of “decentralization” of the own force field for a

self-gravitating body.

2.5 Reduction of Inner Gravitational Field of a Body
to the Resultant Envelope of Pressure

As an example, consider the Earth as a self-gravitating sphere with uniform and

one-dimensional interacting media. The motion of the Earth proceeds both in its

own and in the Sun’s force fields. It’s known from theoretical mechanics that any

motion of a body can be represented by a translation motion of its mass center,

rotation around that center and motion of the body mass related to its changes in the

shape and structure (Duboshin 1975). In the two-body problem the last two effects

are neglected due to their smallness.

In order to study the Earth motion in the own force field the translational (orbital)

motion relative to the fixed point (the Sun) should be separated from the two other

components of motion. After that one can consider the rotation around the geomet-

ric center of the Earth masses under action of the own force field and changes in the

shape and structure (oscillation). Such separation is required only for the moment of

inertia, which depends on what frame of reference is selected. The force function
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depends on a distance between the interacted masses and does not depend on

selection of a frame of reference (Duboshin 1975). The moment of inertia of the

Earth relative to the solar reference frame should be split into two parts. The first

is the moment of the body mass center relative to the same frame of reference

and the second – moment of inertia of the planet’s mass relative to the own mass

center.

So, set up the absolute Cartesian coordinates OcxZz with the origin in the center
of the Sun and transfer it to the system Oxyz with the origin in the geometrical

center of the Earth’s mass (Fig. 2.1).

Then, the moment of inertia of the Earth in the solar frame of reference is

Ic ¼
X

miR
2
i ; (2.34)

where mi is the Earth mass of particle; Ri is its distance from the origin in the same

frame.

The Lagrange’s method is applied to separate the moment of inertia (2.34). The

method is based on his algebraic identity

X
1bibn

a2i

 ! X
1bibn

b2i

 !
¼

X
1bibn

aibi

 !2

þ 1

2

X
1bibn

X
1bjbn

aibj � biaj
� �2

; (2.35)

where ai and bi are whichever values; n is any positive number.

Jacobi in his “Vorlesungen €uber Dynamik” was the first who performed the

mathematical transformation for separation of the moment of inertia of n interacting

mass points into two algebraic sums (Jacobi 1884; Duboshin 1975; Ferronsky et al.

1987). It was shown that if we denote (Fig. 2.1)

rm
R

y

z

x O

mi

Rm

Ri

Oc

η

ζ
ξ

Fig. 2.1 Body motion in own

force field
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xi ¼ xi þ A; Zi ¼ y + B; zi ¼ zþ C;X
mi ¼ M;

X
mi xi ¼ MA;

X
mi Zi ¼ MB; mi zi ¼ MC; (2.36)

where A, B, C are the coordinates of the mass center in the solar frame of reference.

Then, using identity (2.35), one has

X
mir

2
i ¼
X

mi x
2
i þ
X

mi Z
2
i þ
X

mi z
2
i ¼
X

mix
2
i þ2A

X
mixiA

2
X

mi

þ
X

miy
2
i þ2B

X
miyiþB2

X
miþ

X
miz

2
i þ2C

X
miziþC2

X
mi:

Since

MA ¼
X

mi xi ¼
X

mixi þ
X

miA ¼
X

mixi þMA;

then
P

mixi ¼ 0, and also
P

miyi ¼ 0,
P

mizi ¼ 0. Now, the moment of inertia

(2.34) acquires the formX
miR

2
i ¼ M A2 þ B2 þ C2

� �þXmi x
2
i þ y2i þ z2i

� �
; (2.37)

where

M A2 þ B2 þ C2
� � ¼ MR2

m; (2.38)

X
mi xi

2 þ yi
2 þ zi

2
� � ¼ M rm

2; (2.39)

M is the Earth’s mass; Rm and rm are the radii of inertia of the Earth in the Sun’s and

the Earth’s frame of reference.

Thus, we separated the moment of inertia of the Earth, rotating around the Sun in

the inertial frame of reference, into two algebraic terms. The first one (2.38) is the

Earth’s moment of inertia in the solar reference system OcxZz. The second term

(2.39) presents the moment of inertia of the Earth in the own frame of reference

Oxyz. The Earth mass here is distributed over the spherical surface with the reduced

radius of inertia rm. In literature the geometrical center of mass O in the Earth

reference system is erroneously identified with the center of inertia and center of

gravity of the planet.

For farther consideration of the problem of the Earth’s dynamics we accept the

polar frame of reference with its origin in center O. Then expression (2.39) for the

Earth polar moment of inertia Ip acquires the form

Ip ¼
X

mi xi
2 þ yi

2 þ zi
2

� � ¼Xmiri
2 ¼ M rm

2 (2.40)

Now the reduced radius of inertia rm, which draws a spherical surface, is

rm
2 ¼

P
mir

2
i

M
: (2.41)
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Here M ¼Pmi is the Earth’s mass relative to own frame of reference.

Taking into account the spherical symmetry of the uniform and one-dimensional

Earth, we consider the sphere as a concentric spherical shell with the mass

dm(r) ¼ 4p r2r(r)dr. Then the expression (2.41) in the polar reference system can

be rewritten in the form

rm
2 ¼ 1

M

ðR
0

r24 pr2rðrÞdr ¼ 4pR2

MR2

ðR
0

r4rðrÞdr; (2.42)

or

4pr2m
4 pR2

¼
4p
ÐR
0

r4rðrÞdr

MR2
¼ b2MR2

MR2
¼ b2; (2.43)

from where

rm
2 ¼ b2R2;

where r(r) is the law of radial density distribution; R is the radius of the sphere;

b2 is the dimensionless coefficient of the reduced spheroid (ellipsoid) of inertia

b2MR2.

The value of b2 depends on the density distribution r(r) and is changed within

the limits of 1 � b2 > 0. Earlier (Ferronsky et al. 1987) it was defined as a

structural form-factor of the polar moment of inertia.

Analogously, the reduced radius of gravity rg, expressed as a ratio of the potential

energy of interaction of the spherical shells with density r(r) to the potential energy

of interaction of the body mass distributed over the shell with radius R. The potential

energy of the sphere is written as

U ¼ 4 pG
ðR
0

rr rð Þm rð Þdr ¼ a2
GM2

R
; (2.44)

from where

a2 ¼
4pG

ÐR
0

rrðrÞmðrÞdr
GM2

R

¼ r2g

R2
; (2.45)

where in expressions (2.44) and (2.45) m rð Þ ¼ 4 p
Rr
0

r2rðrÞdr:
The value of b2 depends on the density distribution r(r) and is changed within

the limits of 1 � a2 > 0. Earlier (Ferronsky et al. 1987) it was defined as a

structural form-factor of the force function.
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Numerical values of the dimensionless form-factors a2 and b2 for a number of

density distribution laws r(r) are given in Table 2.1. The numerical calculations,

done by integration of the numerators in Eqs. 2.43–2.45 for the polar moment of

inertia and the force function, can be found in the paper (Ferronsky et al. 1978).

Note, that value of the polar Ip and axial Ia moments of inertia of one dimensional

sphere are related as Ip ¼ 3=2Ia.
It follows from Table 2.1 that for a uniform sphere with r(r) ¼ const its reduced

radius of inertia coincides with the radius of gravity. Here both dimensionless

structural coefficients a2 and b2 are equal to 3/5, and the moments of gravitational

and inertial forces are equilibrated and because of that the rotation of the mass is

absent (Fig. 2.2a).

Thus

r2m
R2

¼ r2g

R2
¼ 3

5
; (2.46)

from where

rm ¼ rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=5R2

q
¼ 0:7745966R: (2.47)

For a non-uniform sphere at r(r) 6¼ const from Eqs. 2.43–2.45 one has

0<
4pr2m
4 pR2

<
3

5
<

4pr2g
4 pR2

<1: (2.48)

Table 2.1 Numerical values of form factors a2 and b2 for radial distribution of mass density and

for polytropic models

Density

distribution law a2 b⊥
2 b2

Radial distribution of mass density

r(r) ¼ r0 0.6 0.4 0.6

r(r) ¼ r0(1�r/R) 0.74 0.27 0.4

r(r) ¼ r0(1�r2/R2), 0.71 0.29 0.42

r(r) ¼ r0 exp(1–kr/R) 0.16 k 8/k2 12/k2

r(r) ¼ r0 exp(1�kr2/R2)
ffiffiffiffiffiffi
k

2 p

q
1/k 1.5/k

r(r) ¼ r0 d(1�r/R) 0.5 0.67 1.0

Politrope models

0 0.6 0.4 0.6

1 0.75 0.26 0.38

1.5 0.87 0.20 0.30

2 1.0 0.15 0.23

3 1.5 0.08 0.12

3.5 2.0 0.045 0.07
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It follows from inequality (2.48) and Table 2.1 that in comparison with the

uniform sphere, the reduced radius of inertia of the non-uniform body decreases

and the reduced gravity radius increases (Fig. 2.2b). Because of rm 6¼ rg and

rm < 0.77R < rg the torque appears as a result of an imbalance between gravitational

and inertial volumetric forces of the shells. Then from Eq. 2.48 it follows that

Im ¼ Imo � drmt and rg ¼ rgo þ drgt (2.49)

where subscripts 0 and t relate to the uniform and non-uniform sphere.

In accordance with (2.48) and (2.49) rotation of shells of a one-dimensional body

should be hinged-like and asynchronous. In the case of increasing mass density

towards the body surface, then the signs in (2.48) and (2.49) are reversed

(Fig. 2.2c). This remark is important because the direction of rotation of a self-

gravitating body is function of its mass density distribution.

The main conclusion from the above consideration is that the inner force field

of a self-gravitating body is reduced to a closed envelope (spheroid, ellipsoid or

more complicated curve) of gravitational pressure, but not to a resulting force

passing through the geometric center of the masses. In the case of a uniform body

the envelopes have a spherical shape and both gravitational and inertial radii

coincide. For a non-uniform body the radius of inertia does not coincide with the

radius of gravity, the reduced envelope is closed but has non-spherical (ellipsoidal

or any other) shape. Analytical solutions done below justify the above said.

So, we accept the force pressure as an effect of mass particles interaction which

is the matter’s property to do the work in the form of matter motion.

It follows from this Chapter that physical meaning of the Jacobi’s virial equation

consists in description of motion of a body (material system) by action of its own

force field. This field is formed by the energy of the body’s interacting elementary

particles and expressed through oscillation of the polar moment of inertia. To the

contrary of the failed hydrostatic equilibrium, Jacobi’s equation describes the

motion in the volumetric forces (energy) and in the volumetric moments (oscilla-

tions). The energy here is accepted as the measure of the matter interaction.

We now proceed to derivation of Jacobi’s virial equation for the well known

physical models of natural systems.

R r(r) r(r)

rg • 

rg rm rm

r(r)

rg •

rm

R R

a b

Fig. 2.2 Radius of inertia and radius of gravity for uniform (a) and non-uniform sphere with

density increased to the center (b) and from the center (c)
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Chapter 3

Derivation of Jacobi’s Virial Equation
for Description of Dynamics
of Natural Systems

Let us begin by deriving Jacobi’s virial equation from the equations of Newton,

Euler, Hamilton, Einstein and also from equations of quantum mechanics. By doing

so we will show that Jacobi’s virial equation appears to be a unified instrument for

the description of dynamics of natural systems using volumetric (integral) char-

acteristics in the framework of the various physical models of the matter interaction

employed. The assumptions under which this equation is derived put only one

restriction on the potential energy function to be homogeneous in the co-ordinates.

But it will be seen that even this single restriction does not have to be always

obligatory. The limitations following from any concrete physical model used for

describing dynamics of systems in classical mechanics, hydrodynamics, statistical

physics, or the theory of relativity, become unimportant.

We have defined the classical virial theorem for a system moving in the outer

uniform force field, which determines the relationship between mean values of the

potential and kinetic energy within a certain period of time to be the averaged virial

theorem. To the contrary, the virial theorem for a system moving in its own force

field and establishing a relationship between the potential and kinetic energy of the

oscillating polar moment of inertia, is defined as the generalized (non-averaged)

virial theorem or the equation of dynamical equilibrium of a body.

We come to the conclusion that the physical basis of hydrostatic equilibrium

does not satisfy the demands of general equilibrium of a body motion. As it was

shown in the previous chapter, hydrostatic equilibrium, expressed by the averaged

virial theorem, does not take into account kinetic energy of the interacting mass

particles of a self-gravitating body and does not provide fundamentals for study of

its dynamics. The dynamic equilibrium state based on the generalized virial theo-

rem ensures study of the following physical and dynamical problems:

– Body’s shell oscillation and rotation;

– Interpretation of satellite data with respect to the body’s precession, nutation

and pole wobbling, non-tidal variation in the body’s angular velocity, geopo-

tential, sea level changes etc.;
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– The Sun, the Earth and the Moon perturbation effects based on analysis of the

dynamical equilibrium of the interacting outer force fields of the bodies;

– Relationship between the gravitational and electromagnetic interaction of the

mass particles and the nature of the gravity forces;

– Other dynamical effects arising from action of the inner force field, which

earlier was not taken into account.

The theory presented in this book can be applied to study the body which, by its

structure, presents a system that includes gaseous, liquid and solid shells. For this

purpose derivation of the equation of Jacobi’s virial equation from the equations of

Newton, Euler, Hamilton, Einstein and also from the equations of quantum

mechanics is presented. In this part of the work we justify physical applicability

of the above fundamental equation for study of the dynamics and structure of stars,

planets, satellites and their shells. The main idea of derivation by introduction of

volumetric forces and moments into the transformed equations, as was done in

Eqs. 2.27–2.28, is to show that the effect of matter interaction in nature is unique,

namely, the motion by energy.

3.1 Derivation of Jacobi’s Virial Equation from Newtonian
Equations of Motion

Throughout this section the term ‘system’ is defined as an ensemble of material mass

points mi (i ¼ 1, 2, 3,. . ., n) which interact by Newton’s law of universal attraction.

This physical model of a natural system forms the basis for a number of branches of

physics, such as classical mechanics, celestial mechanics, and stellar dynamics.

We shall not present the traditional introduction in which the main postulates are

formulated; we shall simply state the problem (see, for example, Landau and

Lifshitz 1973a). We start by writing the equations of motion of the system in

some absolute Cartesian co-ordinates x, Z, z. In accordance with the conditions

imposed, the mass point mi is not affected by any force from the other n–1 points

except that of gravitational attraction. The projections of this force on the axes of

the selected co-ordinates x, Z, z can be written (Fig. 3.1):

Xi ¼ Gmi

X
1bjbn;i 6¼j

mj xj � xi
� �
D3
ij

;

Hi ¼ Gmi

X
1bjbn;i 6¼j

mj �j � �i

� �
D3
ij

; (3.1)

Zi ¼ Gmi

X
1bjbn;i 6¼j

mj zj � zi
� �
D3
ij

;
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where G is the gravitational constant and

Dji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � xi
� �2

�j � �i

� �2 þ zj � zi
� �2r

is the reciprocal distance between points i and j of the system.

It is easy to check that the forces affect the i-th material point of the system and

are determined by the scalar function U, which is called the potential energy

function of the system, and is given by

U ¼ �G
X

1bi<jbn

mimj

Dij

: (3.2)

Now Eqs. 3.1 can be rewritten in the form

Xi ¼ � @U

@xi
;

Hi ¼ � @U

@ �i
;

Zi ¼ � @U

@zi
:

Then Newton’s equations of motion for the i-th point of the system take the form

mi
€xi ¼ Xi;

mi€�i ¼ Hi; (3.3)

mi
€zi ¼ Zi;

ζ

ζ i

ζ j

Zi
 Hi

O
η i η j η

ξ i

ξ j

ξ

Fig. 3.1 Absolute Cartesian

co-ordinate system Ox Z z
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or

mi
€xi ¼ �@U

@x i

;

mi€�i ¼ � @U

@�i
; (3.4)

mi
€zi ¼ � @U

@zi
;

where dots over co-ordinate symbols mean derivatives with respect to time.

The motion of a system is described by Eqs. 3.3 and 3.4 and is completely

determined by the initial data. In classical mechanics, the values of projections xi0,
Zi0, zi0 and velocities _xi0, _�i0, _zi0 at the initial moment of time t ¼ t0 may be known

from the initial data .

The study of motion of a system of n material points affected by self-forces of

attraction forms the essence of the classical many-body problem. In the general

case, ten classical integrals of motion are known for such a system, and they are

obtained directly from the equations of motion.

Summing all the equations (3.3) for each co-ordinate separately, it is easy to be

convinced of the correctness of the expressions:X
1bibn

Xi ¼ 0;

X
1bibn

Hi ¼ 0;

X
1bibn

Zi ¼ 0:

From those equations it follows thatX
1bibn

mi
€xi ¼ 0;

X
1bibn

mi€�i ¼ 0; (3.5)

X
1bibn

mi
€zi ¼ 0:

Equations 3.5, appearing as a sequence of equations ofmotion, can be successively

integrated twice. As a result, the first six integrals of motion are obtained:X
1bibn

mi
_xi ¼ a1;
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X
1bibn

mi _�i ¼ a2;

X
1bibn

mi
_zi ¼ a3:

X
1bibn

miðxi � _xitÞ ¼ b1; (3.6)

X
1bibn

mið�i � _�itÞ ¼ b2;

X
1bibn

miðzi � _zitÞ ¼ b3;

where a1, a2, a3, в1, в2, в3 are integration constants.

These integrals are called integrals of motion of the center of mass. The

integration constants a1, a2, a3, в1, в2, в3 can be determined from the initial data

by substituting their values at the initial moment of time for the values of all the co-

ordinates and velocities.

Let us obtain onemore group of first integrals. To do this, the second of Eqs. 3.3 can

bemultiplied by –zi, and the third тpeтьe byZi . Then all expressions obtained should

be added and summed over the index i. In the same way, the first of Eqs. 3.3 should be

multiplied by zi, and the third by –xi added and summed over index i . Finally, the

second of Eqs. 3.3 should be multiplied by xi, and the first by –Zi added and summed

over index i . It is easy to show directly that the right-hand sides of the expressions

obtained are equal to zero: X
1bibn

ðZi�i � HiziÞ ¼ 0;

X
1bibn

ðXizi � ZixiÞ ¼ 0;

X
1bibn

ðHixi � Xi�iÞ ¼ 0:

Consequently their left-hand sides are also equal to zero:X
1bibn

mið€zi�i � €�iziÞ ¼ 0;

X
1bibn

mið€xizi � €zixiÞ ¼ 0; (3.7)

X
1bibn

mið€�ixi � €xi�iÞ ¼ 0:
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Integrating Eqs. 3.7 over time, three more first integrals can be obtained:X
1bibn

mið _zi�i � _�iziÞ ¼ c1;

X
1bibn

mið _xizi � _zixiÞ ¼ c2; (3.8)

X
1bibn

mið _�ixi � _xi�iÞ ¼ c3:

The integrals (3.8) are called area integrals or integrals of moments of momentum.

Three integration constants c1, c2, c3 are also determined from the initial data by

changing over from the values of all the co-ordinates and velocities to their values at

the initial moment of time.

The last of the classical integrals can be obtained by multiplying the three

Eqs. 3.4 by _xi, _�i and _zi respectively, and adding and summing all the expressions

obtained. As a result, the following equation is obtained:

X
1bibn

mi
€xi _xiþ€�i _�iþ€zi _zi
� �

¼ �
X
1bibn

@U

@xi
_xi þ

@U

@�i
_�i þ

@U

@zi
_zi

� �
: (3.9)

It is not difficult to see that the right-hand side of Eq. 3.9 is the complete

differential over time of the potential energy function U of the system as a whole.

The left-hand side of the same equation is also the complete differential of some

function T called the kinetic energy function of the system, and equal to

T ¼ 1

2

X
1bibn

mi
_x
2

i þ _�2i þ _z
2

i

� �
: (3.10)

Equation (3.9) can then be written finally in the form

d

dt
ðTÞ ¼ � d

dt
ðUÞ;

from which, after integration, one finds that

E ¼ T þ U; (3.11)

where E is the integration constant, determined from the initial conditions.

Equation 3.11 is called the integral ofmotion or the integral of living (kinetic) forces.

To derive the equation of dynamic equilibrium, or Jacobi’s virial equation, each

of the equations (3.4) should be multiplied by xi, Zi and zi respectively; then, after
summing all the expressions, one can obtain

X
1bibn

miðxixi þ �i�i þ ziziÞ ¼ �
X
1bibn

xi
@U

@xi
þ �i

@U

@�i
þ zi

@U

@zi

� �
: (3.12)
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We can take farther advantage of the obvious identities:

mixi€xi ¼
1

2

d2

dt2
mix2i
� ��mi

_x
2

i ;

mi�i€�i ¼
1

2

d2

dt2
mi�

2
i

� ��mi _�
2
i ;

mizi€zi¼
1

2

d2

dt2
miz2i
� ��mi

_z
2

i

from the Eulerian theorem concerning the homogenous functions. For the interac-

tion of the system points, according to Newton’s law of universal attraction, the

degree of homogeneity of the potential energy function of the system is equal to –1,

and hence

�
X
1bibn

xi
@U

@xi
þ �i

@U

@�i
þ zi

@U

@zi

� �
¼ U:

Substituting the above expressions into the right- and left-hand side of Eq. 3.12,

one obtains

d2

dt2
1

2

X
1bibn

mi x
2
i þ �2i þ z2i

� �" #
� 2

X
1bibn

1

2
mi

_x
2

i þ _�2i þ _z
2

i

� �
¼ U:

For a system of material points we now introduce the Jacobi function expressed

through the moment of inertia of the system and presented in the form

€F ¼ 1

2

X
1bibn

mi x2i þ �2i þ z2i
� �

:

Then taking into account (3.1), the previous equation can be rewritten in a very

simple form as follows:

€F ¼ 2E� U: (3.13)

This is the equation of dynamic equilibrium or Jacobi’s virial equation describing

both the dynamics of a system and its dynamic equilibrium using integral (volumetric)

characteristicsФ and U or T.
Let us derive now another form of Jacobi’s virial equation where the transla-

tional moment of the center of mass of the system is separated and all the

characteristics depend only on the relative distance between the mass points of

the system. For this purpose the Lagrangian identity can be used:
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X
1bibn

a2i

 ! X
1bibn

b2i

 !
¼

X
1bibn

aibi

 !2

þ 1

2

X
1bibn

X
1bjbn

aibj � biaj
� �2

; (3.14)

where ai and bi may acquire any values and n is any positive number.

Let us now put ai ¼ ffiffiffiffiffi
mi

p
, and bi equal to

ffiffiffiffiffi
mi

p
xi,

ffiffiffiffiffi
mi

p
�i and

ffiffiffiffiffi
mi

p
zi respectively.

Then three identities can be obtained from (3.7):

X
1bibn

mi

 ! X
1bibn

mix2i

 !
¼

X
1bibn

mixi

 !2

þ 1

2

X
1bibn

X
1bjbn

mimj xj � xi
� �2

;

X
1bibn

mi

 ! X
1bibn

mi�
2
i

 !
¼

X
1bibn

mi�i

 !2

þ 1

2

X
1bibn

X
1bjbn

mimj �j � �i

� �2
;

X
1bibn

mi

 ! X
1bibn

miz2i

 !
¼

X
1bibn

mizi

 !2

þ 1

2

X
1bibn

X
1bjbn

mimj zj � zi
� �2

:

In summing up one finds

2mF ¼
X
1bibn

mixi

 !2

þ
X
1bibn

mi�i

 !2

þ
X
1bibn

mizi

 !2

þ 1

2

X
1bibn

X
1bjbn

mimjD
2
ij:

Using now Eqs. 3.6, the last equality can be rewritten in the form

2mF ¼ 1

2

X
1bibn

X
1bjbn

mimjD
2
ij þ a1t + b1ð Þ2 þ a2t + b2ð Þ2 þ a3t + b3ð Þ2; (3.15)

where

m ¼
X
1bibn

mi

is the total mass of the system.

Let us put

F0 ¼ 1

4m

X
1bibn

X
1bjbn

mimjD
2
ij:

The value F0 does not depend on the choice of the co-ordinate system and

coincides with the value of the Jacobi function in the barycentric co-ordinate

system. Moreover, from Eq. 3.15 it follows that
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€F ¼ €F0 þ a21 þ a22 þ a23
m

:

Excluding the value F from Jacobi’s equation (3.13) with the help of the last

equality, the same equation can be obtained in the barycentric co-ordinate system:

€F0 ¼ 2E0 � U; (3.16)

where E0 ¼ T0 + U0 is the total energy of the system in the barycentric co-ordinate

system equal to

E0 ¼ E� a21 þ a22 þ a23
2m

:

We can now show that the value of E0 does not depend on the choice of the co-

ordinate system. For this purpose we can again use the Lagrangian identity (3.14).

In this case ai ¼ ffiffiffiffiffi
mi

p
, and bi ¼ ffiffiffiffiffi

mi
p _xi,

ffiffiffiffiffi
mi

p
_�i and

ffiffiffiffiffi
mi

p _zi. Then the following three
identities can be justified:

X
1bibn

mi

 ! X
1bibn

mi
_x
2

i

 !
¼

X
1bibn

mi
_xi

 !2

þ 1

2

X
1bibn

X
1bjbn

mimj
_xj � _xi
� �2

;

X
1bibn

mi

 ! X
1bibn

mi _�
2
i

 !
¼

X
1bibn

mi _�i

 !2

þ 1

2

X
1bibn

X
1bjbn

mimj _�j � _�i

� �2
;

X
1bibn

mi

 ! X
1bibn

mi
_z
2

i

 !
¼

X
1bibn

mi
_zi

 !2

þ 1

2

X
1bibn

X
1bjbn

mimj
_zj � _zi
� �2

:

After summing and using (3.16) one obtains

2mT ¼ a21 þ a22 þ a23
� �þ 1

2

X
1bibn

X
1bjbn

mimj

_xi � _xj
� �2 þ _�i � _�j

� �2 þ _zi � _zj
� �2	 


or

T ¼ a21 þ a22 þ a23
� �

2m
þ 1

2m

� 1

2

X
1bibn

X
1bjbn

mimj
_xi � _xj
� �2

þ _�i � _�j

� �2
þ _zi � _zj
� �2	 
( )

: (3.17)
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Here the second term on the right-hand side of Eq. 3.17 coincides with the

expression for the kinetic energy To of a system.

Substituting (3.17) into an expression for E0, one obtains

E0 ¼ T0 þ U ¼ 1

2m

X
1bi<jbn

mimj
_xi � _xj
� �2þ _�i � _�j

� �2þ _zi � _zj
� �2	 


� G
X

1bi<jbn

mimj

Dij

:

(3.18)

Thus, the total energy of the system E0 depends only on the distance between the

points of the system and on the velocity changes of these distances. But Jacobi’s

equation (3.16) appears to be invariant with respect to the choice of the co-ordinate

system.

We can show now that the requirement of homogeneity of the potential energy

function for deriving Jacobi’s virial equation is not always obligatory. For this

purpose we consider two examples.

3.2 Derivation of a Generalized Jacobi’s Virial Equation
for Dissipative Systems

Let us derive Jacobi’s virial equation for a non-conservative system. We consider

a system of n material points, the motion of which is determined by the force

of their mutual gravitation interaction and the friction force. It is well known

that the friction force always appears in the course of evolution of any natural

system. It is also known that there is no universal law describing the friction

force (Bogolubov and Mitropolsky 1974). The only general statement is that

the friction force acts in the direction opposite to the vector of velocity of a

considered mass point.

Consider as an example the simplest law of Newtonian friction when its force is

proportional to the velocity of motion of the mass:

Xf ¼ �kmi
_xi;

Hf ¼ �kmi _�i; (3.19)

Zf ¼ �kmi
_zi;

where _xi, _�i, _zi are the components of the radius-vector of the velocity of the i-th

mass point in the barycentric co-ordinate system; k is a constant independent

of i; k > 0.
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Sometimes the friction force is independent of the velocity of the mass point.

There are also some other laws describing the friction force.

We derive the equation of dynamical equilibrium for a system of n material

points using the equations of motion (3.4) and taking into account the friction force

expressed by Eqs. 3.19:

mi
€xi ¼ �@U

@x i

� kmi
_xi;

mi€�i ¼ � @U

@�i
� kmi _�i; (3.20)

mi
€zi ¼ � @U

@zi
� kmi

_zi;

where the value of the system’s potential energy is determined by Eq. 3.2.

Multiplying each of Eqs. 3.20 by xi, Zi and zi, respectively, and summing

through all i, one obtains

X
1bibn

mi xi€xi þ �i€�i þ zi€zi
� �

¼ �
X
1bibn

@U

@xi
xi þ

@U

@�i
�i þ

@U

@zi
zi

� �

�
X
1bibn

kmi xi _xi þ �i _�i þ zi _zi
� �

:

(3.21)

Transforming the right- and left-hand sides of Eq. 3.21 in the same way as in

deriving Eq. 3.13, one obtains

€F� 2T ¼ U� k _F

or

€F ¼ 2E� U� k _F:

(3.22)

Let us show that the total energy E of the system is a monotonically decreasing

function of time. For this purpose we multiply each of the equations (3.20) by the

vectors _xi, _�i, _zi, respectively, and sum over all from 1 to n, which results in

X
1bibn

mi
€xi _xi þ €�i _�i þ €zi _zi
� �

¼�
X
1bibn

@U

@xi
_xi þ

@U

@�i
_�i þ

@U

@zi
_zi

� �

� k
X
1bibn

mi
_x
2

i þ _�2i þ _z
2

i

� �
:
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The last expression can be rewritten in the form

d

dt
ðTÞ ¼ � d

dt
ðUÞ � 2kT

or

dE ¼ �2kTdt: (3.23)

Since the kinetic energy T of the system is always greater than zero, dE � 0, i.e.
the total energy of a gravitating system is a monotonically decreasing function of

time. Thus the expression for the total energy E(t) of the system can be written as

EðtÞ ¼ E0 � 2k
Ðt
t 0

TðtÞdt ¼ E0 1þ q(t)½ �;

where q(t) is a monotonically increasing function of time.

Finally, the equation of dynamical equilibrium for a non-conservative system

takes the form

€F ¼ 2E0 1þ qðtÞ½ � � U� k _F: (3.24)

The second example where the requirement of homogeneity of the potential

energy function for deriving Jacobi’s virial equation is not obligatory is as follows.

We derive Jacobi’s virial equation for a system whose mass points interact mutually

in accordance with Newton’s law and move without friction in a spherical homog-

enous cloud whose density ro is constant in time. Let, also, the geometric center of

the cloud coincide with the center of mass of the considered system. The equations

of motion for such a system can be written in the form:

mi

d2xi
dt2

¼ � 4

3
pGr0mixi �

@U

@xi
;

mi

d2�i
dt2

¼ � 4

3
pGr0mi�i �

@U

@�i
; (3.25)

mi

d2zi
dt2

¼ � 4

3
pGr0mizi �

@U

@zi
;

where i ¼1, 2, . . ., n.
It is obvious that the above system of equations possesses the ten first integrals of

motion and that Jacobi’s virial equation, written in the form

d2F
dt2

¼ 2E� U� 8

3
pGr0F: (3.26)

is valid for it.
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The equation in the form (3.26) was first obtained by Duboshin et al. (1971).

Equations 3.24 and 3.26 can be written in a more general form:

€F ¼ 2E� Uþ X t;F; _F
� �

; (3.27)

where X t;F; _F
� �

is a given function of time t, the Jacobi function F and first

derivative _F. Moreover, we can call Eq. 3.27 a generalized equation of dynamical

equilibrium.

The examples considered above justify the statement that for conditions of

homogeneity of the potential energy function, required for the derivation of Jacobi’s

virial equation, is not always necessary. This condition is required for description of

dynamics of conservative systems but not for dissipative systems or for systems in

which motion is restricted by some other conditions.

3.3 Derivation of Jacobi’s Virial Equation
from Eulerian Equations

We now derive Jacobi’s virial equation by transforming of the hydrodynamic or

continuum model of a physical system. As is well known, the hydrodynamic

approach to solving problems of dynamics is based on the system of differential

equations of motion supplement, in the simplest case, by the equations of state and

continuity, and by the appropriate assumptions concerning boundary conditions and

perturbations affecting the system.

In this section, we understand by the term ‘system’ some given mass M of ideal

gas localized in space by a finite volume V and restricted by a closed surface S. Let

the gas in the system move by the forces of mutual gravitational interaction and of

baric gradient. In addition, we accept the pressure within the volume to be isotropic

and equal to zero on the surface S bordering the volume V. Then for a system in

some Cartesian inertial co-ordinate system x, Z, z, the Eulerian equations can be

written in the form

r
@u

@t
þ ru

@

@x
uþ rn

@

@�
uþ rw

@

@z
u ¼ � @p

@x
þ r

@UG

@x
;

r
@n
@t

þ ru
@

@x
nþ rn

@

@�
nþ rw

@

@z
n ¼ � @p

@�
þ r

@UG

@�
; (3.28)

r
@w

@t
þ ru

@

@x
wþ rn

@

@�
wþ rw

@

@z
w ¼ � @p

@z
þ r

@UG

@z
;
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where r(x, Z, z, t) is the gas density; u, n, w are components of the velocity vector

�n(x, Z, z, t) in a given point of space; p(x, Z, z, t) is the gas pressure; UG is Newton’s

potential in a given point of space.

The value UG is given by

UG ¼ G

ð
ðVÞ

r x; y; z; tð Þ
D

dxdydz; (3.29)

where G is the gravity constant; D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xð Þ2 þ y� �ð Þ2 þ z� zð Þ2

q
is the dis-

tance between system points.

The potential energy of the gravitational interaction of material points of the

system is linked to the Newtonian potential (3.29) by the relation

U = � 1

2

Ð
ðVÞ

UGr x; �; z; tð Þdxd�dz:

To supplement the system of equations of motion we write the equation of

continuity:

@p

@t
þ @

@x
ruð Þ þ @

@�
rnð Þ þ @

@z
rwð Þ ¼ 0 (3.30)

and the equation of state

p ¼ f rð Þ (3.31)

assuming at the same time that the processes occurring in the system are barotropic.

Let us obtain the ten classical integrals for the system whose motion is described

by Eqs. 3.28.

We derive the integrals of the motion of the center of mass by integrating each of

the equations (3.28) with respect to all the volume filled by the system. Integrating

the first equation, we obtain

ð
ðVÞ

r
du

dt
dxd�dzþ

ð
ðVÞ

r u
du

dx
+ n

du

d�
+ w

du

dz

� �
dxd�dz

¼ �
ð
ðVÞ

dp

dx
dxdz�dþ G

ð
ðVÞ

r x; �; z; tð Þ
ð
ðVÞ

r x,y,z,tð Þ x� x

D3
dxdydz

2
64

3
75dxd�dz

(3.32)
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The second term in the right-hand side of Eq. 3.32 disappears because of

the symmetry of the integral expression with respect to x and x. In accordance

with the Gauss-Ostrogradsky theorem the first term in the right-hand side of

Eq. 3.32 terns to zero. In fact

ð
ðVÞ

dp

dx
dxd�dz =

ð
ðSÞ

pd�dz ¼ 0 (3.33)

as pressure p on the border of the considered system is equal to zero owing to the

absence of outer effects.

Bearing in mind the possibility of passing to a Lagrangian co-ordinate system,

and taking into account the law of the conservation of mass dm ¼ rdV ¼ r0dV0 ¼
dm0, we get

ð
ðVÞ

r
du

dt
dxd�dzþ

ð
ðVÞ

r u
du

dx
+ n

du

d�
+ w

du

dz

� �
dxd�dz

¼
ð
ðVÞ

r
du

dt
dV =

ð
ðV0Þ

r0
du

dt
dV0 ¼ d

dt

ð
ðV0Þ

ur0dV0 ¼ d

dt

ð
ðVÞ

rudV;

where Vo and ro are the volume and the density in the initial moment of time t0 .

Finally, Eq. 3.32 can be rewritten as

d

dt

ð
ðVÞ

r udV = 0: (3.34)

Integrating (3.34) with respect to time and writing analogous expressions for

two other equations of the system (3.28), we obtain the first three integrals of

motion:

ð
ðVÞ

r udV = a1;

ð
ðVÞ

r ndV ¼ a2; (3.35)

ð
ðVÞ

rwdV ¼ a3:
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Equations 3.35 represent the law of conservation of the system moments.

Integration constants a1, a2, a3 can be obtained from the initial conditions.

We consider the first equation of the system (3.35) using again the law of

conservation of mass. Then it is obvious that

ð
ðVÞ

u rdV =

ð
ðVÞ

dx
dt

rdV =

ð
ðV0Þ

dx
dt

r0dV0¼ d

dt

ð
ðV0Þ

xr0dV0¼ d

dt

ð
ðVÞ

xrdV = a1:

(3.36)

Analogous expressions can be written for the two other equations (3.35). Inte-

grating them with respect to time, we obtain integrals of motion of the center of

mass of the system in the form ð
ðVÞ

xrdV ¼ a1tþ b1;

ð
ðVÞ

�rdV ¼ a2tþ b2; (3.37)

ð
ðVÞ

zrdV ¼ a3tþ b3:

We now derive three integrals of the moment of momentum of motion. For this

purpose we multiply the second of Eqs. 3.28 by –z, the third by Z, and then sum and

integrate the resulting expressions with respect to volume V occupied by the

system. We obtainð
ðVÞ

r �
dw

dt
� z

dn
dt

� �
dV ¼ �

ð
ðVÞ

�
@p

@z
� z

@p

@�

� �
dVþ

ð
ðVÞ

r �
@UG

@z
� z

@UG

@�

� �
dV:

(3.38)

Analogously, multiplying the first of Eqs. 3.28 by z, the third by –x, then
summing and integrating with respect to volume V, we obtain

ð
ðVÞ

r z
du

dt
� x

dw

dt

� �
dV ¼ �

ð
ðVÞ

z
@p

@x
� x

@p

@z

� �
dVþ

ð
ðVÞ

r z
@UG

@x
� x

@UG

@z

� �
dV:

(3.39)
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Multiplying the second of Eqs. 3.28 by x, the first by –Z, and summing and

integrating as above, the third equality can be written

ð
ðVÞ

r x
d n
dt

��
du

dt

� �
dV¼�

ð
ðVÞ

x
@p

@�
��

@p

@x

� �
dVþ

ð
ðVÞ

r x
@UG

@�
��

@UG

@x

� �
dV:

(3.40)

We write the second integral in the right-hand side of Eq. 3.38 in the form

ð
ðVÞ

r �
dw

dt
� z

dn
dt

� �
dV = G

ð
ðVÞ

r x, �, z, tð Þ�dxd�dz
ð
ðVÞ

r x,y,z,tð Þz� z

D3
dx,dy,dz

�G

ð
ðVÞ

r x, �, z, tð Þzdxd�dz
ð
ðVÞ

r x,y,z,tð Þy� z

D3
dx,dy,dz:

The integral is equal to zero owing to the asymmetry expressed by the integral

expressions with respect to z, z and y, Z. Because the pressure at the border of the
domain S is equal to zero, the first term in the right-hand side of Eq. 3.38 is also

equal to zero. Actually,

ð
ðVÞ

�
@p

@z
� z

@p

@�

� �
dV¼

ð
ðVÞ

d

d�
xpð Þ� d

dx
�pð Þ

	 

dV¼

ð
ðVÞ

xpdxdz��pd�dz½ � ¼ 0:

Taking into account the law of mass conservation, the left-hand side of Eq. 3.38

in the Lagrange co-ordinate system can be rewritten as

ð
ðVÞ

r �
dw

dt
� z

dn
dt

� �
dV ¼

ð
ðVÞ

p
d

dt
�w� znð ÞdV

¼ d

dt

Ð
ðVÞ

p �w� znð ÞdV = 0

(3.41)

Integrating this equation with respect to time, the first of the three integrals is

obtained: ð
ðVÞ

p �w� znð ÞdV = C1:

The other two integrals can be obtained analogously. Thus the system of

integrals of the moment of momentum has the form
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ð
ðVÞ

p �w� znð ÞdV = C1;

ð
ðVÞ

p zu� xwð ÞdV ¼C2; (3.42)

ð
ðVÞ

p xn� �uð ÞdV ¼ C3:

To derive the tenth integral of motion representing the law of energy conservation,

wemultiply each of the systemof equations (3.28) by u, n, andw accordingly, and then

sum and integrate the equality obtained with respect to the system volume

ð
ðVÞ

r
du

dt
uþdn

dt
nþdw

dt
w

� �
dV¼�

ð
ðVÞ

@p

@x
uþ@p

@�
nþdp

dz
w

� �
dV

þ
ð
ðVÞ

r x, �, z, tð Þ @UG

@x
uþ�@UG

@�
nþ@UG

@z
w

� �
dV:

(3.43)

Applying the law of mass conservation for an elementary volume, it can easily

be seen that the left-hand side of Eq. 3.43 expresses the change of the velocity of

kinetic energy of the system:

ð
ðVÞ

r
du

dt
uþ dn

dt
nþ dw

dt
w

� �
dV ¼ d

dt

1

2

ð
ðVÞ

u2 þ nþ w2
� �

dV

2
64

3
75 ¼ d

dt
Tð Þ:

The first integral in the right-hand side of Eq. 3.43 can be transferred into

�
ð
ðVÞ

@p

@x
uþ @p

@�
nþ dp

dz
w

� �
dV ¼ 3

d

dt

ð
ðVÞ

pdV

and gives the change of velocity of the internal energy of the system.

The second integral in the right-hand side of the same equation expresses the

velocity of the potential energy change:ð
ðVÞ

r x; �; z; tð Þdxd�dz @UG

@x
dx
dt

þ� @UG

@�

d�

dt
þ @UG

@z
dz
dt

� �

¼ d

dt
� 1

2

Ð
ðVÞ

r x; �; z; tð Þdxd�dzUG

" #
¼ � d

dt
Uð Þ:
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Finally, the law of energy conservation can be written in the form

Tþ UþW ¼ E ¼ const: (3.44)

where W is the internal energy of the system.

We now derive Jacobi’s virial equation for a system described by

Eqs. 3.28–3.31. For this purpose we multiply each of Eqs. 3.28 by x, Z and z
respectively, summing and integrating the resulting expressions with respect to the

volume of the system:

ð
ðVÞ

r
du

dt
xþ dn

dt
�þ dw

dt
z

� �
dV ¼�

ð
ðVÞ

@p

@x
xþ @p

@�
� þ dp

dz
z

� �
dV

þ
ð
ðVÞ

r
@UG

@x
xþ� @UG

@�
� þ @UG

@z
z

� �
dV

(3.45)

Using the obtained identities considered in the previous section, we have

du

dt
x ¼ 1

2

d2

dt2
x2
� �� u2;

dn
dt

� ¼ 1

2

d2

dt2
�2
� �� n2;

dw

dt
z ¼ 1

2

d2

dt2
z2
� �� w2:

Taking into account the law of conservation of mass for elementary volume, we

transform the left-hand side of Eq. 3.45 as follows:

ð
ðVÞ

r
du

dt
xþ dn

dt
� þ dw

dt
z

� �
dV =

1

2

ð
ðVÞ

r
d2

dt2
x2þ�2þz2
� �

dV

� Ð
ðVÞ

r u2þ n2þw2ð ÞdV ¼ €F� 2T,

(3.46)

where

F ¼ 1

2

Ð
ðVÞ

r x2þ�2þz2
� �

dV

is the Jacobi function and
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T ¼ 1

2

Ð
ðVÞ

r u2 þ n2 þ w2ð ÞdV

is the kinetic energy of the system.

We now transform the first integral in the right-hand side of Eq. 3.45. Using the

Gauss-Ostrogradsky theorem and the equality with zero pressure at the border of

the system, we can write

�
ð
ðVÞ

@p

@x
xþ@p

@�
�þdp

dz
z

� �
dV¼�

ð
ðVÞ

@

@x
pxð Þþ @

@�
p�ð Þþ d

dz
pzð Þ

	 

dV

þ3
Ð
ðVÞ

pdV¼ 3
Ð
ðVÞ

pdV:

(3.47)

The obtained equation expresses the doubled internal energy of the system.

The second integral in the right-hand side of Eq. 3.45 is equal to the potential

energy of the gravitational interaction of mass particles within the systemð
ðVÞ

r
@UG

@x
xþ� @UG

@�
� þ @UG

@z
z

� �
dV ¼ U: (3.48)

Substituting Eqs. 3.46, 3.47 and 3.48 into (3.45), Jacobi’s virial equation is

obtained in the form

€F� 2T ¼ 3
Ð
ðVÞ

pdV + U: (3.49)

Taking into account the law of conservation of energy (3.44), we rewrite

Eq. 3.49 in a form which will be used farther:

€F ¼ 2E� U; (3.50)

where E ¼ T + U + W is the total energy of the system.

3.4 Derivation of Jacobi’s Virial Equation
from Hamiltonian Equations

Let the system of material points be described by Hamiltonian equations of motion.

Let also the considered system consist of n material points with masses mi. Its

generalized co-ordinates and moments are qi and pi ¼ mi(dqi/dt). Hamiltonian

equations for such a system can be written as

_pi ¼ � @H

dqi
;
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_qi ¼
@H

dpi
; (3.51)

where H (p, q) is the Hamiltonian; i ¼ 1, 2, . . ., n.
Using values qi and pi, we can construct the moment of momentum

Xn
i¼1

piqi ¼
Xn
i¼1

miqi _qi ¼
d

dt

Xn
i¼1

miq
2
i

2

 !
:

Now the Jacobi function may be introduced

Xn
i¼1

piqi ¼ _F: (3.52)

Differentiating Eq. 3.52 with respect to time, Jacobi’s virial equation is obtained

in the form

€F ¼
Xn
i¼1

_piqi þ
Xn
i¼1

pi _qi: (3.53)

Substituting expressions for _pi and _qi taken from the Hamiltonian equations

(3.51) into the right-hand side of (3.52), we obtain Jacobi’s virial equation written

in Hamiltonian form:

€F ¼
Xn
i¼1

� @H

@qi
qi þ

@H

@pi
pi

� �
: (3.54)

The Hamiltonian of the system of material points interacting according to the

law of the inverse squares of distance is a homogeneous function in terms of

moments pi with a degree of homogeneity of the function equal to 2, and in terms

of co-ordinates qi with a degree of homogeneity equal to –1. It follows from this

H p; qð Þ ¼ T pð Þ þ U qð Þ

and hence

Xn
i¼1

Pi
@H

@qi
¼ 2T:

Xn
i¼1

qi
@H

@qi
¼ �U
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Taking these relationships into account, Eq. 3.54 acquires the usual form of

Jacobi’s virial equation (3.50) for the system of mass points interacting according to

the law of inverse squares of distance.

Equation 3.54 is more general then Eq. 3.50. The use of generalized co-ordinates

and moments as independent variables permits us to obtain the solution of Jacobi’s

virial equation, taking into account gravitational and electromagnetic perturba-

tions as well as quantum effects, both in the framework of classical physics and in

terms of the Hamiltonian written in an operator form. In the general case, Eq. 3.54

can be reduced to (3.50) as the potential energy of interaction of the system’s

points is a homogenous function of its co-ordinates.

3.5 Derivation of Jacobi’s Virial Equation
in Quantum Mechanics

It is known that in quantummechanics some physical value L by definition takes the

linear Hermitian operatorL̂. Any physical state of the system take the normalized

wave function c . The physical value of L can take the only eigenvalues of the

operator L̂. The mathematical expectation L̂ of the value L at state c is determined

by the diagonal matrix element

L¼ <cjL̂jc>: (3.55)

The matrix element of the operators of the Cartesian co-ordinates x̂i and the

Cartesian components of the conjugated moments p̂k calculated within wave

functions f and g of the system satisfy Hamilton’s equations of classical

mechanics:

d

dt
<fjp̂ijg> ¼ �<fj @Ĥ

dx̂i
jg>; (3.56)

d

dt
<fjx̂ijg> ¼ �<fj @Ĥ

@p̂i
jg>; (3.57)

where Ĥ is the operator which corresponds to the classical Hamiltonian.

Operators p̂i and x̂k satisfy the commutation relations

p̂i;x̂k½ � ¼ i�h dik;

p̂i;p̂k½ � ¼ 0; (3.58)

x̂i;x̂k½ � ¼ 0;

78 3 Derivation of Jacobi’s Virial Equation for Description of Dynamics of Natural Systems



where ћ is Planck’s constant; dik is the Kronecker’s symbol; dik ¼ 1 at i ¼ k and

dik ¼ 0 at i 6¼ k.

Operator components of momentum p̂i for the functions whose arguments are

Cartesian co-ordinates x̂i have the form

p̂i ¼ i�h
@

@xi
(3.59)

and reverse vector

p̂ ¼ �i�hr:

The derivative taken from the operator with respect to time does not depend

explicitly on time; it is defined by the relation

L̂ ¼ � i

�h
L̂; Ĥ
� �

(3.60)

where Ĥ is the Hamiltonian operator that can be obtained from the Hamiltonian of

classical mechanics in accordance with the correspondence principle.

We have already noted that in the classical many-body problem the translational

motion of the center of mass can be separated from the relative motion of the mass

points if only the inertial forces affect the system. We can show that in quantum

mechanics the same separation is possible.

The Hamiltonian operator of a system of n particles which is not affected by

external forces in co-ordinates is

Ĥ ¼ � �h2

2

Xn
i¼1

r2
i

mi

þ 1

2

Xn
i¼1

Xn
i¼1

Uik xi � xk; yi � yk; zi � zkð Þ: (3.61)

Let us replace in (3.61) the three n co-ordinates xi, yi, zi by co-ordinates X, Y, Z

of the center of mass and by co-ordinates xl;�l;zl;which determine the position of a

particle l (l ¼ 1, 2, . . ., n – 1) relative to particle n. We obtain

X ¼ 1

M

Xn
i¼1

mixi;

M ¼
Xn
i¼1

mi; (3.62)

xl ¼ xl � xn;

where l ¼ 1, 2, . . ., n – 1.
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Analogously the corresponding relations for Y, Z, �l; zl are obtained.
It is easy to obtain from (3.62) the following operator relations:

d

dxp
¼ mp

M

@

@X
þ @

@xp
; p ¼ 1; 2; . . . ; n� 1;

@

@Xn

¼ mn

M

@

@X
�
Xn�1

l¼1

@

@xl
;

Xn�1

l¼1

1

@xi

@2

@x2i
¼
Xn�1

l¼1

1

ml

m2
l

M2

@2

@X2
þ 2

ml

M

@2

@X@xl
þ @2

@x2l

 !

þ 1

mn

m2
n

M2

@2

@X2
� 2

mn

M

Xn�1

l¼1

@2

@X@xl
þ
Xn�1

m¼1

Xn�1

l¼1

@2

@xm@xl

 !

¼ 1

mn

@2

@X2
þ

Xn�1

l¼1

1

ml

@2

@x2l
þ 1

mn

Xn�1

m¼1

Xn�1

l¼1

@2

@xm@xl

 !
;

where summing on the Greek index is provided from 1 дo n – 1. It is seen that all the
combined derivatives @2=@X@xl were mutually reduced and do not enter into the

final expression. This allows the Hamiltonian to be separated into two parts:

H ¼ Ho þ Hr

where, in the right-hand side, the first term

Ho ¼ �h2

2M

@2

@X2
þ @2

@y2
þ @2

@Z2

� �

describes the motion of the center of mass, and the second term

Hr ¼ � �h2

2

Xn�1

l¼1

1

ml
r2

l þ
1

mn

Xn�1

m¼1

Xn�1

l¼1

rlr m

 !
þ U (3.63)

describes the relative motion of the particles.

The potential energy in (3.63), which is

U =
1

2

Xn�1

m¼1

Xn�1

l¼1

Ulm xl � xm;�l � �m;zl � zm
� �þXn�1

l�1

Ulm xl;�l;zlð Þ; (3.64)

also certainly does not depend on the co-ordinates of the center of mass.
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Now the Schr€odinger’s equation

Ho þ Hrð Þ c ¼ E c (3.65)

permits the separation of variables.

Assuming c ¼ f X;Y;Zð Þ and xl;�l;zl;ð Þ, we obtain

� �h2

2V
r2f ¼ E0f; (3.66)

Hru ¼ Eru; (3.67)

E0 þ Er ¼ E: (3.68)

The solution of Eq. 3.66 has the form of a plane wave:

f ¼ eikR; (3.69)

E0 ¼ �h2k2

2M
;

where R is a vector with co-ordinates X, Y, Z.

The result obtained is in full accordance with the classical law of the conserva-

tion of motion of the center of mass. This means that the center of mass of the

system moves like a material point with mass m and momentum �hk. The mode of

relative motion of the particles is determined by Eq. 3.67, which does not depend on

the motion of the center of mass.

The existence in the right-hand side of Eq. 3.63 of the third term restricts further

factorization of the function u xl;�l;zlð Þ. Only in the two-body problem, where

n ¼ 2 and at l ¼ m ¼ 1, a part of the Hamiltonian connected with the relative

motion simplified and takes the form

Hr ¼ � �h2

2

1

m1

r2
1 þ

1

m2

r2
2

� �
þ U12 x1;�1;z1ð Þ (3.70)

It seems that choosing the corresponding system of co-ordinates can lead us to an

approach for separating the motion of the center of mass to the many-body problem.

Introducing into Eq. 3.70 the reduced mass m*, which is determined as in

classical mechanics by the relation

1

m1

þ 1

m2

¼ 1

m� ; (3.71)
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and omitting indices in the notation for relative co-ordinates and potential energy

U12, we come to

� �h2

2m�r
2uþ U x; �; zð Þu ¼ Eru: (3.72)

This is Schr€odinger’s equation for the equivalent one-particle problem.

Considering the hydrogen atom in the framework of the one-particle problem, it

is assumed that the nucleus is in ground state. In accordance with Eq. 3.72, the

normalized mass of the nucleus and electron m* should be introduced. No changes

which account for the effect of the nucleus on the relative motion should be

introduced. Because of the nucleus, mass m is much heavier than electron mass

me*; instead of Eq. 3.71 we can use its approximation

m� ¼ m 1� m

M

� �
:

Comparing, for example, the frequency of the red line Ha (n ¼ 3–n´ ¼ 2) in the

spectrum of a hydrogen atom:

o Hað Þ ¼ 5

36

m�
He

4

2�h2h

with the frequency of the corresponding line in the spectrum of a deuterium atom:

o Dað Þ ¼ 5

36

m�
De

4

2�h2h
;

and taking into account that mD � 2mH, for the difference of frequencies, we

obtain

o Dað Þ � o Hað Þ ¼ m�
D �m�

H

m�
H

o Hað Þ � m

2MH

o Hað Þ:

This difference is not difficult to observe experimentally. At wavelength 6,563 Å it

is equal to 4.12 cm�1. Heavy hydrogen was discovered in 1932 by Urey, Brick-

wedde and Murphy, who observed a weak satellite Da in the line Ha of the spectrum

of natural hydrogen. This proves the practical significance of even the first integrals

of motion.

We now show that the virial theorem is valid for any quantum mechanical

system of particles retained by Coulomb (outer) forces:

2Tþ U ¼ 0:

We prove this by means of scale transformation of the co-ordinates keeping

unchanged normalization of wave functions of a system.

82 3 Derivation of Jacobi’s Virial Equation for Description of Dynamics of Natural Systems



The wave function of a many-particle system with masses mi and electron

charge ei satisfies the Schr€odinger’s equation:

� �h2

2

Xn�1

i¼1

1

mi

r2
i cþ 1

2

Xn�1

i¼1

Xn�1

k¼1

eiek

rik
c ¼ Ec (3.73)

and the normalization condition

Ð
d t1 . . .

Ð
c� cd tn ¼ 1: (3.74)

The mean values of the kinetic and potential energies of a system at stage c are

determined by the expressions

T ¼ � �h2

2

Xn�1

i¼1

1

mi

Ð
d t1::::

Ð
c�r2

i cd tn; (3.75)

U ¼ 1

2

Xn�1

i¼1

Xn�1

i¼1

eiek
Ð
d t1 . . .

Ð
d tn

c�c
rik d tn: (3.76)

The scale transformation

�r
0
i = l�ri; (3.77)

keeps in force the condition (3.74) and means that the wave function

c �ri;:::;�rnð Þ (3.78)

is replaced by the function

cl¼ l3n=2 c l�ri;:::, l�rnð Þ (3.79)

Substituting (3.79) into Eqs. 3.76 and 3.75 and passing to new variables of

integration (3.77), and taking into account that

r2
i ¼ l2r02

i ;

1

rik
¼ l

1

r0ik
;

instead of the true value of the energy, E ¼ Tþ U, we obtain

E lð Þ¼ l2T + lU: (3.80)
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Equation 3.80 should have a minimum value in the case when the function which

is the solution of the Schr€odinger’s equation is taken from the family of functions

(3.79), i.e. when l ¼ 1. So, at l ¼ 1 the expression

@E lð Þ
@ l

¼ 2 l2Tþ U

should turn into zero, and thus

2Tþ U ¼ 0;

which is what we want to prove.

We now derive Jacobi’s virial equation for a particle in the inner force field with

the potential U(q) and fulfilling the condition

� qrU qð Þ ¼ U (3.81)

using the quantum mechanical principle of correspondence. We shall also show that

in quantum mechanics Jacobi’s virial equation has the same form and contents as in

classical mechanics, the only difference being that its terms are corresponding

operators.

In the simplest case the Hamiltonian of a particle is written

Ĥ ¼ � �h2

2m
r2 þ Û; (3.82)

and its Jacobi function is

F̂ ¼ 1

2
mq̂2: (3.83)

It is clear that the following relations are valid:

rF̂ ¼ mq̂;

r2F̂ ¼ m:

Following the definition of the derivative with respect to time from the operator

of the Jacobi function of a particle (3.60), we can write Û

_̂F ¼ � 1

�h
F̂; Ĥ
� �

;
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where, after corresponding simplification, quantum mechanical Poisson brackets

can be reduced to the form

F̂; Ĥ
� � ¼ �h2

2m
r2F̂þ 2 rF̂

� �r
 � ¼ �h2

2m
mþ 2mq̂rð Þ: (3.84)

The second derivative with respect to time from the operator of the Jacobi

function is:

€̂F ¼ � 1

�h2
F̂; Ĥ
� �

; Ĥ

 �

: (3.85)

Substituting the corresponding value of F̂; Ĥ
� �

and Ĥ from (3.84) and (3.82) into

the right-hand side of (3.85), we obtain

€̂F ¼ � �h2

2m

1

�h2
mþ 2mq̂rð Þ; � �h2

2m
r2 þ Û

� �	 

: (3.86)

After simple transformation, the right-hand side of (3.86) will be

€̂F� 1

2m
2�h2r2 þ 2mq̂ rÛ

� �
 � ¼ � 2�h2

2m
r2 þ Û; (3.87)

where, in writing this expression in the right-hand side, we used condition (3.81).

Add and subtract the operator from the right-hand side of Eq. 3.87 and, following

the definition of the Hamiltonian of the system (3.82), we obtain the quantum

mechanical Jacobi virial equation (equation of dynamical equilibrium of the sys-

tem), which has the form

€̂F ¼ 2Ĥ� Û: (3.88)

From Eq. 3.88, by averaging with respect to time, we obtain the quantum

mechanical analogue of the classical virial theorem (equation of hydrostatic equi-

librium of the system). In accordance with this theorem the following relation is

kept for a particle performing finite motion in space

2Ĥ ¼ Û: (3.89)

Analogously, one can derive Jacobi’s virial equation and the classical virial

theorem for a many-particle system, the interaction potential for which depends on

distance between any particle pair and is a homogeneous function of the co-

ordinates. In particular, Jacobi’s virial equation for Coulomb interactions will

have the form of Eq. 3.88.
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3.6 General Covariant Form of Jacobi’s Virial Equation

Jacobi’s initial equation

€F ¼ 2E� U;

which was derived in the framework of Newtonian mechanics and is correct for

the system of material points interacting according to Newton and Coulomb laws,

includes two scalar functions Ф and U relates to each other by a differential
relation. We draw attention to the fact that neither function, in its structure, depends
explicitly on the motion of the particles constituting the body. The Jacobi function
Ф is defined by integrating the integrand r(r)r2 over the volume (where r(r) is the
mass density and r is the radius vector of the material point) and is independent in
explicit form of the particle velocities. The potential energy U also represents the
integral of m(r)dm(r)/r over the volume (where m(r) is the mass of the sphere’s shell
of radius r; dm(r) is the shell’s mass) independent of the motion of the particles for

the same reason.

Let us derive Jacobi’s equation from Einstein’s equation written in the form

DG ¼ 3pT; (3.90)

where DG and T are the Einstein tensor and energy-momentum tensor accordingly.

In fact, since the covariant divergence of Einstein’s tensor is equal to zero, we

consider the covariant divergence of the energy-momentum tensor T only of

substance and fields (not gravitational). Moreover, the ordinary divergence of the

sum of the tensor T and pseudotensor t of the energy-momentum of the gravita-

tional field can be substituted for the covariant divergence of the tensor T. This

ordinary divergence leads to the existence of the considered quantities.

Let us define the sum of the tensor T and pseudotensor t through Tij and derive

Jacobi’s equation in this notation.

The equation for ordinary divergence of the sum Tij ¼ (T + t) ij can be written

T0k;k � T00;0 ¼ 0; (3.91)

Tjk;k � Tj0;0 ¼ 0: (3.92)

We multiply Eq. 3.92 by xj and integrate over the whole space (assuming the

existence of a synchronous co-ordinate system). Integrating by parts, neglecting the

surface integrals (they vanish at infinity), and transforming to symmetrical form

with respect to indices, we obtain

Ð
TijdV ¼ 1

2

Ð
Ti0x

j þ Tj0x
i

� �
dV

� � ¼ 0; (3.93)

where i, j are spatial indices.
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Similarly, multiplying (3.91) by xi xj and integrating over the whole space, it

follows that

Ð
T00x

ixjdV
� �

;0
¼ � Ð Ti0x

j þ Tj0x
i

� �
dV: (3.94)

From (3.93) and (3.94) we finally get

Ð
TijdV ¼ 1

2

Ð
T00x

ixj
� �

;0;0
: (3.95)

It is worth recalling that T00 also includes the gravitational defect of the mass

due to the pseudotensor t by definition

The integral
Ð
T00x

ixjdV represents the generalization of the Jacobi function

F ¼ 1
2

Ð
rr2dV introduced earlier, if we take the spur (also commonly known as the

trace) of Eq. 3.95. Let us clarify this operation.

In Eq. 3.95 the spur is taken by the spatial co-ordinates. It is therefore necessary

either to represent the total zero spur by four indices, as happens in the case of a

transverse electromagnetic field, or to represent the relationship between the

reduced spur with three indices and the total spur, as happens in the case of the

energy-momentum tensor of matter.

Special care should be taken while representing the spur of the pseudotensor of

the energy-momentum t. Consider the post-Newtonian approximation. In this

approximation, assuming the value of 2u to be –-goo –1, the components of the

pseudotensor t are written in the form

t00 ¼ � 7

8 p
u;j;i;

tij ¼ � 1

4 p
u;j;i � 1

2
diju;ku;k

� �
;

so that

Spt ¼ t00 þ Sp tij
� � ¼ � 1

p
u;iu;j ¼ 1

7
t00;

Sp tij
� � ¼ 6

7
t00:

The spur in the left-hand side of Eq. 3.95 can therefore be reduced to the

energy of the Coulomb field, the total energy of the transverse electromagnetic

field and the gravitational energy (when it can be separated, i.e. post-Newtonian

approximation).

Finally, it follows in this case that the scalar form of Jacobi’s equation holds:

F;0;0 ¼ mc2; (3.96)

3.6 General Covariant Form of Jacobi’s Virial Equation 87



where m is the mass, accounting for the baryon defect of the mass and the total

energy of the electromagnetic radiation. We do not take into account the radiation

of the gravitational waves.

The result obtained by Tolman for the spherical mass distribution (Tolman 1969)

is of interest:

m ¼ 4 p
Ð
êr2dr; (3.97)

where r is the radius and ê is the energy density.

The integral (3.97) acquires a form which is also valid in the case of flat space-

time. This result can be explained as follows. The curvature of space-time is exactly

compensated by the mass defect. This probably explains the fact that Jacobi’s virial

equation, derived from Newton’s equations of motion which are valid in the case of

non-relativistic approximation for a weak gravitational field, becomes more uni-

versal than the equations from which it was derived.

We shall not study the general tensor of Jacobi’s virial equation, since in

the framework of the assumed symmetry for the considered problems we are

interested only in the scalar form of the equation as applied to electromagnetic

interactions. As follows from the above remarks, in this case Jacobi’s equation

remains unchanged and the energy of the free electromagnetic field is accounted

for in the term defining the total energy of the system. Total energy enters

into Jacobi’s equation without the electromagnetic energy irradiated up to

the considered moment of time. Moreover, for the initial moment of time we

take the moment of system formation. This irradiated energy appears also to be

responsible for the growth of the gravitational mass defect in the system, as was

mentioned above.

3.7 Relativistic Analogue of Jacobi’s Virial Equation

Let us derive Jacobi’s virial equation for asymptotically flat space-time. We write

the expression of a 4-moment of momentum of a particle:

pixi; (3.98)

where pi ¼ mcui is the 4-momentum of the particle; c is the velocity of light;

ui ¼ dxi/ds is the 4- velocity; xi is the 4-co-ordinate of the particle; s is the interval
of events, and i is the running index with values 0, 1, 2, 3.

In asymptotically flat space-time we write

d

ds
pixi
� � ¼ mc

d

ds
uixi
� � ¼ mc

d2

ds2
xixi

2

� �
: (3.99)
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Since

xixi ¼ c2t2 � r2and
d

ds
¼ g

c

d

dt
;

where g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2=c2ð Þp

, and r is the radius of mass particle.

Then we continue transformation of the Eq. 3.99:

mc
d2

ds2
xixi

2

� �
¼ mc

g2

c2
d2

dt2
c2t2 � r2

2

� �
¼ mc g2 � g2

c2
d2

dt2
mr2

2

� �
;

and finally

d

ds
pixi
� � ¼ mc g2 � g2

c
€F; (3.100)

where

d2

dt2
mr2

2

� �
¼ €F:

is the Jacobi function.

On the other hand, we have

d

ds
pixi
� � ¼ mc

d

ds
uixi
� � ¼ mcuiui þmc

dui

ds
xi: (3.101)

Using the identity uiu
i � 1 and the geodetic equation

dui

ds
¼ �Gi

klu
kul;

where

Gi
kl ¼

1

2
gim

@gkm
@xl

þ @glm
@xk

þ @gkl
@xm

� �
:

are the Christoffel’s symbols, and the equation (3.101) will be rewritten as

d

ds
pixi
� � ¼ mc�mcxiGi

klu
kul: (3.102)

The metric tensor gik for a weak stationary gravitational field is

gik ¼ �ik þ xik; (3.103)
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where in our notation Zik is the Lorentz tensor with signature (+,–,–,–).

For the Schwarzschild metric tensor xik we write

x00 ¼ � rg

r
;x11 ¼ � 1

1� rg/r
þ 1 � � rg

r
;xik ¼ 0 if i 6¼ k and i 6¼ 0;1: (3.104)

Here rg ¼ 2GV/c2 is the Schwarzschild gravitational radius of the mass m
0
.

Now we can rewrite the second term in the right-hand side of Eq. 3.102, using

(3.103) and (3.104)

mcxiGi
klu

kul ¼ mcxmukul
@xkm
@xm

� 1

2

@xkl
@xm

� �

¼ mc x0u0u1
@x00
@x1

þ x1u1u1
@x11
@x1

� 1

2
x1u0u0

@x00
@x1

� x1u1u1
@x11
@x1

� �
:

(3.105)

But u1 	 u0 ¼ g and x1 ¼ r.

We therefore obtain for Eq. 3.105

mcxiGi
klu

kul ¼ �mc

2
x1u0u0

@x00
@x1

¼ �mc

2
r g2

rg

r2
¼ mc

2
g2

2Gm0
c2r

¼ � g2

c

Gm0m
r

(3.106)

Finally, we see that

d

ds
pixi
� � ¼ mc� g2

c
U; (3.107)

where U is the potential energy of the mass in the gravitational field of the mass m0.
Identification of the expression (d/ds)(pixi) obtained from Eqs. 3.100 and 3.107

gives

mc g2 � g2

c
€F ¼ mc� g2

c
U: (3.108)

It is easy to see that

mc g2 � 1
� � ¼ mc

1

1� v2=c2
� 1

� �
¼ mc

v2

c2
1

1� v2=c2
¼ g2

c
mv2 ¼ g2

c
2T:

We then obtain

g2

c
€F ¼ g2

c
Uþ g2

c
2T;
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which gives

€F ¼ Uþ 2T;

or

€F ¼ 2E� U; (3.109)

where T is the kinetic energy of the particle m and E ¼ U + T is its total energy.

Equations 3.109 are known as classical Jacobi’s virial equations, and the

expression (3.102) represents its relativistic analogue for asymptotically flat

space-time.

3.8 Universality of Jacobi’s Virial Equation for Description
of Dynamics of Natural Systems

It follows from this derivation of Jacobi’s virial equation that it appears to be a

universal mathematical expression for consideration of the dynamics of celestial

bodies described by equations of motion for a wide range of existing physical

models. The derived equation represents not only formal mathematical transforma-

tion of the initial equations of motion. Physical quintessence of mathematical

transformation of the equations of motion involves change of the vector forces

and moment of momentums by the volumetric forces or pressure and the oscillation

of the interacted mass particles (inner energy) expressed through the energy of

oscillation of the polar moment of inertia of a body. Here the potential (kinetic)

energy and the polar moment of inertia of a body have a functional relationship and

within the period of oscillation are inversely changed by the same law. Moreover,

as it was demonstrated in Sect. 2.2 of Chap. 2. and will be shown in Chap. 6, the

virial oscillations of a body represent the main part of the body’s kinetic energy,

which is lost in the hydrostatic equilibrium model. The change of the vector forces

and moment of momentums by the force pressure and the oscillation of the

interacting mass particles disclose the physical meaning of the gravitation and

mechanism of generation of the gravitational and electromagnetic energy and

their common nature, which is considered in Chap. 6. The most important advan-

tage given by Jacobi’s virial equation, is its independence from the choice of the

co-ordinate system, transformation of which, as a rule, creates many mathematical

difficulties.

By averaging for a uniform system the generalized virial equation €F ¼ 2E� U,

when the first derivative over the polar moment of inertiaФ acquires constant value,
it becomes the classical virial theorem 2E ¼ U, or –U ¼ 2 T, which expresses the
condition of the hydrostatic equilibrium being in the outer force field and without
kinetic energy of oscillations of the interacting particles.
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The starting point for derivation of the virial theorem is the particle momentum.

By Newton’s definition this value “is a certain measure determined proportionally
to the velocity and the mass”. This value is defined or it is found experimentally.

All the other force parameters are obtained by transformation of the initial momen-

tum and those actions are explained by physical interaction of the mass particles,

which are the carrier of the momentum. In fact, we recognize the momentum to be

“innate”, according to Newton’s terminology, value, i.e. the hereditary value.

Under the “innate” value Newton understood “both the resistance and the pressure

of the mass” and finally the effect acquires its status of the inertial force. But the

essence does not change, because the momentum appears together with the mass.

Thus, the circle of the philosophical speculations is locked by the momentum, i.e.

by the mass and its oscillation. All other attributes of the motion are formed by

mathematical transformations.

One more mainly physical problem that was solved in derivation in this chapter

of Jacobi’s virial equation by mathematical transformations is an understanding of

the nature and dynamical effects of the gravitational interaction of mass particles

for a continuous body. Contrary to the interaction of two bodies presented by mass

points, when a dynamical effect is developed in the orbital motion by vector force

and angular momentum, the dynamical effect of the interacting mass particles of the

continuous body is developed in the form of volumetric pressure and volumetric

oscillation. The integral effect of the mass interaction is expressed by oscillation of

the polar moment of inertia. In the next chapter we consider solution of Jacobi’s

virial equation.
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Chapter 4

Solution of Jacobi’s Virial Equation
for Conservative Systems

In Chap. 3 we derived Jacobi’s virial equation of dynamical equilibrium in

the framework of various physical models which are used for describing the dynamics

of natural systems. We showed that, instead of the traditional description of a system

in co-ordinates and velocities, the problem of dynamics can be studied from the

position of an external observer. In this case the system as a whole is described by a

compact and elegant equation and is characterized by integral (volumetric) para-

meters. Such a description of the integral equation does not depend on the choice of

the frame of reference. The external observer can estimate by observations only some

moments of distribution of mass density, i.e. total mass and energy of a system, which

are its integral characteristics. Moreover, in order to solve the problem of a body’s

motion in the framework of its dynamical equilibrium, we invoked the relation-

ship between its force function and the polar moment of inertia, which is the source

of motion. This relationship reveals the nature of the gravitational energy. We also

succeeded in reanimating the lost kinetic energy and obtaining both an equation

of dynamics and an equation of dynamical equilibrium in the form of the oscillating

motion during each period of time and within the whole duration of the system’s

evolution.

The problem is now to find the general solution of Jacobi’s virial equation

relative to oscillation and rotation of a body and to apply the solution to study its

dynamics. This application is valid for studying the Sun, the Earth, the Moon and

other celestial bodies.

In this chapter we show that Jacobi’s virial equation provides first of all

a solution for the models of natural systems, which have explicit solutions in the

framework of the classical many-body problem. We shall give parallel solutions

for both the classical and dynamical approaches, and in doing so we shall show

that, with the dynamical approach, the solution acquires a new physical meaning.

We shall also consider a general case of the solution of Jacobi’s virial equation for

conservative and dissipative systems.
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4.1 Solution of Jacobi’s Virial Equation
in Classical Mechanics

The many-body problem is known to be the key problem in classical mechanics and

especially in celestial mechanics. A particular example of this is the unperturbed

problem of Keplerian motion, when the system consists of only two material points

interacting by Newtonian law. The explicit solution of the problem of unperturbed

Keplerian motion permits the many-body problem to be solved with some approxi-

mation by varying arbitrary constants. In this case the problem of dynamics, for

example that of the Solar System, is transferred into the solution of the problem of

dynamics of nine pairs of bodies in each of which one body is always the Sun and

the second is each of the nine planets forming the system. Considering each planet-

sun sub-system, the influence of the other eight planets of the system is taken into

account by introducing the perturbation function. By the virial approach we can

obtain for the Sun one characteristic period of circulation with respect to the center

of mass of the system which will not coincide with any period of the planets.

The dynamical approach evidences that the planet’s orbital motion is performed

by the central body, i.e. by the Sun, by the energy of its outer force field or by the

field of the pressure. Each planet interacts with the solar force field by the energy of

its own outer force field. The planet’s orbit is the certain curve of its equilibrium

motion which results from the two interacting fields of pressure. The planet’s own

oscillation and rotation perform by action of the inner fields of pressure.

Following these brief physical comments on the dynamical equilibrium motion

of a planet, we now present two methods of solving the Keplerian problem: the

classical and the integral.

4.1.1 The Classical Approach

The traditional way of solving the unperturbed Keplerian problem is excellently

described in the university courses for celestial mechanics found in (Duboshin

1978). Here we present only the principle ideas. The method consists in trans-

forming the two-body problem described by the system of equations (3.10) into the

one-body problem using six integrals of motion of the center of mass (3.13).

The system of equations obtained is sixth order and expresses the change of

barycentric co-ordinates of one point with respect to the center of mass of the

system as a whole. Let us write it in the form

€x ¼ � mx
r3

;

€y ¼ � my
r3

; (4.1)
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€z ¼ � mz
r3

;

where m is the constant depending on the number of the point and for which the

second point is equal to

m ¼ Gm3
1

m1þm2ð Þ2 :

We then pass on from that Cartesian system of co-ordinates OXYZ to orbital x Z z,
using first integrals of the system of equations (4.1). Those are three integrals of the

area,

y _z� z _y ¼ c1;

z _x� x _z ¼ c2; (4.2)

x _y� y _x ¼ c3;

the energy integral,

_x2 þ _y2 þ _z2 ¼ 2m
r
þ h; (4.3)

and the Laplacian integrals,

� mx
r
þ c3 _y� c2 _z ¼ f1;

� my
r
þ c1 _z� c3 _x ¼ f2; (4.4)

� mz
r
þ c2 _x� c1 _y ¼ f3:

As these seven integrals are not independent, we conclude that they cannot form a

general solution of the system (4.1). In fact there are two relations for these

integrals:

c1f1 þ c2f2 þ c3f3 ¼ 0;

f21 þ f22 þ f23 ¼ m2 þ h c21 þ c22 þ c23
� �

;

showing that only five of them are independent. But the last integral needed can

be found by simple quadrature. Using these integrals we can pass on to the

system of orbital co-ordinates OxZz using the transformation relations (see

Fig. 4.1):
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x ¼ f1

f
xþ f2

f
yþ f3

f
z;

Z ¼ C2f3 � C3f2

Cf
xþ C3f1 � C1f2

Cf
yþ C1f2 � C3f1

Cf
z; (4.5)

z ¼ C1

C
xþ C2

C
yþ C3

C
z:

The equation of the curve along which the point moves in accordance with (4.1)

has the simplest form in the system of initial co-ordinates. The equation is

z ¼ 0;

mr ¼ C2 � fx: (4.6)

Finally, introducing the polar orbital co-ordinates r and v, which are related to

the rectangular orbital co-ordinates x and Z by the expressions (see Fig. 4.2)

x ¼ r cos v

and

Z ¼ r sin v;

and using the integral of areas

r2v ¼ C;

X

r

C

M

f

Z

O

N
ξ

ω

v

ς

i
η

τ

Ω

Fig. 4.1 Transition from

Cartesian co-ordinate system

OXYZ to orbital OxZz
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we come to the equation

C t� rð Þ ¼ C2

m

� �2 ðv
0

dv

1þ f
m cos v

� �2
: (4.7)

The solution of Eq. 4.7 gives the change of function v with respect to time.

Repetition of the transformation in the reverse order leads to solution of the

problem. In doing this, we obtain the expression for the change of co-ordinates of

the material point with respect to the initial data x10, Z10, z10, x20, Z20, z20, _x10,
_Z10, _z10, _x20, _Z20, _z20. It is remarkable that if the total energy (4.3) has negative

value, then the solution of Eq. 4.7 leads to the Keplerian equation

E0 � e sinE0 ¼ nðt� tÞ; (4.8)

where the function v is related to the variable E0 by the expression

tg
v

2
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

1� e

r
tg
E

2
;

and

e ¼ f

m
; n ¼

ffiffiffi
m

p
a3=2

; p ¼ C2

m
¼ a 1� e2

� �
:

Because energy by definition is the property to do work (motion) and can be only

a positive value, then the physical meaning of negative total energy which defines

the elliptic orbit of a body moving in the central field of the two-body problem

should be revealed. In the presented solution of the two-body problem, the left-hand

side of the energy integral (4.3) expresses the kinetic energy and the right-hand side

OO′′ O′

P

P′

ϕ0

α

ϕ

Fig. 4.2 Relationship between

the polar and the rectangular

co-ordinates
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means the potential energy of the mass interaction. The integral of energy (4.3)

as a whole, in the co-ordinates and in the velocities, represents the averaged

virial theorem, where the potential energy has formally a negative value. Here the

physical meaning of the total energy determination consists in comparison of

magnitude of the potential and kinetic energy. A negative value of the total energy

means that the potential energy exceeds the kinetic one by that value. As it follows

from analysis of the inner force field of a self-gravitating body presented in Chap. 2,

the potential energy exceeds the kinetic one only in the case of non-uniform

distribution of the mass density and cannot be less than it. In the case of equality

of both energies the total potential energy is realized into oscillating motion. The

excited part of the potential energy is used for rotation of the masses and in the

dissipation. The last case is discussed in Chap. 7.

4.1.2 The Dynamic Approach

Let us consider the solution of the problem of unperturbed motion of two

material points on the basis of Jacobi’s virial equation which in accordance with

Eq. 3.16 is written in the form

€F0 ¼ 2E0 � U;

where E0 ¼ T0 þ U ¼ const is the total energy of the system in a barycentric

co-ordinate system;

The Jacobi function F0 is expressed by (3.15):

F0 ¼ m1m2

2 m1 þm2ð Þ x1 � x2ð Þ2þ �1 � �2ð Þ2þ z1 � z2ð Þ2
h i

;

and the potential energy U in accordance with (3.2) is

U ¼ Gm1m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2þ �1 � �2ð Þ2þ z1 � z2ð Þ2

q :

It is easy to see that between the Jacobi function F0 and the potential energy

U exists the relationship

jUj
ffiffiffiffiffiffi
F0

p
¼ G m1m2ð Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 m1 þm2ð Þp ¼ G1=2mm3=2 ¼ B ¼ const; (4.9)

where m is the generalized mass of the two bodies; m is the total mass of the system;

B is a constant value.
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The relationship (4.9) is remarkable because it is independent of the initial data,

i.e. of its co-ordinates and velocities. Being an integral characteristic of the system

and dependent only on the total mass and the generalized mass of the two points, the

relationship permits Jacobi’s virial equation to be transformed to an equation with

one variable as follows:

€F0 ¼ 2E0 þ Bffiffiffiffiffiffi
F0

p : (4.10)

We consider the solution of Eq. 4.10 for the case when total energy E0 has

negative value. Introducing A ¼ �2E0>0, Eq. 4.10 can be rewritten:

€F0 ¼ �Aþ Bffiffiffiffiffiffi
F0

p : (4.11)

We apply the method of change of variable for solution of Eq. 4.11 and show that

partial solution of two linear equations (Ferronsky et al. 1984a):

ffiffiffiffiffiffi
F0

p� �00
þ

ffiffiffiffiffiffi
F0

p
¼ B

A
; (4.12)

t00 þ t ¼ 4Bl
2Að Þ3=2 ; (4.13)

which include only two integration constants, is also the solution of Eq. 4.11.

We now introduce the independent variable l into Eqs. 4.12 and 4.13, where

primes denote differentiation with respect to l. Note that time here is not an

independent variable. This allows us to search for the solution of two linear

equations instead of solving one non-linear equation. The solution of Eqs. 4.12

and 4.13 can be written in the form

ffiffiffiffiffiffi
F0

p
¼ B

A
1� e cos l� cð Þ½ �; (4.14)

t ¼ 4B

2Að Þ3=2 l� e sin l� cð Þ½ �: (4.15)

Let us prove that the partial solution (4.14) and (4.15) differential Eqs. 4.12 and

4.13 is the solution of Eq. 4.10 that is sought. For this purpose we express the first

and second derivatives of the function
ffiffiffiffiffiffi
F0

p
with respect to l through corresponding

derivatives with respect to time using Eq. 4.15. From (4.15) it follows that

dt

dl
¼ 4B

2Að Þ3=2
1� e cos l� cð Þ½ �: (4.16)
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We can replace the right-hand side of the obtained relationship by
ffiffiffiffiffiffi
F0

p
from (4.14)

dt

dl
¼

ffiffiffiffiffiffi
F0

p ffiffiffiffi
2

A

r
: (4.17)

Transforming the derivative from
ffiffiffiffiffiffi
F0

p
with respect to l into the form

d
ffiffiffiffiffiffi
F0

p
dl

¼ d
ffiffiffiffiffiffi
F0

p
dt

dt

dl
¼

_F0

2
ffiffiffiffiffiffiffi
F0

p dt

dl

and taking into account (4.17), we can write

ffiffiffiffiffiffiffi
F0

p� �0
¼

_F0ffiffiffiffiffiffi
2A

p :

The second derivative can be written analogously:

ffiffiffiffiffiffi
F0

p� �00¼ dt

dl
d

dt

_F0ffiffiffiffiffiffi
2A

p
� �

¼
€F0ffiffiffiffiffiffi
2A

p
ffiffiffiffiffiffi
F0

p ffiffiffiffi
2

A

r
¼

€F0

ffiffiffiffiffiffi
F0

p
A

: (4.18)

Putting Eq. 4.18 into (4.12), we obtain

€F0

ffiffiffiffiffiffi
F0

p
A

þ
ffiffiffiffiffiffi
F0

p
¼ B

A
:

Dividing the above expression by
ffiffiffiffiffiffi
F0

p
=A, we can finally write

€F0 ¼ �Aþ Bffiffiffiffiffiffi
F0

p :

This shows that the partial solution of the two linear differential Eqs. 4.12 and

4.13 appears to be the solution of the non-linear Eq. 4.11.

4.2 Solution of the N-Body Problem in the Framework
of Conservative System

After solving Jacobi’s virial equation for the unperturbed two-body problem,

we come to dynamics of a system of n material particles where n ! 1.

Let us assume that an external observer studying the dynamics of a system

of n particles in the framework of classical mechanics has the following infor-

mation. He has the mass of the system, its total and potential energy and can
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determine the Jacobi function and its first derivative with respect to time in any

arbitrary moment. Then he can use Jacobi’s virial Eq. 4.9 and, making only

the assumption needed for its solution that jUj ffiffiffiffiffiffi
F0

p ¼ B ¼ const, may predict the

dynamics of the system, i.e. the dynamics of its integral characteristics at any

moment of time. The assumption jUj ffiffiffiffiffiffi
F0

p ¼ constwill be considered separately in

Chap. 6.

If the total energy E0 of the system has negative value, the external observer can

immediately write the solution of the problem of the Jacobi function change with

respect to time in the form of (4.14) and (4.15):

ffiffiffiffiffiffi
F0

p
¼ B

A
1� e cos l� cð Þ½ �;

t ¼ 4B

2Að Þ3=2 l� e sin l� cð Þ½ �;

where A ¼ �2E0; e and c are constants depending on the initial values of the

Jacobi function F0 and its first derivative _F0 at the moment of time t0 .

Let us obtain the values of constants e and c, in explicit form expressed

through the values F0 and _F0 at the initial moment of time t0. For convenience

we introduce a new independent variable j, connected to l by the relationship

cooтнoшeниeм l�c ¼ j. Then Eqs. 4.14 and 4.15 can be rewritten:

ffiffiffiffiffiffi
F0

p
¼ B

A
1� e cosj½ �; (4.19)

t� 4B

2Að Þ3=2 c ¼ 4B

2Að Þ3=2 j� e sinj½ �: (4.20)

Using Eq. 4.19 we write the expression for j:

j ¼ arccos
1� A

B

ffiffiffiffiffiffi
F0

p

e
(4.21)

and taking into account the equality

d
ffiffiffiffiffiffi
F0

p
dl

¼ d
ffiffiffiffiffiffi
F0

p
dj

;

substitute Eq. 4.21 into the expression

_F0ffiffiffiffiffiffi
2A

p ¼B

A
esinj:
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The last equation can be rewritten finally in the form

_F0ffiffiffiffiffiffi
2A

p ¼ B

A
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� A

B

ffiffiffiffiffiffi
F0

p

e

� �2
s

: (4.22)

Equation 4.22 allows us to determine the first constant of integration e as

a function of the initial data F0 and _F0 at t ¼ t0. Solving Eq. 4.22 with respect to

e after simple algebraic transformation, we obtain

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A

2B2
� _F0 þ 4B

ffiffiffiffiffiffi
F0

p
� 2AF0

� �r
t¼t0j ¼ const: (4.23)

The second constant of integration c can be expressed through the initial data

after solving Eq. 4.20 with respect to c and change of value j by its expression

from Eq. 4.21. Defining

t� 4B

2Að Þ3=2 c ¼ t;

we obtain

� t ¼ 4B

2Að Þ3=2
arccos

1� A
B

ffiffiffiffiffiffi
F0

p

e
� e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� A

B

ffiffiffiffiffiffi
F0

p

e

� �2
s2

4
3
5� t

8<
:

9=
; t ¼ t0

			 ¼ const:

(4.24)

The physical meaning of the integration constants e, t, and the parameter

Tv ¼ 8pB= 2Að Þ3=2 can be understood after the definitions

Tv ¼ 8pB
2Að Þ3=2 ;

n ¼ 2p
Tv

¼ 2Að Þ3=2
4B

;

a ¼ B

A

and rewriting Eqs. 4.19 and 4.20 in the form

ffiffiffiffiffiffi
F0

p
¼ a 1� e cosjð Þ; (4.25)

M ¼ j� e sinj; (4.26)

where M ¼ n t � tð Þ.
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The value
ffiffiffiffiffiffi
F0

p
draws an ellipse during the period of time Tv ¼ 8pB= 2Að Þ3=2

(see Fig.4.3). The ellipse is characterized by a semi-major axis a equal to B/A and

by the eccentricity e which is defined by expression (4.23). In the case considered,

where E0 < 0, the value e is changed in time from 0 to 1. The value t characterizes
the moment of time when the ellipse passes the pericentre.

Let us obtain explicit expressions with respect to time for the functions
ffiffiffiffiffiffi
F0

p
, F0

and _F0. For this purpose we write Eq. 4.24 in the form of a Lagrangian:

F jð Þ ¼ j� e sinj�M ¼ 0: (4.27)

It is known (Duboshin 1978) that by application of Lagrangian formulas we can

write in the form of a series the expressions for the root of the Lagrange Eq. 4.27

and for the arbitrary function f which is dependent j:

j ¼
X1
k¼0

ek�1

k!

dk�1

dMk�1
sinkM

 � ¼ Mþ e sinMþ e2

1 � 2
d

dM
sin2M

 �þ � � � ; (4.28)

f jð Þ ¼
X1
k¼0

ek�1

k!

dk�1

dMk�1
f 0 Mð ÞsinkM
 � ¼ f Mð Þ þ ef 0 Mð Þ sinM

þ e2

1 � 2
d

dM
f Mð Þsin2M
 �þ ::: :

(4.29)
Using Eq. 4.29, we write expressions for cosj, cos2j and sinj in the form of a

Lagrangian series of parameter e power:

cos j ¼
X1
k¼0

ek�1

k!

dk�1

dMk�1
�1ð Þ sinMsinkM


 � ¼ cosMþ e �1ð Þ sinM sin Mð Þ

þ e2

1 � 2
d

dM
�1ð Þ sinMsin2M


 �þ � � � ¼ cosM� e
2
þ e
2
cos 2M

� 3

4
e3 cosMþ 3

8
e2 cos 3Mþ � � �

(4.30)

a

ϕ0

0 t t+T t+2T

t

Fig. 4.3 Changes of the Jacobi function over time
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cos2j ¼
X1
k¼0

ek�1

k!

dk�1

dMk�1
�2ð Þ sinM cosMsinkM


 � ¼ cos2M

þ e �2ð Þ sinM cosM sinMþ e2

1 � 2
d

dM
�2ð Þ sinM cosMsin2M


 �þ � � �

¼ cos2M� 2 esin2M cosMþ e2

2
�2ð Þ 3sin2Mcos2M� sin4M

� �þ � � �
(4.31)

sin’ ¼
X1
k¼0

ek�1

k!

dk�1

dMk�1
cosM sinM½ � ¼ sinMþ e cosM sinM

þ e2

1 � 2
d

dM
cosMsin2M

 �þ ::: ¼ sinMþ e cosM sinM

þ e2

1 � 2 2 sinMcos2M� sin3M

 �þ � � �

(4.32)

We write the expressions for
ffiffiffiffiffiffi
F0

p
, F0, _F0 using Eqs. 4.25 and 4.26 in the form

ffiffiffiffiffiffi
F0

p
¼ a 1� e cosjð Þ; (4.33)

F0 ¼ a2 1� 2 e cosjþ e2cos2j
� �

; (4.34)

_F0 ¼
ffiffiffiffi
2

A

r
eB sinj: (4.35)

Substituting into (4.33)–(4.35) the expressions for cosj, cos2j and sinj in the form

of the Lagrangian series (4.30)–(4.32) we obtain

ffiffiffiffiffiffi
F0

p
¼ B

A
1þ e2

2
þ � e+

3

8
e3

� �
cosM� e2

2
cos 2M� 3

8
e3 cos 3Mþ � � �

� 

; (4.36)

F0 ¼ B2

A2
1þ 3

2
e2 þ �2 eþ e3

4

� �
cosM� e2

2
cos 2M� e3

4
cos 3Mþ � � �

� 

; (4.37)

_F0 ¼
ffiffiffiffi
2

A

r
eB sinMþ 1

2
e sin 2Mþ e2

2
sinM 2cos2M� sin2M

� �þ :::

� 

: (4.38)

The series of Eqs. 4.36–4.38 obtained are put in order of increased power of

parameter e and are absolutely convergent at any value of M in the case when the

parameter e satisfies the condition

e<e ¼ 0; 6627:::; (4.39)

where e is the Laplace limit.
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In some cases it is convenient to expand the values
ffiffiffiffiffiffi
F0

p
, F0, _F0 in the form of a

Fourier series, using conventional methods (see, for example, Duboshin 1978).

Figure 4.4 demonstrates the changes of
ffiffiffiffiffiffi
F0

p
in time at e ¼ 1.

It is also possible to consider the case solution of Jacobi’s virial equation for

E0 ¼ 0 and E0 > 0. The reader can find here without difficulty a full analogy of

these results as well as the solution of the two-body problem.

4.3 Solution of Jacobi’s Virial Equation in Hydrodynamics

Let us consider the solution of the problem of the dynamics of a homogeneous

isotropic gravitating sphere in the framework of traditional hydrodynamics and the

virial approach we have developed.

4.3.1 The Hydrodynamic Approach

The sphere is assumed to have radius R0 and be filled by an ideal gas with r0.
We assume that at the initial time the field of velocities which has the only

component is described by equation

u ¼ H0r, (4.40)

where u is the radial component of the velocity of the sphere’s matter at the distance r

from the center of mass; H is independent of the quantity r and equal to H0 at time t0 .

We also assume that the motion of the matter of the sphere goes on only under

action of the forces of mutual gravitational interaction between the sphere particles.

In this case the influence of the pressure gradient is not taken into account,

assuming that the matter of the sphere is sufficiently diffused. Then the symmetric

spherical shells will move only under forces of gravitational attraction and will not

coincide. In this case the mass of the matter of any sphere shell will keep its

constant value and the condition (4.40) will be satisfied at any moment of time,

and constant H should be dependent on time.

ϕ0

0
t

t

t+T t+2T

Fig. 4.4 Changes of the value
ffiffiffiffiffiffi
F0

p
in time at e ¼ 1
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Under those conditions the Eulerian system of equations (3.28) can be written in

the form

r
@u

@t
þ r urð Þu ¼ r

@UG

@r
; (4.41)

where r(t) is the density of the matter of the sphere at the moment of time t; u is

the radial component of the velocity of matter at distance r from the sphere’s center;

UG is the Newtonian potential for the considered point of the sphere.

The expression for the Newtonian potential UG (3.29) can be written as follows:

UG ¼ G
4

3
prr2; (4.42)

and the continuity equation will be

@r
@t

þ r
@U

@r
¼ 0: (4.43)

Within the framework of the traditional approach, the problem is to define the

sphere radius R and the value of the constant H at any moment of time, if the radius

R0, density r0 and the value of the constant H0 at the initial moment of time t0 are

given. If we know the values H(t) and R(t), we can then obtain the field of velocities

of the matter within the sphere which is defined by Eq. 4.40, and also the density

r of matter at any moment of time, using the relationship

4

3
pR3

0 r0 ¼
4

3
pR3r ¼ const ¼ m:

Hence the formulated problem is reduced to identification of the law of motion

of a particle which is on the surface of the sphere and within the field of attraction of

the entire sphere mass m ¼ 4=3 p r0R0
3.

The equation of motion for a particle on the surface of the sphere, which follows

from Eq. 4.41 after transforming the Eulerian co-ordinates into a Lagrangian, has

the form

d2R

dt2
¼ �G

m

R2
: (4.44)

It is necessary to determine the law of change of R(t), resolving Eq. 4.44 at the

initial data:

R t0ð Þ ¼ R0; (4.45)

dR

dt

				
t¼tO

¼ H0R0:
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We reduce the order of Eq. 4.44. To do so we multiply it by dR/dt:

dR

dt

d2R

dt2
¼ � dR

dt

Gm

R2

and integrate with respect to time:

ðt
t0

1

2

d

dt
_R

� �2 ¼ ðt
t0

d

dt

Gm

R

� �
dt:

After integration we obtain

1

2
_R
2 � 1

2
_R
2

0 ¼
Gm

R
� Gm

R0

or

1

2
_R
2 ¼ Gm

R
þ k; (4.46)

where the constant k is determined as

k ¼ 1

2
_R
2

0 �
Gm

R0

¼ 1

2
H2

0R
2
0 � G

4p
3

r0
R3
0

R0

¼ 1

2
H2

0R
2
0 1� 8p

3

Gr0
H2

0

� 

¼ 1

2
H2

0R
2
0 1� O½ � ¼ const

(4.47)

Here the quantity O ¼ ro=rcr, where rcr¼ 3H0
2=8pG.

Note that Eq. 4.46 obtained after reduction of the order of the initial Eq. 4.44 is in

its substance the energy conservation law. Equation 4.46 permits the variables to be

divided and can be rewritten in the form

ðR
R0

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gm

R + 2k
q ¼

ðt
t0

dt: (4.48)

The plus sign before the root is chosen assuming that the sphere at the initial time

is expanding, i.e., H0 > 0.

The differential Eq. 4.46 has three different solutions at k ¼ 0, k > 0 and k < 0

depending on the sign of the constant k, which is in its turn defined by the value of the

parameter O at the initial moment of time. First we consider the case when k ¼ 0

which relates, by analogy with the Keplerian problem, to the parabolic model at
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k ¼ 0. Equation 4.46 is easily integrated and for the expression case, i.e., _R>0,

we obtain

_R
2 ¼ 2Gm

R
;

_R ¼ 2Gmð Þ1=2
R1=2

;

from which it follows that

R1=2dR ¼ 2Gmð Þ1=2dt

or

2

3
R3=2 ¼ 2Gmð Þ1=2tþ const: (4.49)

We choose as initial counting time t ¼ 0, the moment when R ¼ 0. In this case

the integration constant disappears:

R ¼ 9

2
Gm

� �1=3

t2=3: (4.50)

The density of the matter changes in accordance with the law

r(t) =
m

4
3
pR3

¼ 1

6pGt2
; (4.51)

and the quantity H(t), as a consequence of (4.50), has the form

H(t) ¼
_R

R
¼ 2

3

1

t
: (4.52)

For the case when k > 0, which corresponds to so-called hyperbolic motion, the

solution of Eq. 4.46 can be written in parametric form (Zeldovich and Novikov

1967)

R ¼ Gm

2k
chZ� 1ð Þ; (4.53)

t ¼ Gm

2kð Þ3=2 fchZ� Zð Þ;

where the constants of integration in (4.53) have been chosen so that t ¼ 0,Z ¼ 0 at

R ¼ 0.
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Finally we consider the case when k < 0, which corresponds to elliptic motion.

At k < 0 the expansion of the sphere cannot continue for unlimited time and the

expansion phase should be changed by attraction of the sphere.

The explicit solution of Eq. 4.46 at k < 0 can be written in parametric form

(Zeldovich and Novikov 1967)

R ¼ Gm

2jkj 1� chZð Þ; (4.54)

t ¼ Gm

2jkjð Þ3=2 Z� shZð Þ:

The maximum radius of the sphere is determined from Eq 4.46 on the condition

dR/dt ¼ 0 and equals

Rmax ¼ Gm

jEj : (4.55)

The time needed for expansion of the sphere from R0 ¼ 0 at t0 ¼ 0 to Rmax is

tmax ¼ pGm

2jkjð Þ3=2
: (4.56)

So the sphere should make periodic pulsations with period Tp equal to

Tp ¼ 2pGm

2jkjð Þ3=2
: (4.57)

The considered solution has important cosmologic applications.

4.3.2 The Virial Approach

We shall limit ourselves by formal consideration of the same problem in the

framework of the condition of the dynamical equilibrium of a self-gravitating

body based on the solution of Jacobi’s virial equation, which we discussed earlier.

As shown in Chap. 3, Jacobi’s virial equation (3.50), derived from Eulerian equa-

tions (3.28), is valid for the considered gravitating sphere. It was written in the form

€F ¼ 2E� U; (4.58)

whereF is the Jacobi function for a homogeneous isotropic sphere and is defined by

F=
1

2

ðR
0

4 pr2rr2dr =
2prR5

5
¼ 3

10
mR2: (4.59)
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The potential gravitational energy of the matter of the sphere is expressed as

U = � 4pG
ðR
0

rrðrÞmðrÞdr ¼� 16p2

15
Gr2R2¼� 3

5
G
m2

R
: (4.60)

The total energy of the sphere E will be equal to the sum of the potential U and

kinetic T energies.

The kinetic energy T is expressed as

T =
1

2

ðR
0

4 pu2rr2dr =
1

2

ðR
0

4 pH2r2rr2dr =
4prH2R5

10
¼ 3

10
mH2R2: (4.61)

For a homogeneous isotropic gravitating sphere, the constancy of the relation-

ship between the Jacobi function (4.59) and the potential energy (4.60) can be

written:

Ujj
ffiffiffiffi
F

p
¼ B ¼ 3

5
G
m2

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

10
mR2

r
¼ 1ffiffiffi

2
p 3

5

� �3=2

Gm3=2; (4.62)

where B has constant value because of the conservation law of mass m of the

considered sphere.

The total energy E of the sphere also has a constant value:

E ¼ Tþ U ¼ A

2
: (4.63)

Then, if the total energy of the sphere has a negative value, Jacobi’s virial

equation can be written in the form:

€F ¼ �Aþ Bffiffiffiffi
F

p : (4.64)

Let us consider the conditions under which the total energy of the system will

have a negative value. For this purpose we write it explicitly:

E = T + U = � 16

15
p2Gr2R5þ 2prH2R5

5
¼ 2

5
prH2R5 1� 8pGr

3H2

� 

: (4.65)

It is clear from Eq. 4.65 that the total energy E has a negative value, when r > rc ,
where rc¼ 3H2=8pG.

The general solution of Eq. 4.64 has the form of Eqs. 4.14 and 4.15:

ffiffiffiffiffiffi
F0

p
¼ B

A
1� e cos l� cð Þ;½ � (4.66)
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t ¼ 4B

2Að Þ3=2 l� e sin l� cð Þ½ �; (4.67)

where e and c are constants dependent on the initial values of the Jacobi function

F0 and its first derivative _F0 at the moment of time to. The constants e and c are

determined by Eqs. 4.23 and 4.24 accordingly.

If we express all the constants in Eq. 4.23:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A

2B2
� _F0 þ 4B

ffiffiffiffiffiffi
F0

p
� 2AF0

� �r
t ¼ t0

		 ¼ const: (4.68)

through mass m of the system, it is not difficult to see that

� _F2
0 þ 4B

ffiffiffiffiffiffi
F0

p
� 2AF0 ¼ 0:

Then the constant e will be equal to zero. Hence the solutions (4.28) and (4.29)

coincide with the solution (4.54), which was obtained in the framework of the

traditional hydrodynamic approach. In this case the period of eigenpulsations of the

Jacobi function (the polar moment of inertia) of the sphere T ¼ 8pR/(2A)3/2 will be
equal to the period of change of its radius Tp ¼ 2pGm/(2|k|)3/2 obtained from

Eq. 4.54.

4.4 The Hydrogen Atom as a Quantum Mechanical
Analogue of the Two-Body Problem

Let us consider the problem concerning the energy spectrum of the hydrogen atom,

which is a unique example of the complete conformity of the analytical solution

with experimental results. The problem consists of a study of all the forms of

motion using the postulates of quantum mechanics and based on the solution of

Jacobi’s virial equation.

The classical Hamiltonian in the two-body problem is written as

H ¼ �p21
2m1

þ �p22
2m2

þ U j�r1 ��r2jð Þ; (4.69)

where

�p1 ¼
@H

@ _~r1
¼ m1

_�r1;

�p2 ¼
@H

@ _~r2
¼ m2

_�r2;
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which after separation of the center of mass can be transformed into the form

H ¼
�P
2

2M
þ �p2

2m
þ U rð Þ; (4.70)

where r ¼ j�r1 ��r2j is the distance between two particles and

P ¼ M _�R; p ¼ m_�r; M ¼ m1 þm2;

R ¼ m1�r1 þm2�r2
m1 þm2

; m ¼ m1m2

m1 þm2

:

We obtain the Hamiltonian operator for the quantum mechanical two-body

problem through changing the pulses and radii by the corresponding operators

with the communication relations

p̂i; p̂0½ � ¼ �i�h dik;

p̂i; r̂k½ � ¼ �i�h dik:

Then

Ĥ ¼ � �h2

2M
DR � �h2

2m
Dr þ ÛðrÞ:

The wave functionu(�r1;�r2Þ ¼ jðRÞc rð Þ, which satisfies the Schr€odinger equation

Ĥu ¼ eu;

describes the motion of the inertia center (the free motion of the particle of mass mc

is described by the function j(R) and the motion of the particle of mass m in the

U(r) is described by the wave function CðrÞÞ. Subsequently we consider only the

wave function of the motion of particle m.

The Schr€odinger equation

DCþ 2m

�h2
E� U(r)½ �C ¼ 0

written here for the stationary state in a central symmetrical field in spherical co-

ordinates, has the form

1

r2
@

@r
r2
@C
@r

� �
þ 1

r2
1

sinY
@

@Y
sinY

@C
@Y

� �
þ 1

sin2Y

@2C
@j2

� 

þ 2m

�h2
E� U rð Þ½ � c ¼ 0:

(4.71)
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Using the Laplacian operator ‘̂2:

‘̂2 ¼ 1

sinY
@

@Y
sinY

@

@Y

� �
þ 1

sin2Y

@2

@j2

� 

;

we obtain

�h2

2m
� 1

r2
@

@r
r2
@C
@r

� �
þ ‘̂

2

r2
C

" #
þ U(r)C ¼ EC:

The operators ‘̂2 and ‘̂z ð‘̂z ¼ �i@=@jÞ commutate with the Hamiltonian ĤðrÞ
and therefore there are common eigenfunctions of the operators Ĥ, ‘̂2 и ‘̂z. We

consider only such solutions of Schr€odinger equations. This condition determines

the dependence of the function C on the angles

C r;Y;jð Þ ¼ R(r)Y‘k Y;jð Þ;

where the quantity Y‘k Y;jð Þ is determined by the expression

Y‘k Y;jð Þ ¼ 1ffiffiffiffiffiffiffi
2 p

p eikjð�1Þki‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1ð Þ ‘� kð Þ!

2 ‘þ kð Þ!

s
Pk‘ cosYð Þ;

and Pk‘ cosYð Þ is the associated Legendre polynomial, which is

Pk‘ cosYð Þ ¼ 1

2‘‘!
sinkY

drþ‘

d cosYrþ‘
cos2Y� 1
� �‘

:

Since

‘̂2Y‘k ¼ ‘ ‘þ 1ð ÞY‘k;

we obtain for the radial part of the wave function R(r)

1

r2
@

@r
r2
dR

dr

� �
� ‘ ‘þ 1ð Þ

r2
Rþ 2m

�h2
E� U(r)½ �R ¼ 0: (4.72)

Equation 4.72 does not contain the value ‘z ¼ m, i.e. at the given ‘ the energy

level E corresponds to 2‘þ 1 states differing by the value ‘z.
The operator

1

r2
@

@r
r2
dC
dr

� �
:
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is equivalent to the expression

1

r

d2

dr2
rRð Þ

and thus it is convenient to make the change of variables, assuming that

X(r) ¼ rR(r):

So that Eq. 4.71 can be rewritten in the form

d2X

dr2
� ‘ ‘þ 1ð Þ

r2
Xþ 2m

�h2
E� U(r)½ �X ¼ 0: (4.73)

We now consider the demand following from the boundary conditions and

related to the behavior of the wave function X(r). At r ! 0 and the potentials

satisfying the condition

limU(r)r2 ¼ 0; (4.74)

r ! 0;

only the first two terms play an important role in Eq. 4.73. X(r) ~ rv and we obtain

v v� 1ð Þ ¼ ‘ ‘þ 1ð Þ:
This equation has roots v1 ¼ ‘þ 1 and v2 ¼ �‘.

The requirement of normalization of the wave function is incompatible with the

values v ¼ �‘ at ‘ 6¼ 0 because the normalization integral

ð1
0

jX2
r rð Þdrj

will be divergent for the discrete spectrum, and the condition

ð
C l, xð ÞC l;Xð Þd l ¼ d X� xð Þ

does not hold for the continuous spectrum.

At ‘ ¼ 0 the boundary conditions are determined by the demand for the finite-

ness of the mean value of the kinetic energy which is satisfied only at v ¼ 1. So,

when the condition (4.74) is satisfied, then the wave function of a particle is

everywhere finite and at any ‘

Xð0Þ ¼ 0:
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Let us consider the energy spectrum and the wave function of the bounded states

of a system of two charges. The bounded states exist only in the case of the attracted

particles. Such a system defines the properties of the hydrogen atom and hydrogen-

like ions.

The equation for the radial wave function is

d2R

dt2
þ 2

r

dR

dr
� ‘ ‘þ 1ð Þ

r2
Rþ 2m

�h2
Eþ a

r

� �
R ¼ 0; (4.75)

where a ¼ Ze2 is constant, characterizing the potential; e is the electron charge;

Z is the whole number equal to the nucleus charge in the charge units.

The constants e2, m and �h allow us to construct the value with the dimension of

length

a0 ¼ �h2

me2
¼ 0:529 � 10�8cm

known as the Bohr radius, and the time

t0 ¼ �h3

me4
¼ 0:242 � 10�11s:

These quantities define the typical space and time scale for describing a system,

and it is therefore convenient to use these units as the basic system of atomic units.

Equation 4.75 in atomic units (at Z ¼ 1) takes the form

d2R

dt2
þ 2

r

dR

dr
� ‘ ‘þ 1ð Þ

r2
Rþ 2 Eþ 1

r

� �
R ¼ 0: (4.76)

At E < 0 the motion is finite and the energy spectrum is discrete. We need the

solutions (4.76) quadratically integrable with r2. Let us introduce the specification

n ¼ 1ffiffiffiffiffiffiffiffiffiffi�2E
p r ¼ 2r

n
:

Equation 4.76 can be written as

d2R

dt2
þ 2

r
dR

dr
þ n

r
� 1

4
� ‘ ‘þ 1ð Þ

r2

� 

R ¼ 0: (4.77)

We find the asymptotic forms of the radial function R(r). At r ! 1 and omitting

the terms ~ r�1 and ~ r�2 in (4.77), we obtain

d2R

dr2
¼ R

4
:
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Therefore at high values of r, R / e�r=2. The normalization demand is satisfied

only by RðrÞ / e�r=2. The asymptotic forms at r ! 0 have already been deter-

mined.

Substituting

R rð Þ ¼ r‘e�r=2 o rð Þ;

Equation 4.77 is reduced to the form

r
d2o
dr2

þ 2‘þ 2� rð Þ do
dr

þ n� ‘� 1ð Þ o ¼ 0: (4.78)

To solve this equation in the limit of r ¼ 0, we substitute o(r) in the form of a

power series

o rð Þ ¼ 1þ 0� vð Þ
0þ lð Þ rþ 0� vð Þ 1� vð Þ

0þ lð Þ 1þ lð Þ
r2

2!
þ 0� vð Þ 1� vð Þ 2� vð Þ

0þ lð Þ 1þ lð Þ 2þ lð Þ
r3

3!
þ ::: ;

(4.79)

where l ¼ 2‘þ 2 and � v ¼ �nþ ‘þ 1.

At r ! 1, the function o(r) should increase, but not faster than the limiting

power r. Then o(r) has to be a polynomial of v power. So, � nþ ‘þ 1 ¼ �k, and

n ¼ ‘þ 1þ k (k ¼ 0, 1, 2, . . ..) at a given value of ‘. Hence, using the definition for
n, we can find the expression for the energy spectrum

En ¼ � 1

2n2
: (4.80)

The number n is called the principal quantum number. In general units it has

the form

E ¼ �Z2 me4

2�h2n2
: (4.81)

This formula was obtained by Bohr in 1913 on the basis of the old quantum

theory, by Pauli in 1926 from matrix mechanics, and by Schr€odinger in 1926 by

solving the differential equations.

Let us solve the problem of the spectrum of the hydrogen atom using the

equation of dynamical equilibrium of the system. In Chap. 3 we obtained Jacobi’s

virial equation for a quantum mechanical system of particles whose interaction is

defined by the potential being a homogeneous function of the co-ordinates. This

equation in the operator form is

€̂F ¼ 2Ĥ� Ûn (4.82)
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where F̂ is the operator of the Jacobi function, which, for the hydrogen atom, is

written

F̂ ¼ 1

2
mr̂2; (4.83)

The Hamiltonian operator is

Ĥ ¼ � �h2

2m
Dr þ Û (4.84)

and the operator of the function of the potential energy for the hydrogen atom is

Û ¼ � e2

r
: (4.85)

We solve the problem with respect to the eigenvalues of Eq. 4.82, using the main

idea of quantum mechanics. For this we use the Schr€odinger equation

ĤC ¼ EC

and rewrite Eq. 4.82 in the form

€̂F ¼ 2E� Ûn (4.86)

This equation includes two (unknown in the general case) operator functions F̂
and Û. In the case of the interaction, the potential is determined by the relation

(4.85), and we can use a combination of the operators F̂ and Û in the form

jÛj
ffiffiffiffî
F

p
¼ e2m1=2ffiffiffi

2
p ¼ B: (4.87)

We now transform (4.86) into the form which was considered in classical

mechanics:

€̂F ¼ 2Eþ Bffiffiffiffî
F

p : (4.88)

Equation 4.88 is a consequence of Eq. 4.86 when the Schr€odinger equation and

the relationship (4.87) are satisfied. Its solution for the bounded state, i.e. when total

energy E is determined in parametric form, can be written

ffiffiffiffi
F

p
¼ B

2jEj 1� e cosjð Þ; (4.89)
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j� e sin’ ¼ M; (4.90)

where the parameter M is defined by the relation

M ¼ 4jEjð Þ3=2
4B

t� tð Þ; (4.91)

where e and t are integration constants and where

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AC

2B2

r
;

C ¼ � _̂F
2

0 þ 4B

ffiffiffiffiffiffi
F̂0

q
� 2AF̂0:

Moreover, the solution can be written in the form of Fourier and Lagrange series.

Thus, the expression (4.37) describes the expansion of the operator F̂ into a

Lagrange series including the accuracy of e3, and has the form

F̂0 ¼ B2

A2
1þ 3

2
e2 þ �2 eþ e3

4

� �
cosM� e2

2
cos 2M� e3

4
cos 3Mþ ::::

� 

(4.92)

Using the general expression for the mean values of the observed quantities in

quantum mechanics

<CjF̂jC> ¼ �Fn

and taking into account that the mean value of the Jacobi function of the hydrogen

atom should be different from zero, we find that our system has multiple eigen-

frequencies vn ¼ nvo with respect to the basic vo which corresponds to the period

Tv ¼ 8pB

4jEjð Þ3=2
: (4.93)

In accordance with the expression

En ¼ �h on ¼ �h2pn
T0

(4.94)

each of these frequencies corresponds to the energy level En of the hydrogen atom.

We substitute the expression (4.93) for Tv intoEq. 4.94 and resolve it in relation toEn:

jEnj ¼ �h2pn 4jEnjð Þ3=2
8 pB

¼ �hn 4jEnjð Þ3=2
4e2m1=2ffiffiffi

2
p

¼ �hn2
ffiffiffiffiffiffiffiffiffiffi
2jEnj

p
e2m1=2

: (4.95)
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The expression obtained by Bohr follows from (4.95):

En ¼ e4m

2�h2n2
: (4.96)

This equation solves the problem.

4.5 Solution of a Virial Equation in the Theory
of Relativity (Static Approach)

We consider now the solution of Jacobi’s virial equation in the framework of the

theory of relativity, showing its equivalence to Schwarzschild’s solution.

Let us write down the known expression for the radius of curvature of space-time

as a function of mass density:

1

R2
¼ 8p

3

Gr
c2

; (4.97)

where R is the curvature radius; r is the mass density; G is the gravitational constant

and c is the velocity of light.

Equation 4.97 can also be rewritten in the form

rR2 ¼ 3

8p
c2

G
: (4.98)

If the product rR2 in Eq. 4.98 is the Jacobi function (F ¼ rR2 is the density of

the Jacobi function) then, from (4.98):

F ¼ 3

8p
c2

G
: (4.99)

and it follows that the Jacobi function is a fundamental constant for the Universe.

(In general relativity, the spatial distance does not remain invariant. Therefore,

instead of this the Gaussian curvature is used, which has the dimension of the

universe distance and is the invariant or, more precisely, the covariant.)

The constancy of the Jacobi function in this case reflects the smoothness of the

description of motion in general relativity. The oscillations relative to this smooth

motion described by Jacobi’s equation are the gravitational waves and horizons, in

particular the collapse and all types of singularity up to the process of condensation

of matter in galaxies, stars etc.

Now we can show that Schwarzschild’s solution in general relativity is equiva-

lent to the solution of Jacobi’s equation when €F ¼ 0. Let us write the expression for

the energy-momentum tensor
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Tk
i ¼ rþ pð Þuiuk þ pdki : (4.100)

In the corresponding co-ordinate system, we obtain

ui ¼ 0; 0; 0;
1ffiffiffiffiffiffiffiffiffiffi�g00

p
� �

; (4.101)

where r ¼ r(r) and p ¼ p(r).

The independent field equations are written

G1
1 ¼ T1

1; G0
0 ¼ T0

0; (4.102)

R�2 ¼ 1

3
Grc2:

The expression for the metric is written in the form

ds2 ¼ dr2

1� r2

R2

þ r2 dOð Þ2 � A� B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

r( )2

c2r2; (4.103)

where

dr2

1� r2

R2

þ r2 dOð Þ2:

is the spatial element.

In this case the expression for the volume occupied by the system is written

V ¼
ðr
0

ðp
0

ð2p
0

r2 sinYffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

r drdYdC ¼ 4pR3

3
arcsin

r

R
� r

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

r" #
(4.104)

It can be easily verified that the right-hand side of Eq. 4.104 coincides with

solution (4.14) and (4.15) of the equation of virial oscillations (4.11) at €F ¼ 0, i.e.,

arcsin x� x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
¼ arccos

A

B

ffiffiffiffi
F

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�AC
2B2

q
0
B@

1
CA�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AC

2B2

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

A

B

ffiffiffiffi
F

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� AC
2B2

q
0
B@

1
CA

2
vuuuut : (4.105)
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In fact, Eq. 4.105 is satisfied for

x ¼
A

B

ffiffiffiffi
F

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� AC

2B2

r and x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AC

2B2

r
,

i.e.

A

B

ffiffiffiffi
F

p
� 1 ¼ 1� AC

2B2
, or

AC

2B2
þ A

ffiffiffiffi
F

p

B
¼ 2.

At €F ¼ 0, the parameter of virial oscillations,

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AC

2B2

r
and

ffiffiffiffi
F

p
¼ B

A
,

so the last condition is satisfied.

Schwarzschild’s solution is rigorous and unique for Einstein’s equation for a

static model of a system with spherical symmetry.

Since this solution coincides with the solution of virial oscillations at the same

conditions, the solutions (4.14) and (4.15) of Eq. 4.11, obtained in this chapter,

should be considered rigorous. Thus we can conclude that the constancy of the

product U
ffiffiffiffi
F

p
in the framework of the static system model is proven. In Chap. 6 we

will come back to this condition and will obtain another proof of the same very

important relationship which is applied for study of the Earth’s dynamics.
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Chapter 5

Perturbed Virial Oscillations of a System

In the previous chapter we have considered a number of cases of explicitly solved

problems in mechanics and physics for the dynamics of an n-body system and

shown that all those classical problems have also explicit solution in the framework

of the virial approach. But in the latter case, the solutions acquire a new physical

meaning because the dynamics of a system is considered with respect to new

parameters, i.e. its Jacobi function (polar moment of inertia) and potential (kinetic)

energy. In fact, the solution of the problem in terms of co-ordinates and velocities

specifies the changes in location of a system or its constituents in space.

The solution, with respect to the Jacobi function and the potential energy, identifies

the evolutionary processes of the structure or redistribution of the mass density of

the system. Moreover, the main difference of the two approaches is that the

classical problem considers motion of a body in the outer central force field.

The virial approach considers motion of a body both in the outer and in its own

force field applying, instead of linear forces and moments, the volumetric forces

(pressure) and moments (oscillations).

It appears from the cases considered that the existence of the relationship

between the potential energy of a system and its Jacobi function written in the form

U
ffiffiffiffi
F

p
¼ B ¼ const: (5.1)

is the necessary condition for the resolution of Jacobi’s equation.

This is the only case when the scalar equation

€F ¼ 2E� U

is transferred into a non-linear differential equation with one variable in the form

€F = 2E +
Bffiffiffiffi
F

p : (5.2)
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It was shown in Chap. 4 that if the total energy of a system Eo ¼ –A/2 < 0, then

the general solution for Eq. 5.2 can be written as

ffiffiffiffiffiffi
F0

p
¼ B

A
1� e cosðl� cÞ½ � (5.3)

t ¼ 4B

2Að Þ3=2 l� e sin l� cð Þ½ �;

where e and c are integration constants, the values of which are determined from

initial data using Eqs 4.23 and 4.24.

Equation 5.2 was called the equation of virial oscillation because its solution

discovers a new physical effect – periodical non-linear change of the Jacobi

function and hence the potential energy of a system around their mean values

determined by the generalized virial theorem. Thus, in addition to the static

effects determined by the hydrostatic equilibrium, in the study of dynamics of a

system the effects, determined by a condition of dynamical equilibrium expressed

by the Jacobi function, are introduced.

The equation of virial oscillations (5.2) reflects physics of motion of the inter-

acting mass particles of a body or masses of bodies themselves by the inverse

square law. Its application opens the way to study the nature and the mechanism of

generation of the body’s energy, which performs its motion, and to search the law of

change for the system’s configuration, i.e. a mutual change location of particles or

the law of redistribution of the mass density for the system’s matter during its

oscillations. This problem was considered earlier in our work (Ferronsky et al.

1987). We continue its study in the next chapter.

As described in Chap. 4, cases of solution of Eq. 5.2 relate to unperturbed

conservative systems. But in reality, in nature all systems are affected by internal

and external perturbations which, from a physical point of view, are developed in

the form of dissipation or absorption of energy. In this connection, as shown in

Chap. 3 in the right–hand side of the equation of virial oscillations (5.2), an

additional term appears which is proportional to the Jacobi function F (indicating

the presence of gravitational background or the existence of interaction between the

system particles in accordance with Hook’s law) and its first derivative _F depend-

ing on time t (indicating the existence of energy dissipation). All these and other

possible cases can be formally described by a generalized equation of virial

oscillations (3.27):

€F = 2E +
Bffiffiffiffi
F

p + X t,F; _F
� �

; (5.4)

where X t;F; _F
� �

is the perturbation function, the value of which is small in

comparison with the term B=
ffiffiffiffi
F

p 6¼ const.

In this chapter we consider general as well as some specific approaches to the

solution of Eq. 5.4 in the framework of different physical models of a system.
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5.1 Analytical Solution of a Generalized Equation
of Virial Oscillations

The equation of perturbed virial oscillations is generalized in the form

€F ¼ �Aþ Bffiffiffiffi
F

p þ X t;F; _F
� �

; (5.5)

where A ¼ –2E; B is constant; X t;F; _F
� �

is the perturbation function which we

assume is given and dependent in general cases on time t, the Jacobi function F and

its first derivative _F.
We consider two ways for analytical construction of the solution of Eq. 5.5. In

addition, let the function X t;F; _F
� �

in Eq. 5.5 depend on some small parameter e in

relation to which the function can be expanded into absolutely convergent power

series of the form

X t;F; _F
� � ¼ X1

r¼1

ekXk t;F; _F
� �

: (5.6)

Let the series be convergent in some time interval t absolute for all values of

e which are satisfied to condition |e| < ē. Then Eq. 5.5 can be rewritten in the form

X t;F; _F
� � ¼ �Aþ Bffiffiffiffi

F
p

X1
r¼1

ekXk t;F; _F
� �

: (5.7)

We look for the solution of Eq. 5.7 also in the form of the power series of

parameter e. For this purpose we write the function F(t) in the form of a power

series, the coefficients of which are unknown:

F tð Þ ¼
X1
k¼0

ekF kð Þ tð Þ: (5.8)

Putting (5.8) into (5.7), the task can be reduced to the determination of such

functionsF(k)(t) which identically satisfy Eq. 5.7. In this case, the coefficient F(o)(t)

becomes the solution of the unperturbed oscillation equation (5.2), which can be

obtained from (5.7) by putting e ¼ 0.

One can consider the series (5.8) as a Taylor series expansion in order to

determine all the other coefficients F(k)(t) , i.e.,

F kð Þ ¼ 1

k!

dkF
dek

� �
e¼0j ;

_F kð Þ ¼ 1

k!

dk _F
dek

� �
e¼0j : (5.9)
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Accepting the series (5.8) for introduction into Eq. 5.7, it becomes identical with

respect to the parameter e. Thus we have justified the differentiation of the identity

with respect to the parameter e several times assuming that the identity remains

after repeated differentiation.

We next obtain

d2

dt2
dF
de

� �
¼ � 1

2

B

F3=2

dF
de

� �
þ
X1
k¼1

kek�1X kð Þ þ
X1
k¼1

ek
dX kð Þ

de

� �
; (5.10)

where dX(k)/de is the total derivative of the function X(k) with respect to parameter

e, expressed by

dX kð Þ

de
¼ @X kð Þ

@F
dF
de

� �
þ @X kð Þ

@ _F

d _F
de

� �
:

Now let e ¼ 0 in (5.10). Then by taking into account (5.8) and (5.9), we obtain

d2Fð1Þ

dt2
þ p1F

ð1Þ ¼ X1; (5.11)

where

p1 ¼
1

2

B

F3=2 e¼0j ¼ 1

2

B

Fð0Þ3=2 ;

X1 ¼ X1 t;Fð0Þ; _F
ð0Þ� �

are known functions of time, since the solution of the equation in the zero approxi-

mation (unperturbed oscillation equation (5.3)) is known.

Carrying out differentiation of Eq. 5.7 with respect to parameter e for the second,

third and so on (k�1) times, and assuming after each differentiation that e ¼ 0, we

will step by step obtain equations determining second, third and so on approxima-

tions. It is possible to show that in each succeeding approximation the equation will

have the same form and the same coefficient p1 as in Eq. 5.11. If so, the equation

determining the functions F(k) and _F kð Þ has the form

d2F kð Þ

dt2
þ p1F

kð Þ ¼ Xk t;Fð0Þ; _F
ð0Þ
; :::;F k�1ð Þ; _F

k�1ð Þ� �
; (5.12)

where the function Xk depends on F(0), _Fð0Þ,. . . F(k-1), _F k�1ð Þ, which were deter-

mined earlier and are the functions of t and unknown functions F(0) and _F 0ð Þ.
It is known that there is no general way of obtaining a solution for any linear

differential equation with variable coefficients, but in our case we can use the
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following theorem of Poincaré (Duboshin 1975). Let the general solution of

the unperturbed virial oscillation equation be determined by the function

F(0) ¼ f(t, C1, C2), where C1 and C2 are, for instance, arbitrary constants e and

C in the solution (5.3) of Eq. 5.2. Then, Poincaré’s theorem confirms that the

function determined by the equalities

F1 ¼ @f

@C1

;

F2 ¼ @f

@C2

satisfies the linear homogeneous differential equation reduced by omission of the

right-hand side of Eq. 5.12.

Thus, the general solution of the linear homogeneous equation

d2F kð Þ

dt2
þ p1F

kð Þ ¼ 0

has the form

F1C
kð Þ
1 þ F2C

kð Þ
2 ¼ F kð Þ (5.13)

and the general solution of Eq. 5.12 can be obtained by the method of variation of

arbitrary constants, i.e. assuming that C
kð Þ
2 are functions of time. Then, using the key

idea of the method of variation of arbitrary constants, we obtain a system of two

equations:

_C
kð Þ
1 F1 þ _C

kð Þ
2 F2 ¼ 0;k: (5.14)

_C
kð Þ
1

_F1 þ _C
kð Þ
2

_F2 ¼ Xk:

Solving this system with respect to _C
kð Þ
1 and _C

kð Þ
2 and integrating the expression

obtained, we write the general solution of Eq. 5.12 as follows:

F kð Þ tð Þ ¼ F2

ðt
t0

F1Xkdt

F1
_F2 � F2

_F1

� F1

ðt
t0

F2Xkdt

F1
_F2 � F2

_F1

;

where

F1 ¼ @f t;C1;C2ð Þ
@C1

and

F2 ¼ @f t;C1;C2ð Þ
@C2

:
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Thus, we can determine any coefficient of the series (5.8), reducing Eq. 5.7 into

an identity, and therefore write the general solution of Eq. 5.5 in the form

F ¼
X1
k¼0

ekF kð Þ ¼
X1
k¼0

ek F2

ðt
t0

F1Xkdt

F1
_F2 � F2

_F1

� F1

ðt
t0

F2Xkdt

F1
_F2 � F2

_F1

2
4

3
5: (5.15)

Let us consider the second way of approximate integration of the perturbed virial

equation (5.5), based on Picard’s method (Duboshin 1975). It is convenient to apply

this method of integrating the equations which was obtained using the Lagrange

method of variation of arbitrary constants.

We assume that the first integrals (4.23) and (4.24)

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A

2B2
� _F0 þ 4B

ffiffiffiffiffiffi
F0

p
� 2AF0

� �r
; (5.16)

� t ¼ 4B

2Að Þ3=2
arccos

1� A
B

ffiffiffiffiffiffi
F0

p

e
� e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� A

B

ffiffiffiffiffiffi
F0

p

e

� �2
s2

4
3
5� t

8<
:

9=
; (5.17)

of the unperturbed virial oscillation equation (5.2) are also the first integrals of the

perturbed oscillation equation (5.5). But constants e and t are now unknown

functions of time. Let us derive differential equations which are satisfied by these

functions, using the first integrals (5.16) and (5.17). For convenience, we replace

the integration constant e by C, using the expression

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AC

2B2

r
:

Now we rewrite Eq. 5.16 in the form

C ¼ � _F2
0 þ 4B

ffiffiffiffiffiffi
F0

p
� 2AF0: (5.18)

Then using the main idea of the Lagrange method, after variation of the first

integrals (5.17) and (5.18) and replacement of €F by

�Aþ Bffiffiffiffi
F

p þ X t;F; _F
� �� �

we write

_C ¼ �2 _FX t;F; _F
� �

; (5.19)

_t ¼ C F;Cð Þ _C ¼ �2 _FX t;F; _F
� �

C F;Cð Þ; (5.20)
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where

C F;Cð Þ ¼ � 4B

2Að Þ3=2
d

dC
arccos

1�A

B

ffiffiffiffi
F

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AC

2B2

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AC

2B2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1�A

B

ffiffiffiffi
F

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AC

2B2

r
0
BB@

1
CCA

2
vuuuuut

2
6664

3
7775:

We now express F and _F in explicit form through C, t and t using, for example,

the Lagrangian series (4.36) and (4.37)

F tð Þ ¼ B2

A2
1þ 3

2
e2 þ �2eþ e3

4

� �
cosM� e2

2
cos 2M� e3

4
cos 3Mþ . . .

	 

;

(5.21)

_F tð Þ ¼
ffiffiffiffi
2

A

r
eB sinMþ 1

2
e sin 2Mþ e2

2
sinM 2cos2M� sin2M

� �þ . . .

	 

: (5.22)

Thus, taking into account Eqs. 5.21 and 5.22 for the functionsF and _F, Eqs. 5.19
and 5.20 can be rewritten as

dC

dt
¼ F1 t;C; tð Þ; (5.23)

dt
dt

¼ F2 t;C; tð Þ:

To solve the system of differential equations (5.23), we use Picard’s successive

approximation method, obtained in the k-th approximation expressions for C(k) and

t(k) in the form

C kð Þ ¼ Cð0Þ þ
ðt
t0

F1 t;C k�1ð Þ; t k�1ð Þ
� �

dt; (5.24)

t kð Þ ¼ tð0Þ þ
ðt
t0

F2 t;C k�1ð Þ; t k�1ð Þ
� �

dt; (5.25)

where C(0) and t(0) are the values of arbitrary constants C and t at initial time t0 ,

and k ¼ 1, 2, . . ..
Then, in the limit of k ! 1, we obtain the solution of the system (5.23):

C ¼ lim
k!1

C kð Þ;

t ¼ lim
k!1

t kð Þ: (5.26)
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Consider now two possible cases of the perturbation function behavior. First,

assume that the perturbation function X does not depend explicitly on time. Then,

since it is possible to expand functions F and _F into a Fourier series in terms of sine

and cosine of argument M, the right-hand sides of the system (5.23) can also be

expanded into a Fourier series in terms of sine and cosine of M.

Finally we obtain

dC

dt
¼ A0 þ

X1
k¼1

Ak cos kMþ Bk sin kMð Þ
" #

; (5.27)

dt
dt

¼ a0 þ
X1
k¼1

ak cos kMþ bk sin kMð Þ
" #

; (5.28)

where A0, Ak, Bk, a0, ak, bk are the corresponding coefficients of the Fourier series

which are

A0 ¼ 2

p

ð2p
0

F1 M;Cð ÞdM;

Ak ¼ 2

p

ð2p
0

F1 M,Cð Þ cos kMdM;

Bk ¼ 2

p

ð2p
0

F1 M,Cð Þ sin kMdM;

a0 ¼ 2

p

ð2p
0

F2 M,Cð ÞdM;

ak ¼ 2

p

ð2p
0

F2 M,Cð Þ cos kMdM;

bk ¼ 2

p

ð2p
0

F2 M,Cð Þ sin kMdM:

130 5 Perturbed Virial Oscillations of a System



Following Picard’s method, in order to solve Eqs. 5.27 and 5.28 in the first

approximation, we introduce into the right-hand side of the equations the values of

arbitrary constants C and t corresponding to the initial time t0 . Then we obtain

Cð1Þ tð Þ ¼ Cð0Þ þ A
ð0Þ
0 t� t0ð Þ

þ
X1
k¼1

1

kn
A

ð0Þ
k sin kM� sin kM0½ � þ B

ð0Þ
k cos kM� cos kM0½ �

n o
(5.29)

tð1Þ tð Þ ¼ tð0Þ þ a
ð0Þ
0 t� t0ð Þ

þ
X1
k¼1

1

kn
a
ð0Þ
k sin kM� sin kM0½ � þ b

ð0Þ
k cos kM� cos kM0½ �

n o
(5.30)

Thus, when the function X does not depend explicitly on time t, solutions (5.29)

and (5.30) of Eq. 5.5 have three analytically different parts. The first is a constant

term, depending on the initial values of the arbitrary constants. It is usually called

the constant term of perturbation of the first order. The second part is a function

monotonically increasing in time. It is called the secular term of a perturbation of

the first order. The third part consists of an infinite set of trigonometric terms. All of

them are periodic functions of M and consequently of time t. This is called periodic

perturbation

Similarly, we can obtain solutions in the second, third etc., orders. Here we limit

our consideration only within the first order of perturbation theory. In practice, few

terms of the periodic perturbation can be taken into account and the solution

obtained becomes effective only for a short period of time.

When the perturbation function X is a periodic function of some argument M
0
,

M0 ¼ n0 t� t0ð Þ;

the right-hand side of the system of Eqs. 5.23 are periodic functions of the two

independent arguments M and M
0
. Therefore, they can be expanded into a double

Fourier series in terms of sine and cosine of the linear combination of arguments M

and M
0
. Then in the first approximation of perturbation theory we obtain the

following system of equations:

dCð1Þ

dt
¼ A

ð0Þ
00 þ

X1
k0;k¼�1

A
ð0Þ
k;k0 cos kMþ k0M0ð Þ þ B

ð0Þ
k;k0 sin kMþ k0M0ð Þ

h i
; (5.31)

dtð1Þ

dt
¼ a

ð0Þ
00 þ

X1
k0;k¼�1

a
ð0Þ
k;k0 cos kMþ k0M0ð Þ þ b

ð0Þ
k;k0 sin kMþ k0M0ð Þ

h i
: (5.32)
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Integrating equations (5.31) and (5.32) with respect to time, we obtain a solution

of the system:

Cð1Þ tð Þ ¼ Cð0Þ þ A
ð0Þ
00 t� t0ð Þ þ

X1
k0;k¼�1

1

knþ k0n0
A

ð0Þ
k;k0 cos kMþ k0M0ð Þ½

n

� cos kM0 þ k0M0
0ð Þ� þ B

ð0Þ
k;k0 sin kMþ k0M0ð Þ½

� sin kM0 þ k0M0
0Þð �

o (5.33)

tð1Þ tð Þ ¼ tð0Þ þ a
ð0Þ
00 t� t0ð Þ þ

X1
k0;k¼�1

1

knþ k0n0
a
ð0Þ
k;k0 cos kMþ k0M0ð Þ½ �

n

� cos kM0 þ k0M0
0ð Þ� þ b

ð0Þ
k;k0 sin kMþ k0M0ð Þ½

� sin kM0 þ k0M0
0ð Þ�

o (5.34)

Equations 5.33 and 5.34 have the same analytical structure as (5.29) and (5.30).

At the same time, in this case, the periodic part of the perturbation can be divided into

two groups, depending on the value of the divisor kn + k0n0. If the values of k and k0

are such that the divisor is sufficiently large, then period Tk,k0 ¼ 2p/(kn + k0n0)
of the corresponding inequality will be rather small. Such inequalities are called

short-periodic. Their amplitudes are also rather small, and they can play a role only

within short periods of time.

If the values of k and k0 are such that the divisor kn + k0n0 is sufficiently small

but unequal to zero, then the period of the corresponding inequality will become

large. The amplitude of such terms could also be large and play a role within large

periods of time. Such terms form series of long-periodic inequalities. In the case of

such k and k0, when kn + k0n0 ¼ 0, the corresponding terms are independent of

t and change the value of the secular term in the solutions (5.33) and (5.34).

5.2 Solution of the Virial Equation for a Dissipative System

In Chap. 3 we derived Jacobi’s virial equation for a non-conservative system

in the form

€F ¼ 2E0 1þ qðtÞ½ � � U� k _F: (5.35)

At k � 1, t � to, |U|√F ¼ B ¼ const, 2Eo ¼ - Ao , and when the magnitude of
the term k _F is sufficiently small, Eq. 5.35 can be rewritten in a parametric form
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€F ¼ �A0 1þ qðtÞ½ � þ Bffiffiffiffi
F

p ; (5.36)

where q(t) is a monotonically increasing function of time due to dissipation of

energy during ‘smooth’ evolution of a system within a time interval t 2 0; t½ �.
Using the theorem of continuous solution depending on the parameter, we write

the solution of Eq. 5.36 as follows:

� arccosW þ arccosW0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A0 1þ q tð Þ½ �C

2B2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A0C

2B2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A0 1þ q tð Þ½ �ð Þ3=2

4B

s
t� t0ð Þ;

(5.37)

arccosW � arccosW0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A0 1þ q tð Þ½ �C

2B2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A0C

2B2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A0 1þ q tð Þ½ �ð Þ3=2

4B

s
t� t0ð Þ;

(5.38)

where

W ¼
A0 1þ q tð Þ½ �

B

ffiffiffiffi
F

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� A0 1þ q tð Þ½ �C
2B2

r ; W0 ¼
A0

B

ffiffiffiffi
F

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� A0C

2B2

r ;

A0 1þ qðtÞ½ �>0; C<
2B2

A0 1þ q tð Þ½ � ;

�A0 1þ q tð Þ½ �j
ffiffiffiffi
F

p
þ Bj<B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A0 1þ q tð Þ½ �C

2B2

r
;

C ¼ �2A0F0 þ 4B
ffiffiffiffiffiffi
F0

p
� _F2

0:

Equations of discriminant curves which bound oscillations of the Jacobi function

F by analogy with the case of the conservative system can be written as

ffiffiffiffiffiffi
F1

p
¼ B

A0 1þ q tð Þ½ � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A0 1þ q tð Þ½ �C

2B2

r" #
; t 2 0; t½ �; (5.39)

ffiffiffiffiffiffi
F2

p
¼ B

A0 1þ q tð Þ½ � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A0 1þ q tð Þ½ �C

2B2

r" #
; t 2 0; t½ �: (5.40)
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It is obvious that the solution of Jacobi’s virial equation for a non-conservative

system is quasi-periodic with period

Tv qð Þ ¼ 8pB

2A0 1þ q tð Þ½ �ð Þ3=2
; (5.41)

and an amplitude of Jacobi function oscillations

D
ffiffiffiffi
F

p
¼ B

A0 1þ q tð Þ½ � 1� A0 1þ qðtÞ½ �C
2B2

� �1=2

: (5.42)

As q(t) is a monotonically and continuously increasing parameter confined in

time, the period and the amplitude of the oscillations will gradually decrease and

tend to zero in the time limit.

In Fig. 5.1a the integral curves (5.37) and (5.38) and the discriminant curves

(5.39) and (5.40) are shown in a general case when 0 < C < 2B2/A0. At the point

Ob, the integral and discriminant curves tend to coincide and the value of the

amplitude of the Jacobi function (polar moment of inertia) oscillations of the

system goes to zero.

When C ¼ 0 (Fig. 5.1b) the discriminant line (5.39) coincides with the axis of

abscissa, F2 ¼ 0. In the accepted case of constancy of the system mass, the point

Ob, where the integral and discriminant curves coincide, will be reached in the time

limit t ! 1.

t

j

(5.37)
ϕ

0
t

ϕ
b = C / 2B

(5.38)
(5.39)

(5.40)

Ob

0

(5.37)
(5.38)

(5.39)

(5.40)

a

b

Fig. 5.1 Virial oscillations of the Jacobi function in time for a non-conservative system (a) and for
the general (Wintner’s) case (b)
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Where 2B2/Ao ! C and C < 0, the solutions (5.37)–(5.39), (4.40) could be

complex so the processes considered are not physical.

We note that, by analogy with the case for a conservative system, considered in

Chap. 4, we can show here that the asymptotic relations (4.30)–(4.32) for the

solutions (5.37) and (5.38) of Jacobi’s Eq. 5.36 in the points of contact of the

discriminant line F2 ¼ 0, are justified. In the points of contact for the integral

curves (5.37) and (5.38) and the discriminant curves (5.39) and (5.40) for which F1

and F2 are not equal to zero, the following asymptotic relations are also justified:

ffiffiffiffiffiffi
F1

p
�

ffiffiffiffi
F

p� �
/ t0 � tð Þ2; (5.43)

ffiffiffiffi
F

p
�

ffiffiffiffiffiffi
F2

p� �
/ t� t0ð Þ2; (5.44)

where t0 is time of a tangency point for the corresponding integral curve of the

discriminant lines F1,2 when F1,2 6¼ 0.

5.3 Solution of the Virial Equation for a System with Friction

Let us consider the solution of Jacobi’s virial equation for conservative systems, but

let the relationship between its potential energy and the Jacobi function be as

follows:

U
ffiffiffiffi
F

p
¼ Bþ k _F: (5.45)

In this case, the equation of virial oscillations (5.2) can be written

€F ¼ �Aþ Bffiffiffiffi
F

p � k
_Fffiffiffiffi
F

p : (5.46)

The term � k _F=
ffiffiffiffi
F

p
in (5.46) plays the role of perturbation function, reflecting

the effect of internal friction of the matter while the system is oscillating.

In principle, Eq. 5.46 can be solved using the above perturbation theory methods.

However, we can show that a particular solution exists for the system of two

differential equations of the second order, which satisfies Eq. 5.46. These differential

equations are as follows:

ffiffiffiffi
F

p� �00

þ
ffiffiffiffi
2

A

r
k

ffiffiffiffi
F

p� �0 þ
ffiffiffiffi
F

p
¼ B

A
; (5.47)

t00 þ
ffiffiffiffi
2

A

r
kt0 þ t ¼ 4B

2Að Þ3=2
l: (5.48)
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In Eqs. 5.47 and 5.48 we introduced a new variable l, so the primes at F and

t mean differentiation with respect to l. Note also that time t here is not an

independent variable. This allows us to transfer the non-linear equation into two

linear equations. The partial solution of Eqs. 5.47 and 5.48 containing two integra-

tion constants is

ffiffiffiffi
F

p
¼ B

A
1� ee�r=2

ffiffiffiffiffiffi
2=A

p
l cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� 2k2

4A
lþ cþ t

s0
@

1
A

2
4

3
5; (5.49)

t ¼ 4B

2Að Þ l� ee�r=2
ffiffiffiffiffiffi
2=A

p
l sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� 2k2

4A
lþ c

s0
@

1
A

2
4

3
5� 4B

2A3=2
� �

ffiffiffiffi
2

A

r
k;

(5.50)

where e and c are arbitrary constants and

t ¼ arctg

ffiffiffiffi
2

A

r
k

4A� 2k2

4A

� ��1=2

:

To show that Eqs. 5.49 and 5.50 of the two linear differential equations (5.47)

and 5.48 are also general solutions of (5.46), let us do as follows.

Differentiating (5.50) with respect to l, we obtain

t0 ¼
ffiffiffiffi
2

A

r ffiffiffiffi
F

p
: (5.51)

We write the derivative from function
ffiffiffiffi
F

p
with respect to l using Eq. 5.51 in the

form

ffiffiffiffi
F

p� �0
¼

_Fffiffiffiffiffiffi
2A

p : (5.52)

Then the second derivative from
ffiffiffiffi
F

p
with respect to l can be obtained analogously

ffiffiffiffi
F

p� �00 ¼
€Fffiffiffiffiffiffi
2A

p t’ ¼
€F

ffiffiffiffi
F

p

A
: (5.53)

Substituting Eqs. 5.52 and 5.53 for
ffiffiffiffi
F

p� �0
and

ffiffiffiffi
F

p� �00
into Eq. 5.47, we obtain

€F
ffiffiffiffi
F

p

A
þ

ffiffiffiffi
2

A

r
k

_Fffiffiffiffi
F

p þ
ffiffiffiffi
F

p
¼ B

A
: (5.54)
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Dividing Eq. 5.54 by
ffiffiffiffi
F

p
=A we have

€Fþ k
_Fffiffiffiffi
F

p þ A ¼ Bffiffiffiffi
F

p ;

which is in fact our Eq. 5.46. This means that Eqs. 5.49 and 5.50 are the general

solution of Eq. 5.46.

Note that Eq. 5.50 differs in general from Kepler’s equation both by the

exponential factor before the sine function and by the constant term in the right-

hand side of Eq. 5.50. In addition, it follows from Eq. 5.49 that the period of virial

oscillations of the Jacobi function depends on the parameter k. Therefore, when l

changes its value by 2 p/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A - 2k2
� �

/4A
qh i

the value of
ffiffiffiffi
F

p
remains unchanged

(we neglect the changes of the amplitude of virial oscillations due to existence of

the exponential factor) assuming that

k

2

ffiffiffiffi
2

A

r
2 p

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� 2k2

4A

s
<<1:

It follows from Eq. 5.50 that time t changes by the relationship of

T = 8 pB/ 2Að Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� 2k2
� �

/4A
q

defining the period of the damping virial oscil-

lations. Therefore, from solutions (5.49) and (5.50) of Eq. 5.46 it follows that if

during the evolution of the system the value U
ffiffiffiffi
F

p
varies only slightly around the

constant, this leads to damping of the virial oscillations of the integral character-

istics of the system around their averaged virial theorem value..

In conclusion we have to note that derivation of the equation of dynamical

equilibrium and its solution for conservative and dissipative systems shows that

dynamics of celestial bodies in their own force field puts forward a wide class of

geophysical, astrophysical and geodetic problems which can be solved by the

methods of celestial mechanics and with the new physical concepts we have

introduced.
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Chapter 6

Relationship Between Jacobi Function
and Potential Energy

In the previous chapters we have considered the general approach to the formulation

and solution of global dynamics problems for a self-gravitating system in terms of

volumetric (integral) characteristics. For this purpose we have transformed Jacobi’s

virial equations for conservative and non-conservative systems:

€F ¼ 2E� U; (6.1)

€F ¼ 2E� Uþ Xðt;F; _FÞ (6.2)

into equations of virial oscillations in the form

€F ¼ �Aþ Bffiffiffiffi
F

p ; (6.3)

€F ¼ �Aþ Bffiffiffiffi
F

p þ Xðt;F; _FÞ: (6.4)

The transfer from Eqs. 6.1 and 6.2 to Eqs. 6.3 and 6.4 has been made by using

the following relationship between the Jacobi function and potential energy:

U
ffiffiffiffi
F

p
¼ B ¼ const: (6.5)

As shown in Chap. 4, the validity of the relationship (6.5) for explicitly solved

cases of the many-body problem in mechanics and physics is an obvious fact.

Consequently, for example, in the case of two-body problem which represents

the conservative system, the solutions of Eq. 6.3 will be analogous to Keplerian

equations of conic sections according to which the Jacobi function (or potential

energy) changes with time. In the same manner the solution of the generalized

equation of virial oscillations (6.4) in celestial mechanics will correspond to the

solution for the periodic motion in the two-body problem obtained by perturbation

theory methods.
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The validity of Eq. 6.5 for a many-body system in a general case is not obvious

despite the fact that both volumetric integral characteristics considered are func-

tions of the distribution of mass density of a system.

In this chapter we consider in detail the main physical aspect of the relationship

between the Jacobi function and the potential energy of a system

6.1 Asymptotic Limit of Simultaneous Collision of Mass
Points for a Conservative System

We take advantage of the results presented by Wintner (1941) in order to study

the many-body problem. From such a study it follows that a conservative system

of n mass points of arbitrary configuration interacting according to Newton’s law,

the following statement is valid.

If the motion of the material points of a system of arbitrary configuration has the

consequence that all of them tend to simultaneous collision then the relationship

U
ffiffiffiffi
F

p
approaches a constant value. This result obtained byWintner supplements the

general properties of conservative systems of material points interacting according

to Newton’s law when their number remains constant all the time. The condition

of constancy of the number of mass points of a system is equivalent to that of the

distance Dij ¼ jri � rjj between any pair of points at any moment of time and should

be Dij>0, where ri and rj denote the 3-vectors of the co-ordinates of mass points in

the barycentric co-ordinate system.

For such a system, from the analysis of Jacobi’s virial equation (6.1) and the

expression for the Jacobi function Ф,

F ¼ 1

2m

X
1�i<j�n

mimjD
2
ij (6.6)

for kinetic energy T

T ¼ 1

2m

X
1�i<j�n

mimjð_ri � _rjÞ2 (6.7)

and for potential energy U

U ¼ �G
X

1�i<j�n

mimj

Dij

(6.8)

three inequalities were obtained which produce restrictions on the Jacobi function

(or potential energy) and its derivatives. These inequalities can be written in the

form
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j_€Fj � Z(j€Fj þ 2jEjÞ5=2 (6.9)

ð€F� 2EÞF1=2 � m> 0 (6.10)

€F� E� 1

4

_F
2

F
� M2

4F
(6.11)

where constants

Z ¼
ffiffiffiffiffiffiffi
2m

p

G

X
1�i<j�n

ðmimjÞ�3=2>0;

m ¼ Gffiffiffiffiffiffiffi
2m

p
X

1�i<j�n

ðmimjÞ3=2>0;

M2 ¼ C2
1 þ C2

2 þ C2
3;

m ¼
X
i¼1

mi

and mi is the mass of the i-th point; E ¼ T + U is the total energy; C1, C2, C3, are

projections of the angular momentum M on the axes.

The third inequality (6.11) is more complicated than the others as is contains,

besides the constant E, which is the total energy of the system, the value M of the

constant angular momentum.

It has been shown by Wintner (1941) that if the motion of material points of an

arbitrary configuration system provides their simultaneous collision, then the system

possesses zero angular momentum and a simultaneous collision will occur in the finite

interval of time. In addition, the behavior of the Jacobi function in the vicinity of the

time moment to of simultaneous collision is defined by the following asymptotics:

F / ðt� t0Þ4=3; (6.12)

F / ðt� t0Þ1=3; (6.13)

F / ðt� t0Þ�2=3: (6.14)

Following Wintner (1941), we introduce the definition of a central configuration

which is needed for further consideration of the problem. If the positions of the

material points in the system are such that the following relation is satisfied:

UZ ¼ smiri (6.15)

then the configuration of the system is called central.
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Here, in Eq. 6.15

s ¼ � U

2F
:

The definition (6.15) of the central configuration can be rewritten in equivalent

form:

ðU2FÞZ ¼ 0: (6.16)

As proved by Wintner (1941), the important relation follows from asymptotics

(6.12)–(6.14) at t ! to:

ðU2FÞZ ! 0 (6.17)

which, together with the definition for the central configuration, leads to the

following theorem:

Any arbitrary configuration of material points in the asymptotic time limit of

simultaneous collisions of all the mass points tends to the central configuration.

It follows from this that

lim
t!t0

jUj
ffiffiffiffi
F

p
¼ const: (6.18)

This theorem justifies the transformation of Jacobi’s virial equation (6.1) and

(6.2) into equation of virial oscillations (6.3) and (6.4) within the framework of

Newton’s law of interaction of material points of a conservative system.

6.2 Asymptotic Limit of Simultaneous Collision of Mass
Points for Non-conservative Systems

The model of a conservative system permits a limited number of problems to be

solved. In reality all natural systems are non-conservative. Study of the dynamics of

such systems is the main object of the problem of evolution.

It is well known from the observations described in the general course of

physics by Kittel et al. (1965) that the gravitating systems in nature are contracting

while losing part of their total energy through friction and electromagnetic radia-

tion. From the kinematics point of view this gravitational contraction is equivalent

to the simultaneous collision of all n mass points of the system. We consider

below the validity of the theorem expressed by Eq. 6.18 for non-conservative

systems.
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Let the motion of a system of n mass points occur by means of the gravitational

interaction and Newtonian friction of the mass points. Then Jacobi’s virial equa-

tion, in agreement with (3.22), can be written as

€F ¼ 2EðtÞ � UðtÞ � k _F; (6.19)

where E(t) is the value of the total energy of the system at the moment of time t.

From analyses of the equations of motion resulting in (3.23) it follows that

EðtÞ ¼ E0 � 2k

ðt
t0

T(t)dt = E0 1 + q(t)½ �;

where E0 is the value of the total energy of the system at the initial moment of

time to; q(t) is a monotonically increasing function of time.

We also accept the condition of the constancy of the number of mass particles in

the system, from which it follows that the distance between any pairs of points

Dij>0 and the following relation is correct:

j d
dt
Dijj � j_ri � _rjj

In the framework of this essentially important condition which forbids paired,

threefold and higher-fold collisions, we obtain three inequalities analogous to

(6.9)–(6.11). The inequalities are valid at any stage of the system’s evolution and

place restrictions on the Jacobi function and its derivatives.

From expression (6.8) for the potential energy of the system, the following

inequalities can be written:

Uj j ¼ jG
X

1� i<j� n

mimj

D2
ij

_Dijj � G
X

1� i<j� n

mimj

D2
ij

j_ri � _rjj (6.20)

and

Gm
i
m

j

Dij

<� U,

where ri and rj are 3-vectors of co-ordinates of mass points in the barycentric

co-ordinate system.

Substituting the last inequality into (6.20) we obtain

j _Uj � U2

G

X
1� i<j� n

j_ri�_rjj
mimj

:
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Since mimjð_ri � rjÞ � 2mT, and assuming

Z ¼ 1

G

X
1� i<j� n

m1=2

ðmimjÞ3=2
;

we obtain

j _Uj � U2Zð2TÞ1=2: (6.21)

Then using Eq. 6.19 in the form

U ¼ 2E0 1þ q(t)½ � � €F� k _F (6.22)

and the law of conservation of energy for a dissipative system

Uþ T ¼ E0½1þ qðtÞ� (6.23)

We rewrite the inequality (6.21) in the form

j _Uj � 2jE0j 1þ q(t)½ � þ j€Fg þ kj _Fj� �2
Z
ffiffiffi
2

p
2jE0j 1þ q(t)½ � þ j€Fg þ kj _Fj� �1=2

¼
ffiffiffi
2

p
Z 2jE0j 1þ q(t)½ � þ j€Fg þ kj _F� �5=2

(6.24)

Differentiating (6.22) with respect to time and substituting this into (6.24), we

finally obtain the first inequality:

j_€Fþ k€F� 2E0 _qðtÞj �
ffiffiffi
2

p
Z 2jE0j 1þ q(t)½ � þ j€Fj þ kj _Fj� �5=2

: (6.25)

In the same way, it follows from (6.6) that

F1=2 � 1

ð2mÞ1=2 ðmimjÞ1=2Dij:

Then

F1=2mimj

Dij

� ð2mÞ1=2ðmimjÞ1=2:

By virtue of (6.4) and (6.8),

€Fþ k _F� 2E 1� q(t)½ � ¼ G
X

1�i<j� n

mimj

DE
:
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The second inequality has the form

€Fþ k _F� 2E 1þ q(t)½ �F1=2 � m> 0 (6.26)

where

m ¼ G

ð2mÞ1=2
X

1� i<j� n

ðmimjÞ3=2:

Now let us derive the third inequality following from the Cauchy-Bunjakowski

inequality, which is

Xn
i¼1

aibi

 !2

�
Xn
i¼1

a2i

 ! Xn
i¼1

b2i

 !
:

Since

r2i ¼jrij2 and jðri � _riÞj¼ðjrij�j_rijÞ

and from the definition of the Jacobi function, one obtains

F ¼
Xn
i¼1

mi jrij � j_rijð Þ:

Applying the Cauchy-Bunjakowski inequality to this expression at

ai ¼ m
1=2
i jrj and bi ¼ m

1=2
i jrj

we can write

_F2 � 2F
Xn
i¼1

mij_ri2j ¼ 2F
Xn
i¼1

miðri � _riÞ2
r2i

:

Assuming

ai ¼ m
1=2
i jrij; Ai ¼ m

1=2
i riX_ri½ �
jrij ;

the vector of the angular momentum M is

M ¼
Xn
i¼1

aiAi:
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Then in a similar may we write

M2 �
Xn
i¼1

a2i

 ! Xn
i¼1

A2
i

 !
� 2F

Xn
i¼1

mi riX_ri½ �
r2i

:

The addition of the last two inequalities yields

_F2 þM2 � 2F
Xn
i¼1

mi ri � _rið Þ2 þ riX_ri½ �2
n o

r2i
:

But since

ri � _rið Þ2 þ riX_ri½ �2
n o

¼ r2i � _r2i ;

we have

_F2 þM2 � 2F
Xn
i¼1

mi _ri:

As Jacobi’s equation can be written in the form

€Fþ k _F� E0 1 + q(t)½ � ¼ 1

2

Xn
i¼1

mi _r
2
i ;

then after substitution of this into the right-hand side of the last inequality, we

obtain

_F2 þM2 � 4F €Fþ k _F� E0 1 + q tð Þ½ �� �
:

Hence the third inequality can be written

€Fþ k _F� E0 1þ q(t)½ � �
_F
2

4F
� M2

4F
: (6.27)

Let us now analyze the behavior of the Jacobi function Ф and its derivatives.

For this purpose we introduce the auxiliary function Q ¼ Q(t), equal to

Q ¼ k _FF1=2 � E0 1 + q tð Þ½ �F1=2 þ 1=4 _F
2þ1=4M

F1=2
; (6.28)

where Ф1/2 > 0.
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Then differentiating (6.28) and using

d

dt
F1=2
� �

¼
_F

2F1=2
;

we obtain

_Q ¼ 1

2

_F

F1=2
€Fþ k _F� E0 1 + q tð Þ½ � � 1

4

M2

F
� 1

4

_F
2

4F

( )
þ F1=2 k€F� E0 _q tð Þ� �

where _q tð Þ>0 and, in agreement with (6.27),

€Fþ k _F� E0 1 + q tð Þ½ � � 1

4

M2

F
� 1

4

_F
2

F

( )
� 0:

Let t0 be the time of simultaneous collision of all the particles of the system.

Then for t ! to (t ! to), Ф ! 0. Let us show that the necessary condition for

existence of such t0 for which Ф ! 0 (if t ! to) is that the constant angular

momentum M must be zero.

Note that if, for t ! to, Ф ! 0, then all mutual Dij ¼ ri � rj
		 		 also tend to zero,

and the potential energy U ! � 1.

Since

€F ¼ 2E0 1þ q tð Þ½ � � U� k _F;

where E0 ¼ const, j _Fj ! 1, jq tð Þj, j _q tð Þj<1, then, for t ! to, €F ! 1. Thus

for t sufficiently close to t0 we have €F> 0 and therefore the derivative _F increases

and does not change its sign. Since Ф > 0 and Ф ! 0, then Ф is monotonically

decreasing function. It therefore follows from the expression for _Q that the function

Q in (6.28) for t sufficiently close to t0 must decrease and its time limit for t ! to
might be – 1, but cannot be + 1. Moreover, it follows from the above statement

that for t ! t0 the limit of function (6.28) is

lim
t!t0

Q ¼ lim
t!t0

1

4

_F
2 þM2

F1=2
; (6.29)

but since Ф1/2 > 0, the time limit (6.29) must be finite and non-negative. Hence

for t ! to and Ф ! 0 the value M2/Ф1/2 must remain limited. Therefore, since

M2 ¼ const, then M � 0 and proof is completed.

The above analysis shows that, at t ! to, €F ! 1, and it therefore follows from

(6.25) that

j_€F ¼ 2E0 _q tð Þ þ k€Fj � const j€Fj þ kj _Fj
 �5=2
: (6.30)
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Using the second inequality (6.26), it can be shown that if to is the time moment

of simultaneous collision of all the particles of the system, then as Ф1/2 > 0

at t ! to, the ratio _F=F1=2 tends to a finite and positive limit.

In fact, as has been shown above, the limit (6.29) of the function (6.28) for

t ! to has a finite value. Since M ¼ 0

lim
t�t0

_F
2

F1=2

will also be finite and non-negative. Let us show that this limit cannot be equal

to zero.

Since for t ! to, M ¼ 0, Ф1/2 ! 0, then the function (6.28) and its limit (6.29)

may be written in the form

Q ¼ k _FF1=2 � E0 1� q tð Þ½ �F1=2þ 1

4

_F
2

F1=2
; (6.31)

m0 ¼
1

4
lim
t�t0

_F
2

F1=2
; (6.32)

where

m0 ¼ lim
t�t0

Q:

From (6.31) we find that

2QF1=2 ¼ k _FF� 2E0 1� q tð Þ½ �Fþ 1

2
_F2:

Hence

d

dt
2QF1=2
� �

¼ €F _Fþ k€FF þ 2k _F
2 � 2E0 1� q tð Þ½ � _F� 2E0F _q:

Let us catty out the integration between the limit to and �t of the last relation

where to has a fixed value and �t! to. We take into account that

lim
t�t0

F1=2 ¼ 0;

m0 ¼
1

4
lim
t�t0

_F
2

F1=2
<1:
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Then we write

2QF1=2¼
ð�t
t0

€F� 2E0 1� q tð Þð Þþ 2k _F
� �

_Fþ 2k€F� 2E0 _q
� �

F
� �

dt:

As shown above, the derivative Ф retains its sign in the sufficiently small

neighborhood of point to. Since Ф � 0 and q > 0, the positive constant m in

the inequality (6.26) will be such that in the sufficiently small neighborhood of to
we have

2jQjF1=2 �
ð�t
t0

m

F1=2
_Fþ 2k€F� 2E0 _q

� �
F

� 

dt:

The first integral to the right of this inequality being equal to 2mФ1/2, andФ1/2 ! 0

with t ! to, then, in the sufficient small neighborhood of to, we have

2jQjF1=2 � 2mF1=2 or jQj � m:

Since m > 0, and taking into account the existence of the time limit (6.32), we

have finished the proof of correctness of the inequality

lim
t!t0

_F

F1=2

� �
> 0:

The above analysis allows us to obtain the following asymptotic relations for the

Jacobi function when t ! to.

Since the limit

m0 ¼
1

4
lim
t!t0

_F
2

F1=2

has a non-zero value, the function Ф ¼ Ф(t) > 0 tends to zero as t ! to in such a

way that, in neighborhood of to, it is proportional to (t – to.)
4/3 with a coefficient of

proportionality of ((9/4)mo)
2/3, and one can differentiate this asymptotic relation

with respect to t. Hence the following asymptotic relations are satisfied:

F / 3=2m1=2o

� �4=3
t� t0ð Þ4=3; (6.33)

F / 12m2o

 �1=3

t� t0ð Þ1=3: (6.34)
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In fact (6.34) follows from (6.33) not only from groundless differentiation, but

actually from (6.33), if (6.32) is taken into account. The asymptotic relation (6.33)

itself follows from (6.32), if we write the last relation in the form

� dt

dF
/ 1

2
m�1=2
0 F�1=4

and then integrate it between the limits Ф ¼ 0 and Ф > 0, but sufficiently close to

Ф ¼ 0. Integration (but not differentiation) of such an asymptotic relation is always

as allowed procedure and hence the asymptotic relations (6.33) and (6.34) are

satisfied.

Let us show that besides (6.32), (6.33) and (6.34), the following asymptotic

relations are also available:

m0 ¼ � lim
t!t0

F1=2 €F; (6.35)

F / 2=3m1=2o

� �2=3
t� t0ð Þ�2=3: (6.36)

To prove relation (6.35), we multiply (6.27) by Ф1/2. Assuming for t ! to and

Ф1/2 ! 0, |E0|(1 + q(t)) < 1, M � 0 and using (6.32), we find that the lower limit

limF1=2 €F � m0. Since (6.35) is equivalent to (6.36), this asymptotic relation will be

proved, if the upper limit limF1=2 €F � m0.
For the proof we assume F ¼ _F


 �3
, so that

€F ¼ 6 _F€F
2þ3 _F

2_€F:

Then, with the aid of (6.30)

_€F� 2E0 _qþ k€F
		 		 � const j€Fj þ kj _Fj
 �5=2

and expressing _F and €F through the function _F ¼ F3 and _F ¼ 3 _F
2 €F, we find

€Fþ 6 _q tð ÞF2=3		 		< const
_F
2þ j _Fj
 �

5=2

jFj :

On the right-hand side of this inequality, we find from (6.34) where _F ¼ F1=3

that for t ! to

€Fþ 6 _q tð ÞF2=3		 		< const
_F
2þ j _Fj
 �

5=2

t�t0
: (6.37)
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Finally, if vo is a positive constant equal to (12m0)
2, then for t ! to

F / n0ðt ! t0Þ; (6.38)

lim _F � n0: (6.39)

In fact, F ¼ _F3 then (6.38) is equivalent to (6.34). At the same time, by virtue of

the relation vo ¼ (12m0)
2, F ¼ _F3, _F ¼ 3 _F2 €F and (6.32), the inequality (6.39) is

another form of the inequality lim F1=2 €F � m0 which we have already proved.

Therefore, we are bound to prove the inequality which can be written in the form

lim _F � m0 by analogy with (6.39). Hence we must prove that the asymptotic

relations (6.38) and (6.39) with the aid of the ‘Trauberian condition’ (6.37), yields

the inequality lim _F � vo which denotes that F ! vo. From this inequality and from

(6.39) the existence of the succession of time intervals follows:

tI1< t< tII1 ;:::; t
I
k< t < II

k

which tends to t0 as k ! 1 in such a way that whenever tIk < t < II
k

0< u0 < p ¼ _F tIk

 �

< _F tð Þ< _F tIIk

 �

< q (6.40)

where p and q are some fixed numbers which are chosen between the limits lim _F,

li�m _F (�1) of the conditions function lim _F tð Þ. It is obvious that we can assume

that to ¼ 0. If we accept const ¼ const (p2 + p5/2), then for any t in any of the time

intervals tIk < t< II
k , by virtue of (6.37) and (6.40), we find that the following

inequality holds:

€F tð Þþ6 _q tð ÞF2=3 tð Þ		 		< const

jtj :

Since t tends to to ¼ 0, increasing or decreasing, all tIk and t
II
k lie on the same side

of to ¼ 0. Integration of the inequality (6.40) between the limits tIk and tIIk yields

_F tIIk

 �� _F tIk


 �þ ð
tII
k

tI
k

6 _q tð ÞF2=3 tð Þdt

							
							< const log

tIIk
tIk

				
				:

By virtue of (6.40) the difference _F tIIk

 �� _F tIk


 �
is equal to a positive constant

p – q and

ðtIIk
tI
k

6 _q tð ÞF2=3 tð Þdt>0:
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Hence the limit log jtIIk =tIkj, as k ! 1, is greater than a certain positive number.

For this reason, when k ! 1, there exists a certain positive number l which

satisfies the relation

tIIk
tIk

> l > 0: (6.41)

Then with the aid of (6.38) it follows that

F tIk

 �		 		
tIk
		 		 ! n0 and

F tIIk

 �		 		
tIIk
		 		 ! n0

since

tIk ! t0; tIIk ! t0; t0 ¼ 0; n ¼ 0:

On the other hand, if k is sufficiently large, the following inequality is valid:

F tIIk

 �		 		
tIIk
		 		

					 t
II
k

		 		
tIk

					� F tIk

 �		 		
tIIk
		 		 tIIk

		 		
F tIIk
		 		

					
					> p

tIIk
		 		
tIk
		 		 � 1

					
					: (6.42)

In fact, all tIk and tIIk lie on the same side of to, and then

tIIk
		 		� tIk

		 				 		 ¼ tIIk � tIk:

Since tIk ! t0 and tIIk ! t0, then for sufficiently large k all F tIk

 �

, F tIIk

 �

have the

same sign. Hence, (6.42) can be written in the form

F tIIk

 �		 		� F tIk


 �		 				 		> p tIIk
		 		� tIk

		 				 		
and is equivalent to the inequality

F tIIk

 �� F tIk


 �		 		> p tIIk � tIk
		 		:

The validity of the last inequality is obvious, since by virtue of (6.40) for

tIk < t < II
k we have _F tð Þ> p> o. Therefore, inequality (6.42) also holds.

From (6.42) in the limit k ! 1 and with the aid of (6.41) where no > 0, we

obtain the following inequality:

n0 l� n0n�1
0

		 		 ¼ p l� 1j j:

Finally, by virtue of (6.41)

l� n0n�1
0

		 		 ¼ l� 1j j> 0;
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and hence no � p. On the other hand, by virtue of (6.40) p � no. The observed

contradiction that the supposition we made at the beginning ðlim _F>>n0Þ is false.
Thus we have proved the validity of the increase inequality lim _F � n0 and this

completes the proof of the relations (6.35) and (6.36).

Let us now show that if the motion of n points with masses mi in the time limit

t ! to produces their simultaneous collision, then the configuration of these n

particles tends to central configuration (6.15) as t ! to. In the proof, we shell use

the asymptotic relations (6.33), (6.34) and (6.36) and the Tauberian lemma, which

states that if the function g(u) has continuous derivatives _g uð Þ and €g uð Þ for u ! 1
and tends, as u ! 1, to a finite limit and €g uð Þ <const, then _g uð Þ ! 0:

There is no loss of generality in assuming that t ! to ! 0, so that t ! to > 0.

Then the asymptotic relations (6.33), (6.34) and (6.36) are simply equivalent to

t�4=3F ! m1 > 0; (6.43)

t t�4 _=3F
� �

! 0; (6.44)

t t�4€=3F
� �

! 0 (6.45)

where

m1 ¼
3

2
m1=2
0

� �4=3
and t ! 0:

Since

F ¼ 1

2

Xn
i¼1

mir
2
i ;

it follows from (6.43) that the time limit t ! 0 all n mass particles collide at the

origin of the barycentric co-ordinate system OXYZ in such a way that, for suffi-

ciently small t, the linear dimensions of the configuration will be proportional to

t2/3. For this reason we eliminate this factor t2/3 simply by multiplying the unit of

length by the factor t–2/3. Then we consider, instead of the values:

ri;Dij ¼ ri � rj
		 		;

F ¼ 1

2

Xn
i¼1

mir
2
i ; (6.46)

U ¼ �G
X

1� i< j� n

mimj

Dij

; (6.47)
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the corresponding values:

�r ¼ t�2=32ri; �Dij ¼ �ri ��rj
		 		 ¼ t�2=3Dij;

�F ¼ t�4=3F ¼ 1

2

Xn
i¼1

mi�r
2
i ;

U ¼ t2=3U ¼ �G
X

1� i< j� n

mimj

Dij

:

The procedure is permissible since the definition of the central configuration is an

invariant relative scale transformation of all the co-ordinates ri ! dri where d is an

arbitrary non-zero factor. Then, the relation (6.15) is invalid for the fixed t 6¼ 0, but

FU
2

� �
�ri
¼ 0 (6.48)

where I ¼ 1, 2, . . ., n in the same limit t ! 0.

The proof of this theorem, the mathematically precise formulation of which is

expressed by (6.48), has several stages.

First, we show that in the time limit t ! 0

4

9
�Fþ U ! 0 (6.49)

and

�Dij > const> 0: (6.50)

Let us introduce a time transformation, changing t to �t ¼ � ln t in such a way to

have �t ! 1 for t ! 0. Let this transformation be

t ¼ e��t: (6.51)

Then, if the arbitrary function f depends on time t, we have

t
df

dt
¼ � df

dt
; (6.52)

t2
d2f

dt2
¼ d2f

dt2
þ df

dt
: (6.53)

With the aid of (6.51)–(6.53) we rewrite the equation of motion

mi€ri ¼ �UZ
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in the form

mi
€�ri � 1

3
_�ri � 2

9
�ri

� �
¼ �Uri � k_�ri (6.54)

where derivatives are written with respect to �t and U�ri ¼ t4=3U�ri :
Similarly, let us rewrite the energy conservation law and Jacobi’s virial equation

in the form

1

2

Xn
i¼1

mi _�ri � 2

3
�ri

� �2
þU ¼ E0 1þ q tð Þ½ �e�2=3�t; (6.55)

€F� 5

3
_F� 4

9
F ¼ �Uþ 2E0 1þ q tð Þ½ �e�2=3�t: (6.56)

Assuming f ¼ Ф in (6.52) and (6.53), we obtain relations which are valid in the

time limit �t ! 1 and similar to (6.43)–(6.45) as t ! 0:

F ! m1>0; (6.57)

_F ! 0; (6.58)

€F ! 0: (6.59)

In the limit �t ! 1 from (6.56), where E0(1 + q(t)) is finite, with the aid of

(6.57)–(6.59), it follows that (6.49) is valid. Moreover, it is obvious from (6.49) to

(6.57) that the potential energy U tends to a finite value and hence (6.50) follows

from (6.47).

Secondly, let us show that the time limit �t ! þ1 (t ! 0):

_�r ! 0; (6.60)

€�r< const; (6.61)

_€�r< const: (6.62)

Note that (6.46) yields

_F ¼
Xn
i¼1

mi
_�ri�ri: (6.63)

Then in the time limit �t ! 1 and with the aid of (6.49) and (6.63), we obtain

Xn
i¼1

mi
_�r
2

i ! 0
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which gives (6.60). Furthermore,

�r< const; (6.64)

Uri

		 		< const: (6.65)

In fact Eq. 6.64 follows from (6.57) by virtue of Eq. 6.46. At the same time,

Eq. 6.65 follows from (6.47) to (6.50). Equation 6.56 follows from (6.54), (6.60),

(6.64) and (6.65). Finally, by differentiating (6.56) with respect to �t and then using

(6.60) and (6.61), it is easy to see that for the proof of (6.62) it is sufficient to show

the boundedness of the second derivatives of the functions U �r1; r2; . . . ; rnð Þ in the

time limit t ! 1. But the boundedness of these derivatives follows obviously from

(6.47), (6.50) and (6.64).

Finally, in accordance with (6.60) and (6.62), the Tauberian lemma is valid if we

consider the function g uð Þ ¼ _�ri, where u ¼ �t. Hence, not only _�ri ! 0, but €�ri ! 0.

It follows therefore from (6.54) that

2

9
mi�ri � U�ri ! 0:

Then by virtue of (6.46)

2

9
F�Z � U�ri ! 0:

From the last expression, with the aid of (6.49) and (6.57), it follows that

FU
2

� �
�ri
¼ F�riU

2

ri
þ 2�FUU�ri ! 0

and therefore

FU2

 �

Z ! 0

as t ! 0.

The last expression completes the proof of the theorem that an arbitrary non-

conservative system tends to central configuration in the asymptotic limit of

simultaneous collision of all its particles.

6.3 Asymptotic Limit of Simultaneous Collision
of Charged Particles of a System

The following analysis is given for a system consisting of a large number of charged

material particles. The particles considered are positively charged nuclei of atoms

and electrons.
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The objective is to prove the statement that the arbitrary configuration of a

system of charged particles interacting according to an inverse law (i.e. gravita-

tional or Coulomb) in the asymptotic time limit of simultaneous collision of all the

particles (for t ! to) tends to a central configuration.

Using the definition of central configuration (6.15), (Wintner 1941), and assum-

ing its uniqueness, the statement to be proved can be written in the form

lim
t!t0

USj j
ffiffiffiffi
F

p� �
¼ const (6.66)

where US ¼ U + Uc is the potential energy of the system, which is equal to the sum

of the gravitational potential energy of Coulomb interactions.

Using Wintner’s method (Wintner 1941), we have previously studied the asymp-

totic time limit of (6.66) for conservative and non-conservative systems whose

particles are interacting according to the law of gravitation. Since the relationship

(6.66) is linear as a function of potential energy, we have to prove it only for Coulomb

interactions of system particles. The proof given below for a non-conservative system

is also based on Wintner’s method, modified for the case of charged particles.

So, for a non-conservative system of n particles interacting according to the

Coulomb law, let us write down in an inertial barycentric co-ordinate system the

Jacobi function, functions of the potential and kinetic energies as well as the energy

conservation law and Jabobi’s virial equation as follows:

F ¼ 1

2m

X
1� i< j� n

mimjD
2
ij; (6.67)

T ¼ 1

2m

X
1� i< j� n

mimjð_ri � _rjÞ2; (6.68)

U ¼ �G
X

1� i< j� n

qiqj

Dij

; (6.69)

E ¼ E tð Þ ¼ E0 � Eg ¼ Tþ Uc; (6.70)

€F ¼ 2E tð Þ � Ec (6.71)

where qi ¼ eZi is the charge of i-th particle with mass mi; Zi ¼ �1, 1, +2, . . .,
N � n; m is the total mass of the system; Eg < 1; _Eg<1, i.e. the total energy and

the luminosity of the system at any time t are functions, monotonically bounded

from above.

The proof of the relationship (6.66) can easily be obtained from the asymptotic

expressions for Jacobi function and its first and second derivatives as

F / ðt� t0Þ4=3; (6.72)
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_F / ðt� t0Þ1=3; (6.73)

€F / ðt� t0Þ�2=3: (6.74)

where t ! to, and to is the moment of simultaneous collision of the charged

particles of the system.

From the expressions (6.72)–(6.74), the limit (6.66), which we are proving,

follows from exact repetition of Wintner’s arguments (Wintner 1941). However,

Eqs. 6.72–6.74 follows from the existence of the limits

lim
t�t0

_F
2

F1=2
¼ m0 ¼ const> 0; (6.75)

lim
t!t0

€FF1=2 ¼ Z0 ¼ const> 0: (6.76)

The limits (6.75) and (6.76) may be obtained in future from analysis of the

Jacobi function in the neighborhood of to, using the auxiliary function

Q ¼ � E� Eg

 �

F1=2 þ 1

4

_F
2 þM2

F1=2

and the three inequalities, correct in the most general case, i.e. not especially in the

close neighborhood of the point of simultaneous collision of particles. These

inequalities are

_€Fþ 2Eg

		 		 � €F
		 		þ 2 E� Eg

		 		
 �5=2
Z0; (6.77)

€F� 2 E� Eg

 �

F1=2
h i

� Z0>0; (6.78)

€F� Eþ Eg�
_F
2

4F
� M2

4F
(6.79)

where M is the angular moment of the system.

Let us prove inequalities (6.77)–(6.79) for a system of particles interacting

according to Coulomb law.

To prove the inequality (6.77), it is essential that the absolute value of the total

potential energy of the system of particles is less than the absolute value of the

energy of mutual interactions of any pair of charged particles, i.e.

qiqj

Dij

� jUcj: (6.80)
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Since

_Uc

		 		 ¼ X
1� i< j� n

qiqj

D2
ij

d

dt
Dij

					
					 �

X
1� i< j� n

qiqj
		 		
D2
ij

j_ri � _rjj;

and

1

Dij

� Ucj j
qiqj
		 		2 ;

then

_Uc

		 		 � Ucj j2
X

1� i< j� n

j_ri � _rjj
qiqj
		 		 :

Analogously, since

mimj _ri � _rj
		 		2 � 2mT

and

mi � qij j
e

me;

then

2mT � qiqj
		 		
e2

m2e _ri � _rj
		 		2

and therefore

_Uc

		 		 � _Uc

		 		2T1=2 2mð Þ1=2
me

X
1� i< j� n

1

qiqj
		 		3=2

where me is the electron mass.

From Jacobi’s equation and the law of conservation of energy it follows that

_Uc

		 		 ¼ _€Fþ 2 _Eg
		 		;

Ucj j � €F
		 		þ 2 E� Eg

		 		
 �
;

Tj j � €F
		 		þ 2 E� Eg

		 		
 �
;
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and finally we obtain the first inequality:

_€Fþ 2 _Eg
		 		 � €F

		 		þ 2 E� Eg
		 		
 �5=2

Z0;

Z0 ¼
2mð Þ1=2
mc

e
X

1� i< j� n

1

qiqj

� �3=2 > 0:

The second inequality (6.78) may be derived from Jacobi’s equation:

€F� 2 E� Eg

 � ¼ �Uc ¼ �

X
1� i< j� n

qiqj

Dij

¼ Ucj j � qiqj
		 		
Dij

and the inequality following from the definition of the Jacobi function:

2mF � mimjDij;

1

Dij

� mimj


 �1=2
2mð Þ1=2F1=2

:

Thus, finally we have

€F� 2 E� Eg

 �� �

F1=2 � qiqj
		 		 mimj


 �1=2
2mð Þ1=2

¼ m0>0:

The derivation of the third inequality (6.79) is based on the Cauchy-Bunjakowski

inequality:

Xn
1� i� n

aibi

 !2

�
Xn

1� i� n

a2i

 ! Xn
1� i� n

b2i

 !
:

Substituting into it

ai ¼ m
1=2
i rij j; bi ¼ m

1=2
i

d

dt
rij j

we have

_F ¼
X

1� i� n

mi rij j d
dt

rij j;
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_F

 �2 � 2F

X
1� i� n

mi

ri
d
dt
ri


 �2
rij j2 :

Substituting as before

ai ¼ m
1=2
i rij j; bi ¼ m

1=2
i

ri _ri½ �
rij j ;

we obtain

M2 � 2F
X

1� i� n

mi ri _rij j2
rij j2

where M is the angular momentum of the system equal to

M ¼
X

1� i� n

mi ri _ri½ �:

Summing up the two inequalities just obtained, we have

_F

 �2 þM2 � 2F

X
1� i� n

mi

rij j2 ri_rið Þ2 þ ri _ri½ �2
n o

¼ 2F
X

1� i� n

mi _rið Þ2 ¼ 4TF

¼ 4F €F� E� Eg

 �� �

:

We finally obtain an expression for the third inequality (6.79):

€F� Eþ Eg �
_F
2

4F
� M2

4F
:

This ends the proof of the expression (6.66) for the Coulomb interactions of

charged particles of the system in the asymptotic time limit of their simultaneous

collision.

6.4 Relationship Between Jacobi Function and Potential
Energy for a System with High Symmetry

If the value

Uj j
ffiffiffiffi
F

p
¼ B (6.81)

does not change for different mass density distribution laws and configurations of

the system, the problem of its dynamics would be solved in the framework of an
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integral (volumetric) approach and a dynamic equilibriummodel. In this case, using

Jacobi’s virial equation,

€F ¼ 2E� U (6.82)

we transfer it into the equation of virial oscillations:

€F ¼ �Aþ Bffiffiffiffi
F

p (6.83)

and obtain three different forms of solutions: elliptic, parabolic or hyperbolic.

The form of the solution depends on the total energy which can respectively be

negative, equal to zero or positive. The problem is solved with respect to the

changes in the time of the simplest moment of distribution of mass density r �xð Þ
of the system.

However, even for a system with spherical symmetry and fixed mass, the value

of (6.81) changes for different laws of distribution of the mass density r(r) (where r
is the radius of the shell with density r(r); r 2 [0,R]). In this connection, transforma-

tion of Eq. 6.82 into 6.83 is possible only after special study, which is described below.

We pay special attention to the systems with high symmetry, namely spherical

and elliptical. This is because most of the natural systems from galaxies to atoms

possess such a symmetry. We consider below the conditions which allow us to

transform Eq. 6.82 into 6.83 for systems with spherical and elliptical symmetry.

6.4.1 Systems with Spherical Symmetry

Let us begin by consideration the value of Eq. 6.81 for a spherical system. It is

convenient to start such a study after rewriting the expressions for the Jacobi

function and the potential energy in the form

F ¼ 1

2
b2mR2; (6.84)

U ¼ �a2
Gm2

R
; (6.85)

where a2 and b2 are dimensionless form-factors independent of radius R and mass

m of the spherical system (See Sect. 2.6).

We now rewrite (6.81), using (6.84) and (6.85), as

B ¼ a2bGm5=2: (6.86)
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Use of form factors a2 and b2 allows us to show that the parameter B in (6.81)

does not depend on radius of the spherical system. The product of a2 and b depends

on mass density distribution law r(r) and does not depend on the total mass of the

system. Hence the problem of the study of the changes of parameter B in (6.81) for an

arbitrary spherical system is reduced to consideration of the dependence of the pro-

duct of the a2 and b form factors on the mass density distribution law for the sphere

with radius unity andmass unity. Let us consider such a sphere and calculate the value

a ¼ a2 b (6.87)

For the arbitrarily given law of density distribution r(k), k 2 [0, 1], satisfying

the condition

ð
ðVÞ

r kð ÞdV kð Þ ¼ 1:

The volume of the sphere with radius unity is

V ¼
ððð
ðVÞ

dx, dy, dz ¼
ð1
0

k2dk

ðp
0

sin ydy
ð2p
0

dj ¼ 4

3
p:

The volume of the sphere with radius k is

V kð Þ ¼
ðk
0

k02dk0
ðp
o

sin ydy
ð2p
0

dj ¼ 4

3
pk3: (6.88)

The volume of the spherical shell with radius k and thickness dk is

dV kð Þ ¼ k2dk

ðp
o

sin ydy
ð2p
0

dj ¼ 4pk2dk: (6.89)

The mass of the spherical shell with radius k and thickness dk is

dm kð Þ ¼ 4pr kð Þk2dk:

The mass of the sphere with radius k is

m kð Þ ¼ 4p
ðk
0

r k
0

� �
k

0
� �2

dk
0
: (6.90)
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The mass of the sphere as a whole is

m ¼ 4p
ð1
0

r kð Þk2dk ¼ 1: (6.91)

The polar moment of inertia of the shell with radius k and thickness dk is

dI kð Þ ¼ k2dm kð Þ ¼ 4pr kð Þk4dk:

The Jacobi function of the sphere is

F ¼ 4p
2

ð1
0

r kð Þk4dk: (6.92)

We can write the expression for the form factor b from (6.84) using (6.91)

and (6.92):

b ¼
ffiffiffiffiffiffiffi
F
1
2
m

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiÐ1
0

r kð Þ
s

k4dk

Ð1
o

r kð Þk2dk
: (6.93)

The potential energy of the shell with radius k and thickness dk in the gravita-

tional field of the sphere of radius k is

dU kð Þ ¼ �G
m kð Þdm kð Þ

k
¼ �G

16p2r kð Þk2dk Ðk
o

r k0ð Þ k0ð Þ2dk0

k
:

The potential energy of the sphere as a whole is

U ¼ �16 p2G
ð1
0

r kð Þkdk
ðk
0

r k0ð Þ k0ð Þ2dk0: (6.94)

We can write the expression for the form factor a using (6.85), (6.91) and (6.94) as

a2 ¼ � U

Gm2

Ð1
0

r kð Þkdk Ðk
o

r k0ð Þ k0ð Þ2dk0

Ð1
o

r kð Þk2dk
� �2

: (6.95)
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Finally, the product of form factors a2 and b represents the functional of the

function of mass density distribution r(k):

a ¼ a2b ¼

Ð1
0

kr kð Þdk Ðk
o

r k0ð Þ k0ð Þ2dk0
ffiffiffiffiffiffiffiffiffiffiffiffiÐ1
0

r kð Þ
s

k4dk

Ð1
o

r kð Þk2dk
� �5=2

: (6.96)

The values of the form factors a2 and b2 and of their product a2b for different

formal laws of mass density distribution are given in Table 6.1. The numerical

calculations of this table can be found in our paper (Ferronsky et al. 1978).

It can be seen from Table 6.1 that the form factor b changes from 0 to 1:

b 2 [0, 1]. It reaches the value of unity in the case when the entire mass of the

sphere is distributed within its outer shell (at k ¼ 1). The minimal value of the form

factor b must be when the entire mass concentrates in the centre of the sphere (at

k ¼ 0). But if we do not place any strong restrictions on the function r(k), i.e. in the
general case, nothing can be said about the changing interval of the value a ¼ a2b
(6.85). It is only possible to note that a ¼ a2b always has a positive value. From

Table 6.1 it can also be assumed that the value of a is more then (3/5)3/2 	 0.46,

which corresponds to the homogeneous distribution of the mass density within the

sphere. It is known also from Chap. 4 that the homogeneous sphere, while con-

tracting under gravitational forces, conserves its homogeneity up to the moment of

simultaneous collision of all its particles.

The sphere expands and then (the time is reversible in classical physics)

becomes homogeneous again. So, in accordance with the definitions given in the

previous section, the homogeneous sphere appears to be the central configuration.

Applying the main idea of the central configuration theorem discussed above in

the general case, we assume the following qualitative picture of the evolution

of a heterogeneous spherical system. During the contraction of the system the

a2b decreases and tends to the quantity (3/5)3/2, reaching this value at the moment

Table 6.1 Numerical values of form factors a and b and their product a2b for various formal

laws of radial mass density distribution of the spherical system

Law of mass

density distribution

r(k), k2 [0, 1] a2 b2⊥ b2 a2b

r(r) ¼ r0 0.6 0.4 0.6 0.46

r(r) ¼ r0(1 – k) 0.728 0.27 0.4 0.47

r(r) ¼ r0(1 – k2) 0.7142 0.29 0.42 0.46

r(r) ¼ r0(1 – k)n 5Tþ8ð Þ Tþ3ð Þ2
8 2n + 3ð Þ 2n + 5ð Þ

8

nþ 4ð Þ nþ 5ð Þ
12

nþ 4ð Þ nþ 5ð Þ
At n ! 1, 0.54

r(r) ¼ r0k
n nþ 3

2nþ 5

2nþ 9

6nþ 15

nþ 3

2nþ 5
0

At n ! 1,0,5

r(r) ¼ r0 d(1 – k) 0.5 0.67 1.0 0.5
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of simultaneous collision of all the particles. If the expansion starts before the

moment of simultaneous collision of the matter (at the neighborhood of singular-

ity), then the value of a2b again increases. Thus, there is a case of perturbed virial

oscillations of the system. This case is known in the literature as ‘stormy relaxation’

of a gaseous sphere and is described quantitatively by the following equation of

change of value of Uj j ffiffiffiffiFp
(Ferronsky 1984):

U
ffiffiffiffi
F

p
¼ B� kF

where B ¼ const, and k is also constant.

This law of change of value of Uj j ffiffiffiffiFp
will be considered in detail in Chap. 8,

which is devoted to astrophysics applications. Here we only note that mechanism

that drives the matter of a system towards simultaneous collision is the loss of

energy through radiation. So, for conservative systems, the equation of virial

oscillations has the form:

€F ¼ �Aþ Bffiffiffiffi
F

p � k _Fffiffiffiffi
F

p :

The term k _F=
ffiffiffiffi
F

p
is part of the perturbation function. It does not lead to the loss

of total energy of the system, and we can call it internal friction.

6.4.2 Polytropic Gas Sphere Model

The laws of mass density distribution in the previous section were considered

formally, neglecting the requirement of hydrodynamic stability of the system.

However, it is well known that for the many really existing celestial gas bodies, a

polytropic model in the central domain, is a good one.

Let us study the value of the form factors a and b and their product a2b for the

polytropic gas sphere model at various quantities of polytropic index. The equation

of state for a gas sphere is

dp kð Þ
dk

¼ �G
m kð Þr kð Þ

k2
; (6.97)

where p(k) is the gas pressure; r(k) is the mass density of the gas, and G is the

gravitational constant.

Using Eq. 6.97 we can rewrite it for the sphere with radius k and mass m in the

form

1

k

d

dk

k2

r kð Þ
dp kð Þ
dk

				
				 ¼ �4pGr kð Þ: (6.98)
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This is one of the basic equations in the theory of the internal structure of the

stars used up to now.

It is assumed that for polytropic models, the two independent characteristics

in Eq. 6.98, namely pressure p(k) and mass density r(k), are linked by the

relationship

pðkÞ ¼ CrbðkÞ; (6.99)

where C and b are constants.

From (6.99) it follows that

1

r kð Þ
dp kð Þ
dk

¼ C
b

b� 1

drb�1 kð Þ
dk

: (6.100)

Substituting (6.100) into (6.98) and introducing specification

rb�1 kð Þ ¼ u kð Þ; n ¼ 1

b� 1
(6.101)

we obtain

C 1þ nð Þ 1
k2

d

dk
k2

du kð Þ
dk

				
				 ¼ 4pGun kð Þ: (6.102)

Equation 6.102 can be simplified if dimensionless variablesY(x) ¼ u(x)/uo and

x ¼ lk are introduced. Here uo is the value u(k) in the center of the sphere, i.e. at

k ¼ 0. The coefficient l is selected with the condition that, after substitution of the

function Y(x) into (6.102), all the constants should be cancelled. Then the follow-

ing relationship for l can be obtained:

C(1þ n)l2 ¼ 4pGun�1
0 (6.103)

and Eq. 6.102, known as the Emden equation, takes the form:

1

x2
d

dx
x2

dY xð Þ
dx

				
				 ¼ �Yn xð Þ: (6.104)

It is obvious that for x ¼ 0 the function Y(x), known as the Emden function,

should satisfy two conditions:

YðxÞjx¼0 ¼ 1;
dYðxÞ
dx

jx¼0 ¼ 0: (6.105)
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We now obtain the expression for the form factor a2 for a sphere with

polytropic index n. For this purpose we write the expression of potential energy

in the form

U ¼ �G

ð
m kð Þdm kð Þ

k
:

Using Eq. 6.97 for the gas sphere and the expression for dm(k), we rewrite

(6.105) as follows:

U ¼
ð

k

r kð Þ
dp kð Þ
dk

dm kð Þ ¼ 4p
ð
k3dp kð Þ: (6.106)

After integration by parts of the right-hand side of (6.105) we obtain

U ¼ �12 p
ð1
0

k2p kð Þdk: (6.107)

On the other hand, (6.105) can be rewritten in the form

U ¼ �G

2

ð
dm2 kð Þ

k
:

Integrating the right-hand side of the last relationship by parts, we obtain

U ¼ �G

2

m2 kð Þ
k

k¼1
k¼0

		 � G

2

ð
m2 kð Þdk

k2
: (6.108)

The integral in the right-hand side of (6.108) is transformed with the help of

(6.97) as follows

� G

2

ð
m2 kð Þdk

k2
¼ 1

2

ð
m kð Þ
r kð Þ

dp kð Þ
dk

dk:

Thus, using (6.100), we obtain

� G

2

ð
m2 kð Þdk

k2
¼ 1

2

ð
m kð ÞC b

b� 1
drb�1 kð Þ
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and, integrating by parts, we have

�G

2

ð
m2 kð Þdk

k2
¼ 1

2
C

b

b�1
rb�1 kð Þm kð Þ k¼1

k¼0

		 �1

2

ð
C

b

b�1
rb�1ðkÞ4 pk2 r kð Þdk

¼ � 1

2

ð
n + 1ð Þ4pk2p kð Þdk: (6.109)

Substituting (6.109) into (6.108), we obtain the second expression for the

potential energy:

U ¼ �G

2
� 4p nþ 1ð Þ

2

ð1
0

k2r kð Þdk; (6.110)

where the condition m(1) ¼ 1 has been taken into account.

Solving the system of Eqs. 6.110 and 6.107 with respect to U, we find that

U ¼ �G
3

5� n

and hence

a2 ¼ 3

5� n
: (6.111)

Now we derive the expression for the form factor b. For this purpose we write

the Jacobi function expression for a polytropic sphere:

F ¼ 4p
2

ð1
0

k4r kð Þdk ¼ 4p
2

ðx1
0

Yn xð Þx4dx
l5

; (6.112)

where x1 is the first root of the equation Y(x) ¼ 0.

Let us specify

n ¼
ðx1
0

Yn xð Þx4dx

and, taking into account (6.103), we write

C 1þ nð Þl2 ¼ 4pGun�1
0
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Then

F ¼ 4pn
2

un0

l5
¼ 4pn

2

C 1þ nð Þ½ �n=n� 1

4pGð Þn=n� 1
l 5�3nð Þ=n�1: (6.113)

Now we obtain the second expression for the Jacobi function using the condition

of Eq. 6.99 at the border surface of the sphere, i.e. at k ¼ 1. Then

1

r kð Þ
dp kð Þ
dk

k¼1j ¼ �Gm kð Þ
k2

k¼1j (6.114)

and

m kð Þk2 k¼1 ¼ � k4

G

1

r kð Þ
				 dp kð Þ

dk
k¼1j :

The left-hand side of Eq. 6.114, taking into account (6.100) and (6.101), is

1

r kð Þ
dp kð Þ
dk

k¼1j ¼ C
b

b� 1

drb�1 kð Þ
dk

¼ C n� 1ð Þ du kð Þ
dk

: (6.115)

Finally we obtain

F ¼ 1

2
b2m kð Þk2 k¼1j ¼ � 1

2
b2

C nþ 1ð Þ
G

k4
du kð Þ
dk

k¼1j

¼ � 1

2
b2

C nþ 1ð Þ
G

u0
x4

l3
dY xð Þ
dk

x¼x1j :

Or when using (6.103),

F ¼ 1

2
pb2

C 1þ nð Þn=n�1

4 pGð Þn=n�1
l 5�3nð Þ=n�1 x4

dY xð Þ
dk

				
				
				x¼x1 : (6.116)

Dividing (6.116) by (6.113), we obtain

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

�x4
dY xð Þ
dx

� �
x¼x1j

vuuut : (6.117)

We calculated the values of a2 and b and their product a2b using the data for

n, x1, and

�x2dY xð Þ
dx

x¼x1j
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at different polytropic index values, taken fromChandrasekhar (1939). The calculated

data are shown in Table 6.2. It is interesting to note that in the framework of the really

existing physical laws of mass density distribution r(k), the quantity a2b changes

within the narrow limits despite the fact that each of the form factors a and b varies

almost three times more the variation of the polytropic index from 0 to 3,5.

6.4.3 System with Elliptical Symmetry

We have shown in the previous section that the property of the central configurations

consisting in the constancyof theproducta2b holds for systemwith spherical symmetry.

Now we prove that this property holds for elliptical symmetry with an ellipsoidal

mass distribution. Moreover, we show that among all the configurations only

ellipsoidal mass distribution possess this property of central configurations.

Let us write the equation of the general ellipsoid with semi-axes a, b, c:

x2

a2
þ y2

b2
þ z2

c2
¼ 1; (6.118)

where x, y, z are the Cartesian co-ordinates of the surface of this ellipsoid.

The equation of a set of similar ellipsoidal shells of this ellipsoid with the

ellipsoidal mass distribution r(x) is

x2

a2
þ y2

b2
þ z2

c2
¼ k2; (6.119)

where k 2 [0, 1] is a parameter of the homogeneous ellipsoidal shell.

The gravitational potential inside this ellipsoidal shell is equal to a constant at an

arbitrary point (x, y, z)

F x; y; zð Þ ¼ �Gms

2

ð1
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + uð Þ b2 + u


 �
c2 + uð Þ

q ; (6.120)

where ms is the mass of the shell; u is a parameter of integration.

Table 6.2 Numerical values of form factors a and b and their product ab for different values of

polytropic index n

Index n a2 x1 �x2
BY xð Þ
dx n b a2b

0 0.6 2.42 4.9 17.63 0.77 0.46

1 0.75 3.14 3.14 12.15 0.62 0.465

1.5 0.87 3.63 2.71 11.12 0.55 0.475

2 1.0 4.35 2.41 10.61 0.48 0.482

3 1.5 6.89 2.01 10.85 0.34 0.502

3.5 2.0 9.53 1.89 11.74 0.26 0.52
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We write down the form factor ae of the potential energy U of this ellipsoid as

a2e ¼ � au

Gm2
; (6.121)

where a is semi-major axis in the equatorial plane; m is total mass

The volume of an ellipsoid bounded by the surface (6.119) with the parameter k is

V kð Þ ¼ 4

3
pabck3: (6.122)

The volume of the thin shell bounded by ellipsoidal surfaces with the parameters

k and k + dk is

dV kð Þ ¼ 4pabck2dk: (6.123)

The mass of this shell is expressed as

dms kð Þ ¼ 4pabck2r kð Þdk: (6.124)

Then the total mass of the ellipsoid is

m ¼ 4pabc
ð1
0

k2r kð Þdk: (6.125)

The mass of an ellipsoid bounded by the surface with the parameter k is

m kð Þ ¼ 4pabc
ðk
o

k
0

� �2
r k0ð Þdk0: (6.126)

Using the reciprocation theorem (Duboshin 1975), we write the potential energy

of the ellipsoid in the form

U ¼ �
ð1
0

m kð ÞdF kð Þ: (6.127)

The gravitational potential inside the thin shell bounded by elliptical surface

with parameters k and k + dk (6.120) is

dF kð Þ ¼ 2pGabckr kð Þdk
ð1
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + uð Þ b2 + u


 �
c2 + uð Þ

q : (6.128)
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Now we write the expression for the form factor ae using the corresponding

values of U and m as

ae ¼ � aU

Gm2
¼ a

2

Ð1
0

kr kð Þdk Ðk
0

k0ð Þ2r k0ð Þdk0

Ð1
0

k2r kð Þdk
� �2

ð1
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + uð Þ b2 + u


 �
c2 + uð Þ

q

¼ a
a

2

ð1
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + uð Þ b2 + u


 �
c2 + uð Þ

q ; (6.129)

where a is the potential energy form factor corresponding to the radial mass

distribution law r(k).
It is easy to see from Eq. 6.129 that when a ¼ b we obtain the value of the form

factor ae for the ellipsoid of rotation

a2e ¼ a2
arcsin e

e
: (6.130)

Since

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2

a2

r
2 0; 1j j

then

a2e 2 a2;
p
2

a2
h i

:

When a > b > c, Eq. 6.129 be (Janke et al. 1960)

a2e ¼ a2
ð1
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + uð Þ b2 + u


 �
c2 + uð Þ

q

¼ a2
affiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � c2
p F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2

a2

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

a2 � c2

s0
@

1
A:

Denoting

arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2

a2

r
¼ arcsin e1 ¼ j and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

a2 � c2

s
¼ e2

e1
¼ sin a2 ¼ f,
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we obtain

a2e ¼ a2
F j; fð Þ
sinj

; (6.131)

where F(j, f) is an incomplete elliptical integral of the first degree in the normal

Legendre form. If e1 < 0.999 and 0 < e2 < e1, the function F(j, f) . sin�1j 2
[1.000; 3.999] (Janke et al. 1960). When the arguments j and f increase, the

function F(j, f) . sin�1j also increases continuously.

Let us now consider the form factor b, which may be written

b ¼ F
ma2

� �1=2
: (6.132)

Obviously b can be obtained by corresponding integration over the parameter

k 2 [0, 1], if one writes the Jacobi function for the homogeneous thin shell bounded

by the surfaces within the parameters k and k + dk and with mass distribution r(k)
in the integrand.

Since the Jacobi function for a homogeneous ellipsoid with mass density ro is

F ¼ 2

15
pabcr0 a2þb2þc2


 �
(6.133)

the Jacobi function for a thin ellipsoid shell may be written

dF kð Þ ¼ 2

3
pabcr kð Þk4dk a2þb2þc2


 �
: (6.134)

Consequently, the Jacobi function Ф of the ellipsoid is equal to

F ¼ 2

3
pabc a2þb2þc2


 � ð1
0

r kð Þk4dk: (6.135)

Finally, using (6.135) and (6.125), Eq. 6.132 for the form factor b will be

be ¼
a2þb2þc2

3a2

Ð1
0

r kð Þk4dk
Ð1
0

r kð Þk2dk

2
6664

3
7775
1=2

¼ b
a2þb2þc2

3a2

� �1=2
; (6.136)

174 6 Relationship Between Jacobi Function and Potential Energy



where b is a form factor of the Jacobi function of the system with radial mass

distribution r(k) and the expression

a2þb2þc2

3a2

� �1=2
2 1ffiffiffi

3
p ; 1

� �
:

So the value ae is equal to

ae ¼ a2ebe ¼ a
F j; fð Þ
sinj

a2þb2þc2

3a2

� �1=2
: (6.137)

Now it can be shown that the property (6.137) of the product a2b constancy is

possessed only by systems with elliptical symmetry and ellipsoidal mass density

distribution. This means that for such systems the form factors a and b may be

expressed as a product of corresponding for factors of the sphere and terms

depending on the form of the boundary surface.

For this proof we consider an arbitrary system with a similar law of mass

distribution r(k), k 2 |0, 1| and the boundary surface S. Then, since we consider

only one-dimensional r(k), mass density will be constant on any surface with a

fixed parameter k and similar to S. The area of this surface is

S0ðkÞ ¼ Sk2: (6.138)

If the volume of the body is equal to V, then the volume of the part of the body

bounded by the surface S0(k) is

V0ðkÞ ¼ Vk3 (6.139)

And its mass is

m kð Þ ¼ V

ð1
0

k2r kð Þdk: (6.140)

Let us introduce the Cartesian co-ordinate system OXYZ with an origin coin-

ciding with the center of similarity. Let us denote by h in the equatorial plane

OXY the longest distance from the center of similarity to the boundary and assume

that the form factor a2e of the body can be expressed as a product of the form factors

of the potential energy a for the radial mass density distribution law and some term

D(S) depending on the form of the boundary surface

ae ¼ � Uh

Gm2
¼ aD Sð Þ ¼

Ð1
0

kr kð Þdk Ðk
0

k0ð Þ2r k0ð Þdk0

Ð1
0

k2 r kð Þdk
� �2

D Sð Þ: (6.141)
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From Eq. 6.141 we can obtain the potential energy in the for

U ¼ �Gm2

h
aD Sð Þ ¼ �GV

h

ð1
0

kr kð ÞdkD Sð Þ: (6.142)

Since the term G, V, H, D(S) do not depend on the parameter k, let us put them

into the integrand and denote

GV

h
kr kð ÞD Sð Þdk ¼ F kð Þ:

Then Eq. 6.142 may be written

U ¼ �
ð1
0

m kð ÞdF kð Þ: (6.143)

Comparing Eqs. 6.143 and 6.127, one can see that Eq. 6.143 an equation for the

reciprocation theorem, whose validity is based on the constancy of the gravitational

potential dF(k) inside the thin shell bounded by the similar and similarly situated

surfaces with parameters k and k + dk. But as shown in the work of Dive (1931),

where one can find rigorous proof of the reverse Newton theorem, only ellipsoidal

shells possess such a property. Therefore the body with the one-dimensional mass

distribution law r(k) for which the form factor ae is equal to the product of the form
factor of the sphere and some term depending on the form of the boundary surface

D(S) must satisfy the equation of the ellipsoid (6.118).

6.4.4 System with Charged Particles

We shell now show, with the help of a model solution, that for the Coulomb

interactions of charged particles, constituting a system, Eq. 6.5 holds with the

same conditions as for the previous models discussed above.

The derivation of the expression for the potential energy of the Coulomb

interactions of a celestial body is based on the concept of an atom following, for

example, from the Tomas-Fermi model (Fl€ugge 1971). In our problem this

approach does not result in limited conclusions since the expression for the poten-

tial energy, which we shell write, will be correct within a constant factor.

Let us consider a one-component, ionized quasineutral and gravitating gaseous

cloud with spherically symmetrical mass distribution and radius of sphere R. We

shell not consider the problem of its stability, assuming that the potential energy of

interaction of charged particles is represented by the Coulomb energy. Therefore, in
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order to prove the relationship (6.5), it is necessary to obtain the energy of the

Coulomb interactions of positively charged ions with their electron clouds.

Assume that each ion of the gaseous cloud has mass number Ai and order

number Z, and that the function r(r) expresses the law of mass distribution inside

the gaseous cloud. The mass of the ion will be Ai m p (where mp ¼ 1.66 
 10�24 g

is the mass of the proton) and its total charge will be +Ze (where e ¼ 4.8 
 10-10

GCSE is elementary charge). Then let the total charge of the electron cloud,

which is equal to �Ze, be distributed around the ion in the spherically symmetrical

volume of radius ri with charge density qe(re), re 2 [0, 1]. Radius ri of the

effective volume of the ion may be expressed through the mass density distribution

r(x) by

4

3
pr3i ¼

Aimp

r rð Þ : (6.144)

Then

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Aimp

4pr rð Þ
3

s
: (6.145)

Let us calculate the Coulomb energy Vc per ion, using Eq. 6.145. Assuming that

the charge distribution law in the effective volume of radius ri is given, we may

write Uc in the form

U
0
c ¼ U þð Þ

c þ U �ð Þ
c ; (6.146)

where U
�ð Þ
c is the potential energy of the Coulomb repulsion of electrons inside the

effective volume of radius ri;U
þð Þ
c is the potential energy of attraction of the electron

cloud to positive ion.

Let us assume that the charge distribution law inside the electron cloud is qe(re).

Then normalization of the electron charge of the cloud surrounding the ion may

be written

� Ze ¼
ðr1
0

4pqe reð Þr2edre: (6.147)

From the Eq. 6.147 we may obtain the normalization constant q0, which will

depend on the given law of charge distribution, as

q0 ¼ � Ze

4p
Ðr1
0

ref reð Þdre:
(6.148)
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Now it is easy to obtain expressions for U �ð Þ
c and U þð Þ

c in the form

Uð�Þ
c ¼ 4pð Þ2q20

ðr1
0

ref reð Þdre
ðre
0

r0eð Þ2f r0eð Þdr0e; (6.149)

U þð Þ
c ¼ 4pZeq0

ðr1
0

ref reð Þdre: (6.150)

Finally, Eq. 6.146 for the potential energy Uc corresponding to one ion may be

rewritten using Eqs. 6.148–6.150 in the form

U0
c ¼ �e2Z

ðr1
0

ref reð Þdre

ðr1
0

r2ef reð Þdre
�

ðr1
0

ref reð Þdre
ðre
0

r0eð Þ2f r0eð Þdr0e

ðr1
0

r2ef reð Þdre
0
@

1
A

2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
: (6.151)

It is easy to see in the right-hand side of Eq. 6.151 that the expression enclosed

in brackets determines the inverse value of some effective diameter of the

electron cloud, which may be expressed through the form factor ai of the ion and

the radius ri, i.e.

ðr1
0

ref reð Þdre

ðr1
0

r2ef reð Þdre
�

ðr1
0

ref reð Þdre
ðre
0

r0eð Þ2f r0eð Þdr0e

ðr1
0

r2e f reð Þdre
0
@

1
A

2
¼ � di

ri
: (6.152)

Thus, Eq. 6.151, using (6.152), yields

� U0
c ¼ ai

e2Z

ri
: (6.153)

The numerical values of the form factor ai, depending on the charge distribution
qe(re) inside the electron cloud, are given in Table 6.3; they were calculated in our

work (Ferronsky et al. 1981).

Using Eq. 6.153, the total energy of the Coulomb interaction of particles may be

written

� Uc ¼ 4p
ðR
0

r rð Þ
Aimp

U0
cr
2dr ¼ 3a2i e

2Z2

R

ðR
0

Rr2
4pr rð Þ
3Aimp

� �4=3

dr: (6.154)
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Introducing in Eq. 6.154 the form factor of the Coulomb energy a2c , depending
on the mass distribution in the gaseous cloud and on the charge distribution inside

the effective volume of the ion, we obtain

� Uc ¼ a2c
e2Z

R

m

Aimp

� �4=3

; (6.155)

where

a2c ¼
3a2c

ðR
0

4p
3
r rð Þ

� �� �4=3
Rr2dr

m4=3
;

m ¼
Xn
i¼1

mi ¼ 4p
ðR
0

r2r rð Þdr;

Since the total number of ions N in the gaseous cloud is equal to

N ¼ m

Aimp

and the relation between the radius of the cloud and the radius of the ion may be

obtained from the relationship of the corresponding volumes

4

3
pR3 ¼ N

4

3
pr3i ;

Table 6.3 Numerical values

of form factors a for

different radial charge

distribution of the electron

cloud around the ion

The law of charge distributiona a2i
qe reð Þ ¼ qo ¼ const 9

10

qeðreÞ ¼ qo 1� re

ri

� �
44

35

qe reð Þ ¼ qo 1� re

ri

� �n
nþ 3ð Þ 11n2 þ 41nþ 36ð Þ

8 2nþ 3ð Þ 2nþ 5ð Þ

qe reð Þ ¼ qo
re

ri

� �
16

21

qeðreÞ ¼ q0
re

ri

� �n
nþ 3ð Þ2

nþ 2ð Þ 2nþ 5ð Þ
The same for n ! 1

a2
ii
! 1

2
a Here qo is the charge value in the center of the sphere; te is the

parameter of radius, re 2 0; 1½ �; n is an arbitrary number, n ¼ 0,

1, 2, . . .
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then Eq. 6.155 may be rewritten in the form

� U0
c ¼ a2c

N4=3e2Z2

R
¼ a2cN

e2Z2

ri
: (6.156)

Hence, the form factor entering the expression of the potential energy of the

Coulomb interaction acquires a simple meaning. It may be represented as a ratio of

the average radius of all spherical volumes per ion to the average effective distance

between electrons, disposed on some spherical shell of radius ri, i.e.

a2c ¼
ri

2rei
: (6.157)

Let us now examine by means of numerical data the relationship (6.5), assuming

different law of mass distribution. The expression for Jacobi function of the system,

which we have previously derived (Ferronsky et al. 1978), is

F ¼ 4p
3

ðR
0

r4r rð Þdr ¼ b2mR2: (6.158)

Thus, Eq. 6.5, using (6.156) and (6.158), may be written

� Uc

ffiffiffiffi
F

p
¼ a2cN

4=3 Z
2e2

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2mR2

2

s
¼ 1ffiffiffi

2
p a2c bN4=3m1=2e2Z2: (6.159)

Since we have assumed that the mass of the system and its ion composition are

constants, examination of Eq. 6.5 will be equivalent to analysis of the product of the

form factors ac and b. Equation 6.5 holds if

a2c b ¼ ri

2rei
	 const: (6.160)

The results of the numerical calculations of the form factors ac and b for

different mass distribution in the cloud are shown in Table 6.4, and calculations

were carried out in our work (Ferronsky et al. 1981). The values of the form factor

ai of the ion, the numerical value of which depends on the choice of charge

distribution qe(re), are shown in Table 6.3.

In the Table 6.4 the numerical values of the form facto a2c and the product of

the form factors a2c b are given for the case of homogeneous distribution of the

electron charge around ion, i.e. when qe(re) ¼ const. From Table 6.4 it follows that

for different laws of mass distribution, when the mass increases to the center, the

product of form factors a2c and b remains constant, and therefore Eq. 6.5 holds,

with the same comments as were made previously.
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From Eq. 6.157 it follows, however, that the form factor of the Coulomb energy

ac becomes infinite, when the volume occupied by the ions tends to zero. Corre-

spondingly, the Coulomb energy in this case will also tend to infinity. In Table 6.4

there are two laws of mass distribution for which the last condition holds. They are

r(r) ¼ ro(1 – (r/R)
n) for n ! 1. When the particles of the system are gathering at

the shell of the finite radius, the energy of the Coulomb interaction tends to infinity

whereas the energy of gravitational interaction has a finite value. When the mass

distribution is r(r) ¼ r0(1 – (r/R)n), the form factor of gravitational and Coulomb

energies are both finite. But the form factors of the Jacobi function of the system in

this case tends to zero, a circumstance which provides the constancy of the product

of the form factors a2c and b. This difference might play a decisive role in the

evolution of the system.

In conclusion, we note that the results of the study on the relationship between

the Jacobi function and the potential energy allows us to consider that the transfer

from Jacobi’s equation (6.1) and (6.2) into the equations of virial oscillations (6.3)

and (6.4) is form the point of view of physics justified. This justification has been

achieved in the framework of Newton and Coulomb interactions of the particles of

the system. At the same time, the observed deviations of the value of parameter B in

(6.5) form some constant quantity can be accounted for by small perturbation when

studying the evolution of a heterogeneous system.
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Chapter 7

Applications in Celestial Mechanics
and Geodynamics

In the previous chapters we presented physical and theoretical fundamentals of the

unified theory for study of unperturbed and perturbed motion of a self-gravitating

celestial body which generates energy by interaction of its constituent particles.

The theory is based on the functional relationship between the polar moment of

inertia and the energy (potential, kinetic and total) of the natural conservative and

dissipative system in the form of Jacobi’s virial equation or the generalized virial

theorem The remarkable property of Jacobi’s virial equation is its ability to be

simultaneously both the equation of dynamical equilibrium and equation of

motion. As it was shown in Chap. 3, the equation is valid for all the known physical

models of the matter interaction describing dynamics of natural systems. The

functional relationship between the potential energy and the polar moment of

inertia was revealed by analyzing of orbits of the artificial satellites. The potential

energy, which is generated by interaction of the elementary mass particles, is the

force function of the body, i.e. the active component of its motion. This energy

induces the inner and outer force field of the body. The kinetic energy appears to be

the reactive component of the force field which is developed in the form of motion

of the same body’s mass particles and the body as a whole. Thus, Jacobi dynamics

of a body is based on its own inner forces, which are developed by interaction of the

elementary particle. The induced inner and outer force field of the body is the main

recoded dynamical effect of the interacted elementary particles.

Now we would like to apply the obtained results of the general solution of

Jacobi’s virial equation presented in Chaps. 3, 4 and 5 to study dynamics of the

Sun, the Earth and the Moon, which represent celestial bodies of the Solar System,

and to obtain some quantitative data concerning the concrete elements of their non-

perturbed and perturbed motion. As in celestial mechanics, under non-perturbed

motion we understand the motion under action of the body’s own force field

generated by interaction of its own masses. The perturbation motion of a body is

considered to be the effects developed by the outer force fields of the Sun, the Earth

and the Moon. Interplanetary perturbations are not considered here because of their

indirect effect and this is a specific problem. The study of dynamics of a body in its

own force field starts first of all with investigation of the basic modes, namely, the

oscillation and rotation of the shells, which are developed by interaction of their

own masses. The energy which is emitted from the body’s surface forms the outer

V.I. Ferronsky et al., Jacobi Dynamics, Astrophysics and Space Science Library 369,

DOI 10.1007/978-94-007-0498-5_7, # Springer Science+Business Media B.V. 2011

183



force field of the body. Dynamical equilibrium between the Sun and the Earth and

between the Earth and the Moon is achieved by interaction of their outer force fields

and guaranties stability of their orbital motion. The effect of differential rotation of

shells and changes in the slope of the body axis of rotation is also examined. Herein,

the observed rotation of the planet as a rigid body in reality is not proved. The effect

of perturbation of the upper shell and the integral effect of rotation of all other shells

is discussed as well.

In order to find a quantitative solution of the task it is necessary to have data

about the mass, radius, moment of inertia and radial density distribution of the

planet’s mass. We have sufficiently reliable data about the mass and radius for the

Sun, the Earth and the Moon. The reliable mean value of the moment of inertia was

found now by artificial satellites only for the Earth. The radial density distribution

data appears to be unreliable even for the Earth. This is because the existing

methodology of interpretation of seismic data by the Williamson-Adams equation

is based on the planet’s hydrostatic equilibrium and needs to be reconsidered. That

is why we have to find such law of density distribution which satisfies to the

experimentally found moment of inertia and the condition of the observed differ-

entiation of masses on the shells with respect to density.

We start the study dynamics of a body with its own oscillations. After that we

move to determine the properties of the interacting masses which have not been

earlier considered and which are needed. Among them are the structure of the

potential and kinetic energy, the nature of the Archimedes’ and Coriolis’ forces and

the electromagnetic component of the body’s potential energy. They are the basis

for consideration of body’s dynamical effects. Finally, we turn to solution of

problem of the body shells rotation, the nature of precession, nutation, and the

orbit plane dynamics.

7.1 The Problem of Eigenoscillations of a Celestial Body

In order to demonstrate application of the new theory to study of a body dynamics

we consider both traditional hydrostatic and proposed dynamic approaches being

applied to the Earth. Applying the volumetric forces and volumetric moments we

show in this solution that the eigenoscillations of a body is a natural kinetic integral

effect of its interacting particles.

7.1.1 Hydrostatic Approach

We consider first the problem of radial oscillations of a gravitating elastic sphere

within the framework of the traditional hydrostatic equilibrium approach which is

used to study eigenoscillations of a celestial body
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The equation of motion of a deformable body in the presence of the mass forces

of the outer uniform force field is written in the form (Landau and Lifshitz 1954)

@sik
@xk

þ rFi ¼ r
@2u

@t2
; (7.1)

where rFi is the i-th component of the mass force; ui is the i-th component of the

displacement vector; sik is the stress vector; r is the mass density of the sphere.

We write the vector components of the mass force in the spherical system of

co-ordinates:

rF0 ¼ 0;

rFl ¼ 0;

rFr ¼ �G r
m rð Þ
r2

;

where m(r) is the body’s mass within the sphere with radius r.

Because of radial deformation of the sphere the only radial component of the

displacement vector differs from zero, i.e.

ur¼ 0;

uy¼ 0;

@2uk

@r2
¼ @2r

@t2
:

For isotropic media and for small deformations the stress tensor sik and the

deformation tensor uik have the linear relationship, according to Hooke’s law:

sik ¼ kuik dik þ 2 m uik � 1

3
dikuik

� �
¼ luik þ 2 muik; (7.2)

where k is the displacement modulus; m is the shear modulus; l ¼ k� 2=3 m is the

Lamé constant; sik ¼ 0 at i 6¼ k and sik ¼ 1 at i ¼ k.

In the case of radial deformations, the components of the deformation tensor are

equal to

urr ¼ dur

dr
;

uyy ¼ uff
ur

r
; (7.3)

uyf ¼ ulr ¼ ury:
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The components of the stress tensor are:

srr ¼ l+ 2 mð Þ dur
dr

+ 2 l
ur

r
;

syy ¼ sff ¼ l
dur

dr
þ 2 lþ mð Þ ur

r
; (7.4)

syf ¼ sfr ¼ sry ¼ 0:

The general equation (7.1) of motion now takes the form

dsrr
dr

þ 1

r
2 srr � syy � s’’
� �þ rFi ¼ r

d2ur

dt2
: (7.5)

Putting Eq. 7.4 into Eq. 7.5, we obtain an equation describing the radial

displacement of matter in the sphere:

l+ 2 mð Þ d2ur

dr2
þ 2

r

dur

r2

� �
þ dur

r2
þ2

ur

r

� �
dl
dr

þ2
dm
dr

dur

dr
+ rFr = r

d2ur

dt2
: (7.6)

Equation 7.6 is used to study the problem of the radial oscillations of the body in

the traditional hydrostatic approach. This equation is solved at boundary conditions

of uniform radial displacement of matter or at uniform pressure over a spherical

surface enveloping the body.

The normal stress at the sphere’s surface which is formed by the outer layer of

the body with radius r is

Tr ¼ S � r
r
: (7.7)

where S is the stress tensor, the components of which are

tr; ty; t’
�� �� ¼ 100j j

srr 0 0

0 syy 0

0 0 s’’

������
������ (7.8)

Here only tr ¼ srr 6¼ 0, but tensor Tr is the purely normal stress, which is

Tr ¼ ðlþ 2 mÞ dur
dr

þ 2 l
ur

r

����
�����rr : (7.9)

Let us consider a uniform sphere with l ¼ const and m ¼ const. Then

d

dt

dur

dr
þ2

ur

r

� �
¼ dy

dr
¼ 0; (7.10)

where y ¼ urr þ uyy þ u’’ is the dilation of the body.
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The general solution of Eq. 7.10 is

ur = Arþ B

r2
: (7.11)

Constants A and B can be defined from the following boundary conditions: at

the centre of the body (r ¼ 0) the displacement ur ¼ 0 and the value B ¼ 0; on the

surface of the sphere radius r ¼ a and Tr ¼ �p.Then

ðlþ 2 mÞ dur
dr

þ 2 l
ur

r

����
����
r¼A

¼ �p (7.12)

from which it follows that

A ¼ � p

3 lþ 2 m
:

Now the general solution (7.11) takes the form

ur ¼ � pr

3 lþ 2 m
(7.13)

y ¼ � 3

3 lþ 2 m
¼ � p

lþ 2=3 m
¼ � p

k
:

Substituting the solution (7.13) into (7.4), we obtain the expression for the

components of the stress tensor:

srr ¼ syy ¼ sff ¼ �p: (7.14)

It is seen from (7.14) that the value of the stress components is reduced to the

constant hydrostatic pressure of the body matter.

To solve the problem of the eigenoscillations of a uniform spherical body, we

assume

ur = U rð Þeiot; (7.15)

where o is the eigenoscillation frequency of the sphere.

Substituting (7.15) into Eq. 7.6, we obtain

lþ 2 mð Þ d2U

dr2
þ 2

r

dU

dr
� 2U

r2

� �
þ r o2Uþ 4

3
p r G r2 ¼ 0: (7.16)
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We introduce the new variable x:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

l+ 2 m

r
or ¼ hr: (7.17)

Then Eq. 7.16 can be rewritten as

d2U

dr2
þ 2

r

dU

dr
� 2U

dr
þ x2

r2
U ¼ 0:

or

d2U

dx2
dx

dr

� �2

þ 2

r

dU

dx

dx

dr

� �
� 2U

r2
þ x2

r2
U ¼ 0:

Considering that

dx

dr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

x + 2 m

r
o ¼ x

r
;

we obtain

d2U

dx2
þ 2

r

dU

dx
� 2

x2
U ¼ 0: (7.18)

Equation 7.18 is known as the Riccati equation. Its solution is

U rð Þ ¼ d

dx

A sin xþ Bcos x

x

� �
(7.19)

The arbitrary integration constants A and B can be found from the boundary

conditions. In the centre of the body (r ¼ 0, x ¼ 0) we have U(r) ¼ 0. Hence,

B ¼ 0. Moreover, the outer surface of the body should be in equilibrium. This

means that the surface pressure should be equal to zero:ð srrÞ r¼A ¼ 0j and

lþ 2 mð Þ dU
dt

eiot þ 2 l
U

r
eiot ¼ 0;

or

lþ 2 mð Þ d

dx

d

dx

���� A
sinx

x

� �
þ2

l
r

���� d

dx
A
sinx

x

� �
¼ 0: (7.20)
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Differentiating this, we have

� lþ 2 mð Þx2sinx� 4 mxcosxþ 4 msinx ¼ 0: (7.21)

After dividing (7.21) by 4m sin x, we obtain

xctgx ¼ 1� lþ 2m
4 m

x2:

The value x at the outer surface is equal to ah. Finally, we obtain the equation for
determining the eigenoscillation values of the body:

ahctgah ¼ 1� lþ 2m
4 m

a2h2: (7.22)

7.1.2 Dynamic Approach

Nowwe consider the problem of the eigenoscillations of the Earth as a uniform body

on the basis of its dynamical equilibrium, i.e. under an action of its own internal

force field or within the framework of the dynamic approach. For this purpose we

use Eq. 7.5 assuming that the internal pressure in the body is isotropic, i.e.

srr ¼ syy ¼ s’’ ¼ �p.

Then we have from (7.5)

r
@2r

@t2
¼ � @p

@r
þ rFr (7.23)

Now let us derive Jacobi’s virial equation from Eq. 7.23 for the spherical

symmetric model of the body. For this purpose we multiply the right-hand sides

of Eq. 7.23 by 4pr3dr and integrate it with respect to dr from 0 to R:

ZR
0

4 pr3 r rð Þ @
2r

@t2
dr ¼ �

ZR
0

@p

@r
4 pr3dr� 4 pG

ZR
0

r r rð Þm rð Þdr (7.24)

The left-hand side of Eq. 7.24 gives

ZR
0

4 pr3 r rð Þ @
2r

@t2
dr ¼ @2

@t2
1

2

ZR
0

4 pr4 r rð Þdr�
ZR

0

r pr2
@r

@t

� �2

r rð Þdr
2
4

3
5

¼ €F� 2T; (7.25)
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where F is the Jacobi function of the body and T is the kinetic energy of the

displacements of the matter.

The first term in the right-hand side of (7.24) is equal to

ZR
0

dp

dr

dr

dr
dr4pr3 ¼ �

Zrs
r0

dp

dr
4 pr3dr; (7.26)

where ro and rs are the mass densities in the centre and on the surface of the body

respectively.

Taking into account that, within the framework of the model of an elastic

medium, the system reaches its mechanical equilibrium faster than its thermal

equilibrium, we assume that the entropy of the system is equal to the constant

value, and therefore we write

dp

dr
¼ dp

dr

� �
s

¼ k

r
¼ c2s ; (7.27)

where cs is the velocity of sound in elastic media and c2s ¼ n2p � 4=3 n2g;
np ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 4=3mð Þ=rp

is the velocity of the longitudinal waves in an elastic

medium; ng ¼
ffiffiffiffiffiffiffiffi
m=r

p
is the velocity of the transverse waves in the elastic medium.

Finally, Eq. 7.26 can be rewritten in the form

�
ZR
0

@p

@r
4 pr3dr ¼ �

ZR
0

c2s 4 pr3dr (7.28)

If the velocity of sound does not depend on the radius of the body, then (7.28) is

�
ZR
0

@p

@r
4pr3dr ¼ �

ZR
0

c2s 4pr
3dr ¼ �rðrÞc2s 4p3 R

0

��

þ
ZR
0

3x4pr3rðrÞc2s dr ¼ 3c2sm;

(7.29)

where r Rð Þ ¼ 0; r 0ð Þ 6¼ 1:
In the general case when the velocity of sound depends on the radius, the

expression for the energy of elastic deformations can be written by the expression

for the velocity of sound as a mean value through the mass body, i.e.,

2Ee ¼ �
ZR
0

@p

@r
4pr3dr ¼ 3m�c 2

s ; (7.30)
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where

�c2s ¼ � 4p
3m

ZR
0

c2c rð Þr3dr rð Þ: (7.31)

The phenomenological parameter cs takes into account the different aggregative

states of the substance of a body, i.e. gaseous, liquid, solid, and plasma (Ferronsky

et al. 1981a).

The second term in the right-hand side of Eq. 7.24 is the potential energy of

the sphere:

4 pG
ZR
0

rr rð Þm rð Þdr ¼ U: (7.32)

Finally, Eq. 7.24 can be rewritten in the form of the Jacobi virial equation:

€F ¼ 2Tþ 3m�c2s þ U ¼ 2E� U; (7.33)

where E ¼ Tþ 3=2m�c2s þ U is the total energy of the body.

One may see now that Eq. 7.33 represents the generalized virial equation (2.31)

obtained from Euler’s equation of motion for a deformable body (7.1) by means of

transformation of the kinetic energy of the mass interaction (7.25) through the polar

moment of inertia (the Jacobi function F). The polar moment of inertia in (7.33)

has a functional relation with the potential energy (7.32). Here the polar moment of

inertia physically represents the body’s structure and shows its changes with a

change in the potential energy.

Averaging Jacobi’s virial equation (7.33) with respect to a sufficiently long

period of time gives the classical averaged virial theorem of the body and expresses

the condition of its hydrostatic equilibrium in the outer force field without taking

into account kinetic energy of the interacted masses:

2E ¼ U;

or

� U ¼ 3mc2s : (7.34)

Equation 7.34 follows also from the condition of hydrostatic equilibrium of the

spherematterwhen the left-hand side of the equation ofmotion (7.23) is equal to zero:

@p

@r
¼ rFr:
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In accordance with (7.30), the left-hand side of this equation represents a double

value of the total body’s energy, the matter of which stays in hydrostatic equilib-

rium in the outer uniform force field. The right-hand side of the equation determines

the potential energy of the matter interaction.

It follows from Eq. 7.34 that the velocity of sound in the elastic media deter-

mines not only the potential energy of the mass interaction, but also the velocity of

propagation of the potential energy flux in the media. This relationship between the

potential energy and the sound velocity is used now in seismic studies for determi-

nation of mass density. We also will apply it for interpretation of the radial density

distribution of the Earth.

To obtain the equation of virial oscillations from (7.33), we accept the following

assumptions. We assume that the total energy E has a constant value and the

relationship between the Jacobi function F and the gravitational potential energy

U is held in the form

U
ffiffiffiffiffiffi
F

p������ ¼ B ¼ const (7.35)

It follows from Eqs. 2.31 and 2.32 and Table 1 of Chap. 2 that, for a density-

uniform sphere, the expression (7.35) is strict. Then, for the uniform body Eq. 7.33

with the help of (7.35) can be written in the form of a non-linear differential

equation of the second order with respect to the variable F:

€F ¼ �Aþ Bffiffiffiffi
F

p (7.36)

whereA ¼ �2E ¼ Uj j
Expression (7.36) is the equation of virial oscillations of the uniform Earth. As it

is shown in Chap. 4, the solution of Eq. 7.36 represents the periodic change of polar

moment of inertia, i.e. oscillation of the interacting mass particles, and synchro-

nously with this change of the potential (kinetic) energy. The solution of (7.36) is

described by Eqs. 4.14 and 4.15 and we rewrite them in the same form:

ffiffiffiffiffiffiffi
F0

p
¼ B

A
½1� e cosðl� cÞ�; (7.37)

t ¼ 4B

2Að Þ3=2 l� e sin l� cð Þ½ � (7.38)

Here e and c are the integration constants depending on the initial conditions of

the Jacobi function Fo and its first derivative at the first moment of time to .

Equations 7.37 and 7.38 and the integration constants after corresponding

generalization were obtained in Chap. 4 in the explicit form:

ffiffiffiffiffiffi
F0

p
¼ a½1� e cos’�; (7.39)
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o ¼ 2p
TV

¼ ð2AÞ3=2
4B

¼ ð2�2EÞ3=2
4U

ffiffiffiffiffiffi
F

p ¼
ffiffiffiffiffiffiffiffi
GM

r3

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
pGr

r
; (7.40)

a ¼B

A
; (7.41)

Mc ¼ ’� e sin’; (7.42)

where Mc ¼ n(t� t); Tv is the period of the virial oscillations; o is the frequency

of oscillations; r is the mass density of the body.

Physical meaning of Eqs. 7.39–7.42 is expressed by Kepler’s motion laws, in

particular, Eq. 7.39 describes the first and second laws, and Eq. 7.40 describes its

third law. And now, due to the functional relationship between the potential energy

and the Jacobi function (polar moment of inertia), the Kepler laws express dynamic

but not static equilibrium of the planet. In fact, the Jacobi function
ffiffiffiffiffiffi
F0

p
, which

represents the polar moment of inertia, traces a second-order curve with period of

oscillations Tv and frequency o. The curve of the uniform body is the circle having

the semi-major axis a and the eccentricity e. The expression (7.42) represents the

Kepler equation. Equations 7.39–7.42 as a whole describe an oscillating motion of

the body in accordance with Kepler’s laws. But their significance grows owing to

the involved volumetric polar moment of inertia and its relationship with the

potential energy of the body determining its dynamical effects. Figure 5.3 demon-

strates the graphic picture of this effect and Eqs. 4.36–4.38 show the effect in the

explicit form by the Lagrange series:

ffiffiffiffi
F

p
0¼B

A
1þe2

2
þ �eþ3

8
e3

� �
cosMc�e2

2
cos2Mc�3

8
e3cos3Mcþ :::

� 	
(7.43)

F0¼B2

A2
1þ3

2
e2þ �2eþe3

4

� �
cosMc�e2

2
cos2Mc�e3

4
cos3Mcþ . . .

� 	
(7.44)

Note that because the polar moment of inertia of the body has a functional

relationship with the potential energy, Eqs. 7.43 and 7.44 and Fig. 5.3 express also

the effect of a change of the potential energy in time. This fact is important for

understanding of the nature and mechanism of the mass particle interaction, the

result of which is generation of the potential energy. Later on we will discuss this

problem in more details.

Quantitative values of the parameters of the body’s virial oscillations are consid-

ered together with solution of the problem of oscillation and rotation of the non-

uniform body. In order to do this the potential and kinetic energies of a non-uniform

body need to be expanded and some other effects of its non-uniform structure have to

be understood. It was noted in Section 2.5 of Chap. 2 that the non-uniformities play an

important role in dynamical processes of bodies. Let us start consideration of the

effect of the non-uniformities with separation of the potential and kinetic energies.
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7.2 Structure of Potential and Kinetic Energies
of a Non-uniform Body

In fact, all the celestial bodies of the Solar System, including theSun, are non-uniform

creatures. They have a shell structure and the shells themselves are also non-uniform

elements of a body. It was shown in Section 2.2 of Chap. 2 that according to the

artificial satellite data all themeasured gravitational moments of the Earth, including

tesseral ones, have significant values. In geophysics this fact is interpreted as a

deviation of the Earth from the hydrostatic equilibrium and attendance of the tangen-

tial forces which are continuously developed inside the body. From the point of view

of the planet’s dynamical equilibrium, the fact of the measured zonal and tesseral

gravitational moments is a direct evidence of permanent development of the normal

and tangential volumetric forces which are the components of the inner gravitational

force field. In order to identify the above effects the inner force field of the body

should be accordingly separated.

The expressions (2.46)–(2.49) in Chap. 2 indicate that the force function and

the polar moment of a non-uniform self-gravitating sphere can be expanded with

respect to their components related to the uniform mean density mass and its non-

uniformities. In accordance with the superposition principle these components are

responsible for the normal and tangential dynamical effects of a non-uniform body.

Such a separation of the potential energy and polar moment of inertia through their

dimensionless form-factors a2 and b2 was done by Garcia Lambas et al. (Garcia

et al. 1985) with our interpretation (Ferronsky et al. 1996). Taking into account that

the observed satellite irregularities are caused by the non-uniform distribution of

the mass density, an auxiliary function relative to the radial density distribution was

introduced for the separation:

C( s Þ ¼
Zs

0

ðrr � r0Þ
r0

x2dx, (7.45)

where s ¼ r/R is the ratio of the running radius to the radius of the sphere R; ro
is the mean density of the sphere of radius r ; rr is the radial density; x is the running

coordinate; the value (rr�ro) satisfies
RR
0

ð rr � r0Þr2dr ¼ 0 and the function

C(1) ¼ 0.

The function C( s ) expresses a radial change in the mass density of the non-

uniform sphere relative to its mean value at the distance r/R. Now we can write

expressions for the force function and the moment of inertia by using the structural

form-factors a2 and b2 which were introduced in Section 2.5:

U ¼ 4pG
ZR
0

rrðrÞmðrÞdr ¼ a2
Gm2

R
; (7.46)
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I ¼ 4p
ZR
0

r4rðrÞdr ¼ b2mR2 (7.47)

By (7.45) we can do the corresponding change of variables in (7.46) and (7.47).

As a result, the expressions for the potential energy U and polar moment of inertia I

are found in the form of their components composed of their uniform and non-

uniform constituents (Garcia Lambas et al. 1985; Ferronsky et al. 1996):

U ¼ a
Gm2

R
¼ 3

5
þ3

Z1

0

cxdx +
9

2

Z1

0

c
x

� �2

dx

2
4

3
5Gm2

R
; (7.48)

I ¼ b2mR2 ¼ 3

5
� 6

Z1

0

cxdx

2
4

3
5mR2 (7.49)

It is known that the moment of inertia multiplied by the square of the frequency

o of the oscillation-rotational motion of the mass is the kinetic energy of the body.

Then Eq. 6.49 can be rewritten

K ¼ I o2 ¼ b2MR2 o2 ¼ 3

5
� 6

Z1

0

cxdx

2
4

3
5mR2o2: (7.50)

Let us clarify the physical meaning of the terms in expressions (7.48) and (7.50)

of the potential and kinetic energy

As it follows from (2.46) and Table 1, the first terms in (7.48) and (7.50),

numerically equal to 3/5, represent a20 and b20 being the structural coefficients of

the uniform sphere with radius r, the density of which is equal to its mean value.

The ratio of the potential and kinetic energies of such a sphere corresponds to the

condition of the body’s dynamical equilibrium when its kinetic energy is realized

in the form of oscillations.

The second terms of the expressions can be rewritten in the form

3

Z1

0

cxdx � 3

Z1

0

c
x

� �
x2dx; (7.51)

� 6

Z1

0

cxdx � �6

Z1

0

c
x

� �
x2dx (7.52)

7.2 Structure of Potential and Kinetic Energies of a Non-uniform Body 195



One can see that there are written here the additive parts of the potential and

kinetic energies of the interacting masses of the non-uniformities of each sphere

shell with the uniform sphere having a radius r of the sphere shell. Note that the

structural coefficient b2 of the kinetic energy is twice as high as the potential energy
and has the minus sign. It is known from physics that interaction of mass particles,

uniform and non-uniform with respect to density is accompanied by their elastic

and inelastic scattering of energy and appearance of a tangential component in their

trajectories of motion. In this particular case the second terms in Eqs. 7.48 and 7.50

express the tangential (torque) component of the potential and kinetic energy of the

body. Moreover, the rotational component of the kinetic energy is twice as much as

the potential one.

The third term of Eq. 7.48 can be rewritten as

9

2

Z1

0

c
x

� �2

dx � 9

2

Z1

0

c
x2

� �2

x2dx: (7.53)

Here, there is another additive part of the potential energy of the interacting non-

uniformities. It is the non-equilibrated part of the potential energy which does not

have an appropriate part of the reactive kinetic energy and represents a dissipative

component. Dissipative energy represents the electromagnetic energy which is

emitted by the body and it determines the body’s evolutionary effects. This energy

forms the electromagnetic field of the body.

Thus, by expansion of the expression of the potential energy and the polar

moment of inertia we obtained the components of both forms of energy which are

responsible for oscillation and rotation of the non-uniform body. Applying the

above results we can write separate conditions of the dynamical equilibrium for

each form of the motion and separate virial equations of the dynamical equilibrium

of their motion.

7.3 Equations of Dynamical Equilibrium of Oscillation
and Rotation of a Body

Equations 7.48 and 7.50 can be written in the form

U ¼ ð a20 + a2t + a2gÞ
Gm2

R
; (7.54)

K ¼ ( b20 � 2 b2t )mR2 o2; (7.55)

where a20¼b20; 2a
2
t ¼b2t ; the subscripts o, t, g define the radial, tangential, and

dissipative components of the considered values.

196 7 Applications in Celestial Mechanics and Geodynamics



Because the potential and kinetic energies of the uniform body are equal

( a20¼b20 ¼ 3=5) then from (7.48) and (7.50) one has

Uo ¼ Ko; (7.56)

Eo ¼ Uo þ Ko ¼ 2Uo (7.57)

In order to express dynamical equilibrium between the potential and kinetic

energies of the non-uniform interacting masses we can write, from (7.48) and

(7.50),

2Ut ¼ Kt; (7.58)

Et ¼ Ut þ Kt ¼ 3Ut; (7.59)

where Eo , Et , Uo , Ko , Ut , Kt are the total, potential and kinetic energies of

oscillation and rotation accordingly. Note, that the energy is always a positive

value.

Equations 7.56–7.59 present expressions for uniform and non-uniform compo-

nents of an oscillating system which serves as the conditions of their dynamical

equilibrium. Evidently, the potential energy Ug of interaction between the non-

uniformities, being irradiated from the body’s outer shell, is irretrievably lost and

provides a mechanism of body’s evolution.

In accordance with classical mechanics, for the above-considered non-uniform

gravitating body, being a dissipative system, the torque N is not equal to zero, the

angular momentum L of the sphere is not a conservative parameter, and its energy

is continuously spent during the motion, i.e.,

N ¼ dL

dt
>0; L 6¼ const:; E 6¼ const:>0

A system physically cannot be conservative if friction or other dissipation forces

are present, because F.ds due to friction is always positive and an integral cannot

vanish (Goldstein 1980), i.e.:
H
F � ds>0.

7.4 Equations of Oscillation and Rotation of a Body
and Their Solution

After we have found that the resultant of the body’s gravitational field is not equal

to zero and the system’s dynamical equilibrium is maintained by the virial rela-

tionship between the potential and kinetic energies, the equations of a self-grav-

itating body motion can be written.
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Earlier (Ferronsky et al. 1987) we used the obtained virial equation (7.33)

for describing and studying the motion of both uniform and non-uniform self-

gravitating spheres. Jacobi (1884) derived it from Newton’s equations of motion

of n mass points and reduced the n-body problem to the particular case of the one-

body task with two independent variables, namely, the force function U and the

polar moment of inertia F, in the form

€F ¼ 2E� U: (7.60)

Equation 7.60 represents the energy conservation law and describes the system

in scalar U and F volumetric characteristics. In Chap. 3 it was shown that Eq. 7.60

is also derived from Euler’s equations for a continuous medium, and from the

equations of Hamilton, Einstein, and quantum mechanics. Its time-averaged form

gives the Clausius virial theorem for a system with outer source of forces. It was

earlier mentioned that Clausius was deducing the theorem for application in

thermodynamics and, in particular, as applied to assessing and designing of Car-

not’s machines. As the machines operate in the Earth’s outer force field, Clausius

introduced the coefficient 1/2 to the term of “living force” or kinetic energy, i.e.,

K ¼ 1

2

X
i

miv
2
i

As Jacobi has noted, the meaning of the introduced coefficient was to take into

account only the kinetic energy generated by the machine, but not by the Earth’s

gravitational force. That was demonstrated, for instance, by the work of a steam

hammer for driving piles. The machine raises the hammer, but it falls down under

the action of the force of the Earth’s gravity. That is why the coefficient 1/2 of the

kinetic energy of a uniform self-gravitating body in Eqs. 7.48–7.50 has disappeared.
In its own force field the body moves due to release of its own energy.

Earlier by means of relation U
ffiffiffiffiffiffi
F

p � const, an approximate solution of Eq. 7.60

for a non-uniform body was obtained (Ferronsky et al. 1987). Now, after expansion

of the force function and polar moment of inertia, at Ug¼ 0 and taking into account

the conditions of the dynamical equilibrium (7.57) and (7.59), Eq. 7.60 can be

written separately for the radial and tangential components in the form

€F0 ¼ 1

2
E0 � U0; (7.61)

€Ft ¼ 1

3
Et � Ut: (7.62)

Taking into account the functional relationship between the potential energy and

the polar moment of inertia

Uj j
ffiffiffiffiffiffi
F

p
¼ B ¼ const,
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and taking into account that the structural coefficients a20 ¼ b20 and 2 a2t ¼ b2t ,
both Eqs. 7.61 and 7.62 are reduced to an equation with one variable and have a

rigorous solution:

€Fn ¼ �An þ Bnffiffiffiffiffiffiffi
Fn

p ; (7.63)

where An and Bn are the constant values and subscript n defines the non-uniform

body.

The general solution of Eq. 7.62 is (4.14) and (4.15):

ffiffiffiffiffiffiffi
Fn

p
¼ Bn

An

½1� ecos( x� ’)], (7.64)

o ¼ 2p
Tv

¼ 4B

(2A)3=2
½ x� esinð x� ’Þ�; (7.65)

where e and j are, as previously, the integration constants depending on the initial

values of Jacobi’s function Fn and its first derivative _Fn at the time moment t0 (the

time here is an independent variable); Tv is the period of virial oscillations; o is the

oscillation frequency; x is the auxiliary independent variable; An ¼ A0 � 1=2

E0>0; Bn ¼ B0 ¼ U0

ffiffiffiffiffiffiffi
F0

p
for radial oscillations; An ¼ At ¼ �1=3Et; >0;

Bn ¼ Bt ¼ Ut

ffiffiffiffiffi
Ft

p
for rotation of the body.

The expressions for the Jacobi function and its first derivative in an explicit form

can be obtained after transforming them into the Lagrange series:

ffiffiffiffiffiffiffi
Fn

p
¼ B

A
1þ e2

2
þ �eþ 3

8
e3

� �
cosMc � e2

2
cos 2Mc � 3

8
e3cos 3Mc þ . . .

� 	
;

Fn¼B2

A2
1þ3

2
e2þ �2 eþe3

4

� �
cosMc�e2

2
cos2Mc�e3

4
cos3Mcþ ...

� 	
; (7.66)

_Fn ¼
ffiffiffiffi
2

A

r
eB sinMc þ 1

2
esin2Mc þ e2

2
sinMc(2cos

2Mc � sin2McÞ þ ...

� 	
:

Radial frequency of oscillation oor and angular velocity of rotation otr of the

shells of radius r can be rewritten from (7.40) as

o0r ¼ 2A0ð Þ3=2
4B0

¼
ffiffiffiffiffiffiffi
Uor

Jor

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2orGmr

b2orr3

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
pGr0r

r
; (7.67)

otr ¼ 2Atð Þ3=2
4Bt

¼
ffiffiffiffiffiffiffiffiffi
2Utr

Jtr

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2trGmr

b2trr3

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
pGr0rker

r
; (7.68)
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where Uor and Utr are the radial and tangential components of the force

function (potential energy); Jor and Jtr ¼ 2/3Jor are the polar and axial moment

of inertia; r0r ¼ 1
Vr

R
Vr

rðrÞdVr; r(r) is the law of radial density distribution;

r0r is the mean density value of the sphere with a radius r; Vr is the sphere

volume with a radius r; 2a tr
2 ¼ btr

2; ker is the dimensionless coefficient

of the energy dissipation or tidal friction of the shells equal to the shell’s

oblateness.

The relations (7.64)–(7.65) represent Kepler’s laws of body rotation in dynami-

cal equilibrium. In the case of uniform mass density distribution the frequency

(7.57) of oscillation of the sphere’s shells with radius r is oor ¼ oo ¼ const: It
means that here all the shells are oscillating with the same frequency. Thus, it

appears that only non-uniform bodies are rotating systems.

Rotation of each body’s shell depends on the effect of the potential

energy scattering at the interaction of masses of different density. As a

result, a tangential component of energy appears which is defined by the

coefficient ker. In geodynamics the coefficient is known as the geodynamical

parameter. Its value is equal to the ratio of the radial oscillation frequency

and the angular velocity of a shell and can be obtained from Eqs. 7.67

and7.68), i.e.

ke ¼ o2
t

o2
0

¼ ot
2

4

3
pG r0

: (7.69)

It was found that in the general case of a three-axial (a, b, c) ellipsoid with the

ellipsoidal law of density distribution, the dimensionless coefficient ke 2 ½0; 1� is
equal to (Ferronsky et al. 1987)

kr ¼ Fð’; fÞ
sin’

a2 þ b2 þ c2

3a2
;




where’ ¼ arcsin
ffiffiffiffiffiffiffiffiffi
a2�c2

a2

q
; f ¼

ffiffiffiffiffiffiffiffiffiffi
a2�b2

a2�c2

q
, and F(j,f) is an incomplete elliptic inte-

gral of the first degree in the normal Legendre form.

Thus, in addition to the earlier obtained solution of radial oscillations (Ferronsky

et al. 1987), now we have a solution of its rotation. It is seen from expression (7.67)

that the shell oscillation do not depend on the phase state of the body’s mass and are

determined by its density.

It follows from Eqs. 7.67 and 7.68 that in order to obtain the frequency of

oscillation and angular velocity of rotation of a non-uniform body, the law of radial

density distribution should be revealed. This problem will be considered later on.

But before that the problem of the nature of a body shells separation with respect to

their density needs to be solved.
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7.5 Application of Roche’s Tidal Approach for Separation
of the Body Shells

It is well known that celestial bodies have a quasi-spherical shell structure. This

phenomenon has been confirmed by recording and interpretation of seismic longi-

tudinal and transversal wave propagation during earthquakes. In order to under-

stand the physics and mechanism of a body mass differentiation with respect to its

density, we apply Roche’s tidal dynamics.

Newton’s theorem of gravitational interaction between a material point and a

spherical layer states that the layer does not affect a point located inside the layer.

On the contrary, the outside-located material point is affected by the spherical

layer. Roche’s tidal dynamics is based on the above theorem. His approach is as

follows (Ferronsky et al. 1996).

There are two bodies of masses M and m interacting in accordance with New-

ton’s law (Fig. 7.1a).

Let M�m and R� r, where r is the radius of the body m, and R is the distance

between the bodies M and m. Assuming that the mass of the body M is uniformly

distributed within a sphere of radius R, we can write the accelerations of the points

A and B of the body m as

qA ¼ GM

R� rð Þ2 �
Gm

r2
; qB ¼ GM

Rþ rð Þ2 þ
Gm

r2
:

The relative tidal acceleration of the points A and B is

qAB ¼ G
M

R� rð Þ2 �
M

Rþ rð Þ2 �
2m

r2

" #

¼ 4p
3
G rMR

3 4Rr

ðR2 � r2Þ2
� 2 rmr

" #
� 8p

3
Gr(2 rM � rmÞ: (7.70)
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Fig. 7.1 The tidal gravitational stability of a sphere (a), and the sphere layer (b)
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Here rM ¼ M/ 4
3
pR3 and rm ¼ m/ 4

3
p r3 are the mean density distributions

for the spheres of radius R and r. Roche’s criterion states that the body with mass m

is stable against the tidal force disruption of the body M if the mean density of the

body m is at least twice as high as that of the body M in the sphere with radius R.

Roche considered the problem of the interaction between two spherical bodies

without any interest in their creation history and in how the forces appeared.

From the point of view of the origin of celestial bodies and of the interpretation

of dynamical effects, we are interested in the tidal stability of separate envelopes of

the same body. For this purpose we can apply Roche’s tidal dynamics to study the

stability of a non-uniform spherical envelope.

Let us assess the tidal stability of a spherical layer of radius R and thickness

r ¼ RB � RA (Fig. 2.1b). The layer of mass m and mean density rm ¼ m/4 pRA
2r

is affected at point A by the tidal force of the sphere of radius RA. The mass of the

sphere is M and mean density rM ¼ M= 4
3
pR3

A The tidal force in point B is

generated by the sphere of radius R + r and mass M + m. Then the accelerations

of the points A and B are

qA ¼ GM

R2
A

; qB ¼ G Mþmð Þ
RA þ rð Þ2 :

The relative tidal acceleration of the points A and B is

qAB ¼ GM
1

R2
A

� 1

RA þ rð Þ2
" #

� Gm

RA þ rð Þ2

¼ 8

3
pGrM � 4pGrm

� �
r ¼ 4pGr

2

3
rM � rm

� �
; R>>rð Þ: (7.71)

Equations 7.70 and 7.71 give the possibility to understand the nature of a body

shell separation including some other dynamical effects.

7.6 Physical Meaning of Archimedes and Coriolis Forces
and Separation of the Earth’s Shells

The Archimedes principle states: The apparent loss in weight of a body totally or
partially immersed in a liquid is equal to the weight of the liquid displaced.We saw

in the previous section that the principle is described by Eqs. 7.70 and 7.71 and the

forces that sink down or push out the body or the shell are of a gravitational nature.

In fact, in the case of rn ¼ rM the body immersed in a liquid (or in any other

medium) is kept in place due to equilibrium between the forces of the body’s weight

and the forces of the liquid reaction. In the case of rn > rM or rn < rM the body is
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sinking or floating up depending on the resultant of the above forces. Thus, the

Archimedes forces seem to have a gravity nature and are the radial component of

the Earth’s inner force field.

It is assumed that the Coriolis forces appeared as an effect of the body motion in

the rotational system of co-ordinates relative to the inertial reference system. In this

case rotation of the body is accepted as the inertial motion and the Coriolis forces

appear to be the inertial ones. It follows from the solution of Eq. 7.62 that the

Coriolis’ forces appear to be the tangential component of body’s inner force field,

and the body rotation is caused by the moment of those forces that are relative to

the three-dimensional centre of inertia which also does not coincide with the three-

dimensional gravity centre.

In accordance with Eq. 7.71 of the tidal acceleration of an outer non-uniform

spherical layer at rM 6¼ rm , the mechanism of the gravitational density differenti-

ation of masses is revealed. If rM < rm, then the shell immerses (is attracted) up to

the level where rM ¼ rm. At rM > rm the shell floats up to the level where

rM ¼ rm and at rM > 2/3rm the shell becomes a self-gravitating one. Thus, in

the case when the density increases towards the sphere’s center, which is the

Earth’s case, then each overlying stratum appears to be in a suspended state due

to repulsion by the Archimedes forces which, in fact, are a radial component of the

gravitational interaction forces.

The effect of the gravitational differentiation of masses explains the nature of

creation of shell-structured celestial bodies and corresponding processes (for

instance, the Earth’s crust and its oceans, geotectonic, orogenic and seismic

processes, including earthquakes). All these phenomena appear to be a conse-

quence of the continuous gravitational differentiation in density of the planet’s

masses. We assume that creation of the Earth and the Solar system as a whole was

resulted by this effect. For instance, the mean value of the Moon’s density is less

than 2/3 of the Earth’s, i.e., rM < 2/3rm. If one assumes that this relation was

maintained during the Moon’s formation, then, in accordance with Eq. 7.71, this

body separated at the earliest stage of the Earth’s mass differentiation. Creation of

the body from the separated shell should occur by means of the cyclonic eddy

mechanism, which was proposed in due time by Descartes and which was unjustly

rejected. If we take into account existence of the tangential forces in the non-

uniform mass, then the above mechanism seems to be realistic.

7.7 Self-similarity Principle and the Radial Component
of a Non-uniform Sphere

It follows from Eq. 7.71 that in the case of the uniform density distribution (rm ¼
rM), all spherical layers of the gravitating sphere move to the centre with accel-

erations and velocities which are proportional to the distance from the centre. It

means that such a sphere contracts without loss of its uniformity. This property of
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self-similarity of a dynamical system without any discrete scale is unique for a

uniform body (Ferronsky et al. 1996).

A continuous system with a uniform density distribution is also ideal from the

point of view of Roche’s criterion of stability with respect to the tidal effect. That is

why there is a deep physical meaning in separation of the first term of potential

energy in expression (7.48). A uniform sphere is always similar in its structure in

spite of the fact that it is a continuously contracting system. Here, we do not

consider the Coulomb forces effect. For this case we have considered the specific

proton and electron branches of the evolution of the body (see Chap. 8).

Note that in Newton’s interpretation the potential energy has a non-additive

category. It cannot be localized even in the simplest case of the interaction between

two mass points. In our case of a gravitating sphere as a continuous body, for the

interpretation of the additive component of the potential energy we can apply

Hooke’s concept. Namely, according to Hooke there is a linear relationship

between the force and the caused displacement. Therefore the displacement is in

square dependence on the potential energy. Hooke’s energy belongs to the additive

parameters. In the considered case of a gravitating sphere, the Newton force acting

on each spherical layer is proportional to its distance from the centre. Thus,

here from the physical point of view, the interpretations of Newton and Hooke

are identical.

At the same time in the two approaches there is a principal difference even in the

case of uniform distribution of the body density. According to Hooke the cause of

displacement, relative to the system, is the action of the outer force. And if the total

energy is equal to the potential energy, then equilibrium of the body is achieved.

The potential energy plays here the role of elastic energy. The same uniform sphere

with Newton’s forces will be contracted. All the body’s elementary shells will

move without change of uniformity in the density distribution. But the first terms of

Eqs. 7.48–7.50 show that the tidal effects of a uniform body restrict motion of the

interacting shells towards the centre. In accordance with Newton’s third law and the

d’Alembert principle the attraction forces, under the action of which the shells

move, should have equally and oppositely direct forces of Hooke’s elastic counter-

action. In the framework of the elastic gravitational interaction of shells, the

dynamical equilibrium of a uniform sphere is achieved in the form of its elastic

oscillations with equality between the potential and kinetic energy. The uniform

sphere is dynamically stable relative to the tidal forces in all of its shells during the

time of the system contraction. Because the potential and kinetic energies of a

sphere are equal, then its total energy in the framework of the averaged virial

theorem within one period of oscillation is accepted formally as equal to zero.

Equality of the potential and kinetic energy of each shell means the equality of the

centripetal (gravitational) and centrifugal (elastic constraint) accelerations. This

guarantees the system remaining in dynamical equilibrium. On the contrary, all

the spherical shells will be contracted towards the gravity centre which, in the case of

the sphere, coincides with the inertia centre but does not coincide with the geometric

centre of the masses. Because the gravitational forces are acting continuously, the

elastic constraint forces of the body’s shells are reacting also continuously.
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The physical meaning of the self-gravitation of a continuous body consists in the

permanent work which applies the energy of the interacting shell masses on one

side and the energy of the elastic reaction of the same masses in the form of

oscillating motion on the other side. At dynamical equilibrium the body’s equality

of potential and kinetic energy means that the shell motion should be restricted

by the elastic oscillation amplitude of the system. Such an oscillation is similar

to the standing wave which appears without transfer of energy into outer space.

In this case the radial forces of the shell’s elastic interactions along the outer

boundary sphere should have a dynamical equilibrium with the forces of the

outer gravitational field. This is the condition of the system to be held in the

outer force field of the mother’s body. Because of this, while studying the dynamics

of a conservative system, its rejected outer force field should be replaced by the

corresponding equilibrated forces as they do, for instance, in Hooke’s theory of

elasticity.

Thus, from the point of view of dynamical equilibrium the first terms in

Eqs. 7.48–7.50 represent the energy which provides the field of the radial forces

in a non-uniform sphere. Here, the potential energy of the uniform component

plays the role of the active force function, and the kinetic energy is the function of

the elastic constraint forces.

7.8 Charges-Like Motion of Non-uniformities and Tangential
Component of the Force Function

Let us now discuss the tidal motion of non-uniformities due to their interactions

with the uniform body. The potential and kinetic energies of these interactions are

given by the second terms in Eqs. 7.48 and 7.50. In accordance with (7.71), the

non-uniformity motion looks like the motion of electrical charges interacting on

the background of a uniform sphere contraction. Spherical layers with densities

exceeding those of the uniform body (positive anomalies) come together and move

to the centre in elliptic trajectories. The layers with deficit of the density (negative

anomalies) come together, but move from the centre on the parabolic path. Similar

anomalies come together, but those with the opposite sign are dispersed with forces

proportional to the layer radius. In general, the system tends to reach a uniform and

equilibrium state by means of redistribution of its density up to the uniform limit.

Both motions happen not relative to the empty space, but relative to the oscillating

motion of the uniform sphere with a mean density. Separate consideration of

motion of the uniform and non-uniform components of a heterogeneous sphere is

justified by the superposition principle of the forces action which we keep here in

mind. The considered motion of the non-uniformities looks like the motion of the

positive and negative charges interacting on the background of the field of the

uniformly dense sphere (Ferronsky et al. 1996). One can see here that in the case of

gravitational interaction of mass particles of a continuous body, their motion is the
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consequence not only of mutual attraction, but also mutual repulsion by the same

law 1/r2. In fact, in the case of a real natural non-uniform body it appears that the

Newton and Coulomb laws are identical in details. Later on, while considering a

body’s by-density differentiated masses, the same picture of motion of the positive

and negative anomalies will be seen.

If the sphere shells, in turn, include density non-uniformities, then by means of

Roche’s dynamics it is possible to show that the picture of the non-uniformity

motion does not differ from that considered above.

In physics the process of interaction of particles with different masses without

redistribution of their moments is called elastic scattering. The interaction process

resulting in redistribution of their moments and change in the inner state or structure

is called inelastic scattering. In classical mechanics while solving the problems of

motion of the uniform conservative systems (like motion of the material point in the

central field or motion of the rigid body), the effects of the energy scattering do not

appear. In the problem of dynamics of the self-gravitating body, where interaction

of the shells with different masses and densities are considered, the elastic and

inelastic scattering of the energy becomes an evident fact following from consider-

ation of the physical meaning of the expansion of the energy expressions in the form

of (7.48) and (7.50). In particular, their second terms represent the potential and

kinetic energies of gravitational interaction of masses having a non-uniform density

with the uniform mass and express the effect of elastic scattering of density-

different shells. Both terms differ only in the numeric coefficient and sign. The

difference in the numerical coefficient evidences that the potential energy here is

equal to half of the kinetic one (Ut ¼ 1/2Kt). This part of the active and reactive

force function characterizes the degree of the non-coincidence of the volumetric

centre of inertia and that of the gravity centre of the system expressed by Eqs. 2.48

and 2.49. This effect is realized in the form of the angular momentum relative to the

inertia centre.

Thus, we find that inelastic interaction of the non-uniformities with the uniform

component of the system generates the tangential force field which is responsible

for the system rotation. In other words, in the scalar force field of the by-density

uniform body the vector component appears. In such a case, we can say that, by

analogy with an electromagnetic field, in the gravitational scalar potential field of

the non-uniform sphere U(R, t) the vector potential A(R, t) appears for which

U ¼ rot A and the field U(R, t) will be solenoidal. In this field the conditions for

vortex motion of the masses are born, where div A ¼ 0. This vector field, which in

electrodynamics is called solenoidal, can be represented by the sum of the potential

and vector fields. The fields, in addition to the energy, acquire moments and have a

discrete-wave structure. In our case the source of the wave effects appears to be the

interaction between the elementary shells of the masses by means of which we can

construct a continuous body with a high symmetry of forms and properties. The

source of the discrete effects can be represented by the interacting structural

components of the shells, namely, atoms, molecules and their aggregates. We

shell continue discussion about the nature of the gravitational and electromagnetic

energy in Chap. 8.
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7.9 Radial Distribution of Mass Density and the Body’s
Inner Force Field

At present only the Earth has experimental data which allow to interpret them with

respect to radial distribution of the body’s mass density. Taking into account our

consideration of dynamics of celestial bodies as self-gravitating systems we

assume that formation of the Earth’s mass density distribution is typical at least

for all the planets and satellites.

The existent idea about the radial mass density distribution of the Earth is based

on interpretation of transmission velocity of the longitudinal and transverse seismic

waves. Figure 7.2 presents the classic curve of transmission velocities of the

longitudinal and transverse seismic waves in the Earth plotted after generalization

of numerous experimental data (Jeffreys 1970; Melchior 1972; Zharkov 1978).

Velocity, km/s

Crust Mantel Core outer Core inner
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Fig. 7.2 Present-day interpretation of the curves of transmission velocities of longitudinal (1) and

transverse (2) seismic waves, density (3), and hydrostatic pressure (4) in the Earth
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The curves of the radial density and hydrostatic pressure distribution based on

interpretation of the velocities of the longitudinal and transverse seismic waves are

also shown.

The picture of the transmission velocities of the seismic waves was obtained by

observations and therefore is realistic and correct. But interpretation of the obtained

data was based on the idea of hydrostatic equilibrium of the Earth. It leads to

incredibly high pressures in the core and high values of the mass density.

In accordance with Bullen’s approach for interpretation of the seismic data, the

density distribution is characterized by the following values (Bullen 1974; Melchior

1972; Zharkov 1978). The density of the crust rocks is 2.7–2.8 g/cm3 and increases

towards the centre by a certain curve up to ~13.0 g/cm3 with jumps at the

Mohorovičić-Guttenberg discontinuity, between the upper and lower mantle, and

on the border of the outer core. Within the core the values of the transverse seismic

waves are equal to zero. Despite the jump of the longitudinal seismic wave velocity

at the outer core border dropping down, Bullen accepted that the density increases

toward the center. It was done after his unsuccessful attempt to approximate the

seismic data of the parabolic curve which gives a decrease of density in the core.

Such a tendency is not consistent with the idea of iron core content. Bullen certainly

had no idea that the radius of inertia and radius of gravity of the body do not

coincide with its geometric centre of mass and, therefore, the maximum value of

density is not located there. In accordance with our concept of the equilibrium

condition of the planet and its dynamical parameters, the approach to interpretation

of the seismic data related to the radial density and radial pressure distribution

should be done on a new basis.

Now, when we accept the concept of dynamical equilibrium of the Earth and

refuse its hydrostatic version, the basic idea to search for a solution of the problem

seems to be the found relationship between the polar moment of inertia and the

potential (kinetic) energy. The value of the structural form-factor of the Earth’s

mean axial moment of inertia b2⊥ ¼ J⊥/MR2 ¼ 0.3315 found by artificial satellites

(Zharkov 1978) should be taken as a starting point. The mean polar moment

of inertia of the assumed spherical non-uniform planet is equal to b2 ¼ (3/2)b2⊥ ¼
0.49725. We accept this value for development of the methodology.

Let us take as a basis the found mechanism of the shell separation with respect to

the mass density which was presented in Sects. 7.5–7.8. The conditions and

mechanism of the shell separation into radial and tangential components of the

inner force field (by the Archimedes and Coriolis forces) represent continually

acting effects and create physics for the Earth’s structure formation. These effects

explain the jumps between the shells observed by seismic data density. We take also

into account the effect, expressed by Eq. 7.30, according to which the velocity of

the sound recorded by the transmission velocity of the longitudinal and transverse

seismic waves quantitatively characterize the energy of the elastic deformation of

the media and velocity of its transmission there.

Applying the conception of Sect. 7.8, we accept that the non-uniformities of the

spherical shells come together and, after their density becomes lower than that of

the mean density of the inner sphere, move from the center by the parabolic law
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because they interact according to the law 1/r2. So, we can find a probable law of

the radial density distribution in the form

r( r Þ ¼ r0ðax2 þ bxþ c), (7.72)

where x ¼ r/R is the ratio of the running and the final radius of the planet; r0 is the
body’s mean density; a, b, c are the numerical coefficients.

The numerical coefficients were selected for different densities for the upper

shell and in such a way that the planet’s total mass M would be constant, i.e.,

M ¼ 4 p
ZR
0

r2rðrÞdr ¼ 4 p
ZR
0

r2r0ð� a
r2

R2
þ b

r

R
þ c)dr

¼ 4

3
pR3 r0ð�

3

5
aþ 3

4
bþ c)

Here the term ð3=5)aþ ð3=4)bþ c ¼ 1 in the right-hand side of the expression

allows us to calculate and plot the distribution density curves in a dimensionless

form.

We have selected three most typical parabolas (7.73) which satisfy the condition

of equality of their moment of inertia, found by artificial satellite data, namely, the

axial moment of inertia J? ¼ b2? mR2 ¼ 0:3315mR2 or the polar moment of

inertia J ¼ b2mR2 ¼ 0.4973 mR2. In addition, the first relation in (7.73) represents

the straight line for which the surface mass density and that in the center corre-

spond to the present-day version and to the form-factor b2?. The fifth straight line

represents the uniform spherical planet. The curve equations with selected numeri-

cal coefficients a, b, and c are as follows:

1: r(r) ¼ r0 �2
r

R
þ 2:495

� �
; a ¼ 0; rs ¼ 2:73 G/CM3;

2: r(r) ¼ r0 �1:51
r2

R2
þ 0:016

r

R
þ 1:894

� �
; rs ¼ 2:08 G/CM3;

3: r(r) ¼ r0 �3:26
r2

R2
þ 2:146

r

R
þ 1:3465

� �
; rs ¼ 1:28 G/CM3;

4: r(r) ¼ r0 �5:24
r2

R2
þ 5:132

r

R
þ 0:295

� �
; rs ¼ 1:03224 G/CM3;

5: r rð Þ ¼ r0 ¼ const:

(7.73)

Figure 7.3 shows all the curves of (7.73). They intersect the straight line 5 of the

mean density in the common point which corresponds to the value r/R ¼ 0.61475.

Using Eq. 7.73 and the found (by observations) form-factor b2? ¼ 0:3315, the
main dynamical parameters were calculated for all four curves. The calculations
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were done by the known formulae of the theory of attraction (Duboshin 1975) and

taking into account the relations of (7.48) and (7.50) obtained in Sect. 7.2. These

calculations are presented below for equation (4), as an example.

The potential energy of the non-uniform sphere with the density distribution law

r(r) is found from the equation:

U ¼ 4pG
ZR
0

rr rð Þm rð Þdr, (7.74)

where

r rð Þ ¼ r0 a
r2

R2
þ b

r

R
þ c

� �
; a ¼ �5.24; в ¼ 5.132; c ¼ 0.295;

m rð Þ ¼ 4p
Z r

0

r2r rð Þdr ¼ 4 p
Z r

0

r2r0 a
r2

R2
þ b

r

R
þ c

� �
dr

¼ 4

3
pr3

3

5
a
r2

R2
þ 3

4
b
r

R
þ c

� �

Then

U ¼ 4pG
ZR
0
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r
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þ c

� �
4
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a
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dr
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Fig. 7.3 Parabolic curves of

radial density distribution

calculated by Eq. 7.73
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The form-factor of the potential energy is a2 ¼ rg
2=R2 ¼ 0:660143, and the

reduced radius of gravity is rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:660143R2

p
¼ 0:8124918R:

In accordance with Eq. 7.48, the potential energy of the non-uniform sphere is

expanded into the components

U ¼ U0 þ Ut þ Ug: (7.75)

The potential energy of the uniform sphere is equal to

U0 ¼ 3

5

GM2

R
: (7.76)

The form-factors of the potential and kinetic energy are equal to a20 ¼ 0:6 and

b20 ¼ 0:6 accordingly.

In accordance with the second term of the right–hand side of Eq. 7.48, the

tangential component of the non-uniform sphere is written as

Ut ¼ � 1

2
4pG

ZR
0

rrt rð Þm0 rð Þdr; (7.77)

where

rt rð Þ ¼ r rð Þ � r0 ¼ r0 a
r2

R2
þ b

r

R
þ c

� �
� r0 ¼ r0 a

r2

R2
þ b

r

R
þ c� 1

� �
;

m0 rð Þ ¼ 4p
Z r

0

r2r0dr ¼
4

3
pr0r

3:

The coefficient ½ in (7.77) is taken as the ratio of the second terms of the

right–hand side of Eqs. 7.48 and 7.50, as in this particular case the tangential

component of the potential energy is determined through the tangential component

of the kinetic energy and is equal to half its value. Then

Ut ¼� 1

2
4
4

3
pr0ð Þ2G

ZR
0

r4 a
r2

R2
þ b

r

R
þ c� 1

� �
dr

¼ � 1

2

GM2

R

3

7
aþ 1

2
bþ 3

5
c� 3

5

� �
¼ 0:0513571

GM2

R

The form-factors of the tangential components of the potential and kinetic energy

are equal to a2t ¼ 0:051357 and b2t ¼ 2 � 0:051357 ¼ 0:102714 accordingly.
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In accordance with the third term in the right–hand side of Eq. 7.48, the

dissipative component of the potential energy of the non-uniform sphere is

Ug ¼ 4pG
ZR
0

rrt rð Þmt rð Þdr; (7.78)

where

rt rð Þ ¼ r rð Þ � r0 ¼ r0 a
r2

R2
þ b

r

R
þ c� 1

� �
;

m0 rð Þ ¼ 4p
Z r

0

r2rt rð Þdr ¼ 4p
Z r

0

r2r0 a
r2

R2
þ b

r

R
þ c� 1

� �
dr

¼ 4

3
pr0r

3 3

5
a
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þ 3

4
b
r

R
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� �
:

Then

Ug ¼ 4
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� �
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35
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8
bc� 7
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5
c2 � 5

6
cþ 3

5

� �

¼ 0:008786
GM2

R
(7.79)

So, the value of the form-factor of the dissipative component is a2g ¼ 0.008786.

The radial distribution of the potential energy for interaction of a test mass point

with the non-uniform sphere is

U rð Þ¼ 4pG
r

Z r

0

r2r rð Þdrþ4pG
ZR
r

rr rð Þdr ¼ 4pG
r

Z r

0

r2r0 a
r2

R2
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r

R
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dr

þ4pG
ZR
r

rr0 a
r2
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þb

r

R
þc
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dr¼GMm1

R
� 3

20
a
r4

R4
�1

4
b
r3

R3
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2
c
r2
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þ 3

4a
þbþ3

2
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¼ GMm1

R
0:786

r4

R4
� 1:283

r3

R3
� 0:1475

r2

R2
þ 1:6445

� �
: (7.80)

At r/R ¼ 0, then a2uðrÞ ¼ 1:6445; and at r/R ¼ 1 then a2uðrÞ ¼ 1.
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The radial distribution of the interaction force of the test mass point with the

non-uniform sphere is

q rð Þ ¼ � 4pG
r2

Z r

0

r2r rð Þdr ¼ � 4pG
r2

Z r

0

r2r0 a
r2

R2
þ b

r

R
þ c

� �
dr

¼ �GMm1

R2

3

5
a
r3

R3
þ 3

4
b
r2

R2
þ c

r

R

� �

¼ �GMm1

R2
�3:144

r3

R3
þ 3:849

r2

R2
þ 0:295

r

R

� �
: (7.81)

At r/R ¼ 0 then a2qðrÞ ¼ 0; and at r/R ¼ 1 then a2qðrÞ ¼ 1.

Table 7.1 demonstrates the results of the calculated dynamical parameters for all

the density curves (7.73) and Fig. 7.4 shows the curves of radial distribution of the

potential energy and gravity force for the test mass point.

We wish to evaluate all four curves of mass density distribution in order to

recognize which one is closer to the real Earth. In this case we keep in mind that the

observed density jumps can be obtained for any curve by approximation of its

continuous section with the mean value for each shell.

Figure 7.4 shows that the radial density values are substantially different for

each curve. It refers, first of all, to the surface and centre of the body. At the same

time Table 7.1 demonstrates the complete identity of the dynamical parameters of

all the non-uniform spheres. It means that a fixed value of the polar moment of

inertia permits us to have a multiplicity of curves of the radial density distribution

with identical dynamical parameters of the body. The found property of the non-

Table 7.1 Physical and dynamical parameters of the Earth for the density distribution presented

by Eq. 7.73

Equation no 1 2 3 4

rs, g/cm
3 2.76 2.08 1.65 1.03224

rc, g/cm
3 13.8 10.455 6.315 1.6284

rmax, g/cm
3/km 13.8/0 10.455/0 8.26/2096 8.57/3122

b2⊥ 0.3315 0.3315 0.3315 0.3315238

b2 0.49725 0.49725 0.49725 0.49725858

bt
2 0.10275 0.10275 0.102752 0.102714

a2 0.660737 0.660737 0.660737 0.660143

at
2 0.051371 0.051371 0.0513714 0.0513571

ag
2 0.009366 0.009366 0.009366 0.0087859

rg, km 5178.6 5178.7 5178.6 5176.4

rm, km 4492.6 4492.6 4492.6 4492.7

rs, rc, rmax are the density on the sphere’s surface, in the centre, and maximal accordingly

b2⊥, b
2 , bt

2 are the form-factors of the axial, polar, and tangential components of the radius of

inertia accordingly

a2, at
2 , ag

2 are the form-factors of the radial, tangential, and dissipative components of the force

function accordingly

rg, rm are the radiuses of the gravity and inertia
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uniform self-gravitating sphere proves the rigor of the discovered functional rela-

tionship between the potential (kinetic) energy and the polar moment of inertia of

the sphere. This property, in turn, is explained by the energy conservation law of a

body during its motion and evolution in the form of the dynamical equilibrium

equation or generalized virial theorem.

If we accept the conditions of the mass density separation presented in

Sects. 7.5–7.8, then the range of curves of the density distribution gives a principal

picture of its evolutionary redistribution and can be applied for reconstruction of the

Earth’s history. It follows from Eq. 7.71 that the density value of each overlying

shell of the created Earth should be higher than the mean density of the inner mass.

Otherwise, such a shell can not be retained and should be dispersed by the tidal

forces. It follows from this that the planet’s formation process should be strictly

operated by the dynamical laws of motion in the form of the virial oscillations and

accompanied by differentiation of the non-uniform shells. The model of a cyclonic

vortex which was proposed by Descartes is the most acceptable from the point of

view of the considered ideas of planets’ and satellites’ creation from a common

nebula. This problem needs a separate consideration. We only note here that from

the presented curves of radial density distribution the parabola (4) more closely

reflects the present-day planet’s evolution as fixed by observations. In this case

location of the Earth’s reduced inertia radius falls on the lower mantle and the

reduced gravity radius – on the upper mantle. The density maximum falls also on

the lower mantle. Its value is found by ordinary means, namely, by taking the

derivative from the density distribution law as equated to zero. From here rmax ¼
8.57 g/cm3 is found to be at a distance of r ¼ 3,122 km. It means that the density

maximum comes close to the border of the outer core where, as seismic observations

show, themain density jump occurs. Curve (4) corrects the values of the radial density

distribution in the mantle and changes its earlier interpretation in the outer and inner

core. Because of zero values of the transverse velocities thematter of the inner core has
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Fig. 7.4 The curves of the radial distribution of the potential energy (a) and gravity force (b) for
the mass point test done by Eqs. 7.74 and 7.81
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a uniform density structure and, from the point of view of the equilibrium state, seems

to be in a gaseous state at a pressure of 1–2 atmospheres. Taking into account the

location of the maximum density value, there is a reason to assume that the outer core

matter stays in the liquid or supercritical gaseous stage. In any case, the density and

pressure of the inner and outer core are much lower and should have values

corresponding to the seismic wave velocities. On the basis of the equation of mass

density differentiation (7.71) we interpret the density jumps observed (by seismic

data) near-by theMohorovičić-Guttenberg and at the outer core borders as the borders

of the shell’s dynamical equilibrium. A shell which is found over that border appears

in a suspended state due to action of the radial component of the gravitational pressure

developed by the denser underlying shell. While the thickness of the suspended shell

is growing it acquires its own equilibrium pressure (iceberg effect). The extremely

high pressures in the Earth’s interior, which follow from the hydrostatic equilibrium

conditions, are impossible in its own force field.

The concept discussed above in relation to the Earth’s density distribution is

illustrated in Fig. 7.5 .

7.10 Oscillation Frequency and Angular Velocity
of the Earth’s Shell Rotation

In order to determine numerical values of frequency of the virial oscillations and

the angular velocities, which are the main dynamical parameters of the Earth’s

shells, we accept equation (4) of the density distribution (7.73) as the first approxi-

mation. All further relevant calculations can be made by applying this equation.
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KM

Fig. 7.5 Radial density distribution of the Earth by the authors’ interpretation
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We know the mean values of the planet’s density r0 ¼ 5.519 g/cm3 and angular

velocity of the upper shell ot ¼ 7.29.10�5 s�1. Applying these values, the fre-

quency and period of the virial oscillations, and the coefficient ke of the tangential

component of the inner forces, can be found. In accordance with Eq. 7.67 the

frequency of the upper shell is equal to

o0 rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
pGr0 rð Þ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
� 3:14 � 6:67 � 10�8 � 5:519

r
¼ 1:24 � 10�3 s�1:

The period of oscillation is found from the expression

To ¼ 2p
o0ðrÞ ¼

6:28

1:24 � 10�3
¼ 5060:4 s ¼ 1:405 h:

The product of the found frequency and the Earth’s radius gives the value of the

planet’s first cosmic velocity, the mean value of which is

n1 ¼ o0ðrÞre ¼ ð1:24 � 10�3Þ � 6370 ¼ 7:9 km=s:

Unlike the usual expression for the first cosmic velocity in the form of

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
GM=r

p
, we used here the physical condition of the dynamical equilibrium

at the Earth’s surface between the inner gravitational pressure of interacting masses

and the outer background pressure including atmospheric pressure.

Given below our own observation data on the near-surface atmospheric pressure and

temperature oscillations at the near-surface layer and the results of the spectral analysis

prove the above theoretical calculations of the planet’s frequency of virial oscillations.

Now, applying the known mean value of the Earth’s angular velocity ot ¼
7.29 .10�5 s�1 and the known value of the frequency of virial oscillations for the

upper shell oo ¼ 1.24.10�3 s�1 by Eq. 7.69 the coefficient ke can be found

ke ¼ o2
t

o2
0

¼ 7:29 � 10�5
� �2
1:24 � 10�3
� �2 ¼ 1

289:33
¼ 0:003456:

The coefficient ke is known in geodynamics as a parameter that shows the ratio

between the centrifugal force at the Earth’s equator and the acceleration of the

gravity force there equal to ke ¼ 1/289.37 (Melchior 1972). The parameter is used

to study the Earth’s figure based on the Clairaut hydrostatic theory.

7.10.1 Thickness of the Upper Earth’s Rotating Shell

It is known that the value of the mean linear velocity of the upper planet’s shell is

ve ¼ 0.465 km/c. We can find the thickness he at which the velocity ve corresponds

to the found frequency of radial oscillations of the shell oo ¼ 1.24.10�3 s�1

he ¼ v

ooðrÞ ¼
0:465

1:24 � 10�3
¼ 375 Km: (7.82)
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Such is the thickness of the upper shell of the Earth which is rotating by forces

in its own force field. It is assumed that the shell is found in the solid state. In

reality it is known that the rigid shell has a thickness less than 50 km. The

remaining more than 300 km-thick part of the shell has a viscous-plastic consis-

tency, the density of which increases with depth. The border of the shell has

a decreased density because of the melted substance due to high friction and

saturation by a gaseous component. The border plays a role of some sort of

spherical hinge. Because the density of the Earth’s crust is lower than that of the

underlying matter, then it occurs in the suspended state. During the oscillating

motion the crust shells are affected by the alternating-sign acceleration and the

inertial isostatic effects.

7.10.2 Oscillation of the Earth’s Shells

Let us obtain the expression of virial oscillations for the Earth’s other shells by

applying expression (4) of (7.73) for the radial density distribution. Write Eq. 7.67

o0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
pGr0ðrÞ

r
;

Where

r0ðrÞ ¼
m0ðrÞ
4

3
pr3

¼
4p

Rr
0

r2rðrÞdr
4

3
pr3

¼
4

3
pr3r0

3

5
a
r2

R2
þ 3

4
b
r

R
þ c

� �
4

3
pr3

¼ r0
3

5
a
r2

R2
þ 3

4
b
r

R
þ c

� �
:

Then

o0 rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
pGr0 rð Þ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
pGr0

3

5
a
r2

R2
þ 3

4
b
r

R
þ c

� �s

¼ 1:24 � 10�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3:144

r2

R2
þ 3:849

r

R
þ 0:295

� �s
: (7.83)

At r/R ¼ 0 then oo(r) ¼ 0.6743.10�3 s�1; at r/R ¼ 1 then oo(r) ¼ 1.24.10
�3 s�1; at rmax ¼ 8.57 g/cm3 oo(r) ¼ 1.486.10�3 s�1, where r/R ¼ 0.49.
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Figure 7.6a shows changes in the virial oscillation frequencies of the Earth’s shells.

7.10.3 Angular Velocity of Shell Rotation

Angular velocity of the Earth’s shell rotations is determined from Eq. 7.68

ot rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
pGrt rð Þ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
pGr0 rð Þ 3

5
a
r2

R2
þ3

4
b
r

R
þc

� �
ke rð Þ

s

¼ o0ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

5
a
r2

R2
þ 3

4
b

r

R
þ c

� �
keðrÞ

s

¼ o0ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3:144

r2

R2
þ 3:8475

r

R
þ 0:295

� �
keðrÞ

s
(7.84)

where ot(r) is the angular velocity of the shell rotation; oo(r) is the shell oscillation

frequency which is determined by Eq. 7.83.

The geodynamic parameter ke(r), which expresses the ratio of the tangential

component of the force field and the gravity force acceleration for the upper shell, is

approximated as

ke rð Þ ¼ o2
t ðrÞ

o2
0ðrÞ

¼ h2c
R2

w0 10 −3, s−1 w t, s−1
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Fig. 7.6 Radial change in virial oscillation frequencies (a) and angular velocity of rotation

(b) according to Eqs. 7.83 and 7.84
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where hc is the distance between the sphere’s surface and the density jump; R is the

sphere’s radius.

At r/R ¼ 1 ke(r) ¼ 0.003456; at r/R ¼ 0 ke(r) ¼ 1, ot(0) ¼ oo(0), i.e. the virial

oscillation frequency corresponds to the gravity pressure of the uniform density

masses. In this particular case we are interested in changes of the angular velocity

of rotation of the upper (1,000 km) and lower (up to the core border) mantle

(2,900 km) shells. Figure 7.6b shows the radial change of the angular velocity of

rotation calculated by Eq. 7.84. It is seen that the angular velocity at the lower

mantle – outer core is close to zero but changes its direction.

We emphasize once more that Eqs. 7.83 and 7.84 express the third Kepler law

which determines radial distribution of both the virial oscillation frequencies and

the angular velocities of rotation. Numerical values of these parameters are deter-

mined by the radial density distribution law. It also determines the density jumps

which mark the effect of the shell’s isostatic equilibrium.

7.11 Perturbation Effects Studied on Basis of Dynamic
Equilibrium

The most noteworthy effects of dynamics of the Earth are the interrelated phenom-

ena of the precession and nutation of the axis of rotation, tidal effects of the oceans,

and atmosphere, the axial obliquity and declination of the plumb-line and the

gravity change at each point of the planet’s outer force field. The present-day

ideas about the nature of these phenomena were formed on the basis of the Earth’s

hydrostatic equilibrium and since old times were considered as effects of perturba-

tion from the Sun, the Moon and other planets. All the above phenomena represent

periodic processes and many observational and analytical works were done for

their understanding and description. The present-day studies of these processes are

still continuing to be specified and corrected. This is because such topical problems

as correct time, ocean dynamics, short and long-term weather and climate changes

and other environmental changes are important for every-day human life.

Now, after it was found that the conditions of the hydrostatic equilibrium are not

acceptable for study of the Earth’s dynamics, we reconsider the nature of the

phenomena by applying the concept of the planet’s dynamical equilibrium and

developing a novel approach to solving the problem.

7.11.1 The Nature of Perturbation for Orbital Motion of a Body

To begin, let us consider physical meaning of the gravitational perturbation for

interacting volumetric (but not point) body masses. To the contrary of hydrostatics,

where the measure of perturbation in the precession-nutation and the tidal phe-

nomena is the perturbing force, in the dynamic approach that measure of
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perturbation is power pressure. In Chap. 2 we concluded that the mass points and

the vector forces as a physical and mathematical instrument in the problem

solution of dynamics of the Earth in its own force field are not applicable. This

is because the outer vector central force field of the interacting volumetric masses

incorrectly expresses dynamical effects of their interaction. As a result, the

kinetic effect of interaction of the mass particles, namely, the kinetic energy of

their oscillation, is lost. And also the geometric center of a body is accepted as the

gravity center and center of the inertia (reaction). In dynamics it leads to wrong

results and conclusions. In this connection we found that in dynamics of the Earth

as a self-gravitating body the effect of gravitational interaction of mass particles

should be considered as the power pressure. In addition, in this case we are free in

our choice of a reference system. Our conclusion does not contradict to Newton’s

physical ideas which are presented in Book I of his Principia where he says: “I

approach to state a theory about the motion of bodies tending to each other with

centripetal forces, although to express that physically it should be called more

correct as pressure. But we are dealing now with mathematics and in order to be

understandable for mathematicians let us leave aside physical discussion and

apply the force as its usual name”.

Accepting the power pressure as an effect of gravitational interaction, we come

to understanding that, in the considered problem of the mutual perturbations

between the Earth, the Moon, and the Sun, the interaction results not between

the body centers or shells along straight lines, but between the outer force fields of

the bodies and between their inner force fields of the shells. Satellite observations

show that the outer force field, induced by the Earth’s mass, has 4p-outward
direction of propagation and acquires a wave nature. We consider this outer

wave force field as a physical media by which the bodies transmit their energy.

Thus, the Earth and other planets are held and move on the orbits by the power of

the outer wave field of the Sun. This power, in terms of its normal and equal to its

tangential components, remains valid since the planets separation (see above

Sects. 7.5, 7.6 and Chap. 8). In order to demonstrate validity of the above concep-

tion let us calculate the mean values of velocity of the Earth and the Moon orbital

motion from the frequencies of oscillation of the respective outer wave fields of

their parents.

In accordance with Eq. 7.67, the frequency os of oscillation of the self-gravitating

Sun’s outer force field at the mean distance Reof the Earth’s orbit is

os ¼
ffiffiffiffiffiffiffiffiffiffi
GMs

R3
es

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:67 � 10�8 � 1:99 � 1033

1:496 � 1013� �3
vuut ¼ 1:9931 � 10�7 s�1;

where Ms is the Sun’s mass; Res is the mean distance between the Earth and the Sun.

In accordance with wave mechanics, the mean value of the Earth’s orbital

velocity is

ve ¼ osRes ¼ 1:9931 � 10�7 � 1:496 � 1013 ¼ 2:98 � 106 cm=s ¼ 29:9 km=s
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If we extend the outer force fields of the Sun and the Earth up to equality of their

reduced densities, then in accordance with the same Eq. 7.67 the border between

the two interacting fields can be found. By calculation the mean (nodal) value of

the Earth’s field border is found to extend up to 2.128.109 m and the Sun’s border –

to 1.478.1011 m.

Applying the same procedure, the orbital frequency oscillation oeof the Earth’s

outer force field at the Moon distance Rmehas value

oe ¼
ffiffiffiffiffiffiffiffiffiffi
GMe

R3
me

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:67 � 10�8 � 5:976 � 1027

3:844 � 1010� �3
vuut ¼ 2:64907 � 10�6 s�1; (7.85)

where Me is the Earth’s mass; Rmeis the mean distance between the Moon and

the Earth.

Then the Moon’s orbital velocity is

�vm ¼ oeRm ¼ 2:64907 � 10�6 � 3:844 � 1010 ¼ 1:0183 km=s: (7.86)

The Moon’s border of the outer force field in the nodal plane extends to the

Earth up to 0.72 .108 m and the Earth’s border – to 3.724.108 m.

The obtained values of velocities, as well as the values for the pericenters and

apocenters, are exactly the same as known from observation. It means that the

observed ecliptic inclination relative to the equatorial plane of the Sun and incli-

nation of the Moon’s orbit relative to the ecliptic reflect asymmetric distribution of

the solar and the planet’s masses. It also means that the observed inclination of the

Moon’s orbit plane and the ecliptic are governed by asymmetric distribution of

the Earth’s and the Sun’s force fields. The force fields of the Earth and the Moon,

together with the bodies themselves being local “secondary” inclusions in the

powerful force fields of the Sun and the Earth, are obliged to adjust their positions

in order to be in dynamic equilibrium. The observed parameters of the orbits and

their inclination relative to the plane diameters of the Sun, the Earth and the Moon

give a general view of the asymmetric distribution of the body’s masses. In

particular, the northern hemisphere of the Earth is more massive than the southern

one. In the perihelion the northern hemisphere is turned to the less massive

hemisphere of the Sun. So that, the polar oblateness of each body controls the

location of its pericenter and apocenter, and the equatorial oblateness of each body

responds to location of its nodes. Thus, the body motion in the outer force field of

its parent occurs under strict conditions of dynamic equilibrium which is also the

main condition of its separation. It follows from the condition of dynamic equilib-

rium that the orbital motion of the Earth and the Moon reflects asymmetry in mass

density distribution of the Sun, the Earth, and the Moon and asymmetry in the

potential of the outer wave field distribution. Only the structure of the Sun’s outer

wave field controls the Earth’s trajectory at the orbital motion and the Earth’s force

field manages the orbital motion of the Moon, but not vice versa or somehow else.
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7.11.2 Change of the Outer Force Field and the Nature
of Precession and Nutation

At the right time of motion of the bodies with the outer wave fields, their mutual

perturbations are transferred not directly from each body to the other one or from

their shells, but through the outer fields by means of the corresponding active and

reactive wave pressure of the interacting fields. There is an important dynamic

effect of all the perturbations. This is the continuous change in the outer wave field

of each body which proceeds from its non-uniform radial distribution of the mass

density. As it was earlier shown, the non-uniform radial distribution of mass density

initiates the differential rotation of the body shells. And, in accordance with

Eqs. 7.67 and 7.68 expressing the third Kepler’s law, the reduced body shells’

perturbing effects are transferred to the other body by means of the outer wave field.

So that the Sun, for instance, through its outer wave field, continuously transfers

to the Earth all the perturbations resulting during rotation of the interacting masses

of the shells. The Earth, in the framework of the energy conservation law, demon-

strates all the perturbations by changes in its orbit turns around the Sun (see below

Fig. 7.7).

Earlier it was shown that in the case of non-uniform distribution of mass density

the body’s potential and kinetic energies have radial and tangential components

which induce oscillation and rotation of the shells. It was defined by Eq. 7.82 that

the observed daily rotation of the Earth concerns only the upper shell with thickness

of ~375 km and reaches the near-by Mohorovičić-Guttenberg discontinuity. By the
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Fig. 7.7 Real picture of

motion of a body A in the

force field of a body B. Digits

identify succession of turns of

the body A moving around

body B along the open orbit C
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same reasoning it is not difficult to find the thickness of the upper shells for the Sun

and the Moon correspondingly equal to:

hs ¼ vs

o0sðRsÞ �
2

6:28 � 10�4
� 1600 km; (7.87)

hm ¼ vm

o0mðRmÞ �
4:56 � 10�3

9:66 � 10�4
� 4:72 km: (7.88)

We do not know real values and angular velocities for the inner shells of the

three bodies. These velocities have a direct interrelation with the observed changes

in parameters of the orbital motion of the Earth and the Moon including the

retrograde motion of the orbital nodes and the apsidal line. In this connection let

us try to understand first of all the nature of precession and nutation of the bodies

from the point of view of the dynamic approach.

It was noted above that, in accordance with the hydrostatic approach, precession

of the equinoxes of the Earth is an effect of the net torque of the Moon and the Sun

on the equatorial “bulge” aroused from gravitational attraction. The torque aspires

to diminish inclination of the equatorial belt with surplus mass relative to the

ecliptic and induce the retrograde motion of the nodal line. In addition, because the

ratio of distance between the interacted bodies is changed, then the relationship

between the forces is also changed. In this connection the precession is accom-

panied by nutation (wobbling) motion of the axes of rotation.

Analysis of orbits of the artificial satellite motion around the Earth shows that, in

spite of absence of the equatorial “bulge” of mass, the apparatus demonstrates the

precession effect. Its orbital plane has a clockwise rotation with retrograde motion

of the nodal line. But a new explanation of the phenomenon is given. It appears that

the retrograde motion of the nodal line associates with the Earth equatorial and

polar oblateness. The amplitude of the nodal line shift depends on the satellite orbit

inclination to the Earth’s equatorial plane. In the case of the poles’ orbital plane the

nodal line shift is completely absent. This is because the pole motion excludes both

the polar and the equatorial oblatenesses of the Earth. The direction of motion of

the apsidal line depends on the satellite’s orbit inclination and is determined by the

Lentz law.

It is also known that for the other free-of-satellite planets the retrograde motion

of the nodal line is also a characteristic phenomenon called the “secular perihelion

shift”. It was found from observation of Mercury, Venus, Earth and Mars that their

secular perihelion shifts are decreased from ~ 4000 through ~ 8.500, ~ 500 to ~ 1.500

accordingly [Chebotarev 1974].

All these facts imply that the explanation given for the satellites’ precession

depending on their orbital inclination to the ecliptic is correct. But the nature of this

unique phenomenon, characteristic for all celestial bodies, are inconsistent with the

hydrostatic approach and should be reconsidered, taking also into account the

satellite observations.
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7.11.3 Observed Picture of a Body Precession

The precession of the Earth, the Moon and the artificial satellites in the form of

motion of an orbital plane toward the backward direction of the body’s motion

should be considered as a virtual explanation of the phenomenon. In fact, the

orbit’s plane is a geometric shape traced by the body. And there is no reason to

consider its movement without the body itself. There is no difficulty to present

the real body motion in space in two opposite directions synchronously.

In particular, the actual picture of the Earth, the Moon and the satellite motion

in counterclockwise direction and retrograde movement of the nodal line is

shown in Fig. 7.7.

Here the satellite is moving in the counterclockwise direction along the unlocked

elliptic orbit 1 in the continuously changing (perturbed by oblatenesses) planet’s

force field. Because of the counterclockwise rotation of the Earth’s mass, the

satellite in perigee started to move on the orbit 2 and makes a shift in retrograde

direction in the ascending and descending nodes. At the same time the eccentricity

of the orbit 2 changes by a proper value. Analogously the body passes on orbit 3, 4,

5 and so on. The theory of dynamic equilibrium of the Earth explains the physics of

the observed phenomenon as follows.

7.11.4 The Nature of Precession and Nutation

The dynamic equilibrium theory assumes that the Earth is a self-gravitating body,

the interacting mass particles of which induce the inner and outer force fields.

Separation of the planet’s asymmetric shells results by the inner force field and

depends on the law of the radial mass density distribution. The normal component of

the body’s power pressure provides oscillation, and the tangential component

induces rotation of the shells having a different angular velocity. At the same time

the mantle shells A and the outer shell of the core B may have the same (Fig. 7.8a)

or opposite direction (Fig. 7.8b) of rotation depending on the radial mass density

distribution.

The seismic data show that the inner core C has a uniform density distribution.

Because of this, it does not rotate and its potential energy is realized in the form of

oscillation of the interacting particles. The potential E of the outer force field is

controlled by integral effect of the interacted masses of all the shells and presented

by the reduced shell D having continuously changing power.

The energy of the Earth’s outer force field is changed from the body surface in

accordance with the 1/r law and at every r is continuously varied because of

differences in the angular velocity of rotation of the shell’s masses. This force

field controls the direction and angular velocity of orbital motion of a satellite.

Taking into account the non-uniform and asymmetric distribution of the masses of

rotating shells, the change in the trajectory of the body motion is accompanied by a

corresponding change in eccentricity of the orbit both at each and subsequent turns.
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Its maximum value is reached when the non-uniformities of the rotating masses

coincide and the minimal value appears at the opposite position.

It is worth noting that the effect of retrograde motion of the nodal line of the

Earth, the Moon and artificial satellites appears to be a common phenomenon

because the induced by the Sun and the Earth outer force fields are changing

with a finite velocity. The conclusion follows from here that the Sun has the

same effects in its shell structure and motion. It is obvious that the other planets

with their satellites have the same character of structure and motion.

If one takes into account the effect of a planet’s orbital plane inclination to the

equatorial plane of the Sun, then the above changes are found to follow the law of 1/r

This observable fact proves our conclusion that the changes in the outer force field

of a body are controlled by rotation of its reduced inner force shell (see the force

shell D on Fig. 7.8). It explains why Mercury has maximal value of the “secular

perihelion shift” between the other planets.

Thus, the Earth’s orbital motion and retrograde movement of its nodal line are

controlled by the Sun’s dynamics of the masses through the outer force field. The

Earth plays the same role for the Moon and the artificial satellites. As to the nutation

motion, then its nature is related to the same peculiarities in the structure andmotion

of the bodies but the effects of their perturbations are fixed by the axis wobbling.

7.11.5 The Nature of Possible Clockwise Rotation
of the Outer Core of the Earth

The question arises why the outer planet’s core may have a clockwise rotation. It

was shown in Section 2.6 that the law of radial density distribution determines the

direction of a body’s shell rotation (Fig. 2.2).

DC
A B CB D A

E E

a b

Fig. 7.8 Sketch of rotation of the Earth’s shells by action of the inner force field: A is the mantle

shells; B is the outer core; C is the inner core; E is the outer force field; D is the reduced shell of the

inner force field of the planet
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It was found that in the case of uniform mass density distribution all energy of

the mass interaction is realized in the form of oscillation of the interacting particles

(Fig. 2.2a). If the density increases from the body’s surface to the center, then there

are oscillations and counterclockwise rotation of shells (Fig. 2.2b). Increase of mass

density from center to surface leads to oscillation and clockwise rotation with

different angular velocities of the body shells (Fig. 2.2c). Finally, the parabolic

law of radial density distribution (Fig. 7.9), where the density increases from the

surface and then it decreases, leads to oscillation and reverse directions of rotation.

Namely, the upper shells have a counterclockwise and the central shells – clockwise

rotation. The case demonstrated on Fig. 7.9, obviously, is characteristic for a self-

gravitating body.

Note that direction of the body rotation depends on radial density distribution

and corresponds with the Lenz right-hand or right-screw rule, well known in

electrodynamics. Taking into account the observed effect of the retrograde motion

of the satellite nodal line, the gravitational induction of the inner and outer force

fields of the Earth has a common nature with electromagnetic induction noted

earlier. Just Fig. 7.9 may explain the nature of the retrograde motion of the nodal

line of a satellite orbit related to the finite velocity in the potential changes of

the outer Earth’s force field induced by the interacted mass particles. The continu-

ous and opposite-directed movement of the asymmetric mass density distribution

of the mantle and the outer core (Fig. 7.8) seems to be the physical cause of

precession, nutation and variation of the inner and outer force fields observed by

satellites. This idea is proved by the satellite data about the retrograde motion of the

nodal line depending on inclination of its orbital plane with respect to the planet’s

equatorial plane

It is worth recalling, from the literature, that the idea of dynamical effects of the

probably liquid core of the Earth has been discussed among geophysicists for a long

time. (Melchior 1972).

R
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rg

ρ(r)

Fig. 7.9 Dependence of the

parabolic law of radial

density distribution on the

shell rotation for the Earth.

Here rm and rg are the reduced

radiuses of inertia and

gravitation
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7.11.6 The Nature of the Force Field Potential Change

It follows from the above discussion that in the frame of the considered dynamical

approach, the variation of potential of the inner and outer force field relates to the

non-uniform distribution of mass density of a self-gravitating body. Rotation of

the outer and inner shells together with the induction finite velocity delay leads to

the observed effects of precession, nutation and variation of their own force fields.

7.11.7 The Nature of the Earth’s Orbit Plane Obliquity

Celestial mechanics does not discuss the problem of obliquity of the planet’s and

satellite’s orbit planes and accepts it as an observable fact. The theory of dynamic

equilibrium explains this phenomenon and the nature of apocenters and pericenters

by asymmetric distribution of masses and by effect of rotation of asymmetric shells

of self-gravitating bodies (see Fig. 7.9). In fact, if the mass of the Sun’s shells has

an asymmetric distribution, then the potential of the outer force field has the same

asymmetry. This asymmetry determines inclination of the Earth’s orbit plane

relative to the plane of the Sun’s rotation. Each point of the orbit reflects a

condition of dynamical equilibrium of the interacting outer force fields of the

planet and the Sun. The position of the Earth’s aphelion and perihelion reflects

the position of the reduced maximal and minimal concentration of the Sun’s mass

density in the shells. Because the Sun’s asymmetric shells have different angular

velocities of rotation, then amplitude of the nodal line will decrease with increasing

distance between the mass anomalies and vise versa. The effect of variation of the

nodal line is proved by observation. So, the present-day angle of ecliptic inclination

to the plane of rotation of the Sun equal to ~7˚15 expresses the relation between

maximum and minimum concentrations of the reduced mass density of the Sun’s

shells. An analogous effect is shown by inclination of the Moon’s orbital plane to

the plane of rotation of the Earth.

7.11.8 The Nature of Chandler’s Effect of the Earth
Pole Wobbling

As it was noticed, changes in the planet’s inner force field are observed in the form

of nutation or wobbling of the axis of rotation. The axis itself reflects the dynamics

of the upper planet’s shell, the thickness of which, by our estimate, is about 375 km.

The Moon is rotating about the Sun in the force field of the Earth which is perturbed

by its natural satellite. Its maximum yearly perturbation should be the Chandler

effect. The Moon’s yearly cycle seems to be the ratio of the Earth’s to the Moon’s

month (in days). Then this cycle is 365(30.5/27) � 410 days.
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7.11.9 Change in Climate as an Effect of Rotation
of the Earth’s Shells

The above analysis of dynamical effects of the Earth’s shells is based first of all on

the data of satellite’s orbit changes and measurements of the planet’s force field.

Unfortunately, a specific feature of an artificial satellite orbital motion is its artifi-

cial velocity which is ~16 times higher than the angular velocity of the upper

Earth’s shell. In this connection all its parameters of satellite motion are unnatural.

So, we cannot directly divide the natural component of its nodal retrograde shift in

order to get the total picture of perturbations which propagate the Earth’s inner

shells. This is an experimental problem.

But there are also long term astronomical observations of the Earth’s dynamics

relative to the far stars, the results of which correspond to the presented ones. In

addition, periodicity in rotation of asymmetric inner shells of the Sun can be fixed

by climatic changes on the Earth over a long period of time. Such changes were

being studied, for instance, by data of the oxygen isotopic composition in mollusk

shells over a number of years. Figure 7.10 demonstrates the results of Emiliani

(1978) who studied the core obtained during deep sea drilling in the Caribbean

basin.

The author obtained the picture of climate change in the Pleistocene era over

730,000 years. It is seen that the periods of climate change vary from 50 to

120,000 years. It means that the pure period of rotation of the asymmetric mass

shells of the Sun is absent and the orbital trajectory has not been locked into place

during the studied time.

7.11.10 The Nature of Obliquity of the Earth’s Equatorial
Plane to the Ecliptic

It is obvious that the obliquity of the planet’s equatorial plane is related to the

polar and equatorial oblateness of the Earth’s masses. It follows from Eq. 7.68 that

the obliquity, in turn, is determined by the tangential component of the inner

force pressure generated by the non-uniform radial mass density distribution.

Fig. 7.10 Isotopic composition of oxygen in shells of molluskGlobigerinoides Sacculiferawithin
time period 0–730,000 year [Emiliani 1978]
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This tangential component of the inner force field induces the inner field of the

rotary moments, the energy of which was discussed in Section 6.9 and presented in

Table 4. The obliquity value can be obtained from the ratio of the potential energy

of the uniform Uo and non-uniform Ut body of the same mass. Accepting this

physical idea and the data of Table 4, we write and obtain:

cos Y ¼ Uo

Ut

¼ a2o
at2

¼ 0:6
0:66

¼ 0:909; Y ¼ 24:5o; (7.89)

where a2o and a2t are the structural form-factors taken from Table 4.

The error obtained in calculation of obliquity by formula (6.89) equal to about

1o or Da2t ¼ 0:006 – can be explained by the accepted law of the continuous radial

distribution of the planet’s mass density.

Equation 7.89 expresses the integral effect of the obliquity of the planet’s

equatorial plane which is observed on the surface of the upper rotating shell. It

was shown earlier that the observed obliquity is really an integral dynamical effect

of the Earth’s mass including the upper part of the Gutenberg shell. But being in a

suspended state, relative to the other parts of the body, the upper shell is able to

wobble as if on a hinge joint by perturbation from the Sun and the Moon. This

effect of the upper shell wobbling gives an impression of the axial wobbling.

By the same cause the obliquity of the ecliptic with respect to the solar equator is

determined by the Sun’s polar and equatorial oblateness. The trajectory of the

Earth’s orbital motion at each point is controlled by the outer asymmetric solar

force field in accordance with the dynamic equilibrium conditions. And only in the

nodes, which are common points for equatorial oblateness of the Sun and the Earth,

is the Huygens’ effect of the innate initial conditions fixed by the third Kepler’s law.

7.11.11 Tidal Interaction of Two Bodies

Let us consider the mechanism and effects of interaction of the outer force pressure

of two bodies being in dynamic equilibrium. Come back to the mechanism and

conditions of separation of a body mass with respect to its density when a shell with

light density is extruded to the surface. Rewrite Eq. 6.71 for acceleration of the

gravity force in points A and B of the two body shells (Fig. 7.7b) and their densities

rM and rm

qAB ¼ 4pGr
2

3
rM � rm

� �
; (7.90)

After the shell with density rm appears on the outer surface of the body, the

condition of its separation by Eq. 7.90 will be:

rM>2=3 rm (7.91)
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The gravitational pressure will replace the shell up to the radius A + dA, where
the condition of its equilibrium reaches rM ¼ rm. This condition is kept on the new
border line between the body and its upper shell. Taking into account that the shell in

any case has a thickness, then, by the Archimedes law, the body will be subject to its

hydrostatic pressure. If the separated shell is non-uniform with respect to density,

then a component of the tangential force pressure appears in it, and the secondary

self-gravitating body (satellite) is formed. The new body will be kept on the orbit by

the normal and equal tangential components of the outer force pressure. In this case

the reaction of the normal gravitational pressure will be local and non-uniform. If the

upper shell is uniform with respect to density, then the reaction of the normal

gravitational pressure along the whole surface of the body and the shell remains

uniform. In this case the separated shell remains in the form of a uniform ring.

The above schematic description of the physical picture of the separation and

creation of a secondary body can be used for construction of a mechanism of the

tidal phenomena in the oceans, the atmosphere and the upper solid shell at interac-

tion between the Earth and the Moon. The outer gravitational pressure of the Moon,

due to which it maintains itself in equilibrium on the orbit, at the same time renders

hydrostatic pressure on the Earth’s atmosphere, oceans and upper solid shell

through its outer force field. This effect determines the tidal wave in the oceans

and takes active part in formation and motion of cyclonic and anti-cyclonic

vortexes. In accordance with the Pascal law, the reaction of the Moon’s hydrostatic

pressure is propagated within the total mass of the ocean water and forms two tidal

bulges. Because the upper shell of the Earth is faster-moving relative to motion of

the Moon, the front tidal bulge appears ahead of the moving planet. Our perception

of the ocean tides as an effect of attraction of the Moon appears to be speculative.

7.12 Dynamics of the Earth’s Atmosphere and Ocean

The atmosphere and the oceans (collectively) are both upper shells of the Earth. The

first of them occurs in a gaseous and the second one in a liquid phase. These shells

exist in the solid Earth’s outer force field but the atmosphere exists in dynamical

equilibrium, and the oceans are in a weighted transition to a hydrostatic state. The

atmosphere as a gaseous shell is totally “dissolved” in the Earth’s outer force field

in the form of atomic and molecular sub-layers, differentiated with respect to

density, and these self-gravitating masses appear in a dynamical equilibrium

state. Relatively homogeneous water masses of the oceans have too low a density

(approximately 2/3) in comparison with the mineral crust to be an independent,

with respect to its dynamics, self-gravitating shell. Therefore, it appears to be

suspended in a semi-hydrostatic equilibrium relative to the crust’s shell. Its inner

gravitational pressure on the shell’s surface is equilibrated with the atmospheric and

outer gravitational pressure. The surface water is practically found to be in a

limiting hydrostatic equilibrium. The small portion of the continuously pumping
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solar energy varies within 7% in the annual cycle and leads to the dynamical

process of water transfer from its liquid to vapor, and vice verse phase.

Dynamics of the main nitrogen and oxygen components with close densities

(atomic weights) of the atmospheric masses in a non-perturbed state could be

represented by its own virial oscillation and rotation about the solid Earth. But

the water vapor which is continuously injected into the gaseous shell, being a

component of very large-capacity energy (1 cm3 of water generates more than

1,000 cm3 water vapor) appears to be the cause of the stormy dynamical perturba-

tion within the near-surface shell of the atmosphere. The cyclonic activity of the

atmospheric vapor has scientific, but mainly practical, interest. The weather and

climate change by variation of the solar energy flux through the water vapor

dynamics have a negative affect on the biosphere.

In turn, the oceans being in a balanced hydrostatic state, are continuously

perturbed both by the inner gravity pressure of the planet related to the density

differentiation of the shells and by perturbation from the Sun’s and the Moon’s

outer force fields. All the above dynamical processes seem to be of interest for

consideration from the point of view of dynamical equilibrium theory.

In this chapter we search for a solution of Jacobi’s virial equation for the non-

perturbed atmosphere as the Earth’s shell which is affected by both inner and outer

perturbations. In order to justify applicability of the virial equation for the study of

dynamics of the atmosphere in the framework of a model of a continuous medium,

we derive this equation from the Euler equations.

7.12.1 Derivation of the Virial Equation for the Earth’s
Atmosphere

We consider the problem of global oscillations of the Earth’s atmosphere as its

shell. We accept that the atmosphere is found to be in dynamical equilibrium both

in its own force field and in the outer force field of the Earth. Derivation of the virial

equation is done in the framework of the continuous medium model. We accept

also that the dynamics of the atmosphere is described by Euler’s equations and the

medium is composed of an ideal gas.

The Euler equations are written in the form (Landau and Lifshitz 1954)

r
@v

@t
þ r vrð Þv ¼ �grad pþ rF; (7.92)

where r is the gas density; p is the gas pressure; @v=@tis the rate of velocity change
at a fixed point of space; F is the density of mass forces.

In addition, the continuity equation

@p

@t
þ div rv ¼ 0 (7.93)

holds for a gas medium.
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Multiplying Eq. 7.93 by v and summing the product with Eq. 7.1, we obtain

@r
@t

v ¼ �rðvrÞv� vdiv rv� grad pþ rF: (7.94)

We take the divergence of Eq. 7.94 and note that

@

@t
div rv½ � ¼ @

@t
divrvð Þ

� 	
¼ � @2r

@t2
:

Then Eq. 7.94 can be rewritten in the form

@2r
@t2

¼ div r vrð Þvþ vdiv rvð Þ þ gradp� rF½ � (7.95)

Multiplying Eq. 7.95 by r2/2 and integrating the obtained expression over the

whole volume of the atmosphere, we have

Z
ðVÞ

r2

2

@2r
@t2

dV ¼
Z
ðVÞ

r2

2
div r vrð Þvþ vdiv rvð Þ þ grad p� rF½ �dV: (7.96)

The left-hand side of Eq. 7.96 can be rewritten in the form

Z
ðVÞ

r2

2

@2r
@t2

dV ¼ @2

@t2
1

2

Z
ðVÞ

r2rdV

0
B@

1
CA ¼ €F;

where F is the Jacobi function of the atmosphere.

Thus, we obtain Jacobi’s equation for the Earth’s atmosphere derived from the

Eulerian equation (7.92) and the continuity equation (7.93) as follows:

€F ¼
Z
ðVÞ

r2

2
div r vrð Þvþ vdiv rvð Þ þ grad p� rF½ �dV: (7.97)

We assume that the Earth is a rigid spherical body with mass M and radius R and

that the mass of the atmosphere is negligible in comparison with the Earth’s mass.

We can transform the right-hand side of Eq. 7.97 as follows:

Z
ðVÞ

r2

2
div½rðvrÞvþ vdivðrvÞ þ grad p� rF�dV

¼ 2Tþ Uþ 3

Z
ðVÞ

pdV� 4pr3p Rmax

R ;
��
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where

T ¼ 1

2

Z
ðVÞ

rv2dV

is the kinetic energy of the gas of the atmosphere in the Earth’s gravitational field;

U ¼ GM

Z
ðVÞ

rdV
r

is the potential energy of the atmosphere in the Earth’s field;

3

Z
ðVÞ

pdV

is the internal energy of the gas atmosphere;

� 2pr3pjRmax
Re

is the energy of the outer surface force pressure effecting the atmosphere.

In fact, we can write an expression for the mass forces, taking into account the

spherical symmetry of the system considered:

F ¼ �GM r
r3
:

Then

�
ð
ðVÞ

r2

2
divðrFÞdV ¼

ð
ðVÞ

r2

2
div rGM

r

r3

� �
dV ¼

ðRmax
R

r2

2

1

r2
@

@r

r2rGM
r2

� �
4p2dr

¼ 4pr2

2
rGMjRmax

R � 4pGM
ðRmax

R

rrdr ¼ Uþ 4pr2

2
rGMjRmax

R :

Analogously, we have

ð
ðVÞ

r2

2
div gradpð ÞdV ¼ 4p

ðRmax

R

r2

2

1

r2
@

@r
r2
@p

=r
� �

r2dr

¼ 4pr2

2

@p

@r

����
Rmax

R

�4pr3pjRmax
R þ3 � 4p

ðRmax

R

r2pdr

¼ 3

ð
ðVÞ

pdV� 4pr3jRmax
R þ 4pr4

2

@p

@r

����
Rmax

R

:
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It is easy to show that

Z
ðVÞ

r2

2
div r vrð Þvþ vdiv rvð Þ½ �dV ¼

Z
ðVÞ

v2rdV ¼ 2T:

Owing to the immobility of the rigid Earth and the atmospheric boundary as well

as the condition of continuity for the gas, the equilibrium hydrostatic condition

holds along the normal to this border, which can be written in the form

r
GM

r2
Rj ¼ � @p

@r
Rj :

If we assume rr2 Rmaxj ¼ 0 , r4
@p

@r
Rmaxj ¼ 0 ,then

4pr2

2
rGM Rmax

R

�� þ 4pr4

2

@p

@r
Rmax
R

�� ¼ 0

It follows from this that Jacobi’s virial equation (7.97) takes the form

€F ¼ 2Tþ U� 4pr3p Rj þ 3

Z
ðVÞ

pdV: (7.98)

Finally, using the energy conservation law for a continuum (Sedov 1970) and the

conservativity of a system, following from the accepted model (the Earth is a solid

body and atmospheric gas is ideal), Eq. 7.98 can be written in the form of the

standard Jacobi virial equation

€F ¼ 2E� U; (7.99)

where the total energy of the atmosphere is conserved and equal to

E ¼ Tþ U� 2pr3pjR þ 3

2

Z
ðVÞ

pdV:: (7.100)

Let us make some important notes concerning the study of the atmosphere by a

conventional approach based on use of the virial theorem.

The standard solution of the problem using the same assumption at zero approx-

imation (barometric height formula) expresses the equilibrium condition between

the atmospheric gravity and the gas pressure. In our case this condition is satisfied if

Jacobi’s virial equation (7.99) is averaged with respect to time, i.e. it is reduced to
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the condition of the hydrostatic equilibrium. But in that case the kinetic energy of

the particle interaction is excluded. Assuming that the motion of the gas particles is

finite, and after time averaging Eq. 7.99 over a sufficiently large time interval, the

validity of the virial theorem is easily shown to be

E ¼ U=2: (7.101)

At known parameters of the atmosphere and the Earth, the potential and total

energies of the atmosphere can be estimated as

U ¼ �GMm

R
� �3:2 � 1033 erg;

E � �1:6 � 1033 erg:

7.12.2 Non-perturbed Oscillation of the Atmosphere

Let us now consider the solution of Eq. 7.99 for the spherical model of the

atmosphere and find the dependence of its Jacobi function F (polar moment of

inertia) on time in explicit form.

In the previous chapter it was shown that Eq. 7.99 is resolved both for the

uniform medium and for the medium with radial density distribution by some law.

In the last case the polar moment of inertia and potential energy are expanded on

the uniform and tangential components and instead of Eq. 7.99 two Eqs. 7.61 and

7.62 are written.

Let us consider a solution for the uniform component of the atmosphere whose

radial density distribution changes by the barometric equation. The uniform com-

ponent of Eq. 7.99 has a solution when there is a relationship between the Jacobi

function and the potential energy of the system in the form

Uj j
ffiffiffiffi
F

p
¼ const: (7.102)

Assume that the Earth has a spherical shape with mass M and radius R and be

enveloped by a uniform atmosphere with mass m which has thickness D. Then the

potential energy of the shell Ua, which is in the gravitational field of the sphere, is

Ua ¼ �GMra

ZRþD

R

4pr2

r
dr ¼ �2pGMra 2RDþ D2

� �
;

where ra is the mass density of the shell.
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The Jacobi function of the atmosphere is

Fa ¼ 4pra
1

2

ZRþD

R

r4 ¼ 4pra
2:5

½5R4Dþ 10R3D2 þ 10R2D3 þ 5RD4 þ D5�: (7.103)

Expressing the gas density ra through its mass, we can write the relationship

(7.102) in the form

B ¼ Uj ja
ffiffiffiffiffiffi
Fa

p
¼ GMmffiffiffi

2
p 3ð2þ lÞ

2ð3þ 3lþ l2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð5þ 10lþ 10l2 þ 5l3 þ l4Þ

5ð3þ 3lþ l4Þ

s
; (7.104)

where l ¼ D/R .

Note that Eq. 7.104 depends only on the ratio of thickness of the shell to the

radius of a central body and varies over limited ranges, while l varies from 0 to1.

At l ¼ 0

Uaj j
ffiffiffiffiffiffi
Fa

p
! GMm3=2

R
;

and at l ! 1

Uaj j
ffiffiffiffiffiffi
Fa

p
! GMm3=2

R

27

20

� �1=2

:

On the other hand, the Jacobi function (7.102) expressed through the mass of the

shell, is written in the form

Fa ¼ 3m

10
R2 3ð5þ 10lþ 10l2þ5l3þl4Þ

5ð3þ 3lþl4Þ : (7.105)

It follows from (7.14) that the Jacobi function of the atmosphere does not depend

only on the value l but also on the radius of the body R. Moreover, the value Fa

varies over unlimited ranges when l runs from 0 to1. The same can be said about

the potential energy of the atmosphere:

Ua ¼ GMm

R

3

2

2þ l

2 3þ 3lþ l2
� �
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Accepting the mass of the atmosphere m ¼ 1021 kg, we can find the value B as

Uaj j
ffiffiffiffiffiffi
Fa

p
¼ GMm

R

mR2

2

� �1=2

¼ 1:0374 � 1053 ½g3=2 cm3 s�2�: (7.106)

Taking (7.106) into account, Eq. 7.99 can be written in the form of an equation

of virial oscillations of the atmosphere (subscript a at F is farther drop):

€F ¼ �Aþ Bffiffiffiffi
F

p ; (7.107)

where A ¼ �2E; E ¼ �1.6.1033 erg.

As shown in Chap. 4, at A ¼ const and B ¼ const, Eq. 7.107 has two first

integrals, as follows:

C¼�2AFþ4B
ffiffiffiffi
F

p
� _F

2
; (7.108)

�arccos
ðA=BÞ ffiffiffiffi

F
p �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�AC=2B2
q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AC

2B2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðA=B ffiffiffiffi

F
p �1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�AC=2B2
q

2
64

3
75
2

vuuuut ¼ð2AÞ3=2
4B

ðt� t0Þ; (7.109)

where C and to are integration constants. The constant C has a dimension of square

angular momentum.

The integrals (7.108) and (7.109) are solutions of the Eq. 7.107. Introducing new

variables

E00 ¼ �arccos
ðA=B ffiffiffiffi

F
p � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� AC=B2
p ; e00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AC

2B2

r
;

and rewriting (7.109) in the form of Kepler’s equation

E00 � e00sin E00 ¼ 2Að Þ3=2
4B

t� t0ð Þ ¼ M00;

expressions can be obtained for F(t) and _FðtÞ from the first integrals (7.108) and

(7.109) in explicit form, using Lagrange’s series (Duboshin 1975):

FðtÞ ¼ B2

A2
1þ 2e00 cosM00 � e002 1� 3

2
cos2M00

� �
� 5

2
e003ð1� cos2M00ÞcosM00 þ . . .

� 	
(7.110)
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FðtÞ ¼
ffiffiffi
2

A

r
eB sinMþ 1

2
e sin 2Mþ e2

2
sinMð2cos2M� sin2Mþ . . .

� 	
;

where M00 ¼ ð2AÞ3=2ðt� t000Þ=nðt� t000Þ; n00 is the frequency of the atmospheres

own virial oscillations; to is the time moment when F acquires its maximal value.

At 0 < C < 2B2/A the Jacobi function changes in time in accordance with

Eq. 7.110. At C ¼ 2B2/A the Jacobi function is equal to F ¼ B2/A2, which

corresponds to the hydrostatic equilibrium of the system or to the virial theorem.

The solution represents the non-linear periodic pulsation of the Jacobi function

of the atmosphere as a whole with period Tv. Using the numerical values of

constants B ¼ 1.03 .1053 and A ¼ –U ¼ 3.2 . 1033 erg, the period of unperturbed

virial oscillations of the Earth atmosphere is equal to

Tv ¼ 8pB

2Að Þ3=2
¼ 2p

ffiffiffiffiffiffiffiffi
R3

Gm

s
¼ 5060:7 s ¼ 1:4057 h: (7.111)

Note that the expression (7.111) for the period of virial oscillations Tv includes

three fundamental constants: the body M, radius R and gravity constant G. The

simplest combination of these three constants, which gives the dimension of time,

coincides with (7.111). In this case the nature of the virial oscillations of the

atmosphere can be explained by the change in time of the gravitational potential

of the solid Earth. The period (7.111) coincides with the period of revolution of a

satellite along a circular orbit with first cosmic velocity v ¼ 7.9 km/s, radius of the

Earth and with a mathematical pendulum the length of whose filament is equal to

the radius of the Earth. This is because the parameters considered are defined by the

same constants g, m, and R.

7.12.3 Perturbed Oscillations

We now consider a general approach to solving the problem of perturbed virial

oscillations of the atmosphere, taking as an example the perturbations caused by the

variation throughout the year of the solar energy flux owing to the ellipticity of

the Earth’s orbit. We assume that all the dissipative processes that occur during the

interaction between the atmosphere and the hydrosphere and in the atmosphere

itself are compensated by solar energy. We note, however, that the value of the flux

is evidently dependent on time. Assuming also that the eccentricity of the Earth’s

orbit and the mean total energy of the atmosphere are known and remain unchanged

in time, the total energy of the Earth’s atmosphere is proportional to the power of

the solar energy flux L(x) which reaches the atmosphere at a given point of the orbit.
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Then

L tð Þ ¼ L0

a2

r2
; (7.112)

where Lo is the mean energy flux reaching the Earth’s atmosphere; r is the radius of

the Earth’s orbit; a is the semi-major axis of the Earth’s orbit.

Using the property of the elliptical motion, we obtain

L tð Þ ¼ L0 1� 2e0 cos E0 þ e02cos2E0
� ��1

; (7.113)

where e0 is the eccentricity of the Earth’s orbit; E0 is the eccentric anomaly that

characterizes the location of the Earth on the orbit and is linked with time by the

Keplerian equation

E0 � e0sinE0 ¼ n0 t� t0ð Þ ¼ M0
0; (7.114)

where n ¼ 2p/t is the cyclic frequency of the Earth’s revolution round the Sun; t is
the period of revolution and is equal to 1 year; to is the moment of time required by

the Earth to pass through the orbit’s perihelion; M0 is the mean of the anomaly.

If the eccentricity e0 � ē ¼ 0.6627. . ., which is the Laplacian limit, then, using

the Lagrangian series, we can obtain expressions for E0 and j(E0) in the form of an

absolute convergent infinite series expanded by entire positive powers of e0.
Note that in order to obtain the expression for (1–e0cosE0 ) we can write the

equality which follows from the Keplerian equation:

1

1� e0cos E0ð Þ2 ¼
dE0

dM0

� �2

:

Expanding the eccentric anomaly E0 in the Lagrangian series by the power of

eccentricity e0 [Duboshin 1975], we obtain

E0 ¼
X1
k¼0

e0k

k!

dk�1 sinkM0� �
dM0k�1

: (7.115)

This can be rewritten in a more convenient form:

E0 ¼
X1
k¼0

e0kEk M0ð Þ;

where

Ek M0ð Þ ¼
X1
k¼0

1

k!

dk�1 sin kM0� �
dM0k�1
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As the absolute convergent series can be differentiated term by term, we obtain

a

r
¼ dE0

dM0 ¼
X1
k¼0

e0k�Rk M0ð Þ; (7.116)

where

�Rk M0ð Þ ¼ dEk M0ð Þ
dM0 :

Multiplying the series (7.116) by itself, we obtain

a2

r2
¼

X1
k¼0

e0k�R 2ð Þ
k M0ð Þ; (7.117)

where

�R
2ð Þ
k M0ð Þ ¼

Xk
k¼0

�Rs M0ð Þ�Rk�s M
0ð Þ

Then the expression (7.112) for the solar energy flux reaching the atmosphere

can be rewritten:

L tð Þ ¼ L0

X1
k¼0

e0k�R 2ð Þ
k M0ð Þ: (7.118)

In agreement with (7.118), the change of the total energy of the Earth’s atmo-

sphere is proportional to the change of the solar energy flux L(t)�Lo. Then the

expression for the total energy of the atmosphere is

E tð Þ ¼ Eþ k L tð Þ � L0½ �;

where k is a proportionality factor.

Thus, in our problem of virial oscillations of the atmosphere perturbed by the

solar energy flux varying during the motion of the Earth along the orbit, the

equation can be written as

€F ¼ �Aþ Bffiffiffiffi
F

p þ X e0;M0ð Þ; (7.119)

where X(e0, M0) is the perturbation function, which has the form

X e0;M0ð Þ ¼ 2k L tð Þ � L0½ �
X1
k¼0

e0kRð2Þ
K M0ð Þ � 1

" #
: (7.120)
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To estimate the geophysical effect of the variation of the solar energy within a

time period of 1 year, we introduce the perturbation function (7.120) into Eq. 7.119

of perturbed oscillations, to an accuracy of squared eccentricity, i.e.,

X M0ð Þ ¼ kL0 2½ e0 cosM0 þ 5

2
e02cos2M�; (7.121)

where kLo � 3 . 1031 erg.

In this case, the expressions for the Jacobi function of the atmosphere and its

first derivative to an accuracy of e have the form

FðMÞ ¼ F0ð1� 2ecosMÞ; (7.122)

_F Mð Þ ¼ 2F0n sinM; (7.123)

Then, differentiating the expression for the eccentricity of the perturbed oscilla-

tions e ¼ (1�AC/2B2)1/2 with respect to time and using Lagrange’s method of

varying arbitrary constants, we obtain

de

dt
¼ A _F Mð ÞX M0ð Þ

2B2e
¼ AF0kL0ne

0

B2
sin MþM0ð Þ þ sin M�M0ð Þ½

þ 5

2
e0sin Mþ 2M0ð Þ þ 5

2
e0 sin M� 2M0ð Þ

	
: (7.124)

Integrating (7.124) with respect to time, we obtain the law of variation of the

virial oscillation eccentricity as a first approximation of the perturbation theory:

eðtÞ ¼ �e� AF0ne
0

B2

cosðMþM0Þ
nþ n0

þ cosðM�M0Þ
n� n0

�

þ 5

2
e0
cos Mþ 2M0ð Þ

nþ 2n0
þ 5

2
e0
cos M� 2M0ð Þ

n� 2n0

	
(7.125)

Finally, putting the expression for the eccentricity of the perturbed oscillations

into (7.122), we obtain

F tð Þ ¼ F0 þ 1

2
a1 cos 2MþM0ð Þ þ cosM0½ � þ 1

2
a2 cos 2M�M0ð Þ þ cosM0½ �

þ 1

2
a3 cos 2Mþ 2M0ð Þ½ þ cos2M0� þ 1

2
a4 cos 2M� 2M0ð Þ½ þ cos 2M0ð �; (7.126)
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where

a1 ¼ 2AF2
0kL0ne

0

B2ðnþ n0Þ ; a2 ¼ 2AF2
0kL0ne

02

B2ðn� n0Þ ;

a3 ¼ 5AF2
0kL0ne

02

B2ðnþ 2n0Þ ; a4 ¼ 5AF2
0kL0ne

02

B2ðn� 2n0Þ ;

M ¼ n t� t0ð Þ; M0 ¼ n0 t� t00ð Þ

n ¼ 1:2 � 10�3 s�1; n ¼ 1:2 � 10�7 s�1

It follows from (7.125) that a contribution of the long-periodic part of the first-

order perturbations to the variation of the Jacobi function of the Earth’s atmosphere

is

Fa tð Þ ¼ const þ 1:44 � 10�3F0 cosM
0 þ 1:44 � 10�3e0F0 cos 2M

0; (7.127)

where Fo ¼ 1.06 . 1039 g . cm2; Fa/Ia ¼ ¾.

Assuming in first approximation that the rotations of the Earth and the atmo-

sphere are synchronous, and using the law of conservation of angular momentum

for the Earth-atmosphere system as I	 þ Iað Þo	 ¼ const, we obtain

DIa
I	

¼ �Do
o	

¼ DT
T0

; (7.128)

where oo is the angular velocity of the Earth’s daily rotation; T ¼ 8.64.104s;

I	 ¼ 8:04 � 1044 g cm2.

It is easy to show that the Earth’s rate of rotation has annual variations with daily

amplitude of variation of about 2 ms duration and can be approximated in our

estimate by the sum of two harmonics with a period of 1 year and half a year

respectively. This estimate is in good agreement with the observed data of the

seasonal variation of the Earth’s angular velocity.

7.12.4 Resonance Oscillation

We now consider the solution for identification of the resonance frequencies of the

perturbed oscillations of the atmosphere due to the change of solar energy flux

during the Earth’s motion along an elliptic orbit.

Let us assume that the Earth’s atmosphere satisfies all the conditions needed for

writing the Eq. 7.107 of unperturbed virial oscillations. We can solve this equation

because its two first integrals of motion (7.108) and (7.109) are known. We accept

242 7 Applications in Celestial Mechanics and Geodynamics



from the solution of Eq. 7.107 that the Jacobi function F changes in time with the

period t00 ¼ 5,060.7 s�1 and the frequency n00 ¼ 2p/t00 ¼ 0.00124 s�1. Assuming

also that the perturbation of the Earth’s atmosphere is affected only by the change

of power of the solar radiation flux during the year owing to the ellipticity of the

Earth’s orbit, then the equation of the perturbed virial oscillations should have the

form of (7.28) and the perturbation function X(e0, M0 ), represented by (7.120),

should be a periodic function of time with period t0 ¼ 31,556,929.9747 s and

frequency n0 ¼ 2p/t0 ¼ 1.9910638 s�1.

We use the Picard method to obtain the solution of Eq. 7.119, which in this case

is written as

€F ¼ �Aþ Bffiffiffiffi
F

p þ 2kL0

X1
k¼0

e02R 2ð Þ
k M0ð Þ � 1

" #
; (7.129)

where A ¼ �2Eo; B ¼ Uaj j ffiffiffiffiffiffi
Fa

p
; e0 ¼ 0.014 is the eccentricity of the Earth’s

orbit; M0 ¼ n0ðt� toÞ ¼ E0 � e0 sin E0 is the mean anomaly determined from the

Kepler equation; E0 is the eccentric anomaly.

Using Lagrange’s method of variation of the arbitrary constants C and t, which

determine the solution of Eq. 7.129 in the form

F ¼ F C; t000; tð Þ; (7.130)

_F ¼ _F C;t000; tð Þ; (7.131)

we can write the system of differential equations (5.19) and (5.20) (see Chap. 5)

determining the change of C и to
00 in time:

dC

dt
¼ �2 _FX M0ð Þ; (7.132)

dt000
dt

¼ �2 _FXðM0ÞCðF;CÞ; (7.133)

where the functionC(F, C) was defined earlier, and X(M0) is a periodic function of
the argument M0 with the period 2p.

Substituting the expressions forF and _F from (7.130) and (7.131) into (7.132) и
(7.133), we obtain the system of two differential equations:

dC

dt
¼ F1 M0;M00;C; t000ð Þ; (7.134)

dt000
dt

¼ F2 M0;M00;C;t000ð Þ; (7.135)

where F1 andF2 are periodic functions of the argumentsM0 andM00 with the period 2p.
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Owing to the periodicity of the right-hand side of the system of Eqs. 7.134 and

7.44, they can be expanded into a double Fourier series. In this case the system

(7.134) and (7.135) can be written:

dC

dt
¼ A00 þ

X1
k0;k00¼�1

Ak0;k00 cos k0M0 þ k00M00ð Þ þ Bk0;k00 sin k0M0 þ k00M00ð Þ
 �( )
;

(7.136)

dC

dt
¼ a00 þ

X1
k0;k00¼�1

ak0;k00 cos k0M0 þ k00M00ð Þ þ bk0;k00 sin k0M0 þ k00M00ð Þ
 �( )
:

(7.137)

Here the coefficients Aoo , Ak 0 k 00, Bk 0,k 00, aoo, ak 0 k 00, bk 0,k 00 do not depend on M0

and M00, but are functions of the unknown quantities C and to
00.

Using the Picard procedure, we determine C(1) and to
00(1) in the first approxima-

tion by substituting the constant values C(o) and to
00(o) into the expressions for F1 and

F2. The values C
(o) and to

00(o) could be found through the initial conditions of F0and
_F0using corresponding formulas (7.108) and (7.109) which describe the unper-

turbed virial oscillations.

After integration of the system (7.136) and (7.137) with respect to time, we have

Cð1Þ ¼ Cð0Þ þ A
ð0Þ
00 t� t0ð Þ þ

X1
k0;k00!�1

1

k0n0 þ k00n00
A

ð0Þ
k0;k00

n
cos k0M0 þ k00M00ð Þ½

� cos k0M0
0 þ k00M00

0Þ�ð � B
0ð Þ
k0;k00 sin½ k0M0 þ k00M00Þð

� sin k0M0
0 þ k00M00

0Þ�
o�
;

(7.138)

t00ð1Þ0 ¼ t00ð0Þ0 þ a
ð0Þ
00 t� t0ð Þ þ

X1
k0;k00!�1

1

k0n0 þ k00n00
a

0ð Þ
k0;k00

n
cos k0M0 þ k00M00ð Þ½

� cos k0M0
0 þ k00M00

0Þ�ð � b
0ð Þ
k0;k00 sin½ k0M0 þ k00M00Þð

� sin k0M0
0 þ k00M00

0Þ�
o�
;

(7.139)

where C(1) and to
00(1) are the arbitrary constants which determine solution of the

Eq. 7.28; A
0ð Þ
k0;k00 , B

0ð Þ
k0;k00 , a

0ð Þ
00 , a

0ð Þ
k0;k00 , b

0ð Þ
k0;k00 are corresponding coefficients of the system

(7.136) and (7.137) after replacing C и to
00 by C(o) and to

00(o).
Thus we have obtained the analytical structure of the solutions (7.138) and

(7.139) known in general perturbation theory which have three classes of terms:

constant, periodic and secular. Of the periodic terms, the most important are the

resonance terms, i.e. those quantities ns ¼ k0n0 + k00n00 which are substantially less

then both n” and n’. These terms give a series of long periodic inequalities (their

number is infinite) and they allow prediction of the development of the natural

processes within relatively long intervals of time.
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Let us calculate, as an example, such lower resonance frequencies which

have climatic significance:

n2:12471 ¼ ð2:12415� 12471 � 1:9910638Þ10�7 ¼ 0:556 � 10�7s�1;

n3:18706 ¼ ð3:12415 � 18706 � 19910638Þ10�7 ¼ 0:161 � 10�7s�1;

n11:68589 ¼ ð11:12415� 68589 � 1:9910638Þ10�7 ¼ 0:07 � 10�7s�1

and so on, and corresponding to those frequencies the periods are:

t2:12471 ¼ 3:6 years; t3:18706 ¼ 12:36 years; t11:68598 � 28 years:

It should, however be kept in mind that the first approximation obtained in the

framework of perturbation theory is in good agreement with observations within

short (not cosmogenic) intervals of time.

Note that one can find analogously the resonance frequencies and the periods of

virial oscillations which occur owing to other perturbations, such as, for example,

diurnal perturbations, because of the rotation of the Earth around its axis and its

latitudinal perturbations, etc. As is well known, the mean solar day has period

t ¼ 8.64.104 s and frequency ns ¼ 2p=t ¼ 7:27 � 10�5 s�1. Then calculating the

resonance frequency ns ¼ k0n0 ~þk00n00<<n; n00, we obtain:

n1:17 ¼ ð1 � 124:17� 17 � 7:27Þ10�5 ¼ 0:58 � 10�5 s�1;

n2:24 ¼ ð2 � 124:17� 24 � 7:27Þ10�5 ¼ 1:16 � 10�5 s�1;

and so on, and corresponding periods:

t1:17 ¼ 12:5 d; t2:24 ¼ 6:24 d andsoon:

For the monthly Moon perturbations, when t ¼ 2.352672.106 s and ns
¼ 2.67.10�6 s�1, we have

n1:465 ¼ ð1 � 1241:7� 2:67 � 465Þ10�6 ¼ 0:15 � 10�6 s�1;

n2:930 ¼ ð2 � 1241:7� 2:67 � 930Þ10�6 ¼ 0:3 � 10�6 s�1

and so on, and corresponding periods:

t1:465 ¼ 1:3 years; t2:930 ¼ 0:66 years:

7.12.5 Observation of the Virial Eigenoscillations
of the Earth’s Atmosphere

It was predicted in Sect. 7.12.2, by means of the solution of Jacobi’s virial equation,

that the eigenoscillations of the Earth’s atmosphere with a period of Tv ¼1h.4 and

frequency o ¼ 1.24.10�3 s�1 exists. This solution describes the periodic change of
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the Jacobi function of the Earth’s atmosphere in time and can be expressed in the

form of a trigonometric Fourier series expanded by entire multiple values of

argument M related to t as

M ¼ 2p
Tv

t� t00ð Þ;

where t0o is the moment of time defining the phase of the virial oscillations.

The first four terms of this series are

F tð Þ¼F0 1þ3

2
e2þ �2eþe3

4

� �
cosM�e2

2
cos2M�e3

3
cos3Mþ :::

� 	
; (7.140)

where Fo is the mean value of the Jacobi function, determined by the virial

theorem; e is the parameter of the virial oscillations of the atmosphere which

characterizes the amplitude of the Jacobi function change; e 
 1.

It has been shown theoretically that the period of chance of the Jacobi function of

the atmosphere depends on the value of its total energy, and in the case of non-

perturbed atmosphere is equal to 1h.4. In the framework of the model considered

with spherically symmetric atmosphere, the change of Jacobi function takes place

owing to the change of the radial mass density distribution of the atmosphere

having the same period. Direct experimental test of this statement is difficult

because the value of the Jacobi function cannot be measured directly to prove the

expression (7.140). But, as it was shown in Sections 2.2, permanent changes in the

Earth’s Jacobi function (polar moment of inertia) is fixed by artificial satellites and

earthquake measurements. Moreover, the process of virial oscillations is accom-

panied by synchronous changes of pressure, temperature, air moisture, magnetic

field intensity and other measurable geophysical parameters at the Earth’s surface.

In addition, from the condition of a global scale of the virial oscillations, it follows

that all the geophysical parameters are pulsating with the same period and are

coherent both within the considerable interval of time and in space over all the

Earth’s surface as well as vertically. The expression for the virial pulsations of the

atmospheric pressure p(t) and temperature T(t) can be expanded into a Fourier

series (7.140) as follows:

p tð Þ ¼ p0 1þ 1

2
e2 þ 2eþ 3

4
e3

� �
cosMþ 5

2
e2 cos 2Mþ :::

� 	
; (7.141)

T tð Þ ¼ T0 1þ 1

2
e2 þ 2eþ 3

4
e3

� �
cosMþ 5

2
e2 cos 2Mþ :::

� 	
; (7.142)

where po and To are the mean values of the atmospheric pressure and temperature

averaged over all the Earth’s surface and through the mass of the atmosphere

respectively.
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We shall use for this expansion the analysis and interpretation of the experimen-

tal data. As is well known, regular observation of the atmospheric pressure and

temperature at various points of the Earth prevents the discovery of a rigorous

periodicity in changes of atmospheric parameters, especially for short periods.

There are a number of reasons for this, including their variability which defines

the dynamics of air masses at any point of observation. The parameters recognized

and studied until now are seasonal, diurnal and semidiurnal periodicity, in addition

to variation of the atmospheric parameters connected with the motion of the

planet along the elliptical orbit around the Sun, with the obliquity of the axis of

rotation to the ecliptic, and with perturbations caused by the Moon.

In our case, in order to prove that the predicted oscillations of various geophys-

ical parameters with period 1h.4 exist, we used the applicable spectral analysis of

experimental data.

Oscillation of the temperature. We now describe the results of spectral analysis

of temperature data recorded by our colleagues in the Central Hydrometeorological

Observatory at the Ostankino TV Tower, Moscow. Let us consider two sets X1 and

Y1 representing regular records of the air temperature variation of 34 h duration,

each of which were obtained simultaneously in July 1971 at heights of 503 and

83 m (Fig. 7.11). The discreteness interval of the numerical record of the tempera-

ture was 120 s, the interval of the gauge was ~60 s, and the sensitivity was oкoлo
0.1�C. The sets X1 and Y1 contain 1,024 discrete values of recorded temperature

starting at 10 h 34 min on 17 July through 21 h 34min on 18 July. Spectral analysis

of the data received was carried out by computer using the method of quick Fourier

transformation with the program developed by A.B. Leybo and V.Yu. Semenov.

Figure 7.11a shows the recorded power spectra Sxx and Syy of the sets X1 and

Y1. With the help of this initial information, we calculated the function of the

mutual spectral density Sxx ¼ S0xy + iS00xy . Then the function of the mutual

coherence was found to be

Co2 ¼ jSxyj2
jSxxjjSyyj (7.143)

and the function of the phase difference was defined as

D’ ¼ atctg
S00xy
S0xy

: (7.144)

They are both plotted in Figs. 7.11b, c.
It is known that the range of the confidence intervals for estimating the phase

difference Dj tends to zero as Co2 runs to unity. Hence the higher the value of the

function of the mutual coherence, the higher the stability of the phase difference

of the harmonics of the two processes X and Y. Therefore, the relationship between

the harmonics is probable for those frequencies where the value of Co2 is close to
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Fig. 7.11 Power spectra of sets of temperature variation at heights of 503 and 83 m (a); functions
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unity. At the same values of Co2 the meaning of the phase difference is lost because

of the wide range of the confidence interval.

We can see from Fig. 7.11b that in the vicinity of the period Tv ¼ 1h.4,

predicted by theory, the function of the mutual coherence of the sets X1 and Y1

is significant, i.e. has high probability of not being equal to zero, and sometimes of

being even greater then 0.7. Note also that the phase difference function in the

neighborhood of the period of oscillations Tv is equal to zero, which indicates that

the harmonic constituents of the temperature variations with the period Tv within

the considered interval of time are coherent at heights of 503 and 83 m.

Twice as much extended time for sets X1 and Y1 does not change the general

character of the discovered regularity. Figures 7.11b, c demonstrate values of the

mutual coherence function Co2 and the phase difference Dj of two sets X2 and Y2

each containing 2,048 experimental points and recorded synchronously with the

same discreteness interval. Recording was continued for 3 days starting at 10 h

34 min on 17 July through 6 h 54 min on 20 July 1971. However, reduction of time

for the sets leads to an increase in values of the mutual coherence function on the

low frequencies, but the values of the frequencies corresponding to the period Tv do

not increase. This proves the theoretically predicted conclusion concerning the

existence of a coherent harmonic with the period Tv.

Figure 7.11b plots the mutual coherence function for two sets of temperature

variations recorded at 17 h 2 min in each case. These sets were recorded at a height

of 503 m with the same discreteness interval as discussed above, but in different

years. Set X3 covers a time interval from 10 h 34 min on 17 July until 3 h 36 min on

18 July 1971, and Y3 was recorded from 9 h 14 min 30 July to 2 h 16 min on 31 July

1971. We can see from the plot that in this case the mutual coherence function

acquires a value equal to 0.6 at T ¼ 1 h.31, which proves the theory of the steady

state virial oscillations within sufficiently long intervals of time.

Let us estimate the amplitude of temperature virial oscillations in the neat surface

layer of the atmosphere. For this purpose we recall that the value of the power

spectrum of a process at a given value of the frequency is proportional to the square

of the amplitude value of the harmonics with the same frequency in Fourier analysis

of the process. We plot the power spectrum of a sinusoid of some known amplitude,

for example, equal to 1�C with period 1h.4 and a given discreteness t � 120 s. The

value of the power spectrum of the sinusoid for the frequency related to period

Tv ¼ 1h.4was found equal to 3.4 grad2 per hertz, and the value of the power spectrum

of temperaturemicro-fluctuation at heights of 83–503m in July 1971, according to the

Observatory recording, was 0.3 grad2 per hertz. It is easy to obtain the estimated value

of the amplitude of the temperature virial oscillations, which is 0.3�C.

Oscillation of the pressure. We now consider our results of the spectrum analysis

of the atmospheric pressure records made by means of a microbarograph designed

by V.N. Bobrov in the Institute of Earth Magnetism and Radio Wave Propagation,

Russian Academy of Sciences. Analysing the records, we took the pressure ordi-

nates correct to 1 mm at amplitude of pressure oscillation within several cm (at

microbarograph sensitivity equal to 0.02 mb/mm). The spectral analysis was done

using the methodology described above.

Figure 7.12a shows the power spectrum of two sets X4 and Y4 containing 1,024

of the pressure ordinates taken with discreteness interval 76.5 s covering the time
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interval from 18 h on 31 August through 15 h 30 min of 1 September 1977 and from

15 h 00 min on 1 September through 12 h 30 min on 2 September 1977.

The experimental data of micro-fluctuations of the atmospheric pressure were

obtained at a near surface layer of the northeast coastal area of the Caspian Sea by

our colleagues from the Institute of Earth Magnetism and Radio Wave Propaga-

tion. Using the function of mutual spectral density Sxx, we calculated the functions

of mutual coherence Co2 and phase difference Dj, shown in Fig. 7.12b, c.

The spectral densities were analyzed by averaging the values of seven experi-

mental points (the number of degrees of freedom equal to 14). The graph of spectral

densities was plotted in relative units and on logarithmic scale (in order to have the

same range of confidence intervals for any value of the spectral density).

Figure 7.12b shows that in the vicinity of the frequency value corresponding to the

periodTv ¼ 1h.4, the coherence coefficient is significant and is equal toCo2 ¼ 0.6. It is

also important to note that, for the same frequency, the phase difference is stable and

close to zero (see Fig 7.12c). These facts prove the theory of the existence of coherent

oscillations of the Earth’s atmosphere with period close to Tv.

Figures 7.12b, c also show the curves of mutual coherence and phase difference

for the other two sets X5 and Y5 plotted on a base of 512 experimental points of

atmospheric pressure recorded within time intervals starting at 16 h 56 min on 28

August and at 2 h 45 min on 29 August and at 18 h 00 min 31 August through 3 h

49 min on 1 September 1977, respectively. The mutual coherence function has a

value equal to 0.5 in the vicinity of TV, and the function of the phase difference has

a value close to zero. This also proves the conclusion discussed above.

We can also show that virial pulsation of the Earth’s atmosphere with period

Tv ¼ 1h.4 is observed in both mid and low latitudes. For this purpose we studied

records of micro-fluctuations of the atmospheric pressure obtained by the same

researchers during their expedition to Cuba.

Let us analyze two sets of experimental data X6 and Y6 taken from their records

of micro-fluctuations of the atmospheric pressure with discreteness interval equal to

180 s. The process X6 covers a time interval starting at 19 h 00min on 7May through

20 h 36 min on 8 May 1976 and the process Y6 covers an interval from 21 h 54 min

on 7May through 23 h 30min on 9May 1976. Figure 7.13a shows the power spectra

of the processes X6 and Y6. The functions of mutual coherence and phase difference

which, in the vicinity of the period Tv, have values Co2 ¼ 0.56 and Dj ¼ 0�

respectively, are shown in Fig. 7.13b, c. The same figures also show functions of

mutual coherence and phase difference for two other sets, X7 and Y7, representing

256 experimental points each and analyzed with the same discreteness intervals.

They cover time intervals starting at 21 h 37min on 25 April through 10 h 23 min on

26April and on 20 h 00min on 28April on 9 h 14min on 29April 1976. The value of

function Co2 ¼ 0.6 and Dj ¼ 0� relative to frequencies with period Tv ¼ 1h.4.

Our estimate of the amplitude of virial oscillations of the atmospheric pressure

made by using the above procedure gives the value of 0.1 mbar.

Figure 7.13b shows the function of mutual coherence of two sets of atmospheric

pressure X8 and Y8 taken with discreteness interval Dt ¼ 6 min and recorded in

various years and at different points of the globe: (a) in Cuba within a time interval
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starting at 19 h 00 min on 7May through 2 h 30 min 8May 1976; (b) on northeastern

shore of the Caspian Sea at 19 h 00 min on 4 September through 20 h 30 min on 5

September 1977. We also observed here that the function Co2 takes a value of about

0.65 in the vicinity of the period Tv ¼ 1h.4. This also proves our hypothesis.

Analogous results were obtained on analysis of the experimental data of micro-

fluctuation of the atmospheric pressure recorded at the Black Sea. The analyses

were made with discreteness interval equal to 120 s.

We have shown the existence of harmonics with period close to Tv ¼ 1h.4,

coherent within long time intervals for micro-fluctuations of atmospheric pressure

5.101

101

100

1,0

0,5

180

C
o2

120

60

0

−60

−120

−180

2.10−1

5,1
2,3

1,5
1,1

0,73
0,65

Tv,h

S
xx
,S
yy

a

b

c

X6

Y6

1
2
3

Fig. 7.13 Power spectra of the sets X6 and Y6 of atmospheric pressure variations in Cuba (a);
functions of mutual coherence of the sets X6 and Y6 (1) and X7 and Y7 (2) and X8 and Y8 (3) (b);
functions of the phase difference of the sets X6 and Y6 (1) and X7 and Y7 (2) (c). (Arrows show the

range of 95% of the confidence intervals)
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and temperatures in the near surface layer of the atmosphere, obtained at various

points of the globe and in different seasons of the year. The resulting data from

analyses of experimental records of micro-fluctuations of pressure and temperature

as well as the geomagnetic field of the Earth are given in Table 7.2.

7.12.6 Dynamics of the Oceans

It follows from Eq. 7.71 that the world ocean is found to be in a suspended state

because the density value of its water is by far less (2/3) than the mean density of

the solid Earth. Accepting this criterion, we may assume that in the earlier stage of

creation of the planet its hydrosphere remained in the gaseous phase. Only after

irradiation of the corresponding part of the potential energy has the water vapor

condensed into the liquid phase (see Chap. 9). Taking into account the observed

geographic distribution of the Atlantic and Pacific oceanic basins, we also may

assume that their floors were formed as a consequence of the planet’s equatorial

oblateness during formation. Applying the same argument and geography of

location, one may conclude that the Indian oceanic floor was formed on the same

base at the Earth’s polar flattening and due to the asymmetric deformation of the

southern hemisphere (see Chap. 2).

The oceans have their own potential energy value which is equal to U �
2.1032 erg. This value is by four degrees less of their oscillating and rotating kinetic

energy. It means that the oceans stay in hydrostatic equilibrium in the outer force

field of the solid Earth which provides rotational motion of this shell

This suspended stay of equilibrium of the oceans determines their dynamics.

According to Eq. 7.71, angular velocity of the rotating oceanic water, because of

low density, is less than that of the solid Earth. Therefore, the oceanic water in its

rotary motion has lower angular velocity with respect to the solid Earth. Encounter-

ing the continents on their way, the ocean waters form the latitudinal currents along

both American and Asian continents. The observed multiply disordered regional

and local linear and eddy currents are the consequences of different perturbations,

which dominate over the regular currents due to the above energy effects.

The regular currents, which move along the east shores of the continents, play

an important role as heating system in formation of weather and climate processes

in the middle and high latitudes.

7.12.7 The Nature of the Weather and Climate Changes

The atmosphere and oceans comprise a common natural system which controls the

weather and climate on the planet. Both shells, being uniform in density and

staying in semi-hydrostatic and semi-dynamic equilibrium in the outer force field

of the solid Earth, are affected by virial oscillations of the planet and rotate with a
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Table 7.2 Experimental data after reciprocal spectral analysis

Place of observation and

parameters

Data and hours of

observation

Frequency

points (h)

Discreteness

(Dt, s)
Time

(h) Co2/ D’˚

Caspian Sea, pressure X:31.08 (18-00)–

01.09.1977

(05-05)

512/11 78.5 1.39 0.5/13

Y:28.08 (17-00)–

29.08.1977

(04-05)

Caspian Sea, pressure X:31.08 (18-00)–

01.09.1977

(15-38)

1024/22 78.5 1.36 0.56/6

Y:01.09 (15-38)–

02.09.1977

(12-41)

Caspian Sea, pressure X:28.08 (16-45)–

29.08.1977

(04-26)

512/11 78.5 1.39 0.47/0

Y:09.09 (22-00)–

10.08.1978

(09-30)

Black Sea, pressure X:13.08 (22-30)–

14.08.1979

(11-00)

512/12,5 87.7 1.39 0.76/�1.4

Y:14.08 (11-00)–

14.08.1979

(23-30)

Moscow, temper.

(503 m)

X:24.01 (08-14)–

25.01.1973

(01-16)

512/17 120 1.42 0.60/0

Y:25.01 (02-30)–

25.01.1973

(19-32)

Moscow, temper.

(50, 83 m)

X:17.07 (10-34)–

18.07.1971

(03-36)

512/17 120 1.42 0.67/�30

Y:17.07 (10-34)–

18.07.1971

(03-36)

Moscow, temper.

(503, 83 m)

X:17.07 (10-34)–

18.07.1971

(20-36)

1024/17 120 1.26 0.72/4

Y:17.07 (10-34)–

18.07.1971

(03-36)

Moscow, temper.

(503, 83 m)

X:17.07 (10-34)–

20.07.1971

(06-54)

2048/68 120 1.28 0.55/10

(continued)

254 7 Applications in Celestial Mechanics and Geodynamics



corresponding angular velocity. However, irregular seasonal pumping of solar

energy, because of ellipticity of the Earth’s orbit and the precession and nutation

perturbation of the upper solid shell, leads to continuous redistribution of solar

energy in the latitude and longitude directions. Those perturbations cause perma-

nent change in balance of the evaporated water from the ocean surface and lead to

changes in baric topography and in trajectories of the cyclonic vortexes which

Table 7.2 (continued)

Place of observation and

parameters

Data and hours of

observation

Frequency

points (h)

Discreteness

(Dt, s)
Time

(h) Co2/ D’˚

Y:17.07 (10-34)–

20.07.1971

(06-54)

Moscow, temper.

(503, 83 m)

X:17.07 (10-34)–

18.07.1971

(03-36)

512/17 120 1.31 0.62/0

Y:30.07 (09-14)–

31.07.1977

(02-16)

Cuba, pressure X:25.04 (21-37)–

26.04.1976

(10-23)

256/13 180 1.42 0.57/10

Y:28.04 (20-00)–

29.04.1976

(09-14)

Cuba, pressure X:07.05 (19-00)–

08.05.1976

(20-36)

512/26 180 1.28 0.59/1.7

Y:08.05 (21-54)–

09.00.1976

(23-30)

Cuba, pressure X:16.11 (12-00)–

18.11.1976

(15-12)

1024/51 180 1.42 0.50/�17

Y:07.05 (19-00)–

09.05.1976

(22-15)

Cuba, magnetic field X:16.02 (12-00)–

18.02.1976

(15-12)

1024/51 180 1.65 0.88/120

Cuba, pressure Y:16.02 (12-00)–

18.02.1976

(15-12)

1.38 0.50/160

Cuba, pressure X:07.05 (19-00)–

08.05.1976

(20-30)

256/26 360 1.1 0.65/�40

Caspian Sea, pressure Y:14.08 (11-00)–

14.08.1979

(23-30)
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carry clouds of moisture. From point of view of the considered theory, those are the

perturbations that appear to be the cause of weather and climate change.

The principles of perturbation and resonance oscillation of the atmosphere

presented in this chapter could be used as a basis for development of analytical

solution of the problem.

7.13 Lyapunov Stability of Motion in Jacobi Dynamics

It is important to note that in the dynamic approach to the solution of problem of the

system’s dynamics, the integral characteristics of a system (Jacobi function and

total energy), presents in Jacobi’s equation, are immanent to their own integrals.

Estimating the Lyapunov stability of motion of a system, they play the role of

Lyapunov functions.

Studying Lyapunov stability of the virial oscillations of celestial bodies, we use

the Duboshin criterion, which is applicable when permanent perturbations are

present. For conservative systems, the potential energy of the system plays the role

of such a perturbation. Thus, the nature of the virial oscillations can be understood as

an effect of non-linear resonance between the kinetic and the potential energies.

7.13.1 Lyapunov Stability of Motion of a System Described
in Terms of Co-ordinates and Integral Characteristics

Let us recall the definition of stability of motion according to Lyapunov (Duboshin

1952). If for any e > 0 there exist d > 0 such that for any perturbations of the

initial data xoj, satisfying the condition | xoj| < d, the inequalities |xoj| < e (j ¼ 1, 2,

. . ., n) holds, then the perturbed motion is stable; otherwise it is unstable.

Studying the stability of motion according to Lyapunov, we shell use his

theorem (Duboshin 1952) which follows:

If for differential equations of a perturbed motion the function V of fixed sign

(positive defined or negative defined) can be found (Lyapunov function), whose

derivative by vitrue of these equations is the function of the constant sign opposite

to the sign of V or identically equal to zero, then the unperturbed motion is stable.

The theory of Lyapunov stability considers variations in the initial data. Thus the

equations for the perturbed and unperturbed motions ate the same, and one can

therefore write Lyapunov’s equation for the variation of perturbations (sequential

perturbations) in the form

_xj ¼ Xj x1; :::; xj:::; xn; t
� �

j ¼ 1; 2; . . . ; n (7.145)

where

Xj x1; :::; xj:::; xn; t
� � ¼ Pj fi þ x1; :::; fj þ xj; ; :::; fn þ xn

� �� Pj fi; :::; fj; ; :::; fnt
� �
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is equal to the difference between the two particular solutions of one and the same

equation of motion of the system which was obtained by subtracting the two

equations. The right-hand sides xj (. . .) of Eq. 7.145 are the functions equal to

zero at the stationary point xj ¼ 0 (j ¼ 1, 2, . . ., n), i.e. in the absence of initial data
perturbations. Thus, according to Lyapunov, the problem of stability can be

reduced to the problem of stability of the zero (trivial) solution of the perturbation

equations, having on the right-hand side at the origin of the new co-ordinates (xj)

the function xj (. . .) identically equal to zero.

Investigating the Lyapunov stability of the system whose equations of motion

are written in co-ordinates, the difficulty is to find the Lyapunov function V.

Progress in this field has been achieved owing to the development of Chetaev’s

method (Chetaev 1962), which we shall employ.

The method is as follows. If the first m integrals F1(x1,. . ., xn) ¼ h1,. . .,
Fm(x1,. . ., xn ) ¼ hm of the perturbed motion are known, then the Lyapunov

function can be sought in the form

V ¼ l1 F1 � F1ð0Þ½ � þ :::þ lm Fm � Fmð0Þ½ � þ m1 F21 � F21ð0Þ

 �þ :::

þ F2m � F2m 0ð Þ
 �
: (7.146)

In writing the equations for the system’s dynamics in terms of integral char-

acteristics it appears that the latter (Jacobi function and total energy) are immanent

to their own integrals. Let us illustrate this statement by well-known examples.

Example 1. Stability of stationary motion in the two-body problem.

Let ro be the radius of circular motion of mass m in the two-body problem; o is its

angular velocity. Then according to Kepler’s law we write

o2r30 ¼ Gm ¼ m ¼ const: (7.147)

If r, c, y are co-ordinates of the elliptic motion, then the integrals of their

perturbed motion are as follows:

Tþ U ¼ m

2
_rð Þ2 þ r2 yð Þ2 þ r2cos2y _c

� �2
� 	

� m
m

r
¼ m

2
h1; (7.148)

@T

@ _c
¼ mr2 cos y _c ¼ mh2: (7.149)

Introducing the perturbations xj,

r ¼ ro þ x1; _r ¼ 0þ x2;

y ¼ x3; _y ¼ 0 ¼ x4;

_c ¼ oþ x5
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Then integrals (7.148) and (7.149) of the perturbed motion can be rewritten in

the form

F1 ¼ x22 þ r0 þ x1ð Þ2x24 þ r0 þ x1ð Þ2cos2 x3 oþ x5ð Þ2 � 2m
r0 þ x1

¼ h1; (7.150)

F2 ¼ r0 þ x1ð Þ2cos2 x3 oþ x5ð Þ ¼ h2: (7.151)

Let us write the Lyapunov function according to Chetaev’s method as follows:

V ¼ F1 � F1 0ð Þ þ l F2 � F2 0ð Þ½ � þ k F22 � F22 0ð Þ
 �
The function V is of fixed sign when 2oþ lþ 2kr20o ¼ 0: It is a positive

definite function when the condition k> 3r20 is satisfied.

All the conditions needed for application of the stability theorem mentioned

earlier are satisfied at k; > 3r20 and the motion in the accepted co-ordinates is

therefore stable.

To estimate the stability of Keplerian motion in terms of integral (volumetric)

characteristics, only one integral of motion is needed, namely the angular momen-

tum Mo:

M0 / Fo: (7.152)

It should be pointed out that these integral characteristics (F and o) form a

canonical pair since their product is proportional to the action of the system

h / Fo (7.153)

and the Jacobi function F is the integral characteristic of motion. It is easy to verify

that Keplerian motion is unstable at Mo ¼ 0, i.e. when linear motion takes place.

Example 2. Stability of a pendulum at vertical oscillation of its fixed point of
suspension (Kapitza 1951).

In contrast to the case considered above, this example is related to the problems of

stability of the system at permanent perturbations (e.g. due to dissipation of feed-

back of energy). Here the equations of unperturbed motion (without dissipation of

energy) and perturbed motion (when dissipation of energy takes place) are different.

The procedure of subtraction of equations does not lead to the equation with the

right-hand side identically equal to zero in the stationary point (for trivial solution).

Such systems can be studied with the help of an approach developed by

Duboshin (1952). Duboshin’s criterion of stability of motion at permanent pertur-

bations is as follows (1978): Unperturbed motion is stable et permanent perturba-

tions Rs(t/xs) if for any given arbitrary positive e � A there exist such positive

numbers l � e and r depending on e that at any initial data xos satisfying the
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conditions Xo
s

�� ��bl and at any functions Fs satisfying at |xs| � e at t > to the

inequalities

jRs t=xsð Þj<r (7.154)

all the solutions xs(t) of the system of differential equations for t > to satisfy the

conditions |xs(t)| < e. In other cases the motion is called unstable at permanent

perturbations, whatever their amplitude r is.

We shell employ Duboshin’s criterion while studying the stability of a pendu-

lum’s oscillations and the stability of the virial oscillations.

The equation of motion of a pendulum near the stable (in the absence of

oscillations of the fixed point) lowest equilibrium state is written

€xþ g

l
þ d

o2

l
cosot

� �
x ¼ 0; (7.155)

where x is the angle measured from the equilibrium state; ‘ is the length of the

pendulum; d is the amplitude of vertical oscillations of the fixed point; and o is the

frequency of oscillations of the fixed point.

For a pendulum oscillating near the lowest stable equilibrium state, the loss of

stability (the parametric resonance) appears at the frequency of oscillations

o ¼ 2

n

ffiffiffi
g

‘

r
(7.156)

where n is a natural number.

For oscillations of a pendulum near the unstable upper state, the condition of

stability of the motion is expressed as

o>
ffiffiffiffiffiffiffi
2g‘

p
d

: (7.157)

Thus variation of the system’s parameters affects the stability of the motion. It

should be noted that Eq. 7.155 itself (even if the dependence of amplitude d on time

is taken into account) is written in linearized form relative to x, although the

amplitudes of swing can be large and even rotation can be considered. Therefore,

the more correct form of the equation will be, without linearization:

€xþ g

‘
þ d

o2

‘
cosot

� �
sin x ¼ 0: (7.158)

In this connection, let us consider the case when d ¼ 0 and the effect of

potential energy of the free rotation of the system is taken into account.

€x ¼ 0; _x ¼ O ¼ const;

where O is the angular velocity.
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The energy of rotation here is equal to the kinetic energy

T ¼ 1

2
m‘O2

The phase of revolution of a pendulum is written as x ¼ Ot + xo, where xo is the

initial phase .The potential energy of the system is U ¼ ðmg=‘Þ sin x, where U is

proportional to sinx.

In this case Eq. 7.158 of the perturbed motion of a pendulum can be considered

as a non-linear resonance of the potential and kinetic energies.

Unperturbed motion (rotation) of the system has angular velocity depending on

its energy T ¼ 1=2m‘2O and therefore

O ¼
ffiffiffiffiffiffiffiffi
2T

m‘2

r

i.e.

O / T1=2 (7.159)

Thus, the unperturbed motion is non-linear although harmonic. Non-linearity is

developed here in non-isochronous oscillations.

The perturbation function, which is the potential energy, oscillates with the same

frequency as the perturbed system itself but has a phase shift. The curves indicating

the variation of the phase of revolution (unperturbed motion) and the potential

energy (perturbation function) are plotted in Fig. 7.14.

In this figure t denotes the period of revolution of the pendulum. Curve 1

represents the phase of revolution, which is a function of time: x ¼ Ot. Curve
2 is parallel to curve 1 but is shifted in the phase by 2p. Curve 3 represents the phase
of the potential energy, which is the following function of time:

U ¼ mg

‘
sin xa x� x3

3
þ :::

� �

In a linear approximation we haveU / x and thus the phase x ¼ Ot coincides with
the phase of revolution. It follows from Fig. 7.14 that if the value of the coefficient

mg grows, then curve 3 intersects curve 2. The differences of phase of revolution

and perturbation reaches the value 2p and the character of the motion changes.

Therefore, if the potential energy is considered as a permanently acting perturbation,

the existence of the bifurcation point of the system with respect to permanent mg is

evident.

Let us write all the forgoing in analytical form. The equation of motion is

€xþ g

‘
cos x ¼ 0: (7.160)
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Multiplying (7.160) by 2 _x and integrating over t, one obtains

_xð Þ2 þ 2g

‘
sin xþ b ¼ 0 (7.161)

or

_xð Þ2 ¼ �b�þ 2g

‘
sin x: (7.162)

The left-hand side of the last equation obtains non-negative values. Therefore

there exist two qualitatively different types of solution depending on the value of

parameter b. If b has negative values (�b > 0) and bj j>2g=‘, then any value of x is
possible ð sin xj jb‘and thus . If bj j<2g=‘, then only those values of x are possible at
which the inequality sinxj jb bj j=ð2g=‘Þ<1 holds.

Thus at g=‘ ¼ bj j=2 we obtain bifurcation of the system by the parameter g=‘; at
g=‘b bj j=2 we obtain rotation of the system; and at g=‘> bj j=2 we obtain oscilla-

tions of the system. It can be seen that the kinetic energy T of the system

oscillations is periodically overpumping from the system into potential energy

(perturbation energy V) and back, but at any time the total energy remains,

E ¼ Tþ U ¼ const. The amplitude of swing of a system is the difference between

the phase of unperturbed motion (rotation) and that of perturbation (the potential

energy), which is responsible for the existence of the non-linear resonance (note

that unperturbed motion is non-linear and non-isochronous, and the difference

between the phase of rotation and perturbation is less than 2p.
There is no contradiction here or for estimates of stability of motion according

to Lyapunov, since in Lyapunov’s theory sufficiently small initial perturbations can

be taken into consideration. Here we are studying the whole range of perturbation

magnitudes. At the same time, it is obvious how Duboshin’s criterion (7.154)

works. If the stability of rotation of the system is studied at permanently acting

perturbations whose role is played by the potential energy, then the value of

perturbation is bound from above by a constant value until the bifurcation point

g=‘ ¼ bj j=2 and the rotation of he system occurs.

Fig. 7.14 Variation of the

phase of revolution

(unperturbed motion) and the

potential energy (perturbation

function) for a pendulum of

vertical oscillations of its

fixed point of suspension
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Now the general case of stability of motion can be easily considered, when

d 6¼ 0 in Eqs. 7.155–7.158. The term (d cosot)sinx ¼ v in Eq. 7.158 can be

considered as an external perturbation of the free (rotating) system and thus the

system becomes unstable when it passes the bifurcation point (the parameter d has

the same dimension as the term mg, i.e. it is proportional to energy). Therefore, the

energy of the new perturbation should be greater than or equal to the energy of

previous perturbations. The energy of the initial perturbations is equal to mg‘ and
that of the new perturbation to mv2/2, where v is the velocity of movement of the

fixed point of a pendulum equal to do. The energy of the new perturbation is

mv2

2
¼ md2o2

2

The following inequalities should hold:

mv2

2
>mg‘

d2o2

2
>g‘ or d>

ffiffiffiffiffiffiffi
2g‘

o

r

Thus, we have shown that by using Duboshin’s criterion in studying the stability of

motion of a pendulum with vertical oscillations of its fixed point of suspension in

the integral characteristics, the result can be obtained directly. The analogous result

(7.157), following from Mathieu’s theory when studying the dynamics of the

system in co-ordinates, requires more complicated solutions.

Lyapunov’s theory provides the possibility of studying the stability of motion

relative to different generalized co-ordinates and associated with their momenta.

But the choice of suitable variables for the particular system cannot be made if the

physics of the studied phenomenon is ignored.

Keplerian motion of a particle in an elliptical orbit can serve as an example of such

a case, being unstable if determined relative to the radius-vector of a system. But this

motion will be stable if it is defined relative to the variable z ¼ r� p=‘þ e cosc,
where p and e are the eccentricity parameters of an ellipse, and r andc are its polar co-

ordinates. The number of generalized co-ordinates should be equal to the number of

degrees of freedom of a system (where co-ordinates are linearly independent). If the

integral characteristics are used for the description of motion of a system, the number

of characteristics must be complemented up to the number of degrees of freedom, at

the expense of unimportant variables.

In the case of the two-body problem (taking the law of conservation of momen-

tum into account) we should have the two canonical pairs. They are action-angle

(usually mentioned) and Jacobi function-frequency (there is no example of appli-

cation of the last pair in other works).

Duboshin’s criterion allows the stability of a system to be studiedwhen its potential

energy is considered (partially or as a whole) as perturbation. Such an approach to the

use of potential energy is employed in quantum mechanics, where all the potential
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energy is considered as perturbation (Landau andLifshitz 1963). In this connection the

virial oscillations of celestial bodies from the physical viewpoint should be consi-

dered as an effect of non-linear resonance between the kinetic and potential energies.

Comparing the approaches to estimations of the system’s stability in a system of

co-ordinates and in integral characteristics, let us point out the following. The

method, which uses a full co-ordinate-momenta description of the system’s dynam-

ics, is too detailed, and classification of the studied system with respect to stability

is therefore impossible. There are an infinite number of cases of systems based on it

which can be chosen.

Using the integral approach, the following classification is possible. For example,

in Keplerian motion, relative to the ratio of the integrals (energy and angular momen-

tum), all possible types of orbit can be subdivided into four classes: two are of stable

motion (elliptical and hyperbolic) and two are unstable (circular and parabolic).

A system’s motion described by co-ordinates and momenta can be classified as

unstable only in a formal way that can be accounted for by the choice of co-

ordinate system. In fact, since we do not know the solution of the problem

beforehand, the wrong co-ordinate system might be chosen.

In order to study theLyapunov stability of a system, theLyapunov functionmust be

known.However, there is no standard rule prescribing how tofind it; it is, rather, an art.

Considerable progress has been made in this field in the development of

Chetaev’s method. In this connection let us point out two facts:

(a) Chetaev’s method for obtaining the Lyapunov function uses the combination

of integrals of motion of the system. It is obvious that this way of choosing the

Lyapunov function has considerable advantages.

(b) The integrals (and not their combination) are not positively defined functions

of co-ordinates and momenta, which is why they are not used in such an

analysis. They cannot be co used since arbitrary (and not their own) co-

ordinate-momenta ate strange to these integrals. In practice, for many soluble

problems, combination of a number of integrals of motion of a system corrects

this deficiency. However, this can be done only for systems with small

numbers of degrees of freedom which resemble a more general description

of a system.

In describing a system in terms of integral characteristics, the characteristics

themselves are immanent to their own integrals of a system and therefore they

play the role of the Lyapunov function. In this case it is not even necessary to carry

out formal mathematical analysis to study the stability of a system.

7.13.2 Stability of Virial Oscillations According to Lyapunov

Let us first estimate the stability of motion which is described by the classical virial

theorem, i.e. when

€Fvirial ¼ 0: (7.163)
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The equation of the perturbed oscillations is in this case Jacobi’s equation with

the same value of the constant a2b:

€F ¼ �Aþ Bffiffiffiffi
F

p

The perturbation function in this case is

� ¼ F� Fvirial: (7.164)

This function satisfies the equation

� ¼ €F� €Fvirial ¼ �Aþ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� þ Fvirial

p ¼ x �ð Þ; (7.165)

where x �ð Þ r¼0j ¼ 0

Here the Jacobi function plays the role of the co-ordinate, and, since x(0) ¼ 0, we

obtain the classical problem of stability of the trivial solution according to Lyapunov.

Using the form of x(Z) and taking into account that, when the condition of the virial

theorem holds at any moment in time, Fvirial is a constant and A and B are such

that � A + (B/F) ¼ 0. It follows that x(Z) is not a function of the defined sign.

Therefore, the stability of the virial state does not follow automatically; it follows only

on the condition that, in a virial state, the function Fvirial assumes minimal values

among all the possible configurations of the system.But the last condition is evenmore

speculative then our hypothesis of constancy of the a2b product.

Thus, the general, and the main, case remains the one when F does not remains

constant. The case described by Fvirial can be considered as a smooth state relative

to the main state, i.e. it is related to the condition when averaging over the period of

oscillations has been carried out.

Now let us consider the stability of virial oscillations of a conservative system

according to Lyapunov described by

€F ¼ �Aþ Bffiffiffiffi
F

p (7.166)

when the product of the form factors a2b is not a constant, i.e. variation of the

parameter B is allowed.

When there are no variations of B, Eq. 7.166 is written

€F1 ¼ �Aþ B1ffiffiffiffiffiffi
F1

p (7.167)

and when variations of the parameter B occur, the equation is written

€F2 ¼ �Aþ B2ffiffiffiffiffiffi
F2

p ; (7.168)

where A is a constant in the absence of energy dissipation.
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The perturbation function Z is written

� ¼ F2 � F1: (7.169)

Then the perturbation equation is written

€� ¼ B2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1 � �

p � B1ffiffiffiffiffiffi
F1

p ¼ x �ð Þ: (7.170)

If Z is a continuous function, we have

x �ð Þ r¼0j ¼ 0 (7.171)

If Z is a discontinuous function, then

x �ð Þ r¼0j 6¼ 0 (7.172)

If Z is continuous function < i.e. variation of a2b is continuous, we obtain the

classical problem of Lyapunov stability of the trivial solution of the perturbed

equation, and all the comments are ordinary, i.e. the motion is stable (the necessary

and sufficient conditions hold).

At discontinuous variations of a2b (isolated singular points), the stability

problem can be studied using Duboshin’s criterion. As was shown in Chap. 5,

the equation for dissipative system can be reduced to a system of linear equations

with constant coefficients. When the ratio of frequencies for each of these equa-

tions is a rational number, the solution can be given by a closed algebraic curve (i.e.

a set of isolated points). If the ratio of frequencies is an irrational number, the curve

corresponding to the solution fills the whole set of possible values of the Jacobi

equation. Here the last possibility corresponds to continuous variation of the

function Z.
It is interesting to point out that the well-known three-body problem theorem by

Poincaré studies this case. There, instead of the mass of one body, in the course of

the proof of the theorem, the continuity is employed.

But as Wintner (1941) has pointed out, the result obtained by Poincaré corre-

sponds to the case when the masses of the bodies are not fixed. This note made by

Wintner is rather general and can be related to the product of the form factors

a2b which should not be considered as a continuous function but rather as a set of

isolated points.

On the whole, study of the stability of virial oscillations gives us evidence that

the proof of the constancy of the product |U|F for existing celestial bodies is a

sufficient but not a necessary condition. The necessary condition for the proof of

the above relationship follows from the direct derivation of the equation of virial

oscillations of celestial bodies from Einstein’s equation and also by showing that

Schwartzschild’s solution in the framework of the general relativity theory is the

solution of Jacobi’s equation when F ¼ 0.
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7.13.3 Stability of Virial Oscillations of Celestial Bodies
as Dissipative Systems

Let us now estimate the stability of oscillations of celectial bodies emitting electro-

magnetic energy. This is the case for systems existing in nature.

For a conservative system, Jacobi’s equation is written

€Fc ¼ 2Ec � U (7.173)

where the subscript c indicates that the corresponding characteristics of the system

relate to a conservative system, and the subscript d, below, denotes a dissipative

system.

Let us study the stability using Eq. 7.173, assuming dissipation of energy, which

can be written

€Fd ¼ 2Ed � U

A variation of the solution of Eq. 7.173 is written � ¼ Fd � Fc:
Then

� ¼ 2ðEd � EcÞ ¼ 2Eg ¼ At;

where t is the time elapsed from the beginning of evolution.

According to Duboshin’s criterion, the system (7.173) which emits energy will

be stable at any finite time interval, ranging from t ¼ to to t ¼ t, where t is the

bifurcation time of the system (see Chap. 8).
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Chapter 8

Creation and Evolution of the Solar
System Bodies

The study of creation and evolution of celestial bodies and their systems is one of

the main subjects in astrophysics, cosmogony and cosmology. It is known from

observation that the matter of the Solar System bodies is very identical with respect

to its substantial and chemical content and from this point of view all the bodies are

of common origin. But the attempts to find general mechanism of creation of the

bodies encounter irresistible contradiction. The point is that the planets having only

~0.015% of the system’s mass possess 98% of the orbital angular momentum.

At the same time ~99.85% of the Sun’s masses produce no sooner than 2% of the

moment of momentum which, in both cases, is accepted to be a conservative

parameter. Also, the specific (for unit of the mass) orbital angular momentum is

increased with the distance from the Sun. These results follow from the problem

solution based on the hydrostatic approach.

We study the problem in the framework of the Jacobi dynamics and with the

assumption that all evolutionary processes are developed as a consequence of the

energy loss through radiation. And also we consider virial oscillations of celestial

bodies to be a mechanism of generation and release of the energy emitted.

Our study appeared to be successful, since, applying dynamic approach, we

resolve the above discrepancy. It was found that the orbital planetary moment of

momentum and the angular momentum of the axial rotating body are kinetic effects

which originate from different components of the potential energy. It was shown in

Sect. 7.2 of Chap. 7, that axial rotation is a dynamical effect which is provided by

tangential component of the body’s potential energy. Rotating energy comprises

very small portion of the total potential energy. It equals to ~3 . 10�2 for the Earth

and ~10�4 for the Sun from their total energy . Rotating energy is the function of

the radial density distribution law and appears as an effect of interaction of the

uniform and non-uniform mass particles with respect to their density. For the

uniform body its rotary energy is equal to zero. This is physics of the body’s

angular momentum.

Quite different origin has orbital moment of momentum. Interaction (collision

and scattering) of the body’s mass particles is accompanied by continuous redistri-

bution of the mass density. According to the Roche’s tidal dynamics (see Sect. 7.5

of Chap. 7), redistribution of the density leads to the shell separation. As it follows

V.I. Ferronsky et al., Jacobi Dynamics, Astrophysics and Space Science Library 369,

DOI 10.1007/978-94-007-0498-5_8, # Springer Science+Business Media B.V. 2011

267



from Eq. 7.71 of Chap. 7, when the body’s upper shell density reaches value more

than 2/3 of the mean density of all others shells, then the upper shell becomes

weightless. From physical point of view it means that the own force field of the

upper shell reaches dynamical equilibrium with respect to the parent’s outer force

field. If the density of such a shell around the body has non-uniform distribution,

then its tangential component of the potential energy converts it into secondary

body with mean density according to Eq. 7.70. In the case of its uniform density, the

shell is preserved as a parent’s ring. In general case the shell is decomposed on parts

of different masses. The orbital motion of a body now is resulted from the parental

body by its outer force field induced by the normal component of the body’s

potential energy. In this case the orbital velocity of the newly created body should

be equal to the first cosmic velocity of the parental body on its surface and the

direction of motion is determined by the Lenz law. Just this energy (and

corresponding velocity) is the function of the orbital moment of momentum of

the secondary body.

So, it is clear from the above that the induced outer force field, which is formed

by the normal component of the solar potential energy, operates the orbital motion

of a secondary body. Doing so, the secondary body conserves the value of the

parental energy at the time of its creation. To the contrary, the body’s own shell

rotation is provided by the tangential component of the potential energy. From here,

the energy and the orbital moment of momentum are conservative parameters. The

body’s total energy is also conservative parameter, but the tangential component of

energy and the corresponding angular momentum are not conservative values (see

minus sign in Eq. 7.50 of Chap. 7).

8.1 The Third Kepler’s Law as a Kinematics Basis
for the Problem Solution of Creation of the Solar
System Bodies

Using the above physics, we discovered a very interesting phenomenon, which

opens the way for solving the problem. It appears that the mean orbital velocities

and periods of revolution of all the planets and asteroids are equal to the first cosmic

velocity and corresponding period of the contracting Protosun, having its radius

equal to the semi-major axes of each planet’s orbit. The same was happened with

the planets’ satellites. The subsequent expansion of the space has not broken the

above regularity.

Tables 8.1 and 8.2 demonstrate the observable and calculated values of the

orbital periods of revolution of the planets, asteroids (small planets) and satellites

obtained by applying first cosmic velocities of the Protosun and the protoplanets

which prove the above said.
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Table 8.1 Observable orbital periods of revolution of the planets around the Sun and calculated

periods of oscillation of its corresponding outer shell

Planets

Orbital radius,

R � 1011 (m)

Observable period of

revolution T (year)

Calculating period of

oscillation T1 (year)

Mercury 0.579 0.24 0.2408

Venus 1.082 0.62 0.6153

Earth 1.496 1.0 1.00

Mars 2.28 1.88 1.8823

Vesta 3.53 3.63 3.7594

Juno 3.997 4.37 4.3733

Ceres 4.13 4.6 4.598

Themis 4.68 5.539 5.5397

Jupiter 7.784 11.86 11.8781

Saturn 14,271 29.48 29.4802

Uranus 28.708 84.01 84.1951

Neptune 44.969 164.8 164.9185

Pluto 59.466 248.09 250.8882

Table 8.2 Observable orbital periods of revolution of the satellites around the planets and

calculated periods of oscillation of their corresponding outer shells

Planets Satellites

Orbital radius

R� 106, m

Observable period of

revolution T, year

Calculated period of

revolution T1, year

Earth Moon 384.4 27.32 27.4103

Mars Phobos 9.4 0.319 0.3208

Deimos 23.5 1.262 1.2604

Jupiter V 181 0.498 0.4973

Io 422 1.769 1.7706

Europa 671 3.551 3.5508

Ganymede 1,070 7.155 7.154

Callisto 1,880 16.69 16.6709

XIII 11,100 240.92 239.0960

VII 11,750 259.14 259.5899

XII 21,000 620.77 660.7744

1X 23,700 758.90 745.1833

Satutn Janus 151.5 0.7 0.6956

Mimas 185.6 0.94 0.9431

Enceladus 238.1 1.37 1.3704

Tethys 294.7 1.89 1.8869

Dione 377.4 2.74 2.7366

Titan 1,212.9 15.95 15.7548

Iapetus 3,560.8 79.33 79.2494

Phoebe 12,944 548.2 549.2722

Uranus Cordelia 49.751 0.3350 0.3348

Cupid 74.8 0.618 0.6172

Miranda 129.39 1.4135 1.4043

Ariel 191.02 2.5204 2.5189

Umbriel 266.3 4.1442 4.1463

Titania 435.91 8.7058 8.6840

Oberon 583.52 13.4632 13.4503

(continued)
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The first cosmic velocity v1 of the Protosun’s and protoplanetary bodies and the

period of oscillation of the corresponding outer shell T1 of the created bodies were

calculated by the formulae from which, in fact, the third Kepler’s law follows:

n1 ¼ oR ¼ R

ffiffiffiffiffiffiffiffi
Gm

R3

r
¼

ffiffiffiffiffiffiffiffi
Gm

R

r
; T1 ¼ 2p

o
¼ 2pR

n1
;

2pð Þ2
T2
1

¼ Gm

R3
;

where m is the body’s mass; G is the gravity constant; R is the semi-major axis;

o ¼ n1/R is the frequency of virial oscillation of the outer shell, which appears to

be equal to the angular velocity of the orbital motion. Note, the frequency of virial

oscillation of the outer weighty shell does not equal to its angular velocity because

the frequency is the parameter of the force field.

For example, when the Protosun’s radius R extended up to the present day

Earth’s orbit (m ¼ 1.99 · 1030 kg, R ¼ 1.496 · 1011 m), then its first cosmic velocity

was equal to

n1 ¼ oR ¼
ffiffiffiffiffiffiffiffiffi
Gms

R

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6; 67 � 1011 � 1; 99 � 1030

1; 496 � 1011

s
¼ 29786:786m=s

¼ 29:786786 km=s:

This value corresponds to the observed mean orbital velocity of the Earth.

The period of oscillation of the interacted mass particles of the Protosun’s outer

shell (R ¼ 1.496.1011 m, v1 ¼ 29786.786 m/s) was equal to

T1 ¼ 2pR
n1

¼ 6; 28 � 1:496 � 1011
29786:786

¼ 3:1540428 � 107s ¼ 1 year;

which is equal to the observed period of the planet’s orbital revolution.

When the Protoearth’s radius R extended up to the present day Moon’s orbit

(me ¼ 5.976.1024 kg, R ¼ 3.844.108 m), then its first cosmic velocity was equal to

n1 ¼
ffiffiffiffiffiffiffiffiffi
Gme

R

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6; 67 � 1011 � 5:976 � 1024

3:844 � 108

s
¼ 1018:3018 m ¼ 1:0183918 km=s;

which is the present day Moon’s mean orbital velocity.

Table 8.2 (continued)

Planets Satellites

Orbital radius

R� 106, m

Observable period of

revolution T, year

Calculated period of

revolution T1, year

Neptune Triton 354.8 5.877 5.8523

Nereid 5513.4 360.14 359.8227

Pluto Charon 19.571 6.387 9.5065

Nix 48.675 24.856 37.2873

Hydra 64.780 38.206 54.2482
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The period of oscillation of the interacted mass particles of the Protoearth’s outer

shell (R ¼ 3.844 108 m, v1 ¼ 1018.3018 m/s) was equal to

T1 ¼ 2pR
n1

¼ 2 � 3:14 � 3; 844 � 108
1018:3018

¼ 23:706449 � 105s ¼ 27:438019 days;

which corresponds to the present day Moon’s period of orbital revolution.

The obtained results mean that all the planets and satellites were launched by

first cosmic velocity of the self-gravitating Protosun and protoplanets after their

outer shells acquired weightlessness. As it was said above, the process of evolu-

tionary loss of energy by emission led to redistribution and differentiation of the

body’s mass density: increase it in the inner shells and decrease in the outer one by

the light components dilution. In general, due to this process and contraction in the

form of separation of the matter, the shell separation of a body with respect to

density was developed up to the state of weightlessness and self-gravitation of the

outer shell’s matter and creation of the body.

The discovered regularity of the Solar system’s planets and satellites creation

seems to be valid for the process of separation of the Protosun itself and the other

ptotostars from the protogalaxy Milky Way. If we accept for the Galaxy’s known

astrometric data (mass mg ¼ 2.5 · 1041 kg, distance of the Sun from the Galaxy

center Rs ¼ 2.5 · 1020 m), then it is not difficult to calculate that the first cosmic

velocity of the proto-Galaxy, which size was limited by the Sun’s semi-

major orbital axes, is equal to 230 km/s, and the orbital period of revolution is

220 · 106 year. The values are close to those found by observation, namely: mean

orbital velocity of the Sun is called as (230–250) km/s, and the orbital period of

revolution Ts ¼ (220–250) · 106 year.

The observed today picture of the Milky Way, consisting of a bar-shaped core

surrounded by a disc of gaseous matter and stars, which create two major and

four or more smaller logarithmic spiral arms, prove the generally common mecha-

nism of creation of the galactic system. This picture demonstrates that the huge

of mass and size of the Protogalaxy rotating body was subjected during evolution

by the polar and the equatorial oblateness. Due to redistribution of mass density and

after reaching a state of their weightlessness the stars were separated from the outer

shell in different surface regions. It appears that the main parts of the mass were

separated in two regions (in the pericenter and the apocenter) and less in all others.

But because the first cosmic velocity is the function of radius of the body, the

regions of separation in the space formed the logarithmic spirals of the moving stars

in accordance with the third Kepler’s law. The same logarithmic spirals were

formed also by the planets and the satellites in the Solar System.

The following initial values of density ri and radius Ri of the Protosun and proto-

planets can be obtained on the basis of their dynamic equilibrium state.

The Protosolar cloud has separated from the Protogalaxy body when its outer

shell in the equatorial domain has reached the value of the first cosmic velocity.

In fact, the gaseous cloud should represent chemically non-homogeneous rotating

body. As it follows from Roche’s dynamics (see Chap. 7, Eq. 7.71), the mean
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density of the gaseous Protogalaxy outer shell should be rs ¼ 2/3rg. The condition
rs ¼ 2/3rg is the starting point of separation and creation of the Protosun from

the outer Protogalaxy shell. Accepting the above described mechanism of forma-

tion of the secondary body, we can find the mean density of the Protogalaxy at the

Protosun separation as

rg ¼
mg

4

3
pR3

¼ 2:5 � 1041
4

3
� 3:14 � 2:5 � 1020� �3 ¼ 1:67 � 10�21kg=m3 ¼ 1:67 � 10�24g=cm3:

The mean density of the separated proto-Galaxy shell is

rs ¼ 2=3rg ¼ 2=3 � 1:67 � 10�24¼ 1:11 � 10�24g=cm3:

In accordance with Eq. 6.70, the mean density and radius of the initially created

Protosun body should be

rs ¼ 2rg ¼ 2 � 1:67 � 10�24¼ 3:34 � 10�24g=cm3;

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 1033
4

3
3; 34 � 10�24

3

vuuut ¼ 7:5 � 1018cm ¼ 7:5 � 1016m

The mean density and the radius of the initially created Protojupiter, Protoearth

and Protomoon are as follows:

the ProtoJupiter : rj ¼ 2 � 10�9g=cm3; Rj ¼ 6:2 � 1013cm ¼ 6:2 � 1011m;

the ProtoEarth : re ¼ 2:85 � 10�7g=cm3; Re ¼ 1:9 � 1011cm ¼ 1:19 � 109m;

the Protomoon : rm ¼ 5 � 10�4g=cm3; Rm ¼ 1:1 � 109cm ¼ 1:1 � 107m;

Analogous unified process was repeated for all the planets and their satellites.

Creation of the other small bodies like comets, meteors and meteorites are also

found their explanation within the considered mechanism and physics. In fact,

the only condition for separation of outer body’s shell is its weightlessness

(its corresponding mean density relative to the body’s mean density), but not a

limit of some amount of mass. In this connection any volume and amount of mass

could probability be separated at any time. For example, we found by calculation

that the short-periodic Encke’s Comet (1970 I, T ¼ 3.302 year) has semi-major

orbital axis R � 1.5 · 1011 m and has separated from the Proto-Sun after small

planet Vesta and before the Mars. The short-periodic Halley’s Comet (1910 II,

T ¼ 76.1 year) has semi-major orbital axis R ¼ 2.7 · 1012 m and has separated
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from the Proto-Sun after Saturn and before Jupiter. The long-periodic Ikeya-Seki’s

Comet (1965 III, T ¼ 874 year) has semi-major orbital axis R ¼ 1.35 · 1014 m and

has separated from the Proto-Sun before the Pluto. Like the asteroid belt between

the Jupiter and Mars, the comet belts should definitely exist between the orbits of all

the Jupiter group planets. As to the meteors and meteorites, they all should be

separated from the planets by the same way. From point of view of dynamical

equilibrium of their orbital motion the orbits of all the small bodies (comets,

meteors and meteorites) should have large eccentricities and dip angles of inclina-

tion to the equator of their central bodies. This is because of probable oblateness of

the proto-Sun body, where its polar regions should have higher values of the first

cosmic velocity. Those small bodies and meteorites, which have not reached or

have later on lost dynamical equilibrium, fell down on the planet’s or satellite’s

surface.

As it was shown in the Table 8.1, the small planets of the asteroid belt separated

from the Protosun by the same mechanism. From point of view of the orbital motion

and first cosmic velocities there are no any features of their separation from a

broken planet.

The above consideration takes off an old misunderstanding about the difference

in the orbital planet’s and the Sun’s moment of momentum. The secondary body

conserves the creation energy and orbital moment of momentum in accordance with

the third Kepler’s law. As to direction of body’s axial rotation and orbital revolu-

tion, then these parameters enter by the inner and outer force field, like in electro-

dynamics, in accordance with the Lenz law. As to the specific (for unit of the mass)

orbital moment momentum of the planets and satellites which increases along with

distance from the central body, the explanation of this gives the increasing radius

from the central body

The revealed physics and kinematics of creation and separation of the Solar

System bodies prove the Huygens’ law of motion on semi-cubic parabola of his

watch pendulum, which synchronously follows the Earth motion. This curve was

called evolute. And the curve perpendicular to the series of tangents to the evolute is

called evolvent. The relationship between the evolute and evolvent represents the

relationship between function and its derivative or between function and its inte-

gral. These relations exist not locally like in mathematical analysis but in integral

form and geometrically visible. While plotting a series of the evolvents with fixed

lengths of the pendulum a peculiarity of the same type is appeared in each point of

the initial curve of evolvent. The peculiarity is the semi-cubic parabola of type

x2 ¼ у3 or x ¼ у3/2. This is just universal law of a body motion in the nature, which

is the consequence of the simple fact. The degree 3/2 is the ration between the

body’s mass volume, which generates the energy, and the body’s surface, which

emit this energy. And also, in any task of motion we always have some initial

conditions, which the moving object is inherited. In the case of the Huygens’

oscillating pendulum the suspension filament starts unrolling in a fixed point.

In the case of a celestial body, creation of satellite starts in a fixed point of its

parental body where the initial conditions are transferred by the third Kepler’s law.
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This is because just in a fixed point of dynamical equilibrium between the generated

volumetric energy (cubic degree of radius) and the irradiated from outer surface

energy (square degree of radius) is broke.

First cosmic velocity was practically applied by man only in twentieth century.

The nature seems to use it perpetually as the main instrument of the Universe

evolution. Our Universe seems to be a pulsating system and its basic infinitesimall

particle is ~10�36 g in weight (see calculation later on in Sect. 8.3) is responsible for

the system’s equilibrium. Because of the matter evolution and energy conservation

law is the process, continuing infinitely long time. Some details related to the

evolution of a gaseous sphere we discuss below.

8.2 Evolution by Radiation and Gravitational
Contraction of a Gaseous Sphere

We consider here several problems in the gravitational evolution of a gaseous

sphere based on the generalized virial theorem and the relationship between the

potential energy and the moment of inertia of the sphere in the form

� U
ffiffi
I

p
¼ a2

Gm2

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m bRð Þ2

q
¼ a2bGm5=2; (8.1)

where U is the potential energy of the sphere; I is the polar moment of inertia;

G is the gravitational constant; m is the body mass; R is the sphere radius; and

a2 and b2 are dimensionless structural parameters depending on the radial mass

density distribution of the spherical body.

From (8.1), and taking into account Eqs. 2.43, 2.45, 7.54 and 7.55, we have the

following relationships between the structural form factors:

a2 ¼ r2g

R2
and b2 ¼ r2m

R2
; (8.2)

a2b ¼ a ¼ const; (8.3)

where a2 ¼ a20 þ a2t þ a2g ; b
2 ¼ b20 � b2t ; a

2
0 ¼ b20 ¼ 0:6 ; 2a2t ¼ b2t ; a

2
0b0 ¼ a0 ¼

const; a2
t bt ¼ at ¼ const; rg and rm are the reduced radius of gravity and radius

of inertia; ao, bo, at, ag, bt, are form factors of the normal, tangential and dis-

sipative components of the energy for non-uniform mass density distribution of

a system.

In Chaps. 6 and 7 we found that the constancy of the form factors product (8.3) is

independent of the body mass, radius and radial mass density distribution for

spherical and elliptic bodies. Eq. 8.3 is therefore a key expression in our further

consideration.
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8.2.1 Equilibrium Boundary Conditions for a Gravitating
Gaseous Sphere

It is well known that polytropic models require the boundary mass density of a

gravitating body to be rigorously equal to zero. Hence this condition gives us no

opportunity to consider any physical processes during evolution.

If Eq. 8.1 for the spherical and elliptical gravitating system is valid, it allows us

to consider convenient boundary conditions which can be used in the study of

evolutionary problems.

In deriving the physical boundary conditions for a self-gravitating and rotating

gaseous sphere, we consider its rotation as an effect of the tangential component of

energy generated by the interacted non-uniform particles. As it was shown in Chap. 7,

the ellipticity of the body is formed not as a result of its rotation but because of its

self-gravitation. The key relationship (8.3) used here as the basis of our consider-

ation prevents any possible errors. When we have to introduce the moment of

inertia, the rotating sphere boundary at the equator will be defined by Kepler’s law.

The fact that gaseous sphere boundary equilibrium conditions differ from those

of the interior explains the difference between a free molecular boundary particle

movement and an internal chaotic one. It is a consequence of the discrete matter

structure dominant at the boundary (Jeans 1919).

Let us now consider the thermodynamic boundary conditions. Surely, we can

define the boundary temperature only in the case of its real existence which, in turn,

depends on the existence of the thermodynamic equilibrium between matter and

radiation. Otherwise, it cannot be considered as black body radiation, and the

Stefan-Boltzmann equation is inapplicable.

Thermodynamic equilibrium at the boundary can be reached only when the

energy and momentum carried away by the radiation flow is greater than that carried

away by the flow of particles from the sphere surface per unit time. Such a surface

cannot increase further without disturbing the thermodynamic equilibrium.

We shall consider the evolutionary process of the gaseous sphere to be a

successive series of hydrodynamic states in equilibrium. We shell also assume

that the radiation energy loss causes the sphere to contract during the time periods

between the equilibrium states.

Taking these ideas into account, we can express the hydrodynamic equilibrium

at the boundary either by an expression representing particle flow ‘locking’ by the

gravitational force, or, equivalently, by an equation showing the absence of particle

dissipation from the boundary surface, which can be written in the form

Gmm
R2

¼ m�n2

R
; (8.4)

where m is the mass of the particle, and �n is the velocity of the particle heat

movement at the sphere boundary of the pole (more precisely it is the velocity of

a particle running from the gravitational field).
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For gravitational contraction between any two equilibrium states, Eq. 8.4 must

be written as

Gmm
R2

>
m�n2

R
: (8.5)

Let us prove that the expression (8.4) for the gaseous spherical body boundary

satisfies the virial relations.

First we consider one particle at the sphere boundary surface with mass m and

moving in the volumetric central field of the body with mass m and radius R. Then it

is easy to see that

m€R
2

2

 !
¼ m €RRþ _�R

� �2� �
: (8.6)

The kinetic energy Kp of the particle is

m _�R
� �2

¼ 2mn2

2
¼ 2Kp: (8.7)

From Newton’s law we have

€�R ¼ �Gm

R3
R: (8.8)

The potential energy Up of the particle in the gravitational field of the body is

m €RR ¼ �Gmm
R3

RR
� � ¼ �Gmm

R
¼ Up: (8.9)

Therefore

d2

dt2
mR2

2

� �
¼ Up þ 2Kp: (8.10)

Summing over all particles at the boundary layer and neglecting their interaction

energy, we obtain

d2

dt2
msR

2

2

� �
¼ Us þ 2Ks; (8.11)

where ms is the mass of the boundary spherical layer.
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Or finally

3

4
€Is ¼ Us þ 2Ks;

€Fs ¼ Us þ 2Ks (8.12)

which represents Jacobi’s virial equation for a spherical gaseous layer.

The exchange of particles between the gaseous body and its boundary layer takes

place at the same radius R and lasts for a short time while the total mass of the layer

remains constant. So Eq. 8.12 is rigorous.

The solution of Eq. 8.12 will be exactly the same as that obtained in Chap. 4 for a

gravitating sphere, except that corresponding parameters of the sphere must be

replaced by those of the boundary layer.

If one time-averages over time intervals which are longer than the period of

boundary-layer oscillations, then the left-hand side of Eq. 8.12 tends to zero

(i.e. the layer enters into the outer force field) and a quasi-equilibrium boundary

state is obtained determined by the generalized classical virial relation between the

potential and kinetic energies:

_Fs ¼ Us þ 2Ks: (8.13)

Thus, we have proved that Eq. 8.4 written for the gaseous sphere boundary is a

virial relation. We shell use this expression further in solving the problem of

contraction velocity for gravitating gaseous sphere.

8.2.2 Velocity of Gravitational Contraction of a Gaseous Sphere

In considering the evolution of a gaseous sphere, one does not usually take into

account its rotation because the total kinetic energy exceeds the rotational energy.

Other authors who accepted the rotation of the gaseous sphere could not manage

with the angular momentum accepted as conservative value during contraction

(Zeldovich and Novikov 1967; Spitzer 1968; Alfvén and Arrhenius 1970).

It was shown in Chaps. 2 and 7 that the main part of kinetic energy of a celestial

body is represented by oscillatory energy of the interacting elementary particles.

The rotational part is much smaller of oscillatory energy and appears to be an

indication of degree of the body matter non-homogeneity. Slow rotating bodies like

the Sun, Mercury, Venus, and Moon have more homogeneous density distribution.

Their part of rotational energy from the total kinetic one is ~1/104. For the other

planets of the Solar System this figure is ~1/300. It follows from (7.50) of Chap. 7

that the value of oscillatory energy for a body as a whole is a conservative

parameter. The value of rotary energy is a changeable parameter.
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The solution of the virial equation obtained earlier enables us to propose the

following mechanism for gravitational contraction of a gaseous sphere. During

each period of the sphere’s oscillation, a certain amount of energy is lost through

radiation. Hence, the contraction amplitude is larger than the expansion amplitude.

The difference between the two amplitudes is the value of the gaseous sphere

contraction averaged over one period of oscillation. Taking into account the adia-

batic invariant relation (Landau and Lifshitz 1973a), we shell consider the problem

of the gravitational contraction of a gaseous sphere using the virial relations and the

key relationships (8.1) and (8.3). Note that we consider here the process of evolution

without loss of body equilibrium.

Since we consider the evolution process of a gaseous sphere as a successive

moment from one equilibrium state to another, it is natural that the minimum time

interval for averaging varying parameters should be a little larger than that required

for establishing the hydrodynamic equilibrium. So it is not difficult to control the

variations of parameters during evolution which are not in contradiction with the

equilibrium. (Later, we shell consider these restrictions to be nonexistent).

It is convenient for our purpose to write the generalized virial theorem in the form

� U ¼ �2ðE� EgÞ � 2ðEg � EÞ; (8.14)

where E ¼ U + K is the total energy of the gaseous sphere which is a constant over

time; Eg is the electromagnetic energy radiated up to the considered moment of

time; K is kinetic energy which includes the energy of rotation and oscillation of the

interacted mass particles; E and U are negative parameters.

The time derivative of Eg is the gaseous sphere luminosity L which is a function

of the sphere radius R and the boundary surface temperature To:

d

dt
Eg
� � ¼ L ¼ 4psR2T4

0; (8.15)

where s is the Stefan-Boltzmann constant.

From Eq. 8.14 it follows that

d

dt
Eg
� � � d

dt
Eg � E
� �þ 1

2

d

dt
�Uð Þ:

The potential energy is in turn a function of the radius R:

� U ¼ a2
Gm2

R
:

The time derivative of (�U) is

d

dt
�Uð Þ ¼ vc

d

dR
�Uð Þ;
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where vc ¼ dR/dt is the gaseous sphere contraction velocity. To find this velocity

we write

1

2
nc

d

dR
a2

Gm2

R

� �
¼ dEg

dt
¼ L

and finally, with the help of Eq. 8.3, we obtain

nc ¼ 8ps
Gm2

R2T4
0

d=dRð Þ a2=Rð Þ : (8.16)

From Eq. 8.16 it is easy to see that vc contains two unknown functions: a
2 ¼ a2(R)

and To ¼ To(R).

As was found in Chap. 2, the structural form factor a2, as well as b2, is the

function of radial mass density distribution of the sphere. In Chap. 7 we considered

this function presented by (8.2) and (8.3). It was found that the contraction velocity

of the gaseous sphere depends on the mass density redistribution which determines

kinetic energy of the body and its shells. So, the function b ¼ b(R) can be found

from the condition of kinetic energy conservation of the body’s upper shell after its

separation.

It follows from (8.3) that during the gravitational contraction of the gaseous

sphere its radius R ! R1 and b
2 ! 1 (where R1 is the orbital radius of separation).

If R ! R1 then velocity of rotation v ! v1 (v1 is the first cosmic velocity).

The kinetic energy of the body’s upper shell before Kb and after Ka shell is

written as

Kb ¼ Io2 ¼ b2mo2R2; (8.17)

Ka ¼ mn21 ¼ mso2R2
1; (8.18)

where I is the polar moment of inertia of the body; o is the frequency of the radial

oscillations; m and ms are the body and its upper shell mass; R � R1 is the

thickness of the upper shell or the contraction value.

From Eqs. 8.17 and 8.18 we can write

b2 ¼ mso2R2
1

mo2R2
¼ k

R2
1

R2
;

b ¼ ffiffiffi
k

p R1

R
;

a2 ¼ a

b
¼ affiffiffi

k
p R

R1

; (8.19)

where к is the ratio of the Protosun’s mass to the mass of a separated body.
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Thus, we obtained an expression for a as a function of R, which is valid when

the kinetic energy of the upper body’s shell conserves in the orbital motion of the

separated creature.

Let us now try to obtain the relationship between the gaseous sphere boundary

temperature To and the radius R. We introduced the virial equilibrium boundary

conditions by Eq. 8.4. This equilibrium was defined as particle flow ‘locking’ by the

gravitational force, or, equivalently, by an equation showing the absence of particle

dissipation from the boundary surface. Let us now rewrite it:

Gmm
R2

¼ m�n2

R
: (8.20)

The heat velocity �n2 depends on the boundary temperature To as

m�n2 ¼ 3kT0; (8.21)

where k is the Boltzmann constant.

Therefore we can rewrite the condition for particle flow ‘locking’ (8.20) with the

help of Eq. 8.21 as

Gmm
3k

¼ T0R: (8.22)

From the law of equal energy distribution over the degrees of freedom for the

case of a gas particle mixture in equilibrium, it follows that

m1�n
2
1 ¼ m2�n2: (8.23)

It is easy to see from (8.22) that the equilibrium radius of a gaseous sphere depends

on the chemical composition of the gas. This conclusion follows from Eqs. 8.22 and

Eq. 7.71 of Chap. 7, where the mechanical equilibrium condition of a body’s upper

shell is considered. Those results explains the effect of the particle flow ‘locking’ on

the pole by the gravitational force which is based on the concept of mass and

radiation equilibrium. Care must therefore be taken when the gas mixture is

analyzed, i.e. if there are a small number of particles with light masses, the mixture

will dissipate easily and the particles flow ‘locking’ will take place in the case of the

heavier particles of the gas mixture.

When the quantities of the various mass particles are approximately equal, the

particle flow ‘locking’ condition can be found only by a numerical solution. The

gaseous sphere radius can be determined only after the equilibrium equation is solved,

and to solve it we must consider all the given types and concentrations of particles in

the flow. Formally, we can apply the effective particle mass m which depends on a

value averaged over all the particle masses. The problem can also be solved by

numerical methods for a gas mixture consisting of many particles, and especially

when the processes of ionization and recombination and chemical reactions occur.
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Another interesting phenomenon, which we shell discuss, arises from the fact

that electromagnetic forces are much stronger then gravitational forces. When some

electrons escape the gravitating body it becomes positive by charges that create

huge forces which tend to stop the process of electron dissipation. That is why it is

necessary to use the proton mass mp when the gaseous cloud consists of neutral

hydrogen partly ionized at the gaseous sphere boundary surface (the position of the

boundary shell is specified by the radius R). The flow of electrons will be ‘locked’

by the extra forces appearing as a result of their primary dissipation. In addition, this

uncompensated positive charge should have a drift at the boundary surface and

small flow of cold plasma should be observed.

In the course of contraction of the gaseous sphere and the increase of its average

temperature, the process of gas ionization should also increase. When the flow of

electrons is large enough, and the limiting equilibrium between the gravitational

forces and the charged protons is achieved, the protons should also start to run off

the body’s gravitational field. In this case, the increasing electron flux has to be

‘locked’ by electrostatic forces. The boundary equilibrium change from the proton

‘locking’ to electron ‘locking’ should start at this moment.

Thus, we come to the conclusion that at least two phases of gaseous sphere

evolutions should exist: that of the proton and that of the electron, with a transi-

tional domain between them which can be calculated by numerical methods in each

specific case.

Figure 8.1 illustrates all that we have said. The process of gravitational contrac-

tion of the gaseous sphere is represented by the curve ABCD. Within the AB range,

the body equilibrium is kept by the gravitational field ‘locking’ of the proton flow

(the proton phase). Within the same range of sphere contraction, the radius R

decreases while the temperature To increases. Point B is the critical one; here the

transformation of equilibrium boundary conditions from proton ‘locking’ to elec-

tron ‘locking’ begins. The process spreads up to point C. While the sphere radius

decreases in the range BC, the boundary temperature remains constant.

D 

Re Rp

C B

ln R

ln T0

A

Fig. 8.1 Proton AB and electron CD equilibrium phases of the boundary shell of contracting

gaseous sphere
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In the electron equilibrium phase in the range CD, we can see that during

the contraction process the boundary temperature increases again.

Let us check the derived expression (8.22) and the conclusion concerning

the existence of two boundary equilibrium phases on the observed Sun data.

First, we calculate the numerical value of ToR in the CGS system with the

help of Eq. 8.22. Assuming numerical values for proton and electron masses,

we obtain

TpRp ¼ Ap ¼
Gmmp
3k

¼ 6:67 � 10�8 � 2 � 1033 � 1:67 � 10�24

3 � 1:38 � 10�16
¼ 5 � 1017cm � K;

TeRe ¼ Ae ¼ Gmme
3k

¼ 6:67 � 10�8 � 2 � 1033 � 9:1 � 10�28

3 � 1:38 � 10�16
¼ 2:73 � 1014cm � K:

For the contemporary Sun we know that R ¼ 7 · 1010 cm and To ¼ 5,000 K so that

ToR ¼ 3.5 · 1014 cm · K.

As at To ¼ 5,000 K, where gas ionization must be fairly complete, we have a

very good coincidence of the calculated and the observed data for the products ToR

and TeRe. For this temperature the proton radius of the Sun Rp is equal to 1014

ToR cm, which corresponds to the orbit radius of Jupiter.

Thus, we have found a, b and To as functions of the radius R. We can now obtain

the gaseous sphere contraction velocity. We rewrite Eq. 8.16:

nc ¼ 8ps
Gm2

RT0ð Þ4
R2 d=dRð Þ a2Rð Þ (8.24)

and, using (8.19 ), we can evaluate the denominator as

R2 d

dR

a2

R

� �				
				 ¼ R2 d

dR

affiffiffi
k

p 1

R

R

R1


 �				
				 ¼ a

2
ffiffiffi
k

p R

R1

:

Finally, we write contraction velocity vc as

nc ¼ 16ps
Gm2

A4

a

ffiffiffi
k

p R1

R
; (8.25)

where A ¼ Ae ¼ ReTe and A ¼ Ap ¼ RpTp are for the electron and the proton

phases of the gaseous sphere evolution, respectively.

Let us use Eq. 8.25 to obtain the contraction velocity and the time of contraction

of the Protosun during the proton and the electron phase of the gaseous sphere

evolution using its corresponding parameters.

If we take for the proton phase of the Protosun, after its separation from the

Protoalaxy, Ap ¼ 5 · 1017 cm . K, initial radius R ¼ 7.5 · 1018 cm, final radius of the

proton phase evolution (at the asteroid belt, after separation of the Protojupiter),
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R1 ¼ 4.2 · 1013 cm, a ¼ 0.46, and s ¼ 5.76 · 10�5 erg · cm-2 · s · (K)4 as initial,

we obtain

ncsp ¼
16 � 3:14 � 5:76 � 10�5 5 � 1017� �4
6:67 � 10�8 2 � 1033� �2 � 0:46 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1033

2:65 � 1030

s
� 4:2 � 10

13

7:5 � 1018

¼ 2:23 � 105cm � s�1;

tsp ¼ 7:5 � 1018
2:23 � 105 ¼ 3:36 � 1013s ¼ 1:06 � 106years:

We can find now the contraction velocity and the time of contraction of the

Protosun during the electron phase of the gaseous sphere evolution. We take now

for the electron phase Ae ¼ 2.73 · 1014 cm.K, initial radius of the Protossun, after

separation of the Protojupiter, R ¼ 4.2 · 1013 m, final radius of the electron phase

let be present day value R1 ¼ 7 · 1010 m, a ¼ 0.46, and s ¼ 5.76 · 10�5 erg · cm�2

· s · (K)4. Then we obtain

ncse ¼
16 � 3:14 � 5:76 � 10�5 2:73 � 1014� �4

6:67 � 10�8 2 � 1033� �2 � 0:46 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1033

1:18 � 1028

s
� 7 � 1010
4:2 � 1013

¼ 8:96 � 10�5cm � s�1;

tse ¼ 4:2 � 1013
8:96 � 10�5

¼ 4:7 � 1017s ¼ 14:9 � 109years:

The found values show that the contemporary Solar System has formed during

the proton phase (the Jupiter group of planets) within one million years and during

the electron phase (the Earth group of planets) within next 15 billion years. Here

we have not taken into account the effects of chemistry of the gaseous sphere on the

equilibrium boundary conditions of the evolutionary process. But the obtained

figures of evolution time show that our calculations give good approximation to

the reality.

8.2.3 The Luminosity–Mass Relationship

To obtain the luminosity-mass we again consider the gaseous sphere evolution plot

given in Fig. 8.1. It follows from (8.15) that in proton (AB) and electron (CD)

evolutionary phases, the gaseous sphere luminosity is proportional to 1/R2. The

boundary surface temperature To remains practically constant during the transition

period (BC) when the equilibrium transformation from the proton to the electron
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phase takes place. But the gaseous sphere luminosity will decrease sharply. One can

see that the luminosity decrease here is proportional to

L / m2p
m2e

; (8.26)

i.e. it is proportional to the ratio of the proton and electron mass squared as the

gaseous sphere surface decreases proportionally to R2. Thus, while going from

point B to point C of the plot, the luminosity of the contracting body decreases by

six orders of magnitude. We can suppose that the observed variations of variable

star brightness are related to their virial energy pulsations, when stars are at the

stage of evolution being considered.

As shown in the previous section, the most continuous period of proton or

electron phase evolution is on the right end of the plot intercept (AB) and (CD).

For these principal evolution time intervals we can write

L ¼ 4psR2T4
o ¼

RToð Þ4
R2

/ m4: (8.27)

This expression, derived from our theoretical considerations, is in good agreement

with the well-known luminosity-mass relation which follows from observations.

That is why Eq. 8.22 can be considered as an additional relation between the

luminosity, the radius and the boundary surface temperature.

Let us take one more example. In Campbell’s work (1962), 13 elliptical galaxies

from the Virgo Cluster are considered and an analysis of the radius-mass relation

for the observed data is given. To interpret these data, Jeans’ relation (Jeans 1919)

is used:

Gmm ¼ 3

2
kToR or

m

R
¼ 3

2

3kTo

2Gm
; (8.28)

where m is the proton mass.

On the plot presented in this work reflecting the mass-radius dependence,

all the points are found to lie on a straight line with slope corresponding to

To � 1.5.107 K. Campbell concludes from this that the Jeans condition of self-

gravitational instability is valid.

We note that Jeans’ formula was derived on the assumption of low gas tempera-

ture and that all the kinetic energy of the gas is used for particle heat movement.

The radiation energy was not taken into account.

Because of absence of direct temperature measurements, the theoretically found

high temperature values at very steep line slopes need other explanations. We mast

stress that in the observational data presented, the distance to the objects (in relative

units) have been found with high degree of precision so that the experimentally

derived constancy of the line slope should be trusted.
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We interpret Campbell’s data on the basis of our expression (8.22) where we

consider the mass-radius relation to be dependent on electron temperature. That is

why, contrary to Jeans, we write

m

Re

¼ 3kTe

Gme
:

Now the value of the boundary surface temperature of Campbell’s galaxies is

To � 4,000 K. This value corresponds to the usual boundary temperatures of

celestial bodies whose evolution goes according to the electron phase of the

equilibrium.

Hence, the experimental data presented by Campbell in his paper confirms once

more the validity of Eq. 8.22 and the assumption of the existence of two evolution-

ary phases for celestial bodies.

In connection with the interpretation of Campbel’s data, it is possible to use

Eq. 8.22 to obtain the limiting temperature which should be reached by a gaseous

sphere in its evolution. We write (8.22) as

Gm

c2
1

R
¼ 3kTe

mc2
or

Rg

R
¼ 3kTo

mc2
: (8.29)

Hence, during the evolution of a gaseous sphere through the electron phase of

equilibrium, when R ! Rg < To ! mec
2/3 k or, equally,

3kT0 ! mec
2 � 0:5 MeV;

T � 5 � 109 K:

This means that the temperature of the bodies approaches the electron temperature.

8.2.4 Bifurcation of a Dissipative System

In Chap. 5 we considered the dynamics of a dissipative system assuming that its

evolution is a consequence of the loss of energy due to its radiation. Let us consider

the problem in some details.

Jacobi’s virial equation for a system was written as

€F ¼ �A0 1þ q tð Þ½ � þ Bffiffiffiffi
F

p ; (8.30)

where the function Ao[1 + q(t)] ¼ E � Eg increases monotonically, reflecting the

change of the total energy of a system as a function of time, and Eg is the energy

radiated up to time t[Eg > 0].
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The solution of Eq. 8.30 was found to be

� arccosWþ arccosW0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�A0 1þ q tð Þ½ �C

2B2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A0C

2B2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

0

q
¼ � 2A9 1þ q tð Þð Þ½ �3=2

4B
t� t0ð Þ:

(8.31)

Equations of the discriminant curves which bound oscillations of the moment of

inertia (Jacobi function) (see Fig. 5.1) are

ffiffiffiffiffiffiffi
I1;2

p ¼ 2B

A0 1þ q tð Þ½ � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A0 1þ q tð Þ½ �C

2B2

r( )
: (8.32)

From analysis of the solution of Eq. 8.30 it follows that the dissipative system

during its evolution must inevitable reach the state when its stability breaks; that

moment (see Fig. 5.1) can be defined by the point Ob which is the physical

bifurcation point. The position of the point can be defined by Eq. 8.32 as

2B2

A0 1þ q tbð Þ½ � ¼ C; (8.33)

Where q tbð Þ is parameter of the bifurcation point which can be found from

condition (8.33)

q tbð Þ ¼ 2B2

A0C
� 1: (8.34)

The moment of inertia (Jacobi function) of the system corresponding to the

bifurcation point, where the discriminant lines coincide, is

Ib ¼ B

A0 1þ 2B2

A0C
� 1

� � ¼ C2

4B2
: (8.35)

To find the moment of time of tb where the system reaches its bifurcation point,

one must know the law of energy radiation of the body q(t) or Eg(t), entering

Eq. 8.30.

We give below our model solution for Eg(t).

The solution for the energy Eg(t) radiation up to t is based on the assumed

existence of the proton and the electron phases of evolution for celestial bodies

proposed in this chapter. On this basis, we have found a relationship between

the body luminosity L and its radius R. During ‘smooth’ intervals of the body
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evolution, when Eg(t) is a continuous and monotonic function of time, the following

relation holds:

Gmmp
3k

¼ RT0; (8.36)

where mp is the mass of the particle (proton or electron) which provides the

boundary heat equilibrium of the body; k is the Boltzmann constant; and To is

the gaseous sphere boundary temperature.

Let us write down the expression for the body luminosity L in relation to the time

derivative of Eg:

dEg

dt
¼ L ¼ 4psR2T4

0; (8.37)

where s is the Stefan-Boltzmann constant.

Now we shell find an explicit expression for Eg(t) with the initial condition

Eg t0ð Þ t0¼0j ¼ 0:

Equation (8.37) between the limits 0 and t can be integrated with the help of (8.36):

Eg tð Þ ¼
ðt
0

4psR2T4
0dt ¼

ðt
0

4psR4T4
0

R2
dt ¼

ðt
0

4ps Gmmp
� �4
3kð Þ4

1

R2
dt ¼

ðt
0

K

R2
dt; (8.38)

Where K ¼ 4ps Gmmp
� �4

3kð Þ4:
Now let us make use of the expression (8.25) for the velocity of the gravitational

contraction of the gaseous sphere vc , which we had found earlier in this chapter:

nc ¼ dR

dt
¼ 32

3

ps
Gm2

Gmmp
3k

� �4 ffiffiffi
k

p
a

ffiffiffiffiffiffi
R1

R

4

r
; (8.39)

Integrating this equation,

ðR
0

R1=4dR ¼ � 32

3

ps
Gm2

Gmmp
3k

� �4
1

a

ffiffiffiffiffiffiffiffiffiffi
k2R1

4
p ðt

0

dt;

we obtain

4

5
R5=4 � 4

5
R
5=4
0 ¼ � 32

3

ps
Gm2

Gmmp
3k

� �4
1

a

ffiffiffiffiffiffiffiffiffiffi
k2R1

4
p� �

t: (8.40)
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Then

R ¼ �Dtþ R
5=4
0

� �4=5
;

where

D ¼ 40ps
3Gm2

Gmmp
3k

� �4
1

a

ffiffiffiffiffiffiffiffiffiffi
k2R1

4
p

:

Finally, substituting the found expression for (8.40) into (8.38), we have

Eg tð Þ ¼
ðt
0

Kdt

�Dtþ R
5=4
0

� �8=5 ¼ 5K

3D
R
5=4
0 � Dt

� ��3=5 � R
3=4
0


 �

¼ 5

3

K

D

1

R
5=4
0 � Dt

� �� 1

R
3=4
0

2
4

3
5 (8.41)

Thus we have obtained an expression in explicit form which we can use to calculate

the energy loss by radiation during the time intervals of ‘smooth’ evolution of

celestial bodies and hence find the parameters of the bifurcation point of a dissipative

system.

8.3 Cosmo–Chemical Effects

From the analysis of the solution of Eq. 8.30 for a dissipative system, we found that,

during the period of energy dissipation, the primary celestial body reaches a

bifurcation point, characterized by separation of its outer shell which angular

frequency coincides with frequency of virial oscillations. According to our theory

of bifurcational creation of secondary bodies (in Alfvén’s definition), some portion

of the mass of the rotating primordial cloud reaches equilibrium relative to the tidal

forces of the whole cloud at the bifurcation point, and moves further in a Kepler’s

orbit. As a result, during the subsequent dissipation of energy, the primary body

continues its contraction by means of redistribution of the mass density without a

separated secondary body. This secondary body conserves the corresponding angu-

lar moment M1 ¼ mn1R1 ¼ mn21=o which in fact is the kinetic energy divided by

frequency of the interacted mass particles. In accordance with (8.3), the value of

this tangential component of the kinetic energy equal to doubled potential energy

(2bt ¼ at) at the moment of a secondary body separation.

It is commonly known that when both the gravitational and electromagnetic

interactions are taken into account, the condition to attain an equilibrium state by
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some portion of the mass (secondary body) can be written in the form suggested by

Chandrasekhar and Fermi (1953):ð
ðVÞ

r�n2 þ 3pþ H2 þ E2

8p
� rUð Þ2

8pG

" #
dV ¼ 0; (8.42)

where r is the density of the substance of the secondary body; v the mean velocity;

p the internal pressure; H and E are the components of the electromagnetic field;

G the gravitational constant; V the volume of the system; and rU the gradient of

the gravitational field.

Since the bifurcational point of a system is characterized by the zero amplitude

of the virial oscillations, the kinetic terms in Eq. 8.42 are small compared to the

mass terms. In this case, Eq. 8.42 can be rewritten asð
ðVÞ

3p� rUð Þ2
8pG

" #
dV � 0;

or ð
ðVÞ

3pdV � 0:1
Gm

R
; (8.43)

where the coefficient 0.1 represents the electromagnetic component in expansion of

the potential energy (8.43) found by astronomical observation of the equilibrium

nebulae (Ferronsky et al. 1996).

The left-hand side of (8.43) is proportional to the energy of the Coulomb

interactions of the charged particles (electrons, protons, ionized atoms and

molecules). The right-hand side of this expression is proportional to the energy of

the gravitational interaction of the particles.

Thus, assuming the separated secondary body to have mass m, radius R and the

average mass of its constituent particles to be m, expression (8.43) can be rewritten

in the form of an equality of the energies of the gravitational and Coulomb

interactions

m

m
e2

R
ffiffiffiffiffiffiffiffiffi
m=m3

p ¼ 0:1
Gm2

R
; (8.44)

where e ¼ 4.8 . 10�10 e.s.u. is the electron charge.

Expression (8.44) is the equivalent of

mm / e3

G3=2
: (8.45)
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The last expression relates the critical mass mc of the separated secondary body

to the averaged mass ma of its constituent particles (electron, proton, molecules),

responsible for the hydrodynamic equilibrium of the body, as

mcm2a /
e2

G3=2

� �
¼ const ¼ 2 � 10�16g3: (8.46)

To illustrate this relationship, we determined the average values for the masses

of the individual particles constituting the planets, stars and galaxes.

Planets: Table 8.3 shows critical masses of the constituent particles for the planets

of the Solar System.

Thus, assuming that the bifurcation theory describes the formation of the Solar

System correctly, the particles determining the hydrodynamic gas pressure in the

case of the considered planet at the moment of their separation from the proto-solar

cloud could have been composed of such elements as H, He, O, Si, Mn, Fe in atomic

or molecular form. The average masses of the particles obtained can be used as

a criterion in the development of cosmo-chemical models of planets with a compli-

cated chemical composition at the moment of their separation from the proto-solar

cloud and also for the construction of their chemical evolution models.

Stars: From (8.46) can be found the boundary values for all stellar critical masses,

corresponding to the masses of the proton and the electron – particles which can be

responsible for the hydrodynamic pressure inside the stellar cloud at the moment of

separation at the bifurcation point of the proto-galactic cloud.

For the mass of the proton mp ¼ 1:6 � 10�24g; mc ¼ 1032g:
For the mass of the electron me ¼ 0:9 � 10�27g; mc ¼ 2 � 1038g:
In the case of ma ¼ ffiffiffiffiffiffiffiffiffimpma

p ¼ 0; 4 � 10�25g; mc ¼ 1035g:

Therefore, considering a typical stellar mass to be ~ 1033 g, we obtain in the

framework of the bifurcation theory of formation of celestial bodies that the

hydrodynamic equilibrium of the gas at the moment of separation of the proto-

stellar cloud is supported both by electron and proton.

Galaxes: The presence of the factor (e2/G)3/2 in the right-hand side of (8.46) allows
us to carry out the following transformations:

mcm2a ¼
e2

�hc

� �3=2
�hc

G

� �
¼ 1

137

� �3=2

m3
p; (8.47)

where �h is Planck’s constant; c the velocity of light; and mp the Planck’s mass.

Table 8.3 Critical and averaged masses of the constituent particle for the Planets

Planets mc (g) ma (g) ma (aum)

Mercury 0.33 · 1027 0.78 · 10�21 469

Earth 5.97 · 1027 0.18 · 10�21 114

Jupiter 2 · 1030 0.00 · 10�23 6.02

Saturn 0.57 · 1030 1.87 · 10�23 11.3

Uranus 0.087 · 1030 4.79 · 10�23 28.8
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Thus, in the right-hand side of (8.47) there are two fundamental constants: the

Planck mass mp (2.2 . 10�5 g) and the fine-structure constant a ¼ 1/137. The

presence of the constant a in the right-hand side of (8.47), being the universal

constant of the weak and electromagnetic interactions, shows that this relation is

applicable not only to electromagnetic but also to weak interactions. Then, putting

the experimentally found values for the neutrino mass mn ¼ 10�30 g (Shirkov 1980)

into (8.44), we obtain

mc ¼ 2 � 10�16

10�30
� �2 ¼ 2 � 1044g: (8.48)

This mass, following from (8.48), is a typical mass of galaxies. Therefore, in the

framework of the bifurcation theory of formation of celestial bodies, the hydrody-

namic equilibrium (8.41) of the substances of galaxies at the moment of their

formation can be provided by the pressure of neutrinos.

Universe: In the framework of the virial oscillation theory, the evolution of the

Universe can be described by a pulsating model (for c ¼ constant) of the system of

material elementary particles. Such a system indefinitely long time exists. The mass

of the particle responsible for hydrodynamic equilibrium of the Universe at the

moment of its maximal compression (singularity stage) can be obtained from the

same expression (8.46). Assuming mc � 1056 g we obtain

ma � 1036g: (8.49)

In the bifurcation theory the maximal average mass of particles in cosmic space can

be determined from the condition ma ¼ mc. Then,

mmax ¼ 6 � 10�6g:

This value is close to the Planck mass.

8.4 Direct Derivation of the Equation of Virial Oscillation
from Einstein’s Equation

Weinberg (1972) reduced Einstein’s equation for homogeneous isotropic space,

with the help of the Robertson-Walker metric, to the following scalar form:

3€R ¼ �4G rþ 3pð ÞR; (8.50)

€RRþ 2 _R
� �2 þ 2k ¼ 4pG r� pð ÞR2; (8.51)
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where R is the radius of the Universe; p radiation pressure (mass defect); and r the

density of matter without mass defect.

Multiplying Eq. 8.50 by R/3 and summing it with (8.51), we obtain:

€R
2

� �
þ 2k ¼ 8pGR2 1

3
r� p

� �
: (8.52)

When r < <p and rR3 ¼ const (dust cloud), and taking into account that for

curved space (Landau and Lifshitz 1973b)

rR3 ¼ m

2p2
; (8.53)

where m is the total mass of the particles constituting the cloud, expression (8.53) is

transformed into

€R
2

� �
þ 2k ¼ 8p

3
G

m

2p2
1

R
: (8.54)

Since from the Jacobi function we have F ¼ mR2/2, Eq. 8.54 can be rewritten as

€Fþ km ¼ 2

3p
Gm2

ffiffiffiffi
m

2

r
1ffiffiffiffi
F

p (8.55)

or

€Fþ km ¼
ffiffiffi
2

p

3p

ffiffiffiffiffiffiffiffiffiffiffiffi
G2m5

p 1ffiffiffiffi
F

p : (8.56)

Finally, the equation of virial oscillations can be easily obtained in the known form

€F ¼ �Aþ Bffiffiffiffi
F

p ; (8.57)

where A ¼ km ¼ E is the total energy, and B is a constant equal to Gm5/2

multiplied by a factor which depends on the realization of the mass defect and on

the period of the a2b form factors (equal to 1=
ffiffiffi
2

p
).

When p ¼ r/3, the equation of virial oscillations for radiation can be obtained

from Eq. 8.52: .

€F ¼ �A:

Equations 8.50 and 8.51 are valid for all natural systems which exhibit a central

symmetry of mass distribution. For celestial bodies Eq. 8.52 is written as
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rR3 ¼ 3m

4p
:

Then, from (8.52) it follows that

€R
� �2 þ 2k ¼ 8p

3
GR2 1� 3p

r

� �
¼ 2Gm

R
1� 3p

r

� �
:

Now, Eq. 8.57 becomes

€F ¼ �Aþ Bffiffiffiffi
F

p 1� 3p

r

� �
: (8.58)

As Weinberg (1972) pointed out, the inequality 0 < 3p 	 r holds for celestial

bodies, and in the most general case we can write

Å ¼ g� 1ð Þ r� nmð Þ

where n is the density of particles and m is the mass of a particle.

Therefore, (r � nm) is the mass defect and g is the politropic index, which

for stable system ranges from 0 to 5/3 for non-relativistic objects, and g 
 4/3

for ultra-relaticvistic objects. For g > 5/3, the body expands indefinitely, and at

g 	 4/3 collapse of the body occurs.

For actually existing celestial bodies, where the absence of heat equilibrium is

taken into account (in the case of a discrete system), pressure is defined as

(Weinberg 1972).

p ¼ 1

3
rþ f r; nð Þ½ �;

where f r; nð Þ ¼ To
a is a function of the energy density r and the density n (number

of particles per unit volume). This function is equal to zero in the ultra-relativistic

limit and in the non-relativistic limit it is equal to [ � nm + (r – nm)] ¼ � 2nm + r.
In both limiting cases, pressure p is

p ¼ 1

3
r and p ¼ 2

3
r� nmð Þ:

Hence, in Eq. 8.58 the undetermined factor in B is equal to zero and

[(2mn/r) � 1) or (1 � (2D/r)], where D ¼ mn� r is the mass defect.

Finally, taking into account the mass defect in Eq. 8.58 shows that the constant

B ¼ BoD, where Bo is of Newtonean nature (aGm5/2) and D, a relativistic correc-

tion, is smaller than 1.

Now let us estimate this correction D in the case of the white dwarf and the

neutron star models according to Weinberg.
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The equation determining the density of particles of particles when Fermi-Dirac

statistics hold can be written as

n ¼ k3F
3p�h2

;

where n is the number of particles in the volume; kF the radius of the Fermi sphere;

and �h is Planck’s constant.

The density of matter of a star is written as

r ¼ nmpnp;

where mp is the mass of a proton and np the average number of protons in a nuclei.

The critical density of matter in a star is

rcr ¼
mpnpme

3

3p�h3
;

where me is the electron mass.

Introducing the new variables Z1 ¼ r/rcr and Z2 ¼ r/rcr, the equation of state

for white dwarfs can be rewritten as follows:

Z1 ¼ 3me

mp
F1 Z1ð Þ;

Z2 ¼ 3me

mp
F2 Z2ð Þ;

where F1 and F2 are some transcendental functions.

For neutron stars the critical density is

rcr ¼
m4p

3p�h3

and the equations of state are written

Z1 ¼ 3F1 Z1ð Þ;

Z2 ¼ 3F2 Z2ð Þ:

Solving the equations of state for the two limiting cases when r < < rcr (i.e. when
the polytropic indexes are 5/3 and 4/3 respectively), we obtain for white dwarfs,

respectively,

re ¼
3

2
p and re ¼ 3p:
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For neutron stars, in the limiting cases (r < < rcr) and (r > > rcr), we have the
same form of relations:

r ¼ 3

2
p and r ¼ 3p;

where r is the total density of matter.

In the ultra-relativistic limit, the relativistic correction will have very large

values (D ¼ 0), which means that the total collapse of the star (Oppenheimer-

Volkoff limit) is leading to the formation of a black hole.

Note that besides the gravitational interaction, there are only two types of known

interactions: the unified electroweak and the strong. Thus it follows that there cannot

be any other types of collapse, since the collapse of white dwarfs corresponds to the

first type of interaction and the formation of neutron stars to the second.

Thus, we have obtained the equation of virial oscillations (8.58) directly in the

most general case and without having to assume the constancy of the form factor

product a2b. Since the same equation follows from Jacobi’s equation with the use

of the hypothesis, we conclude that the relation a2b ¼ const was proven.

We should also note that modern astrophysical studies of the oscillation of

celestial bodies in the non-relativistic approximation are based on the supposition

that these movements have a homologous structure (Misner et al. 1973; Weinberg

1972; Frank-Kamenetsky 1959; Zeldovich and Novikov 1967). It can easily be

verified that the supposition of homology is a sufficient condition to prove the

constancy of the form factor product a2b which is the main point in the derivation

of the equation of virial oscillations from Jacobi’s equation.

The mathematical formulation of the homologous motion of matter in the course

of oscillation of a celestial body is written as follows:

rðtÞ ¼ tð0Þ � fðtÞ;

where r(t) is the radius of a given layer-shell of the body and f(t) is an arbitrary

function of time.

Let us introduce the Lagrange co-ordinates, where m is the mass inside the

sphere of radius r, and dm is the mass of shell of radius r and thickness dr.

According to the property of Lagrange co-ordinates, they are independent of time.

Then, the Jacobi function and the potential energy are written as:

F ¼ 1

2

ðm
0

r2dm;

Uj j ¼ G

ðm
0

mdm

r
:
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Using the assumption that the motion is homologous, these expressions can be

rewritten:

F ¼ 1

2
f2 tð Þ

ðm
0

r2ð0Þdm;

U ¼ G

f tð ÞG
ðm
0

mdm

rð0Þ :

Integrals on the right-hand side of these expressions do not depend on time and

are therefore constants. Thus, the product U2F does not depend on time and is also

a constant.

Note that in the works of the authors mentioned above, the formula for the

pulsation frequency of celestial bodies has been obtained assuming small

amplitudes and the validity of the harmonic law of pulsations. Our approach allows

the same frequency of pulsations to be obtained without the above restricting

assumptions. Moreover, by comparing the two expressions which give equivalent

results, it is possible to obtain the politropic index which enters into the astro-

physical formula for the frequency of pulsations.
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Chapter 9

The Nature of Electromagnetic Field
of a Celestial Body and Mechanism
of Its Energy Generation

The hydro-magnetic dynamo, action of which is provided by the planet’s liquid

metal core or the solar gas plasma, is the most popular idea for explanation of a

body electromagnetic field generation. Its essence is in the motion of the conducting

liquid core where self-excitation of the electric and magnetic poloidal (meridional)

and toroidal (parallel) fields are happened. During rotation of the inner planet’s

shells with different angular velocities, in the case of asymmetric thermal con-

vection of the shell mass, the intensity of the fields is increased. This condition,

for example, for the Earth is achieved because the rotation and magnetic axes

are not coincided and the thermal convection supposedly takes place. But physi-

cally justified theory of the observed planet’s and solar phenomenon of electromag-

netic field is absent. There is no explanation of mechanism of generation of the

energy of this field except of general physical principle of the mass and charge

interaction. Also the ideas or hypotheses about source of refilling of the planets

energy which is spent for the gravitational and thermal irradiation are absent. The

only source of the solar and star irradiated energy is accepted to be the interior

nuclear fusion.

In order to find solution of the problem, in this Chapter we discuss a novel idea

based on the innate capacity of body’s energy for performing motion. As it was

shown in Chaps. 2 and 3, the energy is the measure of the motion and interaction of

particles of any kind of body’s matter. The various forms of energy are inter-

convertible and its sum for a system remains constant. The above unique properties

of the energy, with its oscillating mode of the motion in our dynamics, make it

possible to consider the nature of the electromagnetic and gravitational effects of

celestial bodies as interconnected events.

It was shown in Chap. 7 that the body’s gravitational (potential) energy results in

the body’s matter volumetric pulsations, having oscillating regime, frequencies of

which depend on the mass density. In our consideration the planets and stars are

accepted as self-gravitating bodies. Their dynamics is based on the own internal

force field and the potential and kinetic energies are controlled by the energy

of oscillation of the polar moment of inertia, i.e. by interaction of the body’s

elementary particles.
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Applying the dynamical approach and the results obtained, we show below that

the nature of creation of the electromagnetic field and mechanism of its energy

generation appears to be the effect of the volumetric gravitational oscillation of the

body’s masses. This effect is also characteristic for any celestial body.

9.1 Electromagnetic Component of the Interacted Masses

It was shown in Sect. 7.2 that the electromagnetic energy is a component of the

expanded analytical expression of the potential energy. The expansion was done by

means of the auxiliary function of the density variation relative to its mean value.

The expression of the body’s potential gravitational energy in the expanded form

(7.48) was found as

U ¼ a2
GM2

R
¼ 3

5
þ 3

ð1
0

cxdxþ 9

2

ð1
0

c
x

� �2

dx

2
4

3
5GM2

R
; (9.1)

where U is the potential energy of the gravitational interaction; a2 is the form-

factor of the force function; G is gravity constant; M is the body mass; R is its

radius; C(s) is the auxiliary function of radial density distribution relative to

its mean value.

We have considered and applied the two first right-hand side terms of Eq. 9.1.

The third term in dimensionless form represents an additive part of the potential

energy of the interaction of the non-uniformities between themselves, which was

written as

9

2
l ¼ 9

2

ð1
0

c
x

� �2

dx � 9

2

ð1
0

c
x2

� �2

x2dx: (9.2)

where l ¼
ð1
0

c
x

� �2

dx � 0:

The non-uniformities are determined as the difference between the given density

of a spherical layer and the mean density of the body within the radius of the

considered layer. For interpretation of the third term we apply the analogy of

electrodynamics (Ferronsky et al. 1996). Each particle there generates an external

field, which determines its energy. The energies of some other interacted particles

and their own charges are determined by this field. As far as the potential of the field

is expressed by means of the Poisson equation through the density of charge in the

same point, then the total energy can be presented in additive form through the

application of the squared field potential. If the body mass is considered as a

moving system, then the Maxwell radiation field applies.
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In our solution the dimensionless third term of the field energy is written as

9

2
l ¼ 9

2

ð1
0

c
x

� �2

dx � 9

2

ð1
0

c
x2

� �2

x2dx � 9

2

ð1
0

E2dV; (9.3)

where E ¼ C/x2 is dimensionless form of the electromagnetic field potential which

is a part of the gravitational potential; C plays role of the charge; dV ¼ x2dx is

the volume element in dimensionless form.

In order to determine the numerical value of l, the calculations for a sphere with
different laws of radial density distribution including the politropic model were

done (Ferronsky et al. 1996). These models were used in our earlier numerical

calculations of the form factors a2 and b2. The results, presented in Tables 9.1 and 9.2,
show that for the density distributions which have physical meaning (Dirac’s

envelopes, Gaussian and exponential distributions) and also for the politrops with

index 1.5, the parameter l has the same constant value. We interpret this fact for a

steady-state dynamical system as evidence of the existence of equilibrium radiation

between a celestial body and the external flow. The numerical value of the para-

meter l is equal to 0.022. There is also an observational confirmation of this

conclusion. Spitzer (1968) demonstrates observational results of nebulae of differ-

ent mass and size in Table 3.2 of his book, which we reproduce here in Table 9.3.

One can see that for masses of solar order and up to huge size the value of m/R2

remains constant. This fact proves the statement of the physical meaning of the

expression (9.2) which is the equilibrium radiation of a celestial body.

Table 9.1 Numerical values of the parameter l for a sphere with different laws of

density distribution

Law of radial density distribution a2 b Q ¼ a2b 9l

r ¼ ro 0.6 0.77 0.46 0

r ¼ ro (1– r/R) 0.74 0.63 0.47 0.086

r ¼ ro [1–(r/R)
2] 0.71 0.65 0.47 0.060

r ¼ ro exp(–k r/R) 0.16 k 3.45/k 0.53 0.19

r ¼ ro exp[–(k r/R)2
ffiffiffiffiffiffiffiffiffiffiffiffi
k=2 p

p
1.8

ffiffiffiffiffiffiffiffi
1=k

p
0.49 0.19

r ¼ ro d(1– r/R) 0.5 1.0 0.5 0.20

Table 9.2 Numerical values of the parameter l for politropic models of a sphere

Index of politrope a2 b Q ¼ a2b 9l

0 0.6 0.77 0.46 0

1 0.75 0.62 0.465 0.08

1.5 0.87 0.55 0.475 0.24

2 1.0 0.48 0.482 0.43

3 1.5 0.34 0.5 1.31

3.5 2.0 0.26 0.52 2.26
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Thus, the virial approach to the problem solution of the Earth global dynamics

gives a novel idea about the nature of the planet’s electromagnetic field. The energy

of this field appears to be the component of the potential energy of the interacted

masses. The question arises about the mechanism of the body’s energy generation,

which provides radiation in wide range of the wave spectrum from radio through

thermal and optical to x and g rays.

9.2 Potential Energy of the Coulomb Interaction
of Mass Particles

In Sect. 6.4.4 of Chap. 6 with the help of model solution, we showed that for the

Coulomb interactions of the charged particles, constituting a celestial body, the

relationship between the potential energy of a self-gravitating system and its Jacobi

function holds.

Considering a one-component, ionized, quasi-neutral and gravitating gaseous

cloud with a spherical symmetrical mass distribution, we found that the form-factor

entering the expression for the potential energy of the Coulomb interaction acquires

the same physical meaning what it has in the expression for the potential energy of

the gravitational interaction of the masses. It represents the effective shell to which

the charges in the sphere are reduced.

The considered task about the potential energy of the Coulomb interactions of

the charged particles proves the legitimacy of solution of the virial equation of

dynamical equilibrium for study electromagnetic effects of a celestial body.

9.3 Emission of Electromagnetic Energy
by a Celestial Body as an Electric Dipole

In Chap. 5 we considered the solution of the virial equation of dynamical equilibrium

for dissipative systems written in the form

€F ¼ �A0 1þ q tð Þ½ � þ Bffiffiffiffi
F

p : (9.4)

Table 9.3 Observational parameters of equilibrium nebulae

Parameters

Visible dark nebulae

Small globula Large globula Intermediate cloud Large cloud

m/mSun >0.1 3 8.102 1.8�104
R (pc) 0.03 0.25 100 20

п (п/cm3) >4.104 1.6.103 100 20

m/pR2 (g/cm2) >10–2 3 · 10–3 3 · 10–3 3 · 10–3
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Here the function of the energy emission [1�q(t)] was accepted on the basis of the

Stefan-Boltzmann law without explanation of the nature of the radiation process.

Now, after the analysis of the relationship between the potential energy and the

polar moment of inertia, considered in the previous section, and taking into account

the observed relationship by artificial satellites, we try to obtain the same relation

for the celestial body as an oscillating electric dipole (Ferronsky et al. 1987).

Equation 9.4 for a celestial body as a dissipative system can be rewritten as

€F ¼ �A0 þ Bffiffiffiffi
F

p þ Xðt� t0Þ;

where X(t � to) is the perturbation function sought, expressing the electromagnetic

energy radiation of the body as

Xðt� t0Þ ¼ Egðt� t0Þ:

The electromagnetic field formed by the body is described by Maxwell’s equations,

which can be derived from Einstein’s equations written for the energy-momentum

tensor of electromagnetic energy. In this case only the general property of the

curvature tensor in the form of Bianchi’s contracted identity is used. We recall

briefly this derivation sketch (Misner et al. 1975).

Let us write Einstein’s equation in geometric form:

G ¼ 8pT; (9.5)

where G is an Einstein tensor and T is an energy-momentum tensor.

In the absence of mass, the energy-momentum tensor of the electromagnetic

field can be written in arbitrary co-ordinates in the

4pTmv ¼ FmaFvbgab �
1

4
gmvFstF

st; (9.6)

where gab is the metric tensor in co-ordinates, and Fmn the tensor of the electromag-

netic field.

From Bianchi’s identity

rG � 0; (9.7)

where r is a covariant 4–delta, follows the equation expressing the energy-

momentum conservation law:

rT � 0: (9.8)

In the component form, the equation is

Fma;sgatF
st þ Fma;tgasF

ta ¼ gmv Fvt;s þ Fsv;tð ÞFst: (9.9)
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After a series of simple transformations, we finally have

Fbv;v ¼ 0: (9.10)

here and above, the symbol ‘ ; ‘ defines covariant differentiation.

To obtain the total power of the electromagnetic energy emitted by the body,

Maxwell’s equations should be solved, taking into account the motion of the

charges constituting the body. In the general case, the expressions for the scalar

and vector potentials are

4pf ¼
ð
Vð Þ

r½ �dV
R

; (9.11)

4pA ¼
ð
Vð Þ

j½ �dV
R

; (9.12)

where r and j are densities of charge and current; [j] denotes the retarding effect

(i.e. the value of function j at the time moment t – R/c); R is the distance between

the point of integration and that of observation, and c the velocity of light.

In this case, however, it seems more convenient to use the Hertz vector Z of the

retarded dipole p(t – R/c) (Tamm 1976). The Hertz vector is defined as

4pZ ¼ 1

R
r t� R

c

� �
: (9.13)

Electromagnetic field potentials of the Hertz dipole can be determined from the

expressions

f ¼ �divZ; (9.14)

A ¼ 1

c

dZ

dt
: (9.15)

Moreover, the Hertz vector satisfies the equation

NZ � r2 � 1

c2
@2

@t2

� �
Z ¼ 0; (9.16)

where N is the d’Alembertian operator.

The intensities of the electric and magnetic fields E and H are expressed in terms

Z by means of the equations

H ¼ rot _�Z; (9.17)
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E ¼ grad divZ� 1

c
€�Z: (9.18)

The radiation of the system can be described with the help of the Hertz vector of the

dipole p ¼ qr, where q is the charge and r the distance of the vector from the charge

(+q) to (–q).

From the sense of the retardation of the dipole p(t – R/c) we can write the

following relations:

d�p

@R
¼ � 1

c
_�p;

d2�p

dR2
¼ 1

c
€�p:

Then the components of the fields E and H of the dipole are as follows:

Hj ¼ sin y
c2R

€�p t� R

c

� �
; (9.19)

E y ¼ sin y
c2R

€�p t� R

c

� �
; (9.20)

where y is the angle between p and �R; Hj?Ey and ?R; the other components of E

and H in the wave zone are tending to zero quicker than 1/R in the limit R ! 1.

The flax of energy (per unit area) is equal to

S ¼ c

4p
EyHj ¼ 1

4pc2
sin y
R2

€�p
� �2

: (9.21)

The total energy radiated per unit time is given by

ðð
� Sds¼ 2

3c3
€�p
� �2

(9.22)

Thus, transforming the dissipative system to an electric dipole by means of the

Hertz vector, we have reduced the task of a celestial body model construction to

the determination of the dipole charges +Q and –Q through the effective parameters

of the body.

This problem can be solved by equating expression (9.22) for the total radiation

of a celestial body as an oscillating electric dipole. In addition, the relation for the

black body radiation expressing through effective parameters was presented below

in Sect. 8.2.3.

The expression (9.22) for the total rate of the electromagnetic radiation J of the
electric dipole can be written in the form (Landau and Lifshitz 1973b)

J ¼ 2

3

Q2

c3
€�r
� �

; (9.23)
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where Q is the absolute value of each of the dipole charges, and r is the vector

distance between the polar charges of the dipole. Its length in our case is equal to

the effective radius of the body.

In our elliptic motion model of the two equal masses the vector r satisfies the

equation

€�r ¼ �Gm
�r

r3
: (9.24)

Thus, the total rate of the electromagnetic radiation of the dipole is

J ¼ 2

3

Q2

c3
Gmð Þ2
r 4

: (9.25)

In order to obtain the average flux of electromagnetic energy radiation, the value of

the factor 1/r4 should be calculated averaged during the time period of one oscilla-

tion. Using the angular momentum conservation law, we can replace the time-

averaging by angular averaging, taking into consideration that

dt ¼ mr2

2M
dj; (9.26)

where M is angular momentum, and j is the polar angle.

The equation of the elliptical motion is

1

r
¼ 1

a 1� e2ð Þ 1þ e cosjð Þ; (9.27)

where a is the semi-major axis, and e is the eccentricity of the elliptical orbit.

The value of 1/r4 can be found by integration. In our case of small eccentricities,

we neglect the value of e2 and write

1

r 4

� �
¼ 1

a4
: (9.28)

Finally we obtain

�J ¼ 2

3

Q2

c3
Gm2

a4
: (9.29)

Earlier it was shown (Ferronsky et al. 1987) that

�J ¼ 4ps
1

a2
A4

c ; (9.30)
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where s is the Stefan-Boltzmann constant; Ae ¼ Gmme/3k is the electron branch

constant; me is the electron mass; and k is the Boltzmann constant.

Equating relations (9.29) and (9.30), we find the expression for the effective

charge Q as follows:

Q ¼
ffiffiffiffiffiffiffiffiffi
6ps

p A2
e

crg
; (9.31)

where rg ¼ Gm/c2 is the gravitation radius of the body.

We have thus demonstrated that it is possible to construct a simple model of

the radiation emitted by a celestial body, using only the effective radius and the

charge of the body. Moreover, it was shown a practical method of determining

the effective charge using the body temperature from observed data.

The logical question is raised what is mechanism of the energy generation of the

bodies which they emitted in the wide range of oscillating frequencies spectrum.

Let us consider this important question at least in first approximation.

9.4 Quantum Effects of Generated Electromagnetic Energy

The problem of the energy generation technology for human practical use has been

solved far ago. In the beginning it was understood how to transfer the wind and fair

energy into the energy of translational and rotary motion. Later on people have

learned about production of the electric and atomic energy. Technology of the

thermo-nuclear fusion energy generation is the next step. It is assumed that the Sun

replenishes its emitted energy by the thermo-nuclear fusion of hydrogen, helium

and carbon. The Earth thermal energy loss is considered to be filled up by convec-

tion of the masses and thermal conductivity. But the source of energy for con-

vection of the masses is not known.

The obtained solution of the problem of volumetric pulsations for a self-

gravitating body based on their dynamical equilibrium creates real physical basis

to formulate and solve the problem. In fact, if a body performs gravitational

pulsations (mechanical motions of masses) with strict parameters of contraction

and expansion of any as much as desired small volume of the mass, then such a

body, like a quantum generator, should generate electromagnetic energy by means

of its transformation from mechanical form through the forced energy levels

transitions and their inversion on both the atomic and nuclear levels. In short, the

considered process represents transfer of mechanical energy of the mass pulsation

to the energy of electromagnetic field (Fig. 9.1).

An interpretation of the process can be presented as follows. While pulsating and

acting in regime of the quantum generator, the body should generate and emit

coherent electromagnetic radiation. Its intensity and wave spectrum should depend

on the body mass, its radial density distribution and chemical (atomic) content.
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As it was shown in Sect. 7.4, the body with uniform density and atomic content

provides pulsations of uniform frequency within the entire volume. In this case, the

energy generated during the contraction phase will be completely absorbed at the

expansion phase. The radiation appeared at the body’s boundary surface must be in

equilibrium with the outer flux of radiation. The phenomenon like this seems to be

characteristic for the equilibrated galaxy nebulae and for the Earth water vapor in

anti-cyclonic atmosphere.

The pulsation frequencies of the shell-structured bodies are different but steady

for each shell density. In the case of density increase to the body center, the

radiation generating at the contraction phase will be partially absorbed by an

overlying stratum at the expansion phase. The other part of radiation will be

summed up and transferred to the body surface. That radiation forms an outer

electromagnetic field and is equilibrated by interaction with the outer radiation flax.

The rest of the non-equilibrated and more energetic in the spectrum of radiation

moves to the space. The coherent radiation which reaches the boundary surface has

a pertinent potential and wave spectrum depending on mass and atomic content of

the interacted shells in accordance with Moseley law. The Earth emits infrared

thermal radiation in an optical short wave range of spectrum. The Sun and other

stars cover the spectrum of electromagnetic radiation from radio- through optical, x
and gamma ray of wave ranges. The observed spectra of star radiation show that

total mass of a body takes part in generation and formation of surface radiation.

According to the accepted parabolic low of density distribution of the Earth it has

maximum density value near the lower mantel boundary. The value of the outer

core density has jump-like fall and the inner core density seems to be uniform up to

the body center. The discussed mechanism of the energy generation is justified by

the observed seismic data of density distribution. It is assumed, that the excess of

generated electromagnetic energy from the outer core comes to the inner core and

keeps there the pressure of dynamical equilibrium at the body pulsation during the

entire time of the evolution. The parabolic distribution of density seems to be

characteristic for most of the celestial bodies.

In connection with the discussed problem it is worth to consider the equilibrium

conditions between radiation and matter on the body boundary surface.

ε4

ε3

ε2

ε1

a b

Fig. 9.1 Quantum transition of energy levels at contraction phase of the body mass (a) and

inversion at the phase of its expansion (b); e1, e2 , e3 , e4 are levels of energy
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9.5 The Nature of the Star Emitted Radiation Spectrum

We assume that the Novas and Supernovas after explosion and collapse pass into

neutron stars, white dwarfs, quasars, black holes and other exotic creatures which emit

electromagnetic radiation in different ranges of the wave spectrum. The discussed in

the book effects based on dynamical equilibrium evolution of self-gravitating celestial

bodies allow the exotic stars to be interpreted from a new position. We consider the

observed explosions of stars as a natural logical step of evolution related to their mass

differentiation with respect to the density. The process is completed by separation of

the upper ‘light’ shell. At the same time the wave parameters of the generated energy

of the star after shell separation are changed because of changes in density and atomic

contents. As a result, the frequency intensity and spectrum of the coherent electro-

magnetic radiation on the boundary surface are changing. For example, instead of

radiation in optical range the coherent emission in x or gamma ray range takes place.

But the body’s dynamical equilibrium should remain during all the time of evolution.

The loss of the upper body shell leads to decrease of the angular velocity and increase

of the oscillation frequency. The idea of the star gravitational collapse seems to be an

effect of the hydrostatic equilibrium theory.

As to the high temperature on the body surface, the order of which from

Rayleigh -Jeans’ equation is 107 К and more, then in our interpretation as applying

Eq. 8.33 for evolution of a star of solar mass at the electron phase (Fig. 8.1), the

limiting temperature T0 ! mec
2/3k or (Ferronsky et al. 1996)

3kT0 ! mec
2 � 0:5 MeV;

T � 5 � 109 K:

This means that on the body surface the gas approaches to the electron tempera-

ture because the velocity of its oscillating motion runs to c.
The energy is a quantitative measure of interaction and motion of all the forms of

the matter. In accordance with the low of conservation the energy does not

disappear and does not appear itself. It only passes from one form to another. For

a self-gravitating body the energy of mechanical oscillations, induced by the

gravitational interactions, passes to electromagnetic energy of the radiation emis-

sion and vise versa. The process results by the induced quantum transition of the

energy levels and their inversion. Here transition of the gravitational energy into

electromagnetic and vice versa results in the self-oscillating regime. In the outer

space of the body’s border the emitted radiation energy forms the equilibrium

electromagnetic field. The non-equilibrium part of the energy in corresponding

wave range of the spectrum is irradiated to the outer space. The irreversible loss of

the emitted energy is compensated by means of the binding energy (mass defect)

at the fission and fusion of molecules, atoms and nuclei. The body works in the

regime of a quantum generator. Those are conclusions followed from the theory

based on the body dynamical equilibrium.

9.5 The Nature of the Star Emitted Radiation Spectrum 307



9.6 Temperature of the Relict Radiation

The conclusion about the constancy of the equilibrium radiation parameter l in

(9.2) enables to obtain the numerical value of its temperature. For this we equate the

expression of the black radiation energy and the volumetric density of that part of

the gravitational energy which corresponds to the radiation energy in the Maxwell

theory, that is

sT 4 ¼ l
Gm2

R
� 1

4=3pR3
; (9.32)

where s is the Stefan-Boltzmann’s constant and T is absolute temperature.

From here

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4p
lG
s

4

r
�

ffiffiffiffiffiffi
m

R2

r
: (9.33)

In accordance with Spitzer (1968), the value of m/pR2 for globulae of solar to

galactic mass is equal to 3.10–3 g/cm2 (m/R2 ¼ 10–2) Our data shows that

l ¼ 0.022. Then from Eq. 9.33 the value of T � 4 K. This is the observed relict

radiation..

Let us now consider expression (9.32) from the point of view of the solar system.

The expression can be written in the form

RTð Þ4 ¼ lGm2

4=3ps
:

From here with the solar mass

RT ¼ ffiffiffiffi
m

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lG

4=3ps
4

s
¼ 5 � 1017cm�oK:

This numerical value of RT was obtained in our work (Ferronsky et al. 1979a;

1987) as the value of the proton branch of the Sun evolution. This theoretical

solution has been proved by observational data of Spitzer. The electron branch of

the evolution was also found there. Its RT value is 2,000 times less than that of the

proton branch in accordance with the ratio of their masses. Hence, the radius of

the Protosun cloud is ~1018 cm for the proton branch of the evolution and ~ 1013 cm

for the electron branch. This is possible explanation for the division of the solar

system planets in two groups.

The planetary masses are by 103–107 times less than the solar mass and their

radii are 10–2–10–4 solar radius. This estimation follows from the recalculation of

the proton and electron branches of evolution. Therefore, the ratio m/R2 for the
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planets is only 10–100 times more than that of a protostar obtained by Spitzer.

The radiation of the planets and satellites should be in equilibrium with the other

flux which is the internal solar flax. In this connection the equilibrium temperature

of the planets and satellites should be 3–10 times more than the star’s temperature of

10–100	K. The existing direct measurements give evidence of two peaks in

the relict radiation spectrum (4 K and 20 K). It means that our physics and

numerical estimates are reasonable.

In conclusion we wish to stress that the discovered by the artificial satellites

relationship between the gravitational field (potential energy) and the polar moment

of inertia of the Earth leads to understanding the nature an mechanism of the

planet’s energy generation as the force function of all the dynamical processes

release in the form of oscillation and rotation of the matter. Through the energy

nature we understand the unity of forms of the gravitational and electromagnetic

interactions which, in fact, are the two sides of the same natural effect.

9.6 Temperature of the Relict Radiation 309





Chapter 10

Conclusions

It might appear surprising that the integral approach to description of dynamics of

natural systems, which has a number of obvious advantages, has been developed

far less well than the differential hydrostatic one. However, if we consider the

development of the apparatus of mathematical physics from this viewpoint,

the picture changes completely.

In fact, as soon as the concept of the field was formulated – even through at first

this concept was a purely mathematical one (e.g. of the electrostatic and magnetic

fields) – Gauss’ theorem relating to the flux of a field vector through a closed

surface was put forward. This integral characteristic of a field enclosed within a

surface is an invariant of the field. In the case of electrostatics it is charge which

give rise to the field.

The concept of vector flux through a closed surface has been generalized and

developed. For example, such a generalization is Stokes’ theorem relating to the

circulation of a vector around a closed circuit, which can be used to identify vortex

sources in vector fields. These theorems, which by their very nature are distinctly

integral ones, have served as the basis for the whole mathematical theory of

continuum mechanics, the electromagnetic theory of Maxwell and Poisson’s theory

of Newtonian gravitation.

Thus, the development of the mathematical apparatus of physics has taken

the course of the integral approach to the description of natural phenomena.

The concepts of divergence and the rotor introduced in this connection have served

as instruments for finding the sources and sinks of a field and its vortices.

However, the idea of the continuity of a field, which gave rise to these concepts

itself placed a limit on them, because the size of the region in which the charge was

enclosed by a surface had to tend to zero. The Gaussian surface integral was thus

replaced by divergence as a differential operation.

Circulation was similarly replaced by the rotor as a differential operation. It is

these operations which are used in the Maxwellian field theory. This is because of

the erroneous idea that the electric charges giving rise to the field are themselves

continuous quantities distributed over the volume and also over the surface of

dielectrics and conductors. The theorems of Gauss and Stokes are therefore limited

to volumes shrinking to nil, and the theory became a purely differential one. This

situation was later improved by Lorentz, who introduced into the field discrete

V.I. Ferronsky et al., Jacobi Dynamics, Astrophysics and Space Science Library 369,

DOI 10.1007/978-94-007-0498-5_10, # Springer Science+Business Media B.V. 2011

311



charge points of finite magnitude scattered in empty space. According to his theory,

Maxwell’s equations remain applicable in the empty space between the small

regions enclosing point singularities. On the closed surfaces surrounding these

regions containing field singularities, the solutions to the field equations satisfy

integral conditions. The flax of the field vector through these surfaces is equal to the

sum of discrete charges enclosed by the total surface,

With the solution averaged over space, Lorentz’ theory led to Maxwell’s theory,

which was in fact his objective. This is how the integral approach to the description

of natural phenomena came into being.

The same approach was used by Einstein in the interpretation of his general

theory of relativity and for deriving the equations of motion of matter in accordance

with Newton’s theory from his own equations.

It is, of course, well known that Einstein constructed his general theory of

relativity as a relativistic theory of gravitation. For this, he first wrote Newton’s

equations in the form of field equations using Poisson’s equation, and then gave the

latter a relativistic, generalized character.

Einstein went further and abandoned inertial counting system, which had been

accorded a position of privilege. Thus, the invariance was no longer assumed to be

Lorenzian but universal in relation to any improper continuous transformation.

Here, use was also made of Lorentz’ idea, which we have mentioned earlier, of

the discrete nature of the distribution of matter. Matter is concentrated in point

singularities of a field, and between them there is empty space, for which Einstein’s

field equations hold true. The equations are not satisfied at singular points, which

must be surrounded by closed surfaces. For the latter, the integral relations of Gauss

in tern hold true, i.e. the flux of the field through these surfaces is equal to the

charges found inside them. It should be emphasized once again that the actual fields

inside these regions need not satisfy the conditions of the Einstein’s equations.

Einstein’s theory is, therefore, by its very nature and because of the basis on

which it is constructed, an integral one. This fact is not usually realized, which is

why we draw attention to it. It is by this condition, which in mathematical terms

amounts to the requirement that the divergence of the original tensor should

become exactly nil, that the nature of Einstein’s tensor is uniquely defined. Such

a tensor is one, the divergence of which is twice the contracted Bianchi identity for

the Riemann curvature tensor.

If all the singularities of a field are surrounded by small spheres, in the space

between them the field will everywhere be regular and its equations can be expanded

in descending series in terms of the reciprocals of the velocities of light. Equating

the coefficients in terms of the same powers, we obtain a series of equations. Every

such system contains new quantities not found in the previous systems and is easily

solved.

The motion of singularities (i.e. of particles) is determined by virtue of the

fact that the left-hand sides of the systems of equations being solved satisfy

four identities. The right-hand side of these equations must therefore also satisfy

these identities or, with the singularities taken into account, the integral conditions.

In the absence of singularities these conditions are automatically satisfied and
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provide nothing new. But if there are present, they determine the equations of

motion. Einstein followed all calculations through and obtained Newton’s

equations. This method can also be used when gravitational and magnetic fields

exist simultaneously, and the result of the calculation is positive. In this way,

Einstein showed that even the classical interaction of mass points is caused by

the non-linearity of the field equations. This fact is usually emphasized, but the role

of integral conditions tends not to be mentioned.

Einstein’s equations therefore contain Newton’s equations and thus also their

solutions and combinations.

Jacobi’s virial equation is derived from Newton’s equations and consequently,

must itself be contained in Einstein’s equations. However, it is not immediately

apparent whether Newton’s or Jacobi’s equation is the more fundamental.

Newton’s equations were obtained by Einstein from his second-order equations

by approximation. Jacobi’s equation was obtained from Einstein’s by the method of

oscillation moments, also in second-order but by an exact method. This makes

Jacobi’s equation the more fundamental one; moreover, unlike Newton’s equation,

it remains integral and dynamical in nature.

As we have mentioned, the way in which the whole problem is formulated gives

Jacobi’s moment equation an exact, closed from which in fact solves the problem

itself. In the case of the universe the problem is also one of its non-steady-state

nature. A clever solution to this problem was found earlier by Friedmann.

His solution is a solution to Jacobi’s equation or to the smoothed Einstein equation.

This is an analogue of Maxwell’s equation in the form of a smoothed Lorentzian

equation for charge points.

For the empty space between point singularities an anisotropic solution to

Einstein’s equation has been found (also by indirect means). This solution is

Kasner’s metric. Analysis of this metric shows that the empty space being con-

sidered pulsates. It is compressed on two axes, expands on one, and vice versa.

Since this solution has been obtained for the case of space without matter, i.e.

without its interaction, so that the law of interaction is without significance, the

oscillatory nature of processes in nature is universal. The solution, however, is a

formal one and its physical significance needs to be elucidated.

In fact, in Newton’s well known law of gravitation for two masses it is assumed

that these are mass points. Otherwise, the inverse-square law ceases to apply to their

interaction. This in turn contravenes the law of remote screening mentioned in

Chap. 1, which makes it impossible for approximately isolated (conservative)

systems to exist.

The law of gravitation thus permits the existence of infinitely small radii of

curvature and thereby of an infinitely large curvature of space time, i.e. of singularities.

There are other examples of motion towards or away from a singularity, such as

the formation of stars and planets, the expansion of the universe etc. Newton’s law

of gravitation therefore non-explicitly reflects the conditions for the existence of

singularities, and the generalization of his theory by Einstein retains and, on the

basis of the principle of equivalence, clearly demonstrates these singularities.

Singularities are therefore an empirical fact. So what are they?
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In accordance with Einstein’s theory, curvature is produced by mass.

Consequently, empty-space time is not abstract emptiness but a physical vacuum

with its own structure and also an analogue of mass, which in fact reflects Kasner’s

solution to Einstein’s equation. This view is now widely held. In most models a

vacuum is considered to be a quantum-mechanical system of virtual particles and to

behave in a way similar to an elastic medium. Belinsky et al. (1970) studied the

behavior of Einstein’s equation for non-empty space-time but near a singularity.

They showed that with increasing proximity to (distance from) the singularity a

moment is approached at which the vacuum curvature exceeds the curvature from

matter and the solution to Einstein’s equation again becomes Kasner’s solution.

Its solution, however, is a case of uniform – although anisotropic – space-time.

Belinsky, Lifshitz and Khalatnikov also examined the case of inhomogeneous

space-time and came to conclusion that the nature of the solution was the same

but that the Kasner parameters were dependent on the co-ordinates and time.

In the case of further evolution of the Kasner solution with expansion of space

away from the singularity, the original anisotropic space in gradually converted

into isotropic space, i.e. into the Friedmann model, which is a solution to the

second-order virial equation.

The oscillatory law of the dynamics of natural processes is thus a universal law

of nature. It should, however, be noted that into all the approaches mentioned above

the concept of finite time and of a beginning of time counting has been introduced.

In some models there is also the concept of the end of the world. Only in one of

them (in which the average density of matter for the space being considered is

strictly determined) do the periodically alternating processes of expansion and

contraction infinitely. It is this mode which is determined by the solution to Jacobi’s

virial equation.

A special feature of the Kasner solution for the general anisotropic case of space-

time is the appearance in it of dependence of metric coefficients of time in

accordance with the | t |2/3 law, where t is a time interval. This law was found for

the most general case in which there is no external symmetry, i.e. no symmetry

which is not associated only with the internal arrangement of singularities.

The sources of the important relation | t |2/3 go back to Kepler, who found

experimentally the law in accordance with which the squares of the periods of

rotation of bodies of the solar system are the cubes of the semi-axes of the ellipses in

which they undergo motion.

It was pointed out in Chap. 6 that in Newton’s theory about the attraction of mass

points such a law is also found to be asymptotic for the case in which n bodies

collide simultaneously. It was also shown there that within this asymptotic limit the

simultaneous collision of n bodies leads to a homologous configuration. And for it

in turn the condition of the applicability of Jacobi’s general virial equation with two

functions holds true. Thus, using a solution of the Kasner type, the applicability of

Jacobi’s virial equation within the asymptotic limit of simultaneous collision

between n bodies which was found earlier for Newton’s theory is extended to the

case of the solution of Einstein’s general equation. This indicates the universal

nature of Jacobi’s virial equation in dynamics.

314 10 Conclusions



Let us note further important aspect of the solutions under consideration, which

relates to the change of Kasner epochs. Their number is infinitely independent of

whether the world has a beginning and end. This occurs as a result of a decrease in

the duration of an individual epoch as a singularity is approached.

Let us now consider yet another aspect of the fundamental nature of Jacobi’s

virial equation. As we have already pointed out, Newton’s law of gravita-

tion permits the existence of a curvature in space-time, which is derived from

Einstein’s theory. However, there is one fundamental difference between the two

theories. According to Newton, the gravitational interaction is a long-range one,

corresponding to an infinite velocity of propagation of the interaction. Einstein

assumes a short-range interaction. It is propagated at finite velocity (at the velocity

of light). Consequently, Newton’s theory is formulated in terms of Euclidian

geometry. Nevertheless, with both theories space-time is distorted.

Newton’s theory is constructed on the basis of a simple empirical law of

Kepler’s and does not make use of another empirical law, namely the principle

of equivalence derived from the experiments of E€otv€os.
So what common ground is there between the theories?

The fact is that Newton’s theory is constructed as Newtonean mechanics plus his

own law of gravitation. In Newtonean mechanics there are three axioms, but the

type of interaction is not determined; this is done experimentally. In generalized

Newton’s theory, it is the mechanics that should have been generalized and not the

type of interaction.

With Einstein the type of interaction is replaced by the principle of equivalence.

The mechanics, on the other hand, is generalized in accordance with the principle

of the invariance of equations. Long-range interaction is thus not involved here, and

the type of interaction makes no difference.

Jacobi’s virial equation, which was obtained from Newton’s equations, also does

not so much generalize the type of interaction law, in the way that this was done in

his (Jacobi’s) conclusions, as take into account the mass defect (potential energy).

It is therefore linked with the principle of equivalence. The mass defect, in turn, is

determined by a system that has already been formed and, consequently, does not

depend on the type of interaction during the process of formation (long-range or

short-range).

As was thought by Wintner, Jacobi’s virial equation therefore reflects the type of

interaction law only integrally over the whole period of time in which the mass

defect is formed. Also, if there is no delay, as in the case of Newton’s long-range

law of gravitation, it will be simultaneously a specific and instantaneous type of

interaction, as pointed out by Wintner.

If a delay does take place, for example in accordance with Einstein’s short-range

interaction law, instead of a specific, instantaneous type of interaction, the equation

will include an expression which has been strongly averaged over time, and the

dependence on the type of interaction will cease to be of significance. It will

be replaced by an assertion about the dependence on instantaneous mass or on the

mass defect which has built up over a long time.
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This is the answer to the question posed. At the same time, the strength of the

Jacobi equation is evident. Since in the general theory of relativity the usual

problems in the framework of a short time interval – and even the classical two-

body problem – are not solved, the enormous practical significance of solving

Jacobi’s virial equation becomes obvious. The fact that there are oscillations even

in empty space-time indicates the exclusively fundamental nature of this equation.

Moreover, it has now become obvious that Jacobi’s virial equation, which was

obtained from Newton’s equations, is a particular case of more general virial

equation derived from Einstein’s equations. This equation will thus be studied

from the most general global points of view, namely that of empty space-time,

which will not be called a vacuum, and that of models of an evolving universe.

It should be noted here that the models that have so far been developed from

Jacobi’s equation of an open, a closed and a pulsating universe have been obtained

automatically as its natural solutions as a function of the source data – the quantities

of total moment and mass defect. In this case, all possible types of solution are

encompassed, and the question of the completeness of the set of possible models of

the universe is thereby solved.

Let us now consider an example which demonstrates the use of the integral

approach for constructing a complete closed theory based on Hooke’s law.

The theory concerned is the theory of elasticity.

In this theory, for any volume of a continuum, only quantities and parameters

which ate integral from the point of view of an external observer are considered,

namely deformation, stress and modulus of elasticity. The elements of the volume

interact through their surface. A quantitative measure of their interaction is

provided by strains, and a quantitative measure of the results of interaction by

relative changes in the external dimensions of elements, in other words, their

deformation. The internal structure of the material is demonstrated quantitatively

by means of integral parameters, namely the mass density, the modulus of elasticity

and the Poisson coefficient.

The interaction between the element of interest of a body and the external world

takes place through external surface and volume forces. The external surface forces

act only on the surfaces of the whole body and not on that of any of its elements.

External volume forces amount to the application of surface forces to the surfaces

of any element, and thereby to tensions. Here, external surface forces do not come

into the equilibrium equations but into the boundary conditions of the problem and

are thus excluded as forces.

It is important to stress this point. It was mentioned earlier by Hertz, who set

himself the problem of constructing a system of mechanics without forces. The fact

that he was relatively unsuccessful is because in his days Minkowski’s idea about

the unity of space-time was as yet unknown. The link between static and dynamics

was not as clear as it would be after Minkowski.

Exposition of the theory of elasticity usually begins with the formulation of

Hooke’s law in the form of the relation between deformation and force in the

context of the tensions or compression of a uniform beam. The elongation or

compression of the beam is in linear proportion to the force applied to its ends.
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This relation is then established more precisely by taking into account the

dimension of the area of the beam’s cross-section, the concept of tension as a

ratio of force to the cross-section and the elongation of the beam as a function of the

initial length. The deformation is thus the ratio of relative elongation to the total

length. The intrinsic properties of the material of the beam are taken into account by

introducing the concept of Young’s modulus, which has the dimensionality of the

volume density of energy. Only then is it established that, with longitudinal tension

and compression, the beam is simultaneously undergoing transverse compression

and tension. The relative deformations about the three axes will be in proportion

to one another. The link between the relative deformations is determined by

the Poisson coefficient, which is also a parameter characterizing the material

of the beam. Usually, this aspect is not stressed. For our problem, however, it is

of particular interest.

First, the beam has dimensions (length, height, width, surface area), which are

determined only from the position of an external observer; secondly, all forces are

also fixed from the beginning; thirdly, the internal arrangement of the beam is fixed

by integral parameters (the modulus of elasticity and the Poisson coefficient);

fourthly, when external forces are applied, the beam reacts as a unified whole and

simultaneously in three dimensions. Since here the relative deformations are in

proportion to one another with a constant Poisson coefficient, the principle of the

superimposition of deformations is applicable. The whole theory is therefore found

to be strictly linear.

Finally, it should be noted that two states of the beam are always considered –

the initial and the final states before and after the application of the forces. One of

them is generally the equilibrium state. If these two states of one and the same

system occur at different times, displacement deformations are replaced by velocity

deformations. In this case the approach followed takes the form of the theory of

viscous or liquid media of gases. As far as Hooke’s law itself is concerned, for

its purposes deformations and stresses are characterized by tensors of second order

and the set of coefficients linking them in a linear fashion is an elasticity tensor of

fourth order.

For a fluid, Hooke’s law is written in the form of Pascal’s law. This way of

writing it expresses the condition of equilibrium of the medium, where the stresses

on the main axes are equal to the pressure of the fluid. Another condition of

equilibrium for a fluid is the law of the conservation of matter.

If in the context of Hooke’s law we move to the point of view of Minkowskian

unified space-time, and effect a Lorentzian transformation from a stationary system

of co-ordinates to a moving one, the equilibrium conditions in accordance with

Pascal’s law or in the form of any other Hookean tension law can be expressed as

Euler equations and as an equation of the continuity of the medium. Here it is

important to note that, when deriving the Euler equations of motion, it is not

obligatory to use Newton’s second law of mechanics and that a Hookean system

equilibrium equation can be used.

Nor are any dynamic laws used to justify the Minkowski approach, which is

based directly on experimental values and is considered to be valid.
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It should be noted that, in the context of Hooke’s law, a rigorous solution can be

found to Jacobi’s virial equation for conservative system. In this case Hooke’s law

determines the constancy of the product of potential energy and of the Jacobi

function; this constancy is written in the form Uj j ffiffiffiffi
F

p ¼ aGm5=2.

In this relation the coefficient a ¼ a2b (which stands for the product of form

factors included in the expressions for the potential energy and the Jacobi function)

acts as a modulus of the dynamic elasticity of the system. It remains a constant and

reflects the constancy of the law of mass density distribution of the system within

the limits of its elastic deformations with virial oscillations. The deformation of

the system is characterized by its integral parameter the Jacobi function – and the

stresses are determined by the term Gm5/2/U. As a result, the virial pulses of

the system will be strictly periodic, and the deformations will be found to be elastic

and therefore reversible.

On this basis it was shown in Chap. 7 that the parameters of the virial oscillations

of the Earth, which are detected, can be used as if the Earth were an elastic body for

determining its potential energy. This option remains open for when natural

systems are being examined in the framework of other models of continuous and

discrete media.

We have mentioned a number of aspects of the universality of Jacobi dynamics

in the examination of natural systems. We shell now consider the prospects for

solving a number of practical problems in the context of the dynamic approach.

One of these problems is the dynamics of the Solar System, of its evolution and

its origin. In Chap. 8 we made first step in this direction and obtained the basic

common solution on creation of celestial bodies and their systems. It appears that

any rank of new celestial body (from galaxy to meteorite and even to molecule and

atom) is born by self-gravitating parent as consequence of loss of its energy by

radiation. It means that the stage of self-gravitation and separation mast be changed

by the stage of gravitation and joining of the matter. Thus, the present day stage of

expansion of the Universe, after total separation of the matter, should come to the

stage of its contraction and gathering. Generally saying, our Universe is a closed

pulsating and perpetual system. New more detailed solutions in this direction are

desirable.

In the context of the dynamic approach a new problem of dynamics of the self-

gravitating Earth and its interaction with the Sun and the Moon were considered in

Chap. 7. The found normal and tangential components of the potential and kinetic

energies of a self-gravitating body made it possible to understand mechanism of

separation of the body’s shells, their oscillation and rotation by the inner force field.

It was understood that the induced outer force field, which has all the properties of

the electromagnetic field, acquires the property to conserve the irradiated energy

and potential in the orbital motion of its secondary body. But because of limited

velocity of propagation of the changing potential the orbital trajectory is found to be

open. This fact is proved both by the artificial satellites and the observed precession

of all the planets and the moons. The found important effect makes it possible to

interpret inner structure of the Sun, the Earth, the Moon and other celestial bodies.
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And also it rises the problem of improving of the Kepler’s approximation of the

Earth’s and other body’s orbits which are found to be too rough.

In our opinion, the dynamics of the microcosm is a very interesting application

of Jacobi dynamics. This book takes only the first step in this direction. It is shown

that Jacobi dynamics is also applicable for the solution of this type of problem.

An attractive idea is to use the dynamic approach for studying the physics of

molecules, atoms and nuclei as dissipative systems, which might lead to discovery

of many interesting effects.
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