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Preface

This is a book about unmanned space missions to the edge of the Solar System. And
possibly beyond.

Readers may wish to read first the ““Brief Overview’ of the scientific and technical
problems discussed in this book that is found on pp. xxxi—xxxiv hereafter.

Also, readers might wish to request the DVD of the Lecture that the author gave
at NASA-JPL on August 18th, 1999, about “The Sun’s Gravity Lens and Its Use for
Interstellar Exploration” (running time: about 80 minutes).

This DVD may be requested by email to the author:

Dr. Claudio Maccone, email: c/maccon@libero.it
or, in the author’s absence, to either of the following co-workers of his:

(1) Dr. Luca Derosa, email: spacecraft@libero.it
(2) Dr. Nicolo’ Antonietti, email: n.antonietti@libero.it.

The present book is the result of merging two previously published, smaller books
by the author. The first, The Sun as a Gravitational Lens: Proposed Space Missions,
corresponds to Part I, and the second, Telecommunications, KLT and Relativity,
corresponds to Part II of this revised and updated book.

If NASA and ESA decide to fund the first “precursor interstellar mission” to
550 AU or even beyond to 1000 AU in the decades to come, the goal of this book will
have been reached.

Claudio Maccone
Torino (Turin), Italy, January 23rd, 2009



Preface to earlier works

I first met Frank Drake in 1987 at Balatonfiired, Hungary, at the Second International
Conference on Bioastronomy (officially called the 99th Colloquium of the International
Astronomical Union, held June 22-27, 1987). Bioastronomy is the newly born branch
of science trying to assess whether life exists elsewhere than on Earth. As far as we
know, life can come in a variety of forms, either less or more biologically advanced
than humans are at present. Next to the very primitive forms of life that biologists are
currently trying to detect (e.g., on Mars), it is quite reasonable to admit that civiliza-
tions more advanced than ours possibly exist in the Galaxy also. If this is the case, one
may try to detect them by using the several large radiotelescopes now available on
Earth to pick up the possible “leakage’ of radio signals emitted from planets orbiting
other nearby stars, just as the Earth is constantly emitting a large quantity of radio
waves that have been outflowing into space since humans discovered the technology of
radio transmission about 1900 AD.

Frank Drake was the first scientist to try detecting, back in 1960, whether
“intelligent” radio signals were being emitted by planets around two nearby Sun-
like stars (¢ Eridani and 7 Ceti). This was Project Ozma, and it marked the beginning
of SETI, the (radio) Search for Extra-Terrestrial Intelligence that has been continuing
ever since in some of the most technologically advanced countries, like the U.S.A.,
Russia, France, Italy, Japan, Australia, and Argentina.

At the Balatonfiired 1987 conference Frank Drake gave a talk titled Stars as
Gravitational Lenses that greatly impressed me. He described the huge magnification
(i.e., the very intense focusing) that the gravitational field of the Sun would have on the
radio waves (or light rays) originating, for instance, at the Galactic center, and then
traveling unaltered through the vast Galactic distances until they graze the Sun’s
surface. These rays are then deflected by the Sun’s gravity and made to focus along a
line starting at 550 AU from the Sun. If one could construct a spacecraft capable of
traveling 550 AU (and beyond, perhaps to 1,000 AU), the spacecraft could transmit
back to Earth the greatly magnified radio picture of whatever lies at great distances in
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the opposite direction to the Sun. I have dubbed both the spacecraft and the entire
space mission FOCAL.

In the years 1987-1992 I made a personal preliminary study of the FOCAL space
mission which made clear to me the five basic points listed below. Meanwhile, my
discussions with scientists and engineers, experts in areas of importance to the
FOCAL space mission, led me to organize the first one-day international conference
on FOCAL. This was the Space Missions and Astrodynamics I conference held at
Politecnico di Torino (the Engineering School in my home city of Turin, Italy) on June
18, 1992. I later edited the proceedings of this conference and published them in two
issues of the Journal of the British Interplanetary Society (February and November
1994). By that time interest in FOCAL by various scientists and engineers had grown
to such an extent that the time was ripe to submit a formal proposal for the mission to
one leading space agency. Opportunity was taken of the Call for New Mission Ideas
(M3)issued by ESA, the European Space Agency, early in 1993. So on behalf of a large
group of scientists and engineers from both Europe and the U.S.A., on May 20, 1993,
I submitted the 50-page FOCAL proposal to ESA, who later included it as Proposal
# 24 among the Responses to the Call for Mission Concepts for the Horizon 2000 Plus
plan (see ESA SP-1180, August 1995, p. 115, # 24). It was then wittily remarked by the
French professor Roger Bonnet, Director of Scientific Programs of ESA, that had
FOCAL been approved by the Agency, it would have provided work not just for the
present generation of ESA employees, but also for the generations of their sons and
grandsons.

This remark by Bonnet obviously pointed out the tremendous amount of work
necessary to put up a very deep space mission like FOCAL. However, it could hardly
deter far-sighted scientists and engineers from thinking about such a deep space
mission. I proceeded to promote the FOCAL mission when I ran the Space Missions
and Astrodynamics IT and ITT Conferences at the Politecnico in Turin in October 1994
and June 1995, respectively. At the International Astronautical Federation Congress in
Oslo, October of 1995, the International Academy of Astronautics (IAA) agreed to hold
the First IAA Symposium on Missions to the Outer Solar System and Beyond at the
Politecnico in Turin on June 25-27, 1996. Some 50 experts from NASA-JPL, Russia,
and European countries gathered to discuss the perspectives of future exploration of
the outer solar system, and there FOCAL gained ground as the “must” mission before
any attempt to go beyond 1,000 AU from the Sun was even conceived.

Now the five basic points summarizing the importance of the FOCAL space
mission are as follows:

(1) FOCAL would necessarily be the first precursor interstellar mission of human-
kind. In fact, the minimal distance of 550 AU is about 14 times the distance from
the Sun to Pluto, and so FOCAL would, by far, surpass any other ongoing “‘deep
space’ mission (such as Voyagers 1 and 2, Pioneer 10 and 11) or planned (the
NASA-JPL Pluto Express). Put in better terms still, one might say that any
future interstellar mission of humankind will necessarily be a FOCAL mission
also, since beyond 550 AU the Sun will always be serving as a lens for some
direction.
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Reaching 550 AU takes a long time. How long this flight time might be depends
on the propulsion system adopted (possibly nuclear-electric propulsion, solar
sailing, magnetic sailing, or a combination of all of them). One can currently
imagine this flight taking between 10 and 50 years. It is true that one does not
have to stop FOCAL at just 550 AU, because every point along the straight-line
trajectory beyond 550 AU still is a focal point. This paves the way to an even
more ambitious mission, up to 800 or 1,000 AU, requiring yet more time. One
such mission studied at JPL in the 1980s has the name TAU (Thousand
Astronomical Units). It would yield such a wealth of scientific results through
the study of parallaxes of stars, the heliosphere' and the heliopause,” the inter-
stellar medium, and the possible detection of gravitational waves, that the
FOCAL (or TAU) mission would be justified independent of the gravitational
focusing effect.

Which members of the scientific and technological community would be inter-
ested in the results provided by FOCAL? First, astrophysicists would enjoy
getting a detailed radio picture of the Galactic center, where a massive black
hole is suspected to exist and stars are so close that unexpected physical phenom-
ena could be revealed. This high-resolution radio picture can be obtained only by
using the Sun as a gravitational lens jointly with a spacecraft capable of observ-
ing on the hydrogen line (1,420 MHz) and/or similar frequencies (1.6 GHz for the
OH maser; 22 GHz for the water maser, and so forth). Second, a spacecraft
crossing the Kuiper Belt would provide planetary scientists with a wonderful
opportunity to investigate the lesser bodies recently discovered to orbit the Sun
roughly between 40 AU and 100 AU. Other important fields of investigations,
such as plasma physics of the heliosphere and heliopause, determination of
parallaxes of stars, perturbation of orbits leading to the possible discovery of
new bodies, have already been mentioned. So let me just add that, last but by no
means least, space engineers and technologists would have to overcome chal-
lenges like the selection of the best propulsion system to get there, how to keep
track of the spacecraft at such unprecedented distances, and how to optimally
compress information to enable the huge data flow from the FOCAL spacecraft
back to the Earth. Advanced technology corporations would support the
approval of FOCAL by space agencies as a proving ground for improving
technology already in existence.

SETI deserves a separate discussion. As Frank Drake said in 1987, only by
exploiting the gravitational lens of the Sun can we expect to detect signals that
are extremely weak because they come from so far away in the Galaxy. Consider
the former NASA SETI Targeted Search (ended abruptly in October 1993 by the
U.S. Congress on the ground of “‘necessary budget cuts”). The goal of this
project was to observe 773 Sun-like stars with the highest possible sensitivity

' The heliosphere is the region surrounding the solar system where the solar wind dominates
the interstellar plasma. Despite the word “sphere” as part of the name, the region is not
spherical, but extends roughly 150 AU in front, and much farther behind.

2 The heliopause is the imaginary surface bounding the heliosphere.
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provided by the collecting area of the largest radiotelescopes on Earth (i.e., the
Arecibo telescope located in Puerto Rico, the Goldstone 70-meter Deep Space
Network antenna in the Mojave desert of California, the Nangay radiotelescope
in France, the Parkes antenna in Australia, etc.). Because of the limited collect-
ing area of these telescopes, the distance of the target stars could not exceed 100
light years. But this distance is very small compared with the size of the Galaxy
(100,000 1t-yr in diameter), so even if the NASA-SETI project had been funded,
the part of the Galaxy explored for extraterrestrial life would have been very
small. In other words, the problem is that the collecting area of radiotelescopes
on Earth cannot exceed the current values by much, and hence one cannot detect
even weaker signals. One might say that the generation of SETI scientists of the
school of Frank Drake in the U.S.A., of Nikolai Kardashev in Russia, and of
Jean Heidmann in France, have already done the best they can do on the suface
of Earth. It is now up to the space scientists to take the lead in SETI by putting
up the first FOCAL space mission. FOCAL could detect signals 2 to 3 orders of
magnitude weaker than signals detectable on Earth, and could thus enable the
detection of civilizations located much farther out, around the Galactic center
32,000 1t-yr away, or even farther, thus increasing dramatically the probability of
humankind’s first contact with ET.

Politicians of the highest caliber might also be interested in supporting an epoch-
making space mission like FOCAL for their own personal prestige. In fact, the
costs of the first precursor interstellar mission of humankind could hardly be
supported by a single national space agency, and international cooperation
would be necessary. The U.S. and NASA could, at a minimum, provide the
JPL and Deep Space Network expertise, the Russians could provide the
launcher, the Europeans could be in charge of the scientific payload, as could
the Japanese, etc. Finally, the members of the United Nations could give their
patronage to a space mission of unsurpassed “‘grandeur” as FOCAL, symbol of
the first expansion of humankind outside the solar system.

Claudio Maccone

Secretary of the Interstellar Space Exploration Committee and
Member of the SETI Committee,

International Academy of Astronautics
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Foreword

Wherever in space there are intelligent creatures like us, they will be driven to explore
and understand our Universe, just as we do. We and they wish to glimpse the farthest
depths of space with the greatest clarity allowed by the laws of nature. To this end, we
build, at great expense, ever more powerful telescopes of all kinds on Earth, and now
in space. As each civilization becomes more knowledgeable they will recognize, as we
now have recognized, that they have been given a single great gift: a lens of such power
that no reasonable technology could ever duplicate or surpass its power. This lens is
civilization’s star: in our case, the Sun. The gravity of each such star acts to bend space,
and thus the paths of any wave or particle, in the end creating an image, just as familiar
lenses do.

This lens can produce images which would take perhaps thousands of conven-
tional telescopes to produce. It can produce images of the finest detail of distant stars
and galaxies. Every civilization will discover this eventually, and surely will make the
exploitation of such a lens a very high priority enterprise. One wonders how many
such lenses are being used at this moment in time to scan the Universe, capturing a
flood of information about both the physical and biological realities of our time.

We are just beginning to appreciate the power of such a lens, and to contemplate
its exploitation. In this book is written the theory and potential performance of such a
lens, not only for light and radio waves, but even for gravitational waves and
neutrinos. But such a lens can only be utilized if a major challenge is met. This
challenge derives from the fact that the magnificent images created by the lens for
any electromagnetic waves, including light and radio, are formed at a distance of at
least 550 AU from the Sun. Thus, at this very moment images of fantastic clarity and
brightness are being created far out in space. The challenge to us is to send adequate
detectors to these great distances to capture those images.

In this book Claudio Maccone describes this technological challenge, and how it
might be met by the FOCAL mission. He points out that there are many scientific
bonanzas in addition to the gravitational lens which will accrue from such a mission.



xxii  Foreword

Here can be found the detailed technical requirements of the mission, as well as firm
and accurate quantitative values for the imaging abilities of the lens.

This is a technical primer for what, in the long run, may be the most important
space mission we will conduct. Readers of this book should wonder, as they read, how
many times this same text has been created over the eons on the planets of other stars,
and how many stars already are serving as the super-powerful eyes of the creatures of
distant planets.

Frank D. Drake

Professor of Astronomy and Astrophysics

and Former Dean, Division of Natural Sciences,
University of California, Santa Cruz
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A brief overview of the Sun as a gravitational lens

Two foci of the gravitational lens of the Sun are predicted to exist by the general
theory of relativity (see Figure 1).

(1) A focus for electromagnetic waves, located along a line starting at a distance of
550 AU (Astronomical Units)—that is, 3.17 light days, or 14 times the distance
from the Sun to Pluto. It will be proved that any point beyond this minimal
distance is a focus also. Thus, any spacecraft that can fly to 550 AU and beyond
can take full advantage of the huge radio magnifications of any astronomical
object lying on the other side of the Sun with respect to the spacecraft position.
(2) A focus for gravitational waves and neutrinos, located within the solar system at
distances 22.45 AU and 29.59 AU (roughly between the distances of the orbits of
Uranus and Neptune). The physical justification for the existence of this focus is
that
(a) a gravitational wave can penetrate through the Sun because such waves
scatter significantly only in the presence of significant mass density rather
than the charge on electrons which scatter electromagnetic waves; and

(b) the bulk of the Sun’s mass is more highly concentrated within its inner layers
than within its outer layers (i.e., the Sun’s radial density is maximum at the
center and zero at the surface).

! — e —

ELECTROMAGNET IC WAVES

e
GRAVITATIONAL WAVES, Qe rer
RINGS L

FOCUS FOR
GRAVITATIONAL WAVES ELECTROMAGNET IC WAVES
NEUTRINOS

Figure 1. Comparison between the paths of electromagnetic waves and gravitational waves

being focused by the gravitational field of the Sun.
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THE PROPOSED FOCAL SPACE MISSION TO 550 AU AND BEYOND
TO 1,000 AU

Part I of this book is devoted to studying the FOCAL space mission. By this we mean
to let a spacecraft travel to 550 AU and beyond until it can detect the greatly magnified
radio pictures of any radio source located on the other side of the Sun with respect to
the spacecraft position.

In this book no study will be made of space missions intended to detect the
gravitational waves focused by the Sun, since these missions were studied by David
Sonnabend of JPL in 1979 (see [1]).

Part I opens with a review of the gravitational lens of the Sun based on Einstein’s
general relativity (Chapter 1). This is the so-called “naked” lens, namely the purely
convergent lens due to gravity only (i.e., no Coronal effects are taken into account).
It is then shown that

(1) The naked Sun’s focus lies on a focal sphere of about 550 AU in radius.

(2) The gain (= magnification) of such a gravitational lens is huge: about 57 dB at
the hydrogen line frequency of 1,420 MHz, and similarly for other frequencies of
radioastronomical interest.

(3) The FOCAL spacecraft position must be very tightly (~100 km) aligned with the
source of electromagnetic waves and the Sun center.

Chapter 2 summarizes the cruise science that could be profitably done by the
FOCAL spacecraft while en route to 550 AU and beyond. The implications for
cosmology (re-calibration of the size of the Universe), for nuclear processes associated
with cosmogony, and for stellar parallaxes computation would be profound.

The FOCAL direction of exit out of the solar system is determined by which
nearby star we wish to see magnified. In Chapter 3, we compute such a direction, as
well as the relevant Sun flyby characteristics, for the nearest 50 stars. And in Chapter 4
we show that a time-optimized design of the spacecraft trajectory to reach a distance
of 550 AU is vital for success. This is no simple task, however, since it must be achieved
by either conventional chemical engines, and/or by nuclear-electric propulsion and/or
by solar sailing (see [2]). Each propulsion system has its own advantages.

NEW TOPICS: GL-SETI, THE SOLAR CORONA EFFECTS “PUSHING”
THE FOCUS FARTHER OUT, AND FOCUSED POWER PROPULSION

Part I of this book continues with five further chapters summarized hereafter.

(1) The newly re-written Chapter 6 deals with the use of the gravitational lenses of
nearby stars to get magnified radio pictures of objects emitting electromagnetic
waves from much beyond the nearby lensing stars. This effect could be used for
either astrophysical investigations and for SETI. When used for SETTI, it origin-
ates a new kind of SETI search, called “GL-SETI” (an acronym for
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“Gravitational Lensing SETI”), in addition to the two traditional approaches of
the SETI “‘targeted search” and ‘‘all-sky survey”, as described by the SETI
League President, Richard Factor, in Sections 6.2 and 6.3. His introduction is
just qualitative, however. A more profound, mathematical investigation of
GL-SETI reveals the diffficulties of probing this new research field, as shown
in Section 6.4 by the new equation found by the author to relate the magnifica-
tion of the lensing star, the distance of the ET transmitter, and the power of the
ET transmitter. Finally, in Section 6.5 another application of GL-SETI is
provided in case SETV, the Search for Extra-Terrestrial Visitation (within the
solar system) is proved in the future to be real science, rather than pure science
fiction.

In Chapter 7 the first investigation (to the best of our knowledge) is presented
about the gravitational lenses of the four nearest stars to the Sun in the Galaxy:
Alpha Centauri A, B, C (Proxima), and Barnard’s star. This mathematical
description is intended to lead to a future, full description of the “radio bridge”
between each one of these stars and the Sun, obtained by exploiting the gravita-
tional lenses of all of them. These results show the enormous gains and energy
savings that would affect the telecommunication link between the Sun and each
one of these stars, were both gravitational lenses used at the same time. And this
might indeed be used in the future in case human probes were able to reach, say,
Alpha Centauri, and needed to keep their radio link with the Earth.

In Chapter 8 is given the rather difficult mathematical theory of the Solar
Corona effects on radio waves grazing the surface of the Sun. We start from
the well-known Baumbach—Allen model of the Corona and then go over to
finding the actual minimal focal distances by taking into account the frequency
of the grazing waves. The result is that the action of the Corona counterbalances
and even wins over the action of gravity by “pushing out” the actual minimal
focal distance beyond 550 AU. This is “unfortunate” from the point of view of
planning space missions intended to reach the actual focuses of the gravitational
lens of the Sun, but is much more realistic than naively hoping for a focus at
550 AU, just as if there was no Corona around the Sun!

The mathematical theory of the Corona given in Chapter 8 is then applied in
Chapter 9 to the very special case of the Cosmic Microwave Background (CMB),
whose Planck spectrum has its peak frequency at 160.378 GHz. For this fre-
quency, we show that the Sun’s minimal focal distance is 763 AU because of
the Corona effects, rather than just 550 AU. We also point out that the NASA
Interstellar Probe (ISP), currently under study at JPL and expected to be
launched in 2010 in the direction of the incoming interstellar wind, would reach
763 AU around 2057. ISP could thus prove for the first time the physical exist-
ence of the Sun’s gravity lens if suitably equipped with a photometer or a
bolometer tuned to 160 GHz.

Finally, an entirely new possibility, using the Sun’s gravitational lens for propel-
ling a spacecraft over to interstellar distances, is explored in Appendix E.
Although we had to confine our description to the basic ideas only (i.e., without
equations), this possibility could one day prove vital to help human expansion
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into space up to the nearest stars and perhaps beyond. This exploitation of the

Sun’s gravity lens might possibly be achieved in either of two ways.

(a) exploiting the gravitational focusing of other stars on synthetic solar sails; or

(b) placing a solar power station on the opposite side of the Sun at distances
higher than 550 AU and then moving it slowly toward the Sun. In this case,
the minimal focal distance of the Sun’s lens would be pushed farther and
farther out, and so would be the sail located at its minimal focal distance.
This second technique has one great advantage over the first one: it would
work in all directions out from the Sun center, thus enabling a really free
selection of the destination stars.

In conclusion, this book offers an even more comprehensive vision of the phe-
nomenon of the Sun’s gravity lens, now extended to the gravitational lenses of the
nearest four stars in the Galaxy.

The author is convinced that the new, grand goal of humankind in the new
millennium will be the exploration of our Galactic neighborhood and its human
settlement. Hopefully, this book will be of use to future generations of space scientists
and engineers willing to exploit the Sun’s gravity lens and its unusual properties for
applications to interstellar flight and to the scientific exploration of the Galaxy.
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Part 1

Space missions to the Sun’s gravity focus
(550 to 1,000 AU)
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So much gain at 550 AU

1.1 INTRODUCTION

The gravitational focusing effect of the Sun is one of the most amazing discoveries
produced by the general theory of relativity. The first paper in this field was published
by Albert Einstein in 1936 [1], but his work was virtually forgotten until 1964, when
Sydney Liebes of Stanford University [2] gave the mathematical theory of gravita-
tional focusing by a galaxy located between the Earth and a very distant cosmological
object, such as a quasar.

In 1978 the first “twin quasar” image, caused by the gravitational field of an
intermediate galaxy, was spotted by the British astronomer Dennis Walsh and his
colleagues. Subsequent discoveries of several more examples of gravitational lenses
eliminated all doubts about gravitational focusing predicted by general relativity.

Von Eshleman of Stanford University then went on to apply the theory to the
case of the Sun in 1979 [3]. His paper for the first time suggested the possibility of
sending a spacecraft to 550 AU from the Sun to exploit the enormous magnifications
provided by the gravitational lens of the Sun, particularly at microwave frequencies,
such as the hydrogen line at 1,420 MHz (21 cm wavelength). This is the frequency that
all SETI radioastronomers regard as “‘magic’ for interstellar communications, and
thus the tremendous potential of the gravitational lens of the Sun for getting in touch
with alien civilizations became obvious.

The first experimental SETI radioastronomer in history, Frank Drake (Project
Ozma, 1960), presented a paper on the advantages of using the gravitational lens of
the Sun for SETI at the Second International Bioastronomy Conference held in
Hungary in 1987 [4], as did Nathan “Chip” Cohen of Boston University [5].
Non-technical descriptions of the topic were also given by them in their popular
books [6, 7].

However, the possibility of planning and funding a space mission to 550 AU to
exploit the gravitational lens of the Sun immediately proved a difficult task. Space
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scientists and engineers first turned their attention to this goal at the June 18, 1992,
Conference on Space Missions and Astrodynamics organized in Turin, Italy, led by the
author (see Figure 1.1). The relevant Proceedings were published in 1994 in the
Journal of the British Interplanetary Society [8]. Meanwhile, on May 20, 1993, the
author also submitted a formal Proposal to the European Space Agency (ESA) to
fund the space mission design [9]. The optimal direction of space to launch the
FOCAL spacecraft was also discussed by Jean Heidmann of Paris Meudon Obser-
vatory and the author [10], but it seemed clear that a demanding space mission like
this should not be devoted entirely to SETI. Things like the computation of the
parallaxes of many distant stars in the Galaxy, the detection of gravitational waves
by virtue of the very long baseline between the spacecraft and the Earth, plus a host of
other experiments would complement the SETI utilization of this space mission to
550 AU and beyond. The mission was dubbed “SETISAIL” in earlier papers [11],
and “FOCAL” in the proposal submitted to ESA in 1993.

1.2 THE MINIMAL FOCAL DISTANCE OF 550 AU FOR
ELECTROMAGNETIC WAVES

The well-known Schwarzschild solution to the Einstein field equations is the mathe-
matical foundation upon which the theory of the gravitational lens of the Sun rests.
From it a long string of formulas can be developed. Since those formulas are derived
in standard textbooks, we shall simply rewrite without proofs the basic equations
needed to explain the advantages provided by the gravitational lens of the Sun,
suggesting the interested reader consult the basic references [8, 12, and 13] for the
relevant mathematical demonstrations.

The geometry of the Sun gravitational lens is easily described: incoming electro-
magnetic waves (arriving, for instance, from the center of the Galaxy) pass outside the
Sun and pass within a certain distance r of its center. Then the basic result following
from the Schwarzschild solution shows that the corresponding deflection angle a(r) at
the distance r from the Sun center is given by

afr) = 2 s, (1.1)

cr

Figure 1.2 depicts the various parameters.

The light rays (i.e., electromagnetic waves) cannot pass through the Sun’s interior
(whereas gravitational waves and neutrinos can), so the largest deflection angle «
occurs for those rays just grazing the Sun surface (i.e., for r = rg,,). This yields the
inequality

a(rsu) > af(r) (1.2)

4GM Sun

25
CFSun

with

(1.3)

a(rSun) =
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Figure 1.1. First conference ever about the FOCAL space mission to 550 AU, held on June 18,
1992, at the Politecnico di Torino (Turin, Italy).
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@fr) < l?'(rﬂ"‘ /)

FOCAL
spacecraft

Figure 1.2. Basic geometry of the gravitational lens of the Sun, showing the minimal focal
length and the FOCAL spacecraft position.

From the illustration it should be clear that the minimal focal distance dy,.,; is related
to the tangent of the maximum deflection angle by the formula

tan(a(rg,)) = 2. (1.4)
tfocal
Moreover, since the angle a(rg,,) is very small (its actual value is about 1.75 arcsec),
the above expression may be rewritten by replacing the tangent by the small angle
itself:

a(rSun) ~ S . (15)
dfocal

Eliminating the angle a(rg,,) between equations (1.3) and (1.5), and then solving for
the minimal focal distance d,.,, One gets

d; ~ 'Sun — "'Sun = czrﬁw (1 6)
™ )~ WMy~ 4Gy, |

2
C T Sun

This basic result may also be rewritten in terms of the Schwarzschild radius

2GMg,,
F'Schwarzschild = 7&7 (17)
yielding
2
I'Sun I'Sun ¥ Sun
de 1 r = = . 1.8
Jocal (e (i’ Sun) 46GMs,,  2r Schwarzschild ( )
Czr Sun
Numerically, one finds
et = 542 AU = 550 AU ~ 3.171 light days. (1.9)

This is the fundamental formula yielding the minimal focal distance of the gravitational
lens of the Sun—that is, the minimal distance from the Sun’s center that the FOCAL
spacecraft must reach in order to get magnified radio pictures of whatever lies on the
other side of the Sun with respect to the spacecraft position.
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Furthermore, a simple, but very important consequence of the above discussion
is that all points on the straight line beyond this minimal focal distance are foci too,
because the light rays passing by the Sun farther than the minimum distance have
smaller deflection angles and thus come together at an even greater distance from the
Sun.

And the very important astronautical consequence of this fact for the FOCAL
mission is that it is not necessary to stop the spacecraft at 550 AU. It can go on to
almost any distance beyond and focus as well or better. In fact, the farther it goes
beyond 550 AU the less distorted the collected radio waves by the Sun Corona
fluctuations. The important problem of Corona fluctuations and related distortions
is studied in Chapter 8 of this book.

We would like to add here one more result that is very important because it holds
well not just for the Sun, but for all stars in general. This we’ll do without demon-
stration; that can be found on p. 55 of [12]. Consider a spherical star with radius r,,,
and mass M,,,., which will be called the “focusing star”. Suppose also that a light
source (i.e., another star or an advanced extraterrestrial civilization) is located at the
distance Dy, from it. Then ask: How far is the minimal focal distance dy,,; on the
opposite side of the source with respect to the focusing star center? The answer is

given by the formula
2

Fstar
P — (1.10)
‘focal
e 4GM3'mr r?/ar

2 D

source

This is the key to gravitational focusing for a pair of stars, and may well be the key to
SETI in finding extraterrestrial civilizations. It could also be considered for the
magnification of a certain source by any star that is perfectly aligned with that source
and the Earth: the latter would then be in the same situation as the FOCAL
spacecraft except, of course, it is located much farther out than 550 AU with respect
to the focusing, intermediate star. Finally, notice that Equation (1.10) reduces
to Equation (1.6) in the limit D,,,,., — oo; that is, (1.6) is the special case of (1.10)
for light rays approaching the focusing star from an infinite distance.

1.3 THE (ANTENNA) GAIN OF THE GRAVITATIONAL LENS OF
THE SUN

Having thus determined the minimal distance of 550 AU that the FOCAL spacecraft
must reach, one now wonders what’s the good of going so far out of the solar
system—that is, how much focusing of light rays is caused by the gravitational field
of the Sun. The answer to such a question is provided by the technical notion of
“antenna gain”’, which stems from antenna theory.

A standard formula in antenna theory relates the antenna gain, G,,epmq- t0 the
antenna effective area, 4.y, and to the wavelength A or the frequency v by virtue
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of the equation (see, e.g., [13], in particular p. 6-117, eq. (6-241)):

41A ffectiv
Guntenna = 7;\;6 e . (11 1)
Now, assume the antenna is circular with radius r,,,,.,» and assume also a 50%
efficiency. Then, the antenna effective area is obviously given by

A 2
Aeffec’tive _ P/i;.\ual _ T an2temm ) (112)

Substituting this back into (1.11) yields the antenna gain as a function of the antenna
radius and of the observed frequency

2.2 2.2
G _ 477Ae/72)ctive o 27rAphysical o 27°r antenna __ 277y antenna 2 1.13
antenna )\2 - )\2 - )\2 = cz V. ( . )

The important point here is that the antenna gain increases with the square of the
frequency, thus favoring observations on frequencies as high as possible.

Is anything similar happening for the Sun’s gravitational lens also? Yes is the
answer, and the ‘““gain” (one maintains this terminology for convenience) of the
gravitational lens of the Sun can be proved to be

GSun — 471‘2 ’”Schwn)r\:svhild (1 ) 14)

or, invoking the expression (1.7) of the Schwarzschild radius

87°GMg,, 1 81°GMsg,,

c? A c? v

The mathematical proof of equation (1.14) is difficult to achieve.

The author, unsatisfied with the treatment of this key topic given in [1, 3, and 13],
turned to three engineers of the engineering school in his home town, Renato Orta,
Patrizia Savi, and Riccardo Tascone. To his surprise, in a few weeks they provided a
full proof of not just the Sun gain formula (1.14), but also of the focal distance for
rays originated from a source at a finite distance, Equation (1.10). Their proof is fully
described in [12], and is based on the aperture method used to study the propagation
of electromagnetic waves, rather than on ray optics.

Using the words of these three authors’ own Abstract, they have “computed the
radiation pattern of the [spacecraft] Antenna + Sun system, which has an extremely
high directivity. It has been observed that the focal region of the lens for an incoming
plane wave is a half line parallel to the propagation direction starting at a point
[550 AU]J whose position is related to the blocking effect of the Sun disk (Figure 1.2).
Moreover, a characteristic of this thin lens is that its gain, defined as the magnifica-
tion factor of the antenna gain, is constant along this half line. In particular, for a
wavelength of 21 cm, this lens gain reaches the value of 57.5dB. Also, a measure of
the transversal extent of the focal region has been obtained. The performance of this
radiation system has been determined by adopting a thin lens model which introduces
a phase factor depending on the logarithm of the impact parameter of the incident

Ggun = (1.15)
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Table 1.1. Table showing the gain of the Sun’s lens alone, the gain of a 12-meter spacecraft
(S/C) antenna and the combined gain of the Sun+S/C Antenna system at five selected
frequencies is important in radioastronomy. (Here, as throughout the book, bold type indicates
greater importance).

Line Neutral OH H,O
hydrogen radical

Frequency v 1,420 MHz | 327 MHz 1.6 GHz 5GHz 22GHz
Wavelength A 2lcm 92cm 18 cm 6cm 1.35cm
S/C Antenna Beamwidth 1.231deg | 5.348deg | 1.092deg | 0.350deg | 0.080deg
Sun Gain 57.4dB 51.0dB 57.9dB 62.9dB 69.3dB
12-meter Antenna S/C Gain 42.0dB 29.3dB 43.1dB 53.0dB 65.8dB
Combined Sun+ S/C Gain 99.5dB 80.3dB 101.0dB | 115.9dB | 135.1dB

rays. Then the antenna is considered to be in transmission mode and the radiated
field is computed by asymptotic evaluation of the radiation integral in the Fresnel
approximation.”

1.4 THE COMBINED, TOTAL GAIN UPON THE FOCAL SPACECRAFT
One is now able to compute the Total Gain of the Antenna + Sun system, which is
simply obtained by multiplying Equations (1.13) and (1.15)

4 2
167 GMSunrAntenna 1/3
3 .

GTofa/ = GSunGAntenna = (116)

C
Since the total gain increases with the cube of the observed frequency, it favors
electromagnetic radiation in the microwave region of the spectrum. Table 1.1 shows
numerical data provided by Equations (1.15) and (1.13) for five selected frequencies:
the hydrogen line at 1,420 MHz and the four frequencies that the Quasat radio-
astronomy satellite planned to observe, had it been built jointly by ESA and NASA
as planned before 1988 [14] (the definition of dB is N dB=10Log;o(N)=10In(N)/
In(10)).

1.5 THE IMAGE SIZE AT THE SPACECRAFT DISTANCE

The next important notion to understand is the size of the image of an infinitely
distant object created by the Sun lens at the current spacecraft distance z from the Sun
(z > 550 AU). We may define such an image size as the distance from the focal axis
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Table 1.2. Table showing image sizes for a 12-meter antenna, located at distances of 550 AU,
800 AU, and 1,000 AU from the Sun, for the five selected frequencies.

Line Neutral OH H,O0
hydrogen radical

Frequency v 1,420 MHz | 327 MHz 1.6 GHz 5GHz 22GHz

Wavelength A 2lcm 92 cm 18cm 6cm 1.35cm

Image size (down 6dB) 2.498km | 10.847km | 2.217km | 0.709km | 0.161 km

at 550 AU

Image size (down 6 dB) 3.033km | 13.169km | 2.691km | 0.861km | 0.196 km

at 800 AU

Image size (down 6dB) 3.391km | 14.724km | 3.009km | 0.963km | 0.219km

at 1,000 AU

(i.e., from the spacecraft straight trajectory) at which the gain is down 6 dB. The
formula for this (proven in [8]) is

)\ z
2r Schwar. Aschlld \/ Sun

Thus, the image size increases with spacecraft distance z from the Sun. Table 1.2
provides a quantitative feeling of how the image size changes with the spacecraft
distance from the Sun.

Itis clear that these image size values are very small compared with the spacecraft
distance from the Earth. This means that if we want to observe a certain point-source
in the sky, the alignment between this source, the Sun, and the spacecraft position
must be extremely precise. In fact, the spacecraft tracking must exceed by far what we
are able to do within the solar system today. However, this is not true if the source we
want to observe is the center of the Galaxy, which is a very broad source: slight
changes in the spacecraft trajectory (say, in a spreading spiral shape as described in
Appendix D) would enable us to gradually see much of the Galactic center at the huge
resolution provided by the gravitational lens of the Sun.

T6dp =

2
N
Wz= . 1.17
vz 272\ /GMy,, v ( )

1.6 REQUIREMENTS ON THE IMAGE SIZE AND ANTENNA
BEAMWIDTH AT THE SPACECRAFT DISTANCE z

There are two “‘geometrical” requirements that must be fulfilled in order that the
combined lens system Sun + FOCAL spacecraft antenna can work at best:

(1) Size requirement: the full antenna dish of the FOCAL spacecraft must fall well
inside the cylindrical region centered along the focal axis and having radius equal
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to reqsp. That is, the spacecraft feed—dish radius must be considerably smaller than
F6aB 5
z
T antenna << T6dB = 2772\/2T5un/\\/2 = 2’/'1'2 CGMSM % . (] ]8)
(2) Angle requirement: the impact-radius circle around the Sun within which elec-
tromagnetic waves are focused towards the FOCAL spacecraft must fall well
within the antenna beamwidth of the FOCAL spacecraft. In slightly more
technical terms, the Half-Power Beam Width (HPBW, the angular width of
the main lobe of the spacecraft antenna at the half-power level) should be
considerably greater than the angle subtended at the spacecraft distance by twice
the incident ray impact radius at the Sun

_ 8GMyg,,

HPBW > 2a(r) =~ (1.19)
cr

Tables 1.3 and 1.4 show that both these conditions are fulfilled at the three FOCAL
distances from the Sun for the five selected frequencies, respectively.

1.7 ANGULAR RESOLUTION AT THE SPACECRAFT DISTANCE z

The notion of angular resolution of the Sun lens is relevant to the discussion. Angular
resolution is simply defined as the ratio of the image size (at the spacecraft distance z
from the Sun) to that distance z. From Equation (1.17),

2

T'6dB c 1
0 oG io by — . 1 .
resolution (Z) Z 2 2 GMSW \/—I/ ( 20)

Clearly the angular resolution also depends on the spacecraft distance z from the Sun,

Table 1.3. Table showing image sizes vs. the antenna radius for a 12-meter antenna located at
various distances from the Sun for the five selected frequencies.

Line Neutral OH H,O
hydrogen radical
Frequency v 1,420 MHz | 327 MHz 1.6 GHz 5GHz 22 GHz
Wavelength A 21cm 92cm 18 cm 6cm 1.35cm
Image size at 550 AU 2.498km | 10.85km 2.22km 0.71 km 0.16 km
vs. Antenna Radius >6m >6m >6m >6m >6m
Image size at 800 AU 3.03km 13.17 km 2.69 km 0.86 km 0.20 km
vs. Antenna Radius >6m >6m >6m >6m >6m
Image size at 1,000 AU 3.39km 14.72 km 3.01 km 0.96 km 0.22 km
vs. Antenna Radius >6m >6m >6m >6m >6m
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Table 1.4. Table showing HPBW vs. aspect angle of the Sun for a 12-meter antenna located at
various distances from the Sun for the five selected frequencies.

Line Neutral OH H,O0
hydrogen radical
Frequency v 1,420 MHz | 327 MHz 1.6 GHz 5GHz 22GHz
Wavelength A 2lcm 92 cm 18cm 6cm 1.35cm
HPBW at 550 AU vs. 2« 1.23154° | 5.34798° 1.09299° | 0.34976° | 0.07949°
> > > > >

15x1077°|1.5x1077° [ 1.5x 1077° | 1.5 x 10 7° 1.5 x 10~7°

HPBW at 800 AU vs. 2« 1.23154° | 5.34798° 1.09299° | 0.34976° | 0.07949°
> > > > >
1.5x1077°|1.5x1077° [ 1.5 x 1077°| 1.5 x 1077° [1.5 x 10~7°

HPBW at 1,000 AU vs. 2« 1.23154° | 5.34798° 1.09299° | 0.34976° | 0.07949°
> > > > >
1.5x1077°|1.5x1077° [ 1.5 x 1077°| 1.5 x 1077° [1.5 x 10~7°

and it actually improves (i.e., it gets smaller) as long as the distance increases beyond
550 AU.

Table 1.5 gives angular resolutions for the same three distances at the same five
frequencies. Let us take a moment to ponder over these numbers. The best angular
resolutions achieved so far, in visible light, were obtained by the European astro-
metric satellite Hipparcos, launched in 1989, and dismissed from service in 1993.
Though the apogee kick motor of Hipparcos didn’t fire, forcing technicians to take

Table 1.5. Table showing angular resolution for three spacecraft distances (550 AU, 800 AU,
and 1,000 AU), at the five selected frequencies.

Line Neutral OH H,O
hydrogen radical

Frequency v 1,420 MHz | 327 MHz 1.6 GHz 5GHz 22GHz
Wavelength A 21cm 92cm 18 cm 6cm 1.35cm
Angular resolution at 6.3458 x| 2.7557 x 5.6319 x 1.8022 x | 4.0959 x
550 AU S/C distance 10~% arcsec| 102 arcsec | 107 arcsec | 1076 arcsec|10~7 arcsec
Angular resolution at 5.2267 x | 2.2697 x 4.6387 x 1.4844 x | 3.3736 x
800 AU S/C distance 107 arcsec| 107> arcsec | 1076 arcsec| 10~ arcsec|10~7 arcsec
Angular resolution at 4.6749 x | 2.0301 x 4.1490 x 1.3277 x | 3.0174 x
1000 AU S/C distance 10~% arcsec| 107> arcsec | 107 arcsec | 1076 arcsec|10~7 arcsec
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Table 1.6. Table showing the spatial resolutions for astronomical objects at selected distances
from the Sun for a 12-meter spacecraft antenna.

Line Neutral OH H,O0
hydrogen radical
Frequency v 1,420 MHz | 327 MHz 1.6 GHz 5GHz 22 GHz
Wavelength A 21cm 92cm 18 cm 6cm 1.35cm
Resolution at 145km 632km 129 km 41 km 9km
0.51t-yr (Oort Cloud)
Resolution at 1,248 km | 5,422km 1,108 km 355km 81km
4.29 It-yr (oo Centauri)
Resolution at 9,576 km | 41,583km | 8,499km | 2,719km | 618km
10 pc =32.6It-yr
Resolution at 9,575km |415,833km | 84,986km | 2,719km | 6,180 km
100 pc =326 It-yr
Resolution at 957,58 4,158,330 | 849,861 271,955 61,808
1kpe = 3,260 It-yr km km km km km
0.006 0.028 0.005 0.001 0.0004
AU AU AU AU AU
Resolution at 9,575,870 | 41,583,000 | 8,498,610 | 2,719,550 | 618,082
10 kpe = 32,600 It-yr km km km km km
(Galactic Center) = = = = =
0.06401 0.27797 0.05681 0.01818 0.00413
AU AU AU AU AU
Resolution at 4.78794 2.07917 4.2493 1.3597 3.0903
50 kpe = 160,000 It-yr X X X X X
(Magellanic Clouds) 107 km 108 km 107 km 107 km 106 km
0.32006 1.38984 0.28405 0.0909 0.02066
AU AU AU AU AU
Resolution at 5.82123 2.52788 5.16631 1.65322 | 3.75732
613 kpc =2 Mit-yr X X X X X
(Andromeda Galaxy M31) 108 km 10° km 108 km 108 km 107 km
3.89125 16.8978 3.45349 1.10512 | 0.25116
AU AU AU AU AU
Resolution at 1.74636 7.5836 1.5499 4.95968 1.1272
18,406 pc = 60 Mlt-yr X X X X X
(“Jet” Galaxy M87 in Virgo)| 10'km 10'9km 10'9km 100 km 10° km
116.738 506.934 103.605 33.1535 | 7.53488
AU AU AU AU AU




14 So much gain at 550 AU [Ch. 1

Table 1.6 (cont.)

Line Neutral OH H,O
hydrogen radical

Resolution at 291059 1.26393 2.58316 8.2661 1.8786

3.07 Mkpc = 10 billion It-yr X X X X X

(radius of the Universe) 10'2 km 10" km 10'2 km 10" km | 10" km

19,456 84,489 17,267 5525.58 1255.81
AU AU AU AU AU

0.30765 1.33598 0.27304 0.08737 | 0.01986
It-yr It-yr It-yr It-yr It-yr

the software originally written for a circular geostationary orbit and re-write it for a
highly elliptical orbit, the Hipparcos mission has proven a success. The resolutions
achieved by Hipparcos are at a level of 2 milliseconds of arc precision. Checking this
figure against the above table, one can see that the gravitational lens of the Sun plus a
(modest) 12-meter antenna would improve the angular resolution by about three
orders of magnitude (at radio frequencies).

1.8 SPATIAL RESOLUTION AT SPACECRAFT DISTANCE

Finally, let us turn to the spatial resolution, simply called the resolution hereafter, of
an astronomical object we want to examine with the help of the gravitational lens of
the Sun. It is defined by

¢ 1
RObject = dSun70bjecler'esolulion = dSunfObjeat szm \/EI/ .

Again, beyond 550 AU the resolution improves (i.e., the angle gets smaller) slowly
with increasing spacecraft distance from the Sun. Table 1.6 shows the spatial resolu-
tions for a very wide range of distances, from the Oort Cloud to cosmological objects
like quasars.

(1.21)
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2

Scientific investigations along the way to
550 AU

2.1 INTRODUCTION

Completely aside from the investigations using the gravitational focusing of the Sun,
there are a great many scientific investigations that could be carried out by the
FOCAL mission on the basis of being a deep space probe. The innumerable scientific
advantages of such a deep space probe have already been pointed out by the TAU
deep space mission proposed by JPL in the 1980s. TAU stands for “one thousand
astronomical units,” and the seminal paper, titled ‘“‘Preliminary Scientific Rationale
for a Voyage to a Thousand Astronomical Units” was compiled by Maria Ines
Etchegaray in JPL Publication 87-17 (May 15, 1987). This chapter, as well as the
author’s proposal to ESA for the FOCAL space mission, follows that publication
closely.

A 1 MW nuclear-powered electric propulsion (NEP) system forms the basis for
achieving the high velocities required. A solar system escape velocity of 106 km/s is
needed to propel the TAU vehicle to 1,000 AU in 50 years. The NEP system must
accelerate the vehicle for about 10 years before this velocity is attained because of the
extremely low thrust of the xenon-fueled ion engines. At the end of the thrusting
phase the NEP system is jettisoned to allow the TAU spacecraft and science experi-
ments to coast out to 1,000 AU.

Aside from the new propulsion system, an important technology proposed for
TAU is the advanced optical communication system for transmitting science data to
Earth. A 1-meter optical telescope combined with a 10 W laser transponder could
transmit 20 kbps from 1,000 AU to a 10-meter Earth orbit-based telescope.

TAU could provide astrometrists with a 1,000 AU baseline, a unique opportunity
for making parallax measurements of stars in a volume of space 10% times what is
available from Earth orbit, covering the full range of the Galaxy and the Magellanic
Clouds. Depending on the exact location of the heliopause and the progress of the
Voyager spacecraft, TAU might permit the first in situ measurements of the plasma
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environment across the heliosphere and into the tenuous interstellar medium,
sampling the galactic magnetic field, energetic particles, gas, dust, and plasma
environment.

The parallactic measurements would lead to improved models of astrophysical
phenomena and would combine with Earth-based and Earth-orbiting astronomical
measurements to provide more accurate measurements of the distances to objects of
interest for proper data reduction.

An internal JPL/Caltech TAU “‘thinkshop” was held September 29, 1986, at the
Jet Propulsion Laboratory as a kickoff meeting for developing the scientific rationale
of this type of mission. Following the thinkshop, a series of semi-weekly science
presentations were made to the TAU study team covering all areas of science that
would benefit from this mission. The proposed experiments were evaluated for
scientific worth, feasibility, and uniqueness to a TAU mission. Much more science
could be accomplished than we list in this chapter; we list only research that is unique
to the various characteristics provided by this type of mission.

2.2 VISIBLE AND INFRARED STELLAR PARALLAXES

A FOCAL deep space mission (or equivalently, a TAU deep space mission) has
special significance to optical astronomy. Given our current 2 AU baseline to calcu-
late trigonometric parallax, we can accurately measure distances no farther than
about 100 pc. FOCAL could, by virtue of its 500 AU to 800 AU baseline, expand
the measurement of distances out to perhaps 30 kpc or 40 kpc, which for the first time
brings the entire Galaxy to the reach of our astronomical caliper. This expanded scale
would enable a number of exciting astrophysical studies heretofore impossible. The
astrometric capability of FOCAL is assumed to have a 10% accuracy in measuring
distance and a 0.5-milliarcsecond star position accuracy.

In addition to the wealth of astrophysical science made possible on FOCAL, this
new distance scale would have a profound impact on science from past and future
astronomical observatories. Several astronomical projects have flown or are being
developed or contemplated including IRAS, Hubble Space Telescope (HST), SIRTF,
AXAF, LDR, GRO, and several explorers including COBE, FUSE, EUVE, and
QUASAT. (We won'’t explain each acronym since the interested reader can find them
at the relevant Wikipedia sites.) All of these missions, several of which exploit new
wavelength regimes, require accurate distances from optical astronomy in order to
fully realize the potential of their measurements. FOCAL could provide these
distances across the Galaxy.

2.2.1 Uncertainty in the expansion rate of the Universe
The period—luminosity (PL) relation

Since 1960 the estimate of the expansion rate of the Universe, called the Hubble
constant, has varied between 50 km/s and 100 km/s per 100 kpc. The estimate of the



Sec. 2.2] Visible and infrared stellar parallaxes 19

Hubble constant is based upon our understanding of the astronomical distance scale,
which is based upon the period—luminosity (PL) relation of variable stars such as the
Cepheids, RR Lyraes, and Miras. FOCAL would permit a direct measurement of the
distance to these stars. At present the use of photometric parallaxes requires assump-
tions of the level of local extinction to be made to calculate both the distance and the
absolute luminosity of a star. A current method of calibrating the PL relation is to
obtain distances to nearby star clusters by trigonometric parallax; then match the
main sequence of more distant clusters that contain Cepheids to infer distances to
them. This is called Zero Age Main Sequence (ZAMS) fitting. In this way the PL
relation for Cepheids can be calibrated. The Cepheids can then be used to calibrate
the Tully—Fisher (TF) relation, which relates the speed of rotation (from the width of
the 21 cm emission line of neutral atomic hydrogen) with the absolute magnitude of a
galaxy. The TF relation enables the measurement of distance to very distant galaxies
and eventually the determination of the Hubble constant. FOCAL could remove the
necessity for the ZAMS fit.

FOCAL could determine accurate parallax distances to intrinsically variable
stars within our Galaxy (e.g., Cepheids, RR Lyrae, and Miras). It would be possible
to select objects with varying chemical composition to search for other parameters
that may be involved in the period—luminosity relation such as chemical composition,
or some other higher order effect.

2.2.2 Age of the Galaxy
Ages of the globular clusters

FOCAL could take the parallax of a statistically significant number of globular
cluster stars. Having these “‘exact”, trigonometrically derived distances, one could
then directly fit the theoretical isochrones for the evolution of the stars to the main
sequence of the globular clusters that we see. The age to be determined is the time the
star takes to consume its core hydrogen. The observation is to determine the lumin-
osity and mass of stars that have just completed their core hydrogen burning stage.
Knowing the age of the oldest globular cluster would place a lower limit on the age of
the Universe.

2.2.3 Galactic structure
The gravitational mass of the Galaxy

FOCAL could map the rotation curve of the Galaxy. A mass model derived from this
study could be used to refine theories of the formation of the Galaxy. The present
method of determining the mass of the Galaxy is to do photometric parallaxes on
A-class stars. However, this method contains large errors provided by assumptions of
the interstellar extinction, which would not enter into trigonometric parallax meas-
urements such as FOCAL would provide. Since FOCAL could measure the distances
directly, it could look at late B-class or early A-class type stars that have nearly
circular orbits and are at low galactic inclinations. These would be the best “‘test
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particles”. The measured distances would then be combined with Earth-based
measurements of the stars’ velocities. With a calculation of the velocity dispersion
and distance, one could determine the galactic mass as a function of radius.

Dynamic temperature of the disk and halo of the Galaxy

FOCAL could measure the parallax distance to K-class giant stars, which are well
distributed throughout the Galaxy. The ground-based measurements of the velocity
dispersion of these stars with the FOCAL-measured distances would give informa-
tion on the temperature of the Galaxy as a function of Galactic radius. A measure of
the dynamical temperature would provide a better understanding of the structure and
stability of the disk and the structure of the halo of our Galaxy. Present Earth-based
methods rely on photometric parallaxes of K giants; however, these stars lic on a
steeply sloping branch of the HR diagram, and thus the measure is unreliable.
FOCAL would provide a much more accurate measure of the distances. The 50-year
span of the FOCAL mission would also provide very accurate information on the
proper motion of these K giant stars to complement Earth-based studies, and thus
one could obtain all three components of the velocity dispersion relation [1].

Distance to the Galactic center

FOCAL would measure the visual and IR parallax distance to M-giant stars with as
small an impact parameter as possible, but yet not located so close to the center of the
Galaxy that the stars have the highest extinction rates. M giants are concentrated
towards the center of the Galaxy. IR detectors in the focal plane of the telescope
could permit the parallactic measurements to be made for those stars with the
smallest impact parameters where the extinction in the visible is highest (up to 20
visible magnitudes).

The present day method measures distances to RR Lyrae variable stars by the use
of the PL curve. RR Lyrae are not strongly concentrated towards the center of the
Galaxy as are the M-class giant stars [1].

2.2.4 Stellar evolution
Early stellar evolution and resolution of cloud complexes

Improvement on the present understanding of early stages of stellar evolution could
be provided by measuring the visible and IR parallaxes of stars in molecular cloud
complexes where stars are born and in stellar associations where they have been for a
while. FOCAL could provide distances to these objects free of extinction errors.
Using an infrared array in the focal plane of the detector, FOCAL would be able
to resolve a cloud complex along the line of sight, and thus model the three-dimen-
sional structure of a star-forming region. A large sample of cloud complexes may be
found at about 1 kpc, with Orion even closer. FOCAL’s accuracy would be sufficient
to resolve cloud complexes in depth. Cloud complexes are a few parsecs in size and
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thus a 1 pc resolution at 1 kpe distance would be required. With an accuracy of 10%,
this comes to a measurement accuracy of one part in ten [1].

The initial mass function

FOCAL would help to determine how the masses of stars are distributed as they are
born, looking at stellar masses from 0.1 solar mass to 100 solar masses. Is this
function broad, narrow or bimodal? With FOCAL taking their parallax distances,
differentiation between cluster stars and background stars that do not belong to the
cluster is possible [1].

Binary star evolution

Determination of the parallax distance to binary stars is another project FOCAL
could accomplish. Presently photometric parallaxes are used to determine the dis-
tances of binary stars. This method, however, must assume that the star is a normal
star, not taking into account possible mass transfer between the two stars. The study
of binary stars has evolved late in stellar evolution theory. Observational constraints
to study these objects are badly needed [1].

Late stages of stellar evolution

FOCAL could aid the study of how stars of different masses terminate their stages of
nuclear burning. For example, Wolf—Rayet stars have some kind of high-mass
termination point while planetary nebulae have some kind of low-mass termination
point. One cannot be certain of these points because, for example, the planetary
nebula distance scale is uncertain by a factor of 2. Accurate distances would help
greatly in studying these late stages, and FOCAL could provide them for a much
larger sample than is currently available [1].

Study of peculiar objects

a. Carbon stars

An IR detector in the focal plane of FOCAL’s telescope would permit measurement
of the parallax distances to carbon stars. These stars, though invisible to FOCAL in
the optical range, are bright in the red wavelengths [2].

b. Young protostars

At the moment only estimates are available of the distances to these objects.
Parallactic distance measurements by FOCAL would permit a more accurate deter-
mination of their luminosity and thus of their age. The concern regarding these
objects is to determine if they have completed their assemblage of mass or if they
are still accreting material to build their final mass [3].
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2.2.5 Targets of opportunity

As other Earth-based and Earth-orbiting astronomical observatories come to life,
many new objects will be discovered in our Galaxy and in other galaxies. Over the life
of FOCAL there would be requests for accurate distance determination to these
objects, as well as morphological studies of objects (i.e., cloud complexes), which
would be permitted by the large 500 AU to 800 AU baseline. Below is a list of
presently known objects for which distance knowledge is needed. Many more objects
would be expected to be added to this list over the lifetime of FOCAL.

Objects with unknown distance

O-B associations

Regions of high polarization (filamentary)
Nuclei of planetary nebulae

Nova during observation

Nova remnants

Supernovae

Pulsars

Open clusters, young and very old
Local Group—dwarf galaxies
Local Group—M31 bright members
M33
M3l1
S Doradus—LMC
41 Tucanae—LMC
Supernova remnants
Intergalactic objects in LMC and SMC
Infrared objects discovered by IRAS, SIRTF, LDR
New interesting objects identified by HST, AXAF, LDR, GRO.

2.3 ASTROPHYSICS, ASTRONOMY, AND COSMOLOGY

2.3.1 Interstellar gases

It is believed that the solar system may be on the edge of a tenuous cloud of
interstellar matter [4]. FOCAL could study and characterize the properties of the
interstellar cloud through which the solar system is traversing. In particular, it could
characterize the composition, kinetic energy, and spectra of the cloud’s particles and
gases.

Cosmic abundance of hydrogen

FOCAL would be able to determine the number density of hydrogen and helium with
heliocentric distance. Since the Lyman-alpha background from the star field is
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negligible, the backscatter from the solar emission of Lyman-alpha can be used to
determine the cosmic abundance of hydrogen inside the heliosphere and in the
interstellar medium. A 30% loss of the interstellar influx of atomic hydrogen is
predicted to occur at the heliopause. This model is used to explain the discrepancy
between the solar system ratio of H/He of 7/1 compared with the cosmic abundance
of 12/1. The heliopause is transparent to helium. A measure of the radial dependence
of the number density, and especially its variation across the heliopause transition
region, is a fundamental measure to define the interaction at this boundary [5, 6].

Abundance and distribution of He’|He*, D|H, and Li®/Li’

Knowing the elemental ratios of He3/He4, D/H, and LiG/Li7 would shed light on the
development of nuclear synthesis in cosmology and the big bang. The Li® and Li’
lines are too close together to resolve with presently available spectrometers. A
neutral or ion mass spectrometer might be able to provide the in situ measurements
needed to determine the ratio of these elements in the solar system, across the
heliopause, and into the interstellar medium [7].

Abundance and distribution of H, He, C, N, and O

FOCAL could determine, in situ, the cosmic abundances of these elements within the
heliosphere with radial distance from the Sun across the heliopause transition zone,
and also in the very local interstellar medium. These particles are especially interest-
ing in helping to define the interactions involved in these regions because of their low
ionization potential. The interaction process between the solar environment and the
local interstellar medium is of broader interest than just for solar system studies, since
similar interactions may be found in other star systems as well as other astrophysical
conditions such as stellar expansion [7, 8]. A complement of instruments to accom-
plish this task would include a UV photometer, a neutral particle detector (like the
Ulysses MPI), and an ion particle detector [7].

Radio science—VLBI studies of interstellar scintillation

The angular resolution that can be obtained with VLBI is proportional to the baseline
length in wavelengths. However, a fundamental limit to the angular resolution
obtainable is the scattering size of a point source. Density fluctuations in the inter-
stellar medium broaden the apparent size of background sources through small-angle
diffraction and refraction. By measuring the effect of interstellar scintillation we can
determine the turbulence properties of the interstellar medium along different lines of
sight.

During the first part of the FOCAL cruise, at small heliocentric distances, pulsars
could be used as point sources to observe the effect of interstellar medium scintilla-
tions on the propagation of the pulsar signals. This would permit determination of
the scale size of the turbulence in the interstellar medium, as well as testing present
models of this turbulence. Earth-based studies have indicated that the turbulence
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affecting radio signals has scale lengths much larger than an Earth diameter, requir-
ing interplanetary baselines for a detailed study of the power spectrum. There is a
frequency dependence to the scattering properties of the interstellar turbulence. Thus,
sampling at a range of frequencies (10 kHz—22 GHz) could be used to distinguish the
effects of interstellar scintillation from those of the background source. This study
would aid in the development of future space-based VLBI systems [9, 10]. In addition,
we could directly measure the sizes of the radio-emitting regions in pulsars as the
baseline increases.

The VLBI system proposed would consist of a 5-meter pointable radio antenna
on the FOCAL spacecraft and a large Earth-based antenna. This configuration
would provide a VLBI system with a baseline expanding out to 1,000 AU. There
are two objectives to this investigation: the study of interstellar scintillation and the
study of the structure of the pulsars themselves [11].

2.3.2 Astronomy
Radio science—VLBI studies of very compact radio sources

As the baseline increases the source regions within pulsars would be resolved, the
signal would no longer have the coherence of a point source and thus would not be
useful to probe the interstellar medium. It is at this point in the mission that the
source region itself might be studied. Resolution of the radio source would help define
the size of the source region and help determine, for example, the height above the
surface of the neutron star where the emissions are originating. This would help
constrain present models of the pulsar radio-emitting process.

At the highest possible frequencies (i.e., 22 GHz), the antenna could be used to
study the structure of extragalactic radio sources, some of which are small enough to
be unresolved at high frequencies on Earth-length baselines [11].

Low-firequency radio astronomy

A long wire dipole antenna would permit a study of very low—frequency (10 kHz—
100 kHz) radio emissions. Such emissions cannot be observed from the near-Earth
environment due to the extended ionosphere and solar wind. Likely sources are
galactic supernova remnants, pulsars, and burst emissions from the outer planets
and heliopause. The range of frequencies to be sampled is dependent on the length of
the antenna. Preferably, the antenna would be no shorter than 1/2 of the longest
wavelength to be sampled, although a less optimal size might be usable. Receivers for
low frequencies are simple, reliable, and inexpensive [11].

Gamma-ray burst timing and positioning

FOCAL could determine the location of gamma-ray sources. A FOCAL baseline
would permit precision calculations of the time differential of the signal between
FOCAL and Earth. This method of observation would collapse the positioning
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uncertainty box in one direction and would reduce the optical source hunt to a line
scan problem [12].

Gravitational focusing—quasar studies

Among the projects FOCAL would be able to accomplish are the following [13]:

(a) Test the hypothesis that high-amplitude events are caused by gravitational
focusing by individual stars in an intervening galaxy.

(b) Determine the size of the region responsible for the optical continuum emission
of quasars by observing spatial luminosity differences during high-amplification
events (HAE).

(c) Observe brightness variations in quasars due to the transverse motion of the
focusing star (and the intervening galaxy) with respect to the background
quasar.

(d) Determine the number of bodies causing the gravitational focusing of observable
quasars. A large sampling of quasars is required to do this study.

2.3.3 Cosmology
Gravitational wave detection

Using FOCAL and Earth as end masses of an electromagnetically tracked free-mass
gravitational wave detector [14], a stochastic background of primordial gravitational
waves created by very early cosmological processes or by the big bang itself could be
detected with a sensitivity up to six orders of magnitude better than that available by
other means. The wavelengths to be probed lie between 100 and 10° s. The preferred
tracking system for such an experiment is a laser transponder on board the space-
craft, but a high-frequency radio system would still give an important experiment.
The detection of a gravitational wave background would probe the very earliest era of
the evolution of the Universe and would represent a cosmological observation as
important as or more important than the discovery of the microwave background or
of the cosmic redshift [14—17].

Spatial variations of G

Tracking of the FOCAL spacecraft provides a means to test the theory that there may
be possible variations to the Newtonian inverse-square law of gravitation. The
experiment would test the possibility that the Newtonian laws of motion would break
down in the limit of small accelerations, an idea that has been suggested as an
alternative explanation to the hidden mass theorem for explaining galactic dynamics.
The breakdown of the inverse-square law would manifest itself as a special depen-
dence in the effective gravitational constant.

r 2n
Geffe(’tive =G |:1 + A(i> :| (21)
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where r is the distance at which the gravitational acceleration is equal to the typical
galactic acceleration and 4 and »n are determined constants.

A spacecraft at 1,000 AU would have a small enough acceleration about the Sun
to test this theory: with present day tracking capabilities, the power law index could
be limited to n > 4.3. Planetary-scale baseline probes give only n > 1 [18-21].

IR background

A simple IR experiment at the range of 1 micron—30 microns could answer very
important cosmological questions such as: Is there a 10-micron background from
external galaxies or quasars? Is there a 2-micron background? [2].

2.3.4 Solar system studies
Zodiacal light

The Helios zodiacal light experiment observed the zodiacal light intensity to vary as
r~23_If one assumes constant albedo and grain-size distributions, then the number
density of dust varies with distance as r ' [22, 23]. It is still to be determined if either
of these two parameters vary with heliocentric distance [24]. The zodiacal light
experiment on Pioneer 10/11 measured a brightness gradient of approximately
r~23 from 1 AU to 3.5AU and no detectable signal above the starlight background
beyond 4 AU [25]. Thus, the effect of the zodiacal light should be negligible beyond
Jupiter’s orbit, and faint light observations in IR can be done much better than
from Earth orbit [26]. Thermal emission from interplanetary dust dominates the
10-micron, 25-micron, and 60-micron background in IRAS data [27].

Planetary system

As FOCAL leaves the solar system, it could study the zodiacal light from a distance,
both in the visible as well as at IR wavelengths. The study of what a “‘solar system
dust cloud” looks like from a distance could be used to correlate with detections of
other dust clouds, such as those surrounding Vega and Beta Pictoris, which have
recently been made [26].

Determination of the total solar system mass

By the time the spacecraft reaches 800 AU a substantial amount of the mass of the
inner Oort Cloud would be inside the orbit of FOCAL. A more accurate determina-
tion of the mass of the solar system than has been done to date could then be done
[28].

24 SPACE PLASMA PHYSICS

The heliosphere can be described as a huge bubble in the interstellar gas, created by
the radial supersonic outflow of magnetized plasma from the Sun (the solar wind)
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and confined by the magnetic and particle environment of the local interstellar
medium. The boundary between the region of solar wind dominance and the inter-
stellar medium is called the heliopause. The shape of the heliopause and the structure
of this boundary are a function of the magnetic, dynamic, and thermal pressures of
the interstellar medium, as well as the particle composition in this region, and their
interaction with the very turbulent local magnetic environment. The boundary’s
characteristics (i.e., dynamic and magnetic structure as well as location) are expected
to differ for each particle species. A probable model for the shape of the heliosphere
was extrapolated from our present understanding of the behavior of collisionless
plasmas and from our present knowledge of the heliosphere. According to this model
the Pioneer and Voyager spacecraft have so far probed only the inner heliosphere—
about 20% of the radial dimension of the heliosphere [3]. The radial dimension has a
nominal value of about 100 AU, but estimates range from 50 AU to 100 AU. FOCAL
would be the first opportunity for a full complement of instruments with the proper
range of sensitivity to make a cross-sectional cut of our heliosphere and sample the
interaction region between the interstellar medium and the heliosphere, providing us
with a heliospheric model to be used as a basis for understanding other star systems
[29].

2.4.1 Dust
Solar system

FOCAL would be able to determine the distribution of dust within the solar system,
thus permitting us to study the effects of gravitational focusing, mass and composi-
tion of the dust, and its orbital characteristics, such as direction (direct vs. retrograde)
and ellipticity of the orbit as well as the mass, velocity, energy, and composition of
these particles. The mass and velocity would allow us to define the population of dust
and the orbit of these particles in the solar system. Determination of the particle
orbits is essential in distinguishing the source of the particles and in projecting the
three-dimensional distribution. The velocity (speed and direction) of a particle is the
discriminator between interstellar grains and solar system—source particles.

Heliopause

The energy and the density distribution of dust across the transition zone defined as
the heliopause could be characterized by measurements taken by FOCAL. It would
also be able to determine mass, energy, and chemical composition as well as the
kinematics of particle behavior, charge exchange, and wave—particle interactions in
this turbulent region.

Interstellar medium

Instruments on FOCAL could be used to determine mass, energy, and chemical
composition of the dust population as well as the kinematics of particle behavior
of dust in the interstellar medium. Grains are expected to be on the order of 1071 gto
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10~ g. Dust instruments presently available, such as those used on Galileo and the
Halley missions, have the capability to determine mass and velocity (speed and
direction) as well as particle composition [26].

2.4.2 Plasma and energetic particle distributions
Heliosphere
A FOCAL mission would be able to

(1) determine the composition of, and characterize the energy spectrum and
distribution of, low-energy particles in the outer reaches of the heliosphere not
yet visited by other spacecraft;

(2) determine regions of attenuation and energization of these particles;

(3) characterize the wave—particle interactions of plasmas in the turbulent regions of
the heliosphere, especially those regions dominated by inner heliospheric shocks
and the heliopause boundary.

Interstellar medium

Measurements taken on FOCAL would help determine the “original” energy
distribution and composition of particles of interstellar medium origin prior to the
energization and/or attenuation caused by wave—particle interactions in their traverse
through the heliopause. A definition of the particle domain in the interstellar medium
would lead to an understanding of the interaction of our star system with the Galactic
environment, and would help constrain models of the interstellar medium with other
astrophysical conditions (i.e., star systems and jets [30]).

2.4.3 Low-energy cosmic rays

Projects on cosmic rays include attempts to

(1) determine the origin, energy spectrum, and mass of cosmic rays;

(2) characterize the energy spectrum and distribution of low-energy cosmic rays;

(3) characterize the interaction with, and attenuation or energization of, low-energy
cosmic rays at the heliopause;

(4) characterize the energy spectrum across the boundary; and

(5) differentiate between solar and extra solar system sources of cosmic rays [30].

2.4.4 Magnetic field morphology
Heliosphere| Heliopause

Determining the morphology of the magnetic field as a function of heliocentric
distance would be possible with FOCAL. This would lead to improved magnetic
field models of the heliosphere as a whole. Defining the location of the magnetic
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heliopause boundary characterizing its structure, and the morphology of the regions
upstream and downstream of this “boundary”, inner and outer bow shocks, mass
loading of field lines in the region, and magnetic instabilities caused by the unique
conditions existing in the outer reaches of the heliosphere are also projected FOCAL
goals [3].

Interstellar medium

FOCAL would determine the morphology of the galactic magnetic field as a function
of the galactic magnetic field, as well as the interactions with the local interstellar
plasma, interstellar shocks, hydromagnetic waves, and the characteristics of local
stellar winds. Determining the characteristics of the magnetic field outside the domain
of the heliosphere would help constrain models for the origin and generation of the
Galactic magnetic field [30].

2.4.5 Plasma waves
Heliosphere| Heliopause

The ability to study the plasma waves generated in the various interaction regions of
the outer heliosphere, inner and outer shocks, and heliopause to determine the source
of these waves, and to study the local particle—wave interactions, especially near the
heliopause, are all possible with a FOCAL mission [30]. Plasma wave emissions in the
2 kHz-3 kHz frequency range, known to be generated at planetary shocks, have also
been faintly seen by Voyager from what may be the terminal shock of the heliosphere
[31].

Interstellar medium

Another FOCAL project is the study of the local plasma waves/particle interactions.
FOCAL would also be able to sample the local charge density, and study the local
magnetohydrodynamic (MHD) behavior and the microprocesses for transporting
energy in the interstellar medium [30].

2.5 SCIENCE INSTRUMENTATION

The scientific objectives listed in the previous section define the need for a specific
complement of scientific instruments. Below is a preliminary list of the instruments
that were suggested to accomplish the proposed investigations.

Optical/IR Telescope

Cosmic Ray Detector

Dust Detector

Energetic Particle Detector
Ton/Neutral Particle Detector
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Gamma-Ray Spectrometer

Magnetometer

Plasma Particle Detector

Plasma Wave Instrument

Ultraviolet Spectrometer

Very Low—Frequency Radio Astronomy Antennas
a. Dipole antenna
b. Pointable dish

Much more effort is necessary to establish the interactions of these various
instruments with each other and their effect on overall spacecraft design.
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Magnifying the nearby stellar systems

3.1 INTRODUCTION

Some experts believe that, probably, sometimes after 2050 AD interstellar space
missions to the nearby stars will have become a technologically feasible reality. Before
launching unmanned probes straight towards each nearby star, however, the need
will be felt to have a detailed “map” of each target star system to explore on the
widest possible range of electromagnetic frequencies. Here is where the FOCAL space
mission will show its full power.

We anticipate that there will be a host of FOCAL space missions launched in all
directions around the Sun, each probe launched in the direction exactly opposite to
the star to explore with respect to the Sun position. In this chapter we shall calculate
each of those relative directions and the proximity to the Sun for each flyby in order
to exit the solar system at the desired inclination to the ecliptic.

A FOCAL space mission could be used to magnify anything of interest outside
the solar system. One should then say that FOCAL will be used to magnify the
nearby planetary systems, meaning not just the nearby stars themselves, but also their
planets, halo disks, Oort clouds, etc.

Table 3.1 lists the 25 star systems located within the first 13.10 It-yr from the Sun.
Twenty-five more stars are encountered by extending the list from 13.101t-yr to
18.43 1t-yr from the Sun, and these are presented in Table 3.2. This catalog of nearby
stellar systems was taken from [1].

3.2 DIRECTIONS OF EXIT FROM THE SOLAR SYSTEM FOR FOCAL
PROBES TO MAGNIFY NEARBY STELLAR SYSTEMS

To magnify a selected nearby stellar system, a FOCAL probe must exit the solar
system along the straight line connecting the center of the Sun to that stellar system,
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Table 3.1. Location of the 25 nearest stellar systems.

[Ch.

Stellar Star designation Distance 1950 1950
System from the Right Declination
Sun Ascension
(It-yr) a 6
1 Proxima Centauri 4.29 14h 26m —62° 28’
2 o Centauri A and o Centauri B 4.38 14h 36m —60° 38’
3 Barnard’s star (+4° 3561) 591 17h 55m 4° 33’
4 Wolf 359 7.62 10h 54m 7° 16’
5 Lalande 21185=BD +36° 2147 8.04 11h Im 36° 18’
6 Sirius A =48915 and Sirius B=48915 8.65 6h 43m —16° 39’
7 Luyten 726-8 = A and
Luyten 726-8§ =B =UV Ceti 8.94 1h 36m —18° 13’
8 Ross 154 = AC-242833-183 9.45 18h 47m —23° 53’
9 Ross 248 10.39 23h 39m 43° 55/
10 ¢ Eridani =201091 10.69 3h 3lm —9° 38’
11 Ross 128 10.95 11h 45m 1° 6
12 Luyten 789-6 11.09 22h 36m —15° 3¢’
13 61 Cygni A=201091 and
61 Cygni B=201092 11.17 21h 5m 38° 30/
14 e Indi = 209100 11.21 22h Om —57° 0
15 Procyon A and
B=61421 = o Canis Minoris 11.36 7h 37m 5221
16 +59° 1915 A and X 2398 B 11.48 18h 42m 59° 33’
17 BD +43° 44 Groombridge 34 A and B| 11.57 Oh 15m 43° 44/
18 CD —36° 15693 = Lacaille 9352 11.69 23h 3m —36° 8’
19 T Ceti 11.95 1h 42m —16° 12/
20 L725-32=LET 118 12.50 1h 7m —17° 32/
21 CD —39° 15693 = Lacaille 8760 12.54 21h 14m —39° 4/
22 BD +5° 1668 (Luyten) 12.64 7h 22m 23° 0/
23 —45° 1841 (Kapteyn) 12.74 5h 10m —45° 0’
24 Kriiger 60 =A and
Kriiger 60 (DO Cep)=B 12.84 22h 26m 57° 27
25 Ross 614 A and B 13.10 6h 27m —2° 46’
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Table 3.2. Location of the next 25 nearest stellar systems.

Stellar Star designation Distance 1950 1950

System from the Right Declination
# Sun Ascension

(It-yr) @ 6

26 BD —12° 4523 13.10 16h 28m —12° 32/
27 Wolf 28 (Van Maanen) 13.94 Oh 46m 509
28 Wolf 424 A and B 14.24 12h 31m 9° 18’
29 G 158-27 14.43 Oh 4m —7° 48’
30 CD —37° 15492 14.50 Oh 2m —37° 36’
31 BD +50° 1725=Grm 1618 15.03 10h 8m 49° 42/
32 CD —46° 11540 15.10 17h 25m —46° 51’
33 Luyten 1159-16 15.10 1h 57m 12° 517
34 CD —49° 13515 15.24 21h 30m —49° 13’
35 CD —44° 11909 15.31 17h 33m —44° 17
36 BD +68° 946 15.76 17h 37m 68° 23’
37 Luyten 145—141=cc 658 15.83 11h 43m —64° 33’
38 BD —15° 6290 = Ross 780 15.83 22h S1m —14° 31’
39 40 Eridani A, B, and C 15.76 4h 13m —7° 44/
40 BD +15° 2620 = Lalande 25372 15.90 13h 41m 15° 26’
41 BD +20° 2465 16.23 10h 17m 20° 7'
42 Altair 16.64 19h 48m 8° 44/
43 70 Oph A and B 16.73 18h 3m 2031/
44 AC +79° 3883 16.81 11h 45m 78° 58’
45 BD +43° 4305 16.90 22h 45m 44° 5’
46 AC 458 =Stein 2051 A and B 16.99 4h 26m 58° 33’
47 +44° 2051 =WX UMa A and B 17.54 11h 3m 43° 47
48 —26° 12026 =36 Oph A, B and C 17.73 17h 12m —26° 39’
49 —36° 13940 A and B (HR 7703) 18.43 20h 8m —36° 14/
50 BD +1° 4474 18.43 23h 47m 208/
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and in the direction exactly opposite to the stellar system with respect to the Sun
center. FOCAL must then reach distances between 550 AU and 1,000 AU from the
Sun’s center to perform its observations on electromagnetic waves focused there by
the Sun’s mass.

In terms of celestial coordinates (i.e., right ascension « and declination ¢), the
FOCAL exit direction to observe a selected stellar system points just towards the
opposite direction on the celestial sphere. Since distances to the nearby stellar systems
are huge compared with distances within the solar system, one may well omit the
coordinate transformations between the Earth and the Sun in the first instance,
treating the situation as if the Earth and the Sun were centered at the same point.
Thus, to get the desired direction of exit from the solar system, one only has to

e add 12 hours to the selected stellar system right ascension «;
e reverse the selected stellar system declination sign: —¢ instead of 6.

In this way, the second and third columns in Tables 3.3 and 3.4 are obtained from the
data of Tables 3.1 and 3.2, respectively. These columns yield the new « and ¢ of the
corresponding FOCAL spacecraft exit direction.

In view of the subsequent calculations about the Sun flyby enabling the exit of the
solar system at any requested inclination, Tables 3.3 and 3.4 also contain two more
columns (the fourth and fifth ones) describing the same exit direction in terms of
celestial latitude § and longitude )\, respectively. These columns were computed from
the values of « and 6 by virtue of the transformation equations

{sinﬂ—cosssiné—sinscosésina

cos 3 cos A = cos 6 cos a

which follow from elementary spherical trigonometry considerations and are proven
in any textbook of spherical astronomy; in particular, [2, 3]. The angle ¢ is the
inclination of the ecliptic plane with respect to the celestial equator (i.e.,
23°2621.448").

3.3 KEPLERIAN THEORY OF SIMPLE HYPERBOLIC FLYBYS

The simple theory of classical Keplerian hyperbolic flybys, described in this section,
can be found in textbooks of celestial mechanics or astrodynamics such as [3, 4].
I present the theory here because it paves the way for applications to the Sun flyby
that any FOCAL spacecraft will have to make in order to exit the solar system at any
desired inclination on the ecliptic plane and without additional cost of fuel.

The starting point of the Keplerian theory is, of course, the equation of an ellipse
centered at the origin and having semi-axes ¢ and b along the axes x, and y,
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Table 3.3. Direction of exit from the solar system for the 25 FOCAL spacecraft going to take
magnified shots of the nearest 25 stellar systems.

Stellar FOCAL EXIT FOCAL EXIT FOCAL EXIT FOCAL EXIT

System Right Ascension Declination Latitude Longitude
# (= yarger + 12h) (= —brarger)
1 2° 26’ 62° 28’ 43° 55/ 237° 55/
2 2° 36’ 60° 38’ 41° 26’ 238° 26’
3 5° 55/ —4° 33/ —27° 58’ 268° 58’
4 22° 54/ —7° 16’ 0° 12’ 161° 12/
5 23° 1’ —36° 18’ —27° 28’ 151° 28’
6 18° 43’ 16° 39’ 38° 17 103° 17/
7 13° 36’ 18° 13’ 25° 44/ 15° 44/
8 6° 47 23° 53’ 0° 53/ 280° 53’
9 11° 39’ —43° 55’ —41° 30’ 343° 30’
10 15° 31’ 9° 38’ 26° 31’ 47° 31’
11 23° 45’ —1°6' 0° 29’ 176° 29’
12 10° 36’ 15° 36/ 508/ 3350 8’
13 95 —38° 30’ —51° 52/ 336° 52/
14 10° 0’ 57° 0 41° 21’ 308° 21’
15 19° 37 —5° 21’ 15° 59’ 115° 59
16 6° 42/ —59° 33’ —81° 33’ 308° 33’
17 12° 15 —43° 44/ —37° 58/ 23° 58’
18 11° 3 36° 8’ 27° 14 3320 14/
19 13° 42’ 16° 12/ 24° 29’ 17° 29’
20 1327 17° 32/ 21° 42’ 8° 42/
21 9° 14/ 39° 4/ 21° 47 308° 47
22 19° 22/ —23° 00’ 0° 52/ 108° 52/
23 17° 10’ 45° 0’ 67° 24’ 66° 24’
24 10° 26’ —57° 27 —59° 11’ 344° 11/
25 18° 27’ 2° 46/ 24° 29’ 97° 29’
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Table 3.4. Direction of exit from the solar system for the 23 FOCAL spacecraft going to take

magnified shots of the next nearest 25 stellar systems.

Stellar FOCAL EXIT FOCAL EXIT FOCAL EXIT FOCAL EXIT

System | Right Ascension Declination Latitude Longitude
# (= uarger +12h) (= —brarger)
26 4° 28’ 12° 32/ —-10° 9’ 247° 9’
27 12° 46’ —-5°9 0° 11’ 12° 117
28 0° 31 —9° 18/ —11° 35’ 183° 35
29 12° 4/ 7° 48’ 6° 4/ 1° 4/
30 12° 4/ 37° 36’ 33° 21 15° 21’
31 22° 8’ —49° 42/ —35° 21’ 134° 21’
32 5° 25’ 46° 51’ 21° 54/ 263° 54/
33 13° 57 —12° 51’ 0° 50’ 31° 50
34 9° 30’ 49° 13/ 320 1 308° 17
35 5° 33’ 44° 17 20° 23’ 264° 23’
36 5° 37 -68° 23/ —87° 8’ 221° 8’
37 23° 43’ 64° 33’ 56° 30’ 143° 30’
38 10° 51 14° 31’ 5° 40’ 338° 40’
39 16° 13’ 7° 44’ 26° 56 59° 56
40 1° 41’ —15° 26’ —24° 2/ 197° 2/
41 22° 17 -20° 7' —8° 48’ 148° 48’
42 7° 48’ —8° 44/ —29° 19’ 300° 19/
43 6° 3/ —2° 31 —25° 57" 270° 57
44 23° 45’ —78° 58’ —63° 33/ 115° 33’
45 10° 45’ —44° 5 —46° 55’ 354° 55/
46 16° 26 —58° 33/ —36° 18/ 75° 18’
47 23° 3’ —43° 47 —34° 19’ 147° 19’
48 5012/ 26° 39’ 20217 259° 21’
49 8° 8’ 36° 14/ 15° 12/ 296° 12/
50 11° 47 —2°8 —3° 16’ 357° 16’
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respectively:
PR
) + ke 1 (3.1)
along with the two ellipse relationships
E=br el
3.2
o (3.2)
a
Inserting (3.2) into (3.1) one gets
2 2
X Y
— + =1. (3.3)

a’>  a*(1—e?)

On the other hand, if one considers the polar coordinates (r, 1) centered at the right
focus (whose abscissa is +c¢), the immediate transformation formulas follow:

X =c+rcosv = ae+rcost
{ . (3.4)
y=rsind
which, substituted into (3.3), yield, after some rearranging, the second degree alge-
braic equation in r

(1 — 2 cos® 9)r? + [2ae(1 — e*) cos V]r — a*(1 — e*)? = 0. (3.5)

Solving this with respect to r, one gets the well-known polar equation of the ellipse
centered at the (right) focus located at the origin

a(l —e?)

r(ﬁ)zl—&-ecosﬁ'

For an ellipse, the range of the eccentricity e is 0 < e < 1, and, in the limiting case of
e =0, it is a circle of radius « centered at the origin.

The special case where ¢ = 1 is the parabola, and its equation can be obtained
from (3.6) as its limit for

(3.6)

e—1 (3.7)

in such a way that the numerator of (3.6) tends to a finite positive number, denoted by
p and called the parameter of the parabola. This implies that @ in the numerator of
(3.6) must tend to infinity

a— oo (3.8)

with the result that the polar equation of the parabola is
Pparabola
) = 3.9
() 1 4 cos(¥9) (39)

All values of the eccentricity higher than 1 (1 < e < o) yield a hyperbola. The
polar equation of the hyperbola can be found just as for the ellipse; that is, by starting
from the well-known Cartesian equation of the hyperbola centered at the origin and
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having semi-axes a and b along the axes x, and y, respectively:

Xy
i 1 (3.10)
along with the two hyperbola relationships
A—p gt
3.11
e & (3.11)
a

By repeating steps similar to (3.4) and (3.5), this leads to the polar equation of the
hyperbola

a(e® — 1)

rw)zl—&-ecosﬂ'

(3.12)
Checking this against (3.6), one immediately notices that the polar equations of both
the ellipse and hyperbola would be the same—that is, Equation (3.6)—if a was
formally replaced by —a in the hyperbola equation (3.12). This convention will be
adopted throughout this book, so all the equations affecting the hyperbola will be derived
by the similar equations for the ellipse merely by replacing a by —a (see Figure 3.1).

A basic result in classical newtonian gravitational theory (which is not to be
proven here, and can be found in any textbook about classical mechanics) is the
conservation of energy. For two bodies of masses M and m at the distance r from
each other, and in the reference frame whose origin is located at the center of the
larger mass M, the conservation of total (i.e., kinetic plus gravitational) energy is
expressed by the equation

GM GM
%mvz— rm:_ 2am (3.13)
where v(r) is the velocity of the smaller body of mass m moving around the larger
body of mass M, the latter assumed fixed. This formula is exact for an elliptical orbit
as well as for a hyperbolic trajectory (replacing a by —a, as previously discussed) and
even for a parabolic trajectory (letting a — o0). Solving (3.13) for the velocity v(r),

one gets the speed equation
2 1
Y= [GM(Z==). 14
o) = fom (2 ) (3.14)

Since we are interested in hyperbolic flybys, we are concerned with the approach
speed (i.e., the speed at which the spacecraft enters the sphere of influence of the
massive body M that it is going to fly by). One can approximately assume that when
the spacecraft enters the sphere of influence, its distance from the mass M is “infinite”
(i.e., r — o0), and from this assumption Equation (3.14) yields the following space-
craft approach speed v, along a hyperbolic trajectory (once again, « is to be taken as
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Figure 3.1. Basic geometry of the hyperbolic flyby.

negative, according to the convention):

M
Vo = )Lngov(r) = —GT. (3.15)

Thus, the parameter a for a hyperbolic flyby is related to the approach speed v, by

the important formula
GM

= . 3.16
a ) (3.16)
On the other hand, inversion of the polar orbit equation (3.6) yields

9¥(r) = arccos [i (M - 1)} . (3.17)

r

When the spacecraft is at infinite distance from M along a hyperbola, it is
actually moving along the hyperbola asymptote. One may thus deduce the important
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relationship between the angle 9., (i.e., the angle between the hyperbola axis and any
of the two asymptotes) and the hyperbola eccentricity e:

1
Yo = lim¥(r) = arccos (— 7> (3.18)
r—00 e
and upon inversion,
1
e = ————. 3.19
€ cos(Vy) (3.19)

As for the ranges of these two variables, since for the hyperbola one has e > 1 it
follows that —¥ < ¥ < ¥ and 7/2 < ¥, < .

The value ¥ = 0 is particularly important inasmuch as it is the periastron (i.e., the
point of the spacecraft closest approach to the mass M). This periastron distance r,
may be calculated from the polar orbit equation (3.6) where a and e are being

replaced by (3.16) and (3.19), respectively. The result is

r,=r(0)=a(l —e) = —GTM (l +Coslt9 ) (3.20)

In order to find the spacecraft speed at the periastron, just substitute the previous
equation into the speed equation (3.14) to get

IGM1+e 1 —cosy
o = vlry) = Ta 1-e \/ 1+cos v’ (3:21)

This periastron speed is also the highest speed achieved by the spacecraft along its
hyperbolic trajectory, the lowest speed being the approach speed v,,. In fact, in the
speed equation (3.14), r first decreases from oo to r, and then increases again from r,
to oco.

It turns out to be quite useful to define the impact parameter p of the spacecraft as
the minimal distance between the asymptotes and the center of the mass M. Figure
3.1 shows that one has

{OA:rp—a:a(l—e)—a:—ae
AP = OA cos OAP = —ae cos(m — ¥) = aecos ¥, = —a

from which one gets

OP =042 — AP = /a2 — a® = |a]V/e* — 1.

Being p = OP and a < 0, one finds the following expression for the impact parameter:

5 GM 1 GM
p=—a @2 — 1= DT Cosz 9 —1= UTtan 1900 (322)
o0 o0 o0

In conclusion, we would like to make the important remark that any planar
hyperbolic trajectory may be completely described by just one of the following three
couples of independent parameters:

(a,e), (s, Ys0), (1p, ). (3.23)
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In fact, every one of the above three couples may be re-expressed as a suitable
function of the other two couples of parameters as shown hereafter:

_ GM GM
a = _UT Voo = —7[[
1°° & 1 (3.24)
= T osd ¥, = arccos (— 7>
2 o2\
P
r,=a(l—e) a_<r_GM)
- Jm “ " (3.25)
77N a 1—e _ %y
GM
2GM
ja— _GiM 1+ ! Uy = U; -
r v €08 Vo "

(3.26)

&
» 1 —cosdy ,,pUZ -1
=7 _ _
P = Y\ T cos 0, Yo = arccos | — 1+GM

3.4 THE FLYBY OF THE SUN PERFORMED BY THE
FOCAL SPACECRAFT

To let the FOCAL spacecraft exit the solar system along a straight trajectory inclined
at any angle to the ecliptic plane it is necessary that the flyby of the Sun be the last one
in the sequence of all possible planetary flybys. In this section I shall use the equations
of the previous section to study the Sun flyby performed by a FOCAL spacecraft
intended to explore each one of the stars listed in Tables 3.3 and 3.4.

We shall now assume that the asymptotes of the Sun flyby are the two straight
lines from the Earth to the Sun and from the Sun to the selected star. For additional
simplification we assume that the flyby plane spanned by the two asymptotes men-
tioned above is orthogonal to the ecliptic plane.

Next, let us introduce the deflection angle v of the flyby (i.e., the angle between
the incoming and outgoing hyperbola asymptotes). Then, the absolute value of the
celestial latitude of the target star, |3|, is also the deflection angle in the Sun flyby, as
shown in Figure 3.2.

Moreover, a glance at Figure 3.2 yields the relationship between the angle ¢ = | 3|
and the angle ¥

27 — 20y =7 — 3. (3.27)
Solving this for ¥,
T T 1Bl g ,
Voo = 5 + 5=3 + 5 (“loose” Sun flyby case). (3.28)

Since |G| < 90° for any star, this Sun flyby would cause deflections ¢ smaller than
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- Final
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Fasymptote the star\;--._._

Figure 3.2. Relating the celestial latitude of the target star to the Sun flyby angle between
hyperbola axis and asymptote.

90°. However, the small values of 1) = || formulas in Section 3.3 would yield a huge
perihelion distance, larger than 1 AU. This is clearly a problem in the design of the
FOCAL Sun flyby, and its solution is to replace the above “loose’ Sun flyby by virtue
of a “tight” Sun flyby (i.e., one having the deflection angle 1 larger than 90°).

The tight Sun flyby is depicted in Figure 3.3. The deflection angle ¢ between the
hyperbola asymptotes is now given by

Y=m—|0 (“tight” Sun flyby case). (3.29)

Replacing (3.29) into (3.27), a new relationship between the angle ¥, and |3 is found

181 (“tight” Sun flyby case). (3.30)

Voo =7 —

In conclusion, the tight Sun flyby is more appropriate than the loose one for the
FOCAL space mission, and, in Appendix B, we computed all the 50 tight Sun flybys
required to take magnified radio pictures of all the 50 nearest stars to the Sun.
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Figure 3.3. A “tight” Sun flyby: a different relationship between the deflection angle ¢ and the
absolute value of the celestial latitude, |3, of the target star system.

Mathematically, all tables in Appendix B are thus based on (3.30) rather than on
(3.28).

One may well wonder how long it will take for humankind to send 50 FOCAL
spacecraft: five centuries? Or less? No matter how long, at least some of these FOCAL
spacecraft will have to be launched, for FOCAL is a “must” before any direct stellar
exploration starts.
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Astrodynamics to exit the solar system at the
highest speed

4.1 INTRODUCTION

To this author’s knowledge, the first paper dealing with the problem of making a
spacecraft exit the solar system at the maximum possible speed was published in 1972
by Krafft A. Ehricke [1]. The abstract of his paper summarizes his results: “For
optimum propulsion energy management, the departing spacecraft should use a
powered flyby maneuver at Saturn for insertion into a retrograde heliocentric orbit,
followed by a Jupiter gravity-assist for injection into a hyperbolic orbit such that a
final powered maneuver is applied at closest perihelion distance and highest peri-
helion approach velocity possible.” Later, an algebraic error present in Ehricke’s
paper was corrected by G. Matloff and K. Parks [2]. Again we quote from the
abstract: “An error in some previous considerations of gravity-assist interstellar
propulsion is pointed out and corrected. The revised analysis is applied to powered
and unpowered periapsis maneuvers.”

42 A THEOREM BY CARLES SIMO

The calculations appearing in the present section are due to Carles Simo of the
University of Barcelona (Spain). At the Congress on Advances in Nonlinear Astro-
dynamics (held at the Geometry Center of the University of Minnesota, Minneapolis,
November 8-10, 1993), Simo handed this material over to this author as his con-
tribution to the FOCAL space mission. We had presented the problems of the
FOCAL space mission to him a few months earlier, on May 26-27, 1993, at an
Astrodynamics Congress held in L’Aquila, Italy. We are grateful to Simo for this
enlightening mathematical contribution.
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4.2.1 FElementary background (planar problem)

Assume J is a planet around the Sun in circular orbit (to make things easy). The
velocity is

7=, [_01] 4.1

Let a spacecraft approach J from beyond the J orbit (just as in the case regarded by
K. Von Ehricke as the optimal one) with velocity (see Figure 4.1)

51:U1|:

cosa} 42)

—sin «
Using zero-order approximation, the velocity of the spacecraft with respect to J is
assumed to be hyperbolic:

Usoyin = U1 = Uy (4.3)
whence
-1
5001')1:51 —EJ:UI[CO,SQ} —UJ|: :| = |:Uj+vl,cosa:|. (44)
' —sin « 0 —0; sin «
Spacecraft
Jupiter

A Jupiter flyby is optimized A
by assuming the spacecraft at first flyby
reaches Jupiter from outer
space (from Saturn), and

leaves Jupiter towards the
Sun. Then the final speed
may reach 35.789 km/s

Sun

Jupiter
The Sun flyby only changes at second
the speed direction. However, ﬂyby
a second optimized Jupiter
flyby on the way out of the
solar system might raise
the speed to 51.212km/s

Figure 4.1. Optimal Jupiter flyby from the outer solar system (i.e., from the Saturn orbit) right
toward the Sun. If this flyby is further applied in the reverse sequence, it could throw the
spacecraft out of the solar system at about 50 km/s.
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Passing close to J, the relative velocity is turned by an angle 3, which depends on the
minimum distance. In the sequel, we shall just refer to this angle (3, rather than to the
minimum spacecraft distance from J. Then

. {cosﬂ sin [3}_,

Uoo,()ut = —sinﬁ COSﬁ Uoc,in (45)

or

. [ cos3  sin B} [v, + v} cos a}

Voo,out =

—sinf3 cosf —v; sin «
cos 3 cos(a+ )
= . 4.
Y {_sm ﬂ} o [—sin(a + 5)] (0
On the other hand, one has
Eoo,out = 52 - ﬁ./' (47)

By setting equations (4.6) and (4.2.7) equal to each other (using Equation (4.1) also),

one gets
L cos(a+ f3) cos 5 —1
Uy = Uy [—sin(a n ﬂ):| + UJ|: —sin ﬂ :| (48)

The two components of this vector along the x and y axes are thus, respectively,

{vzx = v cos(a+ B) + vy(cos 5 — 1)

vy, = —0; sin(a + ) — v, sin §. (49)

From them we infer that the modulus of the ¥, vector is given by

vi=vi + v%y =03+ 0} (4 sin’ (g)) + 2vjv;(cos a — cos(a + B)).  (4.10)

4.2.2 Optimization of a single Jupiter flyby

Assume a spacecraft is launched far away from the Sun and up to the Saturn orbit, so
that its motion is close to parabolic. Then suppose the spacecraft “‘comes back™ and
approaches Jupiter, flybys it, and points towards the Sun, S, just at the exit of
Jupiter’s sphere of influence (spherical region of space around Jupiter where Jupiter’s
gravity is still higher than the Sun’s). This implies « + 3 = 7/2 to exit towards the
Sun. By inserting the constraint

™
f=3-a (4.11)

into the expression of the modulus of the flyby exit velocity @,, we can express the
modulus of this velocity as a function of the single angle variable «:

v3(@) = v} + 203(1 — sin @) + 20,v; cos a (4.12)
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whence

Zall = /o3 + 203(1 = sin a) + 20,0, cos . (4.13)

We can now optimize the Jupiter flyby. In other words, it is possible to determine the
“optimal value” of the angle a between the direction of the spacecraft entering the
Jupiter sphere of influence and the direction of the Jupiter velocity around the Sun.
This optimal value of the angle « is obtained by requiring that the above function of «
1S a maximum,; that is,

d||]] _ —203 cos o — 20, sin a —0 (4.14)
da 2\/v%+2v§(l — sin ) + 2vv; cos «
This yields
tana = — L (4.15)
Uy
that is
sina = ——7 cosa=——1 (4.16)

b
2,2 2, 2
\ VT o) \/ o1ty

The modulus of the spacecraft velocity, when it exits the Jupiter sphere of influence, is
obtained by inserting these expressions for sin « and cos « into the formula for v, («).
After some manipulation, the result is

v3 = v] 4 207 + 20,4/ v} + V3. (4.17)

4.2.3 Two optimized Jupiter flybys plus one intermediate Sun flyby

Assume that the spacecraft entrance velocity into the Jupiter sphere of influence, vy, is
the parabolic velocity of any spacecraft with respect to Jupiter—in practice this
amounts to supposing that the spacecraft reaches Jupiter “from very far away”
(e.g., from Saturn):

v = V2. (4.18)

Then the corresponding optimized exit velocity after the Jupiter flyby and directed
towards the Sun is

v3 = (4+2V3)0) e, v, =1\/4+2V30v, =2.732050,. (4.19)

In words, the best Jupiter flyby for a spacecraft “to fall” towards the Sun increases
the modulus of the spacecraft velocity by 2.73 times.
Now consider a double Jupiter flyby. This means the following:

(1) A first Jupiter flyby “from the outside”, as just described.
(2) A (hyperbolic) Sun flyby that just changes the spacecraft direction and keeps the
incoming and outgoing velocities module just the same.
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(3) A second Jupiter flyby performed in a fashion such that the increase in the
spacecraft speed is again optimized. By calling v; the incoming speed and v,
the outgoing speed, for reasons of geometrical symmetry, one has

4) vy =vs.

On the other hand, the formula relating v, to v; for the exit velocity after the second
flyby reads

vi:v§—|—203+2v”/v§+v3:v%—|—203+21)1\/v%+v3

= (44 2V3)05 4 207 4 205/ (4 + 2V/3)0% + 03

= (64+2V3)0] + 207\ 5 +2V3 = (6 +2V3 +21/5+2V3)03.

That is,

vy = \/6 +2V3+24/5+2V30, = 3.90931v, = 51.212 km/s

having replaced the numerical value of the average speed of Jupiter, v; ~ 13.1 km/s.

To summarize, a sequence of two optimized Jupiter flybys with a Sun flyby in
between does indeed allow any spacecraft to leave the solar system with an exit speed
of 51.12kmy/s. Such a speed would bring our spacecraft to 550 AU in 50.911 years.
However, the time the spacecraft must spend within the solar system before exiting is
at least 10 or more years, bringing the total amount of time required to reach 550 AU
to 60 years or more—not a desirable result.

Furthermore, all these classical, unpowered, flybys were supposed to take place
in the ecliptic plane, or in planes only slightly inclined with respect to the ecliptic.
Now, it just happens that (by a stroke of luck!) the “Galactic anticenter” (towards
which we must point our spacecraft in order to “watch” at the Galactic center) is
located only about 10 degrees north of the ecliptic plane (i.e., near the star Elnath in
Auriga). This means that only a small correction for the inclination would be
required. However, consider the case of a spacecraft launched towards the point
of Galactic longitude +90° and Galactic latitude 0° (optimal direction for SETI if the
Theory of the Galactic Belt of Life by Marochnick and Mukhin [3] and Balazs [4]) is
correct). This is in Cygnus, significantly away from the ecliptic! Thus, we can hardly
hope to use a classical planetary flyby sequence to launch our spacecraft there. The
solution to the highest exit velocity problem requires much more effort for anyone
interested in pursuing the FOCAL space mission.

43 A CHEMICALLY POWERED CLOSE-SUN FLYBY?

Kerry T. Nock of JPL long studied the TAU mission [5] and the means to exit the
solar system with the highest possible speed. He once suggested to this author that
a close-Sun flyby with a powerful perihelion thrust by conventional chemical
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propulsion would greatly increase the spacecraft speed as it left the solar system.
Dr. Nock’s idea is that this powered perihelion flyby could occur as close to the Sun
as four solar radii, provided a suitable Sun shield was installed on the spacecraft. This
would lead to a Av of Skmy/s, enabling the spacecraft to exit the solar system at a
speed of about 10 AU/yr. The target distance of 550 AU would thus be reached in
about 50 years.

Whether or not Kerry Nock’s ideas are feasible for the near future, it seems
fruitful to develop the mathematical theory of the Sun flyby enhanced by a perihelion
boost for storable-propellant chemical engines.

44 THEORY OF THE SUN FLYBY ENHANCED BY A
PERIHELION BOOST

In practice, the speed of the FOCAL spacecraft will almost certainly be increased at
the perihelion in either of the following ways:

(1) by virtue of a classical chemical booster;

(2) by deploying a solar sail just when the distance from the Sun is smallest (i.e., the
overall momentum of the impinging photons on the sail surface is highest);

(3) by reversing the orbital angular momentum [6] of a sufficiently light solar sail;

(4) by nuclear propulsion.

To simplify things, it will be assumed that the perihelion boost is tangential to the
spacecraft trajectory at the perihelion, so one only has to take into account a speed
increment Av, changing the outgoing leg of the flyby. I shall denote by “primes” the
values of physical quantities such as r, v, etc. after the boost has occurred. One thus
has, by definition of impulsive approximation,

v, =v, +Av
{ o (4.20)
p—'p

Clearly the hyperbolic trajectory after the perihelion boost has occurred will be
different from the one before it occurred, and so the parameters of the outgoing
hyperbolic leg will be designated a’ and e’. To find out how these are related to those
of the incoming hyperbolic leg, just rewrite (4.20) by virtue of the speed equation

(3.14):
v, =4|GM 2_1 =,/GM 2.1 =0, + Av,. (4.21)
r, a r, a

Solving this for the new semi-major axis a’, one finds

a = |:2 — (UP—’_AUP)Z]I (4.22)

I GM
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Substituting this expression for @’ into the hyperbolic approach speed formula (3.16),
one gets the boosted hyperbolic exit speed

| GM 2GM
vl =1/— P \/(vp + Av,)? — T (4.23)
2

Having found the boosted exit speed, one still needs to find the boosted exit
direction (i.e., the new hyperbola eccentricity e’ and so the new angle 1., yielding the
actual new, boosted exit direction). To find ¢’ one has to resort to using

r,=r,=d(1-¢). (4.24)

Solving this for e’ and replacing a’ with the expression in (4.22), one gets the eccen-
tricity of the boosted hyperbola:
{2 (v, + Av,,)z} v, + Avp)2

!
671711,

~ 1L (4.25)

o GM GM

P

Finally, Equations (3.18) and (4.25) yield the corresponding new angle 9, between
the perihelion radius and the boosted exit asymptote:

. Av. )2 \-1
¥, = arccos Kl - W) } : (4.26)

4.5 DETERMINING THE PERIHELION BOOST BY KNOWING THE
TARGET STAR, THE TIME TO GET TO 550AU, AND THE
SUN APPROACH

This section is critical for the FOCAL mission analysis inasmuch as it paves the way
to choosing the propulsion system to boost the spacecraft at the perihelion. Suppose
one knows the following:

(1) The target star system to observe (i.e., the spacecraft exit direction out of the
solar system, or the angle ¥/ ).

(2) The overall time that it will take FOCAL to get to 550 AU (i.e., the solar system
boosted exit speed v’,).

(3) How the spacecraft is going to approach the Sun (i.e., what is going to be the
perihelion distance r,—which is determined by the thermal requirements upon
the spacecraft), and what is going to be the Sun approach speed v..

Then suppose one wishes to compute what boost Av, will get FOCAL at 550 AU in
the specified time and in the right direction.
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Figure 4.2. Basic geometry of the hyperbolic flyby boosted at perihelion.

This problem is solved as follows. First, a glance at Figure 4.2 shows that the four
angles 9, Y5, and 1 are related by the geometrical equation

27 — oy — Vo = T — 1.

This formula is the natural generalization of (3.27) in order to take the new angle ¥,
into account. Further, just as already was done in Section 3.4, here too only the tight
Sun flybys will be considered. Therefore, (3.29) (i.e., » = w — | 4]) is still valid and, by
eliminating 1) between the last equation and (3.29), one gets

2 — 9 — 0 =B (4.27)

which we shall use in a moment.
Since the Sun approach is known by definition (i.e., vy and r, are known), one
should first rewrite both v, and ¥, as two functions of them. This can be done by

virtue of the equations (3.26); that is,
2 \-1
U5
S 1+ L=
Uy = arccos <+G > ]
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and
o [ 20M
p = 50 o

Having thus determined 9., from the first of these, then (4.27) is solved for ¥, to
yield
Vo =21 — 95 — |8 (4.28)

where everything is known on the right-hand side.

One is now in a position to consider the boosted hyperbolic leg, where one needs
to express v, and v, as functions of rj and 97, that one now knows. Obviously, all the
equations for the boosted hyperbolic leg may be formally derived from the corre-

sponding equations for the incoming leg via the formal replacements
Voo — Uy
L (4.29)

/
r, =1

Uso

Thus, solving (3.20) for vic one gets

) GM( 1 )
Voo =—— | 1+
rp cos ¥,

which, by performing the replacement (4.29), yields

GM 1
”
— 1
Poo rp < cos 19/00)

GM 1
P 0

To find the expression of v;, start from (3.21) and perform the three replacements

(4.29), finding
;1 —=cosd,
Op = Voo \/ 1+ cos 9

Replacing then (4.30) into the last formula yields, after a few reductions,

GM 1
P 00

The required boost Av, is thus given by

and finally

/!

GM 1 2G
- - —J2 . 432
r— % \/ r < cos 19’Oo> \/UOO + r (4.32)

Avp:U
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An alternative form of this equation is obviously

GM 1 GM 1
Av, = v, —p, = - N . 433
= b \/ r, ( cos 19’OQ> \/ rp ( cos 1900> (4.33)

showing that

Av, >0 & 9, <V, (4.34)

that is, Av, is positive for ¥/, < ¥, only. In yet other words, rewriting (4.27) in the
form

Voo + 95 =27 — | 8] (4.35)
one sees that Av, is positive only for 27 — |§| < 29.; that is, only for
Voo > — @ (4.36)

Let us now rewrite this inequality in terms of the FOCAL spacecraft approach speed
to the Sun. Recalling (3.26), that is
14 rp w2\l
GM

2\ -1
Py |ﬁ|
Av, >0 <« arccos {— (1 +7é ) } > = (4.37)

¥, = arccos

and invoking (4.36), one has

that is

2\
Av, >0 & —<l+ éM) 1>cos(7r—|§> :—cos(@) (4.38)

Reversing the second inequality’s sign, and finally solving for v, one gets

A, >0 o o> | M l\ﬁl I (4.39)
r

p Cos—

In conclusion, there is a lower limit to the FOCAL spacecraft approach speed to the
Sun: it must not be less than the value

GM 1

co,min — | T
" cos@

0 —1. (4.40)

which corresponds to the no-boost case previously discussed in Chapter 3.
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SETI and the FOCAL space mission

5.1 INTRODUCTION

SETI, or the Search for ExtraTerrestrial Intelligence, started in 1959 with the seminal
paper of Cocconi and Morrison [1]. SETI was experimentally pursued for the first
time by Drake in 1960 (Project Ozma, [2], Reading #25) and later developed into a
large body of interdisciplinary knowledge [3-7].

The central problem of experimental SETT is to recover weak radio signals out of
noise. In isolation, the problem would not be difficult to solve with the aid of modern
filtering algorithms and computers, but there are a number of complications.

(1) Wedon’t know the radio frequency at which the extraterrestrials may be trying to
communicate with us.

(2) We don’t know from which direction in the sky the signals may be reaching us.

(3) We don’t know how to distinguish a ‘“‘natural” signal (i.e., a radio emission
caused by some astrophysical mechanism), from an “intelligent” signal (i.e., a
radio emission intentionally broadcast by ETs whose civilization has achieved a
level of technological development comparable or more advanced than ours).

(4) In case we do detect a non-natural radio signal, it is not clear how we will deduce
its meaning.

Tentative solutions to the above four complications have been provided by the
worldwide community of experimental SETI-radioastronomers consisting mainly
of Americans, but also Russians (formerly Soviets), French, Dutch, Australians,
Argentinians, Japanese, [talians, etc. over the years since 1960. In summary,

(1) As to the frequencies to examine, all frequencies between about 1 GHz and
10 GHz are suited for interstellar communications, but those in the range
1 GHz-2 GHz seem to be the most appropriate ones. In particular, “magic”
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frequencies (i.e., optimal frequencies for communication because all “ET radio-
astronomers” must know their numerical values) are supposed to be the neutral
hydrogen line (1,420 MHz) and the hydroxyl lines (1,612MHz, 1,615 MHz,
1,667 MHz, and 1,720 MHz). The portion of spectrum between these lines is
nicknamed the waterhole, and Galactic communications would “‘meet’” around
the waterhole as animals gather around water ponds in drought.

(2) This problem of which direction to look in was being solved at NASA by means
of the All-Sky Survey, started at the Goldstone 70-meter antenna on October 12,
1992, but terminated abruptly by the U.S. Congress in October 1993. A previous
all-sky search had been started by the Planetary Society in 1985 by resorting to
more modest antennas located in Massachusetts and Argentina: this was the
META Project, later technically upgraded over the years up to the BETA I
Project. Apart from these two projects, the vast majority of SETI searches were
targeted on stars expected to harbor life because they are similar to the Sun.

(3) To distinguish a “natural” signal from an “intelligent” signal we look at the
signal intensity profile around the signal’s central frequency. If the profile is
Gaussian, the signal is expected to be natural; if the profile is a very narrow
peak (almost comparable with a Dirac delta function) then the signal is
expected to have been broadcast by a technologically advanced civilization.
This we like to call the narrowband assumption in SETI and we shall discuss it
in Section 5.2.

(4) To understand the meaning of an alien intelligent signal we probably need some
Cosmic Language based on a mathematical scheme integrated with knowledge
from other branches of the sciences, such as physics, chemistry, and biology.
Hans Freudenthal’s Lincos (Design of a Language for Cosmic Intercourse) was
the first human attempt in this direction (1960).

5.2 THE NARROWBAND ASSUMPTION IN SETI

All SETI searches carried on thus far have been for narrowband signals, simply
because SETI-radioastronomers believe that an extraterrestrial civilization wishing
to make itself known all over the Galaxy would broadcast radio signals easily
distinguishable from natural emissions. Since natural emissions have a Gaussian
intensity profile around their own central frequency, ET would replace this Gaussian
by a Dirac delta function (i.e., an—almost—infinitely narrow peak), to let us under-
stand that it was an “intelligent” being, rather than Mother Nature, to send us that
wave package. We shall call this widespread belief the narrowband assumption in
SETI.

No mathematical proof of the narrowband assumption seems to have been given.
We would like to provide one here, based on the well-known information theory put
forward by Claude Shannon in 1948. For this proof, we are going to extend an
argument given in 1964 by the leading Russian SETT expert Nikolai S. Kardashev.
His paper [8] was seminal, at least in that it put forward the classification of extra-
terrestrial civilizations as Type I, II, and III, according to whether the extraterrestrials
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were able to funnel the energy of their own planet, solar system, or galaxy, respec-
tively. In that paper Kardashev also used Shannon’s formula for the rate of
information transmission within a certain information channel over the frequency
band between f; and f>:

v S(/)
R:J log {1—1—7} df 5.1
o NG) >y
where S(f) and N(f) are the power spectral densities of the useful signal and noise,
respectively. Kardashev states that “‘by solving the appropriate variational problem,
we may show the maximum rate of information transmission to be achieved under
the condition

S(f)+N(f) = N(f1) = N(f2)- (5.2)

Here f| and f5 are the bounds of the transmitter’s transmission band. It is accordingly
quite clear that the spectrum of the artificial source must show the reverse-shaped
parabola-like equation

S(f) =N(f) = N(f) = N(2) = N(f). (5.3)

That is, the spectrum of the artificial radio emission must feature a maximum.”
Kardashev omitted the mathematical steps leading from (5.1) to (5.3) because they
are mathematically trivial. Yet, we would like to show that expressing them explicitly
pays off, inasmuch as it offers a mathematical proof of the narrowband assumption
universally adopted by SETI searchers. We do so by taking the variation of (5.1) with
respect to the unknown function S(f) together with the two normalization con-
ditions fulfilled by the signal and noise, namely,

f2 /2
| stryar=rps ana [N ar = (5.4)

1 J1

where Pg and Py are the total signal and noise power over the given bandwidth,
respectively. This results in the variational equation

5Lf <ﬁ In {1 + %} FAN(S) + uS(f)) af =0 (5.5)

where A and p are Lagrange multipliers. Performing differentiation under the integral
sign with respect to the function to be optimized (i.e., S(f)), one has

1 (f) _
m-l—‘_%—ku—o (5.6)
N(f)
that has a solution of the form
S(f) = ———~ N(/). (5.7)




62 SETI and the FOCAL space mission [Ch. 5

Next, the Lagrange multiplier ;4 must be determined by integrating both sides of
the solution (5.7) with respect to /" between f; and f5, and then invoking the normal-
ization conditions (5.4)

en R . o
|, swar=-] e -] v (58)
The result is
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Substituting this into (5.7) gives
Ps+ Py
S — N(f). 5.10
(f) = A (f) (5.10)

This formula can also be given in different form by recalling the definition of the
boundaries of the extraterrestrial transmission bandwidth:

S(fi)=0 and S(f;)=0. (5.11)
Equation (5.10) then yields
_Ps+ Py Ps+ Py
N(f1) 7 and N(f5) = 7 (5.12)

whence Kardashev’s formula (5.3) (or Equation (4) in [8], Reading # 28) is obtained
at once.

Now, we want to use (5.10) to prove the narrowband assumption. The argument
is as follows: an extraterrestrial civilization wishing to make itself known would try to
send as much information as possible about itself. It would thus try to maximize the
information transmission rate (5.1) over the transmission bandwidth f; — f| of their
apparatuses. Then, (5.10) shows that, keeping both the total signal and the noise
powers (Pg and Py) fixed over the given bandwidth, the narrower this bandwidth is,
the clearer the signal spectral density S(f) stands out against the noise spectral
density N(f); that is,

Ps+ Py

P iy
= 00— N(f1) = 00~ N(y) = . (513)

In conclusion, ETs must transmit over the narrowest possible bandwidths to let
their messages be understood clearly against the background noise. And on Earth one
must use very narrowband spectral analyzers to detect ET candidate signals. Over the
years the bandwidths that humans are using have steadily decreased to 1 Hz and even
less: hundreds or thousands of Hz are now achievable by dedicated computers like
those of Project Phoenix (formerly NASA-SETI Project) and the BETA 2 system run
at Harvard by the Planetary Society.
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5.3 A SHORT INTRODUCTION TO THE KLT

Understanding the mathematical model of a physical fact may be difficult to people
who are not familiar with the required mathematical background. Yet, mathematics
is just the correct language by which physics and engineering achieve success. Trans-
lating this mathematical language into the language of ‘“‘common” words may be
desirable whenever a mathematical advance is made that has to be described to
newcomers in ‘“‘easy terms’’.

This section is devoted to a rather new mathematical tool that may improve our
understanding of physical phenomena: the Karhunen—Loéve Transform, hereafter
abbreviated KLT. Essentially, it is something superior than the classical Fourier
Transform (FT). To explain why, let us use a comparison in classical mechanics.
Consider an object (e.g., a book), and a three-axis rectangular reference frame,
oriented arbitrarily with respect to the book. Now, all the mechanical properties
of the book itself are described by a 3 x 3 (symmetric) matrix called an ““inertia
matrix” (or “inertia tensor’”) whose elements are, in general, non-zero. Handling a
matrix whose elements are all non-zero is obviously more complicated than handling
a matrix where all elements are zeros except for those lying on the main diagonal (this
is called a ““diagonal matrix’’). Thus, one may be led to wonder whether a certain axes
transformation exists that changes the inertia matrix of the book into a diagonal
matrix.

Classical mechanics shows that only one special orientation of the rectangular
frame with respect to the book exists, yielding a diagonal inertia matrix: the three axes
must coincide with a set of three vectors (parallel to the book edges) called “‘eigen-
vectors” or ““proper vectors” of the book. In other words, each body possesses an
intrinsic set of three rectangular axes, called ‘“‘eigenvectors” of the body, that
describes its mechanical properties most simply. This is referred to as “diagonalizing
the matrix”.

Now, let me go to signal processing, which is our interest here. By adding
random noise to a deterministic signal one obtains what is called a “noisy signal”
or, in case the power of the signal is much smaller than the power of the noise
“‘a signal buried into the noise”. Since the noise + signal X (7) is a random function
of the time, one can describe it by a statistical quantity called autocorrelation (or
simply “correlation”), defined as the mean value of the product of the values of X (¢)
at two different instants #; and f,—that is E{X(¢;)X(t;)} = (X(#;)X(tp)). This
correlation, obviously symmetric in ¢; and #,, may play just the same role as the
inertia matrix in the book example. Thus, if one seeks for the eigenvectors of the
correlation, and then changes the reference frame to the new set of vectors, the easiest
possible description of the signal + noise is achieved. This is the key idea behind the
KLT.

One may also look at the KLT from a slightly different point of view. In mathe-
matical physics the well-known “method of normal coordinates” allows one to
describe the ““small oscillations” of a dynamical system in the best possible way by
expressing the Lagragian as a sum of Lagrangians, each of them representing a simple
harmonic oscillator. This is the result of a “principal axes™ transformation (i.e., a
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Lagrangian coordinate transformation that yields the separation of variables natur-
ally). The KLT is just the statistical version of that.

5.4 MATHEMATICS OF THE KLT

The KLT [9] is named after two mathematicians, the (living) Finn, Kari Karhunen and
the French American, Michel Loéve (1907-1979), who proved independently and at
about the same time (1946) that the series (5.14) hereafter is convergent. Put it this
way, the KLT looks like a purely mathematical topic, but this is not, of course, the
case. Using the language of engineers and radioastronomers, we say that it is possible
to represent the signal 4+ noise X (¢) as the infinite series (K-L, or KLT, expansion)

X(r) = izn o (t) with0<r<T. (5.14)
n=1

Assuming that the noise (auto)correlation E{X (z;)X(t,)} is a known function of ¢,
and 1,, it can be proved that the functions ¢,,(¢) (n = 1,2, ...) are the eigenfunctions of
the correlation—namely, the solutions to the integral equation

L E{X(1)X(12)} du(t2) diz = Ay du(tr). (5.15)

These ¢, (¢) form an orthonormal basis in the Hilbert space, and they actually are the
optimal basis to describe the noisy signal, better than any classical Fourier basis. One
can thus say that the KLT adapts itself to the shape of the signal + noise, whatever it
is.

A further advantage of KLT is that the Z, in (5.14) are orthogonal random
variables (i.e., that E{Z,,Z,} = (Z,,Z,) = X, 6n)- If X (?) is a Gaussian process, this
orthogonality amounts to statistical independence, meaning that the terms in the
KLT expansion are uncorrelated. Since the constants A, are both the (all positive)
eigenvalues and the variances of the random variables Z,, any KLT expansion, when
truncated to keep only the first few terms, is the best approximation to the original
function X (¢) in the mean square sense.

Finally, the mathematical theory of KLT shows that the process X (¢) need not be
stationary. This too spells the difference against the classical Fourier techniques that
hold rigorously true for stationary processes only.

5.5 KLT FOR SETI

The narrowband assumption was the rationale behind all ETI radio searches made
thus far all over the world. Consequently, only Fourier Transform (FT) or Fast
Fourier Transform (FFT) techniques were used to find the very narrow bandwidth
(called “bin” in SETI jargon) in which an unusual amount of received radio energy
might indicate the presence of a signal, either sinusoidal or pulsed.
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In this section, however, we would like to maintain that the traditional usage of
the FFT within SETI might sooner or later be replaced by the adoption of the KLT.
This is no new idea. In 1983 the French SETI-radioastronomer, Frangois Biraud, was
the first person within the SETI community to describe the advantages of KLT over
FFT for detecting wideband signals [10]. Apart from the technical issue, there seems
to be another and deeper one: adopting the KLT means to be ready for the unex-
pected. Indeed, we know nothing about the nature of ETI signals: we have just made
a set of “‘reasonable” assumptions, and we are trying to see whether they serve to put
us in touch with the rest of the Universe. Enlarging the possible signals to look for by
shifting from FFT to KLT can only help.

Very promising work on the KLT for SETI was done by Robert S. Dixon and
Charles A. Klein, both with the Ohio State University in Columbus, Ohio [11]. After
acknowledging that the KLT is more general than the FT because it makes no
assumption about signal periodicity or waveform, these authors took one important
new step in pointing out that only the largest of the KLT components need be
calculated, in contrast to the FT, where all components (one for each frequency)
must be calculated. This largest KLT component, or coefficient, is what the math-
ematicians call the “‘dominant eigenvalue” in the solution of the integral equation
(5.15). Dixon and Klein did not attempt to prove any mathematical theorem about
this fact, but they did numerical computer experiments showing that this must be the
case.

One might ask what prevents radioastronomers from using KLT for SETI now.
The simple answer is the computational burden. In fact, the KLT kernel is the
correlation, and, being the mean value of the product of two random variables, this
kernel is not separable. In general, one cannot hope for the existence of a fast KLT
algorithm. In turn, this means that the computer time required to calculate the
eigenvalues and eigenvectors of a correlation matrix of order N is proportional to
N?, rather than to N In N as for the FFT.

Nevertheless, several concurrent developments seem to be paving new ways to
overcome the above difficulties. On the one hand, the steady improvements in com-
puter hardware and parallelization techniques seem to lead to very fast algorithms
capable of getting the eigenvalues and eigenvectors of a large square symmetric
matrix such as the correlation. On the other hand, the progress in the mathematical
theory of the KLT has been steady since the early 1950s, and we mention some results
of potential interest for SETI applications.

(1) For an exponential correlation of the form
E{(X(1)X (1)} = e 1" (5.16)

the problem of finding the KLT was completely solved as far back as 1958 [12,
pp- 99-101].

(2) The correlation (5.16) is just an example of stationary random process; that is, a
process having a correlation of the form

E{X(11)X(12)} = f(|t2 = 11])- (5.17)
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Now, for the general stationary correlation (5.17), Srinivasan and Sukavanam
[13, 14] obtained a solution to the integral equation (5.15), where the right-hand
side is an arbitrary real-valued function f(- - -) defined on the positive real axis.
They assumed that f(---) admits a Laplace transform f*(---), and in practice
confined themselves to the case where the latter is given by

g(z) _ polynomial of degree not exceeding (n — 1)

/(2= (5.18)

h(z) polynomial of degree n

though they state that their arguments can be easily extended to the more
general case where f™(---) admits a Mittag—Leffler expansion. For the case of
(5.18), they gave explicit, though complicated, formulas for computing the eigen-
values numerically, but apparently not for computing the eigenfunctions. This
prevents further study to be carried out on the possibility that a fast K-L
algorithm might exist for the stationary correlation (5.17). More investigations
are needed.

S. Watanabe [15] introduced the method of the K-L expansion into the realm of
pattern recognition in 1965. In this application, an image is to be represented in
terms of an optimal coordinate system, and the set of basis vectors which make
up this coordinate system is referred to as an eigenpicture. The basis vectors are
simply the eigenfunctions of the covariance matrix of the ensemble of images.
The state of the art in the application of the KLT to images is described in [16],
and this shows that computers already exist that are powerful enough to apply
the KLT to image processing.

The first (apparently) fast K-L algorithm [17] was obtained in 1976 by
A. K. Jain. An excellent description of his mathematical algorithm was given
by A. Rosenfeld and A. C. Kak in [18]. The key idea is to make the correlation
separable by resorting to exponential functions. For instance, let an image
belonging to a given set of images (random field) be sampled on a /(- - -) square
sampling lattice, and let f(m, n) denote the samples, where both m and n take
on integer values from 0 through N — 1. Then the assumed correlation is of the

type

E{f(m,n)f(p,q)} = r\]’”*l’|r|2"*fﬂ — g—alm=pl ,=bln—q| (5.19)

where r|, r,, a, and b are constants, the former two being less than unity. For
this (discrete) correlation both the K-L eigenvalues and eigenfunctions may be
explicitly found, as in [17]. There Jain has shown that if the image boundary
pixels are known, they may be used to modify the rest of the image in such a way
as to possess a K-L transform that can be implemented using FFT (or the
more recently developed fast sine transform). Thus, Jain’s result is essentially
a reduction of KLT to FFT preserving the typical advantages of both.
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5.6 CONCLUSION: ADVANTAGES OF THE KLT FOR THE FOCAL
SPACE MISSION

Since the 1950s the number of applied scientists using the KLT for their research has
slowly increased, but the KLT still lies outside the realm of most current scientific
research. This situation of neglect seems to have been caused primarily by two
obstacles.

(1) The exceedingly heavy computational burden required by the KLT.
(2) The many obscure points still plaguing the KLT mathematical theory.

While the first obstacle might be overcome relatively soon by the development of
parallel processing computers, paving the mathematical way requires more effort.

SETTI is a field of research where the KLT might distinguish itself in comparison
with the FFT. Only the KLT, in fact, would reveal wideband signals whatever the
nature of the noise spectrum, and whether or not the random process is stationary.
The time appears to be ripe for the KLT to be taken seriously by the SETI as well as
by other signal-processing investigators all over the world.

There is, however, an additional and very important point that we would like to
stress: the KLT is not just used for filtering weak signals out of the noise: the KLT is
used for data compression also. In fact, consider the four basic steps of the KLT.

(1) Find the eigenvectors of the autocorrelation of the set of data.

(2) Assume the set of eigenvectors as new vectors.

(3) Expand the set of data over this set of vectors and then truncate it by (arbitrarily)
declaring that whatever is beyond a certain (low) correlation value is “‘noise”
(i.e., unnecessary data).

(4) Reverse-transform to the original set of axes and reconstruct the “filtered” set of
data.

Data compression occurs at Step (3).

Moreover, since data compression is essential in the radio link at huge distances
like those to be reached by FOCAL, one concludes that the KLT is the best possible
way of compressing the data sent by FOCAL to the Earth (i.e., the best way of letting
FOCAL be successful).
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presented to
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Figure 5.1. Plaque of the “Giordano Bruno Award” presented by the SETI League to the
author “for Technical Excellence in the service of SETI”” on April 27, 2002, at the SETT League

Conference, held in Trenton, New Jersey. More at the website: http://www.setileague.org/
awards|brunowin.htm
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Figure 5.2. Claudio Maccone in front of the Giordano Bruno Memorial in Rome. This
Memorial was erected in 1889 right on the spot (in ““Campo dei Fiori” square) where Giordano
Bruno (1548-1600) was burned at the stake on February 17, 1600, by order of the Roman
Inquisition. Photo shot on May 29, 2002.
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GL-SETI (gravitational lensing SETI):
Receiving far ETI signals focused by the
gravity of other stars

6.1 INTRODUCTION

The SETI League (website: http.://www.setileague.org) is a worldwide organization
of thousands of SETI supporters who generally use small TV dishes and PCs to
do SETI searches from their own backyards. In general, such modest apparatuses
could hardly be expected to lead to a contact with ETI, except for ETIs living on
planets of nearby stars, but the notion of gravitational lensing changes this picture
completely. In fact, it could well happen that a very precise alignment occurred
casually between the ETI source, an intermediate star acting as a focusing device,
and the Earth. Thus, a transient but sufficiently strong ETI signal could be detected
on Earth even if it comes from a very far source in the Galaxy and even if it is detected
with a small dish apparatus. It all depends on the mass of the intervening star, on the
precision of the alignment, and of course on the power of the ETI emitted radio
waves.

This great step ahead in SETI was first suggested to the author of this book by
the SETI League President, Richard Factor, who first presented a paper on this
topic at SETICon 01, the 2001 SETI League Technical Symposium and Annual
Membership Meeting, held in Trenton, NJ, April 28-29, 2001 [1]. The author of
this book is greatly indebted to Richard Factor for giving him permission to
reproduce from [1] the following two sections of this chapter. The name “G-L SETI”
for this new way of doing SETI was suggested by the author to Richard Factor by
e-mail.
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6.2 ONLY TWO TYPES OF SETI SEARCHES FROM THE EARTH UP
TO 2001’

6.2.1 Introduction

Microwave SETI (The Search for Extraterrestrial Intelligence) focuses on two
primary strategies, the “Targeted Search” and the “All-Sky Survey”. Although
the goal of both strategies is the unequivocal discovery of a signal transmitted by
intelligent species outside our solar system, they pursue the strategies in very different
manners and have vastly different requirements. This chapter introduces a third
strategy, also with the goal of unequivocal discovery of an extraterrestrial signal,
with equipment and data processing requirements that are substantially different
from the commonly used strategies. This strategy is particularly suitable for use with
smaller radio telescopes and has budgetary requirements suitable for individual
researchers.

6.2.2 Background

Since the first tentative SETI experiment in the 1960s, increasingly larger radio
telescopes and more powerful signal processing engines have been searching the
sky for signals. Perforce these searches have been limited to looking largely for
continuous or pulsed narrowband signals since these are the most likely to be
detectable, and are most identifiable as being of unnatural origin. A number of “hits”
have been recorded, beginning with the famous “Wow” signal and continuing to the
present. After weeding out cases of equipment problems and man-made interference,
a number of candidate signals remained, any of which might have been of intelligent
origin. None of them could be proved to be so, largely because they were not
verifiable. Revisiting the signal’s supposed point of origin failed to provide a repeti-
tion of the event, leaving the original signal as a tantalizing but scientifically useless
phenomenon.

In order for a detected signal to be accepted as of intelligent, extraterrestrial
origin, it is generally agreed that it must meet two criteria:

(1) It must not be “natural”. That is, no natural process could have created it. There
have been false alarms, such as the initial apprehension that the regularity of
pulsar signals signified intelligent design.

(2) It must be verifiable. To rule out man-made causes it must be present long enough
so that several observers in widely separated locations can verify its point of
origin, and all must agree on the same extra-solar point!

Of course, it would be desirable for the signal to have, somehow, a modulation
that would impart information to the observer. An on—off modulation in some

! This section was written by the SETI League President, Richard Factor.
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obvious pattern such as sequential prime numbers would comfortably fulfill this
desirable but not-strictly-necessary characteristic.

With over two decades of sometimes fitful, sometimes diligent searching, the
results can be summed up in two sentences: We know that the sky isn’t teeming with
strong signals. And we have searched such a small percentage of the phase space that
it would be foolish to conclude there’s nothing to be found.

6.2.3 Searches

The physics of detecting interstellar signals is challenging but not daunting. Calcula-
tions show that a relatively modest pair of radio telescopes with easily achievable
transmitter power could communicate between Earth and the nearest stars. Two
radio telescopes the size of that at Arecibo, Puerto Rico, could, with 1-Megawatt
transmitters, detect each other’s presence a good fraction of the way across the
Galaxy. The Drake equation is a construct that enables us to focus on and attempt
to quantify the likelihood of other civilizations with which we might communicate.
Although recent discoveries of planets circling nearby stars has reduced some of the
uncertain terms in this heuristic, there remain sufficient imponderables to allow
essentially any conclusion to be drawn. If one concludes that there are very large
numbers of civilizations in the Galaxy, it is reasonable to infer that several of them
are quite ““close” to us, perhaps within tens or hundreds of parsecs. If one concludes
that there are only a small number, then it is likely that they will be located at greater
distances.

The location of the putative civilization defines the strategy for locating it. If it is
nearby, our largest, most sensitive radio telescopes would probably be able to detect
signals emanating from it, even if those signals are not specifically being ‘““beamed”
toward us. Smaller radio telescopes, and, in particular, very small ones, such as
3m-5m backyard dishes, would not be able to detect “leakage” radiation from even
the closest stars. On the other hand, if a very powerful signal were being beamed,
either directly to us, or sent omnidirectionally into the Galaxy as a beacon, even the
largest radio telescopes would likely fail to find it. Although they would be capable of
detecting the signal, their beamwidth, which is inversely proportional to their size,
would be so narrow that it would require either extremely large numbers of million-
dollar instruments or extravagant luck to be pointing in the right direction to hear the
signal.

6.2.4 Targeted search

The bifurcation of microwave SETI into two search strategies accommodates these
realities. Very large radio telescopes, of which there are only a tiny number and whose
observing time is precious, are used to probe the nearest stars. The SETI Institute’s
Project Phoenix is the main exemplar of this strategy. This targeted search has an
excellent chance of detecting a radio-using civilization (such as ours) if it is on the
planet of a star out to about 100 pc. Such stars are well catalogued and can be selected
on the basis of similarity to the Sun. Extra emphasis can be given to stars that are
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known to have planets; waste can be obviated by foregoing binary stars or others
presumed for various reasons to not support life.

One major advantage of the targeted search is that it doesn’t presuppose delib-
erate attempts at communication. It systematically investigates nearby stars and, if
one harbors a radio-using civilization, it will likely find it. The major disadvantage is
its implicit assumption: civilizations are plentiful and hence nearby. Other, explicit
assumptions which seem reasonable may simply be incorrect (e.g., non-Sol-type stars
are less likely to have associated civilizations).

6.2.5 All-sky survey

Almost a precise complement to the targeted search is the all-sky survey. Where the
first assumes plentiful civilizations, the other makes no such assumption. Where the
first assumes no deliberate attempt at communication, the other requires it. Where
the first cherry-picks “appropriate’ stars, the other makes no distinctions. In terms of
instrumentation, at least as far as mechanical hardware is concerned, they are as far
apart as can be. At least theoretically, one could argue that the all-sky survey could be
accomplished by nothing more than a dipole antenna, while the targeted search will
benefit by using the most enormous radio telescope that can be built. As a practical
matter, the size of the telescopes used in the all-sky survey must fall between limits
imposed by sensitivity and interference rejection on one end and economics on the
other.

Assume that one desires to cover the entire sky with as much sensitivity as
possible. With appropriate location of the observatories, one could accomplish this
with approximately 5,000 “small” dishes on the order of 3 m—5 m in diameter. This is
the essence of the SETI League’s Project Argus, a “‘grass roots’” endeavor. There are
literally millions of these dishes in the hands of TV watchers, at least in the United
States, and, due to the advent of DBS satellites, many of them are available for the
price of carrying them away. Assuming the economic cost of re-commissioning each
dish is on the order of $1,000, the antennas for the all-sky survey come in at only $5
million. This is a pittance compared to even the cost of a single research-grade radio
telescope. However, the economics of scaling is very unfavorable. For instance, to
only double the distance at which a given signal can be detected, one would need to
double the diameter of the antenna, making it in the 6 m—10 m range. Because these
dishes are no longer littering the landscape, they must bear their actual economic
cost, on the order of $10,000 each. Just as bad, doubling the diameter halves the
beamwidth in two dimensions, raising the required number of dishes to 20,000. Thus,
doubling the sensitivity increases the cost from $5 million to $200 million. Doubling
the sensitivity yet again requires 80,000 12m—20m dishes, at perhaps $50,000 per
copy.

The economics of increasing the sensitivity of an all-sky survey are formidable.
Given that the search is sensitivity-limited, a reasonable but not conclusive assump-
tion, an improvement in the strategy might be to concentrate a smaller number of
larger dishes in the direction of the Galactic plane. The Galaxy is only a few hundred
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parsecs thick in this neighborhood and really strong signals are statistically more
likely to come from a direction where there are more stars.

As with the targeted search, there is a major implicit assumption in the all-sky
survey: Somewhere out there we (or the entire Galaxy) are being sent a ““beacon”
signal. Unlike the leakage we as a civilization have been generating for almost a
century, and which can be detected by a targeted search, to detect us at all-sky-survey
distances, we would have to deliberately send a high-power signal to somebody who
was looking for it. For a civilization at our level of development this is not economic-
ally and possibly not technically feasible; for one somewhat or substantially
advanced, it may be possible or even routine. If the assumption that there is the
equivalent of a “beacon” being sent is wrong, then the search will fail.

6.2.6 Common requirements

The two strategies were discussed without regard to the electronic instrumentation
necessary. As divergent as the antenna requirements are, the receiver and signal
detector requirements are very similar. For a research-grade radio telescope, the cost
of the mechanical system is so high that any reasonable electronic detection ensemble
has a cost, you should forgive the expression, in the noise level. This is emphatically
not the case in the all-sky-survey scenario, in which the electronic requirements of the
receiver and data reduction hardware can equal or exceed the cost of the antenna, and
yet come nowhere near the capability of the larger instrument’s electronics. Fortu-
nately, there is great cause for optimism! While the cost of constructing mechanical
hardware increases slowly with time, the cost of constructing electronic hardware
plummets with Moore’s law. At the moment professional electronic hardware exceeds
amateur capability by perhaps a few dB in sensitivity (disregarding antenna size), two
orders of magnitude in stability, and three to four orders of magnitude in frequency
coverage. Advances in DSP in particular, as well as improvements in semiconductors
and other technology, are likely to make today’s professional capabilities within the
reach of amateurs in only a few years.

Divergent requirements, both mechanically and culturally, do not obviate the
desirability of conducting both types of searches. The fact is, nobody knows the
prevalence or location of radio-using civilizations. Many or few, advanced or at our
level of development, near or far, we simply have no idea. Proof of their existence is
interesting and important and the cost of searching is insignificant.

6.3 GL-SETI: NAMELY, SETI SEARCHES FROM THE EARTH BY
EXPLOITING THE GRAVITATIONAL LENSES OF OTHER STARS?
6.3.1 A third strategy

The purpose of this extensive background discussion was to examine the implicit
assumptions and requirements of both kinds of searches. Each has a distinctive

2 Like the previous section, this section was written by the SETT League President, Richard
Factor.
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vulnerability. If there are no nearby civilizations, the targeted search will fail. No
matter how many civilizations there are, if nobody is transmitting a beacon the all-
sky survey is unlikely to detect any of them. What if we happen to be in a deserted
neighborhood? Too bad.

In the discussion above I stated that one of the requirements for a signal to be
scientifically accepted as being of intelligent origin is that it be verifiable. This is not
entirely true. Another way to prove extraterrestrial origin for a signal is for the
content (i.e., modulation), to be both explicit and alien. Certainly a single frequency
beacon wouldn’t fulfill this criterion, nor would simple pulsed signals, the alien
equivalent of telemetry signals, or anything else that could arguably have been
produced on Earth. What would be acceptable? A television signal depicting aliens
or a signal whose decoded modulation revealed scientific knowledge beyond current
competence would, although the first surely would be suspected of being a hoax.
Signals with information between these extremes, upon detailed scrutiny, might be
accepted, at least provisionally. Why, however, consider these possibilities when it is
commonly accepted that at best a single frequency beacon might be discovered?

The phenomenon of gravitational lensing, a consequence of general relativity, is
scientifically accepted and has proved a valid astronomical and astrometrical tool.
A gravitational lens occurs when electromagnetic radiation passes a massive astro-
nomical object such as a star or even a galaxy. Because of the large area of signal
“collected” by the lens and the potentially small area of its focus, enormous signal
gain is possible. Claudio Maccone has written a treatise on the subject, stating that
our own star would have a gravitational focus at about 550 AU, allowing a spacecraft
at this distance to take advantage of this lens to provide signal gain greater by far
than that of the Arecibo dish. One of the purposes of this spacecraft would be to
look for signals of intelligent origin. Sadly, most of us do not have our own space
program and therefore cannot rely on the Sun to supplement our antenna. Is all lost?
No!

For the Sun, the closest point of focus is 550 AU. However, the focus of a
gravitational lens is not a point, it is a line. This line is directed radially from the
focusing mass, and signals at different radial distances from the mass focus at
different points along the line. Any distance greater than 550 AU would therefore
focus signals coming from a sufficiently great distance on the opposite side of the Sun.
At this focal point one could take advantage of the gain of the spacecraft antenna in
addition to the gain of the gravitational lens, giving a great enough signal strength to
detect even “‘leakage’ signals from stars much farther away that those targeted in
searches with our biggest telescopes.

Since the focus is a line, it follows that this effect can be employed at any distance
beyond 550 AU. While we have no immediate prospect of going 550 AU from the
Sun, we are already more than 550 AU from every one of the billions of stars in our
Galaxy! Therefore, at any given time we could be in the line focus of some other star’s
gravitational lens, and could be receiving some other civilization’s signals with rela-
tively modest equipment. Perhaps we have already done so. One reasonable (but
entirely conjectural) explanation of the SETI “hits” that we’ve received over the
decades is that it was a transient gravitational lensing phenomenon.
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Conceptually, then, we can see that it should be possible to take advantage of the
gravitational lens to receive, without an enormous antenna, signals from a great
distance. Unfortunately, doing so requires the fortuitous alignment of the transmit-
ting source, a star (or other large mass), and an antenna, not to mention a receiving
apparatus prepared to detect the signal. If we accept the notion that the lens is
powerful enough to allow us to detect leakage radiation rather than a directed
beacon, we’re entitled to assume that any civilization such as ours would be detect-
able. Therefore, the number of detectable sources depends on the ““solution” to the
Drake equation, compounded with two additional variables:

(1) What are the odds that, at any given instance, a star and potential transmitting
source are so aligned that reception would be possible?; and

(2) Is there an antenna/receiver combination available at the focus capable of
capturing a signal if one were present?

In the spirit of the Drake equation, I shall designate these variables as f, for the
fractional probability of an appropriate alignment, and f, the probability that a
signal, if present, will be detected. As with other terms of the Drake equation, f,
is determined by the Universe. There will be just so many foci crossing one’s antenna
per time period. Like some, but not all, terms, this is susceptible to reasonable
calculation, and values are available in the literature. Unlike f,, f, is under our
control. If a SETI antenna capable of capturing a high-power, single-frequency
beacon is also capable of capturing leakage signals with the aid of a fortuitous
gravitational lens, then the all-sky-survey model is also appropriate for this type
of search, and the economic cost of the antennas necessary to bring f, arbitrarily
close to one is entirely reasonable. However, the electronic signal detection package
useful for beacon detection is unsuitable for detecting and verifying gravitationally
amplified signals.

Because of the relative motion of the notional transmitting source, the interven-
ing lensing body, and the orbital and rotational motion of the earth, the focus of the
signal is constantly shifting. Orbital and proper motions of bodies in this Galaxy are
on the order of tens to thousands of km/s. With some lensing events these motions
will fortuitously subtract and provide a relatively stationary focus, but probabilisti-
cally the large majority will add, giving a receiver a relatively short time in the focus.
A reasonable estimate, derived from estimates of stellar brightening, gives periods of
minutes to a few hours. A much longer period would be of little benefit since most
antennas operate in drift-scan mode, and only look at a given area of the sky for 5 min
to 15 min.

Unfortunately for the initial verifiability model, it may be practically impossible
to use multiple radio telescopes to verify the presence of an intelligent signal. Not
only will the signal be temporally transient and destined to never repeat, but the focus
of the gravitational lens may encompass spatially only one of the antennas. Thus, one
must look to the second verifiability model, one in which the signal(s) modulation
characteristics are in themselves indicative or conclusive of alien origin. To accom-
plish this, as an absolute minimum, a recording of the signal is required.
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The electronic package of a typical SETI system comprises, after the analog
receiver components, a digitizing and analysis subsystem. An amateur system can
be little more than a personal computer with a sound card. Such hardware can look
for narrowband signals over a bandwidth of perhaps 40 kHz. A professional system
uses a number of dedicated processors to give several orders of magnitude more
frequency range, on the order of tens or hundreds of MHz. In either case, however,
the analysis system must make a decision: Is there a narrowband signal present in the
passband? If so, the immediate goal is to determine from whence the signal emanates.
If it is coming from a point stellar source, it should show doppler shift characteristic
of the Earth’s rotation, and should vanish if the radio telescope is pointed moment-
arily in some other direction. If these conditions are fulfilled, then another telescope
at another location is advised of the signal and asked to verify its presence. Missing
from all this excitement is any analysis of the signal itself! A narrowband signal is
characterized by a single number: its frequency. This, plus or minus a few hundred Hz
due to doppler shift, is all you need to know. There’s no point in recording the signal
itself.

To see what to expect from a gravitational-lens-enhanced signal event, consider
what would happen if one were to aim an antenna at the Earth from space. As the
Earth swam into the focus of the dish, a panoply of signals would reveal themselves.
Among the strongest would be television transmitters and pulsed radars. Weaker
signals used for point-to-point communications and radionavigation, for example,
would be evident if the receiver had enough sensitivity. These signals would be all
along the frequency axis. Depending upon time of day or night, frequencies below
approximately 5 MHz to 50 MHz would be filtered from the ensemble by ionospheric
reflection and absorption. Anything from 50 MHz to many GHz would be fair game.
For “internal” use by our civilization, there are no “magic” frequencies. In fact, the
“waterhole” is the least likely to have strong signals, since it is reserved for receiving
weak signals! Whether or not another planet has a radioreflective ionosphere such as
ours does isn’t all that important, since for other reasons we will want to limit our
search to a somewhat higher range of frequencies. Ideally, it would be desirable to
search in the range of approximately 1 GHz to 10 GHz, or even lower and/or higher if
antenna size and/or precision permits.

Would we detect the Earth with a receiver designed specifically for extremely
narrow frequency bin detection? Maybe. Although there is little point in transmitting
a totally modulation-free, extremely narrowband signal (except, perhaps, as a
frequency standard or interstellar beacon), there is often enough energy transmitted
at a “carrier” frequency used as a demodulation reference. It has been said that “a
sufficiently advanced form of modulation is indistinguishable from noise” and we
have been approaching that “ideal”” almost since the beginning of electromagnetic
communication. For example, television transmission in the United States will, over
the next decade, shift from a format with a strong carrier component to a “digital”
format in which there will be no carrier at all.

Another civilization’s hope of detecting the next century’s “I Love Lucy” will be
greatly reduced. For the purpose of SETI it would be better to have a detector that
could detect any artificial characteristic of a signal ensemble. Among the hallmarks of
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artificiality would be, in addition to frequency coherence, a broadened or otherwise
interesting autocorrelation function, a non-Gaussian probability density function, a
suddenly differing smoothed frequency spectrum, and an amplitude modulated, at
whatever rate, intensity.

Another interesting detection method involves the Karhunen—Loéve Transform
(KLT), which promises to detect the presence of any non-random signal. The
computational burden of these methods varies from minor (non-Gaussian PDF)
to fearsome (KLT). While it would be desirable to employ all these methods, and
it will be possible to do so with modest equipment in the near future, there is no
reason not to use the simpler methods available right now.

Given an antenna and some method of detecting when a signal is present (using
whatever methods we choose), we aren’t quite there yet. If the detector alerts us to a
possibly artificial signal (or group of signals) in the antenna beam, what good does it
do us? With the gravitational lens scenario, we cannot count on a cooperative
observatory to verify the location or existence of the signal(s) since their footprint
may not include that observatory. Therefore, we must hope that the alternative
criterion for acceptance, intelligibility of modulation, obtains. Moreover, we must
record as much of the baseband signal as we possibly can since we will, in all
likelihood, never have the opportunity again.

This may not be as formidable an obstacle as it seems. For a traditional SETI
search, little signal recording is necessary. Of primary interest is the existence of
narrowband signals whose characteristics can be defined in a few bytes. To record
the entire baseband in the hope of capturing the modulation of an intelligently
generated signal would require an impressive recorder. Assuming a 10 GHz band-
width and an 8-bit dynamic range, the data generated would fill a standard VHS
videotape roughly once per second. A more dramatic way of looking at this is that if
you put the Statue of Liberty in the middle of a football field and covered the whole
field with the data tapes, one year’s worth of data would obscure the field, statue, and
all, up to the torch.

I have no desire to bury the Statue of Liberty in worthless data, which is what
most of it would be. A better way to handle this is to be more judicious in our data
recording habits. First, we would only want to run the recorder when there is a
candidate signal present. Based on the gravitational lens statistics, or, alternatively,
the number of ““hits” received in SETI searches in the past, this would be comfortably
under 1% of the time. Of course, the time to initiate and terminate recording would
be determined by a signal detector broadly described above. Next, recording the
entire baseband, beyond the state of the art for a single recorder at present, isn’t
really necessary. Although it is conceivable that there would be a torrent of signals at
all frequencies, it is more likely that they will appear in a more limited area. On Earth
we allocate frequency bands for different purposes. Some have a few strong signals
(broadcasting), some have many weak signals (portable telephony). Even with the
enormous gain of a gravitational lens it is unlikely that we can receive signals unless
they have many kilowatts behind them. By setting up a number of recorders capable
of an instantaneous bandwidth of, say 50 MHz, and a suitable number of signal
presence detectors, we should be able to deal with whatever comes our way.
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Finally, we would need to decide on the recorder “dynamic range” which in turn
is determined to a large extent by the number of signals expected to be received and
the expected signal-to-noise ratio. This is normally specified in decibels (dB) wherein
each bit of the sampled signal increases the range by a factor of 2, or roughly 6 dB per
bit. As an example, a broadcast-quality television signal requires roughly 10 bits of
dynamic range, and a bandwidth of roughly 5MHz. It is probably unrealistic to
expect a “‘broadcast quality” of anything at interstellar distances, but with a signal of
any complexity and only one chance to capture it, it is better to err on the side of
greater precision. A digitizer of at least 4 bits and preferably as many as 8 bits should
handle a wide variety of signals.

Given the above analysis, the absolute amount of data to be recorded reduces to
a more manageable average rate of hundreds of kilobytes per second and a burst rate
of, say, 25 megabytes per second. Even this rate would fill many tapes, but because of
the “bursty” nature of the data, it should be possible to subject each burst to more
comprehensive analysis during intervals when no candidate signals are being
received. The data can be initially recorded in random access memory and only
committed to tape or other storage medium when there is a reasonable probability
of a signal being present. This is a more desirable method because “data acquisition”
to memory is simpler and faster than recording directly to a magnetic or optical
medium, and the RAM medium can be immediately and indefinitely reused if the
candidate signal is found to be spurious.

Consider one possible configuration for a small SETI “observatory” electronics
package. A specially modified video obscenity delay line is used as a burst storage
recorder. Electronically, it is arranged as an “endless loop” recorder, so that the last
20 seconds of data received are always in memory. A “‘signal detector”, still to be
optimized, works with a PC to determine the likelihood that there is a non-random
signal in the 5MHz-wide passband of the downconverted radiofrequency input.
When such a determination is made, the computer, after a 10s delay, tells the video
recorder to stop recording, leaving 10s of pre- and 10s of post-*“‘detection” signal in
its memory. This memory, approximately 300 Mbytes worth, is then transferred to a
computer for storage and subsequent detailed analysis.

It should be noted that the gravitational lens scenario and the narrowband
beacon scenario are by no means mutually exclusive, and the ability to perform both
types of detection enhances the capability of both small- and large-antenna SETI
observatories.

6.3.2 Summary

The advantages of looking for gravitationally-lensed intelligent signals include
increasing the chance for detection at relatively small additional cost and at least
the possibility of obviating the “we had a hit but couldn’t confirm it” problem. It is a
strategy that differs from the “targeted search’ in that it has a chance of picking
up “leakage signals” from solar systems that are otherwise completely out of range. It
is a strategy that differs from the all-sky search in that it doesn’t require a signal
beamed to us directly by a civilization that knows where we are, or, transmitted
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omnidirectionally by a civilization that has incredible power at its disposal. It is a
strategy that, given its modest antenna requirements, can be adopted by amateur and
small observatories. And it is one that will benefit as the state of the art in signal
processing improves inevitably, rather than one that requires ever bigger radio
telescopes.

6.4 MACCONE’S EQUATION RELATING TO (1) MAGNIFICATION OF
A LENSING STAR, (2) DISTANCE OF THE ET TRANSMITTER,
AND (3) POWER OF THE ET TRANSMITTER

The G-L SETI ideas outlined by the SETI League President, Richard Factor, in the
preceding Sections 6.2 and 6.3, were entirely qualitative. In other words, Richard
Factor did not give any mathematical theory enabling the scientists to check whether
G-L SETI is an actually achievable goal by virtue of such numbers as the magnifica-
tion of the lensing star located in between the Earth and the ET transmitter, the
distance of the ET transmitter from the Earth (i.e., the “‘range’ of our SETI searches),
and the (unknown to us) power of the ET transmitter.

In this section we make G-L SETT a quantitative science by introducing the use of
mathematics and by discovering the equation relating to

(1) The magnification Gp.,s of the lensing star. This lensing star must be located
along the straight line between ET and the Earth, and could be any star nearby
the Sun in the Galaxy (say, any star up to 2,000 It-yr away from the Sun in all
directions. In the year 2002 we already know the distances (i.e., the parallexes) of
all 218,000 stars closest to the Sun in the Galaxy and located within a sphere of
about 2,000 It-yr from the Sun. All these 218,000 star distances are listed in the
European Space Agency’s Hipparcos Catalogue, published in 1998. The distance
between the Earth and the lensing star, dubbed Dy, g4 hereafter, is thus
supposed to be a known parameter by virtue of the Hipparcos Catalogue. As
for the magnification G, of the lensing star itself, we also regard it hereafter as
a known parameter, although a difficult one to estimate. Actually, the magnifica-
tion G,y depends on (a) the mass of the lensing star, and (b) the atmosphere of
the lensing star, in particular the star’s electron density near to the star surface,
which is where the ET signals have to pass through. We assume these data to be
known, though this assumption could be largely optimistic.

(2) The distance Dy gap of the ET transmitter. This is assumed to be an unknown
datum hereafter. More exactly, we assume the distance Dgr_j.,s between ET and
the lensing star to be an unknown datum, and, of course, one has

DET—Ezlrth = DET—Lens =+ DLen.\'—Earth (61)

(3) The power Pgr of the ET transmitter. This also is assumed to be an unknown
datum, obviously.
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In order to derive our new equation, which was published for the first time in
2002 (see [2]), let us start from the description of the radio link given by John D.
Kraus in his seminal book Radio Astronomy [3]. Suppose ET radiates isotropically
and uniformly over the bandwidth By the unknown power Pgy from ET’s star,
located at the unknown distance Dgr_j,,, from the lensing star. The power Prra rons
received at the lensing star is given by

BrrarensPET Aeff @ Lens 62)
BerdnD i‘T— Lens

PET@ Lens =

from which, assuming Bgra rens = Bgr, One gets

PETAeff@ Lens (6 3)

PeraLens = 5 .
4D ET—Lens
Then, Prra rens 1s magnified by the factor Gy, and finally reaches the Earth (located
at the known distance Dj,,_gu from the lensing star) decreased to the value
Prragarg Dy the inverse-square law:
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Substituting Pry @ rens from (6.3) into (6.4), we get Prr e gaqn @S @ function of only two
unknowns: Pgy and Dgr_j -
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Prra parn = (6.5)

Let us now notice that we can measure experimentally the power Prra guan
received at our radiotelescope on Earth and, thus, Pgrra gaq 1S to be regarded as a
known datum. Therefore, we can solve Equation (6.5) for the unknown distance
Dgr_1ens> finding this distance as a function of the unknown power emitted by ET,
Prr:

GromsAvsr @ LonsAfr & Ear
DETngm(PET) _ Lens“teff @ Lenzs ;ff Q Earth . PET (66)
PET“\ Earth l6m DLens—Earrh

Replacing (6.6) into (6.1) we finally get the full ET-to-Earth range expressed as a
function of the only unknown power Py emitted by ET:

GLenxAz{)_‘)" @ LensAe_ff @ Earth

DETfEarth(PET) = DLem‘fEarth + \/ PET' (67)
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This is the basic relationship we wanted to point out between the ET distance from
Earth, Dgr_g,u, and the power, Pgy, of the isotropic signal emitted by ET. We
believe that this formula will be of help, jointly with the Hipparcos Catalogue, to put
the future GL-SETI searches on sound rational and scientific foundations.
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6.5 SUN GRAVITY LENS AND SETV: THE SEARCH FOR
EXTRATERRESTRIAL VISITATION

SETYV is an acronym for “Search for ExtraTerrestrial Visitation”. This means finding
scientific proofs that aliens visited in the past either the Earth itself or, more in
general, some parts of the solar system. Nowadays we have a SETV Institute whose
mission and more can be found at the website.

This book is not concerned with SETV since in our opinion this would lead easily
to questions like the reality of UFOs, etc., which are regarded as non-scientifically
proven subjects by this author. There is, however, one fully scientific argument
related to SETV and to the gravitational lens of the Sun that we want to mention
here since it could, one day, become the object of radio astronomical searches,
especially in the infrared bands, and could also easily lead to the discovery of those
aliens who are spying us!. Here is the argument.

(1) Suppose that an alien civilization discovered us enough time ago.

(2) Suppose they have interstellar space-faring capabilities, at least for robotic
probes, but possibly also for inhabited probes.

(3) Suppose they use electromagnetic waves to transmit their reports about us back
to their mother star. This is, in this author’s view, the most severe assumption: in
fact, if they are so much more technologically advanced than us, in order to
communicate they could use neutrinos, or even other technologies still unknown
to us.

Well, they may have then sent probes from their star to about 550 AU from our
Sun in order to use the full power of the gravitational lens of our Sun. This means that

(1) They position their own probe(s) in between, say, 550 AU and 1,000 AU on the
opposite side of their own star with respect to the Sun.

(2) They have a similar probe positioned at the focus of the gravitational lens of their
own star.

(3) They take enormous advantage of this two-star radio bridge to save power for
their telecommunications.

Suppose all that is true.

But, then, we may wish to detect these alien probes in the spherical space around
the Sun having a radius of at least 550 AU and extending out to about 1,000 AU in
each direction! A huge volume of space to be explored, but a “must” to be sure that
no alien is spying on us by resorting to the Sun’s gravity lens. We conclude that

1 This exploration of the space within two spheres of radii 550 AU and 1,000 AU
could possibly be made from Earth by antennas searching for infrared radiation
(the heat emitted by the alien probes). This search could appropriately be called
a SETV search. A scientist supporting this view in the most recent years is
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California-based Scott Stride, to whom this author is grateful for enlightening
conversations on this subject.

Suppose we detect such an alien probe using the gravitational lens of the Sun.
Then, from its position around the Sun, we would immediately know the direc-
tion (opposite to the probe and passing through the Sun’s center) along which the
aliens’ star is located. This is a very, very important piece of information indeed,
even if the distance of the alien star cannot be determined by this method.

A stellar catalog like Hipparcos (by ESA), listing all the 218,000 stars closest to
the Sun in the Galaxy, would help us immensely to find the distance of the alien
star, and so its full 3D position! And if Hipparcos is not enough, in two decades
we should have the SIM (Space Interferometry Mission, by NASA-JPL) stellar
catalog yielding the 3D positions of about a million stars around the Sun in the
Galaxy. And if even SIM is not enough, than GAIA (by ESA) should provide us
with the 3D position of 50 million to 1 billion stars in the Galaxy within some
decades, and this really means most stars in the Galaxy itself, even on the other
side of the bulge and even in the Magellanic Clouds.

The inevitable conclusion is that, if any alien probe is spying on us from 550 AU right
now, and if we discover it, we would almost certainly detect the first extraterrestrial
civilization in the Galaxy.
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The gravitational lenses of Alpha Centauri A,
B, C and of Barnard’s Star

7.1 INTRODUCTION

The gravitational lenses of the three nearest stars, Alpha Centauri A, B, and C
(Proxima Centauri), are studied in this chapter. For each star, the minimal focal
distance is found, and turns out to equal 679.262 AU, 563.484 AU and 112.138 AU,
respectively, plus or minus the (large) uncertainties deriving from the uncertainties in
the estimates of the star masses and radii. A comparison of these three minimal focal
distances against the corresponding value for the Sun (550 AU, or, more correctly,
548.214 AU) is then made, but it is clearly pointed out that all these minimal focal
distances are just the theoretical values given by Einstein’s deflection formula for a
corresponding “‘naked star” (i.e., a star as if it had no corona!). The study of the true
focal distances that follow from taking the corona into account is much more difficult
and uncertain, and has to be delayed for further research. For the naked stars, we
study the deflection of radio waves for four different frequencies: the water maser at
22 GHz, NASA’s Interstellar Probe (ISP) telecommunication frequency at 32 GHz
(Ka band), the Cosmic Microwave Background peak frequency at 160.378 GHz and
finally the positronium frequency at 203 GHz. For each frequency the antenna
patterns of the three naked stars’ gravitational lenses are given. Finally, all the
above data are derived also for the fourth star in increasing distance from the
Sun—Barnard’s Star.

The gravitational lens of the Sun still needs more study. In fact, above the surface
of the Sun the Corona extends into space across distances that are comparable with
the Sun radius, and the coronal effects may only complicate the physical picture of the
Sun as a gravitational lens.
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7.2 THE SUN’S GRAVITY+PLASMA LENS AS A MODEL FOR THE
NEARBY STARS

When will the first interstellar robotic probe be launched by humankind? In a
millennium, in some centuries, or just a few decades ?

No one knows the answer in the year 2008, but NASA’s most advanced vision of
the problem seems to suggest that the first robotic probes to the nearest stars will be
launched before the year 2100 (see NASA’s Interstellar Probe site: http://coast.
Jpl.nasa.gov/interstellar/probe/introduction/intro.html).

It seems reasonable to assume that the target of the first of such interstellar
robotic flights will be the nearby Alpha Centauri system of three stars, simply because
this is the nearest group of stars to the Sun. This system is located about 4.3 1t-yr away
in the southern hemisphere: the direction is —62°40.8 in declination and 14h26m43s
in right ascension for Proxima (i.e., Alpha Centauri C) in the year 2000.

From the point of view of spaceflight, planning a mission to the Alpha Centauri
system means that

(1) Innovative propulsion systems must be devised by scientists and engineers to
cover the distance of 4.3 1t-yr in a “reasonable” amount of time—not much larger
than, say, a century. NASA’s Breakthrough Propulsion Physics Program
(BPPP), started in 1996 (http.//www.grc.nasa.gov/WWW/bpp/) tries to address
this propulsion issue by resorting to the most recent and advanced developments
in physics and engineering.

(2) Apart from propulsion, however, other key problems will have to be solved. One
is the telecommunication link to be established between the Alpha Centauri
System and the Sun—Earth System after one or more such probes have reached
Alpha Centauri. Of course, it will always take 4.3 years for our radio messages to
reach Alpha Centauri and 4.3 more years for their replies to reach us: this seems
unavoidable since nothing faster than lightspeed is currently known. In this
chapter, however, we wish to show that, by exploiting the natural phenomenon
called gravitational lensing of both the Sun and the three stars in the Alpha
Centauri System, the powers involved in keeping a permanent two-way radio link
between ourselves and Alpha Centauri can be greatly reduced.

Let us start by reviewing the essential features of the gravitational lens associated
with every star. As a more comprehensive introduction to this research field, the
reader might wish to consult [1, 2] or the author’s recent paper [3], from which this
chapter was adapted.

With reference to Figure 7.1, in this chapter we’ll only state without proof the
following results:

(1) The geometry of the gravitational lens of any star (Figure 7.1) is easy: incoming
electromagnetic waves, arriving from infinity, pass outside the star and at a
certain distance r from its center, traditionally called the “impact parameter”
(as in particle physics). Then, the well-known Schwarzschild solution (of the
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Figure 7.1. Geometry of the gravitational lens of any star, its minimal focal length, and
FOCAL spacecraft.

Einstein equations of general relativity) yields the well-known Einstein’s
deflection formula yielding the deflection angle «(r) that all radiation undergoes

4GMy,,
ar) = —5. (7.1)
c’r
The largest deflection angle « thus occurs for those rays just grazing the star
surface (i.e., for r = rg,) and is

4G M s1q

2,
C Fstar

(7.2)

Qmax = a(rstal‘) =
From the inequality «(ry,,.) > a(r), from the geometry shown in Figure 7.1, and
from the definition of the Schwarzschild radius or gravitational radius of the star,
that is
2GMS ar
F'Schwarzschild—star = Tg = TJ7 (73)
a few easy steps (listed in [3, pp. 7-8]) yield then the minimal focal distance for the
star’s gravitational lens

2
Fstar _ € star

dipcal—siar = =—.
‘focal—star 2rg 4G Msmr

(7.4)

This is the minimal focal distance from the star’s center that the FOCAL spacecraft
must reach in order to get magnified radio pictures of whatever lies on the other side
of the star with respect to the spacecraft position. Also, all points on the straight line
beyond this minimal focal distance are foci too, because the light rays passing by
the star farther than the minimum distance have smaller deflection angles and
thus come together at an even greater distance from the star.

The very important astronautical consequence of this fact for the FOCAL
mission is that it is not necessary to stop the spacecraft at the minimal focal
distance. It can go on to any distance beyond and focus as well or better. In fact,
the farther it goes beyond the minimal focal distance, the less distorted the
collected radio waves are by the star’s corona fluctuations.



88

(@)

(€)

4)

The gravitational lenses of Alpha Centauri A, B, C and of Barnard’s Star [Ch. 7

Let us next find the equation relating the uncertainty in the determination of the
minimal focal distance, Adsycqi—giar, to the uncertainties in the determination of both
the star’s radius, Argg., and mass, AMg,,. The theory of errors shows that one
simply has to compute the total differential of (7.4) and replace the differentials
by the corresponding finite differences, taking also the absolute values of all
terms in the summation resulting from the differentiation of the factors in
(7.4). So one has:

2 2
c 2 s1ar Fiar
Adjpeai—siarl = ~—= - | 522 - Argge| + | — 2" . AM
focal —star 4G Msr(/r sta M_%tar sta
— C2 r.%mr <2 Ar&mr + ’ AMA\‘mr > (7 5)
4G MS[[H‘ rS/CH‘ Mstar .
which, invoking (7.4), finally yields

Ad, al—star A star AMs ar

M| [ | [ M| o

| dfoculfsrar | Tstar star

In words: the relative error in the determination of the star’s minimal focal distance
equals twice the relative error affecting the star radius plus the relative error
affecting the star mass.

The magnification or gain G, of the star gravity lens is of course huge. Along the
focal axis (straight line between the source of electromagnetic waves, the star
center, and the FOCAL spacecraft position), it is

r,  8m*GM,, 1
Gslar(A) = 4W2Xg = cz = X (77)
More generally (see [4, p. 3, eq. (3)]), at distance p from the focal axis, and at
spacecraft distance z from the star, the gain is

g 2 2
Goar(Nsp2) = 423 <§” N f) . (78)

where Jy(x) is the Bessel function of order zero and argument x. Since J,(0) = 1,
(7.8) reduces to (7.7) for p — 0, but notice also that it does so for z — oco. This the
maximum gain provided by the naked star (i.e., the star without taking its corona
into account at all), and so it is a (close) upper bound for the true gain.

The FOCAL spacecraft has an antenna with radius 74enm, and efficiency & uuienna-
Thus, the FOCAL antenna gain is given by

Aphysical * K 47?2 -k
o physical * antenna antenna * Kantenna
Ganlt’n”a(A) - 47T }\2 - A2 . (7.9)
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The total gain on axis for the combined (star + FOCAL antenna) system is the
product of (7.7) times (7.9)

321 G M sy antonna * Kante
Gtutal(/\) = Gxtar(/\) ! Ganrenna(/\) = i 3’“’:;;\’;””“ —

(7.10)

The angular resolution of the star’s gravity lens is found by first establishing the
expression yielding the distance, in the image plane (plane orthogonal to the focal
axis), where the gain decreases for 6 dB; that is

N E ¢
N R 7.11
Poas(A;2) Wz\/; 27%\/GM g, v o

The gain decrease by just 6 dB is an arbitrary measure of the gain decrease off
axis. In [3] a 10dB gain decrease is assumed, with the result that a factor of 4,
rather than of 72, appears in (7.11). If our 6 dB form for (7.11) is assumed, one
then gets the following expression (7.12) for the angular resolution 8,,ion (A, 2)
of any astronomical radio source located on the opposite side of the star with
respect to the FOCAL spacecraft position

peap(N,z) A 1 1
eresolurion()\vz): 6dB( )2—2 > $

z s g

c A

= . 7.12
2772\/GMSun \/E ( )

The spatial resolution of an astronomical object located at a distance dyqr—opject
from the star is
A 1 1
R()hject(/\v Z) = dstarf()bje('t : ere.wluti()n(/\a Z) = ds‘tarf()bject : ? : 21’4, : ﬁ

¢ A
= dyur—ohject "~ = 7.13
star—object zﬂ_zm \/E ( )

So far for the naked star (i.e., just as if the star had no ‘flames’ around it). But the
true star is surrounded by a corona, a turbulent plasma whose electron density
decreases outward as a function of r that is hard to establish both theoretically
and experimentally. To take the star’s corona into account is a difficult problem,
and for the Sun the first breakthrough studies on the solution of the coupled
Einstein—-Maxwell equations for the spherical gravitational lens were made
around 1974 by H. C. Ohanian [5] and E. Herlt and H. Stephani of the
University of Jena in Germany [6, 7]. In 1998 a comprehensive effort to design
a 550 AU probe to exploit the Sun’s lens was made at JPL under the coordination
of John L. West [8], and, as a part of this effort, the JPL experts B. G. Andersson
and Slava G. Turyshev gave in [4, p. 6, eq. (13)] the following empirical formula
for the deflection angle ayumma(r) caused by the Sun’s Coronal plasma effects and
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opposed to the action of gravity

Opnalr) = (2) [2952 107 (8" 1 28107 (32) 1y (3

.. (1.14)

where vy = 6.32 MHz. The result of adding algebraically the gravitational deflec-
tion (7.1) and the plasma opposite deflection (7.14) is that the effective minimal
focal distance of the star’s gravity lens is pushed farther out beyond the value
given by (7.4), at a distance given by

d/bcal(gravity+plasma) (}", l/)

L \2 2 ‘ REIE
= df'ocal(gravity)(r,\'tar) : < l ) : |:1 7%2(,'3“”) ! (M) :| . (715)

star v r

The numerical value v (rsm) =~ 122.2 GHz, to be replaced into (7.12), is
obtained by setting r = ry, into the expression

2., " 15 5
Verivcal(r) = \/”0'~ [2.952- 103 - ('97) 4228102 (%) 11 r‘—}

2r, g

(7.16)

which is the expression for the critical angle for which the plasma deflection
exactly counterbalances the gravity deflection. If the Sun’s Corona theory applies
to stars “‘similar to the Sun” like Alpha Centauri A and B too (an assumption to
be checked), (7.15) is clearly the most important formula for these stars’ true
gravity lenses. For further details see Chapter 8.

7.3 ASSUMED DATA ABOUT ALPHA CENTAURI A, B, C AND
BARNARD’S STAR

A large variety of slightly different numerical values for every important physical
constant or astronomical parameter usually “plagues” the scientific literature. In
order to clear the way from problems of this kind, we clearly state in this section
which numerical values we assume to be true in this chaper. Of course, different
assumed values for both the physical constants and the astronomical parameters
would yield (slightly) different numerical results from ours. However, the differences
should not be very large anyway.

We start from the assumed values of the Newtonian gravitational constant, G, of
the speed of light, ¢, and of the Astronomical Unit, AU. These are given, respectively,
in Table 7.1.

Next we list (Table 7.2) the assumed values of the Sun’s mass and radius,
taken from the JPL’s DAstCom (=Data on Asteroids and Comets) database [9].
Unfortunately, we were not able to find the relevant uncertainties.
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Table 7.1. Assumed values of G, ¢, and of the
Astronomical Unit (AU).

G =6.6726-10""

m3
kg - s2

¢ =1299,792,458

m

1AU=149,597,870.66 km

Table 7.2. Assumed values of the Sun’s mass, radius, and effective temperature.

Gravitational Mass in Uncertainty Radius Uncertainty | Effective
parameter kg in the in the temperature
nw=G- Mg,y mass radius in K
132712439900 1.98891-103° +? 696,000 km +7? 5,780

The mass and radius of each of the four stars we want to study are among the
most difficult astrophysical data to be determined in a reliable fashion. In fact, on
the one hand, the masses are estimated on the basis of the star’s spectral type, and, on
the other hand, the radii require careful measurements that are often disputed by
different astronomers. Further, the star masses and radii are usually listed in separate
catalogs, causing additional difficulties for the theorists who need them. In this
section, we want to point out once and for all the values of the masses and radii
that we have assumed to be correct for the four stars, and we obviously are aware that
these values may be questionable. Table 7.3 shows these assumed values, and the

Table 7.3. Assumed values of the mass, radius, the relevant uncertainties, and the effective
temperature for Alpha Centauri A, B, C and Barnard’s Star.

Name of the Star mass Uncertainty Star Uncertainty Star’s
nearby star M in the star radius in the star effective
in units of mass, Fstar 1N radius, temperature
the Sun mass AM gy units of the Argr in K
Sun radius

Alpha Cent. A 1.1238 +0.008 1.18 +? 5,770

Alpha Cent. B 0.9344 +0.007 0.98 +? 5,300

Alpha Cent. C 0.11 +? 0.15 +? 2,407

(Proxima)

Barnard’s Star 0.17 +? 0.17 +? ~2,400
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Table 7.4. Frequencies and wavelengths for gravity lenses of Alpha Centauri A, B, C and

Barnard’s Star.

Line Neutral H,O Ka band CMB,,,. |Positronium
hydrogen

Frequency v 1.42 GHz 22 GHz 32 GHz |160.378 GHz| 203 GHz

Wavelength A 21.112 cm 1.363 cm 9.37 mm 1.06 mm 1.48 mm

estimated effective temperature (or color temperature—namely, the temperature of
the blackbody curve that best fits the star’s known astrophysical traits) is also given as

further key data for use in future.

In view of further investigations, we also list the website from which the Sun’s
effective temperature was taken: http://climate.gsfc.nasa.gov/~cahalan/Radiation/
SolarIrrVblackbody.html

Finally, in Table 7.4 we want to list the frequencies and wavelengths that we
regard as interesting for the study of the gravitational lenses of Alpha Centauri A, B,
C and of Barnard’s Star. They all are well known in astrophysics and the space

sciences and no further explanation seems to be needed.
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7.4 GRAVITATIONAL LENS OF THE NAKED SUN

(1) Assumed mass of the Sun: 1.9889164628E+30kg; that is,
psun = 132,712,439,900 kg3 /s?

(2) Assumed radius of the Sun: 696,000 km

(3) Sun mean density: 1,408.316 kg/m?

(4) Schwarzschild radius of the Sun: 2.953 km

(5) Minimal focal distance of the Sun: 548.230 AU ~ 3.17 light days ~ 13.86 times
the Sun-to-Pluto distance

(6) Patterns of the naked Sun’s gravity lens at the hydrogen line frequency of
1.420 GHz (=21 cm wavelength):

Off-Axis GAIN of the Sun Lens at 1.4 GHz
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Figure 7.2. Antenna patterns for the naked Sun at the hydrogen line of 1.420 GHz. Horizontal
scale is distance off axis in meters. Vertical scale is the naked Sun gain in dB as given by (7.8).
The thin curve shows the antenna patterns of the gain for the FOCAL spacecraft located at
550 AU from the Sun, whereas the thick curve shows the antenna patterns when FOCAL
reached 1,000 AU from the Sun. Note that this convention (thin line for the FOCAL spacecraft
located at the minimal focal distance and thick line for the spacecraft at 1,000 AU ) will be retained
in all the figures in this chapter. Thus, it is evident that the central lobe widens while the FOCAL
spacecraft is getting farther and farther away from the minimal focal distance up to 1,000 AU
and beyond.
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(7) Patterns of the naked Sun’s gravity lens at the water maser frequency of
22 GHz (=1.36 cm wavelength):

Off-Axis GAIN of the Sun Lens at 22 GHz
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Figure 7.3. Same as for Figure 7.2, but for the water maser frequency of 22 GHz. Same vertical
scale, for comparison.
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(8) Patterns of the naked Sun’s gravity lens at the Ka telecommunication band
frequency of 32 GHz (=9.37 mm wavelength):

Off-Axis GAIN of the Sun Lens at 32 GHz
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Figure 7.4. The important Ka telecommunications band frequency of 32 GHz could possibly
become the link frequency for many future interstellar probes, like NASA’s InterStellar Probe
(ISP) initially scheduled for launch in 2010 in the direction of the incoming interstellar wind.
Note that the central lobe is narrower than above (i.e., about 500 meters). This is a tight
constraint on the alignment between source, Sun center, and FOCAL spacecraft position. It is
of course very difficult to track a spacecraft with such precision at distances above 550 AU. So,
new AOCS methods will have to be devised to solve this tracking problem.
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(9) Patterns of the naked Sun’s gravity lens at the peak frequency of the Cosmic
Background Radiation (CMB), that is 160.378 GHz (= 1.06 mm wavelength,
a value not related to the corresponding CMB peak frequency value by
¢ = Av since both values originate from Planck’s probability density (at the
temperature 7' = 2.728 K), see Section 9.3 for details):

Off-Axis GAIN of the Sun Lens at 160 GHz
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Figure 7.5. Naked Sun antenna patterns for the peak of the cosmic microwave background.
Same vertical scale as above. Note that the central lobe is much narrower still (i.e., the alignment
between source, center of the Sun, and FOCAL spacecraft position is now much tighter, ~50
meters).
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(10) The positronium is an “atom’” made up of one electron and one positron,

whose spins are usually antiparallel. When either spin changes, however, a
photon at the frequency of 203 GHz is emitted (or absorbed) and this is
commonly called the positronium frequency. The great Russian SETI-
radioastronomer Nikolai Kardashev suggested in the 1970s that this
frequency could be used by other civilizations in the Galaxy for their own
telecommunications, and so it is of interest in SETI. The naked Sun’s
antenna patterns on the positronium line are shown below:

Off-Axis GAIN of the Sun Lens at 203 GHz
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Figure 7.6. Naked Sun antenna patterns for the positronium line at 203 GHz (the SETI galactic

link?)
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7.5 GRAVITATIONAL LENS OF THE NAKED ALPHA CENTAURI A

The basic reference that we selected for our study of the gravitational lenses of Alpha
Centauri A and B is the paper published on March 1, 2000, by D. B. Guenther and
P. Demarque [11]. The values of the masses and relevant uncertainties for Alpha
Centauri A and B given in Table 7.3 are taken from the Hipparcos Catalogue, as
reported in [11, p. 506]. Alpha Centauri A and B have the Hipparcos Catalogue
numbers 71683 and 71681, respectively, the Gliese Catalog numbers Gl 559 A and
Gl 559 B (data downloadable from the website http.//www.ari.uni-heidelberg. de/
aricns/cnspages|4c01151.htm), respectively, and the numbers 128620 and 128621,
respectively, in the Cadars.dat file, downloadable from the database http://
cdsweb.u-strasbg.fr/viz-bin/Cat?I1/155 From the last file we derived the radii of Alpha
Centauri A and B reported in Table 7.3, no uncertainties being given.

(1) Assumed mass of Alpha Centauri A: 2.2351443209E+30 kg; that is,
w=1.1238 s

(2) Assumed radius of Alpha Centauri A: 821,280 km; that is, 1.18 times the Sun
radius.

(3) Alpha Centauri A mean density: 963.259 kg/m?

(4) Schwarzschild radius of Alpha Centauri A: 3.318 km

(5) Minimal focal distance of naked Alpha Centauri A: 679.262 AU ~ 3.92 light
days ~ 17.17 times the Sun-to-Pluto distance

(6) Antenna patterns of the naked Alpha Centauri A’s gravity lens at the hydrogen
line frequency of 1.420 GHz (=21 cm wavelength):

Oft-Axis GAIN of Alpha Cen A at 1.42 GHz
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Figure 7.7. Antenna patterns for the naked Alpha Centauri A at the hydrogen line of
1.420 GHz. Again, horizontal scale is distance off axis in meters, vertical scale is the naked
Sun gain in dB as given by (7.8). The central lobe widens while the FOCAL spacecraft is getting
farther and farther away from 680 AU.
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(7) Patterns of the naked Alpha Centauri A’s gravity lens at the water maser
frequency of 22 GHz (=1.36 cm wavelength):
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Figure 7.8. Patterns for the naked Alpha Centauri A at the water maser line of 22 GHz.

(8) Patterns of the naked Alpha Centauri A’s gravity lens at the Ka band
frequency of 32 GHz (=9.37 mm wavelength):
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Figure 7.9. Patterns for the naked Alpha Centauri A at the Ka band line of 32 GHz used for
space telecommunications.
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(9) Patterns of the naked Alpha Centauri A’s gravity lens at the CMB peak
frequency of 160.378 GHz (= 1.06 mm wavelength):
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Figure 7.10. Patterns for the naked Alpha Centauri A at the CMB peak frequency of

160.378 GHz.

(10) Patterns of the naked Alpha Centauri A’s gravity lens at the positronium
frequency of 203 GHz (SETI?):
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Figure 7.11. Patterns for the naked Alpha Centauri A at the positronium frequency of 203 GHz
(SETI?). Note that the alignment is extremely tight (~70 meters at 680 AU), so “‘they’” must be

really advanced!
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7.6 GRAVITATIONAL LENS OF THE NAKED ALPHA CENTAURI B

(1) Assumed mass of Alpha Centauri B: 1.8584435429E+-30 kg, that is,
u=0.9344p5,,

(2) Assumed radius of Alpha Centauri B: 682,080 km, that is, 0.98 times the radius
of the Sun

(3) Alpha Centauri B mean density: 1398.153 kg/m3

(4) Schwarzschild radius of Alpha Centauri B: 2.759 km

(5) Minimal focal distance of Alpha Centauri B: 563.484 AU ~ 3.25 light days
~ 14.25 times the Sun-to-Pluto distance

(6) Antenna patterns of the naked Alpha Centauri B’s gravity lens at the hydrogen
line frequency of 1.420 GHz (=21 cm wavelength):

Off-Axis GAIN of Alpha Cen B at 1.42 GHz
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Figure 7.12. Patterns for the naked Alpha Centauri B at the hydrogen line of 1.420 GHz.
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(7) Patterns of the naked Alpha Centauri B’s gravity lens at the water maser
frequency of 22 GHz (=1.36 cm wavelength):

Off-Axis GAIN of Alpha Cen B at 22 GHz
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Figure 7.13. Patterns for the naked Alpha Centauri B at the water maser line of 22 GHz.

(8) Patterns of the naked Alpha Centauri B’s gravity lens at the Ka band
frequency of 32 GHz (=9.37 mm wavelength):
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Figure 7.14. Patterns for the naked Alpha Centauri B at the Ka band line of 32 GHz used for
space links.
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(9) Patterns of the naked Alpha Centauri B’s gravity lens at the CMB peak
frequency of 160.378 GHz (= 1.06 mm wavelength):
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Figure 7.15. Patterns for the naked Alpha Centauri B at the CMB peak frequency of
160.378 GHz.

(10) Patterns of the naked Alpha Centauri B’s gravity lens at the positronium
frequency of 203 GHz (SETI?):
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Figure 7.16. Patterns for the naked Alpha Centauri B at the positronium frequency of 203 GHz
(SETI?).
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7.7 GRAVITATIONAL LENS OF THE NAKED ALPHA CENTAURI C
(PROXIMA)

We have taken the data about Alpha Centauri C from [12] of 1998 and available at
the website of the Hubble Space Telescope (HST) Astrometry Team: http://clyde.as.
utexas.edu/GFBINFO/ProxCenlnfo.htm

(1) Assumed mass of Alpha Centauri C (Proxima): 2.1878081091E+29 kg; that is,
H= 0.1 I,U'Sun

(2) Assumed radius of Alpha Centauri C (Proxima): 104,400 km; that is, 0.15 times
the Sun radius.

(3) Alpha Centauri C (Proxima) mean density: 45,900 kg/m?

(4) Schwarzschild radius of Alpha Centauri C (Proxima): 0.325 km

(5) Minimal focal distance of Alpha Centauri C (Proxima): 112.138 AU ~ 0.65
light days ~ 2.83 times the Sun-to-Pluto distance

(6) Antenna patterns of the naked Alpha Centauri B’s gravity lens at the hydrogen
line frequency of 1.420 GHz (=21 cm wavelength):
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Figure 7.17. Patterns for the naked Alpha Centauri C (Proxima) at the hydrogen line of
1.420 GHz. Note the much lower naked star gain (~47 dB) due to the much smaller dimensions
of Proxima with respect to the Sun and both Alpha Centauri A and B. Also, the central lobe
widens much when FOCAL goes from the minimal focal distance of 112 AU to 700 AU and
1,000 AU: the alignment gets less tight.
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(7) Patterns of the naked Proxima’s gravity lens at the water maser frequency
(22 GHz; that is, 1.36 cm):

Gain in dB of Proxima Cen Lens at 22 GHz
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Figure 7.18. Patterns for the naked Proxima at the water maser line of 22 GHz.

(8) Patterns of the naked Proxima’s gravity lens at the Ka telecommunication
band of 32 GHz (=9.37 mm wavelength):
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Figure 7.19. Patterns for the naked Proxima at the Ka band line of 32 GHz used for space links.
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(9) Patterns of the naked Proxima’s gravity lens at the CMB peak frequency of
160.378 GHz (= 1.06 mm wavelength):
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Figure 7.20. Patterns for the naked Proxima at the CMB peak frequency of 160.378 GHz.
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(10) Patterns of the naked Proxima’s gravity lens at the positronium frequency of
203 GHz (SETI?):
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Figure 7.21. Patterns for the naked Proxima at the positronium frequency of 203 GHz (SETI?).
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7.8 GRAVITATIONAL LENS OF THE NAKED BARNARD’S STAR

(1) Assumed mass of Barnard’s Star: 3.3811579868E+29 kg; that is, p = 0.17 s

(2) Assumed radius of Barnard’s Star: 118,320 km; that is, 0.17 times the Sun
radius

(3) Barnard’s Star mean density: 48,730 kg/m?

(4) Schwarzschild radius of Barnard’s Star: 0.502 km

(5) Minimal focal distance of Barnard’s Star: 93.199 AU ~ 0.54 light days ~ 2.36
times the Sun-to-Pluto distance

(6) Antenna patterns of the gravity lens of the naked Barnard’s Star at the
hydrogen line frequency of 1.420 GHz (=21 cm wavelength):
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Figure 7.22. Patterns for the naked Barnard’s Star at the hydrogen line of 1.420 GHz. As for
Proxima, note the much lower naked star gain (~49 dB) due to the much smaller dimensions of
Barnard’s Star with respect to the Sun and both Alpha Centauri A and B. Again the central lobe
widens from the minimal focal distance of 93 AU to 700 AU and 1,000 AU, and the alignment
gets thus less tight.
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(7) Patterns of the gravity lens of the naked Barnard’s star at the water maser

frequency (22 GHz; that is, 1.36 cm):
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Figure 7.23. Patterns for the naked Barnard’s Star at the water maser line of 22 GHz.

(8) Patterns of the gravity lens at the Ka telecommunication band of 32 GHz
(=9.37 mm wavelength):

links.
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Figure 7.24. Patterns for the naked Barnard’s Star at the Ka band line of 32 GHz used for space
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(9) Patterns of the gravity lens of the naked Barnard’s Star at the CMB peak

frequency of 160.378 GHz (= 1.06 mm wavelength):
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Figure 7.25. Patterns for the naked Barnard’s Star at the CMB peak frequency of 160.378 GHz.

(10) Patterns of the naked Proxima’s gravity lens at the positronium frequency of

203 GHz (SETI?):
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Figure 7.26. Patterns for the naked Barnard’s Star at the positronium frequency of 203 GHz

(SETI?).
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7.9 CONCLUSIONS

Humankind appears to be “lucky” in that two stars out of three in the nearest star
system (Alpha Centauri) are stars of the same type as the Sun, namely Alpha
Centauri A and B.

The 21st and following centuries are likely to see a host of FOCAL space
missions, each one devoted to a different astrophysical target and thus launched
along a different direction out of the solar system. But the guess is made here that
all of them will use a Tethered System as described in Appendix D in order to avoid,
by virtue of interferometry, all the problems caused by random fluctuations within
the Solar Corona.
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The Coronal Plasma ““pushing” the focus of
the gravity + plasma lens far beyond 550 AU

8.1 INTRODUCTION

The gravitational lens of the Sun still needs more study. In fact, above the surface of
the Sun, the Corona extends into space across distances that are comparable with the
Sun radius, and the coronal effects may only complicate the physical picture of the
Sun as a gravitational lens.

The world’s leading expert on the gravitational lens of the Sun is Professor Von
R. Eshleman, from the Center for Radar Astronomy at Stanford University. Not
only was he the first to suggest the exploitation of the focus at 550 AU by means of a
very deep—space mission back in 1979 [1], but he and his students continued to work
towards understanding the physical characteristics of the Sun’s outer layers, some-
thing that is crucial to the exploitation of its gravitational lens.

In the summer of 1996 Von Eshleman came to Capri, Italy, to attend the Fifth
Bioastronomy Conference, and there he presented a report on the current state of
knowledge about the physics of the gravitational lens of the Sun. This section is
essentially a short summary of Eshleman’s 1996 Capri paper [2].

Eshleman and his pupils are currently investigating the effects of the plasma
above the surface of the Sun on the gravitational lens. Eshleman provided the author
the following drawing (Figure 8.1) and procedure at the Capri 1996 conference:

(1) First, one sees the focal line (solid dark line) outgoing from 550 AU to infinity,
where each point is a focus. This solid line is also, of course, the trajectory of the
FOCAL spacecraft.

(2) One may notice from the drawing the existence of a caustic (i.e., an envelope of all
the deflected light rays). This caustic really is a funnel-shaped surface along the
focal axis outside of which there are no light rays, because all light rays are
concentrated inside it by the gravitational lens of the Sun.
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N

Figure 8.1. Von Eshleman’s drawing of the combined effects of the gravitational lens (due to
the Sun’s mass) and of the coronal lens (due to the plasma properties of the Corona).’

The above summarizes the effects of the gravitational lens due to the Sun’s mass with
no other effects like the Corona influence taken into account. However, Eshleman has
now introduced the Plasma Lens (i.e., the deflection of light rays due to the plasma
properties of the Corona).

The conclusions given by Eshleman (and reported here without mathematical
proofs) are as follows:

(1) For optical wavelengths, but not for IR wavelengths, there is no in-plane caustic,
but there is a central, axial focus.

(2) For short millimeter wavelengths (1 mm—4 mm) there is a double caustic inside
the distance of about 1,200 AU.

(3) For decimetric wavelengths there is a double caustic at a distance of the order of
1 It-yr.

We shall see in the next chapter that NASA-JPL might be willing to again study
the possibility of a very deep—space mission to 1,000 AU, called “Interstellar Probe”
(ISP), as they did in the 1980s for the TAU (Thousand Astronomical Units) mission.
Now, according to Eshleman, a spinning interferometer could be used at optical, IR,
millimetric, and longer wavelengths to do the following:

(1) Study zodiacal cloud and its effect in interferometric and lensing applications.
(2) Detect terrestrial planets in solar glare as test and calibration for discovery of
distant planetary systems.

! Personal communication from the author.
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(3) Use interferometric methods to search for distant planets.

(4) Characterize and employ the gravity lens of the Sun at optical and IR
wavelengths.

(5) Characterize and employ the gravity-plasma lens of the Sun at millimetric
wavelengths.

(6) Characterize and employ the gravity-plasma lenses of nearby stars at decimetric
and longer wavelengths.

(7) Use the 1,000 AU trajectory to align a nearby star with a region to be studied by
focusing, and to align the Sun with another such direction.

In the next chapter, more features of NASA’s ISP, currently under study at JPL
and elsewhere, will be discussed. They will also be turned to advantage in the first
experimental detection of how far from the Sun the “true’ focus of the Sun + plasma
gravity lens of the Sun is actually located.

8.2 THE REFRACTION OF ELECTROMAGNETIC WAVES IN THE SUN
CORONAL PLASMA

The rest of this chapter makes use of the mathematical model of the Sun’s Corona
called the ““Baumbach—Allen” model. This is because such a model is regarded by
many astrophysicists as “the best” description of the Sun Coronal Plasma we have
today (year 2008), though, of course, it will certainly be superseded by more accurate
models sooner of later, especially by models that do not assume spherical symmetry
around the Sun.

The story of the Baumbach—Allen model of the Corona began in the 1930s, when
the German astronomer S. Baumbach worked out and published a formula yielding
the density of electrons in the Coronal Plasma. Baumbach’s formula reads

b

In this formula, b is of course the “impact parameter” (i.e., the radial distance from
the Sun’s center), and it is measured here in units of the Sun radius, rg,,. Baumbach
obtained his formula by careful interpolation of his own measures of the Coronal
brightness. In 1947, the Australian astronomer C. W. Allen [3] confirmed the validity
of Equation (8.1) but re-interpreted one of the terms in Baumbach’s formula proving
what is now called the Baumbach—Allen model of the Corona, where the plasma
density around the Sun varies as a combination of r~%and r 1 power laws, from the
photosphere to about 10 solar radii.

One of the most recent confirmations of the Baumbach—Allen formula
(8.1) comes from the work [4] of M. J. Aschwanden and L.W. Acton, about the
“Tomography of the Soft X-Ray Corona: Measurements of Electron Densities,
Temperatures, and Differential Emission Measure Distributions above the Limb,”

Netectrons (b) = const - {2.952- 103("%)16 +228. 102(“7“”)6 F11- (rs””)z] (8.1)
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a paper submitted to the Astrophysical Journal on May 4, 2000, and downloadable
from the site http://solar.physics.montana.edu/hypermail/eprint/0077.html

In 1998, Beugt G. Andersson and Slava Turyshev of JPL took up the Baumbach—
Allen model with the final goal of determining the “best focal distances™ of the
gravitational lens of the Sun by taking the Coronal effects also into account. They
gave their results in the unpublished JPL report [5] that is carefully described in this
chapter and assumed as “‘the right model” of the Corona in this book. Andersson and
Turyshev gave in [5] the following empirical formula for the deflection angle
O ptasma(b, v) caused by the Coronal Plasma effects and opposed to the action of gravity

Optasmalbv) = (V—VO)Z [2.952 -10° ("2“")16 +228 102 (’2“”)6 +11 @ﬂ (8.2)

where
vy = 6.36 MHz (8.3)

The validity of these equations was tested once again on June 21, 2002, and July
1, 2003, by virtue of the close alignment between the Cassini spacecraft (now at
Saturn), the Sun, and the Earth. The physical soundness of these two important
radio science experiments was already described in 1999 by the Italy-JPL team of
Luciano Iess, Giacomo Giampieri, John D. Anderson, and Bruno Bertotti (see their

paper [6]).

8.3 SUMMARY OF THE SUN PURE GRAVITY (NAKED SUN) LIGHT-
BENDING THEORY

Before embarking in further calculations, it is appropriate to review the equations
predicting the bending of light and radio waves in the vicinity of Sun according to
general relativity. Of course, this is the case of the “naked Sun”, as Eshleman likes to
call it. In other words, the Sun as if there were no flames around it! The “flames’ are
the Corona, or the Coronal Plasma, in scientific language.

Let us start by pointing out that the deflection angle for a light ray grazing the
surface of the Sun, Oy, (Fsun), is very small:

Hg,m,i,“,(rsl,,l) = 1.75 arcsec (8.4)

It is thus always possible to replace the tangent of such a small angle with the angle
itself (measured in radians), as already pointed out in Equation (1.5).

Next we consider the classical Einstein formula, first derived by Einstein [7] in
1915 as a first-order approximated consequence of his general relativity equations,
and finally re-derived again in 1916 as a consequence of the Schwarzschild exact
solution. So, Einstein’s result is that if a light ray passes at the minimal distance b
from the (spherical) Sun’s center, then the deflection angle 6,,,,,(b) at that distance
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aGM un 2r Schwarzschild
egravity(b) = C2bs = 2 b . (85)

On the other hand, the geometry of Figure 1.2 immediately shows that

b
Ograviry (D) = Down (8.6)
Checking (8.5) against (8.6) one gets
b 27 Sehwarzschitd
Dyoris = b . (8.7)
Solving this with respect to Dy, One finally gets for any value of b:
2
D graviny (b) (8.8)

2r Schwarzschild

For the particular case where b = rg,,, the last equation yields again the well-known
result that is the foundation of this book—that is, Equation (1.3)—which, in this
chapter’s notation, becomes

2
Dgravity(rSun) = 2»’;5'71”1 ~ 550 AU. (89)
F'Schwarzschild

On the other hand, eliminating the Schwarzschild radius between (8.8) and (8.9), and
solving for Dy, (), one gets

b 2
Dgravfly(b) = Dgravity(rSun) : < > (8]0)

'Sun

that will be used in the sequel of this chapter.

We complete this section with the “Newtonian comparison”. This is just the
comparison between the Einstein deflection formula (8.5) and the corresponding
deflection formula in Newton’s classical theory. The latter can immediately be
obtained from the fact that, were photons classical material particles traveling at
the non-constant speed v(7) = ¢(t), their path around the Sun’s center would exactly
be a hyperbola branch having its focus at the Sun’s center. This is the theory of the
Keplerian Sun flyby that was developed in Section 3.3, and the relevant formula for
our current problem is the first of Equations (3.26); that is

_ GMSun 1
= (1 +Cosﬁm). (8.11)

oo

The Newtonian deflection angle 3 (see Figure 3.27) is related to ¥, by Equation
(3.28). Then (3.28) changes (8.11) into the “periastron r, vs. deflection angle 37
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formula valid for any Newtonian (i.e., Keplerian) flyby:

_ GMSun 1

W == — g

—1). (8.11)

But the photon speed is v,, = ¢ and the light deflection angle is very small, so the sine
may be replaced by the angle itself, yielding the approximated version of (8.11)

GM9u11 2
& —— | = — 1. 8.12
S (2o1) .12)
Again, as the angle 3 is very small, the —1 term in (8.12) is numerically dwarfed, and

the approximation holds
_2GMyg,,

r, ~

P CZﬁ
which, invoking the impact parameter 7, = b and B = Oy, finally yields the
Newtonian deflection

(8.13)

2GM Sun

Onewion ® — 7, (8.14)
Checking this against the Einsteinian formula (8.5) one obviously finds

OEinstein = 20Newion (8.15)
And, in terms of focal distances,

Dewion = 2D Einstein (8.16)

In words: were the Newtonian theory correct, the minimal focal distance from the
Sun would be 1,100 AU, rather than just 550 AU, as in the Einsteinian theory. Thus,
had Einstein not taught us general relativity, we would have expected to send the
“FOCAL” spacecraft to a distance of 1,100 AU, rather than “just” to 550 AU. The
advent of Einstein’s theory eased our difficulties, in regard to the “FOCAL” distance,
by a factor of 50%. Not a bad result at all, confirming that “in Newton’s days, the
time was not yet ripe for the “FOCAL” space mission!”

8.4 GRAVITY+PLASMA LENS OF THE SUN: FOCAL AXIS
INTERCEPT FOR ANY RAY PASSING AT DISTANCE 5» FROM
THE SUN

We are now ready to consider the real Sun (i.e., the Sun and its Corona) and its effects
upon electromagnetic waves traveling across the Corona. The overall deflection angle
for an electromagnetic wave, having a frequency v and passing at an impact distance
b from the Sun center will be denoted by O,y piasma (05 V). Denoting by Dyyaviry-+ piasma
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the intercept of the straight light path with the focal axis, from Figure 7.4-1 one has
(obviously replacing the tangent by the angle itself)

b
9grav1'1y+plasma (bv V) ~ Di (817)

gravity-+plasma

On the other hand, the same angle 0,41y piasma (P, V) is obviously given by the
difference between the angle 0,4, (b) and the angle 0,45, (b, ), Where we assume
these angles to be positive if the light is bent towards the focal axis, and negative
otherwise. One thus gets:

()gravityntplasma(h V) = egravfty(b) - gp/a,yma (ba V)

_ 2rSchwzr:‘\'c/1ild
b

- (%)2 {2.952 -103 (%)16 208 102(“17“”)6 INEY (”Zﬂ

(8.18)

On equating Equations (8.17) and (8.18), and then solving the resulting equation for
Dgraviner/asmm one gets

Dgravir}f%plasma (b7 V)
_ b
N 2}’S(f/1warzsc/1l/d o (@)2 2.952. 103 (’.571”1)16 4.
v ' b

b

where the dots denote the remaining terms in braces in (8.18). On suitable
multiplication and division at the denominator, this becomes

b
B 2rSchwar:Sz‘/1i/(l _ 2rSchwarzschi/d (@)2 b |:2 952 . ]03 (rSﬂ)16 +.. :|
b b v/ 2r Schwarzschild b
o b
2rSc/1warzschi/d 1 — (@)2 b 2.952. 103 (’@un)m +---
b v 2”Sz'lmr'arzs¢'hild . b
b2
— erChwar:schi/d

B

16
- (@) b {2.952- 103(@) 4 }
v 2"Schwarzschild b
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which, rewriting all terms explicitly, becomes

b2

2r Schwarzschild

|- (”;0)2 72rsmimm {2.952 10° (”2“")16 4228102 (”Sl;‘”)6 INRE (”2“")2}

now, the denominator can be simplified by reducing by one integer all
powers inside the braces, finally yielding

b 2
— ZrS(’hwal rzschild

2 T .

Vo 'Sun Sun Sun 'Sun

S 1595010 (B5) 4208 - 102 (B )+1.1- }
Vz 2rSchwurzschild |: b b b

(8.19)

The last result leads to the definition of the critical frequency ve.q(b) as

2 15
2 Vo " T'sun Sun Sun I'Sun
Ve iear(B) = —20 815 955 . 10 +228-10 F1- }
; ]( ) 2r Schwarzschild |: ( b ) ( b ) b

In other words, taking the square root, we define the critical frequency v,ijcq(b) as
the new function of the impact parameter » only

2. 15 5
Verircat (b) = \/”“S [2952. (’ST) +228. (VST) 411 %} (8.20)

2r Schwarzschild

But what is the physical meaning of this critical frequency?

Think geometrically, and consider increasing distances b above the surface of the
Sun. The least of such increasing distances » above the Sun is of course the surface of
the Sun itself, given by b = rg,,. The relevant critical frequency is found by substitut-
ing b = rg,, in (8.20), and one then finds

2,
Veriical (Fsun) = \/ % 2952 4228 + 1.1] ~ 122.361 GHz  (8.21)

' Schwarzschild

Then, for b — oo, (8.20) shows that v, — 0, and a few more calculations on (8.20)
would reveal that the function is monotonic (i.e., it gradually decreases with increas-
ing distance from the Sun, as is physically obvious). The plot of the v,,..;(b) function
is shown in Figure 8.2 hereafter.

The physical meaning of the critical frequency, however, only comes to light
when one considers the intercept Dg,qyiry4 piasma Of the straight light path with the focal
axis—namely, Equation (8.19)—which, invoking the definition of critical frequency
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CRITICAL FREQUENCY vs HEIGHT b
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Figure 8.2. Electromagnetic waves across the Plasma of the Sun Corona: critical frequency vs.
impact parameter b above the Sun surface.

(8.20), takes the easier form:

2

b~
2rSchwarzschi/d (8 22)
> . .
1— Vcritica/(b)
2

Dgravity+p/asma (ba V) A

This is the fundamental formula yielding the intercept D between the focal axis and the
light rays passing at the distance b (impact parameter) from the Sun’s center. Replacing
the familiar value of 550 AU by virtue of (8.9) may be written in the form

2
550 AU - <ri>
Dgravil}%plasma (ba V) ~ Q—SW . (823)
1 V critical (b)
Nz

The physical meaning of the critical frequency v.;..;(h) is now evident from
both of the last two equations: they clearly show that the ray intercept with the
focal axis is negative (i.e., there is no more focus), when the observing frequency v is
smaller than the critical frequency v.;;..(b). In other words, there is focusing by the
(gravity + plasma) lens of the Sun if, and only if, the frequency v, on which the FOCAL
spacecraft makes it observations through the Sun’s lens, is higher than the critical
Sfrequency Vii.q(b) for rays having the same impact parameter b—namely, passing
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at the same distance from the Sun:

V(b) > Vcritical(b) (824)

FOCUSING CONDITION

It is also useful to write the expression of the total deflection angle (8.18) in terms
of the critical frequency (8.20)

egmvity-%—plasma(b7 l/) = egravity(b) - ep/asma(b7 V)

_ 2r Schwarzschild
b

— (%)2 [2.952 103 ("LZ‘”)IG +228-102 ('ST)G F11- (’iﬂ

) 2
_ 2 Schwarzschild Veritical (b) . 2rSc/m'arzsc/1ild

b 1/2 V'Sun
_ 2”Sclmzrzsc/1i1d . (1 _ Vgritiazl/(b) . b ) (825)
14 'Sun
Thus, the total deflection angle is given by
27 Semmvarsschi aiicaD) b
0gravity+p/asma(ba V) = w . <1 - V(”mi(zll() . ) . (826)
v 'Sun

8.5 ASYMPTOTIC (z — oo) STRAIGHT LIGHT PATH

In this section we are going to derive the equation of the asymptotic straight light
path—that is, the equation of the straight line in the (z, ) plane that approximates the
actual straight light path of the Sun-deflected light rays for z — oco. This result will be
used in the following sections to derive the intercept of this straight light path with the
focal axis z—that is, the actual focus of the (gravity + plasma) lens of the Sun. The
relevant two caustics in the (z,r) plane will also be derived.

We start by recalling from elementary analytical geometry that the equation of
any straight line, intercepting the x and y axes at the distances p and ¢ from the origin,
respectively, is

SFEARSY (8.27)
P q
To keep the same notation as in Figure 1.2 on p. 6 (basic geometry of the gravita-
tional lens of the Sun) one sees at once that the horizontal axis now becomes the z
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axis, the vertical axis becomes the r axis, and the substitutions

{x S (8.28)

y—=r

must be made in (8.27). Also, the two intercepts of the straight line (i.e., the asymp-
totic light ray) with the two axes are given by, respectively

p— D(b,v)
(8.29)
q— D(b7 V) : tan(agravityﬂ)lasma(b))'
Replacing (8.28) and (8.29) into (8.27), one gets
: d ~ 1. (8.30)

+
D(b, l/) D(b7 V) ' tan(()gravir)r’ﬁ»plasnm (b))

This is the equation of the asymptotic (z — oo) straight light ray after deflection by
the Sun has occurred. Moreover, since the deflection angle is very small, one is
allowed to use the approximation

tan (egra vity+plasma (b) ) =~ Ygravity+plasma (b) . (8 31 )

Rearranging, one finds the asymptotic straight light path

r
44— —D(b,v) =0. 8.32
egm vity+plasma (b ) ( ) ( )

8.6 THE THREE APPROXIMATIONS TO THE SUN’S
(GRAVITY + PLASMA) LENS: “CLOSE-SUN”, “MID-DISTANCE”,
AND “AT-INFINITY” (L, K, AND F CORONA, RESPECTIVELY)

Let us write again the critical frequency given by Equation (8.20)

2, 15 5
Vertiont (B) = \/zr:(;rsm {2952- (%) 1208 (’Sb“") T VST] (8.20)

To gain a deeper understanding of the numerical behavior of this critical frequency as
a function of the distance from the Sun center (or impact parameter) b, let us square it
and plot each of its three contributions separately. We also make reference to, and use
the language of, the most recent paper (year 2000) that we could find about the
Baumbach—Allen model of the Corona [4]; this is the paper by M. J. Aschwanden and
L.W. Acton titled “Tomography of the Soft X-Ray Corona: Measurements of
Electron Densities, Temperatures, and Differential Emission Measure Distributions
above the Limb”. This paper was submitted to the Astrophysical Journal on May 4,
2000, and is downloadable from the site http://solar.physics.montana.edu/hypermail|
eprint/0077.html. Figure 8.3 plots, for the square of Equation (8.20), each of these
three contributions as well as their sum, the critical frequency.
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L, K and F CORONA contributions in B-A.
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Figure 8.3. The contribution of each of the three terms making up the expression of the
critical frequency. They correspond to the so-called L, K, and F Corona, respectively, in
the Baumbach—-Allen formula (8.1).

One then finds
(1) The term with the power 15, corresponding to the L Corona, given by

rg 15 b —15
power_15_(h) = 2952 - ( b) —2952. ( > (8.33)

T Sun

(2) The term with the power 5, corresponding to the K Corona (K for continuum),
given by

5 -5
power_5_(b) =228 - (r‘z‘") =228 (rb > (8.34)
Sun

(3) The term with the power 1, corresponding to the F Corona (F for Fraunhofer),
given by

-1
power_1_(b) = 1.1-252 —11. < b > . (8.35)

b ' Sun

To determine the minimal focal distance that the FOCAL spacecraft must reach
according to each of these three approximations of the full (gravity + plasma) lens of
the Sun, we are going to invoke the total deflection expression (8.18), which we repeat
here for convenience

9graviry+plasma (b, V) = egmvity(b) - leasmn(bv V)

- (o () (- (]

(8.18)



Sec. 8.6] The three approximations to the Sun’s (gravity + plasma) lens 125

Were we going to keep this expression just the same in the sequel, it would simply
be impossible to make further analytical progress, since it is impossible to handle
an algebraic equation having the independent variable rg,, /b raised to the three
exponents 16, 6, and 2 at the same time.

To go ahead, one is thus forced to adopt either of the following three
approximations:

(1) “Close-Sun” approximation for the total deflection angle 8(b, v), where only the
term with the power 16 in rg,,/b is retained in (8.18); that is

Betose—sun(b: V) = % - (”—3)22952 (’Sg‘”)lé. (8.36)

To shorten the notation a little, we have set

'Schwarzschild = Ty (837)

where the “g” subscript stands obviously for “gravitational”, inasmuch as the
Schwarzschild radius is called “gravitational radius” by some authors. Notice
that this approximation may well be called the “L. Corona approximation’ of the
(gravity + plasma) lens inasmuch as the corresponding impact parameter b
ranges in between 1 (Sun-grazing electromagnetic waves) and about 1.3 solar
radii.

(2) “Mid-distance” approximation for the deflection angle 6(b, ), where only the
term with the power 6 in rg,,/b is retained in (8.18); that is

Oniaaisiance (b, V) ~ 27? - (%)2228 (’57)6 (8.38)

This approximation may be called the “K Corona approximation” of the
(gravity + plasma) lens, and the corresponding impact parameter b roughly
ranges in between 1.3 and 3 solar radii.

(3) “At-infinity” approximation for the total deflection angle 8(b, ), where the term
with the power 2 in rg,,/b is retained in (8.18) only; that is

0..(b,v) ~ % . (@)21.1 : (’2)2 (8.39)

14

This approximation may be called the “F Corona approximation” of the
(gravity + plasma) lens inasmuch as the corresponding impact parameter b
ranges from about 3 solar radii up to infinity, and this may be regarded as a
sufficiently good approximation for b — oco.

The intercept function D(b,v) in the straight line equation (8.22) must also be
approximated.

In fact, the full expression (8.20), after invoking the definition of critical
frequency (7.4-4), yields the following three approximated expressions of the focal
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axis intercept D(b,v):

(1) Close-Sun focal axis intercept

bz
2r,
Dclosc—Sun(bv V) ~ 2 . . 15 ° (840)
1 — ' Sun X (@) .2952 . (’Sun)
2ry \v b
(2) Mid-distance focal axis intercept
b2
2r,
Dmid—distzzm:e(bv 1/) ~ B v 29 r 5" (841)
| — S (Z0)  oog . (1Sun
2r, (y) 8 ( b )
(3) At-infinity focal axis intercept
b2
2r,
D (b,v) ~ py VO"z o (8.42)
-2 (=) -1.1.-22
2r, (l/) b

At last we are ready to replace both the total deflection angle and the focal
intercept into the asymptotic straight light path (8.32). One must also do a little
rearranging of terms—that is, one must multiply both the numerator and the
denominator of the second term in (8.32) by b/(2r,). The same expression at both
denominators of the second and third terms is thus obtained. Finally, by taking this
common denominator in front of z, one gets for each of the three cases, respectively:

(1) Close-Sun straight ray path:

z- {1 —';f‘; (”—If)z~2952~ (’;“")15} —|—b~r—;:q— 0 (8.43)

(2) Mid-distance straight ray path:

- {1 - ’Zsr : (%0)2 228 - ("2“”)5} +£ LA (8.44)
g

(3) At-infinity straight ray path:

2 2
'Sun Yy ' Sun b b _
z {1 o (%) 11 } 3T 5 =0 (8.45)

In mathematical language, Equations (8.43) through (8.45) represent three
families of oo ! straight lines in the (z, r)-plane with parameter 1 < » < co. In Section
8.8 we are going to prove that each of these three families of straight lines admits an
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envelope. In physical language, this means that we are going to prove that the
gravitational lens of the Sun for electromagnetic waves crossing the Corona has
two caustics (i.e., surfaces of revolution around the focal axis where all light rays
are tangential).

8.7 FOCAL DISTANCE VS. HEIGHT AND MINIMAL FOCAL
DISTANCE FOR ANY ASSIGNED FREQUENCY

It is entirely under our control to select the frequency (or frequencies) on which a
given FOCAL spacecraft will be able to look at the radio sources magnified by the
Sun’s (gravity + plasma) lens. In fact, the relevant detectors of electromagnetic waves
would probably be photometers, or bolometers, or similar instruments and so their
working passband is entirely our choice. For instance, in Chapter 9 we will discuss the
proposal, made by this author to NASA’s Interstellar Probe (ISP) science and
technology definition team, that NASA’s ISP should be able to detect the Cosmic
Microwave Background peak at 160.378 GHz by a suitable instrument.

The frequency v of the observed electromagnetic waves is thus an “a priori” fixed
parameter.

This physical remark is important to settle the question of which are the
independent variables and which are the functions in the equations derived in the
previous section. For instance, consider the fundamental question: “Which is the
minimal focal distance from the Sun that a FOCAL spacecraft must reach to detect
electromagnetic waves focused there by the (gravity + plasma) lens of the Sun?”’ This
question will be answered in this section by resorting to the three close-Sun, mid-
distance, and at-infinity approximations for the Baumbach—Allen straight rays given
by (8.43), (8.44), and (8.45), respectively.

Consider (8.43) plus the equation of the focal axis, r = 0. By replacing r = 0 into
(8.43) one finds

2 15 2
I'Sun Yy T'Sun b _
Zclose—Sun |:1 - 2rg : (l/) <2952 - ( b ) :| - 2rg =0 (846)

This equation yields the focal distance z of the (gravity + plasma) lens (at any
assigned frequency v) for waves bypassing the Sun at any impact parameter b. Put
another way, solving (8.46) for z, one finds how the focal distance z changes at
different heights b above the Sun surface:

b2
2r,
Zc/osefSun(bay) = rs ” 5] ! rs 15 (847)
L T Y S ()
2r, (1/) ( b )

Of course, we are very much interested in the minimal focal distance—namely,
the minimal distance from the Sun that the FOCAL spacecraft must reach in order to



128 The Coronal Plasma “pushing” the focus of the gravity + plasma lens [Ch. 8

be flooded by the electromagnetic waves focused there by the (gravity + plasma) lens
of the Sun. Therefore, we must take the derivative of (8.47) with respect to b

dzclosefSun (b ) V)
db

2 15 2 16
'Sun Y ' Sun 2 15 Yo I'Sun
2b|1 — (=) -2952- —b"—-(—) -2952-
{ 2r, (1/) ( b ) :| 2r, (V) ( b )
. 2 . 1572
'Sun 0 I'Sun
2r, |1 — S (—) 2952 (—)
o { 2, \v b

To find the minimal focal distance, the numerator on the right-hand side of the last

equation must be set to zero. One may prefer to re-write the last formula in terms of
the critical frequency v,,;;..;» Which, in the close-Sun approximation, reads

(8.48)

15

2
vor un r; un
VgriticalfrlosefSun(b) = g rS - 2952 - ( S[; ) (849)
)

By setting b = rg,, in the last equation, one gets
2 V(Z) I's
Vcrilicalf(’/osefSun(rSun) = Tun <2952, (850)
Ty
Then, the numerator on the right-hand side of (8.48), rewritten by virtue of (8.50) and
set to zero, yields the equation of the minimal focal distance:
2bLl'15().vefSunl/2 - 17rgmV%}'iﬁcalfclasef.gml(rSun) =0. (851)

Solving this for b.,s_s., one finally gets the distance from the Sun center passed by
those electromagnetic waves that reach the minimal focal distance in the close-Sun
approximation:

P

n
171 Vi‘rilical(ZSun) "' Sun . (8.52)

1
21 13

bminfﬁlosefSun(V) -

This formula is very important for all practical radio science experiments, like those
described in [6], inasmuch as it tells us where inside the corona the minimal focal
distance waves pass.

To obtain the minimal focal distance one merely has to replace (8.52) into the
function (8.47) and rearrange. One thus gets:

7 & 3
15
17 Vcrizica[(rSun) T Sun
30 - 2% ik,

(8.53)

Zmin—close—Sun(V) =

This is perhaps the most important result in this book. it tells us the minimum distance
that the FOCAL spacecraft must reach in order to be flooded by the electromagnetic
waves emitted by a source at frequency v and focused upon the spacecraft by the
(gravity + plasma) lens of the Sun.



Sec. 8.7] Focal distance vs. height and minimal focal distance 129

It is interesting to notice that, by eliminating v (i.e., “the parameter”, in mathe-
matical language) between (8.52) and (8.53), one gets the simple result

2
Zmin—close—Sun = % : W . (854)
This is, of course, the locus of the minimal focal distances in the (z,b) plane for the
gravitational lens of the Sun for all frequencies in the close-Sun approximation, and it
is just a parabola!

So far for the close-Sun approximation, which is in practice the most important
as well as difficult case.

It is equally possible, however, to derive similar results for the mid-distance and
for the at-infinity approximations to the Baumbach—Allen formula.

Without repeating here all calculations of the first derivative equaled to zero, we
merely give the relevant results, leaving their full proof to the reader as an exercise.

Thus, for case stemming out of (8.44), the distance from the Sun center at which
the electromagnetic waves pass in the mid-distance case is:

2
12

7 Vf'ri ica (rS n) I'Sun
! 2’% U%“ . (8.55)

The minimal focal distance in the mid-distance case is:

bmin—mid—distance (V) =

1 4 2
= r Vf’rirical(rSun) ¥ Sun (8 56)

10-2%1/§rg

Zmin—mid—distance (V)

The locus of the minimal focal distance in the (z, ) plane in the mid-distance case is
again the parabola (with a different numerical coefficient with respect to (8.54))

7 bh;

_ min—mid—distance 8 57
Zmin—mid—distance — 10 : ri ( . )
g

Finally, in the at-infinity approximation—namely, for the case stemming from
(8.45), the distance from the Sun center at which the electromagnetic waves pass is:
2
_ 3 Vcrflica/(rgun) ¥ Sun ] (858)
2v

The minimal focal distance in the at-infinity case is:

bmin—at—oo (V)

27 V2 icat (PFsun) T3
Zmin—at—oo(y) = ché“;igljun) " Sun . (859)

4

The locus of the minimal focal distance in the (z, b) plane in the at-infinity case is once
more the parabola (again with a different numerical coefficient with respect to (8.54)
and (8.57))

3 ernin—at—oo
R (8.60)

Zmin—ar—oo
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8.8 THE TWO CAUSTICS OF THE (GRAVITY + PLASMA) LENS OF
THE SUN

A delightful exercise for calculus newcomers is the demonstration that, given the
equation of a family of co' curves in the implicit form f(x, y, \) = 0, this family of
curves admits an envelope if, and only if, one is able to eliminate the parameter A
between the two simultaneous equations:

S(x,»,A) =0
oy _, (8:61)
O\ e
To prove that such an envelope exists for the family of close-Sun straight rays

given by Equation (8.43), we first have to differentiate the implicit equation (8.43)
with respect to the parameter b, getting:

1 v\ Fsun\ 1 b
15— (=) 2952 (= —r——=0. 8.62

: 2r, (z/) ( b ) + 2r, r Iy ( )
Both sides of the last equation may conveniently be multiplied by b to make it

dimensionally consistent with the original equation of the family (8.43). One thus
finds

b IZ0) 2 r'sun 16 b b2 _
2'15'7’9'6) ~2952~<7) g =0 (8.63)
Finally, multiply the equation of the family (8.43) by 15 and expand
2 15 2
V'Sun 140 V'Sun 156 15b
152—-15-z- - (—) 2952 —r— = .64
o lay (V) 93 (b) Ty, 0 (8.64)

We are now just one step from proving the existence of the envelope or caustic. In
fact, a simple summation of Equations (8.63) and (8.64) lets us get rid of the
“obnoxious” term with exponent 15. One is thus just left with

1 15\ b 15\ »?
1 ikl IR U I bl R .
52+<2+2>rg r ( +2) " 0 (8.65)
that is
1 2
15Z+g.£.,ﬁ_l.bf:0. (8.66)
ry 2 Iy

This is the solvent equation for the envelope system (8.61) in the close-Sun approx-
imation, and it is a simple second-degree algebraic equation in b. Solving it for b will
yield two roots: if these roots are real, then the envelope (caustic) exists, if they are
complex no caustic exists. Actually, solving (8.66) for b one gets the two roots

+v/24/255r,2 + 321 + 8r
by = (8.67)

17
that are real and positive, so the two relevant caustics do exist. The equations of these
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two caustics are very complicated, and will not be given here. We wish to point out,
however, a very basic and simple result: if one sets r = 0 into (8.66) and solves for z,
the simple parabola is found

17 b°
=3 - (8.68)
This is, of course, the locus of the minimal focal distances in the (z,b) plane for the
gravitational lens of the Sun for all frequencies in the approximation, already found
in Equation (8.54), thereby re-proving all our results!
Similarly, in the mid-distance case, it turns out that the solvent equation of the
envelope system (8.61) is

b 7 b
5243 —.p——.— =0 (8.69)
Iy 21y,
whose roots are real. Setting r = 0 and solving for z, (8.57) is found again.
Finally, at-infinity the solvent equation reads

b2
Ly b3 (8.70)
Iy 2,

whose roots are real. Setting r = 0 and solving for z, (8.60) is found again.

8.9 OBSERVING FREQUENCIES FOR THE “CLOSE-SUN”, “MID-
DISTANCE”, AND “AT-INFINITY” APPROXIMATIONS

As of the year 2001, no scientist seems to have derived an adequate mathematical
model of the Solar Corona. This is because there are so many quantum and statistical
phenomena taking place in the Corona that a full mathematical description turns out
to be extremely complicated. Thus, one should not be surprised to find, in this final
section to our Baumbach—Allen model of the Corona, that, despite all the approx-
imations we have introduced thus far, there are more basic limitations in frequency
for the “close-Sun”, “mid-distance”, and “at-infinity” cases.

As usual, we start from the ““close-Sun’’ approximation case, since this is the case
most relevant to the FOCAL Project. Consider again the “Focusing Condition” of
the (gravity + plasma) lens, Equation (8.24). We already know the analytical expres-
sion of the function v, (b) on the right-hand side, given by (8.20). But we don’t
seem to know any analytical expression for the observing frequency on the left-hand
side yet.

Well, after the discussion of Section 8.7 we “nearly’”” know such an analytical
expression in the close-Sun approximation: it is obtained by the inversion of (8.52)—
namely, from (8.52) solved for v, rather than for b.
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FOCUSING CONDITION in CLOSE SUN approx.
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Figure 8.4. Focusing Condition in the close-Sun approximation. The horizontal axis shows the
impact parameter b in units of the Sun radius. The vertical axis shows the frequency in GHz. The
two curves shown cross at b = 1.588804 solar radii and v = 11.0690005 GHz. Focusing only
occurs for electromagnetic waves crossing the Corona at distances less than b = 1.588804 solar
radii from the Sun center and frequencies higher than 11.0690005 GHz. The latter restriction rules
out the hydrogen line.

By doing so, one gets the Observing Frequency in the Close-Sun approximation:

17 Foun\>
Vmin—close—Sun (b) = Vcritic(/l(r.S'un) : 7 : b . (87 1)

By replacing the last formula into the Focusing Condition (8.20), one finds the
Focusing Condition in the Close-Sun approximation:

Vmin—close—Sun (b) > Veritical (b) . (8 72)

We plotted this inequality in Figure 8.4. The horizontal axis shows the impact
parameter b in units of the Sun radius. The vertical axis shows the frequency in
GHz. The two curves shown intersect at b = 1.588804 solar radii and v = 11.0690005
GHz. Focusing by the Sun only occurs for electromagnetic waves crossing the Corona at
distances less than b = 1.588804 solar radii from the Sun center and frequencies higher
than 11.0690005 GH.

This means that there is no close focus created by the Sun at the hydrogen line at
1.420 GHz.

Unfortunately, this is very bad news for SETI !

In fact, the hydrogen line at 1.420 GHz is the # 1 line of interest for SETI, and we
have just found that the “focal length for SETI equals . . . infinity!”” Too bad, indeed.
But this is in agreement with Von Eshleman’s paper [2], who, by resorting to a
mathematical treatment different from the one given in this book, foresaw a double
caustic of the (gravity + plasma) Sun’s lens to yield a focus on the hydrogen line located
light years away from the Sun!
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FOCUSING COND. in MIDDLE DISTANCE approx
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Figure 8.5. Intersection point between (8.20) and (8.73), showing that the mid-distance approx-
imations hold for radial distances from the Sun higher than 10 solar radii, and for frequencies
higher than 750 MHz.

Next, we turn to the mid-distance approximation, given by (8.55). On inversion,
(8.55) yields the Mid-Distance Observing Frequency:

7 r; un 5
Vmin—miflfdistance(b) = Vcritical(rSun) : \/; ) ( ;} ) . (873)

By replacing the last formula into the Focusing Condition (8.20), one finds the
Focusing Condition in the Mid-Distance approximation:

Vmin—mid—distance (b) > Veritical (b) . (8 . 74)

In analogy with the discussion following (8.72), we now numerically find the
coordinates (b, v) of the intersection point between the two curves given by (8.20) and
(8.73). By doing so, one gets Figure 8.5, showing that, for the mid-distance approx-
imation to hold, the impact parameter b must be less than 10 solar radii, and the
observing frequency v must be higher than 0.75 GHz—that is, higher than 750 M Hz.

Finally, the “at-infinity”” approximation starts from (8.58). By inverting it, one
finds the Observing Frequency at Infinity:

3 r un
Vmin—at—oo(b) = Vcritim/(rSun) : \/; . \/ ST (875)

and the Focusing Condition at Infinity:
Vmin—at—co (b) > Vcritit’al(b)~ (876)

Again we should numerically find the intersection point between the two curves given
by (8.20) and (8.75). However, here we get a ““surprise”: even for values of the impact
parameter b equal to millions of AU, the “at-infinity” frequency curve (8.75) keeps
being higher than the critical frequency curve (8.20). This simply means that, in the
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“at-infinity”’ approximation, the Baumbach—Allen model predicts focusing by the grav-
itational lens of the Sun for all observing frequencies.
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NASA'’s Interstellar Probe (ISP: 2010-2070?)
and the Cosmic Microwave Background
(CMB)

9.1 INTRODUCTION

This chapter is devoted to studying the exploitation of the Sun’s gravity lens in a
most realistic context—one that was opened up only recently (1999). Indeed, new
experimental perspectives were opened by NASA’s decision to set up an “Interstellar
Probe Science and Technology Definition Team”, of which the author of this chapter
is a member. NASA’s Interstellar Probe (ISP) is expected to be launched in June 2010
and reach 250 AU in just 15 years, being “pushed” out of the solar system by a
400-meter hexagonal solar sail plus a suitable flyby of the Sun. ISP will then explore
the heliosphere with its termination shock and plasma (120 AU). The probe direction
of exit from the solar system will be toward the heliopause’s “‘nose”’—namely, 16° in
declination and 16.6 hours in right ascension. ISP will then keep going along this
straight direction “forever”, and will cross the 550 AU focal sphere of the Sun around
the year 2040. Could we take advantage of this circumstance to prove experimentally
for the first time that the Sun’s focus is there? Yes—by letting ISP carry some
photometer or bolometer capable of detecting the influx of the Cosmic Microwave
Background (CMB) radiation focused there by the Sun. Also, apart from revealing
the Sun’s focus, valuable results for the science of cosmology would be achieved,
inasmuch as the angular resolution of the CMB provided by IPS and the Sun’s lens
would be about nine orders of magnitude better than COBE’s. To achieve these goals,
in this chapter a study of the CMB observing conditions is made and we also take into
account the effects of the Solar Corona whose electrons actually tend to “push’ the
effective focus of the Sun farther out than 550 AU. We prove one basic result:
the effective minimal focal distance that ISP must reach to look at the CMB through
the Sun lens is 763 AU (or 4.41 light-days)—of course, regardless of the direction of
exit out of the solar system. If NASA’s ISP could observe the CMB focused there
around the year 2055, it would prove to be the first truly “interstellar precursor
mission”’ of humankind.
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9.2 NASA’S INTERSTELLAR PROBE (ISP) AND ITS LONG FLIGHT:
2010 TO 2055 ...

The direction of the incoming interstellar wind is —16° in declination and +16.6 hours
in right ascension. This is going to be the direction of exit from the solar system for
NASA’s “Interstellar Probe” (ISP) (websites http.//umbra.nascom.nasa.gov/SEC/
secr/missions/ISP.html and http://eis.jpl.nasa.gov/sec353/Interstellar.html).

In 1999 NASA set up an ISP Science and Technology Definition Team
(ISP STDT), under the coordination of Robert Mewaldt of Caltech, which made
a 6-month study about ISP’s goals and required technologies. The Team’s con-
clusions were published in October 1999 at JPL [8]. ISP will hopefully be launched
in June 2010, and will, of course, be an “interstellar precursor mission’’, rather than
an interstellar mission proper. Nevertheless, ISP’s name means that the probe will go
as far as possible away from the Sun while still keeping the radio link with the Earth.

New advanced ideas in propulsion, and notably a hexagonal 400-meter solar sail
plus a suitable Sun flyby, make the NASA planners expect that ISP will reach the
nominal goal of 250 AU from the Sun in just 15 years (i.e., around 2025—assuming a
2010 launch). This distance of 250 AU is already well beyond where the heliosphere
(the solar wind—dominated portion of space) ends with the heliopause, and inter-
stellar space then begins. So, according to [8], all payloads aboard ISP will be devoted
to study the heliosphere, the heliopause, and the (possibly existing) bow shock.

The author of this book, however, suggested to the ISP Team to put aboard ISP
one more (small) instrument—a photometer or a bolometer or something similar—zo
enable ISP to detect experimentally for the first time the physical existence of the Sun’s
gravitational lens. In other words, the author suggested to the ISP Team an extension
of ISP’s flight to at least 550 AU and more. This suggestion is based on the obvious
consideration that ISP will get to any distance anyway, sooner or later. So, the real
question is whether the communication link between ISP and the Earth will be kept
until ISP reaches and passes by the important, special distance where the Sun’s
gravity focus is located.

Thus, the idea of testing the Sun’s gravity lens for the first time involves a further
discussion about the times involved for the ISP’s long flight. If 250 AU will be reached
after 15 years of flight (i.e., in 2025), proceeding at uniform speed, ISP can be expected
to cross the naked Sun’s focal sphere at 550 AU around the year 2043. But to reach
the true focal sphere “‘pushed outward” by the Sun’s Corona, however, ISP will need
more time still, depending on observation frequency.

Unfortunately, at this point of our discussion two more difficulties seem to arise:

(1) There is “nothing” (i.e., no quasar, no radiogalaxy, no very bright star) on the
celestial sphere in the direction opposite to the incoming interstellar wind direc-
tion, toward which ISP moves. In other words, no “bright electromagnetic
source’ is going to focus its flux upon ISP by virtue of the Sun’s mass.

(2) Even if we thought of correcting the ISP rectilinear trajectory so as to align the
new trajectory to a bright source, this would practically be impossible because
ISP would have to be aligned with a tolerance of a few tens of meters, far beyond
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the tracking capabilities nowadays available for a spacecraft at 550 AU or
beyond.

To circumvent both these difficulties, we change the target frequency.

9.3 LOOKING AT THE 2.728 K COSMIC MICROWAVE BACKGROUND
THROUGH THE SUN’S GRAVITY LENS BY VIRTUE OF NASA’S
INTERSTELLAR PROBE (ISP)

Rather than looking at quasars or bright stars and the like, we decide to look at the
Cosmic Microwave Radiation (CMB) or Cosmic Background Radiation (CBR), the
famous 2.728 K blackbody radiation that has been filling the Universe since the time
of the decoupling between radiation and matter, about 300,000 years after the big
bang. If we decide that ISP is going to look at the CMB through the Sun’s gravity
lens, then, no longer would an ISP tracking problem exist because the CMB is (almost)
uniformly scattered all over the celestial sphere, so that any direction of exit out of the
solar system is fine.

NASA’s ISP Team already determined [8, p. 16] that ISP’s antenna will be
2.7 meter in diameter keeping the link with Earth on the Ka band (i.e., at 32 GHz).
Then, by replacing this value of 1.35 meters in antenna radius and an assumed 50%
antenna efficiency into (1.16), one gets Table 9.1, showing the gain for the combined

Table 9.1. The gain (or magnification) of the naked Sun’s gravity lens, the gain of a 2.7-meter
spacecraft (S/C) antenna and the combined gain of the naked Sun+S/C antenna system.
Numerical values are given for five frequencies suggested to be observed by NASA’s
Interstellar Probe (ISP).

Line Neutral H,O Ka band CMB,,,x |Positronium
hydrogen

Frequency v 1.42 GHz 22GHz 32GHz {160.378 GHz | 203 GHz

Wavelength A 21.112 cm 1.363 cm 9.37 mm 1.06 mm 1.48 mm

S/C antenna 5.474 deg 0.353 deg 0.243 deg 0.049deg 0.038 deg

beamwidth

Naked Sun gain 57.46 dB 69.36 dB 70.98 dB 77.96 dB 79.01 dB

2.7-meter 29.07 dB 52.87 dB 56.13 dB 70.07 dB 72.17 dB

antenna S/C gain

Combined 86.53 dB 122.23dB | 127.11dB | 148.03dB | 151.18 dB

(naked Sun+ S/C)

gain
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system made up by the naked Sun’s gravity lens plus the spacecraft antenna for the
following five selected frequencies:

(1) The neutral hydrogen line (1,420 MHz).

(2) The water maser line (22 GHz).

(3) The Ka band frequency (32 GHz) that will be used by NASA’s ISP for telecom-
munications with Earth.

(4) The peak of the 2.728 K Cosmic Microwave Background (CMB) radiation
(160.378 GHz).

(5) The first line of the positronium (an “atom’ made by a positron and an electron),
which was suggested by Nikolai Kardashev in 1971 as the “best” line for inter-
stellar communications in SETI.

One can see from Table 9.1 that, looking at the CM B through the naked Sun’s gravity
lens by virtue of NASA’s ISP antenna, achieves the huge gain of 148.03 dB.

Having determined the total (naked Sun+ ISP) gain, we are now going to
estimate the total radiation influx expected to fall upon ISP when the spacecraft
reaches the minimal focal distance from the Sun. Such an estimate is indeed pre-
dictable because the CMB spectrum is precisely the spectrum of a blackbody (Planck
spectrum) whose temperature has been determined by NASA’s COBE (Cosmic
Background Explorer, launched in 1989, see, for instance, [9, pp. 111-113]) spacecraft
as

Denoting Boltzmann’s constant by k& and Planck’s constant by /4, the well-known
Planck spectrum (spectral energy density) is given by

8h V3
3 T
¢ ekT — 1

p,(v, T)dv = dv (9.2)

and is plotted in Figure 9.1 for the particular CMB temperature (9.1). The peak
(maximum) of this function is found at the frequency

2.82144k . 5.83792- 10"k
Yma =T K s B Ks

This is Wien’s displacement law for frequencies, and we have used the following
numerical values for ¢, k, h (taken from [10])

T =160.378 GHz. (9.3)

joul
o0 = 6.6260755 - 10~ joule - 5

(9.4)

¢ = 299,792,458 ? k = 1.380658 - 10~

The peak frequency (9.3) is, of course, found by setting the derivative of (9.2) at zero
with respect to v and solving the resulting numerical equation

et = . (9.5)
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Figure 9.1. Planck’s spectral energy density in frequency for the CMB (temperature
T =2.728 K).

Replacing (9.3) back into (9.2), the numerical value of the Planck spectral energy
density at the peak is found

8h m joul
pl/(l/max: TCMB) = i}; ’ /VL&X = 161355 10725 J03u - :

c Wmax m- Hz
ekTems — 1

(9.6)

The Planck brightness function (Figure 9.2) is the same as the spectral energy density,
but with a different coefficient
2 3
B(v,T) dV:—h~VV7

Ry dv. (9.7)
ekT — 1

Consequently, the brightness peak frequency is the same as (9.3), but the function

value, according to (9.7), is

2h Vs

B, (Vmax> Tems) = > e —

17

— 384941210104 (g)
ekTeup — 1 m

The two physical laws (9.2) and (9.7) are now going to be expressed as functions
of the wavelength A, rather than of the frequency v. This may appear as a trivial
exercise in the first instance, but we wish to clear the way from a mistake that,
unfortunately, is still fairly common. Namely, we wish to point that the peak wave-
length A, is not related to the corresponding peak frequency v, by the familiar
relationship ¢ = X - v. The reason of this apparent paradox is the hidden character of
the Planck law as a probability density, rather than “‘just a function”. This means
that the differential dv must always be taken along at all times (and not “forgotten”,
as usually happens) and, when a change of variable occurs (as in passing from
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s CMB Brightness vs Frequency
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Figure 9.2. Planck’s brightness in frequency for the CMB.

frequencies to wavelengths), probability densities multiply by the Jacobian of the
coordinate transformation—namely, by the derivative of the transformation equa-
tion—if one is in just one dimension as in the case of the Planck spectrum. So, one has

cd
A
and, apart from the axis reversal meant by the minus sign, (9.9) means that the form

of the Planck spectrum in ) is not going to be the same as in v. In fact, one finds, for
the Planck spectral energy density and brightness in lambda, respectively

dv = (9.9)

8h di
eMT — ]
and
2 2
B(\,T) d)\:%-fi/\. (9.11)
eMT — ]

The corresponding two plots are, for (9.10) and (9.11), respectively given in Figures
9.3 and 9.4.

To compute the peak wavelength A,,, one merely has to set to zero the deriva-
tive of (9.10) or (9.11), yielding the same result, since (9.10) and (9.11) only differ by a
constant factor. This common result is the root of the equation

_ 5
T S5—x’

As this numerical equation is different from the numerical equation (9.5), its root is of
course different from that of (9.5). The result is that the equation corresponding to

e X

(9.12)
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(9.3) but for the wavelength is (Wien’s displacement law for wavelengths)
020141 -¢-h 2.897824-1073-m-K
Amax = T = T = 1.0622522 mm. (9.13)

Now, Equations (9.3) and (9.13) are not related by ¢ = X - v because of the way they
were derived. Were they related by ¢ = X - v, one would get from (9.3) the wrong peak
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Figure 9.4. Planck’s brightness in wavelengths for the CMB.



142 NASA'’s Interstellar Probe and the Cosmic Microwave Background [Ch.9

CMB wavelength
wrong!!! M\ .. = 1.8695777 mm wrong!!! (9.14)
and from (9.13) the wrong peak CMB frequency
wrong!!! v, = 282.2254328 GHz wrong!!! (9.15)

which are still claimed by some as the “correct” peak CMB wavelength and fre-
quency, respectively.

The peak values for Planck’s spectral energy density and brightness are obtained
by replacing the peak wavelength (9.13) into (9.10) and (9.11), respectively, and they
are found to be

8mh 1 joule

o2 Amaxs Teums) = S B—" =2.5938759- 107" -=—~  (9.16)
max oAk Tems — | m
and
2he? 1 joule - H
BOwnass Tenn) = ASC e = 6.1881386 - 107 225 2 (9.17)
max N kT n m

e)‘mdka(‘MB — 1

9.4 THE EFFECTIVE MINIMAL FOCAL DISTANCE FOR THE
GRAVITY + PLASMA LENS LOOKING AT THE 2.7K COSMIC
MICROWAVE BACKGROUND IS 763 AU, WHICH NASA’S
INTERSTELLAR PROBE WILL REACH IN 2055

When is NASA’s ISP going to reach the effective minimal focal distance from the Sun
at the CMB frequency? The answer is: in the year 2055, because the effective minimal
focal distance at the CMB peak frequency is ... 763 AU. This is the theorem that we
are going to prove in this section.

Let us start by recalling from point (8) in Section 9.1 that the effective minimal
focal distance from the Sun is the distance when the Sun’s Coronal effects are taken
into account. In other words, we wish to compute the effective minimal distance from
the Sun that ISP must reach in order to look at the CMB peak of 160 GHz. Let us
start by noticing that (8.22) yields essentially two cases.

(1) The spacecraft observing frequency is higher than the ‘“no-lensing” value of
122.361 GHz given by (8.21). This is our case of interest, since the CMB peak
occurs at 160 GHz.

(2) The spacecraft observing frequency is lower than 122.361 GHz. Then, according
to Eshleman [3], one gets the complicated behavior expressed by the double
caustic described (in a qualitative fashion only) in [3]. This case is beyond the
scope of the present chapter and will not be discussed here.
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Figure 9.5. Plots of Equation (8.40). This is the (Gravity + Plasma) Sun lens focal distance F
(in AU) as a function of the impact parameter b (in units of the Sun radius) for all radio waves
focused by the Sun above 120 GHz. The impact parameter b is the distance from the Sun center
at which the radio waves flyby the Sun and then proceed to focus at distance F from the Sun.
Each curve corresponds to radio waves of a different frequency increasing from 59.514 GHz
(top, thick curve) to 1,000 GHz (bottom thick curve). The shifting of the minimum is obvious,
and the “locus” of all these minima is the parabola of Equations (8.54) and (9.21).

To see what happens to the effective minimal focal distance for a frequency higher
than 122.361 GHz, let us plot (8.40) as in Figure 9.5.
From Figure 9.5 it is clear that

(1) On the horizontal axis we have the “impact parameter’” b (the name comes from

particle physics), defined by
b(r)=—-. (9.18)

'Sun

The impact parameter is thus the shortest distance from the Sun’s center (here
measured in units of the Sun radius) at which radio waves passing by graze the
Sun’s surface. Clearly, the higher the impact parameter, the better it is, for then
the ongoing radio waves travel less amid the Sun flames (Sun’s Corona Plasma).
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(2) On the vertical axis we have the focal distance (in AU) at which are focused just
those radio waves that graze the Sun with impact parameter b. Obviously b > 1,
but Figure 9.5 reveals that, in practice, b keeps well below two Sun radii.

(3) The second (dash—dot) curve from the top of Figure 9.5 corresponds to radio
waves having the “critical” frequency of Veyiica(rsun) = 122.361 GHz, at which
no more focusing occurs because the outward deflection due to the coronal
plasma counterbalances the inner deflection due to gravity. We are only interested
in radio waves having a frequency higher than Vesiicq(rsu) = 122.361 GHz and the
CMB peak frequency of 160 GHz, shown by the third (dashed) curve from the top
of Figure 9.5. Then the crucial question arises: For which value of the impact
parameter b is the minimal focal distance achieved along this third curve from the
top?

(4) The remaining, last three curves from the bottom correspond to the observing
frequencies of 300 GHz, 500 GHz, and 1,000 GHz, selected just for reference: we
see that the effective minimal focal distance decreases for increasing frequencies,
and nearly reaches the “gravity only” value of 550 AU for 1,000 GHz or more.

Going now a little beyond the work done in [7], we seek to compute the coordinates of
the minimum for all curves on Figure 9.5. This is done by setting at zero the first
derivative of (8.22) with respect to the impact parameter b. From (8.52) we know that
the impact parameter (= abscissa) of the minimum is found for any frequency
s
17550 (Fsun) T
bin (V) = ”wff(gl") Isun, (9.19)
215 p13

Also, from (8.53) we know that the expression of the effective minimal focal distance is
(for all frequencies higher than the critical frequency)

17 & P
1715 Vclxrsizical(rSun) ' Sun

2 4
30-215wT5 7,

(9.20)

Zmin (V) =

The equation of the geometric locus of all the minima can now be found by eliminat-
ing the frequency v between (9.19) and (9.20). The simple result is the parabola

_ ﬂ brznin
30

(9.21)

Zmin(bmin)
9
which is depicted on Figure 9.5 as the slightly curved branch of parabola crossing all
curves at just their minimum (bottom curve on the legenda on the left).

We now go back to our blackbody radiation and replace its peak frequency value
(9.3) into (9.20) to find the effective minimal focal distance that ISP must reach in
order to ‘“‘catch up” with the CMB focused there by the Sun

Zimin(Vmax) = 763.478 AU = 4.41 light-days
~ 19.5 times the Sun-to-Pluto distance. (9.22)
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This is the most important result derived in this chapter. It shows that, for NASA’s
ISP, as well as for any other spacecraft to come that intend to observe the CMB
through the Sun’s lens, the minimal effective distance from the Sun that must be
reached is about 763 AU. When will NASA’s ISP get there? A simple proportion
shows that, assuming launch in 2010, ISP will get at 763 AU around the year 2055—
namely, 45 years after launch.

Finally, (9.19) yields the impact parameter value for the CMB radiation focused
at 763 AU: it equals 1.11 times the radius of the Sun—namely, the CMB radiation
flybys the Sun at 76,220 km above its surface. This is a short distance from the Sun,
and, unfortunately, coronal fluctuations there are still pretty strong.

Were we to “deconvolve” the image of a planet, or a stellar system, or a radio
galaxy located on the other side of the Sun, at just 1.11 radii from the Sun it would be
a difficult problem. But, fortunately, in the CMB there is ‘“‘nothing to deconvolve”.
Yet, in Section 9.5 we are going to compute the (theoretical) angular resolution of the
CMB provided by the naked Sun’s gravity lens according to Equation (1.20).

Finally, we wish to point out that the first solid, thick curve from the top on
Figure 9.5, corresponding to a frequency of 59.514 GHz, is the critical frequency
provided by Equation (8.20) for an impact parameter b equal to the CMB one—
namely, 1.11. This shows that the CMB frequency (160 GHz) is so far from the
corresponding critical frequency (59.514 GHz) that we need not worry at all about
the double caustic problems hinted in [3].

9.5 IMPROVING COBE’S ANGULAR RESOLUTION BY NINE ORDERS
OF MAGNITUDE BY LOOKING AT THE 2.7K COSMIC
MICROWAVE BACKGROUND BY VIRTUE OF NASA’S
INTERSTELLAR PROBE

The CMB is integrated light from all stars and galaxies that cannot be resolved into
individual objects. So, strictly speaking, it is meaningless to speak of “angular reso-
lution” provided the Sun’s gravity lens when the latter is used to look at the CMB,
simply because there is nothing to resolve in this case. Nevertheless, some meaning to
“angular resolution” can be retained by adopting (1.20) even if for the CMB this is
just “theoretical”. The result is that the improvement in the (theoretical) angular
resolution of the CMB as seen by the Sun’s gravity lens, rather than through COBE,
is about nine orders of magnitude (as shown in Table 9.2).

In the NASA ISP Booklet [8, p. 14] one reads: “NASA’s Cosmic Background
Explorer (COBE) detected the cosmic infrared background at wavelengths beyond
140 microns and established limits on the energy released by all stars since the
beginning of time. Also, by observing the cosmic infrared background it is possible
to determine how much energy was converted into photons during the evolution of
galaxies, back to the time of their formation. Fundamental measurements about
galaxy formation can be made even though individual protogalaxies cannot be seen.
The cosmic infrared background spectrum can reveal how first stars formed and how
early the elements were formed by nucleosynthesis”.
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Table 9.2. The (theoretical) angular resolution provided by the Sun’s gravity lens for ISP,
having a 2.7-meter antenna. Values are given for the five selected frequencies.

Line Neutral H,O Ka band CMB,,,x |Positronium
hydrogen

Frequency v 1.42 GHz 22 GHz 32 GHz 159.25 GHz | 203 GHz

Wavelength A 21.112 cm 1.363 cm 9.37 mm 1.06 mm 1.48 mm

Angular resolution | 6.3458-107° | 4.0959-10~7 [ 2.8159-1077 |5.6584-10~% |4.4389.10%
at 550 AU arcsec arcsec arcsec arcsec arcsec

Angular resolution 5.2267-107% | 3.3736-1077 | 2.3194 1077 |4.6606-10~% |3.6561-10~3
at 800 AU arcsec arcsec arcsec arcsec arcsec

Angular resolution 4.6749-10° | 3.0174-1077 | 2.0745-10~7 [4.1685-10~% | 3.2701-10~8
at 1,000 AU arcsec arcsec arcsec arcsec arcsec

Perhaps the “virtual” angular resolution data given in Table 9.2 have a deeper
significance, which escapes us at this time. Understanding better what “watching at
the CMB through the Sun’s gravity lens means’ is a current research problem.

9.6 CONCLUSIONS

We have sought to prove that looking at the CMB through the Sun’s gravity lens is a
task suitable for the intended NASA’s Interstellar Probe. Not only would this prove
the existence of the Sun’s focusing effects experimentally for the first time, but it
would also contribute an unprecedented CMB angular resolution to the science of
cosmology, even if only on a very narrow region of the sky. More important still,
looking at the CMB is the only observation through the Sun’s gravity lens that is
totally independent of the probe’s exit direction out of the solar system, inasmuch as
the CMB is uniformly distributed over the celestial sphere. Finally, we have proved
that the effective minimal focal distance that ISP must reach is 763 AU because of the
strong refractions caused by the Solar Corona on the electromagnetic waves at the
CMB peak frequency of 160 GHz. If NASA extends ISP’s nominal mission from
400 AU to 1,000 AU, thus giving ISP the possibility of looking at the CMB, NASA’s
Interstellar Probe will become the first really “precursor interstellar mission” in the
history of humankind.
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KLT-optimized telecommunications



10

A simple introduction to the KLT
(Karhunen—Loéve Transform)

10.1 INTRODUCTION

This chapter is a simple introduction about using the Karhunen—Loéve Transform
(KLT) to extract weak signals from noise of any kind. In general, the noise may be
colored and over wide bandwidths, and not just white and over narrow bandwidths.
We show that the signal extraction can be achieved by the KLT more accurately
than by the Fast Fourier Transform (FFT), especially if the signals buried into the
noise are very weak, in which case the FFT fails. This superior performance of the
KLT happens because the KLT of any stochastic process (both stationary and non-
stationary) is defined from the start over a finite time span ranging between 0 and a
final and finite instant T (contrary to the FFT, which is defined over an infinite time
span). We then show mathematically that the series of all the eigenvalues of the
autocorrelation of the (noise + signal) may be differentiated with respect to 7 yielding
the “Final Variance” of the stochastic process X () in terms of a sum of the first-order
derivatives of the eigenvalues with respect to T'. Finally, we prove that this new result
leads to the immediate reconstruction of a signal buried into the thick noise. We have
thus put on a strong mathematical foundation a set of very important practical
formulae that can be applied to improve SETI, the detection of exoplanets, asteroidal
radar, and also other fields of knowledge like economics, genetics, biomedicine, etc.
to which the KLT can be equally well applied with success.

10.2 A BIT OF HISTORY

The Karhunen-Loéve Transform (KLT) is the most advanced mathematical algo-
rithm available in the year 2008 to achieve both noise filtering and data compression
in processing signals of any kind.
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It took about two centuries (~1800-2000) for mathematicians to create such a
jewel of thought little by little, piece after piece, paper after paper. It is thus difficult to
recognize who did what in building up the KLT and at the same time be fair in
attributing each individual advance to the appropriate author. In addition, mathe-
maticians, both pure and applied, often speak such a “clumsy” language of their own
that even learned scientists sometimes find it hard to understand them. This unfor-
tunate situation hides the esthetic beauty of many mathematical discoveries that were
often historically made by their authors more for the joy of opening new lines of
thought than for the sake of any immediate application to science and engineering.

In essence, the KLT is a rather new mathematical tool used to improve our
understanding of physical phoenomena, far superior to the classical Fourier
Transform (FT). The KLT is named for two mathematicians—the Finnish actuary
Kari Karhunen (1915-1992) [1] and the French American Michel Loéve (1907-1979)
[2, 3]—who proved, independently and about the same time (1946), that the series (2)
hereafter is convergent. Put this way, the KLT looks like a purely mathematical topic,
but really this is hardly the case. As early as 1933 the American statistician and
economist Harold Hotelling (1895-1973) used the KLT (for discrete time, rather than
for continuous time), so that the KLT is sometimes called the “Hotelling Trans-
form”. Even much earlier than these three authors the Italian geometer Eugenio
Beltrami (1835-1899) discovered as early as 1873 the SVD (Singular Value Decom-
position), which is closely related to the KLT in that area of applied mathematics
nowadays called Principal Components Analysis (PCA). Unfortunately, a complete
historical account about how these contributions developed since 1865—when the
English mathematician Arthur Cayley (1821-1895) “invented” matrices—simply
does not exist. We only know about “fragments of thought that impair an overall
vision of both the PCA and the KLT.

In Sections 10.3-10.5, we’ll derive heuristically and step-by-step the many equa-
tions that make up for the KLT. We think that this approach is much easier to
understand for beginners than what is found in most “pure”” mathematical textbooks,
and hope that the readers will appreciate our effort to explain the KLT as easily as
possible to non-mathematically trained people.

10.3 A HEURISTIC DERIVATION OF THE KL EXPANSION

We start by saying that the KLT was born during the years of World War Two out of
the need to merge two different areas of classical mathematics.

(1) The expansion of a deterministic periodic signal x() into a basis of orthonormal
functions (sines and cosines, in this case), typified by the classical Fourier series—
first put forward by the French mathematician Jean Baptiste Joseph Fourier
(1768-1830) around 1807,

x(1) = %+ S g, cos(nt) + bysin(nr)] (=7 <1< 7). (10.1)

n=1
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(2) The need to extend this too narrow and deterministic view to probability and
statistics. The much larger variety of phenomena called “‘noise’” by physicists and
engineers will thus be encompassed by the new transform. This enlarged view
means considering a random function X (7) (notice that we denote random
quantities by capitals, and that X (7) is also called a “stochastic process of the
time”’). We now seek to expand this stochastic process onto a set of orthonormal
functions ¢,(¢) according to the starting formula

X() =32, 0,00 (102
n=1

which is called the Karhunen—Loeve (KL) expansion of X (t) over the finite time
interval 0 < ¢ < T.

What are then the Z, and the ¢, (¢) in (10.2)? To find out, let us start by recalling what
“orthonormality” means for the Fourier series (10.1). Leonhard Euler (1707-1783)
had already laid the first stone towards the Fourier series (10.1) by proving that, if
x(7) is assumed to be periodic over the time interval —7 < 7 < 7, then the coefficients
a, and b, in (10.1) are obtained from the known function (or “periodic signal’) x(¢)
by virtue of the equations (“Euler formulae’):
a, = %J x(1) cos(nt) dt b, = %J x(7) sin(nt) dt. (10.3)
If the same result is going to be true for the Karhunen—Loéve expansion, the
functions of the time, ¢, () in (10.2) must be orthornormal (i.e., both orthogonal and
normalized to 1). That is,

Lj ¢m(t) ¢n([) dt = Oy (104)

where the 6,,, are the Kronecker symbols, defined by 6,,, = 0 for m # n and §,,, = 1.

But what then are the Z,, appearing in (10.2)? Well, a random function X (¢) can
be thought of as something made up of two parts: its behavior in time, represented by
the functions ¢,(¢), and its behavior with respect to probability and statistics, which
must therefore be represented by the Z,. In other words, the Z, must be random
variables not changing in time (i.e., “just” random variables and not stochastic
processes). By doing so we have actually made one basic, new step ahead: we have
found that the KLT separates the probabilistic behavior of the random function X (¢)
from its behavior in time, a kind of ““‘untypical” separation that is achieved nowhere
else in mathematics!

Having discovered that the Z, are random variables, some trivial consequences
follow at once. Let us denote by E{ } the linear operator yielding the average of a
random variable or stochastic process. If one takes the average of both sides of the KL
expansion (10.2), one then gets (we “freely” interchange here the average operator
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E{ } with the infinite summation sign, bypassing the complaints of “subtle’” math-
ematicians!)

ELX(0) = " E{Z,}o,(0). (10.5)
n=1

Now, it is not restrictive to suppose that the random function X (¢) has a zero mean
value in time—namely, that the following equation is identically true for all values of
the time ¢ within the interval 0 < ¢ < T’

E{X(1)} =0. (10.6)

In fact, were this not the case, one could replace X (¢) by the new random function
X(t) — E{X(¢)} in all the above calculations, thus reverting to the case of a new
random function with zero mean value. Thus, in conclusion, the random variables Z,
too must have a zero mean value

E{Z,} =0. (10.7)

This equation has a simple consequence: since the variance O'ZZ” of the random

variables Z, is given by
03, = E{Z}} — E*{Z,} (10.8)

by inserting (10.7) into (10.8) we get
oy =E{Z})}. (10.9)

At this point, we can make a further step ahead, that has no counterpart in the
classical Fourier series: we wish to introduce a new sequence of positive numbers ),
such that every A, is the variance of the corresponding random variable Z,,, that is

oy =\, =E{Z;} > 0. (10.10)

This equation provides the “answer” to the next “natural’” question: Do the random
variables Z, fulfill a new type of “orthonormality” somehow similar to what the
classical orthonormality (10.4) is for the ¢,(#)? Since we are talking about random
variables, the “orthogonality operator” can only be understood in the sense of
statistical independence. The integral in (10.4) must then be replaced by the average
operator E{ } for the random variables Z,. In conclusion, we found that the random
variables Z, must obey the important equation

E{ZmZn} = /\n 6mn- (1011)

In this equation, we were forced to introduce the positive ), in the right-hand side in
order to let (10.11) reduce to (10.10) in the special case m = n.

As for the KL equivalent of the Euler formulae (10.3) of the Fourier series, from
the KL series (10.2) and the orthonormality (10.4) of the ¢,(¢) one immediately finds
that

Z,= JTX(Z) &, (1) dt. (10.12)
0



Sec. 10.4] The KLT finds the best basis (eigen-basis) 155

In other words: the random variables Z, are obtained from the given stochastic
process X (f) by “projecting” this X(¢) over the correspoding eigenvector ¢,(1).
If one likes the language of mathematicians and of quantum physics, then one
may say that this projection of X () onto ¢,(¢) occurs in the “Hilbert space”, which
is the infinitely dimensional Euclidean space spanned by the eigenvectors ¢, (¢) so that
the square of ¢,(7) is integrable over the finite time span 0 < ¢ < 7.

To sum up, we have actually achieved a remarkable generalization of the Fourier
series by defining the Karhunen—Loéve expansion (10.2) as the only possible statis-
tical expansion in which all the expansion terms are uncorrelated from each other.
This word “uncorrelated” comes from the fact that the autocorrelation of a random
function of the time, X (¢), is defined as the mean value of the product of X(¢) at two
different instants #; and ¢,:

Ryx(t1,15) = Ry (1), 1) = E{X(1,)X (1)} (10.13)

If we assume, according to (10.6), that the mean value of X (¢) vanishes identically in
the interval 0 < ¢ < T, the autocorrelation (10.13) reduces to the variance of X (¢)
when the two instants are the same

oy = E{X* ()} = E{X()X (1)} = Ry (1.1). (10.14)

Let us add one final remark about the basic notion of statistical independence of
the random viariables Z,. It can be proven that, while the Z, in (10.2) always are
uncorrelated (by construction), they also are statistically independent if they are
Gaussian-distributed random variables. This is fortunately the case for the Brownian
motion and for the background noise we face in SETI. So we are not concerned
about this subtle mathematical distinction between uncorrelated and statistically
independent random variables.

104 THE KLT FINDS THE BEST BASIS (EIGEN-BASIS) IN
THE HILBERT SPACE SPANNED BY THE EIGENFUNCTIONS OF
THE AUTOCORRELATION OF X(t)

Up to this point, we have not given any hint about how to find the orthonormal
functions of the time, ¢,(f), and positive numbers A, (i.e., the variances of the
corresponding uncorrelated random variables Z,). In this section, we solve this
problem by showing that the ¢,(¢) are the eigenfunctions of the autocorrelation
Ry(t1,1,) = E{X(t;)X(1,)} and that the \, are the corresponding eigenvalues. This
is the correct mathematical phrasing of what we are going to prove. However, in
order to ease the understanding of the further maths involved hereafter, a “transla-
tion” into the language of “‘common words” is now provided. Consider an object—
for instance, a book—and a three-axes rectangular reference frame, oriented in an
arbitrary fashion with respect to the book. Then, the classical Newtonian mechanics
shows that all the mechanical properties of the book are described by a 3 x 3
symmetric matrix called the “inertia matrix” (or, more correctly, “inertia tensor”)
whose elements are, in general, all different from zero. Handling a matrix whose
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elements are all nonzero is obviously more complicated than handling a matrix where
all entries are zeros except for those on the main diagonal (i.e., a diagonal matrix).
Thus, one may be led to wonder whether a certain transformation of axes exists that
changes the inertia matrix of the book into a diagonal matrix. Newtonian mechanics
shows then that only one privileged orientation of the reference frame with respect to
the book exists yielding a diagonal inertia matrix: the three axes must then coincide
with a set of three axes (parallel to the book edges) called “principal axes’ of the
book, or “‘eigenvectors” or “proper vectors” of the inertia matrix of the book. In
other words, each body posesses an intrinsic set of three rectangular axes that
describes at best its dynamics (i.e., in the most concise form). This was proven again
by Euler, and one can always compute the position of the eigenvectors with respect to
a generic reference frame by means of a certain mathematical procedure called
“finding the eigenvectors of a square matrix”.

In a similar fashion, one can describe any stochastic process X () by virtue of the
statistical quantity called the autocorrelation (or simply the correlation), defined as
the mean value of the product of the values of X (¢) at two different instants 7, and #,,
and formally written E{X(#;)X(¢,)}. The autocorrelation, obviously symmetric in ¢,
and 1,, plays for the stochastic process X (¢) just the same role as the inertia matrix for
the book example above. Thus, if one first seeks the eigenvectors of the correlation,
and then changes the reference frame over to this new set of vectors, one achieves the
simplest possible description of the whole (signal + noise) set.

Let us now translate the whole above description into equations. First of all, we
must express the autocorrelation E{X(#;)X(z,)} by virtue of the KL expansion
(10.2). This goal is achieved by writing down (10.2) for two different instants, #;
and 1,, taking the average of their product, and then (freely) interchanging the
average and the summations in the right-hand side. The result is

o0

E{X tl iz m f] ¢n 5] E{ZmZ} (1015)

Taking advantage of the statistical orthogonality of the Z,,, given by (10.11), (10.15)
simplifies to

E{X(ZI)X([Z)} = i)‘n1¢m(ll)¢m(12)' (10]6)
m=1

Finally, we now want to let the ¢, (¢) “disappear” from the right-hand side of (10.16)
by taking advantage of their orthonormality (10.4). To do so, we multiply both sides
of (10.16) by ¢,(#;) and then take the integral with respect to #; between 0 and 7.
One then gets:

JO E(X()X(0))6,(0) dty =3 Anoon(s2) jo (1) (11) diy

m=1

= Z >‘m¢m(12)5mn = )‘n¢11([2)7 (1017)
m=1
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that is

j E{X(1)X ()} du(t1) iy = A, du(ts). (10.18)

0

This basic result is an integral equation, called by mathematicians “of Fredholm
type”. Once the correlation E{X(#;)X(#,)} of X(¢) is known, the integral equation
(10.18) yields (upon its solution, which may not be easy at all to find analytically!)
both the Karhunen-Loéve eigenvalues )\, and the corresponding eigenfunctions
¢,(1). Readers familiar with quantum mechanics will also recognize in (10.18) a
typical “eigenvalue equation” having the kernel E{X (#;)X(,)}.

Let us finally summarize what we have proven so far in Sections 10.3 and 10.4,
and let us use the language of signal processing, which will lead us directly to SETI,
the main theme of this chapter.

By adding random noise to a deterministic signal one obtains what is called a
“noisy signal” or, in case the signal power is much lower than the noise power, “a
signal buried into the noise”. The noise + signal is a random function of the time,
denoted hereafter by X (7). Karhunen and Loéve proved that it is possible to represent
X (1) as the infinite series (called the KL expansion) given by (10.2), and this series is
convergent. Assuming that the (signal + noise) correlation E{X(¢;)X(#,)} is a known
function of ¢, and #,, then the orthonormal functions ¢,(¢) (n = 1,2,...) turn out to
be just the eigenfunctions of the correlation. These eigenfunctions ¢,(¢) form an
orthonormal basis in what physicists and mathematicians call the space of square-
integrable functions, also called the Hilbert space. The eigenfunctions ¢,(¢) actually
are the best possible basis to describe the (signal +noise), much better than any
classical Fourier basis made up by sines and cosines only. One can conclude that
the KLT automatically adapts itself to the shape of the (signal+ noise), whatever
behavior in time it may have, by adopting as a new reference frame in the Hilbert
space the basis spanned by the eigenfunctions, ¢,(t), of the autocorrelation of the
(signal + noise), X ().

10.5 CONTINUOUS TIME VS. DISCRETE TIME IN THE KLT

The KL expansion in continuous time, ¢, is what we have described so far. This may
be more “‘palatable” to theoretical physicists and mathematicians inasmuch as it may
be related to other branches of physics, or of science in general, in which time
obviously must be a continuous variable. For instance, this author spent 15 years
of his life (1980-1994) in investigating mathematically the connection between
Special Relativity and KLT. The result was the mathematical theory of optimal
telecommunications between the Earth and a relativistic spaceship either receding
from the Earth or approaching it. Although this may sound like “mathematical
science fiction” to some folks (who we would call “short sighted”), the possibility
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that, in the future, humankind will send out relativistic automatic probes or even
manned spaceships, is not unrealistic. Nor is it science fiction to imagine that an alien
spaceship might approach the Earth slowing down from relativistic speeds to zero
speed. So, a mathematical physics book like [4] can make sense. There, the KLT is
obtained for any acceleration profile of the relativistic probe or spaceship. The result
is that the KL eigenfunctions are Bessel functions of the first kind (suitably modified)
and the eigenvalues are determined by the zeros of linear combinations of these Bessel
functions and their derivatives, as we shall prove in Appendices F through K of this
book, and especially in Appendix G.

Other continuous-time applications of the KLT are to be found in other branches
of science, ranging, for instance, from genetics to economics. But, whatever the
application may be, if time is a continuous variable, then one must solve the integral
equation (10.18), and this may require considerable mathematical skills. In fact,
(10.18) is, in general, an integral equation of the Fredholm type, and the usual
“iterated nuclei” procedure used to solve Fredholm integral equations may be par-
ticularly painful to achieve. The task may be much easier if one is able to reduce the
Fredholm integral equation to a Volterra integral equation, in just the way shown in
the book [4] for the time-rescaled Brownian motion in relation to Special Relativity.

But let us go back to the time variable 7 in the KL expansion (10.2). If this
variable is discrete, rather than continuous, then the picture changes completely.
In fact, the integral equation (10.2) now becomes ... a system of simultaneous
algebraic equations of the first degree, that can always be solved! The difficulty here
is that this system of linear equations is huge, because the autocorrelation matrix is
huge (hundreds or thousands of elements are the rule for autocorrelation matrices in
SETI and in other applications, like image processing and the like). Also huge are the
eigenvalues of the characteristic equation (i.e., the algebraic equations whose roots
are the KL). Can you imagine solving directly an algebraic equation of degree 10,000?

So, the KLT is practically impossible to find numerically, unless we resort to
simplifying tricks of some kind. This is precisely what was done for the SETI-Italia
program by this author and his students, strongly supported by Ing. Stelio
Montebugnoli and his team [5].

10.6 THE KLT: JUST A LINEAR TRANSFORMATION IN THE
HILBERT SPACE

Although we have explained the KL expansion (10.2), we have yet to explain what the
KLT is! We do so in this section.

The next step towards the KLT proper is the rearrangement of the eigenvalues )\,
in decreasing order of magnitude. Suppose we have done this. Consequently, we also
rearrange the eigenfunctions ¢, (¢) so that each eigenfunction keeps corresponding to
its own eigenvalue. It can be proved that no mismatch can possibly arise in doing so,
inasmuch as each eigenfunction corresponds to one eigenvalue only—namely, it can
be proved that there is no degeneracy (contrary to what happens in quantum physics,
where, for instance, there is a lot of degeneracy in the eigenfunctions of even the
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simplest atom of all, the hydrogen atom!). Furthermore, all eigenvalues are positive,
and so, once rearranged in decreasing order of magnitude, they form a decreasing
sequence where the first eigenvalue is the largest, and is called the “dominant”
eigenvalue by mathematicians.

We are now ready to compute the Direct KLT of the (signal + noise). Let us use
the new set of eigen-axes to describe the (signal + noise). Then, in the new representa-
tion, the (signal + noise) is just the Direct KLT of the old (signal + noise). In other
words, the KLT is properly called just a /inear trasformation of axes, and nothing is
easier than that! (Incidentally, this accounts for the title of Karhunen’s first paper
“Uber Lineare Methoden in der Wahrscheinlichkeitsrechnung” = “On linear meth-
ods in the calculus of probabilities™, [1], which obviously refers to the linear character
of the transformation of axes in the Hilbert space.)

10.7 A BREAKTHROUGH ABOUT THE KLT:
MACCONE’S “FINAL VARIANCE” THEOREM

The importance of the KLT as a mathematical tool superior to the FFT has already
been pointed out. However, the implementation of the KLT by a numerical code
running on computers has always been a difficult problem. Both Frangois Biraud in
France [6] and Bob Dixon in the USA [16] failed to do so in the 1980s because all
computers then available could not make the N2 calculations required to solve the
huge system of simultaneous algebraic equations of the first degree corresponding (in
the discrete case) to the integral equation (10.18). At the SETI-Italia facilities at
Medicina we faced the same problem, of course. But we did better than our pre-
decessors because we discovered the new theorem about the KLT that we demon-
strate in this section and call “the Final Variance theorem”. This new theorem seems
to be even more important than the rest of research work about the KLT since it
solves directly the problem of extracting a weak sinusoidal carrier (a tone) from noise
of whatever kind (both colored and white).

The key idea of the Final Variance theorem is to differentiate the first
eigenvalue (briefly called the “dominant eigenvalue’) of the autocorrelation of the
(noise + signal) with respect to the final instant 7" of the general KLT theory.
Remember here that this final instant 7" simply does not exist in the ordinary Fourier
theory, because this 7" equals infinity according to the Fourier theory. Therefore, the
final instant 7 in itself is possibly the most important “novelty” introduced by the
KLT regarding the classical FFT. With respect to T, we may take derivatives (called
“final derivatives” in the remainder of this book because they are time derivatives
taken with respect to the final instant 7') and integrals that have no analogs in the
ordinary Fourier theory. The “error” that was made in the past—even by many KLT
scholars—was to set T = 1, thus obscuring the fundamental novelty represented by
the finite, real positive 7" as a new continuous variable playing in the game! This error
made by other scholars clearly appears, for instance, in the Wikipedia site about
the “Karhunen—Loéve Theorem”, http://en.wikipedia.org/wiki/ Karhunen-Loéve_
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theorem. So, by removing this silly 7' = 1 convention we opened up new prospects for
KLT theory, as we now show by proving our “Final Variance theorem”.

Consider the eigenfunction expansion of the autocorrelation again—Equation
(10.16)—with the traditional dummy index » rewritten instead of m. Upon replacing
t; = t, = t, this equation becomes

E(X(0) = > A6, (10.19)

Since the eigenfunctions ¢, () are normalized to 1, we are prompted to integrate both
sides of (10.19) with respect to ¢ between 0 and 7', so that the integral of the square of
the ¢, (1) becomes just 1:

JT E{X*(1)}dr = ixnr Pi(1)dr = iAn. (10.20)
0 n=1 0 n=1

On the other hand, since the mean value of X (¢) is identically equal to 0, one may now
introduce the variance ai,w of the stochastic process X (7) defined by

ok = E{X*(0} — EX{X ()} = E{X*(1)}. (10.21)
Replacing (10.21) into (10.20), one gets

T 00
JO oy di=> A (10.22)
n=1

This formula was first given by this author in his 1994 book [4, eq. (1.13), p. 12].
At that time, however, (10.22) was regarded as interesting inasmuch as (upon inter-
changing the two sides) it proves that the series of all the eigenvalues A, is indeed
convergent (as one would intuitively expect) and its sum is given by the integral of the
variance between 0 and 7.

Back in 1994, however, the author did not understand that (10.22) had a more
profound meaning: since the final instant 7 is the upper limit of the time integral on
the left-hand side, the right-hand side also must depend on 7. In other words, all the
eigenvalues A, must be some functions of the final instant 7"

A = 2(T). (10.23)
This new remark is vital in order to make further progress. In fact, one is now

prompted to let the integral on the left-hand side of (10.22) disappear by differentiat-
ing both sides with respect to the final instant 7. One thus gets:

2 O (T
o= (7). (10.24)

This result we call the Final Variance theorem. It was discovered by this author in
May 2007 and is the key new result put forward in this chapter. It states that for any
(either non-stationary or stationary) stochastic process X (¢), the Final Variance aim
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is the sum of the series of the first-order partial derivatives of the eigenvalues \,(T') with
respect to the final instant T.

Let us now consider a few particular cases of this theorem that are especially

interesting.

(1

@

In general, only the first N terms of the decreasing sequence of eigenvalues will be
retained as “‘significant” by the user, and all the other terms, from the (N + 1)th
term onward, will be declared to be “‘just noise”. Therefore, the infinite series in
(10.24) becomes in practice the finite sum

2 ~ y 6)‘n(T)
JX(T) ~ 677_'

n=1

(10.25)

In numerical simulations, however, one always wants to make computation time
as short as possible! Therefore, one might be led to consider the first (or
dominant) eigenvalue only in (10.25); that is

> oN(T)
UX(T) ~ 6T .

This clearly is “the roughest possible” approximation to the full X (#) process
since we are actually replacing the full X(¢) by its first KLT term Z,¢,(z) only.
However, using (10.26) instead of the N-term sum (10.25) is indeed a good
shortcut for application of the KLT to the extraction of very weak signals
from noise, as we now stress in the very important practical case of stationary
processes.

If we restrict our considerations to stationary stochastic processes only (i.e.,
processes for which both the mean value and the variance are constant in time),
then (10.25) simplifies even further. In fact, by definition, the stationary processes
have the same final variance at any time (i.e., for stationary processes ag( is a
constant). Then (10.22) immediately shows that, for stationary processes only, all
the KLT eigenvalues are linear functions of the final instant 7"

(10.26)

M(T) < T for stationary processes only. (10.27)

As a consequence, the first-order partial derivatives of all the A, with respect to
T for stationary processes are just constants. In yet other words, for stationary
processes only, (10.25) becomes

2L ON(T)
oT

n=1

~ a constant with respect to 7. (10.28)

In particular, if one sticks again to the first, dominant eigenvalue only (i.e., to
the roughest possible approximation), then (10.28) reduces to
oM(T)

a7~ constant with respect to 7. (10.29)



162 A simple introduction to the KLT [Ch. 10

In Section 10.8 we will discuss the deep, practical implications of this result for
SETI, extrasolar planet detection, asteroidal radar, and other KL T applications.

(3) Please notice that, for non-stationary processes, the dependence of the eigen-
values on T certainly is non-linear. For instance, for the well-known Brownian
motion (i.e., “‘the easiest of the non-stationary processes’’), one has

472

2 =1 (n=1,2,..) (10.30)

A(T)
and so the dependence on 7T is quadratic. For the proof, just place the Brownian
motion variance 0% n=1 into (10.22) and perform the integration, yielding the
T? directly. Of course, this is in agreement with (10.30), which will be proven in
Appendix F when we search for the KLT of the standard Brownian motion—
see, in particular, (F.21).

(4) Even higher than quadratic is the dependence on T for the eigenvalues of other
highly non-stationary processes. For instance, for the zero-mean square of the
Brownian motion, the KLT eigenvalues depend cubically on the final instant T,
as will be proven in Appendix I by Equation (I.60). And so on for more
complicated processes, like the time-rescaled squared Brownian motions whose
KLT will found in Appendix I.

10.8 BAM (“BORDERED AUTOCORRELATION METHOD”) TO FIND
THE NUMERIC KLT OF STATIONARY PROCESSES ONLY

The BAM (an acronym for “Bordered Autocorrelation Method”) is an alternative
numerical technique to evaluate the KLT of stationary processes (only) that may run
faster on computers than the traditional full-solving KLT technique described in
Section 10.5. The BAM has its mathematical foundation in our Final Variance
theorem already proved in Section 10.7. In this section we describe the BAM in
detail and provide the results of numerical simulations showing that, by virtue of
the BAM, the KLT succeeds in extracting a sinusoidal carrier embedded in a lot of
noise when the FFT utterly fails.

Let us start by recalling that the standard, traditional technique to find the KLT
of any stochastic process (whether stationary or not) numerically amounts to solving
N simultaneous linear algebraic equations whose coefficient matrix is the (huge)
autocorrelation matrix. This N> amount of calculations is much larger than the
N xIn(N) amount of calculations required by the FFT and that’s precisely the reason
the FFT has been preferred to the KLT in the last 50 years!

Because of the Final Variance theorem proved in the previous section, however,
one is tempted to confine oneself to the study of the dominant eigenvalue, only by
virtue of just using (10.29). This means studying (10.29) for different values of the
final instant T (i.e., as a function of the final instant 7).

Also, we now confine ourselves to a stationary X (1) over a discrete set of instants
t=0,...,N.
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In this case, the autocorrelation of X(f) becomes the Toeplitz matrix (for
an introduction to the research field of Toeplitz matrices, see the Wikipedia site,
http://en.wikipedia.org/wiki/ Toeplitz_matrix) which we denote by Rr,epi:--

Ripepiic= = | Rxx(2) Ryx(1) Ryx(0) - Ryy(N-2)
Ryx(0)
Ryx(N) Ryx(N—-1) -+ o Ryx(1)  Ryx(0)
(10.31)

This theorem had already been proven by Bob Dixon and Mike Kline back in 1991
[16], and will not be proven here again. We may choose N at will, but clearly the
higher the N, the more accurate the KLT of X (7). On the other hand, the final instant
T in the KLT can be chosen at will and now is T = N. So, we can regard T = N as a
sort of “‘new time variable” and even take derivatives with respect to it, as we’ll do in
a moment.

But let us now go back to the Toeplitz autocorrelation (10.31). If we let N vary as
a new free variable, that amounts to bordering it (i.e., adding one (last) column and
one (last) row to the previous correlation). This means solving yet again the system of
linear algebraic equations of the KLT for N + 1, rather than for N. So, for each
different value of N, we get a new value of the first eigenvalue A\ now regarded as a
Sfunction of N (i.e., A\{(N)). Doing this over and over again, for as many values as we
wish (or, more correctly, for how many values of N our computer can still handle!)
constitutes our BAM, the Bordered Autocorrelation Method.

But then we know from the Final Variance theorem that A\ (N) is proportional to N.
And such a function A\ (N) of course has a derivative, OX{ (N)/ON, that can be computed
numerically as a new function of N. And this derivative turns out to be a constant with
respect to N. This fact paves the way for a new set of applications of the KLT to all fields
of science!

In fact, numeric simulations lead to the results shown in the four plots in Figures
10.1-10.4. The first plot is the ordinary Fourier spectrum of a pure tone at 300 Hz
buried in noise with a signal-to-noise ratio of 0.5, abbreviated hereafter as SNR =0.5.
For a definition of the SNR see the Wikipedia site, http://en.wikipedia.org/wiki/
Signal-to-noise_ratio Please note the following two facts:

(1) This is about as low an SNR can be before the FFT starts failing to denoise a
signal, as is well known by electrical and electronic engineers.

(2) This Fourier spectrum is obviously computed by taking the Fourier Transform
of the stationary autocorrelation of X(z), as is well known from the Wiener—
Khinchin theorem (for a concise description of this theorem, see http://en.
wikipedia.org|wiki| Wiener-Khinchin_theorem).

Notice, however, that this procedure would not work for non-stationary X (¢) because
the Wiener—Khinchin theorem does not apply to non-stationary processes. For
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Fourier spectrum of signal + noise X(t) with SNR=0.5
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Figure 10.1. Fourier spectrum of a pure tone (i.e., just a sinusoidal carrier) with frequency at
300 Hz buried in stationary noise with a signal-to-noise ratio of 0.5.
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Figure 10.2. The KLT dominant eigenvalue \;(N) over N = 1,200 time samples, computed by
virtue of the BAM, the Bordered Autocorrelation Method.
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. Spectrum (i.e., FFT) of the derivative of
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Figure 10.3. The spectrum (i.e., the Fourier Transform) of the constant derivative of the KLT
dominant eigenvalue A (N) with respect to N as given by the BAM. This is clearly a Dirac delta
function (i.e., a peak, at 300 Hz), as expected.
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Figure 10.4. The spectrum (i.e., the Fourier Transform) of the first KLT eigenfunction not
obtained by the BAM, but rather by the very long procedure of solving N linear algebraic
equations corresponding, in discrete time, to the integral equation (10.18). Clearly, the result is
the same as obtained in Figure 10.3 by the much less time-consuming BAM. So, one can say that
adoption of the BAM actually made the KLT “feasible’” on small computers by circumventing
the difficulty of the N2 calculations requested by the “straight” KLT theory.
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non-stationary processes there are other “‘tricks” to compute the spectrum from the
autocorrelation, like the Wigner—Ville Transform, but we shall not consider them
here.

The second plot (Figure 10.2) shows the first (i.e., the dominant) KLT eigenvalue
A (N) over N = 1,200 time samples. Clearly, this A\;(N) is proportional to N, as
predicted by our Final Variance theorem (10.27).

So, its derivative, 9\ (N)/ON, is a constant with respect to N. But we may then
take the Fourier Transform of such a constant and get a Dirac delta function (i.e., a
peak just at 300 Hz). In other words, we have KLT-reconstructed the original tone by
virtue of the BAM. The third plot (Figure 10.3) shows such a BAM-reconstructed
peak.

Finally, this plot is of course identical to the fourth plot (Figure 10.4), showing
the ordinary FFT of the first KLT eigenfuction as obtained, not by the BAM, but by
solving the full and long system of N algebraic first-degree equations.

Let us now do the same again ... but with an incredibly low SNR of 0.005.

Poor Fourier here is in a mess! Just look at the plot in Figure 10.5! No classical
FFT spectrum can be identified at all for such a terribly low SNR!

But for the KLT no problem!

The next plot (Figure 10.6) shows that A\;(N) < N, as predicted by our Final
Variance theorem (10.27).

The third plot (Figure 10.7, KLT fast way via the BAM) is the neat KLT spectrum
of the 300 Hz tone obtained by computing the FFT of the constant OA{(N)/ON.

Fourier spectrum of signal + noise X(t) with SNR =0.005
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Figure 10.5. Fourier spectrum of a pure tone (i.e., just a sinusoidal carrier) with frequency at
300 Hz buried in stationary noise with the terribly low signal-to-noise ratio of 0.005. This is
clearly beyond the reach of the FFT, since we know there should just be one peak only at
300 Hz. Fourier fails at such a low SNR.
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Growth (linear) of dominant eigenvalue A\ (N)
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Figure 10.6. The KLT dominant eigenvalue A;(N) for N = 1,200 time samples, computed by
virtue of the BAM, for the very low SNR =0.005.
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Figure 10.7. The spectrum (i.e., the Fourier Transform) of the constant derivative of the KLT
dominant eigenvalue A, (N) with respect to N as given by the BAM. This is a neat Dirac delta
function (i.e., it has a peak at 300 Hz, as expected).
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Figure 10.8. The spectrum (i.e., the Fourier Transform) of the first KLT eigenfunction, not
obtained by the BAM but rather by the very long procedure of solving N linear algebraic
equations corresponding, in discrete time, to the integral equation (10.18). Clearly, the result is
the same as obtained in Figure 10.7, but this time by the much less time-consuming BAM. So,
one can say that the adoption of the BAM actually made the KLT “feasible” on small
computers by circumventing the difficulty of N? calculations requested by the “straight”
KLT theory.

And this is just the same as the last plot (Figure 10.4) of the dominant KLT
eigenfunction obtained by the KLT slow way of doing N ? calculations. This proves
the superior behavior of the KLT.

10.9 DEVELOPMENTS IN 2007 AND 2008

The numerical simulations described in the previous section were performed at
Medicina during the winter 2006-2007 by Francesco Schilliro and Salvatore ““Salvo”
Pluchino [22]. These simulations suggested in a purely numerical fashion (i.e., without
any analytic proof) that the BAM leads to the following result for stationary pro-
cesses: the ordinary Fourier transform (i.e., ““the spectrum” in the common sense,
since the processes are supposed to be stationary) of the first-order partial derivative
M (T)
or
frequency of the feeble sinusoidal carrier buried in the mountain of noise. In SETI
language, if we are looking for a simple sinusoidal carrier sent by ET and buried in a

with respect to the final instant 7" of the dominant eigenvalue,

, 1s just the
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lot of cosmic noise, then the frequency we are looking for is given by the FFT of
oM(T)
oT

Why?

No analytic proof of this numerical result was ever found at Medicina. But this
author had made the first step towards the then missing analytic proof by proving the
Final Variance Theorem in May 2007, and persisted in discussing this “frontier
result” with other radioastronomers. One year later, in June 2008, he went to
Dwingeloo, the Netherlands, and met with the ASTRON Team working on a poss-
ible implementation of SETI on the brand-new LOFAR radiotelescope. Dr. Sarod
Yatawatta of ASTRON then made the next step toward the missing analytic proof:
he derived an unknown analytic expression for the KLT eigenvalues of the ET
sinusoidal carrier [24]. Unfortunately, Dr. Yatawatta made two analytical errors
in his derivation (described hereafter), which this author discovered and corrected
in September 2008.

In conclusion, the final, correct version of all these equations is explained in the
next two sections, and it proves that the Fourier Transform of the first derivative of
the KLT eigenvalues with respect to the final instant 7 is indeed the frequency of the
“unknown” ET signal, but only for stationary processes, of course.

For non-stationary processes (i.e., for transient phoenomena as actually happens
in practical SETI, since all celestial bodies move, rather than rest), the story is
much more complicated, and this author is convinced that a much more refined
mathematical investigation has to be made: but this will be our next step, not
described in this book yet!

10.10 KLT OF STATIONARY WHITE NOISE

L\I(T) is the

or
frequency of the unknown ET signal, we must understand what the KLT of
stationary white noise is.

Stationary white noise is defined as the one “limit” stochastic process that is
completely uncorrelated (i.e., the autocorrelation of which is the Dirac delta
function). In other words, denoting the stationary white noise by W(r), one has
by definition

Before we give the analytic proof that the Fourier Transform of

E{W ()W (1)} = 6(t — 12). (10.32)

If one now seeks the KLT of stationary white noise, one must of course insert the
autocorrelation (10.32) into the KLT integral equation (10.18), getting

)‘n¢n(t2) = ,[0 E{ W(Zl) W(t2)}¢n(tl) dtl = L) 6(tl - t2)¢n(tl) dtl = ¢n(t2)‘ (]033)

This proves that:
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(1) The KLT eigenvalues of stationary white noise are all equal to 1.
(2) Any set of orthonormal eigenfunctions ¢,(¢) in the Hilbert space is a suitable
basis to represent stationary white noise.

Since any set of orthonormal eigenfunctions ¢,(¢) in the Hilbert space is a suitable
basis to represent stationary white noise, from now one we shall adopt the
easiest possible such basis; that is, the simple Fourier basis made up only by
orthonormalized sines over the finite interval 0 < ¢ < T

bu(t) = ﬁm(zg’%) = w,(1). (10.34)

Of course, this set of basis functions fulfills the orthonormality condition

r T 2 (2mm \F _(2mn
JO Wm(t) Wn(t) dt = JO \/;Sln (T Z) . ?Sln <?t) dt = 6}71/1' (1035)

This property will be used in the next section, where we give the proof that the

M(T)
oT

Fourier Transform of is indeed (twice) the frequency of the unknown ET

sinusoidal carrier buried in white, cosmic noise. We conclude this section by pointing
out the first analytical error made by Dr. Yatawatta in his personal communication
to this author [24]: he forgot to put the square root in (10.34). This of course means
that his further results were flawed, even more so since he made a second analytical
error later, which we shall not describe. But the key ideas behind his proof were
perfectly correct, and we shall describe them in the next section.

10.11 KLT OF AN ET SINUSOIDAL CARRIER BURIED IN WHITE,
COSMIC NOISE

Consider a new stochastic process S(¢) made up by the sum of stationary white noise

W (t) plus an alien ET sinusoidal carrier of amplitude a and frequency v = 21; that is,
v
S(t) = W(t) + asin(wr). (10.36)
What is the KLT of such a (signal + noise) process? This is the central problem of
SETI, of course.
To find the answer, first build up the autocorrelation of this process:
E{S(1))S(t2)} = E{W(1))W (1)} + @" sin(wry) sin(wty)
+ aE{W (1)) sin(wty)} + aE{W(ty) sin(wt;)}.  (10.37)
The last two terms in (10.37) represent the two cross-correlations between the white

noise and the sinusoidal signal. It is reasonable to assume that the white noise and the
signal are uncorrelated, and so we shall simply replace these two cross-correlations by
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zero. The autocorrelation (10.37) of the (signal + noise) stochastic process S(#) thus
becomes

E{S(1,)S(t2)} = E{W (1,)W (1)} + a* sin(wt,) sin(wty). (10.38)

In order to proceed, we now make use of the eigenfunction expansion of the
autocorrelation (10.16), which, replaced into (10.38), changes it into

Z)‘S,,, m tl m l2 Z)‘W,,, m tl m(l2) +a Sln(uﬂl) Sin(u)IZ)' (1039)

In the last equation, the S,,(¢) clearly are the (unknown) eigenfunctions of the
(signal 4 noise) process S(¢), and the A\g are (unknown) corresponding eigenvalues.
In the right-hand side, the Ay, are the eigenvalues of the stationary white noise,
which we know to be equal to 1, but, for the sake of clarity, let us keep the symbol
Aw,, rather than replacing it by 1.

To proceed further, we now must get rid of both #; and #, in (10.39), and there is
only one way to do so: use the orthonormality of the eigenfuctions appearing in
(10.39). We shall do so in a moment. Before, however, let us make the following
practical consideration: since the signal is much waker than the noise (by assumption)
(i.e., the signal-to-noise ratio is much smaller than 1, or SNR « 1), then, numerically
speaking, the (signal 4 noise) eigenfunctions S,,(¢) must not differ very much from
the pure white noise eigenfunctions W, (7). And, similarly, the (signal+ noise)
eigenvalues A\g must not differ very much from the corresponding pure white noise
eigenvalues Ay, . In other words, the hypothesis that SNR <1 amounts to the two
approximate equations

10.40
o (10.40)

m m

Sp(t) = W, (1) }
1

Of course, only the first of these two equations will play a role in the two integrations
that we are now going to perform: once with respect to #; and once with respect to ,,
and both over the interval 0 < ¢ < 7. As a consequence, the new orthonormality
condition (nearly) holds:

T
J Sm(ll)VVn(ll) dll ~ 6mn (1041)
0
and, similarly,
T
Jo Sk(2)W,(t2) diy = by, (10.42)

So, let us now multiply both sides of (10.39) by W,(¢;) and integrate with respect
to t; between 0 and 7. Because of (10.41) and (10.35) one has:

0o T
3 As, S ZAW (1) +a S1n(wt2)J W(ty) sin(wny) diy - (10.43)
n=1 0
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The good point is that the integral appearing in the right-hand side of this equation
can be found. In fact, replacing W, (¢;) by virtue of (10.34) and integrating, one gets

2v/27n\/T sin(wT)

w3T? — 4x2p?

Z/\S/ Sk 12 Z)\Wka(IZ) +Ll s1n(w12)

k=1

(10.44)

We next multiply this equation by W, (#,) and integrate with respect to ¢, between 0
and T. Because of (10.42) and (10.35), (10.44) becomes:

5 23/ 2mny/T sin(wT)

Ag = Ay +a
2 f PT? — 4n2n?

T

J Wn(IZ) Sin(wlz) dlz. (1045)
0

Again, the integral in the last equation can be computed—it is actually the same

integral as in (10.43)—and so the conclusion is

5 8720 T sin®(wT)
(w2T2 _ 47r2n2)2 .

This is Yatawatta’s main result (corrected by Maccone). Let us now point out clearly
that the eigenvalues on the left are a function of the final instant 7' that is,

s, ~ Ay, +a (10.46)

5 872 T sin?(wT')

Xs, (T) = Ay, +a m

(10.47)

This equation clearly shows that

(1) For T — 0, the fraction in the right-hand side approaches zero, and so the
eigenvalues of the signal + noise approach the pure white noise eigenvalues (as
is intuitively obvious).

(2) Forn — oo, again the fraction in the right-hand side approaches zero, and so the
eigenvalues of the signal +noise approach the pure white noise eigenvalues
(as again is intuitively obvious). This result may justify numerically the practical
approximation made by the Medicina engineers when they confined their
simulations to the first eigenvalue only (roughest approximation). In other
words, the dominant eigenvalue of the signal + noise is given by

L8777 sin(wT) > 877 T sin*(wT)

WT) _ STl (1048
¢ WPTT =422 T a0

/\Sl (T) =~ )\W1 +
This completes our analysis of the KLT of a sinusoidal carrier buried in white, cosmic
noise.

10.12 ANALYTIC PROOF OF THE BAM-KLT

We are now ready for the analytic proof of the BAM-KLT method.
Let us first re-write (10.47) in a form in which the pure white noise eigenvalues are

replaced by 1:

5 872 T sin®(wT)

Mg (T) =~ 1 —_— .
s,(T) ta (T2 — 4n2n2)?2

(10.49)
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We then notice that the final instant 7" appears three times in the right-hand side of
the last equation:

(1) once in the numerator outside the sine;
(2) once in the numerator inside the sine;
(3) once in the denominator.

Therefore, the partial derivative of (10.49) with respect to T will be made up by the
sum of three terms:

(1) One term with the derivative of the T in the numerator (i.e., 1 times the sine
square). This brings a term in the cosine of TWICE the sine argument, since one
obviously has

sin®(wT) =1 — 1 cos(2wT). (10.50)

(2) One term with the derivative of the T inside the sine. This brings a term in the sine
of TWICE the sine argument, because one has
2sin(wT’) cos(wT') = sin(2wT). (10.51)

(3) One term with the derivative of the T in the denominator. This does not bring
any term in either the sine or the cosine, but just a rational function of 7" that we
shall give in a moment. In fact, we now prefer to skip the lengthy and tedious
steps leading to the derivative of (10.49) with respect to T and just give the final
result.

In conclusion, the derivative of (10.49) with respect to 7 is given by the following sum
of three terms:

Mg (T
% ~ Coeff| (T) - sin(2wT) + Coeff,(T) - cos(2wT) + Coeff3(T) (10.52)

where the three coefficients turn out to be (after lengthy calculations)
8win’wT

(VT2 = 4n’n?)?’

4’ n* (3w T + 4n’n?)
2

Coeff(T) = a T ) (10.53)

L AT (3w T? + 4nn?)
(w2 T2 _ 47r2n2)3

Coeff(T) = a*

Coeff3(T) = —a

But the right-hand side of (10.52) is no more than ... the simple Fourier series

Mg (T Mg (T
AC) Moreover, (10.52) shows that Ps.(T) ¢\ PERIODIC func-
oT oT

s (T)
oT

equals TWICE the frequency of the buried alien sinusoidal carrier. In other words, the

expansion of

tion of T with frequency 2wT. We conclude that: The Fourier transform of
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Sfrequency of the alien signal is a HALF of the frequency found by taking the Fourier
s, (T)

oTr
And the BAM-KLT method is thus proved analytically.

transform of

10.13 KLT SIGNAL-TO-NOISE (SNR) AS A FUNCTION OF THE FINAL
T, EIGENVALUE INDEX n, AND ALIEN FREQUENCY v

We now derive a consequence from the eigenvalue relationship (10.47) dealing with
the signal-to-noise ratio (abbreviated SNR) in the KLT theory. We shall call it the
“KLT-SNR Theorem”. The proof is as follows.

Consider Equation (10.10), showing that the eigenvalues A, of any KL expansion
are actually the variances of the zero-mean corresponding uncorrelated (i.e., orthog-
onal, in the probabilistic sense) random variables Z,,. If we apply this to the KLT of
stationary unitary white noise, described in Section 10.10, the conclusion is that the
Ay, are the mean values of the square of the corresponding orthogonal (i.e., uncor-
related random variables Z %4/”)

A = E{Ziy,}. (10.54)

Now, the definition of the signal-to-noise ratio (which we prefer to denote SNR,
rather than S/R) of a sinusoidal signal with amplitude a buried in the noise with
amplitude Zy, is just:

L 2 2
SNR - Power of the 31gr.1a1 _ a2 _a (10.55)
power of the noise  E{Zj, } Ap,
This definition can now be inserted into (10.47) divided by Ay, ; that is,
As, (T 2 87 Tsin®(wT
) gy o Srr o) (10.56)
AW,, )‘I/V,, (CU T —4r°n )
with the result that (10.56) is changed into
As (T) 8720’ T sin?(wT)
- 2 ~14+SNR-——— ———. 10.57
w, * (W*T? — 47’n?)? ( )
Solving this for SNR yields
As (T) (W T? — 4x%n?)?
SNR(T Sl e R eyl 10.58
(T,n,w) ( Aw, 872n*T sin*(wT) ( )

For SETI applications, it may be preferable to re-express the last formula directly in

terms of the “alien” frequency v = Zi, instead of w. Equation (10.58) is thus changed
into g

As (T
SNR(T,n,v) ~ (f\i() - 1) :

W

222 T? — i)

—_ 10.59
n?T sin?>(27vT) ( )
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This is our KLT-SNR Theorem. Since the quantity

<)‘S):V(V”T)—l> >0 (10.60)

has a positive numeric value just slighty above zero, from (10.59) we conclude that
SNR(T,n,v) = O(T?) as T — oo
SNR(T,n,v) = O(n?) asn— oo (10.61)
SNR(T,n,v) = O(v*) as v — occ.

These equations yield the “pace of increase” of the KLT-SNR, and should be of
importance in writing down the numeric codes for the actual implementation of the
KLT.

10.14 HOW TO EAVESDROP ON ALIEN CHAT

Following the Paris First IAA Workshop on Searching for Life Signatures (held at
UNESCO, Paris, September 22-26, 2008, and organized by this author), the British
popular science magazine New Scientist published the following article on October
30, 2008, that well summarizes the key features of the present scientific discussion.

How to eavesdrop on alien chat
30 October 2008
From New Scientist Print Edition.
Jessica Griggs

ET, phone . .. each other? If aliens really are conversing, we are not picking up what they are
saying. Now one researcher claims to have a way of tuning in to alien cellphone chatter.

On Earth, the signal used to send information via cellphones has evolved from a single
carrier wave to a “spread spectrum” method of transmission. It’s more efficient, because
chunks of information are essentially carried on multiple low-powered carrier waves, and
more secure because the waves continually change frequency so the signal is harder to
intercept.

It follows that an advanced alien civilisation would have made this change too, but the
search for extraterrestrial life (SETI) is not listening for such signals, says Claudio Maccone,
co-chair of the SETI Permanent Study Group based in Paris, France.

An algorithm known as the Fast Fourier Transform (FFT) is the method of choice for
extracting an alien signal from cosmic background noise. However, the technique cannot
extract a spread spectrum signal. Maccone argues that SETI should use an algorithm known
as the Karhunen—Loéve Transform (KLT), which could find a buried conversation with a
signal-to-noise ratio 1000 times lower than the FFT.

A few people have been “‘preaching the KLT" since the early 1980s but until now it has
been impractical as it involves computing millions of simultaneous equations, something
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even today’s supercomputers would struggle with. At a recent meeting in Paris called
Searching for Life Signatures, Maccone presented a mathematical method to get around
this burden and suggested that the KLT should be programmed into computers at the new
Low Frequency Array telescope in the Netherlands and the Square Kilometre Array
telescope, due for completion in 2012.

Seth Shostak at the SETI Institute in California agrees that the KLT might be the way to
go but thinks we shouldn’t abandon existing efforts yet. “It is likely that for their own
conversation they use a spread-spectrum method but it is not terribly crazy to assume that to
get our attention they might use a ‘ping’ signal that has a lot of energy in a narrow band—the
kind of thing the FFT could find.”

“It is likely that aliens use the same spread-spectrum method of transmission as us on
their cellphones.”

From issue 2680 of New Scientist magazine,

30 October 2008, p. 14.

10.15 CONCLUSIONS

Let us summarize the main results of this chapter.

When the stochastic process X (¢) is stationary (i.e., it has both mean value and
variance constant in time), then there are two alternative ways to compute the first
KLT dominant eigenfunction (i.e., the roughest approximation to the full KLT
expansion, which may be “enough” for practical applications!):

(1) (long way)—either you compute the first eigenvalue from the autocorrelation and
then solve the huge (N?) system of linear equations to get the first eigenfunction;

(2) (short way = BAM)—or you compute the derivative of the first eigenvalue with
respect to T = N and then Fourier-transform it to get the first eigenfunction.

In practical, numerical simulations of the KLT it may be much less time-consuming
to choose option (2) rather than option (1).

In either case, the KLT of a given stationary process can retrieve a sinusoidal
carrier out of the noise for values of the signal-to-noise ratio (SNR) that are three
orders of magnitude lower than those that the FFT can still filter out. In other words,
while the FFT (at best) can filter out signals buried in noise with an SNR of about 1
or so, the KLT can, say, filter out signals that have an SNR of, say, 0.001 or so.

This is the superior achievement of the KLT over the FFT.

The BAM (Bordered Autocorrelation Method) is an alternative numerical
technique to evaluate the KLT of stationary processes (only) that may run faster
on computers than the traditional full-solving KLT technique. In this chapter we
have provided the results of numerical simulations that show, by virtue of the BAM,
how the KLT succeeds in extracting a sinusoidal carrier embedded in a lot of noise
when the FFT utterly fails.



Sec. 10.18] Annotated bibliography 177
10.16 ACKNOWLEDGMENTS

The author is indebted to many radioastronomers and scientists who helped him over
the years to work out what is now the BAM—KLT method. Principal among them are
Ing. Stelio Montebugnoli and his SETI-Italia Team, Dr. Mike Garrett and his
ASTRON Team (in particular Dr. Sarod Yatawatta), Dr. Jill Tarter and the SETI
Institute Team (in particular Drs. Seth Shostak and Doug Vakoch). Also, the Paris
SETI Conference of September 22-26, 2008, organized by this author at UNESCO,
was possible only through the full support of the Secretary General of the IAA,
Dr. Jean-Michel Contant, and of the newly-born French SETI community. Finally, a
number of other young and not-so-young folks continued to support this author in
his efforts for SETT over the years, and their help is hereby gratefully acknowledged.

10.17 REFERENCES

[11 K. Karhunen, “Uber lineare Methoden in der Wahrscheinlichkeitsrechnung,” Ann. Acad.
Sci. Fennicae, Series A 1, Math. Phys., 37 (1946), 3-79.

[2] M. Loéve, “Fonctions Aléatoires de Second Ordre,” Rev. Sci., 84(4) (1946), 195-206.

[3] M. Loéve, Probability Theory: Foundations, Random Sequencies, Van Nostrand, Prince-
ton, NJ, 1955.

[4] C. Maccone, Telecommunications, KLT and Relativity, Volume 1, IPI Press, Colorado
Springs, CO, 1994, ISBN # 1-880930-04-8. This book embodies the results of some 30
research papers published by the author about the KLT in the 15-year span 1980-1994 in
peer-reviewed journals.

[5] S. Montebugnoli, C. Bortolotti, D. Caliendo, A. Cattani, N. D’Amico, A. Maccaferri,
C. Maccone, J. Monari, A. Orlati, P. P. Pari et al., “SETI-Italia 2003 Status Report and
First Results of a KL Transform Algorithm for ETI Signal Detection,” paper IAC-03-
TIAA.9.1.02 presented at the 2003 International Astronautical Congress held in Bremen,
Germany, September 29—October 3, 2003.

[6] F.Biraud, “SETI at the Nangay Radio-telescope,” Acta Astronautica, 10 (1983), 759-760.

[71 C. Maccone, “Advantages of the Karhunen-Loéve Transform over Fast Fourier Trans-
form for Planetary Radar and Space Debris Detection,” Acta Astronautica, 60 (2007),
775-779.

10.18 ANNOTATED BIBLIOGRAPHY

In addition to the above references, we would like to offer an “enlightened” list of a
few key references about the KLT, subdivided according to the field of application.



178 A simple introduction to the KLT [Ch. 10

Early papers by the author about the KLT in mathematics, physics, and the theory
of relativistic interstellar flight, subdivided by journals

1l Nuovo Cimento

[8] C. Maccone, “Special Relativity and the Karhunen—Loéve Expansion of Brownian
Motion,” Nuovo Cimento, Series B, 100 (1987), 329-342.

Bollettino dell’Unione Matematica Italiana

[9] C. Maccone, “Eigenfunctions and Energy for Time-Rescaled Gaussian Processes,”
Bollettino dell’Unione Matematica Italiana, Series 6, 3-A (1984), 213-219;

[10] C. Maccone, “The Time-Rescaled Brownian Motion B(:*"),” Bollettino dell’Unione
Matematica Italiana, Series 6, 4-C (1985), 363-378; C. Maccone, “The Karhunen—Loéve
Expansion of the Zero-Mean Square Process of a Time-Rescaled Gaussian Process,”
Bollettino dell’Unione Matematica Italiana, Series 7, 2-A (1988), 221-229.

Journal of the British Interplanetary Society

[12] C. Maccone, “Relativistic Interstellar Flight and Genetics,” Journal of the British
Interplanetary Society, 43 (1990), 569-572.

Acta Astronautica

[13] C. Maccone, ‘“Relativistic Interstellar Flight and Gaussian Noise,” Acta Astronautica,
17(9) (1988), 1019-1027.

[14] C. Maccone, “Relativistic Interstellar Flight and Instantaneous Noise Energy,” Acta
Astronautica, 21(3) (1990), 155-159.

KLT for data compression

[15] C. Maccone, “The Data Compression Problem for the ‘Gaia’ Astrometric Satellite of
ESA,” Acta Astronautica, 44(7-12) (1999), 375-384.

Some important papers about the KLT for SETI

[16] R. S. Dixon, and M. Klein, “On the detection of unknown signals,” Proceedings of the
Third Decennial US-USSR Conference on SETI held at the University of California at
Santa Cruz, August 5-9, 1991. Later published in the Astronomical Society of the Pacific
(ASP) Conference Series (Seth Shostak, Ed.), 47 (1993), 128-140.

[17] C. Maccone, Karhunen—Loeve versus Fourier Transform for SETI, Lecture Notes in
Physics, Springer-Verlag, Vol. 390 (1990), pp. 247-253. These are the Proceedings
(J. Heidmann and M. Klein, Eds.) of the Third Bioastronomy Conference held in Val
Cenis, Savoie, France, June 18-23, 1990.

After these seminal works were published, the importance of the KLT for SETI was
finally acknowledged by SETTI Institute experts in

[18] R. Eckers, K. Cullers, J. Billingham, and L. Scheffer (Eds.), SETI 2020, SETI Institute,
Mountain View, CA, 2002, p. 234, note 13. The authors say: “Currently (2002) only the
Karhunen Loeve (KL) transform [Mac94] shows potential for recognizing the difference
between incidental radiation technology and white noise. The KL transform is too



Sec. 10.18] Annotated bibliography 179

computationally intensive for the present generation of systems. The capability for using
the KL transform should be added to future systems when computational requirements
become affordable.”

The paper [Mac94] referred to in the SETT 2020 statement mentioned above is

[19] C. Maccone, “The Karhunen—-Loéve Transform: A Better Tool than the Fourier
Transform for SETI and Relativity,” Journal of the British Interplanetary Society, 47
(1994), 1.

An early paper about the KLT for SETI-Italia

[20] S. Montebugnoli, and C. Maccone, “SETI-Italia Status Report 2001, a paper presented
at the 2001 /AF Conference held in Toulouse, France, October 1-5, 2001.

An early paper about the possibility of a “‘fast” KLT

[21] A.K. Jain, ““A Fast Karhunen—Loéve Transform for a Class of Random Processes,” IEEE
Trans. Commun., COM-24 (1976), 1023-1029.

Recent papers about the KLT and BAM-KLT

[22] F. Schilliro, S. Pluchino, C. Maccone, and S. Montebugnoli, La KL Transform:
considerazioni generali sulle metodologie di analisi ed impiego nel campo della Radio-
astronomia, Istituto Nazionale di Astrofisica (INAF)/Istituto di Radioastronomia
(IRA), Technical Report, January 2007 [in Italian].

[23] C. Maccone, “Innovative SETI by the KLT,” Proceedings of the Bursts, Pulses and
Flickering Conference held at Kerastari, Greece, June 13-18, 2007. Available at POS
(Proceedings of Science) website http://pos.sissa.it//archive/conferences|056/034/
Dynamic2007_034.pdf

[24] S. Yatawatta, pers. commun., June 17, 2008.

A recent paper about the KLT for relativistic interstellar flight

[25] C. Maccone, “Relativistic Optimized Link by KLT,” Journal of the British Interplanetary
Society, 59 (2006), 94-98.



11

KLT of radio signals from relativistic
spaceships in uniform and decelerated motion

11.1 INTRODUCTION

It is well known that in special relativity two time variables exist: the coordinate time
t, which is the time measured in the fixed reference frame, and the proper time T,
which is the time shown by a clock rigidly connected to the moving body. They are
related by

T(z):JI 120 g (11.1)

0 ?

where v(?) is the body velocity and c¢ is the speed of light (see [1, p. 44]).

The remainder of this book, starting with the present chapter, is devoted to the
relativistic interpretation of Brownian motion whose time variable is the proper time,
B(7), rather than the coordinate time, B(¢) and to find the KLT of B(7). The bulk of
these results was given by the author in a purely mathematical form, with no reference
to relativity, in [2]. The KLT is also explained in detail in Chapter 10 and Appendices
F-J. However, to enable the reader to read Chapters 11-14 independently of Chapter
10 and Appendices F-J, a summary of that work is now given in a form suitable for
the physical developments that will follow in Chapters 12—14.

Consider standard Brownian motion (Wiener-Lévy process) B(f), with mean
zero, variance f, and initial condition B(0) = 0, as described in Appendix F.
A white noise integral is the process X (¢) defined by

x() = | 5(5) m0o) (112)

0
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where f() is assumed to be continuous and non-negative. Evidently, X (0) = 0, and
it can be proved (see (F.35) or, equivalently, [3, pp. 84-87]) that

t
X(1) :B<Jf2(s) ds). (11.3)
0
Thus, X(¢) is a time-rescaled Gaussian process, with mean zero and
1AL
EX)X() = [ as (11.4)

as autocorrelation (covariance); f; A t, denotes the minimum (smallest) ¢, and £,.
Now the KLT theorem (see [4, pp. 262-271]) states that

X(1) =Y Zudu(t) (0<1<T) (11.5)
n=1
where (1) the functions ¢, (¢) are the autocorrelation eigenfunctions to be found from
T
| O xwo) dis = Mnte) (11.6)

0

where the constants ), are the corresponding eigenvalues; and (2) the Z, are
orthogonal random variables, with mean zero and variance \,; that is:

E{ZVHZI’!} = )‘némn' (11'7)

This theorem is valid for any continuous-parameter second-order process with mean
zero and known autocorrelation. The series (11.5) converges in mean square, and
uniformly in ¢. Finally, if X(¢) is Gaussian—as in Equations (11.2) and (11.3)—the
random variables Z, are also Gaussian, and since they are orthogonal they are
independent.

After these preliminaries, we can state the main result of [2] (Maccone First KLT
Theorem, fully proven in Appendix G).

The white noise integral (11.2), or the equivalent time-rescaled Gaussian process
(11.3), has the KLT expansion:

. [ /)
X(l) = ZZnNn f(t) JOJ(S) ds 'Ju(t) ’Yn(j)"i . (118)
n=1 f(s)ds

(1) the order of the Bessel functions () is not a constant, but the time function

Y0 d X0
= \/ﬁ(r) 7 {fzm] (119)

Here
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with
X0 =[] fs)as. (11.10)

(2) The constants =, are the (increasing) positive zeros of

aJI/(T) (’Yn) /

ry(m) +—5——V(T)|=0. (1L11)

f(T) *n J/
10%

[ reas

0

In general, (11.11) can only be solved numerically.
(3) The normalization constants N, follow from the normalization condition

T 2 4l
NZH f(s) ds} J X[y ()] dx = 1 (11.12)
0 0
where the new Bessel functions order v((x)) is (11.9) changed by aid of the

transformation
T

[ ds =] s

(4) The eigenvalues are determined by

T 2 1
Ay = “ f(s)ds] —. (11.13)
0 (V)
(5) The Gaussian random variables Z, are independent and orthogonal, and have
zero mean and variance \,.

The proof of this theorem may be sketched as follows: first, the Volterra-type
integral equation (11.6) is transformed into a differential equation with two boundary
conditions; and, second, the latter is reduced to the standard Bessel differential
equation by means of two changes of variables. The full proofis given in Appendix G.

Let us now go back to relativity. Since from (11.3) it plainly appears that the
rescaled time of the new Brownian motion is given by

rﬁ(s) ds (11.14)
0

we merely have to equate (11.1) and (11.14) to get the relationship among the
arbitrary time-rescaling function f(¢) and the arbitrary body velocity v(¢):

Jrfz(s) ds:r 1—”20(23) ds. (11.15)

0 0
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By differentiating and taking the positive square root, it follows that:

v*(1)

f(t)_|:1_ B

1
4

y (11.16)

This formula is the starting point to study the KLT expansion (11.8) for a relativistic
body, like a relativistic spacecraft or spaceship moving in a radial direction away or
towards the Earth.

Inversion of (11.16) leads at once to:

o(1) = ey/1 - f4(1). (11.17)

Now, the reality of the motion requires the radicand to be non-negative, whence,
taking the positive sign in front of all square roots, we find

S <1 (11.18)

This is the fundamental upper bound imposed on the “arbitrary” function f(¢) by
special relativity. In other words, as the speed of light can in no case be exceeded, so
/f(¢) must not exceed 1.

As already pointed out, the lower bound on f(¢), required by the presence of the
radicals in (11.8) and (11.10), is zero. Therefore

0<f(t)<1 (0<1<T) (11.19)

is the physical range of the (otherwise arbitrary) function f(¢).
We also need to point out the Newtonian limit of the results. By this we mean the
limit as ¢ — oo. Then, as we see from (11.16),

lim (1) = 1 (11.20)

Cc—0C
and the time-rescaled process under consideration reduces to standard Brownian
motion, B(¢). This agrees, of course, with (11.1), stating that the proper time 7
becomes the same as the coordinate time ¢ in the Newtonian limit ¢ — oco.

Finally, we want to hint at how the shape of the eigenfunctions ¢,(7) may be
determined even without knowing their analytical expression. This possibility is a
consequence of the Sonine-Polya theorem, which is explored in Section G.5, for the
non-relativistic case. The reader is referred there for the details, and here we merely
confine ourselves to the relativistic version of the results. From (11.16) and (G.61) one
finds:

du(t)
dinf@) _1d [ (0 @\ _ 1 07
i a2 )| T 2T 2
-

= (negative) - v(¢) dl;i(z[) . (11.21)

Thus, not only the velocity v(¢), but also its derivative (i.e., acceleration taken with
respect to the coordinate time, 7) determines the shape (i.e., the stability) of the ¢, (7).
The resulting Table 11.1 follows from this and Table G.1.
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Table 11.1. Stability criterion for the relativistic eigenfunctions ¢, ().

Sign of the Sign of the Shape of the Description Description
velocity v(7) coordinate KL eigenfunctions when T is when 7 is
acceleration Bu(1) finite infinite
du(t)/dt
Positive Negative Divergent Asymptotic
.0 ,
An unstable

Negative Positive Divergent Asymptotic
unstable
Positive Positive p () Convergent Asymptotic
72 stable
0 T 1
Negative Negative y () Convergent Asymptotic
71 stable
0 T {

11.2 UNIFORM MOTION

The simplest possible case of (11.16) is when the velocity v(¢) is a constant (i.e., the
body’s motion is uniform). Then f(¢) is a constant K as well

2 1
t
(1) = [1 0 (2)} K. (11.22)
¢
Let us now recall the property of the Brownian motion called self-similarity to the
order 1/2 and expressed by the formula B(ct) = 1/c¢B(t) where ¢ is any real positive
constant—see (F.6) for the relevant proof. From this and from (11.3), one gets at
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once

1t

X(1) = B(J K? ds) = B(K*1) = KB(1). (11.23)
0

Thus, the uniform proper-time Brownian motion B(7) = X(¢) equals the uniform

coordinate-time Brownian motion B(¢) multiplied by the constant K, which is

2

B(r) = [1 —%

1
7

B(1). (11.24)

The KL expansion of B(7) is, of course, the same as that of B(¢) apart from the
multiplicative factor K. And the relevant eigenfunctions are just sines.

To provide an example of how the machinery outlined in Section 11.1 actually
works, we shall now prove this result, also proved in Section F.3 (or in [4, p. 280]).

From (11.10):
x(t) = ,/KJ[de:Kﬁ (11.25)
0

and
K

(1) ==—=. 11.26
=5 (11.26)

The order v(t) of the Bessel functions is then found from (11.9):

0 ) d [x' (1) Kbd[ 1
v — — — — _ _

) de | f2(2) K? dit 2K/t

_ (11.27)

where both the time ¢ and the constant K have vanished from the result. Simplifica-
tions of this kind (further examples will be given in Sections 11.3 and 12.4) are vital to
make the mathematical investigations feasible. Since v = % the relevant Bessel func-

tion is [6, p. 54]
2 .
J%(x): \/Esmx. (11.28)

Thus, from (11.5), (11.27), and (11.28), the KL expansion follows:

!
p - Jde
X(1) = KJ Kds»  Z,N,Ji | v

T
0 n=1 : [ K ds
Jo

> 2T . t
:K;Z,,N,M/ﬂ—%sm(%?). (11.29)
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In this expression the normalization constants N, are yet to be found. To this end,
we must know the ~, given by (11.11). That is,

K K,
Ji() + KVT | =T ()| =0 (11.30)
2\/T 2 KJ ds 2
0
or, simplifying,
31 (m) + 1 (3) = 0. (11.31)
2 2

But this is a special case of the more general Bessel functions formula (see [5, p. 11,
entry (54)]:
vl (z) 4 zJ,(2) = 2J,_,(2) (11.32)

so that (11.31) actually amounts to

J

7%(7,,) =0 (11.33)

since v, # 0. One now has (see [6, p. 55, entry (6)])

,%(X) = \/%cosx (11.34)

so that (11.33) finally becomes the boundary condition:
cosy, =0. (11.35)

J

In this case we find the exact -, expression to be

'y,,:mr—g (n=102,..). (11.36)

Reverting now to the normalization constants N,, (11.12) yields

1=N2 UT K ds]z r x {Jé(%x)r dx

0 0

2 1
= N2K*T? J sin? (7, x) dx
nJo
1 . N2K*T?
= N2K°T? 5 [y, — sin 7, cos 7] = ——— (11.37)
™ ™V
from which
VIV
N, = . 11.38
= (11.38)
As for the eigenvalues )\, from (11.13) they are given by
K*T?
A = (11.39)

or
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and these are also the variances of the independent Gaussian random variables Z,,.
It is interesting to point out that the property

o, =t (11.40)
and (11.39) yield the following proportionality among the proper-time random
variables Z and the coordinate-time random variables ZJ—corresponding to the
case v(1) = 4, or, from (11.16), (1) =

Z, :KZS. (11.41)

Thus, the KL expansion of the proper-time Brownian motion is

:ZOO: ,1\/7s1n(7n ) KZZ \/751n<'yn;):KB(t) (11.42)

n=1

and (11.24) is found once again. In other words, passing from one inertial reference
frame to another, the random variables Z, just change their variance according to
(11.41), whereas the time eigenfunctions remain the same. In Section 11.5 total energy
will also be discussed.

11.3 DECELERATED MOTION

This and the remaining sections are devoted to the case when the proper time is
proportional to a real positive power of the coordinate time, namely

r=cr* (1>0) (11.43)

C being a constant that will be determined immediately, and H being a real variable
whose range has yet to be found. The factor 2 in the exponent is introduced for
convenience. By checking (11.43) against (11.1), differentiating, and taking the square
root, one gets

7(0) = V2HC3, (11.44)

Inserting this into (11.17), the resulting velocity radical reads

= c\/l (2HC)?22H=1), (11.45)
In order to have a real velocity, the inequality
(2HC)*PPH-D < (11.46)

must be valid. Moreover, the initial instant is conventionally zero, and the final
instant is 7, so that the range of H is necessarily greater than one-half. By setting
t = T, the constant C is determined so as v(7) = 0, and one gets

1
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One can now understand the physical meaning of the motion we are studying.
Initially (¢ = 0) the spaceship is traveling at the speed of light. Then it starts decel-
erating until it stops at the final instant 1 = 7. Actually, if we let H vary, we have a
family of curves in the #,v(¢, H) plane. But we have to be careful: the tangent to all
such curves at t = 0 must be horizontal in order to preserve the physical reality when
the spaceship starts decelerating from ¢ to lower speeds (i.e., there cannot be any
sudden “‘speed jump”). Thus, differentiating (11.45)—with C given by (11.47)—with
respect to ¢ and then setting # = 0, one discovers that the condition on H given H > %
must physically be replaced by the stronger condition:

4H —3>0 hence H>3=0.75. (11.48)

An important special case of v(¢, H) occurs when H = 1: in fact, v(¢) is then the
upper-right quarter of an ellipse. One also easily infers that, for 1 < H < oo, all v(¢)
curves lie above this arc of ellipse. In the (physically meaningless) limit case H — oo
the v(z, H) “curve” would be the upper-right quarter of a rectangle. Figure 11.1 shows
this set of v(z, H) curves representing the decelerated motion for different values of H.

V(t,06) 2.10°
V(1,09
v(t,1)

v(t, 10)

0 ! ! ! ! !
0 510" 110 1510 210 2510
t

Figure 11.1. Decelerated motion of a relativistic spaceship approaching the Earth from the
speed of light ¢ down to speed zero in the finite time interval 0 < ¢ < 7. We dubbed this
spaceship the Independence Day (alien) spaceship. For instance, let 7 = 3 days of coordinate
time (i.e., time elapsed on Earth). At the initial instant # = 0 (when the deceleration starts) all the
curves v(¢, H) must have their tangents horizontal (to avoid bumps aboard the spaceship) and
that yields the physical constraint: H > % = 0.75. The above plots show just this fact in a neat,
graphic fashion: (1) all solid curves have H > % and horizontal tangent at ¢ = 0, so they are
acceptable; (2) the dividing line is the dash-dotted curve corresponding to H = %, and one can
see that it does not have a horizontal tangent at ¢ = 0; (3) all the lower curves (dotted) are not
allowed since they don’t have a horizontal tangent at 1 = 0.
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In conclusion, the function f(¢) is defined by the real positive power

1
-3

f(l)_ 1

T3

(0<1<T). (11.49)
From (11.17) and (11.49) we see that the velocity v(¢) is given by

o(1) = ¢ 1-(5;1])2 0<t<T) (11.50)

One can now understand the physical meaning of the motion we are studying.
Initially (¢ = 0) the particle is traveling at the speed of light, then it starts decelerating
until it stops at the final instant = 7'. Actually, (11.50) represents a family of curves
on the (¢, v(¢)) plane if we let H vary according to (11.48). The particular case H = %
represents standard Brownian motion. Another important special case of (11.50)
occurs when H = 1: in fact v(7) is then an ellipse. One also easily infers that, for
%< H < 1 the curve lies below the arc of ellipse, whereas for 1 < H < oo the curve
lies above it. In the (physically meaningless) limit case H — oo the curve would be
half a rectangle.
Let us now turn to the KL expansion of the decelerated Brownian motion

( 21 1 oy
X(t)=B ] = B, (11.51)
2HT /2HTH7§

Integrating (11.49), we get

1 H+ =
Jf(s) ds:%. (11.52)
0 (H+%)TH—2

Then, by virtue of (11.49) and (11.52), the function x(¢) defined by (11.10) reads:

[H
H+§T 2
thus
H[H71
X(1) = —————. (11.54)
H+3i1"2

- _ (11.55)
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and
1
d {X’(z)} TH 2H(—H) !
el = (11.56)
dr | (1) IH _|_%
and, from (11.49) and (11.53),
3 H+t1
X0 _ ’+ (11.57)

120 (H+%)\/H7+% T3

The Bessel functions order can now be found from (11.9), (11.56), and (11.57):

2H
V= .
2H +1

(11.58)

Note that both the time ¢ and the constant 7" disappear identically, and the order of
the Bessel functions is a constant, rather than a function of the time 7. Moreover, by
letting H = % and H — oo, respectively, we see that the range of v is rather limited:
iI<v<l

Our next task is to find the meaning of the constants ~,. Upon substituting
(11.52), (11.53), and (11.54) into (11.11), along with v/ (¢) = 0 one gets, after simplify-
ing any multiplicative factors,

2H

" () = 0. 1.
2H + I‘II/('Y)‘I) + ’YUJV(’Y") 0 ( 59)

By virtue of (11.58), (11.59) is equivalent to

Once again the Bessel functions property (11.32) may be applied, and
’Yn‘]ufl(’}/n) =0. (1161)
Since v, # 0,
Jui () =0, (11.62)

Thus, the ~, are the real positive zeros, arranged in ascending order of magnitude, of
the Bessel function of order v — 1. No formula yielding these zeros explicitly is
known. Yet it is possible to find an approximated expression for them by means
of the asymptotic formula for J,(x) (see [8, p. 134]).

. . 2 vr
,\!LrIoloJV(x) = XILTC”ECOS<X_7_Z)' (11.63)

In fact, from (11.58) one first gets

vel=—gms (11.64)
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Second, (11.62) and (11.64), checked against (11.63), yield

2 T T
0=1J,_1(v) ~ ”m COS<%1 +2(2H7+1)_Z> (11.65)

hence
m ™ ™
g STy (=12 (11.66)
and finally
™ e
| — =1,2,... 11
WAy oy b (11.67)

The first 32 approximated -,, obtained by means of (11.67), appear in Table 11.2, for
various values of H > % In the Brownian case H = % (11.67) is an exact formula, in
that it coincides with (11.36). We are reminded that these ~, give the pace of
convergence of the KL expansion, inasmuch as the standard deviations of the
Gaussian random variables Z, depend inversely on the ~, by virtue of (11.13).
Eventually, the normalization constants N, follow from (11.12) and (11.52):

T2 1
1:N27J xJ2 (7, x) dox. 11.68
e () (11.68)

This integral is calculated within the framework of the Dini series (see [5, p. 71]) and
the result is

1
1 /
J, %7200 dx = 5 bAE G + (3 = A0 (11.69)

This formula, however, may be greatly simplified upon eliminating ,J,,(7,) taken
from (11.60). In fact, one finds

7/21'];/2(%1) = VZJLZ/(%) (1 170)

and (11.68), by virtue of (11.69) and (11.70), becomes

T Jw)
2 v\'/n
2
Thus
(H+Hv2
N =T (11.72)

This is the exact expression of the normalization constants. An approximated expres-
sion can be found upon inserting both (11.67) and (11.58) into the approximated
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Table 11.2. Approximate values of the constants ,.

H=05 | H=06 | H=07 | H=08 | H=09 | H=10 |H=

Brownian
n=1 1.571 1.642 1.702 1.752 1.795 1.833 2.356
n=2 4.712 4.784 4.843 4.894 4.937 4974 5.498
n= 7.854 7.925 7.985 8.035 8.078 8.116 8.639
n==4 11.00 11.07 11.13 11.18 11.22 11.26 11.78
n= 14.14 14.21 14.27 14.32 14.37 14.40 14.92
n==6 17.28 17.36 17.41 17.46 17.50 17.54 18.06
n="7 20.42 20.50 20.55 20.60 20.64 20.68 21.20
n=2_8 23.56 23.63 23.69 23.74 23.79 23.82 24.35
n=9 26.70 26.77 26.83 26.88 26.93 26.96 27.49
n=10 27.84 27.92 27.98 30.03 30.07 30.11 30.63
n=11 32.99 33.06 33.12 33.17 33.21 33.25 33.77
n=12 36.13 36.20 36.26 36.31 36.35 36.39 36.91
n=13 37.27 37.34 37.40 37.45 37.49 37.53 40.05
n=14 42.41 42.48 42.54 42.59 42.64 42.67 43.20
n=15 45.55 45.62 45.68 45.73 45.78 45.81 46.34
n=16 48.69 48.77 48.83 48.88 48.92 48.96 47.48
n=17 51.84 51.91 51.97 52.02 52.06 52.10 52.62
n=18 54.98 55.05 55.11 55.16 55.20 55.24 55.76
n=19 58.12 58.19 58.25 58.30 58.34 58.38 58.90
n =20 61.26 61.33 61.39 61.44 61.48 61.52 62.05
n=21 64.40 64.47 64.53 64.58 64.63 64.66 65.19
n=22 67.54 67.62 67.67 67.72 67.77 67.81 68.33
n=23 70.69 70.76 70.82 70.87 70.91 70.95 71.47
n =24 73.83 73.90 73.96 74.01 74.05 74.09 74.61
n=25 76.97 77.04 77.10 77.15 77.19 77.23 77.75
n=26 80.11 80.18 80.24 80.29 80.33 80.37 80.90
n=27 83.25 83.32 83.38 83.43 83.48 83.51 84.04
n=28 86.39 86.46 86.52 86.57 86.62 86.66 87.18
n=29 87.53 87.61 87.67 87.72 87.76 87.80 90.32
n =30 92.68 92.75 92.81 92.86 92.90 92.94 93.46
n =231 95.82 95.90 95.95 96.00 96.04 96.08 96.60
n=32 98.96 97.0 97.0 97.1 97.1 97.2 97.75
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(11.63) for J,(v,):

o Oml~ W\ 4 2QH+1) 202H+1) 4

2 2
=~ cos(nm — )| ~ . 11.73
[ feostm —ml = [ = (11.73)

By substituting this into (11.72) and using (11.67) for the +,, it follows that

T 1 1
S 2 S A P — 11.74
s d +2)\/" 4 2QH+1) (11.74)

These are the approximated normalization constants.

A similar procedure applies to the eigenvalues ),. In fact, from (11.13) and
(11.52) we get the exact formula

2 ( T T m2H 7r)
cos| nm——— — —=

T° 1
(H+1)? (w)
whereas from (11.75) and (11.67) we get the approximated formula
T° 1
Ay & (11.76)

(H+3)> Ty
’ ”2(”_4_2(2H+1)>

These are the variances of the independent Gaussian random variables Z,,.
Let us now summarize all the results found in the present section by writing two
KL expansions: the exact one

1

tH+ 2
X(t Y (11.77
(1) = TH+ : ; V) TH % )
and the approximated one
VIHT12 "1 & M2 2H
X() » g N7, cos| 71— - T (is)
I+ P TH+3 2QH+1) 4

11.4 CHECKING THE KLT OF DECELERATED MOTION BY
MATLAB SIMULATIONS

Just look at Figure 11.2.
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B(") and its RECONSTRUCTIONS by using 10 sigenfunctions out of 100
T T

10 T T T T T T T
Original Realization of B(2")
1S = ==-Reconstruction by the EMPIRIC KLT | —
- Reconstruction by the ANALYTIC KLT

8t

Figure 11.2. The time-rescaled Brownian motion X (¢) of (11.78) vs. time ¢ simulated as a
random walk over 100 time instants. This X (7) represents the “noisy signal” received on Earth
(whence the use of the coordinate time 1 = Earth time) from a relativistic spaceship approaching
the Earth in a decelerated motion, as in the movie Independence Day. Next to the “bumpy curve”
of X (), two more “smooth curves” are shown that interpolate at best the bumpy X (¢). These two
curves are the KLT reconstruction of X (z) by using the first ten eigenfunctions only. It is
important to note that the two smooth curves are different in this case because the KLT
expansion (11.78) is approximated. Actually, it is an approximated KLT expansion because
the asymptotic expansion of the Bessel functions (11.63) was used. So, the two curves are
different from each other, but both still interpolate X (¢) at best. Note that, were we taking into
account the full set of 100 KLT eigenfuctions—rather than just 10—then the empirical recon-
struction would overlap X (¢) exactly, but the analytic reconstruction would not because of the
use of the asymptotic expansion (11.63) of the Bessel functions.

11.5 TOTAL ENERGY OF THE NOISY SIGNAL FROM RELATIVISTIC
SPACESHIPS IN DECELERATED AND UNIFORM MOTION

A thorough study of the total energy of the noisy signals emitted by relativistic
spaceships in decelerated motion (and of the uniform motion, in particular) is allowed
by the results obtained in Sections 11.2, 11.3, and F.10 in Appendix F.

Our first goal will be to get the characteristic function (i.e., the Fourier trans-
form) of the random variable “total energy”, defined by (F.47). In fact, inserting the
eigenvalues (11.75) into (F.51), it follows that

o0 ; 2 1
D.(¢) = [H(l(HerTi)ivzﬂ g (11.79)
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On the other hand,

v

J,(z) = @ ﬁl 2 (11.80)
T A\ |

is the infinite product expansion for J,(z) [6, p. 498], and the constants j,, evidently

are the real positive zeros of J,(z), arranged in ascending order of magnitude. Then,

keeping in mind (11.62), we can let the two infinite products (11.79) and (11.80)

coincide by setting

Yo =Jv—1n (1181)
and
2 .
2= HTC o YEC (11.82)
(H+3) H+;
Solving for @,(¢), one gets
1
®.(¢) = (11.83)
TV2i( |\ T+/2i¢
F(V) Ju—l 1
2H +1 H+3

which is the exact expression for the characteristic function of the total energy
distribution, . An approximated expression can also be derived using the asymptotic
expression for the Bessel function (11.63); one then gets

.(¢) ~ : : (11.84)
T(v) [TV2iC TV2i( vr =«
ﬁLmJ “C\m+l 273

In the standard Brownian case H =1 (hence v =1 and one can apply the formula
I'(3) = /7)., both (11.83) and (11.84) become

1

®.(¢) = Nl

This result is due to Cameron and Martin, who published it in 1944 [9].
Our next goal is the computation of all the total energy cumulants, given by
(F.56). To this end, consider the series

(11.85)

= 1
Z(’y )2k£S2k‘V_l EO'I(/kJI (k:1727) (1186)
n=1 n

where the notation Sy, is used on [5, p. 61], while the notation o
p. 502]. Then

(k)

.1 1s used on [6,

= - J,(x)
Sop g x k=) 11.87
; 2k, v—1 2JV_1(X) ( )

is the power series in x, with coefficients Sy, whose proof is given on [5, p. 61].
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From the formula that yields any coefficient of a power series, it follows that the
coefficients S, ,_; of the power series in x on the left side of (11.87) are given by

. ()
_ . v 11.
Sok -1 2k 1) ot L{xzkl (2‘]”71 (x)> (11.88)

and the sum of the series (11.86) is obtained. Finally, by virtue of (F.56) and (11.88)
we conclude that all the cumulants of the total energy are

PR U I [dz”l ( J,(x) )

" H DT - e | ax T\2T, ()
21171 T2n ;
2
where the quantities 0'1(/]_)1, a(yz_)l, a(f_)l, afﬁl, 051521, and aff_)] appear on [6, p. 502]—v is

to be replaced by H via (11.58).
Having found all the cumulants, we can now derive the expressions of the most
interesting statistical parameters of the total energy e.

(1) Mean value of the total energy:

T2
(2) Variance of the total energy:
T4
Ky=o0l= : 11.91
2T % TOHPQH + 1)(4H + 1) (11.91)
(3) Third total energy cumulant:
76
K; = . 11.92
T H32H + 1)(3H + 1)(4H + 1) (11.92)
(4) Fourth total energy cumulant:
11H +3)T°
Ky =— SUH )T . (11.93)
H*(2H +1)(3H + 1)(4H + 1)*(8H + 3)
(5) Skewness of the total energy distribution:
3
Ky 22y2H + 1v4H + 1 (11.94)
3 3H +1 ' '
(Kq)2 *
(6) Kurtosis (or excess) of the total energy distribution:
K,  12QH+1)(11H +3) (1195)

(Ky))2 (3H+1)(8H +3)
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Since H > % we infer from (11.94) that the skewness ranges from %\/g =2.7712813
(for H =1) to § = 2.6666667 for H — occ. In addition, from (11.95) we find that the
kurtosis ranges from % = 11.657143 for H = % to 11 for H — oo. Therefore, we may
conclude that the total energy peak is narrow for any H > %

The ordinary Brownian motion case of all the previous results is noteworthy,
and, relativistically speaking, corresponds to the uniform motion of the moving
reference frame with zero velocity (i.e., no motion at all). In fact, by substituting
H =1 v=1and both (11.28) and (11.34) into (11.89), we find all the Brownian

motion total energy cumulants

1 d*"tan x
n—2p2n :
Ky =221 (0= Dl gy lim [ e } (11.96)

Evidently, the last two terms are the (2n — 1)th coefficient in the MacLaurin expan-
sion of tan x, that reads [5, p. 51]

> 1 n n n n—
tan x = Z(zn)!22 Q% = 1)(=1)""' By, x™!, (11.97)

n=1

where the B,, are the Bernoulli numbers, a table of which is found, for instance, on
[7, p. 810]. Thus, by inserting the coefficients of (11.97) into (11.96), we get all the
cumulants of the total energy of standard Brownian motion:

n n—1) n— n n
K, =T> ﬁf 227 — 1) (=1)"""'By,. (11.98)

In particular, we have:

(1) mean value of the total energy

T2
K :E{E}:T; (11.99)
(2) variance of the total energy
KQ:ang;; (11.100)
(3) skewness of the total energy distribution
skewness:gx/g:2,7712812921102; (11.101)

(4) kurtosis (or excess) of the total energy distribution

408
kurtosis = % = 11.657. (11.102)
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11.6 INDEPENDENCE DAY MOVIE: EXPLOITING THE KLT TO
DETECT AN ALIEN SPACESHIP APPROACHING THE EARTH IN
DECELERATED MOTION

Everybody remembers the 1996 movie Independence Day (see http:|/en.wikipedia.org/
wiki/Independence_Day_% 28film%29): huge alien spaceships first appear close to
Moon and move slowly to prepare for the final attack! It is to be believed, however,
that if they move slowly when they are at the Moon distance, they must have moved
much, much faster when they were in the open interstellar space in order to cover the
vast interstellar distances (please note that here we stick to special relativity only, and
do not wish to consider “‘exotic”” mathematical tricks like wormholes, stemming out
of general relativity).

In other words, the alien spaceships must have decelerated in some way from
(say) the speed of light ¢ to zero speed with respect to the Earth. Well, in this section
we are going to study the decelerated signals emitted by the aliens while they approach
the Earth, and work out some equations about the energy of such signals that might
help us to dectect an alien invasion much in advance thanks to the KLT developed in
this chapter (in the movie Independence Day, on the contrary, aliens are already at the
Moon distance when humans detect them!).

To adjust our theory to the problem, first consider a trivial Newtonian problem:
How long would it take to decelerate from speed ¢ to 0 at the uniform deceleration of
just 1g =9.8 m/s’z? The trivial calculation yieds about 1 year (in Earth time) and the
distance at which the deceleration must start is 30,000 AU, or about half a light year
(Oort cloud distance) . Should aliens and/or their gadgets withstand decelerations of
2g, the overall deceleration time would take about half a year, and it should start at
the closer distance of 7,600 AU =0.121t-yr from Earth.

Let us now go back to the relativistic decelerated speed v(¢) given by (11.50) and
consider the radial distance r(f) covered by the spacecraft during the deceleration
phase:

dr(t) -T2
that is
Ty Ty Z2H*1 2

Unfortunately, this integral cannot be computed in a closed form, and we are thus
prevented from fully extending our investigation to any value of H larger than 3. We
shall thus confine ourselves to the two values H = % and H = 1, for which one finds

Tl[ T[I t
R;(T):J r(t) dt:J ¢ lf?dz:%cT;:O.%cT; (11.105)
4 0 0 4 4
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and
Ty

Ty 2
r(t)dt:J ¢ 1—(1) di =TT, = 0.78¢T,, (11.106)
0

RI(T):J T 1

0
respectively.

Next we are going to focus only on (11.105) because this is the case where the
deceleration of the alien spacecraft is “smoothest™ (i.e., less sudden).

The total mean energy emitted by the alien spacecraft in the form of electro-
magnetic waves (= signals + noise) during the time T; is given by (11.90) with H = %;

that is
2

Ts 4
K =FE{el=—* = " T2=-0266T>. 11.107
S = sgea sy T : ( )

The variance of the total energy is given by (11.91) again with H :%

4
Ky =0l = a — & 74— .0887%. (11.108)
T 2H2QH + 1)(4H +1) 454 3

Thus, the total mean energy of the electromagnetic waves emitted by the approaching
alien spacecraft lies within the range
4 _, 2
E +o.=—T; +——=
{8} Oe 15 3 3\/5
This is the “energy bandwidth” upon which any detector of electromagnetic radiation
emitted by the alien spacecraft must be built.
The topics discussed in this section were first presented by the author in October
1994 at the International Astronautical Congress, held in Jerusalem [10].

Tf = (0.266 + O.298)T%2. (11.109)
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KLT of radio signals from relativistic
spaceships in hyperbolic motion

12.1 INTRODUCTION

A spaceship, traveling at a constant acceleration g in its own reference frame,
exemplifies the relativistic interstellar flight. If a Gaussian noise (Brownian motion)
is emitted in units of the spaceship’s proper time, it undergoes a time rescaling when
measured in units of the coordinate time. This noise is studied in this chapter in terms
of its KL expansion. All topics discussed in this chapter were first published by the
author between 1988 and 1990 [1, 2].

12.2 HYPERBOLIC MOTION

A classical topic in special relativity is the so-called hyperbolic motion, first considered
by Minkowski in 1908 [3], and discussed in most textbooks (see [4, p. 41].! Spaceflight
did not exist in the time of Minkowski, so he believed that his formulas about the
hyperbolic motion could only be applied to the physics of elementary particles then
known to exist, such as electrons. Here, however, we shall give the topic of hyperbolic
motion a space-travel cut, in view of the applications to telecommunications that will
be made in the rest of this book.

Imagine a spacecraft traveling faster and faster with respect to its own reference
frame, so that the crew experience a constant acceleration that, for their maximum
comfort, we assume numerically equal to g = 9.8 m/s”. The longitudinal force (see

[5, p. 205]) is \
2 _ 2
fi- [1 ~ vc(zz)} 2 du(1) (12.1)

dt

' The adjective “hyperbolic” refers to the fact that the x(f) curve in the (x,) plane is a
hyperbola—given by Equation (13.24)—and that hyperbolic functions are used in the analysis.
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and so we must find the unknown v(#) in the differential equation

{l - vz(l)}_gm do(?) = myg. (12.2)

c? dt

Separating the variables, and setting v(7) = ¢ sin Q(7), one easily finds

_ g
Q(t) = arctan (c l), (12.3)
whence
v(t) = ¢sin [arctan (% t)] (12.4)
but
2
X
i t =\/— 12.5
sin[arctan x| T2 (12.5)
so that the velocity v(¢) in (11.16) is given by
0 :%. (12.6)
1+ (%)

Note that as t — oo, (12.6) gives v(¢) — ¢, as one would expect. The function f/(¢) for
the hyperbolic motion is then found from (11.16) and (12.6)

1

[y =— . (12.7)

)

Unfortunately, it is quite difficult to handle this function. For instance, its integral
d
Jixl (12.8)
[1+ X7

can be shown to be expressed by hypergeometric functions inasmuch as it is a
binomial integral, but not of an elementary type. Thus, we will not attempt to study
(12.7) directly, but shall consider its asymptotic expansion in Section 12.4.

A few more results, however, can still be derived from (12.7). In fact, one has (see

[6. p. 86))
= | 2y ds = [ =5 — € aresinn (%
T J \) \) L) 1 N (%S)Z P arcsin (C )

el ] -
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Thus, the time-rescaled Brownian motion corresponding to the hyperbolic motion of
special relativity is

X(1) = B(r) = B<§ arcsinh (g t))

¢
=B Eln
g

%z+ 1+ (f’ﬂ)' (12.10)

We shall simply refer to it as the hyperbolic motion.

12.3 TOTAL ENERGY OF SIGNALS FROM RELATIVISTIC
SPACESHIPS IN HYPERBOLIC MOTION

In this section we shall show that it is possible (by virtue of the formulas derived in
Appendix F) to compute both the mean total energy and total energy variance of the
signals emitted by relativistic spaceships in hyperbolic motion.

Let us start with the mean total energy (F.60). This, by substituting (12.9), takes
the form of the definite integral

E{e} = LT dt J[ﬁ(s) ds = ;LT arcsinh (% z) dt

0
aT

2 ¢
:%[xarcsinh(x)—\/l +x2]o (12.11)
g

where we make use of the substitution (g¢)/c = x and of [6, p. 88, entry 4.6.43]. Thus,
the mean total energy of the hyperbolic motion is

.2 2
E{e} = < ﬂarcsinh 9Ty _ 1+ 9T +1
2| ¢ ¢ ¢

9

. (12.12)

It is also possible to derive a closed-form expression for the total energy variance
starting from (F.62) and (12.9), but the calculations are more involved. To this end,
let us first note that

Jarcsinhz(s) ds = s arcsinh?(s) — 21/ 1 + s> arcsinh(s) + 25 + C (12.13)
This result can be used to prove the more complicated expression

Jx arcsinh?(x) dx =1 x? arcsinh?(x) — xv/1 + x2 arcsinh(x)

2

+%+J\/l + x? arcsinh(x) dx + C. (12.14)
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This leads us to compute a further integral
J V1 4 x? arcsinh(x) dx = }[(2v/1 + x? arcsinh(x) — x)x + arcsinh*(x)] + C.

(12.15)

These preliminary results enable us to tackle o, defined in (F.62) using (12.9)

ol = 4J0T di L; du “O 1(s) ds}2 = 4<;>2 JT dt J[ du arcsinh® (%u) (12.16)

o Jo
Now (12.13) and the substitution ((g/c)u = s) change this into

N3 (T (
o= 4<§) J dr [s arcsinh?(s) — 2v/1 + s2 arcsinh(s) + 2s] g?/f)
0

=4 (;)3 Uor(i t) arcsinh? (% l) dr—2 JOT 1+ (% z)zarcsinh (% l) dr+2 J()ngdz} .

The further substitution (g/c)¢ = x and (12.14) yield
o2~ a(5) 5 (CrYamssm (0) - (4) s (L amsn(01) 43 (01

(¢1)
- J V1 4 x? arcsinh(x) dx}

0
hence the integral (12.15) finally yields

ot = (E) [p(er) aresinn(£7) —a(1) 1+ (1) arsinn (4 7)
+o(2r) —2(27) 1+ (L7 arcsion (U7) + (4 — aresinh (£ 7).

Rearranging, the total energy variance for the hyperbolic motion is obtained

_ <;>4{ {2 (g T)Z - 1} arcsinh? (% T)

_6(€T) 1—|—(%T)zarcsinh(%T)+7(gT)2}. (12.17)

GRS

g

c

12.4 KLT FOR SIGNALS EMITTED IN ASYMPTOTIC
HYPERBOLIC MOTION

The obvious asymptotic formula

lim v'1+ x2 = limx

X—00 X—00
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and its consequence
lim In[x + /1 + x?] = lim In[2x] (12.18)

X—00 X—00

form the starting point to investigate the asymptotic hyperbolic motion. In fact, from
(12.10), we see that, when ¢ — oo, X (f) approaches

B(gln(Z%t)). (12.19)

This we shall call the asymptotic hyperbolic motion and shall study it thoroughly.
By comparing (12.19) against (F.40), we immediately find

t

2 ¢ g
ds=—-In(2%1). 12.20
[ 726 a5 =Smn(22) (12.20)

Then, differentiating and taking the square root, we are led to
c 1
f) = (12.21)
NG

This is the f(¢) function for the hyperbolic motion.
Integrating (12.21), one then gets

J; f(s)ds = z\/g\/i. (12.22)

By virtue of (12.21) and (12.22) the x(¢) function defined by (11.10) reads

=\ [f(0) | fs) ds = \/i (12.23)

a constant. This circumstance is vital in order to develop the asymptotic hyperbolic
case, inasmuch as it simplifies things greatly. In fact, from

X'(t) =0 (12.24)
and from (11.9), it can be seen at once that v(¢) vanishes identically
v(t) =0 (12.25)

(i.e., the order of the Bessel functions is zero). Thus, the KL expansion is given by
functions of the form

7 %JJ%]{(:))dS s (77@) (1226)
f(s)ds
0

Our next task is to find the meaning of the constants -, formally given as the real
positive zeros of (11.11). Letting x'(¢) = 0 and /() = 0, and getting rid of all multi-
plicative factors, one easily sees that (11.11) simplifies to

Jo(m) = 0. (12.27)
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Thus, the ~, are the positive zeros, arranged in ascending order of magnitude, of the
derivative of Jy(x). In other words, they are the abscissas of the maxima and minima
of Jy(x), which are known to follow each other alternately. However, a different
interpretation of the ~, follows from the Bessel function property (see [7, p. 12,
entry (55) (set v = 0)]

J(6) = 20, (6) = i (). (12.28)

v
X
In fact, (12.27) now becomes equivalent to

J1(7) =0 (12.29)

and one may also say that the ~, are the real positive zeros of J;(x). The first 40
among them are listed in [8, p. 748], and one finds, for instance,

v, = 3.8317060 7, = 7.0155867 4 = 126.4461387. (12.30)

No explicit formula yielding these zeros exactly is known. However, it is possible to
get an approximated expression by setting v = 1 into the asymptotic formula for
J,(x) (see [9, p. 134])

. . 2 vr
/\]Lngofy(x) _}Lnolo HCOS(X_T_Z) (12.31)
from which
cos (’y” - 31) ~ (12.32)
4
or
3 =T =12, (12.33)
W g REmm—o (=12, .
Thus,
™
Vu ;::mr—l—z. (12.34)
We may see how good this approximation is by setting n =1,2,...,40
1 =~ 3.9269908 v, =~ 7.0685835 4 ~ 126.4491 (12.35)

and checking these results against (12.30). Of course, the agreement improves with
increasing n. As for the eigenvalues )\, they are related to the v, by (11.13)

A, =X 1 (12.36)

g (m)?

and are also variances of the independent Gaussian random variables Z,,.
Finally, we turn to the normalization constants N, that are obtained from (11.12)
after inserting (12.22) and (12.25). The resulting condition for N,, is

4eT (!
1= N,Q,LTL x[Jo(7.)]? dx. (12.37)
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This integral of (12.37) is calculated within the framework of the Dini expansion in
series of Bessel functions (see [7, p. 71]), and one finds

| = N2 4‘gT {2 {Joz(%) + (1 - %)Jﬁ(vn)} }

= 22T 20 + B3 = M2 2L 73 ) (12.38)

where (12.27) was used in the last step. Solving with respect to N, requires the
introduction of the modulus of Jy(v,), and one has

___ V9 12.39
RNy TAeT (1239)

This is the exact expression of the normalization constants.
For an approximated expression for N,, we substitute the Bessel function in its

asymptotic form (12.31) with ~, given in (12.34):
|cos nm)| = \/7 (12.40)
Tn

[ 2
—— €08 7,,
TYn

Then, from (12.39) and (12.40) we get the approximated N,:

~T |19 1
Ny &3 cT‘/"J“" (12.41)

All the results obtained in this section may now be summarized by writing the
exact KL expansion

B<§1n<2%z)> Z f f\/_|]0(7’1)|J <7\/—‘(;.> (12.42)

and the approximated expansion—found by virtue of (12.31) and (12.41)
c g > Ve ol Vi
B(fln 2=t > =Y Z, T cos ('y,,— —7>. (12.43)
g ( C ) Z \/— \/_T4t4 \/T 4

The physical range of validity of (12.42) and (12.43) is provided by the relativistic
condition (11.7). Since, from (12.21)

o(m)| =~

S

¢ 1

f4(t) ; 2 (12.44)

(11.7) yields the velocity of the asymptotic hyperbolic motion

v(t) =yl ——- = (12.45)

<1 (12.46)

m‘m
(35}
-~

(i8]
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must hold, meaning

t> 2 =3.0612245- 107 s ~ 0.96996974 years ~ 1 year. (12.47)
Thus, the asymptotic approximation to the hyperbolic motion holds only after about

1 year of travel. Since any trip to even the nearest stars will certainly last longer than
that, this approximation may be reagarded as physically acceptable.

12.5 CHECKING THE KLT OF ASYMPTOTIC HYPERBOLIC MOTION
BY MATLAB SIMULATIONS

Just look at Figure 12.1.

B{(r) and its RECONSTRUCTIONS by using 10 eigenfunctions out of 100.
T

10 T T T T 1T_—

—— Original Realization of B(t)

—=—=—"-Reconstruction by the EMPIRIC KLT
Reconstruction by the ANALYTIC KLT

Figure 12.1. The time-rescaled Brownian motion X (z) of (12.43) vs. time ¢ simulated as a
random walk over 100 time instants. This X (¢) represents the “noisy signal” received on Earth
(whence the use of the coordinate time ¢ = Earth time) from a relativistic spaceship moving
away from the Earth in an asymptotic hyperbolic motion, as in the science fiction novel Tau
Zero. Next to the “bumpy curve” of X (7), two more “smooth curves’ are shown that interpolate
at best the bumpy X (¢). These two curves are the KLT reconstruction of X (¢) by using the first
ten eigenfunctions only. It is important to note that the two smooth curves are different in this
case because the KLT expansion (12.43) is approximated. Actually, it is an approximated KLT
expansion because the asymptotic expansion of the Bessel functions (12.31) was used. So, the
two curves are different from each other, but both still interpolate X (¢) at best. Note that, were
we taking into account the full set of 100 KLT eigenfuctions—rather than just 10—then the
empirical reconstruction would overlap X(¢) exactly, but the analytic reconstruction would not
because of the use of the asymptotic expansion (12.31) of the Bessel functions.
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12.6 SIGNAL TOTAL ENERGY AS A STOCHASTIC PROCESS OF T
Formulas (F.60) and (12.20) enable us to obtain the total energy mean value
T 1 T 2
E{ey} = J dzJ £2(s) ds =5J ln(—gt) dr. (12.48)
0 0

9Jo ¢

The substitution x = (2g/c¢)t then results in

E{ey} = % <;)2 fe(inx — 1)]07 = % {m (? T> - 1} .

Thus, the asymptotic mean total energy reads

E{eqy} = r [m (279 T) - 1] , (12.49)

g

Note that the same asymptotic result is obtained from the exact expression (12.12)
upon substituting arcsinh by log, and disregarding all the +1 that disappear for
large T.

Next let us turn to the asymptotic total energy variance by resorting to

Jlnzxdx:xlnzx—lenx—i—Zx—&—C (12.50)
2 2 2
Jx1n2xdx:%ln2xf%lnx+%+C (12.51)
2 2
Jxlnxdx:%lnx—%JrC. (12.52)

In fact, inserting (12.20) into the expression for o2 in (F.62), one finds

o2, =4 LT di Lt) du U:ﬁ(s) ds]z

() [ w2 e

whence the substitution [(2g)/cJu = x and the integral in (12.50) yield

3
7. =2(;)
! g

T 5
J dt[x In?x —2xlnx+ Zx]g‘]t.
0
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The further substitution [(2¢g/¢)]t = x now leads to the couple of integrals (12.51)

and (12.52)
: <c)4
0—5/1.:\ =\
g

29 2

=l T T
f xlnzxdx—2f xlnxdx+2r X dx
0 0 0

ur
VX2, x? ) X2 Xt |
—<§> 711’1 x—ilnx—,\ 1HX+T+7+X )
. 41 2
= <§) Z[xz(Zlnzx—61nx—|—7)]6T

(2] ) o) ]

Thus, the asymptotic total energy variance reads

T\ 2 2
ol = <Lg > {2 1n2<—g T> —61n <7g T> - 7}. (12.54)
N c c

Note that just as (12.49) is the asymptotic version of (12.12), so (12.54) is the
asymptotic form of (12.17), and could have been found by substituting arcsinh by
log, and forgetting all the additive +1 that are dwarfed for large T.

The square root of (12.74) is the asymptotic total energy standard deviation

o. 1T e 290) —6m(2T) 47 (12.55)
Asy g c c

Setting
T
92— (12.56)
C

we see that the radicand of (12.55) is the quadratic in £ =In x
26— 6647 > 0. (12.57)

This is positive for any £ because A = —20 < 0.

Let us regard the noise asymptotic total energy as a stochastic process of 7.
The process behavior in time is characterized by its mean value curve (12.49) and by
the upper and lower (mean value + standard deviation) curves given by

E{EAsy} + Uglmn (1258)

The first column of Table 12.1 shows the numerical values of the independent
variable x defined by (12.56) ranging from 0 to 20. In units of time, T ranges from
0 to 20 years since

€~ 3.0612245 - 107 s ~ 0.96699947 years ~ 1 year. (12.59)
)
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Table 12.1. Noise asymptotic total energy

Signal total energy as a stochastic process of 7 213

gT
X ="
@

M = x(In(2x) — 1)

V = x*(21n*(2x) — 6 In(2x) + 7)

x M M-V M+\V
0 0 0 0
1 —0.30685 —2.25673 1.643024
2 0.772588 —2.40600 3.951178
3 2.375278 —2.52698 7.277545
4 4317766 —2.80572 11.44125
5 6.512925 —3.21883 16.24468
6 8.909439 —3.73346 21.55234
7 11.47340 —4.32692 27.27327
8 14.18070 —4.98419 33.34561
9 17.01334 —5.69497 39.72166
10 19.95732 —6.45182 46.36646
11 23.00146 —7.24919 53.25213
12 26.13664 —8.08277 60.35607
13 29.35525 —8.94912 67.65963
14 32.65086 —9.84541 75.14714
15 36.01796 —18.7693 82.80522
16 39.45177 —11.7188 90.62235
17 42.94812 —12.6922 98.58846
18 46.50334 —13.6880 106.6947
19 50.11413 —14.7049 114.9332
20 53.77758 —15.7418 123.2970
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The second column gives the numerical values of the asymptotic mean value (12.49)
of the noise total energy apart from a factor (¢/g)>. The third and fourth columns,
respectively, show the values of the lower (minus sign) and upper (plus sign) curves
(12.58), again apart from a factor (c/g)2.

One may check the above asymptotic total energy results against the correspond-
ing exact results derived at the end of Section 12.3. Table 12.2 shows the same items as
Table 12.1, but is calculated by using the exact total energy variance (12.17). We see
that the agreement is not as good for very small values of 7', while it increases for
increasing 7', and the dispersion of the total energy around its mean value increases
roughly by the same amount as the total energy itself.

The conclusion to this section is that the KL eigenfunction expansion has been
derived for the noise emitted by a spaceship traveling at a constantly accelerated
relativistic motion. Though the mathematical difficulties forced us to confine our-
selves to the asymptotic theory for values of time larger than 1 year, the study of the
noise total energy (where both asymptotic and exact results can be obtained) shows
that the errors of the asymptotic version are not very large.

12.7 INSTANTANEOUS NOISE ENERGY FOR ASYMPTOTIC
HYPERBOLIC MOTION: PREPARATORY CALCULATIONS

In Appendix I, as well as in [2], the process Y (7) defined by
Y(1) = X*(1) — E{X*(1)} (12.59)

was considered. According to (I.35), the KL eigenfunction expansion of that process
reads

S th(s)dx
Y(1)=>_Z,N, f(t)Jf(s)dng(,) A —— |, (12.60)

where the function f(¢) is defined in terms of f(¢) by (1.24). That is,

,/ f2 (12.61)

This section is devoted to finding the KL expansion of the zero-mean square process
Y (1), in the asymptotic hyperbolic case, and its physical meaning for relativistic
interstellar flight will be examined in the coming section. In this section we just
pave the mathematical way to the coming section by performing the necessary
calculations.
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Table 12.2. Noise exact total energy

X =—
@

M:xln(x+\/1+x2)—\/l+x2+1

V= (2x* = DIn’(x + V1 + x2) — 6xV1 + x2In(x + V1 + x2) + 7x7

0 0 0 0
1 0.467160 —0.07884 1.013160
2 1.651202 —0.31139 3.613797
3 3.293061 —0.67013 7.256257
4 5.255744 —1.12713 11.63862
5 7.463172 —1.66295 16.58929
6 9.867916 —2.26419 22.00002
7 12.43777 —2.92124 27.79679
8 15.14952 —3.62692 33.92596
9 17.98561 —4.37568 40.34690
10 20.93235 —5.16310 47.02780
11 23.97876 —5.98558 53.94311
12 27.11583 —6.84016 61.07182
13 30.33603 —7.72432 68.39640
14 33.633301 —8.63592 75.90195
15 37.00130 —9.57310 83.57571
16 40.43615 —18.5342 91.40657
17 43.93342 —11.5179 99.38482
18 47.48945 —12.5229 107.5018
19 51.10098 —13.5481 115.7500
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According to (12.61), we must first obtain the functionf(t), which follows at once
from (12.20) and (12.21)

(12.62)

We now proceed to construct the complicated expression (4.26), or, alternatively,
(3.50) with f(¢) substituted by f(¢), to find the time-dependent order (7). But a glance
at (1.26) and (12.62) shows that considerable analytical difficulties are involved. For
instance, evaluation of the integral appearing in (G.50) with f(¢) substituted by f(¢),
namely

‘[t‘f(s) ds = J[ 2 wds (12.63)

0 09 s

does not seem to be feasible in terms of elementary transcendental functions.

Nevertheless, these difficulties may be overcome by keeping in mind that we are
seeking the asymptotic version of (12.62) for large values of time. Therefore, one is led
to consider the limit

lim f(7) = lim%Jm(zi{t)_%J lim@:

t—00 1—00 ¢ t g 1—00 t

(12.64)

218

where the indefinite form forces us to resort to L’Hospital’s rule, and yields

Concluding the calculation at the last limit, and checking this against the initial limit,
we thus obtain the following “ultimate” asymptotic version of (12.62), which from
now on we shall regard as the asyptotic replacement to (12.62) for large values of
time ¢
~ 2c 1
f(t)=——.
® G

This formula is simple enough for us to perform the remaining calculations involved
with the KL expansion (12.60).

Beginning with the computation of the Bessel function order (G.50) with f()
substituted by f(¢), (12.65) yields at once

(12.65)

Inf(r) = ln(%) ~1n¢ (12.66)
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whence
dInf(r) 11
N 12.67
dt 2t ( )
d*Inf (1) 11
and
f 2c ("1 4
Jf(s) ds=—CJ —ds=—cx/;. (12.69)
0 g Jovs 9
Therefore, (G.50), with f(¢) substituted by f'(t), yields
4c 2
o e ey o
POE aT 2e T e\T2r) T2\2
gVt

1 31 11 1 1(3 1
S LN 7 S L SR QR AL A G TP
\/4” 1 {16;2 4:2} \/4+ ! 12{16 4} (12.70)

The time variable is thus seen to disappear from the last formula, leaving
1 3-4 1 -1

That is, the order of the Bessel function vanishes identically
(1) =0 (12.71)

and this circumstance helps to simplify further calculations considerably. Intuitively
speaking, (12.71) is quite a reasonable result. In fact, on the one hand, the corre-
sponding Bessel function order in the KL expansion of the X () process vanished too

V(1) =0, (12.72)

which is Equation (12.25), or eq. (68) in [1]. On the other hand, (12.71) truly mirrors
the asymptotic character of the KL expansion under consideration, since the Bessel
function of order zero is the only Bessel function of the first kind to have its initial
value equal to one rather than zero, pointing out the non-validity of this theory for
values of time near to the origin.

Let us now proceed to finding the function x(¢) defined by (1.25). By virtue of
(12.65) and (12.69), it follows that

. 2¢ 1 4c¢ c
x(1) = 1/?$-?ﬂ:2f§. (12.73)
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Once again, the time variable cancels out from the last formula, yielding a constant
rather than a time function. An immediate consequence of (12.73) is, of course,

F()=0 (12.74)

which helps to simplify further calculations also.
Reverting now to the KL expansion of (12.60), we see that the Bessel function
must have the form

’y}’lﬁ ‘

Jo| w7 =/

J f(s) ds

0

| 7 as : < \/E> (12.75)

Our next task is to find the meaning of the constants 7,, given by (1.27).

As ¥'(1) =0 and /(1) = 0, and getting rid of all multiplicative factors, one easily
sees that (1.27) yields

Jo(Fn) = 0. (12.76)

Thus, the 4, are the positive zeros, arranged in ascending order of magnitude, of
the derivative of Jy(x). In other words, they are the abscissas of the maxima and
minima of Jy(x), that are known to follow each other alternately. However, a
different interpretation of the 4, follows from (see [7, p. 12, entry 55 (v = 0 must
be set)]

JU) = () = Ty (0): (12.77)
Using (12.77), (12.76) now becomes equivalent to
Ji(G) =0 (12.78)

and one may also say that the 4, are the real positive zeros of J; (x) The first 40 among
them are listed in [8, p. 748], and one finds, for instance:

5, = 3.8317060 4, = 7.0155867 A4 = 126.4461387. (12.79)

No explicit formula yielding these zeros exactly is known. However, it is possible to
get an approximated expression for them on setting v =1 into the asymptotic
formula for J,(x) (see [9, p. 134])

i) = i Zceon (=5 =5) (280
getting
cos(ﬁn—%r) ~ (12.81)
whence
%_%“zmr—g (n=12,.) (12.82)
and finally

Vo R AT+ —. (12.83)

NS
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We can see how good this approximation is by setting n = 1,2, ...,40,
Y1 & 3.9269908 4, ~ 7.0685835 4 =~ 126.4491 (12.84)

and checking these results against (12.79): the agreement improves with increasing n.
As for the eigenvalues )\, they are related to the 4, by (I1.29), and, by virtue of
(12.69), take the form

. 16T 1

(12.85)

Finally, we turn to the normalization constants N, that can be discovered from
(1.28) by inserting (12.69) and (12.71). Therefore

2 1
16;2 T JO oG dx. (12.86)

1=N2

This integral is evaluated within the framework of the Dini expansion in the series of
Bessel functions [5, p. 71], and one finds

-, 16¢°T (1 3 0 -
1 :N% 2 {5 |:J62(7n)+ (1 _72>J3(%1):|}
) Vn

N2 80
g

N28C T

6 () + T5(3)]) = Jo(Fn) (12.87)

where (12.76) was used in the last step. Solving for N, requires the introduction of the
modulus of Jy(7,), and one has

B g
N S BTG (1289

This is the exact expression of the normalization constants. We can, however,
derive an approximated expression for them on substituting the Bessel function by

virtue of (12.80) and (12.83)
2 2
— |cos(nm)| = —. 12.89
= leos(m) = [ = (1289)

Thus, from (12.88), by virtue of (12.89) and (12.83), we get the approximated N, :

1o ()| =

~ g 1
N, ~ 12.90
4 T (12.90)

which completes our set of preliminary calculations.
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12.8 KL EXPANSION FOR THE INSTANTANEOUS ENERGY OF THE
NOISE EMITTED BY A RELATIVISTIC SPACESHIP

When dealing with a noise represented by a stochastic process X (¢), an important
distinction is between its instantaneous energy, given by the square process

X2(1) (12.91)

and the total energy, given by the stochastic integral of the instantanous energy
(12.91) over the finite time span, 0 < ¢ < T during which the noise is observed:

T
I= J X2(s) ds. (12.92)
0
This section is devoted to finding the KL expansion of the process (12.91), whereas
both mean value and variance of the random variable (12.92) have already been
obtained in Section 12.3, as well as in section 5 of [1]. A related paper, [10], may also
be consulted.
Let us then consider the mean value of (12.91), given by (F.59); that is,

E{X*(1)} = J; 72(s) ds, (12.93)

where E denotes mean value operator, or ensemble average. By virtue of (12.20),
(12.93) is changed into

E{X(1)} :Sln(zgt). (12.94)

Thus, the zero-mean square process Y (), defined by (12.59), takes the form

— x2 “in(29
Y(r)=X*(1) gl (26t) (12.95)
whence
2 = Sin(2?
X (t)_gl (201) Y (). (12.96)

Let us now consider the KL expansion of the Y (¢) process. By sustituting into
(12.60) the normalization constants (12.90), the x(¢) function (12.73), and the Bessel
function (12.75), we come up with

22 210 (ﬁn ﬁ)

Ry g
0= 2 23 it T

n=1

from which both ¢ and ¢ disappear, yielding

N~ 1 -Vt
Y(1) = gznm% <’Yn ﬁ) (12.97)
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Thus, by virtue of (12.96) and (12.97), we conclude that the exact KL expansion of
the instantaneous energy X () reads

X2(1) = fln( ) Z: |;07n)|2‘;§CJ (7\/‘[7) (12.98)

From this exact expansion we may also derive an approximated one by resorting
to the usual asymptotic formula (12.80) for both the Bessel functions appearing in
(12.98). The result is

.- 12

X2(1) ~ fln(Z z) Zy—1 2V2e s(&nﬁfz)
~"Tin g VT 4

which, after substituting the 4, by the approximated version (12.83), takes the final

form

¢ g 1 2v2¢ ™ Vi oW

X~ Sm(2%0) (m+5)=-7

(1) gn . g cos n7r—|—4\/_T. y)

This is the approximated (i.e., asymptotic) KL expansion of the noise instantaneous

energy for large values of time. The computational advantage of (12.100) over (12.98)
is that the Bessel functions have been substituted by a cosine.

(12.99)

). (12.100)

12.9 CONCLUSION

A surprising property of both the instantaneous energy KL expansions (12.98) and
(12.100) is revealed by checking them, respectively, against the corresponding KL
expansions (12.42) and (12.43) of the noise process X (). In fact, on the one hand, one
should note that the 7, (12.78) of the Y () process are just the same as the 7, of the
X (t) process, given by (12.29), inasmuch as both are the real positive zeros of J;(¢).
Moreover, a glance shows that (12.98) has just the same eigenfunctions as (12.42),
and (12.100) as (12.43). Therefore, we reach the unexpected conclusion that, when
dealing with the noise emitted by a relativistic spaceship in asymptotic hyperbolic
motion, the best orthonormal basis in the Hilbert space (i.e., the basis spanned by the
eigenfunctions) is the same for both the noise and its own zero-mean instantaneous
energy. Alternatively, if we prefer to give up the zero-mean restriction, we may say
that the noise and its own instantaneous energy share parallel optimal reference
frames, or bases, in the Hilbert space. This unusual feature should bear consequences
in the design of a correct signal analysis procedure to filter out the noise received on
Earth from a relativistically moving spaceship in asymptotic hyperbolic motion.
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KLT of radio signals from relativistic
spaceships in arbitrary motion

13.1 INTRODUCTION

In three papers [1-3] the present author applied the concept of time-rescaled
Brownian motion to aspects of relativistic interstellar flight ranging from commun-
ication theory to genetics. The content of the present chapter was fully published in
paper form in [11]. In particular, the Gaussian noise (Brownian motion) X (¢), emitted
by a relativistic spaceship traveling at a constant acceleration g in its own reference
frame, was shown to be—see Equation (12.10) or [1, eq. (53)]

= ucsn (%)) = (Sl 2\ (0] ). oa

where ¢ is the speed of light, B(¢) denotes standard Brownian motion with mean zero,
variance ¢, and initial condition B(0) = 0, and time ranges within the finite interval
0<r<T.

An approximated (i.e., asymptotic) version of (13.1) for large values of time
follows by ignoring the additive 4+1 under the root sign that is dwarfed by the other

terms, and reads
¢ g
B(gln(Zzt)). (13.2)

For this stochastic process, it was proved in Equation (10.42) that the KL eigen-
function expansion is given by

5(5n(22)) =20 (133)
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where
(1) The constants v, (n =1,2,...), appearing in the argument of the Bessel function

of order 0, Jy(...), are the (infinite) real positive zeros of the Bessel function of
order 1; that is

Ji(v,) =0. (13.4)
(2) The eigenvalues ), are expressed in terms of the constants ~, by the formula
4T 1
" W

(3) The Z, are a set of orthogonal Gaussian random variables with mean zero and
variance \,; that is

E{Zmzn} = )‘n(smn' (135)

By resorting to the asymptotic expansion of the Bessel function of the first kind
for large values of its argument—see Chapter 12, Equation (12.80)—it is also possible
to derive an approximated KL eigenfunction expansion reading

c g ) 1 NI
B fln(th)) = Zn—cos( n——f) 13.6
<g o)) = L A g (13.6)
Here again, the meaning of the quantities appearing in (13.6) is the same as for
those appearing in (13.3), with the only exception that the -, are now replaced by the
approximated formula
v,lzmr—l—%. (13.7)
All the above results apply if, and only if, the spaceship acceleration in its own
reference frame (proper acceleration) equals a constant, here denoted by g. Indeed,
customary terminology such as “relativistic rocket”, “relativistic interstellar flight”,
and the like, is almost always understood in this restricted constant g sense. However,
for the sake of completeness it is desirable to extend the above results of Equations
(13.1)—~(13.7) to the general case where the constant ¢ is replaced by an arbitrary time
function

gA(1). (13.8)

Here the time function A4(¢) has the dimensions of a purely numerical factor, and
represents the non-constant spaceship acceleration measured in units of g with
respect to the spaceship reference frame. Clearly, the constant g case can now be
regarded as the particular case for which the A(¢) function is given by

A(r) = 1. (13.9)

The present chapter is devoted to generalization of the mentioned results
(13.1)-(13.7) to the non-constant g case, and to exploring how many of these
equations can be cast in a closed analytical form without resorting to numerical
techniques for solving them.
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13.2 ARBITRARY SPACESHIP ACCELERATION

13.2.1 Relativistic interstellar flight with an arbitrary spaceship acceleration profile

Analogous to the constant g case in (10.2), the differential equation of motion for a
relativistic spaceship moving with arbitrary acceleration with respect to its own
reference frame reads

2,073
v (1) |2 do(r)
1— = gA 13.1
{ } 22— ga () (13.10)
with the initial condition
v(0) = 0. (13.11)

The left-hand side of (13.10) is the so-called ‘“‘longitudinal force” of special
relativity seen before as (12.1), and the right-hand side is just (13.8). The variables
in (13.10) may be separated to achieve the analytical expression of the unknown
velocity v(z) by setting

v(t) = ¢sin Q(1). (13.12)
In fact, integrating both sides, one gets
¢ tan Q(1) :g‘[:)A(S) ds (13.13)
whence an inversion yields
Q) = arctan(%J;A(s) ds>. (13.14)

Replacing this into (13.12), we get for the velocity

t
v(t) = csin <arctan <%J A(s) ds)) (13.15)
0
But
x
sin(arctan(x)) = ——= 13.16
( (%)) i (13.16)
so that, in conclusion, the spaceship velocity is given by
t
gJ A(s) ds
o(t) = 0 : (13.17)

In the constant g case, this reduces to (12.6), namely

o(r) = —9

1+(gz)2'

(13.18)
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The distance x(¢) covered by the spaceship up to time ¢ and measured by Earth

standards is defined by
t
(13.19)

with the consequential initial condition
x(0) =0. (13.20)

To perform the integration (13.19) for the function (13.17) in a closed form, we note

that one has
!

g A(s) ds
"L A

cjt\/] * <%J;A(s) ds>2 - \/1 R (QJTA(S) ds)2 ¢

¢Jo

(13.21)

This enables us to rewrite (13.17) in the form

A 1d gl 2
u(t) = ?ma \/1 + (;LA(S) ds) (13.22)

whence integration (by parts on the right-hand side) yields the required distance:

9 a0 as) - s
E \/1+<CLA()d) 1+J;d131§)\/1+<9r,4(w)dw>2ds (13.23)

x(t) =—
g g A(1) A%(s) cJo
In the constant g case, this reduces to (see, for example, [5, p. 199, eq. (13)])
2 2
< 9.\ _
x() =y 1+ (c ) 1]. (13.24)

Finally, the proper time 7 (i.e., the time measured aboard the spaceship) is given

by
Z v*(s) (13.25)

7'(t):‘[0 1- o ds.

On replacing (13.17), some rearranging yields
(13.26)
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In the constant g case, both integrals in (13.26) can be performed analytically,
whence Equation (12.9) is found again

t d N N
(1) = J 7q2 = iarcsinh(gt) = gln

i)

13.2.2 KL expansion of the Gaussian noise emitted by a spaceship having an
arbitrary acceleration profile

i @) e

We now turn to the problem of finding the KL expansion for the Brownian motion
(Gaussian noise) emitted when the spaceship moves according to the arbitrary
acceleration law gA(7). From a purely mathematical point of view, the formulas
solving this problem were obtained by the author in [6]. However, that paper only
dealt with analytical developments and not with their application to special relativity,
not to mention starflight. It thus appears appropriate to recast the content of [6] here
so as to make it fit the new developments required by introduction of the generic
acceleration function A(r).

The important point expressed in Section F.§ is that the time-dilation effect of
special relativity induces a time-rescaling in the Brownian motion argument that may
be expressed by the formula

B(7) = B(J;fz(s) ds), (13.28)

where the function f(¢) is called the “time-rescaling” function (see [6, p. 213, eq. (1.1)].
From this and the definition (13.25) of proper time, one gets

t t 2
sz(.v) ds :J -2 (;) ds (13.29)
0 0 ¢
whence, differentiating and taking the square root, one finds
2,07
1) |4
f(0) = [1 L (2)} . (13.30)
¢

This is the relationship between the Brownian motion time-rescaling function, f(¢),
and the spaceship velocity, v(z). Inversion of (13.30) immediately leads to

o(1) = ey/1— f4(1). (13.31)

We next develop the relationship between the time-rescaling function, f(¢), and
the acceleration, gA(¢). Inserting (13.17) into (13.30), with a few reductions, yields

1

[l = ! = {1 + (QJIA(S) dsﬂ_z. (13.32)

e
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This formula will be extensively used in the rest of the present chapter in either of
the above forms. To invert it, one first solves for the integral

! c 1
JOA(S) ds:gﬂ‘m— 1 (13.33)

and then differentiates with respect to ¢, getting

5 a0
__=¢ dt
A(r) = gf3(z) ] ff“(t) . (13.34)

We are now ready to state the main theorem of the present section.

Theorem 1  The KL expansion for the Gaussian noise emitted by a spaceship moving at
an arbitrary proper acceleration gA(t) is given by

o=l taos)] e
J’ o ds
o e

JT " . (13.35)

{BaEED;

=

: Z ZnNnJl/(r) Tn
n=1

Here

(1) The Bessel function of the first kind appearing in (13.35) has the time-dependent
order

where the auxiliary function x(¢) has been defined

x(1) = [1 + <%J;A(S) dS>2F~ J; {1 . <grcj(w) dwﬂ : (13.37)
¢Jo

=
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(2) The real positive zeros, arranged in ascending order of magnitude, of the
equation

X/(T) 'JV(T)('YH) +x(7T):

t 2 *%

[l L 5

define the constants -,.
(3) The normalization condition fulfilled by the eigenfunctions reads

1

1=N3 UT {1 + <€ J A(w) dw>2rds]2 - E XJ () () dx (13.39)

0 ¢Jo

and defines the normalization constants N,,. In (13.39) the new transformed order
v((x)) is obtained from the order v(¢) of (13.36) via the transformation

Lr) [1 + <g JO A(w) dw)z]%ds =x LT {1 + (g JO A(w) dw)zrds. (13.40)

(4) The eigenvalues are given by

el

J; A(w) dw)z}%ds]z (’;7 . (13.41)

(5) Finally, the Gaussian random variables Z, are orthogonal with mean zero and
variance \,, as in (13.5).

The proof of Theorem 1 will not be repeated here, for it is just the same as the
proof we give in Appendix G (see [6, p. 214, theorem 1.1]):' one just needs replace f (7)
by the arbitrary function A4(¢) by virtue of their relationship given by (13.32).

13.2.3 Total noise energy

One of the main advantages of the KL expansion over other expansion types is that it
allows analytical computation of the stochastic integral

T
e= J X2(s) ds. (13.42)
0

Physically, this integral represents the total noise energy over the finite time span
0 <t < T during which the noise is observed on Earth. Mathematically, the expres-
sion in (13.42) is a random variable whose cumulants K,, for n=1,2,..., are

! First published in 1984.
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obtained in Appendix F, Equation (F.56)—see also [1, eqs. (21)-(30)]—and read,
when rewritten in terms of the A(¢) function

i (9] aow an) s Zi% (13.43)
Jo ¢ .[0 = ()

The mean value of the total noise energy may be directly expressed in terms of the
A(t) function by the procedure proven in [1, p. 1021]. The result is eq. (34) of [1],
which, translated and generalized by virtue of (13.32), now takes the form

K,=2""(n—1)!

E{e} = JT dt J[ ! ds. (13.44)

e \/ 1+ (%JO A(w) dw>2

In the constant g case, this reduces to Equation (12.12) (or [1, eq. (55)]), namely

.2 2
E{e} = 6—2 [gT arcsinh <£> — 41+ <£> +1
g*| ¢ c c

Total noise energy variance may also be expressed in a similar fashion, as
described in Appendix F, Equation (F.62) (or [1, egs. (56)—(60)]). When generalized
and recast in terms of A(#) by virtue of (13.32), this variance reads

T t U 1 2
a§=4J dtJ du J ds (13.46)

0 0 0 g S 2
1+ <7J A(w) dw)
¢Jo

and reduces to (12.17) (or [1, eq. (60)]) in the constant ¢ case; that is
4 2
2_ (¢ 9ry _ -
oL = <g> { {2(C T) 1} arcsinh (c T)
g P g\
—6(ET),/1 + (;T> arcsmh(E 7) +7(ET> } (13.47)

13.2.4 KL expansion of noise instantaneous energy

. (13.45)

The instantaneous energy of noise is the square process
B(1) = X*(1) (13.48)

and we are now going to determine its KL expansion in terms of the arbitrary
acceleration A(¢). In a strictly mathematical sense, the problem of finding the KL
expansion of (13.48) was solved by the author in [7], with no reference to special
relativity or starflight. The application of these results to the constant g case of
starflight was found in [2], which will now be generalized to encompass the general
A(t) acceleration case.
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Consider the process Y () defined by
Y(1) = X*(1) — E{X*(1)}. (13.49)

It is natural to call this the zero-mean square process of time-rescaled Brownian motion
X(t), for (13.49) is just the square of X (¢) centered around the latter’s mean value.
Define now the new function

) =200 fﬂ@w- (13.50)

0

Recast in terms of A(¢) by virtue of (13.32), this becomes

f(o= 2{1 + (gJ;A(s) ds>2] \/j; {1 + (%J;A(w) dw)zrds. (13.51)

Then, Equation (13.35) (or [7, eq. (3.24)]%) is the proof of the following:

-

Theorem 2 The KL expansion of the zero-mean instantaneous energy of the Gaussian
noise emitted by a spaceship moving at proper arbitrary acceleration A(t) is given by

~ it > Jrf(b) ds
X2(0) — ELX2(0)} = Y(1) = [ f(1) Jof(s) ds-3 " Z,NJy Jg . (13.52)
n=1 f(s)ds

Here

(1) The Bessel function of the first kind appearing in (13.52) has the time-dependent
order
o3 ol
o) = | - X0 4 \X(0) (13.53)
) de|f ()

where the auxiliary x(¢) function is given by

w0 =\ 7o) as (13.54)

Alternatively, it is possible to express the order by virtue of the single formula

ZOENFES Of'(t) - -3 (13.55)

proved by the author in the appendix to [8] and in (G.50).

. 2
MUCEE H

2 First published in 1988.
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(@)

(©)

4)

®)

The real positive zeros, arranged in ascending order of magnitude, of the
equation

(1) -5 Oy (V) -

I g5 + 00 5107y |~ 0 (13.56)
J f(s) ds

0

X'(T)- Jyry () + X(T) -

define the constants 7,.
The normalization condition fulfilled by the eigenfunctions reads

- T _ 2 ¢l
1=N2 UO 1(s) ds} JO xJ 3 () dx (13.57)

and defines the normalization constants N,. In (13.57) the new transformed
order o((x)) is obtained from the order o(r) of either (13.53) or (13.55) via the
transformation

0 T
[f(s) ds:xJ f(s) ds. (13.58)
Jo 0
The eigenvalues are given by
_ T p 2 1
= — . 13.

Finally, the gamma-type probability density

| /%
f7,(6) =——e VP . |24

1
2

b
Ulz+ ?" , (13.60)

N
—~
[\
>
N
=i
| >

where U(x) is the unit step function, is the probabilistic law according to which
the random variables Z, are distributed.

13.3 ASYMPTOTIC ARBITRARY SPACESHIP ACCELERATION

13.3.1 Asymptotic motion with arbitrary acceleration

The apparently complicated mathematical nature of most results derived so far, in
particular the two KL expansions of Theorems 1 and 2, may seem to give little hope
for their closed-form application to interesting cases of starflight. However, this is not
the case. In fact, if we confine ourselves to the asymptotic for t — oo motion at an
arbitrary acceleration, all the forgoing results get easier. They will be further sim-
plified in the power-like acceleration case that we are going to present in Section 13.4.

So,

let us now examine under what circumstances the asymptotic approximation is

physically acceptable.
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The primary idea behind performing the asymptotic approximation is to replace

the exact radical
g 2
1+ (,J A(s) ds> (13.61)
¢Jo

by what is left of it when the +1 term is dwarfed by the other term; that is

g 2 g 2 glf
14 <7J Als) ds> ~ <7J A(s) ds) _9 J A(s)ds|.  (13.62)
¢Jo ¢Jo ¢ lJo
In other words, we suppose that
g t 2
(ﬂ A(s) ds> > 1 (13.63)
0

whence we find the asymptotic condition

,[t A(s) ds

0

> ; ~ 3.061 - 107 seconds ~ 0.9699 years ~ | year. (13.64)

In the constant g case, (13.64) reduces to
t>S~1 year (13.65)
g

which is (12.47) (or [1, eq. (90)]) and tells us that the asymptotic approximation holds
only after about one year of travel. Since the left-hand side of (13.64) should not
numerically differ too much from that of (13.65) for whatever “‘reasonable” A(¢)
function we may adopt, and since any trip to even the nearest stars will certainly take
longer than one year, we regard the asymptoticity condition (13.64) as physically
acceptable.

In the remainder of this chapter we shall denote all asymptotic formulas derived
from the corresponding exact formulas by the “Asy” suffix.

The first formula that we must asymptotically simplify with the aid of (13.62) is
(13.28), for this is the argument for the time-rescaled Brownian motion B(7) and
leads to the asymptotic time-rescaling function “A4sy”. Thus, (13.28), (13.32), and
(13.62) yield

Bra) = 8| [ s | = 8([ S @) 3s0

A(w) dw
CJO (w) dw

whence we infer

(13.67)
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and, finally, taking the square root, the asymptotic time-rescaling function

Jay(t) = —F———= (13.68)

is obtained.
In the constant g case, this reduces to (12.21) (or [1, eq. (64)]), namely

. c 1
Jag () = a7 (13.69)
The spaceship asymptotic velocity is obtained from (13.68) and (13.31), and reads
1
UA‘J(Z) fAn( J=c¢ |l ———. (13.70)

(o]

In the constant g case, this reduces to (12.45) (or [1, eq. (88)]); that is

1
UAsy(t) =/l _7'[7~ (1371)

It should be noted that the reality of the radicand in (13.70) again yields the same
asymptoticity condition (13.64) as did (13.63).

13.3.2 Asymptotic KL expansion for noise

The asymptotic version of Theorem 1 is obtained on rewriting formulas
(13.35)-(13.41) by the aid of the asymptotic radical (13.62). One then gets

Theorem 3 The asymptotic KL expansion for the Gaussian noise emitted by a
spaceship moving at a proper acceleration gA(t) is given by

I

Xy (1) = By (7) = ﬂ

Zz,u‘Nn,,JJV N =7
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Here

(1) The Bessel function of the first kind appearing in (13.72) has the time-dependent

order
g t d t
i) =4 [0 0] 4 a1 [ 0] 4] a33)
& - 0 dl 0
where the auxiliary function x 4,(¢) has been defined
el E ! ds
Xasnt) = { J A(s) ds] . J L (13.74)
gLlJo 0 /|Js A(w) dw
(2) The real positive zeros, arranged in ascending order of magnitude, of the
equation
Xley(T) : JI/AYJ (Vnm‘) + XAst( )
t -1
|:J A(T) ds:| Tn oJ
Asy V(T) (7”/4\\- )
T O.S I J:/AU(T)('YHA”,) TV/A,;}(T) =0. (1375)
J [J A(w) dw} “ds A
o LlJo

define the constants Vit gy
(3) The normalization condition fulfilled by the eigenfunctions reads

TTr| s -1 1
1= N,%A N ¢ J { J A(w) dw } ds| - J XJIZM.,((,\—))(%A\.X) dx (13.76)
g {Jo LlJo o ’
and defines the normalization constants N, . In (13.76) the new trans-
formed order v4,,((x)) is obtained from the order V(1) of (13.73) via the
transformation
t S -1 T s -1
J { J A(w) dw ] ds =x [ { J A(w) dw ] ds. (13.77)
olLlJo Jo LlJo
(4) The eigenvalues are given by
A, =E JTHSA( ) d ]%d 1 (13.78)
ny == w) dw 5| ——. .
g i)o Lo (Vny)?

(5) Finally, the Gaussian random variables Z,, = are orthogonal with mean zero and

variance \,, .
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13.3.3 Asymptotic total noise energy

In the asymptotic version, characterized by (13.62), the asymptotic total noise energy
cumulants (13.43) take the form

sz oG] [

[ A0

0

-1 |2n > 1
ds| S . (13.79)
} } ,; C

The asymptotic total noise energy derived from (13.44) and (13.62) reads
c(T 1
E{esy} = EJ dtJ J\ds (13.80)

O 0N A(w) dw
0

Finally, asymptotic total noise energy variance follows from (13.46) and (13.62),

yielding
c 2 T t u 1 2
ol :4<f> J dzj du J —ds| . (13.81)
97 Jo - Jo 0 [ A(w) dw

Jo
13.3.4 Asymptotic KL expansion for noise instantaneous energy

Using (13.62) once again, the content of Theorem 2 is turned into the asymptotic KL
expansion for noise instantaneous energy. Let us start by defining the new function,
corresponding to (13.50) in the asymptotic limit,

Faon(1) = 2y () j 2 (s) db. (13.82)

Expressed in terms of A(¢) by virtue of (13.68), this becomes

R

Theorem 2 then immediately yields the following:

Jl A(s) ds

0

fAsy(t) = 25 [ (1383)

Theorem4 The asymptotic KL expansion of the zero-mean instantaneous energy of the
Gaussian noise emitted by a spaceship moving at a proper acceleration gA(t) is given by

Xilsy(t) - E{X/Z‘Iv)([)} = YASy(t)

[ ~
B i x _ J fAsy(s) ds
= fA\)([) J fASy(S) ds - Z ZnA\.y Nn/m JﬂA\,,(t) '?n,,\, 07

0

(13.84)

T
n=l J Sasy(s) ds
0
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Here

(1) The Bessel function of the first kind appearing in (13.84) has the time-dependent

order
N Xio (1) d [Xe (D)
Py (1) = J f;‘ o @ {;‘ ([)} (13.85)

where the auxiliary function is defined by

>~<Asy(t) = ./;A:y(t) J‘;ifAsy(s) dS~ (] 386)

Alternatively, it is possible to express the order by virtue of the single formula

¥ = 2
~ 1 JOfAsy(S) ds
VAs)f(t) = 1 + /{4‘}7([)

3|dInfuy (0P 1d>Infy (1)
.{4[ o }_2 - }(13.87)

proved in Appendix G, Equation (G.50).
(2) The real positive zeros, arranged in ascending order of magnitude, of the
equation

>~(IAV)(T) : JIJA_\.}.(T) (;}‘/”A.\:v) + XAS,V(T)'

Jl;A.sy(T) (;);nA.vy) ~/

Fasn(T) =
(T s Piy(T)| =0 (13.88)

T _ U (T) (’7”.4\‘-) + B
JO fAsy(S) ds A

define the constants 7, .
(3) The normalization condition fulfilled by the eigenfunctions reads

T 2l
1= N2 UO Fin(s) ds} .L X2, () (ng, X) dx (13.89)

and defines the normalization constants ]\7@”. In (13.89) the new transformed
order #74,((x)) is obtained from the order 7 4,,(x) of either (13.85) or (13.87) via
the transformation

J;f}my(s) ds = x JOTf'AS}, (s) ds. (13.90)

(4) The eigenvalues are given by

j\ru\y = |:‘[TJ;;4A'J?(S) ds:|2 : . (13.91)
0 ‘
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(5) Finally, the gamma-type probability density

/\”A\\

z+ = -1 =
o 1 a ZX,,/ . )\’IAU h )\"A.u
J2, O o, w2 Yt ) B
VrQA,,)

where U(x) is the unit step function, is the probability law obeyed by the random
variables Z, .

7

B

13.4 POWER-LIKE ASYMPTOTIC SPACESHIP ACCELERATION

13.4.1 Asymptotic motion with power-like acceleration

There exists a particular case of the spaceship acceleration A(¢) for which all the
asymptotic formulas previously worked out, including the KL expansions of
Theorems 3 and 4, can be analytically developed in a closed form. This is the case
where the acceleration changes in time like some real power « of time; that is

A(r) = 1. (13.93)
The exponent « is subjected to the limitations
-l<ax<l (13.94)

that we shall determine in the present section.

In what follows, we shall denote all the formulas derived from the power-like
hypothesis (13.93) by a ““| P”* suffix. Moreover, since we are going to apply the power-
like hypothesis (13.93) to asymptotic formulas only, in practice the new suffix will be
“Asy|P”.

Note also that the asymptotic constant g case, already studied in detail in [1, 2],
corresponds to the particular case

a=0 (13.95)

of the asymptotic power-like acceleration theory developed in the present and
following sections. All the results of [1, 2] are thus considerably generalized in the
present chapter.

Turning next to the general formulas for the asymptotic power-like acceleration
case, consider first the asymptotic time-rescaling function f},() defined by (13.68).
By virtue of (13.93) one gets

fAA}\P t1+a
“ S‘ ds \/H'—a

(13.96)
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That is,
cV1+a i
.foy\P(t) = \/_\/gt 2. (]397)
Clearly, the integration in (13.96) converges, and v/1 + « is not complex if, and only if
I+a>0. (13.98)
On the other hand, the presence in Theorem 4 of many integrals of the type
' V1 P, 24/
J Fasyp(s) ds = MJ s s = M[IT (13.99)
o Vi Vil —a)
clearly requires
l—a>0. (13.100)

Thus, the limitations (13.98) and (13.100) yield (13.94).
The asymptotic spaceship velocity follows from (13.70) and (13.97), and reads

(14 a)? 1
g p(t) = C\/l — e grE (13.101)
Thus, to avoid complex variables, the inequality
2 2
(14w 1
- ey <1 (13.102)

must apply, whence we infer the power-like asymptotic condition, generalizing (13.65)

t> {@}m ~ [l year- (1 + a)]ﬁ. (13.103)

In other words, in order that the asymptotic power-like acceleration case be physic-
ally acceptable, the time elapsed since departure must be larger than the 1/(1 + «)
power of (1 + «) years.

13.4.2 Power-like asymptotic KL expansion for noise

The power-like acceleration (13.93) has the remarkable advantage over other accel-
eration types that its KL expansions stated in Theorems 3 and 4 can be fully obtained
in the closed form. As a matter of fact, most of the purely mathematical features of
the content of the present section appeared in [9], with no reference to either physics
or engineering applications. In [8, pp. 333-339], the material of the present section
first appeared cast in the language of special relativity, but it was oriented to particle
physics rather than to starflight: the terminology ‘“‘decelerated motion” appearing
there refers to deceleration with respect to the Earth, not with respect to a moving
point. We believe that recasting and completing the mentioned material of [8, 9] into
the framework of the proper acceleration A(t), as required by starflight, will be of help
to scientists and engineers wishing to refer to a single book chapter rather than to a
widely scattered literature.
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Theorem 5 The asymptotic KL expansion for the Gaussian noise emitted by a
spaceship moving at a proper power-like acceleration is given by

XAsy|P(t) = BA:y\P (T)

l1-a
l—at? & 1 )
= > Z,,. Ty (7 TT) . (13.104)

n=1 | Vasy|P (ﬂYnA.\r\P) |

Here

(1) The Bessel function of the first kind appearing in (13.104) has the constant order

|af
VAS}’|PZE‘ (13105)
The auxiliary function defined by (13.74) now reads
v1+ a
Xagip(t \[\f l—a . (13.106)

(2) The constants 7,, , are the real positive zeros, arranged in ascending order of
magnitude, of the Bessel function of the first kind of order v + 1. That is,

Tyt () = 0. (13.107)

(3) The normalization constants for the eigenfunctions are given by

g l—«
Nosr =\ 7 =i : (13.108)
e ¢ \/E 1 + aTIT|JVA.sy\P (’7"4.»;\\1’”
(4) The eigenvalues are given by
AT (14a) 1 (13.109)

N 455 P *5 (1 — a)z . 7)21/4““7 .

(5) Finally, the Gaussian random variables Z,
and variance A, as in (13.5).

Asy|P?

yp are orthogonal with mean zero

We shall just highlight the proof of the foregoing theorem, omitting all lengthy
calculations. The x 44,(p(¢) function of (13.106) immediately follows from (13.74)
and (13.93). Then, a vital simplification occurs: the time disappears identically from
(13.73), yielding the constant order (13.105). This, in turn, simplifies the writing of
(13.75), which, after several reductions, takes the final form

o
- 1 — aJDA“'"‘“, (’7714‘““) + %1'4‘}'\1".,;//‘&!'\”(’y"/“\t\\l’) =0. (131 10)

Let us now recall the Bessel function property (for a proof, see [10, p. 12, entry (55)])
2J,(z) — v, (z) = —zJ,.1(2). (13.111)
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By virtue of (13.105), the left-hand sides of (13.110) and (13.111) coincide, yielding
_FY”A.s'lv\PJVA_v)-\P+1 (711Al\.“‘p) =0 (131 12)

whence, as Viaip #0, (13.107) is obtained.

Let us next turn to the normalization constants (13.108). In this regard, we note
that a formula arising from the Dini expansion in a series of Bessel functions (see
[10, p. 71, entry (49)]), that is

1
1
[ AR G R LA SERIE)
n
may be simplified, by virtue of (13.107) and (13.112), to yield
2

: T2 e )
2 Viggylp \ Vg
Jo XJ”A\,‘-\P(WHAU-PX) dx = %

(13.114)
This and (13.76), where the order transformation (13.77) is not required because the
order (13.105) is a constant, lead then to (13.108).

Finally, the eigenvalues (13.109) are obtained at once from (13.78) and (13.93).
In the constant g case, use of (13.95) shows that formulas (13.104)—(13.109) reduce to
the corresponding formulas appearing in section 4 of [1].

13.4.3 Approximated power-like asymptotic KL expansion for noise

Theorem 5 is perhaps still too complicated for engineering purposes inasmuch as the
Bessel functions may not by easy to evaluate numerically. It seems thus useful to
derive the approximated version of Theorem 5 that follows on replacing the Bessel
function of the first kind by means of its asymptotic expansion for large values of its
argument
. . 2 vr T
JI—I&J”(X)__}I—P; ECOS(X—7—1>. (13.115)
In the following we shall denote all the formulas derived for this approximated
case by a further “|4” suffix. Thus, as we are considering the asymptotic power-like
approximated case, in practice the whole suffix will be ““A4sy|P|4”’. When applied to
(13.107), (13.115) yields

(Vagppp + )
COS<’Y)1A'\.V‘“,‘A - f*z ~0 (131]6)
whence
(Vagp + )0 T
Vg~ = T2 (n=1.2,..), (13.117)

Thus, invoking (13.105), we get the following approximated expression for the
constants Vit gy

T Vgsy|pT
fYnA,\'y\P\A R NT A+ o+
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We now set out to determine the approximated normalization constants N, .
First, the Bessel function appearing in (13.108) has to be replaced by its asymptotic

version (13.115), yielding
2 ‘
7"4\;\‘\1’\4

2
= |cos(nm)| =
ﬂ,ynA.sy\P\A ﬂ—’ynAs‘r\P\A

Vgsy|PT0 7T> ’

|‘,VA.w\P (ry”A.\'}\P\A )| ~ cos (FYnA.\'}\P\A - 2 - Z

2

(13.119)

Then, (13.108) and (13.119) yield the approximated normalization constants N,

Asy|P|A
l-a 1 ||
~ —_— 13.120
nmuﬂm Tl a\/H-—O( +2(1 — Oz) ( )
As for the eigenvalues, one merely has to insert (13.118) into (13.109) to get
o l-a
N, R Tt a), ! . (13.121)
sy|PlA (1- a)2 1 teq 2
g 2 n+ it
4 2(1-a)

These also are the variances of Gaussian zero-mean orthogonal Gaussian
random variables Z,

N gsylpla”

In conclusion, we have proven the following:

Theorem 6 The approximated asymptotic KL expansion for the Gaussian noise
emitted by a spaceship moving at a proper power-like acceleration is given by

X asyipa(t) = BasypalT)

l-a
2 1 o w
e : 1 Z”/l.u\l’\/t cos (7’%)'1’4 T% - Z - 1 —a ! 2) . (13122)

n

2
ﬂ'— P
=R
NgE

In the constant g case, this theorem reduces to (12.43) (or [1, eq. (86)]).

13.4.4 Power-like asymptotic total noise energy

The results of Section 13.3.3 on asymptotic total noise energy will now be applied to
the power-like acceleration (13.93). However, the required convergence of all inte-
grals that we have to use will force us to restrict the range of validity of the exponent

~l1<a<0. (13.123)

Note that the upper inequality implies that the constant g case, characterized by
(13.95), cannot be derived as a particular case of the theory developed within the
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present section. For instance, consider the integral

Jof Gsyip(s) ds = @ [S_QL = @% (13.124)

Clearly, the last step is possible only if « is negative, whence the upper limitation in
(13.123).

The integral in (13.124) is required for computation of the mean total noise
energy (13.80). In fact, invoking (13.93), one obtains

T o N
E{e 6] = L d Jof Gyip(s) ds = ;% T, (13.125)

The power-like asymptotic total noise energy variance, derived from (13.81) by
virtue of (13.93) and (13.124), reads

T t u 2 2 2
) 2 c (] Oé) 2(2—a)
=4 | dt| d » ds| =2— T .
Teunip L ZL u [JofA‘”"P(S) S} g?a*(a—1)*(a—2)(2a - 3)

(13.126)

whence, by taking the square root, we get the power-like asymptotic total noise
energy standard deviation

0. =+V25. Lta T, (13.127)
e 9 ala—1)y/(a—=2)2a—23)

Finally, the power-like asymptotic total noise energy cumulants (13.79) take the form

_ A\ (1 + )" _ - 1
K, =2""n— 1)!<5> (A+0)” oy 1 (13.128)
1 4sy|P g (1 _ a)Zn ; (,YmAWP)M
This formula holds for the full « range (13.94), rather than for the limited range
(13.123), for (13.124) was not required for its derivation.

13.4.5 Power-like asymptotic KL expansion for noise instantaneous energy

Just as Theorem 5 of Section 13.4.2 was the power-like subcase of Theorem 3 of
Section 13.3.2, so it is natural to seek a Theorem 7 to be the power-like subcase of
Theorem 4 of Section 13.3.4. In the present section we shall prove that this guess is
true. However, as in the previous section, we shall have to restrict the range of validity
of the exponent « to

~1<a<0. (13.129)

Once again the upper inequality implies that the constant g case, characterized by
(13.95), cannot be derived as a particular case of the theory now to be established.
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To prove the upper inequality in (13.129), rewrite the definition (13.82) in terms of
the new f,,p(#) function

t

Faotrlt) = Yool | £0t6) . (13.130)

Invoking (13.97), it is observed that the convergence of the integral just requires the
upper inequality in (13.129):
! c(1+a) s c(l+a)t™
Fraps)ds=——"L|—| =—=—————. 13.131
[ ooy ds = LT |2 LD (13.131)

Then, inserting (13.97) and (13.131) into (13.130), we get the explicit expression

—

62(1 —|—a) 2041

Casyip(l) =~ =217 7. 13.132
jA )\P( ) g \/—_Cl ( )
Finally, the integral of (13.132) reads
i~ c 4(1 + Oc) 1-2a
- = — 12 13.1
JOJAA},w(s) ds = Ve (13.133)

We are now ready to state the following theorem:

Theorem 7 The power-like asymptotic KL expansion of the zero-mean instantaneous
energy of the Gaussian noise emitted by a spaceship moving at a proper acceleration
gA(t) is given by

YAsy\P(t) = X/24sy|P(T) - E{Xisy|P(T)}

[—Dc o0 ~ ~ .
=V 1 -2« Z Z”Asy [’N"A\j\\l’JﬂAu'\l’ <’Y"A\;\1’

1
e

T+

T > (13.134)

n=1
Here

(1) The Bessel function of the first kind appearing in (13.134) has the constant order

. 20
VAS}"P = |2

_ 13.135
T (13.135)

The auxiliary function ¥ 4,p(¢) defined by (13.86), by the aid of (13.132) and
(13.133), takes the form
3 c 2V2(1+a)
Xaglp(t) = = ——===1"".
g /—av1l =2«

(2) The constants 7y, , are the real positive zeros, arranged in ascending order of
magnitude, of the Bessel function of the first kind of order (%,,,, — 1); that is

(’?'7/15\'\1’) =0. (13137)

(13.136)

7, -1
" Asy|P
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(3) The normalization constants for the eigenfunctions are given by

i 9 V2y/=a(l —2a)T“7%
AU )y, ()l

sv|P

(13.138)

(4) The eigenvalues are given by

2 21 -2a

216(1 +a)°T I

S, =St T 1 (13.139)
gt ()1 =200 ()

(5) Finally, the probability density followed by the orthogonal random variables
Z is the gamma-type:

Nysy|p

S
Asy|P
z+ %

1 \/ 2X"Au'\l’ X”Acr\}’ R X"Ax)'\P
AfZ (Z) = =€ . z + T U z + T

" gsy|P \/;I:(ZAMW\p)

o=

Sl—

(13.140)
where U(x) is the unit step function.

We now sketch the proof of Theorem 7. The X 44 p(¢) function of (13.136)
immediately follows from the definition (13.86) by invoking (13.132) and (13.133).
Then, just as happened for Theorem 5, time disappears identically from (13.85) or
(13.87) yielding the constant order (13.135). Whether this simplification (which is
essential in order to simplify all subsequent analytical developments) occurs just “‘by
chance” or has any deeper meaning is unknown to this author at the present time.
The reader, however, may wish to speculate on the following unpublished result: the
analytical technique used in [6, 7] to obtain the KL expansions of B(r) and B*(r),
respectively, cannot be extended to B (7) and B*(r). Thus, it would appear that the
mentioned simplifications, occurring in the B(7) and B(7) cases, are indeed a “lucky
circumstance”’.

Continuing the proof of our Theorem 7, we see that the constancy of D p
simplifies the writing of (13.88), and, after several reductions, it takes the form

2a 5 5 .
=301 00 i) + Vo 5100 ) = - (13.141)
Then the Bessel function property (see [10, p. 11, entry (19.54)])°
2J5(2) + 5(z2) = 2054 (2) (13.142)
and (13.141) yield
Vo0 Tgpp) = 0 (13.143)
from which
Vg 7 0 (13.144)

and (13.137) is obtained.

3 Note that this is not the same as (13.111).
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The normalization constants (13.138) come next. Just as for the proof of (13.108),
the Dini expansion formula for the Bessel functions (13.113) may be invoked to
perform the integration in (13.89), with the result

2

1 - JD/ 5y ,(’?n,“. ,X)
JO XT3 () dx = % (13.145)
Equation (13.89) then leads to (13.138) by invoking (13.133) and (13.145). The
eigenvalues (13.139) are immediately obtained from (13.91) and (13.133). Finally,
the probability density (13.140) is the same as (13.60), apart from the replacement of
Ay, by A

745y Nysy|p*

13.4.6 Approximated power-like asymptotic KL. expansion for noise
instantaneous energy

Just as Theorem 6 is the asymptotic approximation of Theorem 5, so in the present
section we are going to derive a Theorem 8 that is the asymptotic approximation to
Theorem 7. Again, the leading idea is to replace all Bessel functions by their simpler
asymptotic form (13.115), which has the advantage of expressing them in terms of a
cosine.

As in Section 13.4.3, all formulas derived for the asymptotic approximation will
be denoted by a further ““|4” suffix. Thus, the whole suffix will now be “Asy|P|4”.

When applied to (13.137), (13.115) yields

~ (ﬁAsylP - 1)7T u
cos <’7"A.\-y\pm - 5 3 =~ (13.146)
whence
- (Dagp— 7 s
’y”A.sy\P\A _#_Z%HW_E (n: 1727) (13147)

Invoking (13.135), we now get the following approximated expression for the %,

ZA)A,\'V\PI 3 ‘Oé|
> =7 —_— . 1 14
(n + Ba—T] (13.148)

The approximated normalization constants ]\7,,4»‘_‘W come next. However, the
Bessel function appearing in (13.138) must first be replaced by its asymptotic version

(13.115), yielding
~ I;Asy\Pﬂ- 0
cos Vngmp — 2 - Z

- [ 2
|JI;A.\'}‘P(’Y’IA.\')‘P‘A)‘ ~ ‘ ™ B
N 4sy|Pl4
2 2
= ~ |cos((n — 1)mr)| = . : (13.149)
TV aspipla TV sy i

~ T
Viagioa = (n—1m+ 1 + 3
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Then, (13.138) and (13.149) yield the approximated normalization constants N,

i
_ gv/—a(l =2a)T* 3 o]

~Y . PR 13.150
45y Pla ¢ 4(1 4 a) g n 4 + |2a — 1| ( )

Asy|P|A

As for the eigenvalues, one merely has to substitute (13.148) into (13.139) to get

_16(1+a)’T' 1
~T2.2 2" 2"
g (-a)(1-20) (3 o
" e

(13.151)

N 4sy|P|A

These are also the variances of Gaussian zero-mean orthogonal random variables
whose probability density is the same as (13.140).

Nasy|p|4

In conclusion, we have proved the following:
Theorem 8 The approximated asymptotic KL expansion of the instantaneous energy

of the Gaussian noise emitted by a spaceship moving at a power-like acceleration is
given by

2 _ v2 2
YAS}"PlA(l) = XA.S)f\P\A(T) - E{XAS_V|P\A(T)}
t = s [2c
2 ™ o s
SVI= 200D 08 <’“S}"“ T 4 a1] 2) '

(13.152)

13.5 CONCLUSION

Eight theorems have been proved concerning application of the KL eigenfunction
expansion to radio communications between the Earth and a relativistic spaceship.
First, we obtained the KL expansion for the noise emitted by the spaceship moving at
an arbitrary acceleration with respect to its own reference frame. The results of the
previous Chapter 12, where this acceleration was supposed to remain constant (= g),
have thus been fully generalized. Yet the KL expansion for the general case is not
much more complicated than for constant g: in all cases, in fact, the eigenfunctions
are Bessel functions of the first kind, and the eigenvalues are the zeros of such Bessel
functions. The noise total energy cumulants, mean value, and variance were obtained
as byproducts of this KL expansion.

A second KL expansion, already studied in Chapter 12 for constant g, was also
fully generalized to arbitrary acceleration: this is the instantaneous energy (i.e., the
zero-mean square noise) eigenfunction expansion. Again, the eigenfunctions are
Bessel functions of the first kind, and the eigenvalues are their zeros.

All these results undergo remarkable simplifications when one considers the
asymptotic acceleration of the spaceship about one year after departure from Earth.
In particular, if the accelaration behaves like a power of time, the formulas are simple
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enough to allow Bessel functions to be replaced by suitable sinusoids. The way is thus
paved for computer numeric simulations, good for engineering design.

The KL expansion is optimal among all possible transforms inasmuch as the
eigenfunction set is, by definition, the best orthonormal basis in the Hilbert space.
Finding this basis only by means of numerical techniques may be time-consuming,
even on fast computers, for one has to determine both the eigenvalues and eigen-
vectors of the large symmetric matrix representing noise autocorrelation. However,
we have solved this problem by providing explicit—if only asymptotically approxi-
mated—eigenfunctions and eigenvalues directly expressed in terms of the acceleration
of the emitting source. The first step has thus been taken in designing the optimal
signal analysis procedure to filter out the noise received on Earth from a relativis-
tically moving spaceship.
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14

Genetics aboard relativistic spaceships

14.1 INTRODUCTION

This chapter was born out of the need to merge two topics apparently unrelated thus
far, namely:

(1) the theory of relativistic interstellar flight; and
(ii) the stochastic processes of genetics.

Their unification is achieved by virtue of the notion of time-rescaled Brownian
motion that embodies both time rescaling, typical of relativity, and Brownian
motion, typical of the stochastic processes of genetics. Though the mathematics
involved is not difficult, to set out the calculations in detail would require too much
space. Thus, the main lines of thought only have been highlighted.

The rationale behind the chapter is that the huge time differences between the
crew of a relativistic spacecraft and people on Earth are not as ““‘unbelievable” as they
seem, inasmuch as the biological laws of genetics are mathematically proved to apply
equally well to both. It is true that, whenever statistical mechanics and thermo-
dynamics are involved, transformations from a reference frame at rest to a moving
reference frame are controversial at the present time. However, we shall not take
thermodynamics into account, nor statistical mechanics as it is understood in the
theory of gases. Our proof only considers a special-relativistic transformation of
coordinates and time affecting a stochastic process representing the number of living
members in a finite population traveling aboard a relativistic spacecraft.

All topics discussed in this chapter were first published by the author in 1990
in [18].
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14.2 DIFFUSION PARTIAL DIFFERENTIAL EQUATION FOR X(t)

This section deals with diffusion phenomena and their relationship to time-rescaled
Brownian motion. We first consider the partial differential equation for a Brownian
diffusion that is rescaled in time, and show that its solution coincides with the time-
rescaled Gaussian density (F.42). Second, we derive the probability density function
for the first-passage time of the X (¢) process at any positive value X = a. This topic
thus provides a further example of application of the mathematical theory developed
throughout this book.
Consider the partial differential equation

p(x, 1) ap(x,1) _ o*(1) 9°p(x, 1)
5 T =g (14.1)
with the initial condition
p(x,0) = 6(x). (14.2)

In (14.1) we assume p(x, ) to be a probability density in x, and the physical
meaning of (14.2) is that the particle randomly moves forward and backward
along the x-axis, departing from the origin (with probability one) at the initial
instant  =0. We may then introduce the corresponding characteristic function
(i.e., the Fourier transform), that depends on both “independent variable” ¢ and
“parameter” ¢

o0

D¢, 1) = J e “p(x, 1) dx. (14.3)

—00

The first step solving the partial differential equation (14.1), subjected to the
initial condition (14.2), is re-writing (14.2) in terms of the characteristic function
(14.3), rather than in terms of the probability density function p(x, ). To this end, we
merely have to set r = 0 into (14.3) and substitute (14.2) into (14.3)

D(¢,0) = r@ e“*p(x,0) dx = r@ EB(x)dx =[] g =e"=1; (14.4)
that is
(¢, 0) = 1. (14.5)

We now want to find a new differential equation in the unknown function ®(¢, ¢)
by differentiating (14.3) with respect to ¢ followed by a substitution of the right-hand
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side of (14.1):
a(D(Cv t) Jw ei@c 8[7()(, t) dx

ot

< ap(x,1) (1) 3*p(x,1)
(x| _
e [ n(t) o + 3 o dx

ot

—00

—00

0 i Op(x,t (1) [° i OPp(x,t
= —n(1) Jim e %dx —&-#Lme ¢ %dx. (14.6)

We can now integrate both integrals by parts and note that all the integrated parts
vanish at oo because of the complex exponential. The result is

8@((, t) o Uz(t) . Oc i(x ap(xa t)
L =i + 2 o [ e Tl
and one more integration by parts finally yields
o 2 2
2 e - o - [i@(z) -0,

In conclusion, we have found the new differential equation for the unknown
characteristic function ®((, ¢)

2
e [z’@(r) -0

This is an ordinary differential equation that may be solved by separating the
variables

D(¢, 1) (14.7)

d(l)(<7 t) . 0-2(0 2
= - . 14.
B¢ 1) iGn(t) = ——=C"| dt (14.8)
Hence, an integration between the limits 0 and ¢ yields
t Cz t
In ®((, 1) — In ®((,0) = iCJ n(s) ds — 7J o (s) ds. (14.9)
0 0
If we invoke the initial condition (14.5), we get
In®((,0)=In1=0 (14.10)
and this changes (14.9) into
. I 2.0t 5
O, 1) = < h o d= [l ds, (14.11)

Having thus found the characteristic function ®(¢,7), we must now inverse-
Fourier-transform in order to get the probability density function p(x,?).
Fortunately, this is no problem in the case of (14.11), for (14.11) is just the inverse
Fourier
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of the Gaussian probability density function

(= [ (s) d)?

p(x,1) :;e 2Jy 70 ds . (14.12)

t
27TJ o (s) ds
0
This is thus the full solution to the partial differential equation (14.1) subjected to the
initial condition (14.2).

Let me now check (14.12) against the time-rescaled Gaussian probability density
(F.42) of the process X (¢). They are seen to coincide if we set

12
J n(s) ds =0,
0
. , (14.13)
J o%(s) ds = J f2(s) ds.
0 0
By differentiating both equations with respect to time, these equations become
)=0,
{’7( )=0 (14.14)
o(r) = f(1).

The function o(f) = f(¢) is sometimes called infinitesimal variance, especially in the
applications of stochastic processes to genetics.
Finally, by substituting (14.14) into (14.1), we see that the diffusion partial
differential equation for the time-rescaled Gaussian process X (¢) is given by
™) _f2(0) ()

a2 ox? (14.15)

with the initial condition
Sx)(x) = 6(x). (14.16)

In particular, since the standard Brownian motion is the special case f(7) = 1 we infer
from (14.15) that the diffusion partial differential equation for B(¢) is

iy (x) 1 O (x)
a2 ox2

(14.17)

again with the initial condition
SB0)(x) = 6(x). (14.18)

14.3 FIRST-PASSAGE TIME FOR X(t)

A particle moves back and forth along the x-axis according to the process X (7). The
time required for the particle to reach the fixed value X = a for the first time is a
random variable, called the first-passage time, and denoted by 7,. We shall now find
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its probability density by extending it to the process X (¢) the method used by Feller
[1, p. 174] to determine the first-passage time probability density of standard
Brownian motion.

The probability that the process X (¢) remains smaller than the threshold « is
given by

2

a a 1 X
P{X(t) <a} = J Sy (x) dx = J e 70 dx. (14.19)
—00 —00 27TUX(t)
The substitution
2
X
yi=—
Tx(1)
yields then
aa 1 v a
P{x<a :JX(')7677dy:N ,
t J —0o V2T Tx(1)

where the N notation for the normal distribution was adopted. On the other hand,
we can follow up Feller’s proof by considering the probability

FTu(t)—P{Ta<t}—2P{X(t)>a}—2{l—N< a )} (14.20)
Ox(r)

which is the first-passage time distribution function, as X (7,) = a.
The derivative of (14.20) with respect to ¢ is the required probability density of
the first-passage time

t g g
frly = IR0y AT ATNO] dox,

dt 4 a dO'X(,) dr '
ox(1)

2

L dov V2l “ar
Ox(r) dt ﬁ

where we had to introduce the absolute value of a because (14.20) is a probability
density.

An interesting result, first proved by Borovkov [2], is also found at once by
equalizing the two densities (in x and ¢, respectively) (14.21) and (G.8)

that is

Jr,(1) = (14.21)

_ 2|a| doxq)

Jr,(1) Sxw(a). (14.22)

Ox(1) dt

This completes the investigation of the first-passage time probability density for
the X (¢) process.
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14.4 RELATIVISTIC INTERSTELLAR FLIGHT

Imagine a spacecraft accelerating with respect to its own reference frame, in such a
way that the crew experience constant acceleration which, for their comfort, we
assume numerically equal to

g=9.8ms’. (14.23)
Then let

t = time on Earth since departure (coordinate time)
7 = time on the spacecraft since departure (proper time)
v(t) = spacecraft velocity with respect to the Earth
m = spacecraft (rest) mass.

Special relativity leads to the longitudinal force [5]

2 _3
v=() |2 do(r)
So we have to solve the differential equation in the unknown velocity
2,073
(|72 do(r)
|:1 2 } m—= = mg. (14.25)
Let us set
v(t) = ¢sin Q(r) (14.26)

By separating the variables in (14.25) and performing elementary integration, one
gets

- g
Q(t) = arctan (C l), (14.27)
whence
v(t) = csin (arctan <% t)) (14.28)
But
X
sin(arctan(x)) = ——. 14.29
( (%)) e (14.29)

So that the spacecraft velocity is given by
t
o(7) :%. (14.30)
1+ (%)

From special relativity it is also known that the spacecraft proper time is given by

(1) = LZ - ”ZC(ZS) ds. (14.31)
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By substituting (14.30) into (14.31), and performing elementary integration, one
derives the spacecraft proper time as

c .19 c
1) =—: h(=t) =-1
7(1) gdrcsm (c ) g n

0 iv (gt)z]. (14.32)

The physical meaning of (14.32) is that the time on board the moving spacecraft
elapses much more slowly than on Earth. For instance, by turning the spacecraft at
mid-way, and then decelerating constantly, the center of our Galaxy might be reached
in just 21 years of proper time, although it lies 30,000 It-yr from us.

145 TIME-RESCALED BROWNIAN MOTION

Let us consider ordinary Brownian motion (or the Wiener—Lévy process) with mean
zero and variance ¢

B(t) = Brownian motion, (14.33)
B(0) =0. (14.34)

Its (first order) probability density function is the Gaussian
1 ¥

=

X) =———=e 2, 14.35
with initial condition
SB0)(x) = 6(x) = Dirac delta function. (14.36)

A white-noise integral is a stochastic process defined by

X(1) = JZ 7(s) dB(s) (14.37)

0
with
f(#) = time-rescaling function (14.38)

which may be any time function, continuous, non-negative, and with a non-negative
derivative. Clearly, ordinary Brownian motion is the particular case of a white-noise
integral when the time-rescaling function equals 1. Also, the initial condition for
(14.37) is

X(0)=0 (14.39)

and it can be proved [3] that (14.37) is a time-rescaled Brownian motion, namely

X(1) = B( thz(s) ds) . (14.40)

0
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In other words, (14.40) is just a Brownian motion having a new time variable
defined by

ﬂg:fﬁ@m. (14.41)

For future reference, we prefer to rewrite (14.41) in the slightly different form that
follows by differentiating with respect to the coordinate time and then taking the

reciprocal of both sides
dt 1

i 14.42

dr 2(1) ( )

From (14.40) it may be inferred that (14.37) is a Gaussian process with zero-mean
variance

ﬁm:Lﬂwﬁ, (14.43)

and (first-order) probability density given by the time-rescaled Gaussian

ﬁMﬂ=4——L——wjﬁaﬁ. (14.44)
ﬁ%Jﬁ@@

0

An important topic related to Brownian motion is the diffusion partial differ-
ential equation (also called the Kolmogorov forward equation, or Fokker—Planck
equation) fulfilled by the Gaussian density (14.35)

I (x) 132]‘}3(:) (x)
ot 2 oxr

This may be proved either by direct differentiation of (14.35) or by Fourier transform

techniques, as in Section 14.2. Correspondingly, the diffusion partial differential

equation fulfilled by the time-rescaled Gaussian density (14.44) may be proved to be
Wi (x) _f7(0) 9o (x)

T ol (14.46)

(14.45)

with the initial condition
fX(O) (x) = 6(x). (14.47)

Having thus paved the mathematical way, the genetics may now be considered.

14.6 GENETICS

Biology is a scientific discipline not yet recast in mathematical terms. Nevertheless, a
few areas of biology may be understood mathematically. Genetics is one of them.
Mendel’s laws, published in 1866, were ignored by the scientific community until
1900, and only after 1908, when the Hardy—Weinberg law was formulated, did the
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field of population genetics take a precise mathematical form. Probability played a
central role in this development, but it should be remembered that, within the wide
field of probability, the theory of stochastic processes did not shape up neatly until
about 1930. Subsequently, R. A. Fisher, S. Wright, and others concluded that the
partial differential equation

0 x;t 1 9?

% = W% [x(1 = x)o(p, x; 1)] (14.48)
represents the diffusion of a single gene belonging to one of two genotypes [8].

Let us now skip the definition of the terms “allele” used by biologists. A certain
gene (e.g., the gene accounting for one’s eye color) may have several alternative forms
(i.e., one’s eyes may be brown, blue, green, etc.). Each of these alternative forms of the
same gene is said to be an “allele” of that gene. Now, denote a certain gene by A—
namely, let A be one allele of the biallelic (A and a) population under consideration.
Then the meaning of the other quantities appearing in (14.48) is

t = time measured with one generation as the unit; (14.49)

N = population size (i.e., there are N diploid individuals)—*diploid”
means that each member of the population has fwo copies of each
gene, because he/she got one from his/her father and one from his/
her mother. This number N stays constant over generations;

(14.50)
o(p, x; 1) = probability that the frequency of allele A in the population becomes
x in the rth generation, given thatitis p at 1 =0 (14.51)

In other words, one has
0<x<l (14.52)

with the initial condition
¢(p,x;0) = p. (14.53)

The exact solution to (14.48), fulfilling the initial condition (14.53), was obtained
by M. Kimura in 1955 [9] and is expressed as follows:

00

$(p,x;1) =Y p(1 = p)i(i+ 1)(2i + 1)
i=1
i(i+1)t
=F(1—i,i+2;2;p) - F(1 —i,i+2;2;x)-e 4N (14.54)

where F(a, b; ¢; x) is the hypergeometric function.
The intuitive meaning of (14.48) is that gene fluctuations are a Brownian motion
with two absorbing barriers at

x=0 and x=1. (14.55)
These barriers are mathematically represented by the term
x-(1=x) (14.56)



258 Genetics aboard relativistic spaceships [Ch. 14

on the right-hand side of (14.48). In words, the percentage (or the relative frequency)
of individuals in the population having gene A changes randomly from generation to
generation, just like a Brownian motion. However, sooner or later, the time will come
when either no individual in the population has the gene A (i.e., the barrier at zero is
reached), or every individual has the gene A (i.e., the barrier at one is reached). The
situation will then no longer change, and all the population will stay homozygous for
the allele a or A, respectively. Thus, (14.48) is the mathematical formulation of the
law of tendency to homozygosity (see [10, 11, and 12].!

14.7 RELATIVISTIC GENETICS
It is now possible to lay the foundations of relativistic genetics. To this end, let us

identify the proper time of special relativity, given by (14.31), with the new time
variable of time-rescaled Brownian motion, given by (14.41)

Jl LAC J; £2(s) ds. (14.57)

0 ?

Differentiating both sides with respect to time gives the relationship between the
velocity of the moving spacecraft and the time-rescaling function

1- =1%(1). (14.58)

This is valid for any kind of special-relativistic motion. Reference to relativistic
interstellar flight, as defined by (14.30), and (14.58), yield the time-rescaling function

R0 p——— (14.59)

1+ (% t)2

The next matter is the diffusion partial differential equation (14.48) for the single
biallelic gene. Since the gene fluctuations, defined by (14.48), are just a Brownian
motion with two absorbing barriers, we must substitute the probability density

Sxw(x) = o(p,x; 1) (14.60)

into (14.46) to let the unknown functions of (14.46) and (14.48) coincide. These are
actually the same thing because nothing more than time rescaling occurs when
transferring from the Earth reference frame to the moving spacecraft reference frame.
Rearranging puts (14.46) in the form

0p(p,x;1) 1 10°¢(p,x;1)
a2 2 o

(14.61)

'n the last reference [12], however, the Kolmogorov backward equation is used, rather than
the forward one, as here.
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To let (14.61) represent the gene fluctuations, the two-barriers term (14.56) (divided
by twice the population size) must be inserted inside its right-hand side?
dpp.x;i) 1 _ 1 9
ot f*(t) 4NOxX?
Then, using (14.42) and the chain rule produces
op 1 Opdi 09
tfi(r)  drdr  or

x(1 = x)b(p, x; ). (14.62)

(14.63)

and (14.62) takes the form

2
a‘ﬁ(”a’j ) 4;v 8‘9 S [x(1 = x)é(p, x;7)] (14.64)

(14.64) is the equivalent of the diffusion equation (14.48) in the moving spacecraft
reference frame.

In conclusion, we have shown how gene fluctuations obey just the same mathe-
matical laws on both the Earth and the relativistic spacecraft, once the time-rescaling
required by special relativity has been taken into account.

148 A GLANCE AHEAD

The exact expression of time-rescaled Brownian motion (14.40) is difficult to handle
because of the complicated expression of proper time for relativistic interstellar flight.
It is possible, however, to substitute (14.32) by the approximated version that one gets
for large values of the time. In fact, the 1 under the square root is then dwarfed by the
other term, and one may write

Lo (0] ~ o2t (1469

Eln
g

Thus, we call asymptotic Brownian motion the stochastic process

B<§ln [2%;} > (14.66)

In Chapter 12 of this book (and, earlier, in [13]) the author showed that the above
approximation starts being physically acceptable about one year after the spacecraft
departure from Earth, and that the exact Karhunen—Loéve eigenfunction expansion
of the Gaussian process (14.66) reads

BG]nP%zD Zz \/_|J0 %”J <«y\/—‘(}> (14.67)

2 For a mathematical justification of this, see, for instance, [8].
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where v, = nth real positive zero of the Bessel function J;(x); T 1

Z, = Gaussian random variable with zero mean and variance ———;
and that (14.67) is valid for 0 < ¢ < T. Finally, by resorting to the well-known
asymptotic expansion of the Bessel function Jy(. ..) for large values of its argument,
(14.67) may be put in the form

Vi ”). (14.68)

c g R 1 !
B(gln [ZCID ;Z” ﬁ\ﬂcos(% 773
Whether this result has genetical significance is unclear.

In a series of papers [14-18], this author also gave the Karhunen—Loéve eigen-
function expansion of the general time-rescaled Brownian motion (14.40), but the
calculations are then made difficult by Bessel functions whose order changes in time.
Once again, whether these results have genetical significance still is an open question.
This leads one to wonder whether the KL eigenfunction expansion, so useful in
communication theory, might become just as useful in genetics.
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Appendix A

Engineering tradeoffs for the “FOCAL”
spacecraft antenna

The antenna is clearly the most important part of the FOCAL spacecraft, for it acts
as both the receiver of the radio waves focused by the Sun and also as the radio link
with the Earth. Thus, optimally sizing the antenna dish will be the primary task of
the designers of the FOCAL spacecraft. To help them with some preliminary con-
siderations, a series of diagrams are shown plotting the gain vs. the antenna size,
measured in meters, for a variety of sizes, gradually ranging from 0 meters up to 1,000
meters.

The six plots (Figures A.1 through A.6) show the antenna’s and Sun’s share of
the total gain of the combined system Sun + spacecraft antenna. These plots clearly
show the advantage of the combined system Sun + spacecraft antenna over the
antenna system alone, which is why the FOCAL is being designed.

Antennas up to 10 meters in diameter are already within today’s technological
realm. For instance, the first large space antennas orbiting the Earth in the form of
radio-astronomy satellites, that is, the Japanese V'SOP/HALCA and Russian—Inter-
national Radioastron spacecraft, have antennas 8 meters and 10 meters in diameter,
respectively. The FOCAL space mission, however, would require a larger antenna
(actually an antenna as large as possible) in order to insure reliable and fast com-
munications with the Earth from the huge distances of 550 AU to 1,000 AU. There-
fore, it does not seem inappropriate to include in our gallery of ‘““gain vs. antenna
diameter” plots of antennas of diameter up to about 100 meters.

Large antennas for use in space can hardly be of the “rigid” type, like the VSOP/
HALCA one. They would rather have to be of the “inflatable” type that was
prototyped around 1985 for the intended NASA/ESA QUASAT radioastronomy
satellite, never constructed due to lack of funds (see [1]).

Finally, one more revolutionary idea pops up in the picture: that of a solar sail
being also a very large space antenna. This idea was nurtured at the first conferences
about the FOCAL space missions and it is not entirely ““crazy” to think that one day
a | km diameter sail could also be a wonderful 1 km antenna.
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The following sequence of six graphs is intended to help engineers to realize what
are the antenna gains in the game in order to design the FOCAL spacecraft antenna.
Each of the six graphs shows two sets of curves: The set of four lower curves
represents the spacecraft antenna gain (in dB) as a function of the dish increasing
diameter from O m up to 1,000 m. The set of four upper curves represents the overall
gain (i.e., Sun gain + spacecraft antenna gain) as a function of the increasing space-
craft dish diameter from 0 m up to 1,000 m. Of course, the Sun gain is the same for all
graphs and marks the difference in height (in dB) between any one of the lower four
curves and the corresponding upper curve. Let us now clarify which curve corre-
sponds to which observing frequency: the thick two curves at the top of each of the
two sets correspond to the frequency of the peak in the cosmic microwave backround
(CMB), the primordial “fossil” radiation that filled the universe about 300,000 years
after the Big Bang, at the time when radiation and matter separated from each other.
In Chapter 9 of this book we show that this frequency equals 160.378 GHz (see Eq.
(9.3)), and it is also stated that CMB radiation would be the ideal target radiation for
FOCAL to measure because of its uniform distribution all over the celestial sphere.
Thus, CMB peak measurement does not imply any precision tracking of the space-
craft at distances greater than 550 AU. In conclusion, the thick top curve represents
the overall gain of the (Sun + spacecraft) antenna, while the lower thick curve shows
the gain of the spacecraft antenna alone. The two second curves from the top (dash—
dash curves) correspond to the observing frequency of 22 GHz. This is the water
maser frequency, and one of the most important astrophysical spectral lines in the
radio part ot the spectrum. The two third curves from the top (dot-dot curves)
correspond to the observing frequency of 1.420 GHz, the famous “‘spin transition
of the electron with respect to the proton” in neutral hydrogen. This is regarded as the
most important frequency for SETI research as well. Finally, the two lowest curves in
the two sets (dash—dot curves) correspond to the frequency of 327 MHz, just to give
an example of a frequency in the megahertz range. Note that the (Sun + spacecraft)
gain associated with this 327 MHz frequency is lower than the gain associated with
the spacecraft alone when observing at the CMB peak of 160.378 GHz.
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Figure A.1. This is the “overall picture” of the two sets of curves (Sun + spacecraft gain and
spacecraft antenna gain alone) for an increasing spacecraft antenna diameter raising from 0 m
up to 1,000 m. In the following five graphs, we “‘chop” this graph into five different increasing
ranges of the FOCAL spacecraft antenna to let FOCAL design engineers get a feeling for the
tradeoffs involved in the game.
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Figure A.2. This is the “first chop” of Figure A.1: the FOCAL spacecraft antenna is supposed
to be small, ranging from O m to Sm in diameter.
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Figure A.3. This is the “second chop” of Figure A.1: the FOCAL antenna ranges from 5m to
10 m in diameter. This is probably the size of the real FOCAL antenna when it will finally be

designed and launched if the antenna is to be rigid.

Antenna's and Sun's share in TOTAL GAIN
220

210

200
190

180

170

160

150

140

130 F—
120

110

GAIN (dB)

100 ===

90

80

70

60
50

40

30

20

10

10 20 25 30 35 40

FOCAL antenna diameter (meters)

45 50 55

60

Figure A.4. Third chop of Figure A.l: the FOCAL antenna ranges from 10m to 60m in
diameter. This is probably the size of the real FOCAL antenna in case it is going to be an

inflatable antenna, or a solar sail that could somehow be used as an antenna as well.
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Figure A.5. Fourth chop of Figure A.l: antenna diameter ranging from 60 m up to 110 m.
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Figure A.6. Last chop of Figure A.1: antenna diameter ranging from 100 m to 1,000 m. We can
hardly envisage how such an antenna could be constructed. At best, it would probably be a solar
sail, to be somehow transformed into an antenna when the spacecraft is so far away from the
Sun for the solar sail to be of use.



Appendix B

“FOCAL” Sun flyby characteristics

The numerical tables in this appendix give the parameters of the Sun flyby according
to four different values of approach speed of the FOCAL spacecraft. These four
different values of the approach speed are justified on the basis of the following four
astronautical arguments, respectively:

(1) 11.185km s~ !—this is the escape velocity from the Earth and so, assuming that
the launch from Earth is orthogonal to the Earth trajectory around the Sun, it is
the minimal speed by which the FOCAL spacecraft can possibly approach the
Sun (Tables B.1 and B.2);

(2) 30kms~'—this is a spacecraft speed that could easily be achieved if the space-
craft was going to make some planetary flyby within the solar system (e.g., a
Venus flyby) before approaching the Sun for the final flyby (Tables B.3 and B.4);

(3) 50 kms—'—this is the spacecraft speed by which the Sun would be approached if
the spacecraft was going to use the “Jupiter—Sun—Jupiter—Sun flyby’’, which was
described in Chapter 4 (Tables B.5 and B.6);

(4) 75kms~!—this is a speed that could conceivably be achieved by virtue of several
flybys within the solar system possibly improved by the use of thrusters (Tables
B.7 and B.8).

Note: if the minimum spacecraft distance from the Sun surface turns out to be
negative, the relevant Sun flyby cannot obviously take place, as the spacecraft would
fall into the Sun! A safe rule of thumb for a “‘realistic’’ minimal spacecraft distance
from the Sun surface seems to be about the distance of Mercury (i.e., 0.38 AU or
about 80 Sun radii).
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Table B.1. Sun flyby characteristics for the nearest 25 stellar systems for the Sun approach
speed vy, = 11.185 km/s. Since this Sun approach speed is also the FOCAL spacecraft exit speed
out of the solar system, at this speed it would take 233 years for FOCAL to reach 550 AU, and

423 years to reach 1,000 AU.

Stellar | Perihelion | Perihelion Minimum | Minimum | Perihelion | Perihelion
system distance distance distance distance speed speed
(Sun radii) from Sun from Sun w.r.t.
surface surface light speed
# (AU) (AU) (Sun radii) (km/s) ¢
1 0.553 119.010 0.548 118.010 57.637 0.00019
2 0.489 105.154 0.484 104.154 61.177 0.00020
3 0.218 46.877 0.213 45.877 91.157 0.00030
4 0.000 0.005 —0.005 —0.995 11,955.31 0.03988
5 0.210 45.139 0.205 44.139 92.874 0.00031
6 0.414 89.016 0.409 88.016 66.313 0.00022
7 0.182 39.087 0.177 38.087 99.188 0.00033
8 0.000 0.053 —0.004 —0.947 2,888.710 0.00964
9 0.494 106.284 0.489 105.284 61.069 0.00020
10 0.193 41.610 0.189 40.610 96.181 0.00032
11 0.000 0.011 —0.005 —0.989 5,174.544 0.01726
12 0.007 1.498 0.002 0.498 498.209 0.00166
13 0.796 171.327 0.792 170.327 48.577 0.00016
14 0.487 104.721 0.482 103.721 61.299 0.00020
15 0.069 14.865 0.064 13.865 159.949 0.00053
16 2.278 490.110 2.273 489.110 30.094 0.00010
17 0.410 88.137 0.405 87.137 66.879 0.00022
18 0.204 43.928 0.200 42.928 93.650 0.00031
19 0.164 35.314 0.159 34.314 104.274 0.00035
20 0.128 27.625 0.124 26.625 117.708 0.00039
21 0.129 27.823 0.125 26.823 117.293 0.00039
22 0.000 0.052 —0.004 —0.948 2,907.923 0.00970
23 1.430 307.577 1.425 306.577 36.923 0.00012
24 1.067 229.485 1.062 228.485 42.343 0.00014
25 0.164 35.346 0.160 34.346 104.228 0.00035
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Table B.2. Sun flyby characteristics for the next nearest 25 stellar systems for the Sun approach
speed vy, = 11.185 km/s. At this speed it would take 233 years for FOCAL to reach 550 AU,
and 423 years to reach 1,000 AU.

Stellar | Perihelion | Perihelion Minimum | Minimum | Perihelion | Perihelion
system distance distance distance distance speed speed
(Sun radii) from Sun from Sun w.rI.t.
surface surface light speed
# (AU) (AU) (Sun radii) (km/s) c
26 0.028 6.095 0.024 5.095 252.205 0.00084
27 0.000 0.004 —0.005 —0.996 13,327.44 0.4446
28 0.037 7.932 0.032 6.932 220.969 0.00074
29 0.010 2.104 0.005 1.104 421.248 0.00141
30 0.310 66.749 0.306 65.749 76.287 0.00025
31 0.353 75.939 0.348 74.939 71.920 0.00024
32 0.131 28.131 0.126 27.131 116.658 0.00039
33 0.000 0.047 —0.004 —0.953 3,078.777 0.01027
34 0.285 61.303 0.280 60.303 79.527 0.00027
35 0.113 24.317 0.108 23.317 125.365 0.00042
36 2.701 581.181 2.697 580.181 27.988 0.00009
37 0.956 205.780 0.952 204.780 44.443 0.00015
38 0.008 1.824 0.004 0.824 452.126 0.00151
39 0.200 42.959 0.195 41.959 94.684 0.00032
40 0.160 34.410 0.155 33.410 106.225 0.00035
41 0.021 4.584 0.017 3.584 291.057 0.00097
42 0.240 51.605 0.235 50.605 86.938 0.00029
43 0.187 40.200 0.182 39.200 98.350 0.00033
44 1.254 269.797 1.249 268.797 39.288 0.00013
45 0.641 137.889 0.636 136.889 53.873 0.00018
46 0.373 80.273 0.368 79.273 69.996 0.00023
47 0.332 71.396 0.327 70.396 74.123 0.00025
48 0.001 0.305 —0.003 —0.695 1,085.764 0.00362
49 0.062 13.407 0.058 12.407 168.342 0.00056
50 0.003 0.650 —0.002 —0.350 782.594 0.00261
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Table B.3. Sun flyby characteristics for the nearest 25 stellar systems for the Sun approach
speed v, = 30 km/s. At this speed, it would take 86 years for FOCAL to reach 550 AU, and 158

years to reach 1,000 AU.

Stellar | Perihelion | Perihelion Minimum | Minimum | Perihelion | Perihelion
system distance distance distance distance speed speed
(Sun radii) from Sun from Sun w.rI.t.
surface surface light speed
# (AU) (AU) (Sun radii) (km/s) c
1 0.077 16.543 0.0.72 15.543 154.593 0.00052
2 0.068 14.617 0.063 13.617 164.088 0.00055
3 0.030 6.516 0.026 5.516 244.498 0.00082
4 0.000 0.001 —0.005 —0.999 32,066.12 0.10696
5 0.029 6.275 0.025 5.275 249.103 0.00083
6 0.058 12.374 0.053 11.374 177.862 0.00059
7 0.025 5.433 0.021 4.433 266.039 0.00089
8 0.000 0.007 —0.005 —0.993 7,747.993 0.02584
9 0.069 14.774 0.064 13.774 163.796 0.00055
10 0.027 5.784 0.022 4.784 257.973 0.00086
11 0.000 0.001 —0.005 —0.999 13,878.97 0.04630
12 0.001 0.208 —0.004 —0.792 1,336.278 0.00446
13 0.111 23.815 0.106 22.815 130.291 0.00043
14 0.068 14.557 0.063 13.557 164.415 0.00055
15 0.010 2.066 0.005 1.006 429.009 0.00143
16 0.317 68.128 0.312 67.128 80.717 0.00027
17 0.057 12.251 0.052 11.251 179.380 0.00060
18 0.028 6.106 0.024 5.106 251.185 0.00084
19 0.023 4.909 0.018 3.909 279.680 0.00093
20 0.018 3.840 0.013 2.840 315.712 0.00105
21 0.018 3.868 0.013 2.868 314.598 0.00105
22 0.000 0.007 —0.005 —0.993 7,799.526 0.02602
23 0.199 42.755 0.194 41.755 99.032 0.00033
24 0.148 31.899 0.144 30.899 113.571 0.00038
25 0.023 4913 0.018 3.913 279.557 0.00093
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Table B.4. Sun flyby characteristics for the nearest next 25 stellar systems for the Sun approach
speed v, = 30 km/s. At this speed, it would take 86 years for FOCAL to reach 550 AU, and 158
years to reach 1,000 AU.

Stellar | Perihelion | Perihelion Minimum | Minimum | Perihelion | Perihelion
system distance distance distance distance speed speed
(Sun radii) from Sun from Sun w.rI.t.
surface surface light speed

# (AU) (AU) (Sun radii) (km/s) c

26 0.004 0.847 —0.001 —0.153 676.455 0.00226
27 0.000 0.001 —0.005 —0.999 35,746.39 0.11924
28 0.005 1.103 0.000 0.103 592.676 0.00198
29 0.001 0.293 —0.003 —0.707 1,129.857 0.00377
30 0.043 9.278 0.038 8.278 204.615 0.00068
31 0.049 10.556 0.044 9.556 192.901 0.00064
32 0.018 3.910 0.014 2.910 312.895 0.00104
33 0.000 0.007 —0.005 —0.993 8,257.784 0.02754
34 0.040 8.521 0.035 7.521 213.305 0.00071
35 0.016 3.380 0.011 2.380 336.250 0.00112
36 0.375 80.787 0.371 79.787 75.067 0.00025
37 0.133 28.604 0.128 27.604 119.203 0.00040
38 0.001 0.253 —0.003 —0.747 1,212.676 0.00405
39 0.028 5.971 0.023 4971 253.957 0.00085
40 0.022 4.783 0.018 3.783 284.912 0.00095
41 0.003 0.637 —0.002 —0.363 780.663 0.00260
42 0.033 7.173 0.029 6.173 233.181 0.00078
43 0.026 5.588 0.021 4.588 263.790 0.00088
44 0.174 37.503 0.170 36.503 105.377 0.00035
45 0.089 19.167 0.084 18.167 144.496 0.00048
46 0.052 11.158 0.047 10.158 187.741 0.00063
47 0.046 9.924 0.041 8.924 198.810 0.00066
48 0.000 0.042 —0.004 —0.958 2,912.196 0.00971
49 0.009 1.8364 0.004 0.864 451.521 0.00151
50 0.000 0.090 —0.004 -0.910 2,099.045 0.00700
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Table B.5. Sun flyby characteristics for the nearest 25 stellar systems for the Sun approach
speed vy, = 50 km/s. At this speed, it would take 52 years for FOCAL to reach 550 AU, and 94

years to reach 1,000 AU.

Stellar | Perihelion | Perihelion Minimum | Minimum | Perihelion | Perihelion
system distance distance distance distance speed speed
(Sun radii) from Sun from Sun w.rI.t.
surface surface light speed
# (AU) (AU) (Sun radii) (km/s) c
1 0.028 5.955 0.023 4.955 257.655 0.00086
2 0.024 5.262 0.020 4.262 273.480 0.00091
3 0.011 2.346 0.006 1.346 407.497 0.00136
4 0.000 0.000 —0.005 —1.000 53,443.53 0.17827
5 0.010 2.259 0.006 1.259 415.172 0.00138
6 0.021 4455 0.016 3.455 296.437 0.00099
7 0.009 1.956 0.004 0.956 443.398 0.00148
8 0.000 0.003 —0.005 —0.997 12,913.32 0.04307
9 0.025 5.319 0.020 4.319 272.994 0.00091
10 0.010 2.082 0.005 1.082 429.955 0.00143
11 0.000 0.001 —0.005 —0.999 23,131.62 0.07716
12 0.000 0.075 —0.004 —0.925 2,227.130 0.00743
13 0.040 8.574 0.035 7.574 217.152 0.00072
14 0.024 5.240 0.020 4.240 274.025 0.00091
15 0.003 0.744 —0.001 —0.256 715.015 0.00239
16 0.114 24.526 0.109 23.526 134.529 0.00045
17 0.020 4411 0.016 3.411 298.967 0.00100
18 0.010 2.198 0.006 1.198 418.641 0.00140
19 0.008 1.767 0.004 0.767 466.134 0.00155
20 0.006 1.382 0.002 0.382 526.186 0.00176
21 0.006 1.392 0.002 0.392 524.330 0.00175
22 0.000 0.003 —0.005 —0.997 12,999.21 0.04336
23 0.072 15.392 0.067 14.392 165.054 0.00055
24 0.053 11.484 0.049 10.484 189.284 0.00063
25 0.008 1.769 0.004 0.769 465.929 0.00155
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Table B.6. Sun flyby characteristics for the next 25 stellar systems for the Sun approach speed
U = 50 km/s. At this speed, it would take 52 years for FOCAL to reach 550 AU, and 94 years
to reach 1,000 AU.

Stellar | Perihelion | Perihelion Minimum | Minimum | Perihelion | Perihelion
system distance distance distance distance speed speed
(Sun radii) from Sun from Sun w.rI.t.
surface surface light speed

# (AU) (AU) (Sun radii) (km/s) c

26 0.001 0.305 —0.003 —0.695 1127.425 0.00376
27 0.000 0.000 —0.005 —1.000 59,577.33 0.19873
28 0.002 0.397 —0.003 —0.603 987.793 0.00329
29 0.000 0.105 —0.004 —0.895 1,883.095 0.00628
30 0.016 3.340 0.011 2.340 341.025 0.00114
31 0.018 3.800 0.013 2.800 321.501 0.00107
32 0.007 1.408 0.002 0.408 521.492 0.00174
33 0.000 0.002 —0.005 —0.998 13,762.97 0.04591
34 0.014 3.068 0.010 2.068 355.508 0.00119
35 0.006 1.217 0.001 0.217 560.417 0.00187
36 0.135 29.083 0.131 28.083 125.112 0.00042
37 0.048 10.298 0.043 9.298 198.672 0.00066
38 0.000 0.091 —0.004 —0.909 2,021.127 0.00674
39 0.010 2.150 0.005 1.150 423.262 0.00141
40 0.008 1.722 0.003 0.722 474.854 0.00158
41 0.001 0.229 —0.004 —0.771 1,301.105 0.00434
42 0.012 2.582 0.007 1.582 388.635 0.00130
43 0.009 2.012 0.005 1.012 439.650 0.00147
44 0.063 13.501 0.058 12.501 175.628 0.00059
45 0.032 6.900 0.027 5.900 240.827 0.00080
46 0.019 4.017 0.014 3.017 312.902 0.00104
47 0.017 3.573 0.012 2.573 331.349 0.00111
48 0.000 0.015 —0.005 —0.985 4,853.660 0.01619
49 0.003 0.671 —0.002 —0.329 752.535 0.00251
50 0.000 0.033 —0.004 —0.967 3,498.408 0.01167
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Table B.7. Sun flyby characteristics for the nearest 25 stellar systems for the Sun approach
speed vy, = 75 km/s. At this speed, it would take 34 years for FOCAL to reach 550 AU, and 63

years to reach 1,000 AU.

Stellar | Perihelion | Perihelion Minimum | Minimum | Perihelion | Perihelion
system distance distance distance distance speed speed
(Sun radii) from Sun from Sun w.rI.t.
surface surface light speed
# (AU) (AU) (Sun radii) (km/s) c
1 0.012 2.647 0.008 1.647 386.482 0.00129
2 0.011 2.339 0.006 1.339 410.220 0.00137
3 0.005 1.043 0.000 0.043 611.246 0.00204
4 0.000 0.000 —0.005 —1.000 80,165.30 0.26740
5 0.005 1.004 0.000 0.004 622.758 0.00208
6 0.009 1.980 0.005 0.980 444.656 0.00148
7 0.004 0.869 —0.001 —0.131 665.097 0.00222
8 0.000 0.001 —0.005 —0.999 19,369.98 0.06461
9 0.011 2.364 0.006 1.364 409.491 0.00137
10 0.004 0.925 0.000 —0.075 644.933 0.00215
11 0.000 0.000 —0.005 —1.000 34,697.43 0.11574
12 0.000 0.033 —0.004 —0.967 3340.696 0.01114
13 0.018 3.810 0.013 2.810 325.727 0.00109
14 0.011 2.329 0.006 1.329 411.038 0.00137
15 0.002 0.331 —0.003 —0.669 1,072.522 0.00358
16 0.051 10.900 0.046 9.900 201.793 0.00067
17 0.009 1.960 0.004 0.960 448.451 0.00150
18 0.005 0.977 0.000 —0.023 627.962 0.00209
19 0.004 0.785 —0.001 —0.215 699.201 0.00233
20 0.003 0.614 —0.002 —0.386 789.279 0.00263
21 0.003 0.619 —0.002 —0.381 786.495 0.00262
22 0.000 0.001 —0.005 —0.999 19,498.81 0.06504
23 0.032 6.841 0.027 5.841 247.581 0.00083
24 0.024 5.104 0.019 4.104 283.927 0.00095
25 0.004 0.786 —0.001 —0.214 698.893 0.00233
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Table B.8. Sun flyby characteristics for the next 25 stellar systems for the Sun approach speed
U = 75 km/s. At this speed, it would take 34 years for FOCAL to reach 550 AU, and 63 years
to reach 1,000 AU.

Stellar | Perihelion | Perihelion Minimum | Minimum | Perihelion | Perihelion
system distance distance distance distance speed speed
(Sun radii) from Sun from Sun w.rI.t.
surface surface light speed

# (AU) (AU) (Sun radii) (km/s) c

26 0.001 0.136 —0.004 —0.864 1,691.138 0.00564
27 0.000 0.000 —0.005 —1.000 89,365.99 0.29809
28 0.001 0.176 —0.004 —0.824 1481.690 0.00494
29 0.000 0.047 —0.004 —0.953 2,824.643 0.00942
30 0.007 1.485 0.002 0.485 511.537 0.00171
31 0.008 1.689 0.003 0.689 482.251 0.00161
32 0.003 0.626 —0.002 —0.374 782.238 0.00261
33 0.000 0.001 —0.005 —0.999 20,644.46 0.06886
34 0.006 1.363 0.002 0.363 533.262 0.00178
35 0.003 0.541 —0.002 —0.459 840.625 0.00280
36 0.060 12.926 0.055 1.926 187.668 0.00063
37 0.021 4.577 0.017 3.577 298.009 0.00099
38 0.000 0.041 —0.004 —0.959 3,031.690 0.01011
39 0.004 0.955 0.000 —0.045 634.892 0.00212
40 0.004 0.765 —0.001 —0.235 712.281 0.00238
41 0.000 0.102 —0.004 —0.898 1,951.657 0.00651
42 0.005 1.148 0.001 0.148 582.953 0.00194
43 0.004 0.894 0.000 —0.106 659.476 0.00220
44 0.028 6.000 0.023 5.000 263.441 0.00088
45 0.014 3.067 0.010 2.067 361.240 0.00120
46 0.008 1.785 0.004 0.785 469.354 0.00157
47 0.007 1.588 0.003 0.588 497.024 0.00166
48 0.000 0.007 —0.005 —0.993 7,280.491 0.02429
49 0.001 0.298 —0.003 —0.702 1,128.802 0.00377
50 0.000 0.014 —0.005 —0.986 5,247.612 0.01750




Appendix C

Mission to the solar gravitational focus by
solar sailing
G. Vulpetti'

The aim of this appendix is to show that near-term technology together with a recent
discovery of astrodynamics would allow designing a mission to the closest solar
gravitational focus (SGF, at 550 AU from the Sun) with acceptable flight time. In
the past, other examples of fast trajectory by rocket to the SGF distance have been
published in the specialized literature (e.g., [1]). Before discussing a specific example
mission and for easing its understanding, we shall introduce a minimal set of concepts
and equations for solar-sailing trajectory computation, recommending the interested
reader the indicated references for an extended study, in particular [2]. Here, we limit
ourselves to heliocentric trajectories. (Details on the geocentric trajectory equations
for solar sail spacecraft can be found in [2, 3].)

C.1 SOME CONCEPTS OF SOLAR-SAIL DYNAMICS

Solar gravity and radiation pressure drive the motion of a sail-based spacecraft or
sailcraft. Solar radiation pressure is not a mere perturbation to the motion of such a
spacecraft, but can bring about continuous thrust acceleration comparable with the
gravitational one. Formally, the dynamical equations can be simple. However, even
in the case of a planar sail, equations become complicated when one introduces the
actual features of the source of light, its photon spectrum and the interaction of
photons with the sail materials. In addition, since we have to deal with a space
vehicle, the sailcraft mass breakdown (namely, a mass model of its systems and
subsystems) couples with its trajectory. One should realize two basic points: (a) in
general, the force field actually acting on sailcraft is not conservative (because the
incidence angle of the photon beam impinging on the sail can be greater than zero),
(b) the sailcraft motion can be controlled by steering the sail axis (of symmetry).

! Retired Scientist, Telespazio SpA, Rome, Italy. Email: giovanni_vulpetti@fastwebnet.it
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For our purposes, we need two frames of reference to describe the sailcraft
motion: the heliocentric inertial frame (HIF) and the extended heliocentric orbital
frame (EHOF). HIF could be identified with the mean-ecliptic and equinox at
J2000. EHOF is the generalization of the usual heliocentric orbital frame by including
trajectory branches separated by a finite number of points where the sailcraft’s orbital
angular momentum per unit mass (H) vanishes. The strict definition and properties of
EHOF can be found in [4]. The axes EHOF are given by the columns of the matrix
(rh x rh), where r denotes the direction of the sailcraft position vector (say, R in the
HIF) and h is either the H direction for a direct trajectory arc or the —H direction for
a retrograde trajectory arc or their (common) limit when H = 0.

The key point for writing the general sailcraft motion equation is to introduce the
time-dependent vector function named the lightness vector [5, 6], denoted by L as
follows:

oA=L (C.1)

L is defined in EHOF. Its components (also called the radial, the transversal, and the
normal lightness numbers) represent the components of the solar pressure—induced
vector acceleration in units of the local gravitational acceleration or 1/ R*, where 1
denotes the solar gravitational constant. Thus, the classical dynamics equations of
sailcraft motion can be written as

d

—R=V
dt

4
dt

(C.2)
V=l a s A A

(Here, for simplicity, Equations (C.2) do not contain the mass rate equation; actually,
if a sailcraft is controlled by small attitude rockets then dM /dr < 0, where M is the
vehicle mass.) One then realizes that sailcraft trajectory can be analyzed in terms of
the L vector only, even though an actual control shall operate on the sail orientation.
This is an important point that contributed to the discovery of high-speed trajectory
families as recently as the 1990s. In order to highlight the different roles of the L
components, we report the main equations for orbital sailcraft energy E, angular
momentum and their time rates ([4-6] contain full discussions of such equations and
their significant consequences for sailcraft dynamics):

d . Hd
E=1v2_(1 ro fp D4y
V==X R’ dt R2 dt
Hx L u=m, by T h—Ahxr) (C.3)
dt "R’ dt R "
LTy H = Hh
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The main quantity in Equations (C.3) is the invariant H—namely, the projection
of the angular momentum onto the z-axis of the heliocentric orbital frame. Its
derivative depends on the transversal lightness number, drives the E change, and
determines the history of H. Note that the normal lightness number governs the
bending of H; an important consequence is analyzed in [4].

In general, L is a complicated function of the sailcraft mass (M) on sail area (S)
ratio (or the spacecraft sail loading, usually denoted by o), the thermo-optical
properties of the sail materials, the sail axis control angles, the spacecraft velocity,
and the characteristics of the source of light [2, 3]. As usually conceived, a practical
sail consists of a multi-layer film: the reflective layer, the emissive layer, and the
substrate the other two layers are deposited on. The reflective layer is always facing
the Sun in a heliocentric trajectory, whereas the emissive layer allows keeping the sail
temperature sufficiently low. (They are known also as the front side and the back side
of the sail, respectively.) Although specular reflection is the dominant effect for
photon—sail momentum exchange, other non-negligible effects have to be taken into
account; an appropriate discussion can be found, for example, in [2] and [5, the
appendix]. If the substrate (the heaviest component of a sailcraft) is removed,” then
one has an all-metal sail capable of achieving very high speeds [4-6]. This is the
configuration we shall consider for a fast mission to SGF.

Neglecting the Sun’s finite size and limb-darkening effects® and retaining the
linear terms in the sailcraft velocity, one can arrive at the following expression for
the lightness vector:

L = Agcosacos g [(2rcosacosé + xpd + ka)(1 — 2,) — 2rsinacos §3,|n

1-28,
+a+d)| —-p,
0
where
CcoS a oS % cos .
n= | sinacosé |, 656 sing |, @=RV, V=|V|
sin 6 0
(C4)
N Wiau -
N=io,—, 0,=2 ; 0.001539kgm™~,
0T M 914vC

Wiw =1368Wm™2, g, =0.00593ms>

2The first experiments on plastic substrate removal, simulating a process in space, were
performed at ENEA (Rome, Italy) in 1998 [10].
3 References [2, 3] contain formulas for dealing with such sail irradiance reduction effects.
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In Equations (C.4), a and 6 denote the azimuth and elevation of the sail axis n
(oriented backward with respect to the reflective sail side) in EHOF. The set
(r,d,a) denote the specularly reflected, the diffused reflected, and the absorbed
fractions of the solar incident flux by the sail materials, respectively. Their exact
meaning, numeric handling, and relationship to orbit determination can be found
extensively in [6, 7]. x, denotes the surface coefficient* of the front side, whereas x is a
function of the sail temperature [5, 6]. The vector (3 (resolved in EHOF) accounts for
the aberration effect, which is a linear one in the sailcraft velocity and, therefore, is
not negligible for a high-speed flight. The quantity o, represents the so-called critical
density. One has the following important relationship

oc=0.1/\ (C.5)

where 7 is the thrust efficiency [5]. Note that g, 4 is the solar gravitational accelera-
tion at 1 AU, whereas W, denotes the solar constant; the value given above is
compliant with another reference’ [8].

Equations (C.4) can be called the connection equations since they represent the
link between the direct control variables and parameters and the lightness numbers
that enter the motion equations.

A sailcraft is not an easy-to-build space vehicle, at least not at the present time.
Its overall system has to be carefully tested in a number of real missions in the Earth—
Moon system before attempting to deliver a scientific payload in the solar system and
beyond. Here, we are forced to assume that such tests have been successful in order to
simulate a fast flight beyond the heliosphere. The theory behind such a mission is
based on that developed in [4-6]. The related trajectory classes, named the H-reversal
mode for solar sailing, are all characterized by reversal of the orbital angular
momentum of the sailcraft. This is the only way to achieve the absolute maximum
of the vehicle energy. In terms of speed, this means that the sailcraft is able to achieve
a cruise value considerably higher than the Earth’s heliocentric orbital speed.® A quite
important issue for an all-metal sail spacecraft is that it requires no additional
propulsion systems for both escaping the Earth—-Moon system and flying-by the
Sun. Therefore, a mission to a distant target could be carried out without planetary
launch windows.

C.2 EXAMPLE SAILCRAFT FOR SGF MISSION

Although we do not enter the details of a sailcraft model for an SGF mission,
nevertheless we mention just a few points about its main systems. The sail system
would consist of a film of aluminum and chromium (130nm and 10nm thick,

41t takes on 2/3 for a Lambertian surface.

3 This quantity has to be measured accurately for a sailing mission, but this could be performed
when an experimental sailcraft flight starts.

® This value amounts to 27 AU/yr. For comparison, the fastest space vehicle made so far
(namely, Voyager 1) has a cruise speed of 3.5AU/yr. 1 AU/yr = 4.7405km/s.
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respectively) deployed and kept open all the flight by a technique [9] studied by the
Aurora Collaboration (AC), which also has been comparing some methods of
in-orbit plastic removal [10]. For this study, AC has selected an attitude control
system based on chemical cold-gas microengines developed by the European Space
Agency. Power system selection focused on the Pu®*®-based general purpose heat
system (successfully used in Voyager, Galileo, Ulysses, etc.) plus a thermo-photo-
voltaic converter [11]. This system has high reliability and efficiency. Considering the
enormous target distance from the Earth, AC’s choice has fallen on a laser system
based on Nd:YAG [12]. The SGF mission would need a minimum of 100kg of
scientific instruments (from technology of the 1990s) that are meant to work up to
750 AU, for which a bit rate (with coding) of 200 baud is considered. Computer
simulations tell us that, using current or near-term technology, the sailcraft in the
heliocentric field can have a mass as low as 300kg (including contingency) and a
circular sail area of 0.24km?. Thus, the vehicle sail loading takes on 1.25g/m>*—
namely, about 80% of the critical density—whereas the mass of the complete sail
system amounts to 46% of the sailcraft mass.

The above goal of 1.25g/m? allows applying the H-reversal mode theory to
achieve a very high cruise speed, or better a mean radial speed very close to the cruise
one. This entails that the time to reach the perihelion is considerably short (200 days
in our example mission) compared with 4 years to 5 years of the conventional
technique by a Jupiter flyby.

C.3 TRAJECTORY PROFILE FOR SGF MISSION

In this specific example, the sailcraft points at the so-called Galactic anti-center
direction. The importance of this target is detailed elsewhere in this book. The
spherical coordinates of such a direction in the above HIF are approximately:
longitude = 86.83°, latitude = 5.537°. The minimum operational distance for pay-
load is 550 AU. These three numbers represent the target of our example mission or
the SGF target, for short.

Reasoning in terms of lightness numbers, the flight design we are going to discuss
is the solution to the following problem:

What is the history of the 3-dimensional L, relative to an H-reversal sailing mode,
which minimizes the flight time to the SGF-target, subject to the constraint that
the sail temperature peak does not exceed 60%’ of the aluminum melting point?

Obviously, this temperature constraint determines a lower limit on the reachable
perihelion.® We have used the nonlinear dynamics approach—in particular, the

7 This value is chosen to preserve the mechanical properties of the aluminum film and, at the
same time, to allow sailcraft to reach a low perihelion.

8 Additional constraints may come from requirements of attitude time rate when the sailcraft
approaches the perihelion.
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Figure C.1. Lightness vector.

Levenberg-Marquardt—-Morrison method—for minimizing the (Euclidean) norm of
a complicated penalty vector function such as that stemming from the H-reversal
mode theory. We shall show nominal time behaviors of meaningful quantities zoomed
on the interval where they vary appreciably. Outside such an interval, quantities
are either constant or asymptotically constant. This avoids displaying compressed
plots.

The optimal flight time of the current problem results in 23.46 years, the mean
radial speed taking on 23.55 AU/yr whereas the cruise speed achieves 24.01 AU/yr (or
113.82 km/s)—very high values indeed. Figure C.1 shows the time profile of the
lightness numbers (defined in Section C.1) which induce this dynamical output.

In general, a low sail-loading value entails a high value of the lightness
number, as in this case, compared with the typical values (0.01-0.1) related to sail-
craft with some polymer-supported sail.” Note that the transversal lightness number
crosses zero while the normal one achieves its maximum. After the perihelion, there
is an attitude maneuver that turns the radial lightness number into a value greater
than 1.1°

In terms of sail axis angles, the above control can be read in Figures C.2 and C.3,
where both profiles in EHOF (or HOF) and HIF are shown. Note that the histories of
azimuth and elevation in HOF are particularly simple.

® Such sails are considerably easier to make and could be appropriate for multiple interplanet-
ary transfers.

10 This is allowed by a subcritical value of the sail loading and high thrust efficiency, according
to Equation (C.5).
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Figure C.3. Sail axis elevation and latitude.

It is meaningful that the angle of photon incidence onto the sail, shown in Figure
C.4, remains practically constant down to the post-perihelion attitude maneuver.
This means that the sail temperature changes only with solar distance. In contrast,
when the temperature decreases sufficiently after its peak, an attitude maneuver can
be performed to further increase the subsequent cruise speed.
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Figure C.4. Incidence angle.

Figures C.5 and C.6 show that the trajectory, induced by the above control Earth
longitude at sailcraft injection'! into the solar branch, has been optimized. Injection
date is on October 23, every year. The computation of the related window is outside
the scope of this appendix. However, preliminary results indicate an injection window
of 2 weeks. Figures C.5 and C.6 highlight special events in the unusual trajectory
shape characteristic of the H-reversal mode families.

Together with Figure C.7, which displays the vehicle speed, and Figure C.8,
which displays energy and invariant H, one can note the general policy underlying
a high-speed trajectory. At injection, the sailcraft begins by decelerating and passes
through a point of minimum speed. Then, the along-track component of the total
vector acceleration becomes positive and keeps on increasing. At the minimum value
of H, also the sailcraft energy achieves its minimum, while the vector H crosses the
ecliptic plane and then reverses.'> As a consequence, the spacecraft can draw close to
the Sun on acceleration. Figures C.7 and C.8 show that both energy and speed never

11 Sailcraft of such a low sail loading could take about 30-40 days, depending on the allowed
control history, to escape the Earth-Moon system.

12 At the reversal point, even angular momentum achieves a non-zero minimum magnitude in
this trajectory family [4], in contrast to the other two for which Hye, = 0 [5-6].
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Figure C.9. Sail temperature.

cease increasing.'® In practice, 250 days after injection one could consider speed as
the cruise speed, equal to 24.01 AU/yr in this case. In Figure C.7, the vertical line on
the right indicates where the sailcraft energy achieves the zero value—namely, the
escape speed.

Figure C.9 shows the sail temperature behavior. Two horizontal lines indicate
0°C and the aluminum melting point, respectively. Some important information can
be read. Except for 36 days in 23.5 years, the sail temperature is below 273 K. This is
caused by (1) the sail absorptance ranges from 0.072 to 0.075, and (2) the sail always
being tilted at sufficiently large angles near the Sun, as shown in Figure C.4. The peak
temperature (514 K) is achieved at the perihelion (0.1655 AU) tagged at 200.315 days
after injection. This maximum satisfies the problem constraint. Finally, in Figure
C.10 we plotted the main contributions to the radiation—pressure thrust around the
perihelion and the final attitude maneuver.

As expected, the dominant term is due to photon specular reflection on the sail.
However, neglecting the other contributions would entail error in the trajectory
computation where sensitivity is the highest. Error propagation in the sailcraft’s final
direction to SGF would result in the target being missed.

Sailcraft navigation and guidance are key areas to be deeply studied. As a point
of fact, although solar sailing represents a true propulsion mode continuously acting

13 No sail attitude controls other than the H-reversal mode are able to reach such high cruise
speeds. In particular, if the maximum lightness number A(« = § = 0) is lower than unity, then
the sailcraft cruise speed is lower than the maximum value the vehicle achieves shortly after
perihelion [4-6]. If X is higher than 1—as in this example mission—then an appropriate attitude
maneuver causes the radial lightness number A, > 1. As a result, speed continues to increase
(even at large distances from the Sun).
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Figure C.10. Main thrust components.

for all the flight, sufficiently far from the Sun one does not expect to be able to correct
previous errors (due to many present-day uncertainties) by the rapidly decreasing
thrust level.

C.4 CONCLUSIONS

The evolution of spacecraft system technology and the advancement of solar sail
dynamics induce us to deem it possible—in the near term—to start solar sailing as a
significant part of a new era in space exploration. Not only does it seem possible to
send frequent and low-cost scientific probes in the Earth-Moon system and beyond,
but also it appears just as feasible to make a low-mass sailcraft to reach the heliopause
in just a few years and the solar gravitational lens region in a couple of decades. Such
a quality jump is fully compliant with the current views of modern spaceflight.
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Appendix D

“FOCAL” radio interferometry by a
tethered system

D.1 A TETHERED SYSTEM TO GET MAGNIFIED RADIO PICTURES
OF THE GALACTIC CENTER FROM 550 AU

The goal of this appendix is to put forward for the first time the notion of a tethered
system for the FOCAL spacecraft. In fact, we are going to show that the length of this
tether system does not need to be very long: actually, just a couple of kilometers or so
is sufficient, and this is a good result because a 2 km tether is certainly technologically
feasible. It is important to point out that the tether could possibly be replaced by a
truss. This would of course increase system stability. To build a 2km long truss in
space, however, is a very difficult engineering task. We thus prefer to speak about a
tethered system rather than a truss system.

We start by facing the problem of Corona Plasma fluctuations with the relevant
disturbances that affect radio waves passing through the Corona itself, as described in
Chapter 8. Finding a solution to this problem is vital for the success of the FOCAL
space mission. In this appendix we claim that the best way to solve the Corona
problem is by doing interferometry in between two antennas of the FOCAL space-
craft. Thus, the FOCAL spacecraft, rather than having just one antenna (inflatable
and, say, 12 m in diameter), must have two identical antennas in the new configuration
proposed here. This doubles the sensitivity of the system, and introduces the new and
fruitful idea of a tether tying each of them to the main cylindrical body of the FOCAL
spacecraft, as depicted in Figure D.1.

The tethered FOCAL system we wish to propose is described as follows:

(1) The whole spacecraft moves away from the Sun along a rectilinear, purely radial
trajectory.

(2) When the distance from the Sun is, say, 400 AU to 500 AU, all “engines” (solar
sails? nuclear-electric? antimatter?) are turned off, so we can assume that, at least
beyond 500 AU, the Sun speed of the whole system is uniform.
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Figure D.1. A tethered system, letting two antennas describe Archimedean spirals around the
FOCAL spacecraft. The whole system moves at uniform speed away from the Sun along a
purely radial trajectory.
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Uniform speed means no acceleration. So, one can start deploying the tether. The
body of the FOCAL spacecraft is supposed to be cylindrical and kept in rotation
at a suitable angular speed (i.e., FOCAL is supposed to be spin-stabilized). On
two opposite sides of the cylinder, the two packed, inflatable antennas are put out
of the spacecraft. And each antenna is tied to the spacecraft by a tether kept taut
because of the angular rotation of the whole system.

The two antennas are inflated at the same time when they have reached the
minimal safety distance from the spacecraft.

The two antennas are oriented and pointed toward the Sun. Notice that this does
not mean that the two antenna axes are parallel to each other. In practice, a huge
isosceles triangle is created in space, having as its basis the distance in between the
antennas and as its apex the center of the Sun (at a distance greater than 550 AU).
Slowly, equal lengths of both tethers are deployed on each side of FOCAL.
Because of the uniform angular rotation of the whole system, this means that
the endpoints of the tether (i.e., the center of each antenna) are made to describe
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Figure D.2. Similar triangles relating the FOCAL tether length, the FOCAL spacecraft dis-
tance from the Sun, the size of the Galactic black hole and its distance from the Sun.

an Archimedean spiral (i.e., a spiral with polar equation r = const - #) around the
axis of the FOCAL cylindrical spacecraft. And, in turn, this fact actually means
much more: since each antenna is pointing to the Sun, then ...

(7) On the other side of the Sun, at the distance of the Galactic center (i.e., about
28,000 It-yr away) two “huge” Archimedean spirals are correspondingly being
described around the Galactic center. Just at the center, a “huge” black hole is
suspected to exist, as depicted in Figure D.2. We call this gigantic black hole in
this appendix the “Galactic black hole”, and provisionally assign to it the
estimated mass of a million times that of the Sun. Consequently, the
Schwarzschild radius of the Galactic black hole is a million times larger than
the Sun Schwarzschild radius (i.e., it equals ~2.95 x 10°km ~ 0.01976 AU). The
linearity between mass and Schwarzschild radius appears in Equation (1.7).

(8) We are now able to estimate the minimal tether length necessary to include the
whole of the Galactic black hole within the area encompassed by the
Archimedean spirals. Figure D.2 clearly shows two “‘similar” isosceles triangles:
(1) the “small”” one, between the tethered FOCAL system and the Sun, and (ii) the
“large” one, between the Sun and the Galactic black hole. These two similar
triangles yield immediately:

minimal tether length _ 2rS¢’/1war:schi/d of Galactic black hole
550 AU 28,000 light years

(D.1)

Solving for the tether length and inserting the relevant numerical values, one finally
gets

minimum tether length = 1.8 km (D.2)
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Since the actual tether length must be higher than this, we reach the conclusion that a
tether about 2km long would certainly allow us to see not just the Galactic black
hole, but also a host of astrophysical phenomena taking place around it, like the
“swallowing” of stars, etc. by the Galactic black hole. We remind the reader that
Table 1.6 gives the spatial resolution for any object at the distance of the Galactic
center, and so it also gives the spatial resolution for the Galactic black hole.

In conclusion, it is believed that the 21st and following centuries are likely to see a
host of FOCAL space missions, each one devoted to a different astrophysical target
and thus launched along a different direction out of the solar system. But the guess is
made here that all of them will use a tethered system as described in this appendix in
order to avoid, by virtue of interferometry, all the problems caused by random
fluctuations occurring within the solar Corona. The tethered system could be
replaced by a long truss to make the system rigid, but we shall not discuss this truss
here.
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Appendix E

Interstellar propulsion by Sunlensing

E.1 INTRODUCTION

An entirely new way of exploiting the gravitational lens of the Sun arose in the mind
of this author and of Prof. Gregory L. Matloff of New York University (NYU) in the
year 2000: this is “interstellar propulsion by Sunlensing”—namely, the propulsion for
interstellar flight that the focusing power of the Sun would insure on an interstellar
spacecraft made up by a suitable microwave sail like Bob Forward’s “StarWisp”.

To put it in easy terms, just imagine that you have a bright star (called “‘the
source’ hereafter), the Sun, and a spacecraft to be pushed away from the Sun in the
direction exactly opposite to the source on the celestial sphere. Then, the Sun’s gain
(i.e., the Sun’s geometrical focusing) would be so strong that one might imagine the
spacecraft on the opposite side being pushed away at higher and higher speeds—
namely, at a (roughly) uniformly accelerated motion, so that even relativistic speeds
could be achieved in a relatively short time. The only important point is that a perfect
alignment between source, Sun, and spacecraft (the three “Ss”) be kept at all times.
This could be achieved by putting aboard the spacecraft a sort of PLL (Phase Locked
Loop device) capable of steering the sail so as to keep it perfectly aligned with the Sun
and the source at all times.

It was in this form that the notion of interstellar propulsion by Sunlensing was
put forth publicly for the first time by this author at the STAIF-2001 Conference
(STAIF is an acronym for “Space Technology and Applications International
Forum™) held in Albuquerque, New Mexico, February 12—-14, 2001, and published
in its Proceedings (see [1]).

In this chapter we investigate this concept by adding Gregory Matloff’s sugges-
tion of using a space-based power station as the source and by utilizing a similar
equation to (E.1). It is clear, however, that a much deeper study of this new form of
interstellar propulsion by Sunlensing must be done as soon as possible.
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E.2

HIGHLIGHTS ON RESEARCH AREAS IN INTERSTELLAR
PROPULSION BY SUNLENSING

This author’s belief is that the problems listed in this section are very relevant to
interstellar propulsion by Sunlensing, but they have not yet reached the stage of
maturity required to be cast in mathematical form.

(1)

(@)

Let us list a few of them:

The alignment between the star acting as the “propeller”, the center of the Sun,
and the sail must be extremely tight. Thus, probes propelled by Sunlensing must
head toward ‘“‘nothing”—namely, toward radial directions from the Sun that are
of no interest. Nevertheless, one could just let the probe fly along one such
“forced” radial trajectory until it reached the closest point to the target star.
Afterward, more traditional propulsion systems could be used for the final
approach to the target star. Optimal “two-leg” trajectories of this kind have
already been proposed by Giovanni Vulpetti in a series of JBIS papers for the
exploration of the nearby stars by relativistic probes. However, he was not
thinking of propulsion by Sunlensing, but rather of nuclear propulsion; so his
trajectories must be re-computed.

According to a suggestion first put forward publicly by Gregory Matloff at the
STAIF-2001 Conference, one could imagine putting a microwave source on one
side of the Sun and let the probe be pushed to interstellar distances just in the
opposite direction by virtue of Sunlensing. This of course solves the exit direction
problem just mentioned at (1) since we can place the microwave generator where
we want around the Sun, and thus we can select at will the sail exit direction.
Figure E.1, drawn for and presented in this book for the first time, depicts this
situation.

We would like to remark, however, that in this case one must use a different
formula for the minimal focal distance than (1.8). In fact, in this case the source
no longer is placed at infinity and formula (1.10) must now be used, where the
source distance is the power station distance and the spacecraft distance is the
solar sail distance. Thus, the correct formula yielding the distance of the solar
sail from the Sun as a function of the distance of the power station from the Sun
(on the opposite side) is:

2

T Sun
dwlarsail = (El)
4GMSun réun

2
& dpower station

This formula yields an infinite distance for the solar sail when the denominator
on the right-hand side approaches zero. In this case, it is immediately seen that
the power station distance has just the value (1.9) of 550 AU (for the naked Sun)
and so we infer that: the solar power station must be initially located at distances
from the Sun much greater than 550 AU. Only later will the solar power station be
forced to get closer and closer to the Sun, but always at distances higher than
550 AU, so as to gradually push the solar sail farther and farther out.
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Solar power

station Solar sail

d[mwcr station solar sail

Figure E.1. A solar power station pushing a solar sail (more properly a microwave sail like Bob
Forward’s ““StarWisp’’) away from the Sun in exactly the opposite direction. The two distances
are related by (E.1).

(©)

Put another way, use of (E.1) instead of (1.8) changes the old picture of just

“reaching 550 AU” into a new one that is essentially a tradeoff between the
distance of the microwave generator and the sail distance. This author’s sugges-
tion is that it could be more convenient to initially send the microwave generator
farther out than 550 AU, and then let it approach 550 AU “from outside” to let
the sail be gradually pushed to high relativistic speeds.
The final problem concerns the Cosmic Microwave Background (CMB). In
Chapter 9 and earlier (in [2]), this author studied how to utilize NASA’s
Interstellar Probe (ISP) to find out “what happens” to the CMB at a distance
of 763 AU where (9.22) predicts the ISP would be hit by the CMB focused by
Sunlensing. We would just like to add here that our feeling is that although CMB
focusing by the Sun may well exist, it would have a very tiny effect. In fact, we
think that the amount of focused CMB in any direction around the Sun simply
equals the amount of CMB radiation shielded by the Sun’s disk in that direction,
but we do not propose to write down the integrals now.

E.3 AN EXAMPLE: LIGHT FROM SIRIUS, NAKED SUN GRAVITY

LENS, AND RELEVANT SOLAR SAIL SIZE

To give just one example, recall from Section 1.3 that the gain of the gravitational lens
of the Sun can be proved to be given by (1.15); that is

wsenitd ST GMgy, 1 8T°GM,
GSun _ 471'2 rSc/m(g\Lschlld _ ™ s Sun X _ T S Sun v (E2)
C C
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Applying this formula to spacecraft propulsion means

(1) considering the light from a bright star (e.g., suppose the source is Sirius) that
reaches the Sun;

(2) computing where the Sun’s gravitational lens focuses such a light beam from
Sirius (presumably, much farther out than 550 AU, especially if one takes the
Corona into account, as outlined in Chapter 8);

(3) placing a spacecraft like a solar sail at the minimal distance where Sirius’s light is
focused by the Sun and then let it be pushed away from the solar system as a
result of this light pressure on the sail. The goal is of course to compute how fast
the sail will move (presumably with a constant acceleration).

In order to perform this calculation, only formula (E.2) matters now, since it yields
the numerical values of the Sun’s gain according to the frequencies emitted by the
source. Of course, Sirius and all stars emit, especially in visible light (A = 400 nm
through 700 nm;i.e., v = 5.5 x 10° GHz through 4.3 x 10° GHz), but, for the sake of
completeness, in Table E.1 we give the Sun gain for radio as well as for visible
frequencies—(the definition of dB is N dB = 10 log;,(N) = 10 In(N)/In(10). Please
note that these are the gain values for the “naked” Sun (i.e., the Sun as if it had no
flames). The flames—namely, the Corona—have important (negative) consequences
on the Sun’s focusing, as briefly described in the coming section. These coronal
effects, however, fade out with increasing spacecraft distance from the nearest focus.

Table E.1 shows that for visible light the on-axis gain ranges in between 112 dB
(for red light) and 114 dB (for violet light), so, on the average, one might say that for
visible light the Sun gain equals about 113 dB.

We would now like to point out that this 113dB Sun gain for visible light is
actually too optimistic. In fact, (E.2) is simply the maximum of the more complicated
formula yielding the antenna patterns of the Sun lens as

r 2wp |2
Gsun(A p,2) = 4W2Xg J3 (}\P”Zg) (E.3)

Table E.1. On-axis gain of the gravitational lens of the naked Sun for seven important
frequencies.

Line Neutral | OH H,O Ka CMB Visible Visible
H band peak red violet

Frequency v 1.420 1.6 22 32 160 43 x105 | 55 x10°

(GHz)

Wavelength A 21 18 1.35 0.937 0.106 700 nm 400 nm

(cm)

Naked Sun gain 57.4 57.9 69.3 71.46 80.40 112.22 114.65

(dB)
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Sunlight GAIN (dB): 400m SAIL at 550 AU
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Figure E.2. (Naked) Sun gain for a 400-meter solar sail at 550 AU from the Sun.

Sunlight GAIN (dB): 400m SAIL at 1000 AU

140
130
120
110
100

90

80

50
40

3(—)200 —-66.67 66.67 200

SAIL WIDTH in meters centered at zero

Sunlight GAIN (dB): 400m SAIL at 1000 AU

Figure E.3. (Naked) Sun gain for a 400-meter solar sail at 1,000 AU from the Sun.

This formula (Andersson and Turyshev [3]; West [4]) yields the naked Sun gain at
distance p from the focal axis, and at spacecraft distance z from the Sun, Jy(x) being
the Bessel function of order zero and argument x. Since J,(0) = 1, (E.3) reduces to
(E.2) for p — 0, but notice also that it does the same for z — co. Having accepted
(E.3), the surprise comes when one plots it for different ranges of the off-axis distance
p, as shown in Figures E.2 through E.5.

In Figures E.2 and E.3 the off-axis distance ranges in between —200 m and 200 m.
This is just the case for a solar sail 400-meter large, like the one currently under
consideration by NASA for the Interstellar Probe (ISP) to be launched toward the
direction of the incoming interstellar gas (see Mewaldt and Liewer [5] or the ISP
website http://interstellar jpl.nasa.gov/).
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=) Sunlight GAIN (dB): 4m SAIL at 550 AU
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Figure E.4. (Naked) Sun gain for a 4-meter solar sail at 550 AU from the Sun. Rather than a
sail, it could be just a solid antenna, as planned by NASA for the so-called NASA InterStellar
Probe (ISP) described in Chapter 9. From this diagram the overall solar pressure on this rigid
antenna could be computed, leading a nearly-uniformly accelerated motion away from the Sun
beyond 550 AU.

Sunlight GAIN (dB): 4m SAIL at 1000 AU
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Figure E.5. Same as above, but with the spacecraft now at 1,000 AU from the Sun.

In Figure E.3 the off-axis distance ranges in between —2m and 2m (i.e., one
considers a 4-m solar sail only).
The antenna patterns in Figures E.2 through E.5 clearly show that

(1) The on-axis peak gain for visible light is ~ 113 dB, but the peak goes off to much
smaller values even if one keeps at very short distances (meters or less) from the
axis. This means that a very robust control mechanism must keep the sail center on
axis at all times.
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(2) The actual average Sun gain on the sail is in fact much lower than the promised
113dB. In practice, the average Sun gain decreases for increasing sail sizes. For
instance, a glance at Figures E.2 and E.3 shows that for the 400-m ISP solar sail
the average Sun gain is about 75 dB, but for the much smaller 4-m sail in Figures
E.4 and E.5 the gain is about 95dB.

E.4 CONCLUSIONS

Exploiting the gravitational lens of the Sun to achieve propulsion of suitable solar
sails is a new topic that deserves much further study.

This author thinks that even relativistic speeds could possibly be achieved by
these sails were they constantly pushed into an accelerated interstellar motion by the
radiation focused on them by the gravitational lens of the Sun.

Other civilizations in the Galaxy—maybe much more advanced than ours—have
probably already exploited the gravitational lens of their mother star not only for
telecommunications and SETI, but for interstellar propulsion as well.
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Appendix F

Brownian motion and its time rescaling

F.1 INTRODUCTION

Let us now change the topic of the discussion, and consider Brownian motion. Since
Brownian motion has been investigated by physicists and mathematicians for about a
century, a number of aspects of both theoretical and practical interest have been
brought to light, and a large book would thus be required to cover them. In this
book we shall confine ourselves to a very particular feature that we will call “time
rescaling”.

By time rescaling we mean making a change in the Brownian motion time
variable in such a way that the new time variable does not elapse uniformly.
The new resulting Brownian motion is mathematically called time-inhomogeneous
Brownian motion, and will be called time-rescaled Brownian motion in the present
book. Thus, our time rescaling is a suitable nonlinear transformation, which may be
adapted to represent a host of scientific phenomena in the fields of mathematics and
physics as well as in those of economics and biology.

For instance, it is evident that the time-rescaling transformation is of interest in
the theory of relativity, inasmuch as two time variables, “‘coordinate time” and
“proper time”, exist in relativity, and Brownian motion may then be a function of
either of them. In addition to restricting our presentation to time-rescaled Brownian
motion, we want to restrict it further to those aspects of Brownian motion that are
related to the KLT.

Now, the basic result proved in this book (Maccone First KLT Theorem, proved
in Appendix G) shows that the KL eigenfunctions for time-rescaled Brownian motion
are Bessel functions of the first kind having nonconstant order. This appears to be an
original contribution, not only with regard to time-rescaled Brownian motion, but
also to the theory of Bessel functions of the first kind. In fact, several properties of
Bessel functions that are well-known to hold good for constant order are naturally
extended here to a general, time-dependent order.
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F.2 BROWNIAN MOTION ESSENTIALS

Brownian motion—or, better, standard Brownian motion—is the easiest and most
important non-stationary Gaussian process. We shall denote it by B(¢), and define it
as the stochastic process with probability density function (of the first order) equal to
the well-known Gaussian

1 5 (F.1)

tad

From this definition, it immediately follows that the mean value of Brownian motion
is identically zero; that is, it equals zero for all values of time

EB0) = | xfy () de =0 (F2)
and taking 1 — 0 in (F.1), it follows that B(¢) fulfills the initial condition
B(0)=0 (F.3)

In other words, at + =0, B(t) becomes deterministic with precise value B(0) = 0.
Another way of stating this is to say that as t — 0 the Gaussian density (F.1)
approaches the Dirac delta function §(x).

Sometimes, Brownian motion is called the Wiener process, or the Wiener—Lévy
process, according to the aspects of the topic that the authors desire to stress. We are
not going to prove here the mathematical properties of Brownian motion. The
interested reader may find, for instance, a nice presentation of them in [2, pp. 292—
293]. Instead, we just highlight the main results, as well as those special features that
will be used in the remainder of the present book.

The relevant variance and standard deviation are immediately seen to be given,
respectively, by

OB(!) = :l:\/; (FS)

If we plot B(¢) against ¢, the resulting graph is a continuous curve, randomly moving
above and below the time axis, in such a way that the standard deviation curve (F.5)
is a parabola having its vertex at the origin and its axis coinciding with the time axis.
Figure F.1 illustrates this.

An interesting property of Brownian motion which we use in this book is its self-
similarity to the order 1/2, expressed by the formula

B(ct) = /cB(t) (¢ >0) (F.6)

To understand why this is true, just replace ¢ — ¢t into the Gaussian density (F.3),
and then rearrange as follows:

1 - 211 ( 7 ) ?
SB(en(X) = —= e M\ = [ g (x). (F.7)
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Figure F.1. Illustration of Brownian motion B(¢) vs. t. The dotted lines are the upper and lower
branches of the standard deviation parabola, having the equation 4+/7.

To complete this overview of Brownian motion properties, we state without
proof (e.g., [2, p. 293]) that the autocorrelation of Brownian motion is given by

ty fort <ty

E{B(1)B(1)} = { (F.8)

15 for Hn>n

This circumstance may be re-phrased by introducing a new symbol, called the
minimum (= smallest of) and denoted A, so that (F.8) takes the form

E{B(1)B(12)} =ty A 1> (F.9)

Let us now express the minimum in terms of the unit step function, defined by

U(1) = (F.10)

0 fort<O0
1 fort>0

The unit step function is clearly discontinuous at the origin, and its value there is not
defined by (F.10).! Moreover, the derivative of the unit step function (in the sense of
the theory of distributions) is the Dirac delta function familiar to physicists and
engineers alike (see [3, pp. 255-282])

du(r)
dt

= 5(1). (F.11)

Let us now go back to the minimum ¢; A ¢,. An easy but essential result about the
minimum #; A ¢, is that it can be re-written in terms of the unit step function as

! Actually, within the mathematically rigorous context of the theory of distributions it can be
shown that the value of (F.10) at the origin may be any value between zero and one, for this
point is a “‘topological” one. However, we shall not elaborate further topics because it is
irrelevant to the current purpose.
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follows:

UAL=tuU(t, — )+ LUt — 1r). (F.12)
A generalization of this is
F(hnty)=F(t)U(ty—t) + F(t) Ut — 1) (F.13)

where F(...) is any function of the minimum 7, A z,. The full power of (F.13) in
helping one to get rid of a number of apparent difficulties related to minimum will
show up in Appendix I (particularly its equations).

F.3 KLT OF BROWNIAN MOTION

We are now ready to compute the KL expansion by solving the integral equation
(10.18) for standard Brownian motion. This exercise yields a fundamental insight into
the mathematical methods that will later be developed to find new results.

In practice, the integral equation (10.18) must be solved with the autocorrelation
(F.9) of Brownian motion. However, dealing with the minimum #; A ¢, as if it was a
continuous function of both its arguments may not be easy, so that we replace it
by the equivalent expression (F.12) in terms of unit step functions. The integral
equation (10.18) then becomes

T

Ma(11) = L MUt — 1) + U — 6)la(ts) dis

rt

=1 J.T b, (12) dty +J

41

OI by (ty) dty. (F.14)

If t; = 0, the right-hand side of the last expression vanishes, and we get the initial
condition for the eigenfunctions

d)n(o) =0. (FIS)

Differentiating both sides of (F.14) with respect to #; reduces the integral equation to
a differential equation. This procedure actually amounts to realizing that the integral
equation (10.18) is not a Fredholm-type for the particular autocorrelation (F.9) of
Brownian motion, but is actually a Volterra-type. We thus get

A de, (1) _ JT

dt ¢n(t2)d[2_l1¢ﬂ([1)+ll¢n([1)' (F]6)
1 1

t

The last two terms cancel each other (and similar cancellations will prove to be
vital in future calculations), so that, by setting #; = T, (F.16) yields the end point
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condition for the eigenfunctions

dn(1)
dt t=T

= ¢(T) =0. (F.17)

The presence of a remaining integral in (F.16) suggests performing a further
differentiation with respect to ¢; changing (F.16) into the differential equation

d*¢,(1)
dt?

This is the harmonic oscillator differential equation, whose general integral is a linear
combination of a sine and a cosine

¢,1(z):Asin(\/LA_n> +Bcos(\/%_n) (F.19)

where 4 and B are integration constants.
Determining the integration constants and A, from the two boundary conditions
(F.15) and (F.17) and the normalization condition (10.4), it follows that

1
300 =0 (F.18)

Gult) = %sin<%t> (F.20)
41?
e e e G L (F21)

These are just the KL expansion coefficients for standard Brownian motion. We may
thus formally write the KL eigenfunction expansion of standard Brownian motion by
substituting (F.20) into (10.2)

B(1) = \/?nij‘z" sin <% z). (F.22)

Our purpose is to generalize this basic result (F.22) to forms of Brownian motion
for which time does not elapse uniformly. This leads to many applications of interest in
physics and in relativistic spaceflight.

F.4 WHITE NOISE AS THE DERIVATIVE OF BROWNIAN MOTION
WITH RESPECT TO TIME

White noise W () is an important notion with which physicists and engineers alike are
acquainted. It is usually introduced as the one stochastic process whose power
spectrum is a constant—in practice over a finite range of frequencies. That is, for
which

Plw) = Jio W) dt

is a constant.
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A stochastic process is said to be stationary if its autocorrelation is a function of
the time difference (7, — #;) alone, rather than being a function of #; and ¢, indepen-
dently. Then, the Wiener—Khinchin theorem guarantees that the power spectrum and
the autocorrelation of the stationary processes are the Fourier transforms of each
other. Thus

P(w) et gy,

()W)} = |

o0

00
= constJ e = oy = const 8(t, — 1,)
—00
and, apart from the constant, the autocorrelation of white noise is the delta function.
In this section we will show that the derivative of Brownian motion B(7) is white
noise in the sense that if we define B(¢) such that

O’E{B(1)B(12)}

E{B(ll)B(tZ)} oty 0ty

(F.23)

then
E{B(1))B(tr)} = 6(ty — 1) (F.24)
just like white noise.
To do this we first recall from (F.9) that
E{B(t})B(t)} = t; A ty.

We now form the left member as in (F.23) and use the expression from (F.12) to get

O’E{B(1))B(1)} _ 9*(t1 A 1)

ot o, T 01 01
2

B ot 0ty

E{B(1)B(12)}

(Ut — 1) + U1 = 1)]
using the fact that dU(x)/dx = 6(x)

0
= %[U(Zz — 1) = 110(ty — 1) + 16(1) — 1))
using the fact that x6(x) =0
0 0
:aTZ[U(& =)+ (—1)6(t, — 11)] :aTzU(lz —1)
=6(h—1) (F.25)
as required. Thus (F.24) is proved. The interpretation of white noise as the derivative

of Brownian motion will be used in Section F.6 to prove basic results about the time
rescaling of Brownian motion.
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F.5 INTRODUCTION TO TIME RESCALING

The rest of this Appendix explores what happens to Brownian motion if one lets the
time elapse according to an arbitrary law, rather than uniformly. We will call this
time-rescaling the Brownian motion. Others call it time-inhomogeneous Brownian
motion, among other things.

The results of the present chapter are not original. They have been known for
years, but have seldom been exploited. We exploited them to the advantage of physics
in Chapters 11 through 13 by establishing their relationship to the theory of relativity.
Further scientific applications of these results may occur in mathematical genetics,
and we dealt with some of them in Chapter 14.

The idea underpinning our work is that the Gaussian character of Brownian
motion is not altered if time is arbitrarily rescaled. That is, all the Gaussian properties
remain the same for the rescaled process.

F.6 THE WHITE NOISE INTEGRAL AND ITS AUTOCORRELATION

The term white noise integral refers to any stochastic process having the form

X(1) = J £(5) dB(s) (F.26)
0

where B(t) is standard Brownian motion (with zero mean and variance ¢) and for the
time being the function f(7) may be any arbitrary function continuous over the real
positive axis. Since the integral in (F.26) is over a stochastic process B(¢), and hence
difficult to define, it makes more sense to use the alternate definition

X(1) = J £(s) B(s)ds (F.27)

and B(7) is the white noise by virtue of Section F.5.

A few words about notation: f(z) shall henceforth be the (almost) arbitrary
scaling function of time, while fy(x) with a subscript will always refer to the prob-
ability density of the stochastic process X (¢)—specifically the time-rescaled Gaussian
probability density in this book. While in Chapter 10 X(¢) referred to an arbitrary
stochastic process, in this section and in the rest of the Appendix it will refer to the
white noise integral (F.26).

The stochastic process X(¢) defined by the white noise integral (F.26) is a
Gaussian process. This should be obvious from the fact that the linear integral
operator in (F.26) acts only on time and not on the statistical nature of the process
dB(s) = B(s) ds, which is Gaussian. However, a more sophisticated argument to
realize that this is indeed the case proceeds as follows:

(1) When one has two (independent) Gaussian random variables X} and X, (with
respective means m; and m, and variances o2 and ¢3), the random variable sum
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X1 + X, is again Gaussian (with mean m; + m, and variance J% + a%)—for a
proof of this well-known fact, see, for instance, [2, p. 250].
(2) Clearly, the same argument can be extended to the sum of any finite number of
Gaussian random variables, which is thus one more Gaussian random variable.
(3) Finally, the integral is the limit of a sum, so that a white noise integral like
(F.1) also is a Gaussian random variable (i.e., the stochastic process X () is
Gaussian).

Now from (F.26) the initial condition for the X (¢) process is immediately seen to be
X(0) = 0. By taking the mean value of both sides of (F.27) and interchanging the
mean value operator with the integral sign, it is also evident from (F.27) that

50} - £{ [ 1080 as} = [ 16 BB} @

- f f(s)% [E{B(s)}] ds = 0 (F.28)
0

since Brownian motion satisfies the standard condition E{B(¢)} = 0 for all z.
Let us now compute the autocorrelation of the process (F.27):

3

E{X(1)X (1)} = E{ [roe0a| o B(z)}

= [ [ 10 BB

0 0
by virtue of (F.24)

1 o
:J dsf(s)J f(6)6(t—s)dr.

0 0
Now the inner integral differs from zero only if the singularity of the delta function
lies between zero and 7,—that is, only if one has 0 < s < ¢,. By resorting to the unit
step function, we can rewrite this in the form

ot Aty

E{X(1)X (1)} = jo dsFEL UL - 5)] = J Fds (Fo)

0

where the notion of minimum (= smallest of) #; and 7, was used in the last step. In
conclusion, autocorrelation of the white-noise integral (F.26) or (F.27) reads
H AL )
E(X(n)x(e) = | 0 (F.30)

0

The variance of X (7) can now be found at once by noticing that

) = E(X*()} - EX{(X (1)} = E{X()X(1)}. (F.31)
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Then, one merely has to set 1, = t, = ¢ into the autocorrelation (F.30), and use the
obvious formula 1 At =1 to get

1
Tx() = sz(s) ds. (F.32)
The square root of this is the standard deviation

1

ox =+ J £2(s) ds. (F.33)
0
Equation (F.33) defines two curves on the (7, X (7))-plane, named standard deviation
curves, that lie above and below the (zero) mean value axis, and are quite helpful for
qualitative understanding of the behavior of the X () process in time.

F.7 TIME RESCALING AND GAUSSIAN PROPERTIES OF X(z)

In this section we are going to prove formally that the Gaussian process X (¢) defined
by (F.27) is just a time-rescaled version of Brownian motion. To this end, consider the
following two processes:

(1) The process X (¢) defined by (F.27).
(2) The Brownian motion B(r), where the ordinary time variable ¢ is replaced by a
rescaled time variable expressed by

t
J 1(s) ds. (F.34)
0
That is, we want to consider time-rescaled Brownian motion
t
B<J £2(s) ds). (F.35)
0
Evidently, both processes (F.1) and (F.9) fulfill the same initial condition
X(0)=0, B(0)=0 (F.36)
and also have the same mean value (zero):
!
E{X(1)} =0, E{B(J 1) ds> } =0. (F.37)
0

The crucial point lies in processes (F.27) and (F.35) also having the same
autocorrelation (i.e., the relationship holds)

E{X(1)X(1,)} = E{B(J:fz(s) ds)B(J:fz(s) ds> } (F.38)

To prove this, one first notices that the right-hand side of (F.38)—that is, the
autocorrelation of the time-rescaled Brownian motion B(...)—by virtue of (F.9) is
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the minimum

E{B(J:ﬁ(s) dS)B<J:f2(S) d)} - (J:fz(s) a)n ( [N&E &) (F39)

Second, that this minimum just equals the integral

1AL
| red o )
0

which, in turn, is the autocorrelation (F.30), completing the proof of (F.38).

To sum up, we have shown that the Gaussian processes (F.27) and (F.35) have
the same initial condition, the same mean value, and the same autocorrelation.
Because of its Gaussian nature, time-rescaled Brownian motion has all its higher
moments fully determined by its first two moments (see, e.g., [2, section 9.3]).
Moreover, the same fact must be true for the process X (7) as well, and, since all
the moments of the two processes are identical, we conclude that the two processes
coincide completely

t
X(1) = B(J 1(s) ds). (F.40)
0

This basic result reveals the nature of time-inhomogeneous, or time-rescaled,
Brownian motion: all the action of the f(¢) function consists in altering the time
behavior of the original Brownian motion, B(¢), but not in changing its Gaussian
character. In fact, the probability density of X(¢) is

1 “3
X)=———e X0 F.41
Sxy(x) Vi) (F.41)
expressing a Gaussian whose variance changes in time according to (F.32). When
rewritten explicitely in terms of the f(¢) function, (F.41) reads

2
X
1 - "2 s) ds
fr(x) = e 2hS (F.42)

V27 J 12(s)ds

0
Also, one may notice that, in agreement with the initial condition X' (0) = 0, both
(F.41) and (F.42) tend to the delta function, §(x), for + — 0. Finally, it follows

immediately that the Gaussian (F.42) reduces to the familiar Gaussian density of
Brownian motion in the case f(7) = I:

Fxn(x) = ﬁﬁe’%. (F.43)

As for the higher moments of the Gaussian process X (¢), they can be found at
once from the corresponding higher moments of the Gaussian density (F.43) simply
by replacing ¢ by virtue of the variance (F.32). The proofs of the Gaussian-higher-
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moments formulas can be found, for instance, in [2, section 5.4]. Thus, the higher
moments of X (¢) read, for even and odd values of n, respectively

! 5 n/2
E{X"(1)} = 1-3-...-(n—1)- Uof (s)ds} , evenn (F.44)
0, odd n

F.8 ORTHOGONAL INCREMENTS FOR NONOVERLAPPING
TIME INTERVALS

Consider four consecutive instants 1, t,, t3, ¢, on the positive time axis, starting from
left to right. The two time intervals, ranging from ¢, to t,, and from #; to #,,
respectively, can be arranged in any one of three ways: completely disjoint intervals,
contiguous intervals (i.e., with 7, = #3), and overlapping intervals.
Let us then consider the corresponding two increments taken by X (¢) over the

two time intervals

(X (12) = X(1))] (F.45)
and

(X (ts) — X(13)]. (F.46)

By virtue of (F.30), we may write the mean value of their product as

E{[X(52) = X (e)][X (14) — X (53)]}

1ALy HAL 1ALy
| res-| Pes- | Lo e e
0 0 0 0
Owing to the relative positions of the four points ¢, , t3, #4, the four integrals in the
last formula may or may not cancel against each other. Therefore, in the three cases
stated above, one gets, respectively,

0, for completely disjoint intervals

0, for continuous intervals
E{[X(12) = X(1)][X(1a) = X ()]} =1 1,
J f*(s)ds, for overlapping intervals.
3
We summarize these results by saying that the increments of the process X (¢) are
orthogonal for non-overlapping time intervals only.

F.9 AN APPLICATION OF THE KLT: FINDING THE TOTAL ENERGY
OF X (1)

One of the most important applications of the KL expansion (10.2) is the calculation
of the stochastic integral

c= jT X3(1) di (F.47)
0
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representing the total energy of the time-rescaled Brownian motion X (¢). In fact, e is a
random variable that, by virtue of the orthonormality property of the eigenfunctions

Pu(1)

T
|| @m(ento) = b, (.48)
0
is immediately seen to be given by the series
T oo oo 00
=] XY zzsaan =Y 2. (F.49)
0 m=1n=1 n=1

This series expansion for the total energy e can be further investigated by means of
Fourier transforms, which are called characteristic functions in probability theory.
Let us set i = v/—1 and define the characteristic function ® x(»(C) of the stochastic
process X (7) with two alternative notations (see [4, p. 153]):

(1) the traditional Fourier transform integral, here applied to the probability density
Sx@(x) of the stochastic process X (¢); and
(2) the probabilistic notation exploiting the notion of mean value

Bay(Q) = | i) dr = EL),
The use of characteristic functions (i.e., Fourier transforms) in probability theory
simplifies things greatly, and was initiated by the French mathematician Paul Lévy in
the 1920s. For instance, consider the simple integral

(o ¢) o 1
J e o7 x = — a>0.
0 a—i¢

From this it follows that the exponential probability density
f(x) =ae™U(x)

has the characteristic function
o

:a—ig’

()

By differentiating the above integral n times with respect to ¢, one gets

> : n!
J P L) [ a— T
0 (o —iQ)"*

This prompts us to take a “bold” step: replacement of the positive integer n by the
real variable v (it actually is better to replace n by v — 1). To prove that this is correct
would take be a step too far, so we will skip the proof here; however, the reader
should be aware that the extension of the factorial from discrete to continuum
values is given by definition of Euler’s gamma function I'(v) (first conceived by Euler
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around 1744)

nl— (v—-1)=T() EJ e 't V.
0

With this extension to the continuum, the integral above becomes

< T
J el(x e*(yxxufl dy = (V) —.
0 (o = iC)
The so-called “gamma-type’” probability density is defined by

OCV

fX,gamma (X) = mei(mxyil U(x).
The characteristic function of the gamma density is immediately seen from the above
integral to be
v o 1
e X" U(x) dx =

@—i)" (l_ig)"'

Let us now go back to the random variables Z2. From the KL expansion of X(1) we
already know that the Z, are Gaussian with mean zero and variance equal to the
eigenvalues \,. On the other hand, a famous theorem in the theory of probability—
for the proof, see, for instance, [4, p. 130]—states that if X is a Gaussian random
variable with mean value zero and standard deviation o, the square of this random
variable obeys a distribution of the gamma type given by

<I)gamma(C) = L) e’ FO([V)

x_ 1
v (X)) =—e 20° —=U(x).
fXZ( ) \/2_7TO' \/} ( )
Checking this against the general gamma-type density previously studied, it is seen
that the density of the square random variables Z ,21 is a particular gamma-type density

(sometimes also called a x’-type density) having

o=V

_1

Y72

1
a=—
207
and, in conclusion, we see that the characteristic function of each Z2 is given by
1 1 o —1)2
® = = =(1-2ix,0)""2 F.50
e

Another useful property of the Fourier transforms that we need is the convolu-
tion theorem, which states that the Fourier transform of a convolution is the product
of Fourier transforms. (This theorem was first proved by the French mathematician
Duhamel around 1833.) In probability theory, convolution of the two densities of the
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independent random variables X and Y is very important, because it is just the
density of the random variable sum, X + Y; that is,

fror@ = | =00 a

This result, plus the convolution theorem, clearly imply that for the corresponding
characteristic functions of the independent random variables X and Y one has

Pyiy(C) = Px(Q) Py (Q).

Let us apply this to the random variables Z, that we know already to be independent
because they are orthogonal and Gaussian. From the series (F.49) it just follows that
the energy characteristic function is found as the infinite product

H‘I’z H (1 —2i\,0) "2 (F.51)
=1

In order to deal with series rather than with products, it is convenient to intro-
duce the so-called second characteristic function ¥_((), simply defined as the natural
logarithm of the (first) characteristic function

V.(¢) = In®.((). (F.52)

Applying this definition to the infinite product (F.51), the latter is changed into the
infinite series

Ei (1= 2i),0). (F.53)

Differentiating n times, we get

v (Q) = 7(21) (n_l)gi (Am)"

o) (F.54)
=1 (1 - 2l>\m€)

l\)

We will now introduce the statistical quantity called the cumulants, denoted K,,,
of a random variable X. Once again, this may be a notion that not all readers may
be familiar with, because it is mainly used by applied statisticians. Therefore, we do
not regard it a waste of time to briefly describe how cumulants get the intuitive
justification that later leads to their formal mathematical definition in (F.55).

Consider the familiar Maclaurin expansion of the exponential

o0 xC
=2

and use this to expand the complex exponential appearing in the definition of the
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characteristic function of a generic random variable X:

Dy(¢) = Joo e"fy(x) dx

—00

R I USH o (i)
:J 2 k!) f"(x)dx:;(k!

—0 k=1

00 0 -k
| st ae= >

k=1
where we used the definition of the absolute Ath moment; that is,

my = JOC xkjfx(x) dx.

The above Maclaurin expansion for the characteristic function is evidently related to
the absolute kth moment by the formula

@gf) (0) = i*my

meaning that, if the characteristic function of a certain probability density is known,
all the absolute moments can be computed by differentiating the characteristic
function and then setting the independent variable to zero

Precisely the same definition as this, applied to the second characteristic function
rather than to the first, yields all the cumulants K,—whence the moments may be
found (see [5, p. 27]). That is,

K, = . (F.55)

Besides this formal definition, however, there is much more that one might say about
cumulants. For instance, it is easy to prove that the mean value of the random
variable ¢ is given by

E{e} = K, = (0)

and the variance is given by
o? =K, = —0/(0).

Reverting now to our problem of determining the total energy distribution &
of X(1), by setting ¢ =0 into (F.54) and making use of (G.48) (to be proven in
Appendix G) we get
T 0 1

10| B

. (F.56)
= (ym)*

K,=2"'n-1) “

0

yielding all the cumulants of the energy distribution of X (¢).
The mean energy of ¢ is a special case n = 1 of (F.56)

2 1

E{e} = K, = HOT 7(s) ds] > (F.57)
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However, one can also write the following expression for E{c}:

T T
E{e} = E{J X%(1) a’t} = J E{X*(1)}dr. (F.58)
0 0
On the other hand, (F.30) with ¢, = ¢, = ¢ leads at once to

E{X*(1)} = thz(s) ds. (F.59)

0
Thus, (F.58) yields for the mean energy of X(¢)

E{e} = LT dr J;fZ(s) ds. (F.60)

Of course, (F.57) and (F.60) are equivalent. Therefore, one finds
T t
0 J dtJ f2(s)ds
3 L R I
2 T 2
m=1 ('Vm) |:J f(s) dS:|
0

We conclude that, although no explicit expression for the +, is known, it is possible to
sum a series like (F.61) involving them. The explanation of this apparent paradox
must lie deep in the theory of Bessel functions, and is unknown to mathematicians at
this time.

Having found an explicit formula for the mean energy in terms of f(¢) such as
(F.60), it is natural to seek a similar expression yielding energy variance. We shall
now prove that it reads

(F.61)

ol = 4JT dt J’ dv“vfz(s) dsr. (F.62)

0 0 0

Though this result is simple, its proof is not so. The starting point is, of course, the
definition of variance as

o’ = E{e*} — E*{e}. (F.63)

The second term is known by (F.60). The first term is calculated to be

E{e?) = E{ J‘OTXZ(t) dtj

0

T

X2(s) ds} = JT dt JT ds E{X*(1)X*(s)} (F.64)

0 0

In order to rewrite the integrand, note that X (¢) and X(s) are Gaussian with zero
mean. Therefore, one is allowed to apply the following property

E(X(0X(9)} = EQX’(0}E(X*(s)} + 2E>{X ()X (5))

_ ffz(x) de £20)dy +2 “;A 2(2) dz]z (F.65)

S
0 0
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where (F.30) and (F.32) were used in the last step. Thus, (F.64) yields
T T t s IAS 2
E{eY) :J dtJ dstz(x)deﬁ(y)dyH“ 72(2) dz} }
0 0 0 0 0

_ JT dr jr £2(x) dx JT ds J P20) dy +2 JT dr JT ds [ Jm 722) dz] ’

0 0 0 0 0 0 0

t\s

= E{e}E{e} + 2LT dr LT dsU 7(2) dzr (F.66)

0

where (F.60) was used twice to rewrite the first term. A remarkable simplification now
occurs. On inserting (F.66) into (F.63): the two terms E*{c} — E*{e} cancel, and the
energy variance becomes

or=2 JOT dr LT ds [ J;Mfz(x) dx] 2. (F.67)

The next difficulty lies in handling the minimum, ¢ A s, which is greatly simplified by
the use of the unit step function:

1 fort>0
U = . (F.68)
0 forr<O

In fact, the minimum may be rewritten as a sum of two terms, resulting in

o2 =2 JT dr JT ds{ “[ﬁ(z) dz} Vst “sfz(z) dz} Ui - s)}

0 0 0 0

_) JOT dt { J; 72) dz} 2 JOT dsU(s — 1) +2 LT ds { J 722) dz] 2 JT AU (i —s).

0 0
(F.69)

The two terms differ only in the variables ¢ and s, so

ol=4 JT dt“tfz(z) dz} 2 J’T ds = 4JT(T —1) “tfz(z) dz} 2dz.

0 0 0 0

Finally, we use integration by parts to get:

elrof [ ]| ool [ros]

_4 LT dr J; dv { Jvfz(z) dz} ’

0
which is recognized to be the same as (F.62), the desired result.
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Appendix G

Maccone First KLT Theorem: KLT of all
time-rescaled Brownian motions

G.1 INTRODUCTION

In Section F.4 the problem of finding the KL expansion of standard Brownian
motion was solved completely. That was possible because the differential equation
for the eigenfunctions was just a simple harmonic oscillator equation, whose solution
is trivial.

In the present chapter we face the problem of finding the KL expansion for the
time-rescaled Brownian motion defined in Appendix F. This problem is rather
involved from the analytical point of view, but we are going to show that it can
be solved completely by resorting to an unusual type of Bessel function of the first
kind whose order is not constant in time."

Some mathematicians might thus be tempted to explore these new special func-
tions more in depth. Physicists might do so for their applications, some of which will
be brought to light in the forthcoming chapters.

G.2 SELF-ADJOINT FORM OF A SECOND-ORDER
DIFFERENTIAL EQUATION

When we present the KL eigenfunction expansion of the X (¢) process in Section G.3,
the calculations will be lengthy. Therefore, it appears convenient to isolate within the
present section the content and proof of a lemma that will later be used in Section
G.3. This lemma deals with the general self-adjoint form of a linear differential
equation of the second order, and it will help putting a certain differential equation
in Section G.3 into its own self-adjoint form.

! The original results appearing in the present chapter were first published by the author in 1984
in [1].
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Consider the most generic linear homogeneous ordinary differential equation of
the second order with non-constant coefficients

A@0)y"(1) + B(1)y'(1) + C(1)y(1) = 0. (G.1)

Since the A(¢) coefficient cannot vanish identically, we can divide the entire equation
by it, illustrating that it actually has two independent coeflicients rather than three:

Y0+ 500+ S0 =0, (G2)

We are now going to prove that any differential equation of the form (G.2) may
be put into its own self-adjoint form that reads

d

2 [POY (O] + R(D)y(1) = 0 (G3)

which is the well-known Sturm—Liouville form of the equation. In other words, we
must prove that the new coefficients P(¢) and R(¢) may uniquely be expressed in terms
of the old coefficients 4(¢), B(t), and C(z).

To this end, the derivative in (G.3) is expanded to give

P(1)y"(1) + P'(0)y'(1) + R(t)y(1) = 0 (G4)
and the equation divided by P(r) (which cannot vanish identically) to give

ﬂm+§%¢m+§%wo:o (G.5)

By comparing (G.2) and (G.5), the following pair of simultaneous equations is found:

B(t) P() d

10 = 0 = [In P(1)] (G.6)
) _ R (G.7)
A1) P(1)
Now (G.6) may be integrated at once, yielding the solution
P(t) = eJ (G.8)
R(1) = (Z)%:%ej%m (G.9)

These are the required formulas yielding P(¢) and R(¢) in terms of A(z), B(t), and
C(t), and the theorem is thus proved.

Let us now put this theorem to work by reducing the following differential
equation to its own self-adjoint form:

Hyeo 34 38 (4148 2o om




Appendix G: Maccone First KLT Theorem: KLT of all time-rescaled Brownian motions 327

Evidently, (G.10) coincides with (G.1) if we set

~x()
A = 58 (G.11)
X0 d [ x(@)
””?ﬁm*EL%J (G12)
d Ty x()
(1) :E{ﬂ(t)} +5 (G.13)

and if the unknown functions y, () with y(¢) can be identified.
We now want to find the new pair of coefficients P(7) and Q(¢) defined by (G.8)
and (G.9), respectively. Dividing (G.12) by (G.11), we get

X'  d {X(f) }

+

B(t) _ /(1) di|/7(1) ,
A0 X0 (G.14a)
13(0)
The key to further steps lies in noticing that both terms are logarithmic derivatives.
Hence
d { x(f)}
B _xX'(0) i)
A(r)  x(1) x(1)
131
_d d[ [ x()
= ol + [ A5
d
= {ln x(1) + In Lig(([t))”
_d X1 _d [ [x*0
= po G = =[] (G140)
By inserting (G.14b) into (G.8), we can now find the coefficient P(¢):
t d (1) >(1)
Py = o A Ji [in[3=G5] | :eln[)f(%} :XE(I). (G.15)
J=(@)
The coefficient R(¢) is also found by virtue of (G.9):
_CW) pon dxX(0]  x@
w0 = 70 =xo{ g [ | + 5 (619
In conclusion, the self-adjoint version of the differential equation (G.10) reads
d[x°() dx(0], x@ _
i rao] o{ G| XG ]  po=e. @)
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G.3 EXACT SOLUTION OF THE INTEGRAL EQUATION FOR KLT
EIGENFUNCTIONS OF ALL BROWNIAN MOTIONS OF WHICH
THE TIME IS NOT ELAPSING UNIFORMLY

In the present section we completely solve the problem of finding the KLT of any
time-rescaled Brownian motion (i.e., of any Gaussian process, in practice).
Our proof develops in three subsequent steps that may be summarized as follows:

(1) The KLT integral equation (10.18), with the time-rescaled Brownian motion
autocorrelation (F.30), turns out to be a Volterra-type (and not Fredholm-type)
integral equation. In other words, it can be transformed into a linear differential
equation of the second order in the unknown KLT eigenfunctions jointly with
two boundary conditions on the eigenfunctions that we will soon discover: an
initial condition and a final condition.

(2) Back in 1984 this author discovered (and published) the fact that this differential
equation can actually be reduced to the standard Bessel differential equation by
virtue of two analytical transformations: (i) suitably changing the unknown
function and (ii) suitably changing the independent (time) variable. The latter
time transformation is actually a general (non-linear) time-rescaling paving
the way to the applications of our results in the theory of relativistic
telecommunications.

(3) The general form of the KLT eigenfunctions for all the time-rescaled Brownian
motions (i.e., Gaussian processes) is thus the product of a time-rescaled Bessel
function of the first kind J,(,)(#) (where the order v may itself depend on time, in
some cases) multiplied by another time function that represents one more rescal-
ing in time. As for the KLT eigenvalues, we will show that they are essentially the
zeros of certain linear combinations of the J,,(¢) and their derivatives.

Let us start from the KLT integral equation (10.18) with the autocorrelation (F.4)
T

Al

A first consequence of (G.18) is easily found by setting #; = 0. In fact, because of

the minimum #; A t, = 0 A #, = 0, the entire left-hand side of (G.18) vanishes, and
one is left with

JI' ") 4 bult2) dty = Mybu(1). (G.18)

0

$(0) = 0. (G.19)

This is the initial condition fulfilled by the eigenfunctions.

Let us now proceed toward the full solution to (G.18). A typical feature of
the Volterra-type integral equations is that any such equation may be changed into
a differential equation with two boundary conditions. For instance, in the case of
(G.18), we can temporarily set

m(t)) =4 At (G.20)
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to denote the minimum ¢; A ¢, as a function of #;. Then we can use the Leibniz
theorem for the differentiantion of an integral to get

o (", _ ") 9f 2 (s) 2, dm(t) 5 dO
aTIL f(s)ds—L LoDas ) T -0 g
=) P — ) U - 1) (G21)

where use of (F.36) was made in the last step. It follows that if both sides of (G.18) are
differentiated with respect to ¢;, (G.20) yields

T
JO 6u()£2(0) Ults — 1) dty = Mh(1). (G22)
That is,

T
f%n)j 6u(12) dis = M (1))- (G.23)

4
A glance at (G.23) shows that setting #; = T results in
¢u(T) = 0. (G.24)

This is the final condition fulfilled by the eigenfunctions.
Let us now rewrite (G.23) in the form

A
")
In order to let the integral disappear, we must differentiate both sides of this with
respect to ¢;. That finally yields, with some rearranging,

|| antrdry ==
T

1 1
G0+ o (G23)
This is the differential equation fulfilled by the eigenfunctions. It is already cast into
its own self-adjoint form.

Having thus changed the integral equation (G.18) into the differential equation
(G.25), we must now solve the latter subject to the boundary conditions (G.19) and
(G.24). Now a great result comes. We discovered that it is possible to reduce (G.25) to
the standard Bessel differential equation (see, e.g., [2, p. 4])

% [xdydg)] n {x_’f:]y(x) -0 (G.26)

on replacing the eigenfunctions by means of a product of two unknown functions like
Gu(1) = X (1)1(1). (G.27)
Then differentiating (G.27), and inserting it into (G.25), the latter is turned into

% B&Eg Palt) + }ﬁ((’t))y;(z)] + XA([) Palt) = 0. (G.28)
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Performing differentiations with some rearranging of the terms, (G.28) becomes

s (40 5[0 o (4[] )

This differential equation is just (G.10), and, as we already know from Section G.2,
it may be cast into its own self-adjoint form given by (G.17)

% Bi((;)yiz(l)} + x(z){% D;Eg} + X/\(:) }y,,(t) =0. (G.29)

By so doing, we have performed one of the two allowed substitutions in any differ-
ential equation like (G.28), i.e., changing the unknown function. The only remaining
change allowed by the theory is a change of the independent variable (i.e., time).
Changing time means time rescaling. Thus, let us make this time rescaling x = v(¢) on
the Bessel differential equation (G.26), turning it into

d () } 2 2 ¥'(1)

— V()| + [ (t) — v]—=y(t) =0. G.30
L2y w] + o -5 (G50
Now, the differential equations (G.29) and (G.30) must coincide in order to yield the
solution y,(¢) = Bessel function of ,(¢) By equating the coefficients of each term,
we get a pair of simultaneous equations:

X0 _ ult)

YR OIRTAG (G.31)
, dxX(0] , x0O\ _ ()
x(r){a{ﬂm} iy }7 [2(1) _VZ]W' (G.32)

Our next task is the full solution of this pair of simultaneous equations, in terms
of the only known function f(¢) Let us start by inspecting (G.31). Its left-hand side
does not depend on the subscript (i.e., variable) n. We thus infer that the same thing
must happen to the right-hand side of (G.31). Hence, we must have the following
functional dependence:

(1) = 1, 0(2). (G33)

In other words, a new constant /, has been introduced as well as a new time-
dependent function () to perform the separation of the variables ¢ and n. Let us
now rewrite the simultaneous equations (G.31) and (G.32) by aid of (G.33) to get the
new pair of simultaneous equations

;27((;)) - 99/((?) (G.34)
(SR} o T 0

Once again, only two terms depend on n in (G.35), causing (G.35) to split into
three more simultaneous equations. Adding these to the previous equation (G.34), we
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now get a set of four simpler simultaneous equations

X)) 60

770 "o (©:30)
dIxX0]_ L0

w0 [ 50 - 250 (G.37)

X2 (1) = 6(1)0'(1) (G.38)

Ai: 2. (G.39)

To solve this set, we eliminate Xz([) between (G.36) and (G.38), finding an easy
differential equation in the unknown function 6(¢)

0000 =10 32

This differential equation may be solved at once by separation of variables, yielding
the solution

0(t) = J[ 7(s) ds (G.40)

where the plus sign must be taken in front of all square roots because the rescaled time
is always positive. Equations (G.33), (G.39), and (G.40) then yield the 1),(¢) function

alt) = \%A_Lf(s) ds (G41)

while Equations (G.38) and (G.40) yield the expression

x(0) = f(t)J £(s)ds (G42)

for the x(¢) function. Finally, Equations (G.37) and (G.36) yield, for the order v of
the Bessel functions, the new time function

(1) = \/— X' d {X'(’) } . (G.43)

IROYAVAD)

Only after several attempts was this author able to further transform this expression
into an easier one. That will be presented in Section G.4.

So far, we have been discussing Bessel functions without actually determining the
precise kind that applies to the particular problem we are facing. We now do so by
noting that in the standard Brownian motion case, described by the functions

fn=1
x(t) =1

v(t) = 3
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one gets just the classical sine eigenfunctions (F.20) if, and only if, Bessel functions of
the first kind are chosen. Therefore, only Bessel functions of the first kind fit our
problem, and only they will be retained among all the possible kinds of Bessel
functions, making the solution to the differential equation (G.26) read

h@ZLmWMm:Lm<%§£ﬂﬂm>

Next, we turn to the orthogonality property for the eigenfunctions ¢,(¢)

0= J ¢in(t)¢/1(l) dr = J NmX(t)ym(t) : NnX(t)yn(Z) dt
0 0

=mmﬂwmﬁwmm(&immymh%&m@ (G.44)

holding for m # n. Note that the new, unknown normalization constants N,, had to
be introduced here. We now wish to prove that (G.44) is just a disguised form of the
orthogonality condition (holding for m # n)

1
|, % 204003) 10200 dx =0 for £
0
which is known to be fulfilled by Bessel functions of the first kind J,(x). This is called
the Dini orthogonality condition because it can be used to expand an arbitrary
function over the set of Bessel functions J,(x), and this series expansion is called
the “Dini series” because it was proved for the first time by the Italian mathematician
Ulisse Dini of Pisa in 1877. For a thorough description of these topics in the theory of
Bessel functions, the reader may wish to consult [2, p. 70, entry (48)].
We now substitute a new variable x for ¢ in (G.44) by virtue of the equation

X JOTf(S) ds = j;j'(s) ds. (G.45)

It is immediately seen that for ¢+ — 0 then x — 0, and for + — T then x — 1.
Differentianting (G.45), we get

T
de f(s)ds =f(1)dt.
Hence ’

T
| reas
0

f(@0)
When this is replaced into (G.44), a “‘miracle” occurs (i.e., the time-rescaling function

f(¢) is canceled out from the integrand). This is a hint that we are on the right track to
reach the Dini orthogonality condition. In fact, by virtue of the new definition

dt = dx.

1 J f(s)ds (G.46)
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the orthogonality expressed by (G.44) becomes

1
JO X Ju((\)) (’me) JV((YI)) (’YHX) dx = 0.
This is, indeed, the desired Dini orthogonality condition rewritten in the notation
required by our needs.

Also, from the integral equation (G.18) it appears that the eigenfunctions ¢, (¢)
may be multiplied by the arbitrary constant called the normalization constant and
denoted by N,. The numerical values of these normalization constants may be
established in a fully arbitrary fashion. However, it is customary to determine them
so that the eigenfunctions have “unit length” in the Hilbert space; that is,

T T 2 1
1= | dia= | [ roa| [ siooore G4
0 0 0
where the new Bessel function of order v((x)) is given by (G.43) with the substitution
(G.45). The normalization condition (G.47) is the case m = n of the orthogonality
condition (G.44), and the right-hand side of (G.47) is a definite integral that must be
computed, either analytically or numerically, in order to determine the normalization
constants N,,.
To complete the solution to the integral equation (G.18), we still need to find the
eigenvalues A,. From (G.46) it follows that:

T 2 1
Ay = “ f(s) ds] —. (G.48)
0 (V)

This formula establishes a one-to-one relationship between the eigenvalues A, and the
unknown constants ,. Finding the A, thus means finding the ~,, but how can that be
done? A clue comes from consideration of the standard Brownian motion case
developed in Section F.3. There Equation (F.22) virtually determines the A, by virtue
of the final condition (F.17), which is the same as (G.24). Since the initial condition
(G.19) is identically fulfilled by any Bessel function of the first kind, we are forced
to resort to the final condition (G.24). This final condition plus the expression (G.27)
for the eigenfunctions ¢,(¢) yield, after one differentiation

S (T
J f(s)ds
0

8']1/ n
J/V(T) (V) + MV'(T) =0. (G.49)

X' (T) ) () + x(T) £y

This is a linear combination of the Bessel functions and their partial derivatives,
whose zeros are the required ~,. Finding an analytical expression for the zeros of
(G.49) is, in general, impossible, and one must thus resort to a numerical solution of
(G.49). However, there may exist some particular cases of the f(¢) function for which
the zeros of (G.49) can be found, albeit in an approximated form. In Appendices H, I,
and J we will give examples of how that can be done.



334 Appendix G: Maccone First KLT Theorem: KLT of all time-rescaled Brownian motions

G.4 A SIMPLER FORMULA FOR BESSEL FUNCTION ORDER

As mentioned before, the expression (G.43) for the order of Bessel functions

[ XWd X0
”(’)‘\/ fz(r)dt{fz(t)}

is cumbersome because of the expression of (G.42)

in terms of the only known function f(¢).

It would thus be desirable to have a single formula yielding the order v(¢) directly
in terms of the f(¢) function, without invoking the x(¢) function. The present section
is devoted to proving that such a formula reads

2

o= (b ] e 1wy

Since the proof is rather lengthy, we set, for convenience

=1 (G.51)
‘= %(l’) (G.52)
1= "delﬁ” (G.53)
J - J; 7(s) ds. (G.54)

Then, from (G.42) it follows that:
Inx(r) = 1nf+ J (G.55)
VIS ki -

2fJ
@*In (1) f’/fr ff/zl[z +f/fzj_f4
i e Jz

(G.57)
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The order v(f) of (G.43), by virtue of (G.56) and (G.57), now reads

0= )

X’ d [ x(0) dinx(r)
B fz(l)df{ 2(r) }
_ X0 fd ] x() ) dinx()  x(@) d*Inx(n)

£ dl{fz(l)} dr 2(l) dr® H

f f : A

—slpmn

[l oot
YAV 21
o

2

3[dinf ()1 1d°Inf(s)
| ol s
and (G.50) is proved.

G.5 STABILITY CRITERION FOR EIGENFUNCTIONS

An amazing feature of eigenfunctions ¢,(¢) is that their behavior in time may be
predicted even without knowing their actual analytical expression, as we prove in the
present section. The starting point is the Sonine—Pdlya theorem (see [2, p. 205]), which
states that, if in the differential equation

S (9] + 6(0r(x) =0 (G.59)
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Table G.1. Stability criterion for eigenfunctions ¢,(¢).

Description when

Description when

Sign of the Shape of the KL
logarithmic eigenfunctions T is finite T is infinite
derivative of (1)
S
Positive y () Divergent Asymptotic unstable
71
Zero Sine/cosine type Simply stable
Negative p ) Convergent Asymptotic stable
n
0 T t

K(x) and ¢(x) are positive and continuously differentiable, and if K(x)¢(x) is
monotonic, then the successive (relative) maxima of |y(x)| form an increasing or
decreasing sequence according as K (x)¢(x) is decreasing or increasing.

We are going to apply this theorem to the differential equation (G.25), which

reads
df 1 1
— | 5= dn(0)| +—,(t) =0.
L] + 300
By checking this against (G.59), one evidently finds the correspondences
X =1
y(x) = (1)
1
K(x) =— >0
™ =70
) (G.60)
1 Y
o(x) = = |77 | =constant> 0
" J f(s)ds
0
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where (G.48) was used in the last formula of (G.60). We thus see that the require-
ments of the Sonine-Polya theorem are fulfilled only if f 2(t) is assumed to be
monotonic, which will indeed be the case in all physical applications we are going
to consider in the book.

Now, it is important to know whether K(x)¢(x) is decreasing or increasing—
namely, whether its derivative is negative or positive. With easy steps from (G.60),
it follows that

d{ 1 1}:%L)f’(t)

di [ f2(0) M AU
- 2 f/ﬂ _ ( negative M
IEYEOYICE (quantity) ar (G.61)

Combining this with the Sonine-P6lya theorem statement, we get the scheme shown
in Table G.1. In Chapter 11 we extended this stability criterion to the theory of
relativity: see Table 11.1.
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Appendix H

KLT of the B(*"") time-rescaled
Brownian motion

H.1 INTRODUCTION

The topics considered in the present chapter are twofold: on the one hand, they can be
regarded as a particular application of the results obtained in Appendices F-G to a
case that allows analytic calculations to be easily carried through to completion; on
the other hand, new light is shed on the theory of certain H-self-similar stochastic
processes, in the wake of the celebrated results obtained by Benoit B. Mandelbrot in
his theory of fractals.

H.2 THE TIME-RESCALED BROWNIAN MOTION B(¢?H)

Consider the process Bpy (1)—where subscript PH refers to the “power H”—defined
by the white noise integral

-}
t K 3

Bpy(1) = LF(H+1>

2

dB(s). (H.1)

By setting

13

the definite integral of the square of this function from 0 to 7 is given by

f(0) = (H2)

t 2H-1 2H

[[‘fZ(s)ds:l > 7 ds = ! N
70 '°r2(H+§> 2H1"2<H+§)
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Equation (F.40) shows that (H.1) is the same as time-rescaled Brownian motion

ZZH

2HT? (H +%)

This formula, by virtue of the self-similarity to the order 1/2 expressed by (F.6),
namely

Bop(t) = B (H.3)

B(ct) = /eB(1), ¢>0 (H.4)
becomes
Bpy(1) = %B(ﬂ”), H > 0. (H.5)
mr@ + 5)

We thus see that Bpy(¢) is essentially a new Brownian motion whose time variable
does not elapse uniformly. Rather, it is accelerated 1 like for H > 1/2, and
decelerated 1*#-like for H < 1/2.

The application of (H.4) to (H.5) immediately yields the important self-
similarity property

BPH(Ct) = CHBPH(Z), c> 0 (H6)

which is called the self-similarity to the order H, or H-self-similarity of Bpy(ct)—
again, the subscript PH (“‘power H’’) in our notation reminds us of this.

Let us now consider two more processes:

t (3
By (t) zj =97 ip(s) (H.7)

1
T(H+=
*3

Lo(1—s)i

r (H + %)
both of which are H-self-similar (as can easily be proved):
Byrp(ct) = ¢ By (1), (H.9)
By (ct) = " By (1). (H.10)

and

Byu(t) = J dB(s), (H.8)

The process By (¢) is the Riemann-Liouville fractional integral to the order H — 1/2
of Brownian motion: it is an integral for H > 1/2 and a derivative for H < 1/2
(see 1, p. 115], [2, Vol. 2, p. 181], and [3, the whole book]'). The definition (H.7)
was given in 1953 by the French mathematician Paul Lévy [4, p. 357], who confined
himself to finding the process variance without further investigations. The process

"However, only fractional integrals of functions—and not of stochastic processes—are
considered in these works.
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By (1) is the Weyl fractional integral to the order H — 1/2 of Brownian motion, and
was first considered in 1940 by Kolmogorov [5]. In 1965 Mandelbrot used its self-
similarity to account for a hydrological law discovered in 1949 by Hurst [6].
Ever since, Mandelbrot and co-workers were mainly responsible for developing
the computer applications of the process By () (notably in [7]). An excellent list
of references to this and related topics, updated to 1982, can be found in Mandel-
brot’s book about fractals [8]. It should also be noted that a detailed analytical study
of both processes (H.7) and (H.8) offers considerable difficulties. It is possible to show
that (H.1) may be regarded as the first-order approximation to both (H.7) and (H.8).
As a result of this we believe our results are interesting, particularly with regard to the
energy distribution of the process Bpy (?), the study of which can be carried on with a
considerable amount of details (Section H.4) by exploiting the KLT of Bpy(f) that we
derive in the next section.

H.3 KL EXPANSION OF Bpy(t)

We are now going to derive the KL expansion for Bpy(¢) as in (H.1). Evidently, we
are dealing with the special case of f(¢) given by

13

f(f)—F<H+;>

(H.11)

Standard Brownian motion corresponds to the special case H = 1/2 of all results to
follow, because at the denominator of (H.11) one then uses the formula I'(1) = 1.

Let us first consider autocorrelation and variance. From (H.11) and (F.30)
integration easily yields the required autocorrelation of Bpy(f)

t Aty ) HATL 2H
BB B} = | as=—LE o )
0 2HT? (H + 5)
Substituting #; = t, = ¢ into (H.12) immediately gives the variance
, 20
TBpy()) =7\ (H.13)
2HT? <H + E)

Unfortunately, a much longer proof is required to derive the following explicit
formula for the KL expansion of Bpy(?):

lH

TH+

00 H+}
Bpy(t) = X (1) = 2H + 1) - N7, |]V(1%)|J,, (% ;H%). (H.14)

n=1
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Here

(1) The order v of the Bessel functions J,(...) is given by

2H
V= .
2H +1
Hence it does not depend on time, and this circumstance is vital to all
forthcoming developments because it simplifies things greatly.

(2) The exact constants -, are the real positive zeros of the Bessel function of order
v — 1 arranged in ascending order of magnitude

(H.15)

Jufl(’yn) =0. (H]6)
(3) The exact normalization constants N, are given by
1 1
(11+3)r ()2
N, = . (H.17)

THH, (7,)]
(4) The exact eigenvalues A\, depend on the v, according to
T2H1 1

1)2 1\ ~2°
H _ 1’*2 H - Tn
() (m3)

(5) The Z, are Gaussian random variables with mean zero and variance \,.

A, = (H.18)

To start the proof, let us consider the function x(7), defined by (G.42), which by
virtue of (H.11) takes the form

H

1 N
H+-T(H+=>
NCEs (+Q

Then (G.43), or, equivalently, (G.50), yields the order of the Bessel functions, which
after some calculations is seen to be given exactly by (H.15). Since the latter is a
constant, we have

x(1) =

(H.19)

V(1) =0, (H.20)
so that the term with v/(T) in (G.49) vanishes
f T *Tn
(T T () (M gy =0 (H21)
| sy as
0
Inserting (H.15) and (H.19) into (H.21), after a few steps one finds
2H
JI/(’Y}'I) + ’Yn‘,;(%) =0 (H22)

2H +1
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which can be shown to be (see [2, p. 11, entry (54)]) the same as
Yudy—1(7,) = 0. (H.23)

The ~, cannot vanish, so (H.16) is proved. Finally, (H.17) for the normalization
constants N, and (H.18) for the eigenvalues )\, follow from (G.47) and (G.48),
respectively, on replacing the time-rescaling function (H.11) and integrating, as we
shall prove in a moment.

But, let us go back to (H.23), which states that the ~, are the real positive zeros,
arranged in ascending order of magnitude, of the Bessel function of order v — 1.
No formula explicitly yielding these zeros exactly is known. Yet it is possible to find
an approximated expression for them by aid of the asymptotic formula for J,(x)

. . 2 v T
Jim 2,00 = i [ ceos(e =5 =) (124
In fact, from (H.15) one first gets
1
V—1:—2H+1, (H.25)

Second, (H.24) and (H.25), checked against (H.23), yield

2 il il
) N Y H.2
0=J,1 () \/;C°S<7”+2(2H+1) 4> o

Hence
™ m m
_° _Taar—-=Z =1,2,... H.2
/Yn+2(2’{(+ l) 4 nm 2 (n 1 ) ( 7)
and finally
™ T
W e T ) (128

The first 32 approximated +,, obtained by means of (H.28), appear in Table H.1, for
various values of H > 1/2. In the Brownian case H = 1/2, (H.28) is an exact formula.
We recall that these +, give the pace of convergence of the KL expansion, inasmuch as
the standard deviations of the Gaussian random variables Z, depend inversely on the
squares of the ~, by virtue of (H.18).

Next we want to prove (H.17) for the normalization constants N,,. From (G.47)
and (H.11) it follows that:

T2H+l

1
1=N2. 2 ; J x J2(7,x) dx. (H.29)
<H+§> F2<H+7> 0

2

This integral is calculated within the framework of the Dini series, and the result is

1
1 /
[, 572000 dx = 50372 + (3 = 3L (H.30)
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Table H.1. Approximate values of the constants -,.

H=05 | H=06 | H=07 | H=08 | H=09 | H=10 |[H=x

Brownian
n=1 1.571 1.642 1.702 1.752 1.795 1.833 2.356
n= 4.712 4.784 4.843 4.894 4.937 4.974 5.498
n= 7.854 7.925 7.985 8.035 8.078 8.116 8.639
n=4 11.00 11.07 11.13 11.18 11.22 11.26 11.78
n=>5 14.14 14.21 14.27 14.32 14.37 14.40 14.92
n= 17.28 17.36 17.41 17.46 17.50 17.54 18.06
n= 20.42 20.50 20.55 20.60 20.64 20.68 21.20
n= 23.56 23.63 23.69 23.74 23.79 23.82 24.35
n=9 26.70 26.77 26.83 26.88 26.93 26.96 27.49
n=10 27.84 27.92 27.98 30.03 30.07 30.11 30.63
n=11 32.99 33.06 33.12 33.17 33.21 33.25 33.77
n=12 36.13 36.20 36.26 36.31 36.35 36.39 36.91
n=13 37.27 37.34 37.40 37.45 37.49 37.53 40.05
n=14 42.41 42.48 42.54 42.59 42.64 42.67 43.20
n=15 45.55 45.62 45.68 45.73 45.78 45.81 46.34
n=16 48.69 48.77 48.83 48.88 48.92 48.96 47.48
n=17 51.84 51.91 51.97 52.02 52.06 52.10 52.62
n=18 54.98 55.05 55.11 55.16 55.20 55.24 55.76
n=19 58.12 58.19 58.25 58.30 58.34 58.38 58.90
n=20 61.26 61.33 61.39 61.44 61.48 61.52 62.05
n=21 64.40 64.47 64.53 64.58 64.63 64.66 65.19
n=22 67.54 67.62 67.67 67.72 67.77 67.81 68.33
n=23 70.69 70.76 70.82 70.87 70.91 70.95 71.47
n =24 73.83 73.90 73.96 74.01 74.05 74.09 74.61
n=25 76.97 77.04 77.10 77.15 77.19 77.23 77.75
n=26 80.11 80.18 80.24 80.29 80.33 80.37 80.90
n=27 83.25 83.32 83.38 83.43 83.48 83.51 84.04
n=28 86.39 86.46 86.52 86.57 86.62 86.66 87.18
n=29 87.53 87.61 87.67 87.72 87.76 87.80 90.32
n =30 92.68 92.75 92.81 92.86 92.90 92.94 93.46
n =231 95.82 95.90 95.95 96.00 96.04 96.08 96.60
n =232 98.96 97.0 97.0 97.1 97.1 97.2 97.75
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This formula, however, may be greatly simplified by eliminating ~,J(v,) from
(H.22). In fact, one finds

Yl 2 () = V2T () (H.31)
and (H.29), by virtue of (H.31), becomes
N | T22H+1 ] ‘lej(;n) (H32)
(H+§) FZ(H+§>
Thus
(3 s) 2
n= . (H.33)

TH517, ()]

This is the exact expression of the normalization constants. An approximated
expression can be found on inserting both (H.28) for the approximated 7, and
(H.15) for the exact v into the asymptotic expansion (H.24) for J,(,)

2 2 cos s m2H ™
™, 4 2(2H+ 1) 2(2H+ 1) 4
|cos nw—m)| = 1/
™Y

By substituting this into the exact expression (H.33) for N, and using the approxi-
mated expression (H.28) for the ~,, it follows that:

1 1 1 1
N, ~ Hi \UO(H+2) Jn—e H.34
" TH+'< +2> < +2)\/" 4 20H+1) (H.34)

These are the approximated normalization constants.
A similar procedure applies to eigenvalues A,. In fact, from (G.48) and (H.11) we
get the exact formula

|Jl/(fy}1)| ~

T2H+1 1
A = : . (H.35)
H + l 21"2 H + 1 (’Vn)z
2 2
Finally from (H.35) and (H.28) we get the approximated formula
TR+ 1
Ay & (H.36)

(o3 (3) =0 smo)

These are the variances of the independent Gaussian random variables Z,,.
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We may now summarize all the results found in the present section by writing
two KL expansions: the exact one

QH + 1)1 & s
10 = BN S 2ty v 13

and the approximated one

I\ 1
X([) _\/§<H+§>ZL 4§:Z sin lH+% 2mH (H 38)
— n S1 ’YHTH‘% 2(2H+1) 2] .

3

H.4 TOTAL ENERGY OF Bpy(t)
In 1944 Cameron and Martin [9] proved that the random variable

I= JT B*(1) dt, (H.39)
0

which is the total energy of standard Brownian motion, has the characteristic
function (i.e., Fourier transform)

0,(¢) = E{e"'} = ——e (H.40)
cos(T+/2i¢).

We are now going to prove that the above result is generalized by our following
result: the total energy of Bpy(7) given, in analogy to (H.39), by the random variable

T
Iy = J By (1) dt (H.41)
0
has the characteristic function
1
@, (¢) = : : . (H.42)
iy e (T

r(l/) : Jz/fl

R o
2I'( H + = I'H+-=
(#+3) (#+3)
To prove (H.42), consider (F.51), where the ), are now given by (H.18) and the ~,
by (H.23). That is,

oo oo T2H+l2l-<-

o, ) =[J0-20n07 = |[[| 1 -——F
= ’yf,l"z(H-i-%)
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Let us check it against the infinite product expressing J,(z)

v

e ‘r(<u22 1>ﬁ(1 _22>

i2
n=1 ]VJI

whose proof appears on p. 498 of [10]. On the one hand, the constants j,, in the last
equation are evidently the real positive zeros of J,(z), arranged in ascending order of
magnitude, while, on the other hand, the ~, are the zeros of J,_;(x) by (H.23). Thus,
we can let the last two infinite products coincide by setting

Tn = jz/—l‘n

2H+1~-
R i (H.43)

) 3
r (H + 2)
Equation (H.42) for the characteristic function of the total energy of Bpy/(t) is thus
proved. It can be inverted numerically by a computer so as to yield the total energy
distribution of Bpy(¢) to any degree of accuracy.
As for the the cumulants (and hence also the moments) of the total energy
distribution of Bpy (1), they are given by the expression for K, in (F.56) with f(¢)

given by (H.11)
Tn(2H+l) 00 1

T ==

Moreover, although an explicit expression for the -, (other than the approximated
(H.28)) is unknown, it is possible to sum the series appearing in (H.44). In fact, we are
now going to prove that all the cumulants of the total energy distribution of Bpy(¢)
are given by

K,=2""(n—1)! (H.44)

K, = . m
" {F <H N %) T" (2n — 1)l x—o |dx?=1\2J,_{(x)

2n—l Tn(ZH-H)

(e

where the quantities o\, 0, ¢, af,4>, o and ¢!® appear on p. 502 of [10]. v is to
be replaced by H via (H.15). In fact, consider the series

2nflTn(2H+l) (71—1)' i |:d2n1 ( J)/(x) ):|

n—1l-o", (H.45)

14

00 1 )
Z )Zk = SZk,V—l = 0-1</I‘—)1 (H46)
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(k)

where the notation Sy ,_; is used on p. 61 of [11], while the notation o, , is used on
p- 502 of [10]. Then
= _ J,(x)
Sy x = 2, (H.47)
2 S =5

is the power series in x, with coefficients Sy ,_|, whose proof is given on p. 61 of [11].
Therefore, the coefficients are

1 )
Sakw1 = 2k —1)! Jim, szzkl <2JV,. (x)) (H.48)

and the sum of the series (H.46) is obtained.
Having found all the cumulants, we can derive expressions of the most interesting
statistical parameters of total energy.

(1) Mean value of total energy

T2H+1
(2) Variance of total energy
AH+2
K, =0l = : H.50
2= % TOHQH + 1)(4H + 1) (H.50)
(3) Third total energy cumulant
T3CH+)
K= . H.51
T H32H + 1)(3H + 1)(4H + 1) (H.51)
(4) Fourth total energy cumulant
11H T4(2H+l)
Ky =—3 SULH +3) 5 . (H.52)
H*(2H +1)(3H +1)(4H + 1)*(8H + 3)
(5) Skewness of total energy distribution
3
K 22\/2H + 1v4H + 1
3 o_ + o (H.53)
(K,)? 3H +1
(6) Kurtosis (or excess) of total energy distribution
K, 12QH + 1)(11H + 3) (H.54)

(K»)>  (3H+1)(8H +3)

Since H > 0 we infer from (H.53) that skewness is at least 2.828, and from (H.54) that
kurtosis ranges from 12 for H =0 to 11 for H — oo. Therefore, we may conclude
that the total energy peak is narrow for any H > 0.
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The standard Brownian motion case of all the previous results is noteworthy.
In fact, by replacing H = 1/2, v = 1/2, and the expression of both J%(x) and J_;(x)
appearing on pp. 54 and 55 of [10], one then gets )

1 d*""tan x
—2 2, .
K, =2"T"(n—1) Gn = 1)!xlg€+[ ] } (H.55)

Evidently, the last two terms are the (2n— 1)th coefficient in the MacLaurin
expansion of tan x, which reads [11, Vol. 1, p. 51]
oo l B
tan x = Z (2’1)!22”(22" — 1)(=1)"" By, ™! (H.56)

n=1

where the B,, are Bernoulli numbers, a table of which can be found, for instance, in
[12, p. 810]. Thus, by inserting the coefficients of (H.56) into (H.55), we get all the
cumulants of the total energy of standard Brownian motion

Y

K, =T (”(zn)! 231202 _ 1) (—1)"1B,,. (H.57)
In particular, we have
(1) Mean value of total energy
K, = E{e} = T; (H.58)
(2) Variance of total energy
Ky=ol= T; (H.59)
(3) Skewness of total energy distribution
skewness = %\/3 (H.60)
(4) Kurtosis (or excess) of total energy distribution
. 408
kurtosis = 35 (H.61)
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Appendix I

Maccone Second KLT Theorem: KLT of all
time-rescaled square Brownian motions

I.1 INTRODUCTION

A surprising feature of the KL expansion obtained in Appendix G is that the same
analytical solution valid for the X (¢) process can be carried over to the X>(¢) process.
In other words, to keep within the easy framework of standard Brownian motion
B(1), if we know the KL expansion of B(f), then we may also find the KL expansion
of Bz(t). The latter will actually be computed at the end of the present chapter, but, as
mentioned above, the general proof is valid for any time-rescaled Brownian motion
X 2(z). The results proved in this Appendix were discovered by the author in 1988 and
published in [1].

1.2 AUTOCORRELATION OF ANY ZERO-MEAN SQUARE PROCESS

The present chapter is devoted to the study of the process
Y(1) = X*(1) — E{X*(1)}. (L1)

Since its mean value is obviously zero, we may call it the zero-mean square process of
the time-rescaled Gaussian process X (#). In this section we want to derive the
autocorrelation of Y(¢). To this end, let us introduce the function (not process)

m(r) = E{X*(1)}. (1.2)
With this notation, the autocorrelation of Y () is by definition
E{Y(0)Y(s)} = E{[X*(0) = m(D)][X*(s) — m(s)]}
= E{X*()X*(s)} — m(s) E{X*(0)} = m(t) E{X*(s)} + m(s)m(r). ~ (L.3)
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The first term in this expression is given by a classical result in the theory of Gaussian
processes (see [2, p. 374])
E{X*()X7(s)} = E{X*()}E{X?(s)} + 2E*{X (1)X (s)}. (14)
Using (1.2) and (I1.4), we now reduce (I.3) as follows
E{Y(1)Y(5)} = m(t)m(s) + 2E*{X ()X (5)} — m()m(s) — m(t)m(s) + m(t)m(s)
=2EX{X ()X (s)}.

That is, the following easy result holds: the autocorrelation of the zero-mean square
process is twice the square of the autocorrelation of the process:

E{Y(1)Y(s)} = 2E*{X(1)X(s5)}. (1.5)
Even better, we can make use of Equation (F.29) to rewrite the autocorrelation:

E{(Y(1)Y(s)} =2 UOA 72(2) dz]z. (L6)

But, according to (F.13), any function F(¢ A s) of the minimum ¢ A s may, by use of
the unit step function

=1 fort>0
U(t) = 1.7
(0 {:0 fort <0 @7
be written in the form
F(tns)y=F)U(s—1)+ F(s)U(t —s). (1.8)

Therefore, the autocorrelation (1.6) is finally rewritten

E{Y()Y(s)} =2 HO 72(2) dzTU(s — )42 H

0

S

2
7(2) dz} U(t—s) (1.9)
and will be used in this form in Section 1.3.

From Equation (I.6) the variance of the Y (¢) process is immediately found by
setting s = . Since t At =t and E{Y ()} = 0, it follows that:

¢ 2
T = B0} =2 [ £e . (L10)
The standard deviation is just the square root of the above

Ty = j:\/EJ;fQ(z) d. (L.11)

I.3 KLT OF ANY ZERO-MEAN TIME-RESCALED SQUARE PROCESS

Knowledge of the autocorrelation (I1.9) enables us to consider

j E(Y()Y(5)}du(s) ds = X,6,(1). (112)

0
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This is the integral equation whose kernel is (I.9) and whose solutions, <Z§,,(t) and \,,
are the eigenfunctions and eigenvalues of the KL expansion, respectively. Though
(1.12) looks like a Fredholm-type equation, it is actually a Volterra-type equation,
and, as such, it can be reduced to a differential equation by differentiating twice.
Moreover, (I.12) and its derivative to the first order also yield the two boundary
conditions.

Let us start by inserting the right-hand side of (1.9) into (I.12)

ZJT$[rj2@ﬁtTLKs0&A@+2JTd{ffa@ﬁhrth@éA@zz&&Ao.

0 0 0 0
(I13)

Using the properties of the unit step function, the above can be written

t 2 T 1 res 2 o
o[ £od] | awai] || Few] ama=San.  a
0 ' olJo
The left-hand side of (I.14) vanishes for 1 = 0 making

$,(0) =0 (L15)

as the initial condition fulfilled by the eigenfunctions ¢,(z).
According to the general procedure for solving Volterra-type integral equations,
we can now differentiate both sides of (I.14) with respect to ¢ to get

t t

4J’fz(z) dz - £2(1) .Jtrén(s) ds — 2“

0 0

2 ~ ~ ~
72) dz} Ga(0)= 2u1).
(1.16)

@ 4,0+

0

Luckily enough, the last two terms on the left-hand side of (I.16) cancel leaving the
simpler equation

4 j'fz(z) dz-12(1)- j Ga(s) ds = 2 (1) (117)
0 T

This equation may be written more conveniently by dividing both sides by the terms
involving f(¢) and A,:
t T
—ijﬁ@w:——ﬁﬁL—< (L18)
A 420 | ree
0
On setting ¢t = T the left-hand side of (I.18) vanishes, yielding the final condition
fulfilled by the eigenfunctions

on(T) = 0. (1.19)

Moreover, we can make the integral on the left-hand side of (I.18) disappear by once
more differentiating both sides with respect to ¢. The differential equation for the
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eigenfunctions ¢,(z) is thus obtained

d A0 I
E - +T¢n(l)_0' (1'20)

4r2(1) [ Feya| M

Jo

We must now solve the differential equation (1.20) jointly with the two boundary
condition (I.15) and (I.19). Before proceding, however, the following important
remark will save a lot of work.

Recall from Section G.3 (see also [3]) that the full solution to the differential
equation (G.25), that is,

A
7] a0 =0 20

Aﬂ
could be found. In other words, we were able to solve (I.21), jointly with the two
boundary conditions (G.19) and (G.24); that is, respectively

$,(0) =0 (1.22)
and

¢L(T) = 0. (1.23)

Now, the important remark we are referring to is that (I.15) is identical to (1.22), and
(1.19) is identical to (I1.23). Moreover, (1.21) corresponds to (1.20) if /(z) is formally
replaced by

F20) — 4£°(0) ffz(w d-.

0

In other words, the whole mathematical solution of (I.20) coincides with the solution
of (I.21) if the replacement

7=y red (124)

0

is performed. This result is fundamental. In fact, we can now use all the apparatus
created in Appendix G for the KL expansion of the X (¢) process to find the KL
expansion of the Y () process.

Start by finding the new X (7) function, corresponding to the x(¢) function defined
by (G.42). To this end, we merely have to substitute (1.24) into (G.42), and get

() = 2Jf(f) \/ j;fz@ dz J;f(s) ¢ J;ﬁ(z) dz ds. (125)
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Next comes the new order 7(7) of the Bessel functions of the first kind, which from
(G.43) and (1.24) turns out to be equal to

(1) = X(1) d X . (1.26)

—#%ﬂ&%aw” V%UW%@&

0

Consider now the new constants 4,. From (G.49) and (I.24) one can conclude
that they are the real positive zeros, arranged in ascending order of magnitude, of the
equation

T

fU)Lﬁ@wm o
AT i n l7l

fm>rﬁ@ww

0 0

X (T)o(r) () + X(T)

(1.27)

Clearly, this equation is very difficult to solve analytically, even in elementary cases
where the function f(¢) is particularly simple. Thus, in practice the 4, will have to be
found numerically.

As for the normalization constants N,,, these also must be computed numerically
from the normalization condition that follows from (G.47) and (1.24), namely

1=N2

2 Jrf(s) J 12(2) de ds]z Jl X2y () dx. (1.28)

0 0 0

The eigenvalues X, are related to the constants 4, (known from (1.27)) by a
formula that follows from (G.48) and (1.24):

1
()

Finally, we need to find the probability distribution of the random variables Z,,
which are obviously not Gaussian. To this end, (I.2) and (F.32) yield

(1.29)
0

N, =4 “T 7(s) L f2(2) dz dsr

m(t) = E{X*(1)} = J; 2(z2) dz = 0%y (1.30)

This time function (not process) is the variance of X(¢) because X(7) has zero
mean. But X(7) is Gaussian. Therefore, X>(¢) is chi-square distributed, having the
probability density

1 ~ 1

fmmm:—gagfﬁﬂfwuy (131)
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Now from the definition (I.1), we get
Sy ) =Fe2wmmo V) = Fro (v +m(1)). (1.32)

By virtue of (I.31) and (I.32), we have now proved that the process Y (¢) has the
(gamma-type) probability density

, 1 B |:y+m(l)} in

Friop0) =—z===e "1y +m(0)] Uy + m(1)). (1.33)
2mm(t)

The random variables Z, must also have a gamma-type probability distribution like

the process Y (¢), for it is well known that the convolution of two gamma densities is

again a gamma density. Thus

| _z+\/§ 5 -1/2 5
fz,,(z)zme m[”\[z”} U(”\[z") (134)

is the probability density function (gamma-type) of the random variables Z,, and is
found from (I1.33) by formally replacing the variance 21712(t) by A,.

In conclusion, we have derived the KL expansion of the zero-mean square
process of X (¢):

Y (1) = X(1) — E{X*(1)}

(1.35)

I.4 KLT OF SQUARE BROWNIAN MOTION

Standard Brownian motion is a particular case of the foregoing theory characterized

by
f()=1. (1.36)

Therefore, the KL expansion of square standard Brownian motion can be found by
merely substituting (1.36) into all the formulas developed in the present chapter.
We start by forming the f(¢) function defined by (1.24),

f() =2Vt (1.37)
Using (1.25), it further follows that:

X(1) = \/EWJ; 2V/zdz = \/gt (1.38)
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Y1) = \/g (1.39)

Then, (1.26) yields the order of the Bessel functions

8 3
=t
) (\[3> d[q 4 2
(t) = 5l :\/;237 (1.40)

which is a constant, resulting in the conclusion that (1.35), (I.37), and (1.40) yield the
orthogonal eigenfunctions

Let us now discover the meaning of the set of constants 4,. From

along with its derivative

| oo

7'(t) =0 (1.42)
as well as from (1.36), (1.38), and (1.39), we see that (I.27) is changed into
CR 8 VT, ..
\éf%(%) + \/g T T” J5(3,) = 0. (1.43)
Z7
3
Rearranging, this reduces to
2 - e
§J§(7n) + 7;1Jé(7r1) =0, (144)
that is, by virtue of (1.40),
2J5(3n) + And 5(5) = 0. (L45)

This, however, is just the left-hand side of an important formula in the theory of
Bessel functions (see [4, p. 11, entry (54)]) stating that

17']17(5/11) + ’7}1']/9(5/11) = ;/11']17—1 (’7}1) (146)

Therefore, (I1.45) amounts to

V51 (Fn) =0 (1.47)
and, since the constants 4, may not vanish,
Jo1() = 0. (1.48)

We have thus found the meaning of the set of constants 7,: they are the (infinite) real
positive zeros of the Bessel function of the first kind and of order —1/3

J (3, =0. (1.49)
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No explicit formula yielding these zeros is known. However, it is possible to get a
good numerical approximation for them by substituting v = 1/3 and x = 4, into the
asymptotic formula for J,(x) (see [5, p. 134]), which reads

. . 2 [
Jim .09 = Jim [ oo (=5 = ) .50
This results in
2 T 1 T
5 S — = == == ). 151
I3 [ =oos(3-5 |3 - 5) (1s1)

Since the zeros of the cosine are (nm — 7/2), it follows from (1.49) that:

w1 T T
Yo—=|—3| ——~nrt—< 1.52
R { 3} 47"y (1:52)
or
o= m|n— El (1.53)
Y, =T ) .
Next, we want to determine the normalization constants defined by (I1.28). That is,
T 2 ¢l
1=N2 U f(s) ds} J xJ%(f?nx) dx. (1.54)
0 0o

Let us now replace (I.36) and a definite integral calculated within the framework of
the Dini expansion in a series of Bessel functions that appear on p. 71 of [4]; the last

expression is then turned into
2 2
120~ (§>
Jr () +\ 1 == |J

n

_, 16 1
1=N2—T%) =
"9 2

PRI

(%)

Now, by virtue of (I.44), we may let the derivative of the Bessel function disappear,
and one gets

Solving (1.54) for the normalization constants requires introduction of the modulus,
and so
S 3V2 1
T (5)

is the exact expression of the normalization constants.
A good approximation for the normalization constants (I.55) can be obtained by
using the asymptotic expression (I.51) for the Bessel function appearing in the
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2cos~—ﬁg—Z
7 O\ T2 3 T4

Inserting the approximated formula (I.53) for the 4, into the cosine argument yields

2 los(mly_2l_m_7
S\ 12l T34

denominator of (I.55), namely

12 (%) | =

3

(1.56)

|JZ(’?n) ~ P

' ™,

Thus

()l = [ — (1.57)
Substituting this expression in (1.55) makes

- 3W2mvA, 3 [ S
N, ~ \/:M ~ 72 n—-—. (1.58)
4T3 V2 AT 12

Similarly, (1.29) and (1.29) plus (1.53), respectively, yield the exact and approxi-
mated expressions for the eigenvalues

- 16 5 1
N=—T"—, (1.59)
9" (9)?
and
- 16 1
Ap=—T7 (1.60)

ol sy
"()

In conclusion, by virtue of (I1.55), (1.38), and (I1.40), we have proven that the exact
expression of the KL eigenfunctions reads

7)) TiHRE) T

The approximated form of (I.61) may be obtained by using the approximate
expression for N, in (I1.58), the approximate expression (I.57) for the Bessel function
in the denominator, and the asymptotic expression for the Bessel function in (I.51).
The result is

(1.62)
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Bz(t).t and its RECONSTRUCTIONS by using 10 eigenfunctions out of 100
20 T T T T T T T T T
Original Realization of B{tht
———-Reconstruction by the EMPIRIC KLT [~ |
* Reconstruction by the ANALYTIC KLT

-20

-40

Bt

-60

-80

100 1 I L 1 1 1 1 1 !
0 10 20 30 40 50 60 70 80 90 100

tmet

Figure L1. The zero-mean square Brownian motion B*(¢) — 1 = X (¢) vs. time ¢ simulated as a
random walk over 100 time instants. Next to the “bumpy curve” of X(¢), two more “‘smooth
curves” are shown that interpolate at best the bumpy X(z). These two curves are the KLT
reconstruction of B2(¢) — by using the first ten eigenfunctions only. It is important to note that
the two smooth curves are different in this case because the KLT expansion (1.66) is approxi-
mated. Actually, it is an approximated KL T expansion because the asymptotic expansion of the
Bessel functions (1.50) was used. So, the two curves are different from each other, but both still
interpolate X (f) at best. Note that, were we taking into account the full set of 100 KLT
eigenfuctions—rather than just 10—then the empiric reconstruction would overlap X(r)
exactly, but the analytic reconstruction would not because of the use of the asymptotic
expansion (I.50) of the Bessel functions.

Substituting 7 = 1/3 from (1.40) and 4, = w(n — 5/12) from (I.53), the approximate
expression for the KL eigenfunctions is

- i 5\ 7
(1) ~ ﬂ% cos (ﬂ[(n - E) ;3 - 12} > (1.63)

In summary, we may now write the full formula (I.35) for the exact KL eigen-
function expansion for the square Brownian motion. In fact, on inserting t; = t, = ¢
into (F.8), we see that

E{B*(n)} =1, (1.64)
and (I.38), (1.55), and (I.64) yield the exact KL expansion for B*()

00 3

t2
(5. 165
=27 T°|Jz ol <7 T%> (165)

n=1
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The corresponding approximate expression is

>\ 5 r 5\ & 7
B -t~y Z3— ) =-—=1|. L.
(1) —1 ;:lj ”‘/gr% cos <w[<n 2) 7 2D (1.66)

Formulas (I1.65) and (I.66) were published by the author in the last section of [1],
but unfortunately they contained a slight computational error. The formulas appear-
ing above are correct.

.5 CHECKING THE KLT OF THE SQUARE BROWNIAN MOTION BY
MATLAB SIMULATIONS

Just look at Figure I.1.
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Appendix J

KLT of the B*(+*"') time-rescaled square
Brownian motion

J.1 INTRODUCTION

Just as Appendix H showed the application of the general results obtained in
Appendix G to the particular time-rescaled stochastic process B(tZH ), the present
appendix investigates the application of the general results obtained in Appendix I
about the square time-rescaled process B*(...) to the particular process B*(r*7).

Before doing so, however, we regard it useful to review briefly the main results so
far obtained. Consider then the general time-rescaled Brownian motion given by
(F.40); that is,

Xt = 5( [ 70 ). (0.1)

0

In Appendix G, as well as in [1], it was proved that the KL eigenfunction expansion of

(J.1) reads
0 / ‘ Jlf(s) ds
X([) = Z ZnNn f(l) J f(S) ds - JI/(T) 7}127 (Jz)
n=l 0 J f(s) ds

o
and converges in mean square, and uniformly in ¢, for 0 <¢ < T.

Here

(1) The time-dependent order () of the Bessel function of the first kind J,(...) is

given by
_ | X0d[xX®
o= \/fz(l)df ol )
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where the auxiliary function x(¢) is defined by
X0 = 10| ) as. (1.4)

Moreover, in Section G.4 as well as in [2], the following straightforward expres-
sion for v(¢), in terms of the time-rescaling function f(¢), was proved:

/ 2

{ If(S)dS {é[dlnf(z)r7ld2lnf(t)}. 15)

vl =43+ Of(z) 4 dr 2 di?

(2) The constants -y, appearing in the argument of the Bessel function in (J.2) are the
real positive zeros, arranged in ascending order of magnitude, of the equation

V) Iy o) () [LE 0 gy 2000 | o )

JOT f(s)ds o

In general, (J.6) cannot be solved for the ~, analytically, and one has to do so
numerically. However, some particular case of the time-rescaling function f(7)
may exist for which (J.6) can be solved analytically. The present chapter is
devoted to one such important case.

(3) The normalization constants N, follow from the normalization condition

N2 “:f(S) dsr j; * oy ()2 dx = 1, (1.7)

where the new transformed order v((x)) is obtained from the order () of either
(J.3) or (J.5) via the transformation

Jlf(s) ds = xJTf(s) ds. (J.8)

0 0

(4) The eigenvalues ), are determined by the ~, (known from (J.6)) according to
T 2 1

A = H f(s) ds} —.

0 (7}1)2

(5) Finally, the Z, are independent and orthogonal Gaussian random variables
having mean zero and variance equal to the eigenvalues ),; that is,

E{Zmzn} = )‘n(smn' (JIO)

(J.9)

Let us next turn to the further process Y () defined by (I.1); that is,
Y (1) = X2 (1) — E{X*(1)}. (3.11)

It is natural to call this the zero-mean square process of the time rescaled Brownian
motion given by (J.1), for (J.11) is just the square of (J.1) centered around the latter’s
mean value.
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In Appendix I, as well as in [3], the author proved that the KL eigenfunction
expansion of the process (J.11) reads:

N |76
Y(t):ZZnNn\/f(t)Lf(s) ds - Ty WJ‘; : (J.12)
n=l f(s)ds

0

By checking (J.12) against (J.2), one sees that the KL expansion of the zero-mean
square process Y (7) is formally identical to the KL expansion of the original X ()
process, with only two exceptions.

(1) The time-rescaling function f'(¢) of the X (¢) is now replaced by the new function
(no longer called “time rescaling”) (for the proof, see (I1.20) through (1.24))

- t
7o) =210 | 260 . (1.13)
(2) The gamma-type probability density

0
s 5
fz,,(z) \/77(2):,,)%6 z4+ > U(Z+ 2), (J.14)

where U(x) is the unit step function, is followed by the random variables Z,, (for
the proof, see (1.34)).

Consequently, we infer that

(1) the Bessel function of the first kind appearing in (J.12) has the time-dependent

order
. ) d | Xt
o=\ -Sas ]

where the auxiliary function x(¢) has been defined by

0 = [F0) j;ﬂs) ds (1.16)

in analogy to (J.3) and (J.4), respectively. Alternatively, it is possible to express
the order by virtue of a single formula, corresponding to (J.5)

! 2

e {3 [d m.f'(z)}z 1d*Inf (,)}. (1.17)

=g+ Of(;) 4| ar 2 dr
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(2) The real positive zeros, ¥,s, arranged in ascending order of magnitude, of the

equation corresponding to (J.6), are defined by
f( T) i ,?n ~
ﬁlﬂpm () + o7,
J f(s)ds

0

aJD(T) ('?n) ~1

X'(T) - Ty () + X(T) v(T)|=0. (J.18)

(3) The normalization condition, analogous to (J.7), reads

1=N, “()Tf(s) dS]z [; X 5(() (GuX)] dx (J.19)

and defines the normalization constants N,. In (J.19) the new transformed order
7((x)) is obtained from the order 7(¢) of either (J.15) or (J.17) via the transforma-

tion
ot T _
J f(s)ds = xJ f(s) ds. (J.20)
0 0

(4) Finally, the eigenvalues are given by an expression analogous to (J.9); that is,

~ T _ 2 1
Ay = U f(s ds} —. J.21
0 ) (’Yn)z ( )

J.2 PREPARATORY CALCULATIONS ABOUT BZ?(¢***!)

In the present section we pave the way to mathematically finding the KL eigenfunc-
tion expansion of the square process B2(z2(’+1).

Let the time-rescaling function f(¢) be a real-exponent power of time, multiplied
by a generic real constant C

f(t) = Cr™. (J.22)

The range of the exponent « is determined by the condition that the following pair of
definite integrals, appearing in (J.2) and (J.1), respectively, must converge:

! C a+l
Lf(s) ds = ﬁt , (J.23)
e C? ar
Jof (s)ds = Yo 1 o (J.24)
Evidently, the stricter condition on « is due to the convergence of (J.24); that is,
1
a > —5- (J.25)

Let us now go back to the problem of finding the KL eigenfunction expansion of
the square process 32(12‘Y+l ). To this end, we must first form the new function defined



Appendix J: KLT of the B>(:*) time-rescaled square Brownian motion 367

by (J.13), which, by virtue of (J.1) and (J.3), turns out to be
S(1) = K, (1.26)
where the new constant K is introduced to simplify things a little

2C°

Our first task is to find the corresponding order of the Bessel function, alter-
natively defined by (J.15) plus (J.16), or by (J.17). Choosing the latter, we are led to
compute the logarithm of (J.26)

Inf(r)=InK + <2a +%> In¢ (J.28)

the logarithmic derivatives

dmﬂo:@“+b

0l ; , (J.29)
and
1
Fnj_ (2+)
p i " , (J.30)
and the integral
r K 3
J f(s)ds = 73:2% (1.31)
0 20( + E

Note that the condition (J.25) on « still holds, since the converge of (J.31) only
requires that

3
a>-7. (1.32)

On substituting these results into the square of (J.17), the latter is turned into

2
2a+%

3’ 1)? 1
~2(t)71+ 2a+§ 3<2a+2> +l<2a+2)
vy K20+ 4 12 2 72

o7 <Za+%> {§ <2a+1) +1}. (J.33)
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The time ¢ now cancels out in the expression, leaving

1
72(1) 1+(2a+32§2i{3<2a+;) +2}

4
(20&4’5

2012 + (20 + ) f6a+2 42
A\ TV T2 2a+1)?

That is,
gm0t (1.34)
2o+ 5
with the immediate consequence
(1) = 0. (1.35)

This circumstance helps simplify upcoming calculations considerably.
Let us now turn to finding the roots of (J.18) that define the constants 7,.
By virtue of (J.35), (J.18) takes the simpler form

J f(s) ds

0

X'(T) o) () + X(T)

We next compute the function defined by (J.16)

. t K
x(1) =4 /f(1) J f(s) ds = ———=1>"" (1.37)
‘ 2o +§
V 2

() = K(LJF?W. (7.38)
2 —
o+ >

and its derivative

Then, (J.38) and (J.37), after rearranging, change (J.15) into

20+ 1 - N -
3 J&(’Yn) + ’Yn‘,g(f}/n) =0. (J39)
2 +5

By virtue of (J.34), the above may be rewritten as

25 (3) + Al 5(3) = 0. (J.40)
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This form of the equation corresponds to the Bessel functions property appearing in
[4, p. 12, entry (55)]. Since zero may not be a root of (J.18), this amounts to

Jo1(9) = 0. (J.41)

The meaning of the set of constants 7, has now been found: these are the (infinite) real
positive zeros, arranged in ascending order of magnitude, of the Bessel function of the
first kind and order given by

1

G 1=_ . Py
v 4o+ 3 (7.42)

No analytic formula explicitly yielding these zeros is known. However, a good
approximated expression for them may be found by resorting to the asymptotic
(for x — o) expansion for the Bessel function of the first kind (see [4, p. 134]), which

reads
2 w T
J,(x) — q/acos(x _7+Z)' (J.43)
In fact, by replacing (J.42), (J.43) takes the form

- 2 I 1 T
e = ] 4

It then follows from (J.41) that:

. 1 ™ m
%1_5[_4014-3} it (J.45)
and finally
- 1 1 .
’yn~7r|:n—z—mi| Valldfori’l—l,2,.... (J46)

Next, we want to determine the normalization constants defined by (J.19); that is,

1= N { J()Tf(s) dsr Li My )] dx. (1.47)

Let us now replace (J.26) and the integral that is calculated within the framework of
the Dini expansion in a series of Bessel functions (see [4, p. 71]); (J.47) thus becomes

kT2t 2 (1 ~2
I=Ni|—% {2 [J’é(&m (1:2 ToG)| ¢
200+ =

Now, by virtue of (J.40), the derivative of the Bessel function disappears, and one gets

e REE):

[\SJOS)
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or

8 2
N, = _ J.48
" KT [J:(9)] )

\/§<2a+§> |

as the exact expression of the normalization constants.

A well-approximated expression of the normalization constants (J.48) may be
obtained by first working out the asymptotic expression—via (J.43)—for the Bessel
function appearing in the denominator of (J.48). To this end, (J.43) and (J.34) yield

. 2 . 7 |2a+1 T
o3l = |\ [ —=—cos [ Fn =3 3 3 (J.49)
771 20£+§

and the approximated formula (J.46) produces

65| 2 cos 1 1 7 |2+ 1 T
~ ~ n_f_ [ [
P\ T T4 240 +3)) 2 ORI

2
)]

_ 2 _1\nt+l _ 2
_\/:%K )™ \/; (J.50)

By substituting (J.50) and (J.46) into (J.48), the desired approximated expression for
the normalization constants becomes

V320 3) R
KT+ V2

_TF(ZO[%) 1 L (1.51)

k123 \" 747 2@a+3)

N, =

Similarly, (J.21) yields the exact eigenvalues

} K243 |
N, = 372.7( i (J.52)
(2a +E) A
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while (J.46) gives the approximate expression

B K2 Tdat3 1

Ay N ) +§ 2" ) l ;2'
T3] T\"T 4 2(a+3)

In conclusion, using (J.48), (J.37) and (J.34), we have proven that the exact
expression of the KL eigenfunctions reads

3
~ ~ f20+% \/E 200 + 512”+1 t2rx+%
¢n(t) = Nn : X(t) Jy <’Yn T2a+%) - T2a+%|«]17(’%)| Ty (Fyn T2a+%> ' (J54)

(J.53)

The approximated counterparts to (J.54) may be obtained by resorting to the exact
expression (J.37), to the approximated expression (J.51) for the normalization con-
stants, to the approximated (J.50) for the Bessel function at the denominator, and
finally to (J.43) for the asymptotic expansion of the Bessel function of the first kind.
The result is

- Vaa + 32! 2 e B
¢n(t)% : 3 COS\ M3~ 5 1
TZOH—% 2 ~ t2rx+3 T2a+3 2 4

- ﬁ T Tn Yol

n T2+

1 3
*ta " 2Qa+1) 7
~Via+3 Torl cos (7,1 720 dat3 4) (J.55)

where (J.34) was used to replace the order in the last expression. Finally, using (J.46)

we get
1 3
- 1t 1 1 £ 12047
Iul(1) ~ Vaa + 3 -cos(w[(n—— ) ot ) (J.56)
as the approximate expression for the KL orthonormalized eigenfunctions.

To+ 4 2(4a+3)) 7208 4(4a+3)

J.3 KL EXPANSION OF THE SQUARE PROCESS B?*(t*H)

In the present section, we derive the full expression for the KL expansion of the
B*(1*"") process by resorting to the results obtained in Section J.2. The notation in
this section is thus consistent with that adopted in Appendix H for the B(r*" ) process,
and this will allow useful comparisons to be made, particularly with regard to the
self-similarity of both processes.
We start by setting
20+ 1=2H (J.57)



372 Appendix J: KLT of the B%(r*7) time-rescaled square Brownian motion

from which
1
=H-——. J.58
a=H- (1.58)
The range (J.25) is then replaced by the new range
H > 0. (J.59)

The advantage of this notation lies in that the Gaussian process

X (1) = B<Ll)f2(s) ds> - B(Z;RH) (7.60)

now plainly reveals its H-self-similarity. By this, we mean the %—self—similarity of the
Brownian motion expressed by the formula (F.6); that is,

B(c-1) = Ve B(1) (1.61)

(valid for any real positive constant ¢) is carried over to the process X (¢) by way of the
generalization

X(c-1)=c"-Xx(1). (J.62)
The proof of this fact immediately follows from (J.60) and (J.61)
_ c’ 2H 2H\ _ H C22H7H

Since the publication of Benoit Mandelbrot’s book about fractals [5], the importance
of H-self-similarity (J.63) is apparent. An investigation about a possible relationship
between the processes studied in the present chapter and Mandelbrot’s fractional
Brownian motions deserves much deeper investigation. We confine ourselves to
pointing out the further 2H-self-similarity fulfilled by the Y () process of (J.11)

Y(c-1)=c* - v(1). (1.64)
The relevant proof follows at once from (J.11) and (J.62):
Y(c-1)=X*(c-1) — E{X?*(c- 1)} = X (1) — E{*"X* (1)}
=X - E{X*(0}) =AMy (). (J.65)

Let us now turn to the KL expansion of the Y (¢) process. The autocorrelation of
the X(¢) process is given by (F.30), that is

{1 L

E{X(1)X ()} :j 13(s) ds. (1.66)

0
Upon setting ¢; = t, = tin (J.606), the obvious formula t A t = ¢, (J.22) and (J.24) yield

t 2
E{X2(1)} = Lﬁ(s) ds =S p,

57 (1.67)
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Therefore, the definition (J.11) of Y (¢), by virtue of (J.60) and (J.67), becomes
2

V() = X30) — E(C(0) = S (B — 2] (1.68)

Since the KL expansion (J.12) has the form
Y(1) = i Z,b(t) (J.69)
from (J.68) and (J.69) the following KL expansion for the process B(r*/?) is inferred:
BX () — 1 = zcifi Zoa (). (1.70)

Inserting now the exact orthonormalized eigenfunctions (J.54), rewritten by aid
of the substitution (J.22), we get the explicit KL expansion

4H 2
B2y - 2 — Z L . (1.71)
n=1 T2H+2‘J ’Yn)l T2H+2

Here

(1) The order of the Bessel function of the first kind is constant in time, and reads
2H

7= - (1.72)
2H + -
*3

(2) The set of constants 4, are defined as the real positive zeros of the Bessel function
of the first kind and of order given by (J.34) minus 1; that is,

Jﬂ—l(ﬁ/n) =0. (J73)

The approximate expression is derived by substituting the approximated ortho-
normalized eigenfunctions (J.56) into (J.70):

2H S - 14
2/ 2H 2H
B (") —t NE; Z”\/4H+1W

- COS <7r ) (J.74)

J.4 CHECKING THE KLT OF B*(t*’) BY MATLAB SIMULATIONS

R A 12H 4
"TAT2@H )2 T A4H 1 1)

Just look at Figure J.1.
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Kty and its RECONSTRUCTIONS by using 10 eigenfunctions out of 100,

10 T T T T
Original Realization of *(t)
Reconstruction by the EMPIRIC KLT
Reconstruction by the ANALYTIC KLT
5 [ ,

15 1 L 1 1
0

20 40 60 30 100
time t

Figure J.1. The zero-mean time-rescaled square Brownian motion B*(r*7) — 1 = X (1) vs.
time 7 simulated as a random walk over 100 time instants. Next to the “bumpy curve” of X (¢),
two more “smooth curves” are shown that interpolate at best the bumpy X (). These two curves
are the KLT reconstruction of X (¢)) by using the first ten eigenfunctions only. It is important to
note that the two smooth curves are different in this case because the KLT expansion (J.74) is
approximated. Actually, it is an approximated KLT expansion because the asymptotic expan-
sion of the Bessel functions (J.43) was used. So, the two curves are different from each other, but
both still interpolate X (¢) at best. Note that were we taking into account the full set of 100 KLT
eigenfuctions, rather than just 10, then the empiric reconstruction would overlap X (¢) exactly,
but the analytic reconstruction would not because of the use of the asymptotic expansion (J.43)
of the Bessel functions.

J.5 REFERENCES

[11 C. Maccone, “Eigenfunctions and Energy for Time-Rescaled Gaussian Processes,”
Bollettino dell’Unione Matematica Italiana, Series 6, 3-A (1984), 213-219.

[2] C. Maccone, “Special Relativity and the Karhunen—-Loéve Expansion of Brownian
Motion,” I/ Nuovo Cimento, 100-B (1987), 329-341.

[3] C. Maccone, “The Karhunen-Loéve Expansion of the Square of a Time-Rescaled
Gaussian Process,” Bollettino dell’Unione Matematica Italiana, Series 7, 2-A (1988),
221-229.

[4] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental
Functions, Vol. 2, McGraw-Hill, New York, 1953.

[51 B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, 1982.



Appendix K

A Matlab code for KLT simulations

K.1 INTRODUCTION

After so much mathematics, it is natural to think of some computer code capable of
simulating the KLTs derived analytically in this book.

The well-known Matlab environment is well-suited for such simulations
inasmuch as it can handle both the eigenvalues and the eigenvectors of symmetric
matrices that are at the heart of the KLT.

But this author is hardly an expert in Matlab programming! So he turned to one
of his pupils, Dr. Nicolo Antonietti, and together they wrote the set of Matlab
routines described in this appendix. This does not mean that such routines are
“optimized”, nor even that they are error-free! Thus, readers of this book might
wish to improve on our work, and we would be most grateful if they could let us have
their new Matlab codes by sending them to the author’s e-mail address: clmaccon@
libero.it. Thanks!

K.2 THE MAIN FILE “STANDARD_BROWNIAN_MOTION_MAIN.M”

The main file of our Matlab 7.1 set of routines is called “Standard_Brownian_
Motion_ MAIN.m” and is listed hereafter. It has plenty of comments, so our reader
should not have difficulties in following what is going on.

% Matlab 7.1 Code for the SIMULATION OF THE KLT.
% Authors: Drs. Nicold Antonietti & Claudio Maccone.
% This version was completed in January 2008.

% Clear the memory & worksheet.
clear all, close all, clc
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% Define the initial value of the loop variable "runtime" as the
% initial cpu time. At the end of this simulation, the runtime will
% be equal to the final cpu time minus the initial cpu time.
run_time = cputime;

% Do you prefer to run a new simulation (creating a new and different
% realization of the stochastic process X(t)) or do you wish to load an
% existing data file (produced by a previous simulation) ?

[t, n, Input_Process_data, flag] = input_data_toggle;

% Decide how many eigenfuctions in the KL expansion you wish to take into
% account for the reconstruction of the process X(t) in the time interval

% between O and T. Clearly, the number of eigenfunctions taken into account
% is at most equal to the number of instants considered in the simulation.

% In practice, however, you may wish to use FEWER eigenfunctions, or even
% just VERY FEW eigenfuctions. The reconstruction of X(t) will thus be

% rougher and rougher, but the computation burden will still be affordable

% by your machine. THIS IS THE TRADE-OFF that the KLT offers to you as
% A LOSSY COMPRESSION ALGORITHM.

How_many_eigenfunctions = inputCHow many eigenfunctions ? \n’);

% Computation of the ANALYTIC autocorrelation matrix of the Brownian
% motion, defined as min(tl, t). This autocorrelation matrix is fed into
% the code only if you previously selected to run an entirely new

% simulation. If you previously selected to load a pre-existing data file
% (as it happens in all EXPERIMENTAL applications of the KLT), then the
% data file of the values of X(t), for t ranging between O and T, is fed
% into the code.

% The autocorrelation of the Brownian motion of size n is defined as

% min(tl, t2) by the function (i.e. by the subroutine)

% Brownian_Autocorrelation(n), hereby called by the Main code.
Autocorrelation_matrix = Brownian_Autocorrelation(t);

% The next step is the most important step in this Main code.

% By virtue of the "eigs" subroutine of Matlab, we avoid getting entangled

% in the computation of the eigenvalues Lambda and of the eigenfunctions Phi

% of the KLT. Quite simply, we feed in the Autocorrelation matrix (whether

% it was ANALYTIC or NUMERIC = EXPERIMENTAL) and "eigs" returns both Lambda
% and Phi! Clearly, in non-Matlab simulations, this "eigs" routine must be

% very carefully written!

[Phi,Lambda] = eigs(Autocorrelation matrix,How_many_ eigenfunctions);

% We now compute the EMPIRIC KLT (as opposed to the ANALYTIC KLT derived in
% the book analytically) for the simulation of X(t) under consideration.

% This EMPIRIC KLT we obtain in the following LOOP by:

%
% 1) PROJECTING the vector of the Input_Process_data (i.e. the vector

% representing the stochastic process X(t) to be KL-expanded) ONTO THE

% RELEVANT ith EIGENVECTOR Phi(i). THIS PROJECTION IS THE RANDOM VARIABLE
% Z(1) of the KL expansion (as it follows by INVERTING the KL expansion,

% just as one does for the Fourier series).

% &) DEFINING the ith term of the KL expansion as the product of Z(i) times
% Phi().

for i = 1:How_many eigenfunctions,
Z(1) = Input_Process_data.’” * Phi(,i);
KIL_EXPANSIONs_ith_term(:,i) = Z(1) * Phi(,i);
end
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% We now create the DATA VECTOR of the EMPIRIC RECONSTRUCTION of X(t)
b achieved by the KLT numerically. This is simply the sum of all the

o KL_EXPANSIONs_ith_term obtained in the previous step of this Main code.

> EMPIRIC_Data_vector = sum(KL_EXPANSIONs_ith_term,R);
EMPIRIC_Data,_vector = sum(KL_EXPANSIONs_ith term,2);

% Next we create the DATA VECTOR of the ANALYTIC RECONSTRUCTION of X(t) as
% given by the formulae mathematically demonstrated in the book.
% This requires a separate routine (named hereafter ANALYTIC_KLT) to be
% called up by this Main code. The text of this routine clearly changed
% according to which formula in the book we refer to.
if flag == 1

[ANALYTIC_Data_vector] = ANALYTIC_KLT(Input_Process_data, n,
How_many_eigenfunctions, t, Lambda);
elseif flag ==

[ANALYTIC_Data_vector] = ANALYTIC_KLT_ decelerated(Input_Process_data, n,
How_many_eigenfunctions, t, Lambda);
elseif flag ==

[ANALYTIC_Data_vector] = ANALYTIC_KLT_ square_brow_motion(Input_Process_data, n,
How_many_eigenfunctions, t, Lambda);
elseif flag ==

[ANALYTIC_Data_vector] =
ANALYTIC_KLT square brow_dec_motion(Input_Process_data, n,
How_many_eigenfunctions, t, Lambda);
elseif flag ==

[ANALYTIC_Data_vector, t] = ANALYTIC_KLT uniform _rel(Input_Process_data, n,
How_many_eigenfunctions, t, Lambda);
end

SRR

% Plot the EIGENVALUES of the EMPIRIC RECONSTRUCTION of X(t).
h2 = figure;

% Plots of:

o 1) The ORIGINAL REALIZATION of X(t).

b &) The EMPIRIC RECONSTRUCTION OF X(t) by the KLT.

b 3) The ANALYTIC RECONSTRUCTION OF X(t) by the KLT.
graphic(Input_Process_data, EMPIRIC_Data_vector, ANALYTIC_Data_vector, flag,
How_many_eigenfunctions, t, n)

SRR

% Save the Input_Process_data as the Matlab file i0lmat.
save i01 Input_Process_data

% How long it took to do all these calculations.
run_time = cputime - run_time

K.3 THE FILE “INPUT_DATA_TOGGLE.M”

The file “input_data_toggle.m” allows the user to choose which stochastic process to
select for the KLT computation. Here is this file’s listing.

% This subroutine allows you either to:

b 1) Create a brand-new REALIZATION of the input stochastic process X(t) or
b 3) Load an existing matlab file (.mat) where the input variables are

b saved

b ) Load an existing file with all the numeric data of the input

b stochastic process. Clearly, this arises when you do EXPERIMENTAL work, %
such as getting the input of a radiotelescope, etc.

RN R
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function [time range,final instant_T,process_values_vector, flag] = input_data_toggle

while true,

flag = input(What process is going to be analized? \n 1. A standard brownian motion
from a still source \n &. A standard brownian motion from a source in a decelerated
motion \n 3. A square standard brownian motion from a still source \n 4. A square
standard brownian motion from a source in decelerated motion \n 5. A uniform
relativistic motion \n’);

if flag==1 | flag==2 | flag==3 | flag==4 | flag==5 |flag==6

break

end

end

while true,
case_number = input(’ Enter 1 to create a NEW REALIZATION of the Brownian
motion X(t).\n Enter 2 to load an existing Brownian motion matlab file (.mat). \n Enter
3 to load an existing Brownian motion data file. \n’);
if case_number==1 | case_number==2 | case_number==3
break
end
end
if case_number == 1
% Creating the NEW REALIZATION of the stochastic process X(t)
final instant T = input(’Please, type the final time unit. (Suggested: no more than
1000) \n");
time_range = (1:1:final instant T)’;
process_values_vector = process_path(final instant_T);
% Plot the Original Realization of X(t) to be later expanded and
% reconstructed by virtue of the KLT.
t = [O; time_range];
random_walk = [0, process_values_vector];
hO = figure;
parabola = sqrt(t);
plot(t, random_walk,-k’, t,parabola,’-k’, t,-parabola,-k’, t,0,-k"), title("REALIZATION of
B(t) over ’, num&str(final instant_T), ’ time instants.’]), xlabel(Ctime t”), ylabel(X(t)")
process_values_vector = process_values_vector’;

% Loading an existing matlab file (.mat) with its input stochastic
% process.
elseif case number ==
nome = input(’Please TYPE the full path and file name.\n’,’s”);
load(nome);
process_values_vector = Input_Process_data;
final instant T = length(Input_Process_data);
time_range = (1:1:final instant_T)’;

% Plot the Original Realization of X(t) to be later expanded and

% reconstructed by virtue of the KLT.

t = [O; time_range];

random_walk = [0, process_values_vector’];

hO = figure;

parabola = sqrt(t);

plot(t, random_walk,-k’, t,parabola,’-k’, t,-parabola,-k’, t,0,-k"), title(REALIZATION of
B(t) over ’, numastr(final_instant_T), ’ time instants.’]), xlabel(Ctime t”), ylabel(X(t)")

% Loading an existing EXPERIMENTALLY OBTAINED input stochastic
% process.
elseif case number ==
nome = input(’Please TYPE the full path and file name.\n’,’s”);
fid = fopen(nome);
A = fscanf(fid, '%4d %4d’, [2, inf]);



A=A
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final instant T = length(time range),
process_values_vector = A(:,R);

fclose(fid);

% Plot the Original Realization of X(t) to be later expanded and

% reconstructed by virtue of the KLT.

t = [0O; time_range];

random_walk = [0, process_values_vector’];

hO = figure;
parabola = sqrt(t);
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plot(t, random_walk,-kK’, t,parabola,’-k’, t,-parabola,-k’, t,0,-k"), title("REALIZATION of

B(t) over ’, num&str(final_instant_T), ’ time instants.’]), xlabel(time t), ylabelCX(t)")

end

if flag ==
process_values_vector

elseif flag ==
process_values_vector

elseif flag ==
process_values_vector

elseif flag ==
process_values_vector

elseif flag ==
process_values_vector

end

process_values_vector;

process_values_vector;

process_values_vector.”2 - time_range;

process_values_vector.”2;

process_values_vector;

K.4 THE FILE “BROWNIAN_AUTOCORRELATION.M”

The file “Brownian_Autocorrelation.m” simply translates the Brownian motion
autocorrelation formula (i.e., the minimum—smallest—of ¢, and f,) into a Matlab
file ready for further applications. Please notice the “lucky circumstance” that the
Brownian motion autocorrelation is known in its analytical form, rather than in some
purely numerical form. It is by virtue of this analytical form, coded in the routine
below, that all the KLT simulations described in this appendix can be performed.

% This subroutine computes the AUTOCORRELATION of the Brownian motion B(t)
% by translating its analytical definition min(tl, t2) into a numeric

% matrix. The entries of such a matrix are each the MINIMUM between the

%

b relevant row and column numbers.

function C = corr_brow(t)

length(t)
zeros(n);

n
C

for row = 1:n,
for column = 1l:n,

C(row, column) = min(t(row),t(column));

end
end
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K.5 THE FILE “PROCESS_PATH.M”
The subroutine “process_path.m” creates the Brownian motion RANDOM WALK.

In other words, this subroutine adds +1 to or subtracts —1 from the value of the B(¢)
stochastic process at every new instant ¢. Its Matlab listing is the following.

% Subroutine creating the RANDOM WALK path of the Brownian motion B(t).
function X = process_path(T)

% Set to zero all the initial values of the T-element vector B that will

% contain the (random) values of the X(t) process when the new realization
% of X(t) will have been computed.

X = zeros(1,T);

% Create a vector with random entries and as many elements as are the time
% instants between 1 and the final instant T.
random_vector = rand(1,T);

for i = 1.T
while random_vector(i) == 0.5
random_vector(i) = rand(1l);
end

if random_vector(i) < 0.5
Increment(i) = - 1;

elseif random_vector(i) > 0.5
Increment(i) = + 1;

end

ifi==1
X(i) = 0 + Increment(i);
else
X(1) = X(-1) + Increment(i);
end
end

K.6 THE FILE “GRAPHIC.M”

The subroutine “graphic.m” provides all the graphic instructions enabling Matlab to
DRAW the plot of the selected stochastic process as a function of time. There are
basically THREE “‘curves” for each realization of the Brownian motion—or time-
rescaled Brownian motion—drawn by our Matlab code:

(1) The original “peaky” Brownian motion ‘“‘curve”, which is the actual Brownian
motion realization.

(2) Its EMPIRIC RECONSTRUCTION, performed by the KLT, BY USING
ONLY A FEW (OR EVEN ALL) THE KLT EIGENFUNCTIONS.

(3) Its ANALYTIC RECONSTRUCTION, performed by the KLT, BY USING
ONLY A FEW (OR EVEN ALL) THE KLT EIGENFUNCTIONS.
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In this way, we may clearly see the extent to which the two KLT RECONSTRUC-
TIONS actually FIT the original Brownian motion process.

This is one of the neater results provided by our simulations code, inasmuch as it
“proves” in a neat, graphical way, “how good” the KLT is according to the number
of eigenfunctions that we wish to take into account.

function graphic(Input_Process_data, EMPIRIC_Data_vector, ANALYTIC_Data_vector, flag,
How_many_eigenfunctions, t, N)

if flag == 1

t = [0; t];

Input_Process_data = [0O; Input_Process_data];
EMPIRIC_Data,_vector = [0; EMPIRIC_Data,_vector];
ANALYTIC_Data_vector = [0; ANALYTIC_Data_vector];

plot(t, Input_Process_data,-k’, t ,EMPIRIC_Data, vector,’-k’, t, ANALYTIC_Data,_vector, k"),

title(['B(t) and its RECONSTRUCTIONS by using ’, num2str(How_many_eigenfunctions), ’
eigenfunctions out of ’, num2str(N), ".’]),

xlabel(’time t’), ylabel(CB(t)’), legend(’Original Realization of B(t)’, 'Reconstruction by the
EMPIRIC KLT’, 'Reconstruction by the ANALYTIC KLT")

hold on

parabola = sqrt(t);

plot(t, parabola,-k’, t, -parabola,’ k', t, O, *k’)

hold off

elseif flag ==

t = [0; t];

Input_Process_data = [0O; Input_Process_data];
EMPIRIC_Data,_vector = [0; EMPIRIC_Data_vector];
ANALYTIC_Data_vector = [0; ANALYTIC_Data_vector];

plot(t, Input_Process_data,-k’, t ,EMPIRIC_Data_vector,’-k’, t, ANALYTIC_Data_vector,” k"),

title(B(t"{RH}) and its RECONSTRUCTIONS by using ’,
num&str(How_many_eigenfunctions), ’ eigenfunctions out of ’, num&str(N), *.’]),
xlabel(’time t”), ylabelCB(t"{2H})"), legend(’Original Realization of B(t"{2H})’,
’Reconstruction by the EMPIRIC KLT’, 'Reconstruction by the ANALYTIC KLT")
hold on

parabola = sqrt(t);

plot(t, parabola, "kK’, t, -parabola, "k, t, O, k")

hold off

elseif flag ==

t = [0; t];

Input_Process_data = [0; Input_Process_data];
EMPIRIC_Data_vector = [O; EMPIRIC_Data_vector];
ANALYTIC_Data_vector = [0; ANALYTIC_Data_vector];

plot(t, Input_Process_data,-k’, t ,EMPIRIC_Data_vector,’-k’, t, ANALYTIC_Data_vector,k’),

title(['B~R(t)-t and its RECONSTRUCTIONS by using ’,
num&str(How_many_eigenfunctions), ’ eigenfunctions out of ’, num&str(N), *.’]),
xlabel(time t”), ylabelCB"2(t)-t"), legend(’Original Realization of B”2(t)-t’, 'Reconstruction
by the EMPIRIC KLT’, 'Reconstruction by the ANALYTIC KLT")

hold on

parabola = sqrt(t);

plot(t, parabola, "-K’, t, -parabola, "k, t, O, k")

hold off



382 Appendix K: A Matlab code for KLT simulations

elseif flag ==

t = [0; t];

Input_Process_data = [O; Input_Process_data];
EMPIRIC_Data_vector = [0; EMPIRIC_Data_vector];
ANALYTIC_Data_vector = [0; ANALYTIC_Data_vector];

plot(t, Input_Process_data,-k’, t ,EMPIRIC_Data_vector,’-k’, t, ANALYTIC_Data_vector, k),

title('B"R(tMRH)}) and its RECONSTRUCTIONS by using ’,
num&str(How_many_eigenfunctions), ’ eigenfunctions out of ’, num&str(N), ’.’]),
xlabel(’time t’), ylabelCB*R(t"{RH})"), legend(’Original Realization of B*Q(t"{RH})’,
’Reconstruction by the EMPIRIC KLT’, 'Reconstruction by the ANALYTIC KLT")
hold on

parabola = sqrt(t);

plot(t, parabola, *Kk’, t, -parabola, "k’, t, O, k")

hold off

elseif flag ==

t = [0; t];

Input_Process_data = [O; Input_Process_data];
EMPIRIC_Data_vector = [0; EMPIRIC_Data_vector];
ANALYTIC_Data_vector = [0; ANALYTIC_Data_vector];

plot(t, Input_Process_data,-k’, t ,EMPIRIC_Data_vector,’-k’, t, ANALYTIC_Data_vector, k),

title(U’B(\tau) and its RECONSTRUCTIONS by using ’,
numastr(How_many_eigenfunctions), ’ eigenfunctions out of ’, num&str(I), .’]),
xlabel(’time \tau’), ylabel(’B(\tau)’), legend(’Original Realization of B(\tau)’,
’Reconstruction by the EMPIRIC KLT’, 'Reconstruction by the ANALYTIC KLT")
hold on

parabola = sqrt(t);

plot(t, parabola, "Kk’, t, -parabola, "k’, t, O, k")

hold off

end

K.7 THE FILE “ANALYTIC_KLT.M”

The file “ANALYTIC_KLT.m” finds the KLT of the ordinary Brownian motion
B(1) as described and proven in Section F.3. We recall here that this is an EXACT
ANALYTICAL solution of the KLT integral equation (10.18). Therefore, the recon-
struction of B(f) by the EMPIRIC KLT and the reconstruction of B() by the
ANALYTIC KLT are exactly the same thing; that is, the two reconstructed curves
just OVERLAP EXACTLY in the B(¢) plot. This happens independently of the
number of eigenfunctions that we decide to take into account for the reconstruction
of B(1).
This subroutine’s listing is as follows.

% This subroutine computes the ANALYTIC RECONSTRUCTION of X(t) according to
% the analytic (either exact or approximated formulae given in the book.

function [ANALYTIC_Data_vector] = ANALYTIC_KLT(Input_Process_data, N,
How_many_eigenfunctions, t, Lambda)

ANALYTIC_Data_vector = zeros (N,1);
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% Final instant T, i.e. the largest value in the "t" set.
T = N;

% This is the KEY SUBROUTINE YIELDING THE ANALYTIC RECONSTRUCTION of X(t).
for n = 1:How_many_eigenfunctions,

arg = t.*pi * (R * n -1) / (R*(T+1)),;

NN = sqrt(2 /(T+1));

lambda(n) = 4 * (T+1)"2 / ((pD)"R) * (B*n - 1)"2);

phi = NN*sin(arg);

zed = sum(Input_Process_data.*phi);

ANALYTIC_Data_vector = ANALYTIC_Data_vector + zed * phi;
end

x = [1:1:How_many eigenfunctions];

% Plot the EIGENVALUES of the EMPIRIC AND ANALYTIC RECONSTRUCTIONS of X(t).
figure;

plot(x, diag(Lambda(l:n,1:n)), ’-k’, x, lambda, k"), titleCEIGENVALUES of the EMPIRIC
and ANALYTIC Reconstruction of B(t)."), ylabelCEigenvalues’);

legendCEMPIRIC eigenvalues’ANALYTIC eigenvalues’)

Now we would like to show how all this performs graphically.

Figure K.1 shows a simple realization of the ordinary Brownian motion B(t)
over 500 time instants, starting from the origin of the axes according to the initial
condition B(0) = 0—see Equation (F.3). The solid horizontal parabola with axis
coinciding with the time axis is of course the STANDARD DEVIATION parabola,

REALIZATION of Eit) over S00 ime instants.
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Figure K.1. A simple realization of the ordinary Brownian motion over 500 time instants.
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Bt} andits RECONSTRUCTIONS by using 10 eigenfunctions out of 500,
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Figure K.2. The same ordinary Brownian motion realization over 500 time instants, as shown in the previous
Figure K.1, plus its two KLT RECONSTRUCTIONS made by taking into account just the first 10 eigenfunc-
tions out of 500. These two curves actually COINCIDE with the single, “‘smooth curve” INTERPOLATING the
“peaky”” Brownian motion realization. They coincide because, as shown in Section F.3, the analytical KLT for
the ordinary Brownian motion is an EXACT solution, rather than a numerically approximate solution. So, the
EMPIRIC and ANALYTICAL RECONSTRUCTIONS cannot fail to coincide!

having the two equations 4+/7 according to Equation (F.5). In plain words, the
ordinary Brownian motion B(#) “oscillates at random” above and below its mean
value (i.e., the time axis, since E{B(#)} = 0) and its average distance from the mean
value equals approximately the standard deviation £+/7. But this does not mean at all
that B(¢) will always stay above or below the time axis: it actually shifts periodically,
as this simulation clearly shows over just 500 time instants.

Figure K.2 shows how well the KLT reconstructs the given stochastic process
according to the number of eigenfunctions taken into account for the reconstruction.
It should be clear that if the user employs ALL of the KLT eigenfunctions for the
reconstruction, the EMPIRICAL reconstruction will overlap exactly the original
realization (100% reconstruction). In contrast, the ANALYTICAL reconstruction
will overlap the original realization exactly ONLY if the solution to the KLT integral
equation (10.18) is EXACT. This is precisely the case for the ordinary Brownian
motion, as described in Section F.3.
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K.8 THE FILE “ANALYTIC_KLT_SQUARE_BROW_MOTION.M”

The subroutine “ANALYTIC_KLT_square_brow_motion” finds the KLT of the
square of the ordinary Brownian motion—that is, B*(r)—as described and proven
in Section 1.4.

However, we must point out a “surprise” here: the mean value of the B*(r)
stochastic process is NOT zero, but, rather, it is . Thus, we may NOT compute
the KLT of the Bz(t) process alone, but, rather, we must compute the KL T of the new
process X (1) = B*() — 1, the mean value of which is indeed zero, so that the assump-
tion E{X(7)} =0, upon which all the KLT theorems of Chapter 10 are based, is
indeed fulfilled. Having said this, the listing is as follows.

% This subroutine computes the ANALYTIC RECONSTRUCTION of X(t) according to
% the analytic (either exact or approximated formulae given in the book.

function [ANALYTIC_Data_vector] = ANALYTIC KLT(Input_Process_data, N,
How_many_eigenfunctions, t, Lambda)

ANALYTIC_Data_vector = zeros (N,1);

% Final instant T, i.e. the largest value in the "t" set.
T = N;

%Input_Process_data = Input_Process_data - mean(Input_Process_data);

% This is the KEY SUBROUTINE YIELDING THE ANALYTIC RECONSTRUCTION of
X~2(t). for n = 1:How_many_eigenfunctions,

gamma(n) = pi * (n-5/1);

arg = gamma(n) * t.°(3/2)/(T+1)"(3/R);

NN = sqrt(3)*t /(T+1)N(3/) / abs(besselj(2/3, gamma(n)));

lambda(n) = 16/9*(T+1)"3 / ((gamma(n))"*);

phi = NN.*besselj(2/3,arg);

zeta = sum(Input_Process_data.*phi);

ANALYTIC_Data,_vector = ANALYTIC_Data,_vector + zeta * phi ;
end

x = [1:1:How_many eigenfunctions];

% Plot the EIGENVALUES of the EMPIRIC RECONSTRUCTION of X(t).

figure;

plot(x, diag(Lambda(l:n,1:n)), ’-k’, x, lambda, k"), titleCEIGENVALUES of the EMPIRIC
and ANALYTIC Reconstruction of B"2(t)t.”), ylabel('Eigenvalues’);

legendCEMPIRIC eigenvalues’ANALYTIC eigenvalues’)

Let us now see the graphs produced by this routine.

Figure K.3 shows a new, simple realization of the ordinary Brownian motion
over 500 time instants (different from the realization shown in Figure K.1).

But the graphs shown in Figure K.4 are ““‘unexpected”! In fact, the vertical axis
now plots X (1) = B*(t) — t for the same realization of B(¢) shown in Figure K.3, and
one sees that the numerical values on the vertical axis are of course much higher than
those in Figure K.3. For instance, the parabola neatly drawn in Figure K.3 is now so
much “squashed” in Figure K.4 that it looks nearly like two “parallel” straight lines
above and below the time axis!
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Figure K.3. A new, simple realization of the ordinary Brownian motion B(#) over 500 time instants.
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There is one more important feature of Figure K.4 that we must point out. The
two reconstructed lines (drawn by taking into account just the first 10 eigenfunctions
out of 500) DO NOT COINCIDE EXACTLY because the analytical solution given
by Equation (I.53) is an APPROXIMATE analytical solution, and NOT an exact
one. In fact, Equation (I.50) is the ASYMPTOTIC (for ¢+ — oo) expansion for the
Bessel functions J,(¢) and so it cannot give accurate values of J,(¢) near the origin
t ~ 0. This explains why, for 7 = 0, the two reconstructions shown in Figure K.4 are
actually different from each other.

K.9 THE FILE “ANALYTIC_KLT_UNIFORM_REL.M”

Let us now turn to the RELATIVISTIC KLT, as described and proven in
Chapters 11, 12, and 13. The simplest possible case of relativistic motion is of
course UNIFORM motion (i.e., the motion of a spaceship at a constant speed which
is also a significant fraction of the speed of light). The KLT for signals received
back on Earth from a spaceship moving (away from or towards the Earth) with
a UNIFORM motion was obtained in Section 11.2. The subroutine
“ANALYTIC_KLT_ uniform_ rel.m” translates the results of Section 11.2 into a
Matlab file. Its listing is as follows.

500
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Btk and its RECONSTRUCTIONS by using 10 eigenfunctions out of 500,
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Figure K.4. Showing the stochastic process X () = B*(r) — ¢ for the same realization of B(r) shown in Figure K.3.
Notice that the standard deviation parabola of Figure K.3 is now very much “‘squashed” around the time axis
because of the changes in the vertical scale of the diagram. Also, the two KLT-reconstructed curves (using only the
first 10 eigenfunctions out of 500), do not overlap exactly for small values of time ¢ because the analytical
reconstruction is just an approximate (i.e., inexact) formula. In fact, the asymptotic expansion formula for the
Bessel functions (I.50) was used in the mathematical derivation. But for high values of time, the two reconstruc-
tions of course overlap.

% This subroutine computes the ANALYTIC RECONSTRUCTION of X(t) according to

% the analytic (either exact or approximated formulae given in the book.

function [ANALYTIC_Data_vector, tau] = ANALYTIC_KLT_ uniform_rel(Input_Process_data,
N, How_many_eigenfunctions, t, Lambda)

ANALYTIC_Data_vector = zeros (N,1);

% Final instant T, i.e. the largest value in the "t" set.
T = N;

ratio = input("What ratio of the speed of light is the uniform velocity? (For instance
0.2) \n’);
K = (1-ratio®@)"(1/4);

% This is the KEY SUBROUTINE YIELDING THE ANALYTIC RECONSTRUCTION of X(t).
for n = 1:How_many_eigenfunctions,

gamma(n) = n*pi - pi/&;

arg = gamma(n) * t / (T+1);

NN = K * sqrt(2 /(T+1));

lambda(n) = K" * T"2 / gamma(n)"d;
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phi = NN*sin(arg);

zed = sum(Input_Process_data.*phi);

ANALYTIC_Data_vector = ANALYTIC_Data,_vector + zed * phi;
end

tau = sqrt(l-ratio”Q)*t;
x = [1:1:How_many_eigenfunctions];

% Plot the EIGENVALUES of the EMPIRIC RECONSTRUCTION of X(t).

figure;

plot(x, diag(Lambda(l:n,1:n)), ’-k’, x, lambda, "Kk”), titleCEIGENVALUES of the EMPIRIC
and ANALYTIC Reconstruction of B(\tau).”), ylabelCEigenvalues’);

legendCEMPIRIC eigenvalues’,ANALYTIC eigenvalues’)

Again, we now want to see the graphs produced by this subroutine.

Figure K.5 shows the new realization of the Brownian motion (different of course
from those in Figures K.1 and K.3). Figure K.6 shows the PROPER time 7 on the
horizontal axis (i.e., the time measured aboard the spaceships). The proper time 7 is
related to the coordinate time ¢ by virtue of Equation (11.1). Since we have assumed
in Figure K.5 that 7 ranges from 0 to 500, then we must compute the integral (11.1) for
t = 500. Also, we must select at which fraction of the speed of light our spaceship is
advancing in empty space. To fix ides, let us assume that it advances at 50% of the
speed of light. Equation (11.1) then yields 7 = 433.013 ~ 433. Thus, the 7 axis in
Figure K.6 ranges only from 0 to 433.

REALIZATION of B(t) over 500 time instants.

1 I 1 1 L I I I
0 50 100 150 200 250 300 350 400 450 500

timet

Figure K5. A new, simple realization of the ordinary Brownian motion B(#) over 500 time instants.
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B(t) and its RECONSTRUCTIONS by using 10 eigenfunctions out of 500.
25 T T T T 1 I 1 1
Onginal Realization of Blx)
20} —=—-Reconstruction by the EMPRICKLT | _
---------- Reconstruction by the ANALYTIC KLT

225 1 1 I 1 ] 1 1 1

0 50 100 150 200 250 300 350 400 450

Figure K6. The time dilation effect of special relativity forces the proper time 7 to range only from 0 to 433—
because of Equation (11.1). Having said that, this figure shows the original input Brownian motion as in Figure
K.5 plus the two reconstructed KLT curves by taking into account only the first 10 eigenfunctions.

K.10 CONCLUSIONS

We have provided the readers with a Matlab code showing the KLT of the Brownian
motion in a graphical fashion. This code might be extended and improved in a
number of ways, of course. Any volunteers?
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