Lecture 9: Solar Polarimeters

Outline

Polarimeters

- Output Polarimeters
- Liquid Crystal Polarimeters
- ZIMPOL
- Oncluding Remarks

nristoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Temporal and Spatial Modulation

General Polarimeters

- polarimeters: optical elements (e.g. retarders, polarizers) that change polarization state of incoming light in controlled way
- detectors always measure only intensities
- intensity measurements combined to retrieve polarization state of incoming light
- polarimeters vary by polarization modulation scheme
- polarimeter should also include polarization calibration optics

Polarizing Beam-Splitter Polarimeter

- simple linear polarimeter: polarizing beam-splitter producing 2 beams corresponding to 2 orthogonal linear polarization states
- full linear polarization information from rotating assembly
- *spatial modulation*: simultaneous measurements of two (or more) Stokes parameters

Rotating Waveplate Polarimeter

istoph U. Keller, Utrecht University, C.U.Keller@uu.nl

- rotating retarder, fixed linear polarizer
- measured intensity as function of retardance δ , position angle θ

$$I' = \frac{1}{2} \left(I + \frac{Q}{2} \left((1 + \cos \delta) + (1 - \cos \delta) \cos 4\theta \right) + \frac{U}{2} \left(1 - \cos \delta \right) \sin 4\theta - V \sin \delta \sin 2\theta \right)$$

- only terms in θ lead to modulated signal
- equal modulation amplitudes in Q, U, and V for δ =127°
- *temporal modulation*: sequential measurements of *I*± one or more Stokes parameters

Lecture 9: Solar Polarimeters

Lecture 9: Solar Polar

Comparison of Temporal and Spatial Modulation Schemes

Modulation	Advantages	Disadvantages
temporal	negligible effects of flat field and optical aber- rations	influence of seeing if modulation is slow
	potentially high polari- metric sensitivity	limited read-out rate of array detectors
spatial	off-the-shelf array de- tectors	requires up to four times larger sensor
	high photon collection efficiency	influence of flat field
	allows post-facto re- construction	influence of differential aberrations

schemes rather complementary \Rightarrow modern, sensitive polarimeters use both to combine advantages and minimize disadvantages

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Lecture 9: Solar Polarimeters

Double-Ratio Technique

- combination of spatial and temporal modulation
- data reduction minimizes effects of many artifacts
- rotatable quarter-wave plate, polarizing beam-splitter
- consider case of circularly polarized light
- quarter-wave plate switches between +45° or -45° to polarizing beam-splitter
- both beams recorded simultaneously
- four measurements are combined to obtain estimate of Stokes V/I ratio largely free of effects from seeing and gain variations between different detector areas
- excellent if polarization signal is small
- frequently used in stellar polarimetry
- can be applied to any polarized Stokes parameter
- works very well for solar applications where the spectrum in the first and the second exposures are different

Rotating Waveplate Polarimeters

Fundamentals

istoph U. Keller, Utrecht University, C.U.Keller@uu.nl

ecture 9: Solar Polarimeters

Double-Ratio Technique (continued)

• measured intensities in two beams in first exposure

$$S_1^{\prime} = g_l \alpha_1 (I_1 + V_1), \ S_1^{\prime} = g_r \alpha_1 (I_1 - V_1)$$

- subscript 1 indicates first exposure
- subscripts *I*, *r* indicate left and right beams of polarizing beam-splitter
- S: measured signal
- g: gain in particular beam
- $\alpha:$ average transmission of atmosphere and instrument for a given exposure
- second exposure

$$S_2' = g_1 \alpha_2 (I_2 - V_2), \ S_2' = g_r \alpha_2 (I_2 + V_2)$$

- incoming *I* and *V* in second exposure may be completely different from first exposure
- also includes beam-wobble induced by rotation of wave plate
 istoph U. Keller, Utrecht University, C.U.Keller@uu.nl
 Lecture 9: Solar Polarimeters

Double-Ratio Technique (continued)

 combination of 4 measured intensities removes effect of transmission changes and differential gain variations of different detector areas

$$\frac{1}{4} \left(\frac{S_1'}{S_2'} \frac{S_2'}{S_1'} - 1 \right) = \frac{1}{2} \frac{I_2 V_1 + I_1 V_2}{I_1 I_2 - I_2 V_1 - I_1 V_2 + V_1 V_2}$$

• if $V \ll I$

 $\frac{1}{2}\left(\frac{V_1}{I_1}+\frac{V_2}{I_2}\right)$

- obtain average V/I signal of two exposures
- no spurious polarization signals are introduced

Christoph U. Keller, Utrecht University, C.U.Keller@uu.r

Lecture 9: Solar Polarimeters

<section-header>

Liquid Crystal Polarimeters

Introduction

- many systems in operation
- variety of liquid crystyal types and arrangements
- often combinations of variable liquid crystal retarders and fixed retarders

stoph U. Keller, Utrecht University, C.U.Keller@uu.nl

ecture 9: Solar Polarimeter

Introduction

- SOLIS = Synoptic Optical Long-term Investigations of the Sun
- 3 instruments: Vector SpectroMagnetograph, Full-Disk Patrol, and Integrated Sunlight Spectrometersun-as-a-star spectrometer) attached to single equatorial mount
- located on top of old Kitt Peak Vacuum Telescope
- solis.nso.edu
- VSM operates in four different observing modes at three different wavelengths:
 - photospheric full-disk longitudinal magnetograms in Fel 630.15 and 630.25 nm
 - Photospheric full-disk vector-magnetograms in Fel 630.15 and Fel 630.25 nm
 - Ochromospheric full-disk magnetograms in Call 854.2 nm
 - full-disk Hel 1083.0 nm line characteristics

Sun-as-a-Star Magnetic Field

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Lecture 9: Solar Polarimeters

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

More Vector-Polarimetry

Parameter

Scan rate

Specifications Specification Effective pixel size 1 arcsec by 1 arcsec (1.125 by 1.125 arcsec initially) Angular coverage 2048 arcsec by 2048 arcsec 0.5 arcsec rms after data reduction **Geometric accuracy** 0.2 to 5.0 seconds/arcsec Better than 1 second Timing accuracy **Time stamping** Better than 1 ms Spectral resolution 238,000 (at 630 nm) Wavelengths 630 nm, 854 nm, 1083 nm • Fel 630.15 and Fel 630.25 nm: I,V,Q,U Polarimetry · Call 854 nm: I,V Hel 1083.0 nm: I 0.0002 at 0.5 seconds/arcsec scanning rate Polarimetric sensitivity Polarimetric accuracy Better than 0.001

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Tool		Chal		
l eci	inical	Cnai	ieng	es

	Condition
Compact instrument no longer than 2.5 m	Folded f/6.6 beam
Good and stable spatial resolution	Helium-filled, active M2
High guiding accuracy of better than 0.5 arcsec rms	Guider in slit plane, active secondary mirror
Low instrumental polarization of less than 1•10-3	Axially symmetric design
Fixed image size, low distortion from 630 to 1090 nm	Quasi RC with correctors
Stable high spectral resolution of 200,000	Large, active grating
Highest possible throughput	Silver, multilayer coatings, CMOS hybrid cameras
Energy densities of up to 0.2 MW/m ²	Copper-silicon carbide plate
High data rate of up to 320 Mbyte/s	DSP array, Storage Area Network

- 575-mm f/1.4 ULE primary mirror
- Single crystal silicon secondary
 - 40 Hz tip/tilt closed-loop bandwidth piezo platform
 - Slow closed-loop focus control
 - Cooled by helium flow

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Lecture 9: Solar Polarimeters

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

 Entrance window provides environmental protection

birefringence

Folded Littrow Spectrograph

Littrow lens

- Air-spaced doublet
- Athermal design
- Moves to adjust for different wavelengths
- Dual Offner reimaging optics

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Lecture 9: Solar Polarimeters

Grating

Almost no instrumental polarization

Rotates for different wavelengths Active adjustment in 2 axes to compensate for flexure

79 lines/mm on 204 mm by 408 mm fused silica blank

CMOS Hybrid Cameras

- Interim replacement for cancelled PixelVision & SITe CCD cameras
- Made by Rockwell Scientific
- 1024 by 1024 18 μm pixels
- 92 frames/s at 1024 by 256
- > 2,000,000 e- full well depth
- Silicon on CMOS multiplexer
- Quantum efficiency 85% at 630 and 854
 nm, 5% at 1083 nm

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Lecture 9: Solar Polarimeters

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Polarization Modulation

- Ferroelectric liquid crystal (FLC) variable retarders (all λ/2 at 630 nm)
- Fixed $\lambda/4$ (at 630 nm) and $\lambda/6$ (at 854 nm) polymer retarders
- All true zero-order retarders to cope with fast f/6.6 beam
- Full vector modulation similar to Gandorfer and Rabin schemes
- Exact position angles optimized based on measured FLC properties
- After modulation, both polarization states pass the same low-polarization optics
 Solar-B spectropolarimeter and Diffraction-Limited Spectro-Polarimeter (DLSP) at
- Dunn Solar Telescope are based on VSM concept

Polarization Analysis

Separation of Polarization Modulation and Polarizer

- FLC and retarders located behind spectrograph entrance slit
- polarizing beamsplitters located in front of cameras
- spectrograph and associated optics built to minimize instrumental polarization between modulators and polarizing beam splitters
- advantages of VSM approach: no moving parts for polarization analysis, switching of polarization states can occur rapidly, and both polarization states are detected simultaneously after having passed through the same optics

Instrumental Polarization

- only entrance window, primary and secondary mirrors not calibrated
- all other optical elements after polarization calibration optics
- still try to minimize polarization introduced because coupling of instrumental polarization and non-linearities camera read-out electronics are difficult to calibrate
- static birefringence of window due to remaining stress from the annealing process, measured at less than 2 nm
- telescope design is axially symmetric and therefore 'polarization free', but symmetry only valid optical axis
- simulation at 0.25° (solar limb) shows I to Q cross talk of 4 · 10⁻⁵ and a V to Q cross talk of 8 · 10⁻⁵

Zurich Imaging Polarimeters (ZIMPOL)

Zurich Imaging Polarimeters I, II

- Developed at ETH Zurich, Switzerland starting in the late 1980's by Povel, Egger, Steiner, Aebersold², Keller, Bernasconi, Gandorfer, Stenflo et al.
- Works with Piezo-Elastic Modulators (PEM) at 20-100kHz
- Synchronous demodulation with specially masked CCDs
- Up to 10 frames per second and up to 4 cameras simultaneously
- No effects due to seeing, flat-field, optical aberrations
- Capable of detecting polarization below the 1•10⁻⁵
 level
- Works well with adaptive optics and image reconstruction techniques

CCD Array as Fast Demodulator

- ZIMPOL I polarization modulator consists of 2 PEMS and a polarizer (single beam)
- modulation according to

istoph U. Keller, Utrecht University, C.U.Keller@uu.nl

 $I'(t) = \frac{1}{2} \left(I + Q\sqrt{2}J_2(A)\cos(2\Omega_1 t) + U\sqrt{2}J_2(A)\cos(2\Omega_2 t) + V\sqrt{2}J_1(A)\sin(\Omega_1 t) \right)$

- frequencies of PEMs given by $\Omega_1,\,\Omega_2$
- amplitudes of both PEMs, *A*, chosen such that $J_0(A) = 0$
- for vector polarimetry: 3 synchronous demodulators, each sensitive to one of 2Ω₁, 2Ω₂, Ω₁
- development of demodulating CCD by Povel and coworkers about 20 years ago
- fractional polarization free of flat-field effects
- no seeing effects due to high modulation frequency

Lecture 9: Solar Polarimeter

34

Scattering Polarization

Polarimetry and Adaptive Optics

Phase-diverse speckle imaging uses in-focus and out-of-focus image sequences to completely remove the aberrations due to the Earth's atmosphere and the telescope over a field of view that is much larger than the isoplanatic patch.

With R.Paxman, J.Seldin, D.Carrara, T. Rimmele

Scattering Polarization

ZIMPOL II

- ZIMPOL I requires three separate CCD cameras for full Stokes polarimetry
- ZIMPOL I mask reduces efficiency by a factor of 2
- Beamsplitting for 3 cameras reduces efficiency by an additional factor of 3
- ZIMPOL II: 3 out of 4 rows masked for simultaneous measurement of all Stokes parameters

CMOS Hybrid Concept

- Well-known concept used for infrared arrays
- CMOS readout 'multiplexer'
- IR-sensitive material (e.g. HgCdTe, InSb) connected with indium bumps
- Silicon for visible spectrum (HyViSI from Rockwell Scientific, see talk by Jack Harvey)
- Combines versatility and speed of CMOS sensors with high QE and fill-factor of backside-illuminated, deep-depletion CCDs
- CMOS hybrids work from 200 nm to 20,000 nm

ZIMPOL II Issues

- UV ZIMPOL II with e2v open-electrode CCD works very well down to 300 nm
- Microlenses to avoid loss on mask never worked well for various reasons
- Quantum efficiency limited by front-side illuminated CCD
- Required mask placement accuracy cannot be achieved with commercial backside processing
- No useful extension to infrared detector technology

Lecture 9: Solar Polarimete

- 8 capacitors per pixel; transistors to demodulate 4 states while previous images are read out
- 18 µm pixel has 6 mio. electron capacity
- Multiplexers with up to 27 transistors per pixel have been built

istoph U. Keller, Utrecht University, C.U.Keller@uu.nl