NIAC Spring Symposium

FFRE Powered Spacecraft

27March 2012 Robert Werka MSFC EV72 FY11 NIAC Fellow

NASA Innovative Advanced Concepts

A program to support early studies of innovative, yet <u>credible</u> visionary concepts that could one day "change the possible" in aerospace

The FFRE

A FISSION FRAGMENT ROCKET ENGINE THAT:

Can free spacecraft from today's propulsion limitations

- Far less propellant than chemical or nuclear thermal.
- Far more efficient than nuclear electric.
- Far safer: charge reactor in space, radioactivity ejected.
- Has highest exhaust velocity possible today
 - 10s 100s lbs of continuous thrust (years).
 - Specific impulse above 500,000 s in practical design.

Spacecraft assessment study will reveal these attributes

- Faster travel.
- More payload.
- Nearly unlimited electrical power.
- Greater human safety (mission travel, maintenance).
- No need for vast propellant supply.
- Close-coupled nature of the FFRE & spacecraft.

Principles of FFRE

- Nanometer-sized, slightly critical Plutonium Carbide dust grains suspended and trapped in an electric field. The fission fragments, neutrons and gamma rays that result travel omni-directionally. The dust is radiatively cooled.
- ❑ A cooled, deuterated polyethylene moderator reflects sufficient neutrons to keep reacting dust critical through use of control rods.
- □ A cooled Carbon-Carbon heat shield reflects the dust infrared energy away from the moderator.
- Cooled low temperature superconducting magnets direct fission fragments out of the reactor. However, many fragments collide instead with reactor components and the reacting dust, creating heat.
- Electricity is generated from heat shield coolant using a Brayton Cycle power system
- The hole in the reactor allows escape of much of the heat. The escaping fission fragments, whose velocity is reduced by collisions from 3.4% to 1.7% light-speed, create thrust.
 Magnet Coding

FFRE History

Original Spinning Brush FFRE

1986: George Chapline's "Spinning Brush" FFRE: Uranium coated carbon fiber permits half the fission fragments to escape, providing thrust. The other half heats up so fibers rotated out of reactor to cool.

Grassmere Dynamics Dusty Plasma Reactor

2003: Dr. Rob Sheldon levitated dust in stably trapped plasma by a quadrapole magnetic field with added levitating magnetic field divergence.

2005: Dr. Rod Clark creates "Dusty Plasma" FFRE: Fissioning uranium dust maximizes both fission fragment escape and radiative cooling, increasing efficiency and permitting reactor operation at Gigawatts of power.

Grassmere Dynamics, LLC

The Company

- Engineering & Consulting
- 40 Years Of Combined Experience In Engineering Design, Materials, Testing & Quality Assurance.
- Specialty Modeling Skills:
 - Computational Fluid Dynamics (CFD)
 - Magneto Hydrodynamic Plasma (MHD)
 - Nuclear (Radiation, Reactor Design & Performance)
 - Optical

3D Simulation Of Tokomak Nuclear Fusion Reactor Magnetically Confined Plasma Using Grassmere Developed Code

Study Groundrules

Study Plan

Schedule

Forward Work

- Finalize FFRE design, identify potential improvements
- Peer review of FFRE design & technology
- Develop draft FFRE test methodology
- Develop draft FFRE & spacecraft concept of operation
- Identify key issues and risks of FFRE
- Develop preliminary FFRE TRL maturation roadmap
- Document in final report
- Refine FFRE through additional studies & experiments

FFRE Design Status

Spacecraft Concept Overview

Spacecraft Performance (First FFRE / Spacecraft Assessment)

Performance Trades

Effect on Mission Of 2nd Generation FFRE Design

FFRE

- □ Thrust: 2X (86N)
- □ I_{sp}: 527,000s

Spacecraft

Assumed no change (conservative)

Mission

- ~8 years round trip
- □ Spiral out and in times halved
- Small coast period in interplanetary flight
- □ Propellant: ~4 mT nuclear

Effect on Mission Of Adding an "Afterburner " to FFRE Design

FFRE

- Fission fragments accelerate an inert gas added to nozzle via friction, adding thrust & decreasing specific impulse
- □ Thrust: 430N, I_{sp}: 52,700s (notional)

Spacecraft

- Added "propellant" and tankage Mission
 - ~6 years round trip
 - □ From Earth: 4 days, Into Jupiter: 40 days
 - Interplanetary Coast: 950days
 - Propellant: 0.3mT nuclear, 22mT gas

Spacecraft Comparison

Vehicle	HOPE	FFRE
Payload (Crew/Science Equip) (mT)	60	60
Total Mass (mT)	890	303
Dry Mass (mT)	460	295
Propellant Mass (mT)	400	4
Overall Length (m)	243	120
Overall Span (m)	42	62
Total Radiator Area (m²)	3498	6,076
Performance	HOPE	FFRE
Total Power (MW)	34	1,000
Thrust (lbf)	126	9.7
I _{sp} (s)	8,000	527,000
Vehicle Acceleration (g)	14e-4	3e-4
Outbound Trip Time (days)	833	2,665
Return Trip Time (days)	693	2,854
Total Mission (years)	HOPE 4.5yrs?	8-16 yrs

What Is Learned So Far

- A FFRE is <u>credible</u> ordinary engineering, ordinary physics. NO MIRACLES.
- A FFRE-propelled spacecraft is <u>game changing</u> to travel in space. A spacecraft with a heavy payload can depart for and return from many solar system destinations. NO REASSEMBLY REQUIRED.
 Our first constructs of a
 - FFRE are grossly inefficient. We are like a Ford Model T engine. Only a few ways of improving performance of the FFRE and spacecraft have been considered.

THERE'S MUCH WORK TO DO.

