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Preface

In this book we provide a comprehensive introduction into the basic physics of phe-
nomena in the solar corona. Solar physics has evolved over three distinctly differ-
ent phases using progressively more sophisticated observing tools. The first phase
of naked-eye observations that dates back over several thousands of years has been
mainly concerned with observations and reports of solar eclipses and the role of the
Sun in celestial mechanics. In the second phase that lasted about a century before the
beginning of the space age, ground-based solar-dedicated telescopes, spectrometers,
coronagraphs, and radio telescopes were built and quantitative measurements of solar
phenomena developed, which probed the basic geometric and physical parameters of
the solar corona. During the third phase, that started with the beginning of the space
age around 1950, we launched solar-dedicated spacecraft that explored the Sun in all
possible wavelengths, conveying to us high-resolution images and spectral measure-
ments that permitted us to conduct quantitative physical modeling of solar phenomena,
supported by numerical simulations using the theories of magneto-hydrodynamics and
plasma particle physics. This book focuses on these new physical insights that have
mostly been obtained from the last two decades of space missions, such as from soft
X-ray observations with Yohkoh, extreme-ultraviolet (EUV) observations with SoHO
and TRACE, and hard X-ray observations with Compton and the recently launched
RHESSI. The last decade (1992−2002) has been the most exciting era in the explo-
ration of the solar corona in all wavelengths, producing unprecedented stunning pic-
tures, movies, and high-precision spectral and temporal data.

There are a lot of new insights into the detailed structure of the solar corona, mass
flows, magnetic field interactions, coronal heating processes, and magnetic instabilities
that lead to flares, accelerated particles, and coronal mass ejections, which have not
been covered in previous textbooks. The philosophy and approach of this textbook is
to convey a physics introduction course to a selected topic of astrophysics, rather than
to provide a review of observational material. The material is therefore not described in
historical, phenomenological, or morphological order, but rather structured by physi-
cal principles. In each chapter we outline the basic physics of relevant physical models
that explain coronal structures, flare processes, and coronal mass ejections. We include
in each chapter analytical and numerical model calculations that have been applied
to these solar phenomena, and we show comprehensive data material that illustrate
the models and physical interpretations. This textbook is aimed to be an up-to-date
introduction into the physics of the solar corona, suitable for graduate students and re-
searchers. The 17 chapters build up the physical concepts in a systematic way, starting
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Table 1: Selection of textbooks and monographs on solar physics.

Author Year Book title
Sun: general
Bruzek & Durrant 1977 Illustrated Glossary for Solar and Solar-Terrestrial Physics
Zirin 1988 Astrophysics of the Sun
Foukal 1990 Solar Astrophysics
Phillips 1992 Guide to the Sun
Lang 1995 Sun, Earth, and Sky
Lang 2000 The Sun from Space
Murdin 2000 Encyclopedia of Astronomy and Astrophysics
Lang 2001 The Cambridge Encyclopedia of the Sun
Golub & Pasachoff 2001 Nearest Star: The Surprising Science of Our Sun
Stix 2002 The Sun
Zirker 2002 Journey from the Center of the Sun

Photosphere
Stenflo 1994 Solar Magnetic Fields: Polarized Radiation Diagnostics
Schüssler & Schmidt 1994 Solar Magnetic Fields

Transition region
Mariska 1992 The Solar Transitions Region

Corona, flares, plasma physics
Kundu 1965 Solar Radio Astronomy
Zheleznyakov 1970 Radio Emission of the Sun and Planets
Svestka 1976 Solar Flares
Krueger 1979 Introduction to Solar Radio Astronomy and Radio Physics
Melrose 1980 Plasma Astrophysics (Vol. 1 & 2):

Nonthermal Processes in Diffuse Magnetized Plasmas.
Priest 1982 Solar Magnetohyrdodynamics
McLean & Labrum 1985 Solar Radiophysics
Melrose 1986 Instabilities in Space and Laboratory Plasmas
Bray et al. 1991 Plasma Loops in the Solar Corona
Benz 1993 Plasma Astrophysics. Kinetic Processes in Solar and Stellar Coronae
Sturrock 1994 Plasma Physics. An Introduction to the Theory of

Astrophysical, Geophysical and Laboratory Plasmas
Kirk, Melrose, & Priest 1994 Plasma Astrophysics
Tandberg−Hanssen 1995 The Nature of Solar Prominences
Golub & Pasachoff 1997 The Solar Corona
Strong et al. 1999 The Many Faces of the Sun:

A Summary of the Results from NASA’s Solar Maximum Mission
Schrijver & Zwaan 2000 Solar and Stellar Magnetic Activity
Priest & Forbes 2000 Magnetic Reconnection (MHD Theory and Applications)
Tajima & Shibata 2002 Plasma Astrophysics
Aschwanden 2002 Particle Acceleraion and Kinematics in Solar Flares

Heliosphere and interplanetary
Russell, Priest, Lee 1990 Physics of Magnetic Flux Ropes
Schwenn & Marsch 1991 Physics of the Inner Heliosphere:

Vol. 1: Large-Scale Phenomena
Vol. 2: Particles, Waves and Turbulence

Kivelson & Russell 1995 Introduction to Space Physics
Crooker et al. 1997 CMEs
Song et al. 2001 Space Weather
Balogh, Marsden, & Smith 2001 The Heliosphere near Solar Minimum − The Ulysses Perspective
Carlowicz & Lopez 2002 Storms from the Sun − The Emerging Science of Space Weather
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with introductions into the basic concepts (§1−2), magneto-hydrodynamics (MHD)
of the coronal plasma (§3−6), MHD of oscillations and waves (§7−8), coronal heat-
ing (§9), magnetic reconnection processes (§10), particle acceleration and kinematics
(§11−12), flare dynamics and emission in various wavelengths (§13−16), and coro-
nal mass ejection (CME) phenomena (§17). So the first-half of the book is concerned
with phenomena of the quiet Sun (§1−9), while the second-half focuses on eruptive
phenomena such as flares and CMEs (§10−17). The scope of the book is restricted
to the solar corona, while other parts of the Sun, such as the solar interior, the pho-
tosphere, the chromosphere, or the heliosphere, are referred to in other textbooks, of
which a selection is given in Table 1. Extensive literature (reviews and theoretical or
modeling studies) are referenced preferentially at the beginning or end of the chapters
and subsections. The material of this textbook is based on some 10,000 original papers
published in solar physics, which grows at a current rate of about 700 papers per year.
The physical units used in this textbook are the cgs units, as they are most frequently
used in the original publications in solar physics literature. Conversion into SI units
can be done easily by using the conversion factors given in Appendix B.
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naris Tsinganos, Tong-Jiang Wang, Harry Warren, Stephen White, Thomas Wiegel-
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Preface to 2nd Edition

The second edition (in paperback) reproduces the entire body of the first edition (with
hardbound cover) with identical text, except for minor corrections of typographical
misprints, but contains in addition a section with some 170 Problems and Solutions
at the end of the main text body (p. 739−788), suitable as exercises for students and
researchers to obtain a deeper understanding of the text. The analytical and numeri-
cal solutions provided for these specific problems allows the reader to verify whether
he/she understands practical applications to solar observations, which are not always
exemplified in detail in the main body of the text. The author is most indebted to the
following friends and colleagues who double-checked and proof-read the sections of
the Problems and Solutions, as well as parts or the first edition text: Henry Aurass,
Mitchell Berger, Jeff Brosius, Amir Caspi, Steven Christe, Ineke DeMoortel, Robertus
Erdélyi, Gregory Fleishman, Andre Fludra, Dale Gary, Sarah Gibson, Holly Gilbert,
Costis Gontikakis, Iain Hannah, Leon Kocharov, Bernhard Kliem, Eduard Kontar,
Enrico Landi, Yuri Litvinenko, Scott McIntosh, Thomas Metcalf, Thomas Neukirch,
Hardi Peter, Gordon Petrie, John Raymond, Pete Riley, Julia Saba, David Smith, Youra
Taroyan, David Tsiklauri, Aad VanBallegooijen, Gary Verth, Angelos Vourlidas, Harry
Warren, Thomas Wiegelmann, and Jie Zhang.

Due to the short interval between the first and second edition we refrained from
updating the text and references. However, we are happy to report that significant
new science results have been produced as a consequence of the flawless continued
performance of the major solar space missions, such as SoHO, TRACE, and RHESSI.
The reader may consult the official NASA mission websites or the author’s website on
solar literature:

http://www.lmsal.com/∼aschwand/publications/index.html
for recent updates of SoHO, TRACE, and RHESSI publications. New solar missions
such as STEREO, Solar-B, and SDO are planned for launch shortly after this second
edition comes out in print. We are looking forward to another exciting decade of vibrant
solar research.

Palo Alto, California, December 2005 Markus J. Aschwanden
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Chapter 1

Introduction

1.1 History of Solar Corona Observations

What we see with our eye from our Sun or from the billions of stars in our galaxy is
optical radiation that is emitted at the surface of the star, in the so-called photosphere.
The optical emission produced by Thomson scattering in the much more tenuous at-
mosphere or corona above, is many orders of magnitude less intense and thus can
only be seen when the solar surface is occulted (e.g., by the moon during a total solar
eclipse). The first observations of the solar corona thus date back to ancient eclipse
observations, which have been reported from Indian, Babylonian, or Chinese sources.
A detailed account of historical eclipses can be found in the book of Guillermier &
Koutchmy (1999), which mentions, for example Chinese solar eclipes as early as 2800
BC, the failure of a prediction by the two luckless Chinese royal astrologers Hsi and
Ho around 2000 BC, the successful prediction of the solar eclipse of 28 May 585 BC
by the Greek mathematician and philosopher Thales, or the eclipse of 1919 May 29 in
Sobral (Brazil) and Principe (West Africa), which has been observed by two expedi-
tions of the British astronomer Arthur Stanley Eddington to prove Einsteins theory of
relativity.

Regular observations of solar eclipses and prominences started with the eclipse of
1842, which was observed by experienced astronomers like Airy, Arago, Baily, Littrow,
and Struve. Photographic records start since the 1851 eclipse in Norway and Sweden,
when the professional photographer Berkowski succeded to produce a daguerrotype of
prominences and the inner corona. Visual and spectroscopic observations of promi-
nence loops were carried out by Pietro Angelo Secchi in Italy and by Charles Augustus
Young of Princeton University during the 19th century. The element helium was dis-
covered in the solar corona by Jules Janssen in 1868. George Ellery Hale constructed
a spectroheliograph in 1892 and observed coronal lines during eclipses. Bernard Lyot
built his first coronagraph at the Pic-du-Midi Observatory in 1930, an instrument that
occults the bright solar disk and thus allows for routine coronal observations, without
need to wait for one of the rare total eclipse events. In 1942, Edlén identified for-
bidden lines of highly ionized atoms and in this way established for the first time the
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Figure 1.1: The operation periods of major instruments and space missions that provided unique
observations of the solar corona are shown in historical order, sorted in different wavelength
regimes.

million-degree temperature of the corona. A historical chronology of these early coro-
nal observations is given in Bray et al. (1991), while coronal observations in the space
age are reviewed in the encyclopedia article of Alexander & Acton (2002).

If we observe the Sun or the stars in other wavelengths, for instance in soft X-rays,
hard X-rays, or radio wavelengths, the brightest emission comes from the corona, while
the photosphere becomes invisible, just opposite to optical wavelengths. A break-
through of coronal observations therefore started with the space era of rocket flights
and spacecraft missions, which enabled soft X-ray and extreme ultraviolet (EUV) ob-
servations above the absorbing Earth’s atmosphere (Fig. 1.1). Early Areobee rocket
flights were conducted by the U.S. Naval Research Laboratory (NRL) in 1946 and
1952, recording spectrograms at EUV wavelengths down to 190 nm and Lyman-α
emission of H I at 121.6 nm. In 1974, G. Brueckner and J.D. Bartoe achieved a res-
olution of ≈ 4′′ in EUV lines of He I, He II, O IV, O V, and Ne VII. The first crude
X-ray photograph of the Sun was obtained by Friedman in 1963 with a pinhole camera
from an Areobee rocket of NRL on 1960 April 19. These rocket flights last typically
about 7 minutes, and thus allow only for short glimpses of coronal observations. Long-
term observations were faciliated with the satellite series Orbiting Solar Observatory
(OSO-1 to OSO-8), which were launched into orbit during 1962−1975, equipped with
non-imaging EUV, soft X-ray, and hard X-ray spectrometers and spectroheliographs.
Finally, the launch of Skylab, which operated from 1973 May 14 to 1974 February
8 initiated a new era of multi-wavelength solar observations from space. Skylab car-
ried a white-light coronagraph, two grazing-incidence X-ray telescopes, EUV spec-
troheliometers/spectroheliographs, and an UV spectrograph, recording ≈ 32, 000 pho-
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Figure 1.2: The Solar Maximum Mission (SMM) satellite was operated during 1980−1989.
Some instrument failures occurred early in the mission, such as the position encoder of FCS and
several gyroscopes. Repairs of the satellite were performed by “Pinky” Nelson and Dick Scobee
from the Space Shuttle Challenger in April 1984. The approach of the maneouvering astronaut
in his flying armchair to the ailing spacecraft is documented in this figure (courtesy of NASA).

tographs during its mission. A comprehensive account of Skylab observations and its
scientific results on cool and hot active region loops, as well as on flare loops, is de-
scribed in the book Plasma Loops in the Solar Corona by Bray et al. (1991).

The first solar-dedicated space mission that operated a full solar cycle was the Solar
Maximum Mission (SMM), launched on 1980 February 14 and lasting until orbit decay
on 1989 December 2 (Fig. 1.2). The SMM instrumental package contained a Gamma-
Ray Spectrometer (GRS) with an energy range of 10 keV−160 MeV, a Hard X-Ray
Burst Spectrometer (HXRBS) in the energy range of 20−300 keV, a Hard X-ray Imag-
ing Spectrometer (HXIS) with moderate spatial resolution (8′′ pixels) in the energy
range of 3.5−30 keV, two soft X-ray spectrometers [Bent Crystal Spectrometer (BCS),
1.7−3.2 Å, and a Flat Crystal Spectrometer (FCS), 1.4−22 Å], an Ultraviolet Spec-
trometer/Polarimeter (UVSP) in the 1150−3600 Å wavelength range, a white-light
Coronagraph/Polarimeter (CP) in the 4448−6543 Å wavelength range, and an Ac-
tive Cavity Radiometer Irradiance Monitor (ACRIM) in ultraviolet and infrared wave-
lengths. SMM made a number of scientific discoveries in observing some 12,000 solar
flares and several hundred coronal mass ejections (CME), which are lucidly summa-
rized in the book The Many Faces of the Sun: A Summary of the Results from NASA’s
Solar Maximum Mission by Strong et al. (1999). There was also a Japanese mission
(Hinotori) flown with similar instrumentation, from 1981 February 21 to 1982 October
11 (see instrumental descriptions in Makishima, 1982 and Takakura et al. 1983a).
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Figure 1.3: Deployment of the Compton Gamma-Ray Observatory (CGRO) in 1991 April,
photographed from the space shuttle Atlantis. The 8 Large-Area Detectors (LAD) of the Burst
and Transient Source Experiment (BATSE) are located at the 8 corners of the spacecraft. The
cylindrical detectors on the top are COMPTEL and EGRET, while OSSE is on the far side.
The BATSE detectors provided for the first time sufficient photon statistics to measure electron
time-of-flight delays in solar flares (courtesy of NASA).

In April 1991, the Compton Gamma-Ray Observatory (CGRO) was deployed (Fig.
1.3), which was designed to detect gamma-ray bursts from astrophysical and cosmo-
logical objects, but actually recorded more high-energy γ-ray and hard X-ray photons
from solar flares than from the rest of the universe. In particular the Burst And Tran-
sient Source Experiment (BATSE) with its high sensitivity (with a collecting area of
2,000 cm2 in each of the 8 detectors) in the energy range of 25−300 keV (Fishman et
al. 1989) delivered unprecedented photon statistics, so that energy-dependent electron
time-of-flight delays could be determined in solar flares down to accuracies of a few
milliseconds, and thus crucially contributed to a precise localization of particle acceler-
ation sources in solar flares. Also the Oriented Scintillation Spectrometer Experiment
(OSSE) (Kurfess et al. 1998) provided crucial measurements of γ-ray lines in the en-
ergy range of 50 keV to 10 MeV in a number of large X-class flares. CGRO recorded
a total of some 8000 solar flares during its lifetime. The truck-heavy spacecraft was
de-orbited by NASA in May 2000 because of gyroscope malfunctions.

The great breakthrough in soft X-ray imaging of the solar corona and flares came
with the Japanese mission Yohkoh (Ogawara et al. 1991), which contained four instru-
ments (Fig. 1.4): the Hard X-ray Telescope (HXT) with four energy channels (14−23
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Figure 1.4: On 1991 August 30, the Yohkoh satellite was launched into space from the
Kagoshima Space Center (KSC) in Southern Japan. The Yohkoh satellite, meaning “Sunbeam”
in Japanese, is a project of the Japanese Institute of Space and Astronautical Science (ISAS)
(courtesy of ISAS).

keV, 23−33 keV, 33−53 keV, and 53−93 keV) and a spatial resolution of ≈ 8′′ (Kosugi
et al. 1991); the Soft X-ray Telescope (SXT) with mulitple filters sensitive to tempera-
tures of T >∼ 1.5 MK, having a spatial resolution of 5′′ in full-disk images and 2.5′′ in
partial frames (Tsuneta et al. 1991); a Wide-Band Spectrometer (WBS) containing soft
X-ray, hard X-ray, and γ-ray spectrometers (Yoshimori et al. 1991); and a Bent Crystal
Spectrometer (BCS) (Culhane et al. 1991). Yohkoh provided a full decade of soft X-
ray images from the solar disk and from flares, revealing for the first time the geometry
and topology of large-scale magnetic field reconfigurations and magnetic reconnection
processes in flares. The satellite lost its pointing during a solar eclipse in December
2001 and reentered in September 2005.

The next major solar mission to observe the Sun from inside out to 30 solar radii
in the heliosphere was the ESA/NASA jointly-built spacecraft Solar and Heliospheric
Observatory (SoHO), launched on 1995 December 2, and still being fully operational at
the time of writing. Twelve instrument teams with over 200 co-investigators participate
in this mission. The SoHO spacecraft includes the following 12 instrument packages:
3 instruments for helioseismology (GOLF, VIRGO, SOI/MDI), 5 instruments for ob-
serving the solar atmosphere (SUMER, CDS, EIT, UVCS, LASCO), and 4 particle
detector instruments that monitor the solar wind (CELIAS, COSTEP, ERNE, SWAN).
Observations of the solar corona are performed by the Solar Ultraviolet Measurements
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Figure 1.5: The Extreme-ultraviolet Imaging Telescope (EIT) on board the Solar and Helio-
spheric Observatory (SoHO) is a normal-incidence, multi-layer telescope (Delaboudinière et
al. 1995). It records since 1996 full-disk solar images in multiple filters, sensitive to coronal
temperatures of 1−2 MK, with a spatial resolution of 2.5′′ and a cadence of a few hours (cour-
tesy of EIT team).

of Emitted Radiation (SUMER) telescope and spectrometer in the 500−1610 Å wave-
length range (Wilhelm et al. 1995), the Coronal Diagnostic Spectrometer (CDS) at
150−800 Å (Harrison et al. 1995), the Extreme-ultraviolet Imaging Telescope (EIT)
(Fig. 1.5) which takes full-disk images in Fe IX (171 Å), Fe XII (195 Å), Fe XV (284
Å), and He II (304 Å) (Delaboudinière et al. 1995), the Ultraviolet Coronagraph Spec-
trometer (UVCS) which provides spectral line diagnostics between 1 and 3 solar radii,
and the Large Angle Spectroscopic COronagraph (LASCO) which images the helio-
sphere from 1.1 to 30 solar radii (Brueckner et al. 1995). Instrument descriptions and
first results can be found in Fleck et al. (1995) and Fleck & Svestka (1997). The SoHO
observatory is a highly successful mission that provided a wealth of data on dynamic
processes in the solar corona, which will be described in more detail in the following
chapters.

The next solar mission was designed to provide coronal observations with unprece-
dented high spatial resolution of ≈ 1′′ (with 0.5′′ pixel size), built as a spacecraft
with a single telescope, called the Transition Region And Coronal Explorer (TRACE)
(Fig. 1.6). The TRACE telescope was mated on a Pegasus launch vehicle, which
launched in 1998 April and is still successfully operating at the time of writing. An
instrumental description is provided in Handy et al. (1999). The instrument features
a 30-cm Cassegrain telescope with a field of view (FOV) of 8.5×8.5 arc minutes and
operates in three coronal EUV wavelengths (Fe IX/X, 171 Å; Fe XII/XXIV, 195 Å;
and Fe XV, 284 Å), as well as in H I Lyman-α (1216 Å), C IV (1550 Å), UV contin-
uum (1600 Å), and white light (5000 Å). This wavelength set covers temperatures from
6000 K to 10 MK, with the main sensitivity in the 1− 2 MK range for the EUV filters.
TRACE has provided us with stunning high-resolution images that reveal intriguing
details about coronal plasma dynamics, coronal heating and cooling, and magnetic re-
connection processes.

The latest solar mission was launched on 2002 February 5, − a NASA small ex-
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Figure 1.6: A cut-away view of the Transition Region And Coronal Explorer (TRACE) tele-
scope is shown. The 30-cm aperture TRACE telescope uses four normal-incidence coatings for
the EUV and UV on quadrants of the primary and secondary mirrors. The segmented coatings
on solid mirrors form identically sized and perfectly co-aligned images. Pointing is internally
stabilized to 0.1 arc second against spacecraft jitter. A 1024×1024 CCD detector collects images
over an 8.5 x 8.5 arc minute field-of-view (FOV). A powerful data handling computer enables
very flexible use of the CCD array including adaptive target selection, data compression, and fast
operation for a limited FOV (courtesy of TRACE team).

plorer mission (SMEX) called the (Reuven) Ramaty High Energy Solar Spectroscopic
Imager (RHESSI) (Fig. 1.7), designed to explore the basic physics of particle acceler-
ation and explosive energy release in solar flares. This instrument provides hard X-ray
images with the highest ever achieved spatial resolution of ≈ 2.3′′, as well as with
the highest energy resolution (achieved by germanium-cooled detectors). An instru-
mental description of the RHESSI spacecraft can be found in Lin et al. (1998b, 2002).
Although this mission was launched late in solar cycle XXIII, it has already recorded
7500 solar flares during the first year.

Progress in the physical understanding of the structure and dynamics of the solar
corona is mainly driven by space-based observations in EUV, soft X-rays, and hard
X-rays, obtained by the high-resolution imagers that were flown over the last decade.
However, very valuable and complementary observations have also been produced by
ground-based observatories. There are essentially two wavelength regimes that are
observable from ground and provide information on the solar corona (i.e., optical and
radio wavelengths). Imaging radio observations of the solar corona have mainly been
accomplished by the Culgoora radioheliograph in Australia (1967−1984), the Nançay
radioheliograph in France (since 1977), the Very Large Array (VLA) in New Mexico
(since 1980), the Owens Valley Radio Observatory (OVRO) in California (since 1978),
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Figure 1.7: The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is a spinning
spacecraft that contains a single instrument, a rotation-modulated collimator with 9 germanium-
cooled detectors (courtesy of RHESSI Team).

RATAN-600 in Russia (since 1972), and the Nobeyama Radio Observatory in Japan
(since 1992). There is also a larger number of radio spectrometers distributed all around
the world, which complement imaging radiotelescopes with dynamic spectra of high
temporal and spectral resolution.

1.2 Nomenclature of Coronal Phenomena

We start now with a tour of coronal phenomena, describing them first by their morpho-
logical appearance in observed images, giving a more physical definition and quantita-
tive characterization in the following chapters of the book. For an illustrated glossary
of phenomena in solar and solar-terrestrial physics see also Bruzek & Durrant (1977).

It is customary to subdivide the solar corona into three zones, which all vary their
size during the solar cycle: (1) active regions, (2) quiet Sun regions, and (3) coronal
holes.

Active regions: Like cities on the Earth globe, active regions on the solar surface
harbor most of the activity, but make up only a small fraction of the total surface area.
Active regions are located in areas of strong magnetic field concentrations, visible as



1.2. NOMENCLATURE OF CORONAL PHENOMENA 9

sunspot groups in optical wavelengths or magnetograms. Sunspot groups typically ex-
hibit a strongly concentrated leading magnetic polarity, followed by a more fragmented
trailing group of opposite polarity. Because of this bipolar nature active regions are
mainly made up of closed magnetic field lines. Due to the permanent magnetic activ-
ity in terms of magnetic flux emergence, flux cancellation, magnetic reconfigurations,
and magnetic reconnection processes, a number of dynamic processes such as plasma
heating, flares, and coronal mass ejections occur in active regions. A consequence of
plasma heating in the chromosphere are upflows into coronal loops, which give active
regions the familiar appearance of numerous filled loops, which are hotter and denser
than the background corona, producing bright emission in soft X-rays and extreme
ultraviolet (EUV) wavelengths. In the Yohkoh soft X-ray image shown in Fig. 1.8,
active regions appear in white. The heliographic position of active regions is typically
confined within latitudes of ±40◦ from the solar equator.

Quiet Sun: Historically, the remaining areas outside of active regions were dubbed
quiet Sun regions. Today, however, many dynamic processes have been discovered all
over the solar surface, so that the term quiet Sun is considered as a misnomer, only
justified in relative terms. Dynamic processes in the quiet Sun range from small-scale
phenomena such as network heating events, nanoflares, explosive events, bright points,
and soft X-ray jets, to large-scale structures, such as transequatorial loops or coronal
arches. The distinction between active regions and quiet Sun regions becomes more
and more blurred because most of the large-scale structures that overarch quiet Sun re-
gions are rooted in active regions. A good working definition is that quiet Sun regions
encompass all closed magnetic field regions (excluding active regions), clearly demar-
cating the quiet Sun territory from coronal holes, which encompass open magnetic field
regions.

Coronal holes: The northern and southern polar zones of the solar globe have
generally been found to be darker than the equatorial zones during solar eclipses. Max
Waldmeier thus coined those zones as “Koronale Löcher” (in german, i.e., coronal
holes). Today it is fairly clear that these zones are dominated by open magnetic field
lines, that act as efficient conduits for flushing heated plasma from the corona into
the solar wind, if there are any chromospheric upflows at their footpoints. Because
of this efficient transport mechanism, coronal holes are empty of plasma most of the
time, and thus appear much darker than the quiet Sun, where heated plasma upflowing
from the chromosphere remains trapped until it cools down and precipitates back to the
chromosphere.

Like our Earth atmosphere displays a large variety of cloud shapes, from bulky
stratocumuli to fine-structured cirrus clouds, the solar corona exhibits an equally rich
menagery of loop morphologies, which can reveal important clues about the underlying
magnetic reconnection and reconfiguration processes. Pointed and cusp-shaped struc-
tures may pinpoint coronal nullpoints of X-type magnetic reconnection points, while
circular geometries may indicate relaxed, near-dipolar magnetic field geometries. In
Fig. 1.9 we show some characteristic coronal structures that are typically seen in soft
X-ray images (Acton et al. 1992).

Helmet streamers: Streamers (e.g., Fig. 1.9[A]) are huge, long-lived, radially ori-
ented structures that extend from the base of the corona out to several solar radii. A
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Figure 1.8: Soft X-ray image of the extended solar corona recorded on 1992 August 26 by
the Yohkoh Soft X-ray Telescope (SXT). The image was made up from two pointings of the
spacecraft, one to the east and one to the west, to capture the distant corona far above the Sun’s
limb (courtesy of Yohkoh Team).

subclass are helmet streamers, which are connected with active regions and are cen-
tered over prominences (above the limb) or filaments (on the disk). The lower part
contains closed field lines crossing a neutral line, while the upper part turns into a
cusp-shaped geometry, giving the appearance of a “helmet”. Above the helmet, a long,
straight, near-radial stalk continues outward into the heliosphere, containing plasma
that leaks out from the top of the helmet where the thermal pressure starts to overcome
the magnetic confinement (plasma-β parameter >∼ 1).

Loop arcades: Regions of opposite magnetic polarity can sometimes have a quite
large lateral extent, so that dipolar loops can be found lined up perpendicularly to a
neutral line over a large distance, with their footpoints anchored in the two ribbons
of opposite magnetic polarity on both sides of the neutral line. Such a loop arcade is
shown end-on in Fig. 1.9(B), which illustrates that the cross section of an arcade can
appear like a single loop.

Soft X-ray jets: If heated plasma flows along an open field line, it is called a soft
X-ray jet, which can have the form of a linear structure, sometimes slightly bent. Such
a jet feature is shown in Fig. 1.9(C), which grew with a velocity of 30 km s−1 to a
length of 200 Mm. Such jet features are visible until the flow fades out or the structure
erupts.
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Figure 1.9: A collection of soft X-ray structures is shown, recorded with SXT/Yohkoh, from
1991 October 3 to 1992 January 25, described in Acton et al. (1992). The images exemplify the
variety of solar coronal features seen in soft X-rays: A) Large helmet-type structure; B) arcade
of X-ray loops seen end-on; C) dynamic eruptive feature which grew at a velocity of about 30
km s−1; D) a pair of small symmetrical flaring loops; E) two cusped loops with heating in the
northern loop; F) a tightly beamed X-ray jet towards the southwest at 200 km s−1; and G) the
sinuous magnetic connection between active regions (courtesy of Yohkoh Team).

Postflare loops: Flare loops become bright in soft X-rays after they become filled
up by upflowing heated plasma, a process that is dubbed chromospheric evaporation,
driven by intense chromospheric heating at the loop footpoints from precipitating non-
thermal particles or thermal conduction fronts. Flare (or postflare) loops trace out
dipole-like magnetic field lines, after relaxation from flare-related magnetic reconnec-
tion processes. A pair of flaring loops are shown in Fig. 1.9(D), where the smaller
flaring loop has a height of 10 Mm and a footpoint separation of 18 Mm.
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Cusp-shaped loops: Loop segments with a pointed shape at the top, are also called
cusps (Fig. 1.9[E]). Such cusps represent deviations from dipole-like magnetic field
lines and thus indicate some dynamic processes. Cusps are expected in X-type recon-
nection geometries, and thus may occur right after a magnetic reconnection process, if
the chromospheric plasma filling process happens sufficiently fast before the loop re-
laxes into a dipole-like (near-circular) geometry. The cusp of the northern loop shown
in Fig. 1.9(E) is particularly bright, and thus may even indicate local heating at the
cusp.

Multiple arcades: It is not uncommon that multiple neutral lines occur in ac-
tive regions, which organize the magnetic field into multiple arcades side-by-side, as
shown in the “bow-tie” structure in Fig. 1.9(F). Multiple arcades can lead to quadrupo-
lar magnetic structures, which play a key role in eruptive processes, because a coronal
magnetic nullpoint occurs above such neighboring magnetic flux systems, which aids
in opening up the field by reconnecting away the overlying closed field lines (according
to the so-called magnetic breakout model (Antiochos et al. 1999b).

Sigmoid structures: If a dipole field is sheared, the field lines deform into S-
shaped geometries, which are also called sigmoids. A string of sigmoid-shaped field
line bundles are shown in Fig. 1.9(G), stringing together a series of sheared active
regions along the solar equator. Sigmoids can imply nonpotential magnetic fields that
have an excess energy over the potential field configuration, and thus may contain free
energy to spawn a flare or coronal mass ejection. It is not clear yet whether the eruptive
phase is initiated by a kink instability of the twisted field lines or by another loss-of-
equilibrium process.

The foregoing inventory describes quasi-stationary or slowly varying coronal struc-
tures. Rapidly varying processes, which all result from a loss of equilibrium, are also
called eruptive processes, such as flares, coronal mass ejections, or small-scale vari-
ability phenomena.

Flares: A flare process is associated with a rapid energy release in the solar corona,
believed to be driven by stored nonpotential magnetic energy and triggered by an in-
stability in the magnetic configuration. Such an energy release process results in ac-
celeration of nonthermal particles and in heating of coronal/chromospheric plasma.
These processes emit radiation in almost all wavelengths: radio, white light, EUV, soft
X-rays, hard X-rays, and even γ-rays during large flares.

Microflares and nanoflares: The energy range of flares extends over many orders
of magnitude. Small flares that have an energy content of 10−6 to 10−9 of the largest
flares fall into the categories of microflares and nanoflares, which are observed not only
in active regions, but also in quiet Sun regions. Some of the microflares and nanoflares
have been localized to occur above the photospheric network, and are thus also dubbed
network flares or network heating events. There is also a number of small-scale phe-
nomena with rapid time variability for which it is not clear whether they represent
miniature flare processes, such as active region transients, explosive events, blinkers,
etc. It is conceivable that some are related to photospheric or chromospheric mag-
netic reconnection processes, in contrast to flares that always involve coronal magnetic
reconnection processes.

Coronal mass ejections (CME): Large flares are generally accompanied by erup-
tions of mass into interplanetary space, the so-called coronal mass ejections (CME).
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Figure 1.10: These images (taken on 1999 March 21) compare the corona seen in EUV (top
panel: TRACE, 171 Å, T=1 MK) and the chromosphere seen in Hα (bottom panel: Big Bear
Solar Observatory (BBSO), T=10,000 K). The cool filaments (on the disk) and prominences
(above the limb) show up as bright structures in Hα (bottom frame), but as dark, absorbing
features in EUV (top frame) (courtesy of TRACE and BBSO).

Flares and CMEs are two aspects of a large-scale magnetic energy release, but the two
terms evolved historically from two different observational manifestations (i.e., flares
denoting mainly the emission in hard X-rays, soft X-rays, and radio, while CMEs be-
ing referred to the white-light emission of the erupting mass in the outer corona and
heliosphere). Recent studies, however, clearly established the co-evolution of both
processes triggered by a common magnetic instability.
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Figure 1.11: Ten maps of photospheric magnetograms are shown, spanning a period of almost
a solar cycle, from 1992 January 8 to 1999 July 25, recorded with the Vacuum Telescope of the
National Solar Observatory (NSO) at Kitt Peak National Observatory (KPNO), Tucson, Arizona.
White and black colors indicate positive and negative magnetic polarity (of the longitudinal
magnetic field component B‖), while grey indicates the zero field (courtesy of KPNO).

Filaments and prominences: A filament is a current system above a magnetic
neutral line that builds up gradually over days and erupts during a flare or CME process.
Historically, filaments were first detected in Hα on the solar disk, but later they were
also discovered in He 10,830 Å and in other wavelengths. On the other side, erupting
structures above the limb seen in Hα and radio wavelengths were called prominences.
Today, both phenomena are unified as an identical structure, with the only significant
difference being that they are observable on the disk in absorption (filaments) and above
the limb in emission (prominences), (e.g., see Fig. 1.10).

1.3 The Solar Magnetic Cycle

The solar magnetic cycle of about 11 years, during which the magnetic polarity of the
global solar magnetic field is reversed, modulates the total radiation output in many
wavelengths in a dramatic way. A full cycle of 22 years, after which the original
magnetic configuration is restored, is called a Hale cycle. The total magnetic flux
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Figure 1.12: Ten soft X-ray maps of the Sun, covering the same time interval of almost a full
solar cycle as the magnetograms shown in Fig. 1.11, observed with the Solar X-ray telescope
(SXT) on the Yohkoh spacecraft (courtesy of Yohkoh Team).

reaches a maximum during the peak of a cycle and drops to a low level during the
minimum of the cycle (see magnetograms in Fig. 1.11). During the solar cycle, the
magnetic flux varies by a factor of ≈ 8 in active regions, by a factor of ≈ 2 in ephemeral
regions, and even in anti-phase in small regions (Hagenaar et al. 2003). Since many
radiation mechanisms are directly coupled to the dissipation of magnetic energy and
related plasma heating, the radiation output in these wavelengths is correspondingly
modulated from solar maximum to minimum (e.g., in soft X-rays, hard X-rays, and
radio wavelengths). This can clearly be seen from the sequence of Yohkoh soft X-ray
images shown in Fig. 1.12.

Although the modulation of optical emission during a cycle is much less dramatic
than in X-rays, the magnetic solar cycle was discovered long ago, based on the increase
and decrease of sunspots. The east-west orientation of the magnetic field in active re-
gions was found to be opposite in the northern and southern hemispheres, switching
for every 11-year cycle, known as Hale’s polarity law. During a cycle, the active re-
gions migrate from high latitudes (≈ 40◦) towards lower latitudes (≈ 10◦) near the
equator, leading to the famous butterfly diagram of sunspots (Spörer’s law), when their
latitudinal position is plotted as a function of time.
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Figure 1.13: Scatter plots of the soft X-ray intensity from SXT (Yohkoh) data in the AlMg filter
as a function of the magnetic flux (from the Kitt Peak Observatory) in the natural logarithmic
scale for the latitudinal zone from −55◦ to +55◦ for two periods: (a) 1991 November 11 to 1996
July 25, and (b) 1996 June 28 to 2001 March 13. Different subperiods are marked by different
grey tones. The color-coding in terms of Carrington rotation numbers is shown in the figures
(Benevolenskaya et al. 2002).

The cyclic evolution of the sunspots can be understood in terms of a reversal of
the global solar magnetic field, which evolves from an initial poloidal field towards a
toroidal field under the influence of differential rotation, according to a model by Ho-
race W. Babcock proposed in 1961. In recent versions of this scenario, the cause of the
solar cycle is a dynamo-like process that is driven by the internal magnetic field in the
tachocline at the bottom of the convection zone. There a strong magnetic field in the
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order of 100,000 G is periodically strengthened and weakened, from which occasion-
ally buoyant magnetic fluxtubes arise and emerge at the photospheric surface, visible
as bipolar sunspot pairs. The differential surface rotation shears the new emerging
fields gradually into a more toroidal field, until surface diffusion by granular convec-
tion breaks up the field and meridional flows transport the fragments towards the poles.
The surface diffusion neutralizes the toroidal field component increasingly during the
decay of the cycle, so that a weak poloidal global field is left at the cycle minimum.
When the internal dynamo strengthens the tachocline field again, the rate of buoyant
fluxtubes increases and the cycle starts over.

The coupling of the photospheric magnetic field (Fig. 1.11) to the coronal soft X-
ray emission (Fig. 1.12) has been quantitatively investigated (e.g., Fisher et al. 1998
and Benevolenskaya et al. 2002), resulting in an unambiguous correlation between the
two quantities, when sampled over a solar cycle (Fig. 1.13). It was found that the soft
X-ray intensity, ISXR, scales approximately with the square of the magnetic field, B2,
and thus the soft X-ray intensity can be considered as a good proxy of the magnetic
energy (εm = B2/8π). Slightly different powerlaw values have been found for the
solar maximum and minimum (Benevolenskaya et al. 2002),

ISXR ∝< |B‖| >n

{
n = 1.6 − 1.8 solar maximum
n = 2.0 − 2.2 solar minimum .

(1.3.1)

The soft X-ray flux is an approximate measure of the energy rate (EH ) that is deposited
into heating of coronal plasma according to this positive correlation. On the other
hand, global modeling of magnetic fields and soft X-ray flux from the Sun and cool
stars yields a more linear relationship, EH ∝ B1.0±0.5 (e.g., Schrijver & Aschwanden,
2002). It is conceivable that the positive correlation applies more generally to all energy
dissipation processes in the solar corona (i.e., that the processes of coronal heating,
flare plasma heating, and particle acceleration are ultimately controlled by the amount
of magnetic energy that emerges through the solar surface, modulated by about two
orders of magnitude during a solar cycle).

1.4 Magnetic Field of the Solar Corona

The solar magnetic field controls the dynamics and topology of all coronal phenom-
ena. Heated plasma flows along magnetic field lines and energetic particles can only
propagate along magnetic field lines. Coronal loops are nothing other than conduits
filled with heated plasma, shaped by the geometry of the coronal magnetic field, where
cross-field diffusion is strongly inhibited. Magnetic field lines take on the same role
for coronal phenomena as do highways for street traffic. There are two different mag-
netic zones in the solar corona that have fundamentally different properties: open-field
and closed-field regions. Open-field regions (white zones above the limb in Fig. 1.14),
which always exist in the polar regions, and sometimes extend towards the equator,
connect the solar surface with the interplanetary field and are the source of the fast
solar wind (≈ 800 km s−1). A consequence of the open-field configuration is efficient
plasma transport out into the heliosphere, whenever chromospheric plasma is heated
at the footpoints. Closed-field regions (grey zones in Fig. 1.14), in contrast, contain
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Figure 1.14: Depiction of lines of magnetic force in the semi-empirical multipole-current sheet
coronal model of Banaszkiewicz et al. (1998). The high-speed solar wind fills the unshaded
volume above the solar surface (Cranmer, 2001).

mostly closed field lines in the corona up to heights of about one solar radius, which
open up at higher altitudes and connect eventually to the heliosphere, but produce a
slow solar wind component of ≈ 400 km s−1. It is the closed-field regions that con-
tain all the bright and overdense coronal loops, produced by filling with chromospheric
plasma that stays trapped in these closed field lines. For loops reaching altitudes higher
than about one solar radius, plasma confinement starts to become leaky, because the
thermal plasma pressure exceeds the weak magnetic field pressure which decreases
with height (plasma-β parameter > 1).

The magnetic field on the solar surface is very inhomogeneous. The strongest mag-
netic field regions are in sunspots, reaching field strengths of B = 2000 − 3000 G.
Sunspot groups are dipolar, oriented in an east-west direction (with the leading spot
slightly closer to the equator) and with opposite leading polarity in both hemispheres,
reversing for every 11-year cycle (Hale’s laws). Active regions and their plages com-
prise a larger area around sunspots, with average photospheric fields of B ≈ 100−300
G (see Fig. 1.11), containing small-scale pores with typical fields of B ≈ 1100 G.
The background magnetic field in the quiet Sun and in coronal holes has a net field
of B ≈ 0.1 − 0.5 G, while the absolute field strengths in resolved elements amount
to B = 10 − 50 G. Our knowledge of the solar magnetic field is mainly based on
measurements of Zeeman splitting in spectral lines, while the coronal magnetic field
is reconstructed by extrapolation from magnetograms at the lower boundary, using a
potential or force-free field model. The extrapolation through the chromosphere and
transition region is, however, uncertain due to unknown currents and non-force-free
conditions. The fact that coronal loops exhibit generally much less expansion with
height than potential-field models underscores the inadequacy of potential-field extrap-
olations. Direct measurements of the magnetic field in coronal heights are still in their
infancy.

An empirical compilation of coronal magnetic field measurements is given in the
paper of Dulk & McLean (1978), reproduced in Fig. 1.15. This compilation combines
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Figure 1.15: Compilation of coronal magnetic field measurements (Dulk & McLean, 1978).

the following measurement methods of the magnetic field: (1) in situ measurements
by spacecraft at >∼ 0.5 AU; (2) Zeeman effect in active region prominences; (3) ex-
trapolations from photospheric magnetograms; (4) microwave radio bursts with gy-
roresonance emission; (5) decimetric bursts that involve a frequency drift related to the
Alfvén speed; (6) metric type II radio bursts, which have a shock speed related to the
Alfvénic Mach number; and (7) type III bursts that show a circular polarization, which
depends on the refractive index and local magnetic field. Although the magnetic field
strength varies 1 − 2 orders of magnitude at any given height (see Fig. 1.15), Dulk &
McLean (1978) derived an empirical formula that approximately renders the average
decrease of the magnetic field with height between 1.02 and 10 solar radii,

B(R) = 0.5
(

R

R�
− 1
)−1.5

G (1.02 <∼ R/R� <∼ 10) . (1.4.1)

Of course, the variation of the magnetic field strength by 1 − 2 orders of magnitude is
mainly caused by the solar cycle (see Fig. 1.13). Alternative methods to measure the
coronal magnetic field directly employ the effects of Faraday rotation, the polarization
of free-free emission, Hanle effect in H Lyman-α, or Stokes polarimetry in infrared
lines.

In order to give a practical example of how the magnetic field varies in typical
active region loops, we show the height dependence B(h) of calculated potential-field
lines (using MDI/SoHO magnetograms) that are co-spatial with some 30 active regions



20 CHAPTER 1. INTRODUCTION

0 50 100 150 200
Vertical height  h[Mm]

1

10

100

1000

M
ag

ne
tic

 fi
el

d 
 B

[G
]

Figure 1.16: Magnetic field extrapolations of 30 loops in an active region based on a
MDI/SoHO magnetogram (Aschwanden et al. 1999a).

loops traced from EIT/SoHO 171 Å images (Aschwanden et al. 1999a). These active
region loops reach heights of h ≈ 50 − 200 Mm. The photospheric magnetic field
strength at their footpoints varies in the range of Bfoot ≈ 20 − 200 G (averaged over
a pixel of the MDI magnetogram), but drops below B <∼ 10 G for heights of h >∼ 100
Mm. The height dependence of the magnetic field can be approximated with a dipole
model (dashed lines in Fig. 1.16),

B(h) = Bfoot

(
1 +

h

hD

)−3

, (1.4.2)

with a mean dipole depth of hD ≈ 75 Mm. Of course, the dipole approximation
is contingent on the potential-field model. Alternatively, if one assumes a constant
magnetic flux Φ(s) = B(s)A(s) along the loop, as the almost constant cross-sectional
area A(s) of observed loops suggests, one might infer in the corona an almost constant
field with height, B(h) ≈ const, while the largest magnetic field decrease occurs
in the chromospheric segment, which expands like a canopy above the photospheric
footpoint. It is therefore imperative to develop direct measurement methods of the
coronal field to decide between such diverse models.

1.5 Geometric Concepts of the Solar Corona

Solar or stellar atmospheres are generally characterized in lowest order by spherical
shells, with a decreasing density as a function of the radial distance from the surface.
The spherical structure is, of course, a result of the gravitational stratification, because
the gravitational potential U(r) is only a function of the radial distance r from the mass
center of the object. The gravitational stratification, which just makes the simplest
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assumption of pressure equilibrium and homogeneity, is a useful basic concept of the
average radial density structure for portions of the atmosphere that are horizontally
quasi-homogeneous.

The solar corona, however, is highly inhomogeneous, due to the structuring of the
magnetic field. The decisive parameter is the ratio of the thermal pressure pth to the
magnetic pressure pmag , also called the plasma-β parameter (see §1.8). In the major
part of the solar corona, the value of the plasma-β parameter is less than unity, which
constitutes a rigorous topological constraint, inasmuch as the thermal pressure is insuf-
ficient to warrant horizontal stratification across the magnetic field. This inhibition of
cross-field transport has the natural consequence that every plasma that streams from
the chromosphere to the corona, traces out bundles of magnetic field lines, with cross
sections that are roughly determined by the geometric area where the chromospheric
upflows pass the boundary of β <∼ 1, which is generally at heights of the transition re-
gion. This topological structuring of the corona has the nice property that the radiating
coronal plasma can be used to delineate the 3D coronal magnetic field B(x, y, z), but
it also produces a highly inhomogeneous density structure, which is more difficult to
model than a homogeneous atmosphere.

The evolution of our perception of the topological structure of the solar corona is
depicted in Fig. 1.17. While the concept of gravitationally stratified spheres seemed
to be adequate to model the average density structure of the solar corona in the 1950s,
the concept of magnetic structuring into horizontally separated fluxtubes, which essen-
tially represent isolated “mini-atmospheres”, was introduced in the 1980s. In the last
decade before 2000, the high-resolution images from spacecraft observations revealed
a spatially highly inhomogeneous and temporally dynamic corona, which is constantly
stirred up by dynamic processes such as heated chromospheric upflows, cooling down-
flows, magnetic reconfigurations, and interactions with waves. The trend is clear, our
picture evolved from stationary and spherical symmetry away towards dynamic and
highly inhomogeneous topologies.

So we can conceive the topology of the solar corona by structures that are aligned
with the magnetic field. There are two types of magnetic field lines: closed field lines
that start and end at the solar surface, and open field lines which start at the solar surface
and end somewhere in interplanetary space. Also for theoretical reasons, open field
lines close over very large distances, to satisfy Maxwell’s equation ∇B = 0, which
states that there are no static sources of magnetic field in the absence of magnetic
monopoles. The appearance of closed magnetic field lines loaded with over-dense
plasma, with respect to the ambient density, has led to the familiar phenomenon of
coronal loops, which are ubiquitous, and most conspicuously seen in active regions,
but can also be discerned everywhere in quiet Sun regions, except in coronal holes near
the poles.

A loop structure can essentially be parametrized in a 1D coordinate system given
by the central magnetic field line. However, the extent of the transverse cross section
is less well defined. What a telescope perceives as a cross-sectional area, depends very
much on the angular resolution. Theoretically, a loop can be as thin as an ion gyro-
radius, because cross-field transport is inhibited in a low-β plasma. The instrument-
limited fine structure appears as shown in Fig. 1.18: an apparently compact loop seen
at low resolution may reveal a bundle of fine threads at high resolution.
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Figure 1.17: Cartoon of geometric concepts of the solar corona: gravitationally stratified layers
in the 1950s (left), vertical fluxtubes with chromospheric canopies in the 1980s (middle), and
a fully inhomogeneous mixing of photospheric, chromospheric, and coronal zones by dynamic
processes such as heated upflows, cooling downflows, intermittent heating (ε), nonthermal elec-
tron beams (e), field line motions and reconnections, emission from hot plasma, absorption and
scattering in cool plasma, acoustic waves, and shocks (right) (Schrijver, 2001b).

Given these geometrical concepts, we can partition the solar corona into open-
field and closed-field regions, as shown in Fig. 1.14. Because the 3D magnetic field
is space-filling, every location can be associated with a particular magnetic field line.
Depending on the desired spatial resolution of a geometric model, each domain of the
corona can further be subdivided into magnetic fluxtubes with a certain cross-sectional
area, each one representing an isolated “mini-atmosphere”, having its own gravita-
tional stratification and hydrostatic pressure balance, constrained by different densities
and temperatures at the lower boundary. This breakdown of the inhomogeneous at-
mosphere into separate fluxtubes simplifies the magneto-hydrostatics into 1D transport
processes. Measurements of the flux in EUV or soft X-rays, which is an optically
thin emission, however, involves various contributions from different fluxtubes along a
line-of-sight, requiring the knowledge of the statistical distribution of fluxtubes. EUV
and soft X-ray data can therefore only be modeled in terms of multi-fluxtube or multi-
temperature concepts.
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SXT/half  5.00 arcsec

SXT/full  2.50 arcsec

TRACE  0.50 arcsec

SMEX  0.10 arcsec

Figure 1.18: Concept of multi-thread loops, which exhibit more or less fine structure depending
on the angular resolution of the observing instrument. Four different representations of the same
bundle of bright magnetic field lines are shown, observed with angular resolutions of 5′′ and 2.5′′

(SXT/Yohkoh, EIT/SoHO), 0.5′′ (TRACE), and with 0.1′′ (a proposed future SMEX mission).

1.6 Density Structure of the Solar Corona

The particle density in the corona, and even in the chromosphere, is much lower than
the best vacuum that can be generated in any laboratory on Earth. Electron densi-
ties in the solar corona range from ≈ 106 cm−3 in the upper corona (at a height of
one solar radius) to ≈ 109 cm−3 at the base in quiet regions , and can increase up
to ≈ 1011 cm−3 in flare loops. The transition region at the base of the corona de-
marcates an abrupt boundary where the chromospheric density increases several orders
of magnitude higher than coronal values (Fig. 1.19) and the temperature drops below
11,000 K, the ionization temperature of hydrogen. The chromospheric plasma is there-
fore only partially ionized, while the coronal plasma is fully ionized. Chromospheric
density models have been calculated in great detail, based on ion abundance measure-
ments from a large number of EUV lines, constrained by hydrostatic equilibrium, radi-
ation transfer (Vernazza et al. 1973, 1976, 1981), and ambipolar diffusion (Fontenla et
al. 1990, 1991).

The density models shown in Fig. 1.19 represent an average 1D model for a grav-
itationally stratified vertical fluxtube. There are, however, a lot of dynamic processes
that heat up the chromospheric plasma, which is then driven by the overpressure up-
ward into the corona, producing over-dense structures with densities in excess of the
ambient quiet corona. In order to give a feeling for the resulting density variations in



24 CHAPTER 1. INTRODUCTION

102 103 104 105

Height above photosphere (km)

108

109

1010

1011

1012

P
ar

tic
le

 d
en

si
ty

 (
cm

-3
)

103

104

105

106

107

T
em

pe
ra

tu
re

 T
e 

[K
]

Te

ne nH0

ne

Te

Figure 1.19: Electron density and temperature model of the chromosphere (Fontenla et al. 1990;
Model FAL-C) and lower corona (Gabriel, 1976). The plasma becomes fully ionized at the sharp
transition from chromospheric to coronal temperatures. In the chromosphere, the plasma is only
partially ionized: ne indicates the electron density, nH0 the neutral hydrogen density.

the highly inhomogeneous corona we show a compilation of density measurements in
Fig. 1.20, sampled in coronal holes, quiet Sun regions, coronal streamers, and active
regions. At the base of the corona, say at a nominal height of ≈ 2500 km above the
photosphere, the density is lowest in coronal holes, typically around≈ (0.5−1.0)×108

cm−3. In quiet Sun regions the base density is generally higher (i.e., ≈ (1 − 2) × 108

cm−3). At the base of coronal streamers, the density climbs to ≈ (3− 5)× 108 cm−3,
and in active regions it is highest at ≈ 2 × 108 − 2 × 109 cm−3. In the upper corona,
say at heights larger than 1 solar radius, the density drops below 106 − 107 cm−3.

Coronal densities were first measured from white-light (polarized brightness) data
using a Van de Hulst (1950a,b) inversion, assuming that the polarized brightness of
white light is produced by Thomson scattering and is proportional to the line-of-sight
integrated coronal electron density. Another ground-based method uses the frequency
of radio bursts that propagate through the corona, assuming that their emission fre-
quency corresponds to the fundamental or harmonic plasmafrequency, which is a direct
function of the electron density. During the last several decades, space-borne observa-
tions in EUV and soft X-rays provided another method, based on the emission measure,
which is proportional to the squared density integrated along the column depth, for op-
tically thin radiation. This latter method can be performed in different spectral lines
so that the densities can be measured independently for plasmas with different tem-
peratures. However, since every instrument has a limited spatial resolution that may
not adequately resolve individual plasma structures, the inferred densities place only
lower limits on the effective densities. Absolute densities can be measured from some
density sensitive lines in the 1 − 20 Å range, at relatively high densities of ne

>∼ 1012

cm−3 (e.g., the Fe XXI and Fe XXII lines; Phillips et al. 1996).
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Figure 1.20: Compilation of electron density measurements in the height range of 0.003 <

h < 0.8 solar radii or 2500 < h < 560, 000 km: in coronal holes (top left), quiet Sun regions
(top right), coronal streamers (bottom left), and in active regions (bottom right). Note that the
electron density at at any given height varies 1−2 orders of magnitude over the entire corona. The
numbered curves (with thick linestyle) represent soft X-ray measurements from Aschwanden &
Acton (2001).

From white-light observations during solar eclipes, the corona was characterized by
three components: (1) the K-corona, made of partially polarized continuum emission
from photospheric light scattered at free electrons (dominating at h <∼ 0.3 solar radius);
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(2) the L-corona, consisting of spectral line emission from highly ionized atoms (domi-
nating at h <∼ 0.5 solar radius); and (3) the F corona, which presents absorption lines of
the photospheric Fraunhofer spectrum caused by diffraction from interplanetary dust
(dominating at h >∼ 0.5 solar radius). The line-of-sight integrated density profiles of
these three components can be approximated by a powerlaw function, each leading to
an average density profile known as the Baumbach−Allen formula (e.g., Cox, 2000),

ne(R) = 108

[
2.99
(

R

R�

)−16

+ 1.55
(

R

R�

)−6

+ 0.036
(

R

R�

)−1.5
]

cm−3

(1.6.1)
parametrized by the distance R = R� +h from the Sun center. Density measurements
from eclipse observations can be performed out to distances of a few solar radii. Further
out in interplanetary space, heliospheric densities can be measured by scintillations of
radio sources (Erickson, 1964),

ne(R) ≈ 7.2 × 105

(
R

R�

)−2

cm−3 , R � R� (1.6.2)

or from the plasmafrequency or interplanetary radio bursts.

1.7 Temperature Structure of the Solar Corona

The temperature of the solar corona was first asserted only 60 years ago. In 1940,
Bengt Edlén analyzed spectral lines following the diagrams of Walter Grotrian and
established that coronal emission arises from highly ionized elements, at temperatures
of >∼ 1 MK (1 MegaKelvin = 1,000,000 Kelvin). The physical understanding of this
high temperature in the solar corona is still a fundamental problem in astrophysics,
because it seems to violate the second thermodynamic law, given the much cooler
photospheric boundary, which has an average temperature of T = 5785 K (and drops
to T ≈ 4500 K in sunspots). The rapid temperature rise from the chromosphere to the
corona is shown in Fig. 1.19 (dashed curve). Further out in the heliosphere, the coronal
temperature drops slowly to a value of T ≈ 105 K at 1 AU.

The temperature structure of the solar corona is far from homogeneous. The opti-
cally thin emission from the corona in soft X-rays (Fig. 1.8) or in EUV implies over-
dense structures that are filled with heated plasma. The only available reservoir is the
chromosphere, which apparently needs to be heated at many locations, to supply coro-
nal loops with hot upflowing plasma. Because the thermal pressure is generally smaller
than the magnetic pressure (plasma-β parameter< 1), plasma transport occurs only in
one dimension along the magnetic field lines, while cross-field diffusion is strongly
inhibited. This has the consequence that every coronal loop represents a thermally iso-
lated system, having only the tiny chromospheric footpoints as valves for rapid heat
and mass exchange. Because the heating of the footpoints of coronal loops seems to be
spatially and temporally intermittent, every loop ends up with a different energy input
and settles into a different temperature, when a quasi-steady heating rate is obtained.
Consequently, we expect that the corona is made up of many filled loops with different
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Figure 1.21: Differential emission measure distribution dEM(T )/dT of two active regions
(AR 93, AR 91) and two quiet Sun regions (QR 93, QR 91) measured by Brosius et al. (1996)
with SERTS data.

temperatures, the cooler ones visible in EUV and the hotter ones shining in soft X-rays.
Such a multi-temperature picture of the solar corona is shown in Plate 1, composed of
three images taken with different temperature filters with EIT/SoHO: a blue image at
1.0 MK (171 Å), a green image at 1.5 MK (195 Å), and a red image at 2.0 MK (284
Å). Following the color coding, one can clearly see in Plate 1 that the northern coro-
nal hole contains the coolest regions and that the temperature seems to increase with
altitude above the limb. In §3 we will learn that this apparent temperature increase
does not reflect a positive temperature gradient with height along individual field lines,
but merely results from the relative density weighting of cool and hot (hydrostatic)
temperature scale heights. Another effect that can be seen in Plate 1 is the law of ad-
ditive color mixing according to Isaac Newton: If blue, green, and red are mixed with
equal weighting, white results. The white color-coding in active regions seen in Plate 1
can therefore be taken as evidence that active regions contain comparable temperature
contributions from 1.0, 1.5, and 2.0 MK temperature loops.

The multi-temperature distribution of the corona can quantitatively be expressed
by the so-called differential emission measure distribution dEM(T )/dT , which is a
measure of the squared density ne(T ) integrated over the column depth along the line-
of-sight for any given temperature,

dEM(T )
dT

dT =
∫

n2
e(T, z)dz . (1.7.1)

This quantity can be measured with a broad range of EUV and soft X-ray lines at any
location (or line-of-sight) on the Sun. Such differential emission measure distributions
obtained from 4 different locations are shown in Fig. 1.21, two in quiet Sun regions
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and two in active regions, obtained from He II, C IV, Mg V, Ca VII, Mg VI, Mg VIII,
Fe X, Si IX, Fe XI, Al X, Si XI, Fe XV, Fe XVI, and Ni XVIII lines with the Solar
EUV Research Telescope and Spectrograph (SERTS) on sounding rocket flights during
1991 and 1993 (Brosius et al. 1996). The set of EUV emission lines used is sensitive
in the temperature range of log(T ) = 4.8 − 6.5 (T = 63,000 K − 3.2 MK). The
DEM distribution in Fig. 1.21 clearly shows a temperature peak around log(T ) =
6.0 − 6.3 for the quiet Sun regions, which corresponds to the T = 1 − 2 MK range,
which is coincident with the blue-red color range in Plate 1. In active regions, the
DEM distributions in Fig. 1.21 show a comparable amount of emission measure in
the temperature range of log(T ) = 6.3 − 6.8, which corresponds to temperatures of
T = 2.0 − 6.3 MK.

This coarse temperature characterization of the corona already shows an interesting
trend. Open-field regions, such as coronal holes (Fig. 1.14), have the coolest temper-
atures of T <∼ 1 MK; closed-field regions, such as the quiet Sun, have intermediate
temperatures of T ≈ 1 − 2 MK; while active regions exhibit the hottest temperatures
of T ≈ 2 − 6 MK. Open-field regions seem to be cooler because plasma transport is
very efficient, while closed-field regions seem to be hotter because the heated plasma
is trapped and cannot easily flow away. The temperature difference between quiet Sun
and active regions is a consequence of different magnetic flux emergence rates, heating
rates, conductive loss rates, radiative loss rates, and solar wind loss rates.

1.8 Plasma-β Parameter of the Solar Corona

The magnetic field B exerts a Lorentz force on the charged particles of the coronal
plasma, consisting of electrons and ions, guiding them in a spiraling gyromotion along
the magnetic field lines. Only when the kinetic energy exceeds the magnetic energy
(i.e., at high temperatures and low magnetic fields), can particles escape their gyro-
orbits and diffuse across the magnetic field. The critical parameter between these two
confinement regimes is the plasma-β parameter, defined as the ratio of the thermal
plasma pressure pth to the magnetic pressure pm,

β =
pth

pm
=

2ξnekBTe

B2/8π
≈ 0.07 ξ n9 T6/B2

1 , (1.8.1)

where ξ = 1 is the ionization fraction for the corona (and ξ = 0.5 in the photosphere),
kB = 1.38 × 10−16 erg K−1 the Boltzmann constant, B1 = B/10 G the magnetic
field strength, n9 = ne/109 cm−3 the electron density, and T6 = T/106 K the electron
temperature. In Table 1.1 we list some typical parameters for the chromosphere, and
cool, hot, and outer parts of the corona.

We see that most parts of the corona have a plasma-β parameter of β < 1, but are
sandwiched between the higher values β > 1 in the chromosphere and outer corona.
Therefore, most parts of the corona are magnetically confined. However, hot regions
with low magnetic fields (e.g., in the magnetic cusps above streamers), can easily have
values of β > 1, so that plasma can leak out across the cusped magnetic field lines.
Most magnetic field extrapolation codes do not or cannot take into account the full
range of β and essentially assume β � 1. The inference of the plasma-β parameter in
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Figure 1.22: Plasma β in the solar atmosphere for two assumed field strengths, 100 G and 2500
G. In the inner corona (R <∼ 0.2R�), magnetic pressure generally dominates static gas pressure.
As with all plots of physical quantities against height, a broad spatial and temporal average is
implied (Gary, 2001).

Table 1.1: The plasma-β parameter in the solar atmosphere.

Parameter Photosphere Cool corona Hot corona Outer corona
Electron density ne (cm−3) 2 × 1017 1 × 109 1 × 109 1 × 107

Temperature T (K) 5 × 103 1 × 106 3 × 106 1 × 106

Pressure p (dyne cm−2) 1.4 × 105 0.3 0.9 0.02
Magnetic field B (G) 500 10 10 0.1
Plasma-β parameter 14 0.07 0.2 7

different locations of the solar corona thus strongly depends on the employed magnetic
field model, in particular because the magnetic field strength B is the least known
physical parameter in the corona, while the density ne and temperature Te can readily
be measured in EUV and soft X-rays for structures with good contrast to the coronal
background. A comprehensive model of the plasma-β parameter has been built by Gary
(2001), using a large number of physical parameters quoted in the literature, resulting
in a well-constrained range of β-values for any given height, β(h), shown as a grey
zone in Fig. 1.22. One conclusion of Gary (2001) is that even in coronal heights of
h >∼ 0.2R� high β-values above unity can occur, which might be responsible for the
dynamics of cusp regions (Fig. 1.23) or overpressure near the apices of large loops seen
with TRACE.
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1.9 Chemical Composition of the Solar Corona

Atomic spectroscopy that led to a first quantitative analysis of the chemical composi-
tion of the photosphere was pioneered by Henry Noris Russell in 1929. The chemical
composition of the Sun has been measured most accurately in the photosphere, where
line emission is brightest, while measurements of elemental abundances in the corona
are much less sensitive, due to the corona being many orders of magnitude fainter. The
chemical composition in the photosphere and corona are largely similar for most of the
elements, and are also consistent with cosmic abundances, as they have been measured
from chemical analyses of meteorites. The most recent comparison of photospheric
and meteorite elemental abundances can be found, for example in Grevesse & Sauval
(2001), where significant differences are listed only for the element of lithium. From
the same source we list elemental abundances measured in the photosphere and corona
(Table 1.2), and show the logarithmic abundances in Fig. 1.24. It can be seen that coro-
nal elements have only currently been detected up to an atomic number of Z ≤ 30,
essentially elements down to a fraction of >∼ 10−6 of the hydrogen abundance, while
the sensitivity limit in the photosphere reaches ≈ 10−12.

There are a few special elements. The abundance of helium cannot be measured
in the photosphere, simply because no helium line (neutral or single-ionized species)
falls within the wavelength range covered by the photospheric spectrum, in the (photo-
spheric) temperature range around 5000 K. Also for the same reason, the noble gases
neon and argon cannot be measured in the photosphere. Theoretical stellar models that
fit the observed age, mass, diameter, and luminosity of the Sun yield a helium abun-
dance of AHe/AH = 9.8 ± 0.4% for the protosolar cloud. A slightly lower value is
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Table 1.2: Elemental abundances in the solar photosphere and corona.

Element Abundance1 Abundance1 FIP Element Abundance1

Photosphere Corona [eV] Photosphere
1 H 12.00 12.00 13.6 42 Mo 1.92 ± 0.05
2 He - 10.93 ± 0.004 24.6 44 Ru 1.84 ± 0.07
3 Li 1.10 ± 0.102 - 5.4 45 Rh 1.12 ± 0.12
4 Be 1.40 ± 0.09 - 9.3 46 Pd 1.69 ± 0.04
5 B (2.55 ± 0.30) - 8.3 47 Ag (0.94 ± 0.25)
6 C 8.52 ± 0.06 8.5 11.3 48 Cd 1.77 ± 0.11
7 N 7.92 ± 0.06 7.9 14.5 49 In (1.66 ± 0.15)
8 O 8.83 ± 0.062 8.8 13.6 50 Sn 2.0 ± 0.3
9 F 4.56 ± 0.302 - 17.4 51 Sb 1.0 ± 0.3
10 Ne - 8.08 ± 0.06 21.6 52 Te -
11 Na 6.33 ± 0.03 6.33 5.2 53 I -
12 Mg 7.58 ± 0.05 7.63 7.6 54 Xe -
13 Al 6.47 ± 0.07 6.43 6.0 55 Cs -
14 Si 7.55 ± 0.05 7.63 8.1 56 Ba 2.13 ± 0.05
15 P 5.45 ± 0.04 5.5 10.5 57 La 1.17 ± 0.07
16 S 7.33 ± 0.11 7.2 10.3 58 Ce 1.58 ± 0.09
17 Cl 5.50 ± 0.302 5.8 13.0 59 Pr 0.71 ± 0.08
18 Ar - 6.40 ± 0.063 15.8 60 Nd 1.50 ± 0.06
19 K 5.12 ± 0.13 - 4.3 62 Sm 1.01 ± 0.06
20 Ca 6.36 ± 0.02 6.33 6.1 63 Eu 0.51 ± 0.08
21 Sc 3.17 ± 0.10 - 64 Gd 1.12 ± 0.04
22 Ti 5.02 ± 0.06 - 65 Tb (−0.1 ± 0.3)
23 V 4.00 ± 0.02 - 66 Dy 1.14 ± 0.08
24 Cr 5.67 ± 0.03 - 6.8 67 Ho (0.26 ± 0.16)
25 Mn 5.39 ± 0.03 - 7.4 68 Er 0.93 ± 0.06
26 Fe 7.50 ± 0.05 7.63 7.9 69 Tm (0.00 ± 0.15)
27 Co 4.92 ± 0.04 5.0 70 Yb 1.08 ± 0.15
28 Ni 6.25 ± 0.04 6.33 7.6 71 Lu 0.06 ± 0.10
29 Cu 4.21 ± 0.04 4.1 72 Hf 0.88 ± 0.08
30 Zn 4.60 ± 0.08 4.4 73 Ta -
31 Ga 2.88 ± 0.102 - 6.0 74 W (1.11 ± 0.15)
32 Ge 3.41 ± 0.142 - 75 Re -
33 As - - 76 Os 1.45 ± 0.10
34 Se - - 77 Ir 1.35 ± 0.10
35 Br - - 78 Pt 1.8 ± 0.3
36 Kr - - 14.0 79 Au (1.01 ± 0.15)
37 Rb 2.60 ± 0.152 - 4.2 80 Hg -
38 Sb 2.97 ± 0.07 - 81 Tl (0.9 ± 0.2)
39 Y 2.24 ± 0.03 - 82 Pb 1.95 ± 0.08
40 Zr 2.60 ± 0.02 - 83 Bi -
41 Nb 1.42 ± 0.06 - 90 Th -

92 U < −0.47)

1) abundances are given on a logarithmic scale, 12.0 +10 log(A/AH)
2) derived in addition or only from sunspots
3) abundance could be a factor of ≈ 3 times higher in corona and solar wind (low-FIP)
(...) Values between parentheses are less accurate
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Figure 1.24: Logarithmic distribution of the abundance of the elements relative to hydrogen,
normalized to 12 + log(A/AH[Z = 1]), as a function of the atomic number, Z. Elements that
have been detected in the corona are labeled.

obtained from inversion of helioseismic data. Other exceptions are the light elements
of lithium, beryllium, and boron, which have a strikingly low abundance as a conse-
quence of their low nuclear binding energy, so that these nuclei are destroyed by proton
collisions at solar temperatures of a few million Kelvins.

Since the solar corona is a highly dynamic and inhomogeneous place, subtle varia-
tions in the chemical composition have been observed in various coronal structures. A
fractionation seems to occur in the lower chromospheric layers, where elements with
a low first ionization potential (FIP) (≤ 10 keV) show abundances that are locally and
temporarily larger than in the photosphere. Such a FIP fractionation effect can change
the relative abundances typically by a factor of ≈ 3 (e.g., Na, Mg, Al, Si, Ca, Ni), or up
to a factor of 10 for iron (Fe), between the chromosphere and the solar wind. Unfortu-
nately the relative abundances cannot directly be measured with respect to hydrogen,
because hydrogen is completely ionized in the corona, so that it has no emission lines
that can be used for absolute abundance determinations. Instead, only relative abun-
dances of “heavy” elements (metals) can be measured, so that there is an ambiguity
whether the FIP fractionation effect causes an enhancement of low-FIP elements into
the corona, or a depletion of high-FIP elements out of the corona (to the chromosphere).

1.10 Radiation Spectrum of the Solar Corona

The atmosphere of our planet Earth filters out emission from the Sun and stars in many
wavelengths, except for two spectral windows at optical and radio wavelengths. The
major progress in solar physics achieved over the last decade thus involves a number of
space missions, floating aloft our absorbing atmosphere. These space missions provide
us unprecedented information over the entire wavelength spectrum, covering gamma-
rays, hard X-rays, soft X-rays, X-ray ultraviolet (XUV), extreme ultraviolet (EUV), and
ultraviolet (UV). It has opened our eyes about the physical processes that govern solar
and stellar atmospheres that we could not anticipate without space data. An overview
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of the solar radiation spectrum is shown in Fig. 1.25, covering a wavelength range over
14 orders of magnitude.

The physical units of the spectrum are generally quantified in terms of the wave-
length λ (bottom axis of Fig. 1.25), having units of meters (m) in the SI system or
centimeters (cm) in the cgs system. However, astronomers often prefer Ångstrøm (Å)
units, defined by,

1 Å = 10−8 cm = 10−10 m . (1.10.1)

In the radio domain, the frequency unit ν is used (top axis in Fig. 1.25), which has the
unit (Hz) or (s−1) in both the SI or cgs system and can be calculated from the basic
dispersion relation of electromagnetic waves in a vacuum,

ν =
c

λ
, (1.10.2)

with c = 2.9979 × 1010 cm s−1 being the speed of light. For relativistic particles,
as we observe in hard X-rays and gamma-rays in the solar corona and chromosphere,
a practical unit is eV. An electron-Volt (1 eV) is defined by the energy gained by an
electron (e) if it is accelerated by a potential difference of 1 Volt (V), which is in SI and
cgs units,

1 eV = 1.60 × 10−19 C × 1 V = 1.60 × 10−19 J = 1.60 × 10−12 erg . (1.10.3)

Equating the particle energy ε with the photon quantum energy ε = hν, we then have
(with Eq.1.10.2) a relation to the wavelength λ,

ε = hν = h
c

λ
= 12.4

(
1 Å
λ

)
keV . (1.10.4)

For thermal plasmas, which are observed in the solar corona in EUV, XUV, and in soft
X-rays, it is customary to associate a temperature T with a wavelength λ, using the
definition of the quantum energy of a photon (and the dispersion relation 1.10.2),

εth = kBT = ε = hν = h
c

λ
. (1.10.5)

This yields (with the Boltzmann constant kB = 1.38 × 10−16 erg K−1 and the Planck
constant h = 6.63 × 10−27 erg s) the conversion formula,

T =
hc

kBλ
= 1.44

(
1 cm

λ

)
K . (1.10.6)

With these relations we can conveniently convert any physical unit used in the context
of a wavelength spectrum. The solar irradiance spectrum from gamma-rays to radio
waves is shown in Fig.1.25, given in units of energy per time, area, and wavelength
(erg s−1 cm−2 µm−1).

Let us tour quickly from the shortest to the longest wavelength regime, summa-
rizing in each one the essential physical emission processes that can be detected with
space-borne instruments and ground-based telescopes.
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Figure 1.25: The solar irradiance spectrum from gamma-rays to radio waves. The spectrum is
shifted by 12 orders of magnitude in the vertical axis at λ = 1 mm to accommodate for the large
dynamic range in spectral irradiance (after Zombeck, 1990 and Foukal, 1990).

The shortest wavelength regime, which is emitted during only the most energetic
processes in large flares, is the gamma-ray (γ-ray) regime, in a wavelength range of
λ ≈ 10−3 − 10−1 Å, which corresponds to energies of ε ≈100 keV−10 MeV. Ob-
viously, such high-energy radiation is only emitted from the Sun when particles are
accelerated in flares to sufficiently high energies, so that they can interact with atomic
nuclei. Solar gamma-ray emission is produced when particles, accelerated to high en-
ergies in the collisionless corona, precipitate to the chromosphere, where a number of
nuclear processes produce gamma-rays (e.g., continuum emission by primary electron
bremsstrahlung, nuclear de-excitation lines, neutron capture lines, positron annihilation
radiation, or pion decay radiation).
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The next wavelength regime is the hard X-rays regime, corresponding to wave-
lengths of λ ≈ 0.1 − 1 Å or energies of ε ≈ 10 − 100 keV. This energy range corre-
sponds to mild-to-medium relativistic electrons (with a rest mass of mec

2 = 511 keV
and a relativistic speed of β = v/c ≈ 0.2 − 0.5), and thus requires electrons that are
accelerated in a collisionless plasma in the corona. When these nonthermal electrons
enter the high-density transition region and chromosphere, they lose their energy by
collisions and emit electron (thick-target) bremsstrahlung, which is seen at hard X-ray
wavelengths.

The next wavelength regime is called soft X-rays, at wavelengths of λ ≈ 1 − 100
Å. This soft X-ray wavelength range corresponds to thermal energies of εth ≈ 0.1−10
keV and plasma temperatures of T ≈ 1.5 − 150 MK. Such plasma temperatures are
found in active regions (T ≈ 1.5− 10 MK) and in flare loops (T ≈ 10− 40 MK). This
entire wavelength regime is well observed with the Soft X-Ray Telescope (SXT) on
board Yohkoh. The longer wavelength decade at λ ≈ 10 − 100 Å is also called X-ray
ultraviolet (XUV). Soft X-rays are produced by free-free emission of electrons that are
scattered off highly-ionized ions in the solar corona.

The next wavelength decade is extreme ultraviolet (EUV), covering wavelengths of
λ ≈ 100− 1000 Å or temperatures of T ≈ 0.15 − 1.5 MK. As it can be seen from the
differential emission measure distribution (Fig.1.21), most of the plasma in the quiet
Sun has temperatures around T ≈ 1 − 3 MK, and thus the quiet Sun is best probed
with EUV lines. Both EUV imagers, the EIT/SoHO and TRACE, have their primary
passbands in this wavelength regime, i.e., 171 Å (T ≈ 1.0 MK), 195 Å (T ≈ 1.5 MK),
and 284 Å (T ≈ 2.0 MK) wavebands. EUV emission is also produced by free-free
emission like for soft X-rays, but by scattering off ions with lower temperatures, Fe IX
to Fe XV.

The peak of the solar irradiance spectrum is, of course, in the optical wavelength
regime of λ ≈ 3000 − 7000 Å that is visible to the eye. It is probably an evolutionary
adaption process that our eyes developed the highest sensitivity where our Sun provides
our life-supporting daylight. Optical emission from the Sun originates mostly from
continuum emission in the photosphere, so that we do not gain much information from
the corona in visible light. It is only during total solar eclipses, when the bright light
from the solar disk is occulted by the moon, that faint scattered light reveals us some
structures from the tenuous corona.

The next three decades of the wavelength spectrum is called infrared, extending
over λ ≈ 1 µm - 1 mm. Infrared emission does not contain many lines, the most
prominent one longward of 1 µm is the He 10,830 Å line. Most of the infrared is dom-
inated by low-excitation species: neutral atoms and molecules (e.g., carbon monoxide,
hydroxil, water vapor). Infrared emission is thus only produced in quiescent gas not
strongly heated, conditions that can be found in supergranulation cell interiors and in
sunspot umbrae.

Finally, the longest wavelength regime is occupied by radio wavelengths, from
λ ≈ 1 mm to 10 m, corresponding to frequencies of ν ≈ 300 GHz to 30 MHz. In radio
there are a variety of emission mechanisms that radiate at characteristic frequencies:
gyrosynchrotron emission produced by high-relativistic electrons during flares (mi-
crowaves: dm, cm, mm wavelengths), gyroresonance emission from mildly relativis-
tic electrons in strong magnetic field regions, such as above sunspots (in microwaves),
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free-free emission from heated plasma in flares and active regions (dm and cm), plasma
emission excited by propagating electron beams (m and dm), and a number of other ra-
diation mechanisms produced by kinetic plasma instabilities. The reason why solar
radio emission is so multi-faceted is because the gyrofrequency of coronal magnetic
fields as well as the plasma frequency of coronal densities coincide with the radio
wavelength range. A large number of ground-based radio telescopes and interferome-
ters have studied this highly interesting spectral window over the last five decades.

1.11 Summary

Observations of the solar corona started with solar eclipses by the moon, which
was the only natural means to suppress the strong contrast caused by the six or-
ders of magnitude brighter solar disk in optical wavelengths. Eclipse observations
provided the first crude density models of the corona and the discovery of coro-
nal holes. Only the space age, however, allowed a systematic exploration of the
other more important wavelength regimes in EUV, soft X-rays, hard X-rays, and
gamma-rays. Decade-long spacecraft missions such as SMM, Yohkoh, CGRO,
SoHO, and TRACE opened up multi-wavelength observations that were instru-
mental for diagnostics of coronal plasma physics and high-energy particle physics
in flare processes. We note that even the most basic physical properties, such as
the density, temperature, and magnetic field structure of solar and stellar coronae
are far more complex than any planetary magnetosphere. The coronal magnetic
field is driven by an internal dynamo that modulates the surface magnetic field,
the solar activity, the coronal brightness, the flare and CME frequency, and the
solar wind with an eleven-year cycle, waxing and waning in complexity and non-
linear behavior. The density and temperature structure is far from the initially
conceived hydrostatic, uniform, and gravitationally stratified atmospheric models,
but rather displays a highly dynamic, restless, intricate, and global system that is
hidden to us in stellar atmospheres by the concealment of distance. A key param-
eter that distinguishes the plasma dynamics in the solar corona is the plasma-β
parameter, which indicates that the magnetic pressure rather than the thermal
pressure governs the coronal plasma dynamics, in contrast to the chromosphere,
the solar interior, or the heliosphere. The chemical composition is another pecu-
liarity of the corona, which shows anomalies as a function of the first ionization
potential energy (FIP-effect) with respect to the universal chemical composition
that is found in the photosphere or in meteorites. The radiation spectrum of the
solar corona spans over at least 14 orders of magnitude, from the longest wave-
lengths in radio over infrared, visible, ultraviolet, soft X-rays, hard X-rays, to
gamma-rays, with each wavelength regime revealing different physical processes.
Only simultaneous and complementary multi-wavelength observations allow us to
establish coherent theoretical models of the fundamental plasma physics processes
that operate in the solar corona and in other high-temperature astrophysical plas-
mas.
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Thermal Radiation

Thermal radiation from the Sun is emitted from temperatures as low as T = 4400 K
in sunspot umbrae (during solar minimum) to as high as T ≈ 40 MK in the superhot
component of flare plasmas, a temperature range that covers about 4 orders of magni-
tude. Concentrating on the thermal emission from the corona, quiet Sun regions emit in
the temperature range of T ≈ 1− 3 MK, active regions in the range of T ≈ 2− 8 MK,
and typical flares in the range of T ≈ 10 − 40 MK. Therefore, thermal emission from
the solar corona falls mainly in the wavelength domain of EUV and soft X-rays. In
this chapter we describe the basic physics of thermal radiation mechanisms in the EUV
and soft X-ray wavelength domain, which will then be applied to data analysis from
the Yohkoh, SoHO/EIT, CDS, and TRACE missions. For complementary literature the
reader is referred to textbooks by Zirin (1988), Foukal (1990), Phillips (1992), Golub
& Pasachoff (1997), or to Astrophysical Formulae by Lang (1980).

2.1 Radiation Transfer and Observed Brightness

First we have to define a few basic elements of radiation theory before we can go into
discussion of the solar radiation in various wavelengths. The quantity we observe at
Earth is the specific intensity Iν , which is the energy (erg) radiated from a solar source
at a frequency interval ν...ν + dν (Hz−1), per time interval dt (s−1), from a unit area
dA (cm−2) of the source, which is foreshortened by a factor cos(θ) for a line-of-sight
with an angle θ to the solar vertical, emitted over a solid angle dΩ (ster−1), so it has the
physical (cgs) units of (erg s−1 cm−2 Hz−1ster−1). The source is assumed to contain
both emitting and absorbing elements.

The definition of the specific intensity Iν is illustrated in Fig. 2.1. The associated
energy dW is thus

dW = Iν dt dA cos(θ) dν dΩ (erg) . (2.1.1)

The intensity along the path s through the solar source increases in every emitting
volume element dV = ds dA cos(θ) per path increment ds by

dW em(s) = εν(s) dt dV dν dΩ , (2.1.2)
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Figure 2.1: Definition of specific intensity Iν emitted per unit area dA and solid angle dΩ at an
angle θ. The source appears under a solid angle Ωs from the observer’s position.

where εν(s) is the local emission coefficient at position s. Equating Eqs. (2.1.1) and
(2.1.2) we have a relation between the intensity increase dIem

ν and the emission coeffi-
cient εν ,

dIem
ν (s) = εν(s)ds . (2.1.3)

Along the same path s, there may be absorbing material (e.g. cool prominence material
absorbs EUV and soft X-ray emission) with an absorption coefficient αν(s), so that the
intensity decreases by an amount

dIab
ν (s) = −αν(s)Iν(s)ds . (2.1.4)

Note that the emission and absorption coefficients are not defined by the same physical
units. For absorption the intensity change is proportional to the incident intensity, while
the emission coefficient is independent of it.

Combining the intensity changes from emission (Eq. 2.1.3) and absorption (Eq. 2.1.4)
leads to the radiative transfer equation, dIν(s) = dIab

ν (s) + dIem
ν (s), or

dIν(s)
ds

= −αν(s)Iν(s) + εν(s) , (2.1.5)

which is a linear differential equation of first order. It is more convenient to solve the
radiative transfer equation by expressing it in terms of the so-called source function Sν ,
which is defined as the ratio of the emission coefficient to the absorption coefficient,

Sν(s) =
εν(s)
αν(s)

. (2.1.6)

Furthermore, we define the optical depth τν(s) at location s, which includes the inte-
grated absorption over the path segment (s − s0),

τν(s) =
∫ s

s0

αν(s′)ds′ , (2.1.7)

where the path starts at the remotest source location s0 and moves along s towards
the observer. Inserting the source function Sν(s) (Eq. 2.1.6) into the radiative transfer
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equation (2.1.5) and substituting the path variable ds by the opacity variable dτν =
ανds (Eq. 2.1.7), the radiative transfer equation can easily be integrated by multiplying
both sides of the equation with the factor e−τν (e.g., see Rybicki,G.B. & Lightman,A.P.
1979, p.13; Zirin 1988, p.57), leading to the solution,

Iν(τν) = Iν(0)e−τν +
∫ τν

0

e−(τν−τ ′
ν)Sν(τ ′

ν) dτ ′
ν (2.1.8)

Let us now apply the radiative transfer equation to a simple case, for instance to a
source that is observed through an absorbing cloud with a constant absorption coeffi-
cient αν(s) = const and length L (yielding an opacity of τν =

∫ L

0 ανds = ανL), and
with a constant emission coefficient εν(s) = const. The limit of the optically thick
(τν � 1) and optically thin case (τν � 1) is then

Iν(τν) = I0e
−τν + Sν [1 − exp (−τν)] ≈

{
Sν if τν � 1
I0(1 − τν) + Sντν if τν � 1 .

(2.1.9)
This application is especially important at radio wavelengths, where the observed bright-
ness temperature TB is proportional to the brightness Bν(T ) [Rayleigh−Jeans approxi-
mation, see Eq. (2.2.5) in §2.2] or source intensity Iν(T ). For an optically thick source,
the observed brightness temperature is then identical to the electron temperature of the
source (i.e., TB = Te), which is usually the case for long wavelengths (dm and m in
the corona), while the observed brightness temperature decreases at higher frequencies
(cm, mm) in the optically thin case (i.e., TB = Teτν � Te). In the optically thick
case we see essentially the temperature at a surface layer where the source becomes
optically thick (τν ≈ 1), while the interior of the source is hidden and has no effect on
the observed brightness temperature, regardless how hot or cold it is. In the opposite
case, optically thin emission is proportional to the opacity τν , which is proportional to
the depth of the source for a constant absorption coefficient αν . Optically thin emis-
sion, therefore, always shows a center-to-limb effect, because the optical path through
the solar corona is increasing from disk center to the limb by a factor of 1/ cos (l − l0)
as a function of the longitude l (relative to the longitude l0 at the disk center), and is
jumping by a factor of two from inside to outside of the disk, when the coronal segment
behind the disk is added to the segment in front of the disk. This center-to-limb effect
is observable at short radio wavelengths as well as in EUV and in soft X-rays.

2.2 Black-Body Thermal Emission

The concept of electromagnetic radiation in thermodynamic equilibrium was intro-
duced by Gustav Kirchhoff in 1860, who envisioned a radiating gas that is confined in
a so-called black body and reaches an equilibrium between emission and absorption.
He found that the ratio of the emission coefficient εν to the absorption coefficient αν is
given by a universal brightness function Bν(T ) that depends only on the temperature
T and frequency ν, the so-called Kirchhoff law,

εν = n2
νανBν(T ) . (2.2.1)
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Figure 2.2: The brightness function Bν(T ) of a black-body radiator as a function of wavelength
λ (Å) for solar temperatures, ranging from T ≈ 5000 K in sunspots to T = 50 MK in superhot
flares. Note that the brightness peaks in the λ ≈ 0.5 − 20 Å range for flare temperatures.

where nν is the refractive index of the medium. The calculation of the universal bright-
ness function Bν(T ) was achieved by Max Planck in 1900, after he introduced the
quantum mechanical theory, where a photon with energy hν is represented by a har-
monic oscillator with a mean thermal energy of kBT [with h = 6.63 × 10−27 (erg s)
being the Planck constant and kB = 1.38× 10−16 (erg K−1) the Boltzmann constant].
Planck’s law of the brightness distribution as a function of frequency ν (Planck 1901,
1913) is,

Bν(T ) =
2hν3n2

ν

c2

1
[exp (hν/kBT ) − 1]

, (2.2.2)

or, in terms of wavelength λ,

Bλ(T ) =
2hc2n2

ν

λ5

1
[exp (hc/λkBT )− 1]

. (2.2.3)

The function Bλ(T ) is plotted in Fig. 2.2 for a range of temperatures. Planck’s function
Bν(T ) can be simplified to Wien’s law in the short-wavelength approximation (hν �
kBT ) (Wien 1893, 1894),

Bν(T ) =
2hν3n2

ν

c2
exp (− hν

kBT
) , (2.2.4)
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Figure 2.3: The observed solar flux spectrum per unit wavelength (thick curve) with a black-
body spectrum of temperature T = 5762 K.

or to the Rayleigh−Jeans law in the long-wavelength approximation (hν � kBT )
(Rayleigh 1900, 1905; Jeans 1905, 1909),

Bν(T ) =
2ν2kBTn2

ν

c2
. (2.2.5)

The Rayleigh−Jeans law is an important approximation used in radio wavelengths (see
Fig. 1.25). For solar temperatures, T >∼ 5× 103 K, the Rayleigh−Jeans approximation
is good at all frequencies ν � kBT/h <∼ 1014 Hz, in infrared as well as in radio.

The wavelength λmax where the Planck function Bλ(T ) has the maximum is only a
function of the temperature T (K) and can be found from the derivative dBλ(T )/dλ =
0, and is

λmax =
0.2898
T (K)

(cm) . (2.2.6)

This relation is also called the Wien displacement law. When the Planck function
Bλ(T ) is integrated over all frequencies, the total flux over the visible hemisphere,
πB, of the black body is obtained (Stefan 1879; Boltzmann 1884; Milne 1930), the
so-called Stefan−Boltzmann law,

πB(T ) = π

∫ ∞

0

Bλ(T )dλ = n2
ν σT 4 , (2.2.7)

with the Stefan−Boltzmann constant σ = 2π5k4
B/(15c2h3) = 5.6774 × 10−5 (erg

s−1 cm−2 K−4). The total output of the photosphere πB(T ) defines with Eq. 2.2.7 the
effective temperature of the photosphere, which is T = 5762 K.

We plot the Planck brightness distribution Bν(T ) in Fig. 2.2 for various temper-
atures relevant to the solar chromosphere and corona (from T = 5000 K to T = 50
MK), in units of (erg s−1 cm−2 cm−1 ster−1). In Fig. 2.3 we overplot the Planck
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brightness function Bν(T ) for an effective temperature of T = 5762 K to the observed
solar spectrum (for a complete solar spectrum see Fig. 1.25). The flux scale is fully
determined by the source size for a black body. The source size is given by the solar
disk with a radius of R� = 6.96 × 105 km, while a steradian unit corresponds to the
angular area of D2 subtended by the Sun−Earth distance, D = 1 AU = 1.50×108 km.
The angular area of the Sun in steradian units is

Ω� =
(

πR2
�

D2

)
= 6.76 × 10−5 (ster) . (2.2.8)

The solar irradiance spectrum Iλ is given in flux intensity units (e.g., tabulated for
the optical wavelength range of λ = 0.115, ..., 50 µm in Foukal (1990), quantified in
SI units of [W m−2 µm−1]). So the relation between the flux intensity Iλ and the
brightness function Bλ is given by

Iλ(T ) = Bλ(T )ΩS (2.2.9)

where ΩS is the solid angle subtended by the source (e.g., the solar disk here, ΩS =
Ω�). A effective temperature of T = 5762 K fits the solar irradiance spectrum quite
well over the optical, infrared, and shorter radio wavelength range (Fig. 2.3). The
wavelength range of λ = 0.18− 10 µm (1800-105 Å) over which a good fit is found to
the black-body spectrum, comprises 99.9% of the solar irradiance output.

At shorter wavelengths, such as in EUV and soft X-rays, the solar irradiance spec-
trum cannot be modeled by black-body spectra for a number of reasons: (1) the tenuous
corona is not optically thick at EUV and soft X-rays, so that the brightness is drasti-
cally reduced by the small opacity τ , Iλ = τBλ(T ) with τ � 1; (2) line blanketing
effects occur in UV due to the increasing number of Fraunhofer absorption lines; (3)
the EUV and SXR spectrum is dominated by thin emission lines from highly ionized
metals (e.g. O, Ne, Mg, Al, Si, Ca, Fe). At the longer radio wavelengths (dm, m),
the solar spectrum can, in the absence of other radio emission mechanisms, again be
modeled with a black-body spectrum, because the corona becomes optically thick.

2.3 Thermal Bremsstrahlung (Free−Free Emission)

The corona is a fully ionized gas, a plasma, so that electrons and ions move freely,
interacting with each other through their electrostatic charge. Electrons and atomic
nuclei are separated in the coronal plasma and can undergo manyfold interactions. We
describe in the following the most important atomic processes that contribute to coronal
emission in EUV, soft X-rays, and radio wavelengths. The most common and least
interfering interaction (with the atomic structure) is when a free electron is scattered
in the Coulomb field of an ion. Essentially a free electron of the coronal plasma is
elastically scattered off an ion and escapes as a free electron, which is called a free-free
transition. A photon is emitted with an energy corresponding to the difference of the
outgoing to the incoming kinetic energy of the electron (i.e., hν = ε′ − ε), according
to the principle of energy conservation. Because the energy of the emitted photon
is only positive when the electron loses energy, this free-free emission is also called
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Figure 2.4: Elastic scattering of an electron (e−) off a positively charged ion (+Ze). The
electron moves with velocity v on a path with impact parameter b and is deflected by an angle of
2ϑ, with tan ϑ/2 = Ze2/(mv2b), according to Rutherford (1911).

bremsstrahlung, the german word for braking radiation introduced by Bohr, Bethe, and
Heitler. We provide a brief derivation of the thermal bremsstrahlung spectrum in the
following, while a more detailed treatment can be found in Jackson (1962, §13, 15) and
Lang (1980).

When a nonrelativistic electron with mass m, charge e, and velocity v passes the
Coulomb field of an atom, molecule, or ion with charge +Ze, considered stationary,
the angular deflection ϑ of the particle is given by (Rutherford, 1911),

tan

(
ϑ

2

)
=

Ze2

mv2b
, (2.3.1)

where the impact parameter b designates the perpendicular distance from the charge
Ze to the original trajectory of the incoming electron (Fig. 2.4). The angular deflection
of the electron on its hyperbolic trajectory corresponds to an acceleration in a direction
perpendicular to its original path by an amount of ∆v. The total power of the elec-
tromagnetic radiation (emitted per unit time in all directions) of an accelerated point
charge is

P =
2
3

q2

c3

(
dv
dt

)2

. (2.3.2)

(see Larmor 1897; for derivation, see Jackson 1962, §14). Thus, the total power ra-
diated by such a deflected electron is, by combining Eqs. (2.3.1) and (2.3.2), using
the approximation ∆v≈v× tan (ϑ) ≈v×2 tan (ϑ/2) that results from the momentum
transfer equation for elastic scattering,

W (ν)dν ≈ 2e2

3πc3
|∆v|2dν ≈ 8

3π

(
e2

mc2

)2
Z2e2

c

( c

vb

)2

dν , for ν <
v
b

(2.3.3)
where ∆v is the change in electron velocity caused by the collision.

The total rate of encounters between an electron and a volume density ni of ions in
the parameter range of b...b + db (which is a cylindric tube with radius b around each
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Figure 2.5: Definition of differential cross section dσs/dΩ, which quantifies the solid angle
dΩ = 2π sin ϑdϑ that corresponds to scattering angles ϑ from the impact parameter range
b, ..., b + db.

ion, see Fig. 2.5), is

niv2π b db = ni v 2π
dσs

dΩ
sin (ϑ) dϑ (2.3.4)

where the differential scattering cross section dσs/dΩ can be calculated from Eq. (2.3.4)
and Rutherford’s expression (Eq. 2.3.1),

dσs

dΩ
=

b

sin (ϑ)

∣∣∣∣ db

dϑ

∣∣∣∣ = Z2

4

(
e2

mv2

)2 1
sin4 (ϑ/2)

. (2.3.5)

The total bremsstrahlung power Pi(v, ν)dν radiated by a single electron in the fre-
quency interval ν, ..., ν + dν in collisions with ni ions is

Pi(v, ν)dν = nivQr(v, ν)dν , (2.3.6)

where the radiation cross section Qr(v, ν) is given by

Qr(v, ν) =
16
3

Z2e6

m2c3v2

∫ bmax

bmin

db

b
(cm2 erg Hz−1) . (2.3.7)

The integral in the radiation cross section is also called Coulomb integral ln Λ, or
Gaunt factor g(ν, T ) if multiplied with the constant

√
3/π,

g(ν, T ) =
√

3
π

ln Λ =
√

3
π

∫ bmax

bmin

db

b
=

√
3

π
ln
(

bmax

bmin

)
. (2.3.8)

The total bremsstrahlung power radiated from a thermal plasma per unit volume, unit
frequency, and unit solid angle, is called the volume emissivity εν and is obtained by
integrating the total bremsstrahlung power of a single electron (Eq. 2.3.6) over the
thermal distribution f (v),

εν = nν
ne

4π

∫
Pi(v, ν)f(v)dv . (2.3.9)
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We insert the Maxwell−Boltzmann distribution of a plasma with temperature T ,

f(v)dv =
(

2
π

)1/2(
m

kBT

)3/2

v2 exp
(
− mv2

2kBT

)
dv . (2.3.10)

Inserting the total bremsstrahlung power Pi(v, ν) (Eq. 2.3.6) of a single electron into
Eq. (2.3.9) and integrating over the Maxwell−Boltzmann distribution f (v) Eq. (2.3.10),
in the classical bremsstrahlung treatment (hν = 1

2mv2) yields then

ενdν =
8
3

(
2π

3

)1/2

nν
Z2e6

m2c3

(
m

kBT

)1/2

nine g(ν, T ) exp
(
− hν

kBT

)
dν

≈ 5.4×10−39Z2nν
nine

T 1/2
g(ν, T ) exp

(
− hν

kBT

)
dν

(
erg s−1 cm−3 Hz−1 rad−2

)
.

(2.3.11)
The observable energy flux F at Earth can be derived from the emissivity εν = dε/(dt dV
dν dΩ) according to Eq. (2.3.11) by the following dimensional relation

dF =
dε

dt dA d(hν)
=

dε

dt (R2dΩ) h dν
=

1
R2h

dε

dt dΩ dν
=

dV

R2h
εν , (2.3.12)

where the factor 1/(R2h) ≈ 1.5 in cgs units, based on the Earth−Sun distance of
R = 1.5 × 1013 cm and h = 6.63 × 10−27 erg s. Thus the observed bremsstrahlung
flux at Earth can be expressed as a volume integral over the source (with Eqs. 2.3.11
and 2.3.12),

Fdν =
∫

dV
1

R2h
ενdν

≈ 8.1×10−39Z2nν

∫
V

nine

T 1/2
g(ν, T ) exp

(
− hν

kBT

)
dV dν

(
erg s−1 cm−2 erg−1

)
.

(2.3.13)
A standard expression for the bremsstrahlung spectrum F (ε) is, as a function of the
photon energy ε = hν, setting the coronal electron density equal to the ion density
(n = ni = ne), and neglecting factors of order unity, such as from the Gaunt factor,
g(ν, T ), and the ion charge number, Z ≈ 1, yielding (e.g. Brown 1974; Dulk & Dennis
1982),

F (ε) ≈ 8.1 × 10−39

∫
V

exp (−ε/kBT )
T 1/2

n2 dV
(
keV s−1 cm−2 keV−1

)
.

(2.3.14)

For an isothermal plasma, the spectral shape thus drops off exponentially with pho-
ton energy ε, which is the main way of discriminating between thermal emission from
nonthermal emission, the latter generally exhibiting powerlaw spectra through a power-
law energy distribution of energetic electrons at the impulsive stage of flares. We show
an example of thermal bremsstrahlung emission in Fig. 2.6, recorded during the flare
of 1980-Jun-27 with balloon-borne detectors (Lin et al. 1981a). Fitting Eq. (2.3.14) to
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Figure 2.6: Example of a thermal spectrum, observed during the flare on 1980-June-27, 16:16
UT, by balloon-borne cooled germanium detectors. The thermal spectrum extends up to <∼ 35

keV and corresponds to a temperature of T = 29.9 MK and a total emission measure of EM =

1.8 × 1048 cm−3 (Lin et al., 1981a).

the observed spectrum yields a temperature of T ≈ 30 MK and an emission measure
of EM ≈ n2V = 1.8 × 1048 cm−3. Since typical flare densities amount to n ≈ 1011

cm−3, the observed emission measure suggests a flare volume of V ≈ 1.8 × 1026

cm3 ≈ (5600 km)3 for this so-called superhot flare plasma.
For radiation transfer calculations it is useful to define the absorption coefficient

αν . This absorption coefficient per unit length for electron-ion bremsstrahlung is ac-
cording to the Kirchhoff law (Eq. 2.2.1) and the Planck function Bν(T ) for a black
body (Eq. 2.2.2),

αν =
εν

n2
νBν(T )

=
εν

n2
ν

c2

2hν3

[
exp
(

hν

kBT

)
− 1
]

. (2.3.15)

For frequencies ν � kBT/h, which is ν <∼ 1014 Hz in the corona (T >∼ 1 MK), the
Rayleigh−Jeans approximation (Eq. 2.2.5) can be used, which leads to a simple form
of the absorption coefficient after inserting the emissivity εν from Eq. (2.3.11) into
Eq. (2.3.15),

αν =
1
nν

neni

(2πν)2

[
32π2Z2e6

3(2π)1/2m3c

](
m

kBT

)3/2

ln Λ ≈ 9.786 × 10−3

ν2

neni

T 3/2
ln Λ ,

(2.3.16)
(in units of cm−1), where the Coulomb logarithm ln Λ amounts to

ln Λ = ln
[
4.7 × 1010

(
T

ν

)]
(2.3.17)

for coronal temperatures T > 3.16 × 105 [K] (i.e., ln Λ ≈ 20 for coronal conditions).
The free-free opacity τff of the quiet corona is about unity at a radio frequency of
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ν = 1 GHz, according to Eq. (2.3.16),

τff (T, n, ν) ≈
∫

ανds =

0.9786
( ν

GHz

)−2 ( n

109 cm−3

)2
(

T

MK

)−3/2( ln Λ
20

)(
λT

5 × 109 cm

)
, (2.3.18)

where λT ≈ 50 Mm corresponds to the thermal scale height of the 1 MK corona.
For lower radio frequencies, the corona becomes optically thick to free-free emission,
while it is generally optically thin for higher frequencies and higher temperatures, such
as during flares.

2.4 Atomic Energy Levels

While free-free transitions, as discussed in the foregoing section, represent close en-
counters of an electron with an ion that do not change the atomic structure, more intru-
sive processes are free-bound transition, excitation, and ionization, where the incoming
free electron becomes bound to the target ion, excites an electron, or hits an electron
out of the atom, respectively. In order to understand such processes quantitatively we
have to resort to the quantum-mechanical theory of the atomic structure.

The simplest atom is hydrogen (H), consisting of a nucleus with a (positively
charged) proton, neutron, and an orbiting electron. In the 1 MK hot solar corona,
hydrogen is completely ionized, so that we have a plasma of free electrons (e−) and
protons (positive H ions, H+), with He nuclei. If an electron becomes captured by a hy-
drogen ion, quantum mechanics rules allow only discrete energy levels (or orbits in the
semi-classical treatment), numbered as n = 1, 2, 3, 4, ... (Fig. 2.7). The wavelengths
of these transitions were found by Balmer (1885) to follow discrete values, which are
called the Balmer series, denoted as Hα, Hβ, Hγ, Hδ in Fig. 2.7,

λ = 3645.6
n2

n2 − 4
Å, n = 3, 4, 5, ... (2.4.1)

Johannes Rydberg later (1906) found more such series of discrete wavelengths and
generalized Balmer’s formula to any transition from orbit n1 to n2, with n2 > n1,

1
λ

=
ν

c
= RH

[
1
n2

1

− 1
n2

2

]
, (2.4.2)

with RH = 1.0974×105 cm−1 the Rydberg constant. Transitions to n1 = 1 are called
the Lyman series (Lyα, Lyβ, ...), to n1 = 2 the Balmer series (Hα, Hβ, ...), to n1 = 3
the Paschen series (Pα, Pβ, ...), to n1 = 4 the Brackett series, to n1 = 5 the Pfund
series, and so forth. A diagram of the transitions and associated wavelengths in the
hydrogen atom is shown in Fig. 2.8. We see that the shortest wavelength of transitions
in the hydrogen atom is at the continuum limit of the Lyman series, at λ = 912 Å. This
wavelength is in the ultraviolet regime (Fig. 1.25), and all other hydrogen lines are at
longer wavelengths in the optical and infrared regime.
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Figure 2.7: Bohr−Sommerfeld model of the hydrogen atom. The lowest quantum mechanical
orbits n = 1, 2, 3, 4, 5, ..., are indicated, along with the transitions of the shortest wavelengths,
the Lyman series (Lyα, Lyβ, ...) and the Balmer series (Hα, Hβ, ... ), that are emitted when an
electron makes the indicated transitions.

An electron transition from an inner orbit n1 (with lower energy state) to an outer
orbit n2 (with a higher energy state) is called excitation, requiring energy input either
by a collision with another particle or by absorption of a photon. The inverse pro-
cess is de-excitation, when an electron jumps from a higher orbit n2 to a lower one
n1 and emits a photon with the discrete wavelength λ given by the Rydberg formula
(Eq. 2.4.2) or corresponding energy ε = hν = hc/λ. If the electron is excited with
an energy above 13.6 eV in the hydrogen atom, it can escape the hydrogen atom al-
together, a process called ionization. The photoelectric effect, observed first by Hertz
and explained by Einstein in 1900, is such an ionization process where an incoming
photon hits an electron out of an atom.

A quantum-mechanical model of the atom was developed by Niels Bohr in 1914,
called the Bohr−Sommerfeld atomic model. Bohr’s semi-classical model assumes
that: (1) electrons move in orbits around the nucleus in a Coulomb potential, V =
−Ze2/r; (2) the orbital angular momentum is quantized in integer multiples of the
Planck constant, L = mvr = nh̄ , n = 1, 2, 3, ...; and (3) the electron energy re-
mains constant except when it changes orbits by emission or absorption of a photon
with quantized energies. These quantum-mechanical rules lead directly to a physical
derivation of the Rydberg constant (Eq. 2.4.2), so that the Rydberg formula can be
expressed in terms of physical constants,

1
λ

=
ν

c
=

Z2me4

4πh̄3c

[
1
n2

f

− 1
n2

i

]
, (2.4.3)

where the indices i and f indicate the initial and final state, respectively.
Going from the simple hydrogen atom to atoms with higher masses and multi-

ple electrons, the quantum mechanical treatment becomes increasingly more complex,
similar to the mechanical orbits in a multi-body system. However, the Rydberg formula
(Eq. 2.4.3) still gives approximately the correct transition energies for special cases,
such as for singly ionized atoms, if the correct charge number Z is used. If we take
singly ionized helium, He II (with Z = +2), the first transition from ni = 2 to nf = 1
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Figure 2.8: The principal hydrogen series are shown with the y-axis proportional to the photon
energy of the emission. The wavelengths of the transitions are given in Ångstrøm units.

should have a factor of Z2 = 4 higher energy difference according to Eq. (2.4.3), or
a factor of 1/4 smaller wavelength, than in hydrogen. Thus, the Lyman-α transition
at λ = 1215 Å in hydrogen is expected to happen at λ/4 = 304 Å in singly ionized
helium, which is indeed one of the strongest lines in the solar XUV spectrum.

The basic energy levels in hydrogen-like atoms are given by the principal quantum
number n = 1, 2, 3, ... . The next quantum number is the orbital angular momentum
l = 0, ..., n−1, quantized in units of h̄. Additional quantum numbers are the projected
angular momentum ml, also quantized in units of h̄, and the electron spin number
ms = −h̄/2, +h̄/2. Thus, an energy state of an electron in an atom is specified by the
4 quantum numbers nlmlms. In spectroscopic nomenclature, the principal quantum
number is given in arabic numbers n = 1, 2, 3, ..., the orbital angular momentum l by
the letters s, p, d, f , and the number of electrons occupying this state are indicated by
a superscript. A few examples of this spectroscopic nomenclature of atomic configura-
tions are listed in Table 2.1.

The ionization state of an atom (i.e., the number of electrons that have been re-
moved), is conventionally denoted by an arabic superscript m with a plus sign (X+m),
indicating the positive charge of the ion (e.g., Fe+9 for a ninefold-ionized iron ion).
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Table 2.1: Spectroscopic nomenclature for ground configurations of elements between Z=1 and
Z=26 (adapted from Zirin 1988 and Golub & Pasachoff 1997).

Element Symbol Z Ground configuration
Hydrogen H 1 1s
Helium He 2 1s2

Lithium Li 3 1s22s
Beryllium Be 4 1s22s2

Boron B 5 1s22s22p
Carbon C 6 1s22s22p2

Nitrogen N 7 1s22s22p3

Oxygen O 8 1s22s22p4

Fluorine F 9 1s22s22p5

Neon Ne 10 1s22s22p6

Sodium Na 11 1s22s22p63s
Potassium K 19 1s22s22p63s23p64s
Calcium Ca 20 1s22s22p63s23p64s2

Vanadium V 23 1s22s22p63s23p64s23d3

Chromium Cr 24 1s22s22p63s23p64s3d5

Iron Fe 26 1s22s22p63s23p64s24p6

The spectra from such ions are also labeled with roman numerals, but starting with the
neutral ion (e.g., Fe I corresponds to the neutral iron atom, Fe II is a singly ionized iron
ion, or Fe X is the ninefold-ionized iron ion Fe+9).

2.5 Atomic Transition Probabilities

The solar spectrum in EUV and soft X-rays is dominated by a large number of emission
lines (Fig. 1.25). The relative line strengths can only be understood if we know the rel-
ative transition probabilities between the quantized atomic energy levels in each chem-
ical element. Obviously the emission of photons, and thus a particular line strength,
must strongly depend on the temperature of the plasma. So we turn back to the black-
body concept introduced in §2.2.

Let us consider a plasma with a temperature T consisting of a large number of
identical atoms of some chemical element. The electrons are found in the available
quantized energy levels, while the emitted photons form an electromagnetic radiation
field that continuously disturbs the electrons. If the atom absorbs a photon, resulting
in an orbiting electron moving from a lower to a higher energy orbit, we call it in-
duced absorption, while the reverse process, when an electron moves from a higher
orbit to a lower one as a result of external radiation and emits a photon with energy
hν = ε2 − ε1 is called stimulated emission. We denote the transition rates from level n
to m with Rnm, and Rmn vice versa. Whatever the initial conditions and temperatures
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are, we expect that the system settles into an equilibrium with a stable temperature T
after some time. According to Kirchhoff’s law (Eq. 2.2.1) we know already that the
electromagnetic radiation will settle into a black-body spectrum given by the Planck
function (Eq. 2.2.2), when it reaches an equilibrium with temperature T . To calculate
the transition probabilities Pmn in this equilibrium situation, Einstein made in 1917 the
following additional assumptions: (1) the rate for induced absorption of photons is pro-
portional to the energy density Uν of the radiation field, (2) the distribution of atomic
energy states is assumed to be in equilibrium, and (3) the statistical distribution of the
energy level population is given by the Boltzmann probability distribution (Eq. 2.3.10).

For transitions from a high energy state εm to a lower state εn, Einstein introduced a
coefficient Amn for spontaneous emission (not affected by the external radiation field)
and a coefficient Bmn for stimulated emission (proportional to the energy density Uν

of the radiation field), so that the probability per unit time is

Pmn = Pspon + Pstim = Amn + BmnUν . (2.5.1)

The opposite process, the excitation of electrons from lower energy states εn to higher
ones εm by induced absorption, has a probability of

Pnm = Pabs = BnmUν . (2.5.2)

The energy density Uν of black-body radiation follows from the Planck function (Eq.
2.2.2),

Uν =
4π

c
Bν(T ) =

8πhν3

c3

1
[exp (hν/kBT ) − 1]

. (2.5.3)

The Boltzmann equation for the population density of excited states at temperature T
is (Boltzmann 1884)

Nm =
gm

g0
N0 exp

(
− χm

kBT

)
, (2.5.4)

where χm is the excitation energy (of energy level εm), N0 is the number of molecules
in ground state, and gm is the statistical weight of the state m. Thus the relative popu-
lation of the energy states εn and εm is

Nn

gn
=

Nm

gm
exp
(
− εn − εm

kBT

)
, (2.5.5)

Combining Einstein’s rate equations for emission (Eq. 2.5.1) and absorption (Eq. 2.5.2)
with the Boltzmann equation (2.5.5) for the population of energy levels εn and εm we
find

gn

gm
exp
[
− εn

kBT

]
BnmUν = exp

[
− εm

kBT

]
(Amn + BmnUν) . (2.5.6)

Choosing a photon energy of hν = εm−εn in the Planck function (Eq. 2.5.3) we obtain
for the Einstein coefficients Amn and Bmn the following relation, which provides the
ratio of transition rates between induced absorption and spontaneous emission,

Amn =
8πhν3

c3
Bmn , (2.5.7)
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Table 2.2: Excitation, ionization, and recombination processes in atoms. Note: ν=photon,
e−=electron, Z=atom, Z+=ion, Z′=excited atom (adapted from Zirin 1988).

Process Particle and Photon notation Transition rate
Induced absorption ν + Z �→ Z′ UνBmnNm

Stimulated emission ν + Z′ �→ 2ν + Z UνBnmNn

Spontaneous emission Z′ �→ Z + ν NnmAnm

Photo-ionization ν + Z �→ Z+ + e− UνNmBmκ

2-body (radiative) recombination e− + Z+ �→ ν + Z NeNiAκm

Dielectronic recombination e− + Z+ �→ ... �→ ν + Z′, ν + Z NeNiαdiel

Auto-ionization Z′′ �→ Z+ + e− NνUνκdiel

Thomson scattering ν + e− �→ ν + e− σT Ne

Free-free emission (bremsstrahlung) e− + Z+ �→ e− + Z+ + ν NeNiκκ′

Free-free absorption ν + e− + Z+ �→ ν + e− + Z+ NeNiBκ′κUν

Collisional excitation e− + Z �→ e− + Z′ NmNeCmn

Collisional de-excitation e− + Z′ �→ e− + Z NnNeCnm

Collisional ionization e− + Z �→ 2e− + Z+ NmNeCmκ

3-body recombination 2e− + Z+ �→ e− + Z N2
e NiCκ,m

and
gmBmn = gnBnm , (2.5.8)

for the statistical weights gm and gn of the energy levels εm and εn. We see that
the temperature dependence dropped out in Eqs. (2.5.7) and (2.5.8), so the relation
between the Einstein coefficients are of atomic nature and independent of the plasma
temperature.

The Einstein probability coefficients have been calculated for the dipole and quadru-
pole moments of the atomic electromagnetic field. The highest transition probability
for spontaneous emission results from the electric dipole moment (Amn ≈ 109 s−1).
The transition probability for spontaneous emission from a magnetic dipole is much
lower (Amn ≈ 104 s−1), and for the electric quadrupole moment is many orders of
magnitude lower (Amn ≈ 10 s−1). Although electric dipole transitions provide the
strongest spectral lines, non-electric dipole transitions are important for providing elec-
tron density sensitive diagnostics.

2.6 Ionization and Recombination Processes

A selection of the most important atomic processes that contribute to the continuum and
line emission of the solar corona in soft X-rays and EUV is enumerated in Table 2.2 and
pictorially represented in Fig. 2.9, including a number of interactions between photons,
electrons, atoms, and ions, such as absorption, emission, excitation, de-excitation, ion-
ization, and recombination processes. All these processes can occur when a (incoming)
photon or electron interacts with an atom or ion. We describe some of these processes
briefly in the context of coronal conditions, in the same order as listed in Table 2.2 and
shown in Fig. 2.9.
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Figure 2.9: Diagrams of absorption, emission, ionization, recombination, excitation, and de-
excitation processes, sorted in same order as in Table 2.2. Atoms and ions are marked with filled
dots, electrons with open dots, electron orbits with circles, electron transitions with arrows, and
photons with a wiggly arrow. Time is proceeding from left to right.

Induced absorption : An incoming photon can excite an electron in an atom to
a higher energy state εn = εm + hν. This process occurs with a probability that is
proportional to the occupation number Nm in state m and the energy density Uν of the
radiation field, where the transition probabilities are specified by the Einstein coeffi-
cients Bmn (Eq. 2.5.2), giving a transition rate R = UνBmnNm. This process is of the
type of discrete bound-bound transitions, which produce numerous absorption lines in
the solar corona (e.g., the Fraunhofer lines at optical wavelength and UV wavelengths).
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Stimulated emission : An electron in an excited atom at energy state εn is stimu-
lated, by a passing photon ν from the ambient radiation field, to fall back into a lower
state εm, emitting during this process a second photon with energy hν = εn − εm. The
probability of this process is also proportional to the energy density Uν of the radiation
field (Eq. 2.5.1), as for induced absorption (i.e., with a rate of R = UνBnmNn). This
process is relevant to laser emission.

Spontaneous emission: In contrast to stimulated emission, no incoming photon
is needed. An electron spontaneously falls from a higher energy state εn to a lower
state εm by emission of a photon with hν = εn − εm. The probability is given by the
Einstein coefficients Anm, so the rate is R = NnmAnm.

Photo-ionization: This a bound-free transition, where the incoming photon has a
higher energy than the ionization energy (i.e., > 13.6 eV for hydrogen), so that the
bound electron becomes free from the atom. The wavelength of the incoming photon
is λ = hc/∆ε, with ∆ε = εi + 1

2mev2
e , where εi is the ionization energy of the atom

from the bound state εi of the electron, and 1
2mev2

e is the kinetic energy of the free
electron after escape.

Radiative (or 2-body) recombination: Recombination (also called free-bound
transition) can occur by several processes, such as radiative recombination, collisional
recombination, or dielectronic recombination. In radiative recombination a free elec-
tron is captured by an ion into one of the available energy states εi, while the excess
energy is removed by emission of a photon with energy hν = 1

2mev2 − εi, just as
the time-reverse process of photo-ionization. This type of bound-free transition pro-
duces series limit continua such as the Balmer (3646 Å) and Lyman continua (912 Å)
of hydrogen (Fig. 2.8). These wavelengths correspond to the ionization energies of
ε1 = 13.6 eV from the ground state level n = 1 and ε2 = 3.6 eV from the first excited
state n = 2 (Fig. 2.7).

Dielectronic recombination: The term dielectronic recombination indicates (since
the Greek word “di” means“two”), that two electrons are involved in this process. A
free electron e−1 is captured by an ion, resulting in a double excitation of the ion: (1)
the original free electron lands in an excited state, and (2) a bound electron of the
ion also becomes excited. Dielectroni recombination is accomplished when the highly
unstable doubly excited configuration subsequently stabilizes, with one or both excited
electrons falling back into vacancies of the lowest available states.

Auto-ionization: An ion is initially in a doubly excited state Z ′′ and auto-ionizes
(i.e., it spontaneously ionizes without induced particle or photon) to Z+ + e−, thus
leaving an ion and a free electron. If an electron from a lower energy state is knocked
off, an electron from a higher energy level has to fall back to the emptied lower state to
stabilize the ion. This process is also called auto-ionization.

Thomson scattering: Photons are scattered off electrons of the coronal plasma,
which produces the white-light corona as visible during total solar eclipses. This is
a continuum scattering process with no wavelength dependence, and thus the name
K-corona (from the german word “kontinuierlich”) has been used for this part of the
corona during eclipses. Without Thomson scattering, none of the solar photons would
reach the Earth during blocking by the moon. The scattering rate is proportional to the
electron density, which provided the first method of determining the electron density
in the solar corona.
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Free-free emission: This process, also called bremsstrahlung is discussed in §2.3.
Electrons are non-elastically scattered off ions and emit photons that have energies
corresponding to the energy difference of the incoming and outcoming electron (i.e.,
hν = ε′ − ε). Free-free emission from the chromosphere and corona is responsible
for much of the emission in microwaves and soft X-rays, and up to <∼ 20 keV in hard
X-rays during flares.

Collisional ionization: This occurs by collisions of ions with free electrons, when
an orbiting electron of the ion (generally the outermost) is removed, and the ion is left
in the next higher ionization state. This process is much more important than photo-
ionization (when a photon incident on an ion results in removal of an orbiting electron).

“Forbidden line” transitions: Some lines that occur in the the solar corona are
called “forbidden lines”, because the electron transitions involved are highly improb-
able by certain quantum-mechanical rules. For instance, the green line of Fe XIV at
5303 Å involves two transitions from 4d levels to two closely spaced 3p levels, for
which the splitting corresponds to the 5303 Å line. In laboratory plasmas, this line
would never be observed, because collisional de-excitation would occur within a time
of ≈ 10−8 s. In the solar corona however, the temperature is so high and the density so
low, that collisional de-excitation can take a day, giving rise to continuous green line
emission. There are many other forbidden lines (mostly in Ca, Fe, and Ni), the most
prominent ones being Ca XV 5694 Å (yellow line) and Fe X 6375 Å (red line), both
visible in the optical continuum.

In the next section we will see that the relative transition rates of these processes
can be constrained by a detailed equilibrium between the direct (e.g. ionization) and
reverse (e.g., recombination) processes, at least in a closed system in equilibrium.

2.7 Ionization Equilibrium and Saha Equation

A standard method used to calculate the relative line strengths in the coronal plasma
involves the assumption of ionization equilibrium. This assumption is made in the
Boltzmann equilibrium relation (Eq. 2.5.5) for the relative population of two energy
states εn and εm. The same assumption made for bound-bound transitions can also be
extended to bound-free transitions to include ionization processes. While the energy
difference is hν = εn − εm for bound-bound transitions, we have an energy difference
that consists of the ionization energy εi plus the kinetic energy of the free (ionized)
electron for bound-free transitions (i.e., hν = εk + 1

2mev2
e). Thus the Boltzmann equi-

librium equation (2.5.5) for the population ratio Nk/N0 of the continuum population
Nk to the ground state population N0 is

Nk

N0
=

gk

g0
exp
(
− εk + 1

2mev2

kBT

)
, (2.7.1)

where the statistical weight gk = g′k ·ge is now composed of the statistical weight of the
ground state g′k of the ionized atom and ge of the free (ionized) electron. The statistical
weight of the free electron is proportional to the number of quantum-mechanical phase
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space elements and inversely proportional to the electron density ne,

ge =
8πm3

ev
2
e

neh3
. (2.7.2)

Substituting the statistical weight ge (Eq. 2.7.2) into the Boltzmann equilibrium equa-
tion (Eq. 2.7.1) and integrating over velocity space, which involves the integral,∫ ∞

0

exp
(
−

1
2mev2

kBT

)
4πv2dv = (

2πkBT

me
)3/2 , (2.7.3)

leads to the Saha equation, first derived by M. Saha in 1920,

Nk

N0
=

2
ne

(2πmekBT )3/2

h3

g′k
g0

exp
(
− εk

kBT

)
, (2.7.4)

The Saha equation, which yields the population ratios relative to the ground state, N0,
can be generalized for the relative ratio between any two different ionization states k
and k + 1,

Nk+1

Nk
=

2
ne

(2πmekBT )3/2

h3

gk+1

gk
exp
(
− εk+1 − εk

kBT

)
. (2.7.5)

We see that the electron density ne appears in the Saha equation (2.7.5), which tells us
that soft X-ray line ratios of the same element are density sensitive, although the density
does not occur in the Boltzmann equation (which depends only on the temperature).

Although the derivation of the Boltzmann and Saha equations rests on the assump-
tion of ionization equilibrium, and thus strictly applies only to processes with photons
(induced absorption, stimulated emission, and photo-ionization), a similar argument
can be made for the equilibrium situation of collisional processes (collisional excita-
tion, de-excitation, and ionization). This is primarily important in the chromosphere
and transition region, where the collision rates are much higher than interactions be-
tween photons and atoms or ions. The ionization equilibrium in the corona is an equi-
librium between collisional ionizations (including auto-ionizations) and radiative and
dielectronic recombinations. At coronal densities, the radiative decay rates (sponta-
neous emission with Einstein coefficient Anm), is so high compared with collisional
excitation rates, that the population of higher excited states can be neglected relative to
the ground state (though not always true, e.g., for Fe IX). The following approximation
for the rate equation constrains the collisional excitation coefficient Cmn,

AnmNn = CmnNeNm . (2.7.6)

The coefficient Cmn for collisions between electrons and ions can be derived by inte-
grating the cross section σ(v) over the Maxwell−Boltzmann distribution (Eq. 2.3.10),
yielding the effective collision strengths:

Cmn = 8.63 × 10−6T−1/2
e ne

(
Ωmn

gm

)
(s−1) , (2.7.7)

where Ωmn are the so-called collision strengths (see e.g., Lang 1980, p.101).
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Figure 2.10: Ionization equilibrium calculations for Fe V to Fe XIX in the temperature range of
T = 105−107 K, for the ionization ratios from Arnaud & Raymond (1992), using the CHIANTI
code.

2.8 Emission Line Spectroscopy

To calculate optically thin synthetic spectra and to perform spectral analysis and plasma
diagnostics of solar soft X-ray and EUV data, we need data from thousands of atomic
energy levels. The most comprehensive and accurate atomic database used for the
analysis of astrophysical and solar spectra is CHIANTI (Dere et al. 1997a, 2001; Young
et al. 1998; Landi et al. 1999; see also URL http://wwwsolar.nrl.navy.mil/chianti.html ),
a database that contains atomic energy levels, wavelengths, radiative data, and electron
excitation data for ions, covering the soft X-ray and EUV wavelength range of λ ≈
1 − 1700 Å. This database is widely used for the analysis of solar data, e.g. from
SoHO/CDS, SoHO/EIT, TRACE, and RHESSI. In the following we define the physical
quantities that are used in such spectroscopic data analysis.

The intensity I(λij) of an optically thin spectral line of wavelength λij (or fre-
quency νij), produced by photons via spontaneous transitions from electrons jumping
from a higher energy level εj to a lower level εi is defined as,

I(λij) =
hνij

4π

∫
Nj(X+m)Ajidz (erg cm−2 s−1 ster−1), (2.8.1)

where Aji is the Einstein coefficient of the spontaneous transition probability (i.e.,
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Nj(X+m) the number density of the upper level j of the emitting ion), and z is the
line-of-sight through the emitting plasma. In the coronal plasma it is assumed that the
collisional excitation processes are faster than the ionization and recombination time
scales, so that collisional excitation determines the population of excited states. It al-
lows treatment of low-level populations separately from ionization and recombination
processes, the so-called coronal approximation. The population of level j is generally
expressed as a chain of ratios,

Nj(X+m) =
Nj(X+m)
N(X+m)

N(X+m)
N(X)

N(X)
N(H)

n(H)
ne

ne , (2.8.2)

where N(X+m)/N(X) is the ionization ratio of the ion X+m relative to the total
number density of element X (e.g. Arnaud & Raymond 1992; Mazzotta et al., 1998;
see example for Fe in Fig. 2.10), AX = N(X)/N(H) is the elemental abundance
relative to hydrogen (see Table 1.2), and n(H)/ne ≈ 0.83 is the hydrogen ratio to the
free electron density (based on an abundance of H:He=10:1 with complete ionization).
The level populations Nj(X+m)/N(X+m) can be calculated with the CHIANTI code
by solving the statistical equilibrium for a number of low levels of the ion including
all important collisional and radiative excitation and de-excitation mechanisms. For
allowed transitions the approximation Nj(X+m)Aji ∝ ne holds.

It is customary to combine all atomic physics parameters in a so-called contribution
function C(T, λij , ne), which is strongly peaked in temperature and is defined as (e.g.
as used in the CHIANTI code),

C(T, λij , ne) =
hνij

4π

Aji

ne

Nj(X+m)
N(X+m)

N(X+m)
N(X)

(erg cm−2 s−1 ster−1) .

(2.8.3)
If we insert the population number Nj(X+m) (Eq. 2.8.2) into the line intensity (Eq.
2.8.1) and make use of the contribution function C(T, λij , ne) as defined in (Eq. 2.8.3),
we have for the line intensity,

I(λij) = AX

∫
C(T, λij , ne) nenH dz , (2.8.4)

where the abundance factor AX = N(X)/N(H) is not included in the contribution
function in this particular definition. This means that the assumption has to be made
that the abundances are constant along the line-of-sight, if Eq. (2.8.4) is used. There are
alternative definitions of the contribution function in literature that include the abun-
dance factor, which we refer to by

G(T, λij , AX , ne) = AX C(T, λij , ne) . (2.8.5)

There are further differences in the definition of the contribution function in the litera-
ture, sometimes the factor 1/4π is not included, or a fixed value of N(H)/ne = 0.83
is assumed. An example of a synthetic spectrum with line intensities I(λij) (Eq. 2.8.4)
in the wavelength range that contains the strong Fe IX 171 Å and Fe XII 195 Å lines is
shown in Fig. 2.11.
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Figure 2.11: A synthetic spectrum calculated in the λ = 150−220 Å wavelength range with the
CHIANTI code, using the Feldman (1992) abundances, the Arnaud & Raymond (1992) values
for the ionization equilibrium, a DEM for a typical active region, and neT = 1015 cm−3 K,
plotted with a wavelength resolution of 0.2 Å. The strongest lines are identified, mostly Fe lines,
and transitions calculated by CHIANTI are indicated. Note the prominent Fe IX at 171 Å and
Fe XII at 195 Å that are frequently used in SoHO/EIT and TRACE images.

Another convenient quantity is the differential emission measure function dEM(T )
/dT (cm−5 K−1), which is a measure of the amount of plasma along the line-of-sight
that contributes to the emitted radiation in the temperature range T, ..., T + dT (Craig
& Brown 1976),

dEM(T )
dT

= nenH
dz

dT
, (2.8.6)

which allows us to express the line intensity (Eq. 2.8.4) in the simple form of an integral
over the temperature range,

I(λij) = AX

∫
T

C(T, λij , ne)
dEM(T )

dT
dT

(
erg cm−2 s−1 ster−1

)
.

(2.8.7)
We note that quantitative analysis of spectral line fluxes requires three different inputs:
(1) the density profile n(z) = ne(z) ≈ nH(z) of the source along the line-of-sight z
in some range of temperatures (T ), in order to define the differential emission measure
dEM(T )/dT ; (2) the atomic abundance AX in the source, for which often standard
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Figure 2.12: A set of contribution functions G(T ) from different lines is shown which con-
tribute to an observed spectrum. The contribution functions were calculated with the CHIANTI
code, using elemental abundances from Feldman (1992), ionization equilibrium values from Ar-
naud & Raymond (1992) and Mazzotta et al. (1998), and a constant pressure of p = neT = 1016

[cm−3 K].

values of photospheric abundances are used (Table 1.2); and (3) atomic parameters,
which are all included in the contribution function C(T, λij , ne) (e.g., as provided by
CHIANTI), but slightly depend on the source density ne (because of the collisional
excitation rates).

An example of a spectral data analysis is illustrated in Figs. 2.12 and 2.13. Ob-
servations (e.g., from SoHO/CDS), provide line intensities I(λij) in a set of spectral
lines. Using such a list of line intensities I(λij) and wavelengths λij , and choos-
ing a predefined set of elemental abundances AX (e.g., Meyer 1985; Feldman 1992)
and ionization equilibrium data (e.g., Arnaud & Raymond 1992), the CHIANTI spec-
tral code is able to calculate the contribution functions for each transition or line
(Fig. 2.12) and to determine the best-fitting differential emission measure distribu-
tion dEM(T )/dT (Fig. 2.13) that is consistent with the data. The solution of the
dEM(T )/dT =

∫
nenIdz ≈ n2z provides a measure of the squared average density

n2 multiplied with the depth z of the source along the line-of-sight. If observations
allow for a geometric model (e.g., the column depth z of a flare loop can be equated
to the transverse width w for a cylindrical loop geometry, z ≈ w), then the average
density ne(T ) =

√
[dEM(T )/dt]/w can be estimated for a range of temperatures T .
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Figure 2.13: A differential emission measure distribution DEM(T ) (smooth curve) is recon-
structed with the CHIANTI code based on the observed spectral line intensities, elemental abun-
dances from Feldman (1992), ionization equilibrium values from Arnaud & Raymond (1992),
and a constant pressure of p = neT = 1016 (cm−3 K). The data points of the spectral line
intensities with error bars are overplotted in DEM units. The polynomial fit (smooth curve) is
only accurate whithin the range of measured spectral lines.

2.9 Radiative Loss Function

While the line intensities I(λij) are important for the analysis of spectra, it is more
practical for the analysis of soft X-ray and EUV images to sum all line intensities in a
temperature interval T, ..., T + dT to obtain an emission measure as a function of tem-
perature (i.e., EM(T )). Because the excitation of atomic levels is a strong function of
temperature, the spectral emissivity P (λ, T ) has to be calculated for each temperature
T separately (e.g., as shown for the synthetic spectrum in Fig. 2.11). It is customary
to define a radiative loss rate ER(T, ne) that sums up all the line contributions radiat-
ing at temperature T with density ne, as having the physical units of (erg cm3 s−1).
This radiative loss rate ER can be written as a product of densities and a temperature-
dependent function, called the radiative loss function Λ(T ) having the physical units
of (erg cm−3 s−1),

ER = nenpαFIP Λ(T ) ≈ n2
eΛ(T ) , (erg cm−3 s−1) (2.9.1)

for optically thin plasmas, where αFIP is a correction factor for abundance enhance-
ments due to the FIP effect (see §2.10). This radiative loss function Λ(T ) has been
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Figure 2.14: A compilation of radiative loss functions is shown. The differences mainly result
from the assumptions of elemental abundances. Coronal abundances (e.g., Feldman 1992) have
approximately a 3 times higher iron content than photospheric abundances (e.g., Meyer 1985),
and thus increase the value of the radiative loss function by a factor of ≈ 10 at temperatures of
T ≈ 0.5−2.0 MK. The one-piece powerlaw approximation is used in the derivation of the RTV
scaling law.

calculated by many authors (e.g., Tucker & Koren 1971; Rosner et al. 1978a; Mewe
& Gronenschild 1981; Cook et al. 1989; Landini & Monsignori−Fossi 1990; Martens
et al. 2000, etc.). A compilation of various calculations is shown in Fig. 2.14. As the
contribution functions in Fig. 2.12 show, oxygen contributes mostly at log(T ) ≈ 5.3
and iron contributes mostly around log(T ) ≈ 6.0. In fact, the radiative loss function
between log(T ) = 4.5 and 7.0 is mostly dominated by contributions from the elements
C, O, Si, and Fe, while continuum emission processes dominate at log(T ) >∼ 7.0.

The differences in the various calculations shown in Fig. 2.14 result mainly from
different assumptions in the elemental abundances. For instance, the two curves calcu-
lated by Martens et al. (2000) use the same code, but apply it to photospheric abun-
dances (Meyer 1985) and coronal abundances (Feldman 1992). The radiative loss
function for coronal abundances shows an enhancement over that of photospheric abun-
dances in the temperature range of log(T ) ≈ 5.2−6.2, by up to an order of magnitude,
which is mainly due to the enhanced coronal iron abundance. An iron enhancement of
≈ 3 is reflected in an emission measure increase of EM ∝ n2

e ≈ 9. This is com-
pensated by the same factor in the radiative loss function Λ(T ), because a factor ≈ 3
times a lower density is then needed to explain the same observed radiative loss rate
ER according to Eq. (2.9.1).

For practical applications in hydrostatic loop models an analytical function for the
radiative loss function Λ(T ) is needed. A widely used approximation was made by
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Figure 2.15: Ratio of coronal to photospheric abundances versus their first ionization potential
(Feldman & Widing 2003).

a powerlaw parameterization in six pieces by Rosner et al. (1978a), shown as a thick
solid line in Fig. 2.14. An even cruder approximation with a single powerlaw function
has been used in Rosner et al. (1978a),

Λ(T ) ≈ 10−17.73T−2/3 (6.3 < log T < 7.0) (2.9.2)

in the coronal temperature range of T ≈ 2 − 10 MK to calculate a temperature-
dependent function in the hydrostatic equilibrium. It turns out that this single pow-
erlaw function (shown as a thin solid straight line in Fig. 2.14) is sufficiently accurate
for most coronal loop models, because the emission measure contributions below tem-
peratures of T <∼ 1 MK are generally negligible due to the small extent of the transition
layer compared with the coronal part of the loop length.

2.10 First Ionization Potential (FIP) Effect

In §1.9 and in Table 1.2 we quantified the chemical composition of the chromosphere
and corona in terms of relative atomic abundances. Because most of the ionization
processes are collisional and thus depend on the product of the electron density ne

with the ion density ni, the line intensities are essentially proportional to the squared
electron density, n2 ≈ neni, as well as to the abundance of the ion AX (Eq. 2.8.4).
The absolute abundance of an element could be determined if the absolute abundance
of hydrogen is known, since the relative abundances to hydrogen; AX = n(X)/n(H)
can readily be measured from line ratios of the same element with multiple ionization
states. Ratios of the line/continuum fluxes (especially in soft X-rays) give the absolute
abundance of the elements that emit the line. The absolute abundance of hydrogen,
however, cannot be measured with spectroscopic line ratios, because hydrogen is com-
pletely ionized at coronal temperatures and produces no line emission. The absolute
abundance of hydrogen in the solar corona is, therefore, still a big uncertainty factor.

A further uncertainty is the spatial and temporal variation of coronal abundances
compared with chromospheric abundances. An enhancement of coronal abundances
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Figure 2.16: Abundances of elements measured in the solar wind relative to their photospheric
abundances versus their first ionization potential (FIP) (Von Steiger 2001).

of Mg, Al, and Si by a factor of ≈ 3 over the chromospheric abundance was first
noticed by Pottasch (1964a,b) from UV and XUV spectra recorded during sounding
rocket flights. Extending abundance measurements to other elements it was found that
the coronal enhancement is mainly a function of the first ionization potential (FIP) (see
Table 1.2). Elements with first ionization potentials of ≤ 10 eV (K, Na, Al, Ca, Mg, Fe,
Si), the so-called low-FIP elements, were found to have enhanced coronal abundances
with respect to photospheric abundances, while the so-called high-FIP elements with
first ionization potentials of >∼ 10 eV (C, H, O, N, Ar, Ne) show no enhancement. The
element S with a FIP of 10 eV is an “intermediate” FIP case. The situation is illustrated
in Fig. 2.15, taken from a recent review by Feldman & Widing (2003), which also
recounts the measurements of the FIP effect in more detail. A similar FIP effect is
measured in the slow solar wind (Fig. 2.16)

Helium is also a special case. Essentially the helium abundance cannot be deter-
mined in the chromosphere because there are no helium lines available at chromo-
spheric temperatures. Measurements of the 1216 Å H I resonance line and the 304 Å
He II resonance line yielded He/H≈ 0.07±0.01 (Gabriel et al. 1995), and an even lower
ratio of He/H≈ 0.052± 0.011 was measured by Feldman & Laming (2000), rendering
coronal helium underabundant with respect to photospheric abundance (Fig. 2.15).

As mentioned above, the biggest uncertainty is still the absolute abundance of hy-
drogen, which also makes the reference level of the FIP diagram (Fig. 2.15) uncertain.
In Fig. 2.15 it is assumed that hydrogen has the same coronal abundance as the pho-
tospheric abundance, so that the low-FIP elements seem to be enhanced in the corona.
However, if hydrogen would have an enhanced coronal abundance, the FIP fraction-
ation effect has to be interpreted in terms of a depletion of high-FIP elements out of
the corona. Recently, spectroscopic EUV line analysis has been combined with free-
free opacity measurements in radio wavelengths, which provides the absolute Fe/H
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Figure 2.17: Abundances of elements measured in the solar wind relative to their photospheric
abundances versus their first ionization time (FIT) (Von Steiger 2001).

abundance ratio (White et al. 2000). In this study it was found that coronal iron in an
active region has an abundance of Fe/H= 1.56 × 10−4 (log(Fe/H)+12=8.2), which is
enhanced by a factor of 10(8.2−7.5) = 4.9 above the photospheric abundance (Table
1.2; log(FePhot/H)+12=7.5). This result implies that low-FIP elements such as Fe are
indeed enhanced in the corona relative to photospheric values, rather than high-FIP
elements being depleted in the corona.

The physical reason behind the FIP effect may be linked to the transport process
of chromospheric plasma upward into coronal structures, or into the heliosphere in the
case of open field lines in coronal holes. Several models have been proposed to explain
the FIP fractionation by means of ion-neutral separation in the chromosphere, predom-
inantly by diffusion perpendicular to the magnetic field (e.g., Geiss 1985). Alternative
approaches involve the time scales of excitation and photo-ionization in the ion-neutral
separation. They all rely on the fact that the low-FIP elements are partially ionized in
the photosphere. Low-FIP elements have a shorter ionization time than high-FIP ele-
ments. Since transport from a highly collisional plasma (in the chromosphere), which
warrants ionization equilibrium, to a near-collisionless state in the outer corona or he-
liosphere freezes the ionization ratios, the ratio of the transport time to the ionization
time could be a crucial parameter in the relative coronal/chromospheric abundance ra-
tios. It has therefore been suggested that the FIP effect should rather be considered
as first ionization time (FIT) effect. In Fig. 2.17 the same abundance measurements
from the solar wind shown in Fig. 2.16 are shown as a function of the first ionization
times (FIT), yielding a similar ordering as the FIP effect. The result suggests that any
separation of ions from neutrals has to occur on short time scales of the order of <∼ 1
minute.
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2.11 Summary

Thermal radiation is produced by particles with a Maxwellian distribution func-
tion, which are found in collisional plasmas, such as in the chromosphere or in
flare loops. The main type of thermal radiation is free-free (bremsstrahlung),
which can be observed in hard X-rays as well as in microwaves. The equilibrium
between absorption and emission processes is expressed with the radiative trans-
fer equation (§2.1). A thermal equilibrium is realized in a black body according to
Kirchhoff’s law (§2.2). In a plasma, where electrons and ions are free (above the
ionization temperature), free electrons become scattered in the Coulomb field of
ambient free ions, which produces the so-called free-free bremsstrahlung emission
(§2.3). In a thermal plasma there are abundant collisions between free electrons
and free ions. Occasionally such collisions excite a bound electron of an ion into a
higher quantum-mechanical energy level, from where it falls back into the ground
state, emitting a photon at the same time to conserve energy. The transitions
from excited to ground state levels are associated with specific energy differences,
which can be calculated with the Rydberg formula (§2.4). There are a large num-
ber of atomic processes that are possible in a collisional plasma, including various
ionization and recombination processes (§2.6). A local thermodynamic and ion-
ization equilibrium defines the number of bound-bound transitions in a plasma,
expressed by the Saha equation (§2.7). Quantitative analysis of fluxes in a particu-
lar EUV or soft X-ray wavelength involve the computation of many spectral lines
(mostly produced by collisional excitation). A comprehensive code containing all
known line transitions is the CHIANTI code. From these lines, the radiative loss
rate can be computed for a coronal plasma with a given density and temperature
(§2.9). The abundance of elements in the solar chromosphere is fairly consistent
with cosmic abundances or abundances measured in meteorites. In the corona,
however, some elements seem to have an enhanced abundance, in particular those
elements with a low first ionization potential < 10 eV (K, Na, Al, Ca, Mg, Si,
Fe), typically a factor of 3, but can amount up to a factor of 10 for the iron (Fe)
element (§2.10). This FIP effect seems to be related to the first ionization time,
which is <∼ 10s for the low-FIP elements. In summary, thermal plasmas (in the
solar corona and in flares) give rise to continuum (free-free bremsstrahlung) as
well as to line emission (in soft X-ray and EUV wavelengths). Quantitative model-
ing of the soft X-ray and EUV fluxes provide a powerful temperature and density
diagnostic of the coronal plasma.



Chapter 3

Hydrostatics

When you stand on a high mountain and look at the horizon, you can notice how the
color of the sky blends from a pale blue into a dark blue with increasing elevation
angle, a clear manifestation of the gravitational settling of the atmosphere. While the
Earth atmosphere has a density or pressure scale height of about 4 km, a fact that forces
most climbers of the Himalayan mountains to carry their own oxygen, the density scale
height in the solar corona is much larger ( >∼ 50, 000 km). The larger scale height in the
solar corona is a consequence of the much larger coronal temperature and lighter hydro-
gen gas. The physics of hydrostatics provides us with a description of the pressure and
density variation with height, which strongly depends on the temperature of the coro-
nal plasma. The physical parameters of temperature, density, and pressure represent the
most basic quantities needed, if we want to study any phenomenon in the solar corona
in a quantitative way. Without them we could not do any diagnostics from the observed
EUV, soft X-ray, or radio emissions. Of course, hydrostatics is applicable only to static
or quasi-stationary structures, strictly speaking. However, because dynamic phenom-
ena in the solar corona often evolve into a stable equilibrium, most of the coronal struc-
tures are found near a stationary state most of the time. Later on, we will generalize the
hydrostatic models by including flows, which lead to hydrodynamic models (§ 4), and
by including magnetic fields (§ 5), leading to magneto-hydrodynamics (MHD) (§ 6).

3.1 Hydrostatic Scale Height

If the pressure is only balanced by the gravitational force, we call it gravitational strat-
ification, gravitational settling, or hydrostatic equilibrium. The gravity force always
points to the center of mass (i.e., the center of the Sun), so the gravitational potential
εgrav is a function of a 1D spatial coordinate (i.e., the distance r from Sun’s center),

εgrav = −GM�m

r
, (3.1.1)

where G = 6.67 × 10−8 (dyne cm2 g−2) is the gravitational constant in Newton’s
gravitational force equation, M� = 1.989×1033 g is the solar mass, and m is a particle
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mass in the solar corona. The solar gravitation g� (i.e., the acceleration constant due
to solar gravity; in Newton’s law F = mg�), is defined by

g� =
GM�
R2�

= 2.74 × 104 (cm s−2) (3.1.2)

where R� = 6.9551× 1010 cm is the solar radius. Thus, with Eqs. (3.1.1) and (3.1.2)
we have the gravitational potential,

εgrav(r) = −mg�

(
R2�
r

)
. (3.1.3)

The gravity force Fgrav is derived from the gradient of the gravitational potential,

Fgrav(r) = −dεgrav(r)
dr

= −mg�

(
R2�
r2

)
. (3.1.4)

which is just Fgrav(r = R�) = −mg� at the solar surface, r = R�. The pressure
p is defined as a force F per area dA, having the physical dimension of (dyne cm−2).
A pressure gradient dp/dr thus has the physical dimension of a force per volume (i.e.,
dp/dr = F/(dA × dr) = F/dV ), which can be expressed as a product of the force
with a particle volume density n (cm−3), dp/dr = F × n. We can, therefore, deduce
the pressure equilibrium or momentum equation by multiplying the force Fgrav(r) in
Eq. (3.1.4) with the particle density n,

dp

dr
(r) =

dpgrav(r)
dr

= Fgrav(r)n(r) = −mn(r)g�

(
R2

�
r2

)
. (3.1.5)

In plasma physics and fluid dynamics it is customary to define a mass density ρ = mn,
where m (g) is the average particle mass and n (cm−3) the particle density. For a fully
ionized gas, such as the solar corona, the mass density is composed of the electron
density ne and ion density ni,

ρ = mn = mene + mini ≈ µmHne , (3.1.6)

where µ is the molecular (or mean atomic) weight of the ion, mH the hydrogen mass,
while the electron mass me = mH/1836 can be neglected for a neutral plasma with
ne ≈ ni. It is sufficient to include only the most abundant two ions (i.e., hydrogen and
helium), because all heavier elements have an abundance of many orders of magnitude
lower (Table 1.2). In the solar corona, which consists of H:He=10:1, the molecular
weight (with µ = 1 for hydrogen 1H and µ = 4 for 4He) is

µ =
10 × 1 + 1 × 4

11
≈ 1.27 . (3.1.7)

We can now write the momentum equation (Eq. 3.1.5) in terms of the coronal electron
density ne(r) by inserting the definition of mn (Eq. 3.1.6),

dp

dr
(r) = −µmHne(r)g�

(
R2

�
r2

)
. (3.1.8)
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To solve this momentum equation, we need a relation between the pressure p(r) and
the electron density ne(r), which is provided by a thermodynamic equation of state
(e.g., the ideal gas equation, p = nkBT ). For the coronal pressure, we have to add the
ion pressure pi and electron pressure pe, so the pressure is twice that of the electron
gas (assuming ne ≈ ni for the corona),

p(r) = 2ne(r)kBTe(r) , (3.1.9)

The electron density ne(r) can then be substituted into the momentum equation (3.1.8)
from the ideal gas equation (Eq. 3.1.9),

dp

dr
(r) = −p(r)

µmHg�
2kBTe(r)

(
R2�
r2

)
. (3.1.10)

We introduce the more practical height variable h above the solar surface,

h = r − R� , (3.1.11)

so that we can express the momentum equation as a function of height h,

dp

dh
(h) = −p(h)

µmHg�
2kBTe(h)

(
1 +

h

R�

)−2

. (3.1.12)

For near-isothermal coronal structures where the approximation Te(h) ≈ const holds,
we can separate the pressure variable p(h) in the momentum equation (3.1.12),

dp

p
= −dh

µmHg�
2kBTe

(
1 +

h

R�

)−2

= − dh

λp(Te)

(
1 +

h

R�

)−2

, (3.1.13)

and integrate both sides of the equation,

∫ p

p0

dp

p
= −
∫ h

h0

1
λp(Te)

(
1 +

h

R�

)−2

dh , (3.1.14)

which has a near-exponential solution,

p(h) = p0 exp

[
− (h − h0)

λp(Te)(1 + h
R� )

]
, (3.1.15)

where the pressure scale height λp(T ) is defined by Eq. (3.1.12) as

λp(Te) =
2kBTe

µmHg�
≈ 4.7 × 109

(
Te

1 MK

)
(cm) . (3.1.16)

Near the solar surface (i.e., for h � R�), the pressure drops off exponentially ac-
cording to Eq. (3.1.15) in an isothermal atmosphere. For relatively small loops (i.e.,
for h � λp(Te)), even an isobaric approximation (p ≈ const) can be used. Since the
pressure scale height or hydrostatic scale height λp scales linearly with temperature Te,
the isobaric assumption is a quite valid approximation for near-isothermal flare loops.
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Figure 3.1: Comparison of exact hydrostatic solution (solid line) for the pressure p(r) in an
isothermal atmosphere (T = 1 MK) and an exponential approximation (dashed line).

The r-dependence is usually neglected in hydrostatic modeling, but we show the
magnitude of the effect in Fig. 3.1. The exponential approximation underestimates a
pressure of 76% at a height of h = 100 Mm, or 38% at a height of h = 200 Mm, a
common altitude seen for active region loops in TRACE 171 Å images.

An observational test of the hydrostatic equilibrium can be performed by measuring
the emission measure EM(h) along a vertical loop segment, which yields the density
profile ne(h) =

√
EM(h)/w for a loop with diameter w, which can then be fitted

by an exponential density model in order to obtain the pressure scale height λp and
the corresponding temperature Tλ (with Eq. 3.1.16). On the other hand, if the loop
is observed with two different temperature filters, a filter-ratio temperature Tfilter can
be obtained from the flux ratio over the same segment (after appropriate background
subtraction to avoid contamination from the background with different temperatures).
Such measurements of the filter-ratio temperature Tfilter are shown in Fig. 3.2, deter-
mined from a sample of some 60 loops measured from either SoHO/EIT 171/195 Å or
195/284 Å filter ratios, plotted versus the scale height temperature Tλ. There is obvi-
ously a good agreement between the two independently measured temperature values
(within <∼ 20%) for this particular set of coronal loops observed in the active region
NOAA 7986 on 1996 Aug 30 with SoHO/EIT (Aschwanden et al. 2000a). Because
this was an old active region, less dynamic heating or passive cooling seems to occur,
so that the hydrostatic equilibrium of these loops is little disturbed. Loops in hydro-
static equilibrium can easily be identified at the limb from their small height extent.
The emission measure scale height is half the density (or pressure) scale height (i.e.,
λEM = λp/2), due to the dependence of EM(h) ∝ n2

e(h)w. Thus, hydrostatic loops
at T = 1 MK, as seen in TRACE 171 Å images, have only an emission measure (or
flux) scale height of λEM ≈ 23 Mm, according to Eq. (3.1.16).
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Figure 3.2: Measurements of the scale height temperature Tλ and SoHO/EIT filter-ratio tem-
peratures Tfilter, for 30 loops detected in 171 Å, 195 Å, and 284 Å, (Aschwanden et al. 1999a,
2000a).

3.2 Hydrostatic Weighting Bias

The fact that the plasma-β parameter is generally much lower than unity in the solar
corona allows us to consider each magnetic fluxtube as an isolated mini-atmosphere,
each one being in its own hydrostatic equilibrium, since cross-field transport by ther-
mal conduction is inhibited. The isothermal assumption is often a good approximation
for a single fluxtube, but never for a line-of-sight integrated quantity. If we measure the
intensity Iν in the optically thin soft X-ray or EUV wavelengths, there are always con-
tributions from many fluxtubes with different temperatures along the line-of-sight. This
multi-thermal effect is most conspicuous from the differential emission measure distri-
butions (e.g., Fig. 1.21), which show a broad temperature range along any line-of-sight.
The multi-temperature contributions are illustrated in Plate 1, where the temperature is
color-coded.

We have seen in Eq. (3.1.16) that the pressure scale height λp is proportional to the
temperature T , and is identical to the density scale height in the isothermal approxima-
tion (since p(r) ∝ n(r) for T (r) = const, according to Eq. 3.1.9). Therefore, hotter
fluxtubes have a larger density scale height than cooler ones, if they are at or near hy-
drostatic equilibrium. If we average the brightness of a cool and a hot loop, say with
equal base density n0 = n(h = 0), the relative density contributions from the hotter
loop will be larger with increasing height, because the hot loop has a larger density
(or pressure) scale height λp than the cooler one. This is illustrated in Fig. 3.3. Con-
sequently, we have the squared weighting effect for the averaged emission measure,
because EM(h) ∝ ne(h)2. The observed soft X-ray or EUV flux is proportional to
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the 3 loops with temperatures of 1.5−2.5 MK. The right line-of-sight at a height of h = 200

Mm above the limb samples significant emission only from the hottest loop with T = 2.5 MK,
(Aschwanden & Nitta 2000).

the emission measure, and thus any temperature analysis of the averaged flux is subject
to this height-dependent density weighting, which we call the hydrostatic weighting
bias (Aschwanden & Nitta 2000).

Let us quantify this hydrostatic weighting bias effect. In the isothermal approxi-
mation (Te(h) = const, for the coronal segment of a single fluxtube), neglecting the
variation of gravity with height (h � R�), we obtain an exponential density profile
ne(h) as a function of height h (from Eqs. 3.1.15 and 3.1.9),

ne(h, T ) = ne0 exp
(
− h

λp(T )

)
. (3.2.1)

The emission measure EM(T ) sums up all the density contributions n2
e(z) along a

given line-of-sight z at a particular temperature T ,

EM(T ) =
∫

n2
e(T, z)dz . (3.2.2)

The flux Fi or intensity measured by a detector or filter i is given by the product of the
differential emission measure distribution dEM(T )/dT and the instrumental response
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Figure 3.4: The differential emission measure distribution dEM(T )/dT of an active region
(AR93) measured by Brosius et al. (1996) with SERTS data is shown (top left panel), the
Yohkoh/SXT response function for the two thinnest filters (bottom left panel), the contribution
functions dF (T )/dT = [dEM(T )/dT ]∗R(T ) for the two SXT filters (thin and thick linestyles)
(top right panel), and the filter ratio Q(T ) = R2(T )/R1(T ) for the two Yohkoh/SXT filters and
an analytical approximation in the range of T = 1.5 − 6.0 MK (bottom right panel).

function Ri(T ) (defined as a function of temperature),

Fi =
∫

dEM(T )
dT

Ri(T )dT . (3.2.3)

Combining Eqs. (3.2.1-3) leads to the following height dependence of the flux,

Fi(h) =
∫

dEM(T, h = 0)
dT

exp
(
− 2h

λp(T )

)
Ri(T )dT . (3.2.4)

In Fig. 3.4 we take an observed differential emission measure distribution from
an active region (Brosius et al. 1996) and assign it to height h = 0, dEM(T, h =
0)/dT (Fig. 3.4, top left). The instrumental response function Ri for the mostly used
Yohkoh/SXT filters (i.e., the Al 1265 Å and Al/Mg/Mn filters), which we call R1(T )
and R2(T ) are shown in Fig. 3.4 (bottom left). The product of the differential emission
measure distribution with the response function quantifies the contribution function,
Ci(T ) = [dEM(T )/dT ]×Ri(T ), shown in Fig. 3.4 (top right). Temperature analysis
is usually done with a filter-ratio method. The temperature dependence of this filter
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Figure 3.5: The height dependence of the observed SXT fluxes F (h) for the two filters are
shown with thin and thick linestyles (top panel), the resulting filter ratio Q(h) (second panel),
and the inferred filter-ratio temperatures (bottom panel). Note that the filter-ratio temperature
T (h) shows a systematic increase with height, although a model with isothermal loops was
assumed.

ratio, Q(T ) = R2(T )/R1(T ), is explicitly shown in Fig. 3.4 (bottom right), and can
be approximated with the analytical function,

Q(T ) =
R2(T )
R1(T )

≈ 0.39 + 0.27[log(T ) − 6.18]1/2 , 1.5 MK < T < 6.0 MK ,

(3.2.5)
This analytical approximation allows us to conveniently invert the filter-ratio tempera-
ture (in the range of Q = 0.4 − 0.6),

log[T (Q)] = 6.18 +
(

Q − 0.39
0.27

)2

, 0.4 < Q < 0.6 . (3.2.6)

We can now extrapolate the fluxes F1(h) and F2(h) as a function of height h by
using the hydrostatic model of Eq. (3.2.4) for both filters, which are shown in Fig. 3.5
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Figure 3.6: Filter-ratio temperature measurements T (r) as functions of height r = 1 + h/R�
in 16 radial sectors of the Sun, observed in quiet Sun and coronal hole regions on 1992-Aug-26
with Yohkoh/SXT (Plate 2). The crosses mark the measurements, while the thick lines repre-
sent the expected temperature gradients due to the hydrostatic weighting bias according to the
approximation of Eq. (3.2.7). The y-axis indicates the temperature T (MK) (Aschwanden &
Acton 2001).

(top panel). The resulting flux ratio Q(T ) = F2(T )/F1(T ), which varies in this case
from Q(h = 0) ≈ 0.57 at the coronal base to Q(h = 0.5R�) ≈ 0.60 at a height of a
half solar radius (Fig. 3.5, middle), can then be inverted into a filter-ratio temperature
T (Q) according to Eq. (3.2.6), which varies from T (h = 0) ≈ 4.4 MK at the coronal
base to T (h = 0.5R�) ≈ 6.3 MK at a height of a half solar radius (Fig. 3.5 bottom).
Thus the hydrostatic weighting bias results in a temperature gradient of dTbias/dh ≈
0.005 K m−1. Applying the same calculations to other active regions or quiet Sun
regions, the typical temperature gradient ∆Tbias(h) due to the hydrostatic weighting
bias has the following height dependence,

∆Tbias(h) ≈ T0

(
h

R�

)
. (3.2.7)

From this calculation we predict quite a substantial positive temperature gradi-
ent with height in the solar corona. Such positive temperature gradients with height,
dT (h)/dh > 0, have been reported in a number of studies, often using Yohkoh/SXT
filter ratios (Mariska & Withbroe 1978; Kohl et al. 1980; Falconer 1994; Foley et
al. 1996; Sturrock et al. 1996a,b; Wheatland et al. 1997; Fludra et al. 1999; Priest
et al. 1999, 2000; Aschwanden & Acton 2001). Because the reported temperature
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gradients have approximately the magnitude predicted by Eq. (3.1.22), it is very plau-
sible that they reflect the hydrostatic weighting bias (as derived here for isothermal
fluxtubes), rather than a real temperature variation T (h) along individual fluxtubes.
A larger number of filter-ratio temperature measurements as functions of height are
shown in Fig. 3.6 for quiet Sun and coronal hole regions, along with the estimated
hydrostatic weighting bias, which predicts a fully compatible temperature gradient.
In other words, although the filter-ratio temperatures show a positive height gradient,
the temperature profile of each fluxtube is consistent with a near-isothermal model,
T (h) ≈ const.

3.3 Multi-Hydrostatic Corona

If we observe the most homogeneous parts of the quiet Sun corona, without any de-
tectable features of loops or fluxtubes (e.g. as seen in the north-east quadrant above the
limb in Plate 1), what is the simplest appropriate model to quantify the optically thin
soft X-ray or EUV brightness? Obviously we cannot apply an isothermal model, be-
cause observed differential emission measure distributions reveal a broad temperature
distribution at any location in the solar corona. Moreover, gravitational stratification in
any thermally insulated structure is an important effect we have to include in a physical
model. Let us characterize the differential emission measure distribution dEM(T )/dT
or the corresponding differential density distribution dne(T )/dT with a simple Gaus-
sian function of temperature (following Aschwanden & Acton, 2001),

dne(x, T )
dT

=
ne(x)√
2πσT

exp
[
− (T − T0)2

2σ2
T

]
. (3.3.1)

This temperature distribution is characterized by 3 parameters: the total electron den-
sity ne(x), the mean electron temperature T0, and the Gaussian temperature distribu-
tion width σT . The differential electron density distribution is normalized so that the
integral over the entire temperature range yields the total electron density ne(x) at a
spatial location x, ∫ (

dne(x, T )
dT

)
dT = ne(x) . (3.3.2)

We define the corresponding differential emission measure (DEM) distribution inte-
grated along a line-of-sight z,

dEM(x, y, T )
dT

=
∫ (dne(x, T )

dT

)2

2
√

πσT dz =
∫

n2
e(x)√
πσT

exp
[
− (T − T0)2

σ2
T

]
dz ,

(3.3.3)
which contains a normalization factor so that the total emission measure EM , obtained
by integrating over the entire temperature range, meets the standard definition of col-
umn emission measure,

EM(x, y) =
∫ (dEM(x, y, T )

dT

)
dT =

∫
n2

e(x) dz . (3.3.4)



3.3. MULTI-HYDROSTATIC CORONA 77

Open-Field Corona

Height

Li
ne

-o
f-

si
gh

t a
t h

h

h’(z) z

rsun

(ne0,T0,σT0)

(0,0)

Figure 3.7: Geometric definitions are shown for a homogeneous corona in a plane along the
line-of-sight. The height as a function of the line-of-sight distance z is denoted with h′(z).

Implicitly, we assume here that the ion density is equal to the electron density, ni = ne,
because the general definition of the DEM is dEM(T )/dT ∝ ninedV .

We follow now the multi-hydrostatic concept outlined in § 3.2 and assume that the
quiet corona is filled by many structures (closed loops or open fluxtubes) all being in
hydrostatic equilibrium, each one at a different temperature, where the sum of all tem-
perature contributions is constrained by the differential emission measure distribution
dEM(T )/dT at the base of the corona (h = h0). Attributing a hydrostatic density
profile ne(h) to each structure as defined by Eq. (3.2.1), the variation of the electron
density ne(h) as a function of height h is then obtained by integrating over the temper-
ature range (Eq. 3.3.2),

ne(h) =
∫

(
dne(h, T )

dT
)dT =

∫
ne(h0)√
2π σT

exp
[
− [h− h0]

λp(T )
− (T − T0)2

2σ2
T

]
dT ,

(3.3.5)
which can be calculated by numerical integration. The density height profile ne(h)
would be an exponential function exactly for an isothermal atmosphere (σT � T0),
but falls off less steeply with height for a multi-thermal atmosphere (σT ≈ T0).

Thus, to model the diffuse corona observed above the limb, we assume (in a spher-
ical geometry) density distributions with a radial dependence according to the hydro-
static scaling ne(h, T ) (Eq. 3.2.1), but having randomly distributed temperatures, char-
acterized by the differential electron density distribution dne(x, T )/dT (Eq. 3.3.1) at
the coronal base (h = h0). Denoting the direction of the line-of-sight with z, a simple
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Figure 3.8: The multi-hydrostatic differential emission measure distributions dEM(T, h)/dT

are shown for different heights h, computed from parameters measured in Aschwanden & Acton
(2001). Note the systematic increase of the peak temperature from TEM = 1.77 MK at the
coronal base (h = 0) to TEM = 2.76 MK at a height of h = 550 Mm, which is a manifestation
of the hydrostatic weighting bias.

geometric consideration yields the following height dependence h′(z) for a point z on
the line-of-sight axis that passes the limb at a lowest height h (at location z = 0),

h′(z) =
√

(R� + h)2 + z2 − R� (3.3.6)

(see Fig. 3.7). Combining Eqs. (3.3.3−6) and Eq. (3.2.1) we obtain then the following
differential emission measure dEM(h, T )/dT for a position h above the limb, inte-
grated along the line-of-sight z,

dEM(h, T )
dT

=
∫ ∞

−∞

n2
e(h0)√
π σT

exp
[
−2[h′(z) − h0]

λp(T )
− (T − T0)2

σ2
T

]
dz . (3.3.7)

Examples of such dEM(T ) distributions inferred from Yohkoh/SXT data are shown
for different heights h in Fig. 3.8. The peak of the dEM(T ) distributions shifts sys-
tematically to higher temperatures T0 with increasing altitude h, due to the hydrostatic
weighting bias.

Multiplying the differential emission measure distribution dEM(h, T )/dT with
the instrumental response function RW (T ) = dFW /dEM(T ) of a filter with wave-
length W and integrating over the temperature range we then directly obtain the flux
FW (h) at a given height h,

FW (h) =
∫ ∞

0

dFW (h)
dEM(h, T )

dEM(h, T )
dT

dT =
∫ ∞

0

RW (T )
dEM(h, T )

dT
dT .

(3.3.8)
It is instructive to visualize the column depth of a hydrostatically stratified atmosphere
as a function of the distance to the Sun’s center, because the electron density can then
directly be estimated from this column depth and an observed emission measure. We
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Figure 3.9: Calculated equivalent column depths zeq(T, h) (Eq. 3.3.10) for a gravitationally
stratified atmosphere as a function of the limb distance h, for isothermal plasmas with tempera-
tures of column depths corresponding to the emission measure scale heights (i.e. half the density
scale height) for vertical line-of-sights at the Sun’s center (h/r� = −1), indicated with dashed
lines.

define an equivalent column depth along the line-of-sight zeq(h, T ) as a function of the
height h above the limb and for a coronal temperature T0 (in the isothermal approxi-
mation σT0 � T0),

EM(h, T0) =
∫ ∞

−∞
n2

e(h, z, T0)dz = n2
e(h0, T0)zeq(h, T0) . (3.3.9)

From Eqs. (3.3.4−7) the following relation follows for this equivalent column depth,

zeq(h, T0) =
∫ z2

z1

exp
(− 2

λp(T0)
[√

(R� + h)2 + z2 − R�
])

dz for h ≥ 0 .

(3.3.10)
with the integration limits z1 = −∞ and z2 = +∞. Inside the disk (−1 ≤ h ≤ 0), we
have only to change the integration limit z2 to,

z2(h) = −
√

R2� − (R� + h)2 for − 1 < h < 0 . (3.3.11)

The column depths zeq(h, T0) are shown in Fig. 3.9 for a height range from disk
center (h = −1) to one solar radius outside the limb (h = +1), for temperatures in
the range of T = 1.0 − 4.0 MK. At disk center (h = −1), the equivalent column
depth matches the emission measure scale height, which is the half density scale height
(λEM = λp/2 = λp(T0)/2) (indicated with dashed lines in Fig. 3.8). At the limb
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(h = 0), there is in principle a discontinuous change by a factor of 2, which, however,
is difficult to measure because of the extremely high instrumental resolution required
to resolve this jump. Above the limb, the column depth drops quickly with height. This
dependence of the column depth on the Sun center distance constrains the soft X-ray
brightness across and outside the solar disk.

After we have derived the differential emission measure distribution dEM(h, T )
as a function of height (Eq. 3.3.7), which can predict the flux FW (h) for an arbitrary in-
strument, we test this model with Yohkoh/SXT data from 1992-Aug-26 (shown in Plate
2). We apply the model to the limb profiles in two filters, FAl.1(h) and FMn/Mg(h), for
36 different position angles (as indicated with radial 10◦ sectors in Plate 2). We intro-
duce an additional free parameter qλ that allows for an arbitrary observed exponential
scale height λobs,

λobs = qλ λp(T ) , (3.3.12)

so that we can actually probe deviations from hydrostatic equilibrium. The best-fit pa-
rameters are shown in Fig. 3.10: electron base densities of ne ≈ 108 − 109 cm−3,
electron base temperatures of T0 ≈ 1.0 − 1.5 MK, temperature widths of σT ≈ 1.0
MK, and scale height factors of qλ ≈ 1. The last result represents a test of the “hydro-
staticity” of the quiet corona. Besides a significant deviation of qλ

<∼ 2.3 at the location
of a coronal streamer (at position angle P ≈ 200◦ − 250◦, most parts of the corona
are found to be near qλ ≈ 1, which means that the pressure scale height is nearly hy-
drostatic, λ ≈ λp(T ) (Eq. 3.3.12). Of course, slight deviations are expected wherever
inhomogeneities in the form of brighter loops or active regions occur.

The white-light spectrum of the solar corona is composed of three components: (1)
the K-corona, made of partially polarized continuum emission from photospheric light
scattered at free electrons (dominating at h <∼ 0.3 r�); (2) the L-corona, consisting of
spectral line emission from highly ionized atoms (dominating at h <∼ 0.5 r�); and (3)
the F-corona, which presents absorption lines of the photospheric Fraunhofer spectrum
caused by diffraction from interplanetary dust (dominating at h >∼ 0.5 r�). The line-of-
sight integrated density profiles of these three components can each be approximated
by a powerlaw, leading to an average density profile known as the Baumbach−Allen
formula, given in Eq. (1.6.1). This density model ne(h) is shown in Fig. 3.11 (square
symbols). We now fit each of these three components with our multi-hydrostatic (line-
of-sight integrated DEM) model. Approximate fits are shown in Fig. 3.11. The coro-
nal base densities n0 are directly given by the Baumbach−Allen formula (Eq. 1.6.1)
[i.e., n0 = 2.99 × 108 cm−3 (K-corona), n0 = 1.55 × 108 cm−3 (L-corona), and
n0 = 3.6 × 106 cm−3 (F-corona)], where the densities of the K and L-corona (see fits
in Fig. 3.11) are also fully consistent with other quiet Sun values we infer here. Also
the DEM temperature ranges inferred from the best fits, T = 0.75 − 1.25 MK for the
K-corona, and T = 0.9−2.3 MK for the F and L-corona, are fully consistent with quiet
Sun values. Most interesting is that the best fits confirm that the K-corona is exactly
hydrostatic (i.e., qλ = 1.0; Fig. 3.11), while the L-corona has an extended scale height
of qλ = 1.9 times the hydrostatic scale height, a value that is typical for coronal stream-
ers. We can, therefore, associate the L-corona dominantly to coronal streamer regions.
Finally, the F-corona exhibits an extreme density scale height factor of qλ ≈ 10 times
the hydrostatic scale height. Such an excessive scale height cannot be consistent with
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Figure 3.10: Best-fit parameters of the multi-hydrostatic coronal density model (Eqs. 3.1.1−9)
in Yohkoh/SXT data (Plate 2) at 36 position angles around the disk: the base electron density ne,0

(top panel), the electron temperature T0 at the dEM(T) peak, along with the averaged temperature
over height, < TEM (h) > (second panel), the Gaussian temperature width σT of the dEM(T )

distribution (third panel), and the ratio qλ of the best-fit exponential scale height λ to the thermal
scale height λp(T ) (from Aschwanden & Acton 2001).

gravitational stratification. It is, therefore, suggestive that the F-corona does not rep-
resent coronal plasma in hydrostatic equilibrium, but rather the density distribution of
interplanetary dust that has its own dynamics escaping solar gravitation. Thus, our
DEM model is not only capable of reproducing the Baumbach−Allen formula and
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Figure 3.11: The Baumbach−Allen formula ne(h) (squares) and its powerlaw components,
associated with the K-corona (crosses), the L-corona (diamonds), and the F-corona (triangles).
Approximate fits to these 3 components and the sum (i.e., Baumbach−Allen formula) are shown
with different linestyles, and the fit parameters (n0, T0, σT0 , qλ) are listed in the top part of the
figure (Aschwanden & Acton 2001).

each of its three coronal components quantitatively in detail (see fits in Fig. 3.11), but
it also provides us with additional physical information that is not explicitly used in
the derivation of the Baumbach−Allen formula, namely the DEM temperature ranges
and the density scale heights of the three coronal components. We can, therefore, re-
late the 6 coefficients of the semi-empirical Baumbach−Allen formula to 12 physical
parameters in the framework of our DEM model (using Eq. 3.3.5),

ne(R) =
3∑

i=1

∫
ni√

2π σTi

exp
[
− (R − 1)R�

qλ,iλ0T
− (T − Ti)2

2σ2
Ti

]
dT , (3.3.13)

where the summation i = 1, 2, 3, represents the 3 coronal components (K, L, F-corona),
each one specified by a base density ni, a DEM temperature range Ti±σTi , and a scale
height ratio qλ,i = λn,i/λTi .

Thus we found that the Baumbach−Allen formula is fully consistent with our DEM
model, where every magnetic field line has a constant temperature with height, Te(h),
while the height variation of the emission measure weighted temperatures TEM(h)
can naturally be explained by the multi-scale height weighting effects of a broad DEM
distribution.
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3.4 Loop Geometry and Inclination

After we have modeled the homogeneous part of the corona, which is also called quiet
Sun corona or diffuse background corona, we turn now to inhomogeneous structures.
Inhomogeneous structures entail active regions, filaments, prominences, or any mag-
netic field topology that is filled with denser plasma. One of the foremost geometric
topologies is that of a coronal loop. Many parts of the solar corona are made of dipole-
like field lines, and thus can be represented by a set of coronal loops. In this section
we deal with the elementary geometry of loop structures, which provides us with a
framework for physical modeling.

In all previous sections we considered the hydrostatic equation as a function of
height h or radial distance from the Sun’s center, r = R�+h. Such a parameterization
works for vertical structures, such as fluxtubes along open field lines in coronal holes.
Now we quantify the geometry for structures along closed field lines, such as active
region loops. A convenient approximation of closed magnetic field lines is a coplanar
circular geometry, where the center of the circle can be offset from the solar surface,
and the loop plane can be inclined to the solar vertical.

3.4.1 Vertical Semi-Circular Loops

Let us start with the simplest geometry (i.e., a semi-circular loop with a vertical loop
plane). The height h(s) of a position specified by the loop length coordinate s (starting
at one footpoint) is

h(s) = r(s) − R� =
2L

π
sin
( πs

2L

)
, (3.4.1)

where L is the loop half length. The pressure balance or momentum equation (Eq. 3.1.5)
as a function of loop length s is then

dp

ds
(s) =

dpgrav(r)
dr

(
dr

ds

)
, (3.4.2)

which involves the derivative dr(s)/ds, which is (from Eq. 3.4.1)

(
dr

ds

)
=
(

dh

ds

)
= cos

(πs

2L

)
= cosϕ (3.4.3)

where ϕ is the angle in the circular loop plane. If we want to specify the pressure p(s)
as a function of the loop length s, we can use the solution derived for h (Eq. 3.1.15)
where we substitute the scaling h(s) between the height h and loop length s for a
specific geometric model (e.g., Eq. 3.4.1 for a semi-circular loop),

p(s) = p0 exp

⎡
⎣− (h[s] − h0)

λp(Te)(1 + h[s]
R�

)

⎤
⎦. (3.4.4)
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Figure 3.12: Vertical and apparent density scale heights in coronal loops (right) and analogy
with communicating water tubes (left).

3.4.2 Inclined Semi-Circular Loops

In the next step we relax the assumption of a vertical loop plane and allow for an
inclination angle θ. A large inclination angle of the loop plane has two primary effects:
(1) the observed density scale height along a loop does not correspond to the hydrostatic
scale height, which is strictly defined in vertical direction; and (2) the chance to observe
complete large loops is much higher for inclined loop planes than for vertical ones, in
particular if they have a size in excess of several density scale heights (e.g., Fig. 3.13).
The hydrostatic scale height λp has always the same vertical extent, regardless of how
much the loop is inclined, similar to the water level in communicating water tubes
with different slopes (Fig. 3.12). The apparent density scale height as observed for an
inclined loop is stretched by the cosine angle,

λobs
p (θ) =

λp

cos (θ)
, (3.4.5)

For solutions of the hydrostatic equations it is most convenient to keep the same coor-
dinate system with s the loop coordinate in the (inclined) loop plane, but to correct for
the loop inclination by modifying the gravity g� by an effective gravity,

geff = g� cos (θ) , (3.4.6)

in the definition of the pressure scale height λp (Eq. 3.1.16). The hydrostatic solutions
can also be applied to other stars, in which case the effective gravity can be adjusted in
the same way by replacing the solar gravity g� by the stellar gravity g∗,

geff = g∗ cos (θ) . (3.4.7)

Thus, we will use in the following the generalized definition of the pressure scale height
λp in terms of geff (Eq. 3.4.6),

λp(Te) =
2kBTe

µmHgeff
≈ 4.6 × 109

(
g�

geff

)(
Te

1 MK

)
[cm] . (3.4.8)

In essence, inclined loops have larger pressure scale heights, which are equivalent to a
lower effective gravity, but the functional form of the hydrostatic solutions remains the
same.
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Figure 3.13: Observations of a highly inclined active region loop (AR 8253) with TRACE (171
Å) on 1998-Jun-26, 14:25 UT. The loop is estimated to have a length of L ≈ 100 Mm and and
an inclination angle of θ ≈ 60◦ from the vertical (Reale et al. 2000a).

3.4.3 Diverging Semi-Circular Loops

For a 3D model we need in addition to the 1D parameterization along the loop (with
coordinate s) also a 2D parameterization transverse to the loop coordinate s, which
is generally characterized by a spherical cross-sectional area A(s). The simplest as-
sumption is a constant cross section A(s) = const, which is often fulfilled to a good
approximation, and can also be justified on theoretical grounds for current-carrying
loops (Klimchuk 2000). On the other side, if a magnetic potential field is assumed,
loops are expected to have a diverging cross section with height. The cross-sectional
variation A(s) along the loop can then be estimated by two adjacent magnetic field
lines of a buried line dipole, as shown in Fig. 3.14. In the geometry of Vesecky et
al. (1979), the two defining field lines join at the center of the buried dipole (Fig. 3.14
left), and where the cross section expands by a factor Γ above the solar surface. A
restriction of this geometry is that the expansion factor Γ is a strict function of the
height of the curvature center with respect to the photospheric surface, which cannot
always be matched with observations. For instance, semi-circular loops can only have
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Figure 3.14: Geometry of expanding loops with a buried dipole: (a) circular loops with zero
cross section at the lowest point and loop expansion factor Γ above the solar surface (Vesecky
et al. 1979); (b) semi-circular loops with zero cross section at coordinate s = −ssub and loop
expansion factor of Γ above the solar surface (Aschwanden & Schrijver 2002).

an expansion factor of Γ = 2 in the geometry of Vesecky et al. (1979). In order to al-
low for an arbitrary range of expansion factors Γ for semi-circular loops, Aschwanden
& Schrijver (2002) introduced a generalized definition shown in Fig. 3.14 (right). A
semi-circular loop can have any (positive) expansion factor above the solar surface, but
the zero cross section point needs to be at a depth of s = −ssub. Algebraically, the
cross-sectional area depends on the loop coordinate s as,

A(s) = A0Γ sin2

(
π

2
s + ssub

L + ssub

)
, (3.4.9)

where the location of the zero cross section point depends on Γ as,

ssub(Γ) =
L

[(π/2)/ arcsin(1/Γ1/2) − 1]
. (3.4.10)

This definition yields an area of A(s = 0) = A0 at the solar surface, and an expanded
area A(s = L) = A0Γ at the looptop position (s = L). Loops with a constant cross
section require Γ = 1 and ssub = ∞. Note, however, that this geometric model for
loop divergence is only appropriate for the coronal parts of loops, above the canopy
geometry in the transition region (Fig. 4.25).

3.4.4 Coordinate Transformations

There are three natural coordinate systems when it comes to analyze, model, or simu-
late loops: (1) the observers coordinate system (x, y, z); (2) the heliographic coordinate
system (l, b) with longitude l and latitude b, which is invariant to solar rotation; and (3)
the loop plane coordinate system (X, Y, Z) aligned with the loop plane. Because the
Sun is rotating, the coordinate transformations are time-dependent, if non-simultaneous
images are analyzed. In the following section we provide the most general coordinate
transformations between the three coordinate systems (also described in Aschwanden
et al. 1999a), which are particularly useful for analysis of stereoscopic observations or
any type of 3D modeling.
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Figure 3.15: Definition of loop geometry parameters: loop positions (xi, yi), i = 1, ..., n, the
azimuth angle α between the loop footpoint baseline and heliographic east-west direction, and
the inclination angle θ of the loop plane with respect to the vertical on the solar surface.

Image (or Observer’s) Coordinate System

(x, y, z): The (x, y) coordinates refer to the x-axis and y-axis of an observed image,
while the coordinate (z) is orthogonal to the image, or parallel to the line-of-sight
direction, defined as positive towards the observer. The origin (x, y, z) = (0, 0, 0)
of this coordinate system is most conveniently assumed at the Sun center position. A
solar FITS image should contain the position of the Sun center in pixel units (ix0, jy0)
(in FITS header CRPIX1, CRPIX2 or E XCEN, E YCEN), the pixel size (∆x, ∆y)
in units or arcseconds (in FITS header CDELT1, CDELT2), and the solar radius ir0 in
pixel units (in FITS header SOLAR R, or E XSMD, E YSMD if the semi-diameters of
an ellipse are fitted). With this information, a pixel position (i, j) can then be converted
into the coordinate system (x, y) by

xi = ∆x (i − ix0) ,

yi = ∆y (j − jx0) , (3.4.11)
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where ∆x =arcseconds/pixel for (x, y) in units of arcseconds, or ∆x = R�/ir0, with
R� = 696 Mm, if physical length units (Mm) are preferred.

Heliographic Coordinate System

(l, b, r): The heliographic coordinate system is co-rotating with the solar surface. A po-
sition on the solar surface is generally specified by heliographic longitude and latitude
coordinates (l, b) (in units of heliographic degrees), with reference to the Carrington
rotation grid. The heliographic longitude and latitude [l0(t), b0(t)] of the Sun’s center
and the solar position angle P (t) of the solar rotation axis are published as a function
of time t in The Astronomical Almanac (Nautical Almanac Office, NRL, Washing-
ton DC), or can conveniently be obtained from the IDL routine SUN.PRO in the SSW
package. The 2D spherical coordinate system (l, b) can be generalized into a 3D co-
ordinate system by incorporating the height h above the solar surface, which can be
expressed as a dimensionless distance to the Sun center (in units of solar radii),

r =
(

1 +
h

R�

)
. (3.4.12)

The transformation from the 3D heliographic coordinate system (l, b, r) into image
coordinates (x, y, z) can be accomplished by applying a series of 4 rotations to the
(normalized) vector (0, 0, r) (Loughhead et al. 1983; Aschwanden et al. 1999a),⎛
⎝ x/R�

y/R�
z/R�

⎞
⎠ =

⎛
⎝ cos(P + P0) − sin(P + P0) 0

sin(P + P0) cos(P + P0) 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 cos(b0) − sin(b0)
0 sin(b0) cos(b0)

⎞
⎠

⎛
⎝ cos(l0 − l) 0 − sin(l0 − l)

0 1 0
sin(l0 − l) 0 cos(l0 − l)

⎞
⎠
⎛
⎝ 1 0 0

0 cos(−b) − sin(−b)
0 sin(−b) cos(−b)

⎞
⎠
⎛
⎝ 0

0
r

⎞
⎠ ,

(3.4.13)
where (l0, b0) are the heliographic longitude and latitude of the Sun center, P is the
position angle of the solar rotation axis with respect to the north-south direction (de-
fined positive towards east), and P0 is the image rotation (roll) angle with respect to the
north-south direction, (P + P0 = 0 for images rotated to solar north). In stereoscopic
correlations, only the longitude of the Sun center l0(t) is time-dependent in first order
(according to the solar rotation rate), while b0(t) and P (t) are slowly varying, and thus
almost constant for short time intervals.

Loop Plane Coordinate System

(X, Y, Z): To parameterize coronal loops it is convenient to introduce a cartesian sys-
tem that is aligned with the loop footpoint baseline (X-axis) and coincides with the
loop plane (X−Z plane, Y = 0). For instance, a circular loop model defined in
the X−Z plane is specified in Eqs. (3.4.1). The transformation of loop coordinates
(X, Y = 0, Z) into a cartesian coordinate system (X ′, Y ′, Z ′) that is aligned with the
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heliographic coordinate system (l, b, r), can simply be accomplished by two rotations,⎛
⎝ X ′

Y ′

Z ′

⎞
⎠ =

⎛
⎝ cos(α) − sin(α) 0

sin(α) cos(α) 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

⎞
⎠
⎛
⎝ X

Y
Z

⎞
⎠ ,

(3.4.14)
where the azimuth angle α denotes the angle between the loop footpoint baseline and
the east-west direction, and θ represents the inclination or tilt angle between the loop
plane and the vertical to the solar surface (Fig. 3.15). Placing the origin of the loop
coordinate system (X = 0, Y = 0, Z = 0) [which is also the origin of the rotated
coordinate system (X ′ = 0, Y ′ = 0, Z ′ = 0)] at heliographic position (l1, b1) at an
altitude hFoot above the solar surface, the transformation into heliographic coordinates
is given by⎛

⎝ l
b
r

⎞
⎠ =

⎛
⎝ l1 + arctan[X ′/(Z ′ + hFoot + R�)]

b1 + arctan[Y ′/(Z ′ + hFoot + R�)]√
[X ′2 + Y ′2 + (Z ′ + hFoot + R�)2]/R�

⎞
⎠ . (3.4.15)

Column Depth of Loops with Constant Cross Section

In order to convert observed emission measures EM(x, y) =
∫

n2
e(x, y, z)dz into

local electron densities ne(x, y, z) we need information on the column depth
∫

dz. An
approximation that is often useful can be obtained from coronal loops with a constant
cross section w, which can be measured from the FWHM as it appears perpendicular
to the line-of-sight in the plane of the sky. For 3D models of loops parameterized by
coordinates (xi, yi, zi), the angle ψ between the line-of-sight and a loop segment can
then directly be derived by the ratio of the projected to the effective length of a loop
segment [i, i + 1],

cos(ψ[xi, yi, zi]) =

√
(xi+1 − xi)2 + (yi+1 − yi)2√

(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2
, (3.4.16)

yielding the column depth wz along the line-of-sight axis z,

wz[xi, yi, zi] =
w

cos(ψ[xi, yi, zi])
. (3.4.17)

3.5 Loop Line-of-Sight Integration

Whenever we analyze images in soft X-rays and EUV wavelengths, we deal with op-
tically thin emission, which represents an integral along the line-of-sight. While the
relevant theory is tersely defined by the radiative transfer equation (Eqs. 2.1.5−7), the
application to real data is a kind of art that requires careful treatment to obtain correct
results. Unfortunately, many papers have been published with over-simplified mod-
els of the line-of-sight integration and have produced incorrect results, in particular in
studies on coronal loops. It is, therefore, important that we familiarize ourselves first
with the subtle effects that matter in the line-of-sight integration, before we proceed
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Figure 3.16: Left panel: the effect of the variable column depth wz(s) measured parallel to
the line-of-sight z is illustrated as a function of the loop length parameter s, for a loop with
a constant diameter w. Right panel: the effect of the inclination angle θ of the loop plane on
the inferred density scale height λ(θ) is shown. Both effects have to be accounted for when
determining the electron density ne(s) along the loop.

with physical loop models. In this section we discuss 3 cases: (1) an intense single
loop, (2) a faint loop embedded in the background corona, and (3) a statistical distribu-
tion of loops embedded in the background corona. All cases are highly relevant to the
analysis of Yohkoh/SXT, SoHO/EIT, SoHO/CDS, and TRACE images.

3.5.1 Bright Single Loop

What we mean with a bright loop is that the observed brightness of the loop structure
has sufficient contrast to the background (at least 10:1) so that the background can
be neglected and ignored in the data analysis. However, even if we manage to find
an isolated bright loop that is most suitable for a quantitative analysis, there are still
a number of effects that need to be considered: (1) projection effects, (2) loop plane
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Figure 3.17: Simulations of the differential emission measure distribution dEM(T )/dT (right
panels) and emission measure maps EM(x, y) (left panels) for a bright loop (top panels), a faint
loop (middle panels), and a statistical distribution of 100 loops (bottom panels). The emission
measure of the diffuse K-corona is also added (dashed line in right panels). The greyscale is
logarithmic, with maximum contrast in the range of EM = 0.8 − 1.0 × 1028 cm−5. The
physical parameters are described in the text.

inclination, (3) cross-sectional variation, (4) instrumental temperature bandpass, etc.
Ideally, the simplest case would be a coronal loop above the limb with a vertical loop
plane, perpendicular to the line-of-sight, and a constant cross section. If the loop plane
appears at an angle to the line-of-sight, the angle ψ(xi, yi, zi) of each loop segment
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s(xi, yi, zi) varies along the loop according to Eq. (3.4.16), and the resulting projected
column depth wz is approximately given by Eq. (3.4.17). The inclination angle θ of the
loop plane is taken into account by the proper coordinate transformation (Eq. 3.4.14)
and affects the inference of the pressure scale height λp according to Eq. (3.4.5). Cross-
sectional variations A(s), require a geometric model, e.g. characterized with an expan-
sion factor Γ (Eq. 3.4.9), and affect the column depth as wz(s) =

√
A(s). The effects

of column depth and inclined scale height are visualized in Fig. 3.16.
In Fig. 3.17 we perform a simulation of a bright single loop embedded in a diffuse

background corona. For the bright loop we choose the parameters: base density ne =
2 × 109 cm−3, temperature Te = 3.0 MK, footpoint distance dfoot = 400 Mm, and
loop width w = 50 Mm. This bright loop has a total emission measure of EMloop ≈
n2

e ∗ w = 2 × 1028 cm−5 at the footpoint. The background corona has been modeled
from parameters that approximately reproduce the Baumbach−Allen model (which is
dominated by the K-corona component): a base density of ne = 5× 108 cm−3, a peak
temperature of T0 = 1.5 MK, a Gaussian width σT = 1.0 MK, and a hydrostaticity
factor of qλ = 1.9. The equivalent column depth above the limb is about zeq ≈ 1010

cm (Eq. 3.3.10 and Fig. 3.9), and the emission measure of the background corona above
the limb is about EMback ≈ n2

ezeq = 2.5 × 1027 cm−5. Thus the contrast is about
EMloop/Eback ≈ 10, so that there is no significant confusion with the background
which can legitimately be neglected in the analysis of the physical loop parameters.
However, such bright and isolated loops are rare.

3.5.2 Faint Single Loop

If we go to fainter loops, the background confusion becomes a crucial problem in
the data analysis. In Fig. 3.17 we simulate a faint loop (middle panel) which has a
density (ne = 5 × 108 cm−3) four times lower than the bright loop (Fig. 3.17 top
panel) defined in the previous section, but with otherwise identical parameters. This
means that the emission measure contrast is a factor of 16 lower than for the bright
loop, and comparable with the background corona. The differential emission measure
distribution dEM(T )/dT in Fig. 3.17 (middle right panel) shows that the loop has still
some contrast above the background corona at T ≈ 2.5 − 3.5 MK, so a background
subtraction could be made in the data, provided that a narrowband filter is available
in this temperature range (e.g., with TRACE 284 Å or with a Yohkoh/SXT filter).
However, if an emission measure distribution dEM loop+back(T )/dT is reconstructed
at a loop location, the non-loop contributions of the background corona along the line-
of-sight cannot be subtracted out properly, because they are co-spatial. A separation
of the loop from the background corona could only be accomplished by performing
an emission measure distribution reconstruction of the background corona at adjacent
positions to the loop (in the same altitudes), which would yield the dashed distribution
dEM back(T )/dT in Fig. 3.17.

3.5.3 Statistical Distribution of Loops

Let us illustrate the line-of-sight problem in loop analysis in a more realistic way. In the
third case shown in Fig. 3.17 (bottom panels) we simulated 100 loops with randomly
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chosen sizes, densities (in the range of ne = 1 − 5 × 108 cm−3), and temperatures (in
the range Te = 0.5 − 5.0 MK), superimposed on the background corona. The differ-
ential emission measure distributions of both the 100 loops and the background corona
are shown in the bottom right panel of Fig. 3.17. Obviously the forest of loops forms
a diffuse inhomogeneous background that is hard to distinguish from the background
corona. Also in the differential emission measure distribution, where the 100 loops
dominate, none of the 100 loops can be separated properly. Multi-temperature analysis
is done with a limited number of SXR and EUV lines [e.g., from SERTS (Brosius et
al. 2000) or from SoHO/CDS (Schmelz et al. 2001)], which show a relatively broad
differential emission measure distribution. Generally, the contrast between the bright-
est loop feature and the background corona is weaker the broader the temperature. This
is expected for the situation shown in Fig. 3.17 (bottom panel). It is, therefore, recom-
mended only to perform multi-temperature analysis on loops with strong contrast, or
to use narrow-band filters (e.g., EIT or TRACE) to benefit from a better temperature
discrimination (Aschwanden 2002a).

3.6 Hydrostatic Solutions and Scaling Laws

In the previous sections we described all coronal loops with an isothermal approxi-
mation to make the essential aspects of the multi-temperature structure of the corona
transparent. However, while the isothermal approximation works fine for the coronal
segments of loops, it breaks down at the footpoints of the loops, in the transition region
and chromosphere. When we talk about hydrostatic solutions, we mean a stationary
solution of the density ne(s) (or pressure pe(s)) and temperature profile Te(s) that
is in hydrostatic equilibrium and matches the chromospheric (at s = 0) and coronal
boundary conditions (at s = L).

A hydrostatic solution has to fulfill both the momentum equation and the energy
equation,

dp

ds
− dpgrav

dr
(
dr

ds
) = 0 , (3.6.1)

EH(s) − ER(s) − 1
A(s)

d

ds
A(s)FC(s) = 0 . (3.6.2)

where the energy equation (expressed in conservative form) contains a heating rate
EH(s) and two loss terms, the radiative loss ER(s) (defined in Eq. 2.9.1) and the con-
ductive loss term, which is expressed as the divergence of the conductive flux FC(s),

FC(s) =
[−κT 5/2(s)

dT (s)
ds

]
= −2

7
κ

d

ds

[
T 7/2(s)

]
, (3.6.3)

with κ = 9.2× 10−7 (erg s−1 cm−1 K−7/2) the Spitzer conductivity. The least known
term is the volumetric heating rate EH(s) along the loop, which crucially depends on
assumptions for the physical heating mechanism. Many previous loop models assumed
uniform heating, EH(s) = const (e.g. Rosner et al. 1978a), for the sake of simplicity.
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A more general parameterization of the heating function involves two free parameters;
the base heating rate EH0 and an exponential heating scale length sH , which was
introduced by Serio et al. (1981),

EH(s) = E0 exp
(
− s

sH

)
= EH0 exp

(
−s − s0

sH

)
. (3.6.4)

where these authors defined the base heating rate E0 at height s = 0, while we refer to
the coronal base heating rate EH0 at some height s = s0 above the chromosphere.

A hydrostatic solution is uniquely defined by three free parameters (i.e., the loop
length L, the base heating rate EH0, and the heating scale length sH ) plus the boundary
conditions of vanishing conductive flux at both sides of the loop boundary,

FC(s = s0) = 0 , (3.6.5)

FC(s = L) = 0 , (3.6.6)

as well as the temperature T0 at the loop base,

T (s = s0) = T0 , (3.6.7)

which is usually associated with the temperature minimum region (i.e., T0 ≈ 2 ×
104 K at a height of h0 ≈ 1300 km). Alternatively, instead of the three independent
parameters (L, sH , EH0), an equivalent set of (L, sH , Tmax) is used (e.g. in Serio et
al. 1981), where Tmax represents the loop maximum temperature, often located near
the looptop.

The hydrostatic solutions of the momentum and energy equation (Eqs. 3.6.1−2)
can be found numerically, either by explicit codes (e.g., a shooting method that starts
from one boundary and varies the free parameters until the solutions meet the second
boundary condition) or by implicit codes (keeping the parameters at the boundaries
fixed and optimizing the solutions in between). No strict analytical solution can be
derived, mainly because the energy equation contains a differential equation of second
order (in temperature), and also because the radiative loss function is parameterized
in arbitrary ways (e.g., with a 7-piece powerlaw function in Rosner et al. 1978a). In
the following we describe how the hydrostatic solutions have been solved in historical
order, first in the approximation of Rosner et al. (1978a) for the case of uniform heating,
then in the generalization of Serio et al. (1981) for the case of nonuniform heating, and
finally we provide the most accurate analytical approximations known today, derived
by Aschwanden & Schrijver (2002).

3.6.1 Uniform Heating and RTV Scaling Laws

In their seminal paper, Rosner et al. (1978a) derived hydrostatic solutions under the
assumption of constant pressure p(s) = 2ne(s)kBT (s) = const and a constant heating
rate EH(s) = const. The assumption of a constant pressure can be justified for small
loops with a length of less than a pressure scale height L < λp, or for hot loops, where
the pressure scale height can be much longer than for cool loops. The assumption
of a constant heating rate can be justified for some long-range heating mechanisms,
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but seems not to be consistent with the latest TRACE observations. The way Rosner
et al. (1978a) solved the hydrostatic equations was by expressing the conductive flux
FC(s) as a function of temperature FC(T ) (using Eq. 3.6.3),

dFC(s)
ds

=
dFC(T )

dT

dT (s)
ds

=
dFC

dT

(
−FC(T )

κT 5/2

)
, (3.6.8)

which then allows us to write the energy equation (Eq. 3.6.2) as a temperature integral,

−
∫

FCdFC = −1
2
F 2

C |FC(T )
FC(T0) =

∫ T

T0

κT ′5/2EH(T ′)dT ′ −
∫ T

T0

κT ′5/2ER(T ′)dT ′ .

(3.6.9)
Rosner et al. (1978a) then introduced two auxiliary functions fH(T ) and fR(T ) for the
two temperature integrals,

fH(T ) =
∫ T

T0

2κT ′5/2EH(T ′)dT ′ , (3.6.10)

fR(T ) =
∫ T

T0

2κT ′5/2ER(T ′)dT ′ , (3.6.11)

leading to an equation that separates the length coordinate s and temperature profile T ,
and thus provides us with an explicit solution for the inverse temperature profile s(T ),

(s − s0) =
∫ s

s0

ds =
∫ T

T0

− κT ′5/2

FC(T ′)
dT ′ =

∫ T

T0

−κT ′5/2√
fR(T ′) − fH(T ′)

dT ′ . (3.6.12)

Rosner et al. (1978a) made then the approximations of: (1) a single powerlaw func-
tion for the radiative loss function, Λ(T ) ≈ Λ0T

−1/2 (Fig. 2.14); (2) the neglect of
the auxiliary function with the heating term fH(T ) <∼ fR(T ); (3) constant accelera-
tion geff (r) ≈ g�; and (4) constant cross section A(s) = const, and derived from
Eq. (3.6.12) an analytical expression for the inverse temperature profile s(T ),

s(T ) = s(T0) + 2.5 × 105p−1
0

×
{
9.6 × 10−16T 3

max

[
arcsin (T/Tmax) − (T/Tmax)(1 − (T/Tmax)2)1/2

]
+ 1
}

.

(3.6.13)
This leads directly to the famous RTV scaling laws, which specify two relations be-
tween three independent parameters: the loop length L, the looptop temperature Tmax,
and the base pressure p0 (assumed to be constant throughout the loop in the RTV ap-
proximation),

Tmax ≈ 1400(p0L)1/3 , (3.6.14)

EH0 ≈ 0.98 × 105p
7/6
0 L−5/6 = 0.95 × 10−6T 7/2

maxL−2 . (3.6.15)

These RTV scaling laws have been applied mainly to soft X-ray loops over the last 20
years, which have a sufficiently high temperature to make the assumption of a constant
loop pressure viable. Tests of the RTV scaling laws seemed to be roughly consistent
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with observations (at least when parameters are compared on a log-log scale), so that
other assumptions in the RTV derivation were tacitly accepted also, such as that of a
uniform heating rate. Only recently, when more accurate measurements with TRACE
data were performed on cooler EUV loops did it become clear that the assumption of a
uniform heating rate was untenable.

3.6.2 Nonuniform Heating and Gravity

Two important generalizations were introduced by Serio et al. (1981): (1) the applica-
tion to a nonuniform heating rate, and (2) the consideration of gravity. (The effects of
gravity and loop expansion was also considered at the same time by Wragg & Priest
1981, 1982). The most common parameterization of the heating rate is a concen-
tration near the loop footpoints, which can be characterized by an exponential func-
tion with a heating scale height of sH (Eq. 3.6.4), as originally introduced by Serio et
al. (1981). The consideration of gravity involves the height dependence of the pressure
(Eq. 3.1.15) in the momentum equation (Eq. 3.1.8), which is approximately given by
the pressure scale height λp ≈ λp(T ) (Eq. 3.1.16). The consideration of these two
important effects leads to a significant modification of the RTV scaling laws, which
read in Serio’s version as,

Tmax ≈ 1400(p0L)1/3 exp
(
−0.08

L

sH
− 0.04

L

λp

)
, (3.6.16)

EH0 ≈ 0.95 × 10−6T 7/2
maxL−2 exp

(
0.78

L

sH
− 0.36

L

λp

)
. (3.6.17)

The deviations from the RTV scaling laws for uniform heating (sH = ∞) are most
prominent for short heating scale heights sH < L. For instance, if the heating scale
height is 10% of the loop length L/sH = 10, then the loop base pressure increases
by a factor of exp(−0.08 ∗ 10)−3 ≈ 11, and the heating rate by a factor exp(0.78 ∗
10) ≈ 2.4 × 103 for a hydrostatic solution. Essentially, the shorter the heating scale
height, the higher are the base pressure p0 and base heating rate EH0. Note that the
Serio et al. (1981) treatment, although it corrects for the largest physical effects, still
contains a number of approximations: (1) the pressure scale height λp is defined with
the approximation p(s) ≈ p0 exp (−s/λp), but neglects the temperature variation Ts

along the loop, and thus the variation of the pressure scale height λp(s) (see Eq. 3.4.4);
(2) the height dependence in the pressure function is approximated by the semi-circular
loop coordinate s, p(h) ≈ p(s); (3) the numerical coefficients (in Eqs. 3.6.16 and
3.6.17) were calculated for loops with an expansion factor of Γ = 0 (but with different
weighting of chromospheric and coronal lines); and (4) the height variation of gravity
is neglected, g(r) ≈ g�.

3.6.3 Analytical Approximations of Hydrostatic Solutions

Since no analytical solutions of the hydrostatic equations (Eqs. 3.6.1−2) are known,
the solutions for the pressure p(s), density ne(s), and temperature T (s) have to be
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Figure 3.18: A hydrostatic solution of a uniformly heated loop with a looptop temperature of
Tmax = 1.0 MK and loop half length of L = 40 Mm, computed with a numeric code. Note that
the transition region is adequately resolved with the numeric code and the boundary conditions
of T (s0) = 2×104 MK and vanishing flux dT/ds(s0) = 0 are accurately met (see temperature
profile in middle top panel). The numeric solution is tested by the criteria that the momentum
balance is zero along the loop (thick solid line in middle right panel) and that the energy balance
is zero along the loop (thick solid line in bottom right panel) (Aschwanden & Schrijver 2002).

calculated by a numerical code (see example in Fig. 3.18). However, accurate approx-
imations have been found by Aschwanden & Schrijver (2002), based on numerical
solutions from a large parameter space. The analytical approximations are expressed
for the temperature function T (s) with

T (s) = Tmax

[
1 −
(

L − s

L − s0

)a]b
, (3.6.18)

and the pressure function p(s) with

p(s) = p0 exp
[
−h(s) − h0

λp(s)

]
, (3.6.19)
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with the pressure scale height λp(s),

λp(s) = λ0

(
T (s)
106K

)(
1 +

h(s)
R�

)
qλ(L, sH) , (3.6.20)

and the density function ne(s),

n(s) =
p(s)

kBT (s)
. (3.6.21)

All coefficients are mainly functions of the ratio of the heating scale height sH to the
loop half length L, and depend only weakly on the temperature Tmax. This dependence
of the three coefficients a, b, and qλ is characterized by,

a(L, sH) = a0 + a1

(
L

sH

)a2

, (3.6.22)

b(L, sH) = b0 + b1

(
L

sH

)b2

, (3.6.23)

qλ(L, sH) = c0 + c1

(
L

sH

)c2

, (3.6.24)

and the subcoefficients ai, bi, and ci are listed in Table 3.1 for a valid temperature range
of T = 1 − 10 MK.

Also the RTV or Serio’s scaling laws can be expressed with more accurate analyti-
cal approximations, with the coefficients di and ei listed in Table 3.1,

Tmax ≈ (p0L)1/3 × d0

[
exp
(

d1
L0

sH
+ d2

L0

λp

)
+ d3

L0

sH
+ d4

L0

λp

]
, (3.6.25)

EH0 ≈ T 7/2
maxL−2 × e0

[
exp
(

e1
L0

sH
+ e2

L0

λp

)
+ e3

L0

sH
+ e4

L0

λp

]
. (3.6.26)

These approximations have been tested in the parameter space of loop lengths L =
4 − 400 Mm, heating scale heights sH = 4 − 400 Mm, and maximum temperatures
Tmax = 1 − 10 MK. The application is most straightforward by using the parameters
[L, sH , Tmax] as independent parameters. If the base heating rate EH0 is preferred
as the independent parameter (i.e., [L, sH , EH0]), which is more physical from the
point of view of an initial-value problem, an inversion of Tmax is required, which is
approximately,

Tmax(L0, sH , EH0) ≈ 55.2
[
E0.977

H0 L2
0 exp

(
−0.687

L0

sH

)]2/7

. (3.6.27)

A summary of the analytical formulae is given in Table 3.2, where the equations are
listed in the order they need to be calculated (a numerical IDL code is available in the
SolarSoftWare SSW). These analytical approximations also accommodate for: (1) a
finite height s0 of the coronal loop base, at which the base pressure p0 and base heating
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Table 3.1: Coefficients in analytical approximations of hydrostatic solutions

Coefficient Tmax = 1 MK Tmax = 3 MK Tmax = 5 MK Tmax = 10 MK
a0 2.098 2.000 2.055 2.026
a1 0.258 0.343 0.328 0.298
a2 1.565 1.418 1.649 1.570
b0 0.320 0.323 0.329 0.309
b1 −0.009 −0.008 −0.009 −0.009
b2 0.877 0.902 0.852 0.928
c0 0.693 0.699 0.700 0.707
c1 0.026 0.024 0.014 0.029
c2 1.199 1.240 2.427 0.915
d0 1452 1416 1428 1506
d1 −0.074 −0.087 −0.064 −0.036
d2 −0.030 −0.044 0.000 0.001
d3 −0.001 −0.003 −0.023 −0.021
d4 0.015 0.043 0.010 0.011
e0 × 106 0.686 0.831 0.808 0.707
e1 0.558 0.848 0.847 0.685
e2 −0.423 −0.707 −0.634 −0.403
e3 0.548 0.057 −0.058 0.063
e4 0.156 0.365 0.361 0.145

rate EH0 are defined (where the half loop length above the base is called L0 = L−s0);
(2) for an inclination angle θ of the loop plane; (3) for loop expansion factors Γ; as
well as for (4) extremely short heating scale heights sH � L, which require a slightly
modified parameterization of the temperature function T (s) (Eq. 3.6.18).

The scaling laws (using the accurate approximations) are shown in Fig. 3.19 for
the base pressure p0(L, sH , Tmax) (Eq. 3.6.25 and Fig. 3.19), and for the base heating
rate EH0(L, sH , Tmax) (Eq. 3.6.26 and Fig. 3.20). One sees that the base pressure p0

as well as the base heating rate EH0 is always lowest for uniform heating, whereas
both parameters systematically increase with shorter heating scale heights sH or with
temperature Tmax.

3.7 Heating Function

The heating function EH(s) is the least known term in the energy balance equation of
hydrostatic solutions (Eq. 3.6.2), while the radiative loss function ER(s) is well deter-
mined for known elemental abundances (Eq. 2.9.1), and the conductive flux FC(s) is
well-described in terms of Spitzer conductivity (Eq. 3.6.3). The formulation of thermal
conductivity of ionized plasmas in the framework of Spitzer & Harm (1953) assumes
that the electron mean free path is much less than the temperature scale height, which
is generally assumed to be the case in the corona, otherwise models with non-local heat
transport have to be employed (e.g., Ciaravella et al. 1991). The reason why the heating
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Table 3.2: Summary of analytical formulae to calculate hydrostatic solutions and scaling laws.

Constants:
− Height of loopbase: s0 = 1.3 × 108 cm
− Temperature at loopbase: T0 = 2.0 × 104 K
− Solar radius: R� = 6.96 × 1010 cm
− Solar gravity: g� = 2.74 × 104 cm s−2

− Spitzer conductivity: κ = 9.2 × 10−7 erg s−1 cm−1 K−7/2

Independent Variables:
Loop half length L[cm]
Heating scale length sH [cm]
Loop top temperature Tmax[K]
Base heating rate EH0[erg cm−3 s−1]
Loop plane inclination angle θ[deg]
Loop expansion factor Γ ≥ 1
Choice 1: [L, sH , Tmax, θ,Γ]

Choice 2: [L, sH , EH0, θ,Γ] �→ Tmax ≈ 55.2[E0.977
H0 L2

0 exp (−0.687L0/sΓ
H)]2/7

Dependent Parameters:
Half loop length above base L0 = L − s0

Loop height h1 = (2L/π)

Subphotospheric zero point ssub = L
[
(π/2)/ arcsin(1/Γ1/2) − 1

]−1

Equivalent heating scale length sΓ
H = sH if (Γ = 1)

sΓ
H = sH/[1 + lnΓ + 2 ln(sin[(π/2)(sH + ssub)/(2L + ssub)])]

if Γ > 1

Temperature index 1 a = a0 + a1

(
L0/sΓ

H

)a2

Temperature index 2 b = b0 + b1
(
L0/sΓ

H

)b2
Scale height factor qλ = c0 + c1

(
L0/sΓ

H

)c2
Effective gravity geff = g� cos θ

Effective scale height λ0 =
(
2kB106[K]/µmpgeff

)
= 4.6 × 109 (1/ cos θ) cm

Serio scale height λp = λ0

(
Tmax/106K

)
Scaling law factor 1 S1 = d0

[
exp
(
d1L0/sΓ

H + d2L0/λp

)
+ d3L0/sΓ

H + d4L0/λp

]
Scaling law factor 2 S2 = e0

[
exp
(
e1L0/sΓ

H + e2L0/λp

)
+ e3L0/sΓ

H + e4L0/λp

]
Base heating rate (for Choice 1) EH0 = L−2

0 T
7/2
maxS2

Base pressure p0 = L−1
0 (Tmax/S1)3

Analytical Approximations:
Normalized length coordinate z(s) = (L − s)/(L − s0)
Height (in loop plane) h′(s) = h1 sin (s/h1)
Loop cross-sectional area A(s) = Γ sin2 [(π/2)(s + ssub)/(L + ssub)]

Temperature (if sΓ
H/L > 0.3) T (s) = Tmax [1 − za]b

Temperature (if sΓ
H/L ≤ 0.3) T (s) = Tmax[1 − za]b

[
1 + 0.5 10 log (L/sH)(1 − z)z5

]
Conductive flux FC(s) = −κT (s)5/2dT (s)/ds

Pressure scale height λp(s) = λ0

(
T (s)/106K

)
(1 + h′(s)/R�) qλ

Pressure p(s) = p0 exp [−[h′(s) − h′(s0)]/λp(s)]
Density n(s) = (p(s)/2kBT (s))
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Figure 3.19: The scaling law for the base pressure p0(L, sH , Tmax) according to the analytical
approximation (Eq. 3.6.25) (Aschwanden & Schrijver 2002).

function cannot be quantified is simply because neither the dominant physical heating
mechanism of coronal loops nor the spatial distribution function of the energy input is
known. Energy could be conveyed by plasma heating processes in the corona (via mag-
netic reconnection) or in the chromosphere (via particle bombardment), or by means of
waves and turbulence. We will discuss theoretical coronal heating mechanisms in more
detail in § 9. Most of the theoretical heating mechanisms are insufficiently advanced to
quantify their spatial distribution. At this point we are in a situation of trying arbitrary
mathematical functions for the parameterization of the heating function EH(s), which
we explore by fitting the resulting hydrostatic solutions to observations, hoping to find
constraints. A number of heating functions have been proposed, e.g.

EH(s) = EH0 (constant) , (3.7.1)

EH(s) = EH0 exp
(
−s − s0

sH

)
, (3.7.2)
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Figure 3.20: The scaling law for the base heating rate EH0(L, sH , Tmax) according to our
analytical approximation (Eq. 3.6.26), (Aschwanden & Schrijver 2002).

EH(s) = EH0 exp
(

s − L

sH

)
, (3.7.3)

including uniform heating (Eq. 3.7.1) or nonuniform heating, characterized by an ex-
ponential function, either concentrated at the footpoint s ≈ s0 (Eq. 3.7.2) or at the
looptop s = L (Eq. 3.7.3). The case of uniform heating was already treated by Rosner
et al. (1978a), the case of footpoint heating by Serio et al. (1981), while the case of
looptop heating was applied to data by Priest et al. (2000).

In Fig. 3.21 we compare a hydrostatic solution of a uniformly heated loop (with a
heating scale height of sH � L) with that of a footpoint heated loop (with a heating
scale height of sH/L = 0.3). The main effect in the energy balance along the loop
(Fig. 3.21 bottom panels) is that the reduced heat input in the upper part of the loop
requires less heat conduction, and thus less of a temperature gradient dT/ds in the loop
segment above the heating scale height sH

<∼ s < L. Consequently, footpoint heated
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Figure 3.21: Hydrostatic solution for a loop with half length L = 40 Mm, looptop temperature
of Tmax = 1.0 MK, and uniform heating (left panels), and for nonuniform heating sH = L/3 =

13 Mm (right panels). The four panels show the solution of the temperature profile T (s) (top),
the density profile ne(s) (second row), the conductive flux FC(s) (third row), and the energy
balance (bottom row). Note that the footpoint heated loop (left) is more isothermal in the coronal
segment s > sH (Aschwanden et al. 2001).

loops are more isothermal in their coronal segments than uniformly heated loops (see
temperature profiles in Fig. 3.21 top). On the other hand, the temperature gradient and
thus the conductive flux is larger near the footpoints, and thus requires a larger base
heating rate EH0 than uniformly heated loops. Therefore, another characteristic of
footpoint heated loops is their higher base heating rate EH0 and higher base pressure
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Figure 3.22: Hydrostatic solutions of the temperature profile T (s) for near-uniform heating
(s = L) and short heating scale heights (sH/L = 0.04, ..., 1.0). The numeric solutions are
shown in solid lines, the analytical approximations (Eqs. 3.6.18 and 3.7.4) in dashed lines (As-
chwanden & Schrijver 2002).

p0, which is also seen in the scaling laws (Figs. 3.19 and 3.20), and generally produces
a higher density ne(s) along the entire loop than a uniformly heated loop.

The higher degree of isothermality of footpoint heated loops is illustrated in Fig.
3.22, where temperature profiles Te(s) are calculated for a range of short heating scale
heights sH/L = 0.04, ..., 1.0. For very short heating scale heights, say sH/L <∼ 1/3,
we see also that the temperature maximum is not located at the loop apex anymore,
but closer to the footpoints. This means that we have upward thermal conduction in
the upper part of the loop to redistribute the excess of the footpoint heating rate that
cannot be radiated away. The analytical approximation for T (s) (Eq. 3.6.18) needs to
be modified for such short heating scale heights, which can be approximated by,

T ′(s) = Tmax[1 − za]b
[
1 + 0.5 10 log

(
L

sH

)
(1 − z)z5

]
, (3.7.4)

where z = (s − s0)/L − s0) represents the normalized length coordinate, shown as
dashed curves in Fig. 3.22. A comparison with observed temperature profiles, obtained
from the 171/195 Å filter ratio of 41 loops observed with TRACE, indeed reveals that
the temperature profiles are near isothermal in their coronal segments, say at s/L >∼ 0.2,
and thus significantly flatter than in the RTV model with uniform heating (Fig. 3.23,
top panel).
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Figure 3.23: Normalized temperature profiles T (s)/Tmax as a function of the normalized loop
lengths s/L are shown in the top panel, inferred from the TRACE filter ratio of 171 Å and
195 Å in 41 coronal loops. The inferred electron density profiles ne(s) are shown in the lower
panel, compared with hydrostatic solutions of the RTV model with uniform heating. Note that
the observed loops are more isothermal and have higher densities, as expected for a nonuniform
(footpoint) heating function (Aschwanden et al. 2000d).
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Note that the alternative model with uniform heating according to the RTV scaling law of Rosner
et al. (1978a), or using the formalism of Serio et al. (1981) with sH = ∞ are not consistent with
the data (Aschwanden et al. 2000d).

The other hallmark of footpoint heated loops is their enhanced base pressure p0,
or equivalently, their higher density ne(s) throughout the loop. This characteristic is
clearly confirmed in the observed density profiles, as shown from 41 loops observed
with TRACE in Fig. 3.23 (bottom panel). The observed densities are typically an order
of magnitude higher than predicted by the RTV model with uniform heating. The ratio
of the base pressure p0 of a footpoint heated loop to that pRTV

0 of a uniformly heated
loop can be expressed from Eqs. (3.6.14) and (3.6.16),

p0

pRTV
0

= exp
(

0.24
L

sH
+ 0.12

L

λp

)
, (3.7.5)

This overpressure ratio is shown in Fig. 3.24 for the same sample of 41 TRACE ob-
served loops. The longer the loops are, the higher the overpressure ratio is. If we
assume the same heating scale height sH for all loops, we find a best fit of sH =
16.9 ± 6.1 Mm (Fig. 3.24). This is a remarkable result for two reasons: first, the heat-
ing scale height sH seems to be independent of the loop length, showing a variation
of only a factor 1.4, while the loop lengths vary over 2 orders of magnitude; second,
the independence of the heating process on the loop length implies that the energy bal-
ance is accomplished locally, barely depending on the physical conditions at the upper
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Table 3.3: Summary of measurements of heating scale heights sH in coronal loops.

Data set Instrument Method Heating scale height Refs.
41 AR loops TRACE Scaling laws sH = 17 ± 6 Mm Aschwanden et al. 2000a
41 AR loops TRACE Hydrostatic solutions sH = 12 ± 5 Mm Aschwanden et al. 2001
1 limb loop Yohkoh Filter ratios sH ≈ ∞ Priest et al. 1999, 2000

Hydrostatic solutions sH � L Mackay et al. 2000a
Hydrostatic solutions sH ≈ 13 ± 1 Mm Aschwanden 2001a

1 disk loop Yohkoh Hydrostatic solutions sH ≈ 8.4 ± 2.5 Aschwanden 2002c

boundary near the apex of the loop.
This result of the observationally inferred heating rate in the order of sH ≈ 10−23

Mm can be understood in theoretical terms. Since the coronal part of the loop is nearly
isothermal, we can basically neglect the thermal conduction term −∇FC(s) in the
energy equation (Eq. 3.6.2), at least in the coronal segment of the loop. The heating
rate EH(s) is then mainly balanced by the radiative loss, which has a scale length that
is half of the density or pressure scale height λ ≈ λp/2, because the radiative loss is
proportional to the squared density Erad(s) ∝ ne(s)2. The 41 loops observed with
TRACE 171 Å all have a looptop temperature of Tmax ≈ 1.0 MK, which corresponds
to a pressure scale height of λp = 46 Mm, yielding a scale height of λ ≈ λp/2 ≈ 23
Mm for the radiative loss or the balancing heating rate. This argument explains the
observationally inferred heating scale heights of sH

<∼ 23 Mm.
In Table 3.3 we give a summary of measurements of heating scale heights sH in

coronal loops. The first measurements were conducted by applying the scaling law for
loop base pressure as expressed in Eq. 3.7.5 and shown in Fig. 3.24 (Aschwanden et
al. 2000a). A second analysis of the same loop data was done by fitting the fluxes in two
filters from calculated hydrostatic solutions, yielding sH = 12 ± 5 Mm (Aschwanden
et al. 2001), corroborating the initial result. While these results were inferred from
relatively cool EUV loops (T ≈ 1.0 MK), the first attempt to determine the heating
function in hotter loops seen by Yohkoh/SXT was performed by Priest et al. (1999,
2000). These authors found an opposite result with a best fit for uniform or looptop
heating, but since filter ratios with a broadband temperature filter like Yohkoh/SXT are
prone to the hydrostatic weighting bias (§ 3.2), it is likely that the analyzed faint loop
contains contaminations from the background corona. The result of looptop heating
was again criticized because the underlying hydrostatic solutions are not consistent
with the observed location of the transition region at the limb (Mackay et al. 2000a).
The same Yohkoh loop was also re-analyzed with a two-component model that includes
the cooler background corona which accounts for the hydrostatic weighting bias in
first order, finding a heating scale height of sH = 13 ± 1 Mm with this correction
(Aschwanden 2001a). A further case of a hot loop observed by Yohkoh/SXT was
analyzed near the disk center, where background confusion is minimal. This loop
also showed a strong contrast, so that no background modeling was necessary, and a
heating scale height of sH = 8.4 ± 2.5 Mm was found (Aschwanden 2002c). Thus,
we conclude that all measurements that properly account for the hydrostatic weighting
bias yield a fairly small range of heating scale heights of sH ≈ 10 − 20 Mm. The
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Mn/Mg.

dominant heating at the footpoints of loops seems to apply equally to cool EUV and
hotter soft X-ray loops (Neupert et al. 1998; Lenz et al. 1999).

3.8 Instrumental Response Functions

With the knowledge of the hydrostatic solutions, which predict near-isothermal tem-
perature profiles T (s) in the coronal parts of the loops for short heating scale lengths,
sH < L, we expect to observe “complete loops” with narrowband temperature fil-
ters, such as those used on SoHO/EIT and TRACE. If the temperature variation T (s)
along a loop would change by more than a factor of ≈ 1.5, such narrowband filters
would detect only a partial segment of coronal loops. As the loop temperature profiles
T (s)/Tmax observed with TRACE show in Fig. 3.23 (top panel), almost “complete
loops” with a length portion of ≈ 85% − 95% are observed, except the footpoint parts
where the transition to chromospheric temperatures are unobservable with EUV filters.

The instrumental response functions R(T ) of the three TRACE coronal filters and
two Yohkoh/SXT filters are shown in Fig. 3.25. The peak response of each filter essen-
tially determines the temperature of the observed loops. Since the response functions
are relatively narrowband for TRACE, there is not much ambiguity in the temperature
determination. Temperature determinations with triple filters confirmed the unambigu-
ity of double filter methods for most of the practical applications (Chae et al. 2002a).



3.9. OBSERVATIONS OF HYDROSTATIC LOOPS 109

However, caution is needed. Both the TRACE 171 Å and 195 Å filters have also sec-
ondary peaks at temperatures of T ≈ 0.2−0.3 MK, and the 195 Å filter has a secondary
peak at temperatures of T ≈ 20 MK. If emission at T ≈ 0.25 MK or T ≈ 20 MK is
1−2 orders of magnitude brighter than emission of the plasma at 1−2 MK, it can con-
tribute a competing brightness in the TRACE filters. Emission from 20 MK plasma
has been observed in the 195 Å filter at the initial phases of flares (Warren & Reeves
2001).

Yohkoh/SXT has a broadband filter response, with an increasing sensitivity towards
higher temperatures. Thus plasma at T = 2.0 MK is about an order of magnitude
brighter than T = 1.0 MK plasma, or hot plasma with T = 5.0 MK is up to 2 orders of
magnitude brighter in the same filter. Since Yohkoh/SXT does not have a temperature
discrimination like narrowband filters, it always sees a forest of many loops with dif-
ferent temperatures, unequally weighted with preference for the highest temperatures.
Loop modeling with Yohkoh/SXT can, therefore, only be done in terms of differential
emission measure distributions dEM(T )/dT .

3.9 Observations of Hydrostatic Loops

Let us now have a look at observations of hydrostatic loops. Coronal loops in hydro-
static equilibrium are most likely to be found in older active regions that decay and do
not show many signs of new emerging magnetic flux and sporadic heating. Such an
active region was observed with SoHO/EIT on 1996-Aug-30, 0020:14 UT, as shown
in 171 Å in Plate 3. This active region is located close to the disk center, displaying
an obvious dipole-like magnetic field in the east-west direction. So, we see a bundle
of dipolar loops from a top perspective, where most loops are seen incompletely. We
observe only the segments that correspond to their lowest density scale heights, as is
typical for hydrostatic loops. A high-pass filtered image (Plate 3 bottom) shows the
outlines of the dipolar loops more clearly. As the loops obviously exhibit a wide range
of inclination angles, a 3D reconstruction of their geometry is needed in order to prop-
erly measure their vertical density scale height (see § 3.4). This was accomplished
with a method called “dynamic stereoscopy”, which reconstructs the inclination angle
of each loop plane by measuring the stereoscopic parallax effect due to the solar ro-
tation over 1−2 days (Aschwanden et al. 1999a). The results of the reconstructed 3D
geometries of the loops is shown in Fig. 3.26, where the loop outlines are shown from
three orthogonal directions. A comparison image of the same active region 7.2 days
earlier at the east limb (Fig. 3.26 top left) confirms the large range of loop plane in-
clination angles, but reveals a more active phase in the earlier life of the active region,
where many loops (probably postflare loops) are filled with plasma all the way up to
the looptop, far above the hydrostatic scale height.

The analysis of the density profiles is illustrated in Figs. 3.27 and 3.28. The loop
coordinates [x(s), y(s)] parameterized as functions of the 3D loop length s are traced
in Fig. 3.26. The curved loop coordinates aligned with the loop axis s have then to be
transformed into an orthogonal coordinate system (s, r) and the loop-associated fluxes
have to be (bilinearly) interpolated, so that the cross-sectional flux profiles f(r, s) can
be obtained as shown in Fig. 3.27. A background flux has to be modeled to subtract
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Figure 3.26: Three different projections of the stereoscopically reconstructed 30 loops of AR
7986. The loop segments that were traced from the 96-Aug-30, 171 Å image are marked with
thick solid lines, while the extrapolated segments (marked with thin solid lines) represent circular
geometries extrapolated from the traced segments. The three views are: (1) as observed from
Earth with l0, b0 (bottom right panel); (2) rotated to north by b′0 = b0 − 100◦ (top right panel);
and (3) rotated to east by l′0 = l0 + 97.2◦ (corresponding to −7.2 days of solar rotation; bottom
left panel). An EIT 171 Å image observed at the same time (−7.2 days earlier) is shown for
comparison (top left panel), illustrating a similar range of inclination angles and loop heights
as found from stereoscopic correlations a week later. The heliographic grid has a spacing of 50

degrees or 60 Mm (Aschwanden et al. 1999a).
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Figure 3.27: Cross-sectional flux profiles of coronal loops in AR 7986 observed with
SoHO/EIT in 171 Å and 195 Å. The loop coordinate s has been stretched out in the vertical
direction. The background flux profile across a loop cross section is modeled with a cubic spline
fit, the grey areas mark the loop-associated EUV fluxes (Aschwanden et al. 2000a).
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Figure 3.28: The density profiles ne(s) inferred from the loop-associated fluxes shown in
Fig. 3.27 are shown with crosses, while an exponential density profile (solid line) is fitted to
infer the density scale height λn and the associated scale height temperature T λ

e (Aschwanden
et al. 2000a).
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out the loop non-associated EUV fluxes. Once the background-subtracted flux profiles
are obtained, the loop widths w(s) can be measured from the FWHM and the density
ne(s) =

√
EM(s)/w(s) can be determined at locations s from the emission measures

EM(s) corresponding to the loop width-integrated fluxes F (s) =
∫

f(r, s)dr. A fit
of an exponential density profile ne(h) = ne0 exp (−h/λ) can then be performed with
proper coordinate transformation h(s) = hloop sin (πs/2L) cos(θ) (see § 3.4). The
results are shown in Fig. 3.28, along with the inferred scale height temperatures T λ

e

(Eq. 3.1.16). The obtained scale height temperatures T λ
e agree with the filter-ratio

temperatures T filter
e fairly well for this set of loops (see Fig. 3.2), which confirms that

this particular set of loops is close to hydrostatic equilibrium.

3.10 Hydrostatic DEM Distributions

The temperature and density-dependent emission from an observed coronal region
is most conveniently quantified in terms of a differential emission measure (DEM)
distribution dEM(T )/dT , which yields a measure of the relative contributions from
plasmas at different temperatures. Of course, such a DEM distribution cannot be ob-
tained by a measurement in a single filter or wavelength, but has to be assembled from
many filters covering the entire temperature range of interest (see, e.g., Pallavicini et
al. 1981). Differential emission measure distributions are defined either integrated in
one dimension along the line-of-sight,(

dEM(T )
dT

)
dT =

∫ +∞

−∞
dz

∫ T+dT

T

n2
e(z, T )dT (cm−5) , (3.10.1)

or integrated over a unit area A (e.g., per cm2 or per pixel area),(
dEM(T )

dT

)
dT = A

∫ +∞

−∞
dz

∫ T+dT

T

ne(z, T )2dT (cm−3) . (3.10.2)

If we observe a quiet part of the solar corona above the limb, it is likely that it consists
of a myriad of hydrostatic loops, all with different temperatures, which we call a multi-
hydrostatic corona (§ 3.2). The corresponding DEM distribution is then composed of
many elementary DEM distributions from individual hydrostatic loops. Thus, we can
define a DEM of a loop by replacing the column depth dz at temperature T by the loop
segment ds(T )/dT , i.e.

dEM(T )
dT

= A(s)n2
e(s[T ])

ds(T )
dT

(cm−3 K−1) . (3.10.3)

Such elementary DEM distributions of individual loops are then straightforward to cal-
culare from a hydrostatic solution, by using the density profile ne(s) and by inverting
the temperature profile T (s) to obtain ds(T )/dT . We show such hydrostatic DEM
distributions for a variety of loop temperatures, Tmax = 1, 3, 5, 10 MK and expansion
factors Γ = 1, 2, 5, 10, for a loop length L = 40 Mm, for footpoint heating sH = 20
Mm (Fig. 3.29, left), as well as for uniform heating (Fig. 3.29, right). The DEM dis-
tributions of hydrostatic loops are almost δ-functions at T <∼ Tmax due to their near-
isothermal coronal segments, with a faint tail to lower temperatures, resulting from
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uniform heating (sH >> L)

Figure 3.29: Differential emission measure (DEM) distributions of hydrostatic loops, calcu-
lated for a loop length of L = 40 Mm, a heating scale height of sH = 20 Mm (left) and uniform
heating (right), for looptop temperatures of T = 1, 3, 5, 10 Mm, and for expansion factors of
Γ = 1, 2, 5, 10. The histograms represent the numerical hydrostatic solutions, the curves the
analytical approximations (Aschwanden & Schrijver 2002).

the thin transition region segment. The absolute values of the loop DEMs shown in
Fig. 3.29 illustrate the dramatically enhanced weight of hot hydrostatic loops in DEM
distributions, which essentially reflects the fact that soft X-ray loops have significantly
higher pressure and density than the cooler EUV loops (see also scaling laws of base
pressure in Fig. 3.19). When we look at a typical DEM distribution of an active re-
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Figure 3.30: Stellar DEM distributions of χ1 Ori (dotted histogram) and ζ Boo A (solid his-
togram) compared with various model DEM distributions: multi-hydrostatic atmosphere with
uniform heating without flows (thick solid line) and with flows (dot-dashed line), and footpoint
heating sH = 20 Mm without flows (triple-dot dashed) and with flows (long-dashed line) (Schri-
jver & Aschwanden 2002).

gion, say those shown in Fig. 1.21 by Brosius et al. (1996), we clearly see a secondary
peak at temperatures of log(T ) ≈ 6.6 − 7.0, which results from the hotter soft X-ray
loops in active regions. If the majority of loops are in hydrostatic equilibrium, it takes
a much smaller number of hot loops than cool loops to produce a comparable peak in
the DEM distribution at a higher temperature than the myriad of cooler EUV loops that
make up the primary DEM peak originating from the quiet background corona. The
relative DEM scaling shown in Fig. 3.29 demonstrates that a hot hydrostatic loop with
T = 10 MK produces a contribution to the DEM distribution that is several orders of
magnitude larger than the contribution from a cool hydrostatic loop with T = 1.0 Mm.

All of what is known from the emission of a star can be characterized by the DEM
distribution of the total star irradiance. Assuming that most of the loops in a stellar
corona are in hydrostatic equilibrium, the resulting DEM distribution can be modeled
with a small number of parameters, essentially the distribution of the independent pa-
rameters [L, sH , EH0] that define the hydrostatic solutions. Such a stellar DEM model
has been tackled in a recent study (Schrijver & Aschwanden 2002), where a prototype
of a stellar atmosphere was composed by (1) a diffusion-controlled surface magnetic
field, (2) potential field extrapolations of the coronal magnetic field, (3) heating rates
of coronal loops constrained by the magnetic field at the photospheric loop footpoints,
and (4) hydrostatic solutions of the density and temperature profile of the coronal loops.
Some trial DEM distributions with this model are shown in Fig. 3.30. Global DEM dis-
tributions for the Sun have been calculated for different phases of the solar cycle and
for different elemental abundances. The simulated DEMs fit the observed stellar DEMs
(χ1 Ori and ζ Boo A, Fig. 3.30) to some extent, but a major mismatch occurs at temper-
atures of T <∼ 1.0 MK. This unexplained steepness of the DEM at the low-temperature
side has not been successfully modeled so far, and thus provides a powerful constraint.
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Factors that help to make the DEM steeper are short heating scale heights and loop ex-
pansion factors. One effect seems not to be sufficient but a combination of both could
reconcile the theory with the data. Nevertheless, this example shows that hydrostatic
models can even constrain stellar DEM distributions and provide information on stellar
heating functions.

3.11 Summary

The solar corona consists of many isolated loops that have their own gravitational
stratification, depending on their plasma temperature. A useful quantity is the hy-
drostatic scale height, which depends only on the temperature (§ 3.1). Observing
the solar corona in soft X-rays or EUV, which are both optically thin emission, the
line-of-sight integrated brightness intercepts many different scale heights, lead-
ing to a hydrostatic weighting bias towards systematically hotter temperatures
in larger altitudes above the limb (§ 3.2). The observed height dependences of
the density needs to be modeled with a statistical ensemble of multi-hydrostatic
loops, which can be characterized with a height-dependent differential emission
measure distribution (§ 3.3). Measuring a density scale height of a loop requires
careful consideration of projection effects (§ 3.4), loop plane inclination angle,
cross-sectional variation, line-of-sight integration (§ 3.5), and the instrumental re-
sponse function (§ 3.8). Hydrostatic solutions have been computed from the energy
balance between the heating rate, the radiative energy loss, and the conductive
loss (§ 3.6). The major unknown quantity is the spatial heating function (§ 3.7),
but analysis of loops in high-resolution images indicate that the heating function
is concentrated near the footpoints, say at altitudes of h <∼ 20 Mm (§ 3.8−3.9).
Also stellar differential emission measure distributions are sensitive to the heat-
ing function (§ 3.10). Of course, a large number of coronal loops are found to
be not in hydrostatic equilibrium, but nearly hydrostatic loops have been found
preferentially in the quiet corona and in older dipolar active regions.



Chapter 4

Hydrodynamics

Although the Sun appears as lifeless and unchanging to our eyes, except for the mono-
tonic rotation that we can trace from the sunspot motions, there are actually a lot of
vibrant dynamic plasma processes continuously happening in the solar corona, which
can be detected mainly in EUV and soft X-rays. There is currently a paradigm shift
stating that most of the apparently static structures seen in the corona are probably con-
trolled by plasma flows. It is, however, not easy to measure and track these flows with
our remote sensing methods. Imagine you are sitting in an airplane and are looking
down to the Earth’s surface, where you see meandering rivers, but because of the dis-
tance cannot make out whether the water in the river bed is flowing or standing still.
For slow flow speeds, so-called laminar flows, there is no feature to track and water
at rest cannot be distinguished from laminar flows, unless we find a drifting boat or
tree as tracer of the river flow. Turbulent flows may be easier to detect, because they
produce whirls and vortices that can be tracked. A similar situation happens in today’s
solar physics. Occasionally we detect a moving plasma blob in a coronal loop that
can be used as a tracer. Most of the flows in coronal loops seem to be subsonic (like
laminar flows) and thus featureless. Occasionally we observe turbulent flows, which
clearly reveal motion, especially when cool and hot plasma becomes mixed by turbu-
lence and thus yields contrast by emission and absorption in a particular temperature
filter. Another method that is available is the Doppler shift measurement, which how-
ever, measures only the flow component along the line-of-sight. At any rate, we are
at the verge of detecting ubiquitous flows in the solar corona, so it is appropriate to
consider the basic physics of hydrodynamics applied to the coronal plasma.

4.1 Hydrodynamic Equations

While we had a momentum equation (3.6.1) and energy equation (3.6.2) to describe
hydrostatic solutions, the generalization to flows (v �=0) requires a third equation, the
continuity equation, which expresses particle number conservation. For the time-
dependent set of hydrodynamic equations, the operator for the total derivative, which
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contains an advective term that also takes the motion of the fluid into account, is

D

Dt
=
(

∂

∂t
+ v · ∇

)
=
(

∂

∂t
+ v · ∂

∂s

)
, (4.1.1)

where v(s) is the velocity and s the length coordinate along a 1D loop. With this
operator we can express the continuity, momentum, and energy equation in the most
compact form,

D

Dt
ρ = −ρ∇ · v , (4.1.2)

ρ
D

Dt
v = −∇p + ∇pgrav , (4.1.3)

ρT
D

Dt
S = EH − ER −∇FC . (4.1.4)

where S is the entropy per unit mass of the plasma. The left-hand side of the en-
ergy equation (4.1.4) describes the heat changes of the plasma while it moves in space
through different energy sinks and sources, which are specified on the right-hand side
of the energy equation.

The heat or energy equation occurs in many forms in literature, so we derive the
most common forms here. For this purpose we summarize the definitions of a number
of thermodynamic quantities (e.g., Priest 1982). The total number density n, mass
density ρ (with mean mass m), and pressure p for a fully ionized gas (as it is the case
in the corona, i.e., np = ne) are, according to the ideal gas law,

n = np + ne = 2ne , (4.1.5)

ρ = nm = npmp + neme ≈ npmp = nemp , (4.1.6)

p = nkBT = 2nekBT . (4.1.7)

When a plasma is thermally isolated, so that there is no heat exchange with the ambient
plasma, the thermodynamic state is called adiabatic, (i.e., the entropy S is constant),
defined by

S = cv log
(
pρ−γ

)
+ S0 , (4.1.8)

where S0 is a constant. The factor cv is the specific heat at constant volume, relating
to the specific heat at constant pressure cp by the relation

cp = cv +
kB

m
. (4.1.9)

The hydrodynamics of a plasma is generally described with the thermodynamics of a
polytropic gas, which can be characterized by the polytropic index γ,

γ =
cp

cv
(4.1.10)
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which expresses the ratio of the specific heats at constant pressure (cp) and at constant
volume (cv). The polytropic index is theoretically γ = (Nfree +2)/Nfree = 5/3 for a
fully ionized gas, such as hydrogen in the corona, with Nfree = 3 degrees of freedom,
but the effects of partial ionization can make it as low as γ >∼ 1. From Eqs. (4.1.9−10)
we can express the specific heats cp and cv as functions of the polytropic index γ,

cp =
γ

(γ − 1)
kB

m
(4.1.11)

cv =
1

(γ − 1)
kB

m
(4.1.12)

A commonly used thermodynamic quantity is the internal energy e, which is de-
fined in an ideal gas by

e = cvT =
1

(γ − 1)
kBT

m
=

1
(γ − 1)

p

ρ
. (4.1.13)

A related thermodynamic quantity is the enthalpy εenth, which comprises the heat
energy acquired (or lost) at constant volume, plus the work done against the pressure
force when the volume changes, and is defined (per unit mass) by

εenth

m
= cpT =

γ

(γ − 1)
kBT

m
=

γ

(γ − 1)
p

ρ
= γe . (4.1.14)

With these definitions we can now express the energy or heat equation (4.1.4) in the var-
ious forms used in the literature. Inserting the expression for the entropy S, Eq. (4.1.8)
leads to the form (Priest 1982, Eq. 2.28e):

ρcvT
D

Dt
log
(
pρ−γ

)
= EH − ER −∇FC . (4.1.15)

Taking the derivative of the logarithm and inserting the definition of the internal energy
e, Eq. (4.1.13) eliminates the temperature T (Priest 1982, Eq. 2.28d; Bray et al. 1991,
Eq. 5.53):

ργ

(γ − 1)
D

Dt

(
pρ−γ

)
= EH − ER −∇FC . (4.1.16)

Expanding the derivatives on the left-hand side yields (e.g., Field 1965, Eq. 8)

1
(γ − 1)

Dp

Dt
− γ

(γ − 1)
p

ρ

Dρ

Dt
= EH − ER −∇FC , (4.1.17)

and using the continuity equation (4.1.2) eliminates the mass density ρ, so that the
energy equation is expressed in terms of pressure p and velocity v (Bray et al. 1991,
Eq. 5.54),

1
(γ − 1)

Dp

Dt
+

γ

(γ − 1)
p∇v = EH − ER −∇FC . (4.1.18)

Alternatively, the energy equation can be expressed in terms of pressure p and temper-
ature T by using the ideal gas law (Eq. 4.1.7), (Bray et al. 1991, Eq. 5.55)

γ

(γ − 1)
p

T

DT

Dt
− Dp

Dt
= cpρ

DT

Dt
− Dp

Dt
= EH − ER −∇FC . (4.1.19)
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Another form of the energy equation is to express it in terms of the internal energy e,
which is proportional to the temperature T . We can express the pressure as a function
of the internal energy with Eq. (4.1.13) by p = (γ − 1)ρe. Inserting the pressure p
into the energy equation (4.1.18), taking the total derivative, and using the continuity
equation then yields

ρ
De

Dt
+ p∇v = EH − ER −∇FC . (4.1.20)

The hydrodynamic equations (4.1.2−4) for coronal loops can be written more
specifically, in one dimension, with loop coordinate s, by inserting the operator D/Dt
explicitly, using ρ = mn, and the form (Eq. 4.1.20) of the energy equation,

∂n

∂t
+

∂

∂s
(nv) = 0 , (4.1.21)

mn
∂v
∂t

+ mnv
∂v
∂s

= −∂p

∂s
+

∂pgrav

∂r
(
∂r

∂s
) , (4.1.22)

mn
∂e

∂t
+ mnv

∂e

∂s
+ p

∂v
∂s

= EH − ER − ∂FC

∂s
. (4.1.23)

The hydrodynamic equations can be generalized for a variable cross-sectional area
A(s). The operator (4.1.1) for the total derivative can be transformed (in 3D) into a co-
ordinate system that follows the loop coordinate s, with v(s) being the parallel velocity.
Integrating the flux quantities over the perpendicular cross-sectional area

∫
dA(s) and

dividing the equations by the cross section A(s) then yields

∂n

∂t
+

1
A

∂

∂s
(nvA) = 0 , (4.1.24)

mn
∂v
∂t

+ mnv
∂v
∂s

= −∂p

∂s
+

∂pgrav

∂r

(
∂r

∂s

)
, (4.1.25)

mn
∂e

∂t
+

mnv
A

∂

∂s
(eA) +

p

A

∂

∂s
(vA) = EH − ER − 1

A

∂

∂s
(FCA) . (4.1.26)

Note that the area dependence enters the advective terms of scalars (ρ, S, FC), but
cancels out for vectors v [e.g., in the momentum equation (4.1.25), if the nonlinear
terms of pressure gradients due to curvature are neglected].

A physically more intuitive form of the hydrodynamic equations is to express them
in conservative form, which means that the energy equation can be written in terms of
energies that are conserved in their sum, so that the left-hand side contains the changes
in enthalpy εenth, kinetic energy εkin, and gravitational energy εgrav, which have to
balance the heating input (EH ), radiative (ER), and conductive losses (−∇FC ) on the
right-hand side of the energy equation. Note that the energy equation has the physical
dimension of energy density per time (erg cm−3 s−1) in all terms. The total energy is
conserved in a closed system (i.e., when no external forces act on the system). This
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will be the case once the system settles into a steady-state equilibrium with no time
dependence (∂/∂t = 0). The hydrodynamic equations of a 1D loop with variable cross
section A(s) can be written in conservative form,

1
A

∂

∂s
(nvA) = 0 , (4.1.27)

mnv
∂v
∂s

= −∂p

∂s
+

∂pgrav

∂r
(
∂r

∂s
) , (4.1.28)

1
A

∂

∂s

(
nvA
[
εenth + εkin + εgrav

]
+ AFC

)
= EH − ER , (4.1.29)

where the kinetic energy εkin(s) is

εkin(s) =
1
2
mv2(s) , (4.1.30)

and the derivative of the gravitational potential dεgrav/ds is defined by Eqs. (3.1.3−5),

∂εgrav(s)
∂s

= − 1
n

∂pgrav

∂s
. (4.1.31)

We can verify that the energy equation in conservative form (Eq. 4.1.29) is equivalent
to the standard form of the energy equation (4.1.26) with the following few steps. Ig-
noring the cross-sectional dependence (i.e., A(s) = const), the continuity equation
(4.1.27) is ,

∂

∂s
(nv) = 0 . (4.1.32)

This implies that the total derivative d/ds in the energy equation (4.1.29) can be written
as a partial derivative of the energy terms,

∂

∂s
(nvε) = ε

∂

∂s
(nv) + nv

∂ε

∂s
= nv

∂ε

∂s
. (4.1.33)

In the same way, we can simplify the total derivative of the product (pv), because it
contains the product (nv) after inserting the pressure p = nkBT ,

∂

∂s
(pv) =

∂

∂s
(nvkBT ) = kBT

∂

∂s
(nv)+nv

∂

∂s
(kBT ) = nvkB

∂T

∂s
= mnv(γ−1)

∂e

∂s
,

(4.1.34)
where we expressed T in terms of the internal energy e from the definition of Eq. (4.1.13).
The energy equation in conservative form (Eq. 4.1.29), after inserting the definitions
of the enthalpy (Eq. 4.1.14), kinetic energy (Eq. 4.1.30), and gravity (Eq. 4.1.31), and
using the relation of the total derivative (Eq. 4.1.33), reads

v
(
mnγ

∂e

∂s
+ mnv

∂v
∂s

− ∂pgrav

∂s

)
= EH − ER − ∂FC

∂s
. (4.1.35)
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Substituting the momentum equation (Eq. 4.1.28),

mnv
∂v
∂s

− ∂pgrav

∂s
= −∂p

∂s
(4.1.36)

eliminates the term mv(∂v/∂s) in Eq. (4.1.35) and simplifies the energy equation to

mnvγ
∂e

∂s
− v

∂p

∂s
= EH − ER − ∂FC

∂s
. (4.1.37)

We can now insert v(∂p
∂s ) = ∂

∂s(pv) − p∂v
∂s and make use of Eq. (4.1.34),

v
∂p

∂s
=

∂

∂s
(pv) − p

∂v
∂s

= mnv(γ − 1)
∂e

∂s
− p

∂v
∂s

, (4.1.38)

which inserted into the energy equation (4.1.37) yields the standard form of the (time-
independent) energy equation

mnv
∂e

∂s
+ p

∂v
∂s

= EH − ER − ∂FC

∂s
, (4.1.39)

corresponding to the notation given in Eq. (4.1.23). Thus, we have proven that the
standard form of the time-independent hydrodynamic energy equation (4.1.23) is iden-
tical to the conservative form given in (Eq. 4.1.29), and that both describe the same
thermodynamics. These are two of the most basic notations of the hydrodynamic en-
ergy equation, although a number of other variants can be found in the literature (e.g.,
see summaries in Priest 1982 or Bray et al. 1991). Solutions of the time-independent
hydrodynamic equations are also called steady-flow solutions which are described in
the next section.

4.2 Steady-Flow and Siphon-Flow Solutions

The hydrodynamic equations (4.1.21−23) describe relations between the four func-
tions of density n(s, t), pressure p(s, t), temperature T (s, t), and velocity v(s, T ),
which are generally space and time-dependent. We expect that dynamic processes
in loops will be smoothed out after a time scale that corresponds to the sound travel
time through the loop length. Especially for loops with longer lifetimes, we expect
that dynamic processes eventually settle into a near-stationary state, and it is therefore
useful to consider time-independent solutions (∂/∂t = 0), i.e., steady-flow solutions
for n(s), p(s), T (s), and v(s).

A first approach in solving the hydrostatic equations analytically is to ignore the
energy equation Eq. (4.1.23) and instead to assume an adiabatic process (i.e., a constant
entropy with ∂S/∂s = 0 in Eq. 4.1.8), for which

pρ−γ = const ,
d

ds

(
pρ−γ

)
= 0 , (4.2.1)

with γ being the polytropic index Eq. (4.1.10), the ratio of specific heats. Thus the
spatial derivative d/ds of this quantity along the loop coordinate s vanishes in adiabatic
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or polytropic processes, and the expansion of the derivative yields the relation (using
ρ = mn),

∂p

∂s
=
(

γp

ρ

)
∂ρ

∂s
= c2

s

∂ρ

∂s
= mc2

s

∂n

∂s
, (4.2.2)

where the sound speed cs is defined by

cs =
√

γp

ρ
. (4.2.3)

Using the continuity equation (4.1.27) for variable cross sections A(s),

d

ds
(nvA) = 0 , (4.2.4)

and the expansion of the continuity equation, the pressure gradient ∂p/∂s (Eq. 4.2.2)
becomes

∂p

∂s
= mc2

s

∂n

∂s
= −mc2

s

(
n

v
∂v
∂s

+
n

A

∂A

∂s

)
. (4.2.5)

Using the approximation of constant gravity ∂pgrav/∂r ≈ −mng� (Eq. 3.1.5) and
considering semi-circular loops, ∂r/∂s = cos (πs/2L) (Eq. 3.4.3), the momentum
equation (4.1.28) becomes,

mnv
∂v
∂s

= −∂p

∂s
− mng� cos

( πs

2L

)
, (4.2.6)

Inserting the expression for the pressure gradient (4.2.5) then yields a differential equa-
tion for the flow speed v(s),(

v − c2
s

v

)
∂v
∂s

= −g� cos
( πs

2L

)
+

c2
s

A

∂A

∂s
. (4.2.7)

This solution is described in Cargill & Priest (1980) and Noci (1981), and is similar to
the solar wind solution of Parker (1958). The solutions of this differential equation are
depicted in Fig. 4.1. Similar solutions are also studied in Noci & Zuccarello (1983).

The solutions for the flow speed are symmetric on both sides of the loop. If the
initial flow speed at one footpoint is subsonic, the flow speed increases towards the
looptop (s = L), because the continuity equation, n(s)v(s) = const, requires a re-
ciprocal change to the density decrease with altitude. When the flow reaches sonic
speed at the looptop (dashed line), it will become supersonic beyond the summit. But
at some point a discontinuous jump must occur to connect the supersonic flow with the
subsonic boundary condition at the secondary footpoint and the supersonic flow will
be slowed down to subsonic speed. There are also a number of unphysical solutions
shown in Fig. 4.1 (dotted lines). Solutions with subsonic speed throughout the loop are
also called siphon flow solutions, which can be driven by a pressure difference between
both loop footpoints.

While the approach of replacing the energy equation by an adiabatic process reveals
the basic features of hydrodynamic solutions in terms of subsonic and supersonic flows
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Figure 4.1: The flow speed v(s)/cs (normalized by the sound speed) as a function of the nor-
malized loop length s/L according to the steady-flow solution of Eq. (4.2.7), for an isothermal
loop with uniform loop cross section. Flows at the critical speed (dashed line) become supersonic
beyond the loop summit (s=L) and are slowed down from v− to v+ by a shock wave. Unphysical
or fully supersonic solutions are marked with dotted lines (after Cargill & Priest 1980).

v(s), accurate steady-flow solutions for the temperature T (s) and density n(s) require
a rigorous solution of the (time-independent) momentum and energy equations, using
a numeric hydrodynamic code. Essentially, this involves finding a solution for the two
functions T (s) and n(s) from the momentum equation (4.1.22) and energy equation
(4.1.23),

mn(s)v(s)
∂v(s)
∂s

= −∂p(s)
∂s

− mn(s)g�

(
R�
r(s)

)2(
∂r(s)
∂s

)
, (4.2.8)

mn(s)v(s)
∂e(s)
∂s

+ p(s)
∂v(s)
∂s

= EH(s) − ER(s) −∇FC(s) , (4.2.9)

where all terms can be expressed as a function of the temperature T (s) and density
n(s), using the continuity equation (4.1.27) for v(s), the ideal gas equation (4.1.7)
for the pressure p(s), a semi-circular loop geometry (Eq. 3.4.1) for the height r(s),
the enthalpy per mass e(s) (Eq. 4.1.13), a heating function of choice EH(s) (§3.7),
the radiative loss function ER(s) (Eq. 2.9.1), the conductive loss ∇FC(s) (Eq. 3.6.3),
and an arbitrary cross section function A(s) (§3.4). In numeric codes, the following
standard definitions are often used,

v(s) = v0
n0A0

n(s)A(s)
, (4.2.10)
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p(s) = 2ne(s)kBT (s) , (4.2.11)

r(s) = R� +
2L

π
sin
( πs

2L

)
,
dr(s)
ds

= cos
( πs

2L

)
, (4.2.12)

e(s) =
1

(γ − 1)
kBT (s)

m
, (4.2.13)

ER(s) = n(s)2Λ[T (s)] , (4.2.14)

∇FC(s) =
1

A(s)
∂

∂s

[−A(s)κT 5/2(s)
∂T (s)

∂s

]
, (4.2.15)

while the heating function EH(s) and cross section function A(s) can be arbitrarily
chosen. From this full set of equations needed to calculate a steady-flow solution, we
see that a solution depends on the following independent parameters: the loop half
length L, base density n0, base temperature T0, base upflow speed v0, base heating
rate EH0, and cross section A0. In addition, a heating scale height sH is needed for
nonuniform heating, and a loop expansion factor Γ for expanding loops.

In the following we describe some results of steady-flow solutions that have been
found with such hydrodynamic codes or from the asymptotic limit of a time-dependent
simulation. For slow flow speeds, v <∼ cs, the velocity-dependent terms in the mo-
mentum and energy equation can be neglected, and the flow speed is approximately
reciprocal to the density (for a constant cross section) according to the continuity equa-
tion,

v(s) = v0
n0

n(s)
≈ v0

(
n0

n(s)

)
static

(4.2.16)

The solutions of the velocity v(s) and density n(s) are shown for subsonic speeds of
(v < cs) in Fig. 4.2, for a loop with a half length of L = 200 Mm and for a range of
initial upflow speeds v0/cs = 0.001, ..., 1. This example illustrates that the solution
for the density profile does not change much in the presence of flows, it is only a factor
of ≈ 0.7 lower near the looptop or sonic point. The flow speed is always increasing
with height, approximately reciprocal to the density for subsonic zones, but somewhat
faster near the sonic point. The almost identical density and temperature profiles of hy-
drostatic loops and steady-flow loops makes it almost impossible to diagnose subsonic
flow speeds in steady coronal loops (except with measurements of the Doppler shift).

The general case of subsonic siphon flows was studied by a number of authors
(e.g. Mariska & Boris 1983; Craig & McClymont 1986; Orlando et al. 1995a,b). The
most common situation are uni-directional siphon flows, where the overpressure at one
footpoint of the loop drives an upflow, which flows along the entire loop and drains
at the opposite side (Fig. 4.3). The flow may stay subsonic all the time (Fig. 4.3
left) or become supersonic near the looptop (Fig. 4.3 right). If all loop parameters
are chosen symmetrically (spatial heating rate, loop cross section), the solutions in
n(s), T (s), and |v(s)| are also symmetric, except that the flow direction changes the
sign, v(s) = −v(2L− s). Flows driven by asymmetric heating or by asymmetric loop
cross sections were considered by Craig & McClymont (1986). Asymmetric heating
enhances thermal conduction into the direction of decreasing heating rate (Fig. 4.4),
but does not change the temperature or velocity profile much. Asymmetric loop cross
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Figure 4.2: The flow speed v(s)/cs as a function of the loop coordinate s/R� +1 for subsonic
steady-flow solutions, for a loop with a length of L = 200 Mm and a range of initial upflow
speeds v(s)/cs = 0.001, ..., 1. The asymptotic limit v=0 of the hydrostatic solution for the
density n(s) is shown with a thick solid line (bottom panel).

sections mainly affect the flow speed in a reciprocal way, as expected from the continu-
ity equation. The solutions for v(s), T (s), and n(s) calculated by Craig & McClymont
(1986), shown in Fig. 4.4, demonstrate that the temperature T (s) and density profiles
n(s) are not much different from the hydrostatic solutions in the presence of flows (see
also Fig. 4.2), even in the presence of asymmetric drivers. Mariska & Boris (1983) and
Klimchuk & Mariska (1988) also simulated flow solutions with asymmetric heating
sources in the loops and found that the density and temperature profiles were rather in-
sensitive to the location of the heating function. They found the highest flow speed v(s)
in locations that were bracketed by a localized coronal heating source or in converging
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Figure 4.3: Scenario of a (uni-directional) siphon flow model, where an asymmetric pressure
drives an upflow at the left-hand footpoint, which flows through the loop and drains at the op-
posite (right-hand) footpoint. The flow is accelerating with height due to the density decrease
according to the continuity equation. The siphon flow may always be subsonic (left panel), or
become supersonic if the initial speed is high or the loop extends over several scale heights (right
panel). At the sonic point, the resulting shock wave produces a density compression that should
also be observable as a brightening of the emission measure near the looptop.

footpoints, possibly explaining the observed redshifts (v <∼ 5 km s−1) in some spectral
lines (C II, Si IV, C IV) formed in the network at transition region temperatures. Other
effects have been investigated for siphon flow models, such as nonequilibrium ioniza-
tion effects (Noci et al. 1989; Spadaro et al. 1990a,b, 1991, 1994; Peres et al. 1992),
but the same conclusions were confirmed, namely that asymmetric heating cannot ex-
plain large redshifts. Models for stationary siphon flows with shocks were calculated
by Orlando et al. (1995a,b), where they found that, (1) the shock position depends on
the volumetric heating rate of the loop, and (2) there exists a range of volumetric heat-
ing rates that produce two alternative positions for shock formation. Thus, observed
positions of shocks in coronal loops could potentially provide a diagnostic of heating
rates and flow profiles.

4.3 Thermal Stability of Loops

We considered hydrostatic solutions of loops (§ 3) as well as steady-flow solutions
(§4.2), which both assume an equilibrium state. An equilibrium state can be stable
or unstable, depending on whether the system returns to the same equilibrium state
after a disturbance or not. It is important to select the stable solutions amongst the
mathematically possible equilibria solutions, because unstable solutions will never
be observed in the real world. An introduction into instabilities in solar MHD plas-
mas is given in Priest (1982). Most of the instabilities occur at boundaries between
two plasma layers with different physical parameters. Examples in classical mechan-
ics are heavy fluids on top of lighter ones, or waves on water. Examples in plasma
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Figure 4.4: Siphon flow solutions of T (s) and v(s) in an asymmetrically heated loop [with
heating rate Q∗(s)]. Radiative loss R(s), conductive loss C(s), and enthalpy M(s) are also
shown (Craig & McClymont 1986).

physics are the (hydrodynamic) Rayleigh−Taylor instability, where a boundary be-
tween two plasmas of different densities and pressures is disturbed by the gravity force;
the Kruskal−Schwarzschild instability (or the hydromagnetic analog of the Rayleigh−
Taylor instability), where the plasma boundary is supported by a magnetic field; the
Kelvin−Helmholtz instability, where different flow speeds shear at both sides of the
boundary; the convective instability, where convection cells form due to a large tem-
perature gradient; or the radiatively driven thermal instability, where the radiative loss
rate leads to a thermal instability in the case of insufficient thermal conduction.

4.3.1 Radiative Loss Instability

Parker (1953) already pointed out the thermal instability of coronal plasmas as a conse-
quence of the dependence of the radiative loss function on the density and temperature.
A simple derivation of the radiatively driven thermal instability, which occurs in the
case of insufficient thermal conduction, is given in Priest (1982, p. 277). If we ne-
glect thermal conduction (∇FC) and flows (v = 0), and assume a constant pressure
(Dp/Dt = 0) in the time-dependent energy equation (4.1.19), we have

cpρ
∂T

∂t
= EH − ER . (4.3.1)

Defining a heating rate h per unit volume (that is proportional to the number density),

EH = hρ , (4.3.2)
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Figure 4.5: The temperature evolution T (t) of a loop after a small perturbation by −5% from
the equilibrium situation (thick line): for a stable loop (thin line: with a powerlaw slope of a > 1

in the radiative loss function), and an unstable loop (dashed line: with a < 1).

and approximating the radiative loss function ER(s) with a powerlaw function in tem-
perature,

ER = n2Λ(T ) ≈ χρ2T α , (4.3.3)

the energy equation reads (Priest 1982, Eq. 7.69),

cp
∂T

∂t
= h − χρT α . (4.3.4)

Assuming a constant pressure, p(s, t) ≈ p0 = const, the mass density ρ can be substi-
tuted by the temperature T ,

ρ =
mp0

kBT
. (4.3.5)

The heating constant h can be constrained from the equilibrium situation (from Eq. 4.3.4)
and dT/dt = 0,

0 = h − χρ0T
α
0 (s) , (4.3.6)

where the mass density is ρ0 = mp0/kBT0. Substituting h into Eq. (4.3.4) and ρ from
Eq. (4.3.5) then yields an equation for the temperature evolution,

cp
∂T

∂t
= χρ0T

α
0

(
1 − T α−1

T α−1
0

)
. (4.3.7)

From this evolutionary equation, the stability conditions for a purely radiatively
cooling loop can easily be seen. If the exponent α < 1, a decrease in temperature (T <
T0) makes the right-hand side of Eq. (4.3.7) negative, and thus the cooling continues
(with the same sign as ∂T/∂t on the left-hand side), so we have a thermal instability,
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while a loop with α > 1 has a stable behavior (Fig. 4.5). A comparison with the
radiative loss function (Fig. 2.14) shows that α < 1 for temperatures of T >∼ 105 K,
so most of the coronal loops would undergo such a radiatively driven instability in the
case of insufficient thermal conduction. The radiative cooling time τrad follows from
Eq. (4.3.7), using ∂T/∂t ≈ T0/τrad,

τrad =
cp

χρ0T
α−1
0

. (4.3.8)

Some numerical values of radiative cooling times τrad for typical coronal conditions
are given in Table 4.1. If cooling is dominated by thermal conduction, the energy
equation could be written as

cpρ
∂T

∂t
= EH −∇FC = EH +

∂

∂s

(
κT 5/2 ∂T

∂s

)
, (4.3.9)

which yields a conductive cooling time τcond (with approximation ∂T/∂s ≈ T0/L),

τcond =
L2ρ0cp

κT
5/2
0

. (4.3.10)

Therefore, the radiatively driven thermal instability can be prevented if the conductive
cooling time is shorter than the radiative cooling time (i.e., τcond < τrad), which yields
with Eqs. (4.3.8) and (4.3.10) a condition for the maximum loop length (Priest 1978),

L < Lmax =

(
κT

7/2−α
0

χρ2
0

)1/2

. (4.3.11)

Thus, if a loop expands and exceeds this limit of the maximum length Lmax, thermal
instability will take place, cooling down until a new equilibrium is reached, with a
cooler temperature and, consequently, higher density. This process is also called con-
densation and may be important for the formation of coronal loops and prominences.

A general stability analysis of a hydrodynamic system can be performed via two
different methods: (1) a time-dependent perturbation equation is inserted into the hy-
drodynamic equations and the eigen values of the resulting combined differential equa-
tion are determined (with numerical methods) to determine the sign of the growth rate
in the perturbation (normal-mode method or eigen-mode analysis); (2) a small pertur-
bation is added to a hydrostatic solution in a time-dependent hydrodynamic numeric
code, and the time evolution is simulated to see whether the perturbed state returns to
the initial hydrostatic solution or diverges from it.

Thermal instabilities have been pioneered for astrophysical plasmas under general
conditions by Parker (1953) and Field (1965). However, applications to coronal loops
require more specific geometries. Antiochos (1979) examined the stability of hydro-
static solutions in coronal loops, which we describe here as an example of an eigen-
mode analysis. We use the continuity equation (4.1.21), the force equation (4.1.22),
the energy equation in the form of Eq. (4.1.18), a polytropic index of γ = 5/3, neglect
the height dependence of the gravity in the momentum equation (i.e., ∂pgrav/∂r ≈ 0,
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Table 4.1: Radiative cooling times τrad for typical densities n0 and temperatures T0 in coronal
loops (after Priest 1982).

T0 = 0.1 MK T0 = 0.5 MK T0 = 1.0 MK T0 = 2.0 MK
n0 = 108 cm−3 τrad = 440 s 2200 s 3.2 × 104 s 1.3 × 105 s
n0 = 109 cm−3 τrad = 44 s 220 s 3200 s 1.3 × 104 s
n0 = 1010 cm−3 τrad = 4.4 s 22 s 320 s 1300 s

and use a powerlaw parameterization for the heating rate, EH = EH0n
γ1T−γ2 , and

for the radiative loss rate, ER = n2Λ0T
−l,

∂n

∂t
+

∂

∂s
(nv) = 0 , (4.3.12)

mn
∂v
∂t

+ mnv
∂v
∂s

= −∂p

∂s
, (4.3.13)

3
2

∂p

∂t
+

3
2
v
∂p

∂s
+

5
2
p
∂v
∂s

= EH0n
γ1T−γ2 −n2Λ0T

−l − ∂

∂s

(
κT 5/2 ∂T

∂s

)
. (4.3.14)

Inserting a time-independent hydrostatic solution n0(s), T0(s), p0(s), v0(s) = 0,
yields the equilibrium model,

0 = −∂p0

∂s
, (4.3.15)

0 = EH0n
γ1
0 T−γ2

0 − n2
0Λ0T

−l
0 − ∂

∂s

(
κT

5/2
0

∂T0

∂s

)
. (4.3.16)

A perturbation can be described in each variable n(s, t), p(s, t), T (s, t), and v(s, t) by
the general function,

f(s, t) = f0(s) + f1(s) exp (+νt) , (4.3.17)

which is composed of the stationary solution f0(s) and a time-dependent disturbance
with a spatial function f1(s) that is initially exponentially growing or decreasing at a
rate ν, for positive or negative values of ν, respectively. Explicitly, the perturbation
terms for each of the four variables for a hydrostatic solution are (v0 = 0),

n(s, t) = n0(s) + n1(s) exp(+νt) , (4.3.18)

p(s, t) = p0(s) + p1(s) exp(+νt) , (4.3.19)

T (s, t) = T0(s) + T1(s) exp(+νt) , (4.3.20)

v(s, t) = v1(s) exp(+νt) . (4.3.21)

Of course, the pressure p is not independent of the disturbances in density n and tem-
perature T , so the equation of state (e.g., p = nkBT for an ideal gas), yields the lin-
earized relation, from the total derivative of ∂p/∂s = nkB(∂T/∂s) + kBT (∂n/∂s),

p1

p0
=

T1

T0
+

n1

n0
. (4.3.22)
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Inserting the disturbance equations (4.3.18−21) into the time-dependent hydrodynamic
equations (4.3.12−14), and subtracting the hydrostatic solutions (4.2.15−16), and lin-
earizing the powerlaw functions for the heating and radiative cooling terms, yields the
following first-order plasma equations (i.e., the linearized equations without second-
order terms in the perturbed variables),

νn1 +
d

ds
(n0v1) = 0 , (4.3.23)

νmn0v1 = −dp1

ds
, (4.3.24)

3
2
νp1 +

5
2
p0

dv1

ds
− κ

5
7

d

ds2
(T 5/2

0 T1)

= EH0γ1n
γ1−1
0 n1T

−γ2
0 − EH0γ2n

γ1
0 T−γ2−1

0 T1 − 2n0n1Λ0T
−l
0 + n2

0Λ0lT
−l−1
0 T1 .
(4.3.25)

To study perturbations that are entirely located inside the coronal loop, the boundary
conditions of vanishing perturbation pressure, velocity, and heat flux can be imposed.
Using these boundary conditions and changing to dimensionless variables,

x = s/L , (4.3.26)

y =
(

T0

Tmax

)7/2

, (4.3.27)

Antiochos (1979) derived from Eqs. (4.2.23−25) a single eigen-value equation of the
Sturm−Liouville type,

∂

∂x

(
y

∂

∂x
µ

)
+ Q(x)µ + λµ = 0 , (4.3.28)

where the eigen function µ is

µ = y5/14 ∂v1

∂x
, (4.3.29)

and the coefficients Q(x) and λ are,

Q(x) =
1
14

∂2y

∂x2
− 1

y

(
5
14

∂y

∂x

)2

− y

(
∂y

∂x

)−1
∂3y

∂x3
, (4.3.30)

λ = −ν
5
2

p0L
2

κT
7/2
max

, (4.3.31)

with Tmax the temperature at the looptop, and L the loop half length. Since neither the
eigen functions µ(s) nor the the coefficient functions Q(s) and T (s) can be expressed
in closed form, numerical algorithms are needed to determine the eigen functions µ(s)
and the eigen values λ. The stability analysis comes down to determine the sign of the
eigen value λ. If an eigen value λ comes out negative, the growth rate ν is positive ac-
cording to definition (4.3.31), because all other parameters are positive in Eq. (4.3.31),
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and thus the perturbation function (4.3.17) will grow, meaning that the system is un-
stable. If an eigen value λ comes out positive, the growth rate ν is negative, which
means that the perturbation will damp out, and the system will return to its hydrostatic
equilibrium (i.e., it is a stable equilibrium). With this type of stability analysis, Antio-
chos (1979) found that hydrostatic models with vanishing heat flux at the loop base are
unstable, and thus concluded that the transition region is intrinsically dynamic.

Analytical work with the eigen-mode method has been developed to quite sophis-
ticated levels to find thermally stable regimes of coronal loops (for a review see, e.g.,
Bray et al. 1991, p. 312−320). It was found that the thermal stability of coronal loops
depends critically on assumptions of the lower boundary conditions, in particular the
heat flux FC(s = 0) across the loop footpoint and the chromospheric temperature
T (s = 0) (Chiuderi et al. 1981; McClymont & Craig 1985a; Antiochos et al. 1985),
on the stabilizing effects of chromospheric evaporation (McClymont & Craig 1985b),
but also on the stabilizing effects of gravity for large loops (Wragg & Priest 1982).
Of course, the results from analytical stability studies have restricted validity, because
a number of assumptions and approximations (e.g., the radiative loss function) have
to be made to make the problem treatable. So, an obvious next step was to study the
stability problem by means of numerical simulations, which do not suffer from an-
alytical approximations. However, these could still produce unreliable results if the
numerical resolution in the transition region is insufficient. Stable loop solutions were
found in time-dependent simulations for a variety of lower boundary conditions (Craig
et al. 1982; Peres et al. 1982; Mok et al. 1991). We will discuss numerical simulations
of the dynamic evolution of loops in more detail in §4.7.

4.3.2 Heating Scale Instability

Another crucial factor in the question of loop stability is the effect of the heating
function EH(s). Early work assumed a constant heating function (EH(s) = const,
e.g., Rosner et al. 1978a) or a heating rate that is proportional to the loop density
(EH(s) ∝ ρ(s), Eq. 4.3.2, e.g., Priest 1978). Serio et al. (1981) divided hydrostatic
solutions of coronal loops into two classes, depending on whether the temperature max-
imum is at the looptop or below. For the second class (with a temperature maximum
below the looptop), Serio et al. (1981) recognized that some solutions have a den-
sity inversion, and thus are unstable against the Rayleigh−Taylor instability, whenever
∇n · g < 0. From the energy scaling laws Serio et al. (1981) derived a criterion for
unstable loop solutions for heating scale heights sH that are about three times shorter
than the loop half length L, i.e.,

sH
<∼

L

3
. (4.3.32)

Hydrostatic solutions were calculated for a large parameter space of heating scale
heights (4 Mm < sH < 400 Mm) and loop half lengths (4 Mm < L < 400 Mm) by
Aschwanden et al. (2001), finding an approximate limit for unstable loops at sH,Mm

<∼√
LMm. More accurate calculations with a higher resolution in the transition region

(Aschwanden & Schrijver, 2002) revealed a limit that was closer to that given by Serio
et al. (1981) (i.e., Eq. 4.3.32). Critical heating scale heights sH were also independently
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Figure 4.6: The temperature (a) and density (b) solutions for a L = 20 Mm loop with three
different values around the critical heating scale height sH . The locations of the maximum and
minimum temperatures are shown with arrows (Winebarger et al. 2003b).

Figure 4.7: (a) The critical heating scale height sH(L) for loops with an apex temperature of
T = 1.0 (Serio et al. 1981; Aschwanden et al. 2001) and for T = 1.0, 3.0, 10.0 MK (Winebarger
et al. 2003b). The critical heating scale heights correspond to slightly different loop stability
criteria in the different works. (b) The corresponding maximum density enhancements at the
critical heating scale height are shown for T = 1.0, 3.0, 10.0 MK (Winebarger et al. 2003b).

determined with a hydrodynamic code in the same parameter space by Winebarger et
al. (2003b), where the instability limit, defined by a temperature maximum Tmax(s)
below the looptop (s < L), was found to have the following dependence on the loop
length L and temperature T ,

( sH

1 Mm

)
<∼ A(T )

(
L

1 Mm

)δ(T )

(4.3.33)
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Table 4.2: Flow measurements in the corona (T > 0.5 MK).

Observer Instrument Wavelength Temperature Flow speed
Coronal holes:
Cushman & Rense (1976) rocket Si XI, 303 Å < 1.4 MK 13±5 km s−1

Mg X, 610 Å 1.1 MK 12±5 km s−1

Mg IX, 368 Å 1.0 MK 14±3 km s−1

Rottman et al. (1982) rocket Mg X, 625 Å 1.4 MK 12 km s−1

Orrall et al. (1983) rocket Mg X, 625 Å 1.4 MK 8 km s−1

Quiet Sun regions:
Hassler et al. (1991) rocket Ne VIII, 770 Å 0.6 MK 0±4 km s−1

Mariska & Dowdy (1992) Skylab Ne VII, 465 Å 0.5 MK 0±18 km s−1

Brekke et al. (1997b) Ne VIII, 770 Å 0.6 MK 5 ± 1.5 km s−1

Ne VIII, 770 Å 0.6 MK 6 ± 3 km s−1

Mg X, 625 Å 1.1 MK 6 ± 1.5 km s−1

Active regions, plages:
Mariska & Dowdy (1992) Skylab Ne VII, 465 Å 0.5 MK < 70 km s−1

Brekke (1993) HRTS Fe XII, 1242 Å 1.3 MK 7±4 km s−1

Above sunspots:
Neupert et al. (1992) SERTS Mg IX, 368 Å 1.1 MK 14±3 km s−1

Active region loops:
Brekke et al. (1997a) SoHO/CDS Mg IX, 368 Å 1.0 MK < 50 km s−1

SoHO/CDS Mg X, 624 Å 1.0 MK < 50 km s−1

SoHO/CDS Si XII, 520 Å 1.9 MK ≈ 25 km s−1

SoHO/CDS Fe XVI, 360 Å 2.7 MK ≈ 25 km s−1

Winebarger et al. (2001) TRACE Fe IX/X, 171 Å 1.0 MK 5 − 20 km s−1

Winebarger et al. (2002) SUMER Ne VIII, 770 Å 0.6 MK 40 km s−1

with numerical parameters A(T ) = 0.83, 1.2, ..., 0.68 and δ(T ) = 0.75, 0.73, ..., 0.93
in the temperature range of T = 1, 2, ..., 10 MK. An example of a temperature and
density solution is shown in Fig. 4.6, while a comparison of the critical limits sH(L)
from Serio et al. (1981), Aschwanden et al. (2001), and Winebarger et al. (2003b) are
shown in Fig. 4.7. As a rule of thumb, we can say that loops that are heated over a
scale height of less than a third of the loop half length are expected to be dynamically
unstable.

4.4 Observations of Flows in Coronal Loops

Before the advent of SoHO, most of the flow measurements were reported from the
chromosphere and transition region below temperatures of T <∼ 0.25 MK (e.g., see Ta-
ble II in Brekke et al. 1997b). In the hotter portions of the solar transition region, a
few flow velocities were reported in coronal holes (Table 4.2) from rocket flights in the
pre-SoHO era (Cushman & Rense 1976; Rottman et al. 1982; Orrall et al. 1983), of the
order of v= 8−16 km s−1. In quiet Sun regions, no significant flow speeds were found
(Hassler et al. 1991) or only very marginal ones in the order of ≈ 5 km s−1 (Brekke
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A

C

B

Figure 4.8: Active region loop system above the east limb observed with SoHO/CDS in O V
on 1996 July 27, 10:00 UT. The Doppler-shifted line profiles (right frame) are measured at three
different spatial positions (A,B,C, left frame) (Brekke et al. 1997a).

et al. 1997b). Significant flow speeds, in the order of ≈ 5 − 50 km s−1, were discov-
ered in active region loops mainly with SoHO/CDS (Brekke et al. 1997a), but also with
SoHO/SUMER (Winebarger et al. 2002) and with TRACE (Winebarger et al. 2001). Is
is likely that flows exist in the majority of active region loops, but their measurement
is difficult with every existing method, because: (1) if spectrographs (such as CDS or
SUMER) are used, then the Doppler shift can only be measured along the line-of-sight
and may largely cancel out in images with insufficient spatial resolution, and (2) if
high-resolution imaging (such as TRACE) is used, then only inhomogeneities in flow-
ing plasmas can be tracked, while laminar flows appear indifferent to static loops. In
the following we describe some of the few existing coronal flow measurements.

SoHO/CDS measurements of high-speed velocities in active region loops were re-
ported by Brekke et al. (1997a), displaying large Doppler shifts of the O V, 629 Å line
at coronal locations in a loop system above the east limb (Fig. 4.8). At position A, a
blueshifted velocity of v≈ 60 km s−1 (towards the observer) was measured relative
to the quiet Sun line profile (Fig. 4.8, right). At the opposite loop side (at position
B) there is no evidence for significant flows. This asymmetry cannot be explained
by a uni-directional siphon flow, but possibly indicates a one-sided catastrophic cool-
ing with rapid downflow, or perhaps the positions A and B might even belong to two
different loops that cannot be discriminated in the CDS image. In a loop nearby (at lo-
cation C), a redshifted flow with a speed of v≈ 25 km s−1 was detected, which cannot
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Figure 4.9: Top left: TRACE 171 Å image of fan-like loops in Active Region 8396 observed
near the Sun center on 1998 Dec 1, 01:00:14 UT, shown with a field-of-view of 270 Mm. Bottom
left: intensity profiles along loop #3 over a projected distance of 15 Mm taken at 4 different
times. Right side: grey-scale representation of the flux along loop #3 (over a segment of 15 Mm)
observed at 10 time intervals after 01:40:35 UT, with the footpoint of the fan-like loop on the left
side (Winebarger et al. 2001).

be identified as downflow or upflow because of the unknown orientation of the loop
plane. Brekke et al. (1997b) also measured high Doppler shifts in coronal lines such
as Mg IX 368 Å and Mg X 624 Å, corresponding to plasma velocities of v ≈ 50 km
s−1. However, those lines are contaminated by blends, which limits the accuracy of
velocity measurements. While the largest speeds are measured in O V, which probably
corresponds to cooling downflows (with a temperature of T ≈ 0.25 MK), velocities in
coronal temperatures (T >∼ 1.0 MK) are generally found to be subsonic (v< 150 km
s−1).
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Apparent flows in active regions can also been measured by feature tracking. An
example of such a measurement is shown in Fig. 4.9, observed with TRACE in Fe
IX/Fe X (171 Å) in Active Region 8395 on 1998 December 1 (Winebarger et al. 2001).
A bundle of fan-shaped loops (Fig. 4.9, top left panel) shows an increase in intensity
that propagates along loop #3, which is interpreted as a tracer of apparent flows. A time
sequence of 4 brightness profiles is shown in Fig. 4.9 (bottom left panel) and a sequence
of 10 brightness maps of stripes extracted along loop #3 are shown in Fig. 4.9 (right
panel). The projected velocity of the leading edge was measured to v= 15.9±3.1 (loop
#1), 13.4±1.6 (loop #2), 16.9± 2.1 (loop #3), and 4.6±1.2 km s−1 (loop #4) for four
different upflow events, each one lasting between 2 and 5 minutes. These dynamic
features in plasmas with a temperature of T ≈ 1.0 MK represent upflows of heated
plasma from the chromosphere into the corona, because they could not be reproduced
with quasi-static changes in hydrostatic loop models without flows. The measured
velocities probably represent only lower limits to the actual flow speeds, because of
projection effects as well as due to the convolution with spatial brightness variations.
The conclusion of upflowing plasma was corroborated with SUMER Ne VIII Doppler
shift measurements in a similar bundle of fan-shaped loops observed with TRACE
171 Å, which exhibited a line-of-sight flow speed of v <∼ 40 km s−1 (Winebarger et
al. 2002). The same temperature of 105.95±0.05 K was measured with the SUMER (Ne
VIII, Ca X, Mg IX) lines and in the TRACE 171 Å passband.

The filling of coronal loops can be quite dynamic, especially for cool loops. An
example is shown in Fig. 4.10, observed with TRACE in the C IV line, which has
a formation temperature of 60, 000 − 250, 000 K. A bundle of magnetic field lines
are filled by upflows from one footpoint, which propagate to the opposite footpoint
similar to a uni-directional siphon flow scenario (Fig. 4.3). Given the 30 s cadence
in the 9 frames shown in Fig. 4.10 and the average loop length of L ≈ 40 Mm, we
estimate a speed of v≈ 40,000 km/(8× 30 s) ≈ 170 km s−1 for the leading edge,
which corresponds to a supersonic speed with a Mach number of about M = v/vth ≈
4. Comparing such highly dynamic images, where cool loops change on time scales
shorter than 1 minute, with a CDS image as shown in Fig. 4.8, which took 17 minutes
for a full raster scan, it is perhaps not surprising that most of the flows are not properly
resolved in CDS images. Thus, the Doppler shift measurements reported by CDS
represent only lower limits and averages over unresolved flows, which can even cancel
out in the case of counterflows.

Although we have described a few analyses of flow measurements with high speeds
in coronal loops, Doppler shift measurements with velocities of v≈ 20 − 100 km s−1

are more common in the transition region [i.e., at temperatures from 10,000 K (He
I, 584 Å) to 500,000 K (Ne VI, 563 Å), while at coronal temperatures, e.g., in Mg
IX (368 Å)] and particularly in Fe XVI (360 Å), large Doppler shifts are much less
frequent (Fredvik et al. 2002). There are also more complicated flow patterns than uni-
directional (or siphon) flows that have been observed in active region loops, such as
helical or rotational flows in apparently sheared or twisted loops (Chae et al. 2000a),
bi-directional or counter-streaming flows (Qiu et al. 1999), or highly fragmented down-
flows in catastrophically cooling loops, also called coronal rain (Foukal 1987; Schrijver
2001a). Doppler-shifted emission, although it is a diagnostic of plasma motion, does
not necessarily have its only explanation in terms of steady flows, it also can be pro-
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Figure 4.10: The filling of coronal field lines with cool chromospheric plasma in the tempera-
ture range of 60, 000−250, 000 K observed with TRACE in the C IV, 1550 Å line. The sequence
of images starts at the bottom left and continues in upward direction, each frame separated by
≈ 30 s. The field-of-view is 40 Mm, and rotated by 90◦ counterclockwise (courtesy of Paal
Brekke).

duced by waves or oscillations. The latter, as we will see in § 7, can be distinguished
from steady flows by the phase shift between velocity and intensity modulations.

4.5 Observations of Cooling Loops

Temperature changes that are observed in coronal loops are a result of the imbalance
between heating and cooling rates. Multiple temperature filters are required to study
such dynamic processes. Curiously, not much quantitative studies of these dynamic
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Figure 4.11: TRACE 171 Å images of 5 loops, outlined with some inner and outer curvature
radii. The dashed segments, mostly located near the looptop, were used to measure the intensity
as a function of time, as shown in Fig. 4.12 (Winebarger et al. 2003a).

processes have been performed, although multi-temperature filters with high spatial
resolution have been available for a decade, on Yohkoh, SoHO, and TRACE. The first
detailed quantitative studies appeared only recently, described below.
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Figure 4.12: The intensities of the five loops in the 284 Å, 195 Å, and 171 Å filter as a function
of time. The solid curves are fits of asymmetric Gaussians to each light curve and the arrows
indicate the appearance time in each filter image, when the loop reaches half of the maximum
flux (Winebarger et al. 2003a).

4.5.1 Cooling Delays

In the study of Winebarger et al. (2003a), a set of 5 active region loops was selected
according to the following criteria: TRACE observations in multiple filters (171, 195,
and 284 Å, if possible), at least 1-hour time coverage, no postflare loops, not obscured
throughout their lifetime, and a somewhat secluded location to allow for accurate back-
ground subtraction. These 5 selected loops are shown in Fig. 4.11, exhibiting a range
of sizes from L ≈ 26 Mm to 356 Mm. All of these loops are found to show a tem-
poral evolution with a rise and fall in flux during the observing periods. However, the
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rise and fall times are not simultaneous in different temperature filters. The rise time
(indicated with arrows at FWHM in Fig. 4.12) always occurs first in the highest tem-
perature filter and sequentially later in the cooler temperature filters. This is exactly
the behavior expected for a cooling plasma. The cooling process is most convincingly
shown for loop #2 (in Fig. 4.12), which was observed with 3 temperature filters. The
delays of the rise times between the 195 Å and 171 Å filters were measured to be
∆t195−171 = 2.5, 23, 23, 10, and 183 minutes for these 5 loops. The FWHM durations
of the flux in each filter were compared with the expected lifetimes based on cooling
of a single-temperature plasma, and it was found that the observed lifetimes of the
loops were significantly longer than the estimated ones (in 4 out of the 5 cases), which
was interpreted in terms of multiple loop strands with different temperatures and dif-
ferent cooling onset times. Furthermore, an approximate linear correlation was found
between the cooling delay and the loop length (i.e., ∆t195−171 ∝ L).

4.5.2 Iron Abundance and Filling Factors

These observed properties of cooling times and their linear scaling to the loop lengths
reveal physical relations that can be analytically derived and be used to determine the
coronal iron abundance (Aschwanden et al. 2003a). Let us describe the plasma cooling
through a narrow temperature range by an exponential function in the first approxima-
tion,

Te(t) = T1 exp
(
− t

τcool

)
, (4.5.1)

where T1 is the initial temperature at time t = 0 and τcool is the cooling time. Cooling
over large temperature ranges would require the full consideration of the hydrodynamic
equations, but the exponential approximation is fully justified for the narrow temper-
ature range of Te ≈ 1.0 − 1.4 MK we are considering here, during the cooling of
coronal loops through the two TRACE 171 and 195 Å filters. So, when a cooling
plasma reaches the temperature T1 of the peak response of the hotter filter (T1 = 1.4
MK for TRACE 195 Å), the time delay ∆t12 to cool down to the cooler filter T2 (e.g.,
T2 = 0.96 MK for TRACE 171 Å), can be expressed with Eq. (4.5.1) as

∆t12 = t2 − t1 = τcool ln
(

T1

T2

)
. (4.5.2)

The cooling time scale could be dominated by thermal conduction losses in the initial
phase, but is always dominated by radiative losses in the later phase. So, as a working
hypothesis, we assume dominant radiative cooling, which is particularly justified near
the almost isothermal looptops (where conductive cooling is very inefficient due to the
small temperature gradient), and is also corroborated by the observational result found
in Aschwanden et al. (2000a), where a median value of τcool/τrad = 1.02 was obtained
from the statistics of 12 nanoflare loops observed with TRACE 171 and 195 Å. Thus
we set the cooling time τcool equal to the radiative cooling time τrad,

τcool ≈ τrad =
εth

dER/dt
=

3nekBTe

nenHαFIP Λ(Te)
, (4.5.3)
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where ne is the electron density, nH the hydrogen density, Te the electron temper-
ature, kB the Boltzmann constant, αFIP the abundance enhancement factor for low
first ionization potential elements, and Λ(Te) the radiative loss function, which can
be approximated with a constant in the limited temperature range of Te ≈ 0.5 − 2.0
MK, according to the piecewise powerlaw approximation of Rosner et al. (1978a), see
Fig. 2.14,

Λ(T ) ≈ Λ0 = 10−21.94 (erg s−1 cm3), for T ≈ 0.5 − 2.0 MK . (4.5.4)

Inserting this radiative loss function into the time delay (Eq. 4.5.2) we find

∆t12 =
3kBTe

nHαFIP Λ0
ln
(

T1

T2

)
. (4.5.5)

The computation of the radiative loss function at a given temperature depends on the
elemental atomic abundances, and thus we define a reference value Λ0,ph for photo-
spheric abundances. Coronal abundances generally show a density enhancement for
low first ionization potential (FIP) elements (§2.10), which we express with an en-
hancement factor αFIP . Since the radiative loss scales with this FIP enhancement
factor, we obtain for the coronal value of the radiative loss function Λ0,Cor (e.g., when
iron (Fe) ions dominate),

Λ0,cor = Λ0,ph × αFe . (4.5.6)

The cooling delay ∆t12 as a function of the coronal iron abundance αFe is, assuming
full ionization in the corona (nH = ne), thus,

∆t12 =
3kBTe

neαFeΛ0,ph
ln
(

T1

T2

)
. (4.5.7)

When a loop cools through a passband, the maximum of the flux F (t) is detected at
the time when the loop temperature matches the peak of the response function, R2 =
R(T2), so the peak flux F2 of the light curve in the lower filter corresponds to the
differential emission measure EM at the filter temperature T2,

F2 = EM × R2 = (n2
ewqfill) × R2 (4.5.8)

with the flux F2 in units of DN/(pixel s), w is the loop width or diameter, qfill is the
linear filling factor in the case of unresolved substructures, and R2 is the response
function, which is R2 = 0.37 × 10−26 cm5 DN/(pixel s) for 171 Å and photospheric
abundances (see Appendix A in Aschwanden et al. 2000c). Inserting the density from
Eq. (4.5.8) into Eq. (4.5.7) we find the following expression for the iron abundance
αFe,

αFe =
3kBT2

Λ0,ph∆t12

√
R2wqfill

F2
ln
(

T1

T2

)

αFe = 4.17
(w qfill

1 Mm

)1/2
(

F2

10 DN/s

)−1/2( ∆t12
1 min

)−1

. (4.5.9)

For a filling factor of unity (qfill = 1), the iron enhancement factor can be determined
with an accuracy of about <∼ 20%, because the observables w, F2, and ∆t12 can each
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Figure 4.13: Cooling delays ∆t12 are measured between the peak time in the TRACE 195 Å
and 171 Å filters, as a function of the loop half length L, from three data sets with 11 nanoflare
loops (crosses; Aschwanden et al. 2000c), 4 active region loops (diamonds; Schrijver 2001a),
and 5 active region loops (triangles; Winebarger et al. 2003a). The thick line represents a linear
regression fit with a slope of 0.94±0.12. The theoretically predicted scaling laws (based on RTV
and Serio et al. 1981, with sH = L/3) are shown for an iron enhancement factor of αF e = 1.0

(dotted) and αF e = 4.0 (dashed) (Aschwanden et al. 2003a).

be measured better than <∼ 10%. In case of unresolved fine structures (i.e., filling
factors of qfill < 1), we obtain with Eq. (4.5.9) at least a firm upper limit for the
iron enhancement. With this method, the following values were found in the study of
Aschwanden et al. (2003a),

αFe ≤ 4.9 ± 1.7 for 11 nanoflare loops [Aschwanden et al. 2000c]
≤ 1.4 ± 0.4 for 5 coronal loops [Winebarger et al. 2003a] .

(4.5.10)
Interestingly, the iron enhancement was found to be higher in the short-lived (≈ 10
min) nanoflare loops than in the longer lived (few hours) coronal loops. The enhance-
ment factors of order αFe ≈ 4 are typical for coronal abundances, as evidenced by
other studies (e.g., Feldman 1992; White et al. 2000). So, this method independently
corroborates the previous finding that low-FIP elements such as Fe are enhanced in the
corona, at least initially after the filling of a coronal loop with heated chromospheric
plasma. The fact that we find a lower value in longer lived loops, almost compatible
with chromospheric abundances, could be interpreted in terms of a depletion process
that occurs after the initial filling phase.
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4.5.3 Scaling Law of Cooling Loops

By the same token, we can also explain the proportionality of the cooling delay ∆t12
with the loop length L, found by Winebarger et al. (2003a). We can make use of
the energy balance equation (§3.6), which is valid in a steady state before the cooling
process, at the turning point from dominant heating to dominant cooling, or at the
turning point from dominant conductive cooling to radiative cooling. Using the RTV
scaling law of Rosner et al. (1978a),

Tmax ≈ 1400(p0L)1/3 × qSerio (4.5.11)

with p0 the pressure and L the loop half length, generalized for gravity and nonuniform
heating by Serio et al. (1981), with the correction factor

qSerio = exp
(
−0.08

L

sH
− 0.04

L

λp

)
, (4.5.12)

where sH is the heating scale length and λp = 47, 000×TMK km is the pressure scale
height. Using the ideal gas law we can eliminate the pressure p,

p = 2nekBTmax = p0qp , qp = exp
(
− h

λp

)
= exp

(
− 2L

πλp

)
. (4.5.13)

in the RTV scaling law and find the following expression for the density ne (with the
understanding that the density is measured at the same location as Tmax, which is
generally at the looptop for RTV loops),

ne =
T 2

maxqp

2kBL(1400 qSerio)3
. (4.5.14)

Inserting this density into the relation for the cooling delay (Eq. 4.5.7) we indeed find
a proportional relation ∆t12 ∝ L,

∆t12 = L ×
[
6 (1400 qSerio)3 k2

B

TmaxΛ0,phαFeqp
ln
(

T1

T2

)]
. (4.5.15)

which should show up for cooling loops with similar maximum temperatures Tmax. In
Fig. 4.13 we show cooling times ∆t12 versus loop lengths L observed in 20 different
loops. A linear regression fit yields a slope of 0.94 ± 0.12, which is fully compatible
with the theoretical prediction of a linear relationship. Also the absolute value of the
linear regression fit yields a mean abundance enhancement of αFe ≈ 4.0, which is
consistent with spectroscopic measurements (Feldman 1992).

4.5.4 Catastrophic Cooling Phase

The cooling process of coronal loops can be traced from coronal temperatures (T >∼ 106

K) in EUV wavelengths all the way down to transition region temperatures (T <∼ 104

K) in Hα and Lyman-α wavelengths. Downflowing material observed in coronal loops
in Hα wavelengths, with typical speeds of v≈ 30 km s−1 (Brueckner 1981), many
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Figure 4.14: TRACE light curves of 4 cooling loops measured at the looptops, normalized to
the minimum and maximum intensity during an interval of 3200 s. In each panel, 4 curves are
shown taken with different filters: 195 Å (solid lines, diamonds), 171 Å (dotted lines, asterisks),
1600 Å (dashed lines, plus symbols), and 1216 Å (dashed-dotted lines, triangles). Note the
similar but delayed evolution of the intensity rise in each filter, sequentially peaking in order of
decreasing temperatures (Schrijver 2001a).

pressure scale heights above the gravitational scale height expected for cool Hα ma-
terial, has been dubbed coronal rain (e.g., Foukal 1978, 1987). Recent observations
with TRACE, taken with a cadence of 90 s, clearly show the entire cooling process,
starting with dominant radiative cooling in EUV and progressing into a phase of catas-
trophic cooling followed by high-speed downflows with temperatures of T <∼ 100, 000
K (Schrijver 2001a). In Fig. 4.14 the light curves of 4 cooling loops are shown, ob-
served in 195 Å (Fe XII, T ≈ 1.5 MK), 171 Å (Fe IX, Fe X, T ≈ 1.0 MK), 1600
Å (C IV, 0.1 MK), and 1216 Å (Lyman-α, C II, C IV; T ≈ 20, 000 − 100, 000 K).
The light curves peak in consecutively cooler temperatures, as expected for a cooling
plasma, with typical cooling times of τcool ≈ 103 s. Once catastrophic cooling starts,
cool material is observed to form clumps and to slide down on both sides of the loops
with speeds up to 100 km s−1, but the downward acceleration was found to be no more
than 80 m s−2, less than 1/3 of the surface gravity (Schrijver 2001a). All these cool-
ing processes were observed in quiescent (nonflaring) loops in active regions, and are
probably an inevitable consequence once heating stops and the loops become thermally
unstable. Comprehensive hydrodynamic modeling of the spatio-temporal evolution of
these heating and cooling processes is still lacking.
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Figure 4.15: TRACE 171 Å images of selected active region loops. The selected loops are out-
lined with dashed lines, while the analyzed density profiles ne(s) were measured in the segments
marked with solid linestyle. All partial images are shown on the same spatial scale, according to
the scale bar at the bottom. The loops are numbered according to their length, with #1 being the
smallest loop (L = 4 Mm) and #41 the largest loop (L = 324 Mm). Black color corresponds to
high EUV intensity (Aschwanden et al. 2000d).
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Figure 4.16: See description in Fig. 4.15.

4.6 Observations of Non-Hydrostatic Loops

In §3.9 we reported on observations of hydrostatic loops, based on the criterion that
their density profile as a function of height ne(h) corresponds roughly to the gravita-
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Figure 4.17: See description in Fig. 4.15.

tional scale height that is expected for a given loop temperature. Loops are expected
to reach such a hydrostatic equilibrium in older active regions, where no impulsive
heating or steady-state heating occurs, or in the initial phase of cooling after heating
stopped, as long they are thermally stable.
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Figure 4.18: See description in Fig. 4.15.

4.6.1 TRACE Observations

However, recent TRACE observations now allow us to clearly distinguish between
loops in hydrostatic equilibrium and those that are not in hydrostatic equilibrium, based
on spatially resolved density profiles ne(h) measured as a function of height h. We
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Figure 4.19: The ratio qλ of scale heights λp (inferred from the best fits to the observations)
to the hydrostatic scale height λRTV is shown as a function of the loop length L in the top
panel. Note that short loops with a half length of L <∼ 80 Mm have scale heights close to the
hydrostatic equilibrium scale height, while they become systematically longer for larger loops,
up to about qλ = 4 hydrostatic scale heights. From the 41 loops shown in Figs. 4.15−18, only
measurements from a subset of 29 loops with relatively small uncertainties (σqλ/qλ ≤ 0.7) are
shown (Aschwanden et al. 2000d).

describe here a data set of 41 observed EUV loops that turned out to be mostly non-
hydrostatic (Aschwanden et al. 2000d). These loops were selected by the criterion of
significant contrast above the background over the entire length of the loops, which
obviously constitutes a bias for high densities at the looptop in the case of large loops
that extend over several density scale heights, and thus prefers nonhydrostatic loops.
The images of the selected 41 loops are shown in Figs. 4.15−18, having a large variety
of sizes, with half lengths of L = 4−324 Mm, all shown on the same scale. Almost all
of these loops were observed in active regions without previous flaring, except for the
loops #6 and #16, where a C5.7 flare occurred 7 hours earlier, and the loops #30, #31,
#33, #37, where a M3.0 flare occurred 8 hours earlier. Two of these loops (#2 and #23,
both in Fig. 4.16 top panels) were also analyzed by Winebarger et al. (2003a), shown
as cases #1 and #2 in Figs. 4.11 and 4.12, and were both identified to be in a cooling
phase. The cooling process is clearly an indication that these loops do not have an en-
ergy balance between heating and cooling, and thus are not likely to be in hydrostatic
equilibrium.

The nonhydrostaticity of the selected loops has been diagnosed from inferring the
pressure scale height λp from their density ne(s) and temperature profiles Te(s), which
was found to be in excess of the expected temperature scale height λT = 47 × TMK
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Figure 4.20: An active region with many loops that have an extended scale height of
λp/λT

<∼ 3 − 4 (left panel) has been scaled to the hydrostatic thermal scale height of T = 1

MK (right panel). The pressure scale height of the 1 MK plasma is λT = 46 Mm, but the
observed flux is proportional to the emission measure (F �→ EM �→ n2

e), which has the half
pressure scale height λT /2 = 23 Mm (Aschwanden et al. 2001).

Mm. The deviations in the pressure scale height were quantified by the ratio

qλ =
λp

λT
, (4.6.1)

which are shown in Fig. 4.19. The scale height factor qλ was found to be system-
atically larger for large loops (in ≈ 60%), up to factors of qλ

<∼ 4. This of course
reflects the bias of the detection threshold requirement. The largest loop (#41), with
a half length of L = 324, Mm has a height of h ≈ 206 Mm, which corresponds to
h/λT ≈ 4.3 thermal scale heights. The EUV flux or the emission measure is propor-
tional to the squared density, so it would drop by a factor of exp (−4.3 × 2) ≈ 10−4

between the footpoint and the loop apex for the hydrostatic case, which is below the
detection threshold. The scale height of the super-hydrostatic density profile is about
4 times larger, implying a density decrease of about a factor of exp (−2) ≈ 0.1 only,
which is detectable. Nevertheless, although most of the small loops have a pressure
scale height that is compatible with hydrostatic equilibrium, this particular selection
demonstrates that there exists a considerable number of large loops evolving in a state
far away from hydrostatic equilibrium, governed by hydrodynamic processes that have
been little quantified and are poorly understood. The dynamic forces that are needed to
suspend the enormous amount of plasma in such super-hydrostatic loops is illustrated
in Fig. 4.20, which shows an image of super-hydrostatic loops observed on 1999-Nov-
06, 22:05 UT (left panel), compared with a simulated image that mimics how the same
loop constellation would appear in hydrostatic equilibrium (right panel).
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4.6.2 Theoretical Models

What hydrodynamic processes could explain such super-hydrostatic loops? We discuss
briefly three possible interpretations, all involving some dynamic scenarios: (1) accel-
erated flows, (2) impulsive heating of multiple loop strands with subsequent cooling,
and (3) wave pressure that exceeds the hydrodynamic pressure.

Let us consider first a scenario with upflowing plasma that is accelerated, say with a
constant vertical acceleration of ∂v/∂t = a cos θ over some time interval. This accel-
eration term has the same physical units as the gravitational pressure in the momentum
equation (4.2.8), so that it effectively corresponds to a reduced gravity force,

mnv
∂v
∂s

= −∂p

∂s
− mn(g� − a) cos θ (4.6.2)

and has the same solution as the steady-flow case (Eq. 4.2.7),(
v − c2

s

v

)
∂v
∂s

= −(g� − a) cos θ (4.6.3)

except for the reduced gravity, which yields an extended pressure scale height λp =
qλλT in the pressure solution, amounting to a factor of

qλ =
λp

λT
=

1
1 − a/g�

. (4.6.4)

In this scenario, the observed factors of qλ
<∼ 3 are feasible with accelerations up to

a <∼ (2/3)g�. The upflow speed at the loop base increases (for constant acceleration)
with time as

v0(t) = a(t − t0) = g�(1 − 1
qλ

)(t − t0) . (4.6.5)

For a loop with a super-hydrostatic scale height of qλ it takes a time interval of

∆ts =
cs

g�
1

1 − 1/qλ
, (4.6.6)

to reach the sound speed, which is about ∆ts ≈ 14 minutes for qλ ≈ 3 and a sound
speed of cs = 150 km s−1 (in a T = 1.0 MK plasma). After this time interval a super-
sonic point is reached and a shock has to develop. Therefore, subsonic flows with such
extended scale heights can only be maintained over shorter acceleration intervals. Such
a constraint conveys severe restrictions on the lifetime of loops with super-hydrostatic
scale heights.

A second scenario was envisioned in terms of nonsteady heating, using time-dependent
hydrodynamic simulations (Warren et al. 2002; Mendoza−Briceno et al. 2002). An ac-
tive region was simulated by an ensemble of loop strands that have been impulsively
heated and are cooling through the TRACE 171 Å (Fe IX/X) and 195 Å (Fe XII) band-
pass. A heating function of the form

EH(s, t) = E0 + g(t)EH0 exp
[
− (s − s0)2

2σ2
s

]
, (4.6.7)
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Figure 4.21: Evolution of an impulsively heated loop simulated with a time-dependent hydro-
dynamic code, showing the temperature Te(s) and density profiles ne(s) at 4 different times (top
panels), and the loop apex temperature Te(t) and apex density ne(t) (bottom panels) (Warren et
al. 2002).

was assumed, where s0 designates the location of the impulsive heating, σs is the spa-
tial width of the heating, g(t) a linearly decreasing time dependence, EH0 the peak
heating rate, and E0 a constant background heating rate. The results of the numer-
ical simulation for s0 = 9.0 Mm, σs = 0.3 Mm, EF = 0.5 erg cm−3 s−1, and a
heating duration of 600 s are shown in Fig. 4.21, for temperature Te(s, t) and density
profiles ne(s, t). After 800 s, the maximum temperature in the loop remains located
near the loop apex, with temperature pulses propagating back down the loop after they
passed the loop apex. The density increases almost two orders of magnitude, compared
with the uniform heating solution (of the background heating) before impulsive heating
starts. Moreover, the density profile clearly exhibits a larger scale height than the ther-
mal scale height before heating, and thus can explain the observed super-hydrostatic
loops. The simulations demonstrate that an impulsively heated loop cools faster than
it drains, allowing for large departures from hydrostatic equilibrium as it cools through
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the TRACE bandpasses (Warren et al. 2002). Moreover, the flat filter ratios and the per-
sistence of these loops for longer than the radiative cooling time imply substructures
with different timing in their heating and cooling phases.

A third scenario to explain super-hydrostatic density scale-height enhancements
was proposed by Litwin & Rosner (1998), where the presence of MHD waves exerts a
ponderomotive force on a dielectric medium (such as the plasma), which opposes the
force of gravity. The parallel momentum balance in steady state can then be expressed
by

n0∇‖(Ψg + Ψp) = −∇‖p0 , (4.6.8)

where Ψg is the gravitational potential, Ψp = −mu2/2 is the ponderomotive poten-
tial, u2 =< v2 > is the average velocity fluctuation of the plasma shaken by MHD
waves, n0 is the mean particle number density, and m = ρ0/n0 is the ion mass. Sim-
ilar to Eqs. (4.6.2−4), the reduced gravity leads to an extended pressure scale height.
Essentially the presence of Alfvén waves produces a wave pressure in addition to the
thermodynamic gas pressure, which in principle can explain the extended scale heights
observed in nonhydrostatic loops.

In conclusion, although all three scenarios can produce extended or super-hydrosta-
tic pressure scale heights, observational tests have not yet been performed to discrimi-
nate between the different theoretical possibilities. The difficulties are: (1) the require-
ments of flow measurements as a function of time, (2) fits of time-dependent temper-
ature Te(s, t) and density profiles ne(s, t), and (3) the lack of diagnostics for wave
pressure.

4.7 Hydrodynamic Numerical Simulations of Loops

The time-dependent evolution of physical parameters in coronal loops, such as the
temperature Te(s, t) and density ne(s, t), is constrained by the hydrodynamic equa-
tions (4.1.21−23) and generally needs to be calculated numerically. If the evolution
converges to a stable state, we call it a hydrostatic solution (§3.6), which is time-
independent [i.e., Te(s) and ne(s)], and which can also be calculated with a shooting
method. Such hydrostatic solutions are of highest importance because they represent
the most likely states observed in nature, while all other functions Te(s) and ne(s) are
unstable and would be observable only in a transient stage. Thus, a number of numer-
ical simulations have been conducted to find out into which hydrostatic state a loop
system evolves, or whether initial conditions such as the unknown heating function can
be constrained from the observed stationary states. A representative summary of such
numerical simulations is given in Table 4.3, with the initial conditions and the final
states listed.

Early time-dependent simulations essentially verified the hydrostatic solutions that
have been derived analytically (e.g., Landini & Monsignori−Fossi 1975; Craig et
al. 1978; Rosner et al. 1978a) or numerically (e.g., Serio et al. 1981). Vesecky et
al. (1979) investigated hydrostatic solutions for uniform heating functions EH(s) =
const and variable loop cross sections and concluded that the temperature maximum
does not necessarily need to occur at the looptop as postulated in the RTV model (Ros-
ner et al. 1978a). Variable heating and the subsequent coronal temperature and density
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Table 4.3: Hydrodynamic time-dependent numerical simulations of coronal loops.

Reference Initial conditions Temporal evolution
and external drivers and final state

Vesecky et al. (1979) uniform heating rate EH hydrostatic solutions
Krall & Antiochos (1980) heating increase/decrease Te(t, s), ne(t, s) evolution
Peres et al. (1982) perturbations in Te, ne, EH relaxation and stability
Craig et al. (1982) perturbations in EH relaxation and stability
Mariska & Boris (1983) asymmetric EH , loop tapering little steady flows
McClymont & Craig (1985a) uniform EH thermal stability
McClymont & Craig (1985b) footpoint EH unstable to antisym. perturb.
MacNeice (1986) heating pulse at looptop chromospheric ablation
Klimchuk et al. (1987) hot low-lying (< 1 Mm) loops unstable, cooling (< 105K)
Klimchuk & Mariska (1988) flows in cool loops siphon flows v <∼ 20 km s−1

Mok et al. (1991) short cool loops, free boundaries unstable, chrom. expansion
Robb & Cally (1992) steady, nonsteady siphon flows subsonic flows, “surge” flows
Peres (1997) asymmetric cold long loops nonsteady siphon flows
Betta et al. (1999a,b) asymmetric p, uniform EH unstable siphon flows
Reale et al. (2000a,b) localized asymmetric heating 1998-Jun-26 event
Warren et al. (2002) impulsive heating/cooling super-hydrostatic
Winebarger et al. (2003b) footpoint heating unstable for sH/L < 1/3
Spadaro et al. (2003) asym., transient footpoint EH siphon flows, downflows

adjustments were simulated by Krall & Antiochos (1980), mimicking evaporation and
condensation processes. Mariska (1987) verified the conjecture that areas of downflow-
ing (upflowing) plasma correspond to loop bases with decreasing (increasing) heating
rates. The hydrodynamic stability and uniqueness of hydrostatic solutions was verified
by introducing finite-amplitude perturbations in temperature, density, and/or heating
rates (Peres et al. 1982; Craig et al. 1982). Loops whose chromospheric footpoints
are only marginally stable, however, were found to evolve dynamically away from
the initial static configuration (Craig et al. 1982). Also loops with a heating rate that
decreases with height, were found to be unstable to antisymmetric perturbations (Mc-
Clymont & Craig 1985b). The consequences of a transient heating pulse released at the
looptop was simulated with sufficient numerical resolution in the transition region by
MacNeice (1986), showing the downward propagating conduction front, the downward
compression of the transition region, and subsequent upward ablation (also called chro-
mospheric evaporation in flare models). While large hot loops (h >∼ 5 Mm) are ther-
mally stable, small-scale loops with heights of h <∼ 1 Mm were found to be thermally
unstable and to evolve into cool loops far below 105 K, forming an “extended chromo-
sphere” (Klimchuk et al. 1987). The thermal stability has been scrutinized by changing
the chromospheric boundaries from rigid to flow-through, and it was found that short
cool loops are unstable to thermal chromospheric expansion (Mok et al. 1991). A more
detailed discussion of loop dynamics based on these numerical simulations is given in
Bray et al. (1991, p. 321).

The next generation of numerical hydrodynamic simulations mainly concentrated
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Figure 4.22: Flow velocity v as a function of position s/L (0 ≤ s ≤ 2) and time t for
L = 30 Mm, EH = 10−4 W m−3, and p2 = 0.02 Pa. The second footpoint pressure p2 is
discontinuously dropped at t = 0 from 0.02 Pa by 15%, illustrating the phenomenon of surge
flow (Robb & Cally 1992).

on flows in coronal loops. A central question was: how common are siphon flows?
Mariska & Boris (1983) simulated asymmetric heating in straight and tapered flux-
tubes and found little flows in the final steady phase. Robb & Cally (1992) found
that siphon flows are inhibited by low heating rates, high pressures, short loop lengths,
and turbulence, while small footpoint pressure asymmetries produce steady subsonic
siphon flows. Time variations of the asymmetric heating rate were found to give rise to
nonsteady “surge flows” without developing standing shocks (Fig. 4.22). In particular
for cool (a few 105 K) long loops, no steady-state siphon flows were found, suggesting
that cool loops (e.g., observed in O V), must be highly dynamic (Peres 1997). Siphon
flows driven by a pressure difference between the two footpoints were found to be un-
stable for uniform heating, while siphon flows driven by asymmetric heat deposition
were found to be stable (Betta et al. 1999a).
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Figure 4.23: Temperature T (s), electron density n(s), and velocity v(s) for two loops with
weakly asymmetric (left) and strongly asymmetric (right) footpoint heating are shown for 6
different times during the simulation. Left: t = 0 s (solid line), near maximum heating t = 1504

s (dotted line), near the end of transient heating t = 2978 s (dashed line), beginning of downflow
t = 5970 s (dash-dotted line), maximum downflow t = 14, 958 s (triple-dot-dashed line), and
restored initial condition t = 27, 913 s (long-dashed line). Right: t = 0 s (solid line), maximum
siphon flow t = 670 s (dotted line), near maximum of transient heating t = 1544 s (dashed
line), beginning of downflow t = 7641 s (dash-dotted line), maximum downflow t = 16, 641 s
(triple-dot-dashed line), and restored initial condition t = 28, 278 s (long-dashed line) (Spadaro
et al. 2003).

The most recent numerical simulations attempt to fit specific observations. For in-
stance, the evolution of the brightening of a highly inclined loop observed with TRACE
on 1998 June 26 (Fig. 3.13) was simulated with a localized, asymmetric heating func-
tion (Reale et al. 2000a,b). However, detailed quantitative fitting by hydrodynamic
codes is still beyond current capabilities, and thus the obtained time-dependent solu-
tions are only approximate and probably not unique. Warren et al. (2002) simulated
impulsive heating, which could reproduce super-hydrostatic scale heights (Fig. 4.21).
Winebarger et al. (2003b) varied the heating scale heights and confirmed the instabil-
ity limit of Serio et al. (1981), namely that short heating scale heights sH/L < 1/3
do not produce stable hydrostatic solutions (see also Figs. 4.6 and 4.7). Spadaro et
al. (2003) simulated transient heating localized at footpoints (Fig. 4.23), as suggested
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by recent TRACE observations (§ 3.7; Table 3.3) and explained by a number of ob-
served facts: (1) the higher density observed with TRACE than predicted by RTV, (2)
persistent downflows in the transition region (T ≈ 0.1 MK) giving rise to redshifted
UV and EUV lines, and (3) strongly unequal heating at the two legs drives siphon
flows (up to 50 km s−1) as observed with CDS and SUMER. Their conclusions are
that coronal heating is (1) transient in nature, (2) localized near the chromosphere, and
(3) asymmetric about the loop midpoint. The localization and asymmetry are important
to explain the observed flows, including siphon flows that would not occur for looptop
heating (Spadaro et al. 2003).

Future numerical hydrodynamic simulations might also include the nonlinear evo-
lution of instabilities, which can lead to limit cycles around stable solutions (Kuin &
Martens 1982), when the time scale of chromosphere-corona coupling (evaporation)
competes with the time scale of cooling (condensation). Gomez et al. (1990) studied
the Hopf bifurcation point where the stability of the static equilibrium is lost. One
predicted consequence is an excess width of chromospheric EUV lines.

4.8 Hydrodynamics of the Transition Region

The transition region between the cool chromosphere (T ≈ 104 K) and hot corona
(T >∼ 106 K) represents the most important boundary condition to all coronal structures.
It acts as an energy source (for upflowing plasma and upwardly propagating waves) as
well as an energy sink (for cooling and draining of coronal plasma). As discussed in
§1.5, the geometric concept of this lower coronal boundary evolved from stratified lay-
ers, to canopies of vertical fluxtubes, and most recently to a rather inhomogeneous and
rugged interface (Fig. 1.17). Not only has the spatial complexity increased in theoreti-
cal concepts of the transition region (Table 4.4), but also the temporal characterization:
stationary models in hydrostatic equilibrium became increasingly criticized in favor of
more dynamic pictures, whose time averages are not equivalent to hydrostatic equilib-
rium situations. Additional modeling complications also result from the fact that the
transition region is not only characterized by a steep temperature and density gradient
(Fig. 1.19), but also by time-dependent effects of the ionization equilibrium, abun-
dance variations, transitions from partial to full ionization, from a high to a low plasma
β-parameter, and from optically thick to optically thin regimes. Here in this section we
discuss mainly aspects that are important for hydrodynamic modeling (geometry, den-
sity, temperature, flow speeds), while other physical properties (magnetic field, MHD
dynamics, transient phenomena) are treated in later chapters. Complementary infor-
mation can be found in the textbook by Mariska (1992) or in reviews by Withbroe
& Noyes (1977), Mariska (1986), Schrijver et al. (1999), Brekke (1999), or Hansteen
(2001).

In early models of the transition region (e.g., Reimers 1971a), only (downward)
heat conduction ∇FC(h) was included in the energy equation (4.1.4), balanced by an
unknown heating source EH(h) constrained from temperature profiles T (h) inferred
from EUV and radio data (Reimers 1971b),

EH = ∇FC =
∂

∂h

(
κT 5/2 ∂T

∂h

)
=

2κ

7
∂T 7/2

∂h
. (4.8.1)



160 CHAPTER 4. HYDRODYNAMICS

Table 4.4: Hydrodynamic models of the transition region.

Reference Physical model
Reimers (1971a) heat conduction
Moore & Fung (1972) heat conduction and radiative loss
Lantos (1972) heat conduction, radiative loss, and enthalpy
Gabriel (1976) “fluxtube canopy” expanding over size of supergranule
Pneuman & Kopp (1977) energy equation with enthalpy flux of spicular downflows
Wallenhorst (1982) energy equation with enthalpy flux of downflows
Antiochos (1984) flare-like impulsive heating in high-pressure fluxtubes
Dowdy et al. (1985) heat conduction inhibited by magnetic constriction
Dowdy et al. (1986) “junkyard model” of mixed small and large-scale loops
Antiochos & Noci (1986) DEM distribution of hydrostatic cool and hot loops
McClymont & Craig (1987) fast downflows in steady-flow solutions of cool loops
McClymont (1989) redshifts from steady-flow solutions of cool loops
Athay (1990) heat conduction with an inhomogeneous temperature boundary
Woods et al. (1990) opacity effects of hydrogen Lyman-α cooling
Woods & Holzer (1991) multi-component plasma with downflows
Rabin (1991) effects of canopy geometry on energy balance
Fontenla et al. (1990) FAL I model: non-LTE, ambipolar diffusion
Fontenla et al. (1991) FAL II model: diffusion of H atoms and ions
Fontenla et al. (1993) FAL III model: He emission with diffusion
Chae et al. (1997) non-LTE radiative transfer in H and He
Fontenla et al. (2002) FAL IV model: H and He mass flows with diffusion

If all the heating occurs above the transition region (EH(s) = 0 for s < s1), this leads
to a temperature dependence of T (s) ∝ (s − s0)2/5. For a constant heating rate this
leads to the solution T (s) ∝ (s − s0)2/7, a functional dependence that approximately
dominates most of the hydrostatic solutions in the transition region.

In the next step, the radiative loss term ER(h) ∝ n(h)2Λ[T (h)] was included (e.g.,
Moore & Fung 1972), because EUV observations (e.g., Noyes et al. 1970) provided
constraints on the radiative flux, but no local heating or mechanical flux was assumed
in the transition region,

0 = −n2Λ(T )− ∂

∂h

(
κT 5/2 ∂T

∂h

)
. (4.8.2)

This model predicts a dependence of ∆log(p) ∝ ∆log(FC) between the pressure and
conductive flux, which was found not to be consistent with the EUV data of Withbroe
& Gurman (1973). These strictly hydrostatic models could be substantially modified
by mass flows v(h) [e.g., caused by upflows of spicular material, which was modeled
by including the enthalpy term of Eq.4.1.14 (Lantos 1972)], using constraints from
radio observations,

∂

∂h

(
5
2
nvkBT

)
= −n2Λ(T ) − ∂

∂h

(
κT 5/2 ∂T

∂h

)
. (4.8.3)
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Figure 4.24: Geometry of the base of a fluxtube with a higher gas pressure than in the surround-
ing transition region. Observer A would see redshifts, observer B’s view is fully obscured, and
observer C would detect some redshift but also some absorption by neutral hydrogen (Antiochos
1984).

This model, which was applied to quiet Sun interspicular regions, produced relatively
large upflow velocities of v <∼ 40 km s−1 in the T = 10, 000 − 300, 000 K tempera-
ture regime (Lantos 1972). However, observations from rocket flights, OSO-8 (Lites et
al. 1976), and Skylab (Doschek et al. 1976) indicated clear evidence for downflows of
spicular material of the order of v <∼ 5 − 15 km s−1. Thus, Pneuman & Kopp (1977)
suggested that downflows of spicular material which returns to the chromosphere, af-
ter being heated to coronal temperatures, needs to be included in the energy equation
(4.1.29),

1
A

∂

∂h

(
nvA
[
εenth + εkin + εgrav

]
+ AFC

)
= EH − ER . (4.8.4)

Pneuman & Kopp (1977) estimated that the enthalpy flux from the spicular downflows
was 10 − 100 times larger than the conductive flux. The dynamics of downflows from
coronal condensations with observed speeds of v >∼ 45 km s−1 was considered as a
main contributor to the EUV emission seen in the entire temperature range of T = 7000
K−3 MK (Foukal 1978). Consequently, conduction and radiation-dominated models
were abandoned in favor of enthalpy-dominated models (Wallenhorst 1982). However,
although the enthalpy flux was found to be much larger than the conductive flux, the
divergence of the enthalpy flux was found to be smaller than the divergence of the con-
ductive flux, so the enthalpy term seems not to modify the temperature solution T (h) of
the energy equation drastically (Wallenhorst 1982). Nevertheless, siphon-flow models
were explored in more detail and it was found that steady-flow hydrodynamic solutions
with fast downflows (v≈ 5 − 10 km s−1) could be reproduced for cool (T <∼ 105 K)
loops, but not for hot coronal loops (McClymont & Craig 1987; McClymont 1989),
which is consistent with observations.

Antiochos (1984) pointed out that the ubiquitous redshift of EUV emission ob-
served in the temperature regime 104.3 <∼ T <∼ 105.3 (e.g. Gebbie et al. 1981) is unlikely
to be caused by falling spicular material, because this model could not explain the ob-
served absence of a center-limb variation of the redshifts. Also steady-state siphon flow
models would not work because they produce an equal amount of blueshifts and red-
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Figure 4.25: Left: The standard 2D geometry of the magnetic field in the transition region
according to Gabriel (1976). The magnetic field emerges from the network boundaries, where
they are concentrated by supergranulation flow and from where they diverge rapidly with height
until they are uniform and vertical in the corona. Right: geometric expansion of an elementary
fluxtube across the transition region (Dowdy et al. 1985).

shifts, which was not observed. Antiochos (1984) concluded that only fluxtubes with
a higher gas pressure than the ambient transition region could explain the direction-
independent redshift, because they possess a transition region that lies below the am-
bient height level (Fig. 4.24), and downflows in the lowered fluxtube transition regions
would only be observable for line-of-sights that are aligned with the magnetic field
lines. This model of immersed fluxtubes explains also the continuum absorption ob-
served above quiet Sun transition regions (Schmahl & Orrall 1979) and displacements
between hot and cool loop segments (Dere 1982). The required overpressure in this
fluxtube necessarily leads to a dynamic fluxtube model with flare-like impulsive heat-
ing and condensation cycles, constituting a dynamic model for parts of the transition
region (Antiochos 1984).

The geometry of coronal fluxtubes is most simplified in 1D models, where a con-
stant cross section is assumed. Such an approximation can be reasonable for coronal
fluxtubes, although there is some controversy whether the majority of coronal loops
expand with height like a dipole field or whether they have a rather constant cross sec-
tion due to current-induced twisting. In the transition region, however, such 1D models
clearly represent an unacceptable oversimplification, because vertical magnetic field
lines are believed to fan out from the network boundaries in the photosphere to the
size of a supergranule in the corona, forming a canopy structure, according to a widely
accepted model by Gabriel (1976), as shown in Fig. 4.25 (left). This geometry leads
to a varying cross section of every fluxtube across the height of the transition region
(Fig. 4.25, right), an effect that produces a strong inhibition of the conductive heat flow
from the corona down to the chromosphere (Dowdy et al. 1985). In the steady-state
case, the inhibition factor of the heat flow Φ = AFC through a constricted fluxtube is
simply the ratio of the harmonic mean area of the constricted tube to the area of the
unconstricted fluxtube (Dowdy et al. 1985). For a cone-like magnetic fluxtube (with a
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Figure 4.26: Left: The emission measure distribution in quiet Sun regions, derived from obser-
vations (dashed line; Rabin & Moore 1984). A theoretical model of hydrostatic energy balance
in canopy-like coronal fluxtubes is shown for comparison, explaining the hotter part of the ob-
served distribution (dotted line; Athay 1982). Right: The “magnetic junkyard” model of Dowdy
et al. (1986) also invokes in addition to the hotter coronal funnels cooler small-scale network
loops (grey structures), which account for the cooler part of the observed emission measure
distribution.

hot looptop cross section Ah and cool bottom area Ac) the inhibition factor is simply

Φ
Φ‖

= Γ−1/2 , (4.8.5)

where Φ‖ is the heat flow AFC through a parallel fluxtube and Γ = Ah/Ac is the ge-
ometric expansion or constriction factor (e.g., Fig. 3.14 or Fig. 4.25). This inhibition
factor was found to vary by no more than a factor of 2 for other geometries with dif-
ferent, but monotonic taper functions (Dowdy et al. 1985). A larger variety of funnel-
shaped canopies was explored by Rabin (1991), finding that magnetic constriction does
not greatly alter the overall energy budget of coronal loops for conduction-dominated
models, with the heat flux varying by no more than a factor of 2 for constriction ratios
up to 100. For a flow-dominated model only, Rabin (1991) found that constriction can
reduce the total energy requirement by a factor of 5 in extreme cases, but it does not
influence the differential emission measure distribution.

The canopy-like footpoint geometry of coronal loops has the consequence of a
much smaller total emission measure at temperatures of T <∼ 0.25 MK, far less than
the observed emission measure distributions (Athay 1982), as shown in Fig. 4.26 (left).
A solution to this dilemma was offered by Dowdy et al. (1986), by invoking a large
number of cool small-scale loops that are anchored in the network but are disconnected
from the hotter large-scale loops that reach up into the corona, the so-called magnetic
junkyard model (Fig. 4.26, right). This second population of cool low-lying loops with
lengths <∼ 10 Mm make up most of the volume of the cooler transition region, while
the pointed footpoints of the larger coronal loops occupy only a small filling factor in
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Figure 4.27: Spatially average Doppler shifts of various ions measured with SoHO/SUMER.
The smooth curve represents an analytical fit of a model with steady downward flow with con-
stant pressure and varying cross section as specified in Eq. (4.8.6) (Chae et al. 1998c).

the transition region. It was shown that hydrostatic solutions of these two populations
can add up to the observed differential emission measure distribution (Antiochos &
Noci 1986). However, the same differential emission measure distribution can also
be reproduced with a model that includes only heat conduction, but arranged on an
inhomogeneous temperature surface (Athay 1990).

Downflows have been measured in the transition region since Skylab. Downflows
were generally found to increase with height in the temperature regime of 104 <∼ T <∼ 2×
105 K, and to decrease at higher temperatures 2 × 105 <∼ T <∼ 106 K (e.g. Achour et
al. 1995; Brekke et al. 1997b, 1999; Peter 2001). One of the more recent measure-
ments is shown in Fig. 4.27, obtained from SoHO/SUMER (Chae et al. 1998c). The
average downflow velocity shows a peak value of v= 11 km s−1 at a temperature near
T = 0.23 MK, and decreases systematically at both sides of this peak temperature.
Chae et al. (1998c) interpreted the velocity decrease with height above T = 0.23 K
with the divergence of a fluxtube, which was found to have the analytical form

A(T )
A(Th)

=
[1 + (Γ2 − 1)(T/Th)p]1/2

Γ
(4.8.6)

with the numerical values Th = 106 K, Γ = 30, and p = 3.6.
So far, all previous transition region models assumed full ionization, ionization

equilibrium, and optically thin emission. Optically thin emission implicitly assumes
that the collisional excitation rate of a particular atomic level can be set equal to the
radiative de-excitation rate for that level, and that the radiated photon leaves the plasma
without further interaction. McClymont & Canfield (1983a), however, suggested that
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Figure 4.28: A compilation of transition region density models: VAL-C = Vernazza et
al. (1981), model C; FAL-C = Fontenla et al. (1990), model C; FAL-P = Fontenla et al. (1990),
model P; G = Gu et al. (1997); MM = Maltby et al. (1986), model M; ME = Maltby et al. (1986),
model E; D = Ding & Fang (1989); O = Obridko & Staude (1988); Gabriel = Gabriel (1976),
coronal model; CICM = Caltech Irreference Chromospheric Model, radio sub-millimeter limb
observations (Ewell et al. 1993), and RHESSI flare loop (Aschwanden et al. 2002b).

optical depth effects drastically modify the radiative loss function Λ(T ) (Fig. 2.14)
below temperatures of T <∼ 105 K. In particular, radiative loss in hydrogen Lyman-
α, which has a peak at log(T ) ≈ 4.2 in the radiative loss function Λ(T ), leads to
singularities in hydrodynamic solutions of the force balance and energy balance equa-
tions (Woods et al. 1990; Kuin & Poland 1991). In further refinements of transition
region models, a multi-component plasma (e.g. electrons, protons, ionized helium,
minor ions) was implemented, so that each species could have different temperatures
and abundance enhancements (Woods & Holzer 1991). A series of transition region
models was developed by Fontenla et al. (1990, 1991, 1993, 2002), which assume
hydrostatic equilibrium, but include beside the standard terms in the energy equation
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(e.g., Eq. 4.1.34) also hydrogen ionization energy flow due to ambipolar diffusion,

∂

∂h

[
v
(

5
2
p − εInH

)
−
(

5
2
kBT + εI

)
npnH

(np + nH)
vambi + FC

]
− v

∂p

∂h
= −ER

(4.8.7)
where εI and nH are the ionization energy and the number density of hydrogen atoms,
respectively, np is the proton density, and vambi is the ambipolar diffusion velocity. To
treat the Lyman-α emission properly, which is partially optically thick, the radiative
loss term ER involves the radiative transfer equation (2.1.5),

ER =
∫

dΩ
∫

(εν − ανIν)dν (4.8.8)

where εν , αν , and Iν are the emissivity, the absorption coefficient, and the radiation
intensity, respectively, all at frequency ν, and dΩ is the solid angle element. In further
models, the diffusion of helium was also included and the resulting He I 10,830 Å
emission was compared with observations (Fontenla et al. 1993, 2002). Flow velocities
also have important effects on H and He line intensities, radiative losses, and ionization
rates, and thus on the ionization energy fluxes. These effects were integrated in the
solution of the statistical equilibrium and non-LTE radiative transfer equation in an
energy balance model by Chae et al. (1997). This effect was found to lead to an order of
magnitude increase in the differential emission measure at T <∼ 2.5 × 104 K compared
to an optically thin approximation with complete ionization.

A compilation of a number of chromospheric density models is shown in Fig. 4.28.
Chromospheric and coronal density models are sharply divided by a thin transition re-
gion where the density drops sharply and the temperature rises reciprocally. Below this
transition region, the plasma is only partially ionized, and thus the electron density ne

is lower than the hydrogen density nH . At the transition region, where complete ion-
ization sets in, the neutral hydrogen density nH0 then drops to a very small value, at an
altitude of approximately h ≈ 2.0 Mm. Above the transition region the plasma is fully
ionized and the electron density is almost equal to the ion density (i.e., ne ≈ ni), as it is
usually assumed in coronal density models. Chromospheric density models have been
calculated in great detail based on ion abundance measurements from a larger number
of EUV lines, constrained by hydrostatic equilibrium and radiation transfer assump-
tions (e.g., Vernazza et al. 1973, 1976, 1981; VAL models, Fig. 4.28), and ambipolar
diffusion (Fontenla et al. 1990, 1991; FAL models; Fig. 4.28). Newer developments
include sunspot umbral models (Maltby et al. 1986; Obridko & Staude 1988), sunspot
penumbral models (Ding & Fang 1989), or stochastic multi-component models with
hot fluxtubes randomly embedded in a cool medium (Gu et al. 1997), all shown in
Fig. 4.28. At coronal heights, i.e., at h >∼ 2.0 Mm, an average quiet Sun density model
was computed by Gabriel (1976), based on the expansion of the magnetic field of coro-
nal fluxtubes that line up with the boundaries of the supergranule convection cells. The
geometric expansion factor and the densities at the lower boundary computed from
chromospheric models then constrain coronal densities in hydrostatic models. This
yields electron densities of ne ≈ 109 cm−3 at the coronal base in quiet Sun regions
(Gabriel 1976), as shown in Fig. 4.28. However, these hydrostatic models in the lower
corona have been criticized because of indications of unresolved spatial fine structure
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and unresolved dynamic phenomena, which contribute in the statistical average to an
extended chromosphere. Observational evidence for an extended chromosphere comes
from spicules observed in EUV or radio (e.g., from submillimeter observations during
a total eclipse; Ewell et al. 1993; CICM model in Fig. 4.28). These radio limb mea-
surements yield electron densities that are 1-2 orders of magnitude higher in the height
range of 500 − 5000 km than predicted by hydrostatic models (VAL, FAL, Gabriel
1976), which have been interpreted in terms of the dynamic nature of spiculae (Ewell
et al. 1993). Chromospheric density models have also recently been inferred from hard
X-ray measurements with RHESSI, which mainly probe the total neutral and ionized
hydrogen density via bremsstrahlung, and the total bound and free electron density
from the collisional energy losses. The RHESSI measurements also confirm the pres-
ence of an elevated transition region significantly higher than hydrostatic models pre-
dict. The 1-MK interface between hot (> 1 MK) coronal loops and their cooler (< 1
MK) footpoints in the transition region is prominently seen in TRACE 171 Å images
and is termed “moss” (Berger et al. 1999; DePontieu et al. 1999; Fletcher & DePontieu
1999; Martens et al. 2000). We will discuss some dynamic aspects of transition region
models in § 6 in terms of MHD processes.

4.9 Hydrodynamics of Coronal Holes

Coronal holes are regions of low-density plasma (Fig. 4.29), located in open magnetic
field regions where the unipolar field lines connect from the solar surface directly to
interplanetary space (Fig. 1.14). This open-field configuration provides efficient con-
duits to convey upflowing plasma and accelerated particles into interplanetary space,
and is thus the source of the fast (v≈ 400 − 800 km s−1) solar wind. For reviews see
Zirker et al. (1977) and Cranmer (2001, 2002a,b). Here we discuss some aspects of
hydrodynamic modeling in coronal holes, while other effects (magnetic field, MHD
processes, transient phenomena) are treated later on.

Since coronal holes entirely consist of open magnetic field lines, and the plasma β-
parameter is below unity, the topology of coronal holes can essentially be represented
by bundles of near-parallel radial fluxtubes, which, however, can have quite large radial
expansion factors. For strictly radial fluxtubes, the expansion factor A(h) would be
proportional to the square of the distance r = R� + h from the Sun center,

A(h) = A(0)
(

1 +
h

R�

)2

f(r) , (4.9.1)

but observations and models (e.g., Fig. 1.14) show rather a super-radial expansion fac-
tor f(r) for the magnetic field near the poles (Suess et al. 1998; Dobrzycka et al. 1999;
DeForest et al. 2001).

For hydrodynamic modeling, the main differences to coronal loops are: (1) the
open upper boundary condition and (2) the (super-radial) expansion A(s) with height.
The generalized versions of the hydrodynamic equations with consideration of variable
loop cross sections A(s) are given in Eqs. (4.1.24−26). For hydrostatic solutions of
fluxtubes in coronal holes, the time dependence can be ignored (d/dt = 0) and a radial
direction can be chosen (s = r). Thus we have three equations (4.1.24−26) for the five
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Figure 4.29: EUV image of the quiet Sun during solar minimum, 1996-May-23, taken by
SoHO/EIT at a wavelength of 195 Å (T ≈ 1.5 MK). Black color indicates enhanced emission.
Note the absence of active regions over the entire solar disk and the deficit of EUV emission in
the coronal holes at the northern and southern polar caps (Cranmer 2002a).

independent functions n(r), T (r), v(r), A(r), and EH(r), which need to be addition-
ally constrained by observations or model assumptions. Observational constraints can
be obtained from the emission measure EM ∝ ∫ n(r)2dz of optically thin EUV lines,
as well as from radio brightness temperatures TB(r) ∝ T (r)[1 − exp(−τν)] in the
case of free-free emission, which scales with τff ∝ n(r)2T (r)−3/2 (Eq. 2.3.18). Such
methods have been applied in several studies (e.g., Drago 1974; Rosner & Vaiana 1977;
Chiuderi−Drago et al. 1977, 1999; Chiuderi−Drago & Poletto 1977; Dulk et al. 1977)
to invert the run of temperature T (r) and density n(r) in coronal holes, either locally
(e.g., in a plume structure or in an inter-plume region) or averaged over a larger coronal
hole region. A compilation of temperature measurements in coronal holes is shown in
Fig. 4.30, being significantly lower (T ≈ 0.78−0.93 MK between r = 1.02−1.07R�)
in coronal holes than in the surrounding quiet Sun regions (T ≈ 0.94 − 1.2 MK), ac-
cording to Habbal et al. (1993). A notorious problem in the determination of the true
temperature in coronal hole areas are contaminations from hotter plasma in the fore-
ground and background. Typical density profiles in coronal holes are shown in Fig. 1.20
and in Fig. 4.31, based on recent SoHO/SUMER measurements (Wilhelm et al. 1998).

Coronal holes were first detected during solar eclipses (Waldmeier 1950), because
the lower density produces less scattered light than the high-density equatorial or strea-
mer regions. Coronal holes have also been detected in the green line of Fe XIV, 5303
Å (e.g., Fisher & Musman 1975; Guhathakurta et al. 1996). Although the average elec-
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Figure 4.30: Average temperature run T (h) in coronal holes compiled from a number of mea-
surements listed in Habbal et al. (1993). The hatched arrows indicate measurements that are
severely contaminated by plasma outside the boundaries of coronal holes (Habbal et al. 1993).

tron density profile n(h) in coronal holes can be inverted from polarized brightness
measurements, optical observations do not provide independent temperature informa-
tion. However, temperature profiles T (h) can be estimated in terms of the scale height
λT from density gradients (i.e., ∂n(h)/∂h ≈ n(h)/λT (h)), in the case of hydrostatic
equilibrium (e.g., Guhathakurta & Fisher 1998).

In EUV emission, densities and temperatures in coronal holes have been studied
with Skylab (Huber et al. 1974; Doschek & Feldman 1977), OSO-7 (Wagner 1975),
SoHO/SUMER, CDS, and UVCS (Warren et al. 1997; Doschek et al. 1997, 1998,
2001; Wilhelm et al. 1998, 2000; Warren & Hassler 1999; Kohl et al. 1999; Doyle
et al. 1999; Dobrzycka et al. 1999; DelZanna & Bromage 1999; Stucki et al. 2000,
2002; Zangrilli et al. 2002). The measurement of EUV line intensities in different
temperature bands allows for a characterization of the differential emission measure
distribution dEM(T )/dT in coronal holes. The inversion of the temperature profile
T (h) can in principle be achieved from multiple EUV lines observed above the limb,
but the ambiguities introduced by the inhomogeneities due to the multi-temperature
corona are better handled by forward-modeling (see §3.3). For hydrodynamic model-
ing, another important parameter is the flow speed measurement. Outflows in coronal
holes, with typical velocities of v≈ 10 − 15 km s−1 were measured by Cushman &
Rense (1976), Rottman et al. (1982), Orrall et al. (1983), Hassler et al. (1991, 1999),
Dupree et al. (1996), Patsourakos & Vial (2000), and Strachan et al. (2000), see also
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Figure 4.31: Electron density measurements in coronal holes based on Si VIII line ratios mea-
sured with SoHO/SUMER, compared with values found in literature. The hydrostatic temper-
ature TS used for the fits of the Si VIII (1445 Å) line is indicated on the right (Wilhelm et
al. 1998).

Table 4.2 for measurements of coronal temperatures.
The boundaries of coronal holes are most pronounced in soft X-rays, because of

the absence of hot plasma with T >∼ 1.5 MK (Fig. 4.29). Thus, the contrast between
coronal holes and quiet Sun regions is probably best in soft X-rays. This makes it
very suitable to study the contours and topology of coronal holes in soft X-rays, but
density and temperature measurements are more difficult than in EUV because of the
high sensitivity to contaminations from hotter plasma from the foreground and back-
ground. In soft X-ray emission, densities and temperatures of coronal holes have been
investigated with OSO-7 and Skylab (Timothy et al. 1975), and Yohkoh/SXT (Hara et
al. 1994, 1996; Hara 1997; Watari et al. 1995; Foley et al. 1997; Aschwanden & Acton
2001). Comparisons of density profiles n(h) inferred from soft X-rays in coronal holes
with other regions can be seen in Fig. 1.20

Because the free-free opacity is highest for low temperatures (τff ∝ T−3/2), the
cool plasma in coronal holes is also clearly detectable in contrast to the hotter plasma
of the quiet Sun in radio wavelengths, where a large number of observations have
been made (Drago 1974; Lantos & Avignon 1975; Fürst & Hirt 1975; Kundu & Liu
1976; Chiuderi−Drago et al. 1977; Chiuderi−Drago & Poletto 1977; Dulk et al. 1977;
Papagiannis & Baker 1982; Wang et al. 1987; Kundu et al. 1989a; Bogod & Grebinskij
1997; Chiuderi−Drago et al. 1999; Gopalswamy et al. 1999; Moran et al. 2001). Most
of the coronal hole radio observations (e.g., Fig. 4.32), however, are of morphological
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Figure 4.32: Left: A Yohkoh/SXT image shows a large coronal hole in the southern polar cap
that extends all the way to the equator. Right: A radio image recorded with the Clark Lake
Radioheliograph at a frequency of 74 MHz shows a deficit of free-free emission at the same
location of the coronal hole (courtesy of Nat Gopalswamy).

nature.
The deconvolution of density n(h) and temperature profiles T (h) from the free-

free opacity τff , requires many frequencies and involves an unknown height scaling of
the opacity with height τff (h). Inversion procedures have been developed and applied
to coronal holes (Bogod & Grebinskij 1997), now called frequency tomography (As-
chwanden et al. 2004b). The ambiguity in the height scaling τff (h), however, requires
additional constraints from other observations (such as EUV) or additional model as-
sumptions.

Despite the numerous observations in all wavelengths, relatively few attempts of
hydrodynamic modeling in coronal holes have been made. A pioneering study was per-
formed by Rosner & Vaiana (1977), but their best hydrodynamic solution constrained
by extensive soft X-ray, EUV, and radio data, yields only a small flow speed of the
order v <∼ 1 km s−1, far below the required solar wind speed of v≈ 300 − 800 km
s−1. Early hydrodynamic models were not able to reconcile multi-wavelength data
(Chiuderi−Drago & Poletto 1977). Other early hydrodynamic models attempted to
model coronal holes with constant cross section fluxtubes and could not reproduce
the differential emission measure distribution dEM(T )/dT from network or cell cen-
ters in coronal holes (Raymond & Doyle 1981). The super-radial expansion A(h) of
fluxtubes in coronal holes has been determined from several observations (Suess et
al. 1998; Dobrzycka et al. 1999; DeForest et al. 2001), but has not yet been applied to
hydrodynamic models. In a parametric study it was found that hydrodynamic models
of coronal holes that are most consistent with the data yield only a very low speed of
v≈10 km s−1 at an Earth’s distance, while an MHD model that includes acceleration
by Alfvén waves is capable of reproducing the observed velocities of v≈ 630 km s−1

(Tziotziou et al. 1998). This is a strong indication that MHD effects are important
and must be included in physical models of coronal hole structures and solar wind.
Recent observations with SoHO/UVCS in Lyman-α and O VI (1032, 1037 Å) have
demonstrated anisotropies of hydrogen atoms H0 and oxygen ions O5+ that are differ-
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Figure 4.33: Solar wind solutions of Eq. (4.10.6) for different constants C. The solutions are
shown for the normalized parameters v/cs and r/rc. The middle horizontal line represents the
sonic limit, curves below this limit are subsonic solutions.

ent from the electron velocity distributions, leading to empirical (multi-species) models
of coronal holes (Cranmer et al. 1999; Miralles et al. 2001; Cranmer 2001, 2002a,b).
The empirical models of coronal holes deduced from SoHO/UVCS observations imply
acceleration mainly at low heliocentric distances, different behavior in the H I and O
VI heating, and anisotropies in the velocity distribution of the emitting ions, which all
constitute constraints in the development of new and more accurate models of the solar
wind plasma heating (see also §9.4.6) and acceleration in coronal holes.

4.10 Hydrodynamics of the Solar Wind

It was Parker’s (1958) ingenious idea that the open corona cannot be in hydrostatic
equilibrium and thus needs to be described by a dynamic solution that includes the
continuous expansion in outward direction, with a vanishing pressure at a large dis-
tance. He found the simplest steady-state solution (d/dt = 0) by assuming: (1) a
radial expansion, A(r) ∝ r2; (2) the ideal gas law, p(r) = n(r)kBT ; and (3) a con-
stant temperature, T (r) = const. The assumption of a constant temperature decouples
the momentum equation from the energy equation, so that a hydrodynamic solution can
simply be calculated by solving only the continuity equation (4.1.24) and momentum
equation (4.1.25), which then reads (using Eq. 3.1.5)

4πr2nv = const , (4.10.1)

mnv
∂v
∂r

= −∂p

∂r
− mng�

R2
�

r2
. (4.10.2)
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Inserting the ideal gass law, p(r) = n(r)kBT , and the sound speed, cs =
√

(kBT/m),
eliminating the density, and using the continuity equation (4.10.1), n(v, r) ∝ 1/(r2v),
yields for the pressure gradient,

∂p

∂r
=

∂

∂r
(nmc2

s) = mc2
s

(
∂n

∂r
+

∂n

∂v
∂v
∂r

)
= mc2

s

(
−2n

r
− n

v
∂v
∂r

)
. (4.10.3)

Inserting this pressure gradient ∂p/∂r into the momentum equation (4.10.2) yields a
differential equation between the solar wind speed v and distance r,(

v − c2
s

v

)
∂v
∂r

=
2c2

s

r
− g�

R2�
r2

. (4.10.4)

This differential equation is formally similar to the siphon-flow solution given in Eq.
(4.2.7), except that a quadratically expanding cross section is specified, A(r) ∝ r2,
and the height dependence of the gravity, g(r) ∝ g�/r2, is additionally included. This
differential equation can simply be integrated by variable separation∫ (

v − c2
s

v

)
dv =

∫ (
2c2

s

r
− g�

R2
�

r2

)
dr , (4.10.5)

which has the solution

v2

c2
s

− ln
(

v2

c2
s

)
= 4 ln

(
r

rc

)
+

2g�R2
�

c2
sr

+ C , (4.10.6)

The solutions have a critical point where ∂v/∂r is not defined, occurring at the sonic
point v = cs with r = rc = g�R2

�/2c2
s (from setting both sides of Eq. 4.10.4 to zero).

The solutions are shown in Fig. 4.33 for a range of values for the constant C.
Acceptable solar wind solutions are only those which are always subsonic (re-

ferred to as solar breezes) or that go through the critical point (requiring C = −3
in Eq. 4.10.6), which has become the standard solar wind solution. Of course, this so-
lution characterizes the observed solar wind only approximately, since the underlying
assumptions of radial expansion and isothermality are not exactly met in reality.

Hydrostatic models that include the energy equation have been applied to the inner
solar wind out to 3 solar radii (Kopp & Orrall 1976) as well as all the way to 1 AU
(Withbroe 1988). Subsequent models have been made more realistic by including a
number of additional effects, such as two-fluid models with different electron and pro-
ton temperatures, or MHD models that include the magnetic field (of the Parker spiral).
A discussion of some effects can be found in Priest (1982; § 12), Kivelson & Russell
(1995; § 4 by A.Hundhausen), and Baumjohann & Treumann (1997; § 8.1).

4.11 Summary

In contrast to the previous chapter (§ 3), where the solar corona was modeled
with hydrostatic solutions, we go a step further in the direction of hydrodynamic
models by including flows. We derived the 1D hydrodynamic equations in time-
dependent and conservative form, for constant and variable loop or fluxtube cross
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sections (§4.1). We derived time-independent steady-flow or siphon flow solutions,
which do not differ much from hydrostatic solutions in the subsonic regime (§4.2).
Thermal stability is an important criterion to constrain the parameter regime in
which coronal loops are most likely to be observed. Loops at coronal tempera-
tures are thermally unstable when the radiative cooling time is shorter than the
conductive cooling time, or when the heating scale height falls below one-third of
a loop half length (§4.3). Recent observations show ample evidence of the pres-
ence of flows in coronal loops (§4.4), as well as evidence for impulsive heating with
subsequent cooling, rather than the prevalence of a long-lasting hydrostatic equi-
librium (§4.5). High-resolution observations of coronal loops reveal that many
loops have a super-hydrostatic density scale height, far in excess of hydrostatic
equilibrium solutions (§4.6). Time-dependent hydrodynamic simulations are still
in a very exploratory phase (§4.7) and hydrodynamic modeling of the transition
region (§4.8), coronal holes (§4.9), and the solar wind (§4.10) remains challenging
due to the number of effects that can not easily be quantified by observations, such
as unresolved geometries, inhomogeneities, time-dependent dynamics, and MHD
effects.



Chapter 5

Magnetic Fields

While the magnetic field of our planet Earth barely amounts to field strengths of the
order B <∼ 1 Gauss [G], it produces a significant shielding effect at the bow shock to
the solar wind and channels energetic particles from the solar wind towards the polar
cusps, where they precipitate in unpopulated polar regions. The magnetic field thus
plays an important role in protecting life on Earth from high-energy particles.

Much more gigantic magnetic fields are found on our vital Sun, amounting to sev-
eral 1000 G in sunspots, and probably harboring field strengths of B ≈ 105 G in the
tachocline at the bottom of the convection zone. While the thermal pressure exceeds the
magnetic pressure (β = pth/pm � 1) inside the Sun, in the chromosphere, and in the
heliosphere, the corona demarcates a special zone where the opposite is true (β � 1).
This special physical property has the far-reaching consequence that all plasma flows
in the corona are governed by the magnetic field, which creates an extremely inhomo-
geneous medium that is filled with myriads of thin fluxtubes with different densities
and temperatures. Essentially, plasma transport is only allowed in a 1D direction along
magnetic field lines, while cross-field transport is strongly inhibited and can be ne-
glected on all time scales of interest. The physical structure of the coronal plasma is
therefore drastically simplified by the 1D geometry of individual fluxtubes on the one
hand, but the topology and diversity of the multitude of fluxtubes that make up the
corona represents a complication on the other hand. Nevertheless, the beauty of the
manifold magnetic fluxtubes that can be observed in the solar corona is their role as
detailed tracers of the magnetic field, which fingerprint the coronal magnetic field with
remarkable crispiness in EUV images (e.g., as provided by TRACE in 171 Å). The
challenge to match up these observed EUV tracers with theoretically calculated 3D
magnetic fields has just begun. While our simplest concepts to characterize these mag-
netic fields with potential fields has some success in the lowest order, detailed obser-
vations clearly reveal to us the nonpotentiality of the coronal magnetic field in almost
all places, providing us essential clues about the underlying currents. In this section
we consider idealized concepts of coronal magnetic fields that neglect the effects of the
hydrodynamic plasma, which are then described in terms of magneto-hydrodynamics
(MHD) in the next chapter (§ 6).
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5.1 Electromagnetic Equations

5.1.1 Maxwell’s Equations

Classical electrodynamics (e.g., Jackson 1962) relates the magnetic field B to the elec-
tric field E by Maxwell’s equations (here in cgs units),

∇ ·E = 4πρE (5.1.1)

∇ · B = 0 (5.1.2)

∇× E = −1
c

∂B
∂t

(5.1.3)

∇× B =
1
c

∂E
∂t

+ 4πj (5.1.4)

where ρE is the electric charge density, j the electric current density, and c the speed
of light. In an astrophysical context, the magnetic induction B is referred to as the
magnetic field, while the standard definition of the magnetic field is H = B/µ (i.e.,
the magnetic induction B divided by the magnetic permeability µ). The electric field E
is related to the electric displacement, D = εE, by the permittivity of free space ε. For
astrophysical plasmas, these constants have values close to that in a vacuum, which is
near unity in Gaussian (cgs) units (i.e., µ ≈ 1 and ε ≈ 1). Note also that the term for
the current density is (4π)j in Maxwell’s and related equations if the current density
is measured in electromagnetic units (emu), but amounts to (4π/c)j if measured in
electrostatic units (esu) (see Appendix C).

5.1.2 Ampère’s Law

A fundamental assumption in magneto-hydrodynamics is the nonrelativistic approxi-
mation, in the sense that plasma motions with speed v0 are much slower than the speed
of light c,

v0 � c . (5.1.5)

This nonrelativistic approximation allows us to neglect the term (1/c)(dE/dt) in Max-
well’s equation (5.1.4), because it is much smaller than the term (∇× B),

1
c

∂E
∂t

≈ 1
c

E0

t0
≈
(v0

c

) E0

l0
� B0

l0
≈ (∇× B) , (5.1.6)

where we attributed the plasma speed v0 ≈ l0/t0 to a typical length scale l0 and time
scale t0, that is given by the curl-operator (∇ = d/dl ≈ 1/l0), and assumed that the
typical electric E0 and magnetic field B0 are of the same order. Thus the simplified
Maxwell equation (5.1.4) yields the following definition for the current density in the
nonrelativistic approximation,

j =
1
4π

(∇× B) (5.1.7)
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The integral equivalent of this definition of the current density j is called Ampère’s law,∫
S

(∇× B) · n dS = 4π

∫
S

j · n dS, (5.1.8)

which integrates the current density j that flows perpendicular (in normal direction
n) through a surface S. The surface integral

∫
S can be transformed into a contour

integral
∫

C
with Green’s theorem, where the total integrated current I flowing through

the surface area S can be computed from the integration of the magnetic field B along
the contour line C that encompasses the area S,∫

C

B · dl = 4π

∫
S

j · n dS = 4πI . (5.1.9)

5.1.3 Ohm’s Law

Plasma moving at a nonrelativistic speed in a magnetic field is subject to an additional
electric field component (1/c)(v×B), besides the direct electric field E it sees at rest.
Ohm’s law defines an electric conductivity constant σ by setting the current density j
proportional to the total electric field E′,

j = σE′ = σ(E +
1
c
v × B) , (5.1.10)

where E′ is the total electric field in the frame of reference moving with the plasma.

5.1.4 Induction Equation

A most convenient description of the magnetic field B in a plasma is to eliminate the
electric field E and the current density j. The electric field E can be eliminated in
Maxwell’s equation (5.1.3) by inserting the electric field E from Ohm’s law (5.1.10),

dB
dt

= −c ∇× E = ∇× (v × B) − c

σ
(∇× j) . (5.1.11)

In addition, the current density j can be eliminated by inserting the nonrelativistic ap-
proximation (5.1.7) from Ampère’s law,

dB
dt

= ∇× (v × B) − c2

4πσ
∇× (∇× B) . (5.1.12)

so that we obtain an equation that contains only the magnetic field B and velocity v.
The constant η = c2/4πσ is called the magnetic diffusivity. Making use of the vector
identity,

∇× (∇× B) = ∇(∇ ·B) − (∇ · ∇)B , (5.1.13)

yields, after inserting Maxwell’s equation (5.1.2), ∇·B = 0, the following form of the
induction equation,

dB
dt

= ∇× (v × B) + η∇2B . (5.1.14)



178 CHAPTER 5. MAGNETIC FIELDS

The first term on the right-hand side is called the convective term, while the second
term is called the diffusive term. Depending on the value of the Reynolds number
Rm, which gives the ratio of the convective term (∝ v0B0/l0) to the diffusive term
(∝ ηB0/l20),

Rm =
l0v0

η
, (5.1.15)

the induction equation can be approximated in the two limits by

dB
dt

≈ ∇× (v × B) for Rm � 1 (5.1.16)

dB
dt

≈ η∇2B for Rm � 1 (5.1.17)

The plasma in the solar corona is close to a perfectly conducting medium (with a high
Reynolds number Rm ≈ 108 − 1012), so that approximation (5.1.16) with Rm � 1
applies, while the diffusive limit (5.1.17) with Rm � 1 is not relevant in the corona.

5.2 Potential Fields

A force field F(r) is called a potential field, as generally defined in physics, when the
force field can be expressed by a gradient of a potential scalar function φ(r),

F(r) = ∇φ(r) , (5.2.1)

for instance the gravitational force field Fgrav(r) = ∇φgrav(r) with φgrav(r) =
GMmr/r2, or the electric force field E(r) = ∇φel(r) with φel(r) = Qqr/r2.

In the same way we can define a magnetic potential field B(r) by a magnetic scalar
potential function φ(r),

B(r) = ∇φ(r) , (5.2.2)

or expressed in cartesian coordinates,

(Bx, By, Bz) =
(

d

dx
,

d

dy
,

d

dz

)
φ(x, y, z) . (5.2.3)

Because of Maxwell’s equation (5.1.2), which states that the magnetic field is diver-
gence free, ∇ · B = 0, it follows that the potential magnetic field also satisfies the
Laplace equation,

∇ · B = ∇(∇φ) = ∇2φ = 0 . (5.2.4)

Inserting the magnetic potential B = ∇φ into the nonrelativistic approximation of the
current density j (Eq. 5.1.7),

j =
1
4π

(∇× B) =
1
4π

(∇×∇φ) = 0 (5.2.5)

immediately shows that the current density j = 0 vanishes in a magnetic potential field
φ, because the vector product of the two parallel vectors ∇ and ∇φ (in Eq. 5.2.5) is
zero by definition. So, a magnetic potential field φ is equivalent to a “current-free”
field,

j = 0 . (5.2.6)



5.2. POTENTIAL FIELDS 179

0.0 0.2 0.4 0.6 0.8 1.0
x/l

0.0

0.2

0.4

0.6

0.8

1.0
y/

l

Figure 5.1: Potential vector field, B(x, y) = [Bx(x, y), By(x, y)], of a symmetric unipo-
lar field, a first-order model of a sunspot. The potential scalar function φ(x, y) is given
in Eq. (5.2.12), and the vector components, Bx(x, y) = dφ(x, y)/dx and By(x, y) =

dφ(x, y)/dy, in Eq. (5.2.13).

5.2.1 Unipolar Field

As a simple example we model a symmetric unipolar potential field (Fig. 5.1), which
in first order approximates the magnetic field of a symmetric sunspot. We introduce a
coordinate system with x representing horizontal direction and y representing vertical
direction in a 2D coordinate system. The magnetic field of a sunspot is often nearly
symmetrical to the central vertical axis and decreases with height with a vanishing field
at large distance. So, for a sunspot placed in the middle of a rectangular box with length
l we can impose the following boundary conditions for a magnetic potential φ(x, y),

φ(x, 0) = symmetric
φ(x,∞) = 0
φ(0, y) = φ(l, y) = 0

(5.2.7) .

We attempt a separation ansatz [i.e., a representation of the potential scalar function
φ(x, y) by a product of two separate functions X(x) and Y (y)],

φ(x, y) = X(x)Y (y) (5.2.8)

A symmetric function in x that fulfills the boundary conditions X(0) = X(l) = 0 is
for instance the sine function,

X(x) = X0 sin
(πx

l

)
. (5.2.9)
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For a function that decreases with height we can choose an exponential function, be-
cause it fulfills the boundary condition Y (∞) = 0,

Y (y) = Y0 exp
(
− y

y0

)
, (5.2.10)

Inserting these expressions (Eqs. 5.2.8−10) into the Laplace equation (5.2.4) we obtain

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
=

∂2X

∂x2
Y + X

∂2Y

∂y2
=
(
−π2

l2
+

1
y2
0

)
φ = 0 (5.2.11)

which requires y0 = l/π to make the expression zero. Thus a solution for the magnetic
potential function φ is

φ(x, y) = φ0 sin
(πx

l

)
exp
(
−πy

l

)
. (5.2.12)

The vector magnetic field B(x, y) can now be calculated via Eq. (5.2.3),

Bx(x, y) = ∂φ/∂x = B0 cos (πx/l) exp (−πy/l)
By(x, y) = ∂φ/∂y = −B0 sin (πx/l) exp (−πy/l) (5.2.13)

with the constant B0 = φ0π/l. The vector magnetic field B(x, y) is visualized in
Fig. 5.1, where the local field strength B(x, y),

B(x, y) =
√

(B2
x + B2

y) = B0 exp
(
−πy

l

)
, (5.2.14)

is represented by the length of the vector arrows, and the direction of the field B(x, y)
is shown by the orientation of the field vectors.

5.2.2 Dipole Field

Many coronal loops have a semi-circular shape, with conjugate magnetic polarities at
the opposite photospheric footpoints, and thus can approximately be described by a
magnetic dipole field, generated by a dipole coil buried below the photosphere. Let
us assume a buried coil with its axis parallel to the surface (in horizontal direction
at location (0, 0) in Fig. 5.2). The coil axis is aligned to the z-axis of a spherical
coordinate system. The distance from the dipole center (at x = 0 and y = 0 in Fig. 5.2)
is denoted with r, the zenith angle from the dipole axis with θ, and the azimuth angle
with ϕ. The (r, θ)-plane is shown in Fig. 5.2. A general derivation of the dipole field in
spherical coordinates is given in Jackson (1962), which in the far-field approximation
(r � a) takes the simple analytical form,

Br(r, θ) =
2m cos θ

r3
,

Bθ(r, θ) =
m sin θ

r3
,

Bϕ(r, θ) = 0 . (5.2.15)



5.2. POTENTIAL FIELDS 181

-1.0 -0.5 0.0 0.5 1.0
x/l

0.0

0.5

1.0

1.5

2.0
y/

l

Photosphere

r

θ

Figure 5.2: Potential vector field, B(x, y) = [Bx(x, y),By(x, y)], of a dipole model in the
far-field approximation, according to Eqs. (5.2.15) and (5.2.18). The magnetic field vectors are
drawn as arrows at equispaced mesh points above the photosphere (y ≥ 0.7), while the dipole is
buried in depth y = 0.0. Magnetic field lines are given by the analytic equation (5.2.22).

with m = πa2I/c the magnetic moment induced by the ring current I with a coil
radius a. Expressing the gradient ∇ of the magnetic potential scalar function φ(r)
from (Eq. 5.2.2) in spherical coordinates,

B(r) = (Br, Bθ, Bϕ) = ∇φ(r) =
(

∂φ

∂r
,
1
r

∂φ

∂θ
,

1
r sin θ

∂φ

∂ϕ

)
, (5.2.16)

we can easily find a potential function φ(r, θ, ϕ) that satisfies the magnetic field com-
ponents specified in Eqs. (5.2.15) as derived with the gradient given in Eq. (5.2.16),
namely

φ(r, θ, ϕ) = −m cos θ

r2
. (5.2.17)

This is the potential scalar function of a dipole, which is the far-field approximation
of a small coil. We plot the magnetic field vectors B(x, y) in cartesian coordinates in
Fig. 5.2, which have the components

Bx(x, y) = Br(r, θ) cos θ − Bθ(r, θ) sin θ ,

By(x, y) = Br(r, θ) sin θ + Bθ(r, θ) cos θ . (5.2.18)

It is also illustrative to draw closed field lines of a dipole field. If the magnetic field
B(x, y) is known as a function of position, then the magnetic field lines in a cartesian
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coordinate system can simply be derived from the proportionality relations,

dx

Bx
=

dy

By
=

dz

Bz
=

ds

B
, (5.2.19)

where s is the distance in the direction of the field line. In spherical coordinates, the
proportionality relations are according to Eq. (5.2.16),

dr

Br
=

r dθ

Bθ
=

r sin θ dϕ

Bϕ
=

ds

B
. (5.2.20)

These proportionality relations lead for our dipole field components [i.e., (Br, Bθ)
given in Eq. 5.2.15], to the following differential equation (after variable separation),

dr

r
=

Br

Bθ
dθ =

2 cos θ

sin θ
dθ , (5.2.21)

which can be easily integrated. To avoid the singularity at the limit θ = 0, we integrate
relative to the lower limit θ1 = π/2 and r1 and find the functional relation r(r1, θ),

r(r1, θ) = r1 exp [2 log(sin θ)] = r1 sin2 θ . (5.2.22)

This parameterization allows us to directly plot the magnetic dipole field lines, with
their distance r from the dipole center as a function of the zenith angle θ, for a set of
constants r1. The constants r1 correspond to the distance of the dipole field line in
the y-direction (at θ = π/2). The dipole field lines plotted in Fig. 5.2 are chosen for
the constants r1 = 0.2, 0.4, ..., 2.0. We see that the magnetic field vectors B(r) from
Eq. (5.2.15), marked with arrows in Fig. 5.2, are parallel to the parameterized field
lines r(θ) from Eq. (5.2.22) at every location, both being different representations of
the same dipole potential field.

5.2.3 Potential-Field Calculation Methods

At present, the solar vector magnetic field is routinely measured from the Zeeman
effect in the photosphere, so we have to rely on field extrapolation methods to infer
properties of the coronal field. The inference of a potential magnetic field B in the
corona is thus only constrained by the values at the photospheric boundary, and thus,
mathematically, represents a boundary problem. Classical potential theory yields a
unique solution for the potential scalar function φ(r), either when the value of φ(r) is
specified at the boundary r = rB (Dirichlet problem), or when its derivative normal
to the boundary is specified (Neumann problem), which is here the normal component
of the magnetic field, Bn = dφ(r)/drn. To solve the Laplace equation (5.2.4) for
this boundary problem, the Green’s function method or the eigen function expansion
methods are used in solar physics.

Green’s Function Methods

The method of using the Green’s function to calculate the solar magnetic field was
first used by Schmidt (1964) and was further developed by Sakurai (1982), leading to
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the widely used Sakurai code for solar potential field extrapolations. In these codes,
besides the lower boundary r = a at the solar surface, where the magnetic field is
constrained by observed magnetograms, an upper boundary at a distance of a few solar
radii r = b is also specified, the so-called source surface, where the magnetic field is
assumed to become radial due to the solar wind.

Let us describe first the Green’s function method for the simplest geometry, when
the line-of-sight is perpendicular to the boundary surfaces (classical Schmidt method),
as it is the case for an observation at the center of the solar disk. We define Cartesian
coordinates with the solar surface parallel to the (x, y)-plane at z = 0, and the z-axis
towards the observer. A magnetogram then yields the normal field component on the
boundary, Bn(x, y) = Bz(x, y, z = 0). The potential magnetic field in the volume
z > 0 is obtained from the potential scalar function φ(r), which first satisfies the
Laplace equation,

∇2φ = 0 (z > 0) , (5.2.23)

second, the lower boundary condition (the so-called Neumann boundary condition),
with n being the unit vector in z-direction,

−n · ∇φ = Bn (z = 0) , (5.2.24)

and third, the upper boundary condition

lim
r �→∞φ(r) = 0 (z > 0) . (5.2.25)

In analogy to an electrostatic potential (e.g., Jackson 1962), a 1/r-potential function
can be chosen as a simple Green’s function, with a “magnetic charge” envisioned at
location r′,

Gn(r, r′) =
1

2π|r − r′| . (5.2.26)

The photospheric boundary with coordinates r′ = (x′, y′, 0), which contains the nor-
mal magnetic components Bn(r′), now contributes to the potential φ(r) at an arbitrary
coronal location r via the Green’s function Gn(r, r′). The potential function φ(r) can
thus be calculated by integrating over all contributions from the photospheric surface
(x′, y′),

φ(r) =
∫ ∫

Bn(r′)Gn(r, r′) dx′ dy′ . (5.2.27)

This potential scalar function φ(r) satisfies the Laplace equation (5.2.23) and the two
boundary conditions (Eqs. 5.2.24−25), as it can be verified mathematically (see, e.g.,
Jackson 1962; Sakurai 1982).

For a practical application, one has to consider the discreteness of the meshpoints
(x′, y′) over which Bn(x′, y′) is measured and the potential is calculated. If the mesh
consists of pixels with a size ∆, the continuous integral (5.2.27) transforms into a
summation over all positions r′ij = (x′

i, y
′
j, 0),

φ(r) =
∑
ij′

Bn(r′ij)Gn(r, r′ij)∆2 . (5.2.28)
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This leads to a modified Green’s function (Sakurai 1982) that is adjusted for the dis-
creteness ∆ of the mesh points in such a way that it still fulfills the Laplace equation
(5.2.23) and the two boundary conditions (Eqs. 5.2.24−25),

Gn(r, r′) =
1

2π|r − r′ + (∆/
√

2π)n| . (5.2.29)

A next generalization is for an arbitrary line-of-sight direction (oblique Schmidt
method), so that the magnetic field can be reconstructed at any position away from the
Sun’s center. The normal vector n has now be replaced by a unit vector l that points
towards the observer, but is not normal to the solar surface anymore. This changes the
Neumann boundary condition (5.2.24) to

−l · ∇φ = Bl (z = 0) , (5.2.30)

with Bl the longitudinal magnetic field component along the line-of-sight. The mag-
netic potential scalar function (5.2.27) becomes

φ(r) =
∫ ∫

Bl(r′)Gl(r, r′) dx′ dy′ , (5.2.31)

where the Green’s function (5.2.26) can be expressed in terms of the direction vectors
n and l as (Sakurai 1982)

Gn(r, r′) =
1
2π

[
n · l
R

+
m · R

R(R + l · R)

]
, (5.2.32)

R = (r − r′) , m = l × (n × l) . (5.2.33).

The oblique Schmidt method works only for small areas of the solar surface. A
more general approach is to include the curvature of the solar surface, which is required
for magnetic field extrapolations over larger areas of the Sun or for global magnetic
field models. Generalizations of potential field line extrapolation codes have been de-
veloped with Green’s function methods, the so-called spherical Schmidt method (e.g.,
Sakurai 1982), as well as with eigen function (spherical harmonic) expansion methods
(e.g., Altschuler & Newkirk 1969).

Eigenfunction Expansion Methods

The natural coordinates to represent the curved solar surface are spherical coordinates
(r, θ, ϕ), with the photosphere at r = a and the z-axis oriented towards the observer in
the l-direction. The Neumann boundary condition (5.2.30) now becomes,

−l · ∇φ = Bl(θ, ϕ) (r = a) . (5.2.34)

The expansion into spherical harmonics was first applied to solar magnetic fields by
Newkirk et al. (1968) and Altschuler & Newkirk (1969). The magnetic potential func-
tion φ(r, θ, ϕ), (e.g., Rudenko 2001; Stix 2002),

φ(r, θ, ϕ) = R�
N∑

l=1

l∑
m=0

fl(r) P m
l (θ)(gm

l cosmϕ + hm
l sin mϕ) , (5.2.35)
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Figure 5.3: Potential field models of the global corona calculated from a source surface model
during 6 different phases of the solar cycle. Each display shows 500 potential magnetic field
lines, computed from simulated magnetograms that mimic the flux dispersion during the solar
cycle (Schrijver & Aschwanden 2002).

is expressed in terms of the Legendre polynomials Pm
l (θ), and the radial dependence

is

fl(r) =
(rw/r)l+1 − (r/rw)l

(rw/R�)l+1 − (R�/rw)l
. (5.2.36)

where rw demarcates the location of the outer boundary, the so-called source surface
where fl(rw) = 0. This means the magnetic field at r = rw points strictly in the radial
direction, as it is assumed to happen due to the forces of the solar wind, at a typical
distance of rw = 2.6 solar radii. The functions fl are normalized to fl(r = R�) = 1.
The potential function expressed in terms of spherical harmonics (Eq. 5.2.35) essen-
tially corresponds to a multipole expansion, where the weight of different multipoles is
given by the expansion coefficients gm

l and hm
l , which have to be numerically fitted un-
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til the potential function φ(r, θ, ϕ) satisfies the Neumann boundary condition (5.2.34)
specified by the observed magnetic field Bl(θ, ϕ). Typical numeric codes calculate
expansions up to orders of N = 25, ..., 100. More sophisticated extrapolation codes fit
non-spherical source surface models (Levine et al. 1982).

A example of potential field extrapolations of the global magnetic field of the
corona is shown in Fig. 5.3, based on a synthetic data set of magnetograms of solar
observations covering several sunspot cycles (Schrijver & Aschwanden 2002). The
time evolution of the global magnetic field was simulated by magnetic flux dispersion
subjected to random walk, induced by the evolution of the supergranular network. The
potential field lines were computed by integrating along the vector field that is the sum
of fields from a set of ≈ 100, 000 point charges simulated in the surface diffusion
model. Only a subset of 500 field lines is displayed in each image, selected from the
photospheric mesh points with the highest magnetic flux concentrations.

5.3 Force-Free Fields

If n particles with electric charge q are moving with velocity v in a magnetic field B,
they experience the well-known Lorentz force

F =
q

c
n(v × B) . (5.3.1)

Since the current density j associated with a moving electric charge q is defined as

j =
q

c
nv , (5.3.2)

the Lorentz force is generally called the j×B force in magneto-hydrodynamics (MHD),

F = j × B , (5.3.3)

and will show up as an additional force term in the momentum equation (4.1.3) when
we include magnetic fields in the MHD equations (§ 6).

In magneto-statics, a magnetic field is said to be force-free, when the “self-force”
or Lorentz force is zero,

j× B = 0 . (5.3.4)

As we already derived a simplified Maxwell equation (5.1.4) in the nonrelativistic ap-
proximation [i.e., j = (1/4π)(∇ × B) in Eq. (5.1.7)], we can insert this expression
for the current density j into Eq. (5.3.4) and obtain a condition for force-free magnetic
fields that is entirely expressed by the magnetic field B,

(∇× B) × B = 0 . (5.3.5)

The general calculation of force-free magnetic fields is non-trivial, because the equa-
tion (5.3.5) is nonlinear, since it contains terms of order B2. Therefore, the computa-
tion of force-free fields subdivides the problem into the mathematically simpler case of
linear force-free fields, which covers only a subset of the possible solutions, while the
more general solutions are referred to as nonlinear force-free fields.
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5.3.1 Linear Force-Free Fields

The general force-free condition (5.3.5) can be turned into a linear problem. A linear
solution of Eq. (5.3.4) can be defined by

(∇× B) = 4πj = α(r)B , (5.3.6)

where α(r) is a scalar function as a function of position (and may additionally depend
on time). So, α(r) �= 0 characterizes a nonpotential field, while the special case of
α(r) = 0 yields (∇× B) = 0 and corresponds to the potential field case (Eq. 5.2.5).

The choice of the scalar function α(r) is not completely arbitrary, because it must
also satisfy the divergence-free Maxwell equation (5.1.2), ∇ · B = 0, and the vector
identity ∇ · (∇× B) = 0. These two conditions yield

∇ · (∇× B) = ∇ · (αB) = α(∇ ·B) + B · ∇α = B · ∇α = 0 . (5.3.7)

This condition is fulfilled if α(r) is constant and does not vary along a magnetic field
line, so that ∇α = 0. This means that α(r) is not a scalar function anymore, but a
simple constant, and Eq. (5.3.6) becomes,

(∇× B) = αB . (5.3.8)

If α is constant everywhere, for each field line in a given volume, we obtain with
(Eq. 5.3.8) for the curl of the current density (∇× B),

∇× (∇× B) = ∇× αB = α(∇× B) = α2B . (5.3.9)

On the other hand we have the vector identity,

∇× (∇× B) = ∇(∇ ·B) −∇2B . (5.3.10)

Comparing these two expressions (Eq. 5.3.9) and (Eq. 5.3.10) and making use of the
divergence-free Maxwell equation (∇ · B = 0) leads to the Helmholtz equation,

∇2B + α2B = 0 . (5.3.11)

Numerical methods to calculate linear force-free fields (lff) have been developed by
using Fourier series (Nakagawa & Raadu 1972; Alissandrakis 1981; Démoulin et
al. 1997b; Gary 1989), using Green’s functions (Chiu & Hilton 1977; Seehafer 1978;
Semel 1988), spherical harmonics (Newkirk et al. 1969; Altschuler & Newkirk 1969),
or a superposition of discrete flux sources (Lothian & Browning, 1995). A generaliza-
tion of linear force-free fields that includes MHD terms, such as the thermal pressure
(∇p) and gravity (∇pgrav) have been studied analytically by Low (1985, 1991, 1993a,
1993b) and Neukirch (1995). Numerical schemes to compute such linear force-free
fields with MHD terms have been devised by using Fourier−Bessel series (Low 1992),
Green’s functions (Neukirch & Rastätter 1999; Petrie & Neukirch 2000), spherical
solutions (Bogdan & Low 1986; Neukirch 1995; Neukirch & Rastätter 1999), or opti-
mization methods (Wiegelmann & Neukirch 2003).
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More generally, if α(r) is a function of position r, which is called the nonlinear
force-free field (nfff), then the curl of the current density (∇× B) is,

∇× (∇× B) = ∇× αB = α(∇× B) + ∇α × B = α2B + ∇α × B . (5.3.12)

Together with the vector identity (Eq. 5.3.10) and (Eq. 5.3.7) we have therefore two
coupled equations for B and α(r) that need to be solved together to obtain a solution
for a linear (α=constant) or nonlinear (α(r)) force-free field,

∇2B + α2B = B×∇α(r) ,

B · ∇α(r) = 0 . (5.3.13)

5.3.2 Sheared Arcade

As an example of a linear force-free field we model a sheared arcade (Priest 1982;
Sturrock 1994). A loop arcade consists of a sequence of equal-sized loops which have
a common axis of curvature, which usually coincides closely with a neutral line on the
solar surface. A sheared arcade can be generated by shifting the footpoints parallel to
the neutral line on one side along the solar surface. The longer the shearing motion is
applied, the higher is the shearing angle of the arcade. With the following simple ana-
lytical model we will see that the shear angle is directly related to the nonpotentiality
of the magnetic field of the loop arcade.

A simple setup is to characterize the horizontal component of the magnetic field
with a periodic function that decreases exponentially with height,

Bx = Bx0 sin(kx) exp (−lz) ,

By = By0 sin(kx) exp (−lz) ,

Bz = B0 cos(kx) exp (−lz) . (5.3.14)

The components of the vector product (∇× B) are then,

(∇× B)x =
∂Bz

∂y
− ∂By

∂z
= lBy0 sin (kx) exp (−lz) ,

(∇× B)y =
∂Bx

∂z
− ∂Bz

∂x
= (−lBx0 + kB0) sin (kx) exp (−lz) ,

(∇× B)z =
∂By

∂x
− ∂Bx

∂y
= kBy0 cos (kx) exp (−lz) . (5.3.15)

Using the constant-α condition for a force-free field (Eq. 5.3.8), we obtain three equa-
tions,

lBy0 = αBx0 ,

(−lBx0 + kB0) = αBy0 ,

kBy0 = αB0 . (5.3.16)
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Figure 5.4: Force-free field of a sheared arcade, with the components (Bx, Bz) shown in the
vertical plane (left), and the components (Bx, By) shown in the horizontal plane (right). The
shear angle θ corresponds to the slope in the right panel. Magnetic field lines are given by the
analytic equation (5.3.19).

These three equations yield the field components Bx0 and By0 and a condition between
the parameters l, k, and α,

Bx0 =
l

k
B0 ,

By0 =
α

k
B0 ,

k2 − l2 − α2 = 0 . (5.3.17)

The solutions are plotted in Fig. 5.4, projected into the (x, z)-plane (Fig. 5.4 left)
and into the (x, y)-plane (Fig. 5.4 right). Obviously each field line lies in a vertical
plane and has a shear angle θ of

tan θ =
By

Bx
=

By0

Bx0
=

α

l
. (5.3.18)

Thus the α-parameter is related to the shear angle θ, and is even proportional for small
values. The higher the shear angle θ, the higher the nonpotential parameter α. For the
case of no shear, θ = 0, we have the potential case with α = 0. Thus, the shear angle
of a loop arcade is a sensible indicator of the nonpotentiality of the magnetic field (i.e.,
the difference between the force-free field and the potential field).

This simple analytical model has a mathematical limitation. The maximum shear
angle is θ = π/2. The third condition in Eq. (5.3.17) implies a maximum value for α,
namely α ≤ √

k2 − l2, thus α < k, since l > 0 (see also Sturrock 1994).
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An explicit parameterization of the nonpotential field lines (Eq. 5.3.14) can be cal-
culated with the proportionality relations given in (Eq. 5.2.19), by variable separation
and integration. We find the following explicit parameterization for individual field
lines,

y(x) =
α

l
x + y0 ,

z(x) =
k

l
log [sin (kx)] + z0 . (5.3.19)

The field lines shown in Fig. 5.4 are plotted with this explicit parameterization. One of
the sheared loops is outlined with a shaded area in Fig. 5.4.

5.3.3 Nonlinear Force-Free Field Calculation Methods

After we have given the general definition of the nonlinear force-free field in §5.3.1,
which requires a solution of the coupled equation system

(∇× B) = αB ,

B · ∇α = 0 . (5.3.20)

(which is a different from of Eq. 5.3.13) we turn now to some numerical methods that
have been developed to calculate such magnetic field extrapolations. The necessity of
nonlinear force-free extrapolation methods is in particular motivated by the fact that
a direct comparison of extrapolated fields and observed coronal structures in images
shows that the potential and linear force-free extrapolations are often inadequate in
representing coronal structures. Critical reviews on nonlinear force-free extrapolation
methods with inter-comparisons and discussions of their problems can be found in
Démoulin et al. (1997b), Amari et al. (1997), and McClymont et al. (1997), all con-
tained in the Special Issue of Solar Physics 174 on the Workshop Measurements and
Analyses of the 3D Solar Magnetic Fields.

The Vertical Integration Method

The most straightforward method is called the method of vertical integration. The
photospheric boundary condition at height z = 0 is given by the measured magnetic
field components Bx, By, Bz , which also define the α-parameter at the photospheric
boundary (e.g., from the z-component of Eq. 5.3.6),

α(x, y, z = 0) =
1

Bz

(
∂By

∂x
− ∂Bx

∂y

)
. (5.3.21)

Using the x and y-component of Eq. (5.3.6), the divergence-free condition ∇ · B (Eq.
5.1.2), and the vector identity condition B · ∇α = 0 (5.3.7), all vertical derivatives of
Bx, By, Bz , and α can be written as a function of horizontal derivatives,

∂Bx

∂z
= αBy +

∂Bz

∂x
, (5.3.22)
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∂By

∂z
= −αBx +

∂Bz

∂y
, (5.3.23)

∂Bz

∂z
= −∂Bx

∂x
− ∂By

∂y
, (5.3.24)

∂α

∂z
= − 1

Bz

(
Bx

∂α

∂x
+ By

∂α

∂y

)
. (5.3.25)

Integration of this system of four equations (5.3.22−25) in the vertical direction pro-
vides the extrapolated magnetic field at height z + dz, which can be continued in the
upward direction to a desired upper boundary of a coronal volume. This apparently
straightforward method (e.g., Wu et al. 1990) was numerically tested by Démoulin et
al. (1992). Although the numeric computation is straightforward, it is a mathemati-
cally ill-posed problem, even for a potential field (α = 0), because of the nature of the
elliptical equations. The ill-posedness of the problem is manifested by the fact that a
small variation of the base boundary conditions can change the solutions dramatically,
as well as the fact that the numerical errors of integration make the integration unsta-
ble and the deviations from the solution are rapidly growing. This has been shown
by a Fourier analysis for the linear force-free case (Alissandrakis 1981; Démoulin et
al. 1992). The Fourier transforms of the magnetic field components with respect to the
spatial coordinates (x, y) are defined in Fourier space (u, v) as,

B̂(u, v, z) = B̂(u, v, 0) exp (−kz) , (5.3.26)

where solutions of the Fourier components B̂ are considered that decrease exponen-
tially with height z. Taking the Fourier transform of the linear force-free equation
(5.3.20) and using the derivative theorem of the Fourier transform leads to a specific
condition for the wave number k (Alissandrakis 1981),

k = ±
√

(4π2(u2 + v2) − α2) , (5.3.27)

where the negative sign (−) in Eq. (5.3.27) indicates wave numbers with decreasing
modes, and the positive sign (+) with growing modes. The growing modes lead to
unphysical solutions, because the magnetic energy diverges to infinity with height,
EB → ∞. The growing modes grow faster for high spatial frequencies and seem to
appear due to lack of boundary conditions. Various modifications have been developed
to minimize the algorithm-dependent computational errors, for instance by spatial av-
eraging of α at each step of the vertical integration (Cuperman et al. 1990), or by spatial
averaging of both the magnetic field B and α separately (Démoulin et al. 1992). The
increased numerical accuracy of the averaging approach was tested in Démoulin et
al. (1992) with an analytical model of a weakly sheared nonlinear force-free field solu-
tion (Low 1982). In an alternative approach, growing modes were suppressed through
Fourier Transform during the extrapolation (Amari et al. 1997). A further drawback
of the vertical integration method is that the derivative dα/dz (Eq. 5.3.25) becomes
singular at the neutral line, where Bz = 0. This obstacle has been circumvented by
spatial smoothing methods (Wu et al. 1990), by imposing a maximum value for α (Cu-
perman et al. 1990) and Bz (Démoulin et al. 1992). Another difficulty with the vertical
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integration method is that a constant α-value along a field line cannot strictly be en-
sured with noisy magnetogram data, as it is required by the condition B · ∇α = 0
(Eq. 5.3.20). While the vertical integration method is the most straightforward ap-
proach, the numerical stability seems to represent a major obstacle to achieve accurate
nonlinear force-free solutions.

The Boundary Integral Method

The previously described vertical integration method is based on techniques of solving
differential equations (5.3.22−25) that have ill-posed features. Alternatively, if the
same physical problem can be formulated by integral equations, one can benefit from
the advantages of integral techniques (e.g., they are more robust because the residual
errors cancel out better in integral summations).

Such an integral equation representation for force-free fields was developed and
demonstrated in Yan (1995), Yan et al. (1995), and Yan & Sakurai (1997, 2000). In
order to apply Green’s theorem, two functions are required, for which the magnetic
field B(r) and the reference function Y (r) are chosen, where

Y (r) =
cos (λr)

4πr
, (5.3.28)

with r = |r− ri| being the distance of an arbitrary location r to a fixed point at ri, and
λ(ri) the parameter that depends only on the fixed location ri. The reference function
Y (r) satisfies the Helmholtz equation (5.3.11)

∇2Y + λ2Y = δi , (5.3.29)

where δi is the Dirac function defined at point i. Because there is a singularity at point
i, a small volume around point i needs to be excluded in the field extrapolation. The
two functions B and Y satisfy the Green’s second identity and the Helmholtz equation
(5.3.29), so that we have∫

V

(Y ∇2B − B∇2Y )dV =
∫

S

(
Y

dB

dn
− B

dY

dn

)
dS , (5.3.30)

with
∫

V
being a volume integral and

∫
S

the surface surrounding the volume, consist-
ing of all sides of the extrapolation box. The surface integral can be calculated for
the chosen reference function Y (Eq. 5.3.28) and we obtain for the volume integral
(5.3.30),∫

V
(Y ∇2B − B∇2Y )dV = B(r) +

∫
V

Y
[
λ2B− α2B− (∇α × B)

]
dV

= B(r) + ψi(λ, r) .
(5.3.31)

Since the volume integral has to vanish at infinity, we require ψi(λ) = 0 at any point in
the extrapolation box, which constitutes an implicit definition for the pseudo force-free
parameter λ, which approximately equals the force-free parameter α. For each compo-
nent of B a corresponding reference function Y is needed, as defined in Eq. (5.3.28),
so we can express it as a diagonal matrix Y = diag(Yx, Yy, Yz) with parameters
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(λx, λy, λz). This then finally leads to a boundary integral representation for the solu-
tion of the nonlinear force-free field problem,

B(ri) =
∫

S

(
Y(ri, r)

dB(r)
dn

− dY(ri, r)
dn

B(r)
)

dS (5.3.32)

This equation indicates that the values of B and the gradients dB/dn are required
over the photospheric surface S. With this input one can then determine the magnetic
field B at any location in the volume V by integration of the products of the reference
function Y and the boundary values B(x, y, z = 0) and gradients dB(x, y, z = 0)/dn.

Drawbacks of the boundary integral method are oversampling of photospheric boun-
dary conditions and the difficulty in setting the pseudo force-free parameter λ(ri). The
method is well adapted for weakly nonlinear force-free cases, for which it has been
successfully tested (Yan 1995; Yan & Sakurai 2000).

The Euler Potential Method

The magnetic field B(r) can also be defined in terms of Euler potentials (Stern 1966;
Parker 1979),

B = ∇α ×∇β (5.3.33)

where the scalar functions α(r) and β(r) are also called Clebsch variables (Lamb
1963). This is equivalent to express the Euler potentials in terms of a vector poten-
tial A,

A = α · ∇β (5.3.34)

since the curl of this vector potential A yields

B = ∇× A = ∇× (α · ∇β) = ∇α ×∇β (5.3.35)

according to the vector identity ∇× (α · ∇β) = ∇α×∇β + α(∇×∇β) and the fact
that the curl of a gradient vanishes, (∇×∇β) = 0. We can also see that the Maxwell
equation (5.1.2) of the divergence-free condition, ∇ · B = 0, is automatically fulfilled
by using the vector identity ∇ · (∇α ×∇β) = ∇β · (∇×∇α) and ∇×∇α = 0.

According to the vector product (5.3.33), both gradients ∇α and ∇β are perpen-
dicular to the vector B, so that their scalar product is zero,

B · ∇α = 0 ,

B · ∇β = 0 , (5.3.36)

and thus the functions α(r) and β(r) are constant along B(r). The surfaces α = const
and β = const are orthogonal to their gradients and tangential to B. Therefore, the
magnetic field lines lie on the intersection of the surfaces α = const and β = const
and each field line can uniquely be labeled by a pair of variables α and β.

Euler potentials have been applied to solar magnetic field problems in various con-
texts. Sakurai (1979) derived a formulation of the force-free field using Euler poten-
tials and the variational principle, Low (1991) presented the 3D component equations,
Uchida (1997a,b) reviews the theory of force-free fields in terms of Euler potentials,
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Yang et al. (1986) and Porter et al. (1992) use them in their 2D magneto-frictional
method to calculate force-free fields, Fiedler (1992) presents a numeric method, Emonet
& Moreno−Insertis (1996) model rising fluxtubes, and Hennig & Cally (2001) discuss
the boundary conditions and develop a new fast numeric method with a multi-grid
technique.

The Euler potential method is mathematically a well-posed problem. A field line
is defined by (α, β) and constrains the connectivity at the boundary (z = 0), but the
connectivities are hard to obtain from observations. Strategies of numeric codes are
therefore to evolve towards observed fields and relax into an equilibrium. The advec-
tion at the boundary (z = 0) is prescribed by

dα(x, y, z = 0, t)
dt

+ v(x, y, z = 0, t) · ∇α = 0 ,

dβ(x, y, z = 0, t)
dt

+ v(x, y, z = 0, t) · ∇β = 0 , (5.3.37)

while relaxation in the coronal volume (z > 0) is achieved by solving the momen-
tum equation with magnetic induction, the Lorentz force, and viscous terms (Yang et
al. 1986), or by iterative minimization of the magnetic energy EB (Sakurai 1979). The
main problem with the Euler potential method are the free boundaries and the related
unconstraintness of the magnetic topology (Antiochos 1986). It is also impossible to
superpose potentials from multiple sources (Stern 1966), which makes it difficult to
obtain analytical solutions.

Full MHD Method

The most complete method to calculate the coronal magnetic field is to use the full set
of magneto-hydrodynamic (MHD) equations, which we will discuss in more detail in
§ 6. The first numeric code that solves the full MHD equations has been developed by
Mikić et al. (1990). Generally, the MHD equations can describe the time-dependent
evolution of the coronal plasma, but for a magnetic field description we are mostly
interested in stable equilibria solutions. Such stable equilibria are expected to be force-
free (j × B = 0), where the plasma density (and the associated pressure p and gravity
pgrav) have no importance. The solutions of the force-free magnetic field are thus
mainly governed by the interaction of the magnetic field with the plasma flows, which
is expressed in the equations of motion (generalized from Eq. 4.1.3) and induction
(Eq. 5.1.14),

ρ
D

Dt
v ≈ (j× B) + νviscρ∇2v , (5.3.38)

dB
dt

= ∇× (v × B) + η∇2B . (5.3.39)

where νvisc is the kinematic viscosity and η the finite plasma resistivity, which both
contribute to the numerical stability of MHD codes. Required boundary conditions
for an MHD code are the magnetic field B = (Bx, By, Bz) and the velocity field
v = (vx, vy, vz = 0) at the photospheric surface.
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The MHD method has proven to be efficient in calculations of the solar magnetic
field. Mikić et al. (1990) study the dynamic evolution of twisted magnetic fluxtubes,
following them until they become kink unstable. Mikić & McClymont (1994) and Mc-
Clymont & Mikić (1994) use the MHD code to derive horizontal photospheric flows
which form from the observed currents. Amari et al. (1997) simulate the 3D MHD
evolution of a quadrupolar configuration and compare it with other extrapolation meth-
ods. Jiao et al. (1997) use an MHD code to model the nonpotential field of active
region loops observed with Yohkoh/SXT. Difficulties with the MHD method are the
same as they are typical for numerical simulations, such as heavy computing demand,
convergence problems, insufficient spatial resolution to handle discontinuities, numer-
ical resistivity and viscosity, too small Reynolds numbers for coronal conditions, and
line-tying (continuous slippage of magnetic field lines).

Potential Vector Grad−Rubin Method

Another method to solve the nonlinear equation system (5.3.20) for force-free fields is
to express it as an iterative sequence of linear equations

Bn · ∇αn = 0 , (5.3.40)

∇× Bn+1 = αnBn , (5.3.41)

with n the iteration number. This method was introduced by Grad & Rubin (1958)
and is also described in Aly (1989) and Amari et al. (1997). The required boundary
conditions are the vertical magnetic field Bz and the vertical current density jz ∝ (∇×
B)z or α. One can start with a potential field as an initial guess, and then successively
iterate the sequence of hyperbolic equations (5.3.40) and elliptic equations (5.3.41).
The problem is mathematically well-posed and the boundary conditions (Bz and α
in one polarity, either for Bz < 0 or Bz > 0) are not oversampled. Applications
to solar observations have been performed by Sakurai (1981). Magnetic field regions
with high currents can lead to twisting and kink-unstable behavior of this code, so that
this method has presently been applied only to observations with low magnetic shear
(Sakurai et al. 1985).

Evolutionary Methods

An alternative technique of a nonlinear force-free calculation method is the so-called
Stress-and-relax method (Roumeliotis 1996), which iteratively adjusts the vector po-
tential field by stressing and relaxing phases until the transverse field at the lower
boundary is optimally matched.

A variant of an integral technique is also given in Wheatland et al. (2000), where
the following quantity is minimized with an evolutionary procedure,

L =
∫

V

[
B−2|(∇× B) × B|2 + |∇ · B|2] dV . 5.3.42

If the residual L → 0 converges, then obviously both conditions (∇×B)×B = 0 and
∇ ·B = 0 are satisfied. A similar method minimizes the differences of the modeled to
the observed tangent magnetic field on the surface (Wheatland 1999).
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5.4 Magnetic Field in Active Region Corona

The theoretical models described in the previous sections provide us quantitative 3D
geometries of magnetic field lines in the solar corona. From the theory it is already
clear that there is no unique solution of the coronal field for any boundary condition
given at the photosphere. So, the ultimate arbitors of the usefulness of these magnetic
field extrapolation models are direct observations of the coronal field. Fortunately,
heating of the corona is localized at the footpoints of many individual magnetic field
lines, which causes upflows of heated plasma, which in turn trace out myriads of loop
threads or strands, each one illuminating a set of individual magnetic field lines. The
aim of this section is a quantitative comparison of such illuminated field lines, as it
can be observed in EUV and soft X-rays, with theoretical field extrapolations, such as
potential fields (§5.2) or force-free fields (§5.3).

5.4.1 3D Stereoscopy of Active Region Loops

If one wants to compare theoretical with observed field lines, the first problem is to
overcome the limitation that observations provide only 2D projections of coronal field
lines, while theoretical extrapolations provide 3D coordinates. An observed 2D pro-
jection is, therefore, ambiguous, because there is an infinite number of possible 3D
curves that produce the same 2D projection along a given line-of-sight. The missing
information of this 2D degeneracy can, however, be retrieved by stereoscopic obser-
vations. While truly stereoscopic observations will be available from the STEREO
mission, which is planned to be launched in 2006, we can currently only use pseudo-
stereoscopic techniques that make use of the solar rotation to vary the aspect angle.
The solar rotation in heliographic longitude l, which has a differential rotation rate as
a function of the latitude b, is (Allen 1973),

l′(t2) = l(t1) +
[
13.45◦ − 3◦ sin2 (b)

] (t2 − t1)
1 day

. (5.4.1)

Thus the aspect angle (from Earth) of a coronal loop varies about 13◦ per day, which is
sufficient to introduce an appreciable parallax effect to constrain the 3D coordinates of
its magnetic field line. The only shortcoming of such a solar rotation-based stereoscopy
technique is the requirement of static structures, which seems to be a prohibitive obsta-
cle at first glance, given the fact that the observed loop cooling times are of the order of
hours (Fig. 4.12; Winebarger et al. 2003a). Fortunately, the global magnetic field con-
figuration of an active region changes over much longer time scales (i.e., in the order
of days or weeks). Therefore, the slowly varying 3D geometry of the coronal magnetic
field represents a quasi-stationary system of conduits that is flushed through by heated
and cooling plasma on much faster time scales. A logical consequence is therefore the
concept of dynamic stereoscopy (Aschwanden et al. 1999a, 2000b), which makes the
only assumption that the magnetic field in the neighborhood of a traced loop is quasi-
stationary during the time interval of a stereoscopic correlation, but allows dynamic
processes of plasma flows, heating, and cooling along the field line. The principle of
dynamic stereoscopy is illustrated in Fig. 5.5.
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Figure 5.5: The principle of dynamic stereoscopy is illustrated here with an example of two
adjacent loops, where a thicker loop is bright at time t1, while a thinner loop is brightest at
time t2. From the loop positions (xi, yi) measured at an intermediate reference time t (i.e.,
t1 < t < t2; middle panel in middle row), projections are calculated for the previous and
following days for different inclination angles θ of the loop plane (left and right panel in middle
row). By extracting stripes parallel to the calculated projections θ = 10◦, 20◦, 30◦ (panels in
bottom part), it can be seen that both loops appear only co-aligned with the stripe axis for the
correct projection angle θ = 20◦, regardless of the footpoint displacement ∆x between the two
loops. The coalignment criterion can, therefore, be used to constrain the correct inclination angle
θ, even for dynamically changing loops (Aschwanden et al. 1999a).

The technique of dynamic stereoscopy has been applied to 30 loops observed in 171
Å (T ≈ 1.0 MK) with Soho/EIT (Aschwanden et al. 1999a), and to a set of 30 hotter
loops observed in 195 Å (T ≈ 1.5 MK) and in 284 Å (T ≈ 2.0 MK) (Aschwanden et
al. 2000b). The 3D coordinates of the traced loops were parameterized with a coplanar
circular geometry, which can be expressed with 6 free parameters for each loop (the
heliographic coordinates l1, b1 of a footpoint reference position, the height offset z0 of
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Figure 5.6: Three different projections of the stereoscopically reconstructed 30 loops of AR
7986 are shown. The loop segments that were traced from the 96-Aug-30, 171 Å image are
marked with thick solid lines, while the extrapolated segments (thin solid lines) represent circular
geometries extrapolated from the traced segments. The three views are: (1) as observed from
Earth with l0, b0 (bottom right panel), (2) rotated to north by b′0 = b0 − 100◦ (top right panel),
and (3) rotated to east by l′0 = l0 + 97.2◦ (corresponding to −7.2 days of solar rotation; bottom
left panel). An EIT 171 Å image observed at the same time (−7.2 days earlier) is shown for
comparison (top left panel), illustrating a similar range of inclination angles and loop heights
as found from stereoscopic correlations a week later. The heliographic grid has a spacing of 50

degrees or 60 Mm (Aschwanden et al. 1999a).

the loop curvature center, the loop radius r0, the azimuth angle α of the loop baseline,
and the inclination angle θ of the loop plane) as defined in Fig. 3.15. The inclination
angle θ can then be measured by stereoscopic correlation of the projected positions at
two different times, using the coordinate transformations given in §3.4.4. The loops
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Figure 5.7: SoHO/MDI magnetogram recorded on 1996-Aug-30, 20:48:00 UT, rotated to
the time of the analyzed EIT image (1996-Aug-30, 00:20:14 UT), with contour levels at
B = −350,−250, ..., +1150 G (in steps of 100 G). Magnetic field lines calculated from a
potential field model are overlaid (thin lines) onto the 30 loops (thick lines) traced from the
SoHO/EIT image (Aschwanden et al. 1999a).

have been traced from a highpass-filtered image as shown in Plate 3. An example of
such a stereoscopic reconstruction is shown in Fig. 5.6, which displays the solutions of
the 3D coordinates in three different projections. A sanity test of the procedure can be
made by rotating the stereoscopic solutions evaluated at disk center by 90 degrees to
the east limb, and by comparing it with an image observed 7 days earlier at the same
location (Fig. 5.6, top left panel). Apparently the long-lived loop system in this active
region displayed a similar distribution of loop inclination angles, so the stereoscopic
determination of loop inclination angles seems to be correct in the first order.

After we have retrieved the 3D coordinates of a set of observed coronal loops, we
are primarily interested in whether they line up with a theoretical model of the 3D
magnetic field. We first apply a potential field model, which has been calculated from
a near-simultaneous SoHO/Michelson Doppler Imager (MDI) magnetogram, using the
Green’s function method described in §5.2.3 (Sakurai 1982). The active region displays
a typical dipole field, with a group of stronger leading sunspots in the west and a trailing
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region of weaker magnetic field in the east. A subset of potential field lines is shown
in Fig. 5.7 (thin lines), selected above a threshold value for the photospheric magnetic
field. From the 30 loops reconstructed in Fig. 5.6, we display only the loop segments
that actually have been traced in the EIT images (thick lines in Fig. 5.7), which roughly
correspond to the lowest density scale height up to height of h ≈ 50 Mm, while the
upper parts of the loops could not be observed due to insufficient contrast, as expected
in a hydrostatic atmosphere (§3.1). Nevertheless, the traced loop segments clearly
reveal a mismatch to the calculated potential field in Fig. 5.7, although the overall
dipolar structure is roughly matched. The same mismatch is also present in EUV loops
traced at different temperatures, such as in 195 Å (T = 1.5 MK) and in 284 Å (T = 2.0
MK), see Plate 4. This brings us to the important conclusion that this active region has
a significant nonpotential characteristic, and therefore contains current-carrying loops.

A next step towards reality is to model the observed loop geometries with a non-
potential field model (e.g., with a force-free field, see § 5.3). This task has been con-
ducted for the same set of field lines by Wiegelmann & Neukirch (2002), using the
stereoscopic 3D coordinates shown in Figs. 5.6 and 5.7 as geometric input. For each
of the observed EIT loops the 3D coordinates r have been measured, which can be
parameterized by the loop length coordinate s (i.e., r(s) = [x(s), y(s), z(s)] ) with
0 ≤ s ≤ L, where L is the full length of the loop here. In the simplest realization of
a force-free field, a magnetic field line can be parameterized by a single free param-
eter α (Eq. 5.3.8). Wiegelmann & Neukirch (2002) varied the parameter α for each
field line until the best match with the observed EIT loop was achieved. They explored
two different criteria to quantify the goodness of the fit. One criterion was to mini-
mize the difference of the secondary footpoint position, at the force-free loop length
s = smax(α) and at the observed loop length L,

min[∆1(α)] = |rff (s = smax, α) − robs(s = L)| , (5.4.2)

which works only when the footpoints of the observed loops robs(s = 0) and robs(s =
L) are exactly known. In the example shown in Fig. 5.7, the full loop coordinates
could only be measured for the shortest loop, while the secondary footpoint of all
other 29 loops could only be estimated with poor accuracy. A more robust criterion
to fit the data is therefore to minimize the average least-square deviation between the
loop coordinates, which was quantified by the integral over the entire loop length by
Wiegelmann & Neukirch (2002),

min[∆2(α)] =
1

s2
max

∫ smax

0

√
[robs(s) − rff (s, α)]2 ds . (5.4.3)

Since the parameter ∆2(α) is normalized, it yields a measure of the average devia-
tion in units of the loop length. Wiegelmann & Neukirch (2002) obtained a fit with a
goodness of ∆2(α) ≈ 3% for the 4 best-fitting force-free field lines (Fig. 5.8), which
were the smallest loops, since those could be measured with highest accuracy with our
pseudo-stereoscopic method. A much higher accuracy cannot be expected at this point,
since the 3D coordinates of the pseudo-stereoscopic EIT loop observations were also
subject to the restriction of a circular and coplanar geometric model. A higher accu-
racy is likely to be achieved with true stereoscopy with the planned STEREO mission,
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Figure 5.8: Top: the EIT loops #1 − 7 shown in Figs. 5.6 and 5.7 are fitted with a force-free
magnetic field model for α = 2.5. Bottom: the EIT loops #13, 16, 17, 20, and 21 of Figs. 5.6
and 5.7 are fitted with a force-free parameter α = −2.0. The thin lines represent the force-free
field, while the EIT loops are marked with thick lines (Wiegelmann & Neukirch 2002).

which will feature two spacecraft with an aspect angle that increases with time when
the two spacecraft separate in opposite directions along the ecliptic plane.

The resulting force-free parameter was found to be α ≈ 2.5 for the group of loops
with the best fits (Fig. 5.8, top), and α ≈ −2.0 for another group on the opposite
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side of the dipole axis (Fig. 5.8 bottom). The linear force-free field in each group was
solved according to the method of Seehafer (1978), where the values of the force-free
parameter α are normalized to the range of −√

2π < α <
√

2π. Given this limit of√
2π = 4.44, we see that this active region exhibits a significant nonpotential field and

that a force-free field provides a reasonably good approximation for the well-measured
field lines.

5.4.2 Alfvén Velocity in Active Regions

For many dynamic phenomena in active regions, or in the solar corona in general, we
need to know the Alfvén velocity, for instance to identify a propagating wave or an
oscillation wave mode (§ 8). The Alfvén velocity vA at a particular location r is a
function of the local electron density ne(r) and magnetic field B(r). In particular it is
useful to know the height dependence vA(h) of the Alfvén velocity, because both the
density and magnetic field vary strongest along the vertical direction of a magnetic field
line. For the set of 30 active region loops analyzed from SoHO/EIT and SoHO/MDI
data (Aschwanden et al. 1999a) we know the geometry r(h) from stereoscopic corre-
lations (Fig. 5.6), the density ne(h) which agrees with hydrostatic models (Fig. 3.2,
§3.9), and the approximate magnetic field B(h) from a potential field model (Fig. 5.7).
The electron density ne(h) decreases near-exponentially with height (e.g., Fig. 3.28),

ne(h) ≈ n0 exp
(
− h

λT

)
, (5.4.4)

where the base densities were measured as n0 ≈ 2.0 ± 0.5 cm−3 for this set of 30
active region loops (Aschwanden et al. 1999a) and the thermal scale height is λT = 47
Mm × (Te/1 MK). The vertical projection of the magnetic field B(h) obtained from
the potential field extrapolation using the SoHO/MDI data is shown in Fig. 5.9 (top),
along with the inferred plasma β-parameter (Fig. 5.9, middle), and the Alfvén velocity
vA (Fig. 5.9. bottom). The magnetic field can be approximated with a dipole field
(Eq. 5.2.15), with the far-field decreasing with the third power,

B(h) ≈ B0

(
1 +

h

hD

)−3

, (5.4.5)

where hD is defined as the dipole depth, demarcating the location of the buried mag-
netic coil where the magnetic field becomes singular, B(h = −hD) → ∞. The po-
tential field lines shown in Fig. 5.9 (top) can closely be fitted with such a dipole model
(Eq. 5.4.5), with footpoint magnetic fields in the range of B0 = 20, ..., 230 G and a
dipole depth of hD = 75 Mm (Aschwanden et al. 1999a). If we plug the hydrostatic
density model ne(h) (Eq. 5.4.4) and the magnetic dipole model B(h) (Eq. 5.4.5) into
the definition of the Alfvén velocity vA (in cgs units),

vA(h) = 2.18 × 1011 B(h)√
ne(h)

, (5.4.6)
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Figure 5.9: The magnetic field B(h) (top), the plasma β-parameter or ratio of thermal to mag-
netic pressure, β(h) (middle), and the Alfvén velocity vA(h) (bottom), determined as a function
of height h for the 30 analyzed EIT loops. The magnetic field B(h) is taken from the nearest
potential field line (see Fig. 5.7). The vertical density scale height λ = 55 Mm is marked with
a dotted line. A potential field model is indicated with dashed curves (top) (Aschwanden et
al. 1999a).
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Coronal base (h=0):
B=126 G
n= 2.0 109 cm3

vA=6166 km/s

Alfven speed minimum:
B=2.4 G
n= 2.4 107 cm3

vA,min=1049 km/s
hA=207 Mm

Figure 5.10: Run of the Alfvén velocity vA(h) as a function of height h, for the range of
magnetic fields B = 20 − 230 G and density ne = 2.0 109 cm−3 measured in 30 active region
loops with SoHO/EIT (Aschwanden et al. 1999a). The average Alfvén velocity has a maximum
of vA0 = 6166 km s−1 at the base and reaches a minimum of vA,min = 1049 km s−1 at a
height of hA = 207 Mm.

we obtain the following height dependence

vA(h) = vA0 exp
(

h

2λT

)(
1 +

h

hD

)−3

, (5.4.7)

with the constant vA0 at the coronal base h ≈ h0,

vA0 = 2180
(

B0

100 G

)( n0

1010 cm−3

)−1/2

km s−1 . (5.4.8)

Both the density and magnetic field decrease with height, but the density drops faster
in the lower corona, while the magnetic field drops faster in the outer corona. Inter-
estingly, the Alfvén velocity reaches a minimum in the middle corona, which can be
found from the derivative dvA(h)/dh = 0 of Eq. (5.4.7). The corresponding height
hA of the minimum Alfvén velocity vA,min is

hA = 6λT − hD , (5.4.9)

which is found at hA = 6 × 47 − 75 = 207 Mm for our active region with hD = 75
Mm and λT = 47 Mm at a temperature of T = 1.0 MK. The minimum value of the
Alfvén velocity vA,min is

vA,min = vA0 exp
(

hA

2λT

)(
1 +

hA

hD

)−3

= vA0 exp
(

3 − hD

2λT

)(
6λT

hD

)−3

.

(5.4.10)
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Table 5.1: Alfvén velocity measurements in the lower corona (adapted from Schmelz et
al. 1994).

Temperature Density Magnetic field Alfvén speed Reference
Te [MK] ne/10

9 cm−3 B[G] vA [km s−1]
3.0 4.2 ± 2.0 250 7700 Nitta et al. (1991)
2.0 1.0 55 3500 Schmelz et al. (1992)
1.9 1.0 133 9800 Schmelz et al. (1992)
1.9 1.0 180 13,000 Schmelz et al. (1992)
3.1 2.6±0.6 150 6000 Schmelz et al. (1994)
2.9 1.2±0.9 178 10,000 Brosius et al. (1992)
2.5 1.0 164−297 10−19,000 Brosius et al. (1992)

583 37,000 Brosius et al. (1992)
3.0 3 − 8 410 10−16,000 Webb et al. (1987)
2.3−2.9 1.0 30−60 1900−3800 Brosius et al. (1993)
1.0 2.0 ± 0.5 126 6200 Aschwanden et al. (1999a)

We show the height dependence of the Alfvén velocity vA(h) in Fig. 5.10. The plateau
of the minimum Alfvén velocity extends over a quite large coronal height range. The
Alfvén velocity varies less than a factor of 2 (e.g., vA,min < vA < 2vA,min), over
a height range of 0.28hA < h < 2.14hA, or 57 Mm < h < 443 Mm in our exam-
ple. Therefore, there is a good justification to approximate the Alfvén velocity with
a constant over large ranges of the solar corona. However, it should be noticed, that
the Alfvén velocity tends to be significantly higher in the lower corona, which is often
neglected in theoretical models. In our active region we see that the Alfvén velocity
drops from 6166 km s−1 at the coronal base to 1049 km s−1 in the middle corona.
In Table 5.1 we show a compilation of Alfvén velocity measurements in the lower
corona, mostly inferred from the circular polarization of free-free emission in radio
wavelengths (see §5.7.1).

5.4.3 Non-Potentiality of Soft X-Ray Loops

We reconstructed the 3D geometry of magnetic field lines with a stereoscopic method
in §5.4.1 and found significant nonpotentiality in all investigated EUV loops of an ac-
tive region. EUV loops are most suitable for this type of 3D reconstruction, because
they appear as numerous thin loop strands, with the most “crispy” contrast at a temper-
ature of T ≈ 1.0 MK, as seen in 171 Å. Hotter active region loops are more difficult
to disentangle, because the most-used instrument that is sensitive to hot plasma with
temperatures of T > 2.0 MK is Yohkoh/SXT, which has very broadband temperature
filters with a sensitivity that increases with temperature. Consequently, Yohkoh/SXT
images tend to show dense, fat, and diffuse bundles of loops with many temperatures
above T >∼ 2.0 MK, which are less suitable for stereoscopic 3D reconstruction. Never-
theless, because hotter plasma requires a higher heating rate than the cooler EUV loops,
it is of interest to investigate the nonpotentiality of these soft X-ray loops, because
this could reveal the underlying currents responsible for plasma heating. Although
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Figure 5.11: Top: a potential coronal field is calculated (left panels), which evolves into a force-
free field (right panels). The field lines of the calculations are superimposed on a magnetogram
map of positive (white) and negative (black) magnetic polarity. Middle: a map of vertical current
density (Jz) flowing into (white) and out (black) of the corona. Bottom: the picture of soft X-
ray loops over the same active region, taken by the Yohkoh satellite. The loops are shown with
the potential field superimposed (left), no superposition (middle), and with the force-free field
superimposed (right) (Jiao et al. 1997).

3D reconstruction might not be feasible, the nonpotentiality can at least be shown by
matching the calculated magnetic field lines with the contours of soft X-ray loops in
2D projection.

Magnetic modeling of AR 7220/7222, observed with Yohkoh/SXT on 1992 July
13, was performed by Jiao et al. (1997) using vector magnetograms from Mees Ob-
servatory and longitudinal magnetograms from Kitt Peak Observatory (Fig. 5.11). The
magnetic field varies between B = −880 G and B = +2370 G in this active region.
The Yohkoh/SXT images shown in Fig. 5.11 were processed with a pixon method to re-
move the point spread function and to enhance the contrast of individual loops. A force-
free magnetic field was computed with the evolutionary MHD technique described in
Mikić & Clymont (1994) and McClymont et al. (1997), similar to the stress-and-relax
method of Roumeliotis (1996), where the time-dependent evolution of the resistive and
viscous MHD equations evolves in response to the changing boundary conditions from
an initial current-free (potential) to a force-free (nonpotential) solution. The initial
potential field is shown in the left panels of Fig. 5.11, clearly exhibiting a mismatch
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Figure 5.12: (a) contains a Yohkoh/SXT image of a quadrupolar active region observed on 1994
Jan 4. (b) shows the line-of-sight magnetogram with positive/negative magnetic field colored in
white/black. (c) displays a potential field calculation, and (d) shows a projection of the same
field lines on the west limb (Gary 1997).

between the dipolar field lines and the east-west oriented soft X-ray loops. Once the
time-dependent magnetic field code evolves into a force-free state as shown in the right
panels of Fig. 5.11, all (selected) field lines match up with the soft X-ray loops. The
current densities range from Jz = −18 to +20 mA m−2. Thus, this method provides a
sensitive diagnostic to measure the currents that may play a crucial role in the heating
of these soft X-ray emitting loops.

A similar exercise was performed by Schmieder et al. (1996), who calculated a
linear force-free magnetic field and matched it up with soft X-ray images from a NIXT
flight on 1991 July 11 (Golub 1997). Based on the fit between the observed soft X-
ray loops and the linear force-free field a differential magnetic field shear was inferred
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Figure 5.13: The left panel shows the same observed Yohkoh/SXT image of Fig. 5.12a, while
the right panel displays an artificial image produced by rendering of calculated magnetic field
lines with filling of optically thin plasma (Gary 1997).

that decreases from the low-lying inner loops towards the higher lying outer loops,
suggesting a continual relaxation of the magnetic field to a lower energy state in the
progressively older portions of the active region. Therefore, a linear force-free field
(with a constant α) cannot describe the entire active region, the parameter α seems to
decrease with height.

Another approach of comparing magnetic field models with soft X-ray loops was
developed by Gary (1997), a 3D loop rendering technique. Gary (1997) calculated
a 3D potential field of the transequatorial AR 7645/7646/7647 based on a Kitt Peak
magnetogram [Fig. 5.12(b)]. The quadrupolar potential field is shown in Fig. 5.12(c),
as well as in a different projection rotated by 90◦ to the west limb [Fig. 5.12(d)]. A
near-simultaneous soft X-ray image observed with Yohkoh/SXT on 1994 Jan 4, 07:35
UT, in the AlMg filter is shown in Fig. 5.12(a), covering a field-of-view of 16′ × 16′.
Gary (1997) developed a geometric code that combines bundles of magnetic field lines
to fluxtubes and fills them with hot plasma of suitable density and temperature. The
filling of the fluxtubes with hot plasma takes into account the exponential hydrostatic
density scale height, the height dependence of gravity, and the scaling laws of Serio
et al. (1981) between looptop temperature, loop length, and heating rate (see hydro-
static solutions in §3.6). The geometric code then iterates the fluxtube rendering with
a non-negative least-square minimization between the synthetic soft X-ray brightness
image and the observed Yohkoh/HXT image. The result of the 3D loop rendering tech-
nique is shown in Fig. 5.13, which shows the line-of-sight integrated emission measure
distribution of optically thin hot plasma loops that best matches the observed soft X-
ray image. This forward-fitting technique allows modeling of the physical parameters
within a given magnetic field model without requiring the disentangling of individ-
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Table 5.2: Observed Loop width expansion factors qw = wtop/wfoot.

Loop expansion Loop widths Spatial Number Instrument Refs.
qw w [Mm] resolution of loops
1.13 4.3±0.3 4.9” 10 Yohkoh/SXT 1
1.3 4.9±2.2 2.45” 43 Yohkoh/SXT 2
1.1 7.1±0.8 2.62” 30 EIT/SOHO 3
1.20 (non-flare) 2.2±1.5 0.5” 15 TRACE 4
1.16 (postflare) 1.3±0.8 0.5” 9 TRACE 4

References: 1) Klimchuk et al. (1992); 2) Klimchuk (2000); 3) Aschwanden et al. (1999a), 4) Watko &
Klimchuk (2000).

ual fluxtubes. The same method can also be used to vary the free parameters of the
magnetic field model to constrain the nonpotentiality of observed loops.

5.4.4 The Width Variation of Coronal Loops

Based on the fact that coronal loops are governed by a low plasma-β parameter (Fig.
1.22), plasma can only flow along the loops, and the cross-sectional variation provides
an accurate measure of whether neighboring magnetic field lines are parallel, expand,
or converge. Since different magnetic field models predict specific geometries, the
observed width variation of coronal loops bears a sensitive test of magnetic field models
and current distributions in the solar corona.

In Fig. 5.14 we calculate the width variation that is expected for different magnetic
field models: (a) for a potential field of a dipole according to the analytical model of
§5.2.2, (b) for a force-free field of a sheared arcade according to the analytical model
of §5.3.2, and (c) for a force-free field of a helically twisted fluxtube as modeled in
§5.5.1, which has a constant cross section by definition. The loop width w(s) can
be calculated straightforwardly from the shortest distance between two neighboring
field lines, parameterized by cartesian coordinates z(x) [i.e., using Eq.(5.3.19)] for a
force-free sheared arcade loop, or Eq. (5.2.22) for a potential-field dipole loop. We
plot in Fig. 5.14 the calculated magnetic field lines for loops that have a width of 10%
of the curvature radius and aspect ratios or qA = 0.5, 1.0, and 1.5 (i.e., the ratio of
the vertical to the horizontal curvature radius). The free parameters in each model are
adjusted in such a way that the different magnetic field models coincide at the inner
curvature radius at the footpoints and looptops. A convenient characterization of the
loop width variation is the so-called loop width expansion ratio qw (i.e., the ratio of the
loop diameter at the top wtop to that at the footpoint wfoot),

qw =
wtop

wfoot
. (5.4.11)

In the bottom frame of Fig. 5.14 we plot this loop width expansion factor qw(qA) as
a function of the loop aspect ratio qA, computed numerically from the three analyti-
cal magnetic field models. The diameter of a helically twisted force-free fluxtube is
constant by definition. However, a force-free fluxtube of a sheared arcade exhibits the
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Figure 5.14: Thickness variations of coronal loops computed for three different magnetic field
models: (a) potential field of dipole loop (dashed lines), (b) force-free field of sheared arcade
loop (solid lines), and (c) force-free field of helically twisted loop (dotted line). Top: field lines
for loop with a ratio of qr = 1.1 between the outer and inner curvature radius. The variation of
the width ratio qw = wtop/wfoot between the looptop and footpoint is listed. Bottom: the loop
width ratio qw as function of the geometric aspect ratio qA = r2/r1 (i.e., the ratio of the vertical
r2 to the horizontal curvature radius r1).
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Figure 5.15: Post-flare loop system observed with TRACE 171 Å on 1998 Aug 25, 00:13:13
UT. Loop expansion factors qw have been measured for 3 loops by Watko & Klimchuk (2000).
Note the near-constancy of the loop diameters in the arcade.

largest width variation (solid line in Fig. 5.14), up to factors of qw
<∼ 10 at qA = 1.5.

The potential field of the dipole loop shows some intermediate expansion factor. Thus
we learn from these three examples that large loop expansion factors qw occur system-
atically for loops with large vertical/horizontal aspect ratios qA > 1, but can equally
be produced by force-free as well as by potential fields, depending on the model.

Let us look now at observational measurements, which are compiled in Table 5.2.
Klimchuk et al. (1992) investigated a set of 10 soft X-ray loops observed with Yohkoh/
SXT with half resolution (4.9”) and a measured expansion factor of qw = 1.13 between
the looptop and footpoint, which indicates an almost constant diameter. A second study
with Yohkoh/SXT full resolution (2.45”) revealed a similar small number for the loop
expansion factor, of the order qw ≈ 1.3 (Klimchuk 2000; Fig.17 therein). Yan & Saku-
rai (1997) calculated the expansion of loops from a force-free magnetic field model and
obtained loop expansion factors up to qw ≈ 4 − 6, while the observed Yohkoh/SXT
loops in arcades showed a much smaller ratio of qw ≈ 1.0 − 1.5. Another study on
cooler EUV loops observed with SoHO/EIT with a resolution of 2.62” revealed a sig-
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nificant expansion only for 2 out of 30 loops, while the overall range was qw ≈ 1.1±0.2
(Fig. 8 in Aschwanden et al. 1999a). However, because the cooler EUV loops have a
shorter hydrostatic scale height than the hotter soft X-ray loops, the expansion could
only be measured over the lowest vertical scale height, which thus constitutes a lower
limit for the expansion factor at the looptop. Measurements of the loop expansion
factors with the highest spatial resolution have then been made with TRACE having a
pixel size of 0.5” (Watko & Klimchuk 2000). An example of such an analyzed postflare
loop system in shown in Fig. 5.15, where the near-constancy of loop cross sections can
be seen clearly. The effective loop widths were determined by correcting also for the
TRACE point spread function with a FWHM of 1.25” (Golub et al. 1999). However,
no large loop expansion factors were measured, either for postflare loops (qw = 1.20)
or for non-flare loops (qw = 1.16). Although longer loops are expected theoretically to
have greater expansion than shorter loops (Klimchuk 2000), Watko & Klimchuk (2000)
found no such correlation between the loop expansion factor qw and loop length L.

Given the consistent observational result that loop expansion factors hover in the
neighborhood of qw ≈ 1.1 − 1.2 (Table 5.2), which is significantly less than pre-
dicted for a dipolar field (qw ≈ 2 for a semi-circular loop) or for sheared arcade loops
(qw ≈ 4), we are left with the interpretation in terms of current-carrying, helically
twisted fluxtubes, for which force-free solutions exist with constant loop cross sections.
Ampère’s law (Eq. 5.1.9) implies that loops with constant cross sections A(s) have a
constant magnetic field B(s), since the magnetic flux Φ = B(s) · A(s) is conserved
along a loop.

There exist analytical models and numerical simulations on the effect of twist on the
structure of straight axis-symmetric fluxtubes (Parker 1977, 1979; Browning & Priest
1983; Zweibel & Boozer 1985; Craig & Sneyd 1986; Steinolfson & Tajima 1987;
Browning 1988; Browning & Hood 1989; Lothian & Hood 1989; Mikić et al. 1990;
Robertson et al. 1992; Bellan 2003), which can explain some twist-induced constric-
tion of fluxtubes, but in many analytical models the assumption of an initial straight
fluxtube is made, which defeats the purpose to explain its existence. Twisted magnetic
fluxtubes embedded within a much larger untwisted dipole configuration have been nu-
merically calculated (Klimchuk et al. 2000), which indeed reproduced a reduction of
the expansion factor for side views, but produced increased expansion for a view from
above (Fig. 5.16). The two effects almost compensate, leading to no significant change
of the average expansion factor. However, an important systematic bias that comes into
play is that the constriction occurs strongest near the footpoints, which are obscured
for views from above (e.g., Fig. 5.15), and may even be outside the sensitivity range
of a given narrowband filter, due to the temperature decrease between the lower corona
and the transition region. Therefore, the instrumental response function (§3.8) has to
be included in comparisons of theoretical models with observations.

Another property that has been observed is that the loop widths do not vary period-
ically as conceivable for a twisted 2D ribbon stripe, but vary monotonically, indicative
of a circular shape of the loop envelope. This geometric property speaks against coronal
heating in 2D sheets, as expected from magnetic reconnection models (e.g., Galsgaard
& Nordlund, 1996). Therefore, it was concluded that loops with constant cross sec-
tions require axial-symmetric heating, dissipation, or transport mechanisms (Klimchuk
2000). A natural mechanism that fulfills this condition is upflow of heated plasma from
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Figure 5.16: A coronal loop embedded within a large dipole configuration is twisted by an
angle of 2π, viewed from the side (at 15◦ elevation angle) and from the top. Note that the loop
expansion with height is more pronounced in side views than in top views (Klimchuk et al. 2000).

below the magnetic canopy (located at the height of the transition region) as envisioned
in siphon-flow models (Fig. 4.3), where the canopy acts as a nozzle and distributes the
upflowing plasma axis-symmetrically over an expanded cross section of the order of a
granulation scale ( >∼ 1 Mm).

5.5 Magnetic Helicity

Magnetic helicity is a measure of the topological structure of the magnetic field, partic-
ularly suited to characterize helically twisted, sheared, (inter-)linked, and braided field
lines. The concept of magnetic helicity became a focus recently because of: (1) the
helicity conservation (especially since magnetic helicity conserves better than the mag-
netic energy), (2) the importance of magnetic helicity for the effectiveness of the solar
dynamo (since non-helical dynamos are generally not very effective), and (3) the role
of helicity in magnetic reconnection and stability (since co-helicity and counter-helicity
reconnection have different reconnection rates and energy outputs). In a plasma with
high electric conductivity (σ) or high Reynolds number Rm (Eq. 5.1.15), magnetic he-
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1992-01-17 09:51 UT

1992-05-27 20:31 UT 1992-11-21 23:20 UT

1992-12-24 01:09 UT 1993-04-24 12:01 UT

Figure 5.17: Sigmoid-shaped loop structures observed with Yohkoh/SXT: on 1992 Jan 17,
09:51 UT (top), 1992 May 27, 20:31 UT (middle left), 1992 Nov 21, 23:20 UT (middle right),
1992 Dec 24, 01:09 UT (bottom left), and 1993 Apr 24, 12:01 UT (bottom right). All images
are plotted on the same spatial scale, to the scale of the solar diameter visible in the top frame.
The greyscale is on a logarithmic scale and inverted (dark for bright emission). Note that many
of the sigmoid structures consist of segmented loops that do not extend over the entire sigmoid
length, but fit the overall curvature of the sigmoid shape.
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Ntwist= 3.0
Ntwist= 3.0

Ntwist= 0.5
Ntwist= 0.5

Ntwist= 0.1
Ntwist= 0.1

Figure 5.18: The geometry of twisted fluxtubes is visualized for straight fluxtubes (left) and
for semi-circular fluxtubes (right). Twisted magnetic field lines (thick linestyle) are shown on
the surface of the cylindrical fluxtubes for a small twist by Ntwist = 0.1 (top panels), moderate
twist by Ntwist = 0.5, and large twist by Ntwist = 3.0 turns. The twist is a measure of the
helicity of magnetic field lines.

licity is conserved to a high degree, even during magnetic reconnection processes. The
magnetic helicity could clearly be measured from the (forward or backward) S-shaped
loops seen in Yohkoh/SXT images (Fig. 5.17), which are also called sigmoids, due to
their similarity with the greek letter σ. Thematic publications on magnetic helicity can
be found, for examplie, in Brown et al. (1999) and Buechner & Pevtsov (2003).

5.5.1 Uniformly Twisted Cylindrical Force-Free Fluxtubes

A common geometrical concept is to characterize coronal loops with cylindrical flux-
tubes. For thin fluxtubes, the curvature of coronal loops and the related forces can
be neglected, so that a cylindrical geometry can be applied. Because the footpoints
of coronal loops are anchored in the photosphere, where a random velocity field cre-
ates vortical motion on the coronal fluxtubes, they are generally twisted. We consider
now such twisted fluxtubes (Fig. 5.18) and derive a relation between the helical twist
and the force-free parameter α (Eq. 5.3.6) (see also Sturrock 1994, § 13.7, or Boyd &
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Sanderson 2003, § 4.3.4).
We consider a straight cylinder where a uniform twist is applied (Fig. 5.18 left), so

that an initially straight field line B = (0, 0, Bz) is rotated by a number Ntwist of turns
over the cylinder length l, yielding an azimuthal field component Bϕ,

Bϕ

Bz
=

r∂ϕ

∂z
=

r2πNtwist

l
= br . (5.5.1)

The fluxtube can be considered as a sequence of cylinders with radii r, each one twisted
by the same shear angle ∂ϕ/∂z = 2πNtwist/l. Obviously, the magnetic components
depend only on the radius r, but not on the length coordinate z or azimuth angle ϕ.
Thus, the functional dependence is

B = [Br, Bϕ, Bz] = [0, Bϕ(r), Bz(r)] . (5.5.2)

Consequently, the general expression of ∇× B in cylindrical coordinates,

∇× B =
[
1
r

∂Bz

∂ϕ
− ∂Bϕ

∂z
,
∂Br

∂z
− ∂Bz

∂r
,
1
r

(
∂

∂r
(rBϕ) − ∂Br

∂ϕ

)]
, (5.5.3)

is simplified (with Eq. 5.5.2), yielding a force-free current density j of

j = [jr, jϕ, jz] =
1
4π

(∇× B) =
1
4π

[
0,−∂Bz

∂r
,
1
r

(
∂

∂r
(rBϕ

)]
. (5.5.4)

Requiring that the Lorentz force is zero, F = 0, we obtain a single non-zero component
in the r-direction, since jr = 0 for the two other components,

F = j× B = [Bzjϕ − Bϕjz , 0, 0] , (5.5.5)

yielding a single differential equation for Bz and Bϕ,

Bz
dBz

dr
+ Bϕ

1
r

d

dr
(rBϕ) = 0 . (5.5.6)

By substituting Bϕ = brBz from Eq. (5.5.1) this simplifies to

d

dr

[
(1 + b2r2)Bz

]
= 0 . (5.5.7)

A solution is found by making the expression inside the derivative a constant, which
yields Bz , and Bϕ with Eq. (5.5.1),

B = [Br, Bϕ, Bz] =
[
0,

B0 br

1 + b2r2
, 0,

B0

1 + b2r2

]
. (5.5.8)

With the definition of the force-free α-parameter (Eq. 5.3.6) we can now verify that the
α-parameter for a uniformly twisted fluxtube is,

α(r) =
2b

(1 + b2r2)
, b =

2πNtwist

l
(5.5.9)
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Figure 5.19: A model of a bipolar linear (constant-α) force-free magnetic field, computed for
positive (left frame) and negative α (right frame). Contours show the vertical magnetic field
strength Bz . An arbitrary field line near the central part of the dipole is marked (thick line) to
visualize the sense of twist, i.e., a forward S-shape for α > 0 and a backward S-shape for α < 0

(Pevtsov et al. 1997).

For instance, for one of the two twisted fluxtubes shown in Fig. 5.18 with Ntwist =
0.5 turn, we obtain, for a length l = 109 cm and tube radius r = 0.25 × 109 cm, a
numerical value of b = 3.1×10−9 cm−1 and a force-free parameter of α = 3.9×10−9

cm−1. The shear angle between the untwisted and the twisted field line is tan θ =
Bϕ/Bz = br = 2πNtwistr/l = 450. This way, the geometric shear angle θ, which
can observationally be measured from twisted coronal loops, can be used to estimate
the force-free α-parameter (Fig. 5.19). Note that we derived a similar relation for the
shear angle θ of a sheared arcade, where we found (Eq. 5.3.18) that the shear angle
θ of the arcade is proportional to the force-free parameter α for small angles (i.e.,
tan θ = By/Bx = α/l).

5.5.2 Observations of Sigmoid Loops

In principle, the appearance of a sinuous-shaped magnetic field line does not rule out
a magnetic potential field. An offset pair of dipoles with an oblique angle with respect
to the mid-axis are connected by sinuous shaped field lines, as shown in Figs. 5.19
and 5.20. Such sinuous field lines can thus be produced by a current-free potential
field. However, given the ubiquitous nonpotentiality of the coronal magnetic field we
encountered already in most of the EUV (§ 5.4.1) and soft X-ray loops (§ 5.4.2), a more
likely interpretation is that coronal structures are twisted because of current systems of
sub-photospheric origin, which enter the corona as vertical currents in the photosphere.
These vertical currents jz ,

jz ∝ (∇× B)z =
(

dBy

dx
− dBx

dy

)
∝ αBz , (5.5.10)

can then be measured from the observed horizontal magnetic field components (Bx, By),
specified by an α.
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Figure 5.20: Magnetic potential field of an offset pair of dipoles. Contours show vertical
magnetic field. Field lines connecting dipoles show distinct forward-S shapes, even for a current-
free potential field (Pevtsov et al. 1997).

The interpretation of sheared and twisted field lines in terms of a current-carrying
force-free field can be proven by testing the proportionality between the geometric
shear angle θ and the force-free parameter α. This test was performed in the study of
Pevtsov et al. (1997), where the force-free parameter α was measured for photospheric
magnetograms in 140 active regions, and was compared with the geometric shear angle
θ of individual soft X-ray loops observed with Yohkoh/SXT. A strong correlation was
found between α and θ in active regions with a dominant α-map (Fig. 5.21), which
led to the conclusion that coronal electric currents extend down to the photosphere,
and probably to subphotospheric currents according to other studies (Lites et al. 1995;
Leka et al. 1996).

5.5.3 Conservation of Helicity

Helically wounded coils provide a magnetic inductance. The energy of n circuits car-
rying currents I1, ..., In is proportional to

∑n
i=1

∑n
j=1 MijIiIj , where Mii is the self-

inductance and Mij is the mutual inductance. By analogy we can define the helicity H
between fluxtubes that carry magnetic fluxes Φi, (i = 1, ..., n), and are interlinked by
a number of Lij turns,

H =
n∑

i=1

n∑
j=1

LijΦiΦj , (5.5.11)
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Figure 5.21: Observed force-free field parameter αp from photospheric vector magnetograms
and shear angle αc (corresponding to the angle θ in Eq. 5.4.12) of coronal loops for 44 active
regions with a dominant sign of αp. A linear correlation is indicated with a dashed line (as
predicted by Eq. 5.4.12 (i.e., tan θ ∝ α), and the 2-σ error band is marked with dotted lines
(Pevtsov et al. 1997).

where Lii (“self-helicity”) represents the number of helical twists within the same flux-
tube i, and Lij (“mutual helicity”) represents the number of helical turns of fluxtube i
around another fluxtube j. In the limit of n → ∞ the discrete double-summation in
the helicity H can be transformed into a double-integral, provided that the volume V
is bounded by a magnetic surface (with n · B = 0),

H =
∫

V

A · B dV , (5.5.12)

where A is the vector potential ,

A(x) = − 1
4π

∫
V

(x − x′) × B(x′)
|x′ − x|3 dV ′ , (5.5.13)

satisfying
∇× A = B , (5.5.14)

∇ ·A = 0 . (5.5.15)

The vector potential is defined only to within a gauge transformation,

A → A′ = A + ∇Φ , (5.5.16)
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Figure 5.22: The definition of X-points or nullpoints, separatrix surfaces, and separator lines in
the context of 2D concepts (left) and 3D magnetic topologies (courtesy of Eric Priest).

which does not change the helicity H , if the volume V is bounded by a magnetic
surface (see derivation in Sturrock 1994, §13.8).

From the analytical model of a uniformly twisted fluxtube we have seen that the
force-free parameter α is uniquely related to the number of twists Ntwist (Eq. 5.5.9),
which is a measure of the helicity. Therefore, we can conclude that the helicity H is
conserved for a linear force-free field (with constant parameter α) for an expanding
fluxtube with anchored footpoints. A more formal derivation can be seen in Sturrock
(1994; § 13.9) or in Bellan (2002; § 3), also known as Woltjer’s theorem (1958). The
conservation of helicity is an important invariant during the evolution of coronal struc-
tures, which can be applied to active region loops (e.g., Liu et al. 2002; Kusano et
al. 2002), flare loops (e.g., Pevtsov et al. 1996; Moon et al. 2002b), filaments (e.g.,
Chae 2000; Pevtsov 2002), prominences (e.g., Shrivastava & Ambastha 1998; DeVore
& Antiochos 2000), magnetic fluxropes and interplanetary magnetic clouds (e.g., Ku-
mar & Rust 1996; Cid et al. 2001), etc. We will deal with such dynamic phenomena in
the sections on MHD (§ 6) and magnetic field changes during flares (§ 9).

5.6 Magnetic Nullpoints and Separators

5.6.1 Topological Definitions

Magnetic nullpoints are single-point locations where the magnetic field vanishes, B =
(0, 0, 0). Magnetic topologies with such singular points are common in the presence of
multiple magnetic sources. The magnetic field of a buried dipole as shown in Fig. 5.2
has no such singular point in the corona, but as soon as a second dipole with a dif-
ferent orientation is brought into proximity or emerges out of the surface, a coronal
nullpoint will occur between the two dipoles where the oppositely directed field com-
ponents cancel (Fig. 5.22, left). In the neighborhood of the X-point or nullpoint one
sees that the magnetic field lines connect to different topological domains, which are
separated by separator curves in 2D (Fig. 5.22, left) or by separatrix surfaces in 3D
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Figure 5.23: Complex 3D magnetic topologies created by three sources. Some of the eight
structurally stable configurations that can be formed are shown, with magnetic sources marked
with stars and separatrix curves with dashed lines (Priest et al. 1997).

(Fig. 5.22 right). A topological domain is defined by a family of magnetic field lines
that connect to the same conjugate pair of magnetic polarities. In the quadrupolar con-
figuration shown in Fig. 5.22 we have a pair of two dipoles, which we can number as
1 and 2, each one having a positive (+) and a negative (−) pole. The four topological
domains confine families of field lines which either connect (a) 1+ with 1−, (b) 1+
with 2−, (c) 2+ with 2−, or (d) 2+ with 1−. In the presence of three sources, eight
structurally stable configurations can be formed (Priest et al. 1997), of which a subset
is shown in Fig. 5.23. The intersection of two separatrix surfaces is called a separa-
tor line, which is marked with thick linestyle in the examples of Figs. 5.22 and 5.23.
Separators can also be found as magnetic field lines that connect two nullpoints. More
extensive discussions of topologies with magnetic nullpoints can be found in Priest &
Forbes (2002), Priest & Schrijver (1999), Brown & Priest (1999, 2001), or Longcope
& Klapper (2002).

There are two different types of magnetic neutral points, one at the intersection
of separatrix curves (X-point), and one at the center of a magnetic island (O-point). A
simple mathematical model of the magnetic field at such neutral points is given in Priest
& Forbes (2002, §1.3.1), with a vector potential A expressed as a quadratic function of
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Figure 5.24: 2D X-point (left) and O-point (right). Iso-contours of the magnetic field B are
calculated from A = 0.1, ..., 0.9 with a = ±1 with Eqs. (5.6.3).

the x and y-coordinates,

A = (0, 0, Az) =
[
0, 0,

B0

2L0
(y2 − ax2)

]
, (5.6.1)

which has elliptic functions as solutions for O-points (if a < 0), and hyperbolic func-
tions as solutions for X-points (if a > 0). The resulting magnetic field B follows from
this vector potential A as

B = (Bx, By, Bz) = ∇× A = (
dAz

dy
,−dAz

dx
, 0) , (5.6.2)

and has the explicit solutions

B = (Bx, By, Bz) = (B0
y

L0
, B0a

x

L0
, 0) , (5.6.3)

With L0 being the length scale over which the magnetic field varies. We see that the
magnetic field vanishes at the position (x, y) = (0, 0). Magnetic field lines are defined
by A = constant, plotted for A = 0.1, ..., 0.9 and a = ±1 in Fig. 5.24.

5.6.2 Observations of Coronal Nullpoints

We expect to observe coronal magnetic nullpoints in quadrupolar configurations, in the
midpoint region between the four magnetic poles. Such an almost symmetric situation
is shown in Fig. 5.12, observed with Yohkoh/SXT on 1994 Jan 4, and modeled with
a 3D potential field in Fig. 5.13. Other examples are given in Tsuneta (1996d), or in
Fig. 5.25, where a bundle of loops emanating from one magnetic polarity group in the
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Figure 5.25: Coronal magnetic nullpoint observed by TRACE 171 Å (left) and SoHO/MDI
magnetogram (right). The 171 Å image, taken on 2000-Sep-4, 10:17 UT, shows the corona
between two sunspots of equal polarity in active regions 9149 (north) and 9147 (south). Between
the spots, the loops meet and are deflected sideways, forming a so-called X-point in the magnetic
field. The leftmost half of the field shows up clearly, but the rightmost half has a different
temperature and is only vaguely visible.

east bifurcates and connects two sunspots, a northern and southern, almost symmetric
pair, with equal magnetic polarity and similar field strength in the west. A separator sur-
face can be imagined at the bifurcation line between the northern and southern bundle
of loops. Probably, the complete magnetic configuration is even quadrupolar, but field
lines on the west side of the magnetic nullpoint (marked with an arrow in Fig. 5.25) are
not illuminated with heated plasma at the right temperature to be detected with TRACE
171 Å. We see that the magnetic field lines are hyperbolically curved near the X-point,
similar to the simple mathematical model visualized in Fig. 5.24 (left).

What role do magnetic nullpoints play in the solar corona? Usually, an X-point is
considered as a necessary condition for magnetic field line reconnection in flares. How-
ever, bifurcating structures with hyperbolic groups of field lines on each side, which
are indicative of magnetic 3D null points, have been found to be in a quasi-stable con-
figuration, such as the saddle-like structure observed with SoHO/EIT in active region
NOAA 8113 from 1997-Dec-6 to 1997-Dec-10 (Filippov 1999). The saddle-like struc-
ture was visible without any signs of additional heating and was even darker than the
loops of the neighboring arcade. Apparently, magnetic nullpoints are a necessary but
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not sufficient condition for fast reconnection processes that occur in flares. There prob-
ably exists a vast number of magnetic nullpoints in active regions, wherever multiple
strong dipoles co-exist in proximity, but their detection requires cotemporaneous heat-
ing of hyperbolic field lines that surround a nullpoint from topologically disconnected
domains.

5.7 Magnetic Field Measurements in Radio

Active regions harbor the strongest magnetic fields on the solar surface, which amounts
up to several kiloGauss (kG) in sunspots. We used a simple analytical model for a
unipolar magnetic field in terms of a potential field in § 5.2.1, which characterizes the
coronal magnetic field above a symmetric sunspot to first order. While in all other
coronal regions the relatively weak magnetic field can only be inferred from photo-
spheric extrapolation methods, the strong fields above and around sunspots provide
direct measurement methods at radio wavelengths, making use of the magneto-ionic
mode splitting in the circular polarization of free-free emission (§ 5.7.1), gyroreso-
nance emission (§ 5.7.2), gyroresonance stereoscopy (§ 5.7.3), and nonpotential field
modeling of gyroresonance emission (§ 5.7.4). Above active regions, the magnetic
field can sometimes be inferred from the change in sign and amplitude of the circu-
lar polarization when the microwave radiation passes through a quasi-transverse (QT)
region (e.g., Ryabov et al. 1999). In weak-field regions far away from sunspots, the
coronal field can also be probed by measuring the Faraday rotation (Alissandrakis &
Chiuderi−Drago 1995). Alternative methods to measure the coronal magnetic field
have also been demonstrated by using the Fe XIII line in the infrared (Lin et al. 2000)
or the Hanle effect (Stenflo 1994).

5.7.1 Magnetic Fields Measured from Free-Free Emission

We derived the free-free absorption coefficient and free-free opacity for electron brems-
strahlung (or free-free emission) in an unmagnetized plasma in § 2.3. In the presence
of a magnetic field B, the plasma becomes magneto-active, in the sense that it be-
comes anisotropic and gyrotropic. The anisotropy shows up in the direction of the
particle motion along magnetic field lines as well as in the direction of wave propaga-
tion (refractive index) and in the gyrotropy of the circular polarization. The dispersion
relation and refractive indices of a magnetized plasma are derived in a number of stan-
dard textbooks on plasma physics (e.g., Ratcliffe 1969; Ginzburg 1961; Chen 1974;
Schmidt 1979; Lang 1980; Benz 1993; Sturrock 1994). The complex refractive index
εν for propagating electromagnetic (transverse) waves in a magnetized plasma is (Lang
1980),

ε2ν,σ = [nν − iqν ]2 = 1 − X

1−iZ− 1
2 Y 2

T

1−X−iZ + σ
[ 1

4 Y 4
T

(1−X−iZ)2 + Y 2
L

]1/2
, (5.7.1)

where the dimensionless frequency ratios are defined by

X =
(νp

ν

)2

, (5.7.2)
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Y =
(νB

ν

)
, (5.7.3)

Z =
(νeff

2πν

)
, (5.7.4)

YT = Y sin ψ , (5.7.5)

YL = Y cosψ , (5.7.6)

with ν being the observed frequency of the electromagnetic wave, νp the plasma fre-
quency, νB the gyrofrequency, νeff the effective collision frequency, ψ the angle be-
tween the propagation vector k of the electromagnetic wave and the magnetic field
B, and σ denoting the two magneto-ionic modes [i.e., the ordinary mode (σ = +1)
and extraordinary mode (σ = −1)], representing the sense of rotation of the gyrating
electrons with respect to the electromagnetic wave vector. In the cold-plasma approx-
imation, where the thermal motion or pressure is neglected, only the real part of the
refractive index (5.7.1) is considered nν (i.e., the imaginary part is set to zero, qν = 0,
Z = 0, or νeff � ν). The refractive index nν,σ for this cool and collisionless plasma
is then

n2
ν,σ =

k2c2

ω2
= 1 − X

1− 1
2 Y 2

T

1−X + σ
[ 1

4 Y 4
T

(1−X)2 + Y 2
L

]1/2
, (5.7.7)

also known as the Appleton−Hartree expression, which can be written by inserting
Eqs. (5.7.2−6) (e.g., Brosius & Holman 1988),

n2
ν,σ = 1+

2ν2
p(ν2

p − ν2)

σ
√

ν4ν4
B sin4 θ + 4ν2ν2

B(ν2
p − ν2) cos2 θ − 2ν2(ν2

p − ν2) − ν2ν2
B sin2 θ

,

(5.7.8)
where the plasma frequency νp and gyrofrequency νB are (in cgs units),

νp =
(

e2ne

πme

)1/2

= 8979
√

ne , (5.7.9)

νB =
(

eB

2πmec

)
= 2.80 × 106 B . (5.7.10)

The free-free absorption coefficient αν , which we derived for a vacuum in § 2.3 (with
refractive index nν = 1), is now generalized for a magnetized plasma by including the
refractive index nν,σ (Eq. 5.7.7) for the two magneto-ionic modes (σ) in Eqs. (2.3.16−17),

αff
ν,σ =

9.786× 10−3

nν,σν2

neni

T 3/2
ln
[
4.7 × 1010

(
T

ν

)]
[cm−1] (5.7.11)

The free-free opacity τff
ν,σ in a magnetized plasma is then

τff
ν,σ ≈

∫
αff

ν,σ(z) dz . (5.7.12)
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When free-free emission is observed at a radio frequency ν, the corresponding radio
brightness temperature is then (according to Eq. 2.1.9) in the Rayleigh−Jeans approx-
imation (Eq. 2.2.5), depending on the magneto-ionic mode (σ),

TB(ν, σ) =
∫

T (z) exp−τff
ν,σ(z) αff

ν,σ(z) dz . (5.7.13)

Since the free-free opacities are different for the two magneto-ionic modes, we obtain a
circular polarization, also called Stokes V parameter, which is defined by the difference
of the brightness temperature between the extraordinary mode (X) and ordinary mode
(O), normalized by their sum,

V =
TB(ν, X)− TB(ν, O)
TB(ν, X) + TB(ν, O)

. (5.7.14)

Therefore, the coronal magnetic field B can be inferred by measuring the circular po-
larization V at radio wavelengths. Neglecting the magnetic field, which can be justified
at sufficiently high radio frequencies ν � νB or for sufficiently weak magnetic fields,
reduces the Appleton−Hartree expression to the simple dispersion relation for plasma
emission (by setting Y = 0 in Eq. 5.7.7),

n2
ν =

k2c2

ω2
= 1 − X = 1 −

(νp

ν

)2

(5.7.15)

yielding no circular polarization for Stokes parameter V in Eq. (5.7.14).
The application of such a model of free-free emission to observed brightness tem-

perature maps TB(x, y), as they can readily be obtained in radio wavelengths, obvi-
ously involves the integration of the free-free opacity over a temperature model T (z)
and density model ne(z) along the line-of-sight. Brosius & Holman (1988) explored
this method for a coronal loop by assuming a constant temperature T and constant
density ne over an appropriate length scale L of the coronal plasma along the line-of-
sight, using radio maps obtained with the Very Large Array (VLA) (Webb et al. 1987).
A COronal Magnetic Structures Observing Campaign (COMSTOC) was organized to
measure the magnetic field in active regions, using VLA radio observations (Nitta et
al. 1991; Schmelz et al. 1992; 1994; Brosius et al. 1992). Further studies with the
same method were continued by Brosius et al. (1993, 1997, 2002) and Alissandrakis
et al. (1996). A summary of the obtained temperatures Te, densities ne, magnetic
fields B, and Alfvén velocities vA is compiled in Table 5.1 (§ 5.4.2). The density and
temperature models were parameterized only with a single or two-component plasma
along the line-of-sight, which, of course, cannot do justice to the highly inhomoge-
neous structure of the solar corona, as evidenced by the relatively broad differential
emission measure distributions observed by multi-temperature instruments (see dis-
cussion on line-of-sight integration in § 3.5). Consequently, significant discrepancies
arose between the plasma temperatures inferred from the COMSTOC radio observa-
tions and soft X-ray or EUV observations, which could only be reconciled with realistic
inhomogeneous models. Nevertheless, although this method allows only for very crude
density and magnetic field models in the case of single radio frequencies, it has the po-
tential of tomographic reconstruction (Aschwanden et al. 2003b), when radio maps will
become available at many frequencies, such as anticipated with the Frequency-Agile
Solar Radio telescope (FASR) (White et al. 2003).
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5.7.2 Gyroresonance Emission

The free-free emission described in the previous section originates from the collisional
energy loss when nonthermal electrons become slowed down in a dense plasma, also
called bremsstrahlung. At the same time, electrons spiral along magnetic field lines
and emit gyroresonance emission due to the Lorentz force that an electron experiences
on its gyroorbit with Larmor radius, also called magneto-bremsstrahlung or cyclotron
emission. In both cases, the radiated power dP/dΩ per stereo-angle is a function of the
acceleration v̇ of a moving charge e, according to Larmor (e.g., Jackson 1962, p. 663),

dP

dΩ
=

e2v̇2

4πc3

sin2 θ′

(1 − β cos θ′)5
, (5.7.16)

where e is the electric charge, v̇ the acceleration, β = v/c the relativistic speed, and θ′

the angle between the electromagnetic wave vector and the direction of acceleration.
The calculation of the gyroresonance emissivity involves the circular gyromotion of
the electron and the integration over the velocity distribution of the electrons. The
gyroemissivity peaks at harmonic frequencies ν = sνB of the gyrofrequency νB and
has a strong angular dependence. For a thermal (Maxwellian) velocity distribution
of kinetic electron energies the gyroemission absorption coefficient per unit length is
(derivations and discussions can be found in, e.g., Takakura 1960; Wild et al. 1963;
Zheleznyakov 1970; Melrose 1980a; Krueger 1979; Lang 1980; Dulk 1985),

αgr
ν,s,σ(θ) =

4π3/2

c

ν2
p

ν

( s
2 )2s

s!
(sin θ)2s−2(1 − σ| cos θ|)2

cos θ
β2s−3

0 exp
[
− (1 − sνB

ν )2

β2
0 cos2 θ

]
,

(5.7.17)
where the thermal velocity of the electron is defined by β0 =

√
kBT/mec2, and the

angle θ is defined between the directions of wave propagation and the magnetic field.
Because of the exponential factor, the absorption coefficient αgr

ν,s,σ drops quickly at
frequencies differing from the resonance frequencies ν = sνB . The integral of the
exponential factor over a resonance line is

∫ +∞

−∞
exp
[
− (1 − sνB

ν )2

β2
0 cos2 θ

]
dν

νB
=
(π

2

)1/2 β0 cos θ√
2

. (5.7.18)

It is therefore convenient to define a gyroresonance absorption coefficient averaged
over a resonance line, which yields with Eqs. (5.7.17−18),

〈αgr
ν,s,σ(θ)〉 =

(π

2

)2 2
c

ν2
p

ν

s2

s!

(
s2β2

0 sin2 θ

2

)s−1

(1 − σ| cos θ|)2 . (5.7.19)

The line-of-sight depth of a gyroresonant layer can be estimated from the magnetic
scale height LB = B/∇B. With this length scale LB we can calculate the gyroreso-
nance opacity τν,s,σ of a resonance layer with harmonic s,

τν,s,σ(θ) =
∫ ∞

0

〈αgr
ν,s,σ(θ)〉dz ≈ 〈αgr

ν,s,σ(θ)〉 LB (5.7.20)
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Figure 5.26: The line-of-sight integrated optical depth of the s = 2, 3, 4 gyroresonance layers
at a radio frequency of ν = 5.0 GHz as a function of the angle θ between the line-of-sight and
the magnetic field direction. The plasma temperature is T = 3.0 MK and the magnetic scale
height LB = 109 cm. The magneto-ionic X-mode is represented with solid linestyle and the
O-mode with dashed lines. The thin lines show the approximation of Eq. (5.7.21), while the
thick lines show the more accurate calculation based on Zlotnik (1968) (adapted from White &
Kundu 1997).

which with Eq. (5.7.19), after inserting the plasma frequency νp (Eq. 5.7.9), yields the
simplified expression (White & Kundu 1997),

τν,s,σ(θ) = 0.0133× neLB

ν

s2

s!

(
s2β2

0 sin2 θ

2

)s−1

(1 − σ| cos θ|)2 . (5.7.21)

The expected radio brightness temperature can then be calculated with Eq. (5.7.13)
in both circular polarizations σ = ±1. We show a typical example of the gyroreso-
nance opacity in Fig. 5.26, calculated for a plasma temperature of T = 3 × 106 K,
a magnetic scale height of LB = 109 cm, and at a frequency of ν = 5.0 GHz, for
the harmonics s = 2, 3, 4. Note that the lowest harmonic s = 2 is optically thick
(τν � 1) at most intermediate angles in both magneto-ionic modes, while the highest
harmonic s = 4 is optically thin τν < 1 in both polarizations. The expression of the
gyroresonance opacity given in Eq. (5.7.21) represents an approximation for perfect
circular polarization, while more general expressions are calculated by Zlotnik (1968),
also shown in Fig. 5.26.

Gyroresonance emission is competing with free-free emission at radio wavelengths.
In strong-field regions above sunspots, gyroresonance emission is always dominant
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Figure 5.27: Free-free emission and gyroresonance emission observed in an active region on
1994 Oct 15. Top left: soft X-ray image obtained by Yohkoh/SXT, which outlines the hot (T >∼ 2

MK) plasma loops of the dipolar region. Right top: H-α image from Learmonth Observatory,
which shows the dominant sunspot in the west as a dark feature. Bottom left: radio map made
with the VLA at ν = 1.5 GHz which shows free-free emission from the plasma envelope at
temperatures of T >∼ 1 MK that become optically thick above the hotter active region seen in
soft X-rays. Bottom right: radio map made with the VLA at ν = 4.5 GHz, which shows bright
gyroresonance emission above the western sunspot and faint free-free emission spread over the
entire active region (courtesy of Stephen White).

at frequencies above a few GHz (Fig. 5.27, bottom right), while free-free emission
is generally dominant in the weak-field regions in plages of active regions, almost
always at frequencies of ν <∼ 2 GHz (Fig. 5.27, bottom left). Measuring the circular
polarization at radio frequencies of ν >∼ 1 GHz, however, provides information on the
magnetic field strengths for both emission mechanisms. It is very fortunate that coronal
magnetic fields, which have field strengths of up to B ≈ 2500 G, fall in the range of
microwave frequencies (ν = 1-20 GHz), for the lower harmonics s = 2, 3, 4, which
can be readily mapped with high spatial resolution (e.g., White & Kundu 1997). The
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Figure 5.28: Left: white-light continuum image of a sunspot, showing the darkest emission in
the central umbra, where the temperature is coolest (T ≈ 4500◦ K) and the magnetic fields are
strongest (B ≈ 1 − 2 kG). Right: radio map of the same sunspot observed with the VLA at a
frequency of ν = 4.5 GHz. The central part of the umbra, where the angle of the line-of-sight to
the magnetic field is small, is darker than the peripheral parts in the penumbra, where the angles
are larger, as expected from the angle dependence of gyroresonance opacity shown in Fig. 5.26
(courtesy of Stephen White).

magnetic field B, scales with the observed radio frequency ν and harmonic number as
(according to Eq. 5.7.10),

B = 357
(

1
s

)( ν

1 GHz

)
(G) . (5.7.22)

For gyroresonance emission, a number of modeling studies have been conducted to
infer the magnetic fields above sunspots (e.g., Alissandrakis et al. 1980; Krueger et
al. 1985; Brosius & Holman 1989; Lee et al. 1993a,b; Vourlidas et al. 1997). A bright-
ness temperature map of gyroresonance emission of a nearly symmetric sunspot is
shown in Fig. 5.28. Generally, radio images at multiple microwave frequencies are
required to disentangle the contributions from different gyroharmonics (s = 2, 3, 4)
for inference of a magnetic field model. When only one single frequency is avail-
able, one can estimate the maximum field strength in the corona from the extent of the
gyroresonance-emitting region. Maximum field strengths up to B ≈ 1800 G have been
measured in the corona at a frequency of ν = 15 GHz (White et al. 1991), and up to
B ≈ 2000 G at ν = 17 GHz with the Nobeyama heliograph (Shibasaki et al. 1994).

5.7.3 Gyroresonance Stereoscopy

All previously described models based on free-free or gyroresonance emission at ra-
dio wavelengths are scale-free, because they provide essentially a relation between the
magnetic field as a function of the opacity B(τ), while the spatial scaling of the opacity
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Figure 5.29: Left: stereoscopic height measurements h(ν) of a gyroresonance source above
a sunspot as a function of radio frequency ν, observed with the Owens Valley Radio Array
(OVRA), showing the brightness temperature in right-hand-circular (RCP) and left-hand-circular
(LCP) polarization. The dashed curves represent fits of a dipole-field model for the 2nd and 3rd
harmonic. Right: magnetic field measurements B(h) as a function of height h, reconstructed
from the same stereoscopic correlations. The upper curve represents a dipole-field model involv-
ing the 2nd and 3rd harmonic (Aschwanden et al. 1995a).

τ(z) as a function of the line-of-sight depth z cannot be directly measured. One possi-
ble method to infer an absolute scaling of the coronal magnetic field B(z) as a function
of height z is solar-rotation stereoscopy, which works relatively well for gyroreso-
nance emission above stationary sunspots. Such an experiment was conducted over
four days (1992-Apr-13 to 16) of sunspot observations with the Owens Valley Radio
Observatory (OVRO) in active region NOAA 7128 (Aschwanden et al. 1995a). Optical
observations of the sunspot provided a photospheric rotation rate of dL/dt = +0.240◦

day−1. Radio images were reconstructed in both RCP and LCP polarizations and the
rotation rates of the centroids of gyroresonance emission were measured at 7 different
frequencies (ν = 10 − 14 GHz). This yielded an average altitude h(ν) of the domi-
nant gyroresonance layers at each frequency, depending on the parallax effect between
the sunspot motion and the radio source motion. The obtained altitudes are shown in
Fig. 5.29 for both circular polarizations. The altitude h(ν) of the stronger RCP po-
larization (X-mode) clearly shows a pattern to decrease with higher frequencies, as
expected for an individual harmonic s in the case of gyroresonance emission. The situ-
ation is only complicated by the fact that multiple harmonics are involved and that the
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Figure 5.30: Spatial model of gyroresonance layers above a sunspot, constrained by stereo-
scopic measurements at 7 frequencies between ν = 10 GHz and 14 GHz (Aschwanden et
al. 1995a).

harmonic number is not known a priori. The altitudes could be fitted by a dipole model
in this case (Fig. 5.29, right),

B(h) = B0

(
1 +

h

hD

)−3

, (5.7.23)

yielding a photospheric field strength of B0 = 2309 G for a combination of the two
harmonics s = 2, 3, or alternatively B0 = 1454 G for the combination of s = 3, 4.
Since the photospheric field could be independently measured in white light to BPh ≈
2500 from an (unsaturated) Mount Wilson magnetogram, the ambiguity of the two
solutions could be resolved, indicating that the combination of harmonics with s =
2, 3 is the more consistent solution. The corresponding dipole depth was found to be
hD = 65 Mm, similar to the active region characterized in Fig. 5.9, where an average
value of hD = 75 Mm was found (Aschwanden et al. 1999a). Based on this model
the height dependence of the gyroresonance source at an observed frequency ν is (with
Eqs. 5.7.22−23),

h(ν, s) = −hD +

[
hD

(
B0

357

)1/3
](ν

s

)−1/3

. (5.7.24)

This dipole model also yields an estimate of the local magnetic scale height LB(h),

LB(h) = − B

∇B
=

(hD + h)
3

, (5.7.25)
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which yields values of LB ≈ 24 Mm for the lower corona. The magnetic scale height
LB is required for gyro-opacity models (Eq. 5.7.21). Additional knowledge of the ge-
ometry (as visualized with a symmetric model in Fig. 5.30), which fixes the aspect
angle θ between the line-of-sight and the local magnetic field for every position, then
allows together with brightness temperature measurements TB(x, y, h), reconstruction
of the 3D density ne(x, y, z) and temperature Te(x, y, z) in the coronal region above
the sunspots, using the relations for the gyro-opacity (Eqs. 5.7.13 and 5.7.21). Of
course, this method works better the more frequencies that are available, because each
frequency provides information about a different height (specified by the gyroreso-
nance layer of the dominant gyroharmonics). Future solar-dedicated multi-frequency
imaging instruments, such as FASR, will allow us to apply such 3D reconstruction
methods to the coronal magnetic field, density, and temperature in great detail.

5.7.4 Non-Potential Field Modeling of Gyroresonance Emission

While we used a simple potential field to model the height dependence of the magnetic
field B(h) using stereoscopic methods (§ 5.7.3), a more sophisticated approach has
been advanced by Lee et al. (1997, 1998, 1999) by employing nonlinear force-free field
models. Earlier it was shown that potential-field (i.e., current-free) extrapolations of
photospheric magnetic fields failed to predict the (maximum) magnetic field strength in
some particular regions to explain the observed gyroresonance emission (Alissandrakis
et al. 1980; Pallavicini et al. 1981; Schmahl et al. 1982; Alissandrakis & Kundu 1984;
Lee et al. 1997). Thus, a convincing argument could be made that nonpotential fields
are necessary to explain the coronal magnetic field in such locations.

In the study of Lee et al. (1998), the gyroresonance emission above a sunspot group
was modeled with a nonlinear force-free code (Plate 5) and 6 different models for the
plasma temperature: (1) Te ∝ h (Fig. 5.31, top row); (2) Te ∝ B (Fig. 5.31 second
row); (3) Te ∝ α, the force-free parameter (Fig. 5.31 third row); (4) Te ∝ j, the
current density; (5) Te ∝ j(l/L), mimicking an RTV loop; and (6) with a magnetic
field correction. It was found that only a nonlinear force-free field model could be
reconciled with the source morphology seen in radio and Hα maps, and that the scaling
law of Te ∝ B yields a good agreement in low-α regions, while Te ∝ j seemed to work
better in high-α regions. Although no unique answer was found, this type of forward-
modeling has the potential to constrain the currents in coronal regions.

An alternative method to test coronal magnetic field models makes use of the spatial
correlations expected for temporal variations of plasma temperatures (Lee et al. 1999).
For a given 3D magnetic field model, plasma heating and cooling should produce cor-
related changes at two altitudes of the same field line, mapped at two radio frequen-
cies, because plasma transport in a low-β corona is only possible along field lines
(§ 1.8). This method successfully demonstrated that in a strongly sheared region only
a nonlinear force-free field could explain the correlations at the right locations, while a
potential-field model failed (Lee et al. 1999).
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Figure 5.31: Radio brightness temperature maps of a sunspot region, observed with the VLA
at 4.9 GHz (left bottom) and 8.4 GHz (right bottom), modeled with three different models of
temperature scaling: Te ∝ h (top row), Te ∝ B (second row), and Te ∝ α (third row). (Lee et
al. 1998).

5.8 Magnetic Field in the Transition Region

The transition region represents a boundary in many physical parameter regimes: it
demarcates (1) a temperature jump from T = 104K to 106 K, (2) a density jump from
>∼ 1011 cm−3 to 109 cm−3 (Fig. 1.19), (3) a transition from a high-β parameter to a

low-β regime (Fig. 1.22), and (4) a transition from a non-force-free to a force-free mag-
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Figure 5.32: Numerical simulation of a magneto-hydrodynamic fluxtube. The temperature
distribution is shown in greyscale, the velocity field with white arrows, and the magnetic field
with black lines. Note the canopy-like expansion in the upper chromosphere (Steiner et al. 1998).

netic field. It is therefore not surprising that also the geometry of magnetic fluxtubes
is subject to a drastic change at this boundary. Fluxtubes generally exhibit a rapid ex-
pansion with height, the so-called magnetic canopy, as inferred from magnetograms in
chromospheric spectral lines or from theoretical models of magneto-hydrostatic extrap-
olations (e.g., Fig. 5.32; Steiner et al. 1998). In the following we describe a few aspects
of the coronal magnetic field structure at this lower boundary, while more extensive
descriptions of the magnetic field in the photosphere, chromosphere, and transition re-
gion can be found in other solar textbooks (e.g., Foukal 1987; Zirin 1988; Schüssler
& Schmidt 1994; Stenflo 1994; Schrijver & Zwaan 2000; Stix 2002) or recent ency-
clopedia articles (e.g., Schüssler 2001; Lites 2001; Stenflo 2001a,b; Solanki 2001a,b,c;
Roberts 2001; Steiner 2001; Keppens 2001).

5.8.1 The Magnetic Canopy Structure

The organizing pattern that structures the magnetic field in the transition region are
the horizontal flows inside a supergranule, which transport emerging magnetic flux to
the boundaries of the supergranulation pattern, i.e., the photospheric network, causing
a congestion of magnetic flux in the network (Fig. 5.33). The concentration of the
magnetic flux in the network causes field-free regions in the internetwork cell (of the
supergranule). If we consider the total (thermal and magnetic) pressure in a fluxtube
rooted in a high-field region in the network, it has to be balanced against the total
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Figure 5.33: Cartoon of canopy structure of magnetic field in the chromosphere and transition
region to the corona. The flows inside a supergranule transport the footpoints of coronal field
lines into the network (arrows), which causes a bundling of the footpoint of vertical field lines.
The expansion into the corona occurs in fluxtubes that have a higher magnetic pressure than the
surrounding coronal plasma.

pressure of the external plasma,

pint(h) +
B2

int(h)
8π

= pext(h) +
B2

ext(h)
8π

. (5.8.1)

In the lower chromosphere, where the plasma-β parameter is high (β = pth/pmagn �
1; Fig. 1.22), the difference in magnetic field pressure inside and outside the fluxtube
does not matter much in the pressure balance, because pth,int ≈ pth,ext � pmagn.
However, above a height where the plasma-β parameter drops below unity, the pres-
sures become comparable and the total internal pressure starts to dominate over the
total external pressure. In the strong-field limit of Bint � Bext, the pressure balance
equation (5.8.1) becomes,

B2
int(h)
8π

≈ pext(h) − pint(h) . (5.8.2)

As a consequence of the decreasing external thermal pressure with height, the magnetic
fluxtube has to expand, while keeping the total magnetic flux Φ(h) = B(h)A(h) con-
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stant. This geometric expansion of the fluxtube with height is called magnetic canopy
(Fig. 5.33). This simplified model explains the physical connection between the canopy
height and the critical height where the plasma-β parameter becomes unity.

The magnetic canopy structure was used by Gabriel (1976) to model the lower
boundary of coronal magnetic fluxtubes. Using standard hydrostatic atmospheric mod-
els and magnetogram measurements near the solar limb, canopy heights of h ≈ 600 −
1000 km have been inferred. Fluxtubes with large temperature differences between the
internal and external plasma produce lower lying canopies. This applies in particular
to sunspots, where the horizontal field of the sunspot canopy extends far beyond the
penumbra (Plate 7). The canopy structure also explains the transition from a very low
filling factor (≈ 10−3, ..., 10−4) of the photospheric magnetic flux (outside sunspots)
to a high filling factor ( <∼ 1) of the coronal magnetic flux.

The dynamic picture of the chromosphere is far more complex. It is thought that
the magnetic flux migration causes myriads of magnetic separatrix surfaces above the
network, where magnetic energy is dissipated like in the interaction regions of geo-
physical plate tectonics (Priest et al. 2002). The texture of these small-scale magnetic
fields (Plate 6) is also called magnetic carpet (Title & Schrijver 1998), involving the
processes of magnetic flux emergence, cancellation, coalescence, and fragmentation
(Parnell 2001). The energy dissipation of the magnetic separatrix surfaces is thought
to be a key player of the coronal heating process.

5.8.2 Force-Freeness of the Chromospheric Magnetic Field

For extrapolations of the magnetic field to coronal heights it is important to establish
where the field becomes force-free. The magnetic field is expected to be force-free in
the corona wherever the plasma β-parameter is smaller than unity, and for the same
reason the magnetic field is expected to be non-force-free in the photosphere due to the
high value of the plasma β-parameter (β � 1). Where is the transition?

An observational measurement of the magnetic field in the chromosphere was made
by using the Na I λ5896 Å spectral line with the Stokes Polarimeter at the Mees Solar
Observatory in active region NOAA 7216 (Metcalf et al. 1995). The magnetic field
was measured at 6 wavelengths within the Na I spectral line, using densities from the
VAL-F model atmosphere (Vernazza et al. 1981). A necessary condition for a magnetic
field to be force-free is (Low 1984a),

Fx � F0 , Fy � F0 , Fz � F0 , (5.8.3)

where Fx, Fy , and Fz are the components of the net Lorentz force,

Fx =
1
4π

∫
z=0

BxBz dxdy ,

Fy =
1
4π

∫
z=0

ByBz dxdy ,

Fz =
1
8π

∫
z=0

(B2
z − B2

x − B2
y) dxdy , (5.8.4)
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Figure 5.34: Ratio of vertical net Lorentz force component Fz to total Lorentz force F0 as a
function of height h, measured in AR 7216. Note that the magnetic field is not-force-free in
the photosphere, but becomes force-free above an altitude of h >∼ 400 km in the chromosphere
(Metcalf et al. 1995).

and F0 is a characteristic magnitude of the total Lorentz force in a non-force-free at-
mosphere, which was set equal to the magnetic pressure force by Low (1984),

F0 =
1
8π

∫
z=0

(B2
x + B2

y + B2
y) dxdy . (5.8.5)

To measure the force-freeness condition (Eq. 5.8.3) the magnetic structure must be
isolated, which was verified by checking the imbalance between the upward and down-
ward vertical magnetic flux, found to be <∼ 0.5% for the investigated active region
(Metcalf et al. 1995). After correcting for the filling factor in the data and inversion of
the wavelengths using the contribution functions from the VLA-F atmospheric model,
Metcalf et al. (1995) inferred the net Lorentz force as a function of height, shown for
Fz/F0 in Fig. 5.34. Clearly the Figure reveals that the magnetic field becomes force-
free above a height of h >∼ 400 km. This critical height approximately corresponds
to the canopy height, which is generally found at altitudes of h ≈ 600 − 1000 km
from limb measurements (Steiner 2001). This confirms the theoretical expectation that
the canopy height coincides with the value of the plasma-β parameter β = 1 and the
transition from non-force-free to force-free fields. A more extended study with 12
active regions was conducted by Moon et al. (2002a), and somewhat smaller values
were found for |Fz/F0| = 0.06, ..., 0.32 than in the study of Metcalf et al. (1995),
with |Fz/F0| ≈ 0.4 in the photosphere, as well as a dependence of the photospheric
force-freeness on the evolutionary status of the active region.
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5.9 Summary

The magnetic field controls virtually all physical processes and observed phenom-
ena in the solar corona. It structures the corona into a highly inhomogeneous en-
semble of isolated mini-atmospheres and drives many dynamical processes such
as upflows and heating of coronal plasma, the evolution of filaments, prominences,
flares, and coronal mass ejections. The coronal magnetic field and its associated
currents can be described in the framework of Maxwell’s equations (§ 5.1). The
simplest 3D models of magnetic fields can be quantified in terms of a potential
field, which characterizes to first order unipolar fields in sunspots, dipolar fields in
active regions, and is often used to compute the global coronal field with a source-
surface model (§ 5.2). A physically better motivated approach is the framework of
force-free fields, where the Lorentz force on a magnetic field structure vanishes,
as it can be justified in the low-β corona (§ 5.3). A number of linear and nonlinear
force-free codes have been developed to calculate the coronal magnetic field from
photospheric magnetograms (§ 5.3.3). Independent measurements of the 3D mag-
netic field have been attempted with stereoscopic methods, which constrain the
force-free parameter α (§ 5.4.1). Generally, most of the EUV and soft X-ray struc-
tures traced in the corona show significant deviations from potential fields (§ 5.4.3)
and reveal near-constant cross sections (§ 5.4.4). A special subset of highly non-
potential field structures are helically twisted loops, also called sigmoids, which
most conspicuously indicate current systems in the corona (§ 5.5). Singularities in
the coronal fields are nullpoints and separatrix surfaces, which are now more and
more frequently observed (§ 5.6). One of the few methods of measuring the mag-
netic field strength in the corona directly is based on radio observations, utilizing
the polarization of free-free emission or gyroresonance emission (§ 5.7). The lower
boundaries of coronal loops are generally formed by canopy-like structures in the
transition region, which demarcate a transition from a high to a low plasma-β
parameter, as well as a transition from non-force-free to force-free magnetic fields
(§ 5.8).



Chapter 6

Magneto-Hydrodynamics
(MHD)

We started to study the structure of the coronal plasma first in terms of simple fluid
mechanics, called hydrostatics (HS) (§ 3), then we moved on to fluid dynamics by
adding flows, called hydrodynamics (HD) (§ 4), then we studied the coronal magnetic
field separately (§ 5), and now we are going to combine these physical concepts into
a single unified framework, called magneto-hydrodynamics (MHD). The coronal mag-
netic field has many effects on the hydrodynamics of the plasma. It can play a passive
role in the sense that the magnetic geometry does not change (e.g., by channeling par-
ticles, plasma flows, heat flows, and waves along its field lines, or by maintaining a
thermal insulation between the plasmas of neighboring loops or fluxtubes). On the
other hand, the magnetic field can play an active role (where the magnetic geometry
changes), such as exertion of a Lorentz force on the plasma, build-up and storage of
nonpotential energy, triggering an instability, changing the topology (by various types
of magnetic reconnection), and accelerating plasma structures [filaments, prominences,
coronal mass ejections (CMEs)]. To understand and quantify all these phenomena we
need the tools of magneto-hydrodynamics. The study of magneto-hydrodynamic pro-
cesses in the solar corona is particularly unique because it represents the only labora-
tory of astrophysical plasmas where we can spatially resolve the structures of interest
on the one hand, whilst exhibiting more powerful plasma processes than can be created
in any terrestrial laboratory on the other hand. General introductions into MHD can
be found in various textbooks (Priest 1982, 1994; Bray et al. 1991; Heyvaerts 2000;
Somov 2000; Davidson 2001; Boyd & Sanderson 2003; Goossens 2003).

6.1 MHD Equations

Magneto-hydrodynamics (MHD) is a fluid theory, expressed in terms of macroscopic
parameters, such as density, pressure, temperature, and flow speed of the plasma.
This plasma reacts to (macroscopic) electric and magnetic forces as described by the
Maxwell equations. However, particle motion in a plasma can also be described by mi-
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croscopic physics, called kinetic theory, such as in terms of the Boltzmann equation,
or Vlasov equation. The fluid approach of MHD can be derived from kinetic theory by
defining appropriate statistical (average) quantities.

6.1.1 Particle Conservation

A particle distribution of species α (e.g., electrons, protons, or ions) has a statistical
distribution in space x, time t, and (microscopic) velocity v′,

fα(x,v′, t) d3x d3v′ . (6.1.1)

The total time-dependent changes of the distribution fα contains, besides time-depen-
dent variations ∂/∂t, also advection (which we included in the total time derivative
D/Dt defined in Eq. 4.1.1), and the action of forces F,(

∂fα

∂t
+

∂x
∂t

∂fα

∂x
+

∂v′

∂t

∂fα

∂v′

)
=
(

∂fα

∂t
+ v′∇fα +

F
mα

∂fα

∂v′

)

=
(

Dfα

Dt
+

F
mα

∂fα

∂v′

)
(6.1.2)

where the force F may include acceleration by an electric field E, and the Lorentz
force due to a magnetic field B (plus forces due to microscopic electromagnetic fields
∆E and ∆B, omitted here),

F = q

[
E +

1
c
(v′ × B)

]
. (6.1.3)

In the statistical description of Boltzmann, the total time-dependent changes of a parti-
cle distribution fα is balanced by the change in the particle collision rate,

∂fα

∂t
+ v′∇fα +

q

mα

[
E +

1
c
(v′ × B)

]
∂fα

∂v′ =
(

∂fα

∂t

)
coll

, (6.1.4)

while the right-hand term vanishes in a collisionless plasma, which is referred to as the
Vlasov equation,

∂fα

∂t
+ v′∇fα +

q

mα

[
E +

1
c
(v′ × B)

]
∂fα

∂v′ = 0 . (6.1.5)

We now define the macroscopic quantities in terms of statistical averages over micro-
scopic particle distributions by integration over velocity space, such as the average
particle density n per unit volume [cm−3],

n(x, t) =
∫

fα(x,v′, t) d3v′ , (6.1.6)

or the average velocity v [cm s−1], which is the bulk velocity of the macroscopic fluid,

v(x, t) =
∫

v′ · fα(x,v′, t) d3v′∫
fα(x,v′, t) d3v′ . (6.1.7)
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Integrating the Boltzmann equation (6.1.4) in velocity space, using the definitions of
the macroscopic quantities n and v (Eq. 6.1.6−7), and summing over the particle
species α, we can directly derive the equation of continuity or equation of mass con-
servation (Eq. 4.1.2) (see e.g., Benz 1993, p. 51; Sturrock 1994, p. 169; Golub &
Pasachoff 1997, p. 212; Somov 2000, p. 167; Heyvaerts 2000),

∂n

∂t
+

∂

∂x
(nv) = 0 (6.1.8)

or, using the mass density ρ = mn (Eq. 4.1.6), we have the same form as Eq. (4.1.2),

D

Dt
ρ = −ρ ∇ · v . (6.1.9)

6.1.2 Momentum or Force Equation

In order to derive the momentum equation we have to multiply the Boltzmann equation
(6.1.4) (with velocity components vi) with the momentum mαvj , and integrate over the
velocity space d3v,∫

mαv′
j

∂fα

∂t
d3v′ +

∫
mαv′

jv
′
i

∂fα

∂xi
d3v′ +

∫
v′

jFi
∂fα

∂vi
d3v′

=
∫

mαv′
j

(
∂fα

∂t

)
coll,i

d3v′ . (6.1.10)

The first term corresponds to the temporal change of the mean momentum, while the
second term involves a second moment of the distribution function and is generally
expressed in terms of the pressure tensor pij ,

pij =
∫

mα v′
iv

′
jfα d3v′ . (6.1.11)

The right-hand side of Eq. (6.1.10) includes the momentum transfer between electrons
and ions due to collisions, which cancels out as a net effect and does not contribute to
the momentum of the combined plasma in the single-fluid description. Using the defini-
tions of the statistical averages for the density n (Eq. 6.1.6), velocity v (Eq. 6.1.7), and
force F, the momentum equation can be expressed in terms of macroscopic parameters
for the combined mass m =

∑
mα (see derivation in, e.g., Benz 1993, p. 51; Sturrock

1994, p. 169; Golub & Pasachoff 1997, p. 212; Somov 2000, p. 167; Heyvaerts 2000),

∂

∂t
(nmv) = −∇p + nF , (6.1.12)

The force term may include (ignoring electric forces FEl parallel to the magnetic field)
the Lorentz force FLor from magnetic fields, the gravity force Fgrav (Eq. 3.1.4), and
viscous forces Fvisc,

F = FLor + Fgrav + Fvisc , (6.1.13)
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where viscous forces Fvisc are defined by

Fvisc = νviscmn

[
∇2v +

1
3
∇(∇ · v)

]
, (6.1.14)

with νvisc being the coefficient of kinematic viscosity. Using the conservation of mass,
d(nm)/dt = 0, the definition of the mass density ρ = mn, and expressing the Lorentz
force FLor = j × B with the current density j (Eq. 5.3.3), Eq. (6.1.12) can be written
in the standard form of the MHD momentum equation,

ρ
Dv
Dt

= −∇p − ρg + (j × B) + Fvisc , (6.1.15)

which corresponds to the hydrodynamic momentum equation (4.1.3), except that the
Lorentz force and viscosity force is added.

6.1.3 Ideal MHD

Many astrophysical plasmas are characterized by a set of equations that is called ideal
MHD equations and includes the MHD continuity equation (6.1.9), the momentum
equation (6.1.15), Maxwell’s equations (5.1.1−4), Ohm’s law (5.1.10), and a special-
ized equation of state for energy conservation (e.g., incompressible, isothermal, or adi-
abatic). Thus, a full set of ideal MHD equations includes (for an adiabatic equation of
state):

D

Dt
ρ = −ρ ∇ · v , (6.1.16)

ρ
Dv
Dt

= −∇p − ρg + (j × B) , (6.1.17)

D

Dt
(pρ−γ) = 0 , (6.1.18)

∇× B = 4πj , (6.1.19)

∇× E = −1
c

∂B
∂t

, (6.1.20)

∇ · B = 0 , (6.1.21)

E = −1
c
(v × B) . (6.1.22)

The usage of such a set of ideal MHD equations involves a number of implicit ap-
proximations: (1) the plasma is charge-neutral, ρE = 0, which yields the Maxwell
equations ∇ · E = 0 and ∇ · j = 0; (2) the plasma has a very large magnetic
Reynolds number, which yields the electric field E = −(1/c)(v × B) from Ohm’s
law (Eq. 5.1.10); (3) the nonrelativistic approximation, v � c, which also implies that
MHD time scales are much longer than electron or ion gyroperiods; (4) a highly col-
lisional plasma, implying the MHD time scales are much longer than collisional time
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scales; (5) isotropic pressure, where the pressure tensor (Eq. 6.1.11) simplifies to the
diagonal elements, pij = δijpα, which for an ideal gas is pα = nαkBTα; (6) the total
pressure is the sum of the partial pressures p =

∑
α pα, which yields (with Eq. 4.1.5)

p = (ne + ni)kBT ≈ 2nekBTe; and (7) adiabatic gas with energy equation of state
pρ−γ = const. Approximations in such sets of ideal MHD equations (6.1.16−22)
are discussed in more detail elsewhere (see, e.g., Priest 1982, p. 73; Benz 1993, p. 56;
Boyd & Sanderson 2003, p. 61).

6.1.4 Energy Equation

The MHD energy equation can be derived from the Boltzmann equation (6.1.4) by
multiplication with the kinetic energy (1/2)mαv2

j and integration over the velocity
space d3v,∫

mα

2
v′2

j

∂fα

∂t
d3v′ +

∫
mα

2
v′2

j v′
i

∂fα

∂xi
d3v′ +

∫
v′2

j

Fi

2
∂fα

∂v′
i

d3v′

=
∫

mα

2
v′2

j

(
∂fα

∂t

)
coll,i

d3v′ . (6.1.23)

The first term contains the temporal change of the mean kinetic energy (Eq. 4.1.30), de-
fined as a macroscopic average over the microscopic kinetic energies with distribution
fα,

εkinnα =
1
2
mαnα < v′2 >=

∫
1
2
mαv′2fαd3v′ . (6.1.24)

The second term of Eq. (6.1.23) contains the divergence of the heat flux density or
conductive flux FC , which we introduced in Eq. (6.1.23),

∇FC = ∇
(

1
2
mαnα < v′2

j v′
i >

)
=
∫

1
2
mαv′2

j v′
i

∂fα

∂xi
d3v′ . (6.1.25)

The third term of Eq. (6.1.24) represents the work done by the force F, which can in-
clude acceleration by an electric field E, work by the gravitational force Fgrav, emis-
sion of radiation, or heat input. The Lorentz force, F = v × B, of course, cannot do
any work, and is thus excluded in this term. Since this force F is not dependent on the
velocity, it can be taken out of the integral in the third term of Eq. (6.1.23) and partial
integration yields

nα < Fi · v′
i >=

∫
v′2

j

Fi

2
∂fα

∂v′
i

d3v′ . (6.1.26)

Using Ohm’s law for the electric field, j = σE (Eq. 5.1.10), the definition of the
current density, j = qnαv/c (Eq. 5.3.2), or expressed with the magnetic field by j =
(1/4π)(∇× B) (Eq. 5.1.7), Eq. (6.1.26) can be expressed as

nα < Fi · vi >= nαqEivi =
nαq

σ
jivi =

c

σ
j2
i =

c

(4π)2σ
(∇× B)2 . (6.1.27)

Adding in the work done by other forces, such as work against gravitational force
Fgrav , emission by radiation with a rate of ER per time and unit volume, and heating
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with a rate of EH per time and unit volume, the complete energy term of work done by
the forces is,

nα < Fi · vi >=
c

(4π)2σ
(∇× B)2 + nαFgravvi + EH − ER . (6.1.28)

Finally, the right-hand term of the energy equation (6.1.23), which describes the energy
changes due to collisions between electrons and ions, is conserved when summed over
all particle species, and thus the net effect is zero on the summed energy equation,

∑
α

∫
mα

2
v2

j

(
∂fα

∂t

)
coll,i

d3v = 0 (6.1.29)

Thus, if we insert the macroscopic quantities defined in Eqs. (6.1.24−29) in the energy
equation (6.1.23) and sum over all species, we obtain the energy equation for a single-
fluid plasma in conservative form,

∂

∂t
(nαεkin) −∇FC +

c

(4π)2σ
(∇× B)2 + nαFgravvi + EH − ER = 0 . (6.1.30)

which we can arrange in the same order as the energy equation in conservative form
given in Eq. (4.1.29),

∂

∂t
(nεkin) + nv

∂

∂x
(εgrav) + ∇FC +

c

(4π)2σ
(∇× B)2 = EH − ER , (6.1.31)

or in the form of Eq. (4.1.18),

1
(γ − 1)

Dp

Dt
+

γ

(γ − 1)
p∇v +

c

(4π)2σ
(∇× B)2 = EH − ER −∇FC . (6.1.32)

commonly used in the framework of resistive MHD.

6.1.5 Resistive MHD

In the ideal MHD approximation it is assumed that the time scales of MHD processes
are much longer than collisional processes, which guarantees that all species stay close
to a Maxwellian distribution all the time. A plasma with a local Maxwellian distri-
bution has zero viscosity and heat conduction, and thus the viscosity term Fvisc and
heat conduction ∇FC does not appear in the ideal MHD approximation. This leaves
the electrical resistivity as the only remaining dissipative mechanism. We see in the
energy equation (6.1.31) that a perfect electric conductor (σ → ∞) makes the electric
dissipation term vanish, c/σ(∇×B)2 → 0. Thus, only some finite resistivity σ � ∞
allows for electric energy dissipation. The set of MHD equations (mass, momentum,
and energy conservation) with finite electrical resistivity σ is called resistive MHD,
consisting of the equations (as a function of ρ, v, p, and B):
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D

Dt
ρ = −ρ∇ · v , (6.1.33)

ρ
Dv
Dt

= −∇p − ρg + (j × B) , (6.1.34)

1
(γ − 1)

Dp

Dt
+

γ

(γ − 1)
p∇ · v +

c

(4π)2σ
(∇× B)2 = EH − ER −∇FC . (6.1.35)

∂B
∂t

= ∇× (v × B) − c

4πσ
(∇ · ∇)B , (6.1.36)

∇ ·B = 0 , (6.1.37)

j =
1
4π

(∇× B) , (6.1.38)

E =
1

4πσ
(∇× B) − 1

c
(v × B) , (6.1.39)

Many of the same implicit approximations are made in resistive MHD as in ideal MHD,
except for perfect conduction and adiabatic equation of state: (1) charge-neutrality, (2)
nonrelativistic speeds, (3) highly collisional plasma, and (4) isotropic pressure. For
further discussion see, for example, Boyd & Sanderson (2003, p. 59).

6.2 MHD of Coronal Loops

We discuss now MHD effects in coronal loops, such as magneto-statics of vertical
fluxtubes (§ 6.2.1), MHD effects near magnetic nullpoints (§ 6.2.2), in curved coro-
nal fluxtubes (§ 6.2.3), in twisted fluxtubes (§ 6.2.4), the MHD of emerging fluxtubes
(§ 6.2.5), the MHD dynamics of coronal loops based on numeric simulations (§ 6.2.6),
and the MHD stability in coronal loops (§ 6.3).

6.2.1 Magneto-Statics in Vertical Fluxtubes

Let us consider one of the simplest applications of the MHD equations, namely the case
of a static equilibrium, where the time-dependence vanishes (∂/∂t = 0) and flows are
constant (v = const). Thus the left-hand side of the ideal MHD momentum equation
(6.1.17), also called Euler’s equation, vanishes and we have

0 = −∇p − ρg + j× B . (6.2.1)

Neglecting gravity g = (0, 0, g�), which is exactly zero when we consider the hori-
zontal pressure balance, and inserting the current j = (1/4π)(∇×B) from Maxwell’s
equation (6.1.19), we obtain the equation of magneto-statics,

−∇p − 1
4π

B× (∇× B) = 0 . (6.2.2)
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B0

T0

p0

BE = 0

TE

pE

Figure 6.1: Concept of vertical fluxtube with internal parameters (B0 > 0, T0, p0) and external
parameters (BE = 0, TE, pE), as it can be used to calculate the horizontal pressure balance at
the boundary of a sunspot.

Using the vector identity ∇(a ·b) = (a ·∇)b+(b ·∇)a+a× (∇×b)+b× (∇×a),
which simplifies for a = b to ∇(b2) = 2(b · ∇)b + 2b× (∇× b), we obtain

−∇(p +
B2

8π
) +

1
4π

(B · ∇)B = 0 , (6.2.3)

where the first term represents the gradient of the total pressure, which is the sum of the
thermal and magnetic pressure, while the second term represents the magnetic tension.
For vertical fluxtubes, which are not bent and thus have no magnetic tension, we can
neglect the second term. For the horizontal pressure balance we thus obtain the simple
relation that the total pressure is constant,

−∇(p +
B2

8π
) = 0 . (6.2.4)

This simple magneto-static model is most suitable to describe the horizontal pres-
sure balance in a sunspot, which contains a strong magnetic field (B0) inside, so that
the field outside can be neglected, BE = 0 (Fig. 6.1). Denoting the pressure inside
and outside with p0 and pE , the total pressure inside thus has to balance the thermal
pressure outside,

pE = p0 +
B2

0

8π
. (6.2.5)

Inserting the pressures p0 = 2n0kBT0 and pE = 2nEkBTE and assuming equal den-
sities inside and outside, n = n0 = nE , we obtain a relation between the magnetic
field strength B0 and temperature difference (TE − T0),

B2
0 = 16πnkB(TE − T0) . (6.2.6)

This immediately proves that every magnetic field B0 > 0 implies a positive temper-
ature difference (i.e., that the temperature inside the sunspot is cooler than outside).
For a typical sunspot the temperatures in the photosphere are TE ≈ 6000◦ K outside
and T0 ≈ 4500◦ K inside, while the density at photospheric height is about n ≈ 1018
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Figure 6.2: Magnetic pressure force (large solid arrow) and magnetic tension force (large
dashed arrow) in three different magnetic field configurations: current sheet (left), X-point (mid-
dle), and O-point (right).

cm−3, which allows according to Eq. (6.2.6) to balance a magnetic field of B0 = 3150
G.

Higher up in the corona, where the density drops to n <∼ 109 cm−3, the same mag-
netic field could not be balanced by any observed temperature difference, which has
the important consequence that the magnetic field has to fan out in the chromosphere
(§ 5.8.1) so that it occupies the corona in a space-filling manner without field-free re-
gions. In the corona, the plasma-β parameter is much lower than unity, so the magnetic
pressure dominates over thermal pressure. The horizontal pressure balance (Eq. 6.2.4)
can be expressed in terms of the internal (β0) and external (βE) plasma-β parameters,

B0

BE
=
(

1 + βE

1 + β0

)1/2

, (6.2.7)

which proves that for coronal conditions (βE � 1, β0 � 1) the difference between the
magnetic field inside (B0) and outside (BE) a fluxtube is always small. For instance,
for a typical coronal plasma with BE = 100 G, nE = 109 cm−3, TE = 106 K
the plasma-β parameter is βE = 0.00035. In a coronal fluxtube where the density
is enhanced by 2 orders of magnitude (n0 = 1011 cm−3), the plasma-β parameter
inside the fluxtube becomes β0 = 0.035, which requires only a decrease of the interior
magnetic field by B0/BE = 0.983 to balance the thermal pressure, a mere 2%. Since
the magnetic flux is conserved over the cross section of a fluxtube, the fluxtube has
only to expand by a fraction of 1% to decrease the magnetic field inside the fluxtube
by 2%. Such small loop expansions are not measurable.

6.2.2 Lorentz Force near Magnetic Nullpoints

In the previous example of a vertical fluxtube we assumed a uniform magnetic field
inside and outside of the fluxtube, which has no magnetic tension (∇·B = 0) and thus
yields a very simple relation for the pressure balance (Eq. 6.2.4). However, as soon
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as a magnetic field gradient is present in curved field lines (B · ∇)B �= 0, a magnetic
tension force occurs. We illustrate how this magnetic tension force compares with the
magnetic pressure force in three simple examples of magnetic nullpoint geometries,
where a gradient in the magnetic field is obviously present: in a current sheet (Fig. 6.2,
left), in an X-point (Fig. 6.2, middle), and in an O-point (Fig. 6.2, right) (see also
discussion in Priest 1994, p. 21).

Let us characterize a current sheet in two dimensions (x,y), with the magnetic field
in the y-direction, varying linearly in field strength as a function of the distance from
the center of the current sheet (Fig. 6.2, left),

B = (Bx, By, Bz) = B0(0,
x

l
, 0) , (6.2.8)

where l is a magnetic scale height. Applying the momentum equation (6.2.3) we find
then that only the first term (i.e., the magnetic pressure) yields a non-zero contribution,
while the second term (the magnetic tension force) vanishes (dBx/dx = 0, dBy/dy =
dx/dy = 0, dBz/dz = 0), so that we have,

−∇(p +
B2

8π
) +

1
4π

(B · ∇)B = −∇(p +
B0

8π

x2

l2
) = −∇p − B0

4π
(
x

l
, 0, 0) , (6.2.9)

which corresponds to an inward directed magnetic pressure (in the x-direction on the
left side, and in anti-x-direction on the right side, see Fig. 6.2),

∇p = −B0

4π

(x

l
, 0, 0
)

. (6.2.10)

So there is no magnetic tension force, which is expected for straight magnetic field
lines, and the magnetic pressure force points on both sides of the current sheet from a
higher magnetic field towards the lower-field region, which is also expected just from
the definition of the magnetic pressure (pm ∝ B2). This behavior has the important
implication that the magnetic pressure drives a lateral inflow of plasma into the current
sheet, unless the lateral magnetic pressure is balanced by the thermal pressure from
hotter plasma inside the current sheet.

Next let us turn to the magnetic field geometry of an X-point, as defined in Eq. (5.6.3),
but here omit the asymmetry factor a for simplicity,

B = (Bx, By, Bz) = B0

(y

l
,
x

l
, 0
)

. (6.2.11)

The magnetic pressure force for such a magnetic field configuration is

−∇
(

B2

8π

)
= −∇

(
B0

8π

(y2 + x2)
l2

)
=

B2
0

4πl

(
−x

l
,−y

l
, 0
)

, (6.2.12)

while the magnetic tension force is

B2
0

4π
(B · ∇)B =

B2
0

4π

(
y

l

∂

∂x
+

x

l

∂

∂y

)(y

l
,
x

l
, 0
)

=
B2

0

4πl

(x

l
,
y

l
, 0
)

, (6.2.13)
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which turns out to be exactly the same magnitude as the magnetic pressure force, but
with opposite sign. Thus, in such an X-point geometry the inward-directed magnetic
pressure force (pointing towards the lower magnetic field) and the outward-directed
tension force (which tries to reduce the curvature), exactly cancel out and no net pres-
sure is exerted on the configuration (Fig. 6.2, middle). This implies that such an X-type
point geometry is in pressure equilibrium and may be observable in the quiet corona
(see, e.g., the TRACE image in Fig. 5.25), although we have not yet investigated its
stability against disturbances. Equivalently, the current in this X-point configuration
turns out to be zero,

j =
1
4π

(∇× B) =
1
4π

(
0, 0,

∂By

∂x
− ∂Bx

∂y

)
= (0, 0, 0) , (6.2.14)

and implies that the Lorentz force is zero, corresponding to a pressure equilibrium
between the magnetic pressure force and the magnetic tension force. An application of
this X-type geometry to coronal loops can be made in postflare loops beneath a cusp,
which may relax from an initial cusp-shaped geometry after reconnection through a
transition of hyperbolic shapes into a near-circular geometry as indicated in Fig. 6.2
(middle panel). According to our understanding of the force balance obtained in this
example, the downward-directed magnetic tension force would be stronger than the
upward-directed magnetic pressure force (pointing to the lower field strength in the
cusp) during the relaxation phase in the cusp after reconnection, until they balance out
in the final, relaxed postflare position.

Let us finally proceed to the case of a magnetic O-point, which is mathematically
related to a magnetic X-point (§ 5.6.1), with the difference that the magnetic field lines
form ellipses (or circles) around the nullpoint instead of hyperbolae. The magnetic
field around an O-point can be defined as (see Eqs. 5.6.1−3),

B = (Bx, By, Bz) = B0(
y

l
,−x

l
, 0) , (6.2.15)

similar to the field around an X-point, except for an opposite sign in the y-coordinate.
We can calculate the magnetic pressure force and magnetic tension force the same way
as in Eqs. (6.2.12−14) with cartesian coordinates, or alternatively use a cylindrical co-
ordinate system (see, e.g., Priest 1994, p. 24). We will obtain the same magnitude and
sign for the magnetic pressure force as for the X-point (because B2 is identical in both
cases), but an opposite sign for the magnetic tension force. Thus, both the magnetic
pressure force and the magnetic tension force will exert a force inward towards the
center of the magnetic island (Fig. 6.2). There is a non-zero current associated with the
magnetic island, which according to (Eq. 6.2.15) points into the anti-z-direction,

j =
1
4π

(∇× B) =
1
4π

(
0, 0,

dBy

dx
− dBx

dy

)
=

B0

4π
(0, 0,−2) (6.2.16)

so such a magnetic island is not force-free. We will come back to the dynamical be-
havior of magnetic islands in the context of the tearing-mode instability during flares
(§ 10.2.1).



252 CHAPTER 6. MAGNETO-HYDRODYNAMICS (MHD)

6.2.3 Lorentz Force in Curved Fluxtubes

So far we have neglected the loop curvature in hydrodynamic models (§ 3 and 4). How-
ever, the loop curvature introduces a non-vanishing tension force term in the Lorentz
force (Eqs. 6.2.1−3), which can be broken down into a magnetic pressure force and a
magnetic tension force,

j × B = −∇
(

B2

8π

)
+

1
4π

(B · ∇)B . (6.2.17)

The effect of the loop curvature can be seen most clearly when we express the tension
force in a coordinate system with unit vectors parallel (es) and perpendicular (en) to
the magnetic field line (e.g., Priest 1982, p. 102; Priest 1994, p. 22),

B

4π

d

ds
(Bes) =

B

4π

dB

ds
es +

B2

4π

des

ds
=

d

ds

(
B2

8π

)
es +

B2

4π

1
rcurv

en , (6.2.18)

where rcurv is the curvature radius of the loop. The first term on the right-hand side
cancels with the component of −∇(B2/8π) parallel to the magnetic field line. So, if
the magnetic field has only a parallel component, B ‖ es, the Lorentz force is simply,

(j × B)curv =
B2

4π

1
rcurv

en , (6.2.19)

which is perpendicular (i.e., normal en) to the magnetic field line and is stronger the
smaller the curvature radius rcurv. Thus the Lorentz force is directed towards the
curvature center and tries to reduce the curvature, unless a magnetic pressure gradient
or thermal pressure gradient is present across the loop that compensates this curvature
force. In the force-free configuration of an X-point shown in Fig. 6.2, the magnetic
field was defined in such a way (Eq. 6.2.11) that the pressure force exactly compensates
the magnetic tension or curvature force. We might ask how important is this Lorentz
force due to the loop curvature. If we compare the Lorentz force (j×B)curv resulting
from the curvature (Eq. 6.2.19) with the dominant term in the momentum equation
(Eq. 6.2.1), i.e., the pressure gradient in the same (perpendicular) direction, (−∇⊥p),
we find that the ratio scales with the perpendicular pressure gradient λ⊥ and plasma
β-parameter as

(j × B)curv

∇⊥p
=

(1/rcurv)B2/4π

∇⊥p
≈ λ⊥

rcurv

pm

pth
=

λ⊥
rcurv

1
β

. (6.2.20)

Since the plasma β-parameter is generally small in the solar corona (β � 1, see
Fig. 1.22), the curvature force in coronal MHDs can be neglected for slender loops
with a transverse pressure scale height of λT � βrcurv � rcurv. If the magnetic field
is force-free, the Lorentz force is exactly zero, which means that the tension force due
to the loop curvature is exactly balanced by the perpendicular magnetic pressure force.

Studies that include the Lorentz force due to the loop curvature explicitly express
the momentum equation with field-aligned coordinates (also called Frenet vectors; e.g.,
Garren et al. 1993; Petrie & Neukirch 1999, 2003), but without exact knowledge of the
3D magnetic field B it cannot be decided whether the curvature force in a static loop
is balanced by a magnetic pressure gradient or by a thermal pressure gradient.
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Figure 6.3: A series of loops is shown with twist angles of 0, 0.3π, ..., 3.0π, lying on a torus
with a width-to-length ratio of 1:10. The projection angle is +4◦ between the line-of-sight and
the loop planes (top) and −4◦ (bottom). Note the similarity of the sling-shot loop geometries
with observed loop systems in Fig. 6.4.

6.2.4 Dynamics of Twisted Fluxtubes

The magnetic field enters the MHD momentum equation (6.1.17) as a j × B term.
In § 5.5.1 we learned that a twisted fluxtube can be characterized with an azimuthal
magnetic field component Bϕ besides the parallel magnetic field component Bz (in
cylindrical coordinates). The resulting Lorentz force in the momentum equation is
then (Eq. 5.5.5),

F = j × B = [Bzjϕ − Bϕjz, 0, 0] . (6.2.21)

The ratio of the azimuthal to the parallel magnetic field component can essentially be
inferred in coronal loops from the twist angle or measured number of twists Ntwist

along the loop length l = πrcurv (Eq. 5.5.1),

Bϕ

Bz
=

rdϕ

dz
=

r2πNtwist

l
= br . (6.2.22)

Thus, an important diagnostic for evaluation of the Lorentz force term is the measure-
ment of twists, and a temporal change in the number of twists may provide a diagnostic
on the dynamic evolution of the Lorentz force on the loop.

In Fig. 6.3 we show projections of twisted loop shapes, for a range of twist angles
Ntwist × 2π = 0, ..., 3π. Obviously, the measurement of the number of twists seems
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Figure 6.4: TRACE 171 Å observations of a postflare loop system on 1999-Sep-14, 08:13:18
UT (left frame) and 09:03:24 UT. The flare started around 06:34 UT and occurred near the limb.
The loop planes are oriented nearly along the line-of-sight. This perspective is most favorable
to display the twist of non-coplanar loops. The system seems to be highly twisted during the
first time interval (left frame) and is more dipolar (coplanar) in the second configuration (right
frame). Compare with theoretical models of twisted loop geometries with a similar projection in
Fig. 6.3.

to be easiest for projections where the loop plane has almost the same direction as
the line-of-sight. In the representation shown in Fig. 6.3 we have chosen a geometric
model where the twisted field line lies on the surface of a semi-circular torus with
annular radius r and curvature radius rcurv, with a ratio of r/rcurv = 0.1. The 3D
coordinates of a twisted field line are then (with X −Z the loop plane), parameterized
as a function of the angle ϕ = 0, ..., π along the loop length coordinate s = rcurvϕ,

X(ϕ) = [rcurv + r cos(ϕNtwist)] cos(ϕ)

Y (ϕ) = r sin(ϕNtwist)

Z(ϕ) = [rcurv + r cos(ϕNtwist)] sin(ϕ) , (6.2.23)

while an arbitrary projection into an observed image plane can be calculated with
the coordinate transformation from loop coordinates (X, Y, Z) into image coordinates
(x, y, z) given in Eqs. (3.4.13−15).

Observations of twisted loops are shown in Fig. 6.4, where a postflare loop sys-
tem near the limb is shown as observed with TRACE in 171 Å. A peculiar feature
of this observation is that the loop planes are oriented almost along the line-of-sight,
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so that the non-coplanarity of the loops is clearly seen and the number of twists can
be measured from individual loops by fitting the projected geometries (Fig. 6.3) of
our twist model given in Eq. (6.2.23). A qualitative comparison of Fig. 6.4 (left
frame) with Fig. 6.3 suggests that many loops have twist angles of Ntwist ≈ 1, ..., 1.5.
Thus, with Eq. (6.2.22) we estimate the azimuthal magnetic field to be of the or-
der Bϕ/Bz = Ntwist(2r/rcurv) ≈ 0.2, ..., 0.3, for r/rcurv = 0.1. If these loops
were force-free, the current ratio would scale proportionally according to Eq. (6.2.21),
jϕ/jz ≈ Bϕ/Bz ≈ 0.2 − 0.3. Vertical currents jz have been measured (in other
observations) from ∇× B, using vector magnetographs, i.e.,

jz(x, y) =
1
4π

(
∂By

∂x
− ∂Bx

∂y

)
, (6.2.24)

with typical values of jz ≈ 2−10 mA m−2 (see Gary & Démoulin 1995 and references
therein). However, the observations here show that these highly twisted loops are not
stable, but rather relax into nearly untwisted dipolar geometries during the next hour
(Fig. 6.4, right frame). This evolution suggests that the initial state was not force-free
and that the Lorentz force tries to untwist the loops until they become force-free. Such
a relaxation of a highly twisted postflare loop system into a near-dipolar configuration
was also observed by Sakurai et al. (1992). There are also quantitative measurements
of the untwisting of fluxtubes as observed with EIT over several days (Portier−Fozzani
et al. 2001).

The MHD evolution of sheared or twisted fluxtubes or coronal loops is quite com-
plex, but has virtually not yet been touched with quantitative data analysis of observa-
tions at all. Recent models of current-carrying loops motivated by laboratory experi-
ments actually predict that the j × B-force creates a pinch effect that gives a twisted
fluxtube an axially uniform cross section also (Bellan 2002, 2003). Excessive twist
could lead to a thermal instability and could force the core of the loop to cool faster
than the outer envelope (Priest 1978). Instabilities in the current sheets between the
sheared cylindrical layers of a fluxtube tend to relax the shear (Priest 1978), while
rapid flows along the sheared layers tend to play a stabilizing role (Glencross 1980).
If a fluxtube is thought as a bundle of filamentary structures, shear between adjacent
filament channels is introduced by braiding due to random footpoint motions, which
creates current sheets between the filaments (Mikić et al. 1989). The fluxtube evolves
quasi-statically through sequences of equilibria with increasing twist, but it becomes
linearly unstable to an ideal MHD kink mode when the twist exceeds a twist angle
of about 2.5π or more, depending on the field structure (Hood & Priest 1979b, 1981).
Twisted loops with local irregularities in the twist can develop an inflexional instability,
which subsequently can relax into braided patterns, form a hammock configuration, or
trigger a kink instability (Ricca 1997). The property of the magnetic field line twist
can also affect the global dynamics of the solar corona. The emergence of a large-
scale twisted magnetic flux from the convection zone is thought to lead to a kinked
alignment of neighboring active regions (Matsumoto et al. 1996). Applying the photo-
spheric random shear on a grander scale to the entire corona leads to eruption of part
of the magnetic field (Steinolfson 1991).

A direct observation of twist-related dynamics has recently been made with the
SoHO/SUMER instrument by measuring the spectral line profiles of active region
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Figure 6.5: Doppler velocity maps of the active region in the O VI line (left) and the Ly−β

line (right). The bright features are redshifted and the dark features blueshifted. Note the large
velocity shears at the cuts R1 and R2 (Chae et al. 2000a).

loops, which showed evidence of rotational motion of twisted loops (Chae et al. 2000a).
If a coronal loop is twisting-up or untwisting, a rotational motion is expected, which
should be observable as a Doppler blueshift at one lateral edge of the loop and as a
redshift on the other edge. Such a Doppler signature has been observed in a number of
active region loops in O VI (T >∼ 105 K) and in Lyβ (T <∼ 105 K), with redshifts and
blueshifts of up to v≈ 20−30 km s−1 (Fig. 6.5). This observation of rotational motion
has interesting consequences for the underlying MHD dynamics. A static loop cannot
twist-up or untwist without changing the position of the footpoints of the twisted mag-
netic field line. However, if the loop expands, the number of twists stays constant for
fixed footpoints, but an observer will see a rotation because the twisted field line will
rotate in azimuth at a fixed height. The same is true when a fluxtube erupts into an open
field line, while helicity stays conserved to first order. The rotational velocity (vrot) is
essentially determined by the expansion velocity along the loop (vexp) and by the twist
angle (θ),

vrot ≈ vexp tan θ . (6.2.25)

Thus the observed rotation velocities of vrot
<∼ 30 km s−1 would require quite rapid
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expansion speeds of vexp ≥ vrot for twist angles of θ ≤ 450. Therefore, such obser-
vations of rotating loops imply highly dynamic twisted fluxtubes that expand rapidly.
Such a rapid expansion of a twisted fluxrope (e.g., with a vertical expansion speed
of vexp ≈ 400 km s−1 between 2 and 5 solar radii), was observed and modeled by
Mouschovias & Poland (1978). The interpretation in terms of vertical expansion would
also predict that the twist angle θ reduces during expansion.

6.2.5 MHD Simulations of Emerging Fluxtubes

The formation process of coronal loops consists of two physically distinct steps: (1)
the emergence of a buoyant subphotospheric magnetic fluxtube into the corona, which
forms a dipolar magnetic field structure; and (2) and filling of coronal fluxtubes with
heated plasma, which increases the density and emission measure of coronal loops.
Generally it is thought that the two processes occur simultaneously. Therefore, the
formation process of a coronal loop cannot be restricted to the corona itself, but rather
includes the evolution of an MHD process starting at the bottom of the convection zone
and propagating upward through the photosphere, chromosphere, transition region, and
corona (Fig. 6.6), covering quite different regimes of plasma parameters (convection,
diffusion, thermal conductivity, resistivity, and viscosity). The process of emergence
of fluxtubes has therefore mainly been studied with numerical 3D MHD codes (see
resistive MHD equations in § 6.1.5) that can handle these various plasma regimes.

A typical 3D MHD simulation of an emerging magnetic fluxtube is performed in
Matsumoto et al. (1993). Initially, a horizontal magnetic flux sheet or tube is embedded
at the bottom of a 3D box with photospheric/chromospheric conditions. The magnetic
flux sheet or tube is unstable against undular modes (k ‖ B) of the magnetic buoyancy
instability and starts to rise. The ascendance of the fluxtubes is subject to pinching in
the longitudinal direction, as well as to fragmentation in the perpendicular direction
due to the interchange instability (k ⊥ B). The interchange modes help to produce a
fine fiber flux structure perpendicular to the magnetic field direction, while the undular
modes determine the overall buoyant loop structure (Matsumoto et al. 1993). The shear
flow at the surface of a buoyant fluxtube can be unstable to the Kelvin−Helmholtz
instability (Tsinganos 1980). Starting the simulation at the base of the convection zone
requires magnetic field strengths of typically B ≈ 30, 000 − 100, 000 G to match
the observed field strengths in the photosphere. However, simple buoyancy models of
straight fluxtubes show a fragmentation into two parallel tubes with opposite senses and
fluid circulation (Fig. 6.7), where the counter-rotating elements move apart from each
other horizontally and eventually stop rising (Longcope et al. 1996). This simple model
cannot explain the emergence into the corona. However, 3D MHD simulations that start
with twisted fluxtubes show the evolution into buoyant helical structures through kink
instability (Fig. 6.8 and Plate 8) which rise all the way through the convection zone
and finally emerge into the corona, forming a sequence of strongly sheared magnetic
loops (Matsumoto et al. 1998). The inclusion of twist into the buoyant fluxtubes is
also important to explain the observed current in emerging active regions (Longcope
& Klapper 1997; Fan et al. 1999), as has been observed by Van Driel−Gesztelyi et
al. (1994), Leka et al. (1996), see Fig. 6.9, and Pevtsov et al. (1997). Once an Ω-
fluxtube emerges through the photosphere, the fragmented fluxtube features eventually
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Figure 6.6: Snapshot of an emerging Ω-loop simulated with the ZEUS-3D/ANMHD code.
The bottom rectangular box shows a volume rendering of |B|, while the coronal magnetic field
above the photosphere (on the X − Y plane) is the top part. The magnetogram is shown with a
greyscale (XY-plane), with the colors (white/black) indicating the (positive/negative) magnetic
polarity (Abbett & Fisher 2003).

coalesce (Abbett et al. 2000). The complete evolution of a rising fluxtube from the
base of the convection zone all the way up into the corona has been simulated by
combining two 3D MHD codes, ANMHD (for the convection zone) and ZEUS-3D (for
photosphere, chromosphere, and corona), see, e.g., Fig. 6.6 (Abbett & Fisher 2003).

Numerical simulations of emerging fluxtubes can explain many observed properties
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Figure 6.7: Left: contours of the relative underdensity dρ/ρ0 of an emerging magnetic flux-
tubes at three different times. Note the fragmentation process into two structures (Longcope et
al. 1996). Right: volume rendering of |B| during the emergence of an Ω-loop that has not fully
fragmented (Abbett et al. 2000).

of bipolar regions, such as the asymmetry between leading and following spots (Fan et
al. 1993), Joy’s law of bipolar tilt angle (D’Silva & Choudhuri 1993), the asymmetric
proper motion of sunspots (Caligiari et al. 1995), a relation between dipole tilt angle
and net flux (Fisher et al. 1995), and a relation between the hemispheric helicity (with
opposite chirality in both hemispheres) and helical turbulence in the convection zone
(Σ-effect, Longcope et al. 1998). The 3D MHD simulations of Matsumoto et al. (1998)
or Dorch et al. (1999) also reproduce the kinked alignment of S-shaped solar active
regions along the same latitude, as can be seen in Yohkoh images (e.g., Fig. 5.17 or
Fig. 1.9 bottom frame).

6.2.6 MHD Simulations of Coronal Loops

We summarized a number of hydrodynamic (HD) simulations on coronal loops in § 4.7,
where the hydrodynamic processes are simulated without taking the role of the mag-
netic field into account, except for the assumption that plasma transport is restricted to
one dimension along the field line, while cross-field transport is inhibited by the low
value of the plasma β-parameter, generally assumed for coronal conditions. Including
the magnetic field, however, using the full set of resistive MHD equations (§ 6.1.5),
opens up a whole new dimension, where the Lorentz force plays an active role and can
change the geometry and topology of the loops (by reducing the curvature, twisting,
braiding, filamenting) and provides additional energy sources and sinks (in the form of
nonpotential energy storage, dissipation by heating, acceleration, and disruption). In
the following we describe a few numeric MHD simulations that exemplify the typical
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Figure 6.8: Isosurfaces of magnetic field strength for an emerging slim fluxtube for short wave-
length perturbations (top) and long wavelength perturbations (Matsumoto et al. 1998).

MHD behavior of coronal loop simulations in general, while more special aspects in
terms of coronal heating will be treated in § 9.

It is generally agreed that the dynamical evolution of coronal loops is driven by pho-
tospheric footpoint motion, where the coronal magnetic field lines are line-tied. The
large photospheric density and the small value of the plasma resistivity warrant a frozen
flow that moves the footpoints of coronal magnetic field lines around without slippage.
Because the photospheric flows are organized in granular and super-granular cells, it
drives a random walk of the footpoints of coronal magnetic field lines. The dynamical
consequences determine the evolution and history of coronal fluxtubes, including the
formation, equilibrium, linear instability, and nonlinear behavior. A time-dependent
3D MHD simulation performed by Mikić et al. (1990) starts with an initial uniform
background magnetic field, where a twisted fluxtube is created by application of slow,
localized photospheric vortex flows. For twists beyond a critical threshold (of >∼ 4.8π
according to Mikić et al. 1990), fluxtubes become linearly unstable to ideal or resis-
tive modes. The nonlinear evolution of kink instabilities generate concentrated current
filaments and their resistive dissipation provides a heating source for the corona. The
3D MHD simulation by Mikić et al. (1990) demonstrates the basic dynamic evolution
of coronal fluxtubes in terms of twisting, current filamentation, and kink instability



6.2. MHD OF CORONAL LOOPS 261

Figure 6.9: Proper-motion tracks for emerging dipoles from Mees CCD imaging spectrograph
(MCCD) over a total elapsed time of ≈ 9 hours. The bottom left part shows two magnetograms at
the beginning and end of the observation period, while the top right insert indicates the tracked
position of two conjugate magnetic footpoints (P10 and F10), connected with a line for each
time step. Note the twisting motion during the emergence process, which provides evidence that
emerging loops are current-carrying (Leka et al. 1996).

in response to photospheric footpoint motion, but the energetics of the plasma in the
fluxtube is not considered (no thermal conduction, radiative loss, or gravitational strat-
ification).

One of the most realistic 3D MHD simulations of coronal loops to date has been
performed by Gudiksen & Nordlund (2002), who simulate a typical scaled-down active
region (Fig. 6.10 top) by constraining the coronal magnetic field with a potential field
extrapolated from an observed magnetogram from SoHO/MDI (Fig. 6.10, bottom) and
subject to random footpoint motion. The photospheric horizontal velocity pattern is
generated from a velocity potential with randomly phased 2D Fourier components,
with amplitudes a(k), velocity power spectrum P (k), typical velocities v(k) at scales
1/k, and corresponding turnover times τ(k) that follow the following power laws,

a(k) ∝ k−p ,

P (k) ∝ k3−2p ,
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Figure 6.10: Top: MHD simulation of coronal loops, synthesized into a TRACE 171 Å emis-
sion measure image, averaged over the z-direction (line-of-sight) of the 3D simulation box. The
greyscale is raised to the power of 0.5 to soften the contrast. Bottom: SOHO/MDI magnetogram
of AR 9914, which has been used as the initial condition of the photospheric boundary of the
simulated 3D box. One and a half box width is shown. Note the locations of the most promi-
nent loops, marked with solid lines in the bottom panel and with dashed lines in the top panel
(Gudiksen & Nordlund 2002).

v(k) ∝ [kP (k)]1/2 ∝ k2−p ,

τk =
1

kv(k)
∝ kp−3 , (6.2.26)

where p = 1 is chosen to be consistent with observed turnover times: ≈ 30 hr at super-
granulation scales of≈ 30 Mm, and ≈ 1000 s at granulation scales of ≈ 3 Mm. The 3D
simulation box spans 30× 50× 50 Mm3, giving a resolution of 0.3 Mm vertically (in-
cluding the transition region and corona) and 0.5 Mm horizontally. The lower boundary
at the photosphere is kept at a constant temperature of 8000 K, while the upper coronal
boundary is kept at an initial temperature of 106 K. The vertical extent of the chromo-
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sphere is realized with a thickness of 4 Mm, and the coronal plasma is initiated with
pressure balance in a gravitationally stratified atmosphere, where the MHD code also
includes the thermal conduction and radiative loss in the energy equation. The mag-
netic field was computed from an observed magnetogram of AR 9114. After an initial
start-up phase, the simulation evolves towards a quasi-stationary configuration with a
hot tenuous corona with temperatures of the order of a few MK, where slender loops
are automatically created by the DC heating process from footpoint-driven braiding
of magnetic field lines. The slender loops are visualized in Fig. 6.10 (top panel) by
displaying the resulting emission measure in the temperature range (T ≈ 0.8 − 1.2
MK) of the TRACE 171 Å filter. This simulation demonstrates a number of interesting
physical effects. The average Joule dissipation, which balances the sum of thermal con-
duction losses and radiation losses decreases monotonically with height, as expected in
a gravitationally stratified atmosphere (§ 3.6), and is in agreement with the footpoint-
concentrated heating function measured observationally (sh ≈ 17 ± 6 Mm, Aschwan-
den et al. 2000d; sh ≈ 12 ± 5 Mm, Aschwanden et al. 2001). The average heating
rate found in this simulation is EH ≈ 2 × 106 erg cm−2 s−1 for plasma at tempera-
tures of T >∼ 1.0 MK. Another interesting finding is that the heated coronal loops are
not in hydrostatic equilibrium, exhibiting a nonhydrostatic stratification with a larger
pressure scale height, and thus reflect the internal dynamics of the intermittent heating
process. The loops are apparently formed by short duration excess heating episodes,
which cause upflows that increase the density along those magnetic field lines that are
subjected to the excess heating. The observed coronal loop structures therefore rep-
resent a selection effect of maximum density structures that are by definition not in
hydrostatic equilibrium, consistent with the analysis of observed nonhydrostatic loops
(§ 4.6). The 3D MHD simulations by Gudiksen & Nordlund (2002) represent a major
breakthrough in our physical understanding of the formation and evolution of coronal
loops, which could only be realized by a realistic driver in the photosphere and a real-
istic physical representation of the entire chromospheric transition region and coronal
domain.

6.3 MHD Instabilities in Coronal Loops

We discussed the thermal stability of loops in § 4.3, which was mainly found to depend
on the temperature gradient along a 1D fluxtube. When the transverse structure of a
fluxtube or coronal loop is taken into account, the magnetic field comes into play and a
whole new world of macroscopic (MHD) and microscopic (kinetic) processes become
possible. The extra degree of freedom opens up a variety of instabilities. In Table 6.1
we give an overview of macroscopic hydrodynamic (HD) and magneto-hydrodynamic
(MHD) plasma instabilities thought to be relevant in coronal loops.

The stability of a plasma structure such as a coronal loop can be investigated using
two basic methods, either by analytical calculations of the eigen values of the linear
growth rate in a perturbed system (normal-mode method), or by time-dependent nu-
merical simulations starting with an initial perturbation of the system. An explicit
example of the normal-mode method is given in § 4.3.1 for the case of the radiative
loss instability, and applications to other instabilities are also given in Priest (1982,
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Table 6.1: Overview of HD and MHD instabilities in coronal loops.

Instability Unstable condition
1) Interchange or Pressure-Driven Instabilities:

1.1. Rayleigh−Taylor instability:
1.1.1 Hydrodynamic: g · ∇n0 < 0
1.1.2 Hydromagnetic (Kruskal−Schwarzschild): k · B = 0
1.1.3 Hydromagnetic (Parker instability): k · B �= 0

1.2) Kelvin−Helmholtz instability:
1.2.1 Hydromagnetic: v1 > vA,2

1.3) Ballooning instability: j × B > ρg

2) Thermal Instabilities:
2.1) Convective instabilities: (dT/dz)crit

2.2) Radiatively-driven thermal instabilities: τcond > τrad

2.3) Heating-driven thermal instabilities: sH/L < 1/3

3) Resistive Instabilities:
3.1. Gravitational mode: Fgrav > (j × B)
3.2. Rippling mode: Fadv > (j × B)
3.3. Tearing mode: (dB/dx)crit

4) Current Pinch Instabilities:
4.1. Cylindrical pinch:

4.1.1 Kink mode: B2
0ϕ ln(L/a) > B2

0z

4.1.2 Sausage mode: B2
0ϕ > 2B2

0z

4.1.3 Helical/torsional mode: B0ϕ > (2πa/L)B0z

4.2. Current sheet:

§ 7). In the following we summarize the instabilities that can occur in coronal loops.
An overview diagram is provided in Fig. 6.11 and more detailed descriptions of the
instabilities can be found in reviews (Priest 1978; Sakurai 1989) and textbooks (Priest
1982, § 7; Bray et al. 1991, § 5.6.2; Sturrock 1994, § 15).

6.3.1 Rayleigh−Taylor Instability

The class of interchange instabilities (Jeffrey & Taniuti 1966) includes instabilities that
occur at the interface between two fluid layers, where the equilibrium is perturbed by
rippling or meandering of the boundary layer, which can be thought of as an “inter-
change” of neighboring fluid elements. The classical hydrodynamic example is a pair
of two horizontal fluid layers with different densities, ρ1 and ρ2, in a vertical gravita-
tional field. A ripple in the horizontal interface implies that upper fluid elements are
pushed downward and lose potential energy, while lower fluid elements are pushed up-
ward and gain potential energy. It is intuitively clear that such rippling is only stable
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when the lighter fluid lies above the denser fluid (e.g. air above water waves), while
an instability occurs when the lighter fluid lies below the heavier fluid (ρ2 > ρ1),
the so-called Rayleigh−Taylor instability (Fig. 6.11-[1.1.1]). This instability condition
is given when the density gradient of the unperturbed plasma (∇n0) has an opposite
direction to gravity (i.e., g · ∇n0 < 0).

6.3.2 Kruskal−Schwarzschild Instability

Kruskal & Schwarzschild (1954) showed that an analogous Rayleigh−Taylor insta-
bility occurs in a plasma supported by a magnetic field against gravity (Priest 1982,
§ 7.5.2; Boyd & Sanderson 2003, § 4.7.1). A ripple or disturbance along a longitudinal
magnetic field will be restored by the curvature force of the bent magnetic field line,
so that no instability arises in the longitudinal direction. In the perpendicular direc-
tion (k · B = 0), however, there is no stabilizing curvature force for disturbances and
longitudinal ripples can form, driven by perpendicular pressure differences (Fig. 6.11-
[1.1.2]). Such longitudinal ripples do not involve any compression or rarefaction of the
plasma, they just correspond to a redistribution (or interchange) of longitudinal plasma
“pleats” in the perpendicular direction to the magnetic field, similar to the motion of
curtain pleats in the wind. Applied to a coronal loop, such longitudinal ripples could
possibly form along the surface of cylindrical loops, driven for instance by a pres-
sure difference between a cool loop core plasma and a hotter surrounding sheet plasma
(Priest 1978). However, such motions of ripples perpendicular to the (longitudinal)
magnetic field are strongly inhibited by the line-tying of the magnetic field lines at
the chromospheric/photospheric footpoints at both endpoints of the loop, and thus are
unlikely to occur in active region loops (Priest 1978).

The Parker instability (Parker 1966, 1969, 1979; Shibata et al. 1989a,b) is a related
kind of ideal MHD instability, occurring for long-wavelength perturbations with k ‖ B
(i.e., undular mode), while the Kruskal−Schwarzschild instability occurs for perturba-
tions with k ⊥ B and k ⊥ g. Numerical simulations of the Parker instability for an
isolated horizontal magnetic flux sheet embedded in a two-temperature layer are shown
in Shibata et al. (1989a,b).

6.3.3 Kelvin−Helmholtz Instability

The classical Kelvin−Helmholtz instability (Fig. 6.11-[1.2]) occurs at the interface be-
tween two fluids with different parallel flow speeds. Stable or laminar flows occur for
small velocity differences, while the interface becomes unstable or turbulent when the
Reynolds number exceeds a critical value. For plasmas, a longitudinal magnetic field
has a stabilizing influence, as well as an azimuthal magnetic field component under
certain conditions (Chandrasekhar 1961; Priest 1982, § 7.5.4). For the solar corona,
such shear flows leading to a Kelvin−Helmholtz instability could potentially arise be-
tween adjacent fluxtubes with upflows and downflows. However, assuming compara-
ble speeds, densities, and magnetic fields in the two counter-streaming fluxtubes, Priest
(1978) estimates that the flow speed v1 would have to exceed the Alfvén speed vA,2 to
produce a Kelvin−Helmholtz instability (i.e., v1 > vA,2), which is unlikely in active
region loops.
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6.3.4 Ballooning Instability

In 3D toroidal plasmas, and therefore in coronal loops, stability is often balanced by
the inner and outer curvature radii, where inner curvatures are more favorable for sta-
bility and outer curvatures are less stable and can cause a ballooning instability locally
(Fig. 6.11-[1.3]). The stability of cylindrical coronal loops and arcades against balloon-
ing modes has been quantified by Hood (1986) and Hardie et al. (1991) for line-tying
conditions at the coronal footpoints. Obviously, the ballooning instability is driven by
the gas pressure gradient, which is balanced by the magnetic tension force in force-
free magnetic fields. Thus, the ballooning instability is only an issue in non-force-free
fields. In large-scale flare loops, the centrifugal or Lorentz force j × B could pos-
sibly exceed the gravity force ρg in high-β regions (which may occur at altitudes of
h >∼ 0.25R�, see § 1.8), and thus produce the right conditions for a ballooning insta-
bility with subsequent disruption of the flare loop (Shibasaki 2001).

6.3.5 Convective Thermal Instability

Thermal instabilities are driven by a temperature gradient. A chief example is the
convective instability (Fig. 6.11-[2.1]), where a horizontal layer of viscous, thermally
conducting fluid is heated from below and becomes unstable when the temperature dif-
ference between the lower and upper boundary becomes too large. Convection cells
form in hexagonal patterns, also known as Bénard cells. Such convection dynamics
occurs in the solar interior (i.e., in the convection zone at a radius of r >∼ 0.7R�), as
well as on a finer scale in the photospheric granulation pattern. The type of convective
instability depends on the thermal diffusivity and magnetic diffusivity (Priest 1982,
§ 7.5.6; Stix 2002, § 6). In the solar corona, plasma flows are essentially 1D along the
magnetic field lines because of the low value of the plasma β-parameter, and thus con-
vection is inhibited along a 1D coronal loop, even when a critical temperature gradient
occurs along a loop. Unstable temperature gradients can only be stabilized by (parallel)
thermal conduction or by uni-directional flows along the loops.

6.3.6 Radiatively-Driven Thermal Instability

Although all coronal loops have a large temperature difference between the coronal
looptop and the chromospheric footpoints, stationary solutions exist where an energy
balance is achieved between heating, thermal conduction, and radiative loss (see hy-
drostatic solutions in § 3.5 and hydrodynamic solutions in § 4.1 and 4.2). Under certain
conditions, however, thermal conduction is not efficient enough to balance the radiative
loss, leading to a so-called radiatively-driven thermal instability (Fig. 6.11-[2.2]) which
we discussed in § 4.3.1 (see also Field 1965; Priest 1978; Priest 1982, § 7.5.7; Hood &
Priest 1979a; Roberts & Frankenthal 1980). Numerical simulations of the radiatively-
driven thermal stability of loops were performed by Klimchuk et al. (1987) and Cally
& Robb (1991), which demonstrated that low-lying compact hot loops are generally
thermally unstable, while large-scale hot loops are quite stable even to large-amplitude
disturbances. Dahlburg et al. (1987) studied the nonlinear evolution of radiation-driven
thermally unstable (unmagnetized) fluids, finding a turbulent contraction of the con-
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Figure 6.11: Hydrodynamic and MHD instabilities that can occur in coronal loop plasmas
are illustrated (in the same order as in Table 6.1). Different densities (ρ1, ρ2) are rendered
with hatched linestyle, different velocities (v1, v2) with dashed linestyle, temperature gradients
(T1, T2) with greyscales, longitudinal magnetic field lines (B0) with thin solid lines, azimuthal
magnetic field components (Bϕ) with thick solid lines, and radiation with wiggly lines. The
directions of the disturbances that lead to an instability are indicated with thick white arrows.
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densed region with subsequent increased radiative loss. The observational signature
of coronal loops that undergo a radiatively-driven thermal instability occurs as coro-
nal rain visible in Hα and UV (Schrijver 2001a) and has been called the catastrophic
cooling phase (see § 4.5.4).

6.3.7 Heating Scale-Height Instability

Another thermal imbalance can occur when the heating function is very localized
(Fig. 6.11-[2.3]), in particular if the exponential heating scale height at the footpoint
is smaller than about one third of the loop half length (i.e., sH

<∼ L/3). Numerical
simulations have shown that the arising temperature gradients cannot be stabilized by
radiative loss and thermal conduction (Winebarger et al. 2002), so that such a nonuni-
formly heated loop undergoes a dynamic cooling phase (see § 4.3). The heating is
insufficient to maintain any stable temperature at the looptop, and thus the loop will
cool down and finally enter a catastrophic cooling phase.

6.3.8 Resistive Instabilities

There is also a class of resistive instabilities, which are driven by a finite resistivity σ
that converts magnetic energy into Ohmic heating. Since the magnetic diffusion time
scales tD = l2/η (with l the width of a current sheet and η = 1/σ the magnetic
diffusivity) are extremely long in coronal conditions, such resistive effects are only
significant for very small spatial scales l (e.g., in thin current sheets). A random dis-
turbance of a thin current sheet could occur in the form of a lateral inflow with speed
v, which causes a current density j ≈ (σ/c)(v × B) (see Ohm’s law, Eq. 5.1.10) and
a Lorentz force which opposes the flow,

FL = j × B ≈ σ

c
(v × B) × B . (6.3.1)

A resistive instability occurs then in the current sheet when the driving force of the
inflow exceeds the opposing Lorentz force. There are different possible driving forces
(Furth et al. 1963), such as : (1) gravity, leading to the gravitational mode (Fig. 6.11-
[3.1]); (2) a spatial variation across the current sheet in magnetic diffusivity, e.g. caused
by a temperature gradient, leading to the rippling mode (Fig. 6.11-[3.2]); or (3) a
sheared magnetic field, leading to the tearing mode (Fig. 6.11-[3.3]). Both the gravi-
tational and rippling-mode instability occur on wavelengths that are shorter than the
width l of the current sheet, while the tearing mode occurs at longer wavelengths
(kl < 1). The fastest growth rate is given by the longest wavelength, which has a value
corresponding to the geometric mean of the magnetic diffusion time τD and Alfvén
crossing time τA,

τtear ≈ √
τDτA . (6.3.2)

Since sheared magnetic fields have been often been observed in active regions before a
flare, the tearing-mode instability plays a major role in triggering solar flares (see § 10
on magnetic reconnection).
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6.3.9 Kink Instability (m=1)

Current pinch instabilities have been studied in laboratories, where cylindrical plasma
columns are pinched (i.e., confined) by azimuthal magnetic field components Bϕ and
the related currents jϕ. Due to the cylindrical geometry of coronal loops, current pinch
instabilities represent an important class of MHD instabilities in the solar corona, such
as the kink mode, sausage mode, or helical/torsional mode. Considering modes that
are periodic in axial direction z or azimuth angle ϕ, axially symmetric perturbations
ξ(x) can be written as,

ξ(x) = ξ(r)ei(kz+mϕ) , (6.3.3)

where m = 0 is called the sausage mode (Fig. 6.11-[4.2]) and m = 1 the kink mode
(Fig. 6.11-[4.1]). We see that m = 0 is independent of the azimuth angle ϕ and thus
represents a purely radial oscillation, while m = 1 involves an azimuthal asymmetry
(i.e., a sinusoidal oscillation in a particular azimuthal plane ϕ).

Let us consider the kink instability, in which a sinuous displacement grows along
a fluxtube (Fig. 6.11-[4.1]). The kink instability can occur in fluxtubes that have az-
imuthal magnetic fields B0ϕ (or associated azimuthal currents jϕ) above some critical
threshold. The basic physical effect can easily be understood from the diagram shown
in Fig. 6.11-[4.1]. If a kink-like displacement deforms a straight fluxtube, the azimuthal
magnetic field lines move closer together at the inner side of the kink than at the outer
side, which creates a magnetic pressure difference ∇(B2

ϕ/8π) towards the direction
of the lower field (which is the outer side of the kink), and thus acts as a force in the
same direction as the kink displacement, and therefore makes it grow further. A dis-
turbance (i.e., the kink displacement) that is not stabilized by the resulting forces (i.e.,
the magnetic pressure difference) leads by definition to an instability. Of course, there
are other forces present that may contribute to stabilization, such as the longitudinal
magnetic pressure force ∇(B2

z/8π), the gas pressure gradient ∇p, or line-tying at the
ends of the fluxtube anchored in the photosphere.

The kink instability has been originally studied by Kruskal et al. (1958), Shafranov
(1957), and Suydam (1958), while special applications to coronal loops were consid-
ered in Anzer (1968), and Hood & Priest (1979b). For force-free magnetic fields of
uniform twist, a critical twist of ϕtwist

>∼ 3.3π (or 1.65 turns) was found to lead to
kink instability, while the critical value ranges between 2π and 6π for other types of
magnetic fields. The effect of line-tying was included by Raadu (1972) and Velli et
al. (1990), that of pressure gradients by Giachetti et al. (1977), and both combined
by Hood & Priest (1979b) or Lothian & Hood (1992). The nonlinear development of
the kink instability was studied by Sakurai (1976). Analytical evaluations of instabil-
ity thresholds, of course, involve highly simplified geometries, while numerical MHD
simulations provide more realistic conditions. Numerical MHD simulations of an in-
creasingly twisted loop system demonstrated linear instability of the ideal MHD kink
mode for twist angles in excess of ≈ 4.8π (or 2.4 turns) (Mikić et al. 1990). The kink
instability is believed to be an important trigger for filament eruption, flare initiation,
and CMEs (§ 17.3.2).
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6.3.10 Sausage Instability (m=0)

In a cylindrical plasma column, the radially inwards directed j×B force is balanced by
the outward pressure gradient ∇p. However, in the absence of a longitudinal magnetic
field B0z , the plasma column is unstable at locations where the confining field is con-
cave, leading to the sausage instability (Fig. 6.11-[4.2]). On the other side, the pinched
plasma column can be stabilized against the sausage instability with a sufficiently large
longitudinal field B0z . Stability is warranted for B2

0z > (1/2)B2
ϕ. An analytical deriva-

tion of the stability analysis of the sausage mode can be found in Sturrock (1994, § 15),
and general discussions of the sausage instability are given in Hasegawa (1975, § 3.5),
Priest (1982, § 7.5.3), and Bray et al. (1991, § 5.6.2). Although sausage-type waves
(e.g., Berghmans et al. 1996) and sausage-mode oscillations (Roberts et al. 1984) have
been applied to coronal loops, no imaging observation of a sausage instability in coro-
nal loops has been reported so far, so that it seems that the sausage stability criterion is
generally met in coronal magnetic fields (i.e., the azimuthal magnetic field of a twisted
coronal loop seems never to reach the critical limit of |Bϕ| > 1.4|B0z|).

6.4 MHD of Quiescent Filaments and Prominences

Some horizontal magnetic field lines overlying a neutral line (i.e., the magnetic po-
larity inversion line) of an active region are found to be filled with cool gas (of chro-
mospheric temperature), embedded in the much hotter tenuous coronal plasma. On
the solar disk, these cool dense features appear dark in Hα or EUV images, in ab-
sorption against the bright background, and are called filaments (Fig. 6.12, bottom),
while the same structures appear bright above the limb, in emission against the dark
sky background, where they are called prominences (Fig. 6.12, top). Thus, filaments
and prominences are identical structures physically, while their dual name just reflects
a different observed location (inside or outside the disk). A further distinction is made
regarding their dynamic nature: quiescent filaments/prominences are long-lived stable
structures that can last for several months, while eruptive filaments/prominences are
usually associated with flares and coronal mass ejections (CMEs). Typical parameters
of prominences are given in Table 6.2.

Reviews on filaments/prominences can be found in Hirayama (1985), Martin (1990,
1998), Kucera & Antiochos (1999), Anzer (2002), Patsourakos & Vial (2002), in
the encyclopedia articles of Gaizauskas (2001), Zirker (2001), Moore (2001), En-
gvold (2001a), Martin (2001), Van Ballegooijen (2001), Oliver (2001a), Rust (2001),
Tandberg−Hanssen (2001), as well as in the textbooks of Svestka (1976), Priest (1982),
Zirin (1988), Foukal (1990), Tandberg−Hanssen (1974, 1995), Schrijver & Zwaan
(2000), Stix (2002), and proceedings edited by Jensen et al. (1979), Poland (1986),
Ballester & Priest (1988), Priest (1989), Webb et al. (1998), and Kaldeich−Schurmann
& Vial (1999). Despite this extensive literature there are still a number of unresolved
theoretical problems in prominences, as pointed out by Forbes (1997).
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Figure 6.12: Top: A small “hedgerow-shaped” prominence above the limb (observed by the Big
Bear Observatory, Zirin 1988), which appears bright in Hα against the black sky background.
The fine structure of the prominence consists of many vertical threads. Bottom: A large polar
crown prominence on the disk (observed with the Swedish Vacuum Solar Telescope on La Palma
on 1998-Jun-19, Engvold 2001a), appearing dark in Hα against the bright chromospheric back-
ground. Note the orientation angle of the prominence threads by ≈ 20◦ − 30◦ relative to the
major prominence axis.
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Table 6.2: Typical physical parameters of prominences inferred from SoHO measurements
(Patsourakos & Vial 2002), Hα (Engvold 2001a), and other sources.

Physical parameter Range of values
Electron density (at T = 105 K) ne = 1.3 × 109 − 3 × 1011 cm−3

Neutral hydrogen column density nH = 1016 − 1019 cm−2

Electron temperature Te = 5000 − 15, 000 K
Gas pressure (at T = 105 K) p = 0.03 − 0.38 dyne cm−2

Length of prominence L ≈ 60, 000 − 600, 000 km
Height of prominence h ≈ 10, 000 − 100, 000 km
Width of prominence w ≈ 4000 − 30, 000 km
Number of threads Nthread = 15 − 20
Lengths of threads Lthread = 5000 − 35, 000 km
Widths of threads dthread = 200 − 400 km
Filling factor qfill = 0.001 − 0.1
Lifetime of threads τthread = 1 − 10 min
Oscillation frequencies T = 3 − 5, 6 − 12, > 40 min
Vertical and horizontal flow velocity (at T = 105 K) v= 2 − 13 km s−1

Nonthermal velocity (at T = 105 K) ∆v= 26 km s−1

Magnetic field density B = 4 − 40 G

6.4.1 Magnetic Field Configuration

Magnetic field measurements (e.g., Querfeld et al. 1985; Bommier et al. 1986a,b) with
the Zeeman and Hanle effect have shown that the magnetic field in prominences has
field strengths in the order of B = 4 − 20 G and that the field is mainly directed
along the length of the prominence. On average, the magnetic field is inclined to the
prominence axis by an angle of ≈ 25◦ (Leroy 1989), see example given in Fig. 6.12
(bottom). Quiescent prominences often have an inverse polarity with respect to the
overlying loop arcade. These observations point to a model where the cool prominence
material is suspended by a highly twisted fluxtube inside a loop arcade (Fig. 6.14).
The high twist explains the inclined angle of ≈ 25◦, and the location of the promi-
nence material in the lower trough of the interior fluxtube explains the opposite field
direction with respect to the overlying arcade (Fig. 6.14). Viewing this magnetic model
along the prominence axis, this scenario with opposite magnetic polarity corresponds to
the Kuperus−Raadu (1974) model (Fig. 6.13, right), while the Kippenhahn−Schlüter
(1957) model (Fig. 6.13, left), which proposes trapping of prominence material in dips
near the apex of a loop arcade, predicts the same magnetic polarity in the prominence
and overlying arcade. The magnetic dip on the top of the field lines preserves the sta-
bility of the quiescent prominence (Pikel’ner 1971). Prominence models based on a dip
in the horizontal magnetic field have been developed, e.g., by Antiochos et al. (1994).

Magnetic field models of quiescent prominences inside large, twisted fluxtubes
have been developed by a number of authors (e.g., Priest et al. 1989; Ridgway et
al. 1991a,b). According to these models, the interior of a large loop arcade contains a
highly twisted fluxtube (Priest et al. 1989b) anchored at both ends near the neutral line,
having a helical twist of one or two turns in the coronal portion of the tube (Fig. 6.14).
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Figure 6.13: Two magnetic field models to support a prominence: (a) Kippenhahn−Schlüter
model; (b) Kuperus−Raadu model. The figures show the field lines projected perpendicularly to
the long axis of a prominence (shaded region) (Van Ballegooijen 2001).

Figure 6.14: Side view of a twisted fluxtube model (Priest et al. 1989) for a solar promi-
nence. The cool prominence material (shaded region) is suspended inside of the twisted fluxtube
(Van Ballegooijen 2001).

Figure 6.15: Model of the formation process of a prominence by flux cancellation in a sheared
coronal arcade. The neutral line is indicated with a dashed line on the photospheric surface
(rectangle). (a) Converging flows shear the initial field. (b) Magnetic reconnection between the
sheared loops AB and CD exchanges the connectivity, producing a long loop AD and a short
loop BC, which submerges subsequently. (c) Overlying loops EF and GH are pushed to the
neutral line. (d) Reconnection produces the helical loop EH and a short loop GF, which again
submerges (Van Ballegooijen & Martens 1989).
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The overlying arcade straps down the twisted fluxtube and probably is essential for the
overall stability and equilibrium (as simulated in a laboratory experiment by Hansen &
Bellan 2001). The cool prominence material is suspended at the lower, upwardly con-
cave formed trough of the twisted fluxtube, which in addition might have some dips in
longitudinal direction to trap the prominence material. A possible scenario to produce
such helical fields is outlined in Fig. 6.15, where shearing and reconnection forms heli-
cal field lines above the neutral line (Priest et al. 1996). Alternative models assume that
twisting occurs in the convection zone (Fig. 6.8) and that the fluxtube emerges through
the photosphere already twisted (Rust & Kumar 1994; McKaig 2001). Observations
also show that prominences tend to form in regions where opposite-polarity flux is can-
celled at the neutral line, which can be explained by reconnection just above the neutral
line (Van Ballegooijen & Martens 1989; Litvinenko & Martin 1999), as illustrated in
Fig. 6.15. A consequence of this model is that reconnection also produces longer and
more sheared field lines above the neutral line, gradually enlarging the prominence
until it eventually becomes unstable and erupts. A more realistic rendering of the
3D magnetic field in a filament channel is illustrated in Fig. 6.16, computed with a
magneto-hydrostatic code by Aulanier & Schmieder (2002).

The twist of magnetic field lines in prominences has been found to have a pre-
ferred chirality or handedness in the northern and southern solar hemispheres (Rust
1967; Leroy et al. 1984). The majority of quiescent filaments are either left-handed
(sinistral) or right-handed (dextral) (Martin et al. 1994). The chirality can be deter-
mined either from the direction of barbs (lateral appendices) on both sides of a fila-
ment spine, because they trace the flow field and thus the magnetic shear, or from the
crossing of bright over dark (or vice versa) filament threads (Chae 2000). Most of
the dextral filaments are found in the northern hemisphere (80%), while most sinis-
trals are in the southern hemisphere (85%; Pevtsov et al. 2003), a pattern that remains
unchanged from solar cycle to cycle, although the absolute direction of the axial mag-
netic field in east-west direction reverses from cycle to cycle. A number of models
has been developed to explain the chirality of filaments, either based on emergence
of subphotospheric twisted fluxtubes (Rust & Kumar 1994), continuous shearing and
reconnection (Priest et al. 1996), or based on twisting by meridional flows and other
surface motions (Van Ballegooijen et al. 1998), all models also being affected by differ-
ential rotation, but none of the models can explain all observed patterns (see review by
Zirker 2001). Numerical simulations based on surface flow fields could reproduce the
formation of filaments (Mackay et al. 1997; Gaizauskas et al. 1997), predict the correct
chirality (Mackay et al. 2000b), but the cycle-dependent hemispheric pattern could not
be reproduced (Van Ballegooijen et al. 2000; Mackay & Van Ballegooijen 2001). 3D
magnetic modeling is able to simulate the formation process (Galsgaard & Longbottom
1999; DeVore & Antiochos 2000), to mimic structural details such as the lateral feet,
barbs, bald patches, and dips of filaments (Aulanier & Démoulin 1998; Aulanier et
al. 1998a, 1998b, 1999, 2000a, 2002; Kucera et al. 1999; Lionello et al. 2002), as well
as the magnetic field strength and orientation (Aulanier & Schmieder 2002; Aulanier
& Démoulin 2003; Démoulin 2003).
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Figure 6.16: Magnetic field lines of a filament channel, computed with a linear magneto-
hydrostatic (LMHS) code. The field lines passing through the Hα filament body and feet (resp.
surrounding it) are drawn with thick (resp. thin) lines. The images show views in projection from
Earth (top left), along the filament channel (top right), and in projections (bottom), (Aulanier &
Schmieder 2002).

6.4.2 Equilibrium Models

The longevity observed in many quiescent filaments and prominences requires a stable
equilibrium of the dense prominence gas against the gravity force. Since the partially
ionized gas can only move along the magnetic field lines in the low-β corona, it will
naturally slide to the lowest points along a field line, and thus many prominence mod-
els envision that the dense prominence gas is trapped in dips of the nearly horizontal
field lines. Kippenhahn & Schlüter (1957) pioneered such a model of the equilibrium



276 CHAPTER 6. MAGNETO-HYDRODYNAMICS (MHD)

and stability of prominence plasma in a magnetic configuration with dipped field lines
(Fig. 6.13 left). This standard model is summarized in many texts (e.g. Priest 1982,
§ 11.2; Stix 2002, § 9.3.4; Van Ballegooijen 2001). The stationary (∂/∂t = 0) momen-
tum equation (6.1.17) implies an equilibrium between the gradient of the gas pressure
∇p, gravity ρg, and the Lorentz force (j × B),

−∇p − ρg + (j × B) = 0 . (6.4.1)

Kippenhahn & Schlüter (1957) modeled the geometry of the prominence as a thin
vertical current sheet in which the pressure p(x), density ρ(x), and vertical magnetic
field Bz(x) depend only on the horizontal coordinate x perpendicular to the sheet. The
temperature T and horizontal magnetic field components Bx and By are assumed to
be constant. The x and z-components of Eq. (6.4.1) then reduce to (see analogous
derivation in § 6.2.1),

− ∂

∂x

(
p +

B2

8π

)
= 0 , (6.4.2)

−ρg +
Bx

4π

∂Bz

∂x
= 0 . (6.4.3)

Defining the boundary conditions far away from the prominence sheet,

p(x → ±∞) = 0 , Bz(x → ±∞) = ±Bz∞ , (6.4.4)

and integrating Eq. (6.4.2) over the range [x,∞] yields,

p(x) =
B2

z∞ − B2
z(x)

8π
. (6.4.5)

Using now the equation of state for the ideal gas (p = 2nekBTe, Eq. 3.1.9), the mass
density (ρ = mn = µmHne, Eq. 3.1.6), the definition of the pressure scale height
(λp = 2kBTe/µmHg, Eq. 3.1.6), and inserting the pressure p(x) from Eq. (6.4.5),
equation (6.4.3) becomes

−B2
z∞ − B2

z (x)
2λp

+ Bx
∂Bz(x)

∂x
= 0 , (6.4.6)

which has the following analytical solution for the magnetic field Bz(x),

Bz(x) = Bz∞ tanh
(

Bz∞
Bx

x

2λp

)
, (6.4.7)

and for the pressure p(x), after inserting Eq. (6.4.7) into Eq. (6.4.5),

p(x) =
B2

z∞
8π

[
sech
(

Bz∞
Bx

x

2λp

)]2
=

B2
z∞
8π

[
cosh

(
Bz∞
Bx

x

2λp

)]−2

. (6.4.8)

The pressure scale height λp = 46, 000 km ×(Te/1 MK) (Eq. 3.1.16) is only 230−690
km for filaments and prominences (with Te = 5000 − 15, 000 K). The fact that the
observed height extent of prominence threads spans over several 1000 km implies a
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Figure 6.17: Vertical magnetic field strength Bz(x) (top left), pressure p(x) or density pro-
file ne(x) (bottom left), and magnetic field lines B(x, z) for the Kippenhahn−Schlüter (1957)
prominence model, according to the analytical solutions specified in Eqs. (6.4.7−10). The
prominence material (grey zone) is suspended by upwardly concave field lines in dips of loop
arcades (Fig. 6.13 left).

highly nonhydrostatic and dynamic nature. The width of the sheet can be estimated
from the pressure scale height and is about w ≈ 4(Bx/Bz∞)λp. The observed widths
of quiescent prominences (≈ 8000 km) can be reproduced with Bz∞ ≈ 0.1Bz. This
implies that only a minor variation of the horizontal magnetic field by ≈ 10% can
support a prominence. Since the temperature is assumed to be constant, the density
ne(x) has the same transverse dependence as the pressure p(x) (Eq. 6.4.8), shown in
Fig. 6.17. The magnetic field lines of the Kippenhahn & Schlüter (1957) model can be
computed according to Eq. (5.2.19) using dx/Bx = dz/Bz,∫

Bz∞
Bx∞

tanh
(

Bz∞
Bx∞

x

2λp

)
dx = z + c , (6.4.9)

which can be integrated and yields,

2λp ln
[
cosh

(
Bz∞
Bx∞

x

2λp

)]
= z + c . (6.4.10)

So the analytical solutions (Fig. 6.17) indicate magnetic field lines that are bent up-
wardly concave. Since the magnetic field B(z) generally decreases with height, the
magnetic pressure force points in an upward direction (towards the lower magnetic
field). Moreover, the magnetic tension force also points in an upward direction at the
center, and towards the center location of the prominence plasma, due to the concave
curvature. So, both the magnetic pressure force and the magnetic tension force oppose
gravity and compress the prominence plasma.

The Kippenhahn−Schlüter (1957) model has been generalized in a number of
ways, by including heat conduction and radiative loss in the energy balance equation
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(6.1.35) (Orrall & Zirker 1961; Low 1975a, 1975b; Lerche & Low 1977; Heasley &
Mihalas 1976; Milne et al. 1979). A prominence model with more realistic bound-
ary conditions was modeled (Anzer 1972; Hood & Anzer 1990) by including the
external magnetic field (in the form of a potential field). The MHD stability of the
Kippenhahn−Schlüter (1957) prominence model was investigated by Anzer (1969),
and that of a sheared field configuration by Nakagawa (1970).

In the alternative prominence model of Kuperus & Raadu (1974) where helical
fields in the interior of a loop arcade suspend the prominence (Fig. 6.13, right frame,
and Fig. 6.14), support of the prominence against gravity is provided by the azimuthal
magnetic field Bϕ, which is required to be

Bϕ

4πh
≈ (ρP − ρ0)g , (6.4.11)

and can easily be satisfied within the observed parameters (Table 6.2). Equilibrium
models of prominences supported by helical fields, which form after reconnection in
vertical neutral sheets, have been considered by Kuperus & Raadu (1974), Van Tend &
Kuperus (1978), Kuperus & Van Tend (1981), Lerche & Low (1980), Low (1981), and
Malherbe & Priest (1983).

6.4.3 Formation and Evolution

How are prominences or filaments created? This question consists of two parts: first,
how is an appropriate magnetic field configured so that it can support a prominence (as
we discussed in § 6.4.1 for the Kippenhahn & Schlüter model), and second, how is the
magnetic field structure filled with cool prominence material? The observations show
that prominences always form in so-called filament channels (Fig. 6.18, top), regions
where chromospheric fibrils (thread-like fine structures) are aligned with the neutral
line (Fig. 6.18, bottom). The filament channels themselves form along boundaries of
large-scale convection cells, typically occurring in mid-latitudes of ≈ 10◦ − 40◦, sep-
arated by about ≈ 45◦ in longitude (Schröter & Wöhl 1976; Stix 2002, § 6.6). For
the question of how prominences acquire their mass there are three different scenar-
ios (Fig. 6.19): (1) cooling and condensation of plasma from the surrounding corona
(Pneuman 1972), (2) injection by chromospheric upflows, and (3) footpoint heating
triggering condensation. Although filaments and prominences appear to be static over
longer time intervals, there is a lot of observational evidence that the formation is a
continuous process, where mass is continuously entering and exiting the filament mag-
netic field throughout its lifetime. Moreover, the continuous process of mass transport
in filament spines and barbs has been found to consist of bi-directional streams (Zirker
et al. 1998).

Coronal Condensation

The first group of scenarios for the formation of filaments or prominences envisions
a coronal origin. For instance, Pneuman (1972) proposed that quiescent prominences
with a high-density form at the base of helmet streamers inside a low-density cavity at
a special location where conductive transport is inefficient and the radiating volume is
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Figure 6.18: Top: a filament channel, recorded in Hα at the Big Bear Solar Observatory on
17 June 1981. The S-shaped filament channel consists of chromospheric fibrils and connects
to opposite magnetic polarities (a sunspot in the north with a filament in the south) and will
become dark once it is filled with cool material that forms a filament. Bottom: example of a
sinistral filament (left) and a dextral filament (right). The fine structure of the filament barbs are
aligned with the chromospheric fibrils (Martin 2001).
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(1) Coronal
Condensation

(2) Footpoint
     Injection

(3) Footpoint
     Heating

Figure 6.19: Three different model concepts for the formation of filaments or prominences: (1)
condensation and cooling in a coronal loop, (2) upflows of cool prominence material from the
chromosphere, and (3) footpoint heating that causes condensation in the coronal segments of the
loop. Grey zones demarcate cool gas or plasma.

small. Similarly, Hood & Priest (1979a), and Priest & Smith (1979) modeled promi-
nences as stretched-out loops in which thermal conduction becomes ineffective, so that
radiative cooling dominates and forms cool prominence plasma. Prominence models
of coronal origin, however, generally face the problem of insufficient mass supply, un-
less the mass flow circuit is closed through the chromosphere. The mass of a large
quiescent prominence is estimated to be (with a density np ≈ 3 × 1011 cm−3 and a
volume of Vprom = 5 Mm × 50 Mm × 400 Mm = 1029 cm3),

Mprom ≈ npmpVprom ≈ 5 × 1016 g , (6.4.12)

which makes up about ≈ 10% of the entire mass of the corona (with np ≈ 3 × 108

cm−3 and a density scale height of λp ≈ 100 Mm),

Mcor ≈ npmp(4πR2
�λp) ≈ 3 × 1017 g . (6.4.12)

Thus the corona would be completely depleted after a dozen prominence eruptions, and
thus inevitably a dynamic process is required to replenish prominence mass from the
much denser chromosphere (Tandberg−Hanssen 1986). There is, of course, a lot of
observational evidence for cooling in coronal loops (§ 4.5), which eventually evolves
into catastrophic cooling below temperatures of T <∼ 1.0 MK followed by high-speed
downflows at T ≈ 0.1 MK (Schrijver 2001a), but this cooling or condensation process
apparently does not lead to the formation of filaments or prominences.

Chromospheric Injection

The second group of filament/prominence formation models envisions injection or up-
flow of chromospheric material, which can be driven in various ways. Siphon flows can
drive material upwards if there is a large enough positive pressure difference between
the chromosphere and a dip near the apex of a coronal loop (Pikel’ner 1971; Engvold
& Jensen 1977). In other models, a unspecified mechanism is assumed that produces
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a ballistic injection with some initial velocity, which may explain surge-like upflows,
such as in spicules or soft X-ray jets.

Footpoint Heating

Poland & Mariska (1986) employ an asymmetric heating mechanism at both footpoints
to drive the upflows. A one-sided reduction of the heating rate by ≈ 1% was found to
be sufficient to cause condensation at the looptop and to establish the pressure differ-
ence to the footpoints to drive a siphon flow. Once the condensation at the looptop
progresses, it acts like a “second chromosphere” and stabilizes the prominence against
fluctuations of the footpoint heating rate. Numerical simulations demonstrated that
heating functions strongly concentrated at the footpoints (as independently measured
by TRACE observations; Aschwanden et al. 2000a, 2001a) lead to condensations of
coronal plasma in dips in the near-horizontal segments of coronal loops (Antiochos &
Klimchuk 1991; Dahlburg et al. 1998; Antiochos et al. 1999a), or even in loops without
dips (Karpen et al. 2001). Although dips were generally considered to be a necessary
condition for the stability of prominences, Karpen et al. (2001) argue that an equilib-
rium situation is not necessary given the dynamic nature of prominences as manifested
by the observations of counter-streaming flows (Zirker et al. 1998). Long-term sim-
ulations demonstrate that the prominence plasma is never in equilibrium, but rather
subject to continuous oscillatory cycles of formation and destruction of condensation
knots (Antiochos et al. 2000a). The footpoint-concentrated heating with subsequent
mass upflows is thought to be ultimately driven by a coronal reconnection process
(Kuperus & Tandberg−Hanssen 1967) or by chromospheric reconnection processes
(Van Ballegooijen & Martens 1989, Priest et al. 1996; Litvinenko & Martin 1999), as
evidenced by the observed correlation of magnetic cancellation features and upflows
into filaments (Martin 1998; Chae et al. 2000b). Prominence formation in coronal
reconnection geometries have been simulated for bipolar (Cheng & Choe 1998) and
quadrupolar current sheets (Sakai et al. 1987).

Disappearance of Filaments/Prominences

The lifetime of a prominence is determined by the balance between heating and cool-
ing. Several possibilities can provide a heating source: (1) thermal conduction from
the hot corona, which is not efficient in the low-temperature prominence plasma; (2)
heating by dissipation of MHD waves (Jensen 1986); or (3) heating by absorption of
ultraviolet radiation (Lyman and Balmer lines). The latter mechanism has a more effi-
cient penetration depth for threaded prominences (Heasley & Mihalas 1976; Anzer &
Heinzel 1999; Heinzel & Anzer 2001).

The final stage of a filament or prominence is called sudden disappearance (or dis-
parition brusque in french), which manifests itself as an instability with a subsequent
eruption into the corona and interplanetary space, often accompanied by a flare or coro-
nal mass ejection. We will discuss these phenomena of eruptive filaments or eruptive
prominences in the section on flares (§ 10) and CMEs (§ 17), (see also models of Hi-
rayama 1974; Kopp & Pneuman 1976; Martens & Kuin 1989; Smith et al. 1992).
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6.5 Summary

Magneto-hydrodynamics (MHD) is one of the key tools to understand the hydro-
dynamics of fully magnetized plasmas. It concerns virtually all phenomena ob-
served in the solar corona: coronal loops, filaments, prominences, flares, coronal
mass ejections, etc. In this section we derived the basic MHD equations (§ 6.1),
which includes particle conservation (§ 6.1.1), the momentum or force equation
(§ 6.1.2), and the energy equation (§ 6.1.4). This set of MHD equations, together
with the Maxwell electrodynamic equations, constitute the framework of “ideal
MHD” (§ 6.1.3), or “resistive MHD” (§ 6.1.4), if we include finite resistivity, respec-
tively. On an introductory level we apply the basic MHD equations to some struc-
tures in the quiet corona, such as to coronal loops (§ 6.2) and filaments and promi-
nences (§ 6.4). We familiarize ourselves with the application of MHD equations
to coronal loops by investigating the pressure equilibrium of magneto-static flux-
tubes (§ 6.2.1), the Lorentz force near magnetic nullpoints (§ 6.2.2), the Lorentz
force in curved loops (§ 6.2.3), and the dynamics of twisted fluxtubes (§ 6.2.4).
More complicated situations require numerical MHD simulations, which became
feasible and popular over the last decade, for instance to reproduce the emergence
of magnetic fluxtubes from the convection zone to the corona (§ 6.2.5), or to simu-
late the heating of coronal loops by random shuffling of their footpoints (§ 6.2.6).
The evolution of coronal structures changes dramatically when the plasma be-
comes locally unstable (e.g., by a pressure-driven, thermal, resistive, or current-
pinch instability, § 6.3). Another fascinating application of MHD physics are fil-
aments and prominences, which consist of cool chromospheric gas embedded in
the hot coronal plasma (§ 6.4). The most challenging unsolved questions concern
their magnetic field configuration (§ 6.4.1), their equilibrium (§ 6.4.2), their mass
supply, and evolution (§ 6.4.3). All these applications deal with quiescent, quasi-
stationary phenomena in the solar corona, while their unstable evolution during
flares and coronal mass ejections require, in addition to the MHD framework, also
a description in terms of kinetic plasma physics.



Chapter 7

MHD Oscillations

Just as a music orchestra contains many instruments with different sounds, it was re-
cently discovered that the solar corona also contains an impressively large ensemble
of plasma structures that are capable of producing sound waves and harmonic oscilla-
tions. Global oscillations from the solar interior were discovered four decades ago, and
are mainly pressure-driven (p-mode) oscillations at fundamental periods of 5 minutes,
which display spatial nodes on the solar surface according to the spherical harmonics
functions, similar to the nodes on the skin of a vibrating drum. The systematic study
of these global oscillations created the discipline of helioseismology.

Thanks to the high spatial resolution, image contrast, and time cadence capabili-
ties of the SoHO and TRACE spacecraft, oscillating loops, prominences, or sunspots,
and propagating waves have been identified and localized in the corona and transi-
tion region, and studied in detail since 1999. These new discoveries established a new
discipline that became known as coronal seismology. The theory of coronal MHD os-
cillations and waves was developed two decades ago and was ready for applications,
but had to await the high-resolution EUV imaging capabilities that can only be ob-
tained from space. One of the most exciting benefits of coronal seismology is the
probing of physical parameters such as Alfvén velocities and magnetic field strengths,
which are very difficult to measure in the solar corona by other means. Initial research
in the new field of coronal seismology concentrates on measurements of oscillation
periods, spatial displacements, damping times, and temperature and density diagnos-
tics of oscillating structures. Future exploration is likely to reveal additional aspects
on the fundamental physics of wave excitation, wave propagation, waveguides, wave
damping, phase mixing, and resonant absorption.

Theoretical reviews on coronal oscillations can be found in Roberts (1984, 1985,
1991a, 2000, 2001, 2002), Bray et al. (1991), Goossens (1991), Poedts (1999), Goossens
et al. (2002b), Roberts & Nakariakov (2003), in the Proceedings of the INTAS work-
shop on MHD Waves in Astrophysical Plasmas edited by Ballester & Roberts (2001),
while observational reviews are covered in Aschwanden (1987a, 2003) Nakariakov
(2003), and Wang (2004).
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7.1 Dispersion Relation of MHD Waves

To understand the various oscillations and waves we observe in the coronal plasma
we have to find wave solutions of the MHD equations (§6.1). The basic theory of
hydromagnetic waves in plasmas can be found in many textbooks (e.g., Jackson 1962,
§ 10.7; Chen 1974, § 4.19; Cowling 1976; Schmidt 1979, § 4.4; Priest 1982, § 4; Benz
1993, § 3.2; Sturrock 1994, § 14).

The existence of wave solutions is generally derived by introducing a perturbation
of the physical parameters of the plasma, using a spatio-temporal function that contains
periodic solutions, like exp(i[kx−ωt]), and to derive dispersion relations ω(k), which
tell us either the group velocity vg = dω(k)/dk or phase speed vph = ω/k of a wave.

We start from the ideal MHD equations as given in Eqs. (6.1.16−22), where we
insert the current density j (Eq. 6.1.19) and electric field E (Eq. 6.1.22), so that the
ideal MHD equations are expressed only in terms of the variables ρ, p,v, and B,

D

Dt
ρ = −ρ ∇ · v , (7.1.1)

ρ
Dv
Dt

= −∇p − ρg +
1
4π

[(∇× B) × B] , (7.1.2)

D

Dt
(pρ−γ) = 0 , (7.1.3)

∇× (v × B) =
∂B
∂t

, (7.1.4)

∇ · B = 0 . (7.1.5)

For adiabatic processes we can eliminate the pressure term in Eq. (7.1.2), using the
relation ∇p = c2

s∇ρ (Eq. 4.2.2) and the definition of the sound speed c2
s = γp/ρ

(Eq. 4.2.3). Furthermore, using ∇B = 0 (Eq. 7.1.5), and inserting vector identities for
∇×(v×B) in Eq.(7.1.4) and for (∇×B)×B in Eq.(7.1.2), as shown in Eqs. (6.2.2−3),
the ideal MHD equations can be reduced to three equations for the variables ρ,v, and
B:

D

Dt
ρ = −ρ ∇ · v , (7.1.6)

ρ
Dv
Dt

= −c2
s∇ρ − ρg +

1
4π

[
−1

2
∇B2 + (B · ∇)B

]
, (7.1.7)

∂B
∂t

= −B(∇ · v) + (B · ∇)v − (v · ∇)B . (7.1.8)

Now we assume that there exists an equilibrium solution (∂/∂t = 0), with no flows
(v0 = 0), so that the density and magnetic field have only a spatial dependence. We
denote this equilibrium solution with the subscript 0: ρ0(x),B0(x). Both sides of the
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equations (7.1.6) and (7.1.8) then vanish and there is only one equation left (Eq. 7.1.7)
that defines the equilibrium solution,

−c2
s∇ρ0 − ρ0g +

1
4π

[
−1

2
∇B0

2 + (B0 · ∇)B0

]
= 0 . (7.1.9)

7.1.1 Unbounded Homogeneous Medium

We now introduce a small perturbation (in density, velocity, and magnetic field) from
the equilibrium, where the perturbation amplitude is denoted with the subscript 1,

ρ(x, t) = ρ0 + ρ1(x, t) ,

v(x, t) = v1(x, t) ,

B(x, t) = B0 + B1(x, t) . (7.1.10)

In the simplest concept we can consider the perturbation as a local phenomenon and
neglect the large-scale gradients of macroscopic parameters. Therefore, we neglect
the gravity term (−ρ0g) and the spatial variation of the stationary solution ρ0(x) and
B0(x), so we assume constants ρ0 and B0 in the perturbation ansatz (Eq. 7.1.10), so
∇ρ0 = 0 and ∂B0/∂x = 0. Plugging these perturbation functions (Eq. 7.1.10) into the
ideal MHD equations (7.1.6-8) and subtracting the equilibrium solution (Eq. 7.1.9), we
obtain the following linear terms (dropping quadratic terms of order [ρ1v1], [ρ1B1], or
[v1B1]),

∂ρ1

∂t
= −ρ0 ∇ · v1 , (7.1.11)

ρ0
∂v1

∂t
= −c2

s∇ρ1 +
1
4π

[−∇(B0 ·B1) + (B0 · ∇)B1] , (7.1.12)

∂B1

∂t
= −B0(∇ · v1) + (B0 · ∇)v1 . (7.1.13)

Without loss of generality we can consider a homogeneous magnetic field in the z-
direction (with unit vector ez), B0 = (0, 0, B0), and the associated Alfvén speed vA,

vA =
B0√
4πρ0

. (7.1.14)

The momentum equation (7.1.12) then becomes

∂v1

∂t
= −c2

s

∇ρ1

ρ0
+

v2
A

B0

[
−∇(ezB1) +

∂B1

∂z

]
. (7.1.15)

Taking the time derivative ∂/∂t of the momentum equation (7.1.15),

∂2v1

∂t2
= − c2

s

ρ0
∇
(

∂ρ1

∂t

)
+

v2
A

B0

[
−∇(ez

∂B1

∂t
) +

∂

∂z

(
∂B1

∂t

)]
, (7.1.16)



286 CHAPTER 7. MHD OSCILLATIONS

allows us to insert (∂ρ1/∂t) from the continuity equation (7.1.11) and (∂B1/∂t) from
the induction equation (7.1.13) and to obtain a single equation for the velocity pertur-
bation v1,

∂2v1

∂t2
= c2

s∇(∇v1) + v2
A

[
−∇
(

∂vz

∂z
−∇v1

)
+

∂

∂z

(
∂v1

∂z
− ez∇v1

)]
.

(7.1.17)
For convenience we introduce the variables

∆ = ∇ · v1 , (7.1.18)

Γ =
∂vz

∂z
, (7.1.19)

so that Eq. (7.1.17) reads,

∂2v1

∂t2
= c2

s∇∆ + v2
A

[
−∇(Γ − ∆) +

∂

∂z

(
∂v1

∂z
− ez∆

)]
. (7.1.20)

Taking the z-component and the divergence of Eq. (7.1.18) then leads to the stan-
dard notation for the linear equations of MHD modes in an unbounded homogeneous
medium (e.g., Cowling 1976; Roberts 1981a),

∂2vz

∂t2
= c2

s

∂∆
∂z

, (7.1.21)

∂2∆
∂t2

= (c2
s + v2

A)∇2∆ − v2
A∇2Γ . (7.1.22)

The two equations (7.1.21) and (7.1.22) can be combined by taking the 4th time deriva-
tive,

∂4∆
∂t4

− (c2
s + v2

A)
∂2

∂t2
∇2∆ + c2

sv
2
A

∂2

∂z2
∇2∆ = 0 . (7.1.23)

To obtain the dispersion relation, one expresses the disturbance in terms of Fourier
components for frequency ω and wave numbers (kx, ky, kz) in the x, y, and z-direction,
respectively,

∆ ∝ eiωt+ikxx+ikyy+ikzz . (7.1.24)

Inserting this Fourier form in Eq. (7.1.23), where the temporal derivatives yield terms
of ∂/∂t → iω and the spatial derivatives yield terms of ∇ → ik, we can express
Eq. (7.1.23),

k2
x + k2

y + m2
0 = 0 , (7.1.25)

where

m2
0 =

(k2
zc2

s − ω2)(k2
zv2

A − ω2)
(c2

s + v2
A)(k2

zc2
T − ω2)

(7.1.26)

and cT is defined as the tube speed,

cT =
csvA√
c2
s + v2

A

, (7.1.27)
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yielding the dispersion relation for fast and slow magneto-acoustic waves

ω4 − k2(c2
s + v2

A)ω2 + k2
zk2c2

sv
2
A = 0 . (7.1.28)

The wave propagation vector k = (kx, ky, kz) has an absolute value of k = |k| =
(k2

x + k2
y + k2

z)1/2. The cosine of the wave vector in the direction to the magnetic field
is kz , so the propagation angle θ is

cos θ =
kz

k
, (7.1.29)

and the phase speed vph and group speed vgr of the wave are defined as

vph =
ω

k
, (7.1.30)

vgr =
∂ω(k)

∂k
=
(

∂ω

∂kx
,

∂ω

∂ky
,

∂ω

∂kz

)
. (7.1.31)

When the phase speed vph varies as a function of the wavelength λ = 2π/k or wave
vector k, the wave is called dispersive. For non-dispersive waves, phase speed and
group speed are identical. The dispersion relation ω(k) can easily be expressed in ex-
plicit form from the quadratic equation (of ω2) in Eq. (7.1.28). Dividing the dispersion
relation (7.1.28) by k4, we can express it as an implicit function of the phase speed vph

and propagation angle θ,

v4
ph − v2

ph(c2
s + v2

A) + c2
sv

2
A cos2(θ) = 0 . (7.1.32)

This phase speed diagram vph(θ) is shown as polar plot in Fig. 7.1 for a specific
ratio cs/vA of the sound speed to the Alfvén speed.

From the phase speed relation (Eq. 7.1.32) we can see several special cases. For a
vanishing magnetic field vA ∝ B0 = 0, the relation degenerates to the simple solution
of a wave with the phase speed equal to the sound speed, without direction dependence
on the angle θ,

vph = cs , for vA = 0 . (7.1.33)

From the continuity equation (7.1.11) and the Fourier form (Eq. 7.1.24) it follows that
ωρ1 = −ρ0kv1, or csρ1 = −ρ0v1, which means that the pressure gradient is the only
restoring force, where a velocity disturbance v1 is restored by a proportional density
change ρ1. So, the sound wave or acoustic wave is a non-dispersive (vgr = vph = cs),
compressional (k · v1 �= 0), and longitudinal (k ‖ v) wave.

For a non-vanishing magnetic field, but perpendicular propagation direction (θ =
90◦), the phase speed becomes,

vph =
√

c2
s + v2

A , for θ = 90◦ . (7.1.34)

For parallel direction (θ = 0) the phase speed is [using the standard solution for the
variable v2

ph in the quadratic equation (7.1.32)],

v2
ph =

(c2
s + v2

A) ± (c2
s − v2

A)
2

, for θ = 0◦ , (7.1.35)
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Figure 7.1: Polar diagram of phase speeds vph of magneto-acoustic waves, shown for a ratio
of cs/vA = 0.7. The sound speed cs is marked with a dotted circle, and the Alfvén speed vA

with a dashed line. The slow and fast magneto-sonic modes, and the Alfvén wave (also called
“intermediate mode” in this context) are shown with thick curves.

which has the two asymptotic limits of the Alfvén speed vA and the sound speed cs,

vph → ±vA , for vA � cs . (7.1.36)

Since the dispersion relation (7.1.28) is a quadratic equation for ω2, there are two so-
lutions ω2(k), which are called the slow and fast modes. If the perturbation is incom-
pressible [i.e., the wave direction is perpendicular to the velocity disturbance (kv1 = 0
or ∇v1 = 0)], the velocity disturbance v1 is restored by a magnetic field change B1.
This can easily be derived from the induction equation (7.1.13), where ∇v1 = 0 leads
to ωB1 = B0kzv1. Combining this condition with the momentum equation (7.1.12)
leads then directly to the definition of the Alfvén speed (Eq. 7.1.14). This incompress-
ible wave is called a shear Alfvén wave and falls into the category of transverse waves.
Because it is an incompressible wave, no density or pressure changes are associated
with it. The driving force of an Alfvén wave is the magnetic tension force alone. Us-
ing the constraint k = kz (i.e., that an Alfvén wave propagates parallel to the magnetic
field), the dispersion relation (7.1.28) yields the following solution for the shear Alfvén
wave,

ω = vAkz = vAk cos θ . (7.1.37)

Thus the shear Alfvén wave propagates with speed vA in a parallel direction, but cannot
propagate in a perpendicular direction (vph = ω/k = 0 for θ = 90◦). This solution is
shown in the polar diagram (Fig. 7.1) as Alfvén wave (or intermediate mode).

So, for every propagation angle θ, there are generally three solutions, which are
called the slow, intermediate, or fast magneto-acoustic mode. The order in the phase
speed, however, depends whether the sound speed cs is larger or smaller than the
Alfvén speed vA. For coronal conditions the Alfvén speed is generally larger (vA ≈
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Figure 7.2: Geometries used in the derivation of the dispersion relation of magneto-acoustic
waves: (1) unbounded homogeneous medium, (2) single interface, (3) slender slab, and (4)
slender cylinder. The curvature of coronal loops is neglected in all models.

1000 km s−1) than the sound speed (cs ≈ 200 km s−1 for a T = 1.5 MK plasma), say
cs/vA ≈ 0.2. In Fig. 7.1 we show the phase speeds of magneto-acoustic waves for a
ratio of cs/vA = 0.7, but coronal ratios are typically lower, so that vph

>∼ vA. From
the polar diagram shown in Fig. 7.1 we can see that the slow mode has a phase speed
in the range of 0 ≤ vph ≤ min(cs, vA), having a maximum for propagation along
the magnetic field and cannot propagate perpendicularly to the magnetic field. The fast
mode has a phase speed in the range of max(cs, vA) ≤ vph ≤ (c2

s + v2
A)1/2, with the

fastest mode propagating perpendicularly to the magnetic field.

7.1.2 Single Magnetic Interface

Since the solar corona is a highly inhomogeneous medium, this introduces a modi-
fication in the dispersion relation of waves and oscillations that can be supported in
coronal structures. A first step towards inhomogeneous structures is the concept of two
different plasma zones that are separated by a discontinuity interface. Such bound-
aries occur at the surface of overdense coronal loops, at the edge of sunspots, or at the
boundaries of coronal holes. The dispersion relations for magneto-acoustic waves have
been generalized for a magnetically structured atmosphere by Roberts (1981a), for a
continuously changing magnetic field B0(x) = [0, 0, B0(x)], as well as for a sharply
structured medium with a step function at the discontinuity boundary x = 0 (Fig. 7.2,
second left),

Bz(x), ρ0(x), p0(x) =
{

Be, ρe, pe , x > 0
B0, ρ0, p0 , x < 0 (7.1.38)

The physical parameters on the two sides are related by the pressure balance (Eq. 6.2.4)
across the interface,

pe +
B2

e

8π
= p0 +

B2
0

8π
, (7.1.39)

with the corresponding definitions of the sound speeds (cs, cSe) and Alfvén speeds
(vA, vAe),

cs =
√

γp0

ρ0
, cSe =

√
γpe

ρe
, (7.1.40)
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vA =
B0√
4πρ0

, vAe =
Be√
4πρe

. (7.1.41)

The dispersion relation can then be derived with the same method as described in
§ 7.1.1. The only difference is that the unperturbed magnetic field B0(x) and den-
sity ρ0(x) have a spatial dependence (on x) instead of being constants (in Eq. 7.1.11),
which has the consequence that the terms ∇ρ0 �= 0 and dB0(x)/dx �= 0 do not vanish
and add an extra term in each of the ideal MHD equations (7.1.11−13). The special
case of a sharp boundary (Eq. 7.1.38) has been treated for solar applications by Ion-
son (1978), Wentzel (1979), and Roberts (1981a). Each of the two separated media
can support magneto-acoustic waves in their domain separately, with dispersion rela-
tions as calculated for the unbounded single medium (§ 7.1.1), requiring m2

0 < 0 in
Eq. (7.1.25), which are called body waves. A new phenomenon that occurs thanks to
the presence of a boundary, is a mode or modes that are termed surface waves, with
m2

0 > 0 in Eq. (7.1.25). The obtained dispersion relation for surface waves at a single
magnetic interface, for a wave vector k = (0, ky, kz) is found to be (Wentzel 1979;
Roberts 1981a),

ω2

k2
z

= v2
A − R

R + 1
(v2

A − v2
Ae) = v2

Ae +
1

R + 1
(v2

A − v2
Ae) , (7.1.42)

R =
ρe

ρ0

(
m2

0 + k2
y

m2
e + k2

y

)1/2

> 0 , (7.1.43)

m2
e =

(k2
zc2

Se − ω2)(k2
zv2

Ae − ω2)
k2

zc2
Sev

2
Ae − (c2 + v2

Ae)ω2
. (7.1.44)

The phase speed of this surface wave is between vAe and vA. Since Eq. (7.1.42) is
transcendental, there may be more than one surface mode (Roberts 1981a). For certain
choices of sound and Alfvén speeds there are two surface waves; for other choices only
one surface wave exists.

A special case is a shear wave that propagates along the y-axis of the surface. The
corresponding dispersion relation is obtained for the limit k2

y � k2
z and k2

y � m2
0, m

2
e,

leading to R ≈ ρe/ρ0 and the simplified dispersion relation

ω2

k2
z

=
ρ0v2

A + ρev2
Ae

ρ0 + ρe
. (7.1.45)

This special case is equivalent to the Alfvén surface wave in the incompressible fluid
limit (γ → ∞.). The same dispersion relation (Eq. 7.1.45) is also obtained in the
special case when the plasma β-parameter is small on both sides of the magnetic inter-
face (i.e., β0 � 1 and βe � 1), which is highly relevant for the solar corona. There
are actually at least two modes of surface waves: one with a phase speed of vph <
min(cSe, cT ), called a slow surface wave, and one with cs < vph < min(cSe, vA),
called a fast surface wave (Roberts 1981a). If one side is field-free, then the interface
supports a slow wave. Further, if the gas inside the magnetic field is cooler than the
field-free medium, then the interface can support a fast surface wave. This shows that
the introduction of a boundary between two media creates a new branch of surface
wave modes, on top of the body wave modes that exist in each medium separately.
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Kink mode

Sausage mode

Figure 7.3: Two types of fast magneto-acoustic modes: (1) the kink mode (top) and (2) the
sausage mode (bottom). The half width x0 of the slab is in the vertical direction and the wave-
length λ = 2π/k is in the horizontal direction.

7.1.3 Slender Slab Geometry

The next step towards a more realistic geometry of coronal structures is the considera-
tion of an isolated magnetic slab, having a step-function transverse profile (for mathe-
matical simplicity) (see Fig. 7.2, second-right panel),

B0(x), ρ0(x), p0(x) =
{

B0, ρ0, p0 , |x| < x0

Be, ρe, pe , |x| > x0
. (7.1.46)

For the special case of an isolated slab in a field-free environment (Be = 0), the fol-
lowing general dispersion relation for surface waves (for wave vector k = (0, 0, kz))
is found (Roberts 1981b),

(k2v2
A − ω2)me =

(
ρe

ρ0

)
ω2m0

(
tanh
coth

)
m0x0 , (7.1.47)

where two wave modes are supported, a sausage mode for the odd tanh-function, and
a kink mode for the even coth-function. In the sausage mode, opposite sides of the
slab oscillate in anti-phase and the central axis remains undisturbed, while in the kink
mode, opposite sides as well as the central axis oscillate in phase (Fig. 7.3). The more
general case of a slab in a magnetic environment (Be �= 0) is treated in Edwin &
Roberts (1982), yielding a similar dispersion relation as Eq. (7.1.47).

Special cases are the limits of slender slabs (where the wavelength is much larger
than the width of the slab, kx0 � 1) and wide slabs (kx0 � 1). For slender slabs
we have the simplification tanh(m0x) ≈ m0x0 for kx0 � 1. The resulting variety of
longitudinal) slow modes and (transverse) fast magneto-acoustic modes (with the two
manifestations of sausage and kink type modes) are discussed in Roberts (1981b).

7.1.4 Cylindrical Geometry

Transforming the cartesian slab geometry into a polar cylindrical geometry brings us
to a suitable representation for magnetic fluxtubes and coronal loops (save for neglect-
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Figure 7.4: The phase speed ω/k is shown for magneto-acoustic waves in a cylindrical fluxtube
(with radius a), as a function of the longitudinal wave number ka, for coronal conditions vAe >

vA > cT > cs. The sausage modes are indicated with solid lines, the kink modes with dashed
lines. The notation in this figure corresponds to k = kz (Edwin & Roberts 1983).

ing the curvature). A straight cylinder is defined in cylindrical coordinates (r, θ, z),
enclosed by a surface boundary at a radius of r = a (Fig. 7.2, right),

B0(r), ρ0(r), p0(r) =
{

B0, ρ0, p0 , r < a
Be, ρe, pe , r > a

. (7.1.48)

The derivation of the dispersion relation of fast and slow waves in such a cylindrical
tube is given in Edwin & Roberts (1983) and is reviewed in Roberts & Nakariakov
(2003). The analytical derivation is similar to the case of the cartesian slab: external
and internal solutions of the MHD equations need to be matched at the boundary by the
continuity of pressure and perpendicular velocity, and the wave energy has to vanish
at a large distance from the tube. The Fourier form of the velocity disturbance v1 in
cylindrical coordinates is

v1 = v1(r) exp [i(ωt + nθ − kzz)] , (7.1.49)

where n is an integer (n = 0, 1, 2, ...) which describes the azimuthal behavior of the
oscillating tube.

The dispersion relation for magneto-acoustic waves in a cylindrical magnetic flux-
tube is found to be (McKenzie 1970; Spruit 1982; Edwin & Roberts 1983; Cally 1986),

ρe(ω2 − k2
zv2

Ae)m0
I ′n(m0a)
In(m0a)

+ ρ0(k2
zv2

A − ω2)me
K ′

n(mea)
Kn(mea)

= 0 , (7.1.50)
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where m0 and me are defined by mα (with α = 0 or α = e),

m2
α =

(k2
zc2

α − ω2)(k2
zv2

Aα − ω2)
(c2

α + v2
Aα)(k2

zc2
Tα − ω2)

. (7.1.51)

and In(x) and Kn(x) are modified Bessel functions of order n, with I ′n and K ′
n be-

ing the derivatives with respect to the argument x. This dispersion relation (7.1.50)
describes both surface (for m2

0 > 0) and body waves (for m2
0 < 0). Fig. 7.4 visual-

izes a typical dispersion diagram for fluxtubes under coronal conditions, cSe < cs <
vA < vAe, (Edwin & Roberts 1983). There are two branches of phase speeds: (1) a
fast-mode branch with phase speeds vA < vph < vAe, containing the kink (n = 1) and
sausage mode (n = 0); and (2) a slow-mode branch with phase speeds cT < vph < cs.
Higher modes with n = 2, 3, ..., are called the fluting modes. Under coronal conditions
(vA � cs), the tube speed cT0 (Eq. 7.1.27) is almost equal to the sound speed cs, mak-
ing the slow mode only weakly dispersive. In contrast, the fast modes are dispersive,
especially in the long wavelength part of the spectrum (ka <∼ 2π).

7.2 Fast Kink-Mode Oscillations

7.2.1 Kink-Mode Period

Magneto-acoustic oscillations of the fast kink mode have now been directly observed
in EUV wavelengths with TRACE (Aschwanden et al. 1999b, 2002a; Nakariakov et
al. 1999; Schrijver et al. 1999, 2002). The geometric ratio of the loop width w = 2a
to the loop half length L is typically w/L ≈ 0.05 − 0.1 (Aschwanden et al. 2002a),
so the dimensionless wave number is ka = 2πa/λ = (π/4)(w/L) ≈ 0.04 − 0.08,
where the wavelength is λ = 4L and the loop radius a = w/2. Therefore, the observed
kink-mode oscillations are in the long-wavelength regime of ka � 1, where the phase
speed of the kink mode is practically equal to the kink speed ck (see Fig. 7.4), given
in Eq. (7.1.45) and also discussed in earlier studies (e.g., Wilson 1980; Spruit 1981;
Roberts et al. 1984),

ck =
(

ρ0v2
A + ρev2

Ae

ρ0 + ρe

)1/2

. (7.2.1)

In the low-β plasma of the corona, where the magnetic field is almost equal inside and
outside of the loop (Be ≈ B0), it can be approximated by

ck ≈ vA

(
2

1 + (ρe/ρ0)

)1/2

. (7.2.2)

Thus, for typical coronal density ratios around oscillating loops (i.e., ρe/ρ0 ≈ 0.1 −
0.5) (Aschwanden 2001b; Aschwanden et al. 2003b), the kink speed amounts to ck ≈
(1.15 − 1.35)vA. As the solution for the kink mode for long wavelengths (ka � 1)
shows in Fig. 7.4, the kink wave is essentially non-dispersive and has a phase speed
equal to the kink speed,

vph =
ω

kz
≈ ck

>∼ vA . (7.2.3)
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Table 7.1: Inference of the magnetic field in 11 oscillations events (based on parameters ob-
tained in Aschwanden et al. 2002a, 2003b).

Observation Loop Oscillation Damping Electron Density Magnetic
date and Length Period time density ratio field
start time [UT] l[Mm] P [s] τD[s] n0 cm−3 ne/n0 B[G]

1998-Jul-14, 12:59:57 168 261 870 15.9 108 0.20 20
1998-Jul-14, 12:57:38 72 265 300 23.2 108 0.26 11
1998-Jul-14, 12:57:38 174 316 500 11.2 108 0.27 15
1998-Jul-14, 12:56:32 204 277 400 4.9 108 0.42 14
1998-Jul-14, 13:02:26 162 272 849 14.2 108 0.44 20
1998-Nov-23, 06:35:57 390 522 1200 9.6 108 0.32 19
1999-Jul-04, 08:33:17 258 435 600 20.0 108 0.14 21
1999-Oct-25, 06:28:56 166 143 200 22.3 108 0.18 43
2001-Mar-21, 02:32:44 406 423 800 20.8 108 0.07 33
2001-May-15, 02:57:00 192 185 200 4.7 108 0.32 19
2001-Jun-15. 06:32:29 146 396 400 9.5 108 0.66 11

Standing waves occur when the kink wave is reflected at both ends of the loop, so that
the nodes of the standing wave coincide with the footpoints of the loops, which are
rigidly anchored in the chromosphere (by line-tying). If we denote the full loop length
with l, the wavelength of the fundamental standing wave is the double loop length (due
to the forward and backward propagation) (i.e., λ = 2l), and thus the wave number of
the fundamental mode (N=1) is kz = 2π/λ = π/l, while higher harmonics (N = 2, ...)
would have wave numbers kz = N(π/l). Then the time period Pkink of a kink-mode
oscillation at the fundamental harmonic is (with Eq. 7.2.2),

Pkink ≈ 2l

ck
=

2l

vA

(
1 + (ρe/ρ0)

2

)1/2

. (7.2.4)

Coronal loops observed with TRACE have full loop lengths of l ≈ 60 − 600 Mm
(Aschwanden et al. 2002a), so for Alfvén speeds of order vA ≈ 1 Mm s−1 we therefore
expect kink periods in the range of Pkink ≈ 2l/vA = 2 − 20 minutes.

7.2.2 Magnetic Field Strength and Coronal Seismology

The observation of kink modes in the corona provides us with a valuable tool for de-
termining the magnetic field strength B in coronal loops, a capability that has been
dubbed MHD coronal seismology (Roberts et al. 1984; Roberts 2000, 2002; Roberts
& Nakariakov 2003) and has been applied to (TRACE) images of oscillating loops
(Nakariakov & Ofman 2001). The kink-mode period Pkink is a function of the Alfvén
speed vA = B/

√
4πρ0, and thus of the mean magnetic field strength B, which can be

explicitly expressed from Eq. (7.2.4),

B =
l

Pkink

√
8πρ0(1 + ρe/ρ0) . (7.2.5)
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Table 7.2: Parameters measured for loop oscillations during the 1998-Jul-14, 12:55 UT, flare
(Aschwanden et al. 1999b).

Loop Length Amplitude Ratio Period Phase Number
# l[Mm] A1[Mm] A1/l T [s] t0/T of pulses
4 90 2.0 ± 0.2 0.022 258 0.79 2.1
6 120 4.6 ± 0.2 0.038 269 ± 6 0.67 ± 0.01 5.4
7 130 3.9 ± 0.4 0.030 320 ± 10 0.87 ± 0.07 2.8
8 150 4.4 ± 0.3 0.029 258 ± 10 0.68 ± 0.09 4.5
9 160 5.6 ± 0.1 0.035 278 ± 5 0.91 ± 0.01 2.4

130 ± 30 4.1 ± 1.3 0.031 ± 0.006 276 ± 25 0.78 ± 0.10 3.4 ± 1.4

For coronal abundances (H:He=10:1) we have µ ≈ 1.27 (Eq. 3.16) in the mass density
ρ0 = µmHn0 (Eq. 3.1.6) and can express Eq. (7.2.5) in practical units (l8 = l/108

cm−3, n8 = ne/108 cm−3, Pkink [s]), giving the field strength B in Gauss:

B = 7.3 × l8
Pkink

√
n8 (1 + ne/n0) (G) . (7.2.6)

For instance, for an oscillating loop observed on 1998-Jul-14, 12:11 UT, Nakariakov &
Ofman (2001) measured a loop length of l = 1.3×1010 cm, a density of ne = 109.3±0.3

cm−3, and an oscillation period of P = 256 s, and using an estimate of the density
contrast of ne/n0 ≈ 0.1 they determined a magnetic field strength of B = 13 ± 9 G,
an Alfvén speed of vA = 756 ± 100 km s−1, and a kink speed of ck = 1020 ± 132
km s−1. The largest uncertainty of this method is probably the density measurement
n0, which can be uncertain up to a factor of 4 due to unknown iron enhancement; This
affects the magnetic field determination according to Eq. (7.2.6) by a factor of 2.

We apply this coronal magnetic field measurement technique, using Eq. (7.2.6),
to 11 coronal loops, for which all necessary parameters have been measured [i.e. the
full loop length l (Mm), the oscillation period P (s), the internal electron density n0

(cm−3), and the ratio ne/n0 of the external to the internal density], obtained in As-
chwanden et al. (2003b) and listed in Table 7.1. The resulting magnetic field determi-
nations fall into the range B = 11, ..., 43 G, with a median value of B ≈ 20 G. The
loop densities have been determined from the background-subtracted emission mea-
sure and could be subject to a filling factor, which would increase the inferred value of
the magnetic field strength. Also, the additional uncertainty from the unknown coronal
iron abundance could double the estimated values for the magnetic field strengths.

7.2.3 Observations of Kink-Mode Oscillations

The first spatial oscillations of coronal loops were discovered in extreme-ultraviolet
wavelengths (171 Å) with the Transition Region And Coronal Explorer (TRACE), in
the temperature range of Te ≈ 1.0 − 1.5 MK (Aschwanden et al. 1999b). The ob-
served loop oscillations occurred during a flare which began at 1998 July 14, 12:55 UT
(Plate 9), and were most prominent during the first 20 minutes. The oscillating loops
connected the penumbra of the leading sunspot to the flare site in the trailing portion.
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TRACE 171 A, 1998-Jul-14
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Figure 7.5: This Figure shows the measurement of oscillating loop amplitudes from differ-
ence images (left column) and a corresponding simulation (right column). The location of the
analyzed loop (Loop #6) is outlined with a thin white curve (top map), where data slices are
extracted perpendicular to the loop at the apex (second row), from which a running difference is
taken to filter out the oscillating loop (third row), and the amplitudes are measured (forth row),
fitted by a sine function (bottom row) (Aschwanden et al. 1999b).
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Figure 7.6: The spatial displacements of the 5 analyzed oscillating loops (Loop #4, 6−9) are
shown (diamonds) and fitted with a sine function (thick solid curve) according to the procedure
illustrated in Fig. 7.5. The spatial displacements are all measured in a perpendicular direction to
the loops. Note that all periods and relative phases are similar, indicative of a common trigger
(Aschwanden et al. 1999b).
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Figure 7.7: The transverse amplitude of a kink-mode oscillation measured in one loop of a
postflare loop arcade observed with TRACE on 2001-Apr-15, 21:58:44 UT (see front cover
of book). The amplitudes are fitted by a damped sine plus a linear function, a(t) = a0 +

a1 sin (2π ∗ (t − t0)/P ) exp (−t/τD) + a2 ∗ t, with a period of P = 365 and a damping time
of τD = 1000 s (courtesy of Ed DeLuca and Joseph Shoer).

Table 7.3: Average and ranges of physical parameters of 26 loops exhibiting MHD fast kink-
mode oscillations. All Alfvén speeds and times are calculated for a magnetic field of B = 30 G.
The most extreme period of P = 2004 s is excluded in the statistics. Only the 10 most reliable
decay times τD are included (Aschwanden et al. 2002a).

Parameter Average Range
Loop half length L 110 ± 53 Mm 37 − 291 Mm
Loop width w 8.7 ± 2.8 Mm 5.5 − 16.8 Mm
Oscillation period P 321 ± 140 s 137 − 694 s 2)

5.4 ± 2.3 min 2.3 − 10.8 min2)
Decay time τD 580 ± 385 s 191 − 12463) s

9.7 ± 6.4 min 3.2 − 20.8 min3)
Oscillation duration d 1392 ± 1080 s 400 − 5388 s

23 ± 18 min 6.7 − 90 min
Oscillation amplitude A 2200 ± 2800 km 100 − 8800 km
Number of periods 4.0 ± 1.8 1.3 − 8.7
Electron density of loop nloop (6.0 ± 3.3)108 cm−3 (1.3 − 17.1)108 cm−3

Maximum transverse speed vmax 42 ± 53 km/s 3.6 − 229 km/s
Loop Alfvén speed vA 2900 ± 800 km/s 1600 − 5600 km/s
Mach factor vmax/vsound 0.28 ± 0.35 0.02 − 1.53
Alfvén transit time τA 150 ± 64 s 60 − 311 s
Duration/Alfvén transit d/τA 9.8 ± 5.7 1.5 − 26.0
Decay/Alfvén transit τD/τA 4.1 ± 2.3 1.7 − 9.63)
Period/Alfvén transit P/τA 2.4 ± 1.2 0.9 − 5.42)
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Figure 7.8: The displacement of loops during MHD fast kink-mode oscillations is shown for
the 1998-Jul-4, 08:33 UT (left), and 2001-Mar-21, 02:32 UT (right) events. The top images show
difference images of TRACE 171 Å, where white/black structures demarcate the new/old loca-
tion of oscillating loops. Note that in the 1998-Jul-4 event only the left segment of a single loop
oscillates, while during the 2001-Mar-21 flare all loops in the active region become displaced
(Aschwanden et al. 2002a).

Five oscillating loops (Table 7.2) with an average length of L = 130 ± 30 Mm were
detected. The transverse amplitude of the oscillations is A = 4.1 ± 1.3 Mm and the
mean period is T = 276 ± 25 s. The oscillation mode is consistent with a standing
wave in the kink mode (with fixed nodes at the footpoints), based on the measured
lateral displacements and the observed oscillation periods.

The steps in the analysis procedure of a loop oscillation are shown in Fig. 7.5 for
a particular loop, and the results of the measured amplitudes of 5 loops are shown in
Fig. 7.6. The parameters of the measured loop length l (Mm), transverse oscillation
amplitude A1 (Mm), ratio A1/l, oscillation period P (s), phase t0/T , and number
of observed pulses are given in Table 7.2. The spatial location of the loops can be
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Table 7.4: Coronal oscillations observed with periods in the range of 1−10 min, the domain
in which MHD fast kink-mode oscillations and photospheric p-mode oscillations (3 to 5 min)
occur.

Observer N Frequency or Oscillation Spatial scale
wavelength period P[s] or instrument

Radio:
Simon & Shimabukuro (1971) 1 86, 91 GHz 180 Kitt Peak
Trottet et al. (1979) 1 169 MHz 60 6′ (Nançay)
Strauss et al. (1980) 1 22 GHz 336 Itapetinga
Aurass & Mann (1987) 1 23−40 MHz 44−234 Tremsdorf
Chernov et al. (1998) 1 164−407 MHz 180 5′ -7′ (Nançay)
Gelfreikh et al. (1999) 4 17 GHz 120−220 0.2′ (Nobeyama)
Nindos et al. (2002) 2 5, 8 GHz 157, 202 1.1′′ − 5.7′′ (VLA)
Optical and Hα:
Koutchmy et al. (1983) 2 5303 Å 43, 80, 300 Sac Peak
Jain & Tripathy (1998) 2 Hα 180-300 Udaipur
Ofman et al. (1997) 2 White light 360 SOHO/UVCS
Ofman et al. (2000a) 7 White light 400, 625 SOHO/UVCS
EUV:
Chapman et al. (1972) 1 304,315,368 Å 300 OSO-7
Antonucci et al. (1984a) 1 554,625,1335 Å 141,117 Skylab
Aschwanden et al. (1999b) 5 171, 195 Å 276±25 TRACE
Nakariakov et al. (1999) 1 171 Å 256 TRACE
Nakariakov & Ofman (2001) 2 171, 195 Å 256, 360 TRACE
Aschwanden et al. (2002a) 26 171, 195 Å 120−1980 TRACE
Soft X-rays:
Jakimiec & Jakimiec (1974) 2 1−8 Å 200−900 SOLRAD 9
Hard X-rays:
Lipa (1978) 26 14−111 keV 10−100 OSO-5
Terekhov et al. (2002) 1 8−60 keV 143.2±0.8 GRANAT

identified from the numbers (#4−9) on Plate 9. Note that the oscillations can typically
only be detected over a small number of ≈ 2 − 5 periods.

The onset of the loop oscillations seem to be triggered in the core region of the
flare, transmitted by a radially propagating disturbance with a speed of ≈ 700 km
s−1. Interestingly, there is an intriguing selection effect with which loops are seen to
oscillate: sometimes only a few loops oscillate, while in strong flare events all loops of
an active region become displaced, with only a subset of them continuing to oscillate
after an initial displacement (Figs. 7.5−7.8). Apparently the oscillating loops need to
fulfill a special selection criterion, which we will discuss further in § 7.5 on damping
mechanisms.

Imaging observations of MHD fast kink-mode oscillations have mainly be made in
EUV (Figs. 7.5−7.8) and the statistics of physical parameters of 26 events are provided
in Table 7.3. A more comprehensive compilation of reports on oscillatory events with
periods of P ≈ 1 − 10 minutes is given in Table 7.4, which besides EUV observations
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Figure 7.9: A snapshot of perturbation of a segment of a coronal loop by a harmonic kink
wave, which produces a variation of the optically thin emission measure integrated along the
line-of-sight, due to the variable column depth (Cooper et al. 2003).

encompasses also occasional reports in radio, optical, Hα, soft X-ray, and hard X-ray
wavelengths. However, most of these other observations have only restricted spatial
information, and thus only a subset are candidates for the interpretation of MHD fast
kink-mode standing waves, based on the plausibility of the observed oscillation period.
There is also the question of how the observed emission is modulated by the kink mode,
which does not perturb the density in the first order. One possibility is that line-of-sight
effects of an oscillating curved loop vary the projected column depth (Fig. 7.9), and this
way produce a modulation of optically thin emission such as in EUV and soft X-rays
(Cooper et al. 2003). Radio emission with high directivity, such as gyrosynchrotron
emission (see § 5.7.2) or beam-driven plasma emission, could also be modulated by
the changing orientation of oscillating curved loops.

Alternatively, gyroresonance emission (particularly above sunspots) may also be
modulated by upward propagating sound waves driven by the well-known photospheric
3-min oscillations in sunspots. This has been clearly identified by high-resolution
imaging of sunspot oscillations with the Nobeyama Radioheliograph (Gelfreikh et
al. 1999) or with the VLA (Nindos et al. 2002). Upward propagating waves are also
thought to cause density fluctuations and to modulate the white-light emission both in
plumes and further out in the solar wind (Ofman et al. 1997, 2000a).

7.2.4 Prominence Oscillations

Quiescent prominences or filaments are made of bundles of closed magnetic field lines,
and thus can exhibit similar fast kink-mode oscillations as ordinary coronal loops de-
scribed in the previous section. What is different, however, is the temperature and
density structure of the prominences. While ordinary coronal loops have an almost
uniform temperature and density along their coronal top segment (save for the grav-
itational stratification), filaments and prominences are made of horizontally stretched
field lines that have dipped segments filled with cool plasma. This nonuniform density
and temperature structure prevents a pure kink-mode oscillation at the fundamental
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Figure 7.10: Various kink-type oscillation modes for 2D prominence fibrils: (a) a string-type
magnetic Love mode, (b) an internal magnetic Love mode, (c) an Alfvén string mode, and (d) an
internal Alfvén mode (after Joarder et al. 1997).

harmonic with nodes of the standing wave at the chromospheric footpoints. Instead,
kink-type displacements have a different inertia in the most massive field line segments
that make up the cool prominence material. Prominence oscillations have therefore
been modeled analogously to a stretched elastic string with nonuniform density, either
as a slab with a skewed field (e.g., Joarder & Roberts 1992; Díaz et al. 2001), or with a
two-component model that consists of a cool dense segment in the middle (mimicking
the prominence gas) and hotter less dense ends on both sides (mimicking the evacuated
parts of the prominence fibril that contain coronal plasma) (e.g., Joarder et al. 1997;
Díaz et al. 2002, 2003). The fundamental modes of such a two-component model are
illustrated in Fig. 7.10, categorized as vertical kink-type oscillations (called magnetic
Love modes in Joarder et al. 1997) and horizontal kink-type oscillations (called Alfvén
modes in Joarder et al. 1997), both having either two nodes (string modes) or three
nodes (internal modes). Since prominences are made of many fibrils, complex interac-
tions can occur between neighboring fibrils (e.g., wave leakage) and a single oscillating
fibril can excite oscillations in a neighboring one (Díaz et al. 2001). The oscillations
are damped, for example, by radiative cooling (Terradas et al. 2001). Very long periods
(of the order of hours and more) are believed to be due to magneto-acoustic slow string
modes (see § 7.4). Those parts of prominences that show fast periods of P ≈ 3 − 5
min are believed to be coupled to the photospheric global p-mode oscillations (e.g,
Balthasar et al. 1988). Alternative prominence oscillation models invoke formation in
current sheets with nonlinear oscillations during compression (Sakai et al. 1987), or
induction-driven radial oscillations in current-carrying loops (Cargill et al. 1994).

Observations of prominence oscillations are compiled in Table 7.5. There are three
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Table 7.5: Periods of prominence oscillations and size scale (adapted from Oliver & Ballester
2002).

Observer Period Size Wavelength
P [min] l[Mm] instrument

Ramsey & Smith (1966) 6−40 ... Hα; Lockheed
Harvey (1969) 1−17 ... Hα; HAO, Climax
Landman et al. (1977) 22 ... Hβ; He3, Ca+; Maui
Bashkirtsev et al. (1983) 77, 82 ... Hβ; Sayan
Bashkirtsev & Mashnich (1984) 42−82 ... Hβ; Sayan
Wiehr et al. (1984) 3−5, 50, 60, 64 ... Hα; Locarno
Tsubaki & Takeuchi (1986) 2.7, 3.5 20 Ca II; Hida
Balthasar et al. (1986) 3−6, 48 ... Hα; Locarno
Balthasar et al. (1988) 3−5, 60 ... Hα, Ca+, Hε; Tenerife
Suematsu et al. (1990) ≈ 60 2.8 Ca II K, Hβ; Hida
Thompson & Schmieder (1991) 4.4 84 Hα; Meudon
Yi, Engvold, & Keil (1991) 5.3, 8.6, 15.8 21 He I; NSO, Sac Peak

5.3, 7.9, 10.6 7 He I; NSO, Sac Peak
Balthasar et al. (1993) 0.5−20 1−37 Hβ, Ca+, HeD3; Tenerife
Balthasar & Wiehr (1994) 5.3−60 1−2 He 3889 A, H8, Ca+; Tenerife
Sütterlin et al. (1997) 3.5−62 2.1−7.7 Ca+ 8542; Locarno
Molowny−Horas et al. (1997) 4−12 1.4−7.3 Hβ; Tenerife
Blanco et al. (1999) 1−6 ... O IV, Si IV; SUMER
Régnier et al. (2001) 5, 6−20, 65 ... He I; SUMER
Bocchialini et al. (2001) 6−12 ... O IV, Si IV; SUMER
Terradas et al. (2002) 71 30 Hβ; NSO Sac Peak
Lin (2002) 5−23 ... Hα; NSO

major groups (see also Engvold 2001b): short periods with P ≈ 3 − 5 min, longer
periods with P ≈ 12 − 20 min, and very long periods with P ≈ 40 − 90 min, which
respectively reflect the photospheric p-mode driven domain, the fast magneto-acoustic
domain, and the slow magneto-acoustic domain. Typical Alfvén speeds in prominences
are about vA ≈ 170 km s−1, based on estimated magnetic fields of B ≈ 8 G and den-
sities of ne ≈ 1010 cm−3. In general, prominence oscillations have been observed in
Doppler shifts (e.g., v ≈ 2 − 13 km s−1, Bocchialini et al. 2001) rather than in in-
tensity, as expected for kink-type oscillations, which are non-compressional transverse
displacements. However, there is some confusion in the interpretation of Doppler shift
measurements, because there are also siginificant flows present along the filaments
(Zirker et al. 1998) besides the kink-type displacement motion. The exciter of a large-
scale prominence oscillation is generally a flare (Ramsey & Smith 1966), as for the
kink-mode oscillations in active region loops (§ 7.2.3). Spatial observations allow us to
distinguish between large-amplitude oscillations, triggered by a wave front from a flare
(winking filaments), and small-amplitude oscillations that affect only parts (threads)
of a prominence. The longest periods seem to involve entire prominences, whereas
periods shorter than <∼ 20 min appear to be tied to thread-like small-scale structures
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(Engvold 2001b). Recent reviews on oscillations in prominences and filaments can
be found in Roberts (1991b), Roberts & Joarder (1994), Oliver (2001a,b), Engvold
(2001a,b), and Oliver & Ballester (2002).

7.3 Fast Sausage-Mode Oscillations

7.3.1 The Wave Number Cutoff

The dispersion relation for magneto-sonic waves in cylindrical magnetic fluxtubes (Eq.
7.1.50) has multiple types of solutions in the fast-mode branch, sausage modes (n = 0),
kink modes (n = 1), and fluting modes (n = 2, 3, ...). The solutions are depicted in
Fig. 7.4, showing that the kink-mode solution extends all the way to ka → 0, while the
fast sausage mode has a cutoff at a phase speed of vph =vAe, which has no solution for
small wave numbers ka <∼ 1. In the following we ignore harmonic structures along the
tube, we set N = 1. The propagation cutoff for the sausage mode occurs at the cutoff
wave number kc (Roberts et al. 1984),

k = kc =
[

(c2
s + v2

A)(v2
Ae − c2

T )
(v2

Ae − v2
A)(v2

Ae − c2
s)

]1/2(
j0,s

a

)
, s = 1, 2, 3, ... (7.3.1)

where j0,s = (2.40, 5.52, ...) are the s-zeros of the Bessel function J0. The cutoff
frequency ω at the cutoff is kcvAe = ωc. Let us consider this cutoff wave number for
coronal conditions. Most of the active region loops have temperatures of T ≈ 1−3 MK
(e.g., see differential emission measure distribution by Brosius et al. 1996, illustrated
in Fig. 3.4), so the sound speed typically amounts to cs = 147×√

TMK ≈ 150− 260
km s−1, which is much smaller than the typical Alfvén speed (vA ≈ 1000 km s−1) in
the corona (Fig. 5.10), so we have the coronal condition cs � vA. In this case the tube
speed cT = csvA/

√
c2
s + v2

A (Eq. 7.1.27) is close to the sound speed, cT
<∼ cs, and the

expression for the cutoff wave number kc (Eq. 7.3.1) simplifies to

kc ≈
(

j0,s

a

)[
1

(vAe/vA)2 − 1

]1/2

. (7.3.2)

In the low-β corona the thermal pressure is much smaller than the magnetic pressure,
and thus we can assume almost identical magnetic field strengths inside and outside
coronal loops (Eq. 6.2.6) (i.e., B0 ≈ Be), so that the ratio of external to internal Alfvén
speed vAe/vA is essentially the density ratio

√
n0/ne. Then

kc ≈
(

j0,s

a

)[
1

n0/ne − 1

]1/2

. (7.3.3)

From this expression we see that for typical density ratios inferred in the solar corona
(e.g., ne/n0 ≈ 0.1−0.5, see Table 7.1), the dimensionless cutoff wave number kca (see
Fig. 7.4) is expected to fall into the range 0.8 <∼ kca <∼ 2.4. Therefore, we would expect
that the global sausage-mode oscillation is completely suppressed for the slender loops
for which kink-mode oscillations have been observed, which have wave numbers of
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Figure 7.11: The wave number cutoff kc for sausage-mode oscillations expressed as a require-
ment of the loop length-to-width ratio l/w as a function of the density contrast n0/ne between
the external and internal loop densities (see Eq. 7.3.5). Note that sausage mode oscillations in
slender loops can occur only for flare conditions.

ka = 2πa/λ = (π/4)(w/l) ≈ 0.04 − 0.08 (§ 7.2.1). The occurrence of sausage-
mode oscillations therefore requires special conditions (e.g., very high-density contrast
n0/ne and relatively thick (fat) loops). The high-density ratio (i.e., n0/ne � 1 or
vAe � vA), yields the following simple expressions for the cutoff wave number kc

(Eqs. 7.3.1−3),

kca ≈ j0,s

(
vA

vAe

)
= j0,s

(
ne

n0

)1/2

. (7.3.4)

Since the wavelength of the fundamental eigen mode (s = 1) corresponds to the double
loop length, so that the wave number relates to the loop length by k = 2π/λ = π/l, the
cutoff wave number condition k > kc implies a constraint between the loop geometry
ratio w/l and the density contrast ne/n0,

l

w
=

π

2ak
<

π

2akc
=

π

2j0,s

√
n0

ne
= 0.6545

√
n0

ne
. (7.3.5)

The numerical factor 0.65 applies to the fundamental (s = 1) sausage mode. Since
geometric parameters (such as l and w) can be measured easier than densities, we might
turn the cutoff condition around and formulate it as a density contrast requirement for
a given loop aspect ratio,

n0

ne
>

(
1

0.6545
l

w

)2

= 2.334
(

l

w

)2

. (7.3.6)

This clearly indicates that slender loops with a high length-to-width ratio l/w � 1
would require extremely high-density contrast n0/ne. Typical active region loops,
which have only a moderate density contrast in the order of n0/ne ≈ 2, ..., 10, would
be required to be extremely bulgy and fat, with width-to-length ratios of l/w ≈ 1 − 2.
The density contrast is much higher for flare loops or postflare loops, up to n0/ne ≈
102, ..., 103. In this case, a length-to-width ratio of l/w ≈ 6−20 would be allowed for
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sausage-mode oscillations. This brings us to the conclusion that global sausage type os-
cillations are only expected in fat and dense loops, basically only in flare and postflare
loops, a prediction that was not appreciated until recently (Nakariakov et al. 2004). The
restriction of the sausage mode wave number cutoff is visualized in Fig. 7.11, where
the permitted range of geometric loop aspect ratios (l/w) is shown as a function of the
density contrast (n0/ne). Note that all these considerations apply to the fundamental
harmonic N = 1 along the fluxtube.

7.3.2 Sausage-Mode Period

Since the sausage mode is highly dispersive (see Fig. 7.4), the phase speed vph is
a strong function of the dimensionless wave number ka. The phase speed diagram
(Fig. 7.4) shows that the phase speed equals the external Alfvén speed above the long-
wavelength cutoff, vph(k = kc) = vAe, and tends to approach the internal Alfvén
speed in the short-wavelength limit, vph(ka � 1) → vA. For coronal conditions, both
the phase speed of the fast kink and fast sausage mode are bound by the internal and
external Alfvén velocities,

vA ≤ vph =
ω

k
≤ vAe . (7.3.7)

Therefore, the period (P = 2l/vph) of the standing sausage mode is also bound by
these two limits,

2l

vAe
< Psaus =

2l

vph
<

2l

vA
. (7.3.8)

At the lower limit we can derive a simple relation for the sausage-mode period from
the long-wavelength cutoff, where vph(k = kc) = vAe, using Eq. (7.3.5),

Psaus =
2l

vph
=

2π

kvph
<

2π

kcvph
≈ 2πa

j0,svAe

(
vAe

vA

)
=

2πa

j0,svA
=

2.62 a

vA
, (7.3.9)

an approximation that was derived in Roberts et al. (1984), which agrees with a sim-
plified solution of the wave equation in Rosenberg (1970). However, one should be
aware that this relation represents only a lower limit that applies at k = kc, while for
all other valid wave numbers (k > kc) the sausage node length is shorter (l = π/k),
and thus the sausage-mode period is shorter, although the phase speed becomes lower,
vph < vAe for k > kc (Fig. 7.4). Therefore, we should use this relation (Eq. 7.3.9)
only as an inequality, while the actual resonance frequency is determined by

Psaus(k) =
2l

vph(k)
, (7.3.10)

provided that the inequality (Eq. 7.3.9) is satisfied (Nakariakov et al. 2004), which is
equivalent to the density requirement (Eq. 7.3.5 or 7.3.6). Provided that sufficiently fat
and overdense loops exist according to the requirement of Eq. (7.3.6), we expect, for
loops with radii of a ≈ 500, ..., 10, 000 km and a typical Alfvén speed of vA ≈ 1000
km s−1 the following range of sausage-mode periods: P ≈ 1.3 − 26 s, which is about
2 orders of magnitude shorter than kink-mode periods.
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Table 7.6: Imaging observations of oscillations in the period range 0.5 s < P < 60 s, a period
range in which MHD fast sausage oscillations are possible.

Observer N Frequency or Oscillation Spatial scale
wavelength period P[s] or instrument

Radio:
Kai & Takayanagi (1973) 1 160 MHz <1.0 17′ (Nobeyama)
Pick & Trottet (1978) 1 169 MHz 0.37, 1.7 5′-7′ (Nançay)
Trottet et al. (1981) 1 140−259 MHz 1.7±0.5 5′ (Nançay)
Sastry et al. (1981) 1 25−35 MHz 2−5 30′ (Gauribidanur)
Kattenberg & Kuperus (1983) 1 5 GHz 1.5 0.15′ (Westerbork)
Zlobec et al. (1992) 1 333 MHz 9.8−14.2 0.7′ − 1.5′ (VLA)
Aschwanden et al. (1992a) 1 1.5 GHz 8.8 0.2′ − 0.9′ (VLA, OVRO)
Baranov & Tsvetkov (1994) 1 8.5−15 GHz 22, 30, 34 3.6′ − 6.0′ (Crimea)
Makhmutov et al. (1998) 1 48 GHz 2.5−4.5 1.9′ (Itapetinga)
Chernov et al. (1998) 1 164−407 MHz 0.2 5′ − 7′ (Nançay)
Asai et al. (2001) 1 17 GHz 6.6 10′′ (Nobeyama)
Nakariakov et al. (2003) 1 17 GHz 8−11, 14−17 10′′ (Nobeyama)
Optical and Hα:
Pasachoff & Landman (1984) 1 5303 Å 0.5−2 (?) 2.5′′ (Hydrabad eclipse)
Pasachoff & Ladd (1987) 1 5303 Å 0.5−4 (?) 2.5′′ (East Java eclipse)
Williams et al. (2001, 2002) 1 5303 Å 6 4.0′′ (Bulgaria eclipse)
Soft X-rays:
Thomas et al. (1987) 1 2−8, 8−16 Å 1.6 20′′ (OSO-7)
McKenzie & Mullan (1997) 16 3−45 Å 9.6−61.6 2.4′′ − 4.7′′ (Yohkoh/SXT)
Hard X-rays:
Asai et al. (2001) 1 23−53 keV 6.6 5.0′′ (Yohkoh/HXT)

7.3.3 Imaging Observations of Sausage-Mode Oscillations

Imaging observations (Table 7.6) should, in principle, provide the period and geometric
dimensions of the oscillating sources, so that the hypothesis of MHD fast sausage os-
cillations could be tested (e.g., the relation P < 2.62 a/vA, Eq. 7.3.9). However, most
of the early imaging observations were made with 1D interferometers (e.g., Fig. 7.12),
with poor spatial resolution (> 1′), and radio images are also subject to substantial
wave scattering (Bastian 1994), so that the widths (w = 2a) of oscillating loops gener-
ally could not be properly resolved. One fast oscillation event has been observed with
high spatial resolution (≈ 4′′) in optical wavelengths during a solar eclipse (Williams et
al. 2001, 2002), which was interpreted as a propagating magneto-acoustic wave (§ 8),
rather than a standing wave. McKenzie & Mullan (1997) conducted a systematic search
for oscillatory signals in Yohkoh soft X-ray images and found significant periods in
16 out of 544 power spectra. They interpreted the periods (9.6 s < P < 61.6 s) in
terms of kink-mode oscillations, but since the kink mode does not modulate the den-
sity (and thus the optically thin soft X-ray flux) to first order, an interpretation in terms
of sausage-mode oscillations would be more plausible.

Asai et al. (2001) observed a fast oscillation with a period of P = 6.6 s simulta-



308 CHAPTER 7. MHD OSCILLATIONS

Figure 7.12: Spatial observations in east-west direction (top) and time profile (bottom) of a
pulsating source (P = 1.7 ± 0.5 s) observed with the Nançay Radioheliograph at 169 MHz.
Note the slight deviations from strict periodicity and the transition from emission to absorption
(Trottet et al. 1981).

neously in soft X-rays and radio during a flare. From their derived parameters (loop
length l = 16 Mm, loop width w = 6 Mm, density n0 = 4.5 × 1010 cm−3) we esti-
mate that the density contrast for the sausage mode wave number cutoff is n0/ne ≈ 17
(Eq. 7.3.6), requiring an ambient density of ne < n0/17 = 2.6 × 109, which is very
likely to be satisfied in active regions. Therefore, an MHD fast sausage-mode oscilla-
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Figure 7.13: Observations of an oscillation event with the Nobeyama Radio Heliograph (NRH)
on 2000-Jan-12 at 17 GHz, showing the time profiles (left) and Fourier power spectra (right).
The total flux (top) integrated over the entire source does not reveal oscillations, but selected
10′′ × 10′′ regions at the footpoints and looptop of a flare loop show oscillating flux amplitudes,
which are shown in normalized units ∆F/F = [F (t) − F0]/F0 (left). The Fourier power
spectra (right panels) reveal periods in the range of P1 = 14 − 17 s and P2 = 8 − 11 s in all
three locations (Nakariakov et al. 2003).

tion is possible above the long-wavelength cutoff k > kc (Eq. 7.3.2).

A recent observation of an oscillating source (Fig. 7.12) interpreted in terms of
sausage mode is presented in Nakariakov et al. (2003). The oscillatory flare loop was
estimated to have a length of l = 25 Mm, a width of w = 6 Mm, and a density of
n0 ≈ 1011 cm−3. If we apply the wave number cutoff criterion (Eq. 7.3.6) we find that
a density contrast of n0/ne > 2.4(l/w)2 ≈ 40 is necessary to satisfy the sausage mode
cutoff. Given the flare loop density of n0 = 1011 cm−3, the density of the background
corona around the flare loop is required to be lower than ne < 2.5×109 cm−3, which is
a possible value. Therefore, the necessary condition for the sausage mode is satisfied.

An important difference to kink-mode oscillations is that the sausage mode pro-
duces density variations, while the kink mode does not. The oscillatory density vari-
ations can easily modulate the gyrosynchrotron emissivity observed in microwaves,
because the gyrosynchrotron radio flux is proportional to the electron number density
(see, e.g., Rosenberg 1970). The fluctuations shown in Fig. 7.12 demonstrate that the
radio flux is modulated locally up to <∼ 20%, which implies an oscillation amplitude
of ≈ 10% for the sausage mode.
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Table 7.7: Non-imaging observations of oscillations in the period range 0.5 s < P < 1 min, a
period range in which fast MHD sausage oscillations are possible. N is the number of observed
pulsation events.

Observer N Frequency or Oscillation Instrument
wavelength period P (s)

Radio:
Dröge (1967) > 18 240, 460 MHz 0.2−1.2 Kiel
Janssens & White (1969) 1 2.7−15.4 GHz 17, 23 Sagamore Hill
Parks & Winckler (1969) 1 15.4 GHz 16 Sagamore Hill
Abrami (1970, 1972) 3 239 MHz 1.7−3.1 Trieste
Gotwols (1972) 1 565−1000 MHz 0.5 Silver Spring
Rosenberg (1970) 1 220−320 MHz 1.0−3.0 Utrecht
De Groot (1970) > 25 250−320 MHz 2.2−3.5 Utrecht
McLean et al. (1971) 1 100−200 MHz 2.5−2.7 Culgoora
Rosenberg (1972) 1 220−320 MHz 0.7−0.8 Utrecht
McLean & Sheridan (1973) 1 200−300 MHz 4.28±0.01 Culgoora
Janssens et al. (1973) 7 3.0 GHz 11−35 Norco
Achong (1974) 1 18−28 MHz 4.0 Kingston
Tapping (1978) 14 140 MHz 0.06−5 Cranleigh
Elgaroy (1980) 8 310−340 MHz 1.1 Oslo
Bernold (1980) > 13 100−1000 MHz 0.5−5 Zurich
Slottje (1981) > 40 160−320 MHz 0.2−5.5 Dwingeloo
Zodi et al. (1984) 1 22, 44 GHz 1.5 Itapetinga
Zaitsev et al. (1984) 23 45−230 MHz 0.3−5 Izmiran
Wiehl et al. (1985) 1 300−1000 MHz 1−2 Zurich
Aschwanden (1986, 1987b) 10,60 300−1100 MHz 0.4−1.4 Zurich
Aschwanden & Benz (1986) 10 237, 650 MHz 0.5−1.5 Zurich
Aurass et al. (1987) 1 234 MHz 0.25−2 Tremsdorf
Correia & Kaufmann (1987) 1 30, 90 GHz 1−3 Itapetinga
Kurths & Herzel (1987) 1 480−800 MHz 1.0, 3.5 Tremsdorf
Kurths & Karlický (1989) 1 234 MHz 1.3, 1.5 Tremsdorf
Chernov & Kurths (1990) 10 224−245 MHz 0.35−1.3 Izmiran
Zhao et al. (1990) 1 2.84 GHz 1.5 Bejing
Fu et al. (1990) 1 1,2,3.8,9.4 GHz 0.18, 4 Yunnan
Kurths et al. (1991) 25 234−914 MHz 0.07−5.0 Zurich
Stepanov et al. (1992) 1 37 GHz 5.2 Metsähovi
Aschwanden et al. (1994a,b) 1,1 300−650 MHz 1.15, 1.8 Zurich
Qin & Huang (1994) 1 9.375 GHz 1.0−3.0 Nanjing
Qin et al. (1996) 1 2.84, 9.375, 15 GHz 1.5, 40 Nanjing
Wang & Xie (1997) 1 1.42, 2.0 GHz 44, 47 Yunnan
Kliem et al. (2000) 1 600−2000 MHz 0.5−3.0 Zurich
Hard X-rays:
Parks & Winckler (1969) 1 > 20 keV 16 Balloon
Lipa (1978) 26 14−111 keV 10−100 OSO-5
Takakura et al. (1983b) 1 30−40 keV 0.3 Hinotori
Kiplinger et al. (1982) 30 > 25 keV 0.4, 0.8 SMM/HXRBS
Kiplinger et al. (1983) 1 > 25 keV 8.2 SMM/HXRBS
Nakajima et al. (1983) 2 > 25 keV 8.2 SMM/HXRBS
Desai et al. (1987) 3 > 30 keV 2−7 Venera
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Figure 7.14: Oscillating time profile observed during a flare on 1969-Feb-25, 09:55 UT with the
Utrecht spectrograph in the radio wavelength range of 160-320 MHz. Large pulses with a period
of P1 = 3 s and small pulses with a subperiod of P2 = 1.0 s were interpreted as harmonics of
the MHD fast sausage oscillation mode (Rosenberg 1970).

Figure 7.15: A damped oscillation observed with the Culgoora radio spectrograph on 1972-
May-16, 03:07 UT, at a frequency of 230 MHz. The deep minimum at t = 20 is produced by
an instrumental time marker. Note the strict periodicity, which yields a mean period of P =

4.28 ± 0.01 s (McLean & Sheridan 1973).

7.3.4 Non-Imaging Observations of Sausage-Mode Oscillations

There are numerous observations of coronal oscillations in the period regime of P ≈
0.5 − 5 s that are without imaging information, mostly reported in radio wavelengths
(Table 7.7 and Figs. 7.14−16). Although we have no direct imaging information on the
oscillating loops, there are a number of reasons that support an interpretation in terms
of MHD fast sausage mode oscillations: (1) the observed pulse periods P ≈ 0.5 − 5 s
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Figure 7.16: Periodic radio emission observed during the 1980-Mar-29, 14:47 UT, flare with
the Zurich radio spectrometer IKARUS. The enlarged spectrogram with a frequency range of
310−385 MHz and a time duration of 10 s shows a periodic sequence of inverted U-bursts with
a mean period of P = 1.15 s, indicating that the radio emission originates within coronal loops
with an apex density of n0 ≈ 109 cm−3, corresponding to the turnover frequency ν ≈ 310 MHz
(Aschwanden et al. 1994b).

coincide with the theoretically expected range of periods (P ≈ 1.3 − 26 s) for typical
loop widths (a ≈ 0.5 − 10 Mm) and coronal Alfvén speeds (vA ≈ 1000 km s−1), see
§ 7.3.2; (2) most of the reported oscillation events occurred during flares (in particu-
lar those made in decimetric, microwave, and hard X-ray wavelengths), which match
the theoretical requirement of a high-density contrast n0/ne ≈ 102 − 103 imposed
by the long-wavelength cutoff k > kc of the MHD fast sausage mode (see § 7.3.1
and Fig. 7.11); (3) those observations that exhibit a regular periodicity can naturally
be explained by an eigen-mode standing wave; and (4) the MHD fast sausage mode
modulates the loop cross section, density, and magnetic field, which provides a natural
mechanism to modulate plasma emission, gyroresonance, and gyrosynchrotron emis-
sion observed at radio wavelengths. These are just plausibility arguments for an inter-
pretation of the observed oscillation events (Table 7.6) in terms of MHD fast sausage-
mode oscillations, but it does not rule out that some events may be caused by alterna-
tive mechanisms (e.g., by limit cycles of nonlinear dissipative systems of wave-particle
interactions). Nevertheless, even more arguments have been brought forward in sup-
port of MHD fast sausage mode oscillations for some particular events. For instance,
a subharmonic period of P2 = 1.0 was observed besides the fundamental period of
P1 = 3.0 s (Fig. 7.14), which matched the theoretically expected ratio derived for a ra-
dial MHD sausage oscillation expressed in terms of the first-order Bessel function (i.e.,
5.3/1.8 = 2.94, Rosenberg 1970). An important characteristic of MHD eigen modes
is their regular periodicity. A classic example is that of McLean & Sheridan (1973),
who observed a damped wave train with about 28 pulses with an extremely stable peri-
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Figure 7.17: Observed oscillation periods as a function of the radio frequency, according to
the list given in Tables 7.6 and 7.7. Horizontal and vertical bars indicate the ranges in each
observation, diamonds represent the mean values, and thick diamonds indicate reports on mul-
tiple oscillation events. Note that most of the events fall in the range of P ≈ 0.5 − 5.0 s and
n0 = 108 − 1010 cm−3, if one assumes that the radio frequency is near the plasma frequency,
ν ≈ νp. The letters A and N refer to the observations of Asai et al. (2001) and Nakariakov et
al. (2003).

odicity of P = 4.28± 0.01 and a damping time of τD ≈ 35 s (Fig. 7.15). There is also
(non-imaging) evidence from radio dynamic spectra that the pulsed emission originates
in coronal loops, because beam-driven radio emission caused by exciters along closed
magnetic field lines show up as inverted U-bursts in dynamic spectra (e.g., Fig. 7.16).

The long-wavelength wave number cutoff kc of the MHD fast sausage oscillation
mode (Fig. 7.4 and Eqs. 7.3.1−4) has an important consequence on the density require-
ment (n0/ne ≈ 102 − 103) that can only be met in flare loops or postflare loops. This
requirement can be tested for a pulsed radio emission generated near the plasma fre-
quency (e.g., radio type III bursts), because the plasma frequency νp provides a direct
density diagnostic,

ν ≈ νp = 8980
√

ne[cm−3] [Hz] . (7.3.11)

According to a standard density model of the corona (e.g., the Baumbach−Allen model,
Cox 2000), the density ne(h) varies as a function of the normalized height R =
1 + h/R� (Fig. 3.11 and Eq. 1.6.1),

ne(h) = 108

[
2.99
R16

+
1.55
R6

+
0.036
R1.5

]
≈ 4 × 108

R9
[cm−3] (7.3.12)

where the approximation on the right-hand side holds for h <∼ R�/2. This density
model ne(h) is shown in Fig. 7.18 (top). Assuming that the fatest possible loops
have a width-to-length ratio of qw ≈ 1/4, the minimum required density ratio is
n0,min(h)/ne(h) = 2.4/q2

w ≈ 40 (Eq. 7.3.6) for loops oscillating in the MHD fast
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Figure 7.18: Top: the Baumbach−Allen density is shown as a model of the average coronal
background (thin curve), together with the approximation ne(h) ≈ 4× 108(1 + h/R�)9 (thick
curve), and the minimum loop density n0,min(h) required for loops that have a width-to-length
ratio of qw = w/l = 0.25. The height and density range corresponding to a plasma frequency
range of 100 MHz−1 GHz is indicated by the shaded area. Bottom: the MHD fast sausage-
mode period P (lsaus) is shown as function of the sausage length lsaus for magnetic fields of
B = 20 G within a factor of 2. The regime of physical solutions for periods P = 0.5 − 5 s and
B = 10 − 40 G is indicated by the shaded area. A and N indicate the values inferred for the
observations of Asai et al. (2001) and Nakariakov et al. (2003).

sausage mode due to the long-wavelength cutoff criterion (Eq. 7.3.1). This cutoff crite-
rion implies the constraint that physical solutions are only possible for heights h >∼ 50
Mm, for oscillations observed in the plasma frequency range of νp ≈ 1 GHz (grey area
in Fig. 7.18, top). The two events observed by Asai et al. (2001) and Nakariakov et
al. (2003) do not fall within this range, because their density inferred from soft X-rays
is higher and would correspond to plasma frequencies of 2 and 3 GHz. The impor-
tant conclusion that follows, based on the two assumptions that the Baumbach−Allen
model represents a realistic density model of the background corona and that oscillat-
ing loops are not fatter than a quarter of their length, is that physical solutions for the
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Figure 7.19: Sketch of MHD fast sausage-mode oscillation in partial loop segment (right),
where the cutoff condition k > kc is satisfied. For a given width-to-length ratio qw, oscillations
occur in segments where n0/ne > 2.4/q2

w (Eq. 7.3.6). The oscillating segment may correspond
to a higher harmonic node [e.g., to N = 3 here (left)], (Aschwanden et al. 2004a).

MHD fast sausage mode are only possible for coronal heights of h >∼ 50 Mm in the
observed frequency range of ν ≤ 1 GHz, where most of the fast oscillations have been
observed (Fig. 7.17).

Next we investigate the constraints introduced by the pulse periods, which are
found in the range of P ≈ 0.5 − 5.0 s (Fig. 7.17). If we denote the length of the
loop segment that participates in the MHD fast sausage mode oscillation with lsaus,
we obtain an upper limit from the phase speed at the wave number cutoff kc (Eqs. 7.3.8
and 7.3.10),

lsaus =
Psaus

2
vph(k) ≤ Psaus

2
vAe , (7.3.13)

where the Alfvén speed vAe is given by the background density ne(h) (Eq. 7.3.12),

vAe(h) =
B√
4πρ0

=
B√

4πµmHne(h)
= 1210

(
B

20 G

)(
ne(h)

109 cm−3

)−1/2

[km/s] ,

(7.3.14)
where we used a mean molecular weight of µ = 1.27 for a H:He=10:1 coronal abun-
dance. We plot the sausage-mode period Psaus as a function of the length lsaus in
Fig. 7.18 (bottom), for a mean coronal magnetic field of B = 20 G (solid line), as
well as for values a factor of 2 smaller or larger (B = 10 − 40 G). We find that
the corresponding lengths of the oscillating loop segment have values in the range
of 0.3 Mm < lsaus < 10 Mm (Fig. 7.18 bottom, shaded area) for pulse periods of
0.5 < Psaus < 5.0 s, which is much smaller than the full loop lengths where phys-
ical solutions are possible for the sausage mode (h = πl > 120 Mm, see Fig. 7.18,
top, shaded area). Because physical solutions are only possible at heights h > 50
Mm, the oscillating loop segment has to be located near the top of the loop. Thus we
conclude that only a small segment of the loop is oscillating in the fast MHD sausage
mode, which can be a segment bound by a higher harmonic node N (see Fig. 7.19).
Note that the measurements of Asai et al. (2001) and Nakariakov et al. (2003) have
longer periods, and actually allow for global sausage-mode oscillations of the entire
loop length for reasonable magnetic fields in the order of B ≈ 40 G (marked with
crosses in Fig. 7.17, bottom).



316 CHAPTER 7. MHD OSCILLATIONS

Alternatively, fast pulsations can also be explained in terms of propagating fast-
mode waves, rather than by standing MHD sausage-mode oscillations. Such scenar-
ios have been developed by Roberts et al. (1984), called “impulsively generated MHD
waves” therein, and have been applied to the optical (eclipse) observations of fast pulses
(P = 6 s), clearly showing propagating wave trains (Nakariakov et al. 2003). A hall-
mark of such propagating periodic wave trains would be parallel ridges of drifting burst
structures in radio dynamic spectra, a fine structure known as “fibers” (e.g., Rosenberg
1972; Bernold 1980; Slottje 1981).

7.4 Slow-Mode (Acoustic) Oscillations

7.4.1 Slow-Mode Oscillation Period

The dispersion relation for magneto-acoustic waves in a cylindrical fluxtube (Fig. 7.4)
shows two domains of solutions, a slow branch with acoustic phase speeds (cT ≤
vph = ω/k ≤ cs), and a fast branch with Alfvén phase speeds (vA ≤ vph ≤ vAe).
Here we consider the slow-mode branch, which is only weakly dispersive in the low-β
corona. The tube speed cT (Eq. 7.1.27) is close to the sound speed cs,

cT =
csvA√
c2
s + v2

A

≈ cs, for cs � vA . (7.4.1)

Thus, the phase speeds of slow-mode (acoustic) waves are given to a good approxima-
tion by vph = ω(k)/k ≈ cs. As discussed in § 7.1.1, the slow-mode magneto-acoustic
waves are essentially sound waves, non-dispersive (vgr ≈ vph ≈ cs), compressional
(kv1 �= 0), and longitudinal (k ‖ v).

Let us consider the simplest solution of slow-mode acoustic oscillations, a stand-
ing wave in the fundamental mode, which has the two endpoints of a fluxtube as fixed
nodes. Neglecting energy dissipation and the magnetic field, the linearized MHD equa-
tions yield (from Eqs. 7.1.11 and 7.1.12)

∂ρ1

∂t
= −ρ0∇ · v1 , (7.4.2)

ρ0
∂v1

∂t
= −c2

s∇ρ1 . (7.4.3)

Taking the time derivative of the momentum equation (7.4.3) and inserting the conti-
nuity equation (7.4.2) yields,

∂2v1

∂t2
= −c2

sρ0∇
(

∂ρ1

∂t

)
= c2

s∇2v1 (7.4.4)

which is just the equation for a harmonic oscillator and has the general solution v(z, t) ∝
exp (kz − ωt), or

v(z, t) = v1 cos
( π

2l
z
)

sin
(πcs

2l
t
)

, v1 = cs
ρ1

ρ0
, (7.4.5)



7.4. SLOW-MODE (ACOUSTIC) OSCILLATIONS 317

Table 7.8: Average and ranges of physical parameters of 54 oscillating events observed with
SUMER. The speed of phase propagation was only measured in cases with a clear signal (Wang
et al. 2003b).

Parameter Average Range
Oscillation period P 17.6 ± 5.4 min 7.1−31.1 min
Decay time τD 14.6 ± 6.9 min 5.5−37.3 min
Doppler oscillation amplitude vD 98 ± 75 km/s 13−315 km/s
Maximum Doppler amplitude vm 75 ± 53 km/s 11−234 km/s
Derived displacement amplitude A 12.5 ± 9.9 Mm 1.7−43.7 Mm
Ratio of decay time to period τD/P 0.84 ± 0.34 0.33−2.13
Number of periods Np 2.3 ± 0.7 1.5−5
Time lag of intensity peak ∆TIV 8.5 ± 13.1 min −2.5 − 52.5 min
Time lag of line width peak ∆TWV 1.0 ± 3.0 min −4.1 − 9.1 min
Intensity peak duration ∆TI 36.2 ± 27.0 min 10−141 min
Number of intensity peak NI 1.5 ± 0.7 1−3
Speed of phase propagation 43 ± 25 km/s 8−102 km/s
Spatial extent of oscillation along slit ∆Y 35 ± 21 Mm 7−87 Mm

ρ(z, t) = ρ1 sin
( π

2l
z
)

cos
(πcs

2l
t
)

(7.4.6)

so the density perturbation is out of phase with respect to the velocity perturbation by
π/2. Since the wave is longitudinal, the standing wave corresponds to a compression
back and forth in a coronal loop, essentially the plasma is “sloshing” back and forth
like the air in Scottish bagpipes.

The period of a standing wave in the MHD slow acoustic mode is obviously the
sound travel time back and forth in a coronal loop for the fundamental harmonic (j =
1),

Pslow =
2l

jcT
≈ 2l

jcs
(7.4.7)

where the sound speed cs in a fully ionized plasma is defined as

cs =
√

γp

ρ
=

√
γ2kBT

µmp
= 147

√
Te

1 MK
[km/s] , (7.4.8)

with γ = 5/3 being the adiabatic index (Eq. 4.1.10), µ = 1.27 the mean molecular
weight (Eq. 3.1.7), and mp the proton mass. For typical coronal loops, say with a
temperature of T ≈ 1 MK and lengths between l = 10 Mm and 100 Mm, the period
of MHD slow-mode oscillations, therefore, is expected to be in the range of Pslow ≈
140 − 1400 s ≈ 2 − 20 min.

7.4.2 Observations of Slow-Mode Oscillations

Slow-mode oscillations in coronal loops have been imaged for the first time with the
SUMER spectrograph on SoHO, by measuring the Doppler shift and intensity fluctua-
tions of EUV lines, mainly in the Fe XIX and Fe XXI lines with a formation tempera-
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Figure 7.20: SUMER observations of MHD slow-mode standing waves. Top left: Doppler
shift in Fe XIX line (T ≈ 6.3 MK) shown across a slit (in the vertical direction on the Sun) as a
function of the time. Middle left: background-subtracted intensity variation in the Fe XIX line.
Bottom left: time profile of total intensity on position B marked in top left frame. Top right:
time profile of Doppler shift at position B, with the fit of a damped sine function. Middle right:
background-subtracted time profile of the Fe XIX intensity, also with the fit of a damped sine
function. Bottom right: time profile of continuum intensity in the wings of S III (T = 0.03−0.06

MK) and Ca X (T = 0.7 MK) lines at position B (Wang et al. 2003a).

ture of T >∼ 6 MK (Wang et al. 2002, 2003a,b; Kliem et al. 2002). SUMER records only
a 1D slit, generally located at a position 50′′ − 100′′ above the limb, but the oscillating
loops could clearly be located in cotemporaneous EUV images from SoHO/EIT and
TRACE. In the statistical paper of Wang et al. (2003b), the authors analyzed a sample
of 54 Doppler shift oscillations in 27 flare-like events. They found oscillation periods
in the range of P = 7 − 31 min, with decay times of τD = 5.5 − 37.3 min, and initial
large Doppler shift velocities up to v= 200 km s−1. The evidence for MHD slow-
mode (standing wave) oscillations is based on the following facts: (1) the phase speed
derived from the observed period and loop lengths roughly agrees with the expected
sound speed; (2) the intensity fluctuation lags behind the Doppler shift by a quarter
period (like the cosine and sine functions in Eqs. 7.4.5−6); (3) the scaling of the dis-
sipation time (modeled as thermal conduction cooling time) with period agrees with
the observed scaling in 90% of the cases. The slow-mode oscillations seem to be trig-
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Figure 7.21: SUMER observations of Fe XIX (T = 6.3 MK) intensity (top left) and S III
(T = 0.03 − 0.06 MK) intensity (bottom left) of M1.2 flare on 2002-Apr-15, 23 UT, and EIT
195 Å (T ≈ 1.5 MK) intensity images (right panels) of the same event as displayed in Fig. 7.20
(Wang et al. 2003a).

Table 7.9: Observations of oscillations in the period range P > 10 min, a period range in which
MHD slow-mode (acoustic) oscillations are expected.

Observer N Frequency or Oscillation Instrument
wavelength period P[s]

Radio:
Kaufmann (1972) 1 7.0 GHz 41 min Brazil
Kobrin and Korshunov (1972) 3 9.67, 9.87 GHz 30−60 min Gorky
Optical:
Ofman et al. (1997) 3 White light 20−50 min SOHO/UVCS
Ofman et al. (2000a) 9 White light 7−10 min SOHO/UVCS
EUV:
DeForest and Gurman (1998) 1 171 Å 10−15 min SoHO/EIT
Soft X-rays:
Jakimiec & Jakimiec (1974) 2 1−8 Å 3−15 min SOLRAD 9
Harrison (1987) 1 3.5−5.5 keV 24 min SMM/HXIS
Svestka (1994) 1 0.5−4, 1−8 Å 20 min GOES
Wang et al. (2002a,b) 54 Fe XIX, 1118 Å 7−31 min SoHO/SUMER
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gered by a pressure disturbance near one footpoint (e.g., caused by a microflare, flare,
or destabilizing filament). The pressure disturbance then propagates as a slow-mode
magneto-sonic (acoustic) wave in longitudinal direction along the loop and becomes
reflected at the opposite side (Nakariakov et al. 2000). The rapid damping of the prop-
agating wave seems to be caused by thermal conduction, as simulated with an MHD
code (Ofman & Wang 2002).

Interestingly, the oscillation is always more clearly detected in the Doppler shift
signal than in intensity. An example of such an observation is given in Figs. 7.20 and
7.21. The geometry of the loop was inferred from an EIT image (Fig. 7.21, bottom
right), yielding a loop length of l = 191 Mm. From the fit of a damped sine function
(Fig. 7.20 right) a period of P = 17.1 ± 0.1 min was found with a decay time of
τD = 21.0± 1.6 min. The formation of the temperature of the Fe XIX line is T = 6.3
MK, yielding a sound speed of cs = 370 km s−1 (with Eq. 7.4.8), and thus an expected
slow-mode oscillation period of Pslow = 2l/cs = 1032 s = 17.2 min. From Eq. (7.4.5)
it follows that the relative amplitudes in the density and the velocity are proportional,

ρ1

ρ0
=

v1

cs
. (7.4.9)

For this event the authors measure an Fe XIX intensity amplitude of I1/I0 ≈ 0.19/2 =
0.09, which roughly agrees with the ratio of the (line-of-sight corrected) Doppler shift
divided by the sound speed, v1/cs = 18.6/370 = 0.05. The authors analyzed a total of
54 Doppler shift oscillations in 27 events, the statistical parameters are given in Table
7.8.

There are other reports of oscillations with periods that are commensurate with
MHD slow-mode oscillations. A compilation of such observations with periods P >
10 min in different wavelengths (radio, optical, EUV, soft X-rays) is given in Table 7.9.
Clearly most of these MHD slow-mode acoustic oscillations have been recorded by
SUMER. However, since MHD slow-mode acoustic oscillations modulate the density
along a loop, there is the possibility of a modulation of the scattered light in optical
wavelengths, of free-free emission detectable in soft X-rays, or in radio wavelengths
at ν ≈ 1 − 5 GHz. Alternatively, long-period oscillations could also be related to
prominence oscillations (Kaufmann 1972).

7.5 Damping of MHD Oscillations

In contrast to p-mode oscillations driven from the solar interior, which seem to be
sustained for indefinite time durations, almost all MHD oscillations in the corona are
strongly damped, many having an exponential decay time of only about one oscillation
period. This observational fact might have some important physical consequences,
once we have identified the correct damping mechanism for each MHD mode. Cur-
rently, however, there are at least five, more or less competing mechanisms, which we
will discuss in turn: non-ideal MHD effects (§ 7.5.1), lateral wave leakage (§ 7.5.2),
footpoint wave leakage (§ 7.5.3), phase mixing (§ 7.5.4), and resonant absorption
(§ 7.5.5).
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7.5.1 Non-Ideal MHD Effects

In the derivation of the dispersion relation of MHD waves (§ 7.1) we used the adiabatic
equation of state, and thus neglected heating, thermal conduction, and radiative loss
in the energy equation. Also, using the set of ideal MHD equations (§ 6.1.3), we
neglected non-ideal effects such as resistivity, viscosity, and Ohmic dissipation, which
might contribute to damping of wave motion. Also the curvature of loops is neglected
in straight slab and cylinder geometries.

Let us first investigate non-adiabatic effects, such as plasma heating and cooling
times. There are two major cooling effects, thermal conduction and radiative loss. The
thermal conduction time (Eq. 4.3.10) is generally estimated by dividing the thermal
energy by the thermal conduction rate, which is the divergence of the conductive flux
(∇FC , Eq. 3.6.3),

τcond =
εth

∇FC
≈ 3nekBTe

(2/7)κT 7/2/L2
=

21kB

2κ
neT

−5/2L2 = 1.6 × 10−9neT
−5/2L2 .

(7.5.1)
Thus for active region loops (ne ≈ 109 cm−3, Te ≈ 1.0 MK, L = 109 − 1010 cm =
10−100 Mm) we estimate cooling times due to thermal conduction from the corona to
the chromosphere to be of the order τcond ≈ 0.4− 40 hours), while for postflare loops
(n ≈ 1010 cm−3, Te ≈ 10 MK, L = 1 − 5 × 109 cm = 10-50 Mm) the conductive
cooling times shorten to τcond ≈ 1 − 20 min. Therefore, thermal conduction is def-
initely important for MHD slow-mode oscillations, which have comparable damping
times (τD ≈ 5−37 min, Table 7.8) and flare-like temperatures. This is probably unim-
portant for MHD fast sausage-mode oscillations, which have flare-like densities but
have the shortest oscillation periods (P ≈ 1 − 10 s), and is definitely unimportant for
MHD fast kink-mode oscillations, which have active region loop densities and damp-
ing times (τD ≈ 3− 20 min) much shorter than the expected thermal conduction times
(τcond ≈ 0.4 − 40 hours). Therefore, thermal conduction is considered as the main
physical mechanism to damp MHD slow-mode oscillations, as observed by SUMER.
Ofman & Wang (2002) include the thermal conduction term and kinematic viscosity
(Eq. 6.1.14) in the MHD equations and perform a numeric simulation of an oscillating
loop according to the physical parameters observed by SUMER. The damping time
τD of the velocity disturbance v1 by the viscosity force is then approximately (with
Eqs. 6.1.14−15 and neglecting other force terms),

v1

τD
≈ Dv

Dt
≈ Fvisc

ρ
= νvisc

[
∇2v +

1
3
∇(∇v)

]
. (7.5.2)

Ofman & Wang (2002) find that the resulting damping times τD are consistent with
the observed ones, and moreover that the theoretically expected scaling law of the
dissipation time with period agrees with the observed one by SUMER (i.e., τD ∝
P 1.07±0.16).

Let us turn now to the other cooling process (i.e., radiative cooling in optically thin
plasma). The radiative cooling time (Eq. 4.5.3) is generally defined by the ratio of the
thermal energy divided by the radiative cooling rate,

τrad =
εth

dER/dt
=

3nekBTe

nenHΛ(Te)
≈ 3kBTe

neΛ(Te)
, (7.5.3)
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which yields, for active region loops, typical radiative cooling times of τrad ≈ 1 hour,
and for postflare loops τrad ≈ 10 min. Therefore, we conclude that the radiative cool-
ing time could contribute to the observed damping time in MHD slow-mode oscilla-
tions, but seems to be unimportant for the MHD fast sausage-mode oscillations (which
have periods of P ≈ 1−10 s) or for the MHD fast kink-mode oscillations (which have
damping times of τD ≈ 3 − 20 min, much shorter than the radiative cooling times of
active region loops with τrad ≈ 1 hour). For MHD slow-mode oscillations, the tem-
perature decrease T (t) due to radiative cooling would also decrease the sound speed
cs(T [t]) in the oscillating loops and prolonge the oscillation periods P (t) ∝ 1/cs(T [t])
with time, an effect that has not yet been tested.

Regarding other adiabatic time scales, such as heating, we do not have much in-
formation in oscillating loops, except that the observed decay times were found to be
significantly longer than the radiative cooling times (§ 4.5.1), a fact that requires con-
tinuous or intermittent heating (Winebarger et al. 2003a). The effects of heating time
scales on the damping time of loop oscillations have not yet been explored much be-
cause of the unknown heating function. However, whether heating or cooling occurs
in the oscillating loops, a most conspicuous consequence is that the intensity or bright-
ness evolution of the loops is convolved with the instrumental temperature response
function (§ 3.8). If a loop cools out of the passband of an instrument, the observed or
detected damping time of a loop oscillation appears to be shorter than for the same loop
with a constant temperature. Thus, the observed damping times of MHD slow-mode
oscillations might be a lower limit to the effective damping times, which can only be
corrected if the cooling time is known from multi-filter data.

Non-ideal MHD effects on damping of magneto-acoustic waves have also been
considered for slab geometries by Van den Linden & Goossens (1991), Laing & Edwin
(1995), and are discussed in Roberts (2000), suggesting that damping might be signifi-
cant over NP ≈ 20 − 100 periods, and thus too slow to explain the observed damping
of MHD fast-mode oscillations.

7.5.2 Lateral Wave Leakage

Consider a perfect waveguide, such as an optical fiber, which has no losses out of the
fiber because of the phenomenon of total reflection, which guarantees 100% reflection
along the internal sides as long as the light waves hit the side walls with a sufficiently
small angle. The small angle becomes larger at the outer surface when you bend the
fiber glass, and total reflection might not be guaranteed anymore, so the optical fiber
becomes “leaky”. By analogy, curvature in coronal loops may lead to leakage of MHD
body or surface waves. The effect of lateral wave leakage occurs in curved loops be-
cause the fast kink and sausage modes become slightly coupled, so that energy can be
transferred from one mode to the other and can be radiated away to infinity (Roberts
2000). For slender fluxtubes, this effect of lateral wave leakage is estimated to be
very small, of order (τD/P ) ≈ (l/a)2 (Spruit 1982; Cally 1986, 2003; Roberts 2000),
which is about 104 wave periods for a slender loop with a/l = 0.01 So, it cannot
explain the observed damping of order τD/P ≈ 1.
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7.5.3 Footpoint Wave Leakage

Now consider a laser, where a resonant cavity builds up wave energy coherently when
the trapped waves are 100% reflected at the side walls that coincide with the wave
nodes. If the reflection is less than 100% we have leakage. Similarly, waves in coro-
nal loops can leak out of the chromospheric footpoints when the reflection coefficient
at the coronal/chromospheric interface is less than 100%, due to ion-neutral collisions
in the chromosphere. Leakage of fast waves from loop footpoints was considered by
Berghmans & De Bruyne (1995), who estimated a decay time of about 102 periods.
The energy reflection coefficient R between an incoming (downward propagating) and
outgoing (upward propagating) coronal Alfvén wave at the coronal/chromospheric in-
terface is given by Davila (1991),

R =

∣∣∣∣∣v
phot
A − vcor

A

vphot
A + vcor

A

∣∣∣∣∣ , (7.5.4)

which amounts to about R ≈ 0.98 for typical coronal and chromospheric Alfvén ve-
locities. The corresponding damping time τD of loop oscillations resulting from wave
leakage at the footpoints is (Hollweg 1984a),

τD =
l

(2 − R1 − R2)vcor
A

=
τA

2 − R1 − R2
, (7.5.5)

where τA is the Alfvén crossing time from one footpoint to the other, and R1 and R2

are the reflection coefficients at both footpoints. The high reflection coefficient given
in Eq. (7.5.4), however, is derived from the assumption of a step function, while a more
realistic treatment of the chromosphere with a finite scale height (i.e., vA ∝ eh/2λ),
leads to a lower reflection coefficient (De Pontieu et al. 2001),

R2 =
J2

0 + Y 2
0 + J2

1 + Y 2
1 − 4/(πα)

J2
0 + Y 2

0 + J2
1 + Y 2

1 + 4/(πα)
≈ (1 − πα)2 , (7.5.6)

where the argument of the Bessel functions (J0, J1, Y0, Y1) is α = 2λω/vcor
A with

ω = 2π/P . For solar applications, the chromospheric scale height is λ ≈ 500 km,
vcor

A ≈ 1000 km s−1, and thus α � 1, leading to the approximation on the right-hand
side of Eq. (7.5.6). The damping time τD due to wave leakage then becomes,

τD ≈ τA

πα
=

LP

4π2λ
. (7.5.7)

Applying this relation to the observed damping times τD , periods P , and loop lengths
l to the MHD fast kink-mode oscillations observed in Aschwanden et al. (2002a), one
finds that chromospheric scale heights between λ = 400 km and 2400 km are required.
These values are somewhat higher than the scale height derived in chromospheric mod-
els with hydrostatic equilibrium (VAL and FAL models), yielding λ ≈ 500 km, but can
be consistent with more dynamic models (as manifested by the ubiquitous spicules)
and with more recent measurements of the chromospheric scale height in microwaves
and in hard X-rays with RHESSI (see Fig. 4.28). In contrast, chromospheric leakage
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was also studied with a nonlinear visco-resistive MHD code, where the damping time
due chromospheric leakage was found to be about 5 times longer than the observed de-
cay time for one MHD fast kink-mode oscillation event observed with TRACE (Ofman
2002). Thus the importance of chromospheric wave leakage is presently unresolved,
awaiting more statistics of damping times and more accurate local measurements of
chromospheric density scale heights.

7.5.4 Phase Mixing

Magneto-acoustic waves in a homogeneous medium (in density and magnetic field)
propagate undamped and undisturbed because they are in perfect resonance with the
magnetic field. However, if the medium has large gradients in the Alfvén velocity,
then shear Alfvén waves suffer intense phase mixing, during which the oscillations of
neighboring field lines become rapidly out of phase, which leads to enhanced viscous
and ohmic dissipation (Heyvaerts & Priest 1983). The amount of wave damping due
to phase mixing in a coronal loop with length l is derived in Heyvaerts & Priest (1983)
and summarized in Roberts (2000), and depends on the Alfvén transit time τA = l/vA,
the scale of inhomogeneity linh, and the coronal viscosity νvisc; the damping time is

τD =
[

6l2l2inh

νviscπ2v2
A

]1/3

. (7.5.8)

The first application of this damping formula to an oscillating loop was presented
in Nakariakov et al. (1999), where a coronal loop with MHD fast kink-mode oscil-
lations was observed with TRACE during the 1999-Jul-14, 12:55 UT, flare (Plate 9)
with the following parameters: full loop length l = 130 ± 6 Mm, oscillation period
Pkink = 256 s, and damping time τD = 870 ± 162 s. For the fundamental kink mode
this corresponds to a phase speed of ck = 2l/Pkink = 1040 ± 50 km s−1, and as-
suming a density ratio of ne/ni ≈ 0.1, this yields (with Eq. 7.2.4) an Alfvén speed of
vA = 770± 40 km s−1 or an Alfvén crossing time of τA = 1.3 s. The full width of the
oscillating loop was measured to w = 7.2 Mm in Aschwanden et al. (2002a). What-
ever the fine structure of the oscillating loop is, for instance a bundle of unresolved
threads, an upper limit on the spatial scale linh over which the Alfvén velocity changes
drastically is a loop radius (i.e., a = w/2 = 3.6 Mm). Therefore, we can derive from
Eq. (7.5.8) an upper limit for the coronal viscosity,

νvisc =
6l2l2inh

τ3
Dπ2v2

A

≤ 6l2a2

τ3
Dπ2v2

A

(7.5.9)

which yields a value of νvisc ≤ 4 × 1012 cm2 s−1, using the parameters above. This
is about an order of magnitude below the traditional value of the coronal viscosity,
νcor

visc = 4 × 1013 cm2 s−1. Nakariakov et al. (1999) used a different scaling law for
the coronal viscosity, based on calculations with a numeric visco-resistive MHD code
(Ofman et al. 1994),

τD = 32.6τAR0.22 = 32.6
l

vA

(
linhvA

νvisc

)0.22

, (7.5.10)
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but this yields the same value of νvisc ≈ 4 × 1012 cm2 s−1 for the viscosity.
The viscous Reynolds number RL based on the Alfvén speed is a measure of vis-

cous convection over a length scale linh with Alfvén speed vA,

RL =
linhvA

νvisc
, (7.5.11)

which yields, for the oscillating loop, a value of RL ≈ 104, which is far below tradi-
tionally believed values of the coronal (magnetic) Reynolds number (Lundquist num-
ber), Rcor

L = 1012 − 1014. The authors suggest that this enhanced value applies to
the shear viscosity. Thus, the shear viscosity needs to be enhanced by 8−9 orders of
magnitude in the loop compared with classical viscosity to explain the strong damp-
ing, if phase mixing is employed as the primary damping mechanism (Nakariakov et
al. 1999). An observational test of this model can be made from the expected scaling
law for phase mixing, which by inserting the oscillation period P = 2l/ck ≈ √

2l/vA

into Eq. (7.5.8) yields (see § 7.5.6),

τD(P ) =
[
3P 2l2inh

νviscπ2

]1/3

. (7.5.12)

It was pointed out that it would be actually more appropriate to consider the shear
viscosity coefficient instead of the kinematic or compressional viscosity to estimate
the damping due to phase mixing, considering the strong anisotropy of the coronal
plasma (Ofman et al. 1994; Roberts 2002).

7.5.5 Resonant Absorption

Another mechanism that could substantially damp kink-mode oscillations is the pro-
cess of resonant absorption, where the energy of the kink-mode motion can be trans-
ferred into (predominantly azimuthal) Alfvén oscillations of the inhomogeneous layers
at the loop boundary, where the density, and thus the Alfvén speed, varies drastically.
The damping of loop oscillations indicates a mode conversion process (i.e., global kink-
mode oscillations transfer energy into localized Alfvén waves, Lee & Roberts 1986).
Following the approach of an initial value problem (e.g., Sedlacek 1971; Ionson 1978;
Rae & Roberts 1982; Lee & Roberts 1986; Hollweg 1987; Hollweg & Yang 1988;
Steinolfson & Davila 1993), the damping time τD of a kink mode oscillating loop with
a thin boundary layer (lskin � rloop) was calculated due to resonant absorption by
Ruderman & Roberts (2002), leading to the damping formula

(τD

P

)
thin

=
2
π

(
rloop

lskin

)
(1 + qn)
(1 − qn)

, (7.5.13)

where rloop is the loop radius, lskin the skin depth or thickness of the loop boundary
with varying density, and qn = ne/ni is the density ratio for the external (ne) to
internal loop density (ni). We see that damping is stronger for larger skin depth ratios,
because the extent of the inhomogeneous region where resonant transfer of Alfvén
wave energy takes place is relatively large. In addition, the damping is strongest for
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the largest density contrast (qn = 0), while it is weakest (τD → ∞) for oscillating
loops that have the same density as the environment (ni → ne, qn → 1). This damping
formula was generalized for elliptical cross sections (Ruderman 2003), and for thick
boundaries 0 < lskin ≤ 2rloop (Van Doorsselaere et al. 2004) using numerical MHD
calculations (LEDA code),

(τD

P

)
thick

= qTB
2
π

(
rloop

lskin

)
(1 + qn)
(1 − qn)

, (7.5.14)

where the correction factor qTB depends on the thickness of the boundary layer (lskin

/rloop) as well as on the density ratio qn (e.g., having a value of qTB(lskin/rloop =
2, qn = 1/3) = 0.75 in the fully nonuniform limit lskin/rloop = 2). In both studies, the
density profile n(r) across the loop cross section is parameterized with a sine function
within the skin depth,

n(r) =

⎧⎪⎨
⎪⎩

ni for r < (rloop − lskin)
ni

[
(1+qn)

2 − (1−qn)
2 sin π

2
(2r+lskin−2rloop)

lskin

]
(rloop − lskin) < r < rloop

ne for r > rloop

(7.5.15)
Oscillating loops observed with TRACE have been found to have typical skin depths of
lskin/rloop = 1.5±0.2, which is close to the fully nonuniform limit of lskin/rloop = 2.
A lower limit of their density ratio was measured at qn ≤ 0.30 ± 0.16 (Aschwanden
et al. 2003b). Inserting these mean values into Eq. (7.5.14) yields a predicted ratio
of the damping time to the oscillation period of τD/P ≈ 2.0, which is very close to
the average observed value (i.e., (τD/P )obs = 580/321 = 1.8, see Table 7.3). So,
the mechanism of resonant absorption predicts a damping time of kink-mode oscilla-
tions that is close to the observed one, which provides a more natural explanation than
the alternative mechanism of phase mixing with an excessively low coronal Reynolds
number.

7.5.6 Observational Tests

For MHD fast kink-mode oscillations, there are 11 events observed with TRACE for
which the damping time could be determined (Aschwanden et al. 2002a; shown in
Fig. 7.22), while for MHD slow-mode (acoustic) oscillations, the damping time has
been measured in 54 events from SUMER observations (Wang et al. 2003b). The
mean ratio of damping time to oscillation period is τD/P = 1.8±0.8 for the fast kink-
mode oscillations (Table 7.3) and τD/P = 0.84 ± 0.34 for the slow-mode (acoustic)
oscillations (Table 7.8).

Attempts have been made to determine the scaling law of theoretically predicted
damping times and to compare it with the observed damping times for the MHD fast
kink-mode oscillation events (Ofman & Aschwanden 2002; Aschwanden et al. 2003b),
but the small number statistics of 11 events does not allow us to discriminate between
competing damping theories, as the scatter of the data points in Fig. 7.23 illustrates.
However, we can determine the average ratios between the predicted and observed
damping times, as shown in Fig. 7.23. The results for the radiative cooling time τrad
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Figure 7.22: Eleven oscillation events observed with TRACE 171 Å, where the transverse
MHD kink-mode oscillation amplitude A(t) is fitted with a damped sine function plus a low-
order polynomial function. The polynomial trend function is subtracted and only the oscillatory
fit (thick curve) to the data points (diamonds) is shown (adapted from Aschwanden et al. 2002a).
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Table 7.10: Physical parameters measured for 11 events with damped oscillations observed
with TRACE 171 Å (Aschwanden et al. 2003b).

Parameter Mean and standard deviation
Loop curvature radii Rcurv 57 ± 21 Mm
Oscillation period P 317 ± 114 s
Damping time τD 574 ± 320 s
Observed number of oscillations τD/P 1.8 ± 0.8
Predicted minimum of ratio (τD/P )min 0.32 ± 0.05
Outer loop radius a 4.5 ± 3.5 Mm
Inner loop radius a − l 0.6 ± 0.5 Mm
Mean loop width wloop = 2a − l 5.1 ± 3.9 Mm
Loop skin depth l 3.9 ± 3.1 Mm
Relative loop skin depth l/R 1.5 ± 0.2
Loop density ni 1.4 ± 0.7 109 cm−3

External plasma density ne(T = 1MK) 0.36 ± 0.18 109 cm−3

Predicted external plasma density ne = niq
LEDA
n 0.76 ± 0.36 109 cm−3

Density ratio qn = ne(T = 1MK)/ni 0.30 ± 0.16
Predicted density ratio qLEDA

n = ne/ni 0.53 ± 0.12
Prediction ratio ne/ne(T = 1MK) = qLEDA

n /qn 2.5 ± 2.1

(Eq. 7.5.3), the footpoint leakage decay time τleak (Eq. 7.5.7), for the phase mixing
decay time τPM (Eq. 7.5.12), and the resonant absorption decay time τRA (Eq. 7.5.14)
are, based on the observational parameters listed in Tables 7.1 and 7.10:

τrad/τD = 9.78 ± 7.67 ,

τleak/τD = 6.16 ± 2.58 ,

τPM/τD = 0.79 ± 0.19 ,

τRA/τD = 0.37 ± 0.15 . (7.5.16)

These statistical results tell us that the radiative cooling time and footpoint leakage
times are much longer and thus not relevant for the observed damping. The footpoint
leakage time was calculated for a chromospheric scale height of λ = 500 km, so in
principle an effective scale height (λ = 3000 km) that is 6 times longer could produce
enough damping. On the other hand, both the phase mixing and resonant absorption
produce damping times comparable or even shorter than the observed ones. For phase
mixing, however, extremely low Reynolds numbers would be required, so it is not clear
whether the concept of compressional viscosity is correctly applied. The most natural
interpretation of the damping mechanism seems to be the concept of resonant absorp-
tion, a conclusion that was suggested by Ruderman & Roberts (2002) and Goossens et
al. (2002a).

For MHD slow-mode acoustic waves, damping by thermal conduction has been
shown to yield damping times that are comparable with the observed ones (i.e., τD ≈
5− 30 min; Ofman & Wang 2002). Note that the observations all refer to hot (T > 6.3
MK) flare-like loops observed in Fe XIX with SUMER. Since the thermal conduction
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Figure 7.23: Damping times predicted by theory (radiative cooling time τrad, footpoint leakage
damping τleak, phase mixing decay time τPM , and resonant absorption τRA) compared with
observed damping times τD for 11 events with MHD fast kink-mode oscillations observed with
TRACE (see data in Table 7.1 and 7.10). The average ratio is marked with a dashed line with the
means and standard deviations (excluding extremal values) indicated in each frame.

times are scaling with τcond(T ) ∝ T−5/2, they would be a factor of 6.32.5 = 100
longer for the cooler (T ≈ 1.0 MK) EUV loops with detected kink-mode oscillations,
and thus would not play a role in the damping of EUV oscillations.

7.6 Summary

Coronal seismology is a prospering new field, stimulated by the first imaging ob-
servations of oscillating coronal loops made with TRACE and SOHO/SUMER
since about 1999. While the theory of MHD oscillations was developed several
decades earlier, only the new imaging observations provide diagnostics on length
scales, periods, damping times, and densities that allow a quantitative application
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of the theoretical dispersion relations of MHD waves (§ 7.1). The theory of MHD
oscillations has been developed for homogeneous media, single interfaces, slender
slabs, and cylindrical fluxtubes. There are four basic speeds in fluxtubes: (1) the
Alfvén speed vA = B0/

√
4πρ0, (2) the sound speed cs =

√
γp0/ρ0, (3) the cusp

or tube speed cT = (1/c2
s + 1/v2

A)−1/2, and (4) the kink or mean Alfvén speed
ck = [(ρ0v2

A + ρev2
Ae)/(ρ0 + ρe)]1/2. For coronal conditions, the dispersion re-

lation reveals a slow-mode branch (with acoustic phase speeds) and a fast-mode
branch of solutions (with Alfvén speeds). For the fast-mode branch, a symmet-
ric (sausage) mode and an asymmetric (kink) mode can be distinguished. The
fast kink mode (§ 7.2) produces transverse amplitude oscillations of coronal loops
which have been detected with TRACE, having periods in the range of P=2−10
min, and can be used to infer the coronal magnetic field strength, thanks to its
non-dispersive nature. The fast sausage mode (§ 7.3) is highly dispersive and is
subject to a long-wavelength cutoff, so that standing wave oscillations are only
possible for thick and high-density (flare and postflare) loops, with periods in the
range of P≈1 s to 1 min. Fast sausage-mode oscillations with periods of P≈10 s
have recently been imaged for the first time with the Nobeyama Radioheliograph,
while there exist numerous earlier reports on non-imaging detections with periods
of P≈0.5−5 s. Finally, slow-mode acoustic oscillations (§ 7.4) have been detected
in flare-like loops with SUMER, having periods in the range of P≈ 5 − 30 min.
All loop oscillations observed in the solar corona have been found to be subject
to strong damping, typically with decay times of only 1−2 periods. The relevant
damping mechanisms (§ 7.5) are resonant absorption for fast-mode oscillations (or
alternatively phase mixing, although requiring an extremely low Reynolds num-
ber), and thermal conduction for slow-mode acoustic oscillations. Quantitative
modeling of coronal oscillations offer exciting new diagnostics on physical param-
eters.



Chapter 8

Propagating MHD Waves

The terms “waves” and “oscillations” are often used interchangably, because the gen-
eral wave form is often decomposed into Fourier components, each one representing
an oscillatory solution, A(x, t) =

∑
n An exp (−i[kx − ωnt]). In this book we use

a stricter definition, reserving the term oscillations only for standing waves with fixed
nodes (§ 7), while propagating waves have moving nodes (Fig. 8.1). All the MHD os-
cillation modes we described in chapter 7 have fixed nodes, anchored at both endpoints
of a coronal loop, forced by the photospheric line-tying conditions of the magnetic
field, analogous to the strings of a violin. In principle, clean harmonic oscillations are
only warranted if either the excitation profile along a loop matches the sine function
of a harmonic wave solution, or once an initial arbitrary displacement settles into a
fundamental harmonic oscillation, after the higher harmonic components are damped
out. This time interval can be quite long, for instance it amounts to about 40 oscilla-
tion periods for a clarinet, as measured with a high-speed camera. Since coronal loop
oscillations have been found to be strongly damped within a few oscillation periods,
they probably never have sufficient time to settle into a clean harmonic eigen mode,
besides the unavoidable damping due to finite dissipation. We expect a series of short-
wavelength disturbances to propagate along the loop, especially when the excitation
occurs at one side of a coronal loop on a time scale much shorter than the reflection
time over the entire loop length. Hence, there is a gradual transition from harmonic
oscillations to propagating waves, depending on the time scale and spatial symmetry
of the initial displacement. In this chapter we deal exclusively with propagating waves,
a field that experienced a major breakthrough after the recent SoHO and TRACE ob-
servations, including the discoveries of EIT (or coronal Moreton) waves (Thompson et
al. 1998a; Wills−Davey & Thompson 1999), compressible waves in polar plumes (Of-
man et al. 1997; DeForest & Gurman 1998; Ofman et al. 1999), wave trains in coronal
loops (Berghmans & Clette 1999; Robbrecht et al. 2001; De Moortel et al. 2002a,b,c),
as well as with the first detection of propagating wave trains during a solar eclipse
(Williams et al. 2001, 2002; Pasachoff et al. 2002). Recent reviews on the subject can
be found in Roberts (2000; 2002) and Roberts & Nakariakov (2003).
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Fixed nodes
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A(z,t)=A0 sin(kz)*cos(ωt) A(z,t)=A0 sin(kz-ωt)

Figure 8.1: Definition of “standing wave” or “oscillation” (left) and “propagating wave” (right).
A standing wave has fixed nodes, while a propagating wave has moving nodes as a function of
time. Standing waves can also be composed by superposing two oppositely directed propagating
waves.

8.1 Propagating MHD Waves in Coronal Loops

8.1.1 Evolutionary Equation for Slow-Mode MHD Waves

We derived the general dispersion relation for magneto-acoustic waves in cylindrical
fluxtubes in § 7.1.4, which showed two branches of phase speed solutions ω/k: a fast-
mode branch (with Alfvén speeds) and a slow-mode branch (with acoustic speeds),
as shown in Fig.7.4 for coronal conditions. In this section we study the propagating
waves of the slow mode for the special geometry of coronal loops, which involves
gravitational stratification in the vertical direction for fluxtubes curved along closed
magnetic field lines, while the case for open magnetic field lines is considered in the
next section (§ 8.2). Making some simplifying assumptions, such as neglecting the
coupling of the slow magneto-acoustic mode with other wave modes, 2D effects (in-
cluding wave dispersion), loop curvature, whilst assuming wavelengths much shorter
than the gravitational scale height, Nakariakov et al. (2000a) derived the evolutionary
equation, using the following form of the resistive MHD equations (see § 6.1.5):

∂ρ

∂t
+

∂

∂s
(ρv) = 0 , (8.1.1)

ρ

(
∂v
∂t

+ v
∂v
∂s

)
= −∂p

∂s
− gρ +

4
3
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∂2v
∂s2

, (8.1.2)
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− 1

(γ − 1)
γp

ρ

∂ρ

∂t
=

∂

∂s

(
κ‖

∂T

∂s

)
, (8.1.3)

where s is the loop length coordinate, ρ(s) the plasma density, v(s) the longitudinal
speed, p(s) the plasma pressure, T (s) the plasma temperature, γ the adiabatic index,
κ‖ = κT 5/2 the thermal conductivity along the magnetic field, η0 the compressive
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Figure 8.2: Evolution of the amplitude of slow magneto-acoustic waves with the initial ampli-
tude v(0) = 0.02 cs for three wave periods: 900 s (solid curves), 600 s (dotted curves), and
300 s (dashed curves). The upper curve of each kind corresponds to the normalized dissipation
coefficient η = 4× 10−4, and the lower curve to η = 4× 10−3. The amplitude of each wave is
measured in units of the initial amplitude. The loop radius is rcurv = 140 Mm (Nakariakov et
al. 2000a).

viscosity coefficient, and g(s) the gravitational acceleration projected along the loop
coordinate s for a semi-circular geometry (with curvature radius rcurv),

g(s) = g� cos
(

s

rcurv

)(
1 +

rcurv

R�
sin

s

rcurv

)−2

. (8.1.4)

Combining the equations (8.1.1−3) into a wave equation, Nakariakov et al. (2000a)
obtained an evolutionary equation for the density perturbation in the form of a modified
Burgers equation,

∂v
∂s

− 1
2λn

v +
γ + 1
2cs

v
∂v
∂ξ

− R�ρ0(0)η
2ρ0(s)

∂2v
∂ξ2

= 0 , (8.1.5)

where ξ = s − cst is the coordinate co-moving with a wave crest with sound speed
cs, λn(s) = c2

s(γg)−1 the local density scale height, Rgas = p/ρT = 2kB/µmp the
gas constant, and ρ0(0) the equilibrium density at the base of the corona (s = 0). The
linearized version of Eq. (8.1.5) can be solved under the assumption of a harmonic
wave, v(s) ∝ cos (kξ) = cos (ks − ωt), propagating with sound speed ω/k = cs with
wave number k,

v(s) = v(0) exp
[∫ s

0

(
1

2λn(x)
− k2ηρ0(0)R�

2ρ0(x)

)
dx

]
, (8.1.6)
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Table 8.1: Observations of slow-mode (acoustic) waves in coronal structures. N is the number
of analyzed events.

Observer N Frequency or Wave speed Instrument
wavelength v [km/s]

DeForest & Gurman (1998) 1 171 Å ≈ 75 − 150 SoHO/EIT
Berghmans & Clette (1999) 3 195 Å ≈ 75 − 200 SoHO/EIT
De Moortel et al. (2000b) 1 171 Å ≈ 70 − 165 TRACE
De Moortel et al. (2002a) 38 171 Å 122 ± 43 TRACE
De Moortel et al. (2002b) 4 195 Å 150 ± 25 TRACE
De Moortel et al. (2002c) 38 171 Å 122 ± 43 TRACE
Robbrecht et al. (2001) 4 171, 195 Å ≈ 65 − 150 EIT, TRACE
Berghmans et al. (2001) 1 171, 195 Å ... EIT, TRACE
Sakurai et al. (2002) 1 5303 Å ≈ 100 Norikura
King et al. (2003) 1 171, 195 Å ... TRACE
Marsh et al. (2003) 1 171, 368 Å ≈ 50 − 195 CDS, TRACE

where the normalized dissipation coefficient η is defined by

η =
1

ρ0(0)csR�

[
4η0

3
+

κ‖(γ − 1)2

Rgasγ

]
. (8.1.7)

The linearized solution of the evolutionary equation (8.1.5) yields a proportional per-
turbation in density, pressure, and temperature (according to the continuity equation
and ideal gas equation),

ρ

ρ0
=

v
cs

,
p

p0
= γ

v
cs

,
T

T0
= (γ − 1)

v
cs

. (8.1.8)

The evolution of each normalized quantity (Eq. 8.1.8) as a function of the loop coordi-
nate s is shown in Fig. 8.2. The growth rate of each amplitude (in density, velocity, or
pressure) is determined by the balance between the vertical gravitational stratification
and dissipation (by thermal conduction and viscosity). Waves of shorter wavelengths
(larger wave numbers k) grow slower than long-wavelength waves. Sufficiently short-
wavelength perturbations, with k > 1/

√
ηλn(0), do not grow at all, but decay with

height. So the evolution of upward propagating slow-mode (acoustic) waves, whether
they grow or decay, depends on the value of the dissipation coefficient η, thermal con-
duction coefficient κ‖, and base density ρ0(0), as combined in the normalized dissi-
pation coefficient η (Eq. 8.1.7). Nakariakov et al. (2000a) estimate a lower limit of
η ≈ 4 × 10−4, using η0 = 0.352 g cm−1 s−1 according to Braginskii’s theory for
n0 = 5 × 108 cm−3, Te = 1.6 MK, and neglecting thermal conduction (γ = 1).
Evolutions of slow-mode acoustic waves for η = 4 × 10−4 and 10−3 are shown in
Fig. 8.2.

8.1.2 Observations of Acoustic Waves in Coronal Loops

Acoustic waves propagating in coronal loops were probably first noticed in EUV im-
ages of SoHO/EIT observations, when time sequences of flux profiles F (s, t) along
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Figure 8.3: TRACE 171 Å observation of a slow-mode (acoustic) wave recorded on 2001 June
13, 06:46 UT. Left: the diverging fan-like loop structures emerge near a sunspot, where the
acoustic waves are launched and propagate upward. Right: a running difference plot is shown
for the loop segment marked in the left frame, with time running upward in the plot. Note the
diagonal pattern which indicates propagating disturbances (De Moortel et al. 2000a).

loops with transient features were plotted with sufficiently high cadence (e.g., with
∆t = 15 s, Berghmans & Clette 1999). In such space-time diagrams, diagonal patterns
were noticed (e.g., Fig. 8.3 right), which exhibited slopes in the range of v = ds/dt ≈
150 km s−1 (Berghmans & Clette 1999), corresponding to a speed slightly below the
sound speed of cs ≈ 180 km s−1 at T ≈ 1.5 MK expected in the used EIT 195 Å
temperature band. A compilation of related observations are given in Table 8.1.

A number of propagating waves were also analyzed from TRACE data, starting in
active regions and propagating upward into diverging, fan-like bundles of loops that
fade out with height (Fig. 8.3, left), while no downward propagating waves were de-
tected (De Moortel et al. 2000b, 2002a,b,c). Typical speeds of v ≈ 122 ± 43 km s−1

(De Moortel et al. 2000b) were measured from TRACE 171 Å data, where the mean
sound is expected to be cs ≈ 147 km s−1 at T ≈ 1.0 MK. Multi-wavelength obser-
vations with both EIT and TRACE confirm that the diverging fan structures consist
of multiple loop threads with different temperatures and corresponding sound speeds
(Robbrecht et al. 2001; King et al. 2003). Time periods of P = 172 ± 32 s were
found for loops rooted near sunspots, which coincide with the 3-minute p-mode os-
cillations detected in sunspots (Brynildsen et al. 2000, 2002; Fludra 2001; Maltby et
al. 2001), while waves that start further away from sunspots (in active region plages)
have periods of P = 321 ± 74 min, which coincide with the global 5-minute p-mode
oscillations. This result clearly proves that subphotospheric acoustic p-mode oscil-
lations penetrate through the chromosphere and transition region and excite coronal
acoustic waves. The energy flux associated with these propagating waves was esti-
mated to dεwave/dt ≈ (3.5 ± 1.2)× 102 erg cm−2 s−1, far below the requirement for
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Table 8.2: Statistical parameters of slow-mode (acoustic) waves observed with TRACE 171 Å
in 38 structures (De Moortel et al. 2002a).

Parameter Average Range
Length of loop segment L 26.4±9.7 Mm 10.2−49.4 Mm
Average footpoint width w 8.1±2.8 Mm 3.9−14.1 Mm
Divergence gradient dw/ds 0.28±0.16 0.07−0.71
Oscillation period P 282±93 s 145−525 s
Propagation speed vwave 122±43 km/s 70−235 km/s
Wave amplitude dI/I 0.041±0.015 0.007−0.146
Brightness change Imax/Imin 7.4±5.8 1−22.7
Detection length Ldet 8.9±4.4 Mm 2.9−23.2 Mm
Detection ratio Ldet/L 0.367±0.188 0.08−0.814
Energy flux dεwave/dt 342±126 erg/(cm2 s) 194−705 erg/(cm2 s)

coronal heating (§ 9.1). The statistical means and ranges of the parameters measured
in De Moortel et al. (2002a) are compiled in Table 8.2. The wave trains were found to
fade out quickly with height, partially an effect of the decreasing flux amplitude due to
the diverging geometry of the loop fans, combined with the damping caused by thermal
conduction (De Moortel et al. 2002b; De Moortel & Hood 2003, 2004). The interpreta-
tion in terms of slow-mode (acoustic) waves is based on: (1) the observed propagation
speed roughly corresponding to the expected sound speed in the used temperature band,
and (2) slow-mode (acoustic) waves being compressional waves, producing a modu-
lation of the density and EUV flux, and thus observed as EUV intensity modulation
(which is not the case for Alfvén waves).

Slow sound waves were possibly also detected in optical wavelengths (in the green
line at 5303 Å) with spectroscopic methods using the Norikura Solar Observatory, with
periods of P ≈ 3 − 5 min and speeds of v ≈ 100 km s−1 (Sakurai et al. 2002),
but the confusion in white light seems to be much larger than in narrow-band EUV
filters. Similarly, searches for waves with CDS data, which have substantially less
spatial resolution than TRACE and EIT data, have only revealed marginal signals of
oscillatory wave activity (Ireland et al. 1999; O’Shea et al. 2001; Harrison et al. 2002;
Marsh et al. 2003), due to the overwhelming confusion with other spatially unresolved
and time-varying loop structures.

8.1.3 Propagating Fast-Mode Waves in Coronal Loops

Fast mode MHD waves have Alfvén phase speeds, which can vary over a considerable
range in coronal conditions, between the minimum Alfvén speed value vA inside of a
loop and the maximum speed vAe outside of the loop (i.e., vA ≤ vph = ω/k ≤ vAe)
(Fig. 7.4). We discussed the standing waves or eigen frequencies of this fast MHD wave
mode in § 7.2 (kink mode) and § 7.3 (sausage mode). Now, what about propagating fast
MHD waves. We quote Roberts et al. (1984): “Propagating waves, rather than standing
modes, will result whenever disturbances are generated impulsively. Such waves may
arise in a coronal loop, if the motions have insufficient time to reflect from the far end of
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Figure 8.4: The evolution of a signal produced by a propagating fast-mode MHD wave in a
coronal loop, which originates at height h = 0 and is observed at height h = z. The time
intervals of the three phases depend on the characteristic velocities vA, vAe, and cmin

g (Roberts
et al. 1984).

Figure 8.5: The group speed vg = ∂ω(k)/∂k, normalized by the external Alfvén velocity
vAe, as a function of the dimensionless wave number frequency kea = ωa/vAe, calculated for
coronal conditions cs 	 vA and ρ0/ρe = 6. Note the occurrence of a minimum in the group
speed, cmin

g (Roberts et al. 1984).

the loop, or in open field regions. An obvious source of such an impulsive disturbance
is the flare (providing either a single or a multiple source of disturbances), but less en-
ergetic generators should not be ruled out. If the waves are generated impulsively, then
the resulting disturbance may be represented as a Fourier integral over all frequencies
ω and wave numbers k. In general, a wave packet results, its overall structure being
determined by the dispersive nature of the modes.” Roberts et al. (1984) calls this type
of wave an impulsively generated fast wave. Such propagating fast-mode MHD waves
display a bewildering variety of evolutionary scenarios, which have not been explored
much in the solar context, but their hydrodynamic analogs have been widely studied in
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Figure 8.6: SoHO/EIT 195 Å observations (left) and Solar Eclipse Corona Imaging System
(SECIS) observations of an active region loop during the total solar eclipse on 1999 Aug 11
(Shabla, Bulgaria), which showed propagating waves along the loop with rapid oscillations (P =

6 s). The SECIS image is taken in Fe XIV 5303 Å, is averaged over 50 consecutive frames (1.1
s), and is contrast-enhanced. The loop is enlarged and loop positions A−M are marked in 3 × 3

macropixels with a scale of 4.07′′ , while the time profiles at positions A−M are shown in Fig. 8.7
(Williams et al. 2002).

oceanography. Here we summarize just some salient features as described in Roberts
et al. (1984).

Let us assume that an impulsive disturbance, in the form of a magnetic field fluctu-
ation B(z, t) = B0(z)+B1(z = z0, t), launches an Alfvén wave near the footpoint of
a coronal loop. As we learned in § 7.1.2, a surface wave at the boundary between the
overdense loop and the less dense coronal environment will then propagate along the
loop (in an upward direction), with a phase speed vph = ω(k)/k that depends on the
wave number k of the disturbance, which could be a broadband spectrum and excite
the whole range of Alfvén velocities vA ≤ vph = ω/k ≤ vAe. Let us watch the re-
sponse of the loop plasma at some height z = h. The first signal that arrives at a height
z = h is that with the fastest phase speed, which is the external Alfvén speed vAe,
having a frequency of ωc = kcvAe, arriving at time t1 = h/vAe. This is the start time
of local periodic oscillations with frequency ωc. After that, waves with slower phase
speeds arrive, down to a minimum speed vph = vA after time t2 = h/vA. This time
interval (t1 < t < t2) is called periodic phase (Fig. 8.4) , during which the oscillation
amplitude steadily grows. However, there is a Fourier spectrum of wave frequencies ω,
but the key for the understanding of the evolution is the group speed, cg = ∂ω(k)/∂k,
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Figure 8.7: Time profiles of the intensity (left) at position A−M of the SECIS image shown
in Fig. 8.6. The mean period in each time profile is P ≈ 6 s, but the peaks shift as a function
of position, indicating a propagating wave. The distance traveled by the wave maximum along
the positions A−H is shown in the top right diagram, where the slope indicates a velocity of
v = 2100 km s−1. The average phase as a function of the distance along the loop is shown in
the bottom right diagram, yielding a wavelength of λ = 12 Mm (Williams et al. 2002).

the observed speed with which the signal of the disturbance is propagating. This group
speed vg = ∂ω(k)/∂k has a minimum value cmin

g at some wave vector k, as shown
in Fig. 8.5, which will arrive at time t3 = h/cmin

g at height z = h. The time interval
t2 < t < t3 is called the quasi-periodic phase (Fig. 8.4). After time t3 the amplitude of
the disturbance will decline, a phase called the decay (or Airy) phase (Fig. 8.4). These
various phases of an impulsively generated fast wave have actually been observed in
oceanography (Pekeris 1948). Numerical simulations of the initial stage confirm this
evolutionary scenario (Murawski & Roberts 1993; 1994; Murawski et al. 1998).

The interpretation of solar observations in terms of this evolutionary scenario of
fast-mode MHD waves is not trivial. Roberts et al. (1983; 1984) emphasize that the
cutoff frequency ωc and the frequency ωmin of the minimum group velocity cmin

g are
the most relevant time scales to be observed and associate the periods (P ≈ 0.5 − 3.0
s) observed in radio wavelengths to this mode of (impulsively generated) propagating
fast-mode MHD waves. Propagating fast-mode MHD waves imply that a magnetic
field disturbance travels at Alfvén speeds. If it modulates gyrosynchrotron emission,
the corresponding radio emission should show a frequency-time drift of some ripple
in the gyrosynchrotron spectrum, which perhaps has been observed in the form of a
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Figure 8.8: Numerical simulation of an impulsively generated fast-mode MHD wave train
propagating along a corona loop with a density contrast of ρ0/ρe = 14. Top: the time series is
recorded at location z = 70w (with w the semi-width of the loop). Bottom: wavelet transform
analysis of the signal, exhibiting a “tadpole” wavelet signature similar to the observations shown
in Fig. 8.9 (Nakariakov et al. 2003b).

quasi-periodic fine structure called fiber bursts (Rosenberg 1972; Bernold 1980; Slottje
1981). Most of the fast oscillation events, however, have been observed in metric
and decimetric frequencies, where plasma emission dominates, but since Alfvén MHD
waves are non-compressional (in contrast to the slow-mode acoustic waves), is not
clear how they would modulate the plasma emission, which is only a function of the
local electron density. Another problem is, even if fast-mode MHD waves modulate
plasma emission, that the average density, and thus the total flux, integrated over a loop
oscillating in the sausage mode would be conserved, and could not be perceived as an
intensity modulation by non-imaging radio instruments, as long as they do not spatially
resolve a sausage node (with spatial scale λ = 2π/k).

The first imaging observations that have been interpreted in terms of propagating
fast-mode MHD waves (Nakariakov et al. 2003b) are the SECIS eclipse observations
of Williams et al. (2001, 2002). During this eclipse, a loop has been observed with
propagating wave trains in intensity, with a period of P ≈ 6 s and a propagation
speed of v ≈ 2100 km s−1 (Figs. 8.6 and 8.7). The evolution of the propagating fast-
mode MHD oscillation has been modeled with a numeric MHD code by Nakariakov
et al. (2003b), which confirmed the formation of quasi-periodic wave trains predicted
by Roberts et al. (1983, 1984) and Nakariakov & Roberts (1995). The evolution of the
loop density as a function of time and oscillation periods, ρ(t, P ) is displayed in the
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Figure 8.9: Observed wavelet transform of a coronal loop with propagating waves during the
eclipse on 1999-Aug-11 observed with SECIS. Note the “tadpole” signature at P = 1/0.16

Hz=6 s (Katsiyannis et al. 2003).

form of a wavelet transform in Fig. 8.8, which exhibits at the dominant period P ≈ 6 s
a “tadpole” feature that is also observed by SECIS (Fig. 8.9). The SECIS observations
were made with 4′′ pixels (≈ 8′′ resolution) and averaged over 1.1 s (Katsiyannis et
al. 2003). There are no detections of fast-mode MHD waves in coronal loops reported
from SoHO/EIT or TRACE, probably because they are rarely operated at their highest
possible cadence of seconds. We expect that more detections of fast-mode MHD waves
will be accomplished with instruments of comparable spatial resolution and cadence in
the future.

8.2 Propagating MHD Waves in the Open Corona

8.2.1 Evolutionary Equation of MHD Waves in Radial Geometry

While closed coronal structures have two boundaries, which control the energy balance
and provide fixed nodes for standing waves, open field structures have only a single
boundary where waves propagate in one direction without ever being reflected. An-
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Figure 8.10: Alfvén speed as a function of radial distance from Sun center, computed for
isothermal (Te = 1.3, 1.4, 1.5 MK) open-field structures with radial geometry and in hydrostatic
equilibrium. Note that the Alfvén speed peaks at a few solar radii.

other significant difference is the radial divergence of the open magnetic field (Fig. 1.14),

B0(r) = B0(R�)
R2�
r2

, (8.2.1)

which can often be neglected in closed field structures. In an isothermal [T (r) =
const] plasma in hydrostatic equilibrium, the density follows the same radial depen-
dence as the pressure (i.e., p(r) = 2ne(r)kBT , Eq. 3.1.9), and thus has the radial
dependence (using Eq. 3.1.15 and r = R� + h),

ρ(r) = ρ0(R�) exp
[
−R�

λp

(
1 − R�

r

)]
, (8.2.2)

with λp the pressure scale height for a given temperature (Eq. 3.1.16). Note that the ra-
dial divergence has no effect on the pressure scale height (see also hydrostatic analogy
of water vessels in Fig. 3.12). Combining Eqs. (8.2.1) and (8.2.2) yields the variation
of the Alfvén speed vA(r) as a function of the radial distance r from the Sun (shown
in Fig. 8.10),

vA(r) =
B0(R�)

[4πρ0(R�)]1/2

R2�
r2

exp
[

R�
2λp

(
1 − R�

r

)]
. (8.2.3)

In this approximation of the open magnetic field with a radial unipolar geometry, the
Alfvén speed reaches a maximum at a distance of a few solar radii, while a semi-
circular dipolar geometry yields a minimum in the lower corona (Fig. 5.10).

To study the propagation of magneto-acoustic waves in an open field structure with
radial geometry, it is useful to transform the ideal MHD equations (§ 6.1.3) into spher-
ical coordinates (r, θ, ϕ) and to choose the direction θ = 0. For purely radial propa-
gation, the ideal MHD equation in spherical coordinates can then be simplified to two
uncoupled (linearized) wave equations, of which one describes Alfvén waves, charac-
terized by magnetic perturbations Bϕ and vϕ (e.g. Nakariakov et al. 2000b; Ofman et
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al. 2000b; Ofman & Davila 1998; Roberts & Nakariakov 2003),

∂2vϕ

∂t2
− B0(r)

4πρ0(r)r
∂2

∂r2
[rB0(r)vϕ] = 0 , (8.2.4)

and the other describes slow-mode (acoustic) waves, characterized with density pertur-
bations ρ and vr,

∂2ρ
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− c2

s

r2

∂
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(
r2 ∂ρ

∂r

)
− g(r)

∂ρ

∂r
= 0 . (8.2.5)

The right-hand side of these two equations is zero here because all dissipative effects
(such as viscosity) are neglected. It is convenient to solve these two wave equations in
the Wentzel−Kramers−Brillouin (WKB) approximation [i.e., assuming that the wave-
length is much smaller than the scale of density variation of the medium (λ � λp)], as
well as using the approximation λp � R�.

In the reference frame of an upward moving Alfvén wave with local speed vA(r),
the transformed time variable is,

τ = t −
∫

dr

vA(r)
. (8.2.6)

The wave equation for Alfvén waves can then be written in the WKB approximation
with the variable R = r(λ/λp) � r,

dvϕ

dR
− R2

�
4λpR2

vϕ = 0 , (8.2.7)

which is the linearized evolutionary equation for an Alfvén wave with solution (Nakari-
akov et al. 2000b),

vϕ(r) = vϕ(R�) exp
[

R�
4λp

(1 − R�
r

)
]

, (8.2.8)

which indicates an Alfvén wave amplitude that is growing with height. This has the
implication that Alfvén waves can propagate large distances and deposit energy and
momentum several radii away from the Sun. The growth of Alfvén waves with height
has also the consequence that nonlinear effects come into play, for instance wave en-
ergy transfer of higher harmonics to shorter wavelengths, where dissipation by viscos-
ity matters (Hollweg 1971). When the wave amplitude grows, compressional waves
will be driven by Alfvén waves (Ofman & Davila 1997, 1998). Such dissipative ef-
fects, which have been neglected in the simplified wave equations [i.e., the right-hand
side of Eqs. (8.2.4) and (8.2.5) are set to zero], have been included for weak nonlinear-
ity and viscosity νvisc by Nakariakov et al. (2000b), leading to a more general wave
equation that is the spherical scalar form of the Cohen−Kulsrud−Burgers equation,

∂vϕ

∂R
− R2

�
4λpR2

vϕ − 1
4vA(v2

A − c2
s)

∂v3
ϕ

∂τ
− νvisc

2v3
A

∂2vϕ

∂τ2
= 0. (8.2.9)

An example of a typical evolution of an initially harmonic Alfvén wave during its
propagation in an open radial magnetic field is shown in Fig. 8.11, showing three phases
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Figure 8.11: Left: evolution of weakly nonlinear Alfvén waves propagating in a radial magnetic
field away from the Sun. The Alfvén waves have an initial speed of vA(R� = 1000 km s−1), an
initial wave period of 50 s, an amplitude of vϕ = 25 km s−1, and the corona has an isothermal
temperature of T = 1.4 MK. The evolution is shown near the Sun (solid line), at r = 2R�
(dotted line), at r = 5R� (dashed line), and at r = 9R� dotted-dashed line. Right: dependence
of the nonlinear spherical Alfvén wave amplitude on the distance from the Sun, for 3 different
initial amplitudes: vϕ = 25, 20, and 15 km s−1 (solid, dotted-dashed, dashed) (Nakariakov et
al. 2000b).

of nonlinear evolution: (1) linear wave growth, (2) saturation and overturn, and (3)
nonlinear dissipation. The theoretically predicted growth rate of Alfvén waves can be
tested with observations of the evolution of line broadening as a function of height
above coronal holes, assuming that the line broadening is associated with transverse
motions caused by Alfvén waves.

8.2.2 Observations of Acoustic Waves in Open Corona

Probably the first detection of propagating MHD waves in (open) coronal structures
was made with SoHO/EIT in 1996. Plotting the EUV brightness of polar plumes
(Fig. 8.12 top) as a function of time (Fig. 8.12, bottom), using the EIT 171 Å wave-
length, propagating features were noticed which had an outward speed of v ≈ 75−150
km s−1 and occurred quasi-periodically with periods of P ≈ 10 − 15 min (DeForest
& Gurman 1998). Based on the speed, which is close to the sound speed expected in
this temperature band (T ≈ 1.0 MK, cs = 147 km s−1), and the density modulation
inferred from the EUV brightness variation, it was concluded that these wave trains
in plumes correspond to propagating slow-mode magneto-acoustic waves, which are
compressive waves. The energy flux associated with these wave trains was estimated
to dεwave/dt = (1.5 − 4.0) × 105 erg cm−2 s−1, which is comparable to the heat-
ing requirement of coronal holes. The evolution of these slow-mode magneto-acoustic
waves can be modeled with the theoretical wave equation (8.2.5), derived (with neglect
of dissipative effects) for a radially diverging geometry, as appropriate for the these
observed wave trains in polar plumes. Ofman et al. (1999) performed a numerical 2D
MHD simulation of the evolution of slow-mode magneto-acoustic waves in plumes,
found that the waves experience nonlinear dissipation, and concluded that they signif-
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Figure 8.12: Top: polar plumes observed over the South Pole of the Sun with SoHO/EIT on
1996 Mar 7 at a wavelength of 171 Å, after subtraction of the radial background model. Bottom:
running time difference images of plumes #1 and #5, with strips averaged over 360 s. Diagonal
features have velocities of v ≈ 100 km s−1 (DeForest & Gurman 1998).

icantly contribute to the heating of the lower corona by compressive viscosity. This
dissipation mechanism leads to damping of the waves within the first solar radii above
the surface (Ofman et al. 2000b). Cuntz & Suess (2001) modeled slow-mode magneto-
acoustic waves in plumes with a “basal-spreading” geometry and found that shocks
form as a consequence at low coronal heights (r <∼ 1.3R�), in contrast to models that
assume weak nonlinearity.

Further away from the Sun, a search for slow-mode compressional MHD waves
was carried out with the SoHO/UVCS white-light channel (Ofman et al. 1997, 2000a).
Within a heliocentric distance of r = 1.9−2.45 R�, Fourier power spectra of polarized
brightness time series revealed significant power at a period of P ≈ 6 min (Ofman et
al. 1997). A wavelet analysis of the same and additional UVCS data confirmed periods
in the range of P ≈ 6− 10 min, with coherence times of the fluctuations over ∆t ≈ 30
min. Banerjee et al. (2001) found long-period oscillations in inter-plume regions with
periods of P ≈ 20 − 50 min up to a height h <∼ 20 Mm above the limb, and interprets
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them also as slow-mode (acoustic) waves. These observations corroborate the presence
of compressional waves high above the limb, which are probably the continuation of
the slow-mode magneto-acoustic waves detected in plumes with EIT.

8.2.3 Spectral Observations of Alfvén Waves in the Open Corona

After we have discovered slow-mode MHD waves in the open-field corona (e.g., in
plumes, § 8.2.2), the question arises whether there also exist fast-mode MHD waves,
which could provide an interesting probe for high-frequency-driven heating and ac-
celeration of the solar wind. So far there is no direct report from imaging observa-
tions, probably because of the high time cadence and high-density contrast needed.
Vertical Alfvén waves with a speed of vA = 1000 − 10, 000 km s−1 would cross a
vertical scale height λn ≈ 50 Mm of the T ≈ 1.0 MK plasma in coronal holes in
∆t = λn/vA = 5 − 50 s. Moreover, Alfvén waves are non-compressional and do not
modulate the plasma density, in contrast to slow-mode (acoustic) waves, while fast-
mode MHD waves behave somewhere inbetween, but generally modulate the plasma
density to a lesser degree than acoustic waves. On the other hand, both compressive
magneto-acoustic (slow mode) and incompressive (fast-mode) Alfvén waves perturb
the plasma velocity (v1), which causes positive and negative Doppler shifts that can
be detected as line broadening. If the distribution of plasma velocity perturbations is
random, it broadens the natural line width in quadrature, so that the broadened line can
be fitted by an effective temperature Teff ,

Teff = Ti +
mi

2kB
< ∆v2 > , (8.2.10)

where Ti is the temperature of line formation for an ion i, and < ∆v2 > is the aver-
age line-of-sight component of the unresolved perturbation velocities (e.g., caused by
Alfvén waves).

If the line broadening ∆v is caused by Alfvén waves, the theory predicts a cor-
relation between the Alfvén velocity disturbance ∆v(r) = vϕ(r) (Eq. 8.2.8) and the
mean density ρ(r) = mn ≈ mini(r) (Eq. 8.2.2), which according to the evolutinary
equation in radial geometry derived in § 8.2.1 is

∆v(r) = vϕ(r) ∝ ρ
−1/4
0 (r) ∝ n−1/4

e (r) . (8.2.11)

Nonthermal broadening of UV and EUV coronal lines have been measured with
Skylab, where nonthermal velocities of ∆v ≈ 20 km s−1 were reported in coro-
nal holes and quiet Sun regions (Doschek & Feldman 1977). More recent measure-
ments with SoHO/SUMER (for a review see, e.g., Spadaro 1999) reveal that the non-
thermal velocity increases systematically with the altitude above the limb (e.g., from
∆v = 24 km s−1 at the limb to ∆v = 28 km s−1 at a height of h = 25 Mm; Doyle et
al. 1998), corresponding to a velocity increase that is consistent with the theoretical pre-
diction of undamped radially propagating Alfvén waves (i.e., [ne(h2)/ne(h1)]−1/4 ≈
[exp(−h/λT )]−1/4 = exp(+h/4λT ) ≈ exp(1/8) = 1.13, [(∆v(h2)/∆v(h1)] =
28/24 = 1.17). Erdélyi et al. (1998b) detected a similar Alfvén scaling in the center-
to-limb variation of the line broadening in transition region lines. Banerjee et al. (1998)
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Figure 8.13: Top: electron density profile ne(h) above a coronal hole measured with
SoHO/SUMER, UVCS, and LASCO. Middle: nonthermal line widths ∆v measured with
SUMER and UVCS. Bottom: comparison of measured nonthermal velocities ∆v and predicted
line widths from the density model ne(h) and the relation for Alfvén waves in radially diverging
magnetic fields, ∆v(h) ∝ n

−1/4
e (r) (Eq. 8.2.11) (Doyle et al. 1999).
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confirmed the results from Doyle et al. (1998) over a larger height range, finding an in-
crease of the nonthermal velocity of the Si VIII line from ∆v(h1) = 27 km s−1 at
h1 = 20 Mm to ∆v(h2) = 46 km s−1 at h2 = 180 Mm, over which range the den-
sity decreased from ne(h1) = 1.1 × 108 cm−3 to ne(h2) = 1.6 × 107 cm−3; so the
observed velocity increase ∆v(h2)/∆v(h1) = 46/27 = 1.70 agrees well with the
theoretical prediction [ne(h2)/ne(h1)]−1/4 = (0.16/1.1)−1/4 = 1.62. Similar non-
thermal velocities were also measured by Chae et al. (1998a) with SoHO/SUMER, by
Esser et al. (1999) with SoHO/UVCS (nonthermal velocity widths of 20 − 23 km s−1

at r = 1.35 − 2.1R�), and Doschek et al. (2001) with SoHO/SUMER. Combining
the Si VIII with O VI line width measurements, Doyle et al. (1999) found that the
Alfvén scaling (Eq. 8.2.11) agrees well only in the height range of h = 30 − 150 Mm
(r = 1.04− 1.2R�), suggesting nonlinear evolution of the Alfvén waves at r >∼ 1.2R�
(see Fig. 8.13, bottom). Taking all these spectroscopic measurements together, there
seems to be strong support for the presence of fast-mode or shear (Alfvén) MHD waves
in the open field structures of the solar corona. We will discuss the relevance for coro-
nal heating in § 9.

8.3 Global Waves

So far we have considered MHD waves that propagated inside waveguides, either in
coronal loops (§ 8.1) or along vertically open structures with radial divergence (§ 8.2).
However, waves have also been discovered that propagate spherically over the entire
solar surface, very much like the spherical water waves you produce when you throw
a stone in a pond. Obviously, the origin of these spherical waves is very localized,
caused by a flare or a coronal mass ejection (CME) at the center of the circular waves.
These global waves were first discovered in chromospheric Hα emission (called More-
ton waves) and were recently in coronal EUV images from SoHO/EIT (called EIT
waves). The big challenge is the physical understanding of the 3D propagation of these
global waves in the complex topology of our corona, which is structured by vertical
stratification, horizontal inhomogeneities, and magnetic instabilities during CMEs.

8.3.1 Moreton Waves, EIT Waves, and CME Dimming

The discovery of global waves goes back to Moreton & Ramsey (1960), who reported
the finding of 7 flare events (out of 4068 flares photographed in Hα during 1959/1960)
with disturbances that propagated through the solar atmosphere over distances of the
order of 500,000 km at speeds of v ≈ 1000 km s−1. More such reports noted expanding
arc features originating in flares and traveling distances of 200,000 km or more with
lateral velocities of v ≈ 500 − 2500 km s−1 (Moreton 1961; Athay & Moreton 1961;
Moreton 1964; Harvey et al. 1974), or v ≈ 330 − 4200 km s−1 (Smith & Harvey
1971). Reviews on early Hα observations of this type of flare waves can be found in
Svestka (1976, § 4.3) and Zirin (1988; § 11). Recent observations of a Moreton wave in
Hα and Hβ even revealed a velocity increase from v = 2500 km s−1 to 4000 km s−1

(Zhang 2001). Today it is believed, based on the high propagation speeds which are in
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Figure 8.14: Two global wave events observed with SoHO/EIT 195 Å, on 1997 Apr 7 (left)
and 1997 May 12 (right). The intensity images (top) were recorded before the eruption, while
the difference images (middle and bottom) show differences between the subsequent images,
enhancing emission measure increases (white areas) and dimming (black areas) (Wang 2000).

the range of coronal Alfvén speeds, that the phenomenon of Moreton waves represent
a tracer of a coronal disturbance, rather than a chromospheric origin (Thompson 2001).

Recent observations by SoHO/EIT (Fig. 8.14) have provided unambiguous evi-



350 CHAPTER 8. PROPAGATING MHD WAVES

Figure 8.15: Left: propagation model of a Moreton wave (Uchida 1968); Right: iso-Alfvén
speed contours calculated for a coronal portion through which a Moreton wave propagates
(Uchida et al. 1973).

dence for global waves, initiated by flares and CMEs. One of the first events was ob-
served during the Earth-directed CME of 1997-May-12, which was characterized as a
bright wavefront propagating quasi-radially from the source region, leaving a dimmed
region behind, and having a radial speed of v = 245 ± 40 km s−1 (Thompson et
al. 1998a). More observations of such global waves followed from SoHO/EIT (Thomp-
son et al. 1999; 2000a; Klassen et al. 2000; Biesecker et al. 2002). The catalog of 19
EIT wave events compiled by Klassen et al. (2000) investigated the correlation of ra-
dio type II events with EIT waves. Radio type II bursts are believed to trace coronal
shock waves and were found to have speeds of vII ≈ 300− 1200 km s−1, much faster
than the EIT waves which were found to have speeds of vEIT ≈ 170 − 350 km s−1.
Biesecker et al. (2002) investigated correlations between 175 EIT wave events and as-
sociated phenomena (CMEs, flares, and radio type II bursts). Wills−Davey & Thomp-
son (1999) observed a global wave with a high spatial resolution using TRACE 195 Å
and traced the detailed trajectories of the propagating wave fronts, finding anisotropic
deviations from radial propagation and speed variations from v ≈ 200 km s−1 to 800
km s−1, clearly illustrating the inhomogeneity of the coronal medium. Two cases of
global waves have been analyzed where the wave front of Moreton waves in Hα and
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Figure 8.16: Simulation of the EIT wave event of 1997 April 7 (Fig. 8.14) by a ray-tracing
method of fast-mode MHD waves. The color range indicates wave speeds v > 500 km s−1

(black) and lower speeds (white). Gaps appear in the wave fronts after t > 45 min when waves
become reflected back into the chromosphere (Wang 2000).

EIT waves were found to be co-spatial, both experiencing a subsequent deceleration,
which was interpreted in terms of a fast-mode shock (“blast wave”) scenario (Warmuth
et al. 2001), rather than in terms of CME-associated magnetic field adjustment.

An intriguing feature of global waves seen with EIT is the dimming region (e.g.,
Thompson et al. 2000b), which the wave front leaves behind (see, e.g., Fig. 8.14).
If the global wave would be just a compressional wave front, a density enhancement
would occur at the front and a rarefaction slightly behind, while the density would be
restored in the trail of the wake. The fact that a long-term dimming occurs behind the
global waves indicates that material has been permanently removed behind the wave
front, probably due to the vertical expulsion of the accompanying CME. This scenario
is strongly supported by recent Doppler shift measurements in O V and He I, indicating
vertical velocities of v = 100 km s−1 in the dimming region that was feeding the CME
(Harra & Sterling 2001, 2003).
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Figure 8.17: MHD simulation of a CME where a piston-driven shock forms at the envelope of
the expanding CME, according to the model of Chen & Shibata 2000). The simulated case has
β0 = 0.25 and vrope = 100 km s−1. Top: global evolution of the density (greyscale), magnetic
field (solid lines), and velocity (arrows). Lower panel: local evolution in the lower corona and
chromosphere, where the initial magnetic field is shown with solid lines (Chen et al. 2002).

8.3.2 Modeling and Simulations of Global Waves

Global waves in the solar corona were modeled early on in terms of a spherically ex-
panding fast-mode MHD shock wave, from which the shock front is detected as an
EIT wave, while the upward propagating shock is manifested in radio type II bursts
(Uchida 1974), whereas the Moreton waves seen in Hα represent the chromospheric
ground tracks of the dome-shaped coronal shock front (Uchida et al. 1973). Uchida
(1974) derived the wave equations for such a spherically propagating fast-mode MHD
wave in a radially diverging magnetic field (similar to § 8.2.1) and calculated the wave
propagation in the WKB approximation (an example of a calculation of propagating
wave fronts is shown in Fig. 8.15 left). Furthermore, observed electron density distribu-
tions and magnetograms were used to constrain models of the global wave propagation
(Fig. 8.15 right) and the trajectories of the accompanying radio type II bursts and More-
ton waves (Uchida et al. 1973; Uchida 1974). The scenario of a flare-produced initial
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Figure 8.18: Evolution of the horizontal density ρ(x) distribution obtained in the MHD simu-
lation shown in Fig. 8.17, with an increment in time. Note the two wave features: a fast coronal
Moreton wave and a slower broader EIT wave front (Chen et al. 2002).

pressure pulse that triggers a fast-mode shock propagating through the corona, the so-
called blast-wave scenario, was further simulated with a full numerical MHD code by
Steinolfson et al. (1978), the ignition of the resulting shock was modeled by Vrsnak &
Lulic (2000a,b), and the formation of the expelled blobs in the coronal streamer belt
were further modeled with LASCO observations by Wu et al. (2000).

A realistic numeric simulation of the EIT signature of global fast-mode MHD
waves was realized by Wang (2000). Fig. 8.16 shows the result for a specific event
(1997 April 7), where the global magnetic field was constrained by a photospheric
magnetogram and the EUV emission by EIT 195 Å images (Fig. 8.14, left). The fast-
mode MHD wave speed is defined by the dispersion relation given in Eq. (7.1.32),
which has the quadratic solution (see Eq. 7.1.35 for the special case of θ = 0),

vph =
1
2

[
v2

A + c2
s +
√

(v2
A + c2

s)2 − 4v2
Ac2

s cos2 θ

]
. (8.3.1)

Wang (2000) used the distribution of phase speeds vph[B(r, θ, ϕ)] constrained by the
photospheric magnetic field B(r, θ, ϕ) as a lower boundary condition and calculated
the propagation of fast-mode wave fronts using a ray-tracing method (Fig. 8.16), which
closely ressembles the observations (Fig. 8.14, left). These simulations reproduce the
initial horizontal speeds of v ≈ 300 km s−1 of observed EIT waves, which are then
found to decelerate to v = 50 − 200 km s−1 in weak-field regions. The speeds simu-
lated by Wang (2000) are consistent with the observed EIT waves, but are about 2 − 3
times lower than those simulated by Uchida (1974) for Moreton waves. This discrep-
ancy was reconciled by a numeric MHD simulation which mimics a CME by an initial
strong upward-directed external force on a fluxrope, which drives the evacuation of
the fluxrope with subsequent magnetic reconnection underneath (Fig. 8.17; Chen et
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al. 2002; see model of Chen & Shibata 2000). A piston-driven shock appears strad-
dling over the fluxrope, which moves upward with a super-Alfvén speed of v ≈ 360
km s−1, while near the solar surface, the piston-driven shock degenerates to a finite am-
plitude MHD fast wave. The evolution of the horizontal density distribution is shown in
Fig. 8.18, where two wave-like features are seen: (1) a piston-driven shock wave with
a speed of v ≈ 400 km s−1, which corresponds to the coronal Moreton wave, and (2)
a second wave with an initial speed of v = 115 km s−1, which becomes increasingly
blurred with time and corresponds to the EIT wave. This simulation explains the fast
Moreton wave in terms of a shock wave that comes from the expanding CME, not from
the flare itself, while the EIT wave front is explained in terms of an adjustment to the
successive opening of CME field lines (Délannée & Aulanier 1999; Délannée 2000).

Other numerical simulations of global waves explore the stability of active regions
under the impact of global waves (Ofman & Thompson 2002) or the global distribution
of the coronal magnetic field (at the height of propagating EIT waves) and the coronal
viscosity (Ballai & Erdélyi 2003), a new discipline that might be called “global coronal
seismology”.

8.4 Summary

Propagating MHD waves have moving nodes, in contrast to standing modes with
fixed nodes. Propagating MHD waves result mainly when disturbances are gen-
erated impulsively, on time scales faster than the Alfvén or acoustic travel time
across a structure.

Propagating slow-mode MHD waves (with acoustic speed) have been recently
detected in coronal loops using TRACE and EIT, usually being launched with
3-minute periods near sunspots, or with 5-minute periods away from sunspots.
These acoustic waves propagate upward from a loop footpoint and are quickly
damped, never being detected in downward direction at the opposite loop side.
Propagating fast-mode MHD waves (with Alfvén speeds) have recently been dis-
covered in a loop in optical (SECIS eclipse) data, as well as in radio images (from
Nobeyama data).

Besides coronal loops, slow-mode MHD waves have also been detected in plumes
in open field regions in coronal holes, while fast-mode MHD waves have not yet
been detected in open field structures. However, spectroscopic observations of line
broadening in coronal holes provide strong support for the detection of Alfvén
waves, based on the agreement with the theoretically predicted scaling between
line broadening and density, ∆v(h) ∝ ne(h)−1/4.

The largest manifestation of propagating MHD waves in the solar corona are
global waves that spherically propagate after a flare and/or CME over the entire
solar surface. These global waves were discovered earlier in Hα, called Moreton
waves, and recently in EUV, called EIT waves, usually accompanied with a coronal
dimming behind the wave front, suggesting evacuation of coronal plasma by the
CME. The speed of Moreton waves is about three times faster than that of EIT
waves, which still challenges dynamic MHD models of CMEs.



Chapter 9

Coronal Heating

When Bengt Edlén and Walter Grotrian identified Fe IX and Ca XIV lines in the solar
spectrum (Edlén 1943), a coronal temperature of T ≈ 1 MK was inferred from the
formation temperature of these highly ionized atoms, for the first time. A profound
consequence of this measurement is the implication that the corona then consists of a
fully ionized hydrogen plasma. Comparing this coronal temperature with the photo-
spheric temperature of 6000 K (or down to 4800 K in sunspots), we are confronted
with the puzzle of how the 200 times hotter coronal temperature can be maintained, the
so-called coronal heating problem. Of course, there is also a chromospheric heating
problem and a solar wind heating problem (Hollweg 1985). If only thermal conduc-
tion was at work, the temperature in the corona should steadily drop down from the
chromospheric value with increasing distance, according to the second law of ther-
modynamics. Moreover, since we have radiative losses by EUV emission, the corona
would just cool off in matter of hours to days, if the plasma temperature could not
be maintained continuously by some heating source. In this section we will specify
the energy requirement for coronal heating, review a fair number of theoretical mod-
els that provide coronal heating mechanisms, and scrutinize them with observational
tests if possible. However, all we have available for observational testing are mostly
measurements of basic physical parameters, such as density, temperatures, and flow
speeds, while theoretical heating models are expressed in parameters that are often not
directly measurable in the corona, such as the magnetic field strength, azimuthal field
components, nonpotential fields, currents, resistivity, viscosity, turbulence, waves, etc.
However, the detection of MHD waves in the corona by TRACE and EIT, the spectro-
scopic measurements of line widths by SUMER, and the ion temperature anisotropy
measurements with UVCS opened up powerful new tools that promise to narrow down
the number of viable coronal heating mechanisms in the near future.

Reviews on the coronal heating problem can be found in Withbroe & Noyes (1977),
Hollweg (1985), Narain & Ulmschneider (1990, 1996), Ulmschneider et al. (1991),
Zirker (1993), Parker (1994), Chiuderi (1996), Mandrini et al. (2000), and Heyvaerts
(2001).
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9.1 Heating Energy Requirement

We start to analyze the coronal heating problem by inquiring first about the energy
requirements. A coronal heating source EH has to balance at least the two major loss
terms of radiative loss ER and thermal conduction EC , as we specified in the energy
equation (3.6.2) for a hydrostatic corona,

EH(x) − ER(x) − EC(x) = 0 , (9.1.1)

where each of the terms represents an energy rate per volume and time unit (erg cm−3

s−1), and depends on the spatial location x. Because the corona is very inhomoge-
neous, the heating requirement varies by several orders of magnitude depending on the
location. Because of the highly organized structuring by the magnetic field (due to the
low plasma-β parameter in the corona), neighboring structures are fully isolated and
can have large gradients in the heating rate requirement, while field-aligned conduc-
tion will smooth out temperature differences so that an energy balance is warranted
along magnetic field lines. We can therefore specify the heating requirement for each
magnetically isolated structure separately (e.g., a loop or an open fluxtube in a coronal
hole), and consider only the field-aligned space coordinate s in each energy equation,
as we did for the energy equation (3.6.2) of a single loop,

EH(s) − ER(s) − EC(s) = 0 . (9.1.2)

Parameterizing the dependence of the heating rate on the space coordinate s with an
exponential function (Eq. 3.7.2) (i.e., with a base heating rate EH0 and heating scale
length sH ), we derived scaling laws for coronal loops in hydrostatic energy balance,
which are known as RTV laws for the special case of uniform heating without gravity
(Eqs. 3.6.14−15), and have been generalized by Serio et al. (1981) for nonuniform
heating and gravity (Eqs. 3.6.16−17). It is instructional to express the RTV law as a
function of the loop density ne and loop half length L, which we obtain by inserting
the pressure from the ideal gas law, p0 = 2nekBTmax, into Eqs. (3.6.14−15),

Tmax ≈ 10−3 (neL)1/2 (9.1.3)

EH0 ≈ 2 × 10−17n7/4
e L−1/4 (9.1.4)

This form of the RTV law tells us that the heating rate depends most strongly on the
density, EH0 ∝ n

7/4
e , and very weakly on the loop length L. Actually, we can re-

trieve essentially the same scaling law using a much simpler argument, considering
only radiative loss, which is essentially proportional to the squared density (Eq. 2.9.1),

EH0 ≈ ER = n2
eΛ(T ) ≈ 10−22n2

e (erg cm−3 s−1) (9.1.5)

where the radiative loss function can be approximated by a constant Λ(T ) ≈ 10−22

[erg cm−3 s−1] in the temperature range of T ≈ 0.5 − 3 MK that characterizes most
parts of the corona. This gives us a very simple guiding rule: the coronal heating
rate requirement is essentially determined by the squared density. The rule (Eq. 9.1.5)
gives us the following estimates: in coronal holes the base density is typically ne ≈ 108

cm−3 and the heating rate requirement is thus EH0 ≈ 10−6 (erg cm−3 s−1).
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Table 9.1: Chromospheric and coronal energy losses, in units of (erg cm−2 s−1) (Withbroe &
Noyes 1977).

Parameter Coronal hole Quiet Sun Active region
Transition layer pressure [dyn cm−2] 7 × 10−2 2 × 10−1 2
Coronal temperature [K], at r ≈ 1.1R� 106 1.5 × 106 2.5 × 106

Coronal energy losses [erg cm−2 s−1]
− Conductive flux FC 6 × 104 2 × 105 105 − 107

− Radiative flux FR 104 105 5 × 106

− Solar wind flux FW 7 × 105 <∼ 5 × 104 (< 105)
− Total corona loss FC + FR + FW 8 × 105 3 × 105 107

Chromospheric radiative losses [erg cm−2 s−1]
− Low chromosphere 2 × 106 2 × 106 >∼ 107

− Middle chromosphere 2 × 106 2 × 106 107

− Upper chromosphere 3 × 105 3 × 105 2 × 106

− Total chromospheric loss 4 × 106 4 × 106 2 × 107

Solar wind mass loss [g cm−2 s−1] 2 × 10−10 <∼ 2 × 10−11 (< 4 × 10−11)

Since the heating flux is quickly distributed along a magnetic field line, we can
just specify a heating rate per unit area at the coronal base, by integrating the volume
heating rate in the vertical direction. For hydrostatic structures, we can integrate the
heating rate in the vertical direction simply by multiplying it with the density scale
height λT , which is proportional to the temperature (Eq. 3.1.16). We denote the heating
flux per unit area with the symbol FH0 (also called Poynting flux),

FH0 = EH0λT ≈ 5 × 103
( ne

108 cm

)2
(

T

1 MK

)
[erg cm−2 s−1] (9.1.6)

Thus for a coronal hole, with ne = 108 cm−3 and T = 1.0 MK, we estimate a required
heating flux of FH0 = 5×103 erg cm−2 s−1, and in an active region with a typical loop
base density of ne = 2.0×109 cm−3 and T = 2.5 MK, we estimate FH0 ≈ 5×106 (erg
cm−2 s−1). Thus the heating rate requirement varies by about 3 orders of magnitude
between the two places.

Another conclusion we can immediately draw about the heating function is that the
height dependence of the heating has roughly to follow the hydrostatic equilibrium.
The heating scale height sH required in hydrostatic equilibrium is therefore half of
the density scale height λT , because the radiative loss scales with the squared density,
EH(h) = EH0 exp (−h/sH) ∝ ER(h) ∝ ne(h)2 ≈ [n0 exp (−h/λT )]2,

sH ≈ λT

2
≈ 23

(
T

1 MK

)
[Mm] . (9.1.7)

This simple theoretical prediction, assuming that radiative loss is the dominant loss
component in the coronal part of loops, is also confirmed by hydrostatic modeling
of 40 loops observed with TRACE, where including the effect of thermal conduction
yielded only slightly smaller values (i.e., sH = 17±6 Mm, Aschwanden et al. 2000d).



358 CHAPTER 9. CORONAL HEATING

  00

 100

 200

 300
40050060070080090010001100120013001400

1500

1600

1700

1800

1900

2000

2100

2200

2300 2400 2500 2600 2700 2800 2900 3000 3100

3200

3300

3400

3500

0 100 200 300
Azimuth  [deg]

103

104

105

106

107

H
ea

tin
g 

re
qu

ire
m

en
t F

H
 [e

rg
 c

m
-2
 s

-1
] AR

AR

QS QS

CH CH

Figure 9.1: Composite soft X-ray image of the Sun observed on 1992 Aug 26 with Yohkoh (top
panel). The histogram shows the heating rate requirement (bottom panel) in the 36 azimuthal
sectors around the Sun. The labels indicate the locations of active regions (AR; dark grey), quiet
Sun regions (QS; light grey), and coronal holes (CH; white) (Aschwanden 2001b).

The spatial variation of the coronal heating requirement is illustrated in Fig. 9.1,
where we deconvolved the mean coronal base density ne0 and differential emission
measure distribution dEM(T )/dT in 36 different sectors of the corona from Yohkoh
SXT two-filter measurements (see § 3.3 and Aschwanden & Acton 2001), and deter-
mined the heating requirement FH0 for these 36 different sectors, finding 5×103 <∼ FH0
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< 1× 104 (erg cm−2 s−1) in coronal holes, 1× 104 <∼ FH0 < 2× 105 (erg cm−2 s−1)
in quiet Sun regions, and 2 × 105 <∼ FH0 < 2 × 106 (erg cm−2 s−1) in active regions.
These measurements agree with the radiative losses found in other observations (e.g.,
Jordan 1976; Withbroe & Noyes 1977; see Table 9.1).

So, we have a quite specific perception of the heating requirement in the solar
corona. The simplest rule is the dependence on the squared electron density, FH0 ∝ n2

e,
which is also proportional to the optically thin emission measure in EUV and soft X-
rays, and thus to the observed flux. This sounds trivial, that the heating rate is directly
proportional to the observed brightness, if we associate radiation as the major loss,
but it would not be true for optically thick radiation, where the observed brightness
temperature is lower than the actual electron temperature. A direct consequence of the
squared density dependence is that most of the heating is required in the lowest half
density scale height. When we ask what the dependence of the heating rate is on the
temperature, the RTV law (Eq. 3.6.15) predicts a dependence with the three-and-a-half
power, FH0 ∝ T 3.5. Thus a soft X-ray-bright loop with a typical temperature of T = 3
MK needs about 50 times more heating flux than an EUV-bright loop with T = 1 MK.

In Table 9.1 we list the energy losses in the corona and chromosphere for com-
parison, given separately for coronal holes, quiet Sun regions, and active regions. We
see that the radiative losses are fully comparable with the conductive losses (within a
factor of 2) in the quiet Sun and active regions. Only in coronal holes, radiative loss
is substantially less than the losses by thermal conduction and the solar wind flux, be-
cause of the low density. So, we can summarize that the minimum heating requirement
at any place on the solar surface is PH0

>∼ 3 × 105 erg cm−2 s−1, mostly needed in
the lowest half density scale height, and the heating requirement increases up to two
orders of magnitude in dense loops in active regions, roughly scaling with the squared
density.

9.2 Overview of Coronal Heating Models

In Table 9.2 we categorize theoretical models of coronal heating processes into 5
groups, according to the main underlying or driving physical processes. It became
customary to classify coronal heating models into DC (Direct Current) and AC (Al-
ternating Current) types, which characterize the electromechanic coronal response to
the photospheric driver that provides the ultimate energy source for heating. Mag-
netic disturbances propagate from the photosphere to the corona with the Alfvén speed
vA. If the photospheric driver, say random motion of magnetic field line footpoints,
changes the boundary condition on time scales much longer than the Alfvén transit
time along a coronal loop, the loop can adjust to the changing boundary condition in
a quasi-static way, and thus the coronal currents are almost direct ones, which defines
the DC models. On the other hand, if the photospheric driver changes faster than a
coronal loop can adjust to (e.g., by damping and dissipation of incident Alfvén waves),
the coronal loop sees an alternating current, which is the characteristic of AC models.
For each of the two model groups there are a number of variants of how the currents
are dissipated, either by Ohmic dissipation, magnetic reconnection, current cascading,
and viscous turbulence in the case of DC models, or by Alfvénic resonance, resonance
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Table 9.2: Coronal heating models (adapted from Mandrini et al. 2000).

Physical process References
1. DC stressing and reconnection models:
− Stress-induced reconnection Sturrock & Uchida (1981)

Parker (1983, 1988); Berger (1991, 1993)
Galsgaard & Nordlund (1997)

− Stress-induced current cascade Van Ballegooijen (1986)
Hendrix et al. (1996)
Galsgaard & Nordlund (1996)
Gudiksen & Nordlund (2002)

− Stress-induced turbulence Heyvaerts & Priest (1992)
Einaudi et al. (1996a,b)
Inverarity & Priest (1995a)
Dmitruk & Gomez (1997)
Milano et al. (1997, 1999); Aly & Amari (1997)

2. AC wave heating models:
− Alfvénic resonance Hollweg (1985, 1991)
− Resonant absorption Ionson (1978, 1982, 1983), Mok (1987))

Davila (1987), Poedts et al. (1989)
Goossens et al. (1992, 1995)
Steinolfson & Davila (1993)
Ofman & Davila (1994); Ofman et al. (1994, 1995)
Erdélyi & Goossens (1994, 1995, 1996)
Halberstadt & Goedbloed (1995a,b)
Ruderman et al. (1997)
Bélien et al. (1999)

− Phase mixing Heyvaerts & Priest (1983)
Parker (1991); Poedts et al. (1997)
De Moortel et al. (1999, 2000a)

− Current layers Galsgaard & Nordlund (1996)
− MHD turbulence Inverarity & Priest (1995b)

Matthaeus et al. (1999)
Dmitruk et al. (2001, 2002)

− Cyclotron resonance Hollweg (1986), Hollweg & Johnson (1988)
Isenberg (1990), Cranmer et al. (1999a)
Tu & Marsch (1997, 2001a,b)
Marsch & Tu (1997a,b,2001)

3. Acoustic heating: Schatzman (1949)
− Acoustic waves Kuperus, Ionson, & Spicer (1981)
4. Chromospheric reconnection: Litvinenko (1999a)

Longcope & Kankelborg (1999)
Furusawa & Sakai (2000)
Sakai et al. (2000a,b, 2001a,b)
Brown et al. (2000)
Tarbell et al. (1999)
Ryutova et al. (2001)
Sturrock (1999)

5. Velocity filtration: Scudder (1992a,b; 1994)
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- Subphotospheric convection and waves
- Photospheric footpoint motions, inflows
- Coronal large-scale reconfiguration
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Figure 9.2: The process of coronal heating can be broken down into 8 subprocesses (a−h).
Theoretical models include different subsets of these subprocesses, but only models that include
the last step and can parameterize the physical parameters of the heated plasma can be compared
with observations. The right side of the diagram shows a flow chart for the major heating models
(with a typical representative listed at the top). Boxes mark physical steps that are part of the
model, arrows mark transport processes between different locations, and dotted lines mark co-
spatial locations. The boxes are colored in grey if the physical process takes place in a high-
density region (Ph=photosphere, Ch=chromosphere, overdense coronal loops) and appear white
for low-density regions (C=coronal background plasma) (Aschwanden 2001b).

absorption, phase mixing, current layer formation, and turbulence in the case of AC
models. As an alternative to current dissipation, some heating could also be produced
by compressional waves (i.e., by acoustic waves or shocks). Finally, a completely dif-
ferent physical mechanism is that of velocity filtration, which is based on the influence
of the gravitational potential field in the corona on a postulated non-Maxwellian chro-
mospheric velocity distribution. We will describe these various coronal heating models
in the following sections.

Before we describe the physical processes of individual heating models in more
detail, let us first have a look at their compatibility and completeness. In most of the
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Figure 9.3: Categories of DC (left panels) and AC models (right panels), subdivided into coro-
nal (top row) and chromospheric versions (bottom row). The greytones demarcate high-density
regions (chromosphere and transition region) (Aschwanden 2002b).

theoretical models, coronal heating is a multi-stage process, which can be conceptually
organized in a scheme with 8 steps, as illustrated in Fig. 9.2: the initial energy comes
from a mechanical driver (a), which has an electromagnetic coupling (b) to the loca-
tion of magnetic energy storage (c). At some point, a magnetic instability and loss of
equilibrium (d) occurs, with possible energy transport (e), before plasma heating (f)
starts. The resulting overpressure forces plasma flows (g), which become trapped (h)
in coronal loops, where they are eventually observed. Various coronal heating models
cover only an incomplete subset of these steps, so that these concepts first have to be
combined with specific geometric and physically quantified models of coronal struc-
tures before they can be applied or fitted to observations. Therefore, observational tests
of theoretical heating models are still in their infancy.

An aspect of over-riding importance for modeling coronal heating is the treat-
ment of a realistic chromospheric and transition region boundary. This is visualized
in Fig. 9.3 for some standard models. Early versions of coronal heating models usually
approximate a coronal loop with a uniform fluxtube (Fig. 9.3, top row), which pro-
duces a more or less uniform energy dissipation for stressing of magnetic field lines
and has rather large dissipation lengths for Alfvén waves. In other words, these highly
idealized models produce an almost uniform heating function that stands in stark con-
trast to the observations. Recent, more realistic, models include gravity and the density
and temperature structure of the chromosphere/transition region at the lower bound-
ary (Fig. 9.3, bottom row), which changes the resulting heating function drastically.
Typically, the heating rate is much more concentrated near the footpoints, because of
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stronger stressing in the canopy-like magnetic field in the transition region, or due to
vertical gradients in the density and Alfvén velocity caused by gravitational stratifica-
tion.

The consideration of the transition region in coronal heating models also plays a
crucial role for all models that involve magnetic reconnection. Essentially, the tran-
sition region is a dividing line between collisional (chromospheric) and collisionless
(coronal) regimes, as illustrated in Fig. 9.4. Magnetic reconnection in collisionless
regimes leads, besides plasma heating, to particle acceleration, which in turn, can ef-
ficiently contribute to chromospheric plasma heating (e.g., by chromospheric evapo-
ration or thermal conduction fronts, as known for flares). The very same process is
also believed to be responsible for heating of the quiet corona to some extent, as the
nonthermal signatures of nanoflares in the quiet Sun suggest. However, if the same
magnetic reconnection process happens inside the chromosphere, no particles can be
accelerated because their collision time is shorter than their escape time out of the
chromosphere. So, no secondary heating via accelerated particles is possible for re-
connection processes in collisional plasmas. Therefore, the location of the magnetic
reconnection region with respect to the transition region (above or below) is extremely
decisive for the efficiency of coronal plasma heating.

9.3 DC Heating Models

9.3.1 Stress-Induced Reconnection

Photospheric granular and supergranular flows advect the footpoints of coronal mag-
netic field lines towards the network, which can be considered as a flow field with a
random walk characteristic. This process twists coronal field lines by random angles,
which can be modeled by helical twisting of cylindrical fluxtubes (see § 5.5.1). The
rate of build-up of nonpotential energy (dW/dt) integrated over the volume V = πr2l
of a cylindrical fluxtube is (Sturrock & Uchida 1981),

∫
dW

dt
dV =

ΦB0 < v2 > τc

4π
, (9.3.1)

where Φ = πr2B0 is the magnetic flux, B0 is the photospheric magnetic field strength,
l the length of the fluxtube, r its radius, < v > the mean photospheric random velocity,
and τc the correlation time scale of random motion. Sturrock & Uchida (1981) estimate
that a correlation time of τc ≈ 10− 80 min is needed, whose lower limit is comparable
with the lifetimes of granules, to obtain a coronal heating rate of dW/dt ≈ 105 (erg
cm−2 s−1), assuming small knots of unresolved photospheric fields with Bph ≈ 1200
G. Furthermore, they predict a scaling law of p0 ∝ B

6/7
c L−1 based on the RTV law,

which compares favorably with the measurements by Golub et al. (1980) with p0 ∝
B0.8±0.2

c .
The idea of topological dissipation between twisted magnetic field lines that be-

come wrapped around each other (Fig. 9.5) has already been considered by Parker
(1972). Similar to Sturrock & Uchida (1981), Parker (1983) estimated the build-up
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Figure 9.5: Topology of magnetic fluxtubes that are twisted by random walk footpoint motion
(left; Parker 1972), leading to a state where fluxtubes are wound among its neighbors (right;
Parker 1983).

of the magnetic stress energy B0Bt/4π of a field line with longitudinal field B0 and
transverse component Bt = B0vt/l,

dW

dt
=

B0Bt

4π
v =

B2
0v2t

4πl
, (9.3.2)

and estimated an energy build-up rate of dW/dt = 107 (erg cm−2 s−1), based on B0 =
100 G, v = 0.4 km s−1, l = 1010 cm, and assuming that dissipation is sufficiently
slow that magnetic reconnection does not begin to destroy Bt until it has accumulated
random motion stress for 1 day. The manifestation of such sporadic dissipation events
of tangential discontinuities in the coronal magnetic field in the form of tiny magnetic
reconnection events is then thought to be detectable as nanoflares in the soft X-ray
corona, whenever the twist angle

tan θ(t) ≈ vt

l
(9.3.3)

exceeds some critical angle. Parker (1988) estimates, for a critical angle given by a
moderate twist of Bt = Bz/4, corresponding to θ = 14◦, that the typical energy of
such a nanoflare would be

W =
l2∆L B2

t

8π
≈ 6 × 1024 (erg) , (9.3.4)

based on l = vτ = 250 km, v = 0.5 (km s−1), τ = 500 s, ∆L = 1000 km, and
Bt = 25 G. Thus, the amount of released energy per dissipation event is about nine
orders of magnitude smaller than in the largest flares, which defines the term nanoflare.

There are several variants of random stressing models. A spatial random walk of
footpoints produces random twisting of individual fluxtubes and leads to a stochastic
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build-up of nonpotential energy that grows linearly with time, with episodic random
dissipation events (Sturrock & Uchida 1981; Berger 1991). The random walk step size
is short compared with the correlation length of the flow pattern in this scenario, so
that field lines do not wrap around each other. The resulting frequency distribution
of processes with linear energy build-up and random energy releases is an exponential
function, which is not consistent with the observed powerlaw distributions of nanoflares
(§ 9.8). On the other hand, when the random walk step size is large compared with the
correlation length, the field lines become braided (Fig. 9.5 right) and the energy builds
up quadratically with time, yielding a frequency distribution that is close to a powerlaw
(§ 9.8). In this scenario, energy release does not occur randomly, but is triggered by a
critical threshold value (e.g., by a critical twist angle; Parker 1988; Berger 1993), or by
a critical number of (end-to-end) twists before a kink instability sets in (Galsgaard &
Nordlund 1997). The expected EUV spectrum and DEM of a microflare-heated corona
have been estimated by Sturrock et al. (1990) and Raymond (1990).

9.3.2 Stress-Induced Current Cascade

The random footpoint motion would stir up a potential magnetic field, if there is one,
and thus nonpotential fields and associated currents would occur in any case. Given the
omnipresence of currents, we may ask to what degree Ohmic dissipation (also called
Joule dissipation) of these currents may contribute to coronal heating. The volumetric
heating rate EH requirement for a loop with length l that is heated at both footpoints is
(using FH0 = 107 erg cm−2 s−1, see Table 9.1),

EH0 =
2FH0

l
= 2 × 10−3

(
l

1010 cm

)−1

(erg cm−3 s−1) . (9.3.5)

The required current density j for Joule dissipation, EH = j2/σ, using the classical
conductivity of σ = 6 × 1016 s−1 for a T = 2 MK corona is then,

j =
√

σEH0 = 1.1 × 107

(
l

1010 cm

)−1/2

(esu) . (9.3.6)

On the other hand, the current density j = (c/4π)(∇ × B) produced by random
footpoint motion, say by twisting the field line by an angle ∆ϕ, so that (∇ × B) ≈
2B0∆ϕ/l), is

j =
c

2π

B0

l
∆ϕ = 48 ×

(
B0

100 G

)(
l

1010 cm

)−1

∆ϕ (esu) (9.3.7)

which is about 5 orders of magnitude smaller than required to satisfy the coronal heat-
ing requirement (Eq. 9.3.6). Therefore, Joule dissipation is generally inefficient in the
corona, unless 105 smaller transverse length scales can be produced. This is the main
motivation of the model by Van Ballegooijen (1986), who proposes a current cascade
model, where free magnetic energy is transferred from large to small length scales in
the corona as a result of the random motion of photospheric footpoints. From a statisti-
cal model of current density fluctuations, Van Ballegooijen (1986) finds that magnetic
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Figure 9.6: Snapshot of 3D MHD simulations of stress-driven current cascading. Left: 3D
cube with isosurfaces of strong electric current densities. Magnetic field lines are traced from
start points just outside the isosurfaces. Right: 2D slice of the electric current density in a cross
section halfway between the boundaries from the 1363-cube shown in the left panel (Galsgaard
& Nordlund 1996).

energy is fed into the system linearly with time, so that the stored energy (integrated
in time) increases quadratically, consistent with Parker (1983), see Eq. (9.3.2). The
power spectrum of current-density fluctuations P (ln k, t) as a function of time t was
numerically evaluated by Van Ballegooijen (1986), where he found a cascading to-
wards smaller length scales, where energy is transferred from wave number ln (kl) to
wave number ln (kl) + 1 during a braiding time. The r.m.s current density in the sta-
tionary state was found to scale with the square root of the magnetic Reynolds number
Rm ≈ 1010,

jrms ≈ c

4π

B0

l
R1/2

m , (9.3.8)

and thus approximately provides the enhancement factor of 2× 105 needed to account
for coronal heating. The heating rate was found to scale with

EH ≈ 0.19
B2

0D

l2
≈ 5 × 1011 B2

0

l2
, (9.3.9)

where D ≈ 150 − 425 (km2 s−1) is the diffusion constant of the photospheric mag-
netic field. However, using a typical value of D ≈ 250 (km2 s−1) and l = 1010 cm,
the obtained heating rate still falls (by a factor of 40) short of the coronal heating re-
quirement (Eq. 9.3.5), but the efficiency is higher if one corrects for the canopy effects
of the magnetic field (Van Ballegooijen 1986).

MHD simulations of this current cascading process were performed by Hendrix et
al. (1996), Galsgaard & Nordlund (1996), and Nordlund & Galsgaard (1997). Hen-
drix et al. (1996) found a weak positive-exponent scaling of the Poynting flux P =
(c/4π)(E × B) (and Ohmic dissipation rate) with the magnetic Reynolds number
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Figure 9.7: The current density log [j2(x)] as a function of height x, obtained by the 3D MHD
simulation of stress-driven current cascading by Gudiksen & Nordlund (2002). Note that the
averaged heating function is strongly concentrated neat the footpoints, similar to the coronal
heating scale heights sH ≈ 10 − 20 Mm inferred from TRACE observations (Aschwanden et
al. 2000d, 2001a).

(Lundquist number), and conclude that line-tied photospheric convection can drive suf-
ficiently large current densities to heat the corona. Also, Galsgaard & Nordlund (1996)
found a scaling of the Poynting flux similar to Parker (1983) and Van Ballegooijen
(1986) (i.e., P ∝ dW/dt ∝ B2

0v2t/l), but interpret the velocity v differently. Van Bal-
legooijen (1986) interpreted the factor v2t as a diffusion constant, while Galsgaard &
Nordlund (1996) in their experiment interpret v as the amplitude of a shearing step and
t as the duration of a shearing episode. A snapshot of their simulations is shown in
Fig. 9.6.

While the early MHD simulations of current cascading by Galsgaard & Nordlund
(1996) were restricted to a uniform fluxtube, more recent simulations include the grav-
itational stratification and a more realistic treatment of the transition region (Gudiksen
& Nordlund 2002). An example of their simulation is shown in Fig. 6.10 and de-
scribed in § 6.2.6. The new effects that arise in these simulations are stronger shear
in the canopy-like parts of the transition region magnetic field, as well as much higher
electron densities near the transition region, leading to enhanced Joule heating in the
transition region and lower corona (Fig. 9.7), which is consistent with the observational
finding of footpoint-concentrated heating in TRACE data (Aschwanden et al. 2000d,
2001a).

9.3.3 Stress-Induced Turbulence

Convection and turbulence are important in fluids with high Reynolds numbers. Since
the magnetic Reynolds number Rm = l0v0/ηm (Eq. 5.1.15) (or Lundquist number)
is high in the coronal plasma (Rm ≈ 108 − 1012), turbulence may also develop in
coronal loops (although there is the question whether turbulence could be suppressed
in coronal loops due to the photospheric line-tying). Theoretical models and numer-
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Figure 9.8: Example of a numeric 2D simulation of MHD turbulence with a Reynolds num-
ber of Rm = 2000, showing the magnetic field lines (contours) and electric current density
(greyscale). Reconnection zones have formed between a number of adjacent islands that are
coalescing, triggering localized nonsteady reconnection events throughout the simulation box
(Matthaeus 2001a).

ical simulations that study MHD turbulence include the kinematic viscosity or shear
viscosity νvisc in the MHD momentum equation (6.1.15), and the magnetic diffusivity
ηm = c2/4πσ in the MHD induction equation (5.1.14),

ρ
Dv
Dt

= −∇p − ρg + (j × B) + νviscρ

[
∇2v +

1
3
∇(∇ · v)

]
, (9.3.10)

∂B
∂t

= ∇× (v × B) + η∇2B . (9.3.11)

Similar to the models of stress-induced current cascades (§ 9.3.2), random footpoint
motion is assumed to pump energy into a system at large scales (into eddies the size of
a granulation cell, ≈ 1000 km), which cascade due to turbulent motion into smaller and
smaller scales, where the energy can be more efficiently dissipated by friction, which is
quantified by the kinematic or shear viscosity coefficient νvisc. Friction and shear are
dynamical effects resulting from the nonlinear terms (v1,iv1,j), (v1,iB1,j), (B1,iv1,j),
and (B1,iB1,j) in Eqs. (9.3.10−11) and are only weakly sensitive to the detailed dy-
namics of the boundary conditions. Analytical (3D) models of MHD turbulence have
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Figure 9.9: Observed nonthermal excess velocities ξ in the transition region and corona of the
quiet Sun (adapted from Chae et al. 1998a, 2002b).

been developed by Heyvaerts & Priest (1992), Inverarity et al. (1995), Inverarity &
Priest (1995a), and Milano et al. (1997), where the nonlinear viscosity terms are speci-
fied as diffusion coefficients. These turbulent diffusion coefficients are free parameters,
which are constrained self-consistently by (1) assuming that the random footpoint mo-
tion has a turbulence power spectrum (e.g., a Kolmogorov spectrum P (k) ∝ k5/3);
and (2) by matching the observed macroscopic parameters (i.e., velocity of footpoint
motion, density, and magnetic field). Heyvearts & Priest (1992) predict turbulent ve-
locities of vturb ≈ 20 − 30 km s−1, which are consistent with the excess broadening
of lines observed with SUMER, which shows a peak of ξ = 30 km s−1 at a transition
region temperature of T ≈ 3 × 105 K (e.g., Chae et al. 1988a, shown in Fig. 9.9).

Analytical models of turbulent heating are applied to sheared arcades (Inverarity et
al. 1995) and twisted fluxtubes (Inverarity & Priest 1995a). Turbulent heating has been
numerically simulated in a number of studies, which exhibit a high degree of spatial
and temporal intermittency (Einaudi et al. 1996a,b; Dmitruk & Gomez 1997). An ex-
ample of such a simulation is shown in Fig. 9.8, where it can be seen how larger eddies
fragment into smaller ones, forming current sheets and triggering magnetic reconnec-
tion during this process. Heating occurs by Ohmic dissipation in the thinnest current
sheets. Milano et al. (1999) emphasize that the locations of heating events coincide
with quasi-separatrix layers. The formation of such current sheets has also been ana-
lytically studied in the context of turbulent heating by Aly & Amari (1997). Numerical
simulations reveal intermittent heating events with energies of EH = 5 × 1024 to 1026

erg and a frequency distribution with a powerlaw slope of α ≈ 1.5, similar to observed
nanoflare distributions in EUV (Dmitruk & Gomez 1997; Dmitruk al. 1998).

Most of the theoretical studies on coronal heating by MHD turbulence ignore the
spatial distribution at coronal heights. A first attempt to extract the height dependence
of MHD turbulent heating has been made by Chae et al. (2002b). Interpreting the ob-
served distribution of nonthermal velocities ξ(T ) (Fig. 9.9), which can be characterized
by a second-order polynomial in log (T ),

ξ(T ) = 27.7 − 15.56(logT − 5.36)2 (km s−1) , (9.3.12)
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as a manifestation of turbulent velocities (Chae et al. 2002b), he equated the heating
rate EH(T ) at a given temperature T to the turbulent dissipation rate of the turbulent
velocity ξ(T ) at the same temperature,

EH(T ) =
ε0ρ ξ4(T )

linvA
, (9.3.13)

where ξ is the nonthermal speed, lin the length scale over which energy injection
occurs, and ε0 a dimensionless factor. Combining a temperature model T (h) of a
coronal loop in hydrostatic equilibrium (e.g., Eqs. 3.6.13 or 3.6.18) with ξ(T ) from
Eq. (9.3.12), then yields the height dependence of the heating rate, EH(h) = EH(T [h]).
With this method, Chae et al. (2002b) found that the heating occurs concentrated
strongly near the footpoints of coronal loops, similar to the TRACE findings (Aschwan-
den et al. 2000d, 2001a).

9.4 AC Heating Models

9.4.1 Alfvénic Resonance

We discussed propagating MHD waves in § 8, where we also reviewed observational
evidence for propagating magneto-acoustic and Alfvén waves in the corona, in closed
loops as well as in open field regions, and thus in the solar wind. Whenever the time
scale of the wave excitation is shorter than the Alfvén (or magneto-acoustic) travel time
back and forth a coronal structure, the Alfvén (or magneto-acoustic) waves propagate,
rather than locking into a standing wave. For the coronal heating problem (or the solar
wind heating problem), we need upward propagating waves that have been generated
by a chromospheric or subphotospheric energy source. However, one problem is that
magneto-acoustic (i.e., fast-mode MHD) waves tend to be totally internally reflected
somewhere in the chromosphere, and thus are evanescent there (e.g., Hollweg 1978).
The Alfvén waves do not suffer these difficulties, a substantial fraction can be trans-
mitted through a resonant cavity with a nearly standing Alfvén wave, and in this way
can propagate into the corona or solar wind (Hollweg 1984a,b; 1985). In § 8.2.3 we
found spectroscopic evidence for line broadening < ∆v >≈ 30 (km s−1) which ful-
filled the scaling between line broadening and density expected for Alfvén waves (i.e.,
∆v(r) ∝ n

−1/4
e (r); Eq. 8.2.11), observed with SUMER and UVCS (e.g., Doyle et

al. 1999; Banerjee et al. 1998; Chae et al. 1998b; Esser et al. 1999). Given this ev-
idence for Alfvén waves in coronal holes, we can estimate the energy flux (Poynting
flux) that is carried by these Alfvén waves,

FA = ρ < ∆v2 > vA , (9.4.1)

which is found to be FA = 4 × 106 (erg cm−2 s−1), (based on ρ = µmpni with
ni = 109 cm−3, < ∆v >= 30 km s−1, and vA = 2000 km s−1). So the energy flux
carried by Alfvén waves is sufficient to heat coronal holes and quiet Sun regions, and
even a substantial fraction of active region loops (see Table 9.1), if it can be dissipated
over an appropriate height range. However, Alfvén waves are notoriously difficult to



372 CHAPTER 9. CORONAL HEATING

r

r0 rres

ne(r)

νA(r)=vA(r)/2l

νDriver

D
en

si
ty

F
re

qu
en

cy

R
es

on
an

t l
ay

er νA(rres)=νDriver

Figure 9.10: The concept of resonant absorption is illustrated for a coronal loop with a density
enhancement in the cross-sectional profile, ne(r) (top). The resulting Alfvén frequency in each
layer r is νA(r) = vA(r)/2l ∝ 1/

√
ne(r) (bottom). Resonant absorption occurs in layers

at locations r = rres where the Alfvén frequency matches the photospheric driver frequency,
νA(r = rres) = νdriver.

dissipate in a homogeneous part of the solar corona, because Alfvén waves are shear
waves and the coronal shear viscosity is very low (Hollweg 1991). The coronal shear
viscosity is only efficient if there are strong cross-field gradients, which is the basic
idea of the resonant absorption mechanism.

9.4.2 Resonant Absorption

In the low plasma-β corona, the magnetic field varies very little across a loop struc-
ture, but the density can vary by orders of magnitude (see derivation based on pressure
equilibrium in § 6.2.1). Therefore, the Alfvén velocity is very nonuniform across a
loop because of the radial density variation (Fig. 9.10). The phenomenon of resonant
absorption is based on the idea that absorption of Alfvén waves (by Ohmic or viscous
dissipation) is enormously enhanced in narrow layers where the local Alfvén resonance
frequency νres matches the oscillation frequency of the (photospheric) driver νdriver

(e.g., the global p-mode oscillation),

νdriver = νres = N
vA(r = rres)

2l
, (9.4.2)

where l is the loop length and N = 1, 2, 3, ... the harmonic number. This is similar
to the standing mode of the fast kink-mode oscillation (Eq. 7.2.4), except that we deal
here with a single resonant loop layer with uniform Alfvén speed vA, while fast kink-
mode MHD oscillations discussed in § 7.2 are produced by surface waves at a loop
surface between internal and external Alfvén speeds vA and vAe.

Models for resonant absorption have been developed by Ionson (1978, 1982, 1983),
Mok (1987), Davila (1987), Sakurai et al. (1991a,b), Goossens et al. (1992, 1995),
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Figure 9.11: An example of an MHD simulation of resonant absorption in a coronal loop.
The 7 panels show the evolution of the velocity component vz of resonant Alfvén waves in the
fluxtube, with the two footpoints at the bottom and top. Note that the resonant layers occur at
particular locations but drift through the entire loop due to the varying density conditions (Bélien
et al. 1999).

Steinolfson & Davila (1993), Ofman & Davila (1994), Ofman et al. (1994, 1995),
Erdélyi et al. (1995), Halberstadt & Goedbloed (1995a,b), Ruderman et al. (1997), and
Bélien et al. (1999). The driver is assumed to be a broadband spectrum P (νdriver),
which covers at least the P ≈ 3−5 min range known from global p-mode oscillations.
The efficiency of dissipation in the resonant layer depends of course on the width of
the resonant layer (which is reciprocal to the gradient of the Alfvén velocity) and the
spectral power found at the resonance frequency P (νdriver = νres). For the dissipation
mechanism it has been shown that ion viscosity is the dominant contributor (Ionson
1982; Mok 1987), which can heat the resonant layer to a coronal temperature (Ionson
1984). The volumetric heating rate EH (or dissipation rate) by resonant absorption has
been derived as (Hollweg 1984a; Hollweg & Sterling 1984),

EH = 2π5/2ρ
1/2
Ph < ∆v2

Ph > λCh B vA L−3
∞∑

N=1

NP (νN ) , (9.4.3)

where ρPh is the photospheric density (where the Alfvén waves are assumed to be gen-
erated), ∆vPh the r.m.s velocity associated with the driver in the photosphere, λCh the
scale height of the Alfvén speed in the chromosphere-transition region, and P (νN ) is a
weighting factor of the normalized power spectrum for the N−th harmonic resonance.

Numerical simulations have been conducted to derive scaling laws between the dis-
sipation rate and the various loop parameters, and to quantify the relative importance
of dissipation by resistivity and shear viscosity, which have been found to be compa-
rable (Poedts et al. 1989; Steinolfson & Davila 1993; Ofman & Davila 1994; Ofman
et al. 1994, 1995; Erdélyi & Goossens 1994, 1995, 1996). While early models of
resonant absorption were applied to a static resonant layer, more self-consistent mod-
els include the density variation due to chromospheric evaporation during the heating,
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which has the effect that resonant layers drift dynamically throughout the loop (Ofman
et al. 1998). The effects of chromospheric coupling were simulated with a 2.5-D MHD
code by Bélien et al. (1999) (Fig. 9.11), who finds that about 30% of the incoming
Poynting flux is absorbed within the loop structure, and only ≈ 1−3% is converted into
heat. The resonant Alfvén waves were also found to generate slow magneto-acoustic
waves (Bélien et al. 1999; Ballai & Erdélyi 1998a; Erdélyi et al. 2001), which are
compressional waves and thus give rise to density variations, which further fragment
the resonant layers. The largest uncertainty in determining the heating efficiency by
resonant absorption is the unknown power spectrum P (νdriver) of the photospheric
driver.

9.4.3 Phase Mixing

When shear Alfvén waves propagate in a structure with a large gradient in Alfvén
velocity, vA(r), as caused by the cross-sectional density profile ne(r) in a coronal
loop (Fig. 9.10, top), the wave oscillations of neighboring field lines suffer friction
(from kinematic and shear viscosity) because they have slightly different phase speeds,
a process that is called phase mixing. This process was analytically studied by Hey-
vaerts & Priest (1983), who find dramatically enhanced viscous and Ohmic dissipation.
Moreover, they find that MHD instabilities such as the Kelvin−Helmholtz and tearing
instability (§ 6.3) occur in the vicinity of velocity nodes. They conclude that phase
mixing is a likely process that dissipates shear Alfvén waves in coronal loops and in
open structures with strong wave reflectivity. However, including gravitational stratifi-
cation of the solar corona leads to a reduction of the transverse density gradient with
height, so that the oscillation wavelengths become longer and the effect of phase mix-
ing becomes weaker (De Moortel et al. 1999). Including the curvature of the (radially
diverging) solar corona shifts the effects of phase mixing to lower altitudes (De Moortel
et al. 2000a). Therefore, the effect of phase mixing depends very much on the ampli-
tude of the excited waves, the geometry, and scale heights, being strongest where the
steepest density gradients occur.

Phase mixing is an essential ingredient of resonant absorption (Poedts 2002), but it
does not need resonances to be effective. The combination of both processes, resonant
absorption and phase mixing, has been simulated by Poedts et al. (1997). Phase mixing
causes a cascade of energy to small length scales, where the dissipation becomes more
efficient. In contrast, Parker (1991) argues that the filamentary structure in coronal
holes couples the plane shear Alfvén waves into a coordinated mode, so that phase
mixing does not provide efficient heating in the first 1 − 2 solar radii, but only at a
radial distance of >∼ 10 solar radii, where it can accelerate the solar wind.

9.4.4 Current Layers

In § 9.3.2 we discussed the stress-induced current cascade, leading to current layers
with strongly enhanced Ohmic dissipation. The same process can be driven in the
slow limit of a DC driver, as well as in the fast limit of an AC driver, compared with
the Alfvén travel time through the system. Galsgaard & Nordlund (1996) performed
numerical simulations in both regimes. In the AC limit, where the driver was simulated
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Figure 9.12: Simulations of low-frequency wave-driven MHD turbulence in a radially diverging
open magnetic field, including wave reflections. The panels show 3 different density profiles
ne(r) (top left), and the associated Alfvén speed vA(r) (top right) assumed in the simulations,
and the resulting heating per unit volume (bottom left) and per unit mass (bottom right). Note
efficient heating in low altitudes r < 2R� due to the presence of reflected waves (Dmitruk et
al. 2002).

by a series of random shearing motion steps (instead of a powerlaw spectrum of wave
vectors), the total dissipation in the loop was found to become independent of its length.

9.4.5 MHD Turbulence

Also the stress-induced turbulence models (§ 9.3.3) can be operated in the AC limit,
where the footpoint motions have a high enough frequency to produce waves rather
than a quasi-static evolution as seen in the DC limit. In the model of Inverarity &
Priest (1995b), a photospheric driver with a velocity of v = 1 km s−1 was found to
produce sufficient damping by turbulence to satisfy the heating requirement for the
quiet corona. In coronal holes, the distinction between the AC and DC limit breaks
down, because there is no second boundary that defines an Alfvén reflection time.
Matthaeus et al. (1999), however, argue that low-frequency waves (say with periods
of P ≈ 100 − 1000 s) in an inhomogeneous open magnetic structure (with gradients
in the Alfvén speed) lead to efficient wave reflections that critically control the forma-
tion of MHD turbulent cascades and the associated heating of coronal holes and the
solar wind at r < 2R� (Dmitruk et al. 2001, 2002; Oughton et al. 2001) (Fig. 9.12).
In the presence of vertical gradients of the Alfvén speed vA(h), MHD nonlinearities
develop that cause upward propagating Alfvén waves to reflect on length scales of
λA = dh/d ln vA, estimated to be of the order λA ≈ 15 Mm, in agreement with
heating scale heights measured by TRACE (Matthaeus et al. 2002).
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Figure 9.13: Summary of temperature measurements in coronal holes and of the high-speed
solar wind: electron temperatures (solid lines), hydrogen (dotted lines), and oxygen O VI,VII
(dashed lines) (Cranmer 2001).

9.4.6 Cyclotron Resonance

If we go to the high-frequency AC regime of ν = 102 − 104 Hz, we come to the ion
gyrofrequencies,

fgi =
eB

2πmic
= 1.52 × 103

(
B

µ

)
[Hz] , (9.4.4)

which yield for a typical magnetic field strength of B ≈ 1 G (at a height of r ≈ 1R�
in the solar wind) gyrofrequencies of fgi = 1.5 × 103 Hz for protons (µ = 1) or
fgi = 1.0 × 102 Hz for oxygen ions (µ = mi/mp = 16). It is therefore conceivable,
if a high-frequency driver with such frequencies in the range of ν ≈ 102 − 104 Hz
exists in a collisionless plasma (such as in the outer solar wind), that ions can resonate
with this driver and obtain high perpendicular velocities v⊥, which corresponds to a
higher perpendicular temperature T⊥ of their velocity distribution. In particular the
new measurements by SoHO/UVCS reveal that: (1) protons and other ions have high
perpendicular temperatures T⊥ > T‖, with T⊥ = 2 × 108 K at 3R�; (2) that positive
ions (O VI, Mg X) have a higher temperature than protons by at least their mass ratio
(i.e., (Tion/Tp) >∼ (mi/mp)); and (3) that the outflow velocity of these ions is about
twice that of the protons (Kohl et al. 1997; 1998; 1999; Li et al. 1998; Cranmer et
al. 1999a,b) (Fig. 9.13).

A theoretical model that uses the resonance between left-hand polarized Alfvén
waves and the Larmor gyrations of positive ions was developed earlier, but was first ap-
plied to the solar corona and acceleration region of the solar wind by Hollweg (1986),
Hollweg & Johnson (1988), and Isenberg (1990), and further modeled for the high-
speed solar wind by Tu & Marsch (1997, 2001a,b), Marsch & Tu (1997a,b, 2001), and
Cranmer et al. (1999a,b). The evidence for perpendicular heating by cyclotron reso-
nance in the solar wind is overwhelming, but the origin of the high-frequency driver is



9.5. OTHER CORONAL HEATING SCENARIOS 377

less clear. It could be Alfvén wave generation at the base of the corona, or alternatively
a gradual growth or replenishment through the extended corona. The spectroscopic
identification of Alfvén waves by the line broadening scaling law ∆v(r) ∝ n

−1/4
e

(Doyle et al. 1998, 1999; Banerjee et al. 1998) down to altitudes of h <∼ 30 Mm (see
Fig. 8.13, bottom) provides evidence for the origin of Alfvén waves in the lower corona
or transition region.

9.5 Other Coronal Heating Scenarios

9.5.1 Acoustic Heating

A possible source of energy for coronal heating that was considered early on is acoustic
waves from the chromosphere (driven by global p-mode oscillations with P ≈ 3 − 5
min). However, this option was ruled out when Athay & White (1978, 1979) showed
with their analysis of UV spectroscopic data from OSO-8, that the acoustic wave flux
does not exceed ≈ 104 erg cm−2 s−1, which is about 2− 3 orders of magnitude below
the coronal heating requirement (see Table 9.1). Acoustic fluctuations with periods
shorter than the acoustic cutoff period, Pcutoff = 4πcs/γg ≈ 200 − 300 s, however,
heat the chromosphere (Schatzman 1949; Ulmschneider 1971; Kuperus et al. 1981).
Upward propagating acoustic waves steepen nonlinearly to shocks in the short photo-
spheric scale height (λCh ≈ 100 km) and are dissipated in the chromosphere: short-
period waves with P ≈ 40 − 60 s are dissipated in the lower chromosphere, and
long-period waves with P ≈ 300 s in the upper chromosphere.

On the other hand, the recent observations from TRACE clearly show evidence
that acoustic waves propagate upwardly into coronal loops, and that they are of photo-
spheric origin, because they are driven with P ≈ 3 min periods near sunspots, and with
P ≈ 5 min far away from sunspots (De Moortel et al. 2000b, see § 8.1.2). However, the
energy flux of these acoustic waves was estimated to dεwave/dt ≈ (3.5 ± 1.2) × 102

erg cm−2 s−1, far below the requirement for coronal heating.

9.5.2 Chromospheric Reconnection

A number of recent studies deal with chromospheric reconnection processes that sub-
sequently contribute to coronal heating, either by generating magneto-acoustic shock
waves or upflows of heated plasma.

Litvinenko (1999a) considers a magnetic reconnection scenario that is driven by
collisions of photospheric magnetic features with opposite polarities (magnetic flux
cancellation). He uses a standard VAL-C chromospheric density model, calculates the
lateral inflow speed for the Sweet−Parker reconnection model, and finds a maximum
inflow speed at a height of h = 600 km above the photosphere, which he considers as
the most favorable height for chromospheric reconnection. This process may hold for
those observed transition region explosive events that have been found to be co-spatial
with magnetic cancelling features (Dere et al. 1991).

Longcope & Kankelborg (1999) envision a similar model where randomly moving
photospheric magnetic flux elements of opposite magnetic polarity collide and cause
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a chromospheric reconnection, perhaps manifested in the appearance of a soft X-ray
bright point. Two approaching bipoles reconnect in a quadrupolar reconnection geom-
etry and release a heat flux that is estimated as

FXBP ≈ 0.1B+B−v0 ≈ 104 (erg cm−2 s−1), (9.5.1)

for typical magnetic fields B± = 1.6 G and photospheric motion velocities of v0 =
2 × 104 cm s−1, in agreement with the observations of soft X-ray bright points, but
about 2 orders of magnitude below the flux required to supply the heating of the quiet
Sun.

A number of numerical MHD simulations have been performed by Sakai and co-
workers that envision similar scenarios of chromospheric reconnection processes that
visualize the microprocesses that could be relevant for heat input to the corona. An
example is shown in Fig. 9.14, with a scenario of photospheric magnetic fluxtubes
that collide in the network, causing parallel and X-type reconnection events. 3D neu-
tral MHD simulations of this scenario were performed by Furusawa & Sakai (2000),
who find that the chromospheric reconnection produces fragmented fluxtubes, strong
currents, fast magneto-sonic waves, and upward plasma flows. The resulting shock
waves can collide with other fluxtubes and produce surface Alfvén waves (Sakai et
al. 2000a). Further simulations reveal the generation of shear Alfvén waves (Sakai et
al. 2000b), torsional waves (Sakai et al. 2001a), upflows colliding in the corona (Sakai
et al. 2001b), fragmentation of loop threads (Sakai & Furusawa 2002), and loop inter-
actions driven by solitary magnetic kinks (Sakai et al. 2002).

The collision of small-scale magnetic fluxtubes might lead to complex topologies
of 3D shock waves, with curved surfaces rather than plane waves. The curved upward
propagation trajectories can then lead to a self-focusing of these shocks. The curved
shock fronts experience strong gradients in their acceleration, turn to each other after
upward propagation, and collide, producing local heating and ejecting plasma jets into
the corona (Tarbell et al. 1999, 2000; Ryutova & Tarbell 2000; Ryutova et al. 2001).
Another possible by-product of chromospheric reconnections are high-frequency sound
waves that could be generated in an oscillatory relaxation phase after reconnection,
which could contribute to coronal heating (Sturrock 1999).

9.5.3 Velocity Filtration

An alternative explanation of the coronal heating problem is the view that the solar
corona is a result of a non-Maxwellian particle distribution generated in the chromo-
sphere-transition zone, with a nonthermal tail characterized by a kappa function, for-
med by the process of velocity filtration in the gravitational potential (Scudder 1992a,b;
1994). The existence of a non-Maxwellian tail, however, is a somewhat arbitrary as-
sumption that requires an unknown acceleration mechanism in the chromosphere that
energizes ions to thermal velocities of vth ≈ 200 − 400 (km s−1). If we adopt this
non-Maxwellian tail population, the kinetic energy and thus the temperature of the
non-Maxwellian particles is predicted to increase linearly with height, because the po-
tential energy is proportional to the height difference,

T (h) = T0 +
mig�

kB(2κi − 3)
h

(1 + h/R�)
≈ T0 +

mig�
kB(2κi − 3)

h , (9.5.2)
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Figure 9.14: Concept of colliding magnetic fluxtubes in the downflows in the network: vertical
fluxtubes from the interior of photospheric intra-network cells drift to the network and collide
there in the converging flows (top), triggering reconnections between collinear fluxtubes (bottom
left) or X-type reconnection between inclined fluxtubes (bottom right) (Furusawa & Sakai 2000)

where T0 is the temperature at height h = 0, κi the index of the kappa function of
the suprathermal tail for ion species i, and mi the ion mass. The basic effect is that
gravitational stratification filters out in the upper corona cooler nonthermal particles
that do not have sufficient energy to overcome the gravitational potential. Since gravity
is an undebatable reality, the effect of velocity filtration would definitely occur if all
dynamic effects could be eliminated in the corona and if we could wait until everything
has settled down into gravitational stratification. There are two strong testable predic-
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tions: (1) the linear temperature increase with height, and (2) the density scale heights
of various ion species are reciprocal to the ion masses (see Eq. 3.1.16 with mi = µmp),

λp =
2kbTi

mig�
, (9.5.3)

(e.g., an iron ion with atomic mass mi = 56mp has a 56 times shorter gravitational
scale height than a hydrogen atom).

How are these predictions testable? For EUV emission with TRACE 171 Å, for
instance, the emission measure is proportional to the product of the electron density and
iron ion density, EM ∝ nine (Eq. 2.9.1). Electrons, which have the same abundance
as the hydrogen ions, excite an eight-times ionized iron ion (Fe XI) by collisions, and
a 171 Å photon is emitted after the excited electron falls back to its original state. The
coronal electrons are distributed in height as the protons (to maintain charge neutrality),
so with a pressure scale height of λp ≈ 50 Mm for a 1 MK plasma. If the rare iron ions
were to be settled into gravitational equilibrium, they would have a 56 times shorter
scale height, so λp

<∼ 1 Mm, and the collisions with iron atoms would also be confined
to the scale height of the iron ions, which would restrict EUV emission at 171 Å to
the bottom of the corona at λp

<∼ 1 Mm. This is of course in contradiction to the
observations, which show a scale height of 171 Å emission, that is the same as expected
for a hydrogen-helium atmosphere with a scale height of λp ≈ 50 Mm (see Fig. 3.2).
So, what is missing in the velocity filtration theory? It appears that the iron ions never
have the time to settle into their gravitational potential, but are constantly mixed with
the hydrogen protons and electrons, either by flows or turbulence. Also, the other
prediction of a linear temperature increase with height contradicts the observations,
which rather show an isothermal temperature profile in the coronal part of EUV loops
(see Fig. 3.23). Perhaps the theory of velocity filtration will never be testable in our
highly dynamic corona, because the time scales of dynamic processes (intermittent
heating, flows, and radiative cooling) seem to be much shorter than the time scale
needed for gravitational settling of the heavy ions (or rare elements) in the corona.

9.6 Observations of Heating Events

Systematic detection and statistical analysis of small-scale phenomena in the solar tran-
sition region and corona have only been explored in recent years with soft X-ray and
EUV high-resolution imaging, with the motivation to discover direct signatures of coro-
nal heating processes and to evaluate their energy budget. Because the physical nature
of these small-scale phenomena is not yet fully understood, they have been given many
different names, although they may turn out to belong to identical physical processes,
but they exhibit complementary signatures in different wavelength regimes. Among
them are: ephemeral regions, emerging flux events, cancelling magnetic flux events,
explosive events, blinkers, soft X-ray bright points, nanoflares, microflares, soft X-ray
jets, active region transient brightenings, etc. The sites of their occurrences (quiet Sun,
active region, photosphere, transition region, corona) are listed in Table 9.3. Some
recent reviews on these small-scale phenomena can be found in Parnell (2002a,b),
Shimizu (2002a,b), and Berghmans (2002).
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Figure 9.15: Physical parameter ranges of EUV nanoflares (data set 1 − 3; dark grey), soft X-
ray brightenings (data set 4− 7; middle grey), SXR jets (data set 8; white), non-flare loops (data
set 9 − 10; white) and flare loops (data set 11 − 15; light grey), see references and numerical
parameter ranges of data sets 1 − 15 in Table 9.4.
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Table 9.3: Small-scale phenomena and their occurrence domain (QS=quiet Sun, AR=active
region, Ph=photosphere, TR=transition region, and C=corona) and primary wavelength range
(optical, EUV=extreme ultraviolet, SXR=soft X-rays) (adapted from Parnell 2002b).

Phenomenon Horizontal domain Vertical domain Wavelengths
Ephemeral regions QS Ph Optical
Emerging flux events QS, AR Ph Optical
Cancelling magnetic flux events QS, AR Ph Optical
Explosive events QS TR EUV
Blinkers QS, AR TR EUV
Nanoflares, microflares QS, AR C EUV, SXR
X-ray bright points QS C SXR
Soft X-ray jets QS, AR C SXR
Active region transient brightenings AR C SXR

Let us first define some nomenclature, before we enter the zoo of small-scale phe-
nomena. In Table 9.4 we have compiled physical parameters (spatial scale l, electron
temperature Te, and electron density ne) of reported coronal small-scale phenomena,
along with flare events for comparison, and we estimate the upper limits of their total
thermal energy,

εth ≤ 3nekBTeV , (9.6.1)

based on a volume estimate of V ≤ l3 for flares, and V ≤ lw2 for linear features
(single loops, jets), respectively. The parameter ranges are also displayed in graphical
form in Fig. 9.15. We wan subdivide flare-like events into three magnitude groups,
according to their total thermal energy content (Fig. 9.15), which can be characterized
with the following typical temperature and density ranges:

Large flares: εth = 1030 − 1033 erg, Te ≈ 8− 40 MK, ne ≈ 0.2− 2× 1011 cm−3

Microflares: εth = 1027 − 1030 erg, Te ≈ 2 − 8 MK, ne ≈ 0.2 − 2 × 1010 cm−3

Nanoflares: εth = 1024 − 1027 erg, Te ≈ 1 − 2 MK, ne ≈ 0.2 − 2 × 109 cm−3

The wavelength regimes in which these heating events are detected are a clear func-
tion of the maximum temperature that is reached (SXR, EUV) and whether nonthermal
particles are produced (HXR): large flares are detected in all three wavelength regimes
(HXR, SXR, EUV), microflares are detected in SXR and EUV, and nanoflares only in
EUV wavelengths.

9.6.1 Microflares − Soft X-ray Transient Brightenings

We can define a microflare as a miniature version of a large flare, having an energy
content with a fraction of 10−6 < εth/εmax

flare < 10−3 of the largest flares. In large
flares there is always hard X-ray emission produced by nonthermal particles, which
may be below the detection threshold of current hard X-ray detectors for small flares
or microflares. Microflares with nonthermal energies of εnth ≈ 1027 − 1031 erg were
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Table 9.4: Physical parameters of coronal small-scale phenomena: spatial scale L, temperature
Te, electron density ne, and upper limit of total thermal energy εth = 3n3kBTeV (non-flare
loops and flares are also included) (adapted from Aschwanden 1999a).

Phenomenon Number Spatial Electron Electron Thermal
of events Scale Temperature Density Energy
N L Te 108ne log(εth)

[Mm] [MK] [cm−3] [erg]
Nanoflares1 281 2.8 − 7.9 1.0 − 1.4 2.9 − 4.4 24.4 − 26.1
QS transient bright.2 228 3.2 − 14.1 1.3 − 1.7 ... ...
QS heating events3 24 4.5 − 7.9 1.2 − 1.5 7 − 20 25.5 − 26.6
SXR bright points4 23 5.4 − 24.7 1.26 − 1.61 ... ...
AR transient bright.5 ≈ 200 5 − 40 4 − 8 20 − 200 26.6 − 30.6
AR transient bright.6 16 2.5 − 13.5 1.4 − 7.3 30 − 600 25.4 − 29.6
AR transient bright.7 41 4 − 28 2.5 − 9 45 − 150 26.5 − 30.0
SXR jets8 16 15 − 100 3 − 8 7 − 40 25.7 − 27.7
Non-flare SXR loops9 47 6 − 42 2.0 − 9.8 ... ...
Non-flare SXR loops10 32 25 − 100 3.5 − 6.0 15 − 50 26.3 − 27.7
Flares11 20 9 − 57 10 − 13 ... ...
Flares12 14 24 − 123 7.9 − 17.9 ... ...
Flares13 19 23 − 102 5.3 − 11.2 ... ...
Flares14 31 5 − 75 7.7 − 10.5 180 − 1040 27.8 − 32.2
Flares15 44 5 − 20 10 − 20 200 − 2500 28.0 − 31.2

References:1 Aschwanden et al. (2000b), 2 Berghmans et al. (1998), 3 Krucker & Benz (2000),
4 Kankelborg et al. (1997), 5 Shimizu (1997), 6 Shimizu (2002a,b), 7 Berghmans et al. (2001),
8 Shimojo & Shibata (2000), 9 Porter & Klimchuk (1995), 10 Kano & Tsuneta (1995), 11 Reale
et al. (1997), 12 Garcia (1998), 13 Metcalf & Fisher (1996), 14 Pallavicini et al. (1977), 15

Aschwanden & Benz (1997).

detected down to 8 keV with the high-sensitivity CGRO/BATSE Spectroscopy Detec-
tors (SPEC), which showed all the characteristics of larger flares [i.e., they exhibit
impulsive time profiles and hard (nonthermal) spectra, Lin et al. 2001]. With RHESSI,
microflares were recently measured in an even lower energy range, revealing tempera-
tures of T ≈ 6− 14 MK from the spectral fits in the 3− 15 keV energy range (Benz &
Grigis 2002).

Active Region Transient Brightenings (ARTB) is a group of events that seem to
coincide with microflares, because they all have flare-like attributes (Fig. 9.16): they
appear in active regions, they consist of small loops (l ≈ 5 − 40 Mm) that become im-
pulsively filled with heated plasma (T = 4− 8 MK) and cool down subsequently, with
durations comparable to small flares (τ ≈ 2−7 min), and have thermal energy contents
of εnth ≈ 1027 − 1031 erg (Shimizu et al. 1992, 1994; Shimizu 1995, 1997; Shimizu
& Tsuneta 1997), comparable to the 8-keV microflares (Lin et al. 2001). About a third
of the ARTBs also show flare-like radio and hard X-ray signatures, such as thermal
gyroresonance, gyrosynchrotron, and nonthermal microwave emission at 1 − 18 GHz
(Gopalswamy et al. 1994, 1997; White et al. 1995; Gary et al. 1997), as well as hard
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Figure 9.16: Multi-wavelength observations (in soft X-rays with Yohkoh/SXT and in EUV with
SoHO/EIT and TRACE) of an Active Region Transient Brightening (ARTB). A slowly varying
background has been subtracted in the SXT and EIT data, and the first 3 TRACE images are
contaminated by particle radiation spikes. Note that the geometry shows typical small-scale flare
loops and the evolution exhibits heating and cooling of soft X-ray-bright plasma over a time
scale of 15 min (Berghmans et al. 2001).

X-ray emission, with soft X-ray emission corresponding to GOES class A and B levels
(Nitta 1997). Berghmans et al. (2001) also discovered that some microflares launched
a slow-mode MHD wave that propagated to the remote footpoint of a pre-existing soft
X-ray loop and caused a gradual brightening there, which they called indirect ARTBs.
Based on all these flare-like characteristics established by multi-wavelength observa-
tions, ARTBs can clearly be identified as microflares, the low-energy extension of the
classical flare distribution. The implication for coronal heating is that ARTBs cannot
heat the corona, if their frequency distribution, which is the low-energy extension of
larger flares, has the same slope (see § 9.7).

X-ray Bright Points (XBP) are small-scale phenomena detected in soft X-rays, but
they can occur everywhere in the quiet Sun or in coronal hole regions, in contrast to
ARTBs which by definition are domiciled in active regions. While it was tradition-
ally believed that flares (and thus microflares) require significant magnetic field con-
centrations (e.g., B ≈ 10 − 1000 G), as they can be found in active regions, it was
not clear a priori whether microflares can also be produced in weak magnetic fields
(e.g., at B ≈ 1 − 10 G), as is typical for quiet Sun regions and coronal holes. So
the question arose whether the ubiquitous X-ray bright points found all over the solar
surface represent the counterpart to microflares known in active regions (ARTBs), or
whether they are a fundamentally different process. X-ray bright points, characterized
as small, compact, and bright features, were discovered in soft X-rays and EUV dur-
ing rocket flights and were analyzed from Skylab data (Golub et al. 1974, 1976a,b,
1977; Nolte et al. 1979). Their spatial size and energy released during their lifetime
(εth ≈ 1026 − 1028 erg) is fairly comparable with ARTBs. Their average lifetime is
8 hours (Golub et al. 1974) to 20 hours (Zhang et al. 2001), which seems to repre-
sent the total lifetime of a “mini-active region”, rather than the duration of a microflare
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Figure 9.17: Temporal evolution of microflares in the quiet Sun network, observed on 1995-
Feb-20 in radio (VLA, 15 GHz) and in soft X-ray (Yohkoh/SXT: Al.1, AlMg filters). The time
profiles are extracted from 4 different microflares, with the locations indicated in the field-of-
view above. Note the correlated impulsive peaks in radio and soft X-rays, representing the
nonthermal and thermal counterparts of flare-like processes. This measurement presents the first
clear evidence for flare-like processes in the quiet Sun (Krucker et al. 1997).

episode. Their magnetic structure has been identified to be associated with an emerg-
ing magnetic bipole (ephemeral region) in 66% or with a cancelling magnetic bipole
in 33% (Harvey 1996; Shimizu 2002a,b). The occurrence rate of XRPs was initially
believed to be in anti-phase to the solar cycle (Golub et al. 1979), but turned out to
be uncorrelated to the solar cycle after contrast correction for the scattered light from
active regions (Nakakubo & Harra 2000). Their association with magnetic emergence
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Figure 9.18: Two soft X-ray jets were observed almost simultaneously with Yohkoh/SXT on
1998 Jul 11, 12:57 UT, shown in two difference images. The difference brightness is white in
the left frame because the flux increases, while it is dark in the right frame because the flux
decreases. They represent outflows from soft X-ray bright points, following the trajectory of
large-scale magnetic field lines. They fade out with height due to a combination of field diver-
gence, gravitational stratification, and cooling (courtesy of Sam Freeland and Hugh Hudson).

or cancellation implies that a magnetic reconnection process is the driver, and thus puts
the XBP in the category of flare-like energy release processes (models of the under-
lying reconnection processes will be discussed in more detail in § 10). Nonthermal
signatures of XBP were explored with radio observations, which provided evidence for
thermal free-free emission at 1.4 GHz (Nitta et al. 1992), thermal emission at 17 GHz
(Kundu et al. 1994), and nonthermal (impulsive) gyrosynchrotron emission at 15 GHz
(Fig. 9.17; Krucker et al. 1997; Benz & Krucker 1999). Correlations between the radio
and soft X-ray locations of XBPs with the photospheric magnetic field revealed that
they are preferentially located above the network (Benz et al. 1997), and thus could be
triggered by emerging flux (Tang et al. 2000) or by magnetic reconnection of colliding
downflows in the network (Fig. 9.14). Detailed correlations of the time profiles be-
tween radio, O V, He I, and Fe IX/X lines led to the conclusion that a flare-like process
happens, where precipitating electrons first produce (undetectable) hard X-rays and
correlated O V and He I responses in the chromosphere, followed by heating of flare
plasma and cooling through the coronal Fe IX/X line (Krucker & Benz 1999). Taking
together all this evidence for flare-like behavior in XBP events, in the form of nonther-
mal radio emissions and correctly timed thermal soft X-ray emissions, we can safely
conclude that the XBP in the quiet Sun regions represent the counterpart to the ARTBs
in active regions, both being governed by flare-like processes. So it appears that these
phenomena can be unified by the term microflares, which suggests the same physical
process, only differing from classical flares by their much smaller energy budget. We
will discuss the consistency of their frequency distribution of energies with larger flares
in § 9.7, which is crucial for extrapolating whether they can match the coronal heating
requirement.
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Another small-scale phenomenon observed in soft X-rays are the so-called X-ray
jets (Shibata et al. 1992a; Strong et al. 1992; Shimojo et al. 1996, 1998, 2001; Shi-
mojo & Shibata 1999, 2000). X-ray jets are found in X-ray bright points and small
active regions, exhibiting outflows of heated plasma with velocities of v = 10 − 1000
km s−1 (Fig. 9.18). Theoretical models envision that X-ray jets are generated in mag-
netic reconnection regions where newly emerged loops interact with a slanted over-
lying field region (Yokoyama & Shibata 1995, 1996). So they are dynamic features
that can be considered as by-products of microflares. They have similar temperatures
to microflares, but have longer dimensions (l ≈ 15 − 100 Mm) than X-ray bright
points, because of their streaming motion along open (or large-scale closed) magnetic
field lines. They probably originate in similar densities to those in the soft X-ray mi-
croflare location ne ≈ (0.2 − 2) × 1010 cm−3, but exhibit lower average densities
[ne = (0.7 − 4) × 109 cm−3; Shimojo & Shibata 2000] because of their streaming
dispersion. Consequently, they also have a lower thermal energy content than the mi-
croflares from which they originate (note that the event group #8 of SXR jets lies below
the microflare and flare population in Fig. 9.15, bottom panel). The fact that their en-
ergy cannot exceed that of their “mother” microflare, thus ranks them less important
for coronal heating than microflares themselves.

9.6.2 Nanoflares − EUV Transient Brightenings

The diagrams shown in Fig. 9.15 illustrate that EUV small-scale events are found at
the bottom of the energy scale, about 9 orders of magnitude below the largest flares,
and thus constitute the category of nanoflares, with energies of εth ≈ 1024 − 1027 erg.
They are also found at the bottom of the temperature scale, at T ≈ 1−2 MK, and at the
bottom of the density scale, with ne ≈ (0.2−2)×109 cm−3. Such tiny EUV brighten-
ings, which we call nanoflares, were first studied with SoHO/EIT data (Krucker & Benz
1998, 2000; Benz & Krucker 1998, 1999, 2002; Berghmans et al. 1998; Berghmans &
Clette 1999, Aletti et al. 2000) and with TRACE (Parnell & Jupp 2000; Aschwanden
et al. 2000b,c; Aschwanden & Parnell 2002) (e.g., see Fig. 9.19, or with a combination
of EIT, TRACE, and SXT together; Berghmans et al. 2001). From the observations it
appears that these transient EUV brightenings have all the properties of larger flares:
they occur in small-scale loops (l ≈ 3 − 8 Mm); they exhibit an impulsive rise and de-
cay (on time scales of a few minutes), consistent with plasma heating and subsequent
cooling (Fig. 9.20), manifested as a cooling delay dτcool/dT < 0 in the temperature
range T ≈ 1.0 − 1.5 MK observed in 195 Å and 171 Å. Some nanoflares also exhibit
plasma outflows, called EUV jets (Chae et al. 1999). EUV nanoflares do not reach tem-
peratures higher than T <∼ 2 MK, and thus are not visible in soft X-rays (as microflares)
or in hard X-rays (as normal flares). Of course, there seems to be a continuous distribu-
tion from large flares down to the tiny nanoflares. A fundamental difference is perhaps
that large flares occur only in active regions, requiring larger magnetic fields, while
microflares and nanoflares can occur everywhere in the quiet Sun or even in coronal
holes.

The theoretical interpretation of nanoflares can be made very much as a scaled-
down version of large flares. If we employ for nanoflares the standard scenario of
classical flares (i.e., coronal magnetic reconnection followed by coronal particle accel-
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Figure 9.19: TRACE Fe XII (195 Å) image of a quiet Sun region containing nanoflares, ob-
served on 1998-Jun-16, 20:25 UT (left) and contrast-enhanced version to visualize the spatial
structure of nanoflares (right). The longer curved features at the bottom belong to coronal loops.
The circular boundary is given by the field-of-view (8′) of the TRACE telescope (Parnell & Jupp
2000).

eration and chromospheric evaporation; Brown et al. 2000), nanoflares would require
a scaled-down geometry of small flare loops that barely stick out of the transition re-
gion. So the location of nanoflares would be confined to the lowest layer of the corona
just above the transition region. On the other hand, theoretical models of coronal heat-
ing postulate nanoflares throughout the corona (Levine 1974; Parker 1988), which can
only be reconciled with the observed tiny nanoflare loops if DC interactions (stress-
induced reconnection, current cascades, and turbulence) produce magnetic dissipation
events preferentially in the tangled magnetic field in the canopy geometry of the tran-
sition region. It is estimated that 95% of the photospheric magnetic flux closes within
the transition region (also called “magnetic carpet”), while only 5% form large-scale
connections over coronal loops (Priest et al. 2002; Schrijver & Title 2002; see also
Plates 10 and 11), which would indeed produce a preponderance of magnetic dissipa-
tion events in the canopy region suitable for EUV nanoflares. It has been envisioned
that such EUV nanoflares result from explosions of sheared magnetic fields in the cores
of initially closed bipoles (Moore et al. 1999), which occur preferentially in the net-
work (Falconer et al. 1998).

Numerical simulations of such small-scale heating events are able to reproduce the
observed physical parameters and statistical frequency distributions (e.g., Sterling et
al. 1991; Walsh et al. 1997; Galtier 1999; Mendoza−Briceno et al. 2002).

9.6.3 Transition Region Transients − Explosive Events, Blinkers

A number of transient small-scale phenomena have also been detected in cooler EUV
lines in the temperature range of T ≈ 2 × 104 − 2.5 × 105 K (e.g., in O V, O IV, He
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Figure 9.20: Light curves of 16 nanoflares observed with TRACE 171 Å and 195 Å on 1999-
Feb-17, 02:16−02:59 UT. Note that all nanoflares peak first in 195 Å (T ≈ 1.5 MK) and sub-
sequently in 171 Å (T ≈ 1.0 MK), indicating plamsa cooling. The filter-ratio temperature is
indicated in the top of each channel, confirming the temperature decrease after the peak (As-
chwanden et al. 2000c).

I, C IV, Si IV, H Lyα, C II, He II, Si III, and N V lines). Based on this temperature
range, these phenomena are likely to occur inside the transition region, in particular
if their source location is stationary. Alternatively they could be associated with up-
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ward ejected cool plasma (e.g., spicules, macrospicules, jets, sprays, surges) or with
downward falling plasma from rapidly cooling coronal loops (catastrophic cooling, see
§ 4.5.4), but these are both dynamic processes that would produce observable source
motions.

Jets of cool material (or exploding small loops), that carry typical energies of
εkin ≈ 2.5 × 1026 and show supersonic velocities of v ≈ 400 km s−1 and turbu-
lent line broadening of ∆v ≈ 250 km s−1, were observed in quiet Sun regions, a
phenomenon that was dubbed explosive events (Brueckner & Bartoe 1983; Dere et
al. 1989, 1991; Fontenla et al. 1989). Such events have been interpreted as the results
of magnetic reconnection in the transition region (Dere 1996), which is also supported
by observations of bi-directional jets (Innes et al. 1997; Innes 2001; Perez et al. 1999)
that are expected to mark a symmetric X-type reconnection geometry. Some EUV jets
have been observed to shoot up high into the corona (Harrison et al. 2001), similar to
erupting macrospicules (Parenti et al. 2002).

Longer lived EUV brightenings with modulated time profiles, but otherwise ex-
hibiting similar temperatures and energies as explosive events found in the quiet Sun,
were called blinkers and were studied with SoHO/CDS (Harrison 1997; Harrison et
al. 1999; Bewsher et al. 2002; Parnell et al. 2002; Brkovic et al. 2001). Blinkers are
a distinctly different phenomenon from nanoflares, because their brightness or emis-
sion measure increase was not found to be caused by a temperature increase (like in
nanoflares), but rather due to an (quasi-isothermal) increase in filling factor (Bewsher
et al. 2002), more like in compressional waves. They were found both in quiet Sun
and active regions (Parnell et al. 2002). There are common features among explosive
events, blinkers, and spicules that suggest a unified process, while observational differ-
ences are related to their location (network border versus intranetwork, on-disk versus
above limb; Moses et al. 1994; Gallagher et al. 1999; Madjarska & Doyle 2002, 2003;
Chae et al. 2000c) or flow directions and associated line profile asymmetries (Chae et
al. 1998b; Peter & Brkovic 2003).

Regarding the coronal heating problem, all these dynamic phenomena contain rel-
atively cool plasma with transition region temperatures (T <∼ 0.5 MK) and seem not
to have a counterpart in coronal temperatures (Teriaca et al. 1999; 2002), so they con-
tribute to cooling of the corona rather than to heating. Also the energy flux of explo-
sive events seems to be insignificant for coronal heating (F ≈ 4 × 104 erg cm−2 s−1;
Winebarger et al. 1999, 2002).

9.7 Scaling Laws of Heating Events

The relevance of microflares, nanoflares, and other transient events to the coronal heat-
ing problem can only be assessed reliably by quantitative tests of the scaling of their
physical parameters and by the statistics of their frequency distributions, which are both
related. We will therefore in this section first explore the scaling of various observable
parameters: area A(l), volume V (l), density ne(l), temperature Te(l), thermal energy
εth(l), magnetic field strength B(l), with their size (length scale l), which provides a
physical understanding of the observed frequency distributions (§ 9.8).
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Table 9.5: Geometric scaling between length scale l and fractal area A measured in EUV
nanoflares (Aschwanden & Parnell 2002), in the Bastille-Day flare, in numerical avalanche sim-
ulations, and in photospheric magnetic flux diffusion.

Phenomenon Length scaling index 1/D2 Area scaling index D2

l(A) ∝ A1/D2 A(l) ∝ lD2

TRACE 171 Å1 0.67 ± 0.03 1.49 ± 0.06
TRACE 195 Å1 0.65 ± 0.02 1.54 ± 0.05
Yohkoh SXT1 0.61 1.65
Bastille-Day flare2 1.56 ± 0.04
2D Avalanche simulation3 1.58 ± 0.04
Magnetic flux diffusion4 1.56 ± 0.08
Magnetic flux concentrations5 1.54 ± 0.05

1 Aschwanden & Parnell (2002); 2 Mean from 7 box-counting runs shown in Fig. 9.21;
3 Charbonneau et al. (2001); McIntosh & Charbonneau (2001); 4 Lawrence (1991);
Lawrence & Schrijver (1993); 5 Balke et al. (1993).

9.7.1 Geometric Scaling

Because the thermal energy content of a heating event scales with the volume V , the
measurement of geometric parameters such as length l and area A need careful treat-
ment to infer the appropriate volume. If the topology of the structure of interest is linear
(e.g., filaments, loops), the volume would scale proportionally, V (l) ∝ l1; if we deal
with a flat structure (i.e., sunspot area, photospheric magnetic flux area), the volume
scales quadratically, V (l) ∝ l2; if we deal with a 3D plasma structure, (i.e., postflare
loop arcade, CME), it could scale with the 3D Euclidian space, V (l) ∝ l3, or possibly
with a fractal Haussdorff dimension, V (l) ∝ lD, with 1 ≤ D ≤ 3. The fractal scaling
is a natural property of many fragmented structures that grow with some self-similar
properties, such as fern branches, snow crystals, coastal fjords, and perhaps solar flare
arcades. The fractal area over which a nonlinear dissipation process spreads has been
explored with simulations of avalanche models (Charbonneau et al. 2001).

In Table 9.5 we compile measurements of geometric scaling laws between the
length l and area A(l), projected along the line-of-sight, that have been measured for a
set of EUV nanoflares with TRACE and Yohkoh/SXT (Aschwanden & Parnell 2002),
along with a numerical simulation of an avalanche model (Charbonneau et al. 2001;
McIntosh & Charbonneau 2001) and measurements of the diffusion of magnetic flux el-
ements on the photospheric solar surface (Lawrence 1991; Lawrence & Schrijver 1993;
Balke et al. 1993), which give a very similar fractal dimension of D2 ≈ 1.5 (to within
10%). For the latter process it was concluded that the measured dimension excludes
a Euclidian 2D diffusion process but that it is consistent with percolation theory for
diffusion on clusters at a density below the percolation threshold. In Fig. 9.21 we show
a fractal area measurement for a larger flare, where the fractal area was determined by
a box-counting method with different macro-pixel sizes (from 1 to 64 × 0.5′′). The
constancy of the fractal dimension measured with different pixel sizes indicates that
we deal with a truly fractal structure, which can be characterized by a single fractal
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Figure 9.21: Measurement of the fractal area of the Bastille-Day flare, observed by TRACE
171 Å on 2000-Jul-04, 10:59:32 UT. The Haussdorff dimension is evaluated with a box-counting
algorithm for pixels above a threshold of 20% of the peak flux value. Note that the Haussdorff
dimension is invariant when rebinned with different macro-pixel sizes (64, 32, 16, 8, 4, 2, 1),
indicated with a mesh grid. The full resolution image is in the top left frame.

dimension, the so-called Haussdorff dimension D2 (e.g., Mandelbrot 1977; Schroeder
1991; Schuster 1988, p. 54),

A(l) ∝ lD2 for l → 0 . (9.7.1)

So, the fractal dimension D2 can be measured at an arbitrary scale from the logarithmic
ratio of the number of 2D-pixels NA that are covered by the structure area and the
number of 1D-pixels Nl that are covered by the maximum structure length,

D2 =
ln NA

ln Nl
. (9.7.2)

The next step, namely to infer the scaling of the volume V (l), is more difficult,
because it cannot be measured directly in astrophysical observations, unless we have
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stereoscopic observations available. In principle, one could use the solar rotation to
determine the projected area of a coronal structure from different angles to infer the 3D
volume. Alternatively, statistical studies of center-to-limb variations of the projected
area could also reveal the 3D volume. For instance, the area of a flat sunspot varies as
A(θ) ∝ cos(θ) with the inclination angle θ to the solar vertical. We define the fractal
dimension of the volume scaling with the symbol D3,

V (l) ∝ lD3 for l → 0 . (9.7.3)

An upper limit is the Euclidian scaling, D3 = 3. It is more difficult to establish a lower
limit. If we assume that the volume increases at least with the size of the (fractal) area,
we would have a lower limit of D3 ≥ D2 ≈ 1.5. However, for linear structures with
a constant thickness, the dimension could be as low as D3 ≥ 1. It is not clear a priori
over what range of size scales an object is fractal. Here we are dealing with nanoflares,
which can have a size as small as the height of the chromosphere (Lmin

>∼ 3 Mm), to
the largest flares that could have the size of an active region (Lmax

<∼ 100 Mm), so we
have a size range of Lmax/Lmin = 100/3 ≈ 30. This implies a range of Euclidian
volumes Vmax/Vmin ≈ 303 ≈ 3 × 104. Upper limits on the filling factor can be
estimated from the ratio of the fractal to the Euclidian volume,

qfill(l) =
lD3

l3
= lD3−3 , (9.7.4)

which would amount to qfill
<∼ 18% for the largest structures and a fractal dimension

of D3 = 2.5, but could be as small as qfill ≈ 3% for a fractal dimension of D3 = 2.0.
So we could estimate the lower limit of the fractal dimension by measuring the filling
factor of flare loops. In the following we adopt an estimate of D3 = 2.5 ± 0.5.

The fractal scaling of the volume V with the area A is then

V (A) ∝ l(A)D3 = AD3/D2 ≈ A5/3 . (9.7.5)

So with the fractal dimensions D2 ≈ 1.5 and D3 ≈ 2.5 we have a scaling of V (A) ≈
A5/3, which is not too much different from the Euclidian scaling V (A) = A3/2. Some
nanoflare studies used a pill-box geometry with constant depth, V (A) ∝ A (e.g., Benz
& Krucker 1998; Parnell & Jupp 2000). In another study, fractal dimensions of D2 =
1.5 and D3 = 2.0 were determined, leading to a scaling of V (A) = A4/3 (Aschwanden
& Parnell 2002).

9.7.2 Density, Temperature, and Energy Scaling

The RTV scaling laws express an energy balance between heating and (radiative and
conductive) losses, using the approximations of constant pressure, no gravity, and uni-
form heating. While this scaling law breaks down for large cool EUV loops, where the
loop length is larger than the pressure scale height, we expect that the approximation
should hold for the smaller and hotter flare loops, because the higher temperature pro-
duces a larger pressure scale height, so that the assumption of a constant pressure is
better fulfilled. In addition, the assumption of uniform heating can be better realized
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Figure 9.22: Scaling laws between mean electron densities (top), electron temperatures (mid-
dle), and thermal energies (bottom) versus mean length scales for the data sets with flare-like
events listed in Table 9.4. The regression fit is performed on the logarithmic values and the
uncertainties are given by the difference in the fits of y(x) and x(y).

in flare loops than in footpoint-heated active region loops. Another assumption of the
RTV laws is the stationary condition for energy balance. This assumption seems to
be inappropriate for flares at the first glance. However, the energy balance between
heating and cooling terms has to be fulfilled at the temperature peak of the flare, which
represents a turning point between dominant heating (i.e., Eheat > Eloss during the
risetime of the flare) and dominant cooling (i.e., Eheat < Eloss during the decay time
of the flare). So, when the flare reaches the temperature maximum at t = tpeak, the
energy balance Eheat(t) = Eloss(t) actually is an equivalent definition of the turning
point dT (t)/dt = 0 or temperature maximum T (t = tpeak) = Tmax.

So, to explore the scaling of the density ne(l), temperature Te(l), and heating rate
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EH(l) as a function of the length scale l for flare-like events, let us use the RTV laws
expressed as a function of the density ne and temperature Te (Eqs. 9.1.3−4), and relate
the volumetric heating rate EH to the enthalpy change per unit volume, dεth/dV ,

T (l) ∝ [ne(l) l]1/2 , (9.7.6)

EH0(l) ∝ n7/4
e l−1/4 , (9.7.7)

EH0(l) ∝ dεth

dV
= 3ne(l)kBTe(l) , (9.7.8)

Prescribing a powerlaw dependence for all three functions, this system of three coupled
equations yields a unique solution for the powerlaw indices,

ne(l) ∝ l3 , (9.7.9)

Te(l) ∝ l2 , (9.7.10)

dεth(l)
dV

∝ l5 , (9.7.11)

and the total thermal energy integrated over the flare volume is

εth(l) = 3ne(l)kBT (l)V (l) ∝ l5+D3 ≈ l7.5±0.5 , (9.7.12)

We now perform a linear regression fit through the logarithmic means of the densities
ne(l), temperatures Te(l), and total thermal energies εth(l) from the flare-like data sets
listed in Table 9.4 and obtain the following relations (Fig. 9.22; with the uncertainties
quantified from the differences of the y(x) and x(y) fits),

ne(l) ∝ lDn ≈
{

l3 RTV law
l3.8±1.3 observations , (9.7.13)

Te(l) ∝ lDT ≈
{

l2 RTV law
l1.2±0.4 observations , (9.7.14)

εth(l) ∝ lDn+DT +D3 ≈
{

l7.5±0.5 RTV law
l7.7±0.9 observations , (9.7.15)

So, the agreement between the RTV model and the synthesized data (with nanoflares,
microflares, and large flares combined) is reasonable. This result explains the large
range of flare energies observed between nanoflares and large flares. Although the spa-
tial scale of flares varies only by a factor of ≈ 20, the energy scaling varies by a factor
of 207.5 ≈ 5 × 109, because each physical parameter (ne, Te, V ) scales with a posi-
tive power with the length scale, representing the “big flare syndrom”. For nanoflare
scaling laws formulated in terms of current sheet parameters or magnetic reconnection
models see Litvinenko (1996a), Vekstein & Katsukawa (2000), Craig & Wheatland
(2002), and Katsukawa (2003).

There are very few measurements of such scaling laws published in the literature.
One scaling law was measured from transient brightenings in soft X-rays observed with
Yohkoh/SXT, yielding εth(l) ∝ l1.6±0.1 (Ofman et al. 1996). Other samples of EUV
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nanoflares yielded εth(l) ∝ l2.11 (Aschwanden et al. 2000c) and εth(l) ∝ A1.634 ≈
l3.2 (Aschwanden & Parnell 2002). We suspect that the scaling laws derived in single
data subsets are subject to the temperature bias of a single instrument with limited
temperature coverage and to the truncation bias in the limited energy ranges, and thus
are not consistent with the synthesized relation derived theoretically and from multiple
data sets (Eq. 9.7.15 and Fig. 9.22).

9.7.3 Magnetic Scaling

For both DC and AC coronal heating models the magnetic field is probably the most
important quantity determining the amount of deposited energy. A number of studies
have therefore been performed to quantify the scaling between the magnetic field and
dissipated energy. If we assume a one-to-one conversion of total dissipated magnetic
energy εm ∝ B2V to thermal energy εth = 2nekBTV , we can predict the following
scaling

B(l) ∝ [ne(l)T (l)]1/2 ∝ l(Dn+DT )/2 ≈
{

l2.5 RTV law
l2.5±0.7 observations , (9.7.16)

or as a function of the area A,

B(A) ∝ l2.5(A) ∝ A2.5/D2 ≈ A1.7 . (9.7.17)

where the lower limit is B(A) ∝ A1.25 for Euclidian scaling D2 = 2, and the upper
limit is B(A) ∝ A2.5 for maximum fractality D2 = 1. Observationally, we have to
distinguish whether magnetic scaling laws have been derived for entire active regions,
for individual coronal loops, or for flare-like events.

Looking at entire active regions, Golub et al. (1980) determined a scaling law for
the total thermal energy content εth in coronal soft X-ray loops with a photospheric
magnetic flux Φ = BA ≈ Bl2 (i.e., εth ∝ Φ1.5). This implies εth ∝ nT l3 ∝
(Bl2)3/2 ∝ B3/2l3, so the dependence on the spatial scale l drops out and the thermal
energy per volume, dεth/dV ∝ nT ∝ B1.5, is close to a one-to-one conversion of
the magnetic energy density, which is expected to scale as ∝ B2. Fisher et al. (1998),
however, find that the soft X-ray luminosity in active regions correlates best with the
total unsigned magnetic flux, LSXR ≈ 1.2× 1026 erg s−1 (|Φ|tot/1022 Mx)1.2, rather
than with B2. The magnetic flux averaged over active regions has been measured to
have a very weak dependence on the area, Φ(A) ≈ A1.1 (Harvey 1993; Schrijver
& Zwaan 2000), so the magnetic field is almost indpendent of the area of the active
region. Van Driel−Gesztelyi et al. (2003) measured the long-term evolution of an
active region and found a scaling of p(B) ≈ B1.2±0.3 from BCS measurements, also
below the theoretical expectation p(B) ∝ dεth/dV ∝ B2 for a one-to-one conversion
of magnetic into thermal energy. We have to be aware that these statistical studies of
active regions involve averaging over large areas with variable filling factors, and thus
may not reflect the intrinsic scaling between magnetic fields and heating.

Isolating individual active region loops, Porter & Klimchuk (1995) measured with
Yohkoh/SXT a scaling law of p(l) ∝ l−1.0 between the pressure and length of 47 non-
flaring soft X-ray loops. Assuming a one-to-one conversion of magnetic to thermal
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Figure 9.23: Time evolution of energy build-up interrupted by random times: linear (top),
quadratic (middle), and exponential growth (bottom). Note that linear growth produces ex-
ponential distributions of saturation energies, while nonlinear growth produces powerlaw-like
distributions, see Fig. 9.24.

energy, this yields B(l) ∝ [ne(l)T (l)]1/2 ∝ p(l)1/2 ∝ l−0.5. Mandrini et al. (2000)
measured the average magnetic field strengths in some 1000 different coronal loops and
found a scaling law of B(l) ∝ l−0.9±0.3. Both studies yield relations that are signif-
icantly below the theoretical expectation for flare-like events (Eq. 9.7.15). Démoulin
et al. (2003) inferred the dependence EH(B) ∝ BaB from active region loops with
Yohkoh SXT and BCS data and corroborate observationally that the index is consis-
tent with the theoretical expectation aB = 2 for a one-to-one conversion of dissipated
magnetic energy to heating.

The magnetic scaling for flare loops or flare-like events has not been explored
much, for a number of reasons that complicate the analysis: (1) an accurate mapping
of flare loop footpoints to the photospheric footpoints is required, which is often am-
biguous because of the height difference and canopy-like divergence of the magnetic
field; (2) the large-scale currents (and thus the nonpotential magnetic field) has been
found to be displaced from hard X-ray flare loop footpoints (Leka et al. 1993); and
(3) 95% of the photospheric magnetic field closes inside the transition region, so that
the coronal connectivity is relatively sparse (Schrijver & Title 2002). So, there is no
quantitative test of the predictions (Eq. 9.7.16) of the the magnetic scaling in flare-like
events available yet.
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9.8 Statistics of Heating Events

9.8.1 Theory of Frequency Distributions

The statistics of energies in the form of frequency distributions became an important
tool for studying nonlinear dissipative events. A frequency distribution is a function
that describes the occurrence rate of events as a function of their size, usually plotted
as a histogram of the logarithmic number log(N) versus the logarithmic size log(S),
where the size S could be a length scale l, an area A, a spatial volume V , or a volume-
integrated energy E. The two most common functional forms of such frequency dis-
tributions are the exponential and the powerlaw function. We will demonstrate that
an exponential distribution results from linear or incoherent processes, while a power-
law distribution results from nonlinear or coherent processes. The latter function has
therefore been established as the hallmark of nonlinear dissipative systems. A power-
law function has no characteristic spatial scale, in contrast to an exponential function,
which has an e-folding scale length. The size range over which a powerlaw function
applies is called the inertial range. We will see that this inertial range extends over
more than 8 orders of magnitude in energy for solar flares and nanoflares. Nonlinear
dissipative systems, which are constantly driven by some random energy input evolve
into a critical state that is maintained as a powerlaw distribution. The fluctuations of the
input does not change the powerlaw slope of the dissipated energy events that make up
the output, but are just adjusted by a scale-invariant number factor and by a slow shift
of the upper cutoff of the distribution. The maintenance of an invariant powerlaw slope
is also called self-organized criticality and is a property that is inherent to nonlinear
dissipative systems. The principle of self-organized criticality has been first applied to
solar flare phenomena by Lu & Hamilton (1991).

We can build a simple mathematical model of a nonlinear dissipative system just
by two rules: (1) energy is dissipated in random time intervals, and (2) energy builds
up with a nonlinear power as a function of time. So, let us consider linear and nonlin-
ear time evolutions (e.g., a quadratic and an exponential function) for the build-up of
energy W (t), see Fig. 9.23,

W (t) = W1 ×
⎧⎨
⎩

(t/τG) linear
(t/τG)2 quadratic
exp (t/τG) exponential

, (9.8.1)

where τG represents an exponential growth time. If we let each process grow to ran-
domly distributed saturation times t = tS , we will obtain a distribution of saturation
energies WS = W (t = tS). The distribution of random times tS obeys Poisson statis-
tics and can be approximated with an exponential distribution with an e-folding time
constant tSe (in the tail tS >∼ tSe),

N(tS)dtS = N0 exp
(
− tS

tSe

)
dtS (9.8.2)

where N0 is a normalization constant. With these two definitions (Eqs. 9.8.1−2) we
can derive the frequency distribution of dissipated energies N(WS) by substituting the
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Figure 9.24: Theoretical frequency distributions N(WS) for 4 different ratios of the mean
saturation times tSe to the growth time τG: (a) tSe/τG = 1.0 (linear case), (b) tSe/τG = 2.0,
(c) tSe/τG = 5.0, (d) tSe/τG = 10.0 (nonlinear cases). Note that the frequency distribution
evolves from an exponential to a powerlaw distribution the higher the nonlinear saturation time
is (Aschwanden et al. 1998a).

saturation times tS with the energy variable WS(tS) in the distribution of saturation
times N(tS) in Eq. (9.8.2),

N(WS)dWS = N [tS(Ws)]
∣∣∣∣ dtS
dWS

∣∣∣∣ dWS . (9.8.3)

So we have to invert the energy evolution time profile WS(tS) (Eq. 9.8.1),

tS(WS) = τG ×
⎧⎨
⎩

(WS/W1) linear
(WS/W1)1/2 quadratic
ln (WS/W1) exponential

, (9.8.4)

and to calculate the derivatives of the inversions, dtS/dWS ,

(
dtS
dWS

)
= τG ×

⎧⎨
⎩

(1/W1) linear
(1/2W1)(W1/WS)1/2 quadratic
(1/WS) exponential

, (9.8.5)

which then can be plugged into Eq. (9.8.3) to yield the frequency distributions of ener-
gies:

N(WS) ∝

⎧⎪⎨
⎪⎩

exp [−(τG/tSe)(WS/W1)] linear
exp [−(τG/tSe)(WS/W1)1/2] × W

−1/2
S quadratic

W
−(1+τG/tSe)
S exponential

. (9.8.6)
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The resulting frequency distribution for linear growth is an exponential distribution,
similar to the exponential distribution of saturation times. This is trivial, because the
energy WS is proportional to the saturation time tS for linear growth. For exponential
growth, however, the resulting frequency distribution becomes a powerlaw (Eq. 9.8.6;
Fig. 9.24) with an index

αW =
(

1 +
τG

tSe

)
, (9.8.7)

(Rosner & Vaiana 1978; Aschwanden et al. 1998a). So the powerlaw slope is deter-
mined by the ratio of the exponential growth time τG of the nonlinear energy evolution
and by the e-folding saturation time tSe of the random distribution of saturation times,
with the limit of αW ≥ 1 for tSe � τG (Fig. 9.25). The linear growth case can also be
mimicked by the exponential model for tSe � τG. We illustrate the relation between
the time profiles of the energy evolution W (tS) and the distribution of saturation ener-
gies in Figs. 9.23 to 9.25. The theoretical relation (9.8.7) for the powerlaw slope gives
us a diagnostic as to whether the underlying nonlinear dissipative process is incoherent
(if αW � 1) or coherent with a high amplification factor (if αW

>∼ 1).

9.8.2 Frequency Distributions of Flare Parameters

We started out to specify the relation between different physical parameters in flares
(ne, Te, εth) as a function of the spatial scale l (§ 9.7.2). Therefore, once we have
measured the distribution of spatial scales, which might be characterized by a powerlaw
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distribution,
N(l)dl ∝ l−αldl 1 ≤ αl ≤ 3 , (9.8.8)

and know the relation of a parameter y(l) as a function of this independent variable l,
for example,

y(l) ∝ lD

⎧⎪⎪⎨
⎪⎪⎩

V (l) ∝ lD3 volume
ne(l) ∝ lDn density
Te(l) ∝ lDT temperature
εth(l) ∝ lDE = lDn+DT +D3 thermal energy

. (9.8.9)

we can predict the frequency distributions N(y) of these parameters in the same way
as we did in Eqs. (9.8.3−6). We need only to calculate the inversion of y(l) and its
derivative, which for powerlaw functions is straightforward,

l(y) ∝ y1/D ,
dl

dy
∝ y1/D−1 (9.8.10)

and yields the desired frequency distributions,

N(y) dy = N [l(y)]
dl

dy
dy = l(y)−αl

dy

dl
dy = y−[1+(αl−1)/D]dy (9.8.11)

So we obtain again powerlaw distributions with the following slopes,

N(y)dy ∝ y−αydy , αy =
(

1 +
αl − 1

D

)
. (9.8.12)

Therefore, for the RTV model described in § 9.7.2 we predict the following powerlaw
slopes αy of the frequency distributions N(y) of various physical parameters y,

RTV model Volume model
αl = 2.5 ± 0.5 αl = 2.5 ± 0.5
D3 = 2.5 ± 0.5 D3 = 2.5 ± 0.5
Dn = 3.0 Dn = 0.0
DT = 2.0 DT = 0.0
DE = Dn + Dt + D3 = 7.5 ± 0.5 DE = 2.5 ± 0.5
αV = 1 + αl−1

D3
= 1.67 ± 0.33 αV = 1.67 ± 0.30

αn = 1 + αl−1
Dn

= 1.50 ± 0.17 ...

αT = 1 + αl−1
DT

= 1.75 ± 0.25 ...

αE = 1 + αl−1
DE

= 1.21 ± 0.08 αE = 1.67 ± 0.33

. (9.8.13)

Thus we predict a powerlaw distribution of energies with a slope of αE = 1.21± 0.08
for the RTV model, where the error bars include only the propagation errors of the
fractal dimension D3 = 2.5 ± 0.5 and the length distribution αl = 2.5 ± 0.5. Let
us define also an alternative model, the so-called Volume model, where the thermal
energy is directly proportional to the volume, without any dependence on the density
and temperature. Such a model may be representative if statistics is done in a subset
of the data, say in a narrowband filter with a small temperature range and with a flux
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threshold (which restricts the range of detected densities). In such a restricted data
subset we would predict a slope of αE = 1.67±0.33. Real data with some temperature
range and some moderate flux range, of course, could produce any value between these
two cases, 1.21 ≤ αE ≤ 1.67. Powerlaw indices in the range of 1.1 − 1.64 have
also been derived from magnetic braiding and twisting models (Zirker & Cleveland
1993a,b).

9.8.3 Energy Budget of Flare-like Events

The frequency distributions specify the number of events N(Wi) in an energy bin
[Wi, Wi+1]. If we want to know the total energy budget over some range that is brack-
eted by the minimum W1 and maximum W2, we have to integrate the energy powerlaw
distribution,

Wtot =
∫ W2

W1

N(W ) W dW =
∫ W2

W1

N1W1

(
W

W1

)1−αW

dW =

= N1W
2
1

⎧⎨
⎩

1
(2−αW )

[(
W2
W1

)2−αW − 1
]

if α2 �= 2 ,

[ln (W2/W1)] if α2 = 2 ,
(9.8.14)

From this expression we see immediately that the integral is dominated by the upper
limit W2 for flat powerlaw indices αW < 2, and by the lower limit W1 in the case
of steep powerlaw indices αW > 2. This implies that nanoflares are important for
coronal heating if the frequency distribution of their energy has a slope steeper than 2,
a necessary condition that was pointed out by Hudson (1991a).

Let us calculate some practical cases that are relevant for the coronal heating prob-
lem. The energy requirements for coronal heating are given in Table 9.1. For the
quiet Sun we need a heating rate of FQS ≈ 3 × 105 erg cm−2 s−1, and for active
regions we need FAR ≈ 107 erg cm−2 s−1. We know that flares occur only in ac-
tive regions and could have a maximum energy up to W2,AR ≈ 1032 erg (Fig. 9.27),
while the largest microflares occurring in the quiet Sun are the so-called X-ray bright
points, which have energies up to W2,QS ≈ 1030 erg. For the lower energy limit
we take the smallest nanoflares that have been observed so far, which have energies
of W1,QS ≈ W1,AR ≈ 1024 erg. With these values we obtain with (Eq. 9.8.14) the
following rates,

N1 =
Wtot

W 2
1

1
(2 − αW )

1
(W2

W1
)2−αW − 1

=

⎧⎪⎪⎨
⎪⎪⎩

4.3 × 100 QS : (RTV model)
1.0 × 103 QS : (Volume model)
1.4 × 102 AR : (RTV model)
3.5 × 104 AR : (Volume model)

(9.8.15)
We visualize these four distributions in Fig. 9.26. Because the powerlaw slopes

are all below the critical value of αE = 2, the total energy is dominated by the upper
energy cutoff W2, so that the lower energy cutoff has almost no effect, since W1 � W2.
Consequently, the integrated total energy is also not very sensitive to the exact value of
the powerlaw slope. In essence, the occurrence rate at the high energy cutoff N(W2)
is the most decisive parameter determining the energy budget.
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Figure 9.26: Predicted frequency distributions that fulfill the coronal heating requirement, for
quiet Sun regions (F = 3 × 105 erg cm−2 s−1) and active regions (F = 107 erg cm−2 s−1),
according to the RTV model (with a powerlaw slope of αE = 1.21 and the volume model
(αE = 1.67), see text.

9.8.4 Measurements of Frequency Distributions

A compilation of some recent frequency distributions of nanoflare energies is shown in
Fig. 9.27, which all have a powerlaw slope of approximately αE ≈ 1.55. In the same
figure we also show the energy distribution of the coronal heating requirement for the
quiet Sun (grey area in Fig. 9.27), for the same powerlaw slope and the parameters:
F = Wtot = 3 × 105 erg cm−2 s−1, W1 = 1024 erg, W2 = 1030 erg, αE = 1.55. We
see that the observed nanoflare distribution lies about a factor of 10 below the theoret-
ical occurrence rate, or shifted to the left by about a factor of ≈ 3 in energy. Now we
have to be aware that the thermal energy is calculated based on the radiation we detect
in EUV and soft X-rays, so it characterizes only the energy equivalent to the radiative
losses, while it does not include energy losses due to conduction to the chromosphere
or the solar wind flux. The radiative losses in the quiet Sun alone are indeed about
a factor of 3 lower than the total coronal energy losses (i.e., F = 1 × 105 erg cm−2

s−1; Table 9.1). So we can conclude that the detected radiation of the EUV and SXT
nanoflares roughly corresponds to a third of the total coronal heating requirement in
quiet Sun regions, which covers approximately the radiative losses. Because there are
many uncertainties involved in the quantification of observed frequency distributions,
this result still needs to be corroborated. If this result holds up, it has the important con-
sequence that we have localized the coronal heating sources in the form of detectable
nanoflares in EUV and soft X-rays with a sufficient rate, and thus we do not need to
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Figure 9.27: Compilation of frequency distributions of thermal energies from nanoflare statis-
tics in the quiet Sun, active region transient brightenings, and hard X-ray flares. The labels
indicate the following studies: K=Krucker & Benz (1998), Benz & Krucker (2002); P=Parnell
& Jupp (2000) (corrected for an erroneous factor of 100 in the original paper); A=Aschwanden
et al. (2000c); S=Shimizu (1995); C=Crosby et al. (1993), and 171, 195=Aschwanden & Parnell
(2002). The overall slope of the synthesized nanoflare distribution, N(E) ∝ E−1.54±0.03 , is
similar to that of transient brightenings and hard X-ray flares. The grey area indicates the coro-
nal heating requirement of F = 3 × 105 erg cm−2 s−1 for quiet Sun regions. Note that the
observed distribution of nanoflares falls short of the theoretical requirement by a factor of 10 in
occurrence rate or a factor of ≈ 3 in energy.

invoke invisible energy sources such as heating by Alfvén waves to explain the radia-
tion of the heated plasma, at least not in quiet Sun regions. In coronal holes, the total
energy losses are much higher due to the solar wind fluxes (Table 9.1), where heating
by Alfvén waves is probably required in addition to nanoflare heating.

In Table 9.6 we compile frequency distributions of small-scale phenomena that
have been reported from the quiet Sun and calculate their total energy flux F based on
the observed energy ranges [W1, W2], powerlaw slopes αE , and rate N1 = N(W1).
EUV transients, nanoflares and microflares generally are found in the energy range
of W ≈ 1024 − 1026 erg and the integrated flux over the entire frequency distribu-
tion lies in the range of F ≈ (0.5 ± 0.2)105 erg−1 cm−2 s−1, which makes up about
one to two-thirds of the total heating requirement of the quiet corona, roughly cov-
ering the radiative losses in the quiet Sun corona. This corroborates our finding in
Fig. 9.27. A similar flux was also measured for explosive events in C III, Ne IV, and
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Table 9.6: Frequency distributions of small-scale phenomena observed in quiet Sun regions.

Phenomenon Number Powerlaw Energy Total
of events slope range flux
N αE E1, E2 F

1024 [erg] [erg cm−2 s−1]
EUV transients, EIT, 171+1951 233 2.45 ± 0.15 10 − 300 0.7 × 105

EUV transients, EIT 1952 228 1.35 ± 0.20 1 − 100 ...
EUV transients, EIT 1953 277 1.45 ± 0.20 10 − 100 ...
Nanoflares, TRACE, 171+1954 5131 2.48 ± 0.11 0.3 − 60 0.2 × 105

Nanoflares, TRACE+SXT5 281 1.53 ± 0.02 10 − 106 0.5 × 105

Blinkers, CDS, O V6 790 1.34 ± 0.08 0.01 − 0.3 ...
Explosive ev., SUMER C III7 3403 2.8 ± 0.1 0.05 − 2 0.45 × 105

Explosive ev., SUMER Ne IV7 2505 2.8 ± 0.1 0.6 − 10 0.16 × 105

Explosive ev., SUMER O VI7 5531 3.3 ± 0.4 0.1 − 2 0.79 × 105

Explosive ev., SUMER Ne VIII7 2907 2.8 ± 0.5 0.06 − 1 0.03 × 105

1 Krucker & Benz (1998); 2 Berghmans et al. (1998); 3 Berghmans & Clette (1999); 4 Parnell
& Jupp (2000) [corrected for a factor of 100 in original paper]; 5 Aschwanden et al. (2000b); 6

Brkovic et al. (2001); 7 Winebarger et al. (2002).

O VI (Winebarger et al. 2002), which fits into the picture that explosive events and
nanoflares are probably controlled by the same physical process as a magnetic recon-
nection process in the transition region, which is manifested with comparable amounts
of thermal plasma inside the transition region (as detected in the cooler EUV lines in C
III, Ne IV, and O VI) as well as in the lower corona (in the hotter EUV lines of Fe IX/X
and Fe XII). Other phenomena such as blinkers carry several orders of magnitude less
energy (εth ≈ 1022 − 3× 1023; Brkovic et al. 2001), and thus seem to be energetically
less important for coronal heating.

There are some significant variations in the powerlaw slope of the frequency distri-
butions, ranging from as low as αE ≈ 1.34 up to αE

<∼ 2.6 (Table 9.6). Our theoretical
RTV model predicts a slope in the range of 1.21 ≤ αE ≤ 1.67 (Fig. 9.26), depending
on the sampling over a broad or narrow temperature and flux range. There are a number
of systematic effects in the data analysis and modeling of the thermal energy that affect
the resulting powerlaw slope, such as: (1) event definition and discrimination, (2) sam-
pling completeness, (3) observing cadence and exposure times, (4) pattern recognition
algorithm, (5) geometric, density, and thermal energy model, (6) line-of-sight inte-
gration, (7) extrapolation in undetected energy ranges, (8) wavelength and filter bias,
(9) fitting procedure of frequency distributions, and (10) error estimates of powerlaw
slopes. Technical details about these issues are discussed and compared in a number of
papers (e.g., Aschwanden & Parnell 2002; Aschwanden & Charbonneau 2002; Benz
& Krucker 2002; Parnell 2002a, 2002b; Berghmans 2002). The main lesson is that ex-
trapolation of the powerlaw to unobserved energies that are many orders of magnitude
smaller than the observed energy ranges remains questionable. The integrated energy
flux over the observed energy range is less susceptible to the powerlaw slope, because
the total flux of the sum of all measured events is conserved, regardless how the fine
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structure is subdivided into discret subevents. Fortunately, since the total energy of the
observed nanoflare distributions is commensurable with the radiative losses, there is no
need to extrapolate the distribution to unobserved energy ranges, and thus the question
whether the powerlaw slope is below or above the critical value of 2 is not decisive
for the heating budget. Another lesson is the completeness of temperature coverage,
which generally requires coordinated multi-wavelength observations. For instance, a
statistical analysis of coronal bright points with EIT 195 Å revealed that bright points
cover only about 1.4% of the quiet Sun area, and their radiation accounts for about 5%
of the quiet Sun radiation (Zhang et al. 2001), while the multi-wavelength data sets
listed in Table 9.5 reproduce almost all of the quiet Sun flux.

9.9 Summary

The coronal heating problem has been narrowed down by substantial progress in
theoretical modeling with MHD codes, new high-resolution imaging with the SXT,
EIT and TRACE telescopes, and with more sophisticated data analysis using au-
tomated pattern recognition codes. The total energy losses in the solar corona
range from F = 3 × 105 erg cm−2 s−1 in quiet Sun regions to F ≈ 107 erg cm−2

s−1 in active regions (§ 9.1). Theoretical models of coronal heating mechanisms
include the two main groups of DC (§ 9.3) and AC models (§ 9.4), which involve
as a primary energy source chromospheric footpoint motion or upward leaking
Alfvén waves, which are dissipated in the corona by magnetic reconnection, cur-
rent cascades, MHD turbulence, Alfvén resonance, resonant absorption, or phase
mixing. There is also strong observational evidence for solar wind heating by cy-
clotron resonance, while velocity filtration seems not to be consistent with EUV
data (§ 9.5). Progress in theoretical models has mainly been made by abandon-
ing homogeneous fluxtubes, but instead including gravitational scale heights and
more realistic models of the transition region, and taking advantage of numerical
simulations with 3D MHD codes. From the observational side we can now unify
many coronal small-scale phenomena with flare-like characteristics, subdivided
into microflares (in soft X-rays) and nanoflares (in EUV) solely by their energy
content (§ 9.6). Scaling laws of the physical parameters corroborate the unifica-
tion of nanoflares, microflares, and flares; they provide a physical basis to under-
stand the frequency distributions of their parameters and allow estimation of their
energy budget for coronal heating (§ 9.8). Synthesized data sets of microflares and
nanoflares in EUV and soft X-rays have established that these impulsive small-
scale phenomena match the radiative loss of the average quiet Sun corona, which
points to small-scale magnetic reconnection processes in the transition region and
lower corona as primary heating sources of the corona.



Chapter 10

Magnetic Reconnection

The solar corona has dynamic boundary conditions: (1) The solar dynamo in the in-
terior of the Sun constantly generates new magnetic flux from the bottom of the con-
vection zone (i.e., the tachocline) which rises by buoyancy and emerges through the
photosphere into the corona; (2) the differential rotation as well as convective motion
at the solar surface continuously wrap up the coronal field with every rotation; and (3)
the connectivity to the interplanetary field has constantly to break up to avoid excessive
magnetic stress. These three dynamic boundary conditions are the essential reasons
why the coronal magnetic field is constantly stressed and has to adjust by restructuring
the large-scale magnetic field by topological changes, called magnetic reconnection
processes. Of course, such magnetic restructuring processes occur wherever the mag-
netic stresses build up (e.g., in the canopy-like divergent field in the transition region,
in highly tangled coronal regions in active regions, or at coronal hole boundaries). A
classical example is a transequatorial coronal hole that sometimes is observed to rotate
almost rigidly during several solar rotations, although the underlying photosphere dis-
plays the omnipresent differential rotation (in latitude): The shape of the coronal hole
can only be preserved quasi-statically, if the photospheric magnetic field constantly dis-
connects and reconnects at the eastern and western boundaries. Topological changes
in the form of magnetic reconnection always liberate free nonpotential energy, which
is converted into heating of plasma, acceleration of particles, and kinematic motion
of coronal plasma. Magnetic reconnection processes can occur in a slowly changing
quasi-steady way, which may contribute to coronal heating (§ 9), but more often hap-
pen as sudden violent processes that are manifested as flares and coronal mass ejections
(§ 11-17). These dynamic processes are the most fascinating plasma processes we can
observe in the universe, displaying an extreme richness of highly dynamic phenomena
observable in all wavelengths.

We concentrate here mainly on the magnetic reconnection processes in the solar
corona, including associated processes in the photospheric and chromospheric bound-
aries, but there is also a rich literature on magnetic reconnection processes in planetary
magnetospheres (e.g., Kivelson & Russell 1995, § 9; Treumann & Baumjohann 1997,
§ 7; Scholer 2003), in laboratory tokomaks and spheromaks (e.g., Bellan 2002), as well
as in other astrophysical objects such as comets, planets, stars, accretion disks, etc. In-
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troductions into magnetic reconnection in the solar corona can be found in textbooks
(Priest 1982, § 10.1; Sturrock 1994, § 17; Priest & Forbes 2000; Somov 2000, § 16-22;
Tajima & Shibata 2002, § 3.3), or in the following recent reviews and encyclopedia ar-
ticles (Forbes 2001; Schindler & Hornig 2001; Ugai 2001; Hood et al. 2002; Biskamp
2003; Kliem et al. 2003), while specific applications to solar flares can be found in
the proceedings of some Yohkoh conferences (Bentley & Mariska 1996; Watanabe et
al. 1998; Martens & Cauffman 2002).

10.1 Steady 2D Magnetic Reconnection

Quasi-steady reconnection of magnetic fields enables the coronal plasma to dissipate
magnetic energy, a process that has been proposed to yield direct plasma heating of
the corona (e.g., Parker 1963a, 1972, 1979, 1983; Sturrock & Uchida 1981; Van Bal-
legooijen 1986) or to supply direct plasma heating in flares (e.g., Sweet 1958; Parker
1963a; Petschek 1964; Carmichael 1964; Sturrock 1966). This concept represents one
of the most fundamental building blocks that has been used in many theoretical models
of coronal heating and solar flares, which we outline in the following.

When a new magnetic flux system is pushed towards a pre-existing old magnetic
flux system (e.g., as the solar wind runs into the magnetopause at the Earth’s bow
shock), or as a new emerging flux region pushes through the chromosphere upwards
into a pre-existing coronal magnetic field, a new dynamic boundary is formed where
the magnetic field can be directed in opposite directions at both sides of the bound-
ary. The magnetic field has then necessarily to drop to zero at the boundary to allow
for a continuous change from a positive to a negative magnetic field strength. Thus
the balance between the magnetic and thermal pressure (Eq. 6.2.4) across the neutral
boundary layer,

B2
1

8π
+ p1 = pnl =

B2
2

8π
+ p2 , (10.1.1)

yields a higher thermal pressure (pnl) in the neutral layer (where B = 0) than on both
sides with finite field strengths B1 and B2. In a 1D model we would have an infinite
neutral boundary layer. In reality, however, the process of bringing two oppositely di-
rected magnetic flux systems together will always have a finite area of first contact,
which limits the extent of the neutral boundary layer and channels outflows to both
sides, so that the simplest scenario is a 2D model as shown in Fig. 10.1, where the
lateral inflows (driven by external forces) will create outflows along the neutral line in
an equilibrium situation. The plasma-β parameter β = pth/(B2

1/8π) becomes larger
than unity in the central region (because B1 → 0), so that the plasma can flow across
the magnetic field lines, which is called the diffusion region, and is channeled into the
outflow regions along the neutral boundary. Outside the diffusion region the plasma-
β again drops below unity and the magnetic flux is frozen-in. The highly pointed
magnetic field lines in the outflow region experience a high curvature force that tries
to smooth out the cusps in the outflow region until a balance between the outward-
directed magnetic tension force and the inward-directed magnetic pressure force plus
thermal pressure is achieved (see § 6.2.2 for the Lorentz force near the X-point). This
magnetic field line relaxation process is also called the sling shot effect, which is the
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Figure 10.1: Basic 2D model of a magnetic reconnection process, driven by two oppositely
directed inflows (in x-direction), which collide in the diffusion region and create oppositely
directed outflows (in y-direction). The central zone with a plasma-β parameter of β > 1 is
called the diffusion region (grey box) (Schindler & Hornig 2001).

basic conversion mechanism of magnetic into kinetic energy. The stationary outflows
are sandwiched between two standing slow shocks (which do not propagate). The end
result is a thin diffusion region with width δ and length ∆ (Fig. 10.1). The whole pro-
cess can evolve into a steady-state equilibrium with continuous inflows and outflows,
driven by external forces. Since the Lorentz force creates an electric field E0 in a direc-
tion perpendicular to the 2D-plane of the flows (i.e. perpendicular to the image plane
of Fig. 10.1), a current jnl in the neutral layer is associated with the electric field E0

according to Ohm’s law (Eq. 5.1.10),

E0 =
1
c
v1B1 =

1
c
v2B2 =

jnl

σ
, (10.1.2)

which is termed the current sheet for the diffusion region. The finite resistivity σ re-
quires, strictly speaking, a treatment in the framework of resistive MHD (§ 6.1.5), al-
though the processes outside the diffusion region can be approximated using the ideal
MHD equations (§ 6.1.3).

10.1.1 Sweet−Parker Reconnection Model

There exists no full analytical solution for the steady-state situation of the reconnection
geometry shown in Fig. 10.1 using the full set of resistive MHD equations (§ 6.1.5), but
separate analytical solutions for the external (ideal MHD) region and special solutions
for the (resistive MHD) diffusion region are available that can be matched with some
simplifications. One such solution is the Sweet−Parker model (Sweet 1958; Parker
1963a), where it is assumed that the diffusion region is much longer than it is wide,
∆ � δ. For steady, compressible flows (∇ · v �= 0), it was found that the outflows
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roughly have Alfvén speeds,

v2 = vA =
B2√
4πρ2

, (10.1.3)

and that the outflow speed v2 relates to the inflow speed v1 reciprocally to the cross
sections δ and ∆ (according to the continuity equation),

ρ1v1∆ = ρ2v2δ , (10.1.4)

and that the reconnection rate M0, defined as the Mach number ratio of the external
inflow speed v0 to the (Alfvén) outflow speed vA, is (with the approximation B1 ≈ B0,
v1 ≈ v0, and S1 ≈ S0),

M0 =
v0

vA
=

1√
S0

. (10.1.5)

The Lundquist number S (or magnetic Reynolds number) is defined by

S = vAL/η , (10.1.6)

analogous to the Reynolds number R = vL/η defined for a general fluid velocity v.
From Eqs. (10.1.4−6) it follows the relation

v0 =
η

δ
. (10.1.7)

So, for typical coronal conditions (with a large Lundquist number of S0 = Rm ≈ 108−
1012) the reconnection rate is typically M0 ≈ 10−4−10−6, which yields inflow speeds
in the order of v0 ≈ vAM0 ≈ 1000 km s−1 ×10−5 ≈ 0.01 km s−1 (using Eq. 10.1.5)
and yields extremely thin current sheets with a thickness of δ = ∆(vA/v1) ≈ ∆×10−5

(using Eq. 10.1.4). So, a current sheet with a length of ∆ ≈ 1000 km would have a
thickness of only δ ≈ 10 m. In typical flares, energies of εtot ≈ 1028−1032 erg (Table
9.4, Fig. 9.27) are dissipated over flare durations of ∆t ≈ 10 − 102 s, which imply
much larger dissipation rates than obtained with the Sweet−Parker current sheet,

dεm

dt
=

B2

8π

dV

dt
≈ B2

8π
L2v0 ≈ B2

8π

L2vA√
S0

≈ 1022

(
B

100 G

)2(
L

1 Mm

)2 ( vA

1 Mm/s

)
,

(10.1.8)
so the Sweet−Parker reconnection rate is much too slow to explain the magnetic dissi-
pation in solar flare events.

10.1.2 Petschek Reconnection Model

A much faster reconnection model was proposed by Petschek (1964), which involved
reducing the size of the diffusion region to a very compact area (∆ ≈ δ) that is much
shorter than the Sweet−Parker current sheet (∆ � δ) (Fig. 10.2). Summaries of the
Petschek model can be found, see example in Priest (1982, p. 351), Jardine (1991),
Priest & Forbes (2000, p. 130), Treumann & Baumjohann (1997, p. 148), and Tajima
& Shibata (2002, p. 225). Because the length of the current sheet is much shorter, the
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Sweet-Parker model
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δ

Petschek model

Slow shocks

∆
δ

Figure 10.2: Geometry of the Sweet−Parker (top) and Petschek reconnection model (bot-
tom). The geometry of the diffusion region (grey box) is a long thin sheet (∆ 
 δ) in the
Sweet−Parker model, but much more compact (∆ ≈ δ) in the Petschek model. The Petschek
model also considers slow-mode MHD shocks in the outflow region.

propagation time through the diffusion region is shorter and the reconnection process
becomes faster. However, in a given external area with size Le comparable with the
length ∆SP of the Sweet−Parker current sheet, a much smaller fraction of the plasma
flows through the Petschek diffusion region with size ∆P , where finite resistivity σ
exists and field lines reconnect. Most of the inflowing plasma turns around outside
the small diffusion region and slow-mode shocks arise where the abrupt flow speed
changes from v1 to v2 in the outflow region (Fig. 10.2, bottom). The shock waves
represent an obstacle in the flow and thus are the main sites where inflowing magnetic
energy is converted into heat and kinetic energy. Simple energy considerations show
that inflowing kinetic energy is split up roughly in equal parts into kinetic and thermal
energy in the outflowing plasma (Priest & Forbes 2000). Petschek (1964) estimated the
maximum flow speed ve by assuming a magnetic potential field in the inflow region
and found that at large distance Le the external field B0(Le) scales logarithmically
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with distance Le,

B0(Le) = B0

[
1 − 4M0

π
ln
(

Le

∆

)]
. (10.1.9)

Petschek (1964) estimated the maximum reconnection rate M0 at a distance Le where
the internal magnetic field is half of the external value (i.e., B0(Le) = B0/2), which
yields using Eq. (10.1.9),

M0 =
π

8 ln (Le/∆)
≈ π

8 ln (Rme)
. (10.1.10)

So, the reconnection rate M0 = v0/vA depends only logarithmically on the magnetic
Reynolds number Rme = LevAe/η. Therefore, for coronal conditions, where the
magnetic Reynolds number is very high (i.e., Rme ≈ 108 − 1012), the Petschek recon-
nection rate is M0 ≈ 0.01 − 0.02 according to Eq. (10.1.10), yielding an inflow speed
of v0 ≈ vAM0 ≈ 10 − 20 km s−1 for typical coronal Alfvén speeds of vA ≈ 1000
km s−1. Thus, the Petschek reconnection rate is about three orders of magnitude faster
than the Sweet−Parker reconnection rate.

10.1.3 Generalizations of Steady 2D Reconnection Models

The semi-quantitative Petschek model has been generalized in a number of mathe-
matically more rigorous formulations that are summarized in Priest (1982) and Priest
& Forbes (2000). The generalizations concern the magnetic field discontinuity in the
slow-mode shock regions, the matching of flow velocities between the diffusion re-
gion and the external region, and the compressibility of the plasma (Green & Sweet
1967; Petschek & Thorne 1967; Sonnerup 1970; Yeh & Axford 1970; Cowley 1974a,
b; Yang & Sonnerup 1976; Roberts & Priest 1975; Priest & Soward 1976; Soward &
Priest 1977; Mitchell & Kan 1978). The structure of the diffusion region has been
modeled in greater detail (Priest & Cowley 1975; Milne & Priest 1981; Priest 1972;
Somov 1992).

A unification of fast, steady, almost-uniform reconnection solutions of the MHD
equations was accomplished by Priest & Forbes (1986), who derived the following
expression for the reconnection rate Me in the external diffusion region,

(
Me

Mi

)2

≈ 4Me(1 − b)
π

⎡
⎣0.834 − ln tan

(
4RmeM

1/2
e M

1/2
i

π

)−1
⎤
⎦ , (10.1.12)

which contains the Sweet−Parker, the Petschek (b = 0), and Sonnerup solution (b = 1)
as special cases. Solutions with b < 0 produce slow-mode compression, solutions with
b > 1 produce slow-mode expansions, also called the flux pile-up regime (Litvinenko
1999b; Litvinenko & Craig 2000; Craig & Watson 2000b), while the intermediate
range of 0 < b < 1 produces hybrid solutions of slow-mode and fast-mode expan-
sions. The unified solutions have been extended by including nonlinearity effects in
the inflow, compressibility, energetics, and reverse currents (Jardine & Priest 1988a, b,
c, 1989, 1990; Jardine 1991). The almost-uniform reconnection solutions refer to the
magnetic field in the inflow region (for which Petschek assumed a potential field). As
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Figure 10.3: Numerical simulations of steady 2D reconnection, showing the flow trajectories
(top) and magnetic field lines (bottom) in the top left quadrant of the symmetric configuration
shown in Figs. 10.1 and 10.2. The simulations are performed for an external reconnection rate
of Me = ve/vAe = 0.042 and for three different values of the magnetic Reynolds number: (a)
Rme = 1746; (b) Rme = 3492; and (c) Rme = 6984. Note that the current sheet (feature at
bottom right of each frame) becomes more elongated with increasing magnetic Reynolds number
Rme, asymptotically approaching the Sweet−Parker solution (Biskamp 1986).

an extension, nonuniform reconnection solutions for highly curved magnetic field lines
in the inflow region have also been calculated (Priest & Lee 1990; Strachan & Priest
1994). Solutions with no flows across the separatrices have also been found (Craig &
Rickard 1994; Craig & Henton 1994), which confirm the anti-reconnection theorem:
“Steady MHD reconnection in two dimensions with plasma flow across separatrices is
impossible in an inviscid plasma with a highly sub-Alfvén flow and a uniform mag-
netic diffusivity” (Priest & Forbes 2000). To circumvent this problem, reconnection
solutions have been sought by including viscosity in the central diffusion region and
separatrix layers (Priest & Forbes 2000). Alternative 2D models also explore asymmet-
ric geometries (Watson & Craig 1998; Ji et al. 2001), cylindrical geometries (Watson
& Craig 2002), strongly sheared configurations instead of the conventional stagnation
point flow topology (Craig & Henton 1995; Craig & McClymont 1997), and solutions
for partially ionized plasmas (Ji et al. 2001), applicable to the photosphere. The lat-
ter effect is interesting because partially ionized plasmas with ambipolar diffusion can
enhance the reconnection rate (Zweibel 1989; Brandenburg & Zweibel 1994).

10.1.4 Numerical Simulations of Steady 2D Reconnection

Numerical simulations of magnetic reconnection have been performed for a variety
of boundary conditions by a number of groups (e.g., Ugai & Tsuda 1977; Sato 1979;
Biskamp 1986; Scholer 1989; Yan et al. 1992, 1993), and analytical solutions have been
compared with the numerical results (Forbes & Priest 1987; Lee & Fu 1986; Jin & Ip
1991). An example is shown in Fig. 10.3, showing the steady-state situation that oc-
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curred after formation of the standing shock. Note that numerical simulations generally
have a much lower magnetic Reynolds number (Rm

<∼ 105) than the coronal plasma
(Rm ≈ 108 − 1012). The simulations by Biskamp (1986) shown in Fig. 10.3 found
a slow reconnection rate as predicted by the Sweet−Parker model, as well as an elon-
gation of the current sheet with higher magnetic Reynolds numbers. This simulation
could not reproduce the Petschek model, but a fast reconnection rate could be obtained
by appropriate choice of the boundary conditions and using nonuniform (enhanced)
resistivity in the diffusion region (Yan et al. 1992), consistent with the Petschek model.
It remains puzzling that simulations with uniform resistivity cannot reproduce the an-
alytical solutions of the Petschek type within the limits of a high magnetic Reynolds
number Rm (Priest & Forbes 2000).

10.2 Unsteady/Bursty 2D Reconnection

When the diffusion region gets too long (such as in the Sweet−Parker model), it be-
comes unstable to secondary tearing (Furth et al. 1963) and an impulsive bursty regime
of reconnection ensues (Priest 1986; Lee & Fu 1986; Kliem 1995; Priest & Forbes
2000, § 6-7). Such unsteady reconnection modes are very likely to operate in solar
flares, because bursty and intermittent pulses (on time scales of seconds to subsec-
onds) have been observed in hard X-ray and radio signatures of particle acceleration
during virtually all flares (§ 13, 15). In the folling we describe a few of those un-
steady reconnection modes, such as tearing instability (§ 10.2.1), coalescence insta-
bility (§ 10.2.2), and their combined dynamics (i.e., the regime of bursty reconnec-
tion, § 10.2.3). There are also other unsteady reconnection types, such as X-type
collapse (Dungey, 1953; Craig & McClymont 1991, 1993; Craig & Watson 1992a;
McClymont & Craig 1996; Priest & Forbes, 2000, p. 205), resistive reconnection in
3D (e.g. Schumacher et al. 2000; Priest & Forbes, 2000, p. 230), or collisionless recon-
nection (e.g. Drake et al. 1997; Haruki & Sakai, 2001a, b). The latter has not yet been
applied to solar flares, but has been discovered in the Earth’s magneto-tail (Øieroset et
al. 2001).

10.2.1 Tearing-Mode Instability and Magnetic Island Formation

In current sheet formations, resistive instabilities (§ 6.3.8) can occur, where the mag-
netic field lines can move independently of the plasma due to the non-zero resistivity
(opposed to the frozen-flux theorem for zero resistivity). In magnetic reconnection
regions with high magnetic Reynolds numbers (Rm = τd/τA), where the outward
diffusion (on a time scale of τd = l2/η, with 2l the width of the current sheet and
η = (νσ)−1 the magnetic diffusivity) is much larger than the Alfvén transit time
τA = l/vA (i.e., τd � τA), three different types of resistive instabilities can occur
(§ 6.3.8, Fig. 6.11): gravitational, rippling, and tearing mode (Furth et al. 1963). Es-
sentially, an Alfvén disturbance can trigger an instability before it can be stabilized by
magnetic diffusion, when τd � τA (i.e., for large Reynolds numbers Rm = τd/τA).
The tearing mode, which has a wavelength greater than the width of the sheet (kl < 1),



10.2. UNSTEADY/BURSTY 2D RECONNECTION 415

X O X O X O

Magnetic field B

Magnetic field B

Figure 10.4: Magnetic island formation by tearing-mode instability in the magnetic reconnec-
tion region. Magnetically neutral X and O points are formed at the boundary between regions of
an oppositely directed magnetic field, with plasma flow in the directions indicated by the arrows
(after Furth et al. 1963).

has a growth time τ tear
G of

τ tear
G = [(kl)2τ3

d τ2
A]1/5 , (10.2.1)

for wave numbers in the approximate range (τA/τd)1/4 < kl < 1 (e.g., see derivations
in Furth et al. 1963; Priest 1982, p. 272; White 1983; and Sturrock 1994, p. 272). Thus,
the mode with the longest wavelength has the fastest growth rate,

τ tear
G,min = [τdτA]1/2 . (10.2.2)

Tearing mode produces magnetic islands in 2D (see Fig. 10.4) or magnetic fluxropes
in 2.5D, respectively. These structures saturate in the nonlinear phase of the tearing
mode (if coalescence is not permitted) and their subsequent diffusion at the diffusive
time scale τd is extremely slow (since Rm � 1 in the corona). The energy release
of tearing-mode instability occurs during the process of island formation. Tearing
modes have been applied to solar flares in a number of theoretical studies (e.g. Stur-
rock 1966; Heyvaerts et al. 1977; Spicer 1977a, b, 1981a; Somov & Verneta, 1989;
Kliem 1990), and numerical MHD simulations have been performed (Biskamp & Wel-
ter 1989). Kliem (1995) estimated the growth time of tearing mode for coronal condi-
tions (ne = 1010 cm−3, T = 2.5 × 106 K, B = 200 G, with smallest current sheet
half-widths of l ≈ 7 × 103 cm), which yields τ tear

G ≈ 0.4 s. This time scale is com-
parable with the duration of elementary time structures observed in the form of hard
X-ray pulses and radio type III bursts. Because tearing mode has a threshold current
density orders of magnitude below the threshold of kinetic current-driven instabilities,
it will occur first. Continued shearing and tearing may reduce the width of the current
sheet until the threshold of kinetic instability is reached (Kliem 1995).



416 CHAPTER 10. MAGNETIC RECONNECTION

Figure 10.5: MHD simulation of the coalescence instability for a Lundquist number of S =

1000 and a plasma-β of 0.1. The magnetic field is shown in left-hand panels, the velocity field
in the right-hand panels. Initial resistivity perturbation is shown shaded (Schumacher & Kliem
1997a).

10.2.2 Coalescence Instability

While tearing mode leads to filamentation of the current sheet, the resulting filaments
are not stable in a dynamic environment. If two neighboring filaments approach each
other and there is still non-zero resistivity, they enter another instability, the coales-
cence instability, which merges the two magnetic islands into a single one (Pritchett
& Wu 1979; Longcope & Strauss 1994; Haruki & Sakai 2001a, b). An example of
an MHD simulation is shown in Fig. 10.5 (Schumacher & Kliem 1997a). Coalescence
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instability completes the collapse in sections of the current sheet, initiated by tearing-
mode instability, and thus releases the main part of the free energy in the current sheet
(Leboef et al. 1982). There is no complete analytical description of coalescence in-
stability, but numerical MHD simulations (Pritchett & Wu, 1979; Biskamp & Welter
1979, 1989; Leboef et al. 1982; Tajima et al. 1982, 1987; Schumacher & Kliem 1997a)
show that the evolution consists of two phases: first the pairing of current filaments as
an ideal MHD process, and then a resistive phase of pair-wise reconnection between
the approaching filaments. The characteristic time scale of the ideal phase is essentially
the Alfvén transit time through the distance lcoal between the approaching current fila-
ments,

τcoal =
1

qcoal

lcoal

vA
, qcoal =

ucoal

vA
≈ 0.1 − 1 (10.2.3)

where ucoal is the velocity of the approaching filaments. For coronal conditions (say
ne = 1010 cm−3, B = 200 G, lcoal = 1000 km) we estimate coalescence times of
τcoal ≈ 0.2 − 2.0 s, which is again the typical time for the observed modulation of
hard-X ray pulses and type III electron beams in flares.

10.2.3 Dynamic Current Sheet and Bursty Reconnection

In praxis, the two previously described processes of tearing instability and coalescence
instability occur iteratively, leading to a scenario of dynamic current sheet evolution,
also known as impulsive bursty reconnection (Leboef et al. 1982; Priest 1985a; Tajima
et al. 1987; Kliem 1988, 1995). A long current sheet is first subject to tearing that
creates many filaments, while rapid coalescence clusters and then combines groups
of closely spaced filaments, which are once again unstable to secondary tearing, to
secondary coalescence, and so forth. MHD simulations reproduce this iterative chain
of successive tearing and coalescence events (Malara et al. 1992; Kliem et al. 2000).
An example of such a numerical simulation from the study of Kliem et al. (2000) is
shown in Fig. 10.8 (magnetic field evolution). Let us review three key studies (Tajima
et al. 1987; Karpen et al. 1995; Kliem et al. 2000), where numerical MHD simulations
of this process have been applied to solar flares.

Tajima et al. (1987) performed numerical MHD simulations of the nonlinear coa-
lescence instability between current-carrying loops and derived an analytical model of
the temporal evolution of electromagnetic fields [see also two comprehensive reviews
on this subject by Sakai & Ohsawa (1987) and Sakai & De Jager (1996), and references
therein]. This nonlinear system evolves into an oscillatory relaxation dynamics, driven
by the interplay of the j×B force and the hydrodynamic pressure response, which was
modeled analytically by Sakai & Ohsawa (1987). The oscillatory behavior is very ap-
pealing, because it provides a possible explanation for the numerous quasi-periodic
time structures observed in radio and hard X-rays during flares. An oscillatory regime
of fast reconnection has also been found from other theoretical work on current insta-
bilities in current sheets (Smith 1977) and X-point relaxation (Craig & McClymont
1991, 1993).

Karpen et al. (1995) performed 2.5-dimensional numerical MHD simulations of
shear-driven magnetic reconnection in a double arcade with quadrupolar magnetic
topology. For strong shear, the initial X-point was found to lengthen upward into a
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Figure 10.6: Magnetic field lines near the reconnection region at four different times (565, 575,
585, 595 s) during a strong-shear MHD simulation by Karpen et al. (1995). Note the tearing
along the vertical current sheet (first frame), which forms two magnetic islands (second frame),
which are ejected from the sheet and merge with the flux systems above or below the sheet (third
frame), followed by another tearing plus magnetic island formation (fourth frame). (Karpen et
al. 1995).

current sheet, that reconnects gradually for a while but then begins to undergo multi-
ple tearing. Several magnetic islands develop in sequence, move towards the ends of
the sheet, and disappear through reconnection with the overlying and underlying field
(Fig. 10.6). A second study with similar quadrupolar configuration was performed,
but with asymmetric shear in dipoles with markedly unequal field strengths (Karpen et
al. 1998). Similar intermittency was found in the shear-driven magnetic reconnection
process, and the simulations moreover show that each dissipated magnetic island leaves
a footprint in the form of fine filaments in the overlying separatrix layer (Fig. 10.7).
This dynamic behavior is essentially identical to the pattern of repeated tearing and
coalescence first investigated by Leboef et al. (1982) and dubbed impulsive bursty re-
connection by Priest (1985b). In Fig. 10.7 there are also some other dynamic processes
present: (a) a thin region along the slowly rising inner separatrix is compressed; (b) a
downflow with v≈ 30 km s−1; (c) this is followed by an upflow along the same field
lines. Although these simulations by Karpen et al. (1995, 1998) are carried out using
parameters corresponding to chromospheric conditions, it demonstrates that magnetic
reconnection in sheared flare arcades occurs in a bursty and intermittent mode, and not
in a quasi-stationary Sweet−Parker or Petschek mode. The physical origin of this in-
termittent reconnection dynamics is most essential to understanding the rapidly varying
time structures of accelerated particles.

A recent work on impulsive bursty reconnection applied to solar flares was car-
ried out by Kliem et al. (2000). Fig. 10.8 shows the evolution of tearing, magnetic
island formations, magnetic island coalescence, secondary tearing, and so forth. Tear-
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Figure 10.7: Mass density difference ratio (greyscale) and projection of magnetic field lines
into the image plane (dashed lines) at 800 s and 1000 s in the vicinity of the reconnection region,
during an MHD simulation of a sheared arcade. The location a corresponds to a thin compressed
region along the slowly rising inner separatrix, b to a narrow downflow falling outside of the left
outer separatrix, and c indicates a broader upflow that follows along the same field lines (Karpen
et al. 1998).

ing and coalescence in the bursty magnetic reconnection mode also modulates particle
acceleration on time scales that are observed in radio and hard X-rays, and is more
consistent with flare observations than steady reconnection scenarios. The iterative
processes of tearing and colaescence may repeat down to microscopic scales (of the
ion Larmor radius or the ion inertial length), producing a fractal current sheet (Shibata
& Tanuma 2001). A similar concept is that of MHD turbulent cascading, which leads
to similar high fragmentation at the smallest spatial scales, called turbulent reconnec-
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Figure 10.8: 2D MHD simulation of dynamic magnetic reconnection, showing the magnetic
field (left panels) and current density (right panels). Regions with anomalous resistivity are
shown shaded in the magnetic field plot (at y=0) (Kliem et al. 2000).

tion (e.g., Kim & Diamond 2001; Matthaeus 2001b; see also Fig. 9.8) and applied to
flares (Moore et al. 1995; Somov & Oreshina 2000). The two concepts of fractal cur-
rent sheets and turbulent reconnection could possibly be discriminated observationally
from the frequency distribution of time scales, since fractal processes are scale-free and
generally produce powerlaw distributions, while turbulent processes are controlled by
incoherent random processes that generally produce exponential distributions (§ 9.8.1).



10.3. 3D MAGNETIC RECONNECTION 421

10.3 3D Magnetic Reconnection

In the previous sections we described magnetic reconnection in two dimensions. Such
2D concepts can approximate 3D reality as long as the magnetic field configuration has
a translational symmetry in the third dimension: the ignorable coordinate. There are
two types of nullpoints in 2D reconnection, X-points and O-points, but there is a much
richer variety of magnetic 3D topologies, where 3D volumes with oppositely directed
magnetic fields are divided by 2D separatrix surfaces, intersection lines of two separa-
trix surfaces form 1D separator lines, and the intersections of separator lines form 3D
nullpoints. The field of 3D magnetic reconnection is still in a very exploratory phase,
encompassing a complex variety of mathematical topologies (e.g., Priest & Forbes
2000, § 8; and Parnell 1996), while only a few of all the possible mathematical topolo-
gies have been identified by observations. Here we focus mainly on 3D topologies that
seem to be most relevant for solar flares.

10.3.1 3D X-Type Reconnection

There are different theoretical definitions of 3D reconnection, in terms of: (1) changes
in magnetic connectivity; (2) the electric field component; (3) plasma flows across the
separatrices; or (4) changes in magnetic helicity (e.g., Priest & Forbes 2000, § 8.1). A
simple practical discrimination rule between 2D and 3D X-type reconnection can be
determined on the basis of whether both prereconnection and postreconnection field
lines can be mapped in the same 2D plane or not. We illustrate this in Fig. 10.9 for
reconnection between open (having only one footpoint on the solar surface) and closed
field lines (with both conjugate footpoints on the solar surface). For 2D reconnection
we can have bipolar (open with open), tripolar (open with closed), and quadrupolar
(closed with closed) reconnection (Fig. 10.9 top). For 2D reconnection, a necessary
condition is that the sequence of magnetic polarities of the reconnecting field lines is
alternating in a common 2D plane (e.g., +/ − / + /− for a quadrupolar geometry:
Fig. 10.9, top right). If the sequence is not alternating (e.g., +/ + / − /−: Fig. 10.9,
bottom right), the reconnection geometry cannot be represented in a 2D plane, because
either the prereconnection or the postreconnection field lines would intersect, so they
can only be separated topologically in 3D space.

2D reconnection geometries (Fig. 10.9, top) can have arbitrary extensions in the
third dimension (along the neutral line), which are called loop arcades. 3D recon-
nection geometries (Fig. 10.9, bottom), in contrast, have more complicated topological
constraints in the third dimension, so that they generally involve interacting loops rather
than loop arcades. Sakai & De Jager (1991) classify the geometries of coalescing loops
into 1D, 2D, and 3D cases, which correspond to the quadrupolar geometries shown in
Fig. 10.9 (right panels). The angle between the magnetic fields at the reconnection
points, which is simply 180◦ (anti-parallel fields) in the 2D-case, can take any arbitrary
value in 3D reconnection geometries. The reconnection rate depends very much on this
angle, being most efficient for anti-parallel fields, but it scales with ∝ [sin (θ/2)]1/2

for skewed angles θ in the Petschek model (Soward 1982). Thus, reconnection can
still occur for almost parallel magnetic fields, although with reduced efficiency, a phe-
nomenon that is called component reconnection in magnetospheric physics. Sakai &
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Figure 10.9: Classification of X-type magnetic reconnection topologies: (1) bipolar models
have reconnection between two open field lines; (2) tripolar models have reconnection between
an open and a closed field line; and (3) quadrupolar models have reconnection between two
closed field lines. Prereconnection field lines are rendered in light grey and at the time of recon-
nection with dotted lines, while the postreconnection field lines, as they occur after relaxation
into a near-potential field state, are rendered in dark grey. 2D versions, invariant in the third
dimension (forming arcades) are shown in the upper row, while 3D versions are captured in the
lower row. Prereconnection field lines (light grey) are located behind each other in the 3D ver-
sions, but approach each other in the image plane during reconnection. Note that the number
of neutral lines (marked with symbol N, perpendicular to the image plane) is different in the
corresponding 2D and 3D cases (Aschwanden 2002b).

Koide (1992) classify magnetic reconnection between two coalescing loops into six
types, depending on the parallelity or anti-parallelity of the magnetic field component
Bz , the current Iz along the loop, and the azimuthal field component Bθ.

10.3.2 Topology of 3D Nullpoints

Wherever multiple magnetic dipoles occur, each one defines a domain that contains a
volume of magnetic field lines with the same connectivity of positive to negative foot-
points, as illustrated in Plate 10. Different dipolar domains are separated by separatrix
surfaces in 3D space. Intersections of 2D separatrix surfaces form 1D separators, and
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Figure 10.10: Topology of 3D reconnection features for a quadrupolar region (left) and a par-
asitic region (right). In the quadrupolar region (left), a new emerging dipole (2+, 2−) joins a
pre-existing, older dipole region (1+, 1−), which are separated by a separatrix surface. The in-
tersection of the two separatrix surfaces embedding both the old and new dipole region intersects
at the separator line, which intersects with the photospheric surface at magnetic nullpoints. In the
parasitic region (right) a unipolar flux region (2−) emerges in the center of a pre-existing open
field region with polarity (1+). The new regions is shielded from the pre-existing open field by
a dome-like fan surface, where the symmetry axis is called the spine, containing a nullpoint at
the intersection with the fan dome.

intersections of 1D separators form 3D nullpoints. The most natural example is the
emergence of a secondary bipole in the neighborhood of a pre-existing dipole, which
form together a new quadrupolar configuration, as shown in Fig. 10.10 (left). The
new dipole region (2+, 2−) pushes the old pre-existing field lines (1+, 1−) aside in
the coronal volume and forms a new separatrix as a dividing surface. Strictly speak-
ing, there is also a third domain of magnetic field lines with connections (1−, 2+)
inbetween, and perhaps a fourth with connections (1+, 2−) above, depending on the
relative strength of the magnetic fluxes.

If the new emerging region is unipolar (which is nothing more than a vertically
oriented dipole) and emerges in an open-field region with opposite polarity, it forms a
parasitic polarity (Fig. 10.10 right), a configuration also called the anemone region in
quiet Sun regions, or δ-spot in flaring regions. In such a unipolar region, surrounded
by opposite magnetic polarity, the new magnetic domain is separated by a dome-like
separatrix surface, called the fan dome. The symmetry axis of the unipolar region is
called the spine curve, which intersects the fan dome at a 3D nullpoint and continues
above the fan dome (Fig. 10.10, right). A field line that connects two nullpoints is
called a separator. Nullpoints have been studied in multiple sources (with hexagonal
geometry) in the photospheric network with up to 12 cell configurations (Inverarity &
Priest 1999).
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Figure 10.11: Classification of 3D nullpoint reconnection topologies: (1) spine reconnection
(left), (2) fan reconnection (middle), and (3) separator reconnection (right), shown for a cylin-
drical geometry (top row) and for a dome-like fan surface geometry on the solar surface (bottom
row). Spine and separator curves are marked with thick lines, fan surfaces with hatched areas,
and 3D nullpoints with black dots. The prereconnection line is rendered in light grey and the
postreconnection field line in dark grey.

10.3.3 3D Spine, Fan, and Separator Reconnection

There is an infinite variety of such 3D topologies, because the complexity increases
with the emergence of every new dipole that pushes into the pre-existing maze of coro-
nal magnetic topologies (see Fig. 5.23 for more examples). However, the topological
complexity cannot grow to infinity. At some point magnetic stresses will break up
highly sheared structures and the neighboring field lines will reconnect to a simpler
topology corresponding to a lower energy state. Field lines that are stressed or pushed
towards a 3D separatrix layer, a fan surface, a spine, or a separator, will experience a
high plasma-β near the zero-magnetic field zone and can slip through the nullpoints
and reconnect to new field lines on the opposite side. Three special types of 3D re-
connections are illustrated in Fig. 10.11: spine reconnection, fan reconnection, and
separator reconnection. In the case of spine reconnection, a field line penetrates the fan
surface, swirls around the spine, and reconnects at the opposite side of the fan surface
and spine curve (Fig. 10.10, left). In the case of fan reconnection, the field line merely
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Figure 10.12: This numerical simulation shows the collapse of a separator line. Top left: initial
magnetic field configuration with a pair of 3D nullpoints. Top right: currents start to accumulate
in the nullpoints (shown with isosurfaces). Bottom left: the separator surface is stretched in the
vertical direction (where the thin vectors indicate the driving velocity and the thick white vectors
the high-velocity outflow jets driven by the reconnection). Bottom right: the process of outflow
jets continues until no magnetic energy is left and the current sheet then fades away (Galsgaard
et al. 2000).

swirls around the spine, rotates around the fan dome, and reconnects at the other side
(Fig. 10.10 middle). The case of separator direction is a special case of fan reconnec-
tion, where the spine curve is replaced by a separator line (Fig. 10.10 right). Since 3D
nullpoints are created in pairs, they are always (at least in the initial stage) connected
with a separator field line. We will show related observations in § 10.6, which seem to
fit these theoretical reconnection modes.

The theory or reconnection in 3D is presented in greater detail in the textbook of
Priest & Forbes (2000, § 8), while shorter reviews and introductions can be found
in Priest (1996), Priest & Schrijver (1999), Brown & Priest (1999), Forbes (2000a),
Schindler & Hornig (2001), and Hood et al. (2002). Analytical studies quantify the
magnetic field in 3D nullpoint topologies (Brown & Priest 2001), the current distri-
butions near 3D nullpoints (Rickard & Titov 1996), and solutions for fan, spine, and
separator reconnection (Craig & McClymont 1999; Craig et al. 1999; Craig & Watson
2000a; Ji & Song 2001). The classical Sweet−Parker reconnection rate is found to
be the slowest possible in the present 3D reconnection models, but it not clear what
type of 3D reconnection yields the fastest reconnection rate suitable for flares. Numer-
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ical simulations of 3D reconnection topologies have been performed by Galsgaard et
al. (1997b, 2000), which showed that reconnection is not restricted to singular points
(nullpoints) but can also occur along separators (Plate 12). The experiments show
(Fig. 10.12) that current accumulation is generated by a shear flow across the fan
plane of the two nulls and the spine axis through the null points becomes disrupted
by the development of the separator current sheet, loses its identity as a singular line,
and becomes integrated into the separator surfaces. The experiments of Galsgaard et
al. (2000) also suggest that separator reconnection is the most important type of null
reconnection among the three possible types (spine, fan, separator).

10.4 Magnetic Reconnection in the Chromosphere

There are a number of small-scale phenomena in the photosphere, chromosphere, and
transition region that involve magnetic reconnection processes and may produce sig-
natures in the lower corona such as microflares and nanoflares. An overview of such
small-scale phenomena is given in Table 9.3 and their role for coronal heating is dis-
cussed in § 9.6. Here we concentrate on the aspect of magnetic reconnection of these
small-scale events.

10.4.1 Magnetic Flux Emergence

The magnetic dynamo in the solar interior constantly generates magnetic fluxtubes that
emerge through the photosphere and add new magnetic flux systems to the corona,
probably moored in deep subsurface structures for the lifetime of an active region
(Schrijver & Title 1999). Fig. 10.13 shows the frequency distribution of the emer-
gence rate of magnetic dipoles, which are called ephemeral regions (Harvey & Martin
1973; Martin 1988) if they have an area smaller than 2.5 deg2, or active regions if they
are larger. Thus, ephemeral regions are essentially “mini-active regions” in quiet Sun
areas. The size distribution shown in Fig. 10.13 encompasses four orders of magni-
tude in magnetic flux (Φ ≈ 5 × 1018 − 5 × 1022 Mx) and eight orders of magnitude
variation in the occurrence rate (Hagenaar et al. 2003). A comparison of the magnetic
flux emergence rate with the network flux implies an overall mean replacement time of
≈ 8 − 19 hr in the quiet Sun (Hagenaar et al. 2003).

Emerging flux systems in active regions are aligned with overlying arch filament
systems (Strous et al. 1996; Strous & Zwaan 1999), emerging in the form of Ω-loops,
U-loops, or “seaserpent-like” shapes (Zwaan 1987; Van Driel−Gesztelyi et al. 2000;
Van Driel−Gesztelyi 2002). Newly emerging magnetic dipoles appear at the edges
of supergranulation cells (Hagenaar 2001). During emergence, magnetic dipoles grow
in size and their rate of divergence is of order v ≈ 2.3 km s−1, while magnetic flux
increases with a rate of dΦ/dt ≈ 1.6 × 1015 Mx s−1 (Hagenaar 2001). The emer-
gence of growing new magnetic flux structures necessarily forces topological changes
in the magnetic field of the overlying corona, which may involve magnetic reconnec-
tion processes. MHD simulations of such magnetic fluxtubes have been performed
in subphotospheric zones (see § 6.2.5 and references therein) and in coronal heights
(Shibata et al. 1989b, 1990). When the emerging field has the same orientation as the
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Figure 10.13: Frequency distribution of emerging magnetic bipoles per day, per flux unit of
Φ[1018 Mx]. The distribution includes ephemeral regions (ER: Φ <∼ 3 × 1020 Mx) and active
regions (AR: Φ >∼ 3 × 1020 Mx, area A >∼ 2.5 deg2). The variation by a factor of 8 is mainly
caused by the solar cycle. The histograms include ephemeral regions studied using MDI, with a
detection threshold of Φ >∼ 4 × 1018 Mx (Hagenaar et al. 2003).

overlying coronal field, an approximately current-free field forms in the interaction re-
gion. When the emerging field is anti-parallel, however, a current sheet forms which
could initiate magnetic reconnection (Shibata et al. 1989b), as shown in Fig. 10.14.
The increased velocity is however relatively small (in the order of vz ≈ 1 km s−1). It
is driven by the Parker instability (undular mode of magnetic buoyancy instability) in
the model of Shibata et al. (1989a, b). The emergence of a bipole does not necessarily
trigger a microflare or flare event, because the emerging flux region could be too small
or could have the wrong orientation (Martin et al. 1984). Harvey (1996) found that
only 8% of soft X-ray bright points (which are the sites of microflares) were associated
with an emerging bipole, while a much larger fraction was associated with magnetic
cancellation features (Harvey et al. 1994). Karpen & Boris (1986) concluded that pre-
flare brightenings and flares probably do not result directly from the emerging fluxtubes
themselves, but from coupled energy release processes, such as current-driven plasma
micro-instabilities. Altogether it appears that magnetic flux emergence does not trig-
ger flares directly, but increases the magnetic complexity locally (e.g., by adding a new
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Figure 10.14: Numerical 2D MHD simulation of an emerging dipole into an anti-parallel coro-
nal field: magnetic field (top), velocity field (middle), and density (bottom). A current sheet
forms (dashed line in top panel) that enables magnetic reconnection (Shibata et al. 1989b).

separator surface and creating new nullpoints: Fig. 10.10), which after further increases
in magnetic complexity ultimately may escalate into a flare-like event. However, flare
models that are directly driven by flux emergence have also been proposed (Heyvaerts
et al. 1977), see § 10.5. Furthermore, 3D magnetic modeling of quasi-separatrix layers
in a flare event and comparison with Hα and soft X-ray images was found to be con-
sistent with the concept of magnetic reconnection driven by the emergence of sheared
magnetic field (Schmieder et al. 1997a, b).

10.4.2 Magnetic Flux Cancellation

The reverse process to magnetic flux emergence is magnetic flux cancellation, which
can occur in at least three different manifestations (Martin et al. 1985; Livi et al. 1985;
Van Driel−Gesztelyi 2002; Parnell 2002b): (1) by submergence, subduction, or re-
traction of fluxtubes; (2) by converging flows; or (3) by flux dispersion or diffusion.
The first process essentially corresponds to a downward motion of a dipole, which
sinks through the photosphere, but does not necessarily involve a magnetic reconnec-
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tion process. Evidence for such a process was found from the timing of disappear-
ance in different heights of chromospheric and photospheric magnetograms (Harvey
et al. 1999). The second process, however, corresponds to a collision between two
conjugate magnetic polarity elements and thus involves a magnetic reconnection pro-
cess (e.g., the model of Litvinenko 1999a). The third one is a fragmentation process
driven by surface random flows, which may or may not involve magnetic reconnection
between individual fragments.

A theoretical model of magnetic reconnection for converging flows that produce
magnetic cancellation was quantified by Litvinenko (1999a). From the equations of
continuity, momentum, and Ohm’s law, Litvinenko (1999a) derives a reconnection in-
flow speed v1 of

v1 =
[

c2B

4πΛσ(4πmpn0)1/2

]1/2 [
1 +

B2

8πkn0T

]1/4

(10.4.1)

where Λ(z) = n0/(dn0/dz) ≈ 100 km is the chromospheric density scale height. Us-
ing a VAL-C standard atmospheric density model, a maximum of the inflow speed of
v1 ≈ 35 m s−1 is found at a height of h ≈ 600 km above the photosphere (assuming
a magnetic field of B ≈ 30 G, see Fig. 10.15). This approaching speed corresponds
to the observed speeds of some cancelling features. The height of h ≈ 600 km above
the photosphere (in the temperature minimum region) is thus considered as the most
favorable location for chromospheric reconnection processes. This process could ex-
plain mass upflows into an associated filament during a photospheric cancellation event
(Litvinenko & Martin 1999).

A more general model of chromospheric reconnection driven by converging flows
has been developed by Chae et al. (2003), including the adiabatic energy equation. This
model contains the case of an isothermal current sheet used by Litvinenko (1999a) as
a special case (for a specific heat ratio of γ = 1). Moreover, Chae’s model (2003) is
formulated only in terms of observable parameters (except for magnetic diffusivity η).
The model of Chae et al. (2003) assumes a (vertical) Sweet−Parker current sheet in the
chromosphere with length ∆, width δ, inflow speed v1, and outflow speed v2, which
obey the relations given in Eqs. (10.1.1−7). One observable parameter is the magnetic
flux loss dΦ/dt, which is defined as the magnetic flux that is processed through the
current sheet,

dΦ
dt

= v1B1Lz = v2B2Lz , (10.4.2)

where Lz is the length of the current sheet along the ignorable coordinate z in the
2D model shown in Fig. 10.2. The electric field (Eq. 10.1.2) that characterizes the
reconnection rate is (using Eqs. 10.4.2 and 10.1.7),

E0 = v1B1 =
1
Lz

dΦ
dt

=
η

c

B1

δ
. (10.4.3)

The momentum conservation across the current sheet is

B2
1

8π
+

1
2
ρ1v2

1 + p1 = pnl , (10.4.4)
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Figure 10.15: Inflow speeds (v1(h), left) and outflow speeds (v2(h), right) of chromospheric
magnetic reconnection models computed as a function of height h, for various theoretical mod-
els. All models use a VAL density model. The model of Litvinenko (1999a) is calculated for a
magnetic field of B = 30 G. The models of Chae et al. (2002b) match magnetic flux loss rates
of v1B1 = 5.0 × 106 G cm s−1 and 1.2 × 106 G cm s−1. The Sweet−Parker and Petschek
models in Chae et al. (2002d) match a flux loss rate of v1B1 = 1.2× 106 G cm s−1. The model
of Chae et al. (2003) match a flux loss rate of v1B1 = 1.5 × 106 G cm s−1, assume anomalous
resistivity η = 50ηclassical and an adiabatic index of γ = 4/3.

and the momentum conservation along the current sheet is

1
2
ρ2v2

2 + p2 = pnl +
B1B2

8π

∆
δ

, (10.4.5)

where p1, p2, pnl are the pressures in the inflow, outflow, and neutral layer (or current
sheet). Chae et al. (2003) used the adiabatic energy equation (see Eqs. 4.1.14 and
4.1.29),(

1
2
ρ1v2

1 +
γ

γ − 1
p1 +

B2
1

4π

)
v1∆ =

(
1
2
ρ2v2

2 +
γ

γ − 1
p2 +

B2
2

4π

)
v2δ . (10.4.6)

Assuming a constant pressure (p1 = p2 = pnl) and the Sweet−Parker geometry δ �
∆, the following density ratio between the inflow and outflow region is found (by
combining Eqs.10.1.1−7 and 10.4.3−6),

f =
ρ2

ρ1
= 1 +

1
(γ − 1 + γβ1)

, (10.4.7)

where the plasma-β parameter is β1 = 8πp1/B2
1 . The inflow speed becomes

v1 =
(

ηB1

∆
√

4πρ1

)1/2

f1/2 (10.4.8)
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Converging flows 0.3 km/s

Magnetic flux cancellation

Hα upflow event 20 km/s

EUV explosive event 100 km/s

Figure 10.16: Schematic of the chromospheric magnetic reconnection model that is driven by
converging flows and produces photospheric magnetic flux cancellation, Hα upflow events, and
UV explosive events (after Chae 1999).

and the temperature increase due to reconnection is found to be

∆T = T0 − T1 =
1
2

γ − 1
γ

µmH

kB
v2
2 , (10.4.9)

with µ the mean molecular weight. Since the magnetic field B1 in the inflow region
is hard to measure, it is easier to obtain the magnetic flux loss rate dΦ/dt and the
cancellation interface length Lz from the observations. Using these observables, the
magnetic field B1 and inflow speed v1 can be expressed as

B1 =

[
L
√

4πρ1

η

(
1
Lz

dΦ
dt

)2
]1/3

f1/3 , (10.4.10)

v1 =
[

η

L
√

4πρ1

1
Lz

dΦ
dt

]1/3

f1/3 , (10.4.11)

From observations of cancelling magnetic features Chae et al. (2003) derived a mag-
netic flux loss rate of dΦ/dt = 1.8 × 1018 Mx h−1 (or 2 × 106 G cm s−1 per unit
length of the interface), an approaching speed of v1 = 0.22 km s−1, and the length
of the interface Lz = 2.5 Mm. From this model, magnetic field strengths of B1 ≈ 8
G (Eq. 10.4.10) and inflow speeds of v1 ≈ 0.1 km s−1 are derived for a typical resis-
tivity value of η = 2 × 107 cm2 s−1. Since the observations indicate a faster inflow
speed, Chae et al. (2003) argued that chromospheric reconnection occurs faster than
the Sweet−Parker model predicts, possibly because of anomalous resistivity that is
about 20 times higher. In an alternative study it was found that inflow speeds and out-
flow speeds are more compatible with the reconnection rates predicted by the Petschek
model (Chae et al. 2002d). The inflow and outflow speeds calculated in the different
studies of Litvinenko (1999a), Chae et al. (2002d, 2003) are shown in Fig. 10.15. Both
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the inflow and outflow speeds systematically increase with height, as a simple con-
sequence of the increasing Alfvén velocity due to the decreasing density with height.
Therefore, the models of Litvinenko (1999a) and Chae et al. (2003) provide a nat-
ural explanation for Hα upflows (e.g., Kurokawa & Sano 2000) with moderate speed
(v ≈ 20 km s−1) in the lower chromosphere (T ≈ 104 K) and for faster flows (v ≈ 100
km s−1) detected in explosive EUV events (T ≈ 105 K) in the upper chromosphere.
Chae (1999) suggests a scenario as shown in Fig. 10.16.

Very similar chromospheric reconnection scenarios driven by converging flows
(Fig. 10.17) have also been envisioned to explain short-lived brightenings observed
in Hα, usually found in emerging flux regions. These brightenings are called Ellerman
bombs (Ellerman 1917; Nindos & Zirin 1997; Qiu et al. 2000; Georgoulis et al. 2002).
Ellerman bombs are estimated to have total energies of ≈ 1027 − 1028 erg, produce
temperature enhancements of ∆T ≈ 2000 K, have short radiative cooling times of a
few seconds, and are believed to contribute to significant heating of the lower chro-
mosphere (Georgoulis et al. 2002). Ellerman bombs provide a sensitive diagnostic
of chromospheric reconnection events, and reveal about ≈100 events per hour in an
emerging flux region, almost randomly distributed, preferentially above neutral lines
of supergranulation boundaries where moving magnetic features collide. Such small-
scale variability in Hα is also observed simultaneously in C IV (Wang et al. 1999),
which establishes a chromospheric temperature for the associated reconnection sites.

Essentially the same scenario of converging (conjugate) magnetic sources that form
a nullpoint and trigger reconnection (Fig. 10.18) has also been employed to explain soft
X-ray bright point events (Priest et al. 1994, 1996). The model shown in Fig. 10.18 has
only a 2D geometry, but more realistic 3D reconnection geometries have also been
attempted, involving the separatrix surfaces of quadrupolar regions (Fig. 10.10 left;
Van Driel−Gesztelyi et al. 1996), four magnetic domains in a “cloverleaf” arrange-
ment (Fig. 5.23a; Parnell et al. 1994; Parnell 1996), or quasi-separatrix layers in more
complex 3D reconnection configurations (Mandrini et al. 1996, 1997; Démoulin et
al. 1996, 1997a, b; Bagalá et al. 2000). One line of X-ray bright point models envisions
that plasma is heated in the reconnecting current sheets and thus would spread along
the separatrix layers (Longcope 1996,1998; Longcope & Kankelborg 1999; Longcope
& Noonan 2000; Longcope et al. 2001), which is distinctly different from standard
flare models, where nonthermal particles accelerated near a coronal current sheet first
precipitate to the chromospheric footpoints and cause chromospheric evaporation to fill
the newly reconnected, relaxing loops with soft X-ray emitting plasma. The latter flare
model has no difficulty in explaining the density increase in the soft X-ray-emitting
flare loops by orders of magnitude, while the separatrix heating model can only pro-
duce high densities if the separatrix layers are heated inside the dense chromosphere.
Also the fact that 64% of soft X-ray bright points were found to be associated with
cancelling magnetic bipoles (Harvey 1996) suggests that the underlying magnetic re-
connection process is confined to the chromosphere.

The role of chromospheric magnetic reconnection processes (with flux cancella-
tion) in the context of larger flares is less obvious. There exists some statistics that
flares begin at or near opposite polarity features that are cancelling (Livi et al. 1989).
Rapid changes of the magnetic fields associated with six X-class flares were detected
by Wang et al. (2002a), but the magnetic flux in the leading magnetic polarity was
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Figure 10.17: Three different models of chromospheric magnetic reconnection at separatri-
ces and quasi-separatrix layers that can explain Ellerman bombs: (a) Magnetic reconnection in
strong, dipolar magnetic fields sustained by converging horizontal flows; (b) Ellerman bombs
triggered by magnetic reconnection above small-scale moving dipolar magnetic features (MDF);
and (c) Ellerman bombs triggered by the interaction of two topologically different, unipolar,
magnetic configurations (Georgoulis et al. 2002).
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Figure 10.18: Stages of the magnetic flux cancellation process: pre-interaction phase of con-
verging flows (top); interaction phase with X-point reconnection and heating of soft X-ray
plasma (middle), and cancellation phase of magnetic flux in photosphere (bottom). Note that
the resulting soft X-ray bright point event precedes the photospheric flux cancellation (Priest et
al. 1994).

found to increase, while the magnetic flux in the following polarity tended to decrease,
by a much smaller amount. So, these events do not support a simple scenario with
(symmetric) magnetic flux cancellation. In another (M2.4) flare, a small sunspot was
observed rapidly to disappear during the flare, which was interpreted as a possible con-
sequence of a magnetic reconnection process with subsequent submergence (Wang et
al. 2002b). In summary, there is a lot of evidence that chromospheric reconnection with
magnetic flux cancellation is the most likely mechanism to explain chromospheric vari-
abilities (UV explosive events, Hα upflows, spicules, and soft X-ray brightenings), but
this mechanism is probably not the primary driver for larger flares.
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Figure 10.19: Numerical 2D simulations of chromospheric reconnection that mimic explosive
events. The greyscale visualize images of the z-component of the current jz(x, y), while the
short streak lines represent the velocity field, at four different time intervals of the simulation
(Roussev et al. 2001a).

10.4.3 Chromospheric Reconnection Jets

A theoretical prediction of any X-type reconnection process are two-sided outflows
in the cusps of the new-reconnected field lines with Alfvén speeds (Eq. 10.1.3 and
Fig. 10.2). If the reconnection occurs inside the chromosphere, there is a steep vertical
density gradient and the outflow speed monotonically increases with height. Litvinenko
(1999a) estimates at a height of z ≈ 600 km an inflow speed of v1 ≈ 40(B/30 G)1/2

m s−1 and an Alfvén outflow speed of v2 ≈ 4(B/30) km s−1. Since the ion density
drops several orders of magnitude in the upper chromosphere (Figs. 1.19 and 4.28),
the Alfvén outflow speed vA ∝ n

−1/2
i increases at least an order of magnitude and we

expect values of v2 ≈ 10 − 100 km s−1 in the upward direction (Fig. 10.15, right).

Numerical simulations of magnetic reconnection in the chromosphere reproduce in-
termittent outflows with Alfvén speed (Karpen et al. 1995, 1998; see also Figs. 10.6 and
10.7; Jin et al. 1996; Innes & Toth 1999; Sarro et al. 1999; Roussev et al. 2001a, b, c;
2002; Galsgaard & Roussev 2002; Roussev & Galsgaard 2002; Marik & Erdélyi 2002;
see Fig. 10.19) that ressemble the observed cool (T ≈ 2×104−5×105 K) high-speed
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outflows (v ≈ 50−250 km s−1) of explosive events (Brueckner & Bartoe 1983; Dere et
al. 1991; Erdélyi et al. 1998a, b). Because of the symmetry of X-point reconnection ge-
ometries, outflow jets are actually expected to have a bi-directional structure, which in-
deed has been observed in the form of simultaneous blue and red Doppler shifts (Innes
et al. 1997). Roussev et al. (2001a) included the upward/downward asymmetry of the
chromospheric density stratification in his MHD simulations and predicts up to one or-
der of magnitude less redshift than blueshift (Fig. 10.19). Numerical simulations show
that the upward-propagating reconnection jet may collide with the bottom of the U-
shaped field lines generating slow-mode MHD waves, and may produce solar spiculae
(Takeuchi & Shibata 2001). A related side-effect is the production of upward-traveling
Alfvén waves (Sakai et al. 2000a, b; 2001b), which at a frequency of <∼ 1 Hz carry
enough momentum to heat the plasma in the transition region by ion-neutral damping,
which also could produce spicules (Haerendel 1992; De Pontieu 1999; James & Erdélyi
2002), among other possible spicule generation mechanisms driven by chromospheric
reconnection (Blake & Sturrock 1985). Further side-effects of chromospheric recon-
nection processes are the generation of upward-propagating shocks, which have curved
fronts due to strong gradients in their acceleration and which may collide (Tarbell et
al. 1999, 2000; Ryutova & Tarbell 2000; Ryutova et al. 2001). A recent analysis of
the timing of Doppler shifts in C IV, C II, and O VI lines suggests that the majority
of observed UV explosive events occur in the presence of the resulting behind-shock
downflows and fewer than 10% by the direct collision of shock fronts (Ryutova &
Tarbell 2000).

10.5 Flare/CME Models

In this section we discuss the most eminent physical models for flare and CME pro-
cesses, which all involve magnetic reconnection in some form. What distinguishes the
different flare models are mainly the initial magnetic topologies, which are prone to
specific instabilities or drivers. This section covers mainly the theoretical aspects of
flare models, while supporting observations are compiled in § 10.6. Theoretical re-
views on flare/CME models can be found in Brown & Smith (1980), Melrose (1993),
Shibata (1998), Priest (2000), Forbes (2000b, 2001), Klimchuk (2001), Low (1999b,
2001b), Priest & Forbes (2002), or in textbook chapters (Svestka 1976, § 6; Priest 1982,
§ 10; Priest & Forbes 2000, § 11; Tajima & Shibata 2002, § 3.3).

10.5.1 The Standard 2D Flare Model

Although not all flares can be explained by a single model, it is justified to establish a
standard model that fits most of the observations and has a well-understood theoretical
foundation. The most widely accepted standard model for flares is the 2D magnetic
reconnection model that evolved from the concepts of Carmichael (1964), Sturrock
(1966), Hirayama (1974), Kopp & Pneuman (1976), called the CSHKP model accord-
ing to the initials of these five authors. This has been further elaborated by Tsuneta
(1996a; 1997) and Shibata (1995) based on the modeling of Yohkoh observations.
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Figure 10.20: Temporal evolution of a flare according to the model of Hirayama (1974), which
starts from a rising prominence (a), triggers X-point reconnection beneath an erupting promi-
nence (b), shown in sideview (b′), and ends with the draining of chromospheric evaporated, hot
plasma from the flare loops (c) (Hirayama 1974).

The initial driver of the flare process is a rising prominence above the neutral line
in a flare-prone active region (Fig. 10.20a). The rising filament stretches a current
sheet above the neutral line, which is prone to Sweet−Parker or Petschek reconnec-
tion (Fig. 10.20b). In the model of Sturrock (1966), a helmet streamer configuration
was assumed to exist at the beginning of a flare, where the tearing-mode instability
(induced by footpoint shearing) near the Y-type reconnection point triggers a flare, ac-
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Figure 10.21: Elaborate version of the standard 2D X-type reconnection model that also in-
cludes the slow and fast shocks in the outflow region, the upward-ejected plasmoid, and the
locations of the soft X-ray bright flare loops (Tsuneta 1997).

celerating particles in a downward direction and producing shock waves and plasmoid
ejection in an upward direction. Hirayama (1974) explains the preflare process as a
rising prominence above a neutral line (between oppositely directed open magnetic
field lines), which carries an electric current parallel to the neutral line and induces a
magnetic collapse on both sides of the current sheet after eruption of the prominence.
The magnetic collapse is accompanied by lateral inflow of plasma into the opposite
sides of the current sheets. The X-type reconnection region is assumed to be the loca-
tion of major magnetic energy dissipation, which heats the local coronal plasma and
accelerates nonthermal particles. These two processes produce thermal conduction
fronts and precipitating particles which both heat the chromospheric footpoints of the
newly reconnected field lines. As a result of this impulsive heating, chromospheric
plasma evaporates (or ablates) and fills the newly reconnected field lines with over-
dense heated plasma, which produces soft X-ray-emitting flare loops with temperatures
of Te ≈ 10 − 40 MK and densities of ne ≈ 1010 − 1012 cm−3. Once the flare loops
cool down by thermal conduction and radiative loss, they also become detectable in
EUV (Te ≈ 1 − 2 MK) and Hα (Te ≈ 104 − 105 K). Kopp & Pneuman (1976) re-
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fined this scenario further and predicted a continuous rise of the Y-type reconnection
point, due to the rising prominence. As a consequence, the newly reconnected field
lines beneath the X or Y-type reconnection point have an increasingly larger height
and wider footpoint separation. Tsuneta (1996a; 1997) and Shibata (1995) elaborated
on the temperature structure, upward-ejected plasmoids, slow shocks, and fast shocks
in the outflow region of the X-type reconnection geometry (Fig. 10.21). The heated
plasma in the reconnection outflow produces hot ridges (T ≈ 15 − 20 MK) along the
separatrices with the slow shocks, sandwiching the denser soft X-ray flare loops that
occupy the newly reconnected relaxing field lines, which are filled with chromospheric
evaporated plasma. The fast shocks in the reconnection outflows collide with the previ-
ously reconnected field lines and may produce hot thermal (as well as nonthermal) hard
X-ray sources above the flare looptops. Numerical hydrodynamic simulations of this
model reproduce heat conduction fronts and slow-mode shocks (Yokoyama & Shibata
1997) and chromospheric evaporation (Magara et al. 1996; Yokoyama & Shibata 1998;
2001)

This model is essentially a 2D model that describes the evolution in a vertical plane,
while evolution along the third dimension (in the direction of the neutral line) can be
independently repeated for multiple flare loops (where footpoints extend to a double
ribbon) or can be stopped (in the case of a single-loop flare). It is likely that the exten-
sion in the third dimension is not continuous (in the form of a giant 2D Sweet−Parker
current sheet), but rather highly fragmented into temporary magnetic islands (due to
tearing-mode and coalescence instabilities, see § 10.2). Numerical simulations of en-
hanced resistivity in the current sheet enables the fast reconnection regime (Magara
& Shibata 1999) that is required to explain the observed fast (subsecond) time struc-
tures. This model fits a lot of the observational features in hard X-rays, soft X-rays,
Hα, and radio wavelengths, provides a physical mechanism to explain self-consistently
the processes of filament eruption, magnetic reconnection, and coronal mass ejection,
but does not specify what drives the initial magnetic system to become unstable. This
model fits single-loop and double-ribbon arcade geometries, but is not appropriate for
quadrupolar flare loop interactions and 3D nullpoint topologies.

10.5.2 The Emerging Flux Model

The most decisive criterion to judge the relevance of a particular flare model is the
driver mechanism that dictates the magnetic evolution, the loss of stability, and subse-
quent magnetic reconnection process. While the driver is a rising filament/prominence
in the Kopp & Pneuman (1976) model, the process of flux emergence has been con-
sidered as a driver in the model of Heyvaerts et al. (1977). The model of Heyvaerts
et al. (1977) consists of three phases: (1) a preflare heating phase where a new mag-
netic flux emerges beneath the flare filament and continuously reconnects and heats the
current sheet between the old and new flux; (2) the impulsive phase starts when the
heated current sheet loses equilibrium at a critical height and turbulent electrical resis-
tivity causes the current sheet rapidly to expand, accelerating particles and triggering
chromospheric evaporation; and (3) the main phase where the current sheet reaches a
new steady state with marginal reconnection [Fig. 10.22(a) and (b)]. A requirement of
this model is the pre-existence of a stable current sheet (with very low resistivity) for
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Figure 10.22: X-type reconnection scenarios for three different orientations of the external
magnetic field: horizontal (a), oblique (b), and vertical (c). The two versions (a) and (b) rep-
resent geometries used in the emerging flux model of Heyvaerts et al. (1977), while version (c)
corresponds to the Kopp & Pneuman (1976) model (Yokoyama & Shibata 1996).

periods of the order of a day or more. However, numerical simulations indicate that the
current sheets reconnect almost as quickly as they are formed (Forbes & Priest 1984;
Shibata et al. 1990). It is therefore believed that the Heyvaerts model can only apply to
small flares (Priest & Forbes 2000).

The geometry of the pre-existing magnetic field is assumed to have a horizon-
tal or oblique angle. A consequence of this geometry is the expulsion of two oppo-
sitely directed plasma jets during the impulsive phase [for a horizontal orientation see
Fig. 10.22(a)], or a single jet in the upward direction [for an oblique orientation see
Fig. 10.22(b)]. This model was further elaborated in terms of reconnection outflow
characteristics by Shibata et al. (1996c), inspired by the numerous plasma jets that
have been observed with Yohkoh/SXT (e.g., Shibata et al. 1992a, 1994a, 1996a, b).
The initial driver in Shibata’s emerging flux model is the nonlinear evolution of the
magnetic buoyancy (Parker) instability (see § 10.4.1 and Fig. 10.14) simulated by Shi-
bata et al. (1989b). This instability was applied to the reconnection between the emerg-
ing flux and the overlying coronal field, leading to formation and ejection of magnetic
islands or plasmoids (Shibata et al. 1992b). Further numerical hydrodynamic simula-
tions succeeded in modeling coronal X-ray jets and Hα surges (Yokoyama & Shibata
1995, 1996). The locations of the slow-mode and fast-mode shocks of reconnection
outflows are indicated in Fig. 10.22. Shibata et al. (1994a, 1996a, b, c) distinguishes
between hot and cool jet structures, where the hot jets emerge from the reconnection
region, while the cooler jets result from chromospheric evaporation into open field
lines. Yokoyama & Shibata (1995, 1996) pointed out that the hot jet ejected from the
current sheet region is not the reconnection jet itself, but a secondary jet accelerated by
the enhanced gas pressure behind the fast shock, which prevents a direct escape of the
primary reconnection jet.

There are other variants of reconnection-driven jet models. The model of Priest et
al. (1994) also produces two-sided, soft X-ray jets, but the drivers are converging flows
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at the footpoint (Fig. 10.18), which is motivated by the observed correlation with mag-
netic flux cancellation, while the driver in the model of Shibata et al. (1994b, 1996a,
b, c) is flux emergence caused by the upward-pushing Parker instability. The model
of Karpen et al. (1995, 1998; Figs. 10.6−7) can also produce jets, but is driven by
shearing motion at the footpoints, which drives magnetic reconnection in a quadrupo-
lar geometry. Thus, the production of plasma jets is a common characteristic of many
flare models, which provides a useful diagnostic of the geometric orientation and spa-
tial location of the involved magnetic reconnection regions (Fig. 10.22).

10.5.3 The Equilibrium Loss Model

The driver in the Kopp−Pneuman flare model (§ 10.5.1) is a rising filament, but the
magnetic pre-evolution that leads up to flare instability is not quantified in the various
concepts of the CSHKP models. The driver in the Heyvaerts model is emerging flux
(§ 10.5.2), but the onset of flare instability is not quantified in terms of a magnetic
field evolution. Another criticism of the latter model is that stable current sheets are
unlikely to exist over extended periods of time (as numerical simulations demonstrate),
which implies that free magnetic energy has to be stored in the form of field-aligned
currents (i.e., force-free fields; Forbes 1996). An evolutionary model that starts with
a stable (force-free) magnetic field configuration, then applies converging flows as a
continuous driver, and demonstrates how the (force-free) evolution passes a critical
point where the system becomes unstable and triggers the rise of a filament, has been
developed by Forbes & Priest (1995) in 2D. The initial situation of the magnetic field is
shown in Fig. 10.23 (b), where the magnetic field is quantified by the 2D equilibrium of
a fluxrope at a stationary height, described by the Grad−Shafranov equation. The two
footpoints of the field lines that envelop the fluxrope are then driven closer together,
while the system evolves through a series of equilibrium solutions. The height h of the
fluxrope as a function of the separation half-distance λ is shown in Fig. 10.23(a), which
monotonically decreases while the source separation is made smaller from λ = 4 → 1.
Once the source separation passes the critical point at λ = 1, the fluxrope enters a loss
of equilibrium and jumps in height (from h = 1 to h ≈ 5), while forming a current
sheet beneath [Fig. 10.23(d)]. In ideal MHD, the rising fluxrope would stop at a higher
equilibrium position, because the tension force associated with the current sheet is
always strong enough to prevent the fluxrope from escaping (Lin & Forbes 2000). If
there is some resistivity, magnetic reconnection is enabled, and even a fairly small
reconnection rate is sufficient to allow the fluxrope to escape (Lin & Forbes 2000).
Magnetic reconnection in the current sheet releases most (≈ 95%) of the magnetic
energy that has been built up from the initial force-free configuration by the converging
motion of the footpoints before the loss of equilibrium. This model is formulated fully
analytically and yields reasonable amounts of released energies, suitable to explain
flares and CMEs. Although this analytical model is restricted to 2D (with a fluxrope
that is not anchored at both ends), it demonstrates quantitatively how a loss of magnetic
equilibrium leads to a rapid energy release, which probably also takes place in more
complex 3D configurations. The question is whether the driver in terms of converging
flows is realistic, because typically observed photospheric flows are in the order of ≈ 1
km s−1, which could be too slow or may be randomly oriented. Also, shear flows with
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Figure 10.23: Flare dynamics in the model of Forbes & Priest (1995), inferred from the ideal
MHD evolution of a 2D arcade containing an unshielded fluxrope (a)−(c). The fluxrope arcade
jumps upwards when the two photospheric field sources are pushed too close to one another.
(d) The vertical current sheet is subject to magnetic reconnection if enhanced or anomalous
resistivity occurs (Forbes & Priest 1995).

subsequent tearing instability have been found to be important drivers of flares, which
would require a generalization of Forbes’s model to 3D. Numerical 3D simulations of a
similar dipolar configuration driven by converging flows have been performed by Birn
et al. (2000).

The analytical model of Forbes & Priest (1995) predicts a specific height evolution
of the fluxrope h(t), which grows initially as h(t) ∝ t5/2, or v(t) ∝ t3/2, and reaches
an asymptotic constant speed of order vterm ≈ 1500 km s−1. The solutions of the
height h(t), velocity v(t), dissipated energy dW (t)/dt, electric field E0(t), Alfvén
speed vA(t), and reconnection speed vR(t) are shown in Fig. 10.24, calculated for a
model with initial half-separation λ0 = 50 Mm, fluxrope length L = 100 Mm, fluxrope
radius a0 = 0.4λ0, density ne = 5 × 1010 cm−3, and magnetic field B0 = 100 G.
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Figure 10.24: Evolution of height h(t) (top left) and velocities v(t) (bottom left) of fluxrope
and magnetic reconnection X-point in the equilibrium loss model of Forbes & Priest (1995). The
upper limit of the dissipated energy dW/dt in the current sheet and the generated electric field
E0 at the X-point are shown (top right), as well as the reconnection speed vR(t) and the ambient
Alfvén speed (bottom right). See parameters in text (Priest & Forbes 2000).

This calculation represents an upper limit, in the case of an unlimited reconnection
rate, so that all magnetic energy goes into the kinetic energy of the upward-accelerated
fluxrope. The upward motion of the unstable fluxrope with associated reconnection
also predicts a shrinkage of flare loops, characterized by the height ratio of the cusp
at the beginning of reconnection to the height (of the relaxed dipolar field line) in the
postflare phase, which was found to be 20% and 33% in two flares (Forbes & Acton
1996).

10.5.4 2D Quadrupolar Flare Model

Among 2D models, which we classified in Fig. 10.9 into bipolar (e.g., Kopp−Pneuman
§ 10.5.1; Priest−Forbes § 10.5.3), tripolar (e.g., Heyvaerts et al. § 10.5.2), and quadrupo-
lar ones, we describe here a representative of the latter category (namely, the quadrupo-
lar photospheric source model), which was first proposed by Uchida (1980), and later
developed further by Uchida et al. (1998a, b) and Hirose et al. (2001). The initial
configuration consists of two parallel arcades (as shown in Fig. 10.9, top right), which
altogether requires three parallel neutral lines. Formation of such double arcades with
current sheets inbetween have been inferred from neighboring active regions (Sakurai
& Uchida 1977) and from polar crown filaments with arcades (Uchida et al. 1996).
As in the Forbes−Priest (1995) model, the principal driver is a converging flow pat-



444 CHAPTER 10. MAGNETIC RECONNECTION

Figure 10.25: Dynamical evolution of the plasma density (left) and current density (right) in
the quadrupolar magnetic reconnection model of Uchida (1980), simulated with a 2.5D MHD
code. Note that the erupted dark filament transforms into a CME with two slow-mode shocks at
both sides (Hirose et al. 2001).

tern that pushes the two arcades together. The X-point above the middle neutral line
supports a dark filament. The two flanking arcades that suspend the filament might
be partially observable as the “barbs” of the filament channel (Fig. 6.18). While the
two arcades push together, the dark filament transforms into a thin vertical current
sheet, which at some point becomes unstable due to tearing-mode instability, trigger-
ing anomalous resistivity and fast reconnection. The dark filament with helical field
lines is accelerated upward in the expanding field structure with a rounded shape and
transforms into a CME. The reconnected field lines below the X-point shrink and form
the postflare arcade. Numerical simulations of the driven reconnection in quadrupolar
arcades or between interacting loops have been performed by Rickard & Priest (1994),
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Sakai et al. (1995), Sakai & De Jager (1996), and for the quadrupolar model of Uchida
specifically by Hirose et al. (2001), see Fig. 10.25 for an example.

There are several motivations for this 2D quadrupolar model. The Kopp−Pneuman
(1976) model cannot explain the magnetic field in the dark filaments seen from the
side, because the direction of the magnetic field at the lower side is opposite to what
is expected from the polarity of photospheric sources (Leroy et al. 1984). A proposed
solution was to introduce a fluxrope (Kuperus & Raadu 1974), which reverses the po-
larity at the lower dip of the prominence (Fig. 6.13). Therefore, the involvement of a
fluxrope-like filament is an essential element in a flare model, which naturally evolves
in the Forbes−Priest (1995) and quadrupolar model of Uchida (1980). Further it is
argued that the 2D quadrupolar model of Uchida (1980) solves the energy problem to
open up the field and to accelerate the filament to escape velocity (Uchida et al. 1996;
1998a, b). In Sturrock’s (1966) model, the erupting filament is required to have an
energy equal to or greater than that of the flare itself, since the open-field configura-
tion (which is the final state in Sturrock’s 1966 model) is conjectured to be the state
of maximum energy (Aly 1984; Sturrock 1991). In the numerical simulation of Hirose
et al. (2001) it is actually found that the major part of the stored magnetic energy is
converted into kinetic energy carried away by the CME (containing the erupted dark
filament), while only a minor part is left for heating of the associated arcade flare.

10.5.5 The Magnetic Breakout Model

A further development of the 2D quadrupolar model of Uchida (1980) is the so-called
magnetic breakout model of Antiochos et al. (1999b) and Aulanier et al. (2000b), which
involves the same initial quadrupolar magnetic configuration, but undergoes an asym-
metric evolution with the opening up of the magnetic field on one side. The asymmetric
evolution is driven by footpoint shearing of one side arcade, where reconnection be-
tween the sheared arcade and the neighboring (unsheared) flux systems triggers an
eruption. In this magnetic breakout model, reconnection removes the unsheared field
above the low-lying, sheared core flux near the neutral line, which then allows the field
above the core flux to open up (Antiochos et al. 1999b). Thus, this model addresses
the same energy problem as Uchida’s model: How very low-lying magnetic field lines
can open up (down to the photospheric level) into an open-field configuration during
the eruption. Moreover, the eruption is solely driven by free magnetic energy stored
in a closed, sheared arcade. It circumvents the Aly−Sturrock energy limit by allow-
ing external, disconnected magnetic flux from a neighboring sheared arcade (which is
not accounted for in the “closed-topology” model of Aly and Sturrock) to assist in the
opening-up process. Thus, a key point of the magnetic breakout model is the interac-
tion of a multi-flux system (e.g., in a quadrupolar double arcade). It has the same initial
configuration as Uchida’s model, but is driven by asymmetric shear.

The magnetic topology of the magnetic breakout model has been applied to the
Bastille-Day flare by Aulanier et al. (2000b), who found a more complex 3D topology
than the 2D quadrupolar model of Antiochos et al. (1999b). Aulanier et al. (2000b)
actually identified a magnetic nullpoint in the corona above the flare arcade which was
connected with a “spine” field line to a photospheric location where the flare bright-
ens up first. The other side of the coronal nullpoint sits on a dome-like “fan” surface,



446 CHAPTER 10. MAGNETIC RECONNECTION

Figure 10.26: 2.5D version of the magnetic breakout model: (a) The initial quadrupolar po-
tential state, with shear applied on both sides of the neutral line P1/N1; (b) the shear triggers
some weak reconnection at the coronal nullpoint; (c) fast reconnection at the nullpoint leads to
opening up of the field; (d) relaxation reconnection in the opening field lines, forming footpoint
ribbons and flare loops; (e) ongoing formation of postflare loops and reconnection at the null.
The Kopp−Pneuman (1976) model is a special case in which the magnetic breakout does not
occur [eliminating phase (c)] (Aulanier et al. 2000b).
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Figure 10.27: Magnetic field topology inferred in the 1993-May-3, 23:05 UT, flare by Fletcher
et al. (2001). The sequence shows a 2D representation of the reconnection process via a separator
dome (Fletcher et al. 2001)

which encloses the main flare arcade. This topology (shown in Plate 13) can be con-
sidered as one of the many possible 3D reconnection scenarios (Fig. 5.23) in which
the magnetic breakout model can be realized. Aulanier et al. (2000b) suggest a more
general definition: “A magnetic breakout is the opening of initially low-lying sheared
fields, triggered by reconnection at a nullpoint that is located high in the corona and
that defines a separatrix enclosing the sheared fields”. This represents a generalization
of the 2.5D version (Fig. 10.26) into 3D reconnection topologies. Obviously, obser-
vations are crucial to pinning down the involved magnetic configurations, which are
now becoming available increasingly clearly from TRACE postflare loop observations.
The reconstruction of the preflare configuration, which is necessary to track down the
reconnection process, however, is hampered by the unavailability of high-resolution
observations at the much higher flare temperatures (T ≈ 10 − 40 MK) during the im-
pulsive flare phase. Nevertheless, the 3D reconnection topology could be reconstructed
for some cases, clearly showing evidence for 3D reconnection involving a separatrix
dome (Fig. 10.27; Fletcher et al. 2001).

10.5.6 3D Quadrupolar Flare Models

Some flares clearly show an interaction between two flare loops (or closed-field sys-
tems), which can most simply be interpreted as the outcome of a quadrupolar recon-
nection process. The magnetic configuration corresponds to a 3D reconnection case
(Fig. 10.9, bottom right) that can be represented by a single, common, neutral line for
the two interacting flare loops, which is different from the 2D case in Uchida’s model,
which has three neutral lines (Fig. 10.9, top right). The two observed flare loops rep-
resent, of course, the postreconnection situation, but the prereconnection topology can
be straightforwardly reconstructed by switching the polarities according to the scheme
shown in Fig. 10.28. Thus, magnetic geometry is fully constrained for this type of 3D
reconnection and can be reconstructed from the observed postflare loops. A number of
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Figure 10.28: The concept of 3D magnetic reconnection in a quadrupolar geometry is visual-
ized for two semi-circular loops (1 and 2), with initial footpoints (1+, 1−) and (2+, 2−). The
three stages of prereconnection (left column), main reconnection phase with subsequent relax-
ation process (middle column), and final postreconnection phase (right column) are depicted for
three different views [i.e., side view (top row), top view (middle row), and perspective view
(bottom row)]. Note that all loop shapes in the initial and final phase are represented by circular
segments, while the intermediate stages of relaxing field lines are rendered by linear interpolation
(Aschwanden et al. 1999c).

flares was found to fit quadrupolar geometry (Hanaoka 1996, 1997; Nishio et al. 1997;
Aschwanden et al. 1999c).

A theoretical model for this type of 3D quadrupolar reconnection was developed
by Melrose (1997) in terms of two interacting current-carrying loops. A fundamental
assumption in Melrose’s (1997) model is the conservation of the large-scale currents
that flow through coronal loops and close below the photosphere. A consequence of
this assumption is that magnetic reconnection processes only redistribute the current
paths, while the net current flowing into and out of the corona remains fixed. In Mel-
rose’s model, magnetic flux (∆Ψ) and electric current (∆I) are transferred during re-
connection, where the mutual inductance between interacting flux loops depends on
their geometry, relative distance, and preflare current. Flux transfer can be calculated
by the mutual inductance between two current-carrying wires, as in electrodynamics.
Aschwanden et al. (1999b) found that the transferred free magnetic energy ∆EI in
Melrose’s model depends strongest on the self-induction term of the largest involved
loop, which can be approximated by

∆EI = (0.70 ± 0.05)µ0Cr2(I2 − I1)I1 ≈ 1029.63
( r2

109 cm

)
[erg] , (10.5.1)

where r2 is the curvature radius of the larger loop, I1 and I2 are the currents of the two
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interacting loops (of order I2 − I1 ≈ I1 ≈ 0.5 × 1011 A), and C = 1.94 a capacity
constant.

This 3D quadrupolar reconnection model only describes the interaction between
two closed loops, which was found to match closely the observed topology of some
flares. Obviously the model does not include any open field lines and thus cannot
explain the simultaneous rise of a filament and expulsion of a CME, which may occur
in a detached magnetic field domain above the interacting loop system. However, a
key aspect of this model is that it relates the currents of the prereconnection to the
postreconnection field lines in a highly sheared configuration. It also quantifies the
efficiency of the reconnection rate as a function of shear angles. Interestingly, most
of the relevant observations indicate shear angles between the reconnecting field lines
which range from near-parallel to near-perpendicular (Aschwanden et al. 1999b), rather
than being anti-parallel as expected in the standard Kopp−Pneuman flare scenario.
This observational fact, however, does not violate the Petschek reconnection model,
since the reconnection rate can still operate at small angles θ, with efficiency scaling as
∝ [sin (θ/2)]1/2 (Soward 1982).

Similar 3D quadrupolar reconnection models are also described in Somov et al.
(1998), Somov (2000, § 16.5.2), and Kusano (2002), where loops that are sheared
along the central neutral line of a flare arcade reconnect with the overlying less sheared
arcade. Alternatively, 3D quadrupolar reconnection in large flares could also be driven
by emerging current loops (Mandrini et al. 1993). Such 3D quadrupolar configurations
are particularly suitable to explain double-ribbon flares, but it could not yet be decided
observationally whether the primary driver of this type of reconnection is a rising fila-
ment (Kopp−Pneuman 1976) or the shear along the neutral line (Sturrock 1966; Somov
et al. 1998).

10.5.7 Unification of Flare Models

In Table 10.1 we sort the previously discussed flare/CME models according to the
driver mechanisms and dimensionality of magnetic reconnection geometry. There are
essentially two locations of drivers: (1) above the flare site (in the form of a rising
filament, prominence, or plasmoid); and (2) below the flare site (in the form of photo-
spheric emergence, convergence flows, or shear flows). The three photospheric drivers
can essentially be discriminated by their directions: (1) flux emergence corresponds
to a flow in the vertical direction (vz); (2) convergence flows are counter-directed per-
pendicular to the neutral line (+vx,−vx ⊥ NL); and (3) shear flows are counter-
directed parallel to the neutral line (+vy,−vy ‖ NL). The classification in Table 10.1
also shows that 2D models can only be constructed when the driver force is in the
2D plane of the loops (e.g., converging flows in the the x-direction or emergence in
the z-direction), while a driver force perpendicular to the 2D loop plane (e.g., shear
in the y-direction) requires 3D models. Table 10.1 is by no means a complete list of
flare/CME models; in principle there could be for every type of driver at least one 3D
model, and moreover multiple models could be conceived for any combination of mul-
tiple loops (open or closed, and arcades). The 2D models are probably all idealized
approximations, but more accurate future observations might require generalizations
of each one to a 3D version. Nevertheless, the classification in Table 10.1 indicates
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Table 10.1: Classification of flare/CME Models according to the driver mechanisms and di-
mensionality of magnetic reconnection geometry.

Driver mechanism: 2D models: 3D models:
Rising filament X-type reconnection
or prominence (Hirayama 1974)
vz(h 
 hPh) (Kopp & Pneuman 1976)
Photospheric Emerging flux model Quadrupolar flux transfer
flux emergence (Heyvaerts et al. 1977) (Melrose 1995)
vz(h = hPh)
Photospheric Equilibrium loss model
converging flows (Forbes & Priest 1995)
+vx,−vx ⊥ NL Quadrupolar double-arcade

(Uchida 1980)
Photospheric Tearing-mode instability
shear motion (Sturrock 1966)
+vy,−vy ‖ NL Magnetic breakout model

(Antiochos et al. 1999b)
Sheared loops inside arcade
(Somov et al. 1998)

that at least models with the same driver mechanism could be unified into a 3D model.
In future we might even distill a single unified flare/CME model by combining all the
important drivers.

A partial unification of flare models has been proposed by Shibata (1998; 1999a),
envisioning a grand unified model of larger flares (long-duration events (LDEs) and
impulsive flares) and smaller flares (microflares, subflares, soft X-ray jets), produced
by fast magnetic reconnection driven by plasmoid ejection as the key process (also
called plasmoid-induced reconnection model). The unification scheme is visualized in
Fig. 10.22, which combines X-type reconnection driven by the emerging flux (Hey-
vaerts et al. 1977) or by a rising filament (Kopp & Pneuman 1976).

Assuming that the energy release is dominated by magnetic reconnection, “univer-
sal scaling laws” were derived for solar and stellar flares (Yokoyama & Shibata 1998;
Shibata & Yokoyama 1999b). These scaling laws are based on the assumptions that
(1) the flare temperature at the loop apex is balanced by the conduction cooling rate
(Q = d/ds(κ0T

5/2dT/ds) ≈ (2/7)κ0T
7/2
A /L2) (see Eq. 3.6.3), yielding

TA ≈
(

2QL2

κ0

)2/7

, (10.5.2)

and (2) the heating rate Q is given by the reconnection rate in Petschek’s theory (see
Eq. 10.1.8),

Q =
(

B2

4π

)(vin

L

)( 1
sin (θ)

)
≈
(

B2

4π

)(vA

L

)
, (10.5.3)

which yields the following scaling law for the apex temperature TA (using the definition
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Figure 10.29: The scaling law between the total (volume-integrated) emission measure EM

versus electron temperature Te according to the scaling law of Shibata & Yokoyama (1999).
Data are taken from solar active region transient brightenings, flares, and stellar flares (R1 R
CrA, AB Dor, 773 Tau) (Shibata & Yokoyama 1999).

of the Alfén speed, vA = B/
√

4πµmpn0),

TA ≈ 107

(
B

50 G

)6/7 ( n0

109 cm−3

)−1/7
(

L

109 cm

)2/7

[K] , (10.5.4)

Further, assuming that (3) the upper limit of the gas pressure is given by the magnetic
energy density,

pth = 2nkBTe = pm =
(

B2

8π

)
, (10.5.5)

and (4) estimating the volume of the heated plasma by a simple cube geometry,

EM ≈ n2L3 (10.5.6)

a scaling law can be found for the total emission measure EM (by eliminating n and
L from Eqs. 10.5.4−6),

EM ≈ 1048

(
B

50 G

)−5 ( n0

109 cm−3

)3/2
(

T

107 K

)17/2

[cm−3] . (10.5.7)

This scaling law relates the observed total emission measure EM to the flare tem-
perature T , which can be measured in solar and stellar flares. Observations of solar
microflares and flares, along with stellar flares, are shown in Fig. 10.29, where the
scaling law (10.5.7) (i.e., EM ∝ T 8.5) is plotted for some range of B = 15 − 150 G
and n0 = 108 − 1012 cm−3. Apparently, both solar and stellar flares obey Shibata’s
scaling law for similar magnetic field strengths B ≈ 50 G, but differ only in density,



452 CHAPTER 10. MAGNETIC RECONNECTION

which is found in the range of n0 ≈ 108 − 1010 cm−3 for solar microflares and flares,
while it is higher (n0 ≈ 1012 cm−3) for stellar flares due to the instrumental detec-
tion threshold. Thus, the magnetic reconnection scenario is a viable way to explain the
scaling of flare plasma temperatures in solar and stellar flares.

10.6 Flare/CME Observations

Overwhelming evidence for magnetic reconnection has been established from Yohkoh
observations over the last decade. In this section we touch on those observations of
flares and CMEs that provide substantial evidence for various aspects of magnetic re-
connection (see compilation in Table 10.2). Reviews on flare and CME observations
with particular emphasis on magnetic reconnection processes can be found in Tsuneta
(1993a, b; 1994a, b; 1995a, b; 1996b, c, d, e), Tsuneta & Lemen (1993), Shibata (1991;
1994; 1995; 1996; 1999a, b), Shibata et al. (1996a), Kosugi & Somov (1998), McKen-
zie (2002), Scholer (2003), Kliem et al. (2003), and Van Driel−Gesztelyi (2003).

10.6.1 Evidence for Reconnection Geometry

X-Point Geometry

Let us first discuss observations that constrain the geometry of magnetic reconnection
regions. A collection of flare images that are consistent with X-point reconnection in
the framework of the Kopp−Pneuman model (§ 10.5.1) are shown in Plate 14, showing
a cusp-like structure when imaged during or shortly after reconnection (in soft X-rays)
or a relaxed, dipolar-like, postflare arcade when imaged later in the postflare phase
(in EUV). A helmet streamer structure was observed in long-duration events (LDEs),
which have a candlelight shape (Fig. 10.30); this implies an X-type or Y-type reconnec-
tion point above the detectable cusp (Tsuneta et al. 1992a; Tsuneta 1996a). Although
the appearance of a cusp is not exclusively an indication of a magnetic reconnection
process (it could also be cross-field diffusion in a high-β plasma, see Fig. 1.23), other
characteristics like the gradual heating during the LDE, the gradual increase of the cusp
height, the temperature structure, and loop shrinkage provide additional evidence that
the energy is provided by an ongoing reconnection process near the top of the cusp
(Tsuneta et al. 1992a; Tsuneta 1996a).

An immediate consequence of the reconnection process is that newly reconnected
field lines relax from the initial cusp shape to a more dipolar shape, which has been
quantified by the shrinkage ratio and was measured to amount to a fraction of 20% and
32% in two flares (Forbes & Acton 1996). By the same token, if particle acceleration
is occurring in the highly dynamic electromagnetic fields near the cusp (§ 11), one
expects that the particle travel time from the cusp to the footpoints is longer than the
loop half-length by about the same shrinkage ratio. Such ratios between the electron
time-of-flight time and the (relaxed, soft X-ray bright) flare loop half-lengths were
indeed measured [i.e., LTOF /Lloop = 1.43 ± 0.30, and LTOF /Lloop = 1.6 ± 0.6,
respectively (Aschwanden et al. 1999c, d)]. These ratios were found to be invariant
in a large range of flare loop heights, hloop ≈ 5 − 50 Mm. Another manifestation
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Table 10.2: Key observations that provide evidence for magnetic reconnection in solar flares
and CMEs.

Physical aspect: Observational signature: References:
X-point geometry Cusp in LDE events Tsuneta et al. (1992a)
X-point altitude Time-of-flight measurements Aschwanden et al. (1996c)

Above-the-looptop HXR sources Masuda et al. (1994)
X-point rises with time Increasing footpoint separation Sakao et al. (1998)

or double-ribbon separation Fletcher & Hudson (2001)
X-point symmetry, horizontal Simultaneous HXR emission Sakao (1994)

at conjugate footpoints
X-point symmetry, vertical Bi-directional type III bursts Aschwanden et al. (1995b)

Coincidence HXR + type III Aschwanden et al. (1993)
Post-reconnection relaxation Loop shrinkage ratio Forbes & Acton (1996)

cooling loops below hot loops Svestka et al. (1987)
Quadrupolar geometry Interacting flare loops Hanaoka (1996,1997)

Nishio et al. (1997)
Aschwanden et al. (1999c)

3D nullpoint geometry Fan dome and spine morphology Fletcher et al. (2001)
Reconnection inflows EUV inward motion Yokoyama et al. (2001)
Reconnection outflows Supra-arcade downflows McKenzie & Hudson (1999)
Slow-mode standing shocks High-temperature ridges Tsuneta (1996a)
Fast-mode standing shocks High density above looptop Tsuneta (1997)

Above-the-looptop HXR Masuda et al. (1994)
Plasmoid ejection Upward-moving plasmoid Shibata et al. (1992a)

Streamer blobs Sheeley et al. (1997)
Downward conduction Downward thermal fronts Rust et al. (1985)
Chromospheric evaporation Line broadening Antonucci et al. (1986)

SXR upflows Acton et al. (1982)
SXR blueshifts Czaykovska et al. (1999)
Hα redshifts Zarro & Canfield (1989)
Momentum balance Wülser et al. (1994)
HXR/Hα ribbons Hoyng et al. (1981a)

of particle acceleration and temporary trapping in the cusp seems to be the above-the-
looptop hard X-ray sources discovered in limb flares (Masuda et al. 1994, 1995, 1996).

A prediction of the Kopp−Pneuman (1976) model is that the X-point progressively
rises with time, which implies that newly reconnected field lines should show a pro-
gressively larger apex height and an increasing footpoint separation with time. Con-
sequently, lower flare loops are cooling and shrinking, while new hotter loops origi-
nate above the cooler loops (Bruzek 1969; Dere & Cook 1979; Svestka et al. 1987;
Van Driel−Gesztelyi et al. 1997). Sakao et al. (1998) measured footpoint motion
and found that about half of the flares show an increasing footpoint separation with
a nonthermal, powerlaw, hard X-ray spectrum, which he interpreted in terms of the
Kopp−Pneuman scenario, while the other half exhibited a footpoint separation de-
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Figure 10.30: Temperature (top left), emission measure (top right), soft X-ray (thick aluminium
filter) intensity (bottom left), and pressure maps (bottom right) of the 1992-Febr-21 long-duration
flare, which occurred at solar position (N09, E88) near the eastern limb. Note the candlelight
shape that is taken as evidence for the cusp geometry in the lower reconnection outflow region
(Tsuneta 1996a).

crease as well as a more exponential hard X-ray spectrum, which he interpreted in
terms of the emerging flux model (Sakao et al. 1998). During the Bastille-Day flare
2000-Jul-14, a systematic increase of the separation of the flare ribbons was clearly
observed in EUV (Fig. 10.33, bottom) as well as in hard X-rays (Fletcher & Hudson
2001). A somewhat more complicated motion was observed in Hα footpoint kernels,
but with an overall trend of increasing footpoint separation (Qiu et al. 2002).

The standard Kopp−Pneuman scenario (Fig. 10.20) is symmetric with respect to
the vertical trajectory of the rising filament, which also implies symmetric particle
path lengths from the acceleration site in the cusp to the two magnetically conjugate
chromospheric footpoints. This symmetry is largely confirmed by simultaneity mea-
surements of the hard X-ray evolution at both conjugate footpoints, which generally is
coincident within <∼ 0.1 s (Sakao 1994). The Kopp−Pneuman model is also symmet-
ric in the vertical direction (except for gravitational stratification), which is supported
by observations of simultaneously accelerated electron beams in the upward direction
(type III bursts) and in the downward direction (reverse slope (RS) radio bursts or hard
X-ray pulses). Such bi-directional electron beams have been measured to originate at
identical plasma frequencies or electron densities (Aschwanden et al. 1995b; Aschwan-
den & Benz 1997), as well as to exhibit a simultaneous start of <∼ 0.1 s in the upward
and downward direction (Aschwanden et al. 1993).
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Figure 10.31: Reconstruction of reconnection geometry with the 3D quadrupolar model
(Fig. 10.28). Top row: soft X-ray image (logarithmic greyscale and thin contours) from
Yohkoh/SXT and hard X-ray image (thick contours) from Yohkoh/HXT. The thin circular seg-
ments represent the geometric solutions of the prereconnection field lines, and the thick circular
segments show the corresponding postreconnection field lines, which coincide with the flare
loops. Second row: simulated SXR and HXR maps constrained by the 3D quadrupolar model,
represented by identical greyscales and contour levels just like the original data (in the top row).
Third row: the geometric solution of the 3D quadrupolar model is rotated so that the vertical
z-axis coincides with the line-of-sight. Ten field lines are interpolated between the prereconnec-
tion and postreconnection state, visualizing the relaxation process of field lines after reconnec-
tion. Bottom row: the same 3D model is rotated so that either the x-axis (view from west) or the
y-axis (view from south) coincides with the line-of-sight. The spacing of the heliographic grid
is 1◦ in all frames (corresponding to 12,150 km). (Aschwanden et al. 1999c).

Quadrupolar Geometry

Observations of two interacting flare loops provide the best constraints to reconstruc-
tion of magnetic reconnection geometry. Interacting flare loops have been reported
in a number of flare observations (e.g., Duijveman et al. 1982; Strong et al. 1984;
Benz 1985; Nakajima et al. 1985; Dennis 1985; Machado & Moore 1986; Vrsnak et
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Figure 10.32: See figure caption of Fig. 10.30.

al. 1987a, b; Machado et al. 1988; De Jager et al. 1995; Kundu et al. 1991, 1995;
Gopalswamy et al. 1995; Wang et al. 1995), but the 3D geometry of the magnetic
reconnection process could not be reconstructed due to insufficient spatial resolution,
temperature confusion, or projection effects. The prereconnection configuration is gen-
erally not visible, because the field lines are not yet illuminated by heated flare plasma.
Also the configuration change during reconnection is generally not observable, because
it takes some time ( <∼ 20 s to 1 min) to enable chromospheric evaporation and to fill
the flare loops. So, what one generally observes is the final postreconnection config-
uration, after the newly reconnected, cusp-shaped field lines relax into a more dipolar
shape. Then, interpreting such a quadrupolar configuration change as a simple switch
of the connectivities between opposite polarities, one can reconstruct the prereconnec-
tion geometry with the scheme indicated in Fig. 10.28. A data set of about 10 flares with
interacting flare loops has been observed in soft X-rays with Yohkoh/SXT, in radio with
Nobeyama, in H-α, and in magnetograms (Hanaoka 1996, 1997; Nishio et al. 1997).
From careful studies of the magnetic polarities it was found that the interaction gen-
erally happens between a small and a large bipolar flare loop that both share the same
neutral line and have one footpoint close together, so that it looks like a three-legged
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Figure 10.33: Top: tracings of individual flare loops from TRACE 171 Å images of the Bastille-
Day flare 2000-Jul-14. The five sets of loops traced at five different times are marked with
different greytones. Note the evolution from highly sheared to less sheared loops. Bottom:
the position of the two flare ribbons traced from 171 Å images. Note the increasing footpoint
separation with time (Aschwanden 2002b).

structure (Hanaoka 1996). However, these “three-legged structures” could be modeled
with a quadrupolar configuration (Figs. 10.31 and 10.32; Aschwanden et al. 1999c),
which reveals both the prereconnection and postreconnection geometry. From these
3D reconstructions it was found that: (1) the length ratio of interacting flare loops
is L1 : L2 ≈ 1 : 4, (2) the angle between the prereconnection field lines is nearly
collinear in half the cases (Fig. 10.31) and nearly perpendicular in the other half of the
cases (Fig. 10.32), but never anti-parallel, (3) the shear angle between the interacting
field lines reduces by ≈ 10◦ − 50◦ during reconnection, and (4) the smaller loop ex-
periences shrinkage by a factor of ≈ 1.3 ± 0.4. These parameters are not predicted by
any Petschek-type model, but the magnetic configuration is consistent with a 3D recon-
nection process in a sheared pair of flare loops (or bundles). Similarly, the interaction
between an emerging small-scale loop and a pre-existing larger loop was modeled by
Longcope & Silva (1997), who found that the interaction during the flare is consistent
with a magnetic flux transfer across the new separatrix surface. In another case, mag-
netic modeling of the preflare configuration revealed that a highly sheared magnetic
fluxtube erupted and triggered reconnection with the overlying large-scale magnetic
field (Zhang et al. 2000). On a larger scale, a twisted sigmoid loop was observed to
expand and to interact with an overlying loop structure that produced a series of non-
thermal radio bursts, which was interpreted as a clear sign of large-scale reconnection
(Manoharan et al. 1996).

A generalization of the quadrupolar interaction between two sheared loops is an
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a) b) c)

d) e) f)

Figure 10.34: Scenario of the dynamic evolution during the Bastille-Day 2000-Jul-14 flare:
(a) low-lying, highly sheared loops above the neutral line first become unstable; (b) after loss
of magnetic equilibrium the filament jumps upward and forms a current sheet according to the
model by Forbes & Priest (1995). When the current sheet becomes stretched, magnetic islands
form and coalescence of islands occurs at locations of enhanced resistivity, initiating particle
acceleration and plasma heating; (c) the lowest lying loops relax after reconnection and become
filled due to chromospheric evaporation (loops with thick linestyle); (d) reconnection proceeds
upward and involves higher lying, less sheared loops; (e) the arcade gradually fills up with filled
loops; (f) the last reconnecting loops have no shear and are oriented perpendicular to the neutral
line. At some point the filament disconnects completely from the flare arcade and escapes into
interplanetary space (Aschwanden 2002b).
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extension of this configuration along the direction of the neutral line, which character-
izes the interaction between two overlying arcades with different shear, as described
in Somov et al. (1998), Somov (2000, § 16.2), and Kusano (2002). Such a 3D config-
uration seems to fit the Bastille-Day flare 2000-Jul-14, whose magnetic structure has
been studied by magnetic field extrapolations (Deng et al. 2001; Yan et al. 2001) as
well as by tracing EUV postflare loops (Fig. 10.33; Aschwanden & Alexander 2001).
The 3D magnetic geometry of this large double-ribbon flare exhibits strongly sheared,
low-lying loops above the neutral line, which enter magnetic reconnection first and
then progressively affect subsequent layers of less sheared loop arcades with increas-
ing height. The magnetic reconnection process is highly fragmented, because it leaves
some 200 different EUV postflare loops in the aftermath. The entire flare seems to
consist of a superposition of at least 200 individual magnetic reconnection processes
between sheared field lines, corresponding to the bursty reconnection mode we de-
scribed in § 10.2. The height of individual, local, magnetic reconnection processes
tends to increase with height during the flare. The situation is sketched in Fig. 10.34.
So, this flare has a lot of aspects in common with the standard Kopp−Pneuman model,
but shearing also plays an important role, such that it also has aspects in common with
the sheared-arcade model of Sturrock (1966), the magnetic breakout model (Antio-
chos et al. 1999b; Aulanier et al. 2000b), and the sheared arcade model of Somov et
al. (1998). Clearly, the observations constrain the 3D geometry of magnetic reconnec-
tion processes in this complex flare to a highly detailed degree and demand a more
complex configuration than the most widely used models discussed in § 10.5.

3D Nullpoint Geometry

While most previous flare models with magnetic reconnection were restricted to X-type
configurations and current sheet geometries (with 2D nullpoints), recent flare studies
also show evidence for 3D nullpoints, saddle points (also called bald patches), sepa-
rator lines, or quasi-separatrix surfaces. One of the first suggestions for the presence
of a 3D nullpoint has been inferred from SoHO/EIT observations in an active region
(Filippov, 1999). However, despite the fact that a saddle-like or hyperbolic magnetic
configuration is considered as a necessary condition for magnetic field line reconnec-
tion, no heating or flaring was observed in this case. Magnetic field extrapolations of
the first Bastille-Day flare (1998-Jul-14) led Aulanier et al. (2000b) to the conclusion
that magnetic reconnection occurred along a spine field line and the fan surface asso-
ciated with a coronal nullpoint (Plate 13). The existence of a coronal 3D nullpoint was
also inferred in the 1999-May-3 flare by Fletcher et al. (2001), based on the emergence
of a positive magnetic flux concentration inside a separatrix dome above the surround-
ing ring of negative magnetic polarity (Fig. 10.27). Relaxation of the stressed magnetic
field was interpreted in terms of spine or fan reconnection during this flare. Upflows of
heated plasma were also observed along the spine field line, which can be considered a
consequence of reconnection-driven heating along the spine field line. These examples
offer convincing evidence that the geometry of magnetic reconnection in 3D nullpoints
can now be constrained by observations.
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Figure 10.35: Time evolution of the magnetic reconnection process with detected inflows
recorded in soft X-rays (Yohkoh/SXT, bottom row) and EUV Fe 195 Å (SoHO/EIT, top row).
The field-of-view of each panel is 35×35 Mm (Yokoyama et al. 2001).

10.6.2 Evidence for Reconnection Flows and Jets

All magnetic reconnection models require inflows into the sides of the current sheet and
predict near-Alfvénic outflows. In solar flares, however, it turned out to be extremely
difficult to detect reconnection inflows, either because of low density, low contrast,
slow inflow speed, incomplete temperature coverage, or projection effects (Hara &
Ichimoto 1996). Only one study has been published that shows evidence for reconnec-
tion inflows in a solar flare (Fig. 10.35−36), where an inflow speed of vin

<∼ 5 km s−1

was measured and a reconnection rate of MA ≈ 0.001−0.03 was estimated (Yokoyama
et al. 2001), consistent with the range of other estimates, MA ≈ 0.001− 0.01 (Isobe et
al. 2002).

Also, direct reconnection outflows are not readily observable. The first evidence of
high-speed downflows above flare loops is believed to have been observed by Yohkoh/
SXT during the 1999-Jan-20 flare, showing dark voids flowing down from the cusps,
with speeds of vout ≈ 100−200 km s−1 (McKenzie & Hudson 1999; McKenzie 2000),
about an order of magnitude slower than expected from coronal Alfvén speeds. The
downward outflows hit a high-temperature (T ≈ 15 − 20 MK) region, which might be
evidence of the fast-mode shock (Tsuneta 1997), sandwiched between the two ridges of
the slow-mode shock (Tsuneta 1996a). There is also evidence for thermal wave fronts
in the flare loops beneath which are heading downward to the chromosphere with ve-
locities of v = 800 − 1700 km s−1 (Rust et al. 1985). The subsequent response to
downward-moving conduction fronts and precipitating nonthermal particles is the pro-



10.6. FLARE/CME OBSERVATIONS 461

Figure 10.36: Time evolution of a horizontal 1D slice of EUV images (Fig. 10.34), located
above the reconnection region, showing a space-time diagram of the inflows (Yokoyama et
al. 2001).

cess of chromospheric evaporation, which is observationally witnessed by line broad-
ening (Antonucci et al. 1986, 1996) and blueshifted lines of high-temperature upflows
(Acton et al. 1982; Czaykovska et al. 1999) that balance the momentum of the down-
flows (Zarro & Lemen 1988; Zarro & Canfield 1989; Wülser et al. 1994). Blueshifted
Fe XXV lines were also interpreted as direct outflows from Petschek-type reconnec-
tion regions (Lin et al. 1996). The precipitating nonthermal electrons are then stopped
in the chromosphere, detectable in co-spatial hard X-ray and Hα ribbons (Hoyng et
al. 1981a; Duijveman et al. 1982; Sakao 1994; Sakao et al. 1998; Mariska et al. 1996).

Better observable dynamic features of magnetic reconnection are upward-ejected
jets and plasmoids, which have been observed abundantly (Shibata et al. 1992a, 1993,
1994a, b, 1995a, 1996a, b, c; Ohyama & Shibata 1996) with typical apparent velocities
of v ≈ 200− 500 km s−1, possibly connected with outflows (streamer blobs) detected
with similar speed in the streamer belt out to 30 solar radii (Sheeley et al. 1997; Wang
et al. 1998, 1999; Van Aalst et al. 1999).

The radio signatures of magnetic reconnection processes are less certain to inter-
pret, because highly nonlinear emission processes are often involved which are not suit-
able as regular tracers. Nevertheless, supersonic reconnection outflows are expected
to produce shock waves, which possibly could be traced by radio type II bursts. A
type II burst structure with no frequency-time drift was observed after one flare, which
was interpreted as an outflow termination shock from a reconnection region (Aurass
et al. 2002a), but the puzzling fact is why it was only detected an hour after the flare,
lasting for 30 minutes. The highly time-variable bursty reconnection is also expected
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to produce density variations that can modulate the plasma frequency of associated ra-
dio emission in a highly dynamic manner, possible manifested as so-called decimetric
pulsation events (Kliem et al. 2000). However, a more reliable diagnostic of magnetic
reconnection processes by means of radio emission requires high-resolution imaging
with high cadence aided by detailed 3D modeling, which might become available from
future solar-dedicated radio interferometers such as the planned Frequency-Agile Solar
Radiotelescope (FASR) (White et al. 2003).

10.6.3 Large-Scale Magnetic Restructuring

Although solar flares offer the most convincing evidence for magnetic reconnection
processes, they occur in relatively confined volumes inside an active region. In contrast,
Yohkoh revealed that there are also large-scale magnetic restructuring processes that
have global effects on the corona. For instance, Tsuneta et al. (1992b) observed the
formation of a large-scale closed-loop arcade (with a height of almost a solar radius)
out of an open-field structure during a time interval of 20 hours, while a polar crown
filament disappeared. Tsuneta et al. (1992b) suggest that the eruption of the polar
crown filament creates a large-scale current sheet which triggers X-type reconnection
and continuously forms closed-field loops beneath in a non-explosive way. So, this
is a “non-flaring” magnetic reconnection process, the only difference to flares being
the much larger size and lower magnetic field. The timing can extend over extended
periods. For instance, Sterling et al. (2001) observed that the onset of a filament rise
started more than 6 hours earlier and that the filament disappeared into interplanetary
space before the arcade formation became detectable in soft X-rays and EUV.

There are a number of interesting physical aspects that surround large-scale global
magnetic reconnection processes and complement our picture of magnetic reconnec-
tion. They either occur without flaring, are absent on the smaller scales of flares, or
organize flares on a larger scale, such as: (1) remote flare brightenings (Nakajima et
al. 1985; Sterling & Moore 2001) ; (2) homologous flares, which are triggered over
large global distances (e.g., Zhang et al. 1998); (3) spotless flares, triggered by global
restructuring (Sersen 1996); (4) helmet streamer formation (Hiei et al. 1993, 1996);
(5) termination and inhibition of upward progressing reconnection at greater heights
(Klimchuk 1996); (6) triggering of radio noise storms (type I bursts); by coronal re-
structuring processes (Marque et al. 2001); (7) large-scale dimmings caused by global
restructuring processes (Chertok & Grechnev 2003); or (8) helicity conservation from
corona to interplanetary space during large-scale reconnection processes (Rust 1996).

10.6.4 Open Issues on Magnetic Reconnection

Although great strides have been made to interpret dynamic flare processes in terms of
magnetic reconnection, there are also a number of puzzling observations, or lack of ex-
pected observations, which might indicate inappropriate, incomplete, or biased models
and physical understanding. A compilation of such critical observational problems and
open issues can be found in Hudson & Khan (1996), Tsuneta (1996c), and McKenzie
(2002). Here a selection of some open issues:
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1. Initial configuration: How is the initial vertical current sheet formed in the Kopp−
Pneuman model? A long current sheet is unstable in tearing mode, so it is not
clear how a stable initial vertical current sheet can be formed in the Kopp−Pneuman
model. Also the model of Heyvaerts et al. (1977) requires an initial stable cur-
rent sheet, but numerical simulations show that reconnection starts as soon as the
current sheet is formed.

2. Anomalous resistivity: Magnetic reconnection requires enhanced resistivity in
the current sheet. What is the source of enhanced resistivity and under what
coronal conditions does it occur?

3. Reconnection inflows: There is only one published event with a detection of
reconnection inflows (Yokoyama et al. 2001). Is this lack of observed inflows
an observational problem: low density, low contrast, insufficient temperature
contrast, incomplete temperature coverage, low velocity, projection effects?

4. Reconnection outflows: There is only one report of supra-arcade downflows that
could be interpreted as a direct signature of reconnection outflows (McKenzie &
Hudson 1999). Moreover, the inferred outflow speed is about an order of mag-
nitude lower than expected for coronal Alfvén speeds? Are there observational
problems for the detection of outflows (confusion from multiple flows, low tem-
perature and density contrast)? Is the magnetic field in the outflow region much
lower (≈ 10 G) than typically assumed in flares, in order to explain the Alfvén
outflow speed?

5. Open fields at onset: Frequent type III bursts and detection of interplanetary par-
ticles during the impulsive flare phase require open field regions at the beginning
of flares. However, in several flare models (Forbes & Priest 1995; the magnetic
breakout model; Antiochos et al. 1999b; quadrupolar models, Uchida 1980, Mel-
rose 1995) there are no open field lines in the beginning. In models with erupting
prominences, the initial rising filament is tied down by closed field lines, which
need first to be opened up during the flare.

6. Number problem of energetic particles: The number of accelerated particles in
flares, as inferred from the hard X-ray yield, requires either a high reconnec-
tion inflow speed, a large reconnection volume, or many reconnection sites, all
requirements that are difficult to reconcile with observations.

7. Homologous flares: If magnetic reconnection changes the magnetic topology,
how can homologous flares occur that have a matching co-spatial morphology
(e.g., identical Hα ribbons?)

10.7 Summary

Theory and numerical simulations of magnetic reconnection processes in the solar
corona have been developed for steady 2D reconnection (§ 10.1), bursty 2D recon-
nection (§ 10.2), and 3D reconnection (§ 10.3). Only steady 2D reconnection mod-
els can be formulated analytically (§ 10.1), which provide basic relations for inflow
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speed, outflow speed, and reconnection rate, but represent oversimplifications for
most (if not all) observed flares. A more realistic approach seems to be bursty 2D
reconnection models (§ 10.2), which involve the tearing-mode and coalescence in-
stability and can reproduce the sufficiently fast temporal and small spatial scales
required by solar flare observations. The sheared magnetic field configurations
and the existence or coronal and chromospheric nullpoints, which are now in-
ferred more commonly in solar flares, require ultimately 3D reconnection mod-
els, possibly involving nullpoint coalescence, spine reconnection, fan reconnection,
and separator reconnection (§ 10.3). Magnetic reconnection operates in two quite
distinct physical parameter domains: in the chromosphere during magnetic flux
emergence, magnetic flux cancellation, and so-called explosive events (§ 10.4), and
under coronal conditions during microflares, flares, and CMEs (§ 10.5). The best
known flare/CME models entail magnetic reconnection processes that are driven
by a rising filament/prominence, by flux emergence, by converging flows, or by
shear motion along the neutral line (§ 10.1). Flare scenarios with a driver perpen-
dicular to the neutral line (rising prominence, flux emergence, convergence flows)
are formulated as 2D reconnection models (Kopp−Pneuman 1976; Heyvaerts et
al. 1977; Forbes & Priest 1995; Uchida 1980), while scenarios that involve shear
along the neutral line (tearing-mode instability, quadrupolar flux transfer, the
magnetic breakout model, sheared arcade interactions) require 3D descriptions
(Sturrock 1966; Antiochos et al. 1999b; Somov et al. 1998). Ultimately, most of
these partial flare models could be unified in a 3D model that includes all driver
mechanisms. Observational evidence for magnetic reconnection in flares includes
the 3D geometry, reconnection inflows, outflows, detection of shocks, jets, ejected
plasmoids, and secondary effects like particle acceleration, conduction fronts, and
chromospheric evaporation processes (§ 10.6). Magnetic reconnection not only op-
erates locally in flares, it also organizes the global corona by large-scale restruc-
turing processes.



Chapter 11

Particle Acceleration

In the previous sections we dealt mostly with MHD descriptions of the coronal plasma,
which is a fluid concept to describe a collisional plasma, where collisions among elec-
trons and ions are so frequent that the particle distribution maintains a Maxwellian or
Boltzmann distribution that can be characterized by a single temperature locally. In
this sense we talk about thermal particles and thermal plasma, which governs most
parts of the corona. Strong electromagnetic fields, as they are generated during mag-
netic reconnection processes, however, have the ability to accelerate particles out of
the thermal distribution to higher energies, which we then call nonthermal particles.
They can survive in the corona for the duration of a collision time and may even es-
cape along open field lines into interplanetary space thanks to their relativistic speed.
The fate of nonthermal particles depends very much on the direction in which they are
accelerated, and whether the field line of their trajectory is open or closed. Particles
that are accelerated in a downward direction or along closed field lines inevitably slam
into the highly collisional chromosphere, where they provide a valuable diagnostic in
hard X-rays and gamma-rays. Nonthermal particles that propagate along coronal or
interplanetary field lines are part of nonthermal tail distributions that are prone to many
kinds of plasma instabilities, which produce electrostatic and electromagnetic radiation
in radio wavelengths. Moreover, relativistic particles that propagate in magnetic fields
produce gyroresonance and gyrosynchrotron emission, which also provides a valuable
diagnostic of energetic particles in solar flares. Thus, nonthermal particles provide a
wealth of information that can be quantitatively exploited by means of kinetic plasma
theory and radiation mechanisms in gamma-rays, hard X-rays, and radio wavelengths.
Nonthermal particles, however, are only produced in significant numbers by highly dy-
namic processes such as magnetic reconnection in solar flares and shocks in coronal
mass ejections (CMEs), which is the main subject of the following sections. We start
with the basic physics of particle acceleration in this chapter (§ 11), and then proceed
to propagation (§ 12) and to secondary radiation mechanisms produced by nonthermal
particles later on, such as hard X-rays (§ 13), gamma-rays (§ 14), and radio emission
(§ 15).
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11.1 Basic Particle Motion

The basic physics of the dynamics of relativistic particles in electromagnetic fields
is covered in textbooks (e.g., Jackson 1962, § 12), and more specific applications to
laboratory plasma, the magnetosphere, or the corona can be found in Chen (1974,
§ 2), Schmidt (1979, § 1), Benz (1993, § 2), Sturrock (1994, § 3-5), Baumjohann &
Treumann (1997, § 2), or Boyd & Sanderson (2003, § 2).

11.1.1 Particle Orbits in Magnetic Fields

Since magnetic fields are ubiquitous in the solar corona, charged particles like electrons
and ions experience a Lorentz force that makes them gyrate around the guiding mag-
netic field lines. The basic (relativistic) equation of motion thus includes acceleration
by an electric field E and the Lorentz force exerted by the magnetic field B,

d(mγv)
dt

(x, t) = q

[
E(x, t) +

1
c
v × B(x, t)

]
, (11.1.1)

where γ is the relativistic Lorentz factor defined in § 11.1.3. Neglecting the electric
field (E = |E| = 0) and assuming a uniform (constant) magnetic field, B(x, t) = B,
we can isolate the gyromotion of the particle, which is a circular orbit with tangential
velocity v⊥ at a gyroradius R. The gyroradius R follows directly from Eq. (11.1.1), us-
ing the proportionality relation for the velocity change dv in a circular orbit, dv/v⊥ =
v⊥dt/R,

R =
mγc

|q|B v⊥ . (11.1.2)

The resulting gyrofrequency is then

Ωg = 2πfg =
v⊥
R

=
qB

mγc
, (11.1.3)

which is independent of the particle velocity. Plugging in the physical constants (see
Appendix A and D) we obtain the following simple formulas for the electron and ion
gyrofrequencies,

fge = 2.80 × 106 B [Hz]
fgi = 1.52 × 103 B/µ [Hz] ,

(11.1.4)

where µ is the molecular weight of the ion mass, mi = µmp. Thus for typical coronal
field strengths of B = 10 − 100 G the electron gyrofrequency amounts to fge = 28 −
280 MHz, reaching a maximum value in fields of B ≈ 1000− 2000 G above sunspots,
with fge ≈ 2.8 − 5.6 GHz. The proton gyrofrequency is a factor of mp/me = 1836
lower, so in the fgi = 15 − 150 kHz range for coronal conditions. In the solar wind
(B = 1− 10 G), proton gyration times can fall in the range of ≈ 1− 10 kHz, and thus
produce high-frequency modulations on time scales of τg ≈ 0.1 − 1 ms.

To evaluate gyroradii, we set the perpendicular velocity v⊥ equal to the thermal
velocity, which is vTe = kBTe/me for electrons and vTi = kBTi/µmp for ions. With
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this definition, and defining the charge state by Z = q/e, the gyroradii of electrons and
ions are,

Re = vTe/(2πfge) = 2.21 × 10−2T
1/2
e B−1 (cm)

Ri = vTi/(2πfgi) = 9.49 × 10−1T
1/2
i µ1/2Z−1B−1 (cm) ,

(11.1.5)

which for typical coronal conditions (Te ≈ Ti ≈ 1.0 MK, B = 10 − 100 G), amounts
to Re = 0.2 − 2 cm for electrons, and Ri = 0.1 − 1 m for protons, respectively.

Thus, in the absence of any electric field, the motion of particles is controlled by
the gyromotion, which is a circular or helical orbit around the guiding magnetic field,
with the electrons and ions rotating in opposite directions. Since the Lorentz force is
perpendicular to the magnetic field direction and the particle velocity vector, magnetic
fields cannot do any work to accelerate particles.

11.1.2 Particle Drifts in Force Fields

In order to accelerate particles, a force is necessary that acts either parallel (F‖) or
perpendicular (F⊥) to the magnetic field. A parallel force accelerates a particle just
along the magnetic field, without any interference with the gyromotion. A perpendicu-
lar force, however, produces a drift of the charged particle that is perpendicular to both
the magnetic field B and the force direction F⊥ (see derivations in any of the textbooks
quoted at the beginning of this section),

vdrift =
c

q

F⊥ × B
B2

=
1

Ωg

(
F⊥
m

× B
B

)
, (11.1.6)

and the motion of the particle can be represented by a superposition of the motion along
the magnetic field (v‖), the gyromotion (vgyro), and the drift (vdrift),

v = v‖ + vgyro + vdrift , (11.1.7)

The perpendicular force F⊥ could be an electric force FE , a polarization drift force
FP , the gravitational force Fg, a magnetic field gradient force F∇B , or a curvature
force FR. Inserting the definitions of these forces we obtain with Eq. (11.1.6) the
following drift rates,

FE = qE vdrift = (c/B2) (E× B)
FP = m(dE/dt) vdrift = (mc/qB2) (dE/dt × B)
Fg = mg vdrift = (mc/qB2) (g × B)
F∇B = (mv2

⊥/2B)∇B vdrift = (mcv2
⊥/2qB3) (B ×∇B)

FR = (mv2
‖/R2)R vdrift = (mcv2

‖/qR2B2) (R × B)

(11.1.8)

Thus, a force F‖ along the magnetic field will accelerate particles to higher energies,
while the perpendicular component F⊥ will only cause a drift velocity vdrift without
energy gain, because the acceleration in the first half of the gyroperiod cancels out
with the deceleration during the second-half of the gyroperiod. Since the E × B-drift
does not depend on the sign of the charge q, both electrons and ions drift into the same
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direction. The E × B-drift thus does not contribute to any net acceleration or energy
gain of the particles. However, it can have an important effect in removing particles
from the acceleration region, especially for acceleration regions with a small transverse
dimension, such as current sheets.

11.1.3 Relativistic Particle Energies

Nonthermal particles are accelerated up to high relativistic speeds in solar flares. It
is therefore useful to remember the basic relativistic notations. A reference energy of
relativistic particles is the rest mass of the electron,

mec
2 = 511 keV . (11.1.9)

The total energy εtotal of a relativistic electron is composed of the rest mass mec
2 and

the kinetic energy ε,
εtotal = mec

2 + ε = mec
2γ , (11.1.10)

also specified in terms of the relativistic Lorentz factor γ,

γ =
1√

1 − β2
=

1√
1 − v/c

2
, (11.1.11)

where the relativistic velocity v is often expressed by the dimensionless variable β =v/c
(not to be confused with the plasma β-parameter). So, the kinetic energy ε is related to
the Lorentz factor γ or velocity v by

ε = mec
2(γ − 1) = mec

2(
1√

1 − (v/c)2
− 1) ≈ 1

2
mev2 + ... (11.1.12)

Often we want to know the electron speed v for a given kinetic electron energy ε, which
follows from Eqs. (11.1.9−12),

v(ε) = c

√
1 − 1

γ2
= c

√
1 − 1

(1 + ε
mec2 )2

. (11.1.13)

Let us consider the acceleration by a constant electric field E. The equation of motion
(Eq. 11.1.1) can then be integrated using the definition of γ(v) (Eq. 11.1.11) yielding,

v(t) = c
1√

1 + (mc/qEt)2
≈ qE

m
t , (11.1.14)

where the nonrelativistic approximation is given on the right-hand side. A second
integration yields the trajectory length of the accelerated particle,

x(t) =
mc2

qE

⎡
⎣
(

1 +
[
qEt

mc

]2)1/2

− 1

⎤
⎦ . (11.1.15)
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The acceleration time for a particle with Lorentz factor γ follows from Eq. (11.1.14),

tacc(γ) =
mc

qE

√
γ2 − 1 . (11.1.16)

A conversion table between relativistic energies ε, speeds β, and Lorentz factors γ
relevant for solar flares is given in Appendix E. From this we see that a typical thermal
electron in the solar corona (with a temperature of Te ≈ 1.0 MK) has a nonrelativis-
tic speed of β = v/c = 0.018 and a kinetic energy of ε = 0.086 keV. If such an
electron is accelerated to about 4 times the thermal speed, so β ≈ 0.07, which is still
nonrelativistic, it can form a bump-in-the-tail in the velocity distribution and produce
radio emission at the plasma frequency. Hard X-ray emission is produced by electrons
with typical energies of ε ≈ 20 − 100 keV, so they have mildly relativistic speeds of
β ≈ 0.2− 0.5. Gyrosynchrotron emission and electron bremsstrahlung in gamma-rays
are produced by highly relativistic electrons, with energies of ε ≈ 0.3 − 10 MeV and
with relativistic speeds of β >∼ 0.8.

In particle acceleration processes, an equipartition of kinetic energies is often as-
sumed for accelerated electrons and protons (i.e., εp = εe),

εp = mpc
2(γp − 1) = εe = mec

2(γe − 1) , (11.1.17)

which yields a velocity ratio βp/βe that is roughly inverse to the square root of the
mass ratio (in the case of equipartition: εp = εe),

βp

βe
=

√
1 − [1 + εp

mpc2 ]−2√
1 − [1 + εe

mec2 ]−2
≈
√

εp

εe
· me

mp
=

1
43

√
εp

εe
=

1
43

. (11.1.18)

11.2 Overview of Particle Acceleration Mechanisms

In the context of solar flares, there are essentially three major groups of particle accel-
eration mechanisms that have been studied over the years: (1) DC electric field accel-
eration, (2) stochastic acceleration, and (3) shock acceleration. Shock acceleration is
sometimes also called first-order Fermi acceleration, because the relative momentum
gain per shock crossing is linear to the velocity ratio (u/v) (of the shock speed u to
the particle speed v). For particles that cross a shock once, this process is also called
shock drift acceleration, while particles that are scattered multiple times across a shock
structure experience diffusive shock acceleration. This latter type of diffusive shock
acceleration is not much different from stochastic acceleration (Jones 1994), which is
also called second-order Fermi acceleration, because the relative momentum gain per
collision is proportional to the second power of the velocity ratio (u/v).

A compilation of acceleration mechanisms according to this grouping is given in
Table 11.1. The first group envisions acceleration in electric fields, which can be
generated in current sheets, during magnetic reconnection processes, or in current-
carrying loops. Although acceleration in a static electric field is conceptually the sim-
plest model, an application to solar flares is rather complicated; the current thinking is
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Table 11.1: Overview of particle acceleration mechanisms in solar flares.

Acceleration Mechanisms Electromagnetic fields
DC electric field acceleration:
− Sub-Dreicer fields, runaway acceleration1 E < ED

− Super-Dreicer fields2 E > ED

− Current sheet (X-point) collapse3 E = −uinflow × B
− Magnetic island (O-point) coalescence4 Econv = −ucoal × B
− (Filamentary current sheet: X- and O-points)
− Double layers5 E = −∇V
− Betatron acceleration (magnetic pumping)6 ∇× E = −(1/c)(dB/dt)

Stochastic (or second-order Fermi) acceleration:
Gyroresonant wave-particle interactions (weak turbulence) with:
− whistler (R-) and L-waves7 k ‖ B
− O- and X-waves8 k ⊥ B
− Alfvén waves (transit time damping)9 k ‖ B
− Magneto-acoustic waves10 k ⊥ B
− Langmuir waves11 k ‖ B
− Lower hybrid waves12 k ⊥ B

Shock acceleration:
Shock-drift (or first-order Fermi) acceleration13

− Fast shocks in reconnection outflow14

− Mirror-trap in reconnection outflow15

Diffusive-shock acceleration16

1) Holman (1985), Tsuneta (1985), Benka & Holman (1994); 2) Litvinenko & Somov (1995),
Litvinenko (1996b); 3) Tajima & Sakai (1986), Sakai & Ohsawa (1987), Sakai & De Jager
(1991); 4) Furth et al. (1963), Pritchett & Wu (1979), Biskamp & Welter (1979), Kliem (1994),
Kliem et al. (2000); 5) Block (1978), Volwerk & Kuijpers (1994), Volwerk (1993); 6) Brown
& Hoyng (1975), Karpen (1982); 7) Melrose (1974), Miller & Ramaty (1987), Steinacker &
Miller (1992), Hamilton & Petrosian (1992); 8) Karimabadi et al. (1987); 9) Lee & Völk (1975),
Fisk (1976), Achterberg (1979), Barbosa (1979), Stix (1992), Miller et al. (1990), Hamilton
& Petrosian (1992), Steinacker & Miller (1992), Miller et al. (1997); 10) Zhou & Matthaeus
(1990); Eichler (1979); Miller & Roberts (1995); 11) Melrose (1980a,b); 12) Papadopoulos
(1979), Lampe & Papadopoulos (1977), Benz & Smith (1987), McClements et al. (1990); 13)
Fermi (1949), Jokipii (1966), Bai et al. (1983), Ellison & Ramaty (1985); 14) Tsuneta & Naito
(1998); 15) Somov & Kosugi (1997); 16) Ramaty (1979), Achterberg & Norman (1980), Decker
& Vlahos (1986); Cargill et al. (1988), Lemberge (1995).

that the relevant electric fields are generated during magnetic reconnection processes,
and therefore their nature is highly intermittent in space and time. The second group of
stochastic acceleration processes involve random energy gains and losses in a turbulent
plasma, where gyroresonant wave-particle interactions provide a net energy gain to res-
onant particles. The third group of shock acceleration mechanisms involve a particular
geometry and inhomogeneous boundary (at a shock front) that is suitable to transfer
momentum and energy to intercepting particles.
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Figure 11.1: Paradigm shift of current sheet structure and associated particle acceleration re-
gions: Left: classical models assume large-scale electric fields based on Sweet−Parker magnetic
reconnection, which have a much larger extent in the x and z-direction than their width in the
y-direction. Right: theory and MHD simulations, however, imply small-scale electric fields in
magnetic X-points and coalescing islands with magnetic O-points (Aschwanden 2002b).

Although these three groups seem to distinctly define different physical concepts,
the distinction becomes progressively blurred the more realistic theoretical models are
used. For instance, large homogeneous current sheets with a well-defined DC elec-
tric field are now replaced with more inhomogeneous, fragmented current sheets and
magnetic islands in the impulsive bursty reconnection mode (Fig. 11.1), so that the
associated electric fields also become highly fragmented and approach the limit of tur-
bulent fields as it is used in the second group of stochastic acceleration. Also some
shock acceleration models are highly diffusive in nature and have much in common
with stochastic acceleration.

Theoretical reviews on solar particle acceleration mechanisms can be found in Vla-
hos et al. (1986), Benz (1993), Kirk (1994), Miller et al. (1997), Petrosian (1996, 1999),
Miller (2000a,b), Priest & Forbes (2000, § 13), Cargill (2001), Schlickeiser (2003),
while there exists a much larger set of observational reviews on particle acceleration
signatures in solar flares, to which we will refer to in the following chapters at the
relevant places.

11.3 Electric DC-Field Acceleration

Particle acceleration in electric fields applied to solar flares can be categorized ac-
cording to (1) the electric field strength (weak sub-Dreicer versus strong super-Dreicer
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Figure 11.2: Schematic of the parallel velocity distribution of electrons and ions in the presence
of an electric field. The bulk of the electron distribution drifts with a velocity vd, but is not
accelerated because the frictional drag force is stronger than the electric field. Above the critical
velocity vr defined by the Dreicer field, the electric force overcomes the frictional force and
electrons can be accelerated freely out of the thermal distribution, in the the so-called runaway
acceleration regime.

fields), (2) the time variability (static versus dynamic electric fields), or (3) the mag-
netic geometry (current sheets, X-points, O-points).

11.3.1 Sub-Dreicer DC Electric Fields

When an electric DC field is applied to a plasma, electrons and ions become ac-
celerated in opposite directions, but the attraction between opposite electric charges
causes an impeding electric drag force or frictional force, which depends strongly
on the ion-collision frequency. However, for large relative velocities the frictional
force can become smaller than the accelerating force, and electrons can be accelerated
freely out of the thermal distribution, which is called the regime of runaway accel-
eration (Fig. 11.2). The critical runaway velocity vr is given by the criterion where
the frictional force equals the electric force eE, where the frictional force can be ex-
pressed by the change of the momentum (mevr) during a collisional slowing-down
time te,i

s = v/ < ∆v‖/∆t > of an electron test particle in an ambient electric field of
ions,

eE =
mevr

te,i
s (vr)

. (11.3.1)

Inserting the expressions for the collisional slowing-down time scale (Dreicer 1959,
1960; for a derivation see, e.g., Benz 1993, § 2 and 9) we obtain the definition of the
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Dreicer electric field (e.g., Holman 1985),

ED =
qi ln Λ
λ2

D

= 2.33×10−8
( ne

109 cm−3

)( Te

107 K

)−1( ln Λ
23.2

)
(statvolt cm−1)

(11.3.2)
where ln Λ is the Coulomb logarithm, λD = vTe/ωpe the Debye length, vTe =
(kBTe/me)1/2 the thermal speed of the electron, and ωpe = (4πnee

2/me)1/2 the
electron plasma frequency. The runaway speed can then be expressed in terms of the
Dreicer field ED (Knoepfel & Spong 1979),

vr = vTe

(
ED

E

)1/2

. (11.3.3)

Runaway acceleration in sub-Dreicer fields has been applied specifically to solar flares
by Kuijpers et al. (1981), Heyvaerts (1981), Spicer (1982), Holman (1985; 1995; 1996),
Tsuneta (1985), Moghaddam−Taaheri & Goertz (1990), Holman & Benka (1992),
Benka & Holman (1992, 1994), Zarro et al. (1995), Zarro & Schwartz (1996a,b),
Kucera et al. (1996), and has been reviewed in Norman & Smith (1978), Benz (1987a),
Miller et al. (1997), and Holman (2000).

Following the model of Holman (1985), the sub-Dreicer electric field is of order
E ≈ 3 × 10−10 (statvolt cm−1), extending over spatial scales of L ≈ 30 Mm, the size
of a typical flare loop. Holman (1985) finds that the energy gain scales with

(W − Wc) = 7.0
(

T

107 K

)1/2 ( νe

10 s−1

)( L

109 cm

)(
vr

vTe

)−2

(keV) (11.3.4)

yielding electron energies of W ≈ 100 keV for an electron temperature of T = 107 K,
a collision frequency of νe ≈ 2 × 103 s−1, a ratio vr/vTe ≈ 4 for the critical runaway
speed vr to the thermal speed vTe, a critical energy Wc = 8 keV, and a length scale of
L ≈ 109 cm. This energy gain is sufficient for the bulk of electrons observed in most
hard X-ray flares, supposing that such large-scale electric fields over distances of L ≈
10 Mm exist. Higher energies could be achieved by assuming anomalous resistivity,
which enhances the value of the effective Dreicer field, and thus the maximum values
of sub-Dreicer electric fields. Regarding the transverse extent of current channels,
Holman (1985) concludes that a fragmentation of about ≈ 104 current channels is
needed, to comply with the maximum magnetic field limit imposed by Ampère’s law.

Thus, in principle, the sub-Dreicer DC electric field model can explain the velocity
distribution of nonthermal particles as observed in hard X-ray spectra, and excellent
spectral fits of the thermal-plus-nonthermal distributions to observed hard X-ray spec-
tra have been obtained with this model (Benka & Holman 1994), as well as for fits
to microwave spectra (Benka & Holman 1992). However, there are a number of open
issues on the spatial geometry, temporal evolution, stability of the invoked DC electric
fields, and the associated magnetic field configuration in the context of suitable flare
models, that have not been satisfactorily addressed in previous studies. The major issue
is that the model requires a large-scale electric field of the size of flare loops. If one
employs a huge Sweet−Parker current sheet (Fig. 11.1, left), a large extent along the
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current sheet is required (L ≈ 109 cm), which is likely to be unstable to tearing mode
and will fragment into many magnetic islands, which coalesce and dissipate in a bursty
reconnection mode (Fig. 11.1, right). Alternatively, if one assumes a large-scale DC
electric field between the coronal reconnection site and chromospheric footpoints, the
energy-dependent timing of electrons accelerated in this DC electric field (§ 12.3) con-
tradicts the observed time-of-flight delays (Aschwanden 1996). A possible way out is
to assume that many parallel strands with different electric fields are produced, which
would produce an energy-dependent timing of precipitating electrons that is consis-
tent with the measured electron time-of-flight delays in hard X-rays (Aschwanden et
al. 1996a), but no model explains how such inhomogeneous large-scale DC electric
fields can be generated in the first place. Moreover, any model with static or steady
electric DC fields faces the problem that the electron beam current require counter-
streaming return currents (Brown & Melrose 1977; Knight & Sturrock 1977; Hoyng
et al. 1978; Spicer & Sudan 1984; Brown & Bingham 1984; LaRosa & Emslie 1989;
Van den Oord 1990; Litvinenko & Somov 1991), which can limit the acceleration ef-
ficiency severely. To solve the problem of return currents in large-scale electric fields,
current closure between adjacent current channels (over distances of a few meters) was
proposed, enabled by the cross-field drift of protons at the chromospheric footpoints
(Emslie & Hénoux 1995).

11.3.2 Super-Dreicer DC Electric Fields

Since weak DC electric fields (such as in the sub-Dreicer regime) require large dis-
tances to accelerate electrons to hard X-ray energies (because the electric potential
energy is simply proportional to the distance (i.e., W ∝ L in Eq. 11.3.4), strong DC
electric fields can produce the same hard X-ray energies over much smaller distances.
This is the primary motivation for exploring particle acceleration in the super-Dreicer
regime. The compactness of the acceleration region is also consistent with the observed
time-of-flight delays (Aschwanden 1996), which show no signs of acceleration delays
for high-energy particles. Applications of electron acceleration in super-Dreicer fields
(E � ED) have been demonstrated by Litvinenko (1996b). He calculated particle or-
bits in standard current sheet geometries (Fig. 11.3, left), but assumed besides the lon-
gitudinal magnetic field B‖ = (0, 0, B‖) and the parallel electric field E = (0, 0, E‖),
also a weaker perpendicular magnetic component, B⊥ = (0, B⊥, 0), which serves to
scatter electrons accelerated along the E-field direction out of the current sheet before
they reach the end of the current sheet (Fig. 11.3, right). The magnetic field inside the
current sheet is thus B = [(−y/∆wy)B0, B⊥, B‖]. In this configuration, the maxi-
mum particle energy W is determined not only by the electric field E‖, but also by the
ratio of the parallel to the perpendicular magnetic field,

W =
B‖
B⊥

e∆wyE‖ , (11.3.5)

with ∆wy the width of the current sheet. The acceleration time is

∆t =

√
B‖
B⊥

2∆wyme

eE‖
. (11.3.6)
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Figure 11.3: Particle orbit in sub-Dreicer electric DC field (left) and super-Dreicer electric DC
field (right). In sub-Dreicer fields, the particle is accelerated the full length of the current sheet
in the z-direction (see, e.g., model by Holman 1985), while it is scattered out of the current
sheet after a short distance in the super-Dreicer field, due to an additional weak perpendicular
magnetic field component (0, By = B⊥, 0) to the longitudinal field (0, 0, Bz = B‖) (see, e.g.,
model by Litvinenko 1996b).

For typical values, B‖ = 100 G, B⊥ = 1 G, E‖ = 10 V cm−1, ∆w = 102 cm,
one obtains electron energies of W ≈ 100 keV. A typical particle orbit for such a
configuration is shown in Fig. 11.3 (right). Essentially the particle spirals around the
guiding magnetic field during acceleration, until the E × B drift scatters it out of the
thin current sheet. The typical acceleration length in the direction of the electric field
is only

∆l = ∆wy

B‖
B⊥

, (11.3.7)

which is about ∆l ≈ 104 cm for the parameters above. Thus, the electric field or
current sheet does not need a large distance as required in sub-Dreicer field acceleration
(L ≈ 109 cm). Therefore, hard X-ray energies can easily be obtained with super-
Dreicer fields in relatively small spatial regions (e.g., in fragmented current sheets or in
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coalescing magnetic islands), as they occur in the bursty reconnection mode (Fig. 11.1,
right; § 10.2.3).

Depending on the relative magnitude of the magnetic field components across (B⊥)
and along (B‖) the current sheet, the motion of the accelerated particles can be regu-
lar (as shown in Fig. 11.3 right) or chaotic (Litvinenko 1995; Somov 2000, § 18), in
particular when the width ∆wy of the current sheet is commensurable with the gyro-
radius of the particle. Acceleration along the singular line (in the z-direction where
E‖ = B‖) can accelerate electrons up to energies of MeV (Litvinenko 2000b). Fur-
ther details of the particle acceleration kinematics in current sheets with super-Dreicer
fields can be found in Martens (1988), Martens & Young (1990), Jardine & Allen
(1996), Litvinenko (1997, 1999c, 2002a,b, 2003a,b), Litvinenko & Somov (1995), and
Somov (1996; 2000, § 18).

11.3.3 Acceleration near Magnetic X-Points

For the magnetic configuration in particle acceleration regions, geometries of the Sweet−
Parker current sheet type (Fig. 10.2, top) have been adopted in the studies of Litvinenko
and Somov. However, since magnetic reconnection occurs at a much faster reconnec-
tion rate in Petschek-type (quadrupolar) configurations (Fig. 10.2 bottom), as required
to explain the fast time structures observed in radio and hard X-rays during flares, it is
of high interest to study particle acceleration near a magnetic X-point.

The behavior of particle orbits near an X-point is distinctly different in the adia-
batic regime (when the gyroradius is much smaller than the magnetic field scale length)
compared with the non-adiabatic regime. In the adiabatic case the particle performs the
regular gyromotion and is accelerated along the electric field that is generally assumed
along the singular line (Neukirch 1996). In the non-adiabatic case, the gyromotion in-
terferes with transits between the unmagnetized central region of the X-point and the
magnetized outer regions (where the plasma β-parameter is less than unity), and leads
to chaotic orbits (Martin 1986; Chen 1992; Hannah et al. 2002). Particle orbits near
magnetic X-points have been studied in the adiabatic regime for a static X-point (Vek-
stein & Browning 1996; Mori et al. 1998; Heerikhuisen et al. 2002), for collapsing
X-points (Sakai & Tajima 1986; Sakai & Ohsawa 1987), for quasi-periodic X-point
collapses (Tajima et al. 1987; Fletcher & Petkaki 1997), and in the adiabatic regime
with chaotic orbits (Moses et al. 1993; Hannah et al. 2002). Examples of numerically
simulated particle orbits near a quadrupolar X-point are shown in Fig. 11.4 [i.e., a reg-
ular orbit in 2D (Fig. 11.4, top right), a chaotic orbit in 2D (Fig. 11.4, bottom left),
and a chaotic orbit in 3D (Fig. 11.4, bottom right), with no electric fields present]. In
the presence of an electric field along the singular line, particles that come close to the
singular line experience the largest amount of acceleration, because the E×B drift that
removes the particles from the accelerating field is minimal near the singular line. This
behavior was also verified by trajectory calculations in analytical field solutions near
2D current sheets, where only particles that encounter the current sheet were found to
achieve significant acceleration (Vekstein & Browning 1996; Heerikhuisen et al. 2002).
The accelerated particles escape along a separatrix line (Hannah et al. 2002). The mag-
netic moment is not conserved for particles that pass through the central unmagnetized
region around the singular X-line (Moses et al. 1993). The energy spectrum of particles
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Figure 11.4: Particle orbits near a (quadrupolar) magnetic X-point (top left): a regular orbit in
2D (top right), a chaotic orbit in 2D (bottom left), and a chaotic orbit in 3D (bottom right). In all
the cases no electric fields are present (Hannah et al. 2002).

accelerated near an X-point is found to have powerlaw functions from N(E) ∝ E−1.3

(Fletcher & Petkaki 1997), N(E) ∝ E−1.5 (Heerikhuisen et al. 2002), N(E) ∝ E−1.7

(Vekstein & Browning 1996), to N(E) ∝ E−2 (Mori et al. 1998), a range that is also
predicted theoretically (Litvinenko 2003a, see Eqs. 27 and 28 therein). Energy spec-
tra of protons accelerated in an X-point characterized by a generalized solution of the
Craig & McClymont (1991) model have been calculated by Hamilton et al. (2003),
finding maximum energies up to the γ-ray regime (> 1 MeV). The acceleration of par-
ticles in X-point geometries has also been verified experimentally in laboratory plasmas
(Brown et al. 2002b).
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Figure 11.5: Test particle orbit near a magnetic O-point in a magnetic island configuration as
shown in Fig. 10.4. The particle is carried into the vicinity of the X line by the E × B drift
(equivalent to the reconnection inflow). There it experiences a ∇B drift acceleration with a
meander component (top right), which leads to the largest acceleration kick (bottom right). The
acceleration continues due to further ∇B drifts in the trapped orbit around the O line. The
symbols mark characteristic points of the orbit. (Kliem 1994).

11.3.4 Acceleration near Magnetic O-Points

An equally important configuration of magnetic nullpoints are magnetic islands, which
naturally form as a consequence of the tearing-mode instability (Furth et al. 1963) (see
Fig. 10.4). The presence of magnetic islands adds an interesting feature to the dynamics
of accelerated particles, namely that it allows for temporary trapping inside the mag-
netic islands, which prolonges the acceleration time and thus requires less demanding
DC electric fields to achieve the same final kinetic energy, compared with electric DC
fields in X-point geometries.

The particle motion for this configuration of two approaching magnetic islands
has been numerically computed in a Fadeev equilibrium (Kliem 1993; 1994; Kliem et
al. 1996; Kliem & Schumacher 1997). Three types of net motion in directions across
the magnetic fields are found: meander orbits at magnetic X and O-lines, the magnetic
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Figure 11.6: Electric field components (arrow heads � and tails ⊗), magnetic field B(x, y)

(solid lines), separatrices (dashed lines), and mass flows (thick arrows, u) in a pair of approaching
magnetic islands (Kliem 1994).

gradient and curvature drift, and the E × B drift. The drift motion in inhomogeneous
magnetic fields near the X-lines can be characterized by a superposition of the gradient-
B drift F∇B and curvature drift FR (Eq. 11.1.8),

v∇ = v∇B + vR =
mc

2q
(v2

⊥ + 2v2
‖)

B×∇B
B3

(11.3.8)

which is exactly parallel to ±E in the 2D field case. The drift and meander orbit of a
test particle is shown in Fig. 11.5, obtained from numeric calculations by Kliem (1994).
It shows a particle that enters the separatrix of a magnetic island and becomes trapped
inside. The particle experiences the largest acceleration kick during the first part of the
orbit after entering the magnetic island near the X-point, and then meanders around
the magnetic O-point in a stable orbit, slowly drifting along the y-axis, dragged by the
∇B and E × B force. The stability of meander orbits essentially traps particles suffi-
ciently long so that they can experience the full energy gain provided by the strength
and extent of the convective electric field near the O-lines. On the other hand, only
particles with a sufficiently high threshold energy (probably requiring a preaccelerated
seed population) enter a meander-like orbit within one characteristic coalescence time,
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but those gain the highest kinetic energies. Also, only particles that come close to an
X-point experience the largest acceleration kick (e.g., Fig. 11.5).

In the bursty reconnection mode (§ 10.2.3), the formation of magnetic islands (by
the tearing-mode instability) and coalescence of neighboring magnetic islands occur in
rapid succession (Pritchett & Wu 1979; Biskamp & Welter 1979; Longcope & Strauss
1994), limiting the acceleration time of a particle trapped in a magnetic island to the
lifetime of a magnetic island (also called coalescence time). The coalescence dynamics
produces additional electric field components that contribute to particle acceleration.
The basic situation is shown in Fig. 11.6 for a pair of approaching magnetic islands.
The plasma motion of the approaching islands also forces an outflow at the intervening
X-point (marked with vector u in Fig. 11.6. This plasma flow produces an extra u×B
Lorentz force, which is called the convective electric field,

Econv = −1
c
u× B (11.3.9)

and for fast reconnection (u ≈ 0.01 − 0.1vA) is typically orders of magnitude larger
than the Dreicer field. The directions of the electric field components at various lo-
cations inside and outside the magnetic islands are indicated in Fig. 11.6 for a pair of
approaching islands. The maximum energy particles can obtain in coalescing magnetic
islands is essentially given by the convective electric field, which is

E ≈ uinflowB0/c ≈ 0.03vA0B0/c ≈ 3 × 103 (V m−1) (11.3.10)

for a main magnetic field of B0 = 200 G and a density of n0 = 1010 cm−3. The half
width of a current sheet lCS was estimated using the minimum critical current jcr for
the onset of anomalous resistivity,

lCS ≈ cB

4πjcr
≈ 7 × 103 cm , (11.3.11)

and the typical acceleration length was numerically found to be of the order of the
magnetic island (or coalescence) length, ≈ LCI (Kliem 1994). The maximum energy
a particle can obtain in such a static, convective electric DC field is then Wmax ≈ 200
keV, which is significantly higher than the particles would gain by the parallel field
(Wmax ≈ eLzE‖ <∼ 20 keV). Acceleration to higher energies would require multiple
magnetic islands or dynamic reconnection.

In summary, while (sub-Dreicer) parallel electric fields could be responsible for
bulk (or pre-)acceleration, the convective electric fields provide a more powerful accel-
eration from the superthermal seed population to higher energies, for a subset of par-
ticles that pass close to an X-line and become trapped inside magnetic islands around
O-lines. We should also not forget that the tearing instability that drives the entire
process of magnetic island coalescence requires anomalous resistivity (e.g., provided
by turbulence from current-driven instabilities at X-lines). Recent work describes the
topology of reconnection in multiple magnetic islands in terms of a fractal structure,
because the iterative processes of tearing, current sheet thinning, and Sweet−Parker
sheet formation are thought to repeat iteratively by cascading down to microscopic
scales, either to the ion Larmor radius or the ion inertial length (Shibata & Tanuma,
2001).



11.3. ELECTRIC DC-FIELD ACCELERATION 481

11.3.5 Acceleration in Time-Varying Electromagnetic Fields

Since a flare is governed by the highly dynamic evolution of magnetic reconnection
processes, every model based on static electric fields must be considered as unrealistic.
Electric DC fields that accelerate particles are likely to be generated by a number of dy-
namic processes (e.g., driven by tearing and coalescence of current sheets, by collapses
and relaxational oscillations of X-points, or by the electromagnetic fields induced by
magneto-acoustic waves or solitons). We describe a few of the physical mechanisms
that may faciliate particle acceleration by time-varying electromagnetic fields during
flares.

Betatron Acceleration

In a laboratory betatron, an oscillating magnetic field induces an AC electric field that
accelerates electrons in a synchronized way during each Larmor orbit (according to
Maxwell’s induction equation, see Eqs. 5.1.3−4), while the electrons spiral to larger
gyroradii and gain energy with each orbit. By analogy, it was proposed that a time-
varying magnetic field in a solar flare loop (e.g., caused by MHD oscillations), could
pump energy into gyrating electrons (Brown & Hoyng 1975). Since the adiabatic mo-
ment µ = mev2

⊥/2B is conserved in a collisionless plasma, a time-varying longitudi-
nal magnetic field B(t) modulates the perpendicular kinetic energy proportionally,

v2
⊥(t)
v2
⊥,0

=
B(t)
B0

. (11.3.12)

So, a particle will gain perpendicular energy when it moves from a lower to a higher
magnetic field location, or when the local magnetic field B(t) increases. If a flare loop
oscillates in a fast sausage mode (§ 7.3), the longitudinal magnetic field would indeed
be modulated, because the magnetic flux Φ over the cross section A(t) is conserved,

Φ = A0B0 = A(t)B(t) . (11.3.13)

In a collisionless plasma, a mirroring trapped electron would just gain and lose perpen-
dicular energy in synchronization with the MHD period, without net energy gain. If
the plasma is slightly collisional or subjected to wave turbulence, however, the perpen-
dicular momentum can be irreversibly transferred to parallel momentum during each
cycle, so that the electron experiences a net gain with each cycle. This process is
called magnetic pumping and could in principle accelerate trapped particles to higher
energies. The application to solar flares was mainly motivated by the observation of
quasi-periodic time structures seen in hard X-rays, which moreover showed a corre-
lated modulation of the slope in the energy spectrum, which can be theoretically ex-
plained in terms of a betatron model (Brown & Hoyng 1975; Brown & McClymont
1976). This theoretically expected correlation, however, was found to hold only dur-
ing the decay phase of the flare, based on the analysis of a larger set of flare events
(Karpen 1982). Moreover, the variation of the hardness of the hard X-ray spectrum
can also be explained by a modulation of the relative ratio of directly precipitating to
trapped-precipitating electrons during an injection cycle, without betatron acceleration.
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Field-Aligned Electric Potential Drops

Acceleration in electric potential drops that are aligned with the magnetic field is a
common acceleration mechanism in astrophysics, believed to operate in auroral arcs of
the Earth’s magnetosphere (e.g., Mozer et al. 1977; Block 1978), in pulsar magneto-
spheres (e.g., Goldreich & Julian 1969), and also occasionally thought to occur in solar
flares (e.g., Colgate 1978; Haerendel 1994; Volwerk 1993; Volwerk & Kuijpers 1994;
Tsuneta 1995c). Electric potential drops can be caused in many ways; by ambipolar
diffusion of electrons and ions, by the difference of the mirroring heights of electrons
and ions (which produces the so-called V-events in the aurora), by shear flows (which
convert magnetic stress energy into kinetic energy), by wave solitons, by double layers,
by shock waves, or return-current electric fields (Karlický 1993). Electric potentials E‖
that are aligned with the magnetic field can accelerate particles directly without being
impeded by the magnetic field, while perpendicular potentials E⊥ would merely cause
an E⊥ × B drift (§ 11.1.2).

While the mechanism of acceleration by field-aligned potential drops is widely
accepted in the magnetospheric community thanks to in situ spacecraft measurements,
the application to solar flares is less clear. There is the concept of electrostatic double
layers, which are small-scale high-intensity electric fields in a current-carrying plasma
or at the boundary of two plasmas with different characteristics (e.g., temperature,
density, or chemical composition; Volwerk 1993). A solar flare cannot be modeled by a
single large double layer, because its generation would require enormously high current
densities, such that the drift velocity of the current-carrying particles is well above
the thermal velocity (Volwerk 1993). Therefore, concepts with many small double
layers or highly filamented current channels have to be envisioned. Holman (1985)
and Emslie & Hénoux (1995) proposed a flare system with many oppositely directed
current channels, but there is no physical mechanism known that generates them in the
first place. Moreover, strong double layers are highly unstable and are estimated to
have lifetimes of the order of milliseconds only (Volwerk & Kuijpers 1994).

A more specific scenario for particle acceleration by field-aligned potential drops in
solar flares has been proposed by Haerendel (1994). Coronal magnetic field reconfig-
urations during a flare are thought to generate Alfvén waves which propagate towards
the chromosphere and set up a parallel electric potential drop when they are reflected
and dissipated in the chromosphere, generating supercritical field-aligned currents in
the chromosphere that can accelerate particles to high energies. The maximum energy
that can be obtained in such a scenario is estimated to be

Φ‖ = 5 MV ×
(

BChr

1000 G

)(
∆B⊥,Cor

100 G

)2

, (11.3.14)

which provides gamma-ray emitting electrons with energies of up to ≈60 MV, as ob-
served. These megaVolt field-aligned potential drops, however, are very short-lived
(essentially the dissipation time of the reflected Alfvén waves at the top of the chro-
mosphere), so acceleration is highly transient and the launch of many coronal Alfvén
waves are required. The advantages of the model are: (1) that it produces instantaneous
acceleration to gamma-ray energies, without requiring a preacceleration mechanism to
a threshold energy (as it is needed in some other acceleration models); and (2) that the
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proximity of the acceleration site to the chromosphere ameliorates the electron number
problem far better than any other model with a coronal acceleration site. However, the
proximity of the acceleration site to the chromosphere seems to contradict the observed
electron time-of-flight delays, which require an acceleration site high up in the corona
above the soft X-ray flare loops (Aschwanden et al. 1996a,b,c).

There are a number of flare models based on dissipation of electric currents in flare
loops, sometimes conceived as an LRC electric circuit (Alfvén & Carlqvist 1967; Car-
lqvist 1969; Spicer 1977b, 1981; Colgate 1978; Zaitsev et al. 1998, 2000). By analogy
to oscillations in an LRC circuit, oscillating magnetic fields [Bz(t), Bϕ(t)] and as-
sociated electric currents [jz(t), jϕ(t)] are thought to modulate field-aligned electric
fields that produce quasi-periodic bunches of accelerated electrons (Zaitsev et al. 1998,
2000). However, such closed-loop flare models ignore magnetic reconnection pro-
cesses and electron time-of-flight measurements, which both suggest an acceleration
site above the flare loops.

A field-aligned potential drop scenario that is more in line with the magnetic recon-
nection scenario suggested by the Yohkoh/SXT and HXT observations and the electron
time-of-flight measurements measured with CGRO/BATSE, is the model of Tsuneta
(1995c). The fast reconnection outflows from the cusp in a downward direction are
heading towards the underlying flare loops that have already been filled by the chro-
mospheric evaporation process. These downflows collide with the loop and stream at
the outer surface towards the chromosphere, generating strong shear flows at the inter-
face with the soft X-ray emitting flare loops. In this process they generate small-scale
time-varying shear flows (vortices), which create oppositely directed field-aligned cur-
rent channels and associated voltage drops of the order ≈ 100 keV. These field-aligned
potential drops can then accelerate electrons (in the runaway regime) to hard X-ray
energies. Since acceleration is localized near the top of the soft X-ray flare loops it is
consistent with the electron time-of-flight measurements.

Coalescence and X-Point Collapse

The dynamics of accelerating electric fields has been studied for the case of two co-
alescing current-carrying loops during an explosive magnetic reconnection process in
great detail by Tajima & Sakai (1986), Sakai & Tajima (1986), Tajima et al. (1987),
Sakai & Ohsawa (1987), and Sakai & DeJager (1991). For the initial configuration of
the current sheet they assume a 2D geometry with width wy and length lx (as illustrated
in Figs. 11.1 and 11.3). The reconnection process is driven by the lateral inflow vy , pro-
ducing a reconnection outflow vx with the local Alfvén velocity, vx = vA ≈ Bx/

√
ne,

which are related to the geometric dimensions of the current sheet by the mass conser-
vation law (in an incompressible plasma),

lxvy = wyvx . (11.3.15)

If the lateral magnetic influx, vyBx, is constant, the reconnection rate would be just
the Sweet−Parker reconnection rate in the case of long current sheets, lx � wy , or the
Petschek reconnection rate, in the case of X-type short current sheets (lx ≈ wy). The
essential feature of nonsteady reconnection processes is the dynamics of the driver. In
the treatment of Sakai & Ohsawa (1987) it is assumed that the lateral magnetic influx
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Figure 11.7: The dynamic evolution during a magnetic current loop collapse. (a) The effective
potential describing the magnetic collapse. The schematic pattern of the nonlinear oscillations
after the explosive phase for (b) the magnetic energy B2 ≈ B2

y , (c) the electric field EL ≈ E2
x,

and (d) the ion temperature Tiz . The oscillation period is of the order of the explosion time t0
(Tajima et al. 1987).

increases explosively (defined by a time-dependence∝ (t− t0)p with a negative power
p, so that a singularity, speak explosion, occurs at time t = t0),

vy(t) ∝ − y

(t − t0)
, (11.3.16)

dynamically driving the dimensions of the current sheet as

wy(t) ∝ wy0η(t0 − t) , (11.3.17)

lx(t) ∝ lx0η(t0 − t)2 . (11.3.18)

Once the time t approaches t0, the length of the current sheet lx(t) decreases faster than
the width wy(t), so that the Sweet−Parker current sheet (lx � wy) makes a transition
to a Petschek type (lx ≈ wy). The associated change in magnetic flux, ∆Φ(t), then
becomes explosive,

∆Φ(t) ∝ ∆Φ0(t0 − t)−4/3 (11.3.19)
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Figure 11.8: The evolution of the electric field in the main X-points is shown in a numerical
simulation of the bursty reconnection mode (see also Fig. 10.8) (Kliem et al. 2000).

which evolves into a very rapid reconnection rate, independent of the plasma resistivity
η. The associated electric and magnetic field components show the following nonlinear
time dependencies,

Ey(t) ∝ − y

(t0 − t)2
, (11.3.20)

Bx(t) ∝ x

(t0 − t)4/3
, (11.3.21)

Ez(t) ∝ c1
x2

(t0 − t)7/3
+ c2

1
(t0 − t)5/3

, (11.3.22)

producing complicated particle orbits that require numerical computations. Sakai &
Ohsawa (1987) calculate the evolution of this dynamic reconnection process with ana-
lytical approximations, as well as by performing numerical simulations, using the stan-
dard MHD equations for a two-fluid (electrons and ions) plasma. They found a variety
of dynamical evolutions: (1) explosive collapse, (2) nonlinear oscillations between
magnetic collapses and recoveries, and (3) double-peak structures during nonlinear
oscillations (Fig. 11.7), depending on the particular value of the plasma-β parameter
β = c2

s/v2
A. Oscillatory evolutions result from the counteracting forces of the j × B-

term, which drives the magnetic collapse, and the pressure gradient term ∇p inside the
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current sheet (Sakai & Ohsawa 1987; Litvinenko 2003b). These theoretical results are
supported by two particular flare observations, which showed indeed quasi-periodic
sequences of double-peak structures (i.e., 1980-Jun-7, and 1982-Nov-26; Sakai & Oh-
sawa 1987). Since the high-resolution observations of TRACE show a high degree of
spatially-fragmented loop arcades, we think that most of the (generally aperiodic) fast
hard X-ray time structures result from spatially-separated magnetic collapses, rather
than from a quasi-periodic oscillation of a single collapse region. Also, multiple, spa-
tially separated magnetic collapses ease the number problem of accelerated particles
considerably, compared with the operation of a single collapse region which has to
be driven by a fast inflow to constantly replenish particles. Nevertheless, the work of
Sakai & Ohsawa (1987) yields valuable quantitative physical insights into the nonlin-
ear evolution of the 3D electric and magnetic field components that accelerate electrons
and ions in a collapsing current sheet.

More advanced work that includes multiple magnetic collapses in a magnetic re-
connection region has been performed by Karpen et al. (1998) and Kliem et al. (2000),
dubbed the “bursty reconnection regime” (§ 10.2.3). Numerical simulations show
highly time-varying currents and electric field components in the X-point regions (Fig.
11.8), which produce quasi-periodic pulses of accelerated particles, probably detected
during broadband decimetric pulsations in radio wavelengths (Kliem et al. 2000). Par-
ticle acceleration is expected to be more efficient in a scenario with multiple X-point
reconnection processes, because the particles stay trapped longer in the meander-like
orbits around the O-points (Ambrosiano et al. 1988; Kliem 1994; Kliem et al. 1996),
and thus are exposed longer to the accelerating fields, opposed to single X-point con-
figurations, where they can escape quickly. Kliem et al. (2000) scaled the physical
parameters of the numerical MHD simulation to solar conditions to estimate the accel-
eration time scales of radio-emitting electrons. The time intervals between subsequent
peaks in the reconnection rate were found to be tR ≈ 200τA ≈ 13δx/vA using an av-
erage distance of δx ≈ 15 lCS between neighboring X-points, where lCS is the current
sheet half width. Translating this time scale tR ≈ 13δx/vA to solar flare conditions
(n0 = 1010 cm−3, T0 = (2.5 − 9) × 106 K, B0 = 70 G), and estimating δx from the

mean free path length λmfp (which implies tR ≈ n
−1/2
0 T 2

0 B−1
0 ), they found typical

time intervals of tR = 0.4− 4 s between subsequent radio bursts. This quantitative ex-
ample demonstrates that tearing and coalescence in the bursty magnetic reconnection
mode can modulate particle acceleration on time scales that are observed in radio and
hard X-rays.

11.4 Stochastic Acceleration

While the source of energy is an external DC electric field in the previously described
particle acceleration mechanisms, we turn now to AC fields of waves as an external
energy source, which can transfer energy to particles, in particular for wave frequen-
cies that are in resonance with the gyrofrequencies of the particles. Since there is
generally a broadband spectrum of waves present in real nature, some waves will have
constructive interference and others destructive interference with the gyromotion of
the particles, so that the energy transfer between waves and particles is a stochastic
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process. Some parts of the velocity distribution of particles, however, experience a
net gain of energy transfer, at the expense of resonant wave energies, which we call
stochastic acceleration. The governing theory of wave-particle interactions in a mag-
netized plasma can describe both (1) the coherent growth of waves by absorption of
free energy from unstable particle distributions, and (2) the stochastic acceleration pro-
cess for particles that are resonant with parts of the wave spectrum. This theory of
wave-particle interactions and quasi-linear diffusion is covered most rigorously in the
textbook of Melrose (1980a,b), and in more concise form in Benz (1993), Sturrock
(1994), or Somov (2000).

11.4.1 Gyroresonant Wave-Particle Interactions

We outline the theory of wave-particle interactions to some degree so that the reader
becomes aware of what basic physics is involved, while the full derivation is referred
to the literature, which is rather extensive because of the rich variety of possible wave
modes in a magnetized plasma and its wave dispersion relations.

The general starting point in the theory of wave-particle interactions is a coupled
pair of rate equations, which describe the changes of the wave photon spectrum N(k, t)
due to interactions with particles, and vice versa the changes in the particle distribution
function f(p, t) due to interactions with waves,

∂N(k)
∂t

+ vg(k)
∂N(k)

∂r
= Γ(k, f [p])N(k) − Γcoll(k)N(k) , (11.4.1)

∂f(p)
∂t

+v(p)
∂f(p)

∂r
=

∂

∂pj

[
D̂ij(N [k])

∂f(p)
∂pi

]
+
(

∂f(p)
∂t

)
Source

+
(

∂f(p)
∂t

)
Loss

,

(11.4.2)
where N(k) = W (k)/h̄ω represents the occupation number of photons in the wave
energy range W (k) in k-space, vg = ∂ω(k)/∂k is the group velocity of emitted
waves, Γ(k, f [p]) the wave amplification growth rate, Γcoll(k) the wave damping rate
due to collisions, f(p) the particle density distribution in momentum p space, v(p) =
p/m is the particle velocity, D̂ij(N [k]) the diffusion tensor, and the last two terms in
Eq. (11.4.2) represent source and loss terms of particles. The coupling between these
two rate equations resides in the wave growth rate Γ(k, f [p]) which depends on the
particle distribution function f(p), and vice versa in the diffusion tensor D̂ij(N [k])
that depends on the wave spectrum N(k).

In principle, the evolution of the particle distribution function f(p, t) and wave
photon spectrum N(k, t) can only be described self-consistently by a simultaneous
solution of the coupled rate equations (11.4.1−2). The solution for the wave photon
spectrum provides information on the coherent growth of waves that are driven by
particular shapes of unstable particle distribution functions and are detectable in ra-
dio wavelengths (e.g., plasma emission that is generated by electron beam distribution
functions, or electron-cyclotron maser emission that is driven by losscone distribution
functions, see § 15). In the context of stochastic particle acceleration, the evolution
of the wave spectrum is generally neglected (Eq. 11.4.1), and an isolated homoge-
neous volume is considered without particle sources or losses, so that the change in the
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particle distribution function is only controlled by the quasi-linear diffusion term (in
Eq. 11.4.2), which characterizes the diffusion of wave-resonant particles in momentum
space,

∂f(p)
∂t

=
∂

∂pj

[
D̂ij(N [k])

∂f(p)
∂pi

]
, (11.4.3)

where the diffusion tensor includes transitions of the photon distribution N(k) from
momentum (h̄ki) to (h̄kj ), integrated over the entire wave vector space d3k,

Dij(p) =
∫

dk3

(2π)3
wσ(p,k)Nσ(k)(h̄ki)(h̄kj) , (11.4.4)

where wσ(p,k) denotes the transition probability for a specific magneto-ionic mode
σ,

wσ(p,k, s) =
1
h̄

[
A(σ)

s (p,k) δ

(
ω − sΩ

γ
− k‖v‖

)]
, (11.4.5)

which can be expressed in terms of an anisotropy factor A
(σ)
s and a resonance condi-

tion,

ω − sΩ
γ

− k‖v‖ = 0 . (11.4.6)

The so-called Doppler resonance condition is the most decisive term for resonant par-
ticle acceleration. It essentially expresses the resonance of the wave vector with the
gyromotion of the particle, which simply is ω = sΩ for the harmonics s in the non-
relativistic limit. The additional corrections are for the relativistic gyrofrequency Ω/γ,
and for Doppler motion of the propagating particles, which shifts the gyrofrequency
to sΩ/γ + k‖v‖. The cases with positive harmonic number (s > 0) are called nor-
mal Doppler resonance, the cases with negative harmonic number (s < 0) anomalous
Doppler resonance, and the degenerate case with s = 0 is referred to as Landau damp-
ing or Cerenkov resonance.

For the calculation of the anisotropy factor A
(σ)
s in Eq. (11.4.5), which is a measure

of the “coupling strength” in the (gyroresonant) wave-particle interaction, we have to
consider the gyromagnetic emission that is radiated by particles due to their spiralling
motion in a magnetic field. The situation is sketched in Fig. 11.9, where a gyrating par-
ticle is shown, that rotates with the gyrofrequency Ω around the guiding magnetic field
B0 and interacts with an electromagnetic wave vector k, which has AC components E1

and B1 rotating with the wave frequency ω around the wave vector direction k. The
spiral motion of the gyrating particle can then be expressed by the spatial vector rg(t),

rq(t) = r0 +
(
R sin[φ0 + Ωt],±R cos[φ0 + Ωt], v‖t

)
, (11.4.7)

with gyroradius R, gyrofrequency Ω, and the sign ± of the electric charge. A spiralling
charge causes a current density,

j(r, t) = q v(t) δ(r − rq[t]) . (11.4.8)

The relative orientation of the wave vector k is characterized by the angle θ to the
direction of the magnetic field B0 and the phase angle ψ(t) (in azimuthal direction
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Magnetic field B0

r(t) Particle phase angle

Φ(t)=Φ0+Ωt
Particle current
j=q v

k(t)
Wave phase angle
Ψ(t)=Ψ0+ωt

θ

Figure 11.9: The wave-particle interaction between a wave with a propagation vector k(t) and
a wave frequency ω, which has an angle θ to the magnetic field direction B0, with a particle
gyrating at position r(t) with gyrofrequency Ω around the guiding field B0. The (azimuthal)
phase angle of the wave vector is Ψ(t) and of the particle is Φ(t).

around the wave propagation vector k),

k(t) = k(sin θ cosψ(t), sin θ sin ψ(t), cos θ) . (11.4.9)

The resulting current density j(r, t) can then be expressed by the Fourier transform
j(k, ω),

j(k, ω) = q

∫
dt

∫
d3r exp[−i(k · r − ωt)] v(t) δ3(r − rq[t])

= q

∫
dt rq(t) exp[−i(k · rq − ωt)] . (11.4.10)

This current density j(k, ω) can be evaluated by first expanding into Bessel functions
(Melrose 1980a), yielding the expression

j(k, ω) = 2πq exp(−ik · r0)
∞∑

s=−∞
exp[−is(φ0 ± ψ)]V(s,p,k) δ(ω − sΩ

γ
− k‖v‖) ,

(11.4.11)
where the velocity quantity V(s,p,k) for random phase approximation (by choosing
r0 = 0, φ0 = 0, and ψ = 0) is expressed by the Bessel function Js(z) and its derivative
J ′

s(z), with the Bessel argument z = k⊥R,

V(s,p,k) =
[
v⊥

s

z
Js(z),±(−i)v⊥J ′

s(z), v‖Js(z)
]

. (11.4.12)

From the current density j(k, ω) we find an implicit solution of the electric field by in-
serting the conductivity tensor σij (which can be computed from the dispersion relation
for cold plasma),

jind
i (k, ω) = σij(k, ω)Ej(k, ω) . (11.4.13)
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From this electric field the radiated power Uσ(k) in k-space (or emissivity) can be
derived using the power theorem of the Fourier transform,

Uσ(k) =
∫

dt

∫
d3r [jext(r, t)E(r, t)] . (11.4.14)

On the other hand, the radiated power in the quantum-mechanical description is

P (k) = lim
τ �→∞

1
τ

Uσ(k) = (h̄ω) wσ(k,p) = ω A(σ)
s (p,k) δ

(
ω − sΩ

γ
− k‖v‖

)
.

(11.4.15)
The steps of Eqs. (11.4.7−15) outline the formal derivation of the anisotropy factor
A

(σ)
s (k,p) specified in Eq. (11.4.5). A more detailed derivation can be found in Mel-

rose (1980a, p. 98−112; 1980b, p. 256−280), which leads to the following expression
for the anisotropy factor (used with the same parameterization in Melrose & Dulk 1982;
Aschwanden 1990a),

A(σ)
s (p, k) =

4π2e2c2β2
⊥

ωnσ
d(ωnσ)

dω (1 + T 2
σ)

[
Kσ sin θ + (cos θ − nσβ‖)Tσ

nσβ⊥ sin θ
Js(z) + J ′

s(z)
]2

,

(11.4.16)
where the argument of the Bessel function is z = (ω/Ωe)nσβ⊥ sin θ. The waves
are described by their refractive index nσ, the longitudinal part of their polarization
is Kσ, and the axial ratio of their polarization ellipse is Tσ. The dispersion relation
for electromagnetic waves in a cold plasma can be parameterized by (Melrose 1980b,
p. 256−263),

k(ω) =
ω

c
nσ(ω, θ) , (11.4.17)

n2
σ = 1 − XTσ

Tσ − Y cos θ
, (11.4.18)

Kσ =
XY sin θ

1 − X

Tσ

Tσ − Y cos θ
, (11.4.19)

Tσ = −σ(x2 + 1)1/2 − x , (11.4.20)

x =
Y sin2 θ

2(1 − X) cos θ
, (11.4.21)

X =
ω2

p

ω2
, (11.4.22)

Y =
Ωe

ω
. (11.4.23)

The equations 11.4.16−23 fully define the anisotropy factor A
(σ)
s for a specific magneto-

ionic mode (σ = 1 for the ordinary mode [O-mode] and σ = −1 for the extraordinary
mode [X-mode]), harmonic number s of the gyrofrequency, wave vector k = (k, θ)
and particle momentum p = mc(β‖, β⊥), which is required for the calculation of the
transition probability specified in Eq. (11.4.5).
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The next step in the calculation of the quasi-linear diffusion coefficient (Eq. 11.4.4)
is the integration over the entire wave vector space d3k,

d3k = (2πk2 sin θ) dk dθ =
2πω2n2

σ sin θ

c3

d(ωnσ)
dω

dω dθ , (11.4.24)

which involves the resonance condition (Eq. 11.4.6). This resonance condition spec-
ifies a particular subset of wave vectors k = (k, θ) for every particle momentum
p = mc(β‖, β⊥). The mathematical nature of the resonance condition can be de-
rived by inserting k‖ = k(ω) cos θ and the dispersion relation k(ω) (Eqs.11.4.17−23),

the relativistic Lorentz factor γ = 1/
√

1 − β2, and the parallel velocity v‖ = v cosα.
The simplest parameterization is to choose the wave vector parameters (ω, θ) as inde-
pendent parameters, which leads to ellipse solutions for the resonant particles, called
resonance ellipses (Melrose & Dulk 1982). This means that the subset of resonant
particles that fulfil the Doppler resonance condition (Eq. 11.4.6) have the following
velocity components that can be characterized by an ellipse in velocity space,

β‖ = v0 − V
√

1 − e2 cosΨ , (11.4.25)

β⊥ = V sin Ψ , (11.4.26)

which has the center at velocity v0 (on the axis in the direction of the magnetic field),
the eccentricity e, and the semi-major axis V (Melrose & Dulk 1982; Aschwanden
1990a),

v0 =
e2

nσ cos θ
. (11.4.27)

e =

[
1 +
(

sY

nσ cos θ

)2
]−1/2

, (11.4.28)

V =

[
1 −
(

sY

nσ cos θ

)2
]1/2

. (11.4.29)

Examples of resonance ellipses are shown in Fig. 11.10, for subsets of particles that are
resonant with wave vectors k = (ω, θ) near the gyrofrequency ω/Ωe = 1.01 − 1.04
and emission angles θ = 68◦ − 77◦. The mathematical solutions of resonance ellipses
implies that quasi-linear diffusion coefficients (Eq. 11.4.4) have to be calculated by
integrating the anisotropy factors A

(σ)
s along these resonance ellipses, summing over

all wave vectors k = (ω, θ).
In order to perform the calculation of the diffusion coefficients we have also to

express the integral equation (Eq. 11.4.4) in spherical coordinates. Following the semi-
classical treatment of Melrose (1980a, p. 151), the emission (or absorption) of a photon
with the quantum-mechanical energy,

ε = h̄ω , (11.4.30)
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Figure 11.10: A set of resonance ellipses in velocity space (β‖, β⊥) for particles that fulfill
the Doppler gyroresonance condition with electromagnetic waves near the gyrofrequency. The
subset of electromagnetic waves is specified by the frequency ω/Ωe = 1.01−1.04 and emission
angles θ = 68◦ − 77◦ to the guiding magnetic field. Particles can only resonate with the
fundamental (s = 1) magneto-ionic ordinary and extraordinary mode above the frequency cutoff
ω/Ωe

>∼ 1.01, which excludes thermal or suprathermal particles with subrelativistic speeds of
β‖ <∼ 0.15. Thus, stochastic acceleration by gyroresonant wave particle interactions requires a
minimum energy threshold of ε >∼ 10 keV for these magneto-ionic modes (Aschwanden 1990a).

causes a momentum change in the resonant particle, which is most usefully split into a
parallel and perpendicular component to the magnetic field, (∆p‖, ∆p⊥), because the
perpendicular component entails the momentum of the gyromotion,

∆p‖ = h̄∆k‖ = h̄k‖ , (11.4.31)

∆p⊥ = h̄∆k⊥ = h̄

(
sΩe

γv⊥

)
. (11.4.32)

Because of the gyromotion it is most useful to employ spherical polar coordinates
(p, α, Φ), where p represents the particle momentum and α the pitch angle, while the
azimuthal phase Φ can be neglected in the random-phase approximation. The changes
in momentum (Eqs. 11.4.31−32) for gyromagnetic emission in spherical coordinates
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are then

(∆p) =
(

h̄ω

v

)
, (11.4.33)

(p∆α) =
(

h̄ω

v

)(
cosα − k‖v/ω

sin α

)
, (11.4.34)

and the four components of the diffusion tensor (Eq. 11.4.4) can be expressed as⎛
⎝ Dαα

Dαp = Dpα

Dpp

⎞
⎠ =

∫
dk3

(2π)3
wσ(p,k) Nσ(k)

⎛
⎝ (p∆α)2

(p∆α)(∆p)
(∆p)2

⎞
⎠ , (11.4.35)

and the diffusion equation (11.4.3) reads in spherical coordinates

∂f(p, α)
∂t

=
1

sin α

∂

∂α

[
sin α

p2

(
Dαα + pDαp

∂

∂p

)
f(p, α)

]

+
1
p2

∂

∂p

[
p

(
Dpα

∂

∂α
+ pDpp

∂

∂p

)
f(p, α)

]
(11.4.36)

Now we have the analytical tool to calculate stochastic acceleration of an arbitrary
particle distribution function f(α, β) for a specific magneto-ionic wave mode (σ, s),
which can include electromagnetic waves (O, X-waves), Langmuir waves, or their low-
frequency counterparts (L, R-waves, and whistler waves). An overview of the most
common wave modes in the cold plasma approximation is given in Fig. 11.11, and a
summary of the corresponding dispersion relations of electrostatic and electromagnetic
waves is given in Table 11.2. For typical coronal conditions, the order of the collision
frequency ωcoll, plasma frequencies ωp, and gyrofrequencies Ω for electrons (e) and
ions (i) is: ωcoll < Ωi < ωi

p < Ωe < ωe
p, as shown in Fig. 11.11. This diagram

illustrates which waves can resonate with the gyrofrequencies of particles. Derivations
of the wave dispersion relations (Eqs. 11.4.17−23) can be found in many textbooks
on plasma physics (e.g., Chen 1974; Schmidt 1979; Priest 1982; Benz 1993; Sturrock
1994; Baumjohann & Treumann 1997; Boyd & Sanderson 2003).

11.4.2 Stochastic Acceleration of Electrons

A glance at the dispersion relations in Fig. 11.11 immediately shows which waves are
important for stochastic acceleration of electrons and ions: essentially, Alfvén waves,
magneto-sonic waves, and ion-sound waves can resonate with the gyrofrequency of
ions, while whistler waves, Langmuir waves, and electromagnetic waves can resonate
with the (fundamental or harmonic) gyrofrequency of electrons. Stochastic accelera-
tion of electrons is reviewed in Miller et al. (1997, § 3.1.1).

Whistler waves, which have frequencies in the range of ΩH � ω <∼ Ωe, can fulfill
the Doppler resonance condition (Eq. 11.4.6) with electrons, and thus can accelerate
electrons up to relativistic energies (Melrose 1974; Miller & Ramaty 1987). For the
(unknown) wave spectrum it is generally assumed that wave turbulence is isotropic and
that the spectral energy density is a powerlaw,

W (k) =
(q − 1)

k0

(
k0

k

)q

Wtot , Wtot =
∫ ∞

k0

W (k)dk , (11.4.37)
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Figure 11.11: Overview of wave modes in cold plasma playing a role in stochastic wave-
resonant particle acceleration. Ions can resonate with low-frequency waves, while electrons
resonate mostly with high-frequency waves. Indicated are the frequency regimes separated by the
collision frequency ωcoll, the ion gyrofrequency Ωi, the ion plasma frequency ωi

p, the electron
gyrofrequency Ωe, and the electron plasma frequency ωe

p. L and R are left and right-hand
circular polarized low-frequency electromagnetic waves, and O and X are the ordinary and
extraordinary mode of the high-frequency electromagnetic waves.

where the lower wave vector threshold for whistler waves is kW
0 = kth = Ωp/cβA

(Hamilton & Petrosian 1992). For the choice of the powerlaw index, either Kol-
mogorov spectra (with slope −5/3 = −1.67) or Kraichnan spectra are used (with
slope −3/2 = −1.50),

W (k) ∝

⎧⎪⎨
⎪⎩
(

k
k0

)−5/3

, (Kolmogorov)(
k
k0

)−3/2

. (Kraichnan)
(11.4.38)

In the Kolmogorov treatment, the spectral energy transfer time at a particular wave-
length is the turbulence eddy turnover time λ/δv, where δv is the velocity fluctuation
of the wave, while the transfer time is longer by a factor of vA/δv in the Kraichnan
treatment (Zhou & Matthaeus 1990; Miller et al. 1996). Stochastic acceleration of
test particles in turbulent MHD plasmas have been demonstrated by Ambrosiano et
al. (1988) and Kobak & Ostrowski (2000).

Numerical simulations of stochastic acceleration of electrons by whistler waves,
using the turbulence wave spectra specified in Eqs. (11.4.37−38) and computing the
quasi-linear diffusion coefficients (Eqs. 11.4.36), have been performed by Hamilton
& Petrosian (1992), Miller et al. (1996), Park et al. (1997), and Pryadko & Petrosian
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Table 11.2: Summary of dispersion relations of elementary waves for parallel and perpendicular
directions in cold plasma (Chen 1974).

Wave direction Dispersion relation wave mode
Electron waves (electrostatic)
B0 = 0 or k ‖ B0 ω2 = ω2

p + 3
2
k2v2

th Langmuir waves (P)
(Plasma oscillations)

k ⊥ B0 ω2 = ω2
p + ω2

c Upper hybrid waves
Ion waves (electrostatic)
B0 = 0 or k ‖ B0 ω2 = k2v2

s Ion sound waves
ω2 = k2

(
γekBTe+γikBTi

M

)
(Acoustic waves)

k ⊥ B0 ω2 = Ω2
p + k2v2

s Electrostatic ion
cyclotron waves

ω2 = ω2
l = Ωcωc Lower hybrid waves

Electron waves (electromagnetic)
B0 = 0 ω2 = ω2

p + k2c2 Light waves

k ⊥ B0, E1 ‖ B0
c2k2

ω2 = 1 − ω2
p

ω2 Ordinary waves (O)

k ⊥ B0, E1 ⊥ B0
c2k2

ω2 = 1 − ω2
p

ω2
ω2−ω2

p

ω2−ω2
h

Extraordinary waves (X)

k ‖ B0
c2k2

ω2 = 1 − ω2
p/ω2

1−ω2
c/ω2 Right hand waves (R)

(whistler mode)
c2k2

ω2 = 1 − ω2
p/ω2

1+ω2
c/ω2 Left hand waves (L)

Ion waves (electromagnetic)
B0 = 0 none
k ‖ B0 ω2 = k2v2

A Alfvén waves

k ⊥ B0
ω2

k2 = c2
(

v2
s+v2

A

c2+v2
A

)
Magneto-sonic waves

(1997), yielding nonthermal tails in the electron spectrum above energies of ≈ 10 keV,
as observed in hard X-ray flares. Hamilton & Petrosian (1992) find that fits to observed
hard X-ray spectra require loop lengths of L ≈ 100 Mm, magnetic fields of B ≈ 100
G, and densities of n > 3.6 × 1010 cm−3 for this acceleration mechanism, and that
the acceleration times are less than 1 s for these parameters. To make sure that the
pitch angle scattering rate by whistler waves is significantly larger than the collision
rate in these high-density flare loops, a prerequisite for stochastic acceleration, a colli-
sion term has additionally to be included in the diffusion equation (Eq. 11.4.36), which
then corresponds to a Fokker−Planck-type equation (Hamilton et al. 1990; Hamilton
& Petrosian 1992; Park & Petrosian 1995, 1996). Further simulations by Steinacker
& Miller (1992) demonstrated that acceleration times of the order of seconds could
be reproduced if the whistler turbulence energy density was about 10% of the mag-
netic field energy density, and that acceleration to gamma-ray energies could occur
by also including the lower frequency waves. Further studies on ion acceleration and
abundance enhancements were pursued by Steinacker et al. (1993) and Miller & Viñas
(1993).
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Figure 11.12: Electron energy spectrum N(E) (left) and wave spectral densities WT (right)
resulting from cascading and transit time damping of fast-mode waves. The waves were injected
at a wavelength of ≈ 107 cm, at a rate of about 19 ergs cm−3 s−1, and over a time of 0.6 s.
The ambient electron density was 1010 cm−3. (a) and (b) Evolution from t = 4 × 105TH to
5 × 105TH . N and WT are shown at times tn = (4 × 105 + 104n)TH , for n = 0 − 10.
(c) and (d) Evolution form t = 106TH to 3 × 106TH . N and WT are shown at times tn =

(106 + 2 × 105n)TH , for n = 0 − 10. Here TH = Ω−1
H ≈ 2.1 × 10−7 s and UB = B2

0/8π is
the ambient magnetic field energy density (Miller et al. 1996).

A remaining question is how electrons are first accelerated from their thermal dis-
tribution (T ≈ 1 − 10 MK, i.e. E ≈ 0.04 − 0.4 keV) to mildly relativistic energies.
Because gyroresonant stochastic acceleration seems not to be efficient for such small
energies, the Landau or Cerenkov resonance (s = 0) was considered (i.e., ω = k‖v‖ in
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Eq. 11.4.6), using the compressive magnetic field component of (magneto-sonic) fast-
mode waves. The resonance condition can be written as v‖ =vA/η, where η = k‖/k,
which shows that magneto-sonic waves (which have similar speeds as Alfvén waves,
i.e., vA ≈ 1000 km/s), can resonate with thermal electron speeds. This process is
the magnetic equivalent of Landau damping and is called transit-time damping (Lee
& Völk, 1975; Fisk 1976; Achterberg 1979; Stix 1992), because the transit time of a
particle across a wavelength is equal to the period of the wave. The only drawback of
this mechanism is that electrons are only accelerated in the parallel direction, so that
a highly beamed distribution would result (v‖ �v⊥ ≈vth), and thus some additional
(unknown) pitch angle scattering is required (Miller 1997) to transfer momentum to
the perpendicular component (v⊥ ≈v‖). Miller et al. (1996) have conducted numeri-
cal simulations of transit-time damping, starting from an MHD-turbulent cascade wave
spectrum, and could demonstrate electron acceleration out of the thermal distribution
up to relativistic energies during subsecond time intervals (see example in Fig. 11.12).

While electron transit-time damping represents a stochastic acceleration process
that works for weak turbulence, the strong-turbulence case with large amplitudes of
MHD waves (δB/B ≈ 1) corresponds to the classic Fermi mechanism (Fermi, 1949)
of collisions between electrons and magnetic scattering centers, which was also applied
to solar flares (Ramaty 1979; LaRosa & Moore 1993).

Stochastic acceleration of electrons by high-frequency waves (ω ≥ Ωe, i.e., plasma
waves, ordinary, and extraordinary electromagnetic waves, see Fig. 11.11), have also
been examined for waves propagating obliquely to the magnetic field (k ⊥ B0), but
only a small fractions of ambient electrons (< 10−3) were energized, which could
be sufficient for electron beams detected as radio type III bursts rather than the pre-
cipitating electrons detected in hard X-rays (Sprangle & Vlahos 1983; Karimabadi et
al. 1987).

11.4.3 Stochastic Acceleration of Ions

For low-frequency waves, when the wave frequency is much smaller than the ion gy-
rofrequency, with ω � ΩH , the Doppler resonance condition (Eq. 11.4.6) simplifies
to ΩH ≈ k‖v‖. Since the dispersion relation for Alfvén waves is ω2 = k2v2

A (Table
11.2), the two conditions imply v‖ � vA, which is a threshold for ion speeds. Thus,
ions need to have a threshold energy of εi

>∼ (1/2)mpv2
A ≈ 20 keV for typical coronal

Alfvén speeds , vA ≈ 2000 km s−1, before they can be accelerated by gyroresonant,
stochastic acceleration. Above this threshold, however, Alfvén waves can accelerate
protons to γ-ray energies of GeV per nucleon on time scales of ≈ 1 − 10 s (Barbosa
1979; Miller et al. 1990; Steinacker & Miller 1992).

Similar to electrons, there is an injection problem in the sense that a suitable accel-
eration mechanism needs to be found to accelerate the ions from their thermal energy
( <∼ 1 keV) to the Alfvénic acceleration threshold (≈ 20 keV). It was proposed that non-
linear Landau damping of Alfvén waves can lead to rapid proton heating and energiza-
tion above the Alfvénic acceleration threshold (Lee & Völk 1973; Miller 1991; Miller
& Ramaty 1992; Smith & Brecht 1993). Alternatively, higher frequency waves of the
Alfvénic branch type (i.e., magneto-acoustic waves with k ⊥ B) through gyroresonant
interaction were also shown to be able to accelerate protons directly from thermal ener-
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Figure 11.13: Proton energy spectrum N(E) (left) and wave spectral density WT (right) re-
sulting from cascading and cyclotron damping of Alfvén waves. The waves were injected at a
wavelength of ≈ 107 cm, at a rate of about 100 ergs cm−3 s−1, and over a time period of 2 s.
The ambient proton density was 1010 cm−3. (a) N at times tn = n(5×104TH), for n = 0−10.
The leftmost curve is the spectrum for n ≤ 7, and the remaining curves, from left to right, are
the spectra for n = 8, 9 and 10. (b) Spectral densities at the same times (Miller & Roberts 1995).

gies (Eichler 1979; Zhou & Matthaeus 1990; Miller & Roberts 1995). An example of
numerical simulations of proton acceleration employing an MHD-turbulent cascade to
generate the initial wave spectrum with a quasi-linear code is shown in Fig. 11.13. Ac-
celeration of protons to energies > 30 MeV on time scales of ≈ 1 s is found, consistent
with gamma-ray observations. However, the detailed shape of the spectrum depends
on the balance between the acceleration rate and escape rate, which requires a detailed
trap-plus-precipitation model.

An attractive feature of gyroresonant stochastic acceleration is its ability to explain
the enhanced ion abundances, which is not easy to accomplish with DC electric field ac-
celeration. In the scenario of turbulent MHD cascades, where long-wavelength Alfvén
waves cascade to shorter wavelengths, gyroresonant interactions are first enabled for
the lowest gyrofrequencies of the heaviest ions such as iron (see mass dependence of
ion gyrofrequency Ωi = ΩH/µ in Eq. 11.1.4), and proceed then to higher gyrofre-
quencies of the lighter ions (Si, Mg, Ne, O, N, C, 4He, see atomic masses in Table 1.2).
Such ion enhancements have been reproduced with quasi-linear codes that simultane-
ously solve all ion diffusion equations, and have been found to be consistent with the
observed ion enhancements during impulsive and gradual flares (Table 11.3; Miller &
Reames 1996). Some problems still remain with reproducing the observed 3He/4He
abundance.
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Table 11.3: Enhanced elemental abundances during flares (Miller & Reames 1996).

Element ratio Impulsive flares Gradual flares (corona)
3He/4He ≈ 1 (×2000 increase) ≈ 0.0005
4He/O ≈ 46 ≈ 55
C/O ≈ 0.436 ≈ 0.471
N/O ≈ 0.153 ≈ 0.128
Ne/O ≈ 0.414 (×2.8 increase) ≈ 0.151
Mg/O ≈ 0.413 (×2.0 increase) ≈ 0.203
Si/O ≈ 0.405 (×2.6 increase) ≈ 0.155
Fe/O ≈ 1.234 (×8.0 increase) ≈ 0.155
H/He ≈ 10 ≈ 100

11.4.4 Acceleration by Electrostatic Wave-Particle Interactions

The previously discussed gyroresonant wave-particle interactions involve all electro-
magnetic waves, which are defined as solutions of Maxwell’s equations with both an
oscillating electric field E1(t) and magnetic field B1(t) component, and include O, X,
L, and R (whistler) waves for electrons, and Alfvén waves and magneto-sonic waves
for ions (Table 11.2). Wave solutions with no oscillating magnetic field, B1(t) = 0,
are called electrostatic waves, which include Langmuir waves (plasma oscillations)
and upper-hybrid waves for electrons, and ion-sound (acoustic) waves, electrostatic
ion-cyclotron waves, and lower-hybrid waves for ions (Table 11.2). In the following
we discuss stochastic acceleration of particles by such electrostatic waves.

Langmuir waves (k ‖ B0) have been found to be very efficient for electron beams
(Benz 1977; Melrose 1980b, § 8), because they have phase speeds in the range of
vTe � ω/k <∼ c and thus can fulfil the Cerenkov resonance condition ω − k · v = 0
for nonthermal electrons. However, a major problem is the identification of a plausible
source of primary Langmuir waves for this process. Since electron beams produce
secondary Langmuir waves by themselves, another source of primary Langmuir waves
is needed for acceleration. Nevertheless, the stochastic acceleration of electrons with
velocities that are close to the phase speed of electrostatic (or electromagnetic) waves
(i.e., v ≈ vph = ω/k), can efficiently resonate with the strong DC electric fields of the
waves and in this way produce electron beam distributions that radiate electrostatic and
electromagnetic emission, which is called direct radiation (Tajima et al. 1990; Wentzel
1991; Güdel & Wentzel 1993).

Takakura (1988) proposed that a strong field-aligned electric field is induced during
the anomalous decay of force-free magnetic fields in the presence of ion-sound waves
(k ‖ B0), which could accelerate electrons to hard X-ray energies.

Other electrostatic waves are lower-hybrid waves (with k ⊥ B0), which were found
to be easily excited by two-stream instabilities between electron and ions (e.g., when
ions drift across the magnetic field with a drift rate of a few ion thermal velocities
vTi; Papadopoulos 1979; Tanaka & Papadopoulos 1983). The excited lower-hybrid
waves can then stochastically accelerate electrons, but only to low energies of <∼ 6vTe.
In addition, the efficiency is limited to <∼ 10−3, so it might be a viable acceleration
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mechanism for radio type II and III bursts (Lampe & Papadopoulos 1977; Vlahos et
al. 1982; Benz & Smith 1987; Meister 1995). More powerful acceleration of elec-
trons by lower-hybrid waves can be achieved with unstable ion ring distributions (Mc-
Clements et al. 1990, 1993), which could be initiated by a quasi-perpendicular shock
(Goodrich 1985) or by collisionless ion motions in a current sheet (Chen et al. 1990),
but the shock requirement is considered as a strong restriction (Miller et al. 1997). In
the Earth’s magnetosphere, lower-hybrid waves were found to accelerate preferentially
H+ ions, while hydrogen cyclotron waves were found to prefer O+ ions, thought to be
responsible for acceleration of auroral ion beams (Varvoglis & Papadopoulos 1985).

11.4.5 General Evaluation of Stochastic Acceleration Models

In summary, the concept of stochastic acceleration accomplishes a number of advan-
tages over the concept of (large-scale) DC electric field acceleration: (1) the accelerat-
ing fields occur on a microscopic scale and completely average out over a macroscopic
volume, so that no return current problems occur, which require a strong filamentation
of the acceleration region in DC electric field models; (2) arbitrary large energies (up
to gamma-ray producing energies) can be obtained for stochastically accelerated par-
ticles, while sub-Dreicer electric fields cannot produce gamma-ray energies; and (3)
gyroresonant particle interactions can naturally explain enhancements of heavy ions
(Table 11.3), for which no explanation exists in DC electric field models. On the nega-
tive side, the major criticism of the stochastic acceleration model is mainly concerned
with the existence of sufficiently strong wave turbulence sources and the efficiency
of the turbulent MHD cascading, which are ad hoc assumptions that cannot easily be
measured, and thus are arbitrarily tuned to reproduce the observed spectra.

11.5 Shock Acceleration

Shocks occur at discontinuous boundaries, such as in the spherical front of an ex-
panding supernova remnant, in the bow shock of planetary magnetospheres that are
circumvented by the solar wind, or at the front of coronal mass ejections (CMEs) that
propagate into interplanetary space. Particle acceleration in such shock structures has
been theoretically and observationally investigated and became a well-established as-
trophysical acceleration mechanism for high-energy particles. For the case of solar
flares, evidence for particle acceleration in shock structures was mainly established
from the observations of radio type II bursts, for which the shock speed could be mea-
sured from the plasma frequency and imaging observations. However, type II bursts
only trace shock waves that propagate outward into interplanetary space. What is new
about shock acceleration in the context of solar flares is that the conspicuous evidence
for magnetic reconnection processes also implies the existence of standing fast-mode
and slow-mode shocks in the reconnection outflow regions, which are believed now to
play an important role for particle acceleration during solar flares.

Basic introductions into astrophysical shock waves can be found in textbooks (e.g.,
Priest 1982, § 5; Benz 1993, § 10; Kirk 1994; Burgess 1995, § 5; Baumjohann &
Treumann 1997, § 8; Priest & Forbes 2000, § 13.3), Boyd & Sanderson (2003; § 10.5).



11.5. SHOCK ACCELERATION 501

Shocks are waves with nonlinear amplitudes that propagate faster than the sound (or
magneto-sonic) speed of the ambient medium. Shocks have been classified either by
(1) the change in magnetic field direction from the upstream to the downstream re-
gion (slow-mode, intermediate-mode, fast-mode), (2) the particle velocity distribution
(collisional or collisionless shocks), (3) the ion acceleration (subcritical or supercrit-
ical shocks), or (4) the driving agent (blast wave or piston-driven wave). Regarding
particle acceleration in shock waves, the classical theories deal with single encounters
of particles with shock waves (first-order Fermi acceleration, § 11.5.1 and § 11.5.2)
or with multiple encounters (diffusive shock acceleration, § 11.5.3). In the context of
solar flares, we discuss shock acceleration in reconnection outflows and chromospheric
evaporation fronts (§ 11.5.4), as well as in shock waves that propagate in CMEs and
interplanetary space (§ 11.5.5).

11.5.1 Fermi Acceleration

Fermi (1949) explained the acceleration of cosmic-ray particles by reflections on mov-
ing magnetized clouds. This idea is generally valid for charged particles that encounter
a moving boundary with higher magnetic fields, because magnetic mirroring then pro-
duces a reflection for adiabatic particle motion. For the energy spectrum of cosmic-ray
particles, Fermi (1949, 1954) derived a powerlaw function, based on statistical argu-
ments that a head-on collision of a particle with a randomly moving magnetic field is
more likely than an overtaking one, so that the average particle will be accelerated. He
derived the spectrum from the law of conservation of momentum. If csh is the velocity
of the shock structure (i.e., a magnetized cloud with high magnetic field that acts as
magnetic mirror in Fermi’s original model), then the change in particle energy ∆ε for
one collision of a relativistic particle is (see e.g., Lang 1980, p. 474),

∆ε = −2ε
csh · v‖

c2
, (11.5.1)

where ε is the particle energy and v‖ is the parallel velocity of the particle. Since the
probability of a head-on collision is proportional to v + csh, and that for an overtaking
one is proportional to v − csh, the average energy gain, < ∆ε >, per collision is

< ∆ε >≈ v + csh

2v
∆ε − v − csh

2v
∆ε ≈ 2

c2
sh

c2
ε . (11.5.2)

Thus, if τcoll is the mean time between multiple collisions with shock structures (or
magnetized clouds), then the average rate of energy gain is

dε

dt
≈ 2c2

sh

τcoll c2
ε, (11.5.3)

which leads to an exponential growth in mean energy as a function of the acceleration
time tA,

ε(tA) = ε0 exp
(

tA
τG

)
, (11.5.4)
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with an e-folding growth time τG of

τG = τcoll
c2

2 c2
sh

. (11.5.5)

Assuming that such encounters of particles with cosmic clouds occur at random, is it
natural to assume a random distribution for the total acceleration time tA of a parti-
cle, which can be characterized by an exponential function for rare events (i.e., low
probability events in the tail of a Gaussian normal distribution), see also Eq. (9.8.2),

N(tA)dtA = N0 exp
(
− tA

tAe

)
, (11.5.6)

where tAe is the e-folding time constant of random acceleration times. Given these two
mathematical properties, (1) an exponential growth in energy ε(tA) (Eq. 11.5.4), and
(2) a random distribution N(tA) of (acceleration) time scales (Eq. 11.5.6), it follows
immediately that the distribution N(ε) of energies is a powerlaw function, according
to the theory of frequency distributions described in § 9.8.1,

N(ε)dε ∝ ε−δdε , δ =
(

1 +
τG

tAe

)
. (11.5.7)

For cosmic ray spectra, powerlaw slopes of δ ≈ 2 are observed (e.g., see Lang 1980,
p. 471−472), which correspond to the hardest spectra observed in solar flares. The
model of first-order Fermi acceleration was also applied to the hydromagnetic bow
shock in the Earth’s magnetosphere, explaining the >30 keV electrons at a few Earth’s
radii beyond the bow shock (Fan et al. 1964; Jokipii 1966; Anderson et al. 1979). Fermi
acceleration has been applied to solar flare loops that trap high-energetic protons (Bai
et al. 1983), as well as to reconnection outflows in solar flares (Somov & Kosugi 1997;
Tsuneta & Naito 1998), as described in more details below (§ 11.5.4).

11.5.2 Shock-Drift (or First-Order Fermi) Acceleration

Let us understand Fermi’s acceleration mechanism in terms of particle kinematics.
Most shocks in the solar corona have a sufficiently low density so that they are es-
sentially collisionless during the passage of a particle, and thus adiabatic particle orbit
theory can be applied. The normal component of the magnetic field is continuous
across the shock front (Bd,norm = Bu,norm), while the tangential component varies,
most strongly for fast shocks (Bd,tang � Bu,tang). Therefore, the total magnetic field
strength increases across the shock front, Bd � Bu, and the particle gains perpendic-
ular velocity (vd,⊥ � vu,⊥) due to the conservation of the magnetic moment,

µ =
1
2mv2

u,⊥
Bu

=
1
2mv2

d,⊥
Bd

= const , (11.5.8)

which explains the definition of slow shocks and fast shocks (Fig. 11.14): In a fast
shock, the magnetic field lines are closer together when bent away from the shock nor-
mal, which increases the magnetic field strength (due to conservation of the magnetic
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Figure 11.14: Definition of fast and slow shocks (left) and adiabatic orbit of a particle during
shock passage (right). The magnetic field lines are closer together for a fast shock, indicating
that the field strength increases when the field is bent away from the shock normal.

flux Φ = AB), and thus increases the perpendicular particle velocity (due to conserva-
tion of particle moment, Eq. 11.5.8). In a slow shock, the downstream magnetic field
is weaker.

The relations between the physical parameters (density, velocities, pressure, and
magnetic field) on both sides of the shock front can be derived from the conservation of
mass, momentum, energy, and magnetic flux, which are called jump or Rankine−Hugoniot
relations, derived in many MHD textbooks (e.g., Priest 1982, § 5; Baumjohann &
Treumann 1997, § 8; Boyd & Sanderson 2003, § 5.5).

A charged particle that crosses a shock front (Fig. 11.15, left) experiences a drift by
an electric field E that is produced by the Lorentz force csh × B of the shock motion
with velocity csh in a magnetic field B,

E =
1
c
csh × B , (11.5.9)

and can be transformed away in a coordinate system that is co-moving with the drift
speed perpendicular to the shock normal, so that the electric field E due to the fluid mo-
tion with velocity csh vanishes. This moving coordinate system is called de Hoffmann−
Teller (HT) frame (Fig. 11.15, right). In the HT reference frame, the incident particle
has a transformed velocity u′ = u − uHT that is parallel to the upstream magnetic
field Bu by definition, so that u′ × Bu = 0 with no resulting electric field. To fulfil
this condition, the transformation velocity vHT of the HT reference system therefore
has to be,

vHT =
n× (uu × Bu)

n · Bu
= uu tan θBn , (11.5.10)

where θBn is the angle between the upstream magnetic field direction Bu and the shock
normal direction n.

The acceleration of a particle in a shock interaction is easiest described in the HT
coordinate system. Let us consider a particle that collides with a shock front and is
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UPSTREAM REFERENCE FRAME

SHOCK csh

upstream downstream

Drift
E ~ csh x B

uu

ud

DE HOFFMANN-TELLER FRAME

SHOCK

upstream downstream

uu

ud

Bu

Bd

Figure 11.15: The passage of a particle through a shock front is shown in the upstream reference
frame (at rest to the observer), where a charged particle experiences a drift along the shock front
due to the electric field E = −(csh/c) × B induced by the motion of the shock plasma with
velocity csh (left). This electric field is transformed away in the De Hoffmann−Teller frame
(co-moving with the shock and drifting with vHT parallel to the shock front, where the incident
particle motion is by definition parallel to the incident magnetic field, uu ‖ Bu (right).

reflected, which are the particles that gain more energy than the overpassing ones in
the Fermi model. In the HT reference frame, the incident particle has a velocity u‖
that is aligned with the magnetic field Bu, and the reflected particle has a collinear
velocity v‖, which would be equal for an adiabatic reflection mechanism, or lower if
the magnetic moment is not conserved. We may quantify the relative ratio with the
(positive) constant α (Boyd & Sanderson 2003, § 10.5.3),

v‖ = −αu‖ . (11.5.11)

The corresponding velocities in the upstream rest frame have the additional component
of the HT transformation velocity vHT ,

u = u‖ + vHT , (11.5.12)

v = v‖ + vHT , (11.5.13)

The difference between incident and reflected (squared) velocities is then (using Eqs.
11.5.11−13)

u2 − v2 = (u‖ + vHT )2 − (v‖ + vHT )2

= u2
‖ − v2

‖ + 2vHT (u‖ − v‖)
= u2

‖ − v2
‖ + 2(u− u‖)u‖(1 − α) .

(11.5.14)

The ratio of the reflected to the incident kinetic energy is thus in the rest frame of the
shock,

v2

u2
= 1 + (1 + α)2

u‖
u2

− 2(1 + α)
u‖ · u

u2
, (11.5.15)
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Figure 11.16: Particle orbit during diffusive shock acceleration. The electron crosses the shock
front multiple times, scattered by wave turbulence, entering it from the upstream direction.

which can be expressed by the angles θBn, θun, and θvn between B, u, v and the shock
normal n, which obey u‖ cos θBn = u cos θvn and u‖ · u = u‖u cos θBn, yielding

v2

u2
= 1 + (1 + α)2

cos2 θvn

cos2 θBn
− 2(1 + α)

cos θBv cos θvn

cos θBn
. (11.5.16)

This expression demonstrates, that for quasi-perpendicular shocks (i.e., θBn
<∼ 90◦ or

cos θBn
>∼ 0) the second term becomes dominant and leads to large increases of the

kinetic energy of the reflected particles (v2 � u2). This confirms that slow-mode
shocks or quasi-parallel shocks yield little amount of acceleration, while fast-mode
shocks or quasi-perpendicular shocks lead to efficient acceleration.

If electrons pass the shock front only in a single encounter, the energy gain is lim-
ited to the downstream/upstream ratio B1/B2 of the magnetic field strengths, which
is typically a factor of 4. Higher energies can be achieved if the magnetic field has
a trapping region upstream of the shock, so that particles are mirrored multiple times
at the shock front and gain energy each time. When the shock propagation becomes
near-perpendicular (1◦ − 2◦) to the upstream magnetic field (fast shock), acceleration
becomes most efficient (Wu 1984; Krauss−Varban & Wu 1989), but on the other hand,
this small angle restriction limits the high acceleration efficiency only to ≈ 1% of the
electrons. Given these restrictions, shock-drift acceleration was mainly applied to the
Earth’s bow shock (Jokipii 1966; Krauss−Varban & Burgess, 1991) and to radio type
II bursts (Holman & Pesses 1983; Melrose & Dulk 1987; Benz & Thejappa 1988).
If particles are preaccelerated and injected into a shock with an energy of 100 keV,
however, electron and protons can be accelerated up to γ-ray energies of 100 MeV by
first-order Fermi acceleration (Ellison & Ramaty 1985).

11.5.3 Diffusive Shock Acceleration

The basic problem of first-order Fermi acceleration, the limited energy gain during a
single shock encounter, can be overcome in inhomogeneous plasmas, where particles
are scattered many times back and forth across the shock front, so that they experience
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a cumulative acceleration effect during multiple shock encounters (Fig. 11.16). The
original concept of Fermi is based on particles that encounter a cloud of scattering cen-
ters moving in random directions, where colliding particles gain more energy than they
lose on average, a statistical effect. A similar approach with a spatial random distri-
bution of multiple shock fronts was also formulated by Anastasiadis & Vlahos (1991,
1994). In solar flares, wave turbulence or low-frequency waves are used as a means to
randomize anisotropic acceleration, which can cause particle scattering in pitch angle
and energy. The mechanism of diffusive shock acceleration invokes efficient particle
scattering in the regime of strong wave turbulence, while stochastic acceleration based
on gyroresonant wave-particle interactions (described in § 11.4) works in the regime of
weak wave turbulence.

Mathematically, diffusive shock acceleration has much in common with stochastic
acceleration by gyroresonant wave-particle interactions (Jones 1994). Particles en-
counter multiple traversals of shock fronts and pick up each time an increment of mo-
mentum that is proportional to its momentum. Therefore, after N shock crossings, a
particle will have a momentum of

p(N) = p0 ΠN
i=1 (1+ < δp/p >i) , (11.5.17)

where the term of the momentum increase < δp/p > is averaged over the particle flux.
Each cycle includes a back and forth-crossing of a shock front. During each cycle there
is a small probability εi of escaping from the shock. So the probability P (N) that a
particle undergoes N cycles is,

P (N) = ΠN
i=1(1 − εi) . (11.5.18)

Taking the ratio of the logarithms of the two equations (Eqs. 11.5.17−18) we obtain

ln P (N)
ln[p(N)/p0]

=
∑N

i=1(1 − εi)∑N
i=1 (1+ < δp/p >i)

≈ −∑N
i=1 εi∑N

i=1 < δp/p >i

= Γ(N) , (11.5.19)

which leads to a powerlaw function for the integral spectrum, which is the probability
that a particle has a momentum ≥ p,

P (p) =
(

p

p0

)−Γ(N)

, (11.5.20)

where the powerlaw exponent Γ(N) could depend on the number of crossings N .
Defining the time interval τi for a shock-crossing cycle, the incremental momentum
gain is, ∑N

i=1 < δp/p >i∑N
i=1 τi

=
1
p

dp

dt
= α(N) , (11.5.21)

while the probability of escape per cycle is

∑N
i=1 εi∑N
i=1 τi

=
1

T (N)
, (11.5.22),
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which yields the powerlaw exponent

Γ(N) =
1

α(N)T (N)
(11.5.23)

and thus a powerlaw spectrum for the particle momentum,

f(p) ∝
(

p

p0

)−1+Γ(N)

. (11.5.24)

The spectrum is only a true powerlaw function when Γ(N) or the product α(N)T (N)
is independent of the number of crossings N . It has been shown that for a particle
bound to a flowing plasma by scattering (Parker 1963b; Gleeson & Axford 1967) or
by electromagnetic forces (Jones 1990), that the probability of escaping from a shock
depends only on the compression ratio ud/uu of the shock (Jones 1994),

Γ(N) =
3

ud/uu − 1
, (11.5.25)

and thus is independent of the number of crossings. In strong shocks as they occur
in astrophysical objects, the compression ratio is bounded by ud/uu ≤ 4, so that the
powerlaw exponent is Γ ≥ 1, but can be close to Γ >∼ 1 as often observed. The fact that
the particle spectrum is a powerlaw spectrum (Eq. 11.5.24) shows us that the process of
diffusive shock acceleration is very similar to stochastic acceleration or second-order
Fermi acceleration, where we also derived a powerlaw function for the energy spectrum
(Eq. 11.5.7).

Note that the original Fermi acceleration mechanism is based on a statistical argu-
ment of many random collisions with magnetic clouds, which leads to a relative mo-
mentum gain proportional to the second power of the (small) velocity ratio < δp/p >∝
(csh/v)2 (Eq. 11.5.2), and is therefore called a second-order Fermi type, while shock-
drift acceleration yields only a momentum gain that is proportional to the velocity ratio,
< δp/p >∝ (csh/v) (Eq. 11.5.11), and is therefore called a first-order Fermi type.

The cursory derivation above summarizes only the statistical argument that leads
to the spectrum of accelerated particles, but ignores the detailed equations of the con-
servation of particle momentum and energy. The general process of diffusive shock
acceleration has to be described by the evolution of the particle distribution function
f(x,v, t) in terms of the diffusion convection equation (e.g. Parker, 1965; Priest &
Forbes, 2000, § 13.3),

∂f

∂t
+u·∇f = ∇·(κ∇f)+

1
3
(∇·u) p

∂f

∂p
+

1
p2

i

∂

∂pi

(
p2

jDij
∂f

∂pj

)
+I−L , (11.5.26)

where the terms describe the time dependence of the particle distribution f , spatial
advection (∇f ), spatial diffusion (κ), adiabatic expansion or compression (at the shock
front), momentum diffusion (Dij), particle injection (I), and escape or loss (L).

Some first energy spectra of ions accelerated in diffusive shocks were calculated
by Ramaty (1979) which could reproduce observed gamma-ray spectra and interplan-
etary particle spectra, and was found to be a viable mechanism to accelerate ions up
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Figure 11.17: Particle orbit of a particle that undergoes diffusive shock acceleration in a quasi-
perpendicular shock with θ = 60◦. Left: energy versus X-orbit in shock frame, where X is
the distance from the shock, with X < 0 upstream and X > 0 downstream. The elapsed time
of orbit is 270 gyroperiods. Right: time history or energy gain and X-orbit (Decker & Vlahos
1986).

to ≈ 100 MeV within <∼ 1 s. Wave-particle interactions in diffusive shocks (e.g., scat-
tering by whistlers and Alfvén waves), was included by Achterberg & Norman (1980),
Decker & Vlahos (1986), and Decker (1988). An example of the history of a particle
acceleration in a quasi-perpendicular shock calculated by Decker & Vlahos (1986) is
shown in Fig. 11.17. However, an important problem that was identified was the preac-
celeration to ε ≈ 20 keV for electrons, requiring another mechanism for first-phase
acceleration, while protons and ions can directly be accelerated out of the Maxwellian
distribution. Diffusive-shock acceleration has been simulated numerically, mostly for
cosmic rays (e.g., Kang & Jones 1995; Baring et al. 1994). For solar flares, the simula-
tions confirmed that ions can promptly be accelerated to gamma-ray energies (Cargill
et al. 1988), with an electron/proton ratio of ≈ 1% − 10% at 1 GeV (Levinson 1994),
and that shock waves can form electron streams capable of radio type II emission (Lem-
berge 1995).
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11.5.4 Shock Acceleration in Coronal Flare Sites

An early application of shock acceleration to solar flares has been proposed by Bai et
al. (1983). They used the concept of the original Fermi acceleration model to explain
the gamma-ray emission, which was found to be slightly delayed with respect to the
hard X-ray emission, a phase during a solar flare that was called second-step accelera-
tion. The basic idea was that two shock fronts would propagate upward from the two
flare loop footpoints, trapping energetic protons in between, which then gain energy
at every reflection between the converging mirrors. The average time interval τcoll be-
tween two successive collisions with shock fronts is the proton travel time between the
two mirrors, τcoll = d/vp,‖. Bai et al. (1983) argued that the interpretation in terms of
Fermi acceleration is supported by the facts that: (1) the protons gain more energy than
electrons at the same speed, (2) that the gamma-ray emission from energetic protons
(with the higher energy) is delayed to the hard X-ray emission from electrons, and (3)
that interplanetary protons are associated with those events with a gamma-ray delay.
These characteristics are all consistent with a Fermi acceleration model, but the ob-
served gamma-ray delay ∆t of a few seconds requires extremely small flare loop sizes
d <∼ csh∆t, and it is also not clear how the trapped high-energy protons can escape into
interplanetary space.

During the era of Yohkoh observations when magnetic reconnection models be-
came popular, first-order Fermi acceleration has been applied to the slow-mode and
fast-mode shocks in the reconnection outflows (Somov & Kosugi 1997; Tsuneta &
Naito 1998). Essentially, it is assumed that particles are trapped in the reconnection
outflow between the coronal reconnection region and the standing fast shock wave
above the soft X-ray flare loop (Fig. 11.18). Since the newly reconnected field lines
are relaxing, the cusp region represents a collapsing trap, where particles are mirrored
between the standing shock beneath and the converging cusp region above. During
every reflection at the standing shock, the trapped particles are accelerated by the first-
order Fermi acceleration mechanism at every bounce time, and thus represents a very
efficient acceleration mechanism. Applying Fermi’s relation (Eq. 11.5.5) we obtain an
estimate of the e-folding energization growth time τG, using the collisional deflection
time τcoll ≈ τdefl(E) ∝ E3/2/ne and a magnetic mirror speed of u =vA/ cos θ with
vA ≈ 1000 km s−1 as the Alfvén speed, where θ is the angle of the magnetic mirror to
the magnetic field,

τG = τcoll
c2

2c2
sh

≈
( ε

100 keV

)3/2 ( nE

1011 cm−3

)−1
(

c2 cos2 θ

2v2
A

)
(s) . (11.5.27)

We see that sufficiently short acceleration times can only be achieved in fast-mode
shocks, where cos θ � 1. To accelerate an electron from a suprathermal energy of ε1 ≈
3 keV to a typical hard X-ray emitting energy of ε = 100 keV, an acceleration time of
t = tG ln(ε/ε1) ≈ τG ln(100/3) = 3.5τG is needed (according to Eq. 11.5.4). The
observed durations of hard X-ray pulses set an upper limit of t <∼ 1 s on the acceleration
time, or tG <∼ 0.3 s on the growth time, requiring a fast shock angle of θ <∼ 87◦. This
scenario, in terms of first-order Fermi acceleration, implies that the fast-mode standing
shocks above the soft X-ray flare loops, which provide a highly perpendicular shock
structure, are the most efficient locations for particle acceleration (Fig. 11.19), while the
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Figure 11.18: Magnetic trap between the High-Temperature Turbulent-Current Sheet (HTTCS)
and the shock front in the downward-directed outflow of a reconnection region. Accelerated
particles move with velocity v1 along the field lines, are reflected at the fast shock above the soft
X-ray flare loop (grey), and experience first-order Fermi acceleration (Somov & Kosugi 1997).

slow-mode shocks that “sandwich” the reconnection outflow may serve as a mechanism
for preacceleration.

The model of first-order Fermi acceleration is viable for 10 − 100 keV electrons
if the following four observational requirements are met (Tsuneta & Naito, 1998): (1)
The net acceleration rate has to overcome the (relatively high) collisional loss rate,

dε

dt
=
(

dε

dt

)
acc

−
(

dε

dt

)
coll

> 0 , (11.5.28)

(2) the energy gain has to be sufficiently high to explain the ≈ 50 keV hard X-ray
emission of Masuda’s above-the-looptop sources, (3) the acceleration time has to be
sufficiently fast ( <∼ 1 s) to explain the impulsive hard X-ray bursts, and (4) the number
of accelerated electrons has to meet the hard X-ray inferred electron injection rates of
≈ 1034 − 1035 electrons s−1. The acceleration rate in the fast shock was estimated to(

dε

dt

)
acc

=
∆ε

∆t
=

2
3
ε

u

l cos θ
, (11.5.29)

where u ≈vA ≈ 1000 km s−1 (Tsuneta 1996a) is the speed of the outflow from the
reconnection region, l ≈ 500 km is the estimated diffusion length, and θ the angle be-
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Figure 11.19: Magnetic field line configuration of the reconnection region. An Alfvénic down-
ward outflow is sandwiched by the two steady slow shocks. A fast shock with length L forms
between the slow shocks. Magnetic disturbances both upstream and downstream of the fast
shock scatter the electrons, which become accelerated. The total length of the diffusion region
along the field lines is l (Tsuneta & Naito 1998).

tween the fast-shock normal and the magnetic field line crossing the shock (Fig. 11.19).
The net acceleration rate (Eq. 11.5.28), after subtraction of the collisional losses,(

dε

dt

)
coll

≈ 47
n10√
εkeV

, (11.5.30)

is shown in Fig. 11.20, for shock angles of θ = 0◦, 60◦, and 85◦. The diagram shows
that the net acceleration exceeds the collisional loss at energies of ε >∼ 4 keV for shock
angles of θ = 85◦. So, if a bulk energization mechanism exists that preaccelerates
electrons out of the thermal distribution (T ≈ 10− 20 MK, ε ≈ 0.5− 1 keV) to ε0

>∼ 4
keV, first-order Fermi acceleration will accelerate them up to ≈ 1 MeV energies at the
fast shock. Tsuneta & Naito (1998) estimate that the preacceleration could be provided
by the slow shocks. A diffusion length of l ≈ 500 km is needed at a fast shock angle of
θ ≈ 85◦ to satisfy the maximum energies (ε <∼ 1 MeV), for acceleration time scales of
tacc ≈ 0.3−0.6 s and a number of accelerated electrons of Nacc = neuL2 ≈ 5×1035

electrons s−1. They point out that this scenario considerably ameliorates the injection
problem of earlier first and second-order Fermi acceleration scenarios, where relatively
high initial energies (ε0 ≈ 20−100 keV) were required (Bai et al. 1983; Ramaty 1979).

Shock acceleration in the context of magnetic reconnection regions in solar flares
has also been studied for electrons and ions separately (Sakai & Ohsawa 1987; Ohsawa
& Sakai 1987, 1988a,b). Besides the fast-mode shocks, reconnection outflows also
produce strong wave turbulence (e.g., of whistler waves), which can accelerate particles
by the first-order Fermi mechanism (LaRosa & Moore 1993; LaRosa et al. 1994). The
magnetic reconnection outflows propagate in the form of thermal conduction fronts
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Figure 11.20: Collisional energy loss rate and Fermi acceleration rate for three different shock
angles. The net energy gain rate (thick lines) is the energy gain rate (dotted and dashed lines)
minus the loss rate (thin line) (Tsuneta & Naito 1998).

down to the chromosphere, which generate ion-acoustic turbulence, ambipolar electric
fields (McKean et al. 1990a,b), and return currents (Karlický 1993), which also can
contribute to suitable conditions for first-order and diffusive Fermi acceleration.

11.5.5 Shock Acceleration in CMEs and Type II Bursts

Since shock waves are ubiquitous in the flare process, particle acceleration by shocks
may occur in a variety of associated transient phenomena, such as in reconnection out-
flows, flare-initiated EIT and Moreton waves, coronal mass ejections, filament erup-
tions, radio type II bursts, interplanetary shocks, etc. Some reviews on coronal shock
acceleration can be found in Nelson & Dulk (1985, § 13), Benz (1993, § 10.2), Mann
(1995), or Priest & Forbes (2000, § 13.4.2).

The first evidence of shock acceleration in the solar corona came from radio type
II bursts, which were identified as shock structures from imaging observations of their
outward motion with speeds of csh ≈ 200 − 2000 (km s−1). The frequency-time
(dynamic) spectrum of a type II burst generally shows a central ridge that drifts with
the shock speed (called backbone) and bifurcating fast-drift structures (called herring-
bones) that indicate electron beams that propagate in the forward and backward direc-
tion of the shock front. Thus, both the accelerator (shock wave) as well as the accel-
erated particles (by plasma emission of electron beams) are identified. The backbone
usually shows a split-band structure with a near-harmonic frequency ratio, indicative
of plasma emission at the fundamental and harmonic frequency, probably produced by
electrostatic waves from electrons with a shifted ring distribution resulting from a first-
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Figure 11.21: (a) Dynamic spectrogram (Tremsdorf Radio spectrograph) and hard X-ray
lightcurve (Yohkoh HXT) during the 1997-Nov-27 type II event. Insert to (a): Yohkoh SXT
negative image of AR 8113 (Al.1 filter) at 12:40:36 UT and harmonic type II source during the
time intervals indicated by horizontal bars at the appropriate frequencies in the spectrogram:
contours of equal brightness at 411 MHz (10, 50, 90% of maximum brightness in the image)
and source centroid positions and half widths of the harmonic type II sources at 237 (dashed)
and 164 MHz (solid). (b) Yohkoh SXT image of (a), superposed on SoHO/LASCO-C1 and C2
images at 1328 and 1330 UT (negative image). Note that the shock waves that produce radio
type II emission are imaged in the lower corona very close to the flare site (top right), while the
CME bowshock is about 5 solar radii away (bottom left), and thus cannot be responsible for the
type II emission (Klein et al. 1999b).
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order Fermi acceleration upstream (Benz & Thejappa 1988). From the bandwidth of
the backbone, the density compression and Mach number of the shock can be computed
(Mann et al. 1995). The occasional absence of a backbone structure was explained by
the lack of reflected particles in almost perpendicular shocks (Holman & Pesses 1983).
The propagation of the shock front could be monitored through interplanetary space,
and the onset of geomagnetic storms on Earth was found to coincide with the arrival
time of shock fronts (e.g., Malitson et al. 1973; Maxwell & Rinehart 1974). Mean-
while, it was identified that the driver of interplanetary shocks are coronal mass ejec-
tions (CME) (Hundhausen 1972). However, the detailed interplay between CMEs and
shock fronts spawned an ongoing debate, because the exact timing, association, point
of origin, geometry, and elemental abundance was found to be inconsistent in many
cases (Cane et al. 1981, 1986, 1991, 2000, 2002; Cane 1984, 1988; Cane & Reames
1988a,b, 1990; MacDowall et al. 1987; Reames 1990a; Kundu et al. 1990; Reames et
al. 1991a,b, 1999; Klein & Trottet 1994; Klein et al. 1999a). Cane (1988) estimated
that the percentage of shocks detected at 1 AU that can be tracked back to originate in
solar flares is less than 50%. The origin of type II bursts is often believed to be tied
to the bow shock of the CME, but detailed imaging observations suggest that some
originate directly in the reconnection sites of flares (Fig. 11.21), well below the CME
bowshock (Klein et al. 1999b; Pick 1999; Klein & Trottet 2001; Klein et al. 2001).
Stationary type II burst emission has been interpreted as a radio signature of the stand-
ing shock in reconnection outflow regions (Aurass et al. 2002b). Comparisons of CME
speeds and type II speeds suggest that many type II bursts are generated by (piston-
driven) flare blast waves rather than by CME shock waves (Gopalswamy & Kundu
1991), or by coronal EIT waves (Mann et al. 1999; Aurass et al. 2002b). A statistical
study of CME images from LASCO and interplanetary type II bursts recorded with
the WIND spacecraft leads to a distinction between three originators of type II bursts:
flare-related blast shock waves (30%), shocks driven by the leading edge of CMEs
(30%), and shocks driven by internal parts or flanks of the CMEs (30%) (Classen &
Aurass 2002).

Theoretical modeling was performed by numerical simulations of fast-mode MHD
shock waves in interplanetary space that attempted to match the observed propagation
speed of type II radio bursts (Dryer & Maxwell 1979; Smith & Dryer 1990; Karlický
& Odstrc̆il 1994; Dryer et al. 2001). In situ measurements of proton pitch angle dis-
tributions near shock fronts that propagate in interplanetary space (e.g., at co-rotating
interaction regions, the interface between the slow and fast solar wind) have been mod-
eled with numerical simulations and theoretical models and were found to be consis-
tent with first-order Fermi acceleration in the electric field of the shock front (Pesses
1979; Mann et al. 2002). The intensity time profiles of protons accelerated in CME-
driven shocks, however, have quite different characteristics eastward and westward of
the shock location, as mapped with multi-spacecraft observations (Reames et al. 1996).
It was argued that shock-drift and diffusive shock acceleration are inefficient in slow
CMEs (Kundu et al. 1989b). From the analysis of solar energetic particle (SEP) events,
Kahler & Reames (2003) conclude that fast CMEs (> 900 km s−1) that propagate
in slow solar-wind regions produce stronger shocks than in fast solar-wind regions,
because they produce a higher compression ratio.
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11.6 Summary

Particle acceleration in solar flares is mostly explored by theoretical models, be-
cause neither macroscopic nor microscopic electric fields are directly measurable
by remote-sensing methods. The motion of particles can be described in terms
of acceleration by parallel electric fields, drift velocities caused by perpendicu-
lar forces (i.e., E × B-drifts), and gyromotion caused by the Lorentz force of the
magnetic field (§ 11.1). Theoretical models of particle acceleration in solar flares
can be broken down into three groups (§ 11.2): (1) DC electric field accelera-
tion, (2) stochastic or second-order Fermi acceleration, and (3) shock accelera-
tion. In the models of the first group, there is a paradigm shift from large-scale
DC electric fields (of the size of flare loops) to small-scale electric fields (of the size
of magnetic islands produced by the tearing mode instability). The acceleration
and trajectories of particles is studied more realistically in the inhomogeneous
and time-varying electromagnetic fields around magnetic X-points and O-points
of magnetic reconnection sites, rather than in static, homogeneous, large-scale
Parker-type current sheets (§ 11.3). The second group of models entails stochas-
tic acceleration by gyroresonant wave-particle interactions, which can be driven
by a variety of electrostatic and electromagnetic waves, supposed that wave tur-
bulence is present at a sufficiently enhanced level and that the MHD turbulence
cascading process is at work (§ 11.4). The third group of acceleration models in-
cludes a rich variety of shock acceleration models, which is extensively explored
in magnetospheric physics and could cross-fertilize solar flare models. Two major
groups of models are studied in the context of solar flares (i.e., first-order Fermi
acceleration or shock-drift acceleration, § 11.5.2, and diffusive shock acceleration,
§ 11.5.3). New aspects are that shock acceleration is now applied to the outflow
regions of coronal magnetic reconnection sites, where first-order Fermi acceler-
ation at the standing fast shock is a leading candidate (§ 11.5.4). Traditionally,
evidence for shock acceleration in solar flares came mainly from radio type II
bursts. New trends in this area are the distinction of different acceleration sites
that produce type II emission: flare blast waves, the leading edge of CMEs (bow-
shock), and shocks in internal and lateral parts of CMEs (§ 11.5.5). In summary
we can say that (1) all three basic acceleration mechanisms seem to play a role to
a variable degree in some parts of solar flares and CMEs, (2) the distinction be-
tween the three basic models become more blurred in more realistic models, and
(3) the relative importance and efficiency of various acceleration models can only
be assessed by including a realistic description of the electromagnetic fields, ki-
netic particle distributions, and MHD evolution of magnetic reconnection regions
pertinent to solar flares.



Chapter 12

Particle Kinematics

Particle acceleration, a universal theme in high-energy astrophysics, remains a black
box in all astronomical observations, even in solar flares, from our nearest astrophysi-
cal laboratory. We are just now starting to understand the complicated electromagnetic
field dynamics in magnetic reconnection regions, which probably provide the most pro-
lific sources of accelerated particles, but we still have no reliable method to map out
the relevant electric and magnetic fields. We do not know the field strengths nor the
exact locations of the accelerating fields. In laboratory accelerators, electromagnetic
field strengths, the geometry of the fields, and particle trajectories are usually known
with high precision by design. Laboratory measurements concentrate mainly on the
kinematic reconstruction of collisional products of accelerated particle beams that hit
a target, which sometimes leads to discoveries of new particles, whose identities are
constrained by the kinematics of their trajectories, momentum, energy, and parity con-
servation laws. In solar flares, we observe analogous collision experiments, where elec-
trons and ions are accelerated in a coronal, collisionless magnetic reconnection region,
which then propagate in the low-β plasma along magnetic field lines to chromospheric
footpoints, corresponding to the targets in laboratory accelerators. Progress has been
made over recent years to measure the small time-of-flight differences of energized
electrons between the coronal acceleration site and the chromospheric target. Because
the time-of-flight is a direct function of the flight distance and the velocity (or kinetic
energy) of the electrons, we have a powerful new diagnostic on the so far unlocalized
particle accelerators. Because the tiny time-of-flight differences are only in the order
of ≈ 10 − 100 ms, high-precision timing measurements have to be conducted which
generally require a photon statistics of >∼ 104 photons per second. This requirement
calls for large-area detectors with high sensitivity, which were available in the Burst
and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory
(CGRO), which operated between 1991 and 2000. However, the photon count rate in
large flares is sufficiently high that also smaller detectors, such as HXRBS/SMM or
RHESSI, can accomplish kinematic measurements. In the following we lay out the
fundamentals of particle kinematics applied to solar flares, including the propagation
processes during acceleration, free-streaming, injection, trapping, and precipitation. A
review on this novel topic can be found in Aschwanden (2002b).
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MODEL ASSUMPTIONS

α<α0 α>α0

ACCELERATION
acceleration time tAcc=0.1-1.0 s
(spectral soft-hard evolution)

INJECTION
modulated in pulses tPul=0.1-2.0 s
synchronized in energy and pitch angle
bifurcation in pitch angle

PROPAGATION
free-streaming, no energy loss
time-of-flight  tTOF(E)=l*E-1/2=0.1-0.3 s

TRAPPING
collisional deflection into loss-cone
tDefl(E)=E3/2/ne=0.5-10 s

ENERGY LOSS
collisions in chromosphere tColl=0.01-0.1 s
thick-target HXR emission

Figure 12.1: Conceptual breakdown of the flare kinematics into five different physical pro-
cesses, described in this section (Aschwanden 1998a).

12.1 Overview on Particle Kinematics

In solar flares, the kinematics of nonthermal particles can generally be characterized
by at least five different physical processes, as sketched in Fig. 12.1: (1) acceleration,
(2) injection, (3) free-streaming propagation, (4) trapping, and (5) precipitation and
energy loss, which we will quantify in turn in the following subsections. The acceler-
ation phase is defined by the time interval in which a thermal particle gains velocity
and kinetic energy up to a maximum value. At the end of the acceleration phase, we
define an injection mechanism that allows a particle to leave the acceleration region
and to enter a magnetic field line where it freely propagates. The third and fourth pro-
cesses could happen in parallel, some particles propagate freely (free-streaming) on a
field line, while others become trapped and bounce back and forth in a magnetic mir-
ror region, depending on the initial pitch angle at injection. The fifth step entails the
phase of energy loss, which inevitably occurs when the particles precipitate towards
the chromosphere, where high density thermalizes all particles very rapidly, causing
the bremsstrahlung that is detectable in hard X-rays (§ 13) and gamma-rays (§ 14).
Trapped particles can be detected by thin-target bremsstrahlung in hard X-rays (§ 13)
or gyrosynchrotron emission (§ 15) in radio wavelengths.
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In principle one can define for each kinematic process a time scale that strongly
depends on the velocity and thus on the kinetic energy ε of the particle, so that the total
elapsed time is composed of the sum of each time interval,

t(ε) = tacc(ε) + tinj(ε) +
{

tprop(ε)
ttrap(ε)

}
+ tloss ,

for α < α0

for α ≥ α0
, (12.1.1)

where particles bifurcate into free-streaming propagation for small pitch angles (α <
α0) or trapping for large pitch angles (α ≥ α0). In practice, the acceleration time
may not be directly measurable if acceleration occurs continuously, while the injection
mechanism may synchronize the release of bunches of particles, as suggested by the
common appearance of the subsecond pulses detected in hard X-rays. Also the en-
ergy loss time may not be measurable in the case of thick-target collisions, because the
stopping distance in the chromosphere is much shorter than the propagation distance
from the coronal acceleration site down to the chromosphere. In this most likely sce-
nario, the time difference between a synchronized pulsed injection at the “exit” of a
coronal magnetic reconnection site and the detection of hard X-rays by chromospheric
thick-target bremsstrahlung is only dominated by the propagation time interval, either
by free-streaming or trapped particle motion,

t(ε) ≈
{

tprop(ε)
ttrap(ε)

for α < α0

for α ≥ α0
. (12.1.2)

The results of recent time delay analysis indicates that these processes dominate the
timing of hard X-ray-producing electrons [namely, electron time-of-flight differences
of free-streaming electrons tprop(ε), or trapping times of electrons ttrap(ε)]. The bi-
modality in the timing can easily be verified by the energy dependence, because time-
of-flight differences have an energy dependence of tprop ∝ l/v ∝ l ε−1/2 (in the
nonrelativistic limit), while trapping times scale with the collisional deflection time,
ttrap(ε) ∝ ε3/2/ne,

t(ε) ∝
{

ε−1/2

ε3/2

for α < α0

for α ≥ α0
. (12.1.3)

Although these two processes seem to be dominant based on the observational analysis,
we do not want to bias ourselves to consider this as the only possibility, but will also
discuss the timing of other processes (acceleration, injection, and energy loss), which
could dominate in specific flare models. For instance, in large-scale DC electric fields,
particles experience acceleration all the way on their trajectory and may never reach
a free-streaming orbit phase. Thus, large-scale DC electric fields produce a distinctly
different timing than small-scale acceleration regions of any kind. We will see that the
timing of particle kinematics also depends strongly on the geometry and topology of the
magnetic field, which is different for each flare model, and thus can be used as a power-
ful method to discriminate competing flare models. We emphasize that such kinematic
tests of particle acceleration models are relatively novel, while traditional approaches
attempt to extract information on acceleration mechanisms by spectral modeling.
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12.2 Kinematics of Free-Streaming Particles

12.2.1 Definition of Time-of-Flight Distance

We start with the simplest kinematic case, which is the propagation of free-streaming
particles in a collisionless plasma. We consider first just the simplest case of constant
velocity. Two particles that are injected with different velocities v1 and v2 at the “exit”
of a coronal acceleration site onto a magnetic field line experience a velocity dispersion
that translates into a time-of-flight difference ∆tprop over a common distance lTOF ,

∆tprop =
lTOF

v1
− lTOF

v2
=

lTOF

c

(√
1 − 1

γ2
1

−
√

1 − 1
γ2
2

)
, (12.2.1)

where γ1 and γ2 are the relativistic Lorentz factors as defined in Eqs. (11.1.11) and
(11.1.13). Obviously, the faster particles (with higher kinetic energy) arrive first, pre-
ceding the slower ones. Thus, if propagation delays dominate the total energy-dependent
timing (Eq. 12.1.1), hard X-ray pulses from electron bremsstrahlung should peak first at
the highest energies. Conversion of the kinetic energy of electrons, εi, into photon en-
ergies detected in hard X-rays, εX,i = hνX , can be calculated from the bremsstrahlung
cross section, which we will treat in § 13. This conversion factor depends on the en-
ergy, the spectral slope of the electron spectrum, and the assumed bremsstrahlung cross
section, and amounts typically to qε = εX,i/ε ≈ 0.5, since electrons can only produce
hard X-ray photons of lower energy. As Fig. 12.2 illustrates, this conversion factor is
needed to evaluate the correct kinetic energies and velocities of the particles from a
measured hard X-ray delay ∆tX .

The time-of-flight distance lTOF evaluated using Eq. (12.2.1) measures the path
length of an electron spiraling along the magnetic field trajectory with some pitch angle
(Fig. 12.2, middle). In order to obtain the length lmag of the magnetic field line, we
need to correct for the parallel velocity component, v‖,

lmag = lTOF qα , qα =
v‖
v

= cosα ≤ 2
π

= 0.64 . (12.2.2)

The numerical value of qα ≤ 0.64 is obtained by averaging the pitch angle over a loop
bounce time in the limit of large mirror ratios (see derivation in § 12.5).

An additional length correction needs to be applied if the magnetic field line is
helically twisted (Fig. 12.2, bottom). If we straighten the flare loop to a cylindrical
geometry with radius r, the projected length lloop of the cylinder is related to the length
of the helical field line lmag by

lloop = lmag qh , qh = cos θ =

√
1 −
(

2πnr

lmag

)2

≈ 0.85 , (12.2.3)

with n being the number of complete twists by 2π radians. The helicity of coronal loops
cannot exceed a few radians before they become magnetically unstable. For instance, a
critical twist of ≈ 2.5π is predicted for erupting prominences (Vrsnak et al. 1991). The
kink instability is predicted for twists in excess of ≈ 4.8π (Mikić et al. 1990). Thus



12.2. KINEMATICS OF FREE-STREAMING PARTICLES 521

t_c=l/c

Li
gh

t t
ra

ve
l t

im
e

Time

Particles
HXR photons

K
in

et
ic

 e
ne

rg
y

ε2(v2)

ε2(v1)

t2=l/v2 t1=l/v1

εX,2=hνX,2

εX,1=hνX,1

Time-of-flight difference ∆t=t2-t1

v

v||

Pitch angle α
Distance parallel to field line

D
is

ta
nc

e 
pe

rp
. t

o 
fie

ld
 li

ne

Distance parallel to loop axis

D
is

ta
nc

e 
pe

rp
. t

o 
lo

op
 a

xi
s

Twist angle θ

Flare loop flux tube

Figure 12.2: Geometrical effects that determine the timing in free-streaming particle prop-
agation: (top) velocity dispersion between particles with different kinetic energies εi, which
translate into a time difference between the detected hard X-ray photon energies εX,i; (middle)
pitch angle α of particle, which defines the parallel velocity v‖ = v cos α; (bottom) twist angle
θ of magnetic field line, which defines the projected trajectory length lloop = lmag cos θ.

we might use an estimated twist of 2π (i.e., n = 1 for the number of twists) and a loop
aspect ratio of 2r/lloop ≈ 0.2 (observed for the Masuda flare), which yields a length
correction factor of qh ≈ 0.85 in Eq. (12.2.3). Combining the two factors we have

lloop = qh lmag = qαqH lTOF ≈ 0.54 lTOF , (12.2.4)

so the length of the particle trajectory projected onto the loop axis is about half the
effective time-of-flight distance.
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Figure 12.3: Hard X-ray observations of the 1991-Dec-15, 18:32 UT flare, recorded with
BATSE/CGRO in the Medium Energy Resolution (MER) mode that contains 16 energy chan-
nels. Channels #3−10 are shown, with the low-energy edges indicated on the left. The channels
are incrementally shifted and a lower envelope is indicated, computed from a Fourier filter with a
cutoff at a time scale of 4 s. The fine structure (with the envelope subtracted) is cross-correlated
in the delay measurements shown in Fig. 12.4 (Aschwanden 1996).

12.2.2 Time-of-Flight Measurements

The previously described pure time-of-flight (TOF) model, where propagation of free-
streaming electrons dominates the energy-dependent timing in Eq. (12.1.1), with all
other terms negligible, seems to explain the relative time delays of fast time structures
seen in hard X-ray time profiles satisfactorily. The smoothly varying component in
hard X-ray time profiles usually exhibits a different energy-dependent timing that is
attributed to trapped particles (§ 12.5). An example is shown in Fig. 12.3, where the
smoothly varying background is subtracted (dashed curves in Fig. 12.3), and the re-
maining fast time structures are cross-correlated in different energies, leading to the
delay curve shown in Fig. 12.4. Taking the conversion factor of photon to electron
energies into account, qε = εX,i/ε ≈ 0.5, and fitting the TOF model (Eq. 12.2.1), a
time-of-flight distance of lTOF = 29.0 ± 1.8 Mm is found, with a reduced χ2 or 0.59
(Aschwanden 1996).

As Fig. 12.4 shows, the relative time delays between adjacent energy channels are
generally very small [e.g., ∆t = t(εX = 46 keV) − t(εX = 60 keV)= 19 ± 2 ms
between the lowest two channels]. How is it possible to measure reliably such small
time delays beyond the temporal resolution or time binning of the instrument, which
is 64 ms for the BATSE/MER data used here? The trick is simply to use a cross-
correlation technique with interpolation at the maximum of the cross-correlation coef-
ficient (CCC), which yields sub-binning accuracy if the photon statistics are sufficiently
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Figure 12.4: Hard X-ray time delay measurements between channel #3 and #4 − 10 from the
data shown in Fig. 12.3. The delays and statistical uncertainties are indicated on the right. The
hard X-ray energies εX on the right axis represent the medians of the count spectra in each
channel, while the electron energies ε on the left axis are computed using the conversion factor
qε = εX,i/ε ≈ 0.5. The solid line represents a fit of the 1-parameter model given in Eq. (12.2.1),
yielding a TOF distance of l = 29.0 ± 1.8 Mm, with χ2

red = 0.59 (Aschwanden 1996).

high. The cross-correlation coefficient between two flux profiles is defined by

CCC(τj) =

∑i2
i=i1

F1(ti)F2(ti−j)√∑i2
i=i1

F 2
1 (ti)

∑i2
i=i1

F 2
2 (ti−j)

, (12.2.5)

where the index i only runs over the overlapping time interval in both energy chan-
nels to avoid a bias from aliasing effects. Empirically we can measure the accuracy
of the delay measurement by repeating the cross-correlation by adding random noise
(Aschwanden & Schwartz 1995). If the correlated time profiles contain pulses with
Gaussian-like shape, characterized by a Gaussian width σ, we can assert the uncertainty
of the mean just as for a normal distribution of N events, which is mt = ±σ/

√
N . For

the delay measurement τ = t1 − t2 we can then use the law of error propagation,

mτ =

√(
dτ

dt1

)2

m2
t1 +
(

dτ

dt2

)2

m2
t2 = σ

√
1

N1
+

1
N2

. (12.2.6)

Thus, for the data shown in Fig. 12.3 we roughly have count rates of order N ≈ 4×104

cts s−1 in the lowest channels and pulses with Gaussian widths of σ ≈ 1000 ms, so
we estimate an uncertainty of mτ ≈ 1000

√
2/4 × 104 ≈ 7 ms for a single pulse.

Averaging over 12 pulses increases the accuracy by another factor of
√

12 = 3.5 and
yields the obtained accuracy of 2 ms, as it was evaluated by repeating with added



524 CHAPTER 12. PARTICLE KINEMATICS

1) Small-Scale Stochastic Acceleration

V
el

oc
ity

  v
v1

v2

2) Small-Scale Electric DC-field Acceleration

V
el

oc
ity

  v

v1

v2

3) Large-Scale Electric DC-field Acceleration

V
el

oc
ity

  v

v1

v2

4) DC Acceleration with different start points

S2S1V
el

oc
ity

  v

v1

v2

5) DC Acceleration with different exit points

E2

E1

V
el

oc
ity

  v

v1

v2

Distance  l
Figure 12.5: Five different models for the timing of electron acceleration and propagation. The
velocity changes of a low-energy (v1) and a high-energy electron (v2) are shown along a 1D path
from the beginning of acceleration (left side) to the thick-target site (right side). Models 1 and 2
characterize small-scale acceleration processes, while models 3 − 5 depict scenarios with large-
scale acceleration. Models 4 and 5 illustrate different start (S1, S2) and exit positions (E1, E2)
for the accelerated electrons (Aschwanden 1996).

random noise. These measurements were accomplished with the BATSE detectors on
CGRO, which had the largest collecting area (2000 cm2). Other hard X-ray detectors
have smaller areas [e.g., HXRBS/SMM with 71 cm2 and RHESSI with an effective
area of 38 cm2 × 9 detectors × (0.52) (bi-grid transmission) = 85 cm−2], so count
rates are a factor of ≈ 25 smaller and the timing accuracy is reduced by a factor of ≈ 5.

12.3 Kinematics of Particle Acceleration

Let us now refine our kinematic models by including finite acceleration times and study
how this affects the timing of hard X-ray emission, or the arrival times of electrons at
the thick-target site. Basically one can distinguish between two opposite scenarios:
small-scale and large-scale acceleration processes.
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Figure 12.6: Fit of the stochastic acceleration model of Miller et al. (1996) to the same data as
in Fig. 12.4. Adding the predicted acceleration time to the propagation time (thick line) yields
negative delays (dashed line). Adjusting the propagation time by a factor of 1.8 (thin line) yields
an acceptable fit in the 100 − 200 keV range, but not at higher energies (Aschwanden 1996).

In small-scale acceleration processes, one can generally neglect acceleration time
scales compared with propagation time scales, tacc � tprop, as long as the accelera-
tion path is small compared with the free-flight propagation path. Such situations are
depicted in model 1 and 2 (Fig. 12.5). Hard X-ray timing can then be described with
the time-of-flight model (§ 12.2) that was found to be fully consistent with the data for
the flare shown in Fig. 12.3.

12.3.1 Stochastic Acceleration

We consider a stochastic acceleration process as it can occur in coronal regions with
enhanced wave turbulence (or similarly in shock fronts). Even when the spatial scale of
the acceleration region is small compared with the TOF propagation distance (model 1
in Fig. 12.5), this does not necessarily imply that the acceleration time is also much
smaller than the propagation time. In the case of diffusive stochastic acceleration
the particles can be bounced around in a turbulent region significantly longer than
the travel time through this region. For instance, LaRosa et al. (1995) estimated the
bulk energization time of electrons in a reconnection-driven MHD-turbulent cascade to
tacc(ε=20 keV)≈ 300 ms, which is comparable with the propagation time inferred in
our flare (Fig. 12.4), tprop(ε=20 keV) =l/v =29 Mm /(0.27 c)=360 ms. More specifi-
cally, Miller et al. (1996) estimated acceleration times of 70 ms to energize electrons
from ≈ 5 to 50 keV, or about 180 ms to 511 keV. They specified an energy dependence
of

tacc(ε) =

[(
ε

mec2

)1/6

− 0.48

]
· 350 ms (ε > 5 keV) , (12.3.1)
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to energize electrons by gyroresonant interactions with fast-mode waves in an MHD-
turbulent cascade. We fit this model to the 1991-Dec-15 flare and show the expected
hard X-ray timing in Fig. 12.6. First we add the acceleration time to the same prop-
agation time inferred in Fig. 12.4 (based on a TOF distance of l = 29 Mm). The
expected hard X-ray delay (dashed curve in Fig. 12.6) becomes negative above 200
keV, meaning that the high-energy electrons arrive later than the low-energy electrons
at the chromosphere due to the longer acceleration time. If we perform a fit of the
combined expression tX = tacc + tprop (using Eqs. 12.2.1 and 12.3.1) we find that the
data can be reasonably fitted in the 100 − 200 keV range with a 1.8 times larger TOF
distance (to compensate for the acceleration time), but the hard X-ray delay decreases
above 200 keV significantly below measured values. Thus, the energy-dependent scal-
ing of the acceleration time specified in the stochastic acceleration model of Miller et
al. (1996) cannot fit the observed delays over the entire energy range of 80 − 800 keV
for this specific flare.

This example illustrates that the observed hard X-ray delays require that the higher
energy electrons arrive earlier than the low-energy electrons, which is a natural out-
come for time-of-flight dispersion, but is an opposite trend to most acceleration mod-
els, where it takes statistically longer to accelerate to higher energies. This is a strong
indication that acceleration times might not be dominant for the observed hard X-ray
timing.

12.3.2 Electric DC Field Acceleration

Acceleration mechanisms employing DC electric fields have been studied by various
researchers (e.g., Holman 1985; Tsuneta 1985; or Emslie & Hénoux 1995), but there
is no detailed comparison of the predicted timing with observations. Models 2 − 5
in Fig. 12.5 depict various scenarios where acceleration and propagation time scales
have different weighting, depending on the spatial location and extent of the DC field.
Because the free-flight path of electrons is complementary to the acceleration path
length in unidirectional DC fields in a more direct fashion than in the case of stochastic
acceleration, the resulting hard X-ray timing provides a crucial test between different
models.

The simplest case is given in model 2 (Fig. 12.5), where the spatial extent of the
DC field is small compared with the TOF distance, and necessarily also implies that
the acceleration time is small compared with the free-flight time (tacc � tprop), and
thus can be neglected. Hard X-ray timing can then be adequately described using
Eq. (12.2.1), which fits the data satisfactorily for the 1991-Dec-15 flare (Fig. 12.4).

Another simple approach is to assume that an electric field extends over the entire
flare loop and that electrons are accelerated from one end of the loop to the other. As-
suming a constant electric field, the electrons would end up with a monoenergetic spec-
trum and coincident timing and thus cannot explain the observed delays (Fig. 12.4). A
first variant is to assume that a flare loop consists of a number of current channels with
different electric fields. In this scenario electrons are accelerated in separate channels
with different electric fields E, obeying the force equation (Eq. 11.1.1),

F = me a =
d

dt
(γmev) = eE =

ε

l
, (12.3.2)
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where ε represents the kinetic energy of an electron gained by the electric field E over
a distance l. Acceleration a can then be expressed as a function of the kinetic electron
energy ε or Lorentz factor γ (using Eq. 11.1.12) by

a(γ) =
ε

me l
=

c2

l
(γ − 1) . (12.3.3)

Acceleration time tacc as a function of energy can then be derived by integrating the
force equation (Eq. 12.3.2) and inserting Eq. (11.1.13),

tacc(γ) =
c

a(γ)

√
γ2 − 1 . (12.3.4)

Inserting the acceleration a(γ) from Eq. (12.3.3) into Eq. (12.3.4) then yields

tacc(γ) =
l

c

√
γ + 1
γ − 1

. (12.3.5)

In model 3 (Fig. 12.5), hard X-ray timing is entirely determined by this energy depen-
dence on the acceleration process, corresponding to the approximation tX ≈ tacc in
the general timing equation (Eq. 12.1.1). We fit this model to the observed hard X-ray
timing of the 1991-Dec-15 flare and show the results in Fig. 12.7 (left panel). Inter-
estingly, this model shows a very similar energy dependence to the TOF propagation
model (shown in Fig. 12.4) and thus fits the data equally well. The inferred accelera-
tion path length is a factor of 0.44 shorter than the path length in the TOF propagation
model, because the average electron speed is about half the final speed applied in the
propagation model (being exactly half in the nonrelativistic limit). Thus, the two mod-
els cannot be distinguished from the timing alone, but the inferred distance scale is a
factor of ≈ 2 different. However, there is no model that explains the existence of many
current channels with very different large-scale electric fields in the first place, which
have to be switched on and off on subsecond time scales to explain the observed hard
X-ray pulses.

In model 4 and 5 (Fig. 12.5) we investigate two further variants of electric DC
field acceleration, where the accelerated electrons are allowed to enter into (model 4)
or exit from (model 5) an electric field channel at different locations. In both models
the resulting electron energy is proportional to the acceleration path length, assuming
a constant (mean) electric field E in all current channels. Model 4 is a natural situation
in the sense that all electrons in a current channel experience acceleration once the
electric field is turned on. In this scenario, the acceleration path length of each electron
is defined by the distance between its start position and the loop footpoint. Defining
the acceleration a by the maximum electron energy εmax = mec

2(γmax − 1) obtained
by the electric field E over the loop length l (or an electron energy ε gained over a
proportionally smaller distance xacc),

a =
εmax

me l
=

ε

me xacc
, (12.3.6)

we find the following timing for electrons in model 4:

tacc(γ) =
c

a

√
γ2 − 1 =

l

c

√
γ2 − 1

(γmax − 1)
. (12.3.7)
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Figure 12.7: Fit of the DC electric field model 3 (left) and model 4 and 5 (right) for the same
data as shown in Fig. 12.4. With respect to the TOF distance lprop = 29 Mm fitted in Fig. 12.4,
the best fit of model 3 (left) yields an acceleration distance of l = lprop · 0.44, model 4 is shown
for l = lprop, and model 5 yields l = lprop · 1.1 (for Emax/mec

2 = 2) and l = lprop · 1.0 (for
Emax/mec

2 = 20), (Aschwanden 1996).

The resulting timing in model 4 is shown in Fig. 12.7 (right panel) for the same TOF
distance l = 29 Mm used in Fig. 12.4 and for γmax − 1 = 2 (or εmax ≈ 1 MeV).
High-energy electrons arrive later at the thick-target site than low-energy electrons for
every parameter combination and, thus, cannot fit the data. Therefore, model 4 can
clearly be rejected for all flares where high-energy electrons arrive first.

In model 5 the electrons are allowed to exit a current channel with an accelerat-
ing electric field at an arbitrary location. Because electron spectra always have neg-
ative slopes, this means that more electrons leave the current channel after a short
distance than after longer distances. This model may mimic a realistic situation when
the current channels are relatively thin (for the most extreme aspect ratios see Emslie &
Hénoux 1995), so that electrons exit a current channel by cross-field drifts. The length
of the acceleration path can then be determined from the final electron energy ε using
Eq. (12.3.6),

xacc(γ) = l
ε

εmax
= l

(γ − 1)
(γmax − 1)

. (12.3.8)

The resulting timing of electrons arriving at the thick-target site is then composed of
the sum of the acceleration time tacc over the acceleration path length xacc and the
free-flight propagation time tprop over the remaining path length l − xacc,

tX(γ) = tacc(γ) + tprop(γ) =
c

a(γ)

√
γ2 − 1 +

l − xacc(γ)
v(γ)

=
l

c

⎡
⎣ √γ2 − 1

(γmax − 1)
+

1 − (γ−1)
(γmax−1)√
1 − γ−2

⎤
⎦ . (12.3.9)
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The fit of the timing in model 5 is also shown in Fig. 12.7 (right panel) for two dif-
ferent parameter combinations (εmax = 1 MeV and 10 MeV). The essential result is
that model 5 fits the data the better the smaller the acceleration time is relative to the
propagation time, a situation that asymptotically approaches model 2 for high electric
field strengths. Consequently, the best fit is consistent with a small-scale acceleration
region, as in model 2.

Acceleration by field-aligned DC electric fields only increases the parallel velocity
v‖ of a particle, while the perpendicular velocity given by gyromotion, approximately
equal to thermal speed, v⊥ ≈ vTe, remains unaffected. Thus the pitch angle of an
accelerated particle would change as a function of the energy gained ε = mec

2(γ − 1)
as,

αacc(γ) = arcsin
(

v⊥
vacc(γ)

)
. (12.3.10)

For every electron that is accelerated out of a thermal distribution to relativistic ener-
gies, this would produce very small pitch angles in the order of a few degrees, such
that all accelerated electrons would immediately precipitate and no trapping would be
possible, in contradiction to the ubiquitous trapping observed in virtually all flares.

In summary, we find that all large-scale DC electric field acceleration models have
some problems in accomodating the observed energy-dependent, hard X-ray time de-
lays. The only model that yields consistent timing (model 3) requires the existence
of many current channels with different electric fields, which need to be switched on
and off on subsecond time scales in synchronization. Such a requirement is difficult
to realize, since currents cannot be switched off faster than with Alfvén speed (Mel-
rose 1992). The problems go away for small-scale electric fields, whether there are
super-Dreicer DC fields in reconnection regions as envisioned by Litvinenko (1996b)
or convective electric fields in coalescing magnetic islands (Kliem 1994), as long as ac-
celeration times are substantially smaller than propagation times to the chromosphere,
tacc � tprop. In this case, however, our time delay measurements are no longer sen-
sitive to any particular acceleration time dependence tacc(ε), other than being able to
place upper limits.

12.4 Kinematics of Particle Injection

12.4.1 Scenarios of Synchronized Injection

In the previous sections we essentially concluded that observed energy-dependent hard
X-ray delays (where the lower energies of pulses are delayed with respect to the higher
energies) are not sensitive to acceleration models, because the models generally pre-
dict the opposite timing (i.e., longer acceleration times for high-energy particles than
for low-energy particles). On the other hand, acceleration times are estimated to be
comparable with or longer than propagation times [e.g., for stochastic acceleration
(Eq. 12.3.1) or for sub-Dreicer electric fields in large current sheets]. The insensi-
tivity of the observed energy-dependent timing to these acceleration time scales can
thus only be reconciled by an intermediate injection mechanism that synchronizes the
injection of accelerated particles at the “exit” of the acceleration region (Fig. 12.1).



530 CHAPTER 12. PARTICLE KINEMATICS

Figure 12.8: Accelerated particles are trapped in the cusp region while they undergo first-order
Fermi acceleration. Particles leave the acceleration-plus-trap region once they become injected
into the magnetic field lines that connect to the footpoints. The injection mechanism could be
related to magnetic island dissipations in the reconnection region, fast shock waves, or pitch
angle evolution (Somov & Kosugi, 1997).

In other words, the acceleration region could be a black box that accelerates particles
continuously or with an arbitrary time cadence, while an injection mechanism opens a
gateway in a pulsed fashion onto magnetic field lines that connect to the chromospheric
footpoints of flare loops. The start time of particle propagation is then decoupled from
the acceleration time.

The physical nature of the postulated particle injection mechanism is little explored
and may be different for various acceleration and flare models. For parallel DC elec-
tric field acceleration, the particle leaves the acceleration path directly and continues
propagation (e.g., model 5 in the previous section) without any intervening delay, so
there is no injection mechanism present. Also, for perpendicular DC electric field ac-
celeration (Fig. 11.3, right panel; Litvinenko 1996b), there is no time delay between
the acceleration inside the current sheet and subsequent propagation once the particle
exits sideward from the current sheet. In contrast, for DC field acceleration in magnetic
islands (Figs. 11.5 and 11.6; Kliem 1994), for stochastic acceleration (e.g., Miller et
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al. 1996), for shock acceleration (Fig. 11.19; Tsuneta & Naito 1998), and in partic-
ular in collapsing traps (Figs. 11.18 and 12.8; Somov & Kosugi, 1997), particles are
temporarily trapped during acceleration and do not escape onto a magnetic field line
(leading to the chromospheric footpoints) before an injection mechanism deflects the
particle out of the acceleration trap. This injection mechanism could be the dynamics of
a macroscopic structure (e.g., the coalescence of two magnetic islands into one), which
changes the locations of the separatrix surfaces that divide trapped from free-streaming
electrons. Alternatively, particles can also leave the acceleration region by microscopic
changes, such as by changing the pitch angles or by transit near an X-point. Generally,
when particles are accelerated in a direction parallel to the magnetic field, their pitch
angles become smaller and the probability of being mirrored in converging magnetic
bottles becomes smaller. So every parallel acceleration mechanism also controls the
pitch angle evolution of particles in such a way that they automatically escape after a
finite time from the magnetic trap. However, the observation of subsecond pulses in
hard X-rays and radio bursts that appear to be strictly synchronized at all (nonthermal)
energies (Fig. 12.3) suggests a macroscopic mechanism rather than a microscopic ki-
netic effect, because microscopic effects are statistical and not synchronized between
particles of different energies.

12.4.2 Model of Particle Injection During Magnetic Reconnection

Let us derive a quantitative model (Aschwanden 2004) that explains particle injection
in solar flares in the context of a Petschek-type magnetic reconnection scenario. In
the standard flare reconnection model (§ 10.5.1; Carmichael 1964; Sturrock 1966; Hi-
rayama 1974; Kopp & Pneuman 1976; Tsuneta 1996a; Tsuneta et al. 1997; Shibata
1995), an X-type reconnection occurs at a coronal height hX and the newly recon-
nected magnetic field lines relax into a force-free configuration which later becomes
(after chromospheric evaporation) the soft-X-ray-bright flare loop. The height ratio of
the reconnection point height hX to the flare loop height hL,

qh =
(

hX

hL

)
≈ 1.5 , (12.4.1)

has been determined by electron time-of-flight measurements, using pulse background
subtraction methods (hX/hL = 1.7± 0.4; lTOF /lhalf−loop = 1.4± 0.3; Aschwanden
et al. 1996c), pulse deconvolution methods (lTOF /lhalf−loop = 1.6±0.6; Aschwanden
et al. 1999d), or loop shrinkage measurements (lcusp/lhalf−loop = 1.25, 1.5; Forbes &
Acton 1996).

The reconnection outflow has initially an Alfvén speed vA(h = hX) and carries the
magnetic flux of the newly reconnected field lines. The newly reconnected magnetic
field lines experience a strong Lorentz force j×B in the initial cusp shape, which grad-
ually reduces when the field line relaxes into a force-free shape, because the curvature
force is reciprocal to the curvature radius rloop if the magnetic field only has a parallel
component (Eqs. 6.2.17−19),

j × B = −∇
(

B2

8π

)
+

1
4π

(B · ∇)B =
B2

4π

1
rloop

en . (12.4.2)
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Figure 12.9: Scenario of field line relaxation after an X-point reconnection: The apex height
of the field line relaxes exponentially into a force-free state from the initial cusp shape to the
final quasi-circular geometry. The losscone angle of the trapped particles gradually opens up
and releases more particles from the trap (Aschwanden 2004).

Thus, in our dynamic model we assume that the motion of the postreconnection field
line occurs initially with Alfvén speed vA, when the curvature radius is minimal in
the cusp, and then decreases asymptotically to zero at the end of the relaxation phase,
when the force-free field line reaches the maximum curvature radius in a quasi-circular
flare loop geometry (Fig. 12.9).

We approximate the height dependence of the apex of the relaxing field line with
an exponential function (Fig. 12.9) with an e-folding relaxation time scale tR,

h(t) = hL + (hX − hL) exp
(
− t

tR

)
, (12.4.3)

which matches the initial condition h(t = 0) = hX (demarcating the height of the
X-point) and final asymptotic limit h(t = ∞) = hL (the height of the relaxed flare
loop). The speed of the height change is simply the derivative of Eq. (12.4.3),

v(t) =
dh(t)

dt
= − (hX − hL)

tR
exp
(
− t

tR

)
= −vX exp

(
− t

tR

)
, (12.4.4)

which defines the relaxation time scale tR,

tR =
hX − hL

vX
, (12.4.5)

so that Eq. (12.4.4) fulfills the initial condition v(t = 0) = −vX and the final asymp-
totic limit v(t = ∞) = 0. Reconnection theories predict that the outflows have Alfvén
speed, so we can set the initial value of the relaxing field line approximately equal to
the reconnection outflow speed, assuming frozen-in flux conditions,

vX ≈ vA = 2.18 × 1011 Bext√
nX

, (12.4.6)
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where Bext denotes the external magnetic field strength on both sides of the outflow
region and nX denotes the internal electron density in the X-point.

The magnetic field in the X-point is zero by definition and gradually increases with
increasing distance from the X-point. Correspondingly, the losscone angle α is zero at
the X-point and then gradually increases with increasing distance from the X-point or
as a function of time for the progressively relaxing field line. A convenient parameter-
ization for this evolution of the losscone angle α(h[t]) is an exponential function, with
an e-folding time scale tI that we call injection time,

α(t) =
π

2

[
1 − exp

(
− t

tI

)]
. (12.4.7)

The pitch angle is initially zero, α(t = 0) = 0 and then opens up to a full half-cone,
α(t → ∞) = π/2, for relaxation times t � tI . We define a mirror ratio between the
magnetic field B(h) at an arbitrary height h in the cusp and BL at the flare looptop,
which relates to the losscone angle α(h[t]) by,

R(h[t]) =
BL

B(h[t])
=

1
sin2 α(h[t])

. (12.4.8)

With this parameterization, the evolution of the magnetic field strength at the apex of
the relaxing field line is (using Eqs. 12.4.7−8),

B(t) = BL sin2 α(t) = BL sin2

(
π

2

[
1 − exp

(
− t

tI

)])
, (12.4.9)

or, inserting the transformation h(t) from Eq. (12.4.3), we obtain the height depen-
dence of the magnetic field

B(h) = BL sin2

(
π

2

[
1 −
(

h − hL

hX − hL

)tR/tI
])

. (12.4.10)

The magnetic field strength in the X-point is zero by definition, BX = B(h = hX) =
0, and then increases in the reconnection outflow region to the ambient value, which we
denote by BL = B(h = hL) at the height of the flare loop (at the position after final
relaxation). So the magnetic field monotonically increases from the X-point towards
the flare looptop.

For the spatial variation of the magnetic field near the X-point (Eq. 12.4.10) it is
actually more instructive to express the injection time tI in terms of a spatial scale. We
define a magnetic length scale LB where the magnetic field increases from zero at the
center of the X-point towards half of the value at infinity, B(h = hX − LB) = BL/2
(Fig. 12.10, bottom panel). This can be calculated straightforwardly from Eq. (12.4.10)
and we find the relation,

tI = tR
ln(1 − qB)

ln(1/2)
≈ tR tan

(π

2
qB

)
≈ tR

π

2
qB , (12.4.11)

where qB expresses the fraction of the magnetic length scale LB to the cusp distance
(hX − hL),

qB =
LB

(hX − hL)
. (12.4.12)
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Figure 12.10: Definition of the magnetic length scale LB at the X-point in the context of a
Petschek-type X-point geometry (top panel), with height in the horizontal direction. The mag-
netic field B(h − hX) as a function of height near the X-point is shown (bottom panel) for the
model parameters used in Fig. 12.11. The magnetic length scale LB is defined by the range
where the magnetic field increases to half the asymptotic value far away from the X-point (As-
chwanden 2004).

The relaxation of the field line has the effect that the narrow losscone at the re-
connection point opens up and allows particles with gradually larger pitch angles to
precipitate. In other words, the particles that are accelerated near the X-point see ini-
tially a very small losscone angle and are thus fully trapped, while the gradual opening
forced by the relaxation of the field line untraps them as a function of relaxation time.
If we assume that the accelerated particles have all been accelerated near the X-point
and have an isotropic pitch angle distribution, their initial distribution is

N(α) dα ∝ 2π sinα dα . (12.4.13)

The precipitation rate dNP (t)/dt is then proportional to the time derivative, where the
losscone angle has the time dependence given in Eq. (12.4.7),

dNP (t)
dt

=
dN(α)

dα

dα(t)
dt

∝ cos [α(t)]
dα(t)

dt
= cos

(
π

2

[
1 − exp

(
− t

tI

)])
exp
(
− t

tI

)
.

(12.4.14)
This implies that the opening speed of the losscone angle is fastest at the beginning and
slows down with time.

To account for a finite acceleration time, we assume that the number of particles
accelerated to an arbitrary energy increases with some power a of the trapping time t,
so the fraction of accelerated particles increases as,

NA(t) ∝ ta . (12.4.15)
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Figure 12.11: The dynamic evolution of parameters is shown for the field-line relaxation model
(§ 12.4.2). The parameters are: height of X-point hX = 30 Mm, height of relaxed flare loop
hL = 20 Mm, density nX = 109 cm−3, magnetic field at apex of flare loop BL = 20 G, and
magnetic scale length in the reconnection region LB/(hX − hL) = 0.1. The curves show the
evolution of height h(t)/hL, relaxation velocity v(t)/vX with vX = 2070 km s−1, magnetic
field at the apex of the relaxing field line B(h)/BL, losscone angle α(t)/(π/2), magnetic mirror
ratio R(t), and precipitation flux F (t)/max(F ). The relaxation time is tR = 4.84 s, the
injection time scale tI = 1.00 s, and the FWHM pulse duration is tw = 1.28 s (Aschwanden
2004).

The flux of precipitating accelerated particles then has the time dependence

F (t) = NA(t)
dNP (t)

dt
∝ ta cos

(
π

2

[
1 − exp

(
− t

tI

)])
exp
(
− t

tI

)
. (12.4.16)

For a given acceleration mechanism, parameter a is a constant, and thus the pulse
profiles are scale-invariant if scaled by normalized time (t/tI). Therefore, the FWHM
of the flux profile, tw, is also scale-invariant [i.e., the ratio (tw/tI)]. We calculate this
scale-invariant ratio qa = (tw/tI) numerically for different acceleration power indices
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Figure 12.12: Temporary trapping occurs in the acceleration region in the cusp region below
the reconnection point in our model (right panel), which can explain the coronal hard X-ray
emission observed during the Masuda flare (left panel; Masuda et al. 1994). The observations in
the left panel show a Yohkoh/HXT 23 − 33 keV image (thick contours) and Be119 SXT image
(thin contours) of the 92-Jan-13, 17:28 UT flare (Aschwanden 1998b).

a = 0.0, ..., 2.0,

qa =
tw
tI

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.493 for a = 0.0
1.014 for a = 0.5
1.284 for a = 1.0
1.503 for a = 1.5
1.697 for a = 2.0

(12.4.17)

We show the time evolution of the various parameters in Fig. 12.11: height h(t)/hL,
relaxation velocity v(t)/vX , magnetic field at apex of the relaxing field line B(h)/BL,
losscone angle α(t)/(π/2), magnetic mirror ratio R(t), and precipitation flux F (t).

We can now express the FWHM pulse duration tw as just a function of the inde-
pendent parameters tR and qB , using Eqs. (12.4.11−12) and (12.4.17),

tw = tR qa

(
ln(1 − qB)

ln(1/2)

)
≈ qa

π

2
LB

vX
≈ 2LB

vA
. (12.4.18)

The right-hand approximation expresses most succinctly the relation of the pulse du-
ration to the underlying physical parameters: the pulse duration is proportional to the
Alfvén transit time (with velocity vX ≈ vA) through the magnetic length scale LB of
the X-point region. The fastest time structures are produced by the smallest X-point
regions (and presumably for the smallest flare loops). For instance, an X-point region
with a spatial extent of LB = 500 km, an Alfvén velocity of vA = 2000 km s−1, yields
pulses with time scales of typically tw ≈ 0.5 ± 0.25 s, depending on the acceleration
power index a. If the Alfvén speed is known, the pulse duration can be used to estimate
the magnetic length scale LB of a Petschek-type X-point (Fig. 12.10), which entails the
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Figure 12.13: The magnetic mirror ratio R = BM/B0 is defined by the ratio of the magnetic
field strengths between the mirror point, B(s = sM ) = BM , and the injection point, B(s =

0) = B0, which define the losscone angle α0. Particles injected with a larger pitch angle α > α0

are mirrored, while particles with smaller pitch angles precipitate through the losscone.

diffusion region of a magnetic reconnection process. Thus, this model provides a di-
rect diagnostic of magnetic reconnection geometry. This model also provides a natural
explanation for the existence of above-the-looptop hard X-ray emission (Fig. 12.12),
as discovered by Masuda et al. (1994) and reviewed in Fletcher (1999). The model
also demonstrates that the observed pulse durations are controlled by the injection time
rather than by the acceleration time scale.

12.5 Kinematics of Particle Trapping

12.5.1 Magnetic Mirroring

After a magnetic reconnection process in a flare, the closed field lines always relax
into a more force-free state, which corresponds to dipole-like field geometries with the
strongest magnetic fields at the footpoints and a weaker magnetic field in the coronal
segments inbetween (Fig. 9.4). This implies that each closed magnetic field line natu-
rally forms a magnetic trap (Fig. 12.13), where particles mirror back and forth as long
as the trapped plasma is collisionless and adiabatic particle motion is ensured. At the
collisionless limit, particle motion is adiabatic and the magnetic moment µ is conserved
along the loop coordinate s,

µ =
1
2mev2

⊥(s)
B(s)

=
1
2mev2 sin2 α(s)

B(s)
= const . (12.5.1)

The pitch angle α(s) changes as a function of the magnetic field B(s) along the field
line, while the velocity v is constant for adiabatic motion.
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To understand the basic kinematics of magnetic traps we assume a dipole-like mag-
netic field, which at its lowest order can be approximated by a parabolic equation (e.g.,
Trottet et al. 1979),

B(s) = B0

[
1 + (R − 1)

s2

s2
M

]
, (12.5.2)

where B0 = B(s = 0) represents the (minimum) magnetic field strength at the looptop
at s = 0, and sM is the length from the looptop to the mirror point. The location
of the mirror point s = sM can be defined at the interface between the (coronal)
collisionless and (chromospheric) collisional regime, which usually coincides with the
zone of largest magnetic divergence (i.e., the canopy structure in the transition region:
Fig. 4.25). The magnetic mirror ratio R is defined by the ratio of the magnetic field
strengths at the mirror point and looptop,

R =
B(s = sM )

B0
=

1
sin2(α0)

. (12.5.3)

The losscone angle α0 is defined by the critical pitch angle α0 of a particle at the
looptop which determines whether a particle is mirrored and trapped (if it has a larger
pitch angle, α > α0) or whether it escapes through the losscone and becomes untrapped
(if it has a smaller pitch angle, α < α0). This losscone angle simply follows from
comparing the magnetic moment (Eq. 12.5.1) at the looptop, α(s = 0) = α0, with that
of the mirror point, α(s = sM ) = π/2,

α0 = arcsin

√
1
R

. (12.5.4)

We will see later on (§ 13) that the mirror ratio R in flare loops can be determined from
measurements of the losscone angle α0, using the ratios between directly precipitating
and trapped electrons from the corresponding hard X-ray fluxes.

Another important quantity is the bounce time of a mirroring particle back and forth
a mirror trap, which, for our parabolic field (Eq. 12.5.2) and for a loop half-length L is

tB = 4
∫ L

0

ds

v‖(s)
= 4
∫ L

0

ds√
v2 − v2

⊥
=

2πL

v
√

1 − 1
R

. (12.5.5)

The ratio of the travel time t0 = 4L/v along the magnetic field line to the bounce time
tB is,

qα(R) =
t0
tB

=
2
π

(
1 − 1

R

)1/2

, (12.5.6)

which approaches the value qα = 0.64 for large mirror ratios R � 1. This ratio
qα also yields the relevant pitch angle correction factor to convert an electron-time-of
flight distance to the length of a magnetic field line [i.e., qα = lmag/lTOF = t0/tB
(Eq. 12.2.2)].
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Figure 12.14: The velocity distribution of a trapped particle distribution forms a losscone with
a critical pitch angle α0 (right frame). Electrons with small pitch angles (α < α0) precipitate
directly to the chromosphere, while electrons with large pitch angles (α > α0) are intermediately
trapped and precipitate after they become scattered in the losscone (Aschwanden 1998a).

12.5.2 Bifurcation of Trapping and Precipitation

The criterion for the bifurcation of particle trajectories, whether they propagate free-
streaming directly to the footpoints or become trapped (Fig. 12.1, 12.14), is controlled
by the initial pitch angle α0 at the injection site. Those particles that have a pitch angle
larger than the critical losscone angle (α > α0) become trapped, until they are pitch
angle-scattered into the losscone (α < α0) after an energy-dependent trapping time
ttrap(ε). They subsequently escape from the trap and precipitate (in the so-called trap-
plus-precipitation model). In the simplest model without energy loss in the trap, for
a δ-like injection, the number of electrons N δ

trap(ε, t) (with kinetic energy ε) in the
trap decreases exponentially, with an e-folding time constant that corresponds to the
trapping time ttrap(ε) (Melrose and Brown 1976), i.e.

N δ
trap(ε, t) = N δ

trap(ε, 0) exp[−t/ttrap(ε)] . (12.5.7)

The precipitation rate, nδ
trap(ε, t), is defined by the time derivative of N δ

trap(ε, t), i.e.

nδ
trap(ε, t) = −dN δ

trap(ε, t)
dt

= nδ
trap(ε, 0) exp[−t/ttrap(ε)] , (12.5.8)

with nδ
trap(ε, 0) = N δ

trap(ε, 0)/ttrap(ε). Consequently, it is also exponentially de-
creasing. For a general injection function f(ε, t), the precipitation rate from the trap,
ntrap(ε, t), can be described by convolution with the trapping time ttrap(ε),

ntrap(ε, t) =
1

ttrap(ε)

∫ t

0

f(ε, t′) exp[− (t − t′)
ttrap(ε)

] dt′ . (12.5.9)
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Figure 12.15: Relation between electron propagation and observed hard X-ray time structures:
Electrons with small pitch angles (injected near the flare looptop) precipitate directly and produce
rapidly varying hard X-ray pulses with time-of-flight delays, while electrons with large pitch
angles become trapped and produce a smoothly varying hard X-ray flux when they eventually
precipitate, with a timing that corresponds to trapping time scales (Aschwanden 1998b).

If the acceleration mechanism produces a wide range of pitch angles, there is al-
ways a mixture of small and large pitch angles, which then produces a mixture of
directly precipitating and trap-precipitating particles. This generally seems to be the
case based on the data analysis of observed hard X-ray delays (§ 13). This dichotomy
is also present in the morphological structure of hard X-ray time profiles, where fast
pulses indicate the fraction of directly precipitating electrons that preserve the pulsed
time profile of the injection mechanism, while the smoothly varying lower envelope
represents a measure of the trap-precipitating electrons that smear out the time pro-
files of the injection mechanism (Fig. 12.15). Therefore, the total electron precipitation
rate n(ε, t) is composed of a combination of the two components (Fig. 12.16): (1) a
fraction qprec of electrons that precipitate directly, and (2) the complementary fraction
(1 − qprec) that precipitate after some temporary trapping,

n(ε, t) = qprecf(ε, t) + (1 − qprec)ntrap(ε, t)

= qprecf(ε, t) +
(1 − qprec)

ttrap(ε)

∫ t

0

f(ε, t′) exp[− (t − t′)
ttrap(ε)

] dt′ . (12.5.10)

The dichotomy of the direct-precipitating and trap-precipitating electrons can be de-
convolved from observed hard X-ray time profiles [e.g., by forward-fitting of the con-
volution function (Eq. 12.5.10)], (Aschwanden 1998a).



12.5. KINEMATICS OF PARTICLE TRAPPING 541

ε4

ε3

ε2

ε1

Electron injection function

n(ε,t,x=0) n(ε,t+tTOF(ε),x=l)
nprec(ε,t+tTOF(ε),x=l)
ntrap(ε,t+tTOF(ε),x=l)

tTOF(ε) ttrap(ε)

Figure 12.16: Temporal relation of the electron injection function n(ε, t, x = 0) at the injection
site and at the hard X-ray emission site n(ε, t+tTOF (ε), x = l), delayed by an energy-dependent
electron time-of-flight interval tTOF (ε), schematically shown for four different energies ε1 <

ε2 < ε3 < ε4. The injection function at the hard X-ray emission site (thick curve) is broken
down into a directly precipitating component (thin curve) and the trap-precipitating component
(hatched curve). Note that the (e-folding) trapping time ttrap(ε) increases with energy ε, while
the time-of-flight delay tTOF (ε) decreases (Aschwanden 1998a).

12.5.3 Trapping Times

Theoretical treatments of trapping models can be found for solar flares (e.g., Benz
1993; § 8) or for magnetospheric applications (e.g., Baumjohann & Treumann 1997;
§ 3). Let us briefly review the theoretical development of solar flare models. Trapping
times of electrons were estimated from various pitch angle scattering mechanisms into
the losscone, for example by Coulomb collisional deflection (Benz & Gold 1971), by
quasi-linear diffusion (via resonant wave-particle interactions) induced by electrostatic
(hydrodynamic) waves (Wentzel 1961; Berney & Benz 1978), whistler waves (Kennel
& Petschek 1966; Wentzel 1976; Berney & Benz 1978; Kawamura et al. 1981; Cher-
nov 1989), lower-hybrid waves (Benz 1980), electron-cyclotron maser (Aschwanden &
Benz 1988a, b; Aschwanden et al. 1990), or plasma turbulence (e.g., review by Ramaty



542 CHAPTER 12. PARTICLE KINEMATICS

0 2 4 6 8 10
Collisional deflection time [s]

0

50

100

150

200

250

300

E
le

ct
ro

n 
en

er
gy

 [k
eV

]

 76.7 keV
 96.9 keV

126.1 keV

165.8 keV

213.5 keV

n e
 = 2.0 10

11  cm
-3

ne =
 1.25 10

11  cm
-3

Figure 12.17: Collisional deflection times are shown for electron densities in the range of
ne = (1.25 − 2.0) × 1011 cm−3, roughly fitting the time delays of the lower envelopes of the
hard X-ray time profiles observed during the Masuda flare on 1992-Jan-13, 17:29 UT, and thus
are interpreted as trapping time differences (Aschwanden et al. 1996c).

& Mandzhavidze 1994; Petrosian 1996).
Coulomb collisional deflection time is considered to be an upper limit for trapping

times, τtrap ≤ τdefl (also called weak-diffusion limit). The trapping time (in the weak-
diffusion limit) is given by the electron collisional deflection time tdefl(ε) (Trubnikov
1965; Spitzer 1967; Schmidt 1979; Benz 1993)

ttrap(ε) <∼ tdefl(ε) = 0.95 · 108
(εkeV

3/2

ne

) ( 20
ln Λ
)

, (12.5.11)

where ln Λ is the Coulomb logarithm,

ln Λ = ln[8.0 · 106 (Te n−1/2
e )] , Te > 4.2 · 105 K . (12.5.12)

The observed time delays between the slowly varying components of hard X-ray time
profiles (§ 13) generally fit the energy-dependence of collisional deflection times (Eq.
12.5.11) for reasonable plasma densities (i.e., ne ≈ 1011 cm−3: Fig. 12.17), which
are found to be consistent with densities measured independently from the emission
measures of soft X-ray flare loops (Aschwanden et al. 1997). Trapping in solar flare
loops thus seems to be controlled by collisions in the weak-diffusion limit.

The lower limits of trapping times are controlled by the diffusion rate into the loss-
cone (with angle αc), which can occur as fast as every bounce time tb (the so-called
strong-diffusion limit), (i.e., Kennel 1969),

τtrap ≥ tb
2α2

c

. (12.5.13)

The temporal dynamics of trap-plus-precipitation models, which includes the temporal
and spectral evolution of trapped and escaping particle distributions and related hard
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X-ray fluxes, has been analytically described in a number of papers (Melrose & Brown
1976; Bai 1982a; MacKinnon et al. 1983; Zweibel & Haber 1983; Craig et al. 1985;
Vilmer et al. 1986; Ryan 1986; MacKinnon 1986; 1988; Alexander 1990; McClements
1990a, b; 1992; McClements & Baynes 1991; Ryan & Lee 1991; Hamilton et al. 1990;
Lu & Petrosian 1988; 1990; Hamilton & Petrosian 1990), as well as simulated numer-
ically (MacKinnon & Craig 1991). Particle dynamics in traps have been modeled to
study asymmetries of hard X-ray sources (Melrose & White 1979), or trajectories of
radio type N bursts (Hillaris et al. 1988). Besides purely magnetic traps, models with
additional electrostatic potentials have also been proposed for solar flares (Spicer &
Emslie 1988), similar to models of auroral kilometric radiation (AKR) (e.g. Louarn et
al. 1990).

12.6 Kinematics of Particle Precipitation

In the following first we consider particle precipitation first in symmetric traps (with
a symmetric magnetic field; § 12.6.1), for the sake of simplicity, as well as for asym-
metric traps (with an asymmetric field; § 12.6.2), which occur more frequently in solar
flares.

12.6.1 Symmetric Traps

The fraction of directly precipitating electrons qprec can be self-consistently related to
the critical losscone angle α0. For the sake of simplicity, we first consider the case of an
isotropic pitch angle distribution at the injection site and symmetric loop geometries,

qprec(α0) =

∫ α0

0
sinα dα∫ π/2

0
sin α dα

= (1 − cosα0) . (12.6.1)

This case corresponds to a double-sided losscone distribution (Fig. 12.14 right panel),
as it occurs in symmetric flare loops. With a deconvolution method we can measure
qprec directly. The corresponding losscone angle α0 is then (for isotropic pitch angle
distributions and symmetric loops),

α0(qprec) = arccos(1 − qprec) , (12.6.2)

leading to the mirror ratio R(α0) defined in Eq. (12.5.3).
The inference of the magnetic mirror ratio R = BM/B0 [i.e., the ratio of the mag-

netic field (B(s = sM ) = BM ) at the mirror point to that at the injection point at
the looptop (B(h = h0) = B0)], together with the (projected) time-of-flight distance
lTOF between the injection site and chromospheric energy loss site (which is presum-
ably close to the losscone site), yields a measure of the magnetic scale height λB .
Defining the scale height by an exponential model

B0 = BM exp
[
− (h0 − hM )

λB

]
≈ BM exp

[
− lTOF

λB

]
, (12.6.3)
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and using the definition of the mirror ratio R = BM/B0, we obtain

λB =
lTOF

ln(R)
. (12.6.4)

The magnetic field can be approximated by a dipole field, parametrized with dipole
depth hD and photospheric field Bph,

B(h) = Bph

(
1 +

h

hd

)−3

, (12.6.5)

to which the magnetic mirror ratio can be related by R = B0/BM ≈ B(h)/Bph. The
resulting magnetic scale height λB is then

λB(h) = − B

∇B
=

(hD + h)
3

. (12.6.6)

Typical dipole depths are of order hD ≈ 100 Mm, leading to magnetic scale heights of
λB ≈ 60 Mm, magnetic mirror ratios of R ≈ 1.6, losscone angles of α0 ≈ 50◦, and
precipitation ratios of qprec ≈ 0.4, for symmetric traps (Aschwanden et al. 1997).

12.6.2 Asymmetric Traps

The timing analysis of CGRO data, based on the total hard X-ray flux without spatial
information, provides a global electron-trapping time scale. The spatial structure, how-
ever, can often be described by two magnetically conjugate footpoint sources, which
often have asymmetric hard X-ray fluxes according to the Yohkoh/HXT images. These
unequal double-footpoint sources indicate electron precipitation sites in a flare loop
with asymmetric magnetic field geometry. We need therefore to develop an asymmet-
ric trap model to relate trapping time information from CGRO data to the asymmetric
double-footpoint sources seen in Yohkoh/HXT data.

In order to mimic an asymmetric trap model we rotate the reference system of a
symmetric dipole-like magnetic field by an angle ψ, as shown with three examples
in Fig. 12.18 (top): the symmetric case with ψ = 0 (left), a weakly asymmetric
case where the dipole coil is rotated by ψ = 30◦ (middle), and strongly asymmet-
ric case where the coil is rotated by ψ = 60◦. (A spherically symmetric sunspot with
a “unipolar” vertical field would correspond to the extreme case of ψ = 90◦.) The
acceleration or injection site into the trap is assumed to be midway (with a magnetic
field BA) between the two footpoints (with magnetic fields B1 and B2). These three
magnetic field values BA, B1, B2 determine which fraction of electrons are trapped
or precipitate to the two footpoints. Because the magnetic moment is conserved,
µ = 1

2mev2
⊥/B ∝ sin α(s)2/B(s) = const, the critical pitch angles that separate

precipitating from trapped particles at the two footpoints are defined by the magnetic
mirror ratios

R1 =
B1

BA
=

1
sin(α1)2

, (12.6.7)

R2 =
B2

BA
=

1
sin(α2)2

. (12.6.8)
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Figure 12.18: Three model scenarios for a symmetric (left column), a slightly asymmetric
(middle column), and a strongly asymmetric magnetic trap (right column). The figure shows the
spatial configuration of a buried dipole and the resulting pitch angle motion of trapped and/or
precipitating electrons (top row), the magnetic field B(s) parametrized as a function of the loop
coordinate s (second row), the pitch angle variation α(s) as a function of the loop coordinate
and three pitch angle regimes (third row), and the corresponding pitch angle regimes in velocity
space (v‖, v⊥) (bottom row). The numbers 1 and 2 correspond to the left and right losscone site,
with the stronger magnetic field located at footpoint 1 (Aschwanden et al. 1999d).
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For positive rotation angles ψ > 0 the magnetic field at footpoint B1 is stronger (B1 >
B2, R1 > R2), and the critical angle, also called the losscone angle, is smaller (α1 <
α2) than at the opposite footpoint 2. The asymmetric magnetic field B(s) along a flare
loop is visualized in Fig. 12.18 (second row) using a quadratic model. Note that in
the case of strong asymmetry (ψ = 60◦), trapping is not possible because B2 < BA,
corresponding to a mirror ratio R2 < 1.

Pitch angle variation α(s) along the loop according to conservation of the magnetic
moment is shown in Fig. 12.18 (third row). Generally, three regimes can be distin-
guished in the α − s plane: (1) a direct precipitation regime for initial pitch angles
0 < α(s = 0) < α1, (2) a secondary precipitation regime after a single mirror bounce
for initial pitch angles α1 < α(s = 0) < α2, and (3) a trapping regime for initial pitch
angles α2 < α(s = 0) < π/2. These three regimes are clearly discernible in the case
of weak asymmetry (ψ = 30◦, Fig. 12.18, middle column). For the symmetric case,
the secondary precipitation regime collapses to zero because α1 = α2 (Fig. 12.18 left
column). For the strongly asymmetric case (ψ = 60◦) no trapping is possible because
there is no solution for α2 < π/2 with R2 < 1.

Once we have a quantitative description of the pitch angle ranges that contribute
to trapping and precipitation at both footpoints, we can calculate the relative fractions
of precipitating electrons at the two footpoints and obtain quantitative expressions for
the hard X-ray flux asymmetry A. Let us visualize the pitch angle regimes in velocity
space (v‖,v⊥) (Fig. 12.18 bottom) and label the different regimes with the footpoint
numbers 1 and 2 to which the electrons precipitate, either directly, after a single mir-
ror bounce, or after intermediate trapping. Let us now determine the relative fractions
of precipitating electrons by integration over the corresponding pitch angle ranges in
velocity space. Here and in the following we assume an isotropic pitch angle distribu-
tion at the acceleration/injection site [f(α) = const]. The fraction qDP1 of directly
precipitating electrons at footpoint 1, which has the smaller losscone (α1 ≤ α2), is

qP1 = qDP1 =

∫ π

π−α1
f(α) sin(α) dα∫ π

0 f(α) sin(α) dα
=

(1 − cosα1)
2

. (12.6.9)

The fraction of directly precipitating electrons at footpoint 2, which has the larger
losscone angle (α2), includes not only those electrons that precipitate without bouncing
(qDP2) but also those that bounce once at the mirror site 1 (qMP2) and then precipitate
at footpoint 2 [i.e., with initial pitch angles of (π − α2) < α(s = 0) < (π − α1)],

qP2 = qDP2 + qMP2 =

∫ α2

0 f(α) sin(α) dα +
∫ π−α1

π−α2
f(α) sin(α) dα∫ π

0
f(α) sin(α) dα

=
(1 + cosα1 − 2 cosα2)

2
. (12.6.10)

From spatially unresolved data (e.g., from CGRO), only the combined fraction qprec

of directly precipitating electrons at both footpoints can be measured, equivalent to the
sum of both footpoint components qP1 and qP2,

qprec = qP1 + qP2 = 1 − cosα2 . (12.6.11)
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The total fraction of trapped electrons is determined by the pitch angle range of the
larger losscone [i.e., α2 < α(s = 0) < (π − α2)],

qT =

∫ π−α2

α2
f(α) sin(α) dα∫ π

0
f(α) sin(α) dα

= cosα2 = (1 − qprec) . (12.6.12)

Trapped electrons are randomly scattered, but their pitch angle increases statisti-
cally with time, until they diffuse into a losscone. Because collisional deflection is an
accumulative process of many small-angle scattering deflections that can add up to a
small or large net value after each loop transit, there is some probability that trapped
electrons can escape on either losscone side. Escape probability through the side of
the larger losscone is higher than from the opposite side with the smaller losscone. To
first order, we estimate that the relative escape probabilities from the trap towards the
two losscone sides is proportional to the probabilities for direct precipitation at the two
losscone sides (for particles with pitch angles α ≤ α2),

qT1 = qT (
qP1

qprec
) , (12.6.13)

qT2 = qT (
qP2

qprec
) . (12.6.14)

The proportionality also implies symmetric escape probabilities for symmetric loss-
cones. We emphasize that this proportionality assumption qT1/qT2 ≈ qP1/qP2 rep-
resents an approximation that is mathematically simple and seems to agree well with
(unpublished) numerical simulations of the asymmetric escape probabilities using the
Fokker−Planck equation. This proportionality assumption is strictly true for the strong-
diffusion limit (where scattering time into the losscone is shorter than the bounce time,
see Eq. 12.5.13), but it also seems to hold approximately for the weak-diffusion limit.

To estimate the relative hard X-ray fluxes at both footpoints, we have to sum the
precipitating and trapped contributions at both sides. We denote the combined fractions
at both footpoints by q1 and q2,

q1 = qP1 + qT1 = qP1(1 +
qT

qprec
) = qP1(

1
qprec

) , (12.6.15)

q2 = qP2 + qT2 = qP2(1 +
qT

qprec
) = qP2(

1
qprec

) . (12.6.16)

Neglecting differences in the spectral slope (e.g., arising from asymmetric accelerators
or asymmetric coronal energy loss), the hard X-ray flux at a given energy ε is propor-
tional to the number of (nonthermal) electrons with energies ε >∼ εX = hνX . Assuming
a similar spectral slope of the electron injection spectrum towards the two opposite di-
rections 1 and 2, the hard X-ray fluences F1 =

∫
f1(t)dt and F2 =

∫
f2(t)dt observed

at the two footpoints are then expected to be proportional to the precipitating electron
fluxes q1 and q2. This constitutes a relation between the observed hard X-ray flux
asymmetry A and the losscone angle α2,

A =
F2

(F1 + F2)
=

q2

(q1 + q2)
= q2 = (1 − q1) . (12.6.17)
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Figure 12.19: Energy dependence of the collisional deflection time (thick curve) and the prop-
agation time (dashed curve). The critical energy Ec where they intersect separates the collisional
from the collisionless regime.

With these relations we have a simple method of determining the two losscone
angles α1 and α2 from the observables qprec and A,

α1 = arccos [1 − 2(1 − A)qprec] , (12.6.18)

α2 = arccos [1 − qprec] , (12.6.19)

as well as the corresponding magnetic mirror ratios R1 and R2 with Eqs. (12.6.7−8),
or the ratios of the magnetic fields B1/BA and B2/BA, respectively. Most observed
double-footpoint flares indeed show asymmetric hard X-ray fluxes (Aschwanden et
al. 1999d). The asymmetry of magnetic field configurations in flare loops produces
a higher precipitating electron flux from the side with higher hard X-ray fluxes, but
increases the trapping efficiency and related emission from the other side, such as gy-
rosynchrotron emission from trapped highly relativistic electrons. This asymmetric
radio emission has been modeled by the so-called cornupia model (Li et al. 1997), and
the complementarity of asymmetric hard X-ray and radio emission has been verified in
several observations (e.g. Wang et al. 1995).

12.6.3 Collisional Limit

Hard X-ray emission >∼ 25 keV is observed at loop footpoints in most flares, which
indicates that the propagation path is essentially collisionless during the propagation
time. For nonthermal electrons with energies <∼ 25 keV, energy loss in the corona is
generally not negligible. Setting the propagation time equal to the collisional deflection
time,

tprop(ε) =
L

v‖(ε)
≤ tdefl(ε) = 2 × 108

(
ε
3/2
keV

ne

)(
20

ln Λ

)
(s) (12.6.20)
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yields a lower limit for the particle energy required to cross a propagation path of length
L across a density ne. This critical energy εc is,

εc ≥ 20

√(
L

109 cm

)( ne

1011 cm−3

)( 0.7
cosα

)
(keV) (12.6.21)

The dependence of the two time scales is shown in Fig. 12.19, where the intersection
defines the critical energy εc. Hard X-ray images from Yohkoh/HXT usually show
emission along the full length of the flare loops in the lowest energy channel (Lo =
14 − 23 keV), because electrons lose their energy before they reach the footpoints at
these low energies, ε < εc (Eq. 12.6.21).

Energy loss is also significant for trapped particles. So far we have treated parti-
cle kinematics mainly in the collisionless regime, where adiabatic particle motion is
applied. This is justified in low-density regions in the corona, where particle propaga-
tion times are much shorter than energy loss times. For particle trapping, however, the
collisional time scale for pitch angle scattering into the losscone, τdefl,

τdefl =
v2

< ∆v2
⊥ >

(12.6.22)

is defined as half the energy loss time τloss (Trubnikov 1965; Spitzer 1967; Schmidt
1979),

τloss =
ε2

< ∆ε2 >
≈ 2τdefl . (12.6.23)

Thus, trapped particles lose a significant fraction of their energy in the trap before they
precipitate, a second-order effect that is ignored in the estimate of trapping times and
trap densities in § 12.6.2.

12.7 Summary

Particle kinematics, the quantitative analysis of particle trajectories, has been sys-
tematically explored in solar flares by performing high-precision energy-depen-
dent time delay measurements with the large-area detectors of the Compton Gam-
ma-Ray Observatory. There are essentially five different kinematic processes that
play a role in the timing of nonthermal particles energized during flares: (1) accel-
eration, (2) injection, (3) free-streaming propagation, (4) magnetic trapping, and
(5) precipitation and energy loss. The time structures of hard X-ray and radio
emission from nonthermal particles indicate that the observed energy-dependent
timing is dominated either by free-streaming propagation (obeying the expected
electron time-of-flight dispersion) or by magnetic trapping in the weak-diffusion
limit (where the trapping times are controlled by collisional pitch angle scatter-
ing). There is no evidence that any of the observed energy-dependent hard X-ray
timing corresponds to a theoretical particle acceleration process. The most plau-
sible explanation for this fact is that particles are ejected from the acceleration
region by an energy-independent synchronization process (e.g., by the relaxation
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of newly reconnected magnetic field lines in the reconnection outflow). In such
a relaxation process, the magnetic mirror ratio opens up the losscone during the
Alfvén transit of the diffusion region and injects particles during subsecond pulses
into free-streaming orbits away from the reconnection region. Particles with small
pitch angles precipitate directly and preserve the pulse structure of the injection
process, while particles with large pitch angles become intermediately trapped
and precipitate latest after a collision deflection time. For particles with kinetic
energies of <∼ 20 keV, the propagation time to the flare loop footpoints may ex-
ceed the collisional deflection time, and thus they are stopped in the coronal part
of the flare loop. Particle kinematics is a novel key tool for the interpretation of
nonthermal hard X-ray, γ-ray, and radio emission.



Chapter 13

Hard X-Rays

Photons with energies in hard X-ray wavelengths (εx ≈ 10−300 keV) are produced by
particles in a collisional plasma, mostly by collisions between relativistic electrons and
thermal ions. Since we cannot place in situ particle detectors into the solar corona, we
have to obtain information on energetic particles from solar flares by remote-sensing
of hard X-ray photons and radio photons. Moreover, since the Earth’s atmosphere
absorbs hard X-rays, solar hard X-rays can only be detected by space-borne detec-
tors. Major contributions to hard X-ray observations have been made over the last 25
years from hard X-ray spectrometers on board SMM and CGRO, and from the hard X-
ray imagers SMM/HXIS, Hinotori, Yohkoh/HXT, and RHESSI. Solar flare hard X-ray
emission provides us with a key diagnostic on particle acceleration and propagation
processes. However, since hard X-ray emission is produced most prolifically when
nonthermal electrons precipitate from collisionless coronal sites towards the highly
collisional chromosphere, most information comes from mapping the electron precip-
itation sites, their energy-dependent timing, their energy spectra, and their temporal
correlation with flare signatures in other wavelengths. From these pieces of informa-
tion, we have to work backward to reconstruct the magnetic topology in flare regions,
to localize the acceleration sites with respect to magnetic reconnection diffusion re-
gions, the particle trajectories of free-streaming and trapped particles, and ultimately
to attempt a diagnostic on the physical processes of energization and acceleration in the
first place. A major breakthrough during the last decade was the discovery of coronal
above-the-looptop sources and electron time-of-flight measurements, which both pin-
point consistently the acceleration and injection of particles in reconnection regions. At
the time of writing we are witnessing pioneering results from RHESSI, which provides
the first hard X-ray high-resolution imaging spectroscopy, the first high-resolution γ-
ray line spectroscopy, and the first imaging at energies above 100 keV.

Reviews on flare-related hard X-ray emission can be found in Emslie & Rust (1980),
Dennis (1985, 1988), De Jager (1986), Dennis et al. (1987), Vilmer (1987), Dennis &
Schwartz (1989), Bai & Sturrock (1989), Brown (1991), Culhane & Jordan (1991),
Hudson & Ryan (1995), Aschwanden (1999b, 2000b, 2002b), Lin (2000), and Vilmer
& MacKinnon (2003).
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Table 13.1: Compilation of hard X-ray and gamma-ray detectors and imagers used for solar
flare observations.

Spacecraft Instrument Energy Time Detector Imaging Operation
or Detector range resolution area resolution period

OSO-5 CsI(Na)1 20−250 keV 1.8 (0.2) s 71 cm2 − 1969−75
OSO-7 NaI(Ti)2 10−300 keV 10, (2.5) s 9.57 cm2 − 1971−74
(Balloon) NaI(Ti)3 > 30 keV 0.1 s 60 cm2 − 1974
(Balloon) Ge4 13−300 keV 0.008 s 300 cm2 − 1981
Hinotori SXT5 10−40 keV 7 s 113 cm2 20′′ 1981−82

HXM5 17−340 keV 0.125 s 57 cm2 − 1981−82
SGR5 0.21−6.7 MeV 2 s 62 cm2 − 1981−82

ISEE-3 NaI(Tl)6 12−1250 keV 0.125 s 22 cm2 − 1978−...
SMM HXIS7 3.5−30 keV 0.5−7 s 1.44 cm2 8′′, 32′′ 1980−89

HXRBS8 20−260 keV 0.128 s 71 cm2 − 1980−89
GRS9 0.3−9 MeV 16, (2) s 200 cm2 − 1980−89

CGRO BATSE10 20−300 keV 0.064 s 2025 cm2 − 1991−00
OSSE11 0.05−10 MeV 2, (0.016) s 2620 cm2 − 1991−00

Yohkoh HXT12 14−93 keV 0.5 s 70 cm2 5′′ 1991−01
WBS13 X, γ 2, (0.25) s 12 cm2 − 1991−01

RHESSI HPGe14 3 keV−20 MeV 2 s 90 cm2 2.3′′ 2002−...

Sources: 1) Frost (1969), Frost et al. (1971); 2) Datlowe et al. (1974); Harrington et
al. (1972); 3) Hurley & Duprat (1977); 4) Lin et al. (1981); 5) Makishima (1982),
Takakura et al. (1983a), Enome (1983), Tsuneta (1984); 6) Anderson et al. (1978); 7)
Van Beek et al. (1980); 8) Orwig et al. (1980); 9) Forrest et al. (1980); 10) Fishman
et al. (1989); 11) Kurfess et al. (1998); 12) Kosugi et al. (1991); 13) Yoshimori et
al. (1991); 14) Lin et al. (1998).

13.1 Hard X-ray Instruments

In Table 13.1 we provide a compilation of hard X-ray detectors and imagers that have
made major contributions to the study of solar flares. Most of them are space-based
instruments, attached to solar-dedicated or all-sky astrophysical missions, and a few
instruments have also been flown on balloon flights. In the following we describe in
more detail the four instruments that collected most of the flare observations.

13.1.1 SMM − HXRBS, GRS, HXIS

The Solar Maximum Mission (SMM) was the first solar flare-dedicated mission, lasting
a full decade, from 1980-Feb-4 to 1989-Dec-2. The scientific highlights of the SMM
mission are reviewed in the monograph of Strong et al. (1999). The instrument suite
contained three hard X-ray instruments, the Hard X-Ray Burst Spectrometer (HXRBS)
(Orwig et al. 1980), the Gamma-Ray Spectrometer (GRS) (Forrest et al. 1980), and the
Hard X-Ray Imaging Spectrometer (HXIS) (Van Beek et al. 1980). SMM was in an
orbit with an initial altitude of 524 km and an inclination of 28.6◦.
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Figure 13.1: Cross-sectional views of the Hard X-Ray Burst Spectrometer (HXRBS) on board
the Solar Maximum Mission (SMM) spacecraft (Orwig et al. 1980).

HXRBS provided high-time resolution (0.128 s) histories of hard X-ray time pro-
files in 16 channels in the energy range of ≈ 20 − 255 keV. The HXRBS instrument
consisted of a central CsI(Na) detector surrounded by a CsI active collimator element
(Fig. 13.1). The CsI crystal was viewed by four photomultipliers, operated in anticoin-
cidence. The duty cycle of the instrument was about 50% and HXRBS recorded over
12,000 solar flare events (see catalog by Dennis et al. 1991).

GRS observed at higher energies, in the range of 0.3−9 MeV, and recorded some
270 γ-ray flares at > 300 keV. HXIS was the first instrument to image hard X-ray
flares, with a resolution of 32′′, and in a fine FOV with 8′′-pixels. Because the HXIS
energy range was 3.5 − 30 keV, the images are dominated by thermal emission.

13.1.2 Yohkoh − HXT

Shortly after the SMM decade, the first hard X-ray imager at energies > 30 keV was
launched on board the Yohkoh spacecraft, called the Hard X-Ray Telescope (HXT)
(Kosugi et al. 1991), while the context images in soft X-rays were recorded with the
Soft X-Ray Telescope (SXT). The Yohkoh mission was a solar flare-dedicated mission,
and both of the instruments switched to higher time and spatial resolution in flare mode.
HXT is a Fourier synthesis imager with 64 collimator detectors, each one with a bi-grid
collimator in front (Fig. 13.2), providing measurements of the sine and cosine of 32
independent spatial Fourier components of the source. Images can be reconstructed
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Figure 13.2: Arrangement of the 64 subcollimators of Yohkoh/HXT which record 64 (1D)
Fourier components. The cosine and sine Fourier element pairs are shown with solid and dashed
linestyles (Kosugi et al. 1991).

from these measurements using algorithms such as the Maximum Entropy Method
(MEM) and CLEAN. HXT was able to produce images in four energy bands, 15 − 24
keV, 24−35 keV, 35−57 keV, and 57−100 keV, with an angular resolution of ≈ 5′′−8′′

and a time resolution of 0.5 s. The lifetime of Yohkoh extended over a full solar cycle,
and HXT recorded a total of 3,112 flare events during the period from 1991-Oct-1 to
2001-Dec-14, documented in the Yohkoh HXT/SXT Flare Catalogue (Sato et al. 2003).

13.1.3 CGRO − BATSE

The Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray
Observatory is the most sensitive all-sky hard X-ray and γ-ray detector system ever
flown. It consists of eight large-area detectors (LADs), with an area of 2025 cm2 each,
placed at the eight corners of the spacecraft (see Fig. 1.3). In addition, BATSE is
also equipped with spectroscopy detectors (SDs), which consist of NaI(Tl) scintillators
with a front area of 127 cm2, which cover a broad energy range of 15 keV−110 MeV
and have 7.2% energy resolution. BATSE was operated in different energy and time
binning modes, triggering automatically to a higher rate after a burst trigger. Weak
solar flare events were recorded with a low time resolution of 1.024 s in four energy
channels (25 − 50, 50 − 100, 200 − 300, >300 keV), while burst trigger events were
recorded with 16 ms and 64 ms time resolution in 16 energy channels. CGRO operated
during the period from 1991-Apr-5 to 2000-Jun-4, and BATSE recorded a total of 8021
burst triggers with the following identification of events: 2704 astrophysical gamma-
ray bursts, 1192 solar flares, 1717 magnetospheric events, 78 terrestrial gamma flashes,
2003 transient sources, and 185 soft gamma repeaters.
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Figure 13.3: Layout of the RHESSI telescope that was mounted on a rotating spacecraft. The
telescope (left) contains a set of nine front grids and nine identical rear grids which together
modulate the incoming hard X-ray photons. The mounting of the nine grids (left) is also shown:
The grid pitch (slit and slat) increases by a factor of

√
3 from grid 1 to 9, so that each one

modulates a particular angular Fourier period. The modulated throughput is detected by nine
cooled germanium detectors, one behind each of the rear grids (right), (Hurford et al. 2002).

13.1.4 RHESSI

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), launched on
2002-Feb-5, is a Fourier imager of the class of rotation-modulated collimators (RMCs),
which spins with a period of ≈ 4 s. RHESSI uses nine collimators, each one made up
of a pair of widely separated grids. Each grid is a planar array of equally spaced, X-ray-
opaque slats separated by transparent slits (Fig. 13.3). The slits of each pair of grids
are parallel to each other and their pitches are identical, so that transmission through
the grid pair depends on the direction of the incident X-rays. Different Fourier com-
ponents are measured at different rotation angles and with grids of different pitches.
For RHESSI, the grid pitches range from p = 34 µm to 2.75 mm in steps of

√
3. This

provides angular resolutions spaced logarithmically from 2.3′′ to 180′′. The images are
reconstructed with algorithms like Clean, Maximum Entropy Method (MEM), Maxi-
mum Entropy Method Visibilities (MEMVis), Pixon, and Forward-Fitting. RHESSI is
the first telescope to provide hard X-ray imaging at such high angular resolution.

Another prime capability of RHESSI is its high energy resolution, thanks to the
cooled germanium detectors (i.e., <∼ 1 keV FWHM at 3 keV, increasing to ≈ 5 keV
at 5 MeV). This allows the many γ-ray lines with typical FWHMs of 2 − 100 keV in
the 1 − 10 MeV range to be resolved for the first time. Instrumental descriptions of
the RHESSI instrument can be found in Lin et al. (1998, 2002), the imaging concept is
described in Hurford et al. (2002), and the spectrometer in Smith et al. (2002).



556 CHAPTER 13. HARD X-RAYS

2θ

b

v

e-

+Ze

Figure 13.4: Elastic scattering of an electron (e−) off a positively charged ion (+Ze). The
electron moves with velocity v on a path with impact parameter b and is deflected by an angle
of 2ϑ, with tan ϑ/2 = Ze2/(mv2b), according to the Rutherford formula. Electromagnetic
radiation (bremsstrahlung) is emitted as a consequence of the acceleration of the particle during
the swing-by around the ion.

13.2 Bremsstrahlung

The most important radiation mechanism that produces a continuum of emission in
hard X-ray wavelengths is bremsstrahlung, which results from the emission of photons
when electrons are elastically scattered in the electric Coulomb field of ambient ions
(Fig. 13.4). We distinguish three different situations: (1) Thermal bremsstrahlung re-
sults when the colliding electrons have the same temperature as the ambient plasma
(§2.3); (2) thick-target bremsstrahlung occurs when the incident electrons have first
been accelerated to a much higher (nonthermal) energy (in a collisionless plasma) and
then become collisionally stopped when they hit a thermal plasma; and (3) thin-target
bremsstrahlung occurs when electrons are continuously accelerated in a collisional
plasma and the X-ray spectrum is nearly unchanged from the acceleration or injection
spectrum.

13.2.1 Bremsstrahlung Cross Sections

Elastic scattering of a single electron (−e) off an ion with charge (+Ze) is quanti-
fied by the differential scattering cross section dσs/dΩ using the Rutherford formula
(Eq. 2.3.5). The derivation of this differential scattering cross section for bremsstrahlung
in Coulomb collisions can be found in standard textbooks on classical electrodynamics
(e.g., Jackson 1962; §15.2). The radiation cross section Qr(v, ν), which specifies how
much energy is radiated in bremsstrahlung photons at frequency ν, ..., ν + dν by an
incident electron with velocity v is calculated by integration over all scattering angles
ϑ or impact parameters b within the possible range of bmin ≤ b ≤ bmax (Eq. 2.3.7;
Fig. 2.5). In the classical derivation of bremsstrahlung, the upper limit is estimated
by the maximum momentum transfer bmax = 2p = 2mev, and the lower limit is set
by the collision time. The integral of this radiation cross section is also called the
Coulomb integral ln(Λ) (or Gaunt factor g(ν, T ), see definition in Eq. 2.3.8). The clas-
sical derivation is nonrelativistic, and conservation of momentum and photon energy
are not considered; it is thus only valid for thermal bremsstrahlung (§2.3).
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For nonthermal bremsstrahlung, however, conservation of energy and momentum
must be considered, which is (for weakly relativistic electrons),

ε = ε′ + hν , (13.2.1)

b2 = (p− p′ − k)2 ≈ (p − p′)2 , (13.2.2)

where ε = p2/2me and ε′ = p′2/2me are the kinetic energies of the electrons before
and after the collision, hν and k = hν/c are the energy and momentum of the photon,
and b is the momentum transferred to the scattering center. The ratio of the maximum to
the minimum momentum transfer is given by the kinematic limits (p+p′) and (p−p′),

bmax

bmin
=

p + p′

p − p′
=

√
ε +

√
ε′√

ε −√
ε′

=
(
√

ε +
√

ε′)2

ε − ε′
=

(
√

ε +
√

ε − hν)2

hν
, (13.2.3)

which leads to the nonrelativistic (or weakly relativistic) Bethe−Heitler cross section
(Jackson 1962; Eq. 15.29)

Qr(v, ν) =
16
3

Z2e2

c

(
z2e2

mc2

)2 1
β2

ln
[
λ′ (

√
ε +

√
ε − hν)2

hν

]
. (13.2.4)

The numerical factor λ′ = 1 corresponds to the quantum-mechanical result in the Born
approximation, first calculated by Bethe & Heitler in 1934. Inserting the fine structure
constant αFS = e2/h̄c = 1/137, the classical electron radius re = e2/mec

2 =
2.8 · 10−13 cm, the kinetic energy of an electron ε = mec

2(γ − 1) ≈ (1/2)mec
2β2,

considering only collisions between electrons (z = 1, m = me) and protons (Z = 1),
and using the Born approximation (λ′ = 1), the cross section reads,

Qr(v, ν) =
16
3

h̄ αFS r2
e

1
2mec

2

ε
ln
[
(
√

ε +
√

ε − hν)2

hν

]
(cm2 erg Hz−1) .

(13.2.5)
The radiation cross section Qr(v, ν) (per frequency unit ω) can be converted into a
photon cross section σ(ε, εx), per photon energy εx = hν = h̄ω, which is defined by
(e.g., Lang 1980, p. 43),

σ(ε, εx) =
Qr(v, ν)

h̄2ω
=

1
h̄

Qr(v, ν)
εx

(13.2.6)

which yields the commonly used form of the Bethe−Heitler cross section (e.g., Brown
1971; Hudson et al. 1978)

σ(ε, εx) ≈ σ0

εxε
ln
[√

ε

εx
+
√

ε

εx
− 1
]

(cm2 keV−1) (13.2.7)

σ0 =
8
3
αFS r2

e mec
2 = 0.78 × 10−24 (cm2 keV) . (13.2.8)

A simpler form can sometimes be used which neglects the logarithmic term; this is the
Kramers cross section,

σ(ε, εx) ≈ σ0

εxε
. (13.2.9)
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The Bethe−Heitler and Kramers cross sections are only applicable to nonrelativistic
or mildly relativistic electrons. For higher energies, a fully relativistic cross section
has been derived (Elwert 1939; Koch & Motz 1959), which was applied in the form
of a multiplicative Elwert factor by Holt & Cline (1968). An expansion of the fully
relativistic cross section up to sixth order of the momentum p =

√
ε/2me is given in

Haug (1997). Comparisons show that the relative error using the nonrelativistic cross
section can exceed 10% even for mildly relativistic energies of ε1 > 30 keV (Haug
1997).

13.2.2 Thick-Target Bremsstrahlung

Total X-ray emission from an emitting volume V is proportional to the number of colli-
sions between electrons and ions (mainly protons) [i.e., to the product of their densities
integrated over the volume,

∫
npne(ε)dV ]. The bremsstrahlung cross section σ(ε, εx)

has the unit of a target area per photon energy (cm2 keV−1), see Eq. (13.2.7), so the
product of the cross section σ(ε, εx) with the velocity v(ε) of the incident electrons
corresponds to a target volume per time unit. To obtain the total number of emitted
photons (of a given photon energy εx = hν) we also have to integrate over all contri-
butions from electrons with energies higher than the photon energy (i.e., ε ≥ εx),

dNphot

dt dεx
=
∫ ∞

εx

σ(ε, εx) v(ε)
(∫

npne(ε)dV

)
dε (s−1 keV−1) , (13.2.10)

which has the unit of photons per time and energy (s−1 keV−1). Assuming a uniform
target density over the volume, so that np is constant and defining n0 =

∫
npdV , the

mean photon count rate at Earth distance, r = 1 AU, has to be scaled by a factor of
1/4πr2, yielding an observed hard X-ray intensity I(εx) of

I(εx) =
dNphot

4πr2 dt dεx
=

1
4πr2

n0

∫ ∞

εx

σ(ε, εx) v(ε)ne(ε)dε , (13.2.11)

which has the units of photons per detector area, time, and energy. If we plug the
nonrelativistic electron velocity v(ε) =

√
2ε/me and the Bethe−Heitler cross section

σ(ε, εx) (Eq. 13.2.7) into the integral of the hard X-ray spectrum I(εx) (Eq. 13.2.11),
we obtain

I(εx) =
1

4πr2
n0

∫ ∞

εx

σ0

εxε
ln
[√

ε

εx
+
√

ε

εx
− 1
](

2ε

me

)1/2

ne(ε)dε . (13.2.12)

This equation implicitly defines the instantaneous nonthermal electron spectrum ne(ε)
that is present in the hard X-ray emitting source. For thick-target emission, however,
the electron injection spectrum fe(ε) that is externally injected into the hard X-ray
emitting source is different from ne(ε). The transformation from the injection spectrum
fe(ε) to the source spectrum ne(ε) is defined by the energy loss process. If energy
losses are purely Coulomb-collisional, we have the following energy loss function,

dε

dt
= −Kn(ε)v(ε)

ε
, K = 4πe4Λ . (13.2.13)
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The total number of photons emitted from an electron with initial energy ε0 at photon
energy εx during braking, as long as ε > εx, is

ν(εx, ε0) =
∫ t(ε=εx)

t(ε=ε0)

σ(εx, ε)n(ε)v(ε)dt , (13.2.14)

which can be written as an energy integral by substituting n(ε)v(ε)dt = −dε (ε/K)
from Eq.(13.2.13),

ν(εx, ε0) =
∫ ε0

εx

σ(εx, ε)
ε

K
dε . (13.2.15)

Since the electrons are decelerated until they are at rest in the target, the ambient plasma
density is not relevant for the emitted photon flux ν(εx, ε0) (Eq. 13.2.15), which is thus
independent of np. The total photon emission rate from the region I(εx) can then be
expressed in terms of the electron injection spectrum fe(ε) incident into the X-ray-
emitting region per second (with Eq. 13.2.15),

I(εx) =
dNphot

4πr2 dt dεx
=

1
4πr2

∫ ∞

εx

ν(εx, ε0) fe(ε0)dε0 (13.2.16)

=
1

4πr2

∫ ∞

εx

fe(ε0)
[∫ ε0

εx

σ(εx, ε)
ε

K
dε

]
dε0 . (13.2.17)

This equation implicitly defines the injection spectrum fe(ε) by the observed photon
spectrum I(εx).

The implicit equations for the instantaneous source spectrum ne(ε) (Eq. 13.2.12)
and the electron injection spectrum fe(ε) (Eq. 13.2.17) can be transformed into Abelian
integral equations (the analytical solution was calculated by Brown 1971). He assumed
a powerlaw function for the observed hard X-ray spectrum I(εx) (i.e., left-hand side of
Eqs. 13.2.12 and 13.2.17),

I(εx) = I1
(γ − 1)

ε1

(
εx

ε1

)−γ

(photons cm−2 s−1 keV−1) , (13.2.18)

where ε1 is a reference energy, above which the integrated photon flux is I1 (pho-
tons cm−2 s−1 keV−1), and γ is the powerlaw slope (not to be confused with the
Lorentz factor). The parameters ε1 and γ of the hard X-ray spectrum can be time-
dependent. The total number of photons above a lower cutoff energy ε1 is the integral
of Eq. (13.2.18),

I(εx ≥ ε1) =
∫ ∞

ε1

I(εx)dεx = I1 (photons cm−2 s−1) . (13.2.19)

Brown (1971) solved the inversion of Eqs. (13.2.12) and (13.2.17) and found the fol-
lowing instantaneous nonthermal electron spectrum ne(ε) present in the X-ray-emitting
region, with the associated electron injection spectrum fe(ε),

ne(ε) = 3.61 × 1041γ(γ − 1)3 B

(
γ − 1

2
,
3
2

)
I1
√

ε

n0ε1

(
ε

ε1

)−γ

(electrons keV−1) ,

(13.2.20)
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fe(ε) = 2.68×1033γ2(γ−1)3 B

(
γ − 1

2
,
3
2

)
I1

ε21

(
ε

ε1

)−(γ+1)

(electrons keV−1 s−1),

(13.2.21)
with n0 (cm−3) the mean electron or proton density in the emitting volume, ε1 [keV]
the lower cutoff energy in the spectrum, I1 (photons cm−2 s−1 keV−1) the total X-ray
photon flux at energies ε >∼ ε1, and B(p, q) is the Beta function,

B(p, q) =
∫ 1

0

up−1(1 − u)q−1du , (13.2.22)

which is calculated in Hudson et al. (1978) for a relevant range of spectral slopes γ and
is combined in the auxiliary function b(γ),

b(γ) = γ2(γ − 1)2 B

(
γ − 1

2
,
3
2

)
≈ 0.27 γ3 . (13.2.23)

So the powerlaw slope of the electron injection spectrum (δ = γ + 1) is steeper than
that (γ) of the photon spectrum in the thick-target model. With this notation we can
write the electron injection spectrum as

fe(ε) = 2.68 × 1033 (γ − 1)b(γ)
I1

ε21

(
ε

ε1

)−(γ+1)

(electrons keV−1 s−1) .

(13.2.24)
The total number of electrons above a cutoff energy εc is then

F (ε ≥ εc) =
∫ ∞

εc

fe(ε)dε = 2.68×1033 b(γ)
(γ − 1)

γ

I1

ε1

(
εc

ε1

)−γ

(electrons s−1) .

(13.2.25)
The power in nonthermal electrons above some cutoff energy εc is

P (ε ≥ εc) =
∫ ∞

εc

fe(ε) ε dε = 2.68 × 1033 b(γ)I1

(
εc

ε1

)−(γ−1)

(keV s−1) .

(13.2.26)
or a factor of (keV/erg)=1.6× 10−9 smaller in cgs units,

P (ε ≥ εc) =
∫ ∞

εc

fe(ε) ε dε = 4.3 × 1024 b(γ)I1

(
εc

ε1

)−(γ−1)

(erg s−1) .

(13.2.27)
Solar flares have typical photon count rates in the range of I1 = 101 − 105 (photons
s−1 cm−2) at energies of ε ≥ 20 keV and slopes of γ ≈ 3. Thus, for εc = ε1 = 20
keV, and using b(γ) ≈ 0.27γ3 ≈ 7 (Eq. 13.2.23), we estimate using Eq. (13.2.27) a
nonthermal power of P (ε ≥ 20 keV) ≈ 3 × 1025 − 3 × 1030 erg s−1. Integrating this
power over typical flare durations of τflare ≈ 102 s yields a range of W = P (ε ≥ 20
keV) ×τflare ≈ 3 × 1027 − 3× 1032 [erg] for flare energies. A frequency distribution
of total nonthermal flare energies in electrons (> 25 keV) which covers this range has
been determined in Crosby et al. (1993), see Fig. 9.27.
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In some work, the photon spectrum (Eq. 13.2.18) is specified with the variable A,
which gives the photon flux at 1 keV and relates to I1 in Eq. (13.2.18) by,

A = I1(γ − 1)ε(γ−1)
1 , (13.2.28)

The observed hard X-ray photon spectrum I(εx) observed at Earth (Eq. 13.2.18), the
thick-target electron injection spectrum fe(ε) (Eq. 13.2.24), and the total power in non-
thermal electrons above some cutoff energy εc [i.e., P (ε ≥ εc), Eq. 13.2.27], are then

I(εx) = A ε−γ
x (photons cm−2 s−1 keV−1) , (13.2.29)

fe(ε) = 2.68 × 1033 b(γ)Aε−(γ+1) (electrons keV−1 s−1) , (13.2.30)

P (ε ≥ εc) = 4.3 × 1024 b(γ)
(γ − 1)

A (εc)
−(γ−1) (erg s−1) . (13.2.31)

13.2.3 Thin-Target Bremsstrahlung

For the thin-target case, the electrons are continuously accelerated and the hard X-ray
spectrum is nearly identical to the acceleration or injection spectrum. The thin-target
electron injection spectrum fe(ε) is given in Lin & Hudson (1976) and Hudson et
al. (1978),

fe(ε) = 1.05 × 1042 C(γ)A
1
n0

ε−(γ−1/2) (electrons keV−1) , (13.2.32)

and the function C(γ) is defined in terms of the Beta function,

C(γ) =
(γ − 1)

B(γ − 1, 1
2 )

≈ (γ − 1.5)1.2 . (13.2.33)

We see that a given photon spectrum (e.g., with a slope of γ = 3), implies a flatter
electron injection spectrum in the thin-target case (δ = γ − 1

2 = 2.5) than in the thick-
target case (δ = γ + 1 = 4). Hard X-ray sources observed in chromospheric heights
are generally interpreted in terms of thick-target bremsstrahlung. In occulted flares,
however, when the hard X-ray sources at the supposed chromospheric flare loop foot-
points are blocked, extended sources of hard X-ray and γ-ray emission are sometimes
observed over a considerable coronal height range, which are likely to be produced
by thin-target bremsstrahlung (e.g., Datlowe & Lin 1973; Barat et al. 1994; Trottet et
al. 1996). The fact that coronal hard X-ray sources are generally much weaker than
chromospheric footpoint sources implies that thick-target bremsstrahlung is generally
dominant (in non-occulted flares).
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Figure 13.5: (Left) Theoretical hard X-ray spectrum consisting of a thermal and a nonthermal
(powerlaw) component with equal energy content above the cutoff energy εc. The parameters
are chosen for a large flare with Te = 30 MK, ne = 1011 cm−3, EMV = 1049 cm−3, γ = 3,
and duration τflare = 1000 s; and for a small flare with Te = 10 MK, ne = 1010 cm−3,
EMV = 1046 cm−3, γ = 5, and duration τflare = 100 s. (Right) Synthetic spectra between 4
and 10 keV show line features at 6.7 keV (Fe) and at 8.2 keV (Fe/Ni) that become progressively
stronger for increasing flare temperatures. The spectra have been calculated with the CHIANTI
code, with coronal abundances of Fe and Ni, and smoothed with a Gaussian filter with a width
of FWHM=0.8 keV. Spectra are given in 1 MK intervals from 8 to 33 MK. Fluxes are those at
the mean solar distance and for a flare with volume emission measure

∫
V

n2
edV = 1049 cm−3

(Phillips 2004).

13.3 Hard X-ray Spectra

13.3.1 Thermal-Nonthermal Spectra

Soft X-ray measurements show that the flare plasma has typical electron temperatures
in the range of Te ≈ 10 − 30 MK (see compilation in Table 9.4; e.g., Pallavicini et
al. 1977; Metcalf & Fisher 1996; Reale et al. 1997; Garcia 1998; Sterling et al. 1997;
Nitta & Yaji 1997). This temperature range corresponds to electron energies of ε =
kBTe ≈ 0.9−2.6 keV (Appendix E). In the thick-target bremsstrahlung model (§13.2.2),
nonthermal populations of electrons and ions accelerated in the corona precipitate to
the chromosphere, heat up the plasma at flare loop footpoints, and cause an overpres-
sure that drives upflows of heated plasma into the flare loops seen in soft X-rays. In
this so-called chromospheric evaporation process we expect that the energy of the pre-
cipitating nonthermal electrons has to exceed the thermal energy of the heated plasma
that is produced as a consequence. Let us compute such a combined thermal-plus-
nonthermal hard X-ray spectrum in order to understand the energy ranges in which
the two components dominate: the cutoff energy that separates them and the overall
spectral shape.

In §2.3 we defined the thermal flux spectrum Fth(ε) (Eq. 2.3.13), which yields
the photon number by dividing by the photon energy ε [i.e., the photon spectrum is
Ith(ε) = Fth(ε)/ε]. Assuming a uniform temperature throughout the flare volume
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and using the units EM49 = EMV /1049 cm−3, T7 = Te/107 K, kbT7 = 0.86 keV,
and photon energy ε in keV, we obtain from Eq. (2.3.13) the following thermal photon
spectrum,

Ith(ε) = 2.6×107

(
EM49

T
1/2
7

)
1

εkeV
exp
(
− εkeV

0.86 T7

)
(photons cm−2 s−1 keV−1) .

(13.3.1)
The total energy in thermal electrons is (with Eq. 9.6.1),

Wth = 3nekBTeV = 4.1 × 1029

(
EM49T7

n11

)
(erg) , (13.3.2)

where the volume emission measure is defined as EMV = n2
eV (assuming a filling

factor of unity).
On the other hand we can quantify the total energy in nonthermal electrons above

some cutoff energy εc: multiplying the power (Eq. 13.2.31) by the flare duration
(τflare) gives,

Wnth(ε ≥ εc) = P (ε ≥ εc) × τflare = 1.1 × 1026 γ3

(γ − 1)
A ε−(γ−1)

c τ2 (erg)

(13.3.3)
where we used the approximation b(γ) ≈ 0.27γ3 and denote τ2 = τflare/102 s.

If we assume energy equivalence between thermal and nonthermal energies (i.e.,
Wth = Wnth(ε ≥ εc) using Eqs. 13.3.2−3), we find a condition for the photon flux
constant A, which then yields the nonthermal photon spectrum (Eq. 13.2.29),

Inth(ε) = 3.5 × 105 EM49T7

n11τ2

(γ − 1)
γ3

1
εc

(
ε

εc

)−γ

. (13.3.4)

The cutoff energy εc of the nonthermal spectrum can be defined by the intersection of
the thermal with the nonthermal photon spectrum [i.e., Ith(ε = εc) = Inth(ε = εc)],
which yields the following expression,

εc = 0.86 T7 ln

(
74

γ3

(γ − 1)
n11τ2

T
3/2
7

)
. (13.3.5)

In Fig. 13.5 we plot such a theoretical thermal-plus-nonthermal photon spectrum based
on the energy equivalence between both components. For a large flare (T7 = 3, n11 =
1, EM49 = 1, γ = 3, and τ2 = 10) we find a nonthermal cutoff energy of εc = 19.5
keV, and for a small flare (T7 = 1, n11 = 0.1, EM49 = 0.001, γ = 5, and τ2 = 1)
we find a nonthermal cutoff energy of εc = 4.7 keV. Thus, in such a model where
nonthermal energy is fully converted into thermal energy, we expect nonthermal cutoff
energies in the range of εc ≈ 5 − 20 keV. At lower energies ε < εc we expect the
thermal (near-exponential) spectrum to dominate, while the nonthermal (powerlaw-
like) spectrum dominates at higher energies ε > εc.

Spectral fitting to observed hard X-ray spectra have indeed confirmed the exis-
tence of the generic thermal-plus-nonthermal model described above. Early hard X-
ray detectors, such as NaI(Tl) and CsI(Na) on ISEE-3 or HXRBS/SMM, did not have
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Figure 13.6: Observed hard X-ray spectra from the 1980-Jun-27 flare, labeled with the time
in s after 16:14:41.87 UT. The flux of each spectrum is offset by a factor of 10−2. The dashed
lines show fits of the thermal spectrum and the dotted lines fits of a thick-target bremsstrahlung
spectrum produced by DC electric field acceleration in the runaway regime (Benka & Holman
1994).

sufficient spectral resolution to resolve the steep thermal spectrum at any energy, but
high-resolution spectra with cooled germanium detectors from balloon flights (Lin et
al. 1981) and RHESSI clearly reveal the detailed spectral shape of the thermal-plus-
nonthermal spectrum as calculated in Fig. 13.5. The hard X-ray spectrum of the 1980-
Jun-27 flare was observed with high spectral resolution in the 13 − 300 keV range
and revealed the presence of a “superhot temperature component” with a maximum
Te ≈ 34 MK and an emission measure of EM = 2.9 × 1049 cm−3 (Lin et al. 1981;
Lin & Schwartz 1987). The same flare was also fitted with a DC electric field acceler-
ation model for the nonthermal component (Fig. 13.6; Benka & Holman 1994; Kucera
et al. 1996). For such “superhot” temperatures of Te

>∼ 30 MK, the thermal compo-
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Figure 13.7: Simulation of spectral evolution during a flare: The thermal-nonthermal spectrum
is identical to the large flare calculated in Fig. 13.5, except that the nonthermal component varies
in time between 10% and 100% of the total thermal energy. The resulting spectra are shown
(left), and the temporal evolution of the fluxes at 20, 30, and 50 keV are shown (top right). The
evolution of the spectral powerlaw slopes γ(t) in the three energy ranges 20 − 30 keV, 20 − 50

keV, and 30 − 50 keV is shown (right). Note the soft-hard-soft evolution due to the changing
ratio of the thermal to nonthermal spectrum. Note, however, that the soft-hard-soft evolution at
higher energies ( >∼ 30 keV) cannot be explained with this model and probably is an intrinsic
property of the acceleration mechanism.

nent could even be fitted by using instruments with poorer spectral resolution, such as
with Hinotori, HXRBS/SMM, and Yohkoh (Nitta et al. 1989, 1990; Nitta & Yaji 1997).
Combined fitting of the thermal and nonthermal component (e.g., using recent RHESSI
data), then allows comparison of the energy budget of both components, which were
found to be comparable: for example Wth ≈ Wnth ≈ 2.6×1031 erg in the 2002-Jul-23
flare (Holman et al. 2003), or Wnth(ε ≥ 10 keV)=2.6 × 1030 erg in the 2002-Feb-26
flare at 10:26 UT (Saint−Hilaire & Benz 2002; Dennis et al. 2003).

13.3.2 Soft-Hard-Soft Spectral Evolution

The hard X-ray spectra of flares often initially show a steep spectral slope (soft), which
flattens at the peak of the flare (hard), and then becomes steeper again (soft) in the decay
phase of the flare. This evolutionary pattern has been called soft-hard-soft evolution.
In other words, the value of the spectral powerlaw slope is anti-correlated with the hard
X-ray flux. Such observations have been reported by Parks & Winckler (1969), Benz
(1977), Brown & Loran (1985), Dennis (1985), Fletcher & Hudson (2002), and Hudson
& Farnik (2002). A soft-hard-soft evolution was observed for every flare subpeak in
the 1980-Jun-27 flare, suggesting that two different electron populations dominate at
the flare peaks and valleys (Lin & Johns 1993). There are a number of physical effects
that can explain spectral changes in the hard X-ray spectrum: (1) Particle trapping
favors the presence of higher energy particles that have a longer collisional time, thus
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Figure 13.8: Thick-target bremsstrahlung spectra for a powerlaw slope δ = 5 of the electron
injection spectrum and low-energy cutoffs between εmin = 1 keV and 3 MeV (left) and for
high-energy cutoffs between εmax = 200 keV and 3.2 GeV (right), (Holman 2003).

producing a hardening of the spectrum. (2) A hardening or flattening of the spectrum
could also be produced by increasing the efficiency of the acceleration mechanism. (3)
A variation of the relative weighting of thermal and nonthermal contributions, as it
is perceived with detectors with poor energy resolution (illustrated in Fig. 13.7). The
thermal spectrum has a much steeper slope than the nonthermal powerlaw in the 20-
30 keV range. If the relative contribution of the nonthermal component decreases,
the relative contribution from the thermal spectrum increases, and thus the spectrum
is softening. In the example in Fig. 13.7 the spectral slope changes from γ = 3.7 to
γ = 5.5 in the 20 − 50 keV range after the flare, when the 50 keV flux drops down to
10%.

Although the soft-hard-soft spectral evolution is very common, it does not apply to
all flares. In some large flares there are also soft-hard-harder patterns observed, in par-
ticular those where solar proton events are also detected, possibly related to extended
acceleration phases, more efficient trapping, or higher proton escape probabilities in
larger flare loops that get involved in the late flare phase (Kiplinger 1995).

13.3.3 Low-Energy and High-Energy Cutoffs

The classical inversion of thick-target bremsstrahlung spectra by Brown (1971) applies
to powerlaw spectra without boundaries. For an observed hard X-ray photon spectrum
with a powerlaw slope of γ, the inverted electron injection spectrum has a slope of
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δ = γ + 1 in the thick-target case (Eq. 13.2.24) and δ = γ − 1
2 for the thin-target case

(Eq. 13.2.32). The presence of low εmin or high-energy cutoffs εmax in the electron in-
jection spectrum, however, can modify the slope of the photon spectrum considerably,
as shown in Fig. 13.8. The photon spectra in Fig. 13.8 were calculated by Holman
(2003) using the thick-target model (Eq. 13.2.17) and the relativistic cross section of
Haug (1997) with the Elwert (1939) correction factor. For an unbounded powerlaw
with a slope of δ = 5 in the electron spectrum we expect a photon spectrum with a
powerlaw slope of γ = δ − 1 = 4. The relativistic cross section, however, yields a
slope of δ = 3.8 (solid line in Fig. 13.8, left). Introducing low-energy cutoffs in the
electron spectrum (εmin = 1, 10, 500 keV, ... , 3 MeV in Fig. 13.8, left) progressively
flattens the photon spectrum, yielding a slope of γ = 1.15 for the highest cutoff at
εmin = 3 MeV. Exceptionally flat hard X-ray spectra have been observed with slopes
as low as γ = 1.98 at εx = 33 keV (Farnik et al. 1997). Fitting BATSE energy spectra,
low-energy cutoffs in the range of εmin ≈ 45 − 97 keV were found, with an average
of εmin ≈ 60 keV (Gan et al. 2002).

The existence and particular value of the low-energy cutoff εmin is decisive for the
estimate of total injected power P (ε ≥ εmin) (Eq. 13.2.27), because the integral is
dominated by contributions at the lower boundary for powerlaw slopes of γ ≥ 1. The
existence of nonthermal spectra down to energy ranges of ≈ 8− 15 keV in microflares
observed with RHESSI (Krucker et al. 2002) suggests that the value of the low-energy
cutoff depends very much on flare size. A physical model for the low-energy cutoff en-
ergy can be derived from the collisional limit τprop = l/v‖(ε) ≤ τdefl(ε) (Eq. 12.6.20)
of the maximum propagation path l of energized electrons between the acceleration
site and the thick-target site, yielding a critical energy εc ≈ εmin (Eq. 12.6.21). The
concept of a low-energy cutoff has been criticized, because there is a gradual tran-
sition from a “warm-target energy loss” at ε >∼ kBTe to “cold-target energy loss” at
ε <∼ 5kBTe, which modifies the estimate of total injected power P (contained in pre-
cipitating electrons) (Emslie 2003).

Introducing a high-energy cutoff (εmax = 0.2, 0.5, 1 MeV, ..., 3.2 GeV in Fig. 13.8
right) leads to a steepening of the photon spectrum near the upper cutoff, causing de-
viations from an ideal powerlaw function approximately an order of magnitude below
the cutoff (i.e., 0.1εmax

<∼ ε <∼ εmax: Holman 2003).

13.3.4 Spectral Inversion

The forward-calculation of photon spectra I(εx) from assumed electron spectra fe(ε)
requires various assumptions on the shape of the spectral function, the cutoffs, and the
choice of a model (thermal, thick-target, thin-target). It is therefore desirable to develop
model-independent inversion methods that yield unbiased electron flux spectra fe(ε)
solely based on the observed photon spectra I(εx) (Brown et al. 2003). Analytical
studies on the inversion problem tell us that: (1) The inversion of a powerlaw photon
spectrum yields a powerlaw electron spectrum, though with a different slope (Brown
1971); (2) a powerlaw photon spectrum can also be produced by multi-thermal spectra
(Brown 1974); (3) “bumps” in photon spectra could indicate “upturns” (with positive
slope) in electron spectra (Brown et al. 1991); (4) nonuniform ionization in the chro-
mospheric thick-target regions modifies spectral inversion at higher energies (Brown et
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al. 1998b); and (5) there are analytical limits to physically acceptable solutions by the
constraints of higher derivatives (Brown & Emslie 1988). The key problem of spec-
tral inversion, of course, lies in the uniqueness and stability of numerical inversion
techniques in the presence of data noise. Because the photon spectrum is an integral
of the electron spectrum convolved with the bremsstrahlung cross section, an inver-
sion technique essentially has to reliably determine the derivative in energy, and this
amplifies data noise. Spectra with low-energy resolution (i.e., dε/ε ≈ 0.1 − 0.3 in
SMM/HXRBS) are not suitable for inversion and are restricted to double (or “broken”)
powerlaw fits in the nonthermal range (Dulk et al. 1992), but high-resolution spectra
with dε/ε ≈ 0.01 obtained from germanium-cooled detectors, such as were obtained
during a balloon flight (Lin et al. 1981; Lin & Schwartz 1987) and available from
RHESSI (Lin et al. 1998, 2001, 2002), should facilitate sufficiently accurate inversions
to reveal deviations from single- and double-powerlaw functions in the nonthermal en-
ergy range (ε >∼ 20 keV). Spectral features in the form of “knees” have been explained
in terms of an acceleration high-energy limit, solar albedo backscattering (Alexander
& Brown 2002; Zhang & Huang 2003), or transport effects through a region of nonuni-
form ionization (Conway et al. 2003; Kontar et al. 2002, 2003). Numerical inversion
techniques have been applied to such spectra using regularization (or Bayesian) ap-
proaches (Johns & Lin 1992), being criticized as an ill-posed inverse problem (Craig
& Brown 1986; Thompson et al. 1992), or Tikhonov’s regularization techniques (Piana
1994; Piana et al. 1995, 2003; Massone et al. 2003).

13.4 Hard X-ray Time Structures

13.4.1 Pulse Observations

While hard X-ray time profiles obtained from earlier observations often did not show
fast time structures in flare light curves due to photon noise limitations, more sensitive
instruments such as BATSE/CGRO clearly revealed pulsed time structures on subsec-
ond time scales in virtually all flares, at nonthermal energies >∼ 20 keV (sometimes
down to >∼ 8 keV: Lin et al. 2001). Four examples of flare time profiles are shown in
Fig. 13.9 (left frame), where the fast time structures are enhanced with a high-pass fil-
ter by subtracting a lower envelope (Fig. 13.9, right frame). The fastest time structures
discovered with the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum
Mission (SMM) spacecraft have been found down to rise times and decay times of
≈ 20 ms and with pulse widths of >∼ 45 ms (Kiplinger et al. 1983b). Such fast time
structures were not very common in SMM data, because only about 10% of all flares
detected with HXRBS had a sufficiently high count rate to detect significant variations
on a subsecond time scale (Dennis 1985). With the much more sensitive BATSE/CGRO
detectors, which had a sensitive area of 2025 cm2 each, subsecond time structures were
detected virtually in all flares recorded in flare mode (activated by a burst trigger). A
systematic study of 640 BATSE flare events with an automated pulse detection algo-
rithm (Aschwanden et al. 1995c) revealed a total of 5430 individual pulses, the distri-
bution of whose pulse widths is shown in Fig. 13.10. This distribution shows that hard
X-ray pulses with durations of τx ≈ 0.3 − 1.0 s are most typical. As the examples in
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Figure 13.9: (Left) Hard X-ray time profiles of four flares observed with BATSE/CGRO at
>∼ 20 keV. The time profiles were recorded in the 16-channel Medium Energy Resolution (MER)

mode with a time resolution of 64 ms. The frames have a duration of 163.84 s. The lower
envelope to the rapid fluctuations was constructed with an FFT low-pass filter with cutoffs of
τfilter = 1.5 − 3.6 s. (Right) The high-pass filtered time profiles (with the lower envelope
subtracted) are shown, revealing numerous subsecond pulses (Aschwanden et al. 1996b).

Fig. 13.9 (left panel) show, the modulation depth of the pulses varies typically in the
range of dF/F ≈ 10% − 50%.

13.4.2 Distribution of Pulse Durations

The distribution of observed pulse durations can be characterized by an exponential
function in the range of τx ≈ 0.3 − 1.0 s, with an average value of < τx >≈ 0.5 s.
The distributions are almost identical at different energies (Fig. 13.10; Aschwanden et
al. 1995c),

N(τx) ∝
{

exp (−τx/0.41 s) for ε > 25 keV
exp (−τx/0.44 s) for ε > 50 keV (13.4.1)

What is the physical origin of these hard X-ray pulses? In most flare models it is
assumed that magnetic reconnection plays a key role in primary energy release (§10.5).
Because large current sheets are not stable, but prone to tearing-mode instability, we
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Figure 13.10: Observed distribution of hard X-ray pulse durations detected in the 25 − 50

keV and 50 − 100 keV channels from BATSE/CGRO during 647 solar flares. The cutoff of
detected pulse widths at <∼ 0.3 s is caused by the Fourier (FFT) filter used for structure detection
(Aschwanden et al. 1995c).

expect that magnetic reconnection occurs in the impulsive bursty regime (§10.2) rather
than in a steady (Parker-type or Petschek-type) mode (§10.1). In the impulsive bursty
regime, many localized reconnection events take place in a flare region, each one sepa-
rated in space and time from the other, but activated by a common trigger that produces
a clustering in time. Each localized reconnection event energizes a bunch of parti-
cles which either precipitate directly to the chromosphere or after some intermediate
trapping. The time signature of energized particles is consequently a temporal cluster
of pulses, which are detectable in hard X-rays by bremsstrahlung and in radio by gy-
rosynchrotron emission and beam-driven plasma emission. In §12.4.2 we developed
a model of the particle injection mechanism during localized magnetic reconnection
events of the Petschek type. We argued that the relaxation of newly reconnected mag-
netic field lines opens up the magnetic trap of energized particles in the cusp region
of a Petschek-type X-point and synchronizes the injection of these energized parti-
cles into free-streaming magnetic field lines. From this model we derived the pulse
duration and found that it scales roughly with the Alfvén transit time through the
diffusion region of the X-point (Eq. 12.4.18). Using this model to predict the pulse
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durations, τx ≈ τw ≈ qa(π/2)LB/vx (Eq. 12.4.18), the scaling ratio for X-point
heights, qh = (hx/hL) ≈ 1.5 (Eq. 12.4.1), and the definition of the Alfvén velocity
vA (Eq. 12.4.6), we expect a scaling of

τw = 0.50
(

hL

10 Mm

)(
Bext

30 G

)−1 ( ne

109 cm−3

)1/2
(

qh − 1
0.5

)( qa

1.3

)( qB

0.1

)
(s) .

(13.4.2)
This model predicts an approximate correlation of pulse width τw with loop height hL

[i.e., τw ≈ 0.5(hL/10 Mm) s]. It reproduces the observed average pulse duration of
< τx >≈ 0.5 s for an average magnetic field strength Bext ≈ 30 G, electron density
ne ≈ 109 cm−3 (above flare loops), cusp height ratio qh = hX/hL ≈ 1.5, and X-point
length scale qB = LB/(hX − hL) ≈ 0.1.

The next test is whether our model can also reproduce the observed exponential dis-
tribution (Eq. 13.4.1). We performed a Monte Carlo simulation by assuming a normal
distribution for each of the five parameters (x) in Eq. (13.4.2) and varied the Gaus-
sian widths σx. For a Gaussian width ratio of σx/ < x >= 0.5 we could reproduce
the same distribution as the observed one (Fig. 13.10) with the same exponential fit
exp(−τw/0.4 s) above a cutoff of τfilter > 0.3 s (Aschwanden 2004). So, making the
minimal assumption that each parameter has the same relative scatter σx/ < x >≈ 0.4,
we find that the following distribution of parameters is most consistent with the obser-
vations: hL = 10 ± 5 Mm, Bext = 30 ± 15 Mm, ne = (1.0 ± 0.5) × 109 cm−3,
qh = 1.5 ± 0.25, and qB = 0.10 ± 0.05. The latter ratio translates in absolute units
into a range of LB = qB ∗hL ∗ (qh −1) = 500±400 km for the magnetic length scale
of the X-point (i.e., the extent of the diffusion region).

13.4.3 Scaling of Pulse Duration with Loop Size

The majority of flares show double, hard X-ray sources, which are usually interpreted
as the conjugate footpoints of flare loops. This interpretation is strengthened when they
are located in areas with opposite magnetic polarity and the connecting flare loop is
visible in soft X-rays. Assuming a semi-circular loop, the footpoint separation d = 2r
thus provides a simple way of estimating the flare loop radius r. For a set of 46 flares
simultaneously observed with Yohkoh/HXT, SXT, and BATSE/CGRO, flare loop radii
were determined in the range of r ≈ 2.5− 25 Mm (see range of x-axis on left panel of
Fig. 13.11).

For the same flares, the time structures were analyzed using a wavelet technique
(Aschwanden et al. 1998c). Wavelet analysis represents a multi-resolution method that
yields dynamic decomposition of the power at different time scales ∆t = ν−1 in the
form of a scalogram or dynamic power spectrum P (ν, t), in contrast to a Fourier spec-
trum P (ν) that averages over the entire analyzed time interval. The wavelet scalogram
can also be converted into a distribution of time scales N(ν) with proper normalization.
This is a suitable tool to characterize the most dominant time scales τx of pulses in hard
X-ray time profiles. This wavelet study revealed pulse time scales of τx ≈ 0.1 − 0.7
(see range of y-axis on left panel of Fig. 13.11). Moreover, a spatio-temporal corre-
lation was found between these pulse time scales τx and the flare loop curvature radii
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Figure 13.11: Correlation of the minimum time scale Tmin with the flare loop radius r (left) and
trap electron density ne (right) for a set of 46 flares simultaneously observed with BATSE/CGRO
and Yohkoh. The symbol size of the data points is proportional to the logarithm of the count rate.
The mean ratio Tmin/r is indicated (solid line in left panel), and collisional time scales for 25
keV electrons are shown (dashed and dotted line in right panel) (Aschwanden et al. 1998c).

rcurv, which can be expressed by the relation (Aschwanden et al. 1998c),

τx = (0.5 ± 0.3)
( rcurv

109 cm

)
s . (13.4.3)

The correlation is shown in the left panel of Fig. 13.11.
On the other hand, we have derived a theoretical model where the duration of parti-

cle injection from a Petschek-type reconnection region also predicts a spatio-temporal
relation between the Alfvén transit time τA = 2LB/vA through the diffusion region
with a geometric size LB (Eq. 12.4.18). Since the geometric ratio of the cusp height
hX was found to be proportional to the flare loop height hL = rcurv , having an ap-
proximate ratio of qh = (hX/hL) ≈ 1.5 (Eq. 12.4.1), we can conclude that the recon-
nection geometry is scale-invariant, which can explain the observed spatio-temporal
correlation (Eq. 13.4.3). Matching the theoretical relation (Eq. 12.4.18) with the ob-
served relation (Eq. 13.4.3), we find the average flare parameters given in Eq. (13.4.2).
A most interesting parameter is the length scale of the reconnection diffusion region,
LB = 500± 400 km which is based on fitting the observed pulse duration distribution
(Eq. 13.4.1) shown in Fig. 13.10.

The pulse time scales analyzed in the same study also obey another constraint: they
are always larger than the collisional deflection time scales in the flare loops, based on
the soft X-ray electron density measurements (Fig. 13.11, right). This fact is consistent
with the interpretation that the density in the cusp region of the relaxing field line is
always lower (ncusp

e ≈ 109 cm−3) than in the soft X-ray-emitting flare loops which
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rloop

racc

Figure 13.12: Proportionality between the spatial scale of the acceleration region racc and the
flare loop curvature radius rcurv, as implied by the spatio-temporal relation between the hard
X-ray pulse time scale τx and loop size rcurv, is visualized in the context of a scale-invariant
reconnection geometry with magnetic islands in the current sheet region. The scale-invariant
geometry is consistent with tearing mode. For larger loops at the base of the current sheet, the
width lCS is also larger. The length scale of the islands, which corresponds to the tearing mode
with the largest growth rate and scales with lCS , is then also larger (Aschwanden 2002b).

have been filled with evaporated plasma, nSXR
e ≈ 1010 − 1012 cm−3 (Fig. 13.11,

right), so the potential trapping time in the cusp is always longer than the trapping time
in the soft X-ray flare loop.

In Fig. 13.12 we apply the observed spatio-temporal relation to an impulsive, bursty
reconnection scenario by Kliem (1995). The tearing-mode instability produces a string
of magnetic islands which undergo coalescence. We can interpret the pulse duration
τx of an elementary particle injection as the coalescence time τcoal (Eq. 10.2.3) of a
magnetic island, which roughly represents the lifespan from formation and dissipation
of a magnetic island, which determines the approximate duration τx of an elementary
particle acceleration episode. Thus, setting τcoal ≈ τx and inserting the observed scal-
ing of Eq. (13.4.3) τx ≈ (rcurv/109 cm s−1) into Eq. (10.2.3), we find the following
scaling for the size of a coalescing magnetic island,

lcoal = τcoalqcoalvA ≈ 0.2 rcurv qcoal

(
B

100 G

)
. (13.4.4)

This is illustrated in Fig. 13.12, as applied to a string of Petschek-type X-points that
result in the impulsive, bursty reconnection regime due to tearing-mode instability. We
can interpret the pulse duration τx of an elementary particle injection as the coales-
cence time τcoal (Eq. 10.2.3) of a magnetic island. This roughly represents the lifespan
from formation to dissipation of a magnetic island, and this in turn determines the
approximate duration τx of an elementary particle acceleration episode. Thus, setting
τcoal ≈ τx and inserting the observed scaling of Eq. (13.4.3), τx ≈ (rcurv/109 cm s−1)
into Eq. (10.2.3), we find the following scaling for the size of a coalescing magnetic
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island,

lcoal = τcoalqcoalvA ≈ 0.2 rcurv qcoal

(
B

100 G

)( ne

1010 cm−3

)−1/2

. (13.4.5)

This yields a range of lcoal ≈ 60 − 6000 km for the sizes of magnetic islands, based
on a range of loop sizes rcurv ≈ 3 − 30 Mm and qcoal = 0.1 − 1, for B = 100 G and
ne = 1010 cm−3, using the same parameters estimated in Kliem (1995).

With the same spatio-temporal scaling law, we can estimate the rate Racc of ac-
celerated particles per magnetic island, defined by the product of the volume V ≈
l3coal, the electron density ne, and the acceleration efficiency qacc, which yields using
Eq. (13.4.4),

Racc =
qaccl

3
coalne

τcoal
= 8×1034 qaccqcoal

3
( rcurv

109 cm

)2( B

100 G

)3( ne

1010 cm−3

)−1/2

(s−1).

(13.4.6)
This relation indicates that large flares require fast coalescence speeds qcoal

<∼ 1 (or
ucoal

<∼ vA) and high magnetic fields B >∼ 100 G, which both scale with the third power
to the acceleration rate, while the acceleration efficiency qacc only scales linearly. Also,
the number of magnetic islands would increase the rate of accelerated particles only
with linear scaling. Interestingly, a lower density yields a higher acceleration rate than a
higher density, because a lower density increases the Alfvén velocity vA or coalescence
speed ucoal = qcoalvA.

13.5 Hard X-Ray Time Delays

13.5.1 Time-of-Flight Delays

Although the energized nonthermal electrons propagate with relativistic speed, it takes
them a finite time to travel from a coronal acceleration site to the chromospheric precip-
itation (and hard X-ray emission) site. For a typical height difference of hx ≈ 15 Mm,
say, it takes an electron at half the speed of light (i.e., β ≈ 0.5 at ε ≈ 80 keV), about
100 ms to reach the chromosphere. Compared with an electron that has half the speed
(i.e., β ≈ 0.25 at ε ≈ 17 keV), which needs twice the travel time, we expect a time
difference of ∆t ≈ 100 ms. Such energy-dependent time delays due to velocity disper-
sion, also called time-of-flight (TOF) delays, have been measured from BATSE/CGRO
data in virtually all flares with pulse structures (Aschwanden et al. 1995c, 1996a, b,
c; Aschwanden & Schwartz 1995, 1996). The kinematics of free-streaming particles
and the basic measurement technique of TOF delays between pulses with different
electron velocities has been described in §12.2. Let us now consider the relation be-
tween electrons and hard X-ray photons, which are needed to infer TOF distances from
energy-dependent hard X-ray timing.

We approximate the nonthermal hard X-ray spectrum with a power law, I(εx) ∝
εx

−γ (Eq. 13.2.29). In the thick-target model (§13.2; Brown 1971), the electron injec-
tion spectrum also obeys a powerlaw form fe(ε) ∝ ε−δ with a slope of δ = γ + 1
(Eq. 13.2.30). Let us now consider a time-dependent electron injection spectrum,



13.5. HARD X-RAY TIME DELAYS 575

10 100 1000
Energy [keV]

10-8

10-6

10-4

10-2

100

102

S
pe

ct
ru

m
 (

no
rm

al
iz

ed
)

Electron injection spectrum N(E)
HXR photon spectrum I(ε)

E-5.0

ε-4.0

0.10 0.20 0.30 0.40 0.50 0.60
Time delay [s]

0

100

200

300

400

500

E
ne

rg
y 

[k
eV

]

Photon energy ε(τ)
Electron energy E(tprop)
Fit: E(tprop)=2.00ε(τ=tprop)

ε

E

τ(ε)

tprop(E)

Figure 13.13: A time-dependent hard X-ray photon spectrum I(εx, t), computed from a time-
dependent electron injection spectrum N(ε, t), represented in the spectral (left) and temporal
domain (right). (Left) The electron injection spectrum N(ε, t) ∝ ε−5 (with an upper cutoff
energy of ε0 = 1 MeV) and the numerically computed hard X-ray photon spectrum I(εx, t =

0) ∝ εx
−4. (Right): The peak time τ (εx) of the hard X-ray photon spectrum I(εx, t) is marked

with the thick curve. The propagation delay tprop(ε) of electrons is shown with the thin curve,
which has a similar functional dependence to the hard X-ray delay τ (εx), and can be fitted by
multiplying the photon energies εx(τ ) with a factor of qε ≈ 2.0 (crosses). The Gaussians shown
at εx = 100 keV and ε = 200 keV symbolize coincident peak times of photons and electrons,
but the width of the Gaussian pulses is reduced by a factor of 100 for clarity (Aschwanden &
Schwartz 1996).

which we characterize with a power law in energy and with a Gaussian pulse shape
in time (with a Gaussian width τG), that is,

fe(ε, t, x = 0) = f0ε
−δ exp

[
− (t − t0)2

2τ2
G

]
. (13.5.1)

After the electrons propagate over a distance l to the thick-target site, they have a
velocity dispersion corresponding to the time-of-flight tTOF = l/v(ε), and the instan-
taneous electron injection spectrum at x = l is,

fe(ε, t, x = l) = f0ε
−δ exp

[
− (t − t0 − l/v[ε])2

2τ2
G

]
. (13.5.2)

From this instantaneous electron injection spectrum fe(ε, t, l) at the thick-target site,
the hard X-ray photon spectrum I(εx, t, l) can be calculated by a convolution with the
Bethe−Heitler bremsstrahlung cross section (Eq. 13.2.12),

I(εx, t, l) = I0
1
εx

∫ ε0

εx

fe(ε, t, l)

(∫ ε

εx

ln
1 +
√

1 − εx/ε′

1 −√1 − εx/ε′
dε′
)

dε , (13.5.3)
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Figure 13.14: Numerically determined values of the electron-to-photon conversion factor
qε(ε, γ, ε0) (thin lines) as a function of the photon energy εx for different spectral indices
γ = 3.0, 3.5, ..., 7.0 and high-energy cutoffs ε0 = 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0 MeV. Ana-
lytical approximations qε(ε, γ, ε0) described in Aschwanden & Schwartz (1996) are optimized
for the energy range of ε = 25 − 150 keV (thick lines).

with ε0 being the high-energy cutoff of the electron injection spectrum. Next, we con-
volve the hard X-ray photon spectrum at each time t with the instrumental response
functions Ri(ε) of the energy channels i to obtain the count rate profiles Ci(ε, t),

Ci(εx, t) = I(εx, t, x = l) ⊗ Ri(εx) . (13.5.4)

To extract the time-of-flight distance lTOF from observed hard X-ray counts, we need
either an inversion technique or a forward-fitting method.

In data analysis, we measure the relative time delays between different energy chan-
nels i and j by cross-correlation of count rate time profiles, seeking the maximum of
the cross-correlation coefficient CCC(τij),

CCC(τij) = Ci(εi, t) ⊗ Cj(εj , t + τij) , (13.5.5)

which yields the energy-dependent time delays τij = τ(εx,i, εx,j). In Fig. 13.13 we
show the peak time of the Gaussian time profile fe(ε, t, x = l) as a function of the
electron energy, τprop(ε), as well as the peak times of the photon spectrum I(ε, t, x =
l) as a function of the photon energy, τ(εx), which essentially contains the energy-
dependent time delay that is measured with the cross-correlation function (Eq. 13.5.5).
A convenient concept for our analysis is to specify a quantitative relation between the
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Figure 13.15: Energy-dependent time delays τij = t(εi) − t(εj) of the filtered hard X-ray
pulses F P (t) of eight flares (some shown in Fig. 13.9), measured from the cross-correlation
between the energy channels εi and εj (with i = jmin) during selected time segments. The
horizontal bars represent the uncertainties of the delay measurement caused by Poisson noise.
The curve represents the best fit of the TOF model τij = (l/c)(1/βi−1/βj). The projected TOF
distance lTOF = l × 0.54 and the χ2

red of the best fit are indicated in each panel (Aschwanden
et al. 1996b).

electron energy ε and photon energy εx. Of course, such a relation depends on the
photon energy εx as well as on spectral parameters, such as the powerlaw slope γ and
high-energy cutoff ε0 of the electron spectrum. Thus, we define such a electron-to-
photon energy conversion factor qε,

qε(εx, γ, ε0) =
ε(t = tpeak)
εx(t = tpeak)

(13.5.6)

The example shown in Fig. 13.13, for which an electron injection spectrum with a
slope of γ = 4 and a cutoff of ε0 = 1 MeV was used, shows a ratio of qε ≈ 2.0 at an
electron energy of ε = 200 keV. To quantify this ratio qε for general applications, this
ratio has been numerically computed in a large parameter space (i.e., ε = 10− 10, 000
keV, ε0 = 100 − 10, 000 keV, and δ = 3.0 − 7.0). The results are shown in Fig. 13.14
and are quantified by analytical approximation formulae in Aschwanden & Schwartz
(1996).

The measurement of a time-of-flight distance can now be carried out using the fol-
lowing steps: (1) First we measure a time delay τij between two hard X-ray energy
channels by interpolating the maximum of the cross-correlation function (13.5.5) be-
tween the two time profiles; (2) the “mean” photon energies εx,i and εx,j of the two
hard X-ray channels are then determined from the mean or median of the contribution



578 CHAPTER 13. HARD X-RAYS

HXR

TOF-Loop

ACC=ES

TOF

r 1
h

HXR

TOF-Cusp
ACC=ES

θ

θ

h

r 1

r 2

r2

TOF

Loop Geometry Cusp Geometry

S
m

al
l-S

ca
le

 A
cc

el
er

at
io

n

Figure 13.16: Geometric models of electron propagation paths with injection at the looptop of
semi-circular flare loops (left) and injection from a symmetric cusp above the looptop (right).
The radius of the flare loop is r1 and the curvature radius of the cusp field line is r2, with both
segments tangentially matching at a loop azimuth angle θ (Aschwanden et al. 1996a).

functions Ci(εx, t) and Cj(εx, t), based on the convolution of channel response func-
tions with the photon spectrum (Eq. 13.5.4); (3) the local powerlaw slope of the photon
spectrum between these two is γ = − ln (I2/I1)/ ln (εx,2/εx,1); (4) estimating some
high-energy cutoff energy ε0 from the photon spectrum, we can then use the photon-
to-electron energy conversion factors (calculated in Fig. 13.14) to obtain the electron
energies εi = εx,i × qε(εx,i, γ, ε0) and εj = εx,j × qε(εx,j , γ, ε0) that correspond to
the peak times of the electron injection pulses (Fig. 13.13); (5) from the electron en-
ergies εi and εj we obtain the velocities using the relativistic relations βi = v(εi)/c
and βj = v(εi)/c from (Eq. 11.1.13); (6) finally, we can apply the velocity dispersion
formula to evaluate the time-of-flight distance lTOF ,

lTOF = cτij

(
1
βi

− 1
βj

)−1

, (13.5.8)

which then also needs to be corrected for the electron pitch angle qα (Eq. 12.2.2) and
helical twist qh of the magnetic field line to obtain the projected loop distance lloop =
qαqhlTOF .

Examples of such time-of-flight measurements are shown in Fig. 13.15, where we
obtained projected TOF distances in the range of l′ ≈ 15 − 30 Mm from energy-
dependent hard X-ray time delays in the energy range of εx ≈ 25− 250 keV. Note that
HXR time delays are always measured with respect to the lowest energy (Fig. 13.15),
which provides the most accurate reference time due to it having the best photon statis-
tics.

13.5.2 Scaling of TOF Distance with Loop Size

We have developed an accurate method to measure the electron propagation distance
from a coronal acceleration site to the chromospheric thick-target site in the previ-
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Figure 13.17: Overlays of co-registered HXT and SXT images (left and middle columns).
The geometry of magnetic cusp field lines is modeled with circular segments and matches the
projected time-of-flight distance lTOF . The vertical projection is shown in the right panels and
uncertainties are marked with thick bars (Aschwanden et al. 1996b).
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Figure 13.18: Overlays of co-registered HXT and SXT images (left and middle columns). The
geometry of the magnetic cusp field lines is modeled with circular segments and matches the
projected time-of-flight distance lTOF . Representation similar to Fig. 13.17 (Aschwanden et
al. 1996b).
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Figure 13.19: Scaling law of TOF distance lTOF versus loop radius r in 42 flare events. The
average ratio of the TOF distance lTOF and loop half-length s is indicated with a solid line; the
dashed lines indicate a loop half-length (lTOF /L = 1) or a full loop length (lTOF /L = 2)
(Aschwanden et al. 1996c).

ous section (assuming synchronized injection, no dependence on acceleration times,
and negligible energy loss times). It is of immediate interest to compare these elec-
tron propagation distances with flare loop sizes. Two geometric models are shown in
Fig. 13.16: Injection at the looptop of a semi-circular flare loop (Fig. 13.16, left), and
injection in the cusp above a flare loop (Fig. 13.16, right). A cusp-like field line that
connects the footpoints with the acceleration site can simply be composed of two circu-
lar segments with opposite curvature, joined together at a common tangent (see dotted
curves in Fig. 13.16, right). The length of such a field line, which corresponds to the
projected time-of-flight distance lTOF , is then

lTOF =
r

2

(
1 +

h2

r2

)
arctan

(
2hr

h2 − r2

)
. (13.5.9)

In the limit h → r, this geometric model also includes the case of injection at the
looptop of a semi-circular loop without a cusp (Fig. 13.16, left).

Some examples of such geometric reconstructions of acceleration heights with the
TOF method are shown in Figs. 13.17 and 13.18; they are based on double-footpoint
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sources observed with Yohkoh/HXT, soft X-ray images of the flare loops observed with
Yohkoh/SXT, and hard X-ray time delay measurements carried out with BATSE/CGRO
data in the energy range ≈ 20 − 120 keV. In Figs. 13.17 and 13.18 we show the co-
aligned maps (left and middle) and the vertical geometry of the TOF distance (right).
Interestingly, the propagation distances always turn out to be longer than the loop half-
length, and thus require a cusp model if one assumes symmetric precipitation to both
footpoints.

The statistics of 42 suitable events, for which both the TOF distance lTOF and
the flare loop radius r could be determined, reveals a remarkable result, shown in
Fig. 13.19: There is a strong correlation between the TOF distance lTOF and the flare
loop half-length L = r × (π/2), revealing a linear relation with a ratio of

lTOF /L = 1.43 ± 0.30 . (13.5.10)

This correlation clearly demonstrates a physical relation between the independently
measured spatial and temporal parameters and, moreover, implies a scaling law be-
tween the location of the acceleration site (which is supposedly close to the reconnec-
tion point) and the relaxed flare loop size after reconnection. This corroborates the
scale-free property of reconnection geometries (Fig. 13.16, right), where the length ra-
tio of a newly reconnected (cusp-like) field line to the relaxed (force-free) field line is
essentially invariant for different sizes of the system. One could argue that the accuracy
of this result may be hampered by the separation method of oppositely signed energy-
dependent time delays dt/dε in the analyzed time profiles. In order to test the robust-
ness of the scaling law, a full kinematic model of directly precipitating and trap-plus-
precipitating electrons was developed (Aschwanden 1998a) and time-of-flight analysis
was repeated with a deconvolution method of the two electron components. A very
similar result was found using this different method (Aschwanden et al. 1998b, 1999a),

lTOF /L = 1.6 ± 0.6 . (13.5.11)

This scaling law can be applied to various reconnection geometries. The fact that the
scaling law is closer to lTOF /L ≈ 1.5, which roughly corresponds to the length of the
cusp-shaped field lines, rather than to lTOF /L ≈ 1.0, which is the value for injection
at the top of a flare loop, indicates that the particle acceleration site is located near
the reconnection point, rather than near the soft X-ray-bright flare loop. The location
of the acceleration region significantly above SXR-bright flare loops is to be expected,
because the densities in soft X-ray-bright flare loops are much higher (ne ≈ 1010−1012

cm−3, Aschwanden et al. 1998a; ne ≈ (0.2 − 2.5) × 1011 cm−3, Aschwanden et
al. 1997) than in the cusp above, ne ≈ (0.6−10)×109 cm−3, Aschwanden et al. 1997).
Had the acceleration site be located inside the dense, soft X-ray-bright flare loops, as
assumed in earlier simple flare models (e.g., see Fig. 1 in Dennis & Schwartz 1989),
the collisional energy loss would be so high that electrons could not be accelerated
to high energies or could not propagate to the footpoints, where the brightest hard X-
ray emission is generally seen from the thick-target bremsstrahlung of precipitating
electrons.

The ratio between time-of-flight distance and relaxed postflare loop half-length is
also consistent with analysis of field line shrinkage in two bipolar flares with “candle-
flame” morphology, where a shrinkage of 20% and 32% was found (Forbes & Acton
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Figure 13.20: Geometry of electron path trajectories (with lengths L1, L2) from a common
acceleration site (A) to two conjugate footpoints (F1, F2). The inclination angle θ of an asym-
metric location A is related to the path difference by (L2 − L1) = 2rθ. The two cases illustrate
the geometry for an acceleration source inside a semi-circular flare loop (left) and for an accel-
eration site above the flare loop (right) (Aschwanden 1998b).

1996). These values correspond in our definition to a ratio of lTOF /L = 1.25 and 1.5,
respectively, a range that is expected in dipole field models with a vertical (Syrovatskii-
type) current sheet. Other models constrained by the (quite narrow) opening angle of
reconnection outflows yield ratios of lTOF /L ≈ 2 − 4 (Tsuneta 1996a).

13.5.3 Conjugate Footpoint Delays

While electron time-of-flight measurements mainly provide 1D constraints to the al-
titude of the acceleration site, relative time delays between conjugate footpoint hard
X-ray emission yield additional information on the horizontal offset or asymmetry
of the acceleration site with respect to the vertical symmetry axis of the flare loop
(Fig. 13.20). Hard X-ray light curves from magnetically conjugate footpoints are
shown in Fig. 13.21. The detailed correlation and near-simultaneity of conjugate pulses
suggests a common injection mechanism that connects to both footpoints, which can
be naturally explained with magnetic reconnection geometries (e.g., Fig. 13.16, right).

Sakao (1994) measured the simultaneity of hard X-ray emission from two conju-
gate footpoints by cross-correlating the hard X-ray fluxes from both footpoints (F1, F2).
Cross-correlation time delays were found to be near-simultaneous in six cases out of
seven investigated flares, with uncertainties of ±(0.1 − 0.5) s. Using the geometry
indicated in Fig. 13.20 we obtain the following relation between the asymmetry angle
θ and the travel times t1 = L1/v and t2 = L2/v for particles propagating with speed v
from a common acceleration site A to two conjugate footpoints F1 and F2:

θ =
v

2rcurv

(t1 − t2)
qαqH

(13.5.12)

where rcurv is the semi-circular loop curvature radius, qα ≈ 0.64 is a correction fac-
tor for the average pitch angle α, and qH ≈ 0.85 is a correction factor for helical
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Figure 13.21: Hard X-ray time profiles F1(t) and F2(t) from magnetically conjugate footpoint
sources, extracted from Yohkoh/HXT images for 14 flares (first and third column; courtesy of
Taro Sakao). The two conjugate time profiles are cross-correlated. The cross-correlation coeffi-
cient CCC(τ ), relative time delay τ , and uncertainty στ (assuming a dynamic range of 1:10 in
HXT images) is shown (second and fourth column) (Aschwanden 2000).



13.5. HARD X-RAY TIME DELAYS 585

twist of the magnetic field line along the trajectory (Aschwanden et al. 1996a). The
path difference (L1 − L2) does not depend on the height of the acceleration source
or on whether acceleration takes place inside or outside of the loop. Based on the up-
per limits of the travel time differences (t2 − t1) measured by Sakao (1994) and the
observed loop curvature radii rcurv of the corresponding flares, one can calculate (us-
ing Eq. 13.5.12) upper limits for the asymmetry angles θ as a function of the speed
v. Since the measured footpoint delays are of the order of the loop-crossing times for
electrons, no high symmetry is required for the acceleration site with respect to flare
loop footpoints. Slower agents, however, such as protons or thermal conduction fronts,
would require a very high symmetry to explain the near-simultaneity of the hard X-ray
footpoint pulses.

13.5.4 Trapping Time Delays

In §12.5 we described the kinematics of trapped particles in a flare loop with magnetic
mirroring. In the weak-diffusion limit, the trapping times correspond roughly to the
collisional deflection times (Eq. 12.5.11), and thus have a timing, τdefl(ε) ∝ ε3/2,
with an opposite trend as a function of energy, compared with time-of-flight delays,
τprop(ε) ∝ ε−1/2. Thanks to this opposite trend, which translates into an opposite sign
in the derivative dτdelay/dε, the two components of directly precipitating and trap-
precipitating electron populations can be cleanly separated in hard X-ray time profiles,
either with a lower envelope subtraction method (Fig. 12.16; Aschwanden et al. 1997)
or with a deconvolution method (Aschwanden 1998a). For the deconvolution method,
one has to invert the convolution of the two-population injection function (Eq. 12.5.10)
with the bremsstrahlung cross section (Eq. 13.2.17).

Data analysis of some 100 flares simultaneously observed with CGRO and Yohkoh
are highly consistent with this model, where the observed hard X-ray flux represents a
convolution of directly precipitating and trapped-plus-precipitating components. The
two components can be separated by subtracting a lower envelope to the fast (sub-
second) time structures (Fig. 12.16). In Fig. 13.22 we show a selection of hard X-ray,
energy-dependent time delay measurements of the slowly varying, hard X-ray flux from
20 flares (Aschwanden et al. 1997). The delays have been fitted with the expression
for the collisional deflection time (Eq. 12.5.11), which seems to be consistent for all
analyzed data at energies 25 <∼ ε <∼ 200 keV.

The fits of collisional deflection times to trapping delays also also yield an electron
density measurement ntrap

e in the trap region, typically in the range of ntrap
e ≈ 3×1010

cm−3 − 3 × 1011 cm−3 (Fig. 13.23, top). Comparison of simultaneous electron den-
sity measurements in the soft X-ray-bright flare loops with Yohkoh/SXT yields similar
densities (Fig. 13.23, middle). This result indicates that trap density is on average
comparable with flare loops that have been filled with chromospheric upflows. It does
not necessarily mean that the trap regions have to be co-spatial with filled, soft X-ray-
bright flare loops. The trapping loops could be collisionless and only the mirror points
could have a density comparable with the chromospheric upflows, producing efficient
collisional deflection near the mirror points, consistent with our fits. The fact that the
trapping times are consistent with collisional deflection times is a strong argument that
trapping is controlled in the weak-diffusion limit. For the strong-diffusion limit, where
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Figure 13.22: Energy-dependent time delay measurements of the smooth hard X-ray compo-
nent, after filtering out the pulsed hard X-ray component with a Fourier filter time scale τfilter

(third line from bottom in each panel) from all 44 flare events. The flares are identified (in
chronological order) with the BATSE/CGRO burst trigger number (top of each panel). Each
cross indicates a time delay measurement of one of the 16 MER energy channels with respect
to a low-energy reference channel (indicated with a vertical dashed line at zero delay). The best
model fit is drawn with a solid line, quantified by the trap electron density ne (lowest line in
each panel) and the mean standard deviation σ (second lowest line in each panel) (Aschwanden
et al. 1997).
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Figure 13.23: Distributions of the CGRO-inferred trap densities nCGRO
e (top), the Yohkoh-

inferred electron densities nSXT
e (middle), and their ratios qne = nCGRO

e /nSXT
e , fitted with

Gaussians (Aschwanden et al. 1997).

pitch angle scattering is controlled by wave turbulence, trapping times would be ex-
pected to be significantly shorter.

13.5.5 Thermal-Nonthermal Delays (Neupert Effect)

In the thick-target bremsstrahlung model, hard X-ray emission reaches a peak when
most of the nonthermal electrons hit the chromosphere and cause impulsive heating
during their energy loss. As a consequence, the heated chromospheric plasma evapo-
rates into the corona due to the local overpressure, which is detectable in the form of
soft X-ray emission from the heated plasma that fills the coronal parts of the flare loops.
The peak of soft X-ray emission, therefore, lags the peak of hard X-ray emission, due
to this causal relationship. In fact, if all nonthermal energy was converted into heating,
the energy in soft X-rays should actually mimic the time integral of the energy depo-
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Figure 13.24: The Neupert effect is illustrated using the following three time profiles. (Top)
GOES 1-8 Å soft X-ray time profile plotted with a time resolution of 3 s for a flare on 1980-
Mar-27. (Middle) Time derivative of GOES soft X-ray flux shown in the top plot. (Bottom)
HXRBS/SMM hard X-ray time profile in the 26− 51 keV energy channels. Note that each peak
in the time derivative of the soft X-rays (middle) closely matches the peaks in the hard X-ray
light curve (bottom) (Dennis & Zarro 1993).

sition rate seen in hard X-rays. In practice, however, there also occurs conductive and
radiative energy loss during the heating and evaporation process, but the “time integral
effect” should still be present if cooling times are longer than impulsive heating time
scales. The relation between the evolution of the soft X-ray flux FSXR(t) and hard
X-ray flux FHXR(t) can be modeled with an empirical cooling time τcool,

FSXR(t) = qF

∫
FHXR(t) exp−t/τcool dt . (13.5.13)

This effect was first pointed out by Werner Neupert (1968), who noticed that time-
integrated microwave fluxes closely match the rising portions of soft X-ray emission
curves, which was later dubbed the Neupert effect by Hudson (1991b). In a statisti-
cal study (68 events) it was found that 80% of the flares display the expected Neupert
effect, showing <∼ 20 s time difference between hard X-ray peaks and the peaks of
soft X-ray time derivatives (see example in Fig. 13.24; Dennis & Zarro 1993). Devia-
tions from a pure integral effect can always be explained by cooling processes, heating
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Figure 13.25: Schematic of physically different hard X-ray sources: thermal hard X-rays at
the flare looptop, nonthermal hard X-ray sources at flare loop footpoints (above the flare loop
and above the X-point), and hard X-ray halo or albedo sources from backscattering at the photo-
sphere.

without detectable hard X-ray emission, or multi-loop confusion. Observations of the
Neupert effect are documented in many multi-wavelength studies of flares (e.g., Silva
et al. 1996; Tomczak 1999; Kundu et al. 2001; Gallagher et al. 2002; Joshi et al. 2003),
long duration events (LDEs) (Hudson & McKenzie 2001), microflares (e.g., Krucker
& Benz 2000; Benz & Grigis 2002), or in numerical simulations (Li et al. 1997). High-
temperature plasma (Te ≥ 16.5 MK) was found to be more likely to exhibit the Neupert
effect than low-temperature plasma (McTiernan et al. 1999). The integral effect also
yields a prediction for the slope of the frequency distributions of hard X-ray fluences
(time-integrated fluxes) and soft X-ray peak fluxes, which is not yet properly under-
stood from observational statistics (Lee et al. 1993c, 1995; Veronig et al. 2002a, b;
Veronig 2003), due to unknown scaling laws between energy deposition rates, flare
temperatures, densities, and energy cutoffs (see §9.8.2). The Neupert effect has also
been observed in stellar flares, based on EUV, optical, and radio observations (Hawley
et al. 1995, 2003; Güdel et al. 1996, 2002).

13.6 Hard X-ray Spatial Structures

Flare observations have revealed at least five types of hard X-ray sources (Fig. 13.25)
which are produced by distinctly different physical mechanisms: (1) the strongest
sources are flare loop footpoint sources due to thick-target bremsstrahlung in or near
the chromosphere (§13.6.1); (2) thermal hard X-ray sources in the upper part of flare
loops (§2.3 and §16); (3) Masuda-type above-the-looptop sources due to temporary
trapping during acceleration (§13.6.3); (4) above-the-X-point hard X-ray sources in or
near soft X-ray flare ejecta (Sui & Holman 2003); and (5) hard X-ray halo or albedo
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sources due to backscattering at the photosphere, reported for the first time from recent
RHESSI observations (Schmahl & Hurford 2002).

13.6.1 Footpoint and Loop Sources

Flare loop footpoint sources are generally the most prominent, nonthermal hard X-ray
sources observed during flares, at typical energies of εx

>∼ 20 keV. Due to the magnetic
conjugacy of flare loop footpoints, they are generally observed as pairs of point-like
or ribbon-like structures on the opposite sides of the main neutral line. The first imag-
ing observations of hard X-ray footpoint sources were accomplished with SMM/HXIS
(e.g., Hoyng et al. 1981a, b) and modeled thereafter (e.g., MacKinnon et al. 1985).
Sakao (1994) provided the first statistics of flare hard X-ray sources and found that
double sources are most frequently observed (43%), while single sources (28%) or
multiple ≥ 3 sources (28%) are less frequently observed. A representative set of hard
X-ray flare maps obtained with Yohkoh/HXT at energies >∼ 20 keV is shown in the
form of contour plots in Fig. 13.26 and in the form of flux profiles across the flare loop
baseline in Fig. 13.27. The flux profile of the footpoint sources can be fitted by Gaus-
sians, which have a full width comparable to the Yohkoh/HXT spatial resolution of
≈ 5′′−8′′, so many sources may be unresolved. Hard X-ray footpoint sources coincide
with the endpoints of soft X-ray flare loops, so they have to be located in the chromo-
sphere or slightly above in the transition region. This is expected from the thick-target
bremsstrahlung model, if acceleration of precipitating electrons takes place at (colli-
sionless) coronal heights. The height of these hard X-ray footpoint sources depends
on the electron energy as well as on the chromospheric density np(h) as a function of
altitude h, which determines the stopping depth of precipitating electrons. A simplified
derivation of the height of hard X-rays sources is given in Brown et al. (2002a).

Making the simplifying assumptions of (1) full target ionization , (2) 1D Coulomb
collisional transport, neglecting pitch angle changes (pitch angle α = 0 or µ = cosα =
1), (3) no mirroring of particles, and (4) powerlaw function for electron injection flux
energy spectrum, the kinetic energy ε(ε0, N) of a decelerated electron in the thick-
target region varies as a function of the column depth N(z) =

∫ zmax

z
n(z′)dz′ (Brown

1972),
ε(ε0, N) = (ε2

0 − 2KN)1/2 , (13.6.1)

where K = 2πe4Λ is a constant and Λ the Coulomb logarithm (see Spitzer 1967). This
(Eq. 13.6.1) defines a stopping depth Ns for a given initial energy ε0,

Ns(ε0) =
ε2
0

2K
. (13.6.2)

The continuity condition then yields (using Eq. 13.6.1)

f(ε, N) = f0(ε0)
dε0

dε
= f0([ε2 + 2KN ]1/2)

ε

(ε2 + 2KN)1/2
(13.6.3)

for the local electron spectrum f(ε, N) as a function of N . Note that we neglect here
the fact that Λ may vary somewhat in lower regions where the ionization falls (e.g.,
Emslie 1978). The photon flux per unit energy εx and per unit source height range dz
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Figure 13.26: Yohkoh/HXT maps of 54 solar flares, shown for the highest HXT energy chan-
nels (Lo=14 − 23 keV, M1=23 − 33 keV, M2=33 − 53 keV) where the footpoint sources are
detectable. All frames have the same spatial scale of 32 HXT pixels in x and y-axis (i.e. 78.5′′

or 55 Mm) (Aschwanden et al. 1999d).
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Figure 13.27: HXT flux profiles (bilinearly) interpolated along the footpoint baseline computed
from the Gaussian fits as shown in Fig. 13.26. The observed flux is shown with a thick solid line,
while the fit of the two-component Gaussian model is shown with a thin solid line, and the center
positions of the Gaussians are marked with dashed lines (Aschwanden et al. 1999d).
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Figure 13.28: Analytical functions of the energy flux per height range, dI/dz(ε, z) (see
Eq. 13.6.14), for six different energies, ε = 10, 20, ..., 60 keV, as a function of altitude z (top).
The functions are normalized to unity and shifted by 0.1 per energy value to make them visible.
The locations zmax(ε) of these functions are fitted to the observed centroids of the altitudes of
footpoint hard X-ray sources in the 2002-Feb-22 flare (Aschwanden et al. 2002b).

for a beam cross section σ(εx, ε) and beam area A, at Earth distance r = 1 AU is (see
Eq. 13.2.16),

dI

dz
(εx, z) =

A

4πr2
n(z)

∫ ∞

εx

f(ε, N)σ(εx, ε)dε (cm−2 s−1 erg−1 cm−1) .

(13.6.3)
Using the simplified Kramers bremsstrahlung cross section (Eq. 13.2.9) and approxi-
mating the injection spectrum f0(ε0) with a powerlaw function (Eq. 13.2.18), the pho-
ton flux (13.6.2) becomes

dI

dz
(εx, z) =

Aσ0

4πr2

1
εx

n(z)
∫ ∞

εx

f0((ε2 + 2KN)1/2)
(ε2 + 2KN)1/2

dε . (13.6.4)

Using Eqs. (13.6.1) and (13.6.3) we obtain for a powerlaw injection function f0(ε),

dIε

dz
= (δ − 1)

AF1

εδ+1
1

σ0

4πr2

1
εx

n(z)
∫ ∞

εx

dε

(ε2 + 2KN)(δ+1)/2
. (13.6.5)

The product AF1 = F1 is the total flux of electrons s−1 at ε0 ≥ ε1 over the area A.
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Figure 13.29: Height distributions I(z, ε) are computed for ε = 5 keV, 10 keV, ... 40 keV and
are represented by brightness maps of the flare loops in different energy bands. The vertical axis
represents the height scale h, for a flare loop with a loop radius of 12.4 Mm. The corresponding
chromospheric densities ne are indicated on the left side. Note that the brightness distributions
of all energies ε >∼ 20 keV are fairly concentrated inside the chromosphere (at h <∼ 2.0 Mm),
while the ε <∼ 15 keV emission is spread along the entire flare loop (Aschwanden et al. 2002b).

Introducing u(εx, z) = εx
2/2KN(z), one obtains

dI

dz
(εx, z) = (δ − 1)

F1

ε1

σ0

8πr2

1
εx

n(z)
(

2KN

ε2
1

)−δ/2

B

(
1

1 + u
,
δ

2
,
1
2

)
, (13.6.6)

where B is the Incomplete Beta function,

B

(
1

1 + u
,
δ

2
,
1
2

)
≡
∫ 1/(1+u)

0

xδ/2−1(1 − x)−1/2dx . (13.6.7)

Note that the Incomplete Beta function B (Eq. 13.6.7) depends on εx only in the com-
bination u = εx

2/2KN . On the other hand, n(z)[2KN/ε2
1]
−δ/2 depends only on z

for a given δ, and is independent of the photon energy εx.
For a practical application we specify a chromospheric density model n(z), which

can be locally approximated using a powerlaw function,

n(z) = n0

(
z

z0

)−b

. (13.6.8)
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Figure 13.30: Height measurements of the centroids of the Gaussian fits to hard X-ray sources.
The spatial location of source centroids is shown (left) and altitudes as functions of energy (right).
Measurements at the southern footpoint are shown (top) and at the northern footpoint (bottom).
The error bars of the height measurements were estimated from Poisson statistics. The curves
indicate powerlaw fits, marked by thick lines in the energy range of the fit (15 − 50 keV) (As-
chwanden et al. 2002b).

The column depth N(z) is then the integrated density,

N(z) =
∫ ∞

z

n(z)dz = N0

(
z

z0

)1−b

, N0 =
n0z0

b − 1
. (13.6.9)

Inserting the chromospheric density model (Eq. 13.6.9) into the hard X-ray intensity
versus height function dI/dz (Eq. 13.6.6) yields the following height dependence,

dI

dz
(ε̃x, z̃) = I0 ε̃x

−1z̃−b+(b−1)δ/2 B

(
1

1 + ε̃x
2z̃b−1

,
δ

2
,
1
2

)
, (13.6.10)

using dimensionless variables
ε̃x = (εx/εx,0) , (13.6.11)
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z̃ = (z/z0) , (13.6.12)

with the reference energy εx,0 and constant I0,

εx,0 =
√

2KN0 , (13.6.13)

I0 = (δ − 1)
F1

E1

σ0

8πr2

1√
2KN0

n0

(
2KN0

ε2
1

)−δ/2

. (13.6.14)

The height distribution dI/dz(ε̃x, z̃) is shown for different photon energies in Fig. 13.28,
where the peaks of the height distributions have been fitted to the heights of the cor-
responding hard X-ray sources observed with RHESSI in the 2002-Feb-22, 11:06 UT
flare (Aschwanden et al. 2002a). Height distributions are also visualized in terms of
a circular flare loop geometry in Fig. 13.29. This example, which is probably typ-
ical for many flares, shows that ≈ 5 keV emission occurs near the looptop, while
>∼ 15 keV emission is localized close to the footpoints, in chromospheric densities of
ne ≈ 1012 − 1013 cm−3. Thus, the centroid height of hard X-ray footpoint sources is
located at progressively lower altitudes with higher energies. Altitude measurements
of the hard X-ray sources carried out using RHESSI observations for the 2002-Feb-
22 flare are shown in Fig. 13.30. These height measurements also constrain a chro-
mospheric density model ne(z) that is shown in Fig. 4.28 for this observation. Alti-
tude measurements of hard X-ray sources have been reported earlier by Matsushita et
al. (1992), with the same trend of lower heights with higher energies.

Conjugate hard X-ray footpoint sources are generally not equally bright (Figs. 13.26
and 13.27) and may have different spectra (e.g., Emslie et al. 2003 for a recent RHESSI
observation). This implies an asymmetry of the magnetic field in the intervening flare
loop, and thus asymmetric mirror ratios and asymmetric trapping (§12.6.2). This asym-
metry introduces a complementary behavior between particle precipitation and trap-
ping at each footpoint: The side with the weaker magnetic field (lower magnetic mir-
ror ratio) exhibits a higher precipitation rate and a smaller fraction of trapped particles
compared with the other footpoint and vice versa. Since hard X-rays are dominantly
produced by precipitating electrons, while microwave emission is predominantly pro-
duced by gyrosynchrotron emission from trapped high-energy electrons, relative foot-
point strengths in hard X-rays are thus complementary to the radio brightness (e.g.
observed by Kundu et al. 1995; Wang et al. 1995). Electron precipitation sites, how-
ever, do not coincide with locations of high vertical current density, which implies that
electrons are not accelerated by large-scale current systems (Li et al. 1997).

13.6.2 Footpoint Ribbons

The classical Kopp−Pneuman model (Figs. 10.20 and 10.21) is a 2D model that makes
no prediction about the spatial extent along the neutral axis. However, Hα ribbons on
both sides of the neutral line were observed long ago, sometimes with considerable
length, but the matching counterparts of hard X-ray double ribbons were not detected
until the end of the Yohkoh era. So, it was not clear whether nonthermal hard X-ray
emission is more localized in its occurrence or whether there is an instrumental sensi-
tivity problem to detect extended hard X-ray ribbons. At the end of the Yohkoh mission,
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Figure 13.31: The position of hard X-ray sources (Yohkoh/HXT) at the peak time of the 2000-
Jul-14 flare is overlaid on EUV images (TRACE 195 Å). Note the detailed co-spatiality with the
flare ribbons observed in EUV (Fletcher & Hudson 2001).

Figure 13.32: The Yohkoh/HXT light curve (solid lines) is scaled to the TRACE 195 Å source
counts/s measured at the ribbon locations of the HXT sources (see Fig. 13.31). The HXT energy
range of the HI channel is >∼ 50 keV. Note that the hard X-ray light curve represents the total
flux (Fletcher & Hudson 2001).
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10:20:27 - 10:21:1710:19:37 - 10:20:27 10:21:17 - 10:21:51

10:22:17 - 10:22:45 10:22:45 - 10:24:0110:21:51 - 10:22:17

Figure 13.33: Sequence of Yohkoh/HXT/Hi (53-93 keV) images observed during the beginning
phase of the 2000-Jul-14 flare, during 10:19-10:24 UT. The field of view of each panel is 157′′×
157′′ . The contours levels are 9%, 13%, 18%, 25%, 35%, 50%, and 71% of the peak intensity for
each panel. A thick line connects the most intense kernels in the two-ribbon structure. In the final
panel, the magnetic neutral line is indicated with a thick dotted line according to SOHO/MDI
observations (Masuda et al. 2001).

ribbon-like hard X-ray sources were reported for the first time during the Bastille-Day
flare (Masuda et al. 2001; Fletcher & Hudson 2001), which were aligned with the EUV
and Hα ribbons that extended over a length of some 200 Mm (Figs. 10.33, 13.31).
Yohkoh/HXT and SXT maps clearly outline the flare arcade, with low-energy hard X-
ray emission (HXT:Lo=14−23 keV) concentrated at the looptop, while all high-energy
emission (HXT: M2, Hi) is concentrated near the flare ribbon footpoints. The hard X-
ray ribbons, however, appear not to cover the full length of the EUV or Hα ribbons or
flare arcade, but rather partial segments at intermittent times (Figs. 13.31 and 13.33),
progressing from west to east during the course of this flare. Nevertheless, these hard
X-ray ribbons were more extended than ever detected before.

A detailed study on these hard X-ray ribbons has been performed by Masuda et
al. (2001). Fig. 13.33 shows the evolution of hard X-ray sources during a first spike of
the flare, which occurs in the western half of the flare arcade. Connecting the strongest
kernel in the northern ribbon to the strongest kernel in the southern ribbon, deemed to
be conjugate footpoints, one clearly sees an evolution from a highly sheared hard X-ray
footpoint pair (10:19:37 UT) to a less and less sheared footpoint pair (10:22:17 UT).
This is the same evolution as outlined in Fig. 10.34, where the general pattern evolves
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from initially highly sheared, low-lying arcade loops to less sheared, higher loops.
This pattern, which is not predicted in the 2D standard model of Kopp−Pneuman, may
indicate some important physics of the trigger mechanism. The highly sheared arcade
part is probably most unstable to tearing mode and triggers magnetic island formation
and subsequent coalescence first, as simulated by Karpen et al. (1998) and Kliem et
al. (2000), see § 10.2. A recent study on the spatio-temporal evolution of conjugate
footpoints can be found in Asai et al. (2003).

Another study on this flare concentrated on the relation between hard X-ray rib-
bons and EUV ribbons (Fletcher & Hudson, 2001). While hard X-ray ribbons mark the
chromospheric sites of direct bombardment of nonthermal particles, EUV ribbons can
also be produced by conductive heating. So they do not need necessarily to be identi-
cal in the two wavelengths, and differences may tell us something about the different
exciter roles. For instance, Czaykowska et al. (1999, 2001) demonstrated that EUV rib-
bons were heated dominantly by heat conduction (or possibly by protons) in one flare,
without any detectable > 20 keV hard X-ray emission, a puzzling exception to the ma-
jority of flares. However, evidence for preflare EUV footpoint brightening preceding
hard X-ray emission was also reported by Warren & Warshall (2001). In the 2000-Jul-
14 Bastille-Day flare, nevertheless, Fletcher & Hudson (2001) find an extremely good
spatial (Fig. 13.31) and temporal correlation (Fig. 13.32) between hard X-ray and EUV
fluxes, suggesting that both signatures are excited by the same precipitating electrons.
If the EUV ribbons were produced by thermal conduction, one would expect the peak
of the EUV flux to be delayed with respect to the peak of the hard X-ray flux, according
to the Neupert effect, but this is not the case here (see Fig. 13.32). The “smooth” hard
X-ray images (Fig. 13.31) overlaid onto the “sharp” EUV ribbons leave the impression
that the hard X-ray images are compromised by HXT’s limited spatial resolution and
insufficient uv-coverage. In particular, fine and long flare ribbons cannot properly be
imaged with sparse uv-coverage. If EUV and hard X-ray emission are produced by
the same precipitating electrons, we expect to see the same sharp flare ribbons in both
wavelengths. Some parts of EUV ribbons, however, seem to be activated in the preflare
phase without hard X-ray signatures (Warren & Warshall 2001).

A dynamical effect that is predicted in almost every reconnection model is that the
footpoints or footpoint ribbons should separate as a function of time when reconnection
progresses to larger altitudes, because higher X-points connect to the chromosphere
at larger footpoint separation (see Fig. 10.21 and 10.34). Tracking footpoint separa-
tion during flares, Sakao (1999) found that it increases sometimes, as expected in the
Kopp−Pneuman reconnection scenario due to the rise of the reconnection point, but
sometimes it decreases. Interestingly, Sakao (1999) found that the sign of footpoint
separation correlates with spectral evolution. Based on this correlation, he concluded
that flares with separating footpoints have hard X-ray spectra with a superhot thermal
component as expected in the Kopp−Pneuman model, while flares with approaching
footpoints have no superhot thermal component as expected in the emerging flux model
of Heyvaerts et al. (1977). The separation of footpoint ribbons is also clearly seen dur-
ing the Bastille-Day flare (Fig. 10.33), although some effects are not understood, such
as the bifurcations of some ribbon segments or the asymmetries in the associated pos-
itive and negative magnetic flux changes (Fletcher & Hudson 2002). Also, the electric
field E = v‖Bn inferred from the ribbon motion is not found to correlate with the
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Figure 13.34: The Masuda flare of 1992-Jan-13: Co-registered overlays of Yohkoh/SXT
(1728:07 UT, Be 119 filter; greyscale in left frame and thin contours in right frame) and
Yohkoh/HXT (17:28:04−17:28:40 UT, Lo 14 − 23 keV, white contours in left frame; and M1
23 − 33 keV, black contours in both frames) (Aschwanden et al. 1996a)

hard X-ray flux in a simple way (Qiu et al. 2002). This complicates the application of
electric field acceleration models (§11.3).

13.6.3 Above-the-Looptop (Masuda) Sources

The discovery of hard X-ray sources located above the loop of soft X-ray-bright flare
loops (see Figs. 13.25 and 13.34) by Masuda et al. (1994, 1995) represented a major
breakthrough in the localization of particle acceleration sources near magnetic recon-
nection sites (see Fletcher 1999 for a review). Previously it was not clear whether hard
X-ray-emitting electrons are accelerated inside or outside prominent soft X-ray flare
loops. From reconnection models one would expect that magnetic energy is converted
into heating and particle acceleration near the X-points, which have to be located above
soft X-ray flare loops (that are generated by chromospheric evaporation after the newly
reconnected field lines relax into a force-free state, Fig. 10.21). However, since plasma
densities (ne ≈ 108 − 109 cm−3) above flare loops are relatively low, no hard X-ray
emission was expected in this collisionless plasma above flare loops. Therefore, Ma-
suda’s discovery of hard X-ray emission at coronal locations above soft X-ray-bright
flare loops changed our minds. Masuda et al. (1994) discovered an above-the-looptop
hard X-ray source at energies of >∼ 20 − 50 keV with Yohkoh/HXT in about 10 flares
(four examples are shown in Plate 15), besides the well-known (usually double) chro-
mospheric footpoint sources. Initially, it was not clear how electrons can emit colli-
sional bremsstrahlung in such low plasma densities above flare loops. An interpre-
tation in terms of thermal hard X-ray emission was ruled out based on the required
temperatures T ≈ 200 MK, for which there was no evidence from other soft X-ray
instruments (Yohkoh/SXT and BCS). Also, the time variability of looptop hard X-ray
emission was too rapid to be consistent with thermal cooling times and thus required a
nonthermal interpretation (Hudson & Ryan, 1995). Therefore, a plausible explanation
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Figure 13.35: Diagram of a possible flare scenario for the Masuda flare (Fig. 13.34), con-
strained by the height (h = 22 Mm) of the above-the-looptop hard X-ray source and the height
(h = 44 Mm) of the acceleration source inferred from electron time-of-flight measurements
(Aschwanden et al. 1996a).

is collisional bremsstrahlung from trapped electrons, which are directly fed in from the
accelerator in the cusp region beneath the reconnection point (Fig. 13.35). The loca-
tion of the coronal hard X-ray source was measured to be about 10′′ (7250 km) above
the soft X-ray loop, and in slightly higher altitudes in images taken in higher ( >∼ 50
keV) energy bands (Masuda et al. 1994). This location is fully consistent with the cusp
geometry in bipolar reconnection models (Fig. 10.21), and thus the coronal hard X-ray
emission has to be emitted relatively close to the acceleration region associated with
the reconnection point, rather than from a secondary trap somewhere else in the corona.
The height of electron acceleration sources inferred from time-of-flight measurements
yields a location above the soft X-ray flare loops (§13.5.2, Fig. 13.19; Aschwanden et
al. 1996c), while the Masuda hard X-ray sources lay typically beneath these inferred
acceleration sites (Plate 15), as expected in reconnection-driven injection (§12.4) or
outflow-shock models (Tsuneta et al. 1997; Somov et al. 1999).

The spectrum of the coronal hard X-ray source in the 1992-Jan-13 flare was ana-
lyzed in detail by Alexander & Metcalf (1997). To overcome the problem of analyzing
a weak source that is suppressed by the much (ten times) brighter footpoint sources
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nearby, they employed the photometrically more accurate pixon method to reconstruct
images from HXT data. Their conclusions were that the coronal hard X-ray source:
(a) has an impulsive temporal profile (similar to the footpoint sources), (b) has a non-
thermal spectrum, (c) has a very hard spectrum or a low-energy cutoff in the electron
injection spectrum, and (d) the looptop and footpoint hard X-ray sources are produced
by two distinct particle populations. All this information indicates that coronal hard
X-ray emission is produced directly by nonthermal electrons in or near the acceler-
ation region. Consequently, these observations are one of the most direct witnesses
of the acceleration process itself. Apparently, electrons are not simply accelerated in
large-scale electric fields, because the required background density for free-streaming
electrons to produce >∼ 30 keV hard X-ray emission would be ne ≈ 3 × 1011 cm−3

(Fletcher, 1995; Fletcher & Martens 1998) to ne ≈ 1012 cm−3 (Wheatland & Melrose
1995). This is about 2 − 3 orders of magnitude higher than what is inferred at the
locations of Masuda’s hard X-ray sources. A more likely acceleration mechanism is
stochastic acceleration, which allows the electrons to stay sufficiently long in a local
trap to produce detectable amounts of nonthermal bremsstrahlung in the low-density
coronal plasma. Specific models envision particle trapping by wave scattering in the
MHD turbulent regions above flare loops (Petrosian & Donaghy 1999, 2000; Jakimiec
et al. 1998; Jakimiec 1999).

13.6.4 Occulted Flares

Obviously, coronal hard X-ray sources are most easily observed for limb flares, because
the separation between footpoint, looptop, and above-the-looptop sources is least con-
fused for such a view. This is the reason why Masuda’s sample of 10 flares includes
only limb flares. However, there are also examples found on the solar disk (e.g., the
1991-Nov-19, 09:29 UT, flare shown in Plate 15, top right). A comprehensive analysis
of 18 limb flares exhibited 15 events with detectable impulsive looptop emission, so
that it was concluded that the detection of above-the-looptop hard X-ray emission is
merely a sensitivity problem and is probably a common feature of all flares (Petrosian
et al. 2002).

An even better opportunity to map the coronal part of hard X-ray emission con-
cerns flares with occulted footpoints (Masuda 2000), but they are rare. The hard X-ray
spectra of occulted flares were found to be softer and the nonthermal broadening of soft
X-ray lines was found to be smaller (Mariska et al. 1996), clearly indicating different
physical conditions above the looptop than at the footpoints, but the thermal proper-
ties are indistinguishable from non-occulted flares (Mariska & McTiernan 1999). The
hard X-ray time profiles of occulted flares were also occasionally found to exhibit spiky
emission, perhaps a signature of turbulent flare kernels (Tomczak 2001). Earlier stereo-
scopic multi-spacecraft measurements of occulted flares yielded maximum heights of
h <∼ 30 Mm at which impulsive hard X-ray emission was identified (Kane et al. 1979,
1982; Hudson 1978; Kane, 1983). A record height of >∼ 200 Mm was determined
for an occulted flare (1984-Feb-16, 09:12 UT) at hard X-ray energies of >∼ 5 keV,
by combined stereoscopic measurements with the ICE and ISEE-3 spacecraft (Kane et
al. 1992). Typical altitudes of acceleration regions are found in the range hacc ≈ 5−35
Mm, based on electron time-of-flight measurements, which is fully consistent with the
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Table 13.2: Observed frequency distributions of peak fluxes FP in solar flares (Aschwanden et
al. 1998a).

Power-law Elements Observations, Literature
slope α data set reference
1.9 Flares OSO V, 1969−71 Dennis (1985)
1.8 Flares OSO VII, 20 keV, 1971−72 Datlowe et al. (1974)
2.0 Flares Balloon, 20 keV, 1980 Lin et al. (1984)
1.8 Flares HXRBS/SMM, > 30 keV, 1980−85 Dennis (1985)
1.66−1.75 Flares HXRBS/SMM, > 30 keV, 1980−89 Schwartz et al. (1992)
1.67−1.73 Flares HXRBS/SMM, > 30 keV, 1980−89 Crosby et al. (1993)
1.70−1.86 Flares HXRBS/SMM, > 30 keV, 1980−84 Bai (1993)
1.74 Flares HXRBS/SMM, > 30 keV, 1980−89 Kucera et al. (1997)
1.75 Flares ISEE3/ICE, > 26 keV, 1978−86 Lee et al. (1993c)
1.86−2.00 Flares ISEE3/ICE, > 26 keV, 1978−86 Bromund et al. (1995)
1.61 Flares BATSE/CGRO,> 25 keV, 1991 Schwartz et al. (1992)
1.60−1.74 Flares BATSE/CGRO,> 25 keV, 1991−92 Biesecker (1994)
1.61−1.66 Pulses BATSE/CGRO,> 25 keV, 1991−94 Aschwanden et al. (1995c)
1.69−1.82 Pulses BATSE/CGRO,> 50 keV, 1991−94 Aschwanden et al. (1995c)
1.56±0.43 Pulses BATSE/CGRO,> 25 keV, 1991−94 Aschwanden et al. (1998a)
1.46±0.34 Pulses BATSE/CGRO,> 50 keV, 1991−94 Aschwanden et al. (1998a)
1.6 Microflares BATSE/CGRO,> 8 keV, 1991 Lin et al. (2001)

height limit of h <∼ 30 Mm in earlier stereoscopic measurements. The most extreme
case with a stereoscopic height of h ≈ 200 Mm (Kane et al. 1992) could be associated
with thin-target emission from trapped electrons in a large-scale flare loop.

13.7 Hard X-Ray Statistics

13.7.1 Flare Statistics of Nonthermal Energies

We discussed the statistics of small-scale heating events in §9.8. They generally show
powerlaw frequency distributions for their thermal energy content εth, with typical
powerlaw slopes in the range of αε ≈ 1.5 − 2.5 (Table 9.6). Energy content is simply
estimated by integrating thermal energy over volume, εth = 3nekBTeV . We also de-
rived two theoretical models that predict powerlaw slopes between αε = 1.21 and 1.67.
For solar flare events, we expect that there is roughly a one-to-one conversion between
nonthermal and thermal energy, based on the chromospheric evaporation model and the
Neupert effect (§13.5.5). It is therefore instructive to study the frequency distributions
of nonthermal flare energies, which can be obtained by deriving the electron injection
spectrum from the observed hard X-ray photon spectrum, and by integrating over the
nonthermal energy range (above some cutoff) and over the flare duration (Eq. 13.2.31).
A compilation for the frequency distributions of flare peak fluxes FP , the most com-
monly measured flare parameter, is given in Table 13.2. The frequency distribution of
nonthermal flare energies εnth, is expected to be somewhat different, because spectral
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Table 13.3: Frequency distributions of flare parameters obtained from hard X-ray data (Crosby
et al. 1993).

Parameter Symbol Powerlaw slope α Scaling law
Peak count rate P 1.73 ± 0.01 −
Total duration D 2.17 ± 0.05 −
Peak hard X-ray flux at 25 keV I(25 keV) 1.62 ± 0.02 I ∝ P 1.01

Peak hard X-ray flux > 25 keV FP (25 keV) 1.59 ± 0.01 FP ∝ P 1.01

Peak energy flux in electrons > 25 keV F (25 keV) 1.67 ± 0.04 F ∝ P 0.94

Total energy in electrons > 25 keV W (25 keV) 1.53 ± 0.02 W ∝ P 1.25

slope and flare duration are not independent of flare peak flux FP . The powerlaw slopes
of the frequency distributions of different flare parameters and scaling laws determined
from hard X-ray data are shown in Table 13.3, obtained from ≈ 104 flares recorded by
HXRBS during the SMM era (Crosby et al. 1993). We see that the frequency distribu-
tion of flare energies is somewhat flatter (αε ≈ 1.53, Fig. 9.27) than that of the hard
X-ray peak count rates (αP = 1.73), so a similar correction of ∆α ≈ −0.2 can be
applied to the results given in Table 13.2 to estimate the distribution of flare energies.
What is remarkable is that all distributions are flatter than a powerlaw slope of 2, so to-
tal energy is always dominated by the largest flares (Hudson 1991a). This implies that
there is only negligible energy in microflares and nanoflares compared with energies in
larger events, if all physical parameters obey the same scaling laws for smaller events.

An interesting quantity to compare would be the frequency distribution of thermal
flare energies. Curiously, no such distribution is available in the literature, probably
because of the difficulty in measuring flare volume for a large number of events, which
could be fractal (Fig. 9.21 and §9.7.1) and requires careful volume modeling. Once
both the thermal and nonthermal frequency distributions are known, we could easily
verify whether there is one-to-one conversion from nonthermal to thermal energies, as
expected in the chromospheric evaporation model and from the Neupert effect (Veronig
et al. 2002b).

13.7.2 Flare Statistics During Solar Cycles

The (monthly averaged) solar flare rate varies about a factor of 20 between solar max-
imum and minimum, similar to the monthly sunspot number (Fig. 13.36). Since the
sunspot number (defined by an empirical formula that weights the sunspot area and
number of sunspot groups) is a measure of the total magnetic flux present on the so-
lar surface at a given time (DeToma et al. 2000), the basic correlation with the solar
flare rate implies, of course, that the number of produced flares is associated with mag-
netic flux, and thus flare energy is ultimately of magnetic origin. A closer look at
Fig. 13.36 reveals that the flare rate also fluctuates much more (with a modulation
depth of <∼ 90%) than the sunspot number (with a modulation depth of <∼ 20%). This
property implies a highly nonlinear response of flare rate as a function of available
magnetic flux. The total soft X-ray luminosity was found to scale with the magnetic
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Figure 13.36: The monthly averaged solar flare rate (top: ISEE-3, HXRBS/SMM, and
BATSE/CGRO) compared with the soft X-ray flare rate (second panel: GOES > M1 class
flares), soft X-ray background flux (third panel: GOES 1 − 8 Å flux), radio 10-cm flux (fourth
panel), and monthly sunspot number (Aschwanden 1994).

field as ISXR ≈< |B‖| >2 (Fig. 1.13; Benevolenskaja et al. 2002). Since the soft
X-ray peak flux is proportional to the time-integrated hard X-ray flux according to the
Neupert effect (§13.5.5), we can understand that the flare rate counted in soft X-rays or
hard X-rays is also somehow related to the available magnetic flux on the solar surface.
The detailed relation, however, is certainly more complex than a simple proportional-
ity. Flare rate must be related in some form to magnetic complexity (sheared magnetic
fields and nonpotential magnetic energy), rather than to total magnetic flux per se.
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13.8 Summary

Hard X-ray emission is produced by energized electrons via collisional bremsstrah-
lung, most prominently in the form of thick-target bremsstrahlung when pre-
cipitating electrons hit the chromosphere. Thin-target bremsstrahlung may be
observable in the corona for footpoint-occulted flares. Thermal bremsstrahlung
dominates only at energies of <∼ 15 keV. Hard X-ray spectra can generally be fitted
with a thermal spectrum at low energies and with a single- or double-powerlaw
nonthermal spectrum at higher energies. A lot of physical insights can be obtained
from time structures and energy-dependent time delays. Virtually all flares ex-
hibit fast (subsecond) pulses in hard X-rays, which scale proportionally with flare
loop size and are most likely spatio-temporal signatures of bursty magnetic re-
connection events. The energy-dependent timing of these fast subsecond pulses
exhibit electron time-of-flight delays from the propagation between the coronal
acceleration site and the chromospheric thick-target site. The inferred accelera-
tion site is located about 50% higher than the soft X-ray flare loop height, most
likely near X-points of magnetic reconnection sites. The more gradually vary-
ing hard X-ray emission exhibits an energy-dependent time delay with opposite
sign, which corresponds to the timing of the collisional deflection of trapped elec-
trons. In many flares, the time evolution of soft X-rays roughly follows the inte-
gral of the hard X-ray flux profile, which is called the “Neupert effect”. Spatial
structures of hard X-ray sources include: (1) footpoint sources produced by thick-
target bremsstrahlung; (2) thermal hard X-rays from flare looptops; (3) “above-
the-looptop” (Masuda-type) sources that result from nonthermal bremsstrahlung
from electrons that are either trapped in the acceleration region or interact with
reconnection shocks; (4) hard X-ray sources associated with upward soft X-ray
ejecta; and (5) hard X-ray halo or albedo sources due to backscattering at the
photosphere. In spatially extended flares, the footpoint sources assume ribbon-
like morphology if mapped with sufficient sensitivity. The monthly hard X-ray
flare rate varies about a factor of 20 during the solar cycle, similar to magnetic
flux variations implied by the monthly sunspot number, as expected from the mag-
netic origin of flare energies.



Chapter 14

Gamma-Rays

Electromagnetic radiation in gamma-rays (also denoted as γ-rays) occupies the high-
energy end of the wavelength spectrum, which conveys us information from MeV to
GeV particles generated in large solar flares. In solar flares, and similarly in other astro-
physical sites, gamma-ray emission is mostly produced by interactions of high-energy
particles with an ambient plasma: by Couloumb collisions between electrons and ions
(bremsstrahlung), by collisions between accelerated ions and thermal ions (producing
nuclear de-excitation lines), or by collisions between protons (which can produce neu-
trons, pions, and positrons). The latter processes are detectable by the neutron capture
line, by pion-decay radiation, and positron annihilation radiation. Gamma-ray emis-
sion provides us information on both electrons and ions, because both continuum and
line spectra are present, in contrast to the hard X-ray spectrum, which is exclusively
produced by electron bremsstrahlung without any significant radiative signatures from
ions. Thus, gamma-rays provide two lines of diagnostic during solar flares: (1) proper-
ties of the acceleration mechanisms (maximum energy, electron/ion ratios, electron/ion
acceleration efficiencies, directivity, pitch angle distributions), and (2) properties of the
ambient plasma (chromospheric ion abundances, coronal trapping times).

Prime gamma-ray observations have been obtained from the Gamma-Ray Spec-
trometer (GRS) on SMM, the Hinotori spacecraft, the Wide-Band Spectrometer (WBS)
on the Yohkoh spacecraft, the Burst and Transient Source Experiment (BATSE) and
Oriented Scintillation Spectrometer Experiment (OSSE) on CGRO, and most recently
from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) spacecraft.
Some of the gamma-ray lines in solar flares are, for the first time, resolved with the
cooled germanium detectors of RHESSI.

Review articles on gamma-ray emission in solar flares can be found in Lingen-
felter & Ramaty (1967), Ramaty (1986, 1996), Ramaty & Murphy (1987), Hudson
(1989), Hudson & Ryan (1995), Chupp (1995, 1996), Ramaty & Lingenfelter (1996),
Share et al. (1997), Trottet & Vilmer (1997), Vestrand & Miller (1999), Share & Mur-
phy (2000), Ramaty & Mandzhavidze (1994, 2000b, 2001), Aschwanden (2002b), and
Vilmer & MacKinnon (2003). For proceedings on solar high-energy particle work-
shops see Zank & Gaisser (1992), Ryan & Vestrand (1994), Ramaty et al. (1996), and
Ramaty & Mandzhavidze (2000a).
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Figure 14.1: Composite photon spectrum of a large flare, extending from soft X-rays (1−10
keV), hard X-rays (10 keV−1 MeV), to gamma-rays (1 MeV−100 GeV). The energy spectrum
is dominated by different processes: by thermal electrons (in soft X-rays), bremsstrahlung from
nonthermal electrons (in hard X-rays), nuclear de-excitation lines (in ≈ 0.5 − 8 MeV gamma-
rays), by bremsstrahlung from high-energetic electrons (in ≈ 10 − 100 MeV gamma-rays),
and by pion-decay (in >∼ 100 MeV gamma-rays). Note also the prominent electron-positron
annihilation line (at 511 keV) and the neutron capture line (at 2.2 MeV).

14.1 Overview on Gamma-Ray Emission Mechanisms

An overview on the most relevant gamma-ray emission processes in solar flares is
given in Table 14.1, taken from Ramaty & Mandzhavidze (1994). There are at least
six distinctly different physical mechanisms that produce photons in gamma-ray wave-
lengths: electron bremsstrahlung continuum emission, nuclear de-excitation line emis-
sion, neutron capture line emission, positron annihilation line emission, pion-decay
radiation, and neutron production processes. A complete solar flare spectrum is shown
in Fig. 14.1, extending from soft X-rays over hard X-rays to gamma-rays, (although
only few flares exhibit all the features present in Fig. 14.1). We see that line emission
occurs only in soft X-rays (by atomic transitions) and in gamma-rays (by nuclear transi-
tions). The gamma-ray spectrum (Fig. 14.1) contains a background spectrum produced
by electron bremsstrahlung that can be dominated by gamma-ray lines and pion-decay
emission at particular gamma-ray energies during large flares. An expanded spectrum
with fits of nuclear de-excitation lines from 56Fe, 24Mg, 20Ne, 28Si, 12C, 16O, 15N,
the electron-positronium line at 511 keV, and the neutron capture line at 2.223 MeV is
shown in Fig. 14.2, using a gamma-ray spectrum observed by OSSE/CGRO (Murphy
et al. 1997). Let us now give a brief description of the various gamma-ray emission
processes, in the order listed in Table 14.1 (which is also the order of the following
sections in this chapter).

Electron bremsstrahlung continuum: The bremsstrahlung of electrons consists of
two types: (1) electrons directly accelerated in the flare and (2) secondary electrons and



14.1. OVERVIEW ON GAMMA-RAY EMISSION MECHANISMS 609

Figure 14.2: Count spectra and best fits obtained using the photon models described in Murphy
et al. (1997). (a) An 8-s CGRO/OSSE spectrum accumulated soon after the peak of emission in
the first orbit by detector 2 while pointing 45◦ off the Sun. The spectrum has been rebinned into
larger energy intervals to improve the statistics for fitting. (b) A 2-minute spectrum accumulated
late in the first orbit by detector 1 while pointing at the Sun (Murphy et al. 1997).
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Table 14.1: High-energy photon and neutron production mechanisms (from Ramaty &
Mandzhavidze 1994).

Emissions Processes Observed photons Primary ion or
or neutrons electron energy range

Continuum Primary electron 20 keV−1 MeV 20 keV−1 GeV
bremsstrahlung >10 MeV

Nuclear Accelerated ion Lines at 1−100 MeV/nucl
de-excitation interactions, e.g., e.g.,
lines 4He(α,n)7Be∗ 0.429 MeV

4He(α,p)7Li∗ 0.478 MeV
20Ne(p,p’)20Ne∗ 1.634 MeV
12C(p,p’)12C∗ 4.439 MeV
16O(p,p’)16O∗ 6.129 MeV

Neutron Neutron production by Line at 10−100 MeV/nucl
capture accelerated ions 2.223 MeV
line followed by 1H(n,γ)2H
Positron β+ Emitter or π+ Line at 10−100 MeV/nucl
annihilation production by accelerated 0.511 MeV
radiation ions, e.g.,

12C(p,pn)11C �→ 11B+e++ν Orthopositronium
p+p�→ π+...π++ �→ µ+ �→ e+ Continuum
followed by < 511 keV
e+ + e− �→ 2γ
e+ + e− �→ Ps+hν
or e++1H �→ Ps+p
Ps �→ 2γ, 3γ

Pion decay π0 and π+ production 10 MeV−3 GeV 0.2−5 GeV
radiation by accelerated particles, e.g.,

p+p�→ π0, π±...
followed by
π0 �→ 2γ, π± �→ µ± �→ e±
e+ �→ γbrems, γann in flight
e− �→ γbrems

Neutrons Accelerated particle neutrons in space 10 MeV−1 GeV
interactions, e.g., (10−500 MeV)
4He(p,pn)3He neutron induced 0.1−10 GeV
p + p �→ π + n + ... atmospheric cascades
22Ne(α, n)25Mg (0.1−10 GeV)

Neutron decay protons 20−400 MeV
in space (20−200 MeV)

positrons that arise from high-energy reactions (involving pions decay and muon pro-
duction). The latter often dominates above 10 MeV. This continuum emission, which
can be detectable up to 1 GeV, is produced by collisional bremsstrahlung from relativis-
tic (20 keV−1 GeV) electrons that lose their energy by collisions with chromospheric
protons and ions. The spectral and temporal consistency of this continuum radiation
between hard X-rays and gamma-rays suggests that the primary relativistic electrons
and ions originate from the same coronal acceleration source during flares.

Nuclear de-excitation lines: Most of the gamma-ray line emission in the 0.5−8 MeV
energy range is produced by protons and ions that have been accelerated in the corona
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and precipitate (like the electrons) to the chromosphere, where they collide with other
ions and produce nuclear de-excitation lines (e.g., 56Fe at 0.847 MeV, 24Mg at 1.369
MeV, 20Ne at 1.634 MeV, 28Si at 1.779 MeV, 12C at 4.439 MeV, or 16O at 6.129
MeV). Narrow lines result from the bombardment of chromospheric nuclei by accel-
erated protons or α (He) particles, while broad lines result from the inverse reaction
in which accelerated carbon (C) and heavier nuclei collide with ambient hydrogen (H)
and helium (α). The broadening of the de-excitation lines is a consequence of the
Doppler shift in the frame of the observer.

Neutron capture line: The very narrow 2.2 MeV line emission is not a prompt pro-
cess, it is emitted only after neutrons become thermalized in the photosphere and be-
come captured by protons to produce deuterium, which has a binding energy of 2.223
MeV, so that a delayed photon with an energy of ε = hν = 2.223 MeV is emitted.

Positron annihilation: Positrons are produced in solar flares by the decay of ra-
dioactive nuclei and charged pions. Annihilation of these positrons with free electrons
produces the 511 keV line emission and a continuum below 511 keV.

Pion decay radiation: Above 10 MeV there is, besides the electron bremsstrahlung
continuum, also significant pion-decay radiation detected (Fig. 14.1). Charged and
neutral pions (π+, π− mesons) are produced by collisions between protons and ions
with energies >∼ 300 MeV/nucleon in the chromosphere. They subsequently decay
into muons (µ+, µ−). The secondary electrons and positrons produce bremsstrahlung,
while almost all neutral pions (π0) decay electromagnetically into two γ-rays, each
with a (Doppler-broadened) energy of 67 MeV (i.e., half of the pion rest mass of
m0

πc2 = 135 MeV).

Neutrons: Neutrons are produced by interactions between accelerated ions and pro-
tons or α-particles, mostly in chromospheric precipitation sites. Neutrons that escape
the chromospheric flare site can propagate directly to Earth, unimpeded by the helio-
spheric magnetic field (because of their neutral charge) producing atmospheric showers
(cascades) that in intense flares are detectable on ground by neutron monitors.

14.2 Electron Bremsstrahlung Continuum

The continuum spectrum is dominated by electron bremsstrahlung below 0.5 MeV in
hard X-rays and in the energy range of 10−50 MeV in gamma-rays (Fig. 14.1). We
have discussed the theory of the collisional electron bremsstrahlung emission mech-
anism already in §13 for the hard X-ray range, which also applies to the gamma-
ray range. A difference is that we deal with highly relativistic electrons (with β =
v/c >∼ 0.9 for energies ε >∼ 1 MeV), and thus have to apply the fully relativistic cross
sections (Koch & Motz 1959; Haug 1975, 1997) to calculate gamma-ray spectra. Of
course, gamma-rays are not always detected during flares, partially because the electron
spectrum falls off so steeply with energy that the sensitivity of gamma-ray detectors is
insufficient for small flares, or because there is indeed a high-energy cutoff in the accel-
eration efficiency in smaller flares. The two possibilities can often not be distinguished
from gamma-ray spectra alone.
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Figure 14.3: Comparison of a gamma-ray line-dominated phase (end phase of flare,
14:36:48−14:53:00 UT; top panel) and an electron-dominated phase (peak phase of flare,
13:57:12−13:58:50 UT; bottom panel) of the 1989-Mar-06 flare. The drop at >∼ 7 MeV in the
end phase (top panel) is due to the absence of strong nuclear lines above this energy. During the
flare peak (bottom panel), the electron-dominated spectrum flattens above >∼ 1 MeV and there
is only a very weak indication of the 2.223 MeV neutron capture line and the 4.439 MeV carbon
line, compared with the later flare phase (top panel), when gamma-ray lines dominate the 2 − 8

MeV range (Rieger & Marschhäuser 1990).
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14.2.1 Electron-Dominated Flares

In some flares, the electron bremsstrahlung continuum dominates even in the 0.5 − 8
MeV range that includes the gamma-ray lines. The gamma-ray spectra of such flares
show a featureless continuum spectrum (e.g., Fig. 14.3, bottom panel) and are called
electron-rich events (Rieger & Marschhäuser 1990). Such events exhibit the electron
bremsstrahlung spectrum in its least contaminated form. Two such typical impul-
sive events were observed with CGRO on 1991-Jun-30 and 1991-Jul-2, both being
not exceptionally large flares (GOES M-class), but exhibiting a very hard spectrum
(ε−1.5,...,−2.2) above ≈ 0.8 MeV (which is flatter than at lower energies), with only
small contributions from nuclear lines (Marschhäuser et al. 1994; Dingus et al. 1994;
Ryan 1994). A comprehensive catalog of gamma-ray spectra from 185 flare events
observed with GRS on SMM is published in Vestrand et al. (1999). The spectral hard-
ening above 0.8 MeV can vary from peak to peak within a flare (e.g., from 0.8 MeV to
0.5 MeV in just 20 s during the 1990-Jun-11 flare; Trottet et al. 1998). This represents
a major challenge for acceleration mechanisms and has not yet been explained. No
correlation between the spectral slope in the gamma-ray range and heliospheric posi-
tion has been found, implying that the degree of anisotropy of the radiating electrons
is low (Rieger et al. 1998). The upper energy cutoff provides a true lower limit of the
maximum energy of accelerated electrons, which is 50 MeV in the 1991-Jun-30 flare
and 10 MeV in the 1991-Jul-2 flare (Dingus et al. 1994). Electron-dominated events
have a relatively short duration of a few seconds to a few tens of seconds (Pelaez et
al. 1992; Yoshimori et al. 1992; Marschhäuser et al. 1994; Rieger 1994). In interplan-
etary particle events, electron-rich events are generally believed to originate in coronal
flare sites along with impulsive hard X-ray events, in contrast to proton-rich events that
originate in CMEs and are associated with gradual hard X-ray events (Reames 1992).

14.2.2 Maximum Acceleration Energy

There is no known high-energy cutoff of the electron bremsstrahlung spectrum; the
highest energies of observed bremsstrahlung are around several 100 MeV (Forrest et
al. 1985; Akimov et al. 1991, 1994a,b,c, 1996; Dingus et al. 1994; Trottet 1994a; Kurt
et al. 1996; Rank et al. 2001; see also Fig. 2 in the review by Ramaty & Mandzhavidze
1994). Gamma-rays were reported up to energies above 1 GeV with the Energetic
Gamma-ray Experiment Telescope (EGRET) on CGRO during the 1991-Jun-11 flare
(Kanbach et al. 1992). The spectrum of the flare could be fitted with a composite
of a proton generated pion neutral spectrum and a primary electron bremsstrahlung
component (Kanbach et al. 1992).

Do these highest observed energies constrain or rule out any acceleration mecha-
nism? For DC electric field acceleration in sub-Dreicer fields, the maximum velocity
to which electrons can be accelerated is limited by the value of the Dreicer field, which
depends on the density and temperature of the plasma, ED ≈ 2× 10−10n/T (statvolts
cm−1), see Eq. (11.3.2). Holman (1996) argues that electron energies up to 10 − 100
MeV can be attained for high densities of ne ≈ 1012 cm−3 and low temperatures T ≈ 2
MK (yielding a Dreicer field of ED = 1 × 10−4 statvolt cm−1, i.e., 3 V m−1), if elec-
trons are continuously accelerated over a current channel with a length of L = 10−100
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Mm. The requirement for such large-scale DC electric fields, however, conflicts with
the observed time-of-flight delays of hard X-ray pulses and the short inductive switch
on/off time scales required for the observed subsecond hard X-ray pulses, as discussed
in the kinematic Section 12.3.2.

Alternatively, Litvinenko (1996b) envisions super-Dreicer electric fields, which
can generate arbitrarily high maximum electron energies within much smaller spa-
tial scales, and thus can be consistent with the time-of-flight delays of the observed
hard X-ray pulses. The maximum energy for relativistic electrons obtained over an
acceleration time t is approximately,

ε(t) = eEl(t) ≈ eEct . (14.2.1)

Litvinenko (2003) identifies plausible physical conditions with super-Dreicer fields of
order E >∼ 100 V m−1 in reconnecting current sheets that lead to electron acceleration
with gamma-ray energies of a few 10 MeV in electron-rich flares or to the generation
of protons with energies up to several GeV in large gradual flares. Also stochastic
acceleration can generate 10 MeV electrons and 1 GeV protons (Miller et al. 1997), if a
sufficiently high wave turbulence level is assumed (which could not be observationally
constrained so far). Thus, the maximum observed gamma-ray energies imply severe
constraints only for the acceleration mechanism of sub-Dreicer electric DC fields.

14.2.3 Long-Term Trapping Sources

In §12.5 we described the kinematics of particle trapping. For the case of Coulomb
collisional scattering, the energy dependence of the trapping time is proportional to
ε3/2, so we expect much longer trapping times for high-relativistic electrons that emit
gamma-ray bremsstrahlung than for low-relativistic electrons in hard X-rays. The col-
lisional deflection time sets an upper limit on the trapping time (Eq. 12.5.11), which is
for electrons

ttrap(ε) <∼ tdefl(ε) = 0.95
( ε

100 keV

)3/2
(

1011 cm−3

ne

) (
20

ln Λ

)
(s) (14.2.2)

and a factor of ≈ 60 longer for ions. A major observational result of the energy-
dependent time delays of the smoothly varying hard X-ray emission is the agreement
of the observed delays with the energy dependence of the collisional deflection time
(according to Eq. 14.2.2), for reasonable flare densities of ne ≈ 1011 cm−3 (see
§13.5.4). This suggests that trapping of flare electrons is controlled by pitch angle
scattering in the weak-diffusion limit (by Coulomb collisions) rather than in the strong-
diffusion limit (by wave turbulence; e.g., see models of turbulent trapping by Ryan &
Lee 1991). Thus, trapping times for ε = 20 − 200 keV hard X-ray-producing elec-
trons amount only to τtrap ≈ 0.2 − 2.0 s in typical flare loops (see also measurements
in Fig. 13.22). If we extrapolate this trapping time to particles with higher energies
[e.g., to gyrosynchrotron-producing highly relativistic electrons (ε ≈ 0.3 − 1.0 MeV)
detected at microwaves], we expect trapping times of τtrap ≈ 3−10 s, and for gamma-
ray-producing electrons (ε ≈ 1− 100 MeV) we expect τtrap = 10− 104 s (Fig. 14.4).
In large-scale traps in the upper corona, where the density drops down to ne ≈ 109
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Figure 14.4: Collisional deflection times for electrons and ions as a function of energy, which
represent the upper limits on the trapping times. Note that trapping times of 1 − 10 hours are
feasible for gamma-ray-producing ions in the ε = 2 − 8 GeV energy range and for gamma-ray-
producing electrons in the ε > 10 GeV energy range.

cm−3, gamma-ray-producing electrons with ε = 1 − 100 MeV could be trapped up to
τtrap ≈ 1 − 103 hours, if there is no other pitch angle scattering mechanism present.
Since the ion collision times are about a factor of 60 longer than for electrons, the nu-
clear gamma-ray lines can easily be produced over time intervals of many hours due to
ion trapping in coronal flare loops.

For such long trapping times, however, there may be some containment problems
due to magnetic field fluctuations (∆B/B) from Alfvén waves, magnetic gradient
drift, and curvature drift (for the latter two effects see, e.g., Sturrock 1994, p. 53),

vD =
γmc

qB

(
v2
‖

B
(B × k) +

1
2

v2
⊥

B2
(B×∇B)

)
, (14.2.3)

where k is the curvature vector. This confinement problem can be cured, like in toka-
maks, by a compensating electric field that produces a counteracting E×B drift, or by
a twisted field that satisfies the force-free equilibrium equation B × (∇× B) = 0, or

∇× B = λB . (14.2.4)

Particle orbits in such force-free fields have been simulated by Lau et al. (1993), and it
was found that long-term containment of energetic protons in a coronal loop is possible
if the magnetic field lines have enough twist (i.e., ≈ 2π between the mirror points of a
bounce orbit). It was also calculated that the amount of matter encoutered by a 1-GeV
proton (the grammage) is sufficiently low during several hours trapping time so that the
protons still have sufficient kinetic energy to produce pions.
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Figure 14.5: Extended γ-ray emission as measured by COMPTEL for the 1991-Jun-11 flare in
the 2.223 MeV neutron capture line (top) and the 4−7 MeV nuclear line flux (bottom). The data
have been corrected for primary and secondary bremsstrahlung. A two-fold exponential decay
has been fitted. The origin of the time axis is 01:56 UT, and the flare onset reported by GOES.
Only data of the extended phase (after 02:13 UT) are shown (Rank et al. 2001).

Observations of long-duration gamma-ray flares, with extended >25 MeV emission
over several hours, much longer than the impulsive phase seen in hard X-rays (typically
a few minutes), were interpreted as evidence for prolonged acceleration of high-energy
particles. Bai (1982b) suggested that this requires a distinct second-phase accelera-
tion process, in addition to the impulsive phase. However, an interpretation in terms
of trapping in large-scale (low-density) loops is also plausible considering the long
collisional time scales (Ramaty & Mandzhavidze 1996). In the 1991-Jun-11 flare, 50
MeV−2 GeV γ-ray emission was observed by CGRO/EGRET and CGRO/COMPTEL
for more than 8 hours (Kanbach et al. 1993), and 2.223 MeV neutron line emission
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Figure 14.6: The beginning of the extended emission during the 1991-Jun-15 flare shows
that the gamma-ray flux is proportional to the microwave flux at 9.1 GHz (solid curve, in so-
lar flux units, s.f.u.). The diamonds represent > 30 MeV emission from GAMMA-1 (Akimov et
al. 1991; Kocharov et al. 1994) and the black squares represent 0.8 − 30 MeV COMPTEL data
(Rank et al. 2001).

(Fig. 14.5) over 5 hours (Rank et al. 1996, 2001). Since gamma-ray emission in this
energy range is dominated by pion decay, either a continuous source of proton accel-
eration or a long-term trapping of accelerated protons is needed (Ryan 2000). Ramaty
& Mandzhavidze (1994) calculate that the following conditions are required for an in-
terpretation in terms of long-term trapping: (1) A low level of plasma turbulence and
a relatively high mirror ratio (WA < 2 × 10−8 ergs cm−3 for Bp/Bc = 50) to pre-
vent the fast precipitation of the particles through the losscones; (2) a matter density
in the coronal part of the loop nc < 5 × 1010 cm−3 to prevent Coulomb and nuclear
losses. Arguments against continuous or second-step acceleration over 8 hours can be
construed based on the lack of hard X-ray emission from lower energy particles and the
smooth exponential decay of the 8-hour gamma-ray emission which is a natural char-
acteristic of a trap population. The extended gamma-ray emission of the three flares of
1991 June 9, 11, and 15 has been reanalyzed in the most comprehensive study by Rank
et al. (2001), who found different spectral slopes, e/p ratios, and pion emission during
subsequent flare phases. Based on these spectral changes they subdivided the flare evo-
lution into three phases (impulsive, intermediate, and extended phase) and concluded
that the extended phase cannot be explained by long-term trapping from a single ac-
celeration phase alone, but rather requires additional injections hours after the flare
onset. Akimov et al. (1996) made a similar argument in favor of prolonged accelera-
tion (rather than long-term trapping) based on the variability of associated radio emis-
sion (Fig. 14.6). The proportionality of radio and gamma-ray emission (e.g., Chupp et
al. 1993; Akimov et al. 1996; Kaufmann et al. 2000) suggests a common population of
highly relativistic electrons in an optically thin region producing gyrosynchrotron and
bremsstrahlung emission.
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Figure 14.7: Schematic overview of hard X-ray, gamma-ray, and neutron production mecha-
nisms. See also overview of processes in Table 14.1 (adapted from Rieger 1989).

14.3 Nuclear De-excitation Lines

14.3.1 Gamma-Ray Line Spectroscopy

In contrast to the continuum spectrum of electron bremsstrahlung, narrow gamma-
ray lines in the 0.5 − 8.0 MeV energy range result from the interaction of acceler-
ated protons and α-particles with ambient He and heavier nuclei. The high-energy
protons and α-particles are supposedly accelerated in coronal magnetic reconnection
sites, concomitantly with the electrons, then precipitate to the chromosphere, and pro-
duce gamma-rays while interacting with hydrogen, helium, and heavier nuclei of the
ambient chromosphere, which is fully ionized in the upper (transition) region, but only
partially ionized in the deeper layers. The strongest lines result from the de-excitation
of 12C nuclei at 4.439 MeV and 16O at 6.129 MeV. The required proton (kinetic) ener-
gies are 5 − 30 MeV. Because the lifetimes of the excited nuclear states are ≈ 10−12

s or shorter, called prompt lines (Fig. 14.7). Concise reviews on gamma-ray line spec-
troscopy can be found, for example, in Lingenfelter (1994), Ramaty & Mandzhavidze
(1994, 1996, 2000a, 2000b, 2001), or Share & Murphy (2000, 2004).

Nuclear de-excitation lines are calculated from nuclear cross sections, measured in
laboratory accelerator experiments. Narrow lines result from the bombardment of am-
bient nuclei by accelerated protons and α-particles, while broad lines result from the
inverse reactions in which accelerated C and heavier nuclei collide with ambient H and
He. The broadening of the de-excitation lines is the consequence of the Doppler shift-
ing of the essentially monochromatic radiation produced in the rest frame of the excited
nuclei. In the case of the narrow lines, the broadening is due to the recoil velocity of the
excited nuclei, which is small. The widths of the broad lines are much larger because
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Table 14.2: Prompt nuclear de-excitation lines (compiled from Kozlovsky et al. 2002) and line
widths (Smith et al. 2000, 2003).

Energy Reaction Transition Mean lifetime Line width
(MeV) (s) (keV)
0.339 56Fe(α, n)59Ni∗ 59Ni∗0.339 �→ g.s. 9.8 × 10−11 4
0.429a,b 4He(α, n)7Be∗ 7Be∗0.429 �→ g.s. 1.9 × 10−13 5
0.478a,b 4He(α, p)7Li∗ 7Li∗0.478 �→ g.s. 1.1 × 10−13 10
0.451 24Mg(p, x)23Mg∗ 23Mg∗0.451 �→ g.s. 1.6 × 10−12 30
0.847 56Fe(p, p′)56Fe∗ 56Fe∗0.847 �→ g.s. 8.9 × 10−12 5 (1.2+2.9)c

56Fe(α, α′)56Fe∗
0.931 56Fe(p, x)55Fe∗ 55Fe∗0.931 �→ g.s. 1.2 × 10−11 5
1.369 24Mg(p, p′)24Mg∗ 24Mg∗1.369 �→ g.s. 2.0 × 10−12 16 (21+8)c

25Mg(p, pn)24Mg∗
26Mg(p, p2n)24Mg∗
24Mg(α, α′)24Mg∗
28Si(p, x)24Mg∗

1.634 20Ne(p, p′)20Ne∗ 20Ne∗1.634 �→ g.s. 1.1 × 10−12 20 (17.6+4.3)c
20Ne(α, α′)20Ne∗
24Mg(p, x)20Ne∗
24Mg(α, x)20Ne∗
28Si(p, x)20Ne∗

1.779 28Si(p, p′)28Si∗ 28Si∗1.779 �→ g.s. 6.9 × 10−13 20 (16.7+4.5)c
28Si(α, α′)28Si∗
32S(p, x)28Si∗

2.614 20Ne(p, p′)20Ne∗ 20Ne∗4.248 �→20Ne∗1.634 9.2 × 10−14 60
20Ne(α, α′)20Ne∗
24Mg(p, x)20Ne∗
28Si(p, x)20Ne∗

4.439 12C(p, p′)12C∗ 12C∗4.439 �→ g.s. 6.1 × 10−14 145 (92+42)c
12C(α, α′)12C∗
14N(p, x)12C∗
14N(α, x)12C∗
16O(p, x)12C∗
16O(α, x)12C∗

6.129 16O(p, p′)16O∗ 16O∗6.129 �→ g.s. 2.7 × 10−11 145 (122+68)c
16O(α, α′)16O∗
20Ne(p, x)16O∗

a Narrow lines for a downward beam or a fan beam (Smith et al. 2000).
b Broad line (when 0.429 and 0.478 MeV combined) for an isotropic distribution (Smith et al. 2000).
c Measured by RHESSI for the 2002-Jul-23 flare (Smith et al. 2003).

the excited nuclei continue to move rapidly after their excitation. Additional narrow
lines are produced by accelerated 3He, whose abundance can be enhanced during im-
pulsive flares. Comprehensive treatments of the nuclear de-excitation gamma-ray line
emission can be found in Ramaty et al. (1975) and Kozlovsky et al. (2002), including
proton and α-particle reactions with He, C, N, O, Ne, Mg, Al, Si, S, Ca, and Fe. In
Table 14.2 we list the most prominent de-excitation processes with their energies, nu-
clear transitions, lifetimes, and line widths. Nuclear cross sections of these gamma-ray
lines as a function of energy are given in Kozlovsky et al. (2002). An overview of the
gamma-ray line spectrum in the energy range of 0.5−8 GeV is shown in Fig. 14.2, ob-
served with CGRO/OSSE, where most of the lines are not resolved, except the broadest
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Figure 14.8: RHESSI background-subtracted count spectra from 00:27:20 to 00:43:20 UT on
2002-Jul-23. Each panel is labeled with the element primarily responsible for the line shown.
The carbon and oxygen lines also show the secondary peak from the escape of a 511 keV
positron-annihilation photon, which also contains information on the line shape. The thick curve
shown in each panel is the Gaussian fit plus underlying bremsstrahlung continuum and broad
lines, convolved with the instrument response. The thinner line is the same fit forced to zero
redshift for comparison. The error bars are ±1σ from Poisson statistics (Smith et al. 2003).

ones with line widths of ≈ 150 keV (12C, 16O). Most of the prominent gamma-ray lines
have been spectrally resolved for the first time in a solar flare with the cryogenically
cooled germanium detectors of RHESSI, which have an energy resolution of ≈ 0.2%
FWHM from 1−6 MeV (Smith et al. 2002). Spectrally resolved gamma-ray lines have
been published in Smith et al. (2003) for the 2002-Jul-23 flare (a GOES X4.8 class)
and are shown in Fig. 14.8. The line fits show a Doppler shift (typically 1% redshift)
due to the nuclear recoils from the ion interaction and the emission of gamma-rays.
The elemental abundances of the accelerated ions as well as of the ambient gas can
be calculated from the gamma-ray line fluences. This provides unique information on
enrichments of coronal over chromospheric abundances (the FIP effect, see §2.10).

14.3.2 Ion-Electron Ratios

The relative ratio of accelerated electrons to protons is not well known. Generally
there is a significant correlation (but with broad scattering) between the fluences of
hard X-ray producing electrons (> 50 keV) and gamma-ray lines (4 − 8 MeV), which
suggests a common acceleration mechanism for ≈ 100 keV electrons and ≈ 10 MeV
protons (e.g., Vestrand 1988; Cliver et al. 1994; Rieger et al. 1998). There are so-
called electron-rich events that are so intense in electron bremsstrahlung that they ob-
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Figure 14.9: Calculated energy contents in ions and electrons. The solid circles and the lower
limits indicated by horizontal bars are, respectively, the ion energy contents assuming low-energy
cutoffs at 1 MeV/nucleon and at the maximum εc allowed by the observed Ne/O line fluence
ratios. The open diamonds are electron energy contents assuming a cutoff at 20 keV (Ramaty &
Mandzhavidze 2000a).

scur gamma-ray line emission (Rieger & Marschhäuser 1990). On the other hand, there
are arguments that protons dominate the energy budget (Simnett 1986a). So, what is
the relative proton-to-electron acceleration ratio? The bulk of the γ-ray line emission
is believed to be produced by ions with energies of 5 − 100 MeV/nucleon that contain
only a small fraction of the energy in > 20 keV electrons (e.g. Lin 2000). However,
systematic studies of γ-ray lines observed with SMM (Share & Murphy 1995) show
that the 1.634 MeV 20Ne line is unexpectedly enhanced. Because the cross section for
20Ne has an unusually low energy threshold (≈ 2.5 MeV), this effect may be due to
large fluxes of low-energy ions with a total energy content perhaps comparable to that
in accelerated electrons (Ramaty et al. 1995; Emslie et al. 1997). On the other hand,
warm thick-target effects could also mimic an enhanced 20Ne line strength (MacKin-
non & Toner 2003). To estimate the relative proton-to-electron ratio, or the relative
energy content of their spectra, an extrapolation of the spectra has to be made in the
ε < 1.6 MeV range. Earlier spectral modeling with Bessel functions yielded a small
proton-to-electron energy content, Wi � We (Ramaty 1986). However, when more
gamma-ray data constraining the relative Ne/O abundance became available, the spec-
tral fits in the gamma-ray range favored an unbroken powerlaw, which led to a much
larger ion energy content, comparable to equipartition, Wi ≈ We (Ramaty et al. 1995).
The total energy contained in ions and electrons was calculated for 19 flares, based on
a single-powerlaw spectrum with the slope constrained by the Ne/O ratio (Fig. 14.9).
For a range of Ne/O=0.2 − 0.25, the energy in ions seems to be larger than the energy
in ≥ 20 keV electrons in about 5 out of the 19 flares. It should also be recalled that the
energy content in nonthermal electrons strongly depends on the assumed lower cutoff
energy, which is traditionally chosen at ≈ 20 keV, but could be below ≈ 10 keV in
small flares (Fig. 13.5). A lower cutoff energy can dramatically increase the energy
content in nonthermal electrons. For discussions of e/p-ratios in solar flares see, for
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example, reviews by Vestrand & Miller (1999) and Vilmer & MacKinnon (2003).

14.3.3 Ion-Electron Timing

If gamma-ray emission is detected during flares, both electrons and ions are involved,
so the question arises of what are the differences in the acceleration properties for both
species, regarding the acceleration times, efficiency, and maximum obtained energies.
In well-observed flares, the data clearly show that both species of particles, electrons,
and ions, are accelerated to relativistic velocities relatively promptly (within a few
seconds), and nearly simultaneously (Forrest & Chupp 1983). This is illustrated in
Fig. 14.10 for the 1980-Jun-7 flare, which consists of a sequence of seven hard X-ray
pulses, each one (except for the first one) followed by a gamma-ray pulse detected in
the energy range of 4.2− 6.4 MeV, with only a slight delay of about ≈ 1 − 2 seconds.
Forrest & Chupp (1983) found that the peaks in hard X-rays and gamma-rays during the
two intense flares of 1980-Jun-7 and 1980-Jun-21 coincided within ±2.2 and ±0.8 s.
Also in the 1992-Feb-8 flare, individual peaks between 40 keV and 40 MeV coincided
within ±1 s (Kane et al. 1986). It is generally argued that this observed delay of <∼ 2
s represents an upper limit for the acceleration time scale of protons and ions (that
are responsible for the 4.2 − 6.4 MeV gamma-ray line emission). In Section 12.3
we found that only acceleration times that are significantly smaller than the electron
propagation times (from the coronal acceleration site to the chromospheric hard X-ray
emission site), tacc(ε) � tprop(ε), can satisfy the observed energy-dependent hard X-
ray delays. This necessarily also implies that the spatial extent lacc of the acceleration
region is significantly smaller than the propagation path length L (i.e., lacc � L).
Based on this argument we can assume that both electrons and ions are accelerated in
the same coronal acceleration region, regardless of the type of acceleration mechanism,
such as small-scale electric fields, stochastic acceleration, or shocks.

For co-spatial acceleration, say in the cusp near a coronal reconnection point, ac-
celerated electrons and protons have to propagate the same distance L to the flare loop
footpoints, where electrons produce thick-target bremsstrahlung in hard X-rays, while
the protons and α-particles produce nuclear de-excitation lines with ambient chromo-
spheric ions in gamma-rays. What is the relative timing between hard X-rays and
gamma-rays for this simplest scenario? For hard X-rays (e.g., for the εx = 35 − 114
keV channel as shown in Fig. 14.10), we know that the hard X-ray photons with energy
εx are produced by relativistic electrons with kinetic energies of ε = εx qε ≈ (35−140
keV) ×1.124 ≈ 40 − 160 keV (from the photon-to-electron energy conversion factor
for bremsstrahlung, defined in Eq. 13.5.6). For gamma-ray emission, however, which
is dominated by the nuclear de-excitation lines of 12C and 16O ions in the ε = 4.2−6.4
MeV energy range (e.g., Hudson et al. 1980), hit by precipitating protons (see Table
14.2), the kinetic energy of the accelerated protons can have a large possible range.
Because the standard composition of coronal plasma is made of 90% protons and 10%
helium we consider only protons here. As a first approximation, let us assume equipar-
tition for the kinetic energy of the accelerated electrons and protons (i.e., εp = εe),

εp = mpc
2(γp − 1) = εe = mec

2(γe − 1) , (14.3.1)
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Figure 14.10: Time profiles for a flare showing near-coincidence impulsive peaks in 35 − 114

keV hard X-rays (from energetic electrons) and 4.2 − 6.4 MeV gamma-rays (from energetic
ions). The time binning is 1 s. Note that the gamma-ray pulses are delayed by only ≈ 1 − 2 s
each (Forrest & Chupp, 1983).

which yields the following velocity ratio βp/βe for protons and electrons,

βp

βe
=

√
1 − [ εp

mpc2 + 1]−2√
1 − [ εe

mec2 + 1]−2
≈
√

εp

εe
· me

mp
=

1
43

√
εp

εe
, (14.3.2)

where the right-hand approximation applies to the nonrelativistic (or mildly relativistic)
case. For equipartition, the velocity ratio is βp/βe ≈ √me/mp =

√
1/1836 ≈

1/43. Therefore, the time-of-flight difference τep between electrons and protons over
a distance l′ is

τep =
l′

c
(

1
βe

− 1
βp

) =
l′

βec

(
1 −
√

εe

εp
· mp

me

)
, (14.3.3)

which, in the case of (kinetic energy) equipartition, would reduce to

|τequip
ep | ≈ 42

l′

βec
[s] . (14.3.4)

Given the example of the flare shown in Fig. 14.10, where we obviously do not have
equipartition, we have electrons with kinetic energies of εe

>∼ 35 keV (Lorentz factor
γe = 1 + εe/mec

2 = 1 + 35/511 = 1.0685 and a speed βe =
√

1 − 1/γ2
e = 0.35)

and protons with εp
>∼ 4.2 MeV (γp = 1 + εp/mpc

2 = 1 + 4.2/938 = 1.0045 and
βp =

√
1 − 1/γ2

e = 0.094). We do not know the flare loop size for the 1980-Jun-7
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flare (Fig. 14.10), but if we substitute typical flare loop radii observed with Yohkoh
(r = 3 − 25 Mm, Fig. 13.19) and the canonical scaling law for electron time-of-
flight distances, l′ ≈ 1.5r × (π/2) (Eqs. 13.5.10 and 13.5.11), we obtain propagation
distances of l′ ≈ 7 − 60 Mm. Thus we expect for the smallest loops with l′ = 7 Mm
an electron-proton delay of τep = (l′/c)(1/βe − 1/βp) ≈ −0.2 s, and for the largest
loops with l′ = 60 Mm a delay of τep ≈ −1.6 s. Therefore, we can predict that we
generally expect gamma-ray delays of |τep| ≈ 0.2 − 2 s for a typical range of flare
sizes, just based on the proton time-of-flight delay from the coronal acceleration site
to the chromosphere. So it is likely that the gamma-ray delay is a proton propagation
delay rather than an acceleration delay. If shorter gamma-ray delays are observed, this
could be explained by faster protons than the equipartition principle predicts, and the
measured delay can then be used to put an upper limit on the maximum energies of the
accelerated protons (with Eq. 14.3.3). Similar values for the gamma-ray delays were
also obtained by other transport models (e.g., Ryan & Lee 1991; Vilmer et al. 1982),
which support our conclusions here. More stringent time delays could be predicted by
estimating the primary proton or ion energies involved in a given nuclear de-excitation
line from the nuclear cross sections.

14.3.4 Directivity and Pitch Angle Distributions

The bremsstrahlung radiation from relativistic particles is highly directional, limited to
within an angle of ϑ ≈ 1/γ. Thus, we do not expect any measurable directivity for
hard X-rays (γ >∼ 1), while it should be clearly detectable in gamma-rays at energies
of ε >∼ 0.5 MeV (γ >∼ 2). For gamma-rays above 10 MeV (γ > 20), which are dom-
inantly produced by electron bremsstrahlung, the relativistic beaming is very strong.
The directivity of bremsstrahlung radiation in solar flares has been discussed in vari-
ous studies (Elwert & Haug 1971; Brown 1972; Petrosian 1973, 1985), including the
geometric effects of curvature and convergence of magnetic field lines and pitch angle
scattering due to Coulomb collisions (Leach & Petrosian 1981, 1983).

Particles with small pitch angles are expected to enter the chromosphere nearly
vertically, and thus would have the highest emission in the downward direction, which
does not coincide with any line-of-sight direction, neither at the disk center nor at the
limb. However, if particles have large pitch angles (ring, pan-cake, or losscone dis-
tributions), which are naturally produced near the magnetic mirrors at the footpoints
of flare loops, we expect that the strongest emission coincides with the line-of-sight
direction for limb flares, while it is weakest at the disk center. Therefore, a larger
number of gamma-ray flares is expected to be detected near the limb than near disk
center. This was indeed observed for flare events before 1987, but not confirmed for
later events. Vestrand et al. (1987) performed statistics on 150 gamma-ray flares de-
tected at > 300 keV with the SMM Gamma-Ray Spectrometer (GRS) and found an
excess of gamma-ray events detected near the limb, as well as a slightly harder spec-
trum for limb flares. This observational result is consistent with losscone distributions,
but inconsistent with beam distributions. Center-to-limb distributions of hard X-ray
and gamma-ray flares are shown for three different energies (>30 keV, >300 keV, and
>10 MeV) in Fig. 14.11, where the directivity effect is clearly most prominent for
the highest energies. The percentage of flares at heliocentric distances of > 64◦ is



14.3. NUCLEAR DE-EXCITATION LINES 625

Figure 14.11: The number distribution of flares as a function of the heliocentric angle for three
different minimum energies, subdivided into 3 − 4 bins. The data of GRS flares with energies
≥ 300 keV are taken from Vestrand et al. (1987). The solid curves represent model distributions
with different pitch angles and magnetic mirror ratios (McTiernan & Petrosian 1991).

expected to be ≈ 30%. Vestrand et al. (1987) observed ≈ 80% of > 10 MeV flares
during solar Cycle 21 and ≈ 55% during Cycle 22 near the limb. Models by Petrosian
(1985) and Dermer & Ramaty (1986) reproduce these directivity effects with pancake
distributions.

While the center-to-limb effect confirms the directivity only on a statistical basis, it
could also be directly measured by stereoscopic observations, which however did not
confirm evidence for strong directivity, probably due to the lower energies used in the
measurements, or possibly also due to the unknown orientation of the magnetic field as
well as Compton backscattering.

Another method to determine the directivity is the modeling of gamma-ray line pro-
files, which should show different amounts of redshifts and blueshifts depending on the
pitch angle distribution of the impinging ions. For instance, the different spectral line
profiles of the 0.429 and 0.478 MeV gamma-ray lines from 7Be and 7Li (produced
by accelerated α-particles colliding with ambient α particles in the chromosphere)
have been calculated for different pitch angle distributions by Murphy et al. (1988).
Fig. 14.12 shows the different line shapes for four different pitch angle distributions:
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Figure 14.12: Gamma-ray line profiles from α − α fusion reactions in flares occurring at the
center of the solar disk for four different angular distributions of accelerated α-particles (Murphy
et al. 1988).

for isotropic, downward beam, losscones (also called fan-beam or pan-cake), and for a
sin6-distribution. Clearly, the line widths and centroids are quite different for these four
distributions and thus provide a sensitive diagnostic for the anisotropy of accelerated α-
particles, although the density gradient in a stratified atmosphere adds complications.
Recent fits to the α − α lines in the 0.3 − 0.7 MeV range have been performed with
this method for 19 flares by Share & Murphy (1997), and it was found that a downward
beam distribution could be ruled out with high confidence in 4 flares, while losscone
distributions and isotropic distributions provide acceptable fits to the data. The inter-
pretation of this result depends on magnetic field models at the loop footpoints. For
a high magnetic mirror ratio one would expect that the precipitating α-particles have
large perpendicular velocities (i.e., losscone distributions), consistent with the observed
anisotropy. Similar studies with fits on 7Be, 7Li (Share et al. 2003) and 12C, 16C, and
20Ne lines (Share et al. 2002) corroborated the same result that a downward beam dis-
tribution can be ruled out and that other distributions (isotropic or downward-isotropic)
yield acceptable fits. The directivity results rule out field-aligned DC electric field ac-
celeration and favor stochastic acceleration processes. Brief reviews on the directivity
results can be found in Rieger (1989), Ramaty & Mandzhavidze (1994), and Vestrand
& Miller (1999).
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Figure 14.13: Two scenarios to explain γ-ray emission from behind-the-limb flares. Left:
because the footpoints of the primary flare loop are occulted behind the limb, γ-ray emission
was postulated to originate from a non-occulted coronal part of a connected large-scale trapping
loop. Right: although the primary flare site is behind the limb, some large-scale trapping flare
loop could connect to the front side, where γ-ray emission is produced in the chromospheric
footpoint.

14.3.5 Gamma-Ray Line Emission in Occulted Flares

Because gamma-rays in the 2 − 7 MeV range are generally dominated by nuclear de-
excitation lines which require chromospheric ion densities, some observations of oc-
culted (behind-the-limb) flare sites raised the problem of how the gamma-ray emission
could be explained for such flares. The issue is whether gamma-rays are produced in an
extended coronal trap region connected to the flare site (Fig. 14.13, left), or whether a
large-scale loop was connecting the behind-the-limb flare site with a remote footpoint
on the front side of the solar disk, where it could produce the usual chromospheric
gamma-ray emission (Fig. 14.13, right). A special class of gradual hard X-ray emis-
sion originating in an occulted flare (20◦ behind the limb) was already reported earlier
(Hudson 1978), before gamma-ray observations were available, interpreted as a pure
coronal (large-scale) trapping structure that is capable of trapping electrons and protons
for extended periods of time.

Gamma-ray emission from an occulted flare was observed on 1989-Sep-29, 10:47
UT, and was associated with NOAA region 5698 at position W105◦, so about 15◦

behind the limb (Vestrand & Forrest 1993, 1994). The gamma-ray emission showed
electron bremsstrahlung continuum, a positron annihilation line, prompt nuclear emis-
sion in the 1 − 8 MeV range, and a neutron capture line at 2.22 MeV that was sur-
prisingly strong. Since the bulk of the prompt gamma-ray emission requires densities
of nH > 1014 cm−3 to efficiently capture neutrons within their 900 s lifetime, it was
concluded that the observations require a spatially extended loop that connects from
behind-the-limb to the front side, covering a distance of ≈ 30◦ heliographic degrees
(i.e., ≈ 370 Mm), as illustrated in Fig. 14.13 (right).

Intense gamma-ray emission of prompt lines in the 1 − 2 and 4 − 7 MeV energy
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range was also reported from PHEBUS on GRANAT during the 1991-Jun-1, 14:46 UT,
GOES class X12.0 event, associated with NOAA region 6659, located 7◦ behind the
east limb (Barat et al. 1994). This corresponds to occultation heights ranging from 3000
to 7000 km above the photosphere. Although prompt gamma-ray line emission requires
densities of nH > 1012 cm−3, which places the gamma-ray line emission region at a
height of < 1500 km, it was concluded that the gamma-ray emission comes from
coronal heights > 3000 km, because no 2.2 MeV neutron capture line was observed,
that could reveal a possible front-side footpoint connected with the behind-the-limb
flare site. Modeling of the gamma-ray line emission with a thin-target model with
densities of ne ≈ 1 − 5 × 1011 cm−3 could reproduce the observed gamma-ray line
fluxes (Trottet et al. 1996), although a very hard spectrum for the accelerated particles
is required (Murphy et al. 1999).

An electron-dominated event was observed during the occulted 1991-Jun-30, 02:55
UT flare, with significant emission in the 10− 100 MeV range from a height of >∼ 104

km (between 2◦ and 12◦ behind the east limb), but no gamma-ray line emission in the
2−7 MeV range was detected (Vilmer et al. 1999). This flare was also stereoscopically
observed by Ulysses at energies >28 keV, revealing that the spatial structure was so
extended that 0.07% of the total emission >28 keV (i.e., 10% of the occulted emission)
originated in on-the-disk sources (Trottet et al. 2003), as indicated in Fig. 14.13 (right).

14.3.6 Abundances of Accelerated Ions

The ratio of certain gamma-ray line fluxes can be used to probe abundance ratios. Par-
ticularly interesting are abundance ratios of low-FIP to high-FIP elements (Fig. 2.15),
which provide us information about what the enhancement factor is between coronal
and chromospheric abundances during flares, for a given element. In the following
we describe some combinations of gamma-ray lines that have been used to determine
abundance ratios in accelerated particles.

The ratio of α-particles to protons (α/p) can be determined from the fluence ratio
of the 0.339 MeV and 0.847 MeV lines. According to the processes listed in Table
14.2 we see that both lines result from de-excitations in ambient 56Fe, so the line ratio
is independent of the ambient abundances. However, it depends on α/p, because the
0.847 MeV line is produced by both protons and α particles (i.e., 56Fe(p,p’)56Fe∗ and
56Fe(α, α′)56Fe∗), while the 0.339 MeV line is only produced by α-particles (i.e.,
56Fe(α,n)59Ni∗), which is thus called a pure α-particle line. Studies of this line find
ratios of α/p >∼ 0.5 or He/H >∼ 0.1 (Share & Murphy 1998).

The strong, narrow gamma-ray lines at 6.13 MeV (16O), 4.44 MeV (12C), 1.78
MeV (28Si), 1.63 MeV (20Ne), 1.37 MeV (24Mg), and 0.847 MeV (56Fe) result from
de-excitations in nuclei of the relatively abundant constituents of the solar atmosphere.
This has allowed the determination of the abundances of these elements (Murphy et
al. 1996; Ramaty et al. 1995, 1996), showing that the low-FIP elements Mg, Si, and Fe
are enriched relative to C and O in the gamma-ray producing region, a result that im-
plies that the FIP bias known in the corona (Fig. 2.15) already sets in at lower altitudes,
in the chromosphere.

A surprising result was that the Ne/O≈0.25 ratio was found to be higher (Ramaty
et al. 1996) than the commonly accepted photospheric value of Ne/O≈ 0.15 (Meyer
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Figure 14.14: The 2.223 MeV neutron capture line count spectrum observed during the 2003-
Jul-23, 00:27:20-00:43:20 UT, flare with RHESSI. The line profile fit includes the nuclear de-
excitation line component (dotted), the electron bremsstrahlung powerlaw (dashed), and a Gaus-
sian for the line (dash-dotted). The sum of all components is rendered with a solid curve. Note
the high-resolution binning of 1 keV, providing a spectral resolution of ≈ 0.05% (Murphy et
al. 2003).

1996), implying either a large ion/electron ratio (which makes the ion energies domi-
nant), a FIP effect issue (Shemi 1991; Share & Murphy 1995; Share et al. 1996), or an
effect of a warm thick-target model (MacKinnon & Toner 2003).

The largest enhancement factors during gamma-ray flares have been measured for
3He/4He ratios. While solar wind values are typically 3He/4He≈ (4.5 ± 0.3) × 10−4,
flares with gamma-ray lines [16O(3He,p)18F∗ → 0.937, 1.04, 1.08 MeV] show that the
ratio could be consistent with 3He/4He ≈ 0.1 in essentially all flares, in some cases up
to 3He/4He ≈ 1 (Mandzhavidze et al. 1999). This huge enhancement by a factor of
≈ 103, which is not observed in gradual solar energetic particle (SEP) events near the
Earth (Reames et al. 1994; Reames 1995a), calls for a specific 3He-production process
(e.g., stochastic acceleration through gyroresonant wave-particle interactions). For dis-
cussions of abundance measurements in gamma-rays see, for example, Meyer (1996),
Mandzhavidze & Ramaty (2000a), Ramaty & Mandzhavidze (2000b), and Reames
(2000).

14.4 Neutron Capture Line

A prominent, very narrow gamma-ray line appears at 2.223 MeV which results from
neutron capture. Neutrons are produced from all accelerated ions (protons and heavier
nuclei such as C, N, O, Fe, etc.). The dominant neutron production process at higher
energies in solar flares comes from the breakup of He nuclei, both in the accelerated
particles and in the ambient medium. Like the gamma-ray lines, neutrons are also most
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likely produced in the high-density chromosphere at the footpoints of flare loops, where
precipitating ions enter the collisional regime. The produced neutrons can propagate
upwards and escape the Sun, or they can propagate downwards into the photosphere,
where they become thermalized by elastic collisions with hydrogen. Subsequently,
a significant fraction is captured by protons [i.e., 1H(n,p)2H], to produce deuterium
(2H) and monoenergetic photons at 2.223 MeV, the binding energy of the deuteron.
The never resolved 2.223 MeV neutron capture line is narrow (a few eV) because it is
broadened by only the relatively low photospheric temperature of ≈ 6000 K. Because
the production site (photosphere) of the 2.223 MeV line is much lower than that of
nuclear de-excitation lines (chromosphere), a significant limb darkening of the 2.223
MeV results for the much longer column depth near the limb. Thus, while the 2.223
MeV line is stronger than the nuclear de-excitation lines for disk flares, the role is
reversed for limb flares.

Because the 2.223 MeV line is very narrow (a few eV), it was never resolved. The
line width observed with high spectral-resolution instruments, such as with HEAO-3
(Prince et al. 1982) or with the cooled germanium detectors of RHESSI (Fig. 14.14;
Murphy et al. 2003) is of instrumental nature. Since the neutrons have first to slow
down before they can be captured by ambient hydrogen, the line occurs delayed by
≈ 50− 300 s. The delay is mostly affected by the energy distribution of the interacting
particles and the photospheric 3He abundance. A competing process in the photosphere
is capture by 3He [i.e., 3He(n,p)3H]. Neutron capture by 3He does not produce radia-
tion but reduces the delay of the 2.223 capture line, and thus can be used to infer the
3He/H abundance ratio. Making some assumptions on the chromospheric density, the
angular (pitch angle) distribution of the interacting particles, the magnetic convergence
in the chromosphere, and fitting the time history of the 2.223 neutron capture line (e.g.,
Fig. 14.5 top; Rank et al. 2001; Murphy et al. 1994), values in the range of 3He/H
≈ (4 ± 3) × 10−5 have been inferred (Ramaty & Kozlovsky 1974; Chupp et al. 1981;
Prince et al. 1983; Hua & Lingenfelter 1987; Trottet et al. 1993; Murphy et al. 1997;
Rank et al. 2001).

The spatial source of the 2.223 MeV emission is expected to coincide with the
flare loop footpoints where also nonthermal hard X-rays and other gamma-ray lines
are emitted, if one assumes that electrons and ions are concomitantly accelerated and
precipitate along the same magnetic field lines. The first imaging observations of the
2.223 MeV line, which were made with RHESSI during the 2002-Jul-23, 00:30 UT,
flare (GOES class X4.8), however, revealed a displacement of ≈ 20′′ ± 6′′ (≈ 15 Mm)
between the centroid of the 2.223 MeV emission and the 50−100 keV, 0.3−0.6 MeV,
and 0.7−1.4 MeV sources (Fig. 14.15; Hurford et al. 2003). This puzzling observation
suggests that electrons and ions are either not jointly accelerated or propagate in differ-
ent directions. A possible explanation was proposed in terms of stochastic acceleration
driven by MHD-turbulence cascading (§11.4.2−3), which favors ion acceleration in
larger loops and electron acceleration in shorter loops (Emslie et al. 2004).

Theoretical studies and reviews on the neutron capture line can be found in Lin-
genfelter et al. (1965), Lingenfelter & Ramaty (1967), Ramaty et al. (1975), Ramaty
(1986), Ramaty & Mandzhavidze (2001).
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Figure 14.15: Locations of gamma-ray sources in the 2002-Jul-23, 00:30 UT, flare, overlaid on
an SoHO/MDI magnetogram. The hard X-ray sources (50−100 keV) seem to outline a double-
ribbon structure as typical for flare arcades. Note the displacement of the 2.223 MeV neutron
capture line, which is displaced by ≈ 20′′ ± 6′′ to the south (Hurford et al. 2003).

14.5 Positron Annihilation Line

Positrons (e+) are the antiparticles to electrons (e−), having the same mass but opposite
electric charge (historically also called β+ particles). Wolfgang Pauli showed in 1930
that the radioactive beta-decay could only be explained if the proton (p) and neutron
(n) have weak interactions in nuclei,

n → p + e− + νe , (14.5.1)

p → n + e+ + νe , (14.5.2)

where νe is the electron neutrino and νe the anti-electron neutrino. The beta-decay
process occurs also for radioactive nuclei (Z, A) with charge Z and mass number A,

(Z − 1, A) → (Z, A) + e− + νe , (14.5.3)

(Z + 1, A) → (Z, A) + e+ + νe . (14.5.4)

Abundant ions accelerated in flares are 12C, 14N, and 16O. The accelerated ions then
collide mostly with ambient thermal protons and helium (α) particles and produce ra-
dioactive ions such as 11C, 13N, 15O, which then produce positrons (e+) by beta-decay
processes according to Eq. (14.5.4). A list of such principal beta-decay processes in the
solar chromosphere that occur during gamma-ray flares is given in Table 14.3, taken
from Lingenfelter & Ramaty (1967), also reproduced in Lang (1980). Nuclear cross
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Table 14.3: Principal positron emitters for abundant nuclei in gamma-ray flares (Lingenfelter
& Ramaty 1967).

Production β+ emitter Maximum Half life Threshold Production
mode and decay mode β+ energy time energy cross section

(MeV) (min) (MeV) (mb)
C12(p,pn)C11 C11 �→ B11 + β+ + ν 0.97 20.5 20.2 50
N14(p,2p2n)C11 13.1 30
N14(p,α)C11 2.9 −
O16(p,3p3n)C11 28.6 10
N14(p,pn)N13 N13 �→ C13 + β+ + ν 1.19 9.96 11.3 10
O16(p,2p2n)N13 5.54 8
N14(p,n)O14 O14 �→ N14 + β+ + ν 1.86 1.18 6.4 −
O16(p,pn)O15 O15 �→ N15 + β+ + ν 1.73 2.07 16.54 50

sections for the production of radioactive proton emitters resulting from protons and
α-particles and the ambient medium are treated in detail in Kozlovsky et al. (1987).

An alternative nuclear interaction that leads to the production of positrons are π-
meson production processes, of which a typical reactions is

p + p → p + n + π+ , (14.5.5)

where p are protons, n neutrons, and π+ is a positive π-meson. After π-mesons are
produced, µ-mesons, electrons, positrons, photons (γ), and neutrinos can be produced
by the decay reactions

π± → µ± + νµ/νµ , (14.5.6)

π0 → γ + γ , (14.5.7)

µ± → e± + νe/νe + νµ/νµ . (14.5.8)

Positively charged pions are created in solar flares with accelerated protons with en-
ergies ≥ 200 MeV, producing positrons that contribute to the 511 keV emission line
(Murphy et al. 1987).

The positrons (e+) that are produced in the chromosphere by the decay processes
described above, slow down by Coulomb interactions and either directly annihilate
with electrons,

e+ + e− → 2γ , (14.5.9)

or form positronium (Ps) by attachment to a free electron (e−),

e+ + e− → Ps + hν , (14.5.10)

or by charge exchange with a hydrogen atom 1H (also called charge exchange in flight),

e+ + 1H → Ps + p . (14.5.11)

Positronium is formed in the singlet or triplet spin state. Both the direct annihilation
process (Eq. 14.5.3) and annihilation from the singlet state contribute to the 511 keV
line. When annihilation takes place from the triplet state, three photons are emitted,
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Figure 14.16: Left: fit of the 511 keV annihilation line profile observed with RHESSI during
the 2002-Jul-23, 00:27:20−00:43:20 UT, flare, including the total background-corrected count
spectrum and the best fit (thin solid curve). Right: the 3γ/2γ ratio versus the 511 keV line
width and temperature for a fully ionized medium is shown for SMM flares (triangles) and the
RHESSI observed flare of 2002-Jul-23 (black dot). The (dashed) curves show model calculations
for different densities (Share et al. 2003).

producing a continuum. The number of photons observed in this continuum divided by
the number of photons in the line is known as the 3γ/2γ ratio. The line width and time
profile of the 511 keV line depends on the temperature, density, and ambient composi-
tion of the ambient medium, which determine the slow-down time of the positrons and
the formation process of the positronium (Crannell et al. 1976). The FWHM width of
the 511 keV line is

FWHM = 1.1 keV

√
T

104 K
, (14.5.12)

if the line width is entirely determined by thermal broadening during the positronium
formation in a hot ionized medium (Crannell et al. 1976).

The 511 keV line has been for the first time fully resolved during a solar flare
with the germanium-cooled detectors of RHESSI, namely during the 2002-Jul-23 flare,
which was a prolific emitter of the 511 keV annihilation line (Share et al. 2003).
The line profile could be fitted with two models in vastly different environments:
(1) formation of positronium by charge exchange in flight with hydrogen at a pho-
tospheric/chromospheric temperature of ≈ 6000 K, which yields a line width of ≈
7.5 ± 0.5 keV, or (2) positronium formation in a hotter thermal plasma with transi-
tion region temperatures of T ≈ (4 − 7) × 105 K, which reproduces the observed
(best-fit) line width of 8.1 ± 1.1 keV (according to Eq. 14.5.12). The line profile fits
and the 3γ/2γ ratio of the RHESSI measurement by Share et al. (2003) are shown in
Fig. 14.16. As Fig. 14.16 illustrates, the 3γ/2γ ratio −0.8 ± 0.5 of the RHESSI mea-
surement requires high densities ( >∼ 1014 cm−3) where the positronium slows down,
which is difficult to reconcile with the lower densities <∼ 1012 cm−3 usually measured
at transition region temperatures. Adopting the second interpretation thus raises the
question why annihilation does not take place in the lower chromosphere (at densities
of >∼ 1014 cm−3) where the positrons are traditionally expected to be produced and
where there is sufficient material to slow them down (Share et al. 2003)?
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Figure 14.17: A gamma-ray spectrum observed with EGRET/CGRO during the 1991-Jun-11,
02:04 UT flare, accumulated during 03:26−06:00 UT (Kanbach et al. 1993). The spectrum is
fitted with a combination of primary electron bremsstrahlung and pion-decay radiation. Note
that pion decay is dominant at energies >∼ 40 MeV (Mandzhavidze & Ramaty 1992a).

Reviews and discussions of the 511 keV annihilation line in solar flares can be
found in Lingenfelter & Ramaty (1967), Ramaty et al. (1975), Ramaty (1986), Ramaty
& Mandzhavidze (1994).

14.6 Pion Decay Radiation

The rest mass of π-mesons is 139.57 MeV for charged pions (π±) and 134.96 MeV for
neutral pions (π0). Therefore, if protons or heavier ions are accelerated to sufficiently
high energies of >∼ 260 MeV/nucleon, the kinetic energy can create pions. A typical
pion production process is given in Eq. (14.5.5), where accelerated protons collid-
ing with ambient nuclei are capable of producing both charged and neutral π-mesons.
The π±-mesons decay succesively into muons µ± (Eq. 14.5.6) and then into an elec-
tron or positron (e±) and neutrinos (Eq. 14.5.8). The secondary electrons (positrons)
in turn radiate by bremsstrahlung in collisions with ambient protons and ions. Neu-
tral pions (π0), on the other hand, decay electromagnetically into two gamma-rays
(Eq. 14.5.7), each with the half pion energy (67 MeV), with some Doppler broadening.
Other pion decay modes are rare (< 1%). Pion-decay radiation usually dominates the
flare gamma-ray spectrum above energies of >∼ 67 MeV (Fig. 14.1). The pion-decay
radiation requires either a very hard proton spectrum or an independent population of
high-energy particles. Therefore, spectral fits of theoretical pion-decay spectra pro-
vide constraints for the spectrum of accelerated protons (required for pion production).
Theoretical models of pion production have been calculated for specific acceleration
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processes, such as for stochastic or shock acceleration (Murphy et al. 1987), whilst
taking the time evolution of trapping (by magnetic mirroring) and precipitation into
account (Mandzhavidze & Ramaty 1992a).

The first detection of pion radiation in solar flares was accomplished during the
1982-Jun-03 flare (Forrest et al. 1985, 1986), which showed evidence for proton and
ion acceleration up to 1 GeV and high-energy neutrons >∼ 500 MeV (Chupp et al. 1985,
1987). The most prominent event for modeling of pion-decay radiation was the 1991-
Jun-11, 02:04 UT, flare (Fig. 14.17), which was observed by EGRET/CGRO in the
energy range of ≈ 10 MeV−2 GeV (Kanbach et al. 1993). The time profile and
the gamma-ray spectrum have been modeled self-consistently with a long-term trap
model of accelerated particles (Ryan & Lee 1991; Ryan 2000; Rank et al. 2001), where
pion production is controlled by precipitating protons and α-particles, which have an
energy-dependent trapping time and are required to meet the necessary threshold en-
ergy for pion production. The best fit was found for a hard proton injection spectrum
with a powerlaw slope of 3.5 (Fig. 14.17). More fine-tuned models distinguish be-
tween at least three different injection phases during the 8-hour-long event, which rec-
onciles the two models of continuous (or episodic) acceleration and long-term trapping
(Mandzhavidze et al. 1996; Akimov et al. 1996; Rank et al. 2001; see also §14.2.3).

The theory of pion-decay emission in solar flares is treated in detail in Murphy
et al. (1987), Mandzhavidze & Ramaty (1992a), and Heristchi & Boyer (1994). Ob-
servations of solar flare pion-decay radiation are described in Mandzhavidze & Ra-
maty (1992b, 1993), Ramaty & Mandzhavidze (1994), Hudson & Ryan (1995), and
Mandzhavidze et al. (1996).

14.7 Summary

The energy spectrum of flares in gamma-ray wavelengths (0.5 MeV−1 GeV) is
more structured than in hard X-ray wavelengths (20 − 500 keV), because it ex-
hibits both continuum emission as well as line emission. There are at least six
different physical processes that contribute to gamma-ray emission: (1) electron
bremsstrahlung continuum emission (§14.2); (2) nuclear de-excitation line emis-
sion (§14.3); (3) neutron capture line emission at 2.223 MeV (§14.4); (4) positron
annihilation line emission at 511 keV (§14.5); (5) pion-decay radiation at >∼ 50
MeV (§14.6); and (6) neutron production. The ratio of continuum to line emission
varies from flare to flare and gamma-ray lines can be completely overwhelmed in
electron-rich flares or flare phases. When gamma-ray lines are present, they pro-
vide a diagnostic of the elemental abundances, densities, and temperatures of the
ambient plasma in the chromosphere, as well as of the directivity and pitch angle
distribution of the precipitating protons and ions that have been accelerated in
coronal flare sites, presumably in magnetic reconnection regions. Critical issues
that have been addressed in studies of gamma-ray data are the maximum ener-
gies of coronal acceleration mechanisms, the ion/electron ratios (because selective
acceleration of ions indicate gyroresonant interactions), the ion/electron timing
(to distinguish between simultaneous or second-step acceleration), differences in
ion/electron transport (e.g., neutron sources were recently found to be displaced
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from electron sources), and the first ionization potential (FIP) effect of chromo-
spheric abundances (indicating enhanced abundances of certain ions that could
be preferentially accelerated by gyroresonant interactions). Although detailed
modeling of gamma-ray line profiles provides significant constraints on elemen-
tal abundances and physical properties of the ambient chromospheric plasma, as
well as on the energy and pitch angle distribution of accelerated particles, little in-
formation or constraints could be retrieved about the time scales and geometry of
the acceleration mechanisms, using gamma-ray data. Nevertheless, the high spec-
tral and imaging resolution of the recently launched RHESSI spacecraft faciliates
promising new data for a deeper understanding of ion acceleration in solar flares.



Chapter 15

Radio Emission

“War is the father of all things” (Heraclitus, 535-475 BC). So it was during World War
II that solar radio astronomy was born, when English radar stations received strongly
directed noise signals, first suspected from enemy transmitters, but finally identified
to be of solar origin. Grote Reber, a pioneer in galactic radio astronomy, first reported
solar radio radiation in 1944. After this discovery, solar radio astronomy was enthusias-
tically undertaken by construction of radio antennas and spectrometers, in Europe, the
U.S.A., Japan, Russia, and Australia. Radio spectrometers expanded their frequency
range from metric to decimetric, microwave, and millimeter wavelengths. These radio
spectrometers are non-imaging instruments, but provide very useful dynamic spectra,
many being still in operation today. A further breakthrough came with the construction
of radio interferometers, which allow for Fourier-type imaging. The most prominent
radio interferometers used for solar observations over extended periods of time are the
Dutch instrument in Westerbork, the Culgoora radioheliograph in Australia, the Very
Large Array (VLA) in New Mexico, the Owens Valley Radio Observatory (OVRO) in
California, the Nançay radioheliograph in France, and the Nobeyama radioheliograph
in Japan. Solar observations in radio wavelengths represent the second-best explored
wavelength regime (besides optical), because it could be done with ground-based in-
struments. A future solar-dedicated, frequency-agile radio array is being planned, the
so-called Frequency-Agile Solar Radiotelescope (FASR), which will provide imag-
ing with about 100 antennas over a very broad frequency range from 30 MHz to 30
GHz (see web-page http://www.ovsa.njit.edu/fasr/ for instrumental descriptions and
updates).

Radio observations range from quiet Sun emission to flares, CMEs, and interplan-
etary particles. Radio emission is produced by thermal particle distributions (free-
free emission), by mildly relativistic particles (gyrosynchrotron emission), as well
as by unstable anisotropic particle distributions, such as electron beams (producing
plasma emission) or losscones (producing electron-cyclotron maser emission). Since
solar radio astronomy has been developed over an epoch of sixty years, there are a
number of textbooks available, focussing either more on observations (Kundu 1965;
Zheleznyakov 1970; Krueger 1979; McLean & Labrum 1985) or more on the theo-
retical underpinning in plasma physics (Benz 1993; Melrose 1980a,b). Reviews on



638 CHAPTER 15. RADIO EMISSION

Table 15.1: Radio emission mechanisms during solar flares, (gyrofrequences are given in units
of angular frequencies, ω = 2πν) (Aschwanden 2002b).

Emission mechanism Frequency Source/Exciter
(1) Incoherent radio emission:
(1a) Free-free emission (bremsstrahlung) ν >∼ 1 GHz Thermal plasma
− Microwave postbursts Thermal plasma

(1b) Gyroemission ω = sΩe

Gyroresonance emission (s = 1, 2, 3, 4) Thermal electrons
Gyrosynchrotron emission (s ≈ 10 − 100) Mildly relativistic electrons
− Type IV moving Trapped electrons
− Microwave type IV Trapped electrons
(2) Coherent radio emission:
(2a) Plasma emission νpe = 9000

√
ne Electron beams

− Type I storms Langmuir turbulence
− Type II bursts Beams from shocks
− Type III bursts Upward propagating beams
− Reverse slope (RS) bursts Downward propagating beams
− Type J bursts Beams along closed loops
− Type U bursts Beams along closed loops
− Type IV continuum Trapped electrons
− Type V Slow electron beams

(2b) Electron-cyclotron maser: ω = sΩe/γ + k‖v‖ Losscones
- Decimetric ms spike bursts Losscones

flare-related radio emission can also be found in Wild & Smerd (1972), Marsh & Hur-
ford (1982), Kundu & Vlahos (1982), Wu (1985), Kundu (1985), Dulk (1985), Simnett
(1986b; 1995), Goldman & Smith (1986), Aschwanden (1987a; 2002b), Benz (1987b;
1993), Trottet (1994b), Aschwanden & Treumann (1997), Bastian et al. (1998), and
Fleishman & Mel’nikov (1998). Short encyclopedic articles have been written by Bas-
tian (2000), Benz (2000), Melrose (2000), and Bougeret (2000).

15.1 Overview on Radio Emission Mechanisms

Radio emission can generally be classified into coherent emission and incoherent emis-
sion mechanisms. Incoherent emission results from continuum processes, such as ther-
mal particle distributions that produce through Coulomb collisions free-free emission
in microwave and mm wavelengths, or thermal/mildly relativistic electron distributions
that produce through their random-phase gyromotion gyroresonance/gyrosynchrotron
emission. Coherent emission, in contrast, occurs by kinetic instabilities from unstable
particle distributions. When a particle distribution function f(v‖, v⊥) evolves with a
positive slope (∂f/∂v‖ > 0) in a parallel direction to the magnetic field, it is called a
beam distribution, and the bump in parallel direction drives a so-called bump-in-tail in-
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Figure 15.1: Characteristic frequencies for radio emission in the solar corona and heliosphere.
The plasma frequency (solid line) and the frequency where the free-free opacity is unity (dashed
line) are shown as distance from the photosphere versus frequency. The regimes of dominant
plasma emission, bremsstrahlung emission, and gyroresonance or gyrosynchrotron emission are
marked as a function of frequency (Gary & Hurford 1989).

stability that produces plasma emission. When a particle distribution function evolves
with a positive slope (∂f/∂v⊥ > 0) in a perpendicular direction, for example losscone,
ring, or Dory−Guest−Harris distributions, it is prone to electron-cyclotron maser emis-
sion. The term “maser” (microwave amplified stimulated emission radiation) refers to
an induced emission stimulated by an inverted particle distribution function, analogous
to the optical laser emission that is pumped by inverted quantum-mechanical level pop-
ulations. A quick overview of these radio emission mechanisms relevant to solar flares
is given in Table 15.1, which also lists the characteristic frequencies and sources or
physical exciter mechanisms. We will structure this chapter according to the same
groups of emission mechanisms.

The classification into these four major groups of physical emission mechanisms
tells us right away in what environment the corresponding radio emission or bursts
occur. Incoherent emission mechanisms require thermal (or isotropic suprathermal)
distributions, which are present in the quiet Sun and in active regions. Thermal free-
free emission tends to dominate over other mechanisms at low frequencies, at high
densities, or in cool regions. Thermal free-free emission is the dominant mechanism in
quiet Sun regions, coronal holes, and in prominences, and sometimes can be relevant
in active regions. Gyroemission, on the other hand, is most efficient in high mag-
netic fields, and thus is expected to dominate radio emission above sunspots. Gyrosyn-
chrotron emission requires mildly relativistic particles, which are naturally produced
during flares. For coherent emission mechanisms, the most natural way to produce
anisotropic particle distributions is either by velocity dispersion, which produces elec-
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tron beams and thus plasma emission, or by mirroring in a magnetic trap geometry,
which produces losscone distributions and thus is prone to losscone instabilities (such
as electron-cyclotron emission). Such magnetic mirror geometries are expected in flare
loops. Thus, most of coherent radio emission occurs during flares, intermittently and
bursty, driven by bursty magnetic reconnection processes (§ 10.2) and the associated
flare plasma dynamics. The term “radio burst” thus dominated the nomenclature of
observed radio emission right from the beginning. Of course, there is also non-flaring
or quiet, quasi-steady radio emission, such as gyroresonance emission above sunspots
(§ 5.7.2) or free-free emission in active regions, which we discussed earlier (§ 5.7.1 and
§ 2.3). Thus we focus in this chapter mainly on flare-related radio emission.

A diagram that shows the coronal and heliospheric altitude range where radio emis-
sion occurs as a function of the frequency is given in Fig. 15.1 (Gary & Hurford 1989).
Using a canonical density model of the corona and heliosphere, the plasma frequency
run fp(h) is shown in Fig. 15.1 (solid curve), starting at fp

<∼ 1 GHz in the transition
region and steadily dropping to fp ≈ 30 kHz at 1 AU distance. Using a density and
temperature model, the run of the optically thick layer with τff = 1 is also shown
in Fig. 15.1 (dashed curve), which illustrates that the corona is optically thin down to
frequencies of a few 100 MHz, The gyrofrequency extends up to fB

<∼ 7 Ghz, the third
harmonic up to 3fB

<∼ 20 GHz, and gyrosynchrotron with harmonics s ≤ 10 extends
up to 10fB

<∼ 70 GHz. In active regions, we expect that plasma emission dominates
at frequencies of f <∼ 1 GHz, bremsstrahlung dominates in the range of f ≈ 1 − 3
GHz, and gyroemission at f >∼ 3 GHz. Typical radio fluxes at different frequencies are
shown in the solar irradiance spectrum of Fig. 1.25, for the quiet Sun and flare-related
bursts. Most of the radio spectra drop off with a high negative power towards higher
frequencies.

15.2 Free-Free Emission (Bremsstrahlung)

15.2.1 Theory of Bremsstrahlung in Microwaves

Bremsstrahlung is produced when individual electrons are deflected in the Coulomb
field of ambient ions due to the acceleration they experience by the Coulomb force.
Since both the test particle (electron) as well as the field particle (ion) are free particles
in a (partially or fully) ionized plasma, this emission is also called free-free emission.
When the test particle is part of the same thermal distribution, we talk about thermal
bremsstrahlung, which we treated in § 2.3. In contrast, if the test particle has a much
higher energy, and thus is part of a nonthermal distribution, we are talking about non-
thermal bremsstrahlung. Moreover we distinguish in hard X-rays between thick-target
and thin-target bremsstrahlung, depending on whether the particle impinges from a un-
collisional plasma onto a collisional target plasma (§ 13.2.2), or if the test particle is
continuously accelerated in a thin-target plasma (§ 13.2.3). Bremsstrahlung produced
by nonthermal particles is observable in microwave and hard X-ray wavelengths (§ 13),
while bremsstrahlung produced by thermal particles is detectable in soft X-rays (e.g.,
see Fig. 2.6) and in microwaves, usually dominant at millimeter wavelengths.

We derived the free-free absorption coefficient αν(z) for thermal electrons in § 2.3,
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which depends on the ambient ion density ni(z) and electron temperature Te(z), at
position z along a given observer’s line-of-sight, and radio frequency ν (Eq. 2.3.16),

αff (z, ν) ≈ 9.786 × 10−3 ne(z)
∑

i Z2
i ni(z)

ν2T 3/2(z)
ln Λ , (15.2.1)

where the Coulomb integral ln Λ(z) is for coronal temperatures approximately (T >∼ 3×
105 K),

ln Λ(z) = ln
[
4.7 × 1010

(
Te(z)

ν

)]
= 24.5 + ln Te(z) − ln ν (cm−1) .

(15.2.2)
The corona is commonly assumed to be fully ionized, so that ni(z) = ne(z), the so-
called coronal approximation. From these two expressions (Eq. 15.2.1−2) we straight-
forwardly obtain the free-free opacity τff (z, ν) as a function of position z by integrat-
ing over the column depth range z′ = [−∞, z],

τff (z, ν) =
∫ z

−∞
αff [Te(z′), ne(z′), ν] dz′ . (15.2.3)

Note that the temperature Te(z) and density ne(z) along the line-of-sight are usually
very inhomogeneous and cannot directly be measured. In principle, one could measure
the differential emission measure (DEM) distribution from many EUV and soft X-ray
wavelengths to constrain it. In practice, simple models with a single temperature or
a two-component plasma have been used. A more realistic approach is to use a sta-
tistical multi-temperature and multi-density model that matches the DEM distribution
of co-spatial EUV and soft X-ray measurements (see Fig. 3.17 and § 3.5.3). Once the
free-free opacity (Eq. 15.2.3) is calculated, one can then determine the radio bright-
ness temperature TB(ν) at the observer’s frequency ν with a further integration of the
opacity along the line-of-sight,

TB(ν) =
∫ 0

−∞
Te(z) exp−τff (z,ν) αff (z, ν) dz . (15.2.4)

The observed quantity is the flux density I(ν), which can be calculated from the bright-
ness temperature TB(ν) with the Rayleigh−Jeans approximation at radio wavelengths
(Eq. 2.2.5, with Sν = Bν ), integrated over the solid angle ΩS of the radio source
(Eq. 2.2.9),

I(ν) =
2ν2kB

c2

∫
TBdΩS . (15.2.5)

At low frequencies where the radio source becomes optically thick, the brightness tem-
perature TB equals the electron temperature Te in a single-temperature plasma, and
depends on the temperature and density. The optically thick radio spectrum is there
constant, TB(ν) = const, and the radio flux density increases with I(ν) ∝ ν2. At
high frequencies, where the plasma becomes optically thin, the brightness temperature
drops with TB(ν) ∝ ν−2 (because of its proportionality to the free-free absorption co-
efficient, see Eq. 15.2.1), and the radio flux density becomes constant, I(ν) = const.
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Figure 15.2: Universal frequency spectra of a homogeneous source in radio brightness temper-
ature (top row) and radio flux density (bottom row), for three different emission mechanisms:
free-free emission (left), thermal gyrosynchrotron (middle), and nonthermal gyrosynchrotron
emission. The arrows represent the magnitude and directions of shift for an increase of parame-
ters by a factor of two (Gary & Hurford 1989).

This typical spectrum of the radio brightness temperature TB(ν) and flux intensity I(ν)
is summarized in Fig. 15.2 (left frame).

An additional complication is introduced by the magnetic field B, which changes
the refractive index nν(B) and thus the phase speed of electromagnetic waves in a mag-
netized plasma, leading to different brightness temperatures for the two magneto-ionic
(ordinary and extraordinary) modes, which is quantified by the degree of polarization
V . The theoretical expressions are given in § 5.7.1 and can be used to infer the magnetic
field strength B from the observed degree of polarization in free-free emission.

15.2.2 Radio Observations of Free-Free Emission

Free-free emission in the radio wavelength is expected to be ubiquitous in the solar
corona, wherever the coronal plasma is sufficiently dense (since the absorption coeffi-
cient scales with the squared density, see Eq. 15.2.1). However, because the dynamic
range of radio imaging is generally limited (typically a few times 100:1), active regions
dominate over the quiet Sun emission, and the presence of flare plasma outshines ev-
erything else. So the free-free emission of active regions can only be mapped in the
absence of flares, and free-free emission from the quiet Sun only in the absence of
active regions.

Free-free emission from solar flares has been imaged in microwave frequencies. An



15.2. FREE-FREE EMISSION (BREMSSTRAHLUNG) 643

Figure 15.3: Observations of the long-duration flare event of 1993-Mar-16 with the Nobeyama
Radioheliograph at 17 GHz and Yohkoh/SXT. Note the common loop-like structure, although
there are little differences due to the different instrumental temperature responses (Hanaoka
1994).

example is shown in Fig. 15.3, obtained with the Nobeyama radioheliograph at 17 GHz
during the long-duration event (LDE) of the 1993-Mar-16 flare (Hanaoka 1994). The
close similarity with a near-simultaneous soft X-ray image obtained with Yohkoh/SXT
clearly illustrates that the same thermal plasma produces free-free emission in both
wavelengths. Of course, the match is not perfect because the response functions of the
two instruments have a different temperature dependence: the SXT response steeply
increases with temperature (Fig. 3.25), while the temperature weighting at a given radio
frequency roughly follows with ∝ n2

eT
−3/2. Thus, the radio flux is more sensitive to

cooler plasma (at equal densities), which might explain why the flare loop footpoints
are more pronounced in the radio image than in the soft X-ray image. This example
illustrates that radio images are quite complementary in temperature coverage to soft X-
ray and EUV images. Modeling of free-free emission using combined radio and other
multi-wavelength data thus enables a quantification of the inhomogeneous plasma in
flares, active regions, or the quiet Sun. Most impulsive flares show an increase of
radio flux in millimeter wavelengths during the postflare phase, which is produced by
optically thin free-free emission from thermal and nonthermal electrons residing in the
hot flare plasma evaporated from the chromosphere.

There is abundant literature on radio observations of free-free emission, addressing
various aspects such as flare temperature studies with radio and soft X-ray images (e.g.,
Gary et al. 1996; Silva et al. 1996, 1997a,b), motions of thermal flare plasmas (e.g.,
Bastian & Gary 1992), temperature studies of active regions and loops (e.g., Kundu &
Velusamy 1980; Lang et al. 1983, 1987; Gary et al. 1990; Gopalswamy et al. 1991),
magnetic field measurements from radio polarization (see § 5.7.1 and Table 5.1 with
references therein), dominance of free-free emission in millimeter wavelengths (White
& Kundu 1992), position-dependent identification of free-free emission versus gyroe-



644 CHAPTER 15. RADIO EMISSION

mission (e.g., Gary & Hurford 1987; 1994), chromospheric density models (e.g., Bas-
tian et al. 1993a, 1996), and density structure of prominences or filaments (e.g., Kundu
et al. 1986; Lang & Willson 1989; Bastian et al. 1993b).

15.3 Incoherent Gyroemission

15.3.1 Theory of Gyrosynchrotron Emission

The fact that the plasma-β parameter is less than unity in most coronal regions (Fig. 1.22)
forces electrons to gyrate around the magnetic field lines. The circular gyromotion is
equal to a radial acceleration of a charged particle, and thus, instead of free-free emis-
sion and absorption, we have gyroresonance (or cyclotron) emission and absorption
in the case of nonrelativistic particles (with a Lorentz factor γ >∼ 1), gyrosynchrotron
emission in the case of mildly relativistic particles (1 >∼ γ >∼ 3), and synchrotron emis-
sion in the case of highly relativistic particles (γ � 1). Because there is no back-
reaction of the gyroemission on the particle distribution, the radiation output is propor-
tional (linear) to the number of particles, and thus is called an incoherent (random-like)
emission mechanism. In contrast, resonant (in particular gyroresonant) wave-particle
interactions can lead to the coherent (nonlinear) growth of resonant waves in unstable
particle distributions, which are called coherent emission mechanisms (§ 15.5).

We derived the gyroresonance absorption coefficient τ(ν, s, θ) for a thermal (Max-
wellian) particle distribution in § 5.7.2, and calculated the corresponding radio spectra
as a function of the emission angle θ in Fig. 5.26 for different harmonics (s = 2, 3, 4).
The gyroabsorption coefficients τ(ν, s, θ), the brightness temperatures TB, and peak
frequencies νpeak of the spectrum are summarized in the form of approximative ex-
pressions in the review article of Dulk (1985), for the cases of gyroresonance emission
(s ≈ 1, 2, 3, 4) from thermal electrons, gyrosynchrotron emission from thermal and
powerlaw electrons (s ≈ 10 − 100), and synchrotron emission from powerlaw elec-
trons. The gyrosynchrotron emissivity is not simply proportional to the number of
energetic electrons, but is also highly sensitive to the pitch angle distribution and the
magnetic field. For a powerlaw electron spectrum (with slope δ and electron density
ne) the gyrosynchrotron emissivity η varies as a function of the angle θ to the magnetic
field B (or electron gyrofrequency fge) approximately as (Dulk, 1985),

η(ν, θ, δ) ≈ 3.3 × 10−2410−0.52δ B ne (sin θ)−0.43+0.65δ

(
ν

fge

)1.22−0.90δ

,

(15.3.1)
and the brightness temperature is TB = Teff(1 − e−τ ), with

Teff (ν, θ, δ) ≈ 2.2 × 109 10−0.31δ (sin θ)−0.36−0.06δ

(
ν

fge

)0.50+0.58δ

, (15.3.2)

where both approximations have an accuracy of ≈ 20%. So, for a typical powerlaw
spectrum with a slope of δ = 4 the spectral and angular dependence is η(ν, θ) ∝
B ne sin θ2.2ν−2.4 and Teff (ν, θ) ∝ sin θ−0.6ν0.84. A graphical summary of the uni-
versal spectral shapes are shown in Fig. 15.2 (middle and right frames). Note that a
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Figure 15.4: A theoretical model of gyrosynchrotron emission from a single asymmetric mag-
netic loop. Top left: the magnetic loop model. Top right: brightness temperature spectra at the
two footpoints and the looptop. Bottom panels: the brightness distribution in total intensity at 8
different microwave frequencies between 2 GHz and 20 GHz (Bastian 2000).

spectral slope of TB(ν) ∝ ν0.9 is indicated in the optically thick part of the nonthermal
gyrosynchrotron spectrum in Fig. 15.2 (top right), which applies for an electron spec-
trum with δ ≈ 4.7 according to Eq. (15.3.2). The main difference of gyrosynchrotron
flux spectra to free-free spectra is the pronounced peak (at ≈ 5 GHz in Fig. 15.2) and
their steeper fall-off at higher frequencies.

At the low-frequency end of the gyrosynchrotron spectrum, a sharp cutoff can be
produced by (1) self-absorption, (2) free-free absorption, or by (3) Razin−Tsytovitch
suppression (e.g., Ginzburg & Syrovatskii 1964; Melrose 1980b, p. 100). The theory
of gyrosynchrotron emission is extensively covered in a number of textbooks (Kundu
1965; Zheleznyakov 1970; Krueger 1979; McLean & Labrum 1985; Benz 1993; Mel-
rose 1980a,b).

15.3.2 Radio Observations of Gyrosynchrotron Emission

Gyrosynchrotron emission is typically produced by nonthermal electrons with ener-
gies of ε ≈ 100 keV−10 MeV, and thus requires particle acceleration mechanisms like
those for hard X-ray and gamma-ray producing electrons in flares. Gyrosynchrotron
emission is commonly observed as a broadband microwave spectrum in a typical fre-
quency range of ν ≈ 2 − 20 GHz. Below <∼ 1 GHz it is self-absorbed and masked
by free-free absorption from the overlying plasma. The spectrum of gyrosynchrotron
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Figure 15.5: Observations of the time evolution of gyrosynchrotron emission from a double-
ribbon flare arcade, during the 1989-Jun-17 flare, 15:55 UT. The contours represent the 4.9
GHz (λ = 6.1 cm) microwave emission observed with the Very Large Array (VLA) and the
underlying greyscale shows the Hα emission (Bastian 2000).

emission peaks typically around νpeak ≈ 5 − 10 GHz (λ ≈ 3 − 6 cm), being opti-
cally thick at lower frequencies and optically thin at higher frequencies. Examples of
gyrosynchrotron spectra are computed in Fig. 15.4 (top right), based on an asymmetric
dipolar magnetic field model (Fig. 15.4, top left). The corresponding radio maps in the
2 − 20 GHz range (Fig. 15.4, bottom) show that the gyrosynchrotron emission domi-
nates at the top of the flare loop at low frequencies (ν = 2 GHz), and at the footpoints
for high frequencies (ν = 20 GHz). This shift in the centroid position of the gyrosyn-
chrotron source results from optical depth effects. The source maximum lies between
the footpoints at low frequencies because (1) the gyrosynchrotron is optically thick
there, and (2) because the magnetic field is weaker there. Higher harmonics contribute
to the radiation at a fixed frequency and hence, the brightness temperature is higher
than at the footpoints. At higher frequencies, though, points between the footpoints
become optically thin, and they are consequently less bright than the footpoints.

An example of a microwave observation with gyrosynchrotron emission is shown
in Fig. 15.5, obtained with the VLA at ν = 4.9 GHz. The underlying Hα maps outline
the double ribbons at the footpoints of the flare arcade. The evolutionary set of 4 radio
maps (Fig. 15.5) shows initially gyrosynchrotron emission at the footpoints, which then
bridges the double ribbons and traces out the flare loop arcade. This evolution could be
interpreted in the way that directly precipitating electrons dominate gyrosynchrotron
emission in the beginning, while trapped electrons dominate in the postflare phase. A
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Figure 15.6: Observations of the 1992-Oct-27 flare in microwaves at 17 GHz (Nobeyama ra-
dioheliograph, top left), in hard X-rays at 13.6− 21.8 keV and 21.8− 31.7 keV (Yohkoh/HXT,
top middle), and in soft X-rays (Yohkoh/SXT, top right). Note the close similarity of hard X-
ray and microwave time profiles (bottom panel: 01:44:30-01:47:00 UT, with 10-min tickmarks),
both being produced by the same population of nonthermal electrons (Bastian 2000).

physical understanding of this evolution requires dynamic modeling of the evolution
of injected and trapped energetic particle distributions (see § 12 on particle kinematics)
and the resulting optical depth effects.

Since both hard X-ray bremsstrahlung und gyrosynchrotron emission are produced
by high-energetic electrons, there is often a close co-evolution between the two emis-
sions. An example of a hard X-ray light curve (HXT 21.8−31.7 keV) and a microwave
time profile (Nobeyama radioheliograph 17 GHz) is shown in Fig. 15.6, observed dur-
ing the 1992-Oct-27, 01:44 UT, flare. There is a detailed correlation between the two
time profiles, but the peak of the microwave emission seems to lag behind the peak of
the hard X-ray emission by a few seconds, which has some important ramifications for
the underlying particle dynamics. As we discussed in § 13, hard X-ray bremsstrahlung
in flare time profiles consists of (1) intermittent pulses that are driven by directly pre-
cipitating electrons and (2) exponential tails that are driven by trap-plus-precipitating
electrons with typical delays of a few seconds, making up most of the lower envelope
or smoothly varying component of the hard X-rays. The trapped electrons generally
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Figure 15.7: Comparison of the radio time profiles for the event on 1998-Jun-13 for 17 GHz
(left) and 34 GHz (right) with a trap model (short-dashed line) derived using the Yohkoh/HXT
53 − 93 keV hard X-ray time profile (dotted histogram) as an injection function. The radio
time profile is modeled as the sum of a component identical to the hard X-ray time profile (the
injection function) and a trapped component (long-dashed line) derived by integrating over the
injection function convolved with an exponential decay term (time constant τ ). All time profiles
are normalized to a peak of unity, and the parameter q specifies the relative contributions of the
injected and trapped components (Kundu et al. 2001).

produce less hard X-ray bremsstrahlung than the precipitating electrons, because of the
lower density in the trap. Gyrosynchrotron emission, however, is emitted from all en-
ergetic electrons, regardless whether they precipitate or are trapped. Therefore, there is
a bias that gyrosynchrotron emission is dominated by trapped electrons, because they
accumulate and spend a longer time in the trap than on the precipitation path, in oppo-
sition to the hard X-ray bremsstrahlung yield, which is dominated by the precipitating
electrons that hit the dense chromosphere. This explains the general delay of the mi-
crowave peak with respect to the hard X-ray peak in flare time profiles. The difference
amounts only to a few seconds, based on the typical trapping times that have been
measured from hard X-rays (§ 12.5.3). The two time profiles shown in Fig. 15.6 also
reveal a longer exponential decay time for microwaves than for hard X-rays, which
again is consistent with the larger relative fraction of trapped electrons that contribute
to the observed total emission. When the trap is asymmetric (§ 12.6.2), the situation
is somewhat more complicated, but a statistical rule is that the asymmetric gyrosyn-
chrotron emission is complementary to the hard X-ray footpoint fluxes, because the
footpoint with the stronger magnetic field has a higher mirror ratio and is more effi-
cient for trapping (which increases the gyrosynchrotron emission and reduces the hard
X-ray emission).

A flare with a simple spiky time structure that has been modeled in terms of a trap-
plus-precipitation model is shown in Fig. 15.7, observed with Yohkoh/HXT and the
Nobeyama radio telescope at 17 and 34 GHz (Kundu et al. 2001). This simple time
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Figure 15.8: Microwave data during the 1993-Jun-3 flare, showing the radio intensity peaks
(contours) on top of a soft X-ray image from a filtered Yohkoh SXT/Al12 at 23:39 UT. Contours
are 80% to 99% of the maximum intensities: 1.8× 107 K at 5 GHz and 1.2× 105 K at 17 GHz,
respectively. The 5 GHz (looptop) source is produced by gyrosynchrotron emission, while the
17 GHz (footpoint) sources could be a combination of gyrosynchrotron and free-free emission
(Lee & Gary 2000).

profile clearly shows the two components of an impulsive peak and a gradual decay,
which can be naturally modeled with the simple trap model outlined in § 12.5.2. The
fitting of a trap model reveals a trapping time of τ = 12.9 s at 17 GHz and τ = 34.5
s at 34 GHz. These time scales are compatible with collisional deflection time scales
ttrap of E ≈ 100 − 250 keV electrons in densities of ne ≈ 1010 cm−3 (Eq. 12.5.11),
and thus may explain the slowly decaying tail of the emission in terms of trapping of
gyrosynchrotron emitting electrons. The difference in trapping times between the two
frequencies of 17 and 34 GHz can be understood qualitatively: The higher frequency
emission results from higher energy electrons, which have a smaller collision frequency
than those responsible for the 17 GHz emission. In the same study, the relative ratio
of the radio flux produced by direct-precipitating and trap-precipitating electrons was
also determined, yielding a ratio of q = 0.11. The gyrosynchrotron emissivity also
depends on the observing angle, the pitch angle distribution, and the magnetic field,
and the radio flux ratio is thus additionally weighted by the gyrosynchrotron emissivity
function η(θ, δ). Generally there are different observing angles in the trapping region
near the looptop (θT ) and in the precipitation sites near the footpoints (θP ). Thus the
time evolution of gyrosynchrotron emission S(t) could be described as (Kundu et al.
2001),

S(t) = q

∫
dε η(ε, θI)fI(ε, t)

L

2v
+ (1 − q)

∫
dε η(ε, θT )ntrap[ε, ttrap(ε), t] ,

(15.3.3)
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Figure 15.9: Fit of a theoretical gyrosynchrotron spectrum (solid curve) to an observed mi-
crowave spectrum (crosses) during the 1981-Jul-24 flare (Stähli et al. 1989). The derived param-
eters are: T = 76 MK, ne = 6 × 109 cm−3, δ = 4.5, B = 340 G, A = 5.0 × 1017 cm−2, and
θ = 57◦. Note the spectral substructures due to low gyroharmonics at the optically thick side of
the spectrum (Benka & Holman 1992).

where η(ε, θI) represents the gyroemissivity of the injected electron distribution fI(ε, t)
(which can be modeled using the hard X-ray time profile as a proxi, see Fig. 15.7),
η(ε, θT ) is the gyroemissivity of the trapped electron distribution ntrap[ε, ttrap(ε), t],
and q is the fraction of directly precipitating electrons. The time evolution of the
trapped electron distribution can be described by a convolution with an e-folding (ener-
gy-dependent) trapping time ttrap(ε),

ntrap(ε, t) =
1

ttrap(ε)

∫ t

0

fI(t′, α > α0) exp[− (t − t′)
ttrap(ε)

] dt′ . (15.3.4)

as we used it to quantify the evolution of trapped hard X-ray-emitting electrons (Eq.
12.5.9). Another flare that has been modeled with such a trap-plus-precipitation model
is the 1993-Jun-3, 23:22 UT, flare (Fig. 15.8), where looptop emission from trapped
electrons was observed at ν = 5 GHz and footpoint emission near the precipitation
sites at ν = 17 GHz (Lee & Gary 2000).

There is a large body of related radio observations, but very few studies exist with
quantitative modeling of gyrosynchrotron emission. Modeling efforts consider 3D
models of gyrosynchrotron-emitting flare loops (e.g., Kucera et al. 1993), the comple-
mentarity of gyrosynchrotron emission and hard X-ray emission in asymmetric (dipo-
lar) flare loops (Wang et al. 1995), or in quadrupolar flare loop configurations (Hanaoka
1997; Kundu et al. 2001; Lee et al. 2003), the pitch angle distribution function of in-
jected electrons (Lee & Gary 2000; Lee et al. 2000; 2002), and combined modeling of
gyrosynchrotron and hard X-ray emission (Silva et al. 1996, 2000; Wang et al. 1994,
1995, 1996; Benka & Holman 1992). An example of a detailed spectral model fit
of gyrosynchrotron emission from a thermal plus nonthermal particle distribution is
shown in Fig. 15.9. However, since source inhomogeneities are not expected to pro-
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Figure 15.10: The evolution of a beam in the tail of a thermal distribution is shown, starting
with the arrival of the fastest electrons at time t1 = L/v1, producing a positive slope ∂f/∂v > 0

and which is unstable. At later times, slower electrons arrive at t2 = L/v2 and t3 = L/v3, but
the slowest ones do not produce a positive slope and are stable (adapted from Lin et al. 1981b).

duce narrowband spectral structures for incoherent gyrosynchrotron emission, it is not
clear whether the observed spectral peak at ν >∼ 2 GHz could be due to an instrumental
artifact (Bastian et al. 1998).

Historically, radio bursts produced by gyrosynchrotron emission have been referred
to as type IV bursts, microwave type IV bursts, or flare continuum. A rarer subgroup
was called moving type IV bursts, based on the outward motion of the source, believed
to be an erupting plasmoid with trapped electrons that emit either plasma or gyrosyn-
chrotron emission. Earlier observations based on this nomenclature are summarized in
Kundu (1965), Zheleznyakov (1970), Krueger (1979), McLean & Labrum (1985), and
Dulk (1985).

15.4 Plasma Emission

15.4.1 Electron Beams

Since particle acceleration in solar flares occurs in a quasi-collisionless plasma, sup-
posedly near magnetic reconnection sites in the corona, the energized (nonthermal)
electrons can propagate along the magnetic field lines, either in an upward direction
into interplanetary space (in case of open field lines) or to remote footpoints (in the
case of closed field lines), or in a downward direction towards the chromosphere. Elec-
tron propagation in a collisionless plasma obeys adiabatic motion and thus the velocity
dispersion [or the time-of-flight difference ∆t = ∆s(1/v1 − 1/v2)] allows the higher
energy electrons to race ahead of the lower energy electrons, which creates a so-called
bump or beam in the forward direction of the particle distribution function (Fig. 15.10).
Such transient beams are unstable to the bump-in-tail instability in the 1D velocity dis-
tribution function, ∂f/∂v‖ > 0. Landau resonance with the unstable electron beam
generates Langmuir waves, which are believed to undergo nonlinear wave-wave inter-
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Figure 15.11: In situ measurements of the electron beam distribution in interplanetary space
by ISEE-3 on 1979-Feb-17. The sequence of 24 distribution functions is taken every 64 s and is
displayed incrementally shifted to the right by amounts of ∆v = 2 × 109 cm s−1. Note that a
positive slope occurs mainly between 20:00 and 20:30 UT (Lin et al. 1981b).

actions that produce electromagnetic emissions at the local electron plasma frequency
(fpe) and its second harmonic (2fpe), generally called type III radio bursts.

Although beams are the primary drivers of the manyfold type III-like radio emis-
sions observed in the solar corona, the kinetic evolution of electron and ion beam veloc-
ity distributions could only be studied by interplanetary in situ measurements, such as
with the ISEE-3, Ulysses, or WIND spacecraft, or with numerical simulations of time-
dependent particle distributions f(x,v, t) in terms of the Fokker−Planck equation. If
a (Gaussian) electron beam distribution fb(v‖) ∝ exp[−(v‖ − vb)2/2∆v2)] is su-
perimposed on a thermal distribution function, fth(v) ∝ exp[−(v2/2v2

th)], a positive
gradient ∂f/∂v > 0 occurs only if the beam is sufficiently strong and has a minimum
beam speed of vb

>∼ 3vth (Fig. 15.10). A bump is first produced at a distance L from
the source at the time of arrival of the fastest electrons, while slower electrons arrive
successively later after a time-of-flight t = L/v, so that the bump in the tail proceeds to
lower velocities (Fig. 15.10). Because the positive slope becomes progressively flatter
towards lower velocities (due to the superposition on the systematically steeper ther-
mal distribution at lower velocities), the instability criterion ∂f/∂v > 0 is not satisfied
anymore at lower velocities v <∼ 3vth, and thus the bump-in-tail instability is quenched.
Such an evolution of the electron velocity distribution has indeed been measured in in-
terplanetary space (e.g., with ISEE-3 during the 1979-Feb-17 event: Fig. 15.11; Lin et
al. 1986). For coronal and interplanetary type III bursts it is measured that the speed of
typical beams is mildly relativistic, vb ≈ 0.1 − 0.3, and the beam electron number is
only a fraction of nb/nth ≈ 10−9−10−6 of the ambient thermal electrons. Since such
electron beam distributions with a positive slope are highly unstable towards Landau
resonance, they generate Langmuir waves by wave-particle interactions almost as fast
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Figure 15.12: Electron velocity distribution functions that produce solar type III bursts mea-
sured with the WIND spacecraft on 1995 April 2, 12:17 UT. (a) parallel slice f(v‖, v⊥ = 0)

(not reduced) with small positive slope ∂f(v)/∂v) > 0; (b) reduced distributions at k⊥ = 0

and k⊥ = 3 × 10−4 m−1; (c) perpendicular distribution f(v⊥); and (d) 2D velocity distribu-
tion f(v‖, v⊥). Note the asymmetry of the distribution with a plateaued beam component in the
forward direction of v‖ (Ergun et al. 1998).

as they form, so unstable beams are rarely observed directly, while the relaxed plateaus
are more frequently seen (Figs. 15.11 and 15.12), which are in a state of marginal
stability. The formation of beams and their apparent stability over large propagation
distances (since they are observed at distances of 1 AU) therefore could not initially be
understood (Sturrock’s dilemma, Sturrock 1964), but later work includes a number of
effects (induced scatter of ions, plasma inhomogeneities, large-scale fluctuations due
to ion-acoustic waves, resonant back-reaction of strong turbulence waves, stochastic
growth theory, return currents, etc.) to generalize the linear theory based on quasi-
linear diffusion (Eq. 11.4.3) with weak turbulence (e.g., Grognard 1985).

Observations of interplanetary type III bursts allowed us to test the numerical sim-
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Figure 15.13: Artemis and Ulysses observations of a group of solar metric type III bursts and
an interplanetary type III radio burst. The latter is represented with frequency decreasing, as
is common for solar type III bursts. The scale is chosen in such a way that its prolongation to
higher frequencies gives the starting point of the interplanetary burst in the corona. It is seen that
this point coincides with the low-frequency starting point of the solar type III group. The lowest
panel shows the high time resolution dynamic spectrum of the type III group identifying it as a
large group consisting of many individual type III bursts (Poquérusse & McIntosh 1995).
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Figure 15.14: The dispersion relations ω(k) for two Langmuir waves associated with particles
of slightly different thermal velocities vth are shown. An ion sound wave (S) with a frequency
ωS = ω2−ω1 and wave vector ks = k2−k1 can couple with the first Langmuir wave L (ω1, k1)
to produce a second Langmuir wave L′ (ω2, k2), and in this way transfer energy via the process
L + S �→ L′.

ulations by measurements of in situ particle distribution functions, but also revealed
inhomogeneous clumps (with sizes ≈ 400 km), intermittent Langmuir waves, and the
association of ion-acoustic waves with Langmuir bursts (Lin et al. 1981b, 1986; Gur-
nett & Anderson 1977). As the electron beam travels upward in the corona and away
from the Sun into interplanetary space, it encounters a decreasing plasma density, and
thus the radio frequency of the observed type III bursts drifts to lower frequencies with
time (Fig. 15.13), so a general characteristic is the negative frequency-time drift rate
∂ν/∂t < 0.

Detailed studies on the formation, evolution, and propagation of electron beams
can be found in Ryutov & Sagdeev (1970), Takakura (1979), Grognard (1985), Spicer
& Sudan (1984), Goldman (1989), LaRosa (1988), Hillaris et al. (1990a,b), McTiernan
& Petrosian (1990), Van den Oord (1990), Ledenev (1994, 1998), Robinson (1996),
Syniavskii & Zharkova (1994), Zharkova & Syniavskii (1997), in textbooks (Kaplan
& Tsytovitch 1973; Melrose 1980b, § 10−11; McLean & Labrum 1985, § 8, 11; Benz
1993, § 5−7; Sturrock 1994, § 8−9) and reviews (Muschietti 1990; Melrose 1990; Pick
& Van den Oord 1990).

15.4.2 Langmuir Waves

Plasma emission is a multi-stage process, which includes, e.g., (1) formation of (unsta-
ble) beam distributions by velocity dispersion, (2) generation of Langmuir turbulence,
and (3) its nonlinear evolution and conversion into escaping (electromagnetic) radi-
ation (plasma emission). We described the dispersion relation for electrostatic and
electromagnetic waves in § 11.4.1, summarized also in Fig. 11.11 and Table 11.2. The
dispersion relation for Langmuir waves is

ω2(k) = ω2
p +

3
2
k2v2

th = ω2
p(1 + 3k2λ2

D) , (15.4.1)

where we used the definition of the Debey length, λD = vth/ωp. Electrons with ve-
locities vth can undergo (gyroresonant) wave-particle interactions with waves ω(k)
when they fulfill the Doppler resonance condition ω − sΩ/γ − k‖v‖ = 0 (Eq. 11.4.6),
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and the wave growth rate Γ[k, f(v] (or absorption rate if Γ < 0) can be calculated
for a given particle velocity distribution function f(v) with the quasi-linear equations
(Eqs. 11.4.1−2). For any resistive instability involving Langmuir waves and nonrela-
tivistic electrons, the growth rate Γ(k) or absorption coefficient is given by (e.g., Benz
1993),

Γ(k) =
(π

2

) ωp
2

k2

ω

n0

(
∂f0(v‖)

∂v‖

)
ω/k

≈
(π

2

) nb

n0

(vph

∆v

)2

ω , (15.4.2)

where ωp = 2πfpe is the plasma frequency, n0 the ambient electron density, nb the
beam electron density, and vph = ω/k the phase speed. So, a positive slope in the
velocity distribution generates Langmuir waves, which can interact with other waves
by a number of processes. For every wave-wave interaction, the energy and momentum
equations have to be fulfilled, that is, the matching conditions of frequencies and wave
vectors,

ω1 + ω2 = ω3 , (15.4.3)

k1 + k2 = k3 . (15.4.4)

For instance, a primary Langmuir wave (ω1,k1) can couple with an ion acoustic wave
(ω2,k2) to generate a secondary Langmuir wave (ω3,k3) (Fig. 15.14). Because the
phase speed of ion acoustic (sound) waves is much smaller than for Langmuir waves,
the primary and secondary Langmuir waves have similar frequencies and wave vectors.
For plasma emission, we need ultimately a conversion into an escaping (electromag-
netic) wave. Among Langmuir waves (L), ion acoustic waves (S), and (electromag-
netic) transverse waves (T), the following three-wave interactions have been considered
for plasma emission (e.g., Melrose 1987),

L + S → L′ (15.4.5)

L + S → T (15.4.6)

T + S → L (15.4.7)

T + S → T (15.4.8)

L + L′ → T (15.4.9)

where the first process is important to generate Langmuir turbulence, while the second
and third are of interest for fundamental plasma emission, the forth for scattering of
transverse waves, and the last for second harmonic plasma emission. Harmonic plasma
emission has been explained in terms of two-stream instabilities. However, even if
Langmuir waves are converted into electromagnetic waves, they could be absorbed in
the solar corona by free-free absorption and do not reach the observer. Only when the
density scale height along the line-of-sight is sufficiently small so that the free-free
opacity does not exceed unity, plasma radiation from electron beams can be observed.

The theory of plasma emission for solar type III bursts was first pioneered by
Ginzburg & Zheleznyakov (1958), Zheleznyakov & Zaitsev (1970a,b), and is exten-
sively described in the textbooks of Zheleznyakov (1970), Krueger (1979), Melrose
(1980b), McLean & Labrum (1985), Benz (1993) and reviews by Takakura (1967),
Smith (1974), Goldman & Smith (1986), Dulk (1985), Melrose (1987), and Robinson
(1997).
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Figure 15.15: Radio burst types in the framework of the standard flare scenario: The accelera-
tion region is located in the reconnection region above the soft X-ray-bright flare loop, accelerat-
ing electron beams in the upward direction (type III, U, N bursts) and in the downward direction
(type RS, DCIM bursts). Downward moving electron beams precipitate to the chromosphere
(producing hard X-ray emission and driving chromospheric evaporation), or remain transiently
trapped, producing microwave (MW) emission. Soft X-ray loops become subsequently filled up,
with increasing footpoint separation as the X-point rises. The insert shows a dynamic radio spec-
trum (ETH Zurich) of the 92-Sept-06, 1154 UT, flare, showing a separatrix between type III and
type RS bursts at ≈ 600 MHz, probably associated with the acceleration region (Aschwanden
1998b).

15.4.3 Observations of Plasma Emission

Metric Type III, J, U, and RS Bursts

From the previously described theory we expect that propagating electron beams gen-
erate plasma emission, which is a coherent emission mechanism, reaching much higher
radio brightness temperatures TB than incoherent emission mechanisms (such as free-
free emission, § 15.2, or gyrosynchrotron emission, § 15.3). Thus, the theory makes a
number of specific predictions that allows us to distinguish beam-driven plasma emis-
sion from other radio emission: (1) the propagating electron beams have mildly rel-
ativistic speeds which implies specific frequency-time drift rates; (2) the plasma fre-
quency range is a strict function of the ambient electron density (yielding densities
of ne ≈ 108 − 1010 cm−3 for plasma emission in the νp = 100 − 1000 MHz range);
(3) plasma emission produces higher brightness temperatures than incoherent emission,
and (4) since the generation of relativistic electrons requires an acceleration mechanism
as is available in flares and CME shocks, we expect a high correlation with the occur-
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Figure 15.16: Spatial geometry and schematic dynamic spectrum of quasi-periodically injected
electron beams, for the case of injection into open (top row) or closed (second to forth row)
magnetic field lines. Note the typical low-frequency cutoff and curvature in the drift rate for
electron beams propagating along closed field lines, for the case of J, U, or RS bursts. The flux
and quasi-periodicity is randomly modulated to simulate a realistic representation of a dynamic
spectrum (right) (Aschwanden et al. 1994a).

rence of other beam-driven emissions, such as with hard X-ray pulses from electron
beams that precipitate to the chromosphere. Let us consider some of these theoretical
predictions in some more detail and relate them to the relevant observed radio signa-
tures (Fig. 15.15), which historically have been classified as type III, type J, type U, or
type RS bursts (Wild et al. 1963).

Since the majority of solar radio observations have been conducted with radio spec-
trometers, which record the dynamic spectra of the radio flux S(ν, t) as a function of
radio frequency ν and time t, an important quantity to characterize the observed ra-
dio bursts is the frequency-time drift rate dν/dt. For plasma emission, the observed
radio frequency ν is close to the fundamental plasma frequency or its harmonic (i.e.,
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Figure 15.17: Dynamic spectra (panels with black background) and time series (profiles) of
four events with sequences of type III or J bursts, recorded by ETH Zurich. The times of the type
III peak fluxes are marked with thin vertical lines. Statistics on the intervening time intervals have
been performed and show often quasi-periodic rather than random time sequences (Aschwanden
et al. 1994a).

ν ≈ sνp), which depends only on the ambient electron density (i.e., νp(ne) ∝ n
1/2
e ,

Eq. 5.7.9). Since electron beams propagate along magnetic field lines, the density
changes as a function of the position ne(s), which could be modeled by a barometric
density model as function of height ne(h) ∝ exp(−h/λT ) in the simplest case, where
λT represents the exponential density scale height (§ 3). The positional coordinate s de-
pends on the time t according to the beam velocity vB (i.e., s(t) =

∫
v(s)dt ≈ vBdt).

Combining these three assumptions, we find the following simple expression for the
frequency-drift rate,(

∂ν

∂t

)
=
(

∂ν(ne)
∂ne

)(
∂ne(h)

∂h

)(
∂h(s)

∂s

)(
∂s(t)
∂t

)
≈ −ν vB cos(θ)

2λT
.

(15.4.10)

Thus the frequency drift rate is proportional to the frequency ν, the beam speed
vB , and reciprocal to the density scale height λT . Note that the sign of the frequency
drift rate is negative for upward propagation (towards lower densities), which is called
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Figure 15.18: Top: radio observations of a type U-burst on 1989-Aug-13 with the ETH Zurich
spectrometer. The ascending branch is broader than the descending branch. The loop transit time
is about 6 s at 1.7 GHz for this U-burst. The same type U-burst has been imaged with the VLA at
a frequency of 1446 MHz. Bottom: photospheric magnetic field in AR 5629 from KPNO/NSO
on 1989-Aug-13, 1500 UT, about 1 hour after the type U-bursts. The contours show an overlaid
VLA map recorded at a frequency of 1446 MHz integrated over the same time interval. The thin
lines show a subset of extrapolated magnetic (potential field) field lines that intersect with the
type U-burst emission, which seems to be at the top of the field lines. The apices of the field
lines range from 75,000 to 142,000 km, with magnetic fields of 25 G to 8 G (Aschwanden et
al. 1992b).
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normal-drifting and defines the classical type III bursts. If a beam is propagating down-
ward (towards higher density), the sign is positive and the radio signature is called a
reverse-drifting (RS) burst. Of course, some electron beams may propagate along a
closed magnetic field line and thus show first a negative drift rate and later a posi-
tive drift rate after they crossed the apex, which appears shaped as an inverted letter
U, and thus are named U-bursts. A partial U-burst which does not show a fully de-
veloped downward branch is called a J-burst. So the historical nomenclature is based
on the morphological appearence in the dynamic spectra, but the physical relevance
is actually their diagnostic of whether the underlying electron beams propagate along
open or closed magnetic field lines. A tutorial for the translation of magnetic struc-
tures (that guide electron beams) into the observed radio burst nomenclature is given
in Fig. 15.16. It is also interesting to note that type U bursts often occur as sequences
with almost identical turnover frequencies (e.g., Fig. 15.17, top right), which suggests
repetitive injection of electron beams into the same closed-loop system. An example
of a type U burst observation with simultaneous radio spectrometer and interferometer
coverage is shown in Fig. 15.18, where the turnover frequency (ν ≈ 1.4 GHz) of the
type U-burst seen in the dynamic spectrum (Fig. 15.18, top) turned out to be identical
to the used imaging frequency, and thus allowed to mapping of the spatial position of
the electron beam at the apex position of the closed magnetic field structure (Fig. 15.18,
bottom).

Another consequence of the electron beam interpretation of radio type III bursts
is their detailed one-to-one correlation to other beam signatures, such as hard X-ray
pulses. An example is given in Fig. 15.19, where five events with apparent bi-directional
beams are shown, along with the detailed evolution of the simultaneous hard X-ray
time profiles. The radio dynamic spectra clearly show a starting point at some fre-
quency between 600 MHz and 1000 MHz from where a normal-drifting type III burst
as well as a reverse-drifting (RS) burst start, coinciding with simultaneous hard X-ray
pulses. Detailed cross-correlation analysis revealed that the start of the radio bursts is
always delayed to the hard X-ray pulses by ∆t = 270 ± 150 ms, which was modeled
in terms of different kinetic energies (ε = 5.7 keV for the radio-emitting electrons
and ε ≥ 25 keV for the hard X-ray emitting electrons) and a finite growth time for
Langmuir waves (∆t < 150 ms) (Aschwanden et al. 1993). Thus, radio type III bursts
and hard X-ray pulses can be interpreted in terms of a simultaneous injection of ac-
celerated electrons in an upward and downward direction. The fraction of electrons
escaping in an upward direction into interplanetary space is usually found to be much
smaller (≈ 10−2− 10−3; Lin 1974) than the downward propagating electrons detected
in hard X-rays. It is not yet clear whether this asymmetry is caused by the acceleration
process or by the dominance of closed magnetic field topology.

Other Metric and Decimetric Bursts

As Table 15.1 shows, there are a number of other radio burst types that have been
interpreted in terms of plasma emission, such as type I, type II, type IV continuum,
and type V bursts, as well as a variety of decimetric bursts (DCIM). Most of the radio
burst classification is based on their morphology as they appear in dynamic spectra,
while the physical interpretation in terms of emission mechanisms is mostly guided
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Figure 15.19: Five reverse slope (RS) radio bursts observed with ETH Zurich (top and middle
panels) and 25−100 keV hard X-ray count rate observed with BATSE/CGRO (bottom panels).
All time intervals have a length of 3.0 s, the time resolution of the radio data is 100 ms and for
hard X-rays 64 ms. The start time of the radio bursts is marked with a thin line, the leading edge
with a dashed curve, and the peak time with a thick solid curve. The envelope-subtracted hard
X-ray flux during the radio start and peak are hatched, consisting of a single of multiple pulses
(Aschwanden et al. 1993).

by the frequency range, brightness temperature, polarization, and frequency-drift rates.
Concise summaries on the observed properties and physical interpretations of radio
burst types are given in the two reviews by Dulk (1985) and Bastian et al. (1998).
Moreover, extensive accounts on solar radio bursts can be found in the textbooks by
Kundu (1965), Krueger (1979), McLean & Labrum (1985), and Benz (1993). Catalogs
of decimetric burst types can be found in Bernold (1980), Slottje (1981), and Güdel &
Benz (1988).

An overview of metric radio burst types is given in Fig. 15.20. The most rapid
response to a particle acceleration phase are type III bursts, which generally appear as
long as hard X-ray emission is produced, typically during a few minutes in the im-
pulsive flare phase. Type III bursts are most easily recognizable in dynamic spectra
from their fast frequency-drift rate, corresponding to the speed of mildly relativistic
electron beams. Another established class are the type II bursts, which have a much
lower frequency-drift rate corresponding to speeds of v ≈ 200 − 2000 km s−1, and
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Figure 15.20: Overview of metric radio burst types during a fully developed eruptive flare,
including type II, III, IV, and V emission (Cliver 2001).

thus have been associated with exciters from MHD shocks. The backbone structure of
type II bursts often shows harmonic bands (Fig. 15.20), corresponding to the funda-
mental (s=1) and harmonic (s=2) plasma frequency (Plate 16). Sometimes fast-drifting
type III-like bursts emanate from the central backbone, called a herringbone struc-
ture, which indicate escaping electron beams that have been accelerated in the shock
front. Another class are type IV bursts or flare continuum, which appear as a stationary,
broadband, long-lasting emission after the start of type II bursts (Fig. 15.20), which is
generally interpreted in terms of plasma radiation from energetic electrons trapped in
large postflare loops. A further class are type V bursts, which last a few minutes af-
ter type III bursts (Fig. 15.20), which seem to be a close by-product of the preceding
type III bursts, but are probably produced by slower electrons (see beam evolution in
Fig. 15.10).

Besides the classical metric burst types (I, II, III, IV, V), there is a variety of deci-
metric burst types, which have been subdivided into type III-like and type IV-like
groups, indicating that they are also produced by plasma emission from either prop-
agating electron beams (type III-like) or from electrons trapped in (post)flare loops
(type IV-like). The major difference between decimetric and metric bursts is that they
are produced in plasmas with higher densities (ne ≈ 109 − 1011 cm−3 for decimetric
frequencies of ν ≈ 0.3 − 3 GHz), and thus originate in magnetic reconnection regions
and postflare loops, while metric bursts originate in the higher corona above. Deci-
metric bursts also show a lot of interesting time structures, such as (1) parallel drifting
bands (so-called zebra bursts and fiber bursts) which indicate multiple gyroharmonics
of propagating Alfvén waves, or (2) pulsating broadband structures (called decimetric
pulsations), which could be attributed to modulations by MHD oscillations or nonlin-
ear relaxational oscillations of wave-particle interactions. So, waves and oscillations
can modulate the emission from trapped electrons, regardless of whether they emit in-
coherently (e.g., gyrosynchrotron emission) or coherently (e.g., beam-driven plasma
emission or losscone-driven gyroemission). As a general rule, coherent emission can
easily be distinguished from incoherent emission from the much higher (nonthermal)
radio brightness temperature (TB ≈ 108 − 1012 K). As further criterion, the degree
of circular polarization can be used. For instance, plasma emission is expected in the
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magneto-ionic ordinary mode, while electron-cyclotron maser emission is generally
dominated by the extraordinary mode.

Most of the radio burst studies have been performed with non-imaging instruments,
and thus are subject to major uncertainties regarding the identification of the radiation
emission mechanism and the physical interpretation of involved waves and particles.
Limited progress has been made with radio imaging instruments, mainly because the
observed radio source sizes are subject to substantial wave scattering in coronal inho-
mogeneities (Bastian 1994), and because the current radio imaging instruments have
too few frequencies and some instruments are not solar-dedicated and thus are rarely
able to catch a flare. The latter two obstacles could be overcome with the planned
solar-dedicated Frequency-Agile Solar Radiotelescope (FASR) (White et al. 2003).

15.5 Losscone Emission

Coherent radio emission is driven by kinetic instabilities of unstable particle distribu-
tion functions, which can be grouped into two major categories: beams (with positive
slopes in a parallel direction to the magnetic field, ∂f/∂v‖ > 0) and losscones (with
positive slopes in a perpendicular direction, ∂f/∂v⊥ > 0). Losscone distributions
develop in magnetic mirror regions in the weak scattering regime. Here we focus on
losscone-driven emission, while beam-driven emission is treated in § 15.4.

15.5.1 Electron Cyclotron Maser Emission

A losscone distribution (Fig. 15.21) naturally originates in a magnetic trap, such as in
a flare loop with magnetic mirrors above the footpoints due to the diverging magnetic
field with height. We discussed the kinematics of particle trapping in such magnetic
mirror configurations in § 12.5.1 in the context of hard X-ray producing electrons.
Now we consider the consequences for radio emission. The basic mechanism is de-
scribed in the framework of gyroresonant wave-particle interactions (§ 11.4.1), which
quantifies the wave growth and absorption rate Γ[k, f(v)] in an unstable particle veloc-
ity distribution function f(v) with the so-called quasi-linear diffusion equation system
(Eqs. 11.4.1−2). For a given wave (k, ω) there is a subset of particle velocities (v‖, v⊥)
that fulfill the Doppler resonance condition ω−sΩ/γ−k‖v‖ = 0 (Eq. 11.4.6), and thus
can contribute to wave growth or absorption. The solution space for each wave (k, ω)
is an ellipse in (v‖, v⊥) space, a so-called resonance ellipse. Therefore, the key for
coherent wave growth is that the slope in the velocity distribution, either ∂f/∂v‖ > 0
or ∂f/∂v⊥ > 0, has be to dominantly positive to produce a positive wave growth rate,
which in the theoretical framework described in § 11.4.1 is defined by,

Γσ
s [k, f(p)] =

∫
dp3 Aσ

s (p,k) δ(ω − sΩ/γ − k‖v‖) k
df(p)
dp

, (15.5.1)

where p = γmv is the particle momentum. This is naturally fulfilled in losscones,
where the tangent resonance ellipses to the losscone edge mostly face a positive value
∂f/∂v⊥ > 0 (see examples of resonance ellipses in Fig. 11.10). The velocity space can
therefore be subdivided into a domain of dominant growth (called undamped regime in
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Figure 15.21: A particle velocity distribution f(β‖, β⊥) is shown that contains a “cold electron”
or thermal distribution, given by an isotropic Maxwellian distribution of temperature Tc = 106

K, and a “hot electron” distribution that is shaped by a losscone, characterized by a Maxwellian
distribution of Th = 108 K outside the critical pitch angle of αc = 30◦, shaped by a sin6(α/αc ·
π/2) pitch angle distribution inside the losscone angle αc. The losscone is one-sided, as it occurs
after a magnetic mirror reflection (Aschwanden 1990a).

Fig. 15.22), while the remaining regime is dominated by absorption (denoted as wave
damping in Fig. 15.22).

The maximum maser growth rates Γmax have been calculated as a function of
the ratio of the plasma frequency ωp to the gyrofrequency Ωe, which characterizes
physical parameter regimes with different electron densities ne and magnetic fields
B. For the particular losscone distribution shown in Fig. 15.21, it was found that the
X-mode (s = 1) dominates at ωp/Ωe

<∼ 0.3, the Z-mode (s = 1) competes around
ωp/Ωe ≈ 0.3, the O-mode (s = 1) at 0.3 ≈ ωp/Ωe

<∼ 1.0, and harmonic modes
(s = 2) at higher values of 1.0 <∼ ωp/Ωe

>∼ 1.4 (Melrose et al. 1984). The growth rate
is fastest (τgrowth = 1/Γmax ≈ 10−5 s) for ωp/Ωe � 1, but drops to τgrowth ≈ 10−2

s for ωp/Ωe ≈ 1. In solar flare conditions, a ratio of ωp/Ωe ≈ 1 requires about
ne ≈ 1010 cm−3 (ωp/2π ≈ 1 GHz) and B = 357 G (Ωe/2π ≈ 1 GHz). Once an
unstable losscone exists, gyroresonant waves grow exponentially at the expense of the
free kinetic energy of the resonant particles at the losscone edge by quasi-linear diffu-
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Figure 15.22: The undamped regime of positive growth rates for electron-cyclotron maser
emission in velocity space. Approximating the resonance ellipses by circles, the undamped
regime is confined by a circle with radius V = (1 − βeq)/2. This is the envelope of all un-
damped resonance circles. The geometrical sketch shows which part of the thermal tail can
not be affected by quasi-linear maser diffusion, mainly low-energetic particles with higher pitch
angles (Aschwanden 1990a).

sion. While the resonant particles lose perpendicular momentum, they drift inside the
losscone and fill it up until the distribution inside the losscone forms a plateau, at which
point the maser saturates and becomes quenched. Given these fast maser growth rates,
the question arises whether such initial unstable conditions with empty losscones can
be built up sufficiently fast. The build-up time of a losscone depends on the advection
time of replenishing particles. For mildly relativistic electrons, say v/c ≈ 0.1, and a
maser saturation time of τsat ≈ 10τgrowth ≈ 10−4 − 10−1 s, relatively small source
sizes of L ≈ 3−3000 km are required to yield advection times shorter than maser satu-
ration times. Thus, unstable losscones that produce electron-cyclotron maser emission
are expected to have rather small spatial scales and short lifetimes, but produce high
radio brightness temperatures due to the coherent wave growth. So the expected obser-
vational characteristics are short (millisecond), narrowband, and intense spikes. The
location of such maser sources is expected above the footpoints of flare loops where
losscones are formed (Fig. 15.23).

More recent work involve other wave modes than the originally proposed elec-
tromagnetic X- and O-modes, such as the electrostatic upper-hybrid waves (see Table
11.2), which provide a natural explanation of the harmonic ratios occasionally observed
in decimetric millisecond spike events (e.g., Willes et al. 1996; Fleishman & Yastrebov
1994a,b; Fleishman & Arzner 2000; Fleishman & Mel’nikov 1998).

There is an extensive literature on the theory of losscone-driven radio emission ap-
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Figure 15.23: Spatial configuration of losscone-driven radio emission in the context of a flare
loop with a magnetic trap (Aschwanden et al. 1990).

plied to solar flare plasmas. The reader is referred to Berney & Benz (1978), Benz
(1980), Melrose & Dulk (1982), Hewitt et al. (1982, 1983), Sharma et al. (1982), He-
witt & Melrose (1983, 1985), MacKinnon et al. (1983), Sharma & Vlahos, (1984), Mel-
rose et al. (1984), Pritchett (1984, 1986), Wu (1985), Winglee (1985a,b), Winglee &
Dulk (1986a,b,c), Robinson (1986, 1988, 1989, 1991a,b), Vlahos & Sprangle (1987),
Vlahos (1987), Aschwanden & Benz (1988a,b), Aschwanden (1990a,b), Smith & Benz
(1991), Charikov & Fleishman (1991), Fleishman & Charikov (1991), Benz (1993,
§ 8), Charikov et al. (1993), Willes & Robinson (1996), Conway & MacKinnon, (1998),
Fleishman & Mel’nikov (1998), Fleishman & Arzner (2000), Conway & Willes (2000).

Time-dependent models of losscone-driven radio emission require trap-plus-precipi-
tation models, which have been developed by a number or authors: Kennel & Petschek
(1966), Benz & Gold (1971), Melrose & Brown (1976), Alexander (1990), McClements
(1990a, 1992), Lee et al. (2000). The particle dynamics of trapped electrons is de-
scribed in Melrose & White (1979, 1981), White et al. (1983), Craig et al. (1985),
Vilmer et al. (1986), McClements (1990b), Hamilton & Petrosian (1990), Hamilton et
al. (1990).

15.5.2 Decimetric Observations

Decimetric radio emission with spiky fine structure that is very narrowbanded (∆ν/ν ≈
1%), fast (∆t <∼ 100 ms), and has an opposite circular polarization (X-mode) to type III
emission (O-mode), has been interpreted in terms of losscone-driven coherent emission
(e.g., electron-cyclotron maser emission: Holman et al. 1980; Melrose & Dulk 1982).
This burst type shows the narrowest frequency bandwidths, which translates into small
spatial source sizes L, regardless of whether the underlying emission is produced near
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Figure 15.24: Radio dynamic spectrum F (t, ν) of a cluster of decimetric millisecond spikes,
recorded with the Zurich radio spectrometer PHOENIX-2 in the frequency range of ν = 800 −
1000 MHz during the 1980-Apr-06 flare, during a time interval of 24 s. The frequency bandwidth
of individual spikes amounts to dν ≈ 10 MHz and the time resolution is ∆t = 0.1 s. Most of
the spikes are probably not resolved in time (Benz et al. 2002).

the plasma frequency fpe or the gyrofrequency fge,

L ≤ ∆ν

ν

{ × λB if ν ≈ fge

× 2λT if ν ≈ fpe
. (15.5.2)

Therefore, for typical magnetic or density scale heights of λB ≈ λT ≈ 105 km, rel-
ative bandwidths of ∆ν/ν ≈ 1% translate into source sizes of L ≈ 200 km (Benz
1986). Using this estimate of the source size and the measured fluxes, one obtains
(with Eq. 15.2.5) very high brightness temperatures of TB ≈ 1013 K, which is six or-
ders of magnitude higher than flare plasma temperatures (Te ≈ 107 K), and thus the
emission mechanism is clearly nonthermal or coherent emission. Since moreover type
III bursts have much broader (drifting) bandwidths and an opposite circular polariza-
tion, a losscone-driven emission mechanism with magneto-ionic X-mode is an obvious
interpretation.

An example of a radio dynamic spectrum of decimetric millisecond spikes is shown
in Fig. 15.24. It shows not only a highly fragmented cluster of individual spikes, but
also some drifting chain structures, which have been found to have harmonic frequency
ratios for harmonics s = 2, ..., 6 (Güdel 1990), which seem to be related to multiple
gyroharmonics. This is not consistent with the conventional model of semi-relativistic
maser emission (Melrose & Dulk 1982), but could be interpreted in terms of Z-mode
emission and upper-hybrid waves, which produce higher harmonics (Winglee & Dulk
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1986b). Another interesting observation revealed that the decay time scale of deci-
metric millisecond spikes scales reciprocally with the frequency (i.e., τdecay ∝ ν−1),

which in the case of plasma emission ν ∝ sfp yields a dependence of τdecay ∝ n
−1/2
e ,

which is a similar trend to collisional processes (Güdel & Benz 1990). Decimetric mil-
lisecond spikes have been detected exclusively during ( >∼ 20 keV) hard X-ray emission
of flares, but only in ≈ 2% of the flares (Güdel et al. 1991), so they are co-produced
with accelerated electrons. Although the temporal modulation of the spike radio flux
mimics closely the hard X-ray pulses, the radio spike emission is typically delayed by
2 − 5 s (Aschwanden & Güdel 1992), which could be related to a trapping time, im-
plying that the high spatial fragmentation occurs at the precipitation site rather than in
the primary acceleration or injection site. Unfortunately there are no clear-cut imaging
observations available from decimetric millisecond spike sources that confirm whether
they originate at the expected losscone sites above flareloop footpoints. Instead, some
observations locate sources of narrowband millisecond spikes in large coronal heights
(e.g., Krucker et al. 1995; Benz et al. 2002). Imaging observations with high spa-
tial resolution, cadence, and frequency-agile coverage are needed to provide a deeper
physical understanding of losscone-driven radio emission.

15.6 Summary

Radio emission in the solar corona is produced by thermal, nonthermal, up to
high-relativistic electrons, and thus provides a lot of useful diagnostics comple-
mentary to EUV, soft X-rays, hard X-rays, and gamma-rays. Thermal or Maxwell-
ian distribution functions produce in radio wavelengths either free-free emission
(bremsstrahlung) for low magnetic field strengths and gyroresonance emission in
locations of high magnetic field strengths, such as above sunspots, which are both
called incoherent emission mechanisms. While EUV and soft X-ray emission oc-
curs in the optically thin regime, the emissivity adds up linearly along the line-
of-sight. Free-free emission in radio is somewhat more complicated, because the
optical thickness depends on the frequency, which allows direct measurement of
the electron temperature in optically thick coronal layers in metric and decimetric
frequencies up to ν <∼ 1 GHz. Above ≈ 2 GHz, free-free emission becomes opti-
cally thin in the corona, but gyroresonance emission at harmonics of s ≈ 2, 3, 4
dominates in strong-field regions. In flares, high-relativistic electrons are pro-
duced that emit gyrosynchrotron emission, which allows for detailed modeling of
precipitating and trapped electron populations in time profiles recorded at differ-
ent microwave frequencies.

Unstable non-Maxwellian particle velocity distributions, which have a positive
gradient in parallel (beams) or perpendicular (losscones) direction to the mag-
netic field, drive gyroresonant wave-particle interactions that produce coherent
wave growth, detectable in the form of coherent radio emission. Two natural pro-
cesses that provide these conditions are dispersive electron propagation (produc-
ing beams) and magnetic trapping (producing losscones). The wave-particle in-
teractions produce growth of Langmuir waves, upper-hybrid waves, and electron-
cyclotron maser emission, leading to a variety of radio burst types (type I, II,
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III, IV, V, DCIM), which have been mainly explored from (non-imaging) dynamic
spectra, while imaging observations have been rarely obtained. Although there
is much theoretical understanding of the underlying wave-particle interactions,
spatio-temporal modeling of imaging observations is still in its infancy. A solar-
dedicated, frequency-agile imager with many frequencies (FASR) is in planning
stage and might provide more comprehensive observations.



Chapter 16

Flare Plasma Dynamics

A solar flare is a catastrophic event that is triggered by an instability of the underly-
ing magnetic field configuration (§ 10) and evolves then into a more stable state by
changing and reconnecting the magnetic topology. This change in magnetic topol-
ogy provides free magnetic energy that is released in the form of currents that spawn
primary plasma heating and particle acceleration (§ 11). In most flare models these
primary processes take place in the corona, in the immediate environment of magnetic
reconnection points and associated magnetic separator lines or separatrix surfaces. In
a second step, the accelerated particles and thermal conduction fronts propagate to the
chromosphere where they heat up the chromospheric plasma, which is a secondary
heating process, driven by the energy loss of the precipitating particles or by thermal
conduction of the impinging ion-acoustic waves. This chromospheric heating process
triggers a third step, an upflow of heated chromospheric plasma, which is called chro-
mospheric evaporation (or physically more correctly, chromospheric ablation). This
third step fills up what appears as prominent flare loops in soft X-ray wavelengths. In
principle, also the primary coronal heating process could be detected in soft X-rays,
but is usually outshone by the much brighter upflows of chromospheric plasma, due to
its higher density and emission measure. The second step of chromospheric heating is
most prominently observed in gamma-rays (§ 13) and hard X-rays (§ 14), and some-
times even in UV and white light. Thus we have to keep in mind that most of the soft
X-ray observations document only the third step in this chain reaction, and we still have
very insufficient diagnostic about the first step of how the flare is initiated. Once the
flare passes its peak in soft X-ray emission, plasma cooling processes start to dominate
over heating. When the plasma cools down from the initial 10−30 MK temperatures at
the peak of the flare down to 1−3 MK, the postflare loop system becomes prominently
detectable in EUV, showing the beautiful fractal structures of postflare arcades seen in
high-resolution TRACE movies (Plate 17). Once the temperature drops below 0.5 MK,
instabilities occur in the postflare loops that cause a rapid break-up and precipitation
of the cooling plasma, visible in UV and Hα. These five steps may occur in successive
order for a simple single-loop flare, but usually occur parallel and time-overlapping
in multi-loop flares, and thus are hard to disentangle. In this section we focus on the
various heating and cooling processes of the flare plasma.
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Table 16.1: Primary plasma heating processes in solar flares.

Heating process References
Resistive or Joule heating Spicer (1981a,b), Holman (1985)
− Anomalous resistivity heating Coppi & Friedland (1971), Duijveman et al. (1981)
− Ion-acoustic waves (AC) Rosner et al. (1978b)
− Electron ion-cyclotron waves (IC) Shapiro & Knight (1978), Hinata (1980)
Shock heating Petschek (1964), Tsuneta (1997)
− Slow-shock heating Cargill & Priest (1983), Hick & Priest (1989)
Electron beam heating
− Coulomb collisional loss Fletcher (1995, 1996), Fletcher & Martens (1998)
Proton beam heating
− Kinetic Alfvén waves, MHD turbulence Voitenko (1995, 1996), Voitenko & Goossens (1999)
Inductive current heating Melrose (1995; 1997)

16.1 Coronal Flare Plasma Heating

We discussed heating mechanisms of coronal plasmas in § 9, of which some could
play a role during flares. However, the chief difference between flare plasma heating
and (quiet Sun) coronal heating is the impulsiveness. Therefore, simple application of
steady-state or quasi-steady magnetic reconnection processes, such as Sweet−Parker
or Petschek-type (§ 10.1), cannot explain the flare dynamics. What is called for in flares
are unsteady and bursty magnetic reconnection modes, such as the tearing-mode insta-
bility and coalescence instability (§ 10.2). We discussed various flare/CME models
in § 10.5, which provide a framework for physical modeling of primary plasma heat-
ing processes, as they occur locally or in the immediate neighborhood of reconnection
sites. In Table 16.1 we compile a list of primary plasma heating mechanisms, along
with some representative theoretical studies or numerical simulations. Observational
evidence for heated plasma regions at the beginning of flares has indeed been found
near the expected reconnection regions above flare loop arcades (Warren & Reeves
2001).

16.1.1 Resistive or Joule Heating

Flares are thought to occur by release of nonpotential magnetic energy and their as-
sociated currents j = (1/4π)∇ × B. If DC electric fields E arise, which are neces-
sary ingredients in DC electric field and runaway acceleration models (§ 11.3), they
carry an associated macroscopic current j = σE that can be dissipated by Joule heat-
ing of the thermal plasma. The resistivity η = c2/(4πσ) or electrical conductivity
σ = nee

2τce/me ≈ 6.96 × 107 ln(Λ)−1Z−1T
3/2
e , which is given by the electron

collision time τce or electron collision frequency fce = 1/τce = 3.64 ne ln ΛT
−3/2
e

determines the Joule heating rate. Since the energy dissipated by a current density j is
j · E, a Joule heating time scale τJ = nekBTe/(j · E) can be derived from the defini-
tions of classical resistivity η and the electron thermal velocity vTe, which is in terms
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of the electric Dreicer field ED (§ 11.3.2) (Holman 1985),

τJ =
nekBTe

j · E =
(

ED

E

)2

τce =
(

vc

vTe

)4

τce , (16.1.1)

where vc is the critical velocity for run-away electrons, so it is in the order of the elec-
tron collision time scale τce for thermal electrons. Significant plasma heating can only
be obtained when the Joule heating time τJ is shorter than the radiative or conductive
cooling time. From this constraint, Holman (1985) finds that the resistivity in a current
sheet must be much greater than the classical resistivity in (hot) quiet corona conditions
(ne ≈ 109 cm−3, Te = 107 K). For flares, a plasma density of either ne

>∼ 1011 cm−3

is required, or anomalous resistivity in the case of lower densities. But anomalous re-
sistivity driven by a parallel current j‖ first requires heating of the electron plasma to
a temperature that is at least an order of magnitude higher than the ion temperature.
Thus, most of the MHD flare simulations assume anomalous resistivity as an initial
condition. Joule heating in solar flares has been studied by Spicer (1981a,b), Duijve-
man et al. (1981), Holman (1985), Tsuneta (1985), and Holman et al. (1989).

16.1.2 Anomalous Resistivity

While the classical resistivity is determined by frictional forces in Coulomb collisions
between electrons and ions of the same temperature, anomalous resistivity occurs in
plasmas in a turbulent state (Coppi & Friedland 1971). In a turbulent plasma, the
electrons that carry the current will also interact with the electric field of waves, which
change the resistivity and other transport coefficients, depending on the type of growing
waves. For waves that affect the resistivity, electrostatic ion-cyclotron waves (IC) and
ion-acoustic waves (AC) have been considered (Rosner et al. 1978b; Shapiro & Knight
1978; Hinata 1980; Duijveman et al. 1981). It was found that ion-acoustic heating can
produce an exponentiating electric field and in this way can generate electron temper-
atures that are much higher than the ion temperature, Te/Ti � 1, the maximum limit
being restricted by the saturation level of ion-acoustic or ion-cyclotron wave growth.
There are very few analytical theories about anomalous resistivity with solar flare ap-
plications, one being applied to a Petschek-type reconnection scenario (Kulsrud 2001;
Uzdensky 2003). Anomalous resistivity is commonly assumed in numerical MHD
simulations because it is one of the easiest ways to reproduce Petschek-type fast recon-
nection, while uniform resistivity would lead to the much slower Sweet−Parker type
reconnection (Yokoyama & Shibata 1994). Particular MHD simulations investigated
the scaling of the reconnection rate with anomalous resistivity (Yokoyama & Shibata
1994), the scaling of the Joule heating rate with anomalous resistivity (Roussev et
al. 2002), the influence of heat conduction on the magnetic reconnection rate (e.g.,
Chen et al. 1999a; Miyagoshi & Yokoyama 2003), the dynamics of X-points in cur-
rent sheets (e.g., Schumacher & Kliem 1996b, 1997b), or the coalescence of magnetic
islands (e.g., Schumacher & Kliem 1997).
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Figure 16.1: Left: slow-shock heating in the downward-directed reconnection outflows. The
reconnection point P is rising vertically, trailing behind two slow MHD shocks (thick lines).
Behind the shock there is a series of loops with heated plasma (shaded), while the cooled plasma
in the inner loops falls down as seen in Hα (Cargill & Priest 1983). Right: slow-shock heating
in upward-directed reconnection outflows. The heated plasma connected with the slow MHD
shocks forms a bubble-like conduction front of a postflare arch (Hick & Priest 1989).

16.1.3 Shock Heating

In § 10.5.1 we described the standard 2D X-type reconnection model, where a fast-
shock front develops in the reconnection outflow and standing slow shocks at the
V-shaped, lateral boundaries (ridges) of the reconnection outflow region (Fig. 10.21;
Tsuneta 1997). The critical importance of slow shocks in converting magnetic en-
ergy to plasma kinetic and thermal energies was pointed out theoretically by Petschek
(1964), Cargill & Priest (1983), and Hick & Priest (1989). The heating rate at a slow-
shock interface can be computed from the jump conditions (i.e., the conservation of the
normal magnetic field, normal and tangential momentum, energy, and tangential elec-
tric field). The heating rate was found to be sufficient to explain the continued heating
of postflare loops (Fig. 16.1 left; Cargill & Priest 1983) as well as for postflare arches
(Fig. 16.1 right; Hick & Priest 1989). Numerical MHD simulations by Yokoyama &
Shibata (1997, 1998) showed that adiabatic slow MHD shocks that emanate from the
neutral point become dissociated into heat conduction fronts and isothermal slow MHD
shocks, due to heat conduction effects. Further confirmation of slow-shock heating
was obtained by soft X-ray observations of high-temperature ridges with temperatures
of T ≈ 10 MK above and below the X-point during and after flares (Tsuneta 1996a,
1997; Tsuneta et al. 1997).
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16.1.4 Electron Beam Heating

Energized (nonthermal) electrons lose their kinetic energy in the Coulomb field of
ambient (thermal) ions and electrons when they enter a collisional plasma. This en-
ergy loss not only stops the fast electrons, but also heats the ambient target plasma.
This heating process is observed most prominently in hard X-rays when nonthermal
electrons precipitate to the chromosphere and produce free-free bremsstrahlung during
the multi-encounter energy loss (see thick-target bremsstrahlung process in § 13.2.2).
However, although most of the coronal regions are collisionless to a good approxi-
mation, some rare Coulomb collisions and thus energy loss and plasma heating al-
ready takes place in the coronal regions that the electrons cross during their jour-
ney to the chromosphere. The coronal energy loss is particularly enhanced in high-
density regions or in trapping regions, where the trapping time can be much longer
than the time-of-flight crossing time. Evidence for coronal energy loss was mainly
established from the observations of above-the-looptop hard X-ray sources (Masuda
et al. 1994, 1995). Modeling of such coronal hard X-ray emission was performed by
Fletcher (1995, 1996), Fletcher & Martens (1998), and Brown et al. (1983, 2002a),
from which the associated coronal energy loss and coronal plasma heating rate can be
inferred. Alexander & Metcalf (1997) attempted to isolate the hard X-ray spectrum of
the (Masuda-type) above-the-looptop from the looptop sources and found a nonthermal
spectrum for the Masuda-type source, which indicates that collisions are too infrequent
there to thermalize the plasma. The looptop sources are generally found to have a ther-
mal spectrum (with T ≈ 40 MK for the Masuda flare), but it is difficult to separate
the plasma that is directly heated by electron beams in the corona from the upflowing
plasma that was heated in a secondary phase in the chromosphere.

16.1.5 Proton Beam Heating

Protons and electrons are thought to be accelerated concomitantly in magnetic recon-
nection regions, so that proton beams as well as electron beams emerge. Proton beams
that propagate in a downward direction towards the chromosphere are expected to ex-
cite strong kinetic Alfvén waves (KAW) (Voitenko 1995, 1996; Voitenko & Goossens
1999; Voitenko et al. 2003). The proton beam-driven instability of kinetic Alfvén
waves (KAW) can be saturated by the velocity-space (quasi-linear) diffusion of the
beam protons. This saturation amplitude of KAWs, however, is too low to explain the
observed nonthermal velocities in flares, but an inverse MHD-turbulent cascade formed
by three-wave interactions is envisioned to spread the turbulence spectrum into the low
wave number domain with enhanced amplitudes. The resulting turbulence of KAWs
contains enough energy to produce the typical nonthermal velocities of v ≈ 200− 400
km s−1 observed in flares (Voitenko & Goossens 1999), and thus could contribute to
impulsive primary plasma heating between the reconnection outflow regions and the
flare loop footpoints. Diagnostic on flare protons, however, is difficult to come by, but
estimates of the proton flux have been attempted by using the 20Ne 1.634 MeV line
(Emslie et al. 1997).
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16.1.6 Inductive Current Heating

Heating of plasma in coronal flare loops can also be accomplished by current induction
according to Maxwell’s laws. Typical coronal loops carry currents of the order I ≈
1012 A and changes in the current path ∂I/∂t and the associated inductance ∂L/∂t
are faciliated by reconnecting magnetic field lines. According to the simple circuit
equation,

d

dt
(LI) + RI +

Q

C
= EMF , (16.1.2)

a coronal loop with electric resistivity R and voltage V then dissipates the current
with a power of P = IV = RI2, according to Ohm’s law, which can be converted
into plasma heating. Early flare models based on current induction were pioneered
by Alfvén & Carlquist (1967). The change in inductance ∂L/∂t can occur in at least
three ways in a flare environment: either like current-carrying loops move apart; the
current path shortens; or unlike currents move closer together (e.g., Melrose 1995). A
model of magnetic flux or electric current transfer in quadrupolar flare loop pairs was
derived in Melrose (1997) and applied to solar flares with interacting flare loops by
Hardy et al. (1998) and Aschwanden et al. (1999c; see also § 10.5.6). An interesting
prediction of this model is that plasma heating occurs along the separator field lines and
separatrix surfaces (Longcope & Silva 1997). Further aspects of induction between
current-carrying loops, such as rising loops, loop oscillations, and stabilizing effects
are studied in Khodachenko et al. (2003). Observational verification of these processes
are difficult, because simultaneous measurements of current changes and temperature
changes in flare loops have not been managed yet.

16.2 Chromospheric Flare Plasma Heating

Let us proceed now to secondary flare heating processes, which occur when acceler-
ated particles or thermal conduction fronts during their downward propagation hit the
transition region and chromosphere. Because of the large density gradient at this inter-
face, this secondary heating process produces far more heated flare plasma than any of
the primary heating mechanisms that operate in the corona, as we described in § 16.1.
There are two competing agents for chromospheric heating, nonthermal particles ver-
sus thermal conduction fronts, which both seem to be important in flares. We review
these two agents separately in the following two sections.

16.2.1 Electron and Proton Precipitation−Driven Heating

There are also two competing scenarios for beam-driven chromospheric heating dur-
ing flares, the electron beam hypothesis and the proton beam hypothesis (Brown et
al. 1990).

The salient feature of the electron beam model is a stream of fast electrons (ε >∼ 20
keV), carrying <∼ 1036 electrons s−1 in large flares, a kinetic power of P (ε > 20 keV)
≈ 1029 erg s−1, an associated current of I ≈ 1026 statamps over an area of A <∼ 1018

cm2, during a time interval of ∆t ≈ 102−103 s (Hoyng et al. 1976; 1981b), as derived
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Figure 16.2: Schematic diagram of the physical processes during the heating of chromospheric
flare plasma: An ambipolar electric field develops when the collisionally heated electrons prop-
agate outward faster than the ions. The ambipolar field drags the ions outward in an effort to
maintain quasi-neutrality. The velocity of an ion is dependent on its charge-to-mass ratio, with
the heaviest ions in general moving more slowly through the potential drop than the lighter ions
(Winglee 1989).

from the thick-target bremsstrahlung model (§ 13.2.2). The collisional interaction of a
beam of charged particles with a hydrogen target of arbitrary ionization level has been
quantified in a number of theoretical studies (e.g., Emslie 1978, 1983, 2003; Emslie et
al. 1981). The detailed amount of energy deposition as a function of the chromospheric
height of course depends on the atmospheric density model (Emslie 1981; Emslie et
al. 1981; Brown et al. 2002a; Aschwanden et al. 2002b) and magnetic field model
(Emslie et al. 1992).

Proton beam models are less constrained because we do not observe any direct
radiative signature in hard X-rays, such as bremsstrahlung in the case of electrons.
Nevertheless, proton beam models have the advantage (over electron beam models)
that a lower particle flux and beam current is needed, and thus a number of proton beam
models have been postulated (Emslie & Brown 1985; Emslie et al. 1996, 1997; Brown
et al. 1990), which can be subdivided into low-energy (≈ 1 MeV) and high-energy
( >∼ 40 MeV) proton beam models. Problems with high-energy protons are that they
produce heating and hard X-rays much too deep in the atmosphere, lack the impulsive
(subsecond) time scales, and predict too high gamma-ray fluxes (Brown et al. 1990),
while low-energy protons cannot explain the hard X-ray emission. Thus, electron beam
models are necessary to explain the observed hard X-rays, while an unknown number
of low-energy protons are likely to be concomitant, both contributing to the heating of
chromospheric plasma during flares.

The detailed kinetic evolution of beam-driven chromospheric heating requires nu-
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Figure 16.3: Left: logarithmic contour plots of initial and final velocity distributions of H+,
He2+, O4+, and Fe6+ ions during chromospheric heating by precipitating particles. The evo-
lution of the particle velocity distributions is simulated with a particle-in-cell code that mimics
the wave-particle interactions in the microscopic electromagnetic fields between electrons and
different ion species. Right: time histories of the parallel and perpendicular temperatures nor-
malized to their initial temperatures (Winglee 1989).

merical simulations with particle codes that self-consistently treat the properties of the
current system and associated electric fields during the propagation and energy trans-
port of the energetic electrons and ions from the corona to the chromosphere. Such
numerical simulations have been performed [e.g., by Winglee (1989) and Winglee et
al. (1991a, b)], from which we show the conceptual setup in Fig. 16.2 and some re-
sults of time histories in Fig. 16.3. In this simulation, a preflare density and temper-
ature of ne = 1010 cm−3 and Te = 105 K is assumed in the transition region, and
ne = 1011 cm−3 and Te = 104 K in the upper chromosphere, with heating initiated
by precipitating energetic ( >∼ 10 keV) electrons. The primary (precipitating) electrons
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heat secondary electrons. The energy of these heated secondary electrons goes in part
into collisional heating of the ambient ions, and in part into upward propagation due to
the overpressure. As the secondary electrons propagate upward, a return current drags
the ions with them through an ambipolar field, in order to maintain charge neutrality.
The ambipolar electric field accelerates lighter ions to higher speeds than the heavier
ions, so that different ion species form separated beams in the velocity distribution
(see Fig. 16.2, right, and Fig. 16.3, left), which become the subject of streaming insta-
bilities. Some of the ions become decelerated while others become accelerated up to
speeds comparable to the initial speed of the light ions. This mechanism reproduces
some of the observed abundance enhancements (such as He3; Reames et al. 1985) and
yields bulk speeds in the upflowing plasma that are comparable with observed soft
X-ray Doppler shifts (Winglee 1989; Winglee et al. 1991a,b).

16.2.2 Heat Conduction-Driven Heating

The magnetic reconnection process in a coronal X-point is thought to accelerate parti-
cles as well as to heat up the local plasma, to temperatures of T ≈ 107 K. The overpres-
sure in the heated plasma will cause an expansion, with thermal conduction fronts that
have a steep temperature gradient at the leading edges. The leading edge is expected to
propagate with the ion-sound speed cs (Smith 1977; Smith & Lilliequist 1979), leading
to an anomalous heat flux of Fan = (3/2)nkBTcs. The consequences of anomalous
flux limitations have motivated a dissipative thermal flare model (Brown et al. 1979;
Smith & Lilliequist 1979; see also the review by Machado 1991), where the impulsively
heated coronal plasma is confined by the relatively slowly moving conduction fronts.
A substantial fraction of the observed soft X-rays (10 eV−1 keV) are then produced
by thermal bremsstrahlung of the bottled-up electrons. A number of observational tests
have been performed for this model, where a proportionality between the hard X-ray
rise time and the (microwave) flare size was found, which was interpreted in terms of a
constant source expansion speed (e.g., the ion-sound speed cs in the conduction-front
model; Batchelor 1989). Another argument in favor of the conduction-front model was
brought forward for a flare that showed all signatures of chromospheric evaporation
upflows but a lack of ( >∼ 15 keV) hard X-ray emission (Czaykowska et al. 2001).

Recent numerical MHD simulations of magnetic reconnection processes include
heat conduction and reproduce the evolution and propagation of conduction fronts in
detail (Yokoyama & Shibata 1997, 1998, 2001; Chen et al. 1999a). The first numer-
ical simulation of magnetic reconnection including heat conduction showed the prop-
agation of both the conduction front and isothermal slow shocks (Yokoyama & Shi-
bata 1997), which was originally predicted by analytical work (Forbes et al. 1989).
Yokoyama & Shibata (1998) further succeeded to include chromospheric evaporation
in the numerical simulation of reconnection coupled with heat conduction. The 2.5D
simulation of Chen et al. (1999a) also includes field-aligned heat conduction and devel-
opments of slow shocks as well as a heat conduction front were found, where the con-
duction front heats the plasma along the field lines. The 2D simulations of Yokoyama
& Shibata (2001) include the effects of anisotropic heat conduction and chromospheric
evaporation (Fig. 16.4). They find that the energy transported by heat conduction
causes an increase in temperature and pressure of the chromospheric plasma, according
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Figure 16.4: 2D numerical MHD simulation of a solar flare with chromospheric evaporation
and anisotropic heat conduction in the framework of a 2D magnetic reconnecting geometry. The
temporal evolution of the plasma temperature (top row) and density (bottom row) is shown. The
temperature and density scale is shown in the bars on the right side. The simulation illustrates the
propagation of thermal conduction fronts and the upflows of chromospheric plasma in response
(Yokoyama & Shibata 2001).

to the scaling

Ttop =
(

B3L

2πκ0

√
4πρ

)2/7

, (16.2.1)

where Ttop is the temperature of the flare looptop, B the coronal magnetic field strength,
ρ the coronal mass density, and κ0 the heat conduction coefficient, respectively. Thus,
these MHD simulations confirm that chromospheric evaporation can also be produced
by heat conduction fronts, which is important for flares without detectable hard X-rays.
In flares with detectable hard X-rays, both drivers (i.e., particle precipitation and heat
conduction) may compete in spawning chromospheric evaporation.
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16.2.3 Hα Emission

From the hydrogen lines (Fig. 2.8) we see that the lowest atomic levels in visible light
are the Balmer series (with transitions between n = 2 and n ≥ 3), with the Hα line
(n = 2 → n = 3) at 6563 Å having the lowest energy levels. Therefore, the solar
chromosphere can most easily be observed with ground-based instruments in the Hα
line, showing chromospheric fine structure in the quiet Sun, filaments, active region
loops, surges, prominences, and flare ribbons with high contrast. The high opacity of
this line makes phenomena easily observable above the limb. Observations are made
in the center of the Hα line, which appears in absorption in the quiet Sun and in active
region plages, but in emission during major flares. The center of the Hα line is often
saturated during flares, so that the kernels of flares are better observed in the line wings,
say at +2.5 Å. Historically, flare research has thus been pioneered from ground mostly
in the Hα line [e.g., see textbooks of Svestka (1976) and Zirin (1988)].

Quantitative analysis of Hα data, however, is complicated because the contribu-
tions to Hα line emission span from the photosphere in the line wing up to the upper
chromosphere in the line core. Furthermore the Hα line involves high-excitation states
(n ≥ 2), and heating processes produce both emission and absorption features. The
evolution of the Hα line profile at the footpoint of flare loops in response to the precip-
itation of nonthermal electrons, heat conduction, and chromospheric evaporation has
been studied in detail by Ricchiazzi & Canfield (1983), Canfield et al. (1984), Ichi-
moto & Kurokawa (1984), and Canfield & Gunkler (1985). These studies provide us
a diagnostic on the effects of electron precipitation and heat conduction based on the
intensity, width, wing, and central reversal of the Hα line profile (e.g., see evolution
of Hα profile during a flare in Fig. 16.5). Canfield & Gunkler (1985) concluded in
one flare that chromospheric evaporation is controlled by heat conduction rather than
by thick-target nonthermal electron heating. In other flares it was demonstrated that
the Hα energy flux is consistent with an energy flux deposited by thick-target electrons
over an area of A ≈ 2 × 1017 cm2 = (4500 km)2 (Wülser et al. 1992). Chromospheric
evaporation produces an upflow of heated plasma (e.g., as seen as blueshift in Ca XIX)
and simultaneously downflows of chromospheric gas (e.g., as seen as redshift in Hα)
to balance the momentum, also called “chromospheric condensation” (Fisher 1989).
This momentum balance between Ca XIX and Hα emission was verified in a number
of solar flares (Zarro et al. 1988b; Canfield et al. 1990; Wülser et al. 1992, 1994).

The precipitation of high-energy particles (mostly protons) also produces a linear
polarization of the Hα line, which is called impact polarization. Successful measure-
ments of the Hα linear polarization therefore would provide support in favor of pre-
cipitating protons as drivers of chromospheric evaporation, rather than electrons. The
observed linear polarization in Hα is weak, in the order of a few percent, and is difficult
to measure, but detections were claimed by Hénoux et al. (1990), Metcalf et al. (1992,
1994), Vogt & Hénoux (1999), Emslie et al. (2000), Vogt et al. (2002), and Hanaoka
(2003).
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Figure 16.5: Hard X-ray (28−101 keV) time profile (top) and Hα line profile evolution during
the 1980-Jun-23, 23:10 UT, flare. Note that the Hα line shows first absorption in the preflare
phase, but strong emission during the hard X-ray phase. The Doppler shift of the line center is
indicated with a bisector line at different flux levels (Canfield et al. 1990).
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16.2.4 White-Light Emission

On very rare occasions, flares can even be observed in white light, which must origi-
nate deep in the chromosphere. The excitation mechanism of white-light flare emission
is still unknown, but there is some consensus that the origin of the optical continuum
of white-light flares should be associated with accelerated particles that penetrate deep
into the dense chromosphere, based on the good temporal correlation between white
light, hard X-rays, and microwave emission (Hudson 1972; Rust & Hegwer 1975;
Neidig 1989; Hudson et al. 1992; Neidig & Kane 1993; Rieger et al. 1996; Ding et
al. 1999). Hudson (1972) finds that the >∼ 5 keV electrons in major flares have enough
energy to create long-lived excess ionization in the heated chromosphere high above
the photosphere to enhance the free-free and free-bound continuum as occasionally
seen in white light. Yohkoh observations, (the first white-light observations of solar
flares from space), actually show white-light emission more frequently, down to the
weakest flares (Hudson et al. 1992; Sylwester & Sylwester 2000; Matthews et al. 2002;
Metcalf et al. 2003). White-light flares have been characterized into two types. The
more common type I events show strong and broadened hydrogen Balmer lines and a
Balmer and Paschen jump and demonstrate a good correlation with signatures of non-
thermal electrons (in hard X-rays and microwaves). Type I white-light flares thus have
been interpreted in terms of flare energy deposition in the chromosphere, where the
white-light continuum is produced predominantly by hydrogen recombination, with the
energy transport to lower levels in the chromosphere accomplished by photo-ionization
(Fig. 16.6), also called radiative backwarming (Hudson 1972; Metcalf et al. 1990a,b,
2003; Ding & Fang 1996). Type II white-light flares do not show this strong chromo-
spheric effect and are suspected to be produced by an energy release in the photosphere
or temperature minimum region (Ding et al. 1999).

16.2.5 UV Emission

Ultraviolet (UV) covers the wavelength range shorter than blue visible light (i.e., λ ≈
100 − 3000 Å), where the shorter wavelength range of λ ≈ 100 − 300 Å is also
called extreme ultraviolet (EUV) (Fig. 1.25). The UV range includes strong lines with
formation temperatures typical for the transition region [e.g., O V (629 Å, T ≈ 0.25
MK), O IV (1404 Å, T ≈ 0.17 MK)], which have been studied with SMM/UVSP
during flares (e.g., see the reviews by Cheng 1999, Dennis 1988). Other instruments
in the UV range were designed to observe active regions (SoHO/SUMER, Wilhelm
et al. 1995), or the solar wind (SoHO/UVCS, Kohl et al. 1995). Flare-related UV
emission was also imaged with TRACE (e.g., Warren & Warshall 2001).

A key observation for the understanding of UV line emission during flares is the
detailed coincidence of hard X-ray pulses with UV time profiles, such as in O V, which
shows a cross-correlation delay of as little as <∼ 0.1 − 0.3 s (Fig. 16.7), as reported by
Woodgate et al. (1983), Orwig & Woodgate (1986), and Cheng et al. (1988). Despite
this detailed coincidence, the causal relation between the two emissions is difficult to
understand. In the framework of the thick-target model (§ 13.2.2), hard X-ray elec-
trons lose their energy in the transition region and upper chromosphere at heights of
h ≈ 2000 − 5000 km (Fig. 13.28), while the UV continuum emission is expected to
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Figure 16.6: Height-temperature diagram of the origin of Hα, Lyman line emission (Lα, Lβ,
Lγ), Lyman continuum, UV lines (T >∼ 20, 000 K), and UV continuum (Si I, Si II, C I) are
shown (left), along with a temperature model (thick line) according to the model of Vernazza et
al. (1973). The corresponding heights of the various emissions (hard X-rays, XUV lines, nuclear
γ-rays, neutrons, Hα, and UV continuum) in a flare loop footpoint are sketched (right). Chro-
mospheric evaporation is caused by heating of precipitating electrons, nuclear γ-rays by precipi-
tating protons, and UV continuum emission by photo-ionization from collisional bremsstrahlung
in the upper chromosphere, also called backwarming (adapted from Vernazza et al. 1973; Brown
& Smith 1980; Dennis 1988).

originate in the temperature minimum region at lower heights of h ≈ 500 − 800 km
(Figs. 16.6 and 1.19). So the nonthermal hard X-ray electrons do not penetrate deep
enough to cause direct heating and collisional excitation of UV lines in the temper-
ature minimum region. Neither does thermal conduction work, because it takes too
long and is ineffective at these depths. So, an alternative explanation was suggested by
Machado & Mauas (1987). Since the λ = 1350 − 1680 Å UV continuum radiation
of the quiet Sun as well as in flare conditions originates in the temperature minimum
region and is primarily due to Si I, after electron capture by Si II, they propose that
UV line emission from the transition region (mainly the C IV resonance line at 1549
Å) increases the amount of Si II in the temperature minimum region by UV photo-
ionization (Fig. 16.6), which is also called radiative backwarming (e.g., Metcalf et
al. 2003). Thus the increase in UV emission during flares can more conveniently be
explained by photo-ionization of the hard X-ray producing electrons, because (1) it
requires about four orders of magnitude less energy input than by collisional excita-
tion from the same hard X-ray electrons, and (2) because photo-ionization occurs more
rapidly. Evidence for this model of photo-ionization of neutral silicon atoms (Si I) near
the temperature minimum region by enhanced UV emission has been verified by quan-
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Figure 16.7: Time profiles of (25 − 200 keV) hard X-rays (bottom), O V line, and UV contin-
uum (top) during the 1985-Apr-24, 01:48 UT, flare. Note the detailed one-to-one correspondence
of six impulsive peaks (labeled with a through f), (Cheng et al. 1988; Dennis 1988).

titative correlations between C II (1335 Å) or C IV (1584 Å) fluxes and Si I (1520 Å)
fluxes in two flares (Doyle & Phillips 1992).

16.3 Chromospheric Evaporation

Although the term “evaporation” designates a change of state in classical physics (i.e.,
from liquid to a gaseous state), the same term became popular in solar flare physics, al-
though it corresponds actually not to a change of state, and should rather be called “ab-
lation”. According to the theoretical model of the “chromospheric evaporation” pro-
cess, the primary flare energy is conveyed to the chromosphere in the form of particle
precipitation or heat conduction. It heats up the chromospheric material at a sufficiently
rapid rate that it reaches coronal and flare temperatures (T ≈ 5 − 35 MK), and driven
by the overpressure, subsequently expands upward into the coronal flare loops, where
it emits soft X-ray emission. Various reviews related to the topics of chromospheric
evaporation have been spawned by observations from the Skylab, Hinotori, and SMM



686 CHAPTER 16. FLARE PLASMA DYNAMICS

Figure 16.8: The evolution of the CSHKP-type magnetic reconnection model predicts that the
magnetic reconnection point rises in altitude with time, and that chromospheric evaporation is
initiated sequentially in overlying loops with increasing footpoint separation (Hori et al. 1997).

Figure 16.9: Temperature (greyscale) and magnetic field evolution (contours) in a dynamic
2.5-dimensional numerical hydrodynamic simulation of magnetic reconnection. Note that the
hot flare loops show an increasing footpoint separation with time (Chen et al. 1999b).

missions (Sturrock 1973, 1980; Canfield et al. 1980; Moore et al. 1980, Doschek et
al. 1986; Doschek 1990, 1991; Wu et al. 1986; Canfield et al. 1986; Canfield 1986a,b;
Tanaka 1987; Watanabe 1987; Antonucci 1989; Antonucci et al. 1999; Emslie 1989;
Zarro 1992; Bornmann 1999). Theoretical treatments can be found in, for example,
Brown & Emslie (1989).
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Figure 16.10: Temperature and intensity (or emission measure) evolution in the scenario of
sequentially reconnecting flare loops as shown in Figs. 16.8 and 16.9. The heating functions of
sequentially heated flare loops are overlapping (case A) or exactly sequential (case B). The in-
tensity is calculated for the Ca XIX line, with the directly heated (dash-dotted curve), evaporated
(dashed), accumulated (thin solid curve), and sum of the components (thick solid line) (Hori et
al. 1998).

16.3.1 Hydrodynamic Simulations of Chromospheric Evaporation

The process of impulsive heating of chromospheric plasma has been simulated with
hydrodynamic (HD) codes, which demonstrated the response of the chromosphere in
the form of rapid pressure build-up that drives upflows of heated plasmas into coro-
nal loops. Most of the early numerical HD simulations used a 1D hydrodynamic
code, which solved the time-dependent hydrodynamic equations of particle, momen-
tum, and energy conservation (Eqs. 4.1.24−26) for a given initial condition of rapid
heating, by incorporating the effects of plasma heating, radiative cooling, thermal con-
duction (in the energy equation), and viscous damping (in the momentum equation,
see Eqs. 6.1.12−14). The basic evolution, that impulsive heating would not immedi-
ately be dissipated in the chromosphere by radiative loss, but rather would heat up the
local plasma and drive significant mass motions due to the high overpressure (i.e., up-
flows into the coronal parts of the connected loops) was already recognized earlier, and
has been called chromospheric evaporation since (Neupert 1968; Antiochos & Sturrock
1978; Acton et al. 1982; Doschek et al. 1986). The heating function EH(s, t) is usually
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split into two components, containing a steady low heating rate to maintain a steady
state corresponding to the background corona, and an impulsive high heating rate to
mimic either the collisional energy loss by precipitating particles or a thermal conduc-
tion front originating from the energy release at the looptop. It was found that the
chromospheric response produces a gentle upflow for heating rates below EH

<∼ 1010

(erg cm−2 s−1), because the plasma is heated only to temperatures T <∼ 0.2 MK, which
is below the peak of the radiative loss function (Fig. 2.14) and thus the increasing radia-
tive loss rate with temperature limits the temperature and pressure increase. Above this
critical heating rate, explosive upflows are generated with speeds exceeding the sound
speed cs, with a supersonic limit of v/cs

<∼ 2.35 (Fisher et al. 1984; 1985b). Paramet-
ric studies show that flare loop densities up to ne

<∼ 5 × 1011 cm−3 can be achieved
(Tsiklauri et al. 2004), which is about two orders of magnitude higher than the ambient
corona in active regions. Numerical HD simulations of the chromospheric evaporation
process have been conducted for two different drivers (or heating scenarios): for non-
thermal particle precipitation (e.g., Somov et al. 1981; Bloomberg et al. 1977; Mac-
Neice et al. 1984; Nagai & Emslie 1984; Fisher et al. 1985a,b,c; Mariska & Poland
1985) and for heat conduction from the looptop (e.g., Nagai 1980; Somov et al. 1982;
Cheng et al. 1984; Pallavicini & Peres 1983; MacNeice 1986; Fisher 1986; Mariska et
al. 1989; Gan et al. 1991; Falchi & Mauas 2002).

The various simulations differ in their numerical techniques and attempt to achieve
sufficient temporal and spatial resolution in the critical transition region with adaptive
grids. More advanced models of the chromospheric structure include radiative loss of
optically thick emission, which demands radiative transfer calculations (McClymont
& Canfield 1983b; Fisher et al. 1985a,b,c; Fisher 1986). A concise summary of de-
sign issues and problems of numerical HD simulations can be found in Antonucci et
al. (1999).

Some numerical simulations include a two-fluid plasma, so that partial ionization
of hydrogen in the chromosphere can be reproduced. MacNeice et al. (1984) uses two
temperature equations, one for the electrons and the other for the neutral atoms and
positive ions of hydrogen. Pure proton beams (with energies of ≈ 1 MeV), however,
seem not to reproduce the observed velocity differential emission distribution better
than electron beam models (Emslie et al. 1998).

One issue is whether the Spitzer−Härm formula (Eq. 3.6.3) for thermal conduction
is valid in all parts of a flare loop. Strictly speaking, the Spitzer−Härm solution is only
accurate in a strongly collisional regime where the ratio of the mean free path length of
a thermal electron to the thermal scale height (the Knudsen parameter) is small ( <∼ 2%).
This issue was investigated by Ljepojevic & MacNeice (1989), who found significant
departures from the Spitzer−Härm solution in the upper transition region and lower
corona of a preflare loop, but not in the lower transition region where the thermal scale
height is much shorter.

The newer generation of hydrodynamic codes are 2D and 2.5D, which also allows
inclusion of the dynamics of the reconnection region (Figs. 16.8 and 16.10), such as
the altitude rise of the reconnection point and footpoint separation of the flare loops
(Yokoyama & Shibata 1998, 2001; Chen et al. 1999b), and the co-existence of soft
X-ray emitting loops produced in sequential order with altitudes increasing with time
(Hori et al. 1997, 1998). Ultimate versions may attempt to incorporate self-consistently
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Figure 16.11: Ca XIX line profile (histogram) observed during the 1984-Apr-24, 23:52 UT,
flare, fitted with the sum (solid curve) of a stationary and a blueshifted component (dashed lines)
corresponding to a line-of-sight velocity of v = 210 km s−1 (Antonucci 1989).

the 3D-MHD, ionization balance, atomic physics, radiation transport, particle kinetics,
and nuclear physics.

16.3.2 Line Observations of Chromospheric Evaporation

Once a time-dependent hydrodynamic simulation is calculated, in terms of the den-
sity ne(s, t), velocity v(s, t), and temperature evolution Te(s, t), the next step is to
convolve these physical parameters with the instrumental response function of a given
filter passband, in order to mimic the observables. For instance, the time evolution
of soft X-ray and EUV line intensities has been simulated for O V, 1371 Å (MacNeice
1986; Mariska & Poland 1985), Ca XIX 3.177 Å (Nagai & Emslie 1984; Li et al. 1989;
Mariska 1995), O VIII, Mg XI, Ne IV, Si XIII, S XV, Ca XIX, Fe XXV (Pallavicini
& Peres 1983), Fe XXV, Ca XIX, Fe XXI (Cheng et al. 1984), or Yohkoh/SXT filters
(Peres & Reale 1993a,b; Bornmann & Lemen 1994). These are mostly soft X-ray lines
in the 1 − 22 Å wavelength range, which are formed due to transitions in the higher
ionization stages of the most abundant ions, emitted in plasmas at temperatures of
T >∼ 10 MK. Quantitative analysis of the soft X-ray line profiles (i.e., measurements of
the line flux, Doppler shifts, and line broadening) provides crucial information on flow
velocities, turbulent velocities, electron temperatures (T ≈ 2 − 40 MK), differential
emission measure distributions, ionization states, and in some cases electron densities
(ne ≈ 1010 − 3 × 1012 cm−3), filling factors (qfill ≈ 3 × 10−4 − 1), and elemental
abundances. The analysis of Ca XIX, Fe XXV, Fe XXVI, and Mg XI spectra is de-
scribed in a number of studies (Antonucci et al. 1982, 1984b, 1985, 1990a; Tanaka et
al. 1982; Antonucci & Dennis 1983; Canfield et al. 1983; Zarro et al. 1988a,b; Fludra
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Figure 16.12: Flare of 1998-Apr-29, 16:37 UT, observed in EUV (SoHO/EIT 195 Å, left), in
Doppler shift (SoHO/CDS Fe XVI; middle), and in Hα (BBSO; right). Note that the magnetic
configuration corresponds to a loop arcade, curved around the sunspot in the south-east of the
image. Blueshifts are observed at the outer and inner ribbons of the curved arcade (black color in
middle image), while redshifts are found in the interior of the arcade (Czaykowska et al. 1999).

et al. 1989) and reviews on the subject are given in Antonucci (1986, 1989), Canfield
(1986a,b), Doschek et al. (1986), Doschek (1990), and Antonucci et al. (1999).

A puzzle that existed for a long time is that the hydrodynamic simulations pro-
duced strong blueshifts and redshifts in soft X-ray and EUV lines due to the upflows
of evaporated material from the flare loop footpoints, while the observations revealed
only relatively small blueshifted components (e.g., Cheng et al. 1984). An example
of a prominent blueshift is shown in Fig. 16.11, corresponding to an upflow speed of
v = 210 km s−1, measured in the Ca XIX line (Antonucci 1989). For Fe XXV, an
even higher line-of-sight velocity of v = 480 km s−1 was measured in the same flare.
Such velocity measurements in different lines have been generalized with the concept
of a continuous function, the so-called velocity differential emission measure (VDEM)
distribution dEM(v)/dv, which in flares covers a range of v ≈ 100 − 1000 km s−2

(Newton et al. 1995). The blueshift, which marks an upflow, is usually only seen in
the rise of the impulsive flare phase (for typically ∆t ≈ 10 − 20 s), though it can
occur repetitively in multi-loop flares. There are also “gentle” upflows that have been
observed in the late flare phase (Schmieder et al. 1987, 1990), which are thought to be
driven by downward heat conduction in postflare loops (Forbes & Malherbe 1986a,b;
Forbes et al. 1989). Observational evidence for conduction-driven evaporation was
also inferred from a linear correlation between the upward enthalpy flux and the down-
ward thermal conductive flux (Zarro & Lemen 1988) and from the lack of hard X-ray
emission (Czaykowska et al. 2001). The reason why large blueshifts never have been
observed in flares might be a result of the confusion of separating upflows and down-
flows in space and time. If a number of overlying or neighboring loops experience
time-shifted heating phases (Figs. 16.8 and 16.10), most of the blue and redshifts can-
cel out temporally and spatially. In a large two-ribbon flare observed with CDS, EIT,
and MDI (Fig. 16.12), dominant blueshifts could only be spatially resolved and iso-
lated at the outer edges of the flare ribbons, which advance outwards like a bush-fire
front and map back to the latest (rising) magnetic reconnection points in the corona
(Czaykowska et al. 1999).

Besides the blueshift feature, some lines also show a so-called “nonthermal line
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broadening” in excess of the natural line width and instrumental broadening (Antonucci
et al. 1999). This term implies an interpretation in terms of nonthermal processes, such
as turbulent motion or unresolved flows. However, the interpretation is ambiguous,
because a superposition of many multiple thermal plasmas can also lead to an excessive
line broadening. This line broadening is expressed in terms of a nonthermal velocity
vnt,

vnt =

√
2kB(TD − Te)

mi
, (16.3.1)

where TD is the Doppler temperature, Te the electron temperature obtained from the
line ratio diagnostics, and mi is the mass of the ion considered. Typical values of line
broadening are vnt = 100 − 200 km s−1, as observed in Ca XIX and Fe XXV lines
(Ding et al. 1996; Harra−Murnion et al. 1997). One argument that the line broadening
is a nonthermal effect is given by the fact that there is no significant difference found in
the excess widths in Ca XIX (T ≈ 14−20 MK) and Fe XXV lines (T ≈ 16−26), which
suggests identical ion and electron temperatures, so it cannot be explained by multi-
thermal effects (Antonucci & Dodero 1986; Saba & Strong 1991). Models of Alfvén
wave turbulence have been applied to soft X-ray lines by Alexander & MacKinnon
(1993), Alexander & Matthews (1994), and MacKinnon (1991). In particular, Alfvénic
outflows and high-temperature turbulent current sheet models (Somov 1992; Antonucci
& Somov 1992; Antonucci et al. 1994) produce flow velocities that are compatible with
the observed Doppler shifts in soft X-ray lines, but a spatial localization could not be
established yet.

16.3.3 Imaging Observations of Chromospheric Evaporation

Early imaging observations of flare loops in soft X-rays, which trace the chromospheric
evaporation process (also called coronal explosions) were accomplished with SMM/
HXIS at energies ≥ 3.5 keV with a time resolution of ∆t ≈ 0.5 − 7 s (e.g., Hoyng
et al. 1981a; Duijveman et al. 1982; De Jager et al. 1984; De Jager & Boelee 1984;
De Jager 1985; or in the reviews of De Jager 1986 and Antonucci et al. 1999). The
heated plasma typically expands with a velocity of v ≈ 100 − 400 km s−1 up into the
loop, so it fills a loop with a length of L = 10 − 20 Mm in about ∆t = L/v >∼ 25 s.
The cooling of the hot flare loops, with a typical temperature of T ≈ 15 MK, has been
observed to occur with an e-folding time scale of tcool ≈ 45 s (De Jager 1985). In most
of the flares there are multiple loops involved which sequentially become filled and
cool down, which could not spatially be separated properly with the angular resolution
(8′′, 32′′) of SMM/HXIS.

The heliographic position of flares is expected to show a systematic center-to-limb
variation of the Doppler blueshift, if the chromospheric upflows are detected in the ver-
tical part near the flare loop footpoints. Such a center-to-limb effect v = v0 cos (l − l0)
was indeed observed in Ca XIX, Fe XXV, and S XV, with a mean radial velocity of
v0 ≈ 60 − 80 km s−1 in the middle of the flare rise phase (Mariska et al. 1993;
Mariska 1994). Occulted flares were found to have a smaller nonthermal line broaden-
ing (Mariska et al. 1996) and a slightly lower temperature (Mariska & McTiernan 1999)
than non-occulted flares, so the chromospheric upflows near the footpoints exhibit more
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Figure 16.13: Evolution of chromospheric evaporation from a SE−NW oriented loop structure
(left) to a N−S oriented loop structure (middle), possibly corresponding to the 3D configuration
shown (right). The greyscale represents Hα images (BBSO), the black contours the hard X-
ray footpoints (HXT), and the white contours the filled soft X-ray flare loops (SXT) (Silva et
al. 1997b).

turbulent motion (or a larger spread of unresolved flow speeds and directions) and they
cool down when reaching higher altitudes.

The context of hard X-ray and soft X-ray emission in the flare loop footpoints was
studied in more detail with Yohkoh/HXT, SXT, and BCS. Maximum blueshifts in Ca
XIX, which correspond to maximum upflow speeds in the chromospheric evaporation
scenario, were noted two minutes prior to the hard X-ray peak (Silva et al. 1997b),
which implies that the least confusion for upflows occurs at the beginning of the flare,
while unresolved upflows and downflows almost cancel out during the flare peak. In the
1994-Jun-30, 21:19 UT flare, the process of chromospheric evaporation was observed
to proceed from a lower lying flare loop to an overarching higher flare loop (Fig. 16.13;
Silva et al. 1997b), similarly to the scenario of interacting flare loops in a quadrupolar
3D-configuration (Fig. 10.28, § 10.5.6). In another event (2000-Mar-16) an asymmetric
behavior was observed in the heating of chromospheric footpoints, leading to asymmet-
ric Hα emission in more or less symmetric soft X-ray and hard X-ray flare loops (Qiu
et al. 2001). The asymmetry in the Hα footpoints was thus ascribed to asymmetric
heating rates rather than to a magnetic mirror asymmetry. The chromospheric heating
in flares actually produces two signatures, one is the upflowing heated plasma which
shows an integral time profile of the hard X-rays (Neupert effect), and the other are
impulsive soft X-ray brightenings, which is a direct radiation enhancement produced
by the energy deposition in the ambient chromosphere around the footpoints (Hudson
et al. 1994; Tomczak 1999; Mrozek & Tomczak 2002). Most of the studies on the
Neupert effect (Neupert 1968) are restricted to soft X-ray and hard X-ray time profiles
integrated over the entire flare location (Dennis & Zarro 1993; Li et al. 1993; Plunck-
ett & Simnett 1994; Lee et al. 1995; McTiernan et al. 1999; Veronig et al. 2002a,b;
Veronig 2003) and find significant deviations from the expected empirical Neupert ef-
fect (§ 13.5), which possibly could be resolved by discriminating the detailed spatial
structure of multiple flare loops (spatial Neupert effect). The variation of plasma flow
speeds as a function of height in flare loop footpoints has been for the first time probed
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corresponds to a slow drift of the plasma frequency cutoff (top). Radio emission produced by
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profile of the concomitant hard X-ray and soft X-ray emission is shown (middle) (Aschwanden
& Benz 1995).

with CDS over a comprehensive temperature range of log(T ) = 4.3−6.9, where strong
downflows (v <∼ +40 km s−1) at chromospheric levels, strong upflows (v <∼ −100 km
s−1) at transition region levels and (v <∼ 160 km s−1) at coronal levels were measured
(Teriaca et al. 2003), as expected in theoretical chromospheric evaporation models.

16.3.4 Radio Emission and Chromospheric Evaporation

The chromospheric evaporation process also has its manifestation at radio wavelengths,
as illustrated in Fig. 16.14. The basic effect is that the local disturbance of the elec-
tron density and temperature, introduced by the upflowing chromospheric plasma, is
detectable from radio bursts emitted at the local plasma frequency. Plasma emission
produced by electron beams has been observed in the lower corona up to a frequency of
8.4 GHz (Benz et al. 1992). The detection of plasma emission at such high frequencies
requires overdense fluxtubes, so that plasma emission can escape in a direction per-
pendicular to the fluxtube axis, where the density scale height is much shorter than in
a homogeneous corona, and thus, free-free absorption is substantially reduced. In the
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Figure 16.15: Observation of a radio dynamic spectrum during the 1992-Oct-05, 0924 UT,
flare with the Zurich radio spectrometer Phoenix, shown in total flux (black in top panel), and
as a gradient-filtered difference image (middle), with the hard X-ray ≥ 25 keV time profile
observed with CGRO and 0.5−4 Å soft X-ray time profiles observed with GOES (bottom panel).
Note the slowly drifting high-frequency cutoff (from 2000 to 1200 MHz) in the radio dynamic
spectra, which indicates a plasma-frequency cutoff most likely resulting from the chromospheric
evaporation front (Aschwanden & Benz 1995).

event of chromospheric evaporation, we expect that the upflowing plasma surrounds
overdense fluxtubes and seals off escape routes for plasma emission, because the ad-
ditional plasma material, if sufficiently dense, makes the escape routes optically thick
due to free-free absorption. Since the evaporating plasma propagates upwards with a
bulk speed of ≈ 300 km s−1, it is expected to produce a slowly drifting high-frequency
cutoff for plasma emission. This high-frequency cutoff is thought to apply to any kind
of plasma emission originating in “evaporating” flare loops (e.g., to type III bursts ex-
cited by precipitating electron beams). The drift rate of this high-frequency cutoff for
plasma emission (Eq. 15.4.10) is estimated to be(

dν

dt

)
CE

=
∂ν

∂h

∂h

∂t
≈ − ν

2λ
vCE cos θ , (16.3.2)

where ν is the observed frequency (assumed to be at the fundamental plasma fre-
quency), λ the local density scale height, h the altitude, vCE the velocity of the chro-
mospheric evaporation front, and θ the propagation angle with respect to the vertical.
Typical physical parameters of the chromospheric evaporating plasma are listed in Ta-
ble 16.2 (from Antonucci et al. 1984b). Based on these electron densities we calculate
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Table 16.2: Typical parameters of flare plasma during chromospheric evaporation (Antonucci
et al. 1984b).

Time phase Velocity Temperature Density Plasma frequency
vCE Te ne νp

(km s−1) (MK) (1011 cm−3) (GHz)
Flare start 0.56−0.96 2.1−2.8
Flare end 2.0−3.5 4.0−5.3
Average 270±90 16.5±2.4 0.8−1.5 2.5−3.5

that the plasma frequency of the upflowing plasma varies in the range of νp = 2.5−3.5
GHz, and can be as low as 2.1 GHz at the start of the flare. For an upward moving
(θ = 0) evaporation front, a velocity of vCE ≈ 270 km s−1, a scale height range
of λ = 5 − 66 Mm (inferred from decimetric type III bursts; Aschwanden & Benz
1986), and a frequency of ν = 2 GHz, we estimate a drift rate of (∂ν/∂t)CE = −8
to −108 MHz s−1 for the high-frequency cutoff. From this considerations we ex-
pect slowly drifting high-frequency cutoffs at decimetric frequencies for various radio
bursts that are related to plasma emission, preferentially at the start of the impulsive
phase of flares. An example of a radio observation is shown in Fig. 16.15, which dis-
plays a sequence of decimetric pulsations or fast-drift bursts that have a slowly drifting
high-frequency cutoff which moves from 2000 MHz at the beginning of the impulsive
flare phase towards 1200 MHz at the end. This corresponds to a density change from
ne = 5.0 × 1010 cm−3 to 1.8 × 1010 cm−3 in the upward moving evaporation front,
in the case of fundamental plasma emission. A detailed study on the plasma cutoff
frequency and related free-free opacity in the context of a specific density model for a
chromospheric evaporation model is given in Aschwanden & Benz (1995). Alternative
studies on the influence of chromospheric evaporation on radio bursts can be found in
Karlický et al. (2001, 2002a,b) or Karlický & Farnik (2003).

16.4 Postflare Loop Cooling

16.4.1 Cooling Delays of Flux Peaks

The temporal evolution of a flare can be subdivided into a heating and a cooling phase,
separated by the temperature peak time tp. In the heating phase (t < tp), the heating
rate exceeds the absorption rate due to thermal conduction and radiative loss, and thus,
the temperature of the heated (evaporating) plasma rises. During the cooling phase
(t > tp), the heating rate drops below the sum of the conduction and radiative loss
rate, and consequently, the flare plasma temperature drops. A consequence of this
evolution is that the flux time profiles measured in different temperature filters exhibit
a peak delay that progressively increases with decreasing temperature of the filters.
This progressive cooling delay can be tracked in different wavelengths, from hard X-
rays, soft X-rays, to EUV. An example is shown for the 2000-Jul-14 flare in Fig. 16.16
(top), which contains the co-registered time profiles from Yohkoh/HXT, Yohkoh/SXT,
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Figure 16.16: Top: Co-registered light curves of the Bastille-Day flare 2000-Jul-14, 10:10
UT, flare, from Yohkoh/HXT, Yohkoh/SXT, GOES, and TRACE, normalized to unity. Bottom:
enlarged portion of the flare peak times, fitted by parabolic curves to determine the mean peak
times for each wavelength. Only data points in the top 20% of the peak fluxes are considered
for the parabolic fits. The relative time delays of the peaks are listed in Table 16.3. Note the
systematic delay with decreasing temperature (Aschwanden & Alexander 2001).

GOES, and TRACE, normalized to unity. All light curves were integrated over the
entire field-of-view of each instrument, which generally encompass most of the flaring
region.

The co-registered time profiles show that emission in all wavelengths peak dur-
ing 10:20−10:28 UT (Fig. 16.16, top). The time profiles in hard X-rays, soft X-rays,
and EUV are all similar, except for an increasingly longer decay towards longer wave-
lengths or lower temperatures. To evaluate the centroid peak time of each light curve,
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Table 16.3: Peak times of total flux in different instruments and wavelengths, and time delays
relative to the hard X-ray HXT/Lo peak for the 2000-Jul-14 flare (Aschwanden & Alexander
2001).

Instrument Peak time Time delay Peak Response
Wavelength ti (MK) ∆ti temperature

Ti (MK)
HXT Lo 14−23 keV 10:20:18 UT 0 s 28.7
GOES 0.5−4 Å 10:22:57 UT 159 s 20.1
GOES 1.0−8 Å 10:24:24 UT 246 s 16.2
SXT Be 10:24:42 UT 264 s 14.4
SXT Al12 10:25:50 UT 332 s 11.2
TRACE 195 Å 10:27:18 UT 420 s 1.5
TRACE 171 Å 10:27:33 UT 435 s 1.0

a parabolic curve is fitted to the peak at each wavelength (Fig. 16.16, bottom), using
the data points in the top 20% near the peak flux. One finds that there is a well-defined
progression of peak times between 10:20 and 10:28 UT, with the higher temperatures
peaking first, starting with thermal hard X-rays, followed by soft X-rays and EUV, in
order of decreasing temperature (see Table 16.3). So the flare peaks in different wave-
lengths are dispersed over about 7 minutes, with an increasing time delay for filters
with lower temperatures, as expected for a cooling flare plasma.

16.4.2 Differential Emission Measure Evolution

If we assume that all loops are heated approximately to the same peak temperature and
cool down with a similar time evolution, we can determine the cooling function T (t) of
a single loop just from the statistical average of all simultaneously brightening loops,
according to the superposition principle. In essence, if we add up the flux profiles
Fn(T [t − tn]) of many loops (indexed with subscript n) with arbitrary relative phases
of their maximum heating time tn, then the superposition ΣFn(T [t − tn]) will exhibit
(in first order) the same temperature-dependent time delays ∆t(T ) as a single loop.
The flux time profiles shown in Fig. 16.16 (top) consist of such a superposition of a
multitude of flare loops.

In the next step we determine the temperatures Ti of the peak response of each
filter i. The instrumental response functions Ri(T ) are shown in Fig. 16.17 (middle).
Then we model a differential emission measure distribution dEM(T ) /dT (Fig. 16.17,
top) that we convolve with the instrumental response functions Ri(T ) to obtain the
contribution functions dFi(T )/dT (Fig. 16.17 bottom) for each instrument i, and then
the instrument fluxes Fi by integrating over the temperature T ,

Fi =
∫

dFi(T )
dT

dT =
∫

Ri(T ) ⊗ dEM(T )
dT

dT . (16.4.1)

where the response function is defined by Ri(T ) = dFi(T )/dEM(T ). Thus, the
average emission measure distribution dEM(T )/dT (Fig. 16.17, top or Fig. 16.18, top
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Figure 16.17: Top: best-fit model of differential emission measure distribution during the
Bastille-Day flare (2000-Jul-14), constrained by the fluxes observed with TRACE, GOES, and
YOHKOH. Middle: instrumental response functions, normalized to unity in the temperature
range of T = 0.1−50 MK. Bottom: temperature contribution functions of the fluxes dFi(T )/dT

detected by each instrument filter, normalized to unity. The absolute flux values and peak tem-
peratures are labeled for each instrument filter (Aschwanden & Alexander 2001).

right) is constrained by the instrument fluxes Fi, as indicated in Fig. 16.17 (bottom).
The peak response temperature Ti of the contribution functions are also indicated in
Fig. 16.17 (bottom) and are listed in Table 16.3. From the observations we measure a
cooling delay ∆ti(Ti) (Table 16.3). Inverting this cooling delay, we obtain a cooling
function Ti(∆ti) in Fig. 16.18 (top left). Since this cooling function is monotonic, we
can also substitute the cooling function Ti(∆t) into the differential emission measure
distribution dEM(Ti)/dT to obtain the evolution function of the differential emission
measure, dEM(Ti)/dT = dEM(Ti[∆ti])/dT = dEM(∆ti)/dT , which is shown
in Fig. 16.18 (bottom left). Using the standard definition of the volumetric emission
measure, EMV = n2

edV , we can then also infer the evolution of the mean electron
density in the flare volume, ne(t), shown in Fig. 16.18 (bottom right).
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Figure 16.18: Evolution of the temperature T (t), the differential emission measure EM(t),
and electron density ne(t) of an average flare loop during the peak of the Bastille-Day flare on
2000-Jul-14, 10:10 UT. Theoretical models of the cooling function T (t) include conductive cool-
ing models: Antiochos & Sturrock 1978, dotted line; Eq. (16.4.6); Culhane et al. 1994, dashed
line; Eq. (16.4.3); and the radiative cooling model, solid curves; Eqs. (16.4.8) and (16.4.13),
fitting the observed peak time delays ti(T ) (diamonds) (Aschwanden & Alexander 2001).

16.4.3 Conductive Cooling

Let us understand the physical nature of this observed cooling function T (t). Because
the temperature T1 and temperature gradients ∂T (t = t1)/∂s of a loop heated at time
t = t1 are initially highest, it is expected that conductive cooling dominates initially.
Neglecting all other terms in the hydrodynamic energy equation, the change in internal
energy de(t)/dt) is then mainly balanced by the thermal conduction loss rate [using
Eqs. (3.6.3), (4.1.13), and (4.1.23)],

mn
de(t)
dt

=
d

dt
[3ne(t)kBT (t)] = − d

ds

(
κT 5/2 dT (t)

ds

)
≈ −2

7
κ

T (t)7/2

L2
, (16.4.2)

with κ the Spitzer thermal conductivity and L the loop half length. This differential
equation (Eq. 16.4.2) can be directly integrated, if we apply the mean-value theorem
to the time dependence of the density ne(t), by replacing it by the mean value < ne >
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outside of the integral. The resulting temperature evolution is then

T (t) = T1

(
1 +

(t − t1)
τcond

)−2/5

, (16.4.3)

with a “conduction time scale” τcond defined by

τcond =
21
5

< ne > kBL2

κT
5/2
1

. (16.4.4)

This solution was used in Culhane et al. (1994) to fit the cooling of a flare plasma
from T1 = 22 MK down to 12 MK. Antiochos & Sturrock (1978) derived a more
general cooling function by including the flow velocities v in the hydrodynamic energy
equation (using Eq. 4.1.23)

−5
2

p

ne

(
∂ne

∂t
+ v

dne

ds

)
=

d

ds
(κ

dT

ds
) . (16.4.5)

Solving this hydrodynamic equation they find a slightly different solution for the cool-
ing curve:

T (t) = T1

(
1 +

(t − t1)
τcond

)−2/7

. (16.4.6)

We fit both solutions from Culhane et al. (1994) and Antiochos (1980) to our measured
cooling curve T (t), in the initial time interval at the highest temperature (Fig. 16.18,
top left), but do not find agreement for the later time intervals (when the temperature
drops below T ≈ 25 MK), and thus conclude that the later cooling phase of this flare
is not dominated by conductive cooling.

16.4.4 Radiative Cooling

Alternatively, we consider dominant radiative cooling. Equating the internal energy
loss de(t)/dt to the radiative cooling rate,

d

dt
[3ne(t)kBT (t)] = −ne(t)2Λ(T [t]) ≈ −ne(t)2Λ0T (t)−2/3 , (16.4.7)

according to the piece-wise powerlaw approximation (Fig. 2.14) of the radiative loss
function Λ(T ) by Rosner et al. (1978a), and applying again the mean-value theorem
for the time-dependence of the density ne(t), we can integrate Eq. (16.4.7) analytically
and find the solution

T (t) = T1

[
1 − (t − t1)

τrad

]3/5

t1 < t < τrad , (16.4.8)

with a “radiative cooling time” τrad defined by

τrad =
9kBT

5/3
1

5 < ne > Λ0
. (16.4.9)
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We fit this radiative cooling function to the data in Fig. 16.18 and find a surprisingly
good fit, except for the first data point. The best-fit parameters are T1 = 27 MK and
τrad = 420 s, yielding a mean density of

< ne >rad=
9kBT

5/3
1

5Λ0τrad
, (16.4.10)

with a value of < ne >= 7.9×1011 cm−3. Therefore, we conclude that the later phase
of this flare is dominated by radiative cooling.

For an analytical model we can synthesize the conductive cooling phase (Tcond(t),
Eq. 16.4.6) in the initial phase of loop heating with the dominant radiative cooling
(Trad(t), Eq. 16.4.8) in the later phase. We join the two analytical solutions smoothly
together at time t2, where we require a steady function, Tcond(t = t2) = Trad(t = t2)
and a smooth derivative, dTcond(t = t2)/dt = dTrad(t = t2)/dt. These two boundary
conditions yield with Eqs. (16.4.6) and (16.4.8) the transition time t2,

(t2 − t1) =
10τrad − 21τ ′

cond

31
, (16.4.11)

and initial temperature T2 of the conductive phase,

T2 = T1
(1 − t2/τrad)3/5

(1 + t2/τ ′
cond)−2/7

. (16.4.12)

The synthesized cooling model T (t) reads then (for a reference time t1),

T (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T2

(
1 + (t−t1)

τ ′
cond

)−2/7

for t1 < t < t2,

T1

(
1 − (t−t1)

τrad

)3/5

for t2 < t < τrad.

(16.4.13)

We find an initial temperature of T2 = 28.4 MK (at time t1) and a transition time of
t2 − t1 = 71 s, with a total cooling time of τrad = 420 s (i.e., 7 minutes).

For comparison, flare plasma cooling was modeled by Culhane et al. (1994) from
Yohkoh/HXT and BCS data, and the data were found to be consistent with conductive
cooling in the temperature range from 23 MK down to 11 MK, over a time period of
180 s. Because the electron densities are comparable in the two flares within a factor of
<∼ 2, the two obtained cooling functions are consistent in the first phase with dominant

conductive cooling, while the second phase with dominant radiative cooling could not
be reconstructed in the study by Culhane et al. (1994) due to the temperature restriction
of BCS. Our case contradicts theoretical models that assume that conductive cooling
mostly dominates over radiative cooling (Antiochos & Sturrock 1978), but strongly
supports models with dominant radiative cooling (e.g., Antiochos 1980), and models
with initial conductive cooling followed by radiative cooling (e.g., Cargill et al. 1995).
Our observationally obtained plasma cooling function T (t) has good similarity with
theoretically obtained cooling functions, which typically reach a maximum of T ≈ 30
MK within 200 s, and then cool down to T = 1 MK in the subsequent next 800 s
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(e.g., Fisher & Hawley 1990). A new technique to quantify the flare heating and cool-
ing function has been explored by modeling the time evolution of the EUV brightness
(e.g., with 171 Å TRACE data) in particular locations of the flare loop footpoint rib-
bons (Antiochos et al. 2000b). Cooling times have been measured from T = 107 K
in soft X-rays all the way to T = 104 K in Hα (Kamio et al. 2003). The cooling of
postflare loops is now more realistically modeled with composites that contain super-
positions of hundreds of individual flare loops (Reeves & Warren 2002). Moreover, the
process of cooling in postflare loops is now perceived as part of a dynamic process,
where localized cooling of coronal plasma by the thermal instability triggers magnetic
reconnection through the enhanced instability, rather than being a mere passive cooling
process (Kliem et al. 2002).

16.5 Summary

The flare plasma dynamics and associated thermal evolution of the flare plasma
consists of a number of sequential processes: plasma heating in coronal recon-
nection sites (§ 16.1), chromospheric flare plasma heating (§ 16.2), chromospheric
evaporation in the form of upflowing heated plasma (§ 16.3), and cooling of post-
flare loops (§ 16.4). The initial heating of the coronal plasma requires anomalous
resistivity, because Joule heating with classical resistivity is unable to explain the
observed densities and temperatures in flare plasmas (§ 16.1.1 and 16.1.2). Other
forms of coronal flare plasma heating, such as by slow shocks, electron beams, pro-
ton beams, or inductive currents are difficult to constrain with currently available
observables. The second stage of chromospheric heating is more thoroughly ex-
plored, based on the theory of the thick-target model, with numeric hydrodynamic
simulations, and with particle-in-cell simulations (§ 16.2.1 and 16.2.3). Impor-
tant diagnostics on chromospheric heating are also available from Hα (§ 16.2.3),
white light (§ 16.2.4), and UV emission (§ 16.2.5), but quantitative modeling is
very sparsely available. The third stage of chromospheric evaporation has been
extensively explored with hydrodynamic simulations (§ 16.3.2), in particular to
explain the observed Doppler shifts in soft X-ray lines (§ 16.3.2), while application
of spatial models to imaging data is quite sparse (§ 16.3.3). Also certain types of
slow-drifting radio bursts seem to contain information on the motion of chromo-
spheric evaporation fronts (§ 16.3.4). The forth stage of postflare loop cooling is
now understood to be dominated by thermal conduction initially, and by radiative
cooling later on (§ 16.4). However, spatio-temporal temperature modeling of flare
plasmas is still in its infancy.



Chapter 17

Coronal Mass Ejections (CMEs)

Every main sequence star is losing mass, caused by dynamic phenomena in its atmo-
sphere that accelerate plasma or particles beyond the escape speed. Inspecting the Sun,
our nearest star, we observe two forms of mass loss: the steady solar wind outflow
and the sporadic ejection of large plasma structures, termed coronal mass ejections
(CMEs). The solar wind outflow amounts to ≈ 2 × 10−10 (g cm−2 s−1) in coro-
nal holes, and to <∼ 4 × 10−11 (g cm−2 s−1) in active regions. The phenomenon of
a CME occurs with a frequency of few events per day, carrying a mass in the range
of mCME ≈ 1014 − 1016 g, which corresponds to an average mass loss rate of
mCME/(∆t · 4πR2

�) ≈ 2 × 10−14 − 2 × 10−12 (g cm−2 s−1), which is <∼ 1% of
the solar wind mass loss in coronal holes, or <∼ 10% of the solar wind mass in active
regions. The transverse size of CMEs can cover from a fraction up to more than a solar
radius, and the ejection speed is in the range of vCME ≈ 102 − 2 × 103 (km s−1).
Ambiguities from line-of-sight projection effects make it difficult to infer the geomet-
ric shape of CMEs. Possible interpretations include fluxropes, semi-shells, or bubbles.
There is a general consensus that a CME is associated with a release of magnetic en-
ergy in the solar corona, but its relation to the flare phenomenon is controversial. Even
big flares (at least GOES M-class) have no associated CMEs in 40% of the cases (An-
drews 2003). A long-standing debate focused on the question of whether a CME is a
by-product of the flare process or vice versa. This question has been settled in the view
that both CMEs and flares are quite distinctly different plasma processes, but related
to each other by a common magnetic instability that is controlled on a larger global
scale. A CME is a dynamically evolving plasma structure, propagating outward from
the Sun into interplanetary space, carrying a frozen-in magnetic flux and expanding in
size. If a CME structure travels from a sub-solar point radially towards the Earth, it
is called a halo-CME or an Earth-directed event. CME-accelerated energetic particles
reach the Earth most likely when a CME is launched in the western solar hemisphere,
since they propagate along the curved Parker spiral interplanetary magnetic field. Re-
lated geomagnetic storms in the Earth’s magnetosphere can cause disruptions of global
communication and navigation networks, or failures of satellites and commercial power
systems, and are thus of practical importance.

Reviews on CMEs can be found in MacQueen (1980), Howard et al. (1985), Kahler
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(1987, 1992), Low (1994, 1996, 2001a), Hundhausen (1999), Forbes (2000c), Klim-
chuk (2001), Cargill (2001), or in the monographs and proceedings of Crooker et
al. (1997), Low (1999a), and Daglis (2001).

17.1 Theoretical Concepts of CMEs

The physical concept of various theoretical CME models can perhaps be best under-
stood in terms of mechanical analogues, as shown in Fig. 17.1. We summarize the es-
sential concepts of five major CME models, following the theoretical review by Klim-
chuk (2001), see also Low (1999b, 2001a,b).

17.1.1 Thermal Blast Model

Early models proposed that the driving force of a CME is caused by a greatly enhanced
thermal pressure, produced by a flare, which cannot be contained by the magnetic field
and thus pushes the CME outward into the heliosphere (Dryer 1982; Wu 1982). An
analogue to the thermal blast model is the overpressure generated by a bomb explosion
(Fig. 17.1, top panel). So, the flare was initially thought to be the primary trigger of a
CME. In the meantime, however, many CMEs have been recorded without a preceding
flare, or the timing was found such that the CME launch occurred first, and flare-related
emission later (e.g., Harrison 1986). Thus, today we think that the thermal blast model
cannot be correct in many CME events (Gosling 1993), although the relative timing
is sometimes very close (e.g., Dryer 1996; Délannée et al. 2000; Zhang et al. 2001b).
A recent MHD simulation that employed hot plasma injection as a driver mechanism
of a fluxrope eruption found that this model could not reproduce the interplanetary
magnetic cloud data over the range of 0.4 − 5 AU (Krall et al. 2000).

17.1.2 Dynamo Model

The class of dynamo-driven CME models implies a rapid generation of magnetic flux
by real-time stressing of the magnetic field. A mechanical analogue is the stressing
of a spring by an external force (Fig. 17.1, second panel). In the solar application,
the driver of magnetic stressing is accomplished by an external force (e.g., by rapid
displacements of the footpoints of a coronal magnetic field system). A theoretical study
demonstrated that shearing of a coronal loop arcade always leads to an inflation of the
entire magnetic field (Klimchuk 1990), and thus a sufficiently fast driver is expected to
produce a CME-like expulsion. In recent simulations (Chen 1989, 1997a, 2000; Krall
et al. 2000) such a driver mechanism is called flux injection, which corresponds to
one of the three scenarios: (1) pre-existing coronal field lines become twisted, (2) new
ring-shaped field lines rise upward in the corona while becoming detached from the
photosphere, or (3) new arch-shaped field lines emerge into the corona while staying
anchored at their photospheric footpoints. The problem with the first scenario is that
the required footpoint motion has to be at least two orders of magnitude faster than
the observed one (e.g., Krall et al. 2000). Also the second scenario is unlikely because
the amount of entrained mass has never been observed and no obvious forces exist
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Figure 17.1: Physical (mechanical) analogues of five different coronal mass ejection (CME)
models: (a) thermal blast model, (b) dynamo model, (c) mass loading model, (d) tether cutting
model, and (e) tether straining model (Klimchuk 2001).
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to lift the mass. The third possibility with emerging flux is more likely, but there
are issues whether the required increase of vertical flux through the photosphere is
consistent with observations. Blackman & Brandenburg (2003) suggest that the launch
of CMEs balances the conservation of magnetic helicity during the solar cycle, by
simultaneously liberating small-scale twist and large-scale writhe of opposite sign.

17.1.3 Mass Loading Model

The next three CME models are also called storage and release models, which entail a
slow build-up of magnetic stress before eruption begins. One of them is loading with
mass (see the analogue of a spring that is compressed by a heavy weight and explo-
sively uncoils when the weight is shifted to one side, Fig. 17.1, middle panel). The
mass loading process during the pre-eruption phase of a CME can be manifested in
the form of a growing quiescent or eruptive filament (§ 6.4), for instance. Theoretical
studies compare the total magnetic energy in pre-eruption and posteruption equilibrium
configurations in order to demonstrate the plausible transition from a higher to a lower
energy state (Low & Smith 1993; Chou & Charbonneau 1996; Wolfson & Dlamini
1997; Wolfson & Saran 1998; Guo & Wu 1998; Low 1999a). There are two forms
of mass loading: (1) by prominences, which are extremely dense, contained in a com-
pact volume, and of chromospheric temperature; and (2) by a relatively higher elec-
tron density distributed over a large volume, which is unstable to the Rayleigh−Taylor
or Kruskal−Schwarzschild instability, if it overlays a volume of lower density. The
first concept that prominences play a fundamental role in the launch of CMEs (Low
1996, 1999a) is supported by the observations with coincident starts of prominences
and CMEs. A crucial criterion is the mass of the prominence (Low et al. 2003, Zhang
& Low 2004). The second concept of unstable mass loading over a larger volume
is supported by observations of CMEs from helmet streamers that contain lower den-
sity cavities (Hundhausen 1988, 1999), but there are also numerous counter-examples
without any signs of internal low-density regions.

17.1.4 Tether Release Model

As we discussed in § 6.2.2, magnetically dominated configurations like coronal loops
generally involve a balance between the upward-directed force of magnetic pressure,
−∇(p + B2/8π), and the downward-directed force of magnetic tension, (1/4π)(B ·
∇)B. The field lines that provide the tension are sometimes called tethers, analogous
to the ground-anchored ropes that hold down a buoyant balloon. In our mechanical
analogy, the tether ropes hold down a compressed spring (Fig. 17.1, forth panel). Once
the tethers are released one after the other, the tension on the remaining thethers in-
creases, until the strain becomes eventually so large that the remaining thethers start to
break and the spring uncoils in a catastrophic explosion. This process has been dubbed
tether release, while the earlier term tether cutting refers more to the explosive end
phase. A 2D model (with translational symmetry) has been developed which demon-
strates how a tether release may work in the solar corona (Forbes & Isenberg 1991;
Isenberg et al. 1993; Lin et al. 1998a; Van Tend & Kuperus 1978; Van Ballegooi-
jen & Martens 1989). We described the loss-of-equilibrium model of Forbes & Priest
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(1995) in § 10.5.3, which is a transition through a sequence of equilibria, driven by
converging footpoint motion, until a loss of equilibrium occurs and the X-point jumps
discontinuously upward into a new equilibrium position. In a non-ideal MHD situa-
tion, where enhanced resistivity is present in the X-point, an eruption with a launch
of a CME would result, after break-off of the “tethers” during the loss-of-equilibrium
phase (Forbes 1991; Lin & Forbes 2000; Mikić & Linker 1999; Amari et al. 2000).

17.1.5 Tether Straining Model

The tether straining model is similar to the tether release model, except that the strain
on the tethers gradually increases by some external force until they brake. In the tether
release model, the force on the tethers is constant, but is distributed to fewer and fewer
tethers with time until they brake. One physical model of the tether-straining class
is the magnetic breakout model of Antiochos (1998) and Antiochos et al. (1999b),
described in § 10.5.5 (Fig. 10.26). The magnetic breakout model is a quadrupolar
structure with two adjacent arcades, having overarching magnetic field lines over the
whole system that represent the tethers. One loop arcade is continuously sheared and
builds up magnetic stress until magnetic reconnection starts in the overlying X-point
between the two loop arcades. The magnetic reconnection process then opens up the
magnetic field in an upward direction (i.e., the “break-up” phase), and allows the CME
to escape into interplanetary space. There are variants of this magnetic breakout model.
A similar breakout effect can also be achieved in a bipolar magnetic field with the mass
loading model (Low & Zhang 2002; Zhang et al. 2002). While the original model of
Antiochos et al. (1999b) is 2D and symmetric, the version of Aulanier et al. (2000a)
involves 3D nullpoints with a separatrix dome beneath the 3D nullpoint and a spine
field line above (Plate 13), which can be an open field line (Fig. 10.26) and then marks
the escape route of the CME. Another thether-straining model is the equilibrium-loss
model of Forbes & Priest (1995), described in § 10.5.3. The straining driver is given by
the converging footpoint motion and magnetic reconnection is initialized underneath
the erupting structure, while it occurs above the erupting structure in the magnetic
breakout model. Other examples of tether-straining models are the sheared arcade
models of Mikić & Linker (1994b), Linker & Mikić (1995), Choe & Lee (1996), and
Amari et al. (1996), and the fluxrope models of Wu et al. (1995; 2000).

17.2 Numerical MHD Simulations of CMEs

There are two kinds of theoretical simulations on CMEs: (1) analytical time-dependent
MHD models, which provide insights into the physical mechanisms, but cannot repro-
duce the detailed morphology of the observations; and (2) numerical time-dependent
MHD simulations, which should be able to reproduce the observations if sufficiently
accurate initial conditions and boundary conditions are known. Reviews on the theo-
retical modeling of CMEs can be found in Low (2001b), and a review on numerical
MHD modeling of CMEs in Wu et al. (2001).
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17.2.1 Analytical Models of CMEs

The general framework of the ideal and resistive MHD equations is given in § 6.1.3 and
§ 6.1.5. The simplest description of a CME in fully developed motion was modeled an-
alytically with the one-fluid MHD equations including gravity, but avoiding the com-
plicated energy equation, but instead using the polytropic assumption with an index of
γ < 5/3. The MHD equations for a polytropic index of γ = 4/3 yield a family of self-
similar solutions in 2D and 3D space (Gibson & Low 1998; Low 2001b). In this model,
the mass expulsion in the gravitational potential well yields an almost constant speed
or mildly accelerating CME, after the hydromagnetic system becomes gravitationally
unstable (Low et al. 1982; Low 1984b). Kinematic models with raising filaments that
increase the magnetic pressure under a helmet streamer and drive the outward motion
have been presented by Pneuman (1980) and Van Tend (1979). Photospheric flows as
drivers of CMEs have been considered by Biskamp & Welter (1989). The energetics
and causes of CMEs in terms of fluxrope geometries have been studied by Forbes &
Isenberg (1991) and Chen (1997a). Analytical solutions of the time-dependent MHD
equations that describe the expulsion of a CME have been calculated by Gibson &
Low (1998). Low (1984) pointed out that the launch of a CME is a two-step process,
consisting of (1) an initial phase where the closed coronal magnetic field is opened
up to eject the trapped (prominence) material, which can be an ideal MHD process,
and (2) a second phase involving magnetic reconnection of the open field lines beneath
the erupted structure, which is a dissipative or resistive MHD process. A further re-
finement along the same basic evolution is the magnetic breakout model of Antiochos
(1998) and Antiochos et al. (1999b), although it has not been modeled analytically.

17.2.2 Numerical MHD Simulations of CMEs

A more general approach is to solve the MHD equations with a numerical code, starting
from an initial condition and propagating in time, with a least two dimensions in space.
There are three generations of numerical MHD simulations of CMEs, based on (1)
thermal blast models, (2) helmet streamer configurations, and (3) magnetic fluxrope
configurations.

The first generation of numerical MHD models of CMEs assumed the initial corona
to be static and potential (i.e., current free) or force-free (i.e., current-aligned) fields,
where a pressure pulse was introduced to mimic a flare energy release (Nakagawa et
al. 1978, 1981; Dryer et al. 1979; Steinolfson et al. 1978; Wu et al. 1978, 1982). The
deficiency of this model is that neither the initial state nor the driver (thermal blast
model, § 17.1.1) is realistic and consequently the model cannot reproduce observed
morphological features of CMEs (Dryer 1994; Wu et al. 2001).

The second generation of numerical MHD models of CMEs (Steinolfson & Hund-
hausen 1988; Steinolfson 1992; Mikić et al. 1988; Guo et al. 1992; Wang et al. 1995b;
Wu et al. 2000; see example in Fig. 17.2) assume a coronal helmet streamer to be the
magnetic configuration of the initial state, where a CME originates from the disruption
of global-scale streamers (Illing & Hundhausen 1986; Dere et al. 1997b; Subramanian
et al. 1999; Plunkett et al. 2000). This generation of MHD simulations succeded to
reproduce a loop-like CME (Steinolfson & Hundhausen 1988) and to reproduce the
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Figure 17.2: Numerical MHD simulation of a CME with the helmet streamer model is shown
in the right panels. A comparison with the observed running difference images of an outward
plasma blob, observed with SoHO/LASCO on 1996-Apr-30, 04:51 UT and 09:37 UT, is shown
in the left panels. Note that the centroid of the plasma blob (marked with a cross in the left
panels) coincides with the centroid in the MHD simulations (Wu et al. 2000).

observed three-part structure: (1) a bright front or leading edge (the pre-eruption hel-
met structure), surrounding (2) a dark cavity, which contains (3) a bright core, identified
as a helical prominence (Hundhausen 1988, 1999; Guo & Wu 1998). MHD simula-
tions of prominences and CMEs demonstrated that the magnetic buoyancy force drives
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Figure 17.3: Numerical MHD simulation of the evolution of a CME, driven by turbulent diffu-
sion. The four panels correspond to the times (a) t=850, (b) t=950, (c) t=1050, and (d) t=1150,
where viscous relaxation is started at t=850, triggering a global disruption involving opening,
reconnection through the overlying arcade and below, and the formation of a current sheet, asso-
ciated with a high dissipation of magnetic energy and a strong increase of kinetic energy (Amari
et al. 2003).

the outward motion (Yeh & Wu 1991; Wu & Guo 1997a). Another driver mechanism
that can lead to a CME eruption is emerging flux (Chen & Shibata 2000). A number
of studies used the shearing of magnetic footpoints to increase the energy of a helmet
streamer, which forces a partial opening-up of the coronal magnetic field to launch a
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CME (Linker & Mikić 1995; Mikić & Linker 1994; Mikić et al. 1988). However, there
is a debate whether a magnetic fluxrope is present prior to eruption, which needs to be
included in such helmet streamer models.

A third generation of numerical MHD models of CMEs implements the feature of
magnetic helical fluxropes (Chen 1997b; Chen et al. 2000; Low & Smith 1993; Low
1994; Guo & Wu 1998; Wu & Guo 1997b; Wu et al. 1995, 1997b,c, 1999; Krall et
al. 2000; see example in Fig. 17.3). One model assumes a magnetic fluxrope with
footpoints anchored below the photosphere, where an eruption is driven by increas-
ing the poloidal flux (i.e., magnetic flux injection or dynamo model), which can re-
produce the dynamics of observed morphological features near the Sun and in mag-
netic cloud data in interplanetary space (Chen 1989, 1996, 2000; Krall et al. 2000).
Another model simulates the evolution of the 3D magnetic field in a current sheet
that undergoes magnetic reconnection above a sheared arcade, leading to topological
changes with intertwined open fluxtubes (Birn et al. 2000, 2003), similar to the he-
lical fluxropes observed in CMEs. The kink instability leads then to the eruption of
sigmoidal (twisted) fluxrope (Fan & Gibson 2003, 2004; Török & Kliem 2003; Török
et al. 2004; Kliem et al. 2004). In another model, the combination of photospheric
shearing and opposite-polarity emergence is used to produce erupting twisted mag-
netic fluxropes (Amari et al. 2000; 2003a,b; see Fig. 17.3), similar to the S-shaped
(sigmoid) structures observed in soft X-rays. Some MHD simulations focus on the
acceleration mechanism of erupting fluxropes, which can be controlled by enhanced
magnetic reconnection rates (Cheng et al. 2003).

17.3 Pre-CME Conditions

The cause of a CME is the key for their physical understanding and should be detectable
in pre-CME conditions. Once we have a deeper understanding which pre-CME condi-
tions lead to the magnetic instability that drives a CME eruption, we obtain not only
a diagnostic but also a predictive tool for the occurrence and evolution of CMEs. Fur-
thermore we can then justify the assumed drivers that have been used in the numerical
MHD simulations described in § 17.2. Thus we concentrate in this section on observa-
tional signatures of possible CME drivers during pre-CME conditions.

17.3.1 Photospheric Shear Motion

CMEs originate in active regions, which generally exhibit a roughly bipolar field. In
order to provide conditions for eruptive phenomena such as flares and CMEs, free mag-
netic energy needs to be stored in the form of a stressed and sheared field, which is a
prerequisite for several CME models (e.g., the dynamo model § 17.1.2 or the tether-
straining model § 17.1.5). The stress of the magnetic field can be observationally de-
termined, after removing the 180◦ ambiguity, by calculating the shear angle between
potential field and transverse field vectors from a vector magnetogram (Fig. 17.4),
which contains the information of the full 3D magnetic field vectors at the photospheric
boundary. This method has been applied to flaring and flare-quiet regions but no dis-
criminating differences were found (Leka & Barnes 2003a,b). In a slight variation
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Figure 17.4: GOES soft X-ray light curves (top left) and SoHO/LASCO image (top right) of a
halo CME on 2000-Jun-6, 18:42 UT, originating in AR 9026, at heliographic position 21N/14E.
Vector magnetograms of AR 9026 are shown in the left panels and soft X-ray Yohkoh/SXT
images in the right panels in the middle and bottom rows. The contours of the magnetogram are
at line-of-sight field strengths of 25 G and 500 G and the observed transverse field strength and
direction are marked by dashes (middle left) and arrows (bottom left). The potential transverse
field computed from the observed line-of-sight field is shown by the arrows in the middle left
panel. Note that the magnetic field is highly sheared near the neutral line, with the transverse
field almost parallel to the neutral line. The highly sheared segment of the neutral line is overlaid
on the Yohkoh/SXT image middle right. The spatial scale is indicated with a bar with 50 Mm
length (Falconer et al. 2002).
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Figure 17.5: TRACE 1600 Å images in C IV of the GOES-class X3 flare on 2002-Jul-15, 20:04
UT. The inserts illustrate the geometry of the helical structure, exhibiting 3 − 4 turns. Note that
the helical structure expands, rises, and unwinds during the eruption (Gary & Moore 2004).

of this method, the length lSS of the highly sheared segment of the neutral line was
evaluated and a correlation was found with the electric current IN flowing from one
polarity to the other, which is a measure of the nonpotentiality of the active region (i.e.,
lSS ∝ IN ; Fig. 17.4; Falconer et al. 2001). In a sample of 17 vector magnetograms it
was found that this criterion, applied to segments of the neutral line with strong trans-
verse field (> 150 G), yields a viable proxy for the prediction of the CME productivity
of an active region (Falconer et al. 2002).

Evidence for a highly sheared magnetic configuration was found to lead to a fila-
ment eruption and flare without the presence of a helmet streamer configuration (Cheng
& Pallavicini 1984). Theoretical models explain the eruption of a prominence from a
sheared magnetic arcade configuration by the formation of helical field lines with sub-
sequent flux cancellation above the neutral line (§ 6.4.1, Fig. 6.15; Van Ballegooijen
& Martens 1989; Roumeliotis et al. 1994). The difference of electric conductivities
outside and inside the filaments constitutes a magnetic expulsion force (Litvinenko &
Somov 2001). Also a change in field-aligned currents can destabilize a filament (Nen-
ovski et al. 2001).

17.3.2 Kink Instability of Twisted Structures

Shearing and stressing of magnetic field lines above the neutral line leads to helical
(S-shaped in projection), so-called sigmoid structures. Once the helical twist exceeds
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some critical angle, the structure becomes susceptible to the kink instability, which pro-
duces a disruption of the magnetic field leading to the expulsion of a filament or CME.
The sigmoidal shape is regarded as an observational signature of azimuthal currents in
twisted coronal structures (i.e., loops, arcades, or filaments). The helicity of twisted
loops has been found to have a hemispheric preference: forward (reverse) S shapes
dominate in the southern (northern) hemisphere (Rust & Kumar 1996). The sense of
the sigmoidal shape (forward-S or backward-S) and the handedness of the magnetic
twist (left-handed or right-handed; i.e., positive or negative α in force-free fields, see
Eq. 5.3.6) have been found to be correlated (Pevtsov et al. 1997). We discussed the
magnetic helicity in the context of sigmoidal loops in § 5.5. Recent numerical MHD
simulations of the kink instability applied to twisted loops have been performed (e.g.,
by Fan & Gibson 2003, 2004; Kliem et al. 2004; Török & Kliem 2003, 2004; Török
et al. 2004), finding a critical twist number of 2.5π <∼ Φtwist

<∼ 3.5π above which no
equilibrium exists, consistent with the analytical (force-free) solution Φtwist

<∼ 2.49π
of Gold & Hoyle (1960). They also investigated which loop parameters (e.g., twist
angle, resistivity, magnetic field gradient with height) lead to quasi-static (stable) non-
eruptive expansion, rather than to an eruption. Some twisted filaments have been ob-
served to expand, but failed to erupt (e.g., observed with TRACE on 2002-May-27, 18
UT; Rust 2003; Török & Kliem 2004).

There is now mounting observational evidence that the kink instability indeed plays
a prime role for many eruptive filaments, flares, and CMEs (e.g., Canfield et al. 1999;
Rust 2001b; Yurchyshyn 2002). Canfield et al. (1999) established statistically that
active regions are significantly more likely to be eruptive if they are either sigmoidal
or large. A most conspicuous case of a helical fluxtube with multiple turns associated
with the double (X3-class) flare event and double CME on 2002-Jul-15 in AR 10030
(Fig. 17.5) has been described by Gary & Moore (2004) and Lui et al. (2003). The
erupting helical structure exhibited up to 3 − 4 turns (Fig. 17.5; Gary & Moore 2004),
and thus is clearly far in the unstable regime of the kink instability. The eruption of
the multi-turn helix, however, occurred after the peak of the gyrosynchrotron emission,
which is interpreted to be a postreconnection erupting feature below the reconnection
region, as one would expect in the magnetic breakout model.

17.4 Geometry of CMEs

The geometry of a CME and its dynamic change as a function of time provide the
primary input for parameterizing a physical 3D-model. Geometric concepts of CMEs
range from semi-spherical shells to helical fluxropes and the observations are often suf-
ficiently ambiguous so that these two opposite concepts cannot easily be discriminated
in the data. While CMEs propagating close to the plane of the sky have a relatively sim-
ple projected shape, other CMEs propagating in a direction towards the observer have
much more complex shapes, the so-called halo CMEs. The true 3D configuration is still
unclear due to the difficulties of the optically thin coronal plasma and the highly dy-
namic nature of CMEs. Coronagraphs measure mainly photospheric photons scattered
by free electrons in the coronal plasma (Thomson scattering), yielding the integrated
density along the line-of-sight, providing us only with a white-light image against the



17.4. GEOMETRY OF CMES 715

Figure 17.6: LASCO C3 image of a CME on 1998-Mar-29 (top left), a CME of 1998-Apr-20
(top right), a halo CME of 1998-May-6 (middle), an erupting prominence of 1998-Jun-02, 13:31
UT (bottom left), and a large CME of 1997-Nov-06, 12:36 UT (bottom right).
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Figure 17.7: Synthetic coronagraph image (a) based on the 3D geometry of a helical fluxrope
model (b). Note that the bright leading edge is produced by projection effects (Chen et al. 2000).

plane of the sky which is not trivial to deconvolve. Geometric inversions are only
possible by using strong a priori constraints (e.g., spherical symmetry), while forward-
modeling requires very flexible dynamic geometric models. A promising new method
to derive the 3D geometry of CMEs has just been developed (at the time when this
book went to print) by inversion of the polarization from white-ligth images (Moran &
Davila 2004).

The first geometric characterizations of CMEs with large statistics were obtained
from SMM Coronagraph/Polarimeter (C/P) observations, which included some 1300
CME events in 1980 and during 1984−1989. There is a large range of angular widths,
with an average of 47◦, launched at an average latitude of 35◦ (Hundhausen 1993).
A typical characteristic of many CMEs is the three-part structure, consisting of (1)
a bright leading edge, (2) a dark void, and (3) a bright core (Illing & Hundhausen
1985). It was suggested that CMEs have a loop-like geometry in a 2D plane, based
on close associations of CMEs with eruptive prominences and disappearing filaments
(Trottet & MacQueen 1980). Alternatively, 3D geometries were suggested, such as
lightbulb bubbles, arcades of loops, or curved and twisted fluxtubes, particularly from
SoHO/LASCO observations (Fig. 17.6) that became available after 1995 (e.g., Crifo et
al. 1983; Schwenn 1986; Webb 1988; MacQueen 1993; Howard et al. 1997; St.Cyr et
al. 2000; Vourlidas et al. 2000; Plunkett et al. 2000; Zhao et al. 2002; Gopalswamy et
al. 2003; Cremades & Bothmer 2004).

Geometric modeling of CMEs is still in its infancy. Based on the concept of mag-
netic fluxropes, which consist of helical field lines wound around a curved cylinder (or
a segment of a torus), the evolution of a CME is conceived as a steady expansion of
this fluxrope into interplanetary space, with the legs connected to the footpoints on the
Sun (Chen 1997a). Simulating the Thomson scattering on such a fluxrope structure,
a synthetic coronagraph image was then produced (Fig. 17.7) which approximately
reproduces the expanding bright leading edge feature of an observed CME (Chen et
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Figure 17.8: LASCO C2 images of the CME of 1997-Apr-30, processed by average-
differencing (top row) and edge-enhancing (bottom row). The leading edge is marked +, the
trailing edge X, the sides *, and the centroid O. Helical lines (marked with arrows) are seen
below the rim that possibly trace the magnetic field (Wood et al. 1999).

al. 2000). Edge-enhancing techniques, however, reveal the detailed fine structure of
CMEs, which appear to be composed of numerous helical strands (Fig. 17.8, Wood et
al. 1999; Fig. 17.9, Dere et al. 1999). Thus, realistic 3D models of CMEs need to dis-
entangle these multiple helical strands, which can be aided by correlation-tracking of
time sequences of edge-enhanced images. The kinematic and morphological properties
of the CME observed on 1997-Apr-30 and 1997-Feb-23 seem to confirm the concept of
erupting fluxrope models (Wood et al. 1999). Comparisons of MHD modeling and ob-
served CME geometries can be found in, for example, Gibson & Low (1998), Andrews
et al. (1999), Wu et al. (2000, 2001), and Tokman & Bellam (2002).
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Figure 17.9: LASCO C2 running-difference images of the CME of 1997-Oct-19. The inner cir-
cle indicates the solar disk. Note the helical structures in the expanding CME (Dere et al. 1999).

17.5 Density and Temperature of CMEs

17.5.1 Density Measurements of CMEs

The density of CMEs of course is very inhomogeneous and varies by orders of mag-
nitude as a function of the distance from the Sun, or as a function of time. Radial
expansion is associated with n(r) ∝ r−2 for a steady constant expansion speed, or,
n(t) ∝ (vt)−2 for a time-dependent homologous expansion. Masses of CMEs lay
in the range of mCME ≈ 1014 − 1016 g. The density is very inhomogeneously dis-
tributed, with the highest density in the compressed plasma at the leading edge, and
a comparable mass in the bright core structure inside the cavity (Low 1996). Knowl-
edge of the density and temperature allows estimation of the thermal pressure pth in
CME structures, and together with estimates of the magnetic field, one obtains the
plasma-β parameter β = pm/pth, which provides an important diagnostic of whether
the morphology of a CME structure is controlled by the magnetic field or by free ra-
dial expansion. Since the radiative loss rate is proportional to the squared density, the
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Figure 17.10: Two subsequent radio brightness images and a difference image recorded with
the Clark Lake Radioheliograph at 73.8 MHz on 1986-Feb-16, before a CME at 19:55 UT,
and during the CME at 20:29 UT. The contours range from 15,000 to 300,000 K. The spatial
resolution is 4.7 and 5.5 arcmin in E−W and N−S direction, respectively. The radio emission
is interpreted as thermal free-free emission from both the quiet Sun corona and from the CME.
Note that the difference image subtracts out the quiet Sun component and exhibits the CME
leading edge (Gopalswamy & Kundu 1992).

knowledge of the density yields also crucial information on the existence of energy dis-
sipation and heating mechanisms in CMEs. CME masses were mostly estimated from
white-light coronagraphs (e.g., Hildner 1977; Poland et al. 1981; Howard et al. 1984).
In the following we report on mass estimates of CMEs from two other wavelengths,
one in radio (Gopalswamy & Kundu 1992) and one in UV (Ciaravella et al. 2001).

While coronagraphs detect photospheric light that is Thomson-scattered by the
CME electrons, radio telescopes can detect thermal bremsstrahlung from CMEs di-
rectly. If the brightness temperature of the quiet Sun background (before the CME) is
much lower than the brightness temperature of the CME, the background density ne
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can be neglected and the CME density nCME is obtained straightforwardly from the
observed brightness temperature TB

TB = 0.2T−1/2
e f−2

∫ ∞

0

(ne + nCME)2ds ≈ 0.2T−1/2
e f−2n2

CMEL (17.5.1)

with L the linear dimension of the CME along the line-of-sight. A radio brightness
image before and during a CME is shown in Fig. 17.10 (left panels), and the difference
image is shown in Fig. 17.10 (right panel). Depending on the line-of-sight depth L,
Gopalswamy & Kundu (1992) estimated a CME mass of mCME = (2.7− 4.2)× 1015

g. With a temperature of T = 1.0 × 106 K and an observed brightness temperature
of TB = 9, 7 × 104 K at f = 73.8 MHz, they estimated a mean electron density of
nCME = 0.5 × 106 cm−3 in the frontal leading edge.

There are three common methods to estimate the density of CMEs from UV spec-
tra: (1) Density-sensitive (and temperature-sensitive) line ratios, (2) emission measure
method of optically thin plasma, and (3) ratio of collisional excitation rate coefficient
Cex(T )neni to the radiative scattering rate (< Iλσλ > ni),

q =
Cex(T )ne

< Iλσλ >
(17.5.2)

where Cex is the excitation rate coefficient, ne the electron density, ni the ion density
which cancels out in the ratio, Iλ the illuminating flux, and σλ the scattering cross
section. Using these methods with SoHO/UVCS data, a temperature in the range of
TCME ≈ 104.5 − 105.5 (Ciaravella et al. 2000) and densities in the range of nCME ≈
(1−3)×107 cm−3 were determined from C III/O VI and N V/O VI ratios at a distance
of R = 1.7R� (Ciaravella et al. 2001).

17.5.2 Temperature Range of CMEs

Most CME observations are made in white light (e.g., with SMM/CP or SoHO/LASCO),
which provides no temperature information. Many CMEs are also seen in EUV, so they
must have substantial mass within the temperature range of TCME ≈ 0.5 − 2.0 MK.
Recent observations with SoHO/UVCS allow us to narrow down the temperature range
(e.g., TCME ≈ 104.5−105.5 from C III, Si III, N V, O VI, and S V line ratios). Coronal
mass loss, however, has also been observed at higher temperatures in soft X-ray wave-
lengths with Yohkoh/SXT, which indicates temperatures of TCME

>∼ 2 MK (Hudson &
Webb 1997; Hudson 1999). Ciaravella et al. (2000) observe CME plasma at the same
time in the intermediate temperature range of TCME ≈ 30, 000 − 300, 000 K with
SoHO/UVCS and with SoHO/EIT 195 Å, which has a peak response around T ≈ 1.5
MK, but argue that the emission seen by EIT 195 Å must result from the sensitivity
to cooler temperatures at T < 0.3 MK, because cooling plasma would not recom-
bine sufficiently fast to form C III or Si III. On the other hand, prominence material
was found to be hot (T >∼ 1.5 MK) based on similar UVCS diagnostic in Ciaravella et
al. (2003) contrary to the assumptions in most CME models, where the core is taken
as cold plasma. Thus, more refined work on the temperature diagnostic of CMEs is
needed.
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Figure 17.11: Height-time h(t) plot (top), velocity v(r) (middle), and acceleration profiles
a(r) (bottom), as a function of distance r/R�, are shown for representants of two different
CME classes: a gradual CME with initially negative acceleration (right), and an impulsive CME
with initially positive acceleration (left) (Sheeley et al. 1999).

17.6 Velocities and Acceleration of CMEs

The height, velocity, and acceleration of a well-defined CME feature, such as the bright
leading edge, are observables that can be measured as a function of time relatively
easy, in particular for limb events. The time phases of acceleration reveal the height
range where accelerating forces operate, and thus might provide crucial insights into
the drivers of CMEs.

Based on the observed characteristics of CME velocity v(t) and acceleration pro-
files a(t) observed with SoHO/LASCO over the distance range of r = 2 − 30 R� it
was proposed that there exist two distinct classes of CMEs (Sheeley et al. 1999): (1)
gradual CMEs, apparently formed when prominences and their cavities rise up from
below coronal streamers, typically attaining slow speeds (v ≈ 400− 600 km s−1) with
clear signs of gradual acceleration (a = 3 − 40 m s−2) at distances R < 30R�; and
(2) impulsive CMEs, often associated with flares and Moreton waves on the visible
disk, with speeds in excess of v >∼ 750− 1000 km s−1, observed to have a constant ve-
locity or decelerating at distances R >∼ 2R� when first seen in coronagraphs (Sheeley
et al. 1999). An example of each class is given in Fig. 17.11: a gradual CME shows
initially positive acceleration (Fig. 17.11, right), while an impulsive CME shows initial
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Figure 17.12: Height-time h(t), velocity v(t), and acceleration a(t) profiles as well as GOES-
10 soft X-ray flux profiles for a CME observed with TRACE, UVCS, and LASCO during the
2002-Apr-21, X1.5 GOES-class flare, shown during the interval of 00:47−03:20 UT. The solid
lines are the best fits using Eqs. 17.6.2−4 (Gallagher et al. 2003).

negative acceleration (Fig. 17.11, left). Sheeley et al. (1999) also found that (Earth-
directed) halo versions of the two classes appear as smooth halos (for gradual CMEs)
or more ragged structures (for impulsive CMEs).

The observations in Fig. 17.11 suggest that the acceleration profile a(t) can be ap-
proximated by either an exponentially increasing or decreasing function, (e.g., Sheeley
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et al. 1999),
a(t) = a0 exp [−(t − t0)/ta] . (17.6.1)

The velocity profile v(t) follows then from integrating the acceleration profile a(t),

v(t) = v0 +
∫ t

t0

a(t) dt , (17.6.2)

and the height-time profile h(t) from double integration of the acceleration profile a(t),

h(t) = h0 + v0(t − t0) +
∫ t

t0

∫ t

t0

a(t) dt dt . (17.6.3)

The acceleration profile of CMEs cannot be observed at low heights (R <∼ 2R�) with
coronagraphs. However, coordinated measurements in EUV can fill in this gap. A
coordinated observation of a CME with TRACE, UVCS, and LASCO revealed both
the initial acceleration as well as the later deceleration phase (Fig. 17.12). So the
acceleration profile shown in Fig. 17.12 could be fitted with a combined function of
exponentially increasing and decreasing acceleration (Gallagher et al. 2003),

a(t) =
[

1
ar exp (t/τr)

+
1

ad exp (t/τd)

]−1

. (17.6.4)

The CME event shown in Fig. 17.12 reaches a final speed of v ≈ 2500 km s−1, which is
among the fastest 1% CME speeds observed with LASCO. The start of the acceleration
at 00:47 UT coincides with the start of hard X-ray emission at energies≥ 25 keV, while
the maximum of acceleration at 01:09 UT coincides with the peak of the ≥ 25 keV hard
X-ray emission, which suggests a close causal connection between the energy release
and CME driving force.

A remarkable observation of a CME event of 1998-Apr-23 05:29 UT has been
reported in soft X-rays (Alexander et al. 2002). A variable acceleration model fitted to
the data yields a peak acceleration of a ≈ 4865 m s−2 within the first 0.4R�, which is
comparable with the largest reported CME accelerations. Also unusual is the detection
in soft X-ray wavelengths, and it is not clear whether the accelerated soft X-ray plasma
represents a fluxrope, shock front, or corresponds to other identifiable parts of a CME
seen in white light.

A quantitative model for the acceleration of CMEs was developed by Chen & Krall
(2003), based on a 3D magnetic fluxrope model (Fig. 17.13, left). The accelerating
force F can be integrated over a toroidal section of the fluxrope from the MHD mo-
mentum equation (Eq. 6.1.17),

F = −∇p − ρg + j × B . (17.6.5)

This model predicts a universal scaling law where maximum acceleration is attained
shortly after the expanding loop passes the height of the minimum curvature radius,

Z∗ =
Sf

2
, (17.6.5)

where Sf is the footpoint separation distance of the magnetic fluxrope. An example of
the application of this model to an observed CME (1997-Feb-23) is shown in Fig. 17.13
(right).
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Figure 17.13: Height-time h(t), velocity v(t), and acceleration a(t) profiles fitted from a
magnetic fluxrope model to LASCO observations of the 1997-Feb-23 CME event. The solid
curve corresponds to the leading edge and the dotted curve to the centroid of the expanding
fluxrope. The vertical line indicates the time when the CME reached 2R� from the Sun center.
The leading edge attains a maximum speed of v = 1000 km s−1. A schematic of the magnetic
fluxrope model is shown on the left-hand side, indicating the footpoint separation distance Sf

and the height Z of the fluxrope centroid (Chen & Krall 2003).

17.7 Energetics of CMEs

A key question is how the required (magnetic) energy storage is achieved and how
it is released to produce a CME. The energetic problem has been pointed out by the
Aly−Sturrock conjecture (Aly 1984; Sturrock 1991), which implies that a closed force-
free magnetic field has less energy than the equivalent fully open field (with an iden-
tical photospheric boundary condition). This conjecture severely constrains the occur-
rence of a CME in a force-free corona if the magnetic field is the primary driver of the
eruption. There are three groups of CME models that satisfy this constraint: (1) the
pre-CME magneto-static corona is not force-free and cross-field currents are present
(Wolfson & Dlamini 1997); (2) the CME involves magnetic flux from several flux sys-
tems so that most of the involved field is not opened, such as in the magnetic breakout
model (Antiochos 1998, Antiochos et al. 1999b); or (3) the CME includes a detached
fluxrope (Low 1996). The magnetic energy of a CME can be estimated to some ex-
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Figure 17.14: LASCO measurements of the evolution of the potential energy (dashed line),
kinetic energy (dash-dotted line), magnetic energy (solid lines), and total energy (solid line with
crosses) of the CME of 1997-Apr-30 (left frame). The evolution of the CME mass (solid line
with diamonds), center-of-mass speed (dashed line with asterisks), and the derived acceleration
(dash-dotted line) are shown in the right frame (Vourlidas et al. 2000).

tent from integrating the extrapolated 3D magnetic field over the volume of the CME,
but these extrapolations are problematic since the force-free extrapolations are given
inputs of the observed photospheric field unlikely to be potential or force-free (Metcalf
et al. 1995).

One approach to obtain a better understanding of the dynamical evolution of phys-
ical parameters in an erupting CME is the study of the energy budget. A recent study
(Vourlidas et al. 2000) indicates that some of the accelerating fluxrope CMEs have
conservation of their total energy (i.e., the sum of magnetic, kinetic, and gravitational
potential energy is constant; see example in Fig. 17.14, left). In this study, white-light
intensities Iobs, velocities vCME , and angular widths of CMEs were measured from
LASCO observations at distances of R = 2.5 − 30 R�. The mass of a CME is esti-
mated from the ratio of the excess observed brightness Iobs (from difference images) to
the brightness Ie(ϑ) of a single electron at angle ϑ from the plane of the sky, which is
computed from the Thomson scattering function (Billings 1966). Assuming a standard
abundance of fully-ionized hydrogen with 10% helium, the CME mass is

mCME =
Iobs

Ie(ϑ)
µ mp ≈ Iobs

Ie(ϑ)
2 × 10−24 (g) . (17.7.1)

The potential energy εgrav of the fluxrope is defined by the amount of energy required
to lift its mass from the solar surface, that is,

εgrav(R) =
∑

fluxrope

∫ R

R�

GM�mi

r2
i

dri , (17.7.2)

where mi and ri are the mass and distance from the Sun center, respectively, for each
pixel in the observed difference image. The kinetic energy εkin is integrated over the
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Figure 17.15: A logarithmic scatterplot of kinetic energies of CMEs and the peak intensities of
associated X-ray flares seen in the GOES integrated soft X-ray flux. The sample includes 249
CME events observed with SMM C/P (Hundhausen 1997).

CME area,

εkin(R) =
1
2

∑
fluxrope

miv2
CME . (17.7.3)

The magnetic energy is assumed to vary during propagation according to the con-
servation of magnetic flux, B(R)×A(R) = const, where A is the area of the fluxrope.
Expressing the volume with V = Al, where l is the length of the fluxrope, the magnetic
energy εmag can be estimated as,

εmag(R) =
1
8π

∫
fluxrope

B2(R)dV ≈ 1
8π

l

A
(B × A)2 , (17.7.4)

where an average value of the magnetic flux is < B × A >= 1.3 ± 1.1 × 1021 G
cm2, obtained from several magnetic clouds observed with the Wind spacecraft during
1995−1998 at Earth distance (Lepping et al. 1990). With this method Vourlidas et
al. (2000) analyzed the energy budget of 11 CMEs and found that the kinetic energy
is smaller than the potential energy for relatively small CMEs, but larger for relatively
fast CMEs (vCME ≥ 600 km s−1). The magnetic energy advected by the fluxrope is
converted into kinetic and potential energy for relatively slow CMEs, so that the total
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Figure 17.16: Yohkoh/SXT images of a long-duration flare at beginning (left) and after (right)
the impulsive flare phase, located in the northeast of the solar disk. Note that most of the flare
loops disappear almost completely from the field-of-view as a result of their outward motion
(Hudson et al. 1996).

energy is constant, εtot ≈ εgrav + εkin + εmag . Thus, the slow CMEs are magnet-
ically driven. For relatively fast CMEs (vCME ≥ 600 km s−1) the magnetic energy
is significantly below the potential and kinetic energy. Typical total energies of CMEs
are εtot ≈ 1029 − 1032 erg, which is comparable with the range of flare energies es-
timated from nonthermal electrons (Fig. 9.27). The kinetic energies of CMEs from
a larger sample of 294 events is shown in Fig. 17.15, demonstrating an approximate
correlation with the total soft X-ray flux and a similar energy range as nonthermal flare
energies (Hundhausen 1997). Moore (1988) estimated the energy of CMEs from the
nonpotential magnetic energy stored in twisted fluxropes and found similar values (i.e.,
∆εtwist ≈ 1030 − 1032 erg).

17.8 Coronal Dimming

A powerful diagnostic of the early phase of CMEs is the so-called coronal dimming,
which is often detectable as a relative deficit of coronal mass or emission measure
compared with pre-CME conditions, interpreted as a vacuum-like rarefaction after the
launch or “evacuation” of a CME. The effect of coronal dimming is most dramati-
cally seen on the solar disk, but is also detectable above the solar limb in some cases.
We discussed the effect of CME dimming previously in the context of global waves
(§ 8.3), which originate at CME launch sites and propagate more or less spherically
over the solar surface, displaying a density compression at the wavefront and a rar-
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Figure 17.17: Yohkoh/SXT Al/Mg difference image of the 1997-Apr-07, 13:50 UT, flare, with
the difference taken before (13:28:42 UT) and after (17:40:40 UT). Three spatial locations with
notable dimming in soft X-rays are marked with R1, R2, and R2 (left), and the correspond-
ing light curves are shown from SoHO/EIT 195 Å (right panel) and compared with the (anti-
correlated) flare light curve (thick solid line in right panel) (Zarro et al. 1999).

efaction behind the wavefront. Such waves have been called Moreton waves and EIT
waves (§ 8.3.1) and have been simulated based on theoretical models (§ 8.3.2). Here we
concentrate on observations that relate the effect of coronal dimming more specifically
to the occurrence of CMEs.

Coronal dimming occurs after a CME launch and were first described as abrupt
depletions of the inner corona using the HAO K-coronameter data (Hansen et al. 1974),
or as a transient coronal hole (Rust 1983), using Skylab data (Rust & Hildner 1978).

Let us review coronal dimming observed in soft X-ray wavelengths. The disap-
pearance of soft X-ray-bright loops in the long-duration flare of 1994-Nov-13, 11:30
UT, has been witnessed (Fig. 17.16) by Hudson et al. (1996). The disappearance and
associated dimming were interpreted as a consequence of outward motion rather than
as a cooling process, based on the fact that the radiative cooling time was estimated to
be much longer than the disappearance (dimming) time. This event is considered as an
example for the counterpart of a CME seen in soft X-rays, with an estimated mass loss
of > 4 × 1014 g and a temperature of T >∼ 2.8 MK (Hudson et al. 1996). A dimming
was also observed just prior to a “halo” CME on 1997-Apr-07, using Yohkoh/SXT
(Fig. 17.17; Sterling & Hudson 1997; Zarro et al. 1999). Here the strongest dimming
occurred symmetrically at both sides of the flare volume, close to the ends of a pre-
flare S-shaped sigmoid (Sterling & Hudson 1997). The resulting dimmings in these
regions persisted for more than 3 days following the flare. At the same time, a dra-
matic dimming was also noticed in EUV, using the SoHO/EIT 195 Å Fe XII images
(Zarro et al. 1999). The locations of reduced EUV intensity are co-spatial and simul-
taneous with those of soft X-ray dimming features. The EIT light curves show a drop
down to ≈25% of the preflare flux, and are clearly anti-correlated with the flare flux
(Fig. 17.17, right). The cause of EUV and SXR coronal dimmings were interpreted
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Figure 17.18: EIT running difference images of the initiation of a CME. EP=eruptive promi-
nence, B=flare-like brightening, F=outer front of CME, FP=footpoint of one side of CME, and
E=secondary set of ejecta. Note the location of strongest dimming at the center of the expanding
CME bubble (Dere et al. 1997b).

within the framework of a fluxrope eruption, partially controlled by the CME.
The dimming at the launch time of a CME is most conspicuously observed in EUV,

generally associated with a spherically expanding wave over the global solar surface
(§ 8.3; e.g., Thompson et al. 1999). Probably the clearest record of the vertical structure
of coronal dimming regions during the launch of a CME can be seen in the EIT 195 Å
observations of 4 time frames during the CME of 1996-Dec-23, 20:20 UT (Fig. 17.18;
Dere et al. 1997b). The onset of the dimming appears to be coincident with the ini-
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Figure 17.19: EUV dimming measured during the 1998-Jul-14, 12:55 UT, Bastille-Day flare
with TRACE 171 Å. Note that the strongest dimming is aligned with the dipole axis of the active
region (positions 1, 2, and 5). The numbered light curves correspond to the EUV fluxes integrated
over the numbered boxes in the inserted map. The center location of the flare coincides with the
center of the diffraction pattern (Aschwanden et al. 1999b).

tiation of global EIT waves, usually continues for hours thereafter, and can exhibit a
quite asymmetric and skewed distribution regarding the center of origin (Thompson et
al. 1998a), or even forming channels of irregular shapes (Chertok & Grechnev 2003).
An analysis of 7 fast (> 600 km s−1) CMEs corroborated that the coronal dimmings
generally map out the apparent footprints of the CMEs observed in white light (Thomp-
son et al. 2000b). The coronal dimming after a CME launch was found to coincide in
EUV and Hα (Thompson et al. 2000a; Jiang et al. 2003). The Hα dimming is thought
to be associated with the material evacuated near the feet of the erupted fluxrope (Jiang
et al. 2003). This dipolar symmetry of EUV dimming has also been observed during
the 1998-Jul-14, 12:55 UT, Bastille-Day flare, where the strongest dimming (down to a
level of 21%−38% of the preflare flux) occurred near the leading and following polar-
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ity of the dipolar active region, while the dimming was much less pronounced (at a level
of 63%−83% of the preflare flux) in orthogonal directions (Fig. 17.19; Aschwanden et
al. 1999b; Chertok & Grechnev 2004).

A multi-wavelength study with a broad temperature coverage between 20,000 K
and 2 MK using CDS data showed that the dimming after a CME is strongest for
plasma with a temperature of ≈ 1.0 MK, and thus the evacuated material comes from
coronal heights rather than from transition region heights (Harrison & Lyons 2000).
Spectroscopic evidence that coronal dimming at CME onsets represent indeed mate-
rial outflows (rather than temperature changes) has been proven by measurements of
Doppler shifts (e.g., with a velocity of v ≈ 30 km s−1 in coronal Fe XVI and Mg IX
lines co-spatial with dimming regions; Harra & Sterling 2001). Another line of evi-
dence that dimming corresponds to mass loss (rather than temperature changes) comes
from mass loss estimates, which have been found to agree between white-light emis-
sion (observed with LASCO) and EUV dimming (observed with CDS), in the range of
mCME ≈ 5 × 1013 − 4 × 1015 g (Harrison et al. 2003). Also the comparison of the
ejected material (≈ 6×1015 g) of an eruptive prominence observed in microwaves was
found to be comparable with the coronal dimming (≈ 1.7 × 1015 g) estimated from
soft X-ray data (Gopalswamy & Hanaoka 1998).

17.9 Interplanetary CME Propagation

Most of the coronal phenomena described in this book occur at a distance of 1R� <
r <∼ 2R� from the Sun center. The propagation of CMEs has been observed in white
light by using coronagraphs (e.g., with SoHO/LASCO, in the range of 2R� <∼ r <∼
30R�). Many space-based observations of CME-related phenomena are performed
from satellites in an Earth orbit, at a distance of 1 AU (i.e., r ≈ 200 R�). The physics
of interplanetary and heliospheric phenomena (which is beyond the scope of this book)
entails a plethora of plasma physics processes equally as rich as coronal phenomena,
and are described in a number of textbooks and monographs (Russell et al. 1990;
Schwenn & Marsch 1991a,b; Kivelson & Russell 1995; Crooker et al. 1997; Song
et al. 2001; Balogh et al. 2001; Carlowicz & Lopez 2002). In the following section
we sketch a short overview of physical concepts that connect coronal to interplanetary
CME phenomena. A subset of these phenomena that play a role in solar-terrestrial con-
nectivity are also referred to as space weather phenomena (Song et al. 2001), of which
the geoeffictive ones (e.g., solar storms; Carlowicz & Lopez 2002), are of utmost inter-
est for the inhabitants on Earth.

17.9.1 Interplanetary Magnetic Field (IMF)

The heliospheric 3D magnetic field is defined by the flow of the solar wind. The field
in the regions between the planets near the ecliptic plane is more specifically called
the interplanetary magnetic field. The basic geometry of the interplanetary magnetic
field has the form of an Archimedian spiral, as inferred by Parker (1963b) from the
four assumptions: (1) the solar wind moves radially away from the Sun at a constant
speed; (2) the Sun rotates with a constant period (i.e., with a synodic period of 27.27
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Figure 17.20: The interplanetary magnetic field has a spiral-like radial field and the boundary
layer between the two opposite magnetic polarities in the northern and southern hemispheres
is warped like a “ballerina skirt”. This concept was originally suggested by Hannes Alfvén in
1977.

days at the prime meridian defined by Carrington); (3) the solar wind is azimuthally
symmetric with respect to the solar rotation axis; and (4) the interplanetary magnetic
field is frozen-in the solar wind and anchored at the Sun. The solar wind stretches the
global, otherwise radial field into spiral field lines with an azimuthal field component.
The resulting Archimedian spirals leave the Sun near-vertically to the surface and cross
the Earth orbit at an angle of ≈ 45◦. Measurements of the magnetic field direction at
Earth orbit reveal a two-sector pattern during the period of declining solar activity and
a four-sector pattern during the solar minimum, with oppositely directed magnetic field
vectors in each sector. From this ecliptic cut, a warped heliospheric current sheet can
be inferred that has the shape of a “ballerina skirt” (Fig. 17.20). The solar axis is tilted
by 7.5◦ to the ecliptic plane, and the principal dipole magnetic moment of the global
field can be tilted by as much as ≈ 20◦−25◦ at activity minimum, and thus the warped
sector zone extends by at least the same angle in northerly and southerly direction of
the ecliptic plane. A longitudinal cut of the solar magnetic field near the Sun is shown
in Fig. 1.14, based on a model by Banaszkiewicz et al. (1998).

The strength of the interplanetary magnetic field, of course, depends on the solar
cycle (§ 1.3), varying between B ≈ 6 nT and 9 nT (≈ 10−5 G) at a distance of 1 AU.
The interplanetary magnetic field can be heavily disturbed by CME-related shocks and
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Figure 17.21: The solar wind speed as a function of heliographic latitude (upper panel) and the
magnitude of the magnetic field as a function of time (lower panel) measured by Ulysses from
launch through its first solar orbit. Note the detection of the slow solar wind (v ≈ 400 km s−1)
in low latitudes ( <∼ 20◦) and of the fast solar wind (v ≈ 800 km s−1) in high latitudes ( >∼ 20◦)
(Balogh 2001).

propagating CMEs. The magnetic field is near-radial near the Sun and falls off with
B(R) ≈ Br(R) ∝ R−2 there, while it becomes more azimuthal at a few AU and
falls off with B(R) ≈ Bϕ(R) ∝ R−1 at larger heliocentric distances according to
the model of Parker. Reviews on the interplanetary magnetic field can be found in, for
example, Kivelson & Russell (1995; § 4), Burlaga (2001), Ness (2001), Russell (2001),
and Schwenn & Marsch (1991a).

17.9.2 Solar Wind

Parker’s (1958) theoretical model of the solar wind (§ 4.10; Fig. 4.33) predicts that the
coronal plasma outflow expands into a supersonic solar wind, which was confirmed by
measurements of in situ spacecraft, such as with Mariner II in 1962, or with Ulysses
more recently (Fig. 17.21). The transition into a supersonic wind occurs at r ≈ 5 R�.
However, the model of Parker (1958) does not address the energy equation and cannot
explain the slow and fast solar wind components. The energy balance equation yields
a different solution for open field regions, where the fast solar wind originates, and for
the corona over closed field regions, where the slow solar wind originates (see shaded
area in Fig. 1.14). In magnetically closed regions, downward heat conduction is the
dominant energy loss mechanism. In open field regions, energy is taken out with the
solar wind in the forms of work done against gravity and kinetic energy of the flow
(Table 9.1). Of course, the exact solution of the energy balance equation also depends
on the coronal heating function, which is not known. However, to obtain a fast solar
wind of v ≈ 800 km s−1, energy needs to be deposited far out in the corona (e.g.,
by dissipation of Alfvén waves; see § 9.4). Furthermore, the energy deposition is also
different for electrons and ions, as measured by the higher ion temperature in the solar
wind, compared with the electron temperature (Fig. 9.13). The solar wind flow speed
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is usually much larger than the local sound speed or Alfvén speed, typically having a
Mach number of ≈ 10, which implies that the dynamic pressure is much higher than
both the magnetic pressure and the thermal pressure. The magnetic field is frozen-in in
the solar wind flow due to the high conductivity.

CMEs represent transient activities that disturb the solar wind. The average CME
speed is slightly below the solar wind speed in the corona. The CME plasma is
entrained in the interplanetary magnetic field lines and is transported into the solar
wind. Various signatures of CMEs in the solar wind include: (1) transient interplane-
tary shock waves, (2) He abundance enhancements, (3) unusual ionization states (e.g.,
He+), (4) brief density enhancements and long-duration density decreases, (5) pro-
ton and electron temperature depressions, (6) bi-directional field-aligned flows of halo
electrons and low-energy protons, and (7) magnetic field variations associated with
magnetic clouds or fluxropes. The chemical abundance and charge state compositions
have been found to be systematically different in CMEs and in the background solar
wind.

Reviews on the solar wind and CME disturbances of the solar wind can be found
in, for example, Holzer (1989), Schwenn & Marsch (1991a,b), Gosling (1994, 1996),
Goldstein et al. (1995), Hundhausen (1995), Winterhalter et al. (1996), Schwadron et
al. (1997), Burgess (1997), Neugebauer et al. (2001), Leer (2001), Schwenn (2001),
Marsch (2001), Webb (2001), Habbal & Woo (2001), Balogh (2001), Russell (2001),
Balogh et al. (2001), Bochsler (2001), Matthaeus (2001b), Esser (2001), Kunow (2001),
Cranmer (2002a,b), Ofman (2003), Erdoes (2003).

17.9.3 Interplanetary Shocks

CMEs have typical propagation speeds of v ≈ 300− 400 km s−1, but fast CMEs have
been measured at speeds in excess of v = 2000 km s−1. Since the fast solar wind
has a typical speed of v ≈ 800 km s−1, fast CMEs are super-Alfvénic. Thus, such
fast CMEs can drive transient interplanetary shocks. Numerical simulations with HD
or MHD codes (for instance see Fig. 17.22), have been able to reproduce the observed
speeds and pressure profiles of shocks and CME events out to large distances from
the Sun. In such simulations, a pressure pulse is initiated in the lower corona. As the
front of a fast CME overtakes the slower solar wind, a strong gradient develops and
pressure waves steepen into a forward shock propagating into the ambient wind ahead,
and occasionally a reverse shock propagates back through the CME towards the Sun
(Riley et al. 1977; 1999). Numerical simulations of CMEs propagating from the corona
through the heliosphere can be found in, for example, Mikić & Linker (1994); Linker
& Mikić (1995); Linker et al. (2001); Odstrc̆il et al. (1996, 2002), Toth & Odstrc̆il
(1996), Odstrc̆il & Pizzo (1999a,b), and Riley et al. (2003).

There are a number of complications that can occur, such as the fact that a faster
CME can catch up with a slower CME and interact. Such interactions form compound
streams in the inner heliosphere. These systems continually evolve further and merge
with other CMEs and shocks as they move outward. In the outer heliosphere, beyond
10-15 AU, such structures form merged interaction regions, which become so extensive
that they encircle the Sun like a distant belt. Such regions block and modulate galactic
cosmic rays (i.e., the flux of high-energy particles that continuously streams into the
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Figure 17.22: Numerical MHD simulations of a CME moving through the ambient solar wind.
The CME is injected in the center of the heliospheric current sheet streamer belt (left), which
is tilted to the solar axis. The propagating CME is shown at slices in heliolongitude and at a
distance of 2.5-5 AU from the Sun 12 days after launch. The slices are 4 different heliolatitudes
and show how the CME’s shape, pressure and speed vary depending on the ambient solar wind
conditions (Courtesy Victor Pizzo, NOAA/SEC).

heliosphere). Finally, a forward interplanetary shock wave that passes the Earth’s mag-
netosphere may cause a sudden commencement of a magnetic storm or substorm at the
Earth and change the electrical and magnetic connection of the interplanetary magnetic
field with the Earth’s magnetic field. Reviews on interplanetary shocks, CMEs, and re-
lated phenomena can be found in, for example, Schwenn & Marsch (1991a,b), Kivel-
son & Russell (1995), Burlaga (1995), Colburn & Sonett (1996), Crooker et al. (1997),
Balogh & Riley (1997), Whang et al. (1998), Balogh et al. (2001), Song et al. (2001),
Lepping (2001), and literature referenced therein.

17.9.4 Solar Energetic Particles (SEP)

Solar energetic particle (SEP) events refer to accelerated particles detected in the he-
liosphere. Some originate in solar flares, while others are accelerated in transient in-
terplanetary shocks, driven by fast CMEs. The acceleration mechanisms are basically
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the same types we discussed in § 11.5 on shock acceleration. Solar energetic particle
events are classified into two types, gradual and impulsive SEP events, depending on
their energy versus time profile. Gradual SEP events occur with a rate of ≈ 10/year
during the maximum of the solar cycle, each one can last several days, and they are
likely to be accelerated directly in interplanetary shocks rather than by flares in the
corona. Impulsive SEP events occur more frequently, with a rate of ≈ 100/year during
the maximum of the solar cycle, they last only a few hours, and they are much weaker
than gradual SEP events. Since they originate along magnetic field lines connected
to coronal flare sites, their acceleration could be governed by the same magnetic re-
connection process that governs the associated flare. Because their 3He/4He ratio is
much higher than in the normal solar wind, they are also called 3He-rich events. In-
terplanetary particles can also be accelerated in the electric fields that are generated at
co-rotating interaction regions (CIR) between high-speed and low-speed streams. To
some extent, the location where acceleration of interplanetary particles takes place can
be determined from the velocity dispersion (i.e., time-of-flight effects), tprop = L/v,
of particles arriving at Earth.

Literature on solar energetic particle events can be found in, for example, Kahler
et al. (1984), Reames & Stone (1986), Reames et al. (1988, 1991a,b, 1992, 1994;
1996, 1997, 2001a,b), Reames (1990b, 1995a,b, 1999, 2001a,b, 2002), Gosling (1993),
Kahler (1992, 1994, 2001), Tylka (2001), Reames & Tylka (2002), and references
therein.

17.9.5 Interplanetary Radio Bursts

There are two sources of energetic particles in interplanetary space, either flare-related
magnetic reconnection sites in the solar corona that are connected to interplanetary
space via open field lines, or shock acceleration sites associated with super-Alfvénic
CME fronts that propagate through interplanetary space. Since the plasma in inter-
planetary space is collisionless, suprathermal and high-energy particles can propagate
unimpeded through interplanetary space and form particle beams (e.g., electron beams
or ion beams). The beam free energy is converted into Langmuir waves, and some
Langmuir wave energy is converted to radio waves at the fundamental or harmonic
local plasma frequency (§ 15.1, 15.4). Thus, beam-driven type III-like radio bursts
are common in interplanetary space (Fig. 15.13), and occasionally type IV-like radio
bursts also occur (i.e., synchrotron emission caused by energetic electrons confined in
a magnetic trap created behind an interplanetary shock wave). The spatial size of in-
terplanetary radio bursts can be very large, since the extent of the radio source grows
with distance from the Sun. However, interplanetary type III emission is not produced
continuously along the propagation path of electron beams, but rather seems to occur
in localized, unresolved regions of the interplanetary medium. Interplanetary type II-
like bursts, also called shock-associated (SA) events, also occur and are believed to
be produced by collisionless shock waves associated with passing CMEs. Thus, inter-
planetary radio bursts provide a rich diagnostic on the acceleration and propagation of
energetic particles and shock waves. However, only radio bursts with plasma frequen-
cies >∼ 20 MHz (above the Earth’s ionospheric cutoff frequency) can be observed with
ground-based radio telescopes, which extends only out to about 1−2 solar radii, while
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all interplanetary radio bursts further out have lower plasma frequencies and require
space-based radio detectors.

Reviews on interplanetary radio bursts can be found in, for example, Lin (1974),
Simnett (1986b), Dulk (1990), Schwenn & Marsch (1991), Robinson (1997), As-
chwanden & Treumann (1997), Cairns et al. (2000), Reiner (2001), and Bougeret
(2001).

17.10 Summary

Coronal Mass Ejections (CMEs) are a new eruptive phenomenon distinct from
flares although they are related by the common solar magnetic fields that pro-
duce them. Both eruptions involve releases of magnetic energy in comparable
magnitudes. CMEs and flares represent complementary phenomena, both be-
ing produced as by-products of a common magnetic instability that is controlled
on a larger scale in the solar corona. Theoretical models include five categories:
(1) thermal blast models, (2) dynamo models, (3) mass loading models, (4) tether
release models, and (5) tether straining models (§ 17.1). Numerical MHD sim-
ulations of CMEs are currently produced by combinations of a fine-scale grid
that entails the corona and a connected large-scale grid that encompasses prop-
agation into interplanetary space, which can reproduce CME speeds, densities,
and the coarse geometry (§ 17.2). The trigger that initiates the origin of a CME
seems to be related to previous photospheric shear motion and subsequent kink
instability of twisted structures (§ 17.3). The geometry of CMEs is quite com-
plex, exhibiting a variety of topological shapes from spherical semi-shells to he-
lical fluxropes (§ 17.4), and the density and temperature structure of CMEs is
currently investigated with multi-wavelength imagers (§ 17.5). The height-time,
velocity, and acceleration profiles of CMEs seems to establish two different CME
classes: gradual CMEs associated with propagating interplanetary shocks, and
impulsive CMEs caused by coronal flares (§ 17.6). The total energy of CMEs (i.e.,
the sum of magnetic, kinetic, and gravitational energy), seems to be conserved in
some events, and the total energy of CMEs is comparable to the energy range esti-
mated from flare signatures (§ 17.7). A closely associated phenomenon to CMEs is
coronal dimming, which is interpreted in terms of an evacuation of coronal mass
during the launch of a CME (§ 17.8). The propagation of CMEs in interplane-
tary space (which is beyond the scope of this book), provides diagnostics on the
heliospheric magnetic field, the solar wind, interplanetary shocks, solar energetic
particle (SEP) events, and interplanetary radio bursts (§ 17.9).



Problems

Chapter 1: Introduction

Problem 1.1: Plot the wavelength ranges of all solar instruments mentioned in this
Section onto a diagram with a wavelength axis similar to Fig. 1.25. Convert
energies (keV) to wavelengths (Å) with Eq. (1.10.4). Do the instruments from
all previous solar missions cover the entire wavelength range? Are there still
some windows left for new discoveries?

Problem 1.2: Compile a metrics of coronal phenomena (enumerated in Section 1.2)
versus wavelengths. Which wavelength domain is richest in displaying coronal
phenomena and why?

Problem 1.3: In Fig.1.13, a correlation between the soft X-ray flux ISXR and the
longitudinal magnetic field B‖ is shown, yielding a powerlaw slope specified in
Eq. (1.3.1). Assume that the average magnetic field strength varies with helio-
graphic longitude l as B‖ = B cos(l). If the magnetic field varies over the range
of B = 10 − 1000 G in active regions during a solar cycle, by what factor is the
soft X-ray flux expected to vary?

Problem 1.4: Determine the magnetic field strength Bfoot (at the photosphere) and
the dipole depth hD (defined by Eq. 1.4.2) that fit closest the empirical model
of Dulk & McLean (1978) (given in Eq. 1.4.1) at their lower limit of 1.02 R�.
Overplot the two models to verify the best fit at the lower limit and characterize
how the two models diverge with height.

Problem 1.5: Can you estimate the filling factors of loop strands as a function of a
fractal dimension defined in a 2D geometry? (Hint: Use definition of Eq. 9.7.2).
What is the fractal dimension D2 if a filling factor of qfill = 0.1 is measured in
a quadratic image area with a length of Nl = 100 pixels. How does the filling
factor qfill change if the same area is imaged with an instrument with 10 times
better spatial resolution and the structure has the same fractal dimension D2?

Problem 1.6: Derive analytically or graphically for what mean temperature the Baum-
bach−Allen density model (Eq. 1.6.1) is closest to hydrostatic equilibrium near
the solar surface? Hint: Use the pressure scale height Eq. (3.1.16) to obtain the
temperature.
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Problem 1.7: In the differential emission measure distributions shown in Fig. 1.21,
at what temperature is most of the coronal plasma found in the Quiet Sun and
in active regions? What maximum factor is the electron density of the 1.5 MK
plasma higher in active regions than in Quiet Sun regions, assuming the same
column depth for the regions shown in Fig. 1.21?

Problem 1.8: If you assume the electron densities ne and electron temperatures Te

given in Table 1.1, what is the range of magnetic field strengths B that reproduces
the spread of the plasma-β parameter β(h) shown in Fig.1.22 (from Gary 2001)
in photospheric (h = 250 km), coronal (h = 10 Mm), and heliospheric (h = 2
R�) altitudes? (Use Eq. 1.8.1).

Problem 1.9: Which chemical elements should have been detected in the solar corona
at the time when the sensitivity was >∼ 10−4 of hydrogen abundance? What el-
ements do you predict to be discovered in the corona when the sensitivity im-
proves to a level of >∼ 10−8 of the hydrogen abundance? Use Fig.1.24 and Table
1.2.

Problem 1.10: Using the conversion formula given in Eq. (1.10.6), calculate at what
wavelengths λ (Å) the following phenomena with their characteristic tempera-
tures should be brightest: (a) sunspot umbra with T = 4500 K, (b) photosphere
with T = 6000 K, (c) transition region with T = 20, 000 K, (d) coronal loop
with T = 1.0 MK, and (e) flare loop with T = 15 MK. Identify the wavelength
domains.

Chapter 2: Thermal Radiation

Problem 2.1: Compute the free-free absorption coefficient αff (Eq. 2.3.16), the free-
free opacity τff (Eq. 2.3.18), and the radio brightness temperature TB (using
Eqs. 15.2.3 and 15.2.4) of the coronal plasma with an average temperature of
Te = 106 K, an average density of ne = 109 cm−3, over a scale height of
λT = 5 × 109 cm, for radio frequencies of ν = 100 MHz, 1 GHz, and 10 GHz.
At what radio frequency does the corona become optically thick?

Problem 2.2: Verify the conversion of Planck’s law as a function of wavelength λ
(Eq. 2.2.2) to a function of frequency ν (Eq. 2.2.3). Hint: use ν = c/λ and
dν = [dν(λ)/dλ]dλ.

Problem 2.3: Derive the wavelength λmax(T ) where the Planck function peaks for a
given temperature T , as given in Eq. (2.2.6). Hint: Substitute the variable x =
λ(kBT/hc) in Eq. (2.2.3) and set the derivative ∂Bλ(x)/∂x = 0 to zero. The
value of x that corresponds to λmax can be calculated numerically or graphically.

Problem 2.4: The hard X-ray spectrum of the flare shown in Fig.2.6 consists of a
thermal < 35 keV and a nonthermal (powerlaw) spectral component. Compute
the total thermal energy, assuming a typical flare density of ne ≈ ni = 1011

cm−3 (use Eq. 13.3.2). Is this an average-sized or a large flare? (Compare with
frequency distribution of flare energies in Fig. 9.27).
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Problem 2.5: Calculate the Lyman, Balmer, and Paschen series with the Rydberg
formula (Eq. 2.4.3) for helium. In what wavelength regimes (SXR, EUV, UV,
optical, IR) are the helium series to be found?

Problem 2.6: Calculate the relative abundances of neutral and ionized calcium (with
ionization potentials of 6.1 and 11.9 eV, and statistical weights g0 = 1 and g1 =
2, respectively) at photospheric temperatures (Te = 6000 K). Which of the two
lines is stronger in the chromosphere, Ca I or Ca II?

Problem 2.7: Estimate the photon energies involved in the emission processes shown
in Fig. 2.9 and identify the wavelength ranges for free-bound, free-free, and ion-
ization processes for hydrogen.

Problem 2.8: If you have the Interactive Data Language (IDL) software available
and have installed the SolarSoftWare (SSW), load the CHIANTI package and
reproduce the ionization equilibrium for Fe levels shown in Fig. 2.10. Instruc-
tions are given in the tutorials provided on one of the CHIANTI web pages, e.g.,
http://wwwsolar.nrl.navy.mil/chianti.html.

Problem 2.9: Compare the radiative losses (integrated over a vertical pressure scale
height) at a coronal temperature of Te = 1.0 MK and coronal density of ne ≈
108 cm−3 from the radiative loss rate given in Fig. 2.14 (or Eqs. 2.9.1 and 2.9.2)
with the Stefan−Boltzmann law (Eq. 2.2.7). Quantify the difference between
line emission and blackbody radiation.

Problem 2.10: Enter all detected coronal elements with known FIP energy (provided
in Table 1.2) into a FIP diagram as shown in Fig. 2.15. What sensitivity in
abundance measurements is needed in future to verify the coronal enhancement
of the new low-FIP elements?

Chapter 3: Hydrostatics

Problem 3.1: Calculate with Eqs. (3.1.2), (3.1.6), and (3.1.16) the pressure scale
heights λp of various stars, such as for (1) a giant, e.g., αLyr (Vega), spectral
class A0 V, with log(M∗/M�) ≈ +0.51, log(R∗/R�) ≈ +0.40, (2) a bright
giant, e.g., βGem (Pollux), spectral class K0 III, with log(M∗/M�) ≈ +0.6,
log(R∗/R�) ≈ +1.2, (3) a white dwarf, e.g., αLeo (Regulus), spectral class B7
V, with log(M∗/M�) ≈ +0.7, log(R∗/R�) ≈ +0.5, and (4) the Earth, with
an atmospheric pressure of p0 = 1.02 × 106 dyne cm−2 and a mean density of
ρ0 = 1.29 × 10−3 g cm−3.

Problem 3.2: Give an analytical expression for the flux F (h) observed in a hydro-
static fluxtube as function of the height h above the limb (1) for a narrowband
filter with ∆T/T � 1, and (2) for a broadband filter with ∆T/T ≈ 1, assuming
a rectangular response function R(T ) and taking the hydrostatic weighting bias
into account.

PROBLEMS
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Problem 3.3: Predict the center-limb brightening (Eq. 3.3.10 and Fig.3.9) for various
spatial resolutions (∆h = 1′′, 10′′, 100′′) at different temperatures (T=1, 4 MK).
Hint: Approximate the peak of the column depth function zeq(h, T0) shown in
Fig. 3.9 with a triangle and read off the values at the disk center and limb from
the graphs. Determine the limb brightness by approximating the triangular peak
with a rectangle of the given spatial resolution. If you have a Yohkoh/SXT or
SoHO/EIT image at hand, test your prediction of the center-limb brightening.

Problem 3.4: What are the correction factors for the vertical hydrostatic scale height
λp, which has to be applied to the observed scale height of the following pro-
jected semi-circular loops: (1) a loop at disk center with footpoints in North-
South direction, when the loop top is displaced from the baseline by a quarter
of the footpoint separation; (2) a loop at the west limb with footpoints in North-
South direction and loop top displaced from the baseline by half the footpoint
separation; and (3) a loop at the west limb with coinciding footpoints when the
looptop is located above the limb at a height that corresponds to half of the pro-
jected loop size?

Problem 3.5: Derive a relation of the intensity contrast between the brightest loop
and the coronal background in the DEM shown in Fig. 3.17 (bottom right). Hint:
Assume that the background emission consists of contributions from N loops
along a line-of-sight and that fluctuations in the DEM obey Poisson statistics.
How does the requirement for instrumental flux contrast vary with the number
of resolved loops? What is the flux contrast for N=10, 100, or 1000 loops along
a line-of-sight?

Problem 3.6: Derive the RTV scaling law for the temperature (Eq. 3.6.14) from
the inverse temperature profile, s(T) (Eq. 3.6.12). Hint: Neglect the heating
term, approximate the radiative loss function with the single-powerlaw function
Λ(T ) ≈ 10−18.8T−1/2, and assume a constant pressure p0 = 2nekBT .

Problem 3.7: Calculate the temperature drop T (s = L/2) in the upper half of a
hydrostatic loop with a loop-top temperature of Tmax = 1.0 MK and a heat-
ing scale height of sH = L (use analytical approximation given in Eq. 3.6.18).
Compare the result with the value obtained from the graphical curves shown in
Fig. 3.22.

Problem 3.8: Use the instrumental response functions graphically shown in Fig. 3.25
and estimate the relative brightness of loops with temperatures of T = 1, 3, 5, 10
MK (and equal density) in TRACE 171 Å and Yohkoh/SXT Al 1265 Å.

Problem 3.9: If the contrast of a TRACE image is 1:10, is the loop top of a hy-
drostatic loop detectable for the following loop parameters: Tmax = 1 MK,
L = 100 Mm? How does it compare for a hot loop with Tmax = 5 MK with
the same length for a Yohkoh image, assuming the same contrast? Hint: Apply
the exponential density model ne(s) (Eq. 3.2.1-2) with the proper scale height
λp (Eq. 3.1.16). Does it explain that TRACE sees only the lower parts of loops
while Yohkoh/SXT sees complete loops?
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Problem 3.10: If the stellar DEM of ζ Boo A is approximated by two populations
of loops, cool loops with T = 3 MK and hot loops with T = 10 MK, with
equal lengths L = 100 Mm and heating scale heights of sH = 20 Mm, what is
the ratio of hot to cool loops, if all are assumed to be in hydrostatic equilibrium?
Hint: Obtain the corresponding DEM components from Fig. 3.30 and use Serio’s
scaling law (Eq. 3.6.16) to determine the base pressures p0. The base density n0

can then be estimated with the ideal gas law (Eq. 3.1.9), and the corresponding
emission measures are EM ∝ n2

0.

Chapter 4: Hydrodynamics

Problem 4.1: Derive the hydrodynamic equations (4.1.21-24) from the general no-
tation (4.1.2-4.1.4), using the 3D operator for the total derivative (4.1.1) and
inserting the definitions for entropy (Eq. 4.1.8) and internal energy (Eq. 4.1.12).
Verify all the steps from Eq. (4.1.4) to Eq. (4.1.23).

Problem 4.2: Derive with the continuity equation (Eq. 4.2.16) and a hydrostatic den-
sity profile ne(h) an approximate scaling law between the loop height and loop-
top temperature in siphon flow loops that develop shocks at the looptop.

Problem 4.3: Use criterion (Eq. 4.3.11) to estimate the density range ne(L) of ther-
mally stable loops with typical coronal temperatures of T0 = 1.0 MK as a func-
tion of their loop length L.

Problem 4.4: Estimate the upflow speed v0 at the footpoint of Brekke’s loop shown
in Fig. 4.8, which shows at location A a blueshift of v(hA) = 60 km s−1. Hint:
assume a constant cross section, a density profile ne(h) according to the hy-
drostatic scale height temperature of the O V line, use the height scale given in
arcseconds in Fig. 4.8, and apply the continuity equation.

Problem 4.5: Simulate the time profile IFilter(t) of a cooling loop with an initial tem-
perature of T = 2.5 MK and a constant density of ne = 109 cm−3, assuming
purely radiative cooling (Eq. 4.5.3), an iron FIP enhancement of αFIP = 4, and
instrumental response functions of the three TRACE passbands approximated by
Gaussian shapes with peak temperatures of Tfilter = 1.0, 1.5, 2.0 and a Gaus-
sian width of ∆Tfilter ≈ 0.2 MK. What are the delays when the emission peaks
in the different filters? Does the simulated duration in each filter match the ob-
served ones shown in Fig. 4.12 (Loop #2)?

Problem 4.6: What is the expected relation between the flux detection threshold with
a signal-to-noise ratio of ∆I/I and the super-hydrostatic scale height factor qλ =
λ/λT shown in Fig. 4.19, required for detection of the looptop? (Hint: Choose
a disk center position, where the background column depth is approximately a
super-hydrostatic scale height). What is the contrast ∆I/I at the footpoint and
looptop, if a loop near disk center has a density ratio of nloop

e /nback
e = 2 to the

background at the base, a width to scale height ratio of w/λT = 0.1, a height of
h = λT , for both a hydrostatic and a super-hydrostatic (λ = 4λT ) scale height?

PROBLEMS
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Problem 4.7: Estimate the time scale of an acoustic wave traveling along a typical
coronal loop (with half length of L = 30, 000 km) and back? Compare it with
the average time interval between subsequent shock formations or surge flows
shown in the simulation of Robb & Cally (1992) in Fig. 4.22.

Problem 4.8: Calculate in first order the correction to the differential emission mea-
sure distribution dEM(T )/dT for a loop with the canopy quantified by Chae
et al. (1998) as given in Eq. (4.8.6), and shown in Fig. 4.27, compared with a
straight loop without canopy. (Hint: Consider only the influence of the cross-
sectional area).

Problem 4.9: Assume a hydrostatic corona with an average temperature of T = 1.0
MK and quantify upper density limits in coronal holes to explain a factor >∼ 10
difference of the radio brightness temperature between coronal holes and quiet
Sun regions, as observed with Clark Lake at ν = 74 MHz (see Fig. 4.32). Use
the Rayleigh-Jeans approximation and consult problem (2.1).

Problem 4.10: How does the density n(r) and velocity v(r) drop off at large distances
r � rc in Parker’s solar wind solution? Does the resulting pressure p(r) vanish
at large distances in the interstellar medium?

Chapter 5: Magnetic Fields

Problem 5.1: Convert the Maxwell’s equations (Eqs. 5.1.1-4), Ampère’s law (Eq. 5.1.7),
and Ohm’s law (Eq. 5.1.10) from Gaussian units (cgs) into metric (SI or mks)
units. Compare them with Appendix C or standard textbooks written in SI units.
How do the Maxwell’s equations differ for vacuum and matter?

Problem 5.2: Calculate analytically the loop width variation w(θ) as a function of
the angle θ along the loop relative to the footpoint location θ0 for a dipole field
(see Fig. 5.2 and use Eq. 5.2.22). Can you reproduce the loop width expansion
factors qw given in Fig. 5.14 (bottom) ?

Problem 5.3: Calculate analytically the loop expansion factor between footpoint
and looptop for a force-free loop in the framework of a sheared arcade (using
Eq. 5.3.19) for k = l = 1. Can you reproduce the loop width expansion factors
qw given in Fig. 5.14 (bottom) ?

Problem 5.4: Calculate how the plasma β-parameter varies as a function of height
in the hydrostatic dipole model described in §5.4.2. Plot a minimum-maximum
range of β(h) as a function of height similar to Fig. 5.10.

Problem 5.5: Reproduce the general outline of an S-shaped field line in Fig. 5.20 by
plotting semi-circular, helically twisted fluxtubes with constant diameters, with
proper projection of the 3D coordinates. Can an S-shaped field line be used
to discriminate a potential magnetic field model (e.g., Fig. 5.20) from a linear
force-free magnetic field model (e.g., Fig. 5.19)?
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Problem 5.6: What is the length of loops that produce the average force-free pa-
rameter |α| ≈ 2 × 10−8 m−1 shown in the observation of Pevtsov et al. (1997)
(Fig. 5.21), if we assume one full twist at the loop axis? At what radius r (or
ratio r/l) does the number of twists double (in the thin fluxtube approximation)?

Problem 5.7: Search for more observations of coronal nullpoints in literature and
data archives similar to the example shown in Fig. 5.25. (e.g., see TRACE and
Yohkoh data archive, publications, or web-pages).

Problem 5.8: Derive the lowest-order expressions for the refractive index nν,σ of
the two magneto-ionic modes, with and without magnetic fields (for longitudinal
waves, ψ = 0), in the cold-plasma approximation (Eq. 5.7.7).

Problem 5.9: Plot an angular emissivity diagram for gyroresonance emission (using
Eq. 5.7.21) for different harmonics (s = 2, 3, 4). At what angles is the strongest
gyroresonance emission observed ?

Problem 5.10: Assuming a chromospheric pressure scale height λp,Ch corresponding
to a temperature of T ≈ 104 K, estimate and the canopy-like expansion factor
A(hCh)/A(h = 0) over the chromospheric height of hCh ≈ 2 Mm. Hint:
Use the pressure balance approximation (Eq. 5.8.2) and assume magnetic flux
conservation.

Chapter 6: Magneto-Hydrodynamics (MHD)

Problem 6.1: Verify analytically the different steps in the transformation of the en-
ergy equation (6.1.23) from the microscopic Boltzmann equation into the macro-
scopic MHD energy equation (6.1.32).

Problem 6.2: Show that the set of ideal MHD equations (6.1.16-6.1.22) is a special
case of the resistive MHD equations (6.1.33-6.1.39).

Problem 6.3: Calculate the part the Lorentz force due to the field line curvature
(Eq. 6.2.18) in a dipole field (§5.2.2). By what fraction does the magnetic field
vary across the loop width for a typical loop with a width of w = 1 Mm and a
curvature radius of rcurv = 50 Mm in order to balance the curvature force in a
dipolar loop?

Problem 6.4: Plot geometric projections of twisted fluxtubes (using the parameteri-
zation 6.2.22) and try to match up observed loop shapes shown in Fig. 6.4. Do
you succeed in measuring the number of turns in some observed loops?

Problem 6.5: If the twisted loop has a length of L = 100 Mm a width of w = 10′′,
and is twisted by one turn, what is the required expansion speed to explain the
rotational Doppler shift vrot

<∼ 30 km s−1 as observed with SoHO/SUMER in
Fig. 6.5 ?

PROBLEMS
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Problem 6.6: Calculate the vertical speed of an emerging, stiffly twisted fluxtube to
explain the observed positional rotation of the data points F10 and P10 shown in
Fig. 6.9. Assume that the twisted fluxtube has emerged completely after 9 hours,
starting from the bottom of the convection zone (≈ 0.3R�). What is the number
of twisted turns needed to explain the observations shown in Fig. 6.9, assuming
a semi-circular loop width to length ratio of 1:10.

Problem 6.7: Discuss which of the instabilities given in §6.3 are most likely to occur
in quiet Sun coronal loops, flare loops, and prominences.

Problem 6.8: Calculate the minimum and maximum pressure in prominences, using
the extremal values of electron densities ne and electron temperatures Te listed
in Table 6.2, and compare them with the observed pressure values in Table 6.2.

Problem 6.9: Calculate the maximum ratio of the mass of a prominence to the total
coronal mass (Eqs. 6.4.12-6.4.13), using the maximum density and geometrical
parameters given in Table 6.2.

Problem 6.10: Use criterion (4.3.11) to estimate the density range ne(L) of thermally
stable filaments with typical temperatures of T0 = 104 K as a function of their
length L. Are all filaments thermally stable, according to the observed densities
given in Table 6.2?

Chapter 7: MHD Oscillations

Problem 7.1: Plot the polar diagram of the phase speeds of magneto-acoustic waves
(Fig. 7.1) for typical coronal conditions, cS ≈ vA/10.

Problem 7.2: Calculate numerically the phase speed vph = ω(k)/k of the fast kink
mode and sausage mode as shown in Fig.7.4 (as a function of ka) from the dis-
persion relation specified in Eqs. (7.1.50-51). Choose for density and speed ra-
tios round numbers close to those shown in Fig. 7.4. What are the corresponding
tube speeds expressed as ratios of the sound speeds?

Problem 7.3: Determine the kink mode period Pkink (Eq. 7.2.4) for a loop with a
constant magnetic field of B = 20 G and a length of L = 100 Mm, an internal
density of n0 = 109 cm−3, as a function of the external density ne in the entire
possible range (0 ≤ ne/n0 ≤ 1). How much is the variation?

Problem 7.4: What are the uncertainties in the magnetic field strength B in the 10
measurements given in Table 7.1, if the density ratio ne/n0 is unknown? Assume
an additional 10% error in the period P .

Problem 7.5: What fraction of the kink-mode oscillation periods P reported in Table
7.4 could be possibly triggered by global oscillations, either by 5-min p-mode
oscillations or 3-min oscillations near sunspots, allowing for a 10% mismatch in
resonant periods?
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Problem 7.6: Assume an exponential density model ne(h) for the 1 MK corona with
a base density of ne = 109 cm−3, a dipole magnetic field B(h) (Eq. 5.4.5 and
Fig.5.10) with a base value of B0 = 100 G and a dipole depth of hD = 75 Mm,
and calculate the cutoff periods Pmin for the MHD fast sausage mode (Eq. 7.3.9)
for a loop diameter of a = 1 Mm. What are the longest sausage periods expected
at altitudes of h = 2 Mm and h = 200 Mm?

Problem 7.7: Estimate the modulation depth dI/I of the soft X-ray flux that is ob-
served in SUMER loops in the case of MHD slow-mode oscillations for the
Doppler velocities v reported in Table 7.8, assuming a sound speed correspond-
ing to the Fe XIX line temperature of T = 6.3 MK (Use Eq. 7.4.9).

Problem 7.8: Estimate the chromospheric density scale height from the RHESSI
measurements shown in Fig. 4.28 and predict the damping times due to footpoint
wave leakage (Eq. 7.5.7). Could they explain the observed damping times (Table
7.1) in fast kink-mode oscillations ?

Problem 7.9: What range of theoretical to observed damping time ratios tRA/td do
you predict for resonant absorption for fully-nonuniform loops (rloop/lskin = 2)
if the density ratio qn = ne/n0 is not known. (Use Eq. 7.5.14).

Problem 7.10: How do radio dynamic spectra of loops with kink oscillations (TRACE
observations) and slow-mode oscillations (SUMER observations) loops look like?
Assume that the density modulation is reflected in the plasma frequency modula-
tion. What frequency bandwidth of the modulated radio emission do you expect?

Chapter 8: Propagating MHD Waves

Problem 8.1: Verify the form of the MHD equations given in Eqs. (8.1.1−3) from the
general set of MHD equations (§6.1.2−5) and viscosity term (Eq. 6.1.14). What
definitions and assumptions are used?

Problem 8.2: Predict the range of sounds speed in each of the TRACE 171 and 195
Å passbands, based on the FWHM of their response functions given in Fig. 3.25
(i.e., in the sensitivity range at > 50% of the peak response, R(T ) > 0.5 ×
max[R(T )]), and compare them with the measured ranges given in Table 8.1.

Problem 8.3: Calculate the time intervals t1 = h/vAe, t2 = h/vA, and t3 = h/cmin
g

in the evolution of an impulsively generated fast-mode MHD wave as shown in
Fig. 8.4. How long lasts the periodic phase and the quasi-periodic phase? Use a
loop height of h = 100 Mm, a magnetic field of B = 20 G, an external electron
density of next

e = 109 cm−3, a density ratio of nint
0 /next

e = 6, and a minimum
group speed of cmin

g = vAe/3 as obtained in Fig. 8.5.

Problem 8.4: Measure the wave speed in the SECIS data shown in Fig. 8.7, using the
time information of Fig. 8.7 and positional information given in Fig. 8.6. Can
you reproduce the reported speed of v = 2100 km s−1 as given in the caption of
Fig. 8.7?

PROBLEMS
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Problem 8.5: Fit a low-order polynomial function to the density profile ne(h) shown
in Fig. 8.13 (top panel) and to the line width ∆v(h) shown in Fig. 8.13 (middle
panel), and verify the theoretical prediction (8.2.11).

Problem 8.6: Estimate the propagation speeds of the simulated EIT wave shown in
the 4 panels of Fig. 8.16. Does the wave accelerate of decelerate?

Chapter 9: Coronal Heating

Problem 9.1: Estimate the variation of the coronal heating requirements in quiet Sun
areas and active regions during the solar cycle, assuming that all active regions
disappear during the solar minimum and the entire coronal magnetic field opens
up like in coronal holes. Hint: Use Table 9.1 and calculate the factors for the
changes in conductive flux FC , radiative flux FR, solar wind flux FSW , and total
flux (in erg cm−2 s−1), with reference to the coronal hole values.

Problem 9.2: Calculate the Ohmic dissipation rate due to random footpoint motion.
How much smaller is it than the coronal heating rate requirement in the quiet
Sun. Hint: Use Eqs. (9.3.5-7) and Table 9.1.

Problem 9.3: Derive the viscosity force (from Eq. 9.3.10) for a turbulent eddy in
the corona with a rotation speed of v0 = 1 km s−1, the size of a granulation cell
(l = 1000 km), and a coronal density of ne = 109 cm−3. How does the viscosity
force scale with rotation velocity v, size l and density ne?

Problem 9.4: Perform a Monte-Carlo simulation of flare energies, using a powerlaw
distribution N(l) ∝ l−D3 of size scales l (Eq. 9.8.8), with fractal dimension
D3 = 2.5, and using and the scaling laws given in Eqs. (9.7.9−15). Can you re-
produce the frequency distribution of flare energies N(Eth) ∝ E−1.21

th predicted
in Eq. (9.8.13)?

Problem 9.5: Use the same Monte-Carlo code of Problem 9.4 and introduce random
scatter in the scaling laws. How does the frequency distribution of flare energies
change? Can it explain the observed distributions listed in Table 9.6 ?

Problem 9.6: Using the relation Eq. (9.8.12), how can you explain the steepest ob-
served frequency distributions with a powerlaw slope of αE = 3.3 found in
Table 9.6 (Winebarger et al. 2002) ?

Problem 9.7: Plot an exponential frequency distribution N(E) ∝ exp(−E/E0) (see
Fig. 9.24) and determine the local powerlaw slopes as a function of energy. How
much does the powerlaw slope change from E1 = E0/2 to E2 = E0 × 2?

Problem 9.8: When you increase the number of events in a frequency distribution of
energies, N(E) = N1(E/E1)−α, e.g., when you sample over a longer duration
of time, how does the upper cutoff energy E2 change as a function of the number
of events N1 detected (at the lower boundary E1). What dynamic range (E2/E1)
have frequency distributions with N1 = 10, 100, 1000, 104, 105 events and a
powerlaw slope of α = 2?
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Problem 9.9: What are the mean (e-folding) amplification factors (tSe/τG) of the
observed frequency distributions listed in Table 9.6 (Use Eq. 9.8.7)? What ob-
servational bias affects these values most?

Problem 9.10: Estimate the temperature filter bias on the powerlaw slope in the fre-
quency distribution of nanoflare energies. Apply it to a 171 Å EUV filter with a
peak response at T1 = 1.0 MK and a maximum sensitivity range of ∆T = ±0.5
MK. Assume that the corrected powerlaw slope is αE = 1.8. Estimate the
change in the powerlaw slope αe = (log[N(E2)] − log[N(E1)])(log[E2] −
log[E1]), when then thermal flare energy E = 3nekBTV is underestimated
because the EUV filter measures a temperature at T1 + ∆T instead of a true
temperature T2, for the temperature range from T1 = 1.0 MK to T2 = 2.0 MK.

Chapter 10: Magnetic Reconnection

Problem 10.1: Calculate the magnetic energy that is dissipated during a flare with
a duration of 100 s for a Sweet−Parker current sheet (Eq. 10.1.8), assuming
typical coronal parameters, B = 100 G, L = 1 Mm, and vA = 1 Mm s−1. Is it
sufficient to explain a nanoflare (E = 1024 erg) or a microflare (E = 1027 erg)?
How many current sheets are needed for one of the largest flares (E = 1032 erg)?

Problem 10.2: Repeat the energy budget calculations for a nanoflare, a microflare,
and the largest flares with the bursty reconnection mode (Use Eqs. 10.1.8 and
10.2.3). How many magnetic islands would be needed for each event and what
coronal length scale would they require?

Problem 10.3: Add to a pre-existing dipole region additional small emerging dipole
regions (Fig. 10.10 left). How does the number of separatrix surfaces, sepa-
rator lines, and nullpoints grow with the number of added emerging dipoles?
Distinguish between non-overlapping emerging regions and overlapping ones.
How many separatrix surfaces, separator lines, and photospheric nullpoints are
created after the emergence of 10 isolated (non-overlapping) and 20 pair-wise
overlapping dipoles?

Problem 10.4: Copy Fig. 10.10 (right) and indicate the direction of the magnetic
field in each domain. Does it agree with the magnetic field directions shown in
Fig. 10.27? Indicate the path of a field line during spine reconnection. From
where to where does the footpoint of a reconnecting spine field line move?

Problem 10.5: Approximate the frequency distribution of magnetic fluxes Φ = AB
of Hagenaar et al. (2003) shown in Fig. 10.13 with a powerlaw distribution, e.g.,
N(Φ) ∝ Φ−2. Assume the scaling law B(A) ∝ A1.7 (Eq. 9.7.17) between the
magnetic field strength B and the area A of a magnetic element. What frequency
distribution do you infer for the areas, N(A)? Based on the lower limit of active
regions given in Fig. 10.13, Φ0 = 3 × 1020 Mx and A0 = 2.5 deg2, how much
larger are the area Amax and magnetic field Bmax at the upper end of the dis-
tribution (at Φmax = 5 × 1022 Mx), and how much smaller are the area Amin
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and magnetic field Bmin of the smallest ephemeral region at the lower end of the
distribution (at Φmin = 5 × 1018 Mx)?

Problem 10.6: Verify the expressions for chromospheric reconnection inflow speeds
v1 (Eq. 10.4.1) in the model of Litvinenko (1999a), using the MHD equations of
continuity and momentum, and Ohm’s law, in lowest order applied to a current
sheet with length 2Λ and width 2a.

Problem 10.7: Discuss how the driver speed of reconnection processes (vx, vy , or vz

in Table 10.1) relates to the reconnection inflow or outflow speed in the various
flare models listed in Table 10.1.

Problem 10.8: Verify the universal scaling laws between emission measure and
flare temperature in the reconnection model of Shibata & Yokoyama (1999),
expressed in Eq. 10.5.7. Derive the scaling law for the total thermal flare energy
Eth from the same model. What is the thermal flare energy for a typical solar
flare with B = 50 G, n0 = 1011 cm−3, and T = 3 × 107 K?

Problem 10.9: Label all the observational signatures listed in Table 10.2 (which pro-
vide evidence for magnetic reconnection) in a flare model cartoon like Fig.10.21.
Discriminate to which of the six flare models discussed in §10.5.1−6 the obser-
vations apply.

Problem 10.10: Measure the reduction of shear angles between the prereconnection
and postreconnection field lines in the 8 flares reconstructed in Figs.10.31−32
(use third row of Figure panels). Can you confirm the range mentioned in the
text?

Chapter 11: Particle Acceleration

Problem 11.1: Calculate the gyration radii of different heavy ions (given in Table
11.3) for typical coronal conditions (Ti = 106 K, B = 10 G) and compare them
with the dimensions of Parker-type current sheets (§10.1.1) and magnetic islands
caused by the tearing mode (§10.2.1). Predict whether these ions have regular or
chaotic orbits near magnetic X- and O-points (§10.3.3−4)?

Problem 11.2: Estimate the proton drift speed for the gravitational force given in
Eq.(11.1.8) for a coronal magnetic field of B = 100 G. What values need the
other parameters (E, dE/dt,∇B, Rcurv) to produce a comparable particle drift
speed? Are the values depending on the coronal magnetic field? How long
is the drift time until a proton becomes scattered out of a current sheet with
∇B = B/l?

Problem 11.3: Predict the electron-to-proton ratio for an observed electron spectrum
of N(ε) ∝ E−δ (for δ = 3), if equipartition of energy (Eq. 11.1.18) applies to
a particular acceleration mechanism. Hint: Assume that electrons and protons
have the same velocity to produce hard X-rays by p − e bremsstrahlung.
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Problem 11.4: How do the Dreicer electric field (Eq. 11.3.2) and the critical threshold
velocity vr (Eq. 11.3.3) for runaway acceleration change for a typical range of
flare parameters (Te = 10, ...30 MK, ne = 109, ..., 1012 cm−3)?

Problem 11.5: Write down the equations of motion in a 3D cartesian coordinate
system for the super-Dreicer DC electric field configuration envisioned in the
model of Litvinenko (1996). See description in §11.3.2 and Fig. 11.3.

Problem 11.6: Derive analytically the parameters v0, V, e of the resonance ellipse
(Eqs. 11.4.25−29) from the general Doppler resonance condition (Eq. 11.4.6).
Hint: Start with inserting the Lorentz-factor γ = 1/

√
1 − β2 and splitting the

velocity components into parallel and perpendicular components, β‖ = v‖/c and
β⊥ = v⊥/c.

Problem 11.7: Plot the dispersion relations ω(k) of the wave types given in Table
11.2 for typical coronal parameters and verify the diagram shown in Fig. 11.11.

Problem 11.8: Estimate the maximum energy gain of a 10 keV electron for shock-
drift acceleration (using Eq. 11.5.16), for angles of θBn = 80◦−89◦, θvn = 45◦,
and α = 1. What angles between the magnetic field and the shock normal is most
favorable for acceleration?

Problem 11.9: Verify the diagram of energy gain by first-order Fermi acceleration
shown in Fig. 11.20, using the model of Tsuneta & Naito (1998) specified by
Eqs. (11.5.28−30).

Problem 11.10: Measure the shock speed from the frequency-time drift rate of the
type II burst in Fig. 11.21, assuming plasma emission at the fundamental and
harmonic (split band feature) and a hydrostatic density model with a scale height
of λT ≈ 46, 000 km. Hint: Use Eq. (15.4.10).

Chapter 12: Particle Kinematics

Problem 12.1: Generalize the time-of-flight difference formula (12.2.1) for particles
with velocities β1, β2 and arbitrary pitch angles α1, α2, traveling on different
field lines with twist angles θ1, θ2, using the definitions of Eqs. (12.2.2−4).

Problem 12.2: Estimate the time accuracy of the HXR time delay measurements ∆tij
between different energy channels i = 3 and j = 4, ..., 10 based on the error
propagation law (Eq. 12.2.6) and the count rate spectrum shown in Fig. 12.3,
which can be approximated by N(ε) ≈ 4 × 104(ε/44 keV)−2. How well do the
estimated uncertainties agree with the values specified in Fig. 12.4 for an average
time scale of τ ≈ 0.2 s?

Problem 12.3: What electric field strength (in [statvolt cm−1]) follows from the DC
acceleration model (with Eq. 12.3.2) in the fit to the data shown in Fig. 12.7 (left
panel)? Is this a sub-Dreicer or super-Dreicer field, for typical flare densities and
temperatures?

PROBLEMS
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Problem 12.4: Derive the nonrelativistic approximations for acceleration time for
the simplest electric DC-field acceleration model (Eq. 12.3.4) and show how the
relativistic expression (Eq. 12.3.5) matches the nonrelativistic limit.

Problem 12.5: Express the hard X-ray pulse duration tw resulting from the field
line relaxation after a reconnection process in dimensionless units for magnetic
scale heights (LB/10 Mm), magnetic fields (B/100 G), and electron densities
(ne/108 cm−3), using the approximation given in Eq. (12.4.18). What is the
time scale if all dimensionless parameters are unity?

Problem 12.6: Modify the pulse shape model (Eq. 12.4.16) for anisotropic accelera-
tion: (a) for a ring or Dory−Guest−Harris distribution, e.g., N(α) ∝ sinN(α),
and (b) for a beam distribution, e.g., N(α) ∝ cosN (α).

Problem 12.7: Derive the expression for the bounce time tB (Eq. 12.5.5) in a parabolic
field (Eq. 12.5.2) and plot it as a function of the magnetic mirror ratio R in the
range of R = 1, .., 10. For what range of mirror ratios [Rmin,∞] does the cor-
rection factor qα for the conversion of electron time-of-flight distances to mag-
netic field line lengths change by less than 10% ?

Problem 12.8: Convolve a Gaussian injection profile f(ε, t) = f(ε) exp[−(t −
t0)2/2σ2

t ] (with a peak at t0 = 5.0 s and a Gaussian width σt = 1.0 s), with
a varying trapping time ttrap = 1, 2, ..., 10 s according to the function given in
Eq. (12.5.9). How does the delay of the peak in the convolved time profile change
as a function of the trapping time? This exercise can be done analytically, but is
easier to do numerically.

Problem 12.9: Determine the losscone angles for asymmetric hard X-ray fluxes at the
flare loop footpoints for flux ratios of A = 0.1, 0.5, 0.9 and precipitation fraction
of qprec = 0.5 (use Eqs. 12.6.17−19).

Problem 12.10: Calculate the critical energies εc (Eq. 12.6.21) for flare loop lengths
L = 5, 50 Mm and flare loop densities of ne = 109, 1010, 1011 cm−3. In which
cases are electron energies of ε = 25 keV thermal?

Chapter 13: Hard X-Rays

Problem 13.1: Enumerate the similarities between Fourier-type hard X-ray imagers
(SMM/HXIS, Yohkoh/HXT, RHESSI) and radio interferometers, e.g., the Very
Large Array (VLA). Compare the concept of a rotation-modulated collimator
(RMC) hard X-ray imager with that of Earth-rotation aperture synthesis in radio.

Problem 13.2: Express the hard X-ray spectrum I(εx) with the the simple Kramers
bremsstrahlung cross section (Eq. 13.2.9), rather than using the Bethe-Heitler
cross-section (Eq. 13.2.7) that is used in Eq. (13.2.12). Can you then predict the
powerlaw slope γ of the hard X-ray spectrum for a particle injection spectrum
with powerlaw slope δ?
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Problem 13.3: Calculate the low-energy cutoff ε(h) of a nonthermal bremsstrahlung
spectrum as a function of the height hA of the acceleration source with height
hX where most X-rays are emitted, assuming that the cutoff is given by the
criterion of equal travel and collisional deflection times (Eq. 12.6.21), using a
simple hydrostatic density model, e.g., ne(h) = n0 exp(−h/λT ), with n0 = 109

cm−3and λT = 46 Mm. For an acceleration source in height hA = 100 Mm,
what are the cutoff energies at heights of hX =2, 20, and 50 Mm? How do the
cutoff energies change if the electrons propagate in a high-density fluxtube with
a base density of n0 = 1011 cm−3?

Problem 13.4: Carry out a Monte-Carlo simulation of the distribution of hard X-ray
pulse durations τw (Eq. 13.4.2). Let each parameter be normally distributed with
the same gaussian width σx/ < x > with respect to the mean value < x >.
Conduct three simulations for σx/ < x >= 0.2, 0.4, and 0.6. How does the
e-folding time constant of the resulting pulse width distribution change? Can
you reproduce the observed distributions shown in Fig. 13.10?

Problem 13.5: Measure the relative hard X-ray delays for case 5 in Fig. 13.15, be-
tween 50 and 300 keV, and use the TOF formula (Eq. 13.5.8), using electron-to-
photon energy conversion factors qε (Eq. 13.5.6) from Fig. 13.14 for a spectral
slope of γ = 3 and the largest high-energy cutoff, in order to estimate the TOF
distance. How close does it agree with the value given in Fig. 13.15 for case 5?

Problem 13.6: What is the time-of-flight distance ratio lTOF /r if the altitude of the
acceleration source is a factor h/r = 1.5 higher than the flare loop radius r?
Hint: use Eq. (13.5.9).

Problem 13.7: Calculate the asymmetry angles of acceleration sources for relative
time delays of ∆t = 100 ms between conjugate footpoint sources, for elec-
tron energies of ε = 25, 50, 100 keV and a loop radius of r = 15 Mm (using
Eq. 13.5.12). Are such asymmetries larger or smaller than observed in the Ma-
suda flare (Fig. 13.34)?

Problem 13.8: Calculate what relative trapping time delays due to collisional deflec-
tions (Eq. 12.5.11) are expected for trap densities of ne ≈ 1010 − 1011 cm−3

(Fig. 13.23) between 50 keV and 100 keV electrons. Compare with the observed
delay in flare # 1361 shown in Fig. 13.22, assuming typical electron-to-photon
energy conversion factors of qε ≈ 2.

Problem 13.9: Estimate from the footpoint asymmetries observed in Flare # 1032
(3rd example shown in Fig. 13.27) the loss cone angles α1 and α2 for trapping
fractions qprec = 0.1, 0.5, 0.9 (using Eqs. 12.6.17−19). Hint: Measure the flux
ratios at both footpoints in Fig. 13.27, assuming that the y-axis is a linear flux
scale.

Problem 13.10: Estimate the flux contrast Ftop/Fmax between the hard X-ray emis-
sion between from the looptop (assumed to be at position z = 10 Mm) and that
from the brightest source (at z = zmax) from the hard X-ray profiles dI/dz for
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electron energies of ε = 10, 20, ..., 60 keV (using Fig. 13.28). At what ener-
gies can a hard X-ray imager with 20% flux contrast separate the two identically
bright footpoint sources?

Chapter 14: Gamma Rays

Problem 14.1: Identify in each of the gamma-ray emission processes listed in Table
14.1 the projectile particles, the target particles, where they originate (corona,
chromosphere), and where they interact (corona, chromosphere).

Problem 14.2: Identify the gamma-ray lines in the spectrum shown in Fig. 14.3 (top)
based on the energies of nuclear de-excitation lines listed in Tables 14.1 and 14.2
and compare the result with the labeled spectrum in Fig. 14.2. Which lines are
not detectable in the spectrum observed in Fig. 14.3?

Problem 14.3: Compare the exponential decay times in the time profiles shown in
Figs. 14.5 and 14.6 with the collisional trapping times given in Eq. (14.2.2).
Assuming that coronal traps have typical densities of ne = ni ≈ 109 − 1010

cm−3, what kinetic energies do you infer for the trapped ions that produce the
gamma-ray lines after precipitation to the chromosphere?

Problem 14.4: How can we tell from the time profile shown in Fig. 14.6 when ex-
tended continuous acceleration occurs, and when trapping without acceleration
is at work?

Problem 14.5: Compare the observed or fitted line widths in the spectra shown in
Fig. 14.8 (also given in Table 14.2, footnote c) and compare with the theoretical
line widths for the nuclear de-excitation lines given in Table 14.2. Does RHESSI
resolve these gamma-ray lines? Note that the instrumental resolution is about
3.0 keV at 847 keV, 4.1 keV at 1779 keV, and ≈ 10 keV at 6129 keV (Smith et
al. 2003). What lines are significantly broadened by the instrumental resolution?

Problem 14.6: What time delay is expected between hard X-rays produced by 25
keV electrons and gamma-ray lines produced by 5 MeV ions in a flare loop with
a half length of L = 100 Mm (see Section 14.3.3)?

Problem 14.7: What are the projectile particles and target particles that produce the
2.223 MeV neutron capture line?

Problem 14.8: Measure the width of the positron annihilation line at 511 keV in the
line profile shown in Fig. 14.16 (left) and determine the temperature of the target
medium with Eq. (14.5.12)?

Problem 14.9: At what energy does pion decay radiation dominate over electron
brems-strahlung, based on the spectrum shown in Fig. 14.17?

Problem 14.10: Make a list of all solar instruments and spacecraft that carried gamma-
ray detectors, based on the information given in §14.
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Chapter 15: Radio Emission

Problem 15.1: Use a coronal/heliospheric electron density model ne(R), e.g., the
Baumbach-Allen model given in Eq. (1.6.1), the ten-fold Baumbach-Allen model
for active regions, or the heliospheric model by Erickson (1964) (Eq. 1.6.2), cal-
culate the plasma frequency as function of the distance R from the Sun, and try
to reproduce the curve fp(R) shown in Fig. 15.1. Which model agrees best at
0.01 and 100 solar radii?

Problem 15.2: At what frequency does each radio spectrum shown in Fig. 15.2 be-
come optically thin, say where τ <∼ 1?

Problem 15.3: The Yohkoh soft X-ray image in Fig. 15.3 (left) shows a flare loop
with an electron temperature of Te ≈ 11 MK and a peak electron density of
ne ≈ 2 × 1012 cm−3. The field-of-view of the image is about 170,000 km.
Calculate the free-free absorption coefficient αff (Eq. 15.2.1), optical depth τff

(Eq. 15.2.3), and radio brightness temperature TB for the radio frequency of the
image shown in Fig. 15.3 (right). Hint: Assume a constant absorption coefficient
along the line-of-sight and estimate the diameter of the flare loops assuming that
both image panels in Fig. 15.3 have the same field-of-view.

Problem 15.4: Gyrosynchrotron spectra of an asymmetric flare loop are shown in
Fig. 15.4 for the looptop and the two footpoints. At what frequencies are the
footpoints brighter than the looptop? Are the footpoints separable in the simu-
lated images in Fig. 15.4 for these frequencies?

Problem 15.5: Estimate the electron density in the radio-emitting trap from the ex-
ponential decay time of the 17 GHz light curve shown in Fig. 15.6 and the theo-
retical expression for collisional deflection times given in Eq. (14.2.2). Assume
a typical energy of εR ≈ 300 keV for the electrons that are responsible for
gyrosynchrotron emission. (The tickmarks of the time axis in Fig. 15.6 mark
intervals of 10 s.)

Problem 15.6: Determine the kinetic energy of the electron beam from the velocity
spectra shown in Figs. 15.11, using the relativistic formulae given in §11.1.3.

Problem 15.7: Calculate the propagation speed of the type III-producing electrons
at the leading edge shown in Fig. 15.13, radiating at a fundamental plasma fre-
quency of ν = 125 kHz, using the heliospheric electron density model ne(R)
of Erickson (1964) (Eq. 1.6.2). How many solar radii away from the Sun is this
radio emission expected?

Problem 15.8: What is the plasma density at the top of the coronal loop in which type
U burst-producing electron beams propagate during the 25/08/80 event shown in
Fig. 15.17 (top right panel)?

Problem 15.9: Explain in words the difference between the process of electron-
cyclotron maser emission and stochastic acceleration (compare the maser growth
rate in Eq. (15.5.1) and the wave-particle interaction rate in Eq. (11.4.5).
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Problem 15.10: How does the radio bandwidth of decimetric millisecond spikes de-
pend on the local magnetic field B and plasma temperature T (use Eq. 15.5.2)?

Chapter 16: Flare Plasma Dynamics

Problem 16.1: Derive an expression for the critical velocity vc for run-away electrons
in terms of the electron collision time τce, the electron thermal velocity vTe, and
the electric field E. Hint: Use the definition of the Joule heating time scale given
in Eq. (16.1.1) and the definition of plasma parameters in Appendix D.

Problem 16.2: Measure the ratios of parallel and perpendicular temperature changes
in the evolutionary curves shown in Fig. 16.3 (right panels; between the start and
end time of the time axis). What relative changes do you predict for the widths
of the parallel and perpendicular velocity distributions of the ions with respect to
hydrogen, assuming that all ions initially had the same temperature? Compare
them with the velocity distributions shown in Fig. 16.3 (left panels). For which
ions do your predictions agree with the simulations?

Problem 16.3: Derive the scaling law for flare looptop temperatures, Eq. (16.2.1), us-
ing similar arguments as for the unification of flare models discussed in §10.5.7.

Problem 16.4: In what altitudes do you expect Hα emission, white-light emission,
and UV emission in solar flares, based on the discussion in §16.2.3−5?

Problem 16.5: Measure the blueshift in the Ca XIX line profile shown in Fig. 16.11
and verify the derived Doppler velocity given in the Figure caption. Name po-
tential error sources when determining the Doppler shift.

Problem 16.6: Predict the frequency-time drift rates dν/dt (Eq. 16.3.2) of decimetric
radio emission that occurs in a chromospheric evaporation front, based on the
mean parameters measured in Table 16.2, and assuming a mean temperature
of Te = 1.5 MK for the background corona. Apply it to the observation in
Fig. 16.15, assuming a propagation angle of θ ≈ 0◦.

Problem 16.7: Derive the expressions for conductive cooling time and radiative cool-
ing time in terms of changes in the thermal energy. Compare them with the
expressions given in Eqs. (16.4.4) and (16.4.9). Give your expressions in dimen-
sionless units for typical flare parameters, i.e., electron densities of ne = 1011

cm−3, and flare plasma temperatures of Te = 107 K (Te = 106 K) for conductive
(radiative) cooling, and flare loop half lengths of L = 10 Mm.

Problem 16.8: For what flare temperature are the conductive and radiative cooling
times (derived in Problem 16.7) equal, using typical flare parameters of ne =
1011 cm−3 and L = 10 Mm?

Problem 16.9: What is the relative importance of conductive and radiative cooling at
the beginning, peak, and decay phase of a flare?
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Problem 16.10: The Bastille Day flare (2000-Jul-14) involved the heating and subse-
quent cooling of a series of over 200 loops (see EUV loop tracings in Fig. 10.33).
The time delays of the peak fluxes in cooler and cooler wavebands are shown in
Fig. 16.16 and specified in Table 16.3. If each loop cools on time scales indi-
cated by the Table, what is the minimum number of successive flare loops that
is required to provide the observed 30 minutes of continuous emission in soft
X-rays at temperatures of Te ≥ 2 MK? What is the average number of loops
seen simultaneously during the flare?

Chapter 17: Coronal Mass Ejections

Problem 17.1: Identify for each of the five theoretical CME models described in
§17.1 (represented with mechanical analogs in Fig. 17.1) which hydrodynamic
or MHD instability (Table 6.1, Fig. 6.11) or flare model (§10.5 and Table 10.1)
represents the physical driver.

Problem 17.2: Estimate the number of helical windings in the interior filament shown
in the numerical simulations by Amari et al. (2003) (see Fig. 17.3). Compare
with the instability criteria for the kink instability (§6.3.9) and assess whether
the simulated filaments fulfil the instability criteria.

Problem 17.3: How do the structures of an erupting filament seen in UV (shown
in Fig. 17.5) relate to the theoretical MHD model shown in Fig. 17.3. Identify
which magnetic field line shown in Fig. 17.3 corresponds most closely to the
erupting filament shown in the TRACE image (Fig. 17.5).

Problem 17.4: Measure the distance of the CME front in the pictures shown in
Fig. 17.6 and estimate how much earlier the CMEs were launched on the so-
lar surface, using the CME speeds published in the NRL/CU/GSFC online CME
catalog. The speeds (in the plane of sky) are 680, 1863, 792, 751, and 1556 km
s−1 for the 5 CMEs listed in Fig. 17.6 Which picture was taken closest to the
launch? Note that the solar disk is indicated with a white circle and assume that
a CME moves at a constant speed since onset.

Problem 17.5: How far is the center of the helical fluxrope located away from Sun
center and what is the radius of the helical fluxrope (in units of solar radii) in the
three cases shown in Fig. 17.7, 17.8 (left panel), and 17.9 (at 14:51 UT)?

Problem 17.6: Calculate how the average density n(t) of an expanding CME changes
as function of time, assuming radial expansion n(r) ∝ r−2 and average speed
vCME = r/t. How many hours after launch does a CME have an average
density of ne = 107, 105, 103 cm−3, if it propagates with an average speed of
vCME ≈ 1000 km s−1 and has an initial coronal density of n0 = 109 cm−3?
What are the corresponding distances from Sun center?

Problem 17.7: Assuming a stratified atmosphere (with a temperature of Te ≈ 1.0 MK
and an average base density of n0 = 109 cm−3), what mass fraction of an active
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region needs to be accelerated to explain a CME-mass of mCME = 1014 − 1016

g, assuming that the mass is ejected vertically above an area with a longitudinal
(l) and latitudinal (b) extent of 45◦ each, bordering the solar equator?

Problem 17.8: Estimate the terminal velocity of fast CMEs, assuming that their total
energies are εtot ≈ 1029 − 1032 erg and their masses are mCME ≈ 1014 − 1016

g. Assume that the most energetic CME has the highest mass, as well as that the
least energetic CME has the lowest mass.

Problem 17.9: Estimate the maximum density rarefaction from the EUV dimming
(assuming an EUV intensity of IEUV ∝ EM ∝ ∫ n2

edz) shown in the time
profiles in Figs. 17.17 and 17.19. If the CME has a spherical expansion in the
heliosphere, what linear size increase does this density rarefaction correspond
to?

Problem 17.10: The Ulysses spacecraft has a high-latitude solar orbit, starting in the
aphelion near Jupiter on February 8, 1992, approaching the Sun at 80◦ southern
latitude on September 13, 1994, and traveling though high northern latitudes
during June to September 1995. Can you explain the variation of the solar wind
speed that Ulysses observed according to the time profile shown in Fig. 17.21
(top).
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Chapter 1: Introduction

Solution 1.1: Gamma-rays are covered by SMM/GRS, CGRO/OSSE, and RHESSI
(≈ 100 keV − 160 MeV ≈10−4 − 10−1 Å), hard X-rays by CGRO/BATSE,
SMM/HXRBS, Yohkoh/HXT, and RHESSI (≈10 keV − 100 keV ≈ 0.1 − 1
Å), soft X-rays by SMM/HXIS, BCS, FCS, Yohkoh/SXT (≈0.5 keV − 10 keV
≈ 1−25 Å), EUV by NRL rockets, SoHO/EIT, CDS, TRACE (≈ 150−800 Å),
UV by SMM/UVSP, SoHO/SUMER, TRACE (≈ 500− 1600 Å), white-light by
SMM/CP, SoHO/LASCO, TRACE (≈4400-6500 Å), infrared by SMM/ACRIM,
and radio by VLA, Culgoora, Nançay, OVRO, Nobeyama, RATAN-600 (≈1 cm
− 3 m ≈100 MHz−30 GHz). Gaps in wavelength ranges that are not covered
by these solar missions and instruments can be found in UV (25 − 150 Å), in
optical (≈ 1600 − 4400, 6500− 8000 Å), in infrared (0.8 µm−1 mm), in high-
frequency radio (≈1 mm−1 cm ≈ 30 − 300 GHz), and in low-frequency radio
( <∼ 100 MHz, >∼ 3 m; decametric, hectometric, and kilometric wavelengths).

Solution 1.2: According to the compilation in Table 1, the wavelength ranges in soft
X-rays (SXR), EUV, and radio display the richest variety of coronal phenomena,
because of their sensitivity to coronal temperatures (≈ 1 − 2 MK).

Table 1: Coronal phenomena versus observability in wavelength regimes
Coronal phenomena γ-rays HXR SXR EUV,UV Hα WL radio
Active regions X X X X X
Quiet Sun X X X X X
Coronal holes X X X
Helmet streamers X X X X
Filaments, prominences X X X X X
Coronal, postflare loops X X X X
Sigmoid loops X X X
Soft X-ray jets X X
Nanoflares X
Microflares X X X
Flares X X X X X X X
Coronal mass ejections X X X
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Solution 1.3: The longitudinal magnetic field is statistically lower by a factor of

< B‖ > / < B >=< cos θ >=
∫ π/2

0 cos θ dθ/
∫ π/2

0 dθ = 2/π ≈ 0.64.
The expected change of the soft X-ray flux during a solar cycle is a factor of
|1000 × 0.64|1.7/|10 × 0.64|2.1 ≈ 1200.

Solution 1.4: Using the height variable h = R − R� [Mm], the dipole model is
BD(h) = Bfoot(1 + h/hD)−3 and the powerlaw model of Dulk & McLean
(1978) is BP (h) = 0.5(h/696)−1.5, with a value of BP (h = h1) = 177 G at
the lower limit of h1 = 14 Mm. The best fit at the lower limit can be found
by requiring identical values, BD(h = h1) = BP (h = h1), and identical first
derivatives dBD/dh(h = h1) = dBP /dh(h = h1) = −15.8 G/Mm, which
yields two equations for Bfoot and hD. They can be analytically solved, yielding
hD = h1 ≈ 14 Mm and Bfoot ≈ 1400 G. The dipole field yields progressively
lower magnetic fields with height than the powerlaw model, about a factor of 2
at a height of h = 60 Mm.

Solution 1.5: The Haussdorff dimension D2 is defined as D2 = log(NA)/ log(Nl)
in 2D, and the filling factor can be defined as qfill = NA/N2

l , because NA is the
number of pixels covered by a fractal structure in an Euclidian area of N2

l pixels.
The filling factor is unity for Euclidian filling, and qfill = 1 → NA = N2

l leads
to the Euclidian dimension D2 = log(N2

l )/ log(Nl) = 2. Thus, the filling factor

can be expressed as a function of the fractal dimension by qfill = N
(D2−2)
l , or

vice versa, D2 = 2 + log(qfill)/ log(Nl). So, for Nl = 102 and qfill = 0.1 the
fractal dimension is D2 = 1.5, and the filling factor for 10 times better resolution
(Nl = 103) and the same fractal dimension (D2 = 1.5) is qfill = 0.03.

Solution 1.6: Substituting the radial distance r = R/R� in the Baumbach-Allen
formula (Eq. 1.6.1) yields the base density n0(r = 1) = 108(2.99 + 1.55 +
0.036) = 4.6×108 cm−3 and the density gradient dne/dr(r = 1) = 108(−16 ∗
2.99−6∗1.55−1.5∗0.036) = −5.7×109 cm−3. This yields for an exponential
(barometric) density model with dne/dr(r = 1) = n0/(λ/R�) a scale height of
λ/R� = 0.08 or λ = 55.7 Mm, which corresponds to a scale height temperature
of T = 55.7/47 = 1.2 MK (with Eq. 3.1.16).

Solution 1.7: The peaks of the DEM distribution functions give the temperature of the
most abundant plasma in each region, i.e., T = 106.18 ≈ 1.5 MK for QR 91 and
QR 93; T = 106.2 ≈ 1.6 MK for AR 93; and T = 106.62 ≈ 4.2 MK for AR 91
and AR 93. The values at log(T = 1.5 MK)=6.18 are log(dEM/dT ) = 21.5 for
AR 93 and log(dEM/dT ) = 20.75 for QR 93, yielding a factor 1021.5−20.75 =
100.75 = 5.6 difference in the emission measure, which corresponds to a density
factor of

√
5.6 = 2.4 in electron density, if the same column depth is assumed

(according to Eq. 1.7.1).

Solution 1.8: The plasma-β ranges shown in Fig. 1.22 are: β ≈ 0.1−100 at a photo-
spheric height of h = 0.25 Mm, β ≈ 0.0005−0.02 at a coronal height of h = 10
Mm, and β ≈ 0.06−100 at a heliospheric height of h = 1400 Mm. Inserting the
densities ne and temperatures Te from Table 1.1, this yields the following ranges
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for the magnetic field: B = 10 ∗√0.07 ∗ 0.5 ∗ 2 × 108 ∗ 0.005/[0.1− 100] =
187−5900 G in the photosphere, B = 10∗√0.07 ∗ 1.0 ∗ 1 ∗ 2/[0.0005− 0.02] =
26− 167 G in the corona, and B = 10 ∗√0.07 ∗ 1.0 ∗ 0.01 ∗ 1/[0.06 − 100] =
0.03 − 1.0 G in the heliosphere.

Solution 1.9: Atoms that have a chemical abundance A/AH
>∼ 10−4 have abundance

values of a = 12.0 + 10 log(A/AH) >∼ 8.0, which are according to Table 1.2:
He (a=10.93), C (a=8.52), O (8.83), and Ne (a=8.08). In the sensitivity range of
10−8 <∼ A/AH

<∼ 10−4 we expect elements with abundance values of 4 < a < 8
to be discovered. This includes the following atoms that have been detected in
the photosphere but not in the corona (see Table 1.2): F (a=4.56), K (a=5.12), Ti
(a=5.02), V (a=4.00), Cr (a=5.67), and Mn (a=5.39).

Solution 1.10: With the conversion formulae Eqs.(1.10.6) and (1.10.1) we obtain
(a) λ = 3.2 µm (infrared) for sunspot umbrae, (b) λ = 2.4 µm (infrared) for the
photosphere, (b) λ = 7200 Å (visible light) for the transition region, (c) λ = 144
Å (EUV) for coronal loops, and (d) λ ≈ 10 Å ≈ 1 keV (soft X-rays) for flare
loops.

Chapter 2: Thermal Radiation

Solution 2.1: The free-free absorption coefficient for Te = 106 K, ne = 109 cm−3,
ln Λ ≈ 20, and ν = [108, 109, 1010] Hz is αff ≈ 10−2ν−2n2

eT
−3/2
e ln Λ ≈

[2×10−8, 2×10−10, 2×10−12] cm−1. The free-free opacity over a scale height

of λT = 5 × 109 cm is τff ≈ ν−2
GHzn

2
9T

−3/2
6 (ln Λ/20)(λT /5 × 109 cm) =

[100, 1, 0.01]. The free-free opacity τff (z) changes along the path z linearly
for a constant absorption coefficient αff , according to Eq. (15.2.3): τff (z) =∫ z

0
αff (z′)dz′ ≈ α z, which yields the following integral for the radio bright-

ness temperature (Eq. 15.2.4): TB = Te

∫ λT

0 exp(−αff z) αffdz = Te[1 −
exp (−τff )], yielding values of TB/Te = [1.00, 0.63, 0.01] for the frequencies
ν = [108, 109, 1010] Hz. Thus, the radio brightness temperatures are TB =
[106, 6.3 × 105, 104] K for these frequencies. The corona becomes optically
thick at radio frequencies of ν <∼ 1 GHz.

Solution 2.2: Substituting the variable ν = c/λ and inserting ν3 = c3/λ3 and the
derivative dν = [dν(λ)/dλ]dλ = −(c/λ2)dλ into the expression Bν(T )dν
(Eq. 2.2.2) yields the desired expression as function of wavelength, Bλ(T )dλ
(Eq. 2.2.3).

Solution 2.3: Substituting the variable x = λ(kBT/hc), i.e., λ = x(hc/kBT ), into
the Planck function (Eq. 2.2.3) yields the expression Bλ(x) ∝ x−5[exp (1/x)−
1]−1. The maximum is found by setting the derivative to zero, ∂Bλ(x)/∂x = 0,
which yields the equation −1 + x−1e1/x/5(e1/x − 1) = 0. For x � 1 we
have approximately e1/x ≈ (e1/x − 1) and the equation simplifies to −1 +
1/5x ≈ 0, which has the solution x ≈ 0.2. The exact numerical solution is
x = 0.2013. From this we can find the wavelength at the peak of the Planck
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function, λmax = x(hc/kBT ) = 0.2898/T [K] (Eq. 2.2.6), by inserting the
constants h, c, kB given in Appendix A.

Solution 2.4: The total thermal energy is (using Eq. 13.3.2) Wth = 3nekBTeV =
4.1×1029(EM49T7/n11) ≈ 2×1029 erg, inserting the emission measure EM =
neniV = 1.8 × 1048 cm−3 and the flare plasma temperature Te = 29.9 × 106

K from Fig. 2.6. The frequency distribution shown in Fig. (9.27) shows a range
of nonthermal flare energies Wnth ≈ 1027 − 1032 erg, so the 1980-June-27 flare
shown in Fig. 2.6 is a medium-sized flare.

Solution 2.5: Combining the two formulae (2.4.2) and (2.4.3) yields λ = [RHZ2

(1/n2
1 − 1/n2

2)]
−1, or specifically for helium (Z=2), by inserting the Rydberg

constant RH = 109, 740 × 10−8 Å−1, λHe = 228 Å×[1/n2
1 − 1/n2

2]
−1 Å.

This yields for the He Lyman series (n1 = 1, n2 = 2, 3, 4, ...,∞) the wave-
lengths λHe,Ly = 304, 256, 243, ..., 228 Å, which are in the EUV domain. For
the He Balmer series (n1 = 2, n2 = 3, 4, 5, ...,∞), the wavelengths λHe,Ba =
1641, 1216, 1085, ..., 911 Å are in the UV domain. For the He Paschen series
(n1 = 3, n2 = 4, 5, 6...,∞), the wavelengths λHe,Pa = 4689, 3205, 2735, ...,
2049 Å are in the optical light domain. Note that the exact atomic wavelengths
differ from the Rydberg formula by a few Å due to the larger mass of the He
nucleus.

Solution 2.6: The population density of excited states at temperature Te is given by
the Saha equation (Eq. 2.7.5). Inserting the values ε0 = 6.1 eV, ε1 = 11.9 eV,
g0 = 1, g1 = 2, Te = 6000 K into Eq. (2.7.5), with the constants kB, h, me

and conversion factor of 1 eV into erg given in Appendix A, leads to a popu-
lation ratio of N1/N0 ≈ 0.6 for a photospheric density of ne = 1017 cm−3,
and N1/N0 ≈ 6 × 105 for a density of ne = 1011 cm−3 at the top of the chro-
mosphere. So, the line intensity (Eq. 2.8.1) is expected to be much stronger for
(ionized) Ca II at chromospheric densities of ne

<∼ 1016 cm−3 than for (neutral)
Ca I.

Solution 2.7: The ionization energy for hydrogen is ε = 13.6 eV, which corresponds
to a wavelength of λ=(12.4 keV/13.6 eV)=912 Å, according to Eq. (1.10.4). So,
ionization requires photons with UV wavelengths, while free-bound transitions
can be accomplished with free electrons of larger energies or smaller wave-
lengths (λ < 912 Å) in UV. Free-free emission and absorption mostly involves
photons with larger energies or shorter wavelengths, in EUV and soft X-rays.

Solution 2.8: Consult tutorial and examples given on the CHIANTI website, which
will guide you to reproduce the ionization equilibrium curves for Fe V to Fe XIX
as shown in Fig. 2.10.

Solution 2.9: The radiative flux per unit area and time is the volumetric radiative loss
rate ER multiplied with the scale height λT , i.e., FR = ERλT ≈ n2

eΛ(T )λT ≈
10−17.73n2

eT
−2/3
e 4.7×109(Te/106 MK) ≈ 104 erg cm−2 s−1 at Te = 1.0×106

K (using Eqs. 2.9.1, 2.9.2, and 3.1.16). The blackbody brightness would be much
higher, according to the Stefan−Boltzmann law (Eq. 2.2.7), B(T ) ≈ σT 4/π ≈
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2×1019 erg cm−2 s−1, but does not apply because the tenuous coronal plasma is
not optically thick (as required for blackbody radiation), and thus the brightness
is drastically reduced by the small opacity τ � 1.

Solution 2.10: Elements for which the coronal abundance has been measured and the
first-ionization potential (FIP) is given in Table 1.2, but do not appear in the FIP
diagram of Fig. 2.15, are: P (FIP=10.5 eV, a=5.5), Cl (FIP=13.0 eV, a=5.8), and
Ni (FIP 7.6 eV, a=6.25). Thus, measurements with a sensitivity in abundances
down to a fraction 105.5...6.25/1012 ≈ 3 × 10−7...2 × 10−6 of hydrogen are
needed to evaluate the FIP effect of these additional elements.

Chapter 3: Hydrostatics

Solution 3.1: Inserting the gravity for the Sun (g�) and for stars (g∗) using Eq. (3.1.2)
into the expression for the pressure scale height (Eq. 3.1.16) yields λ∗

p(Te) =
47,000 km ×(µ∗/µ�)−1(R∗/R�)2(M∗/M�)−1(Te/1 MK). Assuming µ∗ =
µ� and using the logarithmic mass and radial ratios interpolated for the given
spectral classes (e.g., Zombeck 1990, p.65 and p.73), we find (1) λ∗

p = 92 Mm
(Te/1 MK) for the giant star Vega, (2) λ∗

p = 3000 Mm (Te/1 MK) for the bright
giant Pollux, (3) λ∗

p = 94 Mm (Te/1 MK) for the white dwarf Regulus, and (4)
λE

p = p0/(ρ0ge) ≈ 8 km for the Earth.

Solution 3.2: Using Eq. (3.2.4) and a flat response function R(T ) = R0 in the tem-
perature range [T1, T2], where T1 = T −∆T/2 and T2 = T +∆T/2, and denot-
ing the DEM at the base of the fluxtube with DEM0 = dEM(T, h = 0)/dT , we
have (1) F (h) = DEM0R0∆T0 exp[−2(h/λ0)(T0/T )] for a narrowband filter,

and (2) F (h) = DEM0R0

∫ T2

T1
exp[−2(h/λ0)(T0/T )]dT for a broadband filter,

where T0 = 1.0 MK and λ0 = 47, 000 km.

Solution 3.3: Denoting the triangle that approximates the peak of the column depth
function zeq(h = 0) with a peak height z0 and base width h0/R� we are reading
off the peak values z0 = 0.35R� for T = 1 MK, and z0 = 0.90R� for T=4 MK,
and base widths of h0 = 0.05R� ≈ 50′′ for T = 1 MK, and h0 = 0.2R� ≈
200′′ for T = 4 MK. The column depths at disk center are zc = 0.033 for
T = 1 MK, and zc = 0.13 for T = 4 MK. The ratio of the column depths at
the center and limb, which are proportional to the center-limb brightening, are
then Ilimb/Icenter ≈ (z0/zc)[1 − r/(2h0)], which for the spatial resolutions
r = 1′′, 10′′, 100′′ yield the values Ilimb/Icenter ≈ 10.5, 9.5, 0.0 for T=1 MK,
and Ilimb/Icenter ≈ 6.8, 6.6, 5.1 for T=4 MK, respectively.

Solution 3.4: The inclination angles to the vertical are ϑ = 30◦, 60◦, and 60◦ for
the three loop positions. Since we are seeing the horizontally projected scale
height at disk center, the correction for the vertical scale height is λvertical

p =
λhorizontal

p / tan(ϑ) or a factor of
√

3 = 1.73 for loop (1). At the limb we are
seeing the vertical projection of the scale height (check Figs. 3.12 and 3.16),
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regardless of the azimuthal orientation, and thus the correction factor is unity for
both loops (2) and (3).

Solution 3.5: Assuming Poisson statistics, the fluctuations above a background of N
loops is proportional to

√
N , so the flux contrast is Floop/Fbackgr = c(N) ≈√

N/N = 1/
√

N , yielding a contrast of c(N)=32%, 10%, or 3.2% for N =
10, 100, 1000 loops.

Solution 3.6: Inserting the radiative loss rate ER(T ) = n2
eΛ(T ), the radiative loss

function Λ(T ) = Λ0T
−1/2, and the pressure p0 = 2nekBT into the auxiliary

RTV function (3.6.11) and integrating yields fR(T ) = (κp2
0Λ0/2k2

B)T . Insert-
ing this function fR(T ) into the inverse temperature profile s(T ) (Eq. 3.6.12)
and neglecting the heating term, i.e., assuming fH(T ) � fR(T ) yields with
L = smax = s(Tmax) the RTV scaling law Tmax = const(p0L)1/3 with the
constant const = (3/kB)1/3(Λ0/2κ)1/6 ≈ 1.8 × 103, which is close to the
original result of RTV (Eq. 3.6.14).

Solution 3.7: Inserting s = L/2 into Eq. (3.6.18) yields T (L/2) = Tmax[1 − 2−a]b,
and inserting sH/L = 1 into Eqs. (3.6.22-23) with the coefficients from Table
3.1 yields a = a0 + a1 = 2.356 and b = b0 + b1 = 0.311, amounting to a
temperature drop of T (s = L/2) = Tmax × 0.93, so a temperature decrease by
7%.

Solution 3.8: The relative TRACE 171 Å flux of loops is F (T )/F (T = 1 MK)=[1.00,
0.009, 0.003, 0.001], and the relative Yohkoh/SXT Al 1265 Å flux is F (T )/F (T =
5 MK)=[0.006, 0.536, 1.000, 0.822]. So, the brightest structures in TRACE 171
Å are the 1 MK loops, and in Yohkoh/SXT the 5 MK loops, respectively.

Solution 3.9: The flux contrast between looptop [at a height hT = L/(π/2)] and foot-
point is for an exponential density model: c(T ) = EM(hT , T )/EM(0, T ) =
exp(−2hT /λpT ). The contrast for a loop with a length of L = 100 Mm is
c(T = 1 MK)=0.066, and c(T = 5 MK)=0.58, respectively. So, if the detection
threshold is c > 0.1, TRACE will not see the top of the cold 1 MK loop, while
Yohkoh will see the top of a hot 5 MK loop.

Solution 3.10: Serio’s scaling law (Eq. 3.6.16) yields the base pressure p0 = L−1[T 3

(1400 exp[−0.08(L/sH)−0.04(L/λp)])−3, with the numerical values p0 = 3.6
dyne cm−2 for the cool (T = 3.0 MK), and p0 = 124 dyne cm−2 for the hot
loops (T = 10 MK). The resulting base density is then n0 = p0/(2kBT ) =
4.3 × 109 cm−3, and 4.5 × 1010 cm−3, respectively. The DEM distribution in
Fig. 3.30 yields dEM(T )/dlog(T ) ≈ 130× 1050 cm−3 for 3 MK loops, and ≈
25×1050 cm−3 for 10 MK loops, respectively. Assuming dEM(T )/dlog(T ) ∝
Nloopn

2
e, we find the following number ratio of cold to hot loops: Ncold/Nhot =

(130/25)× (n0,hot/n0,cold)2 = 560.
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Chapter 4: Hydrodynamics

Solution 4.1: All analytical steps from Eq. (4.1.1) through Eq. (4.1.24) are described
in detail in Section 4.1.

Solution 4.2: Inserting the density model n(h) = n0 exp (−h/λT ) with λT = λ0×
(T/1 MK) and λ0 = 46, 000 km, into the momentum equation (4.2.16), assuming
a sonic point v(s = L) = cs at the looptop h = L/(π/2), we obtain the scaling
law h(T ) = λ0 ln(cs/v0)(T/1 MK).

Solution 4.3: The radiative loss function ER = n2
eΛ(T ) = n2

eΛ0T
α = χρ2T α

can be approximated with a constant Λ0 = 10−21.94 = 1.15 × 10−22 erg s−1

cm−3 and α = 0 in the temperature range of 105.75 < T < 106.3 (see Fig. 2.14
and Rosner et al. 1978). The criterion for radiative instability, L < Lmax =
(κT

7/2
0 /n2

eΛ0)1/2 (Eq. 4.3.11) can then be expressed as a criterion for a critical

density, ne(L) > ne,min = L−1(κT
7/2
0 /Λ0)1/2 = 2.8×108 (100 Mm/L) cm−3

for a given loop half length L.

Solution 4.4: Using the density model ne(h) = n0 exp (−h/λT ), the continuity
equation ne(h)v(h) = n0v0, the scale height λT = 46, 000× (T/1 MK) km =
11,500 km for the formation temperature (T = 105.4 = 0.25 MK) of the O V
line (Fig. 2.12), and the height h ≈ 60′′ ≈ 44, 000 km and velocity v(h) = 60
km s−1 for the blob A shown in Fig. 4.8, we obtain a base velocity of v0 =
v exp (−h/λT ) ≈ 1.3 km s−1. Thus, blob A experiences a strong acceleration
over this height range.

Solution 4.5: The filter response function Ri(T ), which is a function of time t for
monotonic cooling, can be approximated with a Gaussian function, Ri[T (t)] =
R0 exp(−[T (t)−Ti]2/2∆T 2

i ). Assuming an exponential cooling process, T (t) =
T0 exp(−t/τcool), with a radiative cooling time of τcool ≈ 3kBT0/neαFIP Λ0

= 37.6 min (see Eqs. 5.4.1-4), we obtain the following delays between the peak
responses in the three filters (T171 = 1.0 MK, T195 = 1.5 MK, T284 = 2.0 MK):
t195 − t284 = 10.8 min, and t171 − t195 = 15.2 min, respectively. These delays
are close to the observed ones of loop #2 in Fig. 4.12.

Solution 4.6: The signal-to-noise ratio is proportional of the emission measure ratio
of the loop to the background, i.e., ∆I/I = EMloop/EMback = [n2

loop(h)w]
/[n2

backλT ] near disk center. For an exponential density model with super-hydro-
static scale height λ = qλλT , i.e., nloop(h) = n0 exp (−h/qλλT ), we obtain for
a loop with (nloop

e /nback
e ) = 2, (w/λT ) = 0.1, and h = λT , a contrast of

∆I/I = 50% at the loop base h = 0, ∆I/I = 24% at the looptop h = λT for a
super-hydrostatic scale height ratio qλ = 4, and ∆I/I = 5% at the looptop for
a hydrostatic scale height (qλ = 1). Thus, the looptops are easier to detect for
super-hydrostatic loops.

Solution 4.7: The acoustic travel time along a loop and back is ∆t = 4L/cs ≈ 12
min, for L = 30, 000 km (Fig. 4.22) and a sound speed of cs = 166 km s−1

(for T = 1 MK). The average time interval between two successive surges in
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the simulation shown in Fig. 4.22 is ∆tsurge ≈ 1000s ≈ 17 min, and thus they
could be triggered by reflected (acoustic) disturbances.

Solution 4.8: Insert the area correction factor defined by Chae et al. (1988), i.e.,
A(t[s]) = A(Th)[1 + (Γ2 − 1)(T [s]/Th)p]1/2/Γ (Eq. 4.8.6), into the DEM
expression dEM(T )/dT = A(s[T ])n2

e(s[T ])ds(T )/dT in Eq. (3.10.3).

Solution 4.9: The free-free opacity for ν = 0.074 GHz at T = 1.0 MK is τff ≈ 182
for ne = 109 cm−3, and τff ≈ 1.8 for ne = 108 cm−3, so the corona is op-
tically thick for densities ne

>∼ 108 cm−3 at this frequency, and thus the radio
brightness temperature is equal to the plasma temperature, TB ≈ Te, accord-
ing to the Rayleigh-Jeans approximation (Eq. 2.2.5). Since the electron tem-
perature in coronal holes, T hole

e
>∼ 0.8 MK (see Fig. 4.30), and in quiet Sun re-

gions, T quiet
e

<∼ 3.0 MK (Fig. 3.10), would only allow for a maximum contrast
of T quiet

e /T hole
e ≈ 3/0.8 ≈ 4, the radio emission in coronal holes has to be

optically thin for an observed contrast of ≥ 10, and thus the density in coronal
holes has to be ne < 108 cm−3.

Solution 4.10: At large distances where v � vc, the velocity behaves like v(r) ≈
(ln r)1/2, for which the first and third terms are dominant in Eq. (4.10.6) and
the density falls of like n(r) ≈ r−2(ln r)−1/2, so that the pressure vanishes at
infinity, as required in the interstellar medium.

Chapter 5: Magnetic Fields

Solution 5.1: For conversion of the Maxwell’s equations see Appendix C for ratio-
nalized mks-units. The Ampére law in mks-units is j = (1/µ)∇×B, and Ohm’s
law in mks-units is j = σ(E + v × B), see, e.g., Eqs. (2.15) and (2.9) in Priest
(1982). The Maxwell’s equations in matter contain the material constants µ and
ε, while these values are unity in vacuum in cgs-units.

Solution 5.2: From the dipole field line parameterization Eq. (5.2.22) we define the
distance to a footpoint with r0 = r1 sin2 θ0. The dipole is burried at a dipole
depth hD = r0 sin θ0, which yields the angle θ0 = arcsin [(hD/r1)1/3]. Defin-
ing two dipole field lines with height r1 and r2 above the dipole center, a loop
width can be approximately defined by the difference in distance from the dipole
center, i.e., w(θ) = (r2 − r1) sin2 θ. The expansion factor referenced to the loop
width at the footpoint is then ∆w(θ) = (r2 − r1)(sin θ/ sin θ0)2. A more ac-
curate expansion factor can be derived from transformation into cartesian x- and
y-coordinates.

Solution 5.3: Choosing the parameters k = l = 1, the parameterization of two force-
free field lines according to Eq. (5.3.19) is z1(x) = log[sin(x)]+z01 and z2(x) =
log[sin(x)]+ z02. The width of the fluxtube bound by these two field lines at the
looptop is ∆wtop = z2(x = π/2) − z1(x = π/2) = (z02 − z01). The footpoint
locations are constrained by the requirement z1(x1) = 0 and z2(x2) = 0, which
yields x1 = arcsin(exp[−z10]) and x2 = arcsin(exp[−z20]), so the footpoint
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separation width (with y(x) = αx+y0) is ∆wfoot =
√

(x2 − x1)2 + (y2 − y1)2

=
√

1 + α2× (x2−x1), and the loop expansion factor is qw = ∆wtop/∆wfoot.

Solution 5.4: The plasma-β parameter (Eq. 1.8.1) as a function of height h, using the
hydrostatic density model (Eq. 5.4.4) and magnetic dipole model (Eq. 5.4.5) is
β(h) = 16πξn0kBTeB

−2
0 exp (−h/λT )(1 + h/hD)6. A lower limit βmin(h)

can be derived with n0,min and B0,max, and an upper limit βmax(h) with n0,max

and B0,min, respectively.

Solution 5.5: Parameterize a helical field line first in a straight cylinder in cylindrical
coordinates, parameterized by its length l, radius r, twist angle θ, and azimuthal
angle ϕ0 of the starting point, i.e., ϕ(z) = ϕ0 + (z/r) tan(θ). Then transform
into a curved cylinder system, and calculate the projections onto a plane. S-
shaped field lines can be reproduced with helically twisted (force-free) field lines
(Fig. 5.19; α �= 0) as well as with a potential field model (Fig. 5.20; α = 0), and
thus cannot be used as discriminator between the two models.

Solution 5.6: Using the definition of the α-parameter for a uniformly twisted fluxtube
(Eq. 5.5.9) we find l = 4πNtwist/α ≈ 600 Mm for r � l. With the same
equation (5.5.9) we find r/l =

√
(4πNtwist/αl − 1)/2πNtwist = 1/4π ≈ 0.08

for Ntwist = 2.

Solution 5.7: Examples can be found in: Observation of a 3D magnetic nullpoint
in the solar corona by Filippov (1999, Solar Physics 185, 297); Evidence for
the flare trigger site and 3D reconnection in multiwavelength observations of a
flare by Fletcher et al. (2001; ApJ 554, 451); or on TRACE webpages. The
TRACE Picture-of-the-Day (POD) website http://trace.lmsal.com/POD/ can be
searched with the keyword “X-point”, which displays X-point configurations in
AR 10767 (2005-May-24), AR 10561, AR 9373, AR 9149+9147, AR 9611, and
active regions on 2005-Mar-29, and 2000-May-20 11:12 UT.

Solution 5.8: Without magnetic fields (νB = 0) the gyrofrequency variables disap-
pear in Eqs. (5.7.2-6) (Y = 0, YT = 0, YL = 0) and the refractive index is in
lowest order n2

ν,σ = 1 − X + X2 ≈ 1 − X = 1 − (νp/ν)2. With a magnetic
field, but longitudinal waves (k ‖ B, ψ = 0), we have YT = 0, YL = Y and
obtain in lowest order (X � 1) the approximation n2

ν,σ ≈ 1 − X/(1 + σY ).

Solution 5.9: The angular dependence of the gyro-opacity is shown in Fig. 5.26 for
s = 2, 3, 4. Strongest gyroemission is observed at angles θ ≈ 90◦ for X-mode,
and at θ ≈ 70◦ for O-mode.

Solution 5.10: The pressure balance (Eq. 5.8.2) leads to the relation B2
int(h) ∝

(pE − p0) exp (−h/λT,Ch), and assuming magnetic flux conservation B(h) ∝
1/A(h) yields the scaling A(h) ∝ exp (+h/2λT,Ch). The chromospheric height
is about 4 scale heights, hCh ≈ 4λT,Ch, which yields an expansion factor of
A(hCh)/A(h = 0) ≈ e2 ≈ 7.4.
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Chapter 6: Magneto-Hydrodynamics (MHD)

Solution 6.1: All the steps of the analytical derivation are described in detail in §6.1.4.
The last step from Eq. (6.1.31) to Eq. (6.1.32) can be gathered from §4.1.

Solution 6.2: The equations for particle conservation (Eq. 6.1.33 = 6.1.16), momen-
tum conservation (Eq. 6.1.34 = 6.1.17), Ampère’s law (Eq. 6.1.38 = 6.1.19), and
magnetic divergence (Eq. 6.1.37 = 6.1.21) are identical in the resistive and ideal
MHD equations. In the case of ideal MHD it is assumed that the plasma is a
perfect electric conductor. Setting σ → ∞ or 1/σ → 0, transforms the elec-
tric field from Eq. (6.1.39) to (6.1.22) and the induction equation Eq. (6.1.36) to
∂B/∂t = ∇× (v×B), where the electric field (Eq. 6.2.22) can be inserted and
leads to Eq. (6.1.20). After inserting 1/σ → 0, the energy equation (6.1.35) be-
comes identical with Eq. (4.1.18), which corresponds to the form of Eq. (4.1.4).
Inserting the entropy S from Eq. (4.1.18) and neglecting heating and cooling
(EH = 0, ER = 0,∇FC = 0) leads then to the adiabatic energy equation
(6.1.18).

Solution 6.3: The Lorentz force due to the loop curvature is (j×B)curv = (B2/4π)
/rcurv (Eq. 6.2.19). The curvature radius of a dipolar field line is rcurv ≈
(h + hD)/2, where h is the height of the loop and hD the dipole depth (see
Fig. 5.2). The curvature force is balanced by the radial magnetic pressure differ-
ence, (j×B) = −∇(B2/4π) = −[(B+∆B)2−B2]/4π∆r ≈ −2B∆B/4πw.
Thus the radial change of the magnetic field across the loop width is ∆B/B ≈
w/2rcurv = 1% for w = 1 Mm and rcurv = 50 Mm.

Solution 6.4: Parameterize a helical field line in cylindrical coordinates, transform it
into curved cylinder, and calculate 2D projections as shown in Fig. 6.3. Most of
the loops shown in Fig. 6.4 have a number of twists of Ntwist ≈ 1.

Solution 6.5: The twist angle is θ ≈ tan θ = 2π(w/2)Ntwist/L ≈ 0.22 rad (or
≈ 13◦). The required expansion speed to explain rotational Doppler shifts of
vrot ≈ 30 km s−1 is then (with Eq. 6.2.25) vexp ≈ vrot/ tan θ ≈ 130 km s−1.

Solution 6.6: Assuming that the observations show first the top of the loop and af-
ter 9 hours the footpoints of a twisted semi-circular loop, we obtain a vertical
emergence speed of v = ∆h/∆t = 0.3R�/9 × 3600 = 6.5 km s−1. The
footpoint separation according to the diagram in Fig. 6.9 top right is dfoot =√

(x2 − x1)2 + (y2 − y1)2 ≈√(63 − 50)2 + (16 − 0)2 ≈ 20 Mm. The length
of the semi-circular loop is then l = dfoot(π/2) ≈ 30 Mm. The angular
change of observed loop direction, which changes from |∆x/∆y|(t = 0) =
tan θ1 = 6/20 (θ = 17◦) to |∆x/∆y|(t = 9hr) = tan θ1 = 15/20 (θ = 37◦)
amounts to ∆θ ≈ 20◦. The number of turns of the twisted loop is thus Ntwist =
l tan(∆θ)/(2πr) ≈ 1.2 for a loop with a radius of r = w/2 = l/20 = 1.5 Mm
according to an aspect ratio of w/l = 0.1.

Solution 6.7: The Rayleigh-Taylor instability can occur in reconnection outflows in
flares, or at interfaces below prominences. The Kruskal-Schwarzschild insta-
bility can occur at the surface of (erupting) loops, filaments, and prominences
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that are not line-tied. The Kelvin-Helmholtz instability can occur in supersonic
CME fronts. The ballooning instability can occur in large-scale flare loops. The
convective thermal instability occurs in the convection zone and generates the
granulation and super-granulation pattern in the photosphere. The radiatively-
driven thermal instability could occur in low-lying compact hot loops. The heat-
ing scale-height instability can occur in footpoint-heated loops and filaments.
Resistive instabilities occur in thin current sheets in flares. The kink instabil-
ity is thought to occur during processes associated with sigmoid loops leading
to filament eruptions and CMEs. The sausage instability can occur in fat and
overdense flare loops.

Solution 6.8: The pressure in prominences, p = 2ξnekBTe, includes neutrals with a
degree of ionization 0.1 < ξ < 1. Thus, an upper limit for the minimum pressure
is pmin ≤ 2nminkBTmin = 0.002 dyne cm−2, and the maximum pressure is
pmax ≤ 2nmaxkBTmax = 1.24 dyne cm−2, which covers the observed range of
p = 0.03 − 0.38 dyne cm−2.

Solution 6.9: The maximum mass of a prominence is Mprom = nempqfill(l × h ×
w) <∼ 9 × 1016 g, using the maximum values of each parameter range given in
Table 6.2. This amounts to Mprom/Mcor = 9 × 1016/3 × 1017 <∼ 30% of the
coronal mass. (Note that we neglected the neutrals in this estimate, which would
increase the estimated prominence mass.)

Solution 6.10: The criterion (4.3.11) yields (see also problem 4.3 and Fig. 2.14) a
density limit of ne(L) > 105 (1010 cm/ L) cm−3 at a temperature of T = 104

K, which is fulfilled for all observed filaments according to Table 6.2.

Chapter 7: MHD Oscillations

Solution 7.1: The dispersion relation (7.1.32) is a quadratic equation of v2
ph, hence

the explicit solution is v2
ph = [(v2

A + cs)2 ±√(v2
A + cs)2 − 4c2

sv2
A cos2 θ]/2.

Inserting cs = 0.1vA yields v2
ph(θ) = v2

A[1.01±√
1.012 − 0.04 cos2 θ]/2, from

which the polar diagram can be plotted with (vph/vA) cos(θ) on the x-axis vs.
(vph/vA) sin θ on the y-axis, with different ±signs (from the two square roots)
in each of the four quadrants.

Solution 7.2: Use a mathematical software that provides routines for the Bessel func-
tions In and Kn and a root finder algorithm, e.g., IDL. From Fig. 7.4 we choose
similar speed ratios, e.g., vAe = 2vA (which implies ρ0/ρe = 4), vA = 2c0,
and c0 = 2ce. These ratios imply the following tube speeds (defined with
Eq. 7.1.27): cT0 = c0vA/

√
c2
0 + v2

A = (2/
√

5)c0 ≈ 0.89c0, and cTe =
cevAe/

√
c2
e + v2

Ae = (8/
√

65)ce ≈ 0.99ce, respectively. The expressions m0

and me (Eq. 7.1.51) can then expressed in speed ratios in units of vA and vAe

and inserted into Eq. (7.1.50). For an array of values kza = 0.0, 0.1, ..., 4.0,
solutions of the dispersion relation (7.1.50) can then be found for ω/kz using

SOLUTIONS



770 SOLUTIONS

a numerical root finder algorithm, to yield the functions shown in Fig. 7.4. Be
aware of the wave number cutoff for kza < kc (see §7.3.1).

Solution 7.3: The Alfvén speed is vA = 1224 km s−1 for B = 20 G, ne = ni = 109

cm−3, and µ = 1.27 (Eq. 3.1.7). The resulting kink-mode period is Pkink = 142
s for a mean density ratio of (ne/n0) = 0.5, and varies only <∼ ± 20% for
extremal values 0 ≤ ne/n0 ≤ 1.

Solution 7.4: Applying the error propagation law to B = (1/P )
√

8πρ0(1 + qe)
(Eq. 7.2.5), with qe = ρe/ρ0, we find the derivatives dB/dP = −B/P and
dB/dqe = B/[2(1 + qe)], and with (mP /P ) = 10%, qe = 0.5, and mqe = 0.5

we find a propagation error of (mB/B) =
√

(dB/dP )2m2
p + (dB/dqe)2mqe ≈

20%.

Solution 7.5: About 25% of the periods are found in the range of 5-min p-mode os-
cillations (P = 300±30 s), about 25% in the range of 3-min sunspot oscillations
(P = 180 ± 18 s), and about 50% are found outside these ranges. So, up to half
of cases could be resonant with global oscillations.

Solution 7.6: The resulting height dependence of the sausage mode period limit is
Psaus(h) = (2.62a/vA0) exp (−h/2λT )(1+h/hD)3, with vA0 = 1210B20n

1/2
9

km s−1. Thus, the maximum sausage period are Psaus
<∼ 0.5 s at a height of

h = 2 Mm, and are Psaus
<∼ 2.5 s at a height of h = 200 Mm, respectively.

Solution 7.7: The sound speed is cs = 147
√

6.3 = 369 km s−1 and the phase speed
is v1 = 43±25 km s−1. Using Eq. 7.4.9, the soft X-ray intensity variation is then
∆I/I = ∆EM/EM = [(ρ0+ρ1)2−ρ2

0)]/ρ2
0 ≈ 2ρ1/ρ0 = 2v1/cs = 23±13%.

Solution 7.8: The RHESSI measurements in Fig. 4.28 show a density drop from
ne(h = 1000 km)≈ 1013 cm s−1 to ne(h = 3000 km)≈ 1012 cm s−1, hence the
density scale height is approximately λ = (3000 − 1000 km)/ ln(1013/1012) ≈
870 km. Plugging the 11 values for loop lengths L and periods P from Table
7.1 into Eq. (7.5.7), we obtain a mean damping period of τD = LP/4π2λ =
2200±1800 s, which is about a factor of 4.3 longer than the observed periods of
τobs
D = 509 ± 341 s listed in Table 7.1, and thus this model cannot account for

the observed damping.

Solution 7.9: The ratio of damping time to period is expected to be (τD/P )thick ≈
0.75(2/π)(1 + qn)/(1 − qn) >∼ 1.0, which can be arbitrarily larger when the
densities become comparable (for qn

<∼ 1).

Solution 7.10: Kink-mode oscillations as seen with TRACE do not significantly
modulate the electron density, hence there would be no frequency modulation
detectable in radio. The plasma frequency modulation due to density varia-
tion of slow-mode oscillations would be ∆νp/νp =

√
ne + ∆ne(t)/

√
ne ≈

(1/2)∆ne/ne ≈ (1/2)v1/cs ≈ 6±3%, using Eq. (7.4.9), and v1/cs ≈ 12±6%
(see Problem 7.7).
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Chapter 8: Propagating MHD Waves

Solution 8.1: Inserting the 1D total derivative (Eq. 8.1.1), i.e., D/Dt = ∂/∂t +
v(∂/∂s), into the continuity equation (Eq. 6.1.16), where the divergence in 1D
is ∇v = ∂v/∂s, and making use of the product rule d(ρv)/ds = ρ(∂v/∂s) +
v(∂ρ/∂s), leads to the continuity equation in form of Eq. (8.1.1). - Using the
momentum equation (6.1.15), neglecting the magnetic field (B = 0), but in-
cluding the 1D viscosity term Fvisc = νviscρ(4/3)[∂2v/∂s2] (Eq. 6.1.14), with
the viscosity constant defined as η0 = νviscρ, leads to the momentum equation
in form of Eq. (8.1.2). - Using the energy equation in form of Eq. (4.1.4), but
neglecting the heating and radiative loss term, inserting the 1D total derivative,
using the adiabatic equation (∂p/∂s) = (γp/ρ)∂ρ/∂s; Eq. (4.2.2), and defining
the parallel thermal conductivity as κ‖ = κT 5/2 in Eq. (3.6.3), we obtain the
energy equation in form of Eq. (8.1.3).

Solution 8.2: If we define the sensitivity range for each filter by the temperature range
where the response function exceeds 50% of the peak response, i.e., R(T ) >
0.5 × max[R(T )], we obtain a temperature range of T = 0.69 − 1.28 MK for
the TRACE 171 Å filter, and T = 1.08−1.79 MK for the TRACE 195 Å filter, as
it can be measured from the graphic response function R(T ) (Fig. 3.25) or from
calling the IDL procedure TRACE T RESP.PRO. The corresponding ranges of
sound speeds are (see Appendix D and use µ = 1.27, Eq. 3.1.7): cs ≈ 122−166
km s−1 for TRACE 171 Å, and cs ≈ 152 − 197 km s−1 for TRACE 195 Å,
which cover the observed ranges of slow-mode waves reported in Table 8.1.

Solution 8.3: Using the definition of the Alfvén speed as given in Appendix D (with
µ = 1.27; Eq. 3.1.7), we obtain vA = 500 km s−1, vAe = 1223 km s−1,
cmin
g = 407 km s−1, t1 = 82 s, t2 = 200 s, and t3 = 245 s, which yield

a duration of t2 − t1 = h/vA − h/vAe = 118 s for the periodic phase, and
t3 − t2 = h/cmin

g − h/vA = 45 s for the quasi-periodic phase.

Solution 8.4: From the time profiles shown in Fig. 8.7 we find that a wave train
passes the looptop position H at t1 ≈ 25 s, and loop position A at t2 ≈ 35
s. In Fig. 8.6 (bottom right) we find that pixel A is separated from pixel H by
∆y = 5 pixels in vertical direction, and ∆x = 4 pixels in horizontal direction.
If we approximate the curved loop with a diagonal line, we have a distance of
∆s =

√
∆x2 + ∆y2 = 6.4 pixels, or using a semi-circular approximation, we

estimate a distance of ∆s = ∆y(π/2) = 7.9 pixels. Taking the pixel size of
4.07′′ into account, we estimate a speed of v = ∆s/∆t = 1900 km s−1, or
v = 2300 km s−1, respectively, which bracket the reported value of v = 2100
km s−1.

Solution 8.5: Measuring the densities in Fig. 8.13 (top panel) in the range of r =
R/R� = 1−2 we find ne(r = 1.0) ≈ 108 cm−1, ne(r = 1.5) ≈ 4×106 cm−1,
ne(r = 2.0) ≈ 4×105 cm−1, which fits a radial density profile of ne(r) ∝ r−8.
Measuring the line widths in Fig. 8.13 (middle panel) in the same range we find
∆v(r = 1.0) ≈ 50 km s−1, ∆v(r = 1.5) ≈ 100 km s−1, ∆v(r = 2.0) ≈ 280
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km s−1, which fits a radial function of ∆v(r) ∝ r2.5, which is close to the

theoretical prediction n
−1/4
e (r) ∝ r[−8×(−1/4)] = r2.0.

Solution 8.6: Measuring the diameters of the circular EIT wave pattern in Fig. 8.16
we find d(t = 2 min)≈ 3 mm, d(t = 15 min)≈ 15 mm, d(t = 30 min)≈ 25 mm,
d(t = 45 min)≈ 30 mm, which have to be scaled by the solar diameter d� = 49
mm. Thus, the average speed of the EIT wave is vEIT = R�(d/d�)/t ≈
360, 240, 200, 160 km s−1, so the EIT wave is decelerating.

Chapter 9: Coronal Heating

Solution 9.1: Assuming that the coronal losses do not change significantly in coro-
nal holes (CH) during the solar cycle, and that quiet Sun areas (QS) and active
regions (AR) become similar to coronal holes during the solar minimum, we es-
timate the following changes from the solar cycle maximum to the minimum,
according to Table 9.1: The conductive flux FC will decrease by a factor of 0.3
in QS and 0.006-0.6 in AR; the radiative flux FR will decrease by a factor of
0.1 in QS and 0.002 in AR; the solar wind flux FSW will increase by a factor
of ≥ 14 QS and ≥ 7 in AR; the total corona losses (and thus the total heating
requirement) FC +FR +FSW will increase by a factor of 2.7 in QS and decrease
by 0.08 in AR.

Solution 9.2: The Ohmic dissipation rate is (from Eqs. 9.3-9.7): FOhm
H = EOhm

H ×
(l/2) = j2l/2σ = 2 × 10−4(l/1010 cm)−1∆ϕ2, which is about a factor of
FOhm

H /FQS
H = 2 × 10−4/3 × 105 ≈ 7 × 10−10 smaller than the heating rate

requirement for the Quiet Sun.

Solution 9.3: The viscosity force for a 1D flow component, e.g., vx(x) �= 0, is
Fvisc = νvisc(4/3)ρ(∂2vx(x)/∂x2). For a circular eddy motion with v(x) =
v0 sin(kx) and k = (2π/l), the divergence is zero (∇v), and we obtain Fvisc =
νviscρv0(2π/l)2 = 3 × 10−11(v/1 km/s) (l/1 Mm)−2(ne/109 cm−3) [g cm−2

s−2].

Solution 9.4: Use a random generator to generate values xi, i = 1, ..., N (say
for N = 10, 000 values) with a uniform distribution N(x) = const in the
range of 0 ≤ xi < 1. In order to generate a distribution of length scales that
obeys a powerlaw function N(l) ∝ l−D3 , we seek the function l(x) by requir-
ing dN(l)dl = N(x[l])(dx/dl)dl = l−D3 . Since N(x[l]) = const, we find
x(l) = l−D3+1, and the inverse function is l(x) = x1/(1−D3). Thus, we gen-

erate the corresponding length scales with the function li = x
1/(1−D3)
i , and the

corresponding flare energies with Ei = l7.5
i , according to the scaling given in

Eq. (9.7.11). The distributions N(l) of the values li, and N(E) of Ei, can then
be sampled in logarithmic histograms, from which the powerlaw slopes can be
obtained with a linear regression fit to log[N(l)] vs. log(l), and log[N(E)] vs.
log(E), yielding the power law slopes αl = 2.5 and αE = 1.2, as predicted in
Eq. (9.8.13).
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Solution 9.5: Introducing random scatter in the scaling laws, e.g., Ei = l7.5+ri

i ,
where ri is a random variable from a normal distribution with a mean of zero,
does not change the powerlaw slope of the frequency distribution in energy,
N(E) ∝ E−αE , so it cannot explain other observed slopes as reported in Ta-
ble 9.6. Thus, other powerlaw slopes require different scaling laws.

Solution 9.6: Eq. (9.8.12) with the observed value αE = 3.3 implies αL = 1 + 2.3 ∗
D = 1 + 2.3 ∗ (Dn + DT + D3). Absolute lower limits are given in the case
of uncorrelated parameters (Dn = 0, DT = 0) and highly fractal structures, i.e.,
curvi-linear structures (D3 = 1.0), leading to αL > 3.3. For typical flare scaling
(D = Dn+DT +D3 = 7.5 the length scale index would be αL = 1+2.3×7.5 =
18.25, indicating an extremely steep cutoff. In both cases this implies that the
distribution of spatial scales falls off steeper than observed in flares α = 2.5,
probably caused by a truncation bias from the limited temperature range of a
single wavelength filter.

Solution 9.7: Parameterizing in terms of a normalized energy ε = E/E0, the ex-
ponential distribution is N1(ε) = n1 exp (−ε) and the powerlaw distribution
is N2(ε) = n2ε

−α. Equality in the local value, N1(ε) = N2(ε), and local
derivative dN1(ε)/dε = dN2(ε)/dε, yields n2 = n1 exp (−ε)εα and the solu-
tion α(ε) = ε. The the powerlaw slope changes from α(E = E0/2) = 1/2 to
α(E = 2E0) = 2.

Solution 9.8: If we define the upper cutoff energy E2 where the probability for detec-
tion is at least one single event, we have the requirement N(E2) = N1(E2/E1)−α

= 1, which yields the dynamic range (E2/E1) = N
1/α
1 . Thus for N1 = 10, 102,

103, 104, 105 and α = 2 we expect the dynamic ranges (E2/E1) =
√

(N1) ≈
3, 10, 30, 100, 300.

Solution 9.9: Using the definition of the mean (e-folding) amplification factor from
(Eq. 9.8.7), (tSe/τG) = (αE − 1)−1, we obtain from Table 9.6 the values
≈ 0.7, 2.9, 2.2, 0.7, 1.9, 2.9, 0.6, 0.6, 0.4, 0.5. Incomplete sampling at either the
lower or upper energy cutoff changes the powerlaw slope, and thus the inferred
amplification factor.

Solution 9.10: With a narrowband filter, the true flare energy E2 = 3nekBT2 is
underestimated as E′

2 = 3nekB(T1 + ∆T ). This affects the powerlaw slope
αE = log(N2/N1)/ log(E2/E1) ≈ log(N2/N1)/ log(T2/T1), which is mea-
sured as α′

E ≈ log(N2/N1)/ log(T2/[T1+∆T ]). So, the biased powerlaw slope
is α′

E = αE log(T2/T1)/ log(T2/[T1 + ∆T ]), which for αE = 2.0, T1 = 1.0
MK, T2 = 2.0 MK, ∆T = 0.5 MK yields α′

E = 1.8 × log(2)/ log(1.5) = 3.1.
Thus, event detection with a single narrowband filters tend to yield a steeper
powerlaw distribution.

Chapter 10: Magnetic Reconnection

Solution 10.1: Using Eq. (10.1.8), the energy dissipated over ∆t = 100 s in a typ-
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ical current sheet is ∆εm ≈ 1022∆t = 1024 erg, which is the equivalent of a
nanoflare, but insufficient for a microflare. For a large flare with ∆E = 1032

erg, a total of NCS = ∆E/∆εm ≈ 108 current sheets would be needed.

Solution 10.2: For the bursty reconnection mode we can replace the reconnection
inflow speed v0 = vA/

√
S0 in Eq. (10.1.8) with the coalescence speed ucoal =

vA × qcoal, leading to a dissipation rate of dεM/dt = 1032 (B/100 G)2 (L/1
Mm)2 (vA/1 Mm/s) (qcoal/0.3). This requires the dissipation of 1 magnetic
island for nanoflares, microflares, or large flares each, with length scales of
L ≈ 0.1, 3, 1000 km for the dissipated magnetic islands.

Solution 10.3: From Fig. 10.10 (left) it can be gathered that each emerging dipole
creates a separatrix surface at the interface to the overlying corona, but only
overlapping dipole areas create a separator line, which has two chromospheric
footpoints. Thus after emergence of 10 non-overlapping and 20 overlapping
dipoles we have 30 separatrix surfaces, 10 separator lines, and 20 photospheric
nullpoints.

Solution 10.4: The magnetic topology in Figs. 10.10 (right) and 10.27 is identical,
but the sequence of magnetic poles is opposite (+,−, + versus −, +,−), and
thus all magnetic fields point into opposite direction. In Fig. 10.27, a spine field
connected with the right (−) footpoint polarity flips through the central spine
field line and ends up connected with the left (−) footpoint polarity.

Solution 10.5: The resulting scaling of the magnetic flux with area is Φ(A) =
AB(A) ∝ A(1+α) = A2.7 with α = 1.7. The frequency distribution of areas is
then N(A)dA = N(Φ[A]) |dΦ(A)/dA| dA = Φ−2(A)AαdA = A−α−2dA =
A−3.7dA. The magnetic field for the smallest active regions is B0 = Φ0/A0 =
81 G. The largest active regions have then Amax = A0(Φmax/Φ0)(1/2.7) =
A0 × 6.65 ≈ 17 deg2 and Bmax = B0(Amax/A0)1.7 = B0 × 25 ≈ 2000
G. The smallest ephemeral regions have then Amin = A0(Φmin/Φ0)(1/2.7) =
A0 × 0.22 ≈ 0.6 deg2 and Bmin = B0(Amin/A0)1.7 = B0 × 0.076 ≈ 6 G.

Solution 10.6: Following Litvinenko (1999a), we denote the parameters sideways
of a vertical current sheet with n0, v0, T0, and the parameters above the current
sheet with n, v, T , assuming T = T0. The current sheet has a vertical height of
2Λ and a width of 2a. The continuity equation is then n0v0Λ = nva, the mo-
mentum equation in horizontal direction is n0kT0 +B2/8π = nkT , and the mo-
mentum equation in vertical direction is (1/2)mpnv2 + n0kT0 = nkT . Ohm’s
law j = σ(1/c)(v0 × B) ≈ (σ/c)v0B, and the definition of the current density
j = (1/4π)(∇ × B), yield then v0 = c/4πσa. Considering electromagnetic
units, jemu = jesu/c (see Appendix C), we have v0 = c2/4πσa, yielding the
current sheet width a = c2/4πσv0. Comparing the two momentum equations
yields v = B/

√
(4πmpn) =

√
(n0/n)B/

√
(4πmpn0). The momentum equa-

tion in horizontal direction yields (n/n0) = (1 + B2/8πn0kT ). Inserting the
expressions a, v, and (n/n0) into the continuity equation v0 = v(n/n0)(a/Λ)
yields then Eq. (10.4.1), where the variable v0 (used in Litvinenko 1999a) is
denoted as v1 in Eq. (10.4.1).
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Solution 10.7: In the CSHKP (standard) 2D model, the erupting prominence with
vertical speed vz relates to the reconnection outflow speed vA in upward direc-
tion as an upper limit, i.e., vz

>∼ vA, but the eruption may be driven by a sideward
inflow pressure with speed v1. In the emerging flux model the current sheet is
horizontal or oblique, so the upward motion vz of the emerging field lines act as
driver of the lateral inflow speed v1, i.e., vz ≈ v1. In most of the other models,
i.e., in the equilibrium loss model, in the quadrupolar model, and in shear-driven
3D reconnection models, the shear motion vx is not aligned with the directions
of reconnection inflows or outflows, and thus not directly related. The shear-
ing motion stores non-potential energy, which triggers reconnection processes
spontaneously in a nonlinear way.

Solution 10.8: The flare density scales according to Eq. (10.5.5) as n = B2/16πkT =
3.6 × 1010(B/50 G)2(T/107 K)−1 [cm−3], and thus n2 = 1.3 × 1021(B/50
G)4(T/107 K)−2 [cm−3]. The length scale scales according to Eq. (10.5.4) as
L = 109(B/50 G)−3(T/107 K)7/2(n0/109 cm−3)1/2 cm, and L3 = 1027(B/50
G)−9(T/107 K)21/2(n0/109 cm−3)3/2 cm. The emission measure follows then
from inserting these terms for n2 and L3, i.e., EM = n2L3 ≈ 1048(B/50
G)−5(T/107 K)17/2(n0/109 cm−3)3/2 cm−3, which validates Eq. (10.5.7). The
thermal energy Eth = 3nkBTV ≈ 3kBTnL3 follows the same way by inserting
the terms for n and L3, yielding Eth ≈ 1022(B/50 G)−7(T/107 K)21/2(n0/109

cm−3)3/2 erg. For a typical solar flare we obtain Eth ≈ 1030 erg.

Solution 10.9: All observations listed in Table 10.2 apply to the 2D standard (CSHKP)
model described in §10.5.1, except the observations of quadrupolar geometries
and 3D nullpoint geometries. The phenomenon of post-reconnection relaxation
applies also to most of the other flare models.

Solution 10.10: The angle between the prereconnection and postreconnection field
lines can be measured from the footpoint positions shown in vertical projection
in the 3rd rows of Fig. 10.31 (≈ 10◦ − 20◦) and Fig. 10.32 (≈ 40◦ − 50◦). The
range is quoted as ≈ 10◦ − 50◦ in the text on p.457.

Chapter 11: Particle Acceleration

Solution 11.1: The heavy ions given in Table 11.3 are [He, C, N, O, Ne, Mg, Si, Fe],
which have the atomic number or electric charge number Z = q/e = [2, 6, 7,
8, 10, 12, 14, 26], and the ion/proton mass ratio µi = mi/mp = [4, 12, 14, 16,
20, 24, 28, 56]. Generally, µi � 2Z , because the number of protons is equal to
the number of neutrons. However, some elements have different isotopes with a
larger number of neutrons, such as iron, with 4 additional neutrons in the average.
The resulting ion gyro radii are Ri = 0.95

√
(Tiµi)/ Z B ≈ [95, 55, 51, 48, 42,

39, 36, 27] cm for B = 10 G. Parker-type current sheets are estimated to have
a thickness of δ ≈ 10 m (§10.1.1), while tearing mode islands are estimated to
have smallest widths of l ≈ 70 m (§10.2.1). In the central zone of Parker-type
current sheets, where the magnetic field drops to B <∼ 1 G, ion gyroradii can
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exceed the width of the current sheet, i.e., Ri
>∼ δ ≈ 10 m, and thus these ions

can have chaotic orbits.

Solution 11.2: The drift speed due to solar gravitation is vdrift = mpcg�/eB =
0.0286 cm s−1 for B = 100 G. The equivalent value for electric field change is
dE/dt = g� = 2.74 × 104 cm s−2. The equivalent value for the electric field
is E = mpg�/e = 9.5 × 10−11 statvolt cm−1. The equivalent magnetic field
gradient is ∇B = 2g�/v2

⊥. The equivalent curvature radius is Rcurv = v2
‖/g�.

They all do not depend on the magnetic field. The proton drift time out of a
current sheet is tdrift = l/vdrift = 2eBl2/mpcv2

⊥.

Solution 11.3: At equal speeds (βp = βe) the (kinetic) energy ratio is εp = 1836×εe,
and thus the electron-to-proton ratio is Ne/Np = N0(ε/ε1)−δ/N0(1836ε/ε1)−δ

= 1836−δ ≈ 1.6 × 10−10 for δ = 3.

Solution 11.4: The Dreicer electric field changes as ED ∝ ne/Te, neglecting the
small changes in the Coulomb logarithm, so the Dreicer field varies proportion-
ally to the electron density (by a factor of 103) and reciprocally to the flare
temperature (by a factor of 3). The threshold velocity (Eq. 11.3.3) changes as
vr ∝ vTe

√
ED/E ∝ √

Te

√
ne/Te ∝ √

ne, so is independent of the flare tem-
perature and varies proportionally to the square root of the density.

Solution 11.5: Following the definitions of Litvinenko (1996) we have the mag-
netic field components inside the current sheet, Bx = (−y/∆wy)B0, By =
ξ⊥B0, and Bz = ξ‖B0, or B = [−y/∆wy, ξ⊥, ξ‖]B0, and the electric field
E = (0, 0, E0). The nonrelativistic equation of motion is mdv/dt = e[E +
(1/c)v × B], and using the time scale Ω−1

0 = mc/eB0 and length scale ∆wy ,
the components can be written in a dimensionless 3D cartesian coordinate sys-
tem as: d2x/dt2 = ξ‖(dy/dt)−ξ⊥(dz/dt), d2y/dt2 = −ξ‖(dx/dt)−y(dz/dt),
d2z/dt2 = ε + ξ⊥(dx/dt) + y(dy/dt), where the dimensionless electric field is
defined by ε = mc2E0/∆wyeB2

0 .

Solution 11.6: Defining γ = 1/
√

1 − β2, β2 = β2
‖ + β2

⊥, β‖ = v‖/c, β⊥ =
v⊥/c, a = k‖c, b = sΩe, and inserting into the Doppler resonance condition

(Eq. 11.4.6) yields ω − b
√

1 − β2
‖ − β2

⊥ − β‖a = 0, which is a quadratic equa-

tion and can be transformed into the form of an ellipse equation [(v‖−v0)/A]2+
(v⊥/V )2 = 1 with eccentricity e =

√
1 − (A/V )2 (Eq. 11.4.28), ellipse cen-

ter at v0 (Eq. 11.4.27), major semi-axis V (Eq. 11.4.29), and minor semi-axis
A = V

√
1 − e2.

Solution 11.7: Choose appropriate frequency ratios Ωi � ωi
p � Ωe � ωe

p as indi-
cated in Fig. 11.11 and plot the dispersion relations for the O, X, R, L, P modes,
ion sound, and Alfvén waves according to the dispersion relations given in Table
11.2. The dispersion relations for the P mode, ion sound, and Alfvén waves can
explicitly be expressed as k(ω), while the others can be found with numerical
methods. The sketch in Fig. 11.11 shows approximately log(k) on the y-axis
versus log(ω) on the x-axis.
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Solution 11.8: For θBn
<∼ 90◦ the maximum energy gain is according to Eq. (11.5.16)

v2/u2 ≈ [(1 + α) cos θvn/ cos θBn]2 ≈ 70 − 7000. So, a 10 keV particle can
gain energies of ≈ 700 keV−70 MeV. Acceleration is most efficient for quasi-
perpendicular shocks (θBn

<∼ 90◦).

Solution 11.9: For an energy range of ε = 0.1 − 20 keV, fast shock speed u = 1000
km s−1, diffusion length scale l = 500 km, and shock angles θ = 0◦, 60◦, 85◦

plot the collisional loss (Eq. 11.5.30), energy gain by acceleration (Eq. 11.5.29),
and net gain (Eq. 11.5.28), yielding the diagram shown in Fig. 11.20.

Solution 11.10: According to Eq. (15.4.10) the exciter speed is v ≥ (∂ν/∂t)(2λT /ν).
The drift rate of the type II burst is (∂ν/∂t) ≈ 100 MHz min−1 at ν = 500 MHz
or (∂ν/∂t) ≈ 10 MHz min−1 at ν = 50 MHz, yielding a lower limit of v >∼ 300
km s−1 for the shock speed.

Chapter 12: Particle Kinematics

Solution 12.1: From Eqs. (12.2.2-4) follows lTOF = lloop/(cosα cos θ), which in-
serted into Eq. (12.2.1) yields the generalized TOF delay ∆tprop = (lloop/c)×
[1/(β1 cosα1 cos θ1) − 1/(β2 cosα2 cos θ2)].

Solution 12.2: The count spectrum for the energies given in Fig. 12.3, ε = 44, 59, 77,
102, 127, 167, 233, 321 keV (channel 3-10), is N(ε) = 40,000; 23,000; 13,000;
7400; 4800, 2800, 1400; 750 cts s−1, and the time uncertainties in the cross-
correlation between channels N3 and Ni, i = 4, 10 are for τ = 0.2 s, according
to Eq. (12.2.6), mτ = τ

√
1/N3 + 1/Ni = 1.4, 1.7, 2.0, 2.5, 3.1, 3.9, 5.4, and 7.4

ms, which agrees approximately with the correlation measurements in Fig. 12.4:
mτ = 2, 2, 2, 3, 4, 7, 20 ms. The slight differences occur because the assumed
time scale τ = 0.2 s is only an approximate average of the time scales in the fine
structure of the time profiles that dominate the cross-correlation.

Solution 12.3: The electric field is, according to Eq. (12.3.2), E = εmax/(el) =
0.0017 statvolt cm−1, given the maximum electron kinetic energy of ε = 650
keV and flare loop half length l = lprop × 0.44 with lprop = 29, 000 km. The
Dreicer electric field in typical flare conditions (ne ≈ 1011 cm−3, Te ≈ 107 K)
is ED ≈ 2 × 10−6 statvolt cm−1 (Eq. 11.3.2), and thus the best-fit electric field
is a super-Dreicer field, since E > ED.

Solution 12.4: The acceleration is a = ε/(mel) according to Eq. (12.3.4). Inte-
gration of Newton’s force equation yields v = at and l = (1/2)at2acc, so the
nonrelativistic acceleration time is tacc = l

√
2me/ε. The relativistic expression

(Eq. 12.3.5) is in the nonrelativistic limit, using ε = mec
2(γ−1) and (γ+1) ≈ 2,

tacc = (l/c)
√

(γ + 1)/(γ − 1) ≈ (l/c)
√

2/(ε/mec2) = l
√

2me/ε.

Solution 12.5: Inserting the Alfvén velocity (Eq. 12.4.6) into Eq. (12.4.18) yields
tw ≈ 1.0× (LB/10 Mm) (B/100 G)−1 (ne/108 cm−3)1/2 [s]. The typical time
scale is tw ≈ 1.0 s.
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Solution 12.6: The pulse shape is F (t) ∝ tα(sin α)N−1 cosα (dα/dt) for a Dory−
Guest−Harris distribution (a), and F (t) ∝ tα(cosα)N−1 sin α (dα/dt) for a
beam distribution, with α(t) defined in Eq. (12.4.7).

Solution 12.7: Using the constancy of the magnetic moment, v2
⊥/B(s) = v2/Bm

(Eq. 12.5.1), the definition of the mirror ratio, R = Bm/B0 (Eq. 12.5.3), and
a parabolic field, B(s) = B0[1 + (R − 1)s2/L2] (Eq. 12.5.2), yields the re-
lation v2

⊥(s) = v2(1/R)[1 + (R − 1)s2/L2], which inserted into the defi-

nition of the bounce time, tB = 4
∫ L

0 ds/
√

v2 − v2
⊥(s) leads to the integral

tB = 4L/v
√

1 − 1/R
∫ L

0
(L2 + s2)−1/2ds, which has the solution tB = 4L/v√

1 − 1/R arcsin(s/L)|L0 = 2πL/v
√

1 − 1/R (Eq. 12.5.5). The correction
factors are qα(R = ∞) = 2/π and qα(R = Rmin) = (2/π) × 0.9, requiring
Rmin = 1/(1 − 0.92) ≈ 5.26.

Solution 12.8: An IDL version of a numerical program that solves this problem is:

nt =2000
t0 =5.0
sig t =1.0
dt =0.01
t =dt*(findgen(nt)+1)
for j=0,9 do begin

t trap =1.+j
f inj =exp(-(t-t0)∧2/(2.*sig t∧2))
plot,t,f inj
f =fltarr(nt)
for i=0,nt-1 do begin

f(i)=(1./t trap)*total(f inj(0:i)*exp(-(t(i)-t(0:i))/t trap)*dt)
endfor
oplot,t,f,thick=2
!noeras=2
f0=max(f inj,im0) & fm=max(f,im)
print,’Trapping time = ’,t trap,’ Delay=’,t(im)-t(im0)

endfor

The resulting delays are ∆t = 0.69, 1.01, 1.21, 1.35, 1.46, 1.55, 1.62, 1.68, 1.74,
1.79 s for trapping times ttrap = 1, 2, ..., 10 s.
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Solution 12.9: The losscone angle on one side is α1 = arccos[1 − 2(1 − A)qprec] =
84◦, 60◦, 26◦ for A = 0.1, 0.5, 0.9, and at the other side α2 = arccos[1 −
qprec] = 60◦ for every value A.

Solution 12.10: The critical energy for collisions are εc = 2.0, 6.3, and 20 keV for
loop lengths of L = 10 Mm and densities of ne = 109, 1010, 1011 cm−3. The
corresponding values are εc = 4.5, 14, and 45 keV for loop lengths of L = 50
Mm. Thus electrons with energies of ε = 25 keV are thermal (ε < εc) for the
longest (L = 50 Mm) and densest (ne = 1011 cm−3) loop with εc = 45 keV.

Chapter 13: Hard X-Rays

Solution 13.1: Both the Hard X-ray Fourier imagers and the radio interferometers
have no direct image capabilities (such as a CCD camera), but reconstruct im-
ages by measuring the Fourier components. The image quality depends on the
number of independent Fourier components (the number of grids in hard X-rays,
or pairs of single antennas in radio interferometers). Both the rotation-modulated
collimators (RMC) in hard X-rays and Earth-rotation aperture synthesis in radio
use the rotation of the whole instrument to measure the number of Fourier com-
ponents.

Solution 13.2: Inserting Kramer’s cross-section (Eq. 13.2.9) into Eq. (13.2.11) yields
I(εx) = n0σ0/(4πr2εx)

√
2/me

∫∞
εx

ε−1/2ne(ε)dε. For a particle injection

spectrum ne(ε) ∝ ε−δ the integral yields then a hard X-ray photon spectrum
I(εx) ∝ ε−γ

x with the relation γ = δ − 1/2.

Solution 13.3: Using an average density of < ne >= n0 exp [−(hA + hX)/(2λT )]
during propagation between the heights h = hA and h = hX , with a prop-
agation distance L = hA − hX , we find with Eq. (12.6.21) a cutoff energy
of εc(hA, hX) ≈ 20 [(hA − hX)/10 Mm]1/2 (exp [−(hA + hX)/(2λT )])1/2

[n0/1011 cm−3]1/2, which yields cutoff energies εc = 3.6, 2.9, 2.0 keV for
n0 = 109 cm−3, and εc = 36, 29, 20 keV for n0 = 1011 cm−3.

Solution 13.4: An IDL version of a Monte-Carlo simulation of this problem is:

n =2∧14
for i=0,2 do begin

fwhm =0.2*(1+i)
sig =fwhm/2.35
h = 10.*(1.+sig*randomn(1111,n))
b = 30.*(1.+sig*randomn(2222,n))
nel =1.e9*(1.+sig*randomn(3333,n))
qh = 1.5*(1.+sig*randomn(4444,n))
qa = 1.3*(1.+sig*randomn(5555,n))
qb = 0.1*(1.+sig*randomn(6666,n))
tw =0.5*(h/10.)*(b/30.)∧(-1)*(nel/1.e9)∧(0.5)*((qh-1.)/0.5)*(qa/1.3)*(qb/0.1)
dt =0.1
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h =histogram(tw,min=0,max=3.0,binsize=dt)
hn =float(h)/max(h)
t =dt*(findgen(30)+0.5)
plot io,t,hn,psym=10,thick=i+1,yrange=[1.e-3,1.1]
ind =where((t ge 0.4) and (hn gt 0))
t fit =t(ind)
h fit =alog(hn(ind))
c =linfit(t fit,h fit)
h0 =exp(c(0))
te =-1./c(1)
oplot,t fit,h0*exp(-t fit/te),thick=i+1
print,’fwhm=’,fwhm,’ exp.time const=’,te,’ s’
!noeras=1

endfor

The exponential decay times of the distributions of pulse durations, obtained
from exponential fits to the histograms, are te = 0.11, 0.29, 0.51 s for σx/x =
0.2, 0.4, and 0.6. Thus, the observed distributions with a decay time of te ≈ 0.4
s can be reproduced with a scatter of σx/x ≈ 0.5.

Solution 13.5: From Fig. 13.15 we read off for flare 5 (91/12/15) a relative time delay
of τij ≈ 64 ms between the energies εx = 50 keV and 300 keV. In Fig. 13.14 we
read off energy conversion factors of qε = 2.6 and 2.5 for a powerlaw slope of
γ = 3. Thus the corresponding electron energies are ε = εxqε = 130 keV and
750 keV (Eq. 13.5.6). The corresponding Lorentz factors are γ = ε/mec

2 +1 =
1.25 and 2.74 (Eq. 11.1.10), and the relativistic speeds are β =

√
1 − 1/γ2 =

0.604 and 0.914 (Eq. 11.1.11). The resulting time-of-flight propagation distance
is then tTOF = cτij(1/βi − 1/βj)−1 = 34 Mm (Eq. 13.5.8), and the projected
loop half length is l ≈ lTOF × 0.54 = 18 Mm (Eq. 12.2.4), which is close to the
value l′ = 19.7 ± 1.3 Mm given in Fig. 13.15. The difference comes from the
arbitrarily assumed value of the spectral slope.

Solution 13.6: Using Eq. (13.5.9), the time-of-flight distance ratio is lTOF /r =
(1/2)(1 + q2) arctan[2q/(q2 − 1)] = 1.91 for a height ratio of q = h/r = 1.5.

Solution 13.7: For electron energies of ε = 25, 50, 100 keV, the Lorentz factors
(Eq. 11.1.10) are γ = ε/mec

2 + 1 = 1.049, 1.098, 1.196, the relativistic speeds
(Eq. 11.1.11) are β =

√
1 − 1/γ2 = 0.302, 0.413, 0.548, and the asymmetry
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angles (Eq. 13.5.12) are θ = βc∆t/(2r × 0.54) = 24◦, 33◦, and 44◦. These
asymmetry angles are larger than observed in the Masuda flare, which is θ <∼ 20◦

(Fig. 13.34).

Solution 13.8: The trapping time delay is ∆ttrap = 0.95 × 108 (ε3/2
2 − ε

3/2
1 )/ne =

6.14 s and 0.61 s between electron energies of ε2 = 100 keV and ε1 = 50 keV
and electron densities of ne = 1010 and 1011 cm−3. For an energy conversion
factor of qε = 2, this corresponds to hard X-ray energies of ε2 = 50 keV and
ε1 = 25 keV, for which a delay time of ∆tobs ≈ 1.0 is observed in Flare #1361
shown in Fig. 13.22.

Solution 13.9: Measuring the relative hard X-ray fluxes of the left and right footpoints
in flare # 1032 (third example shown in Fig. 13.27) we obtain the asymmetry
ratio A = F2/(F1+F2) =14 mm/(5 mm +14 mm)=0.74. The resulting losscone
angles are then (with Eqs. 12.6.18-19): α1 = arccos [1 − 2(1 − A)qprec] = 19◦,
43◦, 58◦ for qprec = 0.1, 0.5, 0.9, and α2 = arccos [1 − qprec] = 26◦, 60◦, 84◦.

Solution 13.10: From Fig. 13.28 we measure peak fluxes of Fmax = 1.04, 1.17, 1.33,
1.49, 1.68, 1.84 and looptop fluxes of Ftop = 0.85, 0.45, 0.43, 0.55, 0.69, 0.85,
yielding flux contrast ratios of Ftop/Fmax = 0.82, 0.38, 0.32, 0.37, 0.41, 0.46,
at energies of ε = 10, 20, ..., 60 keV. Thus, an instrument with a flux contrast of
> 20% (i.e., Ftop/Fmax ≤ 0.8), can only separate footpoint sources for energies
of ε >∼ 10 keV.

Chapter 14: Gamma Rays

Solutions 14.1:

Gamma-Ray emission: Projectile particles: Target particles:
electron bremsstrahlung Corona: e− Chrom.: ions
nuclear de-excitation lines Corona: p, ions Chrom.: ions

(56Fe, 24Mg, 20Ne, 28Si, 12C, 16O)
− narrow lines Corona: p, He Chrom.: ions
− broad lines Corona: C, ions Chrom.: H, He
neutron capture line Corona: p Chrom.: p
pion decay radiation Corona: p Chrom.: p,ions
positron annihilation line Chrom.: e+ Chrom.: e−

Solutions 14.2: Gamma-ray lines that are detectable in the spectrum shown in Fig.
14.3 (top frame) are: 0.5 MeV (e+ positron annihilation line), 1.4 MeV (24Mg),
1.6 MeV (20Ne), 2.2 MeV (n capture line), 4.4 MeV (12C), and 6.1 MeV (16O).
Gamma-ray lines listed in Table 14.2 that are not detectable in the spectrum are:
0.3 MeV (56Fe), 0.4 MeV (4He, 24Mg), 0.8 MeV (56Fe), 0.9 MeV (56Fe), 1.8
MeV (28Si), and 2.6 MeV (20Ne).
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Solutions 14.3: The trapping times for ions [including an additional factor of ≈ 60
in Eq. (14.2.2)] is tions

trap ≈ 60 × 0.95(εion/100 keV)3/2 (1011 cm−3/ni), or
expressed explicitly for the energy, εion ≈ 100 keV [(tmin

trap/0.95) (ni/1011

cm−3)]2/3 keV, yielding εion ≈ 20 − 100 keV for densities of ni ≈ 109 − 1010

cm−3 and a trapping time of τtrap ≈ 10 min (as observed in the 1991-Jun-11 and
1991-Jun-15 flare), or εion ≈ 200 − 800 keV for τtrap ≈ 230 min (as observed
in the long-duration component of the 1991-Jun-11 flare shown in Fig. 14.5).

Solutions 14.4: Whenever the time profile shows pure exponential decays, it is likely
that those time phases are governed by trapping, while every impulsive rise is
indicative of a particle injection from a new acceleration phase. So, acceleration
seems to be intermittent in the 1991-Jun-15 flare, producing pronounced injec-
tions at ≈08:15, 08:30, and 09:00 UT, while the intervening time intervals seem
to be governed by precipitation out of a trap.

Solutions 14.5: The fitted line widths (the values are given in parentheses in the
rightmost column of Table 14.2) are all resolved with RHESSI. The effect of the
instrumental resolution has been removed in the measured values, but is negligi-
ble, except for the 56Fe line.

Solutions 14.6: The relativistic parameters of an electron with a kinetic energy of
εe = 25 keV are γ = εe/mec

2 + 1 = 1.05 and β =
√

(1 − 1/γ2) = 0.30. A
proton with a kinetic energy of εp = 5 MeV has γ = εp/mpc

2 + 1 = 1.005 and
β =
√

(1 − 1/γ2) = 0.10. The time-of-flight delay between these particles over
a distance of L = 100 Mm amount to (Eq. 14.3.3) τep = (L/c)(1/βe−1/βp) =
−2.2 s.

Solutions 14.7: In the first step, ions accelerated in the corona act as projectile par-
ticles and precipitate into the chromosphere, where they collide with other ions
(which are the target) and produce neutrons, primarily from the breakup of He
nuclei. In a second step, the neutrons are captured by protons and produce deu-
terium (2H) and monoenergetic photons at 2.223 MeV, i.e., 1H + n → 2H +
γ2.2 MeV.

Solutions 14.8: The FWHM of the 511 keV line shown in Fig. 14.16 is approximately
FWHM≈ 4 keV. Eq. (14.5.12) yields T = 104 (FWHM/1.1 keV)2) ≈ 1.3× 105

K, which is a transition region temperature.

Solutions 14.9: Pion decay radiation dominates over electron bremsstrahlung at ε >∼ 60
MeV for a flare subinterval (of 5000 s), or at ε >∼ 40 MeV if integrated over the
entire flare.

Solutions 14.10: A list of gamma-ray detectors includes: GRS (onboard SMM);
WBS (onboard Yohkoh); BATSE, OSSE, EGRET, COMPTEL (onboard CGRO);
RHESSI; GAMMA-1; PHEBUS (onboard GRANAT), HEAO-3, as well as SPI
(onboard INTEGRAL) and CORONAS-F, which are not mentioned in the text.
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Chapter 15: Radio Emission)

Solution 15.1: Parameterize the logarithmic height (h/R�) in the range of [0.01,100].
Defining the dimensionless distance from Sun center, r = R/R� = 1 + h/R�,
the three models read as: (1) nBA(r) = 108[2.99r−16 +1.55r−6 +0.036r−1.5];
(2) nAR(r) = 10 × nBA(r); and (3) nHP (r) = 7.2 × 105r−2. The plas-
mafrequency fp as function of the distance r − 1 = h/R� is then fp(r) ≈
9000

√
ne(r). Model (3) yields fp(h/R� = 100) = 76 kHz and agrees best with

Fig. 15.1 in the low-frequency part. Model (2) yields fp(h/R� = 0.01) = 570
MHz and agrees best with Fig. 15.1 in the high-frequency part.

Solution 15.2: The spectra shown in Fig. 15.2 become optically thin (τ <∼ 1) at the
high frequency side where TB

<∼ T max
B = Te (upper panels), which occurs for

bremsstrahlung at ν >∼ 2 GHz, for thermal gyrosynchrotron emission at ν >∼ 5
GHz, and for nonthermal gyrosynchrotron emission at ν >∼ 6 GHz.

Solution 15.3: The average loop width in Fig. 15.3 is w ≈ 30, 000 km. For the radio
frequency of ν = 17 GHz, the free-free absorption coefficient is then αff ≈
0.01n2

eν
−2T

−3/2
e ln Λ ≈ 5 × 10−8 cm−1, with a Coulomb logarithm of ln Λ ≈

17. The free-free opacity is then τff ≈ αffw ≈ 150 � 1, so the radio emission
is optically thick, and thus the radio brightness temperature is expected to be the
same as the electron temperature, i.e., TB = Te ≈ 11 MK.

Solution 15.4: The radio brightness temperature of the footpoints dominates over
looptop emission for frequencies of ν >∼ 7 GHz, according to the spectra shown
in Fig. 15.4 (top right). The simulated radio maps (Fig. 15.4 bottom row) show
indeed two separate footpoint sources for ν = 7.59, ..., 20.00 GHz, while the
footpoint sources cannot be separated from the looptop sources for the lower
frequencies ν = 2.00, ..., 5.27 GHz.

Solution 15.5: The e-folding decay time of the 17 GHz time profile, measured at the
steepest decay part, is about 1.5 tickmarks, so τe ≈ 15 s. Using an energy of
εR ≈ 300 keV for the radio-emitting electrons, we obtain with Eq. (14.2.2) the
trap density ne ≈ 1011(0.95/τe)(εR/100 keV )3/2 ≈ 3 × 1010 cm−3. This
indicates a high-density flare loop.

Solution 15.6: An electron beam with a positive slope is most conspicuously seen
in the 8th curve in the left panel (shifted by ∆v‖ = 8 × 2 × 109 cm s−1, and
in the first curve in the middle panel. The steepest slope in those two curves
give a parallel velocity of v‖ ≈ 60, 000− 75, 000 km s−1, or a relativistic speed

of β = v‖/c = 0.20 − 0.25, yielding a Lorentz factor of γ = 1/
√

1 − β2 =
1.021 − 1.033, or a kinetic energy of ε = mec

2(γ − 1) ≈ 11 − 17 keV.

Solution 15.7: The leading edge in Fig. 15.3 shows a frequency-time drift rate of
∂ν/∂t = (150 − 100) kHz/60 s = 0.8 kHz s−1. The plasma frequency of
νp = 125 kHz corresponds to an electron density of ne ≈ 2 × 102 cm−3. Ac-
cording to the heliospheric density model by Erickson (1964) we find a distance
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of R = R�(ne/7.2 × 105 cm−3)−1/2 ≈ 60R�. The local density scale height
λR can be evaluated from the relation ne(R) = n0 exp [−(R − R�)/λR] =
n0(R/R�)−2, yielding λR = (R − R�)/2 ln (R/R�) ≈ 7.2 R� ≈ 5 × 106

km. Using Eq. (15.4.10), the electron beam velocity can then be evaluated from
vB ≈ (∂ν/∂t)2λR/ν ≈ 64, 000 km s−1, or β = v/c ≈ 0.21.

Solution 15.8: The turnover frequency of the U-bursts in flare 1980-08-25 (Fig. 15.17
top right) is ν ≈ 350 MHz. For fundamental plasma emission this corresponds
to an electron density of ne = (νp/9000)2 ≈ 1.5 × 109 cm−3.

Solution 15.9: Both wave-particle interactions are governed by the Doppler reso-
nance condition δ(ω−sΩ/γ−k‖v‖), but positive wave growth occurs from free
energy provided by the anisotropic (losscone) particle distribution in the case
of electron cyclotron maser emission, while the energy transfer occurs in oppo-
site direction for stochastic acceleration, because the particles gain energy from
gyroresonant waves.

Solution 15.10: With Eq. (15.5.2) we find ∆ν/ν ≈ L/λB = L(−∂B/dl)/B in the
case of gyroemission, or ∆ν/ν ≈ L/2λT = L/2λ1(T/1 MK) in the case of
plasma emission, so the radio bandwidth is reciprocal the the magnetic field B
or temperature T .

Chapter 16: Flare Plasma Dynamics

Solution 16.1: Eq. (16.1.1) yields vc = vTe(nekBTe/τcejE)1/4. Inserting Ohm’s
law, j = σE, the electrical conductivity, σ = nee

2τce/me (Appendix D),
and the electron thermal velocity, vTe = (kBTe/me)1/2 (Appendix D), yields
vc = vTe(mevTe/eEτce)1/2, i.e.. the critical velocity is given by the thermal
speed, if the momentum (mevTe) at the thermal speed equals the induced electric
momentum (eEτce). Compare also with Eq. (4) in Holman (1985).

Solution 16.2: From Fig. 16.3 (right) we measure the following temperature changes:
T‖H(t)/T‖H(t0) ≈ 5, T⊥H(t)/T⊥H(t0) ≈ 1.5,
T‖He(t)/T‖He(t0) ≈ 15, T⊥He(t)/T⊥He(t0) ≈ 2.5,
T‖O(t)/T‖O(t0) ≈ 15, T⊥O(t)/T⊥O(t0) ≈ 5,
T‖Fe(t)/T‖Fe(t0) ≈ 30, T⊥Fe(t)/T⊥Fe(t0) ≈ 5.
If all ions had initially the same temperature Ti, we expect that the thermal ion
velocities scale as vTi =

√
kBTi/µimp, where the mean molecular weights are

µH = 1, µHe = 4, µO = 16, and µFe = 56. Thus the relative changes in the
widths of the parallel and perpendicular velocity distributions of the ions with
respect to the initial hydrogen velocity are:
v‖H/v‖H =

√
5/(5 × 1) = 1.0, v⊥H(t)/v⊥H =

√
1.5/(1.5× 1) = 1.0,

v‖He/v‖H =
√

15/(5 × 4) = 0.87, v⊥He(t)/v⊥H =
√

2.5/(1.5× 4) = 0.65,
v‖O/v‖H =

√
15/(5 × 16) = 0.43, v⊥O(t)/v⊥H =

√
5/(1.5 × 16) = 0.46,

v‖Fe/v‖H =
√

30/(5 × 56) = 0.33, v⊥Fe(t)/v⊥H =
√

5/(1.5 × 56) = 0.24.
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The expected changes in the widths of the velocity distributions agree approxi-
mately with the diagrams in Fig. 16.3 (left).

Solution 16.3: Inserting the heating rate Q ≈ (B2vA/4πL) (Eq. 10.5.3) and Alfvén
velocity vA = B/

√
4πρ into the apex temperature TA ≈ (2QL2/κ0)2/7 (Eq.

10.5.2) yields the scaling law Ttop = (B3L/2πκ0

√
4πρ)2/7 given in Eq. (16.2.1).

Solution 16.4: Hα emission originates deep in the chromosphere, ranging from the
photosphere in the line wing to the upper chromosphere in the line core, i.e., in
altitudes of h ≈ 300 − 1600 km (see Fig. 16.6). White light originates deep
in the chromosphere by hydrogen recombination, while the energy transport to
lower altitudes in the chromosphere is accomplished by photo-ionization (radia-
tive back-warming). Similarly, UV continuum emission results from radiative
backwarming deep in the chromosphere, in the temperature minimum region
(h ≈ 500 − 800 km) based on good correlations between C II or C IV and Si I
fluxes (see also Fig. 16.6).

Solution 16.5: The arrows in Fig. 16.11 mark the rest wavelength of the Ca IX line
at λ0 = 3.1760 Å, and the blueshifted line at λ1 = 3.1738 Å. Thus the Doppler
velocity is v = c(∆λ/λ) = c(λ1 − λ0)/λ0 = −210 km s−1, as quoted in the
Figure caption of Fig. 16.11. Errors can be due to the accuracy of the line fit
and due to the value of the rest wavelengths, which are hard to measure in the
laboratory at these wavelengths.

Solution 16.6: Based on the average velocity of v ≈ 270 km s−1 and plasma fre-
quency ν ≈ 3.0 GHz (Table 16.2), a coronal scale height of λT ≈ 47, 300× 1.5
km and a propagation angle of θ ≈ 0◦ we expect a mean drift rate of ∂ν/∂t =
−νv cos θ/λT ≈ 17 MHz s−1, according to Eq. (16.3.2). Applied to Fig. 16.15,
we obtain for ν = 2 GHz, ∆ν = (ν2 − ν1) = 2000 − 1000 = 1000 MHz,
∆t ≈ 100 s, and θ ≈ 0 a drift of ∂ν/∂t ≈ 11 MHz s−1, which approximately
agrees with the observed value of ∆ν/∆t ≈ 10 MHz s−1.

Solution 16.7: Defining the conductive cooling time by dεth/dt = εth/τcond =
−2κT 7/2/7L2 (Eq. 16.4.2) and inserting εth = 3nekBTe we obtain τcond =
(21/2)nekBL2/κT 5/2, or τcond ≈ 500 × (ne/1011 cm−3)(L/10 Mm)2(Te/10
MK)−5/2 s. Defining the radiative cooling time by dεth/dt = εth/τrad =
−n2

eΛ0T
−2/3
e we obtain τrad ≈ 22 × (T/1 MK)5/3(ne/1011 cm−3)−1 s. Note

that the expressions in Eqs. (16.4.4) and (16.4.9) have different numerical factors
because the change in enthalpy is considered rather than the change in thermal
energy.

Solution 16.8: For ne = 1011 cm−3 and L = 10 Mm the conductive cooling time
(derived in Problem 16.7) is τcond = 500 (Te/10 MK)−5/2 = 157, 500 (Te/1
MK)−5/2 s, and the radiative cooling time is τrad = 22 (Te/1 MK)5/3. The two
time scales are equal at Te = 1 MK ×(157, 500/22)6/25 =8.4 MK.

Solution 16.9: In the beginning and peak of the flare, when the flare temperature is
high (Te

>∼ 10 MK), the conductive cooling is faster than radiative cooling, and
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thus conductive cooling dominates. In the late decay phase of the flare, when
the flare loops cool down to EUV temperatures (Te

<∼ 2 MK), radiative cooling
dominates.

Solution 16.10 Based on a cooling time of τcool ≈ 6 min to cool down to Te
<∼ 2 MK

(Table 16.3), we expect a minimum number of subsequent flare loops Nmin >
∆tflare/τcool ≈ 5. Thus, we see simultaneously Nsim ≈ Ntotal/Nmin ≈
(200/5) ≈ 40 flare loops.

Chapter 17: Coronal Mass Ejections

Solution 17.1: (1) The thermal blast model is driven by plasma heating (in a flare
region), producing an overpressure that cannot be confined magnetically. (2)
The dynamo model is driven by magnetic stressing, caused for instance by flux
emergence, such as in the emerging flux model of Heyvaerts et al. (1977). (3)
The mass loading model is driven by an unstable filament, caused either by
mass drainage or unstable loading, subject to the Rayleigh-Taylor or Kruskal-
Schwarzschild instability. (4) The tether release model can be enacted by the
loss-of-equilibrium model of Forbes & Priest (1995), driven by converging flows
towards the underlying neutral line. (5) The tether straining model is a more
complex version with gradual increase of external strain, such as in the magnetic
breakout model of Antiochos et al. (1999b).

Solution 17.2: The inner filament seems to be line-tied during the simulation, so the
number of windings is conserved during the expansion. From Fig. 17.3 (panels
b-d) the number of windings can be estimated to Ntwist ≈ 2.5, corresponding
to a twist angle of ϕtwist ≈ 2.5 × 2π = 5π, which is larger than all critical
angles for kink instability quoted in §6.3.9: ϕtwist

>∼ 3.3π (for force-free fields);
ϕtwist

>∼ 4.8π (Mikić et al. 1990).

Solution 17.3: The central helical filament has ≈ 4 windings in Fig. 17.5 and cor-
responds to the central filament with ≈ 2.5 windings in Fig. 17.3. This helical
filament expands and becomes larger in Fig. 17.5, similar to the simulation in
Fig. 17.3. The other features seen in the C IV 1600 Å images (Fig. 17.5) are
probably of chromospheric origin and do not correspond to any of the coronal
magnetic field lines shown in the simulation in Fig. 17.3.

Solution 17.4: The distances d of the CME front from Sun center can be measured in
units of solar radii (i.e., half the diameter of the white circle that marks the solar
disk in Fig. 17.6), yielding: (a) 18 R�, (b) 20 R�, (c) 20 R�, (d) > 7.3 R�, and
(e) 6 R�. Using the quoted CME speeds we obtain for the times t = d/vCME :
(a) 5.1 h, (b) 2.1 h, (c) 4.9 h, (d) 1.9 h, (e) <0.7 h. Picture (e) was taken closest
to the launch.

Solution 17.5: The distances d and helical curvature radii r are approximately: (1)
Fig. 17.7: d ≈ 3 R�, r ≈ 1.5 R�; (2) Fig. 17.8: d ≈ 4 R�, r ≈ 1.3 R�; (3)
Fig. 17.9: d ≈ 3.7 R�, r ≈ 1.5 R�.
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Solution 17.6: The distances are r(t) = R�
√

n0/n(t) = 10R�, 100R�, and
1000R� ≈ 5 AU (Jupiter orbit). The propagation times are t = r(t)/vCME =
2, 20, and 200 h (≈ 8 days).

Solution 17.7: The area of the active region is AAR = R2
�× ∫ π/4

0
dl
∫ π/4

0
cos b db =

0.55R2�, a fraction of 1/22 of the total solar surface. The mass of the active
region is mAR = n0mpAARλp ≈ 2 × 1016 g. So the fraction to be accelerated
for a CME is mCME/mAR ≈ 0.5% and 50%.

Solution 17.8: Assuming that their total energy is conserved, the total energy is the
sum of gravitational potential, kinetic, and magnetic energy. While slow CMEs
are magnetically driven, the magnetic energy can be neglected for fast CMEs. A
CME reaches its terminal velocity far away from the Sun when the gravitational
potential can be neglected, so that the kinetic energy essentially is equal to the
total energy. The terminal velocity is thus vCME =

√
2εtot/mCME ≈ 450 −

1400 km s−1.

Solution 17.9: The maximum intensity decreases (EUV dimming) are approximately
I(t)/I0 ≈ 0.25 in Fig. 17.17 and I(t)/I0 ≈ 0.21 in Fig. 17.19, corresponding
to a density decrease of ne(t)/n0 =

√
I(t)/I0 = 0.5 and 0.46. The expansion

factors of the CMEs are then l(t)/l0 ∝ [V (t)/V0]1/3 ∝ [ne(t)/n0]−1/3 ≈ 1.3.

Solution 17.10: Ulysses is near the ecliptic ( <∼ 10◦) from 1991 to June 1992 and thus
sees the equatorial slow solar wind (v ≈ 400− 500 km s−1). From June 1992 to
June 1993 Ulysses moves from latitude ≈ 10◦ to ≈ 40◦ and sees both slow and
fast solar wind speeds, modulated by the solar rotation rate. From June 1993 un-
til December 1995, Ulysses moves through the high southern latitudes ( >∼ 40◦)
and sees only the fast solar wind component (v ≈ 800 km s−1), reaching peri-
helion in January 1995, where it sees slow solar wind for a short while, followed
by the passage through high northern latitudes during February 1995 until July
1996 (fast solar wind), and moves towards lower latitudes ( <∼ 30◦) afterwards,
gradually picking up more of the slow solar wind component.

− Quod Erat Demonstrandum −
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Appendix A: Physical Constants

Physical quantity Symbol Value cgs units
Speed of light in vacuum c = 2.9979 × 1010 cm s−1

Elementary charge e = 4.8023 × 10−10 statcoulomb
Electron mass me = 9.1094 × 10−28 g
Proton mass mp = 1.6726 × 10−24 g
Proton/electron mass ratio mp/me = 1.8361 × 103

Gravitational constant G = 6.6720 × 10−8 dyne cm2 g−2

Boltzmann constant kB = 1.3807 × 10−16 erg K−1

Planck constant h = 6.6261 × 10−27 erg s
Rydberg constant RH = me4/4πh̄3c = 1.0974 × 105 cm−1

Bohr radius a0 = h̄2/mee
2 = 5.2918 × 10−9 cm

Electron radius re = e2/mec
2 = 2.8179 × 10−13 cm

Stefan−Boltzmann constant σ = 2π5k4
B/(15c2h3) = 5.6774 × 10−5 erg cm−2 s−1 K−4

1 electron Volt εeV = 1.6022 × 10−12 erg
TeV = 1.1604 × 104 K
λeV = 1.2398 × 10−4 cm
νeV = 2.4180 × 1014 Hz

1 Ångstrøm (Å) = 10−8 cm
1 Jansky (Jy) = 10−23 erg s−1 cm−2 Hz−1

1 Solar flux unit (SFU) = 10−19 erg s−1 cm−2 Hz−1

1 Astronomical unit (AU) = 1.50 × 1013 cm
Solar radius R� = 6.96 × 1010 cm
Solar mass M� = 1.99 × 1033 g
Solar gravitation g� = GM�/R2

� = 2.74 × 104 cm s−2

Solar escape speed v∞ = 6.18 × 107 cm s−1

Solar age t� = 4.60 × 109 years
Solar radiant power L� = 3.90 × 1033 erg s−1

Solar radiant flux density F� = 6.41 × 1010 erg cm−2 s−1

Solar constant (flux at 1 AU) f� = 1.39 × 106 erg cm−2

Solar solid angle (at 1 AU) Ω� = πR2
�/AU2 = 6.76 × 10−5 ster

Photospheric temperature Tphot = 5762 K
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Appendix B: Conversion of Physical Units

Physical quantity Gaussian units [cgs] Rationalized metric units [mks]
Length 1 cm = 10−2 m
Mass 1 g = 10−3 kg
Time 1 s = 1 s
Force 1 dyne = 10−5 N (Newton)
Energy 1 erg = 10−7 J (Joule)
Power 1 erg s−1 = 10−7 W (Watt)
Charge 1 statcoulomb = 1

3 · 10−9 C (Coulomb)
Electric field 1 statvolt cm−1 = 3 · 104 V m−1

Current 1 statampere = 1
3 · 10−9 A (Ampère)

Current density 1 statampere cm−2 = 1
3 · 10−5 A m−2

Electrical conductivity 1 s−1 = 1
9 · 10−9 Siemens m−1

Magnetic induction 1 G (Gauss) = 10−4 T (Tesla)
Magnetic field 1 Oersted = 1

4π · 103 A m−1

Appendix C: Maxwell’s Equations in Different Physical
Unit Systems

Gaussian units [cgs] Gaussian units [cgs] Rationalized metric units [mks]
(current in emu units)) (current in esu units))

∇ · E = 4πρE ∇ · E = 4πρE ∇ · D = ρE

∇ · B = 0 ∇ · B = 0 ∇ · B = 0

∇× E = − 1
c

dB
dt ∇× E = − 1

c
dB
dt ∇× E = −dB

dt

∇× H = 1
c

dD
dt + 4πj ∇× H = 1

c
dD
dt +

(
4π
c

)
j ∇× H = dD

dt + j

− emu units: The current j is measured in electromagnetic units.
− esu units: The current j is measured in electrostatic units, the ratio of the values of j
is j(esu)/j(emu) = c ≈ 3 × 1010 cm s−1.
− Rationalized mks units are SI units with the factor 4π removed from the equations.
− The electric displacement is D = εE. In a plasma, ε ≈ 1 in cgs units.
− The magnetic field is H = B/µ. In a plasma, µ ≈ 1 in cgs units.
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Appendix D: Plasma Parameters

Physical quantity Definition Numerical formula (cgs units)
Thermal pressure pth = 2nekBTe = 2.76 × 10−16 ne T (dyne cm−2)
Magnetic pressure pm = B2/(8π) = 3.98 × 10−2 B2 (dyne cm−2)
Plasma-β parameter β = (pth/pm) = 6.94 × 10−15 neTeB

−2

Thermal scale height λT = 2kBTe/(µCmpg�) = 4.73 × 103 Te (cm)
Electron thermal velocity vTe = (kBTe/me)

1/2 = 3.89 × 105 T
1/2
e (cm s−1)

Ion thermal velocity vTi = (kBTi/µmp)
1/2 = 9.09 × 103 (Ti/µ)1/2 (cm s−1)

Ion mass density ρ = nimi = niµmp = 1.67 × 10−24 µ ni (g cm−3)
Sound speed cS = (γpth/ρ)1/2 = 1.66 × 104 (T/µ)1/2 (cm s−1)
Alfvén speed vA = B/(4πµmpni)

1/2 = 2.18 × 1011 B (µni)
−1/2 (cm s−1)

Electron plasma frequency fpe = (nee
2/πme)

1/2 = 8.98 × 103 n
1/2
e (Hz)

Ion plasma frequency fpi = (niZ
2e2/πµmp)

1/2 = 2.09 × 102 Z(ni/µ)1/2 (Hz)
Electron gyrofrequency fge = eB/(2πmec) = 2.80 × 106 B (Hz)
Ion gyrofrequency fgi = ZeB/(2πµmpc) = 1.52 × 103 B/µ (Hz)
Electron collision frequency fce = 3.64 × 100ne ln ΛT

−3/2
e (Hz)

Ion collision frequency fci = 5.98 × 10−2ni ln ΛZ2T
−3/2
i (Hz)

Electron collision time τce = 1/fce = 2.75 × 10−1T
3/2
e /(ne ln Λ) (s)

Ion collision time τci = 1/fci = 1.67 × 101T
3/2
i /(ni lnΛZ2) (s)

Electron gyroradius Re = vTe/(2πfge) = 2.21 × 10−2T
1/2
e B−1 (cm)

Ion gyroradius Ri = vTi/(2πfgi) = 9.49 × 10−1T
1/2
i µ1/2Z−1B−1 (cm)

Debye length λD = (kBTe/4πnee
2)1/2 = 6.90 × 100T 1/2n

−1/2
e (cm)

Dreicer field ED = Ze lnΛ/λ2
D = 1.01 × 10−11Z ln ΛneT

−1
e (statvolt cm−1)

Electrical conductivity σ = nee
2τce/me = 6.96 × 107 ln(Λ)−1Z−1T

3/2
e (Hz)

Magnetic diffusivity η = c2/(4πσ) = 1.03 × 1012 ln(Λ)Z T
−3/2
e (cm2 s−1)

Magnetic Reynolds number Rm = lv/η = 9.73 × 10−13 l v T 3/2 lnΛ−1

Thermal Spitzer conductivity coeff. κ = 9.2 × 10−7 (erg s−1 cm−1 K−7/2)
Thermal conductivity κ‖ = κT 5/2 = 9.2 × 10−7T 5/2 (erg s−1 cm−1 K−1)
Radiative loss rate Λ0(T ≈ 1 MK) = 1.2 × 10−22 (erg s−1 cm3)
Coronal viscosity νvisc = 4.0 × 1013 (cm2 s−1)

− cgs units: length l (cm), mass m (g), time t (s), Temperature T (K), magnetic field
B (G), densities ni, ne (cm−3).
− Adiabatic index: γ = cp/cv = (N + 2)/N = 5/3 = 1.67.
− Ion/proton mass ratio µ = mi/mp: µ(H) = 1, µ(He) = 4, µ(Fe) = 56.
− Mean molecular weight in corona (H:He=10:1): µC = (10 ∗ 1 + 1 ∗ 4)/11 = 1.27
− Coronal approximation (full ionization): ni = ne.
− Coulomb logarithm: ln Λ = 23 − ln(n1/2

e T
−3/2
e ) ≈ 20 for Te

<∼ 10 eV.
− Charge state: proton → Z = 1, Fe IX → Z = 8.
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Appendix E: Conversion Table of Electron Temperatures
into Relativistic Parameters

Temp. Energy Velocity Lorentz Temperature Energy Velocity Lorentz
Te (MK) ε (keV) β = v/c factor Te (MK) ε (keV) β = v/c factor

γ γ

0.1 0.009 0.006 1.000 100.0 8.618 0.181 1.017
0.2 0.017 0.008 1.000 200.0 17.235 0.253 1.034
0.3 0.026 0.010 1.000 300.0 25.853 0.307 1.051
0.4 0.034 0.012 1.000 400.0 34.470 0.350 1.067
0.5 0.043 0.013 1.000 500.0 43.088 0.387 1.084
0.6 0.052 0.014 1.000 600.0 51.705 0.419 1.101
0.7 0.060 0.015 1.000 700.0 60.323 0.447 1.118
0.8 0.069 0.016 1.000 800.0 68.940 0.473 1.135
0.9 0.078 0.017 1.000 900.0 77.558 0.496 1.152
1.0 0.086 0.018 1.000 1000.0 86.175 0.517 1.169
1.0 0.086 0.018 1.000 1000.0 86.175 0.517 1.169
2.0 0.172 0.026 1.000 2000.0 172.350 0.664 1.337
3.0 0.259 0.032 1.001 3000.0 258.526 0.748 1.506
4.0 0.345 0.037 1.001 4000.0 344.701 0.802 1.675
5.0 0.431 0.041 1.001 5000.0 430.876 0.840 1.843
6.0 0.517 0.045 1.001 6000.0 517.052 0.868 2.012
7.0 0.603 0.049 1.001 7000.0 603.227 0.889 2.180
8.0 0.689 0.052 1.001 8000.0 689.402 0.905 2.349
9.0 0.776 0.055 1.002 9000.0 775.577 0.918 2.518

10.0 0.862 0.058 1.002 10,000.0 861.753 0.928 2.686
20.0 1.724 0.082 1.003 20,000.0 1723.505 0.974 4.373
30.0 2.585 0.100 1.005 30,000.0 2585.258 0.986 6.059
40.0 3.447 0.116 1.007 40,000.0 3447.010 0.992 7.746
50.0 4.309 0.129 1.008 50,000.0 4308.763 0.994 9.432
60.0 5.171 0.141 1.010 60,000.0 5170.516 0.996 11.118
70.0 6.032 0.152 1.012 70,000.0 6032.268 0.997 12.805
80.0 6.894 0.163 1.013 80,000.0 6894.020 0.998 14.491
90.0 7.756 0.172 1.015 90,000.0 7755.773 0.998 16.178

100.0 8.618 0.181 1.017 100,000.0 8617.525 0.998 17.864

−The thermal energy of an electron is εth = kBTe and set εth = εkin.
−The kinetic energy of a nonrelativistic electron is εkin = 1

2mev2.
−The kinetic energy of a relativistic electron is εkin = mec

2(γ − 1).
−The relativistic Lorentz factor is γ = 1/

√
(1 − β2).

−The relativistic velocity is β = v/c.
−The electron rest mass is mec

2 = 511 keV.
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Appendix F: EUV Spectral Lines

The following list contains important transition region and coronal EUV lines (e.g.,
observed with SoHO/CDS, see Harrison et al. 1995, Solar Physics 162: 233−290),
sorted according to increasing formation temperature.

Temperature T(MK) log[T(K)] Wavelengths λ (Å) Line Instrument
0.02 4.3 584.33, 537.03 He I CDS
0.03 4.4 735.90, 743.70 Ne I CDS
0.08 4.4 303.78 He II CDS, EIT
0.08 4.9 702.98, 599.59 O III CDS
0.08 4.9 489.50 Ne III CDS
0.10 5.0 765.14 N IV CDS
0.20 5.3 554.52 O IV CDS
0.25 5.4 172.17, 629.73 O V CDS
0.30 5.5 482.10 Ne V CDS
0.40 5.6 399.83, 401.14 Ne VI CDS
0.40 5.6 562.83, 558.59 Ne VI CDS
0.40 5.6 399.20, 400.68 Mg VI CDS
0.40 5.6 168.18, 186.60 Fe VIII CDS
0.50 5.7 465.22 Ne VII CDS
0.63 5.8 770.40, 780.30 Ne VIII CDS
0.63 5.8 277.04, 278.40 Mg VII CDS
0.63 5.8 272.60, 275.37 Si VII CDS
0.63 5.8 557.76 Ca X CDS
0.80 5.9 313.73, 317.01 Mg VIII CDS
0.80 5.9 316.22, 319.83 Si VIII CDS
1.00 6.0 171.07 Fe IX CDS, EIT, TRACE
1.00 6.0 217.10 Fe IX CDS
1.00 6.0 368.06, 705.80 Mg IX CDS
1.00 6.0 296.12, 345.12 Si IX CDS
1.00 6.0 261.06, 271.99 Si X CDS
1.10 6.1 624.94 Mg X CDS
1.10 6.1 341.94 Si IX CDS
1.30 6.1 347.40, 356.01 Si X CDS
1.30 6.1 174.53, 177.24 Fe X CDS
1.30 6.1 358.62 Fe XI CDS
1.30 6.1 180.40, 188.22 Fe XI CDS
1.30 6.1 192.81 Fe XI CDS
1.40 6.1 568.12, 550.03 Al XI CDS
1.60 6.2 195.12, 193.51 Fe XII CDS, EIT, TRACE
1.60 6.2 364.47, 346.85 Fe XII CDS
1.60 6.2 203.79, 213.77 Fe XIII CDS
1.60 6.2 320.80, 359.64 Fe XIII CDS
1.60 6.2 348.18 Fe XIII CDS
1.80 6.3 520.66 Si XII CDS
2.00 6.3 211.32, 220.08 Fe XIV CDS
2.00 6.3 334.17, 353.83 Fe XIV CDS
2.00 6.3 284.16 Fe XV CDS, EIT, TRACE
2.00 6.3 327.02 Fe XV CDS
2.50 6.4 200.80 Fe XVI CDS
2.50 6.4 335.40, 360.76 Fe XVI CDS
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Appendix G: Vector Identities

a,b, c,d are vectors, ψ(x) and φ(x) are scalar functions (e.g., a potential function),
and ∇ = (d/dx, d/dy, d/dz) the vectors of derivatives.

a · b = b · a
a × b = −b× a

a · (b × c) = b · (c × a) = c · (a × b)
a × (b × c) = (a · c)b − (a · b)c

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c)
(a × b) × (c × d) = [(a × b) · d]c − [(a × b) · c]d

∇ · (∇× a) = 0
∇× (∇× a) = ∇(∇ · a) −∇2a

∇(a · b) = (a · ∇)b + (b · ∇)a + a × (∇× b) + b× (∇× a)
∇(b · b)/2 = (b · ∇)b + b × (∇× b)
∇ · (a × b) = b · (∇× a) − a(∇× b)

∇× (a × b) = a(∇ · b) − b(∇ · a) + (b · ∇)a − (a · ∇)b
a × (∇× b) = (∇b) · a − a · (∇b)

∇(ψφ) = ψ∇φ + φ∇ψ
∇×∇ψ = 0
∇ · (ψa) = a · ∇ψ + ψ∇ · a
∇× (ψa) = ∇ψ × a + ψ∇× a

∇2ψ = ∇ · (∇ψ)
∇2a = ∇(∇ · a) −∇× (∇× a)

x = (x, y, z) is the coordinate of a point, with distance r = |x| from the origin of
the coordinate system (0, 0, 0), and n = x/r is the radial unit vector.

∇ · x = 3
∇× x = 0
∇ · n = 2

r∇× n = 0
(a · ∇)n = 1

r [a − n(a · n)] = a⊥
r

T is a second-order tensor, with (e1, e2, e3) the orthonormal unit vectors in the
cartesian coordinate system,

T =
∑
i,j

Tijeiej

(∇ ·T)i =
∑

j

(dTji/dxj)

∇ · (ψT) = ∇ψ · T + ψ∇ · T
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Appendix H: Integral Identities

φ(x) and ψ(x) are scalar functions, A(x) is a vector function, V the 3D volume with
volume element dx3, S is the 2D surface that encloses the volume, with an area element
da, and n is the outward pointing normal vector on surface element da.

Divergence theorem: ∫
V ∇ · A dx3 =

∫
S A · n da

∫
V ∇ψ dx3 =

∫
S ψn da

∫
V
∇× A dx3 =

∫
S
n × A da

Green’s first identity:∫
V

(φ∇2ψ + ∇φ · ∇ψ) dx3 =
∫

S

φn · ∇ψ da

Green’s theorem:∫
V

(φ∇2ψ − ψ∇2φ) dx3 =
∫

S

(φ∇ψ − ψ∇φ) · n da

S is an open surface and C is the contour line at the boundary, with line element dl.
The normal n to S is defined by the right-hand side rule in relation to the sense of the
line integral around C.

Stokes’ theorem: ∫
S
(∇× A) · n da =

∫
C

A · dl
∫

S n ×∇ψ da =
∫

C ψ dl
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Appendix I: Components of Vector Operators

(e1, e2, e3) are the orthogonal unit vectors and (A1, A2, A3) the corresponding com-
ponents of the vector A. ψ(x) is a scalar function (e.g., a potential field). ∇ψ is the
gradient vector, ∇ · a is the divergence, ∇× a the curl, and ∇2ψ or ∆ψ the Laplacian
operator.

Cartesian Coordinate System (x, y, z)

∇ψ = e1
∂ψ

∂x
+ e2

∂ψ

∂y
+ e3

∂ψ

∂z

∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

∇× A = e1

(
∂Az

∂y
− ∂Ay

∂z

)
+ e2

(
∂Ax

∂z
− ∂Az

∂x

)
+ e3

(
∂Ay

∂x
− ∂Ax

∂y

)

∇2ψ =
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2

Cylindrical coordinates (r, ϕ, z)

∇ψ = e1
∂ψ

∂r
+ e2

1
r

∂ψ

∂ϕ
+ e3

∂ψ

∂z

∇ ·A =
1
r

∂

∂r
(rAr) +

1
r

∂Aϕ

∂ϕ
+

∂Az

∂z

∇× A = e1

(
1
r

∂Az

∂ϕ
− ∂Aϕ

∂z

)
+ e2

(
∂Ar

∂z
− ∂Az

∂r

)
+ e3

1
r

(
∂

∂r
(rAϕ) − ∂Ar

∂ϕ

)

∇2ψ =
1
r

∂

∂r

(
r
∂ψ

∂r

)
+

1
r2

∂2ψ

∂ϕ2
+

∂2ψ

∂z2

Spherical coordinates (r, θ, ϕ)

∇ψ = e1
∂ψ

∂r
+ e2

1
r

∂ψ

∂θ
+ e3

1
r sin θ

∂ψ

∂ϕ

∇ ·A =
1
r2

∂

∂r
(r2Ar) +

1
r sin θ

∂

∂θ
(sin θAθ) +

1
r sin θ

∂Aϕ

∂ϕ

∇×A = e1
1

r sin θ

[
∂

∂θ
(sin θAϕ) − ∂Aθ

∂ϕ

]
+e2

[
1

r sin θ

∂Ar

∂ϕ
− 1

r

∂

∂r
(rAϕ)

]

+e3
1
r

[
∂

∂r
(rAθ) − ∂Ar

∂θ

]

∇2ψ =
1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂ϕ2

where
1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
=

1
r

∂2

∂r2
(rψ)
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Physical units symbols (see also Appendix B)

A Ampère, unit for electric current (SI)
Å Ångstrøm = 10−8 cm (Appendix A)
AU astronomical unit (Appendix A)
C Coulomb, unit for electric charge (SI)
cm centimeter, unit for length (cgs)
dyne unit for force (cgs)
erg unit for energy (cgs)
eV electron Volt; keV, MeV, GeV
g gram, unit for mass (cgs); kg (SI)
G Gauss, unit for magnetic field (cgs); kG
J Joule, unit for energy (SI)
Jy Jansky (Appendix A)
Hz Hertz = s−1, unit for frequency (SI); kHz, MHz, GHz
K Kelvin, unit for temperature (cgs, SI); MK
m meter, unit for length (SI); µm, mm, cm, dm, km, Mm
N Newton, unit for force (SI)
rad radian, unit angle π
s second, unit for time (cgs, SI)
ster sterad, unit for solid angle (ster=rad2)
SFU solar flux unit (Appendix A)
T Tesla, unit for magnetic field (SI)
V Volt, unit for electric potential (SI)
W Watt, unit for power (SI); kW, MW

Latin Symbols

A magnetic vector potential function
A area (cm2)
A oscillation amplitude (cm)
AX elemental abundance of element X, (e.g., AH = hydrogen abundance)
Amn Einstein coefficient for spontaneous emission (§2.5)
a acceleration (cm s−2)
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a0 Bohr atom radius (Appendix A)
B magnetic field vector, magnetic induction (Appendix C)
B magnetic field strength (G)
B(x, y) Beta function
Bν , Bλ brightness function (radiation transfer, §2.2)
Bmn Einstein coefficient for spontaneous emission (§2.5)
b impact parameter (Rutherford formula, §2.3)
b heliographic latitude (deg)
b0 heliographic latitude of Sun center (deg)
C contribution function (§2.8)
C electric capacity (cm)
Cmn collision coefficient (§2.7)
c speed of light (Appendix A)
ck kink-mode speed (§7.2.1)
cp specific heat at constant pressure
cs sound speed (Appendix D)
cT MHD tube speed (Eq. 7.1.27)
cv specific heat at constant volume
D electric displacement (Appendix C)
D fractal dimension
D diffusion constant (cm2 s−1)
Dij diffusion tensor
d distance (cm)
d duration (s)
E electric field vector
E electric field strength (statvolt cm−1)
EC conductive loss rate (erg cm−3 s−1)
ED Dreicer field (Appendix D)
EH heating rate (erg cm−3 s−1)
ER radiative loss rate (erg cm−3 s−1)
EM emission measure EM = n2z (cm−5)
EMV volumetric emission measure EMV = n2V (cm−3)
e unit vector
e elementary electric charge (Appendix A)
e internal energy (Eq. 4.1.13)
F photon flux (erg s−1 cm−2 keV−1)
FC conductive flux (erg cm−2 s−1)
Fgrav gravitational force (dyne)
FH heating flux or Poynting flux (Eq. 9.1.6)
FL Lorentz force (dyne)
Fvisc viscosity force (Eq. 6.1.14)
F� solar radiant flux density (Appendix A)
f frequency (Hz)
f function
f(v) particle distribution function
f(p) particle momentum distribution function
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fce electron collision frequency (Appendix D)
fci ion collision frequency (Appendix D)
fge electron gyrofrequency, also νB , (Appendix D)
fgi ion gyrofrequency (Appendix D)
fpe electron plasma frequency, also νp, (Appendix D)
fpi ion plasma frequency (Appendix D)
f� solar constant (flux at 1 AU), (Appendix A)
G gravitational constant (Appendix A)
G(r, r′) Green’s function
g gravitational acceleration (cm s−2)
g Gaunt factor (§2.3)
geff effective gravity (§3.4)
gn atomic statistical weigth of atomic level εn (§2.5)
g� solar gravitation (Appendix A)
H magnetic field (Appendix C)
H helicity (Eq. 5.5.11)
h height above solar surface (cm)
h heating rate per volume
h Planck constant (Appendix A)
h̄ Planck constant, h̄ = h/2π
hD dipole depth below solar surface (cm)
I current (statampere)
In(r) modified Bessel function
Iν intensity of radiation (erg s−1 cm−2 Hz−1 ster−1)

(radiation transfer, §2.1)
j current density vector
j current density (statamp)
j0,s zeros of Bessel function (Eq. 7.3.1)
K constant in stopping depth of thick-target bremsstrahlung (Eq. 13.6.1)
k wave vector (cm−1)
kB Boltzmann constant (Appendix A)
kc cutoff wave number (cm−1)
L loop half length (cm)
LB magnetic scale height (cm)
Lij electric inductance (s2 cm−1)
L� solar luminosity or radiant power (Appendix A)
l length (cm)
l heliographic latitude (deg)
l0 heliographic latitude of Sun center (deg)
lTOF time-of-flight distance
M Mach number
M� solar mass (Appendix A)
m mass (g)
me electron mass (Appendix A)
mi ion mass (e.g., mH = hydrogen mass)
mp proton mass (Appendix A)
N number of degrees of freedom

NOTATION
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N(k) photon number spectrum
Ns(ε0) stopping depth for electrons with energy ε0

Nn population number of atomic energy level εn (§2.7)
N(X+m) number of atoms X in ionization state (+m)
N(S) frequency or size distribution (log-N versus log-S)
n normal vector
n power index
n total density in plasma (n = ne + ni)
n principal quantum-mechanical level
ne electron number density (cm−3)
nH hydrogen density
ni ion number density (cm−3)
nn atomic quantum number of energy level n (Rydberg formula, Eq. 2.4.3)
np proton number density (cm−3)
nν refractive index
P power (erg s−1)
P period (s)
P probability
P position angle of solar disk (rad, deg) (§3.4.4)
Pij pressure tensor (Eq. 6.1.11)
Pmn transition probability from atomic level n to m
p pressure (dyne cm−2)
pgrav gravitational pressure (dyne cm−2)
pth thermal pressure (dyne cm−2), (Appendix D)
pm magnetic pressure (dyne cm−2), (Appendix D)
Q heating rate
Q electric charge
Qr radiation cross section (cm2 erg Hz−1), (§2.3)
Q(T ) temperature filter ratio
q ratio
q electric charge
qfill filling factor (Eq. 4.5.8)
qp pressure ratio
qx dimensionless ratio or correction factor
qλ scale height ratio (Eq. 3.6.24)
R radial distance from Sun center (cm)
R rate (s−1)
R reflectivity coefficient
R magnetic mirror ratio
Re electron gyroradius (Appendix D)
Ri ion gyroradius (Appendix D)
Rm magnetic Reynoldsnumber (Appendix D)
R(T ) instrumental response function (§3.8)
R� solar radius (cm), (Appendix A)
RH Rydberg constant (Appendix A)
r radius or distance from center (cm)
re electron radius (Appendix A)
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rcurv curvature radius of flare loop (i.e., height of semi-circular loop)
rloop cross-sectional radius of loop
S surface (specifying a surface integral)
S entropy per unit mass (Eq. 4.1.8)
Sν source function (radiation transfer, §2.1)
S0 Lundquist (magnetic Reynolds number) (Eq. 10.1.8)
s path distance along curve (cm)
s harmonic number
sH heating scale length (cm)
T temperature (K)
TB radio brightness temperature (K)
Te electron temperature (K)
Ti ion temperature (K)
Tmax maximum temperature (K)
Tphot photospheric temperature (Appendix A)
t time (s)
tpeak peak time of a time profile (s)
t� solar age (Appendix A)
Uν energy density (erg cm−3)
u velocity (cm s−1)
u Fourier component (in uv-space)
V volume (cm3)
V circular polarization (Eq. 5.7.14)
v Fourier component (in uv-space)
v, v velocity (cm s−1)
vA Alfvén speed (Appendix D)
vgr group speed (cm s−1)
vph phase speed (cm s−1)
vTe electron thermal velocity (Appendix D)
vTi ion thermal velocity (Appendix D)
v∞ solar escape speed (Appendix A)
W total radiated power per frequency interval (Eq. 2.3.3)
W nonpotential magnetic energy (Eq. 9.3.1, 9.8.1)
w width (cm)
wσ(p,k, s) transition probability (Eq. 11.4.5)
X+m atom X in ionization state (+m)
X cartesian coordinate in loop plane system
x cartesian coordinate (in east−west direction)
Y cartesian coordinate in loop plane system
y cartesian coordinate (in south−north direction)
Z Atomic charge number, charge state
Z cartesian coordinate in loop plane system
z cartesian coordinate (along line-of-sight)
z normalized loop coordinate z = (s − s0)/(L − s0) (Eq. 3.7.4)
zeq equivalent width (along line-of-sight)

NOTATION
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Greek Symbols

α particle pitch angle (between velocity and magnetic field)
α azimuth angle (rad, deg)
α powerlaw index
α force-free parameter (Eq. 5.3.18)
αFe iron abundance ratio (Eq. 4.5.6)
αFIP first ionization potential factor (Eq. 2.9.1)
αν absorption coefficient (radiation transfer, §2.1)
α(r) Clebsch variable
β relativistic velocity β = v/c
β plasma-β parameter (Appendix D)
β(r) Clebsch variable
Γ loop cross section expansion factor
γ relativistic Lorentz factor γ = 1/

√
1 − β2

γ adiabatic index γ = cp/cv

γ powerlaw index of photon spectrum
∆ Laplace operator
∆ current sheet length (cm)
δ powerlaw index of electron spectrum
δ current sheet width (cm)
ε photon energy ε = hν (keV)
εx hard X-ray photon energy ε = hνx

εν emission coefficient (erg s−1 cm−3 Hz−1 rad−2), (Eq. 2.3.11)
ε kinetic energy of particle ε = mc2(γ − 1), also εkin, (erg)
εenth enthalpy (Eq. 4.1.14), (erg)
εgrav gravitational energy (erg)
εI ionization energy (eV)
εkin kinetic energy of particle, also ε, (erg)
εm magnetic energy εm = B2/8π, (erg)
εth thermal energy εth = kBT , (erg)
η magnetic diffusivity (Appendix D)
θ inclination angle (to vertical) in spherical coordinate (rad), (deg)
θ shear angle (rad), (deg)
ϑ scattering angle (rad), (deg)
κ thermal (Spitzer) conductivity coefficient (Appendix D)
κ‖ thermal conductivity κ‖ = κT 5/2, (Appendix D)
Λ(T ) Coulomb logarithm (Appendix D)
Λ0 radiative loss rate (Appendix D)
λ wavelength (cm)
λD Debye length (Appendix D)
λp pressure scale height (cm)
λn density scale height (cm)
λT thermal (or temperature) scale height (cm), (Appendix D)
µ magnetic moment (Eq. 11.5.8)
µ molecular weight µ = mi/mp

µC molecular weight of corona (Appendix D)
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ν frequency (s−1=Hz)
ν growth rate (s−1=Hz), (Eq. 4.3.17)
νB electron gyrofrequency, also fge, (Appendix D)
νp electron plasma frequency, also fpe (Appendix D)
νvisc coronal viscosity (Appendix D)
ξ ionization correction of pressure (Eq. 1.8.1)
ξ(T ) nonthermal velocity (Eq. 9.3.12)
ρ mass density, ρ = n m (Appendix D)
ρE electric charge density (Appendix C)
σ electrical conductivity (Appendix D)
σ Stefan−Boltzmann radiation constant (Appendix A)
σs scattering cross section (Eq. 2.3.4)
σg Gaussian width
σT Gaussian temperature width (K)
τ time scale or time delay (s)
τA Alfvénic transit time (Appendix D)
τce electron collision time (Appendix D)
τci ion collision time (Appendix D)
τcoal coalescence time scale (dissipation of magnetic islands), (s)
τcool cooling time (s)
τcond conductive cooling time (s), (Eq. 4.3.10)
τdamp, τD damping time scale (loop oscillations), (s)
τdefl collisional deflection time (s)
τff free-free opacity
τfilter Fourier filter time scale (s)
τg Gaussian width of time pulse
τloss loss time scale (s)
τprop propagation time (s)
τrad radiative cooling time (s), (Eq. 4.3.8)
τtear tearing mode time scale (s)
τw width of time pulses (s)
τx time scale of hard X-ray pulses (s)
τν optical depth (radiation transfer, §2.1)
Φ magnetic flux (Mx = G cm2)
φ(r) potential field (scalar) function (§5)
ϕ azimuthal angle in cylindrical or spherical coordinates
χ radiative loss constant (Eq. 4.3.3)
χn excitation energy of atomic level εn

Ψ(r) potential field (scalar) function (Appendix I)
Ψg gravitational potential
ψ angle between line-of-sight and magnetic field line
Ω gyrofrequency, also fge, (Hz)
ΩS solid angle of source S
Ω� solid angle of Sun at a distance of 1 AU
Ωmn collision strength (§2.7)
ω circular frequency ω = 2πν

NOTATION



Acronyms

1D, 2D, 3D one, two, three-dimensional
AC alternating current
ACRIM Active Cavity Radiometer Irradiance Monitor (on SMM)
AR active region
BATSE Burst and Transient Source Experiment (on CGRO)
BBSO Big Bear Solar Observatory (in California)
BC before Christ (before year 0000)
BCS Bent Crystal Spectrometer (on SMM)
BCS Bragg Crystal Spectrometer (on Yohkoh)
CCD Charge Coupled Device (camera)
CDS Coronal Diagnostic Spectrometer (on SoHO)
CELIAS Charge, ELement and Isotope Analysis (on SoHO)
CME coronal mass ejection
COMPTEL COMPton TELescope (on CGRO)
COMSTOC COronal Magnetic Structures Observing Campaign
COSTEP COmprehensive SupraThermal and Energetic Particle analyser (on SoHO)
CP Coronagraph/Polarimeter (on SMM)
CGRO Compton Gamma Ray Observatory (spacecraft)
DC direct current
DEM differential emission measure (distribution)
EGRET Energetic Gamma Ray Experiment Telescope (on CGRO)
EIT Extreme-ultraviolet Imaging Telescope (on SoHO)
ERNE Energetic and Relativistic Nuclei and Electron experiment (on SoHO)
ESA European Space Administration
EUV extreme ultraviolet
EUVI Extreme-UltraViolet Imager (on SECCHI/STEREO)
FAL Fontenla−Avrett−Loeser (atmospheric model)
FASR Frequency-Agile Solar Radiotelescope
FCS Flat Crystal Spectrometer (on SMM)
FIP first ionization potential
FITS Flexible Image Transport System (data file format)
FWHM full width half maximum
FOV field-of-view
GOES Geostationary Orbiting Earth Satellite (spacecraft)
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GOLF Global Oscillations at Low Frequency (on SoHO)
GSFC Goddard Space Flight Center
GRS Gamma-Ray Spectrometer (on SMM)
HPGe Hyper-pure Germanium detector (on RHESSI)
HD hydrodynamics
HS hydrostatics
HXIS Hard X-ray Imaging Spectrometer (on SMM)
HXRBS Hard X-Ray Burst Spectrometer (on SMM)
HXT Hard X-ray Telescope (on Yohkoh)
IDL Interactive Data Language (software used by most solar physicists)
ISAS Institute of Space and Astronautical Science (Japan)
KPNO Kitt Peak National Observatory (in Arizona)
KSC Kagoshima Space Center (in Japan)
LAD Large Area Detectors (of BATSE instrument on CGRO)
LASCO Large Angle Solar COronagraph (on SoHO)
MDI Michelson Doppler Imager (on SoHO)
MHD Magneto-Hydrodynamics
MSSTA Multi-Spectral Solar Telescope Array (sounding rocket)
NASA National Aeronautics and Space Administration
NRL Naval Research Laboratory (in Washington DC)
NSO National Solar Observatory (in USA)
OSO Orbiting Solar Observatory (spacecraft)
OSSE Oriented Scintillation Spectrometer Experiment (on CGRO)
OVRO Owens Valley Radio Observatory (radiointerferometer in California)
RHESSI Reuven Ramaty High Energy Solar Spectroscopic Imager (spacecraft)
RTV Rosner−Tucker−Vaiana (coronal loop model)
SECCHI Sun Earth Connection Coronal and Heliospheric Investigation (on STEREO)
SEP solar energetic particle events
SERTS Solar EUV Research Telescope and Spectrograph (sounding rocket)
SMM Solar Maximum Mission (spacecraft)
SoHO Solar and Heliospheric Observatory (spacecraft)
SOI Solar Oscillations Investigations (instrument on MDI, SoHO)
SMEX SMall EXplorer mission (NASA mission category)
SSW Solar SoftWare (software package in IDL)
STEREO Solar TErrestrial RElations Observatory (spacecraft)
SUMER Solar Ultraviolet Measurements of Emitted Radiation (on SoHO)
SXT Soft X-ray Telescope (on Yohkoh)
SWAN Solar Wind ANisotropies (on SoHO)
TOF Time-of-flight (difference)
TRACE Transition Region And Coronal Explorer (spacecraft)
UV ultraviolet
UVCS UltraViolet Coronagraph Spectrometer (on SoHO)
UVSP UltraViolet Spectrometer/Polarimeter (on SMM)
VIRGO Variability of solar IRradiance and Gravity Oscillations (on SoHO)
VAL Vernazza−Avrett−Loeser (atmospheric model)
VLA Very Large Array (radiointerferometer in Socorro, New Mexico)
WBS Wideband Spectrometer (on Yohkoh)
XUV extreme ultraviolet
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Bagalá, L.G., Mandrini, C.H., Rovira, M.G., et al. 2000, AA 363, 779.
Bai, T. 1982a, ApJ 259, 341
Bai, T. 1982b, Proc-1982-Lingenfelter, 409.
Bai, T., Hudson, H.S., Pelling, R.M., at el. 1983, ApJ 267, 433.
Bai, T. & Sturrock, P. 1989, ARAA 27, 421.
Bai, T. 1993, ApJ 404, 805.
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Karlický, M. & Odstrc̆il, D. 1994, SP 155, 171.
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Lionello, R., Mikić, Z., Linker, J.A., et al. 2002, ApJ 581, 718.
Lipa, B. 1978, SP 57, 191.
Lites, B.W., Bruner, E.C.Jr., Chipman, E.G., et al. 1976, ApJ 210, L111.
Lites, B.W., Low, B.C., Pillet, V.M., et al. 1995, ApJ 446, 877.
Lites, B.W. 2001, Solar Magnetic Field: Inference by Polarimetry, (in Murdin 2000) .
Litvinenko, Y.E. & Somov, B.V. 1991, SP 131, 319.
Litvinenko, Y.E. 1995, Astron. Reports 39/1, 99.
Litvinenko, Y.E. & Somov, B.V. 1995, SP 158, 317.
Litvinenko, Y.E. 1996a, SP 167, 321.
Litvinenko, Y.E. 1996b, ApJ 462, 997.
Litvinenko, Y.E. 1997, Phys. Plasmas 4(9), 3439.
Litvinenko, Y.E. & Martin, S.F. 1999, SP 190, 45.
Litvinenko, Y.E. 1999a, ApJ 515, 435.
Litvinenko, Y.E. 1999b, SP 186, 291.
Litvinenko, Y.E. 1999c, AA 349, 685.
Litvinenko, Y.E. 2000a, SP 194, 327.
Litvinenko, Y.E. 2000b, Proc-2000-Ramaty, 167.
Litvinenko, Y.E. & Craig, I,J.D. 2000, ApJ 544, 1101.
Litvinenko, Y.E. & Somov,B.V. 2001, SSR 95, 67.
Litvinenko, Y.E. 2002, Proc-2002-ESA506, 327.
Litvinenko, Y.E. 2003a, Proc-2003-Klein, 213.
Litvinenko, Y.E. 2003b, SP 216, 189.
Litwin, C. & Rosner, R. 1998, ApJ 506, L143.
Liu, Y., Zhao, X.P., Hoeksema, J.T., et al. 2002, SP 206, 333.
Livi, S.H.B., Wang, J., & Martin, S.F. 1985, Australian J. Phys. 38, 855.
Livi, S.H.B., Martin, S., Wang, H., & Ai,G. 1989, SP 121, 197.
Ljepojevic, N.N. & MacNeice, P. 1989, Phys. Rev. A, 40, 981.
Longcope, D.W. & Strauss, H.R. 1994, ApJ 426, 742.
Longcope, D.W. 1996, SP 196, 91.
Longcope, D.W., Fisher, G.H., & Arendt, S. 1996, ApJ 464, 999.
Longcope, D.W. & Klapper, I. 1997, ApJ 488, 443.
Longcope, D.W. & Silva, A.V.R. 1997, SP 179, 349.
Longcope, D.W. 1998, ApJ 507, 433.
Longcope, D.W., Fisher, G.H., & Pevtsov, A.A. 1998, ApJ 507, 417.
Longcope, D.W. & Kankelborg, C.C. 1999, ApJ 524, 483.
Longcope, D.W. & Noonan, E.J. 2000, ApJ 542, 1088.
Longcope, D.W., Kankelborg, C.C., Nelson,J., et al. 2001, ApJ 553, 429.
Longcope, D.W. & Klapper, I. 2002, ApJ 579, 468.
Lothian, R.M. & Hood, A.W. 1989, SP 122, 227.
Lothian, R.M. & Hood, A.W. 1992, SP 137, 105.
Lothian, R.M. & Browning, P.K. 1995, SP 161, 289.
Louarn, P., Roux, A., de Feraudy, H., et al. 1990, JGR 95/A5, 5983.
Loughhead, R.E., Wang, J.L., & Blows, G. 1983, ApJ 274, 883.
Low, B.C. 1975a, ApJ 197, 251.
Low, B.C. 1975b, ApJ 198, 211.
Low, B.C. 1981, ApJ 246, 538.
Low, B.C. 1982, ApJ 263, 952.
Low, B.C., Munro, R.H., & Fisher, R.R. 1982, ApJ 254, 335.



845

Low, B.C. 1984a, Proc-1984-Hagyard, 49.
Low, B.C. 1984b, ApJ 281, 392.
Low, B.C. 1985, ApJ 293, 31.
Low, B.C. 1991, ApJ 370, 427.
Low, B.C. 1992, ApJ 399, 300.
Low, B.C. 1993a, ApJ 408, 689.
Low, B.C. 1993b, ApJ 408, 693.
Low, B.C. & Smith, D.F. 1993, ApJ 410, 412.
Low, B.C. 1994, Plasma Phys. 1, 1684.
Low, B.C. 1996, SP 167, 217.
Low, B.C. 1999a, Proc-1999-Habbal, 109.
Low, B.C. 1999b, Proc-1999-Brown, 25.
Low, B.C. 2001a, JGR 106, 25141.
Low, B.C. 2001b, Solar Coronal Mass Ejection: Theory, (in Murdin 2000) .
Low, B.C. & Zhang, M. 2002, ApJ 564, L53.
Low, B.C., Fong, B., & Fan, Y. 2003, ApJ 594, 1060.
Lu, E.T. & Petrosian, V. 1988, ApJ 327, 405.
Lu, E.T. & Petrosian, V. 1990, ApJ 354, 735.
Lu, E.T. & Hamilton, R.J. 1991, ApJ 380, L89.
Lui, Y., Jiang, Y., Ji, H. et al. 2003, ApJ 593, L140.
MacDowall, R.J., Stone, R.G., & Kundu, M.R. 1987, SP 111, 397.
Machado, M.E. & Moore, R.L 1986, Adv.Space Res., 6/6, 217.
Machado, M.E. & Mauas, P.J. 1987, Proc-1987-Dennis, 271.
Machado, M.E., Moore, R.L., Hernandez, A.M., et al. 1988, ApJ 326, 425.
Machado, M.E. 1991, Proc-1991-Culhane, 425.
Mackay, D.H., Gaizauskas, V., Rickard, G.J., et al. 1997, ApJ 486, 534.
Mackay, D.H., Galsgaard, K., Priest, E.R., et al. 2000a, SP 193, 93.
Mackay, D.H., Gaizauskas, V., & Van Ballegooijen, A.A. 2000b, ApJ 544, 1122.
Mackay, D.H. & Van Ballegooijen, A.A. 2001, ApJ 560, 445.
MacKinnon, A.L., Brown, J.C., Trottet, G., et al. 1983, AA 119, 297
MacKinnon, A.L., Brown, J.C., & Hayward, J. 1985, SP 99, 231.
MacKinnon, A.L. 1986, AA 163, 239
MacKinnon, A.L. 1988, AA 194, 279
MacKinnon, A.L. 1991, AA 242, 256.
MacKinnon, A.L., & Craig, I.J.D. 1991, AA 251, 693.
MacKinnon, A.L. & Toner, M.P. 2003, AA 409, 745.
MacNeice, P., McWhirter, R.W.P., Spicer, D.S., et al. 1984, SP 90, 357.
MacNeice, P. 1986, SP 103, 47.
MacQueen, R.M. 1980, Philos. Trans. Royal Soc. London A297, 605.
MacQueen, R.M. 1993, SP 145, 169.
Madjarska, M.S. & Doyle, J.G. 2002, AA 382, 319.
Madjarska, M.S. & Doyle, J.G. 2003, AA 403, 731.
Magara, T., Mineshige, S., Yokoyama, T., et al. 1996, ApJ 466, 1054.
Magara, T., & Shibata,K. 1999, ApJ 514, 456.
Makhmutov, V.S., Costa, J.E.R., Raulin, J.P., et al. 1998, SP 178, 393.
Makishima, K. 1982, Proc-1982-Tanaka, 120.
Malara, F., Velli, M., & Carbone, V. 1992, Phys. Fluids B4, 3070.
Malherbe, J.M. & Priest, E.R. 1983, AA 123, 80.
Malitson, H.H., Fainberg, J. & Stone,R.G. 1973, ApJ 183, L35.
Maltby, P., Avrett, E.H., Carlsson, M., et al. 1986, ApJ 306, 284.

REFERENCES



846 REFERENCES

Maltby, P., Brynildsen, N., Kjeldseth−Moe, O., et al. 2001, AA 373, L1.
Mandelbrot, B.B. 1977, The Fractal Geometryof Nature, (see book list).
Mandrini, C.H., Rovira, M.G., Démoulin, P., et al. 1993, AA 272, 609.
Mandrini, C.H., Démoulin, P., Van Driel−Gesztelyi, L., et al. 1996, SP 168, 115.
Mandrini, C.H., Démoulin, P., Bagalá, L.G., et al. 1997, SP 174, 229.
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Roussev, I., Galsgaard, K., Erdélyi, R., et al. 2001a, AA 370, 298.
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Sonnerup, B.U.Ö. 1970, J. Plasma Phys. 4, 161.
Soward, A.M. & Priest, E.R. 1977, Phil. Trans. Roy. Soc. Lon., A 284, 369.
Soward, A.M. 1982, J.Plamsa Physics 28/3, 415.
Spadaro, D., Noci, G., Zappala, R.A., et al. 1990a, ApJ 355, 342.
Spadaro, D., Noci, G., Zappala, R.A., et al. 1990b, ApJ 362, 370.
Spadaro, D., Antiochos, S.K., & Mariska, J.T. 1991, ApJ 382, 338.
Spadaro, D., Leto, P., & Antiochos, S.K. 1994, ApJ 427, 453.
Spadaro, D. 1999, ESA SP-448, 157.
Spadaro, D., Lanza, A.F., Lanzafame ,A.C., et al. 2003, ApJ 582, 486.
Spicer, D.S. 1977a, SP 53, 249.
Spicer, D.S. 1977b, SP 53, 305.
Spicer, D.S. 1981a, SP 70, 149.
Spicer, D.S. 1981b, SP 71, 115.
Spicer, D.S. 1982, Space Science Rev., 31, 351.
Spicer, D.S. & Sudan, R.N. 1984, ApJ 280, 448.
Spicer, D.S. & Emslie, A.G. 1988, ApJ 330, 997.
Spitzer, L.Jr. & Härm,R. 1953, Phys. Rev. 89(5), 977.
Spitzer, L. 1967, The Physics of Fully Ionized Gases (see book list).
Sprangle, P. & Vlahos, L. 1983, ApJ 273, L95.
Spruit, H.C. 1981, Proc-1981-Jordan, 385.
Spruit, H.C. 1982, SP 75, 3.
Stähli, M., Gary, D.E., & Hurford, G.J. 1989, SP 120, 351.
St.Cyr, O.C., Howard, R.A., Sheeley, N.R., et al. 2000, JGR 105, 169.
Stefan, A.J. 1879, Wien. Ber. 79, 397.
Steinacker, J. & Miller, J.A. 1992, ApJ 393, 764.
Steinacker, J., Jaekel, U., & Schlickeiser, R. 1993, ApJ 415, 342.
Steiner, O., Grossmann−Doerth, U., Knoelker, M., et al. 1998, ApJ 495, 468.
Steiner, O. 2001, Chromosphere: Magnetic Canopy, (in Murdin 2000) .
Steinolfson, R.S., Wu, S.T., Dryer, M., et al. 1978, ApJ 225, 259.
Steinolfson, R.S., & Tajima, T. 1987, ApJ 322, 503.
Steinolfson, R.S. & Hundhausen, A.J. 1988, JGR 93, 14269.
Steinolfson, R.S. 1991, ApJ 382, 677.
Steinolfson, R.S. 1992, JGR 97/A7, 10811.
Steinolfson, R.S. & Davila, J.M. 1993, ApJ 415, 354.
Stenflo, J.O. 1994, Solar Magnetic Fields, (see book list).
Stenflo, J.O. 2001a, Solar Magnetic Fields: Zeeman and Hanle Effects, (in Murdin 2000) .



861

Stenflo, J.O. 2001b, Solar Photosphere: Intranetwork ..., (in Murdin 2000) .
Stepanov, A.V., Urpo, S., & Zaitsev, V.V. 1992, SP 140, 139.
Sterling, A.C., Mariska, J.T., Shibata, K., et al. 1991, ApJ 381, 313.
Sterling, A.C. & Hudson, H.S. 1997, ApJ 491, L55.
Sterling, A.C., Hudson, H.S., Lemen, J.R., et al. 1997, ApJS 110, 115.
Sterling, A.C. & Moore, R.L. 2001, ApJ 560, 1045.
Sterling, A.C., Moore, R.L., & Thompson, B.J. 2001, ApJ 561, L219.
Stern, D.P. 1966, Space Sci. Rev. 6, 147.
Stix, M. 2002, The Sun, (see book list).
Stix, T.H. 1992, Waves in Plasmas, (see book list).
Strachan, N.R. & Priest, E.R. 1994, Geophys. Astrophys. Fluid Dynamics 74, 245.
Strachan, L., Panasyuk, A.V., Dobrzycka, D., et al. 2000, JGR 105, 2345.
Strauss, F.M., Kaufmann, P., & Opher, R. 1980, SP 67, 83
Strong, K.T., Benz, A.O., Dennis, B.R., et al. 1984, SP 91, 325.
Strong, K.T., Harvey, K.L., Hirayama, T., et al. 1992, PASJ 44, L161.
Strong, K.T., Saba, J.L.R., Haisch, B.M., et al. 1999, The Many Faces of the Sun (see book list).
Strous, L.H., Scharmer, G., Tarbell, T.D., et al. 1996, AA 306, 947.
Strous, L.H. & Zwaan, C. 1999, ApJ 527, 435.
Stucki, K., Solanki, S.K., Schühle, U., et al. 2000, AA 363, 1145.
Stucki, K., Solanki, S.K., Pike, C.D., et al. 2002, AA 381, 653.
Sturrock, P.A. 1964, Proc-1964-Hess, 357.
Sturrock, P.A. 1966, Nature 5050, 695.
Sturrock, P.A. 1973, Proc-1973-Ramaty, 3.
Sturrock, P.A. (ed.) 1980, Proc-1980-Sturrock.
Sturrock, P.A. & Uchida, Y. 1981, ApJ 246, 331.
Sturrock, P.A., Dixon, W.W., Klimchuk, J.A., et al. 1990, ApJ 356, L31.
Sturrock, P.A. 1991, ApJ 380, 655.
Sturrock, P.A. 1994, Plasma Physics (see book list).
Sturrock, P.A., Wheatland, M.S., & Acton, L.W. 1996a, Proc-1996-Uchida, 417.
Sturrock, P.A., Wheatland, M.S., & Acton, L.W. 1996b, ApJ 461, L115.
Sturrock, P.A. 1999, ApJ 521, 451.
Subramanian, P., Dere, K.P., Rich, N.B. et al. 1999, JGR 104, 22321.
Suematsu, Y., Yoshinaga, R., Terao, N., et al. 1990, PASJ 42, 187.
Suess, S.T., Poletto, G., Wang, A.H., et al. 1998, SP 180, 231.
Suetterlin, P., Wiehr, E., Bianda, M., et al. 1997, AA 321, 921.
Sui, L. & Holman, G.D. 2003, ApJ 596, L251.
Suydam, B.R. 1958, Proc-1958-UN, 187.
Svestka, Z. 1976, Solar Flares, (see book list).
Svestka, Z., Fontenla, J.M., Machado, M.E., et al. 1987, SP 108, 237.
Svestka, Z. 1994, SP 152, 505.
Sweet, P.A. 1958, Proc-1958-Lehnert, 123.
Sylwester, B. & Sylwester, J. 2000, SP 194, 305.
Syniavskii, D.V. & Zharkova, V.V. 1994, ApJS 90, 729.
Tajima, T., Brunel, F., & Sakai, J. 1982, ApJ 258, L45.
Tajima, T., & Sakai, J. 1986, IEEE Trans. Plasma Sci. PS-14, 929.
Tajima, T., Sakai, J., Nakajima, H., et al. 1987, ApJ 321, 1031.
Tajima, T., Benz, A.O., Thaker, M., et al. 1990, ApJ 353, 666.
Tajima, T. & Shibata, K. 2002, Plasma Astrophysics, (see book list).
Takakura, T. 1960, PASJ 12, 352.
Takakura, T. 1967, SP 1, 304.

REFERENCES



862 REFERENCES

Takakura, T. 1979, SP 62, 383.
Takakura, T., Tsuneta, S., Nitta, N., et al. 1983a, ApJ 270, L83.
Takakura, T., Kaufmann, P., Costa, J.E.R., et al. 1983b, Nature 302, 317.
Takakura, T. 1988, SP 115, 149.
Takeuchi, A. & Shibata, K. 2001, ApJ 546, L73.
Tanaka, K., Akita, K., Watanabe, T., et al. 1982, Annals Tokyo Astron. Obs. 18/4, 237.
Tanaka, K. & Papadopoulos, K. 1983, Physics of Fluids 26, 1697.
Tanaka, K. 1987, PASJ 39, 1.
Tandberg−Hanssen, E. 1974, Solar Prominences, (see book list).
Tandberg−Hanssen, E.A. 1986, Proc-1986-Poland, 5.
Tandberg−Hanssen, E. 1995, The Nature of Solar Prominences, (see book list).
Tandberg−Hanssen, E. 2001, Solar Prominences: Active, (in Murdin 2000) .
Tang, Y.H., Li, Y.N., Fang, C., et al. 2000, ApJ 534, 482.
Tapping, K.F. 1978, SP 59, 145.
Tarbell, T.D., Ryutova, M., Covington, J., et al. 1999, ApJ 514, L47.
Tarbell, T.D., Ryutova, M., & Shine, R. 2000, SP 193, 195.
Terekhov, O.V., Shevchenko, A.V., Kuz’min, A.G., et al. 2002, Astronomy Letters 28/6, 397.
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Abelian integral equation, 559
above-the-looptop sources: see Flare: Ma-

suda sources
absorption coefficient, 38

free-free, 46, 225, 640
gyroresonance, 227, 644
Langmuir waves, 656

abundance:
absolute, 63
coronal, 30, 32, 62, 63
cosmic, 30
elements, 30, 60, 63
factor, 58
flare enhancements, 499, 679
helium, 30, 64, 734
helium (3He-rich), 736
helium (3He/4He), 499, 629, 736
hydrogen, 63, 64
ions, 628
iron, 62, 142, 143
meteoric, 30
photospheric, 30, 32, 60, 62, 63, 65,

143
acceleration: see particle acceleration or CME
acceleration constant, 68
acoustic waves: see waves: sound waves
ACRIM: see SMM
Active Cavity Radiometer Irradiance Mon-

itor (ACRIM): see SMM
active region:

Alfvén speed, 202, 204, 205
anemone region, 423
arcade, 12
definition, 8
DEM, 27, 28, 73
density, 24
energy loss, 357
flow speeds, 135
heating, 28
heating requirement, 358

kinked alignment, 259
loop, 20, 21
loop arcade, 11
magnetic field, 196
sigmoids, 11
temperature, 28

adaptive target selection, 7
adiabatic: see MHD equations
adiabatic index: definition, 791
adiabatic particle motion, 537
advective term: see MHD equations
Airy, 1
Alfvén speed, 202, 315

definition, 791
aluminium: see Al
Aly−Sturrock theorem, 445
Al X, 28
Al XI, 793
ambipolar electric field: see electric field
Ampère’s law, 176, 177
Angstrøm, 33

definition, 789
angular deflection, 43
anisotropy factor, 490
ANMHD code, 258
anomalous Doppler resonance, 488
anomalous resistivity, 463, 673
Appleton−Hartree expression, 225
Ar, 30
Arago, 1
Archimedian spiral, 731
Areobee rocket, 2
argon: see Ar
astronomical unit: definition, 789
asymmetric flows: see MHD equations
asymmetric heating: see loop
atomic collision strength, 56
atomic energy levels, 47, 57
atomic ground state, 51, 55
atomic ionization energy, 55



870 INDEX

atomic line strength, 50, 55
atomic quadrupole moment, 52
atomic statistical equilibrium, 58
atomic statistical weight, 51
atomic transition probability, 50, 51
atomic transition rate, 51
atomic weight, 68
auroral V-events, 482
avalanche models, 391
B, 32, 49
Babcock, Horace W., 16
background subtraction: see loop
Baily, 1
ballerina skirt, 732
Balmer line: see emission
Bartoe, J.D., 2
base heating rate: see heating
Bastille-Day flares: see flare events (1998-

Jul-14 or 2000-Jul-14)
BATSE: see CGRO
Baumbach−Allen model: see corona
BBSO, 13, 690, 692
BCS: see SMM or Yohkoh
Be, 32, 49
Bejing, 310
Bent Crystal Spectrometer (BCS): see SMM
Berkowski, 1
beryllium: see Be
Bessel function, 489, 621
beta-decay process, 631
Beta function, 560, 561
Bethe−Heitler bremsstrahlung cross section,

557, 575
Bethe, Hans, 43
Big Bear Solar Observatory: see BBSO
blinkers: see transient events
blueshift: see loop, flares, or transition re-

gion
Bohr−Sommerfeld model, 48
Bohr, Niels, 43
Bohr radius: definition, 789
Boltzmann constant, 28, 33

definition, 789
Boltzmann equation, 51, 56, 242
Boltzmann probability distribution, 51
Born approximation, 557
boron: see B
bounce time, 538
boundary integral method, 192
Brackett series: see emission

Bragg Crystal Spectrometer (BCS): see Yohkoh
Braginskii’s theory, 334
braking radiation (bremsstrahlung): see emis-

sion
Brazil, 319
bremsstrahlung: see emission
bremsstrahlung cross section: see Bethe−Heitler

or Kramers
brightness function, 40
Brueckner, Guenther, 2
Burgers equation, 333
buried dipole: see magnetic field
Burst and Transient Source Experiment (BATSE):

see CGRO
C, 49
Ca, 49
canopy: see magnetic field or loop
carbon monoxide, 35
Carrington rotation, 16, 88
Cassegrain telescope, 6
catastrophic cooling: see loop
Ca II, 303
Ca VII, 28
Ca X, 138, 318, 793
Ca XIV, 355
Ca XIX, 681, 687, 689, 690, 691, 692
Ca XV, 55
CCD, 7
CDS: see SoHO
CELIAS: see SoHO
center-to-limb effect, 39
Cerenkov resonance, 488, 496
Cerenkov resonance condition, 499
CGRO, 4, 552

BATSE, 4, 383, 554, 568, 569, 570,
571, 574, 582, 585, 603, 662,
694

BATSE/LAD, 4
BATSE/MER, 522
BATSE/SD, 554
COMPTEL, 4, 616, 617
EGRET, 4, 613, 616, 634, 635
OSSE, 4, 609, 619

Ch, 49
Charge, Element and Isotope Analysis (CELIAS):

see SoHO
charge: physical unit, 790
Charge Coupled Device: see CCD
charge state, 791
chemical composition: see abundance
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CHIANTI code, 56, 57, 58, 59
chromosphere:

density model, 23, 24, 165, 166
energy loss, 357
extended chromosphere, 156
fibrils, 278, 279
magnetic field, 237
plasma-β parameter, 28

chromospheric ablation: see flares
chromospheric evaporation: see flares or

loop
CICM model: see transition region
circular polarization, 224, 226
Clean method, 555
Clebsch variables, 193
CME, 703

acceleration, 721, 723, 724
definition, 12
density, 718
dimming, 348, 351, 462, 727, 729
dynamo model, 704, 705, 711
Earth-directed, 703
energetics, 724, 725
fluxrope, 441
geometry, 703, 714, 716, 717, 719
gradual CME, 721
gravitational energy, 725
halo CME, 714, 728
height-time profile, 723
impulsive CME, 721
kinetic energy, 726
magnetic energy, 726
magnetic flux injection, 711
magnetic fluxrope model, 711, 713,

723, 724
mass, 703, 725
mass loading model, 705, 706
MHD models, 708
MHD simulations, 707, 708, 709, 710,

734, 735
models, 436, 450
particle acceleration, 500, 512
radio emission, 719, 720
speed, 703, 721, 723, 724, 734
temperature, 720
tether-cutting model, 705, 706
tether-straining model, 705, 707
thermal blast model, 704, 705, 708
thether-straining model, 711

co-rotating interaction regions, 514, 736

Cohen−Kulsrud−Burgers equation, 343
coherent growth, 400
coherent growth rate, 664
cold-plasma approximation, 225
collimator: rotation-modulated, 8
collisional de-excitation: see emission
collisional deflection time, 542
collisional energy loss rate, 512
collisional excitation: see emission
collisional ionization: see emission
collision strength: see atomic collision strength
column depth: see corona or loop
communicating water tubes, 84
Comprehensive SupraThermal and Energetic

Particle analyser (COSTEP): see
SoHO

Compton Gamma Ray Observatory: see CGRO
Compton Telescope (COMPTEL): see CGRO
COMSTOC, 226
condensation: see loop, flares, or promi-

nences
conduction:

conductive flux, 95
heat conduction coefficient, 93
Spitzer conductivity, 93
Spitzer−Härm conductivity, 99, 688
thermal conduction front, 11, 679

conductive cooling time: see time scales
conductive flux: see loop or flares
conservative form: see MHD equations
constriction factor: see loop
continuity equation: see MHD equations
continuum emission: see emission
contribution function, 58, 60, 62
convection zone, 16
convective electric field: see electric field
convective term, 178
cooling: see loop or flares
coordinate system, 86

cartesian, 796
cylindrical, 796
loop plane coordinate system, 88
spherical, 88, 796

coordinate transformation, 86, 796
coplanar loop geometry: see loop
corona:

abundance, 30, 32
Baumbach−Allen model, 26, 81, 82,

313
column depth, 27, 79
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DEM distribution, 76, 78, 114
density, 24, 25
density model, 23, 166
dimming, 348, 351, 727, 730
energy loss, 357
equivalent column depth, 79
F-corona, 26, 80, 81, 82
FAL model, 166, 323
flow speeds, 135
global waves, 348
heating requirement, 358
hydrostatic weighting bias, 72, 78
hydrostaticity, 80
isothermal atmosphere, 69
K-corona, 25, 54, 80, 82, 91
L-corona, 26, 80, 82
line-of-sight integration, 27, 59, 60
mass, 280
multi-hydrostatic, 76
plasma-β parameter, 28
radio emission, 639
temperature, 26, 27
VAL model, 323

coronagraph, 1, 2
Coronagraph/Polarimeter (CP): see SMM
coronal abundance: see abundance
coronal approximation:

, see ionization
definition, 791

Coronal Diagnostic Spectrometer (CDS): see
SoHO

coronal explosions: see flares
coronal hole, 21

Alfvén waves, 346
definition, 9
density, 24, 170, 171
energy loss, 357
flow speeds, 135
heating requirement, 358
hydrodynamics, 167
interplume regions, 168
line broadening, 346
magnetic field, 28
mass loss, 703
opacity, 170
outflows, 169
plumes, 168, 331, 345
propagating waves, 341, 344
sound waves, 344
super-radial expansion factor, 167

temperature, 28, 169, 170
coronal mass ejection: see CME
coronal rain: see loop
coronal seismology, 283, 294
coronal streamer: see streamer
coronal viscosity: definition, 791
COSTEP: see SoHO
Coulomb collisional deflection, 541
Coulomb integral, 44, 556, 641
Coulomb logarithm, 46, 542

definition, 791
CP: see SMM
Cranleigh, 310
Crimea, 307
cross-correlation coefficient, 523, 576
cross section: see loop or bremsstrahlung
Culgoora, 7, 310
current: physical unit, 790
current density, 488
current denstiy: physical unit, 790
current induction, 676
curvature drift, 615
C I, 684
C II, 127, 389, 436, 685
C III, 405, 720
C IV, 6, 28, 127, 138, 139, 389, 432, 436,

685, 713
daguerrotype, 1
data compression, 7
Debye length, 655

definition, 791
DEM, 27, 28

active region, 27, 73
distribution function, 59, 61
quiet Sun, 27

density:
absolute, 24
active region, 24
corona, 24
coronal hole, 24
coronal streamer, 24
density profile, 70
differential density distribution, 76
effective, 24
electrons, 68
ions, 68
neutral hydrogen, 24, 166
particle number density, 242
quiet Sun, 24

dielectronic absorption: see emission
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dielectronic auto-ionization: see emission
dielectronic recombination: see emission
differential emission measure: see DEM
differential rotation: see rotation
differential scattering cross section, 556
diffusion, 368, 391

ambipolar, 23, 166
coefficients, 370
cross-field, 17, 21, 26
strong-diffusion limit, 542, 547
weak-diffusion limit, 542, 547, 614

diffusion convection equation, 507
diffusion tensor, 493
diffusive term, 178
Dirichlet problem, 182
disk center: see solar disk center
dispersion relation, 33, 224, 284, 290, 291,

494, 655
Alfvén waves, 495
electromagnetic waves, 490
ion-cyclotron waves, 495
ion-sound waves, 495
L-waves, 494, 495
Langmuir waves, 494, 495
light waves, 495
magneto-sonic waves, 495
O-waves, 494, 495
R-waves, 494, 495
upper-hybrid waves, 495
X-waves, 494, 495

dissipation coefficient, 334
divergence theorem, 795
diverging loop geometry: see loop
Dopplershift: see loop or flares
Doppler resonance condition, 488, 491, 655,

664
Doppler resonance ellipse, 491
Dory−Guest−Harris distribution, 639
Dreicer field, 673

definition, 791
Dwingeloo, 310
dynamic power spectrum, 571
dynamic stereoscopy: see stereoscopy
Earth’s ionospheric cutoff frequency, 736
Earth’s magnetic field, 735
eclipse, 1, 5

Babylonian, 1
Bulgaria, 307, 338
Chinese, 1
East Java, 307

Hydrabad, 307
Principe, 1
Sobral, 1

Eddington, Arthur Stanley, 1
Edlén, Bengt, 1, 26, 355
effective gravity: see gravity
EGRET: see CGRO
eigen-mode analysis, 130
eigen function expansion method, 182, 184
Einstein, Albert, 1, 48
Einstein coefficient, 51, 52, 53, 57
Einstein rate equation, 51
EIT: see SoHO
elastic scattering: see scattering
electrical conductivity, 672

definition, 791
physical unit, 790

electric charge density, 176
electric conductivity, 177
electric current density, 176, 186
electric dipole moment, 52
electric displacement, 176
electric field, 176, 177, 178
electric field : physical unit, 790
electric field, convective, 480

ambipolar, 677, 679
electromagnetic units (emu), 176
electron-rich events, 620
electron-to-photon conversion factor, 576,

577
electron-Volt, 33

definition, 789
electron beam, 36, 638, 651
electron beam current, 474
electron beam evolution, 651, 652

bi-directional, 661
electron collision frequency: definition, 791
electron collision time: definition, 791
electron density: see density
electron gyrofrequency: definition, 791
electron gyroradius: definition, 791
electron injection spectrum, 558
electron mass, 68

definition, 789
electron plasma frequency, 652

definition, 791
electron radius: definition, 789
electron rest mass, 792
electron spin number, 49
electron thermal velocity: definition, 791
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electrostatic double layers, 482
electrostatic units (esu), 176
elementary mass: definition, 789
elliptical equation, 191
emission:

auto-ionization, 52, 54
Balmer lines, 47, 48, 54
black-body, 39, 40, 41, 51
bound-bound transition, 53, 54, 55
Brackett series, 47
bremsstrahlung, 43, 45, 52, 55, 556
bremsstrahlung continuum, gamma-rays,

608, 610, 611
bremsstrahlung cross section, 556
bremsstrahlung spectrum, 45
bremsstrahlung total power, 44, 45
bremsstrahlung, thick-target, 558, 677
bremsstrahlung, thin-target, 561
collisional de-excitation, 48, 52, 55
collisional excitation, 47, 48, 52, 56,

58
collisional excitation rate, 60
collisional ionization, 47, 52, 55
collisional recombination, 54
continuum emission, 62, 80
dielectronic recombination, 52, 54
differential cross section, 44
emission coefficient, 38
energy density, 51
excitation energy, 51
forbidden line transitions, 1, 55
Fraunhofer lines, 42, 54, 80
free-bound transition, 47, 54
free-free absorption, 52
free-free emission, 36, 42, 52, 55
free-free transition, 47
green line, 55
gyroresonance, 35, 227
gyrosynchrotron, 35
Hα, 47
Hβ, 47
Hδ, 47
Hγ, 47
induced absorption, 50, 51, 52
ionization equilibrium, 55
line blanketing, 42
line emission, 80
line intensity, 57, 60
Lyα, 2, 6, 19, 47, 49
Lyβ, 47

Lyman continuum, 54
neutron capture line, 610, 611, 629
neutrons, 610, 611
nuclear de-excitation lines, 610, 618
Paschen series, 47
Pfund series, 47
photo-ionization, 52, 54, 684
photoelectric effect, 48
pion-decay radiation, 610, 611, 634
polarized contiuum, 25
positron annihilation radiation, 610, 611,

631
radiation cross section, 44
radiative recombination, 52, 54
Saha equation, 56
spontaneous emission, 51, 52, 54, 57
stimulated emission, 50, 51, 52, 54
thermal bremsstrahlung, 42
three-body recombination, 52
two-body recombination, 52, 54
UV continuum, 6
white light, 6

emission measure: see corona or loop
Energetic and Relativistic Nuclei and Elec-

tron experiment (ERNE): see SoHO
Energetic Gamma Ray Experiment Telescope

(EGRET): see CGRO
energy: physical unit, 790
energy equation: see MHD equations
energy levels: see atomic energy levels
enthalpy: see MHD equations
entropy: see MHD equations
equivalent column depth: see corona
ERNE: see SoHO
Euler’s equation, 247
Euler potential method, 193
European Space Administration: see ESA
EUVI: see SECCHI
EUV spectral lines: list, 793
evolutionary method of magnetic field cal-

culation, 195
exchange in flight, 632
expansion factor: see loop
explosive events: see transient events
extended chromosphere: see chromosphere
Extreme-UltraViolet Imager (EUVI): see SEC-

CHI
Extreme-ultraviolet Imaging Telescope (EIT):

see SoHO
extreme ultraviolet: see EUV
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F, 49
F-corona: see corona
Fadeev equilibrium, 478
FAL model: see corona
Faraday rotation: see also magnetic field
FASR, 226, 233, 462, 637, 664
FCS: see SMM
Fe, 49
Fe/Ni 8.2 keV lines, 562
Fe 6.7 keV lines, 562
Fe IX, 6, 35, 58, 59, 355, 386, 793
Fe VIII, 793
Fe X, 6, 28, 55, 386, 793
Fe XI, 28, 793
Fe XII, 6, 58, 793
Fe XIII, 224, 793
Fe XIV, 55, 338, 793
Fe XIX, 317, 318, 319
Fe XV, 6, 28, 35, 793
Fe XVI, 28, 138, 690, 793
Fe XXI, 24, 317, 689
Fe XXII, 24
Fe XXIV, 6
Fe XXV, 461, 689, 690, 691
Fe XXVI, 689
fibrils: see chromosphere
filaments:

, see also prominences
bald patches, 274
barbs, 274
chromospheric injection, 280
coronal condensation, 278
definition, 14
dips, 274
disappearance, 281
equilibrium model, 275
eruptive filament, 706
footpoint heating, 281
lateral feets, 274
magnetic chirality, 274
magnetic field, 272
MHD, 270
physical parameters, 272
polar crown filament, 462
quiescent filament, 270, 706
winking filaments, 303

filament channel, 274, 279
filament evolution, 278
filament formation, 278
filling factor: see also loop

filter-ratio temperature, 75
, see also corona or loop

FIP effect, 32, 61, 63, 64, 143, 628
FIP fractionation, 65
first ionization potential: see FIP effect
first ionization time, 65
FITS image format, 87
FIT effect, 64
fixed nodes, 331
flares:

arcades, 443
blueshifts, 461, 681, 691, 692
chromospheric condensation, 681
chromospheric evaporation, 11, 438,

671, 676, 685, 693
conductive cooling phase, 699
cooling phase, 695
CSHKP model, 436
cusp, 601
definition, 12
DEM, 697
Doppler shifts, 681, 682
double-ribbon flares, 457, 631, 646,

690
emerging flux model, 439
equilibrium loss model, 441, 707
explosive upflows, 688
footpoint delays, 583
footpoint ribbons, 596
footpoint separation, 599
frequency distribution, 400, 404, 603
gentle upflows, 688, 690
gradual hard X-ray events, 613
Hα emission, 681, 682, 684
homologous flares, 462, 463
hydrodynamic simulations, 444, 679,

680, 686, 687
impulsive soft X-ray brightenings, 692
Kopp−Pneuman model, 436, 686
long-duration event, 452, 589, 643
loop, 649
loop column depth, 595
loop footpoints, 590
loop radius, 572
loop shrinkage, 443, 452
loop size, 571, 578
Lyman continuum, 684
Lyman line emission, 684
magnetic breakout model, 445, 707,

714, 724
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Masuda sources, 453, 536, 600, 675
model unification, 449
models, 436, 450
momentum balance, 681
nonthermal line broadening, 691
nonthermal velocity, 691
occulted flares, 602
physical parameters, 381, 383
postflare loops, 695
quadrupolar flux-transfer model, 447,

455
quadrupolar photospheric source model,

443
radiative cooling phase, 700
radio emission, 693, 694
scaling law, 451
statistics, 603, 604
superhot temperature, 46, 564
temperature scaling law, 680
three-legged structure, 457
upflow speeds, 695
UV continuum, 685
UV emission, 683, 684
white-light emission, 683, 684

flare events:
1979-Feb-17, 652
1980-Jun-27, 45, 564
1980-Jun-7, 623
1981-Jul-24, 650
1984-Apr-24, 689
1986-Feb-16, 719
1989-Aug-13, 660
1989-Jun-17, 646
1990-Jun-11, 613
1991-Jul-2, 613
1992-Jan-13, 536
1992-Oct-27, 647
1993-Mar-16, 643
1995-Apr-2, 653
1997-Apr-30, 717
1997-Apr-7, 728
1997-Nov-6, 715
1998-Apr-20, 715
1998-Apr-23, 723
1998-Apr-29, 690
1998-Jul-14, 730
1998-Jun-2, 715
1998-Mar-29, 715
1998-May-6, 715
2000-Jul-04, 392

2000-Jul-14, 454, 457, 458, 696, 697
2002-Feb-22, 596
2002-Jul-15, 713
2002-Jul-23, 630

Flat Crystal Spectrometer (FCS): see SMM
Flexible Image Transport System: see FITS
fluid theory, 241
fluxtubes:

buoyancy, 17
collisions, 379
emergence, 257
hydrodynamic simulation, 235, 257
magneto-statics, 247

Fokker−Planck equation, 495, 652
Fontenla−Avrett−Loeser (FAL) model: see

corona
footpoint heating: see heating
footpoint overpressure: see pressure
forbidden lines: see emission
force:

curvature force, 467
electric drag force, 472
electric force, 467
frictional force, 472
gravitational force, 68, 467
magnetic field gradient force, 467
magnetic pressure force, 706
magnetic tension force, 706
physical unit, 790
polarization drift force, 467

forward-fitting method, 555
Fourier−Bessel series, 187
Fourier series, 187
Fourier transform, 191, 489, 554
fractal dimension, 391, 392
fractionation of elements, 32
Fraunhofer absorption lines: see emission
Fraunhofer spectrum, 26
free-free absorption: see emission
free-free emission: see emission
frequency-time drift rate, 655, 658, 659, 694
frequency distribution: theory, 398
Friedman, 2
frozen-flux theorem, 414
GAMMA-1, 617
gamma-rays:

center-limb effect, 625
directivity, 624
electron-dominated events, 628
electron-dominated spectrum, 612, 613
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electron-rich events, 613
emission mechanisms, 610
high-energy-cutoff, 613
ion-electron ratios, 620
ion-electron timing, 622
line spectrosocopy, 618
nuclear de-excitation lines, 619
occulted flares, 627
prompt lines, 618
spectrum, 608

Gamma-Ray Spectrometer (GRS): see SMM
gauge transformation, 219
Gaunt factor, 44
Gauribidanur, 307
Gaussian units, 176
geomagnetic storm, 703
geometry: see loop or flares
Geostationary Orbiting Earth Satellite: see

GOES
germanium-cooled detector, 7, 8
Global Oscillations at Low Frequency (GOLF):

see SoHO
global p-mode oscillations, 372
Goddard Space Flight Center: see GSFC/NASA
GOES, 319, 384, 605, 696, 697, 712, 713
GOLF: see SoHO
Gorky, 319
Grad−Shafranov equation, 441
GRANAT, 300

PHEBUS, 628
granular convection, 17
gravitational acceleration, 333
gravitational constant, 67

definition, 789
gravitational field, 178
gravitational force equation, 67
gravitational potential, 20, 67, 68, 121
gravitational stratification, 20, 21, 22, 67
gravity:

effective gravity, 84
solar gravity, 84
stellar gravity, 84

grazing-incidence X-ray telescope, 2
Green’s first identity, 795
Green’s function, 183, 187
Green’s function method, 182, 199
Green’s theorem, 177, 192, 795
Grotrian, Walter, 26, 355
ground-based observatories, 7
ground state: see atomic ground state

GRS: see SMM
gyrofrequency, 225, 466

electron, 466
ion, 466
proton, 466

gyromotion, 28
gyroradius, 466

electron, 467
ion, 467

gyroresonance emission: see emission
gyroscope, 4
gyrosynchrotron emission: see emission
H, 49, 376
Hα, 303
Hβ, 303
Hale’s polarity law, 18
Hale, George Ellery, 1
Hale cycle, 14
Hale polarity law, 15
Hanle effect: see magnetic field
HAO, 303
Hard X-Ray Burst Spectrometer (HXRBS):

see SMM
Hard X-ray Imaging Spectrometer (HXIS):

see SMM
hard X-ray instruments, 552
hard X-ray pulses, 569, 571
hard X-ray sources, 589
hard X-ray spectra, 562

high-energy cutoff, 566
inversion, 567
low-energy cutoff, 566
nonthermal, 562
soft-hard-soft evolution, 565
thermal, 562

Hard X-ray Telescope (HXT): see Yohkoh
hard X-ray time delays, 523, 574
hard X-ray time structures, 568
hard X-ray timing error, 523
hard X-rays:

nonthermal energy, 603
statistics, 603

harmonic oscillator, 40
Haussdorff dimension, 391, 392
He, 1, 30, 49
Heβ, 303
HEAO-3, 630
heating:

AC models, 359, 360, 362, 371
acoustic heating, 360, 377
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Alfvénic resonance, 360, 371
base heating rate, 94
chromospheric evaporation, 676
chromospheric reconnection, 360, 377
coronal heating models, 359, 360
current cascade model, 366
current density, 368
current layers, 360, 374
cyclotron resonance, 360, 376
DC models, 359, 360, 362
electromagnetic coupling, 361, 362
electron beam heating, 675, 676
energy loss, 361, 362
energy requirement, 356
energy transport, 361, 362
exponential heating scale length, 94
footpoint heating, 102, 104, 368, 371,

375
heat conduction, 679
heat flux, 378
heating function, 94, 99
heating rate, 367, 373
heating scale height, 98, 107, 357
hydrodynamic simulations, 367, 368,

369, 375
inductive current heating, 672, 676
instability, 361, 362
Joule dissipation, 263, 366
Joule heating, 672
magnetic energy storage, 361, 362
mechanical driver, 361, 362
MHD turbulence, 360, 370, 375
non-local heat transport, 99
nonuniform heating, 94, 96, 102, 104
numerical simulations, 674, 677, 678
Ohmic dissipation, 366, 374
phase mixing, 360, 374
plasma flows, 361, 362
plasma heating, 361, 362
plasma trap, 361, 362
Poynting flux, 357, 368, 374
proton beam heating, 672, 675, 677
resistive heating, 672
resonant absorption, 360, 372
shear Alfvén waves, 378
shock heating, 672, 674
solitary magnetic kinks, 378
stress-induced current cascade, 360,

366
stress-induced reconnection, 360, 364

stress-induced turbulence, 360, 368
surface Alfvén waves, 378
thermal conduction, 681
torsional waves, 378
uniform heating, 93, 94, 102, 104
velocity filtration, 360, 378
volumetric heating rate, 93

heat conduction coefficient: see conduction
heat equation: see MHD equations
Heitler, Walter, 43
heliographic coordinates, 88
heliographic latitude, 88
heliographic longitude, 88
heliographic position, 9
helioseismology, 5, 283
heliosphere, 17

density, 26
radio emission, 639

heliospheric magnetic field, 731
helium: see He
helmet streamer: see streamer
Helmholtz equation, 187, 192
Hertz, Gustav, 48
He 10,830 Å, 14, 35, 166
He I, 2, 138, 303, 386, 389, 793
He II, 2, 28, 64, 389, 793
Hida, 303
high-temperature turbulent-current sheet, 510
Hinotori, 3, 310, 552, 686
Ho, 1
Hopf bifurcation point: see instabilities
Hsi, 1
HXIS: see SMM
HXRBS: see SMM
HXT: see Yohkoh
hydrodynamic simulations: see loop
hydrogen-like atoms, 49

, see H
hydrogen atomic structure, 47, 48
hydrogen mass, 68
hydrostatic equilibrium: see corona or loop
hydrostatic solution: see loop
hydrostatic weighting bias, 71

, see corona or loop
hydroxil, 35
H I, 2, 6, 64, 172
ideal gas: see MHD equations
impact polarization, 681
implicit codes, 94
inclination: see loop



INDEX 879

incoherent growth, 400
incomplete Beta function, 594
incompressible fluid, 288
induced absorption: see emission
inductance, 448
induction equation, 177, 369
inertial range, 398
infrared, 19, 224
inhibition factor: see loop
instabilities, 263

ballooning instability, 264, 266, 267
bump-in-tail instability, 639, 651
coalescence instability, 414, 416
convective instability, 264, 266, 267
current-pinch instability, 264, 269
current-sheet instability, 264
cylindrical-pinch instability, 264
eigen-mode analysis, 130
gravitational-mode instability, 264, 267,

268, 414
heating scale instability, 133
heating-driven thermal instability, 264,

267, 268
helical-mode instability, 264
Hopf bifurcation point, 159
hydrodynamic instability, 264
hydromagnetic instability, 264, 267
interchange instability, 257, 264
Kelvin−Helmholtz instability, 264, 265,

267
kink-mode instability, 264, 267, 269,

713, 714
Kruskal−Schwarzschild instability, 264,

265, 267, 706
magnetic buoyancy, 257, 427
Parker instability, 264, 265, 427, 440
radiative loss instability, 128, 130
radiatively-driven thermal instability,

264, 266, 267
Rayleigh−Taylor instability, 133, 264,

267, 706
resistive instability, 264, 268
rippling-mode instability, 264, 267, 268,

414
sausage-mode instability, 264, 267, 270
secondary tearing, 414
tearing-mode instability, 264, 267, 268,

414, 437, 478
thermal instability, 264
thermal stability, 127

torsional-mode instability, 264
two-stream instability, 656
undular mode, 257, 265, 427

instantaneous nonthermal electron spectrum,
558

instantaneous source spectrum, 559
Institute of Space and Astronautical Science:

see ISAS
instrumental response function: see Yohkoh

or TRACE
integral identities, 795
internal energy: see MHD equations
interplanetary dust, 26, 80
interplanetary fluxropes, 734
interplanetary magnetic clouds, 734
interplanetary magnetic field (IMF), 731, 732
interplanetary particle events, 613
interplanetary radio bursts, 652, 736

, see radio bursts
interplanetary shocks, 734, 735
interplanetary space: density, 26
ion-neutral separation, 65
ion/proton mass ratio: definition, 791
ionization:

coronal approximation, 58, 641
first ionization time, 65
fully ionized, 23, 24, 68, 119
helium (He+), 734
ionization equilibrium, 55, 59, 60
ionization ratio, 58
ionization state, 49
ionization time, 65
nonequilibrium ionization effects, 127
nonuniform ionization, 567
partially ionized, 24, 166
Saha equation, 55
temperature, 23

ionization energy: see atomic ionization en-
ergy

ionization equilibrium, 56
ion collision frequency: definition, 791
ion collision time: definition, 791
ion density: see density
ion gyrofrequency, 376

definition, 791
ion mass density: definition, 791
ion plasma frequency: definition, 791
ion thermal velocity: definition, 791
iron: see Fe
ISAS, 5
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ISEE-3, 552, 563, 603, 605, 652
isobaric approximation: see corona or loop
isothermal approximation: see corona or

loop
Itapetinga, 300, 307, 310
Izmiran, 310
Jansky: definition, 789
Janssen, Jules, 1
Joy’s law, 259
jump relations, 503
K, 49
K-corona: see corona
Kagoshima Space Center: see KSC
kappa function, 378
Kiel, 310
kinematic viscosity, 194
kinetic energy, 792
kinetic energy, relativistic, 792
kinetic theory, 242
Kingston, 310
Kirchhoff, Gustav, 39
Kirchhoff law, 39, 46, 51
Kitt Peak National Observatory: see KPNO
Knudsen parameter, 688
Kolmogorov spectrum, 370, 494
KPNO, 14, 16, 300
Kraichnan spectrum, 494
Kramers bremsstrahlung cross section, 557,

593
KSC, 5
L-corona: see corona
LAD: see BATSE
Landau damping, 488
Landau resonance, 496, 651
Langmuir turbulence, 656
Laplace equation, 178, 183
Large Angle Solar Coronagraph (LASCO):

see SoHO
Large Area Detectors (LAD): see BATSE
Larmor motion, 43, 227
Larmor orbit, 481
LASCO: see SoHO
Legendre polynomials, 185
length: physical unit, 790
Li, 30, 32, 49
line-of-sight: see corona or loop
line blanketing: see emission
line emission: see emission
line intensity: see emission
line strength: see atomic line strength

lithium: see Li
Littrow, 1
local thermodynamic equilibrium: see emis-

sion
Locarno, 303
Lockheed, 303
log-N-log-S distribution: see frequency dis-

tribution
loop:

arcade, 421
arcade (definition), 10
asymmetric heating, 127, 157, 158
background subtraction, 92
blueshift, 136, 138, 256
braiding, 366
canopy, 162, 163
catastrophic cooling, 145
chromospheric evaporation, 156
column depth, 60, 89
column emission measure, 76
condensation, 130, 156
conductive flux, 93
constriction, 212
constriction factor, 163
cooling, 139
cooling delays, 141
cooling scaling law, 144, 145
coplanar loop geometry, 83
coronal rain, 138, 146
cross section, 20, 21, 85, 89, 111, 120,

121, 209, 210, 326, 374
curvature force, 252
cusp, 10, 11, 12, 29, 30
density function, 98
density profile, 70, 112
differential density distribution, 76
diverging geometry, 85
Doppler shift, 318
downflows, 146
emission measure, 70
expanding geometry, 96, 163
expansion factor, 85, 113, 209
FAL-C model, 24
fast MHD sausage oscillations, 310
fast sausage-mode oscillations, 307,

481
fast-mode waves, 336
filling factor, 142, 143
filter-ratio temperature, 70, 74
flow acceleration, 153
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flow speed, 135, 138
geometry, 83, 162, 197
heating rate scaling law, 102
hydrodynamic simulations, 154, 155,

157, 259, 262
hydrodynamic solutions, 155
hydrostatic equilibrium, 23, 67, 70,

150
hydrostatic loop, 109
hydrostatic solution, 93, 97, 99
hydrostatic weighting, 27
hydrostatic weighting bias, 72, 75, 107
inclination angle, 198
inhibition factor, 163
isothermal, 104
isothermal approximation, 93
kink-mode oscillations, 295, 298, 300
line-of-sight integration, 76, 89
Lorentz force, 252
MHD wave damping, 326
mini-atmosphere, 21, 22
multi-fluxtube structure, 22
multi-temperature structure, 22
multi-thread structure, 23
nonhydrostatic loop, 148
nonlocal thermodynamic equilibrium,

166
nonsteady heating, 153
physical parameters, 381, 383
plane inclination, 83
postflare loop, definition, 11
pressure function, 97
pressure scale height, 98
pressure scale height ratio, 152
redshift, 127, 256
rotation, 256
RTV scaling law, 62, 94, 95, 145
sausage-mode oscillations, 311
scale height temperature, 71
scaling law, 93, 99, 101
semi-circular geometry, 83
sigmoid loops, 214, 217, 713
sigmoid, definition, 12
siphon flows, 138
skin depth, 326
slow-mode oscillation periods, 317
slow-mode oscillations, 317
slow-mode wave parameters, 336
slow-mode waves, 334
super-hydrostatic, 152, 153

surge flows, 157
temperature function, 97
temperature profile, 112
thermal stability, 127
transequatorial, 9, 208
twist, 253, 256, 364
wave pressure, 155
width expansion ratio, 209

loop heating: see heating
loop plane coordinate system: see coordi-

nate system
loop plane inclination, 84
Lorentz factor, 468, 792
Lorentz force, 28, 186, 237, 466
losscone angle, 538, 539
losscone distribution, 626, 639, 664, 665
LRC electric circuit, 483, 676
Lundquist number, 368, 410
Lyα, 389

, see emission
Lyman α emission (Lyα): see emission
Lyman continuum: see emission
Lyot, Bernard, 1
magnesium: see Mg
magnetic diffusivity, 177, 268, 369

definition, 791
magnetic fan dome, 423
magnetic fan surface, 423, 459
magnetic field, 17, 176

active region, 196
buried coil, 180
canopy, 20, 22, 235, 236, 237
closed field, 17, 21, 22, 28
confinement, 28
cornupia model, 548
corona, 18, 19
cusp, 530, 536, 578
dipole, 11, 20, 85, 86, 180, 202, 232,

544, 645
dipole depth, 20, 202
emergence, 257
emerging flux, 17
Faraday rotation, 19, 224
force-free, 18, 186, 200, 216, 219, 237,

238
free-free emission, 224
frozen flow, 260
gyroresonance, 224, 230, 233, 234
gyroresonance stereoscopy, 224, 230
Hanle effect, 19, 224
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infrared lines, 19
interplanetary, 17
kink-mode diagnostic, 294
line-tied, 260, 368
linear force-free, 187
Lorentz force, 253
magnetic carpet, 237
magnetic charge, 183
magnetic island, 573
magnetic scale height, 232
monopole, 21
multipole-current sheet model, 18
non-force-free, 18
nonlinear force-free, 188, 190, 233
nonpotential, 187, 189, 205, 206, 233,

366
open field, 17, 21, 22, 28, 167, 341
physical unit, 790
plate tectonics, 237
polar regions, 17
poloidal, 16, 17
potential, 18, 19, 20, 178, 179, 185,

206, 207
potential field extrapolation methods,

182
potential field lines, 182
potential function, 180, 181
potential vector field, 180, 181
quadrupolar, 207, 208, 218
quasi-transverse region, 224
radio emission, 224
shear angle, 189, 711
sheared arcade, 188, 711
slippage, 260
source surface model, 183, 185
Stokes polarimetry, 19
sunspot, 179
toroidal, 16
twist, 520, 713
unipolar, 179, 423
vertical current, 255
Zeeman effect, 18, 19

magnetic flux, 20
magnetic flux cancellation, 377
magnetic flux injection, 711
magnetic gradient derift, 615
magnetic helicity, 213

conservation, 462
helicity conservation, 218, 714
twist number, 215

uniform twist, 215
magnetic induction, 176

physical unit, 790
magnetic junkyard model: see transition re-

gion
magnetic length scale, 533
magnetic mirror ratio, 537, 538
magnetic mirroring, 537
magnetic moment, 537
magnetic nullpoint, 220, 222, 223, 423, 425,

447, 459
bald patch, 459
Lorentz force, 249
pressure balance, 249
saddle point, 459

magnetic O-point, 222, 251, 415, 478
magnetic permeability, 176
magnetic pressure: definition, 791
magnetic pumping, 481
magnetic quasi-separatrix layer, 432
magnetic quasi-separatrix surface, 459
magnetic reconnection:

3D reconnection, 421
anti-reconnection theorem, 413
bipolar, 422
bursty 2D reconnection, 414
bursty reconnection, 417, 480
chromospheric, 426, 435
collisionless reconnection, 414
current sheet, 409, 414, 439, 471, 476
diffusion region, 408, 411, 412, 414
dipolar, 363
Earth’s bow shock, 408
Earth’s magneto-tail, 414
fan reconnection, 424
flux pile-up regime, 412
fractal current sheet, 419
hydrodynamic simulations, 413, 416,

417, 418, 419, 420, 425, 428,
435

impulsive bursty reconnection, 417
impulsive bursty regime, 414
inflow speed, 429, 430
inflows, 460, 461, 463
jets, 435
magnetic field angle, 422
magnetic flux cancellation, 428
magnetic flux emergence, 426
magnetic islands, 415, 479
models, 363
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neutral boundary layer, 408
nonuniform reconnection, 412
oscillatory regime, 417
outflows, 460, 463
Petschek model, 410, 437, 476, 484,

534
planetary magnetosphere, 407
quadrupolar, 363, 422, 423, 432, 445,

692
reconnection rate, 410, 412
relaxation, 532
resistive reconnection, 414
separator reconnection, 424
slow-mode compression, 412
slow-mode shock, 409, 411, 412
spheromak, 407
spine reconnection, 424
stagnation point flow, 413
steady 2D reconnection, 408, 412
Sweet−Parker model, 409, 437, 471,

473, 484, 673
tokomak, 407
tripolar, 363, 422
turbulent reconnection, 420
uniform reconnection, 412
X-point collapse, 483

magnetic Reynolds number, 367, 368, 410
definition, 791

magnetic scalar potential function, 178
magnetic separator, 220, 221
magnetic separator line, 423
magnetic separatrix surface, 221, 422, 423,

447
magnetic spine field line, 423, 447, 459
magnetic storm, 735
magnetic tension force, 250
magnetic topology, 220, 221, 422, 423
magnetic X-point, 220, 222, 251, 408, 415,

438, 452, 476
magneto-ionic modes, 225, 642
marginal instability, 653
Mariner II, 733
mass: physical unit, 790
mass density, 68

, see MHD equations
Maui, 303
maximum entropy method, 555
maximum entropy visibilities method, 555
Maxwell−Boltzmann distribution, 45
Maxwell’s equations, 21, 176

physical units, 790
MDI: see SoHO
mean molecular weight: definition, 791
merged interaction regions, 734
mesons, 611
meson production, 632
Metsähovi, 310
Meudon, 303
Mg IX, 138, 793
Mg V, 28
Mg VI, 28, 793
Mg VII, 793
Mg VIII, 28, 793
Mg X, 793
Mg XI, 689
MHD equations, 241

adiabatic approximation, 118, 122, 284,
430

advective term, 118, 120
asymmetric heating, 125
asymmetric loop cross section, 125
Boltzmann equation, 245
conductive flux, 245
conductive loss rate, 124
conservative form, 120
continuity equation, 118, 120, 121, 243
critical flow speed, 123
energy equation, 93, 118, 119, 120,

121, 122, 124, 161, 245, 356,
430

enthalpy, 119, 120
entropy term, 118
equation of state, 69
flow speed solution, 123
force equation, 243
gravitational energy, 120
gravity force, 243
heat flux density, 245
ideal gas, 119
ideal gas equation, 69, 118
ideal MHD, 244, 284
internal energy, 119, 124, 699, 700
kinematic viscosity, 244
kinetic energy, 120, 121
Lorentz force, 243, 245
mass conservation equation, 243
mass density, 118
momentum equation, 68, 83, 93, 118,

120, 121, 123, 124, 243, 285
number density, 118
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particle number conservation, 118, 242
polytropic index, 118, 119, 122, 708
pressure profile, 124
radiative loss rate, 124
resistive MHD, 246
RTV scaling law, 356
shock wave, 123, 127
siphon-flow solution, 122, 123, 125,

127
specific heat, 118
steady-flow solution, 122
subsonic flows, 123, 125
supersonic flows, 123
velocity profile, 124
viscous force, 243

MHD method of magnetic field calculation,
194

MHD wave damping: see wave damping
MHD waves: see waves
Michelson Doppler Imager (MDI): see SoHO
microflares: see transient events
molecular weight, 68
momentum equation: see MHD equations
moving electric charge, 186
Multi-Spectral Solar Telescope Array: see

MSSTA
muons, 611
mutual helicity, 219
mutual inductance, 218
N, 49
Na, 49
Nanking, 310
nanoflares: see transient events
Nançay radioheliograph, 7, 300, 307
National Aeronautics and Space Adminis-

tration: see NASA
National Solar Observatory: see NSO
Naval Research Laboratory: see NRL
Ne, 30, 49
Nelson, Pinky, 3
neon: see Ne
network flares: see transient events
network heating events: see transient events
Neumann boundary condition, 183, 184
Neumann problem, 182
Neupert effect, 587, 692

spatial, 692
neutral plasma, 68
Newton, Isaac, 27, 67
Newton law, 68

Ne I, 793
Ne III, 793
Ne IV, 405, 689
Ne V, 793
Ne VI, 138, 793
Ne VII, 2, 793
Ne VIII, 138, 405, 793
nickel: see Ni
NIXT, 207
Ni XVIII, 28
Nobeyama, 8, 300, 307, 643, 647, 648
nomenclature, 8
non-hydrostatic: see loop
non-local heat transport: see heating
non-Maxwellian particle distribution, 378
nonequilibrium ionization effects: see ion-

ization
nonlinear dissipative system, 398
nonlinear oscillations, 485, 663
nonuniform heating: see heating
Norco, 310
Norikura, 334
normal-incidence coating, 7
normal-incidence multi-layer telescope, 6
normal-mode method, 130, 263
normal Doppler resonance, 488
NRL, 2
NSO, 14
NSO (Sacramento Peak), 300, 303
nuclear binding energy, 32
number density: see MHD equations
N IV, 793
N V, 389, 720
O, 49
Ohm’s law, 177, 409, 676
opacity:

free-free emission, 46, 225, 641
gyroresonance, 227, 228
optical depth, 38
thick, 39
thin, 39

optical depth: see opacity
orbital angular momentum, 49
Orbiting Solar Observatory: see OSO
Oriented Scintillation Spectrometer Exper-

iment (OSSE): see CGRO
oscillations, 331
Oslo, 310
OSO-1, 2
OSO-5, 300, 310, 552, 603
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OSO-7, 170, 300, 307, 552, 603
OSO-8, 2, 161, 377
OSSE: see CGRO
OVRO, 8, 232, 307, 649, 650
Owens Valley Radio Observatory: see OVRO
oxygen: see O
O III, 793
O IV, 2, 303, 389, 683, 793
O V, 136, 137, 157, 386, 389, 405, 683,

685, 689, 793
O VI, 172, 256, 376, 405, 436, 720
O VII, 376
O VIII, 689
partial frame, 5
particle:

energy equipartition, 469
kinetic energy, 468
velocity, 468

particle acceleration, 518
acceleration path length, 468
acceleration rate, 574
acceleration time, 469, 474, 481, 527
betatron, 470, 481
DC electric field, 470, 526
diffusive shock, 470, 505
direct radiation, 499
double layers, 470, 482
Dreicer field, 473
electric potential drop, 482
electrons, 493
electrostatic waves, 499
energy equipartition, 469, 623
fast shock, 503, 511
first-order Fermi, 470, 501, 502, 510
ion-cyclotron waves, 499
ion-sound waves, 499
ions, 497
Langmuir waves, 499
lower-hybrid waves, 499
mechanisms, 470
numerical simulations, 496
O-point, 478
runaway, 470, 472, 473
runaway speed, 473
second-order Fermi, 470, 507
second-step acceleration, 509, 617
shock, 470, 500, 512
shock drift, 470, 503
slow shock, 503, 511
stochastic, 470, 486, 493, 497, 525

sub-Dreicer field, 470, 472
super-Dreicer field, 474, 614
timing, 524, 525, 526
upper-hybrid waves, 499
X-point, 476

particle drift, 467, 476, 478
curvature, 479

particle energy loss, 518
relativistic, 468

particle injection, 518, 529
particle kinematics, 518, 667
particle mass, 68
particle number conservation: see MHD equa-

tions
particle orbit, 466, 477, 508, 520
particle pitch angle, 520, 529
particle pitch angle distribution, 624, 650
particle precipitation, 539, 543, 676, 681
particle propagation, 518

collisional limit, 548
critical energy, 549

particle timing, 518, 519, 520
particle trap-plus-precipitation model, 647,

648, 650, 667
particle trapping, 518, 537, 539, 543, 614,

647
particle trapping time, 541, 614, 648, 650
Paschen series: see emission
Pegasus launch vehicle, 6
percolation theory, 391
permittivity of free space, 176
Pfund series: see emission
photo-ionization: see emission
photoelectric effect: see emission
photosphere:

abundance, 30, 32
granular flows, 364
intra-network, 379
network, 235, 379
plasma-β parameter, 28
supergranular flows, 364
temperature, 26, 789

photospheric abundance: see abundance
Pic-du-Midi Observatory, 1
pinhole camera, 2
pion production, 632
pixon method, 555
Planck, Max, 40
Planck brightness distribution, 41
Planck constant, 33, 40
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definition, 789
Planck function, 41, 46, 51
Planck law, 40
plane inclination: see loop or flares
plasma-β parameter, 21, 28

definition, 791
plasma frequency, 225, 656
plasma resistivity, 194
plumes: see coronal hole
Poisson statistics, 398
polarization: see circular, radio, or Stokes

polarization
polarized brightness, 24
polytropic: see MHD equations
population number, 58
position angle: see solar position angle
positronium, 632
positronium formation, 633
positron emission processes, 632
potential scalar function, 178
potential vector Grad−Rubin method, 195
power: physical unit, 790
Poynting flux, 357
pressure:

electron pressure, 69
footpoint overpressure, 104
hydrostatic scale height, 69
ion pressure, 69
isobaric approximation, 69
magnetic, 28
pressure balance, 83, 236, 248, 250
pressure equilibrium, 21, 68
pressure gradient, 68
pressure scale height, 69, 84, 380
thermal plasma, 28

principal quantum number, 49
prominences:

, see also filaments
chromospheric injection, 280
condensation, 130
definition, 14
dip structure, 445
disappearance, 281
disparition brusque, 281
flare trigger, 437
hedgerow shape, 271
Kippenhahn−Schlüter model, 272, 273,

275, 277
Kuperus−Raadu model, 272, 273, 278
magnetic field, 272

magneto-acoustic slow string modes,
302

mass, 280
MHD, 270
oscillation periods, 303
oscillations, 301, 302
physical parameters, 272
quiescent prominences, 270
sudden disappearance, 281

propagating waves, 331
proton/electron mass ratio: definition, 789
proton mass: definition, 789
protosolar cloud, 32
quadrupole moment: see atomic quadrupole

moment
quantum-mechanical angular momentum, 49
quantum numbers, 49
quasi-linear diffusion, 488, 664
quasi-linear diffusion coefficients, 491, 493
quiet Sun, 21

definition, 9
DEM, 27, 28
density, 23, 24
energy loss, 357
flow speeds, 135
heating requirement, 358
meridional flow, 17, 274
temperature, 28

radiation transfer, 23, 37
radiative backwarming, 683, 684
radiative cooling time: see time scales
radiative loss function, 61, 62, 143
radiative loss rate, 61, 62

definition, 791
radiative recombination: see emission
radiative transfer equation, 38, 39
radio brightness temperature, 37, 226, 641,

657
radio bursts:

classification, 661
decimetric (DCIM), 657, 661
decimetric millisecond spikes, 638, 668
decimetric pulsations, 462, 638, 663
decimetric, type III-like, 663
decimetric, type IV-like, 663
decimetric, zebra, 663
fibers, 316
interplanetary, 26
microwave postbursts, 638
microwaves, 657



INDEX 887

type I, 661
type I, storms, 638
type II, 461, 512, 513, 638, 661, 663
type II, backbone, 512, 663
type II, herringbone, 512, 663
type III, 463, 638, 652, 656, 657, 658,

659, 661, 662, 663
type III, interplanetary, 652, 653, 654
type IV, 638, 651, 663
type IV, continuum, 638, 651, 661,

663
type IV, moving, 638, 651
type J, 638, 658, 661
type N, 657
type RS, 638, 657, 658, 661
type U, 638, 657, 658, 659, 660, 661
type V, 638, 661, 663
type V, continuum, 663

radio dynamic spectra, 658
radio emission:

coherent emission, 638, 644, 657, 664
cyclotron emission, 644
electron-cyclotron maser emission, 638,

639, 664
electrostatic waves, 666
free-free emission, 638, 640
gyroresonance emission, 638, 644
gyrosynchrotron emission, 638, 644
gyrosynchrotron emissivity, 644, 649
gyrosynchrotron flux, 649
gyrosynchrotron spectrum, 650
harmonic gyrofrequencies, 668
incoherent emission, 638, 657
losscone emission, 664
plasma emission, 638, 639, 655
upper-hybrid waves, 666, 668

radio interferometer, 36
radio polarization, 642, 664
radio scintillations, 26
radio spectra:

bremsstrahlung, 642
nonthermal gyrosynchrotron, 642
thermal gyrosynchrotron, 642

radio spectrometer, 8
radio telescope, 36
Ramaty High Energy Solar Spectroscopic

Imager: see RHESSI
Rankine−Hugoniot relations, 503
RATAN-600, 8
Rayleigh−Jeans law, 39, 41, 46, 226, 641

Razin−Tsytovitch suppression, 645
redshift: see loop or flares
refractive index, 225, 226
resistive MHD equations, 332
resistivity: see anomalous resistivity or plasma

resistivity
resonance ellipse, 664
response function: see Yohkoh or TRACE
return currents, 474
Reynolds number, 178, 412, 414
Reynolds number, viscous, 325
RHESSI, 7, 8, 324, 383, 552, 555, 567,

568, 596, 620, 630, 633
ring distribution, 639
rocket flights, 2
Rosner−Tucker−Vaiana model (RTV): see

loop
rotation:

, see also Carrington, loop, Faraday
rotation

differential, 16, 196
RTV model: see loop
Russell, Henry Noris, 30
Rutherford, Ernest, 43
Rutherford formula, 556
Rydberg, Johannes, 47
Rydberg constant, 47, 48

definition, 789
Rydberg formula, 48
Sagamore Hill, 310
Saha equation: see ionization
Sayan, 303
scale height temperature: see corona or loop
scaling law: see loop
scalogram, 571
scattering:

differential cross section, 44
elastic scattering, 42, 43
Thomson scattering, 1, 24, 52, 714,

719
Schmidt method, classical, 183
Schmidt method, oblique, 184
Schmidt method, spherical, 184
Scobee, Dick, 3
Secchi, Pietro Angelo, 1
SECCHI: see STEREO
SECIS, 338
self-helicity, 219
self-inductance, 218
self-organized criticality, 398
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semi-circular geometry: see loop or flares
SERTS, 27, 28
shock-associated (SA) events, 736
shooting method, 94
sigmoid: see loop
silicon: see Si
Silver Spring, 310
siphon-flow solution: see MHD equations
Si I, 684, 685
Si II, 684
Si III, 389, 720
Si IV, 127, 303, 389
Si IX, 28, 793
Si VII, 793
Si VIII, 170, 793
Si XI, 28
Si XII, 793
Si XIII, 689
Skylab, 2, 3, 300, 686
sling shot effect, 408
Small Explorer Mission: see SMEX
SMEX, 23
SMM, 3, 552, 686

ACRIM, 3
BCS, 3, 689
CP, 3, 716, 720
FCS, 3
GRS, 3, 552, 623, 624
HXIS, 3, 319, 552, 691
HXRBS, 3, 310, 552, 563, 568, 603,

605, 685
UVSP, 3

soft X-ray events: see transient events
Soft X-ray Telescope (SXT): see Yohkoh
SoHO, 5, 6

CDS, 5, 6, 60, 136, 138, 334, 405,
690, 731, 793

CELIAS, 5
COSTEP, 5
EIT, 5, 6, 20, 23, 27, 35, 168, 197,

211, 223, 319, 334, 338, 345,
349, 384, 405, 720, 728, 729,
793

ERNE, 5
GOLF, 5
LASCO, 5, 6, 347, 513, 712, 715, 716,

720, 721, 724, 725, 731
MDI, 19, 20, 199, 203, 223, 631
MDI/SOI, 5

SUMER, 5, 6, 138, 164, 168, 255,
303, 317, 318, 319, 347, 370,
371, 683

SWAN, 5
UVCS, 5, 6, 172, 300, 319, 347, 371,

683, 720
VIRGO, 5

SOI: see MDI
solar-terrestrial phenomena, 731
solar age: definition, 789
Solar and Heliospheric Observatory: see SoHO
solar constant: definition, 789
solar cycle, 14, 17, 604

10-cm microwave flux, 605
sunspot number, 605
XXIII, 7

solar disk center, 88
area, 42

solar dynamo, 16, 17, 426
solar eclipse: see eclipse
solar energetic particle events (SEP), 629,

735
gradual, 736
impulsive, 736

solar escape speed: definition, 789
Solar EUV Research Telescope and Spec-

trograph: see SERTS
solar flux unit: definition, 789
solar flux: spectrum, 41
solar gravitation, 68

definition, 789
solar gravity: see gravity
solar irradiance, 32

EUV, 35
gamma-rays, 34
hard X-rays, 35
infrared, 35
optical, 35
radio, 35
soft X-rays, 35
spectrum, 33, 34, 42
XUV, 35

solar magnetic cycle: see solar cycle
solar mass, 67

definition, 789
Solar Maximum Mission: see SMM
Solar Oscillations Investigations (SOI): see

MDI
solar position angle, 88
solar radiant flux density: definition, 789
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solar radiant power: definition, 789
solar radius, 68

definition, 789
Solar SoftWare: see SSW
solar solid angle: definition, 789
solar storm, 731
Solar Terrestrial Relations Observatory: see

STEREO
Solar Ultraviolet Measurements of Emitted

Radiation (SUMER): see SoHO
solar wind, 167, 703, 731, 733
Solar Wind Anisotropies (SWAN): see SoHO
solar wind:

energy loss, 357
fast, 17, 18, 733
hydrodynamic solution, 173
hydrodynamics, 172
plasma-β parameter, 28
slow, 18, 733, 734
solar breeze, 173

SOLRAD 9, 300, 319
sounding rocket, 28
sound speed: definition, 791
sound waves: see waves
source function, 38
spacecraft jitter, 7
Space Shuttle:

Atlantis, 4
Challenger, 3

space weather, 731
specific heat: see MHD equations
specific intensity, 37

definition, 38
spectroheliograph, 1, 2
spectroheliometer, 2
spectrometer, 6
spectroscopic nomenclature, 49, 50
speed of light: definition, 789
spherical coordinate system: see coordinate

system
spherical harmonics, 187
spherical harmonics functions, 184
spiculae, 161, 167, 436
Spitzer conductivity: see conduction
spontaneous emission: see emission
spontaneous transition probability, 57
Spörer law, 15
standing waves, 331
statistical equilibrium: see atomic statisti-

cal equilibrium

statistical weight: see atomic statistical weight
steady-flow solution: see MHD equations
Stefan−Boltzmann constant, 41

definition, 789
Stefan−Boltzmann law, 41
stellar corona: DEM distribution, 115
stellar gravity: see gravity
stereoscopic correlation, 88, 198
stereoscopic reconstruction, 110
stereoscopy, 196

dynamic stereoscopy, 109, 196, 197
solar-rotation, 230

STEREO mission, 196, 201
stimulated emission: see emission
Stokes’ theorem, 795
Stokes polarimetry: see magnetic field
Stokes polarization, 226
Stokes V parameter, 226
streamer, 10, 11, 28, 80

definition, 9
density, 24
helmet streamer, 278, 437, 452, 462,

708
streamer blobs, 461

stress-and-relax method of magnetic field
calculation, 195, 206

Struve, 1
Sturrock’s dilemma, 653
substorm, 735
SUMER: see SoHO
sunspot, 18

bipolar tilt angle, 259
butterfly diagram, 15
flow speeds, 135
group, 9
gyroresonance, 230, 231
leading magnetic polarity, 9
magnetic helicity, 259
proper motion, 259, 261
temperature, 26
trailing group, 9
white light, 230

Sun Earth Connection Coronal and Helio-
spheric Investigation (SECCHI):
see STEREO

super-hydrostatic: see loop
supergranulation, 235, 426
surge flows: see loop
SWAN: see SoHO
SXT:



890 INDEX

, see Yohkoh
Yohkoh, 229

Syrovatskii-type current sheet, 583
S V, 720
S XV, 689, 691
tachocline, 16, 17
Tenerife, 303
Thales, 1
thermal-nonthermal time delays, 587
thermal conduction: see conduction
thermal conductivity: definition, 791
thermal energy, 792
thermal pressure: definition, 791
thermal radiation, 37
thermal scale height: definition, 791
thermal Spitzer conductivity: definition, 791
thermal stability: see instabilities or loop
Thomson scattering: see scattering
three-body recombination: see emission
time-of-flight delays, 574
time-of-flight distance, 520, 522, 578, 582

physical unit, 790
time scales:

coalescence time, 417
collional slowing-down time, 472
collisional deflection time, 542, 615
conductive cooling time, 130, 700
cooling time, 142
electron collision frequency, 672
electron collision time, 672, 673
Joule heating time, 672, 673
magnetic diffusion time, 268
radiative cooling time, 130, 142, 321,

700
tearing mode growth time, 415
thermal conduction time, 321

tomographic reconstruction, 226
TRACE, 6, 7, 13, 23, 29, 35, 318, 324, 368,

384, 683, 696, 793
response function, 108, 697

TRACE 1216 Å, 146
TRACE 1550 Å, 138
TRACE 1600 Å, 146, 713
TRACE 171 Å, 137, 138, 140, 141, 142,

144, 146, 147, 148, 149, 150,
211, 223, 254, 294, 327, 334,
389, 391, 697, 730

TRACE 171 Å 702
TRACE 171 Å, 298

TRACE 195 Å, 141, 142, 144, 146, 334,
388, 389, 391, 597, 598, 697

TRACE 284 Å, 141
TRACE Lyα, 146
transient events, 12, 380

active region transient brightenings, 382,
383

blinkers, 12, 382, 388, 405
density scaling, 395
Ellerman bombs, 432, 433
emerging flux events, 382, 385, 426,

427
energy budget, 402
enthalpy change, 395
ephemeral regions, 382, 385, 426, 427
explosive events, 12, 377, 382, 388,

390, 405, 431
frequency distribution, 403, 404
geometric scaling laws, 391
heating rate scaling, 395
hydrodynamic simulations, 388
jets, 390
macrospicules, 390
magnetic cancellation, 382, 385
magnetic scaling, 396
microflares, 382, 383, 387, 603
microflares, definition, 12
nanoflares, 365, 382, 387, 405
nanoflares, definition, 12
network flares, 12
network heating events, 12
physical parameters, 381
RTV scaling law, 394
RTV scaling model, 401
scaling laws, 390
soft X-ray bright points, 378, 382, 383,

384, 432, 434
soft X-ray jets, 382, 383, 386, 387,

441
soft X-ray jets, definition, 10
spicules, 390
sprays, 390
statistics, 398
surges, 390
temperature scaling, 395
thermal energy, 382
thermal energy scaling, 395
volume filling factor, 393
volume scaling, 393
volume scaling model, 401
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volume-area scaling, 393
transit-time damping, 497
transition probability, 488
transition rate: see atomic transition rate
Transition Region And Coronal Explorer:

see TRACE
transition region:

CICM model, 167
DEM distribution, 163
density model, 166
downflows, 161
enthalpy, 160
heat conduction, 159
hydrodynamic models, 160
hydrodynamics, 159
magnetic field, 234
magnetic junkyard model, 163
nonthermal line broadening, 370
radiative loss, 160
redshift, 161

trapping time delays, 585
Tremsdorf, 300, 310, 513
Trieste, 310
turbulence:

MHD-turbulent cascade, 498, 675
strong, 497
weak, 497

two-body recombination: see emission
Udaipur, 300
ultraviolet: see UV
Ultraviolet Coronagraph Spectrometer (UVCS):

see SoHO
Ultraviolet Spectrometer/Polarimeter (UVSP):

see SMM
Ulysses, 652, 733
unidirectional flows: see MHD equations
uniform heating: see heating
Utrecht, 310
UVCS: see SoHO
UVSP: see SMM
V, 49
V-events: see auroral V-events
vacuum, 23
Variability of solar Irradiance and Gravity

Oscillations (VIRGO): see SoHO
vector identities, 795
velocity, 242
velocity, relativistic, 792
velocity differential emission measure (VDEM),

690

Venera, 310
Vernazza−Avrett−Loeser model: see VAL

model
vertical current density, 217

Vertical integration method, 190
Very Large Array: see VLA
VIRGO: see SoHO
viscosity, 321, 324, 413

compressional, 325
kinematic, 325
shear, 325, 369, 373

VLA, 7, 226, 229, 301, 307, 385, 646, 660
Vlasov equation, 242

volumetric heating rate: see heating
volume emission measure, 563
volume emissivity, 44

water vapor, 35
wave-particle interactions, 487, 664
wavelength, 33
wavelet analysis, 340, 571
waves, 284

Airy phase, 339
Alfvén speed, 289
Alfvén waves, 371
blast-wave scenario, 353
body wave, 290
Burgers equation, 333
cylindrical geometry, 291
decay phase, 339
dispersion relation, 291, 292, 304
dispersive waves, 287
EIT waves, 348, 728
electromagnetic waves, 656
electrostatic waves, 673
evolutionary equation, 332, 341
fast magneto-acoustic mode, 287, 288,

293
fast sausage-mode oscillations, 304,

307, 315
fluting mode, 293, 304
group speed, 287, 337, 339
harmonics, 294
hydrodynamic simulations, 351, 352,

353, 373
impulsively generated MHD waves, 316,

336
intermediate magneto-acoustic mode,

288
ion-acoustic waves, 656, 673
ion-cyclotron waves, 673
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kinetic Alfvén waves (KAW), 675
kink mode, 291
kink speed, 293
kink-mode oscillations, 297, 298
kink-mode period, 293, 294
Langmuir waves, 651, 655, 656
magneto-sonic wave, 292
Moreton waves, 331, 348, 721, 728
non-dispersive waves, 287
phase speed, 287, 293, 304, 316, 353
propagating slow-mode waves, 332
propagating waves, 332
quasi-periodic phase, 339
sausage mode, 291
sausage-mode period, 306
shear Alfvén wave, 288
shock waves, self-focusing, 378
single magnetic interface, 289
slender slab geometry, 291
slow magneto-acoustic mode, 287, 288
slow magneto-acoustic wave, 293
slow-mode oscillation periods, 316, 317,

319
slow-mode oscillations, 316
sound speed, 123, 289, 317
sound waves, 287, 656
standing wave, 294
surface wave, 290, 291
transverse mode, 288, 296
transverse waves, 656
tube speed, 286
unbound homogeneous medium, 285
wave number, 304
wave number cutoff, 304, 305
wave propagation angle, 287

wave absorption rate, 656
wave damping, 320, 665

footpoint wave leakage, 323
lateral wave leakage, 322
non-ideal MHD effects, 321
phase mixing, 324
physical parameters, 328
resonant absorption, 325
thermal conduction, 320

wave frequency match condition, 656
wave growth rate, 656
wave propagation vector, 489
wave reflection coefficient, 323
wave vector match condition, 656
weak interactions in nuclei, 631

Wentzel−Kramers−Brillouin approximation,
343

Westerbork, 307
Wideband Spectrometer (WBS): see Yohkoh
Wien displacement law: see Wien law
Wien law, 40, 41
WIND, 652, 653
Woltjier’s theorem, 220
Yohkoh, 5, 552

BCS, 5
HXT, 4, 536, 553, 571, 582, 585, 591,

592, 597, 598, 648, 696, 697
SXT, 5, 10, 11, 15, 16, 23, 30, 35,

170, 206, 208, 214, 222, 307,
358, 384, 385, 386, 391, 396,
513, 553, 571, 582, 643, 647,
649, 689, 692, 696, 697, 712,
720, 727, 728

SXT filters, 73
SXT response function, 108, 697
WBS, 5

Young, Charles Augustus, 1
Yunnan, 310
Zeeman effect: see magnetic field
ZEUS-3D/ANMHD code, 258
ZEUS-3D code, 258
Zurich, 310, 312, 657, 660, 662, 668, 694



Plate 1. The multi-temperature corona : from the EIT instrument on board the space-based
SOHO observatory. This tantalizing picture is a false-color composite of three images all taken
in extreme ultraviolet light. Each individual image highlights a different temperature regime
in the upper solar atmosphere and was assigned a specific color; red at 2 million, green at 1.5
million, and blue at 1 million degrees K. The combined image shows bright active regions strewn
across the solar disk, which would otherwise appear as dark groups of sunspots in visible light
images, along with some magnificent plasma loops and an immense prominence at the right-hand
solar limb (courtesy of EIT/SoHO).



Plate 2. Top: a composite and large field-of-view soft X-ray (Al.1) map from Yohkoh /SXT
with subdivision into 36 radial sectors, each 10◦ wide. The circles indicate the altitude levels
of R = 1.0, 1.5, and 2.0 solar radii. Note two active regions at the east and west, a coronal
streamer in the south−east, and coronal holes in the north and south. Bottom: coronal tempera-
ture maps are shown for the 36 sectors of the same Yohkoh image. The peak temperature T0 of
the fitted differential emission measure distributions dEM(T, h)/dT is given according to the
multi-hydrostatic model defined in Eq. (3.3.7) (Aschwanden & Acton 2001).



Plate 3: SoHO/EIT Fe IX/X image of AR 7986, recorded on 1996-Aug-30, 0020:14 UT, at a
wavelength of 171 Å, sensitive in the temperature range of Te = 1.0 − 1.5 MK (top). The
color scale of the image is logarithmic in flux, the contours correspond to increments of 100 DN
(data numbers). The heliographic grid has a spacing of 5◦. The filtered image (lower panel) was
created by subtracting a smoothed image (using a boxcar of 3×3 pixels) from the original image,
in order to enhance the loop fine structure (Aschwanden et al. 1999a).



Plate 4. 3D view of magnetic potential field lines (yellow lines) calculated with the Sakurai
code by extrapolation of a SoHO/MDI magnetogram recorded on 1996 August 30, 20:48 UT
(red surface with white and black polarities), the traced 171 Å loop segments (blue lines), the
traced 195 Å loop segments (green lines), and the traced 284 Å loop segments (red lines). The
two views are: from vertical (top panel) and from east (bottom panel). The 3D coordinates of
the traced EIT loops are based on stereoscopic reconstruction. Note some significant deviations
between the observed loops and the potential field model (Aschwanden et al. 2000a).



Plate 5. A 3D magnetic field representation is rendered from photospheric magnetograms (op-
tical image in orange), from extrapolated magnetic field lines (black lines), and the iso-gauss
contours for three gyroresonant layers that correspond to gyrofrequencies of 5 GHz (green), 8
GHz (blue), and 11 GHz (yellow). The outer contours of each igo-gauss surface demarcate the
extent of radio emission at each frequency (Courtesy of Stephen White and Jeong Woo Lee).



Plate 6. Top: the small-scale magnetic field connects the network on the spatial scale of su-
pergranulation cells, while large-scale magnetic fields extend up into the corona. This magnetic
field extrapolation was computed based on a magnetogram recorded by SoHO/MDI on 1996 Oct
19. The tangled small-scale fields at the bottom of the corona have also been dubbed “magnetic
carpet”. Bottom: horizontal view of the same 3D representation of magnetic field lines (Courtesy
of Neal Hurlburt and Karel Schrijver).



Plate 7. A stack plot of a sunspot magnetogram in white light (bottom level), magnetic field
strength (second level), vector field B [kG] (third level), with an enlargement of the central
sunspot (forth level) of active region NOAA 7722, recorded with the Advanced Stokes Polarime-
ter on 1994 May 17, 16:05 UT (Courtesy of Bruce Lites).



Plate 8. 3D structure of magnetic field lines (red), iso-surface of magnetic field (grey), and
velocity vectors (green) of an emerging twisted fluxtube, calculated with a 3D MHD code. The
bottom panel shows the projection of magnetic field lines onto the XY-plane. The emergence
into the corona leads to a kinked alignment of solar active regions (Matsumoto et al. 1998).



Plate 9. A TRACE 171 Å image is shown at the beginning of the 1998-Jul-14, 12:55:16 UT
flare, during which the first kink-mode oscillations were discovered. Kernels of flare emission
are located at C1 − C4, which seem to trigger loop oscillations. The diagonal pattern across
the brightness maximum at C1 is a diffraction effect of the telescope. The analyzed loops are
outlined with thin lines. Loops #4 and #6 − 9 show pronounced oscillations (Aschwanden et al.
1999b).



Plate 10. Connectivity domains of a potential magnetic field are visualized by domains with
different colors (bottom left). The logarithm of the magnetic field strength is shown with a
colored contour map, with nullpoints marked as small white squares and separators marked with
black lines (top left). Fan and spine field lines from different perspectives are shown in the right
frames. This numerical computation illustrates that most of the low-lying field lines are closed
(in the transition region), while only a small fraction of the field lines are open and connect
upward to the corona (Schrijver & Title 2002).



Plate 11. TRACE image of the quiet Sun corona, taken in the 171 Å passband, on 1998-Jun-
10, 20:40 UT. The exposure time is 262 s, centered at (−122, −16) arcsec relative to the disk
center, displayed with a pixel resolution of 1′′. Superimposed is a threshold SOHO/MDI full-
disk magnetogram (with green and red indicating opposite polarities), taken at 20:48 UT, aligned
within one arcsec. The color scale saturates at ±15 Mx cm−2 and the magnetogram resolution
is 1.4′′ . Note the detailed correspondence of small magnetic bipoles at the footpoints of coronal
nanoflares and large-scale loops (Schrijver & Title 2002).



Plate 12. Numerical simulation of 3D separator reconnection. Yellow vectors (bottom right
frame) indicate the driving pattern at the top boundary. The two reddish iso-surfaces show the
locations of the nullpoints and the purple iso-surfaces the locations of strong current. Red and
yellow field lines show the magnetic topology and the two nulls. The green and blue field lines
provide the current topology. The bottom right frame is rotated by 180 degrees around the
vertical axis. Note that the currents spread along the separators and enable reconnection along
the entire separator lines (Galsgaard et al. 1997b).



Plate 13. A 3D nullpoint with its associated spine field lines and fan surface is inferred for the
first Bastille-Day (1998-Jul-14, 12:55 UT) flare by Aulanier et al. (2000b). Top: the magnetic
field (with contours at B = ±20, 50, 100, 250, 400, 600 G) from a KPNO magnetogram is
overlaid on a TRACE 171 Å image with a FOV of 203 × 104 Mm. The neutral lines are indicated
with thick black lines. Middle: extrapolated magnetic field lines are shown that closely trace out
a fan-like separatrix surface above the δ-spot (P1-N1) and end in a 3D nullpoint (P2), which is
connected through spine field lines to the leading polarity in the west (N2). Bottom: a 3D view
is shown from a different viewing angle (from north−west) (Aulanier et al. 2000b).



1999-Mar-18 16:40 UT, Yohkoh/SXT 2000-Jun-07 14:49 UT, Yohkoh/SXT

2001-Apr-19 13:31:05 UT, TRACE 171 A 1998-Sep-30 14:30:05 UT, TRACE 171 A

2000-07-14 10:59:32, TRACE 171 A

Plate 14. Soft X-ray and EUV images of flare loops and flare arcades with bipolar struc-
ture. Yohkoh/SXT observed flares (1999-Mar-18, 16:40 UT, and 2000-Jun-07, 14:49 UT) with
“candle-flame”-like cusp geometry during ongoing reconnection, while TRACE sees postflare
loops once they cooled down to 1 − 2 MK, when they already relaxed into a near-dipolar state.
Examples are shown for a small flare (the 2001-Apr-19 flare, 13:31 UT, GOES class M2), and
for two large flares with long arcades, seen at the limb (1998-Sep-30, 14:30 UT) and on the disk
(the 2000-Jul-14, 10:59 UT, X5.7 flare) (Aschwanden 2002b).



Plate 15. The geometry of the acceleration region inferred from direct detections of above-the-
looptop hard X-ray sources with Yohkoh/HXT (contours) and simultaneous modeling of electron
time-of-flight distances based on energy-dependent time delays of 20 − 200 keV hard X-ray
emission measured with BATSE/CGRO (crosses marked with ACC). Soft X-rays detected with
Yohkoh/SXT or thermal hard X-ray emission from the low-energy channel of Yohkoh/HXT/Lo
are shown in colors, outlining the flare loops (Aschwanden 1999c).



Plate 16. A dynamic spectrum of flare/CME-related radio bursts, recorded on 1998-Aug-24 with
the Culgoora radiospectrograph (18 − 1000 MHz) and the WAVES radio detector on the WIND
spacecraft (1 − 10 MHz). The composite dynamic spectrum shows type III bursts followed by
slower-drifting type II bursts. The frequency axis is shown with increasing frequency in the
y-direction, so that electron beams propagating from the Sun away drift in negative y-direction
(dν/dt < 0) (Courtesy of Culgoora Observatory and Wind/WAVES team).

Plate 17. A postflare loop system is imaged with TRACE 171 Å, on 2000-Nov-09, 05:03 UT,
some 6 hours after a GOES-class M7.4 flare on 2000-Nov-08, 22:42 UT in AR 9213 near the
west limb. The flare was accompanied by a coronal mass ejection, observed by SoHO/LASCO.
Note the numerous postflare loops which indicate continuous heating over more than 6 hours
after the impulsive flare phase (Courtesy of the TRACE team).
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