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Preface

This textbook is derived from a document originally written for colleagues of
my company (CEA) who are concerned with ballistic reentry vehicles. This free
and open document was published in French in 1998. It dealt with reentry topics
restricted to aerodynamics and flight mechanics. It was submitted to my publisher,
Springer, who expressed interest in publishing it as a textbook for universities,
engineering schools, aerospace companies, and government agencies. We then pro-
ceeded to enlarge and modify the original French manuscript and translate it to
English.

The final product is not purely academic, but derives from the experiences and
experiments during my long career in this field. In the original text, for rigorous
concerns, we provided demonstration of the majority of theoretical results, which
seemed more suited to the purpose of transferring knowledge. Relating to the first
edition, the present text has been corrected from some errors and we greatly appre-
ciate reader feedback upon discovery of additional errors.

New chapters have been added; particularly those relating to flight qualities,
instabilities and dispersions, and other chapters have been modified. The subject
of planetary entry capsules has been included, following recent collaboration with
Alcatel Space Company and French Spatial Agency CNES (MSR/Netlander pro-
gram). At the end of the textbook, we included a set of exercises as applying
principles of each chapter.

I thank CEA for sponsoring my career in this very special field and provid-
ing the opportunity to write this book. I owe particular thanks to my colleague
Georges Duffa, who initially encouraged me to write the different editions and
kindly reviewed the French text. I also thank Springer for their support throughout
the evolution of the textbook.

Patrick Gallais
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Latin Letters
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A Aerodynamic component axial or trim amplification

factor, directors cosine matrix
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�F , F Force, coefficient of the pulsations equation N, rad/s
g, �g Terrestrial gravity field m.s−2

G Amplification factor of rolling acceleration, coefficient
of the pulsations equation

no dim (rad/s)2

H, �H Height relating to the ellipsoid, angular momentum m, N.m.s
i Base of imaginary numbers
I Moment of inertia m2.kg
k Wave number m−1

K Indicate an inertial or Galilean reference frame
L, �L Length, aerodynamic roll moment or angular

momentum
m, N.m, N.m.s

m Mass kg
M, �M Mass or specific weight, pitching aerodynamic

moment, total moment
kg, N.m

N Yawing aerodynamic moment, length of the great
normal to ellipsoid

N.m, m

p Pressure, roll angular rate, linear momentum Pa, rad/s, N. s
�P Linear momentum vector N. s
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xiv Symbols

q, q Pitch angular rate, quaternion component, dynamic
pressure

rad/s, no
dim, Pa

Q Quaternion
�r , r Position, geocentric radius vector, specific constant of

a gas, yaw angular rate
m,
J/kg/K,
rad/s

R Location vector or universal constant of gases m,
J/mole/K

sgn Sign function (±1) no dim
S Area m2

T Kinetic energy, absolute temperature W, K
t Time s
u Component along X of speed relating to the air m / s
v Component along Y of speed relating to the air m / s
Vc Speed of circular orbit m / s
�V Velocity m / s
w Component along Z of speed relating to the air m / s
x, y, z Geocentric co-ordinates m
�X Vector m
Z Altitude relating to sea level m
ΔX Static margin m

Greek Letters

α Total aerodynamic incidence, angle of
attack

radian

α Component of incidence in the symmetry
plane, angular range

radian

β Yaw component of incidence radian
�Δ,Δ Axis of rotation or difference operator

ε Half angle of coning motion, first order
small number

radian or
arbitrary unit

ϕ Geographical latitude, Euler angle radian

�ϕ Gravitation field vector m.s−2

� Diameter, angle m, radian

�γ , γ Acceleration, polytropic gas constant m.s−2 or no
dim.

�� Acceleration m.s−2

λ Geocentric longitude, mean free path, pul-
sation (complex)

rad, m, rad.s−1

� Real part of pulsation rad.s−1



Symbols xv

μ Gravitational constant, inertia ratio,
mass

m3.s−2, no
dim, kg

θ Nutation Euler angle, principal inertia
axis misalignment

rad

ω Angular rate, aerodynamic pulsation rad / s
�	,	 Angular rate, complex angular rate

(q+ i r)
rad / s

ξ Complex incidence (β+ i α) rad

τ Initial angle between kinetic momen-
tum and linear velocity

rad

ψ Geocentric latitude, Euler angle rad

Indices

a Aerodynamic, apex, absolute

A Aerodynamic, axial

stag Stagnation point value

b Relating to vehicle base plane

c Relating to, relative to base plane

CP, cp Relating to pressure center

cr Relating to critical conditions (resonance)

D Relating to initial re-entry point

e Relating to the movement of a reference frame, static
equilibrium value

E Value relating to a non Galilean or Eulerian frame, at
static trim

G Relating to center of gravity, gyrometric

i Indicate a point of a solid

l,m, n Relating to roll, pitch and yaw axis, relating to vehicle
nose tip

N Normal, relating to vehicle nose tip

O Relating to origin of aerodynamic reference frame

p, q, r Relating to pressure (p), relating to rolling or to reso-
nance (r), gradient relating to components of angular
rate

Ref, R Reference value

T Transposed, transverse

x, y, z Relating to x, y, z axis



xvi Symbols

Y Side component

w Relating to wind

α,β Gradient relating to components of angle of attack

θ Relating to principal axis misalignment

0 Value at zero pitch and yaw angles of attack,
indices of the real part of a quaternion, relating to
initial time

1, 2, 3 Relating to axis number

Ẋ, Ẍ Derivative operators relating to time

∞ Relating to undisturbed incoming conditions



Constants[CRC],[GPS]

Avogadro number N = 6.02213674× 1023 mole−1

Boltzmann constant k = 1.3806581× 10−23 J/K

Perfect gas constant R = Nk = 8.3145107 J/mole/K

WGS84 Ellipsoid

Geometrical Model

Equatorial semi major axis a = 6378137.m

Flatness parameter f = (a− b)/a = 1/298.257223563
Model of gravity

Angular velocity of rotation ω = 7.292115167 · 10−5rad/s

Geocentric gravitational
constant

μ = 3.986005 · 1014m3 · s−2

Coefficient of the first
non-spherical term of the
potential

c̄2,0 = −0.48416685 · 10−3
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[PAL] Palmer, R.H. et al.: A Phenomenological Framework for Reentry Dispersion Source Mod-

elling. Space and Missile Systems Organization, Los Angeles (1977)

xix



xx List of Reference

[PAR] Moss, J.N., Blanchard, R.C., Wilmoth, R.G., Braun, R.D.: Mars Pathfinder Rarefied Aero-
dynamics: Computation and Measurements. NASA Langley Research Center, AIAA 98–0298
(1998)

[PAT] Gnoffo, P.A. et al.: Effect of Sonic Line Transition on the Aerodynamics of the Mars
Pathfinder Probe. NASA Langley Research Center, AIAA (1995)

[PLA] Platus, D.H.: Re-Entry Vehicle Dispersion from Entry Angular Misalignment. The
Aerospace Corporation, El Segundo, California. J. Guid., Control, 2(4), (1978)

[RAT] Wilmoth, R.G. et al.: Rarefied Transitional Bridging Functions of Blunt Body Aerodynam-
ics. NASA Langley Research Center, 1st International Symposium on Rarefied Gas Dynam-
ics, Marseille, France, July (1998)

[RYH] Ryhming, I.L.: Dynamique des fluides. Presses Polytechniques Romandes, Lausannes, Su-
isse (1985)

[SUT] Sutton, K., Graves, R.A.: A general stagnation point convective heating equation for arbi-
trary gas mixtures. NASA TR- 376 November (1971)

[TRU] Truitt, R.W.: Hypersonic Aerodynamics. The Ronald Press Company, New York (1959)
[USS] U.S. Standard Atmosphere 1966. U.S. Government Printing Office, Washington D.C.

(1966)
[VAU] Vaughn, H.R.: A Detailed Development of the Tricyclic Theory. Sandia Laboratories, Al-

buquerque (1968)
[VFL] Lin, T.C., Rubin, S.G.: Viscous flow over spinning cones at angle of attack. AIAA J., 12(7),

(1974)
[VIK] Experimental Aerodynamic Characteristics of the Viking Entry Vehicle Over the Mach

Range 1.5–10. NASA – CR—15225. Martin Marietta Corporation (1971)
[WAT] Waterfall, A.P.: Effect of ablation on the dynamics of spinning re-entry vehicles. J. Space-

crafts and Rockets, 6, (1969)



Introduction

The mission of a ballistic reentry vehicle (RV) consists of a trajectory having three
phases of very different characteristics and duration: launch, vacuum, and atmo-
spheric reentry to the target.

The launch phase is dominated by engine thrust, which is typically designed for
nearly uniform acceleration. Duration is short and, assuming a protective shroud
or fairing is provided, the primary concerns for the RV are the mechanical loads
induced by shock and vibration.

Final stage thrust terminates at a very high altitude, and separation of a deploy-
ment module (or perhaps only the RV) follows in a virtual vacuum environment.
Using reaction jets, the deployment module may exercise maneuvers to dispense
RVs and other objects designed to subsequently reenter with specific mission ob-
jectives. The ballistic phase is governed by the kinematics conditions of separation,
which are then subjected to gravitational and inertial forces. The trajectory, which is
very close to elliptical, usually has a long duration of tens of minutes and contributes
the major part of the range to the target zone.

Following deployments, the RV accelerates under gravitational force until the
first perceptible aerodynamic effects of the atmosphere on motion occur between
120 and 90 km, depending on the mass and drag parameter of the body, known as
the “ballistic coefficient (β).” Nonmilitary missions generally require high altitude
deceleration (low β), whereas most military RVs need to retain velocity by achieving
high β’s, which results in endoatmospheric reentry times of less than a minute.

During reentry, the RV is subjected to gravitational, as well as both inertial and
aerodynamic forces and moments. The aerodynamic effects become increasingly
important as the altitude decreases and usually become dominant by 40 km, a result
of the exponential increase of the air density.

Velocities may decrease from their initial reentry values of approximately Mach
20 to nearly subsonic at impact. Maximum axial loads typically vary from 50 to
100 g with stagnation pressures in excess of 100 atmospheres and thermal flux of
100 MW/m2. The thermal protection system for this nosetip environment must en-
dure several seconds, which is a formidable materials engineering problem. This
problem also extends to the frustum where fluxes reach about one-tenth the nosetip
values and require sophisticated insulation materials that rejects much of the inci-
dent energy.

Transverse load depends on the convergence of the initial angle of attack at
reentry and generally does not exceed a few g’s maximum value at about 20 km.

xxi
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However, ablation of the nosetip may occur nonuniformly and results in asymmet-
ric shapes that induce small sustained angles of attack (“trim” angles) at low alti-
tude. When coupled with inertial asymmetries, these trim angles may be amplified
through complex dynamic effects to much higher angles, having lateral loads that
may threaten vehicle survival.

The above discussion shows the major importance that the combined aerody-
namics and flight mechanics subject realms have in the successful design, accuracy,
and evaluation of RV. As design tools, they provide the necessary aeroshell shape
and mechanical tolerances on dimensions to control mass and inertial properties
that ultimately result in the accuracy achieved by the configuration. Evaluation of
this process follows applications to specific ground and flight tests, which yield the
empirical data to further improve the elements of the analyses. Thus, the overall
mission is vitally dependant on sound execution in these reentry disciplines, which
are treated in this book.

Additionally, the case of planetary probes entry will be developed in this new
edition. These missions have very long durations of several months to several years
and initial conditions vary greatly, with different atmospheric conditions and grav-
itational properties. Aeroshell shapes are tailored to optimize velocity and path an-
gles in these environments in order to achieve favorable experimental conditions.
Although environmental levels may be different from typical Earth conditions, the
technical formulations and approaches are quite similar and the methodology is vir-
tually identical.

The following subjects are treated in separate chapters: classical mechanics;
topography and gravitation; atmosphere models; aerodynamics; inertial model;
changing of reference frames; ballistic phase; six degrees of freedom reentry equa-
tions; zero angle of attack reentry; initial angle of attack convergence; final angle of
attack convergence; roll lock in; instabilities; and dispersions.



Chapter 1
Classical Mechanics

Lagrange mechanics, based on variational calculus and minimum action principle, is
a beautiful intellectual construction but most frequently1 of little use in dealing with
our applications, which are characterized by nonconservative forces. All we need
is contained in the “old” mechanics of Galileo and Newton and its consequences,
deduced (among others) by Euler and d’Alembert. Excellent textbooks are dedicated
to classical mechanics [BRK][LAN]. Our goal is neither to play the scientist nor to
compete with them but only to remind the reader basic hypothesis or results he may
have forgotten, especially the rigid body mechanics, which are used throughout this
book. We assume the reader has a sound knowledge of basic kinematics notions.

1.1 Classical Point Mass Mechanics

Let us first recall that the fundamental principles were entirely deduced from the
observation of movement of planets of solar system, in order to correlate and explain
the measured phenomena with predictions.

Like any theory in physics, they were only assumptions, set up in principles,
which proved for a long time to predict the physical phenomena with great exacti-
tude. It is quite clear that these principles required modification in some domains
by electromagnetic and relativity theory. However, traditional mechanics applies
perfectly to the usual macroscopic objects at velocities well below the speed of
light.

1.1.1 Fundamental Principles

1. The universe bathes in a medium at rest relative to which the objects move, “ab-
solute space” (historically defined using stars assumed “fixed”). The measure-
ment of time is the same for all the observers, whatever their movement relating
to this absolute space.

1 However, I found they can be very useful in some special case such as nonrigid body effects.

P. Gallais, Atmospheric Re-Entry Vehicle Mechanics. 1
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2 1 Classical Mechanics

2. The principles of mechanics apply to privileged observation systems, Galileo or
inertial reference frame (K), in uniform translation relating to absolute space.

a. Principle of inertia: “When no external forces are applied on it, the “free”
movement of a point mass is uniform relating to any inertial reference frame:”

�vK = �vK (t = 0)

b. Fundamental principle: The acceleration of a point mass “m” subjected to a
force is the same relating to any inertial reference frame:

d �vK

dt
=
�f

m
= �γa (1.1)

c. Principle of equality of the action and reaction: For any set of two point
masses interacting,

�f1→2 + �f2→1 = 0

1.1.1.1 Remarks

• The laws of mechanics are invariant through Galilean transform:

�x ′ = �x + �vt; t ′ = t ↔ �x = �x ′ − �vt ′; t = t ′

• The fundamental principle implies assumptions of existence of mass invariant
relating to change of inertial reference frame. Forces and accelerations are also
invariant through Galilean transform:

�x ′ = �x + �vt ; t ′ = t ⇒ f ′
(�x ′, t ′

) = f (�x, t)

• The principle of inertia is a consequence of the fundamental principle; however,
it can be used to define the inertial reference frames.

• Then the second principle can be used to define forces.

1.1.2 Noninertial Frames

The corollary of the principle of inertia is that relating to a noninertial reference
frame,

1. the free movement (zero applied forces) of a point mass is not uniform and
2. the second principle is not valid.

A noninertial reference frame has a rotation and/or nonuniform translation move-
ment relating to inertial frames. To determine the acceleration of a point mass
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relating to a noninertial frame, we must account for latent forces, fictitious forces,
only related to the movement of the noninertial observation frame.

– Let us label O the origin of axes of such a reference frame (E), �Ve(t) the linear ve-
locity of O, �	e(t) angular velocity of (E) around O relating to an inertial reference
frame (K), and �rE(t) the instantaneous location of a point mass P relating to (E).

– Let us develop the movement �r(t) of P relating to (K) while composing the move-
ment of [E] and the relative movement �̇rE of P for an observer fixed to [E], located
at the origin O of [E]. We will demonstrate in Chap. 6 that:

�̇r = �Ve + �̇rE + �	e ∧ �r (1.2)

�̈r = �̇Ve + �̈rE + 2 �	e ∧ �̇rE + �̇	e ∧ �r + �	e ∧ ( �	e ∧ �r) (1.3)

– We thus obtain the expression of the second derivative of the apparent movement

by replacing the left term of (1.3) with its value from (1.1), �̈r = �γa = �f
m , which

yields:

�̈rE = �γE =
�f

m
−
[
��e + 2 �	e ∧ �vE + �̇	e ∧ �r+ �	e ∧ ( �	e ∧ �r)

]
(1.4)

with ��e = �̇Ve (acceleration of the origin of E relating to K) and �vE = �̇rE (ap-
parent velocity of P for the observer fixed to E, obtained by derivation of the
components of �rE relating to E).

It must be noted that the bracketed term of acceleration does not correspond to
real forces but has an entirely kinematics origin in the movement of the observer.
This acceleration is independent of the mass, which is also the case for gravitational
fields. For an observer fixed to such a reference frame, the effect is equivalent to
a gravitational field2. The virtual force appears as a gravity field in which all the
masses interact. However, unlike an ordinary gravitational field, this one depends
not only on the location but also on the relative velocity (Coriolis acceleration term).
Another difference is that the gravitational forces vanish ad infinitum, which is not
the case of virtual forces.

Finally, we observe that the real forces, invariant through changes of inertial ref-
erence frames, are also invariant with respect to changes of noninertial reference
frame.

1.1.3 Linear and Angular Momentum

These physical entities are relative to the selected inertial frame (K):

2 This equivalence is the foundation of general theory of relativity.
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�p = m�v (linear momentum) (1.5)

�l = �r ∧ �p (angular momentum) (1.6)

The fundamental principle (1.1) stated by Newton is equivalent to:

�̇p = �f (1.7)

Therefore:

�̇l = �r ∧ �f (1.8)

1.1.4 Modeling the Forces

The most general model of force is such that the instantaneous value of �f depends
on the entire past of the point mass. Such a force cannot be represented a priori by a
functional relationship. Fortunately, there is a class of simpler models that represent
most situations such that the instantaneous force corresponds to a state function. A
state function depends only on kinematics state parameters (⇀r , �̇r) and time:

�f (t) = ⇀

f (t, �r , �̇r)

We will use this exclusively in all that follows, assuming the function is piecewise
continuous.

1.1.5 Conservation of Energy

1.1.5.1 General Case

Let us consider a point mass subject to a force defined by a state function �f (t) =
⇀

f (t, �r , �̇r). For an inertial observer, we obtain:

t2∫

t1

�̇p · �vdt =
t2∫

t1

�f · �vdt ⇒
t2∫

t1

m �̇v · �vdt =
∮

s1→2

�f · d�r

1

2
mv2

2 −
1

2
mv2

1 = W12 (1.9)

Increase of the state function “kinetic energy” T of the point mass equals the
work done by the force:

T = 1

2
mv2 = p2

2m
(1.10)
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The relationship T2 − T1 = W12 ⇔ dT = ΔW corresponds to the expression of
the conservation of energy.

The kinetic energy and work are depending on the inertial reference frame.
Indeed, let us consider two inertial frames K and K′ such that �Ve is the velocity

of K′ relating to K, �r , and �r ′, the instantaneous relative positions of the point mass
respective to K and K′. From the Galileo relativity principle, we know t = t ′, �f =
�f ′, �v = �v′ + �Ve, and �r = �r ′ + �Ve · t .

We obtain from (1.9) and (1.10):

dT ′ = dT − �Ve · md �v
ΔW ′ = ΔW − �Ve · �f dt

The inequality of the kinetic energy in the various reference frames is obviously
related to different relative velocities.

The inequality of work in different inertial frames is related to differences in rela-
tive displacement, as a consequence of differences of displacement of these frames.

According to the fundamental principle, md �v = �f dt , it is checked that the ex-
pressions are in agreement with the conservation of energy in any reference frame
K′.

dT ′ = ΔW ′ ⇔ T ′2 − T ′1 = W ′
12

1.1.5.2 Particular Case of Conservative Forces

In the case of a “conservative” force in the inertial reference frame K work, W12,
provided by the force during the displacement from location 1 to location 2 is in-
dependent of time and path s1→2 followed. From vector analysis, there exists a
“potential energy,” U(�r) continuous function of the location such that:

�f (�r) = −∂U

∂�r ⇒ W12 = −(U(�r2)−U(�r1)) = −ΔU (1.11)

Potential energy is defined with an arbitrary additive constant, for only the vari-
ation of energy ΔU has a significant physical meaning. In the inertial frame, this
force corresponds to a force field, a function of the location.

In this situation, one can define a total mechanical energy function, E = T+ U.
According to the preceding results:

E = T2 +U2 = T1 +U1 = Constant (1.12)

As potential energy U, total mechanical energy is defined with an arbitrary addi-
tive constant.

However, the reader should strongly protest at this stage, as the above definition
of a conservative force obviously leads to a physical nonsense.
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Indeed, except in the particular case of a uniform field force, the conservative
character of the most general field of force exists only in the inertial reference frame.
Clearly in other inertial frames it depends on time, so it is not conservative, which is
not admissible because the conservation of energy is violated. In fact, this nonsense
is related to the overly general mathematical definition of the state force given above,
as we have seen from the second principle, the force must be independent of the
observation frame. As conservative forces are created by mass, electrical charges
or any material entities, and applied to other material entities, physical conservative
forces depends not directly on the location of the mass point �ri but on the relative
location of the two material entities interacting �ri j = �ri − �r j . With this kind of
dependence, the force becomes independent of the inertial observation frame. When
the force is conservative, namely, �f j→i = − ∂U

∂�ri j
, the total energy of the couple of

entities is a constant of the movement in any inertial frame:

E = Ti + Tj +U = constant

This does not mean that the previous statement cannot be used. We have only
to keep in mind it is an approximation, and the force is conservative only in one
frame. For example, it is useful in the classical two-body problem in gravitational
interaction, when one body has a mass negligible compared to the other (for example
a satellite or a RV around the earth). In this case, the center of mass of the system
is very close to that of the larger mass, and the approximation is valid to study the
movement of the smaller mass.

1.1.6 Isolated System

This is a system in which no forces of external origin are applied.
In the case of a single point mass, we have �f = 0. Thus for any inertial observer:

⇒ �p = �p0; �l =�l0 (1.13)

Linear momentum and angular momentum are constants in the movement.
For an isolated system of N points subjected to internal forces, by applying the

principle of equality of action and reaction to all the combinations of two points, we
obtain:

�P = �P0 ⇔ �̇P =
∑

i

�̇pi =
∑

i

∑

j �=i

�fj→i = 0 (1.14)

�L = �L0 ⇔ �̇L =
∑

i

�̇li =
∑

i

�ri ∧
∑

j �=i

�fj→i = 0 (1.15)

Total linear momentum and total angular momentum are constants in the move-
ment, which is a consequence of the principle of equality of action and reaction.
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1.2 Mechanics of Rigid Bodies

1.2.1 Linear Momentum and Angular Momentum

Let us consider an inertial reference frame K centered at O. A rigid body can be
modeled as a system of point masses for which the relative distance between any
couple of points is uniform (independent of time). We can define the total linear
momentum and the total angular momentum of the body relating to K:

�P =
∑

i

�pi (1.16)

�L =
∑

i

�li (1.17)

We obtain from the point mass mechanics results:

�̇P =
∑

i

�fi =
∑

i

�fext,i +
∑

i

∑

j �=i

�fj→i (1.18)

where �fext,i are forces external to the system and �fj→i is the interior force exerted by
point j on point i.

From the principle of equality, the sum of internal forces is null, which leads to:

�̇P =
∑

i

�fext,i = �Fext (1.19)

Similarly, for angular momentum,

�̇L =
∑

i

�̇li =
∑

i

�ri ∧�fi =
∑

i

⎡

⎣�ri ∧�fext,i +�ri ∧
∑

j �=i

�fj→i

⎤

⎦ (1.20)

The total moment of internal forces vanishes from the principle of equality:

�̇L =
∑

i

�ri ∧�fext,i = �Mext (1.21)

Let us now develop (1.16) and (1.17) that characterize the inertial properties of
the system. We introduce an intermediate point P having at this time an arbitrary
location �R(t) and motion �V(t) relating to K.
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�ri = �R+ ��i ⇒ �P =
∑

i

mi �̇R+
∑

i

mi �̇�i = M �̇R+
∑

i

mi �̇�i (1.22)

�L = �R ∧M �̇R+ �R ∧
∑

i

mi �̇�i +
[
∑

i

mi ��i

]

∧ �̇R+
∑

i

mi ��i ∧ �̇�i (1.23)

1.2.2 Center of Mass and Equations of Movement

We now choose the position of point P at the center of mass G of the body such that:

∑

i

mi ��i = 0 ⇔ �R = 1

M

∑

i

mi�ri (1.24)

Thus we obtain:

�P = M �̇R (1.25)

�L = �R ∧ �P+∑
i

mi ��i ∧ �̇�i = �R ∧ �P+ �H (1.26)

This relation allows us to define angular momentum of the body as the angular
moment relating to the center of mass:

�H =
∑

i

mi ��i ∧ �̇�i (1.27)

Equations (1.19), (1.21), (1.25), and (1.27) result in:

�̇P = d
(

M �̇R
)

dt = �Fext (1.28)

�̇L = d
dt (
�R ∧ �P+ �H) =∑

i
�ri ∧�fext,i = �R ∧ �Fext +

∑

i

��i ∧�fext,i (1.29)

By developing the preceding relation, after simplification:

d �H
dt
=
∑

i

��i ∧�fext,i (1.30)

Finally, the equations of motion of the solid for an inertial observer are:

�̇P = �Fext (1.31)

�̇H = �Mext/G (1.32)
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with:

�P = M �̇R Linear momentum relating to K of the center of mass G together with total
mass M

�H =∑
i

mi ��i ∧ �̇�i Angular momentum of the body relating to its center of mass G

�Fext =
∑

i

�fext,i Sum of external forces applied

�Mext/P =
∑

i

��i ∧�fext,i Moment of exterior forces relating to center of mass G

This well-known theorem simplifies the study of motion of a system of point
masses by breaking the movement into two components:

– The movement of the center of mass associated with the total mass, the linear
momentum, and the sum of external forces applied.

– The movement of the system around its center of mass associated with the angu-
lar momentum and with the sum of external moments applied.

A seldom clarified property of the angular momentum �H and its derivative is the
fact that these quantities are invariant through changes of inertial reference frames
and noninertial ones, restricted to any accelerated translation. Indeed, let us con-
sider a reference frame having an arbitrary accelerated translation motion, �γe(t). For
the linear momentum derivative, we must add the inertia forces, �f I,i = −mi �γe, to
external forces to take into account the accelerated movement of the observer:

�̇P = �Fext −
∑

i

mi�γe = �Fext −M�γe

But in the expression of the derivative of angular momentum about center of
mass, the sum of angular moment of the inertia forces vanishes, thanks to the defi-
nition of center of mass:

�̇H = �Mext/P −
[
∑

i

mi ��i

]

∧ �γe = �Mext/P

This invariance applies particularly to a nonrotating frame centered at the center

of mass G of the body, for which �̇P = 0.

1.2.3 Eulerian Frames

The properties established up to now apply in fact to any system of point masses
since we have yet to introduce the assumption of a rigid body.

Let us use this assumption now. We associate the solid with a rigidly fixed
reference frame E, whose origin is at the center of mass G. The paternity of this
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representation has been attributed to Leonard Euler, and they are known as the
Eulerian frame. The instantaneous location of the solid relating to the inertial frame
K is completely defined by the position of the center of mass G and orientation of
the axes of the Eulerian frame E.

The elementary movement of the solid relating to K during the time step “dt”
consists of a translation d �R of the center of mass and of an elementary rotation dϕ
of the frame around an instantaneous axis of unit vector �n. The elementary displace-
ment and the inertial velocity of any point mass i of the solid are:

d�ri = d �R + dϕ�n ∧ ��i

�̇ri = �̇R + �	 ∧⇀

�i

where �	 = dϕ
dt �n is the instantaneous angular velocity.

Under these conditions, the angular moment of the solid is written as:

�H =
∑

mi ��i ∧
[
�	 ∧ ��i

]
(1.33)

�H = �	
∑

i

mi ��2
i −
∑

i

[
��i · �	

]
��i (1.34)

1.2.3.1 Expression of the Angular Momentum

The preceding expression of the angular momentum �H is very inconvenient to
treat in the inertial frame K, because ��i are rotating vectors. On the other hand,
it is definitely easier to develop the components of �H in an Eulerian frame E, using
the components of �	 and the coordinates of points of the solid relating to E (the last
being rigidly fixed to E, their components are independent of time). We obtain from
expression (1.34):

⎡

⎣
Hx E

Hy E

HzE

⎤

⎦ =

⎡

⎢
⎢
⎢
⎣

∑

i
mi
(
y2

i + z2
i

) −∑
i

mi xi yi −∑
i

mi xi zi

−∑
i

mi xi yi
∑

i
mi
(
x2

i + z2
i

) −∑
i

mi yi zi

−∑
i

mi xi zi −∑
i

mi yi zi
∑

i
mi
(
x2

i + y2
i

)

⎤

⎥
⎥
⎥
⎦

⎡

⎣
	x E

	y E

	zE

⎤

⎦ (1.35)

The matrix on the right side is referred to the matrix of inertia of the solid relating
to center of mass G and to the Eulerian frame E.

1.2.3.2 Derivative of the Angular Momentum

We have seen that expressions of �H and �̇H are independent of the movement of
the origin G of the reference frame. On the other hand, the relative derivative
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(
d �H
dt

)

E
=
⎡

⎣
ḢxE

ḢyE

ḢzE

⎤

⎦ of �H characterizes the apparent movement of �H relating to E and

depends on the rotation movement of E. To connect this relative derivative to the
moment of external forces, we must determine the expression of the inertial deriva-

tive �̇H in the E frame, hence to account for the driving rotation movement of E:

�̇H =
(

d �H
dt

)

E

+ �	 ∧ �H = �Mext/G ⇔
(

d �H
dt

)

E

= �Mext/G −
⇀

	 ∧ �H (1.36)

Such is the equation of the rotation motion of the solid in an Eulerian frame E. By

noting ��I , the linear operator corresponding to matrix (1.35), this equation becomes:

��I �̇	 = �Mext/G − �	 ∧ ��I �	 (1.37)

Operator ��I is represented in E by a symmetrical real matrix:

⎡

⎣
Ixx Ixy Ixz
Ixy Iyy Iyz
Izx Iyz Izz

⎤

⎦ (1.38)

Mathematicians will want to check that it belongs to the hermitical matrix group
and that it admits three real characteristic roots (eigenvalues), corresponding to three
characteristic vectors mutually orthogonal[BAS]. The expression of the matrix in the
Eulerian frame built from these three characteristic vectors is diagonal. The diagonal
terms are the preceding characteristic roots and represent the moments of inertia of
the solid. The axes are called the principal axes of the solid.

⎡

⎣
Ix 0 0
0 Iy 0
0 0 Iz

⎤

⎦ (1.39)

The operator ��I can also be mathematically represented by a second order sym-
metrical mixed tensor, called the inertia tensor of the solid. Both representations are
mathematically equivalent. Each representation has nine components and gives the
same results according to the correspondence (operator) between �	 and �H . In one
case, we apply matrix-products rules and in the other case index-contraction rules
of tensor product. An important practical aspect is the behavior of the elements or
the components of this operator through a change of orthogonal frame E fixed to the
solid. Let us consider E′, a new frame derived from E by a rotation around the center
of mass. Let us label [R] the corresponding rotation matrix, which transforms the
components [HE ′] and [	E ′ ] of �	 and �H in E′ (new frame) into their components

in E (old frame). While [I] and [I′] are the expression of operator ��I with respect to E
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and E′, we obtain:

[HE ] = [R][HE ′] = [I ][	E ] = [I ][R][	E ′]

[HE ′] = [R−1][I ][R][	E ′] (1.40)

As module of vectors is invariant through a rotation, inverse rotation matrix
[R]−1 is equal to transpose matrix [R]T [see (6.7) in Sect. 6.1] and we obtain:

[I ′] = [R]T [I ][R] (1.41)

Such is the transformation rule of the inertia matrix through a change of Eulerian
frame (rotation).

Remark: In full rigor
⇀

	 is not an ordinary vector but a skew symmetric second order
tensor (see Sect. 6.1.1); however, it has the same rule of transformation as ordinary
vectors through rotations. It is not the case for any kind of change, for example,
symmetries. In that case one must use tensor’s change rules.

1.2.3.3 Kinetic Energy of the Solid

Relating to inertial frame, one obtains kinetic energy by addition of kinetic energy
of all the point mass constituting the solid:

T =
∑

i

1

2
mi [ �V + �	 ∧ ��i ]2 (1.42)

The origin of the Eulerian frame is at the center of mass, so we have:

T = 1

2
M �V 2 +

∑

i

1

2
mi

(
�	 ∧ ��i

)2
(1.43)

By developing the �	 term in the Eulerian frame E we obtain:

T = 1

2
MV 2 + 1

2
�	 · �H (1.44)

1.2.3.4 Gyroscopic Moment

The theorem of angular momentum related the angular momentum of a solid to the
action of an external moment. From the principle of equality of action and reaction,
the solid applies a reaction moment (inertial moment) to the system creating the
external moment, equal and opposed to this external moment. From the theorem of
angular momentum to impart an inertial rotation rate �	e to the angular momentum
�H of a solid, we must apply to it a moment:
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�M = �̇H = �	e ∧ �H

Reciprocally, the solid develops against us a gyroscopic reaction moment:

�Mg = −
⇀

	e ∧ �H

The gyroscopic reaction moment has a modulus proportional to ‖ �H‖ and ‖ �	e‖,
and a direction orthogonal to �H and �	e.

A solid with a high angular momentum has a high gyroscopic stiffness. It has
a strong capacity of resistance to external moments with respect to rotation of its
angular momentum.



 

 

 

 

 



Chapter 2
Topography and Gravitation

Thanks to measurements on board satellite and external measurements of their
trajectory, terrestrial topography and gravitation field are now modeled with great
accuracy (the most exact models are confidential, because they reveal the accuracy
of medium- and long-range ballistic missiles). However, open data has more than
sufficient accuracy for reentry analyses. The models are derived from knowledge of
the distribution of the terrestrial masses and geodesy.

Model also exists for planets, in particular for Mars, for which cartography
was recently updated, thanks to measurements from the NASA probe Mars Global
Surveyor.

2.1 The Geodetic Frame of Reference

The needs are:

– a universal reference to define the positions of the various points of the trajectory
relating to the planet and

– an accurate model of the gravitation field.

Geodetic modeling is appealing:

• with geoids, which is by definition the equipotential surface of the apparent grav-
ity field, which coincides on average with the mean level of the seas (the apparent
term indicated for an observer rotating with the planet) and

• with an ellipsoid of revolution, that is, analytical second-order approximation
of the geoids (least-square approximate of the geoids). The set including geoids
model, ellipsoid, and gravity field constitutes the geodetic frame of reference.

The same standard of modeling exists for planets. From current nomenclature,
the geoids for a planet correspond to areoids. In the case of a planet without oceans,
areoid must be defined arbitrarily, for example, in the vicinity of the mean level of
ground.

P. Gallais, Atmospheric Re-Entry Vehicle Mechanics. 15
C© Springer 2007
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2.1.1 Coordinates of a Point Relating to the Earth

The Cartesian geocentric coordinates (x, y, and z) of a point P are defined in a
trirectangular reference frame (Cx, Cy, and Cz) (Fig. 2.1) having its origin in the
center (C) of the ellipsoid (center of mass of the planet). Axis Cx is defined as the
intersection of the equatorial plane with the half-plane meridian origin, and Cz is
the geographic polar axis (northbound).

Geocentric spherical coordinates are connected to Cartesian coordinates by the
following relationships:

x = r · cos ψ · cos λ
y = r · cos ψ · sin λ
z = r · sin ψ

r module of the radius vector �r between the origin C and the point P
ψ geocentric latitude (angle between the radius vector �r and the equatorial

plane, positive for the northern hemisphere)
λ longitude (angle of the meridian half-plane including P with the meridian

half-plane origin, positive toward the east).

λ

reΩ
N

P

H

longitude

C ϕ

r

ψ

x

y

z

p

I

Equatorial plane

Ellisoid
    track

Geographic latitude

Fig. 2.1 Geocentric and geographical coordinates
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The geographical coordinates are defined by:

– longitude, λ, identical to geocentric longitude in the case of an ellipsoid of revo-
lution,

– geographical latitude, ϕ, angle between the equatorial plane and the normal N to
the ellipsoid through the point P, and

– height, H, distance from P to its projection p on the ellipsoid following the nor-
mal.

Astronomical coordinates, latitude, longitude, and altitude have definitions sim-
ilar to the preceding one while replacing the ellipsoid with geoids and the normal
with physical direction of vertical (along gravity).

The same definitions hold for planets. According to the current nomenclature,
geocentric and geographical terms are replaced by areocentric and aerographic.

2.1.2 The Geodetic Systems

Among the main terrestrial systems used are:

– Hayford ellipsoid, often referred to as “International”(1924),
– Union Astronomique Internationale ellipsoid (UAI),
– Europe 50 ellipsoid, European coverage, and
– currently, however, World Geodetic System 84 (WGS 84) is universally used,

which is the reference system used by NAVSTAR.

Characteristics of the system WGS 84 [GPS] are:

– Parameters of the ellipsoid:

Semimajor axis (equatorial radius), a = 6378137 m
Flatness, f = (a− b)/a = 1/298.257223563
Semiminor axis (polar radius), b = a.(1− f) = 6356752.31425 m
Focus location c, c2 = a2 − b2

Eccentricity, e = c
a = 0.0818191908426

– Model of gravity (Geodetic Reference System 1980):

Center of mass G located at origin C of the ellipsoid
Terrestrial rotation velocity,ωωω = 7.292115167 · 10−5rad/s
Geocentric gravitational constant, μ = 3.986005 · 1014 m3 · s−2

Coefficient of the first nonspherical term of the potential, c̄2,0 =
−0.48416685 · 10−3

A recent model for the planet Mars uses:

– Parameters of the ellipsoid:

Semimajor axis (equatorial), a = 3393940 m
Semiminor axis (polar), b = 3376790 m
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– Model of gravity:

Center of mass G located at the origin C of the ellipsoid
Rotation velocity, ω = 7.08821808 10−5rad/s
Geocentric gravitational constant, μμμ = 0.428284 1014m3 · s−2

Coefficient of the first nonspherical term of the potential, c̄2,0 =
− 0.8767481910−3

2.1.3 Calculation of the Geographical Latitude and Height

The numerical calculation of trajectories frequently uses Cartesian coordinates, un-
like data on launching points and targets in terms of geographic coordinates. It is
thus necessary to convert one set of data into the other; i.e., (λ,ϕ,H) into (x, y, and
z) and reciprocally. The direct problem is easy, and one obtains the relations starting
from Fig. 2.1:

x = (N + H ) · cosϕ · cos λ

y = (N + H ) · cosϕ · sin λ

z =
[

N · (1− e2)+ H
]
· sin ϕ

where N is the length of the great normal in “p” to the ellipsoid (measured between
its intersection “I” with the axis Cz and orthogonal projection “p” of P on ellipsoid):

N = Ip = a
√

1− (e · sin ϕ)2

Starting from the preceding results for the geocentric latitude and introducing
D =

√
x2 + y2, one obtains:

tan ψ = z

D

And for the geographical latitude:

tan ϕ = z

D
+ e2 · N

D
· sin ϕ

This requires solution of a nonlinear equation:

tan ϕ = tan ψ+ e2 · a · sin ϕ
D ·
√

1− (e · sin ϕ)2

We can calculate ϕ by successive approximation by replacing ϕ in the second
term with its approximation of order n-1:



2.2 The Terrestrial Field of Gravitation 19

tan ϕn = tan ψ+ e2 · a · sin ϕn−1

D ·
√

1− (e · sin ϕn−1)
2

In practice, a good approximation is obtained after two iterations by using ϕ0 =
ψ as the initial value.

The calculation of height is determined from the geographical latitude ϕ:

H = D

cos ϕ
− N = D

cos ϕ
− a
√

1− (e · sin ϕ)2

2.2 The Terrestrial Field of Gravitation

The corrective term in the potential of the terrestrial gravitational field, taking into
account the nonspherical mass distribution, was modeled in the form of a develop-
ment in spherical harmonics,

R(cos θ, λ, r) =
∞∑

n=2

∞∑

m=0

μ · an

rn+1 ·Pn,m(cos θ)·[cn,m · cos(m · λ)+ sn,m · sin(m · λ)]

with,

θ = π
2
− ψ (Geocentric colatitudes)

Pn,m(cos θ) =
√

(2n+ 1)
(n−m)!

(n+m)!
· Pn,m(cos θ)

Pn,m(cos θ) = (1− cos2 θ)
m
2

2nn!

(
∂

∂ cos θ

)n+m (
cos2 θ− 1

)n

a Semimajor axis of the ellipsoid

In practice, the dominant term is c2,0, which is approximately 1000 times larger
than the following terms. This results in,

R ≈ μ · a2

r3 · c2,0 ·
√

5

2
· (3 · sin2 ψ − 1)

The potential of the field due to the distribution of the terrestrial masses is thus
written as a function of spherical geocentric coordinates,

U(r, ψ) = μ

r
+ μ · a2

r3
· c2,0 ·

√
5

2
· (3 · sin2 ψ − 1)
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From this expression of U, we obtain the radial and orthoradial components of
the gravitation field �ϕ,

�ϕ = �∇U = ∂U

∂r
· �r

r
+ 1

r
· ∂U

∂ψ
· �t

where,

�t = − sin ψ · (cos λ · �i+ sin λ · �j)+ cos ψ · �k

That is to say,

ϕr = ∂U

∂r
= − μ

r2 −
3 · μ · a2

r4 · c2,0 ·
√

5

2
· (3 · sin2ψ − 1)

ϕψ = 1

r

∂U

∂ψ
= μ · a2

r4 · c2,0 · 3
√

5 · sinψ · cosψ

• This model also applies to planets, by using the specific values of the coefficients.
• It applies to the pure gravitational field. To obtain the field of gravity �g measured

by an observer fixed to revolving planet, it is necessary to add to potential U the
centrifugal force� = 1

2ω
2 (r cosψ)2. The resulting potential U+� is called the

potential of normal gravity as it corresponds in the vicinity of the ellipsoid to the
plumb-line direction, normal with the ellipsoid by construction [GPS].



Chapter 3
Models of Atmosphere

The essential problem of dynamic reentry study is related to modeling aerodynamic
effects induced by the flow around the vehicle. To approach it, we must first have a
model of earth’s atmosphere.

3.1 Main Parameters and Hypotheses

A precise model of the ambient gaseous medium as a function of altitude is needed
to calculate the flow. The essential parameters are:

– Density ρ
– Speed of sound a
– Dynamic viscosity μ, or kinematics viscosity η = μ

ρ
– Mean free path of molecules λ
– Absolute temperature T
– Static pressure p
– Relative humidity, wind
– Specific heat: at constant pressure cp, at constant volume cv
– Chemical composition

Geometrical altitude Z, used in the models of atmosphere, is generally the dis-
tance, measured along the field line of the normal gravity, between the point consid-
ered and the mean sea level (this level corresponds to the surface of geoids). This
altitude Z is in practice very close to:

Z ≈ H− Hg

where H and Hg are, respectively, the geographical heights of the point and of the
geoids relating to the ellipsoid.

Most of models of standard atmosphere use the following assumptions:

– Standard equation of state of perfect gas p = ρ · R
M · T

– Atmosphere in vertical hydrostatic balance ∂p
∂Z = −ρ · g

P. Gallais, Atmospheric Re-Entry Vehicle Mechanics. 21
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The preceding equation relates to an observer fixed to the revolving planet and
“g” indicates the “normal field of gravity” that includes the influence of the centrifu-
gal force.

3.2 The Isothermal Exponential Model

Simplification of density versus altitude leads to analytical solutions for the equa-
tions of the motion during the reentry,

ρ = ρs · e
Z

Hg

Parameters ρs and Hg can be:

– determined numerically by smoothing a more exact standard atmosphere,
– derived from standard ground values using preceding assumptions.

In the first case, one finds, for example, in the literature ρs ≈ 1.39 kg/m3, Hg ≈
7000 m

In the second case, one obtains by combining the above two assumptions:

dp

p
≈ −M · gs

R · Ts
· d Z = −Hg

ρs = M

R
· ps

Ts

By using the properties of the standard atmosphere at sea level,

ps = 101325 pa

Ts = 288.15 K

M ≈ 28.9644 · 10−3 kg

gs = 9.80616 m.s−2

We obtain the values of the parameters:
ρs = 1.225 kg · m−3

Hg = 8435 m
A comparison of the two models with a standard atmosphere is given in

Fig. 3.4.
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3.3 Standard Models of Earth’s Atmosphere

The US standard model universally used was built from weather compilations in the
northern hemisphere. The GRAM model from NASA is now supplanting it. The US
standard was updated on several occasions, and we will describe the US66 version.

This version [USS] includes 14 average atmospheres corresponding to points lo-
cated in the 15◦–75◦ range of northern latitudes, for various seasons (spring/fall,
summer, and winter) and for altitudes lower than 120 km. The atmosphere n◦6 that
corresponds to 45◦ latitude, spring/fall, is very close to the US62 atmosphere.

The model uses a geopotential altitude “h,” which is defined as,

gref · h =
Z∫

0

g(z)dz

where g(z) represents an approximate value of the normal gravity field at the latitude
considered and at geometrical altitude z:

g(z) ≈ g(0) · R2
t

(Rt + z)2

In these expressions, Rt and g(0) are functions of the latitude and indicate the
terrestrial radius and the apparent field of gravity at the mean sea level, gref indicates
a constant reference value of the normal gravity field.

Atmosphere profile is determined by the ground pressure and the law of tem-
perature as a function of geopotential altitude. Indeed, by definition of geopotential
altitude,

dp = −ρ · g · dz = −ρ · gref · dh

Then combining with the equation of state,

dp

p
= −M · gref

R · T dh

We finally obtain:

p(h) = p(0) · e
−M·gref

R

h∫

0

dh′
T(h′)

The model uses a continuous law of temperature, linear by section of geopotential
altitude:

– Index of section b ∈ [1,N]
– For the section hb ≤ h < hb+1,T = Tb + Ab · (h− hb)
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This gives for Ab �= 0,

p(h) = p(hb) ·
[

T

Tb

]−M·gref
R·Ab

And for Ab = 0

p(h) = p(hb) · e−
M·gref
R·Tb

·(h−hb)

Finally, using density from the equation of state:

ρ(h) = M

R
· p(h)

T(h)

Constants of the model are:

M = 28.9644 · 10−3 kg ·mole−1

gref = 9.80665 m · s−2

And for the atmosphere n◦6, 45◦ north, spring/fall, the parameters are,

g(0) = 9.80655 m · s−2

Rt = 6356360 m

p(0) = 101325. Pa

Table 3.1 gives geopotential altitudes and the temperatures at beginning of
sections.

Table 3.1 Geopotential altitudes and the temperatures at beginning of sections

Index of
section (b)

Altitudes hb (m) Gradients
Ab (

◦K/m)
Temperatures
Tb(

◦ K)

1 0. −6.5 10−3 288.15
2 11000. 0. 216.65
3 20000. +1.10−3 216.65
4 32000. +2.8 10−3 228.65
5 47000. 0. 270.65
6 52000. −2.10−3 270.65
7 61000. −4.10−3 252.65
8 69000. −3.10−3 220.65
9 79000. 0. 190.65

10 90000. +2.10−3 190.65
11 100000. +4.36 10−3 210.65
12 110000. +16.4596 10−3 254.25
13 117776. 382.24
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Derived parameters:

– Speed of sound

a =
√

γ · R

M
· T ,

with γ = cp
cv
= 1.4 r = R

M = 287.053 J · kg−1 · K−1

– Mean free path

λ = 1√
2 · π ·NA · σ2

· R · T

p
,

with the average collision diameter for air, σ = 3.65 · 10−10 m
– Dynamic viscosity (Sutherland formula)

μ = β · T
3
2

T + S

with

β = 1.458 · 10−6 kg · s−1 ·m−1 · K− 1
2 , S = 110.4 K

Figures 3.1–3.6 give the evolution according to geometrical altitude of the prin-
cipal parameters of the atmosphere US66 n◦6, 45◦ north, spring/fall, together with
a comparison between standard density and the exponential models.
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3.4 Martian Models

Thanks to quest for extra terrestrial life, our neighbor was visited by numerous
probes. It results its topography, and atmosphere are the best known among the
solar system planets. It seems it is also the only planet suitable for future human
landing.

The equatorial radius of Mars is 3394 km, roughly half the terrestrial radius. The
acceleration of gravity at the Martian equator is 3.718 m/s2, 38% of the terrestrial
value 9.798 m/s2.
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The earth’s atmosphere is primarily composed of 78% nitrogen N2 and 21%
oxygen O2 of average molar mass M ≈ 29 10-3 kg mole. The lower layer of the
atmosphere, below 11 km, includes a significant percentage of H2O as vapor, liquid,
or solid. The average profile of the atmosphere in a given place is related primarily
to its latitude; it evolves according to the earth’s angle relating to the sun during the
terrestrial year following the rhythm of seasons. The presence of water in liquid form
on surface (oceans) complicates singularly predictive models of the atmosphere.

Mars atmosphere is primarily composed of 95% CO2 and 3% N2 of average
molar mass M ≈ 43 10-3 kg mole. Taking into account the extremely low tem-
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perature, close to 200 K at ground level, the H2O molecule exists only in solid
form. Atmospheric pressure and density at ground level are close to 500 N/m2 and
0.015 kg/m3, respectively. Like the earth’s atmosphere, the Martian mean atmo-
sphere is function of the latitude and longitude, and it evolves according to loca-
tion relating to the sun during the Martian year, which corresponds to 24 terrestrial
months.

The absence of liquid water simplifies heat exchange and modeling of general
heat/fluid circulation in the atmosphere, thus allowing prediction of mean values of
parameters and dispersions. However, the atmosphere is subjected to violent winds
and dust storms that strongly modify the temperature and density profiles compared
to the mean model.
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Mars atmosphere density, exponential fitting
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Table 3.2 The parameters of exponential fittings

Altitudes ρS(kg.m−3) Hg(km)

0–25 km 0.0159 11.049
25–125 km 0.0525 7.295

There are several models used for the prediction of the Martian atmosphere. Ex-
plorations from NASA, including the Lander “Mars Pathfinder” (1997) successfully
used the Mars GRAM [GRA] model. A more recent model, “European Martian Cli-
mate Database” [EMC], was developed by Europeans for their needs. In this model,
the annual Martian cycle is divided into 12 seasons of duration equal to two ter-
restrial months and the Martian day in 12 periods close to two terrestrial hours.
It includes four scenarios corresponding to assumptions about dust content: “low
dust,” “Viking dust,” and two dust storm scenarios.

Evolution of the density between 0 and 125 km for two profiles resulting from
this model is represented in Fig. 3.7. From these two profiles, Fig. 3.8 shows expo-
nential smoothing for two altitude sections, 0–25 Km and 25–125 Km. The parame-
ters of these exponential fittings are given in Table 3.2.



 

 

 

 

 



Chapter 4
Aerodynamics

Reentry vehicles of medium- and long-range ballistic missiles (approximately 3000–
12000 km) enter the atmosphere with velocities from 3500 to 7500 m/s. Capsules
and space probes have even higher maximum entry velocities, for example, 11 km/s
for the Apollo capsule returning from a lunar mission. These speeds are much higher
than the local speed of sound (320 m/s at 60 km) and correspond to Mach numbers
from 15 to 35 (“hypersonic”). As shown in Fig. 4.1, air disturbances cannot prop-
agate upstream of the vehicle and remain inside a strongly compressed gas layer
(“shock layer”). The surface of the shock wave, strongly curved in the vicinity of
nosetip, becomes gradually a Mach cone downstream on the vehicle.

In addition to the local properties of air at rest and relative velocity, flow fields
and loads are determined by the external geometry and possibly by the properties
of the wall (roughness, catalytic capacity, chemical composition, temperature, and
pyrolize).

Wind tunnels provide relative velocity by subjecting a motionless vehicle to an
air flow, thereby introducing complication of non-uniform ambient conditions.

Characteristics of the incidental flow (or “infinite upstream conditions”) are de-
fined by:

1) The velocity relating to air in the vehicle frame: This frame is represented in
Fig. 4.2 for the most general configuration of “flyer” admitting a symmetry plane
(“pitch” plane). For geometry having an axis of symmetry, the natural choice of
axis OX is along this “roll” axis, and orientation of the pitch plane can be chosen
arbitrarily around it. In this frame, the components of velocity relative to air
�VR = [u, v,w] are:

u = VR · cos β · cos α
v = VR · sin β
w = VR · cos β · sin α

The incidence angle α is defined between the roll axis and the projection of the
relative velocity vector on the pitch plane (positive when w is positive, ranging from

P. Gallais, Atmospheric Re-Entry Vehicle Mechanics. 31
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Fig. 4.1 Shock layer of hypersonic vehicle (NASA picture)

−180◦ to 180◦). The sideslip angle β is the angle between the relative velocity vector
and its projection on the pitch plane (positive when v is positive, ranging from−90◦
to 90◦).

For bodies of revolution, it is convenient to express a total angle of attack α and
a windward meridian φw which can be defined as:

p

u

w

α > 0
β > 0
Φw < 0

α

β

o

y
q

z

α

ΦW

normal axis (yaw)

lateral axis
(pitch)

longitudinal axis (roll)
u

v

Zw

VR

r

x

Fig. 4.2 Definition of the vehicle reference frame
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u = VR cosα

v = −VR · sin α · sinφw
w = VR · sin α · cosφw

Total angle of attack is by definition 0 ≤ α ≤ 180◦ and windward meridian
varies from 0◦ ≤ φw < 360◦

i = α ⇔ cos α = cos β · cos α

For small angles, we have approximately:

i = α ≈
√

α2 + β2

The air velocity relating to the vehicle is noted �V∞, it is such that �V∞ = −�VR.
In the vehicle frame, components of the vector “angular rate” of the vehicle are

�	 = [p q r
]

2) Properties “at rest” of the upstream air:

- In free flight the current altitude and a standard model of atmosphere, or a
measured profile (case of an experimental flight)

- In a wind tunnel experiment the thermodynamic state of the incidental air
upstream of the model (not to be confused with “generating conditions”)

- In digital simulation one of the three possibilities according to studied case’s

3) The situations described above apply to steady flow conditions such as a model
at rest in a wind tunnel and lead to the measurement or the calculation of the
“static” loads. In the case of a real free flight, the relative movement is an accel-
erated translation of the center of mass, combined with rotation of the vehicle.
Instantaneous aerodynamic loads are “nonstationary” and thus depend on linear
accelerations and angular velocities.

4.1 Aerodynamic Coefficients

The most natural reference frame is the vehicle frame. The aerodynamic loads are
calculated or measured along “longitudinal,” “transverse,” and “normal” axes (Ox,
Oy, and Oz) then converted into dimensionless aerodynamic coefficients by “refer-
ence” forces and moments.

The main reference parameters are:

- Dynamic pressure

q = 1

2
ρ∞ · V 2

∞
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For a perfect gas (see Sect. 3.3):

q = 1

2
γ · p∞ · M2

∞

– Reference area, Sref, generally defined as the area of maximum cross section for
ballistic vehicles

– Reference length, Lref, generally corresponding to overall length, or to maximum
diameter (case of space probes)

- Thus the force and moment of references are q · Sref and q · Sref · Lref.

4.1.1 Static Coefficients

Static aerodynamic coefficients are defined [NFX] starting from the components(
XA,YA,ZA

)
of the aerodynamic force �RA and components (L, M, N) of the aero-

dynamic moment around origin O:

Relation of definition Name Symbol

XA = −A = −q · Sref · CA Axial force coefficient CA

YA = q · Sref · CA
Y Lateral force coefficient CA

Y or CY

ZA = −q · Sref · CN Normal force coefficient CN

L = q · Sref · Lref · Cl Rolling moment coefficient Cl

M = q · Sref · Lref · Cm Pitching moment coefficient Cm

N = q · Sref · Lref · Cn Yawing moment coefficient Cn

4.1.1.1 Changing the Origin of Moment Coefficients

The moments and associated coefficients are related to the origin O chosen for the
vehicle frame. Coefficients relating to any different origin G are obtained starting
from the preceding relations and rules to change origin of moments:

�MG = �MO − �XG ∧ �R A

which yields,

C′l = Cl + yG

Lref
· CN + zG

Lref
· CY

C′m = Cm − xG

Lref
· CN + zG

Lref
· CA

C′n = Cn − xG

Lref
· CY − yG

Lref
· CA
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4.1.1.2 Center of Pressure

The center of pressure corresponds to a location where the aerodynamic load is
reduced to the resulting force �RA, which implies �MCP = 0, or:

�XC P ∧ �R A = �MO

That is to say that one can define a unique center of pressure only if �MO is
orthogonal with �RA. This is generally not true, but on the other hand it is almost
always possible to define a center of pressure for the loads in the normal plane
(Ox, Oz) and another for the loads in the lateral plane. The normal force center of
pressure is obtained from the pitching moment M and the components XA and ZA

of the aerodynamic force in the pitch plane:

xCP

Lref
= Cm

CN
+ zCP

Lref
· CA

CN
, yCP = 0 , zCP arbitrary

which gives an infinity of possible points located on the solution line according to
zCP.

Conventionally, one chooses zCP = 0, which gives finally:

xCP

Lref
= Cm

CN

The lateral center of pressure is obtained from the lateral component YA of the
aerodynamic force and the rolling and yawing moments (L, N):

xCPT

Lref
= Cn

CY

yCPT

Lref
arbitrary

zCPT

Lref
= − Cl

CY

The solution is also a line function of yCPT, and the choice yCPT = 0 determines
the lateral center of pressure.

Finally, the static aerodynamic effects can be defined either by forces and mo-
ments coefficients (CA,CN,CY,Cl,Cm,Cn) or generally by the forces coefficient

and centers of pressure
(

CA,CN,CY,
xCP
Lref
,

xCPT
Lref

,
zCPT
Lref

)
. This is because the centers

of pressure are sometimes undetermined, for example, when CN = 0 and Cm �= 0
or when CY = 0 and (Cn �= 0 or Cl �= 0).

It is important to note that all the results in this book correspond to the choice of
the X axis directed forward along the vehicle.

4.1.1.3 Lift and Drag

These concepts originated with the birth of aeronautics. They use the aerodynamic
frame

(
Oxa,Oya,Oza

)
relating to the air flow. The aerodynamic frame is obtained

from the vehicle frame (Ox, Oy, Oz) through a rotation−α around Oy, followed by
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a rotation β around Oza (Fig. 4.2). The axis Oxa is along the relative velocity �VR
of the vehicle, and axis Oza is normal to �VR in the pitch plane (symmetry plane of
the vehicle). The drag and the lift are the components, with opposite signs, of the
aerodynamic force along Oxa and Oza. The sideslip force is along Oya.

The associated coefficients are:

Relation of definition Name Symbol

XA
a = −q · Sref · CX Drag coefficient CD,Cx

YA
a = q · Sref · CY Lateral force coefficient Cy

ZA
a = −q · Sref · CZ Lift coefficient CL,Cz

They are connected to the vehicle coefficients by:

CD = (CA · cosα + CN · sin α) · cosβ − CY sin β

CY = CA
Y · cos β+ (CA cos α+ CN · sin α) · sin β

CL = CN · cosα − CA · sin α

The lift concept is fundamental in two-dimensional incompressible, inviscid
flows because in this case the drag is zero (D’Alembert paradox [RYH]), and the
resulting �R A is equal to lift, normal to the relative velocity.

4.1.2 Dynamic Derivatives

Dynamic effects appear in presence of a rotational movement around the center
of mass or a linear accelerated movement. In the most general case, they result in a
modification of the static effects and can be expressed using dimensionless variable:

p∗ = p · Lref

V∞
Reduced roll rate

q∗ = q · Lref

V∞
Reduced pitch rate

r∗ = r · Lref

V∞
Reduced yaw rate

α̇∗ = α̇ · Lref

V∞
= ẇ · Lref

V2∞
Reduced derivative of angle of incidence

β̇∗ = β̇ · Lref

V∞
= v̇ · Lref

V2∞
Reduced derivative of sideslip angle

V̇∗R =
V̇R · Lref

V2
R

Reduced tangential acceleration

However, in the majority of cases, and particularly those of interests to us, the
reduced dynamic variable of state can be considered as first-order small terms. We
can thus approximate the dynamic effects by a development limited to the first order
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of aerodynamic coefficients such as:

C′
(

xi, x∗j
)
= C (xi)+

∑

j

∂C′

∂x∗j
· x∗j

where C(xi) is a coefficient function of the static variables xi, and x∗j is a reduced
variable representing the dynamic movement. Thus dynamic effects are charac-
terized by the derivatives of forces and moment’s coefficients relating to reduced
dynamic variables.

In practice, in the case of hypersonic vehicles, theoretical and experimental eval-
uations showed that the only significant dynamic effects are the moments associated
with angular rates. The corresponding coefficients are:

∂Cl

∂p∗
Roll damping coefficient Clp

∂Cm

∂q∗
Pitch damping coefficient Cmq

∂Cn

∂r∗
Yaw damping coefficient Cnr

Thus, hereafter we will neglect the dynamic effects on the aerodynamic force.
Rules of transport of the static moment’s coefficients do not apply to the dynamic
derivatives. This will be developed later herein.

4.1.3 Axisymmetric Vehicles

In this case, we choose axis Ox along the symmetry axis. As the Oz axis can be
arbitrarily selected in a plane orthogonal to Ox, we will choose it in the meridian
half plane that includes velocity relative to air, thus:

YA = L = N = 0 ⇔ CA
Y = Cl = Cn = 0

Moreover,

β = 0 ⇒ i = α = α

In this “wind-fixed” frame (w), the number of coefficients necessary to define the
static effects reduced from six to three, e.g., CAw,CNw,Cmw, functions of α. The
damping moments exist along the three axes (xw, yw, zw) and for small angles of
attack we have Cnrw ≈ Cmqw.

The reference frame (w) is not fixed relative to the vehicle. It rotates with the
relative velocity vector; the corresponding meridian for an observer fixed with the
vehicle is called “windward meridian” and is obtained from the meridian origin (Oz)
of the vehicle frame through a rotation �w around Ox.
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cos�w = sin α · cos β
sinα

sin�w = − sin β
sin ᾱ

Thus, one transforms the effects in the rotating frame (w) into the vehicle-fixed
frame through a rotation−�w around Ox.

CA = CAw

CN = CNw · cos�w

CY = CNw · sin�w

Cm = Cmw · cos�w

Cn = Cmw · sin�w

Cl = Clw

Cmq = Cmqw · cos2�w + Cnrw sin2�w

Cnr = Cnrw · cos2�w + Cmqw sin2�w

Cmr = Cnq =
(
Cmqw − Cnrw

) · sin�w · cos�w

The normal force center of pressure and the lateral force center of pressure are
obviously the same:

xCP

Lref
= xCPT

Lref
= Cmw

CN
; zCPT = 0

Lift and drag coefficients for axisymmetric vehicles are:

CDw = CAw · cosα + CNw · sin α

CYw = C A
Yw = 0

CLw = CNw · cosα − CAw · sin α

For small angle of attack, dynamic terms can be simplified and one obtains:

Cmq ≈ Cnr ≈ Cmqw ≈ Cnrw and Cmr ≈ Cnq ≈ 0.

4.2 Modes of Flow

4.2.1 Parameters of Similarity

In first analysis, the aerodynamic coefficients must be functions of variables repre-
senting the upstream flow listed in the preceding paragraph, and of geometry and
dimensions of the vehicle. However, dimensional analysis [RYH] of the theoretical
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flow equations shows that the number of parameters can be considerably reduced
by the use of dimensionless “similarity parameters.” In our case, the hypersonic
aerodynamics coefficients’ most commonly used parameters are:

Name Definition Physical significance

Mach number M∞ = V∞
a∞

V 2∞
a2∞

≡ kinetic · energy

int ernal · energy

Reynolds number Re∞ = ρ∞ · V∞ · Lref

μ∞

pressure f orces

viscous f orces

Knudsen number Kn = λ∞
Lref

mean f ree path

vehicle length

For an axisymmetric vehicle, one often uses a functional aerodynamic model as
follows:

CAw
(
M∞,Re∞,Kn∞,α

)

CNw
(
M∞,Re∞,Kn∞,α

)

Cmw
(
M∞,Re∞,Kn∞,α

)

However, this represents only one generally acceptable simplification. The
aerothermal complexity of the phenomena may require, in some situations, the use
of alternative variables. Thus, to model the influence of thermodynamic nonequilib-
rium phenomena [AND] (chemical or vibration nonequilibrium), it can be necessary
to use dimensioned variables such as altitude, relative velocity, and density of the
gas [PAT].

4.2.2 Characteristics of the Main Flow Modes

The Knudsen number characterizes the rarefaction status of the air with respect to
dimensions of the vehicle:

1. At very high altitude, Kn >> 1, there are practically no collisions between
molecules in the vicinity of the vehicle. We are in “free molecular” mode, and
each molecule interacts individually with the vehicle wall according to the sta-
tistical theory of gases.

2. At low altitudes, when Kn << 1, we are in “continuous flow” mode, governed
by classical fluid mechanics theory (Euler equations for the inviscid flows, or
Navier–Stokes equations to include viscous effects).

3. The intermediate section or “rarefied” mode can be approached by either using
the Navier–Stokes equations with slip conditions at the wall (for flows close
to continuous) or using Boltzman equations (valid everywhere else) solved by
the direct methods of resolution or by direct Monte Carlo simulation (DSMC)
methods.
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In addition to these modes related to the number of molecules per unit volume,
one can further classify the flows with respect to chemical reactions, and reactions
of dissociation and their kinetics. There are primarily related to upstream enthalpy

h∞ ≈ ρ∞V2∞
2 and depend on transit time of the species through the shock layer. We

will not treat this subject and invite the reader to refer to those books and papers
specialized in aerothermal flow interactions [AND].

We will see that the dominant mode for reentry mechanics is the continuous
mode where high aerodynamic loads occur (same order of magnitude as the weight
or much higher).

The “rarefied” mode corresponds to altitude section where the aerodynamics
forces are much lower than the weight, but the aerodynamic moments start to be
significant (same order of magnitude as the gyroscopic moments), which are poten-
tially critical in the case of some planetary probes.

The free molecular mode is important only for small objects or objects in slowly
decaying orbits. For the needs of flight mechanics, we will be satisfied to determine
the effects in free molecular mode by using a simplified model of the interactions to
the wall.

Fast methods to estimate aerodynamic coefficients at the various flow modes will
be treated in Sects. 4.3 and 4.4.

4.3 Continuous Mode

In continuous flow, we must examine the dependence on variable
(
M∞,Re∞,α

)
.

The problem is to model the aerodynamic coefficients in the “flight parameter’s
map” characteristic of the missions of the vehicle. Three methods may be employed.

4.3.1 Experimental

This primarily consists in measuring aerodynamic effects on a model in a wind tun-
nel. The Mach conditions are difficult to achieve along with viscous effects related
to the Reynolds number (turbulent flow) and with surface conditions representative
of flight. Indeed, Reynolds numbers are weak in wind tunnel conditions, because of
size of the models and low gas density. Real gas effects, dependent on the dissocia-
tion of the air at high temperature, are also difficult to simulate because they require
a very high level of upstream enthalpy. Instrumented experimental flights are often
required to obtain these data.

4.3.2 Numerical [AND]

- Traditionally, computational methods solved “Euler” inviscid two- or three-
dimensional equations (calculation of pressure and velocities valid only in
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nonseparated zones) as inputs to viscous calculations of the boundary layer on the
wall by exact or integral methods (wall friction). The turbulent flow computation,
even on smooth walls, relies strongly on experimental results. Loads on the sepa-
rated flow at the base of the vehicle (base drag) are determined empirically using
correlations derived from experimental flight and wind tunnel data. The real gas
effects can be taken into account in the computation by using the equation of
state of air at thermodynamic equilibrium at the local conditions of temperature
and pressure. Inviscid treatment of the subsonic zones (for example, around the
stagnation point) requires the resolution the nonstationary Euler equations (time
marching method). Treatment of the supersonic zones is generally optimized by
using “space marching” methods. “Shock capturing” methods use fixed mesh
in which the shock discontinuity is treated as the other points of the flow. The
“shock fitting methods” suppose that the points of the upstream boundary of the
mesh is the shock, and that location is determined iteratively from the Rankine-
Hugoniot oblique-shock analytic solution. For the last method, the mesh evolves
and is restricted to the layer between the body and the shock surface. It is quite
obvious that the shock wave is neither a perfect discontinuity (case of shock
fitting) nor the result of the numerical pseudo viscosity (case of shock capturing).

Many standard codes exist in aerospace industry, fast and accurate in their appli-
cation field. Their application field is typically:

Vehicle geometry 2D or 3D on axisymmetrical shapes
Minimum Mach number 0.01 (Depending on mesh)
Maximum incidence ◦–35◦ (Depending on geometry, Mach number, and on the method

used to solve subsonic flow at stagnation point)
Limitations Not applicable in the case of a separated flow

- “Exact” methods have been developed to solve Navier–Stokes equations or
“parabolized” Navier–Stokes equations (case of steady state flows, in supersonic
zone)[AND]. The laminar flow solution is theoretically well formulated; however,
the turbulent flow solution is less satisfactory and relies on models based on
experimental results. This kind of code requires long computational times. How-
ever, the progress in numerical methods is relentless, as the computers’ capacities
are enhanced, but the limits of the theory of turbulence could be the Achilles’ heel
of computation flow accuracy.

4.3.3 Approximate Analytical Method [TRU]

Many more or less sophisticated analytical methods were developed before the
present era of digital codes. The only one, which still has a practical utility is
“Newton impact theory,” imagined by the father of mechanics to model the ef-
fects on a body moving through an incompressible fluid. According to this theory,



42 4 Aerodynamics

pressure p undergone by an element of surface whose normal has a tilt angle θ
relating to impinging flow direction is given by:

p− p∞
q

= 2 · cos2 θ

This theory, which was wrong in the assumed field of application, proved several
centuries later to be valid near the stagnation point in hypersonic flow. Indeed, in
this case the shock layer is very thin and approximately parallel to the wall. Thus,
we can consider according to a naive vision that incident molecules individually
impact the wall while yielding the normal component of their mVN of their linear
momentum and retaining the parallel component mVP (Fig. 4.3).

Let us consider in this hypothesis a tube of incident flow at upstream relative
velocity �V∞ crossing an element of wall area. Through the section of area normal
to the tube S · cos θ, flux of mass and linear momentum normal to the wall per unit
of time are, respectively,

dm

dt
= ρ∞ ·V∞ · S · cos θ

d (mVN)

dt
= VN · dm

dt
= ρ∞ ·V2

∞ · cos2 θ · S

Linear momentum yielded to the wall per unit of time corresponds to the normal
force FN exerted on the element of area S and to an increment of pressure p−p∞ =
FN
S relating to the static pressure in the gas,

p− p∞ = ρ∞ ·V2
∞ · cos2 θ = 2 · q · cos2 θ

We finally obtain the pressure coefficient on the wall,

cp = p− p∞
q̄

= 2 · cos2 θ

θ

S.cos θ

Vn = V∞ cos θ

Vp = V∞ sin θ

V∞

n

S

Fig. 4.3 Newtonian impact geometry
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This expression can be empirically refined by observing that factor 2 corresponds
to the maximum of pressure at the stagnation point of the fluid on the wall: (θ = 0).
We can generalize the expression in:

cp = cp,stag · cos2 θ = cp,stag

( �V∞ · �N
V∞

)2

An exact value of cp,stag is obtained by calculating the stagnation pressure be-
hind a normal shock using Hugoniot equations and isentropic compression:

pstag = pshock

[

1+ γ − 1

2
· 1+ γ−1

2 M2∞
γ ·M2∞ − γ−1

2

] γ
γ−1

pshock = p∞
[

1+ 2γ

γ + 1

(
M2
∞ − 1

)]

Historically, some authors tried to refine the Newtonian value of pressure coef-
ficient, for example, by taking into account a pressure correction associated with

the centrifugal force induced by the wall curvature δp = −ρ∞
(V∞ sin θ)2

R . All these
improvements proved completely illusory, because the initial estimate has no true
physical justification; therefore, it is preferred to use the simplest approximation
cp,stag = 2.

4.3.4 Continuous Coefficients by Newton’s Method

4.3.4.1 Static Coefficients

Pressure Coefficients

We obtain the aerodynamic coefficients of a convex shape body by integrating the
elementary surface effects in the areas exposed to incident flow, corresponding to
�V∞ · �N ≥ 0 conditions, where �N is the normal to the wall:

d�F = q̄ · cp,arret ·
( �V∞ · �N

V∞

)2

· �N · dS

d �M = q̄ · cp,arret ·
( �V∞ · �N

V∞

)2

· �r ∧ �N · dS

�r = O �M is the radius vector between the origin of vehicle frame and the center of
the surface element.
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For the areas sheltered from the flow such as (�V∞ · �N ≤ 0), we have:

d�F = d �M ≈ 0

We obtain finally the expression of the aerodynamic coefficients:

Name Expression

Axial force coefficient CAw = −
cp,arret

Sref

∫ ∫

�V∞·�N≥0

( �V∞ · �N
V∞

)2

· Nx · dS

Normal force coefficient CNw = −
cp,arret

Sref

∫ ∫

�V∞·�N≥0

( �V∞ · �N
V∞

)2

· Nz · dS

Pitching moment coefficient Cmw =
cp,arret

Sref · Lref

∫ ∫

�V∞·�N≥0

( �V∞ · �N
V∞

)2

· (z · Nx − x · Nz).dS

In the case of a complicated geometry, it is preferable to carry out a numeri-
cal integration of these expressions. The old “hypersonic arbitrary body program
(HABP)” code of NASA proposes a choice of theoretical analytical expressions
or pressure correlations to numerically calculate the coefficients of any arbitrary
geometry [HAB].

In the case of some simple geometrical forms, the integration of these relations
leads to analytical expressions. For example, in the case of a circular cone of half
apex angle θa and for angle of attack ᾱ ≤ θa:

CAw =2 · sin2 θa +
(

1− 3 · sin2 θa

)
sin2 ᾱ

CNw = cos2 θa · sin 2ᾱ

Cmw =− 2

3
· sin 2ᾱ

xCP

Lref
=− 2

3 · cos2 θa

The origin of moment and center of pressure is located at the apex of the cone, the
reference area is the maximum cross section and the reference length is the length
of the cone.

In the case of a segment of sphere with radius R we obtain (for ᾱ ≤ θa and an
origin O located to the upstream pole of the sphere):

CAw =1− sin4 θa − (1+ 3 sin2 θa) cos2 θa

2
· sin2 ᾱ

CNw =2

3
cos4 θa · sin 2ᾱ

Cmw =− Cmw ⇔ xC P = −R
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with reference area Sref = π ·R2, reference length Lref = R, and θa , half apex angle
of the cone tangent to trailing edge of the segment.

Coefficients of a geometry made up of simple element truncated cones and spher-
ical segments are calculated easily from the above expressions by adding the forces
on elements, and moments brought back to a common origin O by applying the rule
for changing origin (Sect. “Changing the Origin of Moment Coefficients”):

CAw =
∑

i

Si

Sre f
· CAwi

CNw =
∑

i

Si

Sre f
· CNwi

Cmw/O =
∑

i

Si

Sre f

[
Li

Lre f
· Cmwi + xi

Lre f
CNwi

]

xC P =

∑

i
Si · CNwi · xC Pi

Sre f · CNw

where for each element “i”: Si and Li are the reference values, xi the coordinate
of the reference point of moment relative to the common origin O, and xCPi the
coordinate of the center of pressure relative to the common origin O.

An interesting property is, as the dependence of coefficients with incidence ᾱ is
identical for the sphere segment and the cone, it is also identical for all the bodies
made up of such elements:

CAw = CAw0 + CAwα sin2 ᾱ

CNw = CNwα0 sin ᾱ cos ᾱ

Cmw/O = Cmwα0/O sin ᾱ cos ᾱ

xC P

Lre f
= Cmwα0/0

CNwα0
= cste

Axial Force on Base of the Vehicle

An estimate of the base axial force coefficient can be obtained by assuming that the
base pressure is a constant ratio of the static free stream pressure in the incident gas,
pc = η.p∝. This results in :

CAc = −pc − p∞
q̄

= (1− η)
p∞
q̄

q̄ = 1

2
γp∞M2

∞ ⇒ CAc = (1− η)
2

γM2∞
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As we can see in this formulation, base drag becomes a significant contributor
only at low Mach number.

To fit the parameter η relating to a given configuration, one may use experimental
data. A reasonable value often used as first estimate is simply CAc ≈ 1

M2∞
, which

corresponds to η = 0.4.

Axial Friction Force

Certain authors propose analytical formulae for the friction drag using expression of
shear on a flat plane in laminar or turbulent flow. One finds in [GLO] such formulae,
in the case of sharp small angle cone:

• For cold wall conditions, laminar flow:

CA,f = 1.9

tan θc

[(
1+ γM2 sin2 θc

)
cos θc

Re

] 1
2

where Re = ρVL
μ

• For smooth, hot wall turbulent flow:

CA,f = 0.1

Re
1
5

(cos θc)
0.8

tan θc

(
1+ γM2 sin2 θc

)0.8

(
1+ 0.17 ·M2

)0.7

Behavior of the Axial Force Coefficient for a Slender Vehicle

Approximate expressions of Sects. “Pressure Coefficients,” “Axial Force on Base of
the Vehicle,” “Axial Friction Force,” have been applied to calculate the axial force
coefficient of a sharp cone of 8◦ half apex angle and D = 0.50 m diameter (length is
L = 1.78 m), represented in Figs. 4.4–4.7. This behavior is typical of the zero angle
of attack drag coefficient of a slender axisymmetric vehicle.

For a vehicle with high ballistic coefficient, m
SCA

, of order of magnitude 104 kg/m2,
aerodynamic deceleration is initially low and velocity is near constant above 10 km
altitude.

Figures 4.4 and 4.5 give, respectively, approximate components of the drag at
continuous laminar or turbulent flow and constant velocity V = 6000 m/s, between
60 km and 10 km altitude. Figure 4.6 gives the evolution of the Reynolds number
Re = ρV L

μ
in atmosphere US66. By admitting that laminar to turbulent flow tran-

sition begins toward Re = 106 and becomes complete for Re = 107, the flow is
completely laminar above 45 km and mostly turbulent under 32 km altitude.

At altitudes range from 60 to 10 km, the pressure drag coefficient is nearly con-
stant. The base drag coefficient is almost negligible. Variation of the total drag co-
efficient is primarily related to the evolution of friction drag with Reynolds number
or altitude. In laminar flow, the drag coefficient has high initial value followed by a
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Components of drag coefficient - 8 degree cone,
V = 6000 m/s 
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Fig. 4.4 Components of drag coefficient of 8◦ cone
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Drag components, 8 degree cone, H = 5 km

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 5 10 15 20

Mach

A
C

friction, turbulent,
hot wall

base drag

pressure drag

total drag

Fig. 4.7 Drag components of 8◦ cone

decrease with altitude. During the transition, one observes a gradual decrease until
the full turbulence is reached where the drag coefficient remains nearly constant as
long the velocity is sustained.

Under 10 km altitude, velocity and Mach number decrease sharply under drag
effect, we observe the behavior in Fig. 4.7 dominated at Mach lower than 10 by the
evolution of base drag with Mach number.

4.3.4.2 Dynamic Derivatives

The estimate of damping coefficients is possible theoretically using Newton’s method
or more elaborate methods, but quite as approximate (Ericsson [ERI] semiempirical
method “Embedded Newtonian flow”). “Exact” dynamic numerical methods will
likely be developed in future to solve this problem. Experimental approaches using
wind tunnel measurements are possible but seldom used, as measurements are diffi-
cult and inaccurate. In fact, effort in this field remains very limited because we will
see herein that the pitch damping moment coefficient, although having significant
effect, is not considered in practice as a dimensioning parameter, except in the rare
configurations of dynamic instability [KAR]. Consequently, the need for accuracy in
this parameter is not critical and approximate estimate methods are adequate. Codes
using Ericsson’s method give damping coefficients of sphere cone configurations.
This method takes into account the influence of the nosetip shock on downstream
flow and allows the computation of Mach number effects. The Newtonian codes
make it possible to calculate the dynamic derivatives on a convex arbitrary shape.

Indeed, Newtonian impact theory gives the pressure on a surface element from
its motion relative to air. It can also be applied to dynamic effects in the flow.



4.3 Continuous Mode 49

Angular Damping Coefficients

Let us consider the case of a constant linear velocity �VR of the mass center and a
constant angular rate �ω = {p, q, r} around it.

Velocity relative to air, for a surface element located at �r relating to mass center,
is:

�VR (�r) = −V∞ (�r) = �VR (0)+ �ω ∧�r

That is to say,

V∞ (�r) = �V∞ (0)− �ω ∧�r

The Newtonian pressure coefficient at �r becomes:

cp (�r) = cp,stag ·
( �V∞ (�r) · �N

V∞ (�r)

)2

≈ cp,stag ·
[ �V∞ (0) · �N

V∞ (0)
− (�ω ∧ �r) · �N

V∞ (0)

]2

This expression is simplified in the hypothesis rω << V∞ where one retains
only the first-order terms in r �ω

V∞ .

cp (�r) ≈ cp,stag ·
⎡

⎣
( �V∞ (0) · �N

V∞ (0)

)2

− 2

(
�V∞ (0) · �N

) (
�r ∧ �N

)
· �ω

V 2∞ (0)

⎤

⎦

cp (�r) ≈ cp
(�ω = 0

)+ δcp
(�ω)

This involves a modification of the elementary static force,

δ
[
d�RA (�ω)

]
= q · δcp

(�ω) · �N · dS

Let us choose the origin of the vehicle frame at its center of mass. The elementary
moment of disturbance is written as:

dδ �M (�ω) = q · δcp
(�ω) · �r ∧ �N · dS

We obtain the total disturbance of the force from integration of elementary forces
on the impact area.

δ �R A ( �ω) = −2 · q · cp,stag

∫∫

�V∞· �N≥0

(
�V∞ · N

)

V∞

(
�r ∧ �N

)
· �ω

V∞
�N · d S
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By projecting this expression along the three directions of the vehicle frame, we
obtain the damping force coefficients:

CNq = − 1

q · Sre f

∂δR A
z (�ω)

∂
q·Lre f

V∞

= 2 · cp,stag

Sre f

∫∫

�V∞· �N≥0

(
�V∞ · �N

)

V∞

(
�r ∧ �N

)

y
· Nz

Lre f
d S

CY r = 1

q · Sre f

∂δR A
Y ( �ω)

∂
r ·Lre f

V∞

= −2 · cp,stag

Sre f

∫∫

�V∞· �N≥0

(
�V∞ · �N

)

V∞

(
�r ∧ �N

)

z
· Ny

Lre f
d S

CNq = − 1

q · Sre f

∂δR A
z (�ω)

∂
q·Lre f

V∞

= 2 · cp,stag

Sre f

∫∫

�V∞· �N≥0

(
�V∞ · �N

)

V∞

(
�r ∧ �N

)

y
· Nz

Lre f
d S

Dynamic forces at usual angular velocities have a negligible effect (Magnus lift
effect included, as this book does not apply to projectile ammunition with high roll
velocities) on the aerodynamic force. However, they are useful as they are used in
the rules to change origin of damping moment coefficient.

Total disturbance moment is written:

δ �M ( �ω) = −2 · q · cp,stag

∫∫

�V∞· �N≥0

(
�V∞ · N

)

V∞

(
�r ∧ �N

)
· �ω

V∞
�r ∧ �N · d S

The dynamic derivatives of moment are:

Clp = 1

q · Sre f · Lre f

∂δ �M (�ω)
∂

p·Lre f
V∞

= −2 · cp,stag

Sre f

∫∫

�V∞· �N≥0

(
�V∞ · �N

)

V∞

(
�r ∧ �N

)2

x

L2
re f

d S = 0

Cmq = 1

q · Sre f · Lre f

∂δ �M (�ω)
∂

q·Lre f
V∞

= −2 · cp,stag

Sre f

∫∫

�V∞· �N≥0

(
�V∞ · �N

)

V∞

(
�r ∧ �N

)2

y

L2
re f

d S

Cnr = 1

q · Sre f · Lre f

∂δ �M (�ω)
∂

r ·Lre f
V∞

= −2 · cp,stag

Sre f

∫∫

�V∞· �N≥0

(
�V∞ · �N

)

V∞

(
�r ∧ �N

)2

z

L2
re f

d S

The application of these results to a cone with semiapex angle θa gives, for ᾱ ≤
θa and origin at the apex:
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Cmqw = Cnrw = −
(

1+ tan2 θa

)
· cos ᾱ

CNqw = CYrw = 4

3
· cos ᾱ

Rules to Change Origin of Damping Moments Coefficients

When one examines the expression of damping moment coefficients, it appears
a quadratic relationship with radius vector from the origin to the current surface
element. The rules of change are obtained while replacing �r

Lref
with �r−�rG

Lref
in the

original expressions. The only case of interest for an axisymmetric vehicle is that of
a displacement of the center of rotation along Ox.

The rigorous development of calculations led to the following relations, valid for
ᾱ ≤ θmin (maximum incidence, such that the complete area upstream the maximum
cross section, is impacted by the flow), in the wind frame “W”:

Cmqw/G = Cmqw/O − 2 · xG

Lref
· CNqw/O −

(
xG

Lref

)2

· cos ᾱ
cos 2ᾱ

· CNαw

Cnrw/G = Cnrw/O − 2 · xG

Lref
· CYrw/O +

(
xG

Lref

)2

· CYβw

with,

CNαw = ∂CNw

∂ᾱ
= −2

cp,arret

Sref
· cos 2ᾱ ·

∫∫

�V∞· �N≥0

Nx ·N2
z · ds

CYβw =
∂CY

∂β
(ᾱ,β = 0) = 2

cp,arret

Sref
· cos ᾱ ·

∫∫

�V∞· �N≥0

Nx · N2
Y · ds

The application to a sharp conical body shape gives:

CNαw = 2 · cos2 θa · cos 2ᾱ

CYβw = −2 · cos2 θa · cos ᾱ

It is useful to note that in the Newtonian approximation, dynamic derivatives CNq
and CYr are dependent on the gradients of static moment coefficients Cm and Cn,
respectively, which are easier to calculate. One can show indeed:

Cmαw = ∂Cmw

∂α
= sin α · CAqw − cos α · CNqw

Cnβw =
∂Cn

∂β
(ᾱ,β = 0) = −CYrw
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For low angle of attack, ᾱ, cos ᾱ ≈ 1 and sin ᾱ ≈ 0, we obtain the following
rules of change:

Cmqw/G = Cmqw/O + 2 · xG

Lref
· Cmαw/O −

(
xG

Lref

)2

· CNαw

= Cmqw/O +
[

2
xG

Lref

xCP

Lref
−
(

xG

Lref

)2
]

CNαw

Cnrw/G = Cmqw/G

Cmαw/O = xcp

Lref
· CNαw

This gives for the sharp conical body of length Lref:

Cmqw/G = −(1+ tan2 θa)− 8

3
cos θa · xG

Lref
− 2 · cos2 θa ·

(
xG

Lref

)2

Remarks:

• Do not forget that with our convention of direction for OX axis forwards vehicle,
we have xG

Lref
< 0 for an origin O at stagnation point.

• This often used method of change is empirical, because it is derived only from
the Newtonian model. To our knowledge, there is no exact method at this time.

4.3.4.3 Influences of Linear Accelerations

The expression of the pressure coefficients in Newtonian flow depends only on the
instantaneous speed of the surface element relating to the gaseous medium. From
this fact, dynamic effects associated with the acceleration of the center of mass are
null in the field of this approximation.

4.4 Rarefied Mode

4.4.1 Free Molecular Flow

In free molecular flow, effects on the surface element are calculated from analytical
expressions for pressure coefficient and shear coefficient resulting from the kinetic
theory of gases.

The more current model assumes that speed of incident molecules relating to the
wall is the sum of two terms:

�vR = �VR + �ν (T∞)
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• A term �ν (T∞) of random thermal motion in the gas at rest corresponding to a
Maxwell distribution of velocities at equilibrium at the atmosphere temperature
T∞

• A term �VR representing the velocity of the vehicle relating to the reference frame
of the atmosphere at rest

Other hypotheses are:

• All incidental molecules are reemitted after interaction with the wall with a ve-
locity distribution relating to the wall such as:

• In the case of a total accommodation with the wall, these molecules have a
relative velocity distribution at the temperature of the wall Tw (completely
diffuse reflection, with a Maxwell distribution over 2π steradians).

• In the case of partial accommodation with the wall, a fraction of the molecules
are reemitted diffusively at the wall temperature Tw, the remainder is specu-
larly reflected (elastic reflection).

Pressure and shear stresses result from the assessments of linear momentum nor-
mal and parallel to the wall by unit of area and unit of time.

�(mv)wall = �(mv)inc − �(mv)ref

In practice, to take into account the experimental results, one is brought to use
a different ratio of molecules reemitted diffusively (coefficients of accommodation)
to calculate pressure and shear stresses:

σ ′ = accommodation coefficient normal to the wall,
σ = accommodation coefficient tangent to the wall.

Rigorously, we should have

σ = σ ′ = number of diffuse reflections

total number
.

We will use a simplified assumption, valid at high Mach number, which ne-
glects the random thermal velocity of the molecules in front of relative velocity
due to the movement of the wall. In the case of the completely diffuse reflection
σ = σ′ = 1, the molecules yield their momentum to the wall, i.e., the normal
component and the tangential component corresponds to a completely inelastic
shock. In the case of specular reflection σ = σ′ = 0, which corresponds to
an elastic shock, the molecules yield twice their normal momentum to the wall,
while retaining tangential momentum. Note that in Newtonian theory of impact, the
molecules yield their normal momentum to the wall, but keep their parallel momen-
tum as in specular reflection. Newtonian effects are bound to a pressure coefficient
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cp = 2 cos2 θ corresponding to σ′ = 1;σ = 0. In the case of the specular reflection
(σ = σ′ = 0), the wall receives twice the incidental momentum normal, which
corresponds to twice the Newtonian value, that is to say a pressure coefficient cp =
4 cos2 θ.

In the case of diffuse reflection we have, in addition to the Newtonian pres-
sure, a shear stress, directed along the wall component of the incidental velocity.
Momentum yielded to the wall in this direction per unit area and unit volume of
incidental gas is ρV∞ sin θ, and the volume of incidental gas by unit of area and
time is V∞ cos θ. We obtain the shear stress per unit of area to the wall, equal to the
product of the two terms:

τ = ρV2
∞ sin θ cos θ ⇒ cτ = τ

q̄
= 2 sin θ cos θ

We thus can summarize:

σ = σ′ = 1 → Entirely diffuse reflection→ cp ≈ 2 ·cos2 θ, cτ ≈ 2 ·sin θ·cos θ
σ = σ′ = 0 → Completely specular reflection→ cp ≈ 4 · cos2 θ, cτ = 0.

The general simplified expression for shearing and pressure coefficients for any
accommodation coefficients is thus:

cp = σ′ · 2 · cos2 θ+ (1− σ′
) · 4 · cos2 θ = (2− σ′) · 2 · cos2 θ

cτ = σ · 2 · sin θ cos θ+ (1− σ) · 0 = σ · 2 · sin θ · cos θ

In practice, a realistic assumption for the majority of materials, which is com-
monly used, corresponds to completely diffuse reflection, σ = σ′ = 1, and:

cp = 2 · cos2 θ
cτ = 2 · sin θ · cos θ

This assumption results in a simple conclusion: the total effect is limited to the
drag component.

cd =
√

c2
p + c2

τ = 2 cos θ.

cp = cd · cos θ

cτ = cd · sin θ

The integration of these elementary coefficients on a convex body shape and on
the zones directly impinged by the flow is by definition the drag coefficient,

CD = 2

Sre f

∫∫
cos θds
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This coefficient is also written as:

CD = 2
S

Sre f

where S represents the surface of the body projected on a plane normal to the inci-
dental direction.

We deduce immediately the drag coefficient of a sphere section, like those of disk
and of cone at zero angle of attack, relating to area of their respective maximum
cross sections, which are equal to 2. Within the field of this approximation, the lift
coefficient CL and the fineness coefficient f = CL

CD
of an arbitrarily shaped vehicle

are zero, which is not very far from physical reality.
This does not mean normal force and pitching moment on a convex axisymmetric

body are negligible. Indeed, normal and axial forces are obtained directly by projec-
tion of the drag force on the axes of the vehicle, but the moment must be computed
either numerically by integrating the moments elements, or by geometric construc-
tion using the fact that the resulting drag forces cross the former projected surface
of the vehicle (on a plane normal to the direction of the incident flow) through the
barycenter.

We can now deduce easily with the help of the three preceding geometrical
properties, force coefficients of an axisymmetric sphere cone with diameter D and
semiapex angle θa (when all the surface upstream of the maximum cross section is
impinged by the flow, i.e., for an incidence ᾱ ≤ θa):

CD = 2 cos ᾱ.

CN = CX sin ᾱ = 2 sin ᾱ cos ᾱ

CA = CX cos ᾱ = 2 cos2 ᾱ

By observing that the barycenter of the maximum cross section (which corre-
sponds to the base plane) is the center of pressure, because it is aligned with that
of projected surface normal to the upstream flow direction, we obtain the center of
pressure location and the pitching moment coefficient relating to the cone apex and
for ᾱ ≤ θa ,

xcp

D
= − 1

2tgθa

Cm/A = CN
xcp

D
= − 1

2tgθa
CD sin ᾱ = − 1

tgθa
sin ᾱ cos ᾱ

We can observe that these expressions are applicable to a segment of sphere by
using an angle θa corresponding to half apex angle of cone tangent at the trailing
edge.

In order to assess the error associated with the assumption neglecting the ran-
dom thermal velocity of gas in front of the mean macroscopic velocity, we compare
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hereafter the result of the simplified method with the exact analytical expression
using the kinetic theory of gases for the drag coefficient of a sphere, with the as-
sumption of completely diffuse reflection [HBK]:

CD = 2

3

√
π

S

√
Tb

T∞
+ 2S2 + 1√

πS3
e−

S2
2 + 4S4 + 4S2 − 1

2S4 er f (S)

S =
√
γ

2
Mach

This exact analytical estimate, with the conditions Mach 20, T∞ = 180.65 K;
Tb = 300 K; γ = 1.4, corresponds to CD = 2.098137.

The error of the simplified estimate CD = 2. relating to kinetic theory of gases
is about 5%.

4.4.2 Intermediate Flow

This flow represents the transition between free molecular flow and continuous
flow. Its exact theoretical calculation requires DSMC codes. They are very ex-
pensive with respect to memory and in computing times. NASA [PAR] leads ef-
forts in this area. Certain organizations successfully use Navier–Stokes codes in
the field corresponding to the beginning of rarefied flow, others develop methods
called Bathnagar, Gross, and Krook [BG K ] in the rarefied field. Historically, and
often now, the estimates used correlation of experimental data in rarefied flow to-
gether with theoretical results in adjacent flow modes (free molecular and contin-
uous). Models of correlation rely upon “bridging function” between free molecu-
lar and continuous flow. These bridging functions generally use Knudsen number
as correlation parameter. Standard expression used for modeling the aerodynamic
coefficients is:

C = Cc + φ (Kn∞) · (Cm − Cc)

where Cm and Cc are the respective boundary values of the coefficient in free molec-
ular and continuous flow. The bridging functions φ (Kn) vary from zero to unity
between a low value of Knudsen Knc ≈ 10−3 limit at the end of the continuous flow
and a high value Knm ≈ 10 to 100 corresponding to the beginning the free molecular
flow. A kind of bridging function often used for planetary probes applications and
particularly for the US space shuttle [RAT] is:

φ (Kn∞) = sin2 [π
(
a1 + a2 log10 Kn∞

)]

where a1 and a2 are constants related to Knm and Knc, which define the limits of
free molecular and continuous flow.
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Another function was used for Soyuz capsule and corresponds to [RAT]:

φ (Kn∞) = 1

2

[
1+ erf

( √
π

�Kn
ln

{
Kn∞
Knmi

})]

where Knmi corresponds to the middle of the intermediate flow, such as φ(Knmi) =
0.5 and ΔKn is the logarithmic width of the intermediate zone ΔKn = ln(Knm) −
ln(Knc).

Figure 4.8, from [RAT] shows the comparison between the two bridging functions,
NASA DSMC computations and the flight data for the Martian probe Viking 1.

We can observe that the present value of the parameter CN
CA

≈ 0.184 in free
molecular flow, determined for Viking at the angle of attack ᾱ = 11◦, is in good
agreement with the value CN

CA
= tgᾱ = 0.194 predicted by the simplified theory of

Sect. 4.4.1. We will note that CN
CA

does not represent the fineness of the body, which
is equal to

f = CL

CD
=

CN
CA
− tgᾱ

1+ CN
CA

tgᾱ
.

Fineness of Viking 1 thus determined is equal to −0.16 in continuous flow and
−0.01 in free molecular, which is in good agreement with the fineness zero predicted
in free molecular with the simplified method of this book.

From the same origin, one may propose for the “Erf-Log” correlation a common
value for the parameter ΔKn = ln (500) = 6.2146 well suited for highly blunted
probe shapes and a methodology, based on a single DSMC calculation in interme-
diate flow for each aerodynamic coefficient to fit the value of Knmi.

Results of this method relating to different probes and various aerodynamic co-
efficients are presented in Tables 4.1 and 4.2 whose data are from [RAT].

This method, validated here for highly blunted planet probes, must, a priori, be
applicable to other kind of vehicles.

Fig. 4.8 Viking 1,
comparison of bridging
functions’ estimates with
exact computations and
experimental data
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Table 4.1 Parameters of bridging functions for aerodynamic coefficients of Mars’01

Coefficient Square sine correlation Erf-Log correlation

a1 a2 Error
RMS
(%)

ΔKn Knmi Error
RMS
(%)

CA 0.2836 0.1 3.9 6.5 0.3576 4.1
CN 0.3107 .0926 17.3 6.3 0.1804 7.0
Cm 0.3367 .0921 19.8 5.9 .0825 12.1

Table 4.2 Parameters of Erf-Log bridging function for CA and for different vehicles obtained with
the fitting method with a single DSMC computation

Vehicle ΔKn Knmi Error RMS (%)

Viking 6.2146 0.1805 4.3
Pathfinder 6.2146 0.1804 4.6
Mars’01 6.2146 0.4894 4.8
Stardust 6.2146 0.0756 4.8
Microprobe 6.2146 0.0475 5.8

4.5 Qualities of Flight

Flight quality standards are specific to the particular type of aerodynamic vehicle.
They are different for a sailplane, a delta plane, a transport aircraft, a stunt-flying
plane or a fighter, a ballistic reentry vehicle, or a shuttle.

For a nonpowered vehicle, they are associated with the mass and inertial proper-
ties and with the aerodynamic properties. There are three important criteria:

• The velocity criterion, associated with weight and drag
• The maneuverability criterion, associated with weight and lift
• The controllability criterion, associated with rolling, yawing, pitching moments,

and inertia tensor

Velocity criterion: We limit the analysis case to an axisymmetric ballistic reen-
try vehicle. The simplified evolution of the module of velocity during aerodynamic
reentry is governed by

dV

dt
= −1

2
ρV 2 Sre f CD

m
= − q̄

β
.

The “ballistic coefficient” parameter β = m
Sref CD

, expressed in kg/m2, charac-
terizes the response of the vehicle to aerodynamic braking.

• For a planetary entry probe, one seeks effective braking at high altitude and low
atmosphere density (to lessen heat stresses, and to allow soft landing), the param-
eter β must be low. The typical values are 50–100 kg/m2
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• For a military vehicle, we wish to maintain a high velocity; the parameter β must
be high. The typical values are 5000–10000 kg/m2

Criterion of maneuverability: This criterion adapted to actively controlled vehi-
cles is not very useful for a ballistic vehicle. It is characterized by the parameter
“fineness ratio” f = CL

CD
.

A high fineness ratio achieves large trajectory deviations while minimizing the
velocity loss associated with the angle of attack (lift induced drag) and with the
increased range of trajectory. This makes it possible either to obtain high lateral
load factors for maneuvering or to increase the ground range compared to purely
ballistic range.

One example corresponds to space reentry vehicles, like Apollo capsule and
space shuttle. Among military vehicles, one distinguishes the maneuvers intended
to avoid possible interceptions and those intended to correct trajectory to the target.

Controllability criterion: This function consists to control actively or passively
the rotational movement around the center of mass in order to follow a trajectory
intended for the mission.

In the case of purely ballistic vehicles two passive means of stabilization are
used:

• Aerodynamic stability around the ideal angle of attack, along the pitching and
yaw axes

• Gyroscopic stability, obtained using a constant rotation rate along rolling axis
(spin)

4.5.1 Static Stability

4.5.1.1 Vehicle with a Symmetry Axis

In the case of a vehicle with an aerodynamic axis of symmetry, centered in G =[
xG 0 0

]
on the axis of symmetry, there are at least two positions of static trim such

that

Cmw/G (ᾱ) = 0.

They correspond to the angles of attack ᾱ = 0◦ and ᾱ = 180◦, respectively.
The ideal incidence of flight, for which the vehicles are designed and, which

minimizes the transverse effects and deviations of trajectory, is zero. The vehicle
has in general an initial angle of attack at the beginning of reentry, resulting from
errors at separation with the missile. This incidence becomes increasingly harmful
because of growth of the dynamic pressure. It is thus necessary, in order to control
this angle of attack, that there is a static restoring moment toward the flight path
vector relating to air during all the reentry. In the wind-fixed frame (w) centered at
G, this restoring moment is equivalent to a strictly negative coefficient of moment



60 4 Aerodynamics

around pitching axis Y ′w, Fig. 4.3,

Cmw/G (ᾱ,Mach,Re, Kn) = Cmw/O − xG

Lref
CNw < 0 .

Using the definition of center of pressure for a body of revolution (Sect. 4.1.3),
we can write an equivalent condition,

Cmw/O − xG

Lref
CNw < 0 ⇔ −xG − xCP

Lref
CNw < 0.

With our convention, axis OX is directed forward the vehicle. Provided CNw > 0
(which is the usual case, Fig. 4.9, but there are some exceptions), this is equivalent
to a condition of centering the vehicle along OX forward of the center of pressure.

The static margin parameter must be strictly positive in all the flight conditions:

xG − xCP

Lref
> 0

This static stability condition for convergence toward the zero trim angle of attack
is necessary, but not sufficient. We will see that there is also a dynamic stability
condition.

Figure 4.10 represents, for a sphere–cone body of half apex angle 8◦ with a flat
base and a bluntness ratio RN

RB
= 0.1, the influence of center of mass location on the

pitching moment from a Newtonian calculation. The center of pressure of this shape
exists for the incidences 0 < ᾱ < 172◦; it is such that xCP

Lref
≈ −0.65. For ᾱ ≥ 172◦,

the pitching moment is zero and stability is indifferent. We can verify that the object

X
α

G
O

Cmw/G

CP

VR

CNw > 0

Y ′

< 0

w

Zw
′

Fig. 4.9 Static stability of an axisymmetric body
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Fig. 4.10 Sensitivity of axial CG location on static stability for an axisymmetrical body

becomes unstable when static margin becomes negative and the moment increases
in absolute value when static margin increases.

Except for resonance phenomena, which will be studied in Chaps. 11 and 12, two
conditions, static and dynamic, are sufficient to ensure converging toward low inci-
dence. However, in order to prevent the risks of resonance, which appear primarily
at two altitudes range, the control of trim eventually require

• A more severe condition on the static margin, such as xG−xCP
Lref

> strictly positive

minimum value to be defined.
• Conditions on the maximum acceptable level of aerodynamic and inertial asym-

metries.

We will observe that, in practice, the strict static stability condition can be relaxed
in some circumstances.

It is indeed possible to fly with some level of static instability in rarefied flow
at low dynamic pressure, which can be compensated by gyroscopic stability (case
of planetary entry probes). When the vehicle has nonlinear behavior in incidence
(e.g., an aftward motion of the center of pressure with angle of attack), it is possi-
ble to accept temporarily, in continuous flow and in a range of altitude where the
dynamic pressure is still moderate, some level of instability at low angle of attack.
This requires good aerodynamic tools and a good control of the design.

Note: We repeat our warning with respect to center of pressure and static margin
concept. The only physical criterion, which allows pertain stability is the behavior
of the moment around the center of mass. Indeed, the condition of positive static
margin is generally valid, but not in all circumstances.
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4.5.1.2 Nonaxisymmetric Vehicle

For a more general vehicle, including plane symmetric (like sailplane), the aerody-
namic model corresponds to no separable functions of incidence and sideslip angle.
In addition, the trim state does not necessarily correspond to zero incidence and/or
sideslip angles,

Cm / G
(
αααeq,βββeq

) = 0

Cn / G
(
αααeq,βββeq

) = 0

The differential stability condition for small deviations δα, δβδα, δβδα, δβ from the trim state⌊
αααeq βββeq

⌋
corresponds to a static restoring moment. Taking into account the sign

conventions (Fig. 4.1) and definitions of moment coefficients (Sect. 4.1.1), this con-
dition is:

∂Cm / G

∂ααα

∣
∣
∣
∣
αeq,βeq

< 0

∂Cn / G

∂β

∣
∣
∣
∣
αeq,βeq

> 0

In the same way, the general condition of stability in a finished field D(α, βα, βα, β)
around

⌊
αααeqβββeq

⌋
corresponds to a criterion associated with the sign of the moment

coefficients (in order to have a restoring moment). With the previous sign and mo-
ments coefficient conventions, the criterion is

Sign
{
Cm/G (α, β)

} = −sign
{
α − αeq

}

Sign
{
Cn/G (α, β)

} = +sign
{
β − βeq

}

As we pointed out previously, static margin criteria, associated to center of pres-
sure and focus concepts, are not universal and are to be handled with caution because
they sometimes lead to false conclusions.

We will say that in general, differential stability around any axis (pitching or
yawing) is obtained under the condition the center of mass is before “aerodynamic
focus” associated with corresponding pitching/yawing moment and normal/lateral
force.

Aerodynamic focus are the correspondents of the centers of pressure with respect
to small variation of aerodynamic static force and moment around a given equilib-
rium state.

xFN

Lref
= ∂Cm

∂CN
; xFT

Lref
= ∂Cn

∂CY
; zCPT

Lref
= − ∂Cl

∂CY

A body having a plane of symmetry generally possesses a different focus (or
center of pressure) for normal force (CN) and lateral force (CY).
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For an axisymmetric body, we can define a single focus (and also a single center
of pressure) such as xFN

Lref
= xFT

Lref
= xF

Lref
; zFT

Lref
= 0.

Analysis of stability around trim generally needs to use the criterion on sign of
the moment coefficients.

The simplest example of nonsymmetric behavior is a body with axisymmetric
aeroshell, whose mass center is not on the symmetry axis. We assume that the nor-
mal force coefficient has a “usual” behavior, i.e., CNw (ᾱαα) ≥ 0 for all ᾱαα. We choose
the symmetry plane like the pitching plan, i.e., the meridian plane around the axis
of symmetry O′X that includes the center of mass, Fig. 4.11.

Pitching and yawing moments are given by:

Cm/G = Cm/O − xG

Lref
· CN + zG

Lref
· CA = −xG − xCP

Lref
· CN + zG

Lref
· CA

Cn/G = Cn/O − xG

Lref
· CY = −xG − xCP

Lref
· CY .

Taking into account the relations of Sect. 4.1.3, these equations are rewritten
using wind-fixed (w) coefficients:

Cm/G = −xG − xCP(ᾱαα)

Lref
· CNw(ᾱαα)

sin
ᾱααcosβββsinααα + zG

Lref
· CAw(ᾱαα)

Cn/G = −xG − xCP

Lref
· CY = xG − xCP (ᾱαα)

Lref
· CNw (ᾱαα)

sinᾱαα
sinβββ

The zero value of the yawing moment for βββ = 0 shows zero sideslip is a possible
trim condition. Variations of moment around βββ = 0 show this trim is stable in the
interval around trim where static margin is positive (function CNw(ᾱαα)

sinᾱαα is by hypothesis
strictly positive).

Analysis of the pitching moment for βββ = 0 results in a trim angle of incidence
such that,

Fig. 4.11 Stability of a
nonsymmetrical object

Z

α G

Cm/G < 0

CP

CN  > 0

X
u = VR cos β cos α

w = VR cos β sin α

CA > 0αeq

O′O
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CNw
(∣∣αeq

∣
∣) · sign

(
αeq
) .= zG

xG − xC P
(∣∣αeq

∣
∣) · CAw

(∣∣αeq
∣
∣)

We observe that the absolute value of the trim incidence is inversely proportional
to the static margin.

From analysis of pitching moment variations around αααeq, assuming the axial
force coefficient is near constant, we conclude that the static stability conditions
is equivalent to a positive static margin. This behavior is represented in Fig. 4.12
for the same body as in Fig. 4.9, computed in the Newtonian approximation and for

center of mass locations
xG

Lref
= 0.63; 0.62 &

zG
Lref

= 0.0; 0.1.

4.5.2 Gyroscopic Stability

A given rotation rate “p” of the vehicle around its longitudinal axis (roll) insures
some gyroscopic stiffness along this axis. This method is effective during the bal-
listic phase and during high-altitude reentry where external moments are low com-
pared to gyroscopic moment. We will see also that for a ballistic vehicle a minimum
level of constant sign roll rate is needed during the whole reentry to insure the sta-
bility of the flight path angle.

This topic will be developed later during the study of dynamic reentry behavior.

Fig. 4.12 Static stability of nonsymmetrical body
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4.6 Characteristics of a Family of Sphere Cones

To illustrate the previous chapter and because we will need some of these results
later, we present the aerodynamic coefficients of a series of sphere–cone reentry
vehicles (Fig. 4.13) whose characteristics are:

• Common origin at apex of the sharp cone
• Half apex angle, θc = 8◦
• Base radius, Rb = 0.25 m
• Common reference length is sharp cone length Lapex = Rb

tan θc
= 1.788 m

• Common reference area is that of maximum cross section Sre f = πR2
b =

0.19635 m2

Nosetip radius Rn, bluntness ratio e = Rn
Rb

, and overall length Lv of each vehicle
are given in Table 4.3.
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Fig. 4.13 Blunted cone, 8 degree, e = 0.1

Table 4.3 Nosetip radius Rn, bluntness ratio e = Rn
Rb

, and overall length Lv of each vehicle

Rn/Rb 0 0.05 0.1 0.15 0.2

Rn(mm) 0 12.5 25 37.5 50

Lv(m) 1.7788 1.7015 1.6242 1.5469 1.4695

Overall length, Lv = Lapex − Rn

(
1

sin θc
− 1
)

.
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4.6.1 Mach Number Influence

Center of pressure evolution at 1◦ angle of attack (Euler code results) is shown in
Fig. 4.14, evolution of static margin for center of mass location xG

Lre f
= −65.3% is

shown in Fig. 4.15, and normal force coefficient at 1◦ angle of attack is shown in
Fig. 4.16.

Center of pressure :  8° sphere cone (incidence 1°)
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Fig. 4.14 Center of pressure location

The normal forces’ coefficient at 1◦ incidence is often used to approximate the
gradient of normal force coefficient:

CNα(degree)−1 ≈ CN(1 degree)

Evolution of axial force coefficients at zero angle of attack is shown in Figs. 4.17–
4.19.
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Fig. 4.15 Static margin
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Normal force coefficient  (1°) –8° Sphere cone
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Fig. 4.16 Normal force coefficient

We can observe that pressure and friction components are significantly dependent
on bluntness ratio, unlike the base pressure component. However, when we compare
total axial force coefficients at 5 km altitude, we can see that influence of bluntness
ratio is weaker, thanks to a compensation effect, because pressure drag grows with
nose radius while friction drag decreases (Fig. 4.20). Moreover, we can see that at
high Mach number, there is an optimum bluntness ratio e ≈ 0.06 corresponding to
RN ≈ 30 mm for which total drag coefficient is minimum.

The friction component of axial coefficient depends strongly on altitude as well
as flow turbulence and wall roughness as illustrated in Figs. 4.21 and 4.22 for RN =
25 mm (Euler code + integral boundary-layer solution).

Base pressure component of axial force coefficient is estimated from experi-
mental correlations of the base pressure and upstream conditions computed at the
boundary layer limit at the end of the body (using entropy swallowing method [AND],
which consists in determining in the inviscid flow conditions at the boundary layer

Axial force coefficient (pressure) : 8° sphere cone
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Fig. 4.17 Pressure component of axial force coefficient
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Axial force coefficient (friction, H = 5 Km) :  8° sphere cone

,000E + 00

,500E – 02

,100E – 01

,150E – 01

,200E – 01

,250E – 01

,300E – 01

,350E – 01

C
A

f

CAf Rn = 12.5

CAf Rn = 25

CAf Rn = 37.5

CAf Rn = 50

0 5 10 15 20 25

Mach

Fig. 4.18 Friction component of axial force coefficient
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Friction drag coefficient : 8° sphere cone, RN = 25 mm
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Fig. 4.21 Friction drag coefficient versus altitude, smooth wall

edge). As we can notice in Fig. 4.23, for RN = 25 mm, this coefficient is weakly
depending on altitude.

The previous results justify modeling the total axial force coefficient at zero angle
of attack as CA = CAp (Mach)+ CA f (Mach, alti tude)+ CAb (Mach).

Evolution of pitch damping moment coefficient versus Mach number for a center
of mass location xG

Lref
= −65.3% is represented in Fig. 4.24.

We can notice in Figs. 4.15 and 4.24 that the increase in the nose radius increases
the static stability (static margin) at high Mach number but decreases dynamic sta-
bility (damping coefficient).
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Fig. 4.22 Friction drag coefficient versus altitude, influence of transition and roughness
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Base drag coefficient : 8° sphere cone, RN = 25 mm
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Fig. 4.23 Base axial force component versus Mach and altitude

Influence of center of mass location on pitch damping moment coefficient for the
sharp cone (Newtonian estimate) is given in Fig. 4.25.

The roll damping coefficient assessment for RN = 25 mm (Euler code+ integral
boundary layer solution), is represented in Fig. 4.26.

4.6.2 Influence of Angle of Attack

The estimates of inviscid aerodynamic coefficients up to 8◦ incidence (Euler code)
are represented in Figs. 4.27–4.30.
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Axial force coefficient (pressure): 8° sphere cone , RN = 25 mm
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Fig. 4.27 Evolution of axial force pressure component

• Digital code solutions considered to be exact (Euler, Navier–Stokes) are cur-
rently applicable to most configurations. However, tractable computations [Euler
+ boundary-layer codes, parabolized Navier–Stokes (PNS) codes] are available
up to 30◦–35◦ incidence for most robust codes, 10◦–15◦ incidence depending
on geometries for more accurate but less robust codes. Estimates available for
higher incidences are generally derived from experimental results (ground or
flight data) or from codes using empirical pressure correlations like Newton or
HABP (NASA code). There is good agreement between the various numerical
methods around 30◦–35◦ incidence and a correct agreement between Newtonian
and experimental pressures at higher angle of attack. Thus, Newtonian estimates
represent a reasonable first approximation of the inviscid aerodynamic coeffi-
cients at high angle of attack in the conceptual design phase (experimentation is
still essential during the subsequent phases). Considering now the viscous drag

Axial force coefficient (pressure + base) : 8° sphere cone, Rn = 25 mm
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Normal force coefficient : 8° sphere cone, RN = 25 mm
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Fig. 4.29 Evolution of normal force coefficient versus angle of attack

components at high angle of attack (friction and base pressure components) in
continuous flow:

• High angles of attack are generally limited to high altitudes. In this altitude range,
ballistic reentry vehicles have high Mach number and base drag is negligible;

• At higher angles of attack, friction drag also becomes negligible compared with
pressure drag.
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Fig. 4.30 Evolution of center of pressure location versus angle of attack
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The Newtonian estimate (Cp,stag = 2) of pressure drag for a 8◦ cone with 25 mm
nosetip radius is compared with more exact codes in Figs. 4.31–4.33.

At Mach 10, we have agreement at incidences lower than 8◦ with axial and nor-
mal force estimates from Euler codes; at decreasing Mach number, agreement is
very poor. For the center of pressure, the best agreement with Euler results occurs
at Mach 2 and 3 and the agreement improves at higher angle of attack for all Mach
numbers.

4.6.3 Aerodynamic Modeling for Trajectory Codes

Taking into account the state of the art, the ideal model for up to 30◦ angles of
attack would use coefficients as a function of Mach number, altitude and incidence
including pressure and friction from Navier–Stokes or PNS codes. An approxima-
tion commonly used models the normal forces and the pitching moment (or center
of pressure) with inviscid Euler code results. The axial force is then modeled as
the sum of a pressure component and a viscous drag component including the base,
using integral boundary layer solutions and appropriate base pressure correlations.

CN = CN (Mach, ᾱ)
xCP

Lrel
= xCP

Lrel
(Mach, ᾱ)

CA = CAp (Mach, α)+ CA f (Mach, H orRe)+ CAb (Mach, H orRe)

At incidences higher than the capability of Euler or Navier–Stokes numerical
codes, the model is derived either from pressure correlation (Newton or HABP) or
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Fig. 4.31 Euler–Newton comparison
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Normal force coefficient, 8° sphere cone, Rn = 25mm
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Fig. 4.32 Normal force coefficient Euler–Newton comparison

from experimental data. For practical reasons, the need for accuracy in this range is
less critical and usually related to stability of the vehicle (static margin).

Note 1: Model based on altitude uses a standard atmosphere; use of Reynolds
number is valid for any atmosphere (of same chemical mixture).

Note 2: This viscous axial force model is independent of incidence. It was the
most realistic model for a reasonable cost at the time of the first edition. Computer
and numerical algorithm progress make it possible now to use Navier–Stokes or
PNS calculations at angle of attack.

Center of pressure, origin at the apex

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0 10 20 30 40 50 60
incidence (°)

–X
cp

/L
re

f Newton

Euler Mach 2

Euler Mach 3

Euler Mach 10

Euler Mach 20

Fig. 4.33 Center of pressure Euler–Newton comparison
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Note 3: Euler inviscid calculation is not valid when separation of the flow from
the wall occurs. This occurs when angular surface angles are abruptly increased.
It also occurs on the leeward side at high angle of attack and on the base in most
conditions.

4.7 Planetary Entry Capsule

For planetary entry capsules, the aerodynamic entry requirements are quite different
from military reentry vehicles. The objective is to decelerate a scientific payload
or a human crew from an elliptic or hyperbolic outer atmosphere trajectory to a
low supersonic velocity at a suitable altitude in order to initiate a soft landing. To
alleviate thermal and mechanical stresses, deceleration must occur at the highest
possible altitude. This requires for (see Sect. 8.2) a shallow trajectory (small path
angle) and a blunt aeroshell, which offers a low ballistic coefficient β = m

Sref CD
.

Hence, the aeroshell shape must have high value of drag parameter SrefCD (with
dimensions compatible with launcher diameter) and stability compatible with the
payload constraints (CG location).

The most usual shapes are:

• Sphere or spherical cap manned capsule (NASA Mercury, Gemini and Apollo,
Russian Vostok, Soyuz, Chinese Shenzhou, ESA Aerodynamic Reentry Demon-
strator (ARD), and German Mirka)

• Sphere–cone with high semiapex angle (NASA Viking and Mars Pathfinder, ESA
Huygens probes, and Japan Orex)

• Sphere–cone with medium semiapex angle (NASA Pioneer Venus, Galileo, and
Stardust probes) (Fig. 4.35)

Table 4.4 gives the front shield geometrical parameters’ values of some of these
vehicles.

Apollo [APO], Mars Pathfinder [PAT], Pioneer Venus, and Galileo aeroshell are
shown in Fig. 4.35.

Table 4.4 The front shield geometrical parameters’ values

Vehicle Geometry Bluntness ratio Semiapex angle Shoulder radius
RN
D θ at maximum

diameter
RA

D

Mercury Spherical cap 4.106 no
Gemini Spherical cap 1.6 no
Apollo, ARD Spherical cap 1.2 no 0.05
Vostock, Soyuz, Sphere 0.5 no
Mirka, Shenzhou
Galileo Sphere–Cone 0.176 44.85◦ No
Huygens Sphere–Cone 0.463 60◦ 0.0185
Pathfinder Sphere–Cone 0.25 70◦ 0.025
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Fig. 4.34 Mercury and Apollo capsules (pictures from NASA)

Near zero angle of attack, these shapes have a high axial force coefficient, CA ≈
1 to 1.7 and a small positive normal force coefficient CN above Mach 1.5. Their lift
coefficients, mainly generated by the axial force, are negative up to moderate angle
of attack,

CL = CN cosα − CA sin α ≈ −CA sinα.

This lift coefficient behavior is quite different from slender shapes of Sect. 4.5,
which are generated mainly by normal force, which is positive up to moderate angle
of attack,

CL = CN cosα − CA sin α ≈ CN cosα.
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Fig. 4.35 Apollo, Mars Pathfinder, Pioneer Venus and Galileo aeroshell
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Fig. 4.36 Construction for the center pressure of a cone

The center of pressure of Apollo and Soyuz shapes is naturally close to the center
of the spherical cap or the sphere. The center of pressure of sharp conical shapes can
be derived using the simple geometrical method shown in Fig. 4.35. Indeed, we can
approximate the cone surface using small isosceles triangles with origins at the apex;
assuming the pressure is uniform, the center of pressure is the common intersection
of normal (forces) from those triangles with the cone axis.

This approximate construction gives the same result as the Newtonian approxi-
mation:

xCP

D
≈ − 1

3 sinθcosθ
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Fig. 4.37 Newtonian aerodynamic axial and drag force coefficients for Apollo and Mars Pathfinder
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Fig. 4.41 Axial force coefficients in the continuous regime of a 70◦ sphere cone configuration
similar to Pathfinder

It is thus easy to understand why the center of pressure of a high-angle cone is
so far aft, which is vital for centering the payload of the vehicle.

Figures 4.37–4.40 compare Newtonian aerodynamic coefficients (Cp,stag = 2)
for Apollo and Mars Pathfinder.
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Fig. 4.42 Normal force coefficients in the continuous regime of a 70◦ sphere cone configuration
similar to Pathfinder

Sphere cone 70°, Center of pressure

–2

–1

0

1

2

3

0 2 4 6 8 10 12
incidence (degree)

–X
cp

/D
 (

%
) Mach 1.2

2
8
14
16
20.9
27.7
31.6

Fig. 4.43 Center of pressure coefficients in the continuous regime of a 70◦ sphere cone configura-
tion similar to Pathfinder
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Sphere cone 70°, pitching moment coefficient, XG/D = – 0.3
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Fig. 4.44 Pitching moment coefficients in the continuous regime of a 70◦ sphere cone configura-
tion similar to Pathfinder

We notice that aerodynamic coefficients of the two shapes are similar up to 40◦
or 50◦ angle of attack. Pathfinder has a slightly better static stability (calculations
correspond to a center of mass location xG/D = −0.24 for Apollo and xG/D =
−0.27 for Pathfinder). The two vehicles are stable from 0◦ to 75◦ angle of attack
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Fig. 4.45 Drag coefficients in the continuous regime of a 70◦ sphere cone configuration similar to
Pathfinder
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Sphere cone 70°, Lift coefficient
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Fig. 4.46 Lift coefficients in the continuous regime of a 70◦ sphere cone configuration similar to
Pathfinder

(Fig. 4.39), above this range they become stable with aft cover forward (around
180◦ trim angle of attack).

A model for static coefficients in the continuous regime [PAT],[VIK],[GAL] of a
70◦ sphere cone configuration similar to Pathfinder is given in Figs. 4.41–4.46. This
model is valid in a CO2 atmosphere, for a Mach range from 1.2 to 31.6 and incidence
angles from 0◦ to 11◦.

It is worth noting the abnormal behavior of normal force coefficient and center
of pressure [VIK] versus angle of attack at 1.2 Mach number. The CN coefficient is
negative, and center of pressures is well ahead of the stagnation point at less than
5◦ AoA. This phenomenon relates to windward flow separation aft of the maximum
cross section. The pitch moment coefficient curve (Fig. 4.44) shows that this behav-
ior does not involve a static instability of the vehicle. This illustrates the caveat of
Sect. 4.5.1.1 about use of center of pressure and static margin as stability criterion.
In the present circumstances, the vehicle remains stable although static margin is
negative. The only universal stability criterion is based on the pitching moment
coefficient.



 

 

 

 

 



Chapter 5
Inertial Models

For a homogeneous and compact body such as a ballistic reentry vehicle or a plan-
etary entry capsule, the offset between center of mass and center of gravity is very
small, and its effect on flight mechanics, even out of the atmosphere, is negligible.
In this book we will not distinguish between them.

By experience, the most appropriate choice of the Eulerian frame associated with
vehicle is such that longitudinal axis Gx is parallel to the aerodynamic axis of sym-
metry (roll axis).

Indeed, we could choose alternatively Gx along the corresponding main direction
of inertia, but the previous choice is far better as it corresponds to the simplest
aerodynamic model in the equations of motion.

5.1 Moments of Inertia

In ideal circumstances, the CG is along the aerodynamic axis of symmetry, and the
longitudinal axis of inertia has the same direction. The whole configuration is close
to axisymmetric, and the other Eulerian axes may be chosen arbitrarily such that
the frame

(
GxE,GyE,GzE

)
is orthogonal and direct. To define the orientation of the

main inertia frame, we can use the rotation angle ϕ along GxE, which transforms
GyE and GzE into the lateral main directions of inertia. For configurations of inter-
est, the transverse inertia are usually close, Iy ≈ Iz. Longitudinal-to-lateral inertia
ratio μ = Ix/Iy is typically around 1/10 for slender high-β vehicles and more than
one for blunted low-β planetary vehicles.

With the previous hypothesis, the angle ϕ is a second-order parameter with
negligible influence on flight mechanics, thus we will use ϕ = 0 for this book.
Hence, in these ideal circumstances GyE and GzE are principal axes of inertia and
the inertia matrix in the E frame is diagonal. For the exact calculation of the mo-
ments of inertia, the reader is referred to the definitions of Chap. 1 and mechanics
textbooks.

To obtain orders of magnitude, examples are derived for moments of inertia of a
homogeneous solid right circular cone of mass M, height L, and maximum radius R:
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– Center of mass “G” (origin to the cone apex “A”):

xG

L
= 3

4
(5.1)

– Roll moment of inertia:

Ix = 3

10
M R2 (5.2)

– Transverse moments of inertia (origin to the cone apex “A”):

Iy/A = IZ/A = 3

5
M L2 + Ix

2
(5.3)

– Transverse moments of inertia relating to the center of mass “G”:

Iy/G = IZ/G = Iy/A −M x2
G (5.4)

For a pointed cone of semiapex angle 8◦, radius R = 0.25 m, length L = 1.788 m,
and M for ρ = 1000 kg/m3, we obtain:

M = π
3

ρL R2 ≈ 117 kg

Ix ≈ 2.19 m2kg

Iy/G ≈ 15.2 m2kg

5.2 CG Offset and Principal Axis Misalignment

In general, small inertial asymmetries always exist, resulting from the practical con-
straints and integration. We will see herein that levels of acceptable asymmetries are
often very constraining.

Significant inertial asymmetries are of two types:

– CG offset (Fig. 5.1) characterizes the lateral shift (yG, zG) of center of mass from
the geometrical axis of symmetry OXA (aerodynamic axis)

– Principal axis misalignment (Fig. 5.2) characterizes the misalignment θI from
GxE axe. The meridian line around GxE containing the principal axis of inertia is
characterized by its angle�I with the origin of meridian lines GyE .

– A third angle ϕI (not shown) is necessary to define the inertial frame; it cor-
responds to the location of the transverse principal axes of inertia in the plane
normal to GxI and does not play a significant role during reentry.
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Fig. 5.1 Definition of CG offset
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Fig. 5.2 Definition of principal axe misalignment

Thus, in the general case, the geometrical reference frame (aerodynamic) and the
Eulerian frame have parallel axes. One transfers the aerodynamic axes into Eulerian

by a translation O
⇀

G (Fig. 5.1) of components in the transverse plane yG along GyE
and zG along GzE. One then transfers from the Eulerian frame to the principal in-
ertial axis frame

(
GxI,GyI,GzI

)
by a rotation θI around axis Δ, which is derived
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from GzE by rotation of �I around GxE, followed by a rotation ϕI around GxI. The
rotation matrix R that gives the components of �ω in E from its components in the
principal inertial axis frame may be derived using (6.60). This expression is:

⎡

⎣
1 0 0
0 cos ϕI sin ϕI
0 − sin ϕI cos ϕI

⎤

⎦

⎡

⎣
cos θI sin θI cos�I sin θI sin�I

− sin θI cos�I cos θI + (1− cos θI) sin2 �I sin�I cos�I(cos θI − 1)
− sin θI sin�I sin�I cos�I(cos θI − 1) cos θI + (1− cos θI) cos2 �I

⎤

⎦

(5.5)

The inertia tensor in E is obtained from (1.43):

[
I′
] = [R]T [I] [R]

The detailed calculations are cumbersome and exact results rarely have practical
interest. The expression becomes more interesting when we use a first-order approx-
imation suited to a low principal axis misalignment θI, which is sufficiently accurate
for most practical applications:

[R] ≈
⎡

⎣
Ix 0 0
0 cosϕI sin ϕI

0 − sin ϕI cosϕI z

⎤

⎦

⎡

⎣
1 θI cos�I θI sin�I

−θI cos�I 1 0
−θI sin�I 0 1

⎤

⎦

[
I ′
] ≈

⎡

⎣
Ix − (Iy − Ix

)
θI cos�I − (Iz − Ix ) θI sin�I

− (Iy − Ix
)
θI cos�I Iy +

(
Iz − Iy

)
sin2 ϕI − (Iz − Iy

)
sin ϕI cosϕI

− (Iz − Ix ) θI sin�I −
(
Iz − Iy

)
sin ϕI cosϕI Iz −

(
Iz − Iy

)
sin2 ϕI

⎤

⎦

(5.6)

We observe that the angle ϕI appears only in the components Hx and Hy of an-
gular momentum and only modifies the moments of inertia along Gy and Gz axes
and coupling terms Iyz between them.

This expression shows that the principal axis misalignment θI is connected to the
products of inertia Ixy and Ixz by the relation:

θI ≈
√

I2
xy + I2

xz

Iy − Ix
(5.7)

Levels of acceptable asymmetries depend primarily on the size of the vehicle,
on the reentry velocity and flight path angle, and on the levels of aerodynamic
asymmetries. Corresponding studies represent a significant design effort for a reen-
try vehicle. They are developed in the Chap. 12, which treats the roll resonance
phenomenon.



Chapter 6
Changing of Reference Frame

Our essential need is to determine the evolution of center of mass location and in-
stantaneous vehicle orientation relative to a terrestrial frame, rotating or not. For
this purpose, we must use linear momentum equations for the CG location and
angular momentum equations for the vehicle orientation. Expressions of the fun-
damental principles in a rotating reference frame were developed in Chap. 1 and are
well adapted to the calculation of the trajectory of the center of mass relating to a
terrestrial observer. We also showed that the equation of evolution of the angular
momentum is greatly simplified when one uses an Eulerian frame rigidly linked to
the vehicle. These two systems of equations being coupled, we can then transform
components of vectors in the axes of the vehicle to earth related components (for
example, the aerodynamic resulting force), or transform earth related vector com-
ponents to vehicle related components (for example, linear relative velocity).

Let us consider initially an observer in linear translation (accelerated or not) relat-
ing to inertial frames. This observer is rigidly linked to a reference frame (K) whose
axes have a fixed orientation (parallel to those of an inertial frame). We consider a
solid with a fixed point located at origin O of (K), involved in an arbitrary rotation
movement. We associate the solid in frame (E) rigidly linked, centered out of O.
Thus the reference frame (E) is in no uniform rotation at angular velocity �ω E/K(t)
relating to (K). We must characterize the orientation of �ei (E) axes relating to (K)
axes and in addition express the components of a vector relative to (E) from its
components in (K) and reciprocally.

Notice: K has a pure translation movement relating to inertial frames and the
rotational movements of E relative to K and to any inertial frame are identical.

6.1 Direction Cosine Matrices

Each frame K and E is associated with a set of three mutually orthogonal axes cross-
ing at the common origin O, with unit vectors of same modulus. The set of axes i and
unit vectors �ei are numbered with index i selected such that their relative orientations
satisfy the rule: “an observer along axis 1, looking at axis 2 direction, has axis 3 on
his left (classical right-handed rule).” By definition, the frames and associated set of
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axes E and K result one from another by rotation, so the relative orientations of their
axes is maintained through the movement. Let us name �ei and �e′i, i ∈ {1, 2, 3} the
respective unit vectors of (K) and (E). We can write the general relations between
unit vectors by using the rule of summation on the repeated indices (this convention
is only one convenience to simplify the notations in the event of summation):

�e′i = aik �ek

�ek = bkj �e′j (6.1)

From the preceding assumptions, we can deduce the general properties of these
relations.

While replacing �ek with its value drawn from the second expression we obtain:

�e′i = aik bkj �e′j ⇒ aik bkj = δi j

i �= j → δi j = 0

i = j → δii = 1 (6.2)

where one recognizes the symbol of Kronecker δi j . This can be expressed in matrix
form:

AB = I ⇔ A = B−1, B = A−1

A = [ai j
] ; B = [bi j

] ; I =

⎡

⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎦ (6.3)

In addition, the axes of each set being mutually orthogonal with unit vectors of
equal length, we obtain:

aik = �e′i · �e j = cos (�ik) ; bi j = �ei · �e′j = cos
(
� j i
)

(6.4)

where A and B are obviously named direction cosine matrices.
Then, we directly obtain transformation rules for vector components:

�X = xi �ei = x′j �e′j ⇒ xi bij�e′j = x′j �e′j
⇒ x′j = xibij ⇔

[
x′
]T = [x]T [B]

⇒ xj = x′iaij ⇔ [x]T = [x′]T [A] (6.5)

[x]T = [x1 x2 x3
] =

⎡

⎢
⎣

x1

x2

x3

⎤

⎥
⎦

T

,
[
x′
]T = [x′1 x′2 x′3

] =

⎡

⎢
⎣

x′1
x′2
x′3

⎤

⎥
⎦

T

with,
where index T indicates the transpose matrix.
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While transposing these matrix relations, let us obtain a more common expres-
sion to represent the transformations of the vectors components:

[
x′
]T = [x]T [B] ⇒ [

x′
] = [B]T [x]

[x]T = [x′]T [A] ⇒ [x] = [A]T
[
x′
]

aTj
i = ai

j , bTj
i = bi

j (6.6)

A very useful fundamental property of these matrix results from conservation of
vector length (or scalar product) through a rotation transform:

∥
∥
∥�X
∥
∥
∥

2 = [x]T [x] = [x′]T [x′] = [x]T [B] [B]T [x] = [x′]T [A] [A]T [x′
]

⇒ [A] [A]T = [B] [B]T = [I] ⇔ [A]T = [A]−1 = [B] ; [B]T = [B]−1 = [A]
(6.7)

Thus, the inverse matrixes are equal to the transpose matrixes (they are orthogo-
nal), which makes their computation very simple!

6.1.1 Angular Velocity

In order to deal with the problem of evolution of the transformation matrices, we
need to mathematically define the instantaneous angular velocity or the rotating
frame.

For this purpose, let us seek the expression of the linear velocity relating to (K)
of an arbitrary point P of the solid. By definition, this point is at rest relating to (E).
The velocity of P relating to (K) is entirely associated with the rotation movement
of (E) axes:

�X = xi �ei = x ′i �e′i
⇒ �̇X = ẋi �ei = x ′i �̇′ei

Let us name	′ij the components expressed in (E) of vector �̇e′i, time derivative of �e′i :

�̇′ei = 	′ij �e′j (6.8)

Components of �̇X in the rotating frame (E) are then written as:

�̇X = v′j �e′j = x′i �̇′ei = x′i	
′
ij �e′j ⇒ v′j = x′i	

′
ij (6.9)

�̇X and �X being vectors, it results from the above equality 	′i j is a second order
tensor: it is named “angular velocity.” This tensor is skew symmetric. Indeed, base
vector set

{�e′i
}

being orthogonal and unit:
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�e′i · �e′j = δij ⇒ �̇e′i · �e′j + �e′i · �̇e′j = 0

which gives:

(
	′ik �e′k

)
· �e′j + �e′i ·

(
	′jk �e′k

)
= 0 ⇒ δjk	

′
ik + δik	

′
jk = 0

and finally:

	′i j +	′j i = 0 ⇒ 	′j i = −	′i j (6.10)

The transpose tensor is equal to the opposite.

This skew symmetric tensor ��	 can be represented by a vector �ω while posing:

ω′1 = p′ = 	′23 , ω′2 = q′ = 	′31 , ω′3 = r′ = 	′12

��	 = [	′] =

⎡

⎢
⎣

0 −ω′3 ω′2
ω′3 0 −ω′1
−ω′2 ω′1 0

⎤

⎥
⎦

(6.11)

Thus, we obtain according to (6.9):

v′1 = x′i 	
′
i 1 = x′2 ω′3 − x′3ω′2

v′2 = x′i 	
′
i 2 = −x′1 ω′3 + x′3ω′1

v′3 = x′i 	
′
i 3 = x′1 ω′2 − x′2ω′1

(6.12)

Velocity �̇X = �v relative to (K) of any point P of the solid is thus the vector product
of angular rotation vector �ω by the location vector from the origin O�P. The rotational

movement of E being the same relative to K and to any inertial frame ��	, and �ω have
a physical meaning independent of the observation frame (they are respectively a
tensor and a vector). Thus, we can just as easily define their components in (K):

�̇′ei = 	ij �ej (	ij angular velocity tensor) (6.13)

from where we obtain components in (K) of the velocity of the point P relative
to (K),

vj = xi	ij (6.14)

The transformation of the components of ��	 results from that of ordinary vectors
�v and �x:

[v]T = [x]T [	] ⇒ [
v′
]T [A] = [x′]T [A] [	]
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Then,

[
v′
]T = [x′]T [A] [	] [A]−1 ⇒ [

	′
] = [A] [	] [A]−1 , [	] = [B]

[
	′
]

[B]−1

(6.15)
It is easy to check that the skew symmetric character of the tensor is maintained

through the change of frame. Thus we can write in the frame (K):

��	 = [	] =

⎡

⎢
⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤

⎥
⎦→ �ω =

⎡

⎢
⎣

ω1

ω2

ω3

⎤

⎥
⎦

(angular rate vector)

(6.16)

v1 = x2ω3 − x3ω2

v2 = −x1ω3 + x3ω1

v3 = x1ω2 − x2ω1 (6.17)

It is easy, but somewhat tedious, to demonstrate that for rotation transform, the
angular velocity vector has the same behavior as that of ordinary vectors.

Notice: The relation (6.17) expresses velocity �v = �ω∧ �r of a point of the solid E
relating to K. K has a single linear nonuniform movement relating to inertial frames.
The velocity of point P relating to an arbitrary inertial frame is:

�̇V = �̇Ve +⇀
ω ∧ �r (6.18)

where
⇀

V e (t) is the instantaneous linear velocity of origin O of K relating to this
inertial frame.

The result of this is

�̈V = ⇀̇

V e + ⇀̇
ω ∧ �r + �ω ∧ �̇r (6.19)

With
⇀̇
r = �v = �ω ∧ �r , we obtain.

⇀̇

V = ⇀̇

V e + ⇀̇
ω ∧ �r + �ω ∧ (�ω ∧ �r) (6.20)

Let us observe that the Coriolis acceleration term does not appear here because
positions of points �r of solid are fixed in E and thus have a pure rotational movement
relating to K. In the more general case of a point P having a linear translation and a
rotation movement, we obtain the results (1.2)–(1.4) of Chap. 1, whose demonstra-
tion is proposed as an exercise.
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6.1.2 Composition of Angular Velocities

Let us consider three observation frames with the same origin O:

– K0 whose axes remain parallel to some inertial frame ones
– E1 in rotation at the absolute velocity 	 (1, 0) (relating to K0)
– E2 in rotation at the relative velocity 	 (2, 1) relating to E1

Let us seek the absolute rotation velocity	 (2, 2) of E2 relating to K0. According
to the (6.8) and (6.13) already established, we have:

�̇ei (1) = 	ij (1, 0) �ej (0) = 	i j (1, 1) �ej (1) (6.21)

�̇ei (2) = 	ij (2, 0) �ej (0) = 	i j (2, 2) �ej (2) (6.22)

In addition, according to (6.1):

�ei (2) = aij (2/1) �ej (1)⇒ �̇ei (2) = ȧij (2/1) �ej (1)+ aij (2/1) �̇ej (1) (6.23)

from where:

�̇ei (2) = aik (2/1)	kj(2/1, 1) �ej (1)+ aij (2/1)	j k(1, 1)�ek (1)

⇒ �̇ei (2) =
[
aik (2/1)	kj(2/1, 1)+ aik (2/1)	kj(1, 1)

] �ej (1)

⇒ �̇ei (2) =
[
aik (2/1)	kj(2/1, 1)+ aik (2/1)	kj(1, 1)

]
bj l (2/1) �el (1) (6.24)

Thus we obtain,

�̇ei (2) = 	l
i (2, 2) �el (2)

= [aik (2/1)	kj(2/1, 1)bj l (2/1)+ aik (2/1)	kj(1, 1)bj l (2/1)
] �el (1)

⇒ 	l
i (2, 2) = 	l

i(2/1, 2)+	l
i(1, 2)

(6.25)

The property established in E2 frame can be immediately applied to the K0 and
E1 frames using transformation rule for angular velocity tensor.

⇒ 	l
i (2, 0) = 	l

i(2/1, 0)+	l
i(1, 0)

⇒ 	l
i (2, 1) = 	l

i(2/1, 1)+	l
i(1, 1) (6.26)

Thus, the tensor “absolute rotation velocity of E2” is equal to the sum of tensors
“angular rotation velocity E2 relating to E1” and “absolute rotation velocity of E1.”
This is also clearly valid for the angular velocity vectors.

Thus, the Galilean principle of addition of linear velocities applies also to the
angular velocities. This result will be applied, in particular, to the case where E1 is
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a frame linked with the rotating earth and E2 is a frame linked with the vehicle in
rotation relative to earth.

6.1.3 Evolution of the Direction Cosine Matrices

We answered part of the question up to now, which relates to the form and the
properties of transformation matrices for the components of a vector. Now let us
seek the time law of evolution of these matrices. In order to obtain this evolution,
let us examine the movement relative to rotating frame E of an arbitrary vector
�X0 = x0i�ei = x′0i�e′i constant in the K frame:

�̇X0 = 0 = ẋ′0i �e′i + x′0i �̇e
′
i = ẋ′0i �e′i + x′0i	

′
i j�e′j (6.27)

Again, this expresses the fact that the movement of �X0 relating to (E) is entirely
related to the movement of observation axes.

By expressing the components of the vector �X0 using the matrix B, we obtain:

ḃjix0j �e′i + bjix0j	
′
ik �e′k = 0 (6.28)

The vector �X0 being arbitrary, we choose it successively equal to the unit vectors
�ej of system K:

⇒ ∀j, ḃji �e′i = −bji	
′
ik �e′k = −bjk	

′
ki �e′i (6.29)

By identifying the coefficients of the base vectors �e′i, we finally obtain:

ḃji = −bjk 	
′
ki ⇔

[
Ḃ
] = − [B]

[
	′
]

(6.30)

The evolution of the inverse matrix A is determined by transposing the two mem-
bers of the preceding equation:

[
Ḃ
]T = [Ȧ] = − [	′]T [B]T = [	′] [A] ⇔ ȧij = 	′ikakj (6.31)

We can summarize in symbolic form these two equations:

[
Ḃ
] = − [B]

[
	′
]

[
Ȧ
] = [	′] [A] (6.32)

They can be used to determine the evolution of the attitude of a rotating vehicle,
either starting from angular velocities provided by the moment equation or from
the angular velocity measured inboard the vehicle. These equations can be trans-
formed using the angular velocity solved in the fixed frame, by using the rule of
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transformation for angular velocity tensor (in both cases the velocity of E relating
to K is expressed either in the rotating or in the fixed frame):

[
Ḃ
] = − [	] [B] ⇔ ḃij = −	ikbkj

[
Ȧ
] = [A] [	] ⇔ ȧij = aik	kj (6.33)

6.2 Euler Angles

The preceding tools are strictly sufficient to determine the movement of the solid
around the center of gravity, when one knows the angular acceleration. However,
this description is neither simplest nor most convenient. Indeed, we must determine
the evolution of nine elements of the transformation matrix A or B. In fact, these
nine quantities are not independent since the matrices have to verify (6.7):

AAT = I = B BT

These equalities are equivalent to six independent relations between elements of
A or B matrix (and not nine, because matrices AAT and B BT are symmetrical).
We are left with only three independent quantities. Another drawback, of practical
nature, is that it is difficult to quickly assess the relative position of the frames E
and K starting from the matrix elements. On the other hand, the method invented by
Leonard Euler is optimum from two points of view. It uses the minimum number of
parameters, and thus makes it possible to directly visualize the relative position of
the two frames.

The transformation process from the “fixed” starting frame (K) to the “moving”
final frame (E) is divided according to an ordered sequence of three independent
rotations (Fig. 6.1). The first axis of rotation is arbitrarily selected along any of the
three axes �ei (0) of the initial reference frame and the corresponding amplitude of
rotation is θ1. We arrive at a first intermediate frame E1 with axes �ej (1) such as
�ei (1) = �ei (0). From this intermediate frame, we perform a second rotation of angle
θ2 around an arbitrary axis �ej (1) different from �ei (1). Thus we arrive at a second
intermediate reference frame E2, whose axes �ek (2) are such that �ej (2) = �ej (1).
Finally, the frame E is completed by rotation of angle θ3 around an arbitrary axis
�ek (2) = �ek (3) different from �ej (2). Thus we have 3×2×2 = 12 available choices
for the rotation axes �ei (1), �ej (2), and �ek (3). The choice (i = 1, j = 2, k = 3) is
represented in Fig. 6.1.

6.2.1 Euler Rotation Matrix

For the preceding choice, matrices of passage from coordinates in the old axes to
coordinates in the new axes are:
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Rotation θ1

θ2

Rotation θ2

1E
1

2E
1

3E
1

1E
2

3E
2

2E
2

2E
1 = 2E

2

θ2

θ1

θ1

1K

2K

3K

1K
 = 1E

1

1E
1

2E
1

3E
1

θ3

1E
2

2E
2

3E
2

1E

2E

3E

3E
2 = 3E

θ3

about

axis axis

about

Rotation θ3 about

axis

Fig. 6.1 Definition of Euler’s rotation axes

A1 (θ1) =

⎡

⎢
⎣

1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1

⎤

⎥
⎦ (6.34)

A2 (θ2) =

⎡

⎢
⎣

cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2

⎤

⎥
⎦ (6.35)

A3 (θ3) =

⎡

⎢
⎣

cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1

⎤

⎥
⎦ (6.36)

The lower index in the left-hand matrix corresponds to the choice of the rotation
axes; lower index of the angle corresponds to the rank of the intermediate rotation.

The transformation matrix from coordinates in the “fixed” frame K to coordinates
in the moving frame E is the ordered product of the three elementary matrixes:

A(θ1, θ2, θ3) = A3(θ3)A2(θ2)A1(θ1) (6.37)
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We have seen previously that the inverse rotation matrix is equal to the transposed
matrix. We thus obtain:

B(θ1, θ2, θ3) = AT
1 (θ1)AT

2 (θ2)AT
3 (θ3) = A1(−θ1)A2(−θ2)A3(−θ3) (6.38)

In the general case, we will have:

A(θ1, θ2, θ3) = Ak(3)(θ3)Aj(2)(θ2)Ai(1)(θ1) (6.39)

Indices i, j, and k ∈ {1, 2, 3} are such that j �= i and k �= j, and elementary
matrices of the form:

A1 (θn) =

⎡

⎢
⎣

1 0 0

0 cos θn sin θn

0 − sin θn cos θn

⎤

⎥
⎦ (6.40)

A2 (θn) =

⎡

⎢
⎣

cos θn 0 − sin θn

0 1 0

sin θn 0 cos θn

⎤

⎥
⎦ (6.41)

A3 (θn) =

⎡

⎢
⎣

cos θn sin θn 0

− sin θn cos θn 0

0 0 1

⎤

⎥
⎦ (6.42)

The combination of axes {i(1) = 1, j(2) = 2, k(3) = 1}, is frequently used,
associated with the notation θ1 = ψ, θ2 = θ, θ3 = ϕ (for example in Sect. 7.2 for
the coning motion study). We have:

A1 (θ1 = ψ) =

⎡

⎢
⎣

1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1

⎤

⎥
⎦ =

⎡

⎢
⎣

1 0 0

0 cos ψ sin ψ
0 − sin ψ cos ψ

⎤

⎥
⎦ (6.43)

A2 (θ2 = θ) =

⎡

⎢
⎣

cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2

⎤

⎥
⎦ =

⎡

⎢
⎣

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎤

⎥
⎦ (6.44)

A1 (θ3 = ϕ) =

⎡

⎢
⎣

1 0 0

0 cos θ3 sin θ3

0 − sin θ3 cos θ3

⎤

⎥
⎦ =

⎡

⎢
⎣

1 0 0

0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ

⎤

⎥
⎦ (6.45)

A (ψ, θ,ϕ) = A1 (ϕ)A2 (θ)A1 (ψ) (6.46)
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A (ψ, θ,ϕ) =
⎡

⎣
cos θ sin θ sin ψ − sin θ cos ψ

sin ϕ sin θ cos ϕ cos ψ− sin ϕ cos θ sin ψ cos ϕ sin ψ+ sin ϕ cos θ cos ψ
cos ϕ sin θ − sin ϕ cos ψ− cos ϕ cos θ sin ψ − sin ϕ sin ψ+ cos ϕ cos θ cos ψ

⎤

⎦

(6.47)

Combinations used in this book for the reentry studies correspond to {i(1) = 3,
j(2) = 2, k(3) = 1}, where initial axis 3 is along the downward vertical and axis
1 is along the geographic north direction of the observer. The initial axis 2 is thus
directed toward the east of the observer, and the initial plane 1, 2 is horizontal. The
angle θ1 = ψ is the azimuth of axis 1 of the moving frame, the angle θ2 = θ is the
longitudinal inclination, and the angle θ3 = ϕ is the roll angle around longitudinal
axis 1 of the moving frame, relating to the horizontal plane.

Thus, the elementary matrixes of rotation are written as:

A3 (θ1 = ψ) =

⎡

⎢
⎣

cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1

⎤

⎥
⎦ (6.48)

A2 (θ2 = θ) =

⎡

⎢
⎣

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎤

⎥
⎦ (6.49)

A1 (θ3 = ϕ) =

⎡

⎢
⎣

1 0 0

0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ

⎤

⎥
⎦ (6.50)

A (ψ, θ,ϕ) = A1 (ϕ)A2 (θ)A3 (ψ) (6.51)

A (ψ, θ, ϕ) =

⎡

⎢
⎣

cos θ cos ψ cos θ sin ψ − sin θ
− cos ϕ sin ψ+ sin ϕ sin θ cos ψ cos ϕ cos ψ+ sin ϕ sin θ sin ψ sin ϕ cos θ
sin ϕ sin ψ+ cos ϕ sin θ cos ψ − sin ϕ cos ψ+ cos ϕ sin θ sin ψ cos ϕ cos θ

⎤

⎥
⎦

(6.52)

6.2.2 Evolution of Euler Angles

The instantaneous angular velocity vector of the moving frame can be represented
either by its components on an arbitrary frame,

�ω = ω1 �e1(0)+ ω2 �e2(0)+ ω3 �e3(0) = ω′1 �e1(3)+ ω′2 �e2(3)+ ω′3 �e3(3) (6.53)
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or by its components according to Euler intermediate axes of rotation:

�ω = θ̇1 �ei(1)(1)+ θ̇2 �e j (2)(2)+ θ̇3 �ek(3)(3) (6.54)

As these axes are not orthogonal, the most straightforward method is to express
them as a function of mobile frame unit vectors. According to Sect. 6.1, we know
that the matrices of transformation of the unit vectors are identical to those of co-
ordinates, which are products of the elementary matrices of rotation detailed in the
preceding paragraph. We obtain finally a matrix relation between �ω components in
the moving frame and Euler angles time derivatives.

⎡

⎢
⎣

ω′1
ω′2
ω′3

⎤

⎥
⎦ = [E (θ1, θ2, θ3)]

⎡

⎢
⎣

θ̇1

θ̇2

θ̇3

⎤

⎥
⎦ (6.55)

The inverse matrix generally exists (except for some particular relative orien-
tations, depending on the choice of Euler angles) and one obtains the equation of
evolution of the Euler angles:

⎡

⎢
⎣

θ̇1

θ̇2

θ̇3

⎤

⎥
⎦ = [E (θ1, θ2, θ3)]−1

⎡

⎢
⎣

ω′1
ω′2
ω′3

⎤

⎥
⎦ (6.56)

Knowing the angular velocity and initial values of Euler angles, we are able to
determine their evolution and the transformation matrix A. We thus brought back
the problem of evolution from nine to three parameters.

Any medal having its reverse introduces a new problem, which is the appearance
of singular configurations for which the angles cannot be defined. This corresponds
to a zero value of the matrix E determinant and an indeterminant solution of the
system (6.55).

Let us develop the expression of E in the case of the previous sequence 1 2 1:

⎡

⎢
⎣

�e1 (1)

�e2 (1)

�e3 (1)

⎤

⎥
⎦ = A−1

2 (θ)A−1
1 (ϕ)

⎡

⎢
⎣

�e1 (3)

�e2 (3)

�e3 (3)

⎤

⎥
⎦

=

⎡

⎢
⎣

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎤

⎥
⎦

⎡

⎢
⎣

1 0 0

0 cos ϕ − sin ϕ
0 sin ϕ cos ϕ

⎤

⎥
⎦

⎡

⎢
⎣

�e1 (3)

�e2 (3)

�e3 (3)

⎤

⎥
⎦
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⎡

⎢
⎣

�e1 (2)

�e2 (2)

�e3 (2)

⎤

⎥
⎦ = A−1

1 (ϕ)

⎡

⎢
⎣

�e1 (3)

�e2 (3)

�e3 (3)

⎤

⎥
⎦ =

⎡

⎢
⎣

1 0 0
0 cos ϕ − sin ϕ
0 sin ϕ cos ϕ

⎤

⎥
⎦

⎡

⎢
⎣

�e1 (3)

�e2 (3)

�e3 (3)

⎤

⎥
⎦

⇒ �e1(1) = cos θ�e1 (3)+ sin θ sin ϕ�e2(3)+ sin θ cos ϕ�e3(3) (6.57)

⇒ �e2(2) = cos ϕ�e2(3)− sin ϕ�e3(3) (6.58)

By transforming the expression of (6.54) using (6.57) and (6.58), we obtain:

�ω = θ̇1�e1 (1)+ θ̇2�e2 (2)+ θ̇3�e1 (3) = ψ̇�e1 (1)+ θ̇�e2 (2)+ ϕ̇ �e1 (3)

�ω = ψ̇
[
cos θ�e1 (3)+ sin θ sin ϕ �e2(3)+ sin θ cos ϕ �e3(3)

]

+ θ̇
[
cos ϕ �e2(3)− sin ϕ �e3(3)

]+ ϕ̇ �e1(3)

�ω = [ψ̇ cos θ+ ϕ̇
] �e1 (3)+

[
ψ̇ sin θ sin ϕ+ θ̇ cos ϕ

] �e2(3)

+ [ψ̇ sin θ cos ϕ− θ̇ sin ϕ
] �e3(3) (6.59)

From which,

ω′1 = p = ψ̇ cos θ+ ϕ̇

ω′2 = q = ψ̇ sin θ sin ϕ+ θ̇ cos ϕ

ω′3 = r = ψ̇ sin θ cos ϕ− θ̇ sin ϕ (6.60)

Finally, we obtain:

ψ̇ cos θ+ ϕ̇ = p

ψ̇ sin θ = q sin ϕ+ r cos ϕ

θ̇ = q cos ϕ− r sin ϕ (6.61)

This system admits a single solution in ψ̇, θ̇, ϕ̇, except when θ = 0 or π where
it is indeterminant in ψ̇, ϕ̇:

ψ̇ = q sin ϕ+ r cos ϕ
sin θ

θ̇ = q cos ϕ− r sin ϕ

ϕ̇ = p− cos θ
q sin ϕ+ r cos ϕ

sin θ
(6.62)

In the case of the choice of Euler axes of rotation more appropriate to flight
mechanics needs (3, 2, 1), we note that the last two axes of the sequence are identical
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with the preceding case. According to this fact, intermediate matrices of rotations
in θ and ϕ have identical expressions (the angle values are obviously different). The
first axis of rotation is written as:

⇒ �e3(1) =− sin θ �e1 (3)+ cos θ sin ϕ �e2(3)+ cos θ cos ϕ �e3(3) (6.63)

�ω = ψ̇ �e3 (1)+ θ̇ �e2(2)+ ϕ̇ �e3(3)

�ω = ψ̇
[− sin θ �e1 (3)+ cos θ sin ϕ �e2(3)+ cos θ cos ϕ �e3(3)

]

+ θ̇
[
cos ϕ �e2(3)− sin ϕ �e3(3)

]+ ϕ̇ �e1(3)

�ω = [−ψ̇ sin θ + ϕ̇] �e1(3)+
[
ψ̇ cos θ sin ϕ + θ̇ cosϕ

] �e2(3)

+ [+ψ̇ cos θ cosϕ − θ̇ sin ϕ
] �e3(3) (6.64)

This involves,

p = −ψ̇ sin θ+ ϕ̇

q = ψ̇ cos θ sin ϕ+ θ̇ cos ϕ

r = ψ̇ cos θ cos ϕ− θ̇ sin ϕ (6.65)

that is to say,

−ψ̇ sin θ+ ϕ̇ = p

ψ̇ cos θ = q sin ϕ+ r cos ϕ

θ̇ = q cos ϕ− r sin ϕ (6.66)

This sequence thus admits the case of indeterminant θ = ±π
2 , excepted for which

the solution is,

ψ̇ = q sin ϕ+ r cos ϕ
cos θ

θ̇ = q cos ϕ− r sin ϕ

ϕ̇ = p+ sin θ
q sin ϕ+ r cos ϕ

cos θ
(6.67)

Happily, the indeterminant case corresponds to a very improbable orientation
for airplanes and reentry vehicles and does not preclude the use of these Euler
angles.
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6.3 Representations with Four Parameters

The apparent simplicity of the Euler representation presents two drawbacks. First,
the existence of singular configurations constitutes a risk in digital codes; in addi-
tion, the use of the trigonometric functions is expensive in computing times. Repre-
sentations with four parameters may represent the best compromise.

6.3.1 Vectorial Representation

Let us consider a rotation transform of angle ϕ around an axis with unit vector �Δ
(Fig. 6.2):

�X = O �̇M rotation �Δ,ϕ−−−−−−−−→ �X′ = O �M′

The component of vectors along �Δ remains constant through the rotation, and the
normal component rotates an angle ϕ:

�X =
(
�X · �Δ

) �Δ+ �X⊥ ⇒ �X⊥ = �X−
(
�X · �Δ

) �Δ
�X′ =

(
�X · �Δ

)
�Δ+ �X′⊥ =

(
�X · �Δ

)
�Δ+ �X⊥ cos ϕ+

(
�Δ ∧ �X⊥

)
sin ϕ

From which,

�X′ =
(
�X · �Δ

)
�Δ+

[
�X−

(
�X · �Δ

)
�Δ
]

cos ϕ+
(
�Δ ∧ �X

)
sin ϕ (6.68)

Fig. 6.2 Vectorial
representation for rotations

O

1

2

3

ϕ

H

M

M′
Δ

(K)



104 6 Changing of Reference Frame

Such is the vectorial representation of an arbitrary rotation of angle ϕ around an
axis �Δ. We verify that it is a representation with four parameters, composed of a
scalar ϕ and the three components of the vector �Δ (not independent since it is a unit
vector).

6.3.2 Quaternion

6.3.2.1 Definition

A quaternion Q is a quadruplet of real numbers composed of a scalar q0 and of the
three components of a vector �q = (q1q2q3).

It is formally represented by Q = q0+ �q and the conjugate quaternion is by def-
inition Q∗ = q0− �q. The ensemble obeys the equality rule, the addition operations,
and multiplication by a scalar similar to those of R4 vectors.

Moreover, the product obeys the following definition:

AB = (a0 + �a)
(

b0 + �b
)
= a0b0 − �a · �b+ a0�b+ b0�a+ �a ∧ �b (6.69)

It clearly appears that this product is distributive, but noncommutative (presence
of a vector product). It is left to the reader to check that this product is associative,
i.e.,

(
AB
)

C = A
(
BC
)
. A useful immediate consequence is the expression of the

norm of the quaternion:

Q∗Q = QQ∗ = q2
0 + �q · �q =

∥
∥Q
∥
∥2 (6.70)

Another useful property is:

A∗B∗ = (a0 − �a)
(

b0 − �b
)
= a0b0 − �a · �b− a0�b− b0�a− �a ∧ �b =

[
BA
]∗ (6.71)

Let us close these definitions noting, like vectors, �Q, pure vectorial quaternion
of the type Q = (0+ �q).

6.3.2.2 Quaternion and Rotations

Let us consider the quaternion:

R = cos
ϕ
2
+ sin

ϕ
2
�Δ (6.72)

It is built using the parameters of the previous vectorial representation of rota-
tions. The norm is that this quaternion is equal to 1:

∥
∥R
∥
∥2 = cos2 ϕ

2
+ sin2 ϕ

2
= 1 (6.73)
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Consider vector �X defined in K, it is easy to show by using the preceding rules
that the product R �XR∗ represents the vector �X′ transformed from �X by rotation
ϕ around axis �Δ:

R �XR∗ =
(
�X · �Δ

)
�Δ+

[
�X−

(
�X · �Δ

)
�Δ
]

cos ϕ+
(
�Δ ∧ �X

)
sin ϕ = �X′ (6.74)

A rotation ϕ of observed vector being equivalent to a rotation−ϕ of observation
axes, the preceding operator allows us to determine the new components of �X in a
frame E transformed from K by rotation −ϕ around �Δ. In the case of a rotation +ϕ
of axes, we must use the quaternion R′ = cos ϕ

2 − sin ϕ
2
�Δ = R∗. The expression for

the changing of axes thus becomes �X′ = R∗ �XR.

6.3.2.3 Evolution of the Quaternion

Let us indicate formally by �X K and �X E representations in K and in E of a single
vector �X. We have just established the relations:

�XK = R�XER∗

�XE = R∗ �XKR (6.75)

According to (6.70) and (6.73), they are equivalent to:

R∗ �XK = �XER∗

R �XE = �XKR (6.76)

Let us assume that the vector �X is constant in the E frame itself in rotation with
the instantaneous angular velocity �ω = ϕ̇ �Δ relative to K. We obtain according to
(6.75) and (6.76):

�̇XE = 0 ⇒ �̇XK = Ṙ�XER∗ + R �XEṘ∗

⇒ �̇XK = ṘR∗ �XK + �XKRṘ∗ (6.77)

While using (6.71) and (6.77), we obtain:

�XKRṘ∗ = �XK
[
ṘR∗

]∗ =
[
− [ṘR∗

] �XK

]∗ = −
[[

ṘR∗
] �XK

]∗

⇒ �̇X K = ṘR∗ �X K +−
[[

Ṙ R∗
] �X K

]∗ = 2× vectorial part
{

Ṙ R∗ �X K

}

(6.78)
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Moreover, ṘR∗ is pure vectorial, indeed,

RR∗ = ∥∥R
∥
∥2 = 1 ⇒ d

dt
RR∗ = ˙RR∗ + RṘ∗ = Ṙ R∗ + [ṘR∗

]∗

= 2× real part
{

Ṙ R∗
} = 0

Let us denote �W the pure vector ṘR∗, we obtain:

�̇X K = 2× vectorial part
{

Ṙ R∗ �X K

}
= 2 �W ∧ �X K ⇒ �W = �ωK

2
(6.79)

where �ωK denotes the expression of �ω in K, that is to say,

ṘR∗ = 1

2
�ω K ⇔ Ṙ = 1

2
�ω K R = 1

2
R�ω E (6.80)

The details of this equality between quaternion, expressed in E gives:

(
ṙ0 +�̇r

)
= 1

2
(r0 +�r) (0+ �ω E)

⇔ ṙ0 = −1

2
�r · �ωE

�̇r = 1

2
{r0 �ωE + �r ∧ �ωE } (6.81)

The equation of evolution for the components of the quaternion is thus:

ṙ0 = −1

2
(r1ω1E + r2ω2E + r3ω3E )

ṙ1 = 1

2
{r0ω1E + r2ω3E − r3ω2E }

ṙ2 = 1

2
{r0ω2E + r3ω1E − r1ω3E }

ṙ3 = 1

2
{r0ω3E + r1ω2E − r2ω1E } (6.82)

The corresponding transformation matrix for coordinates result from the expres-
sion of the rotation operator:

�XE = (r0 −�r)(0+ �XK) (r0 +�r) ⇔ �XE = A�XK (6.83)

[A] =

⎡

⎢
⎢
⎣

r2
0 + r2

1 − r2
2 − r2

3 2 (r0r3 + r1r2) 2 (r1r3 − r0r2)

2 (r1r2 − r0r3) r2
0 + r2

2 − r2
1 − r2

3 2 (r0r1 + r2r3)

2 (r0r2 + r1r3) 2 (r2r3 − r0r1) r2
0 + r2

3 − r2
1 − r2

2

⎤

⎥
⎥
⎦ (6.84)
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6.3.2.4 Quaternions and Euler Angles

Let us denote Ri(n) (θn) the quaternion associated with nth elementary rotation
around the Euler axis i (n). The total operator of rotation is written as:

�XE = R∗i(3) (θ3) R∗i(2) (θ2) R∗i(1) (θ1)�XK Ri(1) (θ1) Ri(2) (θ2) Ri(3) (θ3) (6.85)

The quaternion corresponding to the product of the three elementary rotations is
thus written as:

Ri(1),i(2),i(3) (θ1, θ2, θ3) = Ri(1) (θ1) Ri(2) (θ2) Ri(3) (θ3) (6.86)

with:

Ri(n) (θn) = cos
θn

2
+ sin

θn

2
�ei (n) (n)

Let us evaluate this expression in the case of Euler angles corresponding to se-
quence 3, 2, 1:

R3 (ψ) R2 (θ) R1 (ϕ) =

⎧
⎪⎨

⎪⎩
cos

ψ
2
+ sin

ψ
2

⎡

⎢
⎣

0

0

1

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩
cos

θ
2
+ sin

θ
2

⎡

⎢
⎣

0

1

0

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
⎧
⎪⎨

⎪⎩
cos

ϕ
2
+ sin

ϕ
2

⎡

⎢
⎣

1

0

0

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

R3 (ψ) R2 (θ) R1 (ϕ) =

⎧
⎪⎨

⎪⎩
cos

ψ
2
+ sin

ψ
2

⎡

⎢
⎣

0

0

1

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩
cos

θ
2

cos
ϕ
2
+

⎡

⎢
⎣

cos θ
2 sin ϕ

2

sin θ
2 cos ϕ

2

− sin θ
2 sin ϕ

2

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

R3 (ψ) R2 (θ) R1 (ϕ) =

⎧
⎪⎨

⎪⎩
cos

ψ
2

cos
θ
2

cos
ϕ
2
+ sin

ψ
2

sin
θ
2

sin
ϕ
2

+

⎡

⎢
⎣

cos ψ
2 cos θ

2 sin ϕ
2 − sin ψ

2 sin θ
2 cos ϕ

2

cos ψ
2 sin θ

2 cos ϕ
2 + sin ψ

2 cos θ
2 sin ϕ

2

− cos ψ
2 sin θ

2 sin ϕ
2 + sin ψ

2 cos θ
2 cos ϕ

2

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

From which we obtain components of the quaternion R3 2 1 (ψ, θ,ϕ) equivalent
with the three rotations:
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r0 = cos
ψ
2

cos
θ
2

cos
ϕ
2
+ sin

ψ
2

sin
θ
2

sin
ϕ
2

r1 = cos
ψ
2

cos
θ
2

sin
ϕ
2
− sin

ψ
2

sin
θ
2

cos
ϕ
2

r2 = cos
ψ
2

sin
θ
2

cos
ϕ
2
+ sin

ψ
2

cos
θ
2

sin
ϕ
2

r3 = − cos
ψ
2

sin
θ
2

sin
ϕ
2
+ sin

ψ
2

cos
θ
2

cos
ϕ
2
. (6.87)



Chapter 7
Exoatmospheric Phase

7.1 Movement of the Center of Mass

7.1.1 Keplerian Trajectories

This topic is included in most mechanics textbooks, so it is difficult to bring anything
new. However, it is a mandatory precondition before studying reentry phase. Also,
we will try to approach it from a somewhat different point of view.

Let us consider now the classical problem of the movement of a point mass in a
central attraction field according to r−2.

7.1.1.1 Hypotheses and Nomenclature

– We assume the earth is a homogeneous spherical body.
– We consider an inertial frame K with origin at earth’s center of mass G, whose

accelerated movement is neglected.
– �r denotes the radius vector from G to the center of mass M of a body of mass m.
– The gravitational field �ϕ = − μ�r

r2r
is isotropic, and gravitational attraction force is

�f = m �ϕ.
– The linear momentum of the body in K is �p = m �̇r.
– The angular momentum is �l = �r ∧ �p.

7.1.1.2 Equations of Movement

For an observer fixed to K, fundamental principles of mechanics are written as,

�̇p = �f ⇔ �̇r = �ϕ
�̇l = �r ∧ �f ⇔ �r ∧ �̇r = �r ∧ �ϕ

Equations of movement are clearly independent of mass. Thus, the motion de-
pends only on the kinematics initial conditions. We thus assume in the continuation

P. Gallais, Atmospheric Re-Entry Vehicle Mechanics. 109
C© Springer 2007



110 7 Exoatmospheric Phase

of this chapter that m = 1 and that force, moment, and energy are related to the unit
of mass.

The central force applied is along �r and its moment relating to G is null. Conse-
quently, the derivative of the angular momentum is null and the angular momentum
is constant in the movement. Thus, the movement is planar, indeed �l = �r ∧ �̇r = �l0
implies �r and �̇r are orthogonal to �l0.

The movement takes place in the plane passing by G and orthogonal to �l0 =
�r0 ∧ �̇r0, defined by �r0 and �̇r0.

(i) Note: we eliminate the case where �l0 = 0, which corresponds to an initial
velocity directed toward the center of attraction and gives a rectilinear trajectory
passing by G.

7.1.1.3 Movement in a Reference Frame Fixed with the Local Vertical

Let us choose frame K such that Gx is along �r0 and Gz along �l0. Gy axis is deter-
mined to complete the right-hand frame. So (Gx, Gy) is the trajectory plane. We
consider �r = {x, y, o} the instantaneous position of M in this plane, and we define a
rotating frame E such that GzE ≡ Gz and GxE is along �r (Fig. 7.1).

Gz, GzE

l0

Gx

GxE

GyE

Gy
Θ

Θ

ωE

G

M

r0

r

M0

r0

r

γ 0

Θ

Fig. 7.1 Local frame E
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We obtain E frame by rotating K with an angle θ around Gz. This is a noninertial
frame, with a nonuniform angular rate �ωE =

{
0, 0, θ̇

}
around Gz.

Instantaneous location and velocity of point M relating to E are �rE = {r, 0, 0}
and �̇rE = [ṙ, 0, 0], i.e., the motion of M relative to E is along the vertical. The

components of attraction force are in this frame �fE =
{
− μ

r2 , 0, 0
}

, directed along

−−→Gx E .
From (1.4), preceding equations established in K are written in the rotating

frame E:

⇀r E ∧
(
�̇rE + �ωE ∧ ⇀r E

)
= �l0 (7.1)

�̈rE = �ϕE −
(

2 �ωE ∧ �̇rE + �̇ωE ∧ �rE + �ω ∧ (�ω ∧ �rE )

)
(7.2)

These equations are simplified by noting that �rE, �̇rE, and �̈rE are parallel and or-
thogonal to �ωE and �̇ωE. We may then obtain projections of these equations along
GxE, GyE, and GzE. Equation (7.1) gives along GzE,

r2θ̇ = l0 (7.3)

Equation (7.2) gives along GxE,

r̈ = − μ
r2
+ θ̇2r (7.4)

The last term of the second member clearly represents the centrifugal force asso-
ciated with the rotation motion of E.

Equation (7.2) gives along GyE,

2θ̇ṙ+ θ̈r = 0 (7.5)

The first term corresponds to the Coriolis acceleration and the second to the tan-
gential acceleration associated with the angular acceleration, both related with the
rotational movement of E. After multiplication by r , (7.5) gives:

d

dt

(
r2θ̇
)
= 0 (7.6)

It is equivalent to (7.3), i.e., with the conservation of angular momentum �l.
This “mechanical” approach leads to the well-known system of differential

equations:
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1

2
r2θ̇ = Ȧ = l0

2
(7.7)

r̈ = − μ
r2
+ θ̇2

r (7.8)

Equation (7.7) clearly represents the second law of Kepler, “rate of swept area Ȧ
is constant,” Ȧ indicates the time derivative of the area swept by the radius vector.

Equation (7.8) can be transformed while using θ̇ from (7.7), and choosing θ as
independent variable:

d

dt
= dθ

dt

d

dθ
⇒ θ̇

d

dθ

(
θ̇

dr

dθ

)
= − μ

r2
+ θ̇2 · r

which gives,

d

dθ

(
1

r2

dr

dθ

)
= − μ

(
2Ȧ
)2 +

1

r
(7.9)

A last change of function r = 1
u allows obtaining a more convenient final form:

d2u

dθ2
+ u = μ

(
2 Ȧ
)2 (7.10)

This can be integrated in,

1

r
= u = μ

(
2 Ȧ
)2 + c cos(θ − θp) (7.11)

Where the constants of integration are c, assumed positive, and the angle θp,
which correspond to the maximum value of u, that is to say the minimum value of
the distance to center of attraction (perigee of the trajectory).

While noting classically 1
p = μ

(2 Ȧ)
2 and c = e

p , we obtain:

r = p

1+ e cos(θ − θp)
(7.12)

We leave to the reader to check that this corresponds to polar equation of a conic,
with origin at focus, of parameters:

p =
(
2Ȧ
)2

μ
“latus rectum” (7.13)

0 ≤ e “eccentricity”
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Table 7.1 Nature of conical curve depending on the eccentricity e

e = 0 D = 1 r = rc = p Circle

0 < e < 1 0 < D ≤ 1+ e
p

1+ e
≤ r ≤ p

1− e
Ellipse

1 ≤ e 0 ≤ D ≤ 1+ e
p

1+ e
≤ r ≤ ∞ Hyperbola or parabola (e = 1)

In the case of the ellipse, the polar angle θ relative to the initial point is classically
named “true anomaly.”

Examination of the denominator D = 1 + e. cos(θ− θp) as a function of θ with
the constraint 0 ≤ r shows that we obtain various forms according to value of e
(Table 7.1).

Whatever the value of e, the radius of the perigee is rp = p
1+e , corresponding to

θ = θp. In the case of closed trajectories (e < 1, with negative total energy), the
radius of apogee is ra = p

1−e , corresponding to θ = θa = θp ± π.
These results demonstrate the first law of Kepler: “the trajectories of planets are

ellipses whose one focus is located at sun mass center.”

7.1.1.4 Parameters of the Conical Curve

The initial conditions are:

�r0 = �r (t = 0) = �r(θ = 0)

�v0 = �̇r0 = �̇r (t = 0) = �̇r(θ = 0)

To determine the parameter e, we will use the conservation of energy in K,

E = T +U = 1

2
�v2 − μ

r
(7.14)

It can be expressed as a function of r and θ using the expression of �v in E:

�v = �vE + �ωE ∧�rE

1

2

(
ṙ2 + (r θ̇)2

)
− μ

r
= E (7.15)

The (7.7) and (7.12) make it possible to determine the time derivative of the
radius vector ṙ = θ̇ dr

dθ , that is to say:

ṙ = 2Ȧ

r2

dr

dθ
= 2Ȧe

p
sin
(
θ− θp

)
(7.16)
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Then, while introducing (7.16) in (7.15), we obtain after some derivations:

e2 − 1 = 2E

(
2 Ȧ

μ

)2

= 2E · p

μ

E = μe2 − 1

2 p
; e =

√
1+ 2E

p

μ
(7.17)

Having determined p and e, the parameter θp is obtained directly from r0 and
ṙ0 = vx0 = v0 sin γ0:

cos θp = p − r0

r0e
= 1

e

(
p

r0
− 1

)

sin θp = − pvx0

2 Ȧe
= − pv0 sin γ0

2 Ȧe
= − p tan γ0

r0e

In the case of closed trajectories, we can determine angular location of apogee
ra, which corresponds to θa = θp ± π ,

cos θa = 1

e

(
1− p

r0

)

sin θa = − p tan γ0

r0e
(7.18)

From (7.17), we can express energy as a function of rp, whatever the trajectory,
and of rp or ra in the case of closed trajectories

E = μ

2

(
e2 − 1

)

p
= μ̇

2

(1+ e) (1− e)

p

Taking into account the expression of the radius of perigee rp = p
1+e , we obtain:

E = Tp +Up = − (1− e)
μ

2rp
= (1− e)

2
Up (7.19)

In the same way,

E = Ta + Ua = − (e + 1)
1μ

2ra
= 1+ e

2
Ua (7.20)

In all cases,

Tp = −1+ e

2
Up (7.21)
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And only in the case e < 1,

Ta = −1− e

2
Ua (7.22)

To analyze the relation between the energy and the nature of the trajectory, we
consider all the trajectories having the same given radius of apogee or perigee ra =
rp = rc. By definition they all have, at this point, the same potential energy,

Ua = Up = Uc = −μ
rc
< 0 (7.23)

From preceding expressions of kinetic energy at point c, we obtain the classifica-
tion of Table 7.2, for a radius of apogee or perigee rc ≈ rt = 6371 km close to the
earth average radius.

Notice: for a given radius of perigee or apogee rc �= rt circular orbit velocity and

escape velocity become V ′c = Vc

√
rt
rc

and V ′l = Vl

√
rt
rc

7.1.1.5 Elliptic Trajectories

From preceding results, we obtain geometrical parameters of the centered Cartesian
representation:

– Semimajor axis

a = rp + ra

2
= 1

2

(
p

1+ e
+ p

1− e

)
= p

1− e2 (7.24)

Table 7.2 Classification of the Keplerian trajectories

Eccentricity Nature of the conical Total energy E and Velocity at perigee or apogee
curve kinetic T at point c

0 < e < 1 Elliptic: rp ≤ r ≤ ra = rc Uc ≤ E <
Uc

2
νc < Vc, circular orbit velocity

0 ≤ Tc <
|Uc|

2

e = 0 Circular, radius rc E = Uc

2
Tc = |Uc|

2
Circular orbit velocity

v = Vc =
√
μ

rc
≈ 7.91 km/s

0 < e < 1 Elliptic: rp = rc ≤ r ≤ ra
|Uc|

2
< E < 0 Vc < νc < Vl , escape velocity

|Uc|
2

< Tc < |Uc|
e > 1 Parabolic, rp ≤ r →∞ E = 0, Tc = |Uc | Escape velocity,

νc = Vl = Vc
√

2 ≈ 11. km/s

e > 1 Hyperbolic, rp ≤ r →∞ 0 < E V1 < νc

|Uc| < Tc
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Taking into account (7.17), it results that energy of the trajectory is entirely de-
termined by a:

E = − μ

2a
(7.25)

– Focus location

±c = ±e · a (7.26)

– Semiminor axis b results from the geometrical definition of the ellipse, i.e., the
sum of the distances from a point M of the curve to focuses is constant:

(a− c)+ (a+ c) = 2d

where d is the hypotenuse of triangle OBC (Fig 7.2)

⇒ b2 = d2 − c2 = a2 − c2 = a2 ·
(

1− e2
)

⇒ semiminor axis b = a
√

1− e2 (7.27)

This leads us to the third law of Kepler
– Rate of swept area:

(
2Ȧ
)2

μ
= p =

(
1− e2

)
a ⇒ Ȧ = 1

2

√
μ (1− e)2 a ⇒ Ȧ =

√μ
2

b√
a

– Area S of ellipse: S = πa b

From which the period of revolution T:

T = S

Ȧ
= 2π√μ

a
3
2 (7.28)

“The square of time of revolution is proportional to the cube of the semimajor
axis of the ellipse.”

7.1.1.6 Chronology

We use the geometrical method having the constant rate of swept area and calcula-
tion of the area swept as function of θ, with origin at apogee.

The ellipse is the orthogonal projection of the corresponding circle (Fig. 7.2), of
radius R = a located in the plane passing by the major axis, and forming an angle ϕ
such that cosϕ = b/a.

We seek the value of area S swept by the radius vector since the passage to
apogee CA until its instantaneous position CM. This area S is the projection of area
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θ ′θ

M

HCO xA

B

r

θ ′θ

M

θ θ′

M

M′

HC O xA

y

B

r

Fig. 7.2 Determination of swept area

S′ of eccentric circular sector CAM′, composed of the centered sector OAM of apex
angle θ′ and of the triangular element OCM′.

S′ = a2θ′

2
+ 1

2
a c sin θ′ (7.29)

S = S′ cos ϕ = a b

2

(
θ′ + e sin θ′

)
(7.30)

We must then determine θ′ (eccentric anomaly), as a function of θ:

HM′ = HM

cos ϕ
⇒ a sin θ′ = a

b
r sin θ

OH = a cos θ′ = r cos θ− c

sin θ′ =
√

1− e2 sin θ
1− e cos θ

(7.31)

cos θ′ = cos θ− e

1− e cos θ
(7.32)

We obtain finally the time since passage at apogee as a function of θ′

t = S

Ȧ
= T

2π
(θ′ + e sin θ′) (7.33)
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Then as a function of θ:

θ ∈ [0,π] → t = T

2π

[

Arc cos

(
cos θ− e

1− e cos θ

)
+ e

√
1− e2 sin θ

1− e cos θ

]

(7.34)

θ ∈ [π, 2π] → t = T

2π

[

2π− Arc cos

(
cos θ− e

1− e cos θ

)
+ e

√
1− e2 sin θ

1− e cos θ

]

7.1.2 Ballistic Trajectories

Ballistic trajectories are closed Keplerian trajectories having an intersection with
terrestrial sphere (Fig. 7.3). They are elliptical trajectories such that:

E < 0 ⇒ v0 <

√
2

rt

r0
Vc (7.35)

In order to intersect with the terrestrial surface, radii of perigee and apogee must
verify:

rp ≤ rt ≤ ra ⇔ (1− e) rt ≤ p ≤ (1+ e) rt (7.36)

Fig. 7.3 Ballistic trajectories
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For an initial point above the ground r0 ≥ rt, the condition rt ≤ ra is automatically
verified. The only remaining condition is that the radius of perigee is lower than
earth radius:

p ≤ rt (1+ e)

This condition, which eliminates the trajectories of satellites being verified, the
range measured at sea level is given by the relation:

rt = p

1− e cos α

where α indicates half angular range. This gives:

cos α = 1

e

(
1− p

rt

)
(7.37)

We must eliminate trajectories of angular range π < 2α < 2π such as cosα < 0,
which are until now without practical interest (they correspond to passage by the
antipodes):

0 ≤ 2α ≤ π ⇒ cosα = 1

e

(
1− p

rt

)
≥ 0 ⇔ p ≤ rt

⇒ P = 2rt arc cos

(
1

e

(
1− p

rt

))
≤ πrt ≈ 20000 km

According to preceding results, parameters p and e are related to initial conditions
by the relations:

p =
(
r0 v0 cos γ0

)2

μ
(7.38)

e =
√√√
√1+ 2

(
v2

0

2
− μ

r0

)(
r0 v0 cos γ0

μ

)2

(7.39)

While r0 ≥ rt, conditions necessary and sufficient to obtain a ballistic trajectory
of range lower than 20000 km are finally reduced to the single inequality:

p ≤ rt ⇔
(

r0

rt

)2 (
v0

Vc

)2

(cos γ0)
2 ≤ 1

This leads to the following constraints on initial conditions:
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• When initial velocity is lower than the circular orbit velocity 0 ≤ v0 ≤ Vc

(
rt
r0

)
,

all the flight path angles 0 ≤ γ0 ≤ π
2 are possible.

• When initial velocity lies between the circular orbit and escape velocities Vc
rt
r0
<

v0 < Vc

√
2 rt

r0
, the flight path angle must satisfy γ0 min ≤ γ0 ≤ π

2 , with

cos γ0 min =
(

Vc
v0

) (
rt
r0

)
.

For an initial point located at sea level (r0 = r1), these conditions become:
• for v0 ≤ Vc, complete interval 0 ≤ γ0 ≤ π

2 is possible.

• for vc ≤ v0 < vl = Vc
√

2, interval is restricted to Arc cos
(

Vc
v0

)
≤ γ0 ≤ π

2 .

In other words, whatever the initial flight path angle, using an initial veloc-
ity lower than vc ≈ 7910 m/s guarantees an impact point of range lower than
half earth’s circumference (at least if we do not take into account constraints re-
lated to the existence of the relief and atmosphere!). A velocity in the interval
vc ≈ 7910 m/s and vl ≈ 11000 m/s and a flight path angle higher than a limit

equal to Arc cos
(

vc
v0

)
also makes this possible.

The angular location of the apogee relative to the initial point is given by:

cos θa = r0 − p

er0
(7.40)

sin θa = p tan γ0

e r0
(7.41)

7.1.2.1 Equations of the Trajectory

Principal useful relations, for an angular origin at the initial point are:

Instantaneous radius:

r = p

1− e cos(θ − θa)
(7.42)

Instantaneous velocity and flight path angle:

v = vc

√
rt

p

√
1+ e2 − 2e cos(θ − θa) (7.43)

sin γ = − e sin(θ − θa)√
1+ e2 − 2e cos(θ − θa)

(7.44)

cos γ = 1− e cos(θ − θa)√
1+ e2 − 2e cos(θ − θa)

(7.45)
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Velocity at apogee and perigee:

va = vc

√
rt

p
(1− e)

vp = vc

√
rt

p
(1+ e)

Total ballistic time (from sea level to sea level):

t = T

π

[

arc cos

(
cos α− e

1− e cos α

)
+ e

√
1− e2 sin α

1− e cos α

]

with T = 2π√
μ

a
3
2 and a = p

1−e2 .

Ballistic time as a function of θ is identical to the general case of the ellipse.
Expression of the dynamic variables according to altitude: Relations as func-

tion to the true anomaly, θ can be used to determine the variables v, γ, t at a
given altitude h. Indeed, we have according to (7.42):

θ − θa = ±Arc cos

(
1

e

(
1− p

rt + h

))
, rp ≤ rt + h ≤ ra (7.46)

7.1.2.2 Maximum Range for a Given Energy

Total energy E of the trajectory being fixed at some negative value, we seek the
optimal flight path angle γopt, which provides the maximum range P. To maximize
α is equivalent to minimize cosα, obtained from (7.17) and (7.37):

cosα = rt − p

rt

√
1+ 2

μ
Ep

minimum ⇒ ∂ cosα

∂p

∂p

∂γ0
= 0 (7.47)

The optimal flight path angle is obtained from ∂ cosα
∂p = 0. Taking into account

(7.38) and (7.39),

popt = −(rt + μ

E
) ⇒ cos2 γopt = − μ

(r0v0)
2

⎡

⎣rt + μ

v2
0
2 − μ

r0

⎤

⎦ (7.48)

For an initial point at sea level (r0 = rt), the expression is simplified consider-
ably:

cos2 γopt = 1

2− rtv
2
0

μ

= 1

2−
(
v0
vc

)2
(7.49)
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The constraint cos2 γopt ≤ 1 implies that the ground velocity must be lower than
the circular orbit velocity Vc.

While carrying this value of γopt in the expression of cos α, we obtain the maxi-
mum range,

cos αopt = 1

eopt

(
1− popt

rt

)

While noting v = v0
Vc

(nondimensional velocity), according to (7.38), (7.39), and
(7.49), we obtain:

popt = rt
v2

2− v2 (7.50)

eopt =
√

1− v2 (7.51)

cos αopt = 2
√

1− v2

2− v2 ⇒ sin αopt = v2

2− v2 (7.52)

Finally, from the expressions of γopt and sin 2γopt, we obtain:

cosαopt = sin 2γopt ⇔ 2αopt = π − 4γopt (7.53)

The theoretical maximum range corresponds to v = 1 ⇒ γopt = 0, i.e., the
circular trajectory, which is obviously unusable in practice:

Pmax = πrt ≈ 20000 km

Remarks:

i) Relations (7.49) and (7.52) giving the optimal flight path angle and the optimal

range are only a function of the parameter T = v2

2 (nondimensional kinetic
energy).

ii) Taking into account operational requirements and constraints related to missiles
and atmospheric effects, the practical maximum ranges are about 12000 Km.

7.1.2.3 Minimal Energy for a Given Range

Path Angle Optimization for Range

The range being given, the preceding result (7.53) directly gives the flight path angle
with minimum energy:

γopt = π

4
− α

2
(7.54)
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We obtain the well-known optimum flight path angle equal to π
4 for the short

ranges. Optimum flight path angle decreases linearly toward zero at the maximum
angular range 2α = π.

Characteristics of Trajectories

For a fixed range P = 2αrt ≤ π rt ≈ 20000 km, use of the optimal flight path
angle corresponds to the minimum energy trajectory. According to (7.52) and (7.14),
energy and sea-level velocity corresponding to γopt = π

4 − α
2 are:

Eopt = − V 2
c

1+ sinα
≤ Ecirc = −V 2

c

2
(7.55)

(
vopt

vc

)2

= 2 sinα

1+ sin α
≤ 1 (7.56)

While carrying vopt = vopt
Vc

in expressions (7.50) and (7.51), we obtain popt and
eopt as a function of α, then derived expressions:

ra,opt =
popt

1− eopt
(Radius of apogee)

va,opt = vc

√
rt

popt

(
1− eopt

)
(Velocity at apogee)

t= T

π

⎡

⎣arc cos

(
cos α− eopt

1− eopt cos α

)
+

eopt

√
1− e2

opt sin α

1− eopt cos α

⎤

⎦ (Ballistic time), with :

T= 2π√μ

(
popt

1− e2
opt

) 3
2

Evolution with range of characteristic parameters of minimal energy trajectories
is shown in Figs. (7.4–7.7).

7.1.2.4 Nonoptimal Trajectories

Nonoptimal Energy Conditions

Let us seek the conditions to obtain a given range P = 2αrt ≤ π rt ≈ 20000 km
while using more energy than the optimal trajectory:

Eopt < E < 0

vopt < v0 <
√

2vc (v0 Sea-level velocity)
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Fig. 7.4 Initial flight path angle as function of range

The range and energy being fixed, we have according to (7.37) and (7.17):

1

e

(
1− p

rt

)
= cosα

e2 − 1

2 p
= E

μ

While eliminating e between the two equations, we obtain an equation in p,
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Fig. 7.5 Velocity as function of range



7.1 Movement of the Center of Mass 125

Fig. 7.6 Apogee altitude as function of range

2 p
E cos2 α

μ
=
(

1− p

rt

)2

− cos2 α (7.57)

Then by using relations:

E = v2
0

2
− μ

rt

V 2
c =

μ

rt
; v = v0

Vc

Fig. 7.7 Ballistic time as function of range
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We obtain a quadratic equation in p
rt

,

(
p

rt

)2

− 2

(
p

rt

)(
sin2 α + cos2 α

2
v2
)
+ sin2 α = 0 (7.58)

which can be written in the canonical form:

(
p

rt
−
(

sin2 α + cos2 α

2
v2
))2

=
(

sin2 α + cos2 α

2
v2
)2

− sin2 α

It admits two solutions when the second member is positive, i.e., when v2 ≥
2 sinα

1+sinα = v2
opt, where vopt is the velocity corresponding to minimal energy, that is

to say:

(
p

rt

)
= sin2 α+ cos2 α

2
v2 ±

√(
sin2 α+ cos2 α

2
v2
)2

− sin2 α (7.59)

Finally, while noting that p
rt
= v2 cos2 γ0, we obtain the solution of two flight

path angles:

cos2 γ0± =
1

v2

⎧
⎨

⎩
sin2 α+ cos2 α

2
v2 ±

√(
sin2 α+ cos2 α

2
v2
)2

− sin2 α

⎫
⎬

⎭
(7.60)

According to previous results:

a) For vopt < v ≤ 1
(
vopt < v0 ≤ vc

)
, the two solutions exist whenever α (they are

confused for v = vopt).

b) For 1 < v <
√

2
(
vc < v0 < Vc

√
2
)

, we saw that this range was realizable with

this initial velocity only if cos2 γ0 ≤ 1
v2 , i.e., if

⎧
⎨

⎩
sin2 α + cos2 α

2
v2 ±

√(
sin2 α + cos2 α

2
v2
)2

− sin2 α

⎫
⎬

⎭
≤ 1 .

According to this condition, γ0+ never exists and γ0− exists whenever α.
For α = αopt at fixed velocity v ≤ 1, we find again the flight path angle for

maximum range:

cos2 γopt =
1

2− v2
→ γopt =

π
4
− αopt

2
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For v2 = v2
opt at fixed range 2α ≤ π, we find as previously for minimal energy:

cos2 γ ′opt =
1+ sin α

2
→ γ ′opt =

π
4
− α

2

In summary, to reach a given range P = 2αrt ≤ πrt ≈ 20000 km, there is a
trajectory with minimal energy corresponding to the optimal flight path angle γ ′opt.
For any value of the energy ranging between this minimal energy and a limit strictly
lower than the energy of circular orbit (at sea level), there are two solutions for
trajectories whose flight path are γ0±:

– The higher flight path angle corresponds to γ0−, called a lofted trajectory, because
it has the highest altitude of apogee and longer ballistic time,

– The lower flight path angle corresponds to γ0+, called a shallow trajectory, be-
cause it is most directly toward the target and of the shortest duration.

Then, we have:

α < αopt → γ0+ < γopt < γ ′opt < γ0−

When energy is higher than the energy of circular orbit and strictly lower than
the escape energy, only the lofted solution γ0− exists.

For example, we obtain for the maximum useful range 2α = π:

vopt = 1; 1 ≤ v <
√

2

cos2 γ0+ =
1

v2

In other words, we can theoretically reach this range with initial conditions from
γopt = 0 → vc = 7910 m / s to γ0+ = 45◦ → vl − ε ≈ 11000 m/s

Note that maximum range trajectories, being defined such that ∂P
∂γ0
= 0, are most

insensitive to error on the initial flight path angle γ0. Consequently, using condi-
tions different from minimal energy conditions result in degradation of the range
accuracy.

Classification of Trajectories

Energy ratio is a method of classification of nonoptimal trajectories. This param-
eter has only a limited interest for missile or entry applications, but is worthy of
discussion.

We seek to reach a range P = 2αrt while using a nonoptimal trajectory. This
implies that with same energy E, using optimal conditions, we are able to reach a
range Pmax > P. The energy ratio parameter is defined as the range loss with respect
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to this maximum range, expressed in % of the range P, when we use a nonoptimal
flight path angle:

ΔP

P
(%) = 100

Pmax − P

P
(7.61)

Total energy, corresponding to Pmax = P
(

1+ 1
100

�P
P

)
, and the range P being

determined, we are brought back to the preceding case, and we obtain two solutions
for trajectories of flight path angles γ0±.

By convention one defines the parameter Π, which takes the values:

Π = +ΔP

P
for the lofted trajectory

(→ γ0−
)

Π = −ΔP

P
for the shallow trajectory

(→ γ0+
)

which defines the energy ratio. However, notice that this classification applies only
for energies where the maximum range trajectory exists, i.e., Pmax ≤ 20000 km and
v ≤ Vc ≈ 7910 m / s. This is in fact largely superabundant for practical applications.

This involves, aside from range limitations due to the missile, that the maximum
theoretical energy ratio corresponds to the maximum range of 20000 km. Thus we
obtain for a range P:

Πmax = ±100
πrt − P

P
≈ ±100

20000− Pkm

Pkm

Figures 7.8–7.11 give the characteristics of trajectories for 4000 km range and
for energy ratio limited to ±150%.

7.1.3 Influence of Earth Rotation

For a trajectory relative to the rotating earth, we define the initial conditions at a
constant altitude corresponding to the end of launch phase. Altitude HI depends
on the missile and the mission (index I indicate the injection point on the ballistic
trajectory). We assume here that the planet has a spherical symmetry and a constant
rotation rate.

Depending on the frame used to observe the trajectory, the initial conditions can
be defined relative to a nonrotating observer, located at planet mass center, or to an
observer fixed to the latter.

Initial conditions at the point “I” of altitude HI are entirely defined by (Fig. 7.12):

• The geocentric latitude λI

• The module of the relative velocity vector VI
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Fig. 7.8 Initial velocity as function of energy ratio

Fig. 7.9 Initial flight path angle as function of energy ratio

• Flight path angle, which corresponds to the angle between the relative velocity
vector γI and the geocentric horizontal plane (normal with the initial radius vec-
tor �rI to the mass center of planet), γI > 0 for initial conditions of ballistic phase

• The azimuth angle of the relative velocity vector AzI relative to north direction
in the geocentric horizontal plane



130 7 Exoatmospheric Phase

Fig. 7.10 Apogee altitude as function of energy ratio

The planet being assumed to have symmetry of revolution around pole axis, we
choose the origin of longitudes at the meridian line of the initial point.

7.1.3.1 Effect of Initial Azimuth

For a revolving observer and a fixed relative velocity and flight path angle, trajecto-
ries corresponding to various azimuths are not symmetrical around the initial radius
vector. This phenomenon does not correspond to our current experiment, but it is
particularly important for the range of ballistic trajectories or for placing satellites

Fig. 7.11 Ballistic time as function of energy ratio
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Fig. 7.12 Relative and absolute velocities

in orbit. Everyone knows that to place satellite in orbit, it is more advantageous to
launch from the equator and toward east and that the range of ballistic missiles is
greater for eastward trajectories. Indeed, for the same relative speed, thus roughly
the same energy consumption, we profit from an increase in the absolute velocity
and a reduction of the absolute flight path angle when one fires eastward. This effect
of “sling” is more effective closer to equator. For a nonrotating observer, absolute
range increases. Although, throughout flight, the points fixed on the earth’s surface
drift away eastward, the absolute range being greater, it results in a net increase of
range measured point-to-point on the surface. For satellites, geometrical parame-
ters of the orbit being determined by the absolute velocity, this effect is even more
beneficial.

To quantify the range increase, there is no need to use a digital code. Indeed,
starting from the relative conditions, we can determine the absolute velocity condi-
tions in the frame GXIYIZI of axes parallel with the local directions East, North,
Zenith at point I (Fig. 7.12):

The drift velocity of a point fixed to earth at initial location I is:

�Ve = �	e ∧ �rI → Vex = 	erI cos λI
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Absolute velocity of a point of relative speed �VRI is thus:

�VAI = �VRI + �Ve

VAX I = VAI cos γAI sin Az AI = VRI cos γRI sin AzRI + Vex

VAY I = VAI cos γAI cos Az AI = VRI cos γRI cos AzRI

VAZ I = VAI sin γAI = VRI sin γRI

The module, slope, and azimuth of absolute velocity are:

VAI

VRI
=
√

1+ x2 + 2x cos γRI sin AzRI (7.62)

γAI = Arc sin

(
sin γRI√

1+ x2 + 2x cos γRI sin AzRI

)

(7.63)

cos Az AI = cos AzRI cos γRI√
cos2 γRI + x2 + 2x cos γRI sin AzR Di

(7.64)

sin Az AI = sin AzRI cos γRI + x
√

cos2 γRI + x2 + 2x cos γRI sin AzRI
(7.65)

where x = Vex
VRI

= 	erI cos λI
VRI

indicates the ratio between the drift velocity at point I
and initial relative speed modulus.

Thus maximum effect is at the equator, where the drift velocity at sea level is
about 463 m/s.

To obtain a first-order estimate of range variation, we neglect the effect of atmo-
sphere, and we assume an injection point located at sea level, r0 = rt.

Let us consider an initial point of latitude λI, a relative speed VRI, a slope γRI,
and an azimuth AzRI (Fig. 7.13).

In the case of a nonrotating planet, the range of the elliptic trajectory is obtained
from V0 = VRI, γ0 = γRI by (7.37), (7.38), and (7.39). The flight duration is ob-
tained by (7.24), (7.28), (7.31), and (7.33):

p = (rtv0 cos γ0)
2

μ

e =
√√
√
√1+ 2

(
v2

0

2
− μ

rt

)(
rtv0 cos γ0

μ

)2

cosα = 1

e

(
1− p

rT

)
; a = p

1− e2

T = 2π√
μ

a
3
2 ; sin θ ′ =

√
1− e2 sinα

1− e cosα
; t = T

π
(θ ′ + e sin θ ′)

where α indicates half angular range α = P
2·rt

.



7.1 Movement of the Center of Mass 133

N

F

I

2αA

φA

λ I

λ F

AzAI

Fig. 7.13 Ground tracks in the absolute frame

For rotating planet, absolute angular range 2αA (seen by a nonrotating observer)
and duration tA are given by the same relations using absolute speed VAI and slope
γAI determined from relative conditions and relations (7.62)–(7.65).

One obtains the relative range PR at sea level by observing that during flight
duration absolute longitude (relative to a nonrotating angular origin corresponding
to the initial meridian plan) of observers fixed to the planet surface increased uni-
formly with Δφ = 	e · tA. Latitude of the final point F is the same for motionless
and revolving observers, λFA = λFR = λF. Longitude at arrival is deduced from
�φ, i.e.,

φR = φA −	e · tA (7.66)

We obtain the latitude λF and longitude φA of final point F in the inertial frame
from λI, AzAI, 2αA and spherical trigonometry relations in the spherical triangle
NIF (Fig. 7.13):

cos
(π

2
− λF

)
= cos

(π
2
− λI

)
cos(2αA)+ sin

(π
2
− λI

)
sin (2αA) cos Az AI

sin Az AI

sin
(
π
2 − λF

) = sin φA

sin(2αA)

cos(2αA) = cos
(π

2
− λI

)
cos
(π

2
− λF

)

+ sin
(π

2
− λI

)
sin
(π

2
− λF

)
cosφA
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This gives:

sin λF = sin λI cos(2αA)+ cos λI sin (2αA) cos Az AI

cos λF =
√

1− sin2 λF

sin φA = sin(2αA) sin Az AI

cos λF
(7.67)

cosφA = cos(2αA)− sinλI sin λF

cos λI cosλF

Finally, we obtain the apparent angular range 2αR for a rotating observer from
φR = φA−	e ·tA , λI, and λF by resolution of the spherical triangle NIFR (Fig. 7.14):

cos (2αR) = sin λI sin λF + cosλI cosλF cosφR (7.68)

Figure 7.15 represents the increase in range compared to the nonrotating case
according to the initial latitude and azimuth, for relative initial conditions

N
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I

2αR

φR

λ I

λ F

FR

Δ φ

φA

Fig. 7.14 Trajectory in rotating frame
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Earth rotation effect on ballistic range
Vr = 6 km/s , FPA = 30 degree
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Fig. 7.15 Influence of azimuth on ballistic range

VRI = 6000 m/s, γRI = 30◦, which correspond to a range of 5264 Km for a nonro-
tating earth.

The variations of range reach−440 to +550 km at equator,−323 to +382 km at
45◦ of latitude.

Figure 7.16 displays results for a relative initial velocity 7000 m/s, and a 25◦
path angle, corresponding to a nonrotating ground range of 8910 km. In this case,
the variations are more important and reach −1200 to +1400 km.
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Earth rotation effect on ballistic range
Vr = 7 km/s, FPA = 25 degree
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Fig. 7.16 Influence of azimuth on ballistic ranges
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7.2 Movement Around Mass Center

The only external forces are the terrestrial forces of gravity, which are applied
directly on the material points composing the solid. Resulting moment around the
center of gravity is zero by definition. The center of gravity is distinct from the
center of mass because the terrestrial field of gravitation is not homogeneous. This
involves in general a small moment around the mass center:

�Mext/I ≈ M
(
�RG − �RI

)
∧ �g
(
�RI

)
≈
∑

i

mi ��i ∧
∂�g
(
�RI

)

∂ �RI

��i

However, in the case of ballistic vehicles, trajectories durations are short com-
pared with satellites, thus the effect of this moment can be neglected. This is a free
rotational movement; thus, for an inertial observer or in accelerated translation, the
angular momentum is constant in the movement:

�̇H = 0 ⇔ �H = �H0

7.2.1 Rotation Around a Principal Axis

We consider first the case where the initial rotation vector is along a principal axis of
the solid. By definition, angular momentum is in the same direction. This involves
for an observer fixed to the solid, according to the (1.36):

d �H
dt
= −�ω ∧ �H = 0 ⇒ �H = �H0, �ω = �ω0.

Thus, the movement is a uniform rotation around the initial axis, which keeps a
constant inertial and relative direction.

In order to assess the stability of this motion, let us assume an initial rotation rate
t < 0 → �ω0 =

{
ω0 0 0

}
and a small disturbance δ�ω (0) = {ε1 (0) ε2 (0) ε3 (0)

}

such that
∥
∥δ�ω (0)∥∥� ω0 at t = 0. It results at t > 0 �ω (t) = {ω0 + ε1, ε2, ε3

}
. The

resulting equation is written in the rotating frame as:

I1ε̇1 + ε2ε3 (I3 − I2) = 0
I2ε̇2 + (ω0 + ε1) ε3 (I1 − I3) = 0
I3ε̇3 + (ω0 + ε1) ε2 (I2 − I1) = 0

While retaining only the first-order terms, we obtain:

I1ε̇1 ≈ 0
I2ε̇2 + ω0ε3 (I1 − I3) ≈ 0
I3ε̇3 + ω0ε2 (I2 − I1) ≈ 0
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Thus, ω1 ≈ ω0 + ε1 (0) is a constant and

[
ε̇2
ε̇3

]
+
[

0 ω0
I1−I3

I2

ω0
I2−I1

I3
0

][
ε2
ε3

]
≈ 0

This set of linear differential equations with constant coefficients classically ad-
mits a particular solutions �vieλt such that,

Det

[
λ −ω0

I1−I3
I2

−ω0
I2−I1

I3
λ

]

= 0 ⇔ λ2 − ω2
0
(I1 − I3) (I2 − I1)

I2
3

= 0

Two cases arise:

1) inf (I2, I3) < I1 < sup (I2, I3)⇒ λ = ±ω0

√
(I1−I3)(I2−I1)

I2
3

2) I1 < inf (I2, I3) ou sup (I2, I3) < I1 ⇒ λ = ±iω0

√
(I1−I3)(I1−I2)

I2
3

Free rotational movement around a principal axis of intermediate moment of
inertia is unstable since the small disturbances are likely to diverge exponentially.

Free rotational movements around principal axes of maximum and minimum
moment of inertia are stable since the small disturbances have a sinusoidal periodic
evolution. This is the origin of the gyroscopic principle of stabilization widely used
during the ballistic phase.

Let us note that when the vehicle has inertial symmetry of revolution I2 = I3 =
IT �= I1 the axis 1 always corresponds to a stable axis and the expression of the

pulsation of the closed cycle is ω0

∣
∣
∣1− I1

IT

∣
∣
∣.

In the case of a nonrigid body, the energy of rotation is likely to decrease
under the effect of dissipative interior forces. It is easy to show that the only
stable mode of free rotation corresponds to the principal axis of highest mo-
ment of inertia. Indeed, conservation of angular momentum and energy of rotation
gives:

�H2 = (I1ω1)
2 + (I2ω2)

2 + (I3ω3)
2 = H2

0

T = 1

2

[
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

]

Assuming axis 1 corresponds to the highest moment of inertia and using ω1
from preceding equation, we can express the energy of rotation according to ω2
and ω3.

T = 1

2

[
H 2

0

I1
+ I2

(
1− I2

I1

)
ω2

2 + I3

(
1− I3

I1

)
ω2

3

]
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With this choice of axis 1 coefficients of ω2
2 and ω2

3 are positive, and it results
the kinetic energy is minimum when ω2 and ω3 are null, which is the proof of the
proposal.

The asymptotic final state corresponds to minimum rotation rate compatible with
the conservation of the angular moment, ω1 = H0

I1
. This explains in particular the

stability of earth rotational movement as it is close to an ellipsoid of revolution
turning around its axis of maximum moment of inertia.

7.2.2 Coning Motion

Now we consider the case of a vehicle with inertial symmetry of revolution. The axis
of symmetry is clearly a principal axis of inertia. In the case of a ballistic RV, it is the
roll axis, which corresponds to the smallest moment of inertia. A ballistic reentry
vehicle is very rigid by definition, designed to sustain very high aerodynamic loads
during reentry. The free rotational motion around its roll axis is stable. At the time of
separation from the missile, a spin is given to the vehicle, in order to stabilize its axis
in a fixed inertial direction. This roll impulse is applied either using a mechanical
device on the missile, or using roll thrusters on the RV. The roll rate is typically about
one revolution per second. The choice of the direction generally corresponds to that
of the velocity relative to earth at the beginning of reentry, in order to minimize
initial angle of attack. Ideally, the spin device delivers a pure rolling moment and
the angular momentum is along the roll axis. However, technological flaws results
in small angular velocities in other axes, involving an initial misalignment of the
angular momentum with the longitudinal axis. This misalignment is at the origin of
the “coning motion,” which corresponds, in the case of finite initial disturbances, to
the sinusoidal evolution of small disturbances.

The symmetry of revolution of the body determines that its longitudinal axis and
the angular velocity �ω are at all times in the same meridian plane around the angular
momentum �H0.

We use frame at the center of mass G, such that Gx0 is along �H0, and Gy0,Gz0
remain parallel to the inertial axes (Fig. 7.17). While using an Eulerian frame, hav-
ing axes along principal inertia axes of the body and such that GxI is along the
symmetry axis, we obtain the tensor of inertia:

[I] =

⎡

⎢
⎣

Ix 0 0

0 IT 0

0 0 IT

⎤

⎥
⎦ ; Iy = Iz = IT

In order to describe the motion, we use Euler angles (ψ, θ,ϕ) shown in Fig. 7.17
corresponding to the choice of axes (1, 2, 1) in Sect. 6.2.

These rotations transform the observation frame
(
Gx0,Gy0,Gz0

)
into the Eule-

rian frame:
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Fig. 7.17 Euler angles
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– Rotation ψ around Gx0 transforms
(
Gx0,Gy0,Gz0

)
into

(
Gx0,Gy1,Gz1

)
.

– Rotation θ around Gy1 transforms
(
Gx0,Gy1,Gz1

)
into

(
GxE,Gy1,Gz2

)
.

– Final rotation ϕ around GxE transforms
(
GxE,Gy1,Gz2

)
into the Eulerian frame(

GxE,GyE,GzE
)
.

It is easy to check that, except in the case where θ = 0, the relation be-
tween (ψ, θ,ϕ) and the instantaneous position of

(
GxE,GyE,GzE

)
relative to(

Gx0,Gy0,Gz0
)

is reciprocal. When θ = 0, angles ψ and ϕ are unspecified, and
we can only define angle ψ + ϕ. Except in this last case, angular rate �ω can be
written relative to the base (nonorthogonal) formed by the unit vectors of the three
successive axes of rotations

�ω = ψ̇�Gx0 + θ̇�Gy1 + ϕ̇�GxE

From previous findings, �ω, �GxE and �Gx0 are in the same plan. From the expression
of �ω, it is clear that the nutation rate θ̇ is null. This involve that angle θ is constant
in the movement.

The motion is thus a precession motion ψ̇ around the angular momentum �H0
and a rolling motion ϕ̇ around the symmetry axis �GxE (Fig. 7.18). It is now
easy to determine these parameters in the transverse plane containing �ω, �GxE, �Gx0,
and �Gz2.

It is clear that �H and θ being constant, components HxE and Hz2 of �H along �GxE
and �Gz2 are also constant. While using components p and r2 of �ω on these last axes,
this involves:



140 7 Exoatmospheric Phase

G

GxE

Gz2

Gx0

.

H0

→

→

→ω

θ

p
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HxE

Hz2

ψ

ϕ

Fig. 7.18 Constants of coning motion

HxE = Ixp = H0 cos θ0 ⇒ p = p0 = H0 cos θ0

Ix

Hz2 = ITr2 = H0 sin θ0 ⇒ r2 = r20 = H0 sin θ0

IT

Thus, roll rate p and the component r2 of angular velocity along �Gz2 are constants
in the movement. Knowing the initial components of angular velocity in frame E,
this allows us to determine θ0,

tgθ0 = Hz2

HxE
= IT r20

Ix p0
=

IT

√
q2

0 + r2
0

Ix p0

We are now ready to determine all the unknown parameters:

�ω = ψ̇ �Gx0 + ϕ̇ �GxE = r20 �Gz2 + p0 �GxE

⇒ r20 = ψ̇ sin θ0; p0 = ϕ̇+ ψ̇ cos θ0

⇒ ψ̇ = ψ̇0 = r20

sin θ0
= μp0

cos θ0
; ϕ̇ = p0 − ψ̇0 cos θ0 = p0 (1− μ)

where μ = Ix
IT

.
The precession rate ψ̇ and the roll angle derivative ϕ̇ are constants in the move-

ment. They both have the same sign as the roll rate. Thus, evolution of Euler angles
of a symmetrical spinning top in free rotation is:

ψ = ψ0 + ψ̇0 t

θ = θ0

ϕ = ϕ0 + ϕ̇0 t
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The evolution of the angular velocity components in the Eulerian frame is then:

p = p0

q =
√

q2
0 + r2

0 sin ((1− μ) p0t + ϕ0)

r =
√

q2
0 + r2

0 cos ((1− μ) p0t + ϕ0)

The pulsation ωG = ϕ̇0 = (1 − μ)p0 is sometimes called gyrometric pulsation,
because it is a characteristic of the measurements provided by lateral rate gyrometers
on the vehicle. Taking into account present results the transverse angular velocity
can be expressed using the complex form as:

q+ i r =
√

q2
0 + r2

0 ei( π
2−ϕ0) e−iωG t

which shows that the angular velocity has an apparent rotational movement around
Gx at rate −ωG.

With typical values of ballistic RVs, μ ≈ 0.1, p0 ≈ 1 r ps, θ0 ≈ 5◦, we obtain:

ψ̇ ≈ 0.1 r ps, ϕ̇ ≈ 0.9 rps

When the geometrical axis of symmetry of the body is aligned with the corre-
sponding principal direction of inertia this describes a cone of half-angle θ0 around
the angular momentum with a 10-s period, the body turns around its axis of symme-
try with a 1.1-s period. When the two axes are distinct, the principal axis of inertia
describes the preceding movement and its geometrical axis of symmetry turns with
a 1.1-second period.



 

 

 

 

 



Chapter 8
Six Degree-of-Freedom Reentry

8.1 General Equations of Motion

Let us consider an observation frame centered at a point O fixed to the earth surface
of radius vector �rT from earth mass center. This frame has a uniform rotation rate
�	e and a centripetal acceleration ��e associated with the earth rotation movement
around its mass center. According to (1.4), the linear acceleration of the center of
mass relative to this frame is:

�̇VR = �γR =
�R A

m
+ �ϕ −

{
��e + 2 �	e ∧ �VR + �	e ∧

(
�	e ∧ �r

)}

with:

��e = −�	e ∧
(
�	e ∧ �rT

)
= 	2

e�rT +
(
�	e · �rT

)
�	e

where �ϕ indicates the local value of the terrestrial gravitation field, a function of
the location of the center of mass G of the vehicle (not to be confused with the
gravity, which includes the centrifugal contribution associated with acceleration of
the origin of reference frame, �g = �ϕ − ��e).

In an Eulerian reference frame E bound to the vehicle, centered in G, the an-
gular momentum theorem (1.32) and (1.37) provides the expression of angular
acceleration:

��I �̇ω = �MA
G − �ω ∧��I�ω ⇒ �̇ω =

[
I−1
] [
�MA

G − �ω ∧ [I] �ω
]

The force �RA and moment �MA
G represent the aerodynamic loads in G whose mod-

els were developed with Chap. 4. Aerodynamic loads are functions of variables of
CG location, angular orientation, and associated velocities. Variables of linear loca-
tion are naturally the coordinates of the vehicle center of mass in the reference frame
of the observer. Angular variables of position may be according to the selected repre-
sentation the cosine directors, Euler angles, or the quaternion associated with the rel-
ative orientation of the vehicle. Thus equations of evolution for the CG location are:
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�̇r = �VR ⇔
⎡

⎣
ẋ
ẏ
ż

⎤

⎦ =
⎡

⎣
vRx
vRy
vRz

⎤

⎦

In the case of the choice {3 2 1} of Euler rotations, we obtain for the angular
variables:

ψ̇ = qR sin ϕ+ rR cos ϕ
cos θ

θ̇ = qR cos ϕ− rR sin ϕ

ϕ̇ = pR + sin θ
qR sin ϕ+ rR cos ϕ

cos θ
,

When using quaternion:

ṙ0 = −1

2
(r1 pR + r2qR + r3rR)

ṙ1 = −1

2
{r0 pR + r2rR − r3qR}

ṙ2 = −1

2
{r0qR + r3 pR − r1rR}

ṙ3 = −1

2
{r0rR + r1qR − r2 pR}

with �ω = [p q r
]
, absolute angular velocity and �ωR =

[
pR qR rR

] = �ω− �	e,
angular velocity of the vehicle relative to the earth rotating frame.

To express the resultant of the aerodynamic loads �RA in the rotating reference
frame of the observer, we will use the rotation transform matrix derived from Euler
angles or from quaternion.

[
A (ψ, θ,ϕ)

] =
⎡

⎣
cos θ cos ψ cos θ sin ψ − sin θ

− cos ϕ sin ψ+ sin ϕ sin θ cos ψ cos ϕ cos ψ+ sin ϕ sin θ sin ψ sin ϕ cos θ
sin ϕ sin ψ+ cos ϕ sin θ cos ψ − sin ϕ cos ψ+ cos ϕ sin θ sin ψ cos ϕ cos θ

⎤

⎦

or,

[
A (r0, r1, r2, r3)

] =

⎡

⎢
⎣

r2
0 + r2

1 − r2
2 − r2

3 2 (r0r3 + r1r2) 2 (r1r3 − r0r2)

2 (r1r2 − r0r3) r2
0 + r2

2 − r2
1 − r2

3 2 (r0r1 + r2r3)

2 (r0r2 + r1r3) 2 (r2r3 − r0r1) r2
0 + r2

3 − r2
1 − r2

2

⎤

⎥
⎦

The general expression of �RA along vehicle axes is:
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XA = −q̄ · Sref · CA

YA = q̄ · Sref · CA
Y

ZA = −q̄ · Sref · CN

Resulting in the expression of �RA along observation axes,

⎡

⎣
RA

x
RA

y
RA

z

⎤

⎦ = [A]T

⎡

⎣
XA

YA

ZA

⎤

⎦

The equation of evolution of the angular momentum in a vehicle reference frame
(Eulerian), having axes parallel to the aerodynamic frame, uses the expression of
the aerodynamic moments in this reference frame,

L = q̄ · Sref · Lref ·
(

Cl/G + Clp/G

(
pR Lref

VR

))

M = q̄ · Sref · Lref ·
(

Cm/G + Cmq/G

(
qR Lref

VR

))

N = q̄ · Sref · Lref ·
(

Cn/G + Cnr/G

(
rR Lref

VR

))

Let us recall that the aerodynamic loads are functions of the motion of the vehicle
relative to atmosphere gaseous mixture. While taking into account the wind veloc-
ity �W, the relative motion is obtained from �VR = �VR/gas + �W . We must replace
�VR (velocity of the vehicle relating to earth) by �VR/gas = �VR − �W in the above
expressions of the aerodynamic loads. In addition, we saw that the aerodynamic
coefficients are also functions of angular velocity relative to gas, direction, and
instantaneous state of the upstream flow. Thus, dynamic evolution of the vehicle
obeys a differential system of state equations such that the derivatives of state vector
depend only on instantaneous state vector. This system is highly nonlinear, primarily
because of the aerodynamic model and the equations of evolution of angular state.
The dimension of the state vector is 12 when we use Euler angles, 13 when we use
quaternion:

�XT = [x y z ψ θ ϕ VRx VRy VRz p q r
]

or,

�XT = [x y z r0 r1 r2 r3 VRx VRy VRz p q r
]
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8.2 Solutions of General Equations

It is clear that in the general case, the evolution problem is not accessible by analyt-
ical methods. We must use a numerical approach using an algorithm of integration
for first-order nonlinear differential equations. A Runge Kutta algorithm of order
higher or equal to 4 (see Fig. 8.1 a very simple FORTRAN 77 subroutine) with
constant time steps is quite suitable provided we use a time step adapted to the
dynamics of the vehicle. However, it is preferable to use an automatic method with
variable time step to obtain a good compromise between accuracy, computing time,
and ease of use of the code.

The numerical approach is essential when we assess accurately the dynamic
behavior of a particular vehicle in the design phase of definition or justification.
However, the comprehension of fundamental dynamic phenomena, as in other fields

Fig. 8.1 Fortran subroutine for Runge Kutta algorithm
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of physics, needs idealized studies simplified to a point to be exploitable where ana-
lytical methods are tractable. In addition to the teaching virtue, this approach makes
it possible to easily assess orders of magnitude of various dynamics reentry phe-
nomena or to explain some unexpected behavior. It is also necessary to emphasize
that, even in the case of sophisticated numerical solutions, the theoretical accuracy
is somewhat illusory in comparison with the uncertainties in the aerodynamic model
and the state of the atmosphere.

In the continuation of this work, we will simplify the most important phenomena
using an analytical approach, while comparing these simplified results with those
of sophisticated digital codes. We will first study the reentry motion of the center
of mass with zero angle of attack hypotheses (the exact approach corresponds to a
three degree-of-freedom digital code). Then we will assess the movement around
the center of gravity in the case of a reentry with incidences:

– When the vehicle has symmetry of revolution together with initial incidence (with
or without spin)

– When the vehicle has low asymmetries and spin

The exact approach requires use of a six degree-of-freedom digital code. To
obtain analytical solutions, we will assume that the motion of the mass center is
decoupled from the motion around the center of mass. The results will be quantita-
tively more or less exact but qualitatively correct most of the time, except in the case
of strong increase in the incidence at the end of the flight. In this last case, only the
numerical study using an adapted code can give realistic dynamic loads (provided
that the aerodynamic models were correctly evaluated).



 

 

 

 

 



Chapter 9
Zero Angle of Attack Reentry

This assumption represents the case of a perfectly symmetrical vehicle, statically
and dynamically stable, with a negligible incidence at the beginning of reentry, pen-
etrating a calm atmosphere. In this case, the axis of symmetry of the vehicle remains
practically aligned with the Flight Path Vector relative to the earth and the aerody-
namic load is simply the axial force, which is also the drag. To obtain a realistic
three degree-of-freedom solution with rigor, we must consider the effect of gravity
and terrestrial geoid’s model, a standard atmosphere model, effect of earth rotation
on the axes of observation and on movement relative to air. However, H. J. Allen
has developed a very useful set of approximate solutions for ballistic vehicles with
high initial velocity and high ballistic coefficient [ALL]:

(h1) zero incidence,
(h2) constant ballistic coefficient

β = m

Sre f CA
,

(h3) zero gravity,
(h4) homogeneous atmosphere with an exponential vertical density profile,

ρ (z) = ρs e−
z

HR ,

(h5) flat, nonrotating earth (Fig. 9.1).

This approximation applies to the decelerated phase (under 50 km altitude) when
the drag force becomes higher than the weight of the vehicle. Indeed, between 120
and 60 km, the trajectory of the center of mass is still very close to the outer atmo-
sphere ballistic trajectory (it is the accelerated reentry phase).

9.1 Allen’s Reentry Results

(h3)+ (h5)⇒ rectilinear trajectory, constant flight path angle γ
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Fig. 9.1 H. Julian Allen with blunt body theory (1957, NASA picture)

(h1)+ (h2)+ (h3)+ (h5)⇒ V̇ = −1

2

ρV 2

β

ż = −V sin γ

with convention γ > 0 for the reentry.
In order to solve this set of differential equations, first let us choose z as the

independent variable instead of t:

⇒ V̇ = dV

dz

dz

dt
= −V sin γ

dV

dz

⇒ dV

dz
= ρV

2β sin γ

Then considering (h4), we choose ρ as a new independent variable:

dV

dz
= dV

dρ

dρ

dz
= − ρ

HR

dV

dρ

⇒ 1

V

dV

dρ
= −K

with K = HR
2β sinγ .
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This differential equation is integrated to give the velocity according to the den-
sity of air,

V = V0e−K (ρ−ρ0) ≈ V0e−Kρ (9.1)

This expression provides the order of magnitude of the environment undergone
by the vehicle during the reentry:

9.1.1 Axial Load Factor and Dynamic Pressure

Longitudinal load factor: nx = A
mg = 1

2ρ
V 2

βg =
V 2

0
2βgρe−2Kρ

Maximum longitudinal load factor: nx maximum⇔ d
dρ

(
ρe−2Kρ

) = 0

⇔ ρ = 1

2K
; z = HR ln(2Kρs)

nx,max =
V 2

0

2gHR

sin γ0

e

The value of the maximum is independent of β.
When HRρs ≤ sin γ0, impact on the ground occurs before meeting the theoretical

maximum. As β is assumed constant, this altitude apply as well to the maximum dy-
namic pressure. Unlike maximum axial load, maximum dynamic pressure depends
on β.

In the case of an atmosphere with parameters Href = 7000 m, ρ0 = 1.39 kg/m3,
for β = 104 kg/m2 and V0 = 6000 m/s typical of a ballistic missile, it results:

γ0 = 30◦ → z ≈ 6100 m ; nx,max ≈ 40 g

γ0 = 70◦ → z ≈ 800 m ; nx,max ≈ 75 g

9.1.2 Heat Flux

The correlation suggested by Sutton and Graves [SUT] for convective heat flux at
stagnation point in laminar flow (cold wall) corresponds to:

� = C

√
ρ

RN
V 3 W/m2

where RN is the radius of curvature of the wall, C a constant, which depends on
the composition of the planetary atmosphere considered. Respective values C =
1.83 10−4 kg

1
2 .m−1 and C = 1.89 10−4 kg

1
2 .m−1 of the constant are well adapted

to the earth’s atmosphere and the Martian atmosphere (95% CO2).
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Maximum heat flux is reached when:

d

dρ

(√
ρe−3Kρ

)
= 0 ⇔ ρ = 1

6K
⇔ z = HR ln

(
6Kρs

)
,

The corresponding maximum value is:

�max = C
V 3

0√
RN

√
β sin γ0

3eHR

Under preceding conditions in earth’s atmosphere and for a nose radius RN =
25 mm representative of ballistic RV, we obtain:

γ0 = 30◦ → z ≈ 15400 m; �max ≈ 68 Mw/m2

γ0 = 70◦ → z ≈ 10100 m; �max ≈ 93 Mw/m2

It should be noted that the maximum load factor is independent of the vehicle
(at least within the framework of this approximation, when the maximum is reached
before impact). The maximum heat flux is not only a function of initial velocity
and flight path angle but also of the ballistic coefficient and nose radius. Thus, vehi-
cles with high ballistic coefficient and small nose radius undergo considerable heat
fluxes.

9.1.3 Thermal Energy at Stagnation Point

In order to assess thermal energy per unit of area at the stagnation point, we will first
establish a generalized expression of the Allen formula, in the case of a more general
atmosphere (i.e., not isothermal), which is homogeneous and in vertical equilibrium.
For the static pressure we have:

dp

dz
= −ρg

Using otherwise the same assumptions, if we use pressure instead of the density
as the independent variable, we obtain:

dV

dz
= ρV

2β sin γD

dV

dz
= dV

dp

dp

dz
= −ρg

dV

dp
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That is to say,

⇒ dV

dp
= V

2βg sin γD

V ≈ VDe
− ∫ p

pD
dp
pc

where the variable pc = 2βg sin γD , homogeneous with a pressure, is characteristic
of the trajectory and vehicle. When pc is constant, we obtain:

V ≈ VDe−
(p−pD)

pc ≈ VDe−
p

pc

When the atmosphere is isothermal, we have p = ρ R
M TS . Taking into account

the expression of the reference height HR = RTS
Mg established in Chap. 3, we find the

Allen solution.
From the expression of the heat flux, we can determine surface thermal energy in

the vicinity of the stagnation point:

� = d E

dt
= C

√
ρ

RN
V 3 ⇒ E(t) = C√

RN

∫

D

√
ρV 3 dt

By carrying out a change of variable using the static pressure:

dt = dp
(

dp
dz · dz

dt

) = dp

ρgV sin γD

E(p) = C

g sin γD
√

RN

∫ p

pD

V 2

√
ρ

dp = C

g sin γD
√

RN

√
RTS

M
V 2

D

∫ p

pD

e−2 p
pc

√
p

dp

Finally, while posing u =
√

2 p
pc

, we obtain:

E(u) = C

g sin γD
√

RN

√
pc RTS

2M
V 2

D2
∫ u

u D

e−u2
du

Taking into account u D ≈ 0, the surface thermal energy received until an altitude
corresponding to an atmospheric pressure p is close to:

E ≈ C√
RN

√
πβHR

sin γD
V 2

D

[
Er f

(√
2

p

pc

)]
watts/m2

In the case of objects with low ballistic coefficient such as space probes or small
meteorites, the parameter pc is small in front of the sea level pressure ps. The maxi-
mum value 1 of Erf function as well as maximum thermal energy is reached before
impact. If the object is not vaporized, maximum surface energy received is then:
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Emax ≈ C√
RN

√
πβHR

sin γD
V 2

D.watts/m2.

9.1.4 Duration of Reentry

Knowing instantaneous vertical velocity, we can determine the variable time as
function of altitude:

dt = dz

VZ
= − dz

V sin γD

t − tD = −
∫ z

z0

dz

V sin γD
= − 1

VD sin γD

∫ z

z0

eKρdz

Using an exponential atmosphere and the variable ρ instead of Z, we have

dz = −HR
dρ

ρ

Time can be written as:

t − tD ≈ HR

VD sin γD

∫ Kρ

KρD

eKρd (Kρ)

Kρ

While noting x = Kρ, the integral can be approximated by:

I (x, xD) =
∫ x

xD

exdx

x
≈
[

Ln |x | + x + x2

4
+ x3

18
+ x4

96
+ . . .

]x

x0

The lower limit of integration xD = KρD is close to zero, the integral can be
written as:

I (x, xD) ≈
[

Ln

∣∣
∣
∣

x

xD

∣∣
∣
∣+ x + x2

4
+ x3

18
+ x4

96
+ . . .

]

That is to say,

t − tD ≈ HR

VD sin γD

[
zD − z

HR
+ Kρ

(

1+ (Kρ)

4
+ (Kρ)2

18
+ (Kρ)3

96

)]

Figures 9.2–9.4 show comparison between the results of Allen approximation
generalized to a nonisothermal atmosphere and the answers of a three degree-of-
freedom code. The assumptions are: γD = 30.4◦, VD = 6061 m/s β = 102 and
104 kg/m2, and US66 standard atmosphere. Heat fluxes are given for nose radius
RN = 1 m.
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These results show a good agreement between analytical calculations and three
degree-of-freedomdigital code. The undervaluation of maximum of deceleration and
heat flux can be explained by not taking into account gravity, which leads to overesti-
mating the loss of speed. The Allen approximation is thus quite able to give excellent
orders of magnitude of the mechanical and thermal constraints during the reentry.

9.2 Influence of Ballistic Coefficient and Flight Path Angle

Figures 9.5–9.7 show the results of three degree-of-freedom code with sensitivity
of reentry conditions to ballistic coefficient and initial flight path angle, in the same
velocity conditions as the preceding case.

We can observe that the objects with low ballistic coefficient decelerate at rela-
tively high altitude and quickly reach a subsonic limit velocity with a vertical flight

3 DoF velocity / altitude history
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path (55 Km and 20 Km for β = 1 and 100 Kg/m2, respectively). Of course, the
Allen assumptions of rectilinear of trajectory and negligible gravity are no longer
valid in this case. In fact, meteorites of small size are vaporized before reaching their
limit velocity, because their balance of thermal energy per unit of volume is very
unfavorable. Even when we use three degree-of-freedom code, accurate calculation
would require modeling the drag coefficient in free molecular and rarefied modes.
On the other hand, massive meteorites reach the surface with high speed retention
and a low thermal energy per unit volume, thus they reach the surface with devastat-
ing kinetic energies. In the case β = 104 kg/m2, final surface energy (Fig. 9.7) and
that estimated using the analytical formula are 136.9 and 151.5 MJ/m2, respectively.
This shows again that the Allen approximation provides useful orders of magnitude
of the mechanical and thermal reentry phenomena.

9.3 Influence of Range

Figures 9.8–9.15 give the influence of range on reentry conditions for a ballistic
coefficient β = 104 kg/m2, obtained using three degree-of-freedom code.

Initial conditions at 120 km are summarized in Table 9.1, for elliptic trajectories
and a nonrotating earth.

Table 9.2 summarizes the values of the parameters and corresponding altitudes
of various ranges of minimal energy trajectories, β = 104 kg/m2 and 25 mm nose
radius.

Increased range corresponds to increased initial velocity V0, thus also increased
axial and lateral load factors, pressure, and stagnation enthalpy proportional to V 2

0 ,
as well as heat flux proportional to V 3

0 . Increased range corresponds to lower flight
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path angle γ0, which increases the duration of the reentry and thus the total heat

received by the vehicle, although maximum heat flux is proportional to (sin γ0)
1
2 .

Table 9.3 summarizes influence of ballistic coefficient on the same parameters
for a 6000-km range minimum energy trajectory.

These results show that increased ballistic coefficient β increases the aerothermal
loads (stagnation pressure, heat flux, quantity of heat received, and ablation). We can
observe in addition that the approximation of Allen for an exponential atmosphere,
which predicts a maximum value of the axial load factor independent of the ballis-
tic coefficient, is faulty. The main origin of this variation is due to the differences

Table 9.1 Initial conditions of elliptic trajectories and a nonrotating earth at 120 km

Range (Km) 2000 4000 6000 8000 10000 12000

VD(m/s) 3821 5216 6061 6633 7036 7323
γ D (degrees) −36.6 −34.2 −30.4 −26.2 −21.9 −17.6
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Table 9.2 Values of the parameters and corresponding altitudes of various ranges of minimal
energy trajectories (β = 104 kg/m2 and 25 mm nose radius)

Range (km) Final Mach Final Maximum Maximum Maximum Final
velocity axial load stagnation heat flux thermal
(m/s) factor pressure (MW. energy

(g/km) (bars/km) m−2/km) (MJ.m−2)

12000 4.4 1508 49.1 10.2 88.7 10.2 117 16.1 1670
10000 5.6 1916 54.0 8.9 97.5 8.9 116 15.1 1320
8000 6.5 2211 55.4 7.5 100 7.5 106 13.2 1120
6000 6.9 2347 52.4 7.3 94.6 7.3 89 12.3 870
4000 6.7 2273 43.5 5.5 78.7 5.5 61 11.4 610
2000 5.5 1876 22.0 5.6 49 5.6 28 11.2 320

Table 9.3 Influence of ballistic coefficient on the parameters of a 6000-km range minimum energy
trajectory

β(kg/m2) Final Mach Final Maximum Maximum Maximum Final
velocity axial load stagnation heat flux thermal
(m/s) factor pressure (MW. energy

(g/km) (bars/km) m−2/km) (MJ.m−2)

20000 11.2 3818 49.1 1.4 167 1.4 122 10.3 1087
10000 6.9 2347 52.4 7.3 94.6 7.3 89 12.3 870
5000 2.7 926 59.4 11.02 53.7 11.02 63 17.1 636

Table 9.4 Comparison between the durations of reentry from 120 km for minimum energy
trajectories [calculated using three degree-of-freedom code (3DoF) and the Allen approximation]

Range (Km) 2000 4000 6000 8000 10000 12000
Duration (3DoF code) 51.22 s 41.77 s 40.81 s 43.59 s 49.82 s 61.06 s
Duration (Allen) 55.8 s 43.5 s 42 s 44.6 s 50.7 s 62.3 s

between the exponential atmosphere and a more realistic model such as the US66
standard atmosphere.

Finally, Table 9.4 shows comparison between the durations of reentry from
120 km for minimum energy trajectories, calculated using three degree-of-freedom
code and the Allen approximation.

The agreement is quite good, considering that the approximation of Allen assumes
zero gravity.



 

 

 

 

 



Chapter 10
Decay of Initial Incidence

This phase proceeds between 120 and 60 km, initially in rarefied flow then in a con-
tinuous mode. The aerodynamic resultant at the center of gravity is still negligible in
front of the weight of the vehicle, and the aerodynamic moment becomes compara-
ble with the gyroscopic moment. The velocity of the center of mass increases under
the effect of gravity, thus this is the accelerated phase of reentry. The incidence
starts to evolve under the effect of the aerodynamic moment; for a stable vehicle it
is the beginning of convergence.

To obtain an approximate solution for the motion around mass center, we will
assume the trajectory is rectilinear in an inertial frame related to a motionless earth
and atmosphere. We choose this reference frame (Fig. 10.1) such that the o�x axis
is along the relative velocity. The choice of normal and lateral axes is arbitrary.
We will use the {3, 2, 1} set of Euler angles to represent the orientation of vehicle
relative to the inertial frame. We assume the vehicle is axisymmetric. In order to
benefit from this aerodynamic and inertial symmetry, we write the equation for the
angular momentum in a reference frame Ox2y2z2 such that the o�x2 axis is along the
symmetry axis, with ϕ = ϕ̇ = 0. This observation frame follows the motion in ψ
and θ of the vehicle, but its axis Oy2 remains in the Oxy plane of the inertial frame.

Angular velocity �ω = [
p q r

]
of the vehicle and angular velocity �ωe =[

pe qe re
]

of the frame Ox2y2z2 are written in these axes as:

p = −ψ̇ sin θ + ϕ̇
pe = −ψ̇ sin θ

q = qe = θ̇
r = re = ψ̇ cos θ

We obtain the angular momentum derivative,

d �H
dt

=
⎡

⎣
Ix ṗ
IT q̇
IT ṙ

⎤

⎦+
⎡

⎣
pe

qe

re

⎤

⎦ ∧
⎡

⎣
Ix p
IT q
IT r

⎤

⎦ =
⎡

⎣
L
M
N

⎤

⎦
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Fig. 10.1 Quasi inertial
frame
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where L, M, and N are the components of the aerodynamic moment.
This gives:

Ix ṗ = L

IT qe + (Ix p − IT pe)re = M

IT re + (IT pe − Ix p)qe = N

Then,

Ixṗ = L

θ̈+
(

Ix

IT
p+ ψ̇ sin θ

)
ψ̇ cos θ = M

IT

d

dt
(ψ̇ cos θ)− (ψ̇ sin θ+ Ix

IT
p)θ̇ = N

IT

Let us assume that the angles θ and ψ are small, and the pitching moment is
a linear function of angle of attack. The object being axi symmetrical, we can
choose arbitrary transverse axes such as incidence and sideslip angles are α = θ
and β = − ψ. Then aerodynamic moment is written as:

M = q̄ Sre f Lre f (Cmα/Gθ + Cmq/G
q Lre f

V
)

N = −q̄ Sre f Lre f (Cmα/Gβ + Cmq/G
r Lre f

V

= q̄ Sre f Lre f (Cmα/Gψ + Cmq/G
r Lre f

V
)

Thus we obtain, while neglecting the second-order terms:

Ix ṗ = L

θ̈ + μpψ̇ ≈ −ω2θ − mq θ̇

ψ̈ − μpθ̇ ≈ −ω2ψ − mqψ̇
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with:

ω2 = − q̄Sref Lref Cmα/G

IT

mq = −
q̄Sref L2

ref Cmq/G

IT V

These equations are valid within our approximation for vehicles of revolution,
with or without roll velocity. Obviously, for a statically and dynamically stable ve-
hicle, we have:

Cmα/G < 0 ⇒ ω2 > 0

Cmq/G < 0 ⇒ mq > 0

The parameter ω represents the natural pulsation of pitching and yawing oscilla-
tions, mq is the aerodynamic damping term.

10.1 Zero Spin Rate

When the roll moment L and the “spin” rate p are null, the preceding system is
simplified:

θ̈ + mq θ̇ + ω2θ ≈ 0

ψ̈ + mqψ̇ + ω2ψ ≈ 0

First, we notice that the motions in ψ and θ are uncoupled and their equations
are identical. We need to study only one of the modes ψ or θ. The instantaneous
movement is an elliptic vibration resulting from the addition of two linear orthog-
onal modes. In addition, when coefficients mq and ω2 are independent of time, we
obtain the equations of the damped linear oscillator. It is obviously not the case of a
ballistic RV, which enters in the atmosphere. During the accelerated phase, velocity
varies little, but the density of air increases exponentially, as well as the dynamic
pressure, mq, and ω2 coefficients. We will see that the influence of the increase
in density is an essential factor in the dynamic behavior of the vehicle during this
phase, namely, “density damping.” In order to show this result analytically, we sim-
plify the preceding model by assuming the aerodynamic damping moment is null
(we will see in Chap. 13 that during this phase, it is negligible compared to density
damping effect). Now, let us consider the simplified equation of the θ mode:

θ̈ + ω2θ ≈ 0
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10.1.1 First Approximate Solution

We look for an approximate solution, while assuming that the relative variation of
natural pulsation Δω

ω is very small over one period T of oscillation:

ε = �ω

ω
= ω̇T

ω
= 2π

ω

ω2 � 1

Let us consider the instantaneous power of an angular movement with constant
pulsation:

Ė = IT
d

dt

(
1

2
θ̇2 + 1

2
ω2θ2

)
= IT

(
θ̈ + ω2θ

)
θ̇ = 0.

⇒ E = 1

2
IT θ̇

2 + 1

2
ITω

2θ2 = 1

2
IT θ̇

2 + 1

2
Kθ θ

2 = E0

where Kθ is the coefficient of the restoring moment. In this case, the power received
by the oscillator is null and energy is constant.

When the pulsation is variable, the derivative of energy is:

Ė = d

dt

(
1

2
IT θ̇

2 + 1

2
ITω

2θ2
)
= IT

(
θ̈ + ω2θ

)
θ̇ + IT θ

2ωω̇.

The term on the right between brackets being null, we obtain:

Ė = IT θ
2ωω̇

The instantaneous power is not zero for the motion with variable pulsation. Rota-
tional energy E is not a constant in the movement. In fact, this linear oscillator is not
an isolated system and, when ω̇ > 0, is receiving energy. Clearly, energy received
come from the initial kinetic energy of the center of mass.

Using the assumption, ε = 2π
ω

ω̇
ω is small and constant, we write now ω̇ in the

form1,

ω̇ = ω2

2π
ε.

Let us calculate the average power received (or removed) to the oscillating system
over one period:

1 Notice: According to our assumption, evolution of the pulsation is not unspecified, but follows,

d

dt

(
1

ω

)
= ε

2π
⇒ ω = ω0

1− t
τ0

,

with τ0 = 1
2πεT0.
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Pm =
〈
Ė
〉 = 1

T

∫ t+T

t
Ėdτ

Because of our assumption, on a one period scale, the motion is very close to a
sinusoidal motion with constant pulsation. Thus we obtain:

〈
Ė
〉 = 1

T

∫ t+T

t
IT θ

2ωω̇dτ ≈ IT
ω3

2π
ε

1

T

∫ t+T

t
θ2dτ

The mean value of the θ2 term for a sinusoidal evolution is equal to 1
2 θ2

max, that
is to say:

〈
Ė
〉 ≈ 1

2
ITω2θ2

max

(εω
2π

)
= E ·

(
ω̇
ω

)

We conclude with a quite simple approximate result, applicable to any linear
oscillating system with a slowly varying frequency:

〈
Ė
〉

E
= ω̇

ω
⇒ E

E0
= ω

ω0

Thus total energy of the oscillator increases linearly with pulsation. Moreover, as
instantaneous energy can be derived from the instantaneous maximum amplitude of
oscillations, we have:

E

E0
= ω2 · θ2

max

ω2
0 · θ2

0,max

We obtain finally:

θmax

θ0,max
=
(ω0

ω

) 1
2

During the accelerated phase of reentry, velocity is approximately constant and
we have:

(ω0

ω

) 1
2 =

(
q̄0

q̄

) 1
4

≈
(

ρ0

ρ

) 1
4

⇒ θ
θ0
≈
(

ρ0

ρ

) 1
4

Although the initial assumption is not verified (especially for the first periods),
we can note from Fig. 10.2 that this expression of the amplitude is in good agreement
with 6 DoF assessment of the evolution of incidence at the beginning of reentry.
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This result clearly highlights the phenomenon of “density damping”. Because
of exponential increase of density, we obtain an exponential growth of pulsation
accompanied by an exponential decay of the amplitude of oscillations (this applies,
of course, only to statically stable vehicles). Rigorously, the term damping used
for this phenomenon is not suitable because, unlike a traditional damping, it is not
directly related to a dissipation of energy. Paradoxically, when the frequency in-
creases, which is the case at the beginning of reentry and corresponds to an increase
in energy of the oscillator, we obtain a decrease of the amplitude. The reverse phe-
nomenon possibly happens at the end of the reentry on trajectories where the max-
imum dynamic pressure occurs before impact. In this case, a decrease of dynamic
pressure is accompanied by aerodynamic pulsation decreases, which corresponds
to an increase in the amplitude of the incidence. The phenomenon is in general
much less marked, because the variation of frequency is much slower and initial
incidence very low. In fact, the dissipative aerodynamic damping moment, which is
not negligible at this time, decreases or cancels the incidence buildup.

10.1.2 Second Approximate Solution

Now, we seek a more exact solution, using the assumption of a reentry at constant
velocity and gradient of pitching moment coefficient in an exponential atmosphere.
Under these conditions, we can write:
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z = zD − VD · sin γD · t ; d

dt
= −VD · sin γD · d

dz

ω2 = ω2
De
− z−zD

HR

The equation in θ becomes,

d2θ
dz2 + k2θ = 0

where k = ωDe
− z−zD

2HR

VD sinγD
= kDe

− z−zD
2HR is the wave number associated with the altitude

wavelength of the incidence oscillation such that λ = 2π
k .

We now consider the variable ϕ built from the wave number HR
λ

relative to the

reference height of the atmosphere, ϕ = 2 · 2π HR
λ
= 2 · k HR . We have:

ϕ = 2kD HRe
− z−zD

2HR

With this new variable, space derivatives of θ are transformed:

d

dz
= dϕ

dz

d

dϕ
= −kDe

− z−zD
2HR

d

dϕ
= − ϕ

2HR

d

dϕ
(

d

dz

)2

= − ϕ

2HR

d

dϕ

(
− ϕ

2HR

d

dϕ

)
=
(

ϕ

2HR

)2 ( d

dϕ

)2

+ ϕ

(2HR)
2

d

dϕ

It is easy to check that:

dθ
dz
= −k

dθ
dϕ

⇒ dϕ = −k dz

dθ
dt
= ω

dθ
dϕ

⇒ dϕ = ω dt

This shows that ϕ represents the phase of the oscillation. We obtain finally a
differential equation relative to variable ϕ,

ϕ2 d2θ
dϕ2 + ϕ

dθ
dϕ
+ ϕ2θ = 0

The observant reader will certainly identify a Bessel equation of zero order in its
simplest form:

ϕ2 d2θ
dϕ2 + ϕ

dθ
dϕ
+ (ϕ2 − n2)θ = 0
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For the detailed study of the solutions of Bessel equations, we invite the reader
to read to specialized course [ARF]. The general solution of zero order is a linear
combination of Bessel function of first species, J0 (ϕ), and of Bessel function of
second species, N0 (ϕ) (or Neumann function, noted Y0(ϕ)):

θ (ϕ) = A J0 (ϕ)+ B N0 (ϕ)

Using Bessel functions properties, we have:

dθ (ϕ)
dϕ

= −A J1 (ϕ)− B N1 (ϕ)

Coefficients A and B can be determined from initial conditions θD and θ̇D:

t = 0 → zD → ϕD =
2ωDHref

VD sin γD

AJ0
(
ϕD

)+ B N0
(
ϕD

) = θD

−A J1
(
ϕD

)− B N1
(
ϕD

) = dθ
dϕ

∣
∣
∣
∣

D
= θ̇D

ωD

which gives:

A =
θDN1

(
ϕD

)+ θ̇(D)
ωD

N0
(
ϕD

)

J0
(
ϕD

)
N1
(
ϕD

)− J1
(
ϕD

)
N0
(
ϕD

)

B = −
θDJ1

(
ϕD

)+ θ̇(D)
ωD

J0
(
ϕD

)

J0
(
ϕD

)
N1
(
ϕD

)− J1
(
ϕD

)
N0
(
ϕD

)

The behavior of the Bessel functions of first and second species of orders 0 and
1 is shown in Fig. 10.3. Evolutions of the incidence, angular rate and pulsation
calculated for a typical reentry vehicle are also represented. The examples are as
follows:

Atmosphere ρs = 1.39 kg/m3;HR = 7000 m
Vehicle coefficients Sref = .12 m2 ; Lref = 1.3 m ; IT = 6 m2 ·kg

Cmα/G = −0.2 radian−1

Initial conditions zD = 120 km ; VD = 6100 m/s, γD = 30◦
θ (Z D) = 10◦; θ̇ (Z D) = 0; ϕD ≈ 0
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Fig. 10.3 Angular rate, angle of attack and aerodynamic frequency histories

Asymptotic Form

• For ϕ → 0, we have:

J0 (ϕ)→ 1 ; J1 (ϕ) ≈ ϕ
2

N0 (ϕ) ≈ 2

π

(
Ln
(ϕ

2

)
+ γ
)
; N1 (ϕ) ≈ − 2

πϕ

with γ ≈ 228
395• For ϕ →∞, we have:

Jn (ϕ) ≈
√

2

πϕ
cos

(
ϕ−

(
n+ 1

2

)
π
2

)

Nn (ϕ) ≈
√

2

πϕ
sin

(
ϕ−

(
n+ 1

2

)
π
2

)

By using the preceding expressions with the initial condition A = θD, and B = 0,
we obtain the asymptotic form of θ and its derivative for large ϕ:
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θ ≈ θD

√
2

πϕ
cos
(
ϕ − π

4

)

θ̇ ≈ −θDωD

√
2

πϕ
sin
(
ϕ − π

4

)

θ̈ ≈ θ0ω
2
D

√
2

πϕ
cos
(
ϕ − π

4

)

Taking into account the definition of ϕ, we find a new behavior of the amplitude

of θ in ω−
1
2 ≈ ρ− 1

4 . The phase is proportional to ω ≈ ρ 1
2 .

The approximate envelopes of incidence, angular pitching rate, and acceleration
are given by:

θ

θD
≈ 1√

πHRkD
e

z−zD
4HR ; θ̇

θD
≈ ωD√

πHRkD
e

z−zD
4HR ; θ̈

θD
≈ ω2

D√
πHRkD

e
z−zD
4HR

These parameters are represented in Fig. 10.3 together with the exact theoretical
solutions for θ and θ̇ calculated previously.

10.2 Nonzero Spin

Although the equations of motion established at the beginning of this chapter apply,
we will use more convenient formulation to analyze the behavior of a vehicle with
spin. We use the {1, 2, 1} set of Euler angles described in Sect. 6.2.1. We use again
an inertial observation frame, such that axis Ox is along the center-of-mass velocity
vector and transverse axes Oy, and Oz. Thus, θ represents the angle between the
axis of symmetry of the vehicle and the flight path vector (total incidence). As pre-
viously stated, we will write the equation of the angular momentum in a reference
frame Ox2y2z2 (Fig. 10.4) such that ϕ = ϕ̇ = 0 (this reference frame, which is not
Eulerian, follows the ψ and θ motion of the vehicle, but its axis Oy2 remains in the
plane normal to flight path vector).

Angular rates �ω = [p q r
]

of vehicle and �ωe =
[
pe qe re

]
of observation

frame are,

p = ψ̇ cos θ + ϕ̇
pe = ψ̇ cos θ

q = qe = θ̇
r = re = ψ̇ sin θ

We import these values into the equation of the angular momentum,
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Fig. 10.4 Euler angles
definition
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d �H
dt

=
⎡

⎣
Ix ṗ
IT q̇
IT ṙ

⎤

⎦+
⎡

⎣
pe

qe

re

⎤

⎦ ∧
⎡

⎣
Ix p
IT q
IT r

⎤

⎦ =
⎡

⎣
L
M
N

⎤

⎦ ,

Then we obtain,

Ix ṗ = L

θ̈ + μpψ̇ sin θ − ψ̇2 cos θ sin θ = M

IT

d

dt
(ψ̇ sin θ)+ θ̇ ψ̇ cos θ − μpθ̇ = N

IT

If we neglect the damping moment, the aerodynamic moment is limited to the
static pitching moment, which we assume to be,

M ≈ q̄ Sre f Lre f Cmα/G sin θ

N = 0

When roll rate is constant, the system is written as:

θ̈ + μp0ψ̇ sin θ − ψ̇2 cos θ sin θ = −ω2 sin θ

ψ̈ sin θ + 2ψ̇θ̇ cos θ − μp0θ̇ = 0

with ω2 = − q̄ Sre f Lre f Cmα/G
IT

.
Multiplying the second equation by sin θ and integrating, we obtain a constant in

the movement. Indeed, as the aerodynamic moment component along the flight path
vector is null, corresponding component of the angular momentum is constant:
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d

dt

(
ψ̇ sin2 θ + μp0 cos θ

)
= 0

ψ̇ sin2 θ + μp0 cos θ = H �V
IT
= C.

Now, we assume that the initial conditions correspond to a free coning motion.
We can evaluate the constant C in two modes of motion.

• Precession mode: �H0 is along �V and
√

q2
0 + r2

0 �= 0 ⇔ τ = 0 ; ε �= 0

H0V

O
X

ε

From results on free coning motion (7.2),

ψ̇0 = μp0

cos θ0
⇒ C = μp0

cos θ0

ψ̇ =
μp0

[
1

cos θ0
− cos θ

]

sin2 θ

• Nutation mode: �H0 is along Ox, and not parallel with �V ⇔ τ �= 0 ; ε = 0

τ

V

O
X

H0

ψ̇0 = 0 ⇒ C = μp0 cos θ0

ψ̇ = μp0(cos θ0 − cos θ)

sin2 θ

This shows in the first case precession that rate is always the same sign as roll
rate p0. In the second case, sign is always opposed to roll rate.

We can synthesize these results:

ψ̇± =
μp0(cos θ∓1

0 − cos θ)

sin2 θ
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Now we assume the nutation motion θ is quasi-static, i.e., θ̈ ≈ 0 (it is not the
case for the precession motion ψ, because ψ̈ �= 0). Multiplying the θ̈ equation by θ,
we obtain a quadratic equation in ψ̇,

(ψ̇ cos θ)2 − μp0ψ̇ cos θ = ω2 cos θ.

Hence, while posing pr = μp0
2 , we derive two solutions for ψ̇:

ψ̇± = pr ±
√

p2
r + ω2 cos θ

cos θ

As in the preceding case, one of the solutions is always the same sign as roll rate
and the other is of opposite sign.

In order to determine the evolution of θ, let us consider again the expression of
the constant in the movement C resulting from the conservation of Hv. Using the

assumption of small angles of attack, sin θ ≈ θ; cos θ ≈ 1 − θ2

2 , this expression
takes the form:

θ2 (ψ̇ − pr
) ≈ ±θ2

0 pr

When we square this equation and replace the bracketed term by its expression

derived from the relation
(
ψ̇ cos θ − pr

)2 = p2
r + ω2 cos θ established previously,

we obtain:

θ4
(

p2
r + ω2

)
≈ θ4

0 p2
r

while naming ξ =
(

ω
pr

)2
, we have finally:

θ
θ0
≈ (1+ ξ

)− 1
4

ψ̇± ≈ pr

(
1±

√
1+ ξ

)

In the precession mode of initial coning motion ( �H0 along �V), the X axis of the
vehicle converges toward the flight path vector while turning in the same direction
as roll rate. The precession rate ψ̇ is initially equal to the free coning value and
further increases in absolute value.

In the nutation mode of initial coning motion ( �H0 along symmetry axis), the Ox
axis of the vehicle is initially motionless and converges toward the flight path vector
while turning in the direction opposite to rolling motion.

We obtain the same type of decay of the incidence as for a vehicle without spin,
i.e., a decrease of the amplitude related to the increase of air density. However, the
initial decrease is slower because of the gyroscopic moment, and the roll rate is high.
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In fact, one finds the same rate of decrease in
(

ρ0
ρ

) 1
4

only when ξ =
(

ω
pr

)2 � 1,

i.e., when the aerodynamic torque becomes prevalent.
Thus the gyroscopic moment related to roll rate has in general an unfavorable

effect with respect to the initial convergence of the incidence. However, in certain
situations this couple can be useful, for example, to control the divergence of the in-
cidence at the encounter of a transitory static instability in rarefied flows, as happens
to some space probes with high cone angles.

Figure 10.5 shows the behavior of a vehicle according to the present approxi-
mate method (Lref = 1.624 m,Sref = 0.196 m2, CNα = 2.2345 radian−1, other
assumptions identical to the vehicle used in the preceding paragraph). Figure 10.6
give a comparison between these approximate results with six degree-of-freedom
calculations. Exact calculation confirms the behavior predicted by the quasi-static
approximation. The differences observed come primarily from the different atmo-
sphere models, and not accounting for the rotation of the flight path vector under
the effect of gravity. We note indeed that the real six degree-of-freedom motion
has oscillations in the case of the initial conditions of precession (τ = 0, ε �= 0).
This is the effect of the rotation of the flight path vector due to gravity. Thus, there
appears a term δτ of second mode with precession rate ψ̇− of sign opposite to pr,
which is added to the initial mode ε with rate ψ̇+ of same sign as pr. With initial
conditions corresponding to the nutation mode (τ �= 0, ε = 0), the term δτ also
appears but its precession rate is the same. This explains why the difference between
six degree-of-freedom and approximate calculations is not oscillatory.



Chapter 11
End of the Convergence of the Incidence

During this phase, between 60 Km and sea level, we are in continuum flow and the
aerodynamic drag becomes comparable, then higher than the weight of the vehicle.
For the motion of the center of mass, it is the decelerated phase, which was previ-
ously analyzed with the Allen approximation. Under the effect of the aerodynamic
moment, incidence oscillations continue to diminish until acquisition of the static
trim in low altitude (generally in the vicinity of 10–15 Km). Depending on the level
of inertial and aerodynamic asymmetries of the vehicle, this static trim can vary
from zero to a highly amplified incidence associated with potentially catastrophic
transverse loads.

We consider here the case of a vehicle of revolution, with spin, having low aero-
dynamic and inertial asymmetries.

We assume that it enters an atmosphere at rest above a nonrotating earth, flat and
without gravity. The analysis will be made with the assumption of low incidence
and sideslip angles. The aerodynamic model is assumed to be linear with respect to
incidence and sideslip angles.

Aerodynamic asymmetries are represented by disturbance of this symmetrical
basic model.

These asymmetries originate in defects of the external surface, either preexistent
by construction or appearing during reentry by ablation under the effects of high heat
flux. They are modeled by adding constant coefficients of forces and moments at
zero incidence and sideslip to the basic aerodynamic coefficients of the symmetrical
model.

Inertial asymmetries are either a lateral displacement of the center of gravity
(CG offset) away from the aerodynamic axis of symmetry (corresponding to the
nondisturbed model) or an angular deviation of the principal axis of roll inertia
from the axis (principal axis misalignment). The amplitude of the misalignment θI

is assumed sufficiently low to allow linear approximation of the sine and cosine lines
and the simplification of the tensor of inertia. The effect of a lateral displacement
of the aerodynamic center of pressure is similar to that of the CG offset and will
not be studied specifically. The transverse moments of inertia are assumed equal (in
practice the effect of small differences is negligible).

The equations of motion will be defined in an Eulerian reference frame fixed to
the vehicle, with origin at the mass center and axis Gx parallel with aerodynamic
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axis of symmetry. The transverse axes direction (fixed relative to the vehicle) will
be chosen in order to simplify modeling. The aerodynamic reference frame has its
lateral axes parallel to the precedents and is centered at O on the aerodynamic axis
of symmetry (O is the point of origin of defining the moments).

These assumptions allow the derivation of an approximate analytical solution.
It is quite obvious that use of six degree-of-freedom code is required to study the
general case.

11.1 Linear Equations

The general equations of evolution of the angular and linear momentum are written
in the Eulerian reference frame of vehicle:

�̇H + �	 ∧ �H = �M A
/G

�̇V + �	 ∧ �V =
�F A

m

We assume that the off-diagonal terms of the tensor of inertia are small compared
with the diagonal terms:

(IT − Ix) sin θI cos φI ≈ IT (1− μ) θy = εy ; (IT − Ix) sin θI sin φI ≈ IT (1− μ) θz = εz

Thus the tensor of inertia is,

[I ] =
⎡

⎣
Ix −εy −εz

−εy IT 0
−εz 0 IT

⎤

⎦

The equation of the angular momentum is written as:

[I ]

⎡

⎣
ṗ
q̇
ṙ

⎤

⎦ =
⎡

⎣
L/G

M/G

N/G

⎤

⎦−
⎡

⎣
p
q
r

⎤

⎦ ∧ [I ]

⎡

⎣
p
q
r

⎤

⎦

By using expression of the matrix of inertia, we obtain:

ṗ = L/G

Ix
+ (1− μ)

μ

[
θyq̇ + θzṙ + p

(
θzq − θyr

)]
(11.1)

q̇ = M/G

IT
+ (1− μ)

{
pr + θy ṗ − θz

(
p2 − r2

)
+ θyqr

}

ṙ = N/G

IT
− (1− μ)

{
pq − θz ṗ − θy

(
p2 − q2

)
+ θzqr

}
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While θy and θz are small, we neglect the roll acceleration terms in the pitch and
yaw equations:

q̇ ≈ M/G

IT
+ (1− μ)

{
pr − θz

(
p2 − r2

)
+ θyqr

}

ṙ ≈ N/G

IT
− (1− μ)

{
pq − θy

(
p2 − q2

)
+ θzqr

}
(11.2)

The expressions of the force and the aerodynamic moment around the origin O
of the aerodynamic reference frame are:

F A
x = −q̄ Sre f CA

F A
y ≈ q̄ Sre f

(
−CNαβ + C A

Y 0

)
= −q̄ Sre f CNα(β − β0)

F A
z ≈ −q̄ Sre f (CNαα + CN0) = −q̄ Sre f CNα(α − α0)

L/o = q̄ Sre f Lre f

(
Cl0 + Clp/o

pLre f

V

)

M/o ≈ q̄ Sre f Lre f

(
Cmα/oα + Cm0/o + Cmq/o

q Lref

V

)

= q̄ Sre f Lre f

(
Cmα/o(α − αe,o)+ Cmq/o

q Lre f

V

)

N/o ≈ q̄ Sre f Lre f

(
−Cmα/oβ + Cn0/o + Cmq/o

r Lre f

V

)

= q̄ Sre f Lre f

(
−Cmα/o(β − βe,o)+ Cmq/o

r Lre f

V

)

Angles αe,o and βe,o are the equilibrium trim values of incidence and sideslip,
respectively, dependent on aerodynamic asymmetries, for a center of mass in O.
α0 and β0 are the incidence at zero normal force and sideslip at zero lateral force,
dependent on these same asymmetries. These angles are small compared to static
trim angles and they will be neglected.

Note that the force and transverse moment related to roll rate (Magnus effect) are
negligible in the case of the ballistic reentry vehicles, because roll rate is low.

The static moment around the center of gravity G located at �rG =
[
xG yG zG

]
in

the aerodynamic frame is:

�Ms/G = �Ms/O −�rG ∧ �FA

Dynamic moment (damping) is transformed using the special rules defined in
Sect. 4.3.2.2.
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Thus we obtain the expression of the total aerodynamic moment around G:

L/G ≈ q̄ Sre f Lre f

(
Cl0 + Clp/G

pLre f

V

)
+ q̄ Sre f CNα

[
yGα − zGβ

]

M/G ≈ q̄ Sre f Lre f

(
Cmα/G (α − αe − αG)+ CmqG

q Lre f

V

)

N/G ≈ q̄ Sre f Lre f

(
−Cmα/G (β − βe − βG)+ CmqG

r Lre f

V

)

where

αG = −zGCA
/

Lre f CmαG
; βG = −yGCA

/

Lre f CmαG
(11.3)

are the static trim incidence and sideslip induced by CG offset, and

αe = αe,G = −Cm0/G

Cmα/G
; βe = βe,G = Cn0/G

Cmα/G

are the static trim incidence and sideslip corresponding to aerodynamic asymme-
tries.

With:

Cmα/G , coefficient of gradient
of pitching moment around
the center of mass

Cmα/G = − xG − xC P

Lre f
CNα < 0

We now introduce these expressions into the equation of the angular momentum,
while noting:

Coefficient of the pitch damping term mq = −qSre f
L2

re f
IT V Cmq/G

Gradient of normal force Nα = qSre f CNα

Roll acceleration due to pure aerodynamic couples ṗ0 = q Sre f Lre f
C10
Ix

Coefficient of the roll damping term l p = −qSre f
L2

re f
IT V Clp/G

We obtain from (11.1) and (11.2):
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ṗ ≈ ṗ0 − l p p + Nα
Ix

[
yGα − zGβ

]+ (1− μ)
μ

[
θyq̇ + θzṙ + p

(
θzq − θyr

)]

(11.4)

q̇ ≈ −ω2
n(α − αe − αG)− mqq + (1− μ) pr + (1− μ)

[
−θz

(
p2 − r2

)
+ θyqr

]

ṙ ≈ ω2
n(β − βe − βG)− mqr − (1− μ) pq + (1− μ)

[
θy

(
p2 − q2

)
− θzqr

]

(11.5)

We will note the trim incidence and sideslip associated with principal axis mis-
alignment, and the total trim incidence and sideslip:

αθ = − (1− μ)θz p2

ω2
n

; βθ = − (1− μ)θy p2

ω2
n

(11.6)

We will restrain the influence of principal axis misalignment on the roll equilib-
rium state such that

α̇ = β̇ = q̇ = ṙ = 0 → αE , βE , qE , rE

Thus we will neglect the influence of the quadratic terms in q and r in the last
two equations, because equilibrium values of q and r are usually small with respect
to roll rate p (this assumption will be checked a posteriori).

Using preceding assumptions, we obtain a linear system in α, β, q, r, α̇, β̇, q̇,
and ṙ for the angular momentum equation (according to what has just been said,
these equations of evolution are correct from the point of view of principal axis
misalignment only with respect to the equilibrium state):

q̇ = −ω2
n (α − αT )− mqq + (1− μ) pr

ṙ = ω2
n (β − βT )− mqr − (1− μ) pq (11.7)

In the same way, the linear momentum equation is written as:

⎡

⎣
V̇x

V̇y

V̇z

⎤

⎦+
⎡

⎣
p
q
r

⎤

⎦ ∧
⎡

⎣
Vx

Vy

Vz

⎤

⎦ = −q Sre f

m

⎡

⎣
CA

CNα (β − β0)

CNα (α − α0)

⎤

⎦

Further derivations are,

V̇x + qVz − r Vy = −qSre f CA

m

V̇y + r Vx − pVz = −qSre f CNα

m
(β − β0)

V̇z + pVy − qVx = −qSre f CNα

m
(α − α0)
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Using small angles approximations:

tanα = Vz

Vx
≈ α; tan β = Vy

Vx
≈ β

α̇ ≈ V̇z

Vx
− α V̇x

Vx
; β̇ ≈ V̇y

Vx
− β V̇x

Vx

Vx ≈ V

When we divide the three initial equations by Vx , taking into account the ap-
proximations above, we obtain by neglecting the small terms of order higher than
one,

V̇

V
+ qα − rβ ≈ −qSre f CA

mV
(11.8)

β̇ − q Sre f CA

mV
β + r − pα ≈ −qSre f CNα

mV
(β − β0)

α̇ − q Sre f CA

mV
α + pβ − q ≈ −qSre f CNα

mV
(α − α0) (11.9)

In order to obtain a more convenient form, we introduce complex numbers for
incidence ξ = β+ iα and transverse angular rate 	 = q + i r. We obtain by linear
combination of the pitch and yaw derivative equations,

	̇ = iω2
n (ξ − ξT )− mq	− i (1− μ) p	 (11.10)

with

ξT = βT + iαT ; ξ0 = β0 + iα0

In the same way we obtain by linear combination of the linear momentum equa-
tions along normal and lateral axes:

ξ̇ − A

mV
ξ − i	+ i pξ = − Nα

mV
(ξ − ξ0) (11.11)

While denoting �α = Nα−A
mV and nα = Nα

mV , we arrange these two equations in a
linear inhomogeneous differential system with variable complex coefficients:

[
ξ̇

	̇

]
=
[− (�α + i p) i

iω2
n − (mq + i (1− μ) p

)
] [
ξ

	

]
+
[

nαξ0

−iω2
nξT

]
(11.12)

Such is the form of the approximate linear differential system for the angular
motion of a ballistic reentry vehicle with spin and small asymmetries.

To obtain a solution, we must combine the equations of roll evolution (11.4)
together with those of velocity and altitude of the center of mass (11.8)
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To determine the evolution of the center of mass location, we must project the
components of velocity in the Eulerian frame �V = [vx ≈ V vy ≈ βV vz ≈ αV

]
on

the earth’s observation frame and integrate them. To do this, we need to know the
orientation of the Eulerian frame relative to the terrestrial axes and thus determine
Euler angles by integration of angular rates.

At this stage, the system is obviously not simple enough to achieve an analytical
solution and we need a last simplification step.

11.2 Instantaneous Angular Movement

Now we assume linear velocity, dynamic pressure, and roll rate are constant. This
academic case represents the approximation of the motion of a model with spin
fired horizontally with a gun in hyperballistic tunnel filled with a homogeneous gas,
during which velocity variation can be considered negligible. Moreover, it allows to
analysis of a short period of time for a reentry vehicle with constant roll rate. Let us
note that constant roll rate requires, among other conditions, the absence of center
of gravity offset.

In this case, coefficients of the first-order inhomogeneous differential system
(11.12) giving the evolution of ξ and 	 are constant.

Eigen frequencies λ of the homogeneous system with constant coefficients are
classically solution of the zero determinant equation:

Δ =
∣
∣∣
∣
− (�α + ip)− λ i

iω2
n − (mq + i (1− μ) p

)− λ

∣
∣∣
∣ = 0

⇔ λ2 + Fλ+ G = 0 (11.13)

with,
F = �α +mq + i (2− μ) p

G = ω2
n − (1− μ) p2 +mq�α + i p

(
(1− μ) �α +mq

)

Note: Frequency or angular pulsation is used interchangeably. It obviously rep-
resents of the same physical entity, expressed either in Hertz or in radians/second.

While neglecting μ
4

∣
∣p
(
�α −mq

)∣∣ << ω2
n, we obtain the Eigen frequencies:

λ+ = �+ + iω+ ≈ − �α+mq
2 + μp(mq−�α)

4ωa
+ i
[− (1− μ

2

)
p+ ωa

]

λ− = �− + iω− ≈ − �α+mq
2 − μp(mq−�α)

4ωa
+ i
[− (1− μ

2

)
p− ωa

] (11.14)

with

ωa =
√

ω2
n +
(μp

2

)2
−
(
�α −mq

2

)2

≈
√

ω2
n +

(μp

2

)2
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11.2.1 Epicyclic Movement

The differential system being linear, for an observer fixed to the rotating axes, the
general expression of the apparent motion is the weighted sum of the two frequency
modes (in the absence of asymmetries):

ξ = ξ+e�+teiω+t + ξ−e�−teiω−t

Now, let us consider an observer fixed to the vehicle axis of symmetry but
motionless in roll (the reference frame of the observer has the same Gx axis as
the vehicle, its transverse axes are such that pobs = 0). These axes are called
“aeroballistic”[VAU]. They turn at angular rate �ωobs =

[−p 0 0
]

with respect to
the vehicle axes. Thus one passes from the vehicle axes to the aeroballistic axes by
a rotation φ around Ox such that φ̇ = −p. Relations for a vector v in the transverse
plane from the aeroballistic frame (index obs) to the vehicle frame are thus:

v = eiφvobs

v̇ = eiφv̇obs + i φ̇eiφvobs = eiφ [v̇obs − i pvobs
]

Remarks:

1. We must not confuse φ with −ϕ the usual Euler angle of the vehicle. Indeed we
have φ̇ = −p, whereas ϕ̇ = p − ψ̇ cos θ .

2. In terms of Euler angles of the aeroballistic frame, we have:

θobs = θ ; ψobs = ψ
θ̇obs = θ ; ψ̇obs = ψ̇
pobs = ϕ̇obs + ψ̇obs cos θobs = ϕ̇obs + ψ̇ cos θ = 0

ϕ̇ + ψ̇ cos θ = p

⇒ φ̇ = ϕ̇obs − ϕ̇ = −p

⇒ ϕ̇obs = −ψ̇ cos θ

3. At low incidences cos θ ≈ 1, ϕ̇obs ≈ −ψ̇ = −ψ̇obs , the transverse planes of the
vehicle and aeroballistic frame are very close to the plane normal to the center of
mass velocity vector. Thus the transverse axes of the aeroballistic frame, which
rotate at rate ψ̇obs+ ϕ̇obs ≈ 0 are quasi inertial, they represent approximately the
point of view of a motionless observer.

Taking into account φ = −pt , we obtain evolution of relative velocity and trans-
verse angular rate in the aeroballistic frame:

[
ξ̇obs

	̇obs

]
=
[−�α i

iω2
n −mq + iμp

] [
ξobs

	obs

]
+
[

nαξ0
−iω2

nξT

]
eipt
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While neglecting the term nαmqξ0, the system can be arranged in the more usual
second-order differential form, similar to a dampened oscillator:

ξ̈obs + F ′ξ̇obs + G′ξobs ≈ �ω2
nξT + i (1− μ) pnαξ0�eipt (11.15)

with,

F′ = �α +mq − iμp

G′ = ω2
n +mq�α − iμp�α

The new characteristic root equation is written as:

λ2 + F′λ+ G′ = 0 (11.16)

which gives the Eigen frequencies:

λ′+ = Λ+ + iω′+ ≈ −
�α +mq

2
+ μp

(
mq − �α

)

4ωa
+ i
[μ

2
p+ ωa

]

λ′+ = Λ− + iω′− ≈ −
�α +mq

2
− μp

(
mq − �α

)

4ωa
+ i
[μ

2
p− ωa

]
(11.17)

Thus, real parts of the Eigen frequencies (damping) are identical to the preceding
ones. The imaginary parts are:

ω′ = ω+ p

11.2.1.1 Precession and Nutation Modes

While noting pr = μp
2 as before, the preceding results give:

ω′+ ≈
μ
2

p+ ωa ≈ pr +
√

ω2
n + p2

r = pr

⎛

⎝1+ sgn(pr)

√

1+
(

ωn

pr

)2
⎞

⎠

ω′− ≈
μ
2

p− ωa ≈ pr

⎛

⎝1− sgn(pr)

√

1+
(

ωn

pr

)2
⎞

⎠ (11.18)

At high altitudes, when p is positive and ωn → 0, ω′+ et ω′− are, respectively,
equal to the precession rates ψ̇+ and ψ̇− determined before in the quasi-static ap-
proximation of initial decay of the incidence of a symmetrical reentry vehicle. Pul-
sation ω′+ is positive and corresponds to precession initial conditions τ = 0; ε �= 0
of coning motion.
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Pulsation ω′− is negative and corresponds to nutation initial conditions τ �= 0;
ε = 0 of coning motion.

As continuation of the precession coning mode, the corresponding aerodynamic
mode at Eigen frequency ω′+ should be called (when p is positive) precession mode.
In the same way the mode with ω′− Eigen frequency should be called nutation mode.
According to this terminology, when p is negative, ω′− becomes the precession fre-
quency and ω′+ the nutation frequency.

In fact, the most widely accepted aerodynamic definition assigns the nutation
mode at highest Eigen frequency (in absolute value) in the aeroballistic axes and the
precession to the lower frequency mode. This last definition is adopted here, which
is in contradiction with gyroscopic terminology.

11.2.1.2 Evolution of the Eigen Frequencies

During the reentry, the Eigen frequencies (or pulsations) evolve with the dynamic
pressure. Let us note Δω = ωa − |pr| ≈

√
ω2

n + p2
r − |pr| ≥ 0, which is zero at the

beginning of reentry. The pulsations of precession and nutation in the aeroballistic
frame are written according to Δω:

ω′nut = 2 pr + sgn(p)Δω
ω′prec = −sgn(p)Δω (11.19)

Thus, in this reference frame, the precession frequency is always of sign opposed
to the roll rate; it is null initially and growing with dynamic pressure. The nutation
frequency always has same sign as roll rate; it is initially equal to the precession
frequency of the coning motion and its module increases with dynamic pressure.

In the vehicle axes, the frequencies are:

ωnut = ω′nut − p = −p (1− μ)+ sgn(p)Δω
ωprec = ω′prec − p = −p − sgn(p)Δω

The pulsation of precession is always opposed sign to the roll rate and increases
in absolute value; its initial value is −p. The pulsation of nutation is also initially of
sign opposed to rolling, of initial value−p (1− μ), but its sign changes when:

Δω =
√
ω2

n + p2
r − |pr | = |p| (1− μ)

⇔ p = pc = ± ωn√
1− μ (11.20)

We will see later that pc value, called critical roll frequency, plays an important
role in the roll resonance and lock-in theory.

Figure 11.1 shows a typical evolution of the aeroballistic Eigen frequencies, with
p = 1 Hz roll rate.
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Fig. 11.1 Evolution of the Eigen frequencies with altitude

11.2.1.3 Representation of Angular Motion

For an observer fixed to the aeroballistic frame, the expression of the complex angle
attack is epicycle:

ξ′ = ξ′+ e�+tei ω′+t + ξ′− e�− t ei ω′−t

Taking into account the approximate expressions of ω′+ and ω′−, this can be
written:

ξ′ = ei pr t
[
ξ′+ e�+t eiωa t + ξ′− e�− t e−iωa t

]

Incidence oscillation for short periods of time appears as elliptic oscillation
slowly damped, whose axes turn slowly at angular rate pr. We can also notice that the
damping rates of the two modes are slightly different. This difference is negligible
below 60 km altitude and also in current applications where μ p

2ωa
<< 1.

For an observer fixed to vehicle axes, the evolution of the complex angle of attack
becomes,

ξ = e−i p
(
1− μ

2

)
t
[
ξ+e�+t eiωa t + ξ− e�−t e−iωa t

]

According to initial conditions of free coning motion at beginning of reentry
(τ, ε), we obtain pure precession motion (τ �= 0, ε = 0), pure nutation (τ = 0, ε �= 0),
or mixed (τ �= 0, ε �= 0), represented in Figs. 11.2 and 11.3.
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Fig. 11.2 Epicyclic motion (120–20 Km)

As we saw in the preceding paragraph, the apparent rotation movement of relative
velocity vector in the vehicle axes is always initially opposed to roll rate. However,
when the initial component of nutation is higher than the component of precession
(ε > τ), the later motion is accompanied by a change of direction of the apparent
rotation of the complex angle of attack, as in the case of a pure nutation motion.
When initial conditions are of precession type (ε < τ), the motion proceeds without
change of the direction of apparent rotation.

11.2.2 Tricyclic Movement

Now we study the general case of a vehicle with small aerodynamic and/or inertial
asymmetries.

In the case of a symmetrical and dynamically stable vehicle (�+,�− < 0),
instantaneous motion is centered on zero angle of attack and the amplitude tends
asymptotically toward zero. When an asymmetry exists, an additional term of exci-
tation is necessary in the second member of the equation of evolution.
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11.2.2.1 Trim Angle of Attack

Let us examine the asymptotic response to this excitation, referenced to an observer
fixed to the vehicle. For him, asymmetries are fixed and result in constant force and
moment terms (excitation at zero frequency). While posing ξ̇ = 0, 	̇ = 0 in the
equation of evolution (11.12), the asymptotic response is a solution of the linear
system:

[− (�α + i p) i
iω2 − (mq + i (1− μ) p

)
] [
ξ

	

]
=
[−nαξ0

iω2ξT

]

The determinant of the system is equal to the coefficient G of the characteristic
equation. Thus we obtain the equilibrium state of the rolling vehicle,
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ξE =
ω2

nξT +
(
mq + i (1− μ) p

)
nαξ0

G
≈ ω2

nξT

G

	E =
iω2

n

[
nαξ0 − (�α + i p) ξT

]

G
≈ pω2

nξT

G
= pξE (11.21)

The complex rolling trim angle can be arranged:

ξE ≈ ξT

1− sgn(1− μ)
(

p
pcr

)2 + i D
(

p
pcr

) (11.22)

with

ξT = ξe + ξG + ξθ (11.23)

pcr = ωn√|1− μ| , critical roll rate (11.24)

D = (1− μ) �α + mq

ωn
√|1− μ| damping parameter (11.25)

This can be expressed in the form:

ξE

ξT
= AeiΔ� (11.26)

with

A = 1
√(

1− εx2
)2 + (Dx)2

(11.27)

x = p

pcr
; ε = sgn(1− μ); sin Δ� = −ADx; cos Δ� = A

(
1− εx2

)

(11.28)

We must observe that ξθ = −x2
(
θy + iθz

)
in ξT depends on roll rate, but we

will continue to formally treat it like other static trim incidences.

• When μ ≥ 1, which is usually the case of entry capsules, ε = −1,A ≤ 1, the
effect of rolling motion is always to decrease the static trim. There is no problem
of roll resonance for such vehicles. For this reason the further developments are
devoted to vehicles having μ < 1.

• When μ < 1, in general the case of ballistic reentry vehicles, the behavior of
rolling trim angle of attack with respect to roll rate is typically that of a resonant
system.
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Resonance happens when x = p
pcr
= ±

√
1− D2

2 ≈ ±1. Amplification factor A

of the static trim angle ξT is then maximum, and its phase lag is ∓ π
2 , depending on

the sign of roll rate:

ξE,max = ξT

D
√

1− ( D
2

)2
e−isgn(p) π2

When p << pcr, amplification is close to unity and phase lag is negligible,
ξE ≈ ξT .

When p >> pcr , amplification is close to zero and phase lag is close to 180◦.
Figures 11.4 and 11.5 give the shape of the amplification and phase lag curves

for the rolling trim according to x, for various damping D.
The physical origin of resonance appears more clearly with the point of view

of an inertial observer, fixed to the aeroballistic frame. Indeed, the equations of
evolution corresponds to a dynamic system of Eigen frequencies ω′nut and ω′prec,

excited by an entry ξT ei p t rotating at frequency p.
Resonance possibly occurs when the frequency of excitation is close to inertial

Eigen frequencies (11.19):

ω′nut = 2 pr + sgn(p)Δω
ω′prec = −sgn(p)Δω

As precession frequency is always of sign opposed to p, resonance can only occur
in the nutation mode:
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Fig. 11.4 Trim amplification factor
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ω′nut = μp + sgn(p)Δω

In the case of entry capsules, μ > 1 → |p| < μ |p| ≤ ∣∣ω′nut

∣
∣, resonance is also

impossible in the nutation mode.
We thus obtain the condition for μ < 1:

p = ω′nut ⇔ p ≈ μp

2
±
√

ω2
n +

(μp

2

)2 ⇔ (1− μ)p2 = ω2
n

The resonance occurs when the roll frequency is near the critical roll rate :

p ≈ ± ωn√|1− μ| = ±pcr

This highlights the reason why entry capsules with μ ≥ 1 are not subject to
resonance. In fact, it is because their inertial Eigen frequencies can never be equal
to roll frequency.

11.2.2.2 Lunar Motion

When the vehicle reaches its rolling trim incidence at roll rate p, we have:

ξ = ξE = αE eiφE ≈ cste

	 = 	E = pξE = pαE eiφE

The relative velocity vector is motionless for the vehicle-fixed observer. From the
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point of view of an inertial observer, the CG relative velocity have a near constant
direction and the axis of symmetry of the vehicle has a precession rate ψ̇ around
this relative velocity:

ψ̇ sinαE = |	E | = rE = pαE ⇒ ψ̇ ≈ p

p = ϕ̇ + ψ̇ cosαE ⇒ ϕ̇ ≈ p − p cosαE ≈ p
α2

E

2

ω �V = ψ̇ + ϕ̇ cosαE ≈ p

(

1+ α2
E

2

)

ω⊥V⇀ = ϕ̇ sin αE ≈ p
α3

E

2

Rigorously, the direction of the rotation rate �ω of the vehicle is not exactly along
the velocity �V . This vector also turns around �V at the rate ψ̇ = p. However, in
practice the misalignment is second order, i.e.:

ω ≈ ψ̇ ≈ p

ϕ̇ = 0

Euler roll angle ϕ is constant: the vehicle turns on itself at roll rate p, with always
the same trim meridian ZE to the velocity vector. The motion is of the same nature
as the apparent rotation motion of the moon around the earth, always presenting the
same face. The lunar motion is typical of the final phase of ballistic reentry vehicles,
under 15 km altitude. Let us assume that the rolling trim angle is in the meridian
plane OzE of the vehicle, we observe the motion represented in Figure 11.6.

We will notice that the above expression of transverse angular rate at equilibrium
is small compared to p. This justifies a posteriori the assumption to neglect q2, r2,
and qr relative to p2 at equilibrium to estimate the influence of the principal axis
misalignment.

Fig. 11.6 Rolling trim
motion
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11.2.2.3 Representation of Angular Motion

The general motion in the presence of asymmetries is the sum of the transitory re-
sponse to initial conditions and of the asymptotic trim solution. The apparent motion
referenced to the aeroballistic frame is:

ξ′ = ei prt
[
ξ′+e�+teiωat + ξ′−e�−te−iωat

]
+ ξEei p t

This motion of the tricycle type is shown in Fig. 11.7. The equilibrium motion
corresponds to the lunar motion such that the vehicle axis turns around the relative
velocity vector at the roll rate.

For an observer fixed to vehicle axis, the evolution of the complex incidence
becomes,

ξ = e−i p
(
1− μ

2

)
t
[
ξ+e�+teiωat + ξ−e�−te−iωat

]
+ ξE.

This motion is of the epicycle type with origin offset ξE relative to G.
When t → ∞,�+ < 0,�− < 0, the bracketed term vanishes and the vehicle

reaches its rolling trim, which corresponds to a constant complex incidence ξE.

11.2.2.4 Critical Roll Frequency and Resonance

The critical rolling frequency is

CG

p t

z

y

⏐ξE⏐

⏐ξnut⏐ ⏐ξprec⏐(ωa + pr) t

(–ωa + pr) t

Fig. 11.7 Tricyclic motion
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pcr = ωn√
1− μ

where the natural pitch and yaw frequency of the vehicle is

ωn =
(
−q Sre f Lre f

Cmα/G

IT

) 1
2

During the reentry, it increases with dynamic pressure and, depending on the
trajectory, generally reaches a maximum before impact. Resonance conditions can
be encountered more than once during the reentry. Typically, a first resonance takes
place at high altitude (usually between 40 and 60 km altitude, Fig. 11.8) as the crit-
ical frequency increases to the level of the initial roll rate. A second resonance may
then be crossed at low altitude (typically a few kilometers) during the decrease of
the critical frequency combined with increased roll rate.

In the absence of coupling between pitch, yaw, and roll motion by the means
of the CG offset, resonance crossing has only a transitory amplification of the ef-
fects of any asymmetry. The rolling trim incidence is temporarily amplified to an
increase of total incidence and associated normal load factor. Figure 11.9 repre-
sents such a case of amplification of the trim associated with a 0.5◦ principal axis
misalignment.
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Fig. 11.8 Evolution of the critical roll frequency



198 11 End of the Convergence of the Incidence

Trim amplification at resonance crossover
trim = 0.5 degree principal axis misalignment

25

20

15

5

10

0
0 20 40 60 80

altitude (km)

1st resonance

critical roll frequency
initial roll, p0 = 1.5 Hz
angle of attack (degree)

fr
eq

ue
nc

y 
(H

z)
, A

O
A

 (
de

gr
ee

)

Fig. 11.9 Trim amplification at first resonance

11.3 Real Angular Motion

The preceding solutions were using two principal assumptions:

Approximation at small angles of attack and linear dependence of the aerody-
namic coefficients

Constant velocity, dynamic pressure, and roll rate.

In reality these last parameters evolve during the reentry, as well as the coeffi-
cients of the equation of evolution. The corresponding effect during the accelerated
phase could be analyzed for a vehicle with or without spin, thanks to other sim-
plifying assumptions. In the case of an exponential evolution of the natural pitch
and yaw pulsation, it is possible to obtain an “analytical” solution, analogous to
that obtained in the case without spin, based on “special” functions. Rather than
attempting tedious developments to finally obtain a solution with limited validity,
we will restrain ambition and give a heuristic solution. This solution corrects the
stationary solution of the preceding paragraph to take account of a slow evolution of
these coefficients. This correction is based on the solution obtained by the method
using energy of rotation in the case of the accelerated reentry and does not have
rigorous theoretical justification. Thus, we obtain in the aeroballistic frame:

ξ ′ =
(
ωn0

ωn

) 1
2 {
ξ+e

∫ t
0 �+dτei

∫ t
0 (pr+ωa )dτ + ξ−e

∫ t
0 �−dτei

∫ t
0 (pr−ωa )dτ

}
+ξE ei

∫ t
0 pdτ
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This approximation must be handled with care and has significance only for lim-
ited durations while the vehicle is subjected to no high frequency disturbance (i.e.,
same order of magnitude or higher than the nutation or precession frequencies).

In this last case, only an exact numerical six degree-of-freedom solution is able
to provide the realistic response of the vehicle. The effect of a disturbance at non-
negligible frequency (for example, roll resonance crossing) involves in general a
redistribution of energy between the nutation and precession components and thus a
basic change of motion (such a phenomenon will be developed in Chap. 14). How-
ever, this approximation shows that even during the decelerated phase, the density
damping plays a significant role. In fact, it is rather now a “dynamic pressure” damp-
ing since the variation of velocity is no longer negligible. As stated earlier, following
maximum dynamic pressure and natural pitch frequency, their decrease can cause
a destabilizing effect, compensated by the stabilizing effect of the gradient of lift
force and any aerodynamic pitch damping moment of the vehicle.

Principal phenomena likely to disturb the evolution of the incidence during reen-
try are, in addition to the effect of external shape and mass asymmetries:

Asymmetric progression of laminar/turbulent transition front on the reentry ve-
hicle. It can be accompanied by destabilizing or stabilizing transverse mo-
ments.

Effects related to the gas injection (blowing) in the boundary layer accompa-
nying pyrolize and ablation of the heat shield. According to the thermal lag
of heat shield material with respect to the heat flux and the roll rate, the
corresponding moments can lead to a dynamic instability. In fact, these phe-
nomena are generally associated with the progression of the transition and
cannot be separated.

The crossing of an unstable aerodynamic regime (e.g., sometimes in rarefied
flow)

An evolution of the center of pressure location related to a sudden change of
aerodynamic configuration. The rapid evolution of the natural pitching fre-
quency can involve a step increase or reduction in the incidence.

The crossing of atmosphere layer with strong vertical gradient of the horizontal
component of wind. Vehicles having low terminal velocity are very sensitive
to this phenomenon.

This list is not exhaustive since other phenomena encountered during flight are
not yet clearly explained. All the listed phenomena are likely to involve fast buildup
or reductions in the angle of attack. Another potential phenomenon relates to non-
linearity of the aerodynamic stability moment with respect to incidence. Indeed, for
some aerodynamic shapes, one can observe a forward motion of the center of pres-
sure when the incidence increases. When the separation from the missile induces
high initial angle of attack, this may be very constraining for the center of mass
location, which must guarantee a positive static margin during the reentry. For other
configurations, one can observe the opposite phenomenon, i.e., an aft motion of the
center of pressure with incidence at high Mach number. If packaging constraints are
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severe, a slight negative static margin near zero angle of attack at high Mach number
can be permitted, provided it again becomes positive at lower altitudes and as the
dynamic pressure increases. A more detailed analysis of some of these phenomena is
done in the Chaps. 13 and 14. In Chap. 12, we will address the behavior of slightly
asymmetrical vehicles when they cross roll resonance and more particularly the
roll-lock-in phenomenon.



Chapter 12
Roll-lock-in Phenomenon

In Sect. 11.2, we studied the reentry of a ballistic RV with constant roll rate and
highlighted the possibility, for μ < 1, of a resonant amplification of the static trim
angle related to asymmetries, according to the parameter x = p/pcr .

This phenomenon is induced by the coupling between rolling motion at fre-
quency p and pitch and yaw motion at frequency ωnut and ωprec. If there is a CG
offset (yG, zG), transverse aerodynamic forces related to incidence and sideslip cre-
ate a rolling moment. This applies a coupling of pitch and yaw with roll and thus
closing a reaction loop. When adequate conditions are met by the parameters of
the loop, a possible consequence of the crossing of resonance is a true control of
roll rate on the critical frequency. This phenomenon, named “roll-lock-in” since it
results in permanent resonance conditions, is likely to maintain a high rolling trim
incidence at altitudes of high dynamic pressure.

This incidence may cause demise of the vehicle under very high lateral loads
and heat flux. To study this phenomenon, we will use the equations of evolution
established in the general case for the complex incidence and angular rates in the
preceding chapter. This time, we will let the dynamic pressure evolve, as well as the
roll rate according to the rolling moment.

In addition, we assume that the RV is initially at rolling trim, and its response
time in pitch and yaw is negligible compared to variation of coefficients of the
differential system (i.e., the dynamic pressure, the roll rate, etc). We will see later
that this classical quasi-static modeling may result in poor prediction. Hence, we
must remind the results are only qualitative. Under these conditions, we assume the
vehicle remains close to rolling trim, and it results ξ ≈ ξE, 	 ≈ 	E:

ξE = βE + iαE ≈ ξT

1− x2 + i Dx
	E = pξE

where the complex static trim angle is ξT = ξe + ξG + ξθ .
While q̇ = ṙ = 0, α = αE , β = βE , qE = pβE and rE = pαE , (11.4) gives the

quasi-static roll acceleration:

ṗ ≈ ṗ0 − l p p + Nα
Ix

[
yGαE − zGβE

]+ (1− μ)
μ

p2 (θzβE − θyαE
)

(12.1)

P. Gallais, Atmospheric Re-Entry Vehicle Mechanics. 201
C© Springer 2007
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From (11.22) to (11.28), we have:

ξE = A2
[(

1− x2
)
− i Dx

]
ξT

with

A2 = 1
(
1− x2

)2 + (Dx)2
. (12.2)

The incidence and sideslip angles at pitch equilibrium with spin are:

αE = A2
[
(1− x2)αT − D xβT

]
; βE = A2

[
D xαT +

(
1− x2

)
βT

]
(12.3)

with αT = αe + αG + αθ ; βT = βe + βG + βθ .
Now, we will examine the different cases of combined asymmetries.
We will use the roll (12.1) assuming pure rolling moment ṗ0 and damping lp are

negligible:

ṗ ≈ Nα
Ix

[
yGαE − zGβE

]+ (1− μ)
μ

p2 (θzβE − θyαE
)

(12.4)

12.1 Association of Aerodynamic Asymmetry and CG Offset

We choose Oz axis along the CG offset and define� angles as shown in Fig. 12.1.
Asymmetries are small by hypothesis, hence zero lift angles are assumed negli-

gible compared with trim angles, |ξ | >> |ξ0|, and we neglect ξ0 in the equations.

The simplified rolling equation becomes:

ṗ = − zG Nαβ

IX
= zG FY

IX
= − zG |F | sin�

IX

Fig. 12.1 Definition of phase
lag angle for lateral force

zG

x

zo
G

Φ0

ΔΦ

p

y

Φ F0

F
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where� is angle of the lateral rolling trim force F at roll rate p. While F = −NαξE ,
� = �0 +��, and ξT = ξe + ξG , (11.22) gives,

F

F0
= ξE

ξe + ξG
= AeiΔ�

with

A = 1
√(

1− x2
)2 + (Dx)2

sin Δ� = −A D x; cos Δ� = A
(

1− x2
)
; x = p

pcr

F0 = |F0| ei( π2 +�0) = −Nα
[
|ξe| ei( π2 +�e) + |ξG | ei π2

]

|ξG | = − zGCA

Lre f Cmα/G
= zGCA

(xG − xcP)CNα

|F0| = Nα |ξe|
√

1+
( |ξG |
|ξe|
)2

+ 2
|ξG |
|ξe| cos�e

sin�0 = − sin�e√

1+
( |ξG |
|ξe |
)2 + 2 |ξG |

|ξe| cos�e

cos�0 = −
[
cos�e + |ξG |

|ξe|
]

√

1+
( |ξG |
|ξe |
)2 + 2 |ξG |

|ξe| cos�e

Aerodynamic asymmetry being independent of zG, static trim angle of the com-
bination can have any orientation�0.

The rolling equation is then:

ṗ = − zG |F0| A sin (�0 + Δ�)
Ix

= zG |F0|
[
D x cos�0 −

(
1− x2

)
sin�0

]

IX
((

1− x2
)+ D2x2

) = ṗ0 maxG

where ṗ0 max = zG |F0|
IX

is the maximum “virtual” static roll acceleration correspond-
ing to the CG offset associated to the static trim incidence, and G = −A sin� the
amplification of roll-acceleration in the vicinity of resonance.



204 12 Roll-lock-in Phenomenon

12.1.1 Equilibrium on Critical Frequency

At resonance we have xcr = p
pcr
= ±

√
1− D2

2

G =
[
Dx cos�0 −

(
1− x2

)
sin�0

]

((
1− x2

)2 + D2x2
) =

[
±D
√

1− D2

2 cos�0 − D2

2 sin�0

]

D2
(

1− ( D
2

)2)

Let us first assume the critical frequency pcr is constant. To maintain resonance
as equilibrium, it is necessary to verify ṗ = ṗcr = 0 ⇔ G = 0, which gives:

tan�0 = ±
2
√

1− D2

2

D
⇔ �0 ≈ ±

∣∣
∣
∣
π

2
− arctg

(
D

2

)∣∣
∣
∣

Thus there are two possible orientations of the aerodynamic trim force relative to
CG offset, which lead to resonance equilibrium, close to ±π

2 . These configurations
correspond to aerodynamic asymmetries such that:

cot�0 =
cos�e + |ξG |

|ξe|
sin�e

≈ ±D

2

For low offset values, they are close to normal to CG offset.
Asymmetries are named “out-of-plane” or “in-the-plane”, depending on the an-

gle with the CG offset.
There is another possible roll-trim for “in-the-plane” asymmetries, such sin�0 =

0 → x = 0, which does not correspond to resonance.
To have a stable lock-in on resonance it is not sufficient to have a zero moment

at p ≈ pcr, moreover it is necessary that a moment exists which restores equilibrium
when variations occur. This implies,

Δ ṗ ≈ K (p − pcr ) ,with K = ∂ ṗ

∂p

∣
∣
∣∣

p≈pcr

< 0 ⇔ ∂G

∂x

∣
∣
∣∣
x≈xcr

< 0

This gives the necessary condition:

∂G

∂x

∣
∣
∣∣
x=xcr

=
D cos�0

(
1+ x2

(
2− D2

)
− 3x4

)
+ 2x sin�0

(
D2 − 1+ 2x2 − x4

)

((
1− x2

)2 + D2x2
)2

∣
∣
∣
∣∣
∣
∣
x=xcr

< 0

⇔
[

D cos�0

(
1+ x2

(
2− D2

)
− 3x4

)
+ 2x sin�0

(
D2 − 1+ 2x2 − x4

)]∣∣
∣
x=xcr

< 0
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For out-of-plane asymmetries, the condition is:

cos�0 ≈ 0; sin�0 ≈ ±1 ⇒ ± 2x
(

D2 − 1+ 2x2 − x4
)∣∣
∣
x=xcr

< 0

with

xcr = p

pcr
= ±

√

1− D2

2

That is to say,

2 sin
(
�0 = ±π

2

)
xcr D2

(

1−
(

D

2

)2
)

< 0

This is verified for:

�0 ≈ π
2
; xcr = p

pcr
= −

√

1− D2

2
≈ −1

�0 ≈ −π
2
; xcr = p

pcr
= +

√

1− D2

2
≈ +1

Thus, for out-of-plane asymmetries, stable roll lock-in at critical frequency is
possible when:

• �0 ≈ −π
2 , on +pcr

• �0 ≈ π
2 , on −pcr

For in-the-plane asymmetries, stable roll equilibrium is possible only if x = 0 when:

D cos�0 < 0 → �0 = π.

Thus roll lock-in is not possible for this kind of asymmetries.
These results are illustrated in Fig. 12.2, which shows the rolling moment ampli-

fication factor G according to x = p
pcr

for �0 = 0, π2 , π, 3π2 and for D = 0.2.
For �0 = π

2 , we can observe the roll-lock-in domain with high stability around
x = −1, and a similar condition at �0 = 3π2 around x = +1.

• Orientations�0 = 0 and�0 = π at x = ±1 show strong amplification of rolling
acceleration, but without possibility of equilibrium. Orientation�0 = π at x = 0
(i.e., at p = 0) gives a low stability equilibrium.
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Fig. 12.2 Rolling acceleration amplification

12.1.2 Lock-in Near Resonance

We have studied the possibility of a lock-in exactly at the critical frequency; how-
ever, lock-in may also occur near the critical frequency, i.e., verifying p = xr pcr

with xr constant near unity.
The necessary conditions to maintain balance around this value are:

G(�0, xr ) = 0; ∂G

∂x

∣
∣
∣∣
xr

< 0

The first condition gives:

sin� = 0 ⇔ �0 = −Δ�+ kπ

⇔ sin�0 = ADxr ; cos�0 = A(1− x2
r )

or

sin�0 = −ADxr ; cos�0 = −A(1− x2
r )

When we introduce these values in the expression of the second condition, we
obtain:

±AD
[
x6

r − (1− D2)x4
r − (1− D2)x2

r + 1
]
< 0
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Naming u = x2
r > 0 and factorizing, we obtain a cubic inequality:

± (u + 1)
(

u2 −
(

2− D2
)

u + 1
)
< 0

The first term has only one real root u = −1 and two imaginary roots. Thus, as
it has a constant sign in the domain u > 0 and the condition is verified only for the
case of negative sign, corresponding to �0 values such that:

sin�0 = −ADxr ; cos�0 = −A(1− x2
r )

Hence, there is a possibility of steady roll equilibrium at any arbitrary value xr ,
for �0 given by the preceding relation.

Figure 12.3 gives, according to�0, amplification factor A and value xr of reduced
roll rate in the case of D = 0.2.

We note that there are two angular domains giving a rolling equilibrium with
high amplification of the trim angle:

• The first is centered on 90◦, which corresponds xr = p/pcr near −1.
• The second is centered on 270◦, which corresponds to xr near 1.

These domains correspond to “out-of-plane” asymmetries.
For in plane asymmetries, there are two angular ranges, centered on 0◦ and 180◦;

they correspond either to the xr = p/pcr value around 0 or to values appreciably
higher than 1 and by consequence do not give a resonant amplification.

Phi0 (degree)

A
, X

r

A
Xr
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0 45 90 135 180 225 270 315 360
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3
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2

Fig. 12.3 Amplification sensitivity on �0
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Fig. 12.4 Amplification of roll acceleration for various orientations of asymmetries

Thus, the roll-lock-in phenomenon requires “out-of-plane” asymmetries, while
“in-the-plane” asymmetries are likely to give a rolling equilibrium around zero roll
rate or high values of trim roll rate. Figure 12.4 shows the possibilities of roll lock-in
at conditions near but distinct from resonance, for �0 = π

4 , 3 π
4 , 5 π

4 , 7 π
4 correspond-

ing to D = 0.2.
We note that the equilibrium roll rates are pr ≈ ±0.9 pcr; pr ≈ ±1.1 pcr

The steady equilibriums are:

�0 = π

4
→ pr ≈ −1.1 pcr

�0 = 3
π

4
→ pr ≈ −0.9 pcr

�0 = 5
π

4
→ pr ≈ +0.9 pcr

�0 = 7
π

4
→ pr ≈ +1.1 pcr

Corresponding amplification factors of trim angle are close to 3.2 for pr ≈
±1.1pcr and 3.9 for pr ≈ ±0.9pcr.

In addition, we can note that the domain of stable equilibrium in the vicinity
of resonance is reduced. Equilibrium corresponding to the maximum of resonance
effects are close to p = ±pcr.
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12.1.3 Variable Critical Frequency

In the preceding analysis, we considered the possibilities of roll lock-in for the case
of a constant critical roll rate. In this case, we need a zero mean rolling acceleration
to maintain lock-in.

The stability condition:

∂ ṗ

∂p

∣
∣
∣∣
pr=xrpcr

= ṗ0 max
1

pcr

∂G

∂x

∣
∣
∣∣
xr

< 0,

does not imply a condition on the level of asymmetries.
When pcr evolve, the stability condition remains unchanged, but to maintain

equilibrium around value pr = xrpcr at constant xr requires a nonzero mean rolling
acceleration ¯̇p = xr ṗcr �= 0. This mean rolling acceleration must verify:

¯̇p = ṗ0 maxḠ(x,�0) = xr ṗcr

To maintain resonance, it is necessary that the stability domain around xr contain
a value of x such that:

|ṗ0 maxG(x,�0)| ≥ |xrṗcr|

• Moreover, around this value the sign of ṗ must be identical to that of xrṗcr.
• If the maximum module of the moment generated by combination of asymmetries

is insufficient, a fortiori it will always be so for nonoptimum conditions, i.e., one
must satisfy the necessary conditions:

max
[|ṗ0 maxG(x,�0)|

] ≥ |xrṗcr| ; sign
[

ṗ0 maxGext (xext ,�0)
] = sign (xr ṗcr )

12.1.4 Criterion for Out-of-plane Asymmetries

Optimum roll amplification factor G corresponds to:

∂G

∂x
= 0 ⇔ D cos�0

(
1+ x2

(
2−D2

)− 3x4
)+2x sin�0

(
D2 − 1+2x2 − x4

)

((
1− x2

)2 + D2x2
)2 = 0

For cos�0 = ±1 ⇔ �0 = 0 or �0 = π , solutions corresponding to G optimum
have analytical expressions:
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xopt ≈
√

1− D2

4
→ Gopt ≈ cos�0

D
√

1− 3D2

16

xopt ≈ −
√

1− D2

4
→ Gopt ≈ − cos�0

D
√

1− 3D2

16

For sin�0 = ±1 ⇔ �0 = π
2 or �0 = 3π2 the solutions are:

xopt ≈ ±
√

1+ D → Gopt ≈ sin�0

D (2+ D)

xopt ≈ ±
√

1− D → Gopt ≈ − sin�0

D (2− D)

xopt = 0 → Gopt = − sin�0

For any other value of �0, the solutions are accessible only numerically.
From preceding results, for out-of-plane asymmetries, stable solutions are ob-

tained only for:

�0 ≈ π

2
; xr ≈ −1

�0 ≈ 3
π

2
; xr = +1

Thus optima of G in the vicinity are:

• for�0 ≈ π
2 ; xr = −1

xopt ≈ −
√

1+ D → Gopt ≈ 1

D (2+ D)
≈ 1

2D

xopt ≈ −
√

1− D → Gopt ≈ − 1

D (2− D)
≈ − 1

2D

• for�0 ≈ 3π2 ; xr = +1,

xopt ≈
√

1+ D → Gopt ≈ − 1

2D

xopt ≈
√

1− D → Gopt ≈ 1

2D

Hence, for out-of-plane asymmetries, the minimum size of asymmetries is given
by the criterion:

ṗ0 max

2D | ṗcr | ≥ 1
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We leave to the reader to check that, when crossing first and second resonance,
the conditions of sign are met for �0 ≈ π

2 ; xr = −1 and for �0 ≈ 3π2 ; xr = +1
The criterion can be developed using Allen’s approximate expression of reentry

velocity for high β vehicles [Chap. 9, (9.1)],

V ≈ VDe−Kρ, ρ = ρSe
− z

HR , K = βHR

2 sin |γ |

We obtain successively:

ṗcr=
√

Sre f CNα�X

2 (IT − IX )

d

dt

(
V
√
ρ
)=
√

Sre f CNα�X

2 (IT − IX )

(
V̇
√
ρ + V

d
√
ρ

dz
(−V sin |γ |)

)

ṗcr =
√

Sre f CNα�X

2 (IT − IX )

(
− A

m

√
ρ + V 2

√
ρ

2Href
sin |γ |

)

=
√

Sre f CNα�X

2 (IT − IX )
V 2
√
ρ

2

(
−βρ + sin |γ |

Href

)

In addition,

D = (1− μ) �α + mq

ωn
√

1− μ = 1

m

√
ρSre f (IT − IX )

2�XCNα

[

(CNα − CA)−
mL2

re f Cmq/G

(IT − IX )

]

Observing that usually |αG | << |αe|,

ṗ0 max ≈ zG
ρV 2

2
Sre f

CNααe

IX

We obtain finally the following expression of the criterion:

zGαe

[zGαe]1
≥ |1− η|

with,

η = HRρ

β sin |γ | ; β = m

SCA

[zGαe]1 =
IX

m HR
sin |γ |

(
1− CA

CNα

)(

1−
mL2

re f Cmq/G

(CNα − CA)(IT − IX )

)

While using the usual sizing assumption Cmq = 0, we obtain:
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[zGαe]1 ≈ 5.73104 IX

m HR
sin |γ |

(
1− CA

CNα

)

mm.degree

Let us apply these results to the conical RV (Chap. 4) of half-cone angle 8◦, RN =
25 mm,D = 0.5 m,m = 117 kg, Ix = 2 m2 kg, IT = 15 m2 kg, β = 9170 kg/m2,
γ = −25◦, and xG/Lre f = 63.4% from apex. At high Mach number and 1◦ angle
of attack we obtain:

λ = CNα/CA ≈ 33.5; �X ≈ 160 mm

While ρSL = 1.39 kg.m−3, Href ≈ 7000 m, and Cmq ≈ 0, it results:

[zGαe]1 ≈ .06 mm.degree

The parameter η ≥ 0 increases during reentry from zero to its maximum value
at sea level ηmax = Hre f ρ0

β sin|γ | = 2.51. The critical frequency increases and passes by
its maximum when η = 1, then decreases when η > 1.

Figures 12.5 and 12.6 show roll lock-in criterions according to η or altitude.

• For asymmetries whose product is lower than value [zGαe]1 lock-in may be
possible in a domain of altitude around the maximum of critical roll rate (it is
necessary that roll rate is reached before the critical roll value corresponding to
altitude where the criterion begins to be satisfied). Roll lock-in is impossible out
of this small domain. For initial roll rates slightly lower than the maximum of the
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Fig. 12.5 Criterion function of η
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Fig. 12.6 Criterion function of altitude

critical frequency, the theoretical analysis shows the possibility of maintaining
the lock-in for very low levels of asymmetries. This is due to the fact that the
critical frequency is stationary in a small interval of altitude around the max-
imum. This does not have any practical consequences, the criterion being not
satisfied out of this interval, lock-in will stop rapidly.

• For asymmetries in the range between [zGαe]1 and the sea level value [zGαe]2 =∣
∣ηmax − 1

∣
∣ [zGαe]1, there may be a possibility of lock-in from the crossing of the

first resonance until the altitude where the criterion is not verified, lower than
the altitude of maximum critical frequency. Lock-in is not possible out of this
domain. For asymmetries whose product is higher than [zGαe]2, lock-in may be
possible from the crossing of the first resonance to the ground level.

Generally, this simplified theory overestimates the risks of roll lock-in compared
to six degree-of-freedom calculations, particularly for the first resonance.

We did not take into account herein the dynamic pitching response of the vehi-
cle, with characteristic time τ ≈ 2π/ωn . Thus, results are clearly valid only when
this response time is negligible compared with the duration of resonance crossing.
Another explanation could be an underestimation of damping factor D. Indeed, den-
sity damping is still effective at first resonance altitude and is not included in this
theory.

Thus this criterion must only be regarded as an instructional tool to obtain orders
of magnitude. A serious study requires the use of a six degree-of-freedom digital
code, which yields results as shown in Fig. 12.7 corresponding to the following
example:
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Fig. 12.7 6 DoF results for 2nd resonance lock-in with CG offset and aerodynamic asymmetry

• Same vehicle as analytic computation, CG offset zG = 1.mm
• Out-of-plane aerodynamic asymmetry corresponding to a normal force at zero

angle of attack exerted on the nose, directed�e = 270◦ from CG offset:

F0n = qπR2
nCN0n

CN0n evolves from 0 for Z > 20 Km to 0.2 for Z < 15 km, with a linear variation.
Assuming no downstream effects, from the nose force, the moment coefficient at
zero angle of attack is:

Cm0G ≈ πR2
n

Sre f

XG

Lre f
CN0n

• Pitch damping coefficient Cmq , nominal value (Chap. 4), or Cmq = 0

In the case without CG offset, the rolling moment is null and the roll rate remains
constant and lower than the critical frequency. There is no crossing of the second
resonance.
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In presence of CG offset, a positive rolling moment occurs under 20 km altitude,
dependent on the development of asymmetry. The positive rolling moment increases
roll rate and involves crossing of second resonance near 2 km altitude. As the orien-
tation of asymmetry (out-of-plane), corresponds to the stable roll equilibrium condi-
tion, and available roll moment is sufficient, there is lock-in on the critical frequency
p ≈ +pcr down to the sea level for the two hypothesis of damping coefficient. Roll
lock-in results in a permanent amplification and a divergence of the trim incidence
compared to the undercritical reference case p << pcrit. This high angle of attack
involves high normal loads (70–140 g) and a velocity loss (Mach difference 0.3 to
1.8 with reference case).

Design studies generally use six degree-of-freedom Monte Carlo codes as main
tool for sizing RVs. From sizing hypothesis on the probability distributions of
vehicle’s parameters (aerodynamic coefficients, mass, inertia, axial CG location,
aerodynamic, and inertial asymmetries), atmosphere, wind, and kinematics initial
conditions, these codes allow to run hundreds or thousands of samples of six degree-
of-freedom trajectories to assess statistics on reentry performance including load
environment and dispersions.

Figure 12.8 shows distribution of lateral loads on the preceding vehicle obtained
with a six degree-of-freedom Monte Carlo code, with hypothesis:

• CG offset is a random variable with uniform probability on the disk rG ≤ RG,max,
RG,max = 0.5, 1.0, 1.5 mm and

• CN0n is uniform in the interval [0, 0.2], φ is uniform in [0, 2π].

lateral load factor (g)

RGmax = 0.5 mm ; nominal Cmq

RGmax = 1.5 mm ; nominal Cmq

RGmax = 1.0 mm ; nominal Cmq
RGmax = 0.5 mm ; Cmq = 0

RGmax = 1.0 mm ; Cmq = 0

RGmax = 1.5 mm ; Cmq = 0
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Fig. 12.8 6 DoF Monte Carlo results for 2nd resonance lock in study
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While RG,max ≥ 1 mm and Cmq = 0, we obtain more than 1% probability of
lateral loads in excess of 100 g.

For this vehicle, it results tolerance on the maximum CG offset must be lower
than 1 mm to achieve acceptable lateral loads.

This type of results shows that Monte Carlo approach is very useful to assess
requirements on stability and tolerances as well as performances of the vehicle

12.2 Isolated Center of Gravity Offset

We consider a symmetrical vehicle, except a small CG offset zG. From previous
analysis, it results static and rolling trim angles.

• At zero roll rate, the pitching moment of axial force “Fx,” balanced by the pitch
stability moment, results in a static trim angle αG = zG CA

CNα(X F−XG )
> 0 in XZ

plane. Figure 12.9 shows normal force Fze = −NααG resulting in the opposite
direction.

• At given roll rate p > 0, equilibrium results in an amplified rolling trim force
FE = AFze with a shift angle Δφ ∈ [−π, 0] in the direction opposite to roll rate
(Fig. 12.10).

The force, applied at the center of pressure, results in a rolling moment around
the center of gravity. Taking into account the values of A and Δφ from Chap. 11,
Sect. “Trim Angle of Attack,” this roll moment is:

LG = zG FE sin Δφ = −zG NααG A2 Dx

LG = −qSCA
z2

G

ΔX

Dx
(
1− x2

)2 + (Dx)2

with x = p/pcr ,ΔX = XG − XC P .
The rolling moment, opposed to p, cannot involve roll equilibrium except around

p = 0 where it cancels. Thus, it always leads to a reduction of the amplitude of

Fig. 12.9 Side view
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Fig. 12.10 View from aft
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roll rate. The incidence αG being proportional to zG, rolling moment is proportional
to the square of zG. Taking into account the requirements on the CG offset coming
from roll lock-in studies, the effect on roll rate is low, except:

• at resonance crossing where trim angle amplification is maximum,
• at the end of the trajectory when αG increases because of the drag increase and

of the possible decrease of static margin associated with lower Mach number.

While rolling moment is proportional to α and β, before decay of initial inci-
dence, roll rate has oscillations at nutation and precession frequencies in vehicle
axes. After convergence of initial angle of attack, the rolling trim angle results in
small constant values of pitch and yaw angular rates (lunar motion):

qE = pβE ; rE = pαE

Figure 12.13 gives typical evolutions obtained from six degree-of-freedom cal-
culations with a CG offset ZG = 5.mm.

12.3 Isolated Principal Axis Misalignment

We have shown that P.A.M. results in a static trim angle proportional to the square
of the roll rate.

ξθ = βθ + iαθ = −sgn(1− μ)
(

p

pcr

)2 (
θy + iθz

)

The origin of the pitching moment is the centrifugal force. While assuming a
positive roll rate and a misalignment in Oz direction, this is illustrated in Fig. 12.11.
We consider an equivalent system of six virtual masses having the same tensor of
inertia as the vehicle. This system is composed of six point masses m = M/6. Two
point masses are located on the rolling principal axis at a distance � symmetrically
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Fig. 12.11 Side view

apart from CG, and four are located symmetrically on pitch and yaw principal axes
at distance “a” from center of gravity.

It is easy to show that equivalent system verifies:

Ix x = 4ma2; Iyy = Izz = 2ma2 + 2m�2

→ 2m�2 = Iyy − Ix x

2

Thus, the action of the centrifugal forces on the system of four masses located in
plane Gxz results in a pitching moment around Gy:

My/G ≈ −2m�2θz p2 + 2ma2θz p2 = − (Iyy − Ix x
)
θz p2

It results the static trim angle:

αθ = − My/G

qSre f Lre f Cmα/G
=
(
Iyy − Ix x

)
θz p2

qSre f Lre f Cmα/G
= −sgn(1− μ)θz

(
p

pcr

)2

.

When μ < 1, the masses on the roll axis which are the main contributors to
transverse inertia are predominant and they create a negative pitching moment. As
shown Fig. 12.11, the trim is opposed to the misalignment, applying an aerodynamic
force Fθz = −Nααθ in the direction of the misalignment.

In this case αθ represents only a convenient parameter, since this trim exists only
in the presence of a roll rate. From Chap. 11, it is modified by roll rate in the same
manner as other static trims. The trim force is amplified FE = A Fθz and shifted an
angle Δφ in the direction opposed to roll rate (Fig. 12.12).
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Fig. 12.12 Phase lag angle of
trim force

z

yp

FE

Δφ

θz

Fθ

Forwardview

Roll acceleration is derived from (12.3) and (12.4),

ṗ ≈ 1− μ
μ

p2θzβE

βE = A2 DxαT

Taking into account:

αT = αθ = −sgn(1− μ)x2θZ

This gives finally the roll acceleration for μ < 1:

ṗ ≈ −D

μ
ω2

nθ
2
z

x5

(
1− x2

)2 + (Dx)2

Thus, roll acceleration always has the sign opposed to p and cancels only for
p = 0. There is no stable roll equilibrium, except possibly around p = 0. The effect
of an isolated small PAM is always a reduction in the absolute value of mean roll
rate (an increase for μ > 1). This decrease is generally small except in the vicinity
of resonance where rolling moment is amplified.

Like CG offset, before reaching rolling trim, PAM induces oscillations on roll
rate at nutation and precession frequencies in vehicle axes. On the other hand, it
results in first-order effects on mean values of transverse angular rates:

qE = pβE = −pθzx3 A2 D = −pcr Dθz
x4

(
1− x2

)2 + D2x2

rE = pαE = −pθzx2
(

1− x2
)

A2 = −pcrθz
x3
(
1− x2

)

(
1− x2

)2 + D2x2

This effect is maximum in the vicinity of resonance x ≈ 1 → qE = pcr θz
D and to

a lesser extent at supercritical roll rates |x| >> 1. It is completely negligible in the
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Fig. 12.13 Histories of parameters at first resonance for inertial asymmetries

case of subcritical roll rates |x| << 1 usually met at the end of the reentry (except
low altitude second resonance).

In addition, we will notice that at resonance the dynamic trim angle induced by
θz equals βE ≈ − θz

D sgn(p). Figure 12.13 shows typical evolutions obtained from
six degree-of-freedom numerical calculation, for a misalignment θz = 1.◦.

12.4 Combined CG Offset and Principal Axis Misalignment

While we choose again z axis in the direction of CG offset (it results by definition
that zG > 0;αG = zG CA

CNαΔX > 0), roll acceleration (12.4) becomes:

ṗ ≈ −Nα
Ix

zGβE + (1− μ)
μ

p2 (θzβE − θyαE
)

From (12.3) we have,

βE = A2
[
βθ

(
1− x2

)
+ (αθ + αG ) Dx

]

αE = A2
[
(αθ + αG)

(
1− x2

)
− βθ Dx

]



12.4 Combined CG Offset and Principal Axis Misalignment 221

with x = p/pcr ; αθ = −x2θz; βθ = −x2θy; αG = zGCA/CNαΔX

12.4.1 Out-of-plane Misalignment

In the case of a PAM normal to the plane of the CG offset
(
θz = 0; θy �= 0

)
, we

obtain from previous expression of rolling acceleration,

ṗ ≈ −Nα
Ix

zGβE − (1− μ)
μ

p2θyαE

αE = A2
[
αG

(
1− x2

)
+ θy Dx3

]

βE = A2
[
−x2

(
1− x2

)
θy + αG Dx

]

While Nα ZG
Ix

= λ
μ
ω2

nαG , with λ = CNα
CA

, we obtain:

ṗ = A2ω2
n

μ
x
[
λ′x
(

1− x2
)
αGθy − λDα2

G − Dx4θ2
y

]

with λ′ = λ− 1 = CNα
CA

− 1.
Then, we finally obtain,

ṗ = − ṗ0x

[
x
(
x2 − 1

)+ D
λ′
(
vx4 + λ

v

)]

(
x2 − x2

r

)2 + D2
(12.5)

with v = θy
αG
, ṗ0 = λ′ω2

n
μ
αGθy

12.4.1.1 Rolling Equilibrium

The first solution of ṗ = 0 is trivial, i.e., x = p = 0. Now, we look for solutions in

the vicinity of resonance x = xr ≈ ±
√

1− D2

2 .
For this purpose, we use the assumptions:

(i) xr ≈ ±1,
(ii) in the numerator, we assume that the terms having relatively low variation

around xr ≈ ±1 are constant,

Then, using the new variable u = x2 − 1, we obtain an approximate expression
of rolling acceleration in the vicinity of xr.

⇒ ṗ ≈ − ṗ0sgn (xr )
usgn (xr )+ u1

D2 + u2
(12.6)
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with u1 = D
λ′
(
λαG
θy
+ θy

αG

)
, assuming λ

λ′ ≈ 1.

In the considered range, the solutions for zero rolling acceleration are obviously:

• for xr = 1, u = −u1
• for xr = −1, u = u1

i.e.:

xe = ±
√

1+ u1 ≈ ±
[
1+ u1

2

]

The solutions closest to resonance correspond to
∣
∣v + λ

v

∣
∣minimum, that is to say:

v = λ

v
⇔ θy = ±αG

√
λ

They correspond to ue = 2D
√
λ

λ′ sgn
(
αGθy

)
. These low values justify the approx-

imation we used.

12.4.1.2 Stability of Equilibrium

To be stable, a roll trim must check ∂ ṗ
∂x

∣∣
∣
xe
< 0, which is expressed according to

u by,

∂ ṗ

∂u

du

dx

∣
∣
∣
∣
xe

= 2xe
∂ ṗ

∂u

∣
∣
∣
∣
ue

< 0

That is to say,

• xe > 0 ⇒ ∂ ṗ

∂u

∣
∣
∣
∣
ue

< 0

• xe < 0 ⇒ ∂ ṗ

∂u

∣
∣
∣
∣
ue

> 0

Simple examination of roll acceleration shows that,

sgn

(
∂p

∂u

∣∣
∣
∣
xe

)

= −sgn ( ṗ0) = −sgn
(
αGθy

)

Stable roll trim corresponds, with αG > 0 by definition:

• For xe ≈ +1 → θy > 0, or, αGθy > 0
• For xe ≈ −1 → θy < 0, or, αGθy < 0

The consequence of these conditions are,
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• xe ≈ +1 → αGθy > 0 ⇒ u1 > 0, xe ≈ 1− u1

2
< xr

• xe ≈ −1 → αGθy < 0 ⇒ u1 < 0, xe ≈ 1−
(

1+ u1

2

)
> xr

This means we have in every case |xe| < |xr |

12.4.1.3 Dynamic Stability

When dynamic pressure evolves, the maximum rolling acceleration ṗmax available
in the vicinity of the equilibrium point xe must have a module at least equal to that
of xe ṗcr and the sign required.

Thus we seek extrema of ṗ in the vicinity of the stable trim solutions determined
above.

To obtain maximum roll acceleration, we need the zero of its derivative. Exami-
nation of exact roll acceleration (12.5) shows a degree five polynomial at numerator
for which analytical solutions does not exist. Hence, we will restrict our ambition
to determine order of magnitude of extrema, by using the very crude approximation
(12.6) of the roll acceleration:

∂ ṗ

∂u
≈ − ṗ0sgn (xr )

(
D2 + u2

)
sgn (xr )− 2u (usgn (xr )− u1)
(
D2 + u2

)2 = 0

⇔ (2− sgn (xr )) u2 + 2u1u − D2sgn (xr ) = 0

The extrema for xe ≈ +1 closest to the resonance, with u1 ≈ 2D√
λ

correspond to:

uext = −u1 ±
√

u2
1 + D2 = −2D√

λ
±
√

4D2

λ
+ D2 ≈ ue ± D

Let us introduce these values into the expression (12.6) of rolling acceleration,
which gives the approximate expression of corresponding extrema,

pext ≈ − ṗ0
uext − ue

D2 + u2
ext
≈ ± ṗ0

D

2D2 = ±
ṗ0

2D

To verify these results, we compare with the exact curve G = ṗ/ ṗ0 shown in
Fig. 12.14, corresponding to critical value v = √λ and D = 0.1. This confirms that
the estimate Gmax = 5 is in qualitative agreement, although the exact results are
nonsymmetric. We also note that equilibrium location at xe ≈ 0.95 is in agreement
with |xe| < |xr |.

Hence, to follow the critical frequency, the roll rate needs an acceleration:

|pext | = | ṗ0|
2D

> | ṗcr | ⇔ | ṗ0| = λ′ω2
n

μ

∣
∣αGθy

∣
∣ ≥ 2D | ṗcr | .
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Fig. 12.14 Evolution of G for
critical v
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This gives the condition:

∣
∣αGθy

∣
∣ ≥ μ

λ′
2D | ṗcr |
ω2

n

Using the same method as Sect. 12.1.1, we obtain the expression of the expres-
sion at right member:

2D

∣∣
∣
∣

ṗcr

ω2
n

∣∣
∣
∣ =

�2 |sin γ |
�X Href

[

1− CA

CNα
−

L2
re f Cmq/G

�2CNα (1− μ)

]

|1− η|

with:

η = 2Kρ = Href

β sin |γ |ρ; �2 = IT

m

This gives the expression of the lock-in criterion:

∣
∣αGθy

∣
∣ ≥ [αGθy

]
1 |1− η|

with
∣
∣αGθy

∣
∣
1 = 1

λ′
Ix |sinγ |

m�X Hre f

[
1− CA

CNα
− L2

re f Cmq/G

�2CNα (1−μ)

]
.

Using zG instead of αG , we obtain:

∣∣zGθy
∣∣
1 ≈ 5.7104 Ix |sin γ |

m Href

[

1− CA

CNα
−

L2
re f Cmq/G

�2CNα (1− μ)

]

mm.degree

The preceding expression is identical to that obtained for the combined CG
offset/aerodynamic asymmetric trim. The only difference is related to the condition
on the ratio αG

θy
, which must equal 1√

λ
to obtain the lock-in closest to the reso-

nance, i.e.:

ZG

�Xθy
≈
√
λ
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When we apply this criterion to the same vehicle and conditions as Sect. 12.1.4,
we obtain the same results:

(
zGθy

)
1 = 0.06 mm.degree

Using result shown in Fig. 12.6, this value also applies to a first resonance cross-
ing at 45 Km. It results a PAM and a CG offset:

θ2
y =

(
zGθy

)

√
λ�X

; z2
G =

(
zGθy

)√
λ�X

such that θy ≈ 0.06 degree and zG ≈ 1 mm.
Figure 12.15 shows the numerical results for a high roll rate ≈ 12 Hz. It results

a crossing of the first resonance at 25 km and the second resonance around 1250 m,

corresponding respectively to |1− η| ≈
∣
∣
∣1− 2.5e−

Z
7000

∣
∣
∣ equal to 0.93 and 1.09. The

roll lock-in threshold numerically determined is:

• for the second resonance, 0.16 <
(
zGθy

)
2 ≤ 0.22 mm. degree

• for the first resonance, 0.22 <
(
zGθy

)
1 ≤ 0.37 mm. degree

The analytical theory gives 0.057 and 0.065 mm-degree, respectively.
Thus, it underestimates the critical threshold of parameter zGθy in a ratio close to

4. It corresponds to a very approximate estimate of the problem. Moreover, it does
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Fig. 12.15 Evolution of roll rate and critical roll rate
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not allow us to determine the evolution of roll rate and thus to judge possibility of
crossing the second resonance.

Figure 12.15 shows evolutions of roll rate and critical frequency for various val-
ues of the parameter zGθy .

12.4.2 In-plane Misalignment

In the case of a PAM in-the-plane
(
θy = 0; θz �= 0

)
, we obtain from (12.3) and

(12.4,):

ṗ = −Nα
Ix

zGβE + ω2
n

μ
x2θZβE

βE = A2 Dx (αG + αθ ) = A2 Dx
(
αG − x2θz

)

While Nα zG
Ix

= λ
μ
ω2

nαG , with λ = CNα
CA

, we obtain:

ṗ = −ω
2
n

μ

(
λαG − x2θZ

)
βE = −ω

2
n

μ
A2 Dx

(
λαG − x2θZ

) (
αG − x2θZ

)

Finally, the rolling acceleration is:

ṗ ≈ − ṗ1

[
x2 − a1

] [
x2 − a2

]
Dx

(
x2 − 1

)2 + D2x2

with,

ṗ1 =
ω2

nθ
2
z

μ
; a2 = λa1; a1 = αG

θz
= zG

λ�Xθz

From this expression, we can determine the roll behavior according to parame-
ter a1:

• When a1 < 0 ⇒ a2 < a1 < 0, the only zero of roll acceleration is for x = 0
and sign ( ṗ) = −sign(x). It results the same behavior than with an isolated CG
offset or PAM. The amplitude of roll rate can only decrease:

• When a1 > 0 ⇒ the rolling moment cancels for x = 0 and

x = x1 = ±√a1

x = x2 = ±√a2

To determine if these roll trim are stable, let us study the behavior of ṗ around
x = x1 and x = x2.
In the domain 0 < a1 < a2 = λa1 we have around x2:
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ṗ ≈ − ṗ1

[
x2 − a1

]
[x − x2] (x + x2)Dx

(
x2 − 1

)2 + D2x2
≈ − ṗ1

[a2 − a1] [x − x2] 2x2 Dx2
(
x2 − 1

)2 + D2x2

As a2 > a1, ∂ ṗ
∂x

∣
∣
∣
x2
< 0, ∂ ṗ

∂x

∣
∣
∣
x1
> 0, and the equilibrium is stable around x2 and

unstable around x1.
Hence, when 0 < a1, the only stable roll trim is x2 = ±√a2 = ±

√
λa1.

However, trim near resonance can occur only when λαG
θz
≈ 1 i.e., in a narrow

domain of PAM at a high relative value θZ/αG ≈ λ. Clearly this event has a low
probability.

Figure 12.16 shows the behavior of function G = ṗ/ ṗ1 in the case of stable trim
near resonance, for different value of x2 such that x2

2 = x2
r + σD.

We see that, unlike out-of-plane PAM, maximum roll amplification (G ∼ 0.5) is
low when x2 = xr. Maximum roll amplification increase when x2 moves away, but
the amplification curve becomes highly asymmetric.

12.4.2.1 Dynamic Criterion

As previously, in real condition of nonstationary flight, the available moment must
be sufficient to maintain a rolling acceleration at least equal to ṗcr . On the basis of
the assumption of a stable trim at initial time (stationary dynamic pressure and Mach
number) at fixed values x2 near maximum of resonance x2

2 = a2 = x2
r + σD, we

look for conditions to stay at trim when the critical frequency and dynamic pressure
begin to evolve. We saw in the case of a combined CG offset and aerodynamic
asymmetry that, in addition to the stable static trim conditions, which must be every
time verified, it is necessary to have around the trim value extrema of rolling accel-
eration with amplitude at least equal to | ṗcr |, with adequate sign. While using the
expression of A2,
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Fig. 12.16 Amplification of roll acceleration
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A2 = 1

D2
(

1− ( D
2

)2)+ (x2 − x2
r

)2 ≈
1

D2 + (x2 − x2
r

)2

where xr =
√

1− D2

2 corresponds to resonance, the expression of rolling accelera-
tion becomes:

ṗ = − ṗ1

[
x2 − a1

] [
x2 − x2

2

]
Dx

D2 + [x2 − x2
r

]2

While a1 ≈ 1/λ << 1, x2 ≈ xr ≈ 1, x2 = x2
r + h with h << 1, we obtain:

ṗ ≈ − ṗ1 D
(h − σD)

D2 + h2
= − ṗ1

h
D − σ

1+ ( h
D

)2

To obtain the extrema of ṗ near x1, we determine the zeros of the derivative,
which gives:

h

D
= σ±

√
1+ σ2

ṗmax

ṗ1
= Gmax± = ∓1

2

√
1+ σ2

1+ σ2 ± σ
√

1+ σ2

Thus, as shown in Figure 12.16, two extrema of rolling moment at (x±)2 = x2
r +

D
(

σ±√1+ σ2
)
= x2

2 ± D
√

1+ σ2 surround the roll trim value x2. Unlike other

asymmetries, maximum roll amplification is low and do not depend on damping
parameter. As shown in Fig. 12.17, the maximum of amplitude on the lower side
of x2 is always positive. When σ > 0, amplitude of maximum on the left side of
x2 is higher than the amplitude on the right side, except when x2 = xr for which
|Gmax±| = 0.5. When σ < 0, amplitude of maximum on the right side of x2 is the
highest.

Obviously, G− and σ > 0 apply to lock-in near first resonance (pcr is increasing),
G+ and σ < 0 to the second resonance.

Fig. 12.17 Amplitude of
maxima of roll amplification
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Hence, to prevent lock-in on x2 such that x2
2 = x2

r + σD, we must verify:

• at first resonance, σ > 0 & | ṗ1Gmax−| < | ṗcr |

⇔ θ2
z < 2

[√
1+ σ2 − σ

]
μ
| ṗcr |
ω2

n

• at second resonance, σ < 0 & | ṗ1Gmax+| < | ṗcr |

⇔ θ2
z < 2

[√
1+ σ2 + σ

]
μ
| ṗcr |
ω2

n

Then, by using previous Allen’s derivation of ω2
n and pcr, while naming η =

ρHref /β sin |γ | and IT = m�2, we obtain,

| ṗcr |
ω2

n
=
√

CA�2 |sin γ |
2CNαΔX Href (1− μ)

|1− η|√
η

Hence, the condition to prevent roll equilibrium within a distance to first or sec-

ond resonance defined by σ =
∣∣x2

2−x2
r

∣∣
D is:

θ2
z < 2μ

[√
1+ σ2 + (−1)i |σ|

]
√

CA�2 |sin γ |
2CNαΔX Href (1− μ)

|1− η|√
η

with i = 1 for first resonance and i = 2 for second resonance.
The choice of σ can be done by noting that when x2

2 = x2
r + σD, the trim angle

amplification at roll equilibrium is:

A ≈ 1
√

D2 + (x2
2 − x2

r

)2
= 1

D
√

1+ σ 2

Hence, for example, the choice σ = 9 leads to a diminution of trim amplifica-
tion by the factor 1/

√
1+ σ2 ≈ 0.11 compared to equilibrium at exact resonance

condition.
For the first resonance, this choice results in the criterion:

θ2
z < θ

2
z1
|1− η|√

η

with
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Fig. 12.18 Evolution of
P.A.M. criterion with altitude

θ2
z1 = 0.11μ

√
CA�2 |sin γ |

2CNαΔX Hre f (1− μ)

Figure 12.18 gives the ratio θZ/θZ1 =
[
|1− η|

/√
η

] 1
2

resulting from the cri-

terion as a function of altitude for β = 104 and a flight path angle γ = −25◦. For
the same vehicle as in out-of-plane PAM, we obtain θZ1 ≈ 0.075◦. Using curve
12.18, we find the limiting value θZ ≈ 4θZ1 = 0.3◦ for a first resonance crossing at
45 km.

In addition, we must remember that to obtain lock-in we need to have αG ≈
θZ
λ
⇔ ZG ≈ θZ ΔX , which gives an order of magnitude ZG ≈ θZ ΔX = 0.83 mm.

This corresponds to a product zGθZ ≈ 0.25 mm.degree.
Hence, from this analytical theory, in-plane PAM criterion is somewhat less crit-

ical than out-of-plane PAM. However, when compared with the combination of CG
offset and aerodynamic asymmetry, they both need in addition to the condition on
the product of asymmetry a condition on the ratio. This makes roll lock-in a very
improbable event for this type of combination.



Chapter 13
Instabilities

Preceding chapters concerning the angle-of-attack behavior used the assumption
of a vehicle unconditionally stable from the static and dynamic point of view. It
results that the initial incidence and/or possible disturbances of the incidence due to
external factors (for example, an atmospheric gradient of wind) remain limited and
dampen shortly. We deal here the intrinsic mechanisms of instability (not related
to external factors), which correspond to a permanent or temporary increase in the
amplitude of the angle of attack.

They are two kinds, bound respectively by the static and the dynamic moment.

13.1 Static Instabilities

We consider here the case where the vehicle is dynamically stable in the entire flight
envelope.

The most radical case, that we eliminate a priori, is that of a static instability
permanent and total during the whole reentry. Indeed, unless we have a huge gyro-
scopic moment corresponding to a very high roll rate, we will obtain a divergence
of the incidence and a probable demise of the vehicle.

A more interesting case, because the diagnosis is less obvious, is that instability
limited to a range of flight parameters, i.e., Knudsen number, Mach number, and
incidence. We will quote two examples of this type of instability.

• Some planetary entry probes with high drag coefficient such as Viking, Mars
Pathfinder, and Huygens, were unstable in the free molecular regime and at the
beginning of the rarefied regime in a broad range of incidence around zero. In
the absence of gyroscopic stability, i.e., for zero roll rate, these vehicles would
have undergone the initiation of angle-of-attack divergence at high altitude and
likely to stabilize around 180◦, their back cover exposed to high pressures and
heat fluxes. Needless to say that their mission would have been completely com-
promised. However, flight mechanics analysis shows that an adequate roll rate
allowed them to stabilize during the critical phase and to limit the divergence of
the incidence to a few degrees until the moment they recovered stability. Success-
ful entries of Viking and Pathfinder in the Martian atmosphere, and Huygens in
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Pitching moment coefficient & center of pressure
Mars Pathfinder - Free molecular flow
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Fig. 13.1 Stability parameters in free molecular flow

the Pluto atmosphere confirmed this analysis. Figure 13.1 presents the Pathfinder
configuration’s evolution in incidence of center of pressure and pitching moment
coefficient for xG

D = −0.27, which were obtained using a Computational Fluid
Dynamic (CFD) code in free molecular flow.

These results show that, for this CG location, the probe is unstable near zero
angle of attack and stable at 180◦.

Figure 13.2 [GAL] presents the evolution of the gradient of pitching moment co-
efficient and angle of attack for a reduced scale similar probe (diameter 1.20 m).
These results were obtained from 6 DoF computations in the Martian environment.
Use of a roll rate higher or equal to 5 rpm avoids any divergence of the incidence
until 80 km altitude where the probe recovers its static stability. The estimate of this
behavior using approximate methods of Chaps 4, 7, and 10 is proposed in exercise.

• Some reentry vehicles have a nonlinear behavior in incidence at high Mach num-
ber in continuous flow. This corresponds to a forward movement of the center
of pressure when the incidence decreases, in some range [0,αmax] around zero
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Fig. 13.2 Sensitivity of AoA divergence on spin rate

angle of attack. At higher angle of attack, the vehicle again becomes stable, i.e.,
the pitching moment coefficient around center of mass becomes negative. We can
assess the angle of attack’s behavior of this vehicle:

• If the initial amplitude of incidence is in this instability range, we will observe
an increase in the incidence up to a maximum value higher than stability
limits, followed by oscillations between these two values (limit cycle). When
Mach number decreases because of aerodynamic deceleration, the object be-
comes again statically stable, and then incidence will converge quickly as in
the regular case.

• If initial incidence is largely higher than the limiting value, normal conver-
gence of angle of attack begins. When angle of attack and Mach number his-
tories stay in the stable range, convergence continues and finishes normally.

Angle-of-attack behavior is thus either entirely normal, when the initial value
is high, or a temporary increase followed by a limiting cycle, then a convergence
resumes.

There are other possible nonlinear behaviors. In practice, it is often possible to
cross unstable portions of the flight parameter range, in low density range with
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moderate dynamic pressure. Center of mass location must be validated by a 6 DoF
analyses.

• Beside the predictable behavior related to vehicle geometry, Mach number, inci-
dence, and Reynolds number, there is another case of more or less catastrophic
angle-of-attack divergence met during experimental flights. They were the sub-
ject of many publications in specialized reviews since years 60 and until re-
cently [WAT]. Two explanations most frequently quoted are respectively related
to the response of heat shield material to heat flux (ablation lag phenomenon)
and to asymmetrical progression of laminar-to-turbulent transition from aft to
forward along the reentry vehicle. According to some authors [VFL] the effects
related to transition are weak and the most probable cause would be “ablation
lag” [ALG].

• Ablation lag:
Instantaneous azimuth distribution of convective heat flux around a symmetrical
reentry vehicle at angle of attack is maximum on the windward meridian. Ac-
cording to Sect. 11.2, for an observer fixed to the vehicle, the windward merid-
ian turns around roll axis with angular rate φ̇w± = − (1− μ

2

)
p ± ωa , with

sign depending on mode of motion (nutation or precession). Heat flux affects
both pyrolize and surface ablation phenomena, which result in the emanation
of gas products from the surface. These products are transported downstream
along the boundary layer (blowing phenomenon), and result in a thickening of
the boundary layer, increasing with the mass flux of injected products. Mass flux
of injected products does instantaneously respond to heat flux, but is subjected
to thermal response time lag. In the case of a zero or very low incidence, the
radial flow distribution has symmetry of revolution as well as the modification
of displacement thickness of boundary layer and induced pressure effects. This
phenomenon modifies the center of pressure, because it induces a change of the
effective aerodynamic geometry of the reentry vehicle. In the case of a finite
angle of attack and roll rate, the maximum of injection flux and displacement
thickness on a given meridian line are affected by a time lag τ relative to time
of passage of the relative velocity vector. In vehicle axes, this results in a roll
angle shift φw − φp = �φ = φ̇w · τ of meridian line φp corresponding to the
maximum of boundary layer thickness represented in Fig. 13.3 in a cross section
of the vehicle.

In addition, approximate assessment of viscous effects shows that the effective
shape of a reentry vehicle from the point of view of pressure distribution corre-
sponds to the shape of the wall increased with displacement thickness of the bound-
ary layer (this is the origin of the name of this parameter). It occurs that because of
ablation lag, not only is this effective shape asymmetric, but it is not aligned to the
plane of windward meridian. These results in an abnormal aerodynamic load, which
corresponds in wind-fixed axes to a yaw force normal to the plane of incidence
and to a yawing moment in the plane of incidence. Wind-fixed aerodynamic load
directed like the regular static component (i.e., corresponding to a pitching force in
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Fig. 13.3 Geometry of
ablation lag

wφ

wz

pz

z

wφ

heat flux

Displacement
thickness

φΔ

φ
φ

0>

p

.

the plane of incidence and a pitching moment normal to it) is named “in-plane,” and
effects corresponding to yaw force and moment are named “out-of–plane.”

In order to study consequences of this phenomenon, we will use approximations
of Chap. 11, relating to equations of incidence motion linearized in the complex
plane GYZ fixed to the vehicle. The regular aerodynamic moment is written in
complex notation:

M̄ = M + i N = q̄ Sre f Lre f Cmα/G · e−i π
2 · (β + iα) = i · ITω

2
n · ξ

with

ξ = β + iα = ᾱeiφw

The origin of the abnormal effect can be modeled by a sideslip component βp of the
complex incidence relating to the meridian plane Zp corresponding to the maximum
of displacement thickness. Figure 13.4 shows the resulting moment ΔMzp, in the
case φ̇w > 0. With these assumptions, an ablation lag have Δφ > 0 and yaw moment
along Zp is negative or positive depending on the location of the yaw force center of
pressure relating to center of mass G.

Fig. 13.4 Frontal view
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The out-of-plane moment increases with the amplitude of the boundary layer
displacement and with βp angle (i.e., the time lag). At first order this moment can
be put in the form:

ΔM = q̄ Sre f Lre f K ᾱ |sin Δφ|

where the K term is a function of upstream flow and of thermal and ablative proper-
ties of the wall material.

Thus, the expression of the moment in vehicle axes is

ΔM̄

q̄Sre f Lre f
= −εK sin Δφ · ξ · e−iΔφ

where ε = ± 1 is positive when yaw force center of pressure is behind center of
gravity, negative before. This sign depends on φ̇w , vehicle shape, wall material, and
upstream flow.

For small angles Δφ, projections of this moment on wind-fixed axes are a negli-
gible pitching moment and a yawing moment:

ΔMyw = −ε
∣
∣ΔM̄

∣
∣ sin Δφ = O2(Δφ)

ΔMzw = −ε
∣
∣ΔM̄

∣
∣ cos Δφ ≈ −εq̄ Sre f Lre f K ᾱ sin Δφ

The approximate ablation lag moment is a wind-fixed yaw moment whose
expression in the vehicle frame is:

ΔM̄ ≈ εq̄ Sre f Lre f l K sin Δφ · ξ = −ε′ ITω
2
l ξ

with ω2
l =

q̄ Sre f Lre f K |sin Δφ|
IT

; and ε′ = sgn (εΔφ).
Remarks:

1) This moment has properties similar as a Magnus effects; however, its physical
origin is completely different. Magnus effect is related to the modification of
viscous flow by rolling motion, without any ablative phenomenon. While pa-
rameter pR

V is small, according to experimental data and theoretical evaluations
[VFL], Magnus moment is negligible for reentry vehicles. This is obviously not
the case of artillery projectiles, slower and with much higher roll rate.

2) The term ω2
l has dimensions of the square of a pulsation.

While including the ablation lag moment, the total aerodynamic wind-fixed mo-
ment is:

M̄T/G = i IT

(
ω2

n + iε′ω2
l

)
ξ

The influence of this moment on the instantaneous angular motion can be esti-
mated using the results of epicycle motion of Chap. 11.2, by modifying the aerody-
namic pulsation:
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ω2
n → ω′2n = ω2

n + iε′ω2
l

By using the same approximations, Eigen frequencies ω± of epicycle movement
remain unchanged, and damping terms become:

�± = −�α + mq

2
± 1

2ωa

[
ε′ω2

l +
μp

2

(
mq − �α

)]

Now, let us use the hypothesis of a yaw force center of pressure aft of the center
of mass, i.e., ε > 0. Below the first resonance altitude, depending on the sign of
rotation rate of the mode, we obtain:

• for ω+ = ωa −
(
1− μ

2

)
p > 0 → φ̇w = ω+ > 0 → ε′ > 0

�+ = −�α + mq

2
+ 1

2ωa

[
ω2

l +
μp

2

(
mq − �α

)]

• for ω− = −ωa −
(
1− μ

2

)
p → φ̇w = ω− < 0 → ε′ < 0

�− = −�α + mq

2
− 1

2ωa

[
−ω2

l +
μp

2

(
mq − �α

)]

We observe in both cases a positive sign of the term related to ablation lag, i.e.,
an unstable contribution. While neglecting the second-order term related to roll,
evolution of the incidence is:

|ᾱ|
|ᾱ0| ≈ e

− 1
2

(
mq+�α− ω2

l
ωa

)
t

In the case where yaw force center of pressure is ahead of the mass center (ε <
0), we will have a stabilizing contribution.

The general expression for angle-of-attack evolution is thus:

|ᾱ|
|ᾱ0| ≈ e

− 1
2

(
mq+�α−ε ω

2
l
ωa

)
t

We thus note that, within the framework of this approximate theory, ablation lag
effects primarily modify the dynamic stability of the vehicle. The effects are similar
to that of the pitch damping moment. Thus, to differentiate the origin of dynamic
stability disturbances in flight observations, it is essential to be able to calculate the
flow rate of ablation products injected as well as its effects on viscous flow.

Quantitative theoretical data in this phenomenon for various materials were pub-
lished in [ALG].
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13.2 Dynamic Instabilities

We can set aside the ablation lag phenomenon already studied, knowing that to take
it into account, we can include it in the term related to traditional damping:

mq → m′q = mq − ε
ω2

l

ωa

First, we will examine the regular case at low incidence and constant pitch damp-
ing moment coefficient. Then, we will give examples of nonlinear unstable behavior.

13.2.1 Approximate Study at Low Angle of Attack

We saw in Chap. 11 that while neglecting the effect of dynamic pressure variation,
i.e., with respect to the short-term evolution, the expression of complex incidence in
a quasi-inertial frame (aeroballistic frame) is:

ξ′ = eiprt
[
ξ′+e�+teiωat+ ξ′−e�−te−iωat

]

with pr = μp
2

ωa ≈
√
ω2

n + p2
r ; �+ ≈ �− ≈ � = −

�α + mq

2
; mq = −qSre f

L2
re f

IT V
Cmq/G

�α = Nα − A

mV
= qSre f

mV
[CNα − C A] = qSre f

mV
CLα

The damping pulsation can be put into the form:

� = −ρV

4

[
1

βL
+ 1

βq

]
= −ρV

4

[
1

βN
− 1

β
+ 1

βq

]

with:

β = m

Sre f CA
; βN = m

Sre f CNα
; βL = m

Sre f CLα
; βq = − m

Sre f CmqG

(
rG

Lre f

)2

where rg indicates the pitching radius of gyration r2
g = IT

m
Thus, we identify the dynamically stable influence of the lift gradient on the

angle of attack and destabilizing influences of drag. The influence of the dynamic
moment Cmq is either stabilizing (Cmq < 0) or destabilizing. However, to determine
completely if incidence oscillations are damped or undamped, it is necessary to take
account of the effect of the variation of aerodynamic pulsation on the amplitude. For
this purpose, let us study in the vicinity of t = t1 the behavior of:
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η =
∣
∣ξ
∣
∣

∣∣ξ1

∣∣ =
[
ωn1

ωn

] 1
2

e�(t−t1).

While assuming Cmα/G is constant, this expression is equivalent to:

η =
[
ρ1V 2

1

ρV 2

] 1
4

e�(t−t1)

Using Allen approximation for exponential atmosphere, we obtain:

D = ∂Ln (η)
∂ t

=
[
�+ ρV

4β
− V sin γ0

4HR

]

That is to say:

η ≈ eD1·(t−t1)

with D1 = − V1
4

[
ρ1

(
1
βL
+ 1

βq
− 1

β

)
+ sinγ0

HR

]
(we must not confuse this term with

the damping term in the roll resonance theory of Chaps. 11 and 12).
Thus we can define an index of dynamic stability,

S = −4D

V
= ρ

[
1

βL
+ 1

βq
− 1

β

]
+ sin γ0

HR
> 0

Evolutions of the contributors to the damping factor D are shown in Figs. 13.5
and 13.6, respectively in algebraic value and in percentage of total damping.

These curves correspond to the conical vehicle of reference (Chap. 4). The hy-
pothesis are Cmq/G = −0.08,V0 = 6000 m/s, γ0 = −30◦,HR = 7000 m, and
ρS = 1.39 kg.m−3.

These results reveal several observations:

1) Drag contributes twice. First, it decreases damping related to rotation of flight
path vector induced by lift ( 1

βL
= 1

βN
− 1

β
). Second it appears because of pulsa-

tion damping through variation of velocity and dynamic pressure (second term
in 1

β
).

2) The expression shows the influence of the two kinds of damping factors. The
group of aerodynamic factors proportional to the product ρV, and parametric
damping dependent on the exponential variation of density simply proportional
to V. The relative contribution of parametric damping is prevalent at high altitude
(z > 50 Km) where the density is very low, then becomes negligible compared
with aerodynamic damping at low altitude (z < 20 Km) when density is high.
Thus dynamic instabilities are very unlikely to develop above 50 km altitude
where the aerodynamic damping coefficient Cmq has little influence.
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3) In the group of aerodynamic factors, and for a vehicle having a high CLα (slen-
der vehicle), the contribution of lift to the rotation of the flight-path vector is a
major contributor to damping. The vehicle can support a null or slightly negative
damping coefficient Cmq/G .

13.2.2 Examples of Unstable Dynamic Behaviors

• The first case presented here was observed during flight tests of a reentry vehicle
with heat shield made of resin and fiber composite material. Terms of aerody-
namic damping derived from angular rate telemetries are presented Fig. 13.7.
Measurements make it possible to derive the total aerodynamic damping ratio,
after correction for the effect of parametric damping dependent on the variation
of the aerodynamic frequency. The method uses the corrected epicycle model
developed in the preceding paragraph. The contribution of lift being theoretically
accessible with good accuracy, we obtain the contribution of all other factors of
dynamic stability, including the pitch damping coefficient Cmq/G. We observe the
zone of dynamic instability in altitude range 25–45 km.

It is interesting to note that the progression of the transition front on this mate-
rial with rough ablated surface takes place inside this same range of altitude. The
origin of this instability is uncertain, because it can be interpreted as well using
a positive damping coefficient or an out-of-plane force and a moment related to
ablation lag. Figure 13.8 gives the damping coefficient extracted from flight data,
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on the assumption of the first interpretation. The damping coefficient estimated
above 45 km is highly negative, and then it becomes highly positive under this
altitude. It becomes negative again below 25 km. Derived values below 15 km al-
titude have a strong uncertainty, because the incidence is low and damping is not
easily observable. Figure 13.9 shows evolution of incidence derived from flight mea-
surements, compared with a 6 DoF computation, using a model of pitch damping
coefficient derived from flight (Fig. 13.8). The agreement between experimental
and theoretical evolutions is excellent, which validate the method of identification
of damping coefficient. Traditional interpretation in terms of damping coefficient,
associated to boundary layer transition, assumes different locations of the transition
point on windward and leeward meridians. To our knowledge, assessment of this
phenomenon was not made theoretically, whereas ablation lag is now well estab-
lished. Interpretation in terms of ablation lag in this particular case remains to be
made.

In practice, this type of behavior was observed and studied only on flights where
incidence at beginning of instability was sufficiently low. This likely corresponds to
the fact that the modest incidence builtin, about 2◦ or 3◦, is easily unperceived when
initial incidence is high. This may also indicate that the phenomenon is nonlinear in
incidence and that the range of dynamic instability is limited to the low incidences.

• The second example of instability relates to behavior at low Mach of a space
probe of shape similar to Viking [GAL]. Figure 13.10 shows a model of dynamic
stability derived from the compilation of numerous wind tunnel test results. The
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coefficient Cmq/G is negative, except in the instability domain, which corresponds
to Mach numbers lower than 3 and incidences lower than 3◦.

Figure 13.11 gives the evolutions of Mach number and incidence according to
altitude, calculated using a 6 DoF code, for entry in the Martian atmosphere with
conditions at 120 km V = 6 km/s, γ = −21◦.

In the case of a probe without spin or asymmetry, incidence quickly increases
in the altitude range corresponding to Mach numbers lower than 2. In the case of a
probe with a spin corresponding to 5 rpm, gyroscopic effects somewhat decrease the
divergence. At last, in the case with a trim angle (4◦ at Mach > 3), bound here to a
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lateral CG offset, the incidence does not diverge. Indeed, thanks to this trim angle,
the time when the vehicle enters the most unstable regime near 1◦ of incidence
is delayed until 6 km altitude. Subsequent decrease of the trim angle is related to
the growth of static stability below Mach 2. Other configurations undergo a high
increase in incidence below 10 km altitude. This growth of incidence corresponds to
an augmentation of kinetic energy of rotation at each oscillation when crossing the
unstable zone.



Chapter 14
Reentry Errors

In this chapter, we deal with the sensitivity of trajectory to various sources of dis-
persions. Aside from dispersions resulting from kinematics initial conditions, we
can classify dispersion factors in two families, one affecting drag and the other
affecting lift.

Dispersions of drag primarily affect relative velocity and chronology of the tra-
jectory. Thus, except for a weak indirect effect on range, owing to the influence of
velocity on curvature of the trajectory by gravity, drag does not contribute, strictly
speaking, to trajectory deviations. On the other hand, occurrence of episodes with
an average lift in a fixed inertial direction may involve large deviations of trajectory,
downrange, and/or cross range errors.

We will analyze these various effects, first using a zero-incidence hypothesis,
then by taking account of the angle of attack.

14.1 Zero Angle-of-attack Dispersions

14.1.1 Initial Conditions

In reentry on earth or another planet, we define initial conditions at a constant al-
titude corresponding to an arbitrary interface with the atmosphere. For earth, in
the case of six degree-of-freedom (6 DoF) applications HI = 120 km above the
reference ellipsoid is used herein for most of vehicles (index I indicates the initial
reentry point). For zero angle-of-attack reentry, altitude HI = 60 km could be used
as well. Eventually, a vehicle with very low ballistic coefficient will need a higher
altitude interface. We will assume here that the planet is spherical and not revolv-
ing. Indeed, although rotation of the planet induces also non-negligible effects on a
relative reentry trajectory, it has negligible effects with respect to the sensitivity to
dispersions.

Initial conditions at point “I” of fixed altitude noted HI or zI are entirely
defined by:

• The relative velocity vector VI
• The flight path angle γI of this vector relating to the horizontal plane normal to

the initial radius vector (�rI ) from the center of the planet

P. Gallais, Atmospheric Re-Entry Vehicle Mechanics. 245
C© Springer 2007
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• Its azimuth AzI defined in the horizontal plane

For the planet having symmetry of revolution, the origin of azimuth angles is
arbitrary, and we choose the origin in the direction of the nominal trajectory. In the
same way, the initial latitude is indifferent in the analysis, and we can limit the study
to the range from the nominal reentry point. Thus, the variations of current location
and velocity compared to the nominal trajectory are:

• Δx or ΔP, downrange error
• ΔH or Δz, altitude deviation
• Δy, cross or side range error
• ΔV , deviation in relative velocity
• Δγ , deviation of flight path angle
• ΔAz, azimuth deviation

14.1.2 Consequences of Drag Dispersions

We analyze here the sensitivity of the trajectory to drag dispersions.

14.1.2.1 Flight Path Angle and Downrange Errors

In the case of zero angle-of-attack reentry, without wind, the drag force is:

CD ≡ CA ⇒ D = 1

2
ρSre f CAV 2

Thus, aerodynamic dispersions of the trajectory are related to product ρCA.
While neglecting earth’s rotundity, equations of motion are:

dV

dt
= −D

m
+ g sin γ

dγ

dt
= g cos γ

V

While using dz = −V sin γ dt , as in Allen reentry, we obtain a differential
system:

dV

dz
= ρSre f CA

2m sin γ
V − g

V

− sin γ

cos γ

dγ

dz
= d log |cos γ |

dz
= g

V 2
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To get first-order estimate of the effect of gravity on flight path angle, we ne-
glect the effect of gravity on velocity variation. Thus, in the case of an exponential

atmosphere ρ = ρ0e
− z

HR , we obtain (thanks to Allen’s results):

V ≈ VI e−Kρ

ln

∣
∣∣
∣

cos γ

cos γI

∣
∣∣
∣ =

∫ z

z I

gdz

V 2

with K = HR
2β sinγI

; β = m
Sref CA

.
That is to say,

cos γ = cos γI · exp

(
−
∫ z I

z

gdz

V 2

)
.

While using an approximation of the exponential, we obtain with x = 2Kρ:

∫ z I

z

gdz

V 2
= gHR

V 2
I

∫ 2KρI

2Kρ

exdx

x
≈
(

gHR

V 2
I

) (
ln |x | + x + x2

4
+ x3

18
+ x4

96

)∣∣
∣∣

2KρI

2Kρ
.

By noting that xI = 2KρI ∼ 0,

cos γ ≈ cos γI e
g(z−z I )

v2
I e

− gHR
v2

I
F(2Kρ)

,

where F(x) ≈ x
(

1+ x
4 + x2

18 + x3

96

)
.

We can note that the drag appears in the exponential term to the right, which
gives the variation of flight path angle related to gravity and velocity loss. The first
exponential corresponds to the evolution of flight path angle at constant velocity
(under gravity effect, without atmosphere). We point out that, in this approximation,
we neglected the effect of gravity on the velocity, as well as the effect of earth
rotundity on variation of current flight path angle.

Application of this result to the calculation of flight path at ground level with
conditions β = 104 kg.m−2, HI = 60 km, VI = 6000 m/s, γI = 30◦, HR = 7000 m,
and ρS = 1.39 kg/m3 gives K = 0.7 and xS = 1.946, F(xS) = 3.452. This cor-
responds to 2.18◦ total variation of flight path angle of which 0.64◦ are the effect
of the aerodynamic drag and 1.57◦ of gravity only. Results of exact numerical cal-
culation using a three degree-of-freedom (3 DoF) code are 2.19◦, 0.60◦, and 1.6◦,
respectively, and are in excellent agreement with this approximate calculation.

In order to assess dispersions of current flight path angle and range, we use the
assumption, valid for vehicles with high ballistic coefficient, that the relative varia-
tions of flight path angle δγ

γ
<< 1 are small. We obtain for flight path angle,
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δγ (z) ≈
(

g HR

V 2
I

)
cos γI

sin γI

[(
zI − z

HR

)
+ F(2Kρ)

]

Evolution of range variations δx with a reference trajectory with constant flight
path angle is determined by the variations of flight path angle:

δx = x(γI + δγ )− x(γI )

dx

dz
= −cos γ

sin γ
⇒ d (δx)

dz
= δ

(
dx

dz

)
≈ δγ

sin2 γI

While using these results, we obtain an approximate expression of the reduction
of range due to combined effect of gravity and drag:

δX (z) ≈ gHR cos γI

V 2
I sin3 γI

∫ Z

Z I

[
zI − z

HR
+ F(2Kρ)

]
dz.

δX (z) ≈ −HR

(
gHR

V 2
I

)
cos γI

sin3 γI

[
1

2

(
z − zI

HR

)2

+ F ′(2Kρ)

]

with F ′(x) ≈ x
(

1+ x
8 + x2

54 + x3

384

)
.

This expression gives the first order of magnitude for range reduction, but may
also provide the variation of range due to drag dispersions, included in the factor
x = 2 Kρ.

Application of this result with the preceding hypothesis gives F′(xS) = 2.593
(xS = 1.946 with ρS = 1.39 kg/m3), which corresponds to a total range reduc-
tion of 3638 m including 240 m related to aerodynamic braking and 3398 m related
to FPA variation at constant velocity. These results are in agreement with 3 DOF
calculations, which give 3557 m of range reduction, including 211 m dependent on
aerodynamic braking.

While assuming relative variations of parameters are independent of altitude and
differentiating range variation, we obtain:

Δ(δX) = ∂(Δx)

∂K
ΔK + ∂(Δx)

∂ρ
Δρ.

Thus, the order of magnitude of range dispersion is:

Δ (δX) ≈ −HR
cos γI

sin4 γI

(
pHR

βV 2
I

)

F ′′(2Kρ)

[
ΔK

K
+ Δρ

ρ

]

with F ′′(x) ≈ 1+ x
4 + x2

18 + x3

96 and ΔK
K = −Δβ

β
.

Application of this result under the same conditions for calculation of FPA gives
F ′′ (xS) = 1.77, that is to say a sensitivity of ground level range equal to 3.34 m per
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percent of variation on density or ballistic coefficient. This order of magnitude is
confirmed by 3 DoF numerical calculations, which give±3 m for±1% variation on
ballistic coefficient β.

This result justifies a posteriori the approximations. In agreement with common
sense, an increase in density involves a reduction of range and an increase in ballistic
coefficient, an increase in range.

It is thus confirmed that the influence on the range of dispersions of atmosphere
density or ballistic coefficient is very low in the case of a vehicle with high initial
velocity and high ballistic coefficient. Indeed, dividing by the variation of range, we
obtain the relative value of dispersion,

Δ (δX)

δX
≈ 1

sin γI

F ′′(2Kρ)
(

p
βg

) [
Δβ
β
− Δρ

ρ

]

[
1
2

(
z−z I
HR

)2 + F ′ (2Kρ)

] .

We can observe that relative variability of range is proportional to Δβ
β2 and Δρ

ρβ
.

While parameter β is large, this explains the low sensitivity of range on drag
dispersions.

14.1.2.2 Dispersion on Velocity

For this purpose, we use the results of Allen adapted to the case of an atmosphere at
hydrostatic equilibrium, without restriction on temperature profile. These hypothe-
ses correspond to:

dp

dz
= −ρg

p = ρ r T (z)

We established in Chap. 9 that velocity verify:

V ≈ VDe
− p

pC

pc = 2β g sin γI

Note: For an exponential atmosphere, the formulations starting from ρ or of p
give identical results.

By differentiating the velocity, we obtain:

ΔV

V
≈ ΔVI

VI
+ p

pC

(
ΔpC

pC
− Δp

p

)

ΔV

V
≈ ΔVI

VI
+ p

pC

(
Δβ
β
+ ΔγI

tgγI
− Δp

p

)
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We observe that this expression corresponds to a constant ballistic coefficient
and constant relative variation Δβ

β
, and that velocity variation depends on dispersion

of density only through the local pressure at altitude Z. Unlike range dispersions,
relative sensitivity of velocity is not negligible; the magnitude depends, at first order,
on relative variations of drag parameters.

Numerical application for our reference case gives a ground velocity of 2234 m/s
and a sensitivity of 23 m/s per percent of constant deviation on atmosphere pressure
or on ballistic coefficient.

14.1.3 Sensitivity to Initial Conditions

We analyze here dispersions related to the variations of initial velocity and flight
path angle.

14.1.3.1 Sensitivity to Initial Velocity

Analysis, in Sect. “Flight Path Angle and Downrange Errors,” of the effect of aero-
dynamic drag on the evolution of flight path angle and range has provided the re-
duction of range by gravity compared to a reference trajectory with constant FPA:

δX (z) ≈ −Href

(
g HR

V 2
I

)
cos γI

sin3 γI

[
1

2

(
z − zI

HR

)2

+ F ′(2Kρ)

]

By adding the range with constant FPA, XI, we obtain the total range:

X = X I + δX = Z I
tan γI

+ δX

From this expression, we directly obtain the sensitivity of range on initial
velocity:

ΔX

X
≈ Δ(δX)

X I
≈ −2δX

tan γI

Z I

ΔVI

VI

Under the same conditions as for assessment of dispersions related to drag, we
obtain a relative sensitivity of 7.10−4 per percent variation on initial velocity. This
corresponds to the nominal range 104 km to a relatively low dispersion equal to
73 m per percent. Exact 3 DoF numerical calculations give 65 m.

The sensitivity of final velocity to initial velocity is obtained in a very simple
way using the Allen expression of current velocity:

V ≈ VI e−KρS ⇒ ΔV ≈ e−KρS ΔVI .

For our reference case, we obtain at sea level a variation 0.372 m/s per m/s of
variation on initial velocity.
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14.1.3.2 Sensitivity to Initial Flight Path Angle

Utilizing the expression from the preceding paragraph, we obtain:

ΔX

X
≈ ΔX I

X I
+ δX

X I

Δ(δX)

δX

which gives with respect to initial FPA,

ΔX

X
= −

[
1

sin γI cos γI
+ δX

Z I

(
3+ tg2γI

)]
δγI .

The second term is much smaller than first, which means that range dispersion is
very close to that of the constant FPA trajectory:

ΔX ≈ − Z I

sin γI

(
ΔγI

sin γI

)

In the case of 30◦ initial FPA at zI = 60 km, corresponding to a nominal range
about 104 km, we obtain 419 m dispersion for 0.1◦ FPA variation.

Influence of initial altitude results using the same approximation,

ΔX

X
≈ ΔX I

X I
= ΔzI

z I
⇒ ΔX ≈ X I

zI
ΔzI = ΔzI

tgγI
.

This evaluation does not offer anything very useful, insofar as the initial reentry
point is arbitrarily selected at a fixed altitude.

Let us evaluate at last the sensitivity of final velocity on initial FPA:

V ≈ VI e−KρS ⇒ ΔV

V
≈ −ρSΔK = KρS

ΔγI

tgγI

That is to say,

ΔV ≈ VI KρSe−KρS
ΔγI

tgγI

This corresponds for our reference case +6.7 m/s for 0.1◦ FPA increase.

14.2 Nonzero Angle of Attack

14.2.1 Effects of Incidence on Aerodynamic Loads

Lift and drag coefficients of a symmetrical vehicle at incidence are:

CD = CA cosα + CN sin α ; CL = CN cosα − CA sinα
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For a slender vehicle at low angle of attack, we have:

CA ≈ CA0 + CAα2α2 ; CN ≈ CNαα

CL ≈ (CNα − CA0) α ; CD ≈ CA0 + (CNα + CAα2 − 1

2
CA0)α

2

Drag can be expressed in the equivalent form:

CD ≈ CD0 + K C2
L ; with K = CNα + CAα2 − 1

2 CA0

(CNα − CA0)
2

This expression highlights the quadratic behavior of lift-induced drag at low inci-
dence. Figure 14.1 illustrates this behavior at different Mach for a 8◦ blunted conical
reentry vehicle (RV), with RN/RB = 0.1, at 0◦–8◦ angle of attack.

The drag coefficient builds very fast with incidence (Fig. 14.2). Thus for our 8◦
conical body, 8◦ incidence corresponds to 120% increase of drag coefficient at Mach
20 (at high Reynolds continuous flow regime).

Principal effect of this drag increase on the trajectory is identical to that of zero
angle-of attack drag variations analyzed in preceding paragraphs.

However, for incidences higher than 2◦ or 3◦, relative variations of drag and lift
grow very quickly, and we could think that for higher initial incidences, the effects
on reentry are very important. Fortunately, for a well-designed vehicle, these effects
are not governing. Indeed, as we saw in Chap. 10, the major part of angle-of-attack
convergence takes place during the accelerated phase of the reentry, i.e., in a range
of altitude where the dynamic pressure is low.

0
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0,1

0,15

0,2

0,25

0,3

0 0,1 0,2 0,3 0,4

CD, CX

C
L

, C
Z Mach 20

Mach 6
Mach 2

Fig. 14.1 Drag polar, 8◦ conical body, incidence 0◦ − −8◦
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Fig. 14.2 Relative drag variation of an 8◦ conical

Although relative variations of drag are important, drag forces are low compared
with vehicle weight and their variations have modest consequences on total acceler-
ation as well as on the trajectory and impact point. The principal consequences are
on velocity and chronology, which undergo first-order variations. Except in special
cases, the most serious consequences of angle-of-attack are not related to initial
reentry incidence, but to residual incidence, in high dynamic pressure zones, i.e., at
low altitude. Residual angle-of-attack generally originates in aerodynamic asymme-
tries, possibly worsened when crossing second resonance, or static or dynamic insta-
bilities. These modifications of trajectories are important and approximate methods
of calculation are not suitable.

We will thus limit our ambitions to the analytical study of lift effects related to
small disturbances in angle of attack.

14.2.2 Effects of Initial Angle-of-attack

14.2.2.1 Accelerated Phase of Center of Mass Movement

We use here hypothesis and results of Sect. 10.2, valid between 120 and 50 km
altitude. We assume the relative velocity is constant module and direction, and use
a quasi-inertial frame Gxyz fixed to the velocity vector (Fig. 14.3).

According to Sect. 10.2, at low angle of attack, approximate evolutions of the
incidence verify:

θ

θI
≈ (1+ ξ)− 1

4 ; ψ̇± ≈ pr

(
1±

√
1+ ξ

)

with pr = μp0
2 and ξ =

(
ω
pr

)2
, ω2 = − qSre f Lre f Cmα/G

IT
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Fig. 14.3 Reference frame definition

In the plane Gyz, complex incidence and lift are written as:

θ̄ = θ exp
[
i
(
ψ − π

2

)]

L̄ = q̄ Sre f CLαθ̄

While choosing Gy directed along initial lift �L I , acceleration normal to the ve-
locity vector is:

ĀN = q̄ Sre f CLα

m
θ exp [iψ]

Thus, the evolution of normal velocity is:

dV̄N

dt
= ĀN =

V 2
I Sre f CLα

2m
ρθ exp [iψ]

V̄N ≈
V 2

I Sre f CLαθI

2m

∫ t

0

{
eiψ

[1+ ξ ]
1
4

· ρ
}

dt

with ξ = ω2

p2
r
= aρ ; a = − V 2

I Sre f Lre f Cmα/G

2IT p2
r
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While using variable altitude H instead of time, we have:

dt = −d H/VI sin γI

⇒ V̄N ≈ −VI Sre f CLαθI

2m sin γI

∫ H

HI

eiψ

[1+ aρ]
1
4

ρd H

where the angle ψ expression according to z is,

ψ± =
∫ t

0
ψ̇±dt ≈ − pr

VI sin γI

∫ H

HI

(
1±

√
1+ aρ

)
d H

Now let us analyze the behavior of ψ for the two modes of angular motion.
Figure 14.4 shows an initial free coning motion of pure precession, such that

angular momentum is directed along initial velocity.
At initial altitude, �AN = �L/m rotates at finite rate ψ̇0 = 2 pr = μp around flight

path. Then ψ̇ grows very slowly when altitude decreases and dynamic pressure in-
creases. In this case, the normal acceleration induces oscillations of normal velocity
components Vy and Vz, without significant effect on the average trajectory.

Figure 14.5 shows an initial free coning motion of pure nutation, such that initial
angular momentum is along the axis of the vehicle. Initial angular rate ψ̇− of the lift
force is null and, when altitude decreases, grows very slowly with a sign opposed
to roll rate. In this case normal acceleration, initially quasi-stationary, carries out its
first half period of rotation very slowly in an altitude domain such that, because of
growth of the dynamic pressure, its average long-term effect on the trajectory is not
negligible.

Figures 14.6 and 14.7 show the behavior resulting from the preceding formulae,
for a 8◦ conical vehicle, m = 117 kg,V0 = 6000 m/s, γI = 30◦, Ix = 2 m2 kg, IT =
15 m2 kg,Sref = 0.196 m2, xG − xCP = 0.162 m,CNα = 2,CLα = CNα − CA =
1.93, p = 2π radians/s, θI = 20◦, exponential atmosphere ρS = 1.39 kg/m3, and
HR = 7000 m.

We note that in the case of pure precession, the two components of normal veloc-
ity oscillate around a zero average value. In the case of pure nutation, the component

?
0

ψ+ = μp

θ0

x
o

L0

H0

V0

Fig. 14.4 Initial coning motion of precession
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Fig. 14.5 Initial coning motion of nutation
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Fig. 14.6 Velocity error for nutation condition

Vy average value is zero (along the initial lift force direction) and component Vz
average value is negative. This corresponds to a deviation of the mean trajectory
normal to the meridian plane of initial lift, opposed to Gz in agreement with the
sign of rotation rate ψ̇− < 0.

Figure 14.8 shows results of 6 DoF computations with the same hypothesis. One
can observe, there is good agreement with the analytical solution.

Now let us develop the case that corresponds to the initial condition of pure
nutation (Fig. 14.5 and 14.6). The assumption of an exponential atmosphere implies
−d H/HR = dρ/ρ. While using ξ = aρ as new variable, the phase ψ− is obtained
analytically:
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Fig. 14.7 Velocity error for precession condition
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Fig. 14.8 Evolution of lateral error for nutation mode, H>50 km
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ψ− = − HR pr

VI sin γI

∫ ξ

0

(√
1+ u − 1

)

u
du

ψ− ≈ −a′
[

2
(√

1+ ξ − 1
)
+ ln

(

4

(√
1+ ξ − 1

)

ξ
(√

1+ ξ + 1
)

)]

with a′ = HR pr
VI sinγI

.
Normal velocity is expressed then as,

V̄N ≈ HRVI Sre f CLαθI

2m sin γI

∫ ρ(H)

0

eiψ−

[1+ aρ]
1
4

dρ = HRVI Sre f CLαθI

2maa′ sin γI
I
(
a′, ξ

)

with I (a′, ξ) = a′
∫ ξ

0
eiψ′−(a′,u))

[1+u]
1
4

du (dimensionless).

There is no exact analytical solution for I(a′, ξ). The numerical study [PLA] of
this function has shown that for large values of a′, its average value is relatively
independent of a′:

I(a′, x) ∼ −i

While using more approximation, it is possible to obtain this value. First, we
use a first-order approximation of phase angle, valid only during the first quarter of
period:

ψ ′− ≈ −a′ξ;⇒ I (ξ, a′) ≈ a′
∫ ξ

0

e−ia′u

[1+ u]
1
4

du

Then we neglect the variation due to the root, which gives:

I (ξ, a′) ≈ a′
∫ ξ

0
e−ia′udu = i

[
e−ia′ξ − 1

]
;⇒ 〈

I
(
a′, x)

)〉 ≈ −i

where operator< I > indicates the time-averaged mean value.
Thus, we obtain an approximate expression for mean normal velocity perturba-

tion:

〈VN 〉 = −i
Href VI Sre f CLαθI

2m a a′ sin γI
= −i

CLαθI IT pr

m(xG − xC P)CNα
= −i

CLαθI IX p

m(xG − xC P)CNα
.

〈
Vy
〉 = 0 ; 〈Vz〉 = − CLαθI Ix p

m(xG − xC P)CNα

The angular deviation of trajectory, which results, develops during the first quar-
ter of period of angular motion (roughly between altitudes H = 90 and 70 km). Its
order of magnitude is:
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δz ≈ 〈Vz〉
VI

≈ − CLαθI Ix p

mVI (xG − xC P)CNα
.

This approximate formula results in Vz = −0.22 m/s, which agree with order
of magnitude of 6 DoF numerical results in Fig. 14.8. The dependence with respect
to the various parameters makes physical sense, because the error is proportional to
initial angle of attack θI and gyroscopic angular momentum Hx = Ixp (indeed, it
delays the subsequent decreasing of incidence), and inversely proportional to mass
and stability parameters.

The deviation of trajectory results in a lateral error Δz ≈ Lδz ≈ H δz/ sin γI at
the ground impact, which gives a very small 6 m value. This estimation agrees quite
well with 6 DoF computations in Fig. 14.9.

However, we point out that the purpose of these approximate developments is
only to understand the origin of the induced error and to estimate its order of mag-
nitude. It results that the effect is low for current reentry velocity and spin rate.
Taking into account the coarse approximations, we needed to use, only a calculation
using an exact – 6 DoF model allows a reliable result. In particular, owing to the
fact that this error develops in a phase of rarefied flow, the exact lift coefficient is
lower than the coefficient in continuous mode used here. In addition, we assumed
constant velocity, which is roughly valid only above 60 km. It results that in this
altitude range, although the incidence decreases, amplitude of oscillations of normal
velocity is increasing.

Side error history for nutation mode
6 DoF computation
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Fig. 14.9 Evolution of lateral error for nutation mode, 120 km to sea level
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14.2.2.2 Decelerated Phase of Motion

Below 50 km altitude, we must take into account the increase in density and the
reduction of velocity by aerodynamic drag, in addition to aerodynamic damping of
incidence. The amplitudes of oscillations of normal load factor and normal velocity
generally pass by a maximum before the end of the trajectory. The amplitude of
these oscillations can be estimated asymptotically using present approximations and
those of Chap. 11.

θ

θI
≈ ξ− 1

4 e
∫ t

0 �dt

� ≈ −�α + mq

2
= −1

2

q Sre f

V

[
CLα

m
−

L2
re f

IT
Cmq

]

∫ t

0
�dt ≈ HR

sin γI

ρ(z)∫

0

�
dρ

ρV
⇒
∫ t

0
�dt ≈ −Dρ

with D = HR Sre f
4 sinγI

[
CLα

m − L2
re f Cmq

IT

]
.

By introducing the Allen approximation for velocity,

ξ = ω2

p2
r
= a0ρ

(
V

VI

)2

= a0ρe−2Kρ

K = HR

2β sin γI

we obtain the amplitudes of oscillations of the incidence and normal acceleration:

θ = θI ξ
− 1

4 e−Dρ = θ0 [a0ρ]−
1
4 e
−
(

D− K
2

)
ρ

|AN | = L

m
= q̄ Sre f

m
CLαθ =

Sre f V 2
I CLαθI a

− 1
4

0

2m
ρ

3
4 e
−
(

D+ 3
2 K
)
ρ

That is to say,

|AN | =
Sre f V

3
2

I p
1
2
r CLαθI

2m

[
2IT

Sre f (xG − xC P)CNα

] 1
4

ρ
3
4 e−D′ρ

with D′ = D + 3
2 K = HR Sre f

m sinγI

[
3
4 CD + 1

4

(
CLα − mL2

re f
IT

Cmq

)]
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The maximum of normal acceleration is given by:

d

dρ

[
ρ

3
4 e−D′ρ

]
= 0 → ρm = 3

4D′
.

This corresponds to an altitude Zm = HR Ln
[
ρS
ρm

]
= HR Ln

[
4D′ρS

3

]
,

and amplitude AN,max = Sre f V
3
2

I p
1
2
r CLαθI

2m

[
2IT

Sre f (xG−xC P )CNα

] 1
4
[

3
4eD′

] 3
4
.

With the same assumptions as the preceding paragraph, for θI = 20◦ initial an-
gle of attack, we obtain 29.6 m.s−2 for the maximum normal acceleration at 26 km
altitude. The evolution of normal load is shown in Fig. 14.10, as well as the result
of 6 DoF code with same hypothesis (zero gravity, exponential atmosphere). This
computation provides 31.4 m.s−2 maximum load at 26.6 km, which is in agreement
with analytical result.

Now, we know the amplitude of normal acceleration, and we can calculate the
lateral fluctuations of the trajectory of the center of mass. In this range of altitude,
rotational frequencies of vehicle axis and of normal acceleration �AN with respect to
inertial frame are, according to Chap. 11:

ψ̇± = pr ± ωa

The current normal acceleration is thus of the form:

Ān = |AN | e
i

[

ψ0+
t∫

t0

ψ̇±dτ

]
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Fig. 14.10 Normal load
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Thus, during an interval of time [t0, t], evolutions of normal velocity and location
are of the form:

V̄N =
∫ t

t0
ĀN dt ′ + V̄N0

R̄N =
∫ t

t0
dt ′
∫ t ′

t0
ĀN dt ′′ + V̄N0 (t − t0)+ R̄N0

We must study by interval the stability of this kind of motion, while considering
on the one hand that the pulsation ωa is slowly variable, and in addition we are in
a range of altitude where nutation and precession rates are finite

∣
∣ψ̇±

∣
∣ > |pr | (I.e.,

ωa > 2 |pr |). We must show that if at the initial time t0 average deviations of normal
velocity V̄N0 and location R̄N0 are null, the later evolution remains near zero or very
low average value.

This demonstration comes within a pure mathematical field and leaves the frame-
work of this work. Experimental observations and digital simulation show that under
the conditions, which have just been defined, and for usual spin rates pr, the lateral
motion is stable and of helical nature around the mean trajectory. This phenomenon
is currently named “lift averaging.”

Orders of magnitude of amplitudes of oscillations of velocity and location around
the mean trajectory correspond to:

ΔVN ≈ |AN |∣
∣ψ̇
∣
∣ ; ΔRN ≈ |AN |

∣
∣ψ̇
∣
∣2

This corresponds for a pure mode ψ̇+ or ψ̇− with a current lateral circular mo-
tion, i.e., a circular helical trajectory (6 DoF results are shown in Fig. 14.11).

Approximate expressions of radius and pitch (wavelength) of the helix are:

R = |AN |
∣
∣ψ̇
∣
∣2
; λ = V

2π
∣∣ψ̇
∣∣

Corresponding evolutions of radius and wave length corresponding to our refer-
ence vehicle are represented in Fig. 14.12.

We can note in Fig. 14.12 that for a vehicle of this type and in this range of
altitude, amplitudes of high frequency lateral variations of trajectory generated by
the evolution of the initial angle of attack is remarkably low.

For a combination of the two modes, the lateral motion is epicycle-like or in
“petal plot” (to see Fig. 14.13, 6 DoF computation) already studied in Chap. 11 on
the evolution of the angle of attack. The order of magnitude of variations to the
average trajectory provided by preceding estimates remains valid.
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Initial conditions : tau = 0, eps = 30
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Fig. 14.11 Petal plot of lateral velocity for pure nutation

14.2.2.3 Trimmed Phase

This phase begins toward 15–20 km altitude, when incidence oscillations bound to
initial incidence almost converged. In practice, residual oscillations of incidence are
generally lower than 0.1◦.

We study the case of a static trim at spin rate p, assumed here as constant, far
from critical roll rate.

If there is a static trim angle related to an asymmetry, the movement in inci-
dence corresponds to lunar motion described in Chap. 11. With respect to an inertial
observer, the axis of the vehicle turns around the velocity vector with an angular
precession rate ψ̇eq ≈ p and maintains a constant angle equal to the trim angle
∣∣αeq

∣∣. The normal acceleration is
∣∣AN,eq

∣∣ = q̄Sre f
m CLα

∣∣αeq
∣∣. This acceleration turns

around the velocity vector at the same angular rate ψ̇eq .
The result is a current movement of circular helix type with pulsation p:

|RN | ≈
∣
∣AN,eq

∣
∣

p2
; λ = V

2π

p
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Fig. 14.12 Parameters of helix motion

The order of magnitude of the characteristics of this movement is given in
Fig. 14.14 under the same conditions as the preceding paragraph, for a roll rate
p = 1 rev. per second and a trim angle of attack αeq = 1◦.

We can note that although relatively low, the amplitude of the fluctuations of the
transverse movement corresponding to a static trim and lunar motion conditions is
10–100 times higher than fluctuations related to the initial angle of attack. This is
clearly related to the precession rate ψ̇eq ≈ p of trim angle that is generally much
lower than that of the oscillatory component of the incidence (ψ̇± ≈ pr ± ωa). The
wavelength of the normal velocity oscillations is about equal to the RV velocity.
Figure 14.15 shows typical 6 DoF plots of side variation of velocity and location
referenced to the zero angle-of-attack trajectory.
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Initial condition : tau = 10, eps = 20
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Fig. 14.13 Petal plot of lateral velocity for epicycle motion

14.2.2.4 Stability of the Lateral Motion

We admitted that when the angular precession rate ψ̇ is slowly variable and of mod-
ule
∣
∣ψ̇
∣
∣ sufficient, deviations of mean trajectory related to incidence are negligi-

ble, due to lift-averaging phenomenon. The first example of instability of the mean
trajectory was already studied; it corresponds to the mean normal velocity, which
develops during the beginning of the accelerated reentry, associated to the nutation
mode. Indeed, this mode corresponds to a zero initial rotation rate of the axis of
the vehicle and lift vector around the velocity vector. Long duration of the first
half period of rotation of normal acceleration involves a deviation of trajectory not
compensated during the following periods, which are of much shorter duration, so
lift averaging does not occur.

This phenomenon is likely to occur more generally during an inversion with pas-
sage through zero or of a temporary minimum of

∣
∣ψ̇
∣
∣.

Such instability occurs in the presence of trim angle of attack and a roll moment,
when roll rate crosses through zero.

Another cause of lift averaging defect is a sharp variation of some aerody-
namic parameter, or its continuous variation for duration shorter than half period of
precession.

Consequences of Roll Through Zero

In order to assess the side velocity disturbance, we assume positive initial roll rate
and constant negative roll acceleration ṗ = ṗ0 < 0, and we choose the origin of
time coincident with rolling cancellation. We assume that the vehicle is at constant
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Fig. 14.14 Helix motion, roll trim conditions
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Fig. 14.15 History of motion’s parameters during roll trim phase (lunar motion)

trim incidence, and we use a reference frame Gxyz such as Gx is along the nondis-
turbed flight path, and normal axes such as axis Gy is according to the direction of
the lift force at time origin (Fig. 14.16). To finish, we assume that during duration
T of normal velocity disturbance, the dynamic pressure is constant. Under these
conditions, roll rate being assumed highly subcritical (|p| < pcr ), the trim incidence
remains close to the static trim incidence θe, and amplitude of normal acceleration
remains constant:

|AN | = q̄ Sre f

m
CLαθe = |AN0|

The vehicle is in lunar motion and according to Sect. 12.2 the phase ψ of ĀN is
such as:

ψ̇ ≈ p = ṗ0t ⇒ ψ =
∫ t

0
ψ̇dτ = ṗ0

t2

2

Variation of side velocity is written as,
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dV̄N

dt
= ĀN = |AN0| eiψ ⇒ ΔV̄N = |AN0|

∫ + T
2

− T
2

eiψdτ

While posing x =
√
| ṗ0|

2 t and accounting for ṗ0 < 0 ⇒ ψ = −x2:

ΔV̄N = |AN0|
√

2

| ṗ0|
∫ +x

(
T
2

)

−x
(

T
2

) e−ix2
dx

If we define T such that x
( T

2

) =
√
| ṗ0|

2
T
2 is sufficiently high, we have:

ΔV̄N ≈ |AN0|
√

2

| ṗ0|
∫ +∞

−∞
e−ix2

dx .

We recognize the well-known Fresnel’s integral (!) and we obtain finally:

ΔV̄N ≈ |AN0|
√

2

| ṗ0|
∫ +∞

−∞
(cos x2 − i sin x2)dx

= |AN0|
√

2

| ṗ0|
[√

π

2
− i

√
π

2

]
= |AN0|

√
2π

| ṗ0|e
−i π4

Thus, the disturbance mean velocity takes place at ψ = −45◦ from direction of
the lift force at the time of zero roll (Fig. 14.16). This disturbance is proportional
to the inverse of roll acceleration. The orientation of the disturbance is simply ex-
plained in the case of a negative rolling acceleration by the fact that the phase of
the lift force tends toward zero per negative value, cancel then decrease without
changing sign. Direction of the lift force thus remains quasi-stationary in the fourth
quadrant for the period around zero roll. In the case ṗ0 > 0, the positive phase
decreases then increases after cancellation. The disturbance will take place in the
first quadrant at ψ = +45◦, so that one can write in the general case:

ΔV̄N ≈ |AN0|
√

2π

| ṗ0|e
i π4 sgn( ṗ0)

Like previously, angular deviation of trajectory and side error at the point of
impact expressions are:

δy ≈ |ΔVN |
V

Δy ≈ Lδy ≈ H

sin γ0
δy
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Fig. 14.16 Precession angle at roll through zero

Variations resulting from this analytical theory for our case of reference and for
a roll acceleration ṗ0 = 2π radians.s−2 are represented in Fig. 14.17.

Figure 14.18 presents typical 6 DoF computation results of roll through zero
consequences.

We can observe that the conjunction of a trim angle of attack with roll through
zero is by far the largest contributor to horizontal dispersion met until now.

Consequences of the Rapid Development of a Trim Angle

Hypothesis on the movement are identical to the case of roll through zero, except

• Constant roll rate p = p0
• In the vehicle frame: no trim angle for (t < t0), then step static trim angle ξm or

linear ramp ξe (t) = ξm
t−t0

T for t0 to t0 + T

We are in lunar motion and according to Sect. 12.2, phase ψ of the vehicle
verifies:

ψ̇ ≈ p0 ⇒ ψ =
∫ t

0
ψ̇dτ = p0t

In the aeroballistic frame, the response to a step static trim angle at time t0 is the
superposition of the trim response term turning at roll rate and the transitory terms
at nutation and precession at frequencies. These last terms are of high frequency
compared with p and of zero mean value. The trimmed response term at rolling
frequency of p is:
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Fig. 14.17 Lateral velocity perturbation and lateral error at impact

• t < t0 → θ = 0
• t0 ≤ t → θ = ξm

1−
(

p
pcr

)2 eiψ

We neglected in the preceding expression the influence of damping D on the trim
incidence. This is allowable, given the assumption of a roll rate clearly subcritical.

In the ramp case, we have:

• t < t0 → θ = 0

• t0 ≤ t ≤ t0 + T → θ = ξm
t−t0

T

1−
(

p
pcr

)2 eiψ

• t0 + T < t → θ = ξm

1−
(

p
pcr

)2 eiψ
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Fig. 14.18 History of motion’s parameters during roll through zero

Under these conditions the aeroballistic frame is quasi-inertial and its transverse
plane is very close to that of the reference frame related to the mean velocity. Com-
plex transverse aerodynamic acceleration expression is:

AN = qSre f

m
CLαθ

dV N

dt
= AN ⇒ ΔV N =

∫ t

t0
AN dτ

We obtain lateral velocity disturbances by integration:

• For the step trim:

ΔV N = i
qSre f CLα

mp

ξm

1−
(

p
pcr

)2

[
eipt0 − eipt

]

• For the ramp and t0 + T < t:
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ΔV N = i
q Sre f CLα

mp

ξm

1−
(

p
pcr

)2

⎡

⎣e
ip
(

t0+ T
2

) sin
(

pT
2

)

pT
2

− eipt

⎤

⎦

Terms independent of time of the two expressions represent the mean velocity
disturbance.

∣
∣〈ΔV N

〉∣∣
step =

qSre f CLα

mp

ξm

1−
(

p
pcr

)2

∣
∣〈ΔV N

〉∣∣
ramp = |〈ΔVN 〉|step

∣∣
∣
∣
∣
∣

sin
(

pT
2

)

pT
2

∣∣
∣
∣
∣
∣

The curve G = sin u
u of Fig. 14.20 for the ramp show first that the maximum effect

(equivalent to the step) takes place when the rising time T of the static trim is small
compared with the roll period, in addition that this effect decreases quickly with T.

In the case of the step, the velocity perturbation has a phase lag of lagπ2 with
respect to the direction of the lift at time t0. In the case of the ramp, this phase lag is
π
2 + pT

2 .
Figure 14.19 gives for 1◦ static trim step respectively the mean normal veloc-

ity error and the ground side variation. The assumptions are identical to preceding
cases, in particular roll rate equal to 1 Hertz. It is advisable to notice that these
errors are relatively high, but sudden appearance of a static trim is not very realistic,
except in the event of mechanical rupture. In the case of an ablative asymmetry, the
phenomenon is much more progressive and has weaker consequences, as shown in
Fig. 14.20, due the influence of the rising time.

Consequences of a Static Stability Variation

Here we analyze the consequences of a fast variation of static stability. The origin
can be, for example, a variation of center of mass location or of external geometry.
We assume a symmetrical vehicle and consider the phase of initial convergence
of the incidence. Results relating to epicycle movement of Chap. 11.2 apply. The
evolution of complex incidence in the aeroballistic frame (quasi-inertial) is:

ξ = eipr t
[
ξ+eiωa t + ξ ′−e−iωa t

]

We assume that the variation of ωa is a discontinuity, i.e., a step of amplitude
Δω = ωa1 − ωa0 at time t = 0. Roll rate p and spin pr are assumed constant. We
study the movement for a few periods; also we neglect the slow variation of ωa

dependent on the variation of dynamic pressure with altitude as well as the damping
of the incidence.
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Fig. 14.19 Lateral velocity perturbation and ground error

• Before the disturbance, for t ≤ 0 we assume that we are in the mode ξ+ with
positive pulsation, such that the complex incidence ξ is along the y axis of the
aeroballistic frame at initial time:

ξ0 (t) = θ0ei(pr+ωa0)t

• For 0 < t, we have again ωa = ωa1 = cst and the general evolution is

ξ1(t) = eipr t
[
ξ1+eiωa1t + ξ ′−1e−iωa1 t

]

For t ≤ 0 we have:
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Fig. 14.20 Influence of rising time

ξ̈0 − 2i pr ξ̇0 + ω2
n0ξ0 = 0

with ω2
n0 = ω2

a0 + p2
r

For t > 0 we have:

ξ̈1 − 2i pr ξ̇1 + ω2
n1ξ1 = 0

with ω2
n1 = ω2

a1 + p2
r

The variation of pulsation is assumed to be instantaneous, and corresponds to
a discontinuity of the aerodynamic moment. As the rotational movement ξ is con-
tinuous, there is no variation of ξ through discontinuity, which is by definition of
null duration, thus no variation of the rotational kinetic energy EK or the angular
rate 	 (for EK and 	 it had not been the case with respect to a disturbance like
an aerodynamic moment of percussion). It results that ξ̇ is continuous. The only
discontinuous variables are the transverse angular acceleration 	̇ and the second
derivative of the complex incidence ξ̈ .

ξ1 (0+) = ξ0 (0) .

ξ̇1 (0+) = ξ̇0 (0)

ξ̈1 (0+)− ξ̈0 (0) = −
[
ω2

n1 − ω2
n0

]
ξ0 (0) = −

[
ω2

a1 − ω2
a0

]
ξ0 (0)

One can show that the discontinuity corresponds to variations of potential energy
and total energy of the movement:
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E = EK + E P = 1

2
IT

[∥∥ξ̇
∥∥2 + ω2

a ‖ξ‖2
]

ΔE = ΔE P = 1

2
IT

(
ω2

a1 − ω2
a0

)
‖ξ (0)‖2

To determine the amplitude of the two modes after the disturbance, we thus write
the conditions of continuity of ξ and ξ̇ at time zero:

ξ1+ + ξ1− = θ0

i (pr + ωa1) ξ1+ + i (pr − ωa1) ξ1− = i (pr + ωa0) θ0

Thus, we obtain:

ξ1+ = ωa1 + ωa0

2ωa1
θ0

ξ1− = ωa1 − ωa0

2ωa1
θ0

We note that the disturbance involves the appearance of the mode ξ− with neg-
ative pulsation. The evolution of the module of the incidence after the step varia-
tion is:

θ2
1 =

θ2
0

2

[

1+
(
ωa0

ωa1

)2

+
(

1−
(
ωa0

ωa1

)2
)

cos (2ωa1t)

]

.

For a decrease of static stability ωa0 > ωa1, minimum and maximum ampli-
tudes are:

θ1 max = ωa0

ωa1
θ0

θ1 min = θ0

The initial incidence oscillation, which was circular with pulsation ωa0 became
elliptical with pulsation ωa1 (see Fig. 14.21, θ0 = 1◦, ωn0 = 20π radians.s−1, and
ωn1 = ωn0√

2
≈ 14π radians.s−1).

Now let us calculate the evolution of the side velocity disturbance for t > 0.
For this purpose, we naturally assume that side velocity before the step has zero

mean value:

V N0 (t) = q Sre f CLα

m
θ0

ei(pr+ωa0)t

i (pr + ωa0)

= qSre f CLα

m (pr + ωa0)
θ0
[
sin ((pr + ωa0) t)− i cos ((pr + ωa0) t)

]
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Fig. 14.21 Incidence and sideslip behavior during a step change of static stability

Lateral speed at the time t = 0 is:

V N0 (0) = −i
qSre f CLα

m
θ0

1

(pr + ωa0)

Lateral speed at later time is:

V N1 (t) = V N0 (0)+
∫ t

0
AN1 (τ ) dτ

with,
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Fig. 14.22 Lateral and normal velocity behavior during a step change of static stability

AN1 (t) = q Sre f CLα

m
ξ1 (t)→ ΔV N (t) = qSre f CLα

m

∫ t

0
ξ1 (τ )dτ

We must thus evaluate,

∫ t

0
ξ1(τ )dτ =

∫ t

0

[
ξ1+ei(pr+ωa1)τ + ξ ′1−ei(pr−ωa1)τ

]
dτ

We leave to the reader to check that one obtains:

∫ t

0
ξ1(τ)dτ =

θ0

2iωa1

[
ωa1 + ωa0

pr + ωa1

(
ei(pr+ωa1)t − 1

)
+ ωa1 − ωa0

pr − ωa1

(
ei(pr−ω−a1)t − 1

)]
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Fig. 14.23 Lateral velocity perturbation and ground error

By adding initial side velocity V N0 (0) to ΔV N (t), we obtain (while noting

η = ω2
n0
ω2

n1
− 1):

V N1 (t) =
qSre f CLα

m (pr + ωa0)
θ0

[
iη+ eipr t

[(
ωa0

ωa1
− η pr

ωa1

)
sin (ωa1t)− i (η + 1) cos (ωa1t)

]]

The result is the mean lateral velocity induced by the step stability variation:

〈
V N1 (t)

〉 = i
qSre f CLα

m

θ0

ωa0 + pr
η
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We note that the mean velocity disturbance is proportional to the initial amplitude∣
∣
∣
∣
⇀

V N0

∣
∣
∣
∣ of lateral velocity fluctuations and, when ωn1 < ωn0, its direction is opposed

to the value of the fluctuation at the time of the disturbance:

〈
V N1 (t)

〉 = −ηV N0 (0)

The multiplicative factor can be expressed from the static margin Δx = xG−xC P

ω2
n =

qSre f CNαΔx

IT
⇒ η =

[
ω2

n0

ω2
n1

− 1

]

= Δx0

Δx1
− 1

Figure 14.22 gives an example of lateral velocity evolution in the transverse
plane before and after the disturbance, for an initial side velocity cycle of ampli-
tude 0.5 m/s, with the assumptions of Fig. 14.21 on aerodynamic frequency, which
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correspond to 1/2 the static margin. In this case the induced mean velocity is equal
to the amplitude of the initial velocity oscillation, i.e., 0.5 m/s.

Using assumptions and results of Sect. “Decelerated Phase of Motion” on the
amplitude of side velocity oscillations at the end of the convergence of the incidence,

we obtain the term

∣
∣
∣
∣
⇀

V N0

∣
∣
∣
∣ versus altitude (Fig. 14.23). This term is equal to the mean

side velocity disturbance for a static margin Δx divided by 2.
Figure 14.23 gives in addition the side location error at sea level under the same

conditions, obtained from:

ΔyN = η |VN0 (z)|
V0

z

sin γ0

Figure 14.24 gives plot of typical 6 DoF computation results of this phenomenon.
This error is definitely a lower order of magnitude than that which results of a

static trim angle associated with roll through zero.



Epilog

In the first five chapters, we described the basic theoretical tools necessary to analyze
flight mechanics of reentry vehicles and planetary capsules. These included classical
mechanics, topography and gravitational models, hypersonic aerodynamics, trans-
form rule for change of reference frames, and inertia properties. Except hypersonic,
which is specific of the subject, these topics are of general use and are provided to
avoid the reader to look for results used all along the book.

The remaining is the application of these tools to ballistic phase and reentry top-
ics. As they represent the matter of the book, it is worth to review these chapters, in
order to enlighten the important results.

Chapter 6: Ballistic Trajectories

For an inertial observer, ballistic trajectories are ellipses that intersect the earth
surface, of absolute range limited to less than 1/2 the earth’s circumference, with
velocities lower than circular orbit (about 7.9 km/s). Most interesting trajectories are
of minimum energy, which minimize fuel consumption and correspond to γ0 = π−α

4
initial flight path angle, where α is angular range. At the same range, nonoptimal
trajectories need higher velocities. They include lofted trajectories with γ > γ0 and
shallow trajectories with γ < γ0. Lofted trajectories are long duration and high
apogee altitude; shallow trajectories are shortest duration and low apogee altitude.

For an observer fixed to rotating earth, at given initial relative conditions, bal-
listic trajectories are modified depending on the initial azimuth and latitude. First
the inertial velocity is the sum of the relative velocity and the local earth velocity,
which modifies the absolute range; second the earth surface drift toward east, which
affects the relative range. Initial eastward azimuth increases range, westward az-
imuth diminishes range. The highest effects are encountered at initial latitude near
equator.

Chapter 7: Free Rotational Motion

Most RV and planetary probes are near axisymmetric and provided with initial
roll rate p (around inertial symmetry axis) for gyroscopic stability. During the out
of atmosphere motion, RV angular momentum is near constant relative to inertial
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frames. For symmetry reason, the roll rate remains constant. When transverse initial
rotation rates are zero, the symmetry axis has a constant direction along the angu-
lar momentum. For finite initial transverse rotation rate, there is an initial angular

offset tan θ0 =
IT

√
q2

0+r2
0

IX p0
between axis of symmetry and angular momentum. The

gyroscopic effect results in maintaining the offset θ constant (nutation angle). We
observe free coning motion of the vehicle’s axes around angular momentum at con-
stant precession velocity ψ̇ = IX p0

IT cos θ0
and roll rate.

Chapter 9: Zero Angle of Attack Reentry

For high β, high initial velocity RV, effects of gravity on trajectory are second
order; major effects are related to the aerodynamic drag, and flight path is very
close to rectilinear. On earth, maximum deceleration (up to 100 g) occurs below
15 Km, where is 90% of the mass of the atmosphere. Most challenging effects are
aerothermal effects on nosetip and heat shield of the vehicle. On nosetip, the heat
flux is inversely proportional to the square root of curvature radius and can exceed
100 Mw/m2. In the rest of the vehicle, heat flux may exceed 10 Mw/m2. Maximum
axial load and heat flux are encountered on lofted trajectories; however, because of
longer reentry duration, maximum aerothermal effects (total energy, ablation mass
loss, and aerodynamic asymmetries) are encountered on shallow trajectories (i.e.,
also on long range trajectories).

Chapter 10: Initial Reentry with Angle of Attack

At zero roll rates, angle of attack behavior depends on aerodynamic static and dy-
namic pitching moments, transverse inertia, and atmosphere profile. Static moment
(i.e., static margin and normal force coefficient) determines only pitching frequen-
cies and trim angle of attack. Unlike many people thinking, for a stable vehicle,
angle of attack convergence is essentially related to dynamic pitching moment
(aerodynamic damping) and to the rate of variation of aerodynamic frequencies
(atmospheric density damping), not directly to the static margin. During the first
part of reentry (120–60 km), CG velocity is nearly constant, dynamic pressure and
aerodynamic frequencies increase exponentially; convergence of angle of attack
relies mainly on density damping. Effect of the spin rate and gyroscopic moment
is to slower initial convergence and to precession the angular perturbations (at
pr = μp/2) around flight path vector.

Chapter 11: End of the Convergence of the Incidence

Below 60 km, for a stable RV, the initial angle of attack has mostly converged due
to density damping.
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At small angle of attack, for an inertial observer, the instantaneous angular
motion of a RV with spin appears tricycle. Angle of attack behavior in the inci-
dence/sideslip plane is the sum of three terms including the static trim angle at
roll frequency and two dynamic damped components, at nutation and precession
frequencies. The static trim angle is due to aerodynamic and/or mass asymme-
tries of the vehicle. Nutation and precession frequencies are near ±ωn the natural
aerodynamic frequency of the vehicle. During reentry, they increase with dynamic
pressure, generally having a 10–30 Hz maximum before impacting. As by defini-
tion the nutation frequency has the sign of the roll rate, resonance generally occurs
once at high altitude when nutation frequency equals roll frequency (first resonance
condition). The roll rate at which the condition is realized is named critical roll
frequency, very close to nutation frequency. A second resonance condition may also
occur at low altitude depending on roll rate history. Due to resonant amplification,
trim angles of attack and lateral loads are temporarily strongly increased throughout
crossing, especially at second resonance where dynamic pressure is high. Except
sustained resonance, final angular movement below 15 km is lunar motion, where
longitudinal axis maintains a constant rolling trim angle with flight path vector,
which has a constant meridian relative to the vehicle. Due to decrease of angle of
attack and increase of dynamic pressure, lateral loads associated with initial angle
of attack generally have a maximum around 20 km.

Chapter 12: Roll-lock-in

When any aerodynamic or inertial asymmetry is combined with a CG offset, it re-
sults a roll moment. Hence near resonance, pitch/yaw rolling trim angles and roll
rate are mutually coupled. Following resonance crossing, this may result in a lock-in
of the roll rate on the critical roll frequency, analog to a closed loop control, which
maintains resonance for a long period with high trim angle and lateral loads. Gener-
ally, first resonance crossing occurs near 45 km and the only asymmetries existing
are mass and inertia, which are not very difficult to specify to manage associated
risks. After transition, high turbulent heat flux induces ablation, which may create
asymmetries on nosetip and roughness on heat shield. Aerodynamics effects, includ-
ing nosetip trim angles and heat shield roll moments, are difficult to control. Hence,
most challenging candidates are CG offset combined with low altitude out-of-
plane aerodynamic asymmetries, which may induce roll-lock-in following second
resonance.

Chapter 13: Instabilities

Angle of attack divergence may result of static or dynamic instabilities. RV and
probes are generally designed to provide unconditional static stability. However,
if needed for packaging constraints, different levels of static instability may be
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admitted at high altitude and low dynamic pressure with little consequence on reen-
try. Dynamic instabilities are often encountered on blunted probe shapes having a
positive pitch damping coefficient at low supersonic and transonic Mach number,
which must be managed in the design. They are rarely a critical problem on RV
at supersonic regime, except for some heat shield materials having highly blowing
pyrolize or ablative properties, for which ablation lag phenomenon may have effects
analog to a positive pitch damping coefficient.

Chapter 14: Dispersions

Origins of horizontal dispersions are twofold, drag and lift. Drag dispersions are
the effects of variations of initial angle of attack, axial force coefficient, and atmo-
sphere density. Lift-induced dispersions are essentially effects of asymmetries and
precession rate history.

For a high performance RV, horizontal dispersions related to drag are low; effects
are mainly on velocity and chronology. Lift effects associated with initial angle of
attack are not negligible, but the main contributors are trim angles of attack (asym-
metries). However, in both cases the key effect is that of precession rate ψ̇ of the
aerodynamic axis around the flight path vector (do not confuse ψ̇ with precession
frequency). When precession rate is a continuous function of time of minimum
value, lift averaging occurs, and trajectory is helical of very small diameter around
the mean flight path. Deviations of mean flight path, with large final horizontal dis-
persions, are consecutive to ineffective lift averaging. This occurs when precession
rate becomes too small or discontinuous, combined with asymmetrical trim. This
may also occur at constant precession velocity, combined with trim perturbations of
duration lower than precession period. Analysis shows that the highest contributor
to horizontal dispersion is low altitude trim angle, combined with roll through zero
(during lunar motion, precession rate is equal to roll rate).



Exercises

• For numerical applications, use of a PC and graphical software is highly advised
(or any computational software).

• All reference frames are orthogonal and right handed.

1. Noninertial reference frames (Chap. 1, Sect. 1.1.2 and Chap. 6, Sect. 6.1.1)

Using the methodology of Sect. 6.1.1, establish the general expression of the
fundamental principle of mechanics in a reference frame in nonuniform rotation
and translation.

2. Accelerometers

The principle of an accelerometer is to measure displacements of a test mass
relating to the case, along its measurement axis (or measure the interior load to
apply to cancel its movement relating to the case)

• To give the general expression of the interior load (accelerometer measurement)
• A triaxial accelerometer block is located at the center of mass of a missile. What

do we measure in the following corresponding situations:

• on launching area
• during propelled phase
• during ballistic phase out of atmosphere
• during reentry phase

3. Vertical and apparent gravity

• Determine the equilibrium position of a line pendulum at the surface of rotational
earth at given latitude.

• Give the expression of the apparent field of gravity.

4. Coriolis force

• A tourist releases a marble from the top of the Eiffel tower (300 m height approx-
imately, latitude 45◦):
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• To determine vertical and horizontal approximate motion and deviation from the
vertical of the point of impact due to earth rotation,

• Neglect aerodynamic drag and use a Z axis directed along the apparent vertical
of gravity.

• Note: It is strictly forbidden to send objects from the Eiffel tower.

5. Quaternion

From Sect. 6.2.3, Q = [q0 q1 q2 q3
]

with
∣
∣Q
∣
∣ = 1 represents a rotation in R3

(like unit complex numbers in R2).

• From q0, q1, q2, q3, determine the parameters ϕ and �Δ = [
Δ1 Δ2 Δ3

]
of this

rotation
• Determine ϕ and �Δ = [

Δ1 Δ2 Δ3
]

for Q = [
0 1 0 0

]
,
[
0 1√

3
1√
3

1√
3

]
,

[
0 − 1√

3
− 1√

3
− 1√

3

]
,
[ 1

2
1
2

1
2

1
2

]
,
[− 1

2
1
2

1
2

1
2

]
,
[√

2
2

√
2

4
1
2 −

√
2

4

]

6. Euler angles and quaternions

• Determine components of the quaternion corresponding to the operator to change
of reference frame K → E through a sequence 1, 2, 1 of Euler rotations, as
function of ψ, θ,ϕ.

• Determine quaternion corresponding to ψ = θ = ϕ = π/2;π/3; 2π/3.
• Determine the single axis rotations corresponding to those rotations.

7. Verify equivalence of quaternion associated to change of reference frame and
vector rotation.

The quaternion associated to change of frame operator transforms components
of a space fixed vector through successive rotations of reference frame (exer-
cise 6). The rotation operator is acting on components of a vector to transform
it by rotation in a unique reference frame. Determine the quaternion associ-
ated with rotation operator for a sequence 1, 2, 1 of Euler rotation. Show the
equivalence with the previous one.

8. Pendulum of Foucault

This experiment demonstrated the effects of the rotation of earth.

• The hinge point of a line pendulum is fixed at the top of a high tower (the line
length L is such that the suspended mass is close to ground level). The pendulum
is released with a low initial angle from apparent vertical (∼ 1◦) without velocity
relative to earth
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• To determine the period of the oscillations and the evolution of the plane of
the oscillations at different latitudes

• Damping related with bearing friction and aerodynamic drag will be neglected
• Use a local frame OXYZ such that O is the hinge point of the pendulum; OZ

is along the ascending apparent vertical, OX eastward and in the plane normal
to OZ.

• Variables are the meridian angle ψ of half plane containing the pendulum and
the apparent vertical OZ (origin at the half plane containing OX) and the angle
θ between the pendulum and OZ.

• Neglect second-order terms in θ.

9. Motion of the terrestrial center of mass

• Assuming earth orbit around the sun is circular of radius R ≈ 1 astronomical unit
(UA = 1.5 108 km) with period 365 days, determine its velocity and centripetal
acceleration. Determine the same parameters for the rotation of the moon around
earth (period 27 days 8 hours, mass 7.3 1022 kg). To determine the acceleration
of earth’s center of mass under the influence of the moon (universal constant
of gravitation G = 6.67 10−11 m3.s−2.kg−1). What can we say about using a
nonrotating reference frame at the earth center of mass to observe the movement
of a ballistic vehicle?

10. Launch windows toward Mars

Knowing that the Martian year lasts about two terrestrial years, the most fa-
vorable launch windows from earth takes place every two years. Determine
orbit (assumed circular) radius of Mars around sun as well as the minimum
distance of earth/mars.

11. Energy of a solid in free rotation

Consider a rigid body of revolution around axis X, subjected only to a grav-
itational field (for example, a satellite). Its initial angular moment �H0 and
principal moments of inertia Ix > Iy = Iz being fixed, determine the pos-
sible range of its kinetic energy of rotation. What can one deduce about the
stability of the rotational movement around the three principal axes?

12. Angular momentum of a nonrigid satellite made of two rigid bodies

Determine the general expression of the total angular momentum of a system
of two solids in rotation, of which centers of mass are in accelerated rela-
tive motion (under the effect of arbitrary interior forces). Determine first the
expression of the total angular momentum and that of its time derivative in
a nonrotating reference, then the expression of this derivative in a rotating
reference frame fixed to one of the solids.
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13. Lunar rotational motion

• It is well-known that the moon always presents the same hemisphere toward the
earth.

• What is the origin of the phenomenon? What are the angular rate and the duration
of the lunar day?

14. Angular stabilization of a satellite by wheels of inertia

Determine angular momentum of a system formed of a solid S in rotation, and
three wheels of revolution with arbitrary rotation around their axes of sym-
metry. Wheel’s axes are respectively directed along the three principal inertia
axes of S. Center of mass of wheels are fixed to S. Give the expression of total
angular momentum and its derivative in an inertial frame, then in the rotating
Eulerian frame fixed to S.

15. Balancing machines

• They are used to measure centering and inertial defects of solids turning around
an axis of rotation, and to determine the balancing masses to restore inertial sym-
metry of revolution around this axis.

• The machine consists of a structure supporting a plate turning at uniform rate
around a vertical axis, balanced perfectly.

• The object to be measured is fixed rigidly to the plate, its axis in alignment with
that of the plate. The method consists in measuring the effects induced on the
rotation-axis’s bearings by inertial asymmetries of the object.

• Using the angular momentum theorem, determine the effects induced on the axis
of rotation of the plate by the defects which follow:

• Lateral offset of the center of mass of the object relating to the axis of rotation
(CG offset)

• Angular variation between the direction of the axis of rotation and that of the
corresponding principal axis of inertia (principal axis misalignment)

16. Aerodynamics of an Apollo like reentry capsule in continuous flow

We consider an earth reentry capsule with symmetry of revolution. Its forebody
is a segment of sphere of radius R = 1.2 D and maximum cross section
diameter D = 3.9 m. Its aft cover is conical with slope −33◦. Its center of
mass is located at xG

D ≈ −0.26; yG = 0; zG
D = −0.035 (the positive x axis

corresponds to the front direction of heat shield).
Determine its aerodynamic coefficients in hypersonic continuous mode (New-

tonian approximation) for angles of attack from −30◦ to +10◦:

• Coefficients of pitching moment around mass center, axial and normal
force, drag and lift, with reference Sref = π D

4 and Lref = D.
• Determine its trim angle and corresponding fineness ratio.



General Remarks 289

Notice: Geometry is simplified (Apollo had a small round-off in the vicinity of
the maximum diameter)

17. Aerodynamics of an Apollo-like reentry capsule in free molecular flow regime

• Same assumptions and questions as exercise 16
• Use accommodation coefficients σ = σ′ = 1

18. Aerodynamics of a planetary entry capsule of Viking type, in hypersonic con-
tinuous flow regime

Body of revolution with heat shield of maximum diameter D = 3.50 m, com-
posed of a segment of sphere of radius R = 0.25 D followed by a tangent con-
ical shroud of semiapex angle 70◦. Its aft cover is a biconical shape of slope
−40◦ and −62◦. Its mass center is located in xG

D ≈ −0.23; yG = 0; zG
D =

−0.02 (positive x axis is in front shield direction). Determine aerodynamic
coefficients in hypersonic continuous flow for incidence from−30◦ to +10◦
(Newtonian approximation):

• Pitching moment coefficient around center of mass, axial and normal
force, lift and drag force, center of pressure, and static margin with refer-

ence Sref. = π D2

4 and Lref = D.
• Determine trim angle and corresponding fineness ratio.

Notice: Geometry is simplified (Viking had a small round-off in the vicinity of
the maximum diameter)

19. Aerodynamics of a Viking-like planetary entry capsule in free molecular flow
regime.

• Same assumptions and questions as 18
• Use assumption yG

D = zG
D = 0

• Use accommodation coefficients σ = σ′ = 1

20. Aerodynamics of pathfinder planetary entry capsule in intermediate flow regime.

We will use for pathfinder in front of maximum cross section the geometry of
Viking (18 and 19), with a maximum diameter D = 2.65 m and a center of
mass in xG

D = −0.27, yG
D = zG

D = 0

The coefficients CA,CN, and ∂CmG
∂α

∣
∣
∣
α=0

will be evaluated in intermediate mode,

according to Knudsen for α = 2◦,Sref. = π D
4 and Lref = D.
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• Use Erf-Log bridging function and fitting method with one point of
DSMC calculation (Sect. 4.4.2). Boundary values in free molecular mode

and continuous mode result from 18 and 19. For ∂CmG
∂α

∣
∣
∣
α=0

, use −0.0315

instead of the Newtonian boundary value, corresponding to CmG(2◦) =
0.0011 drawn from [PAR], resulting from a NASA Navier–Stokes
computation.

• Determine for each coefficient the values Knmi,Knm, and Knc knowing
that ΔK n = Ln (K nm/K nc) = Ln(500) = 6.2146 and that according to
the results of DSMC calculation [PAR] from NASA for α = 5◦ and Kn1 =
0.109, respective values of the function �(K n1) = C(K n1)−CC (K nc)

Cm(K nm)−Cc(K nc)

for CA,CN, are 0.392 and 0.467. For CmG and ∂CmG
∂α

∣
∣
∣
α=0

,�(K n1) =
0.131.

21. Aerodynamics of a biconical reentry vehicle in continuous flow mode

A shape of revolution is considered. It is composed of a spherical blunted nose
such that e = 2RN

D = 0.1, of a first cone C1 of half angle 10◦ and of a second

cone C2 of half angle 5◦. The length ratio is LC1
LC2

= 1
3 . Maximum diameter is

D = 0.50 m.

• Determine by using the Newtonian approximation aerodynamic coeffi-
cients in hypersonic mode (coefficients of normal and axial force, of pitch-
ing moment and location of the center of pressure)

• Determine center of mass location to ensure a static margin 3% of overall
length

• Determine the trim angle corresponding to zG = 10 mm CG offset from
symmetry axis

22. Accuracy of ballistic trajectories

• Consider a ballistic trajectory assumed elliptic from ground level to impact, of
initial velocity V = 5000 m/s. Determine the maximum range and corresponding
initial FPA γopt. Determine around preceding conditions and also for γ = γopt ±
10 degrees, sensitivity of impact location to small variations of initial conditions,
for the parameters:

• Initial altitude
• Initial azimuth
• Initial velocity
• Initial FPA
• Which kind of trajectories allow minimization of the influence of these last two

parameters?
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23. Stability of coning motion for a satellite

A satellite of revolution, with moments of inertia Ix = 5000 kg.m2, Iy = Iz =
3000 kg.m2 is spin stabilized with an initial rotation rate ωx = 10 rpm around
its axis x. It is subjected to an initial transverse rotation rate ωy = 60◦/s
around the axis y. Assume external moments are null. Determine the charac-
teristics of its initial coning motion. Assume it is submitted to a slow dissi-
pation of energy of rotation Ė = −10 mW, assumed constant. Determine its
angular movement:

• Evolution of roll rate ωx and transverse rate ωt =
√
ω2

y + ω2
z of nutation

angle θ
◦ Determine the parameters of movement from the initial angular mo-

mentum, initial energy of rotation, and current value of this energy,
while supposing that the movement is very close to free coning mo-
tion.

• Considering that the energy of rotation cannot decrease beyond a mini-
mum value corresponding to a stable state of rotation, energy dissipation
vanishes in this final state. Identify physical origin of dissipation and com-
ponents of the movement at this origin?

24. Allen and Eggers reentry

• Consider a reentry vehicle with spherical nose, ballistic coefficient β =
7500 kg/m2, and length L = 1.5 m. Initial conditions at 120 km are V0 =
6.5 km/s and FPA γ0 = −20◦, and −60◦

• Calculate and trace the evolution of Mach number, Knudsen, and Reynolds num-
bers according to altitude in the case of a terrestrial reentry with isothermal
atmosphere HR. = 7000 m,ρs = 1.39 kg/m3. Determine the altitude when lami-
nar/turbulent transition begins at the aft of the vehicle (corresponding roughly to
a Reynolds number based on the overall length equal to 106).

• Determine the evolution of the Reynolds number and the altitude of transition
on a nosetip with radius RN = 50 mm by using the same criterion and the nose
radius as reference length.

• Determine the maximum heat flux at stagnation point for spherical noses of
radius RN = 0.025, 0.05, 0.075, 0.100 m.

25. Entries of NASA probes Viking and Mars pathfinder allowed improving Mar-
tian atmosphere models. Method of restitution of the density was based on the
design model of drag coefficient and deceleration measurement during the entry
with an inboard axial accelerometer.
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• Give the relations allowing to estimate the density
• Determine using Allen approximation the evolution of accelerometer measure-

ment with altitude for pathfinder (initial velocity and FPA at 125 km altitude were
respectively 7470 m/s and −13.6◦, the ballistic coefficient β ∼ 65 kg.m−2. Use
an exponential atmosphere model with parameter values from Chap. 3).

26. Impact of meteorites

A spherical homogeneous cosmic object is considered, of density ρb =
2500 kg/m3 and radius R, entering with an initial velocity at 120 Km V =
12 km/s and FPA γ = −30◦ in an exponential isothermal earth’s atmosphere.

• Determine the expression of its hypersonic ballistic coefficient β in continuous
flow according to the diameter, for diameters values D = 0.03, 3, 30, 300, and
3000 m

• Determine according to the diameter:

◦ Ratio of the initial velocity lost while arriving at sea level
◦ maximum convective heat fluxes and corresponding altitudes
◦ Flow of thermal energy per unit area received in the vicinity of stagnation

point and total energy received while assuming heat flux constant on frontal
surface.

◦ The temperature of the body presumed isothermal for a specific heat Cv =
4000 J.K−1 kg−1

◦ Temperature of vaporization of its material is 2500◦C, what can we deduce
for its survival according to its diameter?

• For the objects still quasi-intact at sea level consider their kinetic energy at impact
in kilo tons of TNT (1 gram of TNT is roughly equivalent to 4000 Joules)

27. Normal load factor related to trim angle

• A 8◦ conical ballistic reentry vehicle is considered, of maximum diameter D =
0.5 m, mass m = 120 kg, with conditions at 120 km V = 5.5 km/s, FPA γ =
−20◦ and −60◦.

• Determine the normal load factor according to altitude for constant angle of at-
tack 1, 3, and 5◦. Determine the altitude of the maximum load factor

• Use Allen approximation and neglect angle of attack effect on center of mass
trajectory. Use a drag coefficient CD ≈ 0.05 and the Newtonian value of the
coefficient of normal force slope.

28. Computer codes artifacts

• Time or altitude variation of some reentry parameters (for example, axial deceler-
ation or heat flux) calculated using computer codes exhibit oscillations separated
by points of discontinuity of first derivative relating to altitude
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• What could be the origin of the phenomenon?
• Examine the modeling options used for the physical parameters in the expression

of the aerodynamic force.

29. Gyroscopic stabilization of a planetary entry capsule.

Consider the Mars pathfinder capsule, which was unstable in rarefied flow and
at the beginning of intermediate flow. Determine the evolution of the angle
of attack during a Martian reentry, from 130 km to 70 km altitude, with the
following hypotheses

• initial incidence 1◦(Z = 130 km)
• V = 7.48 km/s, FPA γ = −13.6◦
• Diameter D = 2.65 m, mass 585 kg, pitching moment of inertia IT = 370 kg.m2,

roll inertia IX = 490 kg.m2, and spin rate p = 0.5, 0.6, 0.7, 0.8, 1, and 2
revs/minute.

• Assume constant velocity, exponential atmosphere density (for Z > 70 km, use
HR = 7465 m,ρS = 0.036)

• Use the quasi-static approximation of the evolution of the incidence (Sect. 10.2).

The pitching moment coefficient derivative C = ∂CmG
∂α

∣∣
∣
α=0

in intermediate mode

is given by (exercise 17):

C(K n) = CC + φ(K n) · (CM − CC )

φ(K n) = 1
2

[
1+ er f

( √
π

ΔK n ln
{

K n
K nmi

})]

CC = Cmα/G,C = −0.0315 ; CM = Cmα/G,M = 0.208

Lre f = D ; Sre f = π D2

4

K nmi = 1.76 ; ΔK n = Ln(500)

• Knudsen number is given by K n = 0.7513 10−7

ρD

• Use a classical approximation of Erf function (for example, as in [ABR])

• Determine the minimum roll rate allowing it to cross the zone of instability with-
out divergence of the incidence.

30. Effect of a small trim lift on the center of gravity motion of a reentry vehicle.

Consider a 8◦ conical vehicle without spin, of ballistic coefficient β=104 kg/m2,
having a constant 0.1◦ trim angle.
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• Determine the coefficient of lift gradient and the trim lift coefficient. Determine
lift to drag ratio for a drag coefficient CA = 0.05

• Determine equations of vertical movement while assuming the lift force verti-
cal, exponential atmosphere, flat earth with zero gravity, for an initial velocity
V0 = 6000 m/s, FPA γ0 = −30◦. One will determine the evolution velocity and
FPA, as well as deviation from zero angle of attack trajectory (FPA variation are
considered as first order small terms).

• Compare the order of magnitude of the normal variation y with that obtained in
same conditions, with a roll rate 1.5 revs/second.

31. Approximate assessment of drag dispersion effects on the trajectory and con-
ditions at ground impact. Ballistic reentry vehicle, β = 5000 kg/m2, initial
velocity V0 = 7000 m/s FPA γ0 = −25◦ at 120 km.

• Use a zero incidence nominal trajectory and Allen approximation
• Use 5% of relative variation on drag coefficient or atmosphere density. To deter-

mine the influence on the maximum axial load factor, maximum stagnation point
heat flux, impact velocity.

32. Effect of wind on trajectory and conditions at the impact on the ground

Using Allen approximation, determine effects of a horizontal constant wind in
the plane of the trajectory

• On relative velocity and impact location
• On maximum axial load and heat flux
• Assume that the vehicle remains at zero incidence
• Ballistic RV, V0 = 6 km/s,β = 10000 kg/m2, FPA γ0 = −30◦ and −60◦ at

Z0 = 120 km. Tail wind velocity W = + 30 m/s and head wind W = − 30 m/s

33. Effect of a sharp variation of static stability on evolution of amplitude of inci-
dence oscillations. Symmetrical ballistic RV, case of plane oscillation.

• Zero spin rate
• Assume constant dynamic pressure and neglect damping
• Use expressions of total energy of rotation before and after discontinuity
• Case of an initial amplitude θ0 = 5◦, and a discontinuity ωa0 = 20π radian.s−1,

ωa1 = 10 π radian.s−1 at t = 0. Study the influence of the phase ϕ0 of initial
oscillation between 0 and 2π.

34. Skip trajectories

For planet entries using very shallow trajectories (small FPA), Allen approx-
imation is very inaccurate. It does not predict skip out phenomenon. From
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Sect. “Movement in a Reference Frame Fixed with the Local Vertical” [equa-
tions (7.2) to (7.5)], by including aerodynamic drag, derive equations of mo-
tion for constant ballistic coefficient, spherical nonrotating planet. Using a
FORTRAN program or a numerical software (e.g., Maple, Matlab, Scilab,
or any other), derive the numerical solution for altitude, range, and veloc-
ity. Apply to pathfinder entry using Mars atmosphere and gravity data from
Sect. 3.4.

Compute the following entry parameters and compare to Allen’s approximation.
Altitude/time; altitude/range; velocity/altitude; axial load factor/altitude.
β = 58.8 kg/m2;H0 = 130.8 km, γ0 = −13.71◦;V0 = 7479 m/s;
Determine the minimum FPA at which the capsule begins to rebound on atmo-

sphere (skip out angle).
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1 Equations of Motion Relating to a Reference
Frame in Rotation

Inertial velocity and absolute acceleration of a point mass are defined as first and
second temporal derivative of its location relating to an inertial observation frame K
centered in O.

�X = xi �ei
⇀

V A = �̇X = ẋi �ei ��A = ẍi �ei

Consider a reference frame E centered in O′, turning at rate
−→
	 relating to K. Ve-

locity and acceleration of O′ relative to K are �Ve and ��e. A point M with coordinate
x ′i is in accelerated motion ẍ ′i (t) relative to E.

We look for the expression of inertial velocity and absolute acceleration of M in
E. The locations of M expressed respectively in K and in E are:

�X = xi �ei = −−→O O ′ + x ′i �e′i

By derivation we obtain:

�̇X = ẋi �ei = �Ve + ẋ ′i �e′i + x ′i �̇e′i

According to Sect. 6.1.1, the inertial derivative components of E’s unit vectors

are expressed with the skew symmetric tensor rotation rate ��	,

�̇e′i = 	′ij�e′j
��	 = [	′] =

⎡

⎣
0 −ω′3 ω′2
ω′3 0 −ω′1−ω′2 ω′1 0

⎤

⎦

While replacing and changing the summation indices:

297
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�̇X =ẋi �ei = �Ve + ẋ ′i �e′i + x ′i	
′
i j �e′j = �Ve + ẋ ′i �e′i + x ′j	

′
j i �e′i

⇔ �̇X = ẋi �ei = νe,i �ei + v′Ai �e′i = v′e,i e′i + (ẋ ′i + x ′j	
′
j i)�e′i

Thus, components of inertial velocity �VA in E are:

v′Ai = v′ei + ẋ ′i + x ′j	
′
j i

where v′ei are components of inertial velocity �Ve of O′ in E.
Developing the third term gives,

ν′1 = x ′j	
′
j1 = x ′2ω

′
3 − x ′3ω

′
2

ν′2 = x ′j	
′
j2 = −x ′1ω

′
3 + x ′3ω

′
1

ν′3 = x ′j	
′
j3 = x ′1ω

′
2 − x ′2ω

′
1

Thus, inertial velocity of a point having velocity �VR relative to E can be expressed
formally in E as:

�VA = �Ve + �VR +−→	 ∧−−→O ′M

where �	 =
⎡

⎣
ω′1
ω′2
ω′3

⎤

⎦ is rotation rate “vector.” While deriving the expression of the

inertial velocity in E, we obtain absolute acceleration:

�̈X = �e,i �ei + d

dt

(
ẋ ′i �e′i + x ′j	

′
j i �e′i
)

= �′e,i �e′i + ẍ ′i �e′i + ẋ ′i �̇e′i + ẋ ′j	
′
j i �e′i + x ′j 	̇

′
j i �e′i + x ′j	

′
j i �̇e′i

�̈X = �′e,i �e′i + ẍ ′i �e′i + 2ẋ ′j	
′
j i �e′i + x ′j 	̇

′
j i �e′i + x ′j	

′
j i	

′
ik �e′k

After changing summation index in the last term, we obtain:

γ ′Ai = �′e,i + ẍ ′i + 2ẋ ′j	
′
j i + x ′j 	̇

′
j i + x ′j	

′
j k	

′
ki

The fifth term develops as:

x′j	
′
jk	

′
ki = ν′k	′ki

which is formally equivalent to �	 ∧ �ν, with �ν = �	 ∧ −−→O ′M .
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Thus, absolute acceleration is expressed formally in E as:

⇀

� A = ��e + ��R + 2 �	 ∧ �VR + �̇	 ∧
−−→
O ′M + �	 ∧

(
�	 ∧−−→O ′M

)
=
�F

m

2 Accelerometer Measurements

• General expression of accelerometer measurement

For an observer fixed to the case in accelerated linear motion, under the effect
of external forces and a gravitational field �ϕ, mass “m” is subjected to the interior
forces applied by the case, gravitational force m �ϕ, and inertia force associated with
acceleration of the case. The apparent motion is written as:

m�γr = −m�γe +m�ϕ+ �Fint

At equilibrium, �γr = 0, the measurement of the interior force is:

�A =
�Fint

m
= �γe − �ϕ

Thus, an accelerometer is sensitive only to nongravitational accelerations of the
case, i.e., related to the sum of the external forces applied to the vehicle, less than
the gravitational force.

�A = �γe − �ϕ =
�i�Fext,i

M
− �ϕ

• On the launching site, the missile is subjected to gravitational force M�ϕ and to

reaction of the ground �R = −M
⇀
g :

�A = M �ϕ+ �R
M − �ϕ = �R

M = −�g, measure acceleration created by the reaction of the
ground, opposed to apparent gravity.

• During the propelled phase the missile is subjected to gravitational force M �ϕ,
motor thrust T , and aerodynamic force �Fae:

�A = M �ϕ+ �T+ �Fae
M − �ϕ = �T+ �Fae

M , measure acceleration created by motor thrust and
aerodynamic force.

• During the ballistic phase out of the atmosphere, it is subjected only to gravita-
tional force: �A = M �ϕ

M − �ϕ = 0, accelerometer measurement is null and apparent
gravity is zero.

• During the reentry phase:

�A = M �ϕ+ �Fae
M − �ϕ = �Fae

M , we measure acceleration created by aerodynamic force.
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3 Vertical and Apparent Gravity

Z0

X0

RT
λ

Z
Y

eΩ
→

O

G

We consider a quasi-inertial frame GX0Z0 centered at earth’s center of mass G, not
rotating, such that GX0 is in the equatorial plane and GZ0 along earth’s axis of
rotation, toward north. OYZ is a rotating frame fixed to earth, centered at sea level
such that OZ is along the geocentric vertical, and OY is normal to OZ, in the plane
GZZ0.

Let us consider a rotating observer fixed to OYZ, and a line pendulum centered
on OZ. From the point of view of an inertial observer, the mass of the pendulum
is subjected only to real forces �T, traction of the line, and �P ′ = m �ϕ, gravitational
attraction. When the pendulum is at equilibrium, its mass is fixed to the rotating
reference frame, and its absolute acceleration is equal to centripetal acceleration

m �γe ≈ m �	e ∧
(
�	e ∧ −−→GO

)
dependent on rotation around GZ0. For the inertial

observer, static trim condition is m
←
γ a = m �γe = �T + �P ′.

For the rotating observer, the mass is subjected to �T, �P ′, and to inertia force
�Fi = −m�γe dependent on the motion of observation axes. The equilibrium equation
is m �γr = �T + �P ′ − m �γe = 0, which leads to the same result:

→

→

→

→

→

→

0

Y

Z

Ωe

λ

T

Fi

θ

γe

G

ϕm

P
θ
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In the rotating reference frame, located at latitude λ, we have �T =
[

T sin θ
T cos θ

]
,

�P ′ =
[

0
−mϕ

]
, and

⇀

F i = −m�γe = −m	2
eRT cos λ

[
sin λ
− cos λ

]

which gives at equilibrium:

T sin θ − m	2
e RT cos λ sin λ = 0

T cos θ − mϕ + m	2
e RT cos2 λ = 0

And,

T = P = mg ≈ m(ϕ −	2
e RT cos2 λ)

⇒ sin θ ≈ 	2
e RT cos λ sin λ

g

For a rotating observer it looks like there is a weight P associated to a “gravity”
field “g” smaller than the true gravitation field ϕ. At geographic poles, the gravity is
equal to the true gravitation field. At the equator, the difference with the true field of
gravitation is maximum (−0.34%) and deviation is null. Elsewhere, the vertical of
gravity is deviated by angle θ compared with the true field in the direction centrifuge
of the axis of rotation. Maximum of deviation angle is at ±45◦ of latitude, and
is approximately 0.1◦. The normal to the ellipsoid, being by definition along the
gravity field, λ′ = λ+ θ is close to geographical latitude.

4 Coriolis Force

We consider a reference frame E is fixed to earth, centered at the base of the tower,
with axis OZa along the apparent vertical of gravity and axis OXa normal to merid-

ian plane toward east. �r = O
←
M,

⇀
v r,

⇀
γ r are respectively location, velocity, and ac-

celeration of marble relative to E.

Za

Ya

Xa

Ωe

→

'λ

O

H
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The acceleration of marble relative to the rotating frame E is:

�γr =
�P

m
− 2 �	e ∧ �vr − �	e ∧

(
�	e ∧ �r

)
= �g − 2 �	e ∧ �vr +	2

e�r −
(
�	e · �r

)
�	e

While developing, we obtain:

ẍ = −2	e
[
ż cos λ′ − ẏ sin λ′

]+	2
ex

ÿ = −2	eẋ sin λ′ +	2
e

[
y sin2 λ′ − z sin λ′ cos λ′

]

z̈ = −g + 2	eẋ cosλ′ +	2
e

[
z cos2 λ′ − y sin λ′ cos λ′

]

At first order, we can neglect x and y compared with z like ẋ and ẏ components
compared with ż, as well as terms including	2

e:

ẍ ≈ −2	eż cos λ′

ÿ ≈ 0

z̈ = −g

For z (0) = H, x(0) = y(0) = ẋ(0) = ẏ(0) = ż(0) = 0 we obtain:

ż ≈ −gt

z ≈ H − g
t2

2
⇒ z = 0 → T =

√
2H

g

⇒ ẍ ≈ 2	egt cos λ′, ẋ ≈ 	egt2 cos λ′, x = 	eg
t3

3
cos λ′

For H = 300 m,λ′ = 45◦, and T = 7.8 s, the acceleration of Coriolis moves the
point of impact of the marble toward the east:

x(T ) ≈ 	eg
T 3

3
cos λ′ ≈ 0.08 m

5 Quaternions

From definition (6.72),

Q = cos
φ

2
+ sin

φ

2
�Δ = [q0 q1 q2 q3]

While identifying corresponding terms, we obtain:



6 Quaternions and Euler Angles 303

q0 = cos
φ

2
; q1 = Δ1 sin

φ

2
; q2 = Δ2 sin

φ

2
; q3 = Δ3 sin

φ

2
∣
∣
∣�Δ
∣
∣
∣
2 = 1 ⇒ sin2 φ

2
= q2

1 + q2
2 + q2

3

• If

− 1 < q0 < 1; φ ∈ [0, 2π[⇒
q0 > 0 → φ

2
= Arc sin

√
q2

1 + q2
2 + q2

3

q0 < 0 → φ

2
= π − Arc sin

√
q2

1 + q2
2 + q2

3

q0 = 0 → φ

2
= π

2

Δ1 = q1√
q2

1 + q2
2 + q2

3

; Δ2 = q2√
q2

1 + q2
2 + q2

3

; Δ3 = q3√
q2

1 + q2
2 + q2

3

;

• If q0 = ±1, φ = 0

Q = [0 1 0 0
]
,
[

0 1√
3

1√
3

1√
3

]
,
[

0 − 1√
3
− 1√

3
− 1√

3

]
,
[

1
2

1
2

1
2

1
2

]
,

[− 1
2

1
2

1
2

1
2

]
,
[ √

2
2

√
2

4
1
2 −

√
2

4

]

corresponds to:

[
ϕ, �Δ

]
= [ π2 1 0 0

]
,
[
π 1√

3
1√
3

1√
3

]
,
[

3π
2

1√
3

1√
3

1√
3

]
,
[

2π
3

1√
3

1√
3

1√
3

]
,

[
π
3

1√
3

1√
3

1√
3

]
,
[
π
2

1√
3

1√
3

1√
3

]

6 Quaternions and Euler Angles

R3 (ψ) R2 (θ) R1 (ϕ) =
⎧
⎨

⎩
cos

ψ

2
+ sin

ψ

2

⎡

⎣
1
0
0

⎤

⎦

⎫
⎬

⎭

⎧
⎨

⎩
cos

θ

2
+ sin

θ

2

⎡

⎣
0
1
0

⎤

⎦

⎫
⎬

⎭

⎧
⎨

⎩
cos

ϕ

2
+ sin

ϕ

2

⎡

⎣
1
0
0

⎤

⎦

⎫
⎬

⎭

While applying rules of quaternion product, we obtain successively:
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R3 (ψ) R2 (θ) R1 (ϕ) =
⎧
⎨

⎩
cos

ψ

2
+ sin

ψ

2

⎡

⎣
0
0
1

⎤

⎦

⎫
⎬

⎭

⎧
⎪⎨

⎪⎩
cos

θ

2
cos

ϕ

2
+

⎡

⎢
⎣

cos θ2 sin ϕ
2

sin θ
2 cos ϕ2

− sin θ
2 sin ϕ

2

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

R3 (ψ) R2 (θ) R1 (ϕ) =
{

cos
ψ

2
cos

θ

2
cos

ϕ

2
+ sin

ψ

2
sin

θ

2
sin

ϕ

2

+
⎡

⎣
cos ψ2 cos θ2 sin ϕ

2 − sin ψ
2 cos θ2 cos ϕ2

cos ψ2 sin θ
2 cos ϕ2 + sin ψ

2 sin θ
2 sin ϕ

2
− cos ψ2 sin θ

2 sin ϕ
2 + sin ψ

2 sin θ
2 cos ϕ2

⎤

⎦

⎫
⎬

⎭

Thus, the components of quaternion are:

r0 = cos
ψ

2
cos

θ

2
cos

ϕ

2
− sin

ψ

2
cos

θ

2
sin

ϕ

2

r1 = cos
ψ

2
cos

θ

2
sin

ϕ

2
+ sin

ψ

2
cos

θ

2
cos

ϕ

2

r2 = cos
ψ

2
sin

θ

2
cos

ϕ

2
+ sin

ψ

2
sin

θ

2
sin

ϕ

2

r3 = − cos
ψ

2
sin

θ

2
sin

ϕ

2
+ sin

ψ

2
sin

θ

2
cos

ϕ

2

While using above values of q0, q1, q2, and q3, and results of exercise 5, we

derive parameters φ, and
⇀

Δ of the single axis rotation equivalent to the three Euler’
rotations.

While ψ = θ = ϕ = π/2;π/3; 2π
/

3, we obtain respectively:

Q =
[
0, 1
/√

2, 1
/√

2, 0
]
→ φ = π, �Δ = [1

/√
2 1
/√

2 0
]

Q =
[
−1
/

4,
√

3
/

4,
√

3
/

2, 0
]
→ φ = 2

(
π − Arc sin

(√
15
/

4
))
,

�Δ = [1
/√

5 2
/√

5 0
]

Q =
[
1
/

4,
√

3
/

4,
√

3
/

2, 0
]
→ φ = 2Arc sin

(√
15
/

4
)
, �Δ = [1

/√
5 2
/√

5 0
]

7 Equivalence of Changing Frame and Rotation Quaternion
Operators for Euler Angle Sequence

From Sect. 6.3.2.2, rotation operator to transform vectors of K is:

−→
X ′ = R �X R∗,

with R = cos ϕ
2 + sin ϕ

2
�Δ.
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Denoting �e1, �e2, and �e3 the unit vectors of K frame, and using 1, 2, 1 Euler
sequence of rotations, we first apply the rotation ψ around �e1, then rotation θ around
axis �e′2 transformed of �e2 by rotation ψ around �e1, then rotation ϕ around axis �e′1
transformed of �e1 by rotation θ around �e′2

�e1 =
⎡

⎣
1
0
0

⎤

⎦ ; �e′2 =
⎡

⎣
0

cosψ
sinψ

⎤

⎦ ; �e′1 =
⎡

⎣
cos θ

sin θ sinψ
− sin θ cosψ

⎤

⎦

R = R3 (ϕ) R2 (θ) R1 (ψ) =
{

cos
ϕ

2
+ sin

ϕ

2
ē′1
}{

cos
θ

2
+ sin

θ

2
ē′2

}

{
cos

ψ

2
+ sin

ψ

2
�e1

}

While using the rule of quaternion product and some trigonometry, we obtain:

R = R3 (ψ) R2 (θ) R1 (ϕ) =
{

cos
ψ

2
cos

θ

2
cos

ϕ

2
− sin

ψ

2
cos

θ

2
sin

ϕ

2

+
⎡

⎣
cos ψ2 cos θ2 sin ϕ

2 + sin ψ
2 cos θ2 cos ϕ2

cos ψ2 sin θ
2 cos ϕ2 + sin ψ

2 sin θ
2 sin ϕ

2
− cos ψ2 sin θ

2 sin ϕ
2 + sin ψ

2 sin θ
2 cos ϕ2

⎤

⎦

⎫
⎬

⎭

This is exactly the same result as the changing of frame quaternion resulting from
exercise 6, but former assessment was much easier. This verifies that the two points
of view are equivalent.

8 Pendulum of Foucault

Kepler’s theory for the motion of planets uses the hypothesis of central motion
around the sun (Heliocentric). The explanation of the apparent motion of planets
for earth’s observers required assumption of a rotational motion of earth around its
polar axis. Foucault’s experiment was the first to provide physical proof of earth’s
rotational motion, within the framework of Newtonian mechanics. For a line pendu-
lum located at the pole, initialized for a plane oscillation, the demonstration is easy.
Indeed, in an inertial reference frame centered on the pole, including earth rotational
axis and two nonrevolving axes in the normal plane, the plane of oscillation of the
pendulum remains fixed (moment around the hinge point O of gravity forces applied
to the mass is same direction as angular momentum around O, thus the direction of
the angular momentum remains constant as well as the plane of oscillation). For
an observer fixed to earth, which turns at angular rate �	e relative to inertial frame,
the plane of oscillation has an apparent rotational motion at rate �	r = −�	e around



306 Solutions

vertical, i.e., a rotation toward west of one turn per 24 hours or 15◦/hour. At other
latitude, the phenomenon is similar, with rotation of the plane of oscillation around
apparent vertical equal to 	r = −	e sin λ; however, the rigorous demonstration is
definitely more difficult.

Z0

X0

RT
λ

Z
Y

eΩ
→

O

G

First, to simplify the equations, we will use a reference frame fixed to earth cen-
tered at hinge point O of the pendulum, with axis OZa along vertical of apparent
gravity and axis OXa normal to the meridian plane, toward east.

Z0

X0

Ya

RT

Z

Y
Ωe
→

O

G

aZ

λ'
λ

δθδθ

In this frame, the resultant of the gravitation force and inertia force associated
with acceleration of O by terrestrial rotation results in a “gravity” force along OZa.

g ≈ ϕ −	2
e RT cos2 λ

The geographical latitude λ′, defined as the angle of the vertical of gravity with
respect to the equatorial plane, is connected to the geocentric latitude by the relation:

λ′ = λ+ δθ

δθ ≈ 	2
e RT cosλ sin λ

g
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→

Za

Ya

Xa

Ωe

'λ

O

In this frame, equilibrium of the pendulum is along OZa.
Now let us associate frame OXpYpZp with the instantaneous position of the pen-

dulum such that the position of the mass is located in −� along OZp and such that
we transform OXaYaZa in OXpYpZp by two successive rotations:

• ψ/OZa, which transforms OXaYaZa in OX1Y1Z1
• θ/OX1, which transforms OX1Y1Z1 in OXpYpZp

Za
Z1

Zp

Yp

Y1

Z1 Za

X1

Xa

Xp X1

Y1

Ya

O

ψ

ψ⋅

ψ

ψ⋅θ

θ⋅

θ

θ
T

m

gmP
→ →

→

=

O

We obtain the components in “p” of a vector defined in “a” by the transforma-
tions:

⎡

⎣
VX1
VY1
VZ1

⎤

⎦ =
⎡

⎣
cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

⎤

⎦

⎡

⎣
VXa
VYa
VZa

⎤

⎦ = [Aψ
]
⎡

⎣
VXa
VYa
VZa

⎤

⎦
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and

⎡

⎣
VXp
VYp
VZp

⎤

⎦ =
⎡

⎣
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎤

⎦

⎡

⎣
VX1
VY1
VZ1

⎤

⎦ = [Aθ]

⎡

⎣
VX1
VY1
VZ1

⎤

⎦

Angle ψ corresponds to the orientation of the plane of oscillation OZaYp around
OZa with origin in Oya, and the angle θ is the deflection of the pendulum from the
apparent vertical OZa.

Rotation rate of the pendulum frame relative to observation frame “a” is:

�ωr = ψ̇ O�Za + θ̇ O
⇀

X1 = ψ̇ O�Z1 + θ̇ O
⇀

Xp

Rotation rate �	e of “a” relative to inertial frames is in “a”:

�	e = 	e

⎡

⎣
0

cos λ′
sin λ′

⎤

⎦

Inertial rotation rate �ω of “p” is �ω = ⇀

	e + �ωr, with components in “a”:

⎡

⎣
ωXp
ωYp
ωZp

⎤

⎦ = 	e [Aθ]
[
Aψ
]
⎡

⎣
0

cos λ′
sin λ′

⎤

⎦+ ψ̇ [Aθ]

⎡

⎣
0
0
1

⎤

⎦+ θ̇

⎡

⎣
1
0
0

⎤

⎦

=
⎡

⎣
	e sin ψ cos λ′ + θ̇

	e
(
cos θ cos ψ cos λ′ + sin θ sin λ′

)+ ψ̇ sin θ
	e
(− sin θ cos ψ cos λ′ + cos θ sin λ′

)+ ψ̇ cos θ

⎤

⎦

Let us calculate the derivative of �ω in “p”:

⎡

⎣
ω̇Xp
ω̇Yp
ω̇Zp

⎤

⎦ =
⎡

⎣
θ̈+	eψ̇ cos ψ cos λ′

ψ̈ sin θ+ ψ̇θ̇ cos θ+	e
((−θ̇ sin θ cos ψ− ψ̇ cos θ sin ψ

)
cos λ′ + θ̇ cos θ sin λ′

)

ψ̈ cos θ− ψ̇θ̇ sin θ+	e
((−θ̇ cos θ cos ψ+ ψ̇ sin θ sin ψ

)
cos λ′ − θ̇ sin θ sin λ′

)

⎤

⎦

The weight of the mass has components in “p”:

↼

P = −mg [Aθ ]

⎡

⎣
0
0
1

⎤

⎦ = −mg

⎡

⎣
0

sin θ
cos θ

⎤

⎦

The tension of the wire and the relative position of the mass in “p” are:
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�T =
⎡

⎣
0
0
t

⎤

⎦ �r =
⎡

⎣
0
0
−�

⎤

⎦

Velocity and acceleration of the mass relative to “p” are null by definition. The
equation of motion of the mass in the rotating frame fixed to the pendulum “p” is
thus, according to (1.4):

�γr = 0 =
�P + �T

m
−

.
→
ω ∧ �r − ω ∧ (�ω ∧ �r) =

�P + �T
m

−
.
→
ω ∧ �r + ω2�r −

(
⇀
ω · �r

)
�ω

We will notice that the inertial term of acceleration centrifuges related to the
acceleration of O is already included in the definition of weight �P .

This equation develops in:

ω̇Y p + ωZ pωXp = 0
g

�
sin θ + ω̇Xp − ωZ pωY p = 0

−g cos θ + t

m
−
(
ω2

Xp + ω2
Y p

)
� = 0

The third equation gives the expression of the tension of the wire. By using pre-

ceding expressions of components of �ω and
.
→ω and first-order approximations in θ,

θ2 ≈ 0, sin θ ≈ θ, cos θ ≈ 1, we obtain for the two others equations:

ψ̈ + ψ̇ θ̇ +	e
[− (θ θ̇ cosψ + ψ̇ sinψ

)
cos λ′ + θ̇ sin λ′

]

+ [	e
(−θ cosψ cosλ′ + sinλ′

)+ ψ̇] (	e sinψ cos λ′ + θ̇) = 0

g

�
θ + θ̈ +	eψ̇ cos λ′ cosψ − [	e

(−θ cosψ cos λ′ + sin λ′
)+ ψ̇]

[
	e
(
cosψ cosλ′ + θ sin λ′

)+ ψ̇θ] = 0

That is to say,

ψ̈θ + 2ψ̇ θ̇ = −2	eθ̇ sin λ′ + 2	eθ θ̇ cos λ′ cosψ −	2
e cos λ′ sin λ′ sinψ

+	2
eθ cos2 λ′ sinψ cosψ

θ̈ +
[g

�
− ψ̇2 +	2

e

(
cos2ψ cos2 λ′ − sin2 λ′

)
− 2	eψ̇ sinλ′

]
θ

= 	2
e sin λ′ cos λ′ cosψ

Considering that 	e is about 10−4, we neglect terms in 	2
e. Because of the hy-

pothesis of small oscillations θ, we also neglect 	eθθ̇ compared with 	eθ̇ in the
first equation.
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We obtain:

ψ̈θ + 2
(
ψ̇ +	e sin λ′

)
θ̇ ≈ 0

θ̈ +
[g

�
− ψ̇2 − 2	eψ̇ sin λ′

]
θ ≈ 0

Multiplying the first equation by θ and naming ϕ̇ = ψ̇+	e sin λ′, we obtain:

ϕ̈θ2 + 2ϕ̇θθ̇ ≈ 0 ⇔ d

dt

(
ϕ̇θ2
)
= 0

In the case of an unspecified oscillation, we obtain a law similar to the area law
of elliptic motion,

ϕ̇θ2 = ϕ̇0θ2
0 = constant

When we initialize the pendulum such that ϕ̇0 = 0 (planar oscillation in inertial
frame), we must verify ϕ̇θ2 = 0 ∀θ ⇒ ϕ̇ = 0 ⇒ ψ̇ = −	e sin λ′

Using this value ψ̇ ∼ 10−4 in the equation in θ, we can neglect corresponding
terms and we obtain:

θ̈ +
[g

�

]
θ ≈ 0

i.e., a quasi-planar oscillation with pulsation
√

g
�

whose plane turns slowly around

the apparent vertical at angular rate −	e sin λ′. At 45◦ latitude, rotation rate is
0.7 revs per 24 hours or 10.5◦ per hour. To the equator, the plane of oscillation does
not turn.

In situations where ϕ̇0 �= 0, relative rotation rate of oscillation of the plane around
Zp is:

ψ̇ = −	e sin λ′ +
(
ψ̇0 +	e sin λ′

)
θ2

0

θ2

We can observe that the pendulum will have an elliptic-like oscillation with a fast
rotation rate corresponding to the second term, and a slow rotation rate −	e sin λ′.
The major axis of trajectory turn around the apparent vertical at rate −	e sin λ′.
Deflection of the pendulum verifies by equation:

θ̈ +
[

g

�
− K

θ4

]
θ ≈ 0

with K = ψ̇2
0θ4

0.
The experiment of Foucault corresponds to an initialization with ϕ̇0 ≈ 0 and the

oscillation is planar and sinusoidal.
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9 Motion of the Earth’s Mass Center

For a period of the terrestrial orbit T = 365 × 24 × 3600 s, a perimeter of orbit
L = 2πR ≈ 9.4 1011 m, the circular velocity is Vc = L/T ≈ 30 103 m/s, and

centripetal acceleration is γc = V 2
c

R ≈ 5.9 10−3 m.s−2.
According to the third law of Kepler, the radius of lunar orbit is such that

R3 = a3 = μ
( T

2π

)2
. For T = 27 days and 8 h, a = 3.83 108 m = 383000 km,

its circular velocity is Vc ≈ 1.02 km/s. The lunar constant of attraction is μL =
GmL = 4.87 1012 m3 s−2. The acceleration applied on earth’s center of mass is
thus γ = μL

a2 = 3.3 10−5 m.s−2. This acceleration is negligible with respect to
earth’s gravitation. To study motion of ballistic vehicle relative to earth, we can use
a nonrotating frame with origin at its center of mass like an inertial frame.

10 Launch Windows to Mars

Duration of the Martian year is close to two terrestrial years. According to the third

law of Kepler,
(

aMars
aEarth

)3 =
(

TMars
TEarth

)2 ⇒ aMars ≈ 1.6 aEarth ≈ 1.6UA (240 million

Km).
The minimum distance is about 0.6 UA, that is to say 90 million Km when the

two planets have same solar longitude. The maximum distance is 2.6 UA, which
is about 4.3 higher, when the planets are in opposition of phase. As Martian pe-
riod of revolution around sun is double of the earth’s period, these optimum launch
windows to minimize flight duration occur every two years.

11 Energy of a Solid in Free Rotation

According to (1.39), angular momentum of a solid expressed in the Eulerian frame
corresponding to its principal axes of inertia is:

�H =
⎡

⎣
Ixωx

Iyωy

Izωz

⎤

⎦

For a solid in free rotational motion with given angular momentum, we have:

(Ixωx )
2 + (Iyωy

)2 + (Izωz)
2 = H 2 (1)

Thus, rotation rate is minimum when
⇀

H is along the axis of maximum moment

of inertia Gx, and maximum for
⇀

H along the axes of lowest moment of inertia Gy
or Gz. According to (1.44), kinetic energy of rotation is:
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E = 1

2
�ω.⇀H = 1

2

(
Ixω

2
x + Iyω

2
y + Izω

2
z

)
(2)

Let us replace ω2
x by its expression from (1) while posing Iy = Iz = IT and

ω2
T = ω2

y + ω2
z , we obtain:

E = 1

2

[
H 2

Ix
+ IT

(
1− IT

Ix

)
ω2

T

]

By hypothesis, Ix > IT, which is representative of satellites, the coefficient of the
term in ω2

T is positive and the kinetic energy of rotation is minimum for ω2
T = 0, i.e.,

Emin = 1
2

H2

Ix
. In this case angular momentum is directed along Gx and rotation rate

is minimum, ω = H
Ix

. The energy of rotation is maximum when ωT is maximum,

i.e., according to (1) when ωx = 0, and ωT = H
IT

, Emax = 1
2

H2

IT
.

We finally have the possible range for kinetic energy of rotation:

1

2

H 2

Ix
≤ E ≤ 1

2

H 2

IT

When the body is not absolutely rigid and there are dissipations of rotational
energy, the final equilibrium state corresponds to minimum energy, that is to say
such that axis Gx is along the angular momentum.

12 Total Angular Momentum of a Deformable System
in Gravitation

For an inertial observer, the angular momentum around common center of mass
“G” is

�H = �H1 +
⇀

H2 +−→GG1 ∧ m1 �V1 +−→GG2 ∧m2
⇀

V 2

where �H1 and �H2 are angular momentum of the two solids relative to its mass center
G1 and G2. From definition of G,

m1
−−→
GG1 + m2

−−→
GG2 = 0

⇒ −−→
GG2 = m1

m1 + m2

−−−→
G1G2; −−→

GG1 = − m2

m1 + m2

−−−→
G1G2

Hence, we obtain:

�H = �H1 + �H2 + μ �R ∧
.
→
R (1)
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where �R = −−−→G1G2,
˙⇀
R = �V2 − �V1 and μ = m1m2

m1+m2
is “equivalent mass” associated

with relative motion.
Deriving (1) with respect to time we obtain:

.
→
H =

.
→
H1 +

.
→
H2 + μ

⇀

R ∧
..
→
R = 0 (2)

According to the principle of action and reaction, the resultant of interior effects
is null. Using G2 as reference point for resulting moment we obtain:

�F12 + �F21 = 0

�M12 + �M21 + �R ∧ �F12 = 0

where �F12 and �M12 are force and moment (around G2) exerted by 1 on 2, �F21 and
�M21 are force and moment (around G1) exerted by 2 on 1.

Applying the fundamental principle of dynamics to solids 1 and 2 we obtain:

˙⇀
R = �V2 − �V1;

..
→
R =

.
→
V 2 −

.
→
V 1 =

�F12

m2
−
�F21

m1
+ �ϕ2 − �ϕ1 ≈

�F12

μ

⇒ �F12 = μ
..
→
R

Taking into account this relation in (2) we obtain alternate expression (3) of the
derivative of the total angular momentum in an inertial frame:

.
→
H =

.
→
H1 +

.
→
H2 +

⇀

R ∧ �F12 = 0 (3)

Let us express (2) in the Eulerian frame E fixed to solid 1, while noting �	 inertial
rotation rate of 1 and �	R rotation rate of 2 relative to E:

..
→
R =

..
→
R E + 2 �	 ∧ �RE + �	 ∧

(
�	 ∧ �RE

)
+

.
→
	 ∧ �RE (4)

.
→
H1 =

.
→
H1E + �	 ∧ �H1E (5)

.
→
H2 =

.
→
H2E + �	 ∧ �H2E (6)

�H1E = [I1] �	 ⇒
.
→
H1E = [I1]

.
→
	 (7)

Since 2 is in rotation relative to E:

�H2E = [I2E ]
[
�	+ �	R

]
⇒

.
→
H 2E = [I2E ] �

.
→
	 +

.
→
	R� +

[
İ2E
] [ �	+ �	R

]

+ �	 ∧ [I2E ]
[
�	+ �	R

]
(8)
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We consider rotation matrix A, which transform coordinates relative to E into
coordinates relative to E2 associated to solid 2 and [I2] the matrix of inertia of 2
relative to E2:

According to (1.41) we have:

[I2E ] = [A]T [I2] [A]

According to 6.24, we have
[
Ȧ
] = [A] [	R] where [	R] indicates the tensor

rotation rate of 2 relative to 1.
Using these two equations, we obtain:

[
İ2E
] ( �	+ �	R

)
= [I2E ]

(
�	R ∧ �	

)
− �	R ∧ [I2E ]

(
�	+⇀

	R

)
(9)

Using (3) to (8), conservation of total angular momentum (2) is written in E,

while gathering on the left the terms in
.
⇀

	:

[[I1] + [I2E ]]
.
→
	E + μ �R ∧

( .
→
	 ∧ �R

)

= − [I2E ]
.
→
	R − �	 ∧

{
[[I1]+ [I2E ]] �	+ [I2E ] �	R

}

− [I2E ]
(
�	R ∧ �	

)
+ �	R ∧ [I2E ]

(
�	+ �	R

)

−μ �R ∧
{ ..
→
R E + 2 �	 ∧

.
→
R E + �	 ∧

(
�	 ∧ �R

)}
(10)

The second term of the left member is written as:

μ �R ∧
(
�̇	 ∧ ⇀

R

)
= [Iμ

]⇀
	

with

[
Iμ
] = μ

⎡

⎣
y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

⎤

⎦ ; �R =
⎡

⎣
x
y
z

⎤

⎦ in E

Then we define:

[I ] = [I1]+ [I2E ]+ �Iμ�,

which represents the tensor of inertia of the deformable system around its center of
mass in a frame having axes parallel to E.

Finally (10) is written as:
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[I ]
.
→
	 = − [I2E ]

.
→
	R − �	 ∧

{
[I ] �	+ [I2E ] �	R

}
− [I2E ]

(
�	R ∧ �	

)

+ �	R ∧ [I2E ]
(
�	+�	R

)
− μ⇀R ∧

{ ..
→
R E + 2 �	∧

.
→
R E

}

This expression of the conservation of the total angular momentum in E deter-
mines the evolution of �	 (i.e., of the complete system) when the relative motion of

2 relative to 1 ( �RE ,
˙⇀
R E ,

..
→
R E , ψR, θR, ϕR, �	R,

.
→
	R) is given.

13 Lunar Motion

The origin of this particular motion is the moment related to the gradient of gravity
(7.2). In the case of a homogeneous solid comparable to a long cylinder, this couple
tends to align the axis of the cylinder along the direction of gravitation field (there
are two positions of steady trim, 0◦ and 180◦, and two unstable positions, 90◦ and
270◦). Generally, for any solid, direction of the principal axis of highest moment of
inertia is a stable trim, which is the case of the Moon. During its rotation around
the common mass center of earth/moon system, the orientation of the moon is such
that its principal axis of highest inertia is directed on average toward the earth mass
center (there are small fluctuations around this direction). It thus always presents the
same side to terrestrial observers. The motion of the moon’s CG relative to a frame
with origin at common mass center is thus coupled with its own rotational motion.
Its angular rate 	 corresponds to the period T of its orbit around earth 	 = 2π

T ,
T = 27 days and 8 hours. The duration of the lunar day is thus equal to its period of
orbit T.

14 Angular Stabilization with Inertia Wheels

Let us name �	 satellite angular rate, �ωR1 =
⎡

⎣
ωR1

0
0

⎤

⎦ , �ωR2 =
⎡

⎣
0
ωR2

0

⎤

⎦, and �ωR3 =
⎡

⎣
0
0
ωR3

⎤

⎦wheels angular rates relative to the satellite, IR1, IR2, IR3 moments of inertia

of the wheels around their relative rotation axes. [I ] denotes the tensor of inertia of
the complete satellite, including wheels, which is diagonal per hypothesis. Wheels
are assumed symmetrical around their relative rotational axes. Thus the total tensor
of inertia is independent of the relative angular position of the wheels.

Total angular momentum is the sum of the momentum corresponding to the rigid
motion at rate �	 (i.e., including the wheels at angular rate �	) and momentums
created by relative rotation of wheels.
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�H = [I ]
⇀

	+ IR1
⇀
ω R1 + IR2 �ωR2 + IR3 �ωR3

The conservation of the total angular momentum is expressed in the Eulerian
reference frame of satellite by:

˙⇀
H +	 ∧ ⇀

H = 0

[I ]
.
→
	 = −IR1

.
→
ω R1 − IR2

.
→
ω R2 − IR2

.
→
ω R3 − �	 ∧ [I ] �	− IR1 �	 ∧ �ωR1

− IR2 �	 ∧ �ωR2 − IR3 �	 ∧ �ωR3

While projecting, we obtain:

I1	̇1 = −IR1ω̇R1 − IR3	2ωR3 + IR2	3ωR2 − (I3 − I2)	2	3

I2	̇2 = −IR2ω̇R2 − IR1	3ωR1 + IR3	1ωR3 − (I1 − I3)	3	1

I3	̇3 = −IR3ω̇R3 − IR2	1ωR2 + IR1	2ωR1 − (I2 − I1)	1	2

While varying rotation rates of wheels we obtain inertial reaction moments. This
makes it possible to control the orientation of the satellite.

15 Balancing Machines

In a Eulerian frame E with origin at the center of mass of the test vehicle, with Gx
axis parallel to the axis of rotation and Gy horizontal and parallel to the plate, rota-

tion rate �	 =
⎡

⎣
	x

0
0

⎤

⎦ and angular momentum
⇀

H = [I ′] �	 of vehicle are constant.

According to the expression (5.6), the tensor of inertia around the center of gravity
in the presence of a principal axis misalignment (θI, �I) and of a rotation of the
transverse axes of angle ϕI is:

[
I ′
] ≈

⎡

⎣
Ix − (Iy − Ix

)
θI cos�I − (Iz − Ix ) θI sin�I

− (Iy − Ix
)
θI cos�I Iy +

(
Iz − Iy

)
sin2 ϕI − (Iz − Iy

)
sin ϕI cosϕI

− (Iz − Ix ) θI sin�I −
(
Iz − Iy

)
sin ϕI cosϕI Iz −

(
Iz − Iy

)
sin2 ϕI

⎤

⎦

We deduce expression in E of the angular momentum created by constant rotation
rate �	:

�H ≈
⎡

⎣
Ix	x

− (Iy − Ix
)
θI cos�I	x

− (Iz − Ix ) θI sin�I	x

⎤

⎦
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We consider an inertial reference frame, centered at a point O on the axis of
rotation. In this frame, the motion of the center of mass is a circular motion of radius

rG =
√

y2
G + z2

G . According to the fundamental principle, the solid is subjected to

a centripetal force F = M	2
xrG applied by the axis of rotation having reaction on

bearings that is measurable. The expression in E of this centripetal force is:

⇀

F =
⎡

⎣
0

−M	2
x yG

−M	2
x zG

⎤

⎦

In this inertial frame, angular momentum is a vector rotating at rate �	. According
to angular momentum theorem, the moment applied on the solid around G is equal
to the time derivative of the angular momentum in the inertial observation frame,
that is to say:

�C = ⇀̇

H = �	 ∧ �H

The expression of
⇀

C in E is:

�C =
⎡

⎣
0

(Iz − Ix )	
2
xθI sin�I

− (Iy − Ix
)
	2

xθI cos�I

⎤

⎦

The expression in E of total effect around center of mass G is thus:

(
�F, ⇀C

)

The expression in E of effect around the reference point O is:

(
�F, �M = ⇀

C + O �G ∧ ⇀

F

)

That is to say �M =
⎡

⎣
0[

(Iz − Ix ) θI sin�I + MxG zG
]
	2

x
− [(Iy − Ix

)
θI cos�I + MxG yG

]
	2

x

⎤

⎦

Measurements of components Fy, Fz, My, and Mz applied by rotation axis
to maintain the motion provide an estimate of CG offset and the principal axis
misalignment:
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yG = − Fy

M	2
x
; zG = − Fz

M	2
x

θI sin�I = My + xG Fz

(Iz − Ix )	2
x
;

−θI cos�I = Mz − xG Fy(
Iy − Ix

)
	2

x

Remarks:

• The applied force and the moment are constant in the reference axes of the re-
volving plate. They are revolving for an inertial observer. Output signals of the
strain gauges fixed to bearings are thus sinusoidal. Amplitudes of signals allow
assessment of asymmetries and its phases of their orientation relative to axes of
revolving plate.

• This measurement must be accompanied by a measurement of the moments of
inertia and of the location xG of the center of mass. A measurement of pendulum
frequency around the reference axes is generally used to measure the moments
of inertia.

16 Aerodynamics of Apollo Reentry Capsule
in Continuous Flow

For the incidences α < 33◦ where back cover is not impinged by the flow, only the
spherical front shield contributes to the aerodynamic effects.

According to Sect. “Pressure Coefficients” in Chap. 4, coefficients of axial and
normal force of a segment of sphere in Newtonian flow are with references Sref =
π · R2, Lref = R and θa , semiapex angle of tangent cone at the edge of sphere
(reference point for moments is at upstream pole O of sphere):

CAw = 1− sin4 θa − (1+ 3 sin2 θa) cos2 θa

2
· sin2 α

CNw = 2

3
cos4 θa · sin 2α

Cmw = −CNw ⇔ xC P = −R

While α < 33◦, θa = π
2 − θC , cos θa = sin θC = D

2R ; R
D = 1.2, maximum cross

section and diameter D as reference, coefficients are:
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C ′A =
Sref

π D2

4

CA = 4

(
R

D

)2

CA = 1.826− 1.740 sin2 α

C ′Nw = 4

(
R

D

)2

CNw = 0.0868 sin (2α)

CD = CX = C ′A cosα + C ′Nw sin α

CL = CZ = −C ′A sin α + C ′Nw cosα

f = CZ

CX
= CL

CD

With D as reference length, pitching moment coefficient relative to O is:

C ′mw/O = −
R

D
C ′Nw

For zG = 0, moment coefficient around mass center is:

C ′mw/G = C ′mw/O −
xG

D
C ′Nw = −

(
xG + R

D

)
C ′Nw

For xG = −0.26D:

C ′m/G =−
(

R

D
− 0.26

)
C ′N = −0.94C ′N = −0.0816 sin (2α)

⇒ C ′mα/G =
∂C ′m/G

∂α
= −0.163 cos (2α)

Thus the capsule is statically stable around any trim angle 0 ≤ α < 33◦. For
zG �= 0 and β = 0 pitching moment coefficient around GY is:

C ′m/G =
zG

D
C ′A −

(
xG + R

D

)
C ′N

Yawing moment is null.
Using the preceding results, we obtain for ZG

D = −0.035 the evolutions which
follow for β = 0 according to incidence α:
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Lift & Drag coefficients
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This gives a static trim incidence −21.5◦, lift coefficient CZ = CL = 0.53, drag
coefficient CX = CD = 1.5, and fineness ratio f = 0.35.

17 Aerodynamics of Apollo Reentry Capsule
in Free Molecular Flow

For incidences α < 33◦, the back cover is not impinged by the flow, only the spher-
ical front shield contributes to aerodynamic effects.

According to Sect. 4.4.1, center of pressure is the center of maximum cross sec-
tion plane. With reference of moments at upstream pole O (Sref = πD2/4, Lref = D):

CZ = CL = 0 ; f = CZ

CX
= CL

CD
= 0

CX = CD = 2 cosα ; CN = CX sinα = 2 sinα cosα; CA = CX cosα

Cm/0 = − R

D
(1− cos θC)CN ; sin θC = D

2R
= 1

2.4
:

→

O

CP

R

Cx
G

Cm > 0

x

CN CX

D
V∞ 2

θc

α
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For CG location xG
D = −0.26, we have

Cm/G =Cm/O − xG

D
CN

⇒ Cm/G =
[
− xG

D
− R

D
(1− cos θC)

]
CN = 0.15 CN = 0.15 sin 2α

Pitching moment coefficient is positive, hence the vehicle is unstable with the
heat shield ahead.

Cmα/G = ∂Cm/G

∂α
= 0.30 cos 2α

18 Aerodynamics of Viking Reentry Capsule in Continuous Flow

According to Sect. “Pressure Coefficients” in Chap. 4, while Sre f 1 = π · R2, Lref1 =
R, and θm = semiapex angle of tangent cone at the edge of sphere segment, the
coefficients of spherical segment (1) are:

CAw = 1− sin4 θm − (1+ 3 · sin2 θm) cos2 θm

2
· sin2 α

CNw = 1

2
cos4 θm · sin 2α

Cmw = −CNw ⇔ xC P = −R

O

A

Z

X

2
D

R

C

θ

LA1

LA2

LxA

O

A

Z

X

R

C

θ

L

y1

Cm > 0

With θm = 70◦ and R = 0.25D, while multiplying by
Sre f 1
Sref

= σ2
0 =

(
2R
D

)2 = 1
4

we obtain coefficients of the cap reported to reference area of vehicle Sref = π · D2

4 .
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C ′Aw1 = σ2
0CAw1 ; C ′Nw1 = σ2

0CNw1

Pitching moment coefficient around tip O of sphere with reference length D is:

C ′mw/O = −
R

D
C ′Nw1

Coefficients of the truncated cone are obtained by considering the pointed cone
(2) with origin A (apex), radius D

2 , and length LA2 such that D
2L A2

= tan θ and the
pointed cone (1) with same origin A, ends at junction of sphere with the conical
trunk part, of length L A1 = R

sin θ − R sin θ and maximum radius y1 = R cos θ .

Coefficients of truncated cone (2) with Sref = π · D2

4 of vehicle are:

C ′Aw2 =
(

1− σ 2
1

) [
2 · sin2 θ + (1− 3 · sin2 θ) sin2 α

]

C ′Nw2 =
[
1− σ 2

1

]
cos2 θ sin 2α

with

σ1 = L A1

L A2
= y1( D

2

) = 2R cos θ

D

The coefficient of moment around apex of a pointed cone with reference LA is:

Cmw/A = −2

3
· sin 2α

And for a different reference length D:

C ′mw/A = Cmw/A

(
L A

D

)
= −1

3

cos θ

sin θ
sin 2α

The coefficient of moment of the conical part (2) around the apex, with vehicle
diameter as reference length is:

C ′mw2/A = C ′mw/A

[
1− σ 3

1

]
· sin 2α = −1

3

cos2 θ

sin θ

[
1− σ 3

1

]
sin 2α

The apex of the pointed cone is located at xA = O A = R
sin θ − R from tip O of

vehicle.
The coefficient of moment of the conical part (2) around O is thus:

C ′mw2/O = C ′mw2/A +
x A

D
CNw2

The coefficients of the vehicle are finally:
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CAw = C ′Aw1 + C ′Aw2

CNw = C ′Nw1 + C ′Nw2

Cmw/O = C ′mw1/O + C ′mw2/O

The vehicle pitching moment coefficient around G is:

Cmw/G = Cmw/O − xG

D
CNw

We obtain the numerical results which follow:

CAw = 1.769− 1.65 sin2 α

CNw = 0.1144 sin 2α

Cm/O = −0.1191 sin 2α

The center of pressure xC P
D = Cmw/0

CNw
= −1.041 is independent of incidence.

Static margin is constant and positive:

SM = xG − xC P

D
= 0.811 > 0

zG

D
= 0 → Cmw/G = −0.0927 sin 2α ; Cmαw/G = ∂Cmw/G

∂α

∣
∣∣
∣
0
= −0.185

zG

D
�= 0 → Cm/G = zG

D
CAw − 0.0927 sin 2α

(
sin α cosβ

sin α

)

= zG

D
CAw − 0.185 cos2 β cosα sin 2α

Cn/G = −0.0927 sin 2α

(− sin β

sin α

)
= 0.185 cosα cosβ sinβ

While β = 0, we obtain the curves which follow:
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Viking , continuous flow

–0,1

–0,05

0

0,05

0,1

–20

incidence (degree)
C

m
/G zg/D = 0

zg/D=–0,02
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when β = 0, Yawing moment is null and
∂Cn/G
∂β

> 0. Thus zero sideslip is a stable
trim.

Pitching moment curve for zG
D = −0.02 crosses zero at α = −11◦, which is sta-

ble trim because
∂Cm/G
∂α

< 0. Trim lift coefficient and fineness ratio are respectively

CL = CZ = 0.37; CL
CD
= CZ

CX
= 0.22.

19 Aerodynamics of Viking Reentry Capsule
in Free Molecular Flow

With Sref = π D2

4 , force coefficients are obtained from simplified theory (Sect. 4.4.1,
σ = σ′ = 1, Mach∞):

CZ = CL = 0; f = CZ

CX
= CL

CD
= 0,

CX = CD = 2 cosα; CN = CX sin α = 2 sinα cosα; CA = CX cosα

The center of pressure is at center of maximum cross section plane, i.e.:

xC P/A = − D

2 tan θ
= −0.6369; xC P ′′/O = xC P/A + R

(
1

sin θ
− 1

)
= −0.5808

xC P

D
= −0.1659

Center of pressure is clearly in front of the center of gravity located at xG
D =

−0.23.
Static margin is negative SM = xG−xC P

D = −0.064 < 0.
Pitching moment coefficient around G is positive:

Cm/G = −
(

xG − xC P

D

)
CN = 0.064 · CN = 0.064 · sin (2α)
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Viking, free molecular flow
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The configuration is unstable, because we have
∂Cm/G
∂α

= 0.128 cos 2α > 0

20 Aerodynamics of Pathfinder Entry Capsule
in Intermediate Flow

Erf-Log bridging function is written as:

C (K n) = Cc+φ (K n)·(Cm − Cc) ; φ (K n) = 1

2

[
1+ er f

( √
π

ΔK n
ln

{
K n

K nmi

})]

With

ΔK n = Ln

(
K nm

K nc

)
= Ln (500)

Ln (K nmi ) = Ln (K nm)+ Ln (K nc)

2
⇒ K nm = K nmi e

ΔK n
2

= K nmi
√

500; K nc = K nmi e
− ΔK n

2 = K nmi√
500

Knowing�(K n1) and ΔK n = 6.2146 we deduce Knmi such that:

er f

[ √
π

ΔK n
Ln

(
K n1

K nmi

)]
= 2�(K n1)− 1
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then Knm and Knc.
Using an approximation of the Erf function [ABR], with Kn1 = 0.109, we obtain:

Knc Knmi Knm

CA 0.0096 0.215 4.8
CN 0.0060 0.134 3.0
Cm/G 0.079 1.76 39

According to calculations of reference [PAR] the intermediate regime is shifted
toward high Knudsen numbers for stability parameter.

According to exercises 18, 19, and 20 for 2◦ AoA and a CG location xG
D = −0.27,

we have the limiting values in continuous and free molecular flow:

Mode CA CN Cm/G (2◦) Cmα/G(radian−1)

Continuous 1.769 0.00409 −0.00615 (Newton) −0.176 (Newton)
−0.00110 (NS) −0.0315 (NS)

Free
molecular

1.998 0.0698 0.00726 0.208

We obtain from these values while using Erf-Log bridging function evolutions
according to Knudsen number:

Pathfinder, intermediate flow
AoA = 2°

1,7

1,8

1,9

2

2,1

–4

Log10(Kn)

C
A

Pathfinder , intermediate flow
AoA = 2°

0

0,01

0,02

0,03

0,04

0,05

Log10(Kn)

C
N

–3 –2 –1 0 1 2 3 –4 –3 –2 –1 0 1 2 3

Pathfinder , intermediate flow
AoA = 2°

–0,03

–0,02

–0,01

0

0,01

Log10(Kn)

C
Z

,C
L

Pathfinder , intermediate flow
AoA = 2° , Newton

–0,008
–0,006
–0,004
–0,002

0
0,002
0,004

Log10(Kn)

C
m

/G

–4 –3 –2 –1 0 1 2 3 –4 –3 –2 –1 0 1 2 3



21 Aerodynamics of a Biconic Reentry Vehicle in Continuous Mode 327

Pathfinder, intermediate flow
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At low AoA, and altitudes corresponding to the beginning of continuous flow,
Navier–Stokes code indicates much lower stability than the Newtonian estimate.
This is related to the dissociation of CO2 in Martian atmosphere in the high tem-
perature flow behind the bow shock. Navier–Stokes calculations at lower altitudes
agree with Newtonian estimates.

21 Aerodynamics of a Biconic Reentry Vehicle
in Continuous Mode

O

A1

Z

RN

C

θ1

LA1

Cm > 0

A2

θ2

y1

yN

LN LC1 LC2

O
X

2
D

RN

C

θ1

LC1

LA2

While D = 0.5 m, e = 2RN
D = 0.1, θ1 = 10◦, θ2 = 5◦, and λ = LC1

LC2
= 1

3 , we
obtain:

RN = e
D

2
= 0.025; L N = RN (1− sin θ1) = 0.02489; yN = RN cos θ1 = 0.02462

y1 = yN + LC1 tan θ1 = yN + λLC2 tan θ1;
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D

2
= y1 + LC2 tan θ2 = yN + (λ tan θ1 + tan θ2) LC2

⇒ LC2 =
D
2 − yN

λ tan θ1 + tan θ2
= 1.5409; LC1 = 0.5136;

L = L N + LC1 + LC2 = 2.0752

y1 = 0.1152

L A1 = y1

tan θ1
= 0.6532; L A2 =

D

2 tan θ2
= 2.8575

xA1 = O A1 = L A1 − (L N + LC1) = 0.1147; x A2 = O A2 = L A2 − L = 0.7781

Coefficients of a pointed cone with Lref = LA corresponding to the length and Sref
at maximum diameter from apex are:

CAC (θ, α) = 2 sin2 θ + (1− 3 sin2 θ) sin2 α; CNC (θ, α) = cos2 θ sin (2α)

CmC (θ, α) = −2

3
sin (2α)

Coefficients of the segment of sphere referenced to its radius and base surface
are:

CAS (θ, α) = 1− sin4 θ − (1+ 3 sin2 θ)

2
cos2 θ sin2 α;CN S (θ, α) = cos4 θ

2
sin (2α)

CmS (θ, α) = −CN S (θ, α) = −cos4 θ

2
sin (2α)

By applying formulae of weighted summation (Sect. “Pressure Coefficients” in
Chap. 4) we obtain force coefficients of the blunted biconic:

CA = σ 2
0 CAS(θ1, α)+

(
1− σ 2

1

)
σ 2

2 CAC (θ1, α)+
(

1− σ 2
2

)
CAC (θ2, α)

CN = σ 2
0 CN S (θ1, α)+

(
1− σ 2

1

)
σ 2

2 CNC (θ1, α)+
(

1− σ 2
2

)
CNC (θ2, α)

with

σ0 = 2RN

D
= e; σ1 = yN

y1
; �1 = L A1

L A2
; σ2 = 2y1

D

Total pitching moment coefficient with origin at nosetip O referenced to π D2

4
and LA2 of complete vehicle from apex is:

Cm/0 =− RN

L A2
σ 2

0 CN S (θ1, α)+CmC (θ1, α)
(

1− σ 3
1

)
σ 2

2 �1+CmC (θ2, α)
(

1− σ 3
2

)

+ xA1

L A2
CNC (θ1, α)

(
1− σ 2

1

)
σ 2

2 +
x A2

L A2
CNC (θ2, α)

(
1− σ 2

2

)
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This pitching moment is then referenced to the real length L of vehicle:

C ′m/O =
L A2

L
Cm/O

We obtain values of coefficients:

CA = 0.03418+ 0.9593 sin2 α

CN = 0.9829 sin (2α)

C ′m/O = −0.5664 sin (2α) ; xC P

L
=

C ′m/O

CN
= −0.576

 alfa CA CN C'm/O CX CZ
0 0,0342 0,0000 0,0000 0,0342 0,0000
1 0,0345 0,0343 -0,0198 0,0351 0,0337
2 0,0353 0,0686 -0,0395 0,0377 0,0673
3 0,0368 0,1027 -0,0592 0,0421 0,1007
4 0,0388 0,1368 -0,0788 0,0483 0,1338
5 0,0415 0,1707 -0,0984 0,0562 0,1664

To insure 3% static margin, we must locate the mass center at xG
L = xC P

L +0.03 =
−0.546, i.e., xG = −1.133 m.

At low incidence, we obtain:

CA = 0.03418+ 0.9593 sin2 α ≈ CA0 = 0.03418

CN = 0.9829 sin (2α) ≈ CNαα = 1.966α

C ′m/G ≈ −
(

xG − xC P

L

)
CNαα = −0.059α

With a CG offset zG
L = 0.01, pitching moment coefficient around Gy is:

C ′m/G ≈ −
(

xG − xC P

L

)
CNαα + zG

L
CA0

⇒ αeq = zG

xG − xC P

CA0

CNα
≈ 0.0028 radian

The result is a 0.16◦ trim angle of attack in the pitching plane.
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Biconic coefficients (newtonian)
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22 Targeting Errors of Ballistic Trajectories

According to (7.49), optimum FPA at sea level is such that:

(
cos γopt

)2 = 1

2−
(

V0
Vc

)2
,

i.e., γopt = 37.77◦ with V0 = 5000 m/s and Vc = 7910 m/s. According to (7.53),
half angular range is αopt = π

2 − 2γopt and range at sea level P = 2 αrt = 3215 Km
with rt = 6371 km.

For γopt± 10◦, i.e., 27.77◦ and 47.77◦, range is obtained from (7.37), (7.38), and

(7.39). Introducing circular orbit velocity Vc =
√
μ
rt

and x =
(

V0
Vc

)2
, y = (cos γ0)

2

into these relations, we obtain a relation between half angular range and variables x
and y:

cosα = 1− xy√
1+ (x − 2)xy

It results the respective ranges:
P± = 2α rt = 2998 km and 3033 km.
To obtain the sensitivity of the range to errors in V0 and γ0, let us square this

relation. We obtain f = [1+ (x − 2)xy)
]
(cosα)2 − (1− xy)2 = 0. While differ-

entiating f with respect to α, x, and y we obtain expressions of the partial derivative
of α with respect to x and y:



22 Targeting Errors of Ballistic Trajectories 331

d f = ∂ f

∂α
dα + ∂ f

∂x
dx + ∂ f

∂y
dy = 0,

resulting in

∂α

∂x
= −∂ f

∂x

/
∂ f

∂α

∂α

∂y
= −∂ f

∂y

/
∂ f

∂α

While developing calculations:

∂α

∂x
= y

tanα

[
x − 1

1+ (x − 2) xy
+ 1

1− xy

]
; ∂α
∂y
= 1

tanα

x

2

[
x − 2

1+ (x − 2) xy
+ 2

1− xy

]

The partial derivative of range are:

∂P

∂V0
= 2rt

∂α

∂x

∂x

∂V0
= 4rt

V0

V 2
c

∂α

∂x
; ∂P

∂γ0
= 2rt

∂α

∂y

∂y

∂γ0
= −4rt cos γ0 sin γ0

∂α

∂y

For the maximum range trajectory, with given velocity V0 or x, such that y =
yopt =

(
cos γopt

)2 = 1
2−x , we verify ∂α

∂y = 0, i.e., an extremum range. With the

same hypothesis, ∂α
∂x = 1

2 tanα(1−x)(2−x) > 0, i.e., we obtain a range increase with
velocity, which is consistent with an optimum FPA. By applying these relations, we
obtain for 5000 m/s and for the three FPA:

γ0 (degree) 37.77◦ 47.77◦ 27.77◦
∂P
∂V0

(km/m/s) 1.64 1.42 1.68
∂P
∂γ0

(km/degree) 0 −34.6 45

We note the advantage of using a maximum range or minimal energy at a given
range, which results in minimum sensitivity to FPA errors (only for the same altitude
of initial and final points). We check in addition that a positive FPA error for the
trajectory 27.77◦ corresponds to an increase in range, which is logical because we
get closer to the optimum angle. The opposite occurs for angle 47.77◦.

Error on initial azimuth: A simple geometrical construction shows that the lateral
error is:

δy = rt sin (2α) sin δAz ≈ rt sin (2α) δAz

This results in a side error of about 50 km per degree of azimuth for the three
trajectories.
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23 Stability of Free Rotational Motion of a Satellite with Spin

According to Sect. 7.2.2, tan θ0 = IT ωy0
Ixωx0

results in:

θ0 ∼ 31◦, ϕ̇0 =
(

1− Ix
IT

)
p0 = −0.698 radians /s; ψ̇0 = Ix p0

IT cos θ0
= 4.396

radians/s

Initial angular momentum is H0 =
√
(Ixωx0)

2 + (Iyωy0
)2 = 6106 N.m.s

Exterior couples being null, angular momentum is constant relative to inertial
frames. Exercise 8 gives its rotational energy as a function of the transverse angular
rate:

E = 1

2

[
H 2

0

Ix
+ IT

(
1− IT

Ix

)
ω2

T

]

Initial energy equals

E0 = 1

2

[
H 2

0

Ix
+ IT

(
1− IT

Ix

)
ω2

y0

]

Thus, dissipation of energy Ė < 0 results in decreasing transverse angular rate:

E − E0 = Ė · t = IT

(
1− IT

Ix

)(
ω2

T − ω2
y0

)
< 0

We obtain:

ω2
T = ω2

y0 +
Ė · t

IT (1− Ix
IT
)

(1)

Angular momentum is constant, which enables us to determine roll rate:

ω2
x =

H 2
0

I 2
x
−
(

IT

Ix

)2

ω2
T = ω2

x0 −
(

IT

Ix

)2 Ė t

IT (1− IT
Ix
)

(2)

Transverse rate ωT decreases and roll rate ωx increases.
Then, we obtain the evolution of nutation angle from:

tan θ = ITωT

Ixωx
(3)

The nutation angle tends toward zero, which corresponds to a final trim state

where the x axis of the satellite is aligned along
⇀

H 0, with roll rate ωx = H0
Ix

.
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The expression of instantaneous energy shows that its minimum allowable value

is, Emin = 1
2

H2
0

Ix
, reached when ωT = 0. Thus, dissipation of energy cannot last

beyond this moment. In fact this dissipation is related to the deformation of some
nonrigid part of the satellite under the effect of the periodic component of motion,
dependent on the transverse angular rate vector turning at frequency−(1− Ix

IT
)ωx in

satellite axes. When ωT = 0, the amplitude of excitation is null, the rotational mo-
tion is uniform and corresponds to a rigid mode, the dissipation of energy becomes
null. Expression (1) for Ė = −10 mW results in canceling transverse angular veloc-
ity at 131595 s, i.e., approximately 36 hours 33 minutes. Using graphical software
and formulae (1)–(3), we obtain the evolution of nutation.
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However, the assumption of a constant dissipated power is not physical, because
the amplitude of the transverse angular velocity at origin tends toward zero. A more
realistic figure would be a power model using a decreasing function of transverse
angular rate. This means the convergence time is likely much longer.

24 Allen and Eggers Reentry

The application of Allen’s results (Chap. 9) determines velocity versus altitude for
the two trajectories. We obtain from results of Chap. 3 on isothermal atmospheres:

• Average temperature T = 239.13 K, reference height 7000 m.
• Sound speed a = 310 m/s and dynamic viscosity is 1.54 10−5 (Sutherland For-

mula).
• Molecular mean-free-path λ∞ = 8.1310−8

ρ

Using graphical software, we obtain evolutions versus altitude of Mach number
V
a , Knudsen number λ∞

Lref
( independent of the trajectory), and Reynolds number of

the vehicle Re = ρV Lref
μ

and of the spherical nosetip RN = 50 mmRe = ρV RN
μ

:
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From the assumed values of transition criteria (in practice, they highly depends in
material properties, such as roughness and mass loss rate), evolutions of Reynolds
number make it possible to define altitudes of beginning of transition, i.e., 47 km
for the vehicle and 22 km for nose. Analytical expression of maximum heat flux at
stagnation point gives for nose radius 25–100 mm and the two FPA (flux in MW/m2,
inversely proportional to square root of Rn):

Rn 20° 60°
0,025 67,4 107,2
0,05 47,6 75,8
0,075 38,9 61,9
0,1 33,7 53,6

Altitudes of these maximum heat fluxes are respectively 7.4 Km and 4.6 Km.

25 Mars Atmosphere Measurement

Axial accelerometer measurement is:

AX = −1

2
ρV 2Sref CA

Assuming low angle of attack, we have:

V̇ ≈ AX + ϕ sin γ

V γ̇ = ϕ cos γ

ż = −V sin γ
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Knowing the estimate of velocity and FPA at beginning of entry (from guidance
data), using measured data Ax(t) and the preceding dynamic entry model1 allows to
determine by numerical integration the temporal evolution of velocity V, FPA γ, and
altitude z.

Then, using the design model for drag coefficient (for Pathfinder the model was
a function of velocity and Knudsen number K n = 0.751310−7

ρD ), we obtain the esti-
mated density:

ρ̂ = −2AX

Sref V 2CA (V , K n)

A first iteration is made using the CA from the Knudsen calculation with pre-
vious density model. One can then proceed by iteration using each time Knudsen
calculations based on the density resulting from the preceding iteration step.

The order of magnitude of accelerometer measurement for pathfinder is obtained
using Allen approximation between 125 and 20 km, then between 25 km and 8 km.

V = V0e−K (ρ−ρ0)

V0 = 7470, γ0 = 13.6◦, K = HR

2β sin γ0

Altitudes ρS(kg.m−3) HR (km) K

0–25 km 0.0159 11.049 361.4
25–125 km 0.0525 7.295 238.6

We obtain V1 = V (25 km) = 4972.4 and the evolution of accelerometer mea-
surement in earth g’s.

Pathfinder axial load factor
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1 In fact, in a similar model, but more exact one, taking into account spherical rotating planet.
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In fact this assessment of axial load is overestimated, for Allen’s model is very in-
accurate for shallow trajectories. Taking into account more exact model, pathfinder
maximum load factor was 18 g (to see exercise 34).

The opening of the first parachute of pathfinder occurred at Mach number 1.8
close to the design value at about 8 Km altitude.

26 Entry of Meteorites

Using the approximations of Allen (Chap. 9), with:

M = ρbVb = ρb
4

3
πR3; Sb = πR2;

CX = 1 ⇒ β = M

SCX
= 4

3
ρb R; K = 3HR

8ρb R sin γ0

velocity is:

ρ = ρs e
− Z

HR : V ≈ V0e−Kρ

Thus, velocity loss ratio percentage during entry is:

100
V0 − V

V0
= 100

(
1− e−KρS

)

Heat flux at stagnation point is:

� = c

√
ρ

R
V 3 = c

√
ρ

R
V 3

0 e−3Kρ

Density and altitude at maximum heat flux are ρm = 1
6K ⇔ Zm = HR Ln (6Kρs)

- If Zm > 0, then�m = c
√
ρm
R V 3

0 e−3Kρm = cV 3
0

√
1

6K R e−
1
2 = 2

3 cV 3
0

√
ρb sinγ0

HR
,

maximum heat flux is independent of R.
- If Zm ≤ 0, maximum heat flux is at sea level, Z = 0, ρ = ρs , and �m =

c V 3
0

√
ρs
R e−3Kρs , which depend on R

Heat quantity per unit area d E
d A received in the vicinity of stagnation point is:

pc = 2β g sin γ0; pS = 101325; d E

d A
≈ cV 2

0

√
πβHR

R sin γ0
Er f

[√
2

ps

pc

]
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While assuming d E
d A is constant on the front hemisphere, the order of magnitude

of the quantity of heat received by the body is:

Q ≈ 2πR2 d E

d A

Rise in temperature of the body, assumed uniform in volume is:

ΔT = Q

M CV

If this temperature is lower than Tv = 2500 K, we assume the whole mass of the
meteorite impacts the ground.

The kinetic energy is:

Ekin = 1

2
MV 2 = 4

3
πR3ρbV 2

0 e−2 K ρS

Using graphical software, we obtain:

D (m) beta K dvsv (%) Zm (km) Phimax (MW/m²)
0,03 50 140 100,0 49,4 54,0
0,3 500 14 100,0 33,3 54,0
3 5000 1,4 85,7 17,2 54,0
30 50000 0,14 17,7 1,1 53,7
300 500000 0,014 1,9 -15,0 30,4
3000 5000000 0,0014 0,2 -31,2 9,6

D (m) dE/dS Q (J) M (kg) DT (K) ECIN (J) ECIN (kT)
0,03 319074361 451080,751 0,03534292 3190,744 2,4E-163 0,00
0,3 319074361 45108075,1 35,3429174 319,074 3,2E-08 0,00
3 317798064 4492764283 35342,9174 31,780 5,2E+10 0,01
30 202931294 2,8689E+11 35342917,4 2,029 1,7E+15 431
300 72110805,7 1,0194E+13 3,5343E+10 0,072 2,4E+18 6,12E+05
3000 22973354 3,2478E+14 3,5343E+13 0,002 2,5E+21 6,34E+08

We note that meteorites having a diameter about a centimeter and lower are de-
stroyed before the impact. For diameter about 0.1 meter and higher, they impact
the ground quasi intact; however, their velocity and kinetic energy are low (they
are underevaluated here but when taking account gravity, they reach limit velocity√

2Mg
ρS S CX

about 90 m/s and are dangerous even on a small scale). For a diameter
about 1 m, the kinetic energy becomes high, and huge for 10 m. For 30 m diame-
ter, equivalent energy is about 400 KT and corresponds to serious damage by blast
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effect within a radius of several kilometers. For 300 m of diameter, energy reaches
a catastrophic level equivalent to 600 MT of TNT.

27 Normal Load Factor Related to Incidence

The normal aerodynamic force, for a slender cone with half apex angle θa is:

Z A = −qSre f CN ≈ −qSre f CNαα; CNα ≈ 2 (cos θa)
2

Normal load factor is equal and opposite to apparent normal gravity felt by an
observer fixed to the vehicle:

NZ = Z A

mg
= q

Sre f CNα

mg
α; gZ ,app = −NZ

Using Allen’s approximation:

q = 1

2
ρV 2 = 1

2
ρV 2

0 e−2Kρ; ρ = ρSe
− Z

HR ; K = HR

2β sin γ0

Ballistic coefficient is β = m
Sref CX

∼ 1.22 104 kg.m−2 for Cx ≈ 0.05
Normal load factor for a constant angle of attack α is maximum together with

dynamic pressure:

dq

dρ
= 0 ⇔ 2Kρm = 1 ⇔ Zm = HR Ln(2KρS); qm =

V 2
0

4K e

We obtain:

gama0 (degree) K Zm (Km) qbarmax (bars)
20 0,837 5,913 33,2
60 0,331 -0,590 84,1

alfa (degree) 1 3 5
gama0 (degree) Nz (g)

20 19,0 56,9 94,9
60 48,1 144,2 240,3

These results illustrate the need to control trim incidence under 20 km altitude.
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28 Artefact in Computer Codes

Examination of candidate parameters, for example, axial load factor, shows
dependence:

Nx = 1

2
ρV 2 Sre f CA

mg

Here, we must examine evolutions of V, ρ, and CA .
Expressions of state vector derivatives in the system use models of gravity, atmo-

sphere, and aerodynamic coefficients, which are by construction continuous models
(this is mandatory to use a numerical integration algorithm, for example, a Runge
Kutta method). Consequently, the first derivatives of the state vector, including ve-
locity derivative V̇ are continuous by definition. Thus, the origin of phenomenon
can only comes from aerodynamic and atmospheric density models:

• Aerodynamic coefficients are generally modeled by discrete tables as a function
of Mach, altitude, and angle of incidence, and the coefficients are linearly inter-
polated per interval. Thus, the first derivatives of coefficients are discontinuous.
However, if the discretization of the tables is well chosen, discontinuities are
weak and practically invisible in the evolution of the parameters concerned.

• We are left with the atmosphere. Standard models are generally discretized with
a law of temperature having linear evolution by altitude slices. Slope disconti-
nuities in temperature curve induce notable discontinuities of the first derivative
of density. This is apparent in the example corresponding to the evolution of the
density as a function of altitude for a Martian atmosphere model.

Bumps in atmospheric model
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This phenomenon of slope discontinuity in temperature law is not incompatible
with nature. For example, in the case of the earth’s atmosphere, there is disconti-
nuity at the boundary of low atmosphere with the troposphere near 11 km altitude.
Corresponding oscillations are not inevitably all artefacts of calculation. Likely dis-
continuities of slope induced by modeling are exaggerated compared to reality.

29 Gyroscopic Stabilization of an Entry Capsule

A model of Knudsen number for the Martian atmosphere is found in [PAR]:

K n = 0.751310−7

ρD

While ρ = ρSe
− Z

HR and according to results of exercise 20, we can assess
the derivative of pitching moment coefficient Cmα/G = ∂Cm/G

∂ᾱ
in an intermediate

regime for xG
D = −0.25:

Pathfinder, intermediate flow
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We note that the vehicle is unstable above 87 km altitude.
In the case of a capsule without spin, the incidence motion is divergent, and the

probe will start a swing to present the aft cover forward.
Let us examine the effect of spin on incidence behavior. Quasi static approx-

imation of Sect. 10.2 led to approximate evolution of the incidence. In the case
of a statically stable vehicle, Cmα/G < 0, aerodynamic pulsation is defined by

ω2 = − q̄ Sre f D Cmα/G
IT

. Examination of Sect. 10.2 derivations shows that while
Cmα/G > 0, a statically unstable vehicle, approximate evolution remains valid with
the same expression of ω2.

Then we obtain:

ᾱ

ᾱ0
≈
[

1+
(
ω2

p2
r

)]− 1
4



30 Effect of Equilibrium Lift on CG Motion 341

with pr = μ
p
2 ; μ = IX

IT
, where ω2 is negative in zones of instability and positive

outside.
The calculation of evolution of incidence using the preceding expression, with

1◦ initial AoA at 125 km altitude and roll rate 0.3 to 2 rpm, gives following results:

Angle of attack history

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

70 80 90 100 110 120
altitude (km)

In
ci

d
en

ce
 (

d
eg

re
e)

2 rpm

1 rpm

0,8 rpm

0,7 rpm

0,6 rpm

0,5 rpm

Examination of results shows that using roll rate higher or equal to 1 rpm al-
lows avoiding the divergence for the period of aerodynamic instability. For roll
rates lower than 0.8 rpm, we observe a clear divergence of the incidence above
100 km altitude. For increasing roll rates, the divergence decreases, but later conver-
gence is slowed down. Gyroscopic stabilization was widely used on Martian probes
(Pathfinder, Beagle 2). In the case of Pathfinder, nominal roll rate was 2 rpm.

30 Effect of Equilibrium Lift on CG Motion

For a conical vehicle 8◦ and ᾱ = 0.1◦ ; CA = 0.05; Newtonian theory
(Sect. 4.3.4.3.4) give:

CNα = ∂CNw

∂ᾱ

∣∣
∣
∣
ᾱ=0

≈ 2 cos2 θa ≈ 1.96; CZα = CNα − CA = 1.91

CZ ≈ CZαᾱ = 0.0033; f = CZ

CX
≈ CZ

CA
≈ 0.066

We assume that the lift force is in the vertical plane, directed upward, for a con-
stant fineness and ballistic coefficient.
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V
→

γ

Z

X

x’

z’

Equations of motion relative to axes x′ and z′ fixed to relative velocity vector are:

γX ′ = dV

dt
= FX ′

m
= −q̄

Sre f CX

m
= − q̄

β
; γZ ′ = −V

dγ

dt
= f

q̄

β

Evolutions of altitude and air density are given by:

d Z

dt
= −V sin γ ; dρ

dz
= − ρ

HR

While using ρ as the independent variable we obtain:

ρV sin γ

HR

dV

dρ
= − 1

2β
ρV 2 ⇒ 1

V

dV

dρ
= − HR

2β sin γ

−ρV 2 sin γ

HR

dγ

dρ
= f

2β
ρV 2 ⇒ dγ

dρ
= − f HR

2β sin γ

Second equation gives:

d cos γ

dρ
= f HR

2β
⇒ cos γ − cos γ0 = f HR

2β
(ρ − ρ0)

Dividing the first equation by the second:

1

V

dV

dγ
= 1

f
⇒ V = V0e

γ−γ0
f
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Lateral variation from reference trajectory with no incidence (rectilinear thus
γ = γ0 constant) is:

y = −
∫ t

0
V sin (γ − γ0) dt = −HR

∫ ρ

ρ0

sin (γ − γ0)

sin γ

dρ

ρ

For u = δγ = γ − γ0 << 1 we have:

cos γ − cos γ0 ≈ −u sin γ0 = f HR

2β
(ρ − ρ0) ⇒ u = − f K (ρ − ρ0)

sin γ ≈ sin γ0 + u cos γ0

This gives y:

y ≈ − HR

cos γ0

∫ U

0

(
u

u + tan γ0

)
du

(u − u1)
With u1 = f Kρ0

We obtain by integration:

y ≈ − HR

cos γ0

[
tan γ0

u1 + tan γ0
Ln

(∣∣
∣
∣1+

U

tan γ0

∣
∣
∣
∣

)
+ u1

u1 + tan γ0
Ln

(∣∣
∣
∣
u1 −U

u1

∣
∣
∣
∣

)]

As u1Ln (u1) tends toward zero with u1 we have, when ρ0 ≈ 0:

y ≈ − HR

cos γ0
Ln

(∣∣
∣
∣1+

U

tan γ0

∣
∣
∣
∣

)
= − HR

cos γ0
Ln

(∣∣
∣
∣1−

f K

tan γ0
(ρ − ρ0)

∣
∣
∣
∣

)

Numerical application at sea level gives:

K = 0.7, γS = 26.1◦; δγ = −3.9◦,VS = 2131 m/s, y = 953 m

In the case of reentry with no incidence, we would have according to Allen:

VS = V0e−KρS = 2268m/s, γS = 30◦; δγ = 0◦, y = 0

In the case of a vehicle with spin 1.5 Hz at same trim incidence, radius of the
helicoids trajectory at the end of the flight (Sect. “Trimmed Phase” in Chap. 14) is:

RN =
∣
∣AN,eq

∣
∣

p2 ; AN = q̄ Sre f CZ

m
= f

q̄

β

By using same velocity as trajectory with no incidence, we obtain:

AN = 23.6 m.s−2, y ∼ RN = 0.26 m
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Effect of spin for a weak trim incidence 0.1◦ is to decrease side offset from 953 m
to 0.26 m.

This shows clearly the effectiveness of spin to control effect of asymmetries on
trajectory.

31 Effects of Drag Dispersions

Effects on impact velocity, axial load factor and heat flux are assessed using Allen’s
method (Chap. 9).

VS ≈ V0e−KρS ; K = HR

2β sin γ0
⇒ dVS

VS
= −KρS

(
dρS

ρS
+ d K

K

)

= −KυS

(
d S CX

S CX
+ dρS

ρS
+ d HR

HR

)

Maximum load factor, when reached before impact, is at first order independent
of CX and ρS , and depends only on V0, γ0, and HR:

d NX

NX
= −d HR

HR

Maximum heat flux is proportional to
√

β
HR

, from whence:

d�m

�m
= −1

2

(
d S CX

S CX
+ d HR

HR

)

To determine the influence on range, we must take account of gravity by using
results of Sect. “Flight Path Angle and Downrange Errors” in Chap. 14:

ΔX = −HR
cos γ0

sin4 γ0

pS HR

βV 2
0

F ′′ (2KρS)

[
dρS

ρS
+ d HR

HR
+ d S CX

S CX

]

with F ′′ (x) = 1+ x
4 + x2

18 + x3

96 .
+5% on any of parameters SCX, HR or ρS gives:

• −11.5% on ground impact velocity VS i.e. 81 m/s
• −125 m on range

+5% on SCX or HR gives −2.5% on maximum heat flux.
+5% on HR gives−5% on maximum axial load factor.
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32 Wind Effects

To calculate the trajectory, we use Allen’s hypothesis and results, for an observer
fixed to the air, at constant velocity relative to earth. At zero AoA, drag is along the
relative velocity vector. With a flat earth, no gravity, trajectory relative to the air is
rectilinear. For an observer fixed to the air, Allen’s results are valid except initial
conditions are velocity and FPA relative to the air frame.

W

VR0

V0

γR0

X

γ0

Z

Z0

→

→

→

VR0 cos γR0 = V0 cos γ0 −W ; VR0 sin γR0 = V0 sin γ0

We have:

VR0 =
√

V 2
0 +W 2 − 2V0W cos γ0 ≈ V0

(
1− W cos γ0

V0

)

sin γR0 = sin γ0√

1+
(

W
V0

)2 − 2
(

W
V0

)
cos γ0

≈
(

1+ W cos γ0

V0

)
sin γ0

cos γR0 =
cos γ0 − W

V0√

1+
(

W
V0

)2 − 2
(

W
V0

)
cos γ0

≈
(

1+ W cos γ0

V0

)
cos γ0 − W

V0

Relative velocity evolution according to altitude Z (Z is identical for observer
fixed to wind and observer fixed to earth) is given by:
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VR ≈ VR0e−K Rρ, with K R = HR

2β sin γR0

Velocity V and FPA γ for observer fixed to earth are such as:

V cos γ = VR cos γR0 +W

V sin γ = VR sin γR0

FPA for the motionless observer is not constant, because
tan γ = sinγR0

cosγR0+ W
VR

where VR depends on altitude (the trajectory is thus not

rectilinear)
While denoting V ∗ = V0e−Kρ velocity on reference trajectory with no wind and

assuming W
VR

and W
V ∗ << 1, we obtain from above results first-order expressions of

variations of velocity relative to air and earth relative velocity:

VR − V ∗ ≈ −W cos γ0 (1− Kρ) e−Kρ

V − V ∗ ≈ W cos γ0

[
1− (1− Kρ) e−Kρ

]

Maximum load factor with wind is determined by the conditions relative to air:

NX max =
V 2

R0 sin γR0

2gHRe
⇒ ΔNX max

NX max
≈ 2

ΔVR0

V0
+ Δ sin γR0

sin γ0
= −W

V0
cos γ0

We obtain in the same way for maximum heat flux:

⇒ Δ�max

�max
≈ 3

ΔVR0

V0
+ 1

2

Δ sin γR0

sin γ0
= −5

2

W

V0
cos γ0

Effect of a tail wind is thus to decrease velocity relative to the air, maximum axial
load factor, and maximum heat flux. The opposite occurs for head wind.

Although altitudes Z are identical for the two observers, horizontal ranges since
the point of beginning of reentry are different. Denoting X the range for earth-fixed
observer and XR for observer fixed to air:

X = W t + X R, where X R = Z0 − Z

tan γR0

Range at sea level (Z = 0, t = T) for the earth-fixed observer in presence of
wind is thus:

X = W T + Z0

tan γR0
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where T is total duration of descent from Z0 = 120 km.
Ground range without wind corresponds to X∗ ≈ Z0

tan γ0
. Range variation induced

by wind is thus:

ΔX = W T + Z0

tan γR0
− Z0

tan γ0
= W

(
T − Z0

V0 sin γ0

)

According to approximate expression of reentry time in Chap. 9 we have:

T ≈ Z0

VR0 sin γR0
+ HR

VR0 sin γR0
KρS

[

1+ KρS

4
+ (KρS)

2

18
+ (KρS)

3

96

]

We obtain finally the ground range variation:

ΔX ≈ W HR

V0 sin γ0
KρS

[

1+ KρS

4
+ (KρS)

2

18
+ (KρS)

3

96

]

Thus, effect of tail wind is a range increase and head wind a reduction.
For tail wind, numerical calculations give the following results, derived using

graphical software (for head wind, only the sign is changed):

Sensitivity of velocity on wind for tail
wind + 30 m/s
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Effects on axial load factor, heat flux, and range:

gam0 (degree) W (m/s) DNx/Nx (%) DPHI/PHI (%) DX (m)
20 30 -0,47 -1,17 218
60 30 -0,25 -0,63 26
20 -30 0,47 1,17 -218
60 -30 0,25 0,63 -26

These approximate results are in good agreement with more exact three degrees-
of-freedom solutions.



348 Solutions

33 Effect of a Sharp Stability Variation,
Case of a Plane Oscillation

According to methodology, Sect. “Consequences of a Static Stability Variation” in
Chap. 14:

Evolution of the incidence,

t < 0 → ξ0 (t) = θ0 sin (ωa0t + ϕ0)

t > 0 → ξ1 (t) = θ1 sin (ωa1t + ϕ1)

Energy of rotation,

E0 (t < 0) = 1

2
IT

[
ξ̇2

0 (t)+ ω2
a0ξ0 (t)

]
= 1

2
ITω

2
a0θ

2
0

E1 (t < 0) = 1

2
IT

[
ξ̇2

1 (t)+ ω2
a1ξ1 (t)

]
= 1

2
ITω

2
a1θ

2
1

Subtracting the two sets of equations at t = 0:

E1 − E0 = 1

2
IT

[(
ξ̇2

1 (0)− ξ̇2
0 (0)

)
+ ω2

a1ξ
2
1 (0)− ω2

a0ξ
2
0 (0)

]

= 1

2
IT

(
ω2

a1θ
2
1 − ω2

a0θ
2
0

)

While ξ̇ (t) and ξ (t) are continuous functions, even at t = 0:

E1 − E0 = 1

2
IT

[(
ω2

a1 − ω2
a0

)
ξ2

0 (0)
]
= 1

2
IT

(
ω2

a1θ
2
1 − ω2

a0θ
2
0

)

E1 − E0 = 1

2
IT

[(
ω2

a1 − ω2
a0

)
(θ0 sin ϕ0)

2
]
= 1

2
IT

(
ω2

a1θ
2
1 − ω2

a0θ
2
0

)

Finally:

ω2
a1θ

2
1 = ω2

a0θ
2
0+
(
ω2

a1 − ω2
a0

)
(θ0 sinϕ0)

2 ⇒ θ2
1

θ2
0

= ω2
a0 +

(
ω2

a1 − ω2
a0

)
(sin ϕ0)

2

ω2
a1

Extreme of amplitudes ratio thus corresponds to:

ϕ0 = 0 or ϕ0 = π ⇒ θ1

θ0
= ωa0

ωa1
; ϕ0 = π

2
or ϕ0 = 3π

2
⇒ θ1

θ0
= 1

Thus in the case of planar oscillation, unlike motion with spin and circular po-
larization, amplitude ratio behavior through stability perturbations depends on the
phase of motion. In the case of circular motion AoA is constant, as well as potential
and total energy. It is not the case when the motion is planar or with elliptic po-
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larization. When stability change occurs at the time of a maximum AoA variations
of “potential” and total energy are maximum. When incidence is null, there is no
variation of rotational energy. The effect on amplitude depends on the phase of the
motion at the time of disturbance.

In the case of plane oscillation, if the disturbance occurs close to zero incidence,
total energy remains constant. While stability is decreased, the maximum amplitude
of the oscillation increases according to inverse ωa ratio. If disturbance occurs close
to a maximum of incidence, the variation of total energy is maximum (negative) and
exactly compensate the effect of stability variation, the amplitude does not vary.

34 Mars Skip Out Trajectories

From Chap. 7, while including radial and normal components of aerodynamic drag
in the equations of motion in central gravitation field, we obtain:

r̈ = − μ
r2
+ r θ̇2 − FA sin γ

m

r θ̈ + 2ṙ θ̇ = − FA cos γ

m
FA

m
= ρV 2

2β

V cos γ = r θ̇

V sin γ = ṙ

V =
√

ṙ2 + (r θ̇)2

r̈ = − μ
r2
+ r θ̇2 − ρ

2β
V ṙ

d

dt

(
r2θ̇
)
= − ρ

2β
V r2θ̇

Denoting u = r2θ̇; Vr = ṙ , we obtain the system of motion equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u̇ = −ρV
2β u

V̇r = − μ

r2 + u2

r3 − ρV
2β ṙ

θ̇ = u
r2

ṙ = Vr

The range is rpθ , with rp = planet radius.
Initial conditions are u (0) = r (0)V0 cos γ0; Vr (0) = V0 cos γ0; θ0 = 0; and

r (0) = rp + h0.
A numerical solution is obtained with a very simple FORTRAN program, using

the fourth order Runge Kutta algorithm shown in Chap. 8.
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Using post flight entry condition, numerical results are obtained:



352 Solutions
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Maximum axial load factor, 18 g is much lower than predicted by Allen solution
(32 g) in exercise 25, range and flight time are accordingly much longer. This is
obviously related to the curvature of the planet and to the central gravitation field.

Using the program with decreasing flight path angles shows beginning of skip out
at −11.5◦ FPA, as shown in the next figure. The nominal FPA, 14.8◦, was chosen
with sufficient margin to prevent skip out with regards to navigation uncertainties.
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