

EDDE

ElectroDynamic Debris Eliminator For Active Debris Removal

NASA-DARPA International Conference on Orbital Debris Removal 8-10 December 2009

> Jerome Pearson¹, Joseph Carroll², Eugene Levin¹ and John Oldson¹

¹Star Technology and Research, Inc. ²Tether Applications, Inc.

Low Earth Orbit Cleanup

- <u>Remove all</u> 2465 objects over 2 kg from LEO
 - Reduces future collision-generated LEO debris by 99%
 - Prevents "debris runaway" from future debris collisions
- Controlled de-boost

STAR, INC.

- Actively avoid all tracked satellites and debris
- Allow for targeted re-entry if needed
- EDDE vehicles can eliminate almost all future collision-generated debris from LEO <u>in 7 years</u>

Each vehicle is only 100 kg, and packs into 24"x24"x12"
Each ESPA secondary payload slot can carry 2 EDDEs

STAR, INC. EDDE Enabling Concepts

- Orbit transfers use solar power & electrodynamic thrust
- Rotation gives stability and high maneuverability
 - 3 patents awarded for vehicle methods and apparatus
- Tape conductor for greatest survivability
- Debris is captured in large lightweight nets
- Supported by data from previous space tether flights
 - SEDS-1, PMG, SEDS-2, and TiPS
 - All tethers and deployers by J. Carroll of TAI

EDDE Performance

• 100's of km per day altitude changes

• Over 1 deg per day orbital plane changes

Capture in Lightweight Nets

 Each Net Manager holds 100 expendable mesh nets, 50 grams each

STAR, INC.

- EDDE end passes target at 2-3 m/s, captures object in net, and damps out capture dynamics
- Centrifugal force from EDDE's spin keeps debris in the net even if it was tumbling before capture

EDDE System Design

Conductor/collector Reinforced AI tape, 30 mm x 38 µm

Winding:

Stack:

STAR, INC.

Dynamics/control Orbit transfers optimized Computer controls current

Packaging 24"x24"x12", 2 fit in 1 ESPA slot

Electronics

Emitters, folding solar arrays

STAR, INC.

Concept of Operations

- EDDE is piggyback launched to LEO and deploys
- Transfers orbit for precise rendezvous with target
- Approaches target from sunlit side using binocular vision and positive control of EDDE position/attitude
- Captures debris with lightweight net, using real-time video under ground control
- Drags object below ISS for quick re-entry, actively avoids other objects, and re-boosts to next target

STAR, INC. Typical Removal Operations

 Drag each object below ISS to ~330 km altitude, reducing its orbit life to a few months

Operation	Days	Average Parameters	
Phase to next target	0.4	>400 km	
Climb and tune orbit	2.9	200 km/day, + 20% for plane change	
Approach and capture	0.5	6-8 orbits at 808 km average altitude	
Deboost and release	5.7	100 km/day,+20% margin	
Total per target	9.5	1087 kg, 808 km to 330 km altitude	

 Each EDDE vehicle can remove 40 tons per year (400 times its own mass per year)

EDDE Advantage

 The job: <u>remove all</u> 2465 objects over 2 kg from LEO (2166 metric tons total)

Propulsion System	lsp, sec	Typical Number of Vehicles	Estimated Total Mass in Orbit
Bipropellant	300	900	800 tons
NH ₃ Arcjet	800	300	250 tons
Ion Thruster	3000	120	65 tons
VASIMR	10000	30	25 tons
EDDE		12	1 ton

EDDE Demonstration

- Fly piggyback on any flight with payload margin
- Demonstrate orbit transfer and rendezvous
- Capture and drag down an inactive US object

Example: Pegasus Upper Stage 581x 599 km, 97.8°, 176 kg, 1x1.3 m

STAR, INC.

4-for-4 Flight Record

5:33 AM APR. 6.1994

SEDS-1, NASA Marshall

 Deployed 20 km braided Spectra tether; sent 26 kg end-mass into controlled reentry

PMG (Plasma Motor Generator), NASA JSC

• Demonstrated motor/generator operation; enables EDDE vehicle

SEDS-2, NASA Marshall

• Deployed 20 km braided Spectra tether; demonstrated stable vertical position

TiPS, Naval Research Laboratory

• Libration damped in months; demonstrated 10-year lifetime for 2 mm x 4 km tether

All tethers and deployers by J. Carroll, TAI

EDDE: The LEO Solution

- Compact, low-cost; piggyback launch to any LEO
- Maneuverable over all LEO, to any inclination

FAR, INC.

- Propellantless, for virtually unlimited orbit maneuvers
- Reusable, each capable of removing many targets
- Simple debris capture with lightweight nets
- 1 EDDE removes 136 US sun-synch objects in 3 years
- 12 EDDEs <u>remove all</u> 2465 LEO debris >2 kg in 7 years

