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Preface

This book grew out of a month-long workshop on Magnetic Reconnection Theory
held in 2004 at the Isaac Newton Institute, Cambridge, UK, organized by E. R.
Priest, T. G. Forbes, and J. Birn. The focus of this workshop was on the most recent
advances in understanding reconnection, particularly its three-dimensional aspects
and the physics of collisionless reconnection. These are the two areas where the most
rapid development beyond the classical theory of reconnection has taken place in
recent years. In addition, it was found desirable to include new observational aspects
from the two areas that have initiated the concept of reconnection as well as provided
new, unprecedented details in remote and in situ observations, the Sun and the
Earth’s magnetosphere.

This book highlights recent progress and thus it is not a comprehensive overview.
Rather it is complementary to recent reviews by Priest and Forbes (2000) and
Biskamp (2000), which cover more of the traditional approaches to reconnection. Due
to the focus on new results, rather than the classical concepts, about one-third of the
citations in this book are from the new millenium, years 2001 to 2005. This makes it
plausible that the latest developments have not led to a settled, unified, well-accepted
picture, and that some topics are still controversial, even between different authors
contributing to this book. We did not try to hide those controversies. Also, we did
not try to consolidate various discussions of related topics into single sections or
subsections. We found that, at this stage of the research development, different views
of the same topic by different authors might actually be helpful to the reader to gain
deeper insights.
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1

Introduction

The Sun and the Earth’s magnetosphere (hereafter simply called the magnetosphere)
play particular roles in the history of reconnection, frequently also referred to as
magnetic merging, as well as in the most recent advances in understanding the spatial
structure and the physics of reconnection sites. The concept of reconnection (although
not the term) was first suggested by Giovanelli (1946) as a mechanism for particle
acceleration in solar flares. This proposed mechanism was extremely modern, as it
considered not only electric fields along magnetic neutral lines (as in standard two-
dimensional (2D) models; Section 2.1) but also electric fields with a local component
along the magnetic field, which is the basic concept of general three-dimensional (3D)
magnetic reconnection (Sections 2.2 and 2.3).

Investigations of reconnection in the magnetosphere have stimulated the devel-
opment of the concept of 3D reconnection in the absence of magnetic nulls (Hesse
and Schindler, 1988; Schindler et al., 1988) and considerations of the interaction
between a dipole (magnetosphere) and the surrounding (interplanetary) magnetic
field have stimulated investigations of the topology of the magnetic field and topo-
logical changes associated with reconnection (Dungey, 1961, 1963). They have also
motivated the first investigations into the 3D magnetic structure of magnetic null
points (Greene, 1988; Lau and Finn, 1990). More recently, the complex structures of
the coronal magnetic field, inferred from astonishing X-ray and EUV pictures, have
motivated the further detailed exploration of the 3D topology of magnetic fields and
its role in reconnection (Chapters 2 and 5).

Magnetospheric spacecraft observations on the other hand provide the most
detailed in-situ information on particle populations and the structure of fields in
the vicinity of potential and actual reconnection sites and have thereby motivated
(and vice versa, are being motivated by) the most detailed computer simulations of
reconnection in the collisionless regime (Chapters 3 and 4).

To understand the physical role that magnetic reconnection plays in solar and
magnetospheric activity it seems essential to investigate not only the reconnection
process itself but also the conditions that prevail before reconnection starts. In typical
scenarios, the preonset phase starts with a slow evolution in response to external
forces. During that phase, energy is supplied to the system, largely in the form of
magnetic energy. After the onset of reconnection the system shows a fast evolution,
which may involve a change of magnetic topology, associated with a conversion of
magnetic to kinetic energy. This scheme applies to most models of solar eruptions
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2 Introduction

such as flares (Priest, 1981; Tandberg-Hanssen and Emslie, 1988), erupting promi-
nences (Tandberg-Hanssen, 1994) or coronal mass ejections (Webb, 2000), and of
magnetospheric substorms (McPherron et al., 1973; Baker et al., 1985).

A basic task is to understand what conditions the preonset evolution has to satisfy
to initiate reconnection. Magnetospheric observations have provided strong evidence
for the formation of a thin current sheet or several sheets, which seem to play
a crucial role in magnetotail dynamics (Kaufmann, 1987; McPherron et al., 1987;
Baker and McPherron, 1990; Mitchell et al., 1990; Sergeev et al., 1990; Schindler
and Birn, 1993). Thin current sheets are also believed to be important elements of
solar activity (Priest, 1981; Parker, 1994). Current sheets in the solar context usually
denote infinitely thin sheets, or sheets whose thickness is negligibly small compared
with the structures considered, equivalent to tangential discontinuities in the frame-
work of magnetohydrodynamics (MHD). In the magnetospheric context, thin current
sheets are observed to have a finite thickness; this thickness is typically comparable to
or even smaller than typical ion gyroradii or ion inertia lengths (Chapters 3 and 4);
and they may also have a small but finite magnetic field component across the sheet.
These small deviations actually play an important role when the stability of thin
current sheets is considered (Sections 3.3 and 4.3).

In the simplest scenario, a quasi-steady evolution, driven by external forces, leads
to the formation of a thin current sheet. If the current sheet has become sufficiently
pronounced or if it experiences loss of equilibrium (Birn and Schindler, 2002), recon-
nection may start. However, the formation of a thin current sheet (or of multiple
current sheets) may also be preceded, or followed, by a dynamic phase that does not
involve reconnection, prior to the onset of reconnection.

In the solar atmosphere a thin current sheet might form following the sudden
rise of a magnetic island or flux rope (Forbes, 2000) or as a consequence of a kink
instability of a flux rope equilibrium (Kliem et al., 2004). In the magnetotail the
MHD ballooning mode, driven by pressure gradients in the direction of strong field
line curvature in the center of the plasma sheet, has been considered as a possible
candidate for substorm initiation (Roux et al., 1991), although it is not clear yet how
it might lead to reconnection.

Alternatively, current intensification might initiate a current-driven microinsta-
bility that by nonlinear coupling could lead to reconnection. Another possibility
is a scenario in which lower-hybrid drift instability in the boundary regions of a
current sheet might change the particle and current distribution within the sheet
and thereby initiate, or accelerate, reconnection. Such scenarios are discussed in
Section 3.5.

3D reconnection, collisionless reconnection, and reconnection at the Sun and in
the magnetosphere are the particular focuses of this book. There are still many open
problems and even controversies concerning the occurrence, operation, evolution, and
consequences of reconnection. They include fundamental questions such as:

What is reconnection? What is the role of magnetic topology; how does it affect the
physics of reconnection? The extension of 2D to 3D models is not straightforward,
it may involve the full complexity of magnetic field structure (Chapter 2). On the
particle level, collisionless reconnection involves not only ion scales but even electron
scales (Chapter 3).
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How and where is reconnection initiated? What is the dominant mechanism:
increased current density or low magnetic field strength? What are the differences
between reconnection in low-beta and high-beta plasmas? What is the role of flow
fields?

What determines the rate of reconnection? (One, apparently simple, question has
no full answer yet: How is the reconnection rate defined and measured in generalized
configurations, locally, remotely, and globally?) Is it dominated by an external driving
mechanism, by the local dissipation mechanism, or by the dynamics in the vicinity of
the reconnection site? Recent investigations of reconnection through widely different
simulation codes (Section 3.1) have provided strong evidence that, in a collision-
less medium, Hall electric fields are essential in establishing the reconnection rate,
regardless of the dissipation mechanism. However, this result need not be valid in all
scenarios.

A plausible view of the role of external driving is that it leads to a build-up of the
current density until a current-driven dissipation mechanism sets in which leads to
an electric field that matches the driving electric field. But this picture is convincing
only in simplified 2D models where the plasma cannot escape to the third dimension.
Furthermore, it appears that the plasma response to external driving depends not
only on the boundary conditions but also on the background or initial state (stable
vs. unstable; small vs. large; 1D vs. 2D, 3D).

What is the role of reconnection in particle acceleration at thermal and
suprathermal energies? Particle orbit studies in reconnecting fields (Sections 3.6,
4.4, 5.6) indicate that it is necessary to consider the 3D time-dependent structure
of the electric and magnetic fields to fully identify acceleration mechanisms and to
distinguish local acceleration near the reconnection site from quasi-adiabatic effects
in the dynamically changing fields.

In the following two sections we give a brief overview of the solar and magneto-
spheric contexts of reconnection. These provide a background for fundamental inves-
tigations of the 3D aspects and the physics of collisionless reconnection discussed in
Chapters 2 and 3. In the subsequent Chapters 4 and 5 we return to the applications
of reconnection to the magnetospheric and solar environment.

1.1 The Sun
E. R. Priest

Magnetic reconnection is a fundamental process in the Sun, both in the interior
(where it is essential in dynamo generation of magnetic fields) and in the atmosphere
(where it lies at the core of a solar flare and is probably responsible for heating the
corona). Here we give a brief background and overview of its role in the atmosphere
as a prelude to the more detailed sections that follow.

The solar atmosphere, as classically understood, consists of three parts, namely,
the photosphere, chromosphere, and corona. The photosphere is the thin surface layer
of the Sun having a density and temperature of 1023 m−3 and 6000 K, respectively,
and from which most of the visible light is radiated into space. It represents the top
of the turbulent convection zone which occupies the outer 30% of the solar interior.
The photosphere is covered with small convection cells, called granules, typically
1 Mm across by comparison with the solar radius of 700 Mm, and having lifetimes of
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5 min. In addition, there are large-scale supergranules which are 15 Mm in diameter
and last for 1 or 2 days.

In two bands, north and south of the equator, dark regions called sunspots come
and go and exhibit an 11-year cycle in their number. Sunspots have very strong
magnetic fields (a few thousand gauss) and occur either singly or in groups. The
region of enhanced magnetic field around a sunspot group is known as an active
region. Outside active regions in the so-called quiet Sun, the photospheric magnetic
field is highly fragmentary and located mainly around the boundaries and at the
junctions of supergranules. This magnetic field is typically born as a small bipolar
ephemeral region, the poles of which fragment and migrate rapidly to the super-
granule boundaries. The lifetime of this magnetic flux is only typically 15 hours and
the magnetic field emanating from it into the corona is known as the magnetic carpet
(Schrijver et al., 1998; Hagenaar et al., 2003).

The chromosphere is warmer than the photosphere (about 10 000 K) and rarer
(about 1017 m−3) and above it lies the much hotter corona, with a temperature of
about a million degrees and a density of 1014 m−3. In classical models the corona
was thought to be separated from the chromosphere by a narrow transition region.
However, it is now known that the chromosphere, transition region, and corona repre-
sent the plasma that happens to be at typically 104 K, 105 K and 106 K, respectively,
that is moving or arching along magnetic field lines and is highly dynamic and time-
dependent, either heating up or cooling down.

During a solar eclipse (Fig. 1.1a) the corona can be seen for a few minutes as a
beautiful pearly white glow, about as bright as the full Moon. All its structure is
created by the magnetic field. It reveals large-scale bright closed regions, known as
helmet streamers, and also large magnetically open regions along which the fast solar
wind is escaping, known as coronal holes.

With soft X-ray telescopes on space satellites the corona can be viewed directly
(Fig. 1.1b), where the magnetically closed and open regions show up as bright coronal
loops and dark coronal holes, respectively. A third component of the corona is also
visible, however, namely several hundred tiny bright spots known as X-ray bright
points.

Large magnetic flux tubes containing thin vertical sheets called prominences or
filaments are also present up at coronal levels but they are very much cooler and
denser than the corona, having temperatures of only 7000 K. These prominences
lie above large-scale polarity inversion lines in the component of the photospheric
magnetic field that is normal to the solar surface. When existing inside or on the
edge of an active region they tend to be small, but outside active regions they can
be much larger. The main importance of prominences is that they represent regions
of the solar atmosphere where the magnetic field is highly sheared and twisted, so
that large quantities of magnetic energy are stored in excess of potential. For a given
normal magnetic field distribution at the solar surface, the coronal magnetic field
that has the minimum magnetic energy is the unique potential field based on that
distribution of surface normal field.

1.1.1 Solar flares
Solar flares and coronal mass ejections are thought to occur when stored

magnetic energy in excess of the potential field energy becomes so large that an
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(a)

(b)

Fig. 1.1. The solar corona viewed (a) during a solar eclipse (courtesy High Altitude
Observatory) and (b) by the Yohkoh satellite in soft X-rays (courtesy Yohkoh
team).

eruptive instability or loss of equilibrium takes place. When a prominence and its
overlying coronal arcade erupts, it gives rise to a coronal mass ejection (CME)
(Fig. 1.2). Prominences may erupt from either outside or inside active regions. When
they do so from within an active region, where the magnetic field and resulting
magnetic force and electric field are very much larger than outside, a large two-ribbon
solar flare occurs, in which two separating chromospheric ribbons are seen at the
footpoints of a rising arcade of hot coronal loops.

Several ideas have been proposed to explain the eruption (Priest and Forbes,
2000). For example, one model (Priest and Forbes, 1990; Forbes and Priest, 1995)
suggests that before the eruption there is a coronal arcade containing a largely
horizontal magnetic flux tube supporting a prominence. At the initiation of eruption
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Fig. 1.2. A composite of three images of a large CME from the Extreme-ultraviolet
Imaging Telescope (EIT) (the Sun shown by the small circle in the center) and
the Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2/C3
instruments (courtesy Solar and Heliospheric Observatory (SOHO), which is a
project of international cooperation between ESA and NASA).

the magnetic configuration reaches a point of magnetic nonequilibrium or catastrophe,
such that the configuration is no longer in equilibrium and the imbalance in forces
drives an eruption (Fig. 1.3). The eruption is thought to drive reconnection below the
rising flux tube. Priest and Forbes (1990) developed a 21

2 -dimensional model of this
process (neglecting variations in one spatial direction but including the field compo-
nents in that dimension), whereas Amari et al. (2000) conducted a three-dimensional
numerical experiment with similar quantitative features. A related magnetic breakout
model was proposed by Antiochos et al. (1999).

Regardless of the proposed cause of the eruption, the nature of the reconnection
process is similar in most models (Fig. 1.4). The energy released by the reconnection
heats an arcade of very hot loops, which are filled by evaporation with hot plasma
from the chromosphere and at the feet of which are located the bright chromospheric
ribbons. As reconnection continues, the reconnection location rises and new hot loops
are powered at a higher altitude; meanwhile, the underlying loops cool by radiation
and conduction and their plasma drains back down to the solar surface.

One of the key effects of reconnection is to accelerate particles extremely rapidly
(within a few seconds) to extremely high energies (Sections 5.6 and 5.7). A variety
of mechanisms has been proposed for the way in which such particles may be accel-
erated by reconnection (Section 5.6), including: DC acceleration by the reconnection
electric field; stochastic acceleration by the turbulence associated with reconnection;
shock acceleration by either the slow-mode shocks associated with fast reconnection
or the fast-mode shock that slows down the reconnection jet flowing down from the
reconnection site towards the underlying closed coronal arcade; and finally by beta-
tron and Fermi acceleration in the reconnection field lines below the reconnection
point as they rapidly close down. Furthermore, recent observations from space satel-
lites such as SOHO, TRACE, and RHESSI are giving important clues about the
nature of the particle acceleration process (Section 5.7).
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1.1.2 Coronal heating
One of the biggest mysteries in solar physics is the nature of the mechanism

that is heating the corona to a few million degrees. Reconnection now seems to be a
likely candidate and can work in a variety of ways, as reviewed in Section 5.1. In the
corona the magnetic field is by far the largest source of energy and it dominates the
structures that we see. Furthermore, the Poynting flux of energy upwards from the
photosphere is certainly sufficient to provide the energy required to heat the corona,
but how does it do so?

Several mechanisms involving reconnection have been proposed. First of all, X-ray
bright points are likely to be heated directly by reconnection driven by footpoint
motions, as described in the converging flux model (Priest et al., 1994; Parnell and
Priest, 1995). This is because two-thirds of the X-ray bright points appear to be
associated with the cancellation of the magnetic flux in the photosphere as opposite-
polarity photospheric fragments come together and cancel. The remaining third
are instead associated with emerging flux, as new flux emerges through the photo-
sphere and reconnects with the overlying coronal magnetic field, as described by the
emerging flux model (Heyvaerts et al., 1977).

Coronal loops, on the other hand, may be heated by reconnection in other ways.
The classical model for such heating was proposed by Parker (1972) and developed by
Parker (1994) in terms of the formation and dissipation of current sheets by braiding
of the footpoints of an essentially uniform magnetic field. This basic scenario has now
been developed by Priest et al. (2002), who propose a coronal tectonics model that
attempts to take account of the effect of the magnetic carpet on coronal heating. It
suggests that myriads of current sheets are continually forming and dissipating at the
separatrices and separators that form at the boundaries between the flux domains
that originate at the multitude of photospheric magnetic fragments. Indeed, a recent
estimate of the time for all the magnetic fields in the quiet corona to reconnect gives
the extremely short value of only 1.5 hours (Close et al., 2004b) so that an amazing
amount of reconnection is continually taking place in the coronal magnetic field.
Various ways of how reconnection might play a role in coronal heating are discussed
in Chapter 5.

1.2 Earth’s magnetosphere
J. Birn

The Earth’s magnetosphere is the region above the ionosphere that is governed by
the geomagnetic field and shaped by its interaction with the surrounding interplan-
etary plasma and field, the solar wind. The major regions within and around the
magnetosphere are illustrated in Fig. 1.5. Its outer boundary is the magnetopause,
a current layer that, to lowest order, separates the geomagnetic field from the solar
wind. However, the interconnection between the two regions across the magnetopause
is a crucial consequence of solar wind–magnetosphere interaction involving recon-
nection, discussed in Sections 4.1 and 4.2. Since the solar wind expands at speeds
exceeding the fast magnetosonic speed, a bow shock is generated surrounding the
magnetosphere. The shocked solar wind flowing around the magnetosphere outside
the magnetopause forms the magnetosheath. The funnel-shaped regions that contain
field lines approaching the vicinity of the magnetopause are the cusps. Through the
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plasma sheet
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magnetosheath

bow shock

magnetopause

solar wind

cusp

Fig. 1.5. Characteristic regions of the Earth’s magnetosphere and the surrounding
solar wind.

impact of the solar wind, the dayside magnetosphere is compressed, while the night-
side is expanded, forming the long magnetotail, several hundreds of Earth radii (RE)
in length. The stretched, nearly antiparallel magnetic fields in the tail lobes enclose
a current sheet containing hot plasma (Ti ∼ 2–20keV, Te ∼ 0.4–4keV) with typical
densities of ∼ 0.1–1cm−3. This plasma sheet consists mainly of closed field lines,
connected with the Earth at both ends, whereas the lobe field lines are open, that
is, connected with the Earth only at one end (within the polar caps).

The occurrence of magnetic reconnection in the magnetosphere is closely related
(although by no means exclusively) to magnetospheric substorms. We will therefore
discuss the main reconnection sites in this context. While substorms were originally
defined in terms of ground observations, particularly magnetic perturbations and
auroral features (e.g., Akasofu, 1968), we focus here on magnetospheric features
that are widely believed to be related to reconnection. The reconnection scenario
of substorms (commonly called the near-Earth neutral line model or the neutral
line model ; Baker et al., 1996) is shown schematically in Fig. 1.6. This schematic,
which depicts magnetic field changes in the noon–midnight meridional plane was first
published in a similar form by Hones (1977), although its major elements had been
developed earlier (e.g., Atkinson, 1966; Schindler, 1972; McPherron et al., 1973). It
involves three basic reconnection sites.
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(a)

(b)

(c)
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MAGNETOPAUSE
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SOLAR
WIND

PLASMA SHEET

PLASMOID

Fig. 1.6. Schematic of the topological changes of the magnetosphere in the noon–
midnight meridional plane during a substorm, indicating major reconnection sites.
This sequence was first depicted in a similar form by Hones (1977).

The first site is the frontside magnetopause. When the interplanetary magnetic
field (IMF) is southward, or has a southward component, reconnection at the
frontside leads to a transfer of magnetic flux and energy into the magnetosphere,
which become transported into the tail. If reconnection at the dayside is not balanced
by reconnection at the nightside, this leads to an increase of energy and magnetic
flux in the tail lobes (Caan et al., 1973; Holzer and Slavin, 1979), associated with
an increased flaring angle of the tail boundary (Fairfield, 1985) and a stretching
and intensification of the magnetic field in the inner tail (e.g., Baker et al., 1981),
causing the substorm growth phase (McPherron, 1970).
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A second reconnection site is located in the distant magnetotail. Its role is the
conversion of open (that is, lobe) magnetic field lines to closed (that is, plasma sheet
field lines). The location of this site might vary, from several tens of RE to hundreds
of RE (e.g., Baker et al., 1984; Slavin et al., 1985; Schindler et al., 1989; Nishida et al.,
1995), and it need not be a single site as depicted in Fig. 1.6a. The basic magnetic
topology with the two reconnection sites shown in Fig. 1.6a, involving the transport
of field lines from the dayside through the nightside lobes into the plasma sheet, was
first depicted by Dungey (1961) (Fig. 4.1, Section 4.1).

In principle, if magnetic reconnection at the distant site balances frontside recon-
nection, the configuration in Fig. 1.6a could represent a steady-state model of convec-
tion in the magnetosphere. This obviously requires that closed magnetic field lines
are returned from the nightside to the dayside, involving transport in the direction
out of the plane shown in Fig. 1.6. Although this steady-state convection picture
still guides our general view of transport through the magnetosphere, it has been
found to be inconsistent with the actual behavior and the typical magnetospheric
structure. Erickson and Wolf (1980) found that adiabatic, that is mass and entropy
conserving, transport of closed magnetic flux tubes from the distant to the near tail
should lead to a pressure build-up that is inconsistent with force balance in the near
tail. To avoid this force imbalance, a substantial fraction of mass and/or energy must
be lost from the closed flux tubes as they convect earthward. Since losses into the
ionosphere are sufficient only during episodes of very slow convection (Kivelson and
Spence, 1988) and large-scale diffusive processes are unlikely in the highly conducting
tail plasma sheet, the most obvious way of loss is the severance of a portion of the
plasma sheet by new reconnection that occurs earthward from the distant site and
leads to the formation and ejection of a plasmoid (Fig. 1.6b–d). The detection of
plasmoid signatures in the distant tail (Hones, 1984) has been an important confir-
mation of the phenomenological neutral line model. Plasmoid encounters need not
involve a crossing through the interior of a plasmoid; on the outside they are charac-
terized by a typical north-then south deflection and a compression of the magnetic
field (traveling compression regions, Slavin et al., 1984).

The onset of reconnection in the near tail is enabled by the formation of a
thin current sheet, forming within the near-Earth plasma sheet during the late
substorm growth phase (e.g., McPherron and Manka, 1985; McPherron et al., 1987;
Kaufmann, 1987; Baker and McPherron, 1990; Mitchell et al., 1990; Sergeev et al.,
1990; Pulkkinen et al., 1994; Sanny et al., 1994). As discussed above, the onset need
not be a direct consequence of the current sheet formation but may involve other
dynamic processes as intermediate steps (Sections 3.5 and 4.3). Stability properties
of thin current sheets and the particular role of the magnetic field component
perpendicular to the current sheet are discussed in Sections 3.3, 3.5 and 4.3.

A major feature of substorm-related magnetic field changes in the tail is a redis-
tribution of currents providing a connection between the tail and the ionosphere
through field-aligned currents that close through the ionosphere. This scenario,
commonly denoted as the substorm current wedge (McPherron et al., 1973), is
depicted in Fig. 1.7. Within a central portion of the near-Earth tail the cross-tail
current becomes disrupted or reduced, which is manifested by the dipolarization
of the magnetic field inside the current wedge, that is, a return toward a more
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Fig. 1.7. Schematic of the substorm current wedge. After McPherron et al. (1973).

dipolar field from the stretched field associated with the substorm growth phase.
The reduction of the cross-tail current is associated with a diversion of currents on
the outside of the disruption region, leading to field-aligned currents connecting the
tail with the ionosphere. On the ground, the ionospheric closure of the current wedge
through the auroral electrojet causes characteristic north–south perturbations of the
geomagnetic field. A combination of such magnetic perturbations from a number
of auroral stations is used to form the Auroral Electrojet (AE) index, a commonly
used indicator of substorms. Of course, this picture is highly simplified and there
are many, more detailed, ionospheric and auroral features, which are by no means
understood.

Figure 1.7 also introduces the coordinate system that is commonly used for magne-
tospheric applications, with the x axis pointing sunward, y pointing from dawn to
dusk and z pointing northward. Observationally, one makes a distinction between
the Geocentric Solar Ecliptic (GSE) system, in which the z axis is perpendicular to
the ecliptic plane and the Geocentric Solar Magnetospheric (GSM) system, in which
the z axis lies in the plane formed by the Earth’s dipole axis and the Earth–Sun line.
In either case, the y direction follows from completing the right-handed rectangular
coordinate system.

The basic scenario illustrated in Fig. 1.6 is well established through observations
in the tail (Section 4.5) and consistent with large-scale simulations of tail dynamics
(Section 4.4). However, open problems and controversial views concern particularly
the relationship between the onset of substorm activity and the onset of reconnec-
tion and the connection between tail dynamics and auroral activity. While in the
simplest form of the scenario depicted in Fig. 1.6 the onset of reconnnection in the tail
leads to further activity, an alternative scenario, usually called the current disruption
model (Lui, 1996), assumes that a substorm is triggered locally in the inner magne-
totail, presumably by an instability that involves a cross-tail wave vector component.
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Potential mechanisms are cross-field current-driven instabilities (e.g., Lui et al., 1991)
or interchange/ballooning modes (e.g., Roux et al., 1991; Hurricane et al., 1997; Pu
et al., 1997; Bhattacharjee et al., 1998; Cheng and Lui, 1998) (see also Sections 3.3,
3.5, and 4.3). In this scenario, dipolarization might result from a slippage of field
lines without the necessity of neutral line formation. Reconnection as depicted in
Fig. 1.6 might be a later consequence of the dynamic evolution.

We should note, however, that the current disruption model is not necessarily
completely distinct from magnetic reconnection. Similar to magnetic reconnection,
current disruption is assumed to be related to a breakdown of ideal MHD with its
frozen-in field condition through increased current densities and decreasing gradient
length scales. In contrast to standard reconnection models, the current disruption
model does not assume or require a topological change in the magnetic field and
the violation of ideal MHD is envisioned as a turbulent process not confined to the
vicinity of a neutral line or separator (Lui, 1996). However, the lack of a topological
change can also be a property of generalized magnetic reconnection in the absence
of magnetic nulls (Section 2.3), so that the current disruption model might also be
consistent with turbulent generalized magnetic reconnection.

On the other hand, the reconnection process, as depicted in the neutral line model,
is not necessarily a large-scale, many RE, phenomenon. In fact, high-speed plasma
flows in the plasma sheet, which are usually interpreted as consequences of reconnec-
tion, tend to be localized with a width of only a few RE and occur in an intermittent,
bursty fashion (Baumjohann et al., 1990; Nakamura et al., 2004a; Section 4.5), leading
to the name bursty bulk flow (BBF) events (Angelopoulos et al., 1992). Such flow
bursts are shown to have local features and auroral consequences consistent with a
small current wedge (Fig. 1.7; Nakamura et al., 2001a,b) but need not be associated
with a full substorm.

Although substorm (and other) magnetospheric activity is clearly enhanced during
times of southward IMF, when the magnetosphere couples more strongly to the
solar wind, activity, as well as magnetic reconnection, is not restricted to such
times. During times of northward IMF, reconnection might occur at higher lati-
tudes (Dungey, 1963; Sections 4.1 and 4.2). This is illustrated in Fig. 1.8. Note that
high-latitude reconnection takes place between interplanetary field lines (without
connection to the Earth) and lobe field lines, which connect to the Earth at one
side. After reconnection, the newly connected field lines have the same topology, so
that there is no net flux transfer between the two regions (Reiff and Burch, 1985).
Later, however, the newly connected lobe field lines are dragged toward the tail and
may again reconnect, with another lobe field line. This process, sometimes named
re-reconnection, is illustrated at the bottom of Fig. 1.8. It creates a newly closed
field line and a fully disconnected field line and thereby transports magnetic flux
from the lobes into the closed region. Figure 1.8 depicts the scenario for the case
when the IMF has an anti-sunward component in addition to the northward compo-
nent. In this case high-latitude reconnection should take place first in the northern
hemisphere, followed by re-reconnection in the southern hemisphere. In the absence
of a sunward IMF component, the two processes might operate simultaneously; this
is the scenario originally depicted by Dungey (1963), shown in the bottom panel
of Fig. 4.1.
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Fig. 1.8. Schematic of high-latitude reconnection when the interplanetary magnetic
field has a northward component.
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Fig. 1.9. Schematic of flux transfer event at the magnetopause, interpreted as
spatially and temporally localized reconnection that leads to an interconnected
flux rope. After Russell and Elphic (1978); Elphic (1995).

Magnetopause reconnection need not be quasi-stationary, as indicated in Fig. 1.6
but apparently also occurs in a localized, temporally limited fashion. The main
evidence for the latter is bipolar signatures of the magnetic field component normal
to the magnetopause surface, which are observed in its vicinity, both inside and
outside. This signature indicates the passage of a flux rope, connecting magneto-
spheric with magnetosheath plasma (Thomsen et al., 1987). Such encounters are
termed flux transfer events (FTEs)(Russell and Elphic, 1978; Elphic, 1995; Fig. 1.9).

As discussed further in Chapter 4, the reconnection scenarios at the magnetopause
and in the magnetotail current sheets differ particularly in the role of the magnetic
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field components present in addition to the field associated with the main current.
At the magnetopause, a field component in the direction of the current (guide field)
presumably influences where and how reconnection occurs (Sections 4.1 and 4.2),
whereas in the magnetotail the field component perpendicular to the current sheet
critically controls its stability (Sections 3.3 and 4.3).



2

Basic theory of MHD reconnection

2.1 Classical theory of two-dimensional reconnection
T. G. Forbes

The term magnetic reconnection was introduced by Dungey (1953) who was inter-
ested in the problem of particle acceleration in the Earth’s magnetosphere. Earlier
studies (Giovanelli, 1946; Hoyle, 1949) had considered the acceleration of particles
at magnetic neutral points in the presence of an electric field produced by plasma
convection, but these studies did not include the magnetic field that is produced
by the current associated with the motion of the particles. Using the framework of
magnetohydrodynamics (MHD), Dungey argued that this current would take the
form of a thin sheet in which the diffusion of the magnetic field would necessarily
dominate. Furthermore, this diffusion would cause field lines passing through the
current sheet to change their connectivity to one another. This process was described
as field line disconnection followed by reconnection. The importance of thin current
sheets as a site for plasma heating and particle acceleration in solar flares was also
recognized by Cowling (1953) at about the same time.

In this section we outline basic, two-dimensional approaches to magnetic reconnec-
tion, based on resistive MHD theory. More detailed information can be found in the
original papers and recent books by Biskamp (2000) and Priest and Forbes (2000).
For future reference and the introduction of relevant quantities we here list the basic
MHD equations as used in this book, based on standard international MKS units
and standard notations:

dρ/dt ≡ ∂ρ/∂t+v ·∇ρ = −ρ∇·v, (2.1)

ρdv/dt = −∇p+ j×B, (2.2)

dp/dt = −γp∇·v+(γ −1)ηj2, (2.3)

∂B/∂t = −∇×E, (2.4)

∇×B = μ0j, (2.5)

E+v×B = ηj. (2.6)

Here d/dt denotes the convective time derivative, i.e., the time derivative in a frame
that moves with the plasma, ρ and v denote the plasma mass density and flow
velocity, respectively, and p is the plasma pressure, assumed to be isotropic. E denotes
the electric field, B is the magnetic induction, and j the electric current density. In

16
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space, solar, and astrophysical applications, B is related to the magnetic field simply
by the constant factor μ0, the permeability of free space. Therefore, B is frequently,
but not quite accurately, denoted as the “magnetic field.” The quantity η denotes
electric resistivity, assumed to be scalar, but not necessarily constant in space. Typi-
cally, in space and solar coronal plasma, η is very small, so that the resistive term ηj
in (2.6) can be neglected. This is the basis of the ideal MHD approximation, further
discussed in Section 2.2. The local breakdown of this approximation, however, is a
necessary feature of magnetic reconnection. The assumption of a resistive Ohm’s law
(2.6) to permit this local breakdown forms the basis of the traditional approaches
to reconnection described in this section. However, a simple Ohm’s law, as given
by (2.6), is generally not satisfied in collisionless, or nearly collisionless, space and
solar coronal plasmas, or the resistive term is so small that it becomes irrelevant.
Chapter 3 hence is devoted to the physical mechanisms that govern dissipation and
enable reconnection in collisionless plasma environments.

The quantity γ represents the ratio of specific heats; for isotropic plasmas, usually
γ = 5/3. For vanishing electrical resistivity, η = 0, Eq. (2.3) with γ = 5/3 describes
adiabatic, i.e., entropy-conserving, transport, d(p/ργ)/dt = 0. This approximation
neglects heat flux and radiative transport, which may play a significant role in the
solar corona but not in the magnetosphere. Frequently, other values of γ are used to
account for effects not included explicitly in Eqs. (2.1)–(2.6). For instances, γ = 1 for
isothermal changes, and γ = 1.1 is frequently used to summarily include the effects
of heat conduction and radiative transport in the solar corona. The limit of γ → ∞
formally corresponds to the assumption of incompressibility, ∇·v = 0 or dρ/dt = 0.

2.1.1 Steady-state reconnection
A few years after Dungey’s introduction of the concept of reconnection, Sweet

(1958a) and Parker (1957) developed the first quantitative model. In order to make
the analysis as analytically tractable as possible, they focused on the problem of two-
dimensional, steady-state reconnection in an incompressible plasma. They assumed
that reconnection occurs in a current sheet whose length is set by the global scale,
Le, of the field as shown in Fig. 2.1. Under these conditions they determined that
the speed of the plasma flowing into the current sheet is approximately

ve = vAeS
−1/2, (2.7)

where S = μ0LevAe/η is the Lundquist number, representing the ratio between the
time scales of resistive diffusion and typical Alfvén waves, Le is the global scale length,
and vAe = Be/

√
μ0ρe is the Alfvén speed in the inflow region. Often S is referred to

as the magnetic Reynolds number (Rm), although in other definitions the latter term
refers to a similar number based on a typical flow speed, rather than the Alfvén
speed (Huba, 2004). The outflow speed of the plasma from the current sheet is vAe,
and it does not depend on the value of S. The reconnection rate in two dimensions is
measured by the electric field at the reconnection site. This electric field is perpen-
dicular to the plane of Fig. 2.1, and it prescribes the rate at which magnetic flux is
transported from one topological domain to another (Vasyliūnas, 1975).

The configurations of Figs. 2.1 and 2.2 can be generalized to include a magnetic
field component perpendicular to the plane of the figures, but maintaining the
invariance in that direction. In that case the embedded X-type magnetic neutral point
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Fig. 2.1. The Sweet–Parker field configuration. Plasma flows into the upper and
lower sides of a current sheet of length Le, but must exit through the narrow tips of
the sheet of width l. Because the field is assumed to be uniform in the inflow region,
the external Alfvén Mach number, MAe = ve/vAe, at large distance is the same as
the internal Alfvén Mach number, MAi, at the midpoint edge of the current sheet.
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Fig. 2.2. Petschek’s field configuration. Here the length, L, of the Sweet–Parker
current sheet is much shorter than the global scale length, Le, and the magnetic
field in the inflow is nonuniform. Two pairs of standing slow-mode shocks extend
outwards from the central current sheet. Petschek’s model assumes that the current
density in the inflow region is zero and that there are no external sources of field
at large distance.

becomes a magnetic field line, denoted the magnetic separator, representing the inter-
section of separatrix surfaces between topologically distinct regions. Accordingly, the
presence of an electric field along the separator has been used to define magnetic
reconnection (Sonnerup et al., 1984) in such a configuration, commonly described as
2.5-dimensional (2.5D or 21

2D).
In two-dimensional (and 2.5-dimensional) steady-state models the electric field E

in the invariant direction is uniform in space. Therefore, the Alfvén Mach number,
MAe = ve/vAe = E/(vAeBe), provides a quantitative measure of the reconnection
rate, normalized by the characteristic electric field vAeBe. In terms of this number,
the Sweet–Parker reconnection rate is just MAe = S−1/2.

In astrophysical and space plasmas S is very large (S � 106), so Sweet–Parker
reconnection is usually too slow to account for phenomena such as geomagnetic
substorms or solar flares. Petschek (1964) proposed a model with an increased rate
of reconnection associated with a greatly reduced length of the current sheet in the
Sweet–Parker model. He did this by encasing their current sheet in an exterior field
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with global scale length Le. He also introduced two pairs of standing slow-mode
shocks radiating outwards from the tip of the current sheet as shown in Fig. 2.2.
In Petschek’s solution most of the energy conversion comes from these shocks which
accelerate and heat the plasma to form two hot outflow jets.

Petschek also assumed that the magnetic field in the inflow region is current free
and that there are no sources of field at large distances. These assumptions, together
with the trapezoidal shape of the inflow region created by the slow shocks, lead to
a logarithmic decrease of the magnetic field as the inflowing plasma approaches the
Sweet–Parker current sheet. This variation of the field leads in turn to Petschek’s
formula for the maximum reconnection rate, namely

MAe[Max] = π/(8 lnS), (2.8)

where S and vAe are now the Lundquist number and Alfvén speed in the region far
upstream of the current sheet as shown in Fig. 2.2. Because of its logarithmic depen-
dence on S, the Petschek reconnection rate is many orders of magnitude greater than
the Sweet–Parker rate, and for most space and laboratory applications Petschek’s
formula predicts that MAe ≈ 10−1 to 10−2.

Petschek’s model uses the Sweet–Parker model to describe the flow of plasma and
fields in the diffusion region. Because the Sweet–Parker model only gives average
properties for this region, such as its length and thickness, no detailed matching is
possible between the flows in the diffusion region and the flows in the external region
outside. This lack of detailed matching is sometimes misunderstood to mean that
there is no matching at all (e.g., Biskamp, 2000), but in fact the average properties
of the diffusion region are rigorously matched to the external region to the extent
that the Sweet–Parker model allows (see Vasyliūnas, 1975).

It is not always appreciated that Petschek’s reconnection model is a particular
solution of the MHD equations which applies only when special conditions are met.
Firstly, it requires that the flows into the reconnection region be set up spontaneously
without external forcing (Forbes, 2001). In general, driving the plasma externally
creates a significant current density in the inflow region which violates Petschek’s
assumption that the inflow field is approximately potential. Secondly, Petschek’s
solution also requires that there be no external source of field in the inflow region.
In other words, the field must be just the field produced by the currents in the
diffusion region and the slow shocks. In many applications of interest neither of these
conditions is met.

An alternate approach to reconnection in current sheets was pioneered by Green
(1965) and Syrovatskii (1971), who considered what happens when a weak flow
impinges on an X-line in a strongly magnetized plasma as indicated in Fig. 2.3. The
imposed flow creates a current sheet which achieves a steady state when the rate of
field line diffusion through the sheet matches the speed of the flow. A quantitative
model of this process has been published by Somov (1992).

For a steady-state MHD model the variation of the field in the inflow region is the
key quantity which determines how the reconnection rate scales with the Lundquist
number, S. For any such model the electric field is uniform and perpendicular to
the plane of the field. Thus, outside the diffusion region Eo = −vyBx where Eo is
a constant, vy is the inflow along the axis of symmetry (y axis in Fig. 2.3), and
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Fig. 2.3. Green’s and Syrovatskii’s field configuration. Unlike Petschek’s configu-
ration, this one has external sources which produce an X-type configuration even
when local sources of current are absent (a). The application of external driving
(b) creates a current sheet whose length, L, depends on the temporal history of the
driving and the rate at which reconnection operates (Somov, 1992). The fastest
reconnection rate occurs when L is equal to the external scale length, Le.

Bx is the corresponding field. Thus the inflow Alfvén Mach number, MAe, at large
distances can be expressed as

MAe = MAiB
2
i /B2

e , (2.9)

where MAi is the Alfvén Mach number at the current sheet, Bi is the magnetic field
at the edge of the current sheet, and Be is the magnetic field at large distance.

In Syrovatskii’s model the field along the inflow axis of symmetry varies as

Bx = Bi(1+y2/L2)1/2, (2.10)

where Bi is the field at the current sheet, y is the coordinate along the inflow axis,
and L is the length of the current sheet. Combining (2.10) with (2.9) yields

MAe = MAi/(1+L2
e/L2), (2.11)

which has its maximum value when L = Le. Thus the maximum reconnection rate
in Syrovatskii’s model scales as S−1/2, the same as for the Sweet–Parker model.

By comparison, the field in Petschek’s model along this axis varies approxi-
mately as

Bx = Bi
1− (4/π)MAe ln(Le/y)
1− (4/π)MAe ln(Le/l)

, (2.12)

where l is the current sheet thickness. (This expression for the field is only a
rough estimate since the actual variation in the region y < L is more complex;
see Vasyliūnas, 1975; Priest and Forbes, 2000.) Evaluating this at y = Le and
substituting the result into Eq. (2.9) gives

MAi = MAe[1− (4/π)MAe ln(Le/l)]−2
. (2.13)

The Sweet–Parker theory can be used to eliminate Le/l, so as to obtain an expression
for MAe as a function of S. This expression has a maximum value as given by
Eq. (2.8).
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Fig. 2.4. The variation of the magnetic field in the inflow region of Petschek’s and
Syrovatskii’s models along the axis of symmetry (y axis). At large distance the
variation in Syrovatskii’s model is determined by external field sources at infinity.
The magnetic fields are normalized to their values at the edge of the current sheet,
and the distance y is normalized to the length L of the current sheet. For the
Petschek curve, MAe = 0.02, l = 0.1 L, and Le = 2L.

The variation of the field in the inflow region for the Syrovatskii and Petschek
models is compared in Fig. 2.4. Although both fields increase with distance away
from the current sheet, the rate at which they increase is markedly different. At
large distance the rate of increase in the Syrovatskii model is dominated by the
external field whose variation is fixed and independent of the reconnection rate. By
contrast, the variation in the Petschek model is closely coupled to the reconnection
rate, disappearing altogether when the rate goes to zero. This is one of the main
reasons that the two models give such different predictions for the reconnection rate.
It also explains why the numerical simulation by Biskamp (1986) of the evolution
shown in Fig. 2.3 produces a Sweet–Parker-type scaling rather than a Petschek-type
scaling.

More recently, Kulsrud (2001) has argued that the short current sheet in Petschek’s
solution is not consistent with the requirements for the transport of magnetic flux
through the current sheet. However, the external field he uses is that of Syrovatskii’s
model, which is quite different from the external field appropriate for the Petschek
model. Thus, it is not so surprising that he finds a mismatch in such circumstances.
When the external field appropriate for Petschek’s solution is used, no such mismatch
occurs because the magnetic flux flowing into and out of the diffusion region is rigor-
ously matched to the external field. This is true even though the detailed variation
of the fields and flow within the diffusion region is not prescribed by the Sweet–
Parker model. In the more formal treatments of the Petschek model (e.g., Soward
and Priest, 1977; Priest and Forbes, 1986) the external field is obtained by solving
Laplace’s equation for the inflow region. Given a function which prescribes the vari-
ation of the normal field in the diffusion region one can always find a corresponding
external solution. To first order in the expansion parameter MAe this solution is inde-
pendent of the prescribed form of the function as long as the current sheet is short



22 Basic theory of MHD reconnection

(L 
 Le). Consequently, statements to the effect that Petschek’s solution is gener-
ally invalid because of improper or inexact matching between the diffusion region
and the external region are not correct. The main reason Petschek’s solution is not
generally valid is that it makes specific assumptions about the nature of the external
field which are not appropriate in many situations.

Even in circumstances where Petschek’s model would be expected to apply it
sometimes does not. Several numerical simulations (e.g., Biskamp, 1986; Scholer,
1989) have been carried out in an attempt to verify the steady-state solution found by
Petschek (1964), but none of these simulations has been able to replicate the scaling
results predicted by Petschek’s solution as long as the resistivity is kept uniform
and constant. Only when a nonuniform, localized resistivity model (e.g., Ugai, 1988;
Yan et al., 1992) is used does the Petschek configuration appear. The fact that the
resistivity apparently needs to be nonuniform does not contradict Petschek’s model
because it makes no assumption about whether the resistivity is uniform or not. It is
equally valid for both cases because it assumes only that the region where resistivity
is important is localized. Nevertheless, the question remains as to why a nonuniform
resistivity appears to be necessary.

Although Petschek assumed that the current density, j, in the inflow region is zero
to first order, it is not actually necessary to make such an assumption in order to
obtain a solution. More generally, j can be nonzero to first order in the expansion
of the inflow equations, so that the inflow magnetic field is no longer determined
by solving Laplace’s equation (∇2A = 0) for the vector potential, A, but by solving
Poisson’s equation (∇2A = −μ0j) instead (Priest and Forbes, 1986). The relaxation
of the assumption that j is zero introduces an additional degree of freedom so that
there is now a whole family of solutions (Fig. 2.5). These solutions can be summarized
in terms of the relation between the internal Alfvén Mach number, MAi, at the
entrance to the diffusion region, and MAe, the Alfvén Mach number at the exterior
inflow boundary (Fig. 2.2). The relation is

MAe
1/2

MAi
1/2 = 1− 4

π
MAe(1− b)

[
0.834− ln tan

(π

4
S−1M

−1/2
Ae M

−3/2
Ai

)]
, (2.14)

where b is a parameter that corresponds to different assumptions about the inflow
boundary conditions at y = Le. The relation is plotted in Fig. 2.5 for S = 100
for various values of b. When b = 0, Petschek’s solution is obtained, and when
b = 1, a solution equivalent to that of Sonnerup (1970) is obtained. When b < 1,
the solution somewhat resembles Syrovatskii’s solution in that the magnetic field
increases markedly with distance away from the current sheet. For these solutions the
maximum reconnection rate is the same as for the Sweet–Parker model. As b increases
beyond unity, a flux pile-up regime occurs where the magnetic field increases as the
diffusion region current sheet is approached (Fig. 2.6). For very strong flux pile-up
with b � 1, the flow approaches the MHD stagnation-point flow solution found by
Parker (1973a) and Sonnerup and Priest (1975). The stagnation-point flow appears to
be very fast since formally there is no limit to the value of MAe. However, large values
of MAe require large variations in the gas pressure, which are not possible unless the
plasma β is very much greater than unity. For low-β plasmas the amount of pile-up
is limited, and when this limitation is taken into consideration the reconnection rate



2.1 Classical theory of two-dimensional reconnection 23

M
e 

(e
xt

er
na

l M
ac

h 
no

.)

10–110–210–3 100
10–4

10–2

10–1

100

10–3

Mi (internal Mach no.)

Sweet–Parker

Son
ne

ru
p

Petschek

flux decrease

flux pile-up

Fig. 2.5. External Alfvén Mach number, MAe, vs. the internal Alfvén Mach
number, MAi, for the family of solutions obtained by Priest and Forbes (1986).
These solutions are obtained by an expansion in terms of the inflow Alfvén Mach
number for small variations of the field around the uniform inflow field assumed
in the Sweet–Parker model. Solutions with the labeled characteristics are obtained
for different choices of the parameters describing the boundary conditions at large
distances.
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Fig. 2.6. The stagnation-point flow solution (a) obtained by Parker (1973a) for
magnetic field annihilation at a current sheet, and the closely related flux pile-up
solution (b) obtained by Priest and Forbes (1986).

is found to scale at the relatively slow Sweet–Parker rate (Litvinenko et al., 1996;
Priest, 1996; Litvinenko and Craig, 1999). For a low-β plasma the fastest rate occurs
for b = 0, which is Petschek’s solution.

Vasyliūnas (1975) was the first to point out that the differences between reconnec-
tion solutions are often related to the behavior of the gas and magnetic pressures in
the inflow region. The inflow can be characterized as undergoing a compression or
an expansion depending on whether the gas pressure increases or decreases as the
plasma flows in towards the X-point. These compressions or expansions can further
be characterized as being of the fast-mode type or the slow-mode type, depending on
whether the magnetic pressure changes in the same sense as the gas pressure (fast-
mode type) or in the opposite sense (slow-mode type). For the family of solutions
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above one finds that in Petschek’s solution (b = 0) the gas pressure is uniform to
second order in the expansion parameter MAe, so that to this order, the plasma is
neither compressed nor rarefied as it flows towards the X-point. For the solutions
with b < 0, the plasma undergoes a slow-mode compression, while for the solutions
with b > 1 it undergoes a slow-mode expansion. Between b = 0 and b = 1 the solu-
tions have a hybrid character with slow-mode and fast-mode expansions existing in
different regions of the inflow. Although it does not happen in the above family of
solutions, it is also possible to have hybrid solutions in which slow-mode expansions
and slow-mode compressions co-exist in different regions of the inflow (e.g., Strachan
and Priest, 1994).

2.1.2 Time-dependent reconnection
So far we have only considered the development of steady-state models of

reconnection. However, many phenomena involving reconnection occur on such short
time scales that a steady or quasi-steady state does not exist. For example, in high-
speed coronal mass ejections (>1000km/s) the current sheet created by the ejection
grows in length at a speed which is on the order of, or in excess of, the ambient
Alfvén wave speed (Lin and Forbes, 2000).

Time-dependent reconnection was first considered by Dungey (1958) who noted
that, in a strongly magnetized plasma, motions in the vicinity of an X-line can lead
to the very rapid formation of a current sheet. The first explicit solution demon-
strating this possibility was published by Imshennik and Syrovatskii (1967). They
found that if the gas pressure is negligible and the resistivity is small, then during
the initial formation of the sheet, the electric field, E, at the X-line grows at a rate
which is proportional to (tc − t)4/3 where tc = (π/2)3/2 times the Alfvén scale time
of the system. At the time tc the electric field becomes infinite, but the assumptions
underlying the solution break down before this time is reached. Although several
analyses and extensions of this solution have been done (see Chapter 7 of Priest and
Forbes, 2000, for a list of published papers), little effort has been made to apply this
theory to highly dynamic phenomena such as flares.

Most of the theoretical effort on time-dependent reconnection has concentrated on
the tearing instability (Furth et al., 1963), illustrated in Fig. 2.7. This is a nonideal
instability in which the magnetic reconnection of field lines plays a central role.
Tearing has been invoked in some flare models as a mechanism for releasing magnetic
energy (e.g., Heyvaerts et al., 1977), but, as a flare mechanism, it suffers from the fact
that resistive tearing is relatively slow (Steinolfson and Van Hoven, 1984). The onset
of most flares occurs over a time period on the order of the Alfvén time scale in the
corona, but the time scale of the tearing mode is much slower being a combination
of the Alfvén time scale and the much slower resistive time scale. The actual growth
rate depends on the wavelength of the perturbation. For a simple current sheet the
growth rate is zero if the wave number k is such that kl > 1 where l is the width of
the sheet. This means that a current sheet which is shorter than 2π times its width
is stable to tearing. For S1/4kl < 1, small perturbations grow exponentially at a rate
given by

τtm = (kl)2/5
S3/5, (2.15)
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Fig. 2.7. Typical magnetic island structure resulting from tearing instability of a
plane current sheet.

where τtm is the growth period of the tearing mode and S is the Lundquist number
based on the current sheet thickness and the external Alfvén speed. The fastest
growing mode occurs when kl ≈ S−1/4 and the corresponding growth rate scales with
S−1/2. For values of kl less than this value, the above expression is not valid.

The threshold condition kl < 1 for tearing is a consequence of the fact that the field
lines of the initial current sheet resist being bent. An initial perturbation which has
a relatively short wavelength tends to straighten out before significant reconnection
can occur, but as the wavelength of the perturbation increases, there is more time
for diffusion to act. This diffusion occurs in a thin layer in the center of the sheet
which has a thickness on the order of S−2/5l for the shortest wavelength mode and
S−1/4l for the fastest growing mode.

The growth and stability of the tearing mode can be affected by many factors such
as the geometry of the sheet, line-tying, the presence of a guide field (a magnetic field
component in the direction of the current), externally driven flows, the mechanisms
of magnetic diffusivity, and so on. A discussion of such effects can be found in Galeev
(1979), Priest and Forbes (2000), and Wesson (1987).

Although a large body of literature devoted to two-dimensional reconnection exists,
there are still some fundamental questions that remain unanswered. For example,
what is the rate of reconnection in a rapidly driven system where the current sheet
grows at a rate on the order of the ambient Alfvén speed? This situation is expected
to occur in large coronal mass ejections whose speeds typically exceed the local Alfvén
wave speed. Also, the effects of strong radiation, thermal conduction, and partial
ionization have only been partially explored.

2.2 Fundamental concepts
G. Hornig

The concept of reconnection has been largely developed on the basis of two-dimen-
sional models, as described in Section 2.1. However, many notions (and definitions)
of reconnection based on such two-dimensional models do not transfer to three-
dimensional configurations without inherent symmetry. Moreover, while in two
dimensions reconnection can occur only at hyperbolic null points, so called X-points
of the magnetic field, three dimensions may allow for reconnection both at magnetic
null points and at places of nonvanishing field strength. With respect to the change
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of the magnetic structure under reconnection these two cases differ essentially.
Therefore Sections 2.3 and 2.4 deal with each case separately.

This section focuses on the change of the magnetic structure due to reconnection
in general 3D configurations. It is important to know how reconnection changes the
magnetic topology in order to determine the energy that is set free in the process.
Often the magnetic energy dissipated in the reconnection process itself is small
compared with the release of energy of the subsequent relaxation enabled by the
change of magnetic topology. That is, a comparatively small event can trigger a huge
energy release in a situation where much energy has been stored in the magnetic field
structure. This is for instance the typical situation in solar flares and magnetospheric
substorms.

Magnetic reconnection typically represents a sudden, drastic change of the
magnetic structure in an environment which is otherwise an ideal plasma and hence
conserves the magnetic topology. How to resolve this apparent contradiction between
the properties of the plasma and the occurrence of reconnection is an important and
in parts still open question. We start by investigating the most general conditions
for magnetic flux and connectivity conservation, in order to give some insight into
the way constraints of an almost ideal plasma can be broken.

This first section is also meant to broaden our view of reconnection. Firstly, recon-
nection might not always have the signature which we expect. Secondly, processes
similar to reconnection can occur in different physical systems and the exchange of
knowledge about related processes in other fields can be of mutual benefit.

Regarding the first point, we have to remind ourselves that our notion of magnetic
reconnection was formed historically by a mixture of observations and simple theo-
retical models. Both sources, observations and models, had severe limitations. For
instance we associate reconnection with a very fast, almost explosive process of energy
release. However, a change of the magnetic structure might also occur with a lower
energy output or on a slower time scale. These events may be equally important for
the magnetic structure and can easily escape our observations, either because they
are very different from standard reconnection and we do not recognize their signature,
or they are just too small to be detected with current observational resolution.

With respect to the second point, we should be aware of the fact that processes
analogous to reconnection are also known in other fields of physics. For instance, a
process very similar to magnetic reconnection is known in hydrodynamics as recon-
nection of vortices, sometimes also called cross-linking or cut and connect (Kida and
Takaoka, 1994). Vortices can also reconnect in superfluids, but here they are quan-
tized string-like objects (Koplik and Levine, 1993). Similar processes are known for
cosmic strings (Shellard, 1987) and liquid crystals (Chuang et al., 1991). A remote
similarity exists also to what is known in knot theory as surgery of framed knots
(Kauffman, 1991), while in enzymology a process exists where topoisomerase recon-
nects strands of the DNA (Sumners, 1990).

2.2.1 Topological conservation laws
This section is intended to provide a background for understanding magnetic

flux conservation, field line conservation, helicity conservation and their mutual
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relation. In the following we assume that we have a fluid in a domain D ⊂ IR3 with
a velocity field v(x, t) satisfying for simplicity v ·n|∂D = 0. More general boundary
conditions can be considered as well but yield no further insights for our purposes. We
also assume that the velocity field is at least C1, that is continuously differentiable.
Under these conditions the flow F(x, t) of v, defined by

∂F(x, t)
∂t

= v(F(x, t), t) with F(x,0) = x, (2.16)

exists for all t ∈ [−∞,∞] and is a diffeomorphism of D. This means that for any
given t F maps D onto itself, that this mapping is differentiable, and that its inverse
F−1(x, t) = F(x,−t) is also differentiable (see e.g., Abraham et al., 1983, p. 245).

F allows us to follow any geometrical object, like a line or surface, advected by the
flow field. For instance a point P(0) advected by the flow is found a time t later in
P(t) = F(P(0), t). Similarly a line L(0) at t = 0 is transported to L(t) = F(L(0), t).
Note that due to the differentiability of the flow the topology of the advected objects
is preserved: that is, a line remains a line, i.e. it cannot be cut or shrunk to a point.
If the line were closed it would remain closed and if it were knotted the type of
knottedness would be preserved as well. These objects advected by the flow are
refered to as comoving.

The transport of geometrical objects by the flow can be used to define a transport
of fields in D. In the simplest case we have a scalar field α(x) at time t = 0 and define
the field to be constant for any comoving point, that is

α(F(x, t), t) := α(x) ⇔ α(x, t) := α(F(x,−t)). (2.17)

This implies an equation of evolution for the field,

∂

∂t
α+v ·∇α = 0 ⇒ α(F(x, t), t) = const. (2.18)

The field α is said to be a passive scalar or to be frozen-in.
The transport of vector fields can now be derived from the transport of a passive

scalar by representing the vector field in terms of scalar fields. In IR3 there are two
basic methods by which a vector field may be represented in terms of scalar fields.
First we can represent any vector field by a set of six scalar fields in IR3,

A(x) =
3∑

i=1

αi(x)∇βi(x). (2.19)

Often the βi can be considered as (general curvilinear) coordinates and ∇βi are
the corresponding unit vectors (not necessarily normalized), while the αi are the
components of A with respect to the coordinate system βi. (Note, however, that a
proper coordinate system requires ∇β1 ·∇β2 ×∇β3 �= 0, which is not required here.)
Transporting the six fields αi(x) and βi(x), i = 1 . . .3 according to (2.18) yields an
evolution equation for the vector field A,

∂

∂t
A+∇(v ·A)−v×∇×A = 0 ⇒

∫
C1(t)

A ·dl = const. (2.20)
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The last implication states that the integral over any comoving line or one-
dimensional manifold, C1(t), is constant in time. The evolution equation and its
integral form are the analogue of (2.18) for a vector field represented as (2.19).

The other basic representation of a vector field in IR3 is given by

B(x) =
3∑

i=1

∇αi(x)×∇βi(x). (2.21)

Again transportation of αi(x) and βi(x) yields an evolution equation and a corre-
sponding conserved integral of the form

∂

∂t
B+v ·∇B−B ·∇v+B ∇·v = 0 ⇒

∫
C2(t)

B ·da = const. (2.22)

The conserved integral here is an integral over any comoving two-dimensional surface.
We note that for a divergence-free field the evolution equation can be rewritten as

∂

∂t
B−∇×v×B = 0 for ∇·B = 0. (2.23)

In this form we recognize the induction equation (2.4) of ideal magnetohydrody-
namics. A similar equation can be deduced for the evolution of vorticity in hydrody-
namics in the limit of large Reynolds numbers and isentropic flow with p = p(ρ).

To complete our list of frozen-in fields we have to mention another representation
of a scalar field, namely

ρ(x) = [∇α(x)×∇β(x)] ·∇γ(x). (2.24)

Transporting α(x), β(x), and γ(x), the corresponding transport equation for ρ reads:

∂

∂t
ρ+∇· (v ρ) = 0 ⇒

∫
C3(t)

ρ d3x = const. (2.25)

An example of this kind of transport is the continuity equation for the mass density
in fluid dynamics.

For the mathematically interested reader, we note that the frozen-in fields α, A, B,
and ρ correspond to differential forms ωk of grade k = 0,1,2, and 3. The evolution
of the fields in time is given by so-called pull-back under the mapping F, and the
evolution equation is conveniently written with the help of the Lie derivative:

∂

∂t
ωk +Lvωk = 0 ⇒

∫
F(Ck,t)

ωk = const. (2.26)

The conservation of the corresponding integral over a k-dimensional domain is given
by the Lie-derivative theorem (see e.g., Abraham et al., 1983).

In addition to the representation with the help of scalar fields, a vector field can
be represented also as the derivative of a flow, as defined in (2.16),

B(FB(x, s), s) :=
∂FB(x, s)

∂s
. (2.27)

Here s is a parameter along the field line. Note that FB(x, s) is not a unique repre-
sentation of the field lines. Any positive monotonic function s′(s) can be used to
rescale the parametrization, FB(x, s′(s)). In this case (2.27) yields B∂s′/∂s for the
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Fig. 2.8. Transport of the flow of B by the flow of v.

corresponding vector field, which is proportional to B and therefore has the same
field lines.

Now we can transport the field lines of FB by the flow F. The condition for this
kind of transport (Hornig and Schindler, 1996) is

FB(F(x, t), t, s′(s, t)) = F(FB(x, t, s), t), (2.28)

and it is illustrated in Fig. 2.8. Here we have used on the left-hand side s′(s, t) instead
of s, since a field line is independent of a scaling of this parameter, and so the scaling
could change in time. Differentiating with respect to t and s leads to a differential
equation for the evolution of field lines,

∂

∂t
B+v(x) ·∇B(x)−B(x) ·∇v(x) = λB. (2.29)

Here the function λ is free and allows for changes of the field strength, which do not
affect the field lines. It is easy to check that an evolution according to (2.29) preserves
field lines together with properties such as linkage, knottedness, or ergodicity of field
lines. It is also easy to prove that the number of isolated null points is preserved.
It is less trivial to see that the local structure of null points, in particular the ratio
of eigenvectors of the linearization of B at the null, is conserved as well (see Hornig
and Schindler, 1996).

Relations between conservation laws
There are a number of relations between the five different conservation laws

(2.18), (2.20), (2.22), (2.25), and (2.29). In the following we will mention only those
relations which are relevant for magnetic reconnection. The full set of relations can be
deduced most conveniently from a formulation in terms of differential forms. Here the
application of the Lie derivative on the exterior product, as well as the commutation
of the Lie derivative with the exterior derivative and the interior product, yields
a large number of relations between different conservation laws (see e.g., Frankel,
1997).

Regarding the relations relevant for magnetic reconnection we first note that a
conservation of a line density A as given by (2.20) implies the conservation of the
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B = ∇×A in the form of (2.22). The reverse implication does not hold, but we
can make the following weaker statement: A flux-conserving, divergence-free field
B possesses a vector potential A which is frozen-in according to (2.20). The proof
(Hornig, 1997) uses the gauge freedom in order to find a vector potential which is
frozen-in.

∂

∂t
B−∇×v×B = 0 ⇒ ∂

∂t
A−v×∇×A = −∇Φ

A → Ã = A+∇Ψ with
dΨ
dt

= Φ−v · (A+∇Ψ)

⇒ ∂

∂t
Ã+∇(v · Ã)−v×∇× Ã = 0. (2.30)

This in turn implies that the product h = A ·B, the helicity density, is frozen-in as
a scalar density in the form of (2.25),

∂

∂t
A ·B+∇· (v A ·B) = 0. (2.31)

The helicity density becomes well defined, i.e. a gauge invariant quantity, if it is
integrated over a simply connected volume V with vanishing normal magnetic field
on the boundary ∂V , (Moffatt, 1978).

H(B) :=
∫

V

A ·B d3x for B ·n|∂V = 0. (2.32)

It is a measure of the linkage of magnetic flux in the volume and therefore a topo-
logical measure of the magnetic field in V . The homogeneous Maxwell’s equations
yield a balance equation for the helicity density:

∂

∂t
A ·B︸ ︷︷ ︸

hel. density

+∇· (ΦB+E×A︸ ︷︷ ︸
hel. current

) = −2E ·B︸ ︷︷ ︸
hel. source

(2.33)

Here Φ is the electric potential, i.e., E = −∇Φ − ∂A/∂t. For an ideal Ohm’s law,
E+v×B = 0, the helicity source term vanishes and the helicity current becomes

h = vA ·B+(Φ−v ·A)B.

The second term is not physically relevant and can be made to vanish for a certain
gauge of the vector potential as used in (2.30). This leads in turn to (2.31).

Another important relation is that for a field B the conservation of flux
∫

B ·da
according to (2.22) implies a conservation of field lines (2.29). This is easy to prove,
since we can choose the free function λ in (2.29) as λ = ∇·v. Thus a flux-conserving
evolution is also field line conserving. The reverse implication however does not hold
in general.

Preparation for reconnection: detachment of a drop
Magnetic reconnection can be characterized as a localized breakdown of flux

conservation in the form of (2.22). However, this breakdown occurs in a subtle way,
such that the system is still flux conserving in many respects. This distinguishes
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Fig. 2.9. The detachment of a drop as an example of reconnection of a scalar
quantity.

reconnection from other dissipative processes which also violate the conservation law
(2.22). In the following simple example, reconnection of a scalar quantity is used
to demonstrate some basic properties of reconnection, before we turn to the more
complicated reconnection of the vector quantity B.

Consider the simple example of “reconnection” of a scalar quantity as sketched
in Fig. 2.9. The figure shows the detachment of a drop in a system characterized
by a scalar quantity P which distinguishes the black (P = 1) and white (P = 0)
phases. Although not explicitly shown in the figure we assume that there is a smooth
transition between P = 1 and P = 0, so that P is a continuous quantity. The quantity
P could be, for instance, a parameter characterizing the composition of a fluid where
the black phase is heavier than the white phase. The unstable situation of the heavier
fluid on top of the lighter fluid can then lead to a process as sketched in the figure. The
physical system shown can be mathematically described by an equation determining
the evolution of the velocity of the fluid, e.g., a Navier–Stokes equation, and an
equation for the transport of the scalar quantity P by the flow. Since P is just a
local property of the fluid it is natural to assume that the latter equation reads

∂

∂t
P (x, t)+v ·∇P (x, t) = 0. (2.34)

The same equation would hold if P were the mass density of an incompressible fluid.
We now assume that we have solved the Navier–Stokes equation and are left with

a physical, i.e., smooth, velocity field v. The arrows in Fig. 2.9 indicate the direction
of the flow in the various time steps. At the critical time when the detachment of
the drop occurs the velocity field will show a stagnation flow. Surprisingly however,
the determination of the evolution of P from (2.34) can never show a detachment of
a drop. The reason for this is that for any smooth velocity field it takes an infinitely
long time to transport a fluid element to the stagnation point, which is necessary for
detachment. In order to see this we choose a coordinate system such that the inflow
direction is, let us say, the x axis and the stagnation point is located at the origin.
Then the velocity vx along the x axis can be expanded at the stagnation point as a
series in x: vx = −k2x+O(x2). The time it takes the flow to transport a fluid element
over the last ε distance to the origin is

Tε =
∫ t(0)

t(ε)
dt =

∫ x=0

x=ε

1
vx

dx >
1
k2 (− ln(0)+ ln(ε)) = ∞. (2.35)
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Thus any smooth flow will lead only to an increasing thinning of the neck of the drop
but never to detachment in any finite time.

However, since it is an observational fact that drops can detach, the underlying
equation (2.34) must be incorrect. That is, a term has to be added in the equation,
which becomes relevant if length scales in the system become sufficiently small. It
is obvious this has to occur at some point. Certainly by the time the width of the
structure reaches the order of the distance between molecules, advection with the
fluid velocity v becomes meaningless, and the equation has to be modified in some
way. This can be accounted for by introducing a term r(x, t) on the right-hand side
of Eq. (2.34),

∂

∂t
P (x, t)+v ·∇P (x, t) = r(x, t). (2.36)

We do not know much about the nature of this term, except that it has to be negligible
when compared with v ·∇P (x, t), excluding those points where the latter vanishes.
The value and profile of r(x, t) turn out to be almost irrelevant for detachment to
occur. It must only be of the right sign, or if it is a fluctuating quantity, have a
time average of the right sign. The reason for this is that the width of the structure
decreases exponentially with time, a result of the stagnation flow, and so the term
on the right-hand side will, sooner or later, be sufficient to trigger detachment.

This is an important property of the system under consideration. The nonideal
term on the right-hand side is essential for “reconnection” to occur, but its value and
profile are not important since the process adjusts for this. In magnetic reconnection
we find a very similar situation. The analogue to (2.36) is Ohm’s law and the resistive
term ηj, for instance, can play the role of the nonideal term r(x, t).

Another important property of this example is that despite the nonideal term
r(x, t) the process is still ideal in many respects. In particular we can rewrite
Eq. (2.36) as

∂

∂t
P (x, t)+w ·∇P (x, t) = 0 (2.37)

if we express r = −δv ·∇P and define w = v+δv. Of course the new velocity w is not
smooth, since ∇P vanishes at the point of detachment where r �= 0. This requires a
singularity in δv, and consequently in w, of the type |δv| ∼ 1/|∇P |. Contrary to the
case of a smooth transport velocity (Fig. 2.10), this singular transport velocity w does

Fig. 2.10. No detachment in a finite time for a smooth v(x) ∼ (−x, y,0)!
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Fig. 2.11. Detachment is possible for a singular flow w ∼
(

− x
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x2 +y2 ,0
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indeed lead to a detachment as Fig. 2.11 shows. In particular for a generic saddle
point of the form P ∼ a− bx2 + cy2 this implies a singularity like wx ∼ −1/x along
the inflow direction. A calculation analogous to (2.35) shows that the time it takes
to transport a level line of P onto the stagnation point is now finite,

Tε =
∫ t(0)

t(ε)
dt =

∫ x=0

x=ε

1
wx

dx = ε2/2. (2.38)

2.2.2 Conditions for magnetic reconnection to occur
From Section 2.1 we have already a good idea of the two-dimensional, i.e.,

standard, notion of magnetic reconnection. Reconnection in three dimensions comes
in more variants than in two dimensions, some of which are far from fully explored
yet. Because of this, and since we want to maintain the highest level of generality,
we will start by defining reconnection in as broad terms as possible. We first infer
properties from this definition before specializing to certain configurations.

Within the broadest possible definition of magnetic reconnection, i.e., in the spirit
of the theory of general magnetic reconnection (Schindler et al., 1988; Hesse and
Schindler, 1988), magnetic reconnection requires only a change in the magnetic
connectivity of plasma elements. An ideal plasma evolution, governed by

E+v×B = 0 ⇒ ∂

∂t
B−∇×v×B = 0, (2.39)

implies the conservation of magnetic flux (2.23), as well as field lines (2.29), and
hence the connectivity of plasma elements cannot be changed. Therefore any form of
reconnection requires a nonideal term N, which we add here to the right-hand side
of Ohm’s law

E+v×B = N. (2.40)

Within the framework of resistive magnetohydrodynamics N would represent ηj, the
resistive term in Ohm’s law. However, depending on the parameter regime, other
terms, such as the electron inertia term (Chapter 3), or the electron pressure tensor
(see in particular Sections 3.1 and 3.2), are also thought to be responsible for recon-
nection. In order to keep the most general formulation we will not refer to any
particular choice of N, but rather investigate the properties which N has to have for
reconnection to occur.
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First we note that if N can be represented as

N = ∇Φ+u×B (2.41)

we can rewrite (2.40) as

E+(v−u)×B = ∇Φ (2.42)

⇔ ∂

∂t
B−∇×w×B = 0 for w = v−u. (2.43)

Hence, while the connection of plasma elements might change because the field lines
move with a velocity different from the plasma elements (v), the topology of field
lines remains the same since there exists a velocity w with respect to which the
field is frozen-in (Hornig and Schindler, 1996), sometimes called a flux transporting
flow. This implies also that there is no release of magnetic energy beyond that of an
ideal relaxation of the field. A topological change of the magnetic structure on the
other hand can release huge amounts of energy stored in the magnetic field. Thus
this weak form of disconnection of plasma elements where w, or u, exists but does
not coincide with the plasma velocity, is often not considered as reconnection and
referred to instead as slippage, with u being the slippage velocity. For an illustration
see Fig. 2.12.

Here a remark concerning the difference between conservation of magnetic flux
(2.23) and conservation of field lines (2.29) is indicated. Since we began with the
definition of magnetic reconnection as a change of connectivity of plasma elements,
we could have based our analysis on the more general equation of field line preserva-
tion (2.29), rather than flux conservation. We have already noted that conservation
of magnetic flux implies conservation of field lines. The reverse, however, does not
hold. A simple example, which is line conserving but not flux conserving, is the
resistive dissipation of a line current. The magnetic field consists of circular field lines
enclosing the current and these field lines are preserved if the current distribution
decays and broadens under a resistive dissipation of the current. The magnetic flux
per unit length however decreases and hence the system is not flux conserving.
Another set of fields with this property are linear force-free fields (∇ × B = αB,
α = const.), which also dissipate magnetic flux without changing the topology

Fig. 2.12. Example of a flux tube crossing a nonideal region (gray) where the trans-
port velocity of the magnetic flux w differs from the plasma velocity v while outside
the nonideal region the plasma is ideal (v = w). The black and gray cross-sections
are moving with the plasma velocity. The black cross-sections always remain in
the ideal domain while the gray cross-section passes the nonideal region and is
therefore later detached from the flux tube.
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of field lines. The most general form of N which preserves the topology of field
lines is

N = Aλ̃B +u×B ∇×Aλ̃B = λ̃B. (2.44)

Note that this representation of N includes the form (2.41) for λ̃ ≡ 0. In the following
we will, however, always refer to magnetic flux conservation and correspondingly to
(2.12), rather than to field line conservation, since magnetic reconnection is a process
which is fast compared to the dissipative time scale, and hence we can ignore the
difference between the two in this respect.

For certain forms of Ohm’s law we can directly deduce that N is of the form
(2.41) without referring to a particular process or magnetic field. Aside from the ideal
Ohm’s law, which trivially satisfies (2.41), important examples are the inclusion of a
density-dependent pressure term (2.45) and/or a Hall term (2.46) in Ohm’s law. In
the latter case the transport velocity w turns out to be the electron bulk velocity,

E+v×B = − 1
en

∇Pe(n) ⇒ w = v, (2.45)

E+v×B =
1
en

j×B ⇒ w = ve = v− 1
en

j. (2.46)

Solutions for nonvanishing B
Note that (2.41) is a nonlocal criterion. Nonlocal here means that for any

B which does not vanish at a certain point, we can always find a solution (Φ,u) of
(2.41) in the neighborhood of the point. The crucial question is whether this solution
exists in the whole domain. Solutions (Φ,u) of (2.41) for given N and B can be found
as follows. We split (2.41) into equations parallel and perpendicular to B,

N| = ∇|Φ, (2.47)

N⊥ = ∇⊥Φ+u×B. (2.48)

We can now solve (2.47) by integrating the potential Φ along magnetic field lines and
then use this solution to determine u from (2.48). The solution of (2.47), starting
from a surface transversal to the magnetic field with Φ(x(s = 0)) = 0, is

Φ(x(s)) =
∫ s

s′=0
N(x(s′)) · B(x(s′))

|B(x(s′))| ds′ dx(s)
ds

=
B(x(s′))
|B(x(s′))| . (2.49)

The corresponding solution for u is

u =
B× (N−∇Φ)

B2 . (2.50)

The integration of Φ, however, may fail if the magnetic field lines are closed. For
closed field lines the integral in (2.49) has to vanish, which is a nontrivial condi-
tion on N. This argument also applies to ergodic field lines. If the magnetic field
extends beyond the domain under consideration, i.e., if magnetic field lines cross the
boundary, corresponding boundary conditions for Φ have to take into account the
existence of an external field. For instance, a frozen-in external magnetic field would
require Φ(x0) = Φ(x1) for any pair of points (x0,x1) connected by a field line in
the external domain. If in addition the external field is static a possible solution for
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Fig. 2.13. Two flux tubes of a field of nonvanishing B in a bounded domain. The
flux tubes undergo a nonideal evolution and are shown before (t = 0) and after
(t = 1) the process. Bottom row: The view from above shows a behavior reminiscent
of reconnection.

the external potential would be Φ = 0, which implies u = 0 on the boundaries. An
example of the relevance of the boundary conditions is shown in Figs. 2.13 and 2.14.

Solutions at null points of B
Aside from boundary conditions there is another impediment to finding a

solution to (Φ,u) from (2.41). This arises, for instance, if B vanishes in the nonideal
region. Such points, which are generically isolated, are called null points. Since the
direction of B at a null point is undefined the splitting into (2.47) and (2.48) breaks
down at the null itself. A careful analysis of flows u in the vicinity of the null point
shows that certain N, which generate changes in the ratio of eigenvalues of the
linearization of B at the null, require diverging derivatives of u at the null (Hornig
and Schindler, 1996). While it is debatable whether such a change of eigenvalues is
already a change of the topology, a bifurcation of null points is definitely a change of
topology and requires an infinite velocity u at the time of the bifurcation. Therefore
magnetic null points are locations where the topology of the magnetic field can
change such that no solution of (2.41) exists. While for B �= 0 the nonexistence of a
solution (Φ,u) is always due to the lack of a global solution matching given boundary
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t = 0 t = 1

Fig. 2.14. Two possible evolutions of the external field for the process sketched
in Fig. 2.13. Top row: The external field is static and therefore the evolution
of the internal field causes a change of the topology (reconnection). No slippage
solution exists in this case. Bottom row: The external field follows the motion of
the flux tubes at the upper boundary, which allows for a slippage solution. Here
the topology of the field does not change.

conditions, at null points the nonexistence can be the result either of the lack of
a local solution (a result of a bifurcation, or a change of eigenvalues of the null),
or due to a lack of a global solution. Examples for the latter case can be found in
Section 2.4.

Solutions for E ·B = 0
Another particular case occurs if N‖ vanishes. Since N ·B = E ·B ≡ 0 this

translates to a condition on the electromagnetic field. Note that the quantity E ·B is
a topological invariant of the electromagnetic field and is therefore conserved under
ideal dynamics. In this case Φ has to be constant along field lines and it is solely deter-
mined by boundary conditions on all flux connected to the boundaries. In particular
for boundary conditions Φ|∂V = 0 we have the trivial solution Φ ≡ 0 and the solution
for u reads

u =
B×N

B2 . (2.51)



38 Basic theory of MHD reconnection

Thus there always exists a solution for u unless B has null points and N is non-
vanishing, or not sufficiently fast vanishing toward those null points. The assumption
N‖ ≡ 0 requires that, for generic three-dimensional magnetic null points, N has a
null point at the same location as B, since the field lines close to a generic three-
dimensional isolated null point take on all possible directions. Thus any nonvanishing
N in the vicinity of the null would violate the condition N‖ ≡ 0. The condition
N = 0 where B = 0 is very unlikely to be satisfied in a real plasma. However, in
the two-dimensional case, for a long time the standard situation in which magnetic
reconnection has been discussed, N ·B ≡ 0 is a typical case. In particular for N = ηj,
we have N ·B ≡ 0 since the current is perpendicular to the magnetic field. In two
dimensions the generic null points of B are either elliptic (O-points) or hyperbolic
(X-points). If N does not vanish at these points, singularities in u occur, which
are indicative of either reconnection or a destruction/generation of magnetic flux
as described below. E · B ≡ 0 is therefore the natural generalization of the two-
dimensional case to three dimensions.

Since (2.41) is the most general form of a nonideal term leading to an ideal induc-
tion equation for arbitrary transport velocities w, we may conclude that any other
form of N has to induce a change in the topological structure of the magnetic field.
That is, N allows for a change of the topology if and only if

N �= ∇Φ+u×B. (2.52)

Above we identified situations where this condition is satisfied, or, in other words,
where no solution (Φ,u) representing N exists. This is certainly a necessary condition
for reconnection, but it is questionable whether all processes which change field line
connectivity should be called reconnection. At least for the two-dimensional case we
can clearly distinguish reconnection from a process where magnetic flux is lost or
generated, as demonstrated below.

2.2.3 Two-dimensional reconnection
Let us assume we have a purely two-dimensional magnetic field, B(x, t) =

Bx(x, y, t)ex +By(x, y, t)ey in Cartesian coordinates, that is, the component
perpendicular to the x, y plane, Bn, vanishes. The electric field can be decomposed
into a component normal to the plane and a component tangent to the plane,
Et(x, t) = Ex(x, y, t)ex +Ey(x, y, t)ey. Since ∇×Et = −∂Bn/∂t = 0 the tangential
component of the electric field has to be a gradient of a scalar potential. It can there-
fore not induce any change in connectivity of the magnetic field and we can without
loss of generality assume Et = 0. This implies (∇Φ)t = 0 and hence ∇Φ is at most a
constant vector normal to the plane, ∇Φ = Nc. Moreover, we have E ·B = N ·B = 0.
Under these conditions we can always define a flux conserving flow,

w := v−u = v− B× (N−Nc)
B2 . (2.53)

We first note that the flow w is smooth with the exception of points where B = 0
and N �= 0. Any nonideal evolution therefore manifests itself at the null points of the
configuration.
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The constant field Nc reflects the possibility of a constant electrostatic field normal
to the plane. Many situations require Nc = 0, e.g., an ideal plasma flow on the
boundary (N = 0, u = 0). Therefore we will in the following assume that Nc = 0.
Whenever this assumption is not satisfied the formulas can easily be generalized by
subtracting Nc from either N or E.

The generic null points of a two-dimensional magnetic field are hyperbolic
(X-points) and elliptic (O-points) null points. If N does not vanish at the null
point, the flow w will have a singularity since |w| ∼ 1/B. For a generic null, the
modulus |B| is locally, that is in lowest order near the null, proportional to the
distance (x) from the null. Thus the singularity is of type 1/x. The topology of
the magnetic field near the null point determines the structure of the w-flow. At
an O-point, for instance, w is either converging onto or diverging away from the
null point (Fig. 2.15), depending on the direction of N relative to the orientation of
magnetic field or the current, respectively.

Consider first the converging case. Any point advected by this flow moves towards
the null point and indeed reaches the null point in a finite time

T =
∫ T

0
dt =

∫ 0

x0

dt/dx dx =
∫ 0

x0

1/wxdx ∼ x2
0/2. (2.54)

If we extend the two-dimensional magnetic field in the third dimension (z-direction)
with a translational invariance, the O-point becomes a null line. Any cross-section
of the magnetic field is advected in a finite time onto this null line, and “vanishes”
there together with the magnetic flux threading it. We can determine a rate of loss
of magnetic flux at the O-point (here r,φ, z are cylindrical coordinates at the null
point), by integrating the magnetic flux over a comoving surface spanned by the
invariant and the radial direction (see Fig. 2.16). If the normal of the surface is chosen
along the magnetic field the rate of annihilation of magnetic flux is negative,

dΦ
dt

=
d
dt

∫
C

B ·n da = −
∮

E ·dl = −
∫

O-line
E‖ dl. (2.55)

Note that in the loop integral over the electric field only the part along the O-line
contributes, while the part along the outer edge of the surface vanishes since this
line is comoving and hence the electric field vanishes there. For the diverging case
the flow is reversed and we have a production of magnetic flux at the O-point, or,

Fig. 2.15. Manifestation of loss (a) or creation (b) of flux at an O-point.



40 Basic theory of MHD reconnection

Fig. 2.16. Orientation of the surface (gray square) with respect to which the rate
of loss/generation of flux is measured. The direction of the magnetic field lines
(circles) determines the direction of the normal vector of the surface.

Sin

Sout

Fig. 2.17. Two-dimensional reconnection, the orientation of the flow depends on
the orientation of N with respect to the orientation of the X-type magnetic field.

to be more precise, the system evolves as if there is a production of magnetic flux at
the O-point. In this case (2.55) yields a positive rate.

For a hyperbolic null the structure of w at the null point is shown in Fig. 2.17.
The singularity at the X-point scales in the same way (∼1/x) as for the O-point, but
the structure now resembles that of a stagnation flow, that is, there is an inflow and
an outflow direction. Correspondingly a point advected by this flow along the inflow
separatrix (Sin in Fig. 2.17) is transported in a finite time onto the null point. Here it
is not lost in the singularity, but rather re-emerges along the outflow separatrix (Sout

in Fig. 2.17), since the transport away from the null also takes only a finite time.
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Fig. 2.18. Transport of cross-sections in the singular flow of a two-dimensional
reconnection process.

If we consider the translational extension of the two-dimensional configuration in
the third (invariant) direction, a surface in the inflow plane (i.e., the plane spanned
by the inflow separatrix Sin and the invariant direction) follows the same evolution.
This is demonstrated in Fig. 2.18. In close analogy to (2.55) we find the rate at which
the magnetic flux is reconnected, either by considering the rate at which magnetic
flux is transported onto the null line along the inflow separatrix, or at which the flux
emerges from the null line along the outflow separatrix. In both cases the result is
the same namely the electric field along the null line. We only have to be careful
with choosing the sign of the reconnection rate. If we choose the same convention as
in Fig. 2.16, i.e., a surface in the inflow direction with an orientation parallel to the
magnetic field, we can define:

dΦrec

dt
= − d

dt

∫
B ·n da =

∫
x-line

E‖ dl. (2.56)

In this way the reconnection rate is always positive.
Note that the type of singularity in w and the structure of the flow are here the

same as discussed in the example of the detachment of a drop.
Since X-points and O-points are the only generic null points in two dimensions

this case is exceptionally easy to analyze. Reconnection can occur only at X-points
and will arise whenever N−Nc does not vanish at the X-point, independent of the
physical mechanism which is responsible for the nonideal behavior. Annihilation or
dissipation of magnetic flux, as well as the reverse process of generation of magnetic
flux, manifests itself at O-points and can be clearly distinguished from reconnection.
Note that reconnection, even if it is driven by a dissipative term like ηj, does not
require the dissipation of magnetic flux. Dissipation of magnetic energy and dissipa-
tion of magnetic flux must be clearly distinguished.

2.2.4 Three-dimensional reconnection: E ·B=0
The crucial condition we have used to determine w in the two-dimensional

case was E ·B = 0. This suggests that we can try to replace two-dimensionality by the
more general condition E ·B = 0. Indeed this implies N ·B = 0 which in turn allows
for a representation of N as u×B and (2.53) holds just as in the two-dimensional
case. Again singularities in w can occur only at points with B = 0.

E ·B = 0 is much less restrictive than two-dimensionality for the magnetic field. In
fact the condition does not restrict the topology of the magnetic field, but only its
dynamics. Thus in principle every magnetic field, even if it has ergodic field lines, can
satisfy this condition provided the dynamics, i.e., the electric field, allow for it. Since
singularities in w can occur only at null points of B it seems as if we could obtain
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Fig. 2.19. Locally two-dimensional reconnection along a null line of an otherwise
three-dimensional magnetic field (E ·B = 0).

reconnection at isolated three-dimensional null points as well. However, reconnection
under E ·B = 0 can occur only at null lines and not at isolated three-dimensional null
points. This can be easily proved by noting that in the vicinity of a three-dimensional
null point B takes on every direction, so that N ·B = 0 requires N = 0. Thus N ·B = 0
together with N �= 0 indeed requires a locally two-dimensional configuration, i.e., in
the vicinity of the null point the magnetic field is tangent to a plane perpendicular to
N (see Fig. 2.19), and therefore the magnetic null point has to be part of a magnetic
null line.

Summarizing the results, we say that when E ·B = 0 reconnection occurs at X-type
null lines of the magnetic field provided we have a nonvanishing component N �= ∇Φ
along the null line. The rate of reconnected flux is given by the generalization of
(2.56) to a curved geometry,

dΦrec

dt
=

∫
E‖ dl. (2.57)

Here ‖ denotes the component parallel to the null line. If N is localized in the vicinity
of the X-type null line (hyperbolic null line) the process does not involve any loss
or generation of magnetic flux, as this can occur at an O-type null line only. This
process does not involve any change of the total magnetic helicity of a configuration
because the source term E ·B vanishes.

2.2.5 Three-dimensional reconnection: E ·B �= 0
Although the generalization discussed in the previous section covers a much

wider class of configurations than the pure two-dimensional cases, the condition
E ·B = 0, or N ·B = 0, respectively, is still very restrictive. In general we will have
N ·B �= 0 maybe except for very symmetric field configurations in, e.g., laboratory
plasmas. In particular the different terms of a generalized Ohm’s law responsible
for N �= 0, such as the resistive term, the electron inertia, or the pressure tensor,
do not imply N ·B = 0. Moreover null lines of the magnetic field are topologically
unstable, i.e., an arbitrarily small component of the magnetic field parallel to the
null line can turn them into regular field lines and violate E ·B = 0. This was recog-
nized by Schindler et al. (1988) and led to the development of a theory of general
magnetic reconnection (Hesse and Schindler, 1988; Hesse and Birn, 1993). Within
this theory only a localized nonideal region with a nonvanishing integrated electric
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field component parallel to the magnetic field is required for reconnection to occur.
This corresponds to a nonvanishing reconnection rate as given by (2.57) where ‖ now
denotes the component parallel to an arbitrary field line.

The criterion
∫

E‖ dl �= 0 coincides with the criterion (2.52) under the assumptions
that B �= 0 and N is localized. This can be proved as follows. First we note that
localized means that there exists an environment with N = 0 outside a finite domain
D where N �= 0. This is sketched in Fig. 2.20. We now integrate E along a closed loop
consisting of a magnetic field line crossing D and a material (i.e., comoving) line L in
the external ideal region. L lies in the ideal region and therefore the electric field in
the comoving frame vanishes, E′ = E+v×B = 0. Thus the integral over L does not
contribute to the loop integral; the change of magnetic flux enclosed by this loop is
given by the integral over the magnetic field line only, and is therefore nonvanishing.
This contradicts the generalized flux conservation (2.43) and hence N �= ∇Φ+u×B.
Therefore

dΦ
dt

=
d
dt

∫
B ·n da =

∮
E‖ dl �= 0. (2.58)

The conditions (2.52), or alternatively
∫

E‖ ds �= 0, are very general, and if used
as a definition for magnetic reconnection many nonideal processes would qualify as
reconnection. However, a more precise definition, similar to the one given in the
E ·B = 0 case, is hard to find since, in the general three-dimensional geometry, there
seems to be no clear distinction between a loss/generation of magnetic flux and
reconnection. The analysis of the model of a three-dimensional reconnection process
in the following section illustrates this property. This model shows among other
things that for this type of reconnection the three properties, nonvanishing of the
helicity source term, nonexistence of a flux-transport velocity and flipping of field
lines, are closely related. The flipping of field lines is demonstrated in Fig. 2.21 and it
is the result of following field lines being anchored in the ideal plasma surrounding the
reconnection region. Since the field lines, threading the nonideal region, are frozen-in
on both sides of the nonideal region, there is no unique velocity within the nonideal
region, but two different field line motions. This creates the impression of splitting
of field lines as they enter the nonideal region. This effect is well known from 2.5D
models (see, for example, Priest and Forbes, 1992). An important and unsolved
problem is the question about whether or not the corresponding flux tubes, of a

L

B

D

Fig. 2.20. Setup to prove that a nonvanishing
∫

E‖ ds along a magnetic field line
due to a localized nonideal region D contradicts flux conservation.
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Fig. 2.21. Splitting and flipping of magnetic flux in the process of reconnection in a
region of nonvanishing magnetic field. Reprinted with permission from G. Hornig,
Physics of Plasmas, 10, 2712. Copyright 2003, American Institute of Physics.

process as shown in Fig. 2.21, join again perfectly when they leave the nonideal
region. As we will see in the discussion of the model in Section 2.3 the answer is that
there is in general no perfectly reconnecting counterpart for an arbitrary flux tube
undergoing reconnection. However, for reconnection processes limited in time there
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Fig. 2.22. Sketch of E ·B �= 0 reconnection for two initially untwisted flux tubes.
It is assumed that the process is bounded in time. The cross-sections shown are
the particular cross-sections which are mapped onto each other during the process
(perfectly reconnecting cross-sections). There are no pairwise reconnecting field
lines, but the reconnecting flux tubes get twisted under reconnection. The resulting
twist is consistent with the helicity production. Reprinted with permission from D.
Pontin, G.Hornig and E. R. Priest, Geophysical and Astrophysical Fluid Dynamics,
98, 407. Copyright 2004, Taylor and Francis.

exist distinguished closed flux surfaces, i.e., flux tubes, which are mapped onto each
other. This effect is closely related to the helicity production in the process. While
one can argue that due to the small size of the reconnection region compared to the
volume of the magnetic flux undergoing reconnection, the production of helicity in
the nonideal region will in general be small compared to the helicity of magnetic
flux of the configuration, the helicity production has a non-negligible effect for the
connectivity of field lines. The effect is sketched in Fig. 2.22 for two flux tubes
undergoing reconnection. This rotation also shows that there cannot be a one-to-one
reconnection of field lines. This among other things will be demonstrated with the
example in the following Section 2.3.

2.3 Three-dimensional reconnection in the absence of magnetic
null points
G. Hornig

In this section we will demonstrate fundamental properties of three-dimensional
magnetic reconnection in the absence of null points of the magnetic field. We have to
distinguish here two principally different reconnection scenarios. In plasmas of fusion
devices, where the field closes upon itself after much less than a mean free path of the
electrons, any nonideal process starting on a certain field line will quickly propagate
along that field line and spread out along the whole torus. Thus the way field lines
map the reconnection region upon itself is important for this type of reconnection
and the nonideal domain is in the simplest case a toroidal domain. In astrophys-
ical plasmas, however, length scales along the magnetic field are most often larger
than the mean free path and the field lines are not necessarily closed, such that the
localization of the reconnection region along the magnetic field is crucial. This is the
generic type of reconnection in astrophysical plasmas and it is this scenario, where
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the nonideal region (diffusion region) is bounded in all three dimensions, on which
our model is based.

The analysis of three-dimensional magnetic reconnection in the absence of null
points is hampered by several facts. Firstly, there is in general no distinguishable
magnetic field line which, in analogy with the null line in the two-dimensional case,
defines where the reconnection occurs. Field lines are locally either hyperbolic or
elliptic, i.e., in the plane perpendicular to the magnetic field vector, the field shows
an X-type or an O-type structure. This property, however, does not distinguish an
individual field line but only certain domains, since with every hyperbolic (elliptic)
field line there exists a neighborhood of other hyperbolic (elliptic) field lines. Where
reconnection occurs will therefore not be determined by the local field topology, as
in the two-dimensional case, but by the dynamics prior to the onset of reconnec-
tion, e.g., by the location where current sheets form. This location can, but does not
necessarily need to, be determined by global topological features. Such features are
for instance particular field lines, called separators, which connect two null points.
Separators are the intersections of the two fan planes of the nulls and hence they
are located at the intersection of four different flux domains. So the field lines in the
vicinity of the separator are very sensitive to flows crossing the boundaries of the flux
domains, which in turn indicates that currents will build up easily along these field
lines (Section 5.2). Critical current densities which subsequently lead to reconnection
can, however, also build up in the absence of any topological distinguished field lines.
An appropriate measure to detect the sensitivity of a configuration to respond with
current sheets to an ideal deformation is the squashing factor (see Section 5.3). It
can be used to identify so-called quasi-separatrix layers where the field line connec-
tivity varies strongly and which are therefore preferred locations for the formation
of current sheets (Section 5.3).

Secondly, the clear distinction between reconnection and dissipation/generation
of magnetic flux, which we find in two dimensions, is not present in three dimen-
sions any more. Here, as we will see, both processes are closely related. The lack
of a clear distinction between reconnection and dissipation/generation of flux is due
to the absence of a general transport velocity for the magnetic flux. While in two
dimensions such a velocity always exists (Section 2.2.3), no analogue is present in the
general three-dimensional case, i.e., if E ·B �= 0 (Hornig, 2001; Priest et al., 2003a).
Unfortunately this is the relevant case for reconnection in three dimensions.

Nevertheless, we can investigate the evolution of magnetic flux for B �= 0 recon-
nection, provided the nonideal region is limited to a finite region (D) which does not
contain any closed flux. Under these conditions all the flux in the nonideal region (D)
is connected to the ideal environment. Then we can follow the evolution of magnetic
flux inside D by following the magnetic flux frozen in the ideal external region. There
is no flux-conserving velocity which satisfies w = v⊥ on the whole boundary of D,
but we can define a flux-conserving velocity w inside D which satisfies w = v on
either the part of the boundary where flux enters D or where it leaves D. We can
call them, say, win and wout. However, contrary to the two-dimensional case, for the
general three-dimensional case win and wout will not coincide inside D. This is the
nonexistence of a single flux-transporting velocity as stated above. The construction
is shown in Fig. 2.23.
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Fig. 2.23. The construction of the pair of flux-transporting velocities win and wout
in the nonideal region D.

Comparing the two velocities win and wout at any cross-section within D shows
how the nonidealness acts on the connectivity of plasma elements across D. We will
use this method to investigate a simple model of three-dimensional reconnection as
described by Hornig and Priest (2003).

2.3.1 The model
The model consists of an incompressible (∇·v = 0) kinematic solution of the

stationary resistive MHD equations:

E+v×B = ηj, (2.59)

∇×E = 0, (2.60)

∇·B = 0, (2.61)

∇×B = μ0 j, (2.62)

with a localized nonideal term ηj. It satifies the stationary continuity equation,

∇· (ρ v) = 0, (2.63)

for instance with a uniform plasma density (ρ = const.). The model can be easily
modified to include the Hall term, j×B/(ne), in addition to the convective term
v×B on the left-hand side of Ohm’s law (2.59). This results in a term ve ×B up to
terms of order me/mi. Thus the plasma velocity is replaced by the electron velocity
and idealness now refers to the magnetic field being frozen in the electron flow instead
of the plasma flow, but this substitution does not affect the main results.

We start by prescribing the configuration of the magnetic field as a simple super-
position of an X-type linear field in the x–y plane with a homogeneous field in the z

direction,

B = B0 (y/Lex +k2x/Ley +ez). (2.64)

Here k determines the magnitude of the electric current

j = (k2 −1)B0/(Lμ0)ez. (2.65)

The advantage of this model is that we can integrate the field lines analytically from

∂X(s)
∂s

= B (X(s)) (2.66)
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and so obtain the equations X(x0, s) of the field line that passes through an initial
point x0. The components of X(x0, s) and of the corresponding inverse mapping
X0(x, s) are:

X = x0 cosh (B0ks/L)+y0/k sinh (B0ks/L), (2.67)

Y = y0 cosh (B0ks/L)+x0k sinh (B0ks/L), (2.68)

Z = z0 +B0s, (2.69)

X0 = x cosh (B0ks/L)−y/k sinh (B0ks/L), (2.70)

Y0 = y cosh (B0ks/L)−xk sinh (B0ks/L), (2.71)

Z0 = z −B0s. (2.72)

Note that the parameter s, which parametrizes the magnetic field line, is not the
distance λ along the field line, but is related to it by

ds = dλ/B, (2.73)

where B = |B|.
If we set Z0 = 0 and solve Eq. (2.72) for s

s = z/B0, (2.74)

we can replace s in Eqs. (2.70) and (2.71). The corresponding expressions X0(x, y, z)
and Y0(x, y, z) are Euler potentials for the magnetic field, i.e.,

B = ∇(
√

B0X0)×∇(
√

B0Y0). (2.75)

This property is important for comparison of our results with the theory of “general
magnetic reconnection” developed by Schindler et al. (1988) and Hesse and Schindler
(1988).

Equation (2.60) implies that the electric field is the gradient of a scalar function
φ. Inserting this in Eq. (2.59) yields

−∇φ+v×B = η j. (2.76)

In order to have a localized nonideal term ηj we have to localize the resistivity, since j
is constant. Note that if we prescribe η we can always calculate φ from the component
of Eq. (2.76) parallel to B, (∇φ)‖ = −ηj‖, by integrating along the field lines:

φ = −
∫

η j‖ dl+φ0 = −
∫

η j ·Bds+φ0. (2.77)

To obtain an analytical solution for φ we prescribe η as the following function of
the coordinates x0, y0 of field lines in the plane z = 0 and the parameter s along the
field lines:

η(x0, y0, s) = η0 exp(−(B2
0s2 +x2

0 +y2
0)/l2). (2.78)
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Substituting Eqs. (2.70), (2.71), and (2.74) in the expression for η yields η(x, y, z).
This function is positive, has a maximum η0 at the origin, and is exponentially
decreasing with distance from the origin, such that at a distance of 2l its value is
less than 2% of the maximum. We call this region inside the surface η = 0.02ηmax

the nonideal region D. The shape of this domain is a sphere distorted towards a
tetrahedron by the hyperbolic structure of the magnetic field (see Fig. 2.24).

The above method of prescribing the functional form of η is used for the sake of
simplicity and to easily demonstrate the qualitative evolution of magnetic flux. Since,
as we will see, φ is the relevant quantity for our main results, only the localization of
the product ηj‖ matters. In particular, it is not important whether this localization
is obtained by a localization of η or of j‖ or, which is the physically most plausible
case, a combination of both. Moreover, given a more general Ohm’s law, it does not
matter whether the nonidealness results from a resistive, inertia, or pressure term in
Ohm’s law. Important here is only the existence of a component parallel to B, which
is localized and is not the gradient of a scalar.

Now we can integrate φ from Eq. (2.77) starting with φ = φ0(x0, y0) in the
plane z = 0:

φ(x0, y0, s) = −
√

π B0 η0 l (k2 −1) erf(B0 s/l)
2Lμ0 exp [(x2

0 +y2
0)/l2]

+ φ0(x0, y0). (2.79)

Again we can use Eqs. (2.70), (2.71), and (2.74) to replace (x0, y0, s) by (x, y, z)
in the expression for φ. This allows us to calculate ∇φ(x, y, z) and to deduce the
perpendicular component of the plasma velocity

v⊥ = (−∇φ−ηj)×B/B2. (2.80)

The resulting analytical expression is too long to be presented here explicitly but
can be calculated by any computer algebra system immediately. Instead we use our
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Fig. 2.24. The nonideal region D at 2% of the maximum value of η together
with the hyperbolic flux tube enclosing D (parameters: k = 2, L = 10, l = 1).
Figures 2.24, 2.25, and 2.27–2.33 are reprinted with permission from G. Hornig,
Physics of Plasmas, 10, 2712. Copyright 2003, American Institute of Physics.
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freedom to add a component parallel to B to set the z component of the plasma
velocity to zero,

v = v⊥ − (v⊥)zB/B0. (2.81)

This is convenient to show plots of the vector field in z = const. planes, without
suppressing any information, since now the velocity has only x and y components.

The freedom to choose φ0(x0, y0) results from the fact that, for a given magnetic
field, Ohm’s law (2.76) can be decomposed into an ideal and a nonideal part,

−∇φnon-id. +vnon-id. ×B = η j, (2.82)

−∇φid +vid ×B = 0. (2.83)

Identifying φ0 with φid, we see that this is the source of an ideal plasma flow which
can be superimposed on any reconnection solution. In particular, we choose

φ0(x0, y0) = ϕ0 x0 y0/l2. (2.84)

This choice is motivated by the following consideration. The use of Eqs. (2.70), (2.71),
and (2.74) yields the corresponding expression in terms of (x, y, z) for (2.84). This
choice of φ0 corresponds to vid being a stagnation flow. In particular, in the z = 0
plane it yields

vid(z=0) = φ0/(B0 l2) (−xex +y ey). (2.85)

Thus, in the z = 0 plane the flow structure of the ideal flow is analogous to the
structure of flow in classical two-dimensional reconnection. Contrary to the two-
dimensional case, vid is not singular at the origin, since ideal flows can cross the
quasi-separatrix surfaces (y = ±kx) when the z component of B is nonvanishing. It
is only when B = 0 that this results in a singularity in vid.

Before we come to explicit examples two comments may help to clarify the physical
nature of the solutions. Firstly, as mentioned above, the velocity is divergence-free,
which can be derived from the fact that the z component of curl Eq. (2.76) reduces
to B0∇·v = 0 due to the constant Bz and the vanishing vz. Therefore the solutions
satisfy the continuity equation for a uniform density ρ.

Secondly, our choice of B leads to ∇ × (j×B) = 0. Thus we can find a plasma
pressure p, such that

−∇p+ j×B = 0, (2.86)

i.e., the solutions satisfy the momentum balance in the limit of slow flows (much
smaller than the sound and Alfvén speeds). Moreover, in Section 2.3.4 we will use
velocity fields which have a stagnation point in close similarity to the flows which
are known to exist for the two-dimensional problem (see, for example, Priest and
Forbes, 2000) and for which solutions to the full momentum balance exist. Note that
the nonvanishing Bz component does not alter the momentum balance compared to
the two-dimensional case, since here j has only a z component. Thus our kinematic
solutions are in a certain limit solutions to the full MHD equations.
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2.3.2 Purely rotational solutions
We start by analyzing the situation when φ0 ≡ 0. For this case the solution

for v vanishes in the z = 0 plane and shows counter-rotating flows above and below
the nonideal region, as shown in Fig. 2.25. The rotational flows are distorted by the
hyperbolic structure of the magnetic field. Close to the z = 0 plane they are almost
circular. For large values of z they become highly squashed. This effect grows with
the ratio l/L.

Outside the nonideal domain D, nonzero flow is limited to regions where φ is non-
zero. Since φ is constant along field lines in the ideal domain, this region consists
of all field lines which are threading D. This domain is itself a flux tube, called a
hyperbolic flux tube (see Titov et al., 2002, for an exact definition of this term), as
shown in Fig. 2.24.

The existence of rotational flows outside D (as shown in Fig. 2.25) can be proved
for very general conditions as follows. Consider the electric field along the central
field line, x = y = 0,

E(0,0, z) = B0η0(k2 −1) exp (−z2/l2)/(Lμ0)ez. (2.87)

It leads to a potential difference along the central field line above and below D

given by

φ(0,0,±∞) = ∓
√

π B0 η0 l (k2 −1)
2Lμ0

. (2.88)

Note that these limiting values are already reached to high accuracy at distances
of z/l > 2. With the same accuracy any field line forming the envelope in Fig. 2.24
has a vanishing potential φ. The same holds for all other field lines outside this
hyperbolic flux tube. The central field line (L0), a field line of the envelope (L1),
and two radial lines connecting them above and below D (R1,R2) form a closed loop
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Fig. 2.25. Counter-rotating plasma flows for the purely rotational solution together
with magnetic field lines (solid lines): (a) above (z = 2) and (b) below (z = −2)
the reconnection region and for parameters: k = 2, L = 10, l = 1.
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Fig. 2.26. (a) A closed loop consisting of the central field line and a field line
of the envelope together with two radial connections. For the stationary case the
vanishing of the integral over the electric field along such loops implies rotational
flows above and below the reconnection region (b).

(L0,R1,L1,R2). Along this loop the integral over the parallel electric field has to
vanish (see Fig. 2.26), since ∇×E = 0, and so

0 =
∮

E ·dl

=
∫

L0

E·dl+
∫

R1

E·dl+
∫

L1

E·dl+
∫

R2

E·dl

= ΔL0φ+ΔR1φ+0+ΔR2φ

= 2φ(0,0,−∞)+2ΔRφ.

Here we have used the symmetry z ↔ −z in the last equality. Therefore, the voltage
drop along each of the radial parts of the loop equals −φ(0,0,−∞). However, since
the loop integral requires a direction of integration which is opposite for R1 compared
to R2, the electric fields along R1 and R2 are oppositely directed. These electric fields
induce a plasma flow perpendicular to the radial lines in planes of constant z, which
is oppositely directed above and below D. This completes the proof of the existence
of counter-rotating flows.

2.3.3 Reconnected flux
The rate of reconnected flux is given in general by the integral of the parallel

electric field along the reconnection line (Schindler et al., 1988; Hornig, 2001),

dΦmag

dt
=

∫
E‖dl. (2.89)

In two-dimensional models the reconnection line is the extension of the hyperbolic
null point along the invariant direction. Adding a constant component of B in the
invariant direction turns the null line into a field line of maximal Δφ across D. For
our example the rate of reconnected flux is given by 2φ(0,0,−∞).

The interpretation of a rate of reconnection of magnetic flux in this case, however,
is different from what we are used to in two dimensions. In three dimensions no
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unique line exists at which the flux is split and reconnected: instead, we have a
whole flux tube (the hyperbolic flux tube enclosing D), within which every field line
constantly changes its connection. To envisage the rate of reconnection in this case
we use the method of constructing win and wout as described in the introduction.
These are the velocities of the field lines in D anchored in the ideal region either
above (outflow region) or below (inflow region) D. To find these velocities we have
to solve

−∇φin/out +win/out ×B = 0 (2.90)

⇒ win/out
⊥ = (−∇φin/out)×B/B2. (2.91)

Since win and wout coincide with v outside D we can use for the corresponding
φin/out just the asymptotic values of φ in Eq. (2.79) for large s, i.e., we replace the
error function by its asymptotic values 1 and −1

φin/out = ±
√

π B0 η0 l (k2 −1)
2Lμ0 exp [(x2

0 +y2
0)/l2]

. (2.92)

Of course for an explicit calculation we have to replace x0, y0 with the help of
Eqs. (2.70), (2.71), and (2.74) and insert the result in Eq. (2.91). If necessary we can
also add a flow parallel to B to set the z component of w equal to zero, as we did
for v.

The rate of “mismatching” of flux is now given by the difference of win and wout

in D. For convenience we choose the plane z = 0, where the relative motion of the
two flux tubes anchored in the outflow and inflow regions is given by

Δw⊥ = −∇(φout −φin)×B/B2

= −2∇φout ×B/B2. (2.93)

Figure 2.27 shows the contours of φout −φin and the corresponding velocity vector
field. The rate at which flux crosses any radial line between the origin and the
boundary of D is given by the potential difference along this line, i.e.,

ΔφΔw = 2φout = ΔL0φ = 2φ(0,0,−∞). (2.94)

Note that we now have the same potential difference along a radial line as along the
z axis (L0), while for the previous integrals along R1 and R2 we had only half of
this value.

Another important property is the fact that, as in the two-dimensional case, the
diameter of the nonideal region, i.e., its extent in the x, y plane, does not affect
the reconnection rate. To prove this we can use different scales, say lxy and l, with
respect to the (x0, y0)- and s-dependence in the expression (2.78) for the resistivity.
It then turns out that in φ(0,0,±∞) and hence in the reconnection rate lxy does
not appear. This property is essential for the onset of reconnection under realistic
conditions, when the collapse of a current sheet may lead to small scales in the plane
perpendicular to the current.

A simple pedagogical example gives further insight into the relation between this
potential difference and a reconnection rate. Consider for simplicity a homogeneous
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Fig. 2.27. Contours of φout −φin (black) and difference velocity vectors (arrows)
between flux anchored in the region above and below D and the projection of
magnetic field lines (gray) in the plane z = 0 (parameters: L = 10, l = 1, k = 2).

magnetic field B = B0ez and assume that the difference velocity is a rigid rota-
tion, with a constant angular velocity ω = 2π/T . Integrating along a radial line the
reconnection rate is then given by

dΦrec

dt
=

∫
(Δw×B) ·dr

= 1/T

∫
2πrB0 dr = Φmag/T. (2.95)

Thus it takes a full turn for the reconnected flux to be equal to the total magnetic flux
of the flux tube Φmag, although even after the first instant all field lines of the flux
tube (with the exception of the central one) have changed their connections. Note
that here the line crossed by Δw is a radius, while in the classical two-dimensional
reconnection it is the X line.

Up to this point the hyperbolic structure of the magnetic field in the x, y plane was
not relevant for the results, that is for an elliptic field in the x, y plane (O-point) the
results would have been qualitatively the same. The reason is that the existence of
counter-rotating flows is a topological property which can be proved without refer-
ring to any particular geometry of field lines and even for arbitrary time dependence.
This has been done by Schindler (1995) building on the above mentioned Euler repre-
sentation of the magnetic field (see also Schindler et al., 1988; Hesse and Schindler,
1988). In particular, the plane for which win,wout, and Δw is calculated is arbitrary
as long as it is transversal to B. The hyperbolic structure is, however, relevant for
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the physical background of the reconnection process as discussed above and it will
be found to be relevant in Section 2.3.4 when we consider more realistic reconnection
solutions.

2.3.4 Composite solutions
The reconnection process in the foregoing example affects only the hyperbolic

flux tube bounding the region D and even within this flux tube there is a certain
order in which the field lines reconnect. To see this note that the level surfaces of φin

are also level surfaces of φout (although for different values) and in addition they are
flux surfaces for B and Δw, since they satisfy the ideal equation Eq. (2.90). Thus,
the reconnection changes the connection only within each level surface of φin/out.
There is no reconnection between field lines of different φin/out values. This can be
changed by adding to the pure solution a solution of the ideal equation (2.83). Out
of all possible ideal flows, however, those with a stagnation flow are of particular
interest for two reasons.

Firstly, stagnation flows can create thin current sheets in a self-amplifying way,
as shown in several 2.5-dimensional solutions (see Priest and Forbes, 2000, for refer-
ences). In an astrophysical plasma we expect that the main reason for the localization
of the nonideal term is the localization of the current, which then in turn might trigger
a local anomalous resistivity due to turbulent effects on small scales. Thus stagnation
flows are often an important prerequisite for having a localized nonideal term.

Secondly, the pure solution of the previous section affects only the hyperbolic
flux tube enclosing D and hence is very restricted in its effect on the overall
magnetic field. This can be changed if we have a flow which transports flux from
the external region into the hyperbolic flux tube, lets it reconnect, and subsequently
removes the reconnected flux from this region, thereby extending the effect of the
nonideal region to a much larger domain. Such a process can be accomplished by a
stagnation flow.

These are the motivations to use Eq. (2.84), which creates a stagnation-point
flow in the plane z = 0, as a basic example for the effects of adding an ideal flow
to the pure solution. To be more precise, the resulting flow is a stagnation flow
outside the hyperbolic flux tube where the pure solution is negligible, but whether
the pure solution dominates or not within the hyperbolic flux tube depends on the
strength of the ideal flow compared to that of the pure reconnection solution. The
parameter which determines the strength of the ideal flow is ϕ0 in Eq. (2.84) and
the critical value ϕcrit is the value of ϕ0 where the flow in D turns from O-point to
X-point.

The critical ϕ0 at which the nature of the flow changes can be determined analy-
tically for our example (see Hornig and Priest, 2003):

ϕcrit =
√

πB0 η0 l |k2 −1|/(Lμ0). (2.96)

The same critical value holds for win and wout. For ϕ0 > ϕcrit,win,wout, and v have
a stagnation point at x = y = 0 for every z. For ϕ0 < ϕcrit,win and wout show an
elliptic flow at x = y = 0 for every z. The same is true for v outside D. Inside D there
is a critical distance from z = 0 at which v shows a transition from a hyperbolic to
an elliptic point in v.
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Evolution of the magnetic flux
The effect of the additional flow on the reconnection process can be visualized

best by the flows win and wout in the z = 0 plane, or even more simply by plotting
contour levels of φin and φout at z = 0, which coincide with flow lines win and wout,
respectively. In Fig. 2.28 we show these lines for a case where ϕ0 > ϕcrit, that is, we
have stagnation flows in both win and wout.

The effect of reconnection on the magnetic flux can now be demonstrated by
superimposing the two flow-line images so that the deviations from ideal flow become
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Fig. 2.28. The flow lines of win (left) and wout (right) in the z = 0 plane for
parameters k = 2, η0 = 0.001, L = 2, l = 1, B0 = 3, ϕ0 = 0.01 > ϕcrit.
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Fig. 2.29. (a) The superposition of the two flows in Fig. 2.28 shows regions of
different reconnective behavior, depending on whether the flow lines of win and
wout coincide or separate. (b) The separatrices of win and wout distinguish the
regions which show almost classical reconnection (III), from the ideal region (I)
together with the transition region (II).
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apparent. This is shown in Fig. 2.29a, which may be read in the following way. Any
point in the diagram represents a given field line. Starting with a given point (field
line) there are always two flow lines of win and wout intersecting at this point. They
trace the path of the initial point (field line) frozen to win (left) and wout (right),
respectively. Whenever the flow lines cross at a given point a field line starting in
this field will split into two if we follow both motions.

There are three types of matching or mismatching of magnetic field lines related
to three types of regions in this diagram, as shown in Fig. 2.29b.

Firstly, for all flow lines which remain outside D (which is limited by r ∼ 2 and
indicated as type I in Fig. 2.29b) the two flow lines coincide perfectly. Moreover, the
values of win (left) and wout coincide, so that any field line of B threading the z = 0
plane at such flow lines is frozen-in (win = wout = v).

Secondly, there are cases where the flow lines of win and wout separate only for a
small part inside D and join again as they leave D (region of type II in Fig. 2.29b).
A magnetic field line transported by this flow towards D will show a splitting into
two of a field line entering D, and this splitting can remain even after both field lines
have left D, since it might take both field lines different times to leave D. However,
since the flow lines join again, the separation in time of the split field lines remains
constant once they have left D.

Thirdly, there are cases where the flow lines separate within D and join with
flow lines of opposite regions leaving D (regions of type III). A magnetic field line
transported by this flow towards D will show a splitting in D, and will merge with
field lines of a different region on leaving D. In particular, the distance in space
or time of its initial partner grows even after both have left D. This distinguishes
them from the previous case. The region of initial points which show this behavior
is bounded by the separatrices of the two flows shown in Fig. 2.29b. This case is
very similar to the “classical” two-dimensional reconnection in that field lines of very
distant regions become newly connected.

However, there is in general no unique counterpart to a given field line. This is
demonstrated in Fig. 2.30 for a single set of flow lines from region III. Starting with
a fluid element (a) at an initial time we can find a counterpart (b) such that they
coincide once they have left D in the negative y direction (a′ = b′) but they will in
general not match at the opposite side, i.e. a′′ �= b′′. (For symmetry reasons the x

axis in our example is exceptional in that here we can find perfect counterparts.)
A field line, let us call it (a′′′), which joins with (b′′) lies on the same flow line as
(a) but is shifted by a certain interval in time. If we iterate the process of finding the
reconnecting counterparts, i.e., using (a′′′) as a new (a) and so on, we always obtain
points which lie on the four trajectories shown in Fig. 2.30. So the counterparts of
this reconnection process are not two field lines but the two flux surfaces given by
the field lines crossing the inflow trajectories.

This implies that in general any flux tube will not have a counterpart with which
it can reconnect perfectly in this stationary example. Note that by this process
we always remain on the same level of φin or φout since we switch between φin

and φout only outside D where they coincide. The regions of type III for which
the field lines show genuine reconnection grow with η0 until ϕ0 reaches the critical
value.
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Fig. 2.30. The transport of fluid elements in the reconnecting flows of regions II
(a) and III (b). For region II, plasma on a field line initially at point a is found
after a transition through the nonideal region on field lines a′ and a′′. For region
III, two field lines at starting points a and b were chosen such that they join at
a′ = b′ but they will in general not match on the other side.

The example shown in Fig. 2.29 was based on the choice φ0 ∼ x0y0 (Eq. (2.84))
for the ideal flow. This choice generates a symmetric flow with respect to inflow
and outflow. Since most reconnection simulations show an acceleration of plasma
along the outflow direction we can account for this by choosing a potential which is
nonsymmetric with respect to x0 and y0, for instance φ0 ∼ tanh(x0/lx) tanh(y0/ly).
This potential yields a stagnation flow the characteristic width of which is limited in
the inflow and outflow region to lx and ly, respectively. Choosing lx �= ly there is a
net acceleration of plasma, i.e., the plasma in the outflow region at large distances
from the reconnection site has a different kinetic energy than the plasma in the
inflow region. Figure 2.31 shows the corresponding streamlines and separatrices in
the z = 0 plane. Note that all the plasma in the inflow channels between the two
separatrices eventually has to leave along the two outflow channels bounded by the
same separatrices. Since in our example the flow is divergence-free and has no z

component, the continuity equation requires a simple scaling of the size of inflow and
outflow speed vinlx = voutly.

Increasing η0 in the example of Fig. 2.29 changes the flow pattern drastically.
This is shown in Fig. 2.32 for the two flows separately and in Fig. 2.33a for the
superposition. Figure 2.33b shows the different types of regions. Apart from regions
I–III which are known from the previous example, there are now two new regions
IV and V which result from the existence of the elliptic null in the center. Note
that both regions are strictly within the hyperbolic flux tube and have no effect
on the reconnective behavior of the hyperbolic flux tube with its environment.
Only the sizes of regions I–III are important for the interaction with the envi-
ronment. Region V in particular shows dynamics similar to the pure reconnection
solution. An initial field line splits under the influence of counter-rotating flows, but
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Fig. 2.31. An example of reconnecting flows which show an acceleration of plasma.
The example uses φ0 ∼ tanh(x0/lx) tanh(y0/ly) with lx = 4, ly = 1. Note that the
width of the outflow channel is significantly smaller than the width of the inflow
channel, which implies an acceleration of plasma.
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Fig. 2.32. The flow lines of win (left) and wout (right) in the z = 0 plane for
parameters k = 2, η0 = 0.01, L = 2, l = 1, B0 = 3 and ϕ0 = 0.01 < ϕcrit.

both parts rejoin after some time. Here the counter-rotating flows are dominant.
Region IV is a kind of transition region between III and V. Here an initial field line
splits, one part remains within the hyperbolic flux tube while the other leaves this
domain.
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Fig. 2.33. (a) The superposition of the two flows for ϕ0 < ϕcrit (from Fig. 2.32)
shows regions of different reconnective behavior. (b) The corresponding separatrix
structure. Regions of type I–III are the same as in the previous example. Regions
of type IV and V result from the existence of an elliptic null point in the flows for
ϕ < ϕcrit.

Reconnection rate
The consideration concerning the reconnected flux in Section 2.3.3 still holds

for the composite solution. In particular we can construct the flows win and wout

and their difference Δw. Note that while win and wout depend on the ideal flow
induced by φ0,Δw does not and hence it is just the same as for the pure solution
and so is the interpretation of Δw as the reconnecting engine. However, for the
composite solutions the reconnection rate summarizes the effect of two (ϕ0 > ϕcrit)
or four (ϕ0 < ϕcrit) quite different kinds of reconnective behavior: the almost classical
type of reconnection of region III, the more slippage-like behavior of region II, and
additionally the rotational reconnection of region V together with the transitional
form of region IV for ϕ0 < ϕcrit.

Note that the superposition of the ideal stagnation flow, although nonreconnective
in itself, plays an important role in the process. It transports flux to D, where the
reconnection occurs, and subsequently removes the reconnected flux. It is only due
to the stagnation flow that a separation of the reconnected flux over larger distances
occurs, as has been mentioned already by Schindler et al. (1988).

The reconnected flux is transported towards and away from the reconnection region
via the channels bounded by the separatrices (region III in Figs. 2.29 and 2.33). The
separatrices are streamlines of the ideal flow above and below the nonideal region
and therefore the electric potential along these lines is constant. In the example of
Fig. 2.29 they pass the point x = y = 0 at z values above and below the nonideal
region. Therefore the difference of their electric potentials corresponds to the inte-
grated parallel electric field along the field line x = y = 0 across the nonideal region,
i.e., to the rate of reconnected flux. Outside the nonideal region the potential of the
separatrices above and below the nonideal region is mapped along the field lines, so
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that the separatrices of the win/out in the z = 0 plane, shown in Fig. 2.29, also have
the potential difference of the reconnection rate. Thus the rate of magnetic flux trans-
ported into the reconnection region via the inflow channel, and the corresponding
flux removed from the region through the outflow channel coincide and equal the
total rate of reconnected flux. This property relies on the fact that the separatrices
pass through x = y = 0, which is always the case if ϕ0 > ϕcrit. For ϕ0 < ϕcrit, as
shown in Fig. 2.33, this is not true. The separatrices do not pass through x = y = 0
and hence their potentials differ by less than the reconnection rate. In particular
in the example of Fig. 2.33 the potentials differ only by about 38 percent of the
total reconnection rate. This suggests we define an external reconnection rate, which
measures the flux transported towards and away from the reconnection region via
the inflow and outflow channels. An internal reconnection rate, which describes the
rate at which flux in regions V and IV, i.e., within the hyperbolic flux tube bounding
the nonideal region, changes its connectivity. The internal reconnection rate is the
difference between the total reconnection rate and the external reconnection rate,

dΦrec

dt
=

dΦexternal
rec

dt
+

dΦinternal
rec

dt
. (2.97)

Both extreme cases are conceivable: vanishing external reconnection rate or vanishing
internal reconnection rate. The external reconnection rate vanishes if the ideal stagna-
tion flow vanishes. This is the case of the pure solution discussed in Section 2.3.2. The
effect of reconnection is confined to the hyperbolic flux tube bounding the nonideal
region. On the other hand, the internal reconnection rate vanishes for ϕ0 > ϕcrit, i.e.,
if region V vanishes, and the total reconnection rate equals the external reconnec-
tion rate.

2.3.5 The two-dimensional limit
Since the results for three-dimensional reconnection are in many respects

quite different from what is known of the two-dimensional case, it is natural to ask
what the limit of vanishing guide field, i.e., Bz → 0, yields. In this limit we should
recover the classical two-dimensional reconnection pattern. It turns out that this
limit is difficult to approach, since the construction we have used for calculating
the electric potential along the magnetic field lines fails in this limit. This in turn
is due to the choice of the z = 0 plane as a plane for fixing the initial condition
for the integration of the electric potential. This plane is transversal to all field
lines as long as Bz �= 0. However, in the limit Bz = 0 the corresponding transversal
surfaces should be x = 0 and y = 0. Obviously there is no smooth transition between
the two. Therefore, instead of going through all the technical difficulties needed to
properly take this limit, we demonstrate here only qualitatively how this limit works.
We first restrict ourselves to the pure solution of Section 2.3.2. This solution shows
rotational flows above and below the reconnection region. For Bz → 0 the shape of
these stream lines becomes distorted towards highly squashed ellipses, the major
axes of which are aligned with the separatrices of the magnetic field in the z = 0
plane (see Fig. 2.34a). Since for reconnection the component of the flow parallel to
B is not relevant, we have plotted in Fig. 2.34b only the perpendicular component of
the flow. This perpendicular component has the same signature with regard to the
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Fig. 2.34. (a) The rotational flow above and below the nonideal region takes on the
shape of highly elongated ellipses as the guide field (Bz) tends to zero. (b) The
component perpendicular to B of the counter-rotating flows transforms into an
X-type flow in the 2D limit.

separatrices as the stagnation flow of the classical two-dimensional reconnection. In
order to recover the proper two-dimensional stagnation flow in the whole domain,
it has to be complemented by a corresponding ideal flow. Only carefully chosen
combinations of pure and ideal flows have a proper smooth two-dimensional limit.
Each component itself has singularities in the limit. This is not surprising since the
pure solution does not exist in two dimensions and also there are no ideal stagnation
flows crossing the separatrices of the magnetic field in this limit.

2.3.6 Conclusions
The process of three-dimensional magnetic reconnection at a localized

nonideal region of a nonvanishing magnetic field shows features which are not
present in two- (or 2.5-) dimensional models. The localization implies the existence
of rotational flows above and below the nonideal region (with respect to the direc-
tion of the magnetic field). The process can be understood as a superposition of
a nonideal process generating rotational flows within the flux tube enclosing the
nonideal region together with an ideal flow transporting magnetic flux towards and
away from the reconnection region. The total reconnection rate can also be split
into a reconnection rate measuring only the reconnection with respect to the region
outside the enclosing flux tube and a rate measuring the reconnection within the flux
tube. Moreover, stationary reconnection is imperfect for most of the field lines in
the sense that there is no cross-connection between pairs of field lines, i.e. the strict
one-to-one correspondence of reconnecting field lines known from two-dimensional
reconnection is broken in the three-dimensional case.

2.4 Three-dimensional reconnection at magnetic null points
D. I. Pontin

In many areas of plasma physics, magnetic reconnection can be associated with a
restructuring of the magnetic field (B). Our ideas on how this restructuring occurs
come mostly from the well-studied case of reconnection at two-dimensional hyper-
bolic null points (X-points, see Section 2.1). In three dimensions, reconnection can
occur either at a null point or in the absence of a null point (Schindler et al., 1988).
The nature of reconnection at a three-dimensional null point is of particular interest
since it is the three-dimensional generalization of a 2D X-point. Three-dimensional
null points are also of crucial importance in the topology and interaction of complex
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fields on the Sun. They are found in abundance in the corona (see e.g., Brown and
Priest, 2001; Longcope et al., 2003), where their associated separatrices and separa-
tors are thought to be likely candidates for sites of coronal heating (Longcope, 1996;
Antiochos et al., 2002; Priest et al., 2002, and Section 5.1). There is also evidence
that 3D null point reconnection may act as a trigger for at least some solar flares
(Fletcher et al., 2001).

Magnetic nulls are points in space at which the magnetic field strength falls to
zero. The skeleton of the null point is made up of a pair of field lines which converge
on (or diverge from) the null from opposite directions, which define the spine (Priest
and Titov, 1996), and a family of field lines which radiate out of (or into) the null
lying in a surface, known as the fan plane (Priest and Titov, 1996), see Fig. 2.35.
The orientation of these structures is defined by the eigenvectors of the matrix ∇B
of partial derivatives, evaluated at the null (by considering a Taylor expansion of B
about the null). When the magnetic field in the fan plane is directed into the null,
then the null is termed negative (or A-type), while if it is directed out of the null,
then the null is positive (or B-type).

The local structure of the magnetic field around a generic three-dimensional null
point is shown in Fig. 2.35b (see also e.g., Greene, 1988; Lau and Finn, 1990). By
local in this sense we mean that all of the magnetic components change linearly
with position from the null, and that we are close enough to the null that these
linear variations are much larger than quadratic variations that would appear in a
Taylor expansion about the null. By generic we mean that the null is structurally or
topologically stable in the sense that the structure of the null would be unchanged
by a small perturbation in the magnetic field. Often for simplicity linear nulls are
considered in which all of the fan field lines are straight (resulting from the fan
eigenvalues being equal, see Fig. 2.35a), but this is a nongeneric situation, since in
general when the fan eigenvalues are unequal, most of the field lines will touch one
of the axes, as shown in Fig. 2.35b.

A general mathematical formalism for the structure of nulls is given by Parnell
et al. (1996), who classify them depending, amongst other things, on the magnitude
of the current density, j, and the orientation of the current density vector with respect

(a) (b)

Fig. 2.35. The basic structure of a positive (or B-type) 3D null point when (a) the
fan eigenvalues are equal and (b) they are unequal. The thick line is the spine field
line, while the fan surface is marked out by the dashed circle.
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to the spine and fan. If the current is zero then the null point is known as potential. In
this case the null appears as in Fig. 2.35b; the spine and fan are perpendicular, and in
general most of the field lines are tangent to one of the eigenvectors. However, when
there is a current present directed parallel to the spine, the field lines in the fan form
a spiral, while the fan and spine remain perpendicular. In contrast, if the current is
parallel to the fan, then the spine and fan will no longer be orthogonal. In general,
when the current has components in both directions, both of these effects will be
present, as well as further characteristics, depending on the relative magnitudes of
the spine-aligned and fan-aligned current components (see Parnell et al., 1996, 1997,
for a full description).

Priest et al. (2003a) have shown that three-dimensional reconnection is fundamen-
tally different in a number of important ways from the familiar 2D case. These details
have been illustrated by a kinematic solution for reconnection in the absence of a
magnetic null point (Section 2.3; Hornig and Priest, 2003). Here we follow the same
procedure for reconnection at 3D nulls. In Section 2.4.1 the differences between 2D
and 3D reconnection are outlined. In Sections 2.4.2 and 2.4.3 the nature of recon-
nection is described at null points with spine- and fan-aligned currents. Finally, a
summary is given in Section 2.4.4.

It should also be noted that a number of particular exact solutions to the steady-
state incompressible MHD equations for so-called reconnective annihilation at 3D
null points exist. These solutions describe current sheets of infinite extent, which are
localized to either the fan (Craig et al., 1995) or spine (Craig and Fabling, 1996) of
the null. In each case, the current is aligned parallel to the fan, and field lines diffuse
through the current sheet, and are reconnected with field lines advected across the
other separatrix.

2.4.1 Properties of 3D reconnection
In order to investigate the evolution of magnetic flux in two dimensions, it is

useful to define a flux-transporting velocity w (Hornig and Schindler, 1996; Hornig
and Priest, 2003) which satisfies

E+w×B = 0, (2.98)

which is possible in two dimensions since the electric field E is always perpendicular
to the magnetic field B. By comparison with an ideal Ohm’s law, we can consider w to
be a flow within which the magnetic flux is frozen. The component of w perpendicular
to B can be found from

w⊥ =
E×B

B2 . (2.99)

However, in three dimensions this is not always possible. In general 3D recon-
nection E ·B is nonzero within a finite diffusion region D (Schindler et al., 1988;
Hesse and Schindler, 1988), with the result that in general no unique flux-conserving
velocity exists, or in other words there is no unique magnetic flux velocity w for
flux which threads D (Section 2.2). We consider a finite region D as the generic
situation for astrophysical plasmas, since in general the magnetic Reynolds number
is extemely high, and dissipation is likely to be enhanced only in well-localized
regions, for example when the presence of strong electric currents may drive
microinstabilities.
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Although no unique magnetic flux velocity exists, it is nonetheless possible to
study the evolution of magnetic flux and field lines under certain circumstances. If
no closed magnetic field lines exist within a localized nonideal region D then we can
still follow the motion of individual field lines from certain chosen footpoints, since
we know that in the ideal region on either side of D they must remain attached to
the same plasma elements for all time. Suppose the surface of D is split into two
parts, through one of which magnetic flux enters D, and through the other of which it
leaves. Since each field line is anchored twice in the ideal environment, once on either
side of the nonideal region, one can follow the motion of the field lines by tracing
them through space from footpoints in either of these ideal regions. Consequently, it
is possible to define a velocity with which the field lines passing into D move, say
win, and another velocity wout at which the field lines passing out of D move. In the
stationary case (∂/∂t ≡ 0), these two velocities can be calculated throughout space
by mapping the electric potential (Φ, where E = −∇Φ) from each set of footpoints
along the field lines. This leads us to the mathematical expressions

win/out =
−∇Φin/out ×B

B2 . (2.100)

These two (pseudo-)magnetic flux velocities must each be identical to the plasma
velocity v⊥ on the relevant section of the surface of D, but in contrast to the 2D
case, they are not identical to each other inside D. This is a manifestation of the
nonexistence of a unique magnetic flux velocity w, as stated above. The result is
that following any given field line from two footpoints moving on either side of the
nonideal region D, that field line seems to split as soon as it is transported into D.
Furthermore, the connectivity of field lines which thread D changes throughout the
reconnection process.

The new properties of kinematic 3D reconnection described by Priest et al. (2003a)
are, briefly,

• The mapping of field line footpoints is in general continuous during reconnection,
the exception being at null point separatrices.

• A unique magnetic flux velocity does not in general exist, so that in order to
describe the evolution of the magnetic flux during reconnection it is necessary
to use two magnetic flux velocities (as described above).

• Hence, field lines change their connections continually and continuously throughout
the nonideal region.

• Another way to look at this is to say that a field line traced through and beyond
the nonideal region moves beyond the nonideal region in a virtual flow which is
not the plasma velocity.

• There is no one-to-one reconnection of field lines; that is, for any given field line
which is going to take part in the reconnection process, there is in general no
unique counterpart field line on the opposite side of D with which its footpoints
will become pairwise connected after the reconnection process.

2.4.2 Spine-aligned current

The model
It is instructive to seek insight into the structure of the highly complex

process of 3D reconnection by considering solutions to a reduced set of the MHD
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equations. We follow the method of Hornig and Priest (2003) and adopt the kinematic
approximation (see Section 2.3), by solving the induction equation and Maxwell’s
equations, though not solving the equation of motion.

We seek a solution of the kinematic, steady, resistive MHD equations given by

E+v×B = ηj, (2.101)

∇×E = 0, (2.102)

∇·B = 0, (2.103)

∇×B = μ0j. (2.104)

The nonideal term on the right-hand side of Eq. (2.101) is assumed to be localized.
We consider here two separate, complementary cases. In this section we investigate
reconnection at a null point with current parallel to the spine, while in the next
section we consider the case where the current is parallel to the fan. In general the
field in the vicinity of a spiral null point, the most simple null with spine-aligned
current, can be written (Parnell et al., 1996) in cylindrical polar coordinates as

B = B0 (R,JR/2,−2z) , (2.105)

where B0 and J are constants such that j = (B0J/μ0)ẑ is oriented in the z direction,
parallel with the spine. Since the current is constant, it is necessary in this model to
localize the resistivity in order to obtain a localized nonideal region. We take

η = η0

{(
(R/a)6 −1

)2 (
(z/b)6 −1

)2
R<a, z2<b2

0 otherwise,
(2.106)

where η0, a, and b are constant and η0 is the value of the resistivity (η) at the null
point. The null point and diffusion region are shown in Fig. 2.36a.

From Eq. (2.102), E can be written as the gradient of some scalar, Φ say, so that
Eq. (2.101) becomes

−∇Φ+v×B = ηj. (2.107)

The component of this equation parallel to B may be integrated along field lines
to give

Φ = −
∫

η j‖ dl+Φ0

= −
∫

η j ·Bds+Φ0(X0), (2.108)

where s is a parameter along the field lines, and X0 are the field line footpoint
positions from which the integration is begun. We choose to integrate Φ by setting
s = 0 on surfaces z = ±z0, above and below D, and integrating in towards the z = 0
plane. Note that solutions found by setting s = 0 on other suitable surfaces (those
which cut every field line once and only once) are equivalent when considered with
respect to some given boundary conditions. The electric field E and the component
of the plasma velocity v⊥ perpendicular to B can be found from

E = −∇Φ (2.109)
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Fig. 2.36. (a) Field lines on the boundary of the envelope enclosing the diffusion
region (cylinder), showing the region of influence of the local solution (for a = b =
J = 1). (b) Vectors of the plasma flow v, along with a projection of the magnetic
field lines, in the plane z = 0.4, for the parameters B0 = a = b = η0 = 1, J = 2.

and

v⊥ = (E−ηj)×B/B2. (2.110)

When Φ0 is zero, an “elementary” or “internal” solution is found, upon which an ideal
flow may be superimposed by choosing Φ0 nonzero. This is possible since, for a given
magnetic field, Ohm’s law (2.107) may be decomposed into a nonideal component
(2.111) and an ideal component (2.112) as follows

−∇Φnonid +vnonid ×B = ηj, (2.111)

−∇Φid +vid ×B = 0. (2.112)
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We have the freedom to add an ideal flow to the nonideal solution since we do not
solve the momentum balance equation here, which would otherwise determine the
ideal part of the flow.

The mathematical expressions for Φ, E and v⊥ are too lengthy to show here, but
can be calculated in a straightforward way using a symbolic computation package.
The full method of solution, as well as an in-depth analysis of the results, is described
in Pontin et al. (2004).

The solution
We examine first the nature of the solution with Φid = Φ0 = 0, i.e., just the

local behavior of the flux envelope enclosing the nonideal region D with no extra
ideal flow. Choosing to integrate Eq. (2.108) from z = z0 we automatically start with
Φ constant for z > b. Hence the electric field and plasma velocity are zero for z > b.
The velocity for z < b is a rotation within the flux envelope.

For the purposes of illustration of the results, it is convenient to add a component
of v parallel to B such that vz = 0. This is achieved by defining

v = v⊥ − v⊥z

Bz
B. (2.113)

Our freedom to do this comes from the fact that Eq. (2.110) determines only the
component v⊥ of v perpendicular B. It is this perpendicular component which affects
the transport of the magnetic flux, so for our purposes the parallel component is
arbitrary. The plasma flow which we obtain is shown in a typical plane of constant
z in Fig. 2.36b. The radial component (as well as the z component, due to (2.113))
of v is zero, so we have purely rotational flow.

We can show that these rotational flows are a general property for such a null
point. They are not a result only of our particular choice of setup, for example the
choice of η profile, but are in fact a consequence simply of the structure of B (and
hence j), and the presence of a localized nonideal region. Consider the potential drop
along sections of the closed loop illustrated in Fig. 2.37a. The loop is made up of
four sections; L1 and L3 are radial lines in planes z ≥ b and z < b, respectively, while
L2 is a field line on the boundary of the envelope of flux threading D, and L4 lies
along the spine of the null. The potential drop around any closed loop must be zero.
The potential drop along lines L1 and L2 must be zero as they lie wholly outside D;
L1 lies at z ≥ b and L2 lies on the boundary of the envelope, and so Φ = Φ0 along
their entire lengths. Thus

ΔΦL3 = ΔΦL4 = 0,

or

ΔΦL3 = −(Φ34 −Φ0) �= 0, (2.114)

where Φ34 is the value of Φ at the vertex of L3 and L4, which must be different
from Φ0 since E is nonzero along the spine (E ·B = ηj ·B �= 0 on spine). Since there
is a potential drop along L3 there must also be a nonzero electric field along it.
This electric field, along with the nonzero Bz component, induces a plasma flow
perpendicular to such a radial line, and since the choice of L3 is arbitrary, this gives
a rotational flow. It is found that this rotation has the same sense for z > 0 and
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Fig. 2.37. (a) Closed loop made up of line sections. (b) Flux surfaces within which
field lines periodically reconnect exactly with themselves.

z < 0, and has maximum magnitude in the z = 0 plane. Note that this argument is
completely independent of the particular profile of η.

Since the plasma velocity is rotational, the motion of field lines during the recon-
nection process is rotational as well. Field lines are continually reconnected in “shells”
within the flux envelope enclosing D (see Fig. 2.37b). This means that within any
arbitrary period of time, every field line within the flux envelope changes its connec-
tivity (except the spine, due to symmetry). An initial field line which splits into
two will be periodically exactly reconnected with itself, every time the footpoint
embedded in the flow at R = a performs a full rotation of 2π radians. Note, however,
that this rotation period is different for each shell, since it is not a rigid rotation. For
this reason, if we consider a flux tube within the envelope with a finite radial extent,
there will be no periodic return to the initial state.

As discussed in the previous section, we may superimpose any ideal flow upon the
“elementary” or “internal” solution described above. We would like to choose an ideal
flow which shows the global effect of the local rotational slippage behavior by trans-
porting magnetic flux into and out of the local flux envelope. For this reason we choose
to impose a stagnation-type ideal flow. Stagnation flows are also physically relevant
flows to choose as they may perform the localization of the physical quantities, and
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are common in reconnection solutions (Priest and Forbes, 2000; Hornig and Priest,
2003). On z = ±z0 we choose to set

Φid (x0, y0) = ϕ0 x0 y0, (2.115)

where ϕ0 is a constant. The ideal plasma flow (vid) takes the form of a stagnation
point, which is distorted due to the spiralling of the field lines.

The full plasma flow in this “composite solution” is a competition between the
rotational and stagnation flows. A number of different regions of flow exist, in each
of which the rotational reconnection flow splits the field lines which are transported
through the diffusion region. Two main types of behavior are seen. In the first, flux
tubes traced from either end seem to “slip” apart relative to each other, but are
carried away from the nonideal region in the same direction. In another region of
space however, a more classical type of reconnective behavior is present, and initially
joined flux tubes are split by the reconnection and are carried away in opposite
directions, with the crucial characteristic being that the separation of the two initial
sets of footpoints continues to increase in time (see Fig. 2.38). For a more detailed
description of the process, see Pontin et al. (2004).
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Fig. 2.38. Evolution of a pair of flux tubes, each traced from cross-sections at
either end which move in the ideal flow. As the tubes enter the diffusion region
they split, with the two parts of each of the initial two tubes flipping around the
spine in opposite directions. Notice in (d) that after leaving D the four new tubes
do not rejoin to form two unique flux tubes.



2.4 3D reconnection at nulls 71

0 x

0
y

0z

–2

–1

0

1

2

z

–1 0 2
y

–2 1

(a) (b)

Fig. 2.39. (a) 3D null point with fan-aligned current. The shaded cylinder shows
the diffusion region. (b) The structure of the plasma flow, along with the fan and
spine (black lines) in a typical plane of constant x, for parameters η0 = B0 = J =
a = b = 1.

2.4.3 Fan-aligned current
In this section we model reconnection at a null point with fan-aligned current,

in exactly the same way as described above. This time we choose

B = B0 (x, y −Jz, −2z) , (2.116)

such that, without loss of generality, the current lies in the x direction parallel to
the fan plane, and is given by j = (B0J/μ0)x̂. The fan of this null point is coincident
with the plane z = 0, while the spine is not perpendicular to this, but rather lies
along x = 0, y = Jz/3 (see Fig. 2.39a). We now prescribe a resistivity of the form

η = η0

{(
(R1/a)2 −1

)2 (
(z/b)2 −1

)2
R1<a,z2<b2

0 otherwise,
(2.117)

where R2
1 = x2 +(y −Jz/3)2 and η0, a, and b are constants. η0 is the value of η at

the null point, and the diffusion region is a tilted cylinder of radius a centered on
the spine, extending to z = ±b.

We now proceed as before, again setting s = 0 on z = ±z0 in order to perform the
integration of Eq. (2.108). Setting s = 0 on z = +z0, (2.108) gives an expression for
Φ(X0, s) for z > 0, and setting s = 0 on z = −z0 we obtain Φ(X0, s) for z < 0. In
order for Φ to be physically acceptable, i.e., smooth and continuous at the fan plane
such that E and v are finite there, we must set Φ at z = ±z0 (namely, Φ0) to

Φ0 =
32
21

η0B0 J x0. (2.118)

Φ(X), E and v⊥ can now be obtained as before. The nature of the rearrangement of
magnetic flux in the reconnection process can once again be studied by considering
the motion of the plasma perpendicular to B. The nature of the plasma flow in
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a typical plane of constant x is shown in Fig. 2.39b. Note that the flow in the x

direction vanishes at the spine, and is negligible for the reconnection process.
The plasma flow is nonzero across both the spine and the fan, and has a stagnation

point structure in the y, z plane, centered on the null point. The result of the plasma
flows across the spine and fan is that the nature of the field line behavior under the
reconnection is qualitatively the same as described by Priest and Titov (1996) in the
ideal analysis. Consider tracing field lines from footpoints in the ideal region situated
in the spine-crossing flow. As these footpoints are advected across the top/bottom
of the nonideal region (D), the field lines flip around the spine in the fan plane as
they pass through D. The behavior is analogous to the fan reconnection of Priest
and Titov (1996) (see Fig. 2.40). By contrast, considering footpoints anchored in the
fan-crossing flow, the field lines are advected towards the fan until they lie in the fan
plane, at which point they flip down the spine, and then move away from the null
on the opposite side of the fan (as in spine reconnection).

Although a continuous stream of field lines is reconnected through the spine, no
finite amount of flux is reconnected at it, since it is a single line. A finite amount
of flux is, however, transported across the fan plane in an arbitrary time. This can
be very important, since if we consider our null point to be surrounded by a global
magnetic field, then the fan plane is a separatrix surface of this field, separating
distinct regions of magnetic topology, and so the topology of this field changes when
flux is transported across it. As described previously, in the solar atmosphere separa-
trices are thought to be very important locations for coronal heating (see Section 5.1).

The nature of the plasma flow across the fan plane is a major difference between
this solution and the one described in the previous section. It can be shown once
again that the fundamental nature of the reconnection is simply a consequence of the
structure of B and the presence of a localized nonideal region, as follows. Consider
the structure of B and j in the fan plane. j ·B has opposite sign for x > 0 and x < 0,
since B is radial and j is unidirectional. Hence, Φ = −

∫
ηj ·B ds has opposite sign

for x > 0 and x < 0. As a result, in the fan plane close to the null, E ≈ Ex is unidi-
rectional across the spine, as shown in Fig. 2.41. Since E×B is nonzero in the fan
plane, we obtain a plasma flow across the fan, in the z direction. Note that vz must
have different signs for y > 0 and y < 0 due to the different handedness of the vector
product of E and B in these two regions (see Fig. 2.41). Note further that this argu-
ment is completely independent of the profile of η, and relies only upon the structure
of B (and thus j) and the fact that the nonideal region is localized. For a full descrip-
tion of the model and results described in this section, see Pontin et al. (2005b).

2.4.4 Summary
Two models for kinematic reconnection at 3D magnetic null points with

different current orientations have been described. The behavior of the magnetic flux
in each reconnection process shows many properties which are very different from
the familiar 2D null point reconnection. The fact that no unique field line velocity
exists results in a continual and continuous reconnection of field lines throughout the
nonideal region. It can be demonstrated that these new properties are still present in
3D reconnection when the full set of MHD equations is solved (Pontin et al., 2005a).
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Fig. 2.40. Sequence of snapshots showing the reconnection of two flux tubes,
initially chosen to be symmetric about the null. Field lines traced from footpoints
anchored in the fan-crossing flow flip up the spine through the fan plane (b,c).
Field lines traced from the top/bottom of the box (anchored in the spine-crossing
flow) flip around the spine in the fan plane (d–f). The gray line represents the
spine and the gray disk the fan.
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Fig. 2.41. The schematic structure of the magnetic field (B) and electric field (E)
in the fan plane. The nonzero vector product of the two implies a flow across the
fan, in opposite directions for y > 0 and y < 0.

A key point is that the orientation of the electric current is crucial in determining
the nature of the reconnection. When the current is parallel to the spine of the null
point, a rotational type of reconnection results, within a flux envelope enclosing the
diffusion region. However, when the current is parallel to the fan, magnetic flux is
advected through both the spine and the fan of the null point. The fan-crossing flow
is of particular importance in a global magnetic field such as the solar corona, where
the fan surfaces of nulls separate regions of different magnetic topology.

2.5 Three-dimensional flux tube reconnection
M. G. Linton

Three-dimensional reconnection is a complex subject, as is displayed by the variety of
reconnection configurations presented in the preceding sections. Here we focus on a
subset of these 3D configurations: the pair-wise collision and reconnection of isolated
magnetic flux tubes. The flux tubes are initially surrounded by field-free plasma, and
so do not fall easily into the topology classifications presented above, as the entire
space outside the flux tubes has a null magnetic field. However, as soon as the flux
tubes are pushed together and collide, they form a classical reconnection region at the
collision interface between them. If the tubes are perfectly anti-aligned so that their
fields exactly cancel at this interface, then they undergo null reconnection. However,
in general 3D configurations the tubes will collide with imperfectly aligned fields,
and so there will be a guide field, and the tubes will undergo non-null reconnection,
if they reconnect at all. By focusing on these relatively simple configurations, we
aim to simplify the 3D reconnection dynamics so that we can better understand
the basics of such reconnection without getting lost in a truly complex interaction.
From this study, we hope to build the tools necessary to understand more general
3D interactions, such as occur in the solar corona.

2.5.1 Untwisted flux tube reconnection
As a starting point for this discussion, we study the collision of untwisted

flux tubes. This should be the most basic type of flux tube reconnection: if the fields
each occupied half of the simulation domain instead of an isolated cylindrical tube,
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their interaction would match that of 2.5D simulations. But as the fields are instead
finite in extent and will only collide over a limited region, they will undergo a truly
3D interaction. The tubes simulated here have a magnetic field aligned along their
axis of the form

Baxial(r) = B0(1+cos(πr/R))/2, (2.119)

in cylindrical coordinates, for r ≤ R. The tube radius is R = 3π/16, in units where
the periodic box extends from −π to π in each direction. We align these tubes
perpendicular to each other, as shown in the isosurface inset in Fig. 2.42a, with
one aligned parallel to the y axis at x = x0 = π/4, and the other aligned parallel
to the z axis at x = −x0. The tubes are pushed together at the center of the box
(x = y = z = 0) by a stagnation-point flow of the form

v(x, y, z) = v0[− sinx(cosy +cos z)x̂+cosx(siny ŷ+sinz ẑ)]/2, (2.120)

with a peak velocity amplitude of v0 = vA/30, where vA is the initial Alfvén speed
at the tube axis. This flow is initialized at the start of the simulation, and then
evolves dynamically. These interactions are simulated with a 3D visco-resistive
pseudo-spectral MHD code, discussed in detail in Dahlburg and Antiochos (1995).
The viscous and resistive Reynolds (or Lundquist) numbers are, respectively,
Re = Lν = vAR/(πν) = 560 and S = Lη = μ0vAR/(πη) = 5600, in terms of the
coefficients of kinematic viscosity (ν) and magnetic resistivity (η).

(a) (b) (c)

(d) (e) (f)
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Fig. 2.42. Untwisted flux tube reconnection in a stagnation-point flow. Only field
lines connecting to the vertical boundaries are traced. The field lines are shaded
in proportion to the parallel electric current. The insets in panels (a) and (f) show
isosurfaces of constant magnetic field strength. Adapted from Linton and Priest
(2003).
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The evolution of the field lines in this simulation is shown in Fig. 2.42 (from Linton
and Priest, 2003). These are traced from particles entrained in the flow, subject to the
momentum equation. Only the field lines connecting to the trace particles initially in
the vertical tube are shown: this allows the interface between the tubes to be seen.
The strength of the parallel electric currents along the field lines, a signature of 3D
reconnection (Schindler et al., 1988), is shown here by the grayscale shading (see
the shade bar). These vertical field lines are initially well confined into a cylindrical
volume in Fig. 2.42a. But the field is strongly influenced by the component of the
flow perpendicular to the tube axis, and so quickly spreads out into a thin sheet of
magnetic flux by Fig. 2.42b. The field starts to reconnect soon after it forms into
this sheet. The field lines in Fig. 2.42b which pass near the center of the collision
region change their connections so that they bend from the vertical to the horizontal
flux tube and show large negative parallel currents as they pass through this central
region. These reconnected field lines then spring away from the reconnection site due
to the magnetic tension force. This central reconnection does not last undisturbed
for long: by Fig. 2.42c it is broken up by the tearing instability (Furth et al., 1963)
into three separate reconnection regions: the original region plus a new one on either
side of it. Each of these regions can again be identified by the strong parallel electric
currents in them, and by the field lines curving away from them on either side, loosely
forming an X shape. Upon reconnection, the field in between these three reconnection
regions is trapped into two flux tubes. The part of the reconnected flux lying outside
these reconnection points escapes to the upper right and lower left corners of the
simulation box in Figs. 2.42d–f. At the same time, the flux trapped between the two
flux tubes is pulled together by other reconnected flux wrapping around the tubes
so that it coalesces into a single flux tube by Fig. 2.42f. Note that only about a third
of the total flux reconnects in this simulation: the remaining flux is simply pushed
to the sides of the simulation box by the flow, and can be seen as the purely vertical
field lines in Fig. 2.42f.

For comparison with this reconnection, we now present a simulation in which the
flux tubes approximately keep their cylindrical shape as they collide. To accomplish
this, we impose a solid body motion on the flux tubes, accompanied by the back
reaction of the displaced fluid outside the tubes. This fluid motion is taken from
the classical solution for the motion of a cylinder through an incompressible fluid
(e.g., Landau and Lifshitz, 1987). For the vertical tube at x = −x0 and y = 0, it is,
for r > R,

v = v0
R2

r2

[(
2(x+x0)2

r2 −1
)

x̂+2
(x+x0)y

r2 ŷ
]

, (2.121)

while the flow for r < R is simply v = v0x̂. Figure 2.43 shows that this flow allows
the tubes to collide in a more coherent manner. Reconnection progresses in much the
same way as in the stagnation-point flow, but the initial, single reconnection region
lasts for significantly longer, and as a result the topology of the reconnection at this
stage is more clearly visible. Figures 2.43b and 2.43c show how the reconnected field
lines fold over each other in a left-handed sense as they are traced from the vertical
to the horizontal tube. The creation of this half turn of negative twist is a general
result for such a reconnection event, as we will discuss below, and agrees with the
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Fig. 2.43. Reconnection of untwisted flux tubes in the “solid body cylinder” flow
given by Eq. (2.121).

negative sign of the parallel reconnection currents. By Fig. 2.43d, the tearing mode
is again excited, though in this case only two reconnection regions are generated
instead of three, because the length of the current sheet is shorter here than in
the stagnation-point flow. These two reconnection regions again start to create a
reconnected flux tube between them, in Figs. 2.43d and 2.43e. But this is only a very
loosely coherent flux tube: it is really just the intersection of two sets of reconnected
field lines, from the two reconnection regions, bending around each other. These two
sets of reconnected field lines then reconnect with each other between Figs. 2.43d and
2.43f so that they nearly return to their initial vertical and horizontal alignments. As
this second reconnection occurs at a slightly different point along the field lines than
the first reconnection, the vertical reconnected field lines retain a small piece of the
horizontal field lines, and vice versa. The result is shown by the field lines in Fig. 2.43f:
here there are two singly reconnected, diagonal flux tubes at the top right and bottom
left corners of the simulation, plus two completely vertical, unreconnected flux tubes
near the center. But there is a fifth flux tube, slanting through the center of the
simulation box, which is mostly vertical, with a small horizontal component. This
flux tube is the result of the double reconnection. The inset in this panel shows the
isosurfaces of these flux tubes. It also shows the corresponding horizontal flux tubes
whose field lines are not plotted in the main figure: the two unreconnected horizontal
tubes and the doubly reconnected tube which is mostly horizontal but has a small
(negative) vertical component.

As the final simulation in our investigation of untwisted flux tube reconnection,
we look at the case where the tubes are slightly twisted, but at such a low level that
they are effectively untwisted on the scale of the reconnection region. We choose flux
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tubes with a Gold–Hoyle profile (Gold and Hoyle, 1960) of the form

Baxial(r) =
B0

1+T 2r2 , (2.122)

Bazimuthal(r) = T rBaxial(r), (2.123)

out to a radius of R = 11π/48, with zero field outside, as before. In contrast to the
untwisted profile of Eq. (2.119), where the current goes smoothly to zero at r = R,
this profile induces a strong current sheet at r = R where the Gold–Hoyle field is
abruptly cut off. The twist T for this simulation is one, meaning that the field makes
one turn around the tube axis as it traverses the length of the simulation box. We
again collide the tubes at right angles, in a stagnation-point flow. The simulation,
shown in Fig. 2.44, clearly demonstrates the effect of the twist on the tubes: the
stagnation-point flow has essentially no spreading effect on the flux tubes because the
tension force of the twist counteracts it. Upon colliding, the tubes reconnect much as
in the purely untwisted case with the cylindrical flow, though they never exhibit the
tearing mode instability. A second major effect of the twist is that it keeps the tubes
coherent throughout the reconnection so that all of the flux reconnects. In contrast
to both untwisted simulations, none of the flux breaks away from the colliding flux
tubes to bounce, unreconnected, away from the reconnection site. Thus the twist,
even though its scale length is much longer than the length of the reconnection region,
has a profound effect on the reconnection dynamics. Note that the reconnected tubes
in Fig. 2.44 have about half a turn of right-handed twist each. This is again due to
the fact that half a turn of left-handed twist is added to the field lines reconnecting
at this collision angle.
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Fig. 2.44. Reconnection of slightly twisted (T = 1) flux tubes. From Linton and
Antiochos (2005).
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2.5.2 Twisted flux tube reconnection
As evidenced by the low twist flux tube reconnection simulation of Fig. 2.44,

twist can have a significant effect on the dynamics of reconnecting flux tubes. To
study the effects of twist in more detail, we simulate the extreme case where the tubes
have a twist of T = 10. Here the scale of the twist is comparable to the tube radius,
and therefore to the scale of the collision/reconnection region. We find that the
relative signs of twist in the two flux tubes and the angle at which they collide have
dramatic effects on the reconnection. Therefore we perform a complete simulation
survey of both like-twisted and oppositely twisted flux tube interactions for collisions
at all angles θ = Nπ/4, where N = 0 to 7. The angle θ is measured in the left-handed
sense about the x axis from the axis of the reference tube, which is aligned along
the z axis, to the axis of the second tube. Each simulation is labeled according to
the sign of twist of the tubes, R or L for right- or left-handed twist, and according
to the angle N . Thus the T = 1 collision shown in Fig. 2.44 is an RR6 collision. By
mirror symmetry, an LL interaction at an angle θ is the same as an RR interaction at
2π−θ, so we only study the RR and RL collisions. These simulations are carried out
at a somewhat higher resistivity than those of the previous section, with Lη = 916.

Four different interactions occur for these collisions, which again are induced by
the stagnation-point flow of Eq. (2.120). The tubes can simply bounce, with no
appreciable reconnection. They can reconnect in the classical manner presented in
the previous section, which we will refer to as slingshot reconnection. They can tunnel
through each other, as Dahlburg et al. (1997) discovered. Finally, they can merge
together into a single flux tube. Firstly, we will discuss the energetics of the slingshot
interactions in these simulations. Then we will discuss the merge interaction and the
tunnel interaction.

For these high twist flux tubes, we found that the slingshot interaction occurs only
for oppositely twisted flux tubes, though as Fig. 2.44 clearly shows, the slingshot
does occur at low twist. The energetics of these oppositely twisted (RL) flux tube
interactions are presented in Fig. 2.45a. The radial coordinate here is energy, while
the azimuthal coordinate is the flux tube angle θ. The solid line shows twice the
peak kinetic energy during the simulation while the dashed line shows the magnetic
energy left in the tubes at the end (tvA/R = 150) of the simulation. Both curves
are normalized by the initial magnetic energy. A significant amount of energy is lost
simply to magnetic diffusion, so that all simulations lose at least 70% of their energy,
even if no reconnection occurs. Thus the energy scale, shown by the labeled circles,
goes from 0% to 30% of the initial magnetic energy. Each simulation (radial spoke)
on this plot is labeled with the angle N and with the type of interaction which
occurred. This shows that the slingshot occurs at all angles in the range π/2 ≤ θ ≤
3π/2. At θ = π, where the tubes are exactly antiparallel and all components of the
field can reconnect completely, almost all of the magnetic energy is released. The
slingshot interactions at other angles do not annihilate the flux tubes, but are still
very energetic, releasing more than half of their magnetic energy via the reconnection
(not counting what is lost to diffusion independent of reconnection). These obviously
present prime energy release mechanisms for flux tube reconnections. On the other
hand, for angles close to parallel, essentially no extra energy is released because the
tubes bounce with little reconnection.
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Fig. 2.45. Energy plot, in polar coordinates, for oppositely twisted (RL) and like-
twisted (RR) T = 10 flux tubes. The radial coordinate is the energy while the
azimuthal coordinate is the collision angle θ. Twice the peak kinetic energy is
plotted as the solid line, while the magnetic energy remaining at the end of the
simulations is plotted as the dashed line. From Linton et al. (2001).

In general, the magnetic energy release in slingshot interactions, such as those
of Figs. 2.42 to 2.44, is due to the shortening of the axial field lines as the flux
tubes shorten. In addition, for the slingshot of oppositely twisted tubes such as those
simulated by Linton et al. (2001) and by Ozaki and Sato (1997), there can be signifi-
cant energy release from twist cancellation because the slingshot reconnection splices
tubes with opposite twists together. The unbalanced torsion force generated by these
unmatched twists sends torsional Alfvén waves along the tube until the twists cancel
each other out. If both colliding tubes have the same amount, but opposite sign, of
twist, then they can release their whole twist energy via this reconnection. This is a
significant source of the magnetic energy release shown in Fig. 2.45a.

For comparison, Fig. 2.45b shows the same energy plot for the like-twisted (RR)
flux tube interactions. This presents a very different picture, with much less energy
released by reconnection at all angles than is released in the oppositely twisted
slingshot reconnections. This is due mainly to the fact that these flux tubes cannot
release their twist energy by cancellation. For this same reason, none of the flux tubes
slingshot at this twist either. As they cannot cancel their twist, the main energy
release from the slingshot would be from shortening the axial field lines. But this
would compress the twist and, because the twist is so large, result in a net increase in
the magnetic energy. Thus there is no energetic advantage to undergoing a slingshot
reconnection at this level of twist. The source of energy release for these high twist
tubes is the merge interaction, which occurs primarily at the angles of N = 0 and 1,
and the tunnel interaction, which occurs at N = 6 and N = 7.

The merge interaction occurs in like-twisted flux tubes when the tube axes are
closely aligned so that the azimuthal field is oppositely directed where the tubes
collide. This azimuthal field then reconnects while the axial field largely does not.
Such merge reconnections have been seen in interactions of perfectly parallel, like-
twisted flux tubes by Lau and Finn (1996), Kondrashov et al. (1999), and Linton
et al. (2001) in MHD simulations, and by Yamada et al. (1990) in a laboratory
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Fig. 2.46. Reconnection of highly twisted (T = 10) flux tubes at an angle of θ = π/4
(RR1). The azimuthal flux reconnects, pulling the tubes together so that they
merge into a single tube. From Linton et al. (2001).

experiment. An example of the merge interaction for a nonparallel collision, the
RR1 interaction, is shown in Fig. 2.46 (from Linton et al., 2001). The field lines
reconnect such that they wind about both flux tubes, bringing the axes into closer
alignment by Fig. 2.46b, and thereby increasing the contact region and enhancing
the reconnection. The reconnection progresses through Fig. 2.46c until the tubes
are brought as close together as the boundary conditions will allow, and then the
reconnection stops. While it is the periodic boundary conditions which keep the
footpoints from merging together here, for coronal flux tubes the line-tying boundary
conditions at the photosphere would serve the same purpose. The result, in Fig. 2.46d,
is that the tubes are merged into a single tube along most of their length and then
split to their respective footpoints as they approach the boundaries. The flux tubes
release magnetic energy by merging because it decreases the twist in the tubes. The
pitch of the field, i.e., the axial distance it covers when it travels a unit azimuthal
distance, is conserved in the reconnection. As it has to wind around twice as much
flux after the tubes merge, it therefore only winds half as many times per unit length.
As a result the twist is reduced by a factor of two, and this reduces the energy.
Note that this result can also be derived from helicity conservation. The helicity of
a twisted flux tube is Φ2T (Berger and Field, 1984), where Φ is the axial flux of the
tube. Thus the initial twist helicity of the two tubes is 2Φ2T , while the final twist
helicity of the merged tube is (2Φ)2Tmerge. For these two to be equal, the merged
twist must be half the initial twist.

The second means by which energy is released for like-twisted flux tubes at high
twist is via the tunnel. In a tunnel interaction, as shown in Fig. 2.47 for a T = 5.5
simulation, tubes reconnect with each other such that they pass entirely through each
other. This requires a pair of reconnections, as shown by Dahlburg et al. (1997). The
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Fig. 2.47. Tunnel interaction of RR6 flux tubes at a twist of T = 5.5. From Linton
and Antiochos (2005).

reconnection occurs first as the tubes slingshot from Figs. 2.47b–d, and then a second
time when the tubes rebound from the slingshot to collide again, in Figs. 2.47e,f.
The energetics summary in Fig. 2.45b shows that this tunnel only occurs for our
survey of T = 10 interactions at angles N = 6 and 7, and that it does not occur in
the inverse direction (angles N = 2 or 3). Why does this happen, and why is it not
reversible? We will address this question in the next section.

2.5.3 Helicity conservation and energy release: tunnel vs. slingshot
When flux tubes cross each other, even if they have no twist, there is a

magnetic helicity H associated with them. In a configuration where the flux pene-
trates the boundary, the helicity is poorly defined, but a useful form of helicity can
be calculated either via the relative helicity (Berger and Field, 1984), or by mapping
the volume to a toroidal volume (Linton and Antiochos, 2005). The toroidal mapping
is the easier to calculate in this configuration, and so we shall adopt it here. In this
formalism a pair of flux tubes crossing at θ = 6π/4 as in Fig. 2.42 has a linking helicity
of Hlink/Φ2 = L = 0. If these tubes reconnect in a slingshot to form a pair of parallel
flux tubes crossing the domain on a diagonal, they will have a linking helicity of
L = 1. Finally, if these tubes tunnel through each other so that they cross at θ = 2π/4,
they will have a linking helicity of L = 2. Including the ever twist helicity T discussed
above, the total helicity for a pair of equally twisted flux tubes is H/Φ2 = 2T +L
(Berger, 1986). If the resistivity is very low everywhere in the simulation except at
the reconnection site itself, essentially no helicity will be lost in the simulation, and
so the helicity after reconnection must equal the initial helicity. But the slingshot
and tunnel reconnections shown here change the linking helicity from 0 to 1 and
2, respectively, so the twist helicity must change to compensate. The result is that
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each flux tube must lose a half turn of positive twist in a slingshot reconnection,
and must lose a full turn of positive twist in a tunnel reconnection. We have already
seen this result for the slingshot simulations in Figs. 2.42 through 2.44. In particular,
Figs. 2.43b,c show this negative half turn of twist being generated by the reconnec-
tion. This result has profound implications for the tunnel reconnection: if a pair of
positively twisted flux tubes tunnel through each other from an RR6 configuration
to an RR2 configuration, as in Fig. 2.47, then the loss of one turn of positive twist
per tube means a net reduction in twist, and therefore a reduction in the magnetic
energy. This explains, firstly, why the tunnel occurs at all and, secondly, why the
inverse of the tunnel does not occur: a tunnel from RR2 to RR6 would increase the
twist and therefore the magnetic energy.

We can use this prediction to estimate the final energy state of slingshot and
tunnel reconnection tubes. If we assume that the tubes conserve helicity as above,
and in addition that they conserve flux and mass, and evolve to a new equilibrium
which is homologous with their original state, we find that the final energy state after
slingshot is (from Linton and Antiochos, 2002)

MEs =
L2

s

L2 Eax +
L

Ls

1
T 2

(
T − 1

2

)2

Eaz, (2.124)

where L is the initial tube length and Ls is the slingshot tube length. This is to
be compared to an initial energy of ME0 = Eax +Eaz, where Eax and Eaz are the
initial axial and azimuthal energy, respectively. A tunnel interaction under the same
assumptions will have a final energy of

MEt = Eax +
(T −1)2

T 2 Eaz. (2.125)

These equations show how the decrease (Ls/L) in length decreases the axial magnetic
energy but increases the azimuthal magnetic energy for the slingshot, and how the
loss of twist due to reconnection decreases the azimuthal energy for both the tunnel
and the slingshot. Figure 2.48 shows the post-reconnection equilibrium energies
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Fig. 2.48. Predicted equilibrium energy of RR6 flux tubes after a slingshot
(dash-dotted) or tunnel (dashed) reconnection, from Eqs. (2.124) and (2.125). The
estimated simulation values are shown by the asterisks for the slingshot and by
the plus sign for the tunnel. From Linton and Antiochos (2005).
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predicted by these equations. The slingshot energy is shown as the dash-dotted curve
while the tunnel energy is shown as the dashed curve. The tunnel loses more energy
at high twist, where the twist energy is dominant, but the slingshot loses more energy
below a twist of 2.56, at which point the axial magnetic energy is the more important.
This leads to the interesting prediction that the tunnel should occur at large twists
but the slingshot at low twists. We will test this now. As helicity is easily lost at high
levels of diffusion, the resistivity must be as low as numerically possible for this test,
as it relies on helicity conservation for its predictions. At low resistivity, however,
intense dynamics can make the code numerically unstable. We therefore need to keep
the resistivity relatively high in the reconnection region where the intense dynamics
occur. To accomplish this, we use a spatially nonuniform resistivity which peaks in
a ball at the center of the simulation, where the tubes collide:

η = η0(1+99e−λ2/(4R2)), (2.126)

where λ is the radial distance from the center of the box in spherical coordinates.
The decay scale length 2R is chosen so that most of the reconnection/collision site
will be within the high resistivity region. For the RR6 simulations presented here in
Figs. 2.47 and 2.49, we used a peak Lundquist number of 91 600 which decreases to
916 at the center of the simulation. The result is that the code remains stable, yet
only 3% of the helicity is lost. These simulations show that the tunnel occurs down
to a twist of T = 5.5, shown in Fig. 2.47, while the slingshot occurs at and below
twists of T = 5, shown in Fig. 2.49. Thus the transition from tunnel to slingshot
occurs at twists about two times higher than predicted by Fig. 2.48. The differences
between these two simulations hint at why the transition occurs at such a high twist.

(a) (b) (c)

(d)

Z

Y
(e) (f)

Fig. 2.49. Slingshot interaction of RR6 flux tubes at a twist of T = 5. From Linton
and Antiochos (2005).
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Whereas in the tunnel at T = 5.5, the tubes first slingshot and then come into contact
again to reconnect a second time, at a slightly lower twist of T = 5, the tubes never
come into contact again. Thus the dynamics prevents the tubes from reconnecting
a second time and tunneling to the lower energy state. The actual energy release
from these tubes is estimated by measuring the magnetic energy of the tubes at
the time where the reconnection in the field line plots appears to be complete. The
result is shown in Fig. 2.48 as the asterisks and as the plus sign, for the slingshot
and tunnel reconnections respectively. This shows that the energy release is about
a factor of two larger than predicted. We argue that this is principally due to the
reconnection-independent resistive losses, as the resistivity has a significantly larger
effect on magnetic energy than on magnetic helicity (see, e.g., Berger, 1984). However,
in the very low resistivity solar corona essentially no magnetic energy will diffuse in
the absence of reconnection, and so these predictions should agree more accurately
with the true energy release.

The theory above indicates that the tunnel should also occur at collision angles
of N = 5 and 7, as both configurations will also lose a turn of twist upon tunneling
(see Linton and Antiochos, 2002). We do indeed find the tunnel occurs for these
collisions for a nonuniform Lundquist number of Sη = 18300 to 183 (see Linton and
Antiochos, 2005). The RR7 tubes actually undergo three consecutive reconnections:
first they slingshot, then they tunnel to form an RR1 configuration, and finally, just
as in Fig. 2.46, they merge into a single flux tube. Thus the label tunnel/merge at
N = 7 on the energy plot in Fig. 2.45b. The RR5 tubes, interestingly, bounce when
Sη = 91600 to 916, as they do for a uniform Lundquist number of Sη = 916 (see
N = 5 in Fig. 2.45b). Apparently, the reconnection they can undergo is too slow to
take effect before they bounce away. But at the lower nonuniform Lundquist number
of 18 300 to 183, they tunnel reasonably well, just as predicted. For both of these
interactions, the transition from tunnel to slingshot also occurs at a higher level than
predicted by the theory. The RR7 transitions at T = 3.5 to 4 versus a prediction of
1.41, whereas the RR5 transition occurs at T = 7 to 7.5 versus a prediction of 2.62.
Again, looking at the simulations it becomes obvious that this is due to the extreme
nature of the slingshot at and below the transition twist: this slingshot brings the
tubes so far away from each other that they cannot reconnect again, and cannot
tunnel to the lower energy state.

2.5.4 Summary
Three-dimensional flux tube reconnection can be a powerful tool for under-

standing complex reconnection configurations. Here we have presented a collection
of flux tube interactions which display a wealth of information about the possibil-
ities available in 3D reconnection. For untwisted flux tubes, we showed how the
tearing mode instability can play an important role in the reconnection, channeling
the reconnected flux into a collection of twisted flux tubes. We also showed that it
is difficult to have all of the flux reconnect if the tubes are not continually forced
into the reconnection region: usually a significant portion of the flux bounces away
unreconnected. Yet even a small amount of twist can change this dramatically: the
twist keeps the flux tubes coherent during reconnection and ensures that all of the
flux reconnects. The presence of twist also adds significant complexity to flux tube
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interactions: whereas untwisted flux tubes can only undergo a simple (yet powerful)
slingshot reconnection, twisted flux tubes undergo merging and tunneling as well as
the slingshot. In addition, helicity conservation plays an important role in reconnec-
tion. It adds (or subtracts) half a turn of twist per flux tube reconnection, depending
on the configuration. This is what makes the tunnel reconnection possible at large
twists: the double reconnection necessary for the tunnel takes away a turn of twist per
flux tube, and therefore decreases the total magnetic energy. From simple assump-
tions about the final state of reconnected flux tubes, and about the conservation
of helicity and flux, we can estimate the final energy state of slingshot and tunnel
reconnections. This allows us to estimate which of these two interactions a flux tube
pair will undergo, and to estimate how much energy they will release. We have tested
these predictions and found they correctly predict which interactions can occur for
a given tube configuration. However, we also found that they underestimate the
lowest value of twist at which the tunnel interaction can occur, because the recon-
nection dynamics plays an important role in determining this critical twist. Finally,
the energy release predicted by these estimates agrees to within a factor of two with
that of the simulations, which is reasonable given the high rate of reconnection-
independent diffusion in these simulations. If the agreement improves with decreasing
resistivity, as is expected, this method should prove very useful in predicting energy
release for flux tube reconnections in the very low resistivity solar corona.
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Basic theory of collisionless reconnection

3.1 Fundamentals of collisionless reconnection
J. F. Drake and M. A. Shay

There are a number of well-documented deficiencies of the present resistive MHD
models of magnetic reconnection (Section 2.1) that have motivated the exploration
of reconnection models based on either a two-fluid or a kinetic description: the long
energy release time, the absence of a well-defined mechanism for breaking the frozen-
in condition, the onset problem, and the particle heating problem. As discussed in
Section 2.1, the Sweet–Parker model of reconnection yields an inflow velocity of
plasma into the dissipation region given by

vin∼(δ/Δ)vA, (3.1)

where vA is the Alfvén speed just upstream of the dissipation region and the width of
the current layer, δ∼η1/2, is small compared with its length Δ. In the Sweet–Parker
model Δ is given by the macroscopic system size L. As a consequence, the rate of
reconnection given in Eq. (3.1) is small. In contrast, in Petschek’s model (Section 2.1),
the outflow region from the X-line opens up as a fan, leaving a relatively short dissipa-
tion region Δ in Eq. (3.1), and therefore boosting the reconnection rate dramatically.
However, computations revealed that the open Petschek outflow geometry cannot
be sustained in a model with a simple uniform resistivity (Biskamp, 1986). A model
resistivity that increases sharply in regions with high current density, such as might
be expected from current-driven turbulence, facilitates a Petschek-like reconnection
configuration (Sato and Hayashi, 1979). However, the establishment and role of such
anomalous resistivity during reconnection is not yet well understood (Papadopoulos,
1977; Galeev and Sagdeev, 1984; Drake et al., 2003; see also Section 3.5) in spite of
the wide use of anomalous resistivity models in MHD computations. New insight into
processes driving the macroscale Sweet–Parker current layer has been recently devel-
oped. This current layer reflects an underlying singularity in the post-reconnection
MHD state (Waelbroeck, 1989; Jemella et al., 2003, 2004). Mechanisms that suppress
this tendency toward singularity must compete with the ideal MHD processes that
create the singularity.

Changing the topology of magnetic field lines, which is necessary for releasing
energy during magnetic reconnection, requires some form of dissipation to break the
frozen-in condition. The dissipation mechanisms, which have been identified largely
on the basis of computer simulations, will be discussed in greater detail in Sections 3.2
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and 3.5. Section 3.2 focuses on mechanisms that operate even in the absence of modes
that vary in the main current direction, while Section 3.5 discusses potential effects of
such modes. In planetary magnetospheres such as that of the Earth, where the plasma
density is only a few particles per cubic centimeter or less, the collisional mean free
path is large enough that classical collisions are negligible. In the absence of collisions
the finite mass of electrons limits their response to a parallel electric field and allows
magnetic field lines to reconnect. In a generalized fluid model these finite mass effects
take the form of electron inertia and a nondiagonal pressure tensor (Section 3.2). In
the intense current layers that define the dissipation region, instabilities generated
by the relative streaming of electrons and ions may drive turbulence sufficient to
produce anomalous resistivity (Section 3.5). In the solar corona, where the plasma is
much less tenuous, collisions may play a role in facilitating reconnection, especially
during the early stages of reconnection. However, the fast release of magnetic energy
observed in the corona produces inductive electric fields that typically exceed the
Dreicer runaway field (Miller et al., 1997). For typical reconnection electric fields
corresponding to reconnection inflow velocities of 0.1vA, with vA the Alfvén speed,
the runaway criterion becomes

vA > 10vte
νei

Ωe
, (3.2)

where vte and Ωe denote the electron thermal velocity and cyclotron frequency,
respectively, and νei is the electron–ion collision rate. When the runaway condition
is satisfied, the local dynamics becomes effectively collisionless. Thus, understanding
collisionless reconnection remains critical to modeling the dynamics of both solar
and magnetospheric systems.

An essentially universal feature of magnetized plasma systems is the storage-release
cycle (Chapter 1). Magnetic energy slowly builds up due to input from external
drivers, remains essentially quiescent, possibly for long periods (hundreds to thou-
sands of Alfvén times), and then abruptly releases through topological changes in the
magnetic configuration facilitated by reconnection. In all systems in which magnetic
reconnection can be studied in detail, including disruptions in laboratory fusion
experiments, substorms in the Earth’s magnetosphere, and solar and stellar flares, a
similar cycle is observed yet the underlying reasons for this universal behavior remain
unclear. Is there a common mechanism underlying the sudden onsets of magnetic
reconnection in this variety of systems or is the commmonality of the observations
merely accidental? Is the absence of progress on the reconnection onset problem
because the MHD modeling of such systems is missing key physics?

There is strong evidence that a significant fraction of the magnetic energy released
during magnetic reconnection is channeled into energetic electrons and ions. Solar
observations in particular have suggested that at least 50% of the energy released
during flares is in the form of energetic electrons (Lin and Hudson, 1971; Miller
et al., 1997). Energetic electrons and ions have been measured in the Earth’s magne-
tosphere (Terasawa and Nishida, 1976; Baker and Stone, 1976) and in disruptions
in laboratory fusion experiments (Savrukhin, 2001). Since MHD is a single fluid
model, it cannot describe the energy branching ratio between electrons and ions nor
can it describe the production of energetic particles, causing high-energy tails of the
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particle distributions (Section 3.6) that have been observed, for instance, in recent
magnetotail satellite data (Øieroset et al., 2002). Such heating processes can only
be treated with kinetic models. The focus of this section is to introduce some of
the non-MHD concepts that have emerged as dominant players in the dynamics of
reconnection, including relevant spatial scales, to provide the basis for more detailed
discussions in subsequent sections.

3.1.1 Basic kinetic processes and scales
The dynamics of magnetic reconnection is controlled by the dissipation

region, the narrow boundary layer where dissipative processes allow the magnetic
field to change topology. Understanding and modeling this layer has been challenging
because collisions are typically weak and collisionless kinetic processes dominate. The
intense currents driven by local electric fields can drive turbulence and nonlinear
structures such as electron holes, solitary waves, and double-layers. In spite of these
challenges significant progress has been made in identifying the dissipative mecha-
nisms that break the frozen-in condition and the processes that control the structure
of this layer (Section 3.2).

As outlined in Section 2.1, the aspect ratio of the dissipation region, the ratio of
its width δ to its length Δ, controls the rate of reconnection based on the inflow–
outflow condition in Eq. (3.1). In the MHD model δ is controlled by resistivity while
Δ is linked to the macroscopic system scale length L, independent of the dissipation
processes. A fundamental question is what physical processes control these scale
lengths in a kinetic model. Specifically, what dissipative process controls the width
of the dissipation region and what is the physics that determines the length of the
dissipation region. If the length of the dissipation region remains macroscopic as in
the MHD model, it is unlikely that even large values of the kinetic dissipation will be
sufficient to raise the rate of reconnection to levels that can explain the observations.

An important yet perhaps unexpected result of the efforts to understand kinetic
reconnection was the discovery that the motions of the electrons and ions, because
of their very different masses, decouple at the small spatial scales defining the dissi-
pation region (Sonnerup and Ledley, 1979; Mandt et al., 1994; Horiuchi and Sato,
1994). This behavior can be understood from the electron equation of motion,

me
dve

dt
= −eE−eve ×B− 1

n
∇·Pe −meνei(ve −v), (3.3)

where v is the bulk ion velocity, Pe is the electron pressure tensor (in the electron
rest frame), and d/dt ≡ ∂/∂t+ve ·∇ is the time derivative in the electron rest frame.
This equation appears like an Ohm’s law if ve is replaced with ve = v− j/ne and
terms of order me/mi are neglected,1

me

ne2

[
∂j
∂t

+∇·
(
jv+vj− jj

ne

)]
= E+v×B− j×B

ne
+

1
ne

∇·Pe −ηj. (3.4)

1 The jj term on the left-hand side of (3.4) can be combined with the electron pressure term to yield
the electron pressure tensor in the plasma rest frame, PCM

e , which leads to

me

ne2

[
∂j
∂t

+∇· (jv+vj)
]

= E+v×B− 1
ne

j×B+
1
ne

∇·PCM
e −ηj.

This is the form discussed by Vasyliūnas (1975).
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The generalized Ohm’s law (3.4) contains three terms that are not present in
the resistive MHD limit, the electron inertia term on the left of (3.4), and the
terms proportional to j×B (Hall term) and ∇·Pe. The Hall term brings whistler
dynamics into the system while the electron pressure term brings in kinetic Alfvén
wave dynamics and unmagnetized electron dynamics when the pressure tensor is
nongyrotropic.

At large spatial scales Eq. (3.4) reduces to E+v×B = 0, the ideal MHD “Ohm’s”
law. From this relation it is easily shown that the magnetic field is frozen-in to the
ion fluid (Section 2.2). The ideal MHD equations are scale invariant, meaning that
they do not define a spatial scale. The other terms in Ohm’s law are associated with
specific spatial scales and are important when those spatial scales are reached. The
electron inertial term is associated with the electron skin depth de ≡ c/ωpe, which
can be derived by comparing the convective portion of the inertia term with the
j×B term. At the spatial scales where electron inertia is important typically ve � v

so that the ∇· (jj/ne) portion of the inertia dominates. The scale where the j×B
(Hall) term becomes important is calculated by comparing it with the v×B term,

|v×B|∼vAB <
|j×B|

ne
∼ 1

μ0ne
B2

Δ
(3.5)

or

Δ < di ≡ c/ωpi. (3.6)

If Δ is smaller than the ion inertial length di, j/ne exceeds v so that ve exceeds v,
which implies that electrons and ions no longer move together, unlike in the MHD
regime, where ve∼v. The isotropic pressure term brings in the effective ion Larmor
scale ρs = (Te/mi)1/2/Ωi (based on the ion–sound speed, vs = (Te/mi)1/2 for the limit
where Te � Ti). Since this scale does not follow from Ohm’s law alone, we discuss
this scale later.

The decoupling of electron and ion motion at small spatial scales implies that the
Alfvén wave no longer controls the collective behavior of the plasma motion below
these scales. In particular, the Alfvén wave no longer drives the acceleration of the
plasma away from the X-line, allowing the bent, newly reconnected field lines to
release their stored magnetic energy. Close to the X-line this role is taken over by
either the whistler or kinetic Alfvén wave.

The issue of what breaks the frozen-in condition is of fundamental importance
for the understanding of collisionless reconnection. The details of this mechanism
will be discussed in Section 3.2. Very close to the X-line the convective portion of
the inertial term can be neglected because the local velocity is nearly zero (from
symmetry considerations) so only the nongyrotropic pressure can balance the recon-
nection electric field (Vasyliūnas, 1975). This result is true both with and without a
guide magnetic field (the field component in the direction of the main current), which
implies that the current layer driven by the reconnection electric field must scale
with the electron Larmor radius even when the guide field becomes very large (Hesse
et al., 2002, 2004). Away from the X-line the convective portion of the inertia can be
important, especially for the case with a guide field, where large parallel electric fields
map the magnetic separatrices, extending outward far from the X-line (Pritchett and
Coroniti, 2004; Drake et al., 2005b).
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A final question is how strongly the rate of reconnection depends on the dissipation
mechanism. An important result of the GEM Reconnection Challenge (Birn et al.,
2001) and some earlier papers (Shay and Drake, 1998; Hesse et al., 1999) is that the
rate of late-time reconnection is insensitive to dissipation when whistler and kinetic
Alfvén waves drive the outflow from the X-line. For simplicity, we break the more
detailed discussion of these various issues into the case of antiparallel and guide-field
(component) reconnection.

Reconnection with antiparallel magnetic fields
The case of antiparallel reconnection has been extensively explored because

of its relevance to collisionless reconnection in the Earth’s magnetotail and because
the current layers that develop in the vicinity of the X-line are relatively broad in
comparison with the case of a guide field and therefore computationally less chal-
lenging to model. In Fig. 3.1 is a schematic of the basic structure of the X-line region,
including the field structure and electron and ion flows. At distances greater than di

upstream from the X-line the electrons and ions flow together. At a distance around
di upstream the electron and ion motion decouples and the ions are diverted into the
outflow direction, forming an outflow jet and current layer of width around di. Inside
of this region the ions are essentially demagnetized and respond mostly to electric
rather than magnetic fields. The electrons remain frozen-in to the magnetic field and
continue to move toward the X-line. The electrons decouple from the magnetic field
when they approach within de of the X-line and are accelerated in the outflow direc-
tion in an outflow channel of width de. The peak outflow velocity of the electrons

B-field

c/ωpi c/ωpe

Current
Ion flow

Electron flow
Ion dissipation region
Electron dissipation region

Fig. 3.1. Schematic of the multiscale structure of the dissipation region during
antiparallel reconnection. Electron (ion) dissipation region in white (gray) with
scale size c/ωpe (c/ωpi). Electron (ion) flows in long (short) dashed lines. In-plane
currents marked with solid dark lines and associated out-of-plane magnetic
quadrupole field in gray.
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reaches the electron Alfvén speed vAe = B/
√

μ0men and then drops sharply to match
the ion outflow speed vA. The different trajectories of the electrons and ions in the
reconnection plane produce closed current loops that generate a self-consistent out-
of-plane magnetic field By. This field is the signature of the standing whistler wave
that drives the electron outflow from the X-line.

For consistency with the remainder of this chapter, and the predominant applica-
tions to the Earth’s magnetotail (Chapter 4), we adopt a cartesian coordinate system,
where x is the coordinate in the direction of the main magnetic field, which reverses
sign across the current sheet, y is the direction of the main current (the ignorable
coordinate in 2D models), and z is the direction perpendicular to the current sheet.
We note that these coordinates may differ from those in the original papers cited.

Shown in Fig. 3.2 are data from a 2D simulation of antiparallel reconnection with
a particle-in-cell (PIC) code (Zeiler et al., 2002). The data are consistent with the
schematic shown in Fig. 3.1. A key discovery that is manifest in all models that
include the Hall term in Ohm’s law is that the dissipation region (broadly defined
to include all of the regions where either the ions or electrons decouple from the
magnetic field) remains spatially localized in the outflow direction – that is, unlike
the Sweet–Parker model, the dissipation region is determined by the kinetic scales
(Δ∼10di) rather than the macroscale L. It is this scaling for Δ that facilitates fast
reconnection (vin∼0.1vAx) from Eq. (3.1) even in large systems (Shay et al., 1999,
2004; Huba and Rudakov, 2004). The reason for the different scaling of the Hall
versus the MHD reconnection is linked to the dispersive character of the whistler
wave (Rogers et al., 2001). The insensitivity of the rate of reconnection to dissipation
is also linked to the dispersive property (Birn et al., 2001). Thus, how reconnection
couples to the whistler wave is a crucial scientific issue.

Coupling to whistler waves The coupling of dispersive waves to reconnec-
tion is complicated by the 2D structure of the dissipation region and there has to
date been no rigorous analytical model to describe the essential physics. A good
qualitative understanding can be gleaned from a simple 1D picture as illustrated
in Fig. 3.3, showing the magnetic field of a standing wave that is periodic in the
z direction along a uniform magnetic field in the y and z directions. As suggested
by the magnetic field line segments shaded dark, a segment of the field line can be
treated as a newly reconnected field line formed as a result of reconnection and the
resulting flow in the x direction treated as a proxy for the outflow generated during
reconnection. In the case of the MHD model the solution of this standing Alfvén
wave is

B̃x = B̃0 sin(kz) cos(kvpt), (3.7)

ṽx = vp
B̃0

Bz
cos(kz) sin(kvpt), (3.8)

vp = vAz, (3.9)

with vp the wave phase speed. The amplitude of the x component of the velocity,
B̃0/

√
μ0min, is simply the upstream Alfvén velocity, the usual outflow condi-

tion for magnetic reconnection. A similar calculation carried out with By = 0 at
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Fig. 3.2. Data from a PIC simulation of antiparallel reconnection with mi/me =
100, Ti/Te = 12.0, and c = 20.0 showing: (a) the current Jz and in-plane magnetic
field lines; (b) the self-generated out-of-plane field Bz; (c) the ion outflow velocity
vx; (d) the electron outflow velocity vxe; and (e) the Hall electric field Ey. Notice-
able are the distinct spatial scales of the electron and ion motions, the substantial
value of Bz which is the signature of the standing whistler, and the strong Hall
electric field, Ey, which maps the magnetic separatrix. The overall reconnection
geometry reflects the open outflow model of Petschek rather than the elongated
current layers of Sweet–Parker.

scales below di yields the fields for the whistler wave and the electron outflow
velocity,

B̃y = B̃0 sin(kz) cos(kvpt), (3.10)

vp = kdevAez, (3.11)

where B̃x and ṽx are the same as in Eqs. (3.7) and (3.8) with the whistler phase speed
replacing that of the Alfvén wave. The whistler wave generates a magnetic field B̃y

as the electron flow ṽye drags the field B̃x out of the reconnection plane (Terasawa,
1983; Hassam, 1984). Associated with B̃y is the electron outflow ṽx, which drives the
electrons away from the X-line. Thus, the whistler wave replaces the Alfvén wave in
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Fig. 3.3. Schematic showing how a newly reconnected field line can be represented
as a segment of a simple 1D wave. The horizontal velocity vx generated as the wave
evolves corresponds to the outflow velocity from the reconnection site. The ratio
of the peak horizontal velocity vx to the horizontal magnetic field perturbation Bx

is a constant in the case of the Alfvén wave but depends on the wave vector kz

in the case of whistler and kinetic Alfvén waves and is related to the dispersive
property of these waves.

driving reconnection (Mandt et al., 1994) and the characteristic outflow speed is the
whistler phase speed based on the upstream magnetic field B̃0.

Importantly, for a given value of B̃0 the outflow velocity increases with k (see Eqs.
(3.8) and (3.11)) or inversely with the width of the dissipation region δ. This is very
different from reconnection driven by the Alfvén wave. A consequence is that the
total flux of electrons from the dissipation region nṽx is insensitive to δ and therefore
the mechanism that breaks the frozen-in condition. The implication of this result is
that the rate of reconnection should also not depend on the mechanism that breaks
the frozen-in condition. Computer simulations of reconnection support this hypoth-
esis (Shay and Drake, 1998; Hesse et al., 1999; Birn et al., 2001). In Fig. 3.4 we show
results from the GEM Reconnection Challenge project (Birn et al., 2001), in which
the reconnected flux is shown as a function of time for a series of simulations with an
MHD model, a Hall MHD model (including the j×B and ∇·Pe terms in Ohm’s law),
a hybrid model (massless, fluid electrons and particle ions), and a PIC model. All
of the models but MHD include the dynamics of whistlers and the runs were carried
out with identical Harris equilibria with finite initial field perturbations. The rate of
reconnection is the slope of the curve of reconnected flux. All models but MHD have
indistinguishable rates of reconnection, which greatly exceed the MHD rate (obtained
with uniform resistivity corresponding to a Lundquist number of 200). Since the
mechanism that breaks the frozen-in condition in the various models differs (finite
electron mass in the case of the PIC simulation and a hyper-resistivity in the other
non-MHD models) these simulations confirm the insensitivity of the rate of reconnec-
tion to the dissipation mechanism if dispersive whistlers are included in the dynamics.

The GEM challenge did not address the question how the thin current sheet and
the initial island were formed. Therefore, another collaborative study was performed
to address this question (Birn et al., 2005). This study grew out of a workshop
on Magnetic Reconnection Theory, held in 2004 at the Isaac Newton Institute,
Cambridge, UK, and was therefore dubbed the Newton Challenge. The simulations
started from a current sheet that was four times thicker, in relation to the ion inertia
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Fig. 3.4. Reconnected magnetic flux as function of time for various simulations of
the GEM Reconnection Challenge project (Birn et al., 2001), including an MHD
model, a PIC model, a hybrid model, and a Hall MHD model, using the same initial
conditions and parameters. The slope of the curves is the reconnection rate and is
essentially the same for all models that include the Hall term (whistler dynamics).

length, than that in the GEM challenge, and current sheet thinning and the onset
of fast reconnection was initiated by temporally limited, spatially varying inflow of
magnetic flux. The simulations showed again fast reconnection, independent of the
dissipation mechanism, when the Hall/whistler dynamics was included, consistent
with the GEM study. Further evidence comes from PIC simulations where it has also
been shown that the rate of reconnection is insensitive to the value of the electron
mass (Shay and Drake, 1998; Hesse et al., 1999; Pritchett, 2001b; Ricci et al., 2002).

Thus, the dispersive property of the whistler, which controls the outflow of elec-
trons from the dissipation region in antiparallel reconnection, renders reconnection
insensitive to the mechanism that breaks the frozen-in condition. This result has the
desirable consequence that the details of a kinetic model might not be required to
model reconnection in large systems.

Structure of the electron dissipation region In the case of reconnection with
no initial guide field the electron dissipation region is the narrow region around the
reversal region where the electrons become demagnetized and decouple from the
magnetic field. The width δe of this demagnetized electron region can be obtained
using the conservation of canonical momentum, py = mevy − eB′

xz2/2c, and energy,
where B′

x = dBx/dz. For a typical particle with the thermal velocity vte,

δe =

√
2vte

Ω′
ex

, (3.12)

which is a hybrid of the electron Larmor radius based on the asymptotic magnetic
field and the magnetic scale length LB = Bx/B′

x (Laval et al., 1966). This expres-
sion, however, does not pin down the characteristic scale of the dissipation region
because both the magnetic scale length and possibly the thermal velocity have to
be determined self-consistently. For example, even if the inflowing electrons are very
cold, the dissipation region is still expected to have a finite scale. The self-consistent
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scaling can be determined by requiring that the electrons bouncing in the unmag-
netized region balance the magnetic pressure and at the same time requiring that
the current carried by the electrons within the dissipation region generate the jump
in magnetic field across the layer. These two conditions, B2

x/2μ0 = menv2
b/2 and

δevb = devAex, yield the width of the current layer δe and the electron bounce velocity
vb in the dissipation region,

δe = de, (3.13)

vb = vAex, (3.14)

where the electron Alfvén velocity vAex should be evaluated just upstream of the
electron current layer. This width is consistent with the data shown in Fig. 3.2. Note
that the width of the electron current layer is independent of the magnetic field jump
across the layer. If the electron thermal velocity of the inflowing plasma exceeds
the electron Alfvén speed, the layer will be broader than in Eq. (3.13) so de is the
minimum value of the width of the electron dissipation region. Simulations reveal
that the minimum width is actually around 2de (Zeiler et al., 2002).

How the electrons trapped in the unmagnetized region reach velocities as high as
the electron Alfvén speed is not obvious. The inflow velocity associated with recon-
nection is a small fraction of vAex and is therefore not the driver. This inner electron
region develops a substantial electric field Ez due to excess electrons at the turning
points of their bounce motion in the unmagnetized region. This field points outward
from the neutral line and accelerates the electrons into the unmagnetized region,
producing the counterstreaming electron beams that make up distribution function
at the X-line (Zeiler et al., 2002; Swisdak et al., 2005). Thermal spreading blurs the
fine-scale structure of this layer when the electron thermal velocity approaches the
electron Alfvén speed.

With the width of the dissipation region given in Eq. (3.13), an estimate of the elec-
tron outflow velocity from the electron dissipation region can be obtained. Equations
(3.8) and (3.11) yield k∼1/de so that

ṽex∼vAex. (3.15)

The scaling of the electron outflow velocity with the electron Alfvén speed was
demonstrated in 2D hybrid simulations by varying the electron mass (Shay et al.,
2001). Outflow velocities consistent with this scaling have also been measured in full
particle simulations (Hoshino et al., 2001a).

Reconnection with a guide field
The introduction of an ambient magnetic field in the out-of-plane direction

(the guide field), along the current direction, substantially changes the structure of
the dissipation region even at rather low values of the guide field. With this additional
magnetic field the out-of-plane inductive electric field that drives reconnection has
a component parallel to the magnetic field and the resulting parallel acceleration of
electrons produces strong out-of-plane currents, in contrast to the cross-field currents
that dominate the antiparallel reconnection dynamics. The in-plane components of
the parallel electron flows along newly reconnected field lines drive a pronounced
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density asymmetry across the reconnection layer that couples reconnection to a
kinetic Alfvén wave (Aydemir, 1992; Kleva et al., 1995; Cafaro et al., 1998). Thus,
it is the kinetic Alfvén wave that drives the electron outflow from the X-line rather
than the whistler. The guide field also suppresses the unmagnetized bounce motion
of electrons that defines the width of the electron current layer in the antiparallel
reconnection case. The result is that the electron current layer narrows substantially
and surprisingly has a width that scales with the electron Larmor radius (Hesse et al.,
2002, 2004). A consequence is that the nongyrotropic behavior of electrons survives
even when the guide field is large (see Section 3.2).

Coupling to kinetic Alfvén waves In Fig. 3.5 we show the out-of-plane
current density jy, the electron density ne, and the parallel electric field from a simu-
lation with an ambient guide field equal to the reversed field. Clearly seen in the
plot of the density is the depletion of the density along two of the separatrices and
enhancements along the remaining separatrices (Tanaka, 1996; Pritchett and Coro-
niti, 2004; Drake et al., 2005). This density asymmetry is the signature of the kinetic
Alfvén wave. A diagram showing the essential physics appears in Fig. 3.6 (Kleva
et al., 1995). A parallel electric field on newly reconnected field lines drives a parallel
electron flow across the current layer, depleting the electron density on one side of
the current layer and enhancing it on the other. The resulting electric field causes the
ions to polarization drift across the current layer to charge neutralize the electrons.
A surprise is the magnitude of the electron density depletion, which yields cavity
densities as low as a few percent of the ambient background. The separatrix with the
enhanced density in Fig. 3.5 carries most of the current and the result is a distinct
twist of the current layer that is in contrast with the distinctly symmetric layer in
the case of zero guide field. The perturbations of the kinetic Alfvén wave can be
calculated as in the case of no guide field,

B̃y =
√

μ0nT
B̃0

By
sin(kz) sin(kvpt), (3.16)

vp = kde
Bz

B
cse, (3.17)

ñT = −ByB̃y, (3.18)

where cse =
√

T/me is the electron sound speed. As in the case of the whistler and
Alfvén waves the outflow velocity ṽx is given in Eq. (3.8) but with the phase speed
given in Eq. (3.17). In the case of a strong guide field the flow speeds are below the
magnetosonic speed so the density and out-of-plane magnetic field perturbations are
in pressure balance as given in Eq. (3.18). As in the case of the whistler wave, the
kinetic Alfvén wave speed increases as the layer width decreases for a fixed value of
the upstream magnetic field B̃0. While there have been no reported scaling studies
of the electron outflow velocity in the case of guide-field reconnection, the phase
speed of the wave in Eq. (3.17) suggests that the outflow speed should scale with the
electron sound speed.
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Fig. 3.5. Data from a PIC simulation of reconnection with a guide field (initially
uniform) equal in magnitude to the reversed field. Other parameters are mi/me =
100, Ti/Te = 12.0, and c = 20.0. Shown are: (a) the current density jy; (b) the
electron density; (c) the electron parallel velocity v‖e; (d) the parallel electric field
E‖; and (e) the Hall electric field Ez. Noticeable are the canting and narrowing
of the current layer at the X-line compared with the antiparallel case in Fig. 3.2,
the density cavities that map two of the four separatrices connected to the X-line,
the localization and structuring of the parallel electric field in the low-density
cavities, the large parallel electron velocities that are a conseqence of acceleration
by the parallel electric field in the low-density cavities, and the strong transverse
Hall electric fields that maintain charge neutrality in the density cavities. The
density asymmetry across the dissipation region reflects the coupling to the kinetic
Alfvén wave. The development of the secondary magnetic island is typical during
reconnection with a guide field.

Based on the simple 1D wave model, the values of the guide field and plasma
β where the dispersive whistler and kinetic Alfvén waves dominate the dynamics
of the inner dissipation region or where there are no dispersive waves have been
identified (Rogers et al., 2001). A detailed computational exploration remains to be
completed.

An important remaining question is how large the guide field has to be in order to
magnetize the electrons in the dissipation region and therefore impact the dynamics
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Fig. 3.6. Schematic of the structure of the dissipation region during reconnection
with a guide field. Compression of parallel electron flows on newly reconnected field
lines leads to a density asymmetry across the dissipation region in contrast to the
symmetric system with no guide field. Ions polarization drift across the magnetic
field to charge neutralize the electrons.

from that in an ideal system with no guide field. The dynamics of the antiparallel
system should significantly change if the ambient guide field is sufficient to magnetize
electrons injected into the reversal region. The inflow velocity of electrons is around
0.1vAex – that is, around 0.1 of the outflow velocity of the electrons. The effective
Larmor radius ρg of electrons with this velocity in the guide field is ρg = 0.1vAex/Ωey,
where Ωey = eBy/me is the cyclotron frequency in the guide field. The condition
ρg < de yields

By > 0.1Bx (3.19)

as the condition for which the guide field can no longer be neglected in antiparallel
reconnection (Swisdak et al., 2005). Thus, only very small guide fields are required to
alter the electron dynamics. We emphasize that much larger guide fields are required
to alter the dynamics of ions.

Structure of the parallel electric field and the electron dissipation region In
the absence of a guide field the electron dissipation region has a width that is compa-
rable to the electron skin depth. A guide field can prevent the bounce motion of
electrons across the current layer that controls the dynamics in the antiparallel field
case, resulting in even narrower current layers. The electron dissipation region in the
case of a guide field is controlled by the parallel electron current and therefore the
parallel electric field. This parallel field is given approximately by

E‖ = −∂Ay/∂t−∇‖Φ, (3.20)
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where Ay is the y component of the vector potential that defines the in-plane
magnetic field ∇Ay × ŷ, and ∇‖Φ is the parallel component of the electrostatic field.
The latter is generated due to the parallel bunching of electrons. At a location where
the in-plane magnetic field reverses, the parallel electrostatic field vanishes (∇‖Φ = 0)
and reconnection generates a finite parallel electric field. The structure of Φ controls
the spatial localization of E‖. If the charge perturbation associated with electron
parallel bunching can be balanced by the cross-field motion of either the electrons
or ions, the parallel electric field can remain nonzero. Otherwise the electrostatic
field cancels the inductive field and the electrons short out the parallel reconnection
electric field (Drake and Lee, 1977). The electrons satisfy a kinetic equation based
on drift orbits given by

∂f̃

∂t
+v‖∇‖f̃ +

f0

BΩe

d
dt

∇2
⊥Φ+

e

me
E‖

∂f0

∂v‖
= 0, (3.21)

where f(x, v⊥, v‖) = f0 + f̃ is the distribution function and the third term arises from
the polarization drift. Because the electron layer is typically much smaller than an
ion Larmor radius, the ion response to the potential must include the full ion orbital
dynamics. Only the motion perpendicular to the magnetic field must be included.
The ion density perturbation, ñi, is given by

ñi = [Γ0(b)−1]
eΦ
Ti

n0, (3.22)

Γ0(b) = I0(b)e−b, b = −ρ2
i ∂

2/∂z2, (3.23)

where ρi =
√

Ti/mi/Ωi is the ion Larmor radius and I0 is the modified Bessel function.
Equating this density perturbation with that of the electrons by solving Eq. (3.21),
we find an equation for the potential as follows:

∇‖HΦ = − Ti

Te +Ti
E‖(0)+

T0

n0e

∫
dv‖∇‖h̃, (3.24)

(
∂

∂t
+v‖∇‖

)
h̃ =

e

Te
f0Ė‖, (3.25)

where

∇‖h̃ ≡ ∇‖f̃ +
ef0

Te

(
E‖ +ρ2

e∇‖
∂2Φ
∂z2

)
, (3.26)

H = Γ0
T0

Ti
−1+ρ2

e0
∂2

∂z2 , (3.27)

T0 =
TeTi

Te +Ti
, ρ2

e0 = T0ρ
2
e/Te, (3.28)

and ρe0 is the effective electron Larmor radius based on the hybrid temperature T0.
The operator H in Eq. (3.27) controls the response of the potential Φ to the parallel
inductive electric field. The spatial structure of the parallel electric field therefore
is controlled by this operator and the basic scales involved can be deduced from
its zeros. Taking ∂/∂z∼1/δ the zeros of H yield two distinct scales δ: the effective
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electron Larmor radius ρe0 based on the hybrid temperature T0; and the effective ion
Larmor radius ρs =

√
Te/mi. Earlier models of reconnection with a guide field had

suggested that the transverse scale of E‖ was the ion scale ρs, which is inconsistent
with recent simulations (Hesse et al., 2002, 2004; Swisdak et al., 2005) that suggest
that the parallel electric field is much more localized with a transverse scale given
by the electron Larmor radius.

The structure of E‖ can be deduced from Eqs. (3.24) and (3.25). For simplicity
we consider simple linear tearing perturbations for which ∇‖ = ikxzB′

x/By. At z = 0
the h̃ term in Eq. (3.25) balances the inductive drive term but for z >∼ ρe0, h̃ → 0
and ρ2

e0∂
2/∂z2 
 1. Since Γ0∼0 at scales below the ion Larmor radius, we find that

∇‖Φ∼eq − (Ti/(Ti +Te))Ȧy/c or

E‖ = E‖(0)
Te

Ti +Te
. (3.29)

For Ti � Te the parallel electric field has dropped to a small fraction of its value
at z = 0. E‖ remains approximately constant at this level until z >∼ ρs when Γ0 ∼1
and ∇‖φ∼eqE‖(0) so that E‖∼eq0. Earlier theories in which E‖ remained constant
out to ρs were valid only in the limit of zero ion temperature. In most space physics
applications Ti � Te so the tranverse scale of E‖ is effectively ρe0.

This analysis of the transverse structure of E‖ does not provide information about
the structure of E‖ along the magnetic field. For example, after reconnection has
approached quasi-steady conditions in a large system, what is the spatial extent of
the region where E‖ = 0? Is this region localized to the X-line or does it extend
large distances along the magnetic separatrices? The spatial extent of this region
impacts the number of electrons that can be accelerated by the parallel electric
field during magnetic reconnection and therefore the fraction of energy transferred
from the magnetic field into electrons, a broadly important issue in essentially all
reconnection applications.

The spatial extent of E‖ is controlled by the dynamics of the standing kinetic
Alfvén wave that is driven in the vicinity of the X-line. The deep density cavities
produced along two of the four separatrices emanating from the X-line shown in
Fig. 3.5 are regions where the reconnection electric field can maintain a finite E‖
that extends a significant distance from the X-line (Pritchett and Coroniti, 2004).
This is because the very low density of these cavities makes it more difficult for
electrons to bunch and short out the parallel electric field. The spatial extent of
E‖ is therefore linked to the spatial extent of the density cavities. The cavities are
formed as electrons approach the separatrix and are accelerated toward the X-line
by the parallel electric field. The high parallel mobility of these low-mass particles
allows the electric field to nearly evacuate the separatrix. The limit on the length
of these density cavities has been linked to the upper limit on the in-plane current
that results from the flow of electrons toward the X-line – that is, longer cavities
require more current for their formation (Drake et al., 2005). The in-plane current
produces a self-consistent field B̃y whose pressure must be balanced by depressions
in the local pressure and in-plane magnetic field. The result is an upper limit on the
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length Lc of the cavities and a corresponding upper limit on the electron velocity v‖
that results from parallel acceleration in these cavities,

Lc = 5di(1+βx)Bx/By, (3.30)

v‖ = α
(1+α2/4c2)1/2

1+α2/2c2 , (3.31)

α ≡ vAex(1+βx)1/2, βx = n(Te +Ti)/B2
x. (3.32)

The energetic beams that are produced in these acceleration cavities are injected
into the X-line so that the total current driven at the X-line during reconnection
with a guide field is not just a result of local acceleration but is a more complex
nonlocal process. The high-velocity beams produced in these acceleration cavities
can also generate fluctuations over a broad range of frequencies (Cattell et al., 2005).
The impact of these fluctuations on the electron beams and reconnection remains
an ongoing research topic. Can, for example, the electron-ion drag induced by these
fluctuations compete with the nongyrotropic pressure in balancing the reconnection
electric field at the X-line during steady reconnection?

3.1.2 Scaling of kinetic reconnection to macroscale systems
A second important result of the kinetic modeling concerns the scaling of the

dissipation region with the system size. As discussed earlier, the reconnection rate
is strongly dependent on the aspect ratio of the dissipation region, δ/Δ as defined
in Eq. (3.1). In the Sweet–Parker model the dissipation region has a length that
scales with the macroscopic system length L (Section (2.1)) and the small aspect
ratio, δ/Δ leads to slow reconnection. In contrast, in Petschek’s model, slow shocks
bound the plasma flowing away from the X-line and are responsible for the outflow
acceleration. Since in this model most of the outflowing plasma does not need to pass
through the dissipation region, the length of the dissipation region Δ can be small
compared with the system size, and according to Eq. (3.1) this allows for an enormous
increase in the reconnection rate. Flux conservation through the slow shocks yields
vin∼vout tanθ∼vAxθ, where θ is the angle that the slow shocks make with the x axis.
Comparing this relation with Eq. (3.1), we find that the opening angle of the outflow
is directly related to the aspect ratio of the dissipation region.

While this open geometry does not appear in uniform-resistivity MHD models
(Biskamp, 1986), it does appear in all of the models that couple to dispersive waves in
the dissipation region (Shay et al., 1999; Rogers et al., 2001; Shay et al., 2004). Why
does wave dispersion allow the outflow region to open up as proposed by Petschek?
The opening process is shown in Fig. 3.7 in a time sequence of the out-of-plane current
from a numerical simulation of the transition from Sweet–Parker to Hall reconnec-
tion. The out-of-plane current is directly linked to the ion acceleration away from the
X-line (via j×B force) and provides a good visualization tool for the reconnection
geometry. In this simulation a system with steady Sweet–Parker reconnection was
taken as an initial condition. The resistivity was reduced so that the width of the
Sweet–Parker dissipation region fell below di. The transition was then triggered as
the outflow jet opened sharply and the corresponding rate of reconnection increased.
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Fig. 3.7. Transition from Sweet–Parker to Hall reconnection. From a double
current sheet simulation with system size 409.6c/ωpi × 204.8c/ωpi. Initially the
system has a resistivity, or inverse Lundquist number, of η = 0.015 (based on a
normalization using the length scale c/ωpi and the time scale 1/Ωci). At t = 1098,
the resistivity is lowered to 0.007. In (a)–(d) the total current along y as time
progresses and in (e) the reconnection electric field versus time. The time of each
figure in (a)–(d) is denoted by a dashed vertical line in (e). Figure provided by
Paul Cassak.

Again, a rigorous theory of the connection between the X-line and the Petschek
outflow solution has not been carried out but the essential physics of this transition
can be understood from arguments similar to those used to analyze the outflow from
the 1D waves. Instead of a simple 1D system depending only on z, we consider an
initial condition with slow variation in the x direction corresponding to an open
outflow geometry. Taking x to be the distance downstream of the X-line, Bz ∼x,
B̃0 ∼x and the width of the outflow region δ ∼x so that k ∼x−1. Through the
incompressibility condition ∇·v = 0 the x variation of the outflow velocity ṽx with
distance from the X-line controls the contraction or expansion of the outflow jet
in the z direction. If ṽx increases with x, then ∂ṽz/∂z < 0 and the outflow jet will
constrict, reducing the rate of reconnection. On the other hand, if ṽx decreases with
x, the outflow jet will expand into the Petschek open outflow configuration. Along
the symmetry line z = 0 the outflow velocity scales like vp sin(kvpt) so the variation
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of the phase speed vp with distance x controls the structure of the outflow jet. In
the MHD case vp∼x so that

∂ṽz/∂z < 0 (3.33)

and the outflow jet contracts in the z direction as was seen in earlier MHD simula-
tions (Uzdensky and Kulsrud, 2000). In the case of whistler driven outflow vp is a
constant and ṽx decreases with x so that

∂ṽze/∂z > 0. (3.34)

In this case the outflow jet expands in the z direction as shown in Fig. 3.7 and leads
to the open outflow configuration of Petschek and fast reconnection.

Thus, in the case of the whistler the increase of the width of the outflow jet and
the increase of the magnetic field with distance downstream counterbalance so that
the whistler phase speed is nearly constant, allowing the outflow jet to remain open.
This behavior is, of course, linked to the dispersive property of the whistler.

The simulations performed showing this open outflow geometry via Hall physics are
quite small compared to the actual physical systems which exhibit reconnection such
as the solar corona and the Earth’s magnetosphere. It is therefore important to show
that the length of the dissipation region Δ is independent of system size L. Even a
weak dependence can cause an extreme slowdown of reconnection when extrapolated
to real systems. For the antiparallel case, a study using hybrid simulations of the
double tearing mode yielded reconnection inflow velocities of 0.1vA with no depen-
dence on system size (Shay et al., 1999). Recently, this result has been confirmed
with two-fluid simulations of a system with open boundary conditions (Huba and
Rudakov, 2004). The independence of the rate of reconnection from system size can
be visualized in Figs. 3.7c and d. In these figures, the angle θ that the open current
wedge makes with the x axis is established locally around the X-line and then propa-
gates outwards. By the time of Fig. 3.7d, this wedge of current has propagated about
1/2 of the total system size, with no appreciable change in the angle θ. The angle θ,
therefore, is set up locally at the X-line, independent of system size.

Reconnection rates on the order of 0.1vA yield time scales for global energy release
and magnetic reconfiguration that are consistent with those seen in solar flares
and magnetospheric substorms. In a typical X-class flare, reconnection drives a
global energy release, in the form of hard and soft X-ray emissions that last around
100 seconds. With rough estimates of the magnetic field and density in the solar
corona (B ≈ 100G and n ≈ 1010 cm−3), the reconnection inflow velocity is around
2 ·107 cm/s. A typical magnetic flux tube involved in a flare has an area of 1018 cm2

and a length of 109 cm, giving a time of 50 s to reconnect much of the magnetic
field in the flux tube, which is consistent with the duration of typical flares (Miller
et al., 1997). During a substorm, a significant fraction of magnetotail lobe flux is
reconnected causing a massive dipolarization of the magnetotail. Typical values of
lobe properties (B ≈ 15nT and n ≈ 0.05cm−3) yield a reconnection inflow speed of
150 km/s. In around 10 minutes, a typical time scale for the expansion phase of a
substorm, about 15 RE of magnetic flux in the lobes can reconnect.

The results that the reconnection rate is insensitive to system size and electron
dissipation are not without controversy. The above results have been questioned
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in studies of forced reconnection and double tearing mode reconnection, where it
has been found that either the reconnection rate or the time scales of reconnection
have a dependence on electron dissipation and system size (di/L and ρs/L) (Grasso
et al., 1999; Wang et al., 2001; Porcelli et al., 2002; Fitzpatrick, 2004; Bhattacharjee
et al., 2005). An example will be discussed in Section 3.4. Some of the disparities
may arise from differences in the definition of the reconnection time – whether or
not to include the initiation phase when the island width w∼di, ρs – or from the
difficulty in identifying weak dependencies, such as a 1/6-th power electron mass
dependence discussed in Section 3.4. It is also not clear to what extent simulations
with contrasting results cover identical regimes of the evolution. More studies with
w � di, ρs will be necessary to settle this question.

3.1.3 Transitions from slow to fast reconnection
The structure and rate of reconnection in the collisional MHD model differ

drastically from that of the Hall reconnection model. An important question is how
systems with finite resistivity undergoing reconnection transition between the two
states. Do the rates of reconnection change continuously between the two regimes
or is there a sharp transition? Is the transition related to the observed onset of
reconnection, e.g., in the onset of solar flares or of sawtooth events in laboratory
tokamak experiments? In the environment of the Earth’s magnetosphere this issue
is probably of less importance because of the absence of resistivity.

For a given plasma resistivity, rather general arguments suggest that there are
two stable solutions (fast and slow) to the reconnection problem for a given value
of the plasma resistivity (Cassak et al., 2005). The Sweet–Parker solution, governing
slow reconnection, is valid provided the half-width of the current layer δ exceeds the
relevant kinetic scale lengths,

δ

L
=

√
η

μ0vAL
>

di

L
,
ρs

L
, (3.35)

where the magnetic field is to be evaluated immediately upstream of the current
layer. For the antiparallel reconnection case, this reduces to

ηsf

μ0
∼ vAd2

i

L
, (3.36)

so Sweet–Parker reconnection is valid for η > ηsf . For example, in the solar corona,
n ∼ 1016 m−3, L ∼ 107 m and B ∼ 10−2 T (Miller et al., 1997), so ηsf ∼10−6 ohm/m
in MKS units, corresponding to a temperature of 102 eV∼106 K.

The converse condition, that resistivity be sufficiently small to not impact the
whistler or kinetic Alfvén dynamics that drive kinetic reconnection, yields a distinct
condition. As in the Sweet–Parker analysis, we balance resistive diffusion with convec-
tion at the electron inertial scale de,

ηfs

μ0d2
e
∼ vin,e

de
∼0.1

vAe

de
,
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or
ηfs

μ0
∼0.1vAdi, (3.37)

with vA evaluated upstream of the electron current layer. The fast reconnection
solution is valid if η < ηfs. The value of ηfs is independent of system size and is enor-
mous for most physical systems. Equation (3.37) suggests that once fast reconnection
onsets, resistive effects are unlikely to influence the dynamics.

In typical systems of interest the ratio of ηsf to ηfs is very small,

ηsf

ηfs
∼10

di

L

 1, (3.38)

because di 
 L for most systems of physical interest. For example, the ratio in
Eq. (3.38) is 10−6 for the data from the solar corona presented earlier. Thus, tran-
sitions from fast to slow reconnection occur at much higher resistivities than the
reverse, so for a large range of resistivity ηsf < η < ηfs there are two stable solutions
to the reconnection problem.

These theoretical predictions were tested with numerical simulations using a two-
fluid code (Cassak et al., 2005). The electron to ion mass ratio was me/mi = 1/25.
For a 409.6di ×204.8di computational domain, the critical resistivities are η′

sf ∼0.01
and η′

fs ∼ 0.03, where η′ = η/μ0vAdi is the normalized resistivity. Larger systems
would produce greater separations of ηsf and ηfs. Shown in Fig. 3.8 are plots of the
out-of-plane plasma current from two quasi-steady reconnection simulations of the
two-fluid equations. The upper (lower) simulation has a normalized reconnection rate
E′ = E/(vAB) = 0.055 (0.014), corresponding to the fast (slow) reconnection solution.
At the time shown both of these simulations have identical parameters: η′ = 0.015.
The separate solutions were obtained through differing initial conditions: the slow
solution being initialized with resistive initial conditions (adding the Hall terms after
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Fig. 3.8. Current density jy for fast (upper panel) and slow (lower panel) recon-
nection solutions for a resistivity η′ = 0.015. The parameters of the two runs are
identical and each solution remains stable until all of the available flux has recon-
nected.
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a transient initial period); and the fast solution being initialized as collisionless (no
resistivity but subsequently including it). The range of resistivity over which there
are dual reconnection solutions is apparent in Fig. 3.9, where the reconnection rates
and current layer widths are shown versus plasma resistivity. The solid (open) circles
correspond to the resistive (collisionless) initial conditions. The range of dual solu-
tions matches well the theoretical estimates. The important result is that the slow
solution disappears when the width of the Sweet–Parker current layer falls below di

and at this point the rate of reconnection abruptly increases. Since the Sweet–Parker
reconnection rate decreases with the system size L but the fast rate is independent of
L, the jump in the rate of reconnection will be enormous for large-scale systems such
as the solar corona. From the condition for the disappearance of the Sweet–Parker
solution in Eq. (3.35), a reduction of the local resistivity or an increase in the local
Alfvén velocity can trigger the transition. The upstream Alfvén velocity typically
increases with time as large magnetic fields convect into the X-line during recon-
nection so this model yields a clear mechanism for the transition from slow to fast
reconnection. Possible applications of such an onset model are the solar corona and
disruptions in tokamak fusion experiments. Because of the absence of collisional resis-
tivity in the Earth’s magnetosphere, this model cannot explain onset in this system.
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width, δ, as a function of normalized resistivity, η′ = η/μ0vAdi, for runs analogous
to those in Fig. 3.8.
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3.2 Diffusion region physics
M. Hesse

As discussed in Sections 2.1 and 3.1, in standard resistive MHD models the structure
of the reconnection site is characterized by a resistive diffusion region, where dissipa-
tion is governed by the Ohmic term ηj2, embedded in a wide, essentially dissipation-
free, region governed by ideal MHD. In the collisonless regime the structure and
the dissipation mechanism become more complicated, as illustrated schematically in
Fig. 3.1. This is most easily demonstrated by the generalized Ohm’s law, derived
from the equation of motion of the electron fluid (3.3)

E = −ve ×B− 1
ne

∇·Pe − me

e

(
∂ve

∂t
+ve ·∇ve

)
, (3.39)

where now the ion–electron collision term is neglected. Again, the pressure tensor is
defined in the rest frame of the electrons. Joule dissipation is generally defined by
j ·E′, where E′ = E+v×B is the electric field in the plasma rest frame. Since the first
term on the right-hand side (RHS) of (3.39) can also be expressed approximately by
−v×B+ j×B/ne (assuming one singly charged ion species, for simplicity), and the
Hall term, j×B, does not contribute to the dissipation, it is obvious that the dissipa-
tion mechanism must rely on either thermal, i.e., pressure-based (second term on the
RHS of Eq. 3.39), or inertial effects (last term on the RHS of Eq. 3.39). Of these, the
pressure-based dissipation might rely on current-aligned pressure gradients, or, in
regions of sufficiently small magnetic field, on nongyrotropies of the distribution func-
tion (Vasyliūnas, 1975; Lyons and Pridmore-Brown, 1990; Hesse and Winske, 1993).

We should note that equations equivalent to (3.39) hold self-consistently for all
plasma species, so that, in principle, dissipation could also be derived from the ion
pressure and inertia terms. However, these terms are approximately balanced by the
Lorentz force j×B, so that the net dissipation is given by very small differences
between large ion terms, which are in fact related to electron effects. Therefore it is
much better to discuss the dissipation directly on the basis of the electron terms.

Owing to its very small size and to a lack of sufficiently fast plasma measure-
ments, the properties of the electron diffusion region have not been clearly identified
in spacecraft observations. Thus the physics of the dissipation region remained a
mystery until very recently when highly sophisticated computer simulations of colli-
sionless plasmas permitted the study of electron effects. In this section we present
an overview of our present understanding of how particles become demagnetized in
the diffusion region of the reconnection process. The emphasis of the discussion will
be on electrons; however, many results apply equally to ions, after a suitable change
of charge and mass. The section focuses primarily on the thermal- or bulk-inertia-
based dissipation processes that have been validated in a large number of numerical
models.

The structure of this section follows the historical evolution of theoretical research
of the diffusion region. Following an introduction of the base model for most simula-
tions in Section 3.2.1, we discuss antiparallel magnetic reconnection in Section 3.2.2.
Section 3.2.3 presents an analysis of our present knowledge of guide-field magnetic
reconnection, which is arguably the more generic of the two cases. Both sections
include summaries of translationally invariant and fully three-dimensional models.
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3.2.1 The model and initial configuration
Most of the results presented in this overview are based on the applica-

tion of particle-in-cell codes. The system studied by many researchers is similar to
that selected in the GEM reconnection challenge (Birn et al., 2001). This system is
described in the following.

In most of our analysis we employ dimensionless quantities. For this purpose, we
normalize densities by a typical density n0 in the current sheet, and the magnetic
field by the asymptotic value of the reconnection magnetic field B0. Ions are assumed
to be protons (mass mp) throughout, and length scales are normalized by the ion
inertial length c/ωpi, where the ion plasma frequency ωpi =

√
e2n0/ε0mp is evaluated

for the reference density. Velocities are measured in units of the ion Alfvén velocity
vA = B0/

√
μ0mpn0, based on the reference magnitudes of magnetic field and density.

The electric field is measured in units of E0 = vAB0, the pressure in units of p0 =
B2

0/μ0, and the current density is normalized to j0 = ωpiB0/cμ0.
The magnetic field represents a modified Harris sheet (Harris, 1962) of the

following form:

Bx = tanh(2z)+a0π/Lz cos(2πx/Lx) sin(πz/Lz), (3.40)

Bz = −a02π/Lz sin(2πx/Lx) cos(πz/Lz). (3.41)

The perturbation amplitude a0 = 0.1 leads to an initial value of the normal magnetic
field of about 3% of B0. The system size matches that of the GEM reconnection chal-
lenge by Lx = 25.6 and Lz = 12.8. In addition, we here employ a constant magnetic
field component directed along the main current flow,

By = By0, (3.42)

where By0 is the initial value of the guide field magnitude. The choice of ion–electron
mass ratio varies for different studies; it ranges from mi/me = 25 in the original
GEM challenge problem to mi/me = 1836 in some recent implicit particle-in-cell
calculations (Ricci et al., 2002).

The system evolution is modeled by particle-in-cell codes similar to the one used
by Hesse et al. (1999). Particle orbits are calculated in the electromagnetic fields,
and the electromagnetic fields are integrated on a two- or three-dimensional grid.

3.2.2 Antiparallel reconnection
Previous analyses of time-dependent magnetic reconnection (Hewett et al.,

1988; Horiuchi and Sato, 1994, 1997; Pritchett, 1994; Hesse et al., 1995; Tanaka,
1995b,a; Cai and Lee, 1997; Hesse and Winske, 1998; Kuznetsova et al., 1998; Shay
and Drake, 1998; Hesse et al., 1999; Shay et al., 1999; Hoshino et al., 2001a,b) have
begun to shed light on the electron behavior in different parameter regimes, primarily
in the regions of low magnetic field. It was found that, for antiparallel magnetic
reconnection, deviations from gyrotropy in the electron distribution function can give
rise to reconnection electric fields via nongyrotropic electron pressure terms
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Ey = − 1
nee

(
∂Pxy

∂x
+

∂Pyz

∂z

)
. (3.43)

This process can be understood as an inertial effect of thermal electrons which bounce
in the field reversal region. It is therefore equivalent to a thermal inertia effect, i.e., a
mechanism by which particle thermal motion rather than bulk fluid inertia balances
the reconnection electric field. This bounce motion was first described by Horiuchi
and Sato (1994). Hesse and Winske (1998) performed a particle-in-cell simulation of
collisionless reconnection in the GEM geometry. Their analysis showed indeed the
presence of electron pressure nongyrotropies near the X-point. The magnitude of
these tensor components proved to be sufficient to provide the reconnection electric
field via the expression (3.39).

These studies were taken a step further by Hesse et al. (1999), who investigated
the effect of different electron masses on the collisionless dissipation process in the
reconnection region. The target of the investigation was to study whether different
physics in the diffusion region might lead to different dissipation, thereby influencing
and potentially changing the larger scale behavior of the system under investigation.
In order to test the dependence of the reconnection process on the assumed electron
mass, Hesse et al. (1999) performed a set of simulations with varying ion/electron
mass ratio, ranging from mi/me = 9 to mi/me = 100. Figure 3.10 shows the magnetic
field evolution for the run with mi/me = 25 with the current density in gray scale. The
figure shows that magnetic reconnection, initiated by the initial perturbation, causes
large changes of the magnetic field and current density distribution. Figure 3.10
demonstrates two features: The current sheet thickness in the reconnection region is,
at all times, somewhat larger than the electron skin depth, and the current density
exhibits a saddle-point at the location of the reconnection region. The latter feature
becomes most prominent at later times. Similar features were also found in hybrid
and particle simulations of a similar system.

The relevant off-diagonal components of the pressure tensor are shown in Fig. 3.11,
for a PIC simulation using an ion–electron mass ratio of mi/me = 256 (M. Hesse,
unpublished). This figure demonstrates that electron pressure nongyrotropies are
found even for large mass ratios. Similar results were also found by Pritchett (2001b).

It is apparent from the discussion above that the processes responsible for these
electron pressures rely on the inertia of individual electrons, which contributes to
all of the fluid terms on the RHS of Eq. (3.39). Heavier electrons should spend
more time in the region of low magnetic field, leading to more acceleration and thus
stronger reconnection electric fields. Intuitively, one might expect that the electron
mass should have a significant impact on the evolution of the system. Figure 3.12
proves that this expectation is essentially incorrect. Figure 3.12 shows, for each
of the runs described above, the time evolution of the reconnected magnetic flux,
defined by

Frec =
∫

X−O
Bzdx, (3.44)

where the integral is taken between the major X- and O-points, if there are more
than one of each. Each graph consists of an initial slow growth, typically for the
first seven to eight ion cyclotron times, followed by a rapid time evolution. After
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that time, the evolution slows down considerably. This is due to a depletion of the
magnetic flux in the source regions adjacent to the current sheet which reduces the
energy available to power the reconnection process, and a build-up of plasma and
magnetic pressure in the magnetic island, which reduces the “pulling” of plasma
away from the reconnection region.
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A comparison between the different graphs reveals a surprising result: With the
exception of a small difference in the duration of the slow evolution, all graphs look
essentially alike. This result showed that the electron mass appears to be of little
importance to the large-scale evolution, as has been suggested on the basis of hybrid
simulations with electron inertia (Shay and Drake, 1998; Shay et al., 1999). In fact, a
comparison of other parameters such as velocities and current densities shows striking
similarities also (Hesse et al., 1999).

Figure 3.12 shows that the large-scale evolution is apparently controlled by the
inertia of the ions and might therefore occur on similar time scales independent of the
local electron physics. Hesse et al. (1999) used this result to derive an approximate
scaling equation for the electric field in the diffusion region. They began with the
realization that the electron orbit excursion in a field reversal, and thus the scale of
the electron diffusion region, is given by Eq. (3.12) (Biskamp and Schindler, 1971)

δe =
[
2vte

Ω′
ex

]1/2

=
[
2meTe

e2B′2
x

]1/4

, (3.45)

where Ω′
ex = eB′

x/me and B′
x denotes the derivative of Bx with respect to the z

direction normal to the current sheet. The corresponding bounce orbit is sketched in
Fig. 3.13. This result, combined with the corresponding scale length in the x direction
can be used for an estimate of the electric field from (3.43):

Ey = − 1
nee

(
∂Pxye

∂x
+

∂Pyze

∂z

)
≈ 1

nee

(
Pxye

δe
+

Pyze

δe

)
. (3.46)

Here the values of the pressure tensors are to be taken at the edges of the current
sheet, where electrons begin to become magnetized. In these regions, the pressure
tensor components can be approximated by (Kuznetsova et al., 1998)

Pxye ≈ pe

2Ωez

∂vex

∂x
(3.47)

and

Pyze ≈ − pe

2Ωex

∂vez

∂z
. (3.48)

Here the cyclotron frequencies Ωe = eB/me are evaluated in the z and x components
of the magnetic field, at the diffusion region boundary in the x and z directions,

λ

Fig. 3.13. Schematic of the electron meandering orbits in a magnetic field reversal.
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respectively. The two velocity derivates are related via an approximate, incompress-
ible, equation of continuity. By relating, e.g., Bx = B′

xδe, a small amount of algebra
leads to

Ey ≈ 1
e

∂vex

∂x

√
2meTe (3.49)

for the electric field in the electron diffusion region. This electric field is essentially
constant throughout the electron demagnetization region (Hesse et al., 1999).

Since our simulations indicate that the reconnection electric field appears to be
independent of the electron mass, (3.49) indicates that the gradient of the electron
flow velocity needs to scale like the inverse square root of the electron mass, assuming
no substantial changes in the electron temperature. Similarly, by combining (3.49)
and (3.45) one finds that the peak electron outflow velocity scales with the inverse
fourth root of the electron mass. For an Alfvénic ion outflow velocity, the peak
electron outflow will therefore be of the order of ve∼6.5vA.

The importance of this bounce motion-based dissipation mechanism was verified
in a number of further investigations. Comprising one element of the GEM challenge
studies, Pritchett (2001b) found electron pressure tensor components of the necessary
magnitudes in translationally invariant particle-in-cell models. Similar results were
also found by Hesse et al. (2001a) and Kuznetsova et al. (2001). Pressure tensor-
based dissipation was also seen in implicit particle-in-cell simulation with realistic
ion–electron mass ratios (Ricci et al., 2002).

The next step consisted of extending the modeled domain to three spatial dimen-
sions. Pritchett (2001a) performed a set of three-dimensional simulations of open and
closed magnetic field configurations. Although Pritchett did not investigate electron
anisotropies explicitly, he noted that the structure of the reconnection diffusion region
is essentially identical to the one found in translationally invariant models. Tanaka
(2001) found similar results: reconnection regions that start as two-dimensional struc-
tures remain so even in a fully three-dimensional simulation. In addition, Hesse
et al. (2001b) found that reconnection, when forming out of noise, tends to self-
organize into quasi-two-dimensional channels. The prominent dissipation mecha-
nism appeared to be electron nongyrotropy, unchanged from translationally invariant
models. Finally, Zeiler et al. (2002) found in a high mass ratio simulation that lower-
hybrid drift modes do not destroy the quasi-two-dimensional nature of the electron
current layer.

Thus, the diffusion region in antiparallel reconnection appears fairly well under-
stood. Nevertheless, there are other modes and instabilities that may change the
reconnecting system substantially, without necessarily changing the bounce motion-
based dissipation process. These modes and their effects are discussed in Section 3.5.

3.2.3 Guide field reconnection
In principle it is to be expected that the presence of a guide magnetic field,

aligned with the current direction, may destroy the bounce motion of the electrons
(and ions) in the inner dissipation region. Electron orbits become strongly modified
once the thermal electron Larmor radius rL = vte/Ωe is smaller than or equal to the
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bounce width in the reconnecting magnetic field component, given by (3.45). After
a small amount of algebra, one finds that this condition is equivalent to

By ≥ B′
xδe. (3.50)

Equation (3.50) states that electron bounce orbits in the field reversal region become
affected by the presence of a finite guide magnetic field once the magnitude of the
latter is as big as that of the reconnecting magnetic field at the location of the
farthest excursion of an electron bounce motion.

The question of how kinetic dissipation operates if the guide field exceeds the
condition (3.50) remains a subject of much debate today. Similar to the antipar-
allel reconnection case, a set of theory and modeling analyses have been performed,
however, without a final conclusion. While some early calculations (e.g, Hesse et al.,
1999, 2002; Pritchett, 2001b) indicate that thermal inertial effects may again be the
main contributor to the dissipation process, there are many indications that processes
that involve variations in the current direction may play a role, too (e.g., Pritchett
and Coroniti, 2004; Swisdak et al., 2003). In this section, we provide some detail
on the present understanding of the mechanism supporting electron thermal dissipa-
tion. However, we will also discuss the present understanding of alternate dissipation
processes.

In a situation where By exceeds the threshold (3.50), electron nongyrotropies
need to be based on perturbations of the dominant Larmor motion about the guide
magnetic field. In the wake of earlier results pertaining to electron thermal dissi-
pation (Hesse et al., 1999, 2002; Pritchett, 2001b), Hesse et al. (2004) generated a
high-resolution numerical calculation of the GEM challenge system for mi/me = 256,
and a guide magnetic field of 80% of the reconnection magnetic field component.
An overview of the evolution of this system, shown in Fig. 3.14, demonstrates the
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similarity of the reconnecting system to that found in calculations without guide field
components. The initial, X-type perturbation leads to a reconfiguration. The most
prominent difference to antiparallel merging is the inclination of the reconnecting
current sheet with respect to the x axis. The figure also indicates the presence of a
very thin current sheet in the central reconnection region, which is likely associated
with electron demagnetization.

The panels of Fig. 3.15 show a blow-up of the inner reconnection region, taken at
t = 16. The top panel shows magnetic field lines and the total current density in the
x, z plane, as well as electron flow velocities. The center panel shows that strong elec-
tron flows are associated with strong gradients of the magnetic guide field component
By. The plot demonstrates the presence of a quadrupole-like magnetic perturba-
tion, albeit strongly distorted and on top of the underlying guide field magnitude of
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By0 = 0.8. Finally, the lower panel of Fig. 3.15 displays the electron flow speed in the
y direction. While flow velocity magnitudes are similar to those found in simulations
of antiparallel merging, the layer is strongly concentrated on a scale substantially
smaller than the ion inertial length. We point out that the relative drift between ions
and electrons in the present calculation is, for the temperatures encountered in the
simulation, close to but not larger than the marginally Buneman-unstable threshold.

The relevant pressure tensor components, Pxye and Pyze, are shown in the top two
panels of Fig. 3.16. The top panels indicate that, despite the magnetizing effect of
the guide magnetic field, strong gradients exist particularly in Pyze, which provide
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the xy components match very well, the yz components show a noticeable difference
near z = 0 and x = 13.15. After Hesse et al. (2004). See also color plate.
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a sufficiently large reconnection electric field by virtue of (3.46), with an adjacent
additional contribution from the electron inertia term (Hesse et al., 2004).

The bottom two panels display the results of the approximation (Hesse et al., 2002)

Pxye ≈ −Pzze

Ωe

∂vey

∂z
+(Pyye −Pzze)

Bx

By
, (3.51)

Pyze ≈ Pxxe

Ωe

∂vey

∂x
+(Pyye −Pxxe)

Bz

By
. (3.52)

The panels of Fig. 3.16 show a reasonable agreement between the direct simulation
output and the approximation based on (3.51) and (3.52). However, a closer inspec-
tion of Fig. 3.16 reveals an important difference: While the particle data-derived
value of Pyze features a clear gradient in the z direction at the reconnection location,
at approximately x = 13.15, this is not the case in the approximation. This deficiency
leads to a substantially reduced value of the reconnection electric field, if calculated
based on (3.52). While Pxye appears to be remarkably well represented by its (3.51),
we thus find that (3.52) does not represent the entire, dominant components of the
pressure tensor component Pyze.

Investigating this discrepancy further, Hesse et al. (2004) found that heat flux
tensor effects had to be added into (3.52), with the result

Pyze ≈ Pxxe
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+(Pyye −Pxxe)

Bz

By
+

1
Ωe

(
∂Qxxye

∂x
+

∂Qxyze

∂z

)
, (3.53)

where Qxxy and Qxyz are components of the heat flux tensor defined below in (3.55).
The second heat flux-related term in (3.53) is dominant in the immediate vicinity

of the reconnection region. Therefore, (3.53) can be simplified

Pyze ≈ Pxxe
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∂vey
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1
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∂Qxyze
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. (3.54)

The result of this approximation, depicted in Fig. 3.17, shows an excellent match
with the direct determination of Pyze from the particle data. Thus, an appropriate
approximation of the pressure nongyrotropy in the immediate vicinity of the neutral
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Fig. 3.17. Approximation of the pressure tensor component Pyze that includes heat
flux contributions. This approximation shows an excellent match with Fig. 3.16.
After Hesse et al. (2004). See also color plate.
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point of the magnetic field in the x, z plane cannot be found without inclusion of a
heat flux tensor component.

Derivation of a scaling law of the reconnection process therefore requires an
analytic expression of an evolution equation for the entire heat flux tensor. Hesse
et al. (2004) developed this expression for collisionless systems. The heat flux tensor
is defined in the electron center-of-mass system as

Q = ms

∫
d3u(u−v)(u−v)(u−v)fs. (3.55)

Here, fs and ms denote the distribution function and mass of plasma species s, u
the phase space velocity, and v the bulk flow speed. An evolution equation for Q
is obtained by multiplying the Vlasov equation by uuu and integrating over phase
space. The result needs to be transformed into the center-of-mass frame of species
s in order to derive an evolution equation for Q. After a considerable amount of
algebra, one finds for the components of the heat flux tensor (index e omitted for
simplicity)

∂
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+[QiksBr −QikrBs]εrsj

+[QjksBr −QjkrBs]εrsi

⎤
⎦ = 0.

(3.56)

Here es denotes the charge of species s, and εijk is the usual, totally antisymmetric
tensor. Equation (3.56) relates the time evolution of Qijk to lower order moments
such as pressure and velocities, as well as to the fourth order tensor Γijkl. The last
term in (3.56) represents the effects of particle cyclotron motion on the heat flux
tensor. Clearly, (3.56) is invariant under change of order of indices, leading to a
totally symmetric heat flux tensor.

Further progress toward a simple scaling relation requires simplifying assumptions.
Neglecting time dependence and the 4-tensor, an expression for Qxyz can be obtained
from the x, y,x component of (3.56)∑

l

∂
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(3.57)

Neglecting magnetic field components other than By, the convection term∑
l

∂
∂xl

(Qxyxvl), and assuming Qrst¡Prsvt (a reasonable assumption for a nearly

gyrotropic plasma) near the reconnection region, reduces (3.57) to the simple
expression
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The leading order terms in (3.58) are

Qxyz ≈ − 1
Ωy

∂

∂x
(Pxxvxvy) ≈ −Pxxvy

Ωy

∂vx

∂x
(3.59)

for the relevant component of the electron heat flux tensor. This approximation was
found to be adequate in the electron current sheet.

The reconnection region now has two transitions, the first, where the convection
electric field becomes equal to the inertial electric field, at a scale L1, and a second,
L2, where the inertial electric field is matched to the pressure tensor-derived electric
field. L1 is readily determined by the expansion (e.g., Vasyliūnas, 1975)
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The pressure electric field is derived from the first term of (3.45). With the addition
of (3.61), the pressure tensor y, z component (3.57) becomes
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where the last term dominates the reconnection electric field near the zero of
the magnetic field in the x, z plane. Ignoring lower order terms, and assuming a
divergence-free electron velocity, the pressure electric field can be scaled
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Equation (3.62) states that the transition from inertia-based to pressure-based dissi-
pation occurs at a scale length equal to the electron Larmor radius in the guide
magnetic field component.

Thus we find that there may be two scale lengths associated with collisionless
magnetic reconnection in the presence of moderate guide fields. The first, well-known
scale is reached when the inertial electric field equates the magnitude of the convec-
tion electric field. This scale length is the collisionless skin depth. For values of the
electron β = μ0pe⊥/B2 of less than unity, the second transition occurs at a scale
length of an electron Larmor radius in the guide magnetic field. The very small
scales associated with the electron Larmor radius permit the heat flux to take on an
unprecedented role in the electron dissipation process.

Physically, electron scattering can occur if the Larmor radius in the guide field
is comparable to the gradient scale length in the reconnecting electric field. The
situation is sketched in Fig. 3.18. Electron scattering occurs due to the interac-
tion of field-aligned and gyromotions with the ambient reconnecting electric field
components.
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Fig. 3.18. Schematic of the interaction of the electron Larmor motion about the
guide field with the reconnection magnetic field component.

It should be noted that the electron-based electric field expression
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may equally well be expressed through the ions, which exhibit similar dynamics,
albeit on the larger scale of an ion Larmor radius. The result is the same as (3.63),
but with an index change, and a sign change.

While this analysis presents a consistent solution to the reconnection dissipation
problem in the presence of a guide field, the question remains whether the addi-
tional freedom of a fully three-dimensional evolution might enable other dissipative
processes such as discussed in Section 3.5. While Silin and Büchner (2003b) find
that lower-hybrid drift, kink, and sausage modes appear suppressed in the presence
of a guide field, and Scholer et al. (2003) saw the formation of essentially two-
dimensional reconnection channels, a candidate process is based on the formation
of electrostatic, solitary structures associated with the nonlinear evolution of the
Buneman instability (Drake et al., 2003). Drake et al. argue that correlations of
electron density fluctuations that are associated with these electron holes provide
a mechanism for anomalous resistivity. The modeled electrostatic solitons are well
matched by observations of the magnetopause current layer (Cattell et al., 2002a),
which reveal the presence of electrostatic solitary waves that propagate rapidly along
the current direction. Although the overall morphology and reconnection rates of
Drake et al.’s (2003) three-dimensional simulations are very similar to translationally
invariant calculations, and Pritchett and Coroniti (2004) advocate inertial processes,
the Buneman mode-based dissipation process deserves further studies to clarify its
viability in guide-field magnetic reconnection.

3.3 Onset of magnetic reconnection
P. L. Pritchett

As discussed in Chapter 1 and in Section 3.1, many scenarios of the occurrence of
reconnection involve a sudden transition from a quiescent, slowly evolving state to a
rapid energy release. A critical problem hence is not only to explain fast reconnec-
tion rates, responsible for the energy release, but also to identify the mechanism for
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this transition, that is, the mechanism for the onset of reconnection, or the onset of
fast reconnection. This holds particularly for the onset of reconnection in the terres-
trial magnetotail, which appears to be closely related to the onset of magnetospheric
substorms (Section 1.2). To lowest order, the magnetotail current sheet configuration
resembles the classical Harris (1962) neutral sheet. It was proposed very early in
the space era (Coppi et al., 1966) that collisionless reconnection could occur in the
Earth’s magnetotail as a result of an electron tearing mode driven by the electron
Landau interaction. It was hypothesized that this tearing instability could serve as
the triggering mechanism that powers the sudden onset of magnetic reconnection
associated with the expansion phase of substorms in the terrestrial magnetotail.

This simple one-dimensional picture of the magnetotail must fail, however, inas-
much as the field lines must connect to the intrinsic dipolar magnetic field of the
planet. For the Earth there is a small northward component of the magnetic field in
the region of the current sheet whose magnitude is typically a few nanoteslas, which is
about 10% of the asymptotic (lobe) field strength (e.g., Fairfield and Ness, 1970). As
we shall discuss, the presence of this normal magnetic field component has profound
implications for the possibility of magnetic reconnection in a planetary magnetotail;
the investigation of these consequences is generally referred to as the onset problem
for magnetic reconnection. On the most fundamental level, the resulting cyclotron
motion of electrons in even a very weak normal field removes the electron Landau
resonance (Galeev and Zelenyi, 1976), thus ruling out the possibility of an electron
tearing mode.

More general consequences of a two-dimensional (2D) isotropic equilibrium config-
uration were deduced by Schindler (1972) and Birn et al. (1975). Let z = a(x) > 0 be
the location of the magnetopause (assumed to be a field line). There are then two
possible situations depending on the sign of da/dx (assuming that x increases in the
tailward direction): (1) da/dx > 0 (i.e., the tail diverges as one moves away from the
planet) is a necessary (but not sufficient) condition for instability of the tail. (2) If
da/dx < 0 (i.e., the tail converges), then the tail is stable. With B0z(x, z = 0) > 0,
then da/dx > 0 requires that B0z change sign somewhere. If B0z has the same sign
everywhere, then the tail equilibrium is stable. For the Earth, it is known that B0z

does indeed change sign as one moves into the lobes (e.g., Fairfield, 1979). Thus the
flaring of the Earth’s lobe field could allow for the possibility of some kind of tearing
instability.

The outline of this section is as follows. In Section 3.3.1 we discuss the conse-
quences of the finite normal magnetic field for what is known as the pure ion tearing
instability. In Section 3.3.2 we review the stabilizing effects of electron dynamics
in the presence of the normal field on the tearing instability. In Section 3.3.3 we
consider the implications of the third dimension (out-of-plane coordinate) on the
tearing instability. In Section 3.3.4 we describe some recent results on externally
driven reconnection. Section 3.3.5 contains a summary and outlook.

3.3.1 The pure ion tearing instability
The tearing hypothesis for the magnetotail was resurrected by Schindler

(1974) who suggested that ion Landau damping could drive a pure ion tearing insta-
bility in which the electron dynamics was presumed to be unimportant due to the
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small value of the electron temperature (Te/Ti 
 1). He noted that the characteristic
scaling of the ion tearing growth rate in the absence of the normal field, valid for
ρi0/λ 
 1, would be of the form (Laval et al., 1966)

γ/Ωi0∼(ρi0/λ)5/2, (3.64)

where λ is the half-thickness of the current sheet and ρi0 (Ωi0) is the ion gyro-
radius (cyclotron frequency) in the asymptotic field B0. During quiet times, the
ratio ρi0/λ∼ 0.03. Thus the scaling (3.64) would give γ/Ωi0 ∼ 2 × 10−4 or 1/γ ∼
1h, which is too long to be relevant to substorm onset times. It was expected,
however, that as the current sheet thinned during the growth phase, the growth time
for the tearing instability would decrease substantially. This is particularly signif-
icant, since it was expected that the condition γ/Ωi0 > Bn/B0 would need to be
satisfied in order that the free-streaming particle motion which drives the tearing
instability would not be destroyed by the gyromotion in the normal field Bn. The
scaling (3.64) suggests that for ρi0/λ ≈ 1, this condition easily would be satisfied for
Bn/B0∼0.1.

Subsequent investigations, however, showed that the basic reconnection growth
rate increases much less rapidly as ρi0/λ → 1 than suggested by the scaling (3.64).
Pritchett et al. (1991) and Brittnacher et al. (1995) considered the case of pure ion
tearing (alternatively, electron–ion tearing with a mass ratio mi/me = 1) for the case
of very thin current sheets with ρi0/λ ≈ 1. They obtained a maximum underlying
growth rate

γmax/Ωi0 ≈ 0.50(ρi0/λ)5/2/(1+2ρ2
i0/λ2). (3.65)

The term 1 + 2ρ2
i0/λ2 in the denominator arises from the inclusion of the particle

drift in the cross-tail direction in the particle orbits. For ρi0/λ∼1, this term clearly
differs significantly from unity, and the maximum growth rate for ρi0/λ = 1 is only
γmax/Ωi0 ≈ 0.17, roughly a factor of 6 smaller than expected from (3.64). Thus even
for a sheet as thin as the ion gyroradius (∼400km), the maximum tearing growth rate
is only marginally larger than the typical value of Bn/B0∼0.1. Particle-in-cell (PIC)
simulations have confirmed that the stabilization of the pure ion tearing mode in a
thin current sheet does indeed occur when Bn/B0∼γ/Ωi0 (Pritchett et al., 1991).

The tearing growth rate as a function of mi/me has been calculated by Daughton
(1999b) for the case of the Harris neutral sheet. The maximum growth rate decreases
slowly with increasing mi/me; for ρi0/λ = 1 and Ti/Te = 1, it falls to γ/Ωi0 = 0.07
at mi/me = 1836. It thus seems that it would be very difficult to excite the sponta-
neous ion tearing instability unless Bn were reduced considerably below its normal
value.

3.3.2 Electron stabilization of ion tearing
Traditionally, the analysis of electron stabilization for the ion tearing insta-

bility has been carried out using an idealized 2D plasma sheet configuration in the
noon–midnight meridional (x, z) plane; no variation in the y direction is considered.
In such a configuration and assuming a tearing perturbation A1y = A1(x, z)eγt and
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an electrostatic potential Φ1 = Φ1(x, z)eγt, the completely general energy principle
is (Laval and Pellat, 1964; Schindler, 1966)

δW =
∫

d3x
[
|∇A1|2 −μ0

dJ0

dA0
|A1|2 +

∑
i,e

4πT

∫
d3v

|f̃1|2
f0

]
. (3.66)

Here, f0 is the equilibrium distribution function, J0 is the equilibrium current density,
and f̃1 = f1 −A1∂f0/∂A0 is the nonadiabatic part of the perturbed distribution f1.
The first term in (3.66) represents the stabilizing effect of field-line tension, the
second term is the destabilizing free energy associated with the adiabatic response
to the equilibrium currents, and the last term represents the compressibility effect
arising from the perturbed current density due to f̃1. Various assumptions have been
made regarding the nature of the electron dynamics.

Adiabatic electrons
Lembège and Pellat (1982) used a drift-kinetic analysis (which should be

valid for time and space scales long compared to the electron cyclotron period
and electron Larmor radius) and assumed adiabatic motion for the electrons. They
demonstrated that the tearing mode electromagnetic field produces a strong compres-
sion of the electron density which is independent of Te. This perturbation also forces
a large electrostatic potential in order to maintain charge neutrality. In the energy
principle (3.66), the energy associated with the electron compression exceeds the free
energy available from the reversed magnetic field configuration provided that the
condition

kxλ > (4/π)Bn/B0 (3.67)

is satisfied. In order to violate (3.67) and thus to permit instability, the wavelength of
the mode would have to exceed∼60λ. On such a large scale the conditions necessary
for the WKB approximation to be valid would be violated, and so Lembège and
Pellat concluded that the ion tearing mode was stable.

Effects of turbulence
Several attempts to circumvent this result were made by appealing to the

effects of turbulence. Coroniti (1980) argued that, since the plasma sheet contains
modest to high levels of electromagnetic turbulence, it is possible that pitch angle
scattering by background wave turbulence could invalidate the assumption of adia-
batic electron motion. His analysis found an electron tearing mode growth rate
proportional to a bounce-averaged pitch angle diffusion coefficient.

Adopting Coroniti’s formalism, Büchner and Zelenyi (1987) replaced wave pitch-
angle scattering by the stochastic changes in the first adiabatic invariant (μ) which
can occur when the plasma sheet thins and the adiabaticity parameter

κe = (Bn/B0)(λ/ρe0)1/2 (3.68)

becomes less than or of the order of 1. Here ρe0 is the electron Larmor radius based
on B0. They suggested that the resulting diffusion in μ should permit tearing growth
rates comparable to Schindler’s estimate (3.64) for the ion tearing mode. With κe∼1,
they argued that the electron dynamics would be unimportant.
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Canonical momentum conservation
Pellat et al. (1991) pointed out that the analysis by Coroniti (1980) contained

an error in that it relied on an approximate form of a Green’s function solution. The
exact solution has the property that the perturbed number of particles on a flux
tube is conserved. They showed that this result followed directly from the conser-
vation of the canonical momentum Py in a 2D system, independent of any assump-
tion of electron adiabaticity. Py conservation alone was sufficient to constrain the
cyclotron excursion in the direction transverse to the magnetic surface. They demon-
strated further that neither wave turbulent pitch-angle scattering nor nonadiabatic
stochastic first-invariant diffusion would alter the number of particles on a flux tube.
They recovered the Lembège–Pellat stability criterion (3.67) under the very mild
assumption that kxρen < 1, where ρen is the electron Larmor radius in the Bn field.
Assuming the proton/electron value for the mass ratio, Ti/Te ≈ 7, ρi0/λ∼1, and a
wavenumber kxλ ≈ 0.5, one finds that this condition is satisfied for a normal field of
only Bn/B0∼5×10−3.

2D PIC simulations provided direct confirmation of this electron stabilization
effect (Pritchett, 1994). These simulations used a value Bn/B0 = 0.02 so that the
ion tearing mode was still unstable. With ρi0/λ held fixed at 1, simulations were
performed with mi/me varying from 1 to 64 and Ti/Te from 1 to 8. As kxρen

approached unity, the tearing mode growth decreased dramatically. Qualitatively
similar results were obtained in simulations by Dreher et al. (1996) for a mass ratio
mi/me = 10 and temperature ratios up to Ti/Te = 20.

Brittnacher et al. (1994) reexamined use of the energy principle as applied to
ion tearing. They treated the case of intrinsic pitch-angle diffusion using a Vlasov
description and recovered the Lembège–Pellat result (3.67). For the case of external
pitch-angle diffusion they employed a drift-kinetic description and found that the
energy principle contains an additional term. This new term is stabilizing, however,
and thus at best the marginal stability criterion is still the same.

An alternative Vlasov treatment of the onset problem is given in Section 4.3.2. The
approach discussed there treats a larger class of distribution functions, avoids the
use of inequalities, and introduces the small electron gyroscale regime by considering
the formal limit me → 0. This more refined approach confirms the strong electron
stabilization in the appropriate limit.

Fluid treatment
Further insight into the physics of the electron stabilization effect was

provided by Quest et al. (1996). They employed the standard energy principle
formalism given in (3.66). In evaluating the perturbed particle density on a flux tube,
they used fluid equations assuming that the electrons were frozen-in to the magnetic
field. They argued that if the effective gyroradius of the electrons is small compared
to both the half-width λ and 1/kx and if spatial diffusion and electron resonance
effects are negligible, then it is justifiable to neglect both the inertial term and the
off-diagonal pressure tensor elements in the electron momentum equation. There
was no requirement that the electron orbits be adiabatic, merely that they were
confined to the proximity of a field line, as is required by conservation of Py (Pellat
et al., 1991). This fluid analysis also recovered the Lembège–Pellat result (3.67), and
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it further demonstrated that the compressional stabilization is independent of the
presence of a (uniform) guide field component B0y in the initial configuration. The
electron stabilization is thus a macroscopic fluid effect, independent of the specifics
of the electron orbits.

Exact particle orbits
In none of the energy principle analyses described so far was the linear

stability problem solved directly. Instead, techniques such as the Schwartz inequality
were employed to obtain marginal stability limits; the exact particle orbits were not
used. Brittnacher et al. (1998) devised a new approach in which the energy equation
was solved using a finite element procedure where the quantities that depend on the
details of the particle orbits were determined by standard PIC simulation methods.
Since the exact orbits were considered, it was possible to take into account the effects
of pitch-angle scattering (both intrinsic and induced by an external wave source)
and spatial diffusion. They found that none of these effects could destabilize the
ion mode. For kxρen < 1, the mode was stabilized by the electron compressibility
effects. For weaker values of Bn, finite Larmor radius effects (Galeev and Zelenyi,
1976) were sufficient to stabilize the mode. Thus, the spontaneous ion mode should
not occur in the tail current sheet. They found that the electron tearing mode could
be reestablished by pitch-angle diffusion, but only for values of Bn/B0 ≈ 10−4 too
small to apply to the near-Earth tail.

Transient electrons
All the previous stability analyses have treated the electron population as

basically a single fluid. Sitnov et al. (1998) reexamined the tearing stability analysis
including the effect of a transient electron population. They stressed that in isotropic
self-consistent current sheet models the number density of transient electrons is not
a free parameter; its local value depends on basic sheet parameters such as Bn/B0

and on the distance z from the neutral plane. Using an energy principle analysis,
they found a new version of the stability condition (3.67):

kxλ > (4/π)(Ti/3Te)2Bn/B0. (3.69)

Since (Ti/3Te)2 ∼ 5 in the magnetotail, it is now possible to reach the marginal
stability limit for modes that are consistent with the WKB approximation, leaving
open the possibility that the tearing mode could be unstable. In a subsequent explicit
nonlocal Vlasov linear stability analysis, Sitnov et al. (2002) found instability with
Te/Ti 
 1 when the current sheet was sufficiently long so that the electrons leaving
it could be treated as transient particles. The specific dependence of the marginal
wavenumber on Ti/Te turned out to be less pronounced than given by (3.69). This
new result suggests that while the tearing mode is unlikely to be excited in the tran-
sition region between the dipole and tail-like magnetic fields, it may very likely be
unstable at distances further down the tail where the length of the tail current sheet
is much larger than its thickness.
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3.3.3 Effects of the third dimension
When the restriction to 2D systems is removed and variations in the cross-

tail (y) direction are permitted, the canonical momentum Py is no longer conserved.
It then follows that the particle density along a flux tube need no longer be constant.
With the inclusion of the y dependence, a much larger class of instabilities becomes
possible, and many of these have been proposed as mechanisms for disrupting the
tail current sheet. This subject is treated in detail in Section 3.5 of this work. Here
we consider only the rather limited number of investigations that have looked at
cross-tail instabilities in the presence of a finite normal field component.

One member of the class of kinetic cross-field instabilities has the character of a
kink mode in the y, z plane. This mode was first identified in 2D PIC simulations
by Zhu et al. (1992), and they found that its growth rate in a thin current sheet could
be faster than that of the collisionless tearing instability in the Harris sheet. Pritchett
and Coroniti (1996) showed from a two-fluid analysis with finite electron inertia that
the long-wavelength kink mode (kyλ < 1) is linearly unstable. Since the growth rate
is proportional to the magnitude of the relative electron–ion cross-field drift, they
referred to the mode as a drift-kink mode. The behavior of this mode in the presence
of a normal field component was investigated in 3D PIC simulations by Pritchett
et al. (1996). They considered the case of a ρi0/λ = 1 current sheet with a constant
value of Bn/B0 = 0.06 at z = 0 and used mi/me = 16. In a pure 2D geometry this
configuration would be stable to tearing due to the combined effects of electron
stabilization and ion gyromotion. In the early stage of the simulation (up to Ωi0t∼60),
there was clear growth of the drift-kink modes with kyλ∼0.8–1.2, although their
growth rates were reduced compared to the case of Bn = 0. There was no indication for
any growth of shorter-wavelength lower-hybrid drift modes (Section 3.5.2). Beginning
at Ωi0t∼50, pure tearing modes began to grow and there was an increase in the
B2

z field energy, indicating that reconnection was occurring. This initial stage of
reconnection led to a further reduction in the local value of Bn. This field finally
reached zero in one location by Ωi0t∼100, and this event signaled the onset of a
highly nonlinear stage which was characterized by the formation of a conventional
island configuration. It thus appeared that the kink mode could trigger the onset of
reconnection.

It turns out, however, that, unlike the case of the tearing mode, the drift-kink
growth rate is extremely sensitive to the value of mi/me. Daughton (1999b) showed
that while the growth rate of the kink mode exceeds that of the tearing mode by
about a factor of two for mi/me = 16, for the realistic proton mass ratio of 1836
the kink growth rate is smaller than the tearing rate by about a factor of 25. Thus
low mass ratio simulations probably greatly overestimate the effect of the drift-kink
mode. Daughton (1999b) also noted, however, that another type of kink mode could
be strongly excited (γ/Ωi0 ∼0.1) at realistic mass ratios. This second type of kink
mode is driven by the relative drift between two ion species and has been referred to
as the ion–ion kink mode (Karimabadi et al., 2003a,b). The maximum growth rate
occurs for kyλ∼0.7, the real frequency is ωr ≈ kyvd (where vd is the effective single
fluid drift velocity at z = 0), and the growth rate is always larger than that for the
tearing mode. 3D simulations with mi/me = 100 (Karimabadi et al., 2003b) showed
that the growth of the ion–ion kink mode is not sensitive to the presence of a (weak)
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normal field component, unlike the case of the electron–ion kink mode. Thus the
ion–ion kink mode is still a possible candidate to reduce or eliminate the effects of
electron stabilization.

3.3.4 Externally driven reconnection
Despite its long history, it is by no means clear that the spontaneous tearing

instability is the relevant process for explaining substorm onset in the magnetotail.
Considerable attention has also been paid to the possibility that substorms could
be triggered by external perturbations (Caan et al., 1975; Rostoker et al., 1983;
Lyons, 1995, 1996). It appears that a substantial fraction (∼60%) of substorm onsets
can be associated with northward turnings of the IMF (Hsu and McPherron, 2003).
Prior to onset, a southward IMF imposes an enhanced convection electric field on
the magnetotail. A number of MHD and Hall MHD studies (Birn and Hesse, 1996;
Rastätter et al., 1999; Birn et al., 1999) have shown that reconnection can be initiated
in regions of finite resistivity by such an externally imposed convection electric field.
A few studies have considered this possibility in regard to collisionless reconnection.

In a series of 2D and 3D PIC simulations, Horiuchi and collaborators (Horiuchi
and Sato, 1994, 1997, 1999; Horiuchi et al., 2001; Pei et al., 2001) considered the
effect of applying a very strong driving electric field with Ey/vAB0 ∼0.5–1.0 to a
Harris neutral sheet. For the case of open downstream boundary conditions, they
found that it was possible to achieve a steady-state reconnection configuration. These
studies were not relevant to the onset problem, however. In 2D and 3D studies of
the effect of imposing a more realistic (Ey/vAB0 ∼0.1) convection electric field on
a near-Earth plasma sheet equilibrium configuration, Pritchett and Coroniti (1995)
and Pritchett et al. (1997) found that this process resulted in the formation of a thin
current sheet accompanied by the development of a deep minimum in the equatorial
Bz field. There was no apparent difficulty in actually driving Bz negative, which then
resulted in the tailward expulsion of a plasmoid. Possible limitations of this study
were that mi/me was only 16 and that the reconnection occurred fairly close to the
inner (near-Earth) boundary of the simulation.

Here we present some results from a recent 3D PIC simulation (Pritchett, 2005)
in which a spatially localized convection electric field is applied to a current sheet
equilibrium with Bn/B0 = 0.04 at the center of the sheet. The system size is Lx ×
Ly ×Lz = 25.6 c/ωpi × 12.8 c/ωpi × 12.8 c/ωpi, and the driving field is localized near
the center of the system in x with a half-width of 3.2 c/ωpi. The field is applied at the
z boundaries uniformly in y, and its peak magnitude is Ey/vAB0 = 0.2. The mass
ratio is mi/me = 100, c/vA = 20, ωpe/Ωe = 2.0, the temperature ratio is Ti/Te = 5,
and there is a uniform background density nb = 0.2n0. The initial half-thickness of
the sheet is moderately large, with λ = 1.6 c/ωpi. The boundary conditions in the x

direction are open for particles and magnetic flux. The peak number of particles is
412 million per species, and the maximum particle density per cell is 50 per species.
The initial field line configuration is shown in Fig. 3.19a.

It has become traditional to describe the evolution of the reconnection process
by the reconnection flux ψ (e.g., Birn et al., 2001, and references therein), which is
defined as the difference between the maximum and minimum values of the vector
potential Ay(x, z) on the axis z = 0. In the presence of the normal field component,
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the equilibrium function A0y(x, z = 0) itself has a finite ψ value, and so it is
necessary to measure ψ in terms of the perturbed δAy(x, z = 0) only. Figure 3.20a
shows the development of ψ so defined. The initial noise level in the simulation
corresponds to ψ/(B0c/ωpi)∼1×10−3. There is a relatively long development period
of Ωi0t∼20 during which ψ grows slowly as the perturbation fields propagate in
from the boundary. As shown in Fig. 3.20b, the width of the current layer, defined
as the value wJ where |Bx(0,wJ)| = 0.76B0, decreases during this period from its
initial value of 1.6 c/ωpi to a minimum of ∼ 0.4 c/ωpi. Subsequently, the value of
ψ increases much more rapidly, with the peak slope at Ωi0t ∼ 35 corresponding
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to a reconnection field Ey/vAB0 ≈ 0.44. This is more than twice as large as the
driving value E0y/vAB0 = 0.2, and it is somewhat larger than the value of ≈ 0.26
which was obtained from the GEM Reconnection Challenge simulations (Birn
et al., 2001) where a λ = 0.5 c/ωpi current sheet was perturbed by an internal flux
perturbation.

The thinning of the overall current layer is the result of the formation of an
embedded thin electron current layer. Figure 3.21 shows a series of profiles in z at
x = 0 and averaged over all values of y at various times for (a) the magnetic field
Bx and (b) the total current density Jy. The overall thinning is apparent from the
increasing magnitude of the slope of Bx through Ωi0t = 24 and from the current
density profiles. During this same time interval, the ion profiles ni, vyi, and Jyi

(not shown) show relatively little change; there is only a modest steepening of the
density profile. In contrast, the electron current density shows a dramatic thinning
and increase in magnitude. At Ωi0t = 24, the peak electron current density is about
three times as large as that of the ions. This represents an increase by a factor of 15
in the relative electron to ion current value. The half-width at half-maximum of the
electron current density at Ωi0t = 32 is only 0.14c/ωpi, which is slightly above the
local value of the electron inertial length of ≈ 0.12c/ωpi.

Figure 3.22a shows the development of the normal field profile Bz(x,0) averaged
over all values of y. As noted before, the initial value is Bz(x,0)/B0 = 0.04. During
the developmental phase this value is enhanced for negative values of x and reduced
for positive values. Bz(x,0) is first driven to zero at Ωi0t ≈ 21 at x ≈ 2 c/ωpi. At this
time, there is only a weak y dependence in the equatorial Bz field (not shown); the
growth rate for mode 1 in y is γ/Ωi0∼0.09, which is consistent with the linear theory
prediction for the ion–ion kink (Karimabadi et al., 2003a). Overall, however, the
cross-field modes do not seem to play a major role in the dynamics that force Bz to
0. Shortly after Bz is reversed, there is a significant increase in the reconnection flux
ψ (Fig. 3.20a) and hence in the rate of reconnection. At this stage the reconnection
proceeds much as for the case of a neutral sheet, and the late nonlinear stage (see
Fig. 3.19b for the field lines at Ωi0t = 36) shows little resemblance to the initial
normal field configuration.
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3.3.5 Summary and outlook
Investigations of collisionless magnetic reconnection in the terrestrial magne-

totail must, at least for the near-Earth portion of the tail, confront the underlying 2D
nature of the tail current sheet. Studies of magnetic reconnection in 1D current sheets
do not suffice. This has led to the long history of the onset problem for reconnection
in the tail. There are two basic issues associated with the presence of the normal
field Bn. The first is that the ion gyromotion in Bn can disrupt the free-streaming
motion that provides the collisionless damping to drive the tearing instability. Only
if Bn/B0 is smaller than its typical value of 0.1 and/or the current sheet is unusually
thin (ρi0/λ ≈ 1) can one expect the spontaneous ion tearing instability to survive.
Even this limited parameter space is probably excluded by the second effect, namely
the electron stabilization. The various kinetic treatments based on the 2D analysis
are now in general agreement that the ion tearing mode cannot exist in the transition
region between dipole and tail fields where significant disruptions associated with
substorm onset occur. The situation further down the tail is less clear.

The linear 2D tearing analysis, however, cannot provide the full story regarding
reconnection in the magnetotail. A key feature of magnetospheric reconnection is
that it occurs in bounded spatial regions which are, however, topologically open.
Particles can ballistically enter the reconnection region, transit through it, and
escape, perhaps never to return. The reconnected magnetic flux is also free to flow
away from the reconnection region. The initial studies by Sitnov et al. (2002) suggest
that these effects can alter significantly the previous results. The reconnection
community has barely begun to address the consequences of a 3D open topology for
reconnection.

A further complication of reconnection in real systems is its bimodal character. Not
only does the kinetic physics near the X-line, which breaks the frozen-in condition,
lead to large-scale consequences in terms of particle energization and magnetic flux
reconfiguration, but the large-scale system reacts back on the local reconnection
region in terms of the boundary conditions that are exerted on this region. Thus there
is compelling statistical evidence that northward turnings of the IMF are frequently
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involved in triggering of substorms. Again, our quantitative understanding of the
relevant physical processes is still at an elementary level.

Thus, while at one level the onset problem has been answered – the spontaneous ion
tearing instability is unlikely to be operative in the magnetotail – at the more basic
level we still do not understand the causal sequences that result in the large-scale
reconnection processes associated with a substorm.

3.4 Hall MHD reconnection
A. Bhattacharjee and J. C. Dorelli

As discussed in Section 3.1, the classical models of Sweet–Parker and Petschek leave
us with a quandary for low-resistivity plasmas (corresponding to high Lundquist
numbers S; Section 2.1). On the one hand, the Sweet–Parker time scale is realizable
dynamically in the high-S regime in high-resolution resistive MHD simulations, but
it is too slow to explain dynamic processes such as solar flares or magnetospheric
substorms. On the other hand, the Petschek model, which yields a faster time scale,
appears not to be realizable in the high-S regime.

In addition, steady-state resistive models can provide but one time scale – that of
steady reconnection (proportional to S1/2 for Sweet–Parker and lnS for Petschek).
However, steady reconnection is not a generic condition. It is a strong theoretical
assumption and one that is frequently violated in many dynamical situations of great
physical interest. In particular, there are phenomena involving magnetic reconnection
in laboratory as well as space plasmas where the dynamics exhibits an impulsiveness,
that is, a sudden increase in the time derivative of the growth rate. This is often
referred to as the trigger problem – the magnetic field configuration evolves slowly
for a long period of time, only to undergo a sudden dynamical change over a much
shorter period of time. As the classical steady-state reconnection models of Sweet–
Parker and Petschek do not include time dependency, they cannot account for the
time evolution of the reconnection rate.

In this section, we present recent Hall MHD reconnection models that address the
regime of very high Lundquist numbers S. We consider thin current sheets whose
width Δ falls into the collisionless range between the electron and ion skin depths,
that is, de ≡ c/ωpe < Δ ≤ c/ωpi ≡ di (or de < Δ ≤ ρs in the presence of a guide
or toroidal field, where ρs =

√
βdi). In this regime dissipation is governed by the

generalized Ohm’s law (3.4)

E+v×B = ηj+
me

ne2

dj
dt

+
j×B
ne

− ∇pe

ne
. (3.70)

Here the electron pressure pe is assumed to be a scalar, and only a portion of the
electron inertia term, dj/dt = ∂j/∂t+v ·∇j, is retained. In contrast to the discussion
of Section 3.2, we retain the Ohmic term (first term on the RHS), providing dissipa-
tion in competition with the electron inertial term (second term on the RHS). The
last two terms on the right-hand side of Eq. (3.70), collectively referred to as the Hall
MHD terms, do not contribute to the dissipation in this model. But, as discussed in
Section 3.1, they govern whistler and kinetic Alfvén wave dynamics and may thus
be responsible not only for fast reconnection but also for a plausible explanation of
the trigger problem.
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In the following sections we describe some recent analytical and numerical models
that focus on the issue of scaling of Hall MHD reconnection in impulsive as well
as quasi-steady regimes. It is difficult to determine scaling results by numerical
computations alone simply because the range of parameters (such as the electron-
to-ion mass ratio and the system size) that can be explored by nonlinear Hall MHD
codes is still quite limited. It is therefore useful to consider reduced systems which
are amenable to analytic treatment, can be tested and benchmarked numerically,
and can be extrapolated to yield scaling results in realistic plasma regimes. In
Section 3.4.1, we present results from a reduced collisionless model in which elec-
tron inertia provides the dominant mechanism for breaking field lines, and strongly
time-dependent current singularities drive impulsive reconnection. In Section 3.4.2,
we present results from a semi-collisional 2D Hall MHD model in which resistivity
provides the mechanism for breaking field lines.

3.4.1 Impulsive Hall MHD reconnection
Here we present some analytical and numerical results from the so-called two-

field model, which is deduced from the primitive Hall MHD equations by means of
analytical approximations. The basic assumptions are a large guide field and low beta,
so that the compressional wave propagates faster than any other wave in the system
and the fluid motion is essentially incompressible. It is assumed that the resistivity is
zero, and electron inertia breaks field lines. This model, which is simpler than the full
two-fluid or Hall MHD equations, is amenable to analytical treatment in the linear
as well as nonlinear regimes, and captures certain essential features of impulsive Hall
MHD reconnection dynamics in collisionless plasmas. By a combination of analytical
and numerical studies, we are able to obtain scaling results on the reconnection rate
that can be compared with results obtained from other computational studies.

The dynamics is two-dimensional, and depends only on the coordinates x and z,
with y as an ignorable coordinate. The magnetic field is represented as

B(x, z, t) = B0ŷ+∇Ψ(x, z, t)× ŷ, (3.71)

where B0 is a constant and large guide field, and Ψ(x, z, t) is a flux function. The
velocity is represented as

v(x, z, t) = ŷ×∇Φ(x, z, t), (3.72)

where Φ(x, z, t) is a stream function. The two-field equations are given by (Grasso
et al., 1999)

∂F/∂t+[Φ, F ] = ρ2
s [U,Ψ], (3.73)

∂U/∂t+[Φ,U ] = [J,Ψ], (3.74)

where J = −∇2
⊥Ψ, U = ∇2

⊥Φ, F = Ψ + d2
eJ , and the Poisson bracket is defined

by [Φ, F ] ≡ ŷ ·∇Φ×∇F . In Eqs. (3.73) and (3.74), all quantities have been made
dimensionless. In particular, distance is normalized by the characteristic equilibrium
scale Lz in the z direction, and time is normalized by the Alfvén time scale τA =√

μ0n0miLz/By0 based on the magnetic field component By0. The two dimensionless
parameters are the (normalized) electron skin depth de = c/(ωpeLz), where ωpe is
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the electron plasma frequency, and the (normalized) ion sound gyro radius ρs =√
Te/mi/(ΩiLz) = ρi

√
Te/Ti where Te and Ti are the electron and ion temperatures,

Ωi is the ion cyclotron frequency, and ρi is the ion Larmor radius (also normalized
by Lz). The term proportional to ρ2

s on the right of Eq. (3.73) is due to finite
electron compressibility, and can be traced to the electron pressure gradient term in
the generalized Ohm’s law (3.70). The linearized versions of Eqs. (3.73) and (3.74)
support kinetic Alfvén waves.

For the purpose of the present study, periodic boundary conditions are imposed
in both x and z directions, with the domain of a single periodic cell given by
−Lx ≤ x ≤ Lx, and −Lz ≤ z ≤ Lz. We choose Lz = π and Lx = π/ε, where ε =
Lz/Lx is the slab aspect ratio. Due to the symmetry properties of Eqs. (3.73)
and (3.74), we can consider Ψ(Φ) to be an even (odd) function in both x and z

for all time, if it is so initially. In the following discussion we consider the linear
and nonlinear evolution of the equilibrium given by J0 = Ψ0 = cos z, U0 = Φ0 =
0. It is doubly periodic, and is unstable with respect to double tearing modes,
which grow around resonant surfaces, located at z = 0 and ±π in the periodic cell.
Despite its apparent simplicity, the two-field model is computationally challenging,
because it involves tracking near-singular and dynamic current sheets that grow near-
explosively in the nonlinear regime. We use the Magnetic Reconnection Code (MRC)
which is a massively parallel code in an Adaptive Mesh Refinement (AMR) framework
(Bhattacharjee et al., 2005).

To determine the linear instability of equilibria that depend only on z, we write
Ψ = ψ0 +ψk(z, t) cos(kx), where k = mε, m is an integer and ε is the aspect ratio
defined earlier. The linear dispersion relation and growth rate of collisionless tearing
modes in the two-field model have been obtained analytically using boundary-layer
and asymptotic matching techniques (Porcelli, 1991). The analytic theory is mostly
based on the large-Δ′ approximation, i.e., Δ′de � min[1, (de/ρs)1/3], where Δ′ =
2σ tan(σπ/2), σ =

√
1−k2.2 The parameter Δ′ is positive for 0 < k ≤ 1, which is

necessary for instability. The large Δ′ regime generally requires small k because Δ′ is
proportional to k−2 for small k, that is, small mε. When 0.5 ≤ ε < 1, only the m = 1
mode is linearly unstable. For ε < 0.5, a larger range of m-numbers are destabilized,
up to a maximum mode number equal to integer (ε−1). Bhattacharjee et al. (2005)
have presented fairly comprehensive results on the linear instability of the system
for arbitrary values of the parameters de, ρs, and k. These results generally confirm
the predictions of analytic linear theory in the regime of large Δ′ which generally
requires small k. In the case de � ρs, when Δ′ is large, the analytic theory predicts
the linear growth rate γL ≈ kde. For the case de 
 ρs, the analytic theory predicts
γL ≈ k(deρ

2
s )

1/3 in the large-Δ′ regime. We note that the linear growth rates depend
quite strongly on the aspect ratio (proportional to k), the parameter ρs, and even
the electron inertia, which enters the parameter de, and provides the mechanism for
breaking field lines. An important question is how these dependencies are altered in
the nonlinear regime.

2 The parameter Δ′ governs the matching of a linear tearing mode between the external, ideal-MHD,
solution and the internal solution in the dissipative layer (see, e.g., Biskamp, 2000). Δ′ > 0 is a
necessary and sufficient condition for linear instability.
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It can be shown, under certain strong assumptions (Ottaviani and Porcelli, 1993;
Grasso et al., 1999; Bhattacharjee et al., 2005), that when de �= 0, ρs �= 0 the island
half-width w, defined by the relation ψ(0,0, t) = 1 − w2(t)/2, obeys the nonlinear
equation

d2ŵ

dt̃2
≈ 1

4
(ŵ+ cJ ŵ4), (3.75)

where t̃ = γLt is the time variable normalized by the linear growth rate γL, ŵ ≡ w/δL

where δL (equal to d
1/3
e ρ

2/3
s in the large-Δ′ regime) is the linear boundary-layer

width, and cJ is a positive quantity, slowly varying in time, of the order of unity. We
note that ψ(0,0, t = 0) = 1 and w(0) = 0, and we have included a factor of 1/4 in the
first term of Eq. (3.75) because w grows exponentially with half of the linear growth
rate γL. Equation (3.75) predicts that the island width grows near-explosively in
the nonlinear regime. By the time w becomes of the order of the system size, most
of the magnetic flux is reconnected, and the near-explosive growth of the island is
quenched. (The quenching process is not described by Eq. (3.75), which breaks down
when w becomes of the order of the system size.)

It is worth noting that the tendency for the formation of a current singularity
and island blow-up is already inherent in this problem due to the presence of finite
electron inertia even when ρs = 0. It is in this sense that we describe the current
singularity as a driver of impulsive reconnection. The analytical model also predicts
that the linear as well as the nonlinear reconnection rate does depend on the system
size (that is, k). In what follows, we will test the predictions of this analytical model
with numerical simulations using the MRC.

Figure 3.23 is a typical image plot of the current density J(x, z, t) = −∇2
⊥ψ in the

nonlinear regime. This picture illustrates the usefulness of AMR grids in resolving
intense and thin current sheets produced during collisionless reconnection dynamics.
The magnified images in the smaller inserts show clearly the detailed spatial structure

(a) (b)

Fig. 3.23. (a) Current density in the nonlinear phase. The smaller inserts are
magnified images of the near-singular current sheet at the X-point, showing how
AMR enables resolution of the fine structure. (b) We overlay the plot with a visual-
ization of the adaptive grids, as they provide higher resolution near the small-scale
structures as needed. See also color plate.
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Fig. 3.24. (a) Plot of J−1(∂2J/∂x2) at the origin, which is inverse square of the thin
current sheet width. Very high resolution is needed to follow the rapidly shrinking
current width. (b) Plot of the time evolution of the island width.

in the vicinity of an X-point, which is a signature of collisionless fast reconnection,
and the AMR grids used to resolve them.

Figure 3.24a shows a plot of J−1(∂2J/∂x2) at the origin, which is essentially the
reciprocal of the square of the current sheet width. After a period of exponential
growth, this quantity tends to increase very rapidly, consistent with the analytical
prediction given by Bhattacharjee et al. (2005). We show this plot for three different
levels of AMR. It is clear by inspection that the higher the level of AMR, the longer
is the blow-up phase, before the process saturates. Figure 3.24b shows a plot of the
time evolution of the island width.

In Fig. 3.25, we compare the simulation result from the MRC with the island
equation (3.75) for the same parameters as Fig. 3.24. (Note that the ordinate is
plotted on a logarithmic scale.) As mentioned above, the constant cJ is not fixed by
our analysis. We find that cJ ≈ 0.1 provides a reasonably good fit for the simulation
results.

Shay et al. (1999, 2004) have presented extensive numerical results in support
of their claim that the reconnection eventually evolves into a late nonlinear phase,
which they call the asymptotic phase, when the reconnection rate becomes of the
order of one-tenth of the Alfvén speed (based on the magnetic field just upstream of
the reconnection layer), independent of the electron and the ion skin depth as well
as the system size. (See also Section 4.1.) We revisit this question here because the
initial condition for the magnetic field used by Shay et al. is very similar to the one
used here for the field in the x, z plane, perpendicular to the guide field. There are,
however, significant differences between our model and theirs. Shay et al. use the full
Hall MHD equations and take the equilibrium guide field to be zero. We consider an
equilibrium with a large and constant guide field, and integrate the reduced two-field
equations which are obtained from the full Hall MHD equations in the limit of large
toroidal field and low beta. Despite these differences, it is instructive to compare our
results with those of Shay et al., because there is no doubt that both simulations
exhibit an asymptotic phase. (In these simulations, we explore parameter regimes
in which reconnection proceeds nonlinearly to form islands with widths of the order
of the system size so that the inequality z 
 ρs, de is realized.) We suggest that the
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Fig. 3.25. Island half-width ŵ as a function of time from numerical simulation
(solid curve) and from Eq. (3.75) with cJ = 0.1 (dashed curve), for the case with
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Fig. 3.26. (a) Island width time evolution for different values of ρs for de = 0.25, ε =
0.5, in rescaled (with linear growth rate) time. (b) Linear and nonlinear growth
rates (at fixed island size) for the runs in Fig. 3.26a.

instantaneous reconnection rate, as measured by the rate of change of the island
width (which is proportional to the inflow velocity towards the X-point) is a good
diagnostic with which we can test the claim regarding asymptotic reconnection rates.

Figure 3.26a shows five plots of the island width as a function of γLt, where γL

is the linear growth rate, determined numerically from the MRC for the parameters
de = 0.1 and ρs = 0, 0.25, 0.5, 0.75, 1.0, holding the aspect ratio ε fixed at the value
0.5. We observe that the five plots essentially lie on top of each other for most of the
time interval during the evolution of the instability. In other words, the equation w =
w(γLt) is a reasonably good description for the island width evolution for most of the
time interval. Had this been the whole story, the issue of scaling of the reconnection
rate would be completely settled, and we could claim, following Ottaviani and Porcelli
(1993, 1995), that the instantaneous reconnection rate at all times scales as the linear
growth rate, which is given by γL = k(deρ

2
s )

1/3 in the large-Δ′ regime. In turn, this
would imply that the reconnection rate is not a “universal constant,” and depends
on the aspect ratio as well as de and ρs. Under these conditions, the dependence
on the electron mass, which provides the mechanism breaking field lines, is weak
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(proportional to m
−1/6
e ) but nonetheless significant because it establishes the point of

principle that the reconnection rate is not independent of the parameter that breaks
field lines and controls the structure of the current sheet.

We note, however, that the equation w = w(γLt) is not quite the whole story.
The five curves in Fig. 3.26a do not lie on top of each other in the late nonlinear
phase, although they tend to be quite close to doing so as the ratio de/ρs becomes
larger. In order to determine numerically the scaling behavior of the time-dependent
growth rate in the late nonlinear (or asymptotic) phase, we choose to examine the
nonlinear growth rate at a fixed size of the island width (w = 2), which falls right in
the middle of the late nonlinear phase. (The choice w = 2 is admittedly ad hoc, but
our qualitative conclusions regarding the late nonlinear phase do not depend on this
specific choice.) Figure 3.26b shows the plots of γNL for the five values of ρs given
above at fixed island size. For comparison, we also plot γL for the same values of ρs.
From inspection of Fig. 3.26b, we conclude that although the growth rate in the late
nonlinear regime shows deviation from the equation w = w(γLt), this growth rate
scales with ρs in approximately the same way as γL does. A similar conclusion holds
for the dependence of the growth rate on de in the late nonlinear phase.

We now investigate the dependency of the asymptotic growth rate on the aspect
ratio ε. Figure 3.27a shows five plots of the island width as a function of γLt, where
γL is the linear growth rate, determined numerically for fixed de = 0.25 and ρs = 0.75,
and five different values of the aspect ratio given by ε = 0.1, 0.2, 0.3, 0.4, 0.5. Once
again, we observe that the five plots essentially lie on top of each other for most of
the time interval during the evolution of the instability. In other words, in this case
too the equation w = w(γLt) is a reasonably good description for the island width
evolution for most of the time interval. This would imply a strong dependence of
the reconnection rate on k, in contrast with the conclusion of Shay and coworkers.
However, as in Fig. 3.26a, we note that the five curves in Fig. 3.27a do not lie on
top of each other in the late nonlinear phase. So in order to determine numerically
the dependence of the time-dependent growth rate on the aspect ratio in the late
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Fig. 3.27. (a) Island width time evolution for different values of ε for ρs = 0.75, de =
0.25 in rescaled (with linear growth rate) time. (b) Linear and nonlinear growth
rates (at fixed island size) for the runs in Fig. 3.27a.
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nonlinear phase, we choose to examine the nonlinear growth rate at a fixed size of
the island width (w = 2).

Figure 3.27b shows the plots of γNL for four values of ε at fixed island size. For
comparison, we also plot γL for the same values of ε. From inspection of Fig. 3.27a, we
conclude that although the growth rate in the late nonlinear regime shows deviation
from the equation w = w(γLt), this growth rate clearly exhibits a definite dependency
on ε. However, this dependency of the nonlinear growth rate on ε appears to be a
little weaker than the dependency of γL on ε.

In summary, we have presented linear and nonlinear results on collisionless recon-
nection in a two-field model, valid in the regime of high guide (or toroidal) field and
low plasma beta. In this model, electron inertia breaks field lines, and two-fluid (or
Hall MHD) effects enter via the electron pressure gradient term in the generalized
Ohm’s law. The two parameters representing electron inertia and pressure gradient
are de and ρs, respectively. Even if ρs = 0, the system of equations exhibits near-
explosive nonlinear growth of current sheet amplitude and magnetic island width.
In the regime ρs > de the tendency for near-explosive growth persists, but we repeat
for emphasis that this tendency is already inherent in the system without ρs. Thus,
in the present model, current singularities drive impulsive reconnection, and it is
not surprising that the scaling properties of this system exhibit dependency not
only on ρs but also on de, which breaks field lines and controls the structure of the
current sheet. This type of dynamics has been studied by Shay et al., who have
suggested that the reconnection rate tends to a “universal” rate of the order of one-
tenth of the Alfvén speed (where the Alfvén speed is calculated using the upstream
magnetic field strength) in the late nonlinear regime. We have demonstrated that
the reconnection rate in the late nonlinear regime of the two-field model attains no
such “universal” behavior, but depends on de and ρs in approximately the same way
as the linear growth rate. We have also demonstrated that this reconnection rate
depends on the aspect ratio (or the system size), although this dependency is a little
weaker in the late nonlinear regime than it is in linear theory. These dependencies
cast some doubt on heuristic analyses which use linear wave dispersion relations
to make strong conclusions regarding “universal” reconnection rates in nonlinear
regimes.

As discussed above, one of the significant qualitative consequences of the present
study is that the dynamics and scaling properties of Hall MHD or two-fluid colli-
sionless reconnection models are not independent of the mechanism that breaks field
lines. In the present context, electron inertia is that mechanism, and it introduces
filamentary and rapidly time-varying current density structures that persist through
the linear as well as nonlinear regimes, and produce dynamics that is quite different
than resistive MHD dynamics. That this is so for linear theory has been known for a
long time, but the effect persists also in the nonlinear regime of the present model.
Thus, in problems of time-dependent collisionless reconnection, current singularities
that are dominantly controlled by electron inertia cannot, in general, be assumed
to be a sideshow to ion-controlled reconnection. As the nature and dynamics of the
current singularities do depend on whether resistivity or electron inertia breaks field
lines, the sensitivity of the reconnection rate to these rather different mechanisms
can be different.
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3.4.2 Resistive Hall MHD reconnection scaling: Role of flux pile-up
We now present analytical and numerical results in a quasi-steady Hall MHD

reconnection model where resistivity is the mechanism that breaks field lines. (This
complements the study in Section 3.4.1, where electron inertia breaks field lines and
the system is strongly time-dependent and impulsive.) While the results of the GEM
Reconnection Challenge (Birn et al., 2001) suggest that Hall electric fields can, by
themselves, allow magnetic reconnection to occur on time scales which are much
shorter than the Sweet–Parker time scale, the question of how this reconnection rate
scales with the system size was not addressed by the GEM challenge. Answering this
question is particularly important in the context of the solar corona, where the ion
inertial length can be smaller than the length of a typical coronal arcade by a factor
of ten million. As discussed in Section 3.1.2, Shay et al. (1999, 2004) have argued
that the ion inertial region – the spatial region over which electron and ion bulk
velocities decouple – in a 2D reconnection process should have a thickness of the order
of an ion inertial length, and a width of the order of ten ion inertial lengths. Thus,
they argue that a Sweet–Parker analysis of the ion inertial region implies that the
reconnection inflow speed should be about a tenth of an Alfvén speed and insensitive
to the system size. In an earlier paper, Biskamp et al. (1997) had pointed out that,
although the quasi-steady reconnection rate may be insensitive to the mechanism
that breaks field lines (consistent with the GEM challenge results), the formation
of a macroscopic ion inertial sheet (analogous to the Sweet–Parker current sheet in
resistive MHD) cannot be ruled out. Subsequent studies (Wang et al., 2001; Dorelli
and Birn, 2003; Fitzpatrick, 2004) seem to be consistent with the conjecture advanced
by Biskamp et al.

In this section, we will approach the problem from a different perspective that
draws on an analogy between the current debate about system size scaling and
the Petschek versus Sweet–Parker debate of the last several decades. In particular,
Biskamp’s (Biskamp, 1986) numerical experiments suggested that driven magnetic
reconnection occurs, in the context of resistive MHD, via a process of magnetic
flux pile-up (see also Parker, 1973b; Sonnerup and Priest, 1975; Priest and Forbes,
1986) rather than in a Petschek configuration. In flux pile-up reconnection, magnetic
energy accumulates upstream of a Sweet–Parker current sheet to accommodate a
sub-Alfvénic inflow velocity. As the plasma resistivity is decreased, the magnetic pile-
up increases, compensating for the resulting decrease in the inflow velocity (which
scales like the square root of the resistivity in the Sweet–Parker model); thus, the
reconnection rate is insensitive to the plasma resistivity.

However, momentum conservation considerations prevent this resistivity-
independent reconnection rate from being realized at arbitrarily small resistivities
(Priest, 1996; Litvinenko, 1999). Since the plasma inflow Alfvén Mach number
is much less than one, and there is a finite upstream pressure available to drive
this sub-Alfvénic inflow, there must be an upper limit to the amount of magnetic
energy which can accumulate upstream of the current sheet. Thus, one expects to
observe two distinct regimes of flux pile-up reconnection: a presaturation phase,
in which the reconnection rate is insensitive to the plasma resistivity; and a
postsaturation phase, in which the reconnection rate scales strongly with plasma
resistivity.
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In principle, one can generalize the above arguments to address the scaling of Hall
MHD reconnection with system size. Just as the strong scaling of magnetic pile-up
with resistivity in resistive MHD implies that the reconnection rate scales strongly
with resistivity in the postsaturation regime, a strong scaling of magnetic flux pile-up
with the ion inertial length in Hall MHD implies (by arguments very similar to those
made by Litvinenko, 1999) that the reconnection rate scales strongly with the system
size (i.e., the ratio of the characteristic system length to the ion inertial length). We
illustrate this argument with a simple example (see Dorelli, 2003, for details).

Consider the following incompressible stagnation point flow field:

Ux = U0(x/λ), (3.76)

Uz = −U0(−z/λ), (3.77)

where U0 is a constant with dimensions of speed, and λ is a length scale characterizing
the stagnation point flow. If we assume that the magnetic field is unidirectional,
B = Bx(z)x̂, and that Bx(0) = 0, then the flow field (3.76) and (3.77) describes the
annihilation of antiparallel magnetic fields (in the x, z plane) at a one-dimensional
current sheet, with the current flowing in the y direction. One can demonstrate (see,
for example, Parker, 1973b; Sonnerup and Priest, 1975) that such a flow field solves
the momentum and continuity equations; the magnetic field profile is then determined
from Ohm’s law, and the thermal pressure, p(x, z), is determined by the conditions
of pressure balance:

p(x, z) = p0(x)− 1
2
ρU2 − B2

2μ0
, (3.78)

where ρ is the plasma density (hereafter assumed to be constant), and p0 is a constant.
As described by Dorelli (2003), one can generalize the analysis of Sonnerup and Priest
(1975) to obtain solutions which describe the pile-up of magnetic energy upstream
of the current sheet:

Bx(ζ) = Ey

(
S

U0

)1/2

exp
(

− 1
2
αζ2

)∫ ζ

0
exp

(
− 1

2
αu2

)
du (3.79)

where ζ = (SU0)1/2z, α = 1 + SδiC, S is the Lundquist number (S = μ0λvA/η),
δi = di/λ, and C is an arbitrary constant.

Figure 3.28 shows the magnetic field profile given by (3.79) for various values of the
ion inertial scale; clearly we can see that, for a fixed Lundquist number, the pile-up
scales with δi. Thus, if we define “system size” to be the scale of the stagnation point
flow, then we see that the flux pile-up required to support a given inflow decreases as
the system size decreases. Specifically, if Bmax

x is the magnitude of Bx at the location
of its local maximum, then:

Bmax
x = Ey

[ 2S

U0(1+SδiC)

]1/2
D+(χ), (3.80)

where D+(χ) is Dawson’s integral (Abramowitz and Stegun, 1964),

D+(u) = e−u2
∫ u

0
et2dt, (3.81)
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Fig. 3.28. The (x, z plane) magnetic field component (3.79) is shown for several
values of δi.

and the current sheet thickness χ follows from 1/(2χ) = D+(χ). Thus, as the
Lundquist number approaches infinity, the magnetic flux pile-up saturates at a level
which is independent of the Lundquist number:

Bsat
x = Ey

( 2
δiC

)1/2
D+(χ). (3.82)

Figure 3.29a shows the maximum upstream magnetic field, given by (3.81), as a
function of S, where we have set Ey = 0.009, U0 = 0.1, and C = 0.01. As shown
in Fig. 3.29b, a similar pile-up saturation effect, with the saturation level strongly
dependent on the ion inertial length (and insensitive to the Lundquist number) in
the high-Lundquist number limit, was observed in resistive Hall MHD simulations of
magnetic island coalescence (Dorelli and Birn, 2003).

While the observation of flux pile-up in an island coalescence process is not
surprising, since such pile-up has been observed previously in the context of resistive
MHD (Biskamp, 1986), the δi-dependent saturation of the pile-up observed in the
Hall MHD runs has implications for the scaling of the reconnection rate with system
size. Following Litvinenko (1999), the maximum flux pile-up reconnection rate may
be estimated by constraining the upstream plasma pressure to be positive. One
obtains (Dorelli, 2003):

Ey ≈ 1.31(βU0)1/2
(1+SδiC

S

)1/2
. (3.83)

When the system size is very large (i.e., when δi approaches 0), the maximum recon-
nection rate decreases as the square root of the Lundquist number; however, for any
finite system size, a limit is always reached (for large enough S) in which the recon-
nection electric field becomes insensitive to S. In this limit, however, the electric field
scales strongly with system size (Ey ∝ δ

1/2
i ). This dependence of the asymptotic (as
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Fig. 3.29. The local maximum of the magnetic field Bx in the pile-up region as a
function of the Lundquist number S: (a) from the analytic model given by (3.81);
(b) obtained from a simulation of magnetic island coalescence, upstream of the
current sheet between the coalescing islands (Dorelli and Birn, 2003).
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S approaches infinity) maximum reconnection electric field on system size is shown
in Fig. 3.30.

The physical reason for the reduction in pile-up in Hall MHD flux pile-up recon-
nection can be understood as a consequence of the spatial structure of the guide field.
This field has the form (Dorelli, 2003) By = Cξζ, where C is an arbitrary constant,
ξ = (SU0)1/2x, and ζ = (SU0)1/2z. From Ampère’s law, we can interpret the guide
field as a stream function for the current density in the x, z plane. Thus, if the ion
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inflow velocity is fixed, then the guide field describes an electron stagnation point
flow, the magnitude of which is determined by the first derivatives of By near the
origin. Thus, if C is independent of the plasma resistivity (i.e., if the first derivatives
of the guide field scale inversely with the plasma resistivity), then the magnitude
of the electron flow in the x, z plane scales like the square root of S, and less pile-
up of magnetic energy is required upstream of the current sheet to support a given
reconnection electric field. In other words, fast electron flows may transport magnetic
flux into the current sheet without requiring a compensating drop in plasma pres-
sure (so long as the large first derivatives of By are spatially localized within the ion
inertial layer).

What, then, can we say about the scaling of the Hall MHD reconnection rate with
system size? It appears that if Hall MHD reconnection occurs via a magnetic flux
pile-up mechanism, where the magnetic pile-up is sensitive to the system size (see
for example Wang et al., 2001; Dorelli and Birn, 2003), then one expects to observe,
in the large Lundquist number limit, a pile-up saturation effect which renders the
reconnection rate sensitive to the system size. To settle this question conclusively,
we will have to extend our analytic work to address much more general classes of
problems than the one addressed in this section.

3.5 Role of current-aligned instabilities
J. Büchner and W. S. Daughton

In this section we return to the discussion of collisionless mechanisms that might
generate nonideal contributions to the electric field E+v×B = E′, providing dissi-
pation j ·E′ �= 0. Section 3.2 focused on mechanisms that operate even in the absence
of modes in the direction of the main current in a reconnecting current sheet. Here
we discuss the particular role of current-aligned modes, that is, modes with a wave
vector component ky in the direction of the main current. (Since most of the applica-
tions are made to the magnetotail current sheet, we continue to use a magnetospheric
coordinate system with x in the direction of the main magnetic field, y in the direc-
tion of the current, and z perpendicular to the current sheet.) There are several ways
in which such modes might play a role.

Current-aligned modes might directly generate dissipative electric fields. In
contrast to the DC electric fields discussed in Section 3.2, this influence involves
net effects of alternating or fluctuating electric fields. This represents the classical
concept of anomalous resistivity, which also entails the idea that the dissipative elec-
tric field depends on the local plasma properties, most specifically, the local current
density. In the simplest case, this relationship would be governed by Ohm’s law,
with E′ proportional to j. However, more generally the factor between E′ and j need
not be a constant nor a scalar. Anomalous resistivity due to low-frequency plasma
turbulence was considered in numerous papers, based, for instance, on ion-acoustic
waves or lower-hybrid drift (LHD) waves (see, e.g., Rowland and Palmadesso, 1983).

But there is also the possibility that unstable current-aligned plasma waves may
indirectly and nonlinearly interact with reconnection. Current-aligned modes might
alter the structure of the current sheet and thereby change the stability properties
and the early (linear) evolution or they might play a role in the nonlinear dynamic
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evolution. Modes of particular interest in this kind of interaction are unstable kink-
or sausage-type modes of the current sheet and the lower-hybrid drift instability.

In the following we review key theoretical and simulation results and discuss their
applicability to experimental and observational findings of current-aligned instabili-
ties as well as their potential importance for reconnection. We focus particularly on
lower-hybrid drift modes and kink modes, which are well observed in the magne-
tosphere. Ballooning modes, driven by pressure gradients in the direction of the
magnetic field curvature, will be discussed in Section 4.3. These modes operate
also in the ideal MHD limit, although collisionless effects might provide important
modifications.

3.5.1 Ion-acoustic instability
A current-driven instability which may cause anomalous resistivity in current

sheets is the ion-acoustic (also called ion-sound) instability (e.g., Manheimer and
Flynn, 1971). For space applications it was considered by Kan (1971). Ion-acoustic
waves are unstably excited by a resonant interaction of drifting electrons or ions
with the electric field oscillations of ion-sound waves (e.g., Krall, 1977), thereby
providing momentum exchange between ions and electrons. Ion-sound waves prop-
agate in plasmas with Te � Ti but become strongly Landau-damped when Te ≈ Ti.
In the Earth’s magnetosphere, the proton temperature is typically about 5 to 10
times larger than the electron temperature, so that ion-acoustic waves are strongly
damped. As a result anomalous resistivity due to dissipation of ion-acoustic waves
was expected mainly in laboratory plasmas, e.g. theta-pinch experiments (Liewer
and Krall, 1973) and solenoidal fusion systems (Davidson et al., 1977). Considering
space plasmas, Coroniti (1985) concluded that anomalous resistivity resulting from
the quasi-linear saturation of ion-acoustic instability is much too small to account
for fast reconnection.

Considerably larger wave amplitudes could, however, be expected for stronger
driven currents, for which ion-acoustic instabilities may develop even in plasmas
with Ti ≈ Te. Also, instead of the usually applied one-dimensional quasi-linear theory
which leads to plateau formation stopping wave generation, two-dimensional scat-
tering of the electrons at ion fluctuations should be considered. The investigation of
such systems can be carried out, however, only by means of numerical simulations, for
which Vlasov-code simulations are most appropriate. Even one-dimensional recent
Vlasov-code simulations (Watt et al., 2002; Petkaki et al., 2003) claimed a much
stronger wave excitation than the one predicted by the one-dimensional quasi-linear
theory. These findings revived the interest in the ion-acoustic instability as a possible
mechanism for collisionless dissipation in space plasmas. Since these simulations were
restricted to low mass ratios, Hellinger et al. (2004) and Büchner (2005) repeated the
simulations for the same parameters as Watt et al. (2002) and Petkaki et al. (2003),
but for the realistic proton/electron mass ratio mi/me = 1836, using more accurate
Vlasov solvers (see, e.g., Elkina and Büchner, 2005). As a result it appeared that for
realistic mass ratios the old quasi-linear estimate can be recovered within an order
of magnitude. It has still to be investigated, however, whether dissipation becomes
sufficient to support reconnection in more realistic two- and three-dimensional cases,
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which permit pitch-angle scattering, or under, quasi-stationary, continuous current
flow conditions, driven by external forces.

3.5.2 Lower-hybrid drift instability
Waves in the lower-hybrid frequency range,

ΩLH = ωpi(1+ω2
pe/Ω2

e)
−1/2, (3.84)

where ωpi and ωpe are the ion and electron plasma frequencies, respectively, and
Ωe is the electron cyclotron frequency, are commonly observed in the current sheets
at the Earth’s magnetopause (e.g., Vaisberg et al., 1983; André et al., 2001; Lucek
et al., 2001; Bale et al., 2002; Vaivads et al., 2004a), the magnetotail (e.g., Gurnett
et al., 1976; Pu et al., 1981) and in laboratory plasmas (e.g., Takeda and Inuzuka,
2000; Carter et al., 2002b). They arise from the lower-hybrid drift (LHD) instability
driven by diamagnetic drifts associated with strong pressure gradients, particularly
in the boundary regions of the current sheets (Gary and Eastman, 1979; Labelle and
Treumann, 1988).

The kinetic LHD instability (LHDI) requires gradients L/ρi <∼ (mi/me)1/4 where
L is the characteristic density scale length. This condition is easily satisfied in magne-
tospheric plasmas (Huba et al., 1978). For weaker gradients (mi/me)1/4 < L/ρi <

(mi/me)1/2, the LHDI transforms into the drift cyclotron instability (Freidberg and
Gerwin, 1977). In the opposite limit of strong plasma pressure gradients L <∼ ρi, the
LHDI becomes a fluid instability, excited through the coupling of a lower-hybrid wave
with a drift wave (Huba et al., 1978).

In magnetospheric plasmas, where usually ω2
pe � Ω2

e , the expression for the lower-
hybrid frequency simplifies to ΩLH ≈ (ΩiΩe)1/2. Simple linear theory predicts that
the fastest growing LHD waves are on the electron gyroscale kyρe ∼1, while more
generally, due to nonlinear effects, a broad spectrum of wavelengths may be excited,
reaching up to ky

√
ρeρi∼1. Unstable LHD waves propagate with diamagnetic drift

velocity perpendicular to the local magnetic field (Krall and Liewer, 1971; Liewer
and Krall, 1973; Huba et al., 1977).

Perhaps the most attractive feature of LHDI over other current-driven instabilities
such as ion-acoustic or Buneman instability, is that it persists for a much broader
range of interesting parameters (i.e., weaker drifts and Te < Ti). The quasi-linear satu-
ration of the LHDI and the corresponding anomalous dissipation is well known (e.g.,
Davidson and Gladd, 1975). The LHDI therefore has been considered extensively as a
possible candidate to enable reconnection through anomalous resistivity generated by
wave–particle interactions (Huba et al., 1977, 1980; Winske, 1981; Tanaka and Sato,
1981). However, for a typical current sheet structure, nonlocal kinetic theory predicts
that the fastest growing modes are well localized on the edge of the current layer while
enhanced fluctuations are required in the central region to produce significant anoma-
lous resistivity (Huba et al., 1980). The effects of finite plasma β and the electron ∇B

drift-wave resonance damp the mode in the central region and limit the penetration
to distances greater than ∼L(Te/2Ti)1/2, where L is the half-thickness of the sheet.
For the fastest growing short-wavelength modes kyρe∼1, this conclusion is supported
by kinetic simulations (Tanaka and Sato, 1981; Winske, 1981; Brackbill et al., 1984),



3.5 Role of current-aligned instabilities 147

observations at the magnetopause (Bale et al., 2002), in the magnetotail (Shinohara
et al., 1998), and also by laboratory experiments (Carter et al., 2002a,b).

Although the fastest growing linearly unstable LHD modes are on the electron
gyroscale kyρe ∼1, LHD modes are actually unstable over a broad range of wave-
lengths and frequencies (Ωi < ω ≤ ΩLH). Several of the early simulation papers on
the LHDI report longer-wavelength electromagnetic instabilities near the center of
the sheet after the saturation of the short-wavelength modes (Winske, 1981; Tanaka
and Sato, 1981). Two explanations for these waves were recently proposed, one based
on a new approach to the nonlocal linear stability (Daughton, 2003) and another
based on the nonlinear excitation of a drift resonance between LHD modes generated
at the edge of the current sheet and meandering ions at the center of the current
sheet (Silin and Büchner, 2003a). Both predict that longer-wavelength LHD modes
with wavelengths intermediate between the electron and ion gyroscale ky

√
ρiρe∼1 can

penetrate into the central region, whereas the fastest growing modes with kyρe∼1 are
confined to the edge of the current sheet. These new predictions have been confirmed
in two dimensions by fully kinetic particle-in-cell (PIC) simulations at high mass
ratio (Daughton, 2003).

Figure 3.31 demonstrates these effects, showing the current density jy(y, z) from
a 2D PIC simulation at a realistic mass ratio for a hydrogen plasma, mi/me = 1836
(Daughton, unpublished). The initial state is a thin Harris sheet with parameters
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Fig. 3.31. Evolution of the current density jy(y, z) (grayscale) from a 2D PIC
simulation at realistic mass ratio for a hydrogen plasma, mi/me = 1836. The
three panels demonstrate the transition from the saturation of the fastest growing,
short-wavelength, LHD modes with kyρe ∼ 1 (top) through intermediate-scale
(ky(ρiρe)1/2 ≈ 0.8) modes (center) to long-wavelength (kyL ≈ 0.5) ion–ion kink
instability (bottom).
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ρi/L = 2, Ti = Te, ωpe/Ωe = 4 with a background density of nb/n0 = 0.1 and box size
12L×12L, where L is the current sheet half-thickness. The grid size is 1024×1024
with 150×106 computational particles for each species and a time step of tΩe = 0.03.
At early time, tΩi = 4 (top), the fastest growing, short-wavelength, LHD modes with
kyρe ∼ 1 have saturated leading to the turbulent fluctuations on the edge of the
current layer. At intermediate time, tΩi = 13 (middle), growth of the intermediate
scale ky(ρiρe)1/2 ≈ 0.8 LHDI is clearly evident in the growing m = 5 structure, while
at late time, tΩi = 17 (bottom), a long-wavelength kyL ≈ 0.5 ion–ion kink instability
is observed in conjunction with the intermediate LHDI (see also Karimabadi et al.,
2003b, and Section 3.5.4).

These simulations have shown that for a current sheet thickness near or less than
the ion inertial length, LHD modes may penetrate and modify the central region of
the current sheet, initiating long-wavelength modes that saturate at large amplitudes.
Similar results have been found by Vlasov-code simulations in three dimensions, but
with smaller mass ratio (Silin and Büchner, 2003b). This suggests the possibility
that these fluctuations may influence the development of magnetic reconnection.
Consistent with these results, Silin and Büchner (2005a) also found that the growth
rate increases with the sheet thinning as shown in Fig. 3.32.

It is important to note that the penetration of longer-wavelength LHD modes into
the central region appears to require very thin current layers L <∼ 0.6ρi(ρi/L > 1.6,
see Fig. 3.32). Although current sheets in this parameter regime are clearly observed
in laboratory plasmas (Yamada et al., 2000; Ji et al., 2004), current layers observed in
the magnetosphere are only occasionally that thin (André et al., 2004) but typically
somewhat thicker L >∼ ρi. In this parameter regime, the theoretical results consis-
tently predict that the LHDI is confined to the edge region of the current layer,
where it is in the wrong location to directly produce the anomalous resistivity needed
for reconnection. However, recent explicit 2D kinetic simulations for this parameter
regime, using the realistic ion to electron mass ratio mi/me = 1836, indicate that the
LHDI may, nevertheless, play an important role in the onset of magnetic reconnec-
tion (Daughton et al., 2004; Ricci et al., 2004a). Although the unstable LHDI modes
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Fig. 3.32. Dependence of the global current-aligned mode (thick line) and tearing-
mode instability (thin line) growth rates on the current sheet thickness. After Silin
and Büchner (2005a).
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Fig. 3.33. Mass-ratio dependence of the current-aligned mode. Büchner and Kuska
(1998a).

are clearly localized on the edge of the layer in these simulations, the nonlinear evolu-
tion induces a dramatic bifurcation of the current density and leads to significant
anisotropic heating of the electrons in the central region of the sheet. The essential
physics involves a resonant scattering of the crossing ion orbits into the noncrossing
region of phase space which creates an electrostatic potential structure across the
layer. The basic predictions from this model are in good agreement with observations
concerning the electron flow velocity, bifurcated current structure and the electron
anisotropy.

Since most of the kinetic simulations necessarily still use artificially small ion–
electron mass ratios, the mass-ratio dependence of the nonlinear simulation results
was investigated by Büchner and Kuska (1998a). Figure 3.33 shows that the growth
rate increases mainly for small mass ratios and then saturates towards the realistic
mass ratio of 1836.

3.5.3 Lower-hybrid drift instability in non-antiparallel fields
Huba et al. (1982) first theoretically considered the lower-hybrid drift insta-

bility in non-antiparallel reversed fields. Indeed, while not changing the current sheet
equilibrium, a uniform externally imposed current-aligned magnetic guide field intro-
duces a serious change in the current sheet instabilities. While in the generic Harris
(1962) sheet with antiparallel magnetic fields the particles crossing the current sheet
center may be nongyrotropic and therefore may easily become accelerated by elec-
tric fields of unstable modes, in the presence of the guide field this is no longer the
case (Büchner and Zelenyi, 1991). Thus, the Hall currents, which play an important
role in collisionless reconnection of antiparallel fields, are suppressed in the config-
urations with sufficiently large guide fields. Also, the structure of the reconnected
magnetic field lines changes from closed O-type field lines in the case of antiparallel
reconnection to helical (corkscrew) type in the presence of the guide field, i.e., there
are no classical X- or O-points as in two-dimensional reconnection (Büchner, 1999).

For the case of finite guide fields Galeev et al. (1985) and Kuznetsova and Zelenyi
(1985, 1990a) proposed obliquely propagating nonlinearly unstable drift-tearing
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modes, which could lead to stochastic reconnection. Indeed, in the presence of guide
fields, tearing-mode reconnection islands cannot grow coherently to large amplitudes
due to the rotation of the wave vector with increasing distance from the central
plane. Instead, the authors proposed that small-scale reconnection coupled to a drift
mode would lead to magnetic percolation (Kuznetsova and Zelenyi, 1990b). These
drift-tearing modes, which cause small-scale reconnection, become unstable first near
the current sheet center, where they resemble the classical tearing instability. Later,
oblique modes arise further away from the current sheet center. The authors spec-
ulated that after the magnetic field perturbations exceed a critical level, magnetic
islands overlap and the small-scale reconnection might even grow algebraically with
time to large amplitudes (Galeev et al., 1985).

Pressure-gradient-driven unstable LHD waves always propagate perpendicular to
the local magnetic field (Krall and Liewer, 1971; Liewer and Krall, 1973; Huba et al.,
1977). To investigate their possible consequences for reconnection, Silin and Büchner
(2003b) recently reconsidered the influence of a guide magnetic field on the resonant
LHDI. They found that the unstable LHD waves become decoupled from each other
in the presence of the guide field, because they always propagate perpendicular to
the local magnetic field. The number of resonant ions becomes smaller as the guide
field becomes stronger, and hence the resulting growth rate of the combined mode
decreases as well (see Fig. 3.34). Silin and Büchner (2005b) investigated the LHDI in
a rotating magnetic field, typical for magnetopause current sheets. They found that
in their model the instability saturates at low levels, unable to provide a sufficient
amount of anomalous resistivity.

3.5.4 Kink instability
Kink modes are frequently observed in thin current sheets in the magneto-

tail (e.g., Sergeev et al., 2003, 2004); however, their relation to reconnection remains
unclear. They may provide a means to initiate reconnection, they may be excited
simultaneously but independently, or they may grow as a consequence of reconnec-
tion. Here we discuss particularly their potential role in the initiation of reconnection.

The drift-kink instability is a long wavelength kyL <∼ 1 electromagnetic mode
driven by the relative drift between ions and electrons. It was originally uncovered
from fully kinetic simulations of current sheets (Ozaki et al., 1996; Pritchett and
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Fig. 3.34. Growth rate of the nonlocal long-wavelength LHDI at the center of the
current sheet with a finite guide field By for L = ρi.
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Coroniti, 1996; Pritchett et al., 1996; Zhu and Winglee, 1996; Lapenta and Brack-
bill, 1997) and gives rise to a large-scale undulation of the layer. Linear Vlasov
theory (Daughton, 1999b) predicts substantial growth rates for the artificial mass
ratios typically employed in PIC simulations mi/me <∼ 100. However, the growth
rate is drastically reduced for realistic mass ratio (Daughton, 1999a,b). Comparison
between the predicted theoretical scaling and fully kinetic simulations is excellent for
relatively modest mass ratio mi/me <∼ 100 but deviates significantly at larger mass
ratio (Daughton, 2002). The apparent reason for this discrepancy is the presence of
the LHDI in these simulations which generates significant ion velocity shear which
drives a kinking of the current layer by a Kelvin–Helmholtz type mode (Hesse et al.,
1998; Daughton, 2002; Lapenta and Brackbill, 2002; Lapenta et al., 2003).

It is interesting to note that the original linear Vlasov theory of the drift-kink mode
also explored the possibility of adding a uniform background plasma to the standard
Harris sheet equilibrium (Daughton, 1999b). This introduces a relative drift between
the current-carrying and background ion populations and the linear theory predicts
large growth rates that are independent of the electron mass. This so-called ion–ion
kink instability (Karimabadi et al., 2003a,b) has features which are very similar to
the drift-kink mode in terms of wavelength, frequency, and mode structure, but the
driving factor is the relative drift between two ion populations. Within a single fluid
picture the bulk fluid velocity is sheared, so the mode appears to be closely related
to the Kelvin–Helmholtz instability (Hesse et al., 1998) but the typical regime of
interest is highly kinetic so there are important modifications. An example of the
ion–ion kink mode in a PIC simulation at realistic mass ratio is shown in the bottom
panel of Fig. 3.31.

To summarize, the drift-kink mode is very weak in the limit of realistic mass and
is not physically interesting. However, the ion–ion kink mode has significant growth
rates over a broad range of interesting parameters and is easy to excite with either
shear or multiple drifting ion components. The primary stabilizing factor for the
mode is the presence of a finite guide field. For the parameter regime relevant to
the magnetotail, the properties of the ion–ion kink mode have been systematically
examined using a combination of linear Vlasov theory (Karimabadi et al., 2003a)
along with full PIC and hybrid simulations (Karimabadi et al., 2003b). Some of
the essential properties of the ion–ion kink instability are consistent with recent
magnetotail observations (Karimabadi et al., 2003b; Ricci et al., 2004b).

Although it has been suggested that kink instabilities may perhaps play a role in
the onset of magnetic reconnection (Lapenta et al., 2003), the precise mechanism by
which this would occur has not been identified. To complicate matters, the LHDI is
also typically present in 3D kinetic simulations, and there is now fairly convincing
evidence that it does play a role in the onset. It is interesting to note that the
LHDI modes can be suppressed with the introduction of a sufficient background
plasma which increases the plasma β in the edge region. Recent fully kinetic 3D
simulations with 20% background density have simulated the simultaneous evolution
of an unstable kink mode in conjunction with collisionless tearing (Karimabadi et al.,
2003b). Although there are a number of interesting effects observed during the initial
phase of these simulations, the final stage of evolution in these 3D simulations is
quite similar to the usual 2D tearing scenario.
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3.5.5 Drift-sausage instability
Sausage modes in a current sheet are symmetric modes, characterized

by periodic thinning and thickening. The localized thinning makes them rather
attractive as a means to initiate reconnection. However, results on the exis-
tence of such modes are contradictory, so that their importance has not been
established.

A threshold of a sausage-type electromagnetic instability of a current sheet was
first obtained by Yamanaka (1978), who took into account specifics of the particle
motion in antiparallel fields. Neglecting electrostatic effects, Lapenta and Brack-
bill (1997) solved the linear dispersion relation for a drift-sausage instability based
on a straight orbit integration of the linearized Vlasov equation. Their simulation,
reported in the same paper, however, revealed only a kink-instability of the sheet.
A nonlocal linear theory based on a full orbit integration (Daughton, 1999a, 2003)
of the linearized Vlasov equation also did not find evidence for a drift-sausage
mode. Likewise, the particle-in-cell simulations of current sheet dynamics listed in
Section 3.5.4, which found clear evidence of kink modes, did not observe drift-sausage
modes.

In contrast, Büchner and Kuska (1998a,b, 1999) investigating unstable drift-
sausage modes also by means of PIC simulations, concluded that drift-sausage modes
are nonlinearly unstable, the wavelength of the most unstable mode depending on the
mass ratio as kyLz∼(mi/me)1/4. Wiegelmann and Büchner (2000) showed that elec-
trostatic contributions are indeed necessary to cause a nonlinear drift-sausage sheet
instability in the current flow direction. Otherwise, if the electrostatic perturbations
are artificially suppressed, the tearing-mode instability dominates the current sheet
decay. Considering global eigenmodes, Yoon and Lui (2001) found a preference for
the sausage mode. According to Yoon et al. (2002), for small particle mass ratios
mi/me asymmetric kink modes should dominate, while for higher mass ratios the
sausage mode was more probable. Analytically considering the long-wavelength
limit, Silin et al. (2002) demonstrated that for the correct consideration of the
electrostatic (charge-separation) effects the sausage mode can directly couple into
reconnection via the current-aligned longitudinal electric field Ey at the center of the
current sheet. The resulting reconnection perturbations have finite wave vectors kx

and ky. This way, magnetic reconnection in thin current sheets becomes intrinsically
three-dimensional, propagating together with the global current sheet instability
(reconnection wave) as predicted by Büchner and Kuska (1996, 1998b).

Observationally, sausage modes have been identified in the magnetotail current
sheet by the Cluster satellite tetrahedron (Volwerk et al., 2004; Fruit et al., 2004).
However, the propagation direction of these modes was along the tail, rather than
across. Furthermore, they seemed to be a consequence of substorm onset rather than
leading into it. Therefore, the role of sausage modes in the onset of reconnection
remains unclear, both theoretically and observationally.

3.5.6 Modified two-stream instability
The modified two-stream instability (MTSI) (McBride et al., 1972) and the

closely related ion-Weibel instability (IWI), which represents the special case of
propagation along the magnetic field (Chang et al., 1990), share many of the features
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of the lower-hybrid drift instability, including similar frequencies, growth rates and
wavelengths. As discussed in Section 3.5.2, the LHDI is considered as being driven by
a density gradient, has maximum growth for k ·B = 0 and operates predominantly
in the boundary layers of a current sheet. In contrast, the MTSI/IWI is considered
as being driven by the cross-field drift of unmagnetized ions even in the absence of
a density gradient. It is predicted to have maximum growth for oblique propagation
and to operate predominantly in the region of strongest current, that is, near the
center of the current sheet (McBride et al., 1972; Lemons and Gary, 1977; Wu et al.,
1983; Chang et al., 1990; Lui et al., 1991; Yoon and Lui, 1993; Lui, 2004).

The distinction between the drivers is somewhat arbitrary, because in self-
consistent current sheet models current-associated drifts are typically related to
magnetic field and density gradients as well. Using a local approach that includes
weak inhomogeneity of both density and magnetic field, Silveira et al. (2002)
obtained a unified local kinetic treatment of these instabilities, while Yoon and Lui
(2004) investigated the transition between LHDI and MTSI on the basis of certain
non-Harris type current sheets with signficant E×B drifts, incorporating the spatial
variation through varying parameters such as the plasma β and the ion drift speed.
In both of these investigations, LHDI and MTSI were distinguished according to the
resulting dispersion properties, particularly the wave vector direction of the most
unstable modes. Thus, LHDI is predicted to be dominant for Harris-type equilibria,
where the relative electron–ion drift is entirely diamagnetic, and for the low-β
boundary regions of non-Harris type models (Yoon and Lui, 2004). In contrast,
the MTSI is predicted to be dominant in the high-β central region of non-Harris
equilibria.

It is important to note that these predictions are based on local kinetic theory
which may not be applicable to the central region of a current sheet. Further investi-
gation of these linear predictions requires a nonlocal kinetic treatment in conjunction
with 2D and 3D kinetic simulations.

3.5.7 Summary and conclusions
Current investigations have shown that kinetic instabilities in model

current sheets might, in principle, provide the plasma nonideality necessary for
reconnection in collisionless space plasmas. While the classical one-dimensional
Te � Ti ion-acoustic instability does not operate under realistic space plasma
conditions, the lower-hybrid drift instability is more likely to operate and play
a significant role. While it may be a source of anomalous resistivity under
drastic thinning, under less stringent conditions it may alter the current sheet
structure and thereby destabilize it and couple to reconnection. Kink insta-
bilities are likely to operate, and are indeed observed in thin magnetotail
current sheets (while results on sausage modes are still controversial). However,
it is not clear whether and how they might affect reconnection. More real-
istic 3D model calculations are necessary to further clarify the relationship
between current-driven, current-aligned instabilities and fast reconnection in space
plasmas.
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3.6 Nonthermal particle acceleration
M. Hoshino

Nonthermal particle acceleration in magnetic reconnection is a long-standing problem
in cosmic plasmas. In fact, the possibility of accelerating charged particles by an
electric field along a magnetic neutral line or, more generally, along a magnetic field
line in reconnecting magnetic fields was the reason for introducing the concept of
magnetic reconnection, although not the term, by Giovanelli (1946) as a mechanism
for particle acceleration in solar flares. The relationship between flares and particle
energization by reconnection has been widely recognized after Yohkoh and SOHO
observations (e.g., Tsuneta et al., 1992; Sterling et al., 2000). RHESSI observations
reported substantial electron acceleration and a double power-law X-ray spectrum
in association with flares (Lin et al., 2003).

In the astrophysical context, it is known that almost all young stellar objects emit
X-rays with light curves that are quite similar to those of solar flares, characterized by
a fast rise and exponential decay, even though the luminosities are very much higher
than those of solar flares (Koyama et al., 1996; Montmerle et al., 2000). Furthermore,
a good correlation between the emission measure and the plasma temperature can
been seen (Feldman et al., 1995; Shibata and Yokoyama, 1999). Therefore, those
flares are believed to be related to magnetic reconnection.

Pulsars and their surrounding nebulae are another example of magneto-active
objects, and ultra-relativistic particles are known to be generated in the form of synch-
rotron radiation. The shock acceleration by the interaction of a relativistic pulsar wind
with the nebula is the most widely accepted scenario of generation of ultra-high energy
particles (Kennel and Coroniti, 1984), but magnetic reconnection is also suggested
as another important acceleration process in a striped magnetic field in pulsar
winds (Coroniti, 1990; Lyubarsky and Kirk, 2001). In fact, on the basis of Chandra
X-ray satellite observations, Mori et al. (2004) concluded that magnetic energy dissi-
pation is necessary to explain the luminosity of the synchrotron radiation in the Crab
nebula. Zenitani and Hoshino (2001, 2005) and Jaroschek et al. (2004) suggested
that ultra-relativistic particles can be quickly generated by relativistic reconnection.

In most cosmic plasmas, the nonthermal, high-energy spectra are often described
by a power-law energy spectrum. Over the last several decades, considerable effort
has been devoted toward understanding the formation of such high-energy power
laws and the origin of nonthermal particles in reconnection. However, there are
many outstanding questions regarding particle acceleration that motivate continuing
research in the field. Plasma heating and acceleration in magnetic reconnection is
now a frontier subject of plasma astrophysics. In this section, we review the physics
of particle acceleration in reconnection by focusing on the Earth’s magnetosphere
where many key observational data are available. Since the underlying basic physics
of reconnection should be universal, it can be expected that properties of recon-
nection and particle acceleration in the well-studied terrestrial magnetosphere are
applicable to other astronomical objects, too.

3.6.1 Basic plasma parameters in the magnetosphere
Before discussing observations of energetic particles, it is useful to discuss

typical thermal plasma properties in the terrestrial magnetosphere and specifically
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the magnetotail. We focus on the tail region around 20 to 30 RE distance from Earth
where near-Earth reconnection related to substorms is now believed to occur (e.g.,
Hones, 1979; Nishida et al., 1981; Baumjohann et al., 1991; Nagai et al., 1998).

The ion temperature is always higher than the electron temperature; typical values
are a few keV and several hundred eV, respectively. This preferential ion heating is
believed to be associated with the primary magnetotail acceleration mechanism at
the boundary between the lobe and the plasma sheet.3 The plasma sheet density
is 0.1∼1cm−3, but during an active reconnection period the density may decrease
below ∼ 0.01cm−3 in the vicinity of an X-type neutral line. The gas pressure of
the hot plasma inside the plasma sheet balances the magnetic pressure of the very
tenuous lobes with a magnetic field of about 20nT. The thickness of the electric
current sheet which supports the antiparallel lobe magnetic field is usually about
1∼3RE, but before the onset of substorms the thickness can become as small as the
ion inertia length of the order of 1000 km (e.g., Asano et al., 2003).

Based on the above plasma parameters, let us estimate characteristic limits for the
electric potential induced in the magnetotail. The Alfvén speed estimated by using
the lobe magnetic field and the plasma sheet density is given by

vA = 620
(

Bx

20 nT

)(
0.5 cm−3

n

)1/2

km/s. (3.85)

The reconnecting magnetic field in the plasma sheet may be approximated by

Bz = 2
(

Bx

20 nT

)(
M

0.1

)
nT, (3.86)

where M is the reconnection rate, assumed to be of order 0.1. Therefore, the motional
electric field during reconnection in the magnetotail can be estimated as

Ey = 1.2
(

vA

620 km/s

)(
Bx
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)(
M

0.1

)
mV/m. (3.87)

Multiplying Eq. (3.87) by the scale length L of the magnetotail cross-section of
about 30RE, the maximum potential difference induced in the tail in the dawn–dusk
direction becomes of the order of

eφ = 240
(

vA

620 km/s

)(
Bx

20 nT

)(
M

0.1

)(
L

30 RE

)
keV. (3.88)

Thus the plasma in the Earth’s magnetotail is characterized by thermal energies
well below the available potential energy estimated by Eq. (3.88). On the other hand,
there are many observations that show that plasma particles can be effectively accel-
erated to energies of 1 MeV. These energetic particles are the continuous extension of
the thermal population, forming a supra-thermal tail beginning at several multiples
of the thermal energy. Most energetic particles seen in the magnetotail seem to be
roughly consistent with the available potential energy (see also Section 4.4.4), but
the highest energy particles seem to exceed the available potential energy.

3 However, a similar ratio is also found in the magnetosheath surrounding the magnetosphere
(Fig. 1.5), so that an acceleration mechanism that preserves this ratio from this source region is
also plausible.
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3.6.2 Energetic particle observations and magnetic reconnection
Let us discuss in more detail the energetic particle observations in the Earth’s

magnetotail. In early satellite observations anisotropic energetic particle bursts have
been reported by Sarris et al. (1976) and Hones et al. (1976). An energetic electron
burst with 0.3–1.0 MeV was identified in association with a southward turning of the
Bz magnetic field at x ≈ −20 to −30RE in the magnetotail (Terasawa and Nishida,
1976). The southward turning of Bz suggests that magnetic reconnection is occur-
ring in the magnetotail, because the tail magnetic field during nonreconnection time
intervals should have a northward Bz component.

Similar events were also discussed at x ≈ −30RE based on a survey of electrons
of ε ≥ 200keV by Baker and Stone (1976, 1977), who reported that electron flux
enhancements at energies ε ≥ 1MeV are usually associated with neutral sheet cross-
ings. Sarris et al. (1981) reported ion distribution over the energy range 100 eV to a
few MeV even though the bulk flow speed is not necessarily fast. Möbius et al. (1983)
analyzed energetic protons of 30–500 keV and energetic electrons of ε ≥ 75keV, and
suggested that reconnection near an X-type neutral line is a candidate for the accel-
eration of the energetic particles.

Although the relationship between the energetic particles and reconnection was
plausible, there was no direct evidence of energetic particle production at an X-type
neutral line. The spatial extent of the region around the X-line where non-MHD
processes take place is of the order of an ion inertia length, so that the observational
chance of a satellite traversing this region is very rare. However, Øieroset et al.
(2002) have recently reported the successful observation of energetic particles in the
vicinity of an X-type region. As shown in Fig. 3.35, the fluxes of energetic electrons
up to∼300keV increased approaching the diffusion region, and the energy spectrum
has a power-law signature above ∼2keV with the power-law index of −5. Since the
single, power-law population is extended up to 300 keV, all energetic particles are
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Fig. 3.35. Electron energy spectra observed just on the tailward side of an X-type
region. The power-law indexes k of four different time periods are shown in the
plot. Adapted from Øieroset et al. (2002).
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thought to be generated in the same acceleration process. The high-energy electrons
of ∼300keV seem to be consistent with the available potential energy estimated by
Eq. (3.88).

The maximum available potential energy, however, may be overestimated, because
the reconnection region is believed to be localized within a few Earth radii in
the y direction (e.g., Angelopoulos et al., 1994), so that such a large electric
potential of eφ ∼ 240keV is not easily induced. The relationship between the
observed maximum energy and the available potential energy remains a controversial
issue.

Another important issue is the distribution of the energetic particles. In association
with magnetic reconnection in the magnetotail, plasma is transported away from the
X-type region. During the plasma transport, ions/electrons are drifting toward dusk/
dawn and should gain energy. As shown in Fig. 3.36, however, this is not supported by
observations. Figure 3.36 shows suprathermal particle observations by the Geotail
satellite in the tail (Imada et al., 2002). Electron fluxes of 3.2 keV (right-bottom) and
9.3 keV (left-bottom), the integrated electron flux of energies greater than 38 keV
(left-top), and the energetic ion flux of 39.5 keV (right-top) are shown as a function of
the dawn–dusk position. The nominal electric field is directed toward the positive y

axis, which is the dawn to dusk direction. One can observe asymmetry of the energetic
particle distributions, but this asymmetry is not very distinct. We can find the ener-
getic electrons (protons) even in the dusk (dawn) side region. The observed energetic
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Fig. 3.36. The dawn–dusk distribution of energetic particles. The gray scale shows
occurrence probability of particle flux in each YGSM bin.
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particle distribution is not simply described by a model of the dawn–dusk potential
energy gain. A possible explanation is that diffusion processes of particles play an
important role in the magnetotail. If the spatial diffusion in the dawn–dusk direction
is effectively occurring, the asymmetry of the energetic particle distribution will be
smeared out. There is no energy gain during the diffusion process caused by elastic
scattering, because the potential energy gain/loss can be compensated by the energy
loss/gain from the waves whose scattering centers are embedded in the convecting
plasma. In this case, the maximum energy of particles might even exceed the avail-
able potential energy under the reconnection acceleration with the diffusion process.

3.6.3 Acceleration of test particles under MHD reconnection fields
The direct energization of charged particles in reconnection is provided by the

interaction of the particles with an electric field around the X-type region. In
the earliest exploration of particle acceleration during reconnection, people used
test particle modeling, where a model of the spatial variation of the time-dependent
magnetic and electric fields is given, and they calculated the particle motion and
its energization by integrating the Lorentz equation in time. The test particle
calculations based on the magnetic and electric field structure obtained by a resistive
MHD simulation demonstrated the production of suprathermal particles by moving
in the direction of the electric field over a substantial distance (e.g., Sato et al., 1982;
Scholer and Jamitzky, 1987; Birn and Hesse, 1994). Time-dependent, strong electric
fields generated near the X-type reconnection region in association with a pair of slow
shocks are demonstrated as a primary energy source of the reconnection acceleration.
In addition to the above acceleration mechanism, Ambrosiano et al. (1988) suggested
that small-scale MHD turbulence generated in the plasma sheet under a high
magnetic Reynolds number enhances the particle acceleration through stochastic
scattering.4

Frequently, reconnection is considered to evolve in a steady-state manner, with
the amplitude of the reconnection electric field more or less constant in time. But
it is also postulated that reconnection is nonstationary, and in such a nonsteady
reconnection regime the particle acceleration efficiency may be boosted up. Sakai
and Ohsawa (1987) discussed a driven reconnection scenario by assuming that the
lateral magnetic influx increases in time, and showed the transition to explosive
reconnection. Bulanov and Sasorov (1975), Zelenyi et al. (1984, 1990), and Deeg et al.
(1991) have demonstrated the formation of a power-law type energy spectrum from
inductive electric fields that grow exponentially in time.

While the above theoretical studies of particle acceleration basically assume that
the main acceleration occurs around an X-type region, a more general current sheet
may involve multiple X-points in a filamentary current sheet, which also implies
intervening magnetic islands with O-points. The magnetic islands might play an
important role in trapping particles inside the islands, and if a finite electric field

4 In Section 4.4 we will discuss test particle simulation results that indicate that, in the geomag-
netic tail, betatron or Fermi-type acceleration in the collapsing magnetic field earthward of an
X-type neutral line may be more significant than the acceleration in the immediate vicinity of the
neutral line.
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exists over the plasma sheet, strong particle acceleration can be expected in and
around the magnetic islands as well (Kliem, 1994).

3.6.4 Turbulence and wave scattering
Processes responsible for nonthermal high-energy particles are likely to

violate adiabatic particle motion, and several waves may contribute to nonadiabatic
processes through wave–particle scattering. As noted in Section 3.6.2, the energetic
particle distributions do not show clear dawn–dusk asymmetry in the magnetotail,
which may be suggestive of a diffusion process across the magnetic field. There
has been accumulating evidence that the plasma sheet is in a turbulent state (e.g.,
Kennel, 1995), and the electric and magnetic field turbulence is believed to be the
primary mechanism by which heating and dissipation takes place through scattering
of particles.

The frequency band of the turbulence ranges from below the ion cyclotron freq-
uency (of the order of 0.1 Hz in the Earth’s magnetotail) to the plasma frequency (of
the order of 10 kHz). The observed Fourier power spectral density of the magnetic
fields can be approximated by a double power-law spectrum in the MHD
range (Hoshino et al., 1994; Bauer et al., 1995). Above MHD frequencies, three diffe-
rent types of wave modes are observed (Gurnett et al., 1976). The most intense waves
are broadband electrostatic noise bursts observed in the outer plasma sheet boundary
layer (PSBL) in association with large plasma flows, the other two are whistler mode
magnetic noise bursts and electrostatic electron cyclotron waves. The whistler waves
are also observed in the same region as the broadband electrostatic noise, and are
thought to be associated with regions carrying substantial field-aligned currents.

Concerning the large number of waves observed in the Earth’s magnetotail, we
briefly mention the current understanding of two main generation mechanisms. In the
outer plasma sheet boundary regions, an anisotropic ion beam velocity distribution
function is often observed during the reconnection phase. The distribution consists
of cold incoming ions streaming toward the diffusion region and accelerated outgoing
ions. The outgoing ions are thought to be generated in the diffusion region and to be
ejected along the reconnecting magnetic field lines (e.g., Hoshino et al., 1998). This
outgoing distribution is called the PSBL ion beam. It is expected that the PSBL ion
beams can excite Alfvénic/whistler waves propagating along the magnetic field due
to the firehose/ion beam cyclotron instability. Arzner and Scholer (2001) performed
a large-scale hybrid simulation of reconnection and demonstrated the generation of
the PSBL ion beams and the emission of the Alfvénic/whistler waves in the plasma
sheet boundary layer, which in turn lead to the evolution of MHD turbulence and
the resultant ion thermalization.

Inside the plasma sheet and around the plasma sheet boundary, broadband waves
with frequencies from the lower-hybrid frequency to the plasma frequency are also
believed to be important for particle scattering (Okada et al., 1994; Cattell et al.,
1994). Modern, high-time-resolution satellite measurements show that the broadband
electrostatic waves are localized, large-amplitude, electrostatic waves with a series of
coherent wave forms, now called ESW (Kojima et al., 1994). The scale of ESW is
probably tens of electron Debye lengths, but the amplitude is 10 to 100 times that of a
large-scale reconnection electric field induced by the global MHD flow (Cattell et al.,
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1999). Therefore, the small-scale ESW might appear to control the global dynamics
including the electron heating and acceleration. The emission mechanism may be
attributed to the electron beams generated around the diffusion region in a similar
way to the PSBL ion beams, and the waves are excited by either electron bump-in-tail
instability (Omura et al., 1994) or Buneman instability (Drake et al., 2003).

3.6.5 Strong acceleration during reconnection
As stated in Section 3.6.3, the earliest particle acceleration studies were done

in the framework of prescribed fields or fields computed from resistive MHD recon-
nection models. It is important to explore the particle acceleration in a self-consistent
system of a full particle simulation where the feedback of particle motions via the
electric current into the electric and magnetic fields is taken into account. Larger
amplitude waves could be generated through kinetic instabilities in the collisionless
plasma system. As discussed earlier, the thickness of the plasma sheet is known
to become as small as the ion inertia scale before onset of magnetic reconnection,
and the plasma sheet that governs the macrodynamics also governs the microscale
phenomena. Therefore the microscale plasma dynamics will strongly couple with the
macroscale physics. Then we need kinetic modeling of particle acceleration beyond
the MHD description. Here we discuss energetic electron acceleration processes
obtained by using a full-particle simulation (Hoshino et al., 2001b).

This particle simulation was carried out in two-dimensional (x, z) coordinate space,
assuming the Harris solution (Harris, 1962) as the initial condition. In the early phase,
a localized external electric field drives the evolution from the outer boundary to
initiate reconnection in the center of the simulation box. As time goes on, an X-type
neutral line is formed, and in association with the energy conversion from magnetic
to kinetic energy, the reconnection outflow in the plasma sheet is ejected from the
X-type neutral point. In contrast to resistive MHD models, the energy dissipation
around the X-type magnetic diffusion region is provided by particle inertia due to
inverse Landau resonance of particles with the reconnection electric field and by the
resultant electron pressure anisotropy (Section 3.2).

Figure 3.37 shows a snapshot of the nonlinear evolution of reconnection at t/τA∼
48.8, where τA is the Alfvén transit time for crossing the plasma sheet. The top panel
shows magnetic field lines in the x, z plane (i.e., the reconnection plane), and the
bottom panel shows the magnetic field component perpendicular to the reconnec-
tion plane Bz, which is generated by Hall electric currents in the thin plasma sheet
(Section 3.1).

Figure 3.38 shows energy spectra of electrons integrated over all pitch angles in
the whole simulation domain. In the early phase of reconnection before t/τA∼41.7,
we find that the electrons are gradually thermalized with time, and the spectra
are approximated by a thermal Maxwellian. In the late phase at t/τA ∼48.8, the
enhancement of suprathermal electrons above the thermal Maxwellian can be clearly
seen. By analyzing the positions of those energetic particles, we found that most
energetic electrons of εele/(mec

2) ≥ 0.1 are situated in the X-type region and around
the boundary between the lobe and the plasma sheet, i.e., around the separatrix of
reconnecting magnetic field lines.
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line shows the Maxwellian fit as reference.

In order to understand how and where the electrons get their energies, we have
analyzed electron trajectories in the reconnection region. Figure 3.39 shows several
typical trajectories. The starting points of the trajectories are denoted S1, S2, etc.,
while the end points are labeled E1, E2, etc. The S1–E1 curve is one of the most
typical orbits showing particle acceleration. The electron is initially accelerated near
the X-type region by moving in the negative electric field direction, and is ejected
along the magnetic field line at the separatrix boundary. The particle with the S2–E2
trajectory gains much larger energy than the S1–E1 electron does, during several
bounce motions in the reconnecting magnetic fields with mirror geometry. The energy
gain is provided by the curvature and ∇B drift motions toward the negative y direc-
tion. It is important to note that the ratio between the magnetic field curvature
radius and the gyroradius, κ, is almost unity in the central plasma sheet, and that a
particle with κ∼1 is effectively scattered toward a weak magnetic field region, and has
a tendency to stay for a longer time in the plasma sheet (e.g., Delcourt et al., 1996).



162 Basic theory of collisionless reconnection

–4

–3

–2

–1

0

1

2

3

4

–12 –10 –8 –6 –4 –2 0

z/
λ

x/ λ

S1S3S4
S2

E1

E4

E3

E2

–4

–3

–2

–1

0

1

–12 –10 –8 –6 –4 –2 0

y/
λ

x/ λ

S1
S2

S3

E2

E1

S4
E3

E4

x

z

x

y

+ wave scattering

(III) mirror

(I)
meandering/Speiser

(II)
gradB/curvB
with κ~1

Ey

Fig. 3.39. Typical electron trajectories obtained in a particle-in-cell simulation.
The left panels show trajectories in the x, z plane (top) and in the x, y plane
including the reconnection motional electric fields Ey (bottom). The right-hand
panels are a schematic view of the magnetic field lines in the x, z plane and the
electric field in the x, y plane.

The S3–E3 trajectory around x/λ = −7.5 is an example of the cross-field diffusion.
The electron is scattered towards the stronger magnetic field region and the positive
electric field y direction. The orbit S4–E4 shows pitch-angle scattering, with a change
of the pitch of the gyromotion around x/λ = −8 and −10. We suggest that these
trajectories represent the basic scattering processes that play important roles in
particle acceleration.

Figure 3.40 shows the wave spectra obtained in the magnetic field pile-up region,
where the reconnection outflow plasma collides with the pre-existing plasma. The
vertical and horizontal axes are the wave power of (E2

x +E2
z ) and the wave frequency,

respectively. The wave power is normalized by (vAB/c)2, and the wave frequency
is normalized by the electron plasma frequency at the plasma sheet at t = 0. The
spectrum denoted by the dashed line is taken at the boundary between the lobe and
the plasma sheet at (x/λ, z/λ) = (−7,2), while the solid line is the spectrum inside
the plasma sheet at (x/λ, z/λ) = (−7,0). Inside the plasma sheet, we find that the
low-frequency waves are strongly enhanced. Around the plasma sheet boundary layer,
a broadband spectrum from the low frequency to the plasma frequency can be seen.
The spectrum bump around ω/ωpe∼0.7 corresponds to the local plasma frequency,
i.e., Langmuir waves. Since we can see the signature of an accelerated electron beam
in the distribution function taken around the boundary (Hoshino et al., 2001a), the
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Fig. 3.40. Turbulent wave spectra obtained in the magnetic field pile-up region
where the reconnection plasma outflow collides with the O-type magnetic island.

Langmuir waves are thought to be excited by the fast electron beams. The electron
beams are generated in and around the X-type region due to the reconnection electric
field Ey, and after their energization the accelerated high-speed electrons are ejected
along the magnetic field in the boundary between the lobe and the plasma sheet,
which in turn excite a strong coherent wave in the plasma frequency band probably
through the bump-in-tail instability.

From the above simulation results, we can conclude the following conventional
acceleration scenario. The electrons gain their energy around an X-type neutral
region during the Speiser/meandering motion (Speiser, 1965; Section 4.4), and those
pre-accelerated electrons are transported outward together with the reconnecting
magnetic field lines. Around the magnetic field pile-up region formed by the interac-
tion between the fast reconnection outflow and the pre-existing plasma sheet, those
unmagnetized particles are further accelerated with the aid of particle scattering
which breaks down the adiabatic motion (see Fig. 3.39).

So far we have discussed particle acceleration mainly for (perpendicular) elec-
tric fields in the form of the inductive/convection electric field. The electrostatic
fields parallel to the magnetic fields may play an important role also, not only for
wave–particle scattering but also for strong acceleration. Parallel electrostatic fields
have been used to explain particle acceleration in many phenomena such as auroral
electron acceleration. They are known to arise from the interruption of the parallel
current due to plasma instabilities and from the formation of double layers of electric
charge. Recently Drake et al. (2003, 2005b) explored the acceleration of particles
in a configuration with a guide magnetic field. Magnetized electrons can be effi-
ciently accelerated along the guide field, and those accelerated electrons form an
electron beam, which can become faster than the electron thermal speed during
reconnection. They showed that the beam electrons can drive strong electrostatic
waves in the waveform of ESW in association with electron phase-space holes. The
electron hole acceleration may be regarded as one class of field-aligned potential
drop acceleration processes. The electron hole acceleration is not static but rather
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originates in a highly dynamic evolution during the magnetic energy dissipation
phase.

A series of large-amplitude electrostatic waves was also found in a reconnection
simulation without guide magnetic field. Figure 3.41 shows a snapshot of the electric
field Ex obtained in the full particle simulation with a forced boundary condition.
The simulation parameters are the same as those discussed in Figs. 3.37 through 3.39,
but in addition finite plasma inflow was driven continuously from the top and bottom
boundaries. In such a system, one can expect fast and well-developed reconnection
with large-amplitude waves. In Fig. 3.41 the amplitudes of the coherent electrostatic
waves Ex are found to be several times the magnitude of the inductive electric field
Ey, with wavelengths intermediate between electron and ion inertia scales. For spon-
taneous reconnection in Fig. 3.40, we had already found a signature of Langmuir
wave emission, but the amplitudes remained small. The large-amplitude waves in
Fig. 3.41 are produced as the result of the nonlinear evolution of the Langmuir waves
seen in Fig. 3.40.

In addition to a series of the large-amplitude electrostatic waves propagating along
the outer plasma sheet boundary, we also found a pair of polarized V-shape regions
near the X-type region. The electric field vectors are directed outward from the X-
type region, and ambipolar electric fields are known to be produced in association
with Hall electric currents in a thin current sheet (Hoh, 1966; Hoshino, 1987). In the
driven system, we find a pair of polarized regions, which has stronger electric field
than that seen in spontaneous reconnection, which may play an important role in
acceleration. Recently, Hoshino (2005) discussed that some electrons can be trapped
by the electrostatic potential well of the polarization field, and during the trap-
ping phase electrons can gain their energies from the convection/inductive reconnec-
tion electric field due to the so-called surfing acceleration mechanism (e.g., Sagdeev
and Shapiro, 1973; Katsouleas and Dawson, 1983). Hoshino (2005) found that rela-
tivistic electrons with MeV energies are quickly generated, and the energy spectrum
shows a better-developed nonthermal tail than that seen in Fig. 3.38. Although these
large-amplitude electrostatic waves are believed to be important for plasma heating
and acceleration, there remain many fundamental and theoretical questions to be
solved.
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3.6.6 Discussions and remaining problems
From the observational and theoretical studies, it is now understood that

magnetic reconnection can provide efficient acceleration of particles to suprathermal
energies, but in spite of enormous progress many issues still remain unsolved. One
of the important issues is whether or not reconnection can generate a power-law
energy spectrum. As stated earlier, magnetic energy dissipation is believed to be
important for nonthermal particle acceleration in many astrophysical applications. In
the terrestrial magnetosphere, the energy spectrum is approximately given by a power
law in the high-energy range with a slope of about 3–7 (e.g., Baker and Stone, 1977;
Øieroset et al., 2002). In solar flares where reconnection is regarded as one possible
acceleration model, the power-law index of suprathermal particles is about 2.5–7 as
well. In most space physics and astrophysics contexts, the production of nonthermal
particles is more often attributed to the stochastic/diffusive shock acceleration (e.g.,
Blandford and Ostriker, 1978), because the diffusive shock acceleration can explain
the ubiquitous power-law spectrum with an index of 2, which depends weakly on
plasma parameters. Contrary to the diffusive shock acceleration, the reconnection
acceleration seems to generate softer energy spectra from the observational point of
view. Zenitani and Hoshino (2001, 2005) and Jaroschek et al. (2004), however, found
that reconnection can produce a very hard energy spectrum with a power-law index
of unity in the relativistic regime where the Alfvén speed vA and the thermal velocity
are close to the speed of light c. It is still an open question how the nonthermal energy
spectrum depends on plasma parameters such as temperature and guide magnetic
field, etc.

Another important issue is the spatial energetic particle distribution. The acceler-
ation is basically provided by the inductive/convection electric field in reconnection,
and a localization or spatial separation of energetic particles is expected from the fact
that ions are accelerated parallel to the electric field and electrons in the antiparallel
direction. However, as we stated in Section 3.6.2, dawn–dusk asymmetries of the
energetic particles are not clearly seen at least up to several tens of keV. If diffu-
sion due to wave–particle scattering takes effect substantially during acceleration,
the asymmetry of the energetic particle distribution in the electric field direction is
smeared out, because the potential energy gain/loss is always compensated by the
energy loss/gain from the wave during the scattering. Furthermore, for wave–particle
interaction, the maximum energy may even exceed the available potential energy.
However, it is a controversial issue that the diffusion process plays an important role
in plasma transport in the magnetotail. (Another possible explanation, discussed
further in Section 4.4, is that betatron and Fermi-type acceleration in the collapsing
field earthward of the reconnection site are more important than acceleration near
the X-type neutral line.)

Finally we would like to comment on multiscale coupling. It is well known
that electric and magnetic field turbulence act to heat the plasma through
scattering of particles, but, in addition to this standard paradigm, it has been
suggested that coherent, small-scale, large-amplitude electric field waves, often
observed in key regions of the terrestrial magnetosphere, are responsible for elec-
tron energization. The spatial scale of the small-scale waves is several tens of
Debye lengths, but the amplitudes of the waves are 10 to 100 times that of the
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motional electric field induced in the MHD scale. Then it is proposed that the
microscale processes appear to control the global dynamics. This kind of multiscale
coupling process is beginning to shed light not only on space plasma phenomena
but also on high-energy astroplasma physics. These observational and theoretical
studies are also the key problems of future missions such as MMS/NASA and
SCOPE/JAXA that focus on the potentially rich multiscale structuring plasma
phenomena that result from the coupling of the MHD scale to the scale of electron
kinetics.



4

Reconnection in the magnetosphere

In this chapter we focus particularly on recent advances in observations and simula-
tions of reconnection at the magnetopause and in the near magnetotail, as these are
the sites most heavily investigated by observations and simulations. The scenarios
at the two sites have characteristic differences. At the magnetopause, reconnec-
tion occurs between two topologically distinct regions, the shocked solar wind and
the magnetosphere, which also have quite different plasma properties. Reconnection
generates a magnetic field component normal to the magnetopause and thereby leads
to an interconnection between the two regions. As discussed in Section 1.2 and further
in 4.5, magnetopause reconnection may have quasi-stationary features (as indicated
in Fig. 1.6) as well as features that indicate localized, temporally limited reconnec-
tion (FTEs; Russell and Elphic, 1978; Elphic, 1995; Fig. 1.9). Critical parameters in
reconnection at the magnetopause are the magnitude of the magnetic field compo-
nent in the direction of the magnetopause current (guide field), the angle between
the magnetic fields on either side of the current sheet, and the plasma properties,
all of which may play a role in when and where and how reconnection takes place.
Major questions of magnetopause reconnection, to be addressed in Sections 4.1 and
4.2, concern the location of reconnection sites and the temporal variability of the
process under different solar wind conditions, both of which may be related to the
role of a guide field.

In contrast to magnetopause reconnection, reconnection in the near tail takes place
in a current sheet that already contains a magnetic field component normal to the
current sheet, and the reconnecting field lines, at least initially, are not topologically
distinct. (This changes when reconnection proceeds to lobe field lines.) As discussed
in Section 3.3, the critical question here is not the role of a guide field, which tends to
be quite small on average, but rather whether and how the normal field component
Bz can become reduced to overcome its stabilizing effect. In Section 4.3 we continue
the discussion of magnetotail stability, based on recent investigations of ideal MHD
stability of 2D equilibria and of the collisionless tearing mode.

The stability discussion is followed by results from large-scale theory and simu-
lations concerning current sheet formation and the consequences of reconnection in
the magnetotail (Section 4.4), which also include the effects on currents and parti-
cles. Although major features of magnetic reconnection in the magnetotail have been
discovered by single satellites or the two International Sun-Earth Explorer (ISEE 1
and 2) spacecraft, particular progress has been made recently by the four-satellite
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Cluster mission, which for the first time permitted the calculation of spatial gradi-
ents without model assumptions. These observations form the particular focus of
Section 4.5. The chapter is completed in Section 4.6 by remote sensing observations,
which provide a unique way of determining reconnection rates without in situ infor-
mation.

4.1 Reconnection at the magnetopause: concepts and models
J. C. Dorelli and A. Bhattacharjee

Investigations of magnetic reconnection at the Earth’s magnetopause began with
Dungey’s seminal work on the role of magnetic nulls in the acceleration of auroral
particles (Dungey, 1961, 1963). More than 40 years have passed since Dungey’s model
was published (see Fig. 4.1); nevertheless, as Figs. 1.6 and 1.8 demonstrate, Dungey’s
two-dimensional cartoons still guide our intuition about the large-scale topology
of the magnetospheric magnetic field. However, the two magnetic field topologies
envisioned by Dungey in Fig. 4.1 are structurally unstable – that is, generic small
perturbations of the magnetic field result in qualitative changes in the field topology
(see, for example, the discussion by Lau and Finn, 1990). For pure southward inter-
planetary magnetic field (IMF) conditions (top panel of Fig. 4.1), the continuum of
magnetic nulls in the solar magnetospheric (SM; see Section 1.2) equatorial plane
disappears when either the x or y component of the magnetic field is nonvanishing.
Similarly, the Dungey topology for pure northward IMF conditions (bottom panel
of Fig. 4.1) – in which there is a continuum of magnetic field lines, defining a closed
surface (topologically equivalent to a sphere), which originate at the southern cusp
null and terminate at the northern cusp null – is destroyed by small perturbations
of the SM x or y magnetic field components.

Attempts to extend Dungey’s picture to the generic case, in which the IMF orien-
tation is arbitrary, have generally proceeded by treating magnetopause reconnection
as a locally two-dimensional process, ignoring effects from the large-scale, three-
dimensional magnetic field topology. For example, in the component reconnection
model (Sonnerup, 1974), results from classical two-dimensional reconnection theory
(as described in Section 2.1) are applied to local patches of the magnetopause surface,
under the assumption that the direction of the X-line (the ignorable coordinate in the
two-dimensional theory) is parallel to both the local magnetopause current density
vector and the local magnetic field. A difficulty with this approach (pointed out by
Cowley, 1976) is that the local current direction need not be parallel to the X-line in
more general geometries. Thus, the component reconnection model fails to uniquely
identify an X-line on the magnetopause surface. Instead, it is usually assumed (some-
what arbitrarily) that component reconnection occurs along an X-line which passes
through, and extends some distance away from, the subsolar point.

In contrast, the antiparallel reconnection hypothesis (Crooker, 1979) predicts
the geometry of the X-line as follows: (1) the magnetopause is identified as a
two-dimensional surface which perfectly shields the magnetospheric magnetic field
from the IMF (see, for example, a tutorial by Stern, 1994, on computing the
magnetopause magnetic field in the absence of magnetic merging), treating the
magnetopause surface as a tangential discontinuity; (2) the locus of points on
the magnetopause surface for which the magnetic field vectors on either side of
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Fig. 4.1. Dungey’s original illustrations (Dungey, 1961, 1963) of his reconnecting
magnetosphere model.

the surface are antiparallel is constructed (see, for example, Fig. 4.10); (3) results
from two-dimensional magnetic reconnection theory are invoked (e.g., Quest and
Coroniti, 1981) to argue that the reconnection rate on the magnetopause surface
has local maxima at the antiparallel locus. While this procedure predicts a definite
merging line geometry, it is not clear that it is appropriate to apply results from
two-dimensional tearing mode theory to local patches of the magnetopause surface.
For example, recent calculations of tearing mode growth rates in three dimensions,
starting with a magnetic field topology which is equivalent to Dungey’s closed north-
ward IMF topology (bottom panel of Fig. 4.1) indicate that current density need
not be concentrated near the antiparallel loci (Hu et al., 2004) (which necessarily
contain the northern and southern magnetic nulls).

It should be noted that the distinction between component reconnection and anti-
parallel reconnection in space observations is related to, but not necessarily identical
to, the distinction between the presence or absence of a guide field, discussed, for
instance, in Chapter 3. In observations, as well as in large-scale simulations when
the details of the current sheet structure are not resolved, the distinction is based on
properties of the magnetic field outside the current sheet, whereas physics investiga-
tions of the dissipation mechanism put the emphasis on the presence of the guide field
inside the current sheet, and in particular inside the dissipation region. For simple
models with a uniform, or nearly uniform, guide field the two classification schemes
agree, but in general configurations this need not be the case.

Spacecraft observations have not yet provided us with a convincing global picture
of the dayside magnetopause magnetic field topology. As described in Section 4.2,
for example, images of the proton aurora obtained by the Far Ultraviolet experiment
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(FUV SI-12) on the IMAGE spacecraft have been used to support both the antipar-
allel (Fig. 4.11) and component (Fig. 4.9) reconnection pictures. Spacecraft observa-
tions of accelerated particles and ion-energy dispersion events (see Section 4.2) can
provide indirect evidence of spatially localized acceleration processes which occur
some distance away from the spacecraft. However, associating such particle signa-
tures with distant magnetic reconnection is model dependent: (1) one needs a model
of the magnetic field, using Liouville’s theorem of the conservation of phase space
density along phase space trajectories to map particles from the spacecraft location
to the acceleration site; (2) one usually interprets features of the particle distribution
functions (e.g., low-energy ion cutoffs) in the context of a model of the local magnetic
field geometry at the reconnection site. Further, as is the case with the more recent
proton aurora data, such in situ observations have also been used to support both
the antiparallel (see, for example, Onsager et al., 2001) and component (e.g., Fuselier
et al., 1997) reconnection hypotheses.

In this section we address the role of MHD simulations in computing the struc-
ture and dynamics of Earth’s dayside magnetopause. Solving this problem involves
attacking two of the fundamental problems in the MHD theory of magnetic recon-
nection: (1) What is the geometry and topology of magnetic reconnection in three-
dimensional space and astrophysical systems (in which one cannot associate magnetic
reconnection with the break-up of rational magnetic surfaces, as one typically does in
systems with toroidal topology)? (2) How is fast magnetic reconnection (proceeding
on Alfvénic time scales) possible when the classical collisional resistivity (Spitzer
and Härm, 1953) is negligible? Addressing these two questions goes beyond the clas-
sical, two-dimensional MHD theory of magnetic reconnection described in Section 2.1
and requires non-MHD effects (discussed in Chapter 3). In addition, new three-
dimensional concepts such as separator reconnection (treated, in the solar physics
context, in Section 5.2) have to be considered.

4.1.1 Three-dimensional reconnection at the dayside magnetopause
Vacuum superposition models, in which a uniform IMF, aligned with the

Earth’s dipole axis, is superimposed on Earth’s dipole field, were among the earliest
models of the magnetospheric magnetic field topology (Dungey, 1961, 1963; Forbes
and Speiser, 1971; Cowley, 1973). As we have noted, this topology is structurally
unstable, that is, it is no longer applicable when the IMF is not exactly southward or
exactly northward (with respect to the dipole axis). For generic IMF conditions, the
magnetic field topology of the vacuum superposition model is characterized by two
isolated magnetic nulls (where the field vanishes) joined by a separator loop which
marks the intersection of two separatrix surfaces. This topology is shown in Fig. 4.2
for a generic northward IMF case (the generic southward case has the same topology;
for the sake of brevity, we will consider only the northward case). The notations of
Fig. 4.2 are those of Lau and Finn (1990), given in brackets in the following discussion
(see also Section 2.4).

The local structure of a negative null (type A null), determined from the eigen-
values of the ∇B matrix of magnetic field partial derivatives, is such that a single
field line, the spine (γA line), diverges away from the null, while an infinite number
of field lines converge toward the null, forming the fan (ΣA surface). Similarly, near a
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Fig. 4.2. Vacuum superposition model of Earth’s magnetosphere under generic
northward IMF conditions. The notations follow Lau and Finn (1990) with γ lines
corresponding to spines (Section 2.4) and Σ surfaces corresponding to fans. There
are several distinct topological classes of field lines: (1) Solar wind field lines,
located outside both Σ surfaces; (2) open field lines, located within one Σ surface
but external to the other Σ surface (under northward IMF conditions, such field
lines, marked 2 and 3 in the figure, are said to “overdrape” the dayside magne-
topause as they penetrate into the magnetosphere to intersect Earth’s surface); (3)
closed field lines, which are contained within both Σ surfaces. The two Σ surfaces
intersect to form a single separator line which joins the A and B nulls to form a
null–null loop.

positive null (type B null), a single spine γB line converges toward the null, while an
infinite number of field lines diverge away from the null to form the fan ΣB surface.
The two fan surfaces intersect to form a closed field line, the separator, consisting of
two parts which diverge away from the positive (type B) null and converge toward
the negative (type A) null.

Let us now consider the steady-state case, in which the electric and magnetic fields
are independent of time. The electric field E can be written in terms of a potential, Φ:
E = −∇Φ. Further, in the ideal MHD limit, Ohm’s law takes the form E = −v×B,
so that the electrostatic potential is constant along magnetic field lines:

B ·∇Φ = 0. (4.1)

We are now in a position – following Stern (1973), Greene (1988) and Lau and Finn
(1990) – to investigate how the magnetic field topology of Fig. 4.2 influences the
dayside magnetopause reconnection process. First, we define our volume of interest
to be the region between two spherical surfaces, S1 and S2, where S1 is the Earth’s
surface, and S2 is centered on Earth with a radius R � 1 RE (such that S2 is in
the solar wind). Given values of Φ on S2, we use Eq. (4.1) to determine Φ on S1.
Now, consider the class of field lines which lie on the ΣA surface. By definition, all
such field lines converge toward the A null before merging into a single field line, the
γA line, which diverges away from A. Since the γA line intersects S1, all of the field
lines on the ΣA surface map different locations on S2 to the same point, P1, on S1.
Therefore, since there is a finite solar wind electric field in the Earth’s rest frame,
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(ESW = −vSW ×BSW, where ESW, vSW, and BSW are the solar wind electric, bulk
velocity, and magnetic fields, respectively) the electrostatic potential at P1 is singular
in the ideal MHD limit. This singularity is often referred to as the Stern singularity,
after Stern (1973), who identified it as a signature of magnetic reconnection at the
dayside magnetopause.

The Stern singularity is a symptom of the breakdown of the ideal MHD description
of field line motion on the magnetic separatrix surfaces of Fig. 4.2. If one follows a
solar wind field line (line 1 in Fig. 4.2) as it approaches the dayside magnetopause
segment of the separator line (line segment BA in Fig. 4.2), then the field line velocity,
vFL = −E×B/B2, becomes infinite at the A and B nulls, as field line 1 splits into
lines 2 and 3 (each of which has one end intersecting S1 and the other intersecting
S2). If, on the other hand, there is a finite volume of nonvanishing parallel electric
field through which the separator passes, then the Stern singularity can be removed,
and the field line velocity is no longer infinite (see, for example, Fig. 15 of the review
by Siscoe, 1988).

Thus, we see that simple potential mapping, using Eq. (4.1), in a vacuum super-
position magnetic field topology allows us to deduce that the breakdown of ideal
MHD – necessary for magnetic merging to occur at the dayside magnetopause –
manifests itself as a volume of nonvanishing parallel electric field, E‖ which contains
one or more segments of the separator line. However, without moving beyond kine-
matics (in which the magnetic field topology is given and the resulting ideal MHD
flow field is derived) to consider self-consistent dynamics (in which the influence of
the plasma flow on the magnetic field topology is considered), we cannot make any
conclusions about the spatial distribution of the parallel electric field on the magne-
topause surface. For example, the antiparallel hypothesis predicts that the volume
of nonvanishing E‖ consists of two separate, disconnected regions which contain A
and B. The component reconnection hypothesis, on the other hand, predicts that the
volume of nonvanishing E‖ consists of a single region which contains the subsolar
point. Of course, in the context of the vacuum superposition model, there are many
other possibilities. One interesting possibility, referred to as separator reconnection
(see Section 5.2), involves the formation of a thin current ribbon along the separator
line (analogous to thin current sheets which form by deformation of X-type nulls in
two dimensions; see Fig. 2.3). Such a current ribbon would be the three-dimensional
analogue of the two-dimensional Sweet–Parker current sheet, converting magnetic
energy into plasma energy by a combination of Ohmic dissipation within the sheet
and bulk acceleration by j×B and pressure gradient forces at the edges of the sheet.
Such a ribbon (and its associated parallel electric field) might extend all the way from
A to B, in which case the reconnection geometry would display geometric features
of both antiparallel (near the nulls) and component (near the subsolar point) recon-
nection.

4.1.2 The Sweet–Parker time scale problem
Let us assume that the Stern singularity at the magnetopause is eliminated

via the formation of thin current sheets which contain one or more segments of the
dayside separator line. Such current sheets are expected to undergo reconnection,
associated with E‖ and Joule dissipation. This allows changes in the magnetic flux
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contained within the distinct flux volumes defined by the fan (ΣA and ΣB) separa-
trix surfaces. As discussed in Section 4.6, one can estimate the reconnection rate by
remote sensing of ionospheric convection across Earth’s polar cap boundaries. In the
vacuum superposition model, the polar cap boundaries correspond to the intersec-
tions of the ΣA and ΣB surfaces with the surface S1 (i.e., Earth’s surface). Referring
again to Fig. 4.2, the northern polar cap boundary corresponds to the intersection of
ΣB with Earth’s surface, while the southern polar cap boundary corresponds to the
intersection of ΣA with Earth’s surface. Thus, any ionospheric convection across the
northern (southern) polar cap boundary corresponds to flow of plasma across the ΣB

(ΣA) surface. The rate at which polar cap flux changes is given by the line integral,
taken around the separator, of the parallel electric field. Magnetopause reconnection
electric fields inferred from radar observations of ionospheric convection (see Fig. 4.25
and accompanying text) are typically a few tenths of a mV/m. If we assume that this
parallel electric field is associated with a thin current sheet at the magnetopause and
apply the classical two-dimensional reconnection theory (Section 2.1) to compute the
inflow speed ve (the speed at which magnetic flux is transported into the current
sheet), we get ve ≈ E‖/Be, where Be is now the projection of the upstream magnetic
field in the plane perpendicular to E‖. Using Be ≈ 20nT, we get ve ≈ 0.15vA, where
vA is the upstream Alfvén speed (vA ≈ 100km/s if the plasma density upstream of
the current sheet is taken to be 20cm−3.

Is it possible to explain observed parallel electric fields by invoking the resistive
MHD theory of reconnection in thin current sheets (Parker, 1957; Sweet, 1958a;
Section 2.1)? Referring to Fig. 2.1 and Section 2.1, we note that the Sweet–Parker
theory predicts that ve scales like the square root of the plasma resistivity. Thus, the
Sweet–Parker theory predicts that thin current sheets which form on the nearly colli-
sionless magnetopause are essentially tangential discontinuities (i.e., the component
of the magnetic field normal to the sheet is much smaller than the component parallel
to the sheet), with negligible parallel electric fields and negligible plasma flow across
the magnetic separatrices. We will refer to this disparity between observed reconnec-
tion time scales and that predicted by the Sweet–Parker theory as the Sweet–Parker
time scale problem.

As discussed in Section 2.1, Petschek (1964) suggested a solution to the
Sweet–Parker time scale problem, in which the thin current sheet bifurcates into
two pairs of slow-mode shock waves, resulting in a microscopic diffusion region the
dimensions of which scale like the plasma resistivity (Fig. 2.2). However, in resistive
MHD simulations, one generally observes long, thin Sweet–Parker sheets unless a
localized resistivity model is imposed (Biskamp, 1986; Biskamp and Schwarz, 2001).
However, Biskamp’s numerical experiments revealed another possible solution of
the Sweet–Parker time scale problem. Recall that the Sweet–Parker theory assumes
that the upstream magnetic field (Be) is insensitive to the Lundquist number, S. In
simulations, however, one often observes that Be increases as the plasma resistivity
decreases (see, for example, Biskamp, 1986). The physical reason for this effect is
easy to understand. As the resistivity decreases, the rate at which magnetic flux
can be transported into the current sheet drops. If the rate at which magnetic flux
is added to the upstream region is larger than the rate at which it is transported
into the sheet, then the magnetic field strength increases and magnetic energy
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accumulates just upstream of the current sheet (magnetic pile-up), thereby also
enhancing the reconnection electric field.

While such magnetic pile-up can render the reconnection rate insensitive to the
Lundquist number, this insensitivity cannot hold for arbitrarily small plasma resis-
tivity. As pointed out by Priest (1996) and Litvinenko (1999), momentum conser-
vation in steady state requires that the plasma pressure upstream of the current
sheet decreases to balance the increase in the upstream magnetic pressure. Since
the upstream pressure must be positive, there must be a limit to the amount of
magnetic energy which can accumulate upstream of the current sheet. It turns out
(see Litvinenko, 1999, for details) that the maximum flux pile-up reconnection rate
consistent with positive upstream plasma pressure again scales like the square root of
the plasma resistivity. Thus, whether the Sweet–Parker time scale problem is relevant
in a driven, steady reconnection context depends on whether one is in the presatura-
tion Lundquist number regime (in which magnetic pile-up renders the reconnection
rate insensitive to the Lundquist number) or the postsaturation regime (in which
the pile-up has saturated and the reconnection rate begins to scale strongly with
the Lundquist number). However, the classical plasma resistivity is so low at the
dayside magnetopause that invoking magnetic pile-up to explain observed reconnec-
tion electric fields would require much larger magnetosheath magnetic fields than
are observed. Chapter 3 presents possible solutions of this problem, in which Hall
electric fields can allow the flux pile-up to saturate well before the reconnection rate
begins to stall due to the finite upstream plasma pressure (see also Dorelli, 2003;
Dorelli and Birn, 2003).

4.1.3 Global MHD simulations of magnetopause reconnection
There have been numerous attempts to apply resistive MHD simulations

of Earth’s magnetosphere (often referred to in the literature simply as global MHD
simulations) to the problem of determining the magnetic field topology of the magne-
tosphere under various IMF conditions (see, for example, Fedder et al., 1995; Raeder
et al., 1995; Crooker et al., 1998; Siscoe et al., 2001). However, none of these previous
studies has quantitatively addressed the role of magnetic nulls and their associated
separatrix surfaces in constraining the dynamics of magnetic reconnection at Earth’s
dayside magnetopause. Furthermore, previous global MHD studies have not system-
atically addressed the scaling of the magnetopause reconnection rate with plasma
resistivity. In this section, we describe recent results from the University of New
Hampshire Geospace General Circulation Model (GGCM) simulation code (Raeder,
1999) which quantitatively address the following two questions: (1) What is the
topology of the dayside magnetopause magnetic field under generic northward IMF
conditions (i.e., when the SM By and Bz components have comparable magnitudes)?
(2) How does the magnetopause reconnection rate scale with plasma resistivity under
pure southward IMF conditions?

Figure 4.3 shows a close-up view of the dayside magnetopause computed by the
GGCM code under pure southward IMF conditions (using GSE, Geocentric Solar
Ecliptic, coordinates defined in Section 1.2). The left panel is a three-dimensional
view of the magnetosheath stagnation point flow (3D arrows), showing how
magnetic field lines are convected toward the magnetopause current sheet (located
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Fig. 4.3. GGCM simulation of a thin current sheet which forms at the dayside
magnetopause under pure southward IMF conditions. The left panel shows the
three-dimensional structure of the stagnation point flow (arrow glyphs) near the
subsolar point (the magnetic field is represented by streamtubes); the right panel
shows the y component of the current density in the noon–midnight meridian plane
(white arrows in the right panel show the bulk velocity field projected onto the
plane).

at xGSE ≈ 8.7RE on the xGSE axis), where they undergo magnetic reconnection
as the flow field diverges away from the stagnation point. The right panel shows
the yGSE component of the current density in the noon–midnight meridian plane.
The white arrows show the bulk velocity field. Two important conclusions about
the reconnection physics can be drawn by inspection of the right panel of Fig. 4.3.
First, the aspect ratio of the current sheet is large: the width of the sheet is several
Earth radii, while the thickness is less than a tenth of an Earth radius. Further, the
bulk velocity field diverges away from the stagnation point (indicating decelerating
inflow) rather than converging toward it (which would indicate accelerating inflow).
The structure of the flow field and the geometry of the current sheet suggest that the
Sweet–Parker, rather than the Petschek model, is the relevant model, of reconnection
at the dayside magnetopause.

Figure 4.4 confirms this suggestion. The left panel of Fig. 4.4 shows the plasma
density in the noon–midnight meridian plane. Note that the density decreases (by
roughly ten percent) from its value of about 28cm−3 just downstream of the bow
shock (located at xGSE ≈ 12RE) to about 25cm−3 just upstream of the current
sheet. This density increase is a consequence of the decrease in plasma pressure (see
the curve marked P in the right panel) which accompanies the pile-up of magnetic
energy in the magnetosheath (see the Bz curve in the right panel). As discussed in
Section 2.1, one can interpret the magnetic pile-up, and the associated decrease
in plasma pressure upstream of the current sheet, as a slow-mode expansion which is
characteristic of flux pile-up reconnection. In contrast, the Petschek configuration
is characterized by a slow-mode compression, in which the pressure increases (and
the magnetic field decreases) as one approaches the current sheet.
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Fig. 4.4. Magnetic pile-up and associated plasma depletion upstream of the current
sheet, corresponding to Fig. 4.3. The left panel shows the plasma density in the
noon–midnight meridian plane; the right panel shows the plasma pressure (P ),
the x component of the bulk velocity (vx), and the z component of the magnetic
field (Bz) along the Sun–Earth line. The magnetopause current sheet is located at
x ≈ 8.7RE.

These arguments are qualitative, however, being based on a two-dimensional,
approximate theory (e.g., Priest and Forbes, 1986) which is valid when the pile-up is
not too large. As Fig. 4.3 demonstrates, the subsolar magnetopause stagnation point
flow is three-dimensional. That is, the streamlines diverge nearly uniformly away from
the subsolar point (which is located at roughly xGSE = 8.7RE, yGSE = zGSE = 0). It
turns out that the three-dimensional flow can be accurately modeled near the xGSE

axis in the magnetosheath (see Dorelli et al., 2004, for details), using an analytical
solution of the resistive MHD equations first obtained by Sonnerup and Priest (1975):

vx = −v0x, vy = v0y(1−κ), vz= v0zκ, (4.2)

Bx = 0, By = 0,Bz = f(x), (4.3)

where v0 is a constant which determines the strength of the driving flow, κ is a
parameter controlling the anisotropy of the flow in the GSE y, z plane, and f(x)
gives the z component of the magnetic field as a function of x (i.e., normal to the
one-dimensional current sheet in the y, z plane at x = 0), which satisfies the following
equation:

1
S

d2f

dx2 +v0x
df

dx
+v0κf = 0. (4.4)

Craig et al. (1997) note that the general solution of Eq. (4.4) can be written as
follows:
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Setting C2 = 0 in Eq. (4.5) (i.e., imposing the boundary condition that the magnetic
field vanishes at the stagnation point), one obtains pile-up scaling laws: Be ∝ Sκ/2

and Ey ∝ S−κ/2, where Be is the magnitude of Bz at its local maximum (just
upstream of the current sheet), and Ey is the electric field at the local maximum of
Bz (the reconnection electric field). Figure 4.5 shows a comparison between the scal-
ings predicted by the Sonnerup and Priest (1975) theory (solid lines, with κ = 0.4)
and those computed from the GGCM simulations (squares). While the amount of
pile-up observed in the simulations is less than that predicted by the Sonnerup and
Priest (1975) theory for the highest two Lundquist numbers (this can be explained
by a combination of compressibility and numerical resistivity effects, as discussed by
Dorelli et al., 2004), the scaling of the upstream flow seems to compensate for this to
some extent. The reconnection electric field in the simulations scales approximately
like S−0.2, which is consistent with the prediction of the Sonnerup and Priest (1975)
theory.

We turn now to the question of the topology of the magnetopause magnetic field
under generic northward IMF conditions. To address this question, we have tracked
the magnetic nulls in the GGCM simulation, using a bisection technique developed
by Greene (1992). Figure 4.6 shows the magnetic skeleton computed from the GGCM
model under steady northward IMF conditions in which the y and z components of
the IMF are equal. The magnetic skeleton is computed as follows: (1) magnetic nulls
within the simulation domain are located, (2) starting from a spherical-polar grid of
seed points centered on each null, magnetic field streamlines are computed. The two
panels of Fig. 4.6 show two views of the magnetic skeleton: the left panel shows a
view from the Sun; the right panel shows a view from the northern dusk octant. To
guide the eye, black lines indicate the direction of the IMF, the direction of the first
closed magnetospheric field line passing through the Sun–Earth line, the direction of
the separator line (predicted by the vacuum superposition model), and the direction
of the subsolar reconnection outflow predicted by the separator reconnection model.
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Fig. 4.5. Upstream magnetic field (left panel) and reconnection electric field (right
panel) as functions of the Lundquist number. The solid lines show the prediction of
the Sonnerup and Priest (1975) theory; the squares show the results of the GGCM
simulation.
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Fig. 4.6. Two views of the magnetic skeleton computed from a GGCM simulation
of magnetopause reconnection under generic northward IMF conditions. The left
figure shows a view from the Sun; the right panel shows a view from the northern
dusk octant.

It is clear from comparing Fig. 4.2 with 4.6 that the magnetopause magnetic field
topology observed in the GGCM simulations is similar to the vacuum superposition
topology in the following respects: (1) There are two cusp magnetic nulls – a type
A null in the northern hemisphere, and a type B null in the southern hemisphere;
(2) Open, overdraped field lines originating near the magnetic nulls seem to lie on
surfaces (similar to the Σ surfaces in Fig. 4.2) which extend from the dayside around
the magnetopause surface to the nightside; (3) the orientations of IMF field lines
near the subsolar point are within a few degrees of the line (marked “Separator” in
Fig. 4.6) joining the two cusp nulls.

Further evidence that the magnetopause magnetic field topology is similar to that
of the vacuum superposition model is shown in Fig. 4.7. The left panel shows the
surface which separates IMF field lines from open, overdraped field lines (which have
one end in the solar wind and the other end intersecting Earth’s surface). The right
panel shows the open–closed separatrix surface, which separates open field lines from
closed field lines (both ends of which intersect Earth’s surface). Note that the open–
closed separatrix surface is distorted into a local cusp shape near the magnetic nulls
(the red and blue spheres), resulting in north–south and east–west asymmetries of
the separatrix surface which are similar to those predicted by the vacuum super-
position model shown in Fig. 4.2. Current density on both separatrix surfaces is
distributed in ribbons which are approximately spatially coincident, suggesting that
the current sheet is spatially organized along regions, extending from one cusp null
to the other, where the two separatrices intersect. Further, the magnitude of the
current density does not have local maxima at either of the two cusp nulls. Instead,
it has a local maximum near the subsolar point. The geometry of the stagnation
point outflow is not isotropic; rather, it is similar to that of the current sheet, with
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Fig. 4.7. Magnetic separatrices computed from a GGCM simulation of magne-
topause reconnection under generic northward IMF conditions. The left panel
shows the surface separating solar wind field lines from overdraped open field lines;
the right panel shows the surface separating open field lines from closed field lines.
Arrow glyphs show the bulk velocity field on the separatrix surfaces. Each surface
is color coded according to the magnitude of the current density on the surface.
See also color plate.

approximately Alfvénic outflow at the edges of the sheet (based on the magnetic field
magnitude just upstream of the sheet, vA ≈ 160km/s). Thus, there is compelling
evidence from the GGCM simulations that, under generic northward IMF conditions,
magnetic reconnection occurs at the dayside magnetopause via the formation of a
thin Sweet–Parker current ribbon which extends from one cusp null to the other
across the dayside magnetopause surface. The topology is reminiscent of a sepa-
rator reconnection topology (Fig. 4.2), in which solar wind field lines reconnect with
magnetospheric field lines along the current ribbon to form new overdraped open
field lines.

4.1.4 Summary
As we have seen, resistive magnetohydrodynamics can be a useful tool in

addressing some of the fundamental questions surrounding the theory of magnetic
reconnection at Earth’s dayside magnetopause. Such simulations have elucidated
the nature of the Sweet–Parker time scale problem by making connections with the
classical two-dimensional resistive MHD theories (Section 2.1). In addition to high-
lighting deficiencies in the resistive MHD model, these connections to simple analytic
theories suggest solutions to the time scale problem (Section 3.4) which invoke non-
MHD effects such as Hall electric fields. Further, global MHD simulations allow us to
explore the large-scale topology of the dayside magnetopause in a way which is not yet
possible with in situ spacecraft or remote sensing observations, suggesting that the
apparent conflict between the antiparallel and component reconnection hypotheses
might be resolved in the context of the global separator reconnection model.
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High-resolution global MHD simulations (Raeder, 2005) have also begun to shed
light on the formation of flux transfer events (FTEs; see Section 1.2 and Fig. 1.9) as a
consequence of intermittent, spatially and temporally localized reconnection. These
simulations reproduce major observed features, such as bipolar magnetic field signa-
tures, enhanced core pressure, and intermittent finite-duration events. The major
factor in obtaining these signatures was the breaking of the symmetry between the
flow and the magnetic field and sufficient spatial resolution, whereas the dissipation
mechanism apparently had no significant effect on the FTE features, as long as it
did not cause spatially extended diffusion.

4.2 Observations of magnetopause reconnection
K. J. Trattner, S. A. Fuselier, and S. M. Petrinec

As indicated by Figs. 1.6, 1.8, and 4.1, field lines that have recently been reconnected
at the magnetopause map to the vicinity or inside of the Earth’s magnetospheric
cusp regions. That is a reason why this region forms a particular focus in this section.
Early observations at the magnetopause and in the cusps which indicated plasma
and magnetic flux transfer from the solar wind into the magnetosphere gave the first,
indirect, evidence for magnetic reconnection at the magnetopause (e.g., Aubry et al.,
1970; Burch, 1974; Rosenbauer et al., 1975). Direct and incontrovertible evidence for
reconnection at the magnetopause was provided by the high time resolution plasma
and field observations from the International Sun-Earth Explorer (ISEE) spacecraft
(e.g., Paschmann et al., 1979; Sonnerup et al., 1981; Gosling et al., 1982), which
demonstrated that local flow and field properties were indeed consistent with trans-
port across the magnetopause resulting from reconnection.

Most of these observations addressed kinetic and plasma fluid features of narrow
jets of plasma observed outside the diffusion region (i.e., outside the region where
the ions and electrons become demagnetized and the magnetic field reconnects).
An important analysis tool is the Walén test (Sonnerup et al., 1987), which checks
the plasma flow and magnetic field for consistency with transport across the
magnetopause boundary. While these observations are consistent with quasi-steady,
persistent reconnection, other signatures, specifically those of flux transfer events
(FTEs, see Fig. 1.9) are interpreted as the consequences of temporally and spatially
localized reconnection (e.g., Russell and Elphic, 1978; Elphic, 1995). These features
consist particularly of characteristic bipolar magnetic field perturbations, indicating
traveling flux rope structures in the vicinity of the magnetopause. They were found
to be accompanied by plasma signatures that confirm that these flux ropes connect
magnetosheath and magnetospheric plasmas (Thomsen et al., 1987). Four-satellite
Cluster observations have now provided further details about the structure of FTEs
(Sonnerup et al., 2004).

With the launch of the Polar spacecraft in 1996 and, subsequently, the IMAGE
and Cluster spacecraft, attention was focused again on the magnetospheric cusps
and their role in understanding magnetic reconnection. Polar and Cluster spacecraft
have also established features of the ion diffusion region and its associated magnetic
and electric field perturbations and turbulence and have provided possible glimpses
into the tiny electron diffusion region (e.g., Mozer et al., 2002) and electron current
layers, presumably connected to the diffusion region (André et al., 2004).
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Recent observations have solidified several issues about reconnection and provided
answers to questions raised by previous observations: (1) How continuous and stable
is the process, and (2) where are the reconnection sites at the magnetopause and what
controls their location? Observations pertaining to these two questions are presented
in this section. The focus is on recent observations from a variety of spacecraft. These
observations establish that reconnection is a persistent process at the magnetopause,
which rarely ceases. Changes in the upstream conditions, in particular changes in the
orientation of the Interplanetary Magnetic Field (IMF), cause reconnection sites to
shift but do not cause reconnection to stop, even at high latitudes, where reconnection
sites were once thought to move tailward in a super-Alfvénic flow. Multi-spacecraft
observations in the Earth’s magnetospheric cusps show that the reconnection rate
may change at the magnetopause, but this rate is much less variable than originally
thought. Many of the features observed in the cusp that were attributed to a variable
reconnection rate are actually evidence of spatial structures, which move in response
to the changing solar wind conditions.

Lacking direct identification of reconnection sites at the magnetopause, two basic
models of reconnection emerged in the 1970s. These models are the antiparallel recon-
nection model and the component reconnection model (Section 4.1). In the antipar-
allel reconnection model, magnetic reconnection proceeds at the magnetopause only
at locations where the IMF and the magnetospheric magnetic fields are very close to
antiparallel (Crooker, 1979; Luhmann et al., 1984). In the component model, recon-
nection can occur anywhere on the magnetopause (e.g., Cowley and Owen, 1989),
but the usual assumption is that it occurs along a neutral line that is hinged at
the subsolar point and tilted depending on the IMF By component (Moore et al.,
2002). The newer observations discussed here show that both models have merit.
New results that paint the location of the reconnection site on the magnetopause
demonstrate evidence for both antiparallel and component, or tilted neutral line,
reconnection. The section concludes with open questions and a discussion of the
direction of future observations at the magnetopause and their contribution to under-
standing this important process.

4.2.1 When does magnetopause reconnection occur?
Reconnection at the magnetopause has been observed to persist over long

periods of time. This is clearly demonstrated by recent observations from the Imager
for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft and the
Cluster suite (Fig. 4.8). During an extended interval (∼ 4 hours) of northward IMF,
the Cluster spacecraft observed accelerated flows associated with reconnection jets,
poleward and tailward of the northern cusp. These jets appear in the x component
of the ion velocity moment as measured by one of the spacecraft, displayed in the
left panel of Fig. 4.8. At this time, the Cluster spacecraft were on an outbound
pass through the magnetopause. Simultaneously, far ultraviolet emissions from the
dayside ionosphere were observed remotely by one of the Spectrographic Imagers
comprising the Far Ultraviolet experiment (FUV SI-12) onboard the IMAGE space-
craft. These are Doppler-shifted Lyman-α (121.8 nm) emissions, caused primarily by
charge exchange due to the precipitation of energetic protons into the ionosphere.
The imager does not allow for the determination of the exact Doppler shift or
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Fig. 4.8. IMAGE and Cluster observations of continuous reconnection at the
magnetopause, poleward of the cusp during an extended interval of northward
IMF. The observations of reconnection jets at the high-latitude magnetopause on
March 18, 2002 by Cluster (left panel) and a proton auroral spot by IMAGE on the
same field lines (right panel) provide evidence that the proton spot represents the
remote signatures of reconnection. Cluster sampled the magnetopause for just 5
minutes, but IMAGE tracked the proton spot for ∼ 4 hours (not shown), implying
continuous reconnection. Adapted from Phan et al. (2003); Frey et al. (2003).

energy of the emitting hydrogen atom. However, as confirmed by modeling of the
instrument response function, it is most sensitive to proton precipitation in the
energy range from 2 to 8 keV (Frey et al., 2002). These emissions were found to lie
within an isolated region of the dayside ionosphere, on the same field lines as those
sampled by Cluster. (Field line tracking was accomplished with the Tsyganenko
T89, T96 and T01 magnetospheric magnetic field models (Tsyganenko, 2002, and
references therein).) These ionospheric emissions persisted without interruption over
the entire time period, as shown in the sample image displayed in the right panel
of Fig 4.8, adapted from Phan et al. (2003) and Frey et al. (2003). However, the
emissions did move in local time, as the reconnection site at the magnetopause
changed its location in response to variations of the y component of the IMF.

4.2.2 Where does magnetopause reconnection occur?
Another major question about magnetic reconnection is where reconnec-

tion occurs at the magnetopause. As mentioned above, there are two scenarios:
(a) antiparallel reconnection, where shear angles between the magnetospheric field
and the IMF are near 180◦ (e.g., Crooker, 1979; Luhmann et al., 1984; Gosling et al.,
1991), and (b) component reconnection, where magnetic shear angles are significantly
different from 180◦ (Gosling et al., 1982; Onsager and Fuselier, 1994; Fuselier et al.,
1997, 2000b), and have even been observed to be as low as 50◦ (Gosling et al., 1990).

For northward IMF conditions, only recently has there been a direct observation of
reconnection poleward of the cusp (Kessel et al., 1996). Even more recently, Trattner
et al. (2004) concluded that for northward IMF both reconnection scenarios occur
simultaneously. The reconnection line located poleward of the cusp extends from
the rather small antiparallel reconnection site into regions where the magnetic fields
are no longer strictly antiparallel. This result is also in agreement with conclusions
by Onsager et al. (2001) who reported the existence of very long reconnection lines
during northward IMF conditions.

The antiparallel reconnection site for strictly southward IMF conditions covers
the entire dayside magnetosphere along the magnetic equator. When a strong
By component is present, the antiparallel reconnection sites split up, causing two
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separated reconnection locations in different hemispheres (e.g., Crooker, 1979). In
contrast, the component reconnection tilted neutral line model (e.g., Sonnerup,
1974; Cowley, 1976; Sonnerup et al., 1981; Cowley and Owen, 1989; Fuselier et al.,
2002) for southward IMF conditions predicts that a neutral line runs across the
dayside magnetosphere through the subsolar point regardless of the magnitude of
the By component. The magnitude of the By component would only determine the
tilt of the neutral line relative to the equatorial plane.

The newest observational tool to distinguish between antiparallel reconnection
sites and a tilted X-line is the proton aurora imaging FUV SI-12 instrument onboard
the IMAGE spacecraft. While ionospheric emissions caused by precipitating ions
originating from reconnection regions located at the antiparallel sites would result
in discontinuous emission intensities across local noon, tilted X-line reconnection
would result in a single uninterrupted emission line that smoothly crosses local noon
(Fuselier et al., 2002). Figure 4.9 shows the y, z projections of magnetic field lines
from the T96 magnetic field model that originate at the equatorward edge of a
continuous ionospheric emission line observed by IMAGE/FUV on June 8, 2000 at
9:44 UT during southward IMF conditions. Also indicated with thick gray lines are
the antiparallel reconnection sites at the magnetopause for the solar wind conditions
observed at that time. The magnetic field lines originating from the ionospheric
emissions do not coincide with the regions where antiparallel reconnection is expected
to occur. However, the field lines are consistent with a tilted neutral line that passes
through the subsolar region as predicted by the component reconnection model.

An example of antiparallel reconnection sites is shown in Fig. 4.10. Plotted is the
magnetic field shear angle at the magnetopause for the July 25, 2001 Cluster cusp
crossing, as seen from the Sun. The magnetopause shear angle is calculated from the
magnetospheric field directions using the T96 field model at the Sibeck et al. (1991)
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Fig. 4.9. Projections of magnetic field lines originating at the equatorward edge of
ionospheric emissions caused by precipitating cusp ions; based on the Tsyganenko
T96 magnetic field model. Also shown are the antiparallel reconnection regions
(gray lines). The magnetic field lines do not connect to antiparallel reconnection
regions but are consistent with a tilted reconnection line model (dashed line); after
Fuselier et al. (2002).
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Fig. 4.10. The magnetic field shear angle at the magnetopause as seen from the
Sun, calculated from the magnetic field direction of the T96 (Tsyganenko, 1995)
model and the draped IMF conditions (Cooling et al., 2001) at the magnetopause
for the July 25, 2001, Cluster cusp crossing. White areas show the antiparallel
reconnection regions. Square symbols represent the locations of the reconnection
line at the magnetopause for the SC4 cusp crossing. The locations were deter-
mined by tracing the calculated distances to the reconnection line back along the
geomagnetic field line in the T96 model, starting at the position of the Cluster
SC4 satellite in the magnetosphere.

magnetopause location and the IMF conditions during the Cluster cusp crossing,
by considering draping of the IMF around the magnetopause (Kobel and Flückiger,
1994; Cooling et al., 2001). White regions represent antiparallel magnetic field regions
at the magnetopause while black regions represent parallel magnetic field conditions.
The circle in Fig. 4.10 represents the location of the terminator plane.

The nature of the July 25 Cluster cusp event is discussed in more detail below
and was characterized as a so called double cusp event, featuring two ion-energy
dispersion events which were subsequently identified as spatial cusp features
(Trattner et al., 2003). The square symbols overlaid in the shear angle plot show the
location of the reconnection lines at the magnetopause. Both locations are on the
dayside magnetopause. These locations were derived based on distances calculated
by using the low-velocity cutoffs of the precipitating and mirrored magnetosheath
populations observed by the time-of-flight Composition and Distribution Function
Analyzer (CODIF) onboard the Cluster SC4 satellite located in the cusp (Trattner
et al., 2005). These distances were traced back from the satellite position to the
magnetopause along magnetospheric field lines using the T96 field model.

The reconnection line for the first dispersion event of the Cluster cusp crossing
on July 25, 2001 is located close to the antiparallel reconnection region in the dusk
sector of the southern hemisphere, which is within the error derived for these distance
calculations. The antiparallel reconnection region for the second dispersion event is
located in the dawn sector of the northern hemisphere with a significant section
of the region close to the equator. However, while the location of the reconnection
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line for the second cusp dispersion event traced from Cluster observations is in the
northern hemisphere, it is also in the dusk sector. This section of the reconnection
line is close to local noon and the shear angle at that location is only about 120◦,
classifying this as a component reconnection event.

More insight into the nature and differences of the two reconnection lines for this
Cluster cusp event were provided by observations from IMAGE/FUV. Figure 4.11
shows the SI12 image observed on July 25, 2001, at 23:17:40 UT and mapped into
invariant latitude/magnetic local time. There is a distinct band of dayside emissions
along the auroral oval in the dawn sector at about 77◦ invariant latitude (S) but much
weaker emissions on the duskside. Figure 4.10 showed that the dusk reconnection
line is located in the southern hemisphere. To observe the ionospheric signature from
this southern hemisphere reconnection line in the northern cusp, magnetospheric
field lines opened in the southern hemisphere must convect northward and tailward.
However, they first need to make their way north to the equator against the magne-
tosheath bulk flow. This will result in small convection velocities such that ions
injected onto these field lines will have a slower velocity compared to ions injected on
the dawnside northern hemisphere reconnection line where newly opened magnetic
field lines convect with the magnetosheath bulk flow. SI12 images are sensitive to a
specific velocity range of precipitating ions. While the Cluster observations showed
that there were downward precipitating ions in the dusk sector (the first ion-energy

Fig. 4.11. Image/FUV observations of the northern polar region during the Cluster
cusp crossing on July 25, 2001. Only the second ion-energy dispersion event (S)
observed by SC1 and SC4 produces detectable emissions in the SI12 sensor. The
second dispersion event was traced to a magnetopause location in the northern
hemisphere while the first dispersion was traced to the southern hemisphere. While
precipitating ions from the first dispersion were observed by the CIS instruments
on Cluster, these precipitations were not strong enough to produce FUV emissions
to be detected by Image.
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dispersion event, see below), those ions did not have the necessary velocity to produce
large enough photon flux to be observed by the SI12 sensor.

This was not the case for the second dispersion event observed by the Cluster
satellites. The dawn emission band observed by IMAGE is caused by the high energy
ions at the open–closed field line boundary of the dawn convection cell. The emission
band in the dawn sector shows the extent of the reconnection line in the ionosphere
for these second Cluster dispersion events and the SI12 image reveals that the contin-
uous emission band on the dawnside of the magnetosphere crosses local noon into
the dusk sector. The observation by the IMAGE/FUV instrument is in agreement
with the result of the location of the reconnection line calculated from Cluster 3D
measurements shown in Fig 4.10.

This Cluster cusp crossing on July 25, 2001 was interpreted as an antiparallel
reconnection event. The IMAGE/FUV observations support the antiparallel recon-
nection scenario. The emissions show that the second dawnside reconnection line (S)
in the northern hemisphere originated most probably in the antiparallel reconnection
region but subsequently crossed local noon and extended into a region where the
model magnetic fields are no longer strictly antiparallel. An alternative would be
that the model magnetic fields do not represent the true field orientation near noon.

4.2.3 The stability of high-latitude reconnection
When the IMF is northward, magnetic reconnection is believed to occur

at the magnetopause poleward (tailward) of the cusps (Fig 1.8). This was deduced
initially from topological considerations (Dungey, 1963), and later from observa-
tional evidence (Omel’chenko et al., 1983; Gosling et al., 1991, 1996; Kessel et al.,
1996; Matsuoka et al., 1996; Fuselier et al., 2000b,a; Avanov et al., 2001; Onsager
et al., 2001). Understanding of the presence of stable high-latitude reconnection,
however, has been complicated by the fact that the magnetosheath on the flanks of
the magnetosphere is close to the unshocked solar wind speed; i.e., super-Alfvénic.
The complication stems from the fact that if the reconnected magnetic field lines
are dragged tailward instead of earthward, and if the reconnected plasma population
cannot overcome the tailward flow, then plasma cannot reach the dayside magne-
tosphere, and the reconnection site itself will not remain stationary. However, it is
often observed that high-latitude reconnection can be quite stable, in spite of the
fact that the neighboring magnetosheath flow is often super-Alfvénic. It has been
suggested (Fuselier et al., 2000a) that this is accomplished by the presence of a
depletion layer at the magnetopause boundary, which reduces the magnetosheath
plasma density while increasing the magnetic field. This increases the effective magne-
tosheath Alfvén velocity, thus allowing steady reconnection to occur at high lati-
tudes. One recent statistical study (Petrukovich et al., 2003) has examined, using
spacecraft observations and models, the location of high-latitude reconnection and,
indirectly, the strength of the plasma depletion layer. Particle distributions from the
Toroidal Imaging Mass-Angle Spectrometer (TIMAS) instrument onboard the Polar
spacecraft sampled near the magnetospheric cusp were analyzed using time-of-flight
calculations (Onsager et al., 1990), and the T96 magnetic field model (Tsyganenko,
1995) was used to estimate for each interval the location of the high-latitude magne-
topause reconnection site. Analytic models of the magnetosheath conditions (Spreiter
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et al., 1966; Kobel and Flückiger, 1994; Petrinec and Russell, 1997; Petrinec et al.,
1997) were used to determine the Alfvén speed and Mach number at the location
site. All mapped sites were found to lie in super-Alfvénic regions, which suggests
that steady reconnection could not occur. However, since the velocity-dispersed ion
signatures associated with reconnection were observed near the cusp, it was realized
that reconnection was indeed occurring for extended periods. This paradox could
only be resolved with the inclusion of a plasma depletion layer, which acts to stabi-
lize the reconnection site. Estimates of the strength of the plasma depletion layer
(Petrukovich et al., 2003) were found to be consistent with that determined from
theoretical considerations by Zwan and Wolf (1976).

4.2.4 The variability of reconnection
Over the last two decades there has been a debate as to whether dayside

reconnection is quasi-steady or transient (e.g., Newell and Sibeck, 1993; Lockwood
et al., 1994, and references therein). A smooth and continuous latitude dispersion in
the cusp should be expected for a steady rate of reconnection at the magnetopause.
However, satellite observations from this region show that the energy of precipitating
ions is rarely smooth and continuous with increasing latitude. Rather, these observa-
tions show complicated structures with variations in flux levels and sudden changes
in the energy of the precipitating ions (e.g., Newell et al., 1991; Escoubet et al.,
1992).

The existence of these steps in the ion-energy dispersion, also known as stepped or
staircase cusp ion signatures, has been predicted by Cowley et al. (1991) and Smith
et al. (1992), based on a model by Cowley and Lockwood (1992) of how ionospheric
convection is excited. In this pulsating cusp model (see also Lockwood and Smith,
1989a,b), the cusp steps are the result of pulses of enhanced magnetopause reconnec-
tion (changes in the reconnection rate at the magnetopause) that creates neighboring
flux tubes in the cusp with different time histories since reconnection. A significant
characteristic of temporal steps is their convection with the open magnetic field lines
under the joint action of magnetic tension and shocked solar wind flow. This creates
an ever-changing structural profile of precipitating cusp ions.

The pulsating cusp model was further supported by combining satellite observa-
tions with ground-based observations from the EISCAT radar (Lockwood et al., 1995;
Neudegg et al., 1999; Milan et al., 2000; McWilliams et al., 2001). Convecting flux
tubes caused by reconnection pulses would move along the convection flow. There-
fore, the observation of flow across a step in the cusp ion-energy dispersion revealed
the temporal nature of cusp structures.

Flux tubes on open field lines with precipitating magnetosheath ions could also
be spatially separated, emanating from multiple X-lines. Crossing the boundary into
such a spatially separated different flux tube would also appear as a step in the ion-
energy dispersion due to the different time history since reconnection for field lines
within the two flux tubes (Lockwood et al., 1995). However, this step would not be
convected with the solar wind but would appear as a standing feature in the cusp
(e.g., Newell et al., 1991; Lockwood and Davis, 1996). Independent of the time delay
between the cusp crossings or the satellite velocities, the satellites should encounter
unchanged cusp structures at about the same latitude, observing a spatial feature.



188 Reconnection in the magnetosphere

Such an observation would indicate that the reconnection rate at the magnetopause
is rather stable and not highly variable or even stops entirely for a limited period
of time.

To avoid the ambiguity of single satellite observations in distinguishing between
spatial and temporal effects, several event studies using multi-spacecraft observations
documented the existence of such spatial cusp structures, sometimes also referred to
as double cusps. Particularly important were investigations where satellite missions
or combinations of satellites cross the cusp almost simultaneously at different alti-
tudes, e.g., Dynamics Explorer DE-1 and -2 (Onsager et al., 1995), Interball and Polar
(Trattner et al., 1999), Defense Meteorological Satellite Program (DMSP) (Wing
et al., 2001), and Fast Auroral Snapshot (FAST) and Polar (Trattner et al., 2002a,b).
They found that stepped ion distributions during stable solar wind and IMF condi-
tions are not consistent with the pulsed reconnection model. While individual cusp
crossings for different solar wind conditions are very different, cusp crossings by two
satellites during stable solar wind conditions are remarkably similar for several hours.

While the Cluster satellites do not cross the cusp at different altitudes, the four
satellites with identical instrumentation together with simultaneous ground observa-
tions by the SuperDARN radar array have demonstrated the importance of multi-
spacecraft/multi-instrument studies to understand and separate the temporal from
the spatial scale. Figure 4.12 shows two composite plots that combine the temporal
and spatial separations of the Cluster spacecraft in the cusp into one panel. The top
panel shows an example for a spatial cusp structure that is the result of multiple
reconnection lines at the magnetopause (see Figs. 4.10 and 4.11). The bottom panel
shows an example for a temporal cusp structure that is most likely the result of
variations of the reconnection rate at the magnetopause.

For both panels, the blue and red lines show the magnetic footpoints of
Cluster satellites SC1 and SC4 in the ionosphere, respectively. The footpoints are
plotted on top of geographical maps of the northern polar regions. Overlaid along
the magnetic footpoints are omnidirectional H+ differential flux measurements
(1/(cm2 s sr keV/e)) observed by the CODIF instrument that is part of the Cluster
Ion Spectrometers (CIS) (Rème et al., 2001) onboard the Cluster satellites. Measure-
ments from the low-energy cutoff of the Cluster/CIS instruments are plotted at the
magnetic footpoints with higher energies extending away from the footpoints. Red
and white regions in the color spectrograms represent high flux levels while blue
and black colors represent low flux values. White solid lines in Fig. 4.12 represent
the average location of the auroral oval while the dashed white line represents the
terminator. Also shown is the ionospheric convection path (gray lines) derived from
SuperDARN radar observations, where solid and dashed gray lines represent the
dusk and dawn convection cells, respectively.

The top panel of Fig. 4.12 shows the Cluster cusp crossing on July 25, 2001, which
was also discussed above. Only two spacecraft, SC1 and SC4, are shown because the
CODIF instrument on SC2 was not operational while SC3 was still on closed field
lines for the time of interest. Both satellites were moving poleward over northern
Canada close to the Alaska territory. Two black lines in the color spectrogram mark
the location where the satellites crossed the open–closed field line boundary and
entered the cusp region. Both spacecraft subsequently observed the typical cusp
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Fig. 4.12. Composite plot of Cluster magnetic footpoints and ionospheric convec-
tion streamlines for a spatial and temporal cusp event. Overlaid on the magnetic
footpoints are Cluster/CIS flux measurements. White lines represent the average
location of the auroral oval while the dashed line represents the terminator. White
lines in the color spectrogram show the position of the satellites for the time indi-
cated on the panels. See also color plate.
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ion-energy dispersion events for southward IMF conditions (1a and 4a in the top panel
of Fig. 4.12), with lower energy ions arriving at higher latitudes (e.g., Reiff et al.,
1977; Smith and Lockwood, 1996). The ion-energy distribution decreased smoothly,
indicating a constant magnetospheric reconnection rate at the magnetopause. At
23:37 UT the Cluster satellites were deep inside the cusp. Their positions are marked
with star (SC1) and triangle (SC4) symbols along the path of the magnetic footpoints.
Originating at these symbols are white lines, marking the time index in the color
spectrograms.

At 23:37 UT, SC4 was slightly ahead of SC1 at higher latitudes. Also shown for that
time index are the ionospheric convection cells (solid and dashed gray lines) derived
from the SuperDARN radar data. At that time, both spacecraft encountered a sudden
increase in the ion energy of precipitating cusp ions (1b and 4b), consistent with a
typical step-up ion signature that can occur if the satellite crossed onto magnetic field
lines that were reconnected more recently. Following the sudden step-up signature,
the ion energy of the precipitating cusp ions decreased again with increasing latitude
showing the typical ion-energy dispersion events observed earlier.

A detailed analysis of this event (Trattner et al., 2003) revealed that the convec-
tion cells changed positions at 23:37 UT. Both satellites moved poleward into the
direction of an equatorward directed bulge in the ionospheric convection path which
effectively brings the boundary between the dawn and dusk convection cells to lower
latitudes, into the path of the cluster satellites. At 23:37 UT the convection cell
boundary moved rapidly equatorward while the Cluster satellites SC1 and SC4 have
progressed far enough poleward to be overtaken by the equatorward moving dawn
convection cell. The transition from one convection cell to another resulted in an
almost simultaneous sudden increase of the ion-energy dispersion (structures 1b and
4b) on both satellites, indicating that the ion open–closed field line boundary in the
dawn convection cell is much closer to the SC1 and SC4 magnetic footpoints than
in the dusk convection cell (see also Fig. 4.10). The fact that the sudden increase in
the energy of the precipitating cusp ions coincided with the satellites moving into a
neighboring and spatially separated flux tube (or convection cell) demonstrates the
existence of spatially separated flux tubes as discussed by, e.g., Trattner et al. (2002a).
Subsequently, the two ion-energy dispersion events for the July 25, 2001, Cluster
cusp crossing have been traced to spatially separated reconnection lines located in
different hemispheres (see Fig. 4.10).

The bottom panel of Fig. 4.12 shows the Cluster cusp crossing on September
23, 2001. The magnetic footpoints of Cluster SC1 and SC4 are located over Green-
land with the satellites moving poleward. After crossing the open–closed field line
boundary and entering the cusp, both satellites observed the typical ion-energy
dispersion events for southward IMF conditions with lower energy ions arriving at
higher latitudes. The bottom panel of Fig. 4.12 also shows the ionospheric convection
cells at about 11:18 UT with the Cluster satellites moving oblique to the ionospheric
convection direction. For that time index, the Cluster satellites SC1 and SC4 were
inside the cusp and their position is marked with white lines in the color spectro-
grams.

At about 11:18 UT, SC1 encountered the first step-up cusp structure (1a) for this
Cluster cusp crossing. SC4, positioned just downstream and poleward of SC1 along
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the convection path, encountered a similar step marked (4a) about one minute later.
Observing a similar step feature about 1◦ higher in latitude and about 1 minute
later than the low latitude satellite is consistent with a convecting temporal cusp
structure as predicted by the pulsed reconnection model (see also Lockwood and
Smith, 1989a,b).

The same scenario repeats itself for the second cusp step-up structure. The black
lines in the bottom panel of Fig. 4.12 mark the position of the Cluster satellites at
11:25 UT when SC1 encountered a second cusp step-up feature (1b). SC4, positioned
again just downstream and poleward of SC1, encountered a similar step marked (4b)
about one minute and 1◦ higher in latitude. Both step structures observed by one
spacecraft seem to have convected 1◦ poleward in the direction of the convection path
within about 1 minute, which represents a convection velocity of about 1.5 km/s, in
agreement with observed convection speed in the ionosphere of about 1.2 km/s, as
measured by the SuperDARN radars (see also Lockwood et al., 1990; Pinnock et al.,
1993).

In summary, cusp structures are the result of temporal and spatial effects. The
mechanisms to create temporal and spatial structures are:

(1) Cusp structures are the result of temporal changes in the location of convec-
tion patterns that either drastically shorten or lengthen the convection length of
magnetic field lines from the ion open–closed field line boundary to the position
where they are intercepted by the satellites. The change can be a smooth reversal
of a previous ion-energy dispersion or a sudden step (e.g., Trattner et al., 2003).

(2) Cusp structures are caused by the entry into a different convection cell or flux
tube where the location of the ion open–closed field line boundary was significantly
different from the old cell. This can result in a step-up or step-down ion-energy
dispersion event. The observed cusp structure is a spatial structure and will appear
unchanged for satellites at every altitude (Trattner et al., 2002a,b).

(3) Cusp structures are caused by variation of the reconnection rate at the reconnection
location. This temporal cusp structure will be convected with the open geomagnetic
field lines and travel along the ionospheric convection direction. In agreement with
the pulsating cusp model (e.g., Lockwood and Smith, 1989a) fast low-altitude
satellites overtaking the convecting structure encounter a step-down ion-energy
dispersion event while slow high-altitude satellites are overtaken by the convecting
cusp structure and encounter a step-up dispersion profile.

4.2.5 Conclusions and discussion
Magnetic reconnection between the IMF and the geomagnetic field is

believed to be the dominant process whereby mass and energy are transferred from
the solar wind into the magnetosphere. While there have been many observations
of the consequences of magnetic reconnections at the magnetopause (e.g., jets of
plasma), to date, there are only a small number of in situ measurements at the
center of the diffusion region directly at the magnetopause (e.g., Mozer et al., 2002;
Phan et al., 2004; Vaivads et al., 2004b). These studies confirm the important
role of Hall electric fields in the vicinity of the reconnection site, consistent with
computer simulations of collisionless reconnection (Chapter 3). Coverage of these
magnetopause observations, however, has been too limited to support meaningful
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statistical studies of the global distribution and the morphology of merging sites
on the magnetopause or to assess the validity of various proposed models for the
initiation of magnetopause reconnection.

In contrast, a region extensively covered by satellite observations is the magneto-
spheric cusp, which can be used to estimate the variability of the reconnection process
and remotely trace the location of the reconnection sites (e.g., Lockwood et al., 1995;
Onsager et al., 1995; Trattner et al., 2002a, 2005). Of particular importance for the
location of the reconnection site is the orientation of the IMF. With changing IMF
orientation the location of the reconnection site shifts, moving from lower latitudes
for a more southward field to higher latitude for more northward fields. In case of
directly northward IMF conditions, reconnection is expected to occur poleward of
the cusps (e.g., Fuselier et al., 2002).

Cusp observations indicate the existence of long reconnection lines in the northern
and southern hemispheres where shear angles between the magnetospheric field and
the IMF are near 180◦ (antiparallel reconnection) as well as tilted reconnection lines
across the subsolar point where magnetic shear angles have been found to be signifi-
cantly different from 180◦ (component reconnection) (e.g., Fuselier et al., 2002). Long
reconnection lines poleward of the cusps that combine antiparallel and component
reconnection sites have also been reported (e.g., Trattner et al., 2004).

One of the fundamental properties of reconnection is its variability. Reconnec-
tion is a time-varying process causing convecting step-like discontinuities in the ion
dispersion signatures of precipitating solar wind ions in the cusp. These convecting
structures have been interpreted as evidence for reconnection pulses (e.g., Lockwood
and Smith, 1989a), resulting from short-term enhancements of the reconnection rate
at the magnetopause, followed by intervals of slower or no reconnection.

Cusp observations also revealed that structures in the ion dispersion signatures
in the cusp can be the result of spatially separated flux tubes caused by multiple
reconnection lines at the magnetopause (e.g., Trattner et al., 2005). The occurrence
of such structures, especially during stable solar wind conditions indicates that the
reconnection process can be very stable and persistent. Cusp structures can also be
the result of a change in the convection path of newly opened field lines and therefore
the location of the satellite within the flux tube.

4.3 Stability of the magnetotail
K. Schindler

As pointed out in Chapter 1, an understanding of the role of magnetic reconnection
in magnetospheric and other activity also involves investigating the conditions that
prevail before reconnection starts. With sufficient knowledge about these conditions
one would be able to predict when and where reconnection occurs. The present state
of the art is far from that ideal situation. In the cases that are discussed here, the
preonset phase is considered to consist of a slow evolution generated by external
forces. In the context of magnetospheric substorms, this phase might be identified
as the substorm growth phase (McPherron, 1970; Baker et al., 1981; Section 1.2).
During that phase energy is supplied to the system, largely in the form of magnetic
energy, leading to stretching of the tail and a thinning of the tail current sheet.
After the onset of reconnection the system shows a fast evolution, associated with
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a change of magnetic topology and a release of magnetic energy (Baker et al.,
1985). A theoretical approach to the slow evolution and current sheet formation,
as well as simulations of the dynamic evolution will be discussed in the following
section.

In this section we address two particular problems that pertain to the substorm
growth phase or, more generally, to the context of current sheet formation or inten-
sification prior to the onset of reconnection. The first question is whether ideal MHD
instabilities, such as the ballooning mode, can arise prior to, or during, current
sheet formation and perhaps act as a trigger for reconnection. This question is
considered for two-dimensional equilibria subject to three-dimensional perturbations.
The use of ideal MHD limits the results to rather broad sheets such as observed
in the early stages of the growth phase of magnetospheric substorms. The second
problem relates to the onset of collisionless tearing and supplements the discussion in
Section 3.3.

4.3.1 MHD stability of magnetotail-like configurations
The MHD ballooning mode has been suggested to occur as a consequence of

the strong field line curvature in the center of the plasma sheet (Roux et al., 1991;
Bhattacharjee et al., 1998; Miura, 2001; Cheng and Zaharia, 2004), although other
authors obtained evidence for ballooning stability (e.g., Lee and Wolf, 1992). The
contrasting results on ballooning stability motivated a recent study (Schindler and
Birn, 2004) of stretched magnetotail equilibria with the aim to clarify the parameter
regimes of MHD stability and instability. Here is a summary of that work. This
investigation does not address the nonlinear development of ballooning and whether
it could lead to a (further) concentration of the cross-tail current and thereby initiate
reconnection.

Equilibrium
The equilibrium configurations are two-dimensional with ∂/∂y = 0 and the

magnetic field B lying in the x, z plane. The x axis points tailward. B is derived
from a flux function A(x, z), such that B = ∇A×∇y. The equilibrium is stretched
in the sense that the aspect ratio ε = Lz/Lx 
 1, where Lx and Lz are char-
acteristic lengths associated with the x- and z-dependence of B and the plasma
pressure p. The pressure and the current density jy are functions of A alone and
are related by jy = dp/dA. The flux function A(x, z) satisfies the Grad–Shafranov
equation

− 1
μ0

ΔA =
dp(A)
dA

. (4.6)

One of the main points of interest is the effect of the large field line curvature
occurring at the vertex of closed field lines with κ ·∇p > 0, which in principle favors
the ballooning instability.

Another important point is to clarify the role of a background pressure. Often, an
increase of β = 2μ0p/B2 destabilizes, which here raises the question of how stability
is affected by the superposition of a constant background pressure.
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Stability criterion
The basic stability criterion can be understood in the following way. By

specializing the MHD variational principle (Bernstein et al., 1958) for the present
equilibrium conditions one obtains the functional

δW =
1

2μ0

∫ {∣∣∣∣B ·∇A1

B

∣∣∣∣2 +Vc|A1|2 + |B ·∇ξy|2

+
∣∣∣∣∇A ·∇A1 +JA1

B
−B

∂ξy

∂y

∣∣∣∣2 +μ0γp|∇ · ξ|2
}

d3r, (4.7)

where γ is the adiabatic index, J = μ0jy, and ξ is the displacement vector. Further,

A1 = −ξ ·∇A (4.8)

is the perturbation of the flux function and

Vc = ∇· J∇A

B2 − J2

B2 − dJ

dA
. (4.9)

The quantity Vc is directly related to the field line curvature vector κ = b ·∇b, where
b = B/B, as Vc can be written as

Vc = −2μ0

B2 κ ·∇p. (4.10)

Vc assumes large negative values at the field line vertex where B becomes small.
Positive-definiteness of δW is necessary and sufficient for stability with respect

to ideal MHD. The displacement vector is chosen to vanish on the boundary. For a
derivation of (4.7) see Schindler et al. (1983).

Let us concentrate on the third term of the integrand of (4.7). If we simply drop
it, we obtain a functional, positive-definiteness which is still sufficient for stability.
Interestingly, the third term also vanishes in the ballooning limit, which provides
necessity (de Bruyne and Hood, 1989). Thus, positive-definiteness of the functional

δW ′ =
1

2μ0

∫ {∣∣∣∣B ·∇A1

B

∣∣∣∣2 +Vc|A1|2

+
∣∣∣∣∇A ·∇A1 +JA1

B
−B

∂ξy

∂y

∣∣∣∣2 +μ0γp|∇ · ξ|2
}

d3r (4.11)

is necessary and sufficient for ideal-MHD stability.
Minimization with respect to ∂ξy/∂y and b · ξ reduces (4.11) to the functional

δw =
1

2μ0

∫ (∣∣∣∣∂A1

∂s

∣∣∣∣2 +Vc|A1|2 +
1

J2 q

∣∣VcA1
∣∣2)ds

B
, (4.12)

where

q =
1

μ0γp
+

1
B2 (4.13)

and the bar denotes the average

(· · · ) =
∫

(· · · )ds/B∫
ds/B

. (4.14)
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In (4.12) and (4.14) the s-integration is understood as arc-length integration along
a selected field line. By (4.8) A1(s) is subject to the line-tying boundary condition
(A1 = 0).

It is well known that the functional (4.12) provides a useful criterion for the
ballooning instability (e.g., Lee and Wolf, 1992). The sufficiency property for arbi-
trary modes has been introduced into magnetospheric stability in the recent work
that is summarized here.

Results and interpretation
Stability investigations were carried out by numerical minimization of (4.12).

Here the main results obtained with three different equilibrium models are summa-
rized, concentrating on closed field lines and symmetric modes, the preferred situ-
ation for ballooning. For more general results and details see Schindler and Birn
(2004). The study was limited to the regime of small values of the aspect ratio ε.
For most purposes it was found convenient to replace the x coordinate by x1 = εx in
equilibrium quantities. The main results can be summarized as follows.

(1) Unstable field regions were found only for cases with strong tailward pressure
decay, specifically for p ∝ exp(−x1) and p ∝ 1/xn

1 , n > 10. Configurations with
more moderate pressure variation were found stable.

(2) In all cases of instability the superposition of a moderate background pressure was
sufficient for complete stabilization.

(3) The results were found to be in good agreement with the formal entropy criterion,
stating that dS/dp < 0 is necessary and sufficient for stability, where S = ln(pW γ)
with W being the differential flux tube volume W =

∫
ds/B. (The entropy criterion

is known from the study of the interchange mode.)

Figure 4.13 illustrates the accuracy to which the entropy criterion describes the
minimization results. In this case the equilibrium was presented by the Voigt model
(Voigt, 1986), where the magnetic flux function and the pressure are given by

A = − 2
π

cos
(π

2
z
)

e−x1 , (4.15)

p =
A2

2

(
π2

4
− ε2

)
+p0. (4.16)

The z coordinate is subject to the condition 0 ≤ |z| ≤ 1, which confines the model to
closed field lines; the constant background pressure p0 was added in view of present
purposes.

For two further models it was found that equilibria with moderate tailward pressure
variation are stable. In one of the two models the asymptotic solution of (4.6) for
small ε and exponential p(A) was used, which in a suitable dimensionless form is
given by

A(x1, z) = ln

⎡
⎣cosh

(√
2p̂(x1)z

)
√

2p̂(x1)

⎤
⎦ , (4.17)
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Fig. 4.13. Stability diagram of the Voigt model computed for ε = 0.01. The plot
shows the K, v1 plane, where K denotes the background pressure normalized by
the maximum pressure (at the earthward boundary), and v1 is the x1 coordinate of
the field line vertex. The square symbols mark the boundary of the unstable region
obtained by numerical minimization, the full curve corresponds to the marginal
entropy criterion dS/dp = 0.

where p̂(x1) is the pressure on the x axis, understood as a function of x1. This
function can be chosen arbitrarily. The stability of the model (4.17) was investigated
for the power law

p̂ =
1
xn

1
, n > 0. (4.18)

All cases with n < 10 were found stable in the numerical minimizations, while choices
with n > 10 gave unstable field regions. Again, this result was consistent with the
entropy criterion, as Fig. 4.14 illustrates; note that p decreases with v1, such that
dS/dv1 > 0 means stability. The stability transition at n = 10 is clearly visible. The
necessity of the entropy criterion could have been expected from earlier results (Lee
and Wolf, 1992), but the sufficiency came as a surprise.

Antisymmetric modes were found stable for moderate pressure variation (the
power-law cases were found stable for n < 6). Open field lines were stable in all cases
studied.

The results listed above raise two main questions:

(1) Addressing the realistic cases of moderate decrease of p̂ with x1: Why does the
strong curvature at the vertex (with Vc of order 1/ε2) not cause instability?

(2) Why does the background pressure stabilize, although increasing pressure is known
to destabilize in other cases?
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Fig. 4.14. Entropy S as a function of the vertex position v1 on the x1 axis.

Regarding the first question, it is true that for small ε the curvature term (second
term in the integrand of (4.12)) becomes strongly negative, i.e., destabilizing.
However, the positive compressibility term (third term) becomes large also and, as
was shown analytically, for the minimizing mode the leading terms of an asymptotic
expansion for small ε exactly cancel. In the remaining expression the sign of the
minimum of δw is given by the sign of −dS/dp. (There is a formal alternative,
which, however, did not become effective in any of the cases of the three models
treated numerically.)

The following plausibility argument should help to understand the central role of
entropy without going into the formal details of the rigorous derivation. Entropy
enters the stability problem through a relationship that for small ε assumes the form

J2q +Vc =
J2

μ0γ

dS

dp
. (4.19)

This result can be obtained by applying Gauss’s theorem to (4.9).
The relevance of the relationship (4.19) is readily illustrated by considering the

Euler–Lagrange equation associated with variation of (4.12),

−B
∂

∂s

(
1
B

∂A1

∂s

)
+VcA1 +

Vc

J2q
VcA1 = λA1, (4.20)

where λ is the eigenvalue resulting from the normalizing constraint on A1, fixing
the integral

∫
A2

1/(2B)ds. The sign of the minimum eigenvalue determines stability.
Averaging (4.20), using (4.19) and considering symmetric modes gives

λ =
1

μ0γq

dS

dp

VcA1

A1
− 1

WA1

[
1
B

∂A1

∂s

]
b
, (4.21)

where the subscript b refers to the boundary. Anticipating that typically the mini-
mizing eigenfunction A1 has its maximum at the vertex and from there smoothly
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decays toward the boundary without changing its sign one finds that for small ε the
second term of the right-hand side of (4.21) is negligible and that VcA1/A1 has the
sign of Vc which is negative for the models considered here. So the sign of λ is given
by the sign of −dS/dp, such that dS/dp < 0 is necessary and sufficient for stability.

The stabilizing effect of the background pressure, addressed by the second ques-
tion, has the following reason. Generally, pressure enters the functional (4.12) in two
ways. The curvature term depends on the pressure gradient (see (4.10)) and the
compressibility term on the pressure itself (via q, see (4.13)). Increasing the pres-
sure in an arbitrary way will result in a complicated interplay between stabilization
and destabilization, and experience indicates that destabilization can well dominate
under suitable circumstances. However, in the present case of imposing a constant
background pressure, the pressure gradient remains unchanged so that we are left
with the stabilizing effect of the compressibility term.

4.3.2 Collisionless tearing
The treatment of the collisionless tearing instability in the framework of the

Vlasov theory has a long and complicated history (see Section 3.3). In view of the
complex structure of the problem several authors have applied different assumptions
or ad-hoc simplifications and have obtained conflicting results. A clarifying break-
through was achieved (Lembège and Pellat, 1982; Pellat et al., 1991; Brittnacher
et al., 1995; Quest et al., 1996) by showing that for a sufficiently small electron
gyroscale a magnetic field component Bn normal to the sheet has a strong stabi-
lizing effect. This effect had been excluded by an ad-hoc assumption in earlier work
(Schindler, 1974). As shown by Pellat et al. (1991), the Bn-stabilization is valid in
the regime where ζ = kρn 
 1, k being the wavenumber of the perturbation along the
sheet (x-direction) and ρn the electron gyroradius in the center where the magnetic
field magnitude is Bn. For a more detailed discussion see Section 3.3.

In spite of this breakthrough, several details remained unclear. The analysis
was based on Schwarz’s inequality (Morse and Feshbach, 1953), so that the actual
strength of the stabilization was unknown. Also, the distribution functions were
limited to drifting Maxwellians, where the electric potential can be ignored. In
the following a refined approach is sketched, which removes those shortcomings by
avoiding inequalities and by admitting a large class of distribution functions. We
consider the formal limit me → 0 and then discuss the conditions under which this
limit is a valid approximation.

The equilibrium distribution functions have the standard form F (H,P ) with

F ′ = ∂F (H,P )/∂H < 0, (4.22)

where H is the Hamiltonian and P the canonical momentum with respect to the
invariant direction, here chosen as the y direction.

The approach starts out from an exact form of the variational principle for two-
dimensional plasmas based on the Vlasov theory (Schindler et al., 1973; Schindler,
1974). In addition to Liouville’s theorem and quasi-neutrality, that approach uses
constant P as the only further constraint on the particle orbits. (Any additional
constraint, such as the conservation of the magnetic moment would lead to additional
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stabilization; see also Pellat et al. (1991).) One finds a variational expression of
the form

V2 =
1
2

∫ ( (∇A1)2

μ0
− djy

dA
A2

1 +aϕ2
1 −a[[(〈Ψs1〉s)2]]

)
dx dz (4.23)

and the quasi-neutrality condition

ϕ1 = [[〈Ψs1〉s]]. (4.24)

In (4.23) and (4.24) the following notation is used:

〈 . . . 〉s =

∫
ψs0≤Hs0

. . . dx dz∫
ψs0≤Hs0

dx dz
, (4.25)

[[. . . ]] =
∑

s

∫
. . . q2

sF ′
s dτ∑

s

∫
q2
sF ′

s dτ
, (4.26)

where ψs0 = (P − qsA)2/(2ms)+ qsφ, Ψs1 = ψs1/qs, ϕ1 = φ1 − dφ
dAA1 and

a =
∑

s

as, as =
∫

q2
sF ′

s dτ (4.27)

with the τ -integration extending over velocity space. The subscript s refers to the
particle species, qs and ms are particle mass and charge, respectively. By quasi-
neutrality, the current density jy and the electric potential φ of the equilibrium
become functions of the equilibrium flux variable A alone.

The physical regime of small electron gyroscale is appropriately realized by the
formal limit of vanishing electron mass me with the equilibrium electron temperature
Te kept fixed. Here Te is not a thermodynamic temperature, it is defined kinetically,
i.e., in terms of the energy associated with random motion.

For a single ion species with charge e one finds that for me → 0 (4.23) assumes
the form

V2 =
1
2

∫ [
(∇A1)2

μ0
− djy

dA
A2

1 + |ai|
[[(

〈Ψi1〉i − [[〈Ψs1〉i]]i
)2]]

i

+n0Q
2
(

5
3
kBTe +

e2n0

|ai|

)]
dx dz, (4.28)

where

Q(A) =
1

W (A)
d

dA

∫
A

A1
ds

B
, W (A) =

∫
A

ds

B
, (4.29)

and n0 is the equilibrium electron (or ion) number density.
If for the ion distribution function one chooses a drifting Maxwellian, e2n/|ai|

becomes kBTi. Then (4.29) implies the inequality

V2 > V∗
2 (4.30)

with

V∗
2 =

1
2

∫ ( (∇A1)2

μ0
− djy

dA
A2

1 +Q2n0kBT
)

dx dz, (4.31)
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where T = Te + Ti. The expression (4.31) is consistent with the result of Lembège
and Pellat (1982), and Pellat et al. (1991). As shown there for the WKB-regime, the
term involving Q scales as kLB0/Bn, causing strong stabilization for small Bn (see
also Section 3.3). The same conclusion applies to (4.28). So the present more refined
approach confirms strong electron stabilization in the appropriate limit.

To investigate the range of validity of this approach, the leading correction terms
for small but nonvanishing me were included. One finds that they can be neglected
if ρn is much smaller than the shortest length scale of the electromagnetic field with
respect to the x-variation. For kLx > 1 this reduces to the condition kρn 
 1 of Pellat
et al. (1991).

4.3.3 Discussion
Under the model conditions that were specified in Section 4.3.1, in all cases

that were studied strongly stretched magnetotail configurations with moderate
decrease of p̂(x1) were found to be stable with respect to arbitrary ideal MHD
modes. This means that under those circumstances an ideal MHD instability is not
available as a pre-TCS process. This supports a scenario in which a thin current
sheet is formed in a quasi-steady fashion as a consequence of the external forces.

The stability of the magnetotail under the present conditions is consistent with
2D and 3D MHD simulations (Birn, 1980; Birn et al., 1996) of stretched magnetotail
configurations, which did not produce any evidence for an instability in the ideal
MHD regime. Within the present framework, the entropy criterion implies that an
initially stable configuration cannot become unstable during an adiabatic evolution.
Notably, this applies to a class of adiabatic sequences that lead to loss of equilib-
rium (Birn and Schindler, 2002).

This scenario also covers a situation where the thinning of the current sheet
proceeds until the electrons become sufficiently nongyrotropic (ζ about 1 or larger)
for a collisionless tearing mode to start. This also would mean the onset of recon-
nection, if one defines reconnection appropriately, that is, by the new connection
of field lines without the necessity of the presence or formation of neutral points
(Section 2.3). This onset scheme was confirmed by two-dimensional kinetic simu-
lation studies (Hesse and Schindler, 2001; see Section 3.3). These simulations used
the tail-asymptotic model (4.17) with (4.18) for n = 1.2, which lies in the range of
observed values. Reconnection started when, by external driving, a local decrease
of the normal magnetic field component Bn developed, which led to nongyrotropic
electrons. The ion/electron mass ratio was 100. At the minimum of Bn the (formal)
electron gyroscale exceeded the x-dimension of the system.

In the same work the variational expression (4.31) was investigated with the help of
simplified test functions. In particular, the decay of the stabilizing electron term with
a progressive thinning of the current sheet was studied by considering the quantity

Y =
∫

Q2n0kBT dx dz

|
∫

dj/dAA2
1 dx dz| (4.32)

as a function of ζ. Roughly, Y reduces to 1 at values of ζ near 1. This requires
rather thin sheets. However, it is worthwhile noting that the sheet thickness does
not necessarily have to be reduced to the electron gyroscale ρ0 evaluated outside the
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sheet. Setting ζ = kρn = 1 gives L = kLρn = ρ0B0/(cBn), where we have set kL =
1/c. To make sure that the first term in (4.31) is not dominating, typically c ≈ 3 is
sufficient. So, at onset, L scales as ρ0B0/Bn rather than as ρ0. The physical reason
is that, for achieving a substantial reduction of Q, the length scale of the mode with
respect to x has to become comparable with the width of the particle orbit in the
center of the sheet, which scales as ρn = ρ0B0/Bn. The precise onset conditions are
not yet known. Note that the present orbit dynamics can only provide sufficient
stability criteria. Choosing exact orbits can lead to additional stabilization, even for
ζ > 1 (Brittnacher et al., 1998).

In a three-dimensional picture current-aligned microinstabilities (Section 3.5) may
occur before collisionless tearing starts. Examples of relevant instabilities are the
lower-hybrid (Drake et al., 1984; Daughton et al., 2004) or the kinetic kink mode
(Lapenta and Brackbill, 1997), discussed in Section 3.5. However, the mere presence
of a microinstability does not imply the onset of reconnection. A final evaluation of
the reconnection scenarios for magnetospheric and solar activity requires consider-
ably more effort in the investigation of the preonset conditions, both from fluid and
kinetic points of view.

4.4 Simulations of reconnection in the magnetotail
J. Birn

Only very recently have the magnetospheric reconnection sites themselves been
subjected to direct probing (Sections 4.2 and 4.5). The dominant identification of
reconnection thus has been made by its consequences. In this section we further
discuss causes and consequences of magnetotail reconnection based on MHD
approaches, particularly numerical simulations, in which reconnection is enabled
by ad-hoc resistivity or even by numerical dissipation in the codes. The underlying
assumption is that the large-scale structure and dynamic behavior of the magnetotail
are governed by conservation laws that are well included in the MHD approach,
so that the detailed knowledge (and modeling) of the processes in the vicinity of
the reconnection site, as discussed in Chapter 3, is not necessary. This is analogous
to the treatment of jump conditions across shocks, which are independent of the
detailed shock physics.

Our discussion focuses on several particular aspects: The conditions that enable
the onset of reconnection, particularly, the formation of thin current sheets in the
near tail; the formation and structure of plasmoids; the generation of fast plasma
bulk flows; the formation of the substorm current wedge; and the role of reconnection
and of the dynamic evolution of the tail in the acceleration of charged particles and
the resulting increases of energetic particle fluxes in the inner tail.

4.4.1 Thin current sheet formation
As mentioned in Sections 1.2 and 4.3, the formation of a thin current sheet

in the near-Earth tail region, late in the growth phase of substorms, appears to be a
crucial element in the initiation of a substorm and is well established observationally
(e.g., McPherron et al., 1987; Baker and McPherron, 1990; Mitchell et al., 1990;
Sergeev et al., 1993; Pulkkinen et al., 1994; Sanny et al., 1994). Here we are interested
in the relation between the formation of a thin current sheet and external, that is,



202 Reconnection in the magnetosphere

solar wind conditions that cause the structural changes of the substorm growth phase
and might act as a trigger of substorm onset. Both MHD and particle simulations
have consistently demonstrated that a thin current sheet can form as a consequence
of the addition of magnetic flux to the lobes (e.g., Schindler and Birn, 1993; Pritchett,
1994; Hesse et al., 1996; Birn et al., 1998a), which is a consequence of frontside
reconnection. Recently, Birn and Schindler (2002) demonstrated that the formation
of a thin current sheet may be the final phase leading to a loss of equilibrium,
when the magnetotail changes adiabatically (i.e., entropy conserving) in response to
magnetic flux transfer and deformations imposed by the solar wind. These results,
obtained by two-dimensional quasi-equilibrium theory, were confirmed by two- and
three-dimensional numerical MHD simulations (Birn et al., 2003, 2004c).

The characteristic structure of such a thin current sheet near the critical limit
is illustrated by Fig. 4.15, showing magnetic field lines and the cross-tail current
density (gray scale). Since this current sheet forms within the plasma sheet region,
where field lines are connected to Earth at both ends, the thin sheet assumes a
cusplike structure where the intensified current region extends from the equatorial
plane along two horns toward the Earth. This may be a reason for the frequently
observed bifurcated structure of thin current sheets (Section 4.5.4). Other causes may
lie in the self-consistent collisionless structure itself involving, for instance, deviations
from pressure isotropy (Sitnov et al., 2003; Birn et al., 2004b).

In the theoretical investigations and MHD simulations, the formation of such a thin
current sheet in the near tail is closely related to the fact that the boundary defor-
mation is characterized by a steepening of the flaring angle of field lines in the x, z

plane particularly in the near-tail region. Such an increase of flaring is expected from
the erosion of dayside magnetic flux (Maezawa, 1974) resulting in a tailward trans-
port and an observed increase in tail radius on the nightside (Maezawa, 1975). These
features, as well as the corresponding formation of a thin current sheet embedded in
the near-tail plasma sheet, were indeed also confirmed by global MHD simulations
of the substorm growth phase (Kuznetsova et al., 2005, private communication).
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Fig. 4.15. Structure of a thin embedded current sheet, formed as a consequence of
boundary deformations (Birn and Schindler, 2002) near the critical limit to a loss
of equilibrium. Solid lines are magnetic field lines and the gray scale indicates the
current density in arbitrary units.
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4.4.2 Plasmoid formation and structure
Whereas the close relation between magnetotail boundary deformations

and thin current sheet formation as a means toward tail instability is well estab-
lished, the actual onset mechanism of tail instability and its possible relation to an
external trigger (such as a northward excursion of a pre-existing southward IMF;
see Section 3.3) are not yet identified. In contrast, the macroscopic consequences
of reconnection are better understood, although some controversy still exists. After
the current intensification and thinning has reached a stage where ideal MHD
breaks down and reconnection is enabled, the tail evolution in MHD models follows
the qualitative picture shown in Fig. 1.6. Stretching and compression in the inner
magnetotail leads to the pinching and reconnection of closed field lines into new
shorter closed ones and closed loops that comprise part of the plasmoid. In a
two-dimensional picture this process involves two magnetic neutral points, one of
X-type and one of O-type (in the center of the plasmoid). When this picture is
extended into the third dimension, the X-point becomes an X-line and the O-point
an O-line. Furthermore, due to the finite extent of magnetic reconnection in the
cross-tail dimension, the X-line and O-line cannot extend to infinity but become
connected at some distance away from the midnight meridian plane (y = 0), forming
a closed loop. This fact was first pointed out by Vasyliunas (1976) and confirmed
through numerical simulations by Birn and Hones (1981).

However, exact north–south symmetry, where Bx and By vanish together in the
neutral sheet, represents a highly singular case, and more commonly the tail includes
an, albeit small, net cross-tail magnetic field component, which does not vanish
where Bx = 0. In that case, field lines do not reconnect with themselves but rather
with some neighboring field line. The three-dimensional structure of a generalized
plasmoid in such a case is illustrated in Fig. 4.16, obtained from an MHD simulation
(Birn and Hesse, 1990). The field lines identified as plasmoid field lines are defined
by the property that they cross the x, y plane (equatorial plane) more than once.
This is equivalent to a definition in terms of closed loops in the symmetric case. In
the nonsymmetric case this definition is no longer invariant, because it depends on
the choice of the plane at which intersections are investigated. In this particular case,
it gives a reasonable representation of the plasmoid/flux rope, because the deviation
from the symmetric case is small. It is interesting to note that, despite the smallness
of the net cross-tail magnetic field component By of only a small percentage of the
main component Bx, the plasmoid field lines exhibit only a few windings around the
plasmoid axis.

Initially, the reconnected field lines remain connected to the Earth at both ends
(top panel of Fig. 4.16). There are no uniquely identifiable separatrices or separa-
tors; the conditions of no-null reconnection (Section 2.3) apply. Later, when closed
field lines reconnect with lobe field lines, or field lines from opposite lobes with each
other, one might distinguish different topologies and separatrices between regions of
different topology with possible intersections at separators. However, as indicated
by the bottom panel of Fig. 4.16, flux bundles with different connections are inter-
woven and wrapped around each other, so that the magnetic topology becomes rather
complicated in the region identified as plasmoid. This fine structure becomes more
pronounced when the net cross-tail magnetic field gets smaller. Certainly, the local
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distinction of magnetic connectivity becomes meaningless when the fine scale reaches
the scale of the particle gyroradius.

It is noteworthy that in the picture illustrated by Fig. 4.16 plasmoid severance
is not an instantaneous process but is characterized by a continuous increase of
magnetic flux bundles that first become partially and then fully separated from
Earth. This process is topologically equivalent to the outward propagation of a CME
(Chapter 5; Gosling et al., 1995), although there is no evidence that a CME becomes
fully disconnected within the distances explored by satellites.

North–south symmetry, as well as dawn–dusk symmetry, are generally violated in
global simulations that use actual solar wind properties and Earth’s dipole orien-
tation as input (e.g., Pulkkinen et al., 1998; Wiltberger et al., 2000; Raeder et al.,
2001). Although substorm effects in such simulations are still basically consistent
with the neutral line, plasmoid picture, they also show not only more complicated
magnetic structures (such as the plasmoids pictured in Fig. 4.16), but also plasma
flow features more akin to localized flow bursts (Section 4.5.7) than to organized
tailward and earthward flows (Wiltberger et al., 2000; Raeder et al., 2001). Global
simulations also differ from local simulations by their boundary conditions. Specifi-
cally, the tail connects on the earthward side to an ionosphere model that closes the
field-aligned currents generated by the tail processes. Raeder et al. (2001) found that
there is a significant feedback from the ionosphere that in part controls the recon-
nection onset in the tail. Systematic variations of the ionosphere conductance show
that the ionosphere can in principle even inhibit near-Earth reconnection completely
by tying field lines in the ionosphere (Raeder et al., 1996). Thus, understanding the
boundary conditions of the tail may be just as important as understanding the local
processes.

4.4.3 Plasma flow and the substorm current wedge
Before the advent of numerical simulations, it was expected that the anoma-

lous dissipation that enables reconnection would also be the cause of the current
disruption and deviation into the substorm current wedge. However, this was not
confirmed by MHD simulations, which found that the features of the substorm
current wedge are more closely related to the dynamic evolution and the plasma flow
initiated by reconnection than to the dissipation at the reconnection site (Birn and
Hesse, 1991; Hesse and Birn, 1991; Scholer and Otto, 1991; Birn et al., 1999). This
mechanism is illustrated by Fig. 4.17. When the earthward flow from the reconnec-
tion site slows down and is diverted azimuthally away from midnight, it causes a
twist or shear of the magnetic field and builds up field-aligned currents. It is easy to
see that the twist illustrated in Fig. 4.17 corresponds to field-aligned currents into
the ionosphere on the dawn side with an opposite twist and current out of the iono-
sphere on the dusk side (not shown), consistent with the substorm current wedge
(Fig. 1.7).

We note that the current wedge mechanism illustrated in Fig. 4.17 is not univer-
sally accepted and that an alternative view exists, which is based on a more turbulent
current disruption mechanism in the inner tail (Lui, 1996). Also, the braking of the
earthward flow is not necessary to generate the twist or shear of the magnetic field.
This was demonstrated by Birn et al. (2004a) through simulations of the dynamics of
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Fig. 4.17. Build-up of field-aligned currents, as found in MHD simulations of tail
dynamics. The diversion of earthward flow away from midnight causes a twist of
magnetic flux tubes and a shear between the affected field lines and unaffected field
lines at larger distance from the neutral sheet. This shear or twist corresponds to
field-aligned currents toward the Earth on the dawnside and away from the Earth
on the duskside, which are part of the substorm current wedge (Fig. 1.7).

earthward moving entropy-depleted magnetic flux tubes (bubbles, Pontius and Wolf,
1990), which are the expected result of localized reconnection. The depletion of the
entropy content was suggested earlier as an important mechanism in the earthward
transport of flux tubes, associated with bursty bulk flows (Pontius and Wolf, 1990;
Chen and Wolf, 1993, 1999; see also Section 4.5.7). The bubble simulations confirmed
that the depletion was indeed an important factor in permitting the flux tubes to
penetrate closer to the Earth. They also showed that earthward moving bubbles
were associated with field-aligned current systems, directed earthward on the dawn-
ward edge and tailward on the duskward edge, as in the substorm current wedge.
This is consistent with current systems attributed to observed bursty bulk flows and
their connection with auroral features (Sergeev et al., 1996; Kauristie et al., 2000;
Nakamura et al., 2001b; Sergeev et al., 2004). In the bubble simulations, the field-
aligned currents are generated by the twist of magnetic flux tubes through vortical
plasma motion outside the bubble near its earthward front, similar to the mecha-
nism depicted in Fig. 4.17. This may also be visualized as a bubble plowing its way
through surrounding field lines and pushing them to the side, while becoming more
dipolar itself.

4.4.4 Particle acceleration
Particle acceleration processes that operate in the vicinity of the recon-

nection site have already been discussed in Section 3.6. For these processes the
detailed structure and dynamics of the collisionless plasma are very important and
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a self-consistent description appears necessary. Earlier, the acceleration of ions and
electrons in the vicinity of the neutral line provided an attractive explanation for
increases in energetic particle fluxes (injections) in the range of tens to hundreds
of keV in the near-tail region, observed particularly by geosynchronous satellites.
However, the fact that more refined satellite observations indicate that the near-
Earth neutral line predominantly forms tailward of ∼20 RE (e.g., Nagai et al., 1998)
provides an inconsistency of this model with the fact that energetic particle injec-
tions at geosynchronous orbit are typically dispersionless near midnight (e.g., Baker,
1984; Birn et al., 1997a), indicating an acceleration site close by.

This discrepancy was solved by test particle calculations using the time depen-
dent fields of an MHD simulation of tail dynamics (Birn et al., 1997b, 1998b) or
assumed electric and magnetic fields, capturing the main elements of the dynamic
evolution (Li et al., 1998; Zaharia et al., 2000): a spatial localization and an earthward
propagation of a region of enhanced cross-tail electric field. In the MHD simulation,
these properties followed self-consistently from the dipolarization of the magnetic
field associated with localized earthward plasma flow from the reconnection site. It is
consistent with the convection surge mechanism proposed by Quinn and Southwood
(1982) and Mauk (1986); however, the spatial localization in the cross-tail direction
provides an important additional element.

The characteristic acceleration mechanism is illustrated in Fig. 4.18. It shows a
typical orbit of an accelerated test ion (proton) integrated in the time dependent
electric and magnetic fields of an MHD simulation (Birn and Hesse, 1996; Birn
et al., 1997b). The electric field is characterized by a strong enhancement in the
central region, which is associated with the earthward collapse (dipolarization) of
reconnected field lines. The magnitude of this (−v×B) field may even exceed the
magnitude of the electric field at the reconnection site. The proton starts near the
dawn flank of the tail and at first exibits a so-called Speiser orbit (Speiser, 1965),
characterized by one-half of a gyration around the weak equatorial field Bz, followed
by a gyromotion along a field line toward the Earth. After mirroring closer to the
Earth, the ion gyrates back into the neutral sheet, does another half gyration around
Bz and another gyro-orbit toward the Earth and back into the tail. When the ion
encounters the region of enhanced cross-tail electric field it becomes accelerated and
its gyroradius increases even outside the neutral sheet. The kinetic energy of this
particular ion increases from ∼60keV to ∼180keV.

The electron acceleration is basically similar to the ion acceleration, except that the
electron orbits are mainly adiabatic, that is, conserving the magnetic moment (Birn
et al., 1998b, 2004c). Accelerated electrons typically originate from the duskward
boundary. Depending on their pitch angle, they may bounce many times between
their mirror points, while drifting towards the center tail. When they reach the
central region of earthward collapse they participate in the earthward E×B drift
and become accelerated through a betatron or Fermi mechanism, depending on the
pitch angle. Except for the bounce motion, this is similar to the history of typical
90◦ pitch angle accelerated electrons.

Although, in contrast to the electrons, the acceleration of ions is largely nonadia-
batic, the net acceleration found in these test particle investigations was similar for
both species at energies above several tens of keV, which explains the similarities of
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Fig. 4.18. Characteristic particle acceleration in the dynamic magnetotail based on
test particle tracing in the electromagnetic field of an MHD simulation (Birn and
Hesse, 1996). The center panel shows the projection of an ion orbit in the equatorial
plane overlaid on a snapshot of the cross-tail electric field (gray scale) and the
magnetic neutral line (thin solid line). The corresponding instantaneous magnetic
field structure is shown in the top panel. The bottom panels shows perspective
views of the ion orbit (left) and of the ion energy above the equatorial projection
of the orbit (right). The proton starts near the dawn flank at an energy of ∼60 keV
and becomes energized to 180 keV when it crosses the region of enhanced electric
field.

ion and electron injections at such energies. At lower energies (less than a few tens of
keV) both ions and electrons found in the near tail in the simulations mostly originate
from the more distant tail along the plasma sheet boundaries. A major difference,
however, stems from the difference in the bounce periods of ions and electrons. The
ions entering the near tail from the more distant tail on not yet reconnected field
lines have bounce periods comparable to or larger than the characteristic time of the
field collapse. As a consequence, after mirroring closer to the Earth, the ions may
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be on field lines that are already collapsed and connect to the near tail earthward
of the region of strong Ey. Because of the localization of the induced electric field,
these ions therefore circumvent the region of strong Ey and do not get accelerated.
This explains why the lower-energy limit of enhanced particle fluxes is significantly
higher for ions than for electrons (Birn et al., 1997a).

We note that this is just one of the reasons why the low-energy limit of flux
enhancements is different for ions and electrons. The history of particles may vary
significantly depending on time, location, and pitch angle of particles. Additional
effects are primarily related to differences in source regions. In this context the neutral
line might play a role in diverting particles and thereby affecting fluxes even at loca-
tions far away. The test particle simulations clearly show that the electric field in
the collapsing magnetic field region plays the dominant role in the particle acceler-
ation, rather than the field at the reconnection site itself. This resolves the above
mentioned apparent inconsistency of the neutral line model of substorms with the
fact that observed dispersionless injections imply an acceleration site much closer
than the inferred site of reconnection. The important role of localized, earthward
propagating, electric field pulses was further supported by the excellent agreement
between observed particle injections and models based on energetic particle orbit
calculations that included the drift around the Earth (Li et al., 1998), leading to
so-called drift echos (Lanzerotti et al., 1967, 1971; Belian et al., 1978).

4.5 Observations of tail reconnection
W. Baumjohann and R. Nakamura

Because of the difficulty of separating temporal variations and spatial structure in
a highly dynamic system, measurements with a single spacecraft have always been
problematic and led to debate. This was especially true when trying to explore the
site of reconnection in the near-Earth magnetotail. While sophisticated and detailed
studies of this region using data from the Geotail spacecraft (e.g., Nagai et al., 1998,
2001, 2003) revealed some of its internal structure, some ambiguity still prevailed.

In this section we report on the present state of investigating reconnection in the
vicinity of the near-Earth neutral line based on recent Cluster measurements. Being
a constellation of four identical spacecraft, Cluster allows discrimination of spatial
and temporal variations in magnetic field and plasma parameters. Thus it is ideal to
study the structure and dynamics of plasma and fields relevant to reconnection. In
this section we first present an example of multipoint observation of current sheet
crossings near the X-line and discuss the effects of unmagnetized ions including the
Hall current. We then discuss the closure of the Hall current, followed by a brief
discussion of new results on the consequences of reconnection such as bursty bulk
flows, plasmoids, and slow-mode shocks.

4.5.1 Cluster tetrahedron
The Cluster spacecraft were launched in summer 2000 and put into a polar

orbit with an apogee of about 19RE. Cluster traverses the magnetotail from mid July
to end October, crossing the plasma sheet in a nearly regular tetrahedron form. The
typical configuration of the Cluster tetrahedron during the 2001 tail season is shown
in Fig. 4.19. Most of the Cluster data discussed here were obtained by the Flux-Gate
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Fig. 4.19. Typical Cluster tetrahedron configuration during the 2001 tail season.

Magnetometer (FGM; Balogh et al., 2001) and by the Cluster Ion Spectrometry
(CIS; Rème et al., 2001) unless noted otherwise.

4.5.2 Current sheet structure
Spacecraft traveling in the plasma sheet often observe rapid large amplitude

variations of the magnetic field, sometimes with a change of polarity (a change in
the sign of the prevailing Bx component). Such variations indicate rapid up–down
oscillations of the current sheet known as flapping (Zhang et al., 2002; Runov et al.,
2003b; Sergeev et al., 2003, 2004). Being an interesting phenomenon in itself, flapping
provides a possibility to probe the internal structure of the current sheet.

Figure 4.20 shows an example of current sheet crossings during an episode of
intensive flapping. The top two panels on the left-hand side show the x component of
the magnetic field at all four spacecraft (upper panel) and the proton bulk velocity
(data from Cluster 1, 3, and 4 only) observed during a large storm-time substorm
on October 1, 2001. A set of rapid current sheet crossings during intervals A–D were
used to reconstruct the structure of magnetic field and electric current inside the
current sheet. The resulting current density j = ∇ ×B/μ0 and the magnetic field
curvature vector C = (b ·∇)b, where b = B/B, are shown in the two mid panels. The
calculations show that the electric current was very strong (about 30nA/m2) during
intervals A, B, and C and less intense during interval D. The x component of the
magnetic field curvature vector was dominant during all the crossings and reversals
from negative to positive and vice versa indicate a complex magnetic field topology
and the close encounter of a magnetic neutral line.

The panels on the right-hand side of Fig. 4.20 show the reconstructed spatial
profiles of current density and magnetic field. The method of reconstruction is based
on linear gradient estimation (Chanteur, 1998). It is supposed that during the flap-
ping the current sheet is simply translated without any change of its structure and the
streamline derivative dB/dt = ∂B/∂t+(U ·∇)B = 0. Then integration of the trans-
lation velocity projected onto the local current sheet normal Un = ∂Bx/∂t/∇nBx

during the crossing gives an estimate for the vertical scale Z∗ (see Runov et al., 2005).
The current density profiles have very similar shapes and show that during intervals
A, B, and C Cluster crosses a single-peaked thin current sheet with a half-thickness
of about one ion gyroradius. The profile during interval D shows a change in the
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Fig. 4.20. Cluster observations during a flapping event on October 1, 2001 (left-
hand panel): Bx from Cluster/FGM, components of the current density j = ∇×
B/μ0, and the magnetic curvature vector C = (b ·∇)b, and x component of the
proton bulk velocity from Cluster/CIS. Reconstructed profiles of current density
(cross-tail component) and maximum variance component of the magnetic field for
current sheet crossing A–D (right-hand panel). Index u denotes upward motion of
the sheet, Bx changes from positive to negative, and d indicates downward motion
(Runov et al., 2005). See also color plate.

current sheet structure. Interval E, with reversals of the magnetic field curvature
vector and ion bulk flow direction, will be discussed below.

4.5.3 X-line encounter and Hall currents
During the repeated current sheet crossings in interval E in Fig. 4.20, Cluster

observed a fast flow reversal from tailward, with a maximum speed of 800 km/s, to
earthward, with maximum value of 700 km/s. The magnetic field curvature vector,
calculated from four-point magnetic field observations (see also Shen et al., 2003),
also reversed, first pointing tailward during the tailward flow, then earthward during
the earthward flow. The corresponding reversals of the magnetic field curvature and
proton bulk velocity indicate that Cluster crossed a tailward traveling magnetic
X-line (Runov et al., 2003a).

Figure 4.21 illustrates the situation. The three bottom rows show snapshots of the
magnetic field and proton bulk velocity measured by Cluster at three consecutive
instances, during which the X-line passes over the spacecraft. Two upper rows present
a schematic view of the Cluster tetrahedron position fitted to a simulated magnetic
field and ion flow around an X-line (adapted from Hoshino et al., 2001b). Note that
Cluster observations of the earliest times are plotted at the right, since the X-line
moved tailward, or the location of Cluster relative to the X-line moved earthward.

At 09:48:02 UT (right column) Cluster 1, 3, and 4 detected tailward flow. Cluster 1
and 2 detected earthward and dawnward (By < 0) magnetic field, while the magnetic
field detected by Cluster 3 was tailward and duskward (By > 0). Cluster 4, staying
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Fig. 4.21. Cluster observations of the magnetic X-line. Bottom panels: Snapshots
of magnetic field and ion bulk velocity vectors in three GSM projections. The two
upper figures are sketches of spacecraft positions with respect to the X-line, using
magnetic field lines and ion velocity vectors from a simulation by Hoshino et al.
(2001b). The symbols � and ⊗ give the direction of the By component.

closest to the neutral sheet, saw a very weak magnetic field, directed tailward and
duskward. Cluster 2, 3, and 4 found a weakly negative Bz. Since the weakly positive
Bz at Cluster 1 seems to be a short-lived (5 s) fluctuation (the average value during
the tailward flow (09:47–09:49 UT) is −2nT), these data show that Cluster was
located tailward of the X-line.

At 09:48:34 UT (mid column) the pair of spacecraft most separated along x

(Cluster 3 and 4) detected oppositely directed ion flow: Cluster 4 saw tailward and
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Cluster 3, earthward flow. Cluster 1, staying in a stronger magnetic field, observed
slower ion flow directed mostly southward. The magnetic field topology also changed
drastically: Cluster 1, 2, and 3 observed a magnetic field directed dawnward in the
y, z plane (bottom row), while Cluster 4 saw the field directed duskward. Thus, the
separatrix apparently was located in between Cluster 4 and the other three: Cluster
probed the close vicinity of the X-line. Since Bz at Cluster 1 and 3 was positive,
while Cluster 2, separated along the y direction, showed a small negative Bz, the
magnetic field around the X-line was highly nonuniform in all three directions
and the typical scales were comparable to the Cluster separation. Cluster 2 and
3, separated by 1000 km along z, detected almost equal magnitude but oppositely
directed Bx, which roughly yields a current sheet half-thickness of about 500 km
near the X-line.

At 09:48:57 UT Cluster 3 and 4 observed strong earthward flow, while the flow
detected by Cluster 1 was southward and much weaker. All four spacecraft detected
a positive z component of the magnetic field. At the same time, the magnetic
field observed by Cluster 1 had a dawnward component, while observations by
Cluster 2 and 4 showed a duskward magnetic field component. The magnetic field
from Cluster 3 was slightly dawnward and tailward.

The By observations can be interpreted as the observation of the Hall quadrupolar
magnetic field structure (Section 3.1), first observed by Nagai et al. (1998) and
schematically shown in the upper row of Fig. 4.21 and the sketch in Fig. 4.22 (after
Runov et al., 2003a). Indeed, at 09:48:02 UT, when Cluster was located tailward of
the X-line, the two spacecraft (Cluster 1 and 2) staying in the northern hemisphere
observed dawnward (By < 0) magnetic field, while the other two, situated in the
southern hemisphere, detected By > 0. At 09:48:34 the situation was more complex:
Cluster 3 and 4, located in the southern hemisphere at opposite sides of the X-line
detected oppositely directed out-of-plane magnetic fields (negative at Cluster 3 and
positive at Cluster 4), which is consistent with the theoretical picture. Cluster 1,
detecting the ion inflow, was likely located outside of the Hall zone. Cluster 2 was
probably situated very close to the separatrix, where the Hall effect is negligible.

Fig. 4.22. Sketch of Cluster observations of Hall magnetic fields and current sheet
structure around the reconnection region, the dashed line indicates the trajectory
of Cluster, the symbols � and ⊗ indicate the direction of the Hall magnetic fields,
and the wide arrows show the main plasma flow direction. After Runov et al.
(2003a).
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During the earthward flow interval (09:48:57 UT) Cluster 2 and 4, staying in
the northern hemisphere, showed Bz > 0, while Cluster 3 in the southern hemi-
sphere detected By < 0, which is again consistent with the Hall reconnection model.
Cluster 1, detecting ion inflow, was again located outside of the Hall current system
region.

The quadrupolar out-of-plane magnetic field component is a manifestation of the
Hall current system which has a direction opposite to the main flow direction indi-
cated by the wide arrows in Fig. 4.22. The Hall currents result from ion–electron
decoupling within the ion diffusion region with a characteristic scale of the ion inertial
length (Sections 3.1 and 3.2). These signatures were previously detected by Geotail
(Nagai et al., 2001; Asano et al., 2004) and Wind (Øieroset et al., 2001) spacecraft,
however, simultaneous multipoint observations by Cluster show, for the first time,
the spatial structure of the Hall region.

4.5.4 Bifurcated current sheets
Nakamura et al. (2002b), using Cluster four-point measurements, found that

the magnetotail current sheet sometimes exhibits a double-peaked profile of the elec-
tric current density. Such bifurcated current sheets may exist during intervals of high-
speed ion flow (Runov et al., 2003a) as well as during intervals with |Vx| ≤ 100km/s
(Sergeev et al., 2003; Asano et al., 2005). Their thickness varies from about 1RE

(Runov et al., 2004) down to less than 1500 km (Asano et al., 2005).
The existence of thin bifurcated sheets may be closely associated with the forma-

tion of thin embedded current sheets at small scales (see also Section 4.4.1) prior to or
during reconnection. Indeed, Runov et al. (2003a), analyzing the current sheet struc-
ture around the X-line encounter in interval E in Fig. 4.20, showed that during the
tailward and earthward flow intervals the current sheet was bifurcated, with broad
valleys between peaks of the current. The scale of the valleys was approximately
3000–4000 km. In between the oppositely directed flows the current sheet was very
thin, with a half-thickness of 500 km, and had a flat profile near the maximum of the
current (∼20nA/m2). This is depicted schematically in Fig. 4.22.

4.5.5 Hall current closure
The Hall currents generated in the ion diffusion require continuation currents

outside the ion diffusion region. At the lobe side, the closure of the Hall currents
takes place via cold electrons flowing into the ion diffusion region. At the outflow
region, on the other hand, accelerated electrons exiting along the magnetic field
provide currents into the ion diffusion region. Such behavior of the electrons has been
observed previously by Geotail (Fujimoto et al., 2001; Nagai et al., 2001) and by
Wind spacecraft (Øieroset et al., 2001). These field-aligned currents can be observed
also well outside the reconnection region. In particular, at the earthward side of the
reconnection region, they may even extend to the auroral acceleration region. Cluster
also observed such downward–upward field-aligned current pairs associated with a
transient encounter of energetic ion beams, which suggests a connection to the ion
diffusion region as illustrated in Fig. 4.23 (adapted from Nakamura et al., 2004b).
Multipoint observations suggested that the scale size of the downward current was
at maximum comparable to the ion inertia length so that it plausibly connects to the
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Fig. 4.23. Summary of observations by Cluster during a transient entry into the
plasma sheet between 12:40 and 12:41 UT on October 10, 2001 substorm event
(left-hand side) and illustration of possible relationship to the reconnection region.
For Cluster observations field signatures are showing in the northern hemisphere,
while particle signatures are illustrated in the southern hemisphere assuming they
are symmetric in hemisphere. (adapted from Nakamura et al., 2004b).

near-Earth X-line and is driven by Hall effects in the reconnection region as proposed
by Fujimoto et al. (2001). Consistent with the electric field found in the vicinity of
the ion diffusion region (Nagai et al., 2003), a southward electric field (−V×B field
from the drift of cold ions) was observed at Cluster.

The field-aligned current system closing the Hall current near the reconnection
region has also been inferred using the electron moments from Geotail observations
(Asano et al., 2004). The Plasma Electron And Current Experiment (PEACE; John-
stone et al., 1997) onboard Cluster also succeeded in measuring the field-aligned
electron currents at the earthward side of the reconnection region (Alexeev et al.,
2005). In addition to confirming the downward (towards the X-line) and upward
(away from the X-line) field-aligned currents near the plasma sheet boundary and
the plasma sheet side, respectively, as predicted from the closure of the Hall currents,
their observations showed a layer of stronger downward currents at the interface
between the downward and upward currents. These different layers of field-aligned
currents could be due to two nested diffusion regions possibly related to the effect of
the heavy ions (Alexeev et al., 2005). For the same event, even finer structures with
temporal scales less than 1 s were observed to be embedded in the inflowing field-
aligned beams (Asano et al., 2005) based on the high-temporal resolution measure-
ment of the 500 eV field-aligned electrons with the Electron Drift Instrument (EDI;
Paschmann et al., 2001) onboard Cluster.

4.5.6 Other features
An excitation of electrostatic waves with amplitudes ≤ 400mV/m and

frequencies varying from ion cyclotron to lower hybrid, and electrostatic solitary
waves with amplitudes of 25 mV/m and much higher frequencies were observed
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during the reconnection event discussed in Section 4.5.3 (Fig. 4.21) between 09:47
and 09:51 UT (Cattell et al., 2002b) by the Electric Field and Wave (EFW) instru-
ment (Gustafsson et al., 2001). These waves may provide the dissipation needed for
reconnection in an advanced stage.

Another important new observation for this reconnection event is the ion compo-
sition. During the thin current sheet interval, 09:45–09:55 UT, pressure as well as
density was dominated by O+ rather than H+ (Kistler et al., 2005), which was inter-
preted as being due to storm-time ion outflow from the ionosphere. In the O+ ion
dominated thin current sheet, the O+ ions were found to carry about 5–10% of the
cross-tail current (Kistler et al., 2005). Detailed analysis of the distribution function
showed separate O+ layers above and below the thin current sheet (Wilber et al.,
2004). It was suggested that the O+ in the reconnection region experienced a ballistic
acceleration (Wygant et al., 2005), based on the observation of a large-amplitude
bipolar electric field (±60mV/m) observed by EFW directed normal to the current
sheets for the same event. Cluster therefore opened up a new interesting topic to
investigate from the observational point of view: the effect of the multicomponent
plasma in the reconnection.

4.5.7 Consequences of tail reconnection
One of the major consequences of reconnection is the generation of fast

plasma flows, which for a long time have been used as the major indicator of the
occurrence of reconnection and for the identification of the location of the reconnec-
tion site. Statistical analyses of Geotail ion flow measurements thus concluded, from
a distinction between the substorm-related onset of tailward and earthward flows,
that usually near-Earth reconnection starts in the tail region between 20RE and
30RE distance from the Earth (Nagai et al., 1998).

Plasma bulk acceleration might take place not only in the immediate vicinity
of the reconnection site but also at slow shocks, which in the Petschek model
(Section 2.1) extend outward from the diffusion region. Slow-mode shocks connected
to the ion diffusion region have been identified in the tail by previous studies
(e.g., Feldman et al., 1987; Øieroset et al., 2000) based on Walén analysis (e.g.,
Sonnerup et al., 1987) and checking Rankine–Hugoniot shock jump conditions. Using
multi-composition plasma observation by Cluster, Eriksson et al. (2004) performed
a similar analysis by taking into account also the contributions from oxygen ions
during a substorm X-line event when Cluster observed fast tailward and earthward
flows. The successful joint Walén and slow shock analysis of the tailward flows within
the plasma sheet presented further evidence in favor of Petschek-type reconnection
at distances XGSM > −19RE of the near-Earth magnetotail. The failure of both
the Walén test and the Rankine–Hugoniot analysis of the earthward flow portion
of the plasma flow reversal event were interpreted to be associated with the strong
earthward gradient of the magnetic field in the inner magnetosphere.

Due to its apogee Cluster observes many more earthward high-speed flows than
tailward flows. This enabled new results to be obtained on consequences of reconnec-
tion at the earthward side of the X-line(s), namely earthward propagating southward
then northward magnetic field disturbances related to plasmoids/flux rope (Slavin
et al., 2003a; Zong et al., 2004), traveling compression regions (Slavin et al., 2003b)
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and nightside flux transfer events (Penz et al., 2004; Sergeev et al., 2004), analogous
to features more commonly observed tailward of the reconnection site. Multipoint
analyses by Cluster were used to measure the current density and check a force-free
model (Slavin et al., 2003b) and energetic particle boundaries (Zong et al., 2004) to
show the structures of the plasmoid/flux rope. Yet, since the plasma flows jetting
toward the Earth are significantly influenced by the strong dipolar field and pressure
gradient, it still remains unknown to what extent these structures can be treated as
motion of a stable structure in the analyses. Similar magnetic features were inter-
preted as transient profiles associated with a change in the reconnection rate at a
remote X-line, allowing a determination of the location of the X-line (Penz et al.,
2004; Sergeev et al., 2004). Determination of the field topology would be a key to
differentiating whether these structure are coming from a single X-line or signature
of multiple X-lines.

The bursty bulk flows (BBFs) and related phenomena, which are attributed to
local reconnection that is not necessarily substorm related (Section 1.2), were also
intensively studied by Cluster spacecraft using multipoint observations. A statistical
analysis was performed by Nakamura et al. (2004a) to estimate the typical scale size
of BBFs. It was suggested that the full width of the flow channel is on average 2–3RE

in the dawn–dusk direction and 1.5–2RE in the north–south direction. Furthermore,
BBFs were found to be accompanied by different types of magnetic field disturbances
such as dipolarization (Nakamura et al., 2002a), low-frequency wave activity (Volwerk
et al., 2003, 2004), and turbulence (Vörös et al., 2003, 2004).

The role of reconnection and fast flows in substorms has been one of the key
topics in the magnetosphere. Using Cluster, together with the other spacecraft and
ground-based observations, several case studies determined reconnection to be the
key process leading to a major substorm onset (Baker et al., 2002; Sergeev et al.,
2005), although multiple pseudo-break-ups preceding the major onsets complicate the
determination of the cause and effect arguments of the initial disturbance. During a
more simple isolated earthward flow burst event, magnetosphere–ionosphere coupling
processes were studied by conjugate dense ionospheric observations showing BBF-
associated field-aligned and ionospheric current systems (Grocott et al., 2004; Naka-
mura et al., 2005).

4.6 Remote sensing of reconnection
M. P. Freeman, G. Chisham, and I. J. Coleman

Remote sensing – the acquisition of information about an object without being in
physical contact with it – has been the basis for our understanding of magnetic recon-
nection in the Universe. Telescope observations have revealed a solar magnetic field
and related it through magnetic reconnection to the structure and dynamics of solar
plasma (Giovanelli, 1948; Kopp and Pneuman, 1976). Remote sensing of electrical
currents in space from magnetic fluctuations on the ground inspired the magnetic
reconnection model of plasma convection within the magnetosphere (Dungey, 1961).
In recent years, amazing movies of dynamical reconfigurations of solar prominences
and arcades by the SOHO and TRACE spacecraft and of Earth’s aurora by the Polar
and IMAGE spacecraft have emphasized the spatial and temporal complexity and
motivated new magnetic reconnection models (Aulanier et al., 2000; Fletcher et al.,
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2001; Freeman and Watkins, 2002). Remote sensing of planetary aurorae (Grodent
et al., 2003; Cowley et al., 2005) and other astronomical objects such as collapsing
black holes (Igumenshchev et al., 2003) have suggested magnetic reconnection to be
a universal phenomenon.

Whilst remote sensing is a powerful tool in the study of magnetic reconnection, it
is necessarily an indirect measurement, and typically only on magnetohydrodynamic
(MHD) scales. Thus it is also desirable to have in situ measurements localized within
the broader time and space range of indirect remote sensing. In situ observations have
greatly enhanced our understanding of the plasma and magnetic field environment
within the reconnecting current sheet down to electron scales (Øieroset et al., 2001;
Mozer et al., 2002). They have also provided some measurements of the reconnection
rate at the magnetopause (Sonnerup et al., 1981; Lindqvist and Mozer, 1990) that
can be a valuable point of comparison with remote sensing measurements (Pinnock
et al., 2003). Importantly, the Earth’s magnetosphere occupies a privileged position
in being the only natural environment in which reconnection can be sensed both
remotely and in situ. In this section we shall present a method of remotely sensing
magnetic reconnection in the magnetosphere from the ionosphere (Vasyliunas, 1984)
and discuss examples of its use in advancing reconnection knowledge.

4.6.1 Method
Magnetic reconnection can be defined as the breaking and reconnecting

of magnetic field lines to connect them in a different way (Schindler et al., 1988,
Chapter 2). Thus, magnetic reconnection can be remotely measured by: (a) detecting
regions of different magnetic connectivity and (b) measuring the rate of change of
their magnetic flux or, more generally, the transport of magnetic flux across the
separatrices dividing the regions of different connectivity.

Figures 1.6a and 4.1a show examples of this for the classical open magnetosphere
model (Dungey, 1961) appropriate for southward interplanetary magnetic field (IMF)
with one magnetic reconnection X-line site at the low-latitude magnetopause and
one in the Earth’s magnetic tail. Separatrices emanating from each X-line divide the
magnetic field into four regions with three distinct magnetic topologies: (1) Closed
magnetic field lines with both ends on the Earth. (2) Open magnetic field lines
with one end on the Earth and one end in the solar wind. (3) Free magnetic field
lines with neither end attached to the Earth. The different topologies give rise to
different plasma properties in each region that can be detected at their footpoints,
as discussed below. In this way, the reconnection separatrices are mapped to the
ionosphere without an explicit magnetic field model. Out of the noon–midnight plane
(neglecting distortion by azimuthal fields), the closed field lines form a torus around
the Earth such that the dayside and nightside closed field line regions are joined
(Fig. 1.5). Consequently, the boundary between closed and open magnetic field lines
in the ionosphere is approximately a circle of constant geomagnetic latitude in each
polar hemisphere. As discussed in Section 4.1, this simple topology becomes struc-
turally unstable when the 2D symmetry in Figs. 1.6a and 4.1a is broken, for instance,
by the presence of a y component of the magnetic field. Nevertheless, one can still
identify surfaces that separate regions of different magnetic topology.
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Assuming this, the total net reconnection rate is given by the rate of change of
magnetic flux F in any of these regions. Measuring reconnection from the ionosphere
offers the advantages that the measurement area A enclosing this flux is minimized,
and that the magnetic field in the ionosphere Bi is approximately incompressible
and thus can be described by a static empirical model, such as the International
Geomagnetic Reference Field. Consequently, the rate of change of magnetic flux is
given by

Ḟ = Ḟp − Ḟt = BiȦ, (4.33)

where Ẋ denotes the time derivative of X and the middle expression is appropriate
for the case shown in Fig. 1.6a where Ḟp and Ḟt are the total reconnection rates
along the magnetopause and magnetotail X-lines, respectively.

Complications arise from scenarios in which the topology of the magnetic field
lines with footpoints on the Earth is not changed by reconnection. For magnetopause
reconnection during dominantly northward IMF (Figs. 1.8 and 4.1b), reconnection
X-lines are expected at high northern and southern latitudes (Dungey, 1963). Asym-
metry between the northern and southern hemispheres (e.g., due to magnetic dipole
tilt or a component of the IMF in addition to the north–south component) may
mean that reconnection involving an open magnetic field line with its footpoint on
the Earth changes its connectivity but not its topology (Reiff and Burch, 1985).
For magnetotail reconnection, Figs. 1.6b–d show an example within the neutral line
model of substorms (Baker et al., 1996) that might occur immediately after the onset
of a substorm (see Section 1.2). The formation of a near-Earth X-line simultaneously
with a distant X-line means that a closed field line previously reconnected at the
distant X-line is reconnected again but remains closed, while a severed part forms free
plasmoid (O-type) magnetic field lines. However, this scenario is transient because
the plasmoid is being ejected downtail out of the system. In the presence of a net
cross-tail magnetic field component the symmetry of Fig. 1.6 is broken, and plas-
moid field lines no longer form closed loops but rather helically wound lines, which
initially are still connected to Earth (illustrated by Fig. 4.16, top panel). Although
the connections have changed, no topology change takes place at this stage.

In any event, assuming that the plasma properties on each side of the ionospheric
footpoint of the reconnection separatrix are sufficiently different to identify it, the
local reconnection rate can be remotely sensed in the ionosphere by measuring the
rate of transport of magnetic flux across unit length of the ionospheric separatrix,
such as between closed and open magnetic field line regions:

E = v′
nBi, (4.34)

where v′
n is the field line velocity normal to the separatrix measured in the rest frame

of the separatrix. In the F-region ionosphere, electrons are frozen into the magnetic
field (i.e., ideal electron MHD) such that the field line velocity equals the electron
velocity and thus E is the electric field component tangential to the separatrix.
Moving into a general measurement frame in which the separatrix moves with velocity
u, we get

E = (vn −un)Bi, (4.35)
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where vn and un are the field line velocity and separatrix velocity, respectively, normal
to the separatrix in the measurement frame. In contrast to the total reconnection
rate, a magnetospheric magnetic field model is required to relate the local ionospheric
reconnection rate to the local reconnection rate at the X-line in the magnetosphere
(i.e., to relate the unit length in the ionosphere to the corresponding length along
the X-line).

Thus, ionospheric remote sensing of magnetic reconnection requires the following
measurements: (1) E × B drift velocity normal to the reconnection separatrix,
(2) position and velocity of the reconnection separatrix. Let us now consider the
methods used to measure these.

E×B drift velocity normal to the reconnection separatrix
Measurements of the E×B drift velocity in the ionosphere have been made

for many years by spacecraft and ground-based radars. More indirect estimates have
also been made using ground-based magnetometers to infer currents within the iono-
sphere, which can be related to the electric field via Ohm’s law. Such observations
have provided average convection patterns for given solar wind and magnetospheric
conditions that have clearly shown them to be driven by magnetic reconnection, and
also provided evidence suggesting transient and localized reconnection. However, to
measure convection structure unambiguously from local to global scales in time and
space requires networks of spacecraft, radars, or magnetometers. Such measurements
have become possible from the Super Dual Auroral Radar Network (SuperDARN,
Greenwald et al., 1995). The radars measure the line-of-sight component of the E×B
drift velocity of ionospheric plasma from the Doppler shift of coherently reflected
echoes from naturally occurring irregularities in electron density. Estimates of the
2D E × B drift velocity vector in the ionospheric plane can be derived either by
combining measured velocity components at the same ionospheric location from two
or more radars looking from different directions or by using the line-of-sight measure-
ments to fit a global solution for the velocity stream function (electrostatic potential)
expressed as a series expansion in spherical harmonics and constraining the solu-
tion using limited information from a statistical convection model parametrized by
the IMF orientation (Ruohoniemi and Baker, 1998; Chisham et al., 2002; Provan
et al., 2002). Figure 4.24 shows an example of a SuperDARN convection map derived
from measurements from six radars in a 2-min interval. The 2D velocity can then
be resolved normal to a reconnection separatrix identified from a number of obser-
vational methods as follows.

Position and velocity of the reconnection separatrix
Particle precipitation The most direct and reliable method for locating the

reconnection separatrix uses measurements by polar-orbiting spacecraft of the energy
spectrum of approximately magnetic field-aligned electrons and ions that precipitate
to ionospheric altitude without being mirrored by the magnetic field. From numerous
observations made by the DMSP satellites, the energy spectra have been categorized
into different types corresponding to different plasma regions in the Earth’s magne-
tosphere (Newell et al., 1991, 1996), some of which are on open magnetic field lines
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Fig. 4.24. A map of ionospheric convection in the northern polar ionosphere
measured by SuperDARN. Geomagnetic latitude contours are shown by the thin
black circles, magnetic local times are indicated around the lowest latitude circle.
Short lines indicate 2D velocity vectors estimated from a spherical harmonic fit
to available line-of-sight velocity measurements. Dots indicate the origin of the
vectors. The dotted and dashed curves show the flow streamlines. Other features
are explained in the main text.

and others on closed (Sotirelis and Newell, 2000). Thus one can identify the open–
closed field line boundary (OCB), on which the reconnection separatrices lie in the
most common reconnection scenario of Fig. 1.6a. More generally, the magnetopause
reconnection separatrix can be identified for any IMF orientation from a dispersed
ion signature (Burch et al., 1980). A similar signature of the near-Earth reconnection
separatrix in the magnetotail (Fig. 1.6b–d) may also exist (Sotirelis et al., 1999).

Thus, the reconnection separatrix can be identified from its associated particle
precipitation boundary (PPB) in most cases when it is crossed by a DMSP satellite
or other polar-orbiting spacecraft with similar particle instrumentation. However,
information on the separatrix position and velocity is limited by the long orbital
period of about 100 min during which no more than two OCB crossings are made in
each polar hemisphere, requiring considerable extrapolation in time and space. This
can be improved by using data from more than one polar-orbiting spacecraft when
available (Sotirelis et al., 1998), but coverage is still a significant limitation.
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Optical emissions When particles precipitate into the denser ionosphere
they collide with other particles to give off light, causing the aurorae. The intensity
and wavelength of the emission depends on the flux and energy of the precipi-
tating particles and the particle composition of the ionosphere (Rees, 1963). Thus
there is reason to believe that auroral observations at certain wavelengths should
be able to identify the PPBs associated with reconnection. Most ground-based
optical measurements are made in the red (630 nm) and green (557 nm) spectral
lines. On the nightside, both of these lines correspond to precipitation energies
associated with closed field lines and thus the OCB is identified with the poleward
boundary of either red or green line emission, although the red line is thought to
be the best indicator (Blanchard et al., 1995). On the dayside, the reconnection
separatrix is identified with the poleward edge of dominantly green-line emissions
but the equatorward edge of dominantly red-line emissions, because high fluxes
of low-energy electrons excite red aurorae on newly reconnected field lines in the
cusp region (Lockwood et al., 1993). Spacecraft imagers measure in other wave-
lengths besides the visible. In a large statistical study, the poleward boundary
of UV emissions in the Lyman–Birge–Hopfield Long (LBHL) range (164–178 nm)
measured by the Ultraviolet Imager (UVI) instrument on board the NASA Polar
satellite (Torr et al., 1995) has been shown to match closely the PPB proxy of
the OCB measured by DMSP particle instruments, except in the early morning
magnetic local time (MLT) sector (0–9 MLT) (Carbary et al., 2003). Here, UV
emissions in the 130–140 nm range appear to provide a more reliable proxy for the
OCB (Wild et al., 2004).

In contrast to the particle detectors on polar-orbiting spacecraft, ground-based
optical imagers, such as those in the MIRACLE network (Syrjäsuo et al., 1998), can
sample a fixed latitude every 20 s continuously throughout the night, which may last
for 3 months in the winter at polar latitudes, although observations are interrupted
by clouds and the full Moon. Each image covers a circular area of ∼600km diameter
at ∼ 1km resolution. Satellite-based optical imagers, such as Polar UVI, can image
the aurora over an entire polar ionosphere at lower spatial resolution (∼30km square
at orbit apogee) every 37 s for prolonged periods of ∼9 hours per orbit. UV imagers
are able to make observations in sunlight, although dayglow can dominate over the
auroral emission at times.

Ionospheric electron density Particle precipitation also affects electron
number density in the ionosphere through enhanced ionization. Thus, another OCB
proxy has been identified with a latitudinal transition in ionospheric electron density,
measured by the Sondrestrom incoherent scatter radar. On the nightside, the proxy
is a sharp latitudinal cutoff of electron density in the E-region ionosphere, that is
correlated with the 630 nm optical proxy of the nightside OCB (de la Beaujardière
et al., 1991; Blanchard et al., 1996, 1997). On the dayside, the proxy is a latitudinal
transition from high peak ionization rate or low peak altitude to low peak ioniza-
tion rate or high peak altitude, derived from the electron density measurements
(Blanchard et al., 2001). This is correlated with the DMSP particle proxy of the
dayside OCB.
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HF radar spectral width Although designed to measure the E × B drift
velocity of ionospheric plasma, a number of other diagnostics from the SuperDARN
radars have been found to be useful. One of these is the width of the backscattered
power spectrum (derived from the decorrelation time of the autocorrelation function
of the backscattered radar signal), which is a measure of nonstationarity in the iono-
spheric medium on scales smaller than the radar sampling scales (i.e., 7 s and 45 km)
(Villain et al., 1996). Individual comparisons between a high spectral width region
near noon MLT and particle signatures of newly reconnected magnetic field lines
in the cusp region showed the sharp equatorward boundary of high spectral width
to coincide with the OCB (Baker et al., 1995). Similar latitudinal transitions from
low to high spectral width are also apparent at other MLTs (Chisham and Freeman,
2004). Statistical studies have shown that such spectral width boundaries (SWBs)
are a good proxy for the OCB in the 8–14 and 18–2 MLT sectors, but are displaced
equatorward of the OCB in the 2–8 MLT sector (Chisham et al., 2004b, 2005a). This
MLT variation in the SWB latitude matches that of the poleward boundary of UV
emissions in the LBH band referred to above. In the 14–18 MLT sector, the proba-
bility distribution of SWBs has two peaks in latitude with the more poleward SWBs
(>74◦ latitude) being a good proxy for the OCB (Chisham et al., 2005b).

Convection reversal From the open magnetosphere model for southward
IMF (Fig. 1.6a), the OCB can also be expected to coincide with the convection
reversal boundary between anti-sunward flow on high-latitude open magnetic field
lines and sunward flow on lower-latitude closed field lines. Observationally, the
convection reversal boundary proxy is found to be statistically co-located with the
DMSP particle proxy of the OCB near noon MLT, but is progressively equatorward
of it towards dawn and dusk (Sotirelis et al., 2005), due to plasma circulation from
viscous (nonreconnection) processes.

4.6.2 Examples

Pioneering studies
Remote sensing of magnetic reconnection in the magnetotail using the above

method was pioneered by de la Beaujardière et al. (1991) and Blanchard et al. (1996,
1997) using the Sondrestrom incoherent scatter radar. They investigated how the
magnetotail reconnection rate varied with magnetic local time, IMF variations, and
substorm activity. The technique was later developed to remotely sense the reconnec-
tion rate at the magnetopause and its response to variations in the IMF (Blanchard
et al., 2001). However, these studies were limited to measurements along a magnetic
meridian, such that the orientation of the separatrix had to be assumed and the
reconnection rate was determined only at one point.

Remote sensing of spatially extended reconnection (at the magnetopause) began
with the studies of Baker et al. (1997) and Pinnock et al. (1999) using the Polar
Anglo-American Conjugate Experiment (PACE), comprising one HF radar in each
polar hemisphere. These studies revealed the orientation of the reconnection separa-
trix to be variable in time and space and tilted by up to 40–50◦ with respect to a
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contour of constant geomagnetic latitude, such that the assumptions in the earlier
single-point studies were not always valid. Also, by comparing the reconnection rate
integrated over the radar field of view with the global reconnection rate inferred
from other measurements, the studies suggested that the reconnection separatrix was
rarely contained within the radar field of view, highlighting the need for networks of
radars to image the entire reconnection separatrix.

State of the art studies
A few studies have begun to do this using SuperDARN, supplemented by

other instruments. Milan et al. (2003) studied the variation of the total net reconnec-
tion rate and the relationship between magnetopause and magnetotail reconnection
during two substorm cycles. Using Eq. (4.33), the total net reconnection rate was
calculated from the rate of change of the area of the open field line region. The OCB
was monitored almost continuously in time and space using a combination of the
poleward boundary of UV emissions determined from the Polar UVI, the equator-
ward boundary of high spectral width determined from six SuperDARN radars, and
the poleward boundary of high-energy precipitation determined from three polar-
orbiting spacecraft. The polar cap area was found to increase and decrease by a factor
of three during the interval of study in a manner consistent with the near-Earth
neutral line model (Section 1.2, Baker et al., 1996). Separating the contributions
from magnetopause and magnetotail reconnection, Milan et al. (2003) showed that
nightside reconnection from the first substorm lasted less than 200 min, and likely
only 100 min – the duration of the recovery phase of the first substorm.

Pinnock et al. (2003) studied the extent, and spatial and temporal variation
of magnetopause reconnection during due southward IMF, addressing the scenario
shown in Figure 1.6a. Figure 4.24 shows a snapshot of ionospheric convection at the
time of one spacecraft encounter with the magnetopause when bidirectional plasma
jets associated with reconnection were observed (Phan et al., 2000). The bold circular
annulus bounds the expected location of the OCB based on a lowest order extrapo-
lation in space and time of observed OCB proxies from a DMSP F-13 satellite pass
(bold dashed line) and from the Goose Bay radar. SWBs identified at this time from
the Goose Bay and Finland radars are shown by the gray shaded regions. From a
sequence of such snapshots, Pinnock et al. (2003) derived the ionospheric projection
of the magnetopause reconnection rate wherever radar data existed, as summarized
in the upper panel of Fig. 4.25. Overall, reconnection occurred over the entire MLT
extent of radar observations from 8 to 16 MLT. Mapping this to the equatorial
magnetopause using an empirical magnetic field model with a magnetopause position
calibrated using the actual spacecraft encounters, suggests the reconnection separa-
trix length to be at least 38 RE, extending beyond both the dawn and dusk flanks
of the magnetopause.

The spatial distribution of the reconnection rate is relatively stable in time. The
reconnection rate is relatively uniform in space over the morning sector, but appears
to be more spatially structured in the afternoon sector. This structuring could be due
to a genuine spatial variation in the reconnection rate or could arise from mesoscale
structure of the OCB which is not captured by the lowest order approximation used
(note the difference between the SWB and the fitted OCB in this sector in Fig. 4.24).
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shaded regions, respectively.

In either case, a physical explanation for this structure is unknown. The typical
rate of magnetic flux reconnection per unit length of the separatrix in the iono-
sphere is ∼20Wb s−1 km−1. Integrating this over the entire separatrix in its rest
frame gives a minimum global reconnection rate of ∼150kWb/s and dividing by the
separatrix length at the magnetopause gives an average reconnection rate there of
∼0.6Wb s−1 km−1, comparable with independent in situ spacecraft estimates under
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similar conditions. To within the 2-min resolution of the observations, the results
show that reconnection was continuous but probably variable in time.

This study has been complemented by a similar analysis of reconnection during an
interval of steady, northward IMF (Chisham et al., 2004a). The ionospheric projection
of the magnetopause reconnection rate is summarized in the middle panel of Fig. 4.25.
In this case, the reconnection separatrix was largely contained within the MLT extent
of radar observations from 10 to 13 MLT, as can be seen by the drop to small
reconnection electric fields at the MLT limits. The reconnection separatrix was found
to map to the high-latitude magnetopause, anti-sunward of the cusp, with a length
of ≤11 RE. The global reconnection rate of 10–16kWb/s is an order of magnitude
smaller than for the southward IMF case, whereas the average reconnection rate of
∼ 0.2Wb s−1 km−1 at the magnetopause is only a factor of three lower. The spatial
structure of the reconnection rate is again relatively stable in time and uniform in
space over the central region between 10 and 12:30 MLT. Again, reconnection was
continuous but probably variable in time.

The bottom panel shows the ionospheric projection of the magnetopause reconnec-
tion rate during steady southward IMF but with an eastward component of compa-
rable magnitude, derived here from another study of reconnection (Coleman et al.,
2001). For this intermediate IMF case, the reconnection separatrix appears to be
split into two parts with an area of negligible reconnection in between around noon
MLT. When mapped to the magnetopause, the reconnection separatrix was found
to lie close to the equator in the morning sector but at high latitude close to the
cusp in the afternoon sector. The length of the reconnection separatrix was not fully
imaged by the available radar data. The reconnection rate at the separatrix in the
ionosphere is ∼ 10Wb s−1 km−1 in the morning sector but ∼40Wb s−1 km−1 in the
afternoon. However, when mapped to the magnetopause this disparity is less and
the average reconnection rate there is ∼ 0.5–1Wb s−1 km−1, comparable with that
derived for the southward IMF case.

4.6.3 Discussion
The examples in Section 4.6.2 illustrate how outstanding questions of

magnetic reconnection that were difficult or inaccessible to study by localized
ground-based or in situ observations can now be addressed. Since remote sensing
provides a more continuous, larger-scale view of reconnection, it now seems easier to
address the three general questions: (1) Where does reconnection occur? (2) What
is the reconnection rate? (3) When does reconnection occur?

The location of magnetic reconnection on the Earth’s magnetopause provides
a strong constraint for magnetic reconnection theories and models. Plasma and
magnetic field conditions vary widely over the magnetopause surface, such that
the reconnection location can be used to identify the most favorable conditions for
reconnection. In the three magnetopause examples summarized above, the location,
stability, and rate of reconnection were remotely sensed for steady southward, north-
ward, and intermediate IMF orientations. The measurement of reconnection around
the entire equatorial magnetopause for due southward IMF and at high latitude anti-
sunward of the cusp for northward IMF indicates that reconnection is not inhibited
by high (probably super-Alfvénic) background flow speed and furthermore occurs
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only in regions of maximal magnetic shear (i.e., antiparallel magnetosheath and
magnetospheric magnetic fields). The intermediate IMF example was presented by
Coleman et al. (2001) as a specific test of this antiparallel hypothesis, being under
the conditions for which the ionospheric remote sensing signatures of antiparallel
reconnection would be most different from low-latitude component reconnection (i.e.,
confined to the equatorial plane). Recognizing that antiparallel reconnection gives
rise to bifurcated reconnection sites on the magnetopause whose positions depend
on the IMF orientation and on the Earth’s magnetic dipole tilt, the ionospheric
projection of these sites is most separated in the winter polar hemisphere when
the IMF is in this intermediate orientation, although the gap between them in the
ionosphere is only 1–2 h of MLT. Although this separation is not clearly resolved in
the bottom panel of Fig. 4.25, the reconnection rate does clearly drop to zero near
noon as predicted by the antiparallel reconnection hypothesis. More convincingly,
Coleman et al. (2001) predicted the split reconnection sites to elicit a particularly
unusual and distinct convection signature, which is observed in the SuperDARN
data. Furthermore, a double cusp signature was observed in a simultaneous over-
flight of the DMSP spacecraft, providing independent evidence of a bifurcated recon-
nection separatrix. Further events have been studied which show the characteristic
convection signature, except in one case (Chisham et al., 2002). Additional evidence
has also come from ground-based optical observations of a bifurcated cusp under
similar IMF and seasonal conditions (Sandholt and Farrugia, 2003). An alterna-
tive method to remotely sense the location of reconnection using particle observa-
tions from a polar-orbiting spacecraft has concluded that component and antiparallel
reconnection may occur simultaneously on the magnetopause (Trattner et al., 2004;
Section 4.2) although the statistical basis for this has recently been contested (Abel
et al., 2005).

If the antiparallel reconnection hypothesis is borne out by further observation
then this provides an interesting challenge to 3D global MHD reconnection theory
and models. These predict that 3D MHD reconnection is more component-like than
antiparallel-like, especially for IMF with a southward component (Siscoe et al., 2001,
see also Section 4.1). Reconnection is found to generally occur along the separator
line connecting two magnetic null points near the cusp and passing through the
subsolar region, and is mainly concentrated at low and middle latitudes around the
subsolar region. This appears to contradict the observation of a gap with negligible
reconnection rate near noon MLT in the Coleman et al. (2001) study. However, it has
been suggested that optical observations under similar conditions could be explained
within the 3D MHD framework (Sandholt and Farrugia, 2003). Further research is
required, preferably combining optical and radar ionospheric remote sensing and in
situ spacecraft observations at the magnetopause with 3D MHD models.

Accepting the mapping of ionospheric reconnection separatrices to antiparallel
magnetic field regions on the magnetopause, the difference in the total magne-
topause reconnection rate for the northward and southward IMF examples is
primarily attributable to the length of the locus or loci where magnetospheric
and magnetosheath field lines are antiparallel, which is necessarily shorter for due
northward IMF. The average reconnection rate per unit length of the magnetopause
for the northward IMF case is relatively similar to that for southward IMF (and
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for intermediate IMF). Local MHD reconnection models suggest that the reconnec-
tion rate for antiparallel magnetic fields is proportional to the local Alfvén speed
and it would be interesting to compare the remote sensing results with in situ
measurements of the Alfvén speed in the predicted magnetopause reconnection
regions.

To date, no equivalent ionospheric remote sensing studies of the location, struc-
ture, and rate of nightside reconnection have been published, although studies are
underway (Mai-Mai Lam, private communication). Whilst the nightside reconnection
rate can certainly be measured at the OCB, corresponding to a single and/or distant
X-line in the magnetotail, ionospheric remote sensing of the reconnection rate at the
near-Earth neutral line requires research to identify a suitable ionospheric proxy for
this separatrix (Sotirelis et al., 1999). The Milan et al. (2003) study showed that
nightside reconnection was variable through the substorm and even ceased totally,
but it is unclear how the relative contributions of these two magnetotail reconnection
sites vary. Besides this, ionospheric remote sensing of the location of the reconnec-
tion sites in the magnetotail is very uncertain due to the greater uncertainties in
mapping from the ionosphere to the magnetotail compared with mapping to the
magnetopause.

Finally, the examples presented above concentrated on the properties of reconnec-
tion for a steady-state IMF or on long substorm time scales, and on spatial scales
comparable with the global scale. There is considerable evidence that flows, magnetic
fields, currents, aurora, and other phenomena associated with reconnection fluctuate
on all scales in time and space (Freeman and Watkins, 2002). This would not be
unexpected given the turbulent nature of the IMF and the nonlinear nature of solar
wind/magnetosphere coupling. It would be interesting to use the remote sensing
method to measure the inferred fluctuations in the reconnection rate but more work
needs to be done to improve the analysis methods and the resolution and continuity
of the observations.
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Reconnection in the Sun’s atmosphere

5.1 Coronal heating
E. R. Priest

Understanding how the Sun’s outer atmosphere, or corona, is heated to a few million
degrees by comparison with the temperature of its surface (or photosphere), namely
only 6000 K, is one of the major challenges in astronomy or plasma physics. Until
thirty years ago the main way of glimpsing the corona was during a solar eclipse
(Fig. 1.1a), when the Moon cuts out the glare of the photosphere in white light and
the much fainter corona comes into view with beautiful structures that are dominated
for the most part by the magnetic field.

The corona has a threefold structure of coronal holes, coronal loops, and X-ray
bright points, which was revealed by soft X-ray images from early rockets and Skylab.
The Yohkoh satellite, in particular, has shown the corona to be an MHD world
(Fig. 1.1b), with myriads of coronal loops continually interacting with one another.
In the magnetically open regions (coronal holes) the plasma is streaming rapidly
outwards as the fast solar wind, but in magnetically closed regions the magnetic field
is able to contain the plasma at a higher density. Active regions lying above sunspot
groups show up as a collection of loops in soft X-rays or EUV: images from the
TRACE instrument reveal the highly complex nature of these loop systems (Fig. 5.1).

The energy required to heat the corona is typically 300Wm−2 (3×105 erg cm s−1)
in a quiet region or coronal hole and 5000Wm−2 in an active region. The energy flux
from the solar surface due to photospheric motions moving the footpoints of coronal
magnetic fields is plentiful: since E = −v×B, the Poynting flux is

E×B
μ0

≈ vhBhBv

μ0
,

where vh is the horizontal velocity and Bh,Bv are the horizontal and vertical compo-
nents of the magnetic field. Thus, in order of magnitude, a typical vh of 0.1km s−1,
Bv of 200 G and Bh of 100 G would give a Poynting flux of 104 Wm−2. However,
although Bv is measured well, the value of Bh is highly uncertain and depends on
the nature of the coronal interactions, and therefore on the heating mechanism itself.
Also, the details of how the energy flux is converted into heat and the efficiency of
the various proposed heating mechanisms have not yet been determined.

In the corona the plasma velocity is generally much smaller than the Alfvén speed
(vA =B/

√
μ0ρ), which is typically 1000km s−1 (e.g., for a coronal magnetic field
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Fig. 5.1. An active region imaged by the Transition Region and Coronal Explorer
(TRACE) (courtesy A. Title).

(B) of 10 G and a density (n) of 1015 m−3). We therefore have a force balance, in
which the ratio of the pressure gradient to the magnetic force is the plasma beta

β ≈ 3.5nT

1021B2 ,

which is of order unity in strongly magnetic parts of the photosphere (where
n = 1023 m−3, B = 1500G, T = 6000K) and also in the high corona (where n =
1014 m−3, B=2G, T =106 K). However, in the low corona or in active regions (where
n=1015 m−3, B =200G, T =2 × 106 K, say), β << 1 and so we have a force-free
equilibrium

j×B = 0,

in which the magnetic pressure dominates over the thermal plasma pressure.
The coronal magnetic field is incredibly complex and such complexity may be

described in terms of the magnetic skeleton (Priest et al., 1996), which consists of a
series of null points, separatrices (surfaces of field lines that generally originate from
the fans of nulls and separate topologically distinct regions of space), and separators
(field lines which join one 3D null point to another and represent the intersection
of two separatrices – see Sections 5.1.4 and 5.2). Current sheets tend to form and
dissipate at separatrices and separators, where the magnetic connectivity of coronal
footpoints is discontinuous, but they can also do so at quasi-separatrices where the
magnetic connectivity has steep gradients (Priest and Démoulin, 1995; Titov et al.,
2002), as described in Section 5.3.

Two classes of models for heating the corona have been proposed, namely
reconnection and magnetic waves (e.g., Roberts, 1991; Goossens, 1991). However,
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observational searches have shown that, at low frequencies (30–1000 s), waves do
not appear to be present at high enough amplitude for coronal heating, although
they are seen to be initiated by flares (e.g., Nakariakov et al., 1999). Thus, recon-
nection is now seen as the most likely mechanism for coronal heating in most of
the corona, although high-frequency ion-cyclotron waves may be important in the
high corona, as evidenced by the surprisingly high line widths observed with the
UVCS instrument on SOHO (Kohl et al., 1997). Furthermore, Yohkoh and SOHO
observations have given a wide range of evidence in favor of reconnection at work
in the corona, notably the presence of cusps and interacting loops (Yoshida and
Tsuneta, 1996), X-ray jets (Shibata et al., 1992), explosive events (Dere et al., 1989;
Innes et al., 1997), EIT brightenings (Bergmans and Clette, 1999), and rotating
macrospicules (Pike and Mason, 1998).

Several ways have been proposed in which the corona may be heated by magnetic
reconnection, namely: driven reconnection (Section 5.1.1), turbulent relaxation
(Section 5.1.2), binary reconnection (Section 5.1.3), separator reconnection
(Section 5.1.4), braiding and coronal tectonics (Section 5.1.5). As well as describing
these, we also compare separator and separatrix heating (Section 5.1.4) and describe
a recent estimate of the coronal recycling time (Section 5.1.6).

5.1.1 X-ray bright points: driven reconnection
X-ray bright points were first seen on rocket images and studied with Skylab

by Golub et al. (1974, 1976). They are typically 20 Mm across and are uniformly
distributed over the solar surface, with about 200 being present at one time and
1500 being born each day. Their mean lifetime is 8 hours and they are situated
above pairs of opposite polarity magnetic fragments in the photosphere. One third
of the bright points lie above emerging flux regions and so can be explained by
the emerging flux model (Heyvaerts et al., 1977), whereas the remainder lie above
cancelling magnetic flux regions (Harvey, 1985; Martin et al., 1985) and may be
accounted for by the converging flux model (Priest et al., 1994; Parnell et al., 1994), in
which the convergence of photospheric magnetic fragments drives reconnection in the
overlying corona. The basic idea, illustrated in Fig. 5.2, is that magnetic flux emerges
in a supergranule cell and then moves to the boundary, where one polarity tends to

Jet

XBP

Fig. 5.2. The converging flux model for X-ray bright points.
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accumulate while the other reconnects with opposite-polarity network. The model
has been confirmed by a comparison with high-resolution X-ray (NIXT) observations.

5.1.2 Magnetic relaxation
At the same time as coronal structures are trying to evolve through nonlinear

force-free equilibria in response to footpoint motions, they also tend to relax by 3D
reconnection towards linear force-free states that conserve global magnetic helicity.
Relaxation tends not to destroy magnetic helicity when the magnetic Reynolds
number is very large, but it can convert it from one kind to another, such as from
mutual to self helicity.

Heyvaerts and Priest (1984) suggested that the corona may be heated by relaxation
as it evolves through a series of linear force-free states with the footpoint connections
not preserved but the force-free constant (α) determined from the evolution of relative
magnetic helicity (Berger and Field, 1984)

Hm =
∫

(A+A0)(B−B0) dV,

where A is the vector potential and A0, B0 refer to corresponding potential values
with the same normal field at the boundary. Boundary motions cause the magnetic
helicity to change in time according to

dHm

dt
= 2

∫
(B ·A0)(v ·n)− (v ·A0)(B ·n) dS.

Conceptually, photospheric motions tend to build up energy in a nonlinear force-free
field, which then goes unstable and relaxes to a linear force-free field by reconnection.

Several extensions of the basic theory have been constructed. Vekstein et al. (1991)
suggested intermediate relaxation to a state between the nonlinear and linear fields,
while Vekstein et al. (1993) suggested that the corona is in a state of partial relaxation
with the closed fields being relaxed linear force-free states and the open fields being
potential. Furthermore, Heyvaerts and Priest (1992) realized that their earlier theory
was incomplete, since it depends on an unknown relaxation time, so they proposed
a more self-consistent approach assuming that photospheric motions maintain the
corona in a state with a turbulent viscosity (ν∗) and diffusivity (η∗). First of all, they
calculated the global resistive MHD state driven by boundary motions and deduced
the heat flux (FH(ν∗, η∗)). Secondly, they used cascade theories of turbulence to
determine the values of ν∗ and η∗ which result from that FH. This approach was
applied to an arcade, a flux tube and to heating by wave motions. It was found to
give reasonable heating and turbulence levels.

5.1.3 Binary reconnection
The surface of the Sun is covered with a multitude of magnetic sources which

are continually moving around and which produce a highly complex magnetic field
in the overlying corona, known as the magnetic carpet (Schrijver et al., 1997). A key
question is: what is the effect of the relative motions of photospheric sources in driving
reconnection, and therefore heating, in the overlying corona? One possibility is sepa-
rator heating due to the high-order interactions of several sources (see Sections 5.1.4
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and 5.2), but a more fundamental process considered by Priest et al. (2003b) is the
binary interaction due to pairs of sources.

The skeleton of the field due to two unbalanced sources (stars) in the photosphere
is shown in Fig. 5.3, where a null point (filled circle) closest to the smaller source
possesses a spine (thick line) that joins the null point to the weaker source and to
infinity. It also possesses a fan surface of field lines that arch over the weaker source
in the form of a dome and intersect the photosphere in a dashed curve. Part of the
magnetic flux from the stronger source lies below the separatrix dome, while the
remaining flux lies above it and links out to distant sources.

The suggestion is that the fundamental heating mechanism is one of so-called
binary reconnection due to the motion of a given magnetic source relative to its
nearest neighbor. The heating is due to several effects: (i) the 3D reconnection of
field lines that start up joining the sources and end up joining the largest source to
other more distant sources; (ii) the viscous or resistive damping of the waves that are
emitted by the sources as their relative orientation rotates; and (iii) the relaxation
of the nonlinear force-free fields that join the two sources and that are built up by
the relative motion of the two sources.

5.1.4 Separator reconnection
Several distinct types of reconnection are associated with null points,

namely, spine, fan, and separator reconnection (Priest and Titov, 1996) and, in
particular, separator reconnection is a prime candidate for coronal heating. Numer-
ical experiments have been conducted on this possibility (Galsgaard and Nordlund,
1997; Parnell and Galsgaard, 2004) and the way in which it operates in detail has
been studied by Longcope and coworkers, as follows.

Having shown how a current sheet may form along a separator (Longcope and
Cowley, 1996), a stick–slip model for reconnection was developed together with the

Spine

Null

Fan Separatrix

Fig. 5.3. Skeleton of the field due to two unbalanced sources (stars).
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concept of a “minimum-current corona” (Longcope, 1996). The assumption is that,
due to slow motions of the photospheric footpoints, the corona continually relaxes
to a flux-constrained equilibrium in which the magnetic fluxes within each domain
are conserved but the field lines within each domain can slip through the plasma
or move their footpoints (Longcope, 2001). Such equilibria have potential magnetic
fields in each domain and current sheets along the separators. The theory has been
applied to X-ray bright points (Longcope, 1998).

Priest et al. (2005) stress that in general the effect of slow photospheric motions on
complex coronal magnetic configurations will be to generate three forms of current,
namely, distributed currents throughout the volume, current sheets on separators,
and current sheets on separatrices. They compare energy storage and heating at
separators and separatrices by using reduced MHD to model coronal loops that are
much longer than they are wide.

For example, Fig. 5.4 schematically shows a section across a cylindrical loop.
Figures 5.4a and 5.4b show the initial states at the two ends when there are two
discrete sources (large dots) of magnetic flux at each end, with a separatrix sepa-
rating the field lines from the two sources, and a separator that is the intersection of
the two separatrices. After spinning and rotating all four sources, current sheets will
be created along the separatrices and separator (Fig. 5.4c), and after reconnection
the sheets dissipate and the configuration reduces to a relaxed state (Fig. 5.4d) that
conserves magnetic helicity. They deduce that separatrices are twice as effective for
coronal heating as separators, for observed footpoint motions.

θ0

Source

Separator

Separatrix

(a) z = 0 (b) z = LS

Source

Separatrix
Separator

Separatrix
Sheet

(c) Spin + rotate (d) Relaxed state

Separator
Sheet

Fig. 5.4. Projection of magnetic field lines in a section across the coronal part of a
flux tube for (a) initial state at z = 0, (b) initial state at z = Ls, (c) configuration
after spinning and rotating sources, (d) relaxed state.
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5.1.5 Coronal tectonics
In determining the effect of the magnetic carpet on coronal heating, three

factors are important: the concentration of flux in the photosphere into discrete
intense flux tubes; their continual motion; and the fact that the global topology of
the complex coronal field consists of a collection of topologically separate volumes
divided from one another by separatrix surfaces.

A coronal tectonics model for coronal heating (Priest et al., 2002) takes account
of these three factors. Each coronal loop has a magnetic field that links the solar
surface in many sources. The flux from each source is topologically distinct and is
separated from each other by separatrix surfaces (Fig. 5.5). As the sources move, the
coronal magnetic field slips and forms current sheets along the separatrices, which
then reconnect and heat. Thus, in our view, the corona is filled with myriads of
separatrix current sheets continually forming and dissipating.

But the fundamental flux units in the photosphere are likely to be intense flux
tubes with fields of 1200 G, diameters of 100 km (or less) and fluxes of 3×1017 Mx (or
less). A simple X-ray bright point thus links to a hundred sources and each TRACE
loop probably consists of at least ten finer, as yet unresolved, loops.

Whereas Parker’s braiding model assumes complex footpoint motions acting on a
uniform field, Priest et al. (2002) consider the effect of simple motions on an array of
flux tubes that is anchored in small discrete sources. For a simple model consisting
of an array of flux tubes anchored in two parallel planes, they have demonstrated the
formation of current sheets and have estimated the heating. A more realistic model
would have the sources asymmetrically placed so as to create many more separatrices,
or, more realistic still, it would place all the sources on one plane and have mixed
polarity. The basic principles would, however, be unchanged.

The results give a uniform heating along each separatrix, so that each (sub-
telescopic) coronal flux tube would be heated uniformly. But at least 50% of the
photospheric flux closes low down in the magnetic carpet (Close et al., 2004b), so
the remaining 50% forms large-scale connections. Thus, the magnetic carpet would
be heated more effectively than the large-scale corona. Unresolved observations of
coronal loops would give enhanced heating near the loop feet in the carpet, while the
upper parts of coronal loops would be heated uniformly but less strongly.

L
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I

Fig. 5.5. A schematic of a coronal loop consisting of many sub-volumes, each linked
to a separate source and divided from one another by separatrix surfaces.
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5.1.6 Coronal reconnection time
Photospheric sources of the coronal magnetic field are highly fragmentary

and concentrated into intense flux tubes threading the solar surface. They are also
highly dynamic, with magnetic flux emerging continually in the quiet Sun and
then undergoing processes of fragmentation, merging, and cancellation, in such
a way that the quiet Sun photospheric flux is reprocessed very quickly, in only
14 hours (Hagenaar, 2001).

Recently, Close et al. (2004b) have wondered what the corresponding coronal
reprocessing time is, and have used observed quiet-Sun magnetograms from the
MDI instrument on SOHO to construct the coronal magnetic field lines and study
their statistical properties. For the region they considered, 50% of the flux closed
down within 2.5 Mm of the photosphere and 95% within 25 Mm, the remaining 5%
extending to larger distances or being open (Fig. 5.6). They then tracked the motion
of individual magnetic fragments in the magnetogram and recalculated the coronal
field lines and their connectivity. In so doing, they discovered the startling fact that
the time for all the field lines in the quiet Sun to change their connections is only
1.5 hours. In other words, an incredible amount of reconnection is continually taking
place – indeed, enough to provide the required heating of the corona.

5.1.7 Conclusion
Coronal heating is likely to be produced by a variety of mechanisms. Several

of those that have been proposed over the past ten years are apparently viable and so
more detailed modeling and observations are required in order to distinguish between
them. Magnetic reconnection has emerged as the most likely process, especially in
view of the extremely short coronal recycling time that has been deduced by Close
et al. (2004b), but the mechanism in which it operates is as yet unknown.

Likely mechanisms include the following. For X-ray bright points, driven reconnec-
tion in the converging flux model is probable. For coronal loops, the recent realization
of the extreme complexity of the coronal field with myriads of separatrix and sepa-
rator current sheets forming and dissipating in the coronal tectonics scenario (Priest
et al., 2002) is highly appealing. However, within that scenario, several mechanisms
or ways of describing the heating process are possible, such as: turbulent magnetic
relaxation, binary reconnection, and separator reconnection.

90–95%
closure
of flux

50% closure
of flux

–2.5 Mm

–25 Mm

photosphere

corona

Fig. 5.6. Magnetic field lines in the quiet Sun (Close et al., 2004b).
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In future, there is a need to develop collisionless versions of the above mechanisms,
since the coronal mean free path is typically 10 km, much larger than the widths of the
reconnecting current sheets. Furthermore, a series of planned space missions (Solar B,
2006; Solar Dynamics Observatory, 2008; Solar Orbiter, 2017) will certainly produce
surprises and provide further observational details of coronal heating processes.

5.2 Separator reconnection
D. W. Longcope

As discussed in Section 5.1, separators (i.e., lines where topological boundaries,
separatrices, intersect) are preferred sites for current intensification and reconnec-
tion. In this section we therefore focus on reconnection at a separator (Priest and
Titov, 1996). Models of quasi-static evolution show that current tends to accumulate
at topological boundaries, making it possible for a localized reconnection electric
field to liberate magnetic energy stored throughout the coronal field by separator
reconnection. We first present a simple example of a two-dimensional, quadrupolar
coronal field model (Section 5.2.1), followed by a three-dimensional generalization
(Section 5.2.2). Section 5.2.3 addresses specifics of reconnection in this context and
Section 5.2.4 presents observational evidence for separator reconnection.

5.2.1 X-point current in two dimensions
The simplest example of quasi-static energy storage punctuated by rapid

reconnection is found in a two-dimensional, quadrupolar coronal field. Four sunspots,
denoted P1, N2, P3, and N4 are distributed along the photospheric surface, z = 0,
in a sequence of alternating sign (see Fig. 5.7a). The two-dimensional coronal field
created by these sources is written B = ∇A× x̂, so that field lines can be visualized
by contouring the flux function A(y, z). We take the field initially to be current-free,
∇ ×B = −x̂∇2A = 0, so that it has the minimum energy possible subject to the
photospheric field distribution. This field contains a single X-point, xo, above the
photosphere. The contour at the saddle point, A(y, z) = A(xo), defines four sepa-
ratrix field lines shown as dark curves in Fig. 5.7a, originating at the X-point and
terminating in each of the four photospheric sources. These curves divide the coronal
half-space into four topologically distinct classes of field lines, called flux domains.

The domain consisting of field lines connecting sources P3 and N2 lies directly
under the X-point. For the potential field shown in Fig. 5.7a domain P3–N2 accounts
for 30% of the flux leaving P3; the remaining flux connects P3 to N4. The photo-
spheric sources then move slowly due to forces originating below the surface, leading
to a new potential coronal field with a different apportionment of domain fluxes.
In Fig. 5.7b sources P3 and N2 have approached one another to create a potential
field with more flux in domains P1–N4 and P3–N2 (the shaded contours) and less
in domains P1–N2 and P3–N4. In order to achieve this new potential field (the new
minimum energy state) it would be necessary to reconnect field lines from the latter
two domains to create new field lines for the shaded portions of the former domains.
The extent of the reconnection required is quantified by ΔA, the difference in A(xo)
before and after the photospheric motion.

A perfectly conducting corona is incapable of supporting the electric field to
reconnect field lines. In this case the field will not be able to relax to the potential
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(a)

P1 P3N2 N4
(b)

P1 P3N2 N4

Fig. 5.7. Two-dimensional potential fields from four photospheric sources. Solid
lines are contours of A(y, z) which are field lines. (a) The initial field showing
separatrices as dark curves meeting at the X-point. (b) The potential field after
sources P3 and N2 have moved toward the center. The shaded region shows the flux
which must be transfered through the X-point to produce this field from field (a).

field which is its state of minimum energy. A class of equilibrium coronal fields
maintaining the original apportionment of domain fluxes, which is therefore consis-
tent with ideal coronal evolution, was first proposed by Priest and Raadu (1975),
refined by Hu and Low (1982), and generalized by subsequent authors (Aly and
Amari, 1989; Titov, 1992). This field is current-free except for a current sheet
(a discontinuity in B) where the X-point formerly was (see Fig. 5.8). It can be
shown (Longcope, 2001) that this field has the minimum energy possible subject to
the constraint on the flux in domain P3–N2: it is the flux-constrained equilibrium
(FCE). The size and net current in the sheet depend on ΔA, shown shaded in Fig. 5.8.
Figure 5.8b shows the effect of a smaller ΔA: a shorter current sheet carrying less
current.

The singularity in the flux-constrained equilibrium is related to the equilibrium
current sheet first described by Green (1965) and later by Syrovatskii (1971), an
example of which is shown in Fig. 5.9a. Far from the sheet this field approaches an
X-point structure, B = B′(yẑ+zŷ), set by the boundary conditions. A sheet carrying
current I will have an extent (width)

Δ =

√
4μ0|I|
πB′ . (5.1)

The field adjacent to the sheet vanishes at each tip and increases to a maximum
Bo = B′Δ/

√
2 at the middle. The direction of the field is discontinuous across the

sheet, but its magnitude is not.
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Fig. 5.8. Flux-constrained Priest–Raadu equilibria for photospheric source loca-
tions matching Fig. 5.7b. (a) The equilibrium whose flux apportionment matches
the initial field from Fig. 5.7a. The current sheet is shown as a dark vertical line,
and the shaded regions are those field lines which would have been reconnected
had the field relaxed to its potential state. (b) The case where ΔA is half as large.
The lighter shading shows reconnected flux and the darker shows unreconnected
flux. The current sheet is shorter and carries less current than that in (a).
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Fig. 5.9. Two-dimensional current sheets. (a) A singular equilibrium sheet of the
Green–Syrovatskii type. The width Δ and field strength Bo are fixed by the total
current I and asymptotic magnetic shear B′. The sheet occurs at the vertical
discontinuity across which the field direction changes from downward (left) to
upward (right). (b) The corresponding Sweet–Parker sheet of thickness δ, is shown
as a shaded layer. The slow inflows, vi, and Alfvénic outflows, vo, are shown as
dashed arrows.
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Placing the Green–Syrovatskii current sheet at the X-point of the potential coronal
field changes the flux function of the separatrices by (Longcope and Cowley, 1996;
Longcope, 2001)

ΔA =
μ0I

4π
ln

(
16πeB′z2

o

μ0|I|

)
, (5.2)

where e = 2.7128 is the base of the natural logarithm and B′ is the magnetic shear
at the potential X-point located at xo = (0, zo). For a specified flux constraint, ΔA,
this equation may be inverted to find the current I(ΔA), and from that the width
Δ(ΔA). The energy per unit length by which the current sheet raises the field’s
energy is (Syrovatskii, 1981; Longcope, 2001)

ΔW (ΔA) =
∫ ΔA

0
I(ΔA′)ΔA′ =

μ0I
2

32π2 ln
(

16π
√

eB′z2
o

μ0|I|

)
. (5.3)

This is the free magnetic energy stored throughout the field as a result of the flux
constraint. By eliminating the flux constraint magnetic reconnection can liberate at
least this much energy. (For a derivation of the basic properties of a separator current
sheet, see Priest et al. (2005).)

The flux constrained equilibrium described above is the minimum energy state for
the field under perfectly conducting evolution. It will therefore be an attractor for
nonlinear dynamical evolution with some form of energy dissipation. Studies indicate
that such a singular field can be approached only asymptotically from a continuous
initial condition (Wang and Bhattacharjee, 1994; Klapper, 1998), so the FCE may
never be achieved. The evolution will, however, seek to concentrate a net current of
approximately I(ΔA) into a vertical layer of width Δ(ΔA), even if its thickness can
never decrease to zero.

Small nonideal effects, such as the presence of magnetic resistivity η, will not affect
the global dynamics which establishes the current sheet with global parameters, I, Δ,
and Bo, but will dictate the inner structure of the sheet, including its thickness δ.
The effect of resistivity can be characterized in terms of the Lundquist number of
the current sheet

SΔ ≡ BoΔ
η
√

μ0ρ
� 1

η
√

μ0ρ

∣∣∣∣
∮

B ·dl
∣∣∣∣ =

|I|
η
√

ρ/μ0
. (5.4)

The denominator of the right-most expression is a current Isp ≡ η
√

ρ/μ0, depending
only on the local properties of the plasma. Classical, collisional resistivity (Spitzer
resistivity (Spitzer, 1962)) in a fully ionized hydrogen plasma of temperature T6

Mk and electron density ne = n9 × 109 cm−3 leads to current parameter isp � 2.3×
10−3 T

−3/2
6 n

1/2
9 A. Thus any foreseeable current concentration in the solar corona

(|I| � 106 A) will have an extremely large Lundquist number, SΔ = |I|/Isp.
Sweet–Parker theory (Section 2.1) provides a self-consistent model for the prop-

erties of a quasi-steady-state current sheet in the presence of uniform magnetic
resistivity η. Due to the slowness of Sweet–Parker reconnection the ideal evolution
outside the sheet will tend toward equilibrium, establishing the global current sheet
with parameters Δ, I, and Bo as described above. These parameters, as well as the
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Lundquist number of the sheet, are all set by the external evolution and thus by the
photospheric boundary condition. The thickness of the Sweet–Parker current sheet,

δ = S
−1/2
Δ Δ =

√
4μ0Isp

πB′ , (5.5)

depends on the plasma and on B′, the magnetic shear of the external field. The
reconnection electric field within the current sheet drives an inflow velocity

vi ∼ S
−1/2
Δ

Bo√
μ0ρ

=

√
2IspB′

πρ
. (5.6)

In notable contrast to cases of driven magnetic reconnection, this inflow does not
depend on the rate at which the photospheric sources move. This velocity is in fact
so small (∼0.3m/s) that it appears to the external dynamics that the current sheet
is an equilibrium with no flow at all.

The Sweet–Parker reconnection transfers flux across the X-point, thereby some-
what mollifying the flux deficit ΔA : d(ΔA)/dt = Bovi. At this rate the potential
field can be reestablished after a time

τsp ≡ ΔA

Bovi
∼ S

1/2
Δ

√
μ0ρ

B′ . (5.7)

The factor on the right is the Alfvén time, τA =
√

μ0ρ/B′ over which a disturbance will
propagate into the X-point of the potential field (Craig and Watson, 1992; Hassam,
1992). Since SΔ � 1 the reconnection time is extremely long compared with the
ideal dynamics of the external field. This is effectively equivalent to the assumed
absence of reconnection during which the quasi-steady current sheet is established.
Finally, we note that the Ohmic power dissipation at the sheet, Psp ∼ ΔW/τsp, is so
small that it can be entirely neglected.

In spite of the current sheet and resistive electric field, the scenario described above
is one of quasi-static current accumulation and energy storage if fast reconnection
(Section 2.1) does not occur. Slow motion of the photospheric sources demanded a
readjustment of the coronal equilibrium. Under the assumption that reconnection
was even slower than the photospheric motion, the new equilibrium could not be
a potential field. Even if the field within each domain could fully relax, the lack of
fast reconnection would prevent the transfer of flux between domains and thereby
demands current accumulation at domain interfaces; specifically at the X-point. Due
to the quasi-static nature of the model, the current accumulated depends on the
photospheric displacement, quantified by ΔA, but not the velocity. If the current
accumulation is structured according to Sweet–Parker theory, then the resistive elec-
tric field it creates will accomplish negligible reconnection or energy dissipation,
consistent with the assumption of quasi-static external evolution.

The current sheet is not, therefore, an engine of reconnection in this scenario but is
rather one of energy storage. If substantial reconnection is to occur, as observations
suggest it does, the Sweet–Parker current sheet must be somehow disrupted in order
to substantially enhance its electric field. Once this happens, the magnetic energy,
ΔW (ΔA), stored in the equilibrium current sheet may be converted into other forms.
We return to consider actual reconnection within a three-dimensional geometry.
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5.2.2 Separator current in three dimensions
A three-dimensional generalization of the quadrupolar geometry above was

first outlined by Sweet (1958b), and later studied by numerous others (Baum and
Bratenahl, 1980; Syrovatskii, 1981; Hénoux and Somov, 1987; Gorbachev and Somov,
1988; Priest and Forbes, 1989). The same four sunspots (flux sources) are arranged
on the photospheric plane, z = 0, but no longer in a straight line (see Fig. 5.10). As
in the two-dimensional case, the potential field anchored to these sources consists of
four classes of field lines which define four flux domains. In the potential field these
four domains meet not at a point, as they did in two dimensions, but rather along a
single field line called the separator (the dark curve in Fig. 5.10). This separator field
line plays the same topological role in this three-dimensional field as the X-point did
in the two-dimensional field of Fig. 5.7a. Reapportionment of flux between domains
requires an electric field along the separator (Sweet, 1958b); the absence of such an
electric field will lead to the accumulation of current in a thin current ribbon there.

With the exception of the four sources, P1, N2, P3, and N4, the photosphere
is assumed to have no vertical field, but will in general have horizontal field
throughout. This horizontal photospheric field spreads outward and inward from
positive and negative sources respectively. According to the Poincaré index theorem
(Molodenskii and Syrovatskii, 1977) it must vanish at exactly two points when the
field is continuous; these points are denoted by triangles in Fig. 5.10 and labeled B1
and A2. Each has the structure of a three-dimensional null point: two spine field
lines and a surface of fan field lines all terminating at the null point (Cowley, 1973;
Lau and Finn, 1990; Parnell et al., 1996). The fan surface of the negative null, A2,
consists of field lines which almost all originate in one of the positive sources, P1 or
P3 as shown in Fig. 5.11a. The surface forms a dome separating the field lines ending
at N2 (beneath the dome) from those ending at N4, outside it. The fan surface of
the positive null, B1 (not shown), forms a similar dome over P3 separating its flux
from that of P1.

N4
N2

B1

P1
A2

P3

Fig. 5.10. Sweet’s configuration illustrating the interaction of four flux sources in
a three-dimensional potential corona. The sources are marked with + and × and
null points with 	 (negative) and 
 (positive). Thin solid lines are representative
field lines from each of the four flux domains. The dark solid line is the separator
field line at which all four domains meet.



5.2 Separator reconnection 243
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Fig. 5.11. One separatrix and the only separator in Sweet’s configuration. (a) Fan
field lines from the negative null point A2 shown as solid curves extending into the
corona, z > 0, to form a dome over the negative sources N2. The dashed and solid
lines within the photospheric plane are the footprint of the other fan (not shown).
The thick solid line is the separator; it is that part of the fan surface separating
field lines ending in P3 from those ending in P1. (b) The isolating loop Q consisting
of the separator (dark solid line) and a photospheric return path (dark dashed
line). Thin solid lines in the corona are representatives of flux domain P3–N2, each
passing through Q. Dashed and solid curves within the photospheric plane are the
fan traces and spines of the null points.

Together the two separatrices partition the coronal volume into its four flux
domains. The separatrices intersect along a single field line, the separator, which
begins at B1 and ends at A2. All field lines in domain P3–N2 must pass under this
curve since they must lie beneath both of the separatrix domes at once. Adding a
curve connecting the null points along the photosphere (the thick dashed curve in
Fig. 5.11b) creates a closed loop Q through which every P3–N2 field line must pass.
The net flux in that domain may thus be expressed as the integral

ψ32 =
∮

Q
A ·dl, (5.8)

where A is the vector potential. Any change in the flux of domain P3–N2 requires a
loop voltage around Q. Except for transport across the photosphere, corresponding
to flux emergence or submergence, such a loop voltage must result from a parallel
electric field along the separator: separator reconnection (Priest and Titov, 1996).
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As the flux sources move slowly across the photosphere the potential field above
will evolve. As it does so, the potential flux in domain P3–N2, denoted ψ

(v)
32 , will

change by an amount Δψ. Without a parallel electric field along the separator such a
flux transfer would be impossible and the coronal field could not relax to its potential
state. Once again we can adopt the flux-constrained equilibrium as a field consistent
with nonresistive coronal evolution. This is the state of minimum magnetic energy
for a specified flux ψ32. It is current-free except for a ribbon flowing along the sepa-
rator (Longcope, 2001, see Fig. 5.12). The width of this ribbon and the current it
carries are determined by the discrepancy Δψ32 = ψ32 −ψ

(v)
32 between actual flux and

potential flux.

(a)

(b)
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P3–N4

∑B1
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∑A2

∑A2

Fig. 5.12. The flux-constrained equilibrium resulting from a rotation of sources P3
and N2 about the central point. (a) The shape of the current ribbon is indicated
by a series of span-wise ribs crossing the potential separator. The photospheric null
points of the potential field are once again shown as a 	 and a 
. The current flows
from 	 to 
 (roughly from the right to the left of the picture). The dotted rectangle
is a surface used to illustrate the structure of the field. (b) The separatrices crossing
the surface (dashed curves). Separatrix ΣA2 originates in A2, similar to the one
shown in Fig. 5.11a. It separates field lines ending in N2 from those ending in N4.
The two separatrices partition the plane into the four labeled domains: P1–N2 etc.
The dark vertical line is the current sheet occurring at the intersection of the two
separatrices; the current flows out of the page.
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As in the two-dimensional case, the FCE may be constructed by adding a current
sheet to the potential magnetic field. The potential field in the neighborhood of
the separator will have a local shear perpendicular to its axis denoted B′(�), where
� is the length coordinate along the separator (Longcope and Silva, 1998; Long-
cope and Magara, 2004). A current sheet carrying current I will have a width,
Δ(�) =

√
4μ0|I|/πB′(�), in direct analogy with the Green–Syrovatskii sheet of two-

dimensional theory. This will vary, as it does in Fig. 5.12, due to variation in the
shear along the separator.

The addition of this current ribbon contributes a self-flux (Longcope and Silva,
1998; Longcope and Magara, 2004)

Ψ(cr) =
μ0IL

4π
ln

(
eI�

|I|

)
, (5.9)

where L is the length of the potential field’s separator and I� characterizes its local
magnetic shear (it is proportional to L2 times the shear parameter B′(�) averaged
over its length, using the geometric mean). This expression is the analogue of (5.2)
with the X-point’s height, zo, replaced by L times a factor from the separator’s
geometry. The flux constraint requires that Ψ(cr) = Δψ, thereby fixing the current
I in terms of the boundary conditions. The additional magnetic energy demanded
by the flux constraint is found by integrating the work required to build the current

ΔW (Δψ) =
∫ Δψ

0
I(Δψ′)Δψ′ =

μ0I
2L

32π2 ln
(√

eI�

|I|

)
. (5.10)

5.2.3 Initiation of reconnection
Solar flare observations suggest that coronal magnetic energy accumulates

slowly (quasi-statically) in the corona before being rapidly converted into other forms
such as thermal energy, bulk kinetic energy, and nonthermal particles. The leading
hypothesis has long been that magnetic reconnection is responsible for this rapid
energy conversion. One possibility is that fast reconnection continually takes place
and prevents the build-up of substantial current sheets. In this case a solar flare
could occur after build-up of energy in a force-free field (rather than a current sheet)
when an ideal eruptive instability or nonequilibrium onset drives the formation of
a current sheet and fast reconnection below the erupting flux tube (e.g., Priest and
Forbes, 1990; Forbes and Priest, 1995; Section 5.5). Another possible scenario that
is being described in this section is that fast reconnection does not occur and that
energy may be stored globally in a configuration containing a substantial current
sheet, from which a parallel electric field, localized to the magnetic separator, may
quickly release it. As we have seen, though, Spitzer resistivity with slow Sweet–
Parker reconnection within a steady-state current sheet is not capable of producing
a significant electric field. In this second scenario, there must therefore be some
other mechanism responsible for producing a reconnection electric field to transfer
flux between coronal domains. Such a mechanism, whatever it might be, appears
to remain inactive for long periods during the quasi-static energy accumulation,
and then abruptly switches on to release the stored energy. The electric field will
transfer flux between coronal domains and thereby lower the energy of the magnetic
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field. What form the magnetic energy is converted to will depend on the detailed
mechanism producing the electric field.

The large spatial scales and the nature of the observed reconnection seem to
make it unlikely that collisionless mechanisms, such as whistler mediated reconnec-
tion (Chapter 3), are involved. The width of a Sweet–Parker current sheet given
by Eq. (5.5) is δ ∼ 6m, for a typical shear value B′ ∼ 10−10 T/m (field strength
B ∼ 100G structured on scales ∼ 100Mm). This is substantially larger than the
collisionless skin depth, c/ωpe � 0.15m, but comparable to c/ωpi = 6m. On the other
hand, the separator current sheet is dominated by a strong magnetic field component
parallel to the current (guide field) which might reduce the effectiveness of whistler
mediated reconnection (Biskamp et al., 1997, see also Sections 3.1 and 3.2).

Current sheets are known to be susceptible to several types of instability (see
Syrovatskii, 1981; Priest and Forbes, 2000, for an extensive discussion), any of which
might conceivably enhance the effective resistivity or disrupt the sheet altogether.
Two-dimensional models show that the resistive tearing mode (Furth et al., 1963)
can become unstable in current sheets whose aspect ratio, r = Δ/δ ∼ S

1/2
Δ exceeds a

critical value rcr (Bulanov et al., 1979; Somov and Titov, 1985; Forbes and Priest,
1987). Unless the critical aspect ratio is well in excess of rcr ∼ 105 (two-dimensional
studies suggest it is closer to rcr ∼ 102), or the resistivity is already considerably
enhanced, the threshold of this instability, |I| > r2

crIsp, would be negligibly small in
typical coronal fields.

Another example of an instability which might initiate separator reconnection is
the ion-acoustic instability (Somov and Titov, 1985) which is triggered when the
electron drift speed, J/ene, exceeds the ion sound speed, cs. The ratio of these speeds
within the Sweet–Parker current sheet is

J

enecs
=

|I|
δΔ

√
mp/kB

eneT 1/2 = S
1/2
Δ

πB′√mp/kB

4μ0eneT 1/2 =

√
|I|
Iia

. (5.11)

For the Spitzer resistivity this ratio exceeds unity when the sheet current exceeds
Iia � 108 T

−1/2
6 n

5/2
9 (B′

−8)
−2 A, where B′

−8 is the magnetic shear parameter in units
of G/Mm (i.e., 10−10 T/m). If the resistivity is enhanced above the Spitzer value the
ion-acoustic threshold Iia would increase by the same factor.

5.2.4 Observation of separator reconnection
Observations of a reconnection episode resembling the scenario above were

made by the TRACE, SOHO, Yohkoh, and GOES satellites over the period August
10–11, 2001 (Longcope et al., 2005). At approximately 7:30 UT on August 10 a
bipolar active region (9574) began to emerge just north of an existing active region
(9570). Magnetograms made by SOI/MDI on SOHO (Scherrer et al., 1995) were
used to construct a model of the evolution of the magnetic sources (see Fig. 5.13).
Modeling the two active regions as four magnetic sources (actually as four collections
of sources) there is a single magnetic separator overlying the domain interconnecting
the emerging positive source (P051) to the pre-existing negative source (N01). The
flux of each emerging source grows steadily for the next 30 hours, at Φ̇ � 1.22×
1017 Mx/s. This causes the interconnecting flux in the potential field, ψ(v)(t), to
increase as well, at approximately one-third that rate.
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Fig. 5.13. The photospheric magnetic field at 19:15 UT August 10, 2001 is shown
as a grayscale. The emerging active region (9574) is the concentrated bipole to the
north; the pre-existing active region (9570) in the south contains a concentrated
leading (negative) sunspot and more disperse following (positive) plage to the east
(left). The positive and negative sources used to model this field are shown as +
and × along with their labels. Axes are in seconds of arc from disk center.

Theories and observations imply that the two poles of an active region are
completely coupled when they first emerge. EUV images (171 Å) made at high time
cadence by TRACE reveal numerous coronal loops interconnecting the two active
regions (see Fig. 5.14). These must be the result of magnetic reconnection at the
separator, since no other process could forge field lines of this novel connectivity.

Longcope et al. (2005) measured the diameter of each interconnecting EUV loop
over the course of the 41-hour observation. Multiplying by a coronal field strength
and correcting for loops too faint or too hot to see in the 171 Å passband gives the
interconnecting flux ψ(t) shown in Fig. 5.15. This remains initially small (very few
interconnecting loops are seen) even as the potential flux, ψ(v)(t), rises steadily. At
approximately 6:00 UT on August 11 (22.5 hours after emergence) there is a sudden
burst of reconnection and ψ rises to meet the potential value ψ(v) (see Fig. 5.15).
This transfer of Δψ = 1.1×1021 Mx within 3 hours demands a separator loop voltage
of dψ/dt � 109 V. Coincident with this reconnection there is a sudden elevation in
the soft X-ray flux observed by GOES and Yohkoh (not shown). The net power
radiated over this interval is estimated to be E � 2.4 × 1030 erg (Longcope et al.,
2005).

According to the model of Section 5.2.2, the L � 200Mm long separator between
the active regions should have accumulated current during the first 22.5 hours during
which reconnection was inoperative. A flux discrepancy Δψ = 1.1× 1021 Mx gener-
ates, according to Eq. (5.9), a current of 1.34 × 1011 A and thereby stores ΔW =
1.4 × 1031 erg of magnetic energy (Longcope et al., 2005). The radiation observed
during the reconnection episode accounts for one-sixth of this energy. This much of
the separator reconnection scenario appears borne out by the observations.
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Fig. 5.14. Field lines in the domain interconnecting AR9570 (N01) and AR9574
(P051). (a) The magnetic model extrapolated from sources found in the MDI
magnetogram. Positive and negative sources are denoted by + and ×; positive
and negative nulls by 
 and 	. Dashed and solid lines are the fan traces and
spines from the three null points shown. The dash-dotted line is a projection of the
magnetic separator linking B1 to A2. A set of circles outlines a bundle of field lines
(Φ = 2 × 1018 Mx) from the interconnecting domain under the separator. (b) An
image in 171 Å shown in reverse grayscale. The sources, nulls and footprints from
(a) are superimposed for reference.

The structure of a Sweet–Parker current sheet is determined primarily by the
magnetic shear B′ of the potential separator. In this configuration B′ tends to
decrease with height roughly as B/z. For the field at 6:23 UT August 11, when the
reconnection occurs, it is B′ � 3G/Mm low in the corona, and reaches a minimum
of B′ = 0.2G/Mm at the z = 72Mm apex (where B = 17G). This decrease in B′
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Fig. 5.15. The bottom panel shows interconnecting flux inferred from EUV loops
(ψ, solid) and in the potential field (ψ(v), dashed). The dotted vertical line shows
the time at which AR9574 began to emerge. The top panel is the 1–8 Å flux from
GOES.

with height makes the current ribbon wider at the top, as in Fig. 5.12. Adopting
plasma parameters ne = 109 cm−3 and T = 106 K, the sheet’s thickness would grow
from δ = 3.5m to 13 m at the apex. Were the current sheet Δ = 30Mm wide at the
apex it would have a field Bo � 4G perpendicular to the current, reversing across
the sheet. The component parallel to the current, B � 17G, is considerably larger
than this.

5.2.5 Summary
The foregoing reviewed simple two- and three-dimensional models of energy

storage in quadrupolar coronal fields. A photospheric field consisting of discrete flux
sources, such as sunspots or active region concentrations, gives rise to a coronal field
with a set of distinct flux domains. These domains are bounded by separatrices which
intersect at separators. Slow motion at the photosphere will cause the coronal field
to change quasi-statically through magnetic equilibria. Applying constraints only
on the fluxes in each domain, the equilibrium will have current concentrated at its
separator. If a reconnection electric field develops along this current sheet it will
transfer flux between domains thereby liberating stored energy. Classical resistivity
at a current sheet will not produce such an energy release. Observations suggest
that current accumulates for some time in spite of its resistivity, before reconnection
suddenly occurs.
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5.3 Pinching of coronal fields
V. S. Titov

Section 5.2 addressed the formation of current sheets, as a means leading to recon-
nection, at topological magnetic features such as null points, separator lines, and
separatrix surfaces (Priest and Forbes, 2000), focusing specifically on separators. An
alternative way to achieve a similar result is to form current sheets by complex photo-
spheric motions in coronal magnetic fields with an initially simple topology (Parker,
1994). Since the topological structure of the magnetic field is preserved by ideal MHD
flows, these two approaches look rather different at first sight.

The difference between them becomes less dramatic if one remembers that
the magnetic field itself is generated by complicated plasma motions below the
photosphere. Thus the complexity of observed coronal magnetic structures (and so
their topological features) ultimately originates from the complexity of the plasma
motions. In fact, such a difference becomes even less significant if one considers the
concept of quasi-separatrix layers (QSLs). First introduced by Priest and Démoulin
(1995) and their relation to the process of current sheet formation. This process will
here be referred to as magnetic pinching – a term used in laboratory plasma physics
which seems to be rather precise, at least for configurations with a hyperbolic field
structure.

Contrary to genuine separatrix surfaces, QSLs are not topological but geometrical
features, which can be formed, for example, in a simple arcade-like coronal field by
continuous large-scale MHD flows of ideal plasma if they include a stagnation point
for a sufficiently long period of time. The significance of stagnation-type flows for
building up small-scale structures in a large-scale magnetic field has been clearly
emphasized by Cowley et al. (1997) and previously demonstrated analytically and
numerically in the context of the coronal heating problem by many authors (van
Ballegooijen, 1985; Mikić et al., 1989; Longcope and Strauss, 1994; Galsgaard and
Nordlund, 1996). The purpose of this section is to review some new results on the
properties of QSLs and their relationship to the pinching of coronal magnetic fields,
in particular, in large-scale solar flares.

5.3.1 Definition of QSL
Consider a generic set of field lines connecting photospheric domains of posi-

tive and negative polarity in a solar active region (Fig. 5.16). In Cartesian coor-
dinates with the photosphere given by z =0, the locations of field line footpoints
may be written in terms of coordinates (x+, y+) and (x−, y−) in the z = 0 plane.
The connections of the footpoints by field lines then define two mutually inverse
mappings, which can be represented by vector functions (X−(x+, y+), Y−(x+, y+))
and (X+(x−, y−), Y+(x−, y−)). These functions describe the field line connectivity
globally, while the corresponding Jacobian matrices describe it locally.

In order to determine the location of the QSLs, Priest and Démoulin (1995)
proposed using the norm of these matrices

N± ≡ N(x±, y±) =

[(
∂X∓
∂x±

)2

+
(

∂X∓
∂y±

)2

+
(

∂Y∓
∂x±

)2

+
(

∂Y∓
∂y±

)2
]1/2

,

(5.12)

by requiring that N± � 1 for the field lines belonging to QSLs.



5.3 Pinching of coronal fields 251

B

(x–, y–)

(x+, y+)

+ –

IL X

Y

Fig. 5.16. The photospheric plane and magnetic field lines connecting positive and
negative polarities, which are separated by the inversion line IL.

Applications of this measure for structural analysis of magnetic fields in real events
justified the usefulness of this definition (Démoulin et al., 1997; Démoulin, 2005),
especially in identifying regions with a strong variation of magnetic connectivity.
Nevertheless, N can be replaced by something more self-consistent for characterizing
the connectivity, because it suffers from the following two shortcomings. Firstly, N is
not discriminating enough to differentiate between QSLs and flux tubes connecting
small and large polarities, where N � 1 in the polarity with the smaller size. Secondly,
contrary to what one would expect, the norm gives generally different values for N+

and N− for the footpoints of the same field line.
Both these shortcomings may be overcome by adopting instead the following

value Q (Titov et al., 2002):

Q+ =
−N2

+

Bz+/B∗
z−

≡ Q∗
− =

−N∗2
−

B∗
z−/Bz+

, (5.13)

or equivalently

Q− =
−N2

−
Bz−/B∗

z+
≡ Q∗

+ =
−N∗2

+

B∗
z+/Bz−

. (5.14)

Here the minus sign is introduced to compensate for the negativeness of the normal
magnetic component Bz−, while asterisking some of the functions indicates that their
arguments x∓ and y∓ are substituted by X∓(x±, y±) and Y∓(x±, y±), respectively.
This means that (x+, y+) and (x−, y−) are not arbitrary points on the photosphere
but the footpoints of a particular field line. Because of the conservation of magnetic
flux, the ratios Bz+/B∗

z− and Bz−/B∗
z+ coincide with the determinants of the corre-

sponding Jacobian matrices, so they determine the expansion–contraction factors
along such a field line. In practice, these ratios are easier to compute, so it is better
to use them in (5.13) and (5.14) rather than the Jacobian determinants, which enter
into the original expression of Q (Titov et al., 2002). Since in real computations the
numerical grid on the photosphere is fixed, it is convenient to use only the left-hand
sides of (5.13) or (5.14) for positive or negative polarities, respectively.

The value Q has a clear geometrical meaning, which is revealed by noticing that
an infinitesimal circle maps along a given field line into an infinitesimal ellipse. The
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calculations show that its aspect ratio equals Q/2 +
√

Q2/4−1, so that, when it
is large, it tends to Q. Thus, Q characterizes the degree of squashing of the corre-
sponding infinitesimal flux tube. It is natural then to postulate that the QSL is a
layer-like flux tube consisting of magnetic field lines with Q�2. Here Q=2 is the
lowest bound that corresponds to the field line along which an infinitesimal circle
maps into a circle. This definition of QSLs is justified by existing sequences of configu-
rations where QSLs turn into genuine separatrix surfaces in the limit of Q → ∞ (Titov
et al., 2002).

Another independent measure of the field line connectivity is the degree of expan-
sion or contraction

K+ = log |Bz+/B∗
z−| ≡ −K∗

− = − log |B∗
z−/Bz+|, (5.15)

or equivalently

K− = log |Bz−/B∗
z+| ≡ −K∗

+ = − log |B∗
z+/Bz−|. (5.16)

This measure determines how much the cross-sections of infinitesimal flux tubes
expand or contract from one photospheric polarity to the other. In real configurations
with nonuniform photospheric distributions of the normal magnetic field Bz, the
distribution of K also reveals the footprints of QSLs and helps us to understand their
elastic properties. The latter is very important for understanding the mechanism of
magnetic pinching (Section 5.3.3).

Since the Jacobian matrix, in general, has four independent elements, there must
be two additional characteristics of field line connectivity, which are independent
of the direction of mapping. These characteristics are related to the orientation of
the major axes of the infinitesimal ellipses discussed above and are not as visual
as Q- and K-distributions. In spite of that, it is possible to visualize elegantly all
the information contained in the Jacobian matrices by constructing the so-called
orthogonal parquet (Titov et al., 2002), which is a network formed by the integral
lines of the field of major axes of the above ellipses. The parametrization of the
integral lines may be chosen so that the sizes of the parquet tiles depict the local
squashing and expansion or contraction of the elemental flux tubes. This geometrical
construction is rather appealing for a structural analysis of magnetic configurations
and so it deserves further investigation.

5.3.2 Examples of QSLs
Here we illustrate the above theory by considering two examples of config-

urations which have been used for modeling solar flares. The simplest example is a
quadrupole potential configuration proposed first by Sweet (1969) and then studied
in more detail by Baum and Bratenahl (1980) and Gorbachev and Somov (1988).
It considered a topological approach, where the preferred place for magnetic recon-
nection is associated with a separator field line. Since the separator is determined
as a special field line connecting two magnetic null points, its existence is insep-
arably related to the presence of the nulls. Both nulls in such a configuration are
present, however, only if the photospheric magnetic flux is concentrated in finite
areas. Thus the concept of a separator is applicable to realistic configurations only if
it is a good approximation to regard the photospheric flux as being concentrated in
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discrete patches. On the other hand, a separator together with its associated nulls
tends to disappear when the magnetic flux is distributed smoothly over the whole
photosphere.

Such a difficulty may be resolved by generalizing the concept of separator to the
concept of a hyperbolic flux tube (HFT), which is simply a union of two intersecting
QSLs (Titov et al., 2002). It is bounded by the magnetic flux surface Q = const. � 1
having a nontrivial shape such that the cross-sections of the HFT continuously trans-
form along it as follows

������ → ×××××������ → ������������ → ×××××������ → ������ . (5.17)

Thus, starting from a narrow strip at one polarity, the cross-section branches out
with a second strip in the form of a cross up in the corona and then the first strip
shrinks subsequently toward the other polarity to leave the second strip there as a
footprint of the HFT (see Figs. 5.17 and 5.18).
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Fig. 5.17. Photospheric distributions of (a) the squashing degree Q and (b) the
expansion–contraction degree K, superimposed on a few iso-contours of the corre-
sponding magnetogram for a potential quadrupole configuration (see the details
in Titov et al. (2002)); the dots and pluses trace four HFT ribs projected vertically
onto the photosphere (see Fig. 5.18).

Fig. 5.18. The magnetic flux surface Q = 100 enclosing an HFT (left) and half of
the same surface (right) demonstrating the shape of the mid cross-section of the
HFT. In both panels the photospheric distribution of K is shown together with
the magnetogram iso-contours, as in Fig. 5.17.
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Fig. 5.19. The model of a twisted magnetic field of Titov and Démoulin (1999): a
force-free circular flux rope (left) with a net current I is embedded in a potential
background field produced by fictitious subphotospheric magnetic charges −q, q
and a line current I0 to generate in the corona a field whose photospheric magne-
togram (right) resembles a typical solar active region. The solid and dashed lines
represent iso-contours of Bz in positive and negative polarities, respectively.

A similar combination of QSLs exists in the model of a divergence-free twisted
configuration (Démoulin et al., 1996). Below we consider its force-free analogue
proposed by Titov and Démoulin (1999) (see Fig. 5.19), which provides an approx-
imate, cylindrically symmetric equilibrium consisting of a thin force-free toroidal
flux rope with a net current I, major radius R, and minor radius a. The radial
outward-directed Lorenz self-force is balanced with the help of a field by two fictitious
magnetic charges of opposite sign which are placed at the symmetry axis of the torus
at distances ±L from the torus plane. That axis lies below the photospheric plane
z = 0 at a depth d. The resulting field outside the torus is current-free and contains a
concentric magnetic X-line between the torus and its center. A toroidal field compo-
nent created by a fictitious line current I0 running along the axis of symmetry is also
added. The presence of this component turns the neighborhood of the X-line into an
HFT, which is revealed in the corresponding photospheric distributions of both Q

and K (Titov et al. (2003a); Fig. 5.20).
One can see that the major squashing of elemental flux tubes occurs in very

thin layers (QSLs) such that their footprints are narrow fishhook-like strips. The
magnetic flux surface Q = 100 rooted at the contours of these strips encloses the HFT
(Fig. 5.21) with the variation of its cross-section being similar to that of the above
potential quadrupole field (5.17), except that the whole structure is also twisted.
This fact directly demonstrates the structural stability of HFTs – the configura-
tions containing HFTs might be significantly different but their HFTs are rather
similar. It should be noted also that such a similarity does not depend on the value
of Q = const. � 1 which is used to define the boundary of the HFT.
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Fig. 5.20. The photospheric distribution of squashing degree Q (left) and
expansion–contraction degree K (right) for the twisted configuration shown in
Fig. 5.19. The magnetogram iso-contours are superimposed on both distributions.

Fig. 5.21. An HFT (left) in the twisted configuration (see Fig. 5.19) with its field
line structure depicted by strips shaded differently and a cut (right) through the
HFT by a midplane with its cross-section and footprint shown in black and white,
respectively.

5.3.3 Implications for the process of current layer formation
QSLs are of great importance for understanding 3D magnetic reconnection

on the Sun, since the conditions for their appearance in the solar corona are less
restrictive than for the genuine separatrix surfaces. Of special interest is their realiza-
tion in the form of HFTs considered above, because HFTs play the role of separators
in situations where the latter do not exist. In fact, two separatrix fan surfaces inter-
secting along a separator is a degenerate case of an HFT.

Similar to separators, HFTs are favorable sites for the formation of strong current
layers. Physically, this seems to be due to the special elastic properties of HFTs.
Indeed, as mentioned above, HFTs are a natural part of quadrupolar potential or
twisted configurations. It is characteristic of the field lines belonging to such HFTs
that they connect regions of strong and weak magnetic fields on the photosphere.
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turn

twist

Fig. 5.22. Simplified HFT in a Parker-type model of the coronal magnetic field
and two basic types of HFT deformation due to shears driven by sunspot motions.
Sunspots are shown by circles at the top and bottom planes representing opposite
photospheric polarities.

Therefore, they are stiff at one footpoint and flexible at the other, which in combina-
tion with their arrangement in the HFT provides favorable conditions for its pinching
by stagnation-type flows. The latter can be naturally driven, for example, by shearing
flows between moving sunspots adjacent to the tips of HFT footprints.

To demonstrate this, consider a straightened-out HFT which can be obtained in
a Parker-type model by smoothly concentrating the magnetic flux in two sunspots
at both polarity planes as shown in Fig. 5.22. Taking into account the above-
mentioned properties of HFTs, it is natural to assume that the shearing displace-
ments between sunspots can easily propagate into the coronal volume by vanishing
in amplitude towards the opposite polarity. One can imagine then two extreme cases
of the antiparallel displacements of the sunspots. They may cross the footprints of
the HFT as if trying to either turn or twist it by producing two qualitatively different
deformations of its coronal midpart. The superposition of the displacements propa-
gating from both polarities yields at the midplane in these cases either rotation- or
stagnation-type flows. It will then result in two different patterns of deformation for
the Lagrangian grid.

One can see from Fig. 5.23, obtained in a kinematic approach by Titov et al.
(2003b), that in the case of twist the grid is mostly distorted in a narrow region. Thus,
in this case the midpart of the HFT must be pinching to a strong current layer. From
the superposition of the photospheric shear velocities interpolated linearly between
the polarity planes, it is possible to derive the current density at the most-distorted
midpoint

j∗
z =

2
μ0

(
h+

B‖
2L

)
sinh ξ. (5.18)
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Fig. 5.23. Nonpinching (top) and pinching (bottom) deformations of a HFT in
the (dashed outlined) plane z = 0 due to turning and twisting shearing motions,
respectively, applied to the HFT footprints.

Here 2L is the distance between polarity planes, h and B‖ are the initial
values, respectively, of the transverse field gradient and longitudinal field at the
midpoint, and

ξ =
vst

lsh
(5.19)

is the dimensionless displacement of each sunspot moving with a velocity vs over time
t and creating together with its neighboring spot a shear region of a half-width lsh.
It shows that for ξ > 1 the pinching of the midpart of the HFT causes the respective
current density to grow exponentially with the displacement of the spots. Such an
exponential dependence is due to stagnation-type flows appearing in the middle of
the HFT. This was also shown previously by Longcope and Strauss (1994) for a
multiple flux tube system, where a similar process developed because of coalescence
instability.

The kinematic estimation can be improved at large ξ if one relaxes the major
unbalanced stress in the forming current layer by allowing it to compress in the trans-
verse direction until it becomes approximately force free. The resulting equilibrium
current density at the midpoint is given by (Titov et al., 2003b)

j∗
z eq � j∗

z

[
1+eξ

(
0.91

hlsh
B‖

+0.57
lsh
L

)2
]

, (5.20)

which, compared to its kinematic analogue j∗
z , has an additional factor growing expo-

nentially with the displacement ξ and increasing with decreasing B‖. In particular,
in the limit B‖ → 0 we would formally obtain that j∗

zeq → ∞, which is in agreement
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with the analysis of current accumulation at null points (Bulanov and Olshanetskii,
1984; Priest and Titov, 1996; Rickard and Titov, 1996).

As is seen from both estimates (5.18) and (5.20), the current layer should be formed
even if h = 0 or, in other words, if the initial field is uniform. This is not surprising,
because the twisting pair of photospheric shearing motions interlocks the field lines
in the coronal volume by forming an HFT and pinching it to a thin current layer.
Such a result is in agreement with the earlier numerical simulations motivated by the
so-called Parker problem, where this process has been studied for more complicated
interlocking photospheric motions (Mikić et al., 1989; Longcope and Strauss, 1994;
Galsgaard and Nordlund, 1996). It is also evident from the above estimates that
the additional presence of the transverse hyperbolic field (h �= 0) only enhances the
pinching effect.

The numerical MHD simulations of Galsgaard et al. (2003) confirmed that a
twisting (but not turning) pair of shearing motions across the HFT footprints
yields this effect. It implies that in reality current layers are formed in HFTs if the
twisting component of such motions dominates over the turning one. Unfortunately,
this conclusion cannot be considered as final, because the simulations have been
performed only for an HFT whose initial squashing degree was not large enough
(∼40). Therefore, the observed pinching effect could be, in principle, attributed
to the imposed boundary motions rather than to the structural properties of the
HFT (Démoulin, 2005). Therefore, further investigations are required to resolve this
uncertainty.

Driving the system by suitable horizontal motions is not the only way to cause HFT
pinching. What is required is a suitable stagnation-type flow, which can be driven
in several other ways. For example, a kink instability or other type of instability of
a flux rope can drive such flows and pinch the HFT in the above way (Kliem et al.,
2004; Török et al., 2004). Alternatively, the emergence of magnetic flux from below
the photosphere may cause a similar effect.

5.4 Numerical experiments on coronal heating
K. Galsgaard

5.4.1 The photospheric–coronal connection
The energy required to maintain the corona at its very high temperature is

indirectly supplied by the kinetic energy in the underlying convection zone, where the
plasma β is larger than unity and the local dynamics is determined by the pressure
gradient; this implies that the magnetic field is advected almost passively with the
convective flows. Moving into the corona the situation changes, since the plasma β

becomes less than unity and so the magnetic Lorentz force determines the dynamics.
Convective motions in and below the photosphere advect the magnetic field around.
The effects of these motions propagate, using the magnetic field, into the corona in
the form of a Poynting flux, providing an energy flux into the corona that can be
used to maintain the high coronal temperature.

Historically, two main theoretical classes of model have competed in explaining how
this energy is liberated in the corona. The discrimination between them relates to the
ratio between the characteristic driving time of the photospheric perturbation and
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the Alfvén crossing time along a magnetic field line. When this ratio is less than
unity, the perturbation behaves like a wave on a string. In the opposite case, where
the ratio is larger than unity, the loop is exposed to a systematic perturbation and
large-scale current sheets are expected to form and dissipate. In this chapter the
emphasis is on current sheet heating mechanisms (see also Section 5.1).

The photosphere provides us with the best possibility for measuring the magnetic
field vector, while coronal measurements are almost nonexistent. We are therefore
not able to determine directly the structure of the coronal field. On the other hand,
it is often suggested that the bright strand-like structures seen in high-resolution
EUV and X-ray observations represent the structure of the magnetic field lines.
This argument is based on the assumption that the coronal plasma is frozen to the
magnetic field and the heat conduction along the field is much more efficient than
conduction across the field, which tends to make local excess heating spread only
along the magnetic field.

To make realistic models of coronal heating mechanisms one needs to have an
idealized picture of the structure of the coronal magnetic field and the photospheric
driving. The magnetic structure can, to a first approximation, be found using various
field extrapolation techniques using the magnetic field distribution in the photo-
sphere. For example, Close et al. (2004b) showed that even a potential mapping of
the photospheric field into the corona produces very complex structures, where a
single photospheric flux patch connects to many neighboring flux patches of opposite
polarity. The boundaries between regions of different connectivity (separatrices) are
especially susceptible for accumulating the stress imposed by continuous advection
of the photospheric flux sources and significant current accumulations are expected
to concentrate here.

Another interesting result by Close et al. (2004b) is the complicated magnetic
field structure that results from the extrapolation, which allows for the presence of
magnetic null points in the corona. These are the natural extension of 2D X-points
where reconnection takes place and so are expected to be locations where magnetic
energy release may also take place through 3D reconnection processes (see, e.g., Priest
and Forbes, 2000). Observations (Filippov, 1999) have previously suggested that 3D
nulls exist in the coronal magnetic field. These suggestions are based on large-scale
structures of the inferred magnetic field and require that the structure is maintained
down to very short length scales.

In the following, three different experiments and their relation to fast energy release
in the solar corona are discussed. Section 5.4.2 focuses on experiments where magnetic
null points provide the location for strong current accumulation and subsequent
magnetic reconnection. Section 5.4.3 represents a simple interaction between two flux
sources embedded in a large-scale background magnetic field – a representation of the
small-scale development of the flux in the magnetic carpet. Finally, in Section 5.4.4
the concept of magnetic flux braiding is discussed.

5.4.2 Magnetic nulls and separators
In 2D, magnetic reconnection can only take place at some form of X-point, a

location in space where the magnetic field vector vanishes. When investigating recon-
nection in 3D, it is natural to start looking at 3D null points. They provide a more
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complicated magnetic structure defined by a spine axis and a fan plane (Priest and
Titov, 1996). In the simplest case where the spine axis is perpendicular to the fan
plane and the fan plane is rotationally symmetric around the spine, then a 2D plane
through the fan plane and including the spine axis resembles a stretched 2D X-point,
where the flux domains are separated from each other by the spine axis and the
fan plane. Rickard and Titov (1996) showed that only two primary kinds of current
structure tend to accumulate at the null; namely, a current cylinder along the spine
axis and current sheet that is confined to the fan plane. The two perturbation modes
resemble either a twist of the field around the spine axis or a tilt of the spine axis rela-
tive to the fan plane. Some investigations of single null points have been conducted
numerically, showing that they can be perturbed in different ways to attract current
and be local hosts for reconnection (Craig et al., 1995, 1999; Craig and Fabling,
1996). This is the case both for systematic stresses and also for waves (Galsgaard
et al., 2002; McLaughlin and Hood, 2004, 2005), where it is found that the fast mode
wave converges on the null and dissipates all its energy in its vicinity.

If a magnetic configuration does not contain a singularity, then nulls can only
appear in pairs of two. In the most common case they will be created through a
bifurcation process (Priest et al., 1996) where two fan planes intersect in a single field
line that connects the two nulls. This field line, the separator line, is the center of a
hyperbolic field line structure (e.g., Priest and Titov, 1996). This structure is unstable
to perturbations that make the X-point collapse to form a current concentration.

Galsgaard and Nordlund (1997) investigated a 3D magnetic field configuration
containing eight null points. The initial magnetic field was defined to be 3D periodic
using the ABC flow definition known from dynamo flows,

B = B0 (cosy − sinz, cos z − sinx, cosx− siny) . (5.21)

Here B0 is a scaling factor and x, y, z are coordinates in the interval 0 to 2π. This
is a constant-α force-free magnetic field. It has a complex structure with each null
point connecting to eight neighboring nulls. Two of these connections are by spine–
spine connections, while the remaining six connections are defined by intersections of
two fan planes. The fan–fan connections can further be divided into two subclasses.
Half of these connect two nulls that are close to each other – about half of the box
dimensions, while the other half connect nulls that are separated by more than twice
this distance. The nulls are of the simple type (rotationally symmetric) locally, but
with clear nonlinear effects appearing at just a short distance from the nulls. In the
left panel of Fig. 5.24 the initial configuration is shown. The isosurfaces show the
locations of the nulls, while field lines that are traced from the vicinity of the nulls
indicate the magnetic topology. From this it can be seen that the three connections
between close neighbors all connect through the locations with a low concentration
of magnetic field lines. Using isosurfaces of weak magnetic field magnitude, these
connections are seen as tunnels connecting the nulls (right panel of Fig. 5.24). These
tunnels turn out to be the dynamically important locations when the magnetic field
is stressed.

The magnetic field is enclosed in a 3D domain that is 2D periodic and satisfies
frozen-in conditions on the boundaries in the third direction. A large-scale sinusoidal
shear velocity perturbation is imposed on the boundaries in such a way that the
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Fig. 5.24. Left, the initial setup for the eight null point experiment. The isosur-
faces indicate the location of the nulls, while the field lines show the topology of
the magnetic field. Right panel shows an isosurface of low magnetic field magni-
tude, showing the weak field tunnels connecting the nulls. Notice that the two 3D
domains are not seen at the same viewing angle (Galsgaard and Nordlund, 1997).

Fig. 5.25. The panels show the time evolution of weak-field tunnels. The loca-
tions with a ribbon-like isosurface correspond to the locations of strong current
concentrations (Galsgaard and Nordlund, 1997).

amplitudes have opposite signs on the two boundaries. Independent of the direction
and phase of the imposed boundary driving, the perturbations propagate into the
domain and the stress accumulates at the same spatial locations, namely, at the weak-
field tunnels hosting the separators that connect the neighboring nulls in the domain.
The order in which the separators collapse depends on the actual boundary stress,
but as time progresses all of these connections accumulate strong currents (Fig. 5.25).

By taking a closer look at the development of one of these separator connec-
tions, Galsgaard et al. (2000) showed how the stress propagates from the driving
boundary and perturbs the structure around the separator line. The initial orthog-
onal X-type structure experiences a stress that initiates a collapse of the region about
halfway between the two nulls. From here it spreads along the separator towards
the nulls. As it reaches the nulls, they start to degenerate and within a short time
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Fig. 5.26. The panels show the time evolution of the locations of weak magnetic
field (red isosurfaces) and current (green isosurfaces). This shows how the accu-
mulation of strong current along the separator lines is associated with changes in
the local field line topology (Galsgaard et al., 2000). See also color plate.

the characteristic 3D null point structure is perturbed in a way that resembles a
collapsed 2D X-point (Fig. 5.26). The main difference here is that the magnetic
component along the separator dominates the magnetic field and represents a pres-
sure that is not present in the pure 2D situation. This additional pressure slows the
advection of flux into the current sheet, but also increases the local Alfvén velocity.

From the structure of the X-type field along the separator line it is clear that the
collapse of the X-point can only take place in two orthogonal directions, such that
the separator lines in both cases maintain their identity, with the induced current
sheet connecting two Y-points. Expanding this collapse structure to the 3D nulls,
it is clear that the structure of the field in the vicinity of the null becomes almost
two-dimensional within roughly an Alfvén crossing time of the region.

This indicates that if new magnetic nulls are formed through bifurcation processes
(Brown and Priest, 1999), for instance, when new magnetic flux emerges into the
corona, the time it takes before the nulls become involved in reconnection is likely
to be very short and the identification of a clear 3D null structure more difficult.

The effect of the reconnection is to launch jets that eject plasma from the diffusion
region with Alfvénic velocities. In this case, jet sheets extending all the way along the
edges of the current sheets are formed and slow-mode shocks are found to develop
along the extensions of the fan surfaces, giving about a 90-degree opening angle for
the outflow region. In this manner the reconnection process resembles that of 2D
reconnection.

This investigation shows that the magnetic field tends to collapse along the sepa-
rator connecting two nulls. In no case has current started to accumulate at a single
null in the domain. This stresses the importance of the separator over a single null
point as a location for current accumulation and subsequent magnetic reconnection.
This is further stressed by the experiment discussed in the following section.

5.4.3 Flybys
From an analysis of the magnetic connectivity of a potential field extrapo-

lation of a photospheric magnetogram, Close et al. (2004b) showed that most of the
magnetic flux only reaches a relatively low height and that the field line mapping
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has a complicated connectivity pattern. They found that a single flux concentration
connects to many opposite flux elements. Such a mapping provides the basis for
the presence of many separatrix surfaces that may attract current as the sources
are advected randomly around by the convective motions. The flux interaction
between different flux sources therefore becomes vital for understanding the dynam-
ical evolution of the magnetic field structure, as stressed in the coronal tectonics
scenario (Priest et al., 2002; Section 5.1). Longcope (1998), for example, investigated
this situation in a simplified setup. He used the minimum-current corona (MCC)
approximation where free magnetic energy in a sheared system is concentrated
in a separator current sheet, while the rest of the domain remains in a potential
state. The simple model consists of two localized sources, of equal but opposite
flux, embedded in a constant background magnetic field. Starting from an initial
potential magnetic field configuration, the structure of the magnetic field can have
three different topologies: namely, when the sources are unconnected, when they are
partially connected, and when they are fully connected. In each case two 3D null
points will exist on the photospheric boundary, with their fan surfaces defining the
separatrix surfaces that mark the boundary between the source and the background
flux. Starting from totally unconnected sources, the MCC approach shows how
current builds up along the separator as the fan planes start to touch and the sources
are advected past one another. Different assumptions regarding the energy release
provide different evolution scenarios with, in general, bursty energy releases.

Galsgaard et al. (2000) investigated this scenario numerically. The setup differed
slightly from the one used by Longcope (1998), in that they for simplicity used 2D
periodic boundary conditions. The initial field contained two unconnected magnetic
sources that were advected past one another by imposed motions on the photospheric
boundary. Figure 5.27 shows the initial conditions of the experiment and the location
of the imposed boundary motions. The dynamical evolution passed through a series of
phases. Firstly, the two sources are unconnected and their flux systems are forced
to interact by the imposed boundary motion. The advection forces the source flux
to move into the tail of the other flux source. This flux is not locally rooted in

Fig. 5.27. The isosurfaces mark the locations of the two flux sources. The field lines
outline the separatrix surfaces dividing space into three independent flux regions
and the overlying magnetic field. The vectors on the base represent the direction
and relative strength of the imposed driving profile (Galsgaard et al., 2000).
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the boundary and is simply lifted up over the approaching source. As this process
is continued the fluxes from the two sources become entwined and form a twisted
configuration. This builds up a highly twisted current concentration that eventually
reaches all the way along the separator connecting the two nulls. The magnetic field
reconnects and the two sources become partially connected. As the sources pass the
point of closest approach, a potential extrapolation of the field would give a fully
connected configuration. In the numerical experiment this is not the case, since the
amount of flux connecting the two sources continues to increase after this point.
While flux is still being connected between the two sources, new current structures
start to form between the connected flux and the external flux. This separator current
concentration is formed as a response to the rapid change in orientation between the
closed flux connecting the sources and the fully open flux above it (Fig. 5.28).

Neither the potential field approach adopted by Close et al. (2004b) nor the MCC
approach used by Longcope (1998) allow for detailed investigations of the way the
reconnection process changes the connectivity between different flux patches. To
investigate this Parnell and Galsgaard (2004) defined a large number of starting
points for tracing magnetic field lines from one source. As the sources were advected
with a known flow that maintained the spatial structure of the sources, it was possible
to associate an amount of flux to each starting point and to follow the evolution
of the field line connectivity with time. This showed that the source connectivity
changes in a complicated way, with both the processes of connecting and reopening
the source connectivity taking place simultaneously over a period of time. Figure 5.29
shows the changing connectivity at three different times. Counting up the flux in the
three connectivity groups as a function of time one clearly sees the overlap between
the processes of connecting and reopening the magnetic flux (top panel of Fig. 5.30).
The deviation is very apparent when comparing this evolution with that obtained
when assuming the reconnection is instantaneous and the magnetic field is at all
times maintained potential (bottom left panel of Fig. 5.30).

From the change in connectivity one can derive a normalized reconnection rate. By
doing a number of experiments with different parameters it was possible to derive the
dependence of the reconnection rates on the driving velocity and the orientation of

Fig. 5.28. Left panel shows the large separator current sheet, green, created by the
first interaction between the flux from the two flux sources. Right panel represents
a later time where the sources have passed the point of closest approach. The
current isosurface now represents the separatrix surface where the reopening of the
magnetic field takes place. The field lines indicate the structure of the magnetic
field in the two situations (Galsgaard et al., 2000). See also color plate.
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Fig. 5.29. The panels visualize the change in connectivity of one source as a func-
tion of time. The blue color represents the initially open flux, the red color the flux
connected between the two sources, and finally the green represents the flux that
has reopened again (Galsgaard and Parnell, 2004). See also color plate.
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Fig. 5.30. The top panel shows the change in normalized flux in the three types
of connectivity; open, closed, and reopened for one of the MHD experiments. The
bottom left panel represents the same three graphs for a potential evolution. The
bottom right panel gives the reconnection rates as functions of the driving velocity.
The dashed line represents the MHD experiments, while the dotted line is for the
potential model (Parnell and Galsgaard, 2004; Galsgaard and Parnell, 2004).
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the overlying magnetic field (bottom right panel of Fig. 5.30). From these experiments
an expression for the mean dynamical reconnection rate for the closing of the field
is derived. For a comparison the same is done for the potential model:

RMHD =
0.60vd cosθ

vd cosθ +0.11
, (5.22)

Rpot = 8.8vd cosθ. (5.23)

Here vd is the driving velocity measured in terms of the peak Alfvén velocity in the
sources and θ the angle of the overlying magnetic field with respect to the direction
of the line connecting the sources at their minimum distance. Only the reconnection
rate for closing the field is given here, for, as can be seen in Fig. 5.30, the field has
not reopened again when the driving is stopped. This influences the determination
of the value in a way that is not simple to estimate. For the cases where it was
possible, the reopening process proceeds at about half the speed of the closing. The
main reason for this difference relates to the fact that the closing is a strongly forced
process where the two flux systems can only pass through each other by reconnecting.
The opening on the other hand takes place in a more relaxed environment, where
the driving arises due to a force balance between the connected field and the fully
open magnetic field. In this case the fields can slowly slip past one another and
the force pushing the two flux regions together is smaller. For photospheric driving
velocities, the dynamical reconnection rate is about half the rate found from the
potential model.

When the dynamical evolution is compared with the potential or MCC model, two
differences become clear. In the MCC the current is accumulating in a nontwisted
separator current sheet connecting the two photospheric null points and both the
closing and reopening processes occur through separator reconnection. Also due to
the potential nature of the magnetic field in those models, there are no twisted
magnetic field lines. From the discussion above and from Fig. 5.28 it is seen that
both of these conditions are changed in the MHD experiment. Twisted field lines
are a natural consequence of the shearing of the field lines that form the initial
current sheet. This introduces magnetic helicity and the field lines that connect the
two sources contain a significant twist. Further, the opening does not take place
through the separator current sheet, but through separatrix surfaces. Only in the case
where the opening process is started from a potential partly connected setup will the
opening of the field happen by separator reconnection. In this case the current sheet
is not twisted, but instead forms a bridge-like structure along the separator with the
reconnection jets being in the horizontal plane. In the previous section, Section 5.4.2,
it is mentioned that a separator line can collapse along two different orientations
relative to the two intersecting fan planes. This experiment shows exactly this, and
how which of these orientations is chosen depends on which way the flux flows along
the separator structure.

When the evolution starts from a potential model, the energy input can be
roughly estimated using a simple expression for the Poynting flux (Galsgaard and
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Parnell, 2004, 2005). In the main phase of the experiment the Poynting flux is
given by

Pf ≈ 1
μ0

B2
nv2

dtd
L

, (5.24)

where Bn is the normal component of the magnetic field, vd the driving velocity, td
the time since start of driving, and L the distance to the opposite anchored footpoint
of the field line. Equation (5.24) shows that, when changing the driving velocity, the
Poynting flux scales linearly with the imposed driving velocity for a given advec-
tion distance (vdtd). The time it takes to reach the same advection distance scales
with 1/vs, and so to a first approximation the total energy input is independent
of the driving velocity. Comparing experiments with different driving velocity and
taking into account the velocity scaling, one finds that the evolution of the experi-
ments shows the same behavior (left panel of Fig. 5.31). Differences can be seen and
these depend on the driving velocity. The differences are mostly related to the initial
phase where the Poynting flux can be shown to be proportional to the ratio between
the driving velocity and the local Alfvén velocity. In the main phase that follows,
the Poynting flux increases nearly linearly with time until the boundary driving is
stopped. The bumps are due to wave propagation through the domain that perturbs
the sources.

The right panel of Fig. 5.31 shows the corresponding Joule dissipation as a function
of advection distance. Integrating the dissipation over time for the same advection
distance, the experiments release approximately the same amount of energy. This
correspondence between the energy input and the output is not surprising, as the
response in all cases depends strongly on the same basic evolution of the magnetic
field. The important factor from an observational point of view is therefore directly
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Fig. 5.31. The left panel shows the scaled development of the Poynting flux for
five different experiments as a function of the advection distance. The difference at
the start is due to the initial phase where Pf has a different dependence on vd. The
right panel shows the Joule dissipation for the same events scaled as a function of
the advection distance (Parnell and Galsgaard, 2004). See also color plate.
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related to the time scale of the event. The shorter it is, the more dramatic is the
energy release and therefore also the impact on the plasma parameters, such as
temperature.

These arguments are true only for the initial phase where the structure of the
magnetic field is still dominated by the initial potential magnetic field configuration.
If the driving is continued for a long time, then the sources pass around the periodic
domain several times and the rise speed of the Poynting flux is found to decrease
significantly shortly after the experiments were generally stopped. At the same time
the Joule dissipation continues to rise, but is maintained at a level smaller than the
Poynting flux. The free energy in the domain therefore continues to increase and a
final statistical equilibrium is not reached for the present experiments.

The present investigations do not include a proper treatment of the energy equation
and the atmospheric profile is not appropriate for detailed derivations of observational
properties. One can make simple predictions as to where the energy release will
increase the plasma temperature. Using the knowledge of which field lines reconnect
as a function of time, their path through space can be used to localize regions where
the effect of reconnection would be felt. By making the assumption that all plasma
along these field lines is heated by an amount that scales linearly with the amount of
reconnected flux and inversely with the length of the loop, the structure of the heated
area may be derived. Doing this shows that the structure of the event, for the closing
phase, is very compact, outlining a region that is larger and more structured than the
separator current sheet. In the later phase where the opening of the flux dominates,
the structure becomes much more fragmented in both space and time (Fig. 5.32).
One possible reason for this difference between closing and reopening phases relates
to the fact that this approach only identifies half of the reconnected field lines, namely
the ones that connect to the sources, while the reconnected field lines that enter
the coronal field cannot be identified. To make a more realistic assessment of the
observational appearance of this type of reconnection, one has to include a realistic

Fig. 5.32. The panels show the structure of the plasma heated by the reconnection
event. The left panel represents the separator reconnection phase connecting the
two sources, while the right panel shows the structure of the heated field lines
during separatrix reconnection when the field is reopened. In the right panel the
isosurface structure is rotated 180 degrees to represent the effect of reconnection
from both sources (after Galsgaard and Parnell, 2005).
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treatment of the energy equation and atmospheric stratification. Also, calculating
the skeleton (Priest et al., 1997) will prove invaluable in understanding the details
of the reconnection process.

5.4.4 Flux braiding
One of the most widely discussed methods for coronal heating is magnetic

flux braiding. The idea was first described by Parker (1972) and has been developed
further in the coronal tectonics model (Priest et al., 2002). The concept is based on a
systematic braiding of magnetic flux. When this is continued for long enough, Parker
argues that localized tangential discontinuities will develop at various locations inside
the loop. In the presence of magnetic diffusivity, the free magnetic energy can be
released by reconnection. To simplify the analysis Parker assumed a model where
a curved solar loop is stretched out to fit into a Cartesian domain. The magnetic
flux would be frozen on the two end boundaries and the assumed convective motions
would slowly stress the system. From simple arguments Parker (1988) shows how an
initially straight magnetic field that is braided by footpoint motions will reach a state
where the Poynting flux input equals the requirement for a nano-flare energy release.
This exercise shows that the magnetic field needs to be stressed until the field lines
reach a given angle with the vertical. Using Eq. (5.24), one can estimate this angle
assuming an equipartition between the energy input and energy loss. The important
consequences of this are two-fold; firstly, if the magnetic diffusivity decreases, then
the total energy input to the corona increases, as the angle of the field line increases
before it starts reconnecting. Secondly, the method is self-adjusting to a level that
suits exactly the physical parameters in the corona.

The braiding idea was investigated analytically by van Ballegooijen (1986), who
looked at the mapping of the field between two boundaries in a Cartesian domain.
On one boundary a series of random sinusoidal shear motions were imposed for a
period of time, while the velocity on the opposite boundary was maintained zero. He
found the peak current magnitude inside the domain to increase exponentially with
the number of independent shear motions, the reason being that the shear motions
decrease the characteristic length scale of magnetic structures inside the domain.
This investigation was followed by Mikić et al. (1989), who numerically confirmed
the trend for an exponential growth of the current magnitude. A problem with this
approach is the fact that boundary motions were imposed only on one boundary,
while the magnetic structure was maintained fixed on the opposite boundary. This
imposes a limitation on the “freedom” of the magnetic field lines and therefore
restricts the growth of the current with time, as seen in the experiments that followed.
These allowed imposed boundary motions on both boundaries, so that the current
was able to build up much faster. In fact only two independent orthogonal shear
events (Galsgaard and Nordlund, 1996) or two nonaligned vortex flows (Hendrix
and Van Hoven, 1996) are required to obtain an exponential growth of the current.
These flows allow the field inside the domain to braid more easily. The stress from
the boundaries cannot be released as the field lines cannot propagate through each
other and a large current sheet is formed between two sets of converging field lines.
This situation is illustrated in Fig. 5.33, which schematically shows the effect of the
imposed boundary motions. This particular structure of the magnetic field initiates a
local stagnation flow close to the center of the nonmoving central magnetic field lines.
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Fig. 5.33. The three panels illustrate how the field line structure changes as the
braiding is continued. First a simple shear is formed. The following orthogonal
shear motion creates locations around which the field lines lock into each other.
As the shear motion is continued the current increases exponentially (Galsgaard
and Nordlund, 1996).

As long as the flow is ideal, then a field line with a given tangential component will
approach the center on an exponential time scale. The distance between field lines
of opposite, but equal, tangential components decreases exponentially with time due
to the stagnation flow. In the ideal limit, this results in an exponential growth of the
current with time. Independent of the value of the magnetic diffusivity, after a finite
time, the current will reach a magnitude where a balance between advection and
diffusion will be reached in the current sheet. From a simple analysis of the induction
equation, using the assumption of the stagnation flow, it can be shown that this time
depends logarithmically on the value of the magnetic diffusivity. Therefore, even in
a plasma with a very low value of the diffusivity, this balance is reached within a
finite time.

A concern from 2D reconnection investigations has been to find ways in which
the reconnection process could proceed fast, releasing sufficient energy in a short
enough time to account for dynamical events like solar flares. The situation seen at
the beginning of all of these experiments consists of a large-scale current sheet that
extends almost all the way between the two driving boundaries. Following most 2D
predictions, the time scale for diffusing the magnetic energy will be long due to the
large length scales involved in this structure. The numerical experiments show that
for small driving velocities, dissipation takes place in large monolithic current sheets
even after many random driving periods. As the driving velocity increases, the struc-
ture of the magnetic field changes. The outflow velocity of the initial reconnection
event becomes large enough to change significantly the ambient magnetic field and
initiate the formation of secondary current concentrations. This process is continued
as a cascade process that continues all the way down to the resolution limit. This is
also a way to bypass the problem with the reconnection speed of large monolithic
current sheets, simply by decreasing the length scale of the sheets until the dissipa-
tion matches the requirement. Figure 5.34 shows a snapshot late in the experiments
where several strong current sheets have developed. The field reaches a state where
MHD turbulence becomes responsible for the energy release. As in hydrodynamic
turbulence the dissipation becomes independent of the viscosity, the magnetic dissi-
pation also becomes independent of the value of the magnetic diffusivity.
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Fig. 5.34. The isosurfaces show the locations of strong current (Galsgaard and
Nordlund, 1996).

Equation (5.24) shows how the Poynting flux depends on characteristic values for
the magnetic field, driving velocity, and time scales. Galsgaard and Nordlund (1997)
made a comparison between a Poynting flux defined by initial experiment parame-
ters and the average dissipation in the experiments. This showed a linear relation
between the expression for the energy input estimated from initial characteristics of
the magnetic field and the actual dissipation over more than four orders in magnitude
(Fig. 5.35). This could not have been expected a priori. The dynamical evolution
in the experiments depends on the driving velocity, changing from the large-scale
structures into smaller scales. If the dissipation depends on magnetic diffusivity, it
would have been expected that there should be significant deviations from this rela-
tion as the characteristic parameters going into the expression of the real Poynting
flux change with time. As this is not the case it indirectly implies the dynamical
evolution is independent of the value of the magnetic diffusivity. This conclusion is
supported by Hendrix and Van Hoven (1996), who show that the energy dissipation
has a dependence on the magnetic diffusivity that is close to zero, or if at all an
inverse dependence on the diffusivity.

From Parker’s cartoons of the braiding process one has the impression that the
magnetic field reaches a very complicated state with many twists and turns. Investi-
gations of the numerical experiments show a different picture. Here a winding number
can be derived using a number of field line traces started from points close together.
Doing this, it is found that the distribution function of the winding number has most
of its weight within ± unity of a turn, and only a small tail has values above this,
Fig. 5.36. This may be explained by the fact that the time scale for braiding the
field lines to a large winding number is significantly longer than the reconnection
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Fig. 5.36. The frequency distribution of the winding number determined for a
uniform sample of field lines with start points on one of the driving boundaries. The
image indicates how the winding numbers are distributed seen from the bottom
boundary (Galsgaard and Nordlund, 1996).

time for removing the windings. It can therefore be stated that the fraction of field
lines with a larger than unity winding must be located within a region where the
diffusive process dominates the dynamical evolution, rapidly bringing the winding
number below unity again.



5.4 Numerical experiments on coronal heating 273

An important problem in investigating the appearance of the corona has been to
determine the distribution of the energy release along a loop. One way to approach
this is to use observational data from a region where the structure of the magnetic
field is well defined. By assuming the structure to be one-dimensional, the energy
deposition profile can be found by optimizing the temperature profile obtained from
the 1D energy equation to the observations. Priest et al. (1998) used this approach
for a large Yohkoh loop, and suggested that the energy deposition along the high-
temperature upper coronal part of the loop may be uniform (see also Mackay et al.,
2000; Aschwanden, 2001; Reale, 2002). It is, however, difficult to interpret the obser-
vations, so what do the numerical simulations say about this issue? The experiments
discussed above do not include a realistic atmospheric model and also, for simplicity,
ignore the effects of optically thin radiation and anisotropic heat conduction. Despite
this, an analysis of the distribution of Joule dissipation in a braiding experiment was
done by Galsgaard et al. (1999). The special and temporal 3D dissipation profile
was averaged into a 1D array along the loop. The result is a dissipation profile
with a nearly uniform distribution along the loop. The numerical model can be said
to represent only the coronal part of the loop. Galsgaard (2002) investigated the
implications of including a stratified atmosphere, radiation, and anisotropic heat
conduction on the energy deposition profile. Repeating the analysis shows that a
large amount of energy is deposited below the transition zone, followed by a rapid
decrease before a near-uniform distribution is reached for the coronal part of the
domain. Despite the smaller amount of energy released in the corona, the effect on
the temperature is much larger here due to the significantly lower plasma temper-
ature. It should be mentioned that the dynamical solution is highly complex in
both time and space. The actual variations along individual field lines are therefore
significant, implying that the above average values hide significant localized varia-
tions, which have a large impact on the appearance of individual field lines in the
model. Similar conclusions follow from the coronal tectonics model (Priest et al.,
2002).

One limitation of these experiments is that they do not take properly into account
the large-scale curvature of the closed magnetic field and the variations in length
scale of a complicated coronal magnetic field structure. This is included in the
experiments by Gudiksen and Nordlund (2004, 2005a,b), in which they make a big
effort to make the whole scenario as realistic as possible. The initial magnetic field
configuration is determined as a potential extrapolation of a smoothed active region
magnetogram. They impose a “photospheric” boundary driving that resembles the
convection motions in both structure and power distribution. They include a highly
stratified atmosphere going from the lower transition region into the corona. Finally,
they include all the relevant terms in the energy equation. After an initial phase the
evolution reaches a steady state where many localized energy release events are initi-
ated throughout the domain. Scaling the parameters they confirm that the convective
motions are capable of supplying the energy needed for maintaining a hot corona.
These experiments confirm the scenario of heating in many small current sheets (e.g.,
Priest et al., 2002), and that the locations where energy dissipation takes place
have similar characteristics to those discussed above. By passing the data through
a “TRACE” filter, virtual images of the model corona are obtained. This provides
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images that look very much like TRACE images, with localized loop structures that
exist for as long as they are being heated.

They conclude that the results of the simulations put important question marks
against most of the simple assumptions regarding 1D loop approximations, at
least for the smaller EUV loops that are often taken for granted. These points
concern hydrostatic equilibrium, time independence, symmetric heating profiles, and
constant cross-section.

5.4.5 Summary
Over the last 10–15 years many numerical experiments have tried to under-

stand the processes responsible for the energy release in the solar corona. We have
come a long way, in terms of understanding which different mechanisms are likely to
release magnetic energy. Driven magnetic reconnection is a good candidate for many
energy release events, but what is the most important magnetic topology hosting
these events? The various 3D reconnection processes that are possible are known,
but we still have to learn how they behave in more detail.

Magnetic null points are fascinating in many ways. If the magnetic structure
contains a single null then it will be involved in the process. If several exist and
they are connected by separator lines, then it seems that only separator reconnection
contributes significantly to the process. In this case, as the separator collapses, the
structure becomes locally almost two-dimensional.

Potential models of the magnetic carpet (Close et al., 2004a) show that the coronal
magnetic field must be structurally complicated with lots of structure at low heights.
Understanding the processes that change the connectivity of this field is important
for predicting its dynamical evolution. The experiments discussed above show that
driven reconnection includes the possibility of having a complicated mapping of the
flux while it reconnects. It also shows that the rate of reconnection depends on how
strong the forcing is and how easily the field can avoid the stress from building
up. It is found that the average dynamical reconnection rate is always less than
the comparable rate for a potential evolution. The energy input depends on the
prehistory of the field. The more stressed the situation is, the more likely it is that
simple models will not predict the correct input or the energy deposition available
for heating the plasma.

The effects of boundary motions provide insight to the reconnection process in
cases where no magnetic singularity exists. These experiments suggest that the
energy dissipation becomes independent of the magnetic resistivity when the system
is randomly stressed for a longer time. This is possible as the magnetic structure
evolves from a large-scale structured situation into an MHD turbulence regime. The
newest experiments prove that it is possible at present to conduct fairly realistic
simulations of smaller active regions on the Sun. The results confirm that photo-
spheric motions are capable of maintaining a hot corona. They also show that most
of the previous simplifications used for modeling simple 1D coronal loops are not true
and that it is not possible to model these using well-defined distribution functions.

We are at a transition point in time. We can choose to work with simplified models
where the physical consequences are easy to interpret, or to leap into the difficult
art of large-scale computing of close to realistic simulations with more difficulties in
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understanding the detailed processes at work. The simplified models can be of great
help in increasing understanding provided they are closely motivated by complex
observations and numerical experiments.

5.5 Solar flares
K. Kusano and T. Sakurai

Solar flares are the biggest explosions in our solar system, and they are now
widely believed to be caused by the sudden liberation of free energy stored in the
solar coronal magnetic field. Multiple wavelength observations by modern satellites
strongly suggest that magnetic reconnection is the principal process for the energy
conversion in solar flares. In particular, a typical cusp-like feature of post-flare loops
observed in soft X-rays is a strong piece of evidence in favor of the reconnection
model (Tsuneta, 1996).

The so-called CSHKP model (Carmichael, 1964; Sturrock, 1966; Hirayama, 1974;
Kopp and Pneuman, 1976) has been established as a standard model, which explains
post-flare loops as a consequence of magnetic reconnection across the thin current
sheet located above the magnetic neutral line. However, the fundamental question
of what triggers solar flares still remains to be solved. The trigger problem of solar
flares is related to asking where, when, how, and why magnetic reconnection can be
initiated explosively in the solar corona. These questions are closely related to the
attempt to forecast space weather. Since the trigger of solar flares is intrinsically a
transition process from a quiescent state to a dynamical state, it is not necessarily
the same as the fast reconnection problem, which has been mainly investigated in a
steady reconnection framework.

Since any free energy in the solar corona should be supplied from the lower layers of
the Sun, one of the major concerns in the trigger problem is how a thin current sheet,
which should form the diffusion region, can be formed in a time scale much shorter
than that of the photospheric motion. In order to give an answer, we have to under-
stand the causal relationship between photospheric activity and coronal dynamics.

Related to this problem, it is also important to understand the physical processes
working prior to flare onset. For instance, the characteristic structure called a
sigmoid (Rust and Kumar, 1996), which is a forward-S or inverse-S shaped loop,
has often been observed by the Yohkoh soft-X ray telescope (Tsuneta et al., 1991) in
association with eruptive phenomena, such as flares (Canfield et al., 1999), coronal
dimmings (Sterling and Hudson, 1997), and coronal mass ejections (CME) (Leamon
et al., 2002). A sigmoidal structure is widely believed to be a precursor of eruptive
events.

A sigmoid could be a manifestation of the sheared and twisted nature of the coronal
magnetic field. Therefore, magnetic shear and/or twist, which are often propor-
tional to the magnetic component parallel to the magnetic polarity inversion line,
are thought to be crucial ingredients in the trigger of flares. In fact, the largest flares
tend to occur in delta spot groups with a polarity configuration inverted from Hale’s
law (Fisher et al., 2000). One possible explanation for this is that such inverted delta-
type spots might be formed through the emergence of a magnetic knot caused by a
helical kink instability, which can grow in a strongly twisted flux tube (Linton et al.,
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1999). It also suggests that magnetic helicity is relevant for the trigger mechanism
of solar flares.

The object of this section is to review briefly several models for trigger mechanisms
of solar flares, which have been proposed mainly in the last decade. Afterwards, we
discuss the role of magnetic helicity in the solar corona, and also describe a new
model for a trigger mechanism that the author has proposed recently.

5.5.1 Ideal MHD processes
There are several time scales involved in solar coronal dynamics: the magne-

tohydrodynamic (MHD) time scale τmhd = L/vA, the time scale of photospheric mot-
ion τp = L/vp, the resistive tearing time scale τtear = S1/2τA and the resistive diffusion
time scale τres = Sτmhd, where L is the spatial scale, vp the photospheric motion
speed, vA the Alfvén speed, and S the magnetic Reynolds number. For the charac-
teristic parameters of the solar corona (Priest and Forbes, 2000), we can estimate

τmhd : τp : τtear : τres = 1 : 106 : 107 : 1014 (s).

The large gap between the time scales suggests that only the ideal MHD process
may be able to provide a consistent explanation for the sudden onset of flares,
because the impulsive phase of a flare lasts typically only a couple of minutes.

Thus, an ideal MHD instability, particularly the kink mode, has been the focus of
many studies (Hood and Priest, 1979; Gerrard et al., 2002; Fan and Gibson, 2004;
Kliem et al., 2004; Török et al., 2004, Inoue and Kusano, 2006). For instance,
recently, Török and Kliem (2004) successfully developed a simulation model, in which
morphological structures observed by TRACE (Handy et al., 1999) can be well repro-
duced in terms of a kink mode instability, as shown in Fig. 5.37. The structural

Fig. 5.37. Top: TRACE 195 Å image of the confined eruption event observed on
May 27, 2002. Bottom: Magnetic field lines calculated from a 3D simulation of a
kink-unstable flux tube (Török and Kliem, 2004).
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Fig. 5.38. Illustration of the equilibrium branches in (a) supercritical bifurcation
and (b) subcritical bifurcation.

resemblance between the observations and the numerical model suggests that the
kink instability may well be involved in the flaring process, at least in some events.

However, in spite of these successes, the role of the kink instability in the flare
trigger process is not yet completely understood. In most simulation models, the
instability is set up in the initial state, but it is not yet clear how the solar corona is
destabilized. In general, when the instability arises through a supercritical bifurca-
tion, the growth rate of the instability changes continuously from negative to positive
with the change of a control parameter χ (see Fig. 5.38). In the solar corona, the
stability should be affected by photospheric conditions, which evolve much more
slowly than the characteristic MHD time scale. Thus, it is likely that the coronal
configuration slowly evolves, tracing the saturated state of the instability, when the
system exceeds the stability threshold (C1). In such a case, the sensitivity of the
instability saturation level to the boundary conditions (rather than the instability
growth rate) is a concern. Otherwise, some nonlinear processes have to help increase
the growth rate (e.g., Wilson and Cowley, 2004).

Recently, several new simulations have been developed to study the whole process
of flux emergence of a twisted magnetic flux tube out of the subphotospheric
region (Fan and Gibson, 2004; Magara, 2004; Manchester et al., 2004; Galsgaard
et al., 2005). These models have revealed that the electric current channel of a
sigmoid-like structure can be created through the interaction between the kinking
flux tube and the pre-existing coronal magnetic field after the flux emergence.
Although all these simulation models are still highly simplified, one of the possible
scenarios is that the current sheet structure generated by the ideal MHD mode leads
to the onset of resistive instability.

Another possible scenario is provided by subcritical bifurcation theory, in which
a stable equilibrium disappears when the relevant parameter (χ) slowly exceeds a
threshold (C2), and thus a transition to another state may result (see Fig. 5.38b).
A series of studies by Forbes et al. (1994) and Forbes and Priest (1995) proposed
a theoretical model, in which the onset of flares and filament eruptions occurs as a
result of a loss of equilibrium. In their theory, the relevant parameter is given by
the ratio between the tension force sustaining the flux rope and the repulsive force
acting on it. 2D and 3D numerical simulations by Forbes (1990) and Roussev et al.
(2003) have demonstrated that this scenario can work as the loop feet separation is
slowly reduced by a converging motion towards the magnetic neutral line.
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5.5.2 Morphological models
In the CSHKP model, magnetic reconnection occurs at a vertical current

sheet above a polarity inversion line. If an open field line configuration, in which
only one end of the field lines is tied to the solar surface, is formed first, reconnec-
tion simply occurs between the fields from opposite polarity regions. However, Aly’s
conjecture (Aly, 1984) suggests that open field configurations may not be accessible,
since they would have a higher energy than any closed configuration. Thus initiation
of reconnection from a completely open field is unlikely.

As a result, several morphological models have been proposed in order to explain
how to form the CSHKP model configuration. One is the so-called tether cutting
model (Sturrock, 1989; Moore and Roumeliotis, 1992), in which reconnection first
proceeds beneath the magnetic rope or in the lower part of the arcade. Then, the
tension force of the field lines, which ties the magnetic rope onto the solar surface, is
decreased, and the eruption of the flux rope can be initiated. The physical mechanism
underlying the eruptive process in this scenario is probably related to the loss-of-
equilibrium theory described in the previous section.

Although the tether cutting model is one of the most popular models for the
onset of flares as well as CMEs, it does not specify the detailed mechanism whereby
reconnection is initiated. One possible explanation is that reconnection takes place
when the magnetic shear exceeds a threshold (Mikić et al., 1988; Mikić and Linker,
1994; Kusano, 2002). This magnetic shear model can be understood as a process in
which an overaccumulation of magnetic helicity leads to a loss of stability and/or
the loss of equilibrium (Kusano et al., 1995; Kusano and Nishikawa, 1996). The
other scenario (Inhester et al., 1992; Amari et al., 2003) proposes that the converging
motion toward the magnetic neutral line leads to reconnection at the center of the
sheared arcade. Also, emergence of magnetic flux with a polarity opposite to the
pre-existing arcade may trigger tether-cutting reconnection. For instance, Chen and
Shibata (2000) and Amari et al. (2000) demonstrated this scenario in terms of 2D
and 3D numerical models, respectively.

Another morphological argument was provided by the breakout model, which was
originally investigated by Antiochos et al. (1999). The following conditions have to
be satisfied for this model to trigger the eruption. One is a multipole topology, which
has a magnetic null point above the top of an arcade field. Another is magnetic
shear imposed near the magnetic neutral line. Then, the breakout model predicts
that magnetic reconnection should occur first at the null point above the central
arcade, because the sheared field pushes up the central arcade. The rising of the
magnetic arcade begins by decreasing the unsheared overlying flux. As a result, a
vertical current sheet is thought to be generated at the center of the arcade field
underneath the flux rope. Several numerical simulations have been undertaken based
on the breakout scenario (MacNeice et al., 2004), and the changes of topology have
been studied (Maclean et al., 2005).

Many attempts have been made to examine these two morphological models by
comparing with the observed data (e.g., Sterling and Moore, 2004). However, the
observations are still not good enough to reject either of the models. One reason is
that they all were developed basically as 2D models, with translational symmetry
along the arcade axis, although flaring occurs in practice in highly complicated 3D
fields.
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5.5.3 Relation to magnetic helicity injection
Recently, several new methods have been developed to measure the magnetic

helicity flux out of the photosphere into the solar corona using magnetograph obser-
vations (Chae, 2001; Kusano et al., 2002; Démoulin and Berger, 2003; Kusano et al.,
2004a; Longcope, 2004; Welsch et al., 2004). They all adopt the principle that
magnetic evolution should be governed by the ideal induction equation,

∂B

∂t
= −∇×E, and E +v×B = 0. (5.25)

Then, the relative magnetic helicity flux (Berger and Field, 1984),

Ḣ =
∫

S

E ×AP ·dS,

across the photosphere S can be derived applying an inversion technique to Eq.
(5.25) and using the data for B and ∂B/∂t, where AP is the vector potential of the
corresponding potential magnetic field.

Based on this method, Kusano et al. (2002) and Yokoyama et al. (2003) revealed
that helicity injection in flare-productive active regions is highly complicated both
in time and space. Furthermore, Maeshiro et al. (2005) clarified through the anal-
ysis of several active regions that the soft X-ray radiation from active regions is
almost proportional both to the intensity of the magnetic helicity injection and the
probability of the reversal of magnetic shear. These results imply that solar coronal
activity is sensitive not only to the intensity of the magnetic helicity injection but
also to the complexity of the magnetic shear structure, particularly to the reversal
of magnetic shear.

Measurements of the magnetic helicity flux (Kusano et al., 2002; Yamamoto et al.,
2005) suggested also that, even in flare-productive active regions, the magnetic
helicity supplied to an active region, when normalized by the square of the total
magnetic flux in each region, is of the order of 10−2. This result indicates that the
averaged helicity injection activity is usually too weak to make a twist of more than
one turn in the magnetic flux of an entire active region. It contradicts the idea that
an overaccumulation of magnetic helicity causes solar flares.

Recently, Wang et al. (2004) studied the typical helicity pattern which is associated
with CMEs, using vector magnetograms of several active regions, and found evidence
that newly emerging flux often brings up magnetic shear with a sign opposite to
the dominant helicity of the active region. Moreover, the flare/CME initiation site
is characterized by a close contact with magnetic flux of opposite helicity. This new
revelation suggests that the interaction and reconnection of flux systems with oppo-
site shear is a key element in the mechanism of flare/CME initiation, as predicted
by the new model explained in the following section.

5.5.4 Reversed-shear flare model
Although magnetic shear is a characteristic feature of a flare-productive

active region, recent observations (Kusano et al., 2002; Yokoyama et al., 2003) suggest
that not only the magnitude of magnetic helicity but also the spatial structure
of magnetic shear should be important for the triggering of solar flares. Kusano
et al. (2003, 2004a) proposed that a solar flare could be triggered by magnetic
reconnection between oppositely sheared magnetic fields near a polarity inversion
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Fig. 5.39. Illustration of the three-dimensional field line structure in the reversed-
shear flare model. Panels a, b, and c represent the tearing instability phase, the
collapsing phase, and the erupting phase, respectively.

line (see Fig. 5.39). This reversed-shear flare model predicts that, if tearing mode
instability grows enough at a shear inversion layer between field lines as illustrated
by 1 and 2 in Fig. 5.39a, the magnetic arcade should collapse into the reconnection
point because the axial magnetic flux is annihilated, as shown in Fig. 5.39b, and the
result is that a vertical current sheet is generated.

After that, reconnection at the vertical current sheet ejects more sheared field lines
(4’ in Fig. 5.39c) upward like the tether cutting model. On the other hand, the down-
flow from the vertical current sheet strongly drives the tearing mode reconnection at
the shear inversion layer between line 3’ and reversed-shear field existing in the lower
part (not shown in the figure). A mutual excitation of two magnetic reconnection
processes, in which one reconnection drives another in the 3D configuration, is able
to accelerate the process, even though it is originally initiated by the tearing mode
instability. The reversed-shear flare model may provide a scenario in which a shear-
free field is efficiently reconstructed on the solar surface through the annihilation and
ejection of magnetic helicity due to the double reconnection.

Kusano et al. (2004a) and Kusano (2005) demonstrated by three-dimensional
magnetohydrodynamic simulations that a large-scale eruption of a magnetic arcade
is indeed caused by a magnetic shear reversal at the center of the magnetic arcade.
This simulation also accounts for the formation of a sigmoidal field (S+ to S− in
Fig. 5.40a) prior to the onset of the eruption (Kusano, 2005). It was suggested that
the formation of the sigmoid results from the relaxation toward a force-free minimum
energy state (Taylor, 1986), since the shearing structure inside the sigmoidal flux is
well approximated by a linear force-free field.

When the calculation was continued for a much longer period after the formation
of the sigmoid, the magnetic arcade collapsed and a magnetic cusp structure was
created above the sigmoidal region (Fig. 5.40b), as predicted by the model. The
cusp structure is well consistent with the standard CSHKP model, but the weak
sigmoidal field can survive near the photospheric boundary because the sigmoidal
flux is subject only to the tearing mode reconnection rather than that at the vertical
current sheet. The result contrasts to some previous models of sigmoids based on the
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Fig. 5.40. Three-dimensional dynamic simulation of a reversed-shear arcade
(Kusano 2005). Panels a and b represent the structure of magnetic field lines
before and after the onset of eruption, respectively. Solid arrows indicate typical
plasma flow.

kink instability, which predicted that the kinking deformation of a sigmoid should
lead to the ejection of the sigmoid itself.

5.5.5 Summary
For the last decade, several models have been proposed to explain the trigger

mechanism of solar flares. Although most of the models are consistent with the stand-
ard CSHKP model, at least as far as morphological features are concerned, it is still an
open question as to which model is most likely to explain the trigger process of flares.

Even though simulation studies have greatly contributed to our understanding
of nonlinear solar flare processes, there is a serious limitation in current numerical
models. In most of the previous simulations, the resistive time scale and the time scale
of the photospheric motion are artificially shortened in order to make the calculation
more tractable. However, the main concern of the trigger problem is how to explain
the causal relationship between processes having very different time scales. Therefore,
more advanced simulation models, with more realistic boundary conditions and a
more sophisticated diffusion process, should be developed in future. They may help us
to understand the complicated nonlinear mechanism in the solar flare trigger process
and to solve this long-standing puzzle.

5.6 Particle acceleration in flares: theory
T. Neukirch, P. Giuliani, and P. D. Wood

It is generally accepted that the energy released during solar eruptions (flares, coronal
mass ejections, prominence eruptions) is stored in the magnetic field before the erup-
tion. Theoretical models of solar eruptions invariably include magnetic reconnection
as a physical process for the release of magnetic energy and its conversion into other
forms of energy such as bulk flow energy, thermal energy, and nonthermal energy.
Whereas the phenomena observed to occur on large (MHD) scales are generally well
explained by the so-called standard model, this is not the case for the small-scale
(kinetic) aspects of flares. In particular it is not clear how the large numbers of
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energetic particles observed in flares are generated over very short time scales. Also,
the total energy of the accelerated particle population is estimated to be as large as
50% of the total energy released in some flares. Therefore the problem of solar flare
particle acceleration is one of the most important and interesting problems in solar
physics. Since similar phenomena are believed to occur in many other astrophys-
ical objects throughout the Universe, advancing our understanding of solar particle
acceleration will also have implications for astrophysics in general.

Magnetic reconnection is regarded as particularly important for the generation of
nonthermal particles, but a detailed understanding of the relevant physical processes
is not yet available. Since magnetic reconnection in its generic form is associated
with magnetic field-aligned (parallel) electric fields (e.g., Hesse and Schindler, 1988;
Schindler et al., 1988), the most obvious possibility of energizing charged particles
is by direct acceleration through the parallel electric field. A large amount of work
has therefore been done on this problem, almost exclusively using the test particle
approach. We will give an overview of this work in Section 5.6.1, with emphasis on
some recent studies. Another class of acceleration mechanisms is directly associated
with the reconnection process, but does not rely on the parallel electric field gener-
ated by reconnection. Examples are acceleration at a fast standing shock supposed
to form where the reconnection outflow encounters stronger magnetic field regions
beneath the reconnection site, or acceleration by the Fermi or betatron mechanism
in the collapsing magnetic trap formed by the magnetic field lines transported out of
the reconnection region. Mechanisms of this type will be discussed in Section 5.6.2.
Last, but not least, we will discuss in Section 5.6.3 acceleration mechanisms which
(so far) have no direct relation to magnetic reconnection. In particular, these are
stochastic acceleration mechanisms based on second-order Fermi acceleration by
turbulence or resonant wave–particle interaction. We will focus on mechanisms for
impulsive solar flares and omit the discussion of interplanetary particle acceleration
associated with coronal mass ejections. Due to the limited space available we do not
make any claim regarding completeness of this review, but refer the reader to the
excellent reviews by Miller et al. (1997) and Aschwanden (2002).

5.6.1 Direct acceleration by the reconnection electric field
In its generic form (Section 2.3; Hesse and Schindler, 1988; Schindler et al.,

1988) magnetic reconnection is associated with parallel electric fields. These parallel
fields have been connected with particle acceleration for a number of space and astro-
physical phenomena, including solar flares (e.g., Giovanelli, 1946; Schindler et al.,
1991; Hesse, 1995), since charged particles can be directly accelerated by the parallel
electric field (DC acceleration).

DC acceleration models can be divided into sub-Dreicer and super-Dreicer models
according to the strength of the parallel electric field as compared to the Dreicer
field1 (Dreicer, 1959)

ED ≈ 6 ·10−3
[ n

1015 m−3

][
T

106 K

]
V
m

. (5.26)

1 The actual value of the critical electric field above which particles are accelerated indefinitely is
actually 0.214ED (e.g., Benz, 2002, p. 217)
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Fig. 5.41. Schematic sketch of the general MHD flare scenario. Possible accelera-
tion sites and mechanisms are indicated. For further discussion see the main text.

In sub-Dreicer field models (e.g., Holman, 1985; Tsuneta, 1985; Benka and Holman,
1994) thermal electrons are accelerated up to a certain maximum (runaway) speed
at which a stable balance between the acceleration by the electric field and the
deceleration by Coulomb collisions is reached. Since the sub-Dreicer fields are quite
weak they have to exist over length scales (≈30000km) which are comparable to the
length of the loops involved in a flare. Sub-Dreicer field models are able to explain
some of the characterics of high-energy flare emission, but it is, for example, not at
all clear which physical mechanism could generate the large-scale electric fields which
are assumed in these models.

Observational and theoretical estimates of the parallel electric field strength asso-
ciated with reconnection in flares give values of the order 102 −103 V/m (e.g., Poletto
and Kopp, 1986; Schindler et al., 1991; Forbes, 1997) which is substantially super-
Dreicer. Therefore, the models of flare particle acceleration in reconnection generated
DC fields are super-Dreicer models.

Usually, the reconnection magnetic field models used to study flare particle acceler-
ation are stationary two-dimensional X-point or current sheet fields with or without a
guide field component in the invariant direction. A lot of this work is directly related
to similar studies of particle acceleration in the magnetotail. As the solar corona is
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usually believed to be a low-β plasma, the coronal magnetic fields are assumed to be
force free. In most models this is achieved by adding a strong magnetic field compo-
nent in the invariant direction (guide field) to a 2D X-point or current sheet field.

Studies of test particle orbits with X-point topologies without a guide field have
been presented by, e.g., Bulanov and Sasorov (1976), Vekstein and Browning (1997)
and Heerikhuisen et al. (2002), whereas similar investigations including a guide field
have been described by, e.g., Bulanov (1980), Bruhwiler and Zweibel (1992), Mori
et al. (1998), and Browning and Vekstein (2001). For laboratory applications, inves-
tigations of test particle orbits in an X-point plus guide magnetic field were also
carried out by Egedal and coworkers (Egedal and Fasoli, 2001a,b; Egedal et al., 2001;
Egedal, 2002).

Flare particle acceleration in current sheets without a guide field has been inves-
tigated by, e.g., Martens (1988) and Martens and Young (1990). The influence of
a guide field on the acceleration process in current sheets has been investigated
by Zhu and Parks (1993), Litvinenko (1996) (see also, e.g., Litvinenko and Somov,
1993), and by Zharkova and Gordovskyy (2004b). Acceleration in magnetic fields
with combined current sheet and X-point topology has been studied, for example,
by Heerikhuisen et al. (2002), Craig and Litvinenko (2002), Zharkova and Gordovskyy
(2004a), and Wood and Neukirch (2005).

Except for Heerikhuisen et al. (2002) (see also Craig and Litvinenko, 2002) who use
an exact stationary reconnective annihilation solution (with vanishing guide field) of
the MHD equations found by Craig and Henton (1995), all these studies choose their
magnetic field ad hoc or from purely kinematic considerations, i.e., no attempts are
made to solve the MHD equations fully or approximately. This is usually justified
as representing the magnetic field structure correctly in the vicinity of the nonideal
region. Also, with the exception of Wood and Neukirch (2005), all authors use a
spatially constant electric field in the invariant direction. This is consistent with the
assumptions of stationarity and spatial invariance.

The typical procedure is then to integrate the equation of motion for charged
particles in the given fields, either (semi-)analytically or numerically, and to construct
the distribution function of particle energies as the particles leave the acceleration
region (i.e., the vicinity of the X-point or the current sheet). This is usually done by
following the method introduced by Bulanov and Sasorov (1976), who calculate the
outgoing energy distribution function under the assumption of an initially uniform
particle flux into the reconnection region. The resulting energy distributions usually
have a power-law behavior (f(E) ∼ E−γ) for the energy range relevant for flares. For
values of the parallel electric field in the range quoted above, charged particles are
relatively easily accelerated to energies observed in flares.

Typically, particles drift into the region close to the X-point or the center of the
current sheet where they experience acceleration by the electric field in the invariant
direction until they eventually leave the region of (relatively) weak magnetic field.
A (strong) guide field has the effect that the particles stay longer in the region of
weaker magnetic field and are thus accelerated to higher energies (see, e.g., Litvinenko
(1996) for an investigation of this effect for the case of a current sheet model).

One feature of most of the above models is that they take the electric field to
be constant. Although this is consistent with the kinematic MHD equations, it is
also unrealistic for a reconnection region since the parallel electric field associated
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Fig. 5.42. Magnetic field used in the study by Wood and Neukirch (2005). Shown
is the projection of field lines onto the x, y plane in the region of the X-point. The
dashed lines are contour lines of the parallel electric field, which has a maximum
at the X-point.

reconnection should be strongly localized (Hesse and Schindler, 1988; Schindler et al.,
1988). Therefore, Wood and Neukirch (2005) have undertaken a study in which
the parallel electric field is localized. The magnetic field used in this paper is a
modified Harris sheet field (Harris, 1962) including an X-point (see Fig. 5.42) and a
strong guide field. The electric field is determined from Ohm’s law using a stagnation
point flow for the perpendicular component and a resistive term for the parallel
component. The parallel electric field is strongly localized (see Fig. 5.42) using a
localized resistivity. The motion of electrons in these fields is calculated numerically
using the guiding center approximation (justified by the strong guide field) with
initial positions in the reconnection inflow region where the parallel electric field
is negligible. Orbits are calculated for a range of initial velocities. Using Liouville’s
theorem, any given initial distribution function in the inflow region can then in
principle be calculated in the outflow region using the particle orbits.

For typical solar parameter values Wood and Neukirch (2005) find that for a
Maxwellian velocity distribution and uniform spatial density in the inflow region, the
particles with energies above a couple of keV have a power-law energy distribution
with a power-law index of ≈1.5 (see Fig. 5.43). A detailed investigation (Wood, 2004)
shows furthermore that the high-energy particles (Ekin ≥ 5keV) are concentrated in
narrow beams around the separatrix field lines (see Fig. 5.44).

Figure 5.44 also shows that the electrons are only accelerated along two of the four
separatrix field lines. The figure shows only electrons which drift into the acceleration
region from above, but their counterparts drifting in from below would be accelerated
along the same two separatrix field lines. For protons the guiding center approxima-
tion is not generally valid in this configuration, but a few calculations with a full orbit
code show that for the case here protons would be accelerated along the two separa-
trices along which no high-energy electrons are found. This asymmetry of proton and
electron acceleration has been investigated in detail by Zharkova and Gordovskyy
(2004a,b), but with a different magnetic field configuration and a spatially constant
electric field.

A general problem of this type of acceleration mechanism is that for a realistic size
of the accelerating domain (i.e., the domain with nonvanishing E‖) the number of
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Fig. 5.43. Energy spectrum of particles in the outflow region (x = 30 current sheet
widths) for the model of Wood and Neukirch (2005). The inflow distribution func-
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Fig. 5.44. The upper panel shows the total energy gain for each particle orbit as
a function of y at |x| = 30Lcs in the outflow region. The sharp maxima coincide
with the positions of the separatrix field lines for this |x|. The weaker line shows
that the y distribution of particles of all energies is roughly uniform. This indicates
that only particles gaining large amounts of energy are concentrated along the
separatrices. The lower panel shows the number of particles above 5 keV which
leave the acceleration region along one of the separatrix field lines. Only orbits of
electrons drifting into the reconnection region from above have been taken into
account (Wood, 2004).



5.6 Particle acceleration in flares: theory 287

particles accelerated falls way short (by several orders of magnitude) of the numbers
required to explain the observed nonthermal emission (see, e.g., Wood and Neukirch,
2005). To solve this problem one would either have to make the acceleration region
unrealistically large, for example by assuming a very extended reconnecting current
sheet (Litvinenko (1996) assumes a current sheet length of 104 km with a width
of 500 km), or to assume that a large number of small reconnection sites exists in
the acceleration region which could compensate the shortage of particles from a
single site.

The models discussed so far all use electromagnetic fields which do not change
with time. Time-dependent fields could potentially be used to explain time variations
of flare emission or the observed spectra. Particle acceleration in time-dependent
analytical fields has been studied, e.g., by Fletcher and Petkaki (1997), Petkaki and
MacKinnon (1997), and Hamilton et al. (2003). Fields taken from MHD simulations
of a reconnecting current sheet have been used, e.g., by Kliem (1994) and Kliem
et al. (2000). More recently Turkmani et al. (2005) have used the fields from MHD
braiding experiments for test particle calculations. In this study the particles can
be accelerated in a number of acceleration sites which are distributed stochastically
throughout the simulation domain. It is, however, not entirely clear how this numer-
ical experiment is related to the general MHD picture of solar flares and more work
in this direction needs to be done.

A general problem of test particle calculations is that they do not provide a self-
consistent picture of the acceleration process. This can be justified if the generated
high-energy particle population is only a small fraction of the thermal background
population. Due to the large number of high-energy particles generated this is not
necessarily the case for solar flares. It would therefore be highly desirable that the
test particle calculations are supplemented by self-consistent kinetic calculations. The
largest problem will be to overcome the huge gap between the kinetic scales (a few
meters to kilometers) and MHD scales (order 104 km).

5.6.2 Acceleration mechanisms associated with reconnection
The mechanisms discussed so far all rely on direct acceleration by the recon-

nection electric field. There are, however, other possibilities to transfer the released
magnetic energy into particle energy. These possibilities are indirect because they
involve the transformation of the magnetic energy into another form of energy
(usually bulk flow energy) which is then tapped for the acceleration process.

One such possibility has been suggested by Moore et al. (1995) and Larosa et al.
(1996). These authors use simple physical arguments to describe how particles
might be energized by a turbulent reconnection outflow via diffusive second-order
Fermi acceleration. The theory has not, however, been developed beyond the point
of general estimates. More recently, Selkowitz and Blackman (2004) investigated
stochastic Fermi acceleration in the low-energy regime including both steady and
diffusive acceleration in their model. They also propose that very high-energy elec-
trons (E > 100keV) could be generated by a loop-top fast-mode shock (see below).

It has also been suggested that a fast MHD shock could develop at the point
where the reconnection outflow encounters the stronger magnetic field regions of
the magnetic loops beneath the reconnection region (e.g., Forbes, 1986). Tsuneta
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and Naito (1998) have discussed the possible role of such a fast shock for particle
acceleration. Somov and Kosugi (1997) have included a fast shock as an intrinsic
feature of one of their collapsing magnetic trap models. In their model the shock
does not directly accelerate particles but scatters particles back into the magnetic
trap (see below). Observational evidence for the existence of fast shocks is, at least
at the moment, sparse, but some radio observations of flares have been interpreted
as signatures for a fast termination shock (Aurass and Mann, 2004).

Tsuneta and Naito (1998) suggest that first-order Fermi acceleration at the fast
shock could be responsible for the large number of high-energy electrons in solar
flares (see Fig. 5.41). A general problem for electron Fermi acceleration by shocks is
that injection energies higher than the typical thermal energy at coronal tempera-
tures are needed to explain the generation of the bulk of the nonthermal population
with energies of 20–100 keV. Tsuneta and Naito (1998) argue that a combination of
preheating of the particles by the slow shocks associated with flare reconnection and
the shock being oblique can overcome this difficulty, and make a direct connection
between the fast shock and the existence of hard X-ray loop-top sources observed
in some flares (e.g., Masuda et al., 1994). However, detailed self-consistent calcula-
tions of the formation of a fast shock under flare conditions and demonstrations that
it provides a viable acceleration mechanism for solar flare particles have yet to be
undertaken.

Selkowitz and Blackman (2004) investigate the consequences of a combination of
second-order (stochastic) Fermi acceleration in the low-energy regime (10–100 keV)
with a loop-top fast shock producing particles with energies above 100 keV by first-
order Fermi acceleration. In this scenario the necessary injection energies would be
provided by the second-order Fermi process in the turbulent reconnection outflow
region.

The outflow from the reconnection region will generally be associated with a relax-
ation of the stressed pre-flare magnetic field into a lower energy state by a shrinkage of
magnetic field lines (e.g., Forbes and Acton, 1996). Charged particles would become
trapped either between the legs of the relaxing loops or alternatively between the
points where the relaxing field lines cross a loop-top fast-mode shock. Somov and
Kosugi (1997) have suggested that this collapsing magnetic trap should lead to an
increase in the energy of the trapped particle population by the betatron effect and
by first-order Fermi acceleration. Since the magnetic moment of the trapped parti-
cles, μ = mv2

⊥/2B, is approximately conserved, an increase in the magnetic field
magnitude B has to be accompanied by the same increase in the perpendicular
particle energy, mv2

⊥/2 (betatron acceleration). The trapped particles also carry out
a (quasi-)periodic motion between mirror points which are located either in the loop
legs or at a fast-mode loop-top shock (see Fig. 5.41). The approximate conservation
of the second adiabatic invariant, J =

∮
p‖dl, leads to an increase in the parallel

momentum, p‖, because the distance between the mirror points decreases as the
length of the field lines decreases (first-order Fermi acceleration). A similar particle
energization process during substorms in the Earth’s magnetotail has been suggested
by Birn et al. (1997b, 1998b) to explain dispersionless particle injections observed
frequently by geosynchronous satellites. General theoretical investigations regarding
the role of the two processes in collapsing magnetic traps and their relevance for
solar flares have been carried out by, e.g., Somov and Bogachev (2003). The effect
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of Coulomb collisions of the accelerated particle population with the background
corona has been studied by Kovalev and Somov (2003). Whereas these studies only
use general properties of collapsing magnetic traps, Karlicky and Kosugi (2004) have
used a specific simple model for a collapsing magnetic trap to study the acceleration
occurring in their model, including the effects of Coulomb collisions. They also discuss
the possibility of explaining loop-top hard X-ray sources and radio emission observed
in flares within the framework of the model. In general, the work on collapsing traps
carried out so far is promising, but more detailed studies are necessary to be able to
make a final judgement about the effectiveness of this mechanism for flare particle
acceleration.

5.6.3 Other acceleration mechanisms
We have so far discussed flare acceleration mechanisms which have an

obvious direct or indirect association with magnetic reconnection. For the mecha-
nisms we will discuss now this association is at least unclear. In particular these are
the so-called stochastic acceleration mechanisms.

In general, in stochastic acceleration mechanisms particles gain or lose energy over
short time intervals, but on the average gain energy over longer times. Examples
are second-order Fermi acceleration caused by random scattering/mirroring of parti-
cles in (strongly) turbulent magnetic fields or resonant wave–particle interaction in
weakly turbulent plasmas. Apart from solar flares, stochastic acceleration mecha-
nisms have been studied in astrophysics in general for a long time, in particular in
connection with the acceleration and transport of cosmic rays.

In the context of solar flares, a general assumption made either explicitly or implic-
itly by stochastic acceleration models is that a substantial amount of energy released
on large (MHD) scales is transferred into a turbulent cascade. This energy is then
in turn used to generate the high-energy particle population by stochastic acceler-
ation. How and where the energy released on large scales is converted into plasma
turbulence is at present unclear. As already discussed in Section 5.6.2, one possibility
is that the high-speed flows in the reconnection outflow regions become turbulently
unstable (e.g., Moore et al., 1995; Larosa et al., 1996; Selkowitz and Blackman, 2004).
Another possibility would be that the time evolution of the flare magnetic field causes
oscillations in the relaxing and shrinking magnetic loops which could then cascade
to smaller scales. It is worth pointing out, however, that if the fraction of the total
flare energy ending up in high-energy particles is really as high as 50% the energy
transfer processes involved in these scenarios have to be extremely efficient.

Stochastic acceleration is usually investigated using quasi-linear kinetic theory, in
which the time evolution of the particle distribution functions is determined by a
Fokker–Planck equation in momentum space:

∂f

∂t
=

1
p2 ∇p ·

(
p2D ·∇pf

)
+S(p, t).

Here p is particle momentum, D is the matrix of Fokker–Planck coefficients (here only
including the momentum space variables) and S(p, t) summarizes possible source or
sink terms. In addition there can be terms describing systematic energy losses or
gains (as opposed to diffusive processes) which we have omitted here. None of the
present models includes any spatial information which would allow a coupling to
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MHD flare models. The coefficients of the Fokker–Planck equation are determined by
the interaction of the particles with the turbulent magnetic field which is normally
regarded as a (random) superposition of wave modes. In many cases the Fokker–
Planck equation is simplified further by assuming gyrotropic or isotropic distribution
functions. For a detailed treatment of the derivation of the Fokker–Planck equation
and its coefficients based on the various plasma wave modes we refer the reader
to Schlickeiser (2002).

The physical mechanism behind the net acceleration of particles by small ampli-
tude wave modes is the resonance between the cyclotron frequency of the particles
(or integer multiples of it) and the frequencies of the waves present in the turbulent
spectrum, taking into account the Doppler shift caused by motion of the particle (for
a detailed discussion see, e.g., Miller et al., 1997). Obviously if a particle gains energy
its resonance condition will change, and for particles to be accelerated from thermal
energies to the energies observed in solar flares a spectrum of waves with the right
distribution of frequencies has to be present in the acceleration region.

A number of acceleration models based on wave–particle resonances have been
suggested to operate for electrons and protons/ions during solar flares. We will
here only discuss a few recent suggestions. For a more detailed account we refer
the reader to Miller et al. (1997). Miller and Roberts (1995) have investigated how
protons could be accelerated from thermal to relativistic energies by gyroresonant
interaction with a turbulent cascade of Alfvén waves, presenting numerical solu-
tions of the Fokker–Planck equation coupled with an equation for the evolution of
the turbulent wave energy density. Their calculations indicate that even for very
low levels of turbulent magnetic energy (compared to the energy density of the
ambient magnetic field) a sufficient number of protons can be accelerated to energies
required to produce γ-ray lines observed in flares on the observed time scales (≤a
few seconds).

Electrons could be accelerated by a similar cascade for fast-mode waves, but the
level of turbulence needed is very high (Steinacker and Miller, 1992). Instead the
electrons could be accelerated by the fast-mode waves through transit time damping,
which can be regarded as the magnetic equivalent of Landau damping (see, e.g.,
Stix, 1992). Using an approach similar to the one for protons used by Miller and
Roberts (1995), Miller et al. (1996) show that transit time damping in combination
with a turbulent fast-mode cascade can accelerate a sufficient number of electrons
to hard X-ray producing energies on the observed time scales. Again, the level
of turbulence needed is comparatively small. Since transit time damping affects
only the parallel velocity components of the electrons, Miller et al. (1996) had to
postulate the presence of a mechanism which isotropizes the electron distribution
function. Lenters and Miller (1998) improved the model by including Coulomb
collisions and pitch-angle scattering.

In these and other studies (e.g., Ramaty, 1979; Park and Petrosian, 1995, 1996;
Park et al., 1997) the stochastic acceleration of electrons and protons/ions is treated
separately, making an ad hoc choice of the wave mode necessary for acceleration of the
particle species studied. In a recent paper Petrosian and Liu (2004) have investigated
the acceleration of electrons and protons in an integrated model, yielding promising
results. The model has also been used to study the acceleration of 3He and 4He and



5.7 Fast particles in flares: observations 291

seems to be able to explain the observed large enrichment of 3He in impulsive solar
energetic particle events (Liu et al., 2004b).

In summary, stochastic acceleration models can explain many of the observa-
tional features of flares. Since they can in principle operate within large volumes,
the number problem is not as severe as for other acceleration mechanisms and they
can explain the acceleration of electrons and protons to the observed energies. One
particular advantage of stochastic acceleration based on wave–particle resonance is
that it can explain the preferential acceleration of particular ions. This is difficult to
achieve with other acceleration mechanisms.

5.6.4 Summary
Understanding the physical mechanisms leading to the generation of high-

energy particles in solar flares is one of the outstanding problems in solar physics.
Since similar processes are probably operating in other astrophysical objects as well,
progress made for solar flares will be important for astrophysics in general. Over the
past decade the observations of solar flares have been considerably improved and
we are reaching a position where the theories of particle acceleration in flares are
strongly constrained by observations. On the other hand there is still a considerable
gap between between the macroscopic (MHD) theory of flares and the microscopic
(kinetic) theory of particle acceleration. Closing this gap is a formidable task, but it
is this challenge that makes the problem of particle acceleration in solar flares one
of the most interesting problems in solar physics.

5.7 Fast particles in flares: observations
L. Fletcher

The link between the reconfiguration of coronal magnetic fields and fast particles
was established quite early on in flare physics. Giovanelli (1948) suggested that Hα

chromospheric flare brightenings were due to electrons energized in inductive electric
fields set up in the neighborhood of a sunspot. He was envisaging a relatively low
level of energization, but the sudden ionospheric disturbances (SID) (e.g., Ellison,
1950) caused by ionization of the D-region by an enhanced flux in the ultraviolet,
extreme UV, and X-ray, suggested the presence of much higher energy flare parti-
cles. Observations of the ionizing flux itself had to wait until the era of balloon
and space-borne instrumentation; for example, Arnoldy et al. (1967) established
the correlation of SIDs with flare X-ray bursts observed with the OGO-I and III
satellites.

At present, the primary diagnostic for flare-accelerated electrons is X-ray emis-
sion, interpreted as electron–ion bremsstrahlung. Brown (1971) showed that the
observed spectrum of X-rays can be inverted, i.e., deconvolved with the photon
production cross-section, to deduce the source-averaged spectrum of accelerated
electrons producing it. The diagnostic is quite well-understood for bremsstrahlung
produced by a hot thermal plasma (thermal bremsstrahlung), or by nonthermal elec-
trons in a relatively cold plasma background target (collisional bremsstrahlung). For
the latter, with the assumption of a collisionally thick target (i.e., beam electrons lose
energy via Coulomb collisions as they radiate) properties of the primary accelerated
electron spectrum can also be deduced. The hard or nonthermal component of the
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X-ray spectrum has generally attracted the most interest from the point of view of
acceleration, with the lower energy X-ray radiation assumed to be a response to the
primary energy input. However, coronal flare sources observed at a few tens of keV
probably reveal another facet of electron acceleration (though they are as yet little
explored, either observationally or theoretically).

The radio domain is also rich in electron diagnostics. Both coherent and inco-
herent mechanisms operate. During the impulsive phase, incoherent gyrosynchrotron
emission dominates at centimetric sometimes and millimetric wavelengths. Several
different signatures of beam-generated coherent plasma emission are also observed,
such as decimetric spikes and Type III bursts. Flare electrons can also continue into
space producing interplanetary Type IIIs, detected as waves and particles in situ.
The infrared to EUV regime offers only model-dependent particle diagnostics, but
high spatial and temporal resolution data mean that locations of emission sources
and their relationship to the magnetic configuration can be investigated in great
detail. Solar flares also accelerate copious quantities of ions, which are detected both
in situ, at >0.3AU, and remotely via the γ-ray lines they produce at the Sun. This
chapter discusses in greater detail the remotely sensed diagnostics for accelerated
particles in flares.

5.7.1 Hard X-ray emission
The definition of hard X-ray (HXR) is somewhat fluid, but let us settle on

a photon energy range from 20 keV to 500 keV. HXR spectroscopy was first carried
out inadvertently by balloon-borne scintillation counters (Peterson and Winckler,
1959), and thereafter in the sixties and seventies with balloon, rocket, and satellite
experiments, including the OSO/OGO series. In the 1980s the Hard X-ray Imaging
Spectrometer HXIS (van Beek et al., 1980) on the Solar Maximum Mission added
imaging. HXIS showed intense, discrete HXR sources at energies up to 30 keV, and
joint observations with ultraviolet confirmed that these were formed in the chromo-
sphere (e.g., Hoyng et al., 1981). Now known as HXR footpoints, they are interpreted
as bremsstrahlung radiation produced when fast electrons encounter the dense chro-
mosphere. However, it was demonstrated that only ∼20% of the hard X-ray emis-
sion at energies between 16 and 30 keV came from resolved sources: the remainder
presumably appearing as diffuse emission (MacKinnon et al., 1985). In some events,
coronal emission was also seen (e.g., Hoyng et al., 1981). Subsequent HXR imaging
instruments, Hinotori (e.g., Ohki et al., 1982) and the Yohkoh Hard X-ray Tele-
scope (Kosugi et al., 1991), confirmed HXR footpoints and made several well-resolved
observations of coronal HXR sources (e.g., Masuda et al., 1994) with photon energies
up to at least 50 keV. Coronal sources are amply confirmed by RHESSI.

Based on the collisional thick-target interpretation, properties of the flare electron
population can be summarized as follows (see review by Miller et al., 1997). For a
large flare, 1036–1037 electrons s−1 must be accelerated to above 20 keV for several
tens of seconds, giving a total energy above 20 keV of 1031 erg. Acceleration takes
place on time scales of a second or so, and is fragmented into sub-second bursts.
At typical coronal densities of 109 cm−3, a coronal volume of (109 cm)3 would be
depleted of electrons within a second, therefore any acceleration mechanism must
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provide for a continuous supply of electrons to the corona, and the geometry must
be such as to be able to process a huge number of electrons per second.

RHESSI
The Ramaty High-Energy Solar Spectroscopic Imager (Lin et al., 2002),

launched in February 2002, merits a brief description since its combination of spatial,
spectral, and temporal resolution is historically unique and has provided many chal-
lenges for flare physics. Onboard the RHESSI spacecraft are nine identical detectors,
each a single germanium crystal. The arrival of an X-ray photon in a detector gener-
ates an energy-dependent number of electron–hole pairs. The electrons are drawn to
a central anode and register as a pulse. The theoretical energy resolution is about
1 keV at energies up to 100 keV, and about 5 keV in the γ-ray range (MeV).

Imaging is achieved by rotating modulating collimators. In front of each detector is
a pair of grids, aligned so that the slits and slats in the rear and front grids are exactly
parallel. Each of the nine detectors has a different slit–slat spacing. As the whole
assembly rotates with the spacecraft (at ∼14 rpm) around an axis joining the front
and rear grids, photons from the Sun are either blocked or can reach the detector,
depending on their angle of incidence. The photon flux is thus modulated, with the
modulation pattern at each detector depending on the slit–slat spacing and source
position. Combining modulation patterns from several detectors yields the source
surface brightness distribution. Modulation of the lower energy photons (a few tens
of keV) by the finest grids gives an angular resolution of around 2 arcseconds, or
1500 km on the Sun. Higher energy photons are only modulated by the thicker grids,
so the angular information is not so detailed.

5.7.2 HXR spectroscopy
Early HXR spectroscopic data broadly speaking supported a model of a hot

(quasi-)thermal source dominating at electron energies below ∼20keV, with a (some-
times broken) power law, or exponential electron distribution above. These spectra
were not very detailed, but the high spectral resolution RHESSI spectroscopic obser-
vations now provide strong motivation for detailed modeling, including processes such
as electron–electron bremsstrahlung, noncollisional particle losses and photospheric
albedo. Theoretically these effects were always part of the picture – observationally
we can now hope to disentangle them, an integral part of getting at the underlying
accelerated electron spectrum.

Spectroscopy proceeds in two complementary strands. In forward fitting, a trial
electron spectrum is folded through the HXR cross-section, the result compared
with the observed HXR spectrum, and the electron parameters adjusted until an
acceptable fit is obtained. This method is fast and transparent, but presumes an
electron spectral model (usually a single or broken power law in energy, with a
thermal component at low energies). Grigis and Benz (2004) find electron spectral
indices ranging from 3 to 9, and typical temperatures of the thermal component of
20–40 MK. The spectral index is strongly correlated with the nonthermal flux, and
varies throughout the flare, over subpeaks with durations of much less than a minute
in a soft–hard–soft manner (e.g., Fletcher and Hudson, 2002; Grigis and Benz, 2004).
This appears to be an elementary property of the acceleration process.
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The second approach to deriving electron spectra is via numerical inversion of
the photon spectrum. With some prior assumption about the bremsstrahlung cross-
section, the electron spectrum can be obtained by differentiating the photon spectrum
under some constraints of smoothness or regularization (e.g., Piana, 1994). This is a
more data-driven approach (subject to its own problems) and the subtleties of the
electron spectra have come to light primarily via inversion. Using early balloon-flight
data, Johns and Lin (1992) recovered impulsive phase electron spectra consistent with
a broken power law above 20 keV and a hot (∼30MK) thermal component. Piana
et al. (2003) analyzed the July 23, 2002 RHESSI flare, and confirmed the basic broken
power law (found also using forward-fitting by Holman et al., 2003), and a low-energy
spectrum consistent with a multithermal plasma with a broad temperature distri-
bution. However, a significant new feature is a dip in the source-averaged electron
spectrum at 25–45 keV (Fig. 5.45), which has many possible interpretations.

Perhaps the simplest interpretation is a low-energy cutoff at 30–50 keV, or shal-
lowing in the slope of the accelerated electron spectrum. In this case, the spectral
slope below this energy is also of importance in characterizing the transport and
energy-loss mechanisms. However, the dip at 25–45 keV can also be seen as a bump
at around 55 keV. This could be caused by backscatter of HXR photons from elec-
trons in the dense chromosphere (e.g., Bai and Ramaty, 1978; Johns and Lin, 1992;
Kontar et al., 2003), giving a contribution in an energy range dependent on the spec-
tral slope of the primary photon spectrum and the source position. Correcting for
photospheric albedo reduces the size of the dip but it is not yet known whether it can
be removed altogether. It could be X-rays from the charge- and current-neutralizing
return current that, theoretically, flows co-spatially with the beam. Zharkova and
Gordovskyy (2005) have performed numerical simulations of this, finding a bump,
but at lower energies than observed.
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Fig. 5.45. Source-averaged electron spectrum obtained by inversion of the RHESSI
bremsstrahlung spectrum in the July 23, 2002 flare. Note the dip at energies of
around 25–45 keV. Figure from Piana et al. (2003).
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Forward-fitting is also carried out in small microflare events. These have tempera-
tures around 10–15 MK and steep power-law photon spectra above about 10 keV (e.g.,
Krucker et al., 2002; Hannah et al., 2004). Collisional thick-target analysis of a single
GOES B-class event (i.e., four orders of magnitude less thermal energy than a large
flare) by Hannah et al. (2004) implies a total energy in nonthermal electrons of
around 1029 erg (for a low-energy cutoff of 20 keV). The thermal energy in the same
event derived from the EUV by Liu et al. (2004a) is around 1028 erg. The thick-
target interpretation might be incorrect, but we do know that microflares also show
microwave signatures (e.g., Gary et al., 1997; Qiu et al., 2004) and Type III bursts,
providing further evidence for substantial nonthermal electron components even in
these tiny events.

5.7.3 Flare imaging: HXR to infrared
The first recorded observation of a solar flare was in white light (Carrington,

1859) and showed bright footpoints. However, white-light enhancements are hard to
detect, and occur mainly in the largest flares, so in the decades before space-based
observations, flare footpoints were observed primarily in Hα. From this time the
term two-ribbon flare originates: two bright (and often very convoluted) ribbons of
Hα emission were seen, often separating rapidly and followed by an arcade of loops
joining the locations where the ribbons had been. Ribbons emit also in the IR, UV,
and EUV. HXR and radio sources are found at two or three footpoints in the ribbon,
and are at or near the ends of bright soft X-ray (SXR, ∼1–2keV) loops, often with
strong, impulsive SXR footpoints suggestive of strong heating (e.g., Hudson et al.,
1994; Mrozek and Tomczak, 2004). Figure 5.46 shows an example of a two-ribbon
flare observed in EUV, low- and high-energy HXR, and γ-rays.

TRACE & RHESSI:  28-Oct-2003 11:11:53.000 UT

–200 –150 –100 –50 0
X (arcsecs)

–450

–400

–350

–300

–250

Y
 (

ar
cs

ec
s)

10–20 keV
100–200 keV

TRACE 195A:  28-Oct-2003 11:11:53.000 UT

–450

–400

–350

–300

–250

Y
 (

ar
cs

ec
s)

–500

–200 –150 –100 –50 0
X (arcsecs)

–250

200-300 keV 11:06:40–11:28:20
11:08:00–11:30:002218-2228 keV

BEAM

Fig. 5.46. Multiwavelength observations of the October 28, 2004 flare. In both
panels, the background image is TRACE 195 Å emission. Left: the dashed contours
are HXR emission in the 200–300 keV range, and the solid contours are γ-ray
centroids at 2.2 MeV. Image from Hurford et al. (2005). Right: the dashed
(extended) contours are HXR emission between 10 and 20 keV and the solid
between 100 and 200 keV. Image courtesy of Säm Krucker, UC Berkeley.
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HXR footpoint sources
Yohkoh/HXT showed predominantly double or multiple footpoint flares,

(Sakao et al., 1996). Single footpoints could have been unresolved multiple foot-
points, or with a conjugate footpoint below the dynamic range (around 5 to 10) of
Yohkoh/HXT. The predominance of double footpoints suggests that conjugate foot-
points are usually of approximately equal brightness. Footpoints were observed to
move; for instance, Sakao et al. (2000) demonstrated a tendency for rapidly separating
footpoints to be associated with flares with a photon spectrum breaking upwards
at high energy. Although Yohkoh/HXT observed thousands of HXR flares, only one
was reported as a two-ribbon HXR flare (Masuda et al., 2001). This was during the
well-observed July 14, 2000 event, remarkable for the symmetry with respect to the
magnetic neutral line of its EUV flare arcade. Its magnetic configuration may in fact
have been quasi-2D, especially in its late phase. Even with RHESSI imaging, which
has a better dynamic range (of about 20), we still find that HXR sources of a few
tens of keV and above tend to be concentrated into two or three footpoints, rather
than distributed along a whole ribbon. This implies that, apart from a few excep-
tional cases, the high fluxes of very energetic electrons are preferentially accelerated
in certain parts of the inherently 3D reconnecting structure.

Other wavelengths – IR to EUV – are not generally used as electron flux/spectral
diagnostics, although the wings of the Hα line can be used in principle to diagnose
total electron flux (Canfield et al., 1984). However, UV and optical footpoints are
better resolved in space and time than HXR sources, so can be used to track the
evolution of electron energy deposition sites. White-light flare emission is thought
to be due to an increase in the free–free and free–bound emission in the chromo-
sphere (Hudson, 1972; Aboudarham and Henoux, 1986). Radiative backwarming of
the chromosphere is predicted to lead to observable increases in the infrared (Hudson,
1972). This has recently been observed by Xu et al. (2004) to occur in the same
spatial locations as RHESSI HXR footpoints.

Footpoint motions
Footpoints are assumed to map the ends of field lines which at any instant

are involved in reconnection, so the rate at which flux is advected into the coronal
reconnection region can be deduced from the product of the footpoint speed and
the photospheric magnetic field strength (Forbes and Priest, 1984). In a strictly
2D configuration this is equal to the reconnection electric field. Using Hα flare
ribbons, Poletto and Kopp (1986) first deduced a reconnection electric field on the
order of 100Vm−1 during the gradual phase of a large flare. Subsequently, Qiu et al.
(2002), Asai et al. (2004) and others have carried out similar analyses, finding electric
field strengths on the order of a few kV m−1 during the flare impulsive phase. These
latter authors also identified correlations between the footpoint separation rate and
the HXR flux.

Attempts to understand the 3D configuration from footpoint excitation use
multi-wavelength observations and theoretical magnetic field extrapolations. Both
Aulanier et al. (2000) and Fletcher et al. (2001) deduced the presence of a coronal
spine-fan configuration (using magnetograms, UV/EUV and X-ray observations),
while Metcalf et al. (2003) found evidence for quasi-separatrix layers, by showing
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that the path of a rapidly moving Yohkoh/HXT source and a white-light source
followed the theoretical location of the intersection of magnetic quasi-separatrix
layers with the photosphere. RHESSI shows many examples of moving HXR
footpoints. For example, Fletcher and Hudson (2002) found systematic footpoint
separations, with a rough correlation between the separation rate and the HXR
spectral index. Footpoints were observed to separate along, rather than perpendic-
ular to, the moving flare ribbons observed in EUV – a behavior inconsistent with
simple 2D reconnection models. This was also seen in the two-ribbon X-class flare
that occurred on July 23, 2003. Krucker et al. (2003) tracked three HXR footpoints
for 10–15 minutes, with periods of rapid movement corresponding to high HXR
fluxes. The presence of more than two moving footpoints suggests at least three flux
domains involved in the reconnection process.

TRACE flare footpoints are typically on the order of an arcsecond across or
less, and follow meandering trajectories. However, the collective motion of many
UV sources forms a narrow excitation front sweeping across the lower atmo-
sphere. Fletcher et al. (2004) tracked the individual TRACE UV footpoints that
comprise a flare ribbon as it swept across the chromosphere. At the level of indi-
vidual UV sources within the ribbon, a good correlation was found between the
UV intensity and the product of footpoint speed and line-of-sight magnetic field
strength. However, uncorrelated intensity in adjacent groups of footpoints indicates
a spatially fragmented, rather than continuous, coronal reconnection rate.

Coronal HXR sources
With SMM/HXIS, van Beek et al. (1981) found coronal sources at 3.5–

16 keV. Observations of an occulted flare (i.e., with footpoints beyond the solar limb)
with the Solar X-ray Telescope on Hinotori extended this to at least 25 keV (Takakura
et al., 1983). These sources were generally interpreted as thermal bremsstrahlung
from a hot target. The claim of an impulsive, and by implication, nonthermal coronal
component was first made by Masuda et al. (1994) using Yohkoh/HXT, but this
observation suffered from the dynamic range and source confusion limitations encoun-
tered when imaging usually diffuse coronal HXR sources together with intense chro-
mospheric ones. In a study of 14 occulted Yohkoh/HXT flares, Tomczak (2001) put
this claim on a stronger footing, demonstrating that coronal sources exhibit both
gradual and impulsive HXR emission (apparently originating in the same source,
with the impulsive spikes being more energetic). Hudson et al. (2001) observed a
moving Yohkoh/HXT coronal HXR source, interpreted as fast electrons trapped in
the expanding field of a coronal mass ejection (also showing slowly drifting decimetric
emission).

RHESSI coronal sources occur at energies from a few to several tens of keV, and
are frequently moving. Coronal HXR spectra are usually softer than those of their
footpoints (though Hudson (1978) observed an extremely hard coronal source via
limb occultation). They often appear prior to the footpoint sources (as for example
in the July 23, 2003 flare where Lin et al. (2003) report a rise-phase coronal source
with a wholly nonthermal spectrum) and are maintained long after the impulsive
phase has passed. Emslie et al. (2003) fit the coronal source in the main phase of the
July 23, 2002 flare by an isothermal Maxwellian, but the variation of coronal source
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centroid position as a function of energy in the April 21, 2002 event (Gallagher et al.,
2003) shows that sources need not be isothermal. Karlický et al. (2004) require also a
thin-target nonthermal bremsstrahlung component to explain their moving coronal
sources (also radio emitters) and in a small number of events the majority of HXR
photons up to 50 keV are generated in the corona (Veronig and Brown, 2004) and
are interpreted as collisional thick target emission in a dense coronal loop (on the
order of 1011 cm−3).

Plausible explanations for coronal sources include: (i) emission from a fast-mode
shock, occurring where the outflow jet from a coronal reconnection region impacts
on a dense, static loop system below (Tsuneta and Naito, 1998); (ii) signatures of
the current sheet itself or its heated outflow regions (e.g., Sui and Holman, 2003);
(iii) particles trapped and possibly further accelerated in the field below a current
sheet (e.g., Somov and Kosugi, 1997; Fletcher and Martens, 1998). All of the above
predict that coronal sources will rise as time progresses, which is observed. Ji et al.
(2003) have also found a RHESSI coronal source coincident with an erupting filament
(which eventually fails to leave the Sun), suggesting extreme heating, possibly of the
filament material, as a flux rope rises and interacts with the surrounding field.

5.7.4 Nonthermal radio emissions
During the impulsive phase both coherent and incoherent radio emission is

observed. In the centimeter range, gyrosynchrotron emission dominates, produced
primarily by electrons trapped in the strong magnetic field of flare loops. HXR
and microwave emission are often described as coming from the same population of
accelerated electrons, meaning electrons accelerated in the same event with compa-
rable energies. Kosugi et al. (1988) found the best correlation to exist between
≤80keV HXR and 17 GHz Nobeyama data in impulsive events, suggesting that
the cm-wavelength emission is generated by electrons with E ≤ 200keV. White
et al. (2003) have provided the first simultaneous observations of coronal HXR and
microwave emission during the pre- and impulsive phase of a solar flare, which suggest
an extended coronal population of density 1010 cm−3 above 20 keV. Gyrosynchrotron
emission is beamed along the direction of travel of the electrons and is sensitive to
local field strength, so it can be used, together with HXRs, to constrain the electron
angular distribution. For example, Melnikov et al. (2002) and Lee and Gary (2000)
find evidence for perpendicular anisotropies in the injected electron distributions.

Type III bursts are high brightness temperature radio sources drifting rapidly in
frequency. They occur predominantly at decimeter wavelengths and are a plasma
collective effect, resulting from mode-conversion of Langmuir waves generated by a
beam of electrons. The burst frequency is the local plasma frequency or its second
harmonic, and from the drift rate we deduce that the beams are traveling at around
one-third of the speed of light, usually moving outwards from the Sun. In some strong
flares Aschwanden et al. (1995) found correlated sequences of outward-propagating
bursts, typically delayed by several tenths of a second with respect to HXR bursts.
The size of the delays implies that the upward-propagating beams start to produce
radio emission at a height of ∼50000km. However, not every HXR event is accom-
panied by a Type III signature. Type IIIs require a beam instability (a positive slope
in velocity space) to develop at an appropriate electron energy for exciting radio
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frequencies, and the magnetic geometry might not always permit this. There is also
the possibility of wave absorption or suppression. Conversely, Type III events are
frequently observed in the absence of an X-ray flare. However, it requires a far smaller
flux of electrons to make an observable Type III than to make an observable HXR
event, so this is not surprising. The spatial association between Type III bursts and
plasma structures in the corona can be probed: for example, Raulin et al. (1996)
find that the centroids of Type III sources are aligned along Yohkoh soft-X-ray jets,
suggesting that the electrons propagate along the jets, in relatively dense material.
Radio emission from slowly drifting plasmoids during the flare impulsive phase (Khan
et al., 2002; Karlický et al., 2004) are interpreted as plasma emission generated by
electron beams penetrating into the plasmoid magnetic field structure.

Type II radio bursts during the gradual phase are slowly drifting, broadband radio
signals. Their detailed time and frequency structure is consistent with fast electrons
accelerated in short bursts at the head of a slowly drifting shock, usually interpreted
as a CME bow shock. Recently Aurass et al. (2002) have reported a stationary Type
II burst, which does not drift in frequency and is therefore consistent with a standing
shock, possibly that produced when a downward-directed outflow jet from a coronal
reconnection region impacts the top of post-reconnection coronal loops.

5.7.5 Ions
Narrow γ-ray lines originate from ambient heavy ions raised to excited

nuclear states by collisions with accelerated protons or α-particles. Broad lines arise
from excited states of heavy ions which are themselves accelerated. Nuclear states
de-excite rapidly, so prompt lines reflect the instantaneous fast ion population. Line
emission occurs primarily in the 4–7 MeV range and requires excitation energies
of 10–30 MeV per nucleon of the exciting particles (Ramaty et al., 1979). Chupp
et al. (1975) using OSO-7 made the first detection of de-excitation lines from carbon
and oxygen at 4.4 and 6.1 MeV, respectively, as well as the neutron capture line
at 2.22 MeV. Flare γ-rays have also been observed by the SMM Gamma-Ray Spec-
trometer, the Compton Gamma-Ray Observatory (CGRO), the Yohkoh Gamma-Ray
Spectrometer, GRANAT/PHEBUS, and latterly by RHESSI.

Miller et al. (1997) summarize the ion properties as follows. Ions are accelerated up
to energies of ∼100MeV on time scales of a second, and to a GeV on time scales of a
few seconds. Proton acceleration continues for several tens of seconds at ∼1035 s−1.
The total energy content in protons above 1 MeV is ∼1031 erg. The characteristic
abundances of ion species vary, depending on the type of flare. The most significant
variation is in the 3He/4He ratio. Impulsive flare in situ measurements give a ratio
up to about 1, compared to a typical coronal value of 5×10−4. In gradual long-
duration flares the ratio is compatible with the coronal value. Similarly, both in
situ and spectroscopic measurements in impulsive flares show abundances of neon,
magnesium, silicon, and iron to oxygen enhanced by a factor between two and eight
over coronal values. Gradual flare in situ observations usually show ratios consistent
with coronal values (however, see Murphy et al., 1991, for a counter-example).

The neutron capture line arises when a neutron, produced in a nuclear reaction
(between protons above 30–100 MeV and ambient ions), is captured by a proton to
form deuterium. The capture produces a line at 2.223 MeV. Neutrons take a long
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time to slow down to the energy at which they can be captured, and can penetrate
deep in the solar atmosphere where the radiation is formed. The neutron capture
line is thus delayed by ∼100 s compared to other γ-radiation. The line shape can be
used to constrain the angular distribution of the primary flare protons. Murphy et al.
(2003) have found evidence for pitch-angle scattering of these particles. This line
was the first γ-ray line to be imaged by RHESSI; an example is shown in Fig. 5.46.
Curiously, in the first image of its kind (Hurford et al., 2003), the 2.22 MeV source
was substantially offset from the hard X-ray sources, suggesting protons and electrons
were accelerated in different parts of the magnetic structure.

Ratios of the fluences in strong de-excitation lines to that in the neutron capture
line can, when combined with numerical simulation of ion propagation and interac-
tion, constrain the spectral index and angular distribution of accelerated ions (e.g.,
Hua and Lingenfelter, 1987). The Doppler shifts due to recoil of excited ions affect
γ-ray line shapes and allow further constraints to be placed on the directionality and
angular distribution of accelerated protons and α-particles (Ramaty and Crannell,
1976). Share et al. (2002) have determined that the most likely proton/alpha distri-
bution generating γ-ray lines is a broad forward isotropic distribution, perhaps due
to strong pitch-angle scattering by MHD turbulence. However, RHESSI de-excitation
line spectra reported by Smith et al. (2003), with higher energy resolution than
previous experiments, are consistent with a forward isotropic distribution only if the
particles are traveling along field lines highly inclined to the local vertical (giving an
increased Doppler shift, in line with the observations). Otherwise, a directly beamed
distribution is needed.

Flare-excited nuclei also emit positrons which slow down before directly annihi-
lating on electrons, or forming positronium. Both of these processes will produce a
line at 511 keV (from the singlet state of positronium in the latter case). The line was
first seen in 1972 (Chupp et al., 1975) and is also a delayed line, due to the time taken
for the positrons to slow down and annihilate. A further 511 keV channel involving
the interaction of α-particles with 3He can be used to constrain the accelerated α

angular distribution, which is again found to be forward isotropic or isotropic (Share
et al., 2004).

The continuum above ∼50MeV is pion-decay emission, the pions originating
from protons or ions with energies ≥ 300MeV/nucleon scattering from ambient
nuclei. CGRO detected E > 50MeV continuum emission persisting for several hours,
produced in the high corona (e.g., Kanbach et al., 1993). Rank et al. (2001) demon-
strated that the flux decay times are inconsistent with what would be expected if
the radiation came from fast particles trapped in a coronal magnetic bottle, and
argued that particle acceleration is ongoing during the several hours over which they
radiate.

5.7.6 Conclusions
This review attempts to summarize the observations of signatures of accel-

erated electrons and ions in solar flares. Despite more than forty years of detailed
and dedicated observations, our knowledge of the spectral and spatial distribution of
these particles, which carry a significant fraction of the total flare energy, is rather
meager. We have a broad-brush picture of the numbers of particles involved, general
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spectral shapes and time evolution, and radiation signatures produced, but no clear
observational picture of how they are accelerated and how they are related to the
evolving solar magnetic field. Moreover, the intermediate step between particle accel-
eration and particle radiation – i.e., particle transport – tends to neglect collective
effects in the solar plasma (with the exception of studies of Type III radio emission).
However, it seems likely to the author that a full exploitation of – in particular –
RHESSI and radio spectral observations is directing us to a reexamination of the
theory of particle transport and radiation in flares, while the spatial information
from the IR to γ-rays points to a three-dimensional complexity that our magnetic
field and acceleration models must ultimately grow to encompass.



Definition of specific notations

International System (SI) units are used throughout this book with the following
common notations:

A vector potential
B magnetic induction
c speed of light in vacuum
e elementary charge
E electric field
η electrical resistivity
ε0 permittivity of free space
γ ratio of specific heats; adiabatic constant
j electric current density
me, mi electron, ion mass
MA Alfvén Mach number
μ0 permeability of free space
n number density
νei electron/ion collision frequency
Ωe, Ωi electron, ion gyrofrequency
ωpe, ωpi electron, ion plasma frequency
P pressure tensor
p pressure
ρ mass density
S Lundquist number
t time
T temperature
v flow velocity
vA Alfvén speed
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Sonnerup, B. U. Ö. and Ledley, B. G. (1979). Ogo-5 magnetopause structure and classical

reconnection. J. Geophys. Res. 84, 399–405.
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Sonnerup, B. U. Ö., Paschmann, G., Papamastorakis, I., et al. (1981). Evidence for magnetic field
reconnection at the Earth’s magnetopause. J. Geophys. Res. 86, 10049–10067.
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Vaivads, A., André, M., Buchert, S. C., et al. (2004a). Cluster observations of lower-hybrid
turbulence within thin layers at the magnetopause. Geophys. Res. Lett. 31, L03804.
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collisionless dissipation, 110
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distribution function, 284
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Dreicer runaway field, 88
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drift-kink instability, 150
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driven reconnection, 128, 274
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observed, 215
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energetic particle

injection, 207
observations in the magnetotail, 156–158

energy spectrum, 286
ephemeral region, 4
erupting filament, 298
erupting prominence, 5, 281
ESW, see electrostatic waves, 159

fan, 63, 233, 243, 260, 296
fan reconnection, 70–72, 233
fast particle, 291–301
fast reconnection, 105
fast-mode shock, 287, 298
fast-mode wave, 290
Fermi acceleration, 6, 207, 282, 287–289
field line

elliptic, 46
hyperbolic, 46

field line conservation, 29
fields, frozen-in, 28
filament, 4
flare loop, 6
flare ribbon, 6
flipping, 70
flow advection, 27
flux domain, 237
flux transfer event (FTE), 14, 167,
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flux transporting flow, 34

nonexistence, 46
flux transporting velocity, 64
flux tube reconnection, 74–86
flux-constrained equilibrium, 238, 244
flux-pile-up reconnection, 22
flyby, 262–269
Fokker–Planck equation, 289
footpoint motions, 296
force-free field, 230, 232
frozen-in, 27
frozen-in field, 27

breaking, 90
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γ-ray line, 299–300

RHESSI, 299
GEM reconnection challenge, 91, 94, 95,
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general magnetic reconnection, 1, 33, 42, 48
Gold–Hoyle field, 78
granulation, 3
Green–Syrovatskii current sheet, 240
GSE (Geocentric Solar Ecliptic) system, 12
GSM (Geocentric Solar Magnetospheric)

system, 12
guide field, 15, 74, 167, 169, 284, 285

reconnection, 96–102, 114, 121
guiding center approximation, 285
gyrosynchrotron emission, 298

Hall currents, 214
Hall electric fields, 93, 98

Hall MHD, 94, 95, 133, 136, 143
Hall reconnection, 102, 103, 105, 214
Hall term, 35, 92, 95
hard X-ray footpoints, 292, 296, 297
hard X-ray spectroscopy, 293
hard X-rays, 291–301
Harris sheet, 109, 285
heat conduction, 259
heat flux tensor, 118–120
helicity, 81–86, 232, 234, 279

linking, 82
twist, 82

historical development, 16, 17
hyperbolic flux tube (HFT), 253–258

ideal MHD, 17
IMAGE spacecraft, 170
IMF, interplanetary magnetic field, 10, 181

northward, 13, 14, 168, 182
southward, 10, 168

intense flux tube, 235, 236
internal reconnection, 67
International Sun-Earth Explorer, 167
ion acceleration, 299–300
ion inertial region, 140
ion tearing mode, 122–124
ion-acoustic instability, 145–146, 246
ion-energy dispersion event, 170
ion-sound instability, 145
ISEE, see International Sun-Earth Explorer,

167

jet, 299
Joule dissipation, 108, 267, 273

kinematic reconnection, 65, 72
kinetic Alfvén wave, 97
kink instability, 2, 150–151, 275, 276

Langmuir waves, 164
LASCO, 6
linking helicity, 82
Liouville’s theorem, 285
lobe, 9
loop-top source, 289
loss of equilibrium, 2, 202
lower-hybrid drift instability, 146–150
lundquist number, 17

magnetic carpet, 4, 232, 235, 274
magnetic field pile-up region, 162, 163
magnetic flipping, 70
magnetic flux pile-up, 140
magnetic flux velocity, 64, 65

pseudo, 65
magnetic helicity, 81–86, 232, 234, 266, 276, 279

evolution, 30
ideal evolution, 30
linking, 82
production, 45
total, 30
twist, 82

magnetic merging, 1
magnetic moment, 288
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magnetic nonequilibrum, 6
magnetic percolation, 150
magnetic pinching, 250
magnetic relaxation, 232
magnetic Reynolds number, 17
magnetic skeleton, 230, 233
magnetic splitting, 65, 69, 70
magnetopause, 8
magnetosheath, 8
magnetosphere, 8–15
magnetospheric substorm, 9
magnetotail flaring, 10
Maxwellian distribution, 285
merge reconnection, 80
merging line, 169
MHD equations, 16
MHD turbulence, 274, 300
MHD variational principle, 194
microflare, 295
minimum current corona, 234, 263, 266
MIRACLE network, 222
modified two-stream instability, 152–153

near-Earth neutral line model, 9
neutral line model, 9
Newton challenge, 94
normal magnetic field, 122
null line

O-type, 42
X-type, 42

null point, 259–262
bifurcation, 36
generic, 39
negative, 170
positive, 171
three-dimensional, 74

O-line, 39
O-point, 39
Ohm’s law, 64, 67

generalized, 89–90
Ohmic dissipation, 241, 267, 273
onset problem, 122
orthogonal parquet, 252
overdraped field lines, 178, 179
overdraping, 171

parallel electric field, 76, 244, 245, 282, 283, 285
Parker braiding, 8, 235, 269–274
Parker problem, 258
particle acceleration, 6, 281–291
particle precipitation boundary, 221
passive scalar, 27
PEACE, 215
Petschek model, 18–23, 87, 102
Petschek reconnection rate, 19
photosphere, 3
pile-up of magnetic flux, 140
pile-up region, 162
plasma beta, 230, 258
plasma sheet, 9

boundary layer, 159
properties, 154–155
turbulence, 159

plasmoid, 11, 219
evolution, 203–205
structure, 204

Poincaré index theorem, 242
post-flare loop, 275
power-law distribution, 156, 284, 286
power-law spectrum, 154, 156, 158, 159, 165
Poynting flux, 8, 229, 258, 267, 271, 272
prominence, 4, 5, 281
prominence eruption, 277
proton aurora, 183
pseudo-magnetic flux velocity, 65

quasilinear-theory, 289
quasi-separatrix, 230
quasi-separatrix layer (QSL), 250–258, 296

definition, 252
quiet Sun, 4

radio emission, 298–299
rate of reconnected flux, 52, 60
reconnection, 13

E ·B = 0, 41
E ·B �= 0, 42
cosmic strings, 26
superfluids, 26
two-dimensional, 38
vortices, 26

reconnection electric field, 296
reconnection line, 182
reconnection rate, 60, 224–226, 265

definition in two dimensions, 17
external, 61
internal, 61
Petschek model, 19
Sweet–Parker model, 18
three-dimensional, 52
two-dimensional, 41

reconnection time, 236
reconnective annihilation, 64
reduced MHD, 234
relaxation, 232, 234
reversed shear model, 279
RHESSI, 6, 292–293, 297, 300
rotational flow, 68, 69

sausage instability, 152
separator, 18, 46, 171, 230, 232, 252, 259–264
separator collapse, 261
separator current, 242
separator reconnection, 172, 233–234, 237–249,

266, 268, 274
separatrix, 18, 230, 234, 235, 237–249, 259, 263,

264, 266, 285, 286
shock acceleration, 6, 282
sigma surface, 170
sigmoid, 275, 277
skeleton, 63, 230, 233
slingshot reconnection, 79, 80, 82–85
slippage, 34
slow reconnection, 105
slow-mode shocks, 19, 262
solar corona, 5, 229–237, 276
solar eclipse, 4, 5
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solar flare, 4–6, 63, 245, 275–301
Solar magnetospheric system, 168
solar wind, 8
Sonnerup-type reconnection, 22
Speiser orbit, 207
spine, 63, 72, 170, 233, 260, 296
spine reconnection, 65–70, 72, 233
Spitzer resistivity, 240, 245
splitting, 65, 69, 70
stagnation-point flow, 69, 75
staircase cusp signatures, 187
steady-state reconnection in two dimensions, 17
Stern singularity, 172
stochastic acceleration, 6, 282, 287–290
substorm, 9–13

current wedge, 205–206
growth phase, 10, 11, 192

sudden ionospheric disturbance, 291
sunspot, 4
superDARN, 220
supergranulation, 4
surfing acceleration, 164
Sweet’s configuration, 242
Sweet–Parker model, 18–23, 87, 102
Sweet–Parker reconnection, 239, 240, 246, 248
Sweet–Parker time scale problem, 173
Syrovatskii-type reconnection, 19

tearing instability, 76, 77, 85, 246
tearing mode, 169
tectonics, 235
termination shock, 288
test particle acceleration, 158, 206–209, 287
tether cutting model, 278
thermal inertia effect, 110

thick target, 291, 292, 295, 298
thin current sheet, 2, 11, 172, 173

formation, 201–202
three-dimensional reconnection, 74
TRACE, 6, 229, 230, 235, 246, 274, 276,

295, 297
transit time damping, 290
transition region, 4
traveling compression region (TCR), 13, 216
trigger problem, 132, 275, 281
tunnel reconnection, 81–85
turbulence, 159, 232, 270, 274, 289
turbulent relaxation, 232
twist helicity, 82
two-dimensional theory, 16
two-ribbon flare, 5, 7, 295
type A null, 170
type B null, 171
type III burst, 298

vacuum superposition, 170, 171
Vasyliūnas classification scheme, 23

Walén test, 216, 180
wave–particle interaction, 289
wave–particle resonance, 290
whistler, 92
whistler waves, 159
white light flare, 295, 296
winding number, 271, 272

X-line, 19, 42
X-point, 17, 23, 25, 39, 237
X-ray bright point, 8, 229, 231, 234–236
X-type collapse, 24
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