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Abstract. “Changing the game” in space exploration involves changing the paradigm for the human exploration of 
the Solar System, e.g, changing the human exploration of Mars from a three-year epic event to an annual expedition.  
For the purposes of this assessment an “annual expedition” capability is defined as an in-space power & propulsion 
system which, with launch mass limits as defined in NASA’s Mars Architecture 5.0, enables sending a crew to Mars 
and returning them after a 30-day surface stay within one year, irrespective of planetary alignment.   In this work the 
authors intend to show that obtaining this capability requires the development of an in-space power & propulsion 
system with an end-to-end specific mass considerably less than 3 kg/kWe.  A first order energy balance analysis 
reveals that the technologies required to create a system with this specific mass include direct energy conversion and 
nuclear sources that release energy in the form of charged particle beams.  This paper lays out this first order 
approximation and details these conclusions. 
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INTRODUCTION 

For many decades, NASA’s paradigm for the human exploration of Mars has centered on the conjunction class 
mission, an example of which is described in NASA’s Mars Architecture 5.0 study [Drake 2009].  In this class of 
mission, the crew is sent to Mars on a ~200 day transit near the time of an Earth-Mars conjunction, remains on Mars 
for approximately 500 days until the next conjunction approaches, and then returns on another ~200 day transit.  The 
crew is thus in space for approximately two and half years, with all the health risks that such exposure entails.  In the 
Mars Architecture 5.0 study, nuclear thermal propulsion on a vehicle with an initial mass to low Earth orbit 
(IMLEO) of ~350 mT is identified as the reference propulsion technology for accomplishing this mission.  Other 
studies indicate that nuclear-electric propulsion (NEP) [George 1993] and solar-electric propulsion (SEP) [Donahue 
2010] systems could also accomplish this mission architecture with similar IMLEO requirements. 

However, replacing this paradigm of human Mars exploration with one built around rapid access to Mars on annual 
expeditions would truly “change the game” for exploration of the Solar System.  Such a mission capability can be 
attained with high thrust, low specific impulse (Isp < 1000 sec), short burn technologies such as chemical or nuclear 
thermal propulsion but only at the expense of very large (> 1000 mT) IMLEO for the mission, which is most likely 
unaffordable given current and projected launch vehicle technology and NASA budgets.  However, such mission 
capability may also be attained within the 350 mT IMLEO limit of Mars Architecture 5.0 through the application of 
low thrust, high Isp (> 2000 sec), continuous burn electric propulsion technologies.    The parametric study of Earth-
Mars transit times shown in Fig. 1 reveals that, holding to the same IMLEO limits identified in Mars Architecture 
5.0 and applying such electric propulsion, getting a crew to Mars and back within one year around the optimal 2018 
Earth-Mars opposition (and with a 30 day surface stay) would require an in-space power and propulsion system with 
specific mass () of under 5 kg/kW and a delivered power of approximately 20 MW.  Enabling such a mission over 
a broader range of Earth-Mars opportunities would require an  of 3 kg/kW, and the capability to carry out such a 
mission during any one-year period, regardless of Earth-Mars alignment would require  closer to 1 kg/kW. 

https://ntrs.nasa.gov/search.jsp?R=20130003241 2017-09-24T03:05:10+00:00Z
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A first order assessment of the range of in-space power and electric propulsion systems can identify what 
technologies must be advanced in order to deliver a sufficiently low total power & propulsion system .  Simple but 
revealing estimates of system total  can be built by selecting a system power output requirement from Fig. 1, 
identifying an efficiency ( and  for each of the subsystems involved based on a consistent set of assumptions for 
technology capability, and then calculating the mass of each major subsystem required to handle the power that must 
pass through it. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. Round-trip Earth-Mars mission times to/from High Earth Orbit (HEO) as a function of specific mass, power, and 
IMLEO.  Mission times assume Earth-Mars opposition, a 30-day crewed surface stay, a 40 mT habitat carried outbound, an Earth 
Crew Capture Vehicle returned, and lander & surface habitat delivered separately. [George 1993]. 

SUBSYSTEM SPECIFIC MASS ESTIMATES 

When viewing a basic energy balance, any in-space electric power & propulsion (EPP) system can be seen to consist 
of five basic subsystems:  energy source, energy conversion subsystem, waste heat rejection subsystem, power 
management and distribution (PMAD) subsystem, and the electric propulsion subsystem itself.  There are different 
technology solutions, with different  and  figures of merit, for each.  The figures of merit used for each subsystem 
technology in the present analysis represent the author team’s assessment, based on cited literature, of the most 
aggressive achievable  and .  These are listed in Table 1.  The basis of each of these assessments follows below.  
In each case, a simplifying assumption is made that  will remain constant over a range of 100 kW to 10’s of MW.  
This is a conservative assumption made for purposes of this paper, as the parameter  would usually decrease as 
power is greatly increased in such subsystems.  It should also be noted that, for purposes of the energy balance 
analysis in this paper, the  denominator is defined as the power passing in or out (as specified) of the subsystem 
and not that generated by the total EPP power subsystem. 

Energy Sources 

Energy sources considered in this paper are photovoltaic (solar) arrays, solid core, vapor core, and “thin” core 
nuclear fission, and aneutronic nuclear fusion.  

350 MT 

350 mT 
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Photovoltaic Arrays 

Human Mars mission architectures utilizing SEP have been developed in some detail [Donahue 2010].  A relatively 
near term array concept is the DARPA/Boeing FAST array.  With the solar intensity at 1 A.U. and with 33% 
efficient photovoltaic cells, this array concept is projected to achieve an  of 8 kg/kWout.  However, the efficiency of 
triple-junction photovoltaic concentrator cells, such as would be used in the FAST array, is projected to approach 
50% in the 2020’s [NREL 2012].  Thus, array  at 1 A.U. might be projected to reach 5 kg/kWout.  Accounting for 
the decrease in solar intensity with the square of the distance from Earth to Mars, the effective  for an Earth-Mars 
mission increases to 7.5 kg/kWout.  

 
TABLE 1. Figures of Merit  and for Advanced Electric Power and Propulsion (EPP) Subsystems.  

Subsystem:  Technology      Reference  

Energy Source:  Photovoltaic Array   7.5 kg/kWout - Donahue 2010, NREL 2012 

Energy Source:  Solid Core Fission   0.15 kg/kWout - George 1991  

Energy Source:  Vapor Core Fission   0.04 kg/kWout - Knight 2004  

Energy Source:  “Thin Core Fission”   0.15 kg/kWout - Authors’ estimate 

Energy Source:  Aneutronic Fusion   0.2 kg/kWout - Authors’ estimate 

Fission Neutron Shield   1.0 kg/kWin - Mason 2012  

Energy Conversion:  Rankine heat engine   0.14 kg/kWin 0.18 George 1991  

Energy Conversion:  MHD   0.03 kg/kWin 0.20 Knight 2004 

Energy Conversion:  TWDEC   0.14 kg/kWin 0.70 Momota 1992  

PMAD   1.0 kg/kWin 0.99 George 1991 

Heat Rejection:  Condensing Radiator (1100 K)  0.12 kg/kWin - George 1991  

Heat Rejection:  Condensing Radiator (1500 K)  0.10 kg/kWin - Knight 2004 

Heat Rejection:  Single Phase Radiator (600 K)  0.98 kg/kWin - Mason 2012   

Electric Propulsion (Hall or Plasma)   1.0 kg/kWin 0.6 Brown 2009 

Electric Propulsion (Direct Conversion Plasma)  0.4 kg/kWin 0.6 Tarditi 2012 

Solid Core Nuclear Fission 

Human Mars mission architectures utilizing solid core fission nuclear-electric propulsion have been developed in 
some detail as well.  As this energy source puts out its power as heat, it is desirable to run such a reactor at the 
highest temperature that the materials can stand.  This is estimated in George [1991] to be 2000 K for gas cooled 
reactors, for which Brayton cycle conversion would be optimal, and 1500 K for liquid cooled reactors, for which 
Rankine cycle conversion would be optimal.  These studies have also shown that, due to the lower mass of Rankine 
“constant temperature,” condensing radiators, the latter would yield the lower  for an NEP-based EPP system.  For 
the mission length under consideration in this study, a reactor with sufficient fuel for two years of operation is 
appropriate, and George [1991] estimates  for such a reactor designed for 1500 K operation to be 0.15 kg/kWout. 

Most concepts for crewed NEP missions assume a shadow shield placed at 50 to 100 m from the crew habitat.  The 
mass required of such a shield is proportional to the neutron flux, and thus to the thermal power output, of the fission 
core.  Mason [2012] estimates an effective  for such a shield, which would expose the habitat to 50 rem/year 
located 50 m from the habitat, at 1 kg/kWin.  
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Vapor Core Nuclear Fission 

Another fission concept that has received attention for space applications is the vapor core fission reactor.  In this 
concept, fission fuel in the form of uranium tetrafluoride (UF4) gas is made critical by a shock wave, and the 
resulting hot (~2500 K) partially ionized gas is passed through a magnetohydrodynamic (MHD) power convertor.  
While the physics of such a reactor are understood, none has ever been made to go critical experimentally.  The total 
 of an EPP system based on vapor core technology has been estimated in published studies [Knight 2004].  The 
present analysis presents a modified estimate, in which PMAD and propulsion subsystem ’s are those used in the 
other EPP system  estimates developed herein.  Based on the Knight 2004 estimate, the  of a vapor core reactor is 
estimated to be as low as 0.04 kg/kWout.  

“Thin” Core Nuclear Fission 

Yet another fission concept to consider is known as “thin” core fission.  In this long known concept, uranium fission 
fuel is deposited in a very thin layer (e.g., 6 x 10-3 g/cm2 [Safanov 1954]), allowing fission product fragments to fly 
free and be collimated through a direct energy conversion device, thus avoiding the Carnot limits of heat engine 
conversion.  As with vapor core fission, the physics of such a reactor are understood, but none has ever been made 
to go critical experimentally.  Analytical research continues [Slutz 2000].  No published estimates have been made 
of the  of such a reactor intended for space applications, thus the present analysis assumes an  equivalent to that 
of a full solid core fission reactor:  0.15 kg/kWout.  It is also important to note that cooling the magnets necessary to 
collimate fission product ions into a direct conversion subsystem, as well as cooling the core itself may take a 
substantial amount of power.  Of the cited references only Safonov mentions the escaped or absorbed neutron flux 
associated with such a reactor and then only speculates that only a small fraction of the source neutrons would 
support fission.  Thus, for conservatism, the present study conjectures that 10% of the reactor thermal output power 
would be required to run heat pumps for cooling the superconducting, collimating magnets and that neutron 
shielding requirements would be the same as for a solid core. 

Aneutronic Nuclear Fusion 

The harnessing of a range of fusion reactions has been studied, both analytically and experimentally, for many 
decades.  The key figure of merit for any fusion reactor concept is “Q”, defined as the ration between the gross 
thermal power emitted by fusion reactions (Pgross) and the power required to be fed into the reactor to maintain 
confinement of the fusion plasma (Pdrive).  No effort has yet experimentally produced a Q greater than 1 for any 
reactor concept.  Most of the U.S. and international focus in this field has been on harnessing the Deuterium-Tritium 
(D-T) reaction in an ignited plasma.  The D-T reaction emits most of its energy as high-energy neutrons, thus 
functioning as a heat source in a system requiring heat engine conversion.  The primary program pursuing a D-T 
reactor, the International Tokamak Experimental Reactor (ITER), is not expected to yield a reactor with  anywhere 
close to that suitable for spacecraft power [ITER 2012].  In any case, such a reactor would function as a heat source, 
just as would a solid core fission reactor, and face the limitations of heat engine conversion.  There have been 
studies of using D-T fusion plasmas directly for propulsion [Williams 2005], but these are projected to yield an  
that would be attractive for a human Solar System mission context only at a gigawatt scale, requiring IMLEO far in 
excess of the limit assumed for the present study. 

Another set of fusion reactions under study are the so-called aneutronic reactions:  Deuterium-3Helium and 
Hydrogen-11Boron (D-3He, p-11B).  These reactions release their energy in the form of charged particles, enabling 
direct conversion not subject to Carnot limitations.  However, the ion collision energy required for these reactions to 
take place in conditions near the peak of the fusion cross section is so high that the radiation losses in any 
equilibrium plasma heated to the required temperature would exceed the fusion power output, making Q > 1 
effectively impossible [Dawson 1981].  For these reactions Q > 1 can only obtained by confinement of a non-
equilibrium plasma.  Various such confinement concepts have been proposed [e.g., Rostoker 2003, Krall 1991].  It 
should be noted that such plasmas do not ignite, thus the possible Q may be quite low.  However, studies indicate 
that Q up to 8 may be possible [Burton 2003].  The driving power is required to replace energy losses in the 
confined plasma.  A fraction of these loses (those from plasma collision with structure) must be rejected with 600 K 
radiators, but the majority could be radiated directly into space.  There are few published estimates of  for these 
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reactors, but claims range from 0.01 kg/kWout [Bussard 2006] to 0.1 kg/kWout [Burton 2003].  The uncertainties in 
these estimates lead to the author’s assumption of  = 0.2 kg/kWout for the present study. 

It is important to note at this point that, though the potential for successful physics proof of a Q > 1 reactor is 
uncertain, the aneutronic fusion energy source offers certain key advantages over the other nuclear options identified 
above.  The aneutronic nature of the reactions means not only that a flight EPP system will avoid heavy neutron 
shielding, but also that the development program will most likely avoid the challenges of managing radioactive 
material (i.e., nuclear waste).  Thus, not only would the overall EPP system  be improved over fission options, but 
the overall design, development, testing, and evaluation (DDT&E) program would be significantly cheaper than that 
for any fission-based EPP system.  Pursuing a Q > 1 physics proof for aneutronic fusion would involve investing in 
the development of multiple confinement concepts, any one of which might only have a less than even chance of 
success.  However, many such “bets” could be placed for the price of the ground development effort for even a well 
understood solid core fission reactor. 

Energy Conversion Subsystems 

Energy conversion options considered in the present analysis include two heat engines (Rankine cycle and 
Magnetohydrodynamic – MHD) and one particular direct conversion engine (the so-called Traveling Wave Direct 
Energy Convertor - TWDEC). 

The Rankine engine is selected for consideration with solid core fission, because its constant temperature heat 
rejection enables the lowest mass heat rejection radiators (which condense two phase flow).  Previous studies 
[George 1991] estimate  for such an engine and its coolant piping at a 1500 K topping temperature to be 0.14 
kg/kWin.  Note that the optimal  for such an engine at 1500 K topping is shown to be only 18%, well less than 
might be possible with a deep space heat sink.  Such an  setting optimizes between higher heat rejection 
temperature, which greatly lowers  for radiators, and lower reactor mass. 

MHD conversion is considered as the optimal way in which to take advantage of the high (~2500 K) source 
temperature of a UF4 vapor core reactor.  Previous studies [Knight 2004] estimate MHD subsystem (including UF4 
flow channels, pumps, nozzles, and diffusers)  at 0.07 kg/kWin. 

The TWDEC is suggested by the authors for discussion as the optimal way to draw energy from the ion beams 
produced by “thin core” fission and aneutronic fusion.  The TWDEC functions by decelerating ions with an electric 
field and thus converting the kinetic energy of these ions into high (RF) frequency AC electric power.  Previous 
studies [Momota 1992] predict  of 70% and also note that, in a space application, only a fraction of the losses from 
the TWDEC (those from ion collisions with structure and electrodes) must be rejected as heat, thus even the 
relatively low temperature (600 K) radiators required can be relatively small.  The remaining energy losses are 
rejected by simply allowing the remaining ion kinetic energy to radiate into space.  An estimate of  for a space 
TWDEC of 0.14 kg/kWin is derived from Momota 1992. 

Heat Rejection Subsystems 

Heat rejection radiators are an important contributor to the  of in-space power & propulsion systems.  In some 
cases, in which heat rejection temperatures are relatively low, they can dominate the system .  For single phase 
flow heat rejection, as is encountered when cooling PMAD and system structural components with single phase 
fluids, the present analysis takes the projected advanced radiator  from a previous study [Mason 2012], as adjusted 
for temperature via the Stephan-Boltzman equation.  For two phase flow, condensing radiators, as are encountered 
with a Rankine cycle, the projected advanced radiator from an earlier study [George 1991] is applied for 1100 K 
heat rejection and from a more recent vapor core fission study [Knight 2004] for ultra-high temperature 1500 K heat 
rejection.  Selected values for  are in Table 1. 
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Power Management and Distribution (PMAD) 

In the context of the present study, the basic function of PMAD is to convert electric power from the voltage and 
current (AC or DC) at which it is generated to that which is required by the electric propulsion subsystem.  The 
degree of voltage change and inversion/rectification required drives the  of these subsystems, but only as a second-
order effect.  Previous studies [George 1991] predict that, with high voltage (5000 V) and high frequency (kHz) 
electronics and transformers, advanced PMAD subsystems can be highly efficient ( >95%) and have  
approaching 1 kg/kWin.  

Electric Thruster 

While there are widely different approaches to electric thrusters, which are variables in the present study, those 
considered scalable to the multi-MW power level include Hall thrusters and plasma engines.  Even given this variety 
of concepts, previous studies [George 1991, Brown 2009] generally assume achievable  in a range of 0.5 to 1.5 
kg/kWin and  of ~60%.  An  of 1.0 kg/kWin is chosen for the present analysis for each case save one.  It should be 
noted that a plasma engine, which accelerates its propellant plasma via, for example, RF wave heating and a 
magnetic nozzle, may offer a special  advantage when combined with TWDEC conversion.  A TWDEC can 
conceivably be engineered to tune its power output to the frequency used in the plasma engine’s RF frequency, in 
which case the PMAD subsystem would not be required to condition the power going into the propulsion subsystem.  
It will be shown below that this can enable a significant decrease in EPP system mass. 

There is also one special case of a thruster that will be considered in the present analysis.  Recent studies [Tarditi 
2012] indicate the possibility of accelerating the propellant plasma in a plasma engine via direct interaction with the 
ions emanating from an ion beam energy source (e.g., aneutronic fusion, thin core fission).  This would enable an 
EPP system than avoids even converting energy from the source into electricity, for an even greater system mass 
savings.  This will be considered in one of the system cases assessed below. 

EPP SYSTEM ENERGY FLOW ANALYSIS 

A comparison, based on subsystem  and  identified in Table 1, of achievable  for a complete, EPP system is 
presented in Table 2.  Figure 2 provides energy flow diagrams of each system option.  As the mission capability goal 
is an annual Mars visit capability with 350 mT IMLEO for a single mission, a comparison basis of 30 MW is 
inferred from Fig. 1.  Each case in Table 2 is described below: 

Case 1 - Photovoltaic Power with Plasma or Hall Propulsion:  This  estimate is only valid out to Mars orbit.  The  would 
increase rapidly for missions further away from the Sun. 

Case 2 – Solid Core Fission Power with Plasma or Hall Propulsion:  This cases exemplifies the capability limits of Nuclear 
Electric Propulsion (NEP) as described in George [1991] and Mason [2012]. 

Case 3 – Vapor Core Fission Power:  The present analysis reveals a significantly higher power than the 1.4 kg/kWe estimated by 
Knight (2004).  This is due to the present analysis assuming less aggressive ’s for neutron shielding and PMAD. 

Case 4 – “Thin” Core Fission:  The  and collimating power estimates for this case are particularly speculative.  It can also be 
seen per Fig. 2, Case 4 that propulsion options to obtain this  are limited to plasma engines that accelerate propellant via an RF 
antenna which can be powered by TWDEC conversion without intermediate power conditioning by a PMAD subsystem. 

Case 5 – Aneutronic Fusion:  This case is highly sensitive to the Q of the fusion reactor assumed.  As can be seen in Fig. 3,  
rapidly increases as Q drops below 3 and decreases only slowly as Q exceeds 6.  This is the primary consideration in the 
development of aneutronic fusion for spacecraft power applications. 

Case 6 – Aneutronic Fusion with Direct Conversion to Thrust:  The case is also highly sensitive to the fusion reactor Q as shown 
in Fig. 3.  Further, this system concept channels the fusion product ion beam through a TWDEC only to produce drive power and 
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to condition the beam to go on directly into the plasma engine.  The propellant is accelerated through direct interaction with the 
ion beam in the manner proposed by Tarditi [2012].  While this thruster concept offers the most attractive  assessed in the 
present study, it is somewhat speculative relative to Cases 1 through 5.  

 

 

TABLE 2. Figure of Merit for Electric Power and Propulsion (EPP) Systems 
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FIGURE 2. Functional block diagrams of propulsion & power analysis cases identified in Table 2 

 

Figure 3. Sensitivity of total power subsystem  to aneutronic fusion reactor Q.   
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CONCLUSION 

A quick assessment of Table 2 reveals that the cases described Cases 1 through 3 do not offer an  low enough to 
enable annual Mars expeditions under the constraints identified at the beginning of this paper, while those of Cases 4 
through 6 do.  The energy sources of these last three cases (Cases 4-6) involve substantially greater development 
risk than those of the first three (Cases 1-3), but the total  of the EPP system is not particularly sensitive to that of 
the sources.  The engineering that enables this major reduction in system  involves the removal of energy 
conversion steps.  The combination of ion beam energy sources and the TWDEC not only avoids the massive heat 
rejection subsystems associated with heat engine conversion, but it also, when used with a plasma engine thruster, 
enables the bulk of the system energy flow to bypass high- PMAD subsystems.  The next step in this direction, 
exemplified by the case of Case 6, effectively removes another conversion step along the energy flow from source to 
thruster.  In this last case, even conversion of source energy to electricity is for the most part avoided. 

Another inference from the present parametric study is that obtaining the desired low system  via direct conversion 
requires aggressive development of energy sources that release their energy as charged particle beams rather than 
neutrons/heat.  The two such options assessed present very different development paradigms.  The physics of a 
fission reactor are well understood, and, while no “thin” reactor core has been made critical in test, there is some 
justifiable confidence that it could be done.  However, developing a fission reactor concept so radically different 
from that now used would require extensive nuclear testing involving the production of activated material.  The 
development program going forward would be prohibitively expensive.  The means by which to overcome the 
engineering challenges of the other option, aneutronic fusion, are less well understood, and Q > 1 has yet to be 
experimentally achieved for any fusion concept.  However, as the aneutronic reactions would not produce activated 
material in test, many different confinement concepts could be examined and, if successful, developed to Q > 1 
perhaps far more economically than a fission-based system development program.   

NOMENCLATURE 

 = specific mass (kg/kW).  For propulsion & power system,  is defined as kg(total system)/kW(from power into thruster) 
 = Thermodynamic efficiency 
Q = For a nuclear fusion reactor:  Pgross/Pdrive 
q = Heat rejected (kW) 
T  = Thrust (N) 
Pgross = Total fusion power (kW) output from a fusion reactor core 
Pdrive =  Power (kW) required to maintain plasma confinement in a fusion reactor core. 
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