NIAC Spring Symposium

FFRE Powered Spacecraft

27 March 2012
Robert Werka
MSFC EV72
FY11 NIAC Fellow

What is NIAC?

NASA Innovative Advanced Concepts

A program to support early studies of innovative, yet credible visionary concepts that could one day “change the possible” in aerospace
The FFRE

A FISSION FRAGMENT ROCKET ENGINE THAT:

Can free spacecraft from today’s propulsion limitations
- Far less propellant than chemical or nuclear thermal.
- Far more efficient than nuclear electric.
- Far safer: charge reactor in space, radioactivity ejected.

Has highest exhaust velocity possible today
- 10s – 100s lbs of continuous thrust (years).
- Specific impulse above 500,000 s in practical design.

Spacecraft assessment study will reveal these attributes
- Faster travel.
- More payload.
- Nearly unlimited electrical power.
- Greater human safety (mission travel, maintenance).
- No need for vast propellant supply.
- Close-coupled nature of the FFRE & spacecraft.
Principles of FFRE

- Nanometer-sized, slightly critical Plutonium Carbide dust grains suspended and trapped in an electric field. The fission fragments, neutrons and gamma rays that result travel omni-directionally. The dust is radiatively cooled.
- A cooled, deuterated polyethylene moderator reflects sufficient neutrons to keep reacting dust critical through use of control rods.
- A cooled Carbon-Carbon heat shield reflects the dust infrared energy away from the moderator.
- Cooled low temperature superconducting magnets direct fission fragments out of the reactor. However, many fragments collide instead with reactor components and the reacting dust, creating heat.
- Electricity is generated from heat shield coolant using a Brayton Cycle power system
- The hole in the reactor allows escape of much of the heat. The escaping fission fragments, whose velocity is reduced by collisions from 3.4% to 1.7% light-speed, create thrust.
FFRE History

Original Spinning Brush FFRE
1986: George Chapline’s “Spinning Brush” FFRE: Uranium coated carbon fiber permits half the fission fragments to escape, providing thrust. The other half heats up so fibers rotated out of reactor to cool.

Grassmere Dynamics Dusty Plasma Reactor
2003: Dr. Rob Sheldon levitated dust in stably trapped plasma by a quadrapole magnetic field with added levitating magnetic field divergence.

2005: Dr. Rod Clark creates “Dusty Plasma” FFRE: Fissioning uranium dust maximizes both fission fragment escape and radiative cooling, increasing efficiency and permitting reactor operation at Gigawatts of power.
Grassmere Dynamics, LLC

The Company

- Engineering & Consulting
- Specialty Modeling Skills:
 - Computational Fluid Dynamics (CFD)
 - Magneto Hydrodynamic Plasma (MHD)
 - Nuclear (Radiation, Reactor Design & Performance)
 - Optical

3D Simulation Of Tokomak Nuclear Fusion Reactor Magnetically Confined Plasma Using Grassmere Developed Code
Spacecraft and mission based on 2004 Human Outer Planet Exploration (HOPE) study

- 60 mT crewed payload on roundtrip mission to Callisto
- Propulsion was hypothetical nuclear electric magneto-plasma-dynamic thrusters (6 NEMPD engines, 33 MW each, providing ~22-lb thrust at 8,000 s delivered \(I_{sp} \) using hydrogen as propellant)
- 1 FFRE substituted for 6 NEMPD engines
- All impacted spacecraft subsystems to be redesigned
Study Plan

Organize:
- Study structure, goals, objectives
- Identify SMEs, allocate resources
- Identify study outputs & milestones

Notional Architecture & L1 Reqmts
FFRE Concept
Spacecraft Concept
Iterate to Close

Data Archival & Reporting
- TRL Maturation Roadmap
- Operations Concept
- Test Methodology
- Manufacture, Technology, Issues, & Risks

Complete
Forward Work

- Finalize FFRE design, identify potential improvements
- Peer review of FFRE design & technology
- Develop draft FFRE test methodology
- Develop draft FFRE & spacecraft concept of operation
- Identify key issues and risks of FFRE
- Develop preliminary FFRE TRL maturation roadmap
- Document in final report
- Refine FFRE through additional studies & experiments
Base FFRE Design

- **Nozzle Beam Straightening Coils**
- **Moderator Heat Shield**
- **Reacting Dusty Plasma Cloud**
- **Superconductors**

- **Dimensions:**
 - 11.5 m
 - 2.8 m
 - 5.4 m Ø

Assessment:
- Reduced heat load so less Spacecraft radiator mass
- Complex Shape Moderator
- Thrust & I_{sp} unchanged

Master Equip List Mass incl 30% MGA

<table>
<thead>
<tr>
<th>FFRE System Total, mT</th>
<th>113.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzle</td>
<td>6.4</td>
</tr>
<tr>
<td>Magnetic Mirror</td>
<td>28.6</td>
</tr>
<tr>
<td>Exit Field Coil</td>
<td>11.1</td>
</tr>
<tr>
<td>Moderator</td>
<td>51.2</td>
</tr>
<tr>
<td>Moderator Heat Shield</td>
<td>0.1</td>
</tr>
<tr>
<td>Control Drum System</td>
<td>0.7</td>
</tr>
<tr>
<td>Electrostatic Collector</td>
<td>0.3</td>
</tr>
<tr>
<td>Dust Injector</td>
<td>7.2</td>
</tr>
<tr>
<td>Shadow Shield</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Total Reactor Power 1,000
- Neutrons (30% to FFRE) 24.2
- Gammas (5% to FFRE) 95.6
- Other 70.2
- Thermal (IR) 699

Jet Power 111

Performance

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust</td>
<td>43 N</td>
</tr>
<tr>
<td>(9.7 lbf)</td>
<td></td>
</tr>
<tr>
<td>Exit Velocity</td>
<td>5170 km/s</td>
</tr>
<tr>
<td>Specific Impulse</td>
<td>527,000 s</td>
</tr>
<tr>
<td>Mass Flow</td>
<td>0.008 gm/s</td>
</tr>
</tbody>
</table>

Revised FFRE Designs

Generation 1
- **Attributes:**
 - Ellipsoid Moderator
 - Ring Magnets

Assessment:
- Reduced heat load so less Spacecraft radiator mass
- Complex Shape Moderator
- Thrust & I_{sp} unchanged

Generation 2
- **Attributes:**
 - Dual Paraboloid Moderator
 - Ring Magnets

Assessment:
- Reduced heat load so less Spacecraft radiator mass
- Complex shape moderator, difficult to support & cool, weighs more
- Thrust: 2X (86 N, 19 lbf)
- I_{sp} unchanged (527,000 s)
Spacecraft Concept Overview

Vehicle

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload (Crew/Science Equip.) (mT)</td>
<td>60</td>
</tr>
<tr>
<td>Total Mass (mT)</td>
<td>303</td>
</tr>
<tr>
<td>Dry Mass (mT)</td>
<td>295</td>
</tr>
<tr>
<td>Propellant Mass (mT)</td>
<td>4</td>
</tr>
<tr>
<td>Overall Length (m)</td>
<td>120</td>
</tr>
<tr>
<td>Overall Span (m)</td>
<td>62</td>
</tr>
<tr>
<td>Total Radiator Area (m²)</td>
<td>6,076</td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Power (MW)</td>
<td>1,000</td>
</tr>
<tr>
<td>Thrust (N)</td>
<td>43</td>
</tr>
<tr>
<td>I_{sp} (s)</td>
<td>527,000</td>
</tr>
<tr>
<td>Vehicle Acceleration (g)</td>
<td>3×10^{-4}</td>
</tr>
</tbody>
</table>

- **FFRE** Proellant Tank
- **Nuclear Shadow Shield**
- **Triangular Structure**
- **FFRE Magnetic Nozzle**
- **Aft RCS** Brayton Cycle Generators
- **Fwd RCS**
- **60 mT Crew Habitat & Exploration Equipment**
- **Payload Avionics Radiators**
- **Low Temp (Super-Conducting Magnet) Radiators**
- **Med Temp (Moderator) Radiators**
- **High Temp (Moderator Heat Shield) Radiators**
Spacecraft Performance
(First FFRE / Spacecraft Assessment)

Initial FFRE Propelled Spacecraft Mission Performance
1st Generation FFRE: 43 N Thrust 527,000s μ_sp
Spacecraft is acceleration limited

<table>
<thead>
<tr>
<th>Outbound Trajectory Results</th>
<th>Segment Time (Days)</th>
<th>Thrust Time (Days)</th>
<th>CUM Nuclear Prop (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Spiral — Out</td>
<td>55</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>Interplanetary</td>
<td>2,106</td>
<td>2,161</td>
<td>1,553</td>
</tr>
<tr>
<td>Jupiter Spiral — In</td>
<td>503</td>
<td>2,665</td>
<td>1,915</td>
</tr>
</tbody>
</table>

Stay Time at Callisto: ~330 Days

Total Elapsed Mission Time: 5,850 Days (16.0 Years)
Total Nuclear Fuel Used: 4 mT
Effect on Mission Of 2nd Generation FFRE Design

FFRE
- Thrust: 2X (86N)
- I_{sp}: 527,000s

Spacecraft
- Assumed no change (conservative)

Mission
- ~8 years round trip
- Spiral out and in times halved
- Small coast period in interplanetary flight
- Propellant: ~4 mT nuclear

Effect on Mission Of Adding an “Afterburner “ to FFRE Design

FFRE
- Fission fragments accelerate an inert gas added to nozzle via friction, adding thrust & decreasing specific impulse
- Thrust: 430N, I_{sp}: 52,700s (notional)

Spacecraft
- Added “propellant” and tankage

Mission
- ~6 years round trip
- From Earth: 4 days, Into Jupiter: 40 days
- Interplanetary Coast: 950 days
- Propellant: 0.3mT nuclear, 22mT gas
Spacecraft Comparison

What Is Learned So Far

- A FFRE is credible - ordinary engineering, ordinary physics. NO MIRACLES.
- A FFRE-propelled spacecraft is game changing to travel in space. A spacecraft with a heavy payload can depart for and return from many solar system destinations. NO REASSEMBLY REQUIRED.
- Our first constructs of a FFRE are grossly inefficient. We are like a Ford Model T engine. Only a few ways of improving performance of the FFRE and spacecraft have been considered.

THERE’S MUCH WORK TO DO.