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Abstract

The deployment dynamics of a spin stabilized electric sail (E-sail) with a hub-
mounted control actuator are investigated. Both radial and tangential deploy-
ment mechanisms are considered to take the electric sail from a post-launch
stowed configuration to a fully deployed configuration. The tangential config-
uration assumes the multi-kilometer tethers are wound up on the exterior of
the spacecraft hub, similar to yo-yo despinner configurations. The deployment
speed is controlled through the hub rate. The radial deployment configuration
assumes each tether is on its own spool. Here both the hub and spool rate are
control variables. The sensitivity of the deployment behavior to E-sail length,
maximum rate and tension parameters is investigated. A constant hub rate
deployment is compared to a time varying hub rate that maintains a constant
tether tension condition. The deployment time can be reduced by a factor of 2
or more by using a tension controlled deployment configuration.
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1. Introduction

The E-sail is a novel propellantless in-space propulsion concept with great
potential for fast interplanetary and near interstellar missions, invented and
proposed by Pekka Janhunen[l] at the Finnish Meteorological Institute. In
this concept, a system of radially configured, thin, charged tethers generate an
electric field that interacts with solar wind protons to harvest acceleration for
spacecraft propulsion, demonstrated in Figure 1. This provides infinite specific
impulse and eliminates the need for traditional chemical propellants[2]. Only
an electron gun is required to maintain a positive electrostatic charge on the
tethers. The positive solar wind ions deflect of the results E-sail tether force
field, causing a net force onto the spacecraft. This solar wind propulsion con-
cept is advantageous in comparison to the solar radiation pressure (SRP) based
solar sail due to the effective area of the electrostatic forces and improved solar
radius dependence([3]. A single charged wire, microns thick, will create a meters-
wide effective area, expanding the area of influence of a minimal structure. In
comparison, SRP is directly dependent on the physical area of the solar sail,
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Figure 1: The electric sail is charged by a spin axis-pointed electron beam and deflects solar
wind protons to generate thrust. Artist concept image by A. Szames.

providing many challenges in manufacturing, packaging, and deploying large
membranes[4]. The solar radius dependence of the E-sail has been shown to
decay the acceleration at 1/r7/6 slower than that of the solar sail at 1/72. This
is encouraging for long distance missions to the outer planets and beyond. How-
ever, the E-sail is not operable within a planet’s magnetosphere, where the solar
wind protons are deflected, whereas a solar sail still accelerates on the photons
in this region.

Multiple missions have been designed using the E-sail as the primary propul-
sion system with encouraging results. A fast entry probe mission to Uranus
could be achieved in less than 6 years [5], the interstellar medium reached in
as little as 10 years, and a near Earth asteroid rendezvous could be completed
within a year [6]. Additionally, missions to the inner planets, such as Venus
and Mars, could also be achieved in less than 1 and 2 years, respectively [7].
This provides adequate motivation to pursue further development of the E-sail
system. The electrostatic propulsion theory enabling these missions has been
studied in detail [3, 8]. Additionally, work has been done concerning the sail
shape under thrust [9] and for solving secular drift in the operating sail spin rate
using only voltage modulation [10]. However, the coupled deployment dynamics
of the spacecraft and charged tether system is not well understood. Typically,
the E-sail systems considered are composed of 20-100 tethers, up to 20 km in
length, with payload masses of 100-2000 kg. These tethers are constructed us-
ing multiple micron-thick conductive tethers with auxiliary loops, known as a



Hoytether [11], to provide redundancy and protect against micrometeors. Con-
struction of such tethers at the desired length has been investigated with en-
couraging results [12]. One such tether, 10 meters in length, was flown on the
EstCube-1 [13] but was not deployed [14]. Despite this, evidence supporting the
feasibility of the E-sail is continuing to develop, and steps should now be taken
towards understanding the deployment requirements for such a structure.

During flight, the tethers are spin-stabilized to maintain tensioned, radial,
straight line configurations. Therefore, at the end of the deployment phase, the
spacecraft and each tether component must be rotating at equal rates. This
can be achieved through either a centrifugal deployment or by actuating the
tethers from rest using tether-mounted thrust and spinning up the tethers and
spacecraft after the tethers are fully extended. In this paper, only a centrifugal
deployment is considered. Due to conservation of momentum, a centrifugally
deployed tether system modeled with a spherical pendulum (such as a yo-yo
despinner) asymptotically approaches the negative initial rate when left in free
spin. This fact can be leveraged for deployment by adjusting the tether length or
initial rate such that the final desired rate is reached, however for cases where the
tether length and system inertia is exceedingly large and pre-determined, such as
the E-sail, the initial rate required is not practical. For those cases, energy and
momentum must be continually input to the system as the tethers are deploying
to maintain desired body rates. The primary challenge for a centrifugal E-sail
deployment is providing the momentum required to spin-stabilize the deployed
structure while minimizing risk and fuel consumption, presenting a non-trivial
task.

Review of the literature reveals that many tethered space system concepts
have been presented and studied in the past, however none quite resemble the
structure proposed here. Kilometers-long space tethers that have flown as of
2016 were single tether missions, such as in the TSS, SEDS, and TiPS mis-
sions [15]. These single tether systems used gravity gradients to actuate de-
ployment and hosted much larger payloads, making them poor analogs for the
E-sail deployment dynamics. Spin stabilized, multiple-tether systems have been
proposed and studied, such as the Terrestrial Planet Finder (TPF) and Submil-
limeter Probe of the Evolution of Cosmic Structure (SPECS) concepts, however
the deployment requirements of these concepts are not necessarily comparable
to the E-sail. The SPECS mission, for example, proposes to leverage conser-
vation of momentum during deployment of the 3 tethers by pre-spinning the
system to 90 rpm in order to approach 0.01 rpm at full deployment [16]. A
quick calculation shows that a pre-spin method will not be feasible for the E-
sail deployment. Where an E-sail accelerating a spacecraft at 1 mm/s? could
easily have an inertia of 108 kg m?, and the rotation rate is limited by the ten-
sion capability of the tether and end mass size, the required pre-spin rate could
be on the order of 10° rpm. Another space structure that somewhat relates
to the E-sail is that of wire booms for science payloads, as flown on THEMIS,
RBSP, and MMS. However deployment here is also not directly comparable,
where the wire lengths are on the order of tens of meters, and therefore do not
present the same momentum challenges as the E-sail. These systems also use a



spin-up strategy to take advantage of conservation of momentum during deploy-
ment [17, 18], and therefore offer little additional insight for E-sail deployment
solutions.

In this paper novel deployment schemes are studied where the spacecraft
body rate is controlled using body-mounted devices. A body-mounted strategy
will be simpler than coordinating and commanding individual tether-mounted
devices to actuate deployment. Furthermore, applying torque through the hub
may be possible using commercially available products, whereas tether end point
thruster units are currently under development. Two deployment schemes that
use a body-mounted energy source are considered. The first is a tangentially
aligned deployment, where all tethers are mounted on a central hub oriented
with the spacecraft spin axis, taking advantage of the rotational dynamics to
deploy the tethers simultaneously. The second deployment scheme uses a ra-
dially oriented deployment configuration. Such a configuration has each tether
housed on a separate spool and motor device. This paper compares the dynamic
deployment behavior of these two methods. In previous work by the authors[19],
the coupled rotational dynamics of the spacecraft and E-sail system was mod-
eled during the deployment phase and initial control of these dynamics was
investigated. This paper continues and expands this work through parameter
senstivity analysis and additional control schemes.

A proposed scheme for the E-sail mounts the tethers at a radial orientation
[20], where each tether is housed with an individual hub and motor subsystem
to conduct the tether reeling. An auxiliary tether would line the periphery of
the sail, and thruster units would interface between the tether end points and
auxiliary tether to control position and momentum. These components signif-
icantly increase the mass budget of the E-sail and introduce a highly complex
dynamics problem. In this paper, an auxiliary tether is not included such that
only a stand alone end mass is accounted for. Additionally, the deployment is
assumed to occur in a single plane, reducing the problem to rotational degrees
of freedoms about the deployment normal axis and ignoring out of plane dy-
namics. It is also assumed that the spacecraft has reached deep space conditions
before initiating deployment, the sail is not charged during deployment, and the
tethers do not adhere to each other as they deploy. Of interest is the nominal
performance for each deployment type, as well as the sensitivity of this perfor-
mance with respect to the body rate and spool reel rate. Numerical simulations
demonstrate the expected performance.

2. E-Sail Dynamics Modeling

2.1. Spacecraft and E-Sail Mass Model

The mass budget of the E-sail and spacecraft system is selected such that
the characteristic acceleration of the E-sail at 1 Au from the Sun is between
ag = 0.1 — 1 mm s72. At ag, = 1 mm s~2, significantly faster missions to

the outer planets and beyond are feasible [5]. The characteristic acceleration is



given by: [20]

NL
o 1)
where N is the number of tethers, L is the length of the tethers, m is the total
mass of the spacecraft, and f is the thrust per unit tether length at 1 AU from
the Sun. Using the physical reference data for the E-sail [20], this is known to
be f =579.84 nN m~! for an E-sail operating at 25 kV nominal tether voltage.
The total system mass is set to m = 500 kg, a smaller but feasible mass for
an interplanetary science mission, to facilitate greater focus on the other free
parameters of the system. It is assumed that the maximum number of tethers
is 100 and the maximum length of a tether is restricted to 20 km. [20] However,
this only slightly restricts the range of E-sail sizes that will yield the desired
characteristic acceleration in Eq. (1). For a scenario where there is minimal end
mass, no remote devices, and minimal number of tethers with maximum length,
the tethers themselves are the largest contribution to the spacecraft system
momentum. Therefore, accurate modeling of the E-sail deployment requires
that the tether inertia is not treated as negligible. Here, the tether is modeled
as a length-varying slender rod with mass equal to the current tether mass. The
tether mass is described as a function of the deployment length, where the mass
per unit length per tether is assumed to be A = 1.155 x 10~° kg/m. [20] Where
p is the mass per unit length for N number of tethers, p = N for a given sail
size. The mass of all deploying tethers is then described as:

ag =

mr = pl = pR¢ (2)

where [ is the length as a function of time, which can be described in terms of the
unwrap angle ¢ and the spacecraft hub radius R for a tangential deployment.
The derived tether inertia for each case is included in later sections. The end of
each tether is mounted with an end mass, also referred to as a payload mass, to
enable centrifugal acceleration. The spacecraft is modeled with the additional
mass of the stowed portion of the tethers placed along the circumference of
the spacecraft. Combining the time varying stowed tether contribution of the
inertia to the spacecraft, the inertia of the hub is expressed in the tether fixed
S frame, where only the third axis term will be of a contributor to the planar
deployment. This third axis term expressed in the tether frame is the same for
all deployment models, where my is the hub mass.

1
1333 = meRQ + Rz(mno — mT) (3)

2

2.2. Equations of Motion via Lagrange’s Equation

The equations of motion for each deployment concept are efficiently deter-
mined using the Lagrange energy based approach. The kinetic energy of the

system is
N N
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where subscript H refers to the spacecraft hub, T refers to the tethers, F refers to
the tether end mass, and 7 indicates an individual tether or end mass. Assuming
that all IV tethers are deployed symmetrically at equal rates and have identical
construction, these summation terms can be reduced to single lumped terms,
where the energy contribution of the tether system is equivalent to a single
tether of equivalent mass. Similarly, the energy contribution of the end masses
is condensed. The kinetic energy of each component is then written as follows:

1
Ty = ool ok (50)
Tr = iw;/N[IT]wS/N + imTngc . RT,C (5b)
1 . .

Where the expressions of the inertias, velocities, and rotation rates are defined
uniquely for the two cases in subsequent sections. The equations of motion
are then derived using Lagrange’s Equation, and are validated by checking for
conservation of energy and angular momentum. Where there are no potential
energy sources, this is simplified to

d /oT orT
L) ()

where the non-conservative force is the torque applied on the spacecraft hub.

The contribution of this torque to each general coordinate equation is deter-

mined as follows.

8w3/N
04,

(7)

an = Us -

3. Tangential Deployment Method and Parameter Analysis

In this concept, the tethers are deployed tangentially using a free deployment,
where the acceleration of the end mass advances the tether, much like with a yo-
yo despinner. This concept is illustrated in Figure 2, where the applied torque is
represented with thrusters but could be achieved in other manners. Each of the
tethers are wrapped about a central hub and are unreeled from the hub simulta-
neously. This method takes advantage of the spin stabilized system dynamics to
actuate the deployment and relies only on the spacecraft spin rate. Therefore,
control of the spacecraft spin rate will couple with the deployment rate, creat-
ing a more complex dynamical system but providing a free deployment scheme.
Additionally, transitioning the fully deployed tangential tethers to a radial con-
figuration must also be modeled. Therefore, the deployment is operated in two
phases, an unwrap phase that releases the tether length, and a hinging phase
that transitions the tethers from the tangential to radial configurations.



Figure 2: Concept diagram for the tangential deployment scheme

3.1. Equations of Motion for Tangential Deployment

A dynamical model of the deployment is developed based on a spacecraft
hub based control scheme. This model is primarily concerned with the mo-
mentum balance between the spacecraft hub, tethers, and tether end masses,
and therefore makes several simplifying assumptions. The tethers and tether
tip point-masses are assumed to behave in a symmetrical fashion, and there-
fore are described using one set of state parameters. The tether is treated as a
time varying, straight slender rod and tether flexibility is not considered in this
first order analysis. The parameters of this deployment method are defined in
Fig. 3, which also includes the reference frame definitions, where the S frame is
a tether-fixed frame, the £ frame is a hub-fixed frame, and the A/ frame is iner-
tial. Here ¢ is the deployment unwrap angle, measured from the tether tangent
point’s original position and w is the spacecraft rate. Where the rotation rates
with respect to the inertial frame are defined as

wi/N = W83 (8)
ws/n = (w+ ¢)33 (9)

Figure 3: Tangential deployment dynamics parameters



The velocity vectors are determined as
Rp = —Rwé; 4+ Ro(w + ¢) 32 (10)

Rrc = —%R(% +)é1 + %R¢(w + $)82 (11)

Treating the inertia of the tether as a slender rod, and applying the parallel
axis theorem, the inertia of the tethers with respect to an origin located at the
spacecraft center of mass is shown in Eq. (12), expressed in the tether fixed S
frame.

RPpp — —5RPpg? 0
[Ir] = | —3R’p¢*  5R’pg® X 0 ) (12)
0 0 L R3p¢® + Rpp(R? + T R%*¢?)

These expressions are used to define the kinetic energy expressions of Eq. (5¢).
Then, the equations of motion are derived using Lagrange’s Equation to be as
follows. The spacecraft rate, w, the tether unwrap angle, ¢, and the unwrap
rate, (;5, are the state coordinates of this system. The hub applied torque is
expressed as ug.

1 .
ﬂ1122(—3(4Rp + 8mp¢ + TRpd?)w? + 3(5Rp + 8mpd + TRpd?)d)+

1 1
ER%(lSRp + 12mp¢ + TRpd? ) + 53%(153;} +12mp¢ + TRpdp?)d =0
(13)

1 . .
E1%2(3(4Rp + 8mp¢ + TRpp?)wd + 3(6Rp + 8mpd + TRpd?) )+
1
3 R2(6(2mp + mpy + 2mz) + 12Rpp + 12mpd? + TRpd> )+

%3%(181@ +12mpd + TRpd*)p = u,  (14)

Figure 4: Hinging from tangential to radial dynamics parameters



This model only applies to the point where the tethers are fully unwrapped.
Following this point, the tethers must transition to a radial orientation with
respect to the hub, and this transition will be referred to as the hinging phase.
Using similar methods as those described above, the hinge phase equations of
motion are also determined. The parameters of interest are defined in Figure 4.
The tether has freedom to rotate about the connection point by angle 3, where
the desired dynamics will come to rest at § = 90deg. The deployment angle ¢
is now fixed constant. The angular rate and velocities of the end mass and the
tether center of mass are now described in the S frame.

ws/n = (w+ )33 (15)
Ri.u = Réé, (16)
Ry = —Rcos fwsé; + %R((d) + 2sin B)w + ¢3)8, (17)

The tether inertia for this phase is determined where the hinging position de-
scription is used. Only the third axis inertia is required in the planar dynamics.

Ity = ROp8(3 -+ ¢+ 3psin ) (18)

These expressions define the kinetic energy state of the system expressed in
Eq. 5¢, and the Lagrange equations can now be used to determine the equations
of motion for the hinging phase.

S 2 cos f(~2(mp + Rpo)u? + BpoP)+

1—12R2¢(12mE¢ + Rp(12 4 7¢*) + 6(2mp + 3Rpo) sin B)w+

%Rng(um];gb + Rp(12 4+ 7¢%) + 12Rppsin B)3 =0 (19)

1—12R2(24¢)(mE + Rpg) cos Bwp + 6¢(2mp + 3Rpd) cos ﬂBQ)Jr

1
ﬁR?(GmH + 12mro + 12mp(l + ¢*)+
Rpp(12 + 7¢2) + 24p(mp + Rpe) sin B)c+

%qub(lQmEd) + Rp(12 4 762) + 6(2mp + 3Rpe) sin B)F = us  (20)

8.2. Constant Spacecraft Rate in Tangential Deployment

The deployment behavior is strongly influenced by the reference rate main-
tained by the spacecraft. A constant spacecraft rate is the simplest to implement
and will be analyzed in detail here to provide a baseline case. The constant rate
case is further valuable in that it provides insights into the deployment pa-
rameter relationships and behaviors. Additionally, it may be desirable in that



it provides a predetermined reference trajectory and enables prediction of sys-
tem behavior. Alternative objectives, such as tracking to maintain a constant
tether tension, require live self observations and live updates of the reference
trajectory, however in subsequent sections it is shown that these time varying
cases will improve deployment time significantly. Looking at the tether tension
expression:

T = mp,R($(w + ¢)* + @)é1 + mp,Rw? — ¢* — p(w + $))s2  (21)

Where there is no tension in the 84 direction, this portion of the expression
can be set equal to zero. For a constant spacecraft rate, assuming the tether
deployment is not accelerating, this expression can be used to prove that the
deployment rate with respect to the spacecraft will be equal to the spacecraft
spin rate

w=14 (22)
and this is observed in the numerical simulations shown in Fig. 6. Further
applying these assumptions to the tension expression, the tether tension at a
given point in the deployment is determined for an individual tether, 4, from:

T = 4mp,w’Ro (23)

Additionally, assuming perfect tracking and constant rates, the torque required
through the deployment duration is derived from the equations of motion to be

1
ws = 75 R*(30Rp + 48mp¢ + 42Rpg*)u?

It is notable that the tension and torque do not rely on the spacecraft mass.
These relationships can then be used to explore the sensitivity of the system
to E-sail parameter choices. Of particular interest is the effect of the payload
mass size on the rate requirements and deployment time. Where the maximum
allowable tension in the proposed Hoytether is known to be 0.05 N, the maximum
allowable spin rate can be determined

Tm ax

dmp, Roy (24)

Wmax =

Where ¢ is the final ¢ after deployment. These expressions show that
the deployment tension and rate restrictions are only a function of the end mass
and tether length, and other parameters, such as the spacecraft mass and tether
mass, are not influential. Maps of these expressions as a function of the tether
length, which can be determined from the deployment angle, and the payload
end mass are displayed in Figure 5. These plots quickly demonstrate that for
the constant spacecraft rate case, where the tension increases linearly over time
and the maximum tension will be reached at the end of the deployment, the
deployment requires long deployment times for large end mass payloads. One
primary advantage of the E-sail propulsion in comparison to others is the rela-
tively fast outer planet trajectory cruise times, which are on the order of 6-10

10



years for outer solar system destinations. If the sail requires nearly a year to de-
ploy it will greatly impact the spacecraft acceleration and trajectory. Where the
acceleration is most effective closer to the Sun, the E-sail deployment will most
likely occur during the most propulsion-effective period of the trajectory (the
exception being a case where the deployment is executed as the spacecraft bal-
listically approaches an inner planet flyby). This strongly motivates searching
for time minimal deployment schemes that will reduce the impact on the E-sail
effectiveness. Additionally, for smaller payloads, the torque required to reach
the desired tension is well outside the range of feasible torque capabilities for
modern spacecraft. This strongly motivates investigation of time-varying refer-
ence rate trajectories that will minimize deployment time while not exceeding
torque capabilities.
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Figure 5: Color maps of the maximum allowable spacecraft body rate and the corresponding
torque required to maintain that rate and the time to deploy for the constant body rate case.

3.8. Hub Rate Tracking Feedback Control Analysis

Lyapunov stability theory provides an analytical method to evaluate and
develop controlled nonlinear dynamical systems using stability definitions and
Lyapunov functions.[21] Using this method, a feedback control is developed that
proves the hub-actuated, spacecraft-rate focused controller will be applicable

11



and stable for this system. A positive definite Lyapunov function is chosen
for this development and is defined in (25). It is desired that the spacecraft
rate is controlled by a hub applied torque and tracks to a reference trajectory.
Therefore, the Lyapunov function is only a function of the tracking error, dw =

W — Wy )
V(dw) = ‘% (25)

The time derivative of the Lyapunov function is now taken:
V(6w) = dwdw (26)

To have asymptotic stability, the time derivative of the Lyapunov function must
be negative definite. To find a control that guarantees this, (26) is set equal to
a negative definite Lyapunov rate expression.

V(0w) = —Péw? = dwiw (27)

Simplifying yields:
—Péw = w = w — w, (28)
where P is a positive gain. To determine the control torque, the expression for

w as a function of torque, g, is substituted into Eq. (14) and us is solved for,
shown in (29).

X .
us = 5 R (=3(4Rp + 8mp¢ + TRp¢*)w® + 3(5Rp + 8mpé + TRpd™)¢)+

1 . 1
+ ER2gzs(151~zp +12mpo + TRpd*) ¢ — PER2¢(18Rp +12mpé + TRpd?)dw
(29)

8.4. Spacecraft Rate Trajectory for Tension Maintenance

Alternatively, the spacecraft rate trajectory can be derived such that the
tension is maintained constant. This allows for a time-minimum deployment,
where the strength of material is treated as the limiting factor. To determine
this reference rate, the time derivative of the tension expression is set equal to

Zero. . . . . .
T =mp,R(d(w+ )2 +20(w+ o) (w+d)+w=0 (30)

Assuming there is no jerk, & = 0, the relationship between the spacecraft
rate and the deployment rate is determined as

¢ = 2w (31)

substituting this into Equation 30, the spacecraft rate required to provide con-
stant tension as a function of deployment angle is

T,
2 max
me (96— 1) 32

12



The expression above cannot be used alone as a reference, where the ex-
pression is not defined for ¢ = 0 and would exceed allowable rates for small ¢.
Therefore, a maximum allowable rate must be identified for the spacecraft and
applied for the initial trajectory as a part of a piecewise approach, defined in
Eq. (33). For simulation purposes, the maximum allowable spacecraft spin rate
is set to 2.5 deg/s. The behavior for a deployment case where this is used as
the reference speed is now compared to the constant rate case. Figure 6 shows
the behavior over time for these two cases, where the E-sail size parameters are
chosen such that the characteristic acceleration is 0.1 mm/s? and there are 20
tethers, determining the tether length to be 4.3 km. The payload mass is set to
a modest 50 grams to represent a dummy mass or independent sensor device.
These and other relevant parameters are listed in Table 1.

(33)

W= Weonst Whon-lin 2 Wmax
Wnon-lin ~ Wnon-lin S Wmax

Table 1: Spacecraft and E-sail parameters implemented in example simulations.
A N L meg. mr mpg

7

mm/s? km | kg kg kg
0.1 |20 ] 43 ] 0.050 | 0.996 | 500

3.5. Numerical Simulations

The tension optimized reference trajectory is shown to decrease the deploy-
ment time from 7.02 days to 3.59 days, or to 51% of the constant rate deployment
time. This is somewhat consistent with the expressions of expected deployment
rate, Eq. (22) and Eq. (31), which predict the tension derived reference will
deploy at twice the hub rate. This is a notable savings and will be instrumental
for deployment design, where the greatest strength of this concept is it’s poten-
tial for implementing fast missions to the outer solar system and any time lost
during deployment may detract from that. The tensions achieved at the end
of the deployment are within 0.5% of each other, providing nearly equivalent
end-tension cases. It is notable that the maximum torque capability needed
to achieve the deployment is the same for both cases, however the maximum
tension case has a higher average torque over the shorter duration. The hinge
phase of both deployments are shown in Figure 7, and it’s noted that the two
cases have nearly identical hinging behaviors. Although there is a difference in
the spacecraft rates at the start of deployment, at the moment hinging begins,
the tether deployment rates, q'S, are transfered to tether hinging rates, and the
net behavior is the same. The applied torque ramps down as the tethers decel-
erate and transfer to the desired position and the hinging is completed smoothly
in under 15 minutes. This shows that controlled hinging can be accomplished
using the hub-mounted control scheme.
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Figure 6: Unwrap phase deployment of the tangentially deployed E-sail with a constant ref-
erence trajectory (black) and a tension derived trajectory (red).

4. Radial Modeling and Parameter Analysis

Another method to deploy the E-sail is to use radially deploying tethers, as
seen in Figure 8. Such a design requires tether reeling modules to stow and con-
trol each of the 20-100 tethers individually, and therefore requires 20-100 drive
mechanisms. This introduces a large power consumption during the deployment
as well as synchronization challenges. Additionally, the system still experiences
significant momentum exchange and rate changes that couples with the unreel-
ing process. However, this method enables highly valuable independent control
of the tethers and decouples deployment failure risks of the tethers from each
other. Furthermore, substantial engineering development has been done on a
reeling mechanism[13]. Energy methods are used to determine the equations of
motion for the radial deployment case.

4.1. Radial Deployment Equations of Motion

A dynamics model of this concept is developed using the simplified schematic
illustrated in Figure 9. Here § is the angle of deviation of the tether from radial,
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Figure 7: The hinge phase of the tangentially deployed E-sail is shown to be the same for a
constant reference trajectory (black) and a tension derived trajectory (red).

and ﬁ is the rotation rate of the tether. The tether rotation with respect to
inertial is )

ws/n = (w+ B)33 (34)
Then the velocity vectors are described in the S frame as

R = (I + RsinBw)é;, + (I(B + w) + Rcos fuw)és (35)

Rrpy= <;z‘+ Rsinﬂw) 5 + (;1(5 + w) + Rcos 5w> 59 (36)

The radial tether inertia of the third axis is determined to be:
1 1
Iru,, = Epl‘3 + pl((Rcos B + §l)2 + R?sin 8?) (37)

Using these definitions for the model components, the energy of the system
is determined using Eq. (4). Using again the Lagrangian dynamics formulation,
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w
Figure 9: Radial deployment dynamics parameters

the coupled equations of motion for the hub rate w and deflection angle 8 are

1 . .. .

E(6R,0 sin 812 — 12Rlsin fmpB(S + 2w) — 6Rpl* sin BB(36 + 4w))+
1
12
1
E(lQRQpl—i—QllRp cos BI2+7pl3+24R cos ,BlmE+12l2mE+6R2(2mE+mH—|—2mT,0))o'J+

(3I((4R?p + Tpl? + 8lmg) (B + w) + 2R cos B(4mp (B + w) + pl(78 + 8w))))+

1 .
E(lZRQpl +18Rpcos BI? + Tpl® + 12Rcos flmp + 121°mg)B = us  (38)

1—12(6Rl sin B(—pl B2 + 2(pl + mp)w?))+
1

+ (3I((4R%p 4 Tpl? + 8lmp) (B + w) + 2Rpcos Bl(45 + 5w)))+

1
75 (6Rcos BI(3pl +2mp) + 1(12R%p + Tpl? + 12lmp) )w+

5 (12Rpcos BI2 +1(12R%p 4 Tpl% +12lmp)) =0 (39)

4.2. Radial Deployment with Constant Spacecraft Rate Case

Similarly to the tangential model analysis, the constant hub rate case can
be further analyzed for the radial model. However unlike the tangential case,
the deployment rate of the radial case is controlled by [ which is assumed to be
controlled by the spool motor and held constant. Therefore, adjustments in the
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reference rate will not result in a time savings. While including the deployment
rate as a free variable is possible, it adds significant complexity to the model
and is left for future work. For a radial orientation, the tether tension is written
as

T = mp, (R cos fuw? + l(ﬁ +w)?)ér — mp, (Rsin fw? + 2l(ﬂ +w)+ ZB)).§¢ (40)

where there is no tension in 84, the tether normal direction, the following are
known:

T = mg, (Rcos fw? + (B + w)?) (41)
—mp, (Rsin fw? + 2[(8 +w) +15)) =0 (42)

Assuming the tether’s position is not changing or accelerating, B=0andf = 0,
Equation 42 is used to solve for an expression of 3:
.12

B = sin o (43)
This result proves that for a radially deploying spin stabilized tether, there
must be some deviation from the radial orientation during deployment. This
is a significant result that implies a trade between the deployment rate, space-
craft rate, and tether position deviation. Due to the assumptions made in the
derivation, there is some deviation from the predicted position and the observed
position in numerical simulations. However, the prediction is within 2% accu-
racy. Furthermore, by this definition, the quantity including the ratio of the
linear deployment rate to the spacecraft rate must be from 0-1 for the tether
position to be defined. This limits the possible rate configuration of the system.

4.8. Lyapunov Control Stability Analysis

Similarly to the tangential case, the Lyapunov function for the radial de-
ployment is only a function of the tracking error, dw = w — w,, and the same
Lyapunov function and derivation methods are applied here. To determine the
control torque, the expression for w as a function of torque, ug, is substituted
into Eq. (38) and wus is solved for. This derivation assumes a constant reference
rate.

Uy = 1—12(61%p sin 8% — 12RIsin fmp (8 + 2w) — 6Rpl* sin BA(35 + 4w))+
%(31'((4R2p + 7pl% + 8lmp) (6 + w) + 2R cos B(4mp(B + w) + pl(78 + 8w))))+

1 .
E(lZRQpl + 18Rpcos BI? + Tpl® + 12R cos flmg + 121°mg) 3

1
—PE (12R?pl+24Rp cos BI*+Tpl>+24R cos Blmp+121°mp+6 R (2mp+mp+2mz.,) ) dw
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4.4. Spacecraft Rate Trajectory for Tension Maintenance

Considering instead the time-minimum approach where the tension force in
the tether is maximized and maintained constant, assuming the tether’s position
is not changing or accelerating, and that there is no jerk on the spacecraft hub,
the position of the tether can be predicted as

1 _3l

8 = sin T

(45)
Which is similar to what is determined for the constant rate case, where there
is a factor of 2 in the constant expression and a factor of 3/2 here, indicating
that this reference trajectory maintains a smaller tension deviation than the
constant case. The spin rate trajectory corresponding with this is determined
as a function of the current tether deployment length and rate as

(46)

_ 8Tmax(2pL + mE1> + meLZQ
B meg, (4R2p + 23p12 + 161mE7)

4.5. Numerical Simulation

The response of the system to this reference trajectory is illustrated in Fig-
ure 10 along with the the constant rate case. The deployment rate, [, in both
cases is equivalent and constant, however, so the time to deploy is equivalent.
However, the tether angle in the time varying trajectory is notably smaller,
and the magnitude of the torque effort required is smaller, despite maintaining
a higher tension. This analysis does not account for the additional spin up
phase prior to deployment which is assumed to be provided by the launch ve-
hicle stages. The discontinuity in the position angle occurs at the switch of the
piecewise reference trajectory, and is attributed to the derived expressions of
the tether position angle for the two cases. Eq. (45) and Eq. (43) show that the
predicted tether position will change, and the numerical simulation reflects this
discontinuity. As in the tangential case, due to the tether position displacement,
a hinging maneuver will need to be executed at the end of the deployment. Fig-
ure 11 illustrates the hinging for these two cases. The constant rate case, which
has more displacement from radial, is shown to require a slightly more time and
a greater torque effort to complete the transition, but overall these two cases
show similar behavior.

5. Torque Feasibility

One important question to address is how feasible the torque requirements
are. The deployment torque can be applied to the hub using a variety of meth-
ods, depending on the order of magnitude and duration of torque needed for
the deployment. Electric thrusters may be ideal candidates for their range of
thrust magnitudes and time varying capabilities. Reaction wheels could also
be used if fine control is needed, however the momentum stored in the wheels
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Figure 10: Behaviors of the radially deployed E-sail with a constant reference trajectory
(black) and a tension derived trajectory (red).

would need to be actively removed. Chemical thrusters may also be used to
achieve large torques for large E-sails, however the time variations could only
be achieved using pulse width modulation thrust. The effects of such an ap-
proach on the deployment dynamics must be investigated to ensure stability.
The mass of propellant needed for the electric or chemical thruster options is
a primary concern for feasibility. Knowing the torque required as a function of
time, the force provided at a given radius from the spin axis is easily determined.
Using Eq. (47), which assumes a constant force and relates the propellant mass
to the I, and force, the mass needed for each instant in time is found and nu-
merically integrated over time. The constant force expression is used as a rough
estimation, where including full time varying force presents a greater challenge

than required.
9Lsp

Assuming the thrusters are placed at a 1 meter radius on the spacecraft and
an electric thruster I, = 2000 s, and considering the tangential case presented

(47)

My
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Figure 11: The hinging phases of the radially deployed E-sail deployment with a constant
reference trajectory (black) and a tension derived trajectory (red) are slightly different due to
the difference in initial tether angle.

earlier, the propellant mass for this example sail is m,, = 21 kg for either constant
rate or constant tension case. The previously proposed mass budget allocates 1
kg for each tether thruster unit, and therefore for the 20 tether case, the thruster
mass described above is comparable. Recognizing that the example sail shown
here provides small characteristic acceleration and larger sails will be desired, the
propellant needed to deploy a large sail was investigated and will be hundreds of
kilograms of propellant mass if a 1 meter radius is used. This is significant mass,
however, it can be quickly reduced if larger moment arms are considered. Where
the spacecraft hub might not exceed 1-2 meters, the thrusters could possibly be
mounted on deployable booms to increase the moment arm to achieve more
efficient torque. Using 10 meter booms, the propellant mass would then be on
the order of 10’s of kilograms, achieving considerable mass savings. A final point
to address is again the idea of placing thrusters on the tether tips to provide
torque. While this configuration does provide the best moment arm, the mass
efficiency of these thrusters depends entirely on the I;,, and locating the units
at the tether tips restricts these to be independently functioning thrusters, and
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the design of such units may not be capable of achieving high I,. Additionally,
the flexible dynamics of tether tip-mounted thrust would need to be investigated
to ensure the concept behaves as desired.

6. Conclusions and Future Work

The two E-sail deployment schemes investigated in this paper provide feasi-
ble means to actuate the deployment of an E-sail structure using hub mounted
torque only. The tangential deployment scheme provides a simpler deployment
for lower torque, however it removes the ability to control the individual tether
spooling. Deployment in a truly radial configuration, where 5 = 0, is shown
to require much greater spin rates or much longer deployment duration than
the case where tethers are allowed to drift, and reasonable deployment and
spacecraft rates must have position drift. The advantage of an ideal radial
deployment is that a hinge phase would not be needed, however in practical
application, hinging will greatly reduce the deployment time or hub spin rate
requirements and will be needed. The spacecraft rate trajectory, deployment
rate, characteristic acceleration, and tether tip mass are large contributors to
the deployment dynamics and must be chosen judiciously. Defining realistic
boundaries for these parameters based on technology capabilities and mission
requirements will inform future simulations. Additionally, it is noted that E-
sails designed to have a greater number of shorter tethers have smaller inertia
and therefore require less energy and momentum to deploy. However, these
tethers would be in closer proximity to each other and may present collision
risks. State error estimation of the tether positions must be done to determine
the closest allowable proximity of two adjacent tethers. Future work will model
each tether individually with a unique state and determine the factors influenc-
ing variation in position to do this. An additional concern is that the flexible
tethers may exhibit in-plane bending despite internal tension. Model fidelity
will therefore be further increased by using a lumped-mass method to incorpo-
rate the flexibility of the tethers. While many questions on the finer behavior of
the E-sail deployment remain, the baseline momentum and torque requirements
of the hub actuated deployment are now defined.
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Highlights
Fixed-Axis Electric Sail Deployment Dynamics Analysis using
Hub-Mounted Momentum Control

by
JoAnna Fulton and Dr. Hanspeter Schaub

November 23, 2017

e Deployment dynamics of electric sails with hub-mounted control are in-
vestigated.

e The sensitivity of the deployment behavior to E-sail parameters is inves-
tigated.

e Deployment time reduces by a factor of 2 using tension control over hub
rate control.



