
Journal Pre-proof

Adaptive Sliding Mode Control for Deployment of Electro-dynamic Tether via Limited
Tension and Current

Shumin Chen, Aijun Li, Changqing Wang, Chenguang Liu

PII: S0094-5765(19)31458-4

DOI: https://doi.org/10.1016/j.actaastro.2019.12.025

Reference: AA 7808

To appear in: Acta Astronautica

Received Date: 31 July 2019

Revised Date: 8 December 2019

Accepted Date: 19 December 2019

Please cite this article as: S. Chen, A. Li, C. Wang, C. Liu, Adaptive Sliding Mode Control for
Deployment of Electro-dynamic Tether via Limited Tension and Current, Acta Astronautica, https://
doi.org/10.1016/j.actaastro.2019.12.025.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd on behalf of IAA.

https://doi.org/10.1016/j.actaastro.2019.12.025
https://doi.org/10.1016/j.actaastro.2019.12.025
https://doi.org/10.1016/j.actaastro.2019.12.025


 

Page 1 of 26 

 

Adaptive Sliding Mode Control for Deployment of Electro-dynamic Tether via Limited Tension and 

Current 

 
Shumin Chen* , Aijun Li, Changqing Wang, Chenguang Liu 

 
School of Automation, Northwestern Polytechnical University, 1 Dongxiang Road, Chang’an District, Xi’an Shaanxi, 
710129, P.R. China  
* Corresponding Author. E-mail address: chenshumin@mail.nwpu.edu.cn  

 
Abstract 

This paper studies the deployment control of the electrodynamic tether system by means of tether tension and 

electric current regulation. Design of the control strategy has been implemented based on the simplified dumbbell 

model. In order to improve the robustness of the control system to the possible external disturbances, an adaptive 

sliding mode control is proposed to deploy the tether to the local vertical with the consideration of input limitations, 

which are introduced by a pair of saturation functions to ensure that the tether tension is always non-negative and the 

current is within limits. In addition, the proposed adaptive law is intended to estimate the mass parameter of the 

model, which is with uncertainty caused by the difficulty in accurately determining the masses of the end-bodies. 

The stability characteristic of the system under the proposed hybrid controller is studied based on the Lyapunov 

theory. Numerical case studies in the different orbital inclinations are conducted to illustrate the effectiveness of the 

proposed control strategy. Moreover, the performance of the controller is presented in the presence of the initial 

perturbations, the external disturbances and the uncertainty of mass parameter of the system. 

Keywords: Electro-dynamic tether; Deployment control; Sliding mode control; Adaptive law  

 
Nomenclature 

B  =   Magnetic field of Earth 

C  =   Center of Mass (CM) of the system 

I  =   Electric current along electro-dynamic tether 

i  =   Orbital inclination 

l  =   Tether length 

1 2,m m  =   Mass of end-bodies 

Qθ  =   Generalized force for in-plane angle 

Qβ  =   Generalized force for out-plane angle  

cr  =   Orbital radius of the CM of the system 

T  =   Tether tension 

β  =   Out-plane angle  

∆  =   The disturbances acting on the system 

σ  =   Argument of latitude 

θ  =   In-plane angle 

ϑ  =   True anomaly 

eµ  =   Coefficient of Earth’s gravity field 
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mµ  =   Magnetic moment of the Earth’s dipole 

Ω  =   Angular velocity of the circular orbit 

aΩ  =   Right ascension of ascending node (RAAN) 

ω  =   Orbital angular velocity 

pω  =   Argument of perigee 

 
1. Introduction 

Space Tether System (STS) refers to a combination of several spacecrafts connected by tethers, tapes, or wires 

[1]. In recent years, tether application has been considered as a quite promising branch of space explorations, such as 

atmosphere explorations and orbital maneuvers, for the tether system can guarantee a long operating distance and 

provide the possibility to complete missions without fuel consumption by means of momentum exchange, which 

shows the unique superiority of tether systems compared to conventional spacecraft systems [2,3]. Besides, debris 

deorbiting [4], formation flying [5], payload capture [6], and tethered robot [7] based on STS technology have also 

been discussed theoretically and partially certificated by ground or space experiments over the past decades. 

 STS with conductive tethers or tapes is also known as Electrodynamic Tether (EDT) system. The EDT system 

has shown its broad application prospects in space missions around Earth; notably, bare tether gains much attention 

as it can collect electrons from the rarefied ionosphere more efficiently [8]. There are also some works studied on 

the use of electrodynamic tethers for missions around other planets such as Jupiter [9]. It is expected that the Lorenz 

force generated by the motion of conductive tether in geomagnetic field can be used as a thruster, which provides 

the ability to change orbit altitude of a spacecraft in Low Earth Orbit (LEO). Many researchers have focused on the 

application of EDT for debris de-orbit, and the relevant modeling, dynamics analysis, and control problems are 

studied. Atashgah and Gazerpour et al [4] worked on the time-optimal de-orbit control by limited current regulation. 

Xu and Kong [10] established a rigid bar model and a flexible cable model in their work, and it can be seen from the 

comparison of different models that the rigid rod model has theoretical rationality, and the flexible model is more in 

accordance with the deformation characteristics of the EDT under Ampere force. It is worth noting that when 

current starts flowing along tether, the stable equilibrium position in the local vertical no longer exists, and the 

dynamic behaviors of the EDT system exhibit periodic solutions or rather dynamic instability, which requires proper 

control schemes [11]. Zhong and Zhu [12] proposed a controller based on the roll angle feedback to keep libration 

angles bounded through current switching. Kojima and Sugimoto [13] studied the nonlinear libration control issue 

for EDT systems comprised of one main satellite and two subsatellites. Afterwards, two time-delayed feedback 

control methods were applied to deal with the librations of EDT systems in frozen inclined elliptic orbits [14]. The 

foregoing studies demonstrated that electrodynamic force can be regarded as a control force to damp the librations 

of system.  

The successful deployment of tether is a pre-condition for any space tether mission. Although many works have 

been devoted to the deployment dynamics and control issues of tethered systems [15,16,17], challenge remains in 

the design of non-thrusted tether deployment [18]. A common operation mode for an EDT system is to keep the 

tether non-current carrying in deployment process and energize the fully-deployed conductive tether in de-orbit 

process. In this way, the deployment issue of EDT is actually equivalent to the deployment of non-conductive STS, 
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on which significant research efforts have been concentrated in order to control the libration motion with the end 

mass on the tether deployed to a desired position in a fast and stable manner by means of pure tension, or tension-

thruster strategies [19,20,21]. It is well-known that libration motion should be considered and controlled during 

deployment to ensure the success of missions. Although the abovementioned control schemes have demonstrated 

their validity, the possibility of non-propellant consumption and the potential of electrodynamic force for stabilizing 

libration motion in deployment are often ignored. It is noticeable that the attitude motion of the tether will be 

influenced by the excitation of electrodynamic force [22], which makes the deployment more complicated, but 

provides possibilities for the electrodynamic force to be used as a kind of control force. A hybrid control strategy 

based on tether tension and electrodynamic force fully exploits this possibility and shows its superiority in reducing 

the maximum in-plane angle in deployment [23]. Huang and Liu [24] investigated the hybrid control for the 

underactuated deployment issue of EDT systems by using the backstepping method. Wen and Jin et al [25] studied 

the three-dimensional deployment of EDT systems, and developed a feedback controller with the consideration of 

the constraints of tether tension and current using a pair of saturation functions. Luo and Wen et al [26] proposed 

control laws of current switching to dissipate the libration energy during three-dimensional deployment of EDT 

systems. As indicated in the aforementioned studies concerning a hybrid control strategy in EDT deployment, the 

combination of tether tension and electric current can facilitate the libration control during the deployment process 

[25-26]. However, to the best knowledge of the authors, further research on EDT deployment is needed, when model 

uncertainty and the external disturbances acting on the system are taken into consideration, which is the motivation 

of the present paper. 

This paper studies the control issue of EDT deployment via the regulation of tether tension and electric current, 

taking into consideration the external disturbances and the unknown mass parameter that might be encountered in 

EDT missions. In order to improve the anti-interference ability of the system, an adaptive sliding mode control is 

adopted in this paper, which has been proven to be an effective method for coping with model uncertainty. The 

following sections are organized as follows: in Section 2 the dynamic model of the EDT system is introduced; the 

controller design and stability analysis are given in Section 3; numerical case studies in Section 4 illustrate the 

performance of the proposed controller, and conclusions are drawn in Section 5. 

 
2. Mathematical modeling  

The diagram of the EDT system is shown in Fig. 1. In the current work, 1m  represents the mass of the main 

satellite, and 2m  represents the mass of the subsatellite, which is usually equipped with a cathode emitter to realize 

charge exchange with the space plasma environment. 
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Fig. 1. The diagram of the EDT system 

 The coordinate systems e e eOX Y Z  and Cxyz shown in Fig. 1 are ECI (Earth-centered inertia) frame and LVLH 

(Local Vertical Local Horizontal) frame, respectively. The origin of e e eOX Y Z  is located at the mass center of the 

Earth, and the eOX  axis points to the Vernal Equinox; the eOZ  axis aligns with the rotation axis of the Earth. The 

orbital frame LVLH is used to describe the libration motion of the EDT system, in which the origin C  is located at 

the CM of the system, with the Cx  axis along the local vertical pointing towards the Zenith, and the Cy  axis 

aligning along the velocity direction of the CM of the system. 

Assumptions. For the convenience of modeling, some assumptions are made in this work: 1) The simplified 

dumbbell model is adopted, where the end-bodies are regarded as lumped masses and the tether slack configurations 

are not considered. 2) The mass of tether can be omitted in deployment due to that it is always tiny compared to the 

masses of end-bodies. 3) The orbit motion of the EDT system remains unaffected during the deployment process. 

Remark 1. Note that the deployment time needed in tether missions is usually short, it is reasonable to assume 

that the orbit of system during tether deployment remains unchanged with no consideration of perturbations. Take 

the YES-2 mission as an example. It can be seen from the results of the mission that the total deployed length in the 

first deployment stage is 3378m, and the time needed in this stage is only 5580s [27], which is approximately one 

orbit period (Note that the mission was built to operate from a platform called Foton-M3, the orbit altitude of which 

is about 280km). 

Considering the assumptions above, the equations of dynamic model can be written as follows based on 

Lagrangian mechanics [25]:  

 ( )2 2 2 1 2 2 2[ ( ) cos (1 cos ) 3cos cos 1 ]
e

T
l l e

m
β θ ω β ϑ ω θ β− −− + + + + − =&& & &  (1a) 
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where 1 2

1 2
e

m m
m

m m
=

+
 represents the mass parameter of the system. 

  Furthermore, when the system runs in a circular orbit, ω  can be replaced by the orbital angular velocity Ω , 

thus Eq. (1) can be simplified further: 

 ( )2 2 2 2 2 2[ ( ) cos 3cos cos 1 ]
e

T
l l

m
β θ β θ β −− + + Ω + Ω − =&& & &  (2a) 

 ( ) 2
2 2
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β
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+ + Ω − + Ω = 
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 ( )2 2 2
2
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e
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l m l
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&& & &  (2c) 

where 3
e crµΩ = . 

In the current work, we adopt the non-titled dipole model to depict the Earth’s geomagnetic field [28], which can 

be expressed as follows in the orbital frame: 
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where , ,x y zB B B  represent the components of B  with respect to the axes of Cxyz, respectively. 

Moreover, the generalized electrodynamic forces can be evaluated by means of the virtual work principle: 

 ( )21 2

1 2

( )
cos sin sin cos cos

2( ) y x z

I m m
Q l B B B

m mθ β β θ θ β−
 = + − +

 (4a) 

 ( )21 2

1 2

( )
cos sin

2( ) y x

I m m
Q l B B

m mβ θ θ−
= −

+
 (4b) 

 
3. Controller design and stability analysis 

In this section, a sliding model controller is derived to control the deployment process of the EDT system. With 

the addition of robust terms, the control system can show a good performance with regard to the robustness of 

system [29]. To deal with the model uncertainty, an adaptive control law and its modification are addressed, which 

has the ability to change its parameters as the controlled object changes. The proposed adaptive sliding model 

controller in the present work is intended to adapt the mass parameter of the EDT system during deployment, which 

is necessary because this parameter may be unknown, which can be accounted for by that the masses of the end-

bodies cannot always be determined accurately in practical missions due to a variety of reasons, such as fuel 

consumption. 
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3.1 Controller design 

Set the state vector of the system as [ , , , , , ]Tl l θ θ β β=x & & & , and for the convenience of controller design, the 

dynamic model of EDT in Eq. (2) is reshaped as follows: 

 1 1 1( )e em l m f u= + + ∆x&&  (5a) 

 2 1 2 2( ) ( )f g uθ = + + ∆x x&&  (5b) 

 3 2 2 3( ) ( )f g uβ = + + ∆x x&&  (5c) 

with 

 ( )2 2 2 2 2 2
1( ) [ ( ) cos 3cos cos 1 ]f l β θ β θ β= + + Ω + Ω −x & & , 
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m m
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−
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 ( )1 2
2

1 2
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m m m
θ θ−
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+

x . 

where 1u T= − , 2u I=  represent the control inputs; em  is regarded as an unknown parameter, which is needed to be 

estimated; [ ]1 2 3, ,
T= ∆ ∆ ∆∆ represents the total external disturbances acting on the system, which are mainly caused 

by the solar radiation pressure, the aerodynamic torque and the gradient torque [30]. Besides, 1∆  stands for 

disturbance force and 2 3∆ ∆,  are angular accelerations.  

Remark 2. As for the range of orbital altitude which is concerned in this paper, namely, for the LEO, the 

environmental disturbances can be regarded as bounded. Consequently, it is reasonable to set D≤∆ , where D  is a 

positive number and represents the boundary. Besides, though the mass parameter em  is unknown, it is still obvious 

that the parameter has the relationship 0em > , and usually it is easy to obtain the range of this parameter: 

min maxem m m≤ ≤ .  

The control issue in the current work is to deploy the tether to the desired local vertical, which is an equilibrium 

position for the non-conductive space tether system. Although equilibrium positions have no existence for system 

under the action of Ampere force, the vertical position still has important reference value for EDT missions. In this 

regard, the terminal states are defined as [ , , , , , ]Tk k k k k k kl l θ θ β β=x & & & , and except for the tether length, the final values 

of all the other states approach to zero. 

The sliding mode surface is defined as: 
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 1 1 1 1 2

1 1 1k

s e c e x q

q x c e

= + = −
 = −

&

&
 (6) 

where 1 1 1ke x x= −  denotes the tracking error of tether length. 

The tension control law is given in the following form: 

 1 1 1 1 1ˆ ˆ ( ) sgn( )e e su m q m f x k s sη= − − −&  (7) 

where ˆ em  represents the estimated value of the mass parameter, and ˆ em q&  denotes the adaptive compensation; 

1 1sgn( )sη−  reflects the robustness of the control law; sk  and 1η  are the parameters of the controller, and satisfy: 

0sk > , 1 Dη ≥ , respectively. 

Note that the chattering will be obvious when the uncertainty of mass parameter in the model is large, the 

switching function in the controller is replaced with a saturation function to prevent the chattering: 

 1 1 1 1 1ˆ ˆ ( ) ( )e e su m q m f x k s sat sη= − − −&  (8) 

where the saturation function is described as: 

 
1

1 1 1

1

1,

( ) ,    

1,

s

sat s ks s

s

χ
χ
χ

>
= ≤
− < −

 (9) 

where χ  represents the thickness of the boundary layer, and 
1

k
χ

= . 

Similarly, 2u is derived as: 

 2 2 4 2 2 2 2
1

1
( ( ) ( ))

( ) ku f x x c e sat s
g x

η= − + + +& &  (10) 

where 2 2 2 2s e c e= +& , and 2 3 3ke x x= −  denotes the tracking error of the in-plane angle; 2( )sat s  has the same form as 

the saturation function 1( )sat s ; 2 2,c η  are the parameters of the controller.  

 
3.2 Stability analysis 

The stability of the proposed controller can be proved by the Lyapunov function, which is defined as follows: 

 
2 2

1 1

1 1

2 2e eV m s m
γ

= + %  (11) 

where 0γ > , and ˆe e em m m= −%  denotes the estimation error for em . 

Then, take the derivative of 1V : 
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( )
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γ

γ

γ

η
γ

η
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= − +

= + + ∆ − +
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 
= − − + ∆ + − + + 

 

& && % %

&& & %

&& %

&% % & %

&% &

 (12) 

Hereby, the adaptive law ˆ em&  is proposed as the following form: 

 ( )1 1ˆ ( )em s f x qγ= −& &  (13) 

where γ  represents the parameter of the adaptive law. 

Furthermore, substituting the adaptive law into 1V& , one has: 

 2 2
1 1 1 1 1 1 1 0s sV k s s s k sη= − − + ∆ < − ≤&  (14) 

Given the fact that the control input 1u  is tether tension, which is limited physically because of the 

characteristics of the tether, it is necessary to limit the boundary of the adaptive law, which will affect the value of 

the control input according to Eq. (7). Therefore, the adaptive law is modified as follows [29]: 

 

( )

min

max

1 1

ˆ ˆ   00,

ˆ ˆ ˆ0,        0

( ) ,

e e

e e e

if m m and m

m if m m and m

s f x q otherwiseγ

 = <
= = >
 −


&

& &

&

 (15) 

where maxm  and minm  are the parameters of the modified adaptive law. 

Similarly, define 2V  as: 

 
2

2 2

1

2
V s=  (16) 

And the derivative of 2V satisfies: 

 2 2 2 2 2 0V s sη= − ∆ − ≤&  (17) 

Hence, the closed-loop system is asymptotically stable according to La Salle’s invariance principle since 1V&  and 

2V&  are negative semi-definite [31]. 
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1
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&

&
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2
1 4k 2

-f x + c e
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( )( )ˆ
e

& &1 1m = γs f x - q

 

Fig. 2. The block diagram of the adaptive sliding mode control scheme 
 
4. Numerical simulations and discussions  

The numerical simulations and analysis on a representative EDT system are carried out in this section to verify 

the effectiveness and robustness of the proposed control scheme, which is illustrated in Fig. 2. 

 
4.1 Parameters setting 

The physical parameters of the EDT system are selected as: 1 1000kgm = , 2 50kgm = , 500kmh= , 0radpω = , 

and 0radaΩ = . The initial conditions are given as: (0) 0.5ml = , (0) (0) 0radθ β= = , (0) 1.5m sl =& , 

(0) (0) 0rad sθ β= =& & ; and the desired deployment states are: 3000mkl = , 0m skl =& , 0radkθ = , 0rad skθ =& . 

According to [30], the magnitudes of the aforementioned primary disturbances acting on spacecrafts in LEO are 

in the range of 51 10−× . Considering the dynamic model of EDT shown in Eq. (5) is dimensional, the disturbance 

force 1∆  can be set as the maximum of the range, that is, -5
1=1 10 N∆ × . Furthermore, the angular accelerations 

caused by the disturbance torques can be evaluated as: -7 2
2 3=8.4 10 rad s∆ ≈ ∆ × . Besides, due to the difficulty of 

explicitly modelling for external disturbances [20], it is widely adopted to describe disturbances as a set of periodic 

functions. As a result, the disturbances can be expressed as follows: -5
1( )=1 10 sin(200 )Nt t∆ × Ω , 

-7 2
2 3( ) ( )=8.4 10 sin(200 ) rad st t t∆ ≈ ∆ × Ω . Based on the discussions above, the boundary of ∆  can be set as: 

0.01D = , which is larger than the upper value of the disturbances to guarantee a higher ability of anti-disturbance. 

The restricted conditions for the control inputs T  and I  are: 0.1N 1NT≤ ≤ , 2AI ≤ , respectively. The 

parameters of the modified adaptive law are: 0.0081γ = , max 50m = , min 45m = , and the initial value of the adaptive 

law is selected as: ̂ (0) 48.5em = . When selecting parameters for the SMC controllers, there are some guidelines that 
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need to be concerned about. Take the controller 1u  as an example. The parameter of the controller sk  determines the 

convergence rate of the system, and the parameter 1η  represents the velocity of the approach law of sliding surface. 

Note that if the velocity of approaching is too large, then the chattering will increase, which is undesirable in 

practice, because it may result in lower control accuracy and excite high-frequency dynamics of the system. In order 

to improve the convergence rate and weaken chattering, sk  can be chosen larger and 1η  should be smaller under the 

foregoing constraints 0sk > , 1 Dη ≥ . Given these concerns, in the simulations the parameters of the controllers are 

set as follows: as for 1u , one has 1 0.001c = , 0.5sk = , 1 0.01η = , and the thickness of the boundary layer of the 

saturation function is 0.001χ = ; for 2u  , one has 2 25000c = , and the other parameters are the same as for 1u  

accordingly.  

 
4.2 Case studies 

Considering the orbit inclination will affect the motion of the EDT system, three cases under the different 

inclinations are studied in this subsection. Note that the geomagnetic field model adopted in this paper is non-titled 

dipole model, that is, the angle between the Earth’s rotation axis and the Earth’s dipole axis is ignored. In this way, 

when the orbital inclination is close to 90o , such as polar orbits or Sun-synchronous orbits, the generated 

electrodynamic force is weak, which might not be sufficient to be regarded as a control force. With these 

considerations in mind, the inclinations chosen for evaluation are 0, 15o  and 60o , which can respectively represent 

the equatorial plane, low orbital inclination and large orbital inclination to some extent. The simulation time in the 

studied cases is the actual running time of the EDT system in orbit, which is set as 10000st = . The simulation 

results are shown in the following figures.  

 
Fig. 3. Variation curves of the EDT length versus time  
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Fig. 4. Variation curves of the EDT length rate versus time 

Fig. 3 and Fig. 4 depict the time histories of the tether length and its rate in the case of different orbital 

inclinations. In general, the curves of the tether length and its rate in the three cases are basically coincide. As shown 

in Fig. 3, the tether can be deployed from the initial length (0.5m) to the commanded length (3000m), and the 

deployment time required is about 7660s, which is equal to 1.35 orbit times approximately. Moreover, the inset in 

Fig. 3 demonstrates that the curves of the tether length are smoother when the inclinations are lower. Besides, there 

is no overshoot in the variation curves of the tether length, which meets the expectations of deployment missions. As 

seen from Fig. 4, there are no violent fluctuations in the curves of the tether length rate, and the deployment velocity 

is always larger than zero (the magnitude of the maximum velocity is about 1.4m s), which indicates that there is 

no tether winding during deployment, and the safety of the process can be guaranteed. Therefore, it can be 

concluded that the control law is successful in the three cases to achieve a stable deployment.  
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Fig. 5. Variation curves of the in-plane angle versus time 

 
Fig. 6. Variation curves of the in-plane angle rate versus time 

Fig. 5 and Fig. 6 demonstrate the changes of the in-plane angle and its rate during tether deployment. As shown 

in Fig. 5, the in-plane angle in the three cases can eventually converge to zero, which means the EDT system is 

deployed to the desired local vertical. Fig. 6 shows that the maximum in-plane angle rate occurs at the initial stage, 

which is accounted for by the action of Coriolis force. The convergence of the in-plane motion takes about 

8860s(nearly 1.56 orbital periods), which is a little bit longer than the time needed for the tether length to reach the 

desired state. This illustrates that the in-plane motion goes on after the tether length is already fully deployed, and 

for this stage the control mainly depends on adjusting current along the tether within a quite small range, which can 

be found from the curves of the control inputs shown in the figures below. Besides, it can be seen from the 
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comparison of the curves that the in-plane angle in the case 60oi =  deviates from the local vertical larger during the 

deployment, which is because the Ampere force will decrease as the orbital inclination increases. For the same 

reason, the overshoot of the curve in the case 60oi =  is also larger than that in the other two cases. 

 
Fig. 7. Variation curves of the out-plane angle versus time 

 
Fig. 8. Variation curves of the out-plane angle rate versus time 

Simulation results shown in Fig. 7 and Fig. 8 indicate that the out-plane motion in the three cases is quite tiny 

during the EDT development. Here, the simulation time is specially extended to 20000s so as to demonstrate the 

long-term dynamic responses of the out-plane angle well. Particularly, when the EDT system is running in the 

equatorial plane, the Ampere force will not affect the out-plane motion, which can be seen from the dynamic model 
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of the system. As the orbital inclination increases, the component of Ampere force on the out-plane motion will 

strengthen, which results in the enlargement of the amplitude of the out-plane motion. 

 
Fig. 9. Variation curves of the tether tension versus time 

 
Fig. 10. Variation curves of current along the EDT versus time 

Fig. 9 and Fig. 10 depict the time histories of the control inputs in the three cases. Tether tension at the initial 

stage is restricted to the permissible minimum 0.01N, because if tension is smaller or even negative, the tether may 

not be deployed successfully. It is worth mentioning that, although there is also an upper limit for the tension 

(1N given in the cases), such a maximum is never actually reached under the proposed control strategy. When the 

tether is fully deployed, the curves of the tether tension slightly fluctuate due to the effect of the external 

disturbances. On the other hand, limits for the current are symmetrical with respect to zero, it is because that the 
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current direction may be regulated via plasma contactors installed on the end-bodies [25]. Similarly, the curves of the 

current also fluctuate after tether deployment, and obviously, the amplitude of the current fluctuation in the case of 

60oi =  is larger when dealing with the disturbances. 

 
Fig. 11. The sliding mode surfaces versus time 

 
Fig. 12. The estimations of the mass parameter of the system  

The curves of the sliding mode surfaces are shown in Fig. 11.  As shown in the figure, the sliding surfaces 1s  and 

2s  in the cases can converge to zero. Fig. 12 shows the estimation values of the unknown mass parameter in the 

three cases. The real value of em  in the cases is equal to 47.619kg. As shown in Fig. 12, the estimations ˆ em  

calculated by the adaptive law start from the given initial value, and then stabilize at 47.639kg(the red line), 



 

Page 16 of 26 

47.628kg(the blue line), and 47.612kg(the black line), respectively. All the estimated results are close to the real 

value. 

 
4.3 The influence of disturbances and uncertainty 

In order to verify the anti-disturbance ability of the proposed hybrid control strategy and the influence of the 

model uncertainty, more cases are discussed in this subsection, which may illustrate the influence of the initial 

perturbations, the external disturbances, and the uncertainty of mass parameter in the model. 

 
4.3.1 The influence of the initial perturbations 

Considering there may be some perturbations at the initial moment of tether deployment, which may cause 

deviations in the ejection direction, the comparison below focuses on the impact of the deviations of the initial in-

plane angle. When making the comparison for the initial in-plane angle, the other parameters are the same as the 

previous parameter settings. And the orbital inclination is chosen as 15oi = . The blue lines in the following 

simulations are chosen as the baselines, which represent variation curves in the case of  (0) 0radθ = , and the red and 

black lines depict the cases of  (0) 0.1radθ =  and (0) -0.1radθ = , respectively.  

Fig. 13-15 demonstrate the states of the system in the three cases. The results suggest that although the deviations 

of the in-plane angle will affect the deployment process, the system can reach the desired local vertical, which 

indicates that the proposed control strategy has the ability to overcome the influence of the initial perturbations. The 

corresponding control inputs are shown in Fig. 16 and Fig. 17. 

 
Fig. 13. Variation curves of the tether length versus time 
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Fig. 14. Variation curves of the in-plane angle versus time 

 
Fig. 15. Variation curves of the out-plane angle versus time 
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Fig. 16. Variation curves of the tether tension versus time 

 
Fig. 17. Variation curves of the current along the tether versus time 

4.3.2 The influence of the external disturbances 

Note that the magnitude of the external disturbance ∆  is too small to verify the effectiveness of the proposed 

controller, the amplitude of the disturbance in the following simulations is enlarged, which can depict more severe 

influence. The blue lines in the figures represent the baseline case; the red lines and black lines represent the cases 

under the enlarged disturbance by 5 times and 10 times, respectively. 

 Fig. 18-20 show the states of the system in the three cases. As shown in the figures, the EDT system can bear 

more severe influence than the actual possible disturbances during deployment, which indicates that the proposed 

control strategy has a strong ability of anti-disturbance. The corresponding control inputs are shown in Fig. 21 and 
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Fig. 22. It is worth noting that the curves of the tether tension and current slightly fluctuate after the tether is fully 

deployed due to the influence of the disturbances. 

 
Fig. 18. Variation curves of the tether length versus time 

 
Fig. 19. Variation curves of the in-plane angle versus time 
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Fig. 20. Variation curves of the out-plane angle versus time 

 
Fig. 21. Variation curves of the tether tension versus time 
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Fig. 22. Variation curves of the current along the tether versus time 

4.3.3 The influence of the mass uncertainty 

Due to the reasons stated in Sec. 3, the mass parameter of the system em  may be unknown in the practical 

missions. The influence of the mass uncertainty can be investigated by varying the value of 2m . It should be noted 

that owing to the given upper and lower bounds of em , the value of 2m  is allowed to vary from 2 48kgm =  to 

2 52kgm = . For the comparison purpose, the case of 2 50kgm =  in the following simulations is used as a benchmark. 

In order to verify the effectiveness of the proposed controller, the other two cases are performed under the condition 

of 2 48kgm =  and 2 52kgm =  respectively, which stand for the extreme cases within the boundary. The other 

parameters of the system and the disturbances are kept the same as shown in the part of parameter settings. 

Fig. 23-25 depict the time histories of the system states. It can be seen that the proposed control strategy is 

successful in dealing with the uncertainty of the mass parameter in the three cases and achieving the fast and stable 

deployment in 1.35 orbit periods roughly as discussed in the previous section. Thus, it can be concluded that the 

uncertainty caused by the unknown mass parameter has no significant effect on the performance of tether 

deployment in the proposed control law, which reveals the effectiveness of the deployment controller. Besides, it is 

worth noting that the curves of the tether tension separate from each other and stabilize at different values after the 

tether is fully deployed due to the difference of the mass parameter in the three cases, as shown in Fig. 26.  
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Fig. 23. Variation curves of the tether length versus time 

 
Fig. 24. Variation curves of the in-plane angle versus time 
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Fig. 25. Variation curves of the out-plane angle versus time 

 
Fig. 26. Variation curves of the tether tension versus time 
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Fig. 27. Variation curves of the current along the tether versus time 

5. Conclusions  

The present work developed a hybrid controller for the deployment of EDT system by regulating tether tension 

and electric current simultaneously. In order to address the challenges of the possible disturbances and the 

uncertainty caused by the unknown mass parameter, the sliding mode control combined with adaptive law is adopted, 

and the asymptotically stability of the system is proved by the Lyapunov theory. The simulation results show that the 

EDT system is deployed to the local vertical successfully within 1.35 orbit times roughly without tether winding in 

the cases of different orbital inclinations, and the proposed adaptive law performs well in estimating the unknown 

mass parameter of the system. Furthermore, the anti-disturbance ability of the controller is demonstrated by 

evaluating the influence of the initial ejection perturbations, the external disturbances in different amplitudes and the 

mass uncertainty. In future studies, nonlinear sliding mode control method, combined with adaptive approach, may 

provide further insight into the hybrid regulation of tether tension and current for EDT deployment. 
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Highlights 

• A hybrid deployment strategy for the electro-dynamic tether is investigated. 
• The tether is deployed to the desired local vertical via limited tension and current 

regulation. 
• The deployment controller has a strong ability of anti-disturbance. 
• The unknown mass parameter of the system is well-estimated using the adaptive 

law. 


