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To Dmitri, Alex and Dmitri, Jr.



Preface to the Second Edition

In the second edition, material of the book has been slightly rearranged and
corrected. A significant amount of new material has been added with a triple
goal: (1) to present more recent observational results, (2) to extend discussion to
scaled laboratory experiments for possible application to solar physics, and (3)
to give some practical tools in form of the solved problems that can be used for
quantitative analysis of related phenomena.

Hence, four new chapters have been added. Chapter 21 contains description of
recent laboratory experiments scaled to astrophysics. High repetitive rate and ability
to accurately control the system parameters in the experiment allow to identify
missing elements in physics of studied phenomena. The exemplary experiments
have been chosen to reflect the effects observed or need to be observed in the
solar atmosphere and beyond. The topics span from magnetically driven plasma
jets, bow shocks, and generation of seed magnetic field to plasma instabilities
and self-organization. The next chapter titled initially “What to Observe” turned
out to be long and has been divided into two parts: “What to Observe in the
Low Atmosphere” (Chap. 22), and “What to Observe in the Upper Atmosphere”
(Chap. 23). This division is, of course, formal, because the dynamics of solar
atmosphere is intrinsically governed by coupling of the photosphere/convective
zone and overlying chromosphere/corona. Chapter 24 contains solution of 48
problems covering subjects of Chaps. 2–20. Most problems are made out of original
papers containing fundamental results. In this way, the original paper, often based
on complex theory, turns into a convenient tool for practical use and quantiative
analysis.

I would like to extend my thanks to all friends and colleagues whom I mentioned
in the first edition. No one complained. Many of them read the first edition of
the book and gave me useful advices that helped to improve the text. During the
final stage of preparation of the second edition, I was visiting Dmitri Budker of
Helmholtz Institute, Johannes Gutenberg University in Mainz. Communication with
Dmitri Budker and his young and mighty group was true inspiration, and I thank
them all.

vii



viii Preface to the Second Edition

My very special thanks go to Dr. Claus Ascheron who encouraged me to write
this book, initiated the second edition, helped me greatly, and patiently supported
me to fulfill this task. I am very grateful to Elke Sauer, Adelheid Duhm, and other
members of Springer for their help and support.

Once again, I would like to thank my husband Dmitri Ryutov who heroically
accepted my new commitment to work on the second edition of the book. I am
happy that my sons, Alex and Dmitri Jr, and my grandchildren, Dasha, Liza, and
Pavel, were all involved in various phases of my work asking me good questions
and proofreading some parts of the book.

Livermore, CA, USA Margarita Ryutova
November 2017



Preface to the First Edition

The advanced space and ground-based observations show amazing details in the
sun’s behavior providing us with invaluable information on the sun as a star and
as our own energy source. The behavior of the sun is determined by a tremendous
variety of physical phenomena acting on wide range of spatial and temporal scales.
Every aspect requires its own specific subject studies, and a lot of work is still
needed to understand the inner workings of this fascinating things.

This book addresses one group of the phenomena: those involving finely
structured magnetic fields. It has been more than five decades since the small scale
intense magnetic flux tubes were found to cover the huge “magnetic free” surface
of the sun outside sunspots and active regions. For the time being, the fact that all
the magnetic field of the sun from its visible surface, throughout corona, and further
to the interplanetary space has a fine filamentary structure, is well established. This
ubiquity of the magnetic flux tubes and their obvious role in a variety of processes
affecting the dynamics of the solar atmosphere and of the outflowing plasma calls
for detailed study of their properties. And yet, no book on physics of magnetic
flux tubes and their role in the dynamics of various magnetized objects has been
available.

This book is intended to fill this gap at least partly, offering the first comprehen-
sive account of the physics of magnetic flux tubes. The book provides side by side
presentation of observations and analytical theory complemented by quantitative
analysis. Many problems that are usually treated separately are presented in the
book as a coupled phenomena and are treated on the unified basis. In some cases the
author takes a risk to point at the effects that have not yet been looked for, or may
be used for the predictability of events, and makes suggestions on what the observer
should expect and what to search for in huge banks of observational data.

A major feature of the book is the application and observational test of the
analytical theories that have not been previously considered in the context of the
solar physics. Examples are: negative energy waves that may lead to formation
of solitons propagating along flux tubes; explosive instability in the multi-wave
interactions; energetically open circuit leading to understanding of the observed
variety of coronal structure formation, and others. These concepts are discussed

ix



x Preface to the First Edition

vis-à-vis pertinent observational data. Extremely important is assessment of collec-
tive phenomena in the ensembles of magnetic flux tubes randomly distributed in
space and over their physical parameters making the rarefied ensembles in the quiet
sun, more crowded families in plages, and dense conglomerates in sunspots and
active regions.

The book contains also examples where, conversely, the new theory devel-
opments were prompted and enabled by the observations. One can mention the
observations of continuous fragmentation of flux tubes accompanied by generation
of mass flows, which turned out to be consistent with magnetoacoustic streaming—
an effect analogous to Faraday’s acoustic streaming. Likewise, the flux tube
reconnections and post-reconnection processes that occur in high plasma beta
environment have clearly demonstrated the need for significant extensions of the
existing theory that focused on low beta coronal reconnections.

The reader will also find descriptions of such intriguing and not fully understood
phenomena as the bullwhip effect—an explosively growing amplitude of flux tube
oscillation; a greenhouse-like effect, where the temperature under the prominences
grows much higher than the expected coronal temperatures; and the effects of a
spatio-temporal echoes in the series of recurrent flares and microflares.

The work was done in Lawrence Livermore National Laboratory. The Lab’s
hospitality is greatly acknowledged. I am particularly grateful to Robert Becker,
Kem Cook, Jim Sharp, Charles Alkock, John Bradely, David Dearborn, Gayle
Christiansen and JD Nichols.

I would like to thank my former colleagues from Landau’s theoretical depart-
ment, Kapitza’s Institute for Physical Problems in Moscow, where I received
my graduate degrees and worked for years on quantum vortices in superfluid
Helium and Type II superconductors. My special thanks go to my teachers Isaak
Khalatnikov, Lev Pitaevskii and Alexei Abrikosov, my PhD adviser.

My interest in Solar physics dates back to 1970s, when I once came across an
early paper by Howard and Stenflo about small scale magnetic flux tubes on the sun.
I was captivated by this beautiful subject. I am grateful to Jan Stenflo and Robert
Howard not only for their excellent paper, which triggered my lifetime interest, but
for all the meetings and discussions that I have had with them later.

I would like to thank Henk Spruit, Gene Parker, Bernie Roberts and Gene Avrett,
who happened to be my first foreign correspondents in the field of solar physics.
After about a decade and a half working on magnetic flux tubes (still back in the
Soviet Union), I realized that my results are not known in the West. I then chose
these outstanding physicists and sent them some of my offprints. All responded.
Henk Spruit immediately made me an invited speaker at the IAU Symposium. Gene
Parker was also quick, but I found out about it only 7 months later when I was
summoned by the authorities and presented a huge tattered box full of papers for
identification and explanation what it all meant. It meant that Gene Parker sent me
all his papers without any note. Berny Roberts together with Eric Priest invited
me to the University of St Andrews for several weeks to work together. I visited
Gene Avrett in Harvard Smithsonian Center for Astrophysics several times and had



Preface to the First Edition xi

wonderful communications with him and other researchers in the CFA, especially
with Shadia Habbal and Wolfgang Kalkofen whom I also thank a lot.

I am pleased to thank all my collaborators, particularly Toshi Tajima, Barry
LaBonte, Jun-ichi Sakai, Shadia Habbal, Richard Woo, Tom Berger, Mandy Hage-
naar and Zoe Frank. I am especially grateful to Dick Shine. Many beautiful results
obtained from observations and described in this book would not have been here
without his insight and help.

I would like to thank Alan Title, Philip Scherrer and Ted Tarbell for not only
being my collaborators, but also as trusting people who gave me a job at Stanford
Lockheed Institute for Space Research. No CV, no references, and no questions were
asked.

Finally, I am extremely grateful to my husband Dmitri (Mitya) Ryutov for his
patience and encouragement expressed sometimes in my native Georgian.

Livermore, CA, USA Margarita Ryutova
September 2014
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Chapter 1
The Sun’s Magnetic Fields

Abstract In this introductory chapter we first briefly describe some overall
characteristics of the sun, and then take a closer look at the sun’s magnetic surfaces.
We shall see that highly advanced space and ground-based observations show
various magnetic elements, their clusters, and mass flows in great detail. The
chapter is concluded with the description of the magnetic skeleton of the sun
showing the well-defined imprint of the photospheric magnetic field pattern at all
available temperatures from low chromosphere to the outermost corona.

1.1 The Sun as a Star

1.1.1 Legacy of Ancients

Since ancient times all people on the earth have considered the sun as their own.
They knew that they depended on it, and wanted to know why.

Back in 3000 BC the Egyptians believed that the sun is He who is above and has
created himself from himself, and the earth and sky, and man was born from his
tears.

The Chinese at that time pragmatically built observatories to map out time, record
sunspots, flares, prominences, and eclipses. The origin of the sun and the fear to lose
it was described along the lines: Of all celestial objects it is the Sun that good heaven
put in the China’s sky and give it to Chinese people, animals and plants, and when
Dark force, the dragon, eats the sun at bad times, inspired brave people of China to
scare the dragon with loud gongs. And it always worked. People of China were first
to record and predict the solar eclipses.

And, yet, it was Pythagoras (569–475 BC) and his followers who formulated
the first mathematical basis of the heaven (“Number is within of all things”). They
postulated that the universe is in constant circular motions, and that the sun and all
the heavenly objects revolve about a single central fire. They declared that the sun
is spherical and has a substance similar to glass that collects rays from central fire,
and transmits them to us. Most importantly, they linked geometry of harmonious
motions with its physical nature. Pythagoras said: “from the sun and moon and
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from the stars in so great number, and of so great size, moving so swiftly, there must
necessarily arise a sound inconceivably great. . . and the sound of the stars moving on
in a circle becomes musical.” Concluding that the universe exists in accordance with
musical harmony, so the sun also makes a harmonious period. The Pythagoreans
believed that the moon has an earthy appearance, and this is because, “like our earth,
it is inhabited throughout by animals and plants, only larger and more beautiful; for
the animals on it are fifteen times stronger, not having any sort of excrement, and
their day is fifteen times as long as ours.”

The harmonious cosmological model of the Pythagoreans did not receive
immediate development.

In words of Plutarch “Anaxagoras was the first to put in writing, most clearly
and most courageously of all men, the explanation of the moon’s illumination and
darkness, . . . and even his account was not common property but was still a secret,
current only among a few and received by them with caution or simply on trust.”
Anaxagoras (500–497 BC) declared that “the moon has a light which is not its own
but comes from the sun.” Anaxagoras’s cosmology teaches that the world began with
a vortex setup, that the rotatory movement began at one point and then gradually
spread, taking in wider and wider circles. And then, “in consequence of the violence
of the whirling motion stones were thorn from the earth and kindled into stars.”

Democritus, who according to his own account “was young when Anaxagoras
was old” has in fact reinstated the views of Anaxagoras, but unlike Anaxagoras who
believed that the earth is flat and rides on the air, Democritus believed that the earth
remains where it is because it is in equilibrium and there is no reason why it should
move one way rather than another. At the same time Democritus vision of heaven
was so advanced that could fit a modern astronomy textbook: “There are worlds
infinite in number and differing in size. In some there is neither sun nor moon, in
others the sun and moon are greater than with us, in others there are more than one
sun and moon. The distances between the worlds are unequal, in some directions
there are more of them, in some fewer, some are growing, others are at their prime,
and others again declining, in one direction they are coming into bang, in other they
are waning. Their destruction comes about through collision with one another. Some
worlds are destitute of animal and plant life and of all moisture.”

But it was not until Plato that Astronomy became a science comparable to
Mathematics as it was prescribed by Pythagoras.

Plato (427 BC) said: “We shall pursue astronomy, as we do geometry, by means
of problems, and we shall dispense with the starry heavens, if we propose to obtain
a real knowledge of astronomy, and by that means to convert the natural intelligence
of the soul from useless to a useful possession.”

And long voyage of theory of harmonious motions with earth at the center
continued for centuries. It swallowed the first heliocentric model of universe by
Aristarchus of Samos, who not only hypothesized that ”fixed stars and the sun
remain unmoved, that the earth revolves about the sun,” but also measured sizes of
the earth, moon, and sun, and their distances. He described the moon as a satellite
of the earth. He declared that the sizes of the earth and the sun are negligible in size
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compared to the universe. He radically improved the sun-dial, and regarded time as
“quantity expressed by things in motion and at rest.”

The heliocentric system was abandoned for another 1800 years until the time of
Copernicus. With or without Copernicus the time came for putting the sun where it
belonged.

In what follows the overall characteristic of the sun will be briefly described.
Then the sun’s magnetic surfaces and its magnetic skeleton sustaining the overlying
atmosphere will be presented in view of the most recent observations.

This book is devoted solely to the physics of small-scale magnetic flux tubes
being the first attempt to consolidate the problems involving the intermittent
magnetic fields per se. There are of course excellent books on all the aspects of
solar physics accumulated during the decades of the subject studies (Athay 1976;
Moffatt 1978; Parker 1979; Sturrock et al. 1986; Zirin 1988; Cox et al. 1991; Somov
1991; Strong et al. 1999; Dwivedi 2003; Severny 2004; Golub and Pasachoff 2010;
Priest 2014). This fairly incomplete list of references which themselves contain
rich bibliographies is given in order to direct the reader to valuable information
on various solar subjects that are beyond the scope of this book.

1.1.2 Hidden Interior

The sun today belongs to a family of moderately warm yellow dwarfs, and is in its
middle age.

Almost entire energy of the sun produced by nuclear fusion in the core is
transported throughout the rest of solar interior, its visible atmosphere, and out into
space. This process is determined by the composition of medium, its temperature,
density, pressure, and internal energy. In high density and high temperature plasmas
under conditions immediately outside the solar core, the energy is transported by
radiation. Plasma density here is still so high that photons liberated by nuclear
fusion travel a short distance and soon are either scattered or absorbed and re-
emitted by other particles. At lower temperatures, but still high densities, electrons
provide another mean of energy transport—conduction. This process occupies
the region approximately up to 0.74 R�. Farther outward the plasma density
and temperature rapidly drop. Sharp temperature gradient provides conditions for
convective instability: a heated plasma element (not a particle!) becomes buoyant
and rises some distance, called the mixing length, before it falls back due to
releasing its energy into the surrounding plasma. The overall qualitative picture of
the stages of energy production and transport in the solar interior is sketched in
Fig. 1.1. Regions of action of various mechanisms must obviously overlap.
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Fig. 1.1 Schematic of the energy production and transport in solar interior. Data for the tempera-
ture and density plots are taken from Bahcall and Ulrich (1988)

The sun’s interior is hidden from us and its true structure and physical processes
are subject of guessing and modeling. What we see well however, i.e., the photo-
sphere, chromosphere, multi-temperature corona, and its extension to interplanetary
space supply us with invaluable information for studying the sun as a star.

1.1.3 Magnetic Dipole

The sun as a star appears in the form of a modestly magnetized well-shaped dipole
with a mean field intensity of about 1 G (Fig. 1.2). What seems however as a neat
dipole is in fact tremendously complicated magnetic body, very inhomogeneous,
intermittent, and highly dynamic. And yet, the overall properties of magnetic fields
and general pattern of their behavior are in many ways quite systematic.

For example, measurements of the magnetic flux of a “dipole” over many solar
cycles show that its intensity remains about the same and ranges in the interval
of 1.5–2.5 × 1022 Mx. The axis of magnetic dipole is tilted at about ±7.23◦ with
respect to the ecliptic, and it also remains steady (in the sun’s coordinate system).
The magnetic flux of the dipole mainly comprises of the high latitude magnetic
fields, where in average it is unipolar and uniquely determines the polarity of a
dipole.

An ensemble of polar magnetic fields being quite irregular and variable at short
timescales shows remarkably regular pattern at large timescales: the mean magnetic
flux of a dipole periodically weakens and subsequently undergoes a reversal of
polarity. This happens roughly every 10–11 years and is directly related to periodic
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Fig. 1.2 Magnetic dipole. The background cartoons are the images of total solar eclipses: (a)
1998 February eclipse photographed by Jerry Lodriguss, and (b) 2009 July eclipse photographed
by Miloslav Druckmüller. Note that the tilt of the sun’s axis is different during the two eclipses.
On February, 26 1998 the tilt is near its maximum. This is because when viewed from Earth the
tilt is maximum during the first week of March and decreases to minimum toward the first week
of June (second maximum and minimum fall to the first week of September and the first week of
December, respectively). Reprinted from http://www.zam.fme.vutbr.cz/~druck/eclipse/. Courtesy
of M. Druckmueller

change of sunspot numbers observed during the centuries and known as 11-year
solar cycle.

The reversal of a dipole polarity marks the abrupt changes in the configuration
of sunspots and active regions over the entire solar surface. Most remarkable is
the appearance of new sunspots at latitudes of 38–40◦—this is the highest range
of latitudes for sunspots to appear. New sunspot groups in both hemispheres have
magnetic polarities opposite to those of previous sunspot groups, i.e., the polarity
reversal occurs here as well. Farther in time, new sunspot groups emerge closer
and closer to the equator in both hemispheres. The number of sunspots gradually
increases and reaches the maximum in about 3–4 years. After that, fewer and fewer
sunspots emerge in locations closer to the equator (Fig. 1.3). Sunspot groups are
always organized in such a way that the leading sunspot tends to be closer to
the equator, whereas the trailing sunspot is closer to the pole. The polarity of the
following sunspot is always opposite to that of pole. At the end of cycle when the
last sunspots appear in the equatorial zone, the polarity reversal of a dipole is about
to happen.

The time between two consecutive minima (or maxima) in the sunspot numbers
and migration of the zone of their emergence, traditionally determined as the 11-
year cycle, changes considerably during the centuries, and may range from 7–17
years. And, of course, the number of sunspots in every cycle changes considerably
as well. There were periods of extremely low solar activity when sunspots were not
observed at all. The most well known to our knowledge is the Mounder Minimum
that occurred between 1645 and 1715. This period was called the Little Ice Age,
during which the Thames and the canals of Venice were covered with ice. Progress

http://www.zam.fme.vutbr.cz/~druck/eclipse/
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Fig. 1.3 Diagram of the distribution of the sun’s magnetic field over three 11-year solar cycles.
Yellow represents magnetic field directed out of the sun. Blue represents magnetic field into the
sun. Sunspots themselves produce the “Butterfly” pattern at low latitudes. The sun’s meridional
flow from the equator to the poles in each hemisphere carries magnetic remains of the sunspots
to the poles. This produces the streaks seen at higher latitudes and reverses the magnetic polarity
of the sun’s poles every 11 years. Reprinted from http://solarscience.msfc.nasa.gov. Image credit:
NASA/MSFC/David Hathaway

in the analysis of radioactive Carbon 14 and Beryllium 10 that trace the influence
of solar activity on the Earth provided information about the solar cycles back to
hundreds of centuries (see, e.g., Lockwood (2013) and the literature therein).

It is only natural to expect that the magnetism of other stars has the same nature.
But it was not until the 1980s that this fact was confirmed. Although the magnetic
field concentrations are not directly observable on stars, these areas produce strong
emission in the Ca II H and K resonance lines in the optical, and the Mg II H and
K lines in the ultraviolet diapason. Observing variations in Ca II H and K lines
in main sequence stars, Wilson (1978) found that the solar type stars of type G2
and older indeed show cyclic variations. It was also found that the magnitude of
these variations is of the same order as that for the sun (Vaughan 1980; White and
Livingston 1981).

But it is only our sun that provides us with unprecedented details of its magnetism
and behavior.

1.2 Magnetic Surface

Highly advanced space and ground observations have revealed amazing details of
solar magnetism. The surface of the sun is the best source for obtaining information
on how the magnetic field emerges and evolves, and how it is distributed over
the surface. At any moment of time the solar surface is covered with uneven
ensembles of magnetic elements having various spatial sizes, shapes, and lifetimes.

http://solarscience
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Their distribution over space, so-called magnetic filling factor, also varies over
space and time. The magnetic filling factor fm is a convenient parameter defined
as fm = Sm/S, where S is the area of interest, and Sm is the area occupied by
the magnetic field. In terms of the filling factor, the solar surface can roughly be
categorized as follows (Fig. 1.4):

• Quiet sun—the largest regions of the solar surface covered by small magnetic
flux tubes far removed from each other with average filling factor much less than
unity, fm � 1.

• Sunspots with filling factor of the order of unity, fm � 1.
• Active regions that are clusters of bipolar sunspots and surrounding them mixed

polarity magnetic elements with average magnetic filling factor close to unity,
fm ≤ 1.

• Remnant active regions consisting of mixed polarity elements with magnetic
filling factor in the range of fm ∼ 0.3–0.6.

• Plages, which are rarefied ensembles of either unipolar or mixed polarity
elements with filling factor in the range of fm ∼ 0.2–0.35.
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Fig. 1.4 Full disk magnetogram taken by the AIA/HMI instrument on board of SDO. White and
black patches represent line-of-sight (vertical) magnetic field of positive and negative polarities
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The magnetic elements that form these ensembles have their own substructures
and consist of small-scale flux tubes. Size of the smallest constituents may be well
below the resolution, which for the time being has reached few tens of kilometers.

1.2.1 Quiet Sun

Most of the solar surface, in fact 90% of it is covered by small-scale magnetic
elements—magnetic flux tubes. They usually trace the convective cell boundaries
at all scales, the smallest of which is the granulation network. The size of network
granules ranges from a few hundred km to several arcseconds (1 arcsec = 726 km).
The network picture is well recognizable in the quiet sun magnetograms, where
negative and positive magnetic flux tubes trace the granulation pattern and encircle
it (Fig. 1.5). Lifetime of individual magnetic flux tubes ranges from a few minutes to
a couple of hours. The entire supply of the “ pepper and salt” magnetic flux forming
quiet sun “magnetic carpet” is replaced in about 40 h (Title and Schrijver 1997),
which eventually provides a permanent energy supply to overlying atmosphere.

Fig. 1.5 Fragment of a quiet sun magnetogram taken by HMI/SOT at the disc center. The field of
view is 346 × 283 arcsec2
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1.2.2 Sunspots and Active Regions

Sunspots are huge conglomerates of magnetic flux concentrations seen as dark
spots. Their temperature is about a thousand degrees lower than the average surface
temperature. A closer look at sunspots reveals their extremely complex nature.
For example, mature sunspots are usually surrounded by the penumbra: strong,
almost vertical magnetic field of umbra becomes more and more horizontal toward
the periphery forming an “uncombed” system of thin magnetic filaments arcing
radially outward from the umbra and terminating in the photosphere (Fig. 1.6).
The inclination of the magnetic filaments is found to vary across penumbra from
45◦ to 90◦ to the sunspot normal (Title et al. 1993). There are strong intensity
inhomogeneities across the penumbra, resulting in a visual effect of interlaced dark
and bright filaments.

The Evershed flow (unsteady plasma outflow at the photospheric level) is also
found to be structured on the scale of the penumbral filaments. The flow is more
horizontal than the mean magnetic field at all radii in the penumbra and has a
spatial correlation with dark penumbral filaments (Shine et al. 1994). The bright
filaments are usually less horizontal making thus some angle with the Evershed
flows. Livnigston (1991), comparing images of sunspot with different exposures,

Fig. 1.6 Image of the active region (AR 10375) in 4320 Å Blue Continuum covering 100 ×
130 arcsec area. Both, younger sunspot (upper left) and decaying AR (bottom) show well-
developed filamentary penumbrae. One can see a small bright points inside umbrae, which are
signs of their filamentary structure. Image taken by DOT on June 6, 2003. Reprinted from http://
www.staffscience.uu.nl, courtesy of R. Rutten

http://www.staffscience.uu.nl
http://www.staffscience.uu.nl
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came to the conclusion that the sunspot umbra also has a filamentary structure, and
may exhibit presence of vertical, diverging, and even horizontal filaments.

Newly emerged young sunspots sometimes do not develop penumbrae, and
remain “naked.” These are called pores. Typically they are 3000–6000km in size
and live for many hours.

Sunspot formation and their appearance at a visible surface is a gradual process
that may take hours and days. A complex conglomerate consisting of several
sunspots and pores, such as one shown in Fig. 1.6, takes several solar rotations to
form, live, and decay. Due to a close neighborhood of opposite polarity formations
the active regions harbor a wide range of electromagnetic phenomena that shape the
overlying atmosphere: chromosphere, transition region, and corona. The latitudes of
a complex active regions are also sites of the origin of a slow solar wind.

1.2.3 Plages

Plages are complex conglomerates of magnetic flux concentrations with average
magnetic filling factor of about f ∼ 0.2–0.3.

There are two major types of plages: mixed polarity plage and plage dominated
by one polarity magnetic elements. The origin of plages is mainly associated with
the decaying active regions, but they may also form due to the subsurface magnetic
activity leading to elevated rate of emergence of small-scale magnetic flux tubes.
An average magnetic field in the magnetic concentrations here is about 100 G.
Figure 1.7 shows example of a typical plage with average magnetic field strength
exceeding 100 G, and a filling factor of about f ≥ 0.3. Usually, plages resulting
from remnant active regions are bipolar formations. The decaying sunspot leads
to formation of unipolar plages, which may overlap with the neighboring opposite
polarity plage and form a mixed polarity region.

Dynamics of plages and their activity is extremely rich. There are common
effects produced by unipolar and bipolar plages, but most importantly, each category
has its own unique features.

1.2.4 High Latitudes and Polar Regions

As mentioned above, toward the end of 11-year cycle active latitudes “shrink,” and
remaining sunspots and sunspot groups migrate toward the equator, while the 10–
11 years old remnants of the previous cycle have already migrated toward poles.
The polarity of the pole has a polarity of the ending cycle where small-scale
magnetic elements occupy the polar and high altitude regions. At the turn of a
cycle the opposite polarity sunspots and sunspot groups start to emerge at about
±40◦ latitudes. Newly emerged sunspots migrate toward the equator while their
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SDO/HMI   29 September 2012

Fig. 1.7 Image of a plage taken by the HMI/SDO instrument. White and black patches cor-
responding to positive and negative magnetic fluxes form a typical unipolar plages. Note a
well-defined supergranular pattern demarcated by magnetic flux concentrations. Field of view is
150 × 200 arcsec
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Fig. 1.8 Magnetogram of high altitude solar region near the North pole shows the encounter of
the ensemble of negative polarity network elements of a previous cycle with the ensemble of
positive polarity magnetic elements coming from a new cycle. White dashed line is the approximate
demarcation line between these regions

peripheral magnetic elements migrate toward the polar regions. Thus in the first half
of a new cycle one observes the merging of the opposite polarity ensembles of small-
scale magnetic elements of the previous cycle with those of a new cycle (Fig. 1.8).
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The filling factor of ensembles and the location of demarcation line between them
play a crucial role in the dynamics of the overlying atmosphere, the most spectacular
of which is formation and evolution of quiescent prominences and polar plumes.

1.3 Mass Flows

The entire solar atmosphere from its visible surface to interplanetary space is pierced
by a great variety of mass flows. They are observed in all temperature ranges, and
may have a steady, unsteady, and explosive character. Their velocities vary from a
few tenths of km s−1 to hundreds of km s−1. The presence of flows dramatically
changes the physical picture of any given event, leading often to the formation of
energetically open non-conservative systems. We will discuss several special cases
associated with the presence of mass flows throughout the book. Here we briefly
overview a few general patterns of mass flows.

The surface of the sun exhibits multiple-scale convective motions which tra-
ditionally are described as granular, mezogranular, and supergranular pattern.
Irregularly shaped granules with sizes ranging from a few hundred km to arcseconds
uniformly cover entire solar surface outside pores and sunspots. Average lifetime
of granules is about 8 min. In the center of granule a warm plume is rising
with velocity � 0.4 km s−1 diverging and falling down at the edge of a granule.
Figure 1.9 shows co-aligned images of a region containing several pores surrounded
by unipolar plage and quiet sun patches. The top panels are the magnetogram and
Dopplergram taken simultaneously by the SST instrument on Hinode. Line-of-sight
magnetic field reaches ∼2300 G. Dopplergram measurements give the velocities
ranging between ∼−1.2 and 1.6 km s−1. White dots correspond to downflows, black
points to upflows. Note that downflows are usually associated with magnetic flux
concentrations. Bottom left in Fig. 1.9 is the same region in G-band. The black box
there singles out the region of emerging flux which is enlarged on the right, where
the map of horizontal velocities restored from time series of the SST data is shown.
The velocities are averaged over 20 min. Arrows indicate the direction of horizontal
velocities and their value.

Convective motions are also organized at larger scales. The most systematically
observed motions that form cellular pattern are mesogranulation and supergranula-
tion.

Mezogranular pattern of mass flows is characterized by advection of granular
convection and associated small-scale magnetic fields. Rising velocities of plasma in
a center are usually small, while horizontal velocities of diverging plasma are about
0.5 km/s. Horizontal distance between mezogranular centers is 5000–10,000km
with lifetime of about 2 h.

In case of supergranulation mass flow rising from a center of neighboring
cells with velocities of about 0.1 km/s diverge horizontally with velocities 0.3–
0.5 km/s. Supergranular pattern is closely related to magnetic network consisting
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Fig. 1.9 Co-temporal and co-spatial set of images of 50 × 50 arcsec region taken by the SST
instrument on Hinode on September 30, 2007. Magnetogram is scaled to maximum of ∼2300 G.
Dopplergram velocities range from ∼−1.2 to 1.6 km s−1. White dots correspond to downflows,
black points to upflows. The coordinates are expressed in arcsec. Bottom left is the same area in
the G-band. Black box shows the region of emerging flux, shown enlarged on the right together
with corresponding horizontal flow map. Credit: Vargas Domínguez et al. (2010), reproduced with
permission from ESO

of magnetic elements with stronger than average magnetic field. Typical diameter
of supergranules is of the order of 30,000 km, and lifetime of about 36 h.

A cellular pattern has multi-scale character and at all scales the inter-cellular
lanes are filled by magnetic flux tubes. There they emerge, move around, and interact
with each other and surrounding flows, directly affecting the overlying atmosphere.

The first to respond is the chromosphere. Here the temperature rises from 4000 K
to 2.5 × 104 K in about 1500 km. Extremely dynamic, the chromosphere creates a
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Fig. 1.10 The Hα image of a relatively quiet sun/plage region taken by the DOT on September
23, 2006. The field of view is 86 × 65 Mm. Fibrils of many shapes and sizes bridging the polarity
inversion lines outline the magnetic connections between the opposite magnetic elements. A huge
crescent-like dark feature is an active filament (white arrows). A milky area surrounded by filament
is plage. Reprinted from http://www.staff.science.uu.nl, courtesy of R. Rutten

narrow transition region where in another couple of hundred km the temperature
jumps up to million degrees to setup the corona.

Blocked by strong emission of the photospheric white light, the chromosphere
requires a narrow bandpass filters around the spectral lines emitted at chromospheric
temperatures from the temperature minimum (4200 K) to its “upper boundary”
(2.5×104 K at about 3000 km above the surface). The middle and low chromosphere
are best observed in Ca II K, He II, and Hα lines.

Especially well the chromospheric features associated with mass flows are seen
in Hα line. Here we give only a few examples of the most pervasive large-scale
chromospheric flows. These are fibrils, active filaments, quiescent prominences,
penumbral jets, and spicules. All these features are uniquely associated with and
governed by the magnetic field.

Fibrils are elongated dark structures with characteristic sizes of 1500–7000 km.
Their lifetimes are of the order of network of about 15–20 h. They overhang the
polarity inversion line everywhere, in the quiet sun, in plages, and around the
sunspots. Examples of fibrils are shown in Fig. 1.10. The area is located south of
decaying active region which produced a huge active filament (more precisely set of
filaments), marked by white arrows. The crescent part of filament carefully encircles
a unipolar plage which is seen in the chromosphere as milky conglomerate of bright
rosettes.

http://www.staff.science.uu.nl
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Fig. 1.11 Full disc images of the sun taken by the HMI and AIA instruments on the SDO on
November 13, 2011. The red strokes on the HMI magnetogram demarcate the polarity inversion
lines that coincide with the chromospheric filaments seen as long dark structures in 304 Å He II
line (5×104 K). These are quiescent prominences. Their projection on sky at North East and South
East limbs is shown in inlets. Height of a limb portion of both prominences exceeds 50,000 km

Filaments and prominences form two classes of magnetic structures with very
different patterns of mass flows. Filaments are usually associated with the active
regions. They are confined mostly in the chromosphere, i.e., their height is about
1500–2000km, and their length is in the range of 50–100 Mm. Magnetic field
strength in active filaments may be as high as 500–700 G. Their lifetime ranges
from a few hours to days, and is determined by the evolution of parental active
region. Plasma streaming along the filament may reach 30 km s−1. Some transverse
velocities were recorded to be about 3–10 km s−1.

At much larger scales Hα chromosphere exhibits a huge dark features that
demarcate the global polarity inversion lines (Fig. 1.11). These are quiescent
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prominences. In fact, these complex structures are far from quiescent, and harbor
wide range of plasma instabilities, from regular flow instabilities to explosive
mass release. Having lifetimes from a few days to several solar rotations, their
name is quite justified by their longevity. Compared to active filaments, the Hα

prominences are much longer and much taller structures. Their length may be
more than solar radius. Their height always exceeds the coronal heights, i.e., the
quiescent prominences overhang the corona. At the same time the mass density of
prominences is by 2–3 orders of magnitude higher than the coronal plasma density.
In other words, a heavy cool material of prominence suspended over rarefied hot gas
is like an iron bar floating in thin air.

Figure 1.11 shows the sun in 304 Å He II line (5×104 K) taken by the SDO/AIA
instrument on November 13, 2011 together with the HMI magnetogram. The red
lines on the magnetogram follow the path of prominences suspended above the
demarcation line dividing the quiet sun magnetic network of the opposite polarities.
White boxes on the North East (NE) and South East (SE) of the chromospheric
image contain a projection of a limb portion of prominences. Slightly enlarged,
these images are shown in the bottom of Fig. 1.11. Note that the North East limb
shows the projection of a huge prominence whose body crosses the solar disc from
its center, whereas the South East limb shows the projection of prominences hidden
from us on the far side of the sun.

Mass flows associated with the quiescent prominences is hard to classify.
Whatever shape is taken by the prominences they all have highly intermittent
filamentary structure. Small-scale filaments comprising the prominence are usually
accompanied by mass flows induced by the local magnetic field and electric
currents.

Among a huge variety of magnetic structures and flows, the sun has one of the
most persistent phenomena—spicules. These are magnetized plasma jets coming out
of magnetic network and outlining supergranular boundaries. They are as ubiquitous
as large-scale convective pattern, forming regular bush-like structures arranged into
the rosettes that are mainly anchored in the supergranular lanes. They have quite
self-similar properties practically all over the solar surface. Their lifetime is usually
several minutes. The plasma in spicules is ejected with speed of about 20–30 km s−1,
and in a few minutes, as a fountain, drops down onto photosphere. Figure 1.12
shows a beautiful picture taken by the amateur astronomer in Hα line, showing the
solar surface covered by spicules. One can see a regular chromospheric network
outlined by the bushes of spicules. Two active regions destroy the regularity of
network and produce characteristic fibrils and filaments around them. Along the
large-scale streamers accompanying sunspots and active regions, there are very
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Fig. 1.12 The amateur picture of the sun in Hα showing the active regions surrounded by
filaments and a wonderful prairie of spicules forming extremely regular bushes that outline the
chromospheric network. Reprinted from http://www.stern-fan.de. Courtesy of Rolf Geissinger

specific, always present systematic small-scale jets coming out of penumbrae with
velocities of a few km s−1. Their typical length is between 1000 and 4000 km, some
may reach 10,000 km. Their lifetime ranges from 30 s to several minutes. When at
the limb, the sunspot looks like crowned disc (Fig. 1.13).

We conclude this chapter by mentioning the polar plumes. These are long thin
streamers projected on the sky as beams emanated from the north and south poles.
These streamers are associated with small-scale magnetic elements and, when
visible, their footpoints are seen as bright points. As we know, the polar regions are
populated only by small-scale magnetic elements—remnants of dispersed magnetic
clusters migrated toward the poles. Figure 1.14 shows a segment of south pole taken
with the EIT instrument on SOHO in the Fe IX/X 171 Å (top) and Fe XII 195 Å
(bottom) lines on May, 8 1996. Their temperature is therefore about 1 MK. They
extend up to 30 Mm above the photosphere.

Note that we gave above only a few examples of the Hα structures. In reality
the filaments, fibrils, and quiescent prominences that form a broad classes of
electromagnetic structures. And each class provides its own unique opportunity to
study the fundamental physical processes.

http://www.stern-fan
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Fig. 1.13 Image of the active region (AR 10486) just before it rotated out of sight over the west
limb to the backside of the sun in Ca II H line. The sunspots appear as flat dark pancakes encircled
by spikes of penumbral jets and further surrounded by chromospheric fibrils. The foreground
shows granulation pattern and spicules. A huge jet exceeding 15 Mm in length stands out between
two sunspots. Tickmarks are arc seconds. The image is taken by the DOT on November 4, 2003.
Reprinted from http://www.staff.science.uu.nl, courtesy of R. Rutten

1.4 Magnetic Skeleton

In a visible light radiated from the photosphere the sun looks like a smooth
ball covered with a few tiny pockmarks (Fig. 1.15a). These tiny pockmarks are
caused by the presence of magnetic field where temperature is significantly lower
than that of surrounding photosphere. In the immediate vicinity to the surface
solar atmosphere shows a “normal” behavior: its temperature and density drop
with height. But reaching the temperature minimum of �4400 K at about 500 km
height, the temperature quickly raises, and in about 1500 km from the temperature
minimum reaches �104 K, forming the chromosphere (Fontenla et al. 2006). From
that level, just in a narrow transition region of a few hundred km the temperature
jumps to million degrees, forming a vast corona (for contemporary model of solar
atmosphere, see, e.g., Fontenla et al. (2006) and the literature therein).

The problem of energy production, its transfer, and release throughout the
solar atmosphere has been and still remains one of the major challenges in solar
physics. The obvious platform for approaching this problem is understanding the

http://www.staff.science.uu.nl
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Fig. 1.14 The EUV images of the south pole with regular arrays of polar plumes, emanated
radially outward from the solar surface. One can see bright footpoints of plumes which are
associated with small-scale magnetic flux tubes—remnants of dispersed magnetic clusters that
migrated in course of the solar cycle toward the poles

generation, structure, and evolution of magnetic fields, embedded in highly dynamic
environment and interacting with it.

The overall imprint of the line-of-sight magnetic field in the overlying atmo-
sphere and its outline is illustrated in Fig. 1.15.

The enhanced intensity of a hot plasma at all temperature levels mimics the
magnetic field pattern seen at the surface. The very specifics of energy production,
its transfer, and release, i.e., electromagnetic coupling of the photosphere with
upper layers of atmosphere, is totally determined by characteristic features of
local magnetic fields, be it the quiet sun with its rarefied ensembles of small-scale
magnetic flux tubes, or dense clusters of magnetic flux tubes forming sunspots and
active regions.

Throughout this book we shall study the properties of isolated flux tubes and
their interaction with surrounding medium and each other. We will see that different
topologies of flux tube ensembles met in the quiet sun, plages, and active regions,
together with various mass flows interacting with them, result in a wide range of
phenomena that are observable and may be quite well understood.
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Fig. 1.15 The magnetic surface of the sun and its imprint in the overlying atmosphere: (a)
The solar surface in the white light showing the atmosphere at 5500–6400 K; (b) Line-of-sight
magnetogram with a few red lines demarcating the large-scale magnetic shear; the imprint of
these lines, as well as the presence of magnetic fields are seen throughout the entire atmosphere;
(c) The temperature minimum region in a cool emission line at about 4500–5000 K; (d) Upper
chromosphere and transition region in He II line formed at �105 K; (e)–(f) Corona at escalating
temperatures of about 6.3×105, 1.3×106, 2×106 K (g)–(i), 6.3×106 K, and 2×107 K, respectively.
Images are taken by the AIA/SDO instrument on November 10, 2011
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Chapter 2
A Quick Look on Small-Scale Flux Tubes

Abstract In this chapter we recall some basic steps of how magnetic flux tubes
were discovered and how they were viewed in their early years. During the decades
after their discovery, flux tubes evolved from an interesting novelty into a founding
element of solar magnetism. Today we know that the entire magnetic field of the
Sun, from sunspots to coronal loops and solar wind, has a filamentary structure. We
briefly discuss the universality of filamentary structures in universe.

2.1 Early Years

For ages, solar magnetic fields were associated with sunspots. The existence of
magnetic field concentrations outside sunspots has been realized only in the late
1950s. Howard (1959), observing magnetic fields in various active and quiet sun
regions, found that existence of magnetic “features” with fields greater than 75 Gs
outside sunspots and far removed from them is not “uncommon.” Confirming the
correspondence between calcium bright points (seen at chromospheric tempera-
tures) and photospheric magnetic fields, described earlier by Babcock and Babcock
(1955), Howard writes: “A close correspondence in most small structural details
between the calcium plages and magnetic field tends to indicate a real physical
relationship between the two,” and finally suggests that “the magnetic field in the
solar photosphere and chromosphere is in the form of more or less vertical columns.”

Leighton (1959) describing his observations of magnetic field in plage regions
also concludes that “relatively strong field, 100 or 200 G in strength are found
in extensive areas throughout plage regions, the field pattern being in striking
agreement with the pattern of Ca II emission.”

The same year, Severny (1959) reports on the observations of fine structures in
sunspots!

Such was the birth of small-scale magnetic flux tubes. Not only were the
existence of small-scale magnetic features detected, but they were also found
uniquely associated with two important phenomena. One was a direct correlation
with heating the overlying chromosphere (Ca II emission), and the other was
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formation of large-scale magnetic shear formed all over the solar surface by small-
scale “columns” of opposite polarity.

Pikel’ner (1963), well before the small-scale flux tubes were directly observed,
was the first to predict the existence of flux tubes. He suggested that convective
motions acting on the magnetic lines of force squeeze them and crowd in toward
the periphery of the granules, and that the field becomes concentrated into a
network covering the sun’s surface. He also predicted that the enhanced convection
contributes to chromospheric emission, so that the network becomes observable in
Ca II and Hα lines. Moreover, Pikel’ner found that the motion of plasma entrained in
the magnetic field lines is responsible for the observed mottles consisting of granular
elements streaming from the center toward the periphery, and concluded that the
presence of mottling over the entire solar surface demonstrates that a “weak” field
exists everywhere. The direct observation of these suggestions were still to come.

2.1.1 First Direct Observational Signs of Magnetic Flux Tubes

Using the photographic technique of Leighton for high-spatial resolution measure-
ments of photospheric magnetic fields, Sheeley (1966, 1967) finds that as a bipolar
magnetic region develops in time and as its magnetic flux spreads over a larger area,
the flux density does not decrease smoothly, but is distributed in bits and fragments
of progressively smaller sizes until finally, they escape detection below the threshold
of photographic measurements. The magnetic field in these small magnetic features
was found to range from 200 to 700 G. Sheeley states that “wherever there are
adjacent regions of opposite polarity, there are disc filaments in Hα.” His conclusion,
that “magnetic fields of several hundred gauss occur in tiny areas easily as small
as 500 km in regions of the solar surface sometimes well removed from sunspot
activity,” became the turning point which, despite the predecessors, is a fact of the
discovery of small-scale flux tubes.

Just at about the same time, observing magnetic fields of small sunspots and
pores, Steshenko (1967) finds that the field strength of the smallest pores (1′′ –
0.5–2′′) is about 1400 G. In larger spots he finds very small elements with a field
strength of 5350 G (!), much higher than the average field of the sunspot itself. He
also observed an isolated place outside sunspots having field strengths up to 1000 G.

Beckers and Schröter (1968) performed an extremely detailed study of the small-
scale magnetic structures in and around the sunspots. These studies included the
measurements of velocity, intensity, and magnetic field strength in the fine elements.
By these observations they confirmed and extended Sheeley’ findings, providing
substantial guideline for future observations. Being quite cautious, they start the
discussion as follows: “We presented in this paper evidence that most, and perhaps
all, of the photospheric magnetic field around a unipolar sunspot is concentrated in a
few thousand small region (1000 km in diameter) with strong magnetic fields (up to
1400 G). This, together with the other properties of the magnetic knots, shows that
they are an essential part of a solar activity regions. We are, however, not yet able to
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decide definitely whether they occur only in the dissolution phase or whether they
are a permanent constituent of a solar activity region.”

Soon, it was found that almost the entire surface outside sunspots is covered
by small-scale magnetic elements. Howard and Stenflo (1972), analyzing Mount
Wilson magnetogram recordings obtained during 26 days with 17 by 17 arcsec
aperture, found that more than 90% of the total flux is channeled through narrow flux
tubes with very high field strength in plages and at the boundaries of supergranular
cells. The flux tubes occupying a very small region in the photosphere were found
rapidly spreading out with height. This spreading of the field lines and decreasing
the field strength with height was dabbed the “mushroom effect,” described earlier
by Pikel’ner (1963) as chromospheric mottling (Frazier and Stenflo 1972).

2.1.2 The Sunspot Dilemma

It is interesting that just before these fundamental results establishing the filamen-
tary structure of Sun’s magnetic fields outside sunspots, and long before the recent
high-resolution observations, Papathanasoglou (1971), along the earlier findings of
Crimea group (see, e.g., Severny 1959), has observed the filamentary structure of
sunspot umbra, and showed that the widths of umbral filaments are <1′′, and that
dark spacing between them are about 0.6′′. This amazing result was totally ignored,
earning only three (!) citations, first of which was given by Livingston (1991) in his
Nature article “Radial Filamentary Structure in a Sunspot Umbra,” where he also
reports on the direct observations of the filamentary structure of sunspot umbra.

For many years, however, the study of small-scale filamentary structure of
umbrae was overshadowed by studies of a sunspot as a whole, its stability and its
impact on the surrounding and overlying atmosphere. The large-scale observational
data clearly indicated that as a whole, the sunspots must be intrinsically unstable.
The stability analysis of such a complex and ever changing body requires consid-
eration of many competing effects—the job that yet has to be done. And search
for the mechanisms of sunspot stability became an uphill battle. The filamentary
structure of the sunspot body has been put aside by the majority of researchers.
The most revealing of the acute situation of those days is, probably, an example of
Piddington’s research.

The large body of Piddington’s work on solar magnetic fields may be charac-
terized by his own words (1975): “A phenomenological model of solar magnetic
fields is developed, which differs drastically from all currently popular ( diffuse-
field) models. Its acceptance would require a review of a major part of theoretical
solar physics.”

Revision of a major part of solar theories and interpretations was not easy, and
Piddington’s ideas in many aspects of solar magnetism caused various reactions,
from such definitions as “Piddington’s Heresy” (Parker (1976) on role of turbulent
diffusion) to a silent dropping off his works from citations. Figure 2.1 shows an
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Fig. 2.1 Section of a sunspot magnetic field with the flux-rope helical twist omitted for simplicity.
The individual flux tubes are shown twisted and separated by nonmagnetic plasma regions whose
width increases with distance from the axis, thus accounting for the penumbral filaments. The
Evershed flow ue has different directions and velocities inside and outside the flux tubes. Reprinted
from Pidington (1978) by permission from Springer Science and Business Media

example of the Piddington’s model of sunspot consisting of the individual twisted
flux tubes.

Meyer et al. (1977) reacted to Piddington’s model of sunspot stability simply:
“We shall show, using a simplified model, that a sunspot can be stable in and
immediately below the photosphere. This stability can be related to the potential
energy associated with the Wilson depression. There is no need to invoke twisted
fields (e.g., Pidington 1975), which have not been observed.” (!)

By the time of this statement, from a basic plasma theory, supported by laboratory
experiments, it was already well known that long magnetic cylinders are intrinsically
unstable with respect to so-called screw pinch instability (Shafranov 1956; Kruskal
and Kulsrud 1958; Kadomtsev 1966). A condition for screw pinch instability,
known as Kruskal-Shafranov condition, is simple: flux tube with magnetic field
B(0, Bφ, Bz), radius R, and length L will be inevitably twisted if

q = 2πRBz

LBφ

≡ h

L
< 1, (2.1)

where q is the safety factor, and h is the pitch of helical configuration, i.e., the
distance in which the field line makes one revolution around the flux tube. In case
of solar magnetic flux tubes, the safety factor is always <1, which means that any
magnetic flux confined in a cylinder with roughly R � L must be twisted.

One can say that at those times Piddington’s model of solar magnetic fields
including sunspots (Fig. 2.1), active regions, and their environments, based on the
model of twisted flux-ropes, was probably the closest to the goal. More general
features of solar magnetic field visualized by Pidington (1978) are shown in
Fig. 2.2. All these features, as already mentioned, have been subsequently confirmed
(Ryutova et al. 2008; Su et al. 2010; Ruiz Cobo and Puschmann 2012; Stenflo 2013).
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Fig. 2.2 Schematic of the main magnetic and plasma features of decaying active regions and quiet
sun. The flux-rope section acts as the trunk of a tree-like structure whose main branches are flux
strands. These, in turn, fray into flux fibers (�3 × 1018 Mx) which provide the network rosettes
(on disk) and bushes (at limb). These tend to be driven to the supergranular boundaries (A), but
may be observed piercing the cell interior (B). The kink instability provides a loop (C). A flux fiber
frays further (D) into flux threads (�3 × 1017 Mx) which provide the photospheric filigree and
chromospheric mottles. A group of fibers (E) and perhaps some flux strands (F) form a boundary
and force a convective cell to turn over continuously for several days. Reprinted from Pidington
(1978) by permission from Springer Science and Business Media

2.2 Elements of Theory for De Facto Flux Tubes

The theoretical approach to the origin and properties of small-scale magnetic flux
tubes started to flourish only in a middle of 1970s. By that time, a decade of efforts
of observers prepared a rich ground for these studies.

Parker (1974a) proposed a simple hydrodynamic mechanism associated with
turbulent pumping to squeeze magnetic field into the slender tube (Fig. 2.3). He
writes: “The obvious point of departure for an inquiry into the origin of intense
fields in the supergranular boundaries is the well-known effect in which the outflow
of fluid from the center of each supergranular sweeps the vertical component
of magnetic field to the boundary.” The key element in this scheme is that the
turbulent pumping of fluid downward at the supergranular boundary produces a
partial vacuum within the flux tubes, just like in the water-jet vacuum pump, in
which one fluid is forced along by turbulent coupling to another. In this scheme, the
field is restricted by energy equipartition, B2/8π � (1/2)ρv2, and limits the value
of the magnetic field by a maximum of about 500 G. Uncertainty in velocity fields
and too low value of the magnetic field lead Parker to add yet another effect that
is supposed to further concentrate the individual flux tubes, namely the Bernoulli
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Fig. 2.3 Sketch of a magnetic flux tube extending up through the photosphere. (a) Turbulent
subsiding fluid in a supergranular boundary into the tenuous chromosphere above the visible
surface of the sun; (b) The magnetic field lines alternately squeezed and expanded in the turbulent
convection beneath the photosphere, causing the surge up and down along the flux tube; the open
ends are indicated by the short double arrows. Reprinted from Parker (1974a,b) by permission from
IOP, AAS

effect. Unfortunately, this effect increases the mean magnetic field only to a fraction
of the equipartition value. And Parker concludes that “we must look farther” (Parker
1974b, see also Parker 1979).

The origin of the small-scale magnetic flux tube covering the entire solar surface
and making up sunspots, plages, and active regions is still an open question.

It is therefore not surprising that the first theoretical works on fundamental
properties of flux tubes were based on their de facto existence (Cram and Wilson
1975; Ryutov and Ryutova 1976; Defouw 1976; Ryutova 1977; Roberts and Webb
1978; Spruit 1981).

The basic equations employed in early attempts to study properties of magnetic
flux tubes are Maxwell equations mainly in the MHD approximation:

∇ · B = 0 (2.2)

∂B
∂t

= ∇ × (v × B) + ηD∇2B (2.3)

ρ
dv
dt

= −∇p + 1

4π
(∇ × B) × B − ρg(z) (2.4)
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dρ

dt
+ ρ∇ · v = 0 (2.5)

∂(ρ−γ p)

∂t
+ v∇(ρ−γ p) = 0 (2.6)

where d/dt designates a full derivative (d/dt = ∂/∂t + v · ∇), ηD = c2/4πσ is
magnetic diffusivity, and σ = 1.96ne2/(meνei) is the plasma conductivity.

The magnetic flux tube, in a simple cylindrically symmetric model, may be
considered as a set of magnetic field lines through some surface S bounded by the
closed contour C. The lines of force are defined, in terms of B(r), as the solution of
equations

dr

Br

= rdφ

Bφ

= dz

Bz

(2.7)

Applying Gauss’s theorem to (2.2) we see that the total magnetic flux across any
closed surface S is zero,

∫

S

B · dS = 0, (2.8)

which means that every line of force entering S must also leave, i.e., the individual
lines either extend to infinity or form closed curves. It follows then that the total
number of lines, i.e., the total magnetic flux through any closed contour C, is
constant and can be written as

Φ =
∫

C

B · dS (2.9)

which means, for example, that the strength of a flux tube increases when it narrows
and decreases when it widens.

Let us now turn to question what are the requirements for the equilibrium of a
flux tube. Consider the simplest case of hydrostatic equilibrium and assume that the
magnetic field depends only on coordinate r , B = B(0, 0, Bz(r)). Equation (2.4),
that provides the momentum balance, is then

− ∇p + 1

4π
(∇ × B) × B − ρg = 0 (2.10)

In an absence of gravity from this equation we have

p(r) + B2
z (r)

8π
= pe (2.11)

p(r) + B2
z (r)

8π
= pe + B2

ze(r)

8π
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where the constant of integration, pe, is obviously a gas pressure outside the flux
tube, pe, in case if flux tube is embedded in magnetic free environment,pe+B2

ze/8π ,
if the magnetic field outside flux tube is nonzero. Equations (2.11) are classical
conditions for static equilibrium of magnetic flux tube.

In the presence of gravity, if it acts along the negative direction of z-axis,
Eq. (2.10) gives:

dp

dz
+ ρg(z) = 0 (2.12)

Taking into account the ideal gas low, ρ = mp/kT (k is Boltzmann constant) we
have

p = p0 exp

(

−
∫ z

0

1

Λ(z)
dz

)

(2.13)

where

Λ(z) = kT

mg
(2.14)

is the pressure scale height. In terms of density, Eq. (2.13) becomes

ρ = ρ0
T0

T (z)
exp

(

−
∫ z

0

1

Λ(z)
dz

)

(2.15)

It is important to note that MHD equations (2.2)–(2.6) allow to study quite a
limited classes of phenomena. Throughout this book, however, we will encounter the
problems that will require much more elaborated approach. In each particular case,
for example, such as nonlinear unsteady phenomena, dynamics of non-conservative
systems, self-organized processes, and many others, we will deal with the special
technique.

2.3 Numerical Visualization and Observations

One of the first exemplary models of a quasi-static flux tube was constructed
numerically by Deinzer et al. (1984a,b). The full MHD equations for a compressible
medium together with an energy equation were solved in two-dimensional geometry
for a slender slab being in the pressure equilibrium with surrounding plasma. It was
assumed that all quantities have a barometric dependence on z (cf. Eq. (2.13)).

Figure 2.4 shows an example of the numerical solution for density, magnetic
field, and velocity at a time when stationary state has been evolved (half of the
symmetric structure is shown). The important results obtained in this calculation
are, for example, that the density is reduced inside the slab to half of the
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Fig. 2.4 Results of the slab modeling. (a) Lines of constant density normalized to ρ0 =
1.610−6 g cm−3; the crosses indicate the location of the node points, concentrated at the edge of
the slab where the steepest gradients appear. (b) Magnetic field lines. (c) Velocity field; maximum
velocity is ∼200 m s−1. The horizontal scale is stretched by a factor 10/3 in order to show more
details of the structure. Credit: Deinzer et al. (1984a,b) reproduced with permission ESO

ambient plasma, and appearance of downflows around the magnetic slab caused
by noncollinearity of the isotherms and lines of constant gravitational potential
(not shown). Even these relatively early modeling (although only two-dimensional)
quite adequately represent what is to be observed. The results of more advanced
numerical simulations of flux tube structures and additional literature can be found,
for example, in Steiner (2007). High-resolution observation with ground-based and
space telescopes have allowed to study the inner structure of small-scale flux tubes
and their chromospheric counterparts seen as bright points.

Figures 2.5 and 2.6 show results of the observations made with the Swedish 1-m
Solar Telescope (SST) on La Palma (Scharmer et al. 2003), which may resolve the
magnetic structures in the G-band 4305 Å bandpass with 70 km resolution. Using the
SST data, Berger et al. (2004) studied magnetic elements in a plage region near disk
center. The SST data were complimented by a co-temporal Ca II H image, showing
the network elements in low-chromosphere, and high-resolution magnetogram that
resolves structures as small as 120 km with a flux sensitivity of �130 Mx cm−2.
Figure 2.5 shows a 2.5 × 4 Mm sample region containing small-scale magnetic
elements which at any moment of time fill intergranular lanes. Their lifetime is
usually on the order of granular timescales (∼8–10 min) or less. The top left panel
shows G-band 4305 Å filtergram and bottom left is magnetogram of the region. The
white lines highlight a bright point across which intensities of several parameters
were measured. These are shown in the right panel.

The solid curve with squares is the G-band intensity, duplicated by the Gaussian
fit (dark dashed curve). The FWHM is 128 km. Also shown are plots of co-
temporal and aligned data in the chromospheric Ca II H-line and 4364 Å continuum
with the corresponding magnetogram and Dopplergram signals. The peak absolute
magnetic flux density is 836 Mx cm−2. The peak downflow velocity measured in
the Dopplergram slice is 543 m s−1, displaced from the G-band peak emission by
approximately 200 km on either side of the cut. This displacement of downflow
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Fig. 2.5 Region containing a closely packed system of small-scale magnetic element. (a) G-band
4305 Å filtergram and (b) magnetogram. The white lines highlight a bright point across which a
relative intensity profiles are shown in (c). Credit: Berger et al. (2004), reproduced with permission
ESO

Fig. 2.6 The same as in Fig. 2.5 but for a region containing very small isolated bright point and
elongated dark features. Credit: Berger et al. (2004), reproduced with permission ESO

velocity relative to the magnetic and bright point agrees well with the numerical
models mentioned above (Deinzer et al. 1984a,b). This has been confirmed in more
recent numerical simulations as well (e.g., Steiner et al. 1998).
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Figure 2.6 is another example of the same procedure as above but for the
diverging ribbon-like structure which is not resolved into individual flux tubes.
The measured magnetic flux density in the ribbon structures ranges from 300 to
1500 Mx cm−2.

As in the previous case, the chromospheric emission closely follows the G-band
pattern and the magnetogram signal exhibits more discrete structures. The right
panel shows a distinct double-peak shape in all of the emission lines indicating
higher intensities and magnetic flux density at the edges of the ribbon structure. The
maximum absolute-value flux density in the bright point region is 1341 Mx cm−2.
The magnetic flux density in the central region is also quite large, ∼−700 Mx cm−2,
indicating that this is a complex but rather symmetric magnetic body with a
darkened interior and bright walls.

This kind of structures appeared in various numerical simulations studying
formation of photospheric flux tubes, pores, and light bridges (see, e.g., Steiner
2007; Jafarzadeh et al. 2013 and the literature therein). These studies are well
facilitated by increasing possibilities of observations which include not only studies
of individual flux tubes but their statistical properties as well.

Figure 2.7 shows an example of statistical studies performed with New Solar
Telescope (NST) of Big Bear Solar Observatory. Observations were done with adap-
tive optics correction using TiO 7057 Å line with 10 s time cadence (Abramenko
et al. 2010). Figure 2.7 shows the probability distribution functions (PDFs) for the
diameter, D, lifetime, LT , and maximum intensity, Imax, of bright points tracked
during about 2 h period.

It was found that 98.6% of bright points live less than 120 s. The lifetime
distribution function follows a log-normal approximation for all features with
lifetime exceeding 100 s. The longest registered lifetime was 44 min. The size and
maximum intensity of BPs were found to be proportional to their lifetimes. A
majority of bright points were found to be transient events reflecting the strong

Fig. 2.7 Probability distribution functions of small-scale magnetic features: (a) diameters, (b)
lifetimes, and (c) intensities. The data represent two sets of runs corresponding to lowest (black)
and highest (red) threshold of intensity masks. Straight blue lines show the exponential fit showing
a log-normal distribution of all the parameters. Courtesy of Abramenko, see also Abramenko et al.
(2010)
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dynamics of the quiet sun populated by small-scale magnetic flux tubes. The
distribution function of their sizes extends to the diffraction limit of instrument,
77 km. The authors conclude that the real minimum size of magnetic flux tubes has
not yet been detected in observations with modern high-resolution telescopes.

As a building block of the solar magnetic fields, flux tubes play a major role in
all physical processes in the sun from the energy production, its transfer and release
to overall global behavior of the sun. Study of these processes and the flux tubes
involvement in them is the subject of this book.

2.4 Filamentary Structures in Laboratory and Universe

The universe consisting of ever moving elementary particles and ionized gases
is pierced by inborn magnetic fields. Highly advanced observations show their
ubiquitous filamentary structure. But long before this fact became evident, in studies
of laboratory plasma the concept of magnetic flux tubes became a necessity.

Invention of tokamak and a possibility that magnetic field of the appropriate
configuration could provide plasma confinement brought up the problems of plasma
equilibrium and stability. This, in turn, leads to the concept of magnetic flux
tubes (Rosenbluth and Longmire 1957; Spitzer 1958; Kadomtsev 1959). It has
been realized that among the properties of the magnetic field that are needed for
stable confinement of plasma, the essential role may be played by their filamentary
structure (Leonotovich 1965; Morozov and Solov’ev 1966; Leonotovich 1966).
Examples illustrating a possible configuration of flux tubes are shown in Fig. 2.8.

The concept of magnetic flux tube requires that on the surface of tube (n · B) = 0,
where n is the normal to tube surface. Given that divB = 0, inside flux tube magnetic
flux must be conserved, dΦ = BdS (cf. Eqs. (2.8) and (2.9)).

Although magnetic field is divergence free, it was understood that a flux tube
can branch into two or more tubes. If line of force does not branch, then it cannot

Fig. 2.8 The concept of
magnetic flux tube. (a) The
tube of a cross-section dS and
the normal to tube surface, n;
(b)–(e) Several possibilities
of branching of tube which
occurs at singular points
having different characters
(After Morozov and Solov’ev
(1966))

d e

dS
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c
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have a beginning or an end. Hence, it was postulated that there are three classes of
non-branching lines of force: (1) those that start at infinity and end at infinity; (2)
those that remain in a bounded volume (closed or non-closed), and (3) field lines
that originate at infinity but are trapped within a finite volume. These early studies
of various magnetic field configurations and their properties form the basis for the
studies of magnetic field structures and their effects on various plasmas. Since then,
these studies went far beyond the tokamak devices and, along the main stream of
creating energy producing devices, brought together laboratory and astrophysical
plasmas.

The laboratory experiment allows one to change characteristic parameters of
the object and follow a time history of the event during desired time interval. It
is remarkable that the laboratory experiments that deal with targets of a spatial
scale from several μm to several cm and timescales of nanoseconds and seconds
can reproduce phenomena occurring in stellar coronae, galactic jets, fine structures
in supernovae remnants, and solar atmosphere. Existence of a broad magnetohydro-
dynamic similarity (Ryutov et al. 2001; Ryutov and Remington 2007; Drake 2009)
allows a direct scaling of laboratory results to astrophysical phenomena.

For the time being, a rich bank of encouraging results from laboratory exper-
iments aimed to study the astrophysical plasma have been accumulated (Lapenta
et al. 2006; Bellan 2008; Perrone et al. 2013; Brown et al. 2014).

As an example, in Fig. 2.9 we show the spheromak formation and evolution
(Romero-Talamas et al. 2006), captured by a high-speed imaging system in the
sustained spheromak physics experiment (SSPX) (Hooper et al. 1999; McLean et al.
2001). Spheromak is one of the topologically simplest “long-lived” configurations
in form of a compact toroid. Of many applications, spheromaks can be used, for
example, to study how electric currents in the plasma produce the spheromak, how
it evolves, and whether it is capable of containing hot plasmas. In course of these
studies it became clear that the observed regularities are often similar to phenomena
observed in astrophysical plasmas, and in particular in the solar corona. Figure 2.9
shows four stages of the spheromak evolution. The plasma enters the high-speed
camera field of view a few tens of microseconds after injection, and begins to
balloon out of the injector gun. In about 50 μs the plasma reaches the bottom of
the flux conserver a column forms. This moment is shown in Fig. 2.9a. At 80 μs the
column acquires a kinked shape (Fig. 2.9b). Toward the end of the plasma’s lifetime,
its central column becomes a collection of thin filaments and then reorganizes itself
into a more regular system of filaments.

The process of filamentation and accompanying phenomena have numerous
analogies, from chemistry and discharge tubes to neutron stars and supernovae.
Examples of two extreme objects pierced by “thin” filaments are shown in Fig. 2.10.
Top panel shows a pulsed corona discharge in atmospheric air generated between a
planar high-voltage electrode and the water surface with an immersed stainless steel
plate electrode. During each pulse thin glow-like filaments were formed which then
propagate along the gas–liquid interface (Lukes et al. 2011). Bottom panel shows a
well-defined hairy structure of #49 supernova remnant, typical to all the supernovae
and their remnants.
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Fig. 2.9 Formation and evolution of a plasma column inside the spheromak: (a) Regime of a
column formation (about 50 μs after the plasma injection); (b) At 80 μs the column acquires
a kinked shape; (c) Regime of filamentation: central column becomes a messy collection of
filaments; (d) Possible regimes of self-organization of filamentary structure (Courtesy of Harry
McLean, LLNL, see also Romero-Talamas et al. (2006))

We conclude this chapter by a fascinating and known for a long time examples of
filamentary structures that were predicted and discovered as macroscopic quantum
phenomena.

Long before the concept of magnetic flux tubes has been introduced in a tokamak
plasma, in low temperature physics filamentation of substance became a starting
point in studies of amazing phenomena in superfluidity and superconductivity
(Landau 1941; Onsager 1949; Feynman 1955; Abrikosov 1957). A He 4 isotope
below the 2.17 K (dabbed Helium II) becomes superfluid, but in various situations,
such as under action of a heat or placed in a capillary tube, behaves as a mixture
of superfluid and normal components. A dual nature of Helium II is especially
prominent when placed in a rotating cylinder. At some critical angular velocity
there appear vortices with circulation quantized in units of h/m (h being a Planck’s
constant and m is the mass of the Helium atom).

By the nature the vortices are the elements of a condensate: the vortex core
consists of the normal component, and formation of vortices transforms the
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Fig. 2.10 Two extreme scales of filamentary structures. Top: The gas discharge filaments gener-
ated along the water surface (courtesy of Petr Lukes); Bottom: N49 supernova remnant located in
the Large Magellanic Cloud taken by NASA’s Chandra X-ray observatory (courtesy of NASA)

superfluid into the normal state. According to the theory, appearance of quantum
vortices is energetically favorable. Moreover, in the established state the vortices
have a minimal circulation (i.e., just h/m) and happen to form a regular lattice.

One of the first experiments demonstrating the formation of quantum vortices is
shown in Fig. 2.11. One can see that with increasing the angular velocity of container
there appear more and more vortices, just in agreement with theory predicting
that in a container rotating at angular velocity ω, vortices should appear with a
density 2 ωm/h (Feynman 1955). Tkachenko (1966) predicted that in equilibrium
the vortices should form a triangular lattice. And they indeed do.
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Fig. 2.11 Photographs of stable vortex arrays. Left: Schematic of the experiment. Right: Appear-
ance of quantum vortices at different angular velocities of bucket. The diameter of the dark circles
corresponds to the 2-mm bucket diameter. The angular velocities range from (a) 0.30 s−1 to (l)
0.59 s−1 with somewhat uneven intervals. Reprinted with permission from Yarmchuk et al. (1979).
Copyright APS

Filamentary processes occur as well in Bose-Einstein condensates (BEC, very
cold atomic gases), He-3 isotope below 0.0025, and various types of superconduc-
tors.

Metals in superconducting phase having a zero resistivity are known to expel the
magnetic field. The transition from superconducting to normal state usually has a
discrete quantum nature. In Type-II superconductors, for example, such a transition
occurs via formation of an Angstrom size threads that carry quantized magnetic flux,
Abrikosov vortices (Abrikosov 1957).
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Fig. 2.12 Visualization of Abrikosov vortices and their dynamics in superconducting NbSe2.
Left: Schematic of the experiment setting (see text for details). Right: Magneto-optical images
of vortices and their response to an increase of the applied magnetizing field by 4 mOe. The dark
and bright spots represent initial and final vortex positions, respectively. The scale bar is 10 m.
Reprinted from Goa et al. (2001) by permission from IOP Publishing

With the improved experimental technique it became possible to observe individ-
ual vortices and their dynamics. Figure 2.12 shows a real-time imaging of Abrikosov
vortices in superconducting NbSe2 (Goa et al. 2001).

Left panel in Fig. 2.12 shows a principle of a high-sensitivity magneto-optical
(MO) imaging. The maxima of the magnetic field from vortices in a superconducting
sample (SC) give maxima in the Faraday rotation F of incoming plane polarized
light, which shows up in a ferrite garnet layer (FGF) near the sample. Vortices appear
as bright spots when imaged using a crossed polarizer, P , and analyzer, A. Right
panel shows resulted vortex dynamics during flux penetration. The image shows
the change in flux distribution over a 1 s time interval after a 4 mOe increase in the
applied field. The dark and bright spots represent initial and final vortex positions,
respectively. Medium brightness corresponds to an unchanged flux distribution,
indicating stationary vortices. The insert shows a close-up view of four vortex
jumps. The arrows indicate the direction of vortex motion. Note how close is a
visual resemblance between the distribution of vortices and distribution of flux tubes
over the solar surface: a “filling factor” of vortices changes from very small number
where they form a rarefied ensembles (white arrow) to almost unity where vortices
form a dense conglomerate (double white arrows).
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Vortices in superfluid Helium and superconductors, magnetic flux tubes in
solar atmosphere and space, filamentation process in biology and chemistry have
probably a common ground, which is to be yet established. One conclusion can
be made for sure: formation of filamentary structures in nature is energetically
favorable and fundamental process.

2.5 Problems

2.1 Is it possible to produce magnetic field configuration in which equilibrium is
realized without external currents, solely by stretching the magnetic lines of force
inside the equilibrium configuration? Use the energy-momentum tensor.

2.2 Show that if magnetic field confined within a closed surface S moves with
plasma, then its total helicity,

Hm =
∫

V

A · BdV (2.16)

is an invariant of the motion only if B · n = 0.

2.3 Calculate the helicity of two flux tubes linked together.

2.4 Derive validity conditions of thin flux tube approximation for static tubes.
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Chapter 3
Intrinsic Properties of Flux Tubes: Wave
Phenomena

Abstract The ensembles of small-scale magnetic elements that cover 90% of the
solar surface outside sunspots and active regions are embedded in highly dynamic
environment. The individual flux tubes shaken by convective and interacting with
the various wave trains, such as ubiquitous 5-min oscillations and magnetosonic
waves, respond to these actions in various ways. First of all they are set in motion,
which in a specific situation may have oscillatory character. In this chapter we shall
consider conditions that are necessary for the excitation of waves propagating along
the individual flux tubes, and specify their character.

3.1 Equations of Motion or How Are Tube Waves Excited

The photospheric flux tubes, constantly buffeted by convective flows and wave trains
are brought into motion. The character of these motions is not a trivial question and
requires detailed analysis of the flux tube behavior in a given field of flows. As flux
tubes have form of long, slender cylinder, it is only natural to expect that generated
motions will have an oscillatory character. We will see, however, that to successfully
generate and sustain the oscillations propagating along flux tube require special
conditions. If these conditions are not fulfilled the flux tube, just like a simple rope,
disturbed on one end and even showing the first signs of wavy motion, quickly loses
it. In other words, if not specially arranged, waves excited at one end of the rope
damp out in “no time.” We will see, however, that conditions in solar atmosphere are
favorable for excitation and maintenance of flux tube oscillations. Before moving to
the main subject of this chapter it is tempting to see the oscillating flux tubes in
action.

If we choose the photospheric flux tubes for direct illustration of oscillations, the
task is challenging because flux tubes in the photosphere are aligned predominantly
with the line-of-sight, and detecting their oscillations requires special decoding
of the observational data (Ploner and Solanki 1997; Fujimura and Tsuneta 2009;
Zlotnik et al. 2011). To see the vertical extent of flux tubes we choose for illustrative
purpose the thin magnetic threads comprising prominences that are well observable
at the limb.
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Fig. 3.1 Image of the October 3 2006 prominence taken in Hα line by the SOT instrument
on Hinode (left). Right panels show space-time images obtained from 166 min movie with 15 s
cadence. Kinked oscillatory motions of elemental filaments are ubiquitous phenomena. The scale
of the left panel is 1/2 of the right panels

To study a temporal variability of various small-scale formations, the special
procedure, called space-time cuts, was developed for application to data compiled
in movies. This procedure allows one to follow motions of all the bright and dark
patches lying along the cut (straight line or circle) made on the movie snapshot.
Throughout the book we will use results of this procedure many times. Figure 3.1
(left) shows a limb portion of the prominence taken on October 3 2006 in Hα line
by the SOT instrument on Hinode. Data were compiled in 166 min movie with 15 s
cadence. Examples of two space-time cuts are shown by white lines marked by
numbers 1 and 2. Two right panels show the results of the space-time cuts: motions
of dark and bright patches lying along the cuts during 166 min time interval. One
can see clear oscillatory motion in exemplary magnetic filaments.

It is important to emphasize, however, that although the kinked oscillatory
motions are ubiquitous phenomena in systems of magnetic filament, not all the
flux tubes are subject to regular oscillatory motions. And there must be a specific
mechanism providing the conditions for excitation and, most importantly, for
maintenance of propagating wave with a definite frequency and amplitude that must
be specific for each individual flux tube.

Thus, the questions are:

• What makes the motion acquired by a flux tube due to its interaction with
outer flows or wave trains to be a wave motion with a specific frequency and
amplitude?

• Why, on the other hand, some flux tubes seemingly under the same conditions
exhibit non-oscillatory motions?

• How are the physical parameters of individual flux tube and outer motions
associated with final outcome?
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To find answers to these basic questions we need to construct and solve the
equation of motion of magnetic flux tubes in the dynamic environment. More
precisely, we need to study collective phenomena in the ensembles of flux tubes
interacting with outer motions and having random parameters (radius R, magnetic
field, B, plasma density ρ, inclination with respect to solar surface, etc.) to see why
some flux tubes are brought to oscillatory motions while others are not.

3.1.1 Equation of Motion for a Single Flux Tube

We start with the situation typical to quiet sun, i.e., when magnetic filling factor is
much less than unity, fm = R2/d2 (d is an average distance between the flux tubes),
i.e.,

R � d, (3.1)

and consider a long-wavelength limit,

λ ≡ k−1 � d. (3.2)

As a first step we consider the motion of a separate magnetic flux tube relative to
the plasma and find the force of interaction between the flux tube and the plasma.
After that, by averaging over a volume containing many flux tubes (but still smaller
than the wavelength λ), we obtain an expression for the volume force acting on the
medium due to the ensemble of flux tubes, which subsequently allows us to write
macroscopic equations for a plasma containing many magnetic flux tubes.

We take the initial direction of the flux tube as the z-axis and denote the
displacement of the flux tube from its equilibrium position by a vector ξ (z, t) which
is transverse to the z-axis. Since the relative velocity of the plasma motion and flux
tube is a first-order quantity, we can neglect the change in the size and shape of the
cross section of the flux tube when evaluating the interaction force.

The equation of motion for the tube having constant circular cross section of
radius R can be written as follows:

ρiπR2 ∂2ξ

∂t2 = ρeπR2 ∂v⊥
∂t

+ ρeπR2
(

∂v⊥
∂t

− ∂2ξ

∂t2

)

+ πR2 B2

4π

∂2ξ

∂z2 (3.3)

where v⊥ is the normal component of the macroscopic velocity of the plasma, B is
the magnetic field inside flux tube, and ρi and ρe are the plasma densities inside and
outside flux tube, respectively. The meaning of the forces given on the right-hand
side of the equation is quite simple: the first term corresponds to the Archimedes
force (pushing out), acting on the tube moving in a liquid with acceleration; the
second term takes into account the effect of the added mass per unit length, namely
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πR2ρe (Landau and Lifshitz 1987), also arising due to the acceleration; the third
term is the effect of the magnetic tension inside the flux tube.

When using the added mass concept we assumed that the plasma is incompress-
ible. This is valid since the velocities ∂ξ/∂t and v⊥ are small compared to the sound
speed while the period of the long-wave oscillations is large compared to natural
periods of the radial oscillations of the flux tubes. Equation (3.3) can be written in
the form

∂2ξ

∂t2 − B2

4π(ρi + ρe)

∂2ξ

∂z2 = 2

(1 + ρi/ρe)

∂v⊥
∂t

(3.4)

In the absence of external motions, i.e., when v⊥ = 0, this equation describes the
natural kink oscillations of the flux tube with phase speed (Ryutov and Ryutova
1976; Spruit 1981)

ω

k
= B√

4π(ρi + ρe)
(3.5)

It is remarkable that Eq. (3.4), which is the fundamental equation for kink
oscillations of flux tube and corresponding expression for phase velocity (3.5), was
first derived in such a simple way (Ryutov and Ryutova 1976). Of course, (3.4)
can be derived from MHD equations as well, which will be discussed later in this
chapter. It is important to note however that the equation of motion for individual
flux tube only shows that the flux tube may perform the oscillations with frequency
determined by its magnetic field and plasma density inside and outside it. But the
equation alone does not give an answer to questions of how flux tube oscillations
are excited, and what determines whether the flux tube is capable to sustain these
oscillations or not. As mentioned above, for this problem we need to consider the
motion of an ensemble of flux tubes randomly distributed over their parameters.

3.1.2 Macroscopic Motions of an Ensemble of Flux Tubes

To describe an ensemble of flux tubes and collective phenomena in it we have to take
into account that each separate tube is characterized by its own physical parameters,
radius, R, an internal plasma density, ρi , and temperature, Ti . For simplicity, we
assume that the matter inside the flux tube is cold, Ti � Te, and we can neglect
the gas-kinetic pressure, pi , inside the flux tubes. This assumption is not at all a
principal one and can always be taken into account. Then the unperturbed state can
be described by the pressure equilibrium condition:

B2

8π
= pe ≡ 1

γ
ρec

2
s (3.6)
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where pe is the pressure outside the flux tubes, γ is the specific heat ratio, and cs is
the sound speed.

We now introduce the dimensionless parameter

η = ρi

ρe

, (3.7)

which together with the tube radius, R describes the individual properties of the
flux tube, which obviously may change greatly from one tube to another. So,
rewriting the equation of motion (3.3) for a separate tube and henceforth labeling
the displacement vector, ξ⊥ with the index η (emphasizing that the displacement of
the tube depends on η), we have

∂2ξη

∂t2
− 2

γ

c2
s

(1 + η)

∂2ξη

∂z2
= 2

1 + η

∂v⊥
∂t

(3.8)

Now we proceed to the derivation of the equation for “macroscopic” quantities.
By macroscopic we mean the quantities averaged over the volumes with the
characteristic dimension d satisfying the inequalities (3.1) and (3.2):

R � d � λ (3.9)

In other words, we take averages over the volumes which comprise a large number
of flux tubes but are still small compared to the characteristic scale λ of variation of
“macroscopic” parameters.

All the flux tubes situated in some averaging volume of the size d as in Eq. (3.9)
are subject to the same external conditions (the same v in (3.8)). In particular, the
motion of the flux tubes with the same η in the averaging volume is just identical.

To find the macroscopic equations of motion we introduce the distribution
function of flux tubes, f , with respect to the parameters R and η, and define it
as follows:

dα = f (R, η)dRdη, (3.10)

where dα is the fraction of the volume which is occupied by flux tubes with values of
the parameters R and η in the intervals (R,R+dR), (η, η+dη). The normalization
of the function f , defined in such a way, is clearly the following:

α =
∫ ∞

0

∫ ∞

0
dRdηf (R, η) (3.11)

Here α is simply the total fraction of the volume occupied by flux tubes, which
simply corresponds to the magnetic filling factor of the medium. And, according to
our assumption (we are considering the case of widely spaced magnetic flux tubes:
r � d), α ∼ R2/d2 � 1.
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It is convenient also to introduce the distribution function only over the parame-
ter η:

g(η) =
∫ ∞

0
f (R, η)dR (3.12)

Obviously,

α =
∫ ∞

0
g(η)dη (3.13)

From (3.3) it is clear that the force acting on the unit length of the flux tube from
the side of the ambient plasma is equal to

Fη = πR2ρe

(

2
∂v⊥
∂t

− ∂2ξ

∂t2

)

. (3.14)

Of course, this force is eventually produced by the momentum flux through the
surface of the tube. The tube, on the other hand, acts on the ambient medium with
the force −Fη.

The macroscopic force F(r, t) acting on the unit volume of the external fluid can
be presented as a result of the summation of the forces −Fη (see (3.14)) over all the
flux tubes occupying the averaging volume:

F(r, t) = −ρe

∫ [

2
∂v⊥
∂t

− ∂2ξ

∂t2

]

g(η)dη, (3.15)

where dependence on r describes the variation of all the quantities over the volume.
The macroscopic equation of motion of the ambient plasma can now be written as

ρe
∂v
∂t

= −c2
s ∇δρe + F(r, t) (3.16)

or

ρe
∂v
∂t

= −c2
s ∇δρe − ρe

∫ [

2
∂v⊥
∂t

− ∂2ξ

∂t2

]

g(η)dη. (3.17)

where δρe is the density perturbation of ambient plasma under the adiabatic law

δpe = c2
s δρe, (3.18)

satisfying the continuity equation

∂ρe

∂t
+ ρedivv = 0 (3.19)
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In the above equations we skip the averaging sign over the macroscopic fluid
velocity v and macroscopic pressure perturbation δpe.

Strictly speaking, there are additional terms of the order of α in the continuity
and momentum equations: the terms which arise from the fact that the part of the
averaging volume is occupied by the flux tubes. We neglect these terms because
of the assumed smallness of α. If retained, these terms would give rise to the
appearance of a small (∼α) correction of the phase velocity of sound waves. The
first term in the integrand of (3.17) which after the integration over η acquires the
form −2ρe∂v⊥/∂t gives rise to corrections of the same order of smallness.

The role of the terms proportional to α can also be seen from the energy
consideration. Indeed, multiplying (3.17) by v, and taking into account (3.19) we
obtain for the energy density of a plasma motion:

ρe
∂

∂t

∫

dV

[
1

2
v2 + 1

2
c2
s

(
δρe

ρe

)

+ αv2⊥
]

= ρe

∫

dV

∫

g(η)dη
∂2ξη

∂t2 v⊥
(3.20)

We see that the term containing α on the left-hand side which appeared from terms
proportional to 2∂v⊥/∂t on the right-hand side of (3.17) is negligibly small. So
that, accounting for this particular and analogous terms, or completely neglecting
them, results in only some minor (∼α) redefining of the energy of fluid motion.
Accordingly, when we study the energy exchange between the fluid motion and the
flux tubes oscillations for the case of widely spaced flux tubes with α � 1, we can
omit this and analogous terms.

On the other hand, taking into account the force F in (3.16), which is also of the
order of α, leads to a qualitatively new effect associated with the elasticity of the
flux tubes. In other words, the only term of the order of α which matters in (3.17)
is that proportional to ∂ξ2

η/∂t2, as this term describes the energy exchange between
the oscillating flux tubes and the fluid. It is just this term that is responsible for the
qualitatively new effect which consists in the Landau-like damping of the acoustic
waves and transferring their energy into the energy of flux tube oscillations.

Equations (3.8) and (3.17)–(3.19) form a closet set describing large-scale,
macroscopic motions of the fluid containing randomly distributed flux tubes. Note
that in these motions the flux tubes behave as an ensemble, and cannot be described
as an individual elements. In this sense, one can say that (3.8) and (3.17)–(3.19)
describe the collective phenomena in the system of flux tubes. On the other hand,
as will shall see in the next section, such an approach allows us to reveal some
remarkable properties of individual flux tube that cannot be found without a
macroscopic approach.
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3.2 Absorption of Acoustic Waves: Landau Resonance

Using (3.8) and (3.17)–(3.19) we can study the interaction of the acoustic waves
with an ensemble of flux tubes randomly (and widely) distributed in space and over
their parameters, R, B, ρi , etc. Consider the eigensolutions of this set of equations
in the form of traveling waves, i.e., when all perturbed quantities, ξη, v, and δρ,
change in proportion to exp(−iωt + ikr).

Using (3.8) we first express ξη through v⊥:

ξη = 2iωv⊥
ω2(1 + η) − 2γ −1c2

s k
2cos2θ

(3.21)

where kcosθ = kz is the component of the acoustic wave vector along the flux
tube, and θ is the angle between the direction of propagation of the sound wave
and the flux tube axis. We consider the solution with Re ω > 0. Substituting (3.21)
into (3.15) we obtain

F = iωρev⊥I (ω, k) (3.22)

where

I (ω, k) = 2
∫ ∞

0

[

1 −
(

η + 1 − 2c2
s k

2cos2θ

(ω + i0)2

)−1]

g(η)dη (3.23)

Obviously, as t approaches −∞ the perturbations must vanish, and so we may
replace ω by ω + i0 in the denominator of the integrand.

The integral I (ω, k) is of the order of α and is therefore small compared to
unity. This fact allows us to easily obtain a dispersion relation. Using (3.16), (3.19)
and (3.22)–(3.23), we have

ω � kcs

[

1 − sin2θ

2
I (ω, k)

]

(3.24)

The effect of an ensemble of magnetic flux tubes on the oscillations of the
medium enters into the problem through the integral I (ω, k). The form of
I (ω, k) containing a resonant denominator indicates the resonance character of the
interaction between the medium and the flux tubes. And the resonance condition is

cs = vphcosθ (3.25)

where vph = ω/k is the phase speed of flux tube oscillations (3.5). The
condition (3.25) is analogous to the Cherenkov resonance condition in Landau
damping theory (Landau 1946). The analogy with Landau damping is described
in Appendix 1.
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Thus, when condition (3.25) is satisfied, there occurs a resonant transfer of
acoustic wave energy into the energy of flux tube oscillations. Since the plasma
density and magnetic field are different inside different flux tubes, the phase
velocity (3.5) varies from tube to tube. Thus, one can find for each angle of
propagation, θ , the tubes for which the condition (3.25) is satisfied and which,
therefore, remove energy from the sound wave, and maintain their own oscillatory
motion.

To determine corresponding damping rate we have to evaluate I (ω, k). To do
this we can set the frequency equal to the solution of the dispersion relation for
a “pure” plasma (free from flux tubes), namely ω = kcs . We must also note that
taking into account the real part of I leads only to an insignificant change in the
frequency of the oscillations. Thus, it is sufficient to find an imaginary part of I .
Using the δ-function representation

Im
1

x + i0
= −iπδ(x), (3.26)

we find the damping rate, ν ≡ −Imω, of the sound wave,

ν = kcssin2θ

2
ImI (ω, k), (3.27)

to be

ν =
{

πkcssin2θg(η), η0 > 0
0 η0 < 0

}

(3.28)

where

η0 = 2cos2θ

γ
− 1 (3.29)

One could arrive to the same result by a more formal method, considering the
solution of the Cauchy problem for the set (3.8)–(3.19) and using a Laplace
transform—exactly in the same way as is done by Landau (1946) studying Langmuir
oscillations in a rarefied plasma.

A sketch of the function g(η), which according to our basic assumptions is a
smooth broad function of flux tube parameters, is shown in Fig. 3.2. Here, Δη is the
width of the distribution function, i.e., the interval of parameters of all flux tubes,
Δη � Imω/ω = ν/ω, and δη is the interval of resonant flux tubes, such that
δη ∼ α � Δη. If we make the natural assumption that the plasma density inside
the flux tubes, ρi , changes with respect to the surrounding density, ρe, by not more
than several times from one tube to another, we can conclude that the width, Δη, of
that region of η-values where the distribution function is essentially nonzero, is of
the order of unity, then we have g(η0) � α. This allows us to write the following
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Fig. 3.2 Sketch of the distribution function of flux tubes, g(η), as a function of the ratio of internal
and external densities of the tubes, η = ρi/ρe

estimate for the damping rate

ν

kcs

� α. (3.30)

This estimate holds only for a rather narrow range of values of θ where η0 > 0, that
is, where

cos2θ >
γ

2
(3.31)

For a monatomic gas the corresponding region is about θ ≤ arc cos(5/6)1/2 �
−5◦. This restriction comes from the condition η0 > 0 merely because of the
approximation (3.6). If we remove this restriction and take into account plasma
pressure inside the flux tube, then instead of (3.23), we find

I (ω, k) = 2
∫ ∞

0
dηdvAg(η, vA)

[

1 − ω2

(1 + η)[(ω + i0)2 + c2
kk

2cos2θ ]

]

(3.32)

Here vA is the Alfvén velocity inside flux tube

vA = B√
4πρi

(3.33)

The essential difference between this result and (3.23) is that now there is no evident
restriction on the propagation angle: an integration over the parameter η gives
directly the Cherenkov condition for arbitrary values of parameter η and angle θ .
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3.3 Effects of Noncollinearity of Flux Tubes

It is hard to imagine that magnetic flux tubes, embedded in highly dynamic
environment, stay parallel to each other. Obviously, each flux tube has its own
(and arbitrary) inclination with respect to surface, which means that flux tubes are
essentially noncollinear. This fact turned to be very important in their interaction
with the ambient atmosphere and leads to some striking effects in their dynamics.

To take into account noncollinearity of the flux tubes let us characterize the
direction of a separate flux tube by a single vector n directed along the flux tube
axis. Denote the distribution function of flux tubes with respect to their directions
by h(n). To single out the effect of noncollinearity of the flux tubes we assume in
these calculations that the parameter η is fixed. The normalization of the function
h(n) is

α =
∫

h(n)do (3.34)

where α is again the magnetic filling factor and do is an element of solid angle. The
component of the macroscopic velocity at right angles to the vector n is equal to
v − n(nv). We have thus instead of (8)

ξn = − 2iω[v − n(nv)]
ω2(1 + η) − 2γ −1c2

s (kn)2
(3.35)

We have labeled here the displacement ξ by the index n, to reflect dependence of ξ

on the orientation of the flux tube.
The volume force acting on the plasma can by analogy with (3.22) be written as

Fi = −iωρeKij vj (3.36)

where

Kij = −2
∫

doh(n)(δij − ninj )

[

1 −
(

η + 1 − 2c2
s (kn)2

γ (ω + i0)2

)−1]

(3.37)

Once we have the expression for the force we can use (3.16)–(3.19) to write down
the dispersion relation

ω = kcse

[

1 − kikj

k2 Kij (ω, k)

]

, (3.38)
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and, bearing in mind that Kij is small, find the small imaginary correction to the
frequency:

ν

kcs

=
∫

doh(n)

[

1 − (kn)2

k2

]

δ

[

η + 1 − 2(kn)2

γ k2

]

(3.39)

In the particular case of an isotropic distribution of flux tubes we have h(n) = α/4π ,
and the expression for the damping rate is especially simple

ν

kcs
=

√
2

8

αγ [2 − γ (1 − η)]√
γ (1 + η)

(3.40)

where we assumed that η < 2/γ − 1.
Thus, the contribution of noncollinearity of flux tubes into the process of

absorption of sound waves and accumulation of their energy is quite essential. The
more the tubes deviate from the vertical direction, the more efficient the absorption
of sound waves becomes.

The fact that magnetic flux tubes are noncollinear plays an essential role in the
interaction of neighboring flux tubes, namely allowing the reconnection between
the same polarity magnetic flux tubes that leads to farther fragmentation of flux
tubes and other macroscopic effects that are observed. These will be addressed in
the following chapters.

3.4 Exact Theory of Linear Oscillations of Magnetic Flux
Tube

The linearized set of MHD equations for the plasma inside the magnetic flux tube
has the form

ρi
∂v
∂t

= 1

4π
[[∇ × b] × B], ∂b

∂t
= ∇[v × B], (3.41)

where v and b are the perturbations of velocity and magnetic field, respectively. As
the gas kinetic pressure inside the flux tubes vanishes the equation of continuity
splits off.

In cylindrical coordinates (r, φ, z) with a z-axis directed along the flux tube, the
linearized MHD equations with perturbations proportional to exp(−iωt+ikz+imφ)

imply that the velocity components inside the flux tube are as follows:

vr = −∂ψi

∂r
, vφ = − imψi

r
, vz = 0 (3.42)
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where m = 0,±1,±2,±3,±4, . . ., and ψi satisfies the equation

1

r

∂

∂r
r
∂ψi

∂r
+
(

ω2

v2
A

− k2
z − m2

r2

)

ψi = 0 (3.43)

In the non-magnetized region outside flux tube the linearized set of equations can
also be reduced to a single equation for the velocity potential ψe (ve = ∇ψe):

1

r

∂

∂r
r
∂ψe

∂r
+
(

ω2

c2
s

− k2
z − m2

r2

)

ψe = 0 (3.44)

The perturbation of gas-kinetic pressure in terms of ψe is then

δpe = ic2
s

ωγ
ρeΔψe (3.45)

The external sound speed and Alfvén velocity are connected through the relation
(cf. (3.6))

v2
A = 2

γ η
c2
s . (3.46)

On the surface of flux tube, at r = R, we must satisfy the conditions for the
continuity of the normal components of velocity and total pressure,

vr |i = vr |e, Bbz

4π
= δpe (3.47)

Using (3.42)–(3.46) we can reduce the set of boundary conditions to a single
equation for the logarithmic derivatives of ψi and ψe:

(

η − 2

γ

k2
z c

2
s

ω2

)
∂ lnψe

∂r
= ∂ lnψi

∂r
at r = R (3.48)

Inside the flux tube the solution is proportional to an mth order Bessel function
ψi ∼ Jm(qi, r), where qi = (ω2/v2

A − k2
z )

1/2. Outside the flux tube the solution

has the form of outgoing waves: ψ ∼ H
(1)
m (qer), where H(1) is a first-order , and

qe = (ω2/c2
s − k2

z )
1/2 (we have chosen the branch of the root corresponding to

Re qe > 0).
Since we are considering long-wave oscillations with kzR � 1, the arguments

of the Bessel and Hankel functions in the boundary condition (3.48) are small
compared to unity. If we retain only the first nonvanishing terms in the expansion
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Fig. 3.3 Shape of the flux tube for various m �= 0 modes

with respect to this small parameter we obtain the following dispersion relation:

ωm = Ω ≡ kzc
2
s

√
2

γ (1 + η)
(3.49)

for m = ±1,±2,±3,±4, . . .. It is only natural that the oscillations of flux tubes
may have multiple azimuthal modes. The first four modes (except m = 0) are shown
in Fig. 3.3.

The dipole mode m = ±1 corresponds to kink oscillations of flux tube. Note
that eigenfrequencies of all the modes are independent of the azimuthal number, m,
and are the same, except for axisymmetric mode m = 0. This case requires separate
consideration and will be addressed in Sect. 3.7.

Although the frequencies of all the modes are the same, their amplitudes and
damping rates are quite different and strongly depend on the mode number. The
oscillation amplitude in the vicinity of flux tube is proportional to (kR)|m|, and
progressively diminishing for higher order modes.

3.5 Radiation of Secondary Waves by Oscillating Flux Tubes

So far, considering the equation of motion of a separate flux tube (see (3.8)), we have
neglected the compressibility of the medium surrounding the flux tube. This was
justified by the smallness of the frequency of oscillations ω = kcs as compared to
cs/R. Taking compressibility into account, i.e., higher-order terms in the parameter
ωR/cs ∼ kR leads to the appearance of a new effect, namely to the radiation of
secondary acoustic or MHD waves by the oscillating flux tubes.

If we retain in the boundary condition (3.48) the next order term in powers of kR,
it leads, on the one hand, to a small change in the real part of the frequency and, on
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the other hand, to the appearance of radiative damping of oscillations. The resulting
damping rate ν

|m|
rad has following form

ν
|m|
rad = πΩ

|m|!(|m| − 1)!(1 + η)

(
Rkz

2

)2|m| [ 2

γ (1 + η)
− 1

]|m|
(3.50)

Thus an oscillating flux tube may radiate secondary acoustic waves. The frequency
of radiated waves is obviously the same as frequency of natural oscillations of flux
tube. The corresponding radial wave number kr is determined from the dispersion
relation and is

kr = (ω2 − k2c2
s )

1/2

cs

, (3.51)

Radiation of secondary waves occurs only if kr is real, that is, if the phase
velocity (ω/k) of flux tube oscillations is larger than cs . For the kink mode, for
example, the radiative damping rate is

νrad = πΩ

(1 + η)

(
Rkz

2

)2 [ 2

γ (1 + η)
− 1

]

(3.52)

The ability of flux tube to radiate the secondary acoustic or MHD waves provides
one of the most important mechanisms of energy transfer from primary acoustic
waves and convective motions to overlying atmosphere. Indeed, as was shown in
previous sections the resonant flux tubes absorb the energy of a sound wave in a
time

τres � 1

νres
, (3.53)

where ν � αkcs (see (3.30) and (3.40)).
The absorbed energy is accumulated in flux tubes in the form of their natural

oscillations, and then, after a considerably longer time

τrad � 1

νrad
, (3.54)

the flux tube releases the accumulated energy in the form of secondary acoustic
waves, or secondary MHD waves if the surrounding plasma is magnetized.

The main condition for the above process to take place is as follows:

νres > νrad, (3.55)

Since νres � ωα and νrad � ωk2R2, the condition (3.55) is satisfied if k2R2 < α.
Bearing in mind that the distance, d between flux tubes is of the order of R/α, we
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can write that kd � 1. In other words, under the conditions when a macroscopic
description of widely spaced flux tubes is applicable (k � d−1), the condition (3.55)
is satisfied automatically. On the other hand, these are typical conditions for quiet
sun regions and rarefied plages.

3.6 Scattering of Acoustic Waves and Maximum Energy
Input

The process of energy transfer to the medium can also occur without preliminary
accumulation of energy in the form of flux tube oscillations. Depending on the
parameters of the medium, the interaction between the primary sound wave and
an ensemble of flux tubes may have a character of resonant scattering.

Suppose a plane acoustic wave, ω = kcs , is propagating with unit amplitude

χ = −1

2
exp(−iωt + ikr) + c.c., (3.56)

c.c. stands for complex conjugate. In the presence of a magnetic flux tube the
solution outside flux tube will be superposition of this plane wave and outgoing
cylindrical waves:

ψe = e−iωt+ikzz

[

−1

2
e−iqercosφ +

∞∑

m=−∞
AmH(1)

m (qer)e
imφ

]

+ c.c. (3.57)

where we have used the relation kr = kz + qercosφ.
Inside the flux tube the solution has the form

ψi = e−iωt+ikzz
∞∑

m=−∞
BmJm(qir)e

imφ + c.c. (3.58)

Using the identity

eiqercosφ ≡
∞∑

m=−∞
imJm(qer)e

imφ + c.c. (3.59)

and writing down the boundary condition (3.48) for each azimuthal harmonic m we
obtain the following expression for the coefficients Am:

Am = − im

2

η̃qiJ
′
m(qiR)Jm(qeR) − qeJ

′
m(qeR)Jm(qiR)

η̃qeH
(1)′
m (qeR)Jm(qiR) − qiJ ′

m(qiR)H
(1)
m (qiR)

(3.60)

where η̃ = η − 2k2
z c

2
s /γω2.
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For long-wave oscillations with kR � 1 and m > 0, Am reduces to

Am = − πi |m|−1

|m|!(|m| − 1)!(1 + η)

(
kRsinθ

2

)2|m|
Ω

ω − Ω + iν
|m|
rad

(3.61)

where Ω(η) is given by (3.49).
The power radiated in the m-th mode per unit length of the flux tube is 2πρQm,

where Qm is the density of radiated energy flux

Qm = |Am|2 ρcsk

πr
(3.62)

The energy density, W in the incident acoustic wave is ρω2c2
s /2. Now we can find

relation between this energy and the energy, Q, of the secondary waves radiated per
unit time and per unit length of the flux tube to be

Q = ζ(η,R,ω) W (3.63)

where

ζ = ζ0 + 2
∞∑

m=1

ζm (3.64)

with the coefficients ζ0 and ζm obtained from (3.5) and (3.50) as

ζ0 = c2
s

k

π2

16
(kR)2

(
sin2θ − γ

2

)
, (3.65)

ζm = c2
s

k

[
π

|m|!(|m| − 1)!(1 + η)

]2 (
kRsinθ

2

)4|m|
Ω2

(ω − Ω)2 + (ν
|m|
rad )2

(3.66)

In these expressions Ω(η) and ν
|m|
rad are determined by (3.49) and (3.50), respec-

tively, and cosθ = kz/k.
Equations (3.63)–(3.66) solve the problem of energy input to the medium due to

the radiation of secondary waves by a single oscillating flux tube.
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3.7 Axisymmetric Oscillations of Flux Tube

3.7.1 Types of m = 0 Mode

Axisymmetric oscillations of flux tube have their own peculiarities and should be
considered separately (Cram and Wilson 1975; Defouw 1976; Roberts and Webb
1978; Ryutova 1981).

There are three types of axisymmetric modes with m = 0 (Fig. 3.4):

1. The analogue of slow magnetosonic waves, so-called sausage or tube waves with
the phase velocity

cT = ω

k
= csvA
√

c2
s + v2

A

; (3.67)

These are quasi-longitudinal waves propagating along the flux tube in such a way
that a compression (expansion) of a plasma inside flux tube is compensated by
the decrease (increase) in the longitudinal magnetic field due to a corresponding
change of the tube cross section. So that the sum of gas-kinetic and magnetic
pressure in linear approximation is unperturbed, δpi + BδB/4π = 0;

2. The high frequency fast oscillations analogous to fast magnetosonic waves with

phase velocity ∼
√

c2
s + v2

A. Because of high frequency which is of the order
vA/R, excitation of this mode is difficult. Besides, it experiences strong radiative
damping.

Fig. 3.4 Types of
axisymmetric oscillations of
flux tube with azimuthal wave
number m = 0

"Fast"Sausage Torsional

m=0
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3. Torsional oscillations which are actually pure Alfvén waves. These are transverse
incompressible waves. In their presence neither the tube boundary nor the
surrounding plasma is disturbed. Besides, their amplitude is very small, ∼
vconvR/Lconv, where vconv is characteristic velocity in the convective zone, and
L is the convective cell size. Thus these waves have too insignificant influence
on the dynamics and energy production processes.

Thus the main candidate out of these three axisymmetric tube waves is the
sausage mode.

3.7.2 Equation of Motion for Sausage Oscillations

The main feature of sausage oscillations, as mentioned above, is that the total
pressure, P = p + B2/4π , remains unperturbed, i.e.:

δP = δp + bB
4π

= 0 (3.68)

Thus, in linear approximation the compression or expansion of a flux tube and the
perturbations of plasma and magnetic pressure are uniform. This fact leads to quite
specific features of the sausage oscillations absent in higher mode tube waves.

To observe their features we consider axially symmetric flux tube being uniform
along its length, and use cylindrical coordinates (r, φ, z) with the z-axis directed
along the unperturbed magnetic field. In other words, we assume that the unper-
turbed density ρ, the gas-kinetic pressure p, and the magnetic field B(0, 0, B)

depend on r . As the magnetic field inside flux tube is much stronger than outside,
we shall consider the flux tube environment magnetic-free.

We adopt the model flux tube shown in Fig. 3.5 and assume that the magnetic
field decreases smoothly from a maximum value on the axis of the flux tube to zero
as r → ∞, and that the plasma density and pressure are also smooth functions of r .

Let us bring again the linearized set of MHD equations written in a form

ρ
∂v
∂t

= −∇δp + 1

4π
[∇ × b] × B (3.69)

∂b
∂t

= ∇ × [v × B] (3.70)

∂δρ

∂t
+ divρv = 0 (3.71)

∂ δS

∂t
+ v∇ S = 0 (3.72)
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Fig. 3.5 Sketch of smooth parameter profiles of inhomogeneous flux tube with the sharp
inhomogeneity confined near the tube boundary of the width ∼ l

where S = ρ−γ p is the entropy measure, and v, b, δρ, δp, and are the perturbed
quantities, of the velocity, magnetic field, plasma density, and gas kinetic pressure,

δ S = ρ−γ δp + γρ−γ−1Sδρ (3.73)

For perturbations independent of φ and proportional to exp(−iωt + ikz), (3.69)
gives

− iωρ

(

1 − k2v2
A

ω2

)

vr = − ∂

∂r

(

δp + bzB

4π

)

, (3.74)

− iωρvz = br

4π

∂B

∂r
− ikδp. (3.75)

From (3.70),

br = −kB

ω
vr , bz = 1

iω

1

r

∂

∂r
(rvrB), (3.76)

and Eqs. (3.71)–(3.73) take the form

− iωδρ + 1

r

∂

∂r
rρvr + ikρvz = 0, (3.77)

δp − γ
p

ρ
δρ = vr

iω

(
∂p

∂r
− γ

p

ρ

∂ρ

∂r

)

. (3.78)
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Eliminating from last two equations δρ we get the equation for δp expressed through
velocity perturbations. Now we substitute obtained expression for δp into (3.75) to
obtain the following equation:

− iωρvz = − k

ω
vr

∂

∂r

(
B2

4π
+ p

)

− k

ω
γp

(
1

r

∂

∂r
rvr + iωkz

)

(3.79)

The first term on the right-hand side vanishes due to the flux tube equilibrium
condition, (3.68), and (3.79) takes the form

iω

(

1 − k2c2
si

ω2

)

vz = kc2
si

ω

1

r

∂

∂r
rvr (3.80)

In order to obtain the equation for vr , we need to express the right-hand side
of (3.74) through velocity perturbations. From (3.76)–(3.78) and (3.68) we have

δp + bzB

4π
= ρ

c2
si + v2

A

iω

vr

r
+ c2

si

ω
kρvz (3.81)

Substituting here the expression for vz from (3.80) we obtain

δp + bzB

4π
= ρ

iω

ω2(c2
si + v2

A) − k2c2
siv

2
A

ω2 − k2c2
si

1

r

∂

∂r
rvr , (3.82)

and finally the equation for radial velocity perturbation takes the form

∂

∂r
ρ

ω2(c2
si + v2

A) − k2c2
siv

2
A

ω2 − k2c2
si

1

r

∂

∂r
rvr + ρ(ω2 − k2c2

si)vr = 0 (3.83)

This equation describes the small axisymmetric oscillations of radially inhomoge-
neous plasma both inside and outside magnetic flux tube.

Note that (3.83) describes two m = 0 modes, the slow (sausage) and “fast”
oscillations. In both cases the flux tube boundary performs the radial displacement
vr = ∂ξr/∂t . The torsional, m = 0 oscillations are characterized by the azimuthal
component of velocity, vφ = ∂ξφ/∂t , and will be considered in Chap. 4, Sect. 4.2.1.

3.7.3 Dispersion Relation

Outside the flux tube at large enough distances, r � R, where we can assume that
the plasma is uniform and the magnetic field is negligibly small, (3.83) turns to be
just a second-order Bessel equation. Bearing in mind that in the region r � R there
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are only outgoing waves, the solution to (3.83) is simply proportional to a second-
order Hankel function:

vr = C1H
(2)
1 (qr) (3.84)

where

q =
√

(ω2/c2
se) − k2 (3.85)

Obviously, Reω > 0, and we choose the branch of the roots with Re q > 0.
At small compared to k−1 distances from the flux tube axis (i.e., inside flux tube

and its immediate neighborhood) the second term on the left-hand side of (3.83) is
small compared to the first, because k2R2 � 1. Neglecting the second term we have
in the zeroth approximation

ρ
ω2(c2

si + v2
A) − k2c2

siv
2
A

ω2 − k2c2
si

1

r

∂

∂r
rvr = C2 (3.86)

where C2 is a constant.
From the condition that there be no singularities at r → 0 we find

vr = C2

r

∫ r

0

(ω2 − k2c2
si)r

′dr ′

ω2(c2
si + v2

A) − k2c2
siv

2
A

(3.87)

This solution is valid for arbitrary r-dependence of ρ(r) and B(r). In the region
R � r � k−1 (3.84) and (3.87) have overlapping regions of applicability. This
means that by matching solutions in these regions we can obtain the dispersion
relation.

Consider first the behavior of the solution (3.87) in the region r � R. Here
vA = 0 and cse = const, i.e., the integrand changes in proportion to r . Hence, the
main term in the asymptotic expression of vr is proportional to r . To find the next
term in the expansion we add to and subtract from the expression for vr , the term

∫ r

0

1

ρ

(ω2 − k2c2
se)

ω2c2
se

r ′dr ′, (3.88)

after which we get

vr = C2

r

∫ r

0

[
1

ρ

ω2 − k2c2
si

ω2(c2
si + v2

A) − k2c2
siv

2
A

− (ω2 − k2c2
se)

ρeω2c2
se

]

r ′dr ′

+C2

r

ω2 − k2c2
se

ρeω2c2
se

r2

2
(3.89)
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The expression inside the square brackets decreases fast at large distances, and for
r � R we obtain

vr = C2
r

c2
se

[
1

ρe

ω2 − k2c2
se

2ω2 + D(ω)

r2

]

(3.90)

where function D(ω) describes the dispersion and is defined as follows:

D(ω) = c2
se

∫ ∞

0

[
1

ρ(c2
si + v2

A)

ω2 − k2c2
si

ω2 − k2c2
T

− 1

ρec2
se

ω2 − k2c2
se

ω2

]

r ′dr ′ (3.91)

Here, cT is the phase velocity of the axisymmetric tube oscillations (cf. (3.67)):

c2
T = c2

siv
2
A

c2
si + v2

A

(3.92)

Thus, we found the next term in the asymptotic expression.
Using now expression for the Hankel function for small arguments,

H
(2)
1 = qr

2
− 2i

πqr
, (3.93)

and equating the expressions obtained from (3.90) and (3.92), we find the dispersion
relation:

D(ω) = − 2ic2
se

πρeω
(3.94)

The integrand in (3.91) for D(ω) is nonvanishing only when r ≤ R, i.e., D(ω)

∼ R2.
For the class of solutions related to axisymmetric modes with, R � k−1, we

have ω/kcsi ∼ 1 and ω/kvA ∼ 1. In this case the ratio of the left- and right-
hand sides of (3.94) is of the order of k2R2 � 1. Therefore, for this class of
solutions condition (3.94) can be satisfied only by a special choice of ω, such
that the denominator (ω2 − k2c2

T ) be close to zero. This fact by itself shows the
great sensitivity of the solution to the inhomogeneity of the plasma and magnetic
field inside the flux tube. In other words, the excitation and propagation of the
axisymmetric tube waves are very sensitive to radial profiles of plasma and magnetic
field inside the flux tube. As in realistic situations inhomogeneities certainly exist,
it is necessary to consider their role in any model of the axisymmetric oscillations.
We shall discuss this issue in Sect. 3.7.5.
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3.7.4 Sausage and Fast Oscillations in Homogeneous Flux
Tube

Consider the case of nearly homogeneous flux tube with a stepwise distribution of
the plasma parameters, i.e., flux tube with a sharp boundary (i.e. � � 0 in Fig. 3.5).
In this case

D(ω) = c2
seR

2

2(c2
si + v2

A)

ω2 − k2c2
si

ω2 − k2c2
T

, (3.95)

and from (3.94) we have

z
z − c2

si/c
2
T

z − 1
= −iQ

1

k2R2 (3.96)

where z and Q stand for

z = ω2

k2c2
T

, Q = 4c2
sev

2
A

πc4
T

(3.97)

The right-hand side of (3.95) is a large quantity, because Q � 1 and kR � 1. This
allows us to find both solutions of this equation. We define these solutions for fast
and slow oscillations as zF and zS , respectively.

The |z| � 1 solution of (3.95)–(3.97) is obviously

zF � −i
Q

k2R2 , (3.98)

or, for Reω > 0

zF � 1√
2

cT

R
(1 − i) (3.99)

Thus, the frequency of the fast axisymmetric oscillations is very high, and having
correspondingly high imaginary part, these oscillations are rapidly damping.

Another solution of the dispersion relation (3.95) corresponding to the case when
the denominator in the left-hand side of (3.95) tends to zero describes the slow
oscillations, and is of the form

zS � 1 − i
k2R2

Q

(
c2
si

c2
T

− 1

)

(3.100)
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or choosing Reω > 0 and keeping in mind relations (3.97) we have

ωS � kcT

[

1 − i
k2R2

2Q

(
c2
si

c2
T

− 1

)]

. (3.101)

Thus, the real part of (3.101) is a natural eigenfrequency of the sausage oscillations,
while the imaginary part describes their radiative damping. One can see that, as
far as k � R, radiative damping is small. This fact may play an important role in
large scale dynamics of solar atmosphere. A smallness or radiative damping means
that the oscillations excited in the photosphere where the flux tube interacts with
the acoustic wave trains may propagate along the flux tube for a long time without
damping.

The main problem with this process, however, is that, as mentioned above, the
sausage mode is extremely sensitive to radial inhomogeneities of the plasma and
magnetic field inside the flux tube. From this perspective the more slender are the
flux tube, the more chance they have to sustain the sausage oscillations. We will
discuss this issue in the next section.

3.7.5 Effects of Radial Inhomogeneities on Sausage
Oscillations

In order to determine the conditions under which the radial inhomogeneities of flux
tube start to show an appreciable effect on the sausage oscillations, we consider a
model situation when the phase velocity, cT changes with radius across the flux tube
as follows:

c2
T =

{
c2
T 0(1 − εr2/R2), r < R

0, r > R

}

(3.102)

Clearly, when ε � 1, the quantities in the integral (3.91) for D(ω) inside the flux
tube are independent of r . Then, in terms of parameter z, defined by (3.97), we have
for D(z):

D(z) = R2

2

c2
T 0c

2
se(z − v2

A0/c
2
T 0)

c2
sic

2
T 0

∫ 1

0

dζ

z − 1 + εζ
(3.103)

This integral determines an analytical function D(z) in the complex z-plane with a
cut between the points z = 1 − ε and z = 1 (Fig. 3.6a):

D(z) = R2

2

c2
T 0c

2
se

v2
A0c

2
si

z − v2
A0/c

2
T 0

ε
ln

z − 1 + ε

z − 1
(3.104)

The imaginary part of the logarithm changes in the interval (−iπ , iπ).
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Fig. 3.6 Study of the dispersion relation: (a) The complex z-plane with a cut between the points
z = 1 − ε and z = 1; (b) The hodograph in the complex F -plane corresponding to the z-plane
contour shown in Panel a

In the framework of this model the dispersion relation has a form

z

(

z − v2
A0

c2
T 0

)

ln
z − 1 + ε

z − 1
= −iQ

ε

k2R2 (3.105)

We can modify the left-hand side of this equation at ε → 0 by performing an
expansion in powers of ε. This procedure leads to the dispersion (3.96), which has
the solution z = 1. This result is valid when ε � k2R2. Note that the solution
corresponding to the sausage mode disappears when ε ≥ k2R2.

In the opposite case, when ε � k2R2 but still ε � 1, (3.105) does not have a
solution z = 1. Indeed, as the imaginary part of the logarithm changes from −iπ to
iπ , and the absolute magnitude of the right-hand side of (3.105) is large compared
to unity, the absolute value of z must also be large compared to unity, which is
necessary in order to satisfy (3.105). To find the corresponding solution, we take
into account that at z � 1,

ln

(

1 + ε

z − 1

)

� ε

z
, (3.106)

and (3.105) gives

z = −i
εQ

k2R2 (3.107)

This, on the other hand, coincides with (3.99). Thus, the solution with z � 1
corresponds to a fast mode.

To find the critical value of ε for which the solution vanishes, we can use a
hodograph method mapping the contour shown in Fig. 3.6b onto the complex F -
plane, which we define as

F(z) = z

(

z − v2
A0

c2
T 0

)

ln
z − 1 + ε

z − 1
(3.108)
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In accordance with the Nyquist criterion the number of roots of (3.105) lying in the
lower z-half-plane is equal to the number of times the hodograph of F goes round
the point −iQε/k2R2. Note that as the system initially is stable, we are interested
only in roots with Imz < 0.

The obtained shape of the hodograph and both roots,

ζ1 = −i
Qε

k2R2 , ζ2 = iπ
(

1 − ε

2

)(

1 − ε

2

vA0

cT 0

)

(3.109)

laying inside it, is shown in Fig. 3.6b. From the figure it is clear that the critical value
of ε is determined by the equation

π
(

1 − ε

2

)
(

v2
A0

c2
T 0

+ ε

2
− 1

)

= Q
ε

k2R2
(3.110)

Given that kR � 1 we have for the critical value of ε

εcr = πk2R2

Q

(
v2
A0

c2
T 0

− 1

)

(3.111)

This is quite a small quantity, which means that for the sausage oscillations to
survive and propagate along flux tube, there is very narrow threshold of physical
parameters. On the other hand, radial pulsation of the surface of the tube with
inhomogeneous parameters may become large and cause a catastrophic growth of
radiative losses, and thus damping of the tube waves.

3.8 Problems

3.1 Describe the motion of a sphere oscillating in an ideal fluid and find velocity of
the established oscillations. This is an important problem of added mass.

3.2 The same for a cylinder of a mass M (per unit length) and radius R oscillating
in an incompressible liquid of density ρ under the action of a small sinusoidal force
F = F0sinωt .

3.3 Describe the adiabatic motion of plasma blob displaced vertically in stratified
atmosphere and being in pressure equilibrium with its surroundings.

3.4 Find condition for magnetic buoyancy instability in case of horizontal magnetic
flux tube in stratified atmosphere in presence of ambient magnetic field.
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Appendix 1: Analogy with Landau Damping

Landau damping is a fundamental effect occurring in dispersive and dissipative
media sustaining any kind of wave phenomena (Timofeev 1970; Tataronis and
Grossmann 1970; Chen and Hasegawa 1974; Ryutov 1999).

A plasma wave of frequency ω and wave number k propagating in a collisionless
plasma is subject of Landau damping because the wave distorts the particular
distribution function associated with a resonance

ω = kv (3.112)

Particles having speed v are resonant with the wave and so exchange energy with it.
Mathematically, the dispersion relation for plasma waves is

I = ω2
p

k2

∫
∂f0/∂v

v − ω/k
dv, (3.113)

where ω has a small imaginary part and the imaginary part of the integral gives a
δ-function, so that

I = ω2
p

k2 P

∫
∂f0/∂v

v − ω/k
dv + iπ

∂f0

∂v
, (3.114)

This, in turn, leads to the dispersion relation

ω = ωp + iωp
π

2

ω2
p

k2

(
∂f0

∂v

)

v=ω/k

(3.115)

In our case the resonant excitation of kink and/or sausage waves produces a Landau-
like damping of an incident acoustic wave. Physically, the acoustic wave damps
because the wave distorts the distribution function of flux tubes. This, just like in
kinetic plasma, is associated with a resonance

ω cosθ = kcs. (3.116)

The flux tubes having natural phase speed, ω/k, are resonant with the acoustic wave
and so exchange energy with it. The dispersion relation (3.24) for the acoustic wave
becomes

ω = kcs

[

1 − 1

2
sin2θ

∫

dηg(η)

(

1 − ω2

η + 1 − 2c2
s k

2cos2θ

)]

(3.117)



3.8 Problems 71

where ω has a small imaginary part, and the imaginary part of the integral gives a
δ-function. The resulting dispersion relation is

ω = kcs[1 − iπsin2θg(η0)], (3.118)

where

η0 = 2cos2(θ/2) − 1 = kcs. (3.119)

Resonance is where

η + 1 = 2cos2θ

γ
(3.120)

But

ω2

k2 = B2

4π(ρi + ρe)
= B2

4πρe(η + 1)
, (3.121)

and

B2

8π
= pe = ρec

2
s

γ
, (3.122)

So that the resonance condition (3.116) becomes just expression (3.120).

Appendix 2: Derivation of Equation for Kink Oscillations
from MHD

The linearized set of MHD equations in the cylindrical coordinates with z-axis
directed along magnetic field for the perturbations proportional to exp(−iωt+ikz+
imφ) have a form:

ωδP = −iρ
ω2(c2

si + v2
A) − k2c2

siv
2
A

ω2 − k2c2
si

(
1

r

∂

∂r
rvr + 1

r

∂

∂φ
vφ

)

, (3.123)

ω
∂

∂r
δP = −iρ(ω2 − k2v2

A)vr , (3.124)

ω
1

r

∂

∂φ
δP = −iρ(ω2 − k2v2

A)vr , (3.125)

where δP = δpi + bzB/4π is the total pressure perturbation.
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From (3.124) and (3.125) it is obvious that

(ω2 − k2v2
A)∇zv = 0 (3.126)

Since we are not interested in pure Alfvén wave, (3.126) gives for velocity
perturbations ∇zv = 0, and we can introduce the velocity potential (see (3.42))
which reduces the set (3.123)–(3.125) to the single equation inside flux tube (3.43)
and to (3.44) outside it. Respectively, on the surface of the flux tube, at r = R, the
conditions for the continuity of the normal component of velocity and total pressure
have a form

(ω2 − k2v2
A)∇zv = 0 (3.127)

ρi

(

1 − k2v2
A

ω

)

ψi

∣
∣
∣
∣
R

= ρeψe

∣
∣
∣
∣
R

(3.128)

Consider the motion of a magnetic flux tube in a field of a plane acoustic wave
propagating with the amplitude ζ0 (see (3.56) where we used a unit amplitude):

Ψ0e = 1

2
exp(−iωt + ikr) + c.c. (3.129)

where kr = kzz + qercosφ, and qe = ω2/c2
se − k2

z .
The solution of MHD equations outside flux tube as a superposition of this plane

wave and outgoing cylindrical waves with m = ±1 has a form

Ψ0e = 1

2
exp(−iωt + ikr) + c.c. (3.130)

We have taken a real part of (3.57) and retained only the first nonvanishing term in
the expansion of Hankel function over a small argument. The solution inside flux
tube (3.58) can be written as

Ψ0i = e−iωt+ikzzBrcosφ (3.131)

Using now (3.127)–(3.131) we can find coefficients A and B expressed through the
amplitude of the incident sound wave ζ0. After some algebra we have

A = −ζ0qeR
2 1 − η(1 − k2v2

A/ω2)

1 + η(1 − k2v2
A/ω2)

(3.132)

B = 2ζ0qe
1

1 + η(1 − k2v2
A/ω2)

(3.133)
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Inserting now (3.132) and (3.133) into (3.130) and (3.131) and taking into
account (3.42) we can express the velocity inside flux tube vi⊥ through the velocity
in outer region, ve⊥:

vi⊥ = 2ve⊥
1

1 + η(1 − k2v2
A/ω2)

(3.134)

For a plane harmonic dependence this relationship gives the following equation for
the flux displacement:

(1 + η)
∂2ξ⊥
∂t2 − ηv2

A

∂2ξ⊥
∂z2 = 2

∂v⊥
∂t

(3.135)

Recalling that η = ρi/ρe we see that (3.135) exactly coincides with (3.4).
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Chapter 4
Effects of Flux Tube Inhomogeneities
and Weak Nonlinearity

Abstract In this chapter we shall consider some special properties of magnetic
flux tubes associated with their radial and longitudinal inhomogeneities. Magnetic
flux tube embedded in weakly magnetized or nonmagnetic environment and kept
in dynamic equilibrium by external pressure must be intrinsically inhomogeneous.
Even if magnetic field and density inside flux tube are radially smooth across
the most of its cross section, at the periphery they must have a finite gradient
to match the physical parameters of surrounding plasma. Besides, flux tubes
in the photosphere are subject to longitudinal inhomogeneity because of sharp
stratification of low atmosphere. It is remarkable that this intrinsic property of
flux tubes to be inhomogeneous plays a crucial role in their ability to absorb the
energy of the outer motions, carry it upward, and convert it into the heat or other
forms of energy. We shall discuss some macroscopic effects associated with flux
tube inhomogeneities, which, in fact, are observable. We shall also study a weakly
nonlinear waves in flux tubes and show that they obey a KdV-Bürgers equation and
may develop into shocks and solitons.

4.1 Radially Inhomogeneous Flux Tube: Internal Resonances

4.1.1 Anomalous Resonance in Kink Oscillations

Consider first the effect of radial inhomogeneity of flux tube, which, in fact, results
in a striking property of flux tube: it turns out that even in the absence of any
dissipative effects, an additional and strong damping of flux tube oscillations occurs
near the singular point where the phase velocity of oscillations becomes equal to
the local value of the Alfvén speed (Ryutova 1977; Ionson 1978). Existence of
resonant layer inside any flux tube makes virtually all the flux tubes responsible
for permanently acting mechanism of energy production and its transfer. It is not
surprising therefore that enhanced emission in the overlying atmosphere (almost
at all temperatures) mimics the pattern of small-scale flux tubes observed in the
photosphere.
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Fig. 4.1 Sketch of the flux
tube parameters with the
sharp boundary layer

ρ
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To demonstrate the action of an internal resonance consider the kink oscillations
of flux tube with somewhat simplified profile shown in Fig. 4.1, where the solid line
is the magnetic pressure B2(r)/8π , and the dashed line is the gas-kinetic pressure
p(r). Both functions are linear in the interval [R,R + l], with l � R. We assume
magnetic free environment.

For kink oscillations of flux tube with kR � 1 a plasma can be consid-
ered incompressible and the MHD system for small oscillations proportional to
exp(−iωt), are as follows:

divv = 0

−iωb = ∇ × [v × b] (4.1)

−i(ω + iν)ρv = −∇p + 1

4π
([∇ × b × B] + [∇ × B × b])

with v and b being perturbed quantities.
In order to provide a proper account for singularity in a matching point of phase

velocities, i.e., where vA = ω/k, we have added a small imaginary part, ν, to the
frequency in the equation of motion. Physically, this addition can be attributed, for
example, to the rare collisions between ions and neutrals in plasma.

We use cylindrical coordinates (r, φ, z) with z-axis directed along the flux tube.
At kR � 1 the kink oscillations of flux tubes can be considered as a plane motion,
and we can put vz = 0. The other components of velocity can be expressed through
the velocity potential ψ , just as we did in Chap. 3:

vr = −1

r

∂ψ

∂φ
vφ = ∂ψ

∂r
(4.2)

and reduce the system (4.1) to a single equation for ψ:

∂

∂r

(

ρ − k2B2

4πω2

)

r
∂ψ

∂r
−
(

ρ − k2B2

4πω2

)
ψ

r
= 0 (4.3)
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The solution of (4.3) in the region r < R is obviously

ψi = C1r, (4.4)

and in the region r > R + l,

ψe = C2

r
. (4.5)

To find the solution in the transition layer (R,R + l), it is convenient to introduce a
new variable

x = r − R

l
, 0 < x < 1 (4.6)

Taking into account that l � R, (4.3) can be written as follows:

d

dx
(x − x0 − iε)

dψ

dx
− l2

R2 (x − x0 − iε)ψ = 0 (4.7)

where

x0 =
(

k2B2
i

4πω2 − ρi

)(
k2B2

i

4πω2 + ρe − ρi

)−1

, (4.8)

and small imaginary part iε is associated with imaginary term iν coming from the
system (4.1). The specific value of ε is not important because it does not enter
into final result. In other words, the kinetic losses which are present in plasma, act
“behind the scene.”

Equation (4.7) has a single-valued solution in the complex plane x with a
cut along the line Imx = iε. This is illustrated in Fig. 4.2. At the same time,
−∞ < Re x < x0. Equation (4.7), being of complex arguments, is a modified
Bessel equation of zeroth order. Taking into account that l � R, solution to this
equation can be written as follows:

ψ = A + Dln(x − x0 − iε) (4.9)

Fig. 4.2 The complex
x-plane with a cut along the
line Imx = iε

.
10

x = x   +i ε0

Re x

Im x
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At both boundaries, r = R and r = R + l, we have to satisfy continuity conditions
for the functions ψ (i.e., for solutions (4.4), (4.5), and (4.9)) and their derivative:

ψi(r)

∣
∣
∣
∣
R

= ψ(r)

∣
∣
∣
∣
R

,
dψi(r)

dr

∣
∣
∣
∣
R

= dψ(r)

dr

∣
∣
∣
∣
R

; (4.10)

ψ(r)

∣
∣
∣
∣
R+l

= ψe(r)

∣
∣
∣
∣
R+l

,
dψ(r)

dr

∣
∣
∣
∣
R+l

= dψe(r)

dr

∣
∣
∣
∣
R+l

Now, choosing the logarithm branch single-valued in the region with the cut shown
in Fig. 4.2, we obtain the following dispersion relation:

ln
1 − x0

x0
+ R

l

(
1

1 − x0
− 1

x0

)

+ iπ = 0 (4.11)

In terms ω and k this expression becomes as follows:

ω � kBi√
4π(ρi + ρe)

(

1 + iπ

4

ρi

ρi + ρe

l

R

)

. (4.12)

This result shows that kink oscillations of flux tube with radial dependence of
magnetic field and density inside it are subject to strong resonant damping. At
the applicability limit, when l becomes of the order of radius, R, we have even
Im ω ∼ Re ω. One can show that this result is valid in the case when the magnetic
field outside the flux tube is nonzero.

Physically, the nature of the damping is due to the pumping of oscillation energy
into the resonance point where the dissipation occurs. The effect is similar to the
wave phenomena occurring in moving inhomogeneous media (plasma and liquids)
that develop at the resonant points where the velocity of the substance coincides
with the phase velocity of the oscillations (Timofeev 1970).

As mentioned above, given that flux tubes in nature are always inhomogeneous
across their cross section, the existence of anomalous resonance damping becomes
a major agent in various processes of energy conversion. In particular, the long
waves propagating in plasma with magnetic flux tubes or with any other kind of
magnetic field filamentation experience a strong resonance absorption resulting a
rapid transformation of oscillation energy into the heat.

4.1.2 Alfvén Resonance

The resonant absorption layer, being a site of the anomalous absorption of the kink
oscillation of flux tubes, may also support the Alfvén resonance. By nature kinetic
Alfvén waves are MHD waves having short cross-field scales comparable to the ion
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gyroradius, ri = vTi/ωci. For such short waves the resonant layer may be considered
“uniform,” which is not too principal, but allows to simplify the analysis (Ionson
1978).

The basic assumption can be summarized as follows: (1) B = B(0, 0, B), (2)
local values of velocities are vTi < vA < vTe, (3) in harmonic perturbations
∼ exp(−iωt + k · r), kr � k⊥ � kz.

The MHD equations for a warm ion-electron plasma are as follows:

∂nα

∂t
+ ∇ · (nαvα) = 0 (4.13)

mα
dvα

dt
= eαE + 1

c
eαvα × B − 1

nα

∇Pα, (4.14)

Pα = nαkBTα (4.15)

where the subscript α refers to the particle species. It is also assumed that
(∇ × E) = 0 (shear waves). Linearizing the system (4.13)–(4.15) with respect to
perturbations ∼ exp(−iωt +k · r), one obtains equations for density ñα and current
j̃zα fluctuations:

ñα

nα

=
[
ieαkz

mα

Ẽz + icω2kr

BΩα

(1 − sα)Ẽr

]
1

ω2 − v2
T αk2

z

, (4.16)

j̃zα = inαe2
α

mαω
Ẽz + nαeαv2

T αkz

ω

ñα

nα

(4.17)

where sα = k2
r v

2
T α/Ω2

α, Ωα is the cyclotron frequency, vT α is the thermal velocity,
and tilde marks small fluctuations. The term (1 − sα) in (4.14) has been externally
introduced by letting Ẽ → (1 − sα)Ẽ and represents finite gyroradius correction, or
in other words, it reflects the amount by which the average field felt by the particles
deviates from that at the center of their orbit. Since vTi < vA < vTe, and ω �
kzvA, (4.14) and (4.15) reduce to

4πñee = iω2
pe

v2
Te

(

1 + ω2

k2
z v

2
Te

)
Ẽz

kz

, (4.18)

4πj̃‖e = − iω2
peω

v2
Te

Ẽz

kz

(4.19)



80 4 Effects of Flux Tube Inhomogeneities and Weak Nonlinearity

for electrons, and

4πñie = iω2
pik

2
z

ω2

Ẽz

kz

− ω2
pisi (1 − si )

v2
Ti

Ẽr

kr

(4.20)

4πj̃zi = iω2
pikz

ω

Ẽz

kz

(4.21)

for ions.
Using now (4.18)–(4.21) and z-component of

∇ × (∇ × Ẽ) = 4π

c2

∂j̃

∂t
− 1

c2

∂2Ẽ

∂t2
, (4.22)

one can easily obtain the following dispersion relation for kinetic Alfvén waves:

ω2

k2
zv

2
A

= 1 + β + k2
r r

2
i

(

1 + Te

Ti

)

(4.23)

Here Te and Ti are the electron and ion temperatures, ri is the ion gyroradius, and
β is a local plasma beta. Note that these waves do not have magnetic shear and yet
are capable of propagating across the ambient magnetic field. It is important that
the existence of such waves largely depends on the inclusion of nonzero electron
inertia ensuring the presence of the second term in (4.18) (inertia term) which would
otherwise vanish.

Using the dispersion relation (4.23) in Maxwell’s equations yields the following
useful relationships between B̃ and Ẽ:

B̃⊥
Ẽr

= 1

vA

,
B̃r

Ẽr

= −k⊥
kr

1

vA

(4.24)

Ẽ⊥
Ẽr

= k⊥
kr

,
Ẽz

Ẽr

= −k2
r r

2
i

kzTe

krTi

(1 − k2
r r

2
i ) (4.25)

The transverse structure of a kinetic Alfvén waves (i.e., kr �= 0) greatly increases
viscous damping and leads to irreversible heating of the ions. Furthermore, because
these waves are accompanied by a field-aligned electric field Ẽz, Joule dissipation
of the field-aligned electric current can heat the electrons.

The rate at which energy is a dissipated (per unit volume) due to the ions is

qi = ρνr

(
∂ṽi⊥
∂r

)2

(4.26)
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where ρ is the mass density, ṽi⊥ is the ion velocity, and νr is the cross-field
kinematic viscosity

νr = v2
Tiνi

Ω2
i

(

1 + ν2
i

Ω2
i

)−1

, (4.27)

where νi is the ion–ion collision frequency. With (4.26) and (4.27) a heating rate for
νi � Ωi is given by

qi = k2
r r

2
i νi

|B̃⊥|2
8π

(4.28)

Here the relation ṽi⊥/vA � B̃⊥/B has been used. The electron heating rate, which
is given by

qe = 1

2
Re(j̃ezẼez), (4.29)

is related to the ion heating rate as follows:

qe �
√

me/mi

β
qi. (4.30)

Since in solar plasma β � √
me/mi , electrons and ions are heated at approximately

the same rate. The dissipation rates given by (4.28) and (4.30) greatly exceed those
inferred by an ideal MHD description.

4.2 Boundary Value Problem

Flux tubes embedded in ever-moving environment may carry significant amount
of energy stored around them. One of the important agents of energy transport
is the ability of the oscillating flux tubes to respond to the action of surrounding
changes, temperature inhomogeneities, atmospheric stratification, etc. (Ryutova and
Khijakadze 1990; Solanki et al. 1996; Ploner and Solanki 1997; Garcia de Andrade
2007; Penn et al. 2011). In the next sections we discuss some particular effects
resulted from the response of oscillating flux tubes to changes of the environmental
conditions.
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4.2.1 Phase-Mixing in Flux Tubes

As in the previous section, here again we consider the radially inhomogeneous
flux tubes. Another class of phenomena caused by the inhomogeneity of flux tube
parameters is associated with frequency detuning between neighboring oscillating
magnetic surfaces inside flux tube. Even if the waves propagating along the radially
inhomogeneous flux tube do not possess local resonances they undergo intense
phase-mixing during which the oscillations of neighboring filed lines become
rapidly out of phase (Tataronis and Grossman 1970; Timofeev 1970; Heyvaerts and
Priest 1983). This naturally leads to generation of small-scale motions, at which the
dissipative effects turn on and result in strong absorption of flux tube oscillations.

To look into the effect of phase-mixing we need to consider the general case when
flux tube parameters vary across the entire cross section of flux tube, as shown in
Fig. 4.3a. In this case, the weakly damped wave which could be described in terms
of smoothly varying radial eigenfunction does not exist any more. What happens is
that if at the initial moment of time (t = 0) the eigenfunction had a smooth radial
profile (Fig. 4.3b)

ψ(r, z, t)|t=0 = χ(r, 0)eikzz+iφ, (4.31)

with time it evolves into a strongly oscillating function concentrated in the resonance
point r∗ (Fig. 4.3c).

Further in time and at higher altitudes the eigenfunction becomes multi-spiky,
and waves in neighboring magnetic surfaces will have different phases.

r* r

r

(r,0)

(r,t)

v  (r)

*r

zk

r*

(c)

(b)

x

/ω

A

χ

χ

(a)

Fig. 4.3 The flux tube with the smooth radial profile across its entire cross section and the
evolution of the eigenfunction: (a) The Alfvén velocity, r∗ is the point where the Alfvén velocity
coincides with the phase velocity of tube wave; (b) The eigenfunction at the initial moment of
time; (c) Strongly oscillating eigenfunction at the resonant point, r∗
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The linearized MHD equations, together with the equilibrium condition pi(r) +
B2(r)/8π = pe(r), lead to the following equations for a spatial variation of the tube
displacement, ξ :

− ω2ρ ξ = ∇δP + B2(r)

4π

∂2ξ

∂z2 (4.32)

where δP = δp + Bbz/4π is a perturbation of total pressure (as earlier we use
cylindrical coordinates with the z-axis directed along the tube).

The best way to solve this three-dimensional set of equations with r, φ, z

variables is to use the Laplace transform over z, then solve the radial equation,
and then apply Laplace inversion. In the next section we shall consider some special
cases, namely the case of the Alfvén (torsional) waves, and then address the kink
oscillations.

4.2.2 Phase-Mixed Torsional Waves

In case of torsional Alfvén waves (m = 0), ξr = ξz = 0, and the system (4.32)
reduces to a single equation for ξφ :

− ω2ξφ(r, z) = v2
A(r) + ∂2ξφ(r, z)

∂z2 (4.33)

Laplace transform of ξφ(r, z) over z with Re p > 0 is

ξφp =
∫ ∞

0
e−pzξφdz (4.34)

With this, (4.34) becomes as follows:

ω2ξφp(r) + v2
A(r)p2ξφp(r) = −v2

A(r)

[

ξφ(r, 0) + p
∂ξφ(r, 0)

∂z

]

(4.35)

Thus, for ξφp(r) we have

ξφp = −i
vA(r)

2ω

[

ξφ(r, 0) + p
∂ξφ(r, 0)

∂z

] [
1

p + iω/vA
− 1

p − iω/vA(r)

]

(4.36)

Laplace inversion

ξφ(r, z) = −
∮

epzξpφ(r)dp (4.37)



84 4 Effects of Flux Tube Inhomogeneities and Weak Nonlinearity

requires integration to be performed along the contour which is a vertical line lying
on the right of all the poles of the function ξpφ . The poles are obviously at the points
p = ±iω/vA(r).

Shifting the contour C to the left and taking residues, one can arrive at the
following solution for displacement ξφ(r, z):

ξφ(r, z) = ξ ′
φ(r, 0)vA(r)

ω
sin

ωz

vA(r)
+ ξφ(r, 0)cos

ωz

vA(r)
(4.38)

Equation (4.38) shows how a profile of function ξφ(r, 0) changes at higher altitudes
in the course of wave propagation. Indeed, if at the base of the flux tube, i.e., at
z = 0, ξφ(r, 0) is a smooth function of radius, say, ξφ(r, 0) ∼ r (i.e., a rigid rotation
takes place), then at higher altitudes the dependence of ξφ on r becomes more and
more spiky (Fig. 4.4).

The characteristic radial scale length of perturbations, Δr is of the order of

Δr ∼ v2
A(r)

zωv′
A(r)

∼ vA(r)r

ωz
, (4.39)

and diminishes inversely with z. Respectively, the dissipative processes, like
viscosity, Ohmic losses, and/or thermal losses, become more and more important
at larger z. At the same time, it is obvious that the energy flux no longer depends on
z exponentially.

To obtain a true picture of the dissipation process one should include the dissipa-
tive terms into (4.33). For instance, taking into account viscous losses, the right-hand
side of (4.33) acquires additional term (Landau and Lifshitz Hydrodynamics):

ν
1

r2

∂

∂r

(

r3 ∂

∂r

ξφ

r

)

, (4.40)

where ν is kinematic viscosity.

ξ ξ ξ

r r r

z =2π vA(0)/ωz = 0 z =2π vA(0)/ω

Fig. 4.4 Profiles of the eigenfunction with height in phase-mixed Alfvén wave
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Let us assume that for oscillations with a smooth radial profile (on a scale of
the order of flux tube radius) which initially are generated by convective motions,
dissipation is slow, ω � ν/R2. In this case the oscillations will propagate
almost without damping up to the heights where the inverse damping rate Δr2/ν

(here Δr ∼ vAR/ωz is the scale-length of perturbations) becomes equal to the
propagation time z/vA(r). The corresponding height can be estimated as

z = z∗ � vA(r)

ω

(
ωR2

ν

)1/3

. (4.41)

For the volume density of the power Q released by viscous dissipation we have
the following estimate:

∼ ρν
ω2ξ2

(Δr)2 . (4.42)

As Δr diminishes with height, Q is growing with z. At the altitude given by
decreases (see Fig. 4.5). Thus, the heating power has a characteristic shape with
a pronounced maximum at a certain altitude z. For comparison, the dotted line in
Fig. 4.5 shows the power for the usual exponentially damping wave.

It is therefore obvious that even in the case of a smooth radial profile the flux
tube oscillation can transfer energy from the photosphere and the convective zone
to the upper layers of the atmosphere.

Fig. 4.5 The volume density
of power released by viscous
dissipation; solid line with the
maximum at the definite
altitude z∗ (see (4.41))
represents the phase-mixed
wave, while dashed line is for
the regular exponentially
damping wave

z* z

ln Q
Q 0 NON EXPONENTIAL

DECAY

EXPONENTIAL
DECAY
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4.2.3 Phase-Mixed Kink Oscillations

Consider now the phase-mixing effect in the kink oscillations of flux tube (Ryutova
and Khijakadze 1990). In a low frequency limit, ω � vA/R, the linearized MHD
equations can be reduced to the following equation for the r-component of the tube’s
displacement vector:

∂2

∂z2

(
B2

4π
ξr + ∂

∂r

B2

4π
r

∂

∂r
rξr

)

+ ω2
(

ρξr + ∂

∂r
ρr

∂

∂r
rξr

)

= 0. (4.43)

The Laplace transform for this equation has the form:

∂

∂r
ρ(ω2 + p2v2

A)r
∂

∂r
rξrp + ρ(ω2 + p2v2

A)ξrp = −F(0) − pF(0), (4.44)

where ξrp is the Laplace transform for the displacement ξr (z), and

F(r) = B2

4π
ξr + ∂

∂r

B2

4π
r

∂

∂r
rξr (4.45)

The exact solution of the boundary-value problem in this case is much more
difficult than in the previous case of the torsional Alfvén waves. However, some
general conclusions on the asymptotic behavior of the solution at z → ∞ can be
obtained in a simpler way.

The main contribution to the asymptotic solution comes from those singularities
of ξrp which are nearest to the imaginary axis in the complex plane. In other words,
we should consider the solution of (4.44) in the limit of Re(p) = ε → 0. In this
limit the solution has a strongly oscillating shape near the point where the following
condition is fulfilled:

v2
A(r) = ω2

(Imp)2
(4.46)

The solution in this region has a form:

ξrp = D(r)ln
1

r − r0 + i(ε/Im p)(vA(r)/v′
A(r))

(4.47)

where D(r) is a slowly varying function of p, and r0 is determined by (4.46). As to
the vA(r) and v′

A(r) = dvA(r)/dr , they are taken at the point r = r0.
From (4.41) and (4.47) for ξφp we have

ξφp ∼ 1

r − r0 + i(ε/Im p)[vA(r)/v′
A(r)] (4.48)
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One can see that the function ξφp has poles near the points p = ±vA/ω. i.e., the
solution in this case is similar to that for the Alfvén waves (i.e., for torsional waves).
The same holds for the asymptotic behavior of the solution.

4.3 Longitudinal Resonances

In this section we consider another aspect of the energy accumulation which is
associated with longitudinal inhomogeneities of flux tube and/or its environment
leading to longitudinal resonances In particular, we study here the situation when
magnetic flux tubes are pinned at some altitudes. This problem is also related to the
coronal loops where both ends of coronal loop threads are pinned at the photosphere.

There are situations when magnetic flux tubes stretched upward from the
photosphere get “pinned” at some height (Ryutova and Khijakadze 1990). At this
height, almost complete reflection of the tube wave may occur, which means that
standing waves can be excited and conditions for longitudinal resonances arise.
Below, we discuss two examples of such resonant structures.

Consider the flux tube with a stepwise radial profile of density, magnetic field
and pressure. But we will take into account the height dependence of flux tube
parameters and the parameters of environment. In this case flux tube sustains
weakly damped kink oscillations. It is important to note that the phase-mixing and
associated effects are now absent.

For the z-dependent case the equation for kink oscillations has the form

4πR2(ρi + ρe)
∂2ξ

∂t2
= ∂

∂z

(

R2B2 ∂ξ

∂z

)

(4.49)

With the condition of flux conservation

R2(z)B(z) = const (4.50)

Equation (4.49) can be written as follows:

4π
(ρi + ρe)

B

∂2ξ

∂t2
= ∂

∂z
B

∂ξ

∂z
(4.51)

We solve this equation for two types of longitudinal resonances: one is associated
with loss of radial equilibrium by flux tube, which may lead to the effect similar to
bullwhip effect, and another is caused by the temperature jump at some altitude
along the flux tube.
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4.3.1 Loss of Radial Equilibrium

To demonstrate the effect of gravity let us consider for simplicity an isothermal
atmosphere. Then z-dependence of plasma parameters obeys the simple barometric
law

ρi = ρi0 e−κiz, ρe = ρe0 e−κez,
B2

8π
+ pi = pe (4.52)

where κi and κe are inverse pressure scale-height inside and outside flux tube

κi,e ≡ 1

Λi,e

= mg

kBTi,e

. (4.53)

At κe > κi , i.e., in case when the pressure scale-height outside the flux tube is
less than that inside ( Te < Ti), the flux tube rapidly expands and its mass per unit
length becomes very large. Formally this means that at some height the flux tube
gets “dissolved.” Indeed, from (4.52) it follows that when approaching the height
(from below)

z∗ = ΛiΛe

Λi − Λe

ln
pi0 + B2/8π

pe0
, (4.54)

the magnetic field tends to zero, and according to magnetic flux conservation, R →
∞. Of course this is a formal statement, since at the point z = z∗, the equilibrium
of the flux tube is no longer one-dimensional, but qualitative conclusion that in
this region the flux tube rapidly expands, or, in other words, its inertia becomes
infinitely large, remains valid. Respectively, the amplitude of flux tube oscillations
becomes close to zero, and (4.49) should be solved with the boundary condition
ξ(z∗) = 0. This is a typical Sturm-Liouville problem and the corresponding solution
has a discrete frequency spectrum. Which means the presence of resonances in the
system, and if the spectrum of the exciting force is sufficiently narrow, the amplitude
of flux tube oscillations can increase at several points (namely at the gulf points)
along the tube.

Consider first a quasi-classical problem of forced oscillations of flux tube with
ξ ∼ exp(−iωt). Equation (4.51) takes a form:

∂

∂z
B

∂ξ

∂z
+ 4π

(ρi + ρe)

B
ω2ξ = 0 (4.55)

In a quasi-classical approach, a local wave vector

q(z) = ωB(z)√
4π[ρi(z) + ρe(z)] ≡ ω

ck(z)
(4.56)
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is much larger than κi and κe, i.e., the wave frequency is large. In this approximation,
the flux tube can be considered “locally homogeneous,” and the energy density flux
of tube oscillations takes a simple form

S = πR2(ρi + ρe)ξ
2ω2ck (4.57)

It is just a product of phase velocity of kink oscillations (which in this case coincides
with the group velocity), and the energy density of oscillations per unit length of the
tube. The condition, S = const, determines the oscillation amplitude as a function
of height. From (4.50) and (4.56) we have

ξ(z) = [ρi0 + ρe0]1/4

[ρi(z) + ρe(z)]1/4 ξ(0) (4.58)

As the plasma density drops with height exponentially, the oscillation amplitude
grows exponentially as well. This fact has an important consequences. For example,
at large enough amplitudes, the oscillation energy will be efficiently dissipated due
to nonlinear processes, of which the first to appear is generation of shock waves.

For illustration consider a particular case, when (4.55) can be solved exactly. This
can be done if we assume that scale heights inside and outside flux tube are close,
κi � κe. Then, from equilibrium conditions we have

B(z) = B(0)e−κz/2,
ρi(z) + ρe(z)

B(z)
= ρi(0) + ρe(0)

B(0)
e−κz/2 (4.59)

With these, (4.55) becomes

∂2ξ

∂z2 − κ
∂ξ

∂z
+ q2ξ = 0 (4.60)

where q is given by (4.56).
A secular equation for the solution of (4.60) of the form ∼ exp(iμz) is as follows:

μ2 + iμκ − q2 = 0 (4.61)

To choose a correct root of (4.61), we need to add a small imaginary part to the
frequency,ω = ω0+iε, such that at ω0 > 0, ε → +0. The sign of ε corresponds to a
slow adiabatic excitation of perturbation at t → −∞. Out of two solutions of (4.58),
we need to choose the one that has Reμ > 0, which corresponds to assumption that
at t → −∞ the flux tube was at rest, and that the oscillations excited at z = 0
propagate from the origin of coordinate system to infinity, i.e.,

μ = − iκ

2
+
√

q2 − κ2

4
(4.62)
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After choosing the root, we put ε = 0. Finally,

ξ ∼ eκz/2exp(iz

√

q2 − κ2/4) (4.63)

This solution has two slightly different branches determined by the frequency. One
branch corresponds to relatively high frequencies, when q > κ/2, i.e., when

ω > ck/4Λ, (4.64)

In this case the flux tube oscillations represent running waves propagating upward
along flux tube with exponentially growing amplitude.

In the opposite case, when q < κ/2 and, i.e., for lower frequencies such that

ω < ck/4Λ (4.65)

the solution of (4.55) has pure exponential dependence on height

ξ ∼ e(κ/2−
√

κ2/4−q2)z (4.66)

In both cases (q > κ/2 and q < κ/2), the exponential growth of oscillation
amplitude will be eventually limited by some physical processes determined by
specific properties of a system. First to act are nonlinear processes, and, in particular,
formation of shocks and solitons.

4.3.2 Bullwhip Effect

By its nature, an unlimited growth of the amplitude of flux tube oscillations is very
similar to effect of bullwhip: in both cases the growth of the oscillation amplitude
is associated with longitudinal inhomogeneity of the object. Note that final stage,
i.e., exponentially growing amplitude of flux tube, and shock formation may occur
at different heights for two branches (4.64) and (4.65). One may expect that in case
of ω > ck/4Λ with accompanying running waves, shock formation occurs at higher
altitudes and hence, at higher temperatures, than in case of ω < ck/4Λ.

From observational point of view such a process may be easily recognizable,
especially now when high resolution and high cadence observations show great
details in dynamics of various formations throughout the solar atmosphere. Exam-
ples of such events taken by the AIA instrument on SDO are shown in Figs. 4.6
and 4.7.

Figure 4.6 shows a bullwhip behavior of a flux rope captured by AIA instrument
at coronal temperatures in Fe IX 171 line. Shown is formation and evolution
of growing loop curvature at the “end” of the rope (marked by blue curves)
accompanied in the final stage by shock formation and its farther growth (marked
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UT 02:45UT 02:34

UT 03:20

UT 03:01 UT 03:08

UT 03:18

SDO/AIA 13 June 2010Fe IX 171

Fig. 4.6 A bullwhip behavior of a flux tube at coronal temperatures, T � 6.3 × 105 K shown
at six instances of time. The dark inlet on the image at UT 02:34 is produced by the Edge Detect
procedure of the area marked by box in the left lower corner clearly reveals the flux tube oscillations
well seen in all subsequent snapshots. Blue curves at the final stages outline the exponentially
growing amplitude. The red arcs at three last snapshots outline the growing shock front. Field of
view is 153 Mm × 114 Mm

by the red curves). The dark inlet on the image at UT 02:34 is produced by the Edge
Detect procedure of the area marked by box in the left lower corner of that snapshot.
The inlet reveals a regular oscillations of flux tube, which farther in time (seen in
the subsequent snapshots) evolve into the exponentially growing swing.
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UT 14:55 UT 13:00

He 304 

UT 13:05

2 January 2012

UT 13:15UT 13:10 UT 13:20

SDO/AIA

Fig. 4.7 Bullwhip behavior of a compact magnetic flux at the chromospheric temperatures, T �
6.3×105 K, shown at six instances of time. Last three snapshots (middle row) are reproduced in the
bottom with application of the Edge Detect procedure, which reveals more clearly the oscillatory
pattern throughout the process. Field of view is 68 Mm × 51 Mm

Another example of bullwhip behavior seen at lower, chromospheric tempera-
tures, is shown in Fig. 4.7. In this case explosive growth of the flux tube amplitude
and shock formation occur already at the chromospheric temperatures. Upper six
images show a compact energized magnetic flux tube in the chromosphere taken
by AIA instrument on the SDO in 304 emission line on January 2, 2012. The
Edge Detect procedure applied to all three images in a middle row reveals both
the oscillatory pattern of the body of flux tube and formation of a swing at the end
of flux tube. One should bear in mind that the end of flux tube and its oscillation
amplitude are governed by (4.58) and (4.63).

The bullwhip effect in solar flux tubes is a regular phenomenon and may be
observed at all temperatures from the chromospheres to outer corona. All it requires,
actually, is the longitudinal inhomogeneity of a flux tube and its ability to sustain
the oscillatory motion. As mentioned above, these are in fact the same requirement
that are needed to excite the growing oscillations along the bullwhip and produce a
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crack, i.e., shock wave or exploding soliton, as different theories of bullwhip predict
(Bernstein et al. 1958; Krehl et al. 1998; McMillen and Goriely 2003).

Since antiquity man used whip cracking for various reasons. The fact that the
crack is associated with acceleration of the wave that reaches the supersonic velocity
at the tip, and generates shock wave, has been realized only in the beginning of
twentieth century.

And yet, the first obvious experiment and mathematical illustration of the effect
were done only in 1958 by Bernstein et al. They studied a bullwhip operated by
an expert whip cracker, using a movie camera and still photographs. They found
that the crack is produced by the tip of the whip exceeding the sound speed
and producing the shock wave. In their words, “in order to produce a crack it is
necessary to start a sharp loop near the handle and cause this loop to propagate
down toward the tip by investing the system with sufficient momentum or kinetic
energy. Apparently this energy becomes concentrated near the tip end, and when
the tip tries to negotiate the sharp turn around the loop, it does so with sufficient
velocity to cause a shock wave in air.”

They also gave a mathematical solution for idealized whip assuming that a dis-
continuity in tension propagates down the whip reaching infinite values associated
with decreasing of the mass of the whip. For example, they arrived to solution for
the speed of a kink in a form:

ds

dt
= k + c√

L − s
(4.67)

Here s is the coordinate of a kink along the whip, L is the length of the whip and
k and c are constants of integration. Calculated tension, which is proportionally to
(ds/dt)2, also turns out to be inverse proportional to 1/

√
L − s. This means that

in a finite time, the speed of the tip and the tension increase without the limit as
s → L, i.e., as the kink reaches the tip.

Figure 4.8 shows a numerical solution for the wave propagating along the whip.
The whip is modeled as an inhomogeneous planar elastic rod with tapered end. It
was found that an impulse applied to the handle of the whip travels to the end and
accelerates the tip to supersonic speed. A crack is produced when a section of the
whip breaks the sound barrier. Dash-dotted curves in Fig. 4.8 are the shock waves
emitted by a material point on the rod.

In the solar atmosphere, the open structures that reach the height that no longer
sustains conditions of ωξ0 < cse are all subject of explosively growing amplitude
and exhibition of bullwhip effect. It is important to note that in this particular case
the fact of the exponential growth of amplitude is not at all associated with the
instability of a system, but rather is a consequence of the atmospheric stratification,
i.e., an exponential drop of the density inside flux tube.
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Fig. 4.8 Numerical solution for time sequence of the whip behavior. The solid curves are the rod;
the dashed curve is the path the tip of the whip travels; the dash-dotted curves are the shock waves.
Reprinted from McMillen and Goriely (2003) by permission from Elsevier

4.4 Standing Resonances and the Temperature Jump

Consider now another mechanism for the formation of longitudinal resonant
structures associated with temperature jump (Ryutova and Khijakadze 1990). Take,
for example,

T =
{

T1, 0 < z < L

T2, z > L

}

(4.68)

We assume for simplicity that temperatures inside and outside the flux tube are about
the same.

In particular case, considered in this section, the presence of a sharp discontinuity
in the vertical temperature leads to formation of standing resonances along the
oscillating flux tube. To avoid a possibility of shock formation, we assume that
the initial amplitude of flux tube oscillations is small enough to satisfy condition
ωξ0 < cse, where cse is the sound speed outside flux tube.

The solution of (4.60) in the region below the temperature jump, 0 < z < L, is
as follows:

ξ = e(κz/2)

[

ξ0 cos(z
√

q2 − κ2/4) + A sin(z

√

κ2/4 − q2)

]

(4.69)
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Here we took into account that boundary condition at the base of the flux tube, z =
0, with a given amplitude of oscillations ξ0, i.e., ξ |z=0 = ξ0, provides expressions
for the coefficient in front of the first term, which obviously, is ξ0.

In the region above the temperature jump, z > L, with 1/Λ2 = (mg)/(kT2),
(4.49) has a form:

∂2ξ

∂z2 − κ
T1

T2

∂ξ

∂z
+ q2 T1

T2
ξ = 0 (4.70)

Here we took into account that 1/Λ2 = κ(T1/T2). Solution to this equation for the
open end of flux tube is as follows:

ξ = C e(σkz/2)exp

(

i

√

q2σ − κ2σ 2/4

)

, σ = T1

T2
(4.71)

Two other arbitrary constants A and C are determined from the boundary conditions
at the point z = L:

ξ

∣
∣
∣
∣
z=L

= 0; dξ

dz

∣
∣
∣
∣
z=L

= 0 (4.72)

After a simple algebra, we get for A, describing the behavior of flux tube in region
0 < z < L:

A = −ξ0

κL cosα − 2α sinα −
(
σκL + 2i

√
4σq2L2 − σ 2κ2L2

)
cosα

κL sinα + 2α cosα −
(
σκL + i

√
4σq2L2 − σ 2κ2L2

)
sinα

(4.73)

where the coefficient C is included in A, and

α = L

√

q2 − κ2

4
(4.74)

From the expression (4.73) it is clear that at σ = T1/T2 � 1 there appear narrow
resonances in the system. Indeed, the imaginary part in the denominator is small,
and when the real part of denominator tends to zero, the amplitude of oscillations
becomes infinitely large.

4.4.1 Growth of the Oscillation Amplitude: First Resonance

To consider this effect in more detail, let us simplify the analysis by neglecting the
terms of the order of

√
T1/T2 (and higher) in the numerator, and terms of the order
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of T1/T2 in the denominator. In this approximation we then have

A = −ξ0
κL cosα − 2α sinα

κL sinα + 2α cosα − 2iqL
√

σ sinα
(4.75)

The denominator here tends to zero at tgα = (2qLσ −2α)/kL. Taking into account
smallness of parameter σ = T1/T2 � 1, we find that the resonance condition is
determined by the equation

tgα = − 2α

κL
(4.76)

Respectively, for the set of resonance frequencies we have

ω2
n = ck(0)

√
αn

L2 + κ2

4
(4.77)

where αn are the roots of (4.76), n = 1, 2, 3 . . ..
Near the resonance frequency ωn, i.e., at |ω − ωn| � 0, one can replace the

numerator in (4.75) by its value at the resonance point and expand the denominator
over (ω − ωn). This gives

An = −ξ0
2αn(κ

2L2 − 4α2
n)

[2kL + κ2L2 + 4α2
n]
√

4α2
n + κ2L2

ωn

ω − ωn + iνn/2
(4.78)

where

νn = 16ωn

√
σ

α3
n

[2κL + κ2L2 + 4α2
n]
√

4α2
n + κ2L2

(4.79)

are the damping rates.
As an example, let us consider the first resonance, n = 1, which lies in the

interval π/2 < α1 < π . Assume that the wavelength of oscillations is comparable
with L, i.e., κL � 1. Then, α1 = 1.9, and

A1 = 5ξ0

(
ω − ω1 + i

ν1

2

)
; ν1

ω1
= 1.4

√
σ (4.80)

The oscillation amplitude can be found from (4.59). Near the resonance we can
neglect the first term, thus obtaining

ξ(L) = A1exp(κL/2)sinα1, (4.81)

and for κL � 1,

ξ(L) = 6ξ0
ω1

ω − ω1 + 0.7iω1
√

T1/T2
(4.82)
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Now, if, for example, T2 = 10T1, the width of the resonance is 20% of the frequency.
This is a well measurable quantity in the solar atmosphere.

4.4.2 Spectral Density and Strong Enhancement
of the Oscillation Amplitude

We have considered above harmonic oscillations excited at the base of the flux
tube. Actually, in the region where flux tube is rooted, they experience the random
displacements caused by the convective motions. Therefore, more adequate would
be the description of these displacements in terms of the spectral density of
oscillations, which can be represented in the form

(ξ2
n )ω = |F |2(ξ2

0 )ω

(ω − ωn)2 + ν2
n/4

(4.83)

where (ξ2
n )ω is the spectral density of flux tube oscillations averaged over the

“length” of the flux tube, ωn and νn are, as before, the n-th order eigenfrequency
and corresponding damping rate. The function F has a meaning of a form-factor
which is of the order of unity and depends on the particular longitudinal structure of
the eigenfunction.

To get the square average of flux tube displacement, we have to integrate (4.83)
over frequencies. For narrow resonances, νn � ωn, one can replace (ξ2

0 )ω by the
constant, (ξ2

0 )ωn , to obtain

ξ2
r −

∫

(ξ2
r )ωdω = 1

νn

2|F |2(ξ2
0 )ωn (4.84)

Thus, the displacement of a flux tube at some height can be much larger than
at its footpoint. In other words, if somewhere the resonance structure is formed,
one can expect a large oscillation level and with some probability the amplitude of
oscillations can be substantially larger than its time-averaged value. This means that
in this region nonlinear dissipation can occur. Note that these effect may exist along
the resonances described above and occurrence of a bullwhip effect.

The probability distribution function P(ξ) depends on the properties of a random
process ξ0(t). For example, for a Gaussian process the probability has a standard
exponential form

P(ξ) ∼ exp
(
−ξ2/2ξ2

)
, (4.85)

which gives a considerable probability for fluctuations during which ξ2 is about six
times larger than its average value ξ2, while ξ2 itself is already enhanced and is
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large (see (4.84)):

ξ2 � 6 ξ2. (4.86)

In the observations such events will manifest themselves in range of phenomena,
from a temporal brightening of a flux tube region at a given height to explosive
events and violent mass ejections.

Note that we did not make any assumptions regarding the properties of spectral
density of exciting oscillations, so that it can be arbitrary. The results therefore are
general.

4.5 Weakly Nonlinear Waves in Flux Tubes

In this section we address the problem of weakly nonlinear oscillations of flux tubes.
Besides the nonlinearity, the flux tube oscillations are subject of the dispersion
associated in the first place with inhomogeneity of the flux tube parameters and its
environment. As in many other natural environments, if the wave amplitude steep-
ens, the competition between nonlinearity and dispersion may lead to stabilization
of the amplitude and, thus to formation of a dynamically stable kink, propagating
as a solitary wave (Rayleigh (1876); Boussinesq (1871) and Korteweg and de Vries
(1895)). We will see below that both, nonlinear kink and sausage oscillations may
produce the solitary kink and sustain its longevity.

4.5.1 Nonlinear Kink Oscillations: KdV-Bürgers Equation

In this section we follow studies of weakly nonlinear long wavelength kink
oscillations of flux tube performed by Ryutova and Priest (1993). We adopt, as
earlier, the model of cylindrical flux tube of radius R, directed along the z-axis.
Radius of the flux tubes is assumed to be much less than the wavelength λ = k−1:
kR � 1. The analysis is based on the ideal MHD equations which we write here for
convenience:

ρ
∂v
∂t

+ (v∇)v = −∇δp + 1

4π
[∇ × B] × B (4.87)

∂B
∂t

= ∇ × [v × B]
∂ρ

∂t
+ divρv = 0 (4.88)

p = p0

(
ρ

ρ0

)γ
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The set is completed by the pressure equilibrium condition.
At the surface of flux tube the boundary conditions of continuity of the normal

component of velocity,

vri|r=R = vre|r=R, (4.89)

and the normal component of the momentum flux

pi + B2

8π

∣
∣
∣
∣
r=R

= pe

∣
∣
∣
∣
r=R

(4.90)

should be satisfied. These conditions lead to the following dispersion relation (see
Eqs. (3.47)–(3.48), Chap. 3):

η
ω2 − k2v2

A

ω2

∂ lnψe

∂r

∣
∣
∣
∣
r=R

= ∂ lnψi

∂r

∣
∣
∣
∣
r=R

(4.91)

In the long-wavelength limit the expression (4.91) is subject of expansion in
powers of a small parameter (kR). The first term in this expansion gives the phase
velocity of a kink mode, ck = B/

√
4π(ρi + ρe).

Retaining the next order terms we obtain

ω = ck k + βk k3 + iμ k3, (4.92)

where

βk = − ckR
2

8(1 + η)2
, μ = πckR

2

4

c2
k − c2

s

91 + η)c2
s

(4.93)

Here cs is the sound speed outside flux tube.
The second term in the dispersion relation (4.92) describes a weak dispersion of

the kink mode associated with the flux tube inertia, and the third term corresponds
to radiative damping of flux tube oscillations.

Now we need to determine the character of the nonlinearity of the kink
oscillations. Analyzing the next terms we arrive to a simple conclusion that the first
nonlinear term that can affect the finite-amplitude kink oscillations is a cubic term,
since the azimuthal dependence of the quadratic nonlinearity contains only terms
with m = 0 and m = 2. Thus, the character of nonlinearity of a kink mode appears
to be cubic.

To find the equation of kink mode corresponding to the dispersion relation (4.92)
and containing a cubic nonlinearity we use the method of the stretched variables

ζ = ε(z − ckt), τ = ε2t (4.94)

where ε is a key small parameter.
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To carry out the adequate perturbation analysis we perform expansion of the
MHD equations by representing the velocity, magnetic field and other plasma
parameters in power series with respect to ε. For simplicity we assume that plasma
inside flux tube is cold, pi � pe, and respectively, neglect the gas-kinetic pressure
inside flux tube. This assumption is not principal but allows to simplify algebra.
Thus inside the flux tube we may write

v⊥ = ε1/2v1⊥ + ε3/2v2⊥ + · · ·
vz = εv1z + ε2v2z + · · ·

B⊥ = ε1/2B1⊥ + ε3/2B2⊥ + · · · (4.95)

Bz = B0 + ε3/2B1z + ε5/2B2z + · · ·
ρ = ρ0 + ερ1 + ε2ρ2 + · · ·

Respectively, outside the flux tube we have

ve⊥ = ε1/2v1e⊥ + ε3/2v2e⊥ + · · ·
vez = εve1z + ε2ve2z + · · · (4.96)

pe = pe0 + ε3/2pe1 + ε5/2pe2 + · · ·
ρe = ρe0 + ε3/2ρe1 + ε5/2ρe2 + · · ·

where v⊥ and B⊥ are the transverse (r and φ) components of velocity and magnetic
field.

The expansions (4.95) and (4.96), along the exact representation of a linear stage
of flux tubes oscillations, describe the dispersion properties of a system that includes
the oscillating flux tube and its environment. Besides, the above choice of variables
allows one to specify the nature of the nonlinearity independently of the dispersive
properties of a system.

Substituting (4.95) and (4.96) in the MHD equations, and equating terms of each
order in ε, we obtain sequence of equations up to the desired order.

First, in the order of ε3/2 for a flux tube interior we have from (4.87) and (4.88)

− ckρ0
∂v1⊥
∂ζ

= − B0

4π
∇⊥Bz + B0

4π

∂B1⊥
∂ζ

(4.97)

− ck
∂B1⊥
∂ζ

= B0
∂v1⊥
∂ζ

(4.98)

and for outer region

− ckρe0
∂ve1⊥
∂ζ

= −∇⊥p1 (4.99)

p1 = c2
s ρ1 (4.100)
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Substituting B1⊥ = −(B0/ck)v1⊥ which follows directly from (4.98), into (4.97)
we have

(

−ckρ0 + B0

4πck

)
∂v1⊥
∂ζ

= −∇⊥
B0B1z

4π
, (4.101)

and, respectively,

(

−ckρ0 + B0

4πck

)
∂v1⊥
∂ζ

= −ckρe0
∂v1⊥
∂ζ

(4.102)

This equation coincided naturally with the basic equation for linear oscillations
which gives the phase velocity of kink mode.

Now we proceed to the next, ε2, order approximation. At this order from z-
component of (4.87) and the second equation in (4.88) we have

ρ1 = ρ0

ck

v1z, ρ0ckv1z = c2
k

v2
A

B2
1⊥

8π
(4.103)

Here we used relationship

∇⊥B1z = v2
A − c2

k

v2
A

∂B1⊥
∂ζ

. (4.104)

Now, in the next, ε5/2 order, the transverse components of (4.87) and the first
equation in (4.88) for the flux tube interior take forms

ρ0ck
∂v2⊥
∂ζ

+ B0

4π

(
∂B2⊥
∂ζ

− ∇⊥B2z

)

= ρ0
∂v1⊥
∂τ

−(ρ1ck −ρ0v1z)
∂v1⊥
∂ζ

(4.105)

ck
∂B2⊥
∂ζ

+ B0
∂v2⊥
∂ζ

= ∂B1⊥
∂τ

+ ∂

∂ζ
(v1zB1⊥) (4.106)

In the outer region at this order we have

ρe0 ck
∂ve2⊥
∂ζ

− ∇⊥p2 = ρe0
∂ve1⊥
∂τ

+ ρe1

2
∇⊥v2

e1⊥, (4.107)

ρe0 ck

∂ve1z

∂ζ
= ∂p1

∂ζ
(4.108)

Using p1 = c2
s ρe1 in (4.108) and taking into account that

∇ρe1 = ρe0ck

c2
s

∂ve1⊥
∂ζ

(4.109)
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we can write (4.107) in the form:

ρe0 ck
∂ve2⊥
∂ζ

− ∇⊥

(

p2 + ρe1v2
e1⊥

2

)

= ρe0
∂ve1⊥
∂τ

− ckρe0

c2
s

v2
e1⊥

∂ve1⊥
∂ζ

(4.110)

Matching (4.105) and (4.110) through the boundary conditions, we obtain

(ρi0 +ρe0)ck
∂v2⊥
∂ζ

+ B0

4π

∂B2⊥
∂ζ

= (ρi0 +ρe0)ck
∂v1⊥
∂τ

− ckρe0

c2
s

v2
1⊥

∂v1⊥
∂ζ

(4.111)

Eliminating the second-order terms in (4.111) and (4.106) we arrive straightfor-
wardly to nonlinear equations for kink mode written in the stretched variables:

2
∂B1⊥
∂τ

+ ck

ρi0v
2
A

∂

∂ζ

(

B1⊥
B2

1⊥
8π

)

− c2
k

c2
s

ρe0ck

B2
0 (ρi0 + ρe0)

B2
1⊥
2

∂B1⊥
∂ζ

(4.112)

It is convenient to introduce instead of the transverse components B⊥ the complex
quantity H = Br − iBφ , and normalize it by the unperturbed magnetic field, B0.
Finally, the nonlinear equation for a kink mode acquires the form:

∂H

∂τ
+ ck

4

∂

∂ζ
(|H |2H) − c3

k

4(1 + η)c2
s

|H |2 ∂H

∂ζ
= 0 (4.113)

Equation (4.113) is a fundamental equation describing nonlinear kink oscillations of
magnetic flux tubes. We see that, as expected, the character of nonlinearity is cubic.

It interesting that the first two terms in (4.113) formally are similar to those
describing hydromagnetic waves propagating along the magnetic field in a cold
plasma (e.g., Mjolhus 1976). Note however that the similarity is only formal,
because in cold plasma the MHD waves propagate in an unbounded plasma, whereas
in case of magnetic flux tubes, we deal with an oscillating “magnetic string” which
interacts with the nonmagnetic environment. The influence of the magnetic free
region is represented by the last term in (4.113), and is reflected in the propagation
velocity of the kink mode.

It should be emphasized that the entire procedure developed above (starting from
stretched variables (4.113)) was aimed to find the character of nonlinearity. To
construct the full equation describing the nonlinear kink oscillations in weakly dis-
persive and dissipative media, (4.113) should be supplemented with the dispersion
terms obtained in the analysis of radiative damping.

Applying a standard procedure to the dispersion relation (4.92) we obtain the
evolutionary equation describing a weakly nonlinear kink oscillations in weakly



4.5 Weakly Nonlinear Waves in Flux Tubes 103

dispersive medium, which includes the intrinsic dissipative process associated with
radiation of secondary MHD waves by oscillating flux tube

∂H

∂τ
+ ck

4

∂

∂ζ
(|H |2H) − c3

k

4(1 + η)c2
s

|H |2 ∂H

∂ζ
+ βk

∂3H

∂ζ 3

+μ

π
v.p.

∫ ∞

−∞
∂3H

∂s3

ds

s − ζ
= 0 (4.114)

where βk and μ are given by expressions (4.93).
Equation (4.114) fully describes a nonlinear oscillations of flux in a dissipative

and weakly dispersive media. The equation is obviously of a type of KdV-Bürgers
equation (see, e.g., Karpman 1975). The final outcome depends on the interplay
between the nonlinearity, dispersion and dissipation processes. If, for example, the
nonlinearity prevails dispersion and dissipation, kink oscillations evolve into shock
waves. In case of competitive dispersion effect, a kinked flux tube will sustain a
solitary kink for a long time. The effect of radiative damping (last term in (4.114))
plays important role in development of strong plasma instabilities which will be
addressed later. Here we must add that kink solitons proved to be ubiquitous in
solar atmosphere, and are well observed, especially in sunspot and plage regions.
This will be studied in Chaps. 11 and 15.

4.5.2 Possibility of Solitary Sausage Wave

On the possibility of symmetric, m = 0 mode, soliton solution in a magnetic slab
was first pointed out by Roberts and Mangeney (1982). They considered a uniform,
two-dimensional slab of magnetic field B, with width 2d , embedded in a gravity-
free, nonmagnetic atmosphere. Earlier, Roberts (1981) studied a long wavelength
symmetric pulsations of such a slab and obtained their dispersion relation up to
nonlinear terms with respect to wavenumber, k. It was found that there are two
possible symmetric waves propagating along the magnetic field depending on the

phase velocity, cT = csivA/

√
c2

si + v2
A and the sound speed outside the slab, cse.

If cT < cse, then the dispersion relation has a form

ω � kcT (1 − α|k|), (4.115)

where the constant α is a measure of the environment’s inertia,

α = 1

2

ρe

ρi

c2
T cse

c2
siv

2
A

c2
si − c2

T√
c2

se − c2
T

d (4.116)
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If cT > cse or csi < cse, then the dispersion relation for slab oscillations takes a
form

ω � kcse(1 − αek
2), (4.117)

where

αe = 1

2

ρe

ρi

c2
se

c2
si + v2

A

c2
se − c2

si

c2
se − c2

T

d2 (4.118)

Dispersion relation (4.115) corresponds to wave propagating inside the slab,
and (4.117) to those outside the slab.

Using the method of stretched variables for a magnetic slab oscillations, Roberts
(1985) derived nonlinear equations for sausage mode:

∂v

∂t
+ cT

∂v

∂z
+ βT v

∂v

∂z
+ α

1

π

∂2

∂z2

∫ ∞

−∞
v(z′, t)dz′

z′ − z
(4.119)

where v is the wave propagation velocity, and βT is a coefficient of nonlinearity

βT = 1

2

v2
A[3c2

si + (γ + 1)v2
A]

(c2
si + v2

A)2
(4.120)

Thus, for a slab, weakly nonlinear sausage oscillations are governed by the equation
similar to one-dimensional integro-differential equation obtained by Benjamin
(1967) and Ono (1975) for internal waves in deep water.

One should bear in mind, however, that there are several problems with sausage
oscillations. One is that they are very sensitive to radial inhomogeneity across
their cross section, and can survive only if the flux tube is highly homogeneous,
which, under real conditions of solar atmosphere, is quite unlikely. The same
fact also works “against” nonlinearity of sausage oscillations. One of the obvious
mechanisms for steepening the waves in the solar flux tubes is gravity: the waves
propagating upward against gravity quickly grow, so does the cross section of flux
tubes, and, sausage waves damp away earlier than they become nonlinear.

4.6 Problems

4.1 Find the length and time scales for resonant absorption of Alfvén waves in
coronal loops with uniform magnetic field B0 bounded by z = 0 and z = L. Assume
that Alfvén waves with motions vy(x, z, t) are excited in the loop by footpoint driver
of amplitude A(x) and frequency ωd in the continuum spectrum (Priest 2014).
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4.2 Describe phase mixing of standing Alfvén waves in time. Consider a “short”
coronal loops (Priest 2014).

4.3 Magnetic flux tubes anchored in the photosphere and shaken by convective
motion may be roughly modeled by a bullwhip with lash of length L and mass M

with an attached cracker of mass m, with m � M . Show that the cracker may
move much faster than the handle of a whip (footpoint of solar flux tubes) and reach
unlimited speed braking sonic barrier (Krehl et al. 1998).
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Chapter 5
Flux Tube Dynamics in the Presence
of Mass Flows

Abstract Mass flows observed throughout the solar atmosphere exhibit many
patterns. They are observed in a wide temperature range of 3 × 104–107 K, and can
have a steady, unsteady, or explosive character. Their amplitudes vary from a few
tenths of km s−1 at the photosphere up to hundreds of km s−1 in the transition region
and corona. Presence of mass flows drastically changes the dynamics of magnetic
structures, and most importantly, plays a crucial role in the processes of the energy
production, transfer, and release. Depending on the geometry and intensity of the
flow, the system of magnetic flux tubes exhibits a number of unusual phenomena
that are directly observed. In this chapter we consider mainly two effects associated
with presence of mass flows. One is the instability of Negative-Energy waves ()
and other lies in the range of velocities beyond the instability threshold, namely the
effect of mass flows on the energy transfer by the phase mixed Alfvén waves.

5.1 Kelvin-Helmholtz Instability and Negative-Energy Waves

The mass flows observed in the solar atmosphere and beyond are as ubiquitous
as the magnetic structures. They are predominantly collinear with the magnetic
structures, with some differences between downflows, upward mass flows, and
vortical motions. For example, in the chromospheres/transition region strong down-
flows are usually associated with complex dynamical structures with multiple
velocities (Kjeldseth-Moe et al. 1994). Upward mass flows, also seen at chro-
mospheres/transition region temperatures, apart the “well behaved” spicules, may
be adjacent to downflows and often exhibit explosive character ejecting plasma
with velocities ranging from 100 to 400 km s−1 (Dere et al. 1989). Nonisotropic
and unsteady high velocity events often having a twisted character, such as
macrospicules, are observed to move outward into the corona at velocities of
10–150 km s−1. Mass flows in macrospicules often follow a ballistic trajectories
(Withbroe et al. 1976; Habbal and Gonzalez 1991). A quiet prominences and active
chromospheric filaments are in fact ever moving magnetized plasma with all kind
of shapes and energetics. We shall discuss the effect of various flows throughout the
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book. Here we concentrate on some basic and at the same non-trivial features of the
system of flux tubes and flows.

To understand the basic dynamic processes associated with flows, we need to
study their interaction with the structured magnetic fields.

One of the well-known effects of mass flow on the magnetic and nonmagnetic
interface is the Kelvin-Helmholtz (KH) instability (Chandrasekhar 1961).

In the atmosphere, for example, the condition for KH instability is simple

u ≥
√

2gd
ρ2 − ρ1

ρ2 + ρ1
(5.1)

Here g is the gravitational acceleration, d is a thickness of a narrow mixing layer, ρ2
and ρ1 are the gas densities in lower and upper layers of atmosphere, ρ2 > ρ1, and
u = u2 − u1 is the shear flow associated with different velocities of a wind below
and above some layer of the clouds. Consequences of condition (5.1) are observed
from its simplest manifestation on our sky and waters to quantum world and biology.

Figure 5.1 shows a typical example of KH instability often seen on our sky as
a result of interaction between the clouds and the wind with sheared velocities.
The choice of this picture (although the oceans and large water surfaces are even
more favorite objects) has been motivated by interesting fact: note that higher in the
atmosphere the size and regularity of KH rolls change significantly. One can see
from condition (5.2) that with height, i.e. with the drop of the atmospheric density
condition for the instability changes, so does the amplitude of the KH rolls. At some
point the velocity of the wind may no longer be higher than the required threshold.
In this case, two different scenarios may develop. One corresponds to so low shear
velocities that system is stable with respect to any drastic changes. Another scenario
may develop under some special conditions determined by system parameters, when
the system becomes a subject of explosively growing amplitude KH rolls. Example
of such a situation may be illustrated by “the rogue wave over Alabama” shown in
bottom panel of Fig. 5.1.

Figure 5.2 shows example of a quiescent prominences taken by the SDO/AIA
in 304 and 193 Å lines (the image is combination of these two lines). The
chromospheric, 304 Å line, clearly shows oscillatory pattern of the prominence
filaments. The region occupying by the oscillating filaments slowly grows for
several days. In early hours of February 27 the prominence starts to grow faster,
and at about UT 03:01 bursts into explosion. Here we see this event at five instances
of time from 2013 February 25 to the explosive phase.

We shall discuss below two types of KH instability characteristic to solar
magnetic flux tube. Classical KH instability, just like in hydrodynamics, develops
when the plasma flows associated with oscillating flux tubes exceed some threshold
uKH. This threshold is supersonic for any tangential discontinuity in the absence of
magnetic field, and becomes super-Alfvénic when the magnetic field is involved.

Much more intriguing turned out to be the range of flow velocities below
the KH threshold, i.e. when the system is stable with respect to a regular KH
instability. What happens is that at the sheared mass flows having velocities less
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Fig. 5.1 Two different regimes of shear flow instabilities. The upper panel is a typical KH
instability caused by interaction of wind with layered clouds. Bottom panel shows another regime
of flow instability leading to creation of a powerful rouge wave similar to the ocean rouge waves
exhibiting explosively growing “amplitude.” In both cases the energy of a system is locally not
conserved: unaccounted energy comes from the wind. The upper picture is taken by Henrik Bondo
in Denmark on December 30, 2006, reprinted from http://epod.usra.edu, credit EPOD at NASA’s
Earth Science Division and the EOS (GSFC); the lower picture, the rogue wave over Alabama, is
courtesy of Xinhua photo agency, reprinted from http://news.xinhuanet.com/english/photo

than uKH but larger than some threshold, the nonlinear dissipative instabilities
may develop, which lead to the appearence of Negative-Energy waves (NEWs)
(Ryutova 1988). The characteristic feature of negative energy waves is that any
interaction of these waves with the medium, i.e. any mechanism of subtraction
of their energy (dissipative effects, interaction with other waves, etc.) leads to fast
growth of their amplitudes. Accordingly, the damping rate becomes the growth rate.
This in turn results in the onset of strongly nonlinear processes and the widening of
the classes of instabilities, most important of which is the explosive instability when

http://epod.usra.edu
http://news.xinhuanet.com/english/photo
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Fig. 5.2 Snapshots of the oscillating the filaments of slowly evolving quiescent prominence. The
gradual “swelling” of prominence takes several days. Finally, the prominence starts to grow faster
and by Feb. 27 UT 04:10 bursts out in the explosive way. Courtesy of NASA/SDO

the amplitudes of the perturbations in a system (A) reach infinitely large values in a
finite time: A ∼ 1/(t−t0), t0 is the “explosion” time, and it is completely determined
by the physical properties of the medium (Kadomtzev et al. 1964; Dikasov et al.
1965; Sturrock 1966; Coppi et al. 1969; Weiland and Wilhelmsson 1977; Ostrovskii
et al. 1986). It is important to emphasize that Negative-Energy waves may appear
only in an energetically open systems, i.e. systems with “unaccounted” energy
source and sink of energy. In the system of atmospheric clouds, for example, the
source is a wind energy, and the dissipation is any viscous or thermal losses.

Analytically, to recognize the Negative-Energy waves and distinguish them from
usual, positive energy waves, is very simple. Any wave will have a negative energy
if, for example, at a positive eigenfrequency the derivative of the corresponding
dispersion function, D(ω, k) = 0, with respect to ω becomes negative, i.e. if

∂D(ω, k)

∂ω
< 0 (5.2)
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The location where this derivative becomes zero is the bifurcation point that
corresponds to the upper threshold for NEW and lower threshold for classical KH
instability. Hence, if along the magnetic flux tube the amplitude of the mass flow is
in the interval, uNEW ≤ u ≤ uKH, the system is able to maintain vigorous dynamics
characteristic to presence of Negative-Energy waves.

The properties and existence of Negative-Energy waves are largely determined
by the dispersion properties of the system. To demonstrate their nature in a simple
way, consider longitudinal electromagnetic wave with frequency ω propagating in
a dispersive medium. The energy of such wave is given by the expression (Landau
and Lifshitz 1984):

U = 1

8π

∂ε(ω, k) ω

∂ω
< E2 > (5.3)

where ε(ω, k) is the dielectric function and serves as linear dispersion relation for a
system

ε(ω, k) = 0 (5.4)

We see that the wave energy is proportional to the derivative dε/dω, so that the sign
of energy depends on whether the medium exhibits normal dispersion, ∂ε/∂ω > 0
or anomalous dispersion ∂ε/∂ω < 0.

Similarly, for any other system with the dispersion function

D(ω, k) = 0, (5.5)

the energy of the wave ∼ A exp(−iωt) is

W = 1

4
ω

∂D(ω, k)

∂ω
A2 (5.6)

Consider now the system with any kind of dissipation, e.g. Landau damping, Ohmic,
thermal conductivity, viscosity, etc., which causes appearence of small imaginary
part, iα, in the dispersion relation

D(ω + iν, k) + iα = 0 (5.7)

This adds a small imaginary part in the wave frequency whose amplitude now is
∼ Aexp[−i(ω + iν)t]. Expanding the dispersion function with respect to the small
imaginary term, ν, we obtain

D0(ω0) + iν
∂D

∂ω

∣
∣
∣
∣
ω0

+ iα = 0, (5.8)
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which gives

ν = − α

∂D/∂ω|ω0

(5.9)

Equations (5.6) and (5.9) show that at the normal dispersion, i.e. when ∂D/∂ω > 0,
the parameter ν < 0 is a damping rate and dissipative effects lead to the absorption
of wave energy. In the opposite case of anomalous dispersion, i.e. when ∂D/∂ω <

0, ν > 0 becomes the growth rate and any subtraction of wave energy leads to
growing of the wave amplitude. It must be understood that the system which may
possess the anomalous dispersion must be energetically open system, i.e. locally
the energy of a system is not conserved. In this particular case the system loses
the energy on the expense of growing the wave amplitude. This leads to the strong
dissipative instabilities which will be considered below, and which play essential
role in the dynamics of solar atmosphere.

5.2 Shear Flow Instabilities in Magnetic Flux Tubes

5.2.1 Specifics of Kelvin-Helmholtz Instability Along Flux
Tubes

Consider a homogeneous magnetic flux tube of circular cross section in the presence
of a flow directed along the tube axis. We adopt for a coordinate system in which
the matter inside the flux tube is at rest, while the flow velocity outside the tube has
a value u and is directed toward increasing z.

We begin with the kink oscillations, and describe the displacement of the tube
with respect to its unperturbed position by the vector ξ (z,t), which lies in the plane
perpendicular to the axis of the tube. The equation for kink oscillations in presence
of shear flow can be written as follows:

ρi
∂2ξ⊥
∂t2 = −ρe

(
∂

∂t
+ u

∂

∂z

)2

ξ⊥ + B2

4π

∂2ξ⊥
∂z2 (5.10)

Equation (5.10) can be written in the form of an energy integral:

I =
∫

dz
πR2

2

[

(ρi + ρe)

(
∂ξ⊥
∂t

)2

+
(

B2

4π
− ρeu

2
)(

∂ξ⊥
∂z

)2
]

= const

(5.11)

The integrand has the meaning of the energy of the oscillations per unit length along
the tube.
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For sinusoidal traveling waves ∼ exp(−iωt + ikz) the dispersion relation
obtained from (5.10) has the form

D(ω) = ω2 + 1

η
(ω − ku)2 − k2v2

A = 0 (5.12)

where as earlier, η = ρi/ρe. From (5.12) we have

ω± = k

1 + η
[u ±

√
η[v2

A(1 + η) − u2] (5.13)

This dispersion relation describes two different kinds of instabilities, and accord-
ingly, two branches and different thresholds for the onset of these instabilities.

One instability is analogous to a usual Kelvin-Helmholtz instability, and the other
one is the instability of Negative-Energy waves (NEWs).

The condition for Kelvin-Helmholtz follows from (5.13) immediately, and
corresponds to appearence of an imaginary part in frequency, i.e. when the radicand
in (5.13) becomes negative:

u > uKH
c = vA

√
(1 + η) (5.14)

Thus at u > vA

√
(1 + η), mass flows directed along the flux tube cause the

excitation of natural oscillations flux tube, just like a strong wind causes appearence
of a KH rolls at the ocean surface or along the layered clouds.

By nature the KH instability develops at a linear stage although its threshold in
hydro- and gasdynamics is supersonic. In our case, when magnetic field is involved,
the threshold becomes superalfvénic.

It follows from dispersion relation (5.13) that unstable perturbations propagate
upstream: Re(ω/k) = u/(1 + η) > 0. Consequently, if an upstream flow of
surrounding plasma “blows over” a certain length of flux tube, the kink oscillations
excited here will also propagate upstream.

This instability is remarkable in that it may be considered as an important agent
for exciting oscillations in regions far from a convection zone. It is usually assumed
that the excitation of oscillations of magnetic tubes requires an oscillatory motion of
their point where it is shaken by an unsteady convection. Oscillations of magnetic
flux tubes excited by convective motions have the frequencies of the order of the
inverse timescale of the granular or supergranular motions, i.e., on the order of
l/τ ∼ 10−2 − 3 × 10−3 s−1. These low frequency oscillations indeed cover entire
solar surface and are well observed in lower atmosphere. In upper atmosphere,
however the oscillations of filamentary structures are observed to have wide range of
frequencies which is hard to explain by the involvement of the convective motions.

The KH instability, on the other hand, provides another mechanism, which does
not require motions at the base of the flux tube, and not just any motions but such
that the resonance conditions must hold. The KH instability may act anywhere in
solar atmosphere from photosphere to corona and solar wind. The frequencies of
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oscillations in this case, being totally unrelated to the time scales of convection,
may be arbitrary. They are determined by the local physical parameters of a system,
and may be used for diagnostic goals.

5.2.2 Flux Tubes and Negative-Energy Waves (NEWs)

At a flow velocity which is less than uKH
c , i.e. when the system is stable with

respect to classical KH instability, the system may become subject of instability
of Negative-Energy waves. It is important to emphasize that the instability of NEW
is below the hydrodynamic instability, and require weaker, as we will see below,
sub-alfv’enic, flows to trigger an exchange of energy and momentum between the
magnetic flux and outer motions. Besides, as discussed above, any loss of energy
by NEWs leads to the growing of their amplitude. Along the usual dissipative
processes, the non-dissipative mechanisms of energy loss typical to flux tube per
se naturally contribute to growing of their amplitude. This occurs due to radiation
of secondary waves by oscillating flux tube, and the resonance damping (Ryutova
1977; Ionson 1978). In later chapters we shall see the Negative-Energy waves in
action and study various consequences of their instabilities observed throughout the
solar atmosphere. Now, to understand the nature of NEWs, and find out the range of
velocities for their existence let us employ the energy analysis.

Using the energy integral (5.11) and dispersion relation (5.13), we can find for
traveling waves the energy density per unit length of the tube

W = πR2

2
ρeξ

2⊥k2
[

(1 + η)
ω2

k2 + ηv2
A − u2

]

(5.15)

or

W = 1

(1 + η)
πR2k2ρeξ

2⊥(w2 ± uw), (5.16)

where we have introduced notation

w =
√

η[v2
A(1 + η) − u2] (5.17)

One should keep in mind that the radicand here is positive, i.e. we consider the
velocities u > vA

√
(1 + η), i.e. the system is stable with respect to KH instability.

For u > 0, the only wave which can have a Negative-Energy is one that
corresponds to the minus sign in dispersion relation (5.13), i.e. the wave which
would propagate in the negative z direction in the absence of a flow. For this wave a
lower branch of (5.16) gives

W = πR2k2ρeξ
2⊥(ηv2

A − u2)
w

w + u
, (5.18)
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One can see that the energy of the wave becomes negative at

u > uNEW
c = √

η vA (5.19)

where the superscript “NEW” specifies that the threshold corresponds to the
appearance of Negative-Energy waves. Comparing conditions (5.14) and (5.19), we
see that the relation uNEW

c < uKH
c holds with a good margin, i.e., that Negative-

Energy waves have an appreciate range of parameters where they can be generated.
Thus, in the interval of sheared flow velocities

uNEW
c < u < uKH

c (5.20)

an instability of Negative-Energy waves occurs and action of any dissipative effects
or non-dissipative damping results in their enhancement and thus an increase of their
amplitude.

As mentioned above, a remarkable property that magnetic tubes exhibit is that
even in the absence of dissipative processes, the development and enhancement of
this instability may be facilitated by the mechanism of a collisionless dissipation
of kink oscillations. The most important of which are associated with two intrinsic
features of flux tubes: (1) The resonant absorption of the oscillations in an Alfvén
resonance layer, and (2) Lost of the energy due to the radiation of secondary waves,
both acoustic and MHD. In the next section we consider several examples.

5.3 Basic Equations of Flux Tube Oscillations with Shear
Flows

The linearized system of MHD equations in presence of mass flow with an
unperturbed velocity u is follows

ρ
∂v
∂t

+ (u∇)v + (v∇)u = −∇δp + 1

4π
([∇ × b] × B + [∇ × B] × b) (5.21)

∂b
∂t

= ∇ × [v × B] + ∇ × [u × b] (5.22)

∂ δρ

∂t
+ divρv + divδρu = 0 (5.23)

∂ δS

∂t
+ v∇S + v∇δS = 0 (5.24)

where v, b, δρ, and δp are perturbed parameters, and u = u(0, 0, u(r)). All the flux
tube parameters are assumed to be functions only of the radius. For the perturbations
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proportional to exp(−iωt + imφ + ikz) from (5.21) we have

− i(ω − ku)ρvr = − ∂

∂r

(

δp + bzB

4π

)

+ ik
B

4π
br

−i(ω − ku)ρvφ = 1

r

∂

∂φ

(

δp + bzB

4π

)

+ ik
B

4π
bφ (5.25)

−i(ω − ku)ρvz = −ikδp − ρvr
∂u

∂r
− kB

4π(ω − ku)
vr

∂B

∂r

Equation (5.22) gives

br = − kB

ω − ku
vr ,

bφ = − kB

ω − ku
vφ, (5.26)

−i(ω − ku)bz = −1

r

∂

∂r
rBvr − imB

r
vφ + br

∂u

∂r

Note that divb = 0.
Equations (5.23) and (5.24) become, respectively, as follows:

− i(ω − ku)δρ + 1

r

∂

∂r
rρvr + im

R
ρvφ + ikρvz = 0, (5.27)

− i(ω − ku)(δp − c2
s δρ) + vr

(
∂p

∂r
− c2

s

∂ρ

∂r

)

= 0 (5.28)

To put system of (5.25)–(5.28) in a compact form, we express all the perturbed
quantities in terms of vr , vφ and the perturbation of the total pressure, δP = δp +
bzB/4π . After some algebra we obtain the following system:

iδP = ρ
Ω2(c2

s + v2
A) − k2c2

s v
2
A

Ω2 − k2c2
s

[
1

r

∂

∂r
rvr

vr

Ω
+ im

r

vφ

Ω

]

∂δP

∂r
= iρ(Ω2 − k2v2

A)
vr

Ω
, (5.29)

im

r
δP = iρ(Ω2 − k2v2

A)
vφ

Ω

where

Ω = ω − ku. (5.30)

System (5.29) describes all types of small oscillations of a magnetic tube in
presence of field aligned shear flows.



5.4 Dissipative Instabilities of Negative-Energy Kink Oscillations 117

5.4 Dissipative Instabilities of Negative-Energy Kink
Oscillations

Consider first the kink oscillations. In the long-wave limit, and with assumption
that the fluid is incompressible, i.e. that divv = 0, we can replace the velocity by a
stream function ψ (cf. Chap. 3):

vr = −1

r

∂ψ

∂φ
vφ = ∂ψ

∂r
(5.31)

then, instead of the system (5.29) we have a single equation for kink oscillation in
presence of shear flow:

1

r

∂

∂r

[(

ρΩ − k2B2

4πΩ

)

r
∂ψ

∂r

]

−
(

ρΩ − k2B2

4πΩ

)
ψ

r2 = 0 (5.32)

We are assuming that ω contains a small imaginary part iν, introduced in order to
bypass the singular point at ρΩ = k2B2/4πΩ correctly. Physically, the appearance
of this correction can be explained in terms of any dissipative processes present in
the system, i.e. for example caused by collisions between the plasma particles. We
use the model of flux tube which is homogeneous nearly throughout entire radius,
except a narrow diffuse boundary layer where the plasma density and the magnetic
pressure are linear functions of the radius (cf. Fig. 3.6):

ρΩ2 = ρiω
2 R − r + l

l
+ ρeΩ

2 r − R

l
(5.33)

B2(r) = B2 R − r + l

l

where thickness of boundary layer l � R.
Solutions of (5.32) at constant values of the density, magnetic field, and flow

velocity are Bessel functions in the flux tube interior and Hankel functions outside
it. To first order in kR � 1, these solutions are, respectively,

ψ =
{

C1r, r < R

C2/r, r > R + l

}

(5.34)

To find solutions in the transition region R < r < R + l (as we did in Chap. 3,
Section 8), we introduce the variable

x = r − R

l
, 0 < x < 1, (5.35)



118 5 Flux Tube Dynamics in the Presence of Mass Flows

and using the smallness of parameter l/R, rewrite (5.32) in the form which (which
is identical to Eq. (3.118)):

d

dx
(x − x0 − iε)

dψ

dx
− l2

R2 (x − x0 − iε)ψ = 0, (5.36)

where small imaginary part iε comes from taking into account the dissipative
properties of a system, and x0 now includes the shear flow velocity:

x0 = (k2v2
A − ω2)

(

k2v2
A + ρe

ρi

Ω2 − ω2
)−1

(5.37)

Just like in Chap. 3 (Section 3.7) we can find a single-valued solution of (5.35) in
the complex plane x with a cut along the line Imx = iε (see Fig. 3.6):

ψ = A + D ln(x − x0 − iε) (5.38)

At the same time, −∞ < Rex < X0. Using now continuity of ψ and dψ/dx at
both boundaries, r = R and r = R + l, we find the dispersion relation

ln
1 − x0

x0
+ R

l

(
1

1 − x0
− 1

x0

)

+ iπ = 0 (5.39)

The real part of (5.39) yields

1 − x0 = x0 (5.40)

It is easy to verify that this expression is precisely the same as the dispersion
relation (5.13).

For imaginary part of the frequency (5.39) gives the following expression:

γ

ω
= −π

4

l

R

η

(1 + η)2

(ηu ∓ w)2

±w
(5.41)

Equations (5.40) and (5.41) solve the problem of kink oscillations of flux tube
with smooth radial profile and in presence of shear flows. One can see that for waves
with a positive energy (the upper sign) the quantity γ corresponds to a damping rate,
while for waves with a Negative-Energy (the lower sign), γ becomes positive, and
thus corresponds to a growth rate.

Finally, the growth rate of the instability of NEW supported by the anomalous
absorption (Alfvén resonance) is as follows:

γres

ω
= π

4

l

R

η

(1 + η)2

{

(ηu +
√

η[v2
A(1 + η) − u2]

}2

√
η[v2

A(1 + η) − u2]
(5.42)
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Note that the anomalous-absorption effect which is responsible here for the
instability of Negative-Energy waves may also occur in the case of a homogeneous
magnetic flux tube if the shear flow has the coordinate dependence. Since under
real conditions of solar atmosphere both the magnetic flux tube and mass flows
along them are inhomogeneous, the instability of negative-energy waves may be
considered as one of the most natural occurrence triggering a violent phenomena in
systems with filamentary magnetic fields.

5.5 Radiative Instability of Flux Tube Oscillations
in Presence of Flows

In this section we address the problem of radiative damping of flux tube oscillations
in the presence of sheared mass flows. We focus here on the kink and sausage modes
and find the damping rates of these modes and their energy content.

We start with the density perturbations written in the form

δρ = cos(mφ)

[
1

2
f (r) exp(−iωt + ikz) + c.c.

]

(5.43)

The function f satisfies the equation

1

r

d

dr

(

r
df

dr

)
m2

r2 − k2f + (ω − ku)2

c2
se

f = 0 (5.44)

A solution to this equation corresponding to acoustic waves which propagate away
from the tube is

fe(r) = AH(1)
m (k⊥r), (5.45)

where

k⊥ =
√

(ω − ku)2

c2
se

− k2 = k

cse

√
(vφ − u)2 − c2

se (5.46)

The radiation of secondary acoustic waves by flux tube is possible only if the
radicand here is non-negative .

At large distances from the flux tube (k⊥r � 1), solution (5.45) has the
asymptotic behavior

f = a

(
2

πk⊥r

)1/2

exp

(

ik⊥r − imπ

2
− i

π

4

)

. (5.47)
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For k⊥r � 1, solution for δρ (Eq. (5.43) will still be a plane-wave,

δρ = 1

2
ρ0cos(mφ) exp(−iωt + ikz + ik⊥r) + c.c. (5.48)

With this we can calculate the energy density of a radiated wave to obtain

Wse = ρec
2
se

2

∣
∣
∣
∣
δρ0

ρe

∣
∣
∣
∣

2 cse

√
k2 + k2⊥ − ku

cse

√
k2 + k2⊥

cos2mφ. (5.49)

Under condition (5.67) (see below), Wse is negative. Using relation (5.47), we find

Wse = cse

πk⊥r

|A|2
ρe

χcse − ku

χ
cos2(mφ) (5.50)

here χ =
√

k2 + k2⊥.
The energy flux from a unit length of the flux tube,

Q = 2πr〈Wse〉k⊥cse/χ (5.51)

is

Q = 2c2
se|A|2
ρe

χcse − ku

χ2

{
1, m = 0

1/2, m = 1

}

(5.52)

Now we need to express the coefficient A in terms of the flux tube oscillation
amplitude. To do this, we shall consider the solution of (5.45) near the flux tube
boundary at k⊥r � 1. Corresponding analysis is presented in the next two sections
separately for sausage and kink oscillations.

5.5.1 Sausage Oscillations

For sausage oscillations we have

f =
(

1 + 2i

π
ln

Ck⊥r

2

)

, (5.53)

where C is Euler’s constant. Using the system (5.21), one can see that for non-
magnetic environment, the density perturbation is related to the radial component
of the displacement of the fluid, ξr , as follows:

ξr = c2
se

ρe(ω − ku)2

∂δρ

∂r
. (5.54)
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Accordingly, for the displacement of the tube boundary in the sausage oscillations
of the form ξr = (1/2)ξ0exp(−iωt + ikz) + c.c., from (5.43), (5.53), and (5.54),
we get

A = − iπ

2

Rρe(ω − ku)2

c2
se

ξ0 (5.55)

Finally, for sausage oscillations, the energy flux, QT , radiated from a unit length of
the flux tube is

QT

π2ρe

2
vφ(vφ − u)2k3R2|ξ0|2. (5.56)

5.5.2 Kink Oscillations

Now we turn to kink oscillations. Using the expansion of the Hankel function
H

(1)
m (k⊥r) at k⊥r � 1, we find from (5.45):

f � − 2iA

πk⊥r
(5.57)

The radial component of the flux tube displacement in the kink oscillations, ξr =
cosφ[(1/2)ξ0exp(−iωt + ikz) + c.c.], follows from (5.43), (5.54), and (5.57):

A = − iπ

2

k⊥R2ρe(ω − ku)2

c2
se

ξ0 (5.58)

Note that for long-wavelength kink oscillations ξ0 is, in fact, the amplitude of the
tube axis displacement from its unperturbed position.

The energy flux, Qk , radiated from a unit length of the flux tube performing kink
oscillations, is

Qk = π2ρe

4
vφ(vφ − u)2[(vφ − u)2 − c2

se]
k5R4|ξ0|2

c2
se

(5.59)

Let us now find the energy of the sausage and kink oscillations for a unit length
of the tube. For the kink oscillations, the result follows directly from (5.11) and
acquires the following form

Wk = πR2

4
|ξ0|2k2

[

(ρi + ρe)
ω2

k2 + ρiv
2
A − ρeu

2
]

(5.60)
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In the case of the sausage oscillations, we need to carry out some calculations.
First note that for these oscillations we have

WT =
〈

ρδv2‖
2

+ γρ

2

(
δρ

ρ

)2

+ δB2

8π

〉

πR2 (5.61)

where the averaging is done over a wave-length. When writing this expression we
have assumed that the transverse velocity of the plasma motion inside the flux tube
is small compared to the velocity of a shear flow. From the equations of motion,
the continuity equations, and the frozen-in condition we find the following relations
inside the tube:

δv‖ = csi

ρ
δρ, δB = B

ξ

2R
, δρ = v2

A

2c2
si

ξ

R
(5.62)

using for ξ the expression (5.54), we obtain

WT = π |ξ0|2
8

ρiv
2
A(v2

A + c2
si)

c2
si

(5.63)

Having the expressions for the energy flux, Q, radiated from a unit length of the flux
tube and the energy of flux tube oscillations W , we can directly find the instability
growth rates, γ rad = Q/2W . Indeed, for the kink oscillations we have

γ rad
b

ω
= πk2R2

2

(vφ − u)2[(vφ − u)2 − c2
se]

c2
sevφ[(1 + η)vφ − u] (5.64)

and for the sausage oscillations,

γ rad
T

ω
= πk2R2

4

ρe

ρi

c2
T (cT − u)2

v4
A

. (5.65)

All the quantities entering into the both expressions are directly or indirectly
measurable. The obtained results therefore allow to infer physical parameters that
are not directly observable and to develop the predictability tools.
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5.6 Parity of Negative and Positive Energy Waves

The radiative damping of primary flux tube oscillations in the presence of shear
flows may lead to strong enhancement of the oscillations. This is possible in two
cases:

1. If the flux tube oscillations have a Negative-Energy, and the radiated wave has a
positive energy, and

2. If the flux tube oscillations have a positive energy, and the radiated wave has a
Negative-Energy.

The dispersion relation for plane sound waves far from the flux tube is as follows:

ω

k

∣
∣
∣
∣
se

= u ± cse

√

1 + k2⊥
k2 , (5.66)

where k⊥ is the component of the wave vector perpendicular to the z-axis, and k is
the component of the wave vector along the z-axis. The subscript se specifies sound
waves.

It is easy to verify that the sound wave which in the absence of a flow propagates
in the negative z direction may have a Negative-Energy. This corresponds to the
lower sign in dispersion relation (5.66). The condition for the flow velocity under
which the energy of radiated acoustic wave becomes negative is

u ≥ cse

√
1 + k2⊥/k2 (5.67)

The transverse component of the wave vector of this wave is found from the
condition

(ω/k)|k = (ω/k)|s (5.68)

Let us first find the conditions under which the kink oscillations with a positive
energy radiate sound waves with a Negative-Energy, i.e., the conditions under which
the following relations hold:

1

1 + η
(u + w) = u − cse

√

1 + k2⊥
k2 > 0 (5.69)

where, as earlier, w =
√

η[v2
A(1 + η) − u2].

Simple calculations show that these relations can hold under the following
conditions

vA > cse/
√

η, u > cse +
√

v2
A − c2

se/η (5.70)
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It follows from the equilibrium condition of the unperturbed tube, pi+B2/8π = pe.
that

cse > vA

√
γ η/2, (5.71)

where γ is the adiabatic index. Consequently, conditions (5.70) can be satisfied only
if γ < 2, which holds very well for the most of the solar atmosphere.

The question is, can a Negative-Energy kink oscillation radiate a wave with a
positive energy? In other words, can the condition

1

1 + η
(u − w) = u + cse

√

1 + k2⊥
k2

(5.72)

be satisfied? the answer is negative: this condition cannot be satisfied since it reduces
to the equation

− w = ηu + (1 + η)cse

√

1 + k2⊥
k2 (5.73)

whose left side is negative, and right side is positive. Thus, we may conclude that
the kink oscillations with a positive energy traveling “downstream” will become
unstable due to the radiation of secondary acoustic waves with a Negative-Energy.
The growth rate of this instability is given by (5.64). We have to bear in mind of
course that the primary condition for this instability is that the shear flow velocity
must be in the interval given by conditions (5.70).

The mechanism of the Negative-Energy instability associated with the radiative
damping operates for sausage oscillations as well. Although a flow has essentially
no effect on the axisymmetric oscillations, and their energy remains positive even
in the presence a flow, the NEW instability may develop due to the radiation of
negative-energy waves. The sound waves having Negative-Energy are those which
propagate against the flow in the coordinate system of the fluid; their energy
becomes negative under condition (5.67), i.e., if they are traveling downstream in
the laboratory system. Now, taking into account the phase-matching condition we
obtain an instability condition (cf. (5.69)):

cT = u + cse

√
1 + k2⊥/k2 > 0 (5.74)

This condition can hold if

u > cT + cse (5.75)

A slow wave propagating downstream may thus be unstable with respect to radiation
of Negative-Energy waves. The growth rate of this instability is given by (5.65).
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5.7 Explosive Instability of Negative-Energy Waves

A specific nonlinear instability, an explosive instability, occurs in a system which
contains waves with energies of different signs. This instability was first studied by
Dikasov et al. (1965) in the particular case of waves with random phases. Coppi
et al. (1969) described the explosive instability for a “triplet” of coherent positive
and Negative-Energy waves, and introduced the term “explosive instability.” A
distinctive feature of an explosive instability is that the amplitudes of all the
interacting waves reach infinitely large values in a finite time. This statement is of
course formal, because at large enough, but finite amplitudes higher-order nonlinear
processes turn on and limit the growth of the amplitude to a certain level. A very
good account of the Negative-Energy waves and associated explosive instability is
given in the book by Weiland and Wilhelmsson (1977).

Analyzing nonlinear processes, in particular, three-wave processes, it is conve-
nient to assume that the sign of the frequency corresponds to the sign of the energy.
When this approach is taken, the condition for the explosive instability of a three-
wave process can be written as follows:

ω1 + ω2 + ω3 = 0

k1 + k2 + k3 = 0 (5.76)

|m1| ± |m2| ± |m3| = 0

where the indices 1, 2, 3, mark the three interacting waves. Since we are considering
oscillations with m = 0,±1, it follows from the last relation in (5.76) that either all
three waves are axisymmetric, m = 0, or two of them have m = ±1, and the third
m = 0.

In case of flux tube oscillations, conditions (5.76) indeed hold, providing thus
development of explosive instability. We may consider, for example, the interaction
of one sausage mode (m = 0) and two kink modes (m = ±1). Conditions (5.76) in
this case reduce to the following

ωT + ωk+ + ωk− = 0, kT + kk+ + kk− = 0 (5.77)

The k+ and k− subscripts correspond to waves traveling downstream and upstream,
respectively.

It is simple to verify that conditions (5.77) are compatible if kT > 0, and if the
the following inequality holds:

u >
cT

1 + η
+
√

v2
Aη − c2

T

η(η2 + 3η + 3)

1 + η2 , (5.78)

which is exactly the condition for an explosive instability.
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It is important to emphasize that condition (5.78) is quite powerful: even if
only a single wave, e.g. a sausage wave with kT > 0, has been excited in the
system, and the amplitudes of the two other waves are on the level of thermal noise,
then the amplitudes of these two waves will grow exponentially reaching finally
the explosive phase. From dimensionality considerations it is clear that the typical
growth rate is on the order of magnitude kT cT . After a time of several inverse growth
rates, at which the amplitudes of all three waves become comparable, the amplitudes
begin a power-law growth in accordance with (Dikasov et al. 1965; Coppi et al.
1969):

vT ∼ 1

t0 − t
(5.79)

where t0 is the time of the “explosion.” In our case, t0 � (kT , vT )−1.

5.8 Sub-critical Mass Flows: Absence of Instabilities

In this section we shall consider the effects of sub-critical mass flows when a system
is stable with respect to both the KH and NEW instabilities. In particular, we will
study the influence of mass flows on the propagation of shear Alfvén waves.

We will see that even in a simple case of regular mass flows directed along
the magnetic field, their presence considerably modifies the dissipation of shear
Alfvén waves, affecting both the magnitude and the height of maximum dissipation.
The strongest effect occurs in the case of downflows when the flow velocity at
a certain height becomes equal to the Alfvén velocity. Near that point the wave
comes to extinction and gives off its energy completely. This effect can be directly
associated with observed high velocity downflows in the transition region, and,
in particular, can serve as a qualitative explanation for the high variability of
the emission observed around 105 K. In the presence of upward mass flows and
moderate downflows, the dissipation of Alfvén waves is accompanied by the radial
redistribution of the energy input across the magnetic structure thus creating a
mosaic pattern in the emitting regions. Note again that the flow velocities are
assumed to be below the thresholds which correspond to the onset of hydrodynamic
and dissipative instabilities.

5.8.1 Can the Alfvén Waves Heat the Corona?

The specific mechanism of the dissipation of the Alfvén waves is an important
agent in the problem of the energy transfer and release in the solar atmosphere.
One of the major mechanisms by which Alfvén waves may heat the plasma is their
dissipation due to the phase mixing effect (Heyvaerts and Priest 1983). The origin



5.8 Sub-critical Mass Flows: Absence of Instabilities 127

of this effect is associated with the strong distortion of the wave front which occurs
at the propagation of Alfvén waves upward in the solar atmosphere (see Chap. 4,
Sect. 4.2). The absorption of the wave reaches a maximum at the height where the
dissipation time becomes comparable to the propagation time (z/vA). The estimate
for this characteristic damping length is:

zmax ∼ Ld ∼ vA

ω

(
R2ω

ν

)1/3

(5.80)

where ν is the kinematic viscosity coefficient. In the higher layers of the solar
atmosphere where the plasma is typically collisionless, the Reynolds number
Re = (R2ω)/ν is very large, ∼1010. Therefore, the damping length (5.80) greatly
exceeds the typical length of magnetic structures in the solar atmosphere. Parker
(1991) gave a detailed analysis of difficulties connected with the efficiency of phase
mixing effect, which under solar conditions occurs far beyond the corona. And the
search began for the effects that would make the phase mixing process to work at
reasonable (e.g., coronal) heights.

Important advances were obtained by Similon and Sudan (1989) who treated
the propagation of Alfvén waves in a three-dimensional geometry propagating in a
complex magnetic field made up of stochastic field lines: the irregular motions at the
footpoints of an inhomogeneous magnetic structure and the stochastization of the
magnetic field lines lead to shortening of the damping length down to Ld ∼ lnRe.

Still too high. There are various models based on different physical factors, such
as plasma turbulence, relaxation effects, and others, which can affect the efficiency
of heating by the Alfvén waves and especially its location (Hood et al. 1997; De
Moortel et al. 2000; Voitenko and Goossens 2000; Rogava et al. 2000; Walsh and
Ireland 2003).

5.8.2 Effect of Mass Flows on the Efficiency of Heating
by Alfvén Waves

We consider one more aspect, namely, the influence of background mass flows on
the propagation of the Alfvén waves and their possible influence on the phase-
mixing effect. We shall see that the presence of shear flows not only reduces height
of energy release but leads to important topological effects that are observable.

To visualize these effects we assume that Alfvén waves excited by convective
motions are subject to slow dissipation. That is, for oscillations with initially smooth
radial profile over a scale on the order of flux tube radius R, the frequency

ω � ν/R2 (5.81)
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In this case for pure cylindrical geometry with z-axis directed along the magnetic
field, the oscillations with velocity

v = v0 cos
ωz

vA(r)
(5.82)

will propagate almost without damping up to the heights z∗ where the inverse
damping rate Δr2(z)/ν becomes equal to the propagation time z/vA(r):

Δr2(z)/ν � z/vA (5.83)

Here Δr is the scale length of the perturbation at a height z estimated as

Δr(z) ∼ vA(r)

|dvA/dr/|
vA(r)

ωz
(5.84)

If R is the characteristic radius of the magnetic structure, then

vA(r)

|/dvA/dr| ∼ R, (5.85)

and at a height of a few wavelengths (z � vA

ω
), the scale length, Δr , becomes

smaller and smaller:

Δr(z) ∼ R
vA

ωz
� R (5.86)

Note that relationships (5.83) and (5.86) give straightforward estimate (5.80).
At a small scale (∼Δr) the dissipative effects turn on and ultimately result in

the strong damping of a wave at a certain altitude. The dissipative terms link the
perturbations at the field lines separated by a distance not exceeding a generalized
skin depth

δ =
√

ν∗
z

vA

(5.87)

where

ν∗ = η

ρ
+ νm (5.88)

At the height zmax where the main dissipation occurs (Eq. (5.80)), the skin depth is
given by

δ = R
1

Re1/3 � R (5.89)
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This means that considering the wave propagation and dissipation at a certain
magnetic surface, we need to know the coefficients of the equation of motion only in
the vicinity of this surface. In other words, after the formation of narrow spikes, the
analysis becomes local (across the magnetic field), and it can be applied essentially
to any field and velocity profile. In the case of an arbitrary magnetic field geometry,
the velocity perturbation in the Alfvén wave is

v(�, r) = v(�)eiS(r) (5.90)

where S(r) is an eikonal:

S(r) =
∫ L

L0

ω

vA(r) + u(r)
d� (5.91)

The integration is carried out along the flux tube between its footpoints.
The dependence of the velocity v on the coordinates transverse to the magnetic

field B as in geometrical acoustics is determined by the gradient of the eikonal across
the magnetic structure

v(�, r) = ṽ(�)eiτ�⊥S (5.92)

where τ is a two-dimensional vector in the plane perpendicular to B.
The dissipation per unit volume is

q � 1

2
ρν∗(�⊥S)2ṽ2(�) (5.93)

where the dependence of ṽ(�) on the coordinate � along the ray trajectory is
determined by the conservation of the energy flux

B
d

d�

(
ρṽ2

2

1

B
(vA + u)

)

= −1

2
ρν∗(�⊥S)2ṽ2(�) (5.94)

Here B is the absolute value of the magnetic field and the operator

B
d

d�

(
1

B
. . .

)

in the left-hand side of (5.94) takes into account the change of the cross section of
the magnetic flux.

For a given magnetic field B(r) (5.94) solves the problem of the wave dissipation
and yields the dissipation rate at any point in the magnetic structure.
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Let us define the expression in brackets in the left-hand side of (5.94) as a
function f (�):

f (�) = vA + u

B(�)

ρṽ2

2
(5.95)

With this function, (5.94) can be rearranged as follows:

df

d�
= −ν∗

(�⊥S)2

vA + u
f (�) (5.96)

The integration of this equation is straightforward and yields:

f = f0e
− ∫ l

ν∗[(∇⊥S)2/(vA+u)]d� (5.97)

The dissipation rate (5.17) is then

q � ν∗(�⊥S)2 B

vA + u
f0 exp

(

−
∫ l

ν∗
(�⊥S)2

vA + u
d�

)

(5.98)

This expression describes the propagation of an Alfvén wave in an arbitrary
magnetic field and flow velocity directed along the same ray trajectory.

In the next section we derive the maximum energy release and the characteristic
damping length for some chosen geometry of the magnetic field and aligned mass
flow.

5.9 Phase-Mixed Alfvén Waves at Sub-Alfvénic Mass Flows

5.9.1 Damping Rate and Height of Energy Release

Let us consider the two-dimensional magnetic field B = B(0, Bφ, Bz) with Bφ =
Bφ(r) and Bz = B0 = const. We will assume that the plasma flow is directed
along the magnetic field. Consequently, the phase velocity vph = vA + u will be
vph = vph(0, vphφ(r), vphz). The eikonal (5.91) can be written as

S(r) =
∫ L ω

√
v2

phφ + v2
phz

d� (5.99)

For the chosen geometry

d� =
√

r2dφ2 + dz2 (5.100)
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and

vphφ

vphz
= Bφ

Bz

(5.101)

dz

Bz

= rdφ

Bφ(r)
(5.102)

With the help of relationships (5.101) and (5.102) we can rearrange the expressions
for the arc element (5.100) and phase velocity as follows:

d� =
√
√
√
√1 + B2

φ

B2
z

dz (5.103)

| v |=
√

v2
phφ + v2

phz = vphz

√
√
√
√1 + B2

φ

B2
z

(5.104)

Substituting (5.103) and (5.104) into Eq. (5.99) yields

S(r) =
∫ z ω

vphz(r)
dz (5.105)

For the transverse gradient of the eikonal, we have then

∇⊥S(r) = ∂

∂r

∫ z ω

vphz(r)
dz = −v′

phz(r)ω

v2
phz(r)

z. (5.106)

With this expression, the dissipation rate (5.98) becomes as follows:

q = ν∗
ρ|v0|2

2

ω2v′
ph

2

v4
ph

z2exp

⎛

⎝−2

3
ν∗

ω2v′
ph

2

v5
ph

z3

⎞

⎠ (5.107)

We took into account here the relationships (5.101) and (5.102) and integrated the
exponent over z. For convenience, we dropped the index “z” of the phase velocity
and will keep in mind below that vph is the z-component of vph = vA + u.

The function f (ζ ) = ζ 2e−(2/3)ζ 3
has a maximum at ζ = 1 which from (5.107)

gives a height where the maximum absorption of Alfvén waves occurs:

zmax(r0) = vA0 + u0

ω

[
ω(v2

A0 + u2
0)

ν∗(v′
A0 + u′

0)
2

]1/3

(5.108)
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Here r0 is the radius of some arbitrary magnetic surface. The subscript “0”
introduced in (5.108) reflects the fact that the height of the maximum energy input
depends on the radius of the magnetic surface. Thus, for the particular magnetic
surface the maximum damping rate is

qm = ν∗
ρ|v0|2

2

[ [v′
A(r0) + u′(r0)]ω

ν∗[vA(r0) + u(r0)]
]2/3

e−2/3 (5.109)

5.9.2 Observable Morphological Effects

The presence of mass flows considerably modifies the picture of the energy release
contributed by Alfvén waves. First of all, since the profiles of the Alfvén velocity
and flow speed are different functions of radius, the phase velocity vA(r) + u(r)

can have more than one extremum across the magnetic structure. Obviously,
the maximum heating occurs at those radii where the gradients of the Alfvén
velocity and plasma flows are strongest. The height of maximum absorption, given
by (5.108), can be quite adequate for those regions of the atmosphere where
observational evidence for an extreme fine structure is found (see, e.g., Kjeldseth-
Moe et al. 1994, p. 89).

According to observations, multiple velocities in the transition region are the
result of the simultaneous existence of distinctly different velocities associated with
separate magnetic filaments with individual sizes of 4–40 km. Taking the magnetic
field as 10 G, the temperature as 105 K, and the scale of the magnetic filament and
mass flow as R1 = 10 km and R2 = 40 km (see, e.g., Dere 1994; Kjeldseth-Moe
et al. 1994), we can estimate the height (5.108). For this choice of parameters, the
combined kinetic coefficient is ν∗ � 2.1 × 1010 cm2 s−1, and the estimate for the
height of maximum dissipation is 6300 km for the thinner filaments, and 16,000 km
for the filaments with a 40 km radius.

One more morphological effect caused by presence of mass flows, which can
be observed, is appearence of an escape channels across the magnetic structure
carrying energy into upper layers of atmosphere. Indeed, at those radii where

v′
A(r0) + u′(r0) ⇒ 0 (5.110)

the damping of the Alfvén waves becomes negligibly small and the wave energy
is carried out along these radii to higher altitudes. Thereby, along the magnetic
structure, these radii form the escape channels for the energy of Alfvén waves
(Fig. 5.3).

Habbal et al. (1990) comparing the morphological structure and temporal
behavior of the emission from coronal bright points in a coronal hole and a quiet
sun region found that the peaks of emission in the six different wavelengths from
the chromosphere to corona are not always co-spatial, implying that bright points
consist of a bunch of small-scale loops of different temperatures.
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Fig. 5.3 Schematic example
of slightly different magnetic
field and flow profiles. The
extrema of the phase velocity
correspond to the energy
escape channels, and the
regions of steepest gradients
are those where the strongest
energy absorption occurs
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It is important to note that the patchy brightenings associated with magnetic
structures may be observed in a wide range of spatial and time scales. For example,
the energy escape channels may be associated with the ensembles of unipolar
magnetic flux tubes typical to the photosphere underlying the coronal holes (Harvey
and Sheeley 1979; Tian et al. 2008). The energy transfer via unipolar flux tubes
most probably is associated with the Alfv’en waves, and being the subject of ever
present mass flows, will exhibit the effect described above. In other words, the
energy carried by flux tubes, depending on their parameters and associated mass
flows may be deposited at different heights and at different temperatures, depending
on the realization of escape channels. This may be illustrated in Fig. 5.4. The first
panel here shows a snapshot of the sun in Fe XII 193 Å line at 1.26 × 106 K with
a huge coronal hole region outlined by the white box. The subsequent snapshots
show the coronal hole region at increasing temperatures, starting with magnetogram
(Fig. 5.4b).

One can see that the chromospheric bright points (Fig. 5.4c) closely mimic the
ensemble of magnetic flux tubes, i.e. almost every flux tubes “delivers” the energy at
5 × 104 K. Higher in the atmosphere, at 6.3 × 105 K (Fig. 5.4d) there are noticeably
less number of bright points, although they still fill the region quite densely. At
million degree temperatures (Fig. 5.4e) we see significantly less bright points which
actually disappear at 2.5×106 K (Fig. 5.4f). At this temperature there are only a few
survivors (marked by red arrows). These bright points have different origin: as seen
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Fig. 5.4 Image of coronal hole taken on 31 May 2013 with the AIA and HMI instruments on the
SDO. (a) A whole disc image in Fe XII line at 1.3 × 106 K with well-defined coronal hole; an
area in white box containing coronal hole is shown in subsequent images; (b) The magnetogram
under the coronal hole is dominated by a rarefied ensemble of mostly unipolar flux tubes; white
curve is an approximate border of coronal hole, red arrows show some of the most prominent
opposite polarity inclusions; (c)–(f) Coronal hole at the increasing temperatures, 5×104 K (He II),
6.3 × 105 K (Fe IX), 2 × 106 K (Fe XIV), 2.5 × 106 K (Fe XVI). Red arrows on the Fe XVI image
show the only surviving bright points inside the coronal hole. Courtesy of NASA/SDO

on the magnetogram they are associated with the opposite polarity flux tubes, and
the energy transfer here is associated with interaction between the opposite polarity
flux tubes through the reconnection and post-reconnection processes.

The next important question associated with effect of mass flows is that of
the asymptotic behavior of the total power flux in the phase mixed wave and its
distribution across the magnetic structure. We proceed to this problem in the next
section. This effect as well can be observed and measured.

5.10 The Asymptotic Behavior of the Total Energy Flux

The total energy flux P in the wave, integrated over the cross section of the
magnetic structure in the absence of a background plasma flow is

P = π

2

∫

ρ|v|2vArdr (5.111)
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From the expression for the damping rate (5.109) it is clear that the slowest damping
occurs near the axis of the flux tube where for a monotonic dependence of B(r) and
ρ(r) on r , the derivative of the Alfvén speed tends to zero. Near the axis, then, the
derivative of the Alfvén speed can be represented by

v′
A � v′′

A(0) r, (5.112)

where by the order of magnitude

v′′
A(0) � vA

R2 (5.113)

From (5.92) and (5.106) in the absence of mass flows we have for |v|2

|v|2 = |v0|2 exp

[

−1

3

ω2ν∗(v′′
A)2r2

v5
A

z3

]

(5.114)

Since v is a function of radius, v = Ωr , we should take into account that

v0 = Ω(0)r (5.115)

Substituting (5.114) and (5.115) into (5.111), we find that asymptotically, at a height
z � (vA/ω)(1/Re1/3) the total power flux has a power-law dependence on z:

P = πρ(0)vA(0)Ω2(0)

∫ ∞

0
exp

[

−2

3

ω2ν∗(v′′
A)2z3r2

v5
A

]

r3dr (5.116)

Indeed, the integration gives

P = 1

2
πρ(0)vA(0)Ω2(0)

(
3v5

A

2ω3ν∗(v′′
A)2

)2
1

z6 (5.117)

or

P = πρ(0)vA(0)Ω2(0)R4
(

zmax

z

)6

(5.118)

This energy flux is produced within the central part of a magnetic structure limited
by the radius

R∗ � R

(
zmax

z

)3/2

(5.119)
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The situation changes when the background plasma flows are taken into account.
In this case, the maximum and/or minimum energy input is redistributed across
the magnetic structure and the location of the corresponding regions is determined
by those radii where the sum, vA(r) + u(r), has an extremum. With different
profiles of Alfvén speed and flow velocity, as observed, there might be several points
where this sum has an extremum. Therefore, the picture of a heated area across the
magnetic field, as already discussed, should have quite a patchy and mosaic form.
For example, in the simplest case when there is only one point, say, r = r0, instead
of (5.112) we will have

v′
A + u′ � (v′′

A + u′′) (r − r0) (5.120)

Respectively, the total power flux is

P � πρ(0)[vA(r0) + u(r0)]Ω2(r0)r
3
0

×
∫ ∞

0
exp

[

−1

3

ω2(v′′
A + u′′)(r − r0)

2ν∗
v5
A

z3

]

dr (5.121)

this gives the following law for the z-dependence of the total power flux:

P ∼
(

zmax

z

)3/2

(5.122)

while in the absence of plasma flows the z-dependence of the total power
flux, (5.118) is proportional to (zmax/z)

6. Therefore, the presence of plasma flows
significantly changes the distribution of energy input with height. First of all, the
total energy input occurs at much lower altitudes in the presence of flows than
without them. Second, the energy release and its manifestation must have a patchy
character. This result seems quite natural and can be easily understood: in the
absence of plasma flows the energy flux is concentrated near the center of the
magnetic structure, now it is redistributed across the magnetic field, and occurs in
some annular channel with a width which has a height dependence of the form:

|r − r0| ∼ r0

(
zmax

z

)3/2

(5.123)

From observational point of view this effect seems to be ubiquitous and well
observed.
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5.11 The Wave Extinction in the Presence of Downflows

In the case of downflows, if at some point the flow velocity becomes equal to the
Alfvén speed, the phase velocity (the denominator in (5.98)) becomes zero and
the damping becomes infinite. The physical reason for this effect is quite simple:
when the flow speed becomes comparable to Alfvén speed, the wave flux undergoes
stagnation (in the laboratory frame), dissipating all its energy as it approaches the
stagnation point. As both Alfvén and flow velocities have some radial profiles, the
stagnation occurs at a height which depends on radius. This fact gives rise to a
peculiar spatial distribution of the dissipated power which must be observable.

Let us consider a flux tube in which the flow is directed towards the surface of
the Sun. Denote the cross section of the flux tube by A. Then from the magnetic flux
conservation BA = const and the mass conservation ρuA = const we find that the
Alfvén velocity scales as

vA ∼ B√
ρ

(5.124)

or

vA

u
= const

√
ρ (5.125)

We see that the ratio of the Alfvén velocity and flow speed, vA/u, decreases with
height as the density decreases (Fig. 5.5). Thus simple consideration shows that the
condition vA � u can most easily be met at higher altitudes.

Near the point vA(r) = u(r) where the phase velocity of the wave vph = vA + u
becomes zero, the wave comes to extinction, and Alfvén waves propagating upward
will release all their energy.

Fig. 5.5 Possible behavior of the ratio of the Alfvén and flow speeds with height
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Near the point vA = u at the axis of the magnetic structure, we have

vph(r, l) = ∂vph

∂l
(l − l0) + 1

2

∂2vph

∂r2 r2 (5.126)

As earlier, we consider an example of a simple profile for the Alfvén velocity and
the mass flow and assume that they have an extremum at the center of a magnetic
flux tube. Let us introduce the notations

Ωl = ∂vph

∂l
, (5.127)

Ωr = R
∂2vph

∂r2 (5.128)

For a given field line (at a distance r from axis) the condition vph = 0 holds at the
height

l∗(r) = l0 − Ωr

Ωl

r2

2R
(5.129)

When approaching the point l∗, the eikonal diverges logarithmically; therefore, it
depends weakly on the lower integration limit l0. Substituting the expansion (5.126)
into the expression (5.91) and retaining only the first term in this expansion yields

S(l) =
∫ l

l0

ωdl

Ωl |l − l∗| = ω

Ωl

ln | l − l∗

l
| (5.130)

The radial derivative of the eikonal is then

∂S

∂r
= ω

Ωl|l − l∗|
∂l∗

∂r
(5.131)

Using now expression (5.129) we have

∂S

∂r
= − ω

Ωl

2 rΩr

R|l − l∗| (5.132)

This expression allows us to find how the energy flux, or actually, the function f

determined by (5.95), damps out near l = l∗. From (5.97) and (5.132) we have

f ∝ exp

[

−ν∗
ω2Ω2

r r2

|Ω5
l |R2

∫ l

L0

dl

|l − l∗|3
]

. (5.133)
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The integration gives

f ∝ exp

[

−ν∗
ω2Ω2

r r2

2|Ω5
l |R2

1

(l − l∗)2

]

. (5.134)

We see that near the point l∗ the damping is very strong: nothing propagates beyond
this point.

Before the wave comes to extinction at the point l = l∗, the strong damping
occurs at the height, ld , which is determined by the condition (for r ∼ R)

ν∗
ω2Ω2

r

|Ω5
l |(l∗ − ld )2

∼ 1 (5.135)

We took into account here that at r ∼ R, l∗ = ld (see (5.129)). Using the estimates

Ωl ∼ vA

l∗
,Ωr ∼ vA

R
, (5.136)

we have from (5.135)

(l∗ − ld )2 ∼ ν∗
ω2l∗5

R2v3
A

. (5.137)

This expression gives the distance Δ = l∗ − ld at which the strong damping of the
wave increases dramatically and ends up with the complete absorption of the wave
power at the point l∗:

Δ ∼ l∗
(

l∗

zmax

)3/2

; (5.138)

zmax here is the characteristic damping length of the shear Alfvén waves provided
by the phase-mixing effect in the absence of plasma flows (Eq. (5.80)). To estimate
the axial extent of the total energy release, we take the parameters corresponding
to the transition region, at 105 K, where the largest downflows are observed. For
a magnetic field strength B = 4 G, a density 1010 cm−3, R = 40 km, an Alfvén
wave period of 100 s, the characteristic damping length in the absence of flows is
zmax = 9 × 104 km. Taking the height of the transition region to be l∗ = 104 km,
we get the axial extent of the absorption region to be Δ = 370 km.

In Fig. 5.6 we sketch the qualitative behavior of the amplitude and damping rate
of the Alfvén wave with height. The amplitude (Fig. 5.6a) and the damping rate
(Fig. 5.6b) in the absence of plasma flows are shown. In this case the amplitude of
the Alfvén wave drops gradually with height until it reaches the height where the
eigenfunction of perturbations becomes highly oscillatory so that the wave damps
out due to the regular phase mixing effect. At this height, the amplitude drops rapidly
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Fig. 5.6 Qualitative behavior of the amplitude and the damping rate both in the absence and in the
presence of downflows. In the absence of mass flows the amplitude of the Alfvén wave (a) drops
gradually with height until it reaches the height where the eigenfunction of perturbations becomes
highly oscillatory so that the wave damps out due to the phase mixing effect. Near that region the
damping rate (b) has a maximum. In the presence of downflows at lower altitudes the behavior of
the wave amplitude (c) and the damping rate (d) are similar to those without mass flows. At the
point l = ld the strong damping occurs and at a short distance of Δ = l∗ − ld the wave damps out
completely, so that no portion of it propagates farther

and the damping rate has a maximum determined by (5.108) and (5.109) with
u = 0.

In the presence of downflows the process of the wave damping has an entirely
different character: at lower altitudes the behavior of the wave amplitude Fig. 5.6c
and the damping rate Fig. 5.6d are similar to those without mass flows. At the point
l = ld the strong damping occurs and at a short distance Δ = l∗ − ld the wave
damps out completely, so that no portion of it propagates farther.

Note that the same consideration is applicable also to the other modes of flux
tube oscillations, in particular kink, m = ±1, and sausage, m = 0 oscillations.

Hence, the physical parameters of the magnetic field and plasma flows determine
the morphology of a heated area: the geometrical height where the maximum
heating occurs now is not restricted by the phase-mixing effect and can be much
lower than zmax.

5.12 Problems

5.1 This exemplary problem is about the internal waves in an ocean. The classical
Kelvin-Helmholtz instability is usually analyzed by considering a sheared mass
flows of fluids in gravitational field when lighter fluid with ρ1 is above a heavier
one, ρ2 > ρ1. Find the regions of linear KH instability and nonlinear instability of
Negative Energy Waves (NEWs) (Cairns 1979).
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5.2 Throughout solar atmosphere, especially in the transition region and corona,
repetitive pulses with explosively growing amplitudes are often observed. The solar
atmosphere as energetically open system has plenty of free energy available, and
thus may easily sustain the negative energy waves whose interaction with positive
energy waves leads to explosive growth of all three wave amplitudes. The interplay
between the processes of explosive growth and its saturation may lead to repeated
peaks of the amplitude in time. Describe the process and determine the speed and the
repetition rate of the peaks (Weiland and Wilhelmsson 1977; Wilhelmsson 1984).

Appendix: Equation for Alfvén Waves in the Presence
of Parallel Mass Flows

In this section we derive the general equation for Alfvén waves in the presence of
mass flows which can be used for solving problems other than those considered in
the previous sections.

In particular, this equation will allow one to study the influence of mass flows
on the resonance absorption of Alfvén waves and to explore the development of
different kinds of hydrodynamic instabilities.

Consider for simplicity a magnetic field having only a z-component,
B0(0, 0, B(r)). The background mass flow with the velocity u(r) is assumed to
be directed along the magnetic field. All the plasma parameters are monotonic
functions of radius. The perturbation of the velocity v(0, vϕ(r, z, t), 0) and the
magnetic field b(0, bϕ(r, z, t), 0) are axisymmetric, and we will drop the index ϕ

further. The MHD-equations for a given geometry which include the viscous losses
have the form

ρ

(
∂v

∂t
+ u

∂v

∂z

)

= B

4π

∂b

∂z
+ 1

r2

∂

∂r
ηr3 ∂

∂r

v

r
(5.139)

∂b

∂t
+ u

∂b

∂z
= B

∂v

∂z
+ ∂

∂r

1

r
νm

∂

∂r
rb (5.140)

All notations are standard; η is ion viscosity (ωiτi � 1) and νm is magnetic
diffusivity. Since the dissipation is weak, we have neglected in the dissipative terms
the derivatives ∂/∂z.

Taking the derivative (∂/∂t + u∂/∂z) of (5.139) and using (5.140) we have

ρ

(
∂

∂t
+ u

∂

∂z

)2

v = B

4π

∂

∂z

[

B
∂v

∂z
+ ∂

∂r

1

r
νm

∂

∂r
rb

]

+
(

∂

∂t
+ ∂

∂z

)
1

r2

∂

∂r
ηr3 ∂

∂r

v

r
(5.141)
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At weak dissipation, one can use in the second term in right-hand side of (5.141),
the following expression for ∂b/∂z:

B

4π

∂b

∂z
� ρ

(
∂v

∂t
+ u

∂v

∂z

)

, (5.142)

Now we can write a single equation for v:

ρ

(
∂

∂t
+ u

∂

∂z

)2

v = B2

4π

∂2v

∂z2 + B

4π

∂

∂r

1

r
νm

∂

∂r
r

4πρ

B

(
∂v

∂t
+ u

∂v

∂z

)

+
(

∂

∂t
+ u

∂

∂z

)
1

r2

∂

∂r
ηr3 ∂

∂r

v

r
(5.143)

For the boundary value problem with

v |z=0= v0e
iωt (5.144)

and without the dissipation we have from (5.143) (see (5.82)):

v = v0 cos
ωz

vA(r)
(5.145)

As discussed in Section 8, the velocity profile becomes spiky with height, and its
scale (5.86) at the heights z � vA/ω becomes much less than R:

Δr � R (5.146)

This condition allows us to simplify (5.141). Namely, in the dissipative terms
we can neglect the radial derivatives of all the functions except v. Note that the
background plasma parameters B(r), ρ(r), and u(r) change at the scale R, and
from to condition (5.146) we have

db

dr
,

dρ

dr
,

du

dr
� ∂v

∂r
(5.147)

Furthermore,

∂2

∂r2 � 1

r

∂

∂r
,

1

r2 (5.148)

Under these conditions (5.143) becomes:

(
∂

∂t
+ u

∂

∂z

)2

v = v2
A(r)

∂2v

∂z2 + ν∗
(

∂

∂t
+ u

∂

∂z

)
∂2v

∂r2 (5.149)

where ν∗ = η/ρ + νm.
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One can see that in the absence of dissipation, different radii do not communicate
with each other as is clearly seen from (5.149): The Alfvén waves along each
cylindrical surface propagate with the speed determined only by the surface radius
r , i.e. at a speed vA(r).

The dissipative term links the perturbations at the field lines separated by
the distance not exceeding a generalized skin-depth (5.89), which means that
considering the wave propagation and dissipation at a certain magnetic surface, we
need to know the coefficients of (5.149) only in the vicinity of this surface. We
denote the radius of some arbitrary surface by r0, and for

r = r0 + x, (5.150)

use the approximations

vA(r) ∼= vA(r0) + dvA(r)

dx
|r0 (5.151)

u(r) ∼= u(r0) + du(r)

dx
|r0 (5.152)

ν∗ ∼= ν∗(r0) (5.153)

We drop the index “0” below, and will keep in mind that these quantities have a
local meaning at a certain radius r0.

For perturbations ∼ exp(−iωt), (5.149) reduces to

[u2(r)−v2
A(r)]∂

2v

∂z2
−2iωu(r)

∂v

∂z
−ω2v = ν∗

∂2

∂r2

(

−iωv + u(r)
∂v

∂z

)

(5.154)

It is convenient to represent the velocity perturbations in a form

v = w(r, z, t) exp

(

i
ω

vA0 + u0
z

)

(5.155)

where vA0 = vA(r0) and u0 = u(r0). Simple algebra gives the following equation
for w (the analogue of parabolic equation in diffraction theory):

∂w

∂z
+ iω

v′
A0 + u′

0

(vA0 + u0)2 xw (5.156)

−ν∗
[

1

2(vA0 + u0)

∂2w

∂2x
− u′(r)

vA0(vA0 + u0)

∂w

∂x
− u′′(r)

2vA0(vA0 + u0)
w

]

= 0

Prime means the derivative over radius.
Equation (5.156) is the basic equation describing the Alfvén wave propagation in

the presence of plasma flows. Magnetic field and plasma parameters have a smooth
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dependence on radius. This equation can be written in especially convenient form
using a function Q which we define as follows:

w = Q(x, z, t) exp

(
u′(x)

vA0
x

)

, (5.157)

and in the variables:

ξ = x

[
ω(v′

A0 + u′
0)

ν∗(vA0 + u0)

]1/3

(5.158)

ζ = z
ω(v′

A0 + u′
0)

(vA0 + u0)2

[
ω(v′

A0 + u′
0)

ν∗(vA0 + u0)

]−1/3

(5.159)

With (5.157)–(5.159), the basic parabolic equation (5.156) takes a form:

∂Q

∂ζ
+ iξQ − ∂2Q

∂ξ2 + α(ξ) · Q = 0 (5.160)

with

α(ξ) ∼
[

(u′)2(ξ)

v2
A0

+ u′′(ξ)

vA0

]

(5.161)

Equation (5.160) allows one to study the various instabilities in the presence of mass
flows.

It is important to note that the asymptotic behavior of the total power flux of
the wave varies much more slowly with height in the presence of mass flows than
without them. Namely, the total power flux P in the presence of flows scales with
height as P ∼ z(−3/2), while it scales as P ∼ z−6 in their absence.

Thus, a regular subsonic upward and downward mass flows modify considerably
the propagation of phase mixed Alfvén waves. First of all, the radial redistribution
of the energy input occurs, which is determined by the fact that the extrema of
the Alfvén speed and flow velocity are not spatially coincident. In this case, the
strongest absorption occurs at those radii at which the gradients of the phase velocity
are steepest, while those radii at which the phase velocity has extrema form an
escape channel for the wave energy. Therefore, even for moderate flow velocities
(compared with the magnitude of the Alfvén speed), both upward and downward
flows lead to the creation of a complex mosaic of highly localized bright regions
with varying heights. These effects can be considered as a reasonable explanation
for understanding the complex intermittent emission such as observed in coronal
bright points (Huang et al. 2012; Alexander et al. 2011; Habbal and Withbroe 1981;
Habbal et al. 1990).



References 145

Note also that the strongest effect occurs in the case of downflows: if at some
geometrical height the Alfvén speed and flow velocity become equal, the wave
comes to extinction and gives off its energy completely. This process is independent
of the heating due to phase mixing and can occur much earlier and at lower altitudes
than the onset of the latter. Near this region the absorption length Δ = l∗ − ld along
the direction of the magnetic field becomes very small. Since both the Alfvén speed
vA and flow velocity u depend on r and l, the points where vA = u constitute
a surface l = l(r) in which essentially all the wave energy is released. This
effect, as mentioned earlier, should manifest itself as a complex picture of localized
bright regions, as complex as the topology of the magnetic fields and plasma flows
throughout the solar atmosphere.
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Chapter 6
Collective Phenomena in Rarefied
Ensembles of Flux Tubes

Abstract In the previous chapters we have considered the properties of individual
flux tubes and their dynamics due to the interaction with the surrounding medium.
The solar atmosphere, however, consists of ensembles of flux tubes randomly
distributed in space and over their parameters. In this chapter we shall consider
the time-dependent response of a randomly magnetized medium to propagation
of acoustic waves and unsteady wave packets. We will see that the collective
phenomena resulted from these interactions lead to clear morphological effects
that are observable. The character of these effects and the associated energy input
and distribution crucially depend on the magnetic filling factor of the medium and
several other factors that will be specified.

6.1 Response of Flux Tubes to Propagation of Sound Waves

The response of a randomly magnetized medium to propagation of acoustic waves
and unsteady wave packets strongly depends on the distribution of magnetic
elements and their individual properties (Ryutova and Priest 1993a,b). Obviously,
the wave packets and other motions near the surface carry significant amount of
energy, which, by various means, may be absorbed by the magnetic flux tubes and
carried upward into higher layers of the atmosphere. The outcome depends not
only on the properties of an individual flux tube, but strongly depends on the set
of neighboring flux tubes. For illustrative purpose we show in Fig. 6.1 examples of
the corona overlying two different ensembles of magnetic flux tubes. The left panels
show a dense conglomerate of magnetic elements forming a small active region with
magnetic filling factor on the order of unity. Hot compact loops are “customary”
overlying the dense mixed polarity region. The right panels show a quiet sun region
with rarefied ensemble of flux tubes with small filling factor. One can see clouds
of energy, at the same, 0.5 × 105 K temperature, as active region coronal loops,
but spread diffusively over the ensembles of far removed flux tubes. Later in this
chapter we shall see that the appearance of hot large clouds of plasma is a natural
consequence of the collective phenomena in rarefied ensembles of flux tubes.
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SDO  2 June 2012

Fe IX 171

HMI Magn

Fig. 6.1 Snapshots of two typical ensembles of magnetic elements and their overlying corona in
Fe IX 171 Å line at 6.3 × 105 K. Left: The magnetogram of a compact active region forming well-
defined hot loops; Right: A quiet sun region magnetogram and hot cloudy corona above it. White
arrows show an approximate direction of the propagation of clouds. Field of view of each snapshot
is 130 × 100 Mm. Courtesy of SDO/HMI

6.1.1 Energy Exchange Between the Acoustic Waves
and Ensembles of Flux Tubes

We start with consideration of rarefied ensembles of flux tubes and their interaction
with acoustic waves and unsteady wave packets. The subject of dense conglomerate
will be studied in Chaps. 8 and 9.

The most important role here is played by resonant interaction, both absorption
and scattering of the sound wave by flux tubes. Recall that in the case of resonant
absorption the acoustic waves (of frequency ω)energy of the incident acoustic wave
is accumulated in the system of magnetic flux tubes. The acoustic wave first damps
out at a rate νL ∼ (R2/d2)ω, and remains for a long time in the form of flux tube
oscillations. Then, in a time ν−1

rad which is much longer than the damping time of
the sound wave, the resonant flux tubes radiate their energy as secondary acoustic
(or MHD) waves, where νrad ∼ ωk2R2. The incident acoustic wave can also be
resonantly scattered with the main contribution coming from the kink mode; it
leads to a linear frequency shift and to the appearance of incoherent noise without a
preliminary buildup of wave energy in flux tube oscillations.

When the distribution of flux tube natural frequencies is broader than νL the
landau-like resonant absorption process is more important than resonant scattering,
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Fig. 6.2 Distribution function f (Ω) of the flux tubes as a function of their frequencies, Ω , for (a)
a broad distribution with δΩ � ν; (b) a narrow distribution with δΩ � νL where δΩ is the spread
in eigenfrequencies and νL is the damping rate of the acoustic wave due to Landau resonance

but when the distribution is narrow the tubes are almost identical and resonant
scattering may dominate.

Figure 6.2 illustrates these two cases of distribution function over the flux tube
parameters. Obviously the case of broad distribution function is much more realistic
than the case of almost identical flux tubes (Bogdan and Zweibel 1987). Thus, the
damping of long-wavelength acoustic oscillations in the rarefied plasma (R � d)
with

λ = k−1 � d, (6.1)

is largely determined by Landau damping (Landau 1946; Timofeev 1970; Chen and
Hasegawa 1974; Ryutov and Ryutova 1976; Lontano et al. 2000).

To look into the problem in depth we need to make nonlinear estimates, and
consider the damping of monochromatic sound wave of finite amplitude. This will
allow us to solve several problems. In particular, to find the maximum energy that
can be transferred to the medium from the acoustic wave packets, and a frequency
shift of the propagating waves, which is of measurable quantity.

Let a periodic acoustic wave be excited at the initial moment of time, t = 0, with
amplitude ζ0 and frequency ω0. The displacement amplitude ξη(t) of a flux tube in
the field of this sound wave is described by the equation:

∂ξη

∂t2
+ Ω2(η)ξη = AΩ2(η)ζ0e

−iωt (6.2)

where Ω(η) is the eigenfrequency of flux tube oscillations and A is a numerical
factor of order unity.
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6.1.2 Near-Resonance Condition

Let us first consider the energy exchange between the acoustic wave and the flux
tube in conditions close to resonance, i.e., in a region of small (η − η0). We assume
that the frequency shift Δ is small:

|Δ| − |ω − Ω | � ω (6.3)

Under this condition, for those values of η sufficiently close to η0 the amplitude of
the flux tube oscillations increases linearly in time, so that very rapidly, just in a few
periods, it becomes much larger than ζ0, and we can neglect the initial amplitude ξ0
(� ζ0).

The solution of (6.2) corresponding to the initial conditions ξ = 0 and dξ/dt = 0
at t = 0 is

ξ = Aζ0

[

− ΩeiΩt

2(Ω + ω)
− Ωe−iΩt

2(Ω − ω)
+ Ω2e−iωt

Ω2 − ω2

]

(6.4)

The first term on the right has a nonresonant character and can be neglected. The
last two terms can be combined, and using again the condition (6.3) we find

ξ � Aζ0ω

2Δ
e−iωt (1 − e−iΔt ). (6.5)

The energy density of flux tube oscillations which is proportional to |ξ |2 is then
estimated as

W � |1 − e−iΔt |2
Δ2 = sin2(Δt/2)

Δ2 . (6.6)

Let us denote the distribution function of flux tubes over their eigenfrequenciesΩ by
f (Ω). Then the total energy transfer to the flux tubes within time t is proportional to

I =
∫

f (Ω)
sin2(Δt/2)

Δ2 dΩ. (6.7)

At a time t � 1/ω, the interval of frequencies Ω that gives a significant contribution
to the integral (6.7) is of the order of (1/t) � Ω . Respectively, for a broad enough
distribution function f (Ω) can be replaced by its value at Ω = ω:

I � 1

2
f (ω)t

∫ ∞

−∞
sin2(x)

x2 dx = π

2
f (ω)t (6.8)

Then the power absorbed by the flux tubes is proportional to |ζ0|2f (ω).
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Fig. 6.3 Plots of the amplitude of flux tube displacement, ξη, as a function of the initial sound
wave amplitude, ζ⊥: dashed line for the linear case, and solid line for nonlinear case

By retaining all the numerical factors one can obtain in this way the damping
rate, νL, of the acoustic wave due to the Landau resonance, which is given by (3.28)
of Chap. 3. Thus in order of magnitude,

νL(≡ Imω) � αω (6.9)

Note that this estimate holds for a broad distribution function f (Ω) with Δ ∼ Ω

(Fig. 6.3).
Equation (6.7) shows that, when the damping rate of the acoustic wave equals to

νL, the wave is absorbed by flux tubes whose

|Δ| ≡ |ω − Ω | ≤ νL (6.10)

Within a time tL = 1/νL the energy of the acoustic wave is transferred to the
resonant flux tubes. The oscillations of the flux tubes, in principle, are gradually
dissipated in two ways: first, by radiative damping through the radiation of
secondary acoustic or MHD waves with damping rate νrad ∼ (kR)2Ω (see (3.50));
and, second, by the usual dissipative effects (e.g., viscosity, thermal losses, etc.),
with corresponding damping rate νdiss.

The Landau damping mechanism corresponds to the case when

νL � νrad + νdiss (6.11)

In this case the sequence of energy transfer phenomena is as follows:

1. Within a time tL = 1/νL the energy of the acoustic wave is transferred to the flux
tubes with eigenfrequencies in the range |ω − Ω | ∼ νL;
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2. Within a time of a few inverse damping rates |ω − Ω |−1 ∼ ν−1
L the flux

tube oscillations become phase-mixed and their oscillations become completely
incoherent;

3. Within a time proportional to (νrad+νdiss)
−1 the flux tube oscillations damp away

due to either or both mechanisms mentioned above, i.e. radiation and dissipative
processes.

The flux tube oscillation energy is converted into heat if νrad > νdiss, or into the
energy of incoherent secondary acoustic noise if νrad < νdiss.

It is important that if νL � νrad + νdiss, absorption of the acoustic wave occurs
neither by resonant absorption nor by resonance scattering: the initial energy of the
acoustic wave is instead stored for a long time, ∼ (νrad + νdiss)

−1, in the form of
incoherent flux tube oscillations.

6.2 Nonlinear Estimates of the Maximum Energy Input

Let us return to (6.2) and for definiteness rewrite it for the kink mode with
eigenfrequency Ω = kcs/

√
2/γ (1 + η)

∂2ξη

∂t2 + Ω2(η)ξη = −ω2ζ⊥e−Iωt (6.12)

As was already mentioned, near the resonance, in a few periods, the flux tube
oscillation amplitude, ξ , far exceeds the amplitude ζ⊥ of the initial sound wave,
and the oscillations become nonlinear. The first effect which saturates the growth of
the amplitude is a nonlinear frequency shift, which we denote as Δωnl(ξη). Now the
frequency of flux tube oscillations can be written as

Ωnl = Ω + Δωnl(ξη) (6.13)

The first non-vanishing term in the expansion of Δωnl(ξη) in powers of ξη has the
form

Δωnl(ξη) = Ω(kzξη)
2 (6.14)

For values η that are sufficiently close to resonance value η0 (condition (6.3), the
stationary value of the amplitude can be estimated directly from (6.12):

ξ(η)

∣
∣
∣
∣
dΩ

dη
(η − η0) − Ωk2

z ξ
2
η

∣
∣
∣
∣ ∼ ζ⊥ω (6.15)
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Since dΩ/dη ∼ ω, it follows from (6.14) and (6.15) that ξη depends on η as follows:

ν �
{

ζ⊥/|η − η0|, |η − η0| � (ζ⊥kz)
2/3

ζ⊥(ζ⊥kz)
−2/3, |η − η0| ≤ (ζ⊥kz)

2/3

}

(6.16)

This expression allows us to estimate the energy which will be transferred by an
ensemble of flux tubes to the medium when the amplitude of flux tube oscillations
reaches saturation. Since the energy of flux tube oscillations per unit length is of
the order of magnitude of ρeR

2ξ2
η ω2, the energy per unit volume transferred to the

medium can be estimated as

W∗ � ρeω
2
∫

g(η)ξ2
η dη (6.17)

Near the resonance we have

W∗ � ρeω
2ζ 2⊥(ζ⊥kz)

−2/3g(η0) (6.18)

or

W∗

W
� α

(
ρec

2
se

W

)1/3

(6.19)

Here W ∼ ρeω
2ζ 2 is the energy density of the incident sound wave. We used here

the estimate g(η0) ∼ α.
This result solves the problem of damping of a finite-amplitude wave, which may

proceed in two major ways:

1. When W/c2
se > α3 the maximum energy which can be transferred by the flux

tube is small compared to the energy of the sound wave, that is, the wave transfers
only an insignificant fraction of its initial energy to flux tubes, after which the
damping stops.

2. At W/c2
se < α3, the energy of flux tubes remains small even when the sound

wave is completely absorbed; in this case, nonlinear effects, and in particular,
a nonlinear frequency shift, are unimportant, and damping is determined by the
linear theory.

The condition for the applicability of the linear approximation in the problem of
damping of a monochromatic sound wave with initial amplitude ζ thus has the form

kζ < α3/2 (6.20)

Consider now the example of the case opposite to (6.20), i.e. when

kζ > α3/2 (6.21)
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In this case the sound wave is ultimately damped to extinction due to radiation
damping of the flux tube oscillations. The damping time turns out to be much larger
than ν−1

L . In this case the dissipation rate of the acoustic energy can be estimated as
−Q ∼ νradW

∗, where W∗ is given by (6.19) and νrad is the radiative damping rate.
Now, instead of the estimate 6.19) we have

− ∂W

∂t
� νradWα

(
ρec

2
se

W

)1/3

, (6.22)

which gives the characteristic damping time of the acoustic wave as

τ � 1

νradWα

(
ρec

2
se

W

)−1/3

� ν−1
rad (6.23)

Note that we have kept the assumption that νrad � Δωnl, otherwise the nonlinear
effects become unimportant.

To compare the contribution of linear and nonlinear processes let us directly find
the dependence of the flux tube oscillation amplitude on the initial amplitude of the
sound wave in both cases.

In the linear case we have

ξη ∼ ζ⊥
k2
zR

2
(6.24)

For a nonlinear estimate of the oscillation amplitude can be obtained from (6.15)

ξη �
∣
∣
∣
∣
∣

ζ⊥
Δ − Ωk2

z ξ
2
η − iνrad

∣
∣
∣
∣
∣
, (6.25)

where νrad is the small imaginary part of the radiative damping of tube oscillations,
and instead of the expansion of Ω in powers of |η − η0| we have retained Δ =
|ω − Ω |. Now with (6.14) we can rewrite (6.25) in the form

ξη �
∣
∣
∣
∣

ζ⊥
Δ − Δωnl − iνrad

∣
∣
∣
∣ . (6.26)

In the case of an exact linear resonance we have

|Δ| − |ω − Ω | = 0 (6.27)

which, in fact, is the basic Cherenkov condition in Landau resonance, cs = vphcosθ .
Indeed, since ω = cskz and Ω = cphkzcosθ , the condition ω − Ω = 0 gives
cs = vphcosθ .
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Now, from (6.26), (6.14), and (3.50, Chap. 3) we find

ξη �
∣
∣
∣
∣

ζ⊥ω

ω(kzξη)2 + iω(kzR)2

∣
∣
∣
∣ . (6.28)

This gives the simple dependence of ξη on the initial amplitude of the sound wave

ξη ∼ ζ⊥
1

k2
z

√
ξ4
η + R4

(6.29)

Figure 6.3 contains plots of the function ξη(ζ⊥) for both cases, the linear, dashed
line (6.24) and nonlinear, solid line (6.29).

These plots show that, for large amplitudes, ζ⊥, i.e. in nonlinear regime the
scattering cross section considerably decreases with respect to the linear case. Thus
the process of the energy transfer to the medium and its efficiency is totally governed
by the wave packet parameters, the properties of individual flux tubes, and on their
relationship. In other words on the character of oscillations excited in the flux tube
ensembles.

Although the most contribution comes from the kink modes, the axisymmetric
oscillations may also contribute to the dynamics and energy exchange in an
ensemble of magnetic flux tubes (Komm et al. 2000; Tirry 2000; Fujimura and
Tsuneta 2009). In the next section we describe the collective phenomena associated
with the excitation of the m = 0 mode.

6.3 Axisymmetric Oscillation in Flux Tube Ensembles

6.3.1 Equations of Motion

Of three types of axisymmetric modes the most efficient one is a width phase
velocity ((3.67), Chap. 3):

cT = ω

k
= csivA
√

c2
si + v2

A

(6.30)

The fact that the total pressure in the sausage oscillations remains unperturbed,
δP = δp + BδB/(4π) = 0, allows us to write down the r-component of the
displacement vector as

ξr = ξ0
r

R
(6.31)

Note that expression (6.31) is, in fact, a solution of the linearized MHD equations
for m = 0, namely, the first term in the expansion of the resulting Bessel function.
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In terms of displacement vector the linearized MHD equations for perturbations
of the form exp(−iωt + imφ + ikz) with m = 0 then are

−ρiω
2ξz = −ikzδp

br = ikzξrB0, bz = −B0
1

r

∂

∂r
rξr

δρ + ρi

1

r

∂

∂r
rξr + ikzξz (6.32)

δpi = c2
siδρ

From this set and expression (6.31) for ξr we can find the total pressure perturbation

δP = −2ρi
ξ0

R

(
2ρic

2
si

1 − c2
sik

2
z/ω

2
+ v2

A

)

(6.33)

Each flux tube that performs such oscillations pushes the surrounding plasma with
a force proportional to δP . The boundary condition

δP = −δp (6.34)

gives a connection between the response of the external bulk plasma and the volume
force with which the ensemble of flux tubes act on the plasma.

Let us find this connection. First of all, note that (6.34) gives the dependence
of the flux tube displacement on the external pressure. Indeed, substituting (6.33)
into (6.34) we have

2ρi
ξ0

R

(
c2

si

1 − c2
sik

2
z/ω

2
+ v2

A

)

= δpe, (6.35)

which gives for ξ0 the following expression

ξ0 = R
δpe

ρiv
2
A

ω2 − k2
z c

2
si

ω2 − k2
z c

2
T

c2
T

c2
si

(6.36)

Now we have to write the equation describing the propagation of sound waves in
the medium containing the ensemble of random flux tubes. We assume that outside
the flux tubes plasma is unmagnetized. Then the continuity equations become as

ρeω
2ξ = −ikδp (6.37)

δpe = c2
siδρe (6.38)
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and, instead of δρe = −ρedivξ , we have

δρe = −ρedivξ + ρe
< δV >

L3
, (6.39)

where V is the volume occupied by flux tubes within the large volume L3, such
that V � L3, i.e. the flux tubes form a rarefied ensemble with small filling factor,
α � 1.

The presence of the second term on the right-hand side of (6.39) is very important
and its meaning can be easily understood: this is the natural contribution of the
expansion and compression of the oscillating flux tubes to the density perturbation
of the surrounding plasma.

For flux tubes that are collinear but random in their other parameters the volume
V can be written as V = L

∑
j πR2

j , and for its perturbation we have

δV = 2v
∑

j

πRj δRj , (6.40)

It is obvious that

δRj = ξ0j (6.41)

where the displacement ξ0j of the individual flux tube’s boundary is defined
by (6.36). Thus, we have

δRj = ξ0j = Rj

δpej

2ρiv
2
Aj

ω2 − k2
z c

2
sij

ω2 − k2
z c

2
Tj

c2
Tj

c2
sij

(6.42)

When considering kink oscillations of flux tubes we neglected the plasma pressure
inside the flux tubes. This assumption does not affect the phenomenological results.
For sausage oscillations, however, we cannot neglect pi , and unlike the previous
case, the distribution function now contains one more parameter.

6.3.2 Dispersion Relation: Resonance and Frequency Shift

Let us introduce a broad distribution function of flux tubes f (Ξ) over the set Ξ of
all their parameters, radius R, gas-kinetic pressure inside, pi , and outside flux tube,
pe, density ratio, η = ρi/ρe, and magnetic field B. Normalization of the distribution
function gives the magnetic filling factor of the medium:

∫

f (Ξ)d ΞdR = α (6.43)

where d Ξ = dηdpidpedB, and α � 1.
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With the help of the distribution function we can find the average of the perturbed
value < δV > in (6.39), which allows one to find the volume force with which
oscillating flux tubes act on the medium. To do this, we use first the traditional
procedure and suppose that we have large number N � 1 of flux tubes occupying
the volume V . The volume dV occupied by flux tubes whose parameters are in the
intervals Ξ + d Ξ,R + dR in a total volume L3 is

DV = L3f (Ξ)d ΞdR (6.44)

The corresponding number of flux tubes in a volume L3 then

dN = L3

πR2 f (Ξ)d Ξ (6.45)

The contribution of dN flux tubes in the perturbation δV of the volume (6.40) equals

dδV

L3 = 2

L2 πRδRdN (6.46)

Integrating this expression and, taking into account (6.45), we find

δV

L3 = 2
∫

δR(Ξ)

R(Ξ)
f (Ξ)d Ξ. (6.47)

Substituting (6.42) for δR into (6.47), we obtain the perturbed volume averaged over
the flux tube ensemble:

δV

L3 = δpe

∫
1

ρiv
2
A

ω2 − k2
z c

2
si

ω2 − k2
z c

2
T

c2
T

c2
si

f (Ξ)d Ξ. (6.48)

With this expression (6.39) becomes

δρe = −ρedivξ + δpe

c2
se

I (ω, k), (6.49)

where

I (ω, k) = γpe

∫
1

ρiv
2
A

ω2 − k2
z c

2
si

ω2 − k2
z c

2
T

c2
T

c2
si

f (Ξ)d Ξ. (6.50)

Equations (6.37), (6.38), (6.49), and (6.50) form a closed set which describes
the response of the medium containing a random ensemble of flux tubes to
the propagation of sound waves provided by the resonant excitation of sausage
oscillations of the flux tubes.
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For plane wave propagating in an arbitrary direction (6.37) and (6.49) give the
straightforward dispersion relation:

ω2[1 − I (ω, k)] = kc2
se. (6.51)

Since I (ω, k) ∼ α � 1, we can rewrite (6.51) as

ω = kcse[1 + 1

2
I (ω, k)]. (6.52)

To perform the integration in (6.50) we have to specify the set of parameters
Ξ . In the whole set of parameters there are only a few independent ones. We will
show that by adequate transformation and choice we can reduce their number to
two. We will choose as independent variables the sound speed inside flux tube, csi,
and sausage oscillation phase velocity, cT . Let us write the pressure equilibrium for
a flux tube in the form

ρic
2
si + γ

2
ρiv

2
A = ρec

2
se (6.53)

This gives for the plasma density inside the flux tube

ρi = ρec
2
se

c2
si + (γ /2)v2

A

. (6.54)

Using the expression for phase velocity (6.30) and (6.54), we can express (ρiv
2
A)−1

in terms of csi and cT as

1

ρiv
2
A

= 1

c2
se

(
c2

si

c2
T

− 1 + γ

2

)

. (6.55)

Substituting this expression into the integral (6.50) we have

I (ω, k) = γpe

∫
1

c2
se

(
c2

si

c2
T

− 1 + γ

2

)
ω2 − k2

z c
2
si

ω2 − k2
z c

2
T

c2
T

c2
si

f (Ξ)d Ξ. (6.56)

Here γpe cancels with ρec
2
se, and so the integrand becomes a function of only csi

and cT . Now putting d Ξ = dc̃sidc̃T , where c̃si and c̃T are nondimensionalized in
terms of the sound speed outside the flux tubes (c̃T = cT /cse and c̃si = csi/cse),
with the use of (6.52) we arrive to the dispersion relation:

ω = kcse

[

1 + 1

2

∫ (

1 − 2 − γ

2

c2
T

c2
si

)
ω2 − k2

z c
2
sec̃

2
si

ω2 − k2
z c

2
sec̃

2
T

f (c̃si, c̃T )dc̃sidc̃T

]

.

(6.57)
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The real part of the integral gives a linear frequency shift for the acoustic waves
interacting with the ensemble of flux tubes, while imaginary part reflects the
resonant absorption of sound waves due to the excitation of flux tube oscillations.
The corresponding damping rate and frequency shift are

ν = −Imω = −kcse

2
ImI (ω, k). (6.58)

and

Δω = kcse

2
ReI (ω, k). (6.59)

For illustrative purposes let us calculate the damping rate. To find ImI (ω, k) it is
useful to rewrite the integral (6.56) in the form

ImI (ω, k) = Im
∫ (

1 − 2 − γ

2

c2
T

c2
si

)
[ω2 − k2

z c
2
sec̃

2
si]f (c̃si, c̃T )dc̃sidc̃T

(ω − kzcsec̃T + i0)(ω + kzcsec̃T )
.

(6.60)

where we have added a vanishing imaginary part in the resonance denominator in
order to choose the correct integration path. Using the standard identity we can write

Im
1

ω − kzcsec̃T + i0
= −iπδ(ω − kzcsec̃T ), (6.61)

The resonance condition is ω = kzc̃T , has the form of the usual Cherenkov
condition. Indeed, as k = kzcosθ , and c̃T = cT /cse, we have

cse = cT cosθ. (6.62)

Now, integrating (6.60) over dc̃T we obtain

ImI (ω, k) = π

kzcse

∫ ∞

0

[

1 − 2 − γ

2

(ω/kzcse)
2

c̃2
si

]

f (ω/kz), c̃si)dc̃si (6.63)

Bearing in mind that ω/(kzcse) = 1/cosθ , we can rewrite (6.63) in the form

ImI (ω, k) = π

2cos2θ

∫ ∞

0

[

1 − 2 − γ

2

1

x2

]

(1 − x2)f (x)dx, (6.64)

where we have introduced the variable

x = c̃secosθ (6.65)
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The integral (6.64) for a given distribution function is equal in order of magnitude
to the magnetic filling factor of the medium. Thus, an estimate for the Landau
damping rate is

ν � α
πkcse

4cos2θ
(6.66)

Note that the integrand contains a product of two terms (1 − x2) and [1 − (2 −
γ )/2x2], which for a proper sign of the damping rate have to be positive. Since
always (1 − x2) > 0 (because c̃si = csi/cse < 1, from (6.53)), we have to satisfy
also the condition

(

1 − 2 − γ

2

1

x2

)

> 0 (6.67)

which is automatically satisfied since 1/x2 < 2/(2 − γ ). Using the definition of x,
and the resonance condition (6.62), we have

c2
T <

2

2 − γ
c2

si, (6.68)

which also always holds ( cT < csi and 2/(2 − γ ) > 1).
In the same way one can find the frequency shift (6.59). Given that I (ω, k) ∼ α,

it is obvious that

Δω � α
kcse

2
(6.69)

Thus, under the resonance condition (6.62), the flux tubes absorb the energy of
sound waves which remains in the form of natural oscillations of the flux tubes until
it turns into one or the other form of energy depending on the particular dissipation
mechanism.

The first effect which turns on is the radiative damping of sausage oscillations.
The corresponding damping rate is (cf. (3.101), Chap. 3):

νm=0
rad = πω

2

k2R2

2

c6
si

c2
se(c

2
ci + v2

A)2
(6.70)

In this case the energy transfer scenario can be described as follows. If the Landau
damping rate determined by (6.66),

νL ≡ ν > νm=0
rad , (6.71)

the resonant flux tubes absorb the energy of the sound wave in a time tL = ν−1
L ,

and accumulate it during a time ν−1
rad , after which the oscillating flux tubes radiate
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secondary acoustic or MHD waves. In the case opposite to (6.71) when

νL ≡ ν < νm=0
rad , (6.72)

the energy of the incident acoustic waves goes directly to the energy of secondary
waves, that is, a direct resonance scattering of sound waves takes place.

6.4 The Interaction of Unsteady Wave Packets
with an Ensemble of Flux Tubes

In this section we consider the interaction of an unsteady wave packets of acoustic
waves with plasma containing random ensembles of magnetic flux tubes. We focus
mainly on the physical mechanisms of energy transfer to the plasma. We shall
see, for example, that the propagation of an acoustic wave packets in randomly
magnetized solar atmosphere is accompanied by clear morphological effects which
include the spreading of the energy absorption region over scales much larger than
the size of the initial wave packet. From observational point of view this is one of the
ordinary events observed in chromosphere and corona above the quiet sun regions
(see Fig. 6.1).

The regions of an efficient energy input and their localization depend on the
distribution of magnetic flux tubes in space and over their physical parameters,
including their noncollinearity, which plays important role here. The appearance
of clouds of energy above the rarefied ensembles of flux tubes is determined by
the fact that the solar atmosphere is randomly magnetized, and magnetic flux tubes
covering the solar surface are essentially nonidentical.

We start with a brief summary of the acoustic wave propagation through the
random ensembles of magnetic flux tubes. As was shown, the interaction of an
acoustic wave with an ensemble of flux tubes results in the excitation of oscillations
propagating along those particular flux tubes for which the Cherenkov resonance
condition is satisfied:

ω = (k · n)vph (6.73)

where vph is the phase speed either of a kink mode (m = ±1) or an axisymmetric
mode (m = 0). It is important that vph carries the required information on flux tube
parameters and completely determines its individuality.

We shall operate again with a broad distribution function over flux tube param-
eters with the mean width Δη � α, where α is the total fraction of the volume
occupied by flux tubes in given area (see Fig. 3.2, Chap. 3). At the same time, it is
only natural that the interval δη of the parameters of those tubes that are close to
resonance with a particular sound wave is small:

δη � α � Δη (6.74)
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The width of the interval of phase velocities of excited flux tube oscillations is
δvph � Imω/k � αω/k, so that

δvph/vph � α (6.75)

The Landau damping rates due to the excitation of kink and sausage modes are,
respectively,

νm=±1 = g(η0)πkcsesin2θ, η0 = 2cos2θ

γ
− 1, (6.76)

and

νm=0 � α
πkcse

4cos2θ
(6.77)

Hereafter we will denote the damping rates (6.76) and (6.77) by νL, remembering
that a Landau resonance occurs for both kinds of modes; which mode should be
considered in a particular case is determined by the Cherenkov condition (6.73).

Once excited the flux tube oscillations are subject to radiative damping with the
following damping rates:

νm=±1
rad = πω

1 + γ

(
kzR

2

)2 [ 2

γ (1 + γ )
− 1

]

(6.78)

and

νm=0
rad = πω

2

(kR)2

2

c6
si

c2
se(c

2
si + v2

A)2
(6.79)

For convenience let us overview the major steps in the process of the interaction
of a sound wave with the magnetic flux tubes.

Under the Cherenkov condition (6.73) the resonant flux tubes absorb the energy
of the sound wave in a time

τL = ν−1
L (6.80)

Excited oscillations then propagate along the flux tubes (Fig. 6.4). In a time

τrad = ν−1
rad (6.81)

the absorbed energy is re-radiated as secondary acoustic or MHD waves. The time
for radiation of secondary waves is estimated as

τrad � 1

ω(kR)2
, (6.82)
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Fig. 6.4 Propagation of an acoustic wave through an ensemble of flux tubes, some of which are
nonresonant, while others are resonant with respect to kink or sausage modes

For those regions of the solar atmosphere where the magnetic filling factor, α, is
small, i.e. R � l � k−1, expression (6.82) is much larger than the Landau damping
time:

τrad � τL (6.83)

Thus the energy of the incident acoustic wave remains for a long time in the form
of flux tube oscillation energy.

From expression (6.82) it is obvious that the different flux tubes radiate secondary
waves over different times and at different heights: thicker flux tubes, for example,
radiate sooner than the thinner ones; and, of course, the radiated waves have random
phases

Δω � νL (6.84)

This process is illustrated in Fig. 6.5. These phenomena manifest themselves in
clear morphological effects, namely in the appearance of clouds of energy overlying
the rarefied ensembles of flux tubes. In other words, the energy absorption region
spreads over the area that is much larger than the size of the initial wave packet. The
amount of the energy input and its location determined by physical parameters of a
system will be discussed in the next section.
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Fig. 6.5 Radiation of secondary acoustic or MHD waves by resonant flux tubes. Different flux
tubes radiate secondary waves in different times and at different heights

6.5 Spreading of the Energy Absorption Region: “Clouds
of Energy”

The processes described above by (6.78)–(6.83) and illustrated in Figs. 6.4 and 6.5
represent the initial stage of the interaction between acoustic wave-trains and
ensembles of flux tubes. The process may continue farther due to the fact that the
secondary acoustic or MHD waves are also subject to absorption or scattering by
the randomly magnetized medium.

Specifically, the secondary waves are again reabsorbed after a length scale LL

which is of the order of cse/νL, or

LL = cse

νL

� λ

α
, (6.85)

This process cascades farther until a reradiated waves get finally absorbed due to the
action of some dissipative effects. In other words, process of the resonant absorption
and re-radiation of the waves proceeds until final extinction of the wave energy. The
duration and character of these processes depend, again, on the parameters of the
acoustic wave packets and the properties flux tube ensembles.
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To visualize clearly these effects let us start with the following criteria:

νL � νrad � νdiss, (6.86)

where νdiss is a damping rate due to the usual dissipative mechanisms, thermal
conductivity, viscosity, Ohmic losses. These conditions are appropriate for the
solar atmosphere, but the analysis can be reproduced with minor changes for other
relationships between the acting damping rates.

Let us introduce the damping lengths corresponding to Landau damping, LL,
radiation, Lrad and dissipative processesLdiss:

LL = cse

νL

, Lrad = vph

νrad
, Ldiss = vph

νdiss
, (6.87)

In accordance with criteria (6.86) we have

LL � Lrad � Ldiss. (6.88)

Consider two limiting cases:

1. The case of a large wave packet, whose size D is larger than the Landau damping
length LL

D � LL, (6.89)

2. The case of a short wave packet when D is much smaller than LL

D � LL, (6.90)

At the same time for both cases the following inequality holds with a good
margin:

D � λ � d, (6.91)

where d , as earlier, is the mean distance between flux tubes.

6.5.1 Large Wave Packets

Under the condition (6.89) a wave packet interacting with an ensemble of flux tubes
is damped away without a considerable displacement: since the Landau damping
length is much less than the size of the wave packet, all the resonant flux tubes are
excited in the initial area of the wave packet. In Fig. 6.6 a schematic of a large wave
packet which covers the space containing the ensemble of widely spaced flux tubes
is shown. At the initial moment of time t = 0 flux tubes are not excited.
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Fig. 6.6 Propagation of a large wave packet through an ensemble of flux tubes: (a) Initial location
of a wave packet with no flux tubes yet excited; (b) At an intermediate time, ν−1

L � t � ν−1
rad , the

wave packet has damped away, but the energy remains in the form of natural oscillations of flux
tubes which have not yet radiated secondary waves. k is the direction of the propagation of the
wave packet

At a time which is larger than the Landau damping time but less than the time of
the radiation of secondary waves

LL

cse
� t � Lrad

vph
, (6.92)

the wave packet is already damped away, but the excited flux tubes have not yet
radiated secondary waves. In other words, at the time t such that

ν−1
L � t � ν−1

rad , (6.93)

the wave packet is damped away, but its energy remains in the form of natural
oscillations of resonant flux tubes imitating the initial area of the wave packet. This
stage is shown in Fig. 6.6b.

The excited perturbations, kink or sausage modes, propagate along the flux tubes
carrying the accumulated energy of wave packet to higher layers of the atmosphere
with a speed whose projection on the direction of the wave packet propagation is
approximately cse.

After a time

t � ν−1
rad , (6.94)

secondary waves are radiated. Since νrad depends on the radius of the flux tube
((6.78) and (6.79)), different flux tubes radiate in different times. Respectively, the
height of the energy input is different for different flux tubes. This fact leads to a
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significant spreading of the region where the energy of the initial wave packet is
transferred to the medium, so that the region of energy input becomes larger than
the initial size of the wave packet. Note that noncollinearity of flux tubes enhances
the spreading of energy input region. It is also important that the location of energy
input, or in other words, the location of reappearance of the wave packet image
differs from the expected position of the wave packet in the absence of random flux
tubes.

The sketch of the process is shown in Fig. 6.7. In the absence of flux tubes the
wave packet would travel along its initial direction spreading out diffusively. On the
other hand, when passing through the random ensembles of flux tubes, the wave
packet loses in fact its identity and reappears as a product of flux tube oscillations
in different location and of different sizes. The most typical coronal emission above
the rarefied ensembles of flux tubes forming quiet sun regions shown in Fig. 6.1 is
in a striking agreement with the process described above.

Wave packet at t=0

True location in presence

Expected location
in absence of flux tubes

 of flux tubes

k

Fig. 6.7 Initial location and size of a wave packet shown at t = 0. In a time t = ν−1
rad the final

location of wave packet carrying the energy will be observed at the expected location if there are
magnetic flux tubes, and on a true location when passing through the ensemble of flux tubes
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6.5.2 Short Wave Packets: Energy Absorption and Release

For a short wave packet, with size D � LL, we have

D � cse

αω
� λ

α
(6.95)

where we have taken into account that LL � cse/νL (see Eq. (6.87)), and thus

νL � αω. (6.96)

The condition (6.95) means that, during the traveling of the wave packet through the
ensemble of flux tubes, both excited and non-excited flux tubes exist simultaneously.

Indeed, the wave packet traverses any particular flux tube within a time

T � D/cse � ν−1
L (6.97)

which is short compared to Landau damping time. Thus the wave packet excites
resonant flux tubes on its way and propagates further, leaving a trace of excited flux
tubes, which in turn radiate secondary waves. In principle, the first excited flux tubes
can already radiate their energy before the wave packet is finally damped away. In
this case secondary acoustic waves coexist with the initial wave packet.

The particular scenario of wave packet dynamics and the final region of the
energy input depend on the specifics of the flux tube distribution. In other words,
the shape of the “new image” of the wave packet is determined by the memory of
the system.

Now we proceed to quantitative analysis. Conditions (6.97) allow to write the
pressure perturbation, and other perturbed quantities, through the slowly varying
envelope:

δpe = 1

2
δp0F

(

r − k
k
cset

)

e−iωt+ikr + c.c. (6.98)

where ω = csek, and F(r − (k/kcse)t) is the slowly varying envelope. No
damping is taken into account in this expression because of the condition (6.97). For
definiteness, we consider δp0 and F as real functions, i.e. δp0 = δp∗

0 and F = F ∗.
Let us first consider the response of a certain flux tube to the action of the external

perturbation in the form (6.98). Consider as an example the kink oscillations of flux
tube and recall the equation for the displacement vector ξ of a flux tube ((3.8),
Chap. 3):

∂2ξη

∂t2 − v2
ph

∂2ξη

∂ζ 2 = 2

1 + η

∂v⊥
∂t

(6.99)
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Fig. 6.8 A wave packet moving in the direction k. While n is the direction of a flux tube and r is
the coordinate of a point on the flux tube surface

where v⊥ is the normal component of the macroscopic velocity of plasma outside
the flux tubes, and ζ is the coordinate along the flux tubes.

Without the external motions, when v⊥ = 0, (6.99) describes the m = ±1
eigenoscillations of a flux tube, whereas the right-hand side of (6.99) with nonzero
v⊥ �= 0 represents the interaction force between flux tube and its environment.

Consider the wave packet traveling in the k direction as sketched in Fig. 6.8, and
let n be a unit vector along the flux tube. The coordinate of any point at the flux tube
surface can be written as r = r0 + nζ .

The absolute value of the macroscopic plasma velocity outside the flux tube, v,
can be written as v = (k/k)v, so that its component, normal to the vector n, is

v⊥ = v
k − n(k · n)

k
(6.100)

In the external region, which we assume to be magnetic free, we have

− iωρev = −ikδpe (6.101)

which gives v = kδpe/ωρe or v = δpe/(cseρe), so that

∂v

∂t
= 1

cseρe

∂δpe

∂t
(6.102)

For the slowly varying envelope, given by (6.98), we therefore have

∂v

∂t
� −iω

δp0

cseρe

F

(

r − k
k
cset

)

e−iωt+ikr + c.c. (6.103)
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and the force on the right-hand side of (6.99) can be written as

∂v⊥
∂t

= −k − n(k · n)

k

[

ω
δp0

cseρe

F

(

r − k
k
cset

)

e−iωt+ikr + c.c.

]

(6.104)

Introducing the notations

ṽ ≡ 2δp0

(1 + η)cseρe

, ξ⊥ = ξ̃
k − n(k · n)

k
, (6.105)

and using expression (6.104) for the interaction force we have instead of (6.99):

∂2ξ̃η

∂t2 − v2
ph

∂2ξ̃η

∂ζ 2 = −iωṽF

(

r − k
k
cset

)

e−iωt+ikr + c.c. (6.106)

Since F is slowly varying function, we seek the solution of (6.106) in the form

ξ̃ = 1

2
ξ0(ζ, t)e−iωt+ik‖ζ + c.c. (6.107)

where ξ0(ζ, t) is also slowly varying function, and k‖ = (k · n) ≡ kcosθ .
Taking second derivatives of function (6.107) over time and coordinate, substi-

tuting them into (6.106) we obtain

1

2
(ω2 − k2‖v2

ph)ξ0(ζ, t) + iωξ0t + ik‖v2
phξ0ζ = iωṽF. (6.108)

For flux tubes that are close to resonance the following conditions are fulfilled:

|ω − k‖vph| � ω (6.109)

For exact resonance we have the Cherenkov condition: ω = k‖vph. Denote the
deviation from exact resonance by

δω = |ω − k‖vph| (6.110)

Then the coefficient of the first term on the left of (6.108) can be written

1

2
(ω2 − k2‖v2

ph) = 1

2
(ω + k‖vph)(ω − k‖vph) � ωδω (6.111)

With this we can rewrite (6.108) in the form

ξ0t + vphξ0ζ − iδωξ0 = ṽF (ζ, t), (6.112)
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and for the complex conjugate

ξ∗
0t + vphξ

∗
0ζ + iδωξ∗

0 = ṽF (ζ, t), (6.113)

Multiplying (6.112) by ξ∗
0t , (6.113) by ξ0t , and integrating the sum we get the energy

density of flux tube oscillations:

∂

∂t

∫ ∞

−∞
|ξ0|2dζ ′ = ṽ

∫ ∞

−∞
F(ζ ′, t)[ξ0(ζ

′, t) + ξ∗
0 (ζ ′, t)]dζ ′ (6.114)

The next important step is to average expression (6.114) over the large volume
containing many tubes. This way we can find the energy input in this volume
provided by the interaction of the acoustic wave packet with the ensemble of flux
tubes.

Let us first find the energy density of a single magnetic flux tube. The energy of
a flux tube per unit length is

〈W 〉 =
〈

πR2(ρi + ρe)sin2θ

(
∂ξ̃⊥
∂t

)2〉

(6.115)

Taking into account (6.107) we have for the averaged energy per unit length:

〈W 〉 = πR2(ρi + ρe)sin2θω2|ξ0|2. (6.116)

The total energy of the flux tube is then

W =
∫ ∞

−∞
〈W 〉dζ ′ = πR2(ρi + ρe)sin2θω2

∫ ∞

−∞
|ξ0|2dζ ′. (6.117)

Taking the time derivative of (6.117) and comparing it with (6.114) we get an
expression for the temporal variation of the flux tube energy:

∂W

∂t
= ṽπω2R2(ρi + ρe)sin2θ

∫ ∞

−∞
F(ζ ′, t)Re ξ0(ζ

′, t)dζ ′. (6.118)

where we took into account that ξ0 + ξ∗
0 = 2Re ξ0; ξ0(ζ, t) is governed by (6.112).

To solve the problem qualitatively we have to find an explicit expression for
ξ0(ζ, t), that is, to solve (6.106). To do so we introduce new variables

s ≡ ζ − vpht, x ≡ ζ (6.119)

such that

∂

∂t
≡ −vph

∂

∂s
,

∂

∂ζ
≡ ∂

∂s
+ ∂

∂x
. (6.120)
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In these variables (6.112) becomes

− vph
∂ξ0

∂s
+ vph

(
∂ξ0

∂s
+ ∂ξ0

∂x

)

− iδωξ0 = ṽF

(

x,
x − s

vph

)

(6.121)

or, finally,

∂ξ0

∂s
− iδωξ0 = ṽ

vph
F

(

x,
x − s

vph

)

. (6.122)

The solution of this equation is of the form

ξ0 = ṽ

vph
exp

(

i
δω

vph
x

)∫ x

−∞
exp

(

−i
δω

vph
x ′
)

F

(

x ′, x ′ − s

vph

)

dx ′. (6.123)

In the original variables (see (6.119)) this solution is

ξ0(ζ, t) = ṽ

vph

∫ ζ

−∞
exp

[

−i
δω

vph
(ζ − ζ ′)

]

F

(

ζ ′,
ζ ′ − ζ

vph
+ t

)

dζ ′, (6.124)

and for temporal variation of the energy of flux tube oscillations (6.118) we have

∂W

∂t
= ṽπω2R2(ρi + ρe)sin2θRe

∫ ∞

−∞
F(ζ, t)dζ · ξ0(ζ, t) (6.125)

where ξ0(ζ, t) is given by (6.124).
Averaging this expression over the large volume containing many flux tubes

we can find the energy deposition to the medium from the ensemble of flux tubes
interacting with the acoustic wave packets. This will be done in the next section.

6.6 The Energy Transfer from Unsteady Wave Packets
to the Medium

Let us consider a large volume with a cross section of dimensions L by L , such
that d � L � λ, where d is, as earlier, a mean distance between the flux tubes.

The energy deposition into the volume with the cross section L × L has the
form

1

L 2

∂WL

∂t
= Re

ω2ṽ2

vph
sin2θ

∫ ∞

0
(ρi + ρe)g(η)dη

∫ ∞

−∞
F(ζ, t)dζ

×
∫ ζ

−∞
exp

[

−i
δω

vph
(ζ − ζ ′)

]

F

(

ζ ′, ζ ′ − ζ

vph
+ t

)

dζ ′ (6.126)
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As discussed, for a broad distribution function the estimate for the parameter
range of resonance is quite small δη � α � 1. This condition implies that the
main contribution in the expression (6.126) comes from a narrow resonance region
of width δη near the resonance value of η = η0, (η0 = 2cos2θ/γ − 1).

The first integral in (6.126) can be written as

∫ ∞

η

(ρi + ρe)g(η)d(η − η0) (6.127)

Since the function g(η) is strongly peaked near the η0, the lower limit in this integral
can be replaced by −∞ and (ρi + ρe)g(η) by its value at exact resonance, [(ρi +
ρe)g(η)]η0 . Then the triple integral in (6.126) can be written as

I3 =
∫ ∞

−∞
F(ζ, t)dζ · I2(ζ ), (6.128)

where

I2 = (ρi + ρe)g(η)|η0 (6.129)

×
∫ ζ

−∞

∫ ∞

−∞
exp

[

−i
δω

vph
(ζ − ζ ′)

]

F

(

ζ ′, ζ ′ − ζ

vph
+ t

)

dζ ′d(η − η0)

The real part of (6.129) determines the energy dissipation (6.126) in the medium.
After performing the double integration in (6.129) we find

ReI2(ζ ) = π
1

|(d/dη)(δω/vph)|η0

(ρi + ρe)g(η)|η0F(ζ, t). (6.130)

The evaluation of this double integral is detailed in the Appendix.
Using now (6.126) and (6.130) we can write the energy deposition into the

ensemble of flux tubes from the acoustic wave packet as

∂WL

∂t
= 2πL 2ω2v2sin2θ

vph |(d/dη)(δω/vph)|η0

[(ρi + ρe)g(η)]η0

∫ ∞

−∞
F 2(ζ, t)dζ . (6.131)

This gives the value of the energy dissipation in a volume with cross section L ×L
containing the ensemble of flux tubes with distribution function g(η).

The energy dissipation per unit volume according to (6.131) will be

∂WL

∂t
= 2πρeω

2ṽ2sin2θ

vph |(d/dη)(δω/vph)|η0

(1 + η)g(η)|η0F
2(ζ, t), (6.132)



6.6 The Energy Transfer from Unsteady Wave Packets to the Medium 175

or, after substituting here ṽ from (6.105),

∂WL

∂t
= 8πω2g(η0)sin2θ

vph |(d/dη)(δω/vph)|η0(1 + η0)

δp2
0

ρec2
se

F 2. (6.133)

From this equation we can find the damping rate of the acoustic packet. To do so,
we first find the energy density of the acoustic wave packet itself, namely, W = ρv2,
where the velocity v is

v2 = δp2
e

ρ2
e c2

se
F 2. (6.134)

Averaging the expression (6.98) representing the form of the wave packet we obtain

v2 = 1

2ρ2
e c2

se
δp2

0F
2, (6.135)

and for the energy density of the acoustic wave packet we have:

Wac = δp2
0

2ρec2
se

F 2. (6.136)

Comparing (6.133) and (6.136) one can see that Eq. (6.133) can be written as
follows:

∂WL

∂t
= 16πω2g(η0)

vph |(d/dη)(δω/vph)|η0

sin2θ

1 + η0
Wac, (6.137)

which implies the damping rate of

Γ = 16πω2g(η0)

vph |(d/dη)(δω/vph)|η0

sin2θ

1 + η0
. (6.138)

Now recall that vph is the phase velocity of the kink mode in the flux tube, and δω

is determined by (6.110). Then for the derivative in the denominator of (6.138) we
have

d

dη

δω

vph
= d

dη

ω − k‖vph

vph
= − ω

v2
ph

dvph

dη
(6.139)

And so

vph

∣
∣
∣
∣

d

dη

δω

vph

∣
∣
∣
∣
η0

= 1

2

ω

1 + η0
(6.140)



176 6 Collective Phenomena in Rarefied Ensembles of Flux Tubes

After substituting (6.140) into (6.138) we have for the damping rate

Γ = 32πω g(η0) sin2θ. (6.141)

Comparing (6.141) with the damping rate of a monochromatic wave (6.76), we see
that qualitatively the damping rate of an unsteady wave packet is determined exactly
by the same physical parameters, but it is almost an order of magnitude larger than
that of a monochromatic wave. It is important to note, however, that the essential
difference between these two cases is that the propagation of unsteady wave packet
is accompanied by spreading of energy input region and its specific location.

Modern space instruments allow nowadays to observe and measure large-scale
disturbances, like, e.g., so-called “EIT” waves (Delaboudiniere et al. 1995; Chen et
al. 2005; Gopalswamy et al. 2009; Chen and Wu 2011; Long et al. 2013). Obviously
these waves are hardly a local phenomena and are directly connected with the energy
absorbed by the ensembles of photospheric flux tubes and transferred in form of
various clouds of energy and high frequency waves into the corona.

6.7 Problems

6.1 The waves and wave packets in the vicinity of the solar surface may well
be associated with the parametric excitation. Consider a sample problem of one-
dimensional oscillator

∂2x

∂t2 + ω2
0(1 + αcos2ωt)x = 0 (6.142)

with α � 1 and |ω − ω0| � ω0 (Kadomtsev 1968).
Describe the character of oscillations

(a) in the region of parametric resonance, and
(b) under the condition of instability.

6.2 The instability described above for beat waves (Fig. 24.2b) falls into a class
of modulation instabilities (Lighthill 1965). This instability plays a major role
in the systems of solitons, rogue waves, formation of chaos and other nonlinear
phenomena. Find the criterion of instability for a plane wave packet with slowly
varying amplitude and phase (Kadomtsev and Karpman 1971).
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Appendix

To perform the integration in (6.129) we introduce the function

κ(η) = δω

vph
(6.143)

and change the variable ζ − ζ ′ = x. Then the double integral in (6.129) becomes
(we need only its real part):

Re I (ζ ) = Re
∫ ∞

0

∫ ∞

−∞
d(η − η0)e

iκ(η)xF

(

ζ − x, t − x

vph

)

dx. (6.144)

Now, the shortest way to integrate (6.144) is to use the definition of the δ-function,
namely

δ(x) = 1

2π

∫ ∞

−∞
eikxdk, δ[f (x)] = 1

|df/dx|0 δ(x). (6.145)

Therefore, (6.144) can be written as

Re I (ζ ) = Re
∫ ∞

0
2π

1

|df/dx|0 δ(x)F

(

ζ − x, t − x

vph

)

dx. (6.146)

which gives immediately

Re I (ζ ) = π

|df/dx|0 F(ζ, t). (6.147)

Substituting (6.147) into (6.144) we come to expression (6.130)

ReI2(ζ ) = (ρi + ρe)g(η)|η0

π

|(d/dη)(δω/vph)|η0

F(ζ, t). (6.148)
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Chapter 7
Effects of Magnetic Flux Tubes
in Helioseismology

Abstract In the previous chapter we studied the response of rarefied ensembles
of random magnetic flux tubes to the propagation of acoustic waves and unsteady
wave packets. In this chapter we shall study how the properties of acoustic wave
packets at the photospheric level, modified by presence of magnetic flux tubes flux
tube, can be used for diagnostics goals. In particular, we shall study effects of flux
tubes on local helioseismology based on the time-distance analysis (Duvall et al.,
Nature 362:430, 1993; Duvall et al., Nature 379:235, 1996). We shall see that flux
tubes strongly affect the standard methods of time-distance tomography, and allow
more realistic inference of physical parameters, including flows, magnetic fields,
and their nonuniformities. Besides, one can study the structure of solar atmosphere
by spectral features of acoustic waves using an approach in the data analysis called
“Raman spectroscopy of p-modes.”

7.1 The Time-Distance Tomography

The time-distance tomography is based on the measurement of travel time of an
acoustic wave between any point on the solar surface and a surrounding annulus
(Duvall et al. 1993, 1996). An acoustic wave propagating through the near-surface
envelope interacts with its random magnetic fields and mass flows and is exposed to
the density and temperature perturbations. The alterations in travel time of acoustic
waves due to these interactions carry the information on the surface and subsurface
structures. In the original approach the travel times were measured by calculating
the temporal cross correlation function between the data at some point of given area
and the data within an annulus at large distance from the point. For each of chosen
annuli the travel times were measured for both forward and backward propagation,
i.e. from the central point of the annulus (τ (+)) and back (τ (−)). However, this
approach, even though later extended to measurements of travel times in the north-
south and east-west directions separately (Duvall et al. 1997) did not allow to detect
the presence of magnetic fields.
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Fig. 7.1 Geometry of the problem: (a) ray trajectory in the model of uniform slab; AC = r (b)
annulus on the solar surface; the x-axis is parallel to solar equator, while the y-axis is directed
along the local meridian

The situation has changed with development of the procedure based on the
angular dependence of travel times. An advantage of such an approach is in its
intrinsic invariance with respect to the choice of the coordinate frame and sensitivity
to the presence of magnetic elements. The method provides an automatic rule of
assigning proper weights to every observational points and its magnetic status.

7.1.1 Key Points of Time-Distance Analysis with Magnetic
Fields

Consider a typical geometry of time-distance analysis in local helioseismology, but
let the magnetic field be present (Ryutova and Scherrer 1998). Figure 7.1b shows
the geometry of the problem: acoustic wave propagating from the point A on the
solar surface downward is reflected at the depth of h and propagates back to certain
point C on the surface. Flow velocity is denoted by u, its direction is characterized
by the angle θu; the magnetic field, B forms the angle θB with the axis x. The angle
θ is counted, say, from west at the solar surface.

In ray approximation the averaged value of the propagation time can be
expressed as

τ̄ = 1

2π

∫ 2π

0
τ (θ)dθ (7.1)

The key point of the approach that reflects the presence of magnetic flux tubes is
that in addition to the average (7.1) one must also take sin nθ and cos nθ transforms
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of the propagation time

τ̄ (n)
c = 1

2π

∫ 2π

0
τ (θ) cos nθdθ (7.2)

τ̄ (n)
s = 1

2π

∫ 2π

0
τ (θ) sin nθdθ (7.3)

We will use the approximation of geometrical acoustics and assume that the
magnetic effects are small. We will discuss only averages corresponding to the first
two harmonics, n = 1, 2. It is remarkable that the first harmonics and their various
combinations give amazingly rich information when used with the observational
data. In particular, the first harmonics alone (n = 1) give information on the
direction and absolute value of the horizontal flow velocity.

Combinations of the second harmonics (n = 2) of the inward (τ (−)) and outward
(τ (+)) times give information on the orientation and absolute value of horizontal
magnetic fields and the spatial gradients of flow velocity. Namely the sum of forward
and backward propagating times τ (+) + τ (−) carries information on the magnetic
field distribution, while the difference τ (+) − τ (−) on the magnitude and orientation
of shear flows.

Besides, the method allows to separate the contributions of mass flows from
the contribution of the magnetic fields and find the alteration of the travel time
provided by flow field and magnetic field independently. One can also single out
the horizontal components from vertical components of the magnetic field and
mass flows. Higher order harmonics carry information on the finer structures of
the medium and require high resolution data.

To illustrate the kind of information that is contained in τ̄
(1,2)
c,s , first we consider a

simple model of acoustic wave propagation: we assume that “unperturbed” plasma
parameters (i.e., parameters in the absence of flows and magnetic field) are uniform
in the slab of thickness h corresponding to the lower reflection point for the acoustic
wave. Then we present the corrections to the propagation time in a vertically
stratified atmosphere and show that in this much more general case the alterations in
the travel time still manifest the same cos nθ − sin nθ dependence on the azimuthal
angle.

We assume that the wavelength of acoustic waves is small compared to all
other spatial scales and use the ray approximation. Typically, near the surface flow
velocities, u, and Alfv’en speed, vA are much less than the sound speed, cs

u, vA � cs, (7.4)

Thus effects of flow and magnetic field enter into the propagation time τ (θ) as small
additions proportional to u/cs , and v2

A/c2
s , respectively. Since the conditions (7.4)

are believed to be held for subsurface layers, one can consider the effects of flow
and magnetic field separately. We will follow this line of reasoning throughout the
chapter.
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7.1.2 The Travel Times

The travel time of the wave propagating with the group velocity vgr = ∂ω/∂k in
the ray approximation is

τ =
∫

l

1

vgr

dl (7.5)

where dl is an element of a ray trajectory. The dispersion relation for acoustic waves
in the first approximation with respect to magnetic effects and mass flow, u, has the
form

ω = kcs + ku + v2
A

2kcs

[k − (kb)b]2 (7.6)

where b is a unit vector along the magnetic field, and k =
√

k2
x + k2

y + k2
z . The

group velocity is

vgr = ∂ω

∂k
= k

k
cs + u + v2

A

2cs

k
k

− v2
A

cs

b(kb)

k
+ v2

A

2cs

k(kb)2

k2 (7.7)

The absolute value of the group velocity up to the terms linear in u and quadratic in
vA is

vgr = cs + nu + v2
A

2cs

[1 − (nb)2] (7.8)

where n = k/k.
Note that in the presence of a weak (vA � cs) magnetic field, in addition to

the modified acoustic mode (fast-mode solution of the wave equation) that we have
considered, there appear two more modes, the pure Alfv’en mode, with

ω = ku + (kb)vA (7.9)

and a slow magnetosonic mode with

ω = ku + (kb)vA − (nb)2 kv2
A

2cs

(7.10)

Modes (7.9), (7.10) have much slower group and phase velocities than the modified
acoustic mode (7.6). These modes would correspond to much longer propagation
times (cs/vA times longer) and may give large errors in the frame of the time-
distance analysis.
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It must be noted that in future one can study a domain of much longer propagation
times. Despite some difficulties that may appear at small enough flow speed when
group velocity of low-frequency modes (7.9), (7.10) closely follows the direction
of the magnetic field, extension of the time-distance analysis to the domain of the
propagation times

τ � r

vA

(7.11)

may prove to be feasible and will then provide direct information about magnetic
fields.

In the first approximation with respect to magnetic and flow effects (cf. the
conditions (7.4)) travel time can be written as follows:

τ =
∫

l

(
1

cs

− δcs

c2
s

− nu
c2
s

− v2
A

2c3
s

[1 − (nb)2]
)

dl (7.12)

Thus, the variation of sound speed, flows, and magnetic field have different
angular dependence. Therefore, taking Fourier sine and cosine transforms (different
harmonics!) of travel time one can see that the parity properties of the contribution
of mass flows, magnetic effects, and variation in sound speed with respect to forward
and backward propagation are different.

Additional and rich information can be obtained from the analysis of parity
properties (with respect to forward and backward propagation) of the various
contributions, including the spatial inhomogeneities of background parameters of
medium, which can be distinguished by the Fourier sine and cosine transforms
of the propagation time (7.12). The Fourier transform should be performed for
the forward and backward propagation times, and also for some combinations of
their differences. Finally, applying an inversion procedure to the transformed times
one can reconstruct the depth-dependent flow and magnetic fields below the solar
surface.

7.2 The Effects of Horizontal Flows

In the unperturbed state the propagation time from point A to the point C (Fig. 7.1)
on the ring of radius r is obviously

τ = τ0 =
√

r2 + 4h2

cs

, (7.13)

and is the same for the waves traveling in the “forward” (from the point A to point
C) and “backward” directions (from C to A). In the presence of plasma flows, these
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times are different: the “upstream” group velocity of the acoustic wave is greater
than that of “downstream.”

Let the direction of flow u form an angle θu with the axis x as shown in Fig. 7.1a.
Then from (7.12) elementary calculations (in the linear approximation) show that

τ = τ0 − ur

c2
s

cos(θ − θu) (7.14)

Integrating these expressions with cos θ and sin θ we obtain

τ (1)
s = − ur

2c2
s

sin θu, τ (1)
c = − ur

2c2
s

cos θu (7.15)

while τ
(2)
s = τ

(2)
c = 0.

The absolute value of the velocity can be found from the relationship

u = 2c2
s

r

√

[τ (1)
s ]2 + [τ (1)

c ]2 (7.16)

and the direction of propagation may be determined from

sin θu = − τ
(1)
s

√

[τ (1)
s ]2 + [τ (1)

c ]2
, cos θu = − τ

(1)
c

√

[τ (1)
s ]2 + [τ (1)

c ]2
(7.17)

or

ux = 2c2
s

r
τ (1)
c , uy = 2c2

s

r
τ (1)
s (7.18)

Note that the presence of a uniform vertical flow does not affect (7.16) and (7.17).
As to the forward (τ (1)+

s,c ) and backward (τ (1)−
s,c ) propagation times, in the case of the

uniform flow we have

τ (1)+
s,c = −τ (1)−

s,c . (7.19)

Therefore, the “homogeneous” flow field may be found through (7.16) and (7.18),
using for τ

(1)
s,c either of the transforms, forward propagation times, τ

(1)+
s,c , backward

propagation times, τ
(1)−
s,c , or their average, [τ (1)+

s,c + (−τ
(1)−
s,c )]/2. For pure homo-

geneous flows all three results should be identical. Obviously such situation is far
from reality. The stronger are inhomogeneities, the larger will be the discrepancies
between the three velocity maps. The main discrepancies will be caused by those
effects that have the opposite parity properties, i.e. nonuniformities in sound speed
and horizontal magnetic field.
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7.3 Effects of Horizontal Magnetic Field

First we derive expression for the propagation time τ (θ) in a case when a magnetic
field is parallel to x-axis, and then, we take into account the fact that θB is a finite
angle.

For a simple model of the magnetic field parallel to the x-axis the dispersion
relation (7.6)) in the first approximation with respect to magnetic effects has a form:

ω = kcs + v2
A

2kcs

(k2
y + k2

z ) (7.20)

Using the equation for the ray trajectory, (7.5)) yields:

τ = τ0 − τ0v
2
A

2c2
s

(

1 − r2

2(4h2 + r2)

)

+ τ0v
2
A

4c2
s

r2

4h2 + r2 cos 2(θ − θB) (7.21)

In this case, τ
(1)
s = τ

(1)
c = 0, while

τ (2)
s = τ0

v2
A

4c2
s

r2

4h2 + r2 sin 2θB (7.22)

and

τ (2)
c = τ0

v2
A

4c2
s

r2

4h2 + r2 cos 2θB (7.23)

The magnetic field strength (actually, the inverse plasma beta) can be easily
determined from the expressions (7.22) and (7.23):

v2
A

c2
s

= 4
4h2 + r2

r2

√

[τ (2)
s ]2 + [τ (2)

c ]2

τ0
(7.24)

The orientation of the magnetic field can be determined from the following relations:

sin 2θB = τ
(2)
s

√

[τ (2)
s ]2 + [τ (2)

c ]2
, cos 2θB = τ

(2)
c

√

[τ (2)
s ]2 + [τ (2)

c ]2
(7.25)

Now, using (7.24) and (7.25) we have for Bx = B cos θB and By = B sin θB :

Bx,y =
⎛

⎝
8πρc2

s

√

[τ (2)
s ]2 + [τ (2)

c ]2

τ0r2/(4h2 + r2)

⎞

⎠

1/2⎛

⎝1 ± τ
(2)
c

√

[τ (2)
s ]2 + [τ (2)

c ]2

⎞

⎠

1/2

(7.26)
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It is important to note that forward (τ (2)+
s,c ) and backward (τ (1)−

s,c ) propagation times
are the same

τ (2)+
s,c = τ (2)−

s,c . (7.27)

This means that the half-sum of measured values of forward and backward propa-
gation times, (1/2)(τ

(2)+
s,c + τ

(2)−
s,c )obs will determine the orientation and magnitude

of magnetic field (see Eq. (7.32)); while the difference of these values carries
information about the gradients of mass flows. Thus, τ

(2)
s,c in (7.24) should be taken

as

τ (2)
s,c = (1/2)(τ (2)+

s,c + τ (2)−
s,c )obs (7.28)

The presence of vertical component of a uniform magnetic field will not give a
contribution to τ

(2)
s and τ

(2)
c (as well as to τ

(1)
s and τ

(1)
c ). This fact is one of the

merits of this approach that allows one to single out the influence of plasma flows
from those of magnetic field on one hand, and explore the orientation and magnitude
of horizontal components independently from the vertical projection, on the other.

7.4 Effects of Background Inhomogeneities

7.4.1 Weak Inhomogeneities

So far we were considering the simplest situation when the sound speed cs , the
flow velocity u, and magnetic field B do not depend on coordinates over the space
comparable with radii of annuli where the measurements are taken.

Now we discuss a modification of the earlier results in a case when cs , u and B
weakly depend on coordinates x and y, such that they change insignificantly over
the radius of annulus; then they can be described linearly over x and y additions to
otherwise constant cs , u and B.

As corrections to the propagation times caused by the presence of mass flow,
magnetic field, and inhomogeneity of sound speed are small, they can be taken into
account separately, i.e., cross terms can be neglected.

Now, instead of a uniform slab of thickness h with a bottom perfectly reflecting
acoustic waves, we consider linear corrections (in x, y, z) to cs , u and B, in other
words, we assume that

cs = cs0 + σ · r, (7.29)

uα = u0α + ναβ · rβ , (7.30)

Bα = B0α + bαβ · rβ (7.31)
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where σ is a constant (independent of coordinates) vector and ναβ and bαβ are
constant tensors.

Let us consider the effects of the inhomogeneities of these three physical
parameters on the sine and cosine transforms of the propagation times.

Nonuniformities of cs : The vertical nonuniformity (dependence on z) does not
break the cylindrical symmetry of the problem and does not contribute to τ

(n)
s,c (n =

1, 2, . . .) at all. The horizontal nonuniformity (nonvanishing σx and/or σy) gives rise

to the appearance of finite contributions to τ
(1)
s,c . These contributions, obviously, will

be identical for τ
(1)+
s,c and τ

(1)−
s,c .

Variation of horizontal magnetic field: The contribution of magnetic field effects
to the group velocity scales as B2 and, therefore, magnetic contributions to τ (n)

are even (τ (n)+ = τ (n)−). The nonuniformity causes the appearance of the
term of the type B0xbxyyn2

x , B0xbxyyn2
y , and B0ybyxxn2

y . As n2
x and n2

y contain
terms proportional to sin 2θ , cos 2θ , the propagation time will now contain terms
proportional to sin θ , cos θ and sin 3θ , cos 3θ .

Variation of horizontal velocity: The presence of the terms linear in x and y gives
rise to a contribution to τ

(2)
s,c . The change of the sign in u is equivalent to mutual

replacement of the emission source and detection points. On the other hand, the
change of sign in velocity changes the sign in τ

(2)
s,c . Therefore, we conclude that

τ (2)+
s,c = −τ (2)−

s,c (7.32)

This particular case is considered in the next section, where we use (7.32) to find
the spatial distribution of mass flows through the observed propagation times.

7.4.2 Variations of Flow Velocities

We use the model described by (7.30). Denoting the variable part of the velocity
vector by Δu, we can write:

Δux = uxxx + uxyy, (7.33)

Δuy = uyxx + uyyy (7.34)

The horizontal component of the group velocity in the case shown in Fig. 7.1, for
the ray propagating in the direction forming an angle θ with x-axis, is

csr√
r2 + 4h2

+ Δux cos θ + Δuy sin θ, (7.35)
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or

csr√
r2 + 4h2

+ ρ

(
uxx − uyy

2
cos 2θ + uxy + uyx

2
sin 2θ

)

(7.36)

where ρ is a polar radius, x = ρ cos θ, y = ρ sin θ .
The propagation time up to the terms linear in uαβ is then (see (7.14))

τ = τ0 − ur cos θ

c2
s

− 1

c2
s

(
uxx − uyy

2
cos 2θ + uxy + uyx

2
sin 2θ

)∫ r

0
ρdρ

(7.37)

or

τ = τ0 − ur cos θ

c2
s

− r2

2c2
s

(
uxx − uyy

2
cos 2θ + uxy + uyx

2
sin 2θ

)

(7.38)

The first harmonics give the expressions for the horizontal components of uniform
flow, while second harmonics include the effects of possible shear flows in the
horizontal plane:

τ (2)
s = −uxy + uyx

8c2
s

r2 (7.39)

τ (2)
c = −uxx − uyy

8c2
s

r2 (7.40)

7.5 Practical Use of the Forward-Backward Information

We summarize here the symmetry properties of various contributions to the
propagation time and use the results to find the general pattern of magnetic field
and flow distribution at two different layers using the observational data.

7.5.1 Symmetry Properties

The symmetry properties and in particular parities of the forward-backward propa-
gation times are shown in Table 7.1. As mentioned earlier, the parity properties give
an additional mean to split various effects.

For example, if we take a half-sum of measured times, τ (2)+
s,c and τ

(2)−
s,c , we obtain

the quantity that eliminates the contribution of the flow and by (7.24)–(7.28) gives
directly the magnetic field strength. At the same time, the difference, (1/2)(τ

(2)+
s,c −

τ
(2)−
s,c ), gives the flow nonuniformities. Thus, when computing, for example
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Table 7.1 Symmetry
properties of various
contributions to the
propagation times

Effect τ
(1)
s,c τ

(2)
s,c Parity property

Horizontal variation of
sound speed

Yes No τ
(1)+
s,c = τ

(1)−
s,c

Uniform horizontal flow Yes No τ
(1)+
s,c = −τ

(1)−
s,c

Variation in horizontal mass
flow (ναβ �= 0)

No Yes τ
(2)+
s,c = −τ

(2)−
s,c

Uniform horizontal magnetic
field

No Yes τ
(2)+
s,c = τ

(2)−
s,c

Variation in horizontal
magnetic field (bαβ �= 0)

Yes No τ
(1)+
s,c = τ

(1)−
s,c

Uniform vertical flow No No

Variation in vertical flow Yes No τ
(1)+
s,c = −τ

(1)−
s,c

Variation in vertical
magnetic field (bzα )

Yes No τ
(1)+
s,c = τ

(1)−
s,c

uxy + uyx , we use the expression (7.39) in a form:

∂ux

∂y
+ ∂uy

∂x
= −4c2

s

r2 (τ (2)+
s − τ (2)−

s ) (7.41)

Note that although the variation in the horizontal magnetic fields contribute to the
first harmonics (last row in Table 7.1), the alteration in travel time would be masked
by the effects of a uniform mass flows (second row in Table 7.1) and may be ignored.

7.5.2 Reconstruction of Subsurface Flow and Magnetic Fields
from Observations

For illustrative purposes we use here results of travel-time measurements obtained
from the data sets taken by the MDI instrument on SOHO, and perform their sine

and cosine transforms for reconstruction the subsurface flow and magnetic fields.
The data were taken from the 8 h observation of line-of-sight velocity in the MDI
high resolution field on January 27, 1996. The object of the observation is very quiet
sun region. In other words, we deal with the helioseismology effects in the rarefied
ensemble of flux tubes.

Figure 7.2 (top) shows magnetogram of the region with magnetic field shown in
blue. The travel times have been measured for sets of ray paths on a grid of 30 × 40
points on the observed area of 175 × 130 Mm. The sine and cosine transforms
have been made for two sets of short distance ray paths. Each set contains the data
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Fig. 7.2 Top: high-resolution magnetogram of a quiet sun region, taken by the MDI/SOHO
instruments January 27, 1996. Bottom: The reconstructed subsurface horizontal magnetic field in
terms of inverse plasma beta, v2

A/c2
s at 1.2 Mm below the visible surface, (v2

A/c2
s )max = 0.11.

Arrows show the subsurface velocity field. White dashed circles outline supergranular pattern
populated by the magnetic field concentrations, which are especially well recognizable on the
reconstructed map below the surface
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averaged over the three sets of annuli with the radial distance ranges of Δ = 0.225–
0.625◦ and Δ = 0.625–1.025◦.

For the reconstructed flow and magnetic fields the mean depths drop at h1 �
1.2 Mm and h2 � 2.8 Mm below the solar surface. Thus, for the first set of measured
travel times and their sine and cosine transforms we prescribe the mean depth h =
1.2 Mm and mean annulus radius r = 5.2 Mm, respectively, for the second set of
measured travel times we have h = 2.8 Mm and r = 10 Mm.

Figure 7.2 (bottom) shows a pattern of the reconstructed magnetic field, more
precisely, v2

A/c2
s at the depth h = 1.2 Mm (blue color). One can see a strong

correlation between the measured magnetic field on the solar surface and the
underlying horizontal field. Note that although the procedure does not allow
to resolve the scale less than the ray path, much larger scale of reconstructed
local elements compared to elements on magnetogram is consistent with both
ray approximation and observational data which also are restricted by the size of
annuli. It is remarkable how well the reconstructed magnetic field pattern mimics a
supergranular geometry (marked by white dashed circles in Fig. 7.2a).

Figure 7.3 shows the computed map of velocity field for the depths of 1.2 Mm.
This map also clearly shows the supergranular pattern in the flow field. Maximum
velocity at this depth is vmax = 2.3 km/s. The flow map reconstructed at 2.8 Mm
depth (not shown) also mimics the magnetic pattern, but the velocities are lower,
e.g., vmax = 1.7 km/s.

120
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40

20

0
0

50 100 175

Distance, Mm

Fig. 7.3 The reconstructed velocity field at 1.2 Mm below the visible surface, vmax = 2.3 km/s.
One can see that at the location of strong magnetic field the mass flows are inhibited
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In the absence of local inhomogeneities the velocity field reconstructed from the
measurements of backward propagation times and forward propagation times should
be the same. However, presence of the local inhomogeneities of medium violates the
exact relationship (7.32) and causes discrepancies in the maps obtained from τ

(1)+
s,c

and τ
(1)−
s,c . These discrepancies are associated with those effects that have different

parity properties, such as the variation in sound speed and nonuniform magnetic
fields.

It is important that, although the effect of “uniform” mass flows in τs,c is
much stronger than that of the magnetic field inhomogeneities, there is a sig-
nificant difference between the velocity field reconstructed from the forward and
backward propagation times. This difference shows the location of magnetic field
inhomogeneities or/and variation in sound speed. Figure 7.4 shows the map of
velocity vectors which represent the difference between the velocities obtained from
τ

(1)+
s,c and τ

(1)−
s,c . One can see a clear correlation between the location of largest

discrepancies in reconstructed velocity field and the locations of strongest magnetic
field (cf. Fig. 7.2).

For quantitative estimates of the magnetic field strength we need to adopt
some model parameters for plasma density below the surface. Let us try, e.g., the
parameters given in the model of the convection zone by Spruit (1974): at the depth
h = 1.2 Mm, ρ = 0.38 × 10−5 g/cm3, which gives the estimate for sound speed
cs = 14.8 km/s; at h = 2.8 Mm, ρ = 0.36 × 10−4 g/cm3, and cs = 18.4 km/s

Fig. 7.4 Discrepancies between the velocity maps obtained from forward and backward propaga-
tion times at 1.2 Mm below the visible surface. Some of the largest discrepancies are outlined to
show their correlation with strongest magnetic field concentrations
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Fig. 7.5 The velocity field and the velocity shear at the depth 2.8 Mm, Dhz,max � 0.29×10−3s−1

(see also Hill 1995, and the references therein). For these parameters at h = 1.2 Mm,
the upper bound value of magnetic field strength is Bmax = 3480 Gs; at h =
2.8 Mm, Bmax = 10,760 Gs.

As already mentioned, the method allows to obtain the information about the
velocity gradients and construct the velocity shear maps. The example of such
computation, i.e. the maps of velocity field and the intensity of shear flows, Dhz =
∂ux/∂x − ∂uy/∂y, at the depth 2.8 Mm is shown in Fig. 7.5. Note that at the depth
1.2 Mm, the maximum velocity shear is even higher, Dhz,max � 0.67 × 10−3 s−1.

So far we were computing the velocity and magnetic field maps assuming that
sound speed and other parameters depend on vertical coordinate in a stepwise
manner. In the next section we consider more general case and take into account
effects of gravity.

7.6 Magnetic Corrections in a Vertically Stratified
Atmosphere

In this section we generalize the method to the case of a vertically stratified
atmosphere. We start from expression for the correction to the propagation time:

δτ = −
∫

l

dl

vgr

δvg

vg

(7.42)
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where integration is carried out along the unperturbed ray trajectory. From (7.8) we
have vg = cs , δvgr = v2

A/(2cs)[1 − (nb)2]. By noting that ds/vg = dz/vgz, where
vgz is the vertical component of the group velocity, one finds that

δτ = −2
∫ h

0

dz

vgz

δvg

vg

= −
∫ h

0

v2
A[1 − (nb)2]dz

c3
s nz

(7.43)

As earlier, h is the depth of a layer where reflection of the ray occurs (kz = 0). The
factor “2” in (7.43) takes into account two branches of the ray trajectory, descending
and ascending. From the condition ω = const we have:

c2
s (h)(k2

x + k2
y) = c2

s (z)(k
2
x + k2

y + k2
z ) (7.44)

In the system where x and y are ignorable coordinates, kx and ky are conserved
quantities. We have therefore

kz =
√

k2
x + k2

y

√

1 − c2
s (z)

c2
s (h)

(7.45)

and

nz =
√

1 − c2
s (z)

c2
s (h)

; nx = cs(z)

cs(h)
cos θ; ny = cs(z)

cs(h)
sin θ (7.46)

We will take into account both vertical variation of the Alfv’en velocity, vA = vA(z),
and the direction of the horizontal magnetic field, θB = θB(z). We have:

(vb)2 = cos2(θ − θB)
c2
s (z)

c2
s (h)

(7.47)

Taking into account relations (7.43), (7.46) and (7.47) one finds that

δτ = −
∫ h

0

v2
A(z)c2

s (h)[1 − cos2(θ − θB(z)]
c4
s (z)

√
c2
s (h) − c2

s (z)
dz (7.48)

or

δτ = −
∫ h

0

v2
A(z)c2

s (h)[1 − cos 2θ cos 2θB(z) − sin 2θ sin 2θB(z)]
c4
s (z)

√
c2
s (h) − c2

s (z)
dz (7.49)

Remarkably, in this much more general case, δτ still manifests the same cos 2θ and
sin 2θ dependence on the azimuthal angle as in the model of a uniform slab.

Recall that in the case of a uniform slab (nb)2 = (r2/4h2r+) cos2(θ − θB),
nz = 2h/

√
4h2r+, and one recovers (7.21).
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For cosine and sine transforms now, instead of (7.23), we have:

τ (2)
s = 1

4

∫ h

0

v2
A(z)c2

s (h) sin 2θB(z)

c4
s (z)

√
c2
s (h) − c2

s (z)
dz (7.50)

τ (2)
c = 1

4

∫ h

0

v2
A(z)c2

s (h) cos 2θB(z)

c4
s (z)

√
c2
s (h) − c2

s (z)
dz (7.51)

Probing different annuli, i.e., different reflection depths, and using a standard
inversion procedure, one can find by virtue of (7.21) and (7.22) distribution of
horizontal magnetic field and its depth dependence.

For known cs(z) one can apply Abel inversion τ
(2)
s and τ

(2)
c and obtain in this

way both magnitude and direction of the horizontal magnetic field.
Note that one can also solve the problem of the accuracy of reconstruction of sub-

surface flows over annular distances which become comparable with characteristic
scale of convective motions, granular, mezogranular, and supergranular (Ryutova
and Scherrer 1998).

7.7 Estimate of the Energy Flux from Time-Distance
Analysis

Time-distance measurements in helioseismology can be used to estimate the energy
flux on the solar surface (Ryutova 1997). Nonreciprocity of travel times along the
ray path and different parity properties of sound speed, flow velocity, and magnetic
field allow one to obtain information on large-scale distribution of plasma flows and
magnetic fields and their energetics. We shall see that the covariance of sum and
difference of the reciprocal travel times is a measure of large-scale, climatological
heat flux and that the covariance of sum and difference of their departures from
the mean gives an estimate for the magnetic energy flux. Using the reciprocal
travel times measured in north-south and west-east directions, one can estimate the
latitude- and longitude-dependent energy fluxes.

The procedure is based on the fact that the space-time average of the products,

〈uc2
s 〉 and 〈uv2

A〉, which are related, respectively, to large-scale heat flux and
magnetic energy flux, can be directly found from time-distance measurements.
Indeed, the covariance of sum, s = τ (+) + τ (−) and difference, d = τ (+) − τ (−)

is related to the heat flux, while covariance of their departure from the mean,
(Δs)2 − (Δd)2 is a measure of the magnetic energy flux.

We shall consider large-scale energy fluxes associated with the motions and
magnetic field transport over spatial scales comparable to the size of annuli where
the measurements are taken and over a time period that is much larger than the
characteristic time of magnetic field fluctuations. This is somewhat similar to
climatological heat flux measured in ocean tomography (see, e.g., Munk 1986). As
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in the acoustic monitoring of ocean gyres, solar tomographic measurements can
also be used to measure the eddy fluxes: the heat and magnetic energy transport
associated with the small-scale flux tubes and rapid motion.

7.7.1 Heat and Magnetic Energy Fluxes

Recall that in the approximation of geometrical acoustics the group velocity (7.5)
has a form

vgr = cs + nu + v2
A

2kcs

[1 − (nb)2] (7.52)

We have already mentioned that the flow velocity and Alfv’en speed are much less
than the sound speed (7.4), and enter the propagation time τ (θ) as small additions
proportional to u/cs , and v2

A/c2
s , respectively.

If the duration of observations, T , is much larger than the period of measured
oscillations, 2π/ω, i.e. if

ω T � 1, (7.53)

one can define the averages over T , as

cs(r, t) = cs0(r) + δcs(r, t)

u(r, t) = u0(r) + δu(r, t) (7.54)

B(r, t) = B0(r) + δB(r, t)

Time average of the fluctuating parts, δcs , δu, and δB are zero:

δcs = 0, δu = 0, δB = 0 (7.55)

In the first approximation with respect to magnetic and flow effects, the travel
time is given by

τ (t) =
∫

l

(
1

cs0(l)
− δcs(l, t)

c2
s0

− n[u0(l) + δu(l, t)]
c2
s0

− v2
A0

2c3
s0

[1 − (nb)2]
)

dl

(7.56)

To separate the contribution of magnetic field from the velocity, one needs to
perform the inversion of the difference, d = τ+ − τ−, which yields the simulation
of the flow field, and the sum, s = τ+ + τ−, that gives the distribution of the
temperature. In principle, heat fluxes can be determined through point-by-point
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multiplication of the inverted flow and temperature fields with the subsequent
averaging in space and time, which would be exactly the same as calculating a
covariance of d and s: sd = (τ+)2 − (τ−)2, just like in the reconstruction of the
flow field by using the first Fourier harmonics of travel times measured as a function
of direction and distribution magnetic field patterns using the second harmonics.

Point-by-point multiplication of the two fields would give the average magnetic
energy flux. This simply means that if one uses the measured travel times to
calculate the covariance of sum and difference of reciprocal travel times and their
departures from the mean, one obtains the estimate of heat and magnetic energy
fluxes.

To illustrate how the method works, we assume that unperturbed plasma
parameters are uniform along the ray path and that the measured ray averages may
be considered the range averages. Then travel times in the forward and backward
directions can be written as

τ±(t) = l

cs0

(

1 ∓ u0

cs0
− v2

A0

2c2
s0

[1 − (nb)2] +
〈
−δcs(l, t)

cs0
∓ δu

cs0

〉
)

(7.57)

Taking into account that the mean travel time is τ0 = 1/cs0, the deviation of
the travel time from the mean value due to the temperature inhomogeneities and
presence of mass flows and magnetic fields is obviously

Δτ±(t) = l

cs0

(

∓ u0

cs0
− v2

A0

2c2
s0

[1 − (nb)2] +
〈
−δcs(l, t)

cs0
∓ δu

cs0

〉
)

(7.58)

The time average FB = uv2
A is then the measure of the magnetic energy flux over

the region where measurements are taken. Bearing in mind that c2
s is almost a linear

function of temperature, the average FT = uc2
s may be considered a measure of the

heat flux, uT .
The time average of the above expression is

Δτ±(t) = l

c2
s0

(

∓u0 − v2
A0

2cs0
[1 − (nb)2]

)

(7.59)

Note that δcs and δu vanish due to (7.55). Now we can find the expression for the
measure of the magnetic energy flux:

FB = u0v
2
A[1 − (nb)2] = c3

s0

2τ 2
0

(Δτ+2 − Δτ−2
) (7.60)
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Similarly, from (7.57) we obtain the expression for the measure of a heat flux. The
time average of (7.57) is:

τ±(t) = l

c2
s0

(cs0 ∓ u0 − v2
A0

2cs0
[1 − (nb)2]), (7.61)

The difference of squares of the forward and backward propagation times is then

τ+(t)
2 − τ−(t)

2 = τ 2
0

(

−4
u0cs0

c2
s0

+ 2
u0v

2
A

c3
s0

)

(7.62)

The last term on the right-hand side is a measure of the magnetic energy flux. Using
(7.60), we obtain the expression for a heat flux:

FT = uc2
s = −c3

s0

4

(τ+2 − Δτ+2
) − (τ−2 − Δτ−2

)

τ 2
0

(7.63)

Data averaged over the time of observations should represent the natural spatial
scales of energy transport over the time comparable to the time of observations.
There is, though, the limitation “from below”: the spatial scales cannot be less than
the characteristic scale of annuli where measurements are taken. This restriction
stems from the ray approximation. The method, however, is quite universal and can
be used in future improved techniques.

7.7.2 Contribution of Eddy Fluxes

The eddy fluxes, which are related to the dynamics of the energy transport at small-
scales, can be calculated by constructing the spatial mean product 〈δuδc2

s 〉. For this
we use the departure from the time mean:

δτ±(t) =
∫

l

(

−δc2
s (l, t)

2c3
s0

∓ δu

c2
s0

)

dl (7.64)

The mean square is

(δτ±)2 = 1

4c4
s0

∫

dl

∫

ds[δf (l)][δf (l + s)] (7.65)

where f (l) = δc2
s (l)±2cs0δu(l). Introducing a correlation length, r = ∫∞

−∞ dsρ(s),

where ρ(s) = f (l)f (l + s)/f 2 we obtain for the mean square

(δτ±)2 = [δc2
s ± 2cs0δu]2

4c6
s0

lr (7.66)
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The estimate for the eddy heat flux along a particular ray is then

Feddy = 〈δuδc2
s 〉 = c5

s

lr
[(δτ+)2 − (δτ−)2]. (7.67)

The same approach can be applied to the travel times measured as a function of
direction. In this case, taking sine and cosine convolutions of travel time, we can
find the magnetic energy flux provided by small-scale motions, FB

eddy = 〈δuδv2
A〉,

as well.
The merit of this application is that although small-scale granular and mezogran-

ular motions are beyond the resolution of time-distance analysis, their contribution
to heat flux can be determined.

7.7.3 Reconstruction of Energy Fluxes from Observational
Data

In this section we estimate magnetic energy and heat fluxes (7.60)–(7.63) using the
observational data described in previous section. For the estimate of the energy flux,
we use the data sets for westward-eastward (WE) and north-south (NS) times (for
observational details, see Duvall et al. (1997)). It is important to note that these time
sets that are measured in quadrants cannot be used directly for detecting magnetic
fields: according to their parity properties, magnetic fields contribute to the second
Fourier harmonics of travel times, and nonconvoluted times are not directly related
to magnetic field topology. So that for magnetic field and velocity field measurement
one should apply the method described in the previous section. However, although
WE and NS times do not give the distribution of the magnetic field, they can be
directly used for estimating magnetic energy flux. This is shown in Fig. 7.6. The
two upper panels show the intensity of a heat flux in the west-east (a) and north-
south (b) directions. Two lower panels are the intensity of the magnetic energy flux
in the west-east (c) and north-south (d) directions. The small arrows on all four
panels correspond to the computed velocity field for the depths of 1.2 Mm obtained
in Sect. 7.5.

One can see strong correlation between the intensity of a convective heat flux
and magnetic energy transport with the direction of mass flows. Note that travel time
measurements used for the reconstructed velocity fields and for the energy fluxes are
different: the heat and magnetic energy fluxes are computed using both backward
and forward propagation times and their departures from the mean; the velocity
map is reconstructed from sine and cosine convolutions of travel times measured as
a function of direction.

There is also good correlation between the magnetic energy flux and recon-
structed magnetic field shown in Fig. 7.2b. In all four panels, the brightest yellow
patches correspond to the highest flux in the west-east/north-south direction,
while the white areas correspond to the strongest flux in the east-west/south-north
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b

WE NS

Fig. 7.6 Reconstruction of the energy flux from observations. (a) Heat flux in the west-east
direction, |FT | = 1.84 × 1012 erg/cm2 s; (b) Heat flux in the north-south direction, |FT | = 1.6 ×
1012 erg/cm2 s; (c) Magnetic energy flux in the west-east direction, |FB | = 9.5 × 1010 erg/cm2 s;
(d) Magnetic energy flux in the north-south direction, |FB | = 10.5 × 1010 erg/cm2 s. Field of view
is the same as in Fig. 7.2

direction. The white arrows in Fig. 7.6 highlight the essential difference between
heat flux (top panels) and magnetic energy flux (bottom panels). Note that the mean
of the maximum heat flux, 〈FT 〉 = 1.7 1012 erg/cm2 s, is larger by an order of
magnitude than the magnetic energy flux, 〈FB〉 = 1011 erg/cm2 s.

7.8 Raman Spectroscopy of Solar Oscillations

Presence of magnetic flux tubes and their interaction with the acoustic waves can
form a basis for a new approach in the analysis of helioseismic data. This quite
useful analysis can be called “Raman spectroscopy of solar p-modes” (Ryutova
1998). It is based on the fact that interference of oscillating flux tubes with the
incoming acoustic wave may result in the generation of beat wave with combination
frequency: the power spectra of scattered waves in addition to main peak will
have Stokes and anti-Stokes satellites. The amplitude and frequency shift of these
satellites reflect the properties and the structure of the observed region.
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7.8.1 Stokes and Anti-Stokes Satellites

The presence of the constant level of the solar p-mode fluctuations is a reflection
of the dynamic balance between two processes: generation of p-modes by turbulent
motions, and their damping by classical and/or anomalous dissipation mechanisms.
Observational studies of the acoustic wave properties show that the sources and
sinks are distributed nonuniformly over the solar surface. The sources exciting the
p-modes (on the average level) are more likely connected with the turbulent motions
in the convective zone and, according to the conjecture that was put forward by
Brown (1991), may be isolated and thus sources and sinks may well be separated
from one another in space and time.

Localized sources of the acoustic waves and excess of the acoustic emission
compared to the average were observed in the quiet sun regions with the enhanced
network of small-scale magnetic flux tubes (Brown 1991; Braun et al. 1992; Braun
1995).

A physical mechanism that may explain the excess of the emission in the quiet
Sun is associated with the interaction of p-modes with nonsteady motions, and in
particular with the oscillating magnetic flux tubes (see Chap. 3). Note that only
nonsteady motions can give rise to the increase in the energy of outgoing waves:
the steady-state nonuniformities may cause scattering but not a significant energy
increase.

As discussed in Chap. 3, there are two major effects that contribute to this
process. One is a resonance scattering, when the energy of p-modes propagating
in the random ensembles of flux tubes damps out due to the resonance excitation
of natural oscillations of magnetic flux tubes. It was shown that transformed energy
of p-modes remains for a “long time” in a form of flux tube oscillations. Then, in a
time τrad � 1/ω(kR)2) the resonant flux tubes radiate the accumulated energy into
surrounding plasma. The radiation occurs only if the phase velocity of flux tubes
oscillations exceeds the sound speed in the ambient plasma: vgr > cse (Chap. 6).

Another effect works in the opposite case when vgr < cs , and is connected
with nonlinear coupling of flux tubes oscillations and acoustic waves, which in turn
leads to generation of beat waves with combination frequencies and wavenumbers
(Fig. 7.7):

ωout = ωin ± Ω, kout = kin ± K (7.68)

The frequency shift, Ω , does not necessarily correspond to any of the eigenfre-
quencies of the p-modes. Both, Ω and K are perturbations determined by a local
properties of medium, and may correspond, for example, to eigenfrequency (and
eigenvector) of a scattering centers. It is just this process that facilitates appearance
of Stokes and anti-Stokes satellites.
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Fig. 7.7 Sketch of a power spectrum for outgoing wave in Raman scattering. In addition to main
peak at the incident frequency, there appear equidistant Stokes and anti-Stokes satellites

The effective distance at which acoustic waves interact with a particular flux tube
is of the order of flux tube radius, R. The main component of pressure perturbation
in the vicinity of the magnetic flux is axisymmetric:

δp � kξacp; δv � ξackR; δR

R
� δp

p
(7.69)

This is coupled with m = ±1 flux tube motions. The resulting nonlinear drive exists
at the scale � R, has m = ±1 symmetry, and can be expressed as the following
equivalent displacement

δx � ξkink kξac (7.70)

Here δx can be conceived as a forcing term for generating the secondary emission.
Assuming that ω = ωin � Ω, kin

z � Kz, one finds the following estimate for the
power radiated per unit length of flux tube:

PRaman � ρc2
se

ω

(
Rω

cse

)4

ξ2
kinkω

2(kξac)
2 (7.71)

If the filling factor of the area is f , then the power scattered by the volume of the
size L × L2 is f PRamanL

3. Incident acoustic energy flow into the same volume is
ξ2
ack

2ρc3
seL

2. The ratio of the two is a measure of the excess of the emitted acoustic
power:

ζ = f L

(
Rω

cse

)5 ξ2
kink

R
(7.72)

Obviously, a quantity ζ has a meaning of the optical depth with respect to the
scattering process. Even more power may be emitted by the Raman scattering
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of acoustic waves in association with the sausage oscillations. In this case the
equivalent displacement is

δx � Rω

cse
ξsausgξac (7.73)

Energy radiated per unit length is

PRaman � ρc2
se

ω

(
Rω

cse

)2

ξ2
sausgξ

2
acω

2 (7.74)

and the optical depth is

ζ = σL

(
Rω

cse

)3 ξ2
sausg

R
(7.75)

Using the amplitude of satellites and frequency shift one can infer a typical
physical parameters of “scattering centers,” and, generally speaking, develop the
analysis for the study of the structure of atmosphere through the spectroscopic
features of p-modes.

7.8.2 Using Raman Spectroscopy in Observations

In this section we give some examples of measured power spectra of incoming and
outgoing waves and their possible interpretation, only to demonstrate the principle
of the method.

The MDI/SOHO high resolution data were used to compute the series of incom-
ing and outgoing acoustic power for different spherical harmonics by employing the
Hankel decomposition method (Braun 1995). Some 512 Dopplergrams contributed
to this series. The target region was a very quiet sun on the disk center. The
annulus had inner and outer radii of 2.5 and 11.25 heliocentric degrees (1 degree =
12.151 Mm length-of-arc). The power was computed up to L = √

l(l + 1) = 2016.
Figure 7.8 shows example of measured power spectra for incoming (solid line)

and outgoing (dashed line) wave for the spherical degree l = 452.6. The equidistant
Stokes and anti-Stokes satellites clearly exceed their counterparts in the incoming
power spectrum.

To distinguish a true Stokes and anti-Stokes peaks from closely situated neigh-
boring p-mode ridges, one needs, except fulfillment of equality ν0 − ν− = ν0 − ν+,
additional facts which are associated only with the Raman scattering and are not
related to neighboring acoustic ridges. Most important here is that Stokes frequency
shift is determined by physical parameters of a local “scattering centers,” and, in
particular is directly associated with an eigen-frequency of oscillating flux tubes.
This means that the frequency shifts must not only be equidistant, but should give
a reasonable estimate for the Alfvén velocity. For given spherical degree � and
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Fig. 7.8 The measured power spectra for incoming (solid line) and outgoing (dashed line) wave
for the spherical degree l = 452.6. The equidistant Stokes and anti-Stokes satellites clearly exceed
their counterparts in the incoming power spectrum

frequency ν the local sound speed is roughly estimated as (e.g., Hill 1995)

cs(l, ν) = 2πR�
ν

l
(7.76)

In the subsurface layers Alfvén velocity is small compared to sound speed, therefore
the phase velocities of both kink and sausage mode of flux tube oscillations is close
to the Alfvén speed, i.e.

vgr = Ω

k
� vA (7.77)

Assuming that the wave number is approximately the same as that of incident
acoustic wave we can express it through sound speed from (7.76):

vA � Ω

ωin
cs(l.ν) (7.78)

Examples of the parameters of power spectra, calculated sound speed and inferred
Alfvén velocity are given in Table 7.2. Pin and Pout are values of net averaged
powers (in arbitrary units). The averaging is done over a narrow frequency interval
(0.23 mHz) near the peaks in outgoing power spectrum for first three cases, � =
452.6, 699.4 and 740.6. In all three cases the satellite peaks in outgoing power
spectra which exceed their counterparts in the incoming power spectra, are shifted,
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Table 7.2 The parameters of power spectra and estimates for inferred Alfvén speed

Pin Pout ν (mHz) ν0 − ν− ν0 − ν+ cs vA

� = 452.6 2.14 × 103 1.44 × 104 ν− = 2.67 0.55 −0.55 31.1 5.30

3.46 × 104 2.72 × 104 ν0 = 3.22

1.31 × 104 3.1 × 104 ν+ = 3.77

� = 699.4 4.96 × 103 9.9 × 103 ν− = 2.6 0.60 −0.60 20.0 3.75

3.52 × 104 3.51 × 104 ν0 = 3.20

2.75 × 104 4.48 × 104 ν+ = 3.8

� = 740.6 1.54 × 104 1.69 × 104 ν− = 2.7 0.62 −0.62 19.6 3.66

2.32 × 104 5.9 × 104 ν0 = 3.32

2.78 × 104 3.25 × 104 ν+ = 3.94

equally from the central peak. Peak at incident frequency, must contain equidistant
Stokes and anti-Stokes satellites. The emitted power is proportional to magnetic
filling factor and size of the observed area. It is more sensitive to small parameter
(kR)2 than the power radiated, for example, by resonant flux tubes, which in
addition may have incoherent character. Besides, in contrast to the resonance case
where the condition (kR)2 � 1 is required, here the parameter (kR)2 may be finite.
Therefore, large regions of flux tubes, comparable with the acoustic wavelength,
will contribute the Raman scattering most readily, and will be easier to analyze.
Good candidates here are the quiet photospheric network near plages and regions
containing small pores.

Finally, it must be noted that the methods of time-distance analysis have proved
to be very useful instrument in reconstructing the observational data to test the
conditions under the solar surface, and, as we discussed above, to perform additional
analysis of the atmospheric structure.

During the last decades the helioseismic approach has been generalized in many
ways (Gizon and Birch 2005; Couvidat et al. 2006; Schad et al. 2013). One can apply
its methods to various problems from probing the subsurface filamentary structure
of sunspots and field inclination (Schunker et al. 2005; Cameron et al. 2011; Felipe
et al. 2014) to testing the far-side helioseismic maps (Lindsey and Braun 2000; Zhao
2007; Gonzalez-Hernandez et al. 2013).

It must be noted again that this chapter deals only with the role of small-scale
magnetic flux tubes in helioseismology.

7.9 Problem

7.1 In the actual data analysis one usually deals with the discrete points. The
discreteness of data cause, obviously the errors. Develop the approach that can
minimize these errors in time-distance helioseismology analysis (Ryutova 1997).
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Chapter 8
Wave Phenomena in Dense Conglomerate
of Flux Tubes

Abstract In this chapter we shall consider the properties of strongly magnetized
regions of the sun such as sunspots, pores, and active regions, where random
magnetic flux tubes form a dense conglomerates. Physical processes and, in
particular, the wave phenomena in closely packed flux tubes exhibit some distinct
features that are observable and can be used for testing the structure and energetics
of these regions. One of the most pronounced effects is the strong enhancement
of the dissipation of the incoming wave energy, caused by large local gradients of
velocity, temperature, and pressure arising at borders of neighboring small-scale
inhomogeneities.

8.1 Propagation of MHD Waves in an Ensemble of Closely
Packed Flux Tubes

In the previous chapters we studied response of a rarefied ensembles of random
magnetic flux tubes to the propagation of acoustic waves and unsteady wave
packets, typical to quiet Sun areas (Fig. 8.1a). Unlike quiet photosphere, sunspots
and active regions represent a dense conglomerate of flux tubes (Fig. 8.1b) where
all the parameters of the medium (magnetic field, plasma density, temperature, etc.)
change from one domain to another by an order of magnitude (see, e.g., Livingston
1991). The dynamics of these two different types of ensemble and, in particular,
their response to propagation of acoustic and MHD waves are very different. The
dispersion properties and the observational spectroscopy of these regions, as well as
the mechanisms of energy transfer from photosphere to upper layers of atmosphere
are also very different.

The most striking effect here is that sunspots, pores, and active regions act as
a sink of incoming wave energy. This phenomenon is similar to the enhanced
dissipation in poly-crystals considered many years ago by Zener (1937) and
Isakovich (1948), and widely used in modern buildings by use of a porous materials
in order to reduce the noise. For sunspots and other densely magnetized regions the
effect of enhanced absorption of incoming wave power has been first described by
Ryutova and Persson (1984) and measured independently by Braun et al. (1987,
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Fig. 8.1 Classes of ensembles of magnetic flux tubes: (a) Widely spaced flux tubes with small
magnetic filling factor typical to quiet sun; (b) Dense conglomerate of random flux tubes with
magnetic filling factor on the order of unity typical to sunspots

1988, 1990). The theory later was extended and complemented by numerical
analysis (Ryutova et al. 1991).

Strong enhancement of the wave dissipation occurs due to the presence of closely
packed random flux tubes with characteristic radius, R, much smaller than the
wavelength:

d � R � λ (8.1)

where d is a small gap between the flux tube comprising the sunspot. The efficiency
of enhanced dissipation is of the order of λ/R � 1.

The physical reason for this effect can be easily understood. Since all the plasma
parameters change from tube to tube, and tubes have common boundaries, the
velocity amplitude of perturbations as well as all other perturbed quantities are
different in different flux tubes. This results in appearance of strong local gradients
of all the plasma parameters at much smaller scales. In other words, the MHD
equations now contain a vortex part of these parameters leading to much stronger
dissipation of the wave energy compared to homogeneous medium.

The characteristic scale of local gradients is naturally of the order of the
tube radius—the scale of the inhomogeneities, at which the dissipative effects
are enhanced. The damping rate, and the very process of absorption, can be
quite different in different regions, and is largely determined by the level of the
fluctuations of the background plasma parameters and their time and spatial scales.
Inside the sunspot physical parameters, as already was mentioned, change from one
small domain to another by the order of unity. Figure 8.2 shows high resolution
image of a typical well-shaped sunspot. Excellent contrast achieved in Fe I 6302
Å line shows densely packed individual flux tubes inside the umbra (white arrows)
surrounded by a beautiful penumbra.

Another example of highly heterogeneous nature of the sunspot umbra is taken
from studies of photometric properties of sunspot umbra (Fig. 8.3). Using a color
index analysis (Beckers and Schröter 1968) high temperature umbral dots densely
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08 August 2003

Fe I  6302 A

Fig. 8.2 Sunspot umbra densely packed by small scale magnetic flux tubes (white arrows, e.g.,)
is surrounded by filamentary penumbra. Magnetogram of the sunspot AR 425 is taken with the
Swedish 1-m Solar Telescope (SST) in Fe I 6302 Å line. Reprinted from http://www.isf.astro.su.
se. Credit G. Scharmer and K. Langhans, ISP, Sweden

Fig. 8.3 Left: the deconvoluted image of the central part of sunspot taken by Hinode/SOT with
the blue filter (Goodarzi et al. 2015); Right: Image of umbra, highly populated by umbral dots, is
taken with the blue and the green filters to compute the ratio of intensities (normalized to quite
photosphere); the color bar shows value of the color index. Image size is 4.2 × 3 Mm. Reprinted
from http://www.isf.astro.su.se. Credit H. Goodarzi and K. Langhans, ISP, Sweden

populating the umbra were studied in great details (Goodarzi et al. 2016). It was
shown, for example, that umbral dots can reach photospheric temperatures and even
higher at the periphery (the average background temperature of umbra is 3100 K).

http://www.isf.astro.su.se
http://www.isf.astro.su.se
http://www.isf.astro.su.se
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It was found that they are distributed more or less similar to quiet sun network
forming minute bright and dark round or elongated cells with a spacing of order
of 0.35 arcsec. Possible formation of umbral dots and flushes may be associated
with the nonlinear phenomena in dense conglomerate of flux tubes providing natural
inhomogeneity of sunspots.

8.1.1 Basic Equations and Dispersion Relation

We begin with the linear theory following the original approach by Ryutova and
Persson (1984), and describe a formalism that allows to study the propagation
of long MHD waves in an inhomogeneous plasma. We consider the case where
unperturbed magnetic field is concentrated in vertical flux tubes with z-axis directed
along the field, and consider the MHD waves propagating across the system of
magnetic flux tubes.

The unperturbed parameters of plasma, B0(x, y), and ρ0(x, y) p0(x, y) are
assumed to be stationary. This means that the inhomogeneities belong to the class
of the so-called entropy inhomogeneities, in which the total pressure P0 is constant

P0 = p0(x, y) + B2
0 (x, y)

8π
= const (8.2)

But local temperature, density, and magnetic field vary each by the order of unity.
The lifetime of such inhomogeneities is determined by the thermal conductivity

and the diffusion, which are quite slow varying quantities in a photospheric plasma.
Consider small linear perturbations of all physical parameters, including the

entropy, S(x, y, t), i.e, assume that

p = p0(x, y) + δp(x, y, t)

B = B0(x, y) + δB(x, y, t)

ρ = ρ0(x, y) + δρ(x, y, t) (8.3)

S = S0(x, y) + δS(x, y, t)

v = δv(x, y, t)

It is convenient to introduce the displacement vector:

v = ∂ξ

∂t
(8.4)
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Substituting these into the 2D ideal MHD system and neglecting terms of higher
than the first order perturbations we obtain

ρ0
∂2δξ

∂t2 = −∇
(

δp + B0δB

4π

)

(8.5)

δρ + div(ρ0ξ ) = 0 (8.6)

δB + div(B0ξ ) = 0 (8.7)

δp

p0
− γ

δρ

ρ0
+ ξ

(∇p0

p0
− γ

∇ρ0

ρ0

)

= 0 (8.8)

The last equation describes the entropy perturbations. We consider harmonic
oscillations, proportional to exp(−iωt), and replace ∂/∂t by −iω.

We are considering a motion with a scale λ � R. At the same time, the scale
over which we average the equations of motion, l, is much larger than R, i.e.

R � l � λ. (8.9)

This means that at the scale l the compression of the plasma may be considered as a
quasi-stationary one, that is, δP is almost a constant, even though ρ0 and ξ change
by the order of unity at even smaller scale R � l. Figure 8.4 shows the basic

Fig. 8.4 Sketch of the spatial
variation of plasma
parameters in the presence of
the long wave. The initial
state of the sunspot (or any
other dense conglomerate of
magnetic elements) has large
amplitude density and
magnetic field variation on
the scale of flux tubes, R. The
incident wave sets up a total
pressure perturbations δP on
the much larger scale λ. The
temperature and velocity
respond to the wave with
amplitude δT and δv that
depend on small-scale
structure and thus have many
small regions of high
gradients (cf. Fig. 8.2)

δT

δv

δP

Density R

x

x

x

x

λ/2
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approach in spatial variations of plasma parameters in field of wave with λ � R.
Indeed, as one can see from (8.5), the change of δP at the scale l is of the order
of ρ0|ξ |ω2l, where ω ∼ csλ is characteristic frequency of oscillations, cs being the
sound speed. In other words, the change of δP at the smallest possible averaging
l ∼ R is as small as ρ0|ξ |ω2R, while the change of δP at a scale λ is much larger:

δP ∼ ρ0|ξ |ω2λ. (8.10)

Using the equilibrium condition (8.2), from (8.5)–(8.8) we have

δp = γp0divξ − ξ∇p0 (8.11)

δB = −B0divξ − ξ∇B0 (8.12)

δP = −2
[(γ

2
− 1
)

p0 + P0

]
divξ (8.13)

Taking into account estimate (8.10), it is obvious from (8.13) that

divξ ∼ |ξ |
λ

(8.14)

and there are no large terms of the order of |ξ |/R in divξ .
It is, however, important that from (8.13) one can not say anything about the

magnitude of the divergence-free part of ξ . On the other hand, from (8.5) we have

∇ × ξ = 1

ω2ρ2
0

[∇ρ0 × ∇δP ] (8.15)

For ∇δP (8.10) gives the estimate |∇δP | ∼ ω2|ξ |ρ0. As for an inhomogeneous
plasma |∇ρ0| ∼ ρ0/R, we find from (8.15) that

|∇ × ξ | � |ξ |
R

, (8.16)

This estimate shows that, unlike the case of a homogeneous plasma, in the dense
conglomerate of flux tubes the divergence-free part (vortex) is very important.

Let us now proceed to the derivation of averaged equations. By expressing divξ

in terms of δP from (8.13), and taking the average, we obtain:

div〈ξ 〉 = 〈δP 〉
2

〈
1

(γ /2 − 1)p0 + P0

〉

, (8.17)

where angular brackets denote averaging over the volume with characteristic size
l (R � l � λ). While deriving (8.17) we have taken into account that, up to the
small terms of order Rλ, we can put 〈δP 〉 = δP .
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In order to obtain a closed system of equations describing self-consistently large-
scale oscillations in an inhomogeneous plasma, in addition to (8.17) we need to add
another equation expressing 〈ξ 〉 in terms of 〈δP 〉. From (8.5) we have

ξ = 1

ω2ρ0
∇δP (8.18)

As shown above, divξ � |∇ × ξ |. This means that taking the divergence of (8.18),
we can neglect the left-hand side of resulting equation and write the following
approximate relation

div

(∇δP

ρ0

)

� 0 (8.19)

Let us introduce the notations:

δP̃ = δP − 〈δP 〉, q̃ = q − 〈q〉 (8.20)

where q = 1/ρ. It follows from (8.19) that

div(qδP̃ ) = ∇〈δP 〉 · ∇q (8.21)

This equation together with the condition 〈δP̃ 〉 = 0 uniquely determines δP̃ .
By averaging (8.18), we obtain:

〈ξ〉 = 1

ω2

[
〈q∇δP 〉 + 〈q̃〉〈∇δP̃ 〉

]
. (8.22)

Since in (8.21), which is linear, the right-hand side is proportional to ∇〈δP 〉, we
can write

〈q̃∇δP̃ 〉α = Qαβ∇β 〈δP 〉 (8.23)

where Qαβ is a tensor whose symmetry is determined by the symmetry of the
fluctuations of q = 1/ρ0. For example, if statically, there is not any selected
direction in the xy-plane, then obviously, Qαβ = qδαβ , where Q is constant. If
the level of fluctuations is of the order of unity, i.e. 〈q̃2〉 ∼ 〈q〉2, then Q is of the
order 〈q〉.

Finally, using (8.22) and (8.23) we obtain

〈ξ〉α = 1

ω2

[〈q〉δαβ + Qαβ

] · ∇β〈δP 〉. (8.24)

Equation (8.24), together with (8.17), forms closed system which defines all
the properties of the linear long-wave oscillations propagating through the dense
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conglomerate of random flux tubes. For spatially harmonic wave proportional to
exp(ik · r), these equations lead directly to the dispersion relation:

ω2 = 2

〈
1

(γ /2 − 1)p0 + P0

〉−1 [〈 1

ρ0

〉

k2 + Qαβkαkβ

]

. (8.25)

It must be noted that this dispersion relation can be directly used for the diagnostic
goals when measuring ω(kx, ky) diagrams, which allows to reconstruct the morpho-
logical map of studied region.

The normalized phase velocity corresponding to this dispersion relation (8.25)
can be represented as follows:

vph = ω

k
=
〈

1

ρ(c2
s + v2

A)

〉−1/2(〈
1

ρ

〉

+ Qαβ

kαkβ

k2

)1/2

(8.26)

To find Qαβ , one needs to solve (8.21), which, in most cases, cannot be done
analytically. Example of two-dimensional case where analytical solution is possible
is given in the next section.

8.1.2 Spacial Cases

In a two-dimensional case (8.21) can be analytically solved if we assume that
density inhomogeneities are small, i.e. q̃ � q . Then (8.21) can be written as

〈q〉ΔδP̃ = −∇〈δP 〉 · ∇q̃ (8.27)

where we have neglected the term 〈q̃∇δP̃ 〉 ∼ q̃2.
Using the Fourier-transformation

q̃ = 1

2π

∫

eik·xq̃kd2k, (8.28)

we find that

δP̃k = ik
〈q〉k2 ∇〈δP 〉 · q̃k, (8.29)

then

〈q̃∇δP̃ 〉 = 1

(2π)2

〈∫ ∫

d2k1d
2k2e

i(k1+k2)·r · q̃k1 q̃k2

k2(k2 · ∇〈δP 〉)
〈q〉k2

〉

(8.30)
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Using the formula

〈ei(k1+k2)·r〉 = 4π2

L2 δ(k1 + k2) (8.31)

where L is normalization length, we obtain

〈q̃∇δP̃ 〉 = −
∫

d2k(q̃2)k
k(k · ∇〈δP 〉)

〈q〉k (8.32)

here

(q̃2)k ≡ 1

L2 |q̃k|2 (8.33)

is the spectral density of fluctuations. We used here the identity qk ≡ q∗−k, as q(r)
is a real function.

Using now relation (q̃2)k � [(ρ̃2)k/〈ρ0〉4], we obtain the following expression
for the correlation function

〈q̃∇δP̃ 〉 = − 1

〈ρ0〉4

∫

d2k(ρ̃2
0 )k

k(k · ∇〈δP 〉)
〈q〉k2 (8.34)

Thus, up to the terms of the order of ρ̃2
0 ,

Qαβ = − 1

〈ρ0〉3

∫

d2k(ρ̃2
0 )kkαkβ (8.35)

Finally, we need an expression for the fluctuating part of the displacement vector
ξ̃ = ξ − 〈ξ〉. With accuracy up to the terms linear in ρ̃ we have (see (8.18):

ξ̃ = 1

ω2ρ̃0

[

∇δP̃ − ρ̃0

〈ρ0〉∇〈δP 〉
]

, (8.36)

where δP̃ is related to ρ̃0 by (8.29).
For isotropic fluctuations Qαβ = 0, and the dispersion relation (8.25) acquires

an especially simple form:

ω2 = 2

〈
1

(γ /2 − 1)p0 + P0

〉−1 〈 1

ρ0

〉

k2. (8.37)
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8.2 Dissipative Processes

In the MHD approximation, there are three major sources of damping of magne-
toacoustic waves in plasma: viscosity, thermal conductivity, and Ohmic losses. In
most cases the damping is slow, i.e. the damping rate Γ is much smaller than the
frequency of oscillations. Thus, we can write

Γ = Q̄visc + Q̄therm + Q̄ohm

2W
(8.38)

where W is the energy density of oscillations and Q̄ is the energy dissipated per unit
time and averaged over the space period of the wave.

To be more specific, we will perform the calculations for the case, which is
characteristic to solar atmosphere, where ωiτi � 1, τi and ωi = eB/mic being
ion collision time and ion gyro-frequency.

We therefore can use a standard relations (Braginskii 1965):

Qvisc = Q
(1)
visc + Q

(2)
visc (8.39)

with

Q
(1)
visc =

(
1

3
η0 − η1

)

(div δv)2 (8.40)

Q
(2)
visc = 1

2
η1

(
∂vα

∂xβ

+ ∂vβ

∂xα

)2

(8.41)

where

η0 = 0.96nT τi, η1 = η0

3

1

2(ωiτi)2 , τi = 3

4

√
mi

π

T 3/2

Λe4n
(8.42)

and Λ is a Coulomb logarithm. Further

Qtherm = χ

T
(∇δT )2; χ = 2nT

miω
2
i τi

(8.43)

with χ being the thermal conductivity. Here we have assumed that in an unperturbed
state the temperature is homogeneous and one can neglect terms of the type
(δχ/T )∇δT · ∇T0 in Qtherm.
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8.2.1 Weakly Inhomogeneous Medium

We start with the estimate of the damping rate for a homogeneous plasma. We shall
see that the terms with small or no effect on the damping rate in homogeneous
plasma become very large in presence of closely packed flux tubes.

The main contribution to damping rate Γ in homogeneous plasma comes from
the first term in (8.40), since it does not contain a small parameter (ωiτi)

−2, and can
be estimated as

Q
(1)
visc � nT τi

δv2

λ2 (8.44)

while the contribution from the second term in (8.40) is (ωiτi)
2 times smaller:

Q
(2)
visc � nT τi

(ωiτi)2

δv2

λ2 (8.45)

Since δT is of the order of T0(δv/ωλ), Qtherm is of the same order as Q
(2)
visc, i.e.

(ωiτi)
2 times smaller than the viscous dissipation due to η0, and also can be ignored.

The Ohmic dissipation is estimated as follows:

Qohm �
( c

4π

)2 δB2

σλ2 (8.46)

where σ ∼ ω2
peτe/4π is the plasma conductivity.

Now we can estimate the ratio of Qohm to Q
(2)
visc, bearing in mind that δB is of

the order of (B0/ωλ):

Qohm

Q
(2)
visc

�
√

me

mi

1

β0
(8.47)

where β0 = 8πp0/B
2
0 is plasma β in the unperturbed state. That is, for not too small

β0, Qohm is much smaller than Q
(2)
visc and Qtherm, and even more so with respect to

Q
(1)
visc.

Consequently, the damping rate is essentially determined only by Q
(1)
visc:

Γ � Q
(1)
visc

W
(8.48)

As the estimate for the energy density is

W � min δv2, (8.49)



218 8 Wave Phenomena in Dense Conglomerate of Flux Tubes

we obtain the following estimate for Γ :

Γ � T τi

miλ
. (8.50)

The reason why the damping rate in a plasma with small scale inhomogeneities
may become much larger than that given by (8.50) is that in such a case all perturbed
quantities (δṽ, δB̃, δT̃ etc.) have a component that changes not at a scale λ, but at a
scale R, so that all the spatial derivatives in (8.39)–(8.43) become much larger than
for waves traveling in a homogeneous plasma.

Assuming that inhomogeneities are of the order of unity, ρ̃ � ρ, one can expect
that all dissipative terms increase by the factor (λ/R)2 � 1.

Note, however, that the main dissipative term, Q
(1)
visc, does not increase in the

inhomogeneous case. This happens because it is proportional to (divδv)2 and,
(divδv) is of the order of δv/λ even in the case of an inhomogeneous plasma.
Therefore, the enhancement of dissipation comes only from terms Q

(2)
visc and Q

(1)
therm.

Although the dissipation in homogeneous case, caused by Q
(2)
visc and Q

(1)
therm is

much less than by Q
(1)
visc, in some cases of an inhomogeneous plasma it can be quite

large, resulting in a much faster damping than that determined by (8.50). This will
be discussed in the next section.

8.2.2 Medium with Moderate and Strong Inhomogeneities

Even though the main dissipation term does not increase, the terms Q
(2)
visc and Q

(1)
therm

increase by a factor (λ/R)2ρ̃0/ρ0, where ρ̃0 is the characteristic amplitude of the
inhomogeneities (see Eq. (8.20)). Thus, if

λ

R

ρ̃0

ρ0
> ωiτi, (8.51)

Q
(2)
visc and Q

(1)
therm become much larger than Q

(1)
visc, resulting in the significant

enhanced dissipation of an incoming wave power.
Thus, under condition (8.51), the energy dissipation is determined by the sum

Q
(2)
visc + Qtherm, and can be estimated as

Q
(2)
visc + Qtherm � nT τi

(ωiτi)2

δv2

R2

(
ρ̃0

ρ0

)2

(8.52)
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Qohm remains related to Q
(2)
visc by the estimate (8.47) and is thus much smaller than

Q
(2)
visc. The damping rate can be found from (8.49) and (8.52):

Γ � T τi

miR2

1

(ωiτi)2

(
ρ̃0

ρ0

)2

(8.53)

In previous calculations we assumed that initially the plasma was stationary.
However, in an inhomogeneous plasma there are processes of thermal conductivity
and magnetic field diffusion that tend to reduce inhomogeneities. The shorter of the
two is the thermal conductivity time,

τtherm � R2n

χ
�
[

T τi

miR2

1

(ωiτi)2

]−1

(8.54)

Consideration of a stationary background in the problem of the absorption of
the wave power requires the condition Γ τtherm � 1 to be satisfied. However,
from (8.53) and (8.54) it is obvious that τtherm is always much smaller than Γ −1,
which means that the background temperature becomes homogeneous much earlier
than the wave is damped. This is just the reason why we assumed that the plasma in
the initial state has a homogeneous temperature (see discussion following (8.43)).

The diffusion of the magnetic field occurs over a time scale

τdiff � 4πR2σ

c2
� τtherm

√
mi

me

, (8.55)

(we consider the case when plasma β � 1).
From the condition Γ τdiff � 1, we obtain the following restriction on plasma

parameters:

(
ρ̃0

ρ0

)2

�
√

me

mi

. (8.56)

Assuming that the condition (8.56) is satisfied, we calculate the enhanced damping
rate for the plasma with a moderate level of inhomogeneities, ρ̃0/〈ρ0〉 < 1.
In the initial stationary state we have a regular equation of state p0(x, y) =
(2/mp)ρ0(x, y) · T0(x, y).

Using (8.6)–(8.8) we can express δT through the displacement vector

δT = −T0(γ − 1)divξ (8.57)

Now from Eqs. (8.11)–(8.13) we have:

δT

T
= (γ − 1)

δρ

ρ
= δP

P

γ − 1

γ + (2 − γ )(Pm/P)
, (8.58)
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and, using the adiabatic relation, we have for δρ:

δρ

ρ
= δP

P

1

γ + (2 − γ )(Pm/P)
. (8.59)

Thus, when the acoustic or MHD waves propagate in the dense conglomerate of flux
tubes, there are always temperature and density perturbation with a scale R which
is much less than λ. The enhanced dissipation of incoming waves is caused just by
these steep temperature and density gradients.

8.2.3 Dissipation by Thermal Conduction

The dissipation caused by thermal conductivity is described by the expression

Qtherm = χ

T
〈(∇δT )2〉 (8.60)

The average is taken over a scale which is much larger than R. For δT given
by (8.58) we obtain

Qtherm = χ

T

(
γ − 1

γ

)2 δP 2
0

[P + (2/γ − 1)Pm]2 (8.61)

×
{

k2 +
〈

(2/γ − 1)2(∇Pm)2

[P + (2/γ − 1)Pm]2

〉}

where we have taken into account that k � 1/R and have assumed the sinusoidal
dependence of δP on x: δP = δP0sin(kx − ωt).

The first term in the curly brackets corresponds to the usual dissipation of p-
modes in a homogeneous medium while the second term describes the additional
damping associated with strong inhomogeneities.

The spatial damping rate Im kT caused by thermal dissipation (see, e.g., Landau
and Lifshitz 1984) is

Im kT = Qtherm

2csE0
(8.62)

where E0 = ρ(δv)2/2 is the energy density of the initial acoustic wave.
Let us express now the velocity perturbations in terms of the total pressure

perturbations

δv = δP

ρvph
(8.63)

where vph is determined by (8.26).
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As an example, let us choose an isotropic distribution of inhomogeneities. In this
case in (8.26), Qαβ = 0 and

v2
ph = γ

ρ

[
P =

(γ

2
− 1
)

Pm

]
. (8.64)

Using (8.26) and (8.61)–(8.64) we can write for the damping rate

Im kT = χ

2cs

T (γ − 1)2

γ [P + (2/γ − 1)Pm]
{

k2 +
〈

(2/γ − 1)2(∇Pm)2

[P + (2/γ − 1)Pm]2

〉}

(8.65)

From (8.58)

T (γ − 1)2

γ [P + (2/γ − 1)Pm] = δT

δP
. (8.66)

The equation of state and an adiabatic relation of the temperature and gas pressure
give

δT

δp
� δT

δP
= 1

γ cV

, (8.67)

where instead of the number density n we used the specific heat at constant volume,
cV = n/(γ − 1). Combining (8.64), (8.65), and (8.67), for the spatial damping rate
we obtain

Im kT = κ

2cs

γ − 1

γ

{

k2 +
〈

(2/γ − 1)2(∇Pm)2

[P + (2/γ − 1)Pm]2

〉}

(8.68)

where κ = χ/cV is the thermal diffusivity.
Note that in denominator of the second term in (8.68) the last term is numerically

small compared to the first term; for γ = 5/3, it is only 0.2 of the first term even
when p/P = 1 (i.e., in nonmagnetic medium, while in sunspots p/P < 1 always).
This allows us to use the expansion

1

[P + (2/γ − 1)Pm]2
� 1

P 2

[

P − 2

(
2

γ
− 1

)
Pm

P

]

, (8.69)

and write

Im kT = κ

2cs

γ − 1

γ

{

k2 +
〈
(2/γ − 1)2(∇Pm)2

P 2

〉}

. (8.70)

For flux tubes with known internal structure we can easily take the average of
〈(∇P)2〉. As an example, suppose the magnetic field decreases from axis according
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to, say, a Gaussian law,

B = Bmax exp(−r2/R2). (8.71)

With the characteristic distance between flux tubes’ centers d and the flux tube areal
filling factor to be f = R2/d2, we have

〈
(∇Pm)2

P 2

〉

= f

R2

〈
P 2

m,max

P 2

〉

(8.72)

In what follows we omit the angle brackets and bear in mind that the ratio
P 2

m,max/P
2 is averaged over the ensemble of flux tubes. Note that we use here

adiabatic approach which is valid for wavenumbers

k > kT ≡ κ

R2cs

(8.73)

Finally, for the spatial damping rate caused by thermal losses we have:

Im kT = κ

2cs

γ − 1

γ

[

k2 +
(

2

γ
− 1

)2 f

R2

P 2
m,max

P 2

]

(8.74)

For Gaussian magnetic field profile in a flux tube, the average magnetic pressure
of the flux tube is 〈Pm〉 = f P 2

m,max/2. Even in the case of closely packed flux tubes,
with f � 1, the average magnetic pressure will be reduced below its maximum
value, which should be taken into account in constructing equilibrium sunspot
models.

8.2.4 Dissipation by Viscosity

A very similar mechanism leads to enhancement of the viscous dissipation. The
plasma densities inside and outside the individual flux tube are usually different and
the total pressure perturbation δP gives rise to a relative motion of flux tube and the
external plasma. The characteristic scale of these motions is of the order of R. The
viscous dissipation

Qν = η

2

(
∂vi

∂xk

+ ∂vk

∂xi

− 2

3
δikdivv

)2

+ ζ(divv)2 (8.75)
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can greatly exceed its homogeneous value. Calculations similar to those made in
previous section, give

Qν = c2
s

2

(
4

3
η + ζ

)
δP 2

P 2

{

k2 + η

(4/3)η + ζ

〈[

∇
(

1 − ρ

〈ρ〉
)]2

〉}

(8.76)

Assuming that the temperature of the plasma in the unperturbed state (in absence
of the wave) is more or less uniform, we can write that [1 − ρ/〈ρ〉] = p + pm/P .
With this, for the spatial damping rate Im kν , caused by viscous dissipation, we
obtain

Im kν = 7

6

ν

cs

(

k2 + 3

7

f

R2

P 2
m,max

P 2

)

, (8.77)

where we assumed that ζ ∼ η and have introduced a kinematic viscosity ν = η/ρ.
Equation (8.76) has been obtained under the assumption that the viscous forces

have a weak influence on the velocity field which is determined by the inertial
forces. This is true for time scales ω−1 of the perturbations less than the time of
establishing of viscous flows over the scale R, ω−1 ≤ R2ν. Thus, the damping
rate (8.77) is valid if the condition analogous to condition (8.73) is satisfied, that is,
if

k > kcν ≡ ν

R2cs

. (8.78)

8.2.5 Total Dissipation Rate

The total damping rate which includes both thermal and viscous losses is simply
the sum of expressions (8.74) and (8.77). Both these expressions contain two
parts: the usual absorption of sound waves in medium with finite viscosity and
thermal conductivity, and the absorption caused by the presence of small-scale
inhomogeneities.

Let us denote the spatial damping rate corresponding to the usual losses (i.e., in
homogeneous medium) as Im k1 and the damping rate caused by the strong local
gradients by Im k2. Then the total damping rate is

Im k = Im k1 + Im k2, (8.79)

where

Im k1 = k2

2cs

[
7

3
ν +

(

1 − 1

γ

)

κ

]

(8.80)
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and

Im k2 = f

2csR2

P 2
m,max

P 2

[

ν +
(

1 − 1

γ

)(

1 − 2

γ

)2

κ

]

. (8.81)

For pure molecular transport, the kinematic viscosity ν and the thermal diffu-
sivity κ are of the same order of magnitude. In this case, because of the small
numerical factor in the second term in (8.81), the enhanced dissipation is dominated
by viscosity. The same conclusion holds in the case of a turbulent viscosity and
thermal conductivity, when

ν ∼ κ ∼ ṽl̃ (8.82)

with ṽ being a characteristic velocity of turbulent elements and l̃ their characteristic
scale. Thermal dissipation may become more important in the case of a large
radiative heat transfer where κ � ν.

It is important that, although formally Im k contains k2 through Im k1, the
damping rate does not depend on k: according to our basic assumption the scale
of inhomogeneities R is much less than the acoustic wavelength, k2R2 � 1, and,
respectively,

Im k1 � Im k2. (8.83)

So that the absorption is completely determined by the anomalous damping rate
Im k2:

Im k2 = 1

2

fP 2
m,max

P 2

ν

csR2 . (8.84)

We neglected here the second term in square brackets in (8.81), and have taken into
account the condition (8.82).

Respectively, the enhancement factor

EF = Im k1/Im k2 (8.85)

is

EF = 3f

7k2R2

P 2
m,max

P 2 , (8.86)

which because of k2R2 � 1 is quite large.
We see that the expression for Im k2 contains the critical wavenumber:

kcr = ν

R2cs

. (8.87)
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This quantity plays a significant role in the interaction of the wave with the
inhomogeneous medium.

Finally, taking into account the condition (8.81) we can neglect Im k1 in (8.79)
and represent the total damping rate as follows:

Im k = 1

2

f P 2
m,max

P 2 kcr (8.88)

This expression shows, first of all, that the damping of acoustic waves does
not depend on the wavenumber and is determined by the physical properties of
absorption region: magnetic filling factor, the scale of inhomogeneities, dissipative
coefficients, sound speed, and the average magnetic field.

The dependence of the absorption on the magnetic field is quite specific
and needs separate comments. Namely, according to (8.88) the damping rate is
proportional to B4. At large values of magnetic field, when P 2

m,max becomes of the
order of P 2 the damping rate does not depend on magnetic field any more and there
occurs a saturation of the absorption enhancement over the magnetic field strength.

So that, for high enough magnetic field, such that P 2
m,max � P 2 we have

Im k = f

2
kcr. (8.89)

The other important meaning which carries the expression (8.88) is that it allows
us to introduce the specific parameter μ which actually determines the acoustic
opacity of the region:

μ = Im k

k
= 1

2

fP 2
m,max

P 2 . (8.90)

An important feature of the parameter μ is that it does not depend on the
assumptions on the particular value of viscosity ν and, in this respect, is independent
on the particular model of viscous transport.

It is also important that the local damping rate has no dependence on the sunspot
size; the total absorption of a spot then scales simply with the path length through
the spot, that is, the sunspot dimension L. We will see below that these features are
totally consistent with the observations.

If α is the total absorption of the wave propagating through the sunspot, the
spatial damping rate can be evaluated as

Im k = 1

L
ln

(
1

1 − α

)

. (8.91)
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So that the total damping coefficient, α = 1 − exp(−Im kL) depends only on the
size of sunspot (or/and plage) and on the physical parameters of medium:

α = 1 − exp

(

−1

2

fP 2
m,max

P 2 kcrL

)

. (8.92)

8.3 Anomalous Damping at Small Wavevectors

In the previous sections, to find the dissipation rate of p-modes, we concentrated
on the region of wave vectors higher than some critical value kcr. In this section
we extend the analysis to the region of low wavenumbers (low frequencies) when
conditions (8.73) and (8.78) break, and

k < kcr (8.93)

We will see that the picture of anomalous damping of p-modes described above
considerably changes at smaller wave vectors. First of all, the viscous forces inhibit
the relative motions of the flux tubes and the ambient gas (“sloshing mode”),
thus reducing the dissipation enhancement: there appears a strong dependence of
the damping rate on the wavevector (and frequency), and Im k decreases with
decreasing wave number. The same happens with the damping process provided
by thermoconductivity. In what follows, we, as before, assume that ν ∼ κ .

We start from the description of the dissipation caused by the thermal losses. At
k < κ/(R2cs), the temperature and density perturbations become nonadiabatic and
their relation should be estimated from the full thermoconductivity equation:

d

dt

[

δT − (γ − 1)
T δρ

ρ

]

= κΔδT . (8.94)

Evaluating for estimation dδT /dt as ωδT , and κΔδT as κδT /R2, we obtain that at
k < kcr the first term in the left-hand side of (8.94) becomes negligibly small as
compared to the right-hand side. Hence, the relation between the temperature and
density perturbation is determined by the expression

∣
∣
∣
∣
δT

T

∣
∣
∣
∣ � kcs(γ − 1)

R2δρ

κρ
(8.95)

Using here the definition for kcT analogous to (8.87), instead of (8.58), we have

∣
∣
∣
∣
δT

T

∣
∣
∣
∣ �

k

kcr
(γ − 1)

δρ

ρ
= k

kcr

∣
∣
∣
∣
δP

P

∣
∣
∣
∣

γ − 1

γ + (2 − γ )(Pm/P)
. (8.96)
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The factor k/kcr that appears in (8.96) obviously gives rise to the dependence of
the dissipation rate on the wavenumber, and, respectively, on frequency. After the
substitution of (8.96) in (8.60) the same procedure described in Sect. 8.2.2 leads to
the following expression for damping rate at k < kcr (cf. (8.74)):

Im kT � kcr

2

γ − 1

γ

[

k2R2 +
(

2

γ
− 1

)2
k2

k2
cr

f P 2
m,max

P 2

]

(8.97)

We see that the contribution provided by the presence of small-scale inhomo-
geneities of magnetic field (the second term in square brackets) is still larger than
the homogeneous one:

f
P 2

m,max

P 2 > k2
crR

2. (8.98)

As was mentioned above, at k < ν/(R2cs) the relative motions of flux tubes and
ambient plasma is inhibited by viscous forces. Indeed, one can see from Navier-
Stokes equation that the Archimedean force is now balanced by the viscous friction
and the velocity δv of relative motions of fluid elements with different unperturbed
densities should be determined from the condition

ν

R2

∣
∣
∣
∣
δv

v

∣
∣
∣
∣ � ω

δρ

ρ
(8.99)

with ω = kcs , this estimate becomes as

∣
∣
∣
∣
δv

v

∣
∣
∣
∣ �

k

kcr
,
δρ

ρ
(8.100)

and, finally, the damping rate for k < kcr becomes as follows (cf. (8.77)):

Im kν � kcr

(
7

6
k2R2 + 1

2

k2

k2
cr

f P 2
m,max

P 2

)

, (8.101)

Exactly as in the case of thermal losses, here we have that the anomalous
damping caused by the presence of small-scale inhomogeneities even at small
wavenumbers is still larger than the dissipation in a uniform medium. Although both
expressions, (8.77) and (8.101), are the order-of-magnitude estimates, they allow us
to perform qualitative, and at some degree, quantitative analysis of observational
data of p-mode absorption by sunspots. This is done in the next section.
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8.4 Absorption of p-Modes by Sunspots and Active
Regions—Observations

By analyzing the velocity field inside and outside a sunspot, one can directly
detect the difference between the radially propagating components of the incident
and outgoing waves. The most natural way to perform this analysis is to use a
polar coordinate system centered on the sunspot (Braun et al. 1987). The general
procedure is analogous to the partial wave analysis in classical mechanics.

The general solution of the two-dimensional wave equation in polar coordinates,
(r, φ), is given by the two kinds of Hankel functions, representing incoming,
H

(1)
m (k, r), and outgoing, H(2)

m (k, r), waves

Ψm(r, θ, t) = e(iωt+imφ)[Am(ω, k)H (1)
m (k, r) + Bm(ω, k)H (2)

m (k, r)] (8.102)

Here, m is the azimuthal wave number, k is the horizontal wavenumber, and Am and
Bm are complex coefficients. Both are determined by power and phase of the waves;
Am corresponds to the wave traveling radially inward and Bm to outward wave.

If there is no absorption of incoming waves, then Am = Bm, and radial
component of the wave amplitude can be expressed by Bessel function of the first
kind. If, however, there is a sink of wave power, then |Am| �= |Bm|, and there appears
a net flow of power either toward or away from the center of sunspot.

Long-run temporal sequences of two-dimensional longitudinal velocity fields
were recorded in the vicinity of several sunspots, pore, and a region of quiet sun.
A summary of the observational parameters is given in Table 8.1. First column is
the date of the observation. The second column is the object of the observation.
Following columns list the total duration of the run, the interval between the
successive scans, the spatial extent of the object of the observation and resolution of
each scan.

A refined data reduction method which was employed by Braun et al. (1987,
1988) for the analysis of each time series showed that unlike quiet sun region, for
each studied sunspot, there was a significant deficit of outgoing power in comparison
with incoming power.

Figure 8.5 shows example of the 1986 October run. |Am|2 and |Bm|2, i.e. power
of incoming and outgoing waves summed over all computed azimuthal orders are

Table 8.1 1983, 1986 observing parameters

Date Activity Duration (h) Time interval Size (arcsec) Resolution (arcsec)

1983 January 18 Spot 4.1 90.8 512 × 240 1 × 1

1983 February 23 Spot 6.0 90.8 512 × 240 1 × 1

1983 April 26 Quiet 6.4 91.0 512 × 240 1 × 1

1986 October 24 Spot 7.8 96.1 512 × 480 1 × 2

1986 October 25 Spot 5.8 96.3 512 × 480 1 × 2

1986 November 20 Pore 8.4 93.1 512 × 460 1 × 2
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Fig. 8.5 The power spectrum computed in the k − ω plane for the 1986 October time series,
summed over all azimuthal orders. Power spectra were computed individually for the October 24
and 25 observing runs and combined for the purposes of this illustration. The top and bottom halves
of the diagram indicate the power present in inward and outward propagating waves, respectively.
A deficit of outward traveling waves is clearly seen in all of the ridges. Reprint from Braun et al.
(1988) by permission from IOP copyright AAS

plotted in the k − ω plane. The structure of the p-mode ridges in this diagram is
identical to that determined by analysis of quiet sun oscillations with difference that
instead of, e.g., spherical harmonic degree �, the radial wavenumber has been used
in the present analysis. The top and bottom panels show the amplitude of incoming
and outgoing waves, respectively. Note that both, |Am| and |Bm|, are each summed
over the interval of azimuthal wavenumbers of −5 ≤ m ≤ 5. A deficit of outward
traveling waves is clearly seen in all of the p-mode ridges.

In all studies, it was found that for each of the sunspot observations there was a
substantial deficit of outgoing power relative to incoming power. This power deficit
can be characterized by an absorption coefficient defined as

α = Pin − Pout

Pin
(8.103)

where Pin and Pout are the total power in the incoming and outgoing p-modes
summed over all azimuthal orders and over the frequency interval of 1.5 mHz ≤



230 8 Wave Phenomena in Dense Conglomerate of Flux Tubes

Fig. 8.6 The absorption coefficient α vs. horizontal wavenumber for sunspots, pore and the quiet
sun. In all cases α is shown up to the horizontal wavenumber where p-mode power could still be
discerned from the background noise. The errors were calculated from the statistical properties
of the power spectra and a standard treatment of the error propagation. Reprint from Braun et al.
(1988) by permission from IOP copyright AAS

ν ≤ 5 mHz. The background noise visible outside of the p-mode ridges has been
estimated and subtracted from the total power before calculating α.

Figure 8.6 shows the dependence of α on horizontal wavenumber where the
incoming and outgoing wave power has been summed over azimuthal orders
−5 ≤ m ≤ 5. Every sunspot and even a pore show significant absorption of
p-mode oscillations. In the case of the January 1983 and October 1986 sunspots as
much as 50% of incoming power has been absorbed. It is important to note that
the amount of absorption is constant at the higher wavenumbers (k ≥ 0.5 Mm−1),
but noticeably drops as k approaches 0. For comparison with sunspot behavior the
measurements were performed over the quiet sun region (see panel marked April 26,
1983). One can see that the quiet sun observations, as expected, show no significant
difference between incoming and outgoing power.

In the subsequent studies, a significant improvement in the measurements of p-
mode absorption and scattering amplitudes, and in particular, the increased temporal
frequency resolution, provided a greater details in the interaction of p-modes with
sunspots, active regions and quiet sun (see, e.g., Gizon et al. 2009 and literature
therein).

The observed regularities can be summarized as follows.
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1. The absorbing regions are spatial coincident with sunspots and plages seen on
the solar surface, with some differences in detail.

2. The fraction of the incident p-mode power absorbed is zero at low wavenumbers,
k ≤ 0.1 Mm−1, then rises to a high value at higher wavenumbers, k >

0.4 Mm−1. The absorbed fraction remains constant at the high value to the
observational limit at k ∼ 1 Mm−1.

3. The onset of absorption occurs at lower wavenumbers and the absorbed fraction
is higher in larger sunspots than in smaller sunspots and pores. Typical isolated
sunspots absorb 40% of p-mode power at high wavenumber (k > 0.4 Mm−1).
Giant sunspots absorb up to 70%, while small ones absorb only 20%.

4. The absorbed fraction is larger in sunspots than in plages, but the acoustic
opacity, the absorption per unit magnetic field, appears to be saturated in
sunspots, whereas in plages this effect was not observed.

5. The dependence on the temporal frequency shows a broad peak in p-mode
absorption centered approximately at 3 mHz.

Understanding the direct interaction of p-modes with sunspots and plages is a
powerful tool in probing inhomogeneities in sunspot interior and for developing
the helioseismology methods. It is remarkable that the mechanism of the enhanced
absorption of acoustic wave power by sunspots, described earlier in this chapter
has been developed before the observational data became available (Ryutova and
Persson 1984). The comparison of theory and observations turned out to be
remarkably good (LaBonte and Ryutova 1993). In the next section we overview
these results.

8.5 The Interpolation Formula and Comparison
with Observations

The qualitative analysis of the p-mode absorption (LaBonte and Ryutova 1993)
shows that at low wavenumbers the damping rate depends on the magnitude of
wavenumbers and increases quadratically with the increasing wavenumbers. The
total damping rate provided by both, viscosity and thermal conductivity (in sunspot
environment ν � κ) according to (8.97) and (8.101), is

Im k

kcr
�
(

7

6
+ γ − 1

2γ

)

k2R2 (8.104)

+
[
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(

1 − 1

γ

)(

1 − 2

γ

)2

κ

]
k2

k2
cr

f P 2
m,max

2P 2

This expression for the damping rate is valid up to the critical values of k � kcr,
above which the enhancement of the absorption becomes more efficient and reaches
its saturation.
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The damping rate corresponding to the saturation regime is given by (8.88), and,
obviously, does not depend on the wavenumber any more.

To unify the description of both limiting cases, k < kcr, (8.104), and k ≥
kcr, (8.88), we will use the following interpolation formula

Im k = q0
k2

k2 + k2
cr

, (8.105)

where according to (8.88), q0 is the damping rate corresponding to the saturation
over the wavenumber

q0 = 1

2

f P 2
m,max

2P 2 kcr. (8.106)

The interpolation formula for the total absorption coefficient (8.92) then is

α = 1 − exp

(

−q0L
k2

k2 + k2
cr

)

. (8.107)

Using the least squares approximation we can match the curve (8.107) with the
observational dependence of the total damping rate α on k.

To do this, we choose six sunspots observed in different times (Braun et al. 1988,
1992; Braun and Duvall 1989). Dates and parameters of the observed objects are
shown in Table 8.2. These examples cover the cases from the very small sunspot of
November 20, up to the giant active region of March 10.

Using the observational data for α and k in (8.107) we obtain the values of q0
and kcr for chosen sunspots. The observed and calculated values of αmax are shown
in the last two columns in Table 8.2.

The interpolation curves calculated with (8.107) together with the observed
absorption seen in all six sunspots are shown in Figs. 8.7, 8.8 and 8.9. The cross
indicates the values of critical wave number kcr. Note a remarkably good qualitative
and quantitative matching of observations and theory in all cases. This includes the
theoretical dependence of the absorption on the wave number and size of sunspot.

Table 8.2 Comparison of the observed and calculated absorption coefficients for six different
sunspots

αmax

Date Diameter (Mm) q0 kcr (Mm−1) μ = Imk/kcr Observed Calculated

1983 January 18 40 0.017 0.44 0.0386 0.50 0.44

1988 February 23 30 0.02 0.516 0.0387 0.45 0.40

1986 October 25 32 0.022 0.33 0.066 0.50 0.45

1986 November 20 8 0.047 0.43 0.11 0.31 0.30

1989 March 10 120 0.013 0.37 0.35 0.78 0.70

1988 November 29 36 0.024 0.445 0.054 0.58 0.45
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Fig. 8.7 The absorption coefficient α vs. horizontal wavenumber k calculated from theoretical
model (solid lines) are compared with the observational data: (a) the 1986 November 20 pore
(8 Mm), and (b) the 1989 March 10 giant active region (120 Mm)
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Fig. 8.8 The same as in Fig. 8.7, but two other similar sunspots that are similar in size and
properties: (a) the 1983 February 23 sunspot (30 Mm), and (b) the 1986 October 25 sunspot
(32 Mm)
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Fig. 8.9 Comparison of the absorption coefficients for (a) a regular sunspot of 1983 January 18
(a) and (b) the quiet sun region taken on 1983 April 26
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Recall that at large wavenumbers,

kcr ≤ k < 1/�, (8.108)

where kcr (for ν � κ) is given by (8.87), the damping rate is almost constant and
by the enhancement factor (EF) larger than in uniformly magnetized plasma (see
Eq. (8.86). Note that in this regime (i.e. k > kcr), the viscous effects and thermal
conductivity have less influence on the sloshing mode, and the enhancement of the
wave dissipation becomes more efficient, which is reflected in steepening of the
theoretical curve in agreement with observational points.

At smaller wavenumbers,

k < kcr, (8.109)

the viscosity and thermal conductivity reduce the velocity and temperature fluctu-
ations, and the damping rate Imk gets proportional to k2 (and respectively, to ω2).
The enhancement factor in this interval of wave numbers is

EF = 3

7

1

k2
crR

2

f P 2
m,max

2P 2
. (8.110)

The saturation regime, the very fact of its natural appearance in theory, and the
corresponding maximum value of the total absorption coefficient is also in a good
agreement with observations.

In conclusion, we overview the basic points of agreements between the theory
and the observed properties of the p-mode absorption. For the general estimates we
adopt the following typical values: flux tube radius, R = 50 km; p-mode frequency
ω/2π × 3 s−1; p-mode wavenumber k = 0.5 Mm−1; sunspot radius L = 25 Mm;
sound speed cs = 10 km s−1.

1. Acoustic absorption is co-spatial with magnetic field locations. In the situation
where viscous processes are dominant, we conclude that Imk in a nonuniform
medium increases with respect to the uniform medium by the enhancement factor
EF, given by (8.86) at k ≥ kcr, and by (8.110) at k < kcr.

For a quantitative estimate, we use the observed quantities for k and R,
take the filling factor f � 1 as appropriate to a sunspot, and assume that
P 2

m,max/2P 2 = 1/2, a value consistent with the models of Maltby et al. (1986)
for a sunspot with a photospheric magnetic field of � 2 kG. This gives an
enhancement factor of

EF � 3 × 102 (8.111)

Thus, the enhancement of absorption is quite large. The absorbing regions should
be distinct from the background. The lower filling factor f in plages compared
to sunspots explains the reduced absorption seen in the observations, despite the
larger size of the plage.
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2. The absorbed fraction of the acoustic power rises with increasing wavenumber at
low wavenumbers but then levels off and remains constant at high wavenumbers.

From (8.104) we see that at wavenumbers below the critical value kcr which is
determined by the thermal and viscous diffusion time scales ((8.73) and (8.78)),
Imk is proportional to k2. Soon above the critical value, the absorption saturates
and at large enough wavenumbers (k � 1 Mm−1) becomes constant.

A plot of absorption coefficient versus wavenumber k as calculated from
theory for six different sunspots is compared with the observational data
(Figs. 8.7, 8.8 and 8.9). The calculated curves adequately describe the observed
behavior; this includes the saturation regime, the corresponding maximum
values of the total absorption coefficient for each sunspot, and the region of
wavenumbers below kcr. The theory clearly indicates that soon after kcr the plot
must steepen because at k ≥ kcr, and the enhancement of wave dissipation
becomes more efficient, which is also in agreement with observational points.

3. The absorption level increases with sunspot size. Theoretically indeed the local
damping rate (8.88) has no dependence on sunspot size, and the total absorption
of the wave power by a spot scales simply with the path length of the wave
through the spot (8.91).

Table 8.2 shows calculated values for the local damping rate q0 = Imk, critical
wavenumber kcr, and the total absorption coefficient α, covering the case of a
small sunspot saturating at 30% (1986 November 20) to the giant active region of
1989 March 10 saturating at 70%. The typical isolated sunspots absorb 40–50%
of incident acoustic wave power (e.g., 1983 January 18, 1983 February 23), in
agreement with observations.

Note that the deviation of critical wavenumbers for different spots from the
mean value of kcr = 0.4 Mm−1, both in theory and observations, is quite small.
This means that, generally speaking, the physical parameters of the medium
(mean viscosity ν, sound speed cs , and scale of inhomogeneities R) are quite
similar in different sunspots. In order to explain the typical value of kcr, the
kinematic viscosity (neglecting the thermal conductivity contribution) should be
of the order of 10 km2 s−1. This is much larger than the kinematic viscosity
caused by “molecular” transport (the thermal diffusivity would also be larger
than provided by radiative transport). Therefore, we have to assume that within
the sunspot some turbulent viscosity is present, which is only natural. If one
uses (8.82), then, to fit the calculated value ν, one can use the observed limit
on turbulent velocities in sunspots of ṽ = 2 km s−1 to find the length scale of
the turbulence l̃ ∼ 5 km, much smaller than flux tube radius but consistent with
Becker’s observed limit on turbulent scales.

A very important parameter for future diagnostic goals is the acoustic opacity
coefficient μ, (8.90), the parameter which is determined only by the magnetic
field and plasma density distribution over the region and is independent on the
particular model of viscous transport.

4. The absorption per unit magnetic field (acoustic opacity) appears to saturate in
sunspots compared to plages. The dependence of the enhancement factor (8.86)
on the magnetic field strength is EF ∼ B4 for weak magnetic fields; at large
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Fig. 8.10 The theoretical curve and the observed absorption coefficient for the 1988 November
sunspot (November 27–30 run): (a) vs. spherical harmonic degree of the mode 1, and (b) vs. the
wave frequency

values of B, when P 2
m,max becomes of the order of P 2, the enhancement factor

saturates. The same holds with the acoustic opacity, (8.90).
There is no observed saturation over magnetic fields in plages, which is quite

natural from theoretical point of view: the average magnetic field strength in
plages is hundreds of Gauss (and less); the magnetic filling factor is less than
unity (� 0.3) which means that magnetic elements are separated by almost
magnetic free plasma, and the condition P 2

m,max � P 2 can hardly be reached.
5. In a frame of linear theory, frequency scales linearly with the wavenumber, and

we should expect the dependence of the absorption on frequency similar to those
on wavenumber. Example of the dependence of the absorption coefficient on
frequency is given Fig. 8.10. Shown are the theoretical curve and the observed
absorption coefficient for the November 1988 spot. Left panel is dependence on
the absorption coefficient of spherical harmonic degree of the mode 1, and right
panel dependence on the wave frequency. The theoretical curve is calculated for
the saturation regime over the wavenumber which corresponds to the critical
wavenumber kcr = 0.44 Mm−1, or �cr = 309.73. The observational points
correspond to �cr = 308 (Braun et al. 1992). Thus for frequency dependence
comparison of theory with observations shows good qualitative and the order-of-
magnitude quantitative agreement, and as we are dealing here with the saturation
regime, the calculated curve is smooth.

It must be noted finally that the dispersion relation (8.26) contains much more
information on the structure of medium than those inferred above. In particular,
it carries information on the statistical properties of the medium providing the
dependence of the phase velocities on the angle of the propagation in a plane
perpendicular to magnetic field. At the same time, there is always the dependence on
the angle between the magnetic field and the direction of the wave propagation, i.e.,
vph = v

‖
ph/cosθ . These and other details give wider opportunity for topographical

studies of randomly magnetized atmosphere.
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8.6 Problem

8.1 Find the pressure fluctuations in a turbulent nonstationary stream in the
presence of random fluctuations of velocity.
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Chapter 9
Nonlinear Wave Phenomena in Dense
Conglomerate of Flux Tubes

Abstract Nonlinear wave phenomena in strongly inhomogeneous media have a
number of specific features that are important for various physical objects where
the parameters of medium change by an order of unity over the scales small
compared to the wavelength. Generally, one would expect that the presence of
strong inhomogeneities may “cut” the steepening of the wave front, and thus prevent
formation of shocks. We shall see that this is not always the case. In this chapter, we
address this problem based on properties of sunspots and describe the procedure that
allows one to obtain nonlinear equations in the presence of strong inhomogeneities.
The approach involves dispersion properties of a system, and dissipative effects.
The equation itself takes a form similar to KdV–Bürgers equation and thus describes
corresponding scenarios of the system evolution. For example, the predominance of
dissipative effects leads to damping of the primary wave at linear stage causing
direct heating, or, depending on the interplay between nonlinear and dispersion
effects, the process of heating may proceed either through the formation of shocks or
through the storing of wave energy in a system of solitons which are later damped
away. In any case, the presence of inhomogeneities results in strongly enhanced
heating compared to that in homogeneous medium.

9.1 Nonlinear Equations in Strongly Inhomogeneous
Medium

In the previous chapter, we saw that strongly inhomogeneous areas such as sunspots
and active region consisting of tightly settled flux tubes with varying parameters
behave as a sink of incoming wave energy. There are however the observed effects,
such as strong local brightenings in sunspots, light bridges, explosive events, and
others that cannot described in the frame of linear theory. Besides, the analysis of
the enhanced dissipation of the incoming wave energy by dense conglomerate of
magnetic domains becomes more complete in nonlinear studies. First of all, we
will see that even in the presence of small-scale inhomogeneities the magnetosonic
waves of arbitrary (and finite) amplitude can split into two simple (Riemann) waves
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Fig. 9.1 Image of the active region (AR 10375) in G-band covering 80×56 Mm area. One can see
spectacular families of local brightenings all over the active region. The image is taken by the DOT
on September 9, 2000. Reprinted from http://www.staff.science.uu.nl, courtesy of Rob Rutten

traveling in the opposite directions. Each wave has a tendency of steepening and
overturning with the subsequent formation of shocks.

The presence of inhomogeneities leads also to the finite dispersion of the wave,
having the cubic dependence on wavenumber, and thus to the frequency shift of
incident wave.

ω = vph · k(1 + δ2k2) (9.1)

The final form of the averaged equations for the finite amplitude wave acquires
the form of KdV–Bürgers’ type equations containing the nonlinear, dispersive, and
dissipative terms. These terms along their “direct functions” carry the information
on statistical properties of the system.

To illustrate small-scale energetic events in magnetic cluster, we show in Fig. 9.1
a captivating image of the active region (AR 09169) in G-band taken by the DOT.
One can see ubiquitous small-scale brightenings all over the active region, and, as
expected, highly filamentary structure of umbrae (seen as faint white dots).

We start with a semi-two-dimensional analysis and assume that all plasma
parameters are random functions of coordinate x: ρ0(x), p0(x), B0(x), T0(x). The
dependence on coordinate y is assumed to be weak so that ∂/∂y � ∂/∂x, and the
magnetic field is directed along the z-axis.

The lifetime of such inhomogeneities is determined by the thermal conductivity
and diffusion which are small in a strongly magnetized plasma in the direction x

perpendicular to the flux tube direction. The inhomogeneities can be considered as

http://www.staff.science.uu.nl
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stationary, providing at the same time the total pressure being constant:

P0 = p0(x) + B2
0 (x)

8π
= const (9.2)

It is important that we make no assumption that inhomogeneities are small: all
parameters can change from one domain to another by an order of magnitude.

To describe the magnetosonic wave, we use the ideal MHD equations:

ρ
dv

dt
= −∂P

∂x
,

dρ

dt
+ρ

∂v

∂x
= 0,

dB

dt
+B

∂v

∂x
= 0,

dp

dt
+ p

γ

∂v

∂x
= 0, (9.3)

where d/dt = ∂/∂t + v(∂/∂x). From the second and the third equations of the
system (9.3), there follows the frozen in flux condition:

B(x)

ρ
= B0(x)

ρ0(x)
, (9.4)

where B(x)0 and ρ(x)0 are the values of B(x) and ρ(x) at the point where a given
element of the medium was located at the initial moment of time, t = 0. Similarly,
from the entropy equation:

p(x)ρ(x)−γ = p0ρ
−γ

0 . (9.5)

We average the first and second equations of the system (9.3) over the scale L

that is much larger than the size of inhomogeneities R, but much smaller than the
length of magnetosonic wave λ: R � L � λ. Denoting this averaging by angular
brackets, we have

〈

ρ
dv

dt

〉

= − ∂

∂x
〈P 〉 (9.6)

and

d〈ρ〉
dt

+ ∂

∂x
〈ρv〉∂v

∂x
= 0 (9.7)

Now, because of the averages 〈ρdv/dt〉 and 〈ρv〉, the system (9.6) and (9.7) is not
a closed one anymore. This means that one needs to find a way to split the averages
and bring the system of equations to the closed form.

To do this, we use the following considerations, which are valid for large-scale
slow motions with a timescale T ≡ (2π/ω) � R/cs (cs being the sound speed) and
spatial scale λ � R. For these kinds of motions, the changes in any characteristics
of the system (density, pressure, frozen-in magnetic field, etc.) in the frame moving
with the fluid element are slow, for example, changing the time of the order of T .
To avoid misunderstanding, it must be emphasized that at the same time, the partial
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derivative ∂/∂t can be large, ∂/∂t ∼ v/R. Now, we can rewrite the continuity
equations from the system (9.3) in the form:

∂v

∂x
= −dlnρ

dt
,

∂v

∂x
= −dlnB

dt
,

∂v

∂x
= − 1

γ

dlnp

dt
(9.8)

It is clear that ∂v/∂x is a small quantity estimated as:

∂v

∂x
∼ 1

T
∼ v

λ
� v

R
(9.9)

That is, despite the presence of inhomogeneities of density, pressure, and magnetic
field which have the scale R, velocity is a “smooth” function, changing only over
the scale λ � R. This allows us to write the following relations:

〈

ρ
dv

dt

〉

� 〈ρ〉d〈v〉
dt

, 〈ρv〉 � 〈ρ〉〈v〉 (9.10)

these relations are valid with the accuracy of the order R/λ � 1. Recall that the
scale L over which the averaging is made is small compared to λ and large compared
to R. As a result, we obtain instead of Eqs. (9.6) and (9.7) the following equations:

〈ρ〉d〈v〉
dt

= − ∂

∂x
〈P 〉, (9.11)

∂〈ρ〉
∂t

+
(

∂

∂x
〈ρ〉
)

〈v〉 = 0 (9.12)

The form of (9.11) and (9.12) is similar to the equations for one-dimensional gas-
dynamics. The analogy will become complete when we find the closure relationship
between the averaged quantities 〈ρ〉 and 〈P 〉.

Note that the density ρ of each plasma element can be expressed in terms of its
initial density ρ0(x), pressure p0(x), and total pressure P at a given point. Thus,
using the definition of P and relationships (9.2), (9.4), and (9.5), we obtain

P = p0

(
ρ

ρ0

)γ

+ P0 − p0

ρ2
0

ρ2. (9.13)

This relationship determines implicitly the dependence of ρ on P , ρ0, and p0 (P0 is
assumed to be known),

ρ = ρ(P, ρ0, p0). (9.14)

In what follows, it is convenient to introduce the distribution function f (ρ0, p0)

of the random quantities ρ0 and p0, which we define as follows: the fraction of those
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segments of the axis x, where ρ0 and p0 take the values in the intervals (ρ0, rho0 +
dρ0), (p0, p0 + dp0), is proportional to f (ρ0, p0)dρ0dp0:

dx0 ∼ f (ρ0, p0)dρ0dp0. (9.15)

Let us choose now two Lagrangian planes with the distance L (R � L � λ).
The amount of the matter between the Lagrangian planes, which by definition are
“affixed” to plasma particles, is constant:

M =
∫

L

ρ(x)dx =
∫

L0

ρ0(x0)dx0 = const (9.16)

This condition leads to the connection of the segment dx in MHD wave with its
initial value dx0

dx = dx0
ρ0(x0)

ρ(P, p0, ρ0)
(9.17)

Note that the total pressure P is slowly varying function with the characteristic scale
of the order of λ. Since the distance L is much less than λ, the change of P between
Lagrangian planes is small, and we can substitute P by its average value 〈P 〉.

With the help of (9.14), we can find the density of each element of plasma, which
can be written as ρ = ρ(〈P 〉, ρ0, p0). Then, instead of Eq. (9.17) we have

dx = dx0
ρ0(x0)

ρ(〈P 〉, p0, ρ0)
. (9.18)

Taking into account that dx0 ∼ L0f (p0, ρ0)dp0dρ0, from (9.18) we obtain

L = L0
1

∫
f (p0, ρ0)dp0dρ0

∫
ρ0(x0)

ρ(〈P 〉, p0, ρ0)
f (p0, ρ0)dp0dρ0. (9.19)

The whole mass of substance between the Lagrangian planes is obviously the
following:

M = L0

∫
ρ0f (p0, ρ0)dp0dρ0∫
f (p0, ρ0)dp0dρ0

(9.20)

Dividing this mass by the distance defined by (9.19), we obtain the expression for
the average density,

〈ρ〉 =
∫

ρ0f (p0, ρ0)dp0dρ0

[∫
ρ0(x0)

ρ(〈P 〉, p0, ρ0)
f (p0, ρ0)dp0dρ0

]−1

(9.21)

≡ F(〈P 〉).
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In this way, one can find the relationship between 〈ρ〉 and 〈P 〉 for any distribution
function f (p0, ρ0). Now, together with (9.21), Eqs. (9.11) and (9.12) form a closed
system of dynamical equations describing self-consistently the propagation of long-
wave magnetosonic oscillations of a finite amplitude in an inhomogeneous plasma.
The specific features of the system are determined by its statistical properties, and
in particular, by the function f (p0, ρ0).

9.2 Formation of Shocks Across Small-Scale Inhomogeneities

The problem of the finite amplitude wave propagation, and in particular the process
of the steepening of a wave front and its overturning is largely determined by the
dependence of ρ on P , i.e., by the specific form of a function ρ = F(P).

For ordinary gas, the ρ = F(P) dependence, which is ρ ∼ p1/γ (and γ > 1),
automatically satisfies the condition of overturning:

du

dρ
> 0 (9.22)

where u = v + cs , and v = ∫ (cs/ρ)dρ.
It must be noted that the analysis of the shock formation in case of a strongly

inhomogeneous plasma requires several clarifying steps. First of all, we have
to represent the condition (9.22) in a more general form, namely through the
relationship (9.21), and then verify whether a particular ρ = F(P) satisfies the
overturning condition or not.

Let us rewrite the (9.11) and (9.12) in the form

ρ
dv

dt
= −dP

dρ

dρ

dv

dv

dx
, (9.23)

dρ

dv

dv

dt
= −ρ

∂v

∂x
. (9.24)

We omit herewith the averaging brackets and bear in mind that we deal with the
averaged quantities. Eliminating dv/dt in these equations, we find

dP

dρ

dρ

dv

dv

dx
= ρ2 ∂v/∂x

dρ/dv
. (9.25)

Substituting this expression in the right-hand side of (9.23), we obtain the general
form of nonlinear equation:

∂v

∂t
+
(

v + ρ
dv

dρ

)
∂v

∂x
= 0. (9.26)
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If we introduce the notation u = v + cs , the analogy with an ideal compressible
gas becomes complete, and the condition for overturning of the wave front, (9.22),
remains the same:

dv

dρ
+ d

dρ

(

ρ
dv

dρ

)

> 0. (9.27)

We now have to express all terms in this condition through the function ρ =
ρ(P ). From (9.25), it follows that

ρ
dv

dρ
= 1√

dρ/dP
(9.28)

For the first term in condition (9.27), this expression yields simply

dv

dρ
= 1

ρ(P )
√

dρ/dP
(9.29)

The second term in Eq. (9.27) can be written as

d

dρ

(

ρ
dv

dρ

)

= dP

dρ

∂

∂P

1√
dρ/dP

, (9.30)

or, performing the differentiation, we have

d

dρ

(

ρ
dv

dρ

)

= −1

2

d2ρ/dP 2

(dρ/dP)5/2 , (9.31)

Using now (9.27), (9.29), and (9.31), we obtain the most general form of the
condition of steepening of a wave front in a medium with an arbitrary relationship
between the density and pressure:

2

(
dρ

dP

)2

> ρ(P)
d2ρ

dP 2 . (9.32)

9.2.1 Validation of the Overturning Condition

We need to clarify now that the condition (9.32) is indeed satisfied when the
dependence ρ = F(〈P 〉) is defined by the expression (9.21):

F(〈P 〉) =
∫

ρ0dΓ

[∫
ρ0(x0)

ρ(〈P 〉, p0, ρ0)
dΓ

]−1

(9.33)

where dΓ = f (ρ0, p0)dρ0.
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The first and second derivatives of this function are

dF

d〈P 〉 =
∫

ρ0dΓ

∫
ρ0

ρ2

dρ

d〈P 〉dΓ

[∫
ρ0

ρ(〈P 〉) dΓ

]−2

(9.34)

and

d2F

d〈P 〉2 = 2
∫

ρ0dΓ

(
∫

(ρ0/ρ)dΓ )−3

(∫
ρ0

ρ2

dρ

d〈P 〉dΓ

)2

(9.35)

+
∫

ρ0dΓ

(
∫

(ρ0/ρ)dΓ )−2

∫ [
ρ0

ρ2

d2ρ

d〈P 〉2 − 2
ρ0

ρ3

(
dρ

d〈P 〉
)2
]

dΓ

Combining the condition (9.32) with (9.21), (9.34), and (9.35) after some algebra,
we obtain

(∫

ρ0dΓ

)2 (∫ ρ0

ρ
dΓ

)−3 ∫
[

ρ0

ρ2

d2ρ

d〈P 〉2 − 2
ρ0

ρ3

(
dρ

d〈P 〉
)2
]

dΓ < 0

(9.36)

It is obvious that
∫

ρ0dΓ > 0 and
∫

ρ0/ρdΓ > 0.
The first and second derivatives in (9.36) can be easily found from (9.13) where

P is substituted by its average value 〈P 〉 (see the explanations after (9.17)):

dρ

d〈P 〉 = ρ

γ 〈P 〉 + (2 − γ )(P0 − p0)(ρ2/ρ2
0 )

, (9.37)

d2ρ

d〈P 〉2 = (dρ/d〈P 〉)[γ 〈P 〉 − (2 − γ )(P0 − p0)ρ
2/ρ2

0 ] − γρ

[γ 〈P 〉 + (2 − γ )(P0 − p0)(ρ2/ρ2
0 )]2

, (9.38)

these derivatives, taken in the point 〈P 〉 = P0, become

dρ

d〈P 〉
∣
∣
∣
∣
P0,ρ0

= ρ0

γp0 + 2(P0 − p0)
, (9.39)

d2ρ

d〈P 〉2

∣
∣
∣
∣
P0,ρ0

= ρ0[γp0 − γ 2p0 − 2(P0 − p0)

[γp0 + 2(P0 − p0)]3 . (9.40)

Substituting expressions (9.39) and (9.40) into the condition (9.36), we obtain

∫

f (p0, ρ0)
γ (γ + 1)p0 + 6(P0 − p0)

[γp0 + 2(P0 − p0)]3 dρ0dp0 > 0. (9.41)
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In accordance with the equilibrium condition, the magnitude P0 − p0 is always
positive, P0 − p0 = B2/8π > 0. This means that the integrand in expression (9.41)
is positive definite.

Thus, the condition (9.41) as well as its general form, Eq. (9.32), is satis-
fied for any distribution function f (p0, ρ0). It is therefore only natural that the
magnetosonic wave of finite amplitude propagating in a plasma with random
inhomogeneities can split into two simple waves with subsequent steepening and
overturning.

Note however that when the width of the wave front becomes comparable with
the characteristic scale of inhomogeneities, this conclusion becomes invalid. In this
case, the dispersion effects play essential role; since at λ ∼ R the dispersion of
MHD waves becomes nonlinear, a steepening of the wave front may be inhibited.

9.3 Effect of Inhomogeneities on the Dispersion Properties
of the System

In this section, we consider the dispersion properties of a dense conglomerate of
flux tubes and find nonlinear dependence of the frequency on the wavenumber.

9.3.1 Basic Equations

Consider again the one-dimensional problem and start with the linearizing of the
MHD equations (9.3) introducing small perturbations, remembering that unper-
turbed quantities are random functions of coordinate x:

p = p0(x) + δp(x, t), ρ = ρ0(x) + δρ(x, t), (9.42)

p = B0(x) + δB(x, t), v = δv(x, t).

Using the resulted equations and equilibrium condition δP = δp + (B0δB)/4π , we
can write for δP :

∂δP

∂t
= −2

[(γ

2
− 1
)

p0 + P0

] ∂δv

∂x
. (9.43)

This equation together with the momentum equation,

ρ(x)
∂δv

∂t
= −∂δP

∂t
, (9.44)

forms a closed set describing linear perturbations in an inhomogeneous plasma.
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All perturbed quantities can be represented in the following way:

δP = 〈δP (0)〉 + δP (1), δv = 〈δv(0)〉 + δv(1), etc., (9.45)

where 〈δP (0)〉, 〈δv(0)〉, etc., are linear perturbations averaged over the distance L:
R � L � λ, and δP (1), δv(1), etc., are fluctuating parts of perturbations caused by
the presence of inhomogeneities.

For slow motions, ∂/∂t ∼ ε � 1, we have from (9.43) and (9.44)

∂δv(0)

∂x
∼ ε � 1,

∂δP (0)

∂x
∼ ε � 1. (9.46)

therefore δP (0) � 〈δP (0)〉 and δv(0) � 〈δv(0)〉. At the same time, by definition
〈δP (1)〉 = 0 and 〈δv(1)〉 = 0.

Since we deal with inhomogeneities that are initially stationary, we can consider
a harmonic wave in time and replace ∂/∂t by −iω. It is convenient to introduce the
notation:

φ0(x) = 1

2

[(γ

2
− 1
)

p0(x) + P0

]−1
(9.47)

Now, Eqs. (9.43) and (9.44) acquire a form:

iωρ0(x)δv = ∂δP

∂x
, iωφ0(x)δP = ∂δv

∂x
. (9.48)

Let us represent ρ0(x) and φ0(x) as follows:

ρ0(x) = 〈ρ0(x)〉 + ρ1(x), φ0(x) = 〈φ0(x)〉 + φ1(x) (9.49)

Note that the fluctuations of plasma parameters of the background medium and
the average values of these parameters are of the same order: ρ1(x) ∼ 〈ρ0(x)〉 and
φ1(x) ∼ 〈φ0(x)〉, which reflects the fact that the inhomogeneities are strong, and in
particular that all unperturbed quantities change from one flux tube to another by an
order of magnitude. At the same time, 〈ρ1(x)〉 = 0 and 〈φ1(x)〉 = 0.

Introducing into the system (9.48) a fluctuating part of perturbations and of
background inhomogeneities, we have

iω(〈ρ0(x)〉 + ρ1)(δv
(0) + δv(1)) = ∂

∂x
[δP (0) + δP (1)], (9.50)

iω(〈φ0(x)〉 + φ1)(δP
(0) + δP (1)) = ∂

∂x
[δv(0) + δv(1)]
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After averaging, (9.50) become

iω[〈ρ0(x)〉δv(0) + 〈ρ1δv
(1)〉] = ∂δP (0)

∂x
, (9.51)

iω[〈φ0(x)〉δP (0) + 〈φ1δP
(1)〉] = ∂δv(0)

∂x

The second terms in the left-hand side of (9.51) are those that determine the
dispersion of the wave due to the presence of inhomogeneities.

9.3.2 Dispersion Relation

To solve the system (9.51), we have to express δv(1) and δP (1) through unperturbed
quantities. The equations describing δv(1) and δP (1) can be obtained by subtraction
from the system (9.50) of the corresponding equations of system (9.51):

iω[ρ1δv
(0) + 〈ρ0(x)〉δv(1) + 〈ρ1δv

(1)〉] = ∂δP (1)

∂x
, (9.52)

iω[φ1δP
(0) + 〈φ0(x)〉δP (1) + 〈φ1δP

(1)〉] = ∂δv(1)

∂x

Since we are looking for the first-order corrections, we can omit in (9.52) second
and third terms in the left-hand side; these terms give the next-order corrections in
δP (1) and δv(1). Then, the system (9.52) becomes

iωρ1δv
(0) = ∂δP (1)

∂x
, iωφ1δP

(0) = ∂δv(1)

∂x
. (9.53)

Now, we introduce the following definitions:

ρ1(x) = dψ(x)

dx
, φ1(x) = dζ(x)

∂x
. (9.54)

Naturally, 〈ψ〉 = 0 and 〈ζ 〉 = 0. With these definitions, the (9.53) are

δP (1) ≡ iωψ(x)δv(0), δv(1) ≡ iωζ(x)δP (0). (9.55)

Substituting (9.55) into (9.51), we obtain the final set of equations containing
the corrections that determine the dispersion of the wave due to the presence of
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inhomogeneities:

iω[〈ρ0(x)〉δv(0) + iω〈ρ1ζ 〉δP (0)] = ∂δP (0)

∂x
, (9.56)

iω[〈φ0(x)〉δP (0) + iω〈φ1ψ〉δv(0)] = ∂δv(0)

∂x

Since the coefficients in the system (9.56) do not depend on coordinates, we can put
∂/∂x = ik and obtain the dispersion relation:

〈φ0〉〈ρ0〉ω2 + 〈ρ1ζ 〉〈φ1ψ〉ω4 + ikω2[〈ρ1ζ 〉 + 〈φ1ψ〉] = k2. (9.57)

Using the definitions (9.55), we see that the third term in the left-hand side
of (9.57) is a full derivative whose average is evidently zero

〈ρ1ζ 〉 + 〈φ1ψ〉 =
〈
dψ

dx
ζ + dζ

dx
ψ

〉

=
〈
dζψ

dx

〉

≡ 0 (9.58)

On the other hand, the square of this expression, 〈ρ1ζ 〉 + 〈φ1ψ〉, determines the
coefficient of ω4 in the dispersion relation, and, because of (9.58), evidently has a
negative definite quadratic form:

〈ρ1ζ 〉〈φ1ψ〉 = −1

2

[〈
dψ

dx
ζ

〉2
+
〈

ψ
dζ

dx

〉2
]

≡ −a2 (9.59)

Taking this into account, the dispersion relation (9.57) becomes

〈φ0〉〈ρ0〉ω2 − a2ω4 = k2 (9.60)

In the zeroth-order approximation (neglecting the dispersion of the wave), ω scales
linearly with k:

ω = c̃s (ρ0, p0, B0)k (9.61)

where modified sound speed c̃s (ρ0, p0, B0) has a form:

c̃s (ρ0, p0, B0) = 1√〈φ0〉〈ρ0〉 = 1√〈φ0〉
〈

1

γp0 + B2/4π

〉−1/2

. (9.62)

Using linear approximation (9.61), from (9.60) we obtain the next approximation in
the wave vector

ω2 = k2c̃2
s + a2k4c̃6

s (9.63)
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or, finally,

ω = kc̃s(1 + δ2k2). (9.64)

Here, δ2 is a coefficient that determines the dispersion of the wave due to the
presence of inhomogeneities:

δ2 = 1

2
a2c̃4

s . (9.65)

9.3.3 KdV–Bürgers’ Equation with Strong Inhomogeneities

For a wave of a small but finite amplitude, along a finite dispersion, one should take
into account the effects of a weak nonlinearity described by (9.26). Note first that the
dispersion relation (9.64), if written in the velocity frame moving with the modified
sound speed c̃s , corresponds to the dynamic equation of the form:

∂v

∂t
= c̃sδ

2 ∂3v

∂x3 . (9.66)

Respectively, the desired nonlinear equation, in the reference frame moving with c̃s ,
can be written in the form:

∂v

∂t
+ αv

∂v

∂x
= c̃sδ

2 ∂3v

∂x3 . (9.67)

where α is coefficient of nonlinearity. This is a typical KdV equation.
Now, we can conclude that the evolution of the initial magnetosonic perturbation

in a plasma with random density and magnetic field inhomogeneities can be
described by a KdV equation whose coefficients are uniquely determined by the
statistical properties of these inhomogeneities (see (9.21) and (9.59)). It must be
noted that the coefficient δ that determines the dispersion differs from zero only in
an inhomogeneous plasma, whereas in homogeneous case δ = 0.

Obviously, (9.67) implies that depending on the interplay between the dispersion
and nonlinearity, the system is subject to a soliton formation. In this case, the width
ΔX of leading (the largest) soliton may be estimated in a standard way as:

ΔX ∼
√

c̃sδ2

αṽ0
, (9.68)

where ṽ0 is the amplitude of the initial perturbation. In order for the soliton to
be formed (and the approach to be valid), the width ΔX must be larger than
the characteristic scale of inhomogeneities R. Since, according to (9.59), at large
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enough inhomogeneities (ρ1 ∼ ρ, p1 ∼ p0), δ is of the order R, and α is of
the order of unity, we conclude that the above description is adequate under the
condition when ṽ0 � c̃s , which is relatively weak constraint.

As already mentioned, a plasma with strong inhomogeneities exhibits an impor-
tant feature: dissipative effects caused by thermal conductivity and viscosity are
significantly enhanced. For the complete description of nonlinear wave propagation
in such a media, (9.67) has to contain the dissipative terms as well. This leads to
KdV–Bürgers’ equation (Ryutova et al. 1991):

∂v

∂t
+ αv

∂v

∂x
= c̃sδ

2 ∂3v

∂x3 + μ
∂2v

∂x2 (9.69)

where coefficients μ(ρ,p0, B0) = μvisc + μtherm are again determined by statistical
properties of inhomogeneities and contain parts connected with viscous and thermal
losses (Ohmic losses as already discussed, remain the same as in homogeneous
medium and are much less than those two). The procedure that allows to find μ is
described in the previous chapter (Sect. 8.2, Eq. (8.53), see also Ryutova and Persson
1984). By the order of magnitude, μ can be estimated as follows:

μ � λ2Γ = λ2 T τi

miR2

1

(ωiτi)2

(
ρ̃0

ρ0

)2

(9.70)

where Γ is the damping rate (Eq. (8.53)) determined by the level of inhomogeneities
and mainly by the viscous losses (τi and ωi = eB/mic being ion collision time and
ion gyro-frequency).

Equation (9.69) allows us to make general comments. This equation describes
the evolution of the arbitrary initial perturbation: depending on the interplay of the
nonlinear, dissipative, and dispersive effects, it can evolve either to weak shocks
or be split into a train of some number of independent solitons which then will be
damped away, or in the case of predominance of dissipative effects, the primary
perturbation can be damped away in a linear stage (Karpman 1975).

9.4 Numerical Analysis

In this section, we study numerically the influence of strong background inho-
mogeneities with small-scale spatial on the propagation and evolution of long-
wavelength perturbations using a one-dimensional code of ideal magnetohydrody-
namics. The set of the ideal MHD equations (9.3) is solved by numerical simulations
as given in Ryutova et al. (1991).
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9.4.1 The Model

As the initial state, consider an isothermal plasma with temperature T and assume
the gas to be a polytrope of index γ = 1.5. The distribution of magnetic field is
given by:

B(x) =
√

8πp(x)

β(x)
(9.71)

where plasma beta

β(x) = β0f (x) (9.72)

and β0 is the maximum value of the plasma beta, f (x) = f (ρ0, p0) describes
the randomly distributed small-scale inhomogeneities of the background. In what
follows, we use β0 = 1.0.

The initial density and pressure distributions are calculated using the equation of
state p(x) = ρ(x)T , and the equation of magnetostatic equilibrium (9.2).

Long-wavelength perturbations of the form:

δvx(x) = Asin
(

2π
x

λ

)
, δρ(x) = ρ0

cs

δvx, δp(x) = ρ0cδvx, (9.73)

are initially imposed, where A is the amplitude of the initial perturbation and λ is
its wavelength.

We assume periodic boundaries for x = 0 and x = Xmax, where Xmax is the size
of computational domain. The set of MHD equations (9.3) is nondimensionalized
using the following normalizing constants: the atmospheric scale height H , sound
speed cs , and density ρ0.

Equation (9.3) are solved numerically using a modified Lax–Wendroff scheme
(Rubin and Burstein 1967) with an artificial viscosity according to Richtmayer
and Morton (1967). The test and accuracy of MHD code in such a scheme were
described by Shibata (1983), Matsumoto et al. (1988), and Tajima (1989). The mesh
size is Δx = Xmax/(Nx − 1), where Nx is the number of mesh points in the x

direction.
We shall see that the numerical analysis presented below supports the theoretical

results derived in the previous sections and extends the studies to the case when
λ ∼ R. In particular, it will be shown that long-wavelength perturbations steepen
and form shock waves even in the presence of small-scale background fluctuations
of basic physical parameters, and that the energy dissipation due to the small-scale
inhomogeneities is strongly enhanced with respect to the case of a homogeneous
medium. Although theory assumes the characteristic wavelength is greater than the
characteristic scale of inhomogeneities, λ � R, numerical computation allows us
to remove such a restriction and generalize the dissipation effect regardless of the
characteristic wavelength.
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9.4.2 Formation of Shock Waves

Assume that A = 0.5, Nx = 1001, Xmax = 100, and λ = Xmax. Since the length
scale of the background fluctuations is Δx, our theoretical assumption λ � R is
amply fulfilled. The magnitude A of the initial pressure perturbation is too large
to be realistic. However, our simulations with different values of A show that the
amplitude of the perturbation within the regime of 0.1 < A < 0.5 does not
qualitatively affect the overall evolution. Since the timescale for the steepening of
the initial wave with wavelength λ is of the order of λ/v, its quantitative effect is
that the smaller A is, the larger is the computational time. Thus, this high value of
the initial perturbation is chosen simply for computational convenience.

Figure 9.2 shows the time variation of the velocity field Vx in the strongly
nonuniform plasma. The initially sinusoidal perturbation becomes more and more
asymmetric (t ∼ 22), steepens, and forms strong shock waves at t ∼ 42. The
characteristic Bürgers’ sawtooth shock formation is apparent. Note that the “discon-
tinuities” of shocks are more than several grid spacings so that they are not beyond
the numerical resolution.

Figure 9.3 contains the velocity Vx , the total pressure Ptot, the plasma density
ρ, and the vertical magnetic field Bz in the final state at t = 76. The shocks

Fig. 9.2 The case of small-scale inhomogeneities: distribution in x of the velocity Vx at t = 0
(upper left panel), and its evolution at t = 22, 42, and t = 76
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Fig. 9.3 Plots of the velocity Vx , the total pressure P = p + B2/8π , the density ρ, and the
magnetic field strength Bz at t = 76 for the case shown in Fig. 9.2

are best resolved in Vx , ρ, and Ptot. The profiles of the density and magnetic
field are strongly modulated by the small-scale background fluctuations. At this
point, we summarize that even in the presence of strong, small-scale background
inhomogeneities the propagation of acoustic waves with wavelengths λ � R is
characterized by steepening of the wave front and the formations of shocks.

9.4.3 Energy Dissipation

We now discuss the energetics of the system and compare the case of inhomoge-
neous background fluctuations with that of a homogeneous medium. We assume the
same amplitude of the initial perturbation, A = 0.5, as in the previous calculations,
but use Xmax = 20. The smaller wavelength of the initial perturbation reduces the
timescale for steepening of the wave front by a factor of 5 compared to the case of
Xmax = 100.

Consider first the case of a homogeneous medium. Figure 9.4 shows the time
variation of magnetic, thermal, and kinetic energies in a system. It should be noted
that ΔE = E(t) − E(0). The kinetic energy Ek strongly decreases within the first
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Fig. 9.4 Time variation of magnetic (ΔEm), thermal (ΔEth), kinetic (ΔEk ), and total (ΔETot)
energies, where ΔE = E(t) − E(0), for the case of homogeneous background

Fig. 9.5 Time variation of magnetic (ΔEm), thermal (ΔEth), kinetic (ΔEk ), and total (ΔETot)
energies for the case of dense conglomerate of inhomogeneities

10 time intervals. In this period, the waves steepen and form shocks. Within the
next 30 time intervals, 10% of the kinetic energy dissipates and is converted mostly
into thermal energy through compressional shock heating, and partly into magnetic
energy. The total energy in this numerical analysis is conserved within less than 1%
of its initial value.

Figure 9.5 shows the evolution of the energy flow for the case of an inho-
mogeneous plasma. The kinetic energy decreases more drastically compared to
homogeneous cases. Within the first period (t ∼ 30), the thermal energy strongly
increases partly due to damping of the kinetic energy and partly due to the
dissipation of the magnetic energy. The heating effect is gauged by the increase
of thermal energy ΔEth, or lack of it. For example, ΔEth in Fig. 9.5 in the
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Fig. 9.6 Time variation of thermal energy, ΔEth, for different wavelengths of the initial perturba-
tion in the case of an inhomogeneous medium

inhomogeneous case is ∼ 0.18, while ΔEth shown in Fig. 9.5 for homogeneous
case is ∼ 0.09.

An interesting difference between the homogeneous and the inhomogeneous case
is that in the latter one the magnetic field also releases its energy which is converted
into thermal energy of medium through formation and dissipation of compressional
shocks.

Very useful are results of the limiting case when λ ∼ R, in which the
wavelength of the initial perturbation is of the same order as the length scale of the
inhomogeneities (characteristic scale of flux tube). This case is beyond the reach of
analytical studies that do not allow to make any predictions.

In solving this problem, the following set of parameters are taken: A = 0.5,
Xmax = 20, and λ = Xmax/16. Results of the calculation show again the strong
dissipation of kinetic and magnetic energies in the early stage of the wave front
evolution.

Figure 9.6 shows the time evolution of the thermal energy ΔEth. Compared to
the case when λ � Xmax, which is also shown in Fig. 9.6, the heating of the plasma
is even more efficient. Due to strong dissipation from the very beginning, the initial
perturbations are rapidly damped before the wave steepens and reaches the shock
regime.

Thus, the presence of small-scale background inhomogeneities, in case a dense
conglomerate of random flux tubes, results in a much stronger dissipation of
incoming wave power and a stronger heating of the medium compared to the case of
a homogeneous plasma. Qualitatively, this result is independent of the amplitude A

of the initial wave, but the higher is the amplitude the larger the amount of heating.
In the limiting case of λ ∼ R, the numerical analysis indicates that the waves do not
steepen to form shocks but rather are rapidly damped out. Compared to the case of
long-wave perturbations, the heating in this case is more efficient.



258 9 Nonlinear Wave Phenomena in Dense Conglomerate of Flux Tubes

Fe XII 193 IRIS

SDO

SDOFe IX 171

He II 304

140 Mm

1
1
5
 M

m

Hinode/SOTMgrm

12 April 2016    AR 12529

Fig. 9.7 The Hinode magnetogram of active region 12529 is shown with aligned images of the
overlying chromosphere in SOT He II 304, low corona in SOT Fe IX 171 line, and hot corona
in IRIS Fe XII 193 line. Black and yellow arrows indicate the different response of the overlying
atmosphere to the activity in tattered and dense sunspots. Courtesy of Hinode, NASA/SDO, and
NASA/IRIS

Note again that energy deposition due to the generation of shocks and solitons
should manifest itself in strong local brightenings, chains of bright points, and light
bridges (if solitons are involved). The size of bright points is naturally comparable
with the thickness of wave front. Thus, possibility of shock and soliton formation
may play an essential role in the widespread appearance of local brightenings and
their chains observed in sunspots and active regions (Aballe Villero et al. 1993;
Anastasiadis and Vlahos 1994; Berger and Berdyugina 2003; Schleicher et al. 2003;
Lagg et al. 2014).

It is important to compare the energy production and its supply to overlying
chromosphere/corona provided by the young sunspot where flux tubes are tightly
settled and the decaying tattered sunspot with magnetic filling factor less than
unity. Figure 9.7 shows active region 12529 consisting of young leading sunspot of
negative polarity and the following sunspot of positive polarity in its decaying phase.
One can see a clear difference between the response of the atmosphere overlying
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these two sunspots. The pattern of hot plasma in the chromosphere and corona
above the dense negative sunspot is very different from that of the positive tattered
sunspot “compound.” Above the negative sunspot we see typical large-scale coronal
loops and chromospheric umbral dots, while above the tattered compound the entire
atmosphere is the conglomerate of densely packed brightenings. Indeed, less denser
is the conglomerate of magnetic flux tubes (but still with the filling factor close to
unity), the more space have the shocks to be enhanced, and interact with higher
efficiency.

9.5 Problems

9.1 Obtain the traveling wave-type solution of KdV equation for shallow water.
Assume that the wave propagates along the x-axis, so that the pressure p and the
velocity u do not depend on y (Kadomtsev and Karpman 1971).

9.2 Find the conditions for shock formation in dispersive media with dissipation.
Describe specific features of such shocks. Consider a traveling wave solution of
KdV–Bürgers equation (Sagdeev 1966).

9.3 Under the conditions of previous problem, determine μcr, i.e., find the critical
value of the dissipation coefficient corresponding to monotonic and oscillating
shock profiles.
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Chapter 10
Magnetosonic Streaming

Abstract The Faraday effect in gas dynamics called acoustic streaming and
its accompanying nonlinear phenomena is found to have analogies in plasma
magnetohydrodynamics. A natural place where these effects occur is the solar
atmosphere covered by random ensembles of magnetic flux tubes. Unlike acoustic
streaming, magnetosonic streaming consisting of the generation of plasma flows
by an oscillating flux tube, is accompanied by a current drive, and results in a
specific evolution of magnetic structures. Depending on the physical parameters
of a system, a single magnetic flux tube may be either split into thinner flux tubes
or be diffusively dissolved into the ambient plasma. The effect of the magnetosonic
streaming, on the one hand, is an obvious candidate for the generation of electric
currents and mass flows at magnetic flux tube sites, and, on the other hand, it
determines the evolution of magnetic structures, like, e.g., their fragmentation
processes, and ultimately their lifetimes. In this chapter, we shall describe the
nature and origin of the magnetosonic streaming and then use the theory to explain
observed regularities in the evolution of photospheric flux tubes. Some regimes will
be also verified in numerical simulation. Application of these results to observed
properties of photospheric flux tubes will be given both in the qualitative and
quantitative analysis.

10.1 Secondary Flows—Boundary Layer Effects

10.1.1 Acoustic Streaming—History and Nature of Faraday’s
Effect

The effect of the acoustic streaming was first observed by Faraday in one of his
simple trials while assisting the lectures of Professor Devi. Young Faraday found
that above the oscillating membrane there appears a well-directed, perpendicular to
the face of membrane, air streaming. Much later, Lord Rayleigh was involved in the
problem of a musical organ seemingly out of tune without an evident reason. He
found that for each tube there must be a threshold with respect to the intensity of
sound above which some physical effects turn on and lead to discord of organ. Soon,
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he found that these effects are related to viscosity of the air in the vicinity of solid
surface of the tube and gave an analytical description (Rayleigh 1884) considering
the stationary sound waves in a space between two plain parallel walls. He found
that gas flows must appear due to the viscosity of medium in a thin boundary layer
along the tube walls. Moreover, he found similar to air streaming generated by the
vibrating membrane. Lord Rayleigh wrote in his paper:

“Experiments in acoustics have discovered more than one set of phenomena,
apparently depending for their explanation upon existence of regular currents of air
resulting from vibratory motion. . . Such currents, involving as they do circulation of
the fluid, could not arise in the absence of friction. . .

. . . The more important of the problems relates to flows generated over vibrating
plate. . . This was traced by Faraday (1831) to the action of currents of air, rising from
the plate at the place of maximum vibration, and falling back to it at the nodes.”

The acoustic streaming is connected with the viscosity of the medium and with
the presence of a solid obstacle or solid boundary walls in a field of sound wave,
or other kind of oscillations: near the obstacle or a boundary, sound waves result
in the tangential motion and in additional stresses that give rise due the absorption
of the energy of oscillations in a thin boundary layer; this energy is transformed
into the energy of stationary mass flows. The effect is nonlinear and appears in the
second order in the wave amplitude. Although the effect is provided by the presence
of viscosity, the velocity of established stationary flows actually does not depend
on the viscosity coefficient. However, the time required to set up the steady flows is
inversely proportional to the coefficients of viscosity.

Fascinated by the effect, Rayleigh tried to perform different experiments to
further explore it. For example, he found strong air streaming as a result of the
oscillation of a fork at the mouth of Helmholtz resonator. After the studies of Lord
Rayleigh, almost half of a century passed before the renewal of the problem of the
acoustic streaming.

Acoustic streaming was rediscovered in the experiments on piezoelectric gen-
erators and named Quartz wind: a strong mass flow was observed in front of an
oscillating surface of quartz crystal in liquid (Meissner 1926). The flows of liquid
generated by an ultrasonic source turned out to be so strong that they were enough
to disturb the crystal face.

Soon, a new manifestation of acoustic streaming was found. Andrade (1931)
experimentally studied flows generated by induced standing sound waves about a
circular cylinder and found four stationary vortices visible by injection of smoke.

Similar results were obtained by Schlichting (1932), who performed also the
calculation of the boundary layer on the cylinder oscillating in viscid fluid. In
Fig. 10.1, the calculated streamlines of secondary flow and an experiment by
Schlichting visualizing the four vortices generated by the oscillating (solid) cylinder
are shown.

However, understanding that Andrade’s and Schlichting’s experiments demon-
strate the same effect as quartz wind was reached only when a complete theory of
acoustic streaming was built up by Eckart (1948). Since then, acoustic streaming
is often referred to as Eckart flows. These studies invoked an activity exploring the
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ba

Fig. 10.1 Schlichting’s results: (a) Flow portrait of the secondary flow (streaming) close to an
oscillating circular cylinder; (b) experimental results on generation of secondary flow (streaming)
close to an oscillating circular cylinder. After Schlichting (1932). Copyright Springer Science and
Business Media

acoustic streaming in a wide range of media including the cell membrane in biology
(Nyborg 1965). It is interesting that Faraday’s effect explains creation of fountains
in Tibetan singing bowls.

10.1.2 Secondary Flows in Magnetohydrodynamics

Especially, rich effects analogous to the acoustics streaming were found in studies
of nonlinear effects in the interaction of magnetic flux tubes with acoustic wave
(p-modes) in solar atmosphere (Ryutova 1986; Ryutova et al. 1996). It was found
that at the site of an oscillating magnetic flux tube there appear qualitatively new
effects that are absent in usual gas- and hydrodynamics. These are briefly described
below.

1. First of all, the Reynolds stresses appear only outside the solid-body cylinder; in
case of a magnetic cylinder, the additional magnetic stresses appear both outside
and inside of the flux tube. This causes generation of plasma flows outside as
well as inside magnetic structure. Of these two, the inner flow (that is absent in
case of solid obstacles) plays a crucial role in the evolution of flux tube and its
dynamics.

As a result, the magnetic field and plasma density are leveled along the field
lines of the induced flow. Depending on the ratio of the duration of wave train (in
particular p-modes) to the time of establishing viscous flow, the magnetic flux
tube may be either split into smaller flux tubes (in case of coherent wave train,
for example) or be diffusively dissolved into the ambient plasma (in the case of
convective motions or incoherent wave train).
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If in the splitting regime the same conditions are fulfilled for newborn flux
tubes, each of the newborn flux tube experiences further splitting. This process of
filamentation of magnetic structure proceeds until fragmentation products meet
conditions corresponding to diffusive dissolution. Outer fragments are dissolved
first. Note that higher-order nonlinear effects can also stop the fragmentation
process.

The very process of fragmentation obviously determines the lifetime of
magnetic structure.

2. Unlike the acoustic streaming, the magnetosonic streaming is accompanied by
the current generation: if the absorption of oscillation energy is provided mostly
by one of the plasma species electron or ion (the specific situation depends on the
damping mechanism), current drive occurs along the plasma flow. This current
leads to distortion and redistribution of the initial magnetic field, and, thus, to
changing of the equilibrium. Geometry of the currents corresponds to that of the
generated mass flows.

3. The most remarkable feature of the effect in the case of magnetic flux tube is that
there are two different mechanisms leading to magnetosonic streaming, while
for the acoustic streaming only the absorption of oscillation energy in a thin
boundary layer is responsible:

(a) One mechanism is associated with the ponderomotive force which naturally
arises if the force acting on plasma contains a nonzero vortex part. This
mechanism is not connected with the direct absorption of oscillations, i.e.,
dissipative process, but requires radial inhomogeneity of magnetic field and
plasma density across the magnetic flux tube. This condition holds always
for solar flux tubes. In hydrodynamics, it is quite problematic, as it would
require the inhomogeneous compressibility of medium.

(b) The other mechanism is similar to those in gas dynamics and is connected
with the absorption of the momentum and angular momentum of flux tube
oscillations.

Absorption of the momentum leads to the generation of upward and downward
mass flows. Absorption of angular momentum causes the rotational mass flows
across the flux tube axis.

4. In solar magnetic flux tubes, there are two major nondissipative mechanisms of
the absorption of flux tube oscillations (see Chaps. 3 and 4). One is the anomalous
damping in the resonance point, where the phase velocity of oscillations becomes
equal to local meaning of Alfvén velocity. The second is the radiative damping
of flux tube oscillations due to the radiation of secondary acoustic waves. This
means that even in the absence of dissipative effects, the flux tube itself is able to
provide and sustain the generation of plasma streaming and current drive inside
and outside it.
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10.2 Magnetosonic Streaming Due to the Action
of Ponderomotive Force

We start with the generation of plasma streaming in and around magnetic flux tube
resulted by action of ponderomotive force which naturally arises in the oscillating
electromagnetic field at nonlinear stage.

Consider the flux tube performing a kink oscillations (with z-axis directed along
the magnetic field):

m = ±1 (10.1)

and having a long wavelength:

λ � R (10.2)

To visualize the nature of magnetosonic streaming, we choose the kink mode
as it is an exact analogue to periodic vibration of a solid cylinder in Schlichting’s
experiment shown in Fig. 10.1. The analogy is especially complete with the
experiment of Andrade who placed a circular cylinder in a field of acoustic waves.

We will see that there are conditions under which an oscillating magnetic
flux tube generates four vortices similar to those in the experiments of Andrade
and Schlichting. Furthermore, as mentioned above, the force responsible for the
generation of vortices outside the flux tube affects the plasma inside the flux tube as
well and leads to generation of inner plasma flows and electric currents.

Plasma density and magnetic field are leveled along the streamlines of the
induced flows and initially smooth magnetic flux tube splits into four independent
flux tubes. The process of splitting continues until “newborn” flux tubes reach the
regime when they diffusively dissolve.

The linearized system of MHD equations describing kink oscillations of a flux
tube with radial dependence of background parameters has a form:

ρ
∂ ṽ
∂t

= −∇p̃ + 1

4π
(∇ × B̃) × B + 1

4π
(∇ × B) × B̃ (10.3)

∂B̃
∂t

= ∇ × (ṽ × B) (10.4)

where tilde marks perturbed quantities.
For long-wavelength oscillations under the condition (10.2), incompressibility is

maintained with good accuracy:

divṽ = 0. (10.5)
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Since in the linear regime the z-component of velocity of kink oscillations is negli-
gibly small (flux tube performs a periodic transverse motion), velocity perturbations
ṽ(ṽr , ṽφ, 0) can be expressed through the stream function ψ:

ṽr = −1

r

∂ψ

∂φ
, ṽφ = ∂ψ

∂r
. (10.6)

Obviously, the ponderomotive force appearing in the second order has only
components in the plane perpendicular to the z-axis, and the problem becomes two-
dimensional. Then, the equation of motion for plasma in the second order has a
form:

ρ(r)
∂V
∂t

= −∇
[

p(r) + B2(r)

8π

]

+ f + νΔV (10.7)

All quantities here have a standard meaning; ν is the kinematic viscosity, and f is
the ponderomotive force acting on a unit volume of plasma:

f = −
〈

ρ̃
d ṽ
dt

〉

+ 1

c
〈(j̃ × B̃)〉 (10.8)

The averaging is performed over the wave period. Under the condition that the
inertial term, the first term in left-hand side of (10.7), is small, Eq. (10.7) becomes
stationary, describing a velocity field of steady flow:

ρνΔV = −∇
[

p + B2

8π

]

+ f (10.9)

This equation determines existence or nonexistence of magnetosonic streaming:
the streaming can be generated by the oscillation flux tube only if the force is
nonpotential. In other words, for generation of secondary flows it is necessary that

∇ × f �≡ 0. (10.10)

Otherwise, the ponderomotive force leads to an insignificant redistribution of the
plasma and magnetic field.

We will see below that the nonzero vortex part in the ponderomotive force is
provided by the radial dependence of magnetic field and plasma density across the
flux tube. The magnitude of the force is, therefore, determined by the gradient of
magnetic field and plasma density.

The magnitude of f becomes large in the resonance layer where the phase
velocity of kink oscillations becomes close to the local Alfvén velocity. Although
the generated flow is of the second-order effect, a strong plasma streaming can arise
in a thin resonance layer.
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Let us rewrite (10.9) through the angular velocity Ω = ∇ × V:

ρνΔΩ = ∇ × f (10.11)

Equation (10.11) uniquely describes the velocity field of generated steady flows.
To carry out a quantitative analysis, we solve linear equations for kink oscilla-

tions and through linear solution find the ponderomotive force.
We assume that all perturbed quantities are proportional to exp(iωt − ikz) and

their dependence on φ has a form (linearly polarized wave):

ψ(r, φ) = χ(r)cosφ (10.12)

With (10.6) and (10.12), the linearized system of MHD equations for the kink mode
is reduced to a single equation for χ :

∂

∂r

[

ρ(r) − k2B2(r)

4πω2

]

r
∂χ

∂r
−
[

ρ(r) − k2B2(r)

4πω2

]

χ(r) = 0 (10.13)

The important feature of (10.13) is that it has the classical form of the Rayleigh
equation with a singularity: the coefficient of higher derivative at some point across
the tube becomes zero. In our case, this is just the same point where the phase
velocity of kink oscillations (ω/k) becomes equal to the local Alfvén velocity. As
considered in Chap. 4 strong absorption of oscillations, the anomalous damping,
takes place at this point. The analytical solution of (10.13) and corresponding
damping rate are given in Chap. 4, Sect. 4.1.

Having solutions of (10.13),

ṽr = χ(r)

r
sinφ, ṽφ = ∂χ(r)

∂r
cosφ (10.14)

and

B̃r = −kB

ω

χ(r)

r
sinφ, B̃φ = −kB

ω

χ(r)

r
cosφ (10.15)

we can find the expression for ponderomotive (nonlinear) force (10.8).
The averaged force has only stationary terms and can be written as follows:

f = −〈[ṽdiv(ρṽ) + ρ(ṽ∇)ṽ]〉 + 1

4π
〈(∇ × B̃) × B̃〉 (10.16)

After some algebra, we get the following expressions for components of the
ponderomotive force:

fr = G(r)cos2φ, fφ = H(r)sin2φ (10.17)
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where

fr = ρ

2
cos2φ

{
χ2

r3 − χ ′2

r
− χ2

r2

∂ lnρ

∂r

−k2v2
A

ω2

[

χ ′
(

1

r

∂

∂r
rχ ′ − χ

r2

)

+ χ ′2 ∂ lnB

∂r

]}

(10.18)

and

fφ = ρ

2
sin2φ

{
χ

r
χ ′′ + χ

r2
χ ′ − χ ′2

r
+ χχ ′

r

∂ lnρ

∂r

−k2v2
A

ω2

[
χ

r

(
χ

r2 − 1

r

∂

∂r
rχ ′
)

+ χχ ′

r

∂ lnB

∂r

]}

(10.19)

Here, χ(r) is the solution of (10.13) and the prime stands for derivative over r .
Equations (10.17)–(10.19) immediately show that streamlines of the field of

ponderomotive force are closed in each quarter of the circle at a given radius of the
magnetic flux tube. Sketch of streamlines of generated flow is shown in Fig. 10.2. It
is important that plasma particles frozen in magnetic field follow the streamlines and
ultimately end up with the same geometry as the generated flows (Fig. 10.2). It must
be emphasized that the flow is generated inside the flux tube as well as outside it.

Fig. 10.2 Field of ponderomotive forces. The dashed line is an effective radius of flux tube
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It is interesting to compare (10.11) with the classical equation describing the
streaming generated by sound waves in a liquid (Equation (25) in Eckart 1948):

∂R1

∂t
− ν0∇2R1 = b

ν0

ρ0
∇ρ1 × ∇

(
∂ρ1

∂t

)

(10.20)

where R1 = ∇ × u1 is rotation of the secondary flow, and the coefficient b =
4/3 + ν′/ν0 is the abbreviation containing ν, which is the ordinary coefficient of
shear viscosity measured in cm2/s, and ν′ which is the bulk viscosity. Although in
fluid dynamics the generation of flow is provided by the viscous stresses and thus
by the absorption of oscillation energy, the velocity amplitude of secondary flow
turns out to be independent of the magnitude of viscous coefficients unless the bulk
viscosity is nonzero.

There is a principal difference between the amplitude of generated flow in the
case of acoustic streaming and that in the magnetosonic streaming. In the case of
flux tube oscillations, we have two different means for generation of secondary flows
and electric currents. One is associated with the dissipative effects. In this case, the
amplitude of plasma flow is proportional to the ratio of the damping rate to the
coefficient of plasma viscosity. The magnitude of the damping rate is determined
by the specific mechanism of absorption, which can be provided by the resonance
absorption, by radiation of secondary acoustic waves, or by the usual dissipative
mechanisms of absorption such as viscosity, thermoconductivity, and Ohmic losses.
And yet, like in the acoustic streaming, the amplitude of secondary flow also turns
out to be independent of the dissipative coefficients. But, the time required to set
up the steady state depends on the plasma resistance and is inversely proportional
to the coefficient of viscosity or other dissipative coefficients. This is discussed in
Sect. 10.4.

Another cause of secondary flows is the action of ponderomotive force, consid-
ered above. Here, the situation is quite different because ponderomotive force is
not dissipative and the amplitude of generated flow is no longer independent of the
viscous coefficient (or other dissipative coefficients) but is inversely proportional
to it. This means that, at the applicability limit, flow generated by the action of
ponderomotive force can reach a significant value.

In the following sections, we discuss a qualitative picture of the effect of
ponderomotive force, and, thus, of the induced flow on the evolution of magnetic
flux tubes with the initially smooth radial profile of background parameters.

10.3 Process of Filamentation and Diffusive Vanishing
of Magnetic Flux Tubes

The evolution of a flux tube due to the generated plasma flow strongly depends
on the physical parameters of the flux tube and surrounding plasma, in particular,
on the initial size (radius) of the tube, and on the relationship between the time of
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establishing of viscous flows and the duration of acoustic wave trains interacting
with the flux tube. One can see from (10.7) that for large enough flux tubes the
viscous term is small and its evolution is determined by the inertial term ρ∂V/∂t .

In this section, we give qualitative analysis of the case when the viscous term
is essential and secondary streaming can be described by the averaged stationary
equation (10.9). At the end of this section, we compare these results with an estimate
of the lifetime of flux tube for which viscous effects are negligible.

We start with qualitative analysis of the field of forces defined by (10.18)
and (10.19).

Denote the amplitude of flux tube displacement in kink oscillations by ξ =√
ξ2
r + ξ2

φ ( ṽ = ∂ξ/∂t). From (10.3) and (10.4), we can estimate the magnitude

of magnetic field perturbation B̃ as:

B̃ ∼ B
ξω

vA

(10.21)

The magnitude of ponderomotive force is of the order of (B̃2/R), that is,

f ∼ B2

8π

ξ2ω2

v2
AR

(10.22)

The velocity amplitude of generated flow is estimated from (10.11):

ρνV
1

R
∼ f (10.23)

or

V ∼ f

ρ

R2

ν
(10.24)

As discussed above, the amplitude of plasma streaming under the action of
ponderomotive force does depend on the coefficient of viscosity and is inversely
proportional to it. This assertion is valid until the last term in (10.18) is larger than
the inertial term.

The quantity (R2/ρ) entering estimate (10.24) is proportional to the time of
establishing of viscous flow:

τν ∼ R2

ν
, (10.25)

and determines the time required for magnetic structure to reach a new state
provided by generated plasma flows.
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The field of forces and, therefore, the character of generated flows depend on the
relation between τν and the duration, T , of the acoustic wave train interacting with
the flux tube.

We discuss here two cases, those of “coherent” and “incoherent” wave trains.
In the case of a long “coherent” wave train when

T > τν (10.26)

the estimate (10.24) becomes as follows:

V ∼ f τν

ρ
(10.27)

The plasma density and magnetic field are gradually equilibrating along the stream-
lines of induced flow and obtain the same symmetry as those of ponderomotive
force. This process leads to splitting of magnetic flux into four independent flux
tubes. This symmetry is a result of the specific kink oscillations whose azimuthal
number, (10.1), provides the corresponding symmetry of the force:

f = iG(r)cos2φ + jH(r)sin2φ (10.28)

Farther evolution of the system depends on the behavior of newborn flux tubes.
Analytical description of the next stage is difficult, because newborn flux tubes
form an ensemble of closely spaced structures with complicated flows inside them.
They can interact with each other or/and be influenced by acoustic waves as their
predecessors. If newborn flux tubes (or some of them) are influenced mostly by
coherent acoustic waves, the filamentation process goes further, and those flux
tubes experience further splitting. The behavior in this regime is confirmed by
numerical simulation (Sect. 10.5). In this case, the lifetime of the magnetic structure
is determined by the length of the time required to complete the filamentation
process and by the subsequent diffusive vanishing of the smallest flux tubes.

10.3.1 Diffusive Broadening of Flux Tube

In the opposite case of short “incoherent” wave train or convective motions, when

T < τν (10.29)

the generated flows have a character of stochastic motions. These motions result
in a diffusive broadening of a flux tube: the plasma density and magnetic field are
smoothed out gradually until the flux tube disappears.

In Fig. 10.3, the schematic change in time of squared magnetic field squared and
gas kinetic pressure is shown: the decrease of magnetic field and the leveling of gas
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Fig. 10.3 Schematic change in time of squared magnetic field and gas kinetic pressure: the
decreasing of magnetic field and the leveling of gas kinetic pressures inside and outside flux tube
ends up by diffusive dissolving of flux tube

kinetic pressures inside and outside flux tube lead ultimately to complete dissolving
of a flux tube.

The “diffusion coefficient,” defining a speed of this process, is

D ∼ Δx2

T
(10.30)

where Δx is the displacement of an element of a tube estimated as

Δx ∼ V T (10.31)

The velocity amplitude of generated flow, in this case, is of the order of

V ∼ f

ρ
T , (10.32)

and for the diffusion coefficient, we have

D ∼ ξ4ω4

R2 T 3 (10.33)

The lifetime of a magnetic flux tube can be estimated in terms of the diffusion
coefficient as:

tD ∼ R4

ξ4ω4T 3 (10.34)

This estimate is valid for flux tubes that interact with the acoustic waves with the
period T less than τν or with the convective motions with turnout time T < τν .
At the same time, the radius of flux tubes should be small enough to satisfy the
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condition when the inertial term is small compared with the viscous term:

ρ

∣
∣
∣
∣
∂V
∂t

∣
∣
∣
∣ < |ν�V| (10.35)

As mentioned above for thick flux tubes, the term |νΔV| is negligibly small and
their evolution is determined by the inertial term. In this case, the generated flow is
estimated as:

V ∼ f tV

ρ
, (10.36)

where tV is the time of the establishing of the generated flow. If this time is less or
comparable with the duration of acoustic wave trains, the flux tube experiences the
splitting into thinner tubes. The time of splitting is of the order of tV :

tsplit ∼ tV ∼ R

V
∼ ρR

f tsplit
(10.37)

or

tsplit ∼
√

ρR

f
∼ R

ωξ
(10.38)

Transition from the case (10.34) to (10.38) occurs when these timescales become
comparable, i.e., for a tube radius exceeding the estimate

R ∼ ξωT . (10.39)

In the next section, we give order-of-magnitude estimate of generated flows and
corresponding lifetimes for photospheric flux tubes interacting with the convective
motions and acoustic wave trains.

10.3.2 Quantitative Estimates—Lifetimes and Spatial Scales
of Flux Tubes

For quantitative estimates, we adopt the following typical values: the period of
acoustic waves Tp = 300–180 s, duration of acoustic wave train Twtr = 25 min, and
lifetime of convective granule Tconv = 8 min. Consider flux tubes with R = 100 km
and less. For the effective viscosity at magnetic flux site, we use the observed
limit on turbulent velocities, ṽ, and characteristic length scale of the turbulence, l̃,
consistent with observations (Beckers 1976; Title et al. 1992; Yi and Engvold 1993):
ṽ = 0.4 km s−1 and l̃ = 20 km. This gives for the effective viscosity ν = 8 km2/s.
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For the chosen parameters τν = R2/ν � 21 min, and the necessary con-
dition (10.26) is fulfilled. Obviously, the duration of the splitting process is
comparable with the time of the establishing of viscous flows, e.g., τν . So that in
time tsplit � 21 min flux tube with radius R = 100 km splits into four newborn flux
tubes each with radius roughly of R = 50 km.

To estimate the amplitude of corresponding flows generated across the flux tube,
we use (10.24) which with (10.22) becomes as follows:

V � 1

2

ξ2ω2

ν
R (10.40)

We assume that transverse displacement of a flux tube ξ is not less than R/2π . This
assumption may be justified from the condition (10.39) where, for periodic motions
replacing ωT by 2π , we come to above estimate.

For the velocity of transverse displacement of a flux tube, ṽ = ωξ , this estimate
gives ṽ = ωξ = R/Tp. And for tubes of radius R = 100 km, we have ṽ =
0.33 km s−1 which is consistent with the observed values. From (10.40), we find
the amplitude of generated flows: V = 0.7 km s−1.

Newborn flux tubes having radius 50 km may experience farther splitting. This
time either again due to the interaction with the acoustic wave trains or, more likely,
due to the action of convective motions: for these flux tubes τν = 5.21 min < Tconv.
Duration of this process is of the order of 5.21 min. The amplitude of generated
flows is V � 0.1 km s−1. In the third generation, flux tubes whose radius is now
about 25 km are too thin to experience farther splitting and should vanish diffusively
in time � 1.3 min. The total lifetime of a flux tube with R = 100 km is thus roughly
27 min.

It is important to note that the condition (10.39) determines the lower limit of
flux tube size (its radius) below which flux tubes do not experience fragmentation
and vanish diffusively. To estimate the critical radius given by (10.39) note that
diffusive regime requires the condition (10.29). This means that at given timescale
T , flux tubes with radius R ≤ √

νT are subject to diffusive vanishing with tD � T

(with T ≤ τν !). If we assume that the minimum effective timescale is that of 3 min
oscillations, the minimum critical radius is then Rmin = √νTp = 38 km. Of course,
this estimate is the order-of-magnitude one, and the value of critical radius may be
smaller or larger than 40 km. For example, convective motions also can terminate
the fragmentation process in flux tubes with radius about 60–70 km. In this case, the
flux tube vanishes diffusively in time of � 7–9 min.

The estimated timescales, the range of velocities, and the dynamics of photo-
spheric flux tubes are in a good agreement with the observed regularities found in
sub-arcsecond measurements (Berger et al. 1995; Schrijver et al. 1997; Kubo et al.
2010).

It is important to note that plasma flows are also generated outside flux tube. In
a case of kink oscillations under the conditions close to (10.26), four stationary
vortices are generated outside a flux tube. These vortices, shown in Fig. 10.2
outside dotted line (representing the flux tube effective radius), are similar to those
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generated in the experiments of Andrade and Schlichting shown in Fig. 10.1 (see
also Holtzmark et al. 1954). In these experiments, as well as in any manifestation
of an acoustic streaming, the only mechanism leading to the generation of flows is
the absorption of the energy of oscillation in a thin boundary layer. Whereas the
mechanism of generation of mass flows inside and outside oscillating magnetic flux
tubes is associated with “always present” intrinsic properties of flux tubes.

10.4 Generation of Mass Flows Due to the Absorption
Mechanisms

In the presence of dissipative effects just like in the case of acoustic streaming,
the energy of oscillating flux tube may be converted into secondary flows within
a thin boundary layer. This mechanism leads to additional and much richer effects
in magnetohydrodynamics of flux tubes which in some aspects have no analogy in
hydrodynamics.

As discussed throughout the book, along with the usual dissipative effects, the
energy of flux tube oscillations is intrinsically damped out due to the nondissipative
damping mechanisms: (1) Radiative damping when an oscillating flux tube gives
off its energy through emission of secondary acoustic or MHD waves; and (2)
Anomalous damping in the resonance layer, where the phase velocity of flux tube
oscillations becomes close to the local meaning of Alfvén velocity.

In particular, the anomalous damping of kink oscillations in the resonant layer
leads to especially strong effect of magnetosonic streaming.

Recall that physically, the nature of this mechanism is the pumping of oscillation
energy into the resonance layer where the dissipation occurs. The whole momentum
or/and angular momentum of flux tube oscillations is transferred to the plasma in a
thin layer, causing in nonlinear stage generation of a strong mass flows.

Formally, the expression for the force inducing the secondary streaming has the
same form as (10.8), but now the terms that are directly connected with the resonant
absorption are taken into account.

Absorption of the momentum of oscillations leads to the generation of upward
or downward mass flows. Absorption of angular momentum of oscillations causes
the rotational mass flows in a plane perpendicular to tube axis. Nonzero angular
momentum can be transmitted, for example, by circularly polarized kink oscilla-
tions.

The solution of (10.13) for a smooth dependence of plasma density and magnetic
field on the tube radius (Chap. 4, Eq. (4.12)) leads to the following dispersion
relation:

ω � kB√
4π(ρ + ρe)

(

1 + iπ

4

ρ

ρ + ρe

l

R

)

(10.41)
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One can see that it contains a large imaginary part corresponding to strong
absorption of kink oscillations in the resonance layer. For smooth radial profile of
magnetic field and density, when l � R, the damping rate becomes comparable with
eigenfrequency γ = Imω ∼ Re ω, and the effect is quite strong.

From (10.41), we have for the spatial damping rate α = Imk:

α = π

4

ω

vA

√
ρ

ρ + ρe

l

R
(10.42)

The energy of kink oscillations per unit length of a tube is W = ρṽ2πR2; ṽ

is the magnitude of linear velocity perturbation (see (10.6)). The momentum of
oscillation is

P = kz

ω
W (10.43)

The force Fz appearing due to the absorption of momentum P is proportional to

Fz ∼ α
kz

ω
P (10.44)

The force acting on a unit volume of a tube is then

fz = Fz

2πRl
(10.45)

From (10.42), (10.44) and (10.45), we have

fz � π

8

ω

vA

√
ρ

ρ + ρe

ρṽ2 (10.46)

As we see, the “model” parameter (l/R) does not enter in the final expression for
the force responsible for the generation of mass flows. The magnitude of generated
flows which is proportional to fz is completely determined by the basic physical
parameters and assumes their radial dependence to be arbitrary.

Let us now estimate the flow velocities generated along magnetic flux tubes
under a real conditions typical to solar atmosphere. In particular, we consider two
examples, flux tubes in the chromosphere and low corona.

For these estimates, it is convenient to rewrite expression (10.46) through plasma
beta. The pressure equilibrium condition gives that ρ/ρe = β/(1 + β), and (10.46)
becomes

fz � π

8

ω

vA

√
β

1 + 2β
ρṽ2 (10.47)
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The amplitude of generated flows, (10.24), is then

Vz � π

8

ω

vA

√
β

1 + 2β
ṽ2 R2

ν
(10.48)

In chromosphere and corona, i.e., in the magnetic dominant case (β � 1), viscosity
is estimated by Braginsky’s kinetic coefficients:

ρν = 2.21 × 10−15 T 5/2

lnΛ
g cm−1 s−1 (10.49)

For quantitative estimate, we use the following parameters.
For chromosphere: temperature T = 104 K, Coulomb logarithm Λ = 10, density

n = 1011 cm−3 (ρ = 1.67 × 10−13 g cm−3), magnetic field B = 50 G (Alfvèn
velocity is then vA = 345 km/s), characteristic radius of magnetic structure R =
100 km, and wave period Tp = 180 s.

For low corona: temperature T = 105 K, Λ = 20, density n = 3×109 cm−3(ρ =
5 × 10−15 g cm−3), weaker magnetic field of B = 10 G (Alfvèn velocity vA =
399 km/s), and wider structure of radius R = 200 km; for the wave period, we
accept a typical period of Alfvén waves Tp = 100 s.

We assume that the velocity of transverse displacement of a flux tube in
chromosphere and corona is proportional to the radius of the structure and wave
frequency. This gives in chromosphere ṽ � 3 km/s, and in corona ṽ � 12 km/s.

For the chosen set of parameters, (10.48) gives the following estimates for the
amplitude of mass flows generated along the flux tube: in chromosphere Vz �
23 km/s and in corona Vz � 2.5 km/s. It is remarkable that the range of velocities
in the chromosphere are close to those observed in spicules.

Thus, in the application to chromospheric magnetic structures “magnetosonic
streaming” can be considered as a promising candidate for more detailed studies of
the origin of spicules and their dynamics. It is important to note that the secondary
flows generated along and/or across the magnetic flux tube should not be confused
with short-living strong sporadic jets observed throughout the solar atmosphere.
The secondary flows belong rather to the flux tubes themselves, the feature that is
“always there.”

In the same way as above, we can estimate the magnitude of the force appearing
due to the absorption of angular momentum of oscillations which is responsible for
generation of azimuthal flows and electric currents. The angular momentum directed
along the tube axis is estimated as:

Mz ∼ W

ω
(10.50)

The angular momentum absorbed per unit length of a tube is proportional to
(αkz/ω)Mz. An estimate for force acting on plasma in the azimuthal direction may
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be obtained from the following relation:

2πRl ∼ αkz

ω
Mzω (10.51)

or

fφ ∼ αkz

ω

W

2πRl
, (10.52)

These are the same order-of-magnitude force as in the case of the absorption of the
momentum of oscillation.

As mentioned above, if the oscillation energy is mostly absorbed by one of the
plasma components (electron or ion), mass flows are accompanied by current drive.
In this case, imaginary part of (10.41) contains additional terms connected with the
specific damping mechanism.

If the absorption is associated mostly with the electron component of plasma, the
damping may be a result of one of the two major damping mechanisms:

1. Electron–ion collision with collisional damping rate

δe ∼ νei
vA

kzv
2
Te

(10.53)

2. Landau damping with

δL ∼ ω

kzvTe
, (10.54)

vTe being the electron thermal speed.

For example, in a case of Landau damping for spatial damping rate αL, we have

αL ∼
√

π

2

r2
i

l2

Te

Ti

kvA

vTe
(10.55)

Here, ri is the ion Larmor radius, Te and Ti are the electron and ion temperatures,
respectively.

Let us estimate, for example, the magnitude of the azimuthal electric current
generated by the absorption of angular momentum. The force (Eq. (10.52)) causes
the motion of electrons with the velocity

ueφ ∼ fφτ

neme

, (10.56)
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And, thus, leads to the appearance of azimuthal current jφ = eneuφ of the order of

jφ ∼ αL

νei

e

me

ρṽ2

2

R

l
(10.57)

In the same way, we can estimate the currents generated along the magnetic field
due to the action of the z-component of the force (Eq. (10.46)).

Although the generated currents are of the second-order effect, they play an
essential role in the dynamics of the magnetic flux tube and may lead to the
distortion of the initial magnetic field, changing its equilibrium conditions.

10.5 Numerical Analysis

In this section, numerical simulations of magnetosonic streaming and current drive
are performed for the regime corresponding to the filamentation process, i.e., to the
generation of the azimuthal flows and electric currents.

10.5.1 Basic Equations and Numerical Method

For numerical simulations, the following assumptions are adopted: (1) the medium
is an ideal gas, (2) the gas is a polytrope of index γ = 1.5, (3) the magnetic field is
frozen in the gas and is vertical, and (4) gravity is neglected. Cartesian coordinates
(x, y, z) are adopted so that the z-direction is parallel to the magnetic field. It is
assumed that the evolution is two-dimensional with ∂/∂z = 0. Thus, the basic
equations are as follows:

∂ρ

∂t
+ ∂

∂x
(ρVx) + ∂

∂y
(ρVy) = 0, (10.58)

∂

∂t
(ρVx) + ∂

∂y
(ρVxVy) + ∂

∂x

(

ρV 2
x + p + B2

z

8π

)

= δx, (10.59)

∂

∂t
(ρVy) + ∂

∂y
(ρVxVy) + ∂

∂x

(

ρV 2
y + p + B2

z

8π

)

= δy, (10.60)

∂Bz

∂t
+ ∂

∂x
(VxBz) + ∂

∂y
(VyBz) = 0, (10.61)
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∂

∂t

[
p

γ − 1
+ 1

2
ρ(V 2

x + V 2
y ) + B2

z

8π

]

+ ∂

∂x

[
γ

γ − 1
pVx + 1

2
ρVx(V

2
X + V 2

y ) + B2
z

4π
Vx

]

+ ∂

∂y

[
γ

γ − 1
pVy + 1

2
ρVy(V

2
X + V 2

y ) + B2
z

4π
Vy

]

= δxVx + δyVy,

(10.62)

where δx and δy describe the interaction of a flux tube with acoustic waves. All other
symbols have their standard meaning.

The distribution of the initial magnetic field strength Bz(x, y) is given by:

Bz(x, y) = [8πp(x, y)/β(x, y)]1/2 (10.63)

where

β(x, y) = β0/f (x, y), (10.64)

f (x, y) = 1

2

[

−tanh

(
r − r0

w0

)

+ 1

]

, (10.65)

r = [(x − x0)
2 + (y − y0)

2]1/2, (10.66)

and where β0 is the plasma beta at the center of the flux tube, x0 and y0 are the
coordinates of the center of the flux tube, r0 is its radius, and w0 is the width of
the boundary layer between the flux tube and the unmagnetized plasma. In these
calculations, we use β0 = 0.2 and w0 = 1.0H , where H is the characteristic length
scale.

The initial density and pressure distributions are calculated by using (10.63)–
(10.66), the equation of the state and the equation of magnetostatic equilibrium

p(x, y) + B2
z

8π
= const. (10.67)

An incompressible velocity field is initially imposed on the magnetic flux tube. We
assume a velocity potential of the form:

Φ(x, y) = A sinπx · sinπy, (10.68)

and consider resulting velocity field:

Vx = −f (x, y)
∂Φ

∂y
, Vy = −f (x, y)

∂Φ

∂x
, (10.69)
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Time-dependent acoustic perturbations are imposed on the magnetic flux tube via
interaction terms in the equations of motion ((10.59) and (10.60)) of the following
form:

δx = Af (x, y) · sin ωt, δy = Af (x, y) · cos ωt. (10.70)

We assume free boundaries for x = 0, x = Xmax, y = 0, and y = Ymax.
Equations (10.58)–(10.65) are nondimensionalized by using a characteristic length
scale H , the sound speed cs , and the density ρ0 outside the flux tube. The system
is solved numerically by using a modified Lax–Wendroff scheme with an artificial
viscosity according to Richtmyer and Morton (1967). The tests and accuracy of such
an MHD code have been described, for example, in Tajima (1989). The mesh sizes
are Δx = Xmax/(Nx − 1) and Δy = Ymax/(Ny − 1), where Nx and Ny are the
numbers of mesh points in the x- and y-directions. The total number of mesh points
is (Nx × Ny) = (203 × 203), and the total area is (Xmax × Ymax) = (20 × 20) in a
typical model in units of the characteristic length scale.

10.5.2 Numerical Results

We will discuss here two examples (models 1–2) of numerical simulation of the
filamentation process in the interaction of magnetic flux tube with acoustic waves.
The main parameters of simulation models are the interaction terms, δx and δy , the
initial radius of flux tube, r0, the frequency, ω, and the artificial viscosity parameter,
q . Model 1 represents the case where the interaction term has only an x-component,
δx = 0.05. In model 2, we allow a nonzero y-component of the interaction term,
δy = 0.05. The artificial viscosity is q = 3.0. By varying radius and frequency,
we also study the dependence of the evolution of flux tube on these parameters.
Two other regimes will be discussed in Chap. 22 as an illustration of what can be
observed.

Figure 10.4 shows the initial (t = 1) and final (t = 52) states of the contour
lines of the magnetic field Bz, the density distribution (logρ), the velocity field
V = (Vx, Vy), and the current density j = (jx, jy) for model 1. The radius of
unperturbed flux tube in this model is r0 = 2H , and temporal frequency of the
wave is ω = 2π/5. Initially, the vertical magnetic field with a smooth radial
profile is concentrated in a flux tube with radius r0, the plasma density inside
the flux tube (also having a smooth radial dependence) is lower than outside for
pressure equilibrium (isothermal plasma), and the velocity field shows the potential,
incompressible flow imposed on magnetic flux tube according to (10.69). In the
course of the evolution, the magnetic flux tube breaks down into four different
magnetic structures (t = 52).

The magnetic field of the final configuration is distributed into two major and two
minor, nearly symmetrical, tubes. The density distribution and generated current
density show the filamentation process as well. It is remarkable that magnetic field
lines and plasma density lines in the “final” state are no longer collinear—a fact
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Fig. 10.4 Results for model 1. Shown are: (a) the contour lines of Bz and (b) the density contours
(logρ) of undisturbed flux tube. (c)–(f) Results at t = 52: (c) the contour lines of magnetic field, (d)
the density contours, (e) the current density j = (jx , jy ), and (f) the velocity field V = (Vx, Vy).
Total illustrated area is (20 × 20) in units of H . The contour level step width is 1.5 for (a) in the
unit of linear scale and 0.2 for (b) in the unit of logarithmic scale. The maximum values of the
current density and velocity vectors shown in panels (e) and (f) are in units of (ρc2

s /H)1/2 and
sound speed cs , respectively. Numbers on top of each frame represent the time in units of H/cs
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important for further evolution of a conglomerate of newborn flux tubes as well as
for observed properties of magnetic structures.

It is important to emphasize that in all cases the generation of flows and frag-
mentation of magnetic flux tubes accompanied by redistribution of electric currents,
occurs according newly acquired topology determined by system parameters. To
understand the influence of the artificial viscosity on the numerical code showed
that within the regime of q = 3 to q = 6, the evolution of flux tube is not sensitive
to the magnitude of the artificial viscosity, except may be for the fact that higher
viscosity, as predicted by theory, leads to more a pronounced effect of filamentation
(see example in Sect. 22.2).

Now, we investigate the case where the interaction terms have nonzero x and
y components (model 2). This case is close to the theoretical analysis with the
difference that theory assumes both components of the force equal to each other.
The advantage of the numerical result compared with the analytical one is that here
the evolution of the flux tube can be traced further into later stages: the filamentation
process does not stop at the formation of the first four newborn flux tubes but goes
further, showing the formation of a complex structure with many magnetic elements
of different strength and size (Fig. 10.5).

Fig. 10.5 Results at t = 55 for model 2, where the generated force has both x- and y-components.
The formation of a complex structure with many magnetic elements of different strength and size
is shown. As earlier, (a) is the magnetic field, (b) shows density contours, (c) is the velocity field
and (d) is the current density



284 10 Magnetosonic Streaming

10.6 Intrinsic Nature of Flux Tube Fragmentation

Time series of high-resolution observations show that continuous fragmentation,
merging, and dissolution of small-scale magnetic flux tubes is the fundamental
process in the photosphere and overlying atmosphere (Yi and Engvold 1993; Berger
et al. 1995; Berger and Title 1996; de Wijn et al. 2009; Bellot Rubio et al. 2001).
The timescale of splitting and merging processes spans from tens of second to
minutes. In each individual case, the process persists to the limit of resolution.
The resolved elements vary in shape from circular points as small in diameter as
70 km to elongated filaments with lengths of the order of 500–1000 km which in
high resolution consist of chains of circular magnetic elements. They are located
predominantly in the intergranular lanes constantly buffeted by convective motions
and wave trains.

The flux tubes are associated with intergranular bright points whose intensity
structure consists of a bright core with dark surroundings. The best proxy of the
small-scale flux tubes are G-band images taken through a 12-Å bandpass filter
centered at 4305 Å line. Example of the G-band image of a small quiet sun area
is shown at four instances of time in Fig. 10.6.

Boxes 1 and 2 highlight examples of two groups of small-scale flux tubes that
quickly break into smaller and smaller elements. First, three snapshots show the
evolution of flux tubes with 1-min interval. The group in the box 1 consisting
roughly of four elements in 2-min breaks into about 7–8 smaller elements. In another
4 min shown at UT 09:02, every flux tube has been “dissolved.” The fragmentation
of flux tubes in box 2 is longer process: at UT 09:02, a beautiful chain of tiny flux
tubes have been spread along the intergranular lane. The average cross section of
these elements is less than 100 km. In a few minutes, they will be dissolved as well.

It is interesting that the fragmentation process even in the case of photospheric
magnetic flux tubes can end up with quite vigorous nonlinear dynamics. In other
words, diffusive vanishing is only one possibility of the final stage of life of flux
tube. Given that generated flows are accompanied by current drive with quite
complicated geometry, strong distortion of the topology of magnetic field takes
place. This may lead to such a situation that is favorable for local reconnections.
This process will manifest itself in a strong localized brightening and plasma jets
well above the photosphere, i.e., in the chromosphere/transition region including
corona. These effects will be considered in Chaps. 12 and 13.
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Fig. 10.6 Snapshots of quiet sun region in G-band showing evolution of small-scale magnetic
elements buffeted by convective motions. Examples of breaking of magnetic flux tubes in smaller
and smaller satellites are highlighted by boxes 1 and 2. The image is taken by the DOT on 13 April,
2005. Reprinted from http://www.staff.science.uu.nl, courtesy of Rob Rutten

10.7 Problems

10.1 Find the velocity profile of a wave generated at a viscous boundary layer
near an oscillating infinite plate. Let the plate lying in xy plane performs harmonic
oscillations in x direction (Stokes first problem), i.e., the velocity components on
the surface of plate are

vx |z=0 = v0exp(−iωt), vy |z=0 = vz|z=0 = 0 (10.71)

10.2 The acoustic streaming, one of the most beautiful nonlinear effects, consists
in generation of unsteady mass flows by the sound waves propagating near the solid
obstacles and is originated by the near-wall viscous stresses. Consider the acoustic
boundary layer at a plane solid wall (in the xz-plane) assuming two-dimensional

http://www.staff.science.uu.nl
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flow in the xy-plane. Find the velocity of the streaming generated by the oscillating
wall (Schlichting 1932).

10.3 Determine the acoustic streaming in the space between two plane parallel
walls (y = 0 and y = h) in the presence of a stationary sound wave (24.153).
The distance h between the plates satisfies the condition λ � l � δp Rayleigh
(1883).
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Chapter 11
Moving Magnetic Features (MMFs)

Abstract In highly dynamic environment of sunspot areas with various sources
and sink of energy, small-scale flux tubes do not in general obey the local
conservation laws nor do the ensembles of flux tubes that exhibit a complex
collective phenomena. Some of the most spectacular phenomena are associated with
the so-called Moving Magnetic Features, MMFs, small bipoles streaming radially
outward the sunspot penumbra and exhibiting various mysterious properties. For
example, they are observed to propagate faster than background mass flows and
sometimes even upstream. Altogether, the properties of the MMFs are inconsistent
with the energy and momentum conservation laws and require the approach of a
non-conservative, energetically open systems. In this chapter, we shall study these
amazing features, their observed characteristics, and their impact on the overlying
atmosphere. We shall apply the methods of non-conservative systems to understand
their behavior. We will also see the negative energy waves in action, and associated
formation of shocks and solitons.

11.1 Types of MMFs and Their Observed Properties

The regular outward motions of bright points around sunspots observed by Sheeley
(1967) and Vrabec (1971) were named by Harvey and Harvey (1973) moving
magnetic features, MMFs. They were first to give a detailed description of the MMF
properties by using simultaneous magnetic and Hα observations of 37 sunspots
(during about 1-year time span). Since then, the MMFs were extensively studied
both with ground-based and space observations (Brickhouse and LaBonte 1988; Lee
1992; Ryutova et al. 1998; Yurchyshyn et al. 2001; Bernasconi et al. 2003; Ryutova
and Hagenaar 2007; Ryutova et al. 2007; Zuccarello et al. 2009).

It was found that on the very edge of the penumbra along the systematic outflow
of 0.5–1 km s−1, the small magnetic features, 1–2′′ in size, are observed to move
outward from the penumbra with velocities higher than the background flows. They
eventually form the outer boundary of the moat where they vanish or begin to reside
in the network. During their lifetime, MMFs exhibit some clear and well-established
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properties that are listed below:

1. MMFs tend to appear in opposite-polarity pairs. The pairs may not be equally
visible.

2. The emerging phase takes about 10 min.
3. Pairs can emerge anywhere in the moat but most are near the outer edge of the

penumbra.
4. They frequently appear along the continuation of dark filaments; a substantial

fraction of the magnetic field is horizontal from the mid to outer penumbra
and is confined to dark filaments; the Evershed flow occurs in the regions of
horizontal fields.

5. MMFs move with (almost) the constant velocity, and may slow down gradually;
nearby MMFs may have quite different speeds.

6. The inner foot predominantly shares the sunspots polarity for pair emergence;
there are also opposite-polarity structures, some might appear Nonpaired,
emitted from the edge.

7. There is a trend for the short-living MMFs to have higher than average
velocities.

8. Shorter-lived MMFs seem to be smaller in size.
9. The outer foot moves slightly faster than the inner one; the opposite-polarity

footpoints are gradually separating at perhaps 100 m s−1.
10. There are other structures that move faster than 2 km s−1.
11. Several MMFs seen at the very moment of emergence have initial velocities up

to 8 km s−1.
12. After the emerging phase, MMFs appear as bright areas in the upper photo-

sphere and chromosphere with excess emission in the Ca II K line.
13. They appear to carry a total magnetic flux several times larger than the total flux

of the sunspot.
14. There are bipolar features that move inward, i.e., from the edge of penumbra

toward the sunspot umbra.

Having some common properties, MMFs are quite distinct from each other. As a
result, they were formally divided into classes (Shine and Title 2001).

Type I MMFs are opposite-polarity pairs seen as a compact bipoles. Their initial
velocities (at the moment of emergence) may be quite high, 3–8 km s−1. Moving
outward from the sunspot, they gradually slow down; at this stage, the separation
between the footpoints gradually increases at about 100 m s−1. During their lifetime,
which may be hours, they still move with velocities higher than background plasma
flows. Nearby MMFs may have quite different speeds. The inner footpoint shares
the sunspot’s polarity.

Type II MMFs appear as seemingly unipolar features emitted from the edge of
a sunspot and having another footpoint partially or totally hidden. They share the
sunspot’s polarity, and have properties similar to those of the inner footpoint of the
type I MMFs. Footpoints of type I MMFs are often not equally visible with well-
pronounced inner footpoint and diffuse outer footpoint.
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Type III MMFs also appear either as unipolar features, or opposite-polarity pairs
with one footpoint barely visible. Unlike type II, these MMFs have the polarity (of a
strong footpoint) opposite to parental sunspot. They are of smaller size, travel with
higher velocities than the other MMFs (2–3 km s−1), and are associated with bright
points in the continuum.

Type I∗ MMFs are outflowing opposite-polarity pairs with the inner footpoint
having the polarity opposite to the sunspot (Yurchyshyn et al. 2001; Zhang et al.
2003). To distinguish them from regular type I MMFs, we use the notation of a
“complex conjugate.”

Type IV MMFs, called MDFs, moving dipolar features, were found in an emerg-
ing sunspot region (Bernasconi et al. 2003). They have the remarkable property of
moving inward, i.e., toward the sunspot umbra. These are slowly migrating bipoles
(0.3–0.8 km s−1) with the inner footpoint having a polarity opposite to the sunspot.

11.2 Impossibility of the Origin of MMF’s in Conservative
Systems

Harvey and Harvey in their original observational paper proposed a graphic scenario
in which some flux tube becomes detached (!) from the sunspot trunk at the surface
where it is nearly horizontal. The supergranular or granular motions then twist this
detached part of flux tube into kinks that then are carried outward by the systematic
Evershed outflow. This “sea-serpent” sketch by Harvey and Harvey became the
basis for subsequent models. Copy of the original Harvey and Harvey’s cartoon
is incorporated in the combined sketch shown in Fig. 11.1, right. Left side of the
cartoon shows the sketch of Wilson’s (1986) model. Figure 11.2 is a sketch by

N

Evershed flow

N S

Sunspot Moat
Network

Harveys’
Model

Wilson’s

Model

S N

Oscillatory flow

Fig. 11.1 Cartoon visualizing a possible creation and motion of MMFs: right side of cartoon
shows a sketch given by Harvey and Harvey showing how twisted magnetic flux tube may be
separated from the main body of sunspot and swept to the network by flows; left side of cartoon
is Wilson’s (1986) sketch showing a possible formation of MMFs in form of the new flux loops
generated by an oscillatory velocity field
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Sunspot
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U−loop

Stretched MDF

U−loop

+ −+ −

Evershed flow

Bernasconi et al.
flow direction MDF

Fig. 11.2 Cartoon visualizing even more mysterious magnetic features—MDFs, moving toward
parental sunspot against the main stream of Evershed flow directed from sunspot to its periphery.
Reprinted from Bernasconi et al. (2003) with permission from Springer Copyright 2002, Kluwer
Academic Publishers

Bernasconi et al. showing a possible motion of MDF’s (type IV MMFs) moving
against the background flow toward the sunspot.

Wilson (1986) suggested that new flux loops may be generated by suitable
oscillatory velocity field near the boundaries of existing magnetic structures with
subsequent detachment (!) of loops, which may appear as compact bipoles. Wilson,
however, objects the Harvey and Harvey’s cartoon mainly on the basis of energy
disbalance: comparison of magnetic energy density (for a 1500 G flux tube) and the
energy density of granular motions shows that energy density of granular motions
is smaller than the former one by two orders of magnitude.

Finally, Wilson justly concludes: “It is hard to see how the motions could deform
such a flux tube into the required kink, far less maintain the tube in this form during
the passage across the moat.” Indeed, if flux tubes and outer motions are considered
as a conservative system, origin of MMFs, moving faster than background flows and
even upstream, is impossible to explain.

And yet, most of the subsequent attempts to visualize MMFs were somehow or
other connected with the Harvey and Harvey’s “sea-serpent” picture. For example,
it was tempting to represent type I MMF as a

⋂
-shaped kink formed along a thin

horizontal filament, which would indeed have the appearance of a bipolar formation
with the inner footpoint of the same polarity as the sunspot. Similarly,

⋃
-shaped

kinks would appear as MDF or MMF with the inner footpoint having opposite to
sunspot polarity.

The fundamental problem here is that either kind of kink is highly unstable: under
the action of magnetic tension and buoyancy forces, a

⋃
-shaped kink straightens in

1–2 min, while a
⋂

-shaped kink may at best first oscillate and survive only for
several minutes longer (Ryutova, Tarbell, and Shine 2003).

But, the problem goes even deeper. One needs to not only overcome the stability
issue but also find the forces that push MMFs to travel faster than the background
flows with lifetimes from tens of minutes to hours. In case of MDF’s (Fig. 11.2),
mysterious forces make the kink to travel even upstream, against the background
flows.
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In other words, the properties of the MMFs are inconsistent with energy and
momentum conservation laws and require approach of non-conservative, energet-
ically open systems. We will see below that the mechanism that operates in an
energetically open system describes all the observed types of MMFs and their
properties.

11.2.1 The Mechanism

The mechanism that explains the origin of MMFs and their observed properties is
based on a natural coexistence of flux tubes and adjacent shear flows, that form non-
conservative system, and must be considered as such. The system with unbalanced
sources and sinks of energy cannot maintain (locally) conservation laws and, as open
energetically, becomes the subject to vigorous nonlinear dynamics (Kadomtzev et al.
1964; Dikasov et al. 1965; Coppi et al. 1969; Ostrovsky et al. 1986; Ryutova 1988).
In our case, an unaccounted energy source comes from mass flows, sinks are played
by any dissipative effects.

As shown in Chap. 5, the exchange of energy and momentum between magnetic
flux and outer motions results in the development of two kinds of shear flow
instabilities. The onset of the instabilities occurs respectively at two thresholds with
respect to velocity: (1) Kelvin–Helmholtz instability (KHI) which develops at a
linear stage and leads to the excitation of natural oscillations propagating along the
magnetic flux tube; and (2) instability of negative energy waves (NEW) which leads
to nonlinear growth of oscillations excited along the flux tubes.

Recall that the dispersion relation for linear kink oscillation in the presence of
flow, u, has a form (cf. Eq. (5.12), Chap. 5):

ω± = k

1 + η

[

u ±
√

η[(1 + η), v2
A − u2]

]

(11.1)

and that super-Alfvénic velocities, u > vA

√
1 + η, correspond to the KHI threshold,

whereas dissipative instabilities of NEWs develop at sub-Alfvénic shear velocities.
Namely, when the shear velocity, u, drops into the interval:

vA
√

η ≤ u < vA

√
1 + η (11.2)

Thus, dissipative instabilities require weaker flows to trigger the energy and
momentum exchange between the magnetic flux and outer motions. In other words,
under the condition (11.2), the kink along flux tube not only becomes stable but
may also grow under the action of any dissipative effect, including the action
of non-dissipative damping mechanisms specific for the flux tubes, i.e., due to
anomalous damping in the Alfvén resonance layer, or due to radiative damping. First
mechanism is provided by the smooth radial profiles of flux tube, while the second
mechanism is provided by the radiation of secondary acoustic or MHD waves. Both
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mechanisms are inherent for the photospheric flux tubes, making thus formation of
a kink and its further behavior unrestricted.

It must be noted that the range of the flow velocities observed in sunspot region
are enough to “deform” a flux tube and generate a stable kink, that later may evolve
into the shock, traveling soliton, or series of solitons.

11.3 Nonlinear Kink and Its Evolution in the Presence
of Shear Flows

To describe the evolution of a kink mode in the presence of shear flow, we
use nonlinear equations obtained in Chap. 4 (Eq. 4.114)), complemented by the
additional dissipative terms that represent the intrinsic dissipative features of flux
tube:

∂ψ

∂t
+ αψ

∂ψ

∂x
+ βdisp

∂3ψ

∂x3 = ν
∂2ψ

∂x2 − γ

π
P

∫ ∞

−∞
∂ψ

∂s

ds

x − s
(11.3)

+μ

π
P

∫ ∞

−∞
∂3ψ

∂s3

ds

x − s

Here, ψ = B2
y + B2

z , α � 3ck/4B2 is the coefficient of nonlinearity, βdisp is the
dispersion coefficient, ν is the dissipative coefficient provided by usual dissipative
losses (viscous, thermal, and Ohmic), γ corresponds to anomalous damping of
kink oscillations in the Alfvén resonance layer, and μ represents the radiative
damping of oscillations. P denotes the principal value of the integral. The equation
is written in a frame moving with the group velocity of linear kink oscillation
ck = vA

√
η/(1 + η).

Although (11.3) in the presence of mass flows formally remains the same as
without flows, coefficients α, βdisp, γ , and μ are now the functions of the shear
velocity u:

α � 3

4

c±
k

B2 (11.4)

β±
disp = ∓ R2

2ηv2
A

(c±
k − u)4

√
η[(1 + η)v2

A − u2]
(11.5)

γ = ±π

4

ε

η

(c±
k − u)2

√
η[(1 + η)v2

A − u2]
(11.6)
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Here, c±
k = [(1/(1 + η)]

[

u ±
√

η[(1 + η)v2
A − u2]

]

is the group velocity of linear

kink oscillations in the presence of shear flow, u, and ε is a measure of the diffused
boundary of a magnetic flux. We assume that the initial magnetic field is constant
across the effective radius, R, and then drops to zero linearly in thin boundary layer
of thickness l, thus ε = l/R. In the analytical approach, we assume that ε � 1 and
consider magnetic field well concentrated in the effective radius R. In the numerical
studies (see Sect. 11.4 below), this restriction will be removed, and a more realistic
situation with smooth radial dependence of flux tube parameters and velocities on
radius will be considered.

Equation (11.3), as a typical KdV–Bürgers, describes several scenarios of the
evolution of the initial kink perturbation depending on the interplay of the nonlinear,
dissipative, and dispersive effects. Besides, the sign of dispersion plays a crucial role
in the properties of the equation and its solution.

For example, if nonlinear and dispersion effects are in balance, the steepening of
the amplitude gets compensated by dispersive stretching and leads to formation of a
long-lived soliton, which travels with its own velocity that is higher than the shear-
flow velocity. In observations, such a formation appears along the line of sight as a
compact bipole.

If nonlinearity prevails over dispersion, the soliton becomes asymmetric and
acquires shocklike form, i.e., one side of the soliton becomes steeper than the other.
Such a formation appears along the line of sight either as a single-polarity element
or as a bipole with one sharp and one diffuse footpoint. Its velocity may be even
higher than that of a soliton.

It is important that in case of a positive dispersion of medium there appears a
bright soliton, i.e., nonlinear kink is

⋂
-shaped. If the dispersion changes sign, the

soliton becomes dark, negative soliton, acquiring
⋃

-shape (Karpman 1975).
First, we shall discuss in detail the case of the soliton formation and its evolution

in medium with positive dispersion. In other words, we choose the lower branch of
the dispersion relation (11.1), and lower signs of all parameters given by (11.4)–
(11.6).

The right-hand side of (11.3) is assumed to be small compared to each term
in the left-hand side. In this case, one can use a well-developed technique (e.g.,
Whitham 1974, Ostrovsky et al. 1986) to find quasi-stationary solutions of (11.3).
This technique consists mainly of two steps. First, we find solution of a stationary
KdV equation, and then assuming that the amplitude and other parameters of the
system are slowly varying functions of time, we find the evolutionary equation for
the amplitude.

In the absence of dissipative terms, a stationary solution of (11.3) is a solitary
wave with amplitude A (in our case A � B2⊥), width Δ and travel velocity of
soliton, vs ,

ψ = Asech2 x − vs t

Δ
(11.7)
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Δ =
√

12βdisp

αA
, (11.8)

vs = ck + αA

3
(11.9)

Now, to obtain a solution of (11.3) for the dissipative system (with nonzero, but
small right-hand side) one assumes that the amplitude, width, and the speed of a
soliton are slowly varying functions of time.

The time dependence of these parameters is determined by the energy equation
that can be obtained by multiplying (11.3) by ψ and integrating over a distance
large compared with the size of a soliton. This procedure leads to the evolutionary
equation for the amplitude:

dA

dt
= 2.92

π
γ

(
α

12βdisp

)1/2

A3/2 − 16

15

α

12βdisp
νA2 (11.10)

By analyzing this equation, we can conceive the nature of its solution. First, in the
beginning of soliton evolution, when its amplitude is small enough, the first term in
the right-hand side of (11.10) is leading one; the amplitude in this case experiences
an explosive growth:

A � A0

(1 − t/texpl)2 (11.11)

with the explosion time texpl = π
√

12βdisp/αA0/2.92γ . Under photospheric
conditions, this time is quite large; that is, the phase of the explosive growth is
short: after several inverse growth rates, the amplitude gets stabilized by higher
nonlinear effects (Coppi et al. 1969; Ryutova 1988). At about this time, the second
term in (11.10) becomes more important, and the amplitude of soliton decays as
follows:

A(t) = A0

1 + t/tdiss
, (11.12)

where tdiss � 12βdisp/ναA0. With (11.11)–(11.12) and basic relationships between
the parameters of soliton, (11.7)–(11.9), one can easily draw a qualitative picture of
the formation of magnetic soliton and its further behavior. Moreover, these relations,
containing directly observable parameters, allow one to perform the quantitative
analysis and comparison with the observations.

Thus, at flow velocities in the range defined by condition (11.2), one should
expect the formation of a stable soliton with the properties described by the simple
relationships between the soliton parameters, (11.7)–(11.9). The simplicity of these
relations makes the conclusion regarding the validity of soliton solution quite
rigorous. One can see that all three relations are interdependent: the amplitude,
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the width of the soliton, and its velocity are all functions of each other. So that,
for the kinked formation to be a soliton, these parameters must obey all three
conditions simultaneously. In other words, if one of these conditions breaks, the
kinked formation cannot be considered as a solitary wave.

In the solar photosphere, and in particular in the sunspot area, two of the
abovementioned parameters, the travel velocity, vs , and width of the soliton, Δ, are
directly measured quantities. The amplitude, A, which is proportional to magnetic
field strength, B2, is also well-measurable parameter. In this sense, (11.8) and (11.9)
are the first to be checked. We will perform the quantitative analysis and comparison
with the observations to Sect. 11.5. Before doing this, in the next section we
present numerical studies of soliton-like and shocklike formations, which extend the
analytical studies and allow, for example, to study temperature distribution inside a
kinked formation.

11.4 Soliton and Shocklike Formations Along the Flux Tube:
Numerical Studies

Numerical studies are based on a three-dimensional simulation code of a normalized
set of MHD equations in which the numerical scheme is the modified 2-step Lax–
Wendorff method (Fushiki and Sakai 1995; Suzuki and Sakai 1996). The region of
calculation or the system sizes in the x, y, and z directions are, respectively, 0 <

x < 4πL0, 0 < y, z < 2πL0. The density, the magnetic field, and the pressure are
normalized by ρ0, B0, and p0; the velocity is normalized by the Alfvén velocity, vA.
The space and time are normalized by L0 and τA = L0/vA. Thus, the normalized
set of MHD equations is as follows:

∂ρ

∂t
+ div(ρv) = 0 (11.13)

ρ

(
∂v
∂t

+ v∇v
)

= −β∇p + ∇ × B × B + ρg̃ez (11.14)

∂B
∂t

= ∇ × v × B + 1

Rm

∇2B + AD∇ × (
1

ρ
B × B × ∇ × B) (11.15)

∂ρ

∂t
+ v∇ρ + Γp divv = Γ − 1

βRm

(∇ × B)2 (11.16)

where the plasma beta is β = c2
s /v

2
A, Rm is the magnetic Reynolds number defined

by Rm = τB/τA, where τB = 4πσL2
0/c

2 is the magnetic diffusion time, g̃ =
gτA/vA is normalized gravitational acceleration, and the coefficient of ambipolar
diffusion AD is defined as AD = B2

0τA/4πΓρeρL2
0.
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The system sizes are 0 ≤ x ≤ 4πL, and 0 ≤ y = z ≤ 2πL in the x, y, and z

directions, respectively. The mesh points are Nx = 80, Ny = 50, and Nz = 50 in
the x, y, and z directions, respectively. Free boundary conditions (first derivatives
of all physical quantities are continuous) are used for the y and z directions, while a
periodic boundary condition is used in the x direction.

The flux tube (containing the current) initially is placed along the x direction and
satisfies an equilibrium. The flux tube magnetic fields are given by:

Bθ = Bmr/R

1 + (r/R)2 , (11.17)

Bz = Bz0

1 + (r/R)2 (11.18)

For computations, the radius of a flux tube is taken as R = 0.5, and Bm = 1.2,
Bz = 1.0. r means the distance from the center line of a flux tube. The initial density
is ρ = p and the initial pressure p is taken to satisfy an equilibrium as follows:

p = ρ = exp(−g̃z/β) + B2
m − B2

z0

2β(1 + r2/a2)2
(11.19)

where the first term shows the balance with gravity, and the second is the pressure
needed to balance the Lorentz force. Plasma flow outside the flux tube is assumed
to be directed along the flux tube (i.e., along x-axis), and with r-dependence of the
form: u(r) = u0(1−0.8/(1+ (r/R)2)). The velocity perturbations, vz, are imposed
at x = πL as vz = vmexp[−(x − π)2)/(1 + (r/R)2]. The parameters used here are
as follows: Γ = 5/3, β = 1.0, Rm = 104, AD = 10−3, g̃ = 0.05, u0 = 0.2−1.0,
and vm = 1.2.

Numerical simulations were performed in several regimes, changing mainly the
external flow velocity, u0. It was found that depending on the shear flow velocity
there are two different and well-distinguishable regimes of the evolution of a kink
perturbation, which can be identified as shocklike and soliton-like cases.

The shocklike regime requires lower-amplitude shear velocities. It is remarkable,
however, that the propagation velocity of shocklike kinks is larger than shear
velocity. From the observational point of view, the shocklike regime may correspond
to either a unipolar MMF (if the front of a shock is much more pronounced than its
tail) or to those MMFs whose legs have different propagation velocities: the outer
(leading) leg should be faster than the trailing one.

Soliton-like kinks always appear as a bipole features. Their propagation velocity
may be both lower or higher than the speed of the shear flow.

In Fig. 11.3a, b, the evolution of kinks into the (a) shocklike and (b) soliton-like
events at time t = 8τA are shown. In Fig. 11.3c, the relation between the velocity
of shear flow and the propagation velocity of the generated kink is shown. At the
velocities less than 0.6vA, the generated kink shows shocklike behavior. Region
of flow velocities � 0.6vA for chosen parameters of magnetic flux tube and its
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Fig. 11.3 Two different regimes of the evolution of a magnetic kink. Top: snapshots of the
shocklike event at t = 8τA (a), and the soliton-like event at t = 8τA (b); bottom (c) the relation
between the velocity of shear flow, u(r), which facilitates the generation of a magnetic kink, and
the propagation velocity of a new-born kink; dashed lines demarcate the approximate regions of
the socklike and soliton-like formations

environment corresponds to the bifurcation point. At the shear velocities higher than
these velocities, the generated kink acquires the properties of a stable solitary wave.

In Fig. 11.4, the time history of the soliton-like kink is shown for a shear velocity
vx = 0.8vA. One can see that with a “decreasing” of the “amplitude” (which
corresponds to decreasing the magnetic field strength), the width of the soliton—
the separation between the “two legs” increases (cf. (11.8). The last panel in this
figure corresponds to time t = 3τA and shows three-dimensional view of the same
event along the tube axis.
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Fig. 11.5 The three-dimensional view (upper panels) and line-of-sight magnetic field (lower
panels) (a) for a stable propagating soliton corresponding to type I MMFs, and (b) for the shocklike
MMF. Note that in case of soliton both footpoints are equally well pronounced, while in case of
the shocklike formation one footpoint along the line of sight is sharp and compact, while its pair is
weaker and diffuse

Figure 11.5 shows well-developed three-dimensional view of soliton and shock-
like formations and their line-of-sight magnetic field. Figure 11.5a is a stable
propagating soliton—a typical bipole, with both positive and negative footpoints
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clearly seen. Figure 11.5b is shocklike formation whose line-of-sight magnetic field
differs from the soliton case: its leading footpoint is sharp and compact, while the
trailing one is diffuse (cf. Fig. 11.3a, b) From observational point of view this means,
that shocklike MMF may appear as bipolar feature with uneven emission from its
legs, or even as a single-polarity MMF.

It is important to discuss the change of the temperature distribution inside
the magnetic flux during the formation and propagation of a kink. Note that the
analytical theory does not allow us to include the temperature distribution in the
nonlinear dynamics of magnetic flux tube, but the numerical calculations proved to
be very helpful.

In both cases, shocklike and soliton-like kink formation, quite uneven redistribu-
tion of the temperature takes place. A numerical modeling clearly shows the regions
with some energy excess in the new-born magnetic features. For example, in the
case of a soliton both legs have higher temperature than the surrounding plasma.
The temperature in the following leg is slightly higher than in the leading one
(Fig. 11.6a). In the case of a shocklike formation, the temperature behind the shock-
front is, as it should be, significantly higher than in the rest of medium (Fig. 11.6b).
The described temperature distribution may explain the excess of the emission in the
Ca II K line that almost exactly mimics the path of the MMFs in the photosphere.

The animated process of the magnetic kink propagation shows several remark-
able features, such as the shredding of the magnetic field at the late stage of its
evolution. These kind of events are usually well seen in the high cadence movies
obtained from observations.

11.5 Observations and Comparison with Theory

In this section, when discussing and comparing the theoretical results with the
observed properties of moving magnetic features, we use several examples from the
set of observations taken on June 14 1994 at the Swedish Vacuum Solar Telescope
(SVST) on La Palma. The observations include simultaneous images in Ca II K-
line, G-band, and magnetograms. The 0.3-nm bandpass Ca II K filter has some
contribution from the chromosphere but in non-active areas most of the intensity is
from the inner wings of the line profile which originate in the upper photosphere.

Hence, the images show dark patches during the early stages of flux emergence
and the movies show many examples of emerging flux in the moat area, especially
near the outer edge of the penumbra. These appear as dark elongated features
which expand and develop bright points at opposite ends which then continue to
separate while traveling outward. Each end becomes an MMF. The long axis of the
emergence is generally in the radial direction.

The time series for the magnetograms, K-line filtergrams, and G-band filtergrams
have been co-aligned. The observing time is 175 min.
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Fig. 11.6 The temperature distribution in the well-developed nonlinear kink: (a) The soliton-like
kink at t = 7τA, and the shear velocity is vx = 0.8vA; (b) The shocklike kink at t = 7τA, and the
shear velocity is vx = 0.2vA . Note the elevated temperature level in the soliton legs (a), and strong
behind-shock heating at shocklike formation (b)

To display their time evolution, the space–time images were constructed for
several of these MMFs using the long axis of the emergence as the space dimension.
These are shown in Fig. 11.7.

For detailed analysis, we choose three examples, namely space–time slices 1, 3,
and 4. The space–time images resulted from cuts 1 and 3 are shown in Figs. 11.8
and 11.9, respectively, and those resulted from cut 4 is shown in Fig. 11.10.

Each of the paths corresponding to 1 and 3 slices shows the appearance of two
quite similar MMFs. All four events have high velocities in the initial phase, about
4 km s−1. In the region where a well-defined darkening is seen in the Ca II K images,
indicating the emergence of magnetic field, the separation between two legs, the
width of soliton, gets stabilized and becomes almost constant; after this, the travel
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Fig. 11.7 A G-band image of the sunspot area taken on June 14 1994 at the SVST on La Palma.
The labeled lines represent the spatial component of space–time images made from the movies to
follow various emerging flux events and their variation in time

velocities of the MMFs drop to 1.0–0.7 km s−1, after which all four events show
a slow evolution: their width gradually increases, while the propagation velocity
gradually decreases.

The most spectacular MMF which can be interpreted as an exemplary solitary
wave is revealed by cut 4 and is shown in Fig. 11.10. The evolution of all the
observed MMFs fits amazingly well the analytical description given by (11.7)–
(11.12). Besides, their appearance and location where they emerge can be also well
understood in the frame of theory. For example, we will see below that the 1 and 3
events are most likely shallow events, while the MMF shown on the slice 4 should
have been originated at some depth below the visible surface. This can be explained
along the following line of reasoning.

If the stable kink (a kink soliton) is formed close to the surface, the buoyancy
force may be neglected. From the observational point of view, such events should
be seen both in their initial phase which corresponds to fast growth and fast
propagation (in accordance with Figs. 11.13 and 11.14), and in the second stage,
which corresponds to their slow evolution after the moment of stabilization. The four
MMFs shown in Figs. 11.8 and 11.9 are good candidates to be considered shallow
kinks formed on or slightly below the surface. Their proximity to the edge of the
penumbra is also consistent with a shallow origin, since at least some of the nearly
horizontal field at the outer penumbra boundary may extend just below the visible
surface.



302 11 Moving Magnetic Features (MMFs)

Fig. 11.8 Space–time slices along the line labeled 1 in Fig. 11.7 for: (a) the G band filtergrams
movie, (b) the magnetogram movie, and (c) the K-line filtergram movie. Time is along the vertical
axis increasing upwards with tick marks every 5 min. Observation period is 175 min. The horizontal
axis is distance along the line with tick marks every arc second (about 726 km). One can see two
beautiful MMFs especially well recognizable in the magnetogram and Ca II K-line movies (marked
by black arrows)

If the MMF is formed well below the surface, then its initial fast phase develops
below the surface and the MMF may appear while in its second phase of slow
evolution. This type of event may be more likely to appear further from the
penumbra as is the case for event 4 shown in Fig. 11.10.

During the initial stage of soliton formation while the amplitude is small (so that
the first term in (11.10) is a leading one), its growth is governed by (11.11). This
phase is accompanied by the fast emergence of magnetic flux and may start below
the visible surface. The emerging kink appears as closely spaced, opposite-polarity
couple moving with relatively high velocity (see all four MMFs shown in Figs. 11.8
and 11.9).

When the amplitude of a kink becomes such that both terms in the right-hand side
of (11.10) are comparable, the soliton becomes stabilized. Its amplitude remains
constant until some other dissipative processes make the second term in (11.10)
more important. At this stage, the amplitude of the soliton decreases slowly in



11.5 Observations and Comparison with Theory 303

Fig. 11.9 Same as Fig. 11.8 but for the line labeled 3 in Fig. 11.7

accordance with (11.12). Its travel velocity (see (11.9)) also decreases, and its width,
or the separation between the opposite-polarity legs (11.8), gradually increases. This
stage can be easily identified in all four events shown in Figs. 11.8 and 11.9. As
the dark structure seen in the Ca II K images expands and fades, the propagation
velocity drops to values of 1.0–0.7 km s−1, after which their behavior is described
by (11.12).

Thus, we may conclude that qualitatively, these MMFs show both phases of the
evolution: the fast, explosive phase, and the phase of a gradual decay.

The exemplary event shown in Fig. 11.9 may be an excellent demonstration of
an observed solitary kink formed well below the visible surface. It is seen only in
the second stage and from the period of about t =20–60 min the width of a soliton
remains almost constant and then very gradually decreases.

The moment of the transition from one phase to another (i.e., the moment
when the amplitude A reaches its stationary value, Ast ) carries some additional
information about the nature of the effect and, also, about the physical parameters
of the medium. Roughly, at this moment
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π
γ

(
α
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)1/2
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α

12βdisp
νA2 (11.20)
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Fig. 11.10 An exemplary magnetic soliton. This body has emerged obviously before the start
of the observations. Its behavior, growth of the separation between the legs, slowing down, etc.,
strictly obey the laws of evolutionary soliton

that is,

A
1/2
st � 0.87

√
12βdisp

α

γ

ν
(11.21)

or, taking into account (11.8), we can estimate the stationary value of the width,

Δst � 1.15
ν

γ
(11.22)

This result is analogous to a well-known fact in the theory of solitary waves:
after some time, the “memory” of soliton weakens and soliton “forgets” its initial
conditions. As noted earlier, ν represents any kind of dissipative losses. If the
soliton formation occurs close to visible surface, we may suggest that dissipation
is provided mostly by the viscous losses. If the formation of soliton occurs in
deeper layers, say at h = −1000 km, then thermal and radiative losses become
more important.
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11.6 Quantitative Analysis

For quantitative estimates, we consider two examples: (1) the formation of a soliton
on or slightly below the surface, and (2) the formation of a soliton at a depth h =
−1000 km.

For the first case of a shallow soliton, we adopt the following typical values:
mass density (outside the magnetic flux tube), ρe = 3.4 × 10−7 g/cm3; temperature
T = 0.94 × 104 K; sound speed, respectively, is cs = 10.2 km s−1 (see e.g., Maltby
et al. 1986); the ratio of mass densities η = ρi/ρe = 0.9; the flux tube radius
R = 500 km ; ε = l/R = 0.05; and magnetic field strength (for analytical estimates,
the unperturbed value of the field along the tube axis) Bx = 500 G.

With these parameters, we may find the Alfvén velocity, the range of shear
velocities corresponding to dissipative instabilities, Eq. (11.2), and, choosing some
critical value for the shear velocity, compute the width, the amplitude, and the speed
of the propagation of a soliton.

At the Alfvén velocity vA = 2.6 km s−1, the range of shear velocities that would
generate a kink is then 2.45 km s−1 < u < 3.55 km s−1. This is higher than the
usual outflow velocities seen in the sunspot moat (Shine et al. 1987) by about a
factor of 2 but lower than the maximum Evershed velocities seen at the outer edge
of the penumbra. Localized and perhaps transitory shear velocities between the
magnetic flux tube and the surrounding medium of this magnitude seem likely in
this environment. Taking a value of u = 3 km s−1, we then have a phase velocity
of ck = 0.63 km s−1 and γ = 0.12 km s−1. At this depth, dissipative losses may
be provided both by the effective viscosity and thermal diffusivity. The estimate for
the dissipative coefficient, assuming kinematic viscosity, may be taken as ν � 102–
103 km2 s−1.

In accordance with expression (11.22), we should expect the stabilization of a
soliton when its width reaches the value of Δst = 1.15ν/γ . At this moment, the
travel velocity of a soliton, Eq. (11.9), should approach its stationary value, vst =
ck +αAst/3, which corresponds to changing the regime of the evolution of a soliton
in time. We can write this estimate through the directly observed parameter, the
width of a soliton, Δ (separation between the opposite-polarity legs):

vst = ck + 4βdisp

Δ2
st

(11.23)

After this moment, according to (11.10) the evolution of a soliton is governed
by (11.12): Its amplitude gradually decreases, which means that its width
increases gradually, resulting in the slowing down of its propagation velocity.
Equation (11.12) rewritten for the width of a soliton has a form:

Δ = Δst

√

1 + t

tdiss
(11.24)

where tdiss � 12βdisp/ναAst , or tdiss � Δ2/ν.
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If we adopt ν � 100 km2 s−1, for the chosen example, we get: Δst � 960 km =
1.3′′, which is less than Δst for given observed MMFs in Figs. 11.7, 11.8, and 11.9.
If we take ν � 200 km2 s−1, Δst � 2.6′′, which is very close to observed values. We
can estimate the velocity of a soliton in both fast (emerging) and slow phases. For
this, let us estimate the dispersion coefficient: βdisp = 3.6×105 km3 s−1. The theory
does not allow us to estimate the initial width of a soliton, but if we make a natural
suggestion that is well justified by the observational data, that the initial width of a
solitary kink is of the order of a flux tube radius or slightly larger, say, Δ0 � 1′′,
then for the speed of a soliton in the fast phase we get the soliton propagation speed
v0A = ck + 4βdisp/Δ

2
0 � 0.63 + 2.74 = 3.4 km s−1. This is very close to the

observed values of 4 km s−1.
After the bifurcation point (at the moment of stabilization), the propagation

velocity drops to the values determined by Δst , so that in a slow phase the speed of a
soliton is vs � ck + 4βdisp/Δ

2
st � 0.63 + 1.59 = 2.2 km s−1 with ν = 100 km2s−1.

At ν = 200 km2 s−1, vs � 0.63 + 0.4 = 1.0 km s−1. This result shows that as the
“resistance” of the medium (the effective viscosity or thermal diffusivity) becomes
higher, the propagation speed of the soliton decreases.

Given the wealth of the observational data, this simple approach may be used
for the estimation of the effective viscosity of the medium. The estimate for tdiss for
ν = 100 km2 s−1 is tdiss � 156 min, which means, in accordance with (11.24), that
the width of a solitary kink remains almost constant for a long time. This is one of
the main observed features of MMFs.

Let us consider now the event shown in Fig. 11.10. This MMF is seen only in its
slow phase and its evolution in time should be governed by (11.24). Our goal here is
to find out if the observed separation between the bipoles fits the time dependence
given by (11.24) and then to compare the most crucial parameter in this expression,
tdiss found from the observations and theory.

Comparison of the measured separations as a function of time with the theoretical
curve is shown in Fig. 11.11. The squares are the observed values. Times are just
from the beginning of the series; the transition time is unclear here, and we adopt
an offset below to fit the observations. Independent of the start time, it follows
from (11.12) that for different moments of time, tk,i , the separation between the
legs of the MMF, Δk,i , should satisfy the relationship

aki = Δ2
k − Δ2

i

tk − ti
= Δ2

st

tdiss
, (11.25)

which should be constant. The observed separations show an average value for a of
0.17. We can then make a reasonable fit to the data with Δst = 1.0′′ and a start time
at 2 min.

The resulting curve is displayed as the solid line in Fig. 11.11 and shows that
the observed temporal behavior of the separations is indeed totally consistent
with (11.24).
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Fig. 11.11 The time dependence of the width of a solitary kink. Squares indicate the observed
values for the event shown in Fig. 11.10. The solid line is a fit using (11.24) showing a perfect
match of theory and observations

Comparison of the observations with theory allows one to develop quite reliable
diagnostic tool For example, from the above example follows the estimate for tdiss
which is tdiss = Δst/a = 1.0/0.17 min=5.88 min. To compare this value with the
theoretical one, we have to take into account the effect gravity. In this case, the
dispersion caused by the force of gravity is much stronger than the cubic dispersion
caused by the compressibility of the medium. The linear dispersion relation for
the incompressible kink perturbations of the horizontal magnetic slab in a stratified
atmosphere has a form:

η[(ω − ku)2 − k2v2
A] + ω

√
ω2 − N2 tanh kR − (1 − η)gk tanh kR = 0 (11.26)

where N is a Brünt-Väisälä frequency,

N2 = −g
1

ρ

dρ

dz
(11.27)

In a long-wavelength approximation (thin magnetic flux tube), kR � 1, for the
phase velocity we have

ck = u ±
√

(1 − η)

η
gR + v2

A, (11.28)
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and the lower threshold for the KH instability is

uc1 =
√

(1 − η)

η
gR + v2

A (11.29)

Therefore, the growth rate of the negative energy kink (at u > uc1) is

γ = −NR
u − uc1

uc1
(11.30)

Note that this case, i.e., the effect of gravity on nonlinear kink oscillations described
by (11.26–11.28), is quite general and may be applied to the magnetic flux emerging
elsewhere at the solar surface and not necessarily in the vicinity of a sunspot.

Returning now to the quantitative analysis of the exemplary soliton shown in
Fig. 11.10, we need to use the dispersion relation (11.26). Let us assume that the
instability of a negative energy kink occurs at h = −1000 km below the surface.
At this depth, we adopt the following parameters: the mass density (outside the
magnetic field), ρe = 0.27 × 10−5 g cm3, temperature, T = 1.5 × 104 , sound
speed, cs = 14 km s−1, and the ratio of mass densities, η = ρi/ρe = 0.8. We
choose the magnetic field strength as B = 1000 Gs, which gives an Alfvén velocity
of vA = 1.92 km s−1. The lower limit of a critical shear velocity for the instability is
then uc1 = 6.16 km s−1. We have no direct evidence of local shear velocities at this
depth, but values of such magnitude are plausible. If we take u = 8 km s−1, then
the phase speed is ck = 0.84 km s−1. Now, we can calculate the first dissipative
coefficient, γ , responsible for the growth rate of the negative energy kink:

γ = −NR
ck

uc

= 1.96 km s−1 (11.31)

where the Brünt-Väisälä frequency N = 0.013 s−1. With ν = 103 km s−1, we
obtain, for the width of a solitary kink in the moment of stabilization, a value Δst =
587 km, and for tdiss = Δ2

st/ν, we have tdiss = 5.7 min, which is in good agreement
with the fitted values of 725 km and 5.88 min.

11.7 Unification of Known Types of Moving Magnetic
Features

As we have seen throughout this chapter, the general problems associated with the
MMFs are their great variety and their nonconformity with conservation laws. It is
just the second point, i.e., their energetically open character that explains all the
observed types of MMFs and different scenarios of their evolution. The variety
of MMFs is determined by a great variety of flux tube themselves, their adjacent
sheared mass flows, and dispersion and dissipative properties of a whole system.
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The most attractive point here is that the most parameters that enter the theory
are directly observable. This fact itself not only serves as tools for understanding
the nature of the MMFs but may also serve as a powerful tool to infer physical
parameters that are not directly observable.

Thus, (11.7)–(11.12) must carry the information about all “five” types of MMFs,
their lifetimes, and behavior. Besides, as there are clear differences in the observed
properties of MMFs, that have lead to their classification listed in Sect. 11.1, the
theory must provide the means to put a particular MMF into its own class.

According to general theory, the MMFs may be either soliton-like or shocklike
formation. Now, we need to find out, for example, why one soliton may behave as
type I MMF, i.e., move outward from parental sunspot with velocity higher than
background flows, and the other soliton may behave as the MDF, i.e., move slowly
upstream toward parental sunspot.

To describe different properties of all five types of MMFs, we need to analyze
various combinations of the system parameters.

First, we need to emphasize how important role is played by the dispersion of
the medium. If the dispersion is positive, the generated kink is a bright soliton
propagating as a

⋂
-shaped kink (Fig. 11.12a). If the dispersion is negative, the

solution is a dark soliton forming a
⋃

-shaped kink (Fig. 11.12b). Properties of these
solitons are very different. Before we come to the main differences, note, e.g., that
the propagation velocity of a bright soliton is higher than that of a dark soliton.
This is obvious from (11.9) representing the soliton velocity. Written through the
dispersion and the width of a soliton, it gives: v±

sol = ck ± 4βdisp/Δ
2. Respectively,

lifetime of a bright soliton is longer and it travels farther from sunspot than that of
the dark soliton. But the main difference, as one can see from Fig. 11.12, is that the
bipoles formed by the kinked flux tube are mirror opposite.

Indeed, in case of positive dispersion, the observer sees along the line of sight a
bipole whose leading footpoint has a polarity opposite to that of the parental sunspot,
while the trailing footpoint (the one that is closer to sunspot) has the same polarity

β < 0Bright soliton β > 0 Dark soliton

ba

U

U− shaped kink − shaped kink

Fig. 11.12 Analytical solutions for nonlinear kink: (a) a bright soliton at positive dispersion; (b) a
dark soliton at negative dispersion. Vertical axes are ψ normalized by B2, and horizontal axes are
x normalized by flux tube radius
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as the sunspot (Fig. 11.12a). In case of negative dispersion, it is vice versa, and
the observer sees a bipole with a leading footpoint having the same polarity as the
sunspot, and the trailing footpoint of the opposite polarity (Fig. 11.12b).

Two other major conditions that further determine the character and properties
of generated kink are in the first place, whether the nonlinearity is balanced by the
dispersion or not. And then, it is a relation between the phase velocity of a kink
and its propagation velocity determined by (11.32). Note that the solutions shown
in Fig. 11.12 correspond to a solitary wave when the nonlinearity is balanced by the
dispersion effects.

Breaking down the classes of the solution with respect to above three conditions
we arrive to all five types of moving magnetic features. These are illustrated in
Fig. 11.13 and described below.

Type I At the positive dispersion, βdisp > 0, when the nonlinearity is balanced
by the dispersion, the solution correspond type I MMFs that are observed as a
compact bipoles with the inner footpoint sharing the sunspot’s polarity. Moving
outward from the sunspot, they gradually slow down. During their lifetime, which
may be hours, they still move with velocities higher than background plasma flows
(Fig. 11.13a, c—balance).
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Fig. 11.13 Analytical solutions for nonlinear kink (upper panels), and cartoons depicting all
types of MMFs. Balance means that nonlinearity is balanced by dispersion, and disbalance that
nonlinearity prevails over dispersion. If at negative dispersion, βdisp < 0, the phase velocity is
such that ck < αA/3, and a moving magnetic feature has negative velocity, it will travel upstream
toward sunspot
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Type II If under above conditions (i.e., at positive dispersion, βdisp > 0)
nonlinearity prevails over dispersion, the soliton becomes asymmetric and acquires
shocklike form, i.e., one side of the soliton becomes steeper than the other. In this
case, the observer sees either a bipole with one footpoint clearly and another being
diffuse, or only one footpoint. This solution corresponds to type II MMFs which
appear as unipolar features emitted from the edge of a sunspot. They share the
sunspot’s polarity. Often, type II MMFs may have two footpoints: well-pronounced
inner one having the same polarity as the parental sunspot, and a diffuse outer
footpoint having opposite polarity (Fig. 11.13a, c—disbalance).

Type I∗ At the negative dispersion, βdisp < 0, when the nonlinearity is balanced
by the dispersion, the solution corresponds to type I∗ MMFs that are outflowing as
opposite-polarity pairs with the inner footpoint having the polarity opposite to the
sunspot (Fig. 11.13b, d—balance).

Type III If at βdisp < 0, nonlinearity prevails over dispersion, just like in the
case of positive dispersion, the soliton becomes asymmetric: one side of the soliton
becomes steeper than the other, so that the observer sees either a bipole with one
footpoint clearly or another being diffuse, or only one-footpoint. This solution
corresponds to type III MMFs which appear as a unipolar features emitted from
the edge of a sunspot and having the same polarity as sunspot (Fig. 11.13b, d—
disbalance).

Type IV The most mysterious magnetic bipoles dabbed moving dipolar features
(MDFs), unlike all other MMFs travel toward the sunspot against background mass
flows. But, even these remarkable features are part of the general scheme: they
require a negative dispersion , and flux tube parameters such that the condition
ck < αA/3 be fulfilled. In this case, according to (11.9), the soliton propagation
velocity becomes negative. According the same equation, their propagation velocity
is always less than that of other types of MMFs, and less than the background flows.
Indeed, the MDFs were observed as slowly migrating bipoles with velocities ranging
0.3–0.8 km s−1) (Fig. 11.13b, d—balance).

It must be noted again that observations of MMFs during their long passage
across the penumbra and moat may provide a reliable tool for inference of
physical parameters of the photosphere that are not directly observable. Simple
relations, (11.7)–(11.9), between its size (separation between the footpoints),
velocity, and line-of-sight magnetic field (with new satellite the vector magnetic
fields are also readily available), allow one to infer such parameters as dispersive
properties of a system, dissipative effects and others. These parameters then may
be used for the evaluation of their dissipative properties, which determine coupling
with the upper atmosphere.
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11.8 Impact of MMFs on the Overlying Atmosphere

In the above section, we saw that all types of MMFs, often having conflicting
properties, can be described on a unified basis. Note that MMFs may appear in
any other magnetized regions where magnetic flux tubes interact with shear mass
flows and are subject to gravity forces.

In this section, we will study the response of the upper atmosphere to individual
MMFs, i.e., how dynamics and energetics of MMFs affect the upper layers of
atmosphere. We must expect, of course, that these effects depend on the type of
MMFs. For example, the soliton-type bipolar MMFs, being quite sturdy, should
mainly participate in the formation of a moat, unless conditions for explosive
instability turn on. The shocklike MMFs, however, being the subject to gravity
acceleration may trigger the energetic events in the chromosphere, such as jets and
microflares.

We use here several data sets of multi-wavelength observations of the photo-
sphere and its overlying chromosphere and corona to demonstrate the response of
the upper atmosphere to dynamics of MMFs.

We start with the data taken on 10 June 1999 (N18.5W5.0), which consist of
time series of high-resolution MDI magnetograms co-aligned with the TRACE
chromospheric and coronal time series in 1600 Å , Fe IX/X 171 Å and Fe XII 195
Å lines complemented by time series of H α filtergrams obtained from the Swedish
Vacuum Solar Telescope (SVST) on La Palma.

Figure 11.14 shows a sample MDI magnetogram (panel (a)) of the central
sunspot co-aligned with the image of overlying atmosphere in the ± 700 mÅ wings
of H α (panel (b)). To study temporal variability of small magnetic features, we
use again the procedure of space–time cuts. Three examples of such cuts in both
wavelengths are shown in the upper- and lower-right panels (1a,b); (2a,b); and
(3a,b). The population of MMFs and their association with mass flows around
the sunspot are well seen in the ±700 mÅ wings of H α showing the motions at
somewhat elevated photospheric level.

More than three quarters of the moat area is well populated by MMFs. The paths
of corresponding cuts and their directions are shown, respectively, in panels (a) and
(b). The left sides of cuts 1 and 2 and the entire cut 3 through the diameter of a moat
pass through the region well populated by MMFs. One can see different types of
MMFs on the left sides of panels (1a,b) and (2a,b), and at both sides of panel (3a,b),
streaming outward from sunspot; whereas the right ends of cuts 1a,b and 2a,b pass
through the moat region devoid of MMFs (curved arrows in the left panels mark the
region depleted of MMFs). We will see below that regions with a deficit of MMFs
usually serve as a preferred site for coronal loop formation (Ryutova et al. 2007).

Features of individual MMFs as well as expected response of overlying atmo-
sphere are consistent with the predictions of the theory.

The processes of energy transfer and release by soliton (type I,I∗, MDF) and
shocklike kinks (type II and III), and therefore their impact on the dynamics of the
overlying atmosphere, are quite different.
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Fig. 11.14 The sunspot observed on 10 June 1999. (a) MDI magnetogram scaled from −1000 to
1000 G; (b) co-aligned image of the same area in the −700 mÅ wing of H α; upper-right panels:
three cuts made over the central sunspot showing propagation of negative (black) and positive
(white) magnetic footpoints lying along these cuts; small arrows show some long-living MMFs;
lower panels: As in the magnetogram movie, left sides of cuts 1 and 2, and the entire cut 3 pass
through the region well populated by MMFs (thick black arrows); the right ends of cuts 1 and 2
reveal very little activity of small-scale bipoles (thick white arrows)

Solitons, once formed, remain “self-contained” and sturdy for a long time.
Their amplitude slowly decays as 1/(1 + t/tdiss). During the passage of a soliton
through the moat, it gradually slows down, separation between the footpoints
increases, and a kink straightens out. The slow process of energy loss by a traveling
soliton may produce a faint emission in chromospheric lines, which may end up
at the moat boundary by the appearance of bright points. Under certain and rare
conditions, though, solitons may experience an explosive growth, as 1/(1−t/texpl)

2.
This corresponds to quick and violent energy release which may produce well-
concentrated jets and microflares even at coronal temperatures.

A shocklike kink is a more unsteady state than a soliton. Its lifetime may be as
long as that of a soliton, but to remain in a quasi-stable state, it requires an intense
process of energy supply and release.

One should bear in mind that the very existence of evolutionary soliton- and
shocklike kinks is possible only in energetically open systems, i.e., in systems with
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Fig. 11.15 Examples of different types of MMFs and their counterparts in the transition region.
Upper panels: (a) SVST magnetogram of the central sunspot form Fig. 11.14 with resolution 0.2′′ ,
(b) the same region in TRACE 1600 at T ∼ 6 × 104–2.5×105 K; three straight lines show
corresponding space–time cuts in the lower panels. Cut 1 contains two most typical MMFs, type I
(double arrow) and type II (single arrows); Stable soliton (type I) leaves a very faint trace at high
temperatures, while type II which has shocklike properties produces strongly enhanced emission
in the TR. Cut 2 shows type I MMF (with the inner footpoint of polarity opposite the sunspot’s),
which after about an hour of a steady state starts to shrink and quickly disappears; this process
is accompanied by the extended brightening (2b). Cut 3 shows another type I MMF under the
condition when it experiences an “explosive” collapse, which results in the intense, but short-lived
microflare (snapshot in panel (b) shows its maximum phase). Panel (4) shows a long-lived Type
I MMF at the MDI resolution with the inner footpoint of the same polarity as parental sunspot
(type I, bright soliton), and panel (5) shows type I MMF with the inner footpoint of the opposite to
sunspot polarity (type I∗, dark soliton)

continuous energy inflow and outflow (sources and sinks). Therefore, the intensified
process of the absorption and release of energy by shocklike formation should be
accompanied by the enhanced emission in the upper layers of atmosphere during
most of its lifetime. The energy of a shocklike kink is concentrated in a small
volume. When this volume decreases, the kink quickly dissipates its energy, and
may cause the appearance of jets and microflares.

Examples of different types of MMFs and their counterparts in the overlying
atmosphere are shown in Fig. 11.15. Cuts 1a,b contain two MMFs, type I, marked
by double arrows, and type II, marked by a single arrow. The size of the footpoints
is about 1–1.3′′. This type I feature was born obviously long before the SVST
data were taken; its footpoints are already far apart exceeding a separation of 4′′.
It continues a steady motion with further gradual spreading, typically seen in the
numerous long-lived MMFs. At transition region temperatures, as expected, this
MMF is barely noticeable. Its neighbor, a type II MMF with shocklike properties, on
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the contrary, produces strongly enhanced emission at the temperatures T ∼ 6×104–
2.5 × 105 K during its passage throughout the moat.

The third example is quite rare. This is a type I MMF born during the SVST
observations. Its short path resembling the Greek λ is consistent with the explosive
behavior leading to collapse and violent energy release. Indeed, the collapse of this
MMF was accompanied by a strong and short-lived (∼6 min) microflare seen in its
maximum phase on the TRACE 1600 image (panel b).

To obtain more information about the influence of MMFs on an overlying
atmosphere, a high cadence (≤30 s) movies in G-band 4305 Åwere compiled
together with co-spatial Dopplergrams.

In Fig. 11.16, we compare space–time slices made along cuts 1–3 using Dopp-
lergram and G-band movies. Cut 1 lies in the region of a significant deficit of the
MMFs. The corresponding Dopplergram image (Fig. 11.16a, upper panel), shows
characteristic umbral oscillations and running penumbral waves. The left vertical
lines in these panels mark the umbra/penumbra boundary, and the right lines the
approximate boundary of the penumbra. The rest is the moat region. One can see
how regular umbra/penumbra plane waves smooth out in the moat and leave a place
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UT 12:50
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Fig. 11.16 Computed Dopplergram in H α ± 0.350 Å and SVST G-band images of a target area
(left panels). Corresponding space–time images for three cuts shown in the right panels (upper
row is from a Dopplergram movie, lower row is from G-band movie): (a) Cut 1 is made over the
region devoid of MMFs; (b) cut 2 reveals “unipolar” type II MMF and its imprint on overlying
chromosphere; and (c) cut 3 shows two MMFs of type II marked by black arrows, 1 and 2, and one
MMF of type I marked by white arrow, 3. See text for details. Tick marks in the x-axis correspond
to 2.5′′ and tick marks in the y-axis to 5 min
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to a vague pattern of granular motions. Note here that a short-lived chromospheric
transient appeared at UT 12:50.

The bottom-left panel is a G-band image at 4305 Å. This line has been commonly
used to track the small-scale magnetic elements that appear as G-band bright points.
The space–time slice in the G-band passing through region devoid of MMFs (lower
panel a) shows irregular motions, appearance, and disappearance of small-scale
network magnetic elements.

The other two cuts, 2 and 3, corresponding to images in panels (b) and (c), lie
in regions dominated by type II MMFs having shocklike properties. Cut 2 reveals
a typical example of such an MMF. Its emergence is accompanied by the strongly
enhanced up-flows seen in Dopplergram image (marked by stars). Traveling with
high velocity, �6 km s−1, the MMF generates along its path strong disturbances
that culminate at about the time when the MMF “settles down” and starts to migrate
slowly toward the moat boundary (black arrows in panels (b)). Note that a lateral
motion of the H α disturbance at this time is about 14 km s−1, which at T � 104 K
is already (but slightly) supersonic.

Cut 3 reveals three features, two MMFs of type II marked by black arrows
in lower panel (c), and one MMF of type I, marked by white arrow. During the
passage of the MMF # 1 through the moat, Dopplergram movie shows how a regular
pattern of oscillations disintegrates into two distinct velocity fields associated with
the ridges of up-flow material followed by the post-ridge downflows, marked by
white arrows in the upper panel (c). The velocity of the ridges associated with the
first MMF is over 16 km s−1, and is clearly supersonic, while the lateral motion of
a ridge 2 is about 9 km s−1 and seems to be subsonic.

As already mentioned, simple relations between the width of a soliton, its
velocity, amplitude (B2

z ), and lifetime, expressed in directly observable quantities
allow detailed analysis of the data and inference of such parameters as dissipative
coefficients (which determine the lifetime of MMFs), dispersion, the slope of a
soliton, etc. Most importantly, these parameters may be used to study observational
signatures of dissipation processes which are associated with the energy transfer and
release by MMFs.

11.9 Anticorrelation Between Population of MMF’s
and Coronal Loop Formation

So far, we were discussing the properties of individual MMFs and their observed
signatures. It is interesting that as an ensemble, the families of MMFs have an
essential influence on the dynamics of solar atmosphere from its visible surface
to corona.

It was found that very intense formation of an ensemble of MMFs as a collective
phenomenon is strictly correlated with the absence of large-scale “stable” coronal
loops (Ryutova et al. 2007). Such loops are usually rooted at the side of the sunspot
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with no or few MMFs. We will discuss below possible reasons that may cause
the observed anticorrelation. For these studies, several sets of multi-wavelength
observations of different sunspot areas from the photosphere to the corona have
been used.

Hagenaar and Shine (2005) studied statistical properties of MMFs using time
sequences of high-resolution magnetograms of eight sunspots. They have developed
an automated algorithm to find and track unipolar magnetic field concentrations, and
derived flow-maps around the spots to compare plasma flow patterns with the tracks
of moving magnetic features. These results were compared with the corresponding
images of overlying corona.

The examples of the data taken on 3 November 1998 and 9 April 2003 are shown
in Fig. 11.17. Figure 11.17a, b is a co-aligned MDI magnetogram and the overlying
corona in the TRACE 171 Å line. Figure 11.17c shows tracks of unipolar magnetic
elements obtained from the time sequence covering a 19-hr period. In all studied
cases, the number and distribution of MMFs around sunspots is uneven: one side of
a sunspot may show a much higher population of MMFs than the other. The side of
the sunspot with a small population of MMFs is indicated by black arrows, and as
in all studied cases, it is just this side where large-scale coronal loops are rooted.

MDI Mgrm

November 3, 1998

April 9, 2003

TRACE 171 Tracks of MMFs

Tracks of MMFsTRACE 171

cbMDI Mgrma

Fig. 11.17 Connection between the number of MMFs and the preferable site for the formation of
coronal loops. Left and middle panels: co-aligned MDI magnetogram and overlying corona. Right
panels: paths of outflowing unipolar magnetic features obtained from the MDI movies covering a
19-h period. Black arrows show the side of the sunspot where the population of MMFs is low and
where large-scale coronal loops are originated. The zigzag arrows indicate a tiny region with quite
sturdy MMFs and, respectively, a gap in the coronal loops rooting. Red dashed curves outline the
position of the umbrae, and black circles the approximate penumbrae radii
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It is important to note, however, that only intense MMF production strictly
correlates with the absence of loops. Moderate MMF production may or may not
prevent coronal loop formation, and prominent loop bundles do not necessarily
mean the absence of MMFs. And yet, in a long-term period a dynamic ensemble
of a large number of MMFs seems to create physical conditions unfavorable for the
formation of long-lived coronal loops. The correlation between the deficiency of
MMFs and the preferable location of coronal footpoints definitely calls for further
studies.

For the time being, it is obvious that whatever is the reason for coronal loops to
avoid regions highly populated by MMFs, it should be sought in the nature of MMFs
as a collective phenomenon. Below, we discuss two possible reasons that may cause
the observed anticorrelation:

1. According to the observations, MMFs appear along horizontal magnetic fila-
ments usually located in areas of strong horizontal flows. From the theoretical
point of view, as well, a primary condition for the soliton formation is a
horizontal magnetic flux tube (with gravity force perpendicular to its axis) in
the presence of aligned shear flow (Ryutova et al. 1998). Some part of the
sunspot penumbra, however, may be dominated by elevated magnetic filaments
that cannot support formation of MMFs but may well serve as a base for coronal
loops. The key element here seems to be the natural coexistence and uneven
distribution of horizontal and elevated filaments in the penumbra: an intense
MMF formation and the lack of loops correspond to strong predominance of
horizontal filaments, while regions with a preference to more elevated filaments
produce coronal loops. The coexistence of horizontal and vertical filaments
explains the emergence of a few MMFs in the presence of coronal loops.

2. The other effect that may cause a lack of MMFs around sunspots with horizontal
penumbral filaments and co-aligned flows (i.e., under satisfactory primary
conditions) is deviation of local physical parameters of a system from values
adequate for the formation of MMFs. To discuss this effect, we first briefly
address some key properties of MMFs and conditions for their formation based
on (11.3)–(11.9).

As we know, the solution of (11.3) has several branches, determined by the phase
velocity, (11.1), the sign of dispersion, and the interplay of nonlinear, dispersion,
and dissipative effects. If dispersion is balanced by nonlinearity, stationary solution
of (11.3) is known to be a stable solitary kink with a simple relation between the
width of a soliton, Δ (separation between MMF footpoints), its velocity, vsol, and
amplitude, A � B2

z (Bz is the line-of-sight magnetic field at the MMF footpoint)
given by (11.7)–(11.9).

Order-of-magnitude comparison of the two last terms in the left-hand side of
(11.3) gives a condition for balance between nonlinear and dispersive terms, αψ ∼
βdisp/Δ

2; for positive dispersion, we have

3

4

B2
z

B2 ck � R2

Δ2

1

2ηv2
A

(ck − u)4
√

η[(1 + η)v2
A − u2]

(11.32)



11.9 Anticorrelation Between Population of MMF’s and Coronal Loop Formation 319

Table 11.1 Measured and estimated parameters of MMFs

Directly observed parameters Estimated parameters

MMF Bz (G) R Φ (1018 Mx) Δ vsol(km s−1) ck (km s−1) vA (km s−1) c
(th)
k (km s−1)

1 480 1.2′′ 3.6 4′′ 1.2 0.48 3.8 0.42

2 230 2.2′′ 5.1 8′′ 0.8 0.32 1.8 0.32

By slight violation of the equivalence (11.32) toward increasing dispersion, roughly
for thicker flux tubes, solitons become flat, their width increases, and their velocity
drops. Thus, if the penumbral filament is thick enough, the kink produced by the
shear flow instability will not survive. Finally, when the nonlinear term in (11.3)
can be neglected, i.e., the problem becomes linear, a kink generated by shear flow
after few undulations will disappear as usual wave. This will also happen if the
dispersion term exceeds the nonlinearity by one or two orders of magnitude.

To estimate the radius of the flux tube at which in otherwise suitable conditions
solitons do not form, we use two examples of a long-lived type I MMFs shown in
Fig. 11.15 (panels 4 and 5).

The observed and estimated parameters are shown in Table 11.1. The first five
columns are directly observed parameters. The two next columns containing vA and
ck are values of Alfvèn and phase velocities deduced from observations. The value
c
(th)
k is calculated with (11.1). We must to add this table the values of an angle and

radii that at given physical conditions are not suitable for the formation of MMFs.
These are: for MMF 1, θ = 10–15◦, Rθ = 7–4.6′′, and for MMF 2, θ = 16–27◦,
Rθ = 8–4.8′′.

We adopt the following values: the plasma density outside the flux tube ρe =
2.8 × 10−7 g cm−3, the ratio of mass densities, η = ρi/ρe = 0.9, and the flux tube
inclination in the developed soliton, θ = 45◦, so that Bz = Bsinθ .

Using condition (11.32), and the soliton velocity, from (11.7)–(11.9), we may
exclude a quantity βdisp/Δ

2 and estimate the phase velocity directly through the
observed speed of a soliton. This gives ck � 0.4 vsol. For the lower sign in Eq. (11.1),
the shear flow velocity should be taken in the range of

√
ηvA ≤ u ≤ √

1 + ηvA.
Taking a value of u = 4 km s−1 for MMF # 1, and u = 2 km s−1 for MMF # 2, we
obtain, respectively, c

(th)
k = 0.42 km s−1, and c

(th)
k = 0.38 km s−1. Both values are

close to values estimated from observations.
If the slope of the kink legs levels down, nonlinearity becomes negligible, and

conditions for the formation of MMFs are no longer satisfied. For small enough
angles ranging over interval 15–10◦, the right-hand side of (11.32) exceeds the left-
hand side by a factor of 15–33. This means that if under the condition of MMF 1,
with a radius of 1.2′′, a flux tube with a radius of about 4.6–7′′ (and higher) cannot
form a stable kink. For a comparable size of flux tubes, under conditions allowing
formation of “thicker” kinks, such as MMF # 2, “unfavorable” angles may be as
high as 16–27◦.

Most probably, it is a combination of both effects, uneven coexistence of elevated
and horizontal magnetic filaments in the penumbra and the presence of thick
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horizontal filaments, that causes the observed correlation between coronal loops
and the deficiency of MMFs. The effects of MMFs in the dynamics of the upper
atmosphere seem to be quite pronounced and call for further studies. An analysis of
flow maps in and around the sunspot together with the vector magnetograms may
provide reliable information on the nature of the photosphere–corona coupling.

11.10 Problems

11.1 Obtain conservation laws for the KdV equation,

∂u

∂t
+ u

∂u

∂x
+ β

∂3u

∂x3
= 0. (11.33)

Here, the equation is given in normalized form, β is dimensionless dispersion
coefficient.

11.2 Analyze solutions of Gardner equation which is known as the combination of
KdV and modified KdV (MKdV) equations:

ut + 6uux + 6αu2ux + uxxx = 0 (11.34)

Show that depending on the sign of α, the Gardner equation describes either bright
(
⋂

-shaped kink) or dark (
⋃

-shaped kink) solitons.

11.3 In one-wave approximation (for nondimensionalized amplitude u), solitons in
non-equilibrium media may be described by the generalized KdV-Bürgers equation
which includes dispersion of medium, β �= 0:

∂u

∂t
+ u

∂u

∂x
+ β

∂3u

∂x3 = γ u + ν
∂2u

∂x2 (11.35)

Analyze behavior of solitons in case of a strong dispersion.

References

P.N. Bernasconi et al., Solar Phys. 209, 119 (2003)
N. Brickhouse, B. LaBonte, Solar Phys. 115, 43 (1988)
B. Coppi, M.N. Rosenbluth, R. Sudan, Ann. Phys. 55, 201 (1969)
V.M. Dikasov, L.I. Rudakov, D.D. Ryutov, Sov. Phys. JETP 21, 608 (1965)
I. Fushiki, J.I. Sakai, Solar Phys. 161, 317 (1995)
H. Hagenaar, R. Shine, Astrophys. J. 635, 659 (2005)
K. Harvey, J. Harvey, Solar Phys. 28, 61 (1973)
B.B. Kadomtzev et al., Sov. Phys. JETP 20, 1517 (1964)
V.I. Karpman, Nonlinear Waves in Dispersive Media (Pergamon Press, London 1975)



References 321

J.W. Lee, Solar Phys. 139, 267 (1992)
P. Maltby et al., ApJ 306, 284 (1986)
L.A. Ostrovsky, S.A. Rybak, L.S. Tsimring, Sov. Phys. Uspekhi 29, 1040 (1986)
M.P. Ryutova, Sov. Phys. JETP 67(8), 1594 (1988)
M. Ryutova, H. Hagennar, Solar Phys. 246, 281 (2007)
M. Ryutova, R. Shine, A. Title, J.I. Sakai, Astrophys. J. 492, 402 (1998)
M. Ryutova, T. Tarbell, R. Shine, Solar Phys. 213, 231 (2003)
M. Ryutova, H. Hagennar, A. Title, Astrophys. J. 656, L45 (2007)
N.R. Sheeley, Solar Phys. 1, 171 (1967)
R. Shine, A. Title, in Encyclopedia of Astronomy and Astrophysics, ed. by P. Murdin (IOP, Bristol,

2001), p. 3209
R.A. Shine, A.M. Title, T.D. Tarbell, K.P. Topka, Science 238, 1203 (1987)
M. Suzuki, J.I. Sakai, Astrophys. J. 465, 393 (1996)
D. Vrabec, in Solar Magnetic Fields, ed. by R. Howard. IAU Symposium, vol. 43 (Reidel,

Dordrecht, 1971), p. 329
G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)
P.R. Wilson, Solar Phys. 106, 1 (1986)
V.B. Yurchyshyn, H. Wang, P. Goode, Astrophys. J. 550, 470 (2001)
J. Zhang, S.K. Solanki, J. Wang, AandA 399, 755 (2003)
F. Zuccarello et al., AA 500, 5 (2009)



Chapter 12
Reconnection of Flux Tubes: Specifics
of High Plasma β

Abstract Two fundamental mechanisms of magnetic reconnection worked out by
Sweet–Parker tandem (Parker, J Geophys Res 62:509, 1957; Sweet, IAU symposium
on electromagnetic phenomena in cosmic plasmas, Stockholm, 1956 (1958), p 123)
and Petschek (The physics of solar flares, ed. by W.N. Hess. Proceedings of the
AAS-NASA symposium on physics (NASA, Washington, 1964), pp 425–439) were
both aimed to explain an enormous amount of energy produced by coronal flares.
Since then, extensive studies of a topological change of magnetic field resulted in
a huge body of refined reconnection theories, beautiful laboratory experiments, and
numerical modeling. One thing, however, remained for a long time unchanged: the
subject of studies, magnetized plasma, has been a priori considered magnetically
dominated, i.e., having very low plasma beta, β = 8πp/B2 � 1. It is just this
condition that provides release of a huge amount of energy stored in magnetic fields
due to their topological change. This simple fact dominated so strongly that during
almost six decades there was no attempt to investigate the opposite situation, i.e.,
when topologically favorable conditions for reconnection appear in gas-dominated
plasma with finite or even larger than unity plasma beta, β = 8πp/B2 ≥ 1.
As quest was for large amount of magnetic energy, the case of high-beta plasma
(with magnetic energy less that gas-kinetic energy) did not seem promising. This,
however, proved to be wrong. It turned out that in case of small-scale magnetic flux
tubes under real conditions of solar photosphere, high β reconnection is unavoidable
process. In the photosphere, magnetic flux tubes buffeted by convective motions
collide and reconnect. True that the photospheric reconnection does not give the
immediate gain in energy, but it sets the system in strongly unstable state. Now, the
central problem becomes to understand how the post-reconnection products evolve.
In this chapter, we shall study the peculiarities of high β reconnection, and what
is more important, the post-reconnection processes. We shall see that high-beta
reconnection triggers various nonlinear processes that are responsible for wide range
of observed phenomena.
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12.1 Basics of Magnetic Reconnection

It all started with trying to solve a mystery of chromospheric flares. Back in the
1940s, there were accumulated quite a rich observational data in Ca H and K
lines and in Hα showing clear association of chromospheric flares with underlying
sunspot groups.

Giovanelli (1946), who involved himself in these observations, in a short note
on a theory of chromospheric flares pointed out that the changing magnetic flux of
ever-evolving sunspot groups leads to formation of an X-type neutral points in the
magnetic field lines and to formation of at least two types of current systems, whose
evolution eventually leads to electrical discharges along neutral lines. Figure 12.1a
shows Giovanelli’s sketch of currents flowing in a system of a bipolar sunspot group.
Magnetic field lines are shown in a “dividing” plane containing the sun’s general
magnetic field, and intersecting the two sunspots. A current filament, one in the
neutral point current sheet (j1), and two others flowing into sunspots (j2) are shown
by dashed lines. Arrows show their relative direction. The line AB is the locus of
points where the dividing plane meets the surface of the sunspot. The line CDE is
the locus of points where lines of force from near the neutral point meet the sun’s
surface. This line serves as a base of the neutral point current sheet.

The most remarkable fact in Giovanelli’s studies is that his model of magnetic
field reorganization is essentially three dimensional. Although Giovanelli does
not talk about “breaking” and “rejoining” lines of forces, the very idea and
accompanying drawing form the bases of all types of future reconnection models.

The very first statement that “lines of force can be regarded as being broken and
rejoined” belongs to Dungey (1953), who suggested that near-neutral point magnetic

1j

j
2

a

b

Fig. 12.1 Earliest representation of magnetic energy release: (a) Three-dimensional (!) cartoon
by Giovanelli (1948), showing currents near a growing bipolar spot group (see details in text); (b)
Dungey’s (1953) “lines of force” that “can be regarded as being broken and rejoined”
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field may go unstable and result in the reconfiguration of magnetic field and the fast
dissipation of magnetic energy. Figure 12.1b illustrates Dungey’s examples which
he describes as follows. When “two parts of a loop of force are close together
with their fields in opposite directions, the result is that the loop of force breaks
into two loops, whose total length is less than that of the original loop.” And,
Dungey concludes that “the field energy from relatively large region is concentrated
on particles in the neighborhood of the neutral point, and that part of energy is
released.”

Bumba (1958) was first to observe that the Hα emission in the largest flares
begins over a series of small-scale magnetic elements, dubbed at that time as flare
knots, that form to strips on either side of the polarity inversion boundary. It was
found that the flare knots are associated with strong electric currents (Moreton and
Severny 1968).

Simple and appealing, Dungey’s two-dimensional cartoon took a long journey.
And, reconnection theories became two dimensional for decades.

Sweet (1958) presented a talk at the 1956 IAU Symposium in Stockholm on
theory of solar (chromospheric) flares based on formation of a neutral collision layer
as a result of merging of opposite-polarity magnetic field systems, with subsequent
change in their topology leading to strong radiation of energy and production of
high-energy particles.

Parker (1957), impressed by Sweet’s presentation, derived scaling laws of the
process and coined the term “reconnection.” When two oppositely directed magnetic
fields approach each other (Fig. 12.1b), the field gradient steepens and the electric
current density (c/4π)∇×B becomes large. At the same time, at small characteristic
distance, the dissipative effects turn on and strong dissipation occurs.

To be consistent with Sweet’s hydrodynamic analogy of expelling gas occupying
a space between two rigid plates forced to move toward each other, Parker derives
the rate of steady-state reconnection from the basic conservation laws. The total
pressure, p + B2/8π , is uniform across the current sheet, so the gas pressure is
highest on the neutral plane where B goes through zero (Fig. 12.2a). This excess
pressure ejects the gas from the mid-plane region along the lines of force in the
±x directions with the velocity v. For irrotational and steady motion, Bernoulli’s
equation is

ρv
∂v

∂x
+ ∂p

∂x
= 0 (12.1)

Integrating along x-axis from the origin at the center, where v = 0, to a point outside
the fields, one obtains ρv2 = 2Δp, where Δp is the pressure excess B2/8π . Thus,
the velocity of expulsions is just the Alfvén velocity, vA = B/

√
4πρ.

If l is the characteristic length of the gradient of B across the neutral plane, then
the characteristic rate of the net expulsion of gas out of both ends is 4lv. If the two
magnetic fields approach each other with velocity w, then the mass conservation of
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Fig. 12.2 Magnetic field and flow configuration in the reconnection process. (a) Diffusion-
dominant mechanism by Sweet–Parker: the plasma moves toward boundary from both sides and
after field lines reconnect at the x-point due to finite conductivity, is ejected along it; (b) Petcheck’s
mechanism includes standing waves, shown by vertical arrows off the x-type neutral point. Flow
geometry is the same as in previous case, but now it is independent of the diffusivity and is
controlled by Alfvén waves

gas requires that

wL = vAl. (12.2)

As the field changes by 2B, across the thickness 2l, the current density (per-
pendicular to the xy-plane) is j = cB/4πl. The Ohmic dissipation across the
width l is lj2/σ which, in fact, equals the magnetic energy influx wB2/8π .
Hence, the velocity with which the opposite fields move toward each other is
w = (2/l)(c2/4πσ), or

w = 2η

l
(12.3)

where η = c/4πσ is the resistive diffusion coefficient. Thus, w has a simple
meaning of the characteristic diffusion velocity over a scale l. Solving for w and
l, (12.2) and (12.3) give

w = 2vA√
Rm

, l = 2L√
Rm

(12.4)

where Rm is magnetic Reynolds number Rm = 2LvA/η. Thus, the rate (12.4) is
larger by

√
Rm than pure diffusion, but it is still too small compared to the Alfvén

speed. In the solar atmosphere, magnetic Reynolds number is of the range 106–1012,
and reconnection rates are then 10−3–10−6 of the Alfvén speed. In other words, the
rate at which magnetic energy can be released by Sweet–Parker mechanism is by
several orders of magnitudes less than the observed one.

At AAS-NASA Symposium on Physics of Solar Flares, (Petschek 1964) gave
a talk on “Magnetic Field Annihilation” and showed that the rate of magnetic
energy release due to the merging of opposite polarity magnetic fields can be made
comparable with that observed in solar flares.
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Petschek pointed out that on the basis of resistive instability analysis of Furth et
al. (1963) the boundary in the Sweet–Parker model would be unstable. However, the
linearized instability analysis is not sufficient for estimate of the actual reconnection
rate. Petschek showed that the two opposite fields could meet and form much shorter
current sheet than that assumed by Sweet and Parker. The Petschek’s drawing
is shown in Fig. 12.2b. Once the field lines in this small region (2l × 2x) are
reconnected, their tension ejects the plasma vigorously generating the Alfvén waves
that accelerate further to form slow magnetosonic shocks. The reconnection rate in
this process depends strongly on system parameters and may be arbitrary. Sweet–
Parker’s solution is one of the special cases. Petschek, deriving the maximum
reconnection rate which can be presented as

w = vA

lnRm

(12.5)

comments: “It is a fortunate circumstance that this answer depends only logarith-
mically on the magnetic Reynold’s number and is therefore rather insensitive to our
ignorance of the effective conductivity of plasma.”

Sweet, during discussion after Petschek’s presentation said: “Dr. Parker and I
have been living with this problem for several years and have got the feel of it. Your
solution struck me at once as the solution for which we have been seeking.”

Petschek’s work was prophetic in that simple way which gives extremely
wide range of the reconnection outcome depending on the physical parameters of
medium. Nature, from laboratory plasma devices, near earth magnetosphere, the
Sun and outer space consists of plasma which never is at rest. This means that
any moving plasma is magnetized and, naturally, is strongly inhomogeneous. Thus,
magnetic fields are permanently subject of topological changes. This is exactly
what the reconnection is, but the outcome, depending on physical parameters of
a particular system, has many faces.

Since those early days, all studies of magnetic reconnection were focused
exclusively on those areas where the reconnection would lead to a strong in situ
heating and particle acceleration (Rosenau 1979; Syrovatskii 1981; Axford 1984;
Biskamp 1986). And, the requirement of plasma beta to be much smaller than unity
became an imperative.

Highly improved solar observations made the marsh of reconnection mecha-
nism triumphant: favorable magnetic configuration (such as shown in Fig. 12.3),
rearrangement of overlying coronal loops, and subsequent flare became regularly
observed. The observed timescales, however, are still too far from those estimated
theoretically. And refining of reconnection models, their study in laboratory experi-
ments that allows to change and control the system parameters, continues to this day
(Parker 1991; Somov 1992; Priest and Forbes 2000; Yamada et al. 2010; Kulsrud
2011).

This concludes our brief look at the “orthodox,” β � 1, magnetic reconnection.
In this and in subsequent chapters, we shall study the opposite case, the reconnection
and post-reconnection processes in high-beta plasma containing magnetic flux
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140 Mm
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Fig. 12.3 Magnetogram of a huge active region AR 10486 taken on 28 October 2003 by the
MDI instrument on SOHO. (a) White arrows show two parallel regions with possibly two separate
current sheets. (b) The same region in the chromospheric 1600 Å line, and (c) in the coronal Fe XII
1995 Å line. Enhanced emission at chromospheric and coronal temperatures mimic the possible
current sheets

tubes, i.e., the case when magnetic energy stored in flux tubes is less than gas-kinetic
energy of medium.

Odd enough, but during almost six decades of reconnection studies the case of
high-beta reconnection was not questioned until late 1990s. The problem of high-
beta reconnection was first considered in series of papers by Tarbell et al. (1999,
2000), and Ryutova et al. (2000, 2001, 2003). These studies originated from the
attempts to explain new regularities established in simultaneous multi-wavelength
observations of the photosphere and its overlying chromosphere/transition region.

12.2 Photospheric Reconnections: No Immediate Gain
in Energy

Throughout this book, we talked and will come back to the fact that small-scale
magnetic flux tubes in the photospheric network are the subject of a complex
dynamics that includes continuous emergence of new flux tubes, total or partial
cancellation of opposite-polarity elements, merging and splitting processes, the
appearance of bright points in their vicinity, etc.

An exemplary set of magnetograms illustrating various processes in a very quiet
sun is given in Fig. 12.4. Shown are the magnetograms of 90′′ × 90′′ area at six
instances of time with 20-min intervals taken by the MDI/SOHO instrument on
January 22, 1997. Three white boxes identify the most typical events.

The box 1 is a region of newly emerging flux: at UT 17:08, the box is almost
empty, in 20 min newly emerged bipole shows up, and in another hour the box is
full of mixed polarity “pairs.” This region produces strongly enhanced emission at
the transition region temperatures.

The box 2 contains two bipolar objects. Both bipoles during a given time get
strongly reduced, which also coincides with strongly enhanced emission in the
chromosphere/transition region temperatures.
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Fig. 12.4 Magnetograms of a quiet sun region taken by the MDI instrument on SOHO at six
instances of time with 20-min intervals. Field of view is 90′′ × 90′′. Three most typical events are
marked by boxes: the emergence of new magnetic flux (box 1), cancellation of opposite-polarity
magnetic elements (box 2), and fragmentation process in the system of one polarity fluxes (box 3)

Region inside the box 3 is dominated by magnetic elements of a single (positive)
polarity. It shows a distinct fragmentation which at the given resolution (�1.2′′)
roughly may be described as two “thick” magnetic concentrations (UT 17:08)
breaking eventually into six “thinner” elements (UT 18:28).

Multi-wavelength observations taken simultaneously at different heights of
the solar atmosphere reveal a clear connection between dynamic changes in the
photospheric magnetic fields and the energetic events in the overlying atmosphere
(Harrison et al. 1997; Brekke et al. 1997; Benz 1999; Tarbell et al. 1999). These
observations provided the basis for studies of reconnection processes between the
photospheric magnetic flux tubes (Tarbell et al. 1999, 2000; Ryutova and Tarbell
2000; Ryutova et al. 2001).

12.2.1 Specifics of Photospheric Reconnections

Brought together by convective or other motions, flux tubes collide and must
reconnect. The reconnection of photospheric flux tubes proceeds and results in
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essentially different effects than that in the coronal plasma. Unlike the low-beta
corona where the reconnection process liberates a large amount of energy stored in
the magnetic field (B2 � 8πp) and deposits it “on the spot,” in the photosphere
with much smaller magnetic energy than the gas-kinetic energy of environment,
the reconnection does not give an immediate gain in the energy. But, it puts the
system in strongly nonlinear unsteady state whose further evolution is determined
by physical parameters of the post-reconnection products.

The key elements of photospheric reconnection, that, in fact, are absent in low-
beta corona, are provided by the specific conditions near the solar surface. The most
important of which are following:

1. Photospheric magnetic fields are concentrated in well-defined flux tubes embed-
ded in an almost non-magnetic environment; that is, the plasma beta in the
surrounding medium is very large,

β = 8πpext

B2
ext

� 1 (12.6)

2. At the same time, because of the pressure equilibrium, the ratio of external gas-
dynamic pressure and magnetic pressure inside flux tubes is finite:

β∗ = 8πpext

B2 ≥ 1 (12.7)

3. Flux tubes are always noncollinear, i.e., approaching each other always make
some angle.

4. The low atmosphere is sharply stratified.

The first and second conditions ensure that after reconnection, the post-
reconnection products that acquire strongly curved shape are kept in dynamic
equilibrium by external gas kinetic pressure. Under such conditions, the post-
reconnection products behave like elastic bands: straightening and shortening they
create a sling-shot effect triggering strongly nonlinear processes in the external
plasma.

The third condition, i.e., the fact that photospheric flux tubes are noncollinear,
is extremely important: reconnection occurs not only between the opposite-polarity
flux tubes but between the same-polarity flux tubes as well.

The fourth condition, strong stratification of low atmosphere, plays a decisive
role in development of strongly nonlinear processes. When the kick produced by
the sling-shot effect generates acoustic or MHD waves, those waves that propagate
upward against gravity quickly steepen and become shocks. Further evolution of
shocks leads to a wide class of phenomena that are directly observable higher in the
transition region and corona.

Before we consider these phenomena in detail and put in practical use, let
us discuss some general properties of flux tube reconnections. Consider first an
interaction of two noncollinear flux tubes containing equal magnetic fluxes as shown
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Fig. 12.5 Reconnection of noncollinear flux tubes. Top: opposite-polarity flux tubes; bottom:
same-polarity flux tubes. Inside panels: (1a)–(2a) just before the collision; (1b)–(2b) post-
reconnection sling-shot effect; (1c)–(2c) the reconnection products in the final moment of action
of a restoring magnetic force. Δx in panel 2b is the displacement of the flux tube tip in the time
interval between the reconnection and the straightening

in Fig. 12.5. When two slander (noncollinear) flux tubes with magnetic fields B1
and B2 collide, they overlap only in a short region. Along line of sight, these flux
tubes may be seen as opposite polarity elements if they approach each other in such
way that the smaller angle, α, is formed between the opposite-polarity ends. If the
smaller angle, α, is formed between the same-polarity ends, the observer sees the
same-polarity pairs.

Reconnection occurs in both cases creating a sling-shot effect due to the
straightening of reconnected flux tubes. Depending on the relative amount of flux
and whether the colliding fluxes are the same or opposite polarities, the magnetic
reconnection leads to different scenarios of the evolution of post-reconnection
products and their observational signatures. In principle, orientation of colliding
flux tubes making an angle 2α may be arbitrary. We will assume for convenience
that the bisector of the angle 2α is oriented along the line of sight.

Thus, in case of the opposite-polarity flux tubes (Fig. 12.5 top), immediately
after reconnection, the new flux tubes are strongly curved. Magnetic tension in
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this strongly curved state causes a fast shortening and straightening of post-
reconnection flux tubes. The energy release in this process is approximately
Wmagn ∼ (B2/8π)SL, where B is the absolute value of the magnetic field strength,
S is the cross section of interacting area and L is the effective length of a flux tube
participating in the reconnection process.

In case of the same-polarity flux tubes (Fig. 12.5 bottom), the reconnection
creates an illusion of scattering of flux tubes. Soon after reconnection, the restoring
magnetic force acting on the reconnection products straightens and drags them away
from each other. The change of flux tube half-length in this process is proportional to
δL � α2L. The magnetic energy content in this process is δWM � δLS(B2/8π) �
α2LS(B2/8π).

The velocity of post-reconnection flux tube motion can be estimated from the
released energy: LS(ρv2/2) � δWM , which gives v � αvA. The time for the flux
tube straightening is:

Δt = Δx

v
� αL

v
� L

vA

(12.8)

For the flux tube to participate in the reconnection process over its whole cross
section, the characteristic reconnection time should be less than the straightening
time. This condition sets the limit on the flux tube radius Rmax at which the whole
flux tube reconnects and behaves as a single elastic band in a sling-shot effect. The
maximum rate in the fast reconnection process is estimated as wmax � vA/(lnRem),
where Rem = LvA/Dm is magnetic Reynolds number and Dm is a magnetic
diffusivity (Petschek 1964). The reconnection time is, therefore:

τrec � R

wmax
= RlnRem

vA

(12.9)

From (12.8) and (12.9), one gets the estimate for a maximum radius of the flux tube
participating in elemental act of reconnection:

Rmax <
L

2lnRem

(12.10)

At the photospheric conditions, the Reynolds number is between 103–106, so that
the condition for the flux tube to be thin enough to participate in the reconnection
process “as a whole” (i.e., over a whole flux tube radius) is Rmax < L/6–L/13.

The same estimate is valid for the reconnection between the opposite-polarity
elements. In this case, the straightening time is � L/u, where the ascend-
ing/descending velocity of flux tube u � vA (see below). If we take the half-length
of the flux tube as L = 500 km, the estimate for the radius drops into the interval
Rmax ∼ 36–70 km.

Thus, in either case magnetic flux concentrations having as small radius as
150–200 km may be the sites of multiple reconnection processes. Moreover, the
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straightened segments of post-reconnection products may participate further in
similar processes, creating a cascade of shocks in case of the opposite polarity pairs,
and continuous fragmentation in case of the same-polarity pairs.

12.2.2 Flux Tubes Carrying Different Amount of Magnetic
Flux

The fact that under photospheric conditions magnetic flux concentrations having
a radius larger than Rmax ∼ 36–70 km may participate in multiple reconnection
processes that result in flux tube shredding is totally consistent with the observations
(see e.g., Berger and Title 1996). It is important, therefore, to consider the
reconnection of flux tubes carrying different amount of magnetic flux and having
different radii. We consider the most typical scenarios shown in Figs. 12.6 and 12.7.

Consider first the case shown in Fig. 12.6 depicting the interaction of opposite-
polarity flux tubes. Top left: “thick” and “thin” flux tubes reconnect resulting total
cancellation of thin flux tube. Bottom left: the initial stage of two “thick” flux tube
interaction when they only partially cancel each other.

The timescale and energetics of the reconnection and post-reconnection pro-
cesses are governed mainly by the parameters of the thinner flux tube. From
the observational point of view, if a bisector of collision angle is directed along
the line of sight, this process corresponds to the apparent cancellation of the
smaller magnetic flux and shrinking of the thicker flux tubes. It is accompanied
by possible acoustic emission and shock formation caused by the

⋃
-shaped part

of the reconnection product. The shocks may produce a bright point in overlying
chromosphere/transition region.

The four right panels in Fig. 12.6 are the MDI magnetograms of 10′′ × 10′′ area
marked by box 2 in Fig. 12.4. Sequence of snapshots at four instances of time show
the interaction of mixed polarity elements where partial cancellation of “thick”
negative-polarity flux and total cancellation of “thin” positive-polarity flux occurs.
One can follow the process of reconnection until almost total disappearance of both
fluxes.

Consider now the interaction of same-polarity flux tubes having different param-
eters. Figure 12.7 is constructed in the same way as Fig. 12.6. Top-left panel shows
the interaction of “thick” and “thin” flux tubes which results in splitting of the
thicker flux tube, while the reconnection products move away from the remnants
of the thicker flux tube. Thus, the observer should see three dynamic objects instead
of initial two.

Bottom-left panel shows the interaction of two “thick” flux tubes. In its ini-
tial stage, this event is a fragmentation process. Next, the new-born fragments,
accelerated by the sling-shot effect, will inevitably hit other magnetic flux tubes.
In any case, the process of apparent cancellation (the opposite-polarity fluxes) or
fragmentation and scattering (the same-polarity fluxes) will repeatedly take place
down to the smallest possible scales until the magnetic flux disappears diffusively.
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Fig. 12.6 Reconnection of opposite-polarity flux tubes carrying different amount of magnetic
flux. Top left: opposite-polarity “thick” and “thin” (elementary) magnetic flux tubes showing total
cancellation of thin and partial cancellation of thick flux; bottom left: partial cancellation in the
collision of thick flux tubes; right panels give an observational example; the MDI magnetograms
of 10′′ ×10′′ area at four instances of time show the interaction of “thick” negative (black) polarity
flux and total cancellation of “thin” positive (white) polarity flux. After Ryutova et al. (2003)

Observational example of the interaction of the same-polarity thick flux tubes is
shown in right panels in Fig. 12.7. The 10′′ × 10′′ area (box 3 in Fig. 12.4) initially
contained two large positive flux tubes that approached each other. Subsequently,
flux tubes experience multiple reconnections ending up with whole string of smaller
flux tubes.

A simple general conclusion here is that the most pronounced effects in the
regions of mixed polarity are partial or total cancellation of magnetic fluxes and
frequent appearance of photospheric and chromospheric bright points, while in the
regions dominated by a single polarity the most typical event is fragmentation of
neighboring fluxes into smaller elements and an illusion of a scattering process.
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Fig. 12.7 The same as in Fig. 12.6 but now the reconnection occurs between the same-polarity
flux tubes. See text for details

12.2.3 Number of Events: Importance of Noncollinearity of
Flux Tubes

The frequency of events shown in Figs. 12.5, 12.6, and 12.7 depends on the magnetic
filling factor of a given area and the velocity of surface motions, u. Let us denote
the characteristic distance between two neighboring flux tubes at the surface by l,
and the characteristic flux tube radius by R. Obviously, the number of flux tubes
intersecting the unit area, σ , is σ ∼ 1/l2. The filling factor is f ∼ R2σ � R2/l2,
and for the quiet Sun f << 1.

Let us evaluate the number of collisions, n, per unit time, experienced by a
particular flux tube, in both cases, collinear flux tubes and noncollinear flux tubes
with the degree of noncollinearity ∼ 1.

In the first case, the collision rate n‖ can be estimated analogously to the estimate
of gas-kinetic theory:

n‖ � Rσu (12.11)
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Note that in case of collinear flux tubes two of them merge together if they come to
a distance comparable with flux tube radius over the whole length of the flux tube.
For any particular flux tube, the number of such events per unit time is estimated
by (12.11). One can see that in the case of collinear fluxes n‖ scales as σ .

In the case of noncollinear flux tubes, the collision rate does not explicitly depend
on the radius of flux tube, R, because two noncollinear flux tubes inevitably intersect
even at R ⇒ 0. Therefore, n�‖ � (u/l) � u

√
σ . The ratio of number of events in the

case of noncollinear and collinear flux tubes is, thus, n�‖/n‖ � (1/R
√

σ) >> 1. So,
in the case of noncollinear flux concentrations, the frequency of collisions is much
higher than in the collinear case.

The total number of collisions occurring per unit area is given by:

N�‖ = n�‖σ � uσ 3/2 (12.12)

Since the filling factor is f � R2σ , the number of events per unit time occurring
with every particular flux concentration, nt equals to n�‖, that is: nt = u

√
σ . To

estimate the number of particular events, we need to introduce a probability of the
“proper” geometry of the collision, ν. Then, the number of particular events Nν per
unit area of the solar surface is Nν = νuσ 3/2. In fact, no flux tube seems to be left
without colliding with its neighbor.

The outcome of flux tube interaction, depending on the specifics of the process,
produces its own impact on the overlying atmosphere. It is therefore not surprising
that at any height (and temperatures), the solar atmosphere mimics the pattern of
small-scale elements in the photosphere. Before we discuss details of the response
of the atmosphere to reconnection events among the ensembles of small-scale
magnetic fields (which will be done in the next chapters), it is useful to investigate
the dynamics of post-reconnection product immediately after reconnection occurs.

12.3 Dynamics of Post-reconnection Products

Here, we consider the dynamics of a flux tube motion after the reconnection has
occurred, starting from the configuration shown in Fig. 12.8. We assume that the
flux tube radius R is small compared to the other dimensions of the problem,
in particular, the characteristic length L of the flux tube involved in the post-
reconnection motion. The upper points of the flux tube merging the asymptotes of
magnetic field lines at B → B∞ are supposed to remain at rest.

In the further discussions, to reduce the number of parameters entering the
problem, we assume that the flux tube is empty, i.e., the pressure of the ambient
plasma is counterbalanced by the magnetic pressure inside the tube, pe = B2/8π .
In other words, we assume that the internal plasma beta is very small, βi =
8πpi/B

2 � 1. This approach is quite reasonable for regions close to surface
(Sánchez Almeida 2001).
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Fig. 12.8 The shape of magnetic field lines, z(x, t). (a) Solid line, z0(x, t)—just after reconnec-
tion; the dashed lines—time sequence of the straightening and shortening of the flux tube due to
the action of the magnetic field tension. (b) Simplified shape of the reconnection product

We describe the shape of the flux tube by a curve z = z0(x, t) (sketched in
Fig. 12.8). After reconnection occurs, the magnetic tension inside the flux tube tends
to straighten it and the initial configuration begins to evolve along a sequence of
states 1 → 2 → 3 . . ..

In the case of an empty flux tube, the inertia is determined by the added-mass
effect, i.e., by the inertia of the external fluid that gets involved into the motion as
soon as the flux tube begins to move (Ryutov and Ryutova 1976).

At large Reynolds numbers typical even for solar photosphere, the is relatively
small at sub-sonic motions of the flux tube. Per unit length of the flux tube, it can be
evaluated as (Parker 1979):

Fdrag = CDρu22R (12.13)

where CD is a dimensionless drag coefficient, which, in the parameter domain Re ≥
103, u < cs , is � 0.1–0.2. When u exceeds the sound speed, cs , a bow shock is
formed in front of the flux tube, and a friction force increases abruptly. For a flow
with u � 2cs , CD becomes of the order of unity (Landau and Lifshitz 1987). We
approximate it by the step function. When evaluating the friction force for transsonic
motions of the flux tube, we discuss constraints imposed by this approximation.

12.3.1 Self-similarity of Solution

In this section, we consider the dynamics of post-reconnection flux tube in absence
of gravity, assuming that the scale L satisfies the condition:

ρgL <
B2

8π
(12.14)
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This is equivalent to the condition of L being smaller than the scale height, L < Λ,
which is usually satisfied in upper layers of atmosphere.

The case without the effects of gravity is directly applicable to the flux tube
dynamics when the reconnection occurs between the same-polarity magnetic ele-
ments and reconnection products move across the gravity force (Fig. 12.7). In this
case, the magnetic tension is almost perpendicular to the gravitational acceleration
and gravity does not play a role. Therefore, the xz plane of Fig. 12.8 should not
necessarily be perceived as a vertical plane. Besides, the non-gravity situation is also
valid for upper layers of atmosphere where the atmospheric stratification strongly
weakens.

We begin the analysis with an incompressible case. In other words, we assume
that the velocity of a flux tube is much less than cs , and the drag force may be
neglected. The other forces acting on a certain small segment of the flux tube are
the magnetic tension acting through the ends of the segment, and the gas pressure
acting through the side surface. Simple calculations give the following expression
for the net force acting on a curved segment of the flux tube (per unit length):

Fnet = B2

4π

πR2

r
(12.15)

where r is the curvature radius. Note that there are two degrees of freedom in the
problem: the minor radius of the flux tube, R, and the major radius of curvature, r .
With respect to R the flux tube is in equilibrium, while with respect to r the flux
tube is straightening. Let the shape of the flux tube be described by z = z0(x, t).

Consider a shape of the flux tube at the time t + Δt . Let ξ be a normal
displacement of a certain point to its new position. Obviously, (∂z0/∂t) =
(1/nz)(∂ξ/∂t), where nz is a z-projection of a unit vector normal to the tube:
nz = [1 + (∂z0/∂x)2]−1/2. Therefore,

∂ξ

∂t
= ∂z0

∂t

[
1 + (∂z0/∂x)2]−1/2 (12.16)

We take the second derivative of ξ over the time and multiply it by the added mass
per unit length, which in the case of a cylinder is πR2ρ. Equating this to the normal
component of the force acting on a certain segment of the flux tube, we obtain

πR2ρ
∂

∂t

(
∂z0

∂t

[
1 + (∂z0/∂x)2

]−1/2
)

= F (12.17)

According to (12.15),

ρ
∂

∂t

(
∂z0

∂t

[
1 + (∂z0/∂x)2

]−1/2
)

= B2

4π

1

r
(12.18)
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From the equations of differential geometry for the radius of curvature, r , we have

1

r
= ∂2z0

∂x2

[
1 + (∂z0/∂x)2

]−3/2
(12.19)

and the equation of motion of the flux tube acquires the form:

∂

∂t

(
∂z0

∂t

[
1 + (∂z0/∂x)2

]−1/2
)

= v2
A

∂2z0

∂x2

[
1 + (∂z0/∂x)2

]−3/2
(12.20)

One can see that the parameter R does not enter the problem and (12.20) looks
like the equation for an infinitesimally thin “string.” Note that, in the limit of small
curvature, (12.20) coincides with the linear equation of motion for magnetic flux
tube (Ryutov and Ryutova 1976; Spruit 1981).

We present a solution where after reconnection the flux tubes arms are asymp-
totically straight lines. Hence, there is no parameter of the dimension of the length
in the system and the solution can depend on the variable z only in the combination
ß = x/vAt . This solution is self-similar. Moreover, it corresponds to a motion
with a constant velocity. We can check this property by presenting z0 in the form:
z0 = vAtf (ß). For space and time derivatives, we have

∂z0

∂t
= −vAß2 d

dß

(
f

ß

)

; ∂z0

∂x
= df

dß
, (12.21)

and similarly for the higher-order derivatives. With these, (12.20) acquires the form
of an ordinary differential equation for f (ß):

ß
d

dß

{

ß2 d

dß

(
f

ß

)[
1 + (df/dß)2

]−1/2
}

= d2f

dß2

[
1 + (df/dß)2

]−3/2
(12.22)

Thus, the self-similar solution does exist. Taking derivatives, we find

fßß
[
ßfßf + ß2 − 1

] = 0 (12.23)

The motion described by this equation is an ascent with a constant velocity. Note
that a constant velocity motion corresponds to a zero inertial force, and, therefore,
to a zero magnetic tension. This means that the part of the flux tube involved in the
motion should be a straight line, i.e., the flux tube has the shape shown in Fig. 12.8b.

The presence of the multiplier fßß in (12.23) means that the evolving flux tube
consists of straight segments for which fßß = 0. The initially resting material
begins an ascending motion near the points 1 and 2 (Fig. 12.8b), where the magnetic
curvature is large. We do not resolve this region in the asymptotic solution, but
realistic velocity u of ascending flux tube can be found using energy analysis.
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12.3.2 Energy Analysis

We start with the energy conservation law:

Wkin = −ΔWpot (12.24)

where ΔWpot is the change in potential energy. The kinetic energy for the segment
1–2 (Fig. 12.8b) is:

Wkin = 2z∗tanα
ρu2

2
S (12.25)

The change in potential energy consists of the change in the magnetic energy
plus the pdV work associated with the change of flux tube volume. If gravity
is neglected, the external pressure is constant and, therefore, due to pressure
equilibrium, the magnetic field is also constant, leading to:

ΔWpot =
(

2z∗tanα − 2z∗

cosα

)
B2

4π
S (12.26)

Where we have used the fact that the pdV work, according to the analysis related
to (12.15), is equal to the release of the magnetic energy. From (12.24)–(12.26), one
finds

u = vA

√
2(1 − sinα)/sinα (12.27)

The model neglecting dissipation is good for sub-sonic velocities u. From the
pressure balance, pe = B2/8π , and the expression for sound speed, c2

s = γp/ρ,
the condition for the sub-sonic motion of flux tubes is

sinα > 4/(4 + γ ) (12.28)

which for γ = 5/3 gives α ≥ 45◦. Hence, for a wide range of angles ≤ 45◦, the
motion of flux tube may be trans- and super-sonic which we discuss in the next
section.

12.3.3 Transsonic Motion

At smaller intersection angles (≤45◦), the segment 1–2 (Fig. 12.8b) reaches the
sound speed and the drag caused by the formation of a bow shock enters the
problem. We first evaluate the drag force for the case where the velocity u exceeds
the sound speed by the order of unity.
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α h
δ z
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(b)

(a)

Fig. 12.9 A straightening flux tube: (a) moving segment of flux tube with finite curvature;
(b) sketch for the estimate of a total energy release

From (12.13), we find that the drag force F ∗
drag acting on the segment 1–2 is

approximately (for α � 1) F ∗
drag � 2Rπρc2

s z
∗. On the other hand, the lifting force

produced by the magnetic tension is Fmagn � 2πR2(B2/4π). Taking the ratio, one
finds: (Fmagn/F

∗
drag) � (R/z∗). For z∗ � R, the magnetic force is much less than

the drag force. This will restrict the upward velocity to values only slightly above the
sound speed and the drag coefficient, CD in (12.13) becomes much less than unity
(� R/z∗). Note that a step-wise approximation of the friction force as used above
does not allow one to find a complete solution in the domain of velocities of about
(2/3)cs ≤ u ≤ cs , where a transition from small values of CD to CD � 1 occurs.

If friction is present, the flux tube will have a finite curvature at the segment 1–2.
This deviation from a straight line gives only a second-order (in δz) correction to
the length of a segment 1–2 and, in the evaluation of the energy release Wtherm, we
will assume that the segment 1–2 is straight (Fig. 12.9). From the balance equation:

Wtherm = −ΔWpot − Wkin, (12.29)

after substituting u = cs into (12.25) and (12.29), we have

Wtherm = S
ρc2

s

2
2z∗ 4 − (γ + 4)sinα

γ cosα
(12.30)

Here, we must assume that sinα < 4/(4 + γ ) (otherwise, the motion is sub-sonic).
When the flux tube finally straightens out (Fig. 12.5b), the energy released per unit
length of the final state is

W̃ = ΔWpot

2htanα
= S

B2

4π

1 − sinα

sinα
(12.31)

At small α’s, the energy release diverges, indicating the significance of a sling-shot
effect for almost antiparallel flux tubes.
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12.4 Dynamics of
⋃

-Shaped Flux Tubes

Consider now the motion of post-reconnection flux tubes in the presence of gravity.
For simplicity, we adopt an isothermal model, ρ = ρ0exp(−z/Λ), with a constant
scale height, Λ = p/ρg. The subscript “0” refers to the region where intersection
of flux tubes occurred.

The pressure balance condition in the initial state is

B2

8π
= p0exp(−z/Λ) (12.32)

From (12.32) and the magnetic flux conservation, B0S0 = BS, we find the initial
magnetic energy of a flux tube, W 0

mag:

W 0
mag = 2

cosα

∫ h

0

B2

8π
Sdz (12.33)

or,

W 0
mag = 1

cosα

B2
0S0

4π
2Λ (1 − exp(−h/2Λ)) (12.34)

The final magnetic energy is

W
f
mag = 2h tanα

B2

8π
S = 2h tanα

B2
0

8π
S0exp(−h/2Λ), (12.35)

and the change of the magnetic energy, ΔWmag ≡ W
f
mag − W 0

mag, is:

ΔWmag = − B2
0S0Λ

2πcosα
exp(−h/2Λ)

[

exp(h/2Λ) − 1 − h

2Λ
sinα

]

< 0 (12.36)

Now, we evaluate the work of the gravity force over the ascending (straight)
segment of the flux tube. At some height z above the reconnection point, the length
of the segment is 2z tanα, and its cross section is S = S0exp(z/2Λ), so that the
gravity force acting upward is:

Fgr = 2ρgS0z exp(z/2Λ) tanα ≡ 2ρ0gS0z exp(−z/2Λ) tanα (12.37)

Accordingly, the change of the gravitational energy between the final and initial
state is negative, ΔWgr = − ∫ h

0 Fgrdz:

ΔWgr = ΛS0B
2
0

π exp(h/2Λ)
tanα

[

1 + h

2Λ
− exp(h/2Λ)

]

< 0 (12.38)
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We used here the pressure equilibrium condition. In addition to the variation of the
magnetic energy, ΔWmg, the pdV work makes an equal contribution to the total
variation of a potential energy of the system, that is:

ΔWpot = 2ΔWmg + ΔWgr (12.39)

The kinetic energy of the flux tube in the final state can be found from the energy
conservation law:

Wkin = −ΔWpot (12.40)

Collecting (12.36)–(12.40), we find

Wkin = S0B
2
0

4πcosα
exp(−h/2Λ)

[
4Λ(1 + sinα)(exp(h/2Λ) − 1) − 4hsinα)

]

(12.41)

The kinetic energy of the fluid in the final state is (12.25), with z∗ = h, ρ =
ρ0exp(−h/Λ) and S = S0exp(h/2Λ) we have

W
f

kin = 2htanα
ρ0u

2

2
S0exp(−h/2Λ) (12.42)

From (12.41) and (12.42), one finds the velocity of a tip at the moment when
⋃

-
shaped tube gets straightened:

u(f ) = vA

√

2
(exp(h/2Λ) − 1)(1 + sinα) − 2(h/2Λ)sinα

(h/2Λ)sinα
(12.43)

In the limit where gravity may be neglected, i.e., at Λ → ∞, this expression
naturally coincides with (12.27).

When the velocity of flux tube exceeds the sound speed, a bow shock is formed
in front of ascending segment of flux tube. At the same time, the velocity of the
flux tube still increases which leads to an increase of the friction force and thus to
dissipation of energy. This keeps the final velocity of the flux tube close to cs , and
the excess of the potential energy will be spent on plasma heating. The threshold
for sub-/transsonic motion, unlike the simplified estimate (12.28) for “empty” flux
tube, now depends on the height where the reconnection occurs.

Using (12.43), we can roughly estimate the height where transsonic motions set
in. In Fig. 12.10, the plots of the ascending velocity (actually the Mach number) vs
the normalized height are shown for an “empty” flux tube, i.e., in virtue of pressure
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Fig. 12.10 The velocity of the ascending portion of a flux tube as a function of height for several
angles of collision; solid lines correspond to the ratio vA/cs = 0.35, and dashed lines to vA/cs =
0.64. The dotted line shows the M = 1 level

equilibrium condition. Several qualitative conclusions can be drawn here. A smaller
collision angle results in faster upward motion of flux tubes, so that its motion
becomes transsonic at lower altitudes. At very small angles of collision (almost
antiparallel flux tube), the reconnection process leads mainly to the conversion
of magnetic energy into thermal energy in the immediate vicinity of the collision
region.

With increasing angle of collision, the shock formation and the dissipation of the
energy occurs at higher altitudes. As the initial velocity of a tip is proportional to
Alfvèn velocity, the stronger is the magnetic field the higher are the regions of the
shock formation (the dashed lines in Fig. 12.10).

12.5 Dynamics of
⋂

-Shaped Flux Tube

Here, we consider the motion of the lower,
⋂

-shaped part of flux tube formed
after reconnection. If the magnetic field is strong enough, the

⋂
-shaped part of the

reconnection product starts moving in the downward direction against the gravity
force. We again use the piece-wise model of the flux tube (Fig. 12.11), and perform
an energy analysis to find the character of the motion of flux tube and its velocity.

The gravitational energy increase caused by the deformation of flux tube shown
in Fig. 12.11, similarly to (12.37) and (12.38), is

ΔWgr = −8ΛS0
B2

8π
tanα

[
exp
( z0

2Λ

)
− z0

2Λ
exp
( z0

2Λ

)
− 1
]

(12.44)
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Fig. 12.11 Sketch for the
motion of the

⋂
-shaped part

of the reconnection product

α

z

z
0

h

Integration has been carried here downward from the point of reconnection. In the
downward motion of a curved flux tube (forced by sling-shot effect), the change of
potential energy is positive as the final state has higher gravitational energy. The
change of the magnetic energy, plus pdV work, is 2ΔWmg:

2ΔWmg = − B2
0S0

πcosα

[
exp
( z0

2Λ

)
− 1 − z0

2Λ
exp
( z0

2Λ

)
sinα

]
(12.45)

It is remarkable that the function:

ΔWpot = ΔWgr + 2ΔWmg (12.46)

may have a minimum at some height z∗ less than h. The flux tube will then evolve to
reach an equilibrium state in which the buoyancy force is balanced by the magnetic
tension.

Note that immediately after reconnection the top of the
⋂

-shaped flux tube will
always move downward, because of a high curvature the magnetic tension acting on
the tip is universally dominant over the buoyancy force. Besides, the gravitational
energy variation scales as z2, whereas the magnetic energy variation scales as z,
which can be easily verified by expansion of (12.44) and (12.45) with respect to
z0/2Λ. Therefore, magnetic energy is always dominant at the beginning.

There are a variety of possibilities for how the flux tube reaches equilibrium state
depending on physical parameters of a system and, in particular, on the angle α.

For example, the flux tube may reach an equilibrium state with sub-sonic motion.
Then, because of inertia, it overshoots the equilibrium state and oscillates around it,
gradually dissipating the energy. The repercussions of these oscillations may be
visible as periodic bright transients on the solar surface. Figure 12.12 shows plots
of the potential energy vs height for different angles of collision. The energy is
normalized by the factor 8ΛS0(B

2/8π) and the height by 2Λ.
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Fig. 12.12 A plot of the potential energy normalized by the factor 8ΛS0(B
2/8π) vs height for

different angles of collision. The dashed line shows the energy level where oscillation periods are
estimated (see text for details)

At smaller half-angles, α = 15◦, 20◦, the potential well is deep enough for the
flux tube to oscillate about some equilibrium height, gradually dissipating its energy.
The period of the oscillations can be found through the velocity of downward
motion, u(z):

T =
∮

dz

u(z)
(12.47)

The velocity of downward motion, on the other hand, can be derived from the energy
conservation law W

seg
kin = −ΔWpot, where now the kinetic energy of a segment is

W
seg

kin = 2ztanα
ρ0u

2

2
S0exp

( z

2Λ

)
(12.48)

and,

ΔWpot = B2

π

ΛS0

cosα

[
(1 + sinα)

(
1 − exp

( z

2Λ

))
− z

Λ
sinαexp

( z

2Λ

)]

(12.49)

Finally, for the velocity of the downward motion, we obtain

u = vA

√

2
(1 + sinα)(1 − e−ζ ) − 2ζ sinα

ζ sinα
(12.50)
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Fig. 12.13 The velocity of downward motion of the apex of a
⋂

-shaped part of a flux tube as a
function of depth (measured from the reconnection point)

In the limit of ζ = (z/2Λ) → 0, i.e., Λ → ∞, this expression, just like (12.43) for
the upward motion, coincides with expression (12.27) for unstratified media.

From observational point of view, this analysis is very useful because allows
direct measurements of some parameters and, in particular, the velocities.
Figure 12.13 shows plots of the velocity of downward motion of the flux tube
normalized by the atmospheric sound speed. One must bear in mind that these
velocities are sub-sonic.

If immediately after reconnection the downward motion is supersonic (see
velocity plots for α = 15◦, 20◦, in Fig. 12.13), the energy of the flux tube is
converted quickly into thermal energy. At some height, when its motion slows down
to sub-sonic velocity, the flux tube approaches equilibrium in the oscillatory regime.
Thus, at sufficiently small angles of collision, a sling-shot effect produced by the

⋂
-

shaped part of flux tubes results in a multi-step process of energy release. Initially,
the straightening flux tube pushes surrounding plasma to move with the transsonic
velocity leading to local heating. Then, the flux tube oscillates gradually releasing
its energy.

At larger collision angles and/or weaker magnetic field, the oscillatory regime is
reached without a preliminary heating of surrounding plasma.

Finally, with increasing angle of collision (e.g., at half-angle α = 40◦), the
potential well becomes so shallow that buoyancy quickly overcomes the magnetic
force and the flux tube stops its downward motion and reaches equilibrium.
Note that in all cases described above, the equilibrium is a priori marginal: any
fluctuations in the medium will trigger the upward motion of flux under the action
the buoyancy, and possible appearance of a next-generation bipole.
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Consider a quantitative example of flux tubes colliding, say at half-angle α =
15◦. Immediately after collision, a flux tube moves with transsonic velocity. This
motion is accompanied by an energy release estimated from the difference between
the potential energy (12.49) and the kinetic energy of the flux tube at height z∗ where
the velocity of the flux tube becomes equal to sound speed:

Wtherm = −ΔWpot(z
∗) − 2z∗tanα

ρc2
s

2
S0exp

(
z∗

2Λ

)

(12.51)

For α = 15◦, z∗ � 1.6 Λ. This corresponds to an energy level Wpot/E = −0.64
(Fig. 12.12, dashed line). At this level, the flux tube will oscillate in the interval
z1–z2 = 1.6 Λ–3.72 Λ.

The oscillation period is easily estimated. Using (12.47) and (12.50), we have

T = 2Λ

vA

∫ ζ2

ζ1

ζ sinα dζ

(1 + sinα)(1 − e−ζ ) − 2ζ sinα
≡ 4Λ

vA

I (12.52)

where I is the integral:

I = 1

2

∫ ζ2

ζ1

ζ sinα dζ

(1 + sinα)(1 − e−ζ ) − 2ζ sinα
(12.53)

For this example with end points ζ1=0.8 and ζ2 = 1.86, numerical integration gives
I = 0.98. Assuming a collision close to the surface, we take ρ = 2.7 10−7 g cm−3

and scale height Λ = 150 km (Maltby et al. 1986). The Alfvén velocities for
magnetic field values B = 300, 500, and 1000 G are vA = 1.6, 2.7, and 5.4 km s−1,
respectively. Periods of oscillation are, respectively, T � 5.2, 3.1, and 1.6 min.

Note again that if the velocity of flux tube reaches the acoustic velocity, the
dissipation rate becomes large, and the flux tube will approach the equilibrium
state in an essentially aperiodic fashion. Acoustic waves will be generated running
in front of the flux tube, but they will not be enhanced to strong shocks because
the density grows in the direction of their propagation. Eventually, all the potential
energy is converted to thermal energy of plasma. The loss of energy in the case of
transsonic motion will make the oscillatory regime possible again.

With high-resolution and high-cadence data, all the processes described in
Sects. 12.3–12.5 are, in principle, directly observable. Simple analytical relations
can be used for developing the diagnostic tools.
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12.6 Problems

12.1 Estimate the rate of energy flux produced in the upper atmosphere by the
reconnection of flux tubes, assuming that in the photosphere flux tubes, randomly
distributed within supergranular cells, are carried out to the network and reconnect
there with elements of opposite polarity.

12.2 Compare the speed and efficiency of the Sweet–Parker and Petschek recon-
nection models under the chromospheric conditions.
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Chapter 13
Post-reconnection Processes: Shocks,
Jets, and Microflares

Abstract In the previous chapter, we began to study the reconnection of magnetic
flux tubes under the photospheric conditions where magnetic energy is less than
the gas-kinetic energy of surrounding plasma (β ≥ 1). We saw that unlike a low β

reconnection that liberates large amount of magnetic energy leading to an in situ
heating, high β reconnection does not give an immediate gain in energy, but it
sets the system in a highly dynamic state triggering strongly nonlinear processes.
These processes, determined by the evolution of post-reconnection products, occur
higher in the atmosphere at a considerable distance from the reconnection area. In
this chapter, we shall study how the post-reconnection products evolve and what
determines the form and energetics of their impact on the overlying atmosphere.
We will see that there are three major forms of the post-reconnection outcome:
(1) generation of supersonic plasma jets, (2) formation of microflares, and (3)
various combinations of jets and microflares. These were found to be in a perfect
agreement with observations. Moreover, multiwavelength observations show details
and interrelation of a ubiquitous sequence of events that start from cancellation
of photospheric magnetic fields, pass through shock formation, and result in
appearance of supersonic jets, microflares, and their combinations in the overlying
atmosphere.

13.1 Key Regularities Observed in the
Photosphere/Transition Region

The uninterrupted time series shows distinctive properties in the response of
the chromosphere and transition region to dynamic changes in the photospheric
network. It was found that appearance of sporadic bright transients and mass flows
in the upper atmosphere strongly correlates with the cancellation (total or partial) of
opposite polarity network magnetic fields in the photosphere. The observed plasma
flows are found to have a steady, nonsteady, or explosive character, with amplitudes
varying from a few km s−1 up to hundreds of km s−1. Hot localized regions
(emitting soft X-rays) often correlate with lower velocity regions of 40 km s−1

rather than with the high-velocity explosive events (Dere 1994; Harrison et al.
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TRACE 1700 MDI Mgrm TRACE IV

180 km/s

O VIC II
SUMER

Fig. 13.1 Snapshots of the 90 × 230 Mm region: first and third panels are the TRACE images in
UV continuum (∼5 × 103 K) and C IV line (∼105 K); the second panel is the MDI magnetogram;
the fourth panel shows SUMER spectra in two lines: C II 1037.0 Å corresponding to ∼2.5×104 K
(left) and O VI 1037.6 Å corresponding to ∼3×105 K (right). The SUMER slit position is indicated
on three images by vertical line

1997; Brekke 1999; Tarbell et al. 1999, 2000; Ryutova and Tarbell 2000; Ryutova
et al. 2003). New generation of space-based instruments allow to study the jets and
explosive events in higher cadence time series that add more details to their behavior
(Mendoza-Torres et al. 2005; Fludra and Warren 2010; Curdt and Tian 2011; Innes
and Teriaca 2013).

Example of the key elements in the observed regularities in the quiet sun
atmosphere is shown in Fig. 13.1, which contains snapshots from an uninterrupted
time series taken by several instruments on SOHO and TRACE on May 16, 1999.
High-resolution magnetograms taken by MDI compiled in the 2.2-h movie show
changes in small scale magnetic flux concentrations. TRACE images in the C
IV lines and UV continuum are taken simultaneously with 15 s cadence and co-
aligned with the MDI magnetograms and SUMER data. The field of view is 128 ×
320 arcsec near disk center. The time series of C IV images shows the appearance
and evolution of bright transient phenomena. The SUMER spectra allow one to
study mass flows along the slit position. The far right panel in Fig. 13.1 shows C II
and O VI lines which correspond to chromospheric (∼2.5 × 104 K) and transition
region (∼3 × 105 K) temperatures. The imprint of the magnetic field pattern in the
photosphere is clearly seen in the 1700 Å continuum and C IV images showing the
unambiguous connection between the photospheric magnetic fields and significant
emission in the chromosphere and transition region.
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The most persistent regularities in the photosphere/transition region coupling can
be described as follows:

1. At any moment of time the enhanced emission in the continuum (1700 Å) and C
IV line mimics the magnetic pattern.

2. The appearance of bright transients usually correlates with reduction of magnetic
flux in the photosphere, observed in canceling mixed polarity elements.

3. Microflares and other bright transients are often accompanied by two-directional
plasma jets. Supersonic jets associated with bright transients and observed over
the canceling magnetic features may appear several thousands of kilometers
away from the center of a C IV transient.

4. If the radiative transient is accompanied by plasma flows, the energy is distributed
between the two: usually the stronger localized emissions correspond to lower
velocity jets and vice versa.

5. Plasma flows are always seen whenever the slit crosses the site of magnetic flux
tubes or a region of converging supergranules, a vertex.

6. If the magnetic flux concentrations in the vicinity of a “vertex” are weak or even
below the MDI resolution, multiple flows are seen in cooler (C II) lines without
much activity in the transition region.

7. Multiple flows and explosive events occurring repeatedly are seen in the O VI
line above the converging supergranules if they harbor significant number of
magnetic flux concentrations.

8. Explosive events may appear in both SUMER lines or in only one. Events seen in
both lines, i.e., both in chromosphere and transition region, are also accompanied
by C IV microflares, as would be expected from the temperatures of formation.
In the events seen only in one of SUMER lines, C IV microflares are usually very
weak or even absent.

There are a lot of works devoted to explanation and modeling of the transition
region jets and microflares. As a rule, the explanations are based on the low β

magnetic reconnection, as indeed, in upper chromosphere and transition region
β � 1. But unresolvable problem here is that the reconnection theories do not have
the specific conditions that would correspond to one or the other form of released
energy. In other words, even the most sophisticated reconnection theories cannot
explain why the observed energetic events take the form of either only a supersonic
jet, or that of pure microflare (heating), or their various combinations.

Contrary to this, the photospheric reconnection serving as a triggering mech-
anism, and being only an initial phase of a long chain of upcoming events, may
explain not only the fact that the pattern of energetic events in the upper atmosphere
mimics exactly the magnetic pattern in the photosphere, but allows to follow the
process of energy transfer and its release that may develop in very different ways
depending on the behavior of post-reconnection products.

Thus, at the photosphere, flux tubes collide and reconnect at any given moment
of time and at any place. Post-reconnection products begin their “own life” and the
system soon “forgets” about the reconnection. The farther evolution of a system
is the subject of simple lows determined by the specific conditions that allow
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to distinguish the final form of the energy release. These conditions not only
predict formation of jets, microflares, and their diverse combinations, but allow the
quantitative analysis as well. This will be discussed below.

13.2 Post-reconnection Shocks and Hydromagnetic
Cumulation of Energy

The nature of photospheric reconnection and, most importantly, the nature of post-
reconnection processes are determined by specific conditions in the photosphere
(Tarbell et al. 1999; Ryutova et al. 2001). As discussed in the previous chapter, the
most important of which are:

1. The property of network magnetic fields to be concentrated in isolated flux tubes
and being in pressure equilibrium with almost non-magnetic high plasma beta
environment (β = 8πpext/B

2
ext � 1).

2. The property of flux tubes to be essentially noncollinear.
3. Sharp stratification of the low atmosphere.

The first condition implies that after reconnection strongly curved magnetic field
lines, due to pressure equilibrium, pext = pin + B2

tube/8π , still remain confined in
thin flux tubes. The magnetic tension results in fast straightening and shortening of
the reconnection products creating a slingshot effect (Fig. 13.2a, b).

The initial velocity of tips, u0 is proportional to Alfvén speed, u0 � vA, but is
less than the sound speed u0 < cs . The tip of the

⋃
-shaped part of flux tube that

is moving upward accelerates quickly under the magnetic tension and the buoyancy
force that are acting in the same direction. Depending on the angle of collision α

between the flux tubes, the velocity of a tip itself reaches the velocity of ambient
sound speed in 1–2 scale heights (see Fig. 12.10, Chap. 12).

At transonic velocities, the slingshot effect generates acoustic shocks. Most
importantly, the shock front itself, because of the inhomogeneity of the medium, has
an uneven curved surface. So that some elements of the shock front may move faster
than others. Propagating upward in a stratified atmosphere, the front of a shock will
become more uneven: faster elements of the shock front lead, and slower elements
lag (Fig. 13.2c, d).

The stability analysis shows that the perturbation of the shock front displacement,
ξ , evolves in time as ∂ξ/∂t = ξ(∂u/∂z)|z=H , where u(z) is the velocity and H is a
position of the unperturbed shock front (Gurevich and Rumyantsev 1969; Luo and
Chevalier 1994). Note that perturbations grow with the increment proportional to
∂u/∂z > 0.

In those regions where a shock front has a concave form, self-focusing and the
collision of the advanced shock fronts occur (Fig. 13.2d, e). This leads to hydro-
dynamic cumulation, i.e., the concentration of the kinetic energy in a small volume
(Stanyukovich 1960; Landau and Lifshitz 1987; Zababakhin and Zababakhin 1988).
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Fig. 13.2 Reconnection of photospheric flux tubes and post-reconnection outcome. Left: (a)
noncollinear flux tubes approaching each other at a half-angle α; (b) the post-reconnection
slingshot causing straightening of reconnection products and generating shock; Right: (c) uneven
shock front in gravitational field becomes more uneven: faster elements accelerate faster and slower
elements lag; (d) converging shock fronts just before the self-focusing; (e) reflection of shocks
immediately after collision

The form and amount of released energy depends on the angle at which shock
fronts collide. We will see below that the head-on shock front convergence leads
to deposit of entire energy of a system in the kinetic energy of plasma, whereas
the shock convergence at some angle leads to deposit of the energy either into
supersonic jets or to the distribution of energy between the plasma jets and
microflares.

13.2.1 Head-On Convergence of Shock Fronts

Thus shocks generated by post-reconnection slingshot effect and propagating in
strongly inhomogeneous atmosphere must have an uneven form and may experience
self-focusing in upper layers of atmosphere (Fig. 13.2). Besides, the shocks resulted
from neighboring reconnections are also the subject of collision as well. These
effects are as ubiquitous as the reconnection of flux tubes in the photosphere.
Obviously, a great variety of shock–shock collision implies that shock fronts may
approach each other at an arbitrary angle, including head-on collision when shock
fronts are almost parallel to each other.
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Fig. 13.3 Wave front
configuration in case of
head-on collision: (a) shock
fronts approaching each other
with the velocity u with
respect to laboratory system,
u � vA(ρ0/ρ); (b) reflection
of shock fronts after a
head-on collision (θ = 0)
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Figure 13.3 shows shock front configurations corresponding to head-on collision.
In a small vicinity of the collision region, shock fronts may be considered as planar.

Figure 13.3a shows two parallel segments of shock front approaching each other
in the unperturbed region with temperature T0 (zone 0). Behind the shocks (zone 1)
the temperature increases to the value T1 (e.g., Landau and Lifshitz 1987):

T1 = 2γ (γ − 1)

γ + 1
M2T0 (13.1)

After collision, behind reflected shocks (Fig. 13.3b) the temperature increases
farther and becomes:

T2 = 3γ − 1

γ
T1 (13.2)

If shocks are of about equal Mach numbers, the matter in zone 2 with temperature
T2 (behind reflected shocks) immediately after collision is at rest. Therefore, all the
initial kinetic energy is converted entirely into the thermal energy of plasma. It must
be emphasized that this is additional, 2.4 times more heating of a region which was
already heated behind the shocks prior to their collision.

Some quantitative estimates are shown in Table 13.1. We consider two examples,
one when the reconnection of flux tubes occurs at the photospheric level, and the
other, when flux tubes reconnect slightly above the surface, near the temperature
minimum region. At the surface ρ0 � 2.8 × 10−7 g cm−3, and for magnetic field
strength of B = 1000 G, vA = 5.35 km s−1. Thus, the initial velocity of plasma
pushed by slingshot is u0 � 5.35 km s−1. The wave propagating against gravity
accelerates according to a power law as (e.g. Whitham 1958):

u(z) = u0

(
ρ0

ρ(z)

)σ

(13.3)
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Table 13.1 Examples of the heating of the chromosphere at height h = 1100 km by the head-on
collision of shocks resulted from reconnection of flux tubes at two different heights: (1) at the
surface, h0 = 0, and at the temperature minimum, h0 = 200. M = u/cs being Mach number

h0 (km) T0 (K) ρ0 (g cm−3) B (G) u0 = vA (km s−1) u (km s−1) M T1 (K) T2 (K)

0 6520 2.8 × 10−7 1000 5.35 41.4 5 5.1 × 104 1.2 × 105

200 4990 8.2 × 10−8 500 4.9 28.4 3.5 2.4 × 104 6.0 × 104

where u0 and ρ0 are the velocity and density of a preshock plasma at the reference
point, and

σ =
[

2 +
√

2γ

γ − 1

]−1

(13.4)

with γ = 5/3, u = u0(ρ0/ρ)0.236.
At the height h = 1100 km, ρ = 4.8×10−11 g cm−3, and the shock is accelerated

up to the velocity u = 41.4 km s−1. At this height T0 = 6100 K, cs = 8.2 km s−1,
and Mach number M = 5. Therefore, the temperature behind the shock priorto the
collision becomes T1 = 5.1 × 104 K. Additional heating after the collision gives
T2 � 2.4 T1 = 1.2 × 105 K.

In the region of temperature minimum at about h = 200 km, where ρ0 = 8.20 ×
10−8 g cm−3, and the temperature is lower than at the surface, T = 4990 K. The
magnetic field in flux tube drops and we may take for B = 500 G . The initial
velocity is then u0 � vA = 4.9 km s−1. Note that the parameter β∗ = 2.66. At
the same height as above (h = 1100 km ), M � 3.6, and the temperature behind
the shock will be T1 = 2.4 × 104 K, and the after-collision additional heating gives
T2 � 6.0 × 104 K. For atmospheric parameters a reference model by Maltby et al.
(1986) is used.

13.2.2 Energy Distribution Between Heat, Jet, and Their
Combinations

If the shock fronts intersect at some angle θ �= 0 (Fig. 13.4a), the temperature
increase occurs in a larger volume and will be less than in the case of head-on
collision. At the same time, a finite angle between the reflected shock fronts, 2φ,
gives the plasma space to escape (Fig. 13.4b). Therefore, only a part of the kinetic
energy of a system is converted into heat. The other part is converted into directed
flows of plasma or cumulative jets.

With increasing collision angle, the velocity of the jet increases at the expense
of local heating. At some critical angle, there is no reflected wave, and most of the
energy is concentrated in the hot and dense plasma jets. The main characteristics of
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Fig. 13.4 Wave front configuration for converging shocks: (a) shock fronts moving with the
velocity u with respect to laboratory system at the angle 2θ ; (b) collision and reflection of shock
fronts in the coordinate system moving with the velocity u/sin θ

this process may be obtained from general theory of shock reflection (Stanyukovich
1960; Landau and Lifshitz 1987).

Let us take a closer look on the process shown in Fig. 13.4b. When shock fronts
collide, a preshock plasma is at rest, i.e., the velocity in zone 1 is zero, and in the
laboratory system, the intersection line, R, moves to the left with the velocity vR =
u/sin θ . We will carry out analysis in the coordinate system moving with the vR ,
where the process is stationary.

The relations across the reflected shocks, i.e., conservation of mass, normal
momentum, tangential velocity, and energy, respectively, are

ρ2v2sin φ = ρ1v1sin (θ + φ) (13.5)

p2 + ρ2v
2
2sin2 φ = p1 + ρ2v

2
1sin2 (θ + φ) (13.6)

v2cos φ = v1cos (θ + φ) (13.7)

h2 + 1

2
v2

2sin2 φ = h1 + 1

2
v2

1sin2 (θ + φ) (13.8)

where hi = γ /(γ − 1)(pi/ρi) is the enthalpy. Excluding v2, p2, and ρ2, this system
reduces to a single equation of the form

2
[(

1 − τ1τ2
)2 + (τ1 + τ2

)2
]

(13.9)

= M̃2(τ1 + τ2
) [(

γ + 1
)
τ2
(
1 − τ1τ2

)− (γ − 1
)(

τ1 + τ2
)]
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Fig. 13.5 Critical angles of
shock front convergence, θcr,
and reflection, φcr, vs the
Mach number defining
regions of predominant
heating (HEAT), jet formation
(JET), and the distribution of
energy between the two
(HEAT-JET). The dotted line
shows a limiting angle
corresponding to maximum
jet velocity
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where we used notations: M̃ = v1/cs , τ1 = tan θ and τ2 = tan φ. (13.9) is a
quadratic equation for τ1, and may be written as

Aτ 2
1 + Bτ1 + C = 0 (13.10)

For each value of incident angle, τ1, there is a maximum value of τ2 at a given Mach
number beyond which this equation has imaginary roots; i.e.„ there is no reflected
wave in the process. This regime corresponds to pure jet formation.

Thus, the condition of the vanishing of the discriminant

Δ = B2 − 4AC = 0 (13.11)

determines the regions of varying energy release: dominant heating, jet formation,
and distribution of energy between the two.

Solving (13.9) with Δ = 0, one obtains critical angles vs Mach number. Results
are shown in Fig. 13.5. We took into account that M̃ = M/tan θ . In the region
below dashed curve (the plot of the critical reflection angle), the energy of a system
is converted entirely into heat. The region between the two curves corresponds to the
distribution of energy between the thermal energy and cumulative jets. Above the
solid curve, the parameters of colliding shock fronts correspond to jet formation.
The critical incident angle, θcr, approaches a limit and, at large Mach numbers,
becomes independent of M .

The maximum value of θcr can be found directly from Eq. (13.9) setting M � 1.
This gives a simple equation:

(γ + 1)τ1τ
2
2 − τ2 + (γ − 1)τ1 = 0. (13.12)

The discriminant of this equation, Δ = 1 − (γ 2 − 1)τ 2
1 , gives τmax

1 = 1/
√

γ 2 − 1

for limiting value of incident angle, or θmax = tan−1 (1/
√

γ 2 − 1), which coincides
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with the classical result of θmax = sin−1 (1/γ ) (Stanyukovich 1960; Landau and
Lifshitz 1987). In our case, for γ = 5/3, θmax = 36.87.

The jet velocity (vjet = v2) can be found from (13.5)–(13.8). In the laboratory
system, one obtains:

vjet = u

(
1

tan θ
− 2tan2 θ

M2

)(

1 + 2tan2 θ

M2

)−1/2

(13.13)

At large Mach numbers this reduces to vjet � u cot(θ/2), which is also in agreement
with classical theory (Stanyukovich 1960). Here θ should be understood as its
limiting value θmax = tan−1(1/

√
γ 2 − 1), so that vmax

jet = u (γ + √
γ 2 − 1).

For γ = 5/3, vmax
jet = 3u. Thus, even at moderate Mach numbers, M � 2,

at the collision angles close to 37◦, most of the kinetic energy of a system is
concentrated into the hot and dense plasma jets. The density of jet is estimated as
ρjet � ρ1γ /(γ − 1).

Using above quantitative examples (Table 13.1), and suggesting that shock fronts
collide at the angle close to 37◦, we find that the usual after-shock heating (T1) is
accompanied by strong cumulative jets with high velocities; in the first example,
vjet � 124 km s−1 (T1 = 5.1 × 104 K), and in the second example, vjet �
103 km s−1 (T1 = 3.4 × 104 K).

In three-dimensional geometry, there may occur rare but violent event of
cylindrical focusing. This happens when the initial shock front is close to the
figure of revolution. In this case, a cylindrical cumulation similar to Guderley’s
effect will occur, and strong two-directional hot jets of material will be formed
in the intersection point (Guderley 1942; Landau and Lifshitz 1987). This will be
addressed in the subsequent sections.

Note again that the above consideration applies to the case where the magnetic
pressure is small everywhere, except inside the flux tubes. So that the slingshot
generates almost purely acoustic waves, and the magnetic effects are not involved
in further dynamics. On the other hand, even if the magnetic pressure in the ambient
plasma is non-negligible, all the essential features of the phenomena will remain
in place. In the same manner as above, the MHD waves will be driven by the
slingshot effect, and the waves will steepen when propagating upward, leading to
the formation of MHD shocks and to the cumulation in the areas of the appropriate
curvature of shock fronts (Whitham 1958; Pai Shih-I 1962; Sokolov 1991).

A great variety of the quiet sun magnetic network that covers 90% of the solar
surface ensures all possible combinations of the process that starts from magnetic
flux reduction in the photosphere, passes through shock formation, and ends up in
the various forms of energy release. Accordingly, the recycling time of the magnetic
network is very short (Schrijver et al. 1997): in about 40 h magnetic field in the entire
network replaces itself providing continuous energy supply to the upper atmosphere.
The energy flux estimated on the basis of this time scale is enough to explain the
observed UV/EUV radiation of the order of 5–10× 105 erg cm−2 s−1. The height
of the most intensive shock formation and subsequent appearance of the impulsive
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phenomena corresponds to the empirical height of the sharp temperature jump. The
high rate of emergence of new fluxes and diversity of their parameters result in the
cascade of shock waves, thus creating a magnetic energy avalanche and “steady”
energy input into higher layers of atmosphere. This is an on-going process which
works all the time and is independent of the phase of magnetic activity of the sun.

13.3 Observation of Photospheric Reconnections and Their
Impact on Overlying Atmosphere

To demonstrate relation between the reconnecting flux tubes and subsequent energy
transfer and release in overlying atmosphere we shall compare high-resolution mag-
netograms with the observational data taken simultaneously for the chromosphere
and transition region.

We start with data taken on January 22, 1997. High-resolution MDI magne-
tograms of a very quiet region were co-aligned with the simultaneous CDS/SOHO
images taken in the O V line (629 Å), which shows plasma at 2.5 × 105 K. The
data were compiled in the 2.5 h movie that shows motions and changes in the
photospheric magnetic fields and the response of the transition region to these
changes. At any moment of time, the enhanced intensity in the O V line mimics
the magnetic pattern of the photosphere. The appearance of bright transients
is correlated with the flux reduction in the colliding opposite-polarity magnetic
elements. Two examples of such events are shown in Figs. 13.6 and 13.7.

Figure 13.6, left four panels, show magnetograms of a small region with
reconnecting flux tubes (marked by red arrow) and the same area at the transition
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Fig. 13.6 Magnetic flux cancellation and subsequent appearances of bright transient in the
transition region at 2.5 × 105 K. Left four panels are magnetograms of a small, 30 × 30 arcsec
region of quiet sun at two instances of time together with the same area in the Oxygen V 629 Å.
The right panel shows a quantitative picture of this process in time. Magnetic flux is in 1018 Mx,
UT time is minutes, and the O V intensity is in arbitrary units
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Fig. 13.7 Time variation of negative (solid line) and positive (dashed line) fluxes in region of
newly emerging bipole, and corresponding intensity curves. The reconnection starts at about UT
18:10 and proceeds with several steps. The microflare peaks up at UT 18:40

region temperature (2.5 × 105 K) at two instances of time. Right panel shows time
history of this process before and after the reconnection occurred. A black solid
curve is the time variation of measured negative flux (black spots in left panels) and
dashed curve is that of positive flux (white spot in left panels). The corresponding
intensity variation is shown by the red curve. The reconnection started at UT 17:15,
and in about 5 min when magnetic flux reduced by 30–40% a strong microflare
appeared in the transition region.

Another example of the reconnection process and its impact to overlying
transition region is shown in Fig. 13.7. Left four panels are magnetograms showing
a newly emerging bipoles and their interaction. The right panel contains measured
magnetic flux and the Oxygen V intensity. The reconnection process begins at about
UT 18:10 and continues with several steps until UT 18:30. Soon after that the
microflare appears and reaches its maximum at UT 18:40.

The events shown in Figs. 13.6 and 13.7 represent the most typical pattern for
the majority of the observed mixed polarity neighbors. Several flux tubes show such
pattern repeatedly during the time of observation. In particular, the above examples
come from quite a short (2.2 h) data set, and the 128′′ × 320′′ area of a quiet sun
region. There were observed over 200 different events of bright radiative transients
in the transition region, and appearance of each event was preceded by reduction of
the photospheric magnetic field.

13.3.1 Microflares, Jets, and Their Combinations

The picture becomes more complete when complimented by the observation of
mass flows. Now one can observe not only time history of microflares resulted from
the photospheric reconnections, but whether these microflares are accompanied by
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Fig. 13.8 Left Panel: The MDI magnetogram of the 66′′ ×220′′ region shows small scale network
magnetic elements of positive (white) and negative (black) polarities that outline the regular set
of supergranules; Middle panel: The same region at transition region temperatures showing the
enhanced emission in C IV line that mimics the network magnetic pattern. Solid lines on these
images show the SUMER slit position (slit width is 1′′); Left panels: The time variation of C II
chromospheric and O VI transition region line intensities at each position of the slit during a 45-
min (out of 2.2 h) time sequence. Each bright dot on this image corresponds to the enhanced plasma
flows. Their occurrence also traces closely the sites of magnetic elements

generation of mass flows or not. To demonstrate these processes we will use the data
sets shown in Fig. 13.1.

Figure 13.8 is an example from these observations. The MDI magnetogram of
the target region is shown in left panel, the second panel is the TRACE image of the
same region in C IV transition region line. Two right panels show time variation of
C II (chromospheric) O VI line (transition region) intensities at each position of the
slit during about 45 min (out of 2.2 h) time sequence.

A well-distinguished normal set of supergranules in the magnetogram is outlined
by small-scale network magnetic elements. The hot plasma in the transition region
(C IV line) mimics exactly the photospheric magnetic pattern. The SUMER slit that
captures flows extends over about 10 supergranules crossing several vertices and a
short, ∼15 arcsec, section of a plage highly populated by positive (white) magnetic
concentrations. The enhanced intensities in the C II and O VI lines clearly reflect
the topology of the photosphere as well. For example, the SUMER spectra above
the plage region with dense conglomerate of magnetic fluxes (in the upper part of
image) show continuing enhanced emission, while above the cell interiors with little
magnetic field there are only rare sporadic events.

The enhanced emission in the cooler C II line traces the magnetic field sites more
closely than the O VI line and has a more diffuse character. While the enhanced
emission in the O VI line is more discrete. This difference is quite remarkable, and
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reflects the evolution of post-reconnection shocks: at low chromosphere there are
much more shocks that provide a regular behind shock heating, while higher in
the atmosphere, where the cumulative effects, and cylindrical focusing turn on (not
all the shocks are subject to cylindrical focusing!) and lead to more concentrated
sporadic events. Note that the explosive events accompanied by a strong jets such as
those marked by white arrows on the O VI image (the velocity of these jets exceed
100 km s−1) do not usually appear in C II images. This again means that cumulative
effects associated with shock front convergence occur higher in the atmosphere.

Thus, the usual behind-shock heating is continuously sustained above the
magnetic flux concentrations and should appear as diffuse “clouds” with the
temperatures higher than that of unshocked material. This particular stage of the
energy production is what the enhanced emission in the C II line shows. Higher
in the atmosphere, shocks experience either self-focusing or collision with other
shocks leading to hydrodynamic cumulation, i.e., concentration of energy into
a small volume. These events are strongly localized and appear as small-scale
isolated features with significantly enhanced emission. Note again that the enhanced
emission in a hot O VI line is much more discrete than corresponding emission in
underlying chromosphere (C II line).

Each bright grain (i.e., enhanced emission) in a hot C IV and O VI lines has its
own character and may represent one of three forms of energy release:

1. microflare alone corresponding to pure C IV emission;
2. a strong jet corresponding mainly to O VI emission; and
3. combination of two. To see these regularities in detail and distinguish three type

of events from each other we plot measured positive and negative magnetic fluxes
in time and compare them with time evolution of CDS and SUMER intensities.
Example of such procedure is shown in Fig. 13.9.

Lower panel here shows time variation of positive and negative magnetic fluxes of a
bipole inside the yellow box in Fig. 13.8. The upper panel shows the response of the
chromosphere and transition region to magnetic field variations. Green and red lines
are C II and C IV microflare intensities and blue line shows strength of generated
flows. The numbers 1–5 on the magnetic curves mark changes of magnetic fields in
the most prominent events produced by on-going reconnection in this bipole during
2-h period.

The flux reduction marked by “1” resulted in appearance of microflare alone
without significant flows (a pure “HEAT” regime). The next three events, 2–4,
correspond to the “HEAT-JET” regime: microflares are accompanied by supersonic
jets, the most spectacular of which is # 3 event. In this particular case a multistep
reduction of magnetic fluxes, i.e., multiple reconnection processes, lasted almost
10 min, generating enough energy to trigger appearance of a strong microflare and
supersonic jet with velocity of about 120 km s−1 (see also below). Note that a
significant energy was deposited even in low chromosphere (C II green line in upper
panel). Finally, case 5 corresponds to pure “JET” regime.
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Fig. 13.9 Time variation of
positive and negative
magnetic fluxes in the
compact bipole inside the
yellow box in Fig. 13.8, and
corresponding changes in the
C IV (the red line in the upper
panel), C II (green line), and
O VI (blue line) intensities
over this area. The flux
reduction marked by “1” in
lower panel caused
appearance of microflare
alone without significant
flows (a pure “HEAT”
regime); the next three events
correspond to the
“HEAT-JET” regime when
microflares are accompanied
by the O VI plasma jets, and
the event marked by “5” is
the example of a pure “JET”
regime
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13.3.2 Effects of Converging Supergranular Flows

The supergranular topology and convective flows in general play very impor-
tant role in electro-mechanical coupling between the photosphere and chromo-
sphere/transition region. Converging flows attract all possible magnetic elements,
which then float along the supergranular lanes, collide, and reconnect. Vertices
where three supergranules meet are the most populated areas, and thus the most
active energy production sites.

Figure 13.10 shows examples of energy release in the chromosphere and
transition region along the SUMER slit passing through differently magnetized
and topologically distinct regions. The left panel is a magnetogram, with uneven
circles marking the supergranular pattern. Numbers with arrows indicate several
areas along the SUMER slit to be discussed. We will also discuss event overlying a
strong magnetic concentration marked as # 13, which lies in the intergranular lane
off the SUMER slit, but supersonic jets generated by post-reconnection shocks were
so strong that they reached the slit and were well detectable.
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Fig. 13.10 Illustration of the influence of supergranular motions on the energy production. Panel
a: The magnetogram of the 66′′ × 190′′ region together with overlying chromosphere/transition
region in C IV line. Numbers 1–13 correspond to differently magnetized and topologically distinct
regions; Panels b and c show O VI and C II intensities (in arbitrary units) above verities # 7 and # 9:
vertex # 7 contains weak magnetic concentrations while # 9 vertex is site of a strong magnetic field
concentrations; Panel d compares intense energetic events occurring above strongly magnetized
vertex # 12 with the cell interior # 10 depleted of magnetic elements

We choose four examples, vertices marked as # 7, # 9, and # 12, where
supergranules converge, and #10 which represents the cell interior. The right panels
in Fig. 13.10 are computed intensity curves in SUMER O VI and C II lines for
chosen examples.

The process of energy production, transfer and release is very sensitive to local
conditions. There are also clear differences in the outcome depending on whether
magnetic flux tubes near the vertex are weak (like region # 7) or strong (like regions
# 9 and # 12).
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At vertices, converging flows will attract neighboring magnetic elements, includ-
ing the smallest. High-resolution observations show that cancellation, merging and
splitting processes among the tiny flux tubes persist to the limit of resolution.

The process of heating and jet formation caused by reconnection of the smallest
possible elements should have two general features: (1) The shock convergence and
formation of jets may occur at lower altitude (because of small magnetic fluxes),
i.e., in cooler emission lines; and (2) The re-occurrence of generated flows will
happen frequently in the same place, because the long lifetime of supergranules
makes long-lived attracting centers. On the other hand, if there is a strong magnetic
flux concentration near the attracting center, the multiple flows may be observed at
higher altitudes and in hotter emission lines.

Example of a vertex with very weak magnetic field is region # 7 shown in
Fig. 13.10b. Generated flows, as expected, are seen predominantly in the C II line.
The strong explosive event seen in O VI at t = 30 may have an origin associated
with the strong downflows observed a few moments earlier in C II line (not shown).
This type of event is quite common: appearance of sporadic explosive events and
complex dynamical structures with multiple velocities in regions of maximum
downflows is ubiquitous.

If in the region of converging supergranules strong magnetic flux concentrations
are present, the series of reconnections releases energy at higher altitudes which
manifests itself in hot and dense multiple flows observable in the hotter O V I line.
Example of such event is shown in Fig. 13.10c. One can see the appearance of series
of hot plasma flows and some explosive events during the entire time span, just as
expected due to the supergranular converging flows that provide continuous supply
of small scale magnetic elements which interact with longer-lived strong magnetic
field.

To illustrate one more time the effect of a vertex, we superimpose the O VI
intensities for the vertex region # 12 and cell interior region # 10, which is quite
distant from the supergranular lane (Fig. 13.10d). One can see that during more than
2 h nothing spectacular happens in region # 10. While the repetitive explosive events
seen, e.g., at t = 140, t = 390, and t = 480 above the vertex (# 12) are quite natural.

In each case one can estimate the energy content in the radiative events and
compare it with magnetic energy, reduced during reconnection. One should bear in
mind, however, that this energy is not a direct deposit, but triggers multistep process
of shock formation and shock–shock interaction.

Now the question is do the observations show formation shocks and their possible
association with the reconnection of flux tubes. The answer is yes, and we address
this question in the next section.
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13.4 Key Elements of Energy Production and Observation
of Shocks

Let us first overview key elements of energy production and its release in the
chromosphere/transition region. As discussed throughout this chapter, the process
starts with reconnection of opposite polarity photospheric flux tubes, passes through
shock formation and ends up with one of the forms of energy release determined by
the system parameters and evolution of shocks. The main steps of this process are
shown again in Fig. 13.11. Left panels are the MDI magnetogram of 30′′ × 30′′
region marked by green box in Fig. 13.8 together with radiative events in the
chromosphere/transition region (Trace C IV and SUMER O VI lines). Time history
of negative and positive magnetic fluxes and corresponding changes in C IV and O
VI intensities are shown in upper right panel. The lower panel shows line profiles
of SUMER spectra as function of wavelength extracted at two instances of time,
t = 15:26:53 and t = 15:26:40 (solid lines). The approximate moment of the
maximum flux reduction is marked by t1 = 15:23. High velocity jets appear
about 6 min later (t3 = 15:29:03). The peak intensity in C IV slightly precedes
the appearance of the jet. Before the maximum of intensities about 2 min earlier at
t2 = 15:26:53 (also at t = 15:26:40) SUMER spectra showed clear shock signatures
(lower right panel): the left intensity peak is significantly stronger than the right
one. The difference between the two peaks, Δλ∗, is a measure of the shock velocity.
Indeed, Δλ∗ is a difference between the Doppler shifted lines resulted from mass
motions, v2 (left peak) and v1 (right peak). The velocity difference v∗ = v2 − v1 is

v∗ cosθ = Δλ∗

λ0
c (13.14)

where θ is the angle between the direction of flow and line of sight, λ0 is the
wavelength of unshifted line (e.g., λ0 = 1037.656 Å). The velocity in front of the
shock v1 and behind the shock velocity v2 are related by (e.g., Landau and Lifshitz
1987):

v2 − v1 = cs
2(M2 − 1)

(γ + 1)M
= v∗ (13.15)

This expression can be used to estimate the Mach number M = vsh/cs . For strong
shocks (M � 1) Eq. (13.15) gives vsh = (γ + 1)v∗/2.

The estimate for a shock velocity in the example shown in Fig. 13.11 with Δλ∗ =
0.135Å) is vsh = 60 km s−1 (we took θ = 30◦).

Note that usually the first generation shocks appear predominantly in the C II,
and occasionally in the O VI line (including the above example). This fact is quite
natural: shock formation is the earlier stage of the energy production that occurs
shortly after the flux tubes reconnect. Therefore, the average enhancement in the C II
and even C IV lines can be explained by the direct behind-shock heating and behind-
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Fig. 13.11 Key elements of energy production and its release associated with the photospheric
reconnection. The left three panels are snapshots of the 30′′ × 30′′ region, marked by green box in
Fig. 13.8, at the moment of the intensity maximum in the O VI line. The upper right panel shows
time history of positive and negative magnetic fluxes and corresponding changes in the intensities
of C IV (red) and O VI (blue) lines. The lower right panel contains line profiles vs wavelength
(Å) extracted from exposures at t = 15:26:40 and t = 15:26:53 (solid lines). Dash-dotted line is
Gaussian fit

shock flows, while strong radiative events (blinkers, microflares) and explosively
growing flows are consequences of further evolution of shocks.

It is remarkable that high cadence data compiled in movies show not only
shock signatures, but allow to see and measure step by step evolution of shocks.
Figure 13.12 shows a typical example of the evolution of shock triggered by
reconnection of opposite polarity flux tubes (marked by the white arrow in panel a).
As mentioned above the C II (T � 104 K) shocks appear soon after the reconnection
but before the enhanced emission in hotter C IV and O VI lines appear (panels b and
c, respectively).
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Fig. 13.12 Example of a step by step evolution of shock and its accompanying phenomena. Panel
a: Magnetogram of 30′′ ×30′′ area (yellow box in Fig. 13.8) with compact bipole near the SUMER
slit just before the reconnection occurred; Panels b and c: appearance C IV microflare and a strong
O VI jet with velocity vjet = 118 km s−1. Panel d: Line profiles of C II SUMER spectra extracted
from exposures with 13 s time step; from t1 = 15:06:19 (green line) a double-humped profile
typical of shocks rapidly evolves into a strong shock (blue line, t2 = 15:06:32), and at t3 =
15:06:44 (red lines) reaches its maximum resulting strong radiative transient in less than 20 s

Line profiles of C II SUMER spectra at 13 s time steps are shown in Fig. 13.12d.
From t1 = 15:06:19 (green line) a double-humped profile typical of shocks rapidly
evolves into a strong shock (blue and red lines). At t3 = 15:06:44, when peaks reach
maximum, the difference between the two peaks is Δλ∗ = 0.18 Å. This gives for
the shock velocity vsh = 0.5(γ + 1)(v2 − v1) = 69 km s−1. At C II temperature
(2.3 104 K, sound speed cs = 24 km s−1) this corresponds to Mach number M =



13.5 Explosive Events 371

vsh/cs � 3. At transition region heights such a shock may generate jets in the HEAT-
JET regime, with velocities ranging from 105 km s−1 to 170 km s−1. Indeed, fast
evolution of the shock (shown in panel d in three instances of time) is followed
by the appearance of a bright transient in C IV line and a hot O VI plasma jet.
The measured velocity of the jet at t = 15:07:10 is 118 km s−1. This is a typical
explosive event—one of the main features observed in the transition region. In the
next section we address this issue in more detail.

13.5 Explosive Events

There are basically two major classes of explosive events in the chromo-
sphere/transition region (coronal mass ejection, CMEs, and polar plumes belong to
totally different classes of high velocity events and are not discussed here):

1. those that may be generated by post-reconnection shocks, and
2. those that are associated with the nonlinear explosive instability of Negative

Energy Waves (NEWs). Naturally, the explosive events produced by these two
different mechanisms must and have different signatures.

Consider first the mechanism associated with post-reconnection shocks. As we
have discussed earlier, shocks produced by the post-reconnection slingshot effect,
propagating upward and having uneven surface, may experience self-focusing
(Guderley’s effect), in which the entire energy of a system, squeezed in a small
volume, gets violently released in form of a hot bi-directional jets. Similar effects
may occur when two different shocks produced by two independent reconnections
collide. This effect is universal and well observable.

Figure 13.13 shows an example demonstrating shock–shock interaction and
subsequent generation of strong explosive event. Reconnections occurring in close
bipoles marked by double red arrows in Fig. 13.8 (#13 in Fig. 13.10) cause a series
of upward propagating shocks (Fig. 13.13a): left peaks are higher than right peaks
corresponding to higher intensity behind the shock than in front of it. These shocks
result in two close microflares and strong bi-directional jets in O VI (right panels in
Fig. 13.13a).

The jet generates the downward shock in O VI line: now the double-humped
spectrum has its right peak higher than the left one, which interacts with the upward
propagating C II shock at t = 15:30:45 UT (blue line in Fig. 13.13b). This results
in the immediate appearance of the O VI explosive event (marked by yellow arrows
in lower right panel of Fig. 13.13b) and a strong C II jet.

Prior to the collision temperature increases only due to regular, behind-shock
heating, T1 = 2γ (γ − 1)(γ + 1)−2M2T0 (subscripts “0” and “1” denote the
unperturbed and behind-shock plasma, respectively). In this example the shock
velocity (before the collision) is vsh � 88 km s−1, and T1 = 8.5 × 104 K. After the
collision behind the reflected shocks the temperature increases further and becomes:
T2/T1 = (3γ − 1)γ −1, T2 = 2.46 × 105 K. This is accompanied by strong
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Fig. 13.13 Example of the observed shock–shock interaction and the resulting sporadic events.
(a) A series of strong shocks continuing to occur during and after the double microflare at C
IV temperature accompanied by the downward propagating O VI jet (peaks are significantly red-
shifted) with velocity exceeding 180 km s−1; (b) Downward propagating shocks (O VI line profiles
show the right peaks exceeding the left peaks) interact with a series of upward propagating C II
shocks at t = 15:30:45; The right panels show 3D plots of C IV emission together with the jet
images taken by SUMER; the approaching shocks cause a triple humps seen at t = 15:30:09 in the
C IV line; immediately after the shock collision, at t = 15:30:58 a strong C II jet and the explosive
event in O VI line (marked by yellow arrows) appear. The field of view in panels and scales of the
SUMER spectra are the same as in Fig. 13.13

plasma jets. The jet velocities are in the range of 115–220 km s−1. These are typical
observed parameters in the transition region explosive events.

The probability of the explosive events produced by collision of neighboring
shocks is quite high and can be observed everywhere from quiet sun regions
to plages where shocks produced by non-collinear flux tubes may reach each
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other when accelerating and expanding in overlying chromosphere. Typically these
explosive events are accompanied by a strong microflares as well (cf. Fig. 13.13).

In case of self-focusing of a single shock front when the entire cumulative
energy goes into the strong bi-directional jets, there is usually little energy left
for microflare. Strong support for such events is the absence or weakness of a
transient microflares (the cylindrical focusing corresponds to a pure “jet” regime).
The probability of such events, in principle, is also quite high. But in those regions
where shock production is high, cylindrical convergence can be easily destroyed by
the cascade of shocks produced by neighboring reconnection processes. Therefore,
cylindrical focusing and resulted pure “JET” regime must be expected at least
above the regions that are magnetically underpopulated, such as cell interior and
magnetically poor vertices. Besides, as these events have the character of impulsive
phenomena, their lifetimes must be short.

Thus we have two sub-classes in class of explosive events associated with post-
reconnection shocks. From observational point of view the observed signatures of
these two sub-classes of explosive events are well distinguishable.

Another, totally different class of explosive events is associated with the instabil-
ity of negative energy waves. These explosive events, having totally different origin,
may look quite similar to those associated with the shock convergence, and yet have
their own signatures.

In the first place the instability of NEWs requires the presence of downflows in a
system of structured magnetic field and can develop in a wide interval of velocities
(Ryutova 1988):

40 km s−1 ≤ u ≤ 220 km s−1 (13.16)

These conditions are easily met in the chromosphere, and we should expect this
class of events to be quite common. Among the observed signatures of this kind of
explosive events, we should expect (1) downflows with velocities of about 40 km s−1

and higher; (2) microflares, since such downflows correspond to the heat-jet regime
in shock–shock collision; and (3) a high birthrate.

Note that the lifetimes of the explosive events caused by the instability may
vary from a few seconds to minutes depending on the physical conditions of the
instability, which may be realized in a wide range of parameters.

Most of the chromosphere/transition region explosive events fall into one of two
classes and have the properties listed above. These properties are summarized in
Table 13.2.

Numbers in the first column correspond to chosen examples along the slit
shown in Fig. 13.10. The second column shows the photospheric features at a given
position along the slit; e.g., “Vertex, B” denotes a supergranular vertex with a strong
magnetic field. The third column shows recurrence of the explosive events during
the entire observed interval (2.2 h). Column 4th shows the reduction of magnetic flux
before the appearance of the explosive event. Column 5th shows the intensity of the
C IV transient. The velocities and lifetimes in columns 6 through 8 are approximate.
Column 9 reflects the mechanism causing an explosive event: “instability” stands
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Table 13.2 Examples of explosive events and their properties

ΔΦ C IV C II O VI

Case Location Recurr. (Mx) (Intensity) (km s−1) (km s−1) Lifetime Class

1 Cell Rare n/a Strg 40 80 ∼120 s Instb

2 Vertex(B) Multi n/a Strg 30 120 ≥180 s Instb

2 Vertex(B) Multi n/a Strg 40 180 �90 s Instb

3 Cell Rare >1018 Weak 20 80 ∼100 s Gudrl

4 Edge B Multi 1018 Weak 20 60 ∼3 min Instb

5 Edge B Multi 2 1018 Med 20 60 ∼6 min Instb

6 Cell Rare 3 1017 Weak 20 80 ∼4 min Instb

7 Vertex Rare 4 1017 None 20 110 ∼90 s Gudrl

8 Vertex, B Multi 1018 Med 20 80 ∼3 min Instb

9 Vertex, B Multi 2 1018 Strg 40 180 ≤120 s Instb

10 Cell Rare <1017 Weak 10 120 ≥70 s Gudrl

11 Vertex Rare 2 1017 Weak 40 80 ≥120 s Instb

12 n/a Few 6 1018 Strg 50 200 ≥5 min Instb

13 n/a Few 2 1018 Med 10 80 ∼90 s Instb

for the explosive instability of NEWs, and “Gudereley” for a cylindrical focusing of
shock waves or shock-shock collision.

Among more than 40 analyzed events, only a few cases (10%) could be explained
by cylindrical focusing. Some examples shown in Table 13.2 are: case 7 which is
above the vertex with no magnetic field (below the MDI resolution), and cases 3
and 10 that are both above the cell interiors. In all cases, the peak velocities are
more than 100 km s−1, the C IV event is absent, and lifetimes are quite short (90 s).
Examples of the explosive events in cases 7 and 10 are shown in left four panels in
Fig. 13.14. One can see that C IV emission that would represent microflare is absent,
while SUMER O VI jet is quite prominent.

The properties of strong jets generated by the explosive instability of NEWs
are more diverse. This is quite natural because the interval of the critical velocities
(13.16) is quite wide. For example, downflows close to the lower critical limit lead
to long-lasting explosive events and are often accompanied by a medium or weak
microflares. Stronger downflows lead to explosive events of shorter duration and
are usually accompanied by a strong microflares. Examples of this type of jets are
shown in right panels, Fig. 13.14. In both cases 1 and 2, strong microflares occur first
and are accompanied by downflows. Then very quickly the explosive events appear.
The time interval corresponding to the development of the explosive instability
is roughly estimated as texpl ∼ 30–100 s. This means that as soon as cumulative
effects create the microflare and downflows, in a few tens of seconds the explosive
instability develops, leading to extremely fast acceleration of jets.

The examples in Fig. 13.14 show that explosive events can be detected by
SUMER even when the main emission is located in several arcseconds from
the slit. The overall birthrate for explosive events can be roughly estimated
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Fig. 13.14 Four examples of explosive events shown in TRACE C IV and SUMER O VI lines.
Left panels are events driven by the cylindrical focusing of shock fronts; the remarkable feature
of this class of explosive events is the absence of emission in the C IV line. Right panels are the
explosive events driven by the explosive instability of NEWs; the necessary attribute here is the
appearance of a prominent microflare accompanying the strong jets

as f = N/(ST ), where the number of events N = 40, the “effective” area
S = 5′′ × 360′′ = 9.5 × 1018 cm2, and the time of observation T = 7800 s. This
gives f = 5.4×10−20 cm−2 s−1, which is consistent with the earlier estimates, f =
4×10−21 cm−2 s−1 for coronal holes and 10−20 for the quiet Sun (e.g., Dere 1994).

13.6 Response of the Upper Atmosphere to Reconnection
of Unipolar Flux Tubes

We saw that the reconnection processes occur both in the system of the opposite
polarity flux tubes and the same polarity flux tubes. The post-reconnection pro-
cesses, however, are quite different, and response of the overlying atmosphere is
quite different as well.

Figure 13.15 shows an example of the response of the upper layers of atmosphere
to dynamic changes in the photospheric magnetic field. Three left images in
both panels are the SUMER spectra in N II (corresponding to chromosphere at
temperature � 2.7 × 104 K), N IV (transition region at T � 1.4 × 105 K), and
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Fig. 13.15 Response of the chromosphere (N II and N IV SUMER spectra) and transition region
(SUMER O V and CDS O V images) to reconnections of the photospheric flux tubes. Left panels:
example of opposite polarity magnetic flux tubes; Right panels: the reconnection between the same
polarity flux tubes. Solid line is a SUMER slit

O V (transition region at T � 2.3 × 105 K). Two right images in both panels are
the O V emission taken by the CDS, and high-resolution magnetogram taken by the
MDI.

One can see that when slit crosses the center of the mixed polarity group
(Fig. 13.15, left panels), strongly enhanced transient emission in CDS O V line
is detected. This is a typical example of the hydrodynamic cumulation of upward
propagating shock produced by the post-reconnection slingshot.

When the slit crosses the region dominated by one polarity elements (Fig. 13.15,
right panels), the slingshot effect must be tilted, or be perpendicular to gravity,
so that in this case the lateral motions dominate over the upward propagating
shocks. As a result, the motions are detected in lower chromosphere (N II line
is significantly broadened), while upward propagating shocks are suppressed. The
enhanced emission on the CDS image is still seen over the mixed polarity group,
now left from the slit.

Concluding this chapter we must say that the energy supply for highly energetic
events at all temperature levels from chromosphere to corona overlying the small
scale magnetic network lies in the continuous hydromagnetic activity of small scale
magnetic flux tubes.

The fact that the atmosphere above the quiet sun is far from quiet is, therefore,
only natural. It is just here, within a narrow transition region, the sharp temperature
jump from 6000 K to the million degree corona occurs. We saw that the chromo-
sphere and transition region are the first to amass the energy coming from below and
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transport it into the corona. And it is also only natural the chromosphere/transition
region are the sites of continuous radiative transients, microflares, plasma jets, and
explosive events. Indeed, localization of all these events in the transition region is
co-spatial with the photospheric magnetic pattern, and their appearance correlates
with canceling mixed polarity magnetic elements. Moreover, each observed event,
be it just a microflare, supersonic jet, or combination of two can only be explained by
various conditions for generation of post-reconnection shocks and their interaction.
Theoretical solution for the parameter range gives a simple set of physical parame-
ters that corresponds to all three regimes. Of which the largest range of parameters
is release of the energy in form of combined microflares and jets. Naturally, just like
it is observed, stronger microflare assumes the weaker jet and vise versa. A simple
theory allows to easily perform quantitative analysis.

13.7 Problems

13.1 A strong magnetosonic shock wave propagating across the magnetic field may
be subject of corrugation instability, when there appear a small oscillations on the
shock front. Find conditions for the instability of shock front in the presence of
Ohmic and viscous losses. Take the magnetic field directed along the z-axis and,
respectively, electric field and current along the y-axis (Landau and Lifshitz 1987).

13.2 In case of a strong shock under certain conditions there may occur a
radiative transfer of energy that drastically changes the after shock temperature.
Find the condition for radiant heat exchange at a shock front and describe its
phenomenology (Zeldovich and Raizer 1967).

13.3 A point blast explosion idealized as the sudden release of energy concentrated
in a small volume generates a strong shock. This is one of the best known problem
described by similarity solution (Sedov 1959).

(a) Reproduce so-called Sedov-Taylor solution,
(b) Describe the same solution by the rough estimates.
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Chapter 14
Photospheric Network as Energy Source
for Quiet Sun Corona

Abstract In previous chapters, we studied post-reconnection processes resulted
from interaction of photospheric flux tubes, embedded predominantly in non-
magnetic environment. Higher in the atmosphere, magnetic field preserves its
filamentary structures, but is surrounded by low beta-magnetized plasma. In this
chapter, we will study post-reconnection processes occurring in the arbitrarily
magnetized plasma. We will see that in this case a reconnection triggers various
branches of MHD shocks, and cumulation of energy occurs higher in the atmosphere
reaching coronal heights and beyond. We are still dealing here with the atmosphere
above the rarefied ensembles of flux tubes. Thus imprint of quiet sun at coronal
heights is the most expected outcome of post-reconnection processes occurring at
all levels. Moreover, these processes seem to be the reliable energy source to fuel the
fast solar wind which is rooted in coronal holes outside sunspots and active regions.

14.1 Post-reconnection Processes in Arbitrarily Magnetized
Environment

In previous chapters, we studied post-reconnection processes resulted from con-
stantly interacting photospheric flux tubes, and in particular, the evolutionary
shocks that experience strong gradient acceleration in the sharply stratified pho-
tosphere/chromosphere region. We saw that a great variety of transition region
radiative transients, microflares, jets, and their combinations can be explained
by post-reconnection processes that evolve along many different ways depending
on local physical parameters. Although all these processes occur far from the
reconnection region, and in time when the system has long “forgot” the flux tube
reconnection itself, the fact that the reconnection occurred at the photospheric
level, i.e., in predominantly magnetic free environment, determines the range of
parameters for radiative transients observed in the chromosphere/transition region.

In this chapter, we will see that similar processes occur when reconnection
occurs above the surface in arbitrarily magnetized environment. In this case the
post-reconnection shocks and their further evolution follow the same path as those
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triggered by the photospheric reconnection, but final energy release occurs higher
in the atmosphere, and the process itself fits different range of parameters.

14.1.1 Magnetic Loop Arcades in the Chromosphere

One of the key elements of the entire mechanism of energy production by
reconnection of individual flux tubes is the very existence of intermittent magnetic
structures, which implies that parameter β∗ is finite:

β∗ = pext

B2/8π
≥ 1 (14.1)

This condition, which is always true for the photospheric flux tubes, also holds in
highly inhomogeneous chromosphere and even corona. Let us estimate heights at
which the condition (14.1) can still be applied. We use the reference model of the
solar atmosphere given by Maltby et al. (1986). For example, the gas pressure at
heights h = 200, 500, and 800 km, respectively, is: pe � 2.65 × 104 dyn cm−2,
� 1.77 × 103 dyn cm−2, � 18.9 dyn cm−2. At h = 200 km β∗ ≥ 1 for magnetic
field strength B ≤ 800 G, at h = 500 km, β∗ ≥ 1 for B ≤ 160 G, and at h = 800 km
for the magnetic field ≤ 60 G β∗ ≥ 1 and there still will be an interface between the
magnetic flux and the external plasma.

Figure 14.1 shows example of the chromosphere/transition region magnetic
loop arcades taken by AIA instrument on the SDO on August 2, 2010. The well-
defined thin magnetic loops forming such arcades is the most typical form of
magnetic field at all heights of solar atmosphere. In other words, the filamentary
structure of magnetic field is an intrinsic property of the solar atmosphere. This
means that as far as the magnetic loops preserve their identity and have their well-
defined boundaries with the environment, the post-reconnection processes will have
qualitatively similar character as those under the photospheric conditions.

As the very first step, just like in the photosphere, magnetic field forming thin
loops and being in equilibrium with environment after reconnection will still be
confined in loops but now in strongly curved form. This as we know immediately
leads to slingshot effect. As mentioned above, the parameter range for the initial
stage of the process, and for subsequent steps, is of course different than those for
photospheric reconnections.

The system of loops is usually long-living. It lives as long as photospheric
magnetic flux concentrations serving as footpoints, last. The individual loops,
however, are in constant motion, changing their shape and orientation. At any
moment of time the neighboring loops may come close to each other at some
point and reconnect. This is obviously a continuous process providing a continuous
generation of post-reconnection shocks and subsequent energy release in various
forms. In other words, ever evolving magnetic loop arcades are sites of cascades of
shocks and appearance of microflares, supersonic jets, and their combinations.
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114 Mm

SDO/AIA  He II 304       T=5x104   K 

   UT 23:452010 August 2

Fig. 14.1 Image of the magnetic loop systems at chromosphere/transition region temperatures
taken by the SDO/AIA instrument in the He II 304 Å line. The very existence and dynamic stability
of chromospheric loops implies the pressure equilibrium across the loops and favorable conditions
for post-reconnection slingshot that generates microflares and jets

Figure 14.2 shows snapshots of the “same” arcade of loops as in Fig. 14.1 (i.e.,
loops rooted in the same magnetic region at the photosphere). These are different
images made by subtracting the subsequent movie frames with 60 s interval to
increase the contrast. Three instances of time show the system in different phases.
At UT 19:19 a nice shaped arcade looks quite peaceful, but harbors several strong
microflares (marked by arrows). White frame in this panel is the area occupied
by loop system shown in Fig. 14.1. At UT 19:27 (middle panel) a well-developed
supersonic jet continues to raise. The right panel shows the maximum phase of the
jet. The loop system has been significantly reorganized.

Thus, rooted in the photospheric small-scale network magnetic elements, mag-
netic loops form arcades of different sizes in the chromosphere/transition region. In
these ever evolving arcades magnetic loops may reconnect at any time at any given
height. And, of course, the reconnection occurs in various environments. The most
typical cases are shown in Fig. 14.3. Dark crosses mark the reconnection regions.
Numbers correspond to different magnetic status of environmental plasma in the
vicinity of reconnection region. Reconnections marked by #1 occur in magnetic
free environment. #2 corresponds to reconnections occurring in vicinity of vertical
magnetic field. In cases marked by #3 the neighboring magnetic field makes some
angle with gravity force, and #4 is when external magnetic field is almost horizontal.

The post-reconnection waves generated in these different cases will have differ-
ent properties depending on the magnetic status of the environmental plasma. The
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SDO/AIA  He II 304     2010 August 1

142 Mm

UT 19:39UT 19:19 UT 19:27

Fig. 14.2 Example of microflares and strong supersonic jet originated in the magnetic loop
arcades at the chromosphere/transition region temperatures. To increase a contrast, the images
were obtained by subtracting the subsequent movie frames with 60 s interval. The left panel shows
one of “quiet” moments of the arcade exhibiting a few microflares (marked by arrows); white
frame is the area occupied by loop system shown in Fig. 14.1. At UT 19:27 (middle panel) a well-
developed jet reaches a projection height of about 100 Mm. The right panel shows the maximum
phase of the jet
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Fig. 14.3 Sketch of magnetic structures above the photosphere and examples of reconnection
regions in different magnetic environments. Numbers correspond to different magnetic status of
plasma in the vicinity of reconnection region: #1 is magnetic free case; #2 corresponds to vertical
magnetic field near reconnection region (i.e., parallel to gravity force); #3 is when magnetic field
makes some angle with gravity force, and #4 is when external magnetic field is almost horizontal
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evolution of shocks and final energy release will be also different. Detailed analysis
of each case will be considered below. Before doing this we need to emphasize the
direction of energy transport.

It is important that in any case, whether the environment is nonmagnetic or
there is a magnetic field having parallel, oblique, or perpendicular direction with
respect to the gravity force, the most efficient energy transfer provided by the
post-reconnection shocks occurs in the direction of decreasing density, i.e., always
radially outward from solar surface.

The fact that the energy released due to the post-reconnection processes in
the environment of arbitrary magnetic topology is carried out radially outward is
extremely important for understanding one of the puzzles associated with the fast
solar wind. It was found (Woo 1996; Woo and Habbal 1999) that the fast solar wind
is organized in a form of small-scale filamentary ray-like structures.

Observations of density and velocity distribution in the outer corona obtained
from radio occultation measurements (Woo 1996; Woo and Habbal 1999) showed,
for example, that the density profile closest to the Sun at 1.15 R�, representing the
imprint of the Sun, is carried radially into interplanetary space by small-scale ray-
like structures that pervade the entire solar corona. Moreover, a significant fraction
of mass fluxes which extend into interplanetary space originate from the quiet sun
and the coronal hole areas (Cranmer 2009; Nistico et al. 2011; Zhao et al. 2014).

Hassler et al. (1999) have also reported on the connection between the fast
solar wind outflow and the chromospheric magnetic network. This means that
the mechanism responsible for the formation of fast solar wind must not only
connect the roots of the wind with the chromospheric network, but also explain how
generated flows are guided through strongly inhomogeneous atmosphere radially
outward. From this perspective the post-reconnection processes occurring in very
different magnetic regions, but always carrying energy radially outward, seem to be
the most reliable mechanism.

14.1.2 Post-reconnection Shocks in Upper Atmosphere: Types
and Characters

To illustrate the basic properties of post-reconnection processes in arbitrarily
magnetized environment, characteristic to upper atmosphere, we consider a two-
dimensional problem with B0 = (B0x, B0z), and assume that all the equilibrium
parameters depend only on the coordinate z, directed along the gravity force,
fg = −gz.

2D nonlinear MHD equations, in Riemannian coordinates (method of charac-
teristics, see, e.g., Landau and Lifshits 1987, Whitham 1974) reduce to a single
equation for z-component of the velocity u(z) which, for homogeneous medium,
has a form of the simple wave:

∂u

∂t
+ [v + αu]∂u

∂z
= 0, (14.2)
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whose parameters are constant at fixed characteristics

dz

dt
= v + cs, (14.3)

where cs = (∂p/∂ρ) is a sound speed, and v is characteristic velocity (Jeffrey and
Taniuti 1964):

v2± = 1

2

⎧
⎨

⎩
c2
s + B2

4πρ
±
√
(

c2
s + B2

4πρ

)2

− c2
s B

2
z

πρ

⎫
⎬

⎭
(14.4)

B2 = B2
x + B2

z , and α is a coefficient of nonlinearity:

α = 1

v

[
∂(vρ)

∂ρ
+ 4πρ(v2 − c2

s )

Bx

∂v

∂Bx

]

(14.5)

Note that other quantities, e.g., transverse velocity ux(z) and the magnetic field
Bx(z) evolve according to linear equations: in these quantities nonlinearity appears
in higher order (Sagdeev 1966; Sokolov 1991; Ryutova and Sakai 1993).

In the stratified medium,nonlinear distortions of the wave profile can still be
described by a Riemann equation if the spatial scale of nonlinear perturbations
is assumed to be small compared to the scale height. In this case all the wave
parameters vary slowly on characteristics, and (14.2) acquires a form of a quasi-
simple wave with non-zero body force, F(ρ,B, v) in its right-hand side (Asano and
Taniuti 1969; Ostrovskii and Rubakha 1974):

F(z) = v2(z)
1

W(z)

dW(z)

dz
(14.6)

where

W(z) �
[
ρ(z)v(z)

ρ0v0

]−1/2

(14.7)

with ρ(z) and v(z) being the values of density and characteristic velocity in the
undisturbed gas ahead of the shock front; subscript “0” marks their initial values.
The solution of (14.2) with the body force (14.6) is a quasi-simple wave (Landau
and Lifshits 1987; Ostrovskii and Rubakha 1974):

t −
∫ z

0

dz′

v±(z′)
+ u

W(z)

∫ z

0

αW

v2±(z′)
dz′ = Φ

( u

W

)
, (14.8)

where Φ is a function determined by the boundary conditions.
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The height of shock formation and its amplitude are determined by simultaneous
conditions on the derivatives of (14.8) (Landau and Lifshits 1987):

∂t

∂u
= 0,

∂2t

∂u2 = 0 (14.9)

For a given magnetic field geometry two branches of the velocity v±(z) ((14.4))
determine two independent characteristics along which nonlinear MHD waves
evolve.

We know that thin magnetic loops forming canopy-shaped arcades of different
sizes is an intrinsic property of the solar atmosphere from the chromosphere to
corona. In these arcades magnetic flux tubes may collide and reconnect. Notably,
the reconnections may occur in the differently magnetized environment. As shown
in Fig. 14.3 there are basically four most typical cases marked by numbers 1–4.

Below we describe these four cases in more detail, and illustrate them in
Fig. 14.4. Case numbers 1–4 correspond to cases marked by the same numbers in
Fig. 14.3.

No. 1 corresponds to the case when intense magnetic flux tubes collide at the
photosphere level in totally magnetic free environment (the external plasma β � 1).
Therefore, a slingshot effect generates pure acoustic waves,

v± = cs (14.10)

Propagating upward these waves steepen and become shocks with complex wavy
surfaces, whose further evolution leads to strong hydrodynamic cumulation and
production of high-energetic events as we have seen in the previous chapter.

No. 2 is the process when flux tubes collide and reconnect in the vicinity of
some vertical magnetic field, Bx � Bz. This case is typical for areas at or slightly
above the surface where magnetic field tends to be vertical. It may be realized as
well in higher layers of the atmosphere underlying coronal hole regions where the
“background” magnetic field is predominantly vertical. In this case the slingshot
effect generates MHD waves, and characteristic velocity (14.4) has two branches:
the upper branch is a pure acoustic wave, while the lower branch corresponds to the
Alfvén wave, propagating along the vertical magnetic field:

v+ = cs, v− = Bz√
4πρ

(14.11)

No. 3 corresponds to the case when the slingshot effect operates in an arbitrarily
oriented magnetic field which is typical of magnetic canopies, i.e. throughout entire
solar atmosphere. Two branches of (14.4) correspond to the fast and slow MHD
waves with phase velocities (respectively, v+ and v−):

v+ = B√
4πρ

, v− = cs cosθ (14.12)
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Fig. 14.4 Reconnection of magnetic flux concentrations in nonmagnetic (case No. 1) and
magnetic (cases No. 3–No. 4) environments. The second column shows external magnetic field,
the next column shows the characteristic velocities; the fourth and fifth columns depict the flux
tubes prior and after the reconnection, and the last column contains a slingshot outcome

where θ is the angle between the z-axis and the magnetic field (Bx = Bsinθ, Bz =
Bcosθ ). Only for this case we assume that plasma beta is small (actually, β ≤ 0.1
is already a good approximation).

No. 4 is the case when the shock is formed in the presence of a predominantly
horizontal magnetic field. In this case (Bz = 0), the characteristic velocity (14.4)
then has only one root corresponding to fast magnetosonic waves:

v+ =
√

c2
s0 + v2

A0 (14.13)

This situation is readily realized in upper chromosphere where magnetic fields form
a hierarchy of canopies. It is also often met in lower atmosphere, especially in
regions occupied by compact bipoles. In high-beta plasma the process is similar
to that of the acoustic shocks, while in low-beta plasma the process is dominated by
the properties of nonlinear Alfvèn waves.
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In all cases considered above it is the acoustic component that provides the action
of strong hydrodynamic cumulation, i.e., transport of energy by post-reconnection
acoustic shocks, and subsequent formation of radiative transients and collimated
jets. As we will see below, formation of shocks associated with the Alfvèn
component occurs in a restricted range of parameters, but frequency of these waves
may be quite high.

14.2 Heights of Shock Formation

To find the height of shock formation and the shock amplitude, we use (14.8)
and (14.9) and specify boundary conditions by assuming that the kick produced
by slingshot effect has a form of sinusoidal pulse with the initial velocity vA:

u(0, t) =
{

vA sinωt 0 ≤ t ≤ π/ω

0 t > π/ω

}

(14.14)

where ω � vA/R (R being a characteristic radius of reconnecting flux tubes). Then
the function Φ in (14.8) acquires a form:

Φ(u,W) = 1

ω
sin−1

(
u

vAW

)

(14.15)

With this function the first of two conditions (14.9) gives:

−
∫ z

0

α(z′)W(z′)
v2±(z′)

dz′ + 1

ω

1
√

v2
A − (u/W)2

= 0 (14.16)

The second condition, ∂2t/∂α2 = 0, gives

1

ω

u/W

[v2
A − (u/W)2]3/2

= 0 (14.17)

Thus, the shock formation occurs at the height zsh, determined by the inte-
gral (14.16), with u = 0:

∫ zsh

0

αW(z′)
v2±(z′)

dz′ = R

v2
A

(14.18)

The shock amplitude, u(z) as a function of height, can be found from (14.16).
A crucial role in the height of shock formation and the amplitude of the shock

is played by parameters α(z) and W(z), which in fact reflects thermodynamic
properties of medium and its magnetic status.
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To solve (14.16) and (14.18) one needs to use a specific model of the atmosphere,
and, in principle, take into account a back reaction of the temperature on the
propagation of shock waves. Here we restrict ourselves by description of basic
properties of the energy transfer process associated with the post-reconnection
shocks produced at different heights and in differently magnetized regions of a
low atmosphere. For this we assume that the equilibrium atmosphere is an ideal
gas (p = (k/m)ρT ) and the temperature gradient is adiabatic, (dT /dz) = [(γ −
1)/γ ](gm/k). For γ we will use below γ = 5/3 and a harmonic mean value
γ = 1.29.

As shown in Fig. 14.4, pure acoustic branch is a necessary component in almost
all cases (even the case No. 4 for a weak external field drops into this category).
This means that in any magnetic field geometry one of the channels of the energy
transport and its release is governed by properties of the acoustic shocks.

To illustrate the general properties of the shock formation, first we consider
the acoustic branch and then discuss the fast MHD wave associated with v+ =
B/

√
4πρ ( B =

√
B2

x + B2
z ).

For the acoustic waves the parameters α(z) and W(z) are as follows:

α+ = γ + 1

2
, W = exp

(
γ + 1

4

z

Λ

)

(14.19)

Equation (14.18), determining the height of the shock formation becomes as
follows:

γ + 1

2c2
s0(0)

∫ zsh

0
exp

(
5γ − 3

4

z′

Λ

)

dz′ = R

v2
A

, (14.20)

Integrating this equation yields:

1

z
(0)
sh

4Λ

(5γ − 3)

[

exp

(
5γ − 3

4

z

Λ

)

− 1

]

= 1 (14.21)

where z
(0)
sh is the height of shock formation in an unstratified atmosphere (Λ → ∞):

z
(0)
sh = 2

γ + 1

c2
s0

v2
A0

R (14.22)

(14.21) immediately gives the expression for the height of the shock formation in
the stratified atmosphere:

zsh = 4

5γ − 3
Λln

(

1 + 5γ − 3

4

z
(0)
sh

Λ

)

(14.23)
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For the Alfvèn branch out of (14.12) the height of shock formation is as follows
(Asano and Taniuti 1969; Ostrovskii and Rubakha 1974):

zsh = 4

3
Λln

[

1 − 3

4

z
(0)
sh

Λ

]−1

(14.24)

with z
(0)
sh � (2/3)R.

Figure 14.5 shows the height of the shock formation in stratified atmosphere
zsh, normalized to its value in the unstratified medium, z

(0)
sh : solid and dashed

lines correspond to the acoustic branch, while dash-dotted line to Alfvèn waves.
Naturally, the acoustic shock formation in the stratified atmosphere for upward
propagating waves occurs at lower heights than in the homogeneous medium, as
always zsh < z

(0)
sh . At the same time, for essentially different specific heat ratios

there is a little difference between the corresponding values of zsh. In both cases it
decreases monotonically with decreasing scale height and remains almost the same
for γ = 1.29 and γ = 5/3. We will see below that the shock amplitude, on the
contrary, is very sensitive to thermodynamic properties of medium.

Unlike the acoustic waves, the shocks associated with the Alfvén waves are
formed in the stratified atmosphere at much higher altitudes than in the homoge-
neous medium. The height of their formation quickly increases with decreasing
scale height, and if the parameters of medium and magnetic field are such that
z
(0)
sh > (4/3)Λ, the shocks associated with Alfvèn waves do not develop at all

(see (14.17)). This threshold is marked by dotted line in Fig. 14.5. Physically this
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Fig. 14.5 Height of the shock formation in stratified atmosphere, zsh, vs its value in the unstratified
medium, z

(0)
sh : solid and dashed lines correspond to the acoustic branch, while dash-dotted line to

Alfvèn waves. The dotted line is a boundary beyond which (to the right) the shocks associated with
Alfvèn waves do not develop
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means that in photosphere/chromosphere region where scale height is small, the
formation of Alfvèn shocks is not favorable even in the presence of strong magnetic
fields, i.e., in low atmosphere (or in any other height where z

(0)
sh > (4/3)Λ) the

generated Alfvèn waves will rather participate in other nonlinear processes. For
example, they may release the energy through the strong phase mixing or evolve
into solitary waves.

It is important to note that the frequency of these waves may be quite high—the
fact consistent with observations. The theoretical value of characteristic frequency
can be estimated as ω � 2πw/R, where w is the reconnection rate,

w = vA/lnRem, (14.25)

Rem being a magnetic Reynolds number (Petschek 1964). R is a characteristic
size of reconnection area. Remember that we deal with the post-reconnection
processes, and that the waves are generated by post-reconnection slingshot. For
the photosphere and low chromosphere, the characteristic radius of magnetic flux
participating in one act of reconnection is R ∼ 35 − 70 km (Tarbell et al. 1999,
2000; Ryutova and Tarbell 2000). Quantitative estimates are as follows. Magnetic
Reynolds number in these regions is Rem ∼ 103–106. If we take R ∼ 40 km,
then in the photosphere region for vA � 10 km s−1, ω ∼ 0.11–0.23 s−1, in low
chromosphere, for vA � 50 km s−1, ω ∼ 0.6 − 1.14 s−1; at vA � 100 km s−1, ω ∼
1.14–2.27 s−1.

The shock amplitude immediately after the shock formation, ush(z) as a function
of altitude and scale height can be found by evaluating the integral in (14.16) for
given parameters α, W(z) and z

(0)
sh , and resolving the equation with respect to u(z).

The results of these calculations for the acoustic and Alfvèn waves are shown in
Figs. 14.6 and 14.7, respectively. Two values of z

(0)
sh /Λ = 0.6, 1.0, have been used.
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Fig. 14.6 The shock amplitudes at the moment of the shock formation as a function of height for
the acoustic branch. Solid lines correspond to γ = 1.29, and dashed lines to γ = 5/3
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Fig. 14.7 The same as in Fig. 14.6 but for the Alfvèn waves. Unlike the acoustic waves the
amplitude of the Alfvèn waves grows exponentially at high altitudes

One can see that immediately after the shock is formed, its amplitude sharply
increases in all cases whether it is acoustic or Alfvèn wave. At large heights
the amplitude of the acoustic shock is proportional to exp[(5 − 3γ )/8], and for
monatomic gas it reaches some constant value (at about Mach numbers M �
2). For medium with γ = 1.29, the shock amplitude grows exponentially as
∼ exp(0.14z/Λ). The amplitude of the Alfvèn shocks at large distances is
proportional to exp(z/4Λ), providing their fast exponential growth with height
(Fig. 14.7). Such a behavior of the shock amplitude, however, is valid only up to
the altitudes of 2.5–3 Λ from the height of shock formation or up to the heights
where Mach number reaches quite moderate values of 1.5–2 (which is earlier). As
one can see from Figs. 14.6 and 14.7, in all cases this happens approximately at
about the same time. After which the shock amplitude becomes independent of the
Mach number and being subject to gradient acceleration, increases in accordance
with the power law (Whitham 1974; Landau and Lifshits 1987):

ush = u0(ρ0/ρ)κ (14.26)

where u0 and ρ0 are shock velocity and pre-shock plasma density at the reference
point, and κ = [2 + √

2γ /(γ − 1)]−1. For γ = 5/3, κ = 0.236 and for γ = 1.29,
κ = 0.201. Below we will use the results of this section for some quantitative
estimates.
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14.3 Energy Release in the Chromosphere-Transition Region

The universal character of the mechanism which works in wide range of physical
parameters and in any place where magnetic flux tubes or loops collide and
reconnect makes the after-shock jets and radiative transients ubiquitous throughout
the entire atmosphere overlying the quiet sun. To look into the mechanism deeper
and use it in practice let us make some quantitative estimates based on the
observational data.

14.3.1 Quantitative Analysis

Consider again example demonstrating direct connection between the changes of the
photospheric fields and their association with the transition region plasma flows and
bright radiative transients (Fig. 14.8). The upper panels are the MDI magnetogram
of the 66′′ × 85′′ area at some instance of time and C IV image of the same
region together with the SUMER spectra showing how the enhanced emission in
the chromosphere/transition region mimics the photospheric magnetic pattern. The
middle panel shows the time variation of positive and negative magnetic fluxes in
the area marked by red square in the MDI magnetogram, and corresponding changes
in the C IV intensity over this area (red line). The lower panel is the co-aligned
time variation of SUMER spectra in C II (green) and O VI (blue) lines. The most
prominent radiative transients produced above chosen area are marked by numbers
1, 2a, 2b, and 3.

The radiative transients highlighted in (Fig. 14.8) have very characteristic fea-
tures and precursors that are most typical of the majority of the observed bright and
high velocity events. The event marked by “1” corresponds to energy release in a
form of a microflare alone without significant flows. Two similar events marked
by “2a” and “2b” are typical to the “HEAT-JET” regime when highly concen-
trated cumulative energy is distributed between the radiative transient (having the
enhanced intensity in the C IV line) and plasma jets (cf. Fig. 14.5, Chap. 13). The
event marked by “3” corresponds to pure jet regime. It is remarkable that before
this event quite significant portion of negative magnetic flux has been moved into
the marked area. Simultaneous reduction of this newly emerged negative and pre-
existed positive fluxes resulted in the series of events, the strongest of which are
marked by “3” and “2b.”

As discussed throughout the book, these regularities are universal features of
the energy build up process that starts from the reconnection of opposite polarity
elements passes through shock formation, then through shock-shock interaction that
results in the release of energy in upper layers of atmosphere in one of the three
forms:

1. microflare;
2. microflare accompanied by plasma jets; and
3. only plasma jets.
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Fig. 14.8 Microflares and jets produced by reconnecting flux tubes. Upper panels are the
magnetogram, chromosphere in C IV line and corresponding SUMER spectra with mass flows
in lower chromosphere (C II line) and transition region (O VI line); a small region marked by a red
square in the MDI magnetogram is where the studied reconnection occurred. Middle panel shows
the time variation of positive and negative magnetic fluxes in the marked area, and corresponding
changes in the C IV intensity over this area (the red line); Lower panel is time variation of SUMER
spectra in C II (green) and O VI (blue) lines; Numbers 1, 2a, 2b, and 3 label the events used for
quantitative estimates
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The largest range of physical parameters corresponds to energy distribution
between the radiative transients and plasma flows. Usually weaker microflare is
accompanied by a stronger jets and v.v.

The time history of the photospheric magnetic fluxes (Fig. 14.8, middle panel)
shows, as always, a clear connection between the magnetic flux reduction and
subsequent appearance of energetic events in the chromosphere-transition region.
Before we discuss these particular events in detail, let us recall that in each
reconnection process only a limited portion of the magnetic flux is involved. For
typical magnetic flux tubes in the photosphere a characteristic radius of magnetic
flux tube participating in one elemental act of reconnection is ∼ 40–100 km (Tarbell
et al. 2000). Usually, colliding flux tubes are of different sizes, but each reconnection
reduces the magnetic flux of either polarity by equal amounts. In our example the
positive magnetic flux belongs to a large magnetic flux concentration while the
negative flux is small and isolated. Although the positive flux decreases with time,
its sawtooth character caused by the measurements taken at the edge of magnetic
conglomerate is not as informative as time variation of the negative flux.

For quantitative estimates we will use the measurements of the negative magnetic
flux (lower curve in Fig. 14.8, middle panel). For the background photospheric
parameters we adopt a reference model by Maltby et al. (1986) where at “zero”
level, (z = 0) the plasma density ρ � 2.8 × 10−7 g cm−3 and the temperature
T = 6500 K; the sound speed cs = 8.5 km s−1, and the scale-height Λ � 160 km.

First, we need to estimate the height of the shock formation, zsh, Eq. (14.23),
and the shock amplitude at this height which can be obtained from (14.16):

ush(z) = vA0 + vA0exp

(
γ + 1

4

z

Λ

) √[I (z) − 1]
I (z)

(14.27)

where I (z) is the left-hand side expression of (14.21) with the running coordinate
z instead of the fixed one zsh:

I (z) = 4Λ

(5γ − 3)z
(0)
sh

[

exp

(
5γ − 3

4

z

Λ

)

− 1

]

(14.28)

Note that at z = zsh, I (zsh) = 1, by definition. vA0 is the pre-shock velocity of the
wave generated initially by the post-reconnection slingshot effect. This velocity is
determined by the magnetic flux participating in the reconnection process, ΔΦ =
πR2B, and the reconnection rate, (14.16), or time, τ = RlnRem/vA. For the
quantitative estimates we will use for ΔΦ the measured drops of the magnetic flux
and for τ the corresponding observed times in which these drops occur.

Excluding from ΔΦ and τ the radius of the magnetic flux, we obtain an estimate
for the Alfvèn velocity:

v3
A = ΔΦ

π
√

4πρ

[
lnRem

τ

]2

(14.29)
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With the magnetic Reynolds number Rem � 103 typical to the photosphere (cf.
Parker 1979), measured times and corresponding magnetic flux changes give for the
events 1, 2a, 2b, and 3, respectively, vA = 3.61 km s−1; 4.18 km s−1; 4.12 km s−1

and 4.5 km s−1. These are typical values for the Alfvèn velocities in the photospheric
flux tubes with magnetic field strength ranging from 500 to 1000 G: vA = 2.7–
5.3 km s−1.

The radius of the magnetic flux participating in the reconnection process is
estimated as R = τvA/lnRem, which gives for these four events the values: 132,
163, 161, and 137 km. Now we can find the height of shock formation corresponding
to given parameters in the homogeneous atmosphere, z

(0)
sh , using (14.22), and

respectively, the height of the shock formation in the stratified atmosphere, zsh, using
Eq. (14.27). We then find the shock amplitude, ush(z). Results of these calculations
are shown in Table 14.1 and Fig. 14.9.

One can see that height of the shock formation ush is very close to the solar
surface: from these heights shock wave quickly accelerates, and in a few scale

Table 14.1 Parameters and
results of quantitative
estimates

Events 1 2a 2b 3

ΔΦ (1017 Mx) 3.7 6.6 6.3 5.0

τ (s) 252 270 270 120

vA0 (km s−1) 3.61 4.18 4.12 4.5

R̃ (km) 132 163 161 137

z
(0)
sh (km) 549 505 514 370

zsh (km) 206 198 199 169

zsat
sh (km) 750 780 780 800

usat
sh (km s−1) 14.5 16.0 16.2 19.3

M0 1.7 1.9 1.9 2.3
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Fig. 14.9 The shock velocity for chosen events as a function of height. The vertical bars indicate
the approximate height at which the shock amplitude saturates
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heights gets saturated. Figure 14.9 shows the shock velocity as a function of the
atmospheric height (z=0 corresponds to ρ � 2.8 × 10−7 g cm−3 and T = 6500 K).
The vertical bars indicate the height at which the shock amplitude saturates: from
there the velocity of shock, which becomes independent of the Mach number and
scale height, increases in accordance with the power law, (14.26), i.e., as

ush(z) = usat
sh

[
ρ(z)

ρsat

]0.236

(14.30)

As expected, the shock amplitude saturates at Mach numbers M0 ∼ 1.5–2 (see
last line in Table 14.1). The corresponding heights are between 750–800 km. The
mass density here is ρsat � 4 × 10−10 g cm−3. At height z = 2000 km (ρ � 3 ×
10−13 g cm−3) (14.30) gives following estimates for the shock velocities produced,
respectively, in the events 1, 2a, 2b, and 3: 79 km s−1, 87 km s−1, 88 km s−1, and
105 km s−1.

To estimate a behind shock temperature, T2 = M2T1(3γ − 1)γ −1, at this height
we adopt for the sound speed the value 13 km s−1 and background temperature
T1 = 7300 K. Then Mach numbers for each event are: M(1) = 6.1; M(2a) = 6.7;
M(2b) = 6.8; M(3) = 8. Respectively, the behind shock temperatures are T

(1)
2 =

8.5 × 104; T
(2a)

2 = 10.2 × 104; T
(2b)
2 = 10.5 × 104; T

(3)
2 = 1.46 × 105.

The obtained estimates are the most typical for the measured and inferred
physical parameters of the chromosphere and transition region.

14.3.2 Total Energy Flux in Quiet Sun Atmosphere

The total energy flux released by the entire quiet sun “magnetic carpet” is consistent
with the observed UV/EUV radiation. It can be estimated on the basis of observed
time scale (∼40 h) in which the total magnetic field in the quiet sun network
is replaced (Title and Schrijver 1997). The energy release in each event of the
reconnection is on the order of

Wmag � B2

8π
SL (14.31)

where S is the cross section of the interacting area, S = πR2, and L is a
characteristic length of the flux tube. In the quiet sun the magnetic filling factor,
f � (S/d2) � 1 (d being a characteristic distance between the flux tubes). Let
the velocity of relative motion of colliding flux tubes be vT , then a “collision” rate
in the system of non-collinear flux tubes, n�‖, may be estimated as n�‖ � vT /d . The
number of events per unit area of solar surface per unit time is N = n�‖/d2. The
energy released per unit area of solar surface per unit time is:

E = B2

8π
S L

1

d2

vT

d
� B2

8π
f vT (14.32)
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or in terms of a mean flux density B̄ = B(S/d2) = Bf ,

E = B̄2

8π

vT

f
(14.33)

The velocity vT can be estimated as vT = d/τ , where τ is the time of the total
replacement of the quiet sun magnetic flux, τ � 40 h (Title and Schrijver 1997).
This gives:

E = B̄2

8π

vT

f
= B̄2

8π

d

f τ
= B̄2

8π

√
S

f 3/2τ
(14.34)

Examples: for B̄ � 2 G, f � 5 × 10−3, R̄ � 200 km, the energy flux
� 105 erg/(cm2 s). For B̄ � 5 G, f 10−2, the energy flux � 2.5105 erg/(cm2 s).

This energy supply is maintained continuously by constant addition and replace-
ment of newly emerging small-scale network magnetic fluxes, keeping thus the
chromosphere/corona above the quiet sun warm and topologically imitating the
pattern of small-scale magnetic elements.

14.4 Magnetic Energy Avalanche and the Fast Solar Wind

What we see within a few solar radii of the solar surface as a slow and fast wind
seems to be a natural consequence of the two different types of magnetic field
clusters observed on the solar surface:

1. the dense conglomerates of active regions, and
2. the rarefied ensembles of small scale magnetic flux tubes covering the rest, 90%

of the solar surface.

The slow wind, flowing from the sun’s equatorial belt with typical velocities below
500 km s−1 and having highly variable physical properties, seems to be associated
with the active regions which form the near-equatorial belt of active latitudes and
exhibit a strong variability over the solar cycle.

The fast wind flowing on average at 750 km s−1 fills the remaining vast regions of
interplanetary space and consists of highly thin intermittent streamers. Although the
small-scale structures are highly dynamic, the overall properties and background
physical parameters of the fast wind appear to be almost constant (see, e.g.,
proceedings of the Solar Wind Eight conference, Gosling et al. 1996).

Intuitively, it is obvious that the slow wind is associated with the active regions
and the fast wind with the quiet sun magnetic network. But how these two
components of the solar wind are connected to their too far removed source regions
and where are they actually rooted in the Sun were long-standing questions.
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Earlier studies of the solar wind has been based mainly on remote in situ
measurements conducted beyond 0.3 AU. Restricted by extrapolations, high speed
streamers were related to coronal holes, and, respectively, the heating and accelera-
tion mechanisms in the fast component of the wind were based on large scale open
magnetic structures typical to coronal hole regions (Hundhausen 1977; Zirker 1977;
Gosling et al. 1995). And it was the corona that has been unquestionably considered
as the base of the solar wind.

Detailed observations of density and velocity structure in the outer corona
obtained from radio occultation measurements (Woo 1996; Habbal et al. 1997;
Woo and Habbal 1999) provided a link for understanding the connection between
the Sun and interplanetary space by probing the solar wind before it evolves with
heliocentric distance. These data combined with later ultraviolet and white-light
measurements of solar atmosphere showed, for example, that the density profile
closest to the Sun at 1.15 R�, representing the imprint of the Sun, is carried
essentially radially into interplanetary space by small-scale ray-like structures that
pervade the entire solar corona, and that a significant fraction of mass fluxes which
extend into interplanetary space originate from the quiet Sun regions, and are
indistinguishable in properties from those emanating from polar coronal holes. In
other words, the primary energy source of the fast wind seems to be associated
with small-scale magnetic flux tubes both in large quiet sun regions and regions
underlying coronal holes. It was also found that there is a direct connection between
the fast solar wind outflow and the chromospheric magnetic network (Hassler et al.
1999).

One of the most important details of the above observations is the fact the
energy flow occurs radially outward from the sun. This means that no matter how
complicated are the magnetic structures throughout the solar atmosphere from its
surface, the energy that fuels the fast solar wind always finds its way vertically
upward, which obviously requires action of some universal mechanism. Such a
mechanism may well be associated with the post-reconnection shocks produced
all over the quiet sun surface in arbitrarily magnetized environment as shown in
Figs. 14.3 and 14.4. We saw that in any case, no matter what the environmental
magnetic field is, even if it is horizontal (case # 4), the energy released due to
the post-reconnection processes always flows radially outward along the gravity.
The energy content in these processes (Sect. 14.3) is comparable with the energy
estimated at the base of the solar wind.

We may conclude, therefore, that the fast solar wind can originate from the entire
quiet sun surface supported by the following facts:

1. Intense hydro-magnetic activity resulting from interacting small-scale network
magnetic elements in the quiet sun and regions underlying coronal holes creates
the magnetic energy avalanche maintained by the continuous supply of emerging
magnetic elements and their all-time reconnections;

2. Cumulative jet formation as an intrinsic feature of the post-reconnection dynam-
ics of flux tubes in the arbitrary magnetic environment is always in place;
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3. In the presence of vertical or near-vertical magnetic fields the jet formation is
accompanied by the generation of high frequency Alfvén waves (Axford and
McKenzie 1992);

4. The resulting energy flux estimated on the basis of observed time scale (∼40 h)
in which the total magnetic field in the quiet sun is replaced is enough to explain
the observed UV/EUV radiation of the order of 5–10×105 erg cm−2 s−1;

5. The high rate of the emergence of new fluxes and diversity of their parameters
result in the cascade of shock waves, creating thus magnetic energy avalanche
and relatively steady energy input into higher layers of atmosphere: short
recycling time of total magnetic field in the quiet sun network ensures that
produced energy flux will be uniformly felt in the corona. This in turn provides
the observed steady character of the fast wind.

6. The most efficient energy transport provided by the gradient acceleration in
strongly stratified photosphere/chromosphere region and occurring radially out-
ward from solar surface strongly supports the observations showing that the
fast solar wind may be organized in a form of small-scale filamentary ray-like
structures diverging radially outward from the solar surface.

It is important to note that the purpose of this section is to address the problem
of primary energy source that may originate the fast wind. A priori it is clear that
there is no other energy than that stored in the convective zone and highly dynamic
magnetic network that could produce the quiet sun corona and start the fast wind.
This mechanism seems to provide a natural way of the energy transfer from a huge
photosphere/convective zone energy reservoir to upper layers of atmosphere and
is consistent with the observed properties of heating and high velocity events in the
bottom of the fast wind. Obviously these processes occur at much earlier stages (and
at much lower altitudes) than the body of the wind is formed and get accelerated.
The link between these two stages is subject of future studies.

14.5 Problems

14.1 Consider a strong acoustic shocks and compare density compression for
adiabatic and isothermal shocks.

14.2 Find the condition for unlimited cumulation of a cylindrically converging
electromagnetic waves in a volume limited by radius Rcyl (Zababakhin and Nechaev
1958).
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Chapter 15
Response of the Corona to Magnetic
Activity in Underlying Plage Regions

Abstract The fact that corona is strongly inhomogeneous in space and evolves in
time in very different ways means that the processes of energy production, flow,
and release have several branches. The processes of the extraction of energy stored
in the photosphere strongly depend on the magnetic filling factor, i.e., whether
we deal with the quiet sun network, plages or active regions. So far we were
studying rarefied ensembles of flux tubes typical to quiet sun. In this chapter,
we move to denser ensembles of flux tubes typical to plages and consider the
response of the upper atmosphere to magnetic activity in underlying plage regions.
We will see that the character of the EUV emission above plage regions that are
dominated by single polarity magnetic elements, i.e., unipolar plages, always has
an amorphous shape that topologically mimics the shape of the underlying plage.
Contrary to this, the EUV emission above mixed polarity plages is highly discrete
and consists of sporadic localized radiative transients. Such a different response of
the chromosphere/corona to unipolar and mixed polarity plages obviously implies
the action of different mechanisms for energy production, flow, and release. In all
cases, however, the primary energy source lies in continuous hydromagnetic activity
among the photospheric magnetic fields. It is just the character of this activity,
different in differently magnetized regions, that determines the processes of the
extraction of energy and its transport throughout the solar atmosphere.

15.1 Magnetic Imprint of Plage Regions in the Corona

A great variety of the coronal structures, from large-scale steady loops associated
with active regions, amorphous structures seen above unipolar plages, all kinds of
flares and microflares, evolve in time in different ways and have underneath (at
the photosphere) very different patterns of magnetic fields and plasma flows. It is,
however, obvious that despite of all the diversities of the observed phenomena, the
primary energy source is associated with the photospheric magnetic fields.
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The specifics of the photospheric magnetic fields and their interaction with
highly dynamic environment determine in large the action of particular physical
mechanism of energy production and its flow into upper layers of atmosphere.
These mechanisms lead, in the first place, to formation of one or the other type of
chromospheric and coronal structures, reflecting the composition of the underlying
photosphere, and then to the release of incoming energy. It is important that along
the filling factor, a decisive role in the energy production is played by the dominant
polarity of the region. This is especially prominent in plages and quiet sun regions
which may either consist of mixed polarity elements or be dominated by one polarity
features. This is also true for sunspots and active regions where inclusions of
opposite polarity elements are permanently observed.

Response of the chromosphere and corona to hydromagnetic activity in these
largely different magnetic clusters is quite different. We have already seen that
regions with mixed polarity flux tubes in quiet sun produce localized microflares and
jets in the overlying chromosphere and corona. In this chapter, we will see that the
EUV emission above unipolar plages has the amorphous structure and very peculiar
braidlike behavior in time. As in case of mixed polarity regions, the chromosphere
and corona above the unipolar regions also mimic magnetic topology of underlying
photosphere.

Figure 15.1 represents a typical view of the sun’s region containing various
clusters of magnetic elements and its overlying chromosphere and corona. The
images are taken on January 10, 2012 by the AIA and HMI instruments on the SDO.
The top left panel is a magnetogram containing the active region (AR), unipolar
plage (the red contour), mixed polarity plage (the blue contour), and quiet sun (QS).
The top right panel is the overlying chromosphere at 5 × 104 K in the He II line.
Two bottom panels are the corona at 6.5 × 105 and 1.3 × 106 K temperatures in Fe
IX 171 and Fe XII 193 lines, respectively. The white arrows in the chromosphere
and coronal images show a huge body of the amorphous emission that overlies and
mimics the magnetic pattern of a unipolar plage. The blue arrows show sporadic
events in the chromosphere and corona localized above mixed polarity plage. The
hot coronal loops and sporadic events overlie the active region. Note that the
chromospheric emission above the quite sun has a discrete character, obviously
associated with the isolated network elements. Higher in the corona the emission
above the quiet sun becomes diffusive. It is interesting that this emission often looks
“perforated,” which is well seen in the Fe XII 193 line (bottom right). The dark lanes
making the bushy pattern coincide with supergranular lanes. These are the sites of
spicules whose cool material protrudes the hot coronal plasma.
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Fig. 15.1 Snapshots of an ordinary region of the sun containing various kinds of magnetic struc-
tures: the active region (AR), unipolar plage (demarcated by the red contour in the magnetogram),
mixed polarity plage (demarcated by the blue contour), and quiet sun (QS). A huge body of a
fuzzy emission in the chromosphere and corona overlying the unipolar plage region reflects the
shape and location of the plage. The same is true for a sporadic events occurring above the mixed
polarity plage (the blue arrows). The images are taken by the SDO instruments in four wavelengths
on January 10, 2012. Field of view is 440 Mm × 563 Mm

15.2 Coronal Dynamics Above Unipolar and Mixed Polarity
Plages

To illustrate the details of the photosphere/corona coupling and see associated
regularities between the coronal emission and the underlying chromosphere and
photosphere, we use multiwavelength observations from the TRACE instruments
and the MDI on SOHO.

The analyzed data sets, obtained on June 10, 1999, consist of time series of high-
resolution MDI magnetograms co-aligned with the TRACE 1600 Å, Fe IX/X 171 Å,
and Fe XII 195 Å lines. The data cover a 166′′×270′′ area near disk center. There are
several sunspot groups and both types of plages, unipolar and mixed polarity. The
period of observation is over 10 h. Figure 15.2 shows a sample MDI magnetogram
(top) and overlying corona in Fe IX/X 171 Å line (bottom). One can see three
sunspots in the region and several plages. The region marked by a triangle is a
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Fig. 15.2 Aligned MDI and TRACE images taken on June, 10 1999. MDI magnetogram is scaled
from −1000 to 1000 G. Field of view 120 Mm×196 Mm. The region demarcated by a triangle is
an example of plage with mixed polarity magnetic elements; rectangular and heart-shaped regions
are examples of unipolar plages

typical mixed polarity plage, rectangular- and heart-shaped regions are examples of
unipolar plages.

The corona above the sunspots and plages shows all kinds of formations: steady
large-scale loops, patchy amorphous structures, X-ray bright points, and various
radiative transients. To study temporal variability of these formations, the data were
compiled in co-aligned movies with a 15 s cadence to use again the procedure of
space-time cuts, and follow the motions of various bright patches lying along the
cut (Ryutova and Shine 2004). Simultaneous movies taken in the TRACE 171, 195,
and 1600 Å lines allow to study a character of temporal behavior of the enhanced
emission at different heights and temperatures. Figure 15.3 shows snapshots of
corona at two temperatures with five space-time cuts shown by straight lines and
marked by numbers 1–5. The near horizontal slices are made from left to right; the
vertical slices are made from top to bottom. Note that the difference between the
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Fig. 15.3 Snapshots of the entire field of view at T � 106 K ( 171 Å) and T ∼ 2 × 106 K (Fe XII
195 Å). The straight lines marked by numbers 1–5 are the space-time cuts unfolded in Fig. 15.4.
It is remarkable that large-scale loops prominent in 171 Å (white arrow) faded significantly in the
Fe XII 195 Å line, while all spongy structures seen in the 171 Å emission remain in place at the
higher temperatures. Note that time difference between 171 and 195 Å snapshots is 6 h 20 min, and
yet the amorphous emission in both coronal lines mimics closely the magnetic pattern of unipolar
plages. Black arrows mark a mixed polarity plage

start times of these two sets is about 6 h, and yet the properties of the hotter λ 195
emission are remarkably similar to those of λ 171.

Space-time slices reveal clear differences in the properties of the emission at
the coronal and chromospheric temperatures associated with the sunspot and plage
regions.

Intersections through large-scale coronal loops (marked by curved arrows in
Fig. 15.4) show a slow process of brightening up and dimming down. These are
long-living quasi-steady loops showing transverse oscillations accompanied by
merging and splitting processes.

The enhanced emission above the unipolar plages is always of amorphous
texture. When observed in high cadence time series this fuzzy emission shows



406 15 Response of the Corona to Magnetic Activity in Underlying Plage Regions

1
2
0
 m

in

3 4 5

Fe XII 195

t   =16:01
0

101 Mm
1

7
7

 m
in

Fe IX/X 171

21

t  =10:07
0

Fig. 15.4 Examples of the space-time tracks along lines 1–2 in Fe IX/X 171 images (upper panels)
and along lines 3–5 in Fe XII 195 images (lower panels). All over the chosen area coherent
braidlike structures are well seen above each unipolar plage (some are marked by thin white
arrows); the mixed polarity plage produces a frequent radiative transients—jets and microflares,
hot enough to be seen at 106 K (series of small arrows along slices 1 and 3). Thus, the response of
corona to hydrodynamic activity in a unipolar and mixed polarity flux tubes is radically different.
Curved arrows demarcate intersections through long-living quasi-steady coronal lops with their
subtle motions and slow intensity variations

extremely sturdy well-organized coherent structures having braidlike appearance.
These are indicated by thin white arrows in Fig. 15.4.

Braidlike coherent structures remain regular as long as the plage preserves its
properties. They are not affected by overlying or neighboring coronal loops. Their
destruction is associated only with the emergence of opposite polarity magnetic
elements in the unipolar plage. Such an event is marked, for example, by the
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thick white arrow in the top left panel of Fig. 15.4. Just before the appearance of
a compact flare, additional magnetic flux of the opposite polarity has emerged in
the underlying plage, and destroyed the braided coherent structure. This interesting
phenomena were discovered by Shine et al. (1999). We will see below that the
braidlike structures are ubiquitous for the corona overlying the unipolar plages and
have very natural explanation (Ryutova and Shine 2004).

Contrary to long-living braidlike structures, coronal emission above mixed
polarity plages is highly discrete and consists of frequent localized transients,
resembling a continuous irregular firework.

The system of mixed polarity magnetic elements intrinsically prevents the
formation of coherent structures. This is clearly seen in the space-time cut # 1
(Fig. 15.4). This cut (made from top to bottom) first crosses a negative polarity
unipolar plage (see Fig. 15.3, upper panel), then enters the region of mixed polarity
plage (black arrows in Fig. 15.3) and finally crosses the site of quasi-steady loops.
Accordingly, the space-time image (Fig. 15.4 upper left panel) shows first a braided
coherent structures, then frequent sporadic microflares (marked by the set of short
arrows), and finally the “lazy” motions of quasi-steady loops. Another cut through
this area is made in the hotter 195 Å line (cut # 3 in Fig. 15.3, lower panel). One can
see that sporadic radiative transients produced by the mixed polarity plage are as
frequent at 2 × 106 K temperatures as in lower corona. It is important that coherent
structures are also formed at 2 × 106 K temperatures (cuts 3–5), and have the same
properties and longevity as their counterparts in lower corona.

15.3 Properties of Braidlike Coronal Structures

The braidlike structures, being quite similar, still have quite distinguishable proper-
ties from one region to another. One of the main causes affecting them is magnetic
filling factor of underlying plage. To see what can we learn from comparing the
various regions, we choose the most typical cases that may characterized as Rare,
Medium, and Dense plages. These are illustrated in Figs. 15.5a–d and 15.6e–h. Each
figure contains the snapshots of the magnetogram and its overlying corona in Fe
IX/X 171. Space-time slices made over the coronal emission are represented as
always by white lines. The time interval is 177 min. Analyzing these figures we
may summarize some general properties of the coherent structures as follows.

First of all, the braidlike structures have an isotropic nature. One can see that two
parallel cuts, a and b in Fig. 15.5 made over a rarefied plage show similar space-
time behavior. The same is true in case of medium plage, demonstrated by cuts e
and f which are made under different angles, and in case of densely populated plage
shown by cuts g and h (Fig. 15.6).

The next important feature of the coherent structures, as we have already
mentioned, is their sturdy character. Once formed, they remain regular as long
as their underlying plage remains unipolar, which may usually last for hours.
Their destruction, sometimes only temporary, occurs if there is emergence of
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Fig. 15.5 Some properties of the coherent structures: (1) They have an isotropic nature (cuts
a–b); (2) The braid period depends on the plage magnetic filling factor; (3) Emergence of
opposite polarity fluxes destroys the well-organized structures (space-time image c), and (4) The
braidlike structure along cut d remain quite regular until the appearance of a “mini-flare” caused
by emergence of an opposite polarity flux tube in the photosphere. White boxes are used for
quantitative analysis

opposite polarity magnetic flux. This is shown in panel c, Fig. 15.5 and panels
g and h, Fig. 15.6. In the first case, along the cut c a group of negative polarity
elements emerged (around the region marked by white arrow in the magnetogram).
Interaction of opposite polarity flux tubes totally destroyed the braidlike structures
replacing them by frequent sporadic microflares. Note that neighboring coherent
structures are not affected by the whole series of radiative transients (cut d). In two
other cases, along the cuts g and h (Fig. 15.6) a single opposite polarity element
emerged around UT 12:27 and caused appearance of a mini-flare that temporarily
destroyed coherent structure. This is also seen in space-time images g and h. A flare
that appeared at UT 12:27 (cf. Fig. 15.4, panel 1, thick white arrow) destroys only
its “own” structures while neighboring structures (to the right) remain unaffected.

The braid period depends mainly on the magnetic filling factor of the underlying
plage. The braid period is in fact, a time interval between two neighboring peaks
of intensity, and thus is directly measurable. As a result, one finds that the denser
the plage, the shorter is the braid period. Using the above observation one gets the
following. The rarefied plage with a magnetic filling factor, f � 0.2, produces a
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Fig. 15.6 Properties of the coherent structures (cont.) over medium and densely populated plages
showing a ubiquitous nature of a spectacular braidlike structure

coronal emission with a braid period T � 20 min. For a denser, medium plage with
f � 0.3, T ∼ 10 min. Above the dense plage Dense with f > 0.4, the braid period
is T ∼ 6 min. The filling factors were computed from the MDI magnetograms as a
fraction of a plage area covered by magnetic field.

To better understand the properties and nature of the coronal emissions above
the unipolar and mixed polarity plages, it is important to examine the properties
of the underlying chromosphere/transition region, which is the first to respond
to magnetic activity in the photosphere. As expected, there is a clear difference
between the response of the chromosphere to dynamic changes in the unipolar and
mixed polarity plages.

Figure 15.7 is an example of the analyzed data sets. Shown is the eastern part
of the studied region in TRACE 1600 Å, corresponding to a range of temperatures
in the interval T ∼ 6 × 104–2.5 × 105 K. Space-time cuts 1 and 2, made over
the unipolar plages, show the typical pancakes—regular chromospheric oscillations
with periods 3–6 min. Cuts 3 and 4 made over the mixed polarity plages show all
kinds of sporadic brightening from quite strong and long lasting ones (marked by
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Fig. 15.7 Space-time images in the chromosphere. Cuts 1 and 2 are made over the unipolar
plages, while cuts 3 and 4 are made over the mixed polarity plages. Panels 1 and 2 show a regular
oscillations of intensity corresponding to waves with 3–6 min period; Panels 3 and 4 show both,
long lasting and brief sporadic brightenings typical to chromosphere overlying mixed polarity
plage

white arrow on the image (3), to whole series of short-living UV flashes (see image
(4)). These brightenings turned out to be precursors of coronal radiative transients.

15.4 Comparison of Coronal Emission Above Mixed Polarity
and Unipolar Plages

Long lifetime and sturdy character of the coronal emission above plage regions
allow to perform quantitative analysis of the observations. For example, the space-
time images, which themselves carry valuable information for diagnostics, may be
complimented by the intensity variation over a particular area. To demonstrate such
an approach, let us allocate several small regions with the area size of some S �
2.2 Mm × 2.2 Mm, and, using the movies, compute the time variation of intensities
in these areas. Three examples of such a procedure are shown in Figs. 15.8, 15.9,
and 15.10.

Figure 15.8 represents the coherent emission above the unipolar plage, marked
by white rectangle in Fig. 15.6e. A blown up view of this region and a corresponding
sketch are shown in Fig. 15.8, left. Small white squares in these images demarcate
locations corresponding to the apex of the emission and knots over which the
intensity curves are computed. These are shown in the right panel of Fig. 15.8. As
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Fig. 15.8 Intensity curves of the Fe IX/X 171 emission radiated from two 2.2 Mm×2.2 Mm
regions located in the apex and in the knot of the braidlike emission. Left: Space-time slice of the
exemplary region (elongated box in Fig. 15.6e) and its sketch; white squares indicate the apex (Ap)
and knot (Kn) regions where the intensities are measured. Right: Thick lines show the intensity
variation in the knot and apex regions during the 177 min period, and thin curves represent an
average background intensity. Maximums in the knot region correlate with minimums in the apex
region, and appear with about 10 min periodicity

expected, maximums of intensity in the knot region coincide with minimums of
intensity in the apex region, and vice versa. The braid period here is about 10 min.
The intensities are in arbitrary units. To emphasize the significance of signal of the
enhanced emission, we plot the integrated background intensity curves, which are
shown for comparison by thin solid lines.

Figure 15.9 also represents the temporal variation of spongy emission above the
unipolar plage. The left panel is the space-time sample marked by white box in
Fig. 15.5d. One can see an unmistakable braidlike structure of the emission. To
enhance the visual effect we made a sketch of a segment marked by box in left
panel, trying to follow the intensity borders as they look. One can notice that in
this case, “left” and “right” apexes are slightly shifted with respect to each other.
The measured intensity variations over these areas are shown in the right panel of
Fig. 15.9. Both peaks appear with about 15 min periodicity. A longer period of these
braided structures (compared to previous example) is consistent with the fact that
underlying plage region in this case is more rarefied.

Note also that in this case toward the end of observations coronal emission
gets strongly enhanced, but still preserves its oscillatory pattern. The enhancement
is caused by emergence of small-scale opposite polarity flux tubes, which by
interacting with the existing magnetic flux tubes supply enough energy to enhance
the emission, but not destroy the structure itself.
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Fig. 15.9 Temporal behavior of the Fe IX/X 171 emission radiated above the rarefied plage region
along the slice d (Fig. 15.5d, white box). Two left panels show a braided behavior of the emission.
The right panel contains the intensity curves measured for 2.2 Mm×2.2 Mm regions confined
in small white boxes: (1) the “left” apex and (2) the “right” apex. Maximums in the “left” and
“right” apexes are slightly shifted with respect to each other enhancing the visual impression of
braidlike appearance. Period is about 15 min. Thin lower curve represents an integrated background
intensity. A strongly enhanced emission during last 70 min is caused by the emergence of the
opposite polarity flux and its interaction with the existing magnetic elements

Totally different is the behavior of coronal emission above the mixed polarity
plage. Examples of the intensity curves for the Fe IX/X 171 emission line above
mixed polarity plage (2.2 Mm×2.2 Mm white square above the short arrows in the
upper left panel of Fig. 15.4) are shown in Fig. 15.10 together with the intensity
curve measured for TRACE 1600 above the unipolar plage (Fig. 15.7, cut 2).
The upper, Fe IX/X 171 emission curve is measured above 2.2 Mm×2.2 Mm area
marked by white square above the short arrows in the upper left panel of Fig. 15.4.
The lower, 1600 emission curve is measured over the region marked with cut 2 in
Fig. 15.7. Thin curves represent corresponding background intensities.

A series of million degree radiative transients of various duration are clearly
seen in the upper curve of Fig. 15.10. Contrary to this, UV emission above the
unipolar plage (“pancakes”) shows regular oscillations with about 270 s period.
Generally period of these oscillations ranges between 3 and 6 min. Note that in
most cases 1600 oscillations are modulated. One can see that in this particular case
the modulation period is about 120 min.

Obviously, the physical processes behind the observed regularities in the chro-
mosphere/coronal emission are directly associated with the mechanisms of the
energy extraction from the photospheric magnetic fields, and must be different for
differently magnetized regions. Phenomenology of these processes is a subject of
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Fig. 15.10 Intensity curves measured for 3 × 3 arc sec regions: upper curve in Fe IX/X 171 emis-
sion line is computed above the mixed polarity plage (short arrows in Fig. 15.4), and shows series
of significant flares and microflares of various duration; lower curve in the chromospheric 1600
emission line is computed above unipolar plage (Fig. 15.7, cut 2), and shows regular oscillations
with period less than 5 min. Thin curves represent corresponding background intensities

the next section. Before we turn to this, it is useful to briefly summarize the results
of this section.

Plage dominated by unipolar magnetic flux tubes:

1. The enhanced emission in TRACE 1600 (T ∼ 6 × 104–2.5 × 105 K), Fe IX/X
171 Å, and Fe XII 195 Å (T ∼ 106 and T ∼ 2 × 106) lines mimic the plage
magnetic pattern.

2. The emissions in Fe IX/X 171 Å and Fe XII 195 Å lines exhibit coherent braidlike
structures in space-time images, and have an isotropic character. The structures
remain regular as long as an underlying plage preserves its general properties.
The braid period depends on the magnetic filling factor of plage: the denser the
plage, the shorter the braid period.

3. There is no direct connection between the coronal emission and individual
magnetic elements. Moreover, the actual distribution of individual magnetic
elements inside the plage does not play a role. Whatever irregular pattern they
form inside the plage, the coherent structures are regular and occupy an area
somewhat larger than the plage but with boundaries which follow closely the
demarcation line of the plage region.

4. The only factor observed to disrupt these structures was the emergence of the
opposite polarity magnetic field in the plage dominated by one polarity magnetic
elements.

5. The emission in TRACE 1600 Å, corresponding to chromosphere and transition
region temperatures, not only mimics the general shape of underlying plage, but
also traces the individual magnetic flux tubes to the limit of their resolution.
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6. The space-time images in TRACE 1600 Å show typical regular oscillations with
3–6 min period seen in space-time images as pancake structures.

Mixed polarity plage:

1. The enhanced emission in TRACE 1600 (T ∼ 6 × 104–2.5 × 105 K), Fe IX/X
171 Å, and Fe XII 195 Å (T ∼ 106 and T ∼ 2 × 106) always exists above the
mixed polarity plages, but has a discrete nature.

2. The emission in Fe IX/X 171 and 195 Å lines shows a random set of sporadic
radiative transients in the region confined by boundaries which coincide with the
general boundaries of the underlying plage.

3. There is a correlation between the numbers of radiative transients and the density
of mixed polarity flux tubes.

4. Mixed polarity plages intrinsically prevent formation of any kind of a stable
structures and fill the coronal space by randomly distributed frequent flares and
microflares.

5. The emission in TRACE 1600 Å is quite irregular and dynamic, but traces closely
the magnetic pattern of underlying plage.

6. The space-time images in TRACE 1600 Å show random “flashes”—localized,
sporadic brightening which may be attributed as precursors for the coronal
radiative transients.

15.5 Energy Extraction Mechanisms from the Ensembles
of Photospheric Flux Tubes

In this section, we discuss a phenomenology of physical processes that may extract
the energy stored in the plages and provide the transport of this energy into
upper layers of atmosphere. These processes include the formation of a million
degree plasma exhibiting regular structures observed above the unipolar plages,
and sporadic radiative transients above the mixed polarity regions. It is important,
that in the first case, the mechanism should explain not only the fact that the
regular coronal structures are observed only above the unipolar plages, but also two
different characteristic timescales: the short period of braiding and the longevity
of their duration. As to the second case, i.e., energy production and transfer in
mixed polarity plages, the physical processes here must be similar to those in the
quiet sun region where mixed polarity flux tubes form rarefied ensembles and
sustain ubiquitous reconnection events. The main difference, however, is that the
reconnection and post-reconnection processes that occur in the quiet sun regions
are strongly intensified in plages due to higher magnetic filling factor. This will be
discussed below before we turn to the problem of unipolar plages.
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15.5.1 Mixed Polarity Plage

In the previous chapters we saw that the photospheric reconnections between
the opposite polarity flux tubes lead to multi-step process of energy buildup that
involves the formation of post-reconnection shocks and their further evolution. As
a result, the final energy release falls into three main classes of radiative transients:
(1) strong localized emissions, just microflares, not exhibiting significant flows
of material; (2) microflares with lesser intensities, but accompanied by one or
two directional plasma jets: as a rule, stronger microflare correspond to lower
velocity jets, and vice versa; and (3) strong supersonic jets and explosive events
not associated with microflares. The appearance of any kind of radiative transients
usually correlates with canceling mixed polarity magnetic elements. Moreover, the
observations clearly show that the sequence of events that start with cancellation of
the photospheric magnetic fields, pass through shock formation, and result in the
transition region radiative transients—microflares, jets, and their combinations—
have a universal character and are ubiquitous.

It is important to emphasize again that the photospheric reconnection is only a
triggering mechanism for multi-step processes of post-reconnection shocks and their
subsequent interaction. These processes, as we saw, occur higher in the atmosphere
at a large distance from the reconnection area where post-reconnection shocks are
already well developed and lead to hydrodynamic cumulation of energy.

The similar processes occur obviously, in mixed polarity plage regions. Here,
however, magnetic filling factor is much higher than in the quiet sun regions, and
shock production is strongly enhanced. Respectively, the rate of appearance of
jets and microflares significantly increases. Besides, unlike a quiet sun where flux
tubes reconnect in almost nonmagnetic environment, in plage regions with higher
magnetic filling factor flux tubes may collide and reconnect in the environment of
arbitrarily oriented magnetic fields (see Figs. 14.3 and 14.4, Chap. 14). In this case,
along the acoustic branch, there are MHD and Alfvèn waves which propagate much
higher into the atmosphere and result in the generation of million degree coronal
jets and microflares.

In the case of the acoustic branch, as we have seen, the shock amplitudes
saturate at heights where the Mach number reaches quite moderate values of 1.5–2
(this corresponds to 2–4 scale heights). After that the shock amplitude becomes
independent of the Mach number and being subjected to gradient acceleration,
increases in accordance with the power law (Whitham 1958; Stanyukovich 1960;
Landau and Lifshitz 1987).

In the case of the MHD and Alfvèn branches, their steepening starts at much
higher altitudes, and their shock amplitudes do not saturate, but rather increase
exponentially from heights where their Mach numbers reach values of 1.5–2 (Jeffrey
and Taniuti 1964; Ryutova et al. 2001).

Figure 15.11 shows the shock amplitude for the acoustic and Alfvèn waves as a
function of height for two sets of initial parameters of flux tubes. Plots for acoustic
shocks are produced with the parameters taken from the observations of a very quiet
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Fig. 15.11 Comparison of the shock amplitudes as a function of height: dotted lines correspond to
the acoustic shocks generated by reconnection of magnetic flux tubes in nonmagnetic environment;
solid lines are the amplitudes (actually Mach numbers) of the Alfvènic shocks generated by
the reconnection of flux tubes in the neighborhood of other magnetic structures. Lines s1–A1
correspond to shock resulted from the magnetic flux reduction of ΔΦ = 3.7 × 1017, and lines
s2–A2 are obtained for flux reduction of Φ = 5.0 × 1017. Alfvèn shocks accelerate faster and
dissipate their energy with much more efficiency than the acoustic shocks, producing temperatures
close to 1 MK

sun region presented in Ryutova et al. (2001). In particular, line 1 in Fig. 15.11
corresponds to a magnetic flux reduction of ΔΦ = 3.7 × 1017 and reconnection
time τ = 252 s; line 2 corresponds to ΔΦ = 5.0 ×1017 and τ = 120 s (cf. Fig. 15.6
and Table 1 in Ryutova et al. (2001)). The calculated temperatures produced in
these cases are, respectively, T (s1) = 8.5 × 104; T (s2) = 1.46 × 105, and are
consistent with the transition region temperatures. Plots for the Alfvèn shocks are
obtained assuming that the similar flux tubes collide and reconnect in the vicinity
of the external magnetic field. If the Alfvèm shocks dissipate at the same height as
their acoustic counterparts (as shown by stars in Fig. 15.11), the plasma temperature
would increase up to the values T (A1) = 5.1 × 105 and T (A2) = 7.5 × 105,
respectively. These are already close to coronal temperatures. In two more scale
heights these temperatures would be T (A1) = 8.2 × 105 and T (A2) = 1.3 × 106.

It is important to emphasize that this is an ongoing process and requires
only the existence of the opposite polarity magnetic flux tubes. It has a random
character giving the appearance of sporadic radiative transients in a wide range of
temperatures from chromospheric flashes to million degree mini-flares. The wide
range of temperatures in these radiative transients is ensured by various heights of
the shock formation and their energy release.
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15.5.2 Unipolar Plage

In contrast to mixed polarity plages, the unipolar plages heat the corona more
uniformly, and, what is most important, the heated corona not only mimics the
general shape of an underlying plage, but also exhibits an extremely stable braidlike
oscillatory pattern. These million degree structures, as we saw, remain regular
as long as the unipolar plage preserves its general properties. It must be noted
that although reconnections between the same polarity magnetic flux tubes are
as ubiquitous as between the opposite polarity flux tubes, the post-reconnection
dynamics is completely different. As discussed in Chap. 12, the post-reconnection
sling shot in this case works mainly across the tube axis and leads to fragmentation
of the magnetic flux tubes. This may be accompanied by possible excitation of
waves propagating along the flux tubes (Tarbell et al. 2000; Ryutova et al. 2003a;
Ryutova and Tarbell 2003b). Therefore, the mechanism for heating corona by small-
scale flux tube ensembles that works so well in the mixed polarity plages is not that
efficient in the unipolar regions.

What is then the dominant process in the ensemble of unipolar magnetic flux
tubes? How does this process extract the energy stored in the dynamic plage,
and how does this energy flow into corona? One thing is clear, whatever are
the mechanisms causing these processes, they must be associated with collective
phenomena in the entire ensemble of flux tubes. In other words, the problem requires
consideration of a plage as a whole, i.e., as an ensemble of magnetic flux tubes
randomly distributed in space and over their physical parameters.

In Fig. 15.6 we have studied the interaction of acoustic waves and unsteady
wave packets with an ensemble of random magnetic flux tubes. It was shown, for
example, that the physical processes of energy transfer to the medium, as well as the
maximum available energy input, crucially depend on the distribution of the random
flux tubes in space and over their parameters (see also Ryutova and Priest 1993a,b).

The remarkable feature of these processes is that they are accompanied by spe-
cific morphological effects occurring in overlying atmosphere. The most important
role in these processes is played by resonant interaction. Recall that due to Landau
damping the energy of an acoustic wave (of wave vector k and sound speed cse)
damps out at a rate

νL ∼ f kcse (15.1)

and remains for a long time in the form of flux tube oscillations. f = R2/d2 being
a magnetic filling factor of the medium. The corresponding resonance condition is:

ω = (kn)vm
ph, (15.2)
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where n is a unit vector along the flux tube axis. vm
ph is the phase velocity of the flux

tube oscillation:

vm=±1
ph = ck =

√
ηvA√

1 + η

vm=0
ph = cT = csivA

√
c2

si + v2
A

(15.3)

with η = ρi/ρe being the ratio of plasma densities inside and outside flux tube.
Thus, under the condition (15.1) the resonant flux tubes absorb the energy of the

sound wave in a time τL = ν−1
L , and carry it into upper layers of atmosphere in

the form of a kink or sausage oscillations propagating along the flux tubes. This is
sketched in Fig. 15.12, left (see also Figs. 6.4, 6.5, 6.6, and 6.7 of Chap. 6). Then,
in a time τrad = ν−1

rad the resonant flux tubes radiate the accumulated energy as
secondary acoustic or MHD waves. The radiative damping rate is:

νrad ∼ ωk2R2 (15.4)

Since τrad depends on the tube radius R, different tubes radiate secondary waves
in different times and at different heights (Fig. 15.12, right panel), e.g., thicker flux
tubes give off their energy earlier than thinner ones. This leads to the energy release
in a form of patchy EUV emission that fills the region of a finite thickness spread
over the entire space occupied by a given ensemble of flux tubes.

nonresonant
flux tubes

resonant
flux tubes

wave front

Fig. 15.12 Interaction of a wave packet with the random ensemble of flux tubes. Left: Energy of
wave packet is transferred to flux tubes, some of which are nonresonant, while others are resonant
with respect to excitation either of kink or sausage oscillations. Right: Radiation of secondary
acoustic or MHD waves by oscillating flux tubes. After Ryutova and Priest (1993b)
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15.5.3 N-Solitons

Most importantly, as flux tube oscillations propagate upward into a more rarefied
atmosphere, many of them reach the nonlinear regime. These waves are subject
to modulation instabilities which may lead to the formation of regular coherent
structures (Zakharov and Shabat 1972; Mjølhus 1976).

Consider example of nonlinear kink oscillations. The analysis presented below
may also be performed for the sausage modes. Nonlinear kink oscillations of flux
tubes are described by the MKdV-Burgers equation for B⊥ = (Bx, By) and can
written as an energy equation for ψ = B2

x + B2
y (see Chap. 11, Eq. (11.3), of three

dissipative terms we retain below only the term associated with radiative damping):

∂ψ

∂t
+ αψ

∂ψ

∂z
+ β

∂3ψ

∂z3 = μ

π
v · p ·

∫ ∞

−∞
∂3ψ

∂s3

ds

z − s
(15.5)

The coefficients α, β, and μ are, respectively, those of nonlinearity, dispersion, and
radiative damping:

α � 3

4

ck

B2
0

, β = ckR
2

8(1 + η)2 , μ = πckR
2

4

c2
k − c2

s

(1 + η)c2
s

(15.6)

ck is the phase velocity of the kink mode (15.3).
In the absence of dissipation a stationary solution of (15.5) is a solitary wave with

the amplitude A � B2⊥, width Δ, and travel velocity of the soliton, vsol:

ψ = A sech2
(

z − vs t

Δ

)

Δ =
√

12β

αA
, vsol = ck + αA

3
(15.7)

To obtain a nonstationary solution one has to derive the evolutionary equation for the
amplitude, suggesting that all the parameters of soliton, its amplitude, A, width, Δ,
and velocity, vsol, are slowly varying functions of time. Using a standard procedure
of fast and slow variables (Mjølhus 1976), we obtain the evolutionary equation for
slowly varying amplitude for the modulated MKdV soliton, Ã(ζ, τ ), which is known
to be a Schrödinger equation with cubic nonlinearity (Dodd et al. 1982):

i
∂Ã

∂τ
+ 3k

∂2Ã

∂ζ 2 +
(

3

4
− c2

k

4c2
s (1 + η)

)

|Ã|2Ã = 0 (15.8)
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Here Ã = A(ζ, τ )/A0 (A0 being a soliton amplitude in the initial moment of time),
and τ and ζ are slow time and space (dimensionless) variables:

τ = (c3
k/β)1/2t, ζ = z̃ − (1 − 3k2)τ (15.9)

z̃ = (ck/β)1/2z, and k is the wavenumber of a carrier wave, normalized by the
inverse radius.

Equation (15.8) has two different solutions depending on the sign of the
cubic term. If this term is negative, then (15.5) together with the Schrödinger
(evolutionary) equation describes a soliton with slowly decaying amplitude.

The situation changes dramatically if this term is positive. At

ε = 3

4
− c2

k

4c2
s (1 + η)

> 0 (15.10)

Equations (15.5) and (15.8) describe the interaction in the soliton gas which results
in self-focusing (and self-modulation) of solitons. This is a well-known N-soliton
solution in the exact theory of two-dimensional self-focusing of waves in nonlinear
media pioneered by Zakharov and Shabat (1972).

It was shown that only pair interactions of solitons can occur. Therefore, since in
the self-focusing problem the soliton has the meaning of a homogeneous waveguide,
the N-soliton solution describes the intersection of N “homogeneous” channels
with a bound state having a form of a “complicated” oscillating channel (Zakharov
and Shabat 1972; Kuznetsov et al. 1995). Examples of the corresponding solution
as applied to our problem are shown in Fig. 15.13. For background atmospheric
parameters we adopt the reference model of the solar atmosphere (Maltby et al.
1986).

Solutions shown in Fig. 15.13 are obtained for height h = 2200 km. The
background temperature at this height is T = 2.1 × 104 K. The temperature in
the self-focused structures, i.e., in the oscillating “energy” channel, is about 106 K.
We adopted a flux tube radius at the surface of R = 500 km. The top panel shows
the solution for a plage filling factor f = 0.35, and average magnetic field in flux
tubes, < B >= 30 G. The bottom panel corresponds to a solution for f = 0.28 and
< B >= 20 G. As expected from the observations, the braid period increases with
decreasing filling factor of the flux tubes ensemble.

It is important to emphasize that there are two necessary conditions for the
formation of these structures. First, the Schrödinger equation must have an N-soliton
solution, i.e., condition (15.10) must be satisfied, i.e.:

ck <
√

3(1 + η)cs (15.11)

Second, for solitons to interact through radiation, their velocity must be higher than
the environmental (background) sound speed:

vsol = ck + αA

3
> cs (15.12)
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Fig. 15.13 Visualization of
N-soliton solution with
radiation for two slightly
different regimes. Top:
Magnetic filling factor of
plage is f = 0.35; Bottom:
f = 0.28
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These two conditions determine a finite thickness of self-organized structures and
the optimal height of their formation. Quantitative estimates for the above examples
give heights of formation h � 2–4 Mm.

The mechanism described above may serve as a natural basis for models of
coronal heating above the unipolar plages. Moreover, as the braided structures are
easy to observe, they may serve as a valuable tool for the inference of physical
parameters that are not directly observable.

It must be noted that the theoretical problem is treatable in a frame of ener-
getically open turbulence and structure formation. Here again, a starting process
is the one shown in Fig. 15.12: random flux tubes absorb the energy of the waves
and convective motions; because of the randomness of flux tubes, the accumulated
energy is transferred and released by the individual flux tubes at different times
and different heights; the reradiated waves have random phases. Such a process
most naturally generates plasma turbulence. Given a permanent energy supply and
radiative losses, this is an energetically open turbulence that has a tendency for self-
organization and structure formation.



422 15 Response of the Corona to Magnetic Activity in Underlying Plage Regions

In
te

n
si

ty
 a

m
p
li

tu
d
e

Time (normalized unites)

Fig. 15.14 Visualization of a collapse in soliton gas that leads to concentration of energy in a
small volume and thus to the dramatic increase of the temperature in a squeezed volume. Due to
self-focusing the system of solitons bifurcates into the state of a hot loops that should overlie the
spongy structures

As a next step, one can study coupling processes between the coherent braided
emission and the overlying hotter corona. If the observed structures above the
unipolar plages have similar properties as “moss”(Berger et al. 1999), then above
these structures 3–5×106 K coronal loops should be observed (Berger et al.
1999). In the frame of the present theoretical model this seems quite natural and
may be attributed to well-studied phenomena of collapse in soliton gases and in
energetically open turbulence (Grimshaw et al. 2001). Collapse in the system of
solitons (as well as in turbulence) leads to concentration of energy in a small volume
and thus to a dramatic increase of temperature in this volume. As a result of self-
focusing in the coherent coronal emission, the system will bifurcate into the state
of a much hotter loops. Qualitative picture of the N-soliton collapse is shown in
Fig. 15.14.

Concluding this chapter, we must emphasize that strong inhomogeneity of the
EUV emission at 1–2×106 K temperatures, and the fact that it evolves in time in
very different ways, is largely determined by the “magnetic status” of underlying
photosphere.

In particular, the EUV emission above plage regions dominated by single polarity
magnetic elements always has an amorphous structure spread over the region that
topologically mimics the shape of the underlying plage. Space-time slices of the
amorphous EUV emission show coherent braidlike structures with almost constant
period for a given area. The braid period depends mainly on the magnetic filling
factor of the underlying plage. The denser the plage, the shorter is the braid
period. The structures remain regular as long as the plage preserves its general
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properties. The only factor observed to disrupt these structures was the emergence
of opposite polarity magnetic field in the otherwise unipolar plage (Fig. 15.14, see
also Fig. 15.4).

Contrary to the case of unipolar plages, coronal emission above the mixed
polarity plages is highly discrete and consists of sporadic localized radiative
transients—jets, microflares, and their combinations.

Although physical mechanisms that may explain the observed properties of the
coronal emission are different for the mixed polarity plages and plages dominated
by a single polarity magnetic elements, the primary energy source in either case is
associated with hydromagnetic activity among the photospheric magnetic flux tubes.
Thus, sporadic radiative transients observed in the corona above the mixed polarity
plages are produced by the cumulative effects triggered by post-reconnections
processes among the opposite polarity photospheric flux tubes.

On the other hand, the corona above plages dominated by single polarity
elements is heated by the energy flux resulting from collective phenomena in
the interaction of a random ensemble of flux tubes with the acoustic or MHD
waves and unsteady wave packets. This energy flux is released in the corona
over the finite region that mimics the underlying plage and has the properties of
energetically open turbulence with a tendency to self-organization . These properties
manifest themselves as periodically spaced regions of enhanced brightening forming
braidlike structures in time similar to those obtained from observations. The
observed coherent structures are extremely sturdy which characteristic to any self-
organized state.

15.6 Problems

15.1 Consider finite amplitude Alfvén waves propagating along the magnetic field
and analyze the conditions for the formation of Alfvén solitons and their properties.

15.2 Magnetic braiding and its accompanying phenomena have been a subject of
intensive studies and accumulated a huge body of literature related to magnetic
confinement experiments as well as solar and space plasmas. The equilibrium of
twisted magnetic braid depends on the radius of curvature of a magnetic body,
R, and the degree of twisting, κ = Bφ/Bz. Find conditions for stability of the
equilibrium state of magnetic braids in two cases:

(a) R � ∞;
(b) for finite radius of curvature R.
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Chapter 16
Electrodynamic Coupling of Active
Region Corona with the Photosphere

Abstract In the previous chapters we studied response of the chromosphere and
corona to magnetic activity in the underlying quiet sun regions and both types of
plages, unipolar, and mixed-polarity ones. In this chapter we turn to the question
how the chromosphere and corona respond to magnetic activity in the active
regions where filling factor is close to unity. Our consideration will be based
on a specific case favorably caught in multiwavelength observations, showing the
entire process from the birth and evolution of a compact active region to formation
and dynamics of coronal structures above it. We then discuss a general theory
based on energetically open systems of currents that may be driven into various
dynamic forms via nonlinear processes with continuous flow of matter and energy.
Depending on the system parameters these may be long-living steady loops showing
subtle oscillations, loops in the relaxation regime, and the periodically flaring and
exploding loop systems. The theory also predicts that the EUV loops must have a
filamentary structure and allows one to estimate the limiting currents and critical
radii of elemental filaments associated with the stability criteria.

16.1 The Problem of Multi-Face Corona

The problem of energy production, transfer, and release throughout the solar
atmosphere not only involves ambiguous mechanisms of the magnetic energy
dissipation but also includes a wide range of phenomena that shape the upper layers
of atmosphere and link their structure and dynamics to photospheric motions and
magnetic fields. Especially rich in its diversity is the active region chromosphere
and corona. Note that studies of active region corona were strongly dominated by
attempts to explain coronal flares. However, observations show a great variety of
coronal structures that do not produce the major flares. Most long-living coronal
loop may slowly decay, oscillate, periodically result in flare-like events, produce
a series of microflares, and even show spatio-temporal periodicity of microflares
resembling the echo effects. In other words, the question why the solar flare occurs
is, of course, important but no less important is the question why, under seemingly
equal conditions, the flare does not occur. The answer to this question is closely
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related to the very basic question: how the coronal structures are formed and what
makes them to take one or the other form.

To look into this problem we shall consider some characteristic features of
electromagnetic coupling throughout the solar atmosphere, and in particular, we
shall study links between the photospheric driver and structure formation in the
overlying chromosphere/corona. Special attention will be paid to the fact that
the magnetic structures rooted in an unsteady photosphere/convective zone are
necessarily the current carrying system. This fact plays a crucial role in the
formation, evolution, and disruption of any magnetic structure throughout the solar
atmosphere. As a first step one needs to investigate how the observed hydromagnetic
effects may generate electric currents.

Generation of electric currents and their role in the astrophysical plasma is a
long-standing problem and has been studied by many authors (see, e.g., Alfvèn
1981, and the references therein). In applications to the solar atmosphere it was, for
example, shown that plasma pressure at the base of magnetic flux tubes can drive
large currents along the entire length of flux tube (Boozer 1988). In the nonlinear
regime (when the interaction of flux tubes with convective motions is included) this
effect leads to the generation of both longitudinal and azimuthal currents in flux
tubes (Ryutova et al. 1996). Elfimov et al. (1996) showed that Alfveén waves can
drive significant currents in solar coronal loops that may support loops in a quasi-
stationary state.

Alfvèn and Carlqvist (1967) suggested that the coronal loops and storage of flare
energy can be represented by force-free currents analogous to the circuit currents
and even performed laboratory experiment on current limitation and disruption.
Because an inductive circuit has a general tendency to “explode,” it was supposed
that it also may explain the coronal flares.

The advantage of the circuit approach is quite clear, as it naturally consolidates
many different aspects of electrodynamics into a simple scheme. The concept of the
electric circuit has been further exploited by several authors in application to a wide
range of phenomena from the solar flares to ionospheric substorms (see monograph
by Alfvèn (1981) and the literature therein). Ionson (1982), addressing the problem
of stellar coronal heating, emphasized that all the proposed mechanisms that were
thought as a unique in their own right “are based upon a unifying foundation of
electrodynamics whose principal ingredients are capacitance C (the ability of a
magnetoplasma to store electric and kinetic energy), inductance L (the ability to
store magnetic energy), resistance R (the ability to convert the above electrodynamic
energy into thermodynamic end products such as heat). Extending the LRC circuit
analogue to a continuously driven system with a β ≤ 1 velocity field as a secondary
voltage generator, Ionson established coupling between the solar surface driver
and coronal dissipation region. The model gives scaling laws that are in a good
agreement with the observations. These are, however, valid only for large-scale,
long-living (stable) coronal loops.

In fact, due to flexibility of the equivalent circuit parameters that reflect the
physical properties of a system both at macroscales and microscales, the LRC circuit
approach has a great potential in studying an overall behavior of coronal structures.
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The main point here is that the formation of a current system, storage and dissipation
of electromagnetic energy, is ongoing and energetically unbalanced process. In other
words this is a typical dissipative, energetically open system, driven into various
dynamic forms via internal processes and sustained by a continuous flow of matter
and energy.

The main properties of a system are determined by several key factors, such
as (1) character of the photospheric driver; (2) magnetic field that interconnects
the β ≥ 1 energy source region with the β � 1 dissipation region; (3) local
height of the chromosphere/transition region where the most efficient generation
of currents occurs (Ryutova and Shine 2006; Ryutova 2006); (4) feedback between
the current generation and dissipation regions; and (5) characteristic spatial scales
and timescales of a system. A theory is quite transparent, and containing directly
measurable parameters, allows quantitative analysis and comparison with the
observations.

To clarify theoretical analysis by comparing them with observations we use here
a specific event associated with the birth, formation, and evolution of compact
coronal structures caused by strong localized motions generated by emerging
magnetic flux in the photosphere. Multiwavelength observations show that long
before the magnetic pore is formed, the chromosphere and transition region show
a high activity above the future site of pore formation: rising but not yet visible
magnetic flux exerts a strong pressure on the overlying plasma generating highly
collimated plasma flows seen in the Hα images. About the time when the magnetic
pores are formed and the Hα surges bifurcate into the established arc-like flows,
a system of compact coronal loops is formed, showing direct connection between
the motions associated with the evolving magnetic fields and the coronal structure
formation.

16.2 Emerging Magnetic Flux and Structure Formation
in Overlying Atmosphere

The primary data sets that we will use in this section are observations from the
Swedish Vacuum Solar Telescope (SVST) on La Palma, complemented by the
TRACE data sets, used in the previous chapter to describe the response of corona
to magnetic activity in underlying plage regions. A target region now is a central
sunspot and its nearby environment.

Figure 16.1 shows snapshots of the sunspot area and its overlying corona made
at two instances of time several hours apart. The white arrow in Fig. 16.1a shows a
part of a unipolar plage, and in particular, a group of the positive polarity flux tubes
that form in the beginning of the observation, a pattern resembling a kitten paw.
The corona above this region (panel b) shows an amorphous emission typical of
regions overlying unipolar magnetic plages. Figure 16.1c, d taken hours later shows
a fully developed pores of opposite polarities, and a completely different shape of
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Fig. 16.1 Snapshots of the studied region. Aligned MDI and TRACE 171 and 195 images of the
56′′ × 51′′ area. MDI magnetogram is scaled from −500 to 500 G. Thin arrows show a future site
of flux emergence and pore formation. (a) Positive polarity magnetic flux tubes form a “kitten
paw” in the beginning of the observation. (b) 2.0×106 K emission in Fe XII 195 Å has amorphous
structure typical of unipolar plages. (c) Hours later, MDI magnetogram shows fully developed
bipolar pores; (d) 106 K emission in Fe IX/X 171 Å line shows well-established system of compact
loops overlying the pore and large-scale “open” loops rooted in the central sunspot; broken arrow
shows a sturdy character of the amorphous structure above the unipolar plage

the coronal emission. Part of the spongy emission seen before the pore formation is
replaced by the system of compact loops overlying and “connecting” two opposite
polarity pores.

It is remarkable that part of the amorphous emission outside newborn pores has
preserved its unipolar properties and remains amorphous (panel c, broken arrow).
As discussed in previous chapter, space-time slices of the amorphous EUV emission
show coherent braid-like structures that remain regular as long as the plage preserves
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its general properties. The only factor observed to disrupt these structures is the
emergence of opposite polarity magnetic field in the unipolar plage.

In what follows we describe the evolution of coronal structures from the
amorphous stage shown in Fig. 16.1b to much more complicated picture shown in
Fig. 16.1d that includes compact loop structures overlying newly formed pores and
prominent open structures rooted in the north side of the central sunspot.

Initially, there are few changes in the magnetic field configuration in and around
the central sunspot. But, gradually, during the first 2 h, a group of positive polarity
magnetic flux tubes that form the kitten paw move out and form a circle (Fig. 16.2,
upper row). We know from the observations that this is a future site of a large-
scale magnetic pore in form of a double compact sunspot. It is therefore natural
to suggest that upward moving but not yet surfaced large magnetic flux generates
plasma motions that sweep out the small scale flux tubes. This suggestion indeed

UT 09:22:53UT 08:44:28 UT 10:07:17

La Palma filtergrams, wing of Hα350 mA−

UT 08:45:03UT 08:34:03 UT 09:59:03

MDI  Mgrms

Fig. 16.2 Time sequence of snapshots showing changes in the configuration of the photospheric
magnetic field and response of the chromosphere to this changes. During about 1 h 25 min positive
polarity flux tubes forming the kitten paw, gradually move out and arrange into a circle with
inclusions of a few negative magnetic flux tubes; Lower panels show the origination and evolution
of an accelerating mass flow in the chromosphere
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is readily supported by the chromospheric data: overlying chromosphere and even
corona respond to these motions at very early stage.

Snapshots taken in a blue wing of Hα (lower row in Fig. 16.2) show piercing
plasma flow directed upward from kitten paw area, and their evolution in time. As
early as about UT 08:45 when positive polarity magnetic flux tubes are still arranged
in a kitten paw pattern, coronal plasma above this region is already significantly
disturbed, and acquires a form of a dagger shaped upward flow. A primary coronal
emission having an amorphous structure still remains amorphous but now is pierced
by these flows. The appearance of a few negative polarity magnetic flux tubes before
the large-scale magnetic flux surfaces causes in the transition region appearance
of sporadic brightening. In the kitten paw region, the number of sporadic events
increases with emergence of more and more of negative polarity inclusions.

It is important to note that the newly generated plasma flows themselves do not
heat the surrounding coronal plasma. But they play an essential role in the final
rearrangement of a hot coronal plasma and its additional heating, as we will see
below. During the maximum activity of Hα surges, the “damaged” corona still
remains amorphous. Only when the Hα surges abruptly decay does the coronal
emission gets enhanced, suggesting that the energy of these flows somehow is
converted into the heat.

The maximum activity of the Hα surges and their decay phase are shown in
Fig. 16.3, upper row. Lower row shows corresponding images during the decay
phase. The former amorphous emission at the maximum phase in the 171 Å line

H −700 mA

UT 10:28

UT 10:51 UT 10:50

α 171 A

UT 10:47

1600 A

UT 10:18 UT 10:32

MDI Mgrm

UT 10:28

UT 10:50

Fig. 16.3 Target region around the time of maximum activity of Hα surges (upper row) and around
the decay phase (lower row). The pores are not yet formed, but unipolar kitten paw pattern is
replaced by mixed polarity magnetic fields resulting in significant energy input and release in the
transition region (e.g., 1600 Å images)
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(black dagger in upper image) is replaced by the appearance of the “first light"—a
new enhanced emission (right panel in lower row).

At about the time when both positive and negative polarity pores are formed,
two different types of formations develop in the overlying corona. One may be
characterized as a system of “stable” loops rooted at the North edge of the sunspot
and overlying unipolar region (marked by arrow “st” in Fig. 16.4). The other
formation, also resembling a loop system, consists of frequent X-ray microflares,
appearing at different places along the virtual lines that eventually become loops
(marked by arrow “fl” in Fig. 16.4). Shortly after this stage, taken around UT 12:00,
a seemingly unstable structure overlying the bipolar pore region forms a very regular
loop system; from now on (e.g., after UT 13:03), this system keeps its identity for
many hours (to the end of available data sets). Its persistent character is supported
by a well-established flow system seen in Hα images.

UT 13:03UT 12:02

Fe IX/X 171 A

Hα −350 mA

Fe XII 195 A−350 mAαH

st

fl

st st

fl

fl

UT 12:11

MDI Fe IX/X 171 A

UT 15:47UT 17:45 UT 16:03

Fig. 16.4 Formation of compact coronal structures and their evolution. White arrow marked by
“st” shows the compact loops that remain stable for over 2 h (upper row). In lower row these
compact “stable” loops are shown disrupted and replaced by large-scale open spurs. The unstable
structures consisting of sporadic microflares (marked by arrow “fl”), on the contrary, become
stabilized. Hα images corresponding to these structures show a well-established flow pattern; a
clear arc system formed by flows mimics the tiny arc system of loops seen in both coronal lines,
171 and 195 Å
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The loop system marked by arrow “st” from the moment of its formation up
to some time around UT 13:03 (period that lasted over 2 h) remained “quiet” and
showed neither changes nor any microflare activity. At around UT 13:03 these loops
seem to be gained some energy, and in couple of hours (at about UT 15:22), the
compact loop system was gone, and in place of it large-scale open structures were
formed. These structures are quite prominent in hotter 195 Å line as well (lower row
in Fig. 16.4).

Obviously, their stable period was provided by the monotonic polarity of
underlying region. In other words, the lack of opposite polarity magnetic elements
ensured the lack of sporadic injection of energy into system. The appearance of
additional energy and its source can be traced in space-time cuts shown in Fig. 16.5.
Cuts made along lines 1 and 2 on the MDI image show motions of magnetic fluxes
(horizontal panels 1 and 2) and cut 3 on the 1600 Å image. Two cuts made on
the magnetogram show the motion of magnetic elements with slightly different
orientations, and cut 3 shows a temporal variability of the enhanced emission in
the transition region.

MDI UT 15:41 UT 12:59

3

2

1

2

1

UT 13:02MDI 1600

3

12:00 13:00 14:00 15:00 16:00 17:00 UT 10:00 11:00 

Fig. 16.5 Photospheric reconnections and chromospheric microflares preceding the structure
formation in overlying corona. Left panel is the magnetogram showing a newborn negative and
positive polarity pores at UT 13:02, with a negative satellite flux next to the positive pore (white
arrow). It is this area where a continuous reconnection occurs. At the central panel showing
magnetogram at UT 15:41, the satellite negative flux is already gone. The horizontal panels 1 and
2 are the space-time images made along the paths (1, 2) in the magnetogram, and 3 in the 1600 Å
image. Space-time images 1–2 show the tracks of the motions of the magnetic elements, and 3
shows a temporal variability of the enhanced emission in the transition region. Large black arrows
show photospheric reconnections; small black arrows show the splitting of the positive polarity
flux into several flux tubes
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One can see that during the period between UT 14:40 and UT 15:10 the negative
polarity flux disappeared completely (shown by white arrow in the MDI snapshot at
UT 13:02), and positive flux has been reduced and fragmented. There is a slight
time lag between the final magnetic flux reduction and appearance of a strong
chromospheric microflare of about 6 min. This is just the time needed to transfer
and release the energy at the T � 105 K in the transition region produced by the
reconnection of the photospheric magnetic flux tubes (Tarbell et al. 1999; Ryutova
and Tarbell 2003). Series of reconnection processes (black arrows in panels 1, 2 of
Fig. 16.5) that provided the strong energy supply to previously stable loop system
naturally lead to its destruction. This series of reconnection events could also trigger
the processes along the entire North edge of the sunspot resulting the formation of
large-scale open coronal loops (see 171 and 195 Å coronal images in Fig. 16.4).

Obviously, the mechanisms that may explain the observed regularities must, in
the first place, link the formation of coronal structures with their forerunner, strong
plasma motions generated by emerging but not yet visible magnetic flux. We will see
below that such mechanisms are uniquely associated with the current drive, arising
due to a strong disturbances propagating in the magnetized plasma. In the next
section we will address these mechanisms and estimate possible values of generated
currents.

16.3 Current Drive Mechanisms Associated
with the Emerging Magnetic Flux

A strong disturbances confined in a limited surface area and propagating upward in
the magnetized and sharply stratified atmosphere may provide several sources
for efficient current drive. The kick produced by the large emerging flux
generates acoustic and Alfvèn waves. The exchange of energy and momentum
between the induced waves and the electrons leads to an efficient generation
of electric currents. Strong collimated flows (analog of a beam-plasma system)
cause generation of currents as well. Finally, helical motions clearly seen in
the generated Hα surges (see, e.g., Fig. 16.3) may also contribute to the current
drive.

Non-inductive current drive is a fundamental process used for decades to
generate and continuously sustain the toroidal currents in tokamak fusion devices
(see, e.g., Fish 1987 and the literature therein). It can be studied as a natural process
occurring in various space plasmas as well (Otani and Strauss 1988; Ryutov and
Ryutova 1989; Block et al. 1998). Although there are a number of very different
non-inductive methods of current generation, they all rely upon two basic principles:
(i) beam–particle interactions (Ohkawa 1970), and (ii) wave–particle interactions
(Wort 1971). In any case it is the energy and momentum exchange between the
electrons and wave/particles that determines the efficiency of the current drive,
η = j/P . j is a current density, and P=dW/dt is work done by the “source’,’
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i.e. the induced power per unit volume of plasma:

P = 1

2
mp

d(nu2)

dt
(16.1)

In other words, the plasma electrons interacting with particles and/or waves gain a
momentum menu, where n is a plasma density and u is a longitudinal component
of the injected beam (or wave) velocity; this momentum (and the electric current
associated with it) is subject to losses due to electron ion collisions. Thus, the
momentum balance is determined by the equation (Fish 1987):

dj

dt
� e

me

mpu
dn

dt
− νeij (16.2)

where νei is electron-ion collision frequency, u is the velocity of the injected beam
or the phase velocity of a source wave. Equation (16.2) gives a standard estimate for
the efficiency of current drive in the stationary regime:

η = j

P
� e

meνeiu
(16.3)

The induced power depends on the specific mechanism of the current drive. We will
consider three major cases.

16.3.1 Proper Motion

First we will estimate the currents that may be driven by strong collimated flows
similar to those observed in our data set (cf. Fig. 16.3). As the hydrogen plasma
is injected into the atmosphere, the streaming particles with velocity, u, interact
with the background electrons. Induced power per unit volume of plasma may be
estimated using the standard transport equations (Trubnikov 1965), which give:

P � mpnν̃ieu
2α

u2

v2
T e

(16.4)

Here ν̃ie = (me/mp)νie is the inverse slowing-down time of particles via electron
ion collisions; the factor α(u/vT e)

2 is the cross-section of electron ion collisions,
where α is a coefficient of the order of unity (Stanyukovich 1960), and vT e is
the electron thermal velocity. With this estimate and (16.3), the current density is
estimated as j � neu(u/vT e)

2.
The quantitative estimates for our observations are as follows. The average

velocity of Hα surges is u � 2.0 × 106 cm/s. Low in the atmosphere, say at T =
2.0 × 105 K and density n = 4.0 × 1010 cm−3 (vT e = 5.5 × 108 cm s−1), generated
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current density may be quite high, j � 0.17 A m−2. Higher in the atmosphere, the
efficiency drops. Thus, at T = 105 K , n = 4.0 × 1010 cm−3, and T = 8.0 × 105 K,
n = 2.0 × 109 cm−3, current densities become respectively, j � 8.5 × 10−3 A m−2

and j � 2.1 × 10−4 A m−2. These estimates are close to current densities in the
EUV loops estimated from the analysis of vector magnetograms of active regions
(Georgoulis et al. 2004).

16.3.2 Acoustic Waves

It was shown (Ryutov and Ryutova 1989) that strong disturbances generated in the
solar atmosphere from a limited area and propagating upward against gravity may
excite electric currents (and magnetic fields) in the transition region between the
chromosphere and corona.

Two simple properties of the solar atmosphere provide the basis of the mech-
anism: (1) upward propagating waves quickly steepen due to sharp stratification
and at the chromospheric height break into sequence of shocks, and (2) at these
heights the plasma is strongly collisional. It was shown that in strongly collisional
plasma for the perturbations emitted from a limited surface area, half of the wave
momentum is transferred to electrons and half to ions. This means that the velocity
of the electrons becomes mi/me times higher than that of the ions providing the
generation of currents. The mean force acting on the electron gas, Fe, has been
evaluated in two cases, for purely sinusoidal wave (low atmosphere), and for a
nonlinear wave that reaches the sawtooth, weak shocks regime. In the linear case
Fe has a form:

Fe = 4π2

15

mpcsκe

λ2n
ξ (16.5)

where κe = nkT τe/me is the electron thermal conductivity, λ is the wavelength,
and ξ = W/ρc2

s is actually a squared Mach number, W being an acoustic wave
energy. In the second case the energy dissipation occurs at the front of a shock and
no longer depends on κe (Landau and Lifshitz 1988). Fe then has the form:

Fe = 8
√

3mpc2
s

λ
ξ3/2 (16.6)

In a stationary regime which is established in about time associated with skin-effect,
the generated currents reach the value:

j = σ

e
Fe (16.7)
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First we estimate the generated currents by the sinusoidal waves (linear regime).
This regime may be valid only up to heights of a few hundred km above the
surface. For example, let us take the temperature T = 6.2 × 103 K, electron density
ne = 1011 cm−3, and the wavelength λ = 3 × 107 cm. Sound speed is then
cs � 9.2 km/s, the wave amplitude is about 8 km/s (assuming that the initial wave
amplitude is 0.5 km/s, and the average scale height is 200 km), and ξ � 0.76. With
these parameters (16.5) and (16.7) give an estimate of the generated current density
j = 1.3 × 10−8 A/m2.

In weakly nonlinear, sawtooth regime (ξ ≥ 1), the efficiency of current drive
increases dramatically, in fact, by about 6 orders of magnitude. From (16.6)
and (16.7) we have

j = 0.275
e

me

T 3/2

lnΛ

8
√

3mpc2
s

λ
ξ3/2 (16.8)

Now, for example, at T = 8 × 103 K (h � 2000 km), cs � 10.4 km/s, lnΛ = 16,
λ = 3 × 107 cm, and ξ = 1.1, we have j = 2.1 × 10−2 A/m2. This is a typical
current density for the EUV loops.

16.3.3 Alfvèn Waves

To estimate the efficiency of current drive by Alfvèn waves we need to find the
power dissipated by the Alfvèn waves in the presence of plasma flows. Current
drive by Alfvèn waves in coronal loops in the absence of mass flows was studied,
e.g., by Elfimov et al. (1996). The effects of mass flows on the dissipation of Alfvèn
waves in the solar atmosphere have, however, very characteristic features (Ryutova
and Habbal 1995). It was found that in the approximation of geometrical optics the
energy dissipation rate, P , has a form:

P � ν∗(�⊥S)2 ρ0(v0A + u0)
2

2
exp

(

−
∫ l

ν∗
(�⊥S)2

vA + u
d�

)

(16.9)

Here ν∗ = (η0/ρ) + ηD is the combined dissipative coefficient; η0 = 0.96nkT τi

is the ion viscosity and ηD = c2/4πσ is the magnetic diffusivity, and τi is the
ion collision time (Braginskii 1965). u is the flow velocity. �⊥S is the gradient of
eikonal across the magnetic field structure. The integration is performed along the
ray trajectory. With the simplified magnetic field geometry B = B(0, Bφ(r), Bz),
and plasma flow directed along the vertical Bz component, the dissipation rate at
height z can be estimated as follows:

P � ν∗
ρω2

2

(v′A + u′)2

(vA + u)2 z2 exp

[

−2

3
ν∗

ω2(v′A + u′)2

(vA + u)5 z3
]

, (16.10)
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The height dependence of P has a form f (ζ ) = ζ 2e− 2
3 ζ 3

. This function has a
maximum at ζ = 1, which for given physical parameters determines maximum
amount of the power absorption, Pm, and its height, zm. With the approximation
(vA + u)/(d(vA + u)/dr) ∼ R, where R is a radius of a separate filament in a
magnetic structure, the estimates for these quantities are as follows:

zm � (vA + u)τω, Pm � ρ(vA + u)2

2τω

e−2/3 (16.11)

where we introduced notation

τω =
[

R2

ν∗ω2

]1/3

(16.12)

τω has a meaning of the inverse damping rate of the Alfvèn waves due to the
phase mixing (Ryutova and Habbal 1995). Using (16.2) we can now estimate the
maximum current density, jm = [e/mpν̃ei (vA + u)]Pm (the z-dependence of
generated currents is the same as in (16.10)):

jm � 0.257ne(vA + u)
1

ν̃eiτω

(16.13)

For quantitative estimates we choose some exemplary values for temperature,
density, and the Alfvèn speed typical for the chromosphere and lower transition
region. These are shown in Table 16.1 together with kinetic coefficients calculated
via standard expressions:

ν∗ = 1.32 × 109 T 5/2

nlnΛ
+ 5.25 × 1011 lnΛ

T 3/2
, (16.14)

Table 16.1 Estimate of the
generated current densities
and corresponding heights

Parameter Set 1 Set 2 Set 3

T (K) 2.0 × 104 105 3.0 × 105

n (cm−3) 4.0 × 1010 2.0 × 1010 1010

˜νei (s−1) 4.4 × 102 25.0 2.4

ν∗ (cm2 s−1) 1.2 × 108 1010 3.27 × 1011

vA (cm s−1) 6.5 × 106 9.2 × 106 1.3 × 107

R (cm) 2.0 × 106 4.0 × 106 107

ω = 0.1 s−1

zm (cm) 1.3 × 109 6.13 × 108 4.73 × 108

jm (A m−2) 2.1 × 10−3 7.0 × 10−2 0.82

ω = 0.3 s−1

zm (cm) 6.13 × 108 2.93 × 108 2.33 × 108

jm (A m−2) 4.4 × 10−2 0.14 1.7
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and ν̃ei = 1.97 × 10−3nlnΛ/T 3/2. For the plasma flow we take again u = 2.0 ×
106 cm s−1, and for radius of a magnetic filament R = 2.0 × 106–107 cm.

The last six rows in Table 16.1 contain the height of the maximum absorption
and corresponding maximum density of the generated currents estimated for Alfvèn
wave frequencies, 0.1 and 0.3 s−1. The efficiency of the current drive is quite
sensitive to the frequency of the Alfvèn waves—higher frequency waves can
generate stronger currents and at lower altitudes. Nonetheless, the variation of the
basic physical parameters (corresponding to chromosphere/transition region) gives
the range of current densities close to those shown in Table 16.1 and is consistent
with observations.

The estimate of corresponding heights shows that generated currents mainly
reach their maximum values at the transition region level. It is also important to
also mention that the injection of a magnetic helicity, which is a necessary part of
the emergence of complex magnetic fields, can also play an important role in the
current drive.

Each effect or their combinations may contribute to generation of currents. The
dominance of one or the other effect depends on the specific situation and the local
physical parameters of the system.

16.4 Energy Flow Throughout Solar Atmosphere

In the previous sections, we studied formation and properties of the EUV structure
formation associated with the emergence of a large-scale magnetic flux which
eventually formed two opposite polarity pores. We saw that long before the magnetic
pore is formed, chromosphere and corona show a high activity above the future
site of pore formation: rising but not yet visible magnetic flux exerts a strong
pressure on the overlying plasma generating highly collimated plasma flows seen
in the Hα images. About the time when the magnetic pores are formed and Hα

surges bifurcate into the established arc-like flows, a system of compact coronal
loops are formed, showing direct connection between the plasma motions, the
evolving magnetic fields and the coronal structure formation. It was suggested that
the triggering mechanism for structure formation may be associated with generation
of currents caused by strong disturbances propagating upward from a limited surface
area.

The kick produced by highly concentrated emerging flux is not only accom-
panied by the observed Hα flows but may also generate acoustic and Alfvèn
waves. Therefore, the efficiency of current drive has been analyzed for three main
sources:

1. the proper motion of hydrogen plasma,
2. the acoustic waves, and
3. the Alfvèn waves.
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Quantitative estimates of current densities for each of these mechanisms are in
the range of jm = 2.1 × 10−3–2 A m−2, which agrees with the reported range
of measured current densities (Leka et al. 1996; Georgoulis et al. 2004; Geor-
goulis and LaBonte 2004). We saw that generated currents reach their maximum
values mainly at the transition region heights. It should be emphasized again
that the current drive is considered as the initial stage of the EUV structures
formation.

Now we turn to the question how the structures evolve in time. We shall use the
electric circuit analogue to address this problem focusing on major questions: what
makes the coronal structures take one or the other observed form, and what are the
conditions for their realization.

Once a current system is formed, its further evolution depends on the capacity
of a system to store electromechanical and magnetic energies, on its dissipative
properties and thus the ability to release the accumulated energy. These properties
are determined by several key factors, such as:

1. character of the photospheric driver;
2. magnetic field that interconnects the β ≥ 1 energy source region and β � 1

dissipation region;
3. local height of the chromosphere/transition region where the most efficient

generation of currents occurs;
4. feedback between the current generation and dissipation regions; and
5. characteristic spatial and time scales of a system.

The key element of the present approach is the recognition of the fact that the
transition region plays an essential role in the process of energy transfer throughout
the atmosphere (see, e.g., Title 2000; Tarbell et al. 2000; Ryutova and Tarbell
2003; Ryutova and Shine 2004). On the one hand, this is a region where the
most efficient generation of currents occurs, and on the other hand, it is where
presumably the energy transfer from large- to small-scale culminates, thus providing
interconnection between corona and its underlying atmosphere through the resistive
stresses.

16.4.1 An Equivalent Circuit: Earlier Attempts

The evolution of newly formed current system may proceed in different ways
depending on hydromagnetic activity of underlying photosphere and on physical
and kinetic properties of a system, in other words on the nature of photospheric
driver and the overlying region.

The equivalent LRC approach turned out to be very helpful to study not only
coupling between the energy source and remote dissipation regions, but also to
analyze the various scenarios and find conditions for their realization on a unified
basis.
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The circuit equation follows directly from the global electrodynamics, and
has been derived by many authors in application to laboratory plasma (see, e.g.,
Lehnert 1963) and to various space objects (Alfvèn and Falthammar 1963; Alfvèn
and Carlqvist 1967; Ionson 1982; Spicer 1982; Melrose 1995). Generally, the
equation has a standard LRC form, but its coefficients obtained from the MHD
equations written for a particular system reflect the specific parameters of this
system.

For convenience, we will demonstrate here the equivalence of an LRC circuit and
electrodynamic equations:

4π

c2

∂j
∂t

= � × (� × E) (16.15)

� ·j = 0 (16.16)

j = σ

(

E + v × B
c

)

(16.17)

ρ
dv
dt

= − � Pe + j × B
c

(16.18)

One can start from the equation of motion for the electron gas and arrive to the
equation for the generation of the electric field (Spicer 1982; Melrose 1995). This
approach leads to a simple circuit equation of a “transmission line.’ In this case,
however, the physical mechanism of coupling which occurs at small resistive scales
is obscured.

As it was pointed out by Ionson (1982), the electrodynamic coupling between
the two regions occurs through the turbulent stressing of the common magnetic
field in the photosphere that results in generation of a Pointing flux of energy that
propagates upward and subsequently dissipates. This process is directly related to
the dissipation of the surface Alfvèn waves (and associated heating) where energy
is transferred from large to small scales by phase mixing.

Indeed, because of high conductivity of coronal plasma, dissipative effects
turn on at a small transverse scale, Δxr , where the resonance absorption of the
Alfvèn waves occurs. In other words, Δxr is a characteristic distance at which the
dissipative terms link the perturbations at the magnetic field lines (Heyvaerts and
Priest 1983; Ryutova and Habbal 1995):

Δxr = a

Re
1/3
m

, (16.19)

Rem = vAa/ηD is the magnetic Reynolds number with ηD = c2/4πσ being
magnetic diffusivity, and σ = 1.96ne2/(meνei) plasma conductivity. Parameter a is
the width of magnetic structure.
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16.4.2 LRC Circuit with Mutual Inductance (Transition
Region)

Thus physics of coupling is associated with the dissipative stresses that operate at
small scales characterized by generalized skin depth, Δxr , which is in fact the local
cross-field shear length of the induced current.

Here we adopt the approach used by Ionson (1982, 1984). Figure 16.6a illustrates
the prototype of physical system from subsurface layers to the corona and its
equivalent electrodynamic circuit. The system comprises a β < 1 magnetic
loop and an underlying region of β ≥ 1 velocity fields which are electro-
dynamically coupled via the interconnecting magnetic field. It is important to
note, however, that Ionson’s model (as well as all other previous models) ignores
the influence of the transition region. The points marked by the question marks
and the straight line passing them in Fig. 16.6a is only a formal boundary
between the two regions, and is not reflected in the circuit equation. On the
other hand, Fig. 16.6b that illustrates the energetically open circuit includes the
presence of the transition region and its influence. This will be discussed in
the next section. Before doing this, we will continue Ionson’s (1982) line of
reasoning.

Despite the above-mentioned disadvantage, the Ionson’s model is important to
discuss. Let us choose a coordinate system with l directed along the magnetic field,
and x⊥ = (xr, xθ ), where xr represents the radial direction, with characteristic
scale Δxr , and xθ—the azimuthal direction, with characteristic scale of the width
of elemental loop, a. It is assumed that physical parameters vary only in the l and
xr directions. Using (� × E)l � 0, which follows from the condition that Poynting
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Fig. 16.6 Model of the equivalent LRC circuit for the coronal loops: (a) Prototype magnetic
loops system proposed by Ionson (1982); question marks highlight the cloudy points on line
dividing a β ≥ 1 and β < 1 regions; (b) Energetically open LRC circuit (Ryutova 2006);
Chromosphere/transition region is reflected by the necessarily present mutual inductance, M
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flux be directed along the loop, one has from (16.15):

4π

c2

∂j⊥
∂t

+ �⊥
(

∂El

∂l

)

− ∂2E⊥
∂l2 = 0 (16.20)

4π

c2

∂jl

∂t
+ ∂

∂l
(�⊥ · E⊥) − �2⊥El = 0 (16.21)

Obviously, ∂/∂xr � ∂/∂x � ∂/∂l. This implies that Eθ � Er , and since
j⊥ ∼ ∂E⊥/∂t , jθ � jr . Taking into account that �j = 0, one can see that (16.20)
and (16.21) are redundant.

Thus, formally it is sufficient to consider one of the above equations. But as
will be discussed later choice of the equation is not only matter of convenience
but may cause essential limitations. To demonstrate this we briefly describe below
Ionson’s derivation who has focused upon (16.21). Using Ohm’s law, and taking
time derivative of (16.21) one obtains:

4π

c2

∂2jl

∂t2
+ ∂2

∂xr∂l

(
1

σ

∂jr

∂t

)

− �2⊥
(

∂jl

∂t

)

− 1

c

∂3(vθB)

∂xr∂l∂t
= 0 (16.22)

With the use of the Heaviside step function of plasma beta, H(1 − β), this equation
can be rewritten in the form that reflects the contribution of various terms of this
equation in the β ≥ 1 and β < 1 regions. Note that the second term in this
equation can be neglected since it is small compared to the other terms. The last
term has a meaning of the driving emf in the β ≥ 1 region, which cannot be
evaluated explicitly. In the β < 1 region this term represents the reactance of
the overlying plasma to driving emf, and can be easily determined from the force
balance, Eq. (16.18):

ρ
∂vθ

∂t
� −jrB

c
, (16.23)

Now (16.22) can be written as follows:

4π

c2

∂2jl

∂t2 − H(1 − β)
1

σ

∂3jl

∂x2
r ∂t

− H(1 − β)
4πv2

A

c2

∂2jl

∂l2 = H(β − 1)
1

c

∂3(vB0)

∂xr∂l∂t

(16.24)

This equation has already a form of a simple LRC equation: the first term is an
inductive reactance, the second term is associated with the resistance, the third term
is a capacitive reactance, and the term on the right-hand side is the external source
of emf.

Using the equivalence ∂/∂xr → iπ/Δxr , ∂/∂l → iπ/l, (16.24) can be
integrated over the total volume of the magnetic loop. Note that this integration
is equivalent to averaging procedure in which Eq. (16.24) is multiplied by volume
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of the elemental loop of the length l, i.e., by laΔxr . One should bear in mind that jl

currents are localized within a cross-sectional area, aΔxr .
Assuming that most of the resistive load is associated with the β < 1 region, the

result of this integration is as follows:

L
d2I

dt2 + R
dI

dt
+ I

C
= dΦ(t)

dt
, (16.25)

where the equivalent inductance L, capacitance C, and resistance R are given by

L = 4l

πc2 , C = lc2

4πv2
A

, R = 1

σ

l

(Δx)2 , (16.26)

with the current and emf as

I = jlaΔxr = jral (16.27)

Φ(t) = avθB

c
(16.28)

(16.25)–(16.28) obtained by Ionson (1982, 1984) allowed him to perform detailed
analysis and obtain several important results. In particular, the coupling between
the photospheric driver and coronal loop features was established, and implicit
equations for the maximum temperature and base pressure were found in a good
agreement with observations. It was shown that coronal loops have a classic
feature of high quality resonators, which allows, for example, to study the resonant
properties of a system and make reasonable predictions.

This model, however, can be applied only to a “stable” (long living) coronal
loops, and does not describe their evolution. The important restricting factor here
is the assumption (highlighted above in italic) that the resistive load of a system is
associated only with the β � 1 coronal region. But, as discussed earlier, the energy
production and transfer necessarily involves the transition region where the resistive
stresses already operate at the corresponding small scales. The coupling mechanism
therefore must reflect connection between the resistive properties of both, corona
and the transition region, as shown schematically by the mutual inductance, M in
Fig. 16.1b.

16.5 Energetically Open Circuit

To represent transition between the chromosphere and corona, as discussed above,
we take into account that the resistive load is associated not only with the corona,
but with the chromosphere/transition region as well. This leads to appearance of
an equivalent mutual resistance in the circuit equation, which in fact is equivalent
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to appearance of mutual inductance. This element is crucial for stability of newly
formed EUV structures and realization of different scenarios of the structure
evolution. Besides, as the system has all the properties of energetically open, locally
non-conservative system with source and sink of energy, we extend the analysis to
nonlinear processes. Fully nonlinear treatment of the problem is hardly possible, but
the advantage of circuit approach is that it allows quite a simple treatment of weakly
nonlinear unsteady processes.

One of the basic principles of the circuits is that if Ohm’s law, Φ = RI ,
does not hold, the circuit must be considered nonlinear. There are many factors
that brake Ohm’s law in practice. First of all, if there is some functional relation
between I and Φ, the circuit becomes intrinsically nonlinear. Among numerous
so-called contingently nonlinear elements, one of the most important is thermally
sensitive resistance. Even a weak dependence of the resistance on temperature leads
to nonlinear functional of I = I (Φ) (see, e.g., Harnwell 1949). The present study
will be restricted only by the intrinsic nonlinearity of a system.

As shown in Sect. 16.2, the triggering mechanism for the EUV structure forma-
tion is associated with electric currents generated by strong disturbances produced
by the emerging flux. We have discussed the efficiency of current drive for three
types of disturbances: proper motion of hydrogen plasma (the observed Hα),
acoustic waves, and Alfvèn waves.

It is hard to tell which of these mechanisms is dominant during the formation
process. However, after the current system is formed, one can accept that its
sustaining source of energy has a periodic or quasi-periodic character. It is therefore
only natural to assume that during the entire process, the currents are voltage-
dependent, I = I (Φ), and the sustaining photospheric driver is quasi-periodic. This,
of course, does not exclude some sporadic injection of energy, caused, for example,
by the reconnection processes.

We will distinguish three interconnected regions: (1) the photosphere with the
quasi-periodic driving force, (2) chromosphere/transition region where the most
efficient generation of currents occurs, and (3) corona.

Figure 16.7 illustrates a typical example of well-established system of coronal
loops near the eastern limb of the Sun (the image is rotated by 90◦ so that
north is to the right, upper panel) together with co-aligned MDI magnetogram
of underlying region and its image at the transition region temperatures (lower
panels). The average length of the coronal part of loops is about l � 280 arcsec
(�2 × 1010 cm), and width of elemental filament is in a range of a � 1–3 arcsec
(�0.73–2.2×108 cm). The aspect ratio is of the order of (a/l) � 0.01. This estimate
will be used below for quantitative analysis.

Note that as longitudinal currents are localized within a cross-sectional area,
aΔxr , where Δxr is determined by (16.19), each elemental loop resolved in TRACE
171 Å line consists of thousands of current carrying filaments.

The family of loops is rooted at relatively compact sunspots with well-defined
boundaries (marked by large arrows). The enhanced emission at the transition region
temperatures corresponding to these sunspots is spread over much larger area that
mimics the bright conglomerate of coronal loop footpoints. Note that transition
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Fig. 16.7 Model of coronal loops for the equivalent circuit. (a) Example of well-established
system of coronal loops close to limb, together with co-aligned MDI magnetogram of underlying
region and its image at the transition region temperatures (TRACE 1600 Å). Note that the family
of loops is rooted in the photosphere at compact sunspots with well-defined boundaries, while
corresponding enhanced emission in 1600 and 171 Å lines is spread over much larger area (marked
by large arrows). (b) Schematic of the model for the equivalent circuit with the photospheric driver,
corona, and the transition region that links these regions through mutual resistance, ZM = √

ZZT R

region shows high activity above the entire active region, while response of the
corona is quite selective: coronal loops appear at some preferable (and limited)
sites, while rest of the corona is either covered by mossy emission (marked by small
arrows) or seems intact (except a spectacular short living compact loops lying over
the polarity inversion line).

A sketch in Fig. 16.7b illustrates the model studied here with the photospheric
driver and overlying transition and coronal regions coupled through mutual resis-
tance, ZM = √

ZZT R . This in fact is equivalent to mutual inductance, because
Zi = ωLi , and M = √

LLT R (see below for details). Thus we take into
account that the resistive load is associated not only with the corona, but with
the chromosphere/transition region as well. To reflect this in the equivalent circuit
equation, it is convenient to use (16.20) which with Ohm’s law has a form (as
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discussed above, jθ � jr , and j⊥ is carried mostly by jr ):

4π

c2

∂jr

∂t
− ∂2

∂r2

1

σ
jr + 1

c

∂2vφB

∂l2 = 0 (16.29)

We use the Heaviside step function of plasma beta in the form: H(βT R − β),
where βT R denotes the plasma beta at about the transition region heights. We apply
the same averaging procedure that established equivalence between (16.22) and
(16.25).

It is convenient to represent the coronal part of (16.29) in terms of induced emf,
Φ = (vθBa)/c. Using Eq. (16.23) one obtains:

jr = − c2

4πv2
A

1

a

∂Φ

∂t
(16.30)

Now (16.22) can be written as follows:

H(βT R − β)
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(16.31)

The term on the right-hand side (kept in general form) includes dependence on the
driving emf in the β ≥ 1 region, and reactance of the transition region plasma.
Integrating over the volume of the system gives:

LC
d2Φ

dt2 + RC
dΦ

dt
+ Φ = 4l

πc2

dIg(Φ)

dt

ΔxT R

Δx
(16.32)

where we used (16.27), i.e., that Ig = jraT RlT R , and divided (16.32) by Δx/l.
Using expression (16.26) for resistance, and assuming that R/RT R is proportional
to (1/σ)/(1/σT R), one obtains that (ΔxT R/Δx) � √

lT R/l. With this, (16.32) takes
the following form:
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d2Φ

dt2 + RC
dΦ

dt
+ Φ = 4

√
llT R

πc2

dIg(Φ)
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, (16.33)

or

LC
d2Φ

dt2 + RC
dΦ

dt
+ Φ = M

dIg

dΦ

dΦ

dt
, (16.34)

where M has a meaning of the equivalent mutual inductance determined by the
resistive coupling between the corona and its underlying region:

M = 4

πc2

√
llT R, (16.35)
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Note that the spatial extent of the resistive coupling covers the cross-section area
of the family of loops at the transition region heights (shaded area in Fig. 16.7b,
marked by long arrows in Fe IX/X171 and 1600 Å images in Fig. 16.7a).

The functional Ig(Φ) cannot be determined explicitly, but as a first step we may
assume that the current is a weakly nonlinear function of the quasi-periodic emf.
This can be treated with the perturbation theory, using the standard asymptotic
methods of oscillation theory (Bogolubov and Mitropolsky 1961; Hagedorn 1988):

Ig = Ig(0) + dIg

dΦ

∣
∣
∣
0
Φ + 1

2

d2Ig

dΦ2

∣
∣
∣
0
Φ2 + 1

6

d3Ig

dΦ3

∣
∣
∣
0
Φ3 + · · · (16.36)

In the first approximation dIg/dΦ � I0/Φ (where I0 is the induced current in a
stationary state), and the first expansion coefficient in (16.36) can be estimated as

dIg

dΦ

∣
∣
∣
0
� I0

Φ
= C

I0∫
Idt

= Γ0 (16.37)

The second expansion coefficient, d2Ig/dΦ2 corresponds to the inflection point,
and can be put zero. This assumption is not essential, as it does not change the final
result. The third expansion coefficient can be estimated using the assumption that at
weak nonlinearity, Eq. (16.36) remains valid for maximum currents corresponding
to saturation limit, Φ = Φsat, where Φsat � vθBa/2c is coronal loop’s capacitive
emf (cf. (16.28)). Taking derivative of (16.36) at this limit and using maximum
power balance, IgΦ|sat = RI 2

g |sat, we have

1

2

d3Ig

dΦ3

∣
∣
∣
0
� − 1

R

1

Φ2
sat

= −Γ2, (16.38)

and Eq. (16.36) becomes

Ig = Ig(0) + Γ0Φ − 1

3
Γ2Φ

3 (16.39)

Note that this is analogous to sinusoidal volt-ampere characteristic at weak nonlin-
earity, sinx = x − (1/3!)x3. Respectively,

dIg

dΦ
= Γ0 − Γ2Φ

2, (16.40)

and Eq. (16.34) takes a form

L
d2Φ

dt2 + (R − MΓ0 + MΓ2Φ
2)

dΦ

dt
+ 1

C
Φ = 0 (16.41)
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Taking into account that

I = C
dΦ

dt
, (16.42)

and using the balance of capacitive and inductive reactance, (1/2)CΦ2 �
(1/2)MI 2, for the third term in brackets, Eq. (16.41) reduces to the following
electrodynamic equation having a form of the equivalent circuit equation with a
weak nonlinearity:

LC
d2I

dt2
+ (RC − MS0 + MS2I

2)
dI

dt
+ I = 0 (16.43)

where

S0 = CΓ0 = C
I0∫

I (t)dt
, (16.44)

and

S2 = M

RC

1

Φ2
sat

. (16.45)

Coefficients of nonlinear expansion, S0 and S2 have a natural physical meanings
(Bogolubov and Mitropolsky 1961; Gaponov-Grekhov and Rabinovich 1992). MS0
represents the excess of energy supply over the generation threshold. MS2 reflects
the nonlinear effect associated with the back-reaction of a circuit to the induced
currents and is a measure of the amplitude of self-excited oscillations. Γ0 is
a measure of a current drive rate and can be estimated from the momentum
balance (16.2):

Γ0 = I0∫
I (t)dt

� ˜νei . (16.46)

where ν̃ie = (me/mp)νie is the inverse slowing-down time of particles via electron
ion collisions.

The presence of the new terms, −MS0 + MS2I
2, in Eq. (16.43) significantly

changes the situation. First of all, as is well known, if the coefficients in the circuit
equation are not of the same sign, the system is subject to instabilities. The evolution
of the system strongly depends on the interplay between the coefficients, and most
importantly, on the sign of parameter,

μ = MS0 − RC, (16.47)

which determines the solution of the circuit (16.43), and thus the actual behavior
of the current system. This parameter reflects the basic physical properties of the
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current loops both, at micro-scales (skin depth, kinetic coefficients, density) and at
large-scales (spatial dimensions, magnetic field).

Physically, MS0−RC < 0 corresponds to the situation when the energy supply is
less than the current generation threshold; in other words, the characteristic current
buildup time, ∼M/R, is less than the inverse current generation rate, 1/ ˜νei .

At MS0−RC > 0 the additional energy supply exceeds the generation threshold,
i.e., is analogous to high quality resonator.

Finally, proximity to MS0 − RC � 0 corresponds to a parameter range where
the bifurcation of the system from one regime to another occurs.

Instabilities can develop in all three cases, including linear regime. But the
character of the instability and conditions for its stabilization are different, providing
thus realization of a wide range of coronal loop regimes from lengthy oscillatory
states to flare-type disruption. In the next section we will present the solutions of
Eq. (16.43), and discuss conditions for several basic regimes.

16.6 Evolution of Current Systems

16.6.1 Linear Regime

We start with the brief analysis of linear regime, i.e., when the term, MS2I
2 in

Eq. (16.43) is negligibly small. There are two classes of the coronal loop evolution,
determined, again by the sign of μ.

If μ < 0, Eq. (16.43) is a standard circuit equation that describes three well-
known types of behavior depending on the determinant Δ = R̃2 − 4L/C (with
R̃ = R − M0S0/C):

1. Δ < 0 gives a regime of underdamped oscillations of currents, with frequency

ω = ω0

√

1 − R̃2C/4L and damping rate γR̃ = R̃/2L; this corresponds to
long living “stable” loops showing the intensity oscillations with the above
parameters.

2. Δ > 0 corresponds to overdamped oscillations of currents with damping rate
γ± = (R̃ ± Δ1/2)/2L.

3. Δ = 0 corresponds to marginal state, critically damped oscillations, which can
bifurcate into the weakly damped state or v.v. due to the external disturbances.

If μ = MS0 − RC > 0, i.e., when the energy supply exceeds the generation
threshold, the system becomes unstable, and the damping rate γR̃ becomes a growth
rate. As the instability is linear it may result in a not too violent and yet the flare-
like energy release without disruption of the global loop system. This process may
occur repeatedly as long as a particular loop system exists. At any time when the
accumulated energy exceeds the threshold and gets released the system starts to
gain energy back until it again reaches the critical conditions for the release of
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the excess of energy. This regime corresponds to quasi-stable periodically flaring
coronal loops.

16.6.2 Nonlinear Regime

To discuss the nonlinear regime, first we rewrite Eq. (16.43) in dimensionless form:

d2i

dτ 2
− ε(1 − i2)

di

dτ
+ i = 0 (16.48)

Time is dimensionalized by ω−1
0 = √

LC, and current by the coefficient of
nonlinearity:

τ = t/
√

LC, i =
√

MS2

|μ| I, ε = μ/
√

LC. (16.49)

Equation (16.48) is a typical Van der Pol equation for an energetically open
oscillator with the dissipation and the driving force. The solution to this equation
is known to be a modulated oscillations of the form:

i(τ ) = A(τ) cos(ω̃τ + φ) − ε

32
A3(τ ) sin 3(ω̃τ + φ) (16.50)

with ω̃ = 1− ε2/16, and slowly varying amplitude A(τ) satisfying the evolutionary
equation (see Appendix):

dA(τ)

dτ
= ε

2

{

A(τ) − A3(τ )

4

}

(16.51)

The solution to this equation is:

A(τ) = 2A0
√

A2
0 + (4 − A2

0) exp(−ετ)

(16.52)

As discussed above the time dependence of the current amplitude is determined by
the sign of μ (i.e., on the sign of ε).

If μ > 0, currents evolve in accordance with a typical Poincare limit cycle;
i.e., whatever the initial amplitude of the generated currents is “large” (A0 > 2) or
“small” (A0 < 2), asymptotically the currents tend to a stationary value of A =
2. In other words, currents with initial amplitude A0 > 2 evolve in a decreasing
regime, while currents with the initial amplitude A0 < 2 increase until they reach the
limiting value. The larger the initial amplitude the faster it drops (i.e., the shorter is
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Fig. 16.8 Poincare limit
cycle (μ > 0 regime of the
coronal loop evolution):
Coronal loops with the initial
current amplitude higher than
A = 2 quickly approach the
quasi-stable state releasing
the excess of energy until
currents drop to a limiting
value. Loops with the initial
current amplitude less than
A = 2 gradually gain energy
until currents reach a limiting
value. The plots of the
amplitudes are calculated for
ε = 0.1
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its limiting cycle) and the faster is the release of excess energy. The opposite regime
corresponds to longer living systems gradually accumulating energy until the system
reaches a stationary regime. Note that any stationary regime may be destroyed by
some additional source of energy like reconnection process or interaction of the
system with neighboring loops.

Figure 16.8 shows the time dependence of the current amplitude for different
values of the initial amplitude starting from A0 = 0.1 to A0 = 4. In all examples
we used ε = 0.1, i.e. we assumed that the energy supply exceeds the generation
threshold by 10%. This solution describes a quasi-stationary oscillatory regime of
coronal loops.

If μ < 0 (i.e., ε < 0), Eq. (16.51) describes two qualitatively different evolution
of currents. For high enough initial amplitudes, i.e., for A0 > 2, the system becomes
subject to explosive instability. In a finite time the currents reach infinitely large
values. To illustrate this we may drop the linear term in Eq. (16.51), and rewrite the
equation in the form

dτ

dA
� 8

|ε|
1

A3 (16.53)

Integration of τ gives a straightforward standard expression for explosively growing
amplitude

A(τ) = A0
√

1 − (τ/τexpl)
(16.54)

with the explosive time (in this approximation) τexpl = 4/(|ε|A2
0). The actual

explosive time is somewhat longer and follows from the general solution of
Eq. (16.51) with ε = −|ε|.
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Written in the form:

A(τ) = 2
√

1 − exp{|ε|(τ − τexpl)}
, (16.55)

this solution clearly shows the explosive behavior with the characteristic time

τexpl = 1

|ε| ln
A2

0

A2
0 − 4

(16.56)

After the onset of the explosive instability, the system may develop in several
different ways. This is determined by effects that may suppress or sustain the
instability. Formally, in time τexpl the currents indeed reach infinitely large values.
This means that the system becomes strongly nonlinear, and other nonlinear effects
turn on that may stabilize the instability (Weiland and Wilhelmsson 1977; Ryutova
1988).

There are two major regimes:

1. the disruption of the circuit occurs before the instability gets stabilized, and
2. higher nonlinear effects stabilize the explosive instability which leads to partial

energy release.

The first case corresponds to strong flare event which may destroy the current
system.

If at μ < 0 the initial amplitude of the injected current is less than A = 2, the
currents are in the decaying regime and loops gradually (and quite slowly) lose their
energy.

The plots of the amplitude (16.55) for both regimes are shown in Fig. 16.9. The
numbers next to plots are non-dimensionalized values of initial amplitude. In these

Fig. 16.9 The μ < 0 regime
of the coronal loop behavior.
The numbers next to plots are
the initial (nondimensional)
amplitude A; ε = 0.02 for all
cases. Loops with the initial
current amplitude higher than
A = 2 show the explosive
growth of currents; higher are
the initial currents, shorter is
the explosive time. Loops
with the initial current less
than A = 2 are in a gradually
decaying state
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examples we used ε = 0.02, i.e., the supplied energy is close to the generation
threshold, but below it by 2%.

16.7 Quantitative Analysis

To perform quantitative analysis we need to represent solutions in the dimensional
units:

I = i

√
|μ|

MS2
, t = τ

√
LC, ε = |μ|√

LC
, (16.57)

It is also useful to introduce a dimensional amplitude of current I (t):

I (t) =
√

|μ|
MS2

A(τ) (16.58)

Now we need to express the above quantities through the basic physical param-
eters including the specific parameters of coronal loops. For μ = MS0 − RC

using (16.26) and (16.35)–(16.46) we obtain:

μ = CL
me

mp

νei

[√
lT R

l
− π2mp

me

δ2

(Δxr)2

]

(16.59)

where δ = c/ωpe is a plasma skin depth, δ = 5.3 × 105/
√

n, and Δxr is given by
Eq. (16.19). Note that parameter μ is determined by the loop properties at micro-
scales as well as at large-scales. With (16.19)–(16.26) μ takes a form:

μ = ˜νei

ω2
0

α (16.60)

where we introduced parameter α, which determines the sign of μ:

α =
√

lT R

l
− 1.06 × 107 T

n

(vA

a2

)2/3
(16.61)

Using (16.26) and (16.45) with Φ � vBa/2c we have for S−1
2 :

S−1
2 = R

4M
mpv2nla2 = Re

2/3
m

σ

mpv2nl2

4M
(16.62)
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Now the normalization factor for dimensional current reduces to:
√

|μ|
MS2

= nevl

√|α|
2Mω0

Re
1/3
m

σ
, (16.63)

and for the amplitude of current we have:

I (t) = nev

√

|α| l

lT R

π

2Re
2/3
m

al|A| (16.64)

It is also convenient to make quantitative estimates in terms of the current density.
As |I | = jaΔxr , the current density is given by:

j = nev

√

|α| l

lT R

π

2Re
1/3
m

l

a
|A| (16.65)

The velocity of the induced coronal flow, v, can be estimated by balancing the
capacitive and inductive resistances (Ionson 1982):

v � 5 × 10−3vARe
1/6
m (16.66)

The above equations, containing the physical parameters simply associated with the
observed quantities allow perform the quantitative analysis and use results both for
diagnostic goals and prediction of the behavior of loop systems.

16.7.1 Examples

For quantitative estimates we will choose three temperature regimes: T = 2×106 K,
T = 106 K, and T = 3 × 105 K. We will also assume that some million degree
loops may be quite compact and reach only transition region heights. Therefore for
each temperature regime we consider examples of the loop lengths of l = 1010 cm,
l = 2 × 109 cm, and l = 5 × 108 cm. We choose for the aspect ratio a/l = 0.01.

First we need to find values of α that define the regions with μ > 0 and μ < 0,
and thus two basic groups of different regimes of the loop evolution. Using the
dependence of the Alfvèn speed on the temperature and plasma beta as

vA = 1.82 × 104
√

T/β, (16.67)

we have:

α =
√

lT R

l
− 7.3 × 109 1

nβ1/3

(
T

a

)4/3

(16.68)
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α

α

Fig. 16.10 Parameter α as a function of plasma density at three different temperatures. Numbers
“1”, “2”, and “3” correspond to loop lengths of l1 = 1010 cm, l2 = 2×109 cm, and l3 = 5×108 cm,
respectively. In all examples solid lines correspond to plasma beta β = 0.1 and dashed lines to
β = 0.05. The range of parameters with α < 0 (μ < 0) corresponds to explosively unstable loops,
whereas α > 0 (μ > 0) to loops evolving according to Poincare limit cycle

Parameter α as a function of density is shown in Fig. 16.10. Three panels
correspond to three temperature regimes. Each temperature regime contains plots
for three different lengths of loops, reflecting the examples of the chromosphere and
corona. Solid lines correspond to β = 0.1, and dashed lines to β = 0.05.

Some qualitative conclusions follow immediately from these plots. The regime
with μ > 0, which corresponds to dynamics of coronal loops evolving in accordance
with the Poincare limit cycle requires quite high densities for loops to be in a stable
state. For example, for 2 MK loops with l = 1010 cm to be in a stable regime,
densities should be higher than 2 × 109 cm−3. At lower temperatures, the density
threshold slightly decreases. This result is consistent with recent observations
showing that densities in large and hot loops are by the order of magnitude higher
than those believed earlier (Aschwanden et al. 2000). It was also shown that not only
the loops with moderate length l ≤ 109 cm, but even long loops with l > 1010 cm
have densities higher than 109 cm−3.

If the density drops below some critical value, and μ becomes negative
(cf. (16.68)), the loop becomes either subject to explosive instability if the initial
current density exceeds the critical values (A0 > 2 in dimensionless units) or slowly
decays if A0 < 2.

Parameters close to μ � 0 (α � 0) correspond to the bifurcation region.
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Table 16.2 Estimates of critical currents and current densities for loops of three different length
at coronal temperatures

T (K) 2 × 106 106 8 × 105

ηD (cm2 s−1) 3.7 × 103 1.05 × 104 1.47 × 104

vA (cm s−1) 8 × 107 5.7 × 107 5 × 107

l (108 cm) 100 20 5 100 20 5 5

Rem (1010) 200 43 10 54 10 2.7 1.7

ω0 (s−1) 0.025 0.13 0.5 0.02 0.1 0.36 0.31

α (μ < 0) −0.1 −0.15 −0.2 −0.1 −0.2 −0.3 −0.5

n (108 cm−3) 3.2 14 48 1.2 5 17 11

˜νei (10−2 s−1) 0.45 2 6.7 0.48 2 6.7 6.1

Icr (106 A) 76 17 3 42 10 2.6 2.4

I
(a)
cr (1010 A) 96 12.8 1.33 34 4.4 0.77 0.63

jcr (A/m2) 0.96 3.2 5.4 0.34 1.1 3.1 2.5

α (μ > 0) 0.1 0.15 0.2 0.1 0.2 0.3 0.5

n (108 cm−3) 12 31 82 5 16 40 57

˜νei (10−2 s−1) 0.17 4.3 0.12 2 6.3 0.16 0.32

Ilim (106 A) 290 38 5 180 30 6.1 12

I
(a)
lim (1010 A) 360 28.6 2.3 140 14 1.82 3.17

jlim (A/m2) 3.6 7.1 9.2 1.4 3.5 7.3 12.7

The range of parameters corresponding to negative values of μ also describes
different regimes of loop behavior, which, again, depends on the initial energy
supply. Thus, in the μ < 0 regime the explosive instability may develop only if
A0 > 2; if A0 < 2 loops just gradually lose their energy, as shown in Fig. 16.9.

As the normalized factor for currents contains the specific parameters of coronal
loops, the limiting value is different for different loops. Some quantitative examples
are shown in Table 16.2. The upper section has some basic parameters for chosen
lengths of coronal loops at three temperatures. The middle part of the table contains
the quantitative estimates of critical currents and current densities for loops in the
μ < 0 regime. The lower part of the table contains the estimates for limiting currents
for loops in the μ > 0 regime. We defined the A = 2 value in dimensional units for
the μ < 0 regime as Icr and for μ > 0 as Ilim to distinguish them from the initial
current amplitude I0.

The values of Icr and Ilim are given by Eq. (16.64) with A = 2. To estimate
these values we choose α = ±0.1, ±0.15, and ±0.2 for loops at T = 2 × 106 K;
α = ±0.1, ±0.2 and ±0.3 for loops at T = 106 K, and α = ±0.5 at T = 8 ×105 K
for loop of 5 × 108 cm length. The choice of α determines the densities of loops
(see Fig. 16.10).

It is important to note that Icr and Ilim are calculated for elemental current
filaments with cross-section aΔxr using (16.27). The total average current flowing
through the visible loop with cross-section � a2 will be obviously I (a) = jla

2 or
I (a) = IRe1/3. As measured currents in literature are related to visible loops (see,
e.g., Leka et al. 1996), it is useful to calculate the critical values of these averaged
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currents as well. These values are given in Table 16.2 as I
(a)
cr and I

(a)
lim . Thus, e.g.,

for loop with l = 1010 cm and a × 108 cm at T = 2 × 106 K, the critical current
is I

(a)
cr = 9.6 × 1011 A; for loop with l = 2 × 109 cm at T = 106 K, I

(a)
cr =

4.4 × 1010 A.
Take, for example, a loop with l = 1010 cm at T = 2 × 106 K with α =

−0.1. The critical current for such a loop is Icr = 7.6 × 107 A (I (a)
cr = 9.6 ×

1011 A). If the initial amplitude of injected current is, say I0 � 2 × 107 A, then
the loop is subject to explosive instability. In dimensional units the explosive time is
texpl = τexpl

√
LC, where τexpl is determined by (16.56). Using (16.57) and (16.60)

we have

texpl = 1

˜νei |α| ln
I 2

cr

I 2
cr − I 2

0

(16.69)

In the above example, currents with initial amplitude of 2 × 108 A will reach
the “infinitely” large values in about 6 min. If the initial amplitude of the
injected current is somewhat smaller (but still higher than the critical value),
say 108 A, it will take about 32 min to bring the system to the regime of explosive
instability. Obviously, the larger the injected currents the shorter the explosive
time.

At μ > 0 the initial current, I0 = 2 × 108 A, for the same loop is less than
Ilim = 2.9 × 109 A, and the loop will continue to accumulate energy until currents
reach this limiting value. The ratio I0/Ilim in this case 0.069, so time for currents
to reach the limiting value is longer than τ = 500 (cf. curve “0.1” in Fig. 16.8).

In dimensional units for loop with l = 1010 cm and vA = 8 × 107 cm/s, this
time translates into t = τ

√
LC = 5.5 h. Consider, for example, the loop with

l = 2 × 109 cm at T = 2 × 106 K. The critical current with α = −0.15 is Icr =
1.7 × 107 A. If the initial amplitude of the injected current is only I0 = 4 × 107 A
(A0 = 2.3), the explosive instability will develop in about 8 min. The same loop
with the initial current I0 = 2.5 × 107 A (A0 = 1.5) will cool down in about
1.2 h.

It is important to emphasize again that the parameter μ = MS0−RC that defines
two major groups for coronal loop conditions reflects the physical properties of a
system both at large-scales (e.g., l, a, B) and at micro-scales (e.g., σ , ν̃ie, etc.).

Wide range of these parameters and their combinations provide various regimes
for the coronal loop evolution. Within each of the major group, loops may behave in
a very different ways. As seen in Fig. 16.8 (μ > 0), loops with high initial currents
cool down and quickly approach a quasi-stable state—this may well represent
the post-flare cooling regime; loops with sub-limited currents gradually gain the
energy until they reach a quasi-stable state. Figure 16.9 shows, e.g., that within
the range of parameters defined by μ < 0, loops with high initial currents are
subject to the explosive instability that correspond to fast and violent energy release,
while loops with sub-critical currents remain for a long time in slowly decaying
phase.
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16.8 Limiting Currents and Filamentary Structures

When plotting parameter α as a function of plasma density (Fig. 16.10), we fixed
the aspect ratio a/l = 0.01. Clearly, one can fix any other parameter, say density
or temperature, and plot α as a function of thickness, a, or aspect ratio. Character
of these plots will be similar to those shown in Fig. 16.10, and will show the critical
values of the structure dimensions at given density or temperature.

According to the recent observations coronal loops should indeed have a
filamentary structure (see, e.g., Aschwanden et al. 2000; Winebarger et al. 2003).
It is remarkable that in the circuit model small-scales of current-carrying filaments
arise automatically. Radius of the filamentary structure is restricted from above
roughly speaking by the Reynolds number (Ryutova and Habbal 1995). More
precise estimate involve many factors which are the subject of future studies,
whereas minimum, critical value of radius, acr follows directly from the parameter
μ which determines regime of the loop dynamics (see (16.60) and (16.68)).

If density, temperature, and loop length are known from observations, Eq. (16.68)
allows one to estimate the limiting current for a particular loop, and find critical
radius of elemental filament, acr, below which the filament becomes unstable.
Examples of such estimates are given in Table 16.3, where we used results of
Winebarger et al. (2003) for 8 loops. w here is the observed loop width. One can
see that it exceeds the calculated critical radius of filamentary structure in all cases
except one (# 3 loops in Table 16.3). Indeed, the “stable” loops should have higher
radii than acr. If the radius of some filament drops below this value, the filament
becomes unstable.

In conclusion, it is useful to briefly overview the results of this chapter and make
some additional remarks.

We started this chapter with consideration of the particular events associated
with magnetic flux emergence that eventually forms two opposite polarity pores,
and triggers formation of magnetic loop structures in the overlying chromo-

Table 16.3 Estimates of limiting currents, Ilim, and critical radii of filamentary structures, acr,
for the “stable” loops observed with TRACE and SXT

Observations Estimates

l w T n Ilim acr

No (108 cm) (108 cm) (MK) (108 cm−3) (1010 A) (108 cm)

1 4.0 1.9 1.2 12.2 2.11 0.91

2 10.0 2.3 1.2 14.7 6.99 1.1

3 17.0 1.5 1.2 9.1 5.94 1.9

4 18.0 2.2 1.2 15.2 12.7 1.4

5 26.2 9.9 6.7 40.6 44.4 4.2

6 28.1 10.3 6.0 25.5 32.2 5.4

7 28.7 21.1 5.8 18.5 34.8 6.7

8 29.5 19.5 5.1 17.3 34.3 6.3
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sphere/corona. This is an ordinary event occurring in the solar atmosphere in any
moment of time at various scales. Particular event considered in this chapter stands
out only in virtue of the acquisition of a rich multiwavelength data that show step by
step development of events that starts from detection of the subsurface motions and
ends up with the formation of the EUV structures that outline well- established flows
above the newly formed pores. Changes in the photospheric magnetic fields occur
“hand in hand” with dynamic changes in EUV structures, and serve as evidence for
unambiguous coupling of the photosphere, chromosphere and corona.

High cadence multiwavelength observations show how the emergence of a large
scale magnetic flux is accompanied by strong collimated plasma flows which appear
at coronal heights at the very early stage of the flux emergence. The corona and
chromosphere quickly respond to these motions, and show a high activity above
the future site of pore formation long before the pore is formed. Coronal structures
acquire their “final” forms only after the strong Hα flows are significantly reduced
and acquire a more or less stable shape of a compact arcades “connecting” two
opposite pores. The EUV structures as well consist of an arcades of many thin loops
of the same shape as the flow pattern.

These observations clearly indicate that the impulsive phenomena associated
with strong magnetic flux emergence (whose visible manifestation is, e.g., a highly
collimated plasma flows) are directly responsible for the EUV structure formation.
Combination of magnetic fields and impulsive phenomena suggest the involvement
of electric currents.

We have analyzed the efficiency of current drive associated with the photospheric
drivers. In particular, we have concentrated on those mechanisms of current drive
which are directly connected with strong disturbances produced by emerging
magnetic flux. These are

1. the currents generated by the proper motion of hydrogen plasma,
2. the wave-induced currents, and
3. currents driven by the Alfvèn waves in the presence of mass flows. Each of these

mechanisms gives a reasonable range of parameters for generated currents.

The proper motion of plasma is quite efficient at all heights, and may generate
currents from j � 2.0 × 10−4 A m−2 at high altitudes up to j � 0.17 A m−2 at
low altitudes. The acoustic waves in linear regime can be ignored, whereas in a
weakly nonlinear regime they may drive currents on the order of j � 10−2 A m−2.
In case of the Alfvèn waves, the efficiency of current drive is quite sensitive to wave
frequency. For example, higher frequency waves can generate stronger currents
and at lower altitudes. Quantitative estimates of current densities at different
temperatures (and frequencies) give an interval ranging from j � 1.7 A m−2 to
j � 2.0 × 10−3 A m−2. The advantage of this mechanism is that it naturally
combines the mechanical (flows) and magnetic effects in the process of current
drive. Besides, the method itself allows to estimate both, the current densities and
corresponding heights.

The effect of the current drive as a natural consequence of a photospheric driver
allows to study further evolution of currents and coronal structures associated with
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the dynamic changes in the photosphere. These processes may be described in
terms of the equivalent electric circuit, that consolidates mechanical, magnetic, and
electrical effects into one scheme, and establishes coupling between the surface
driver and dissipation region in the overlying atmosphere.

Further evolution of currents and coronal structures associated with the dynamic
changes in the photosphere is studied using the analogue of an energetically open
circuit. This approach is quite general and may be applied to any current systems
throughout the solar atmosphere. The system consists of the energy source (in
our case a photospheric driver), dissipation region, and region where transition
and feedback between the β ≥ 1 and β � 1 regions occur (transition region
between the chromosphere and corona). Such a system has obviously all the
properties of energetically open, dissipative system which has a tendency to self-
organization and formation of various forms of dynamic structures. We treated
the system as such and extended analysis to nonlinear regime, which allows
to study the various regimes of the EUV structures and conditions for their
realization.

The major element of the approach is the inclusion of the transition region and its
influence on coupling between the corona and photosphere/chromosphere region.
Physics of coupling has the resistive character, and consists of the mechanical
stressing of the common magnetic field in the photosphere that results in generation
of electric currents and corresponding Pointing flux of energy that propagates
upward and subsequently dissipates. Because of high conductivity of coronal
plasma, dissipative effects turn on only at a small transverse scales of the order of
generalized skin depth determined by kinetic coefficients of plasma. The generated
currents reach their maximum values mainly at the transition region heights
establishing conditions for coronal loop formation.

To reflect influence of transition region on the coupling process we take into
account that the resistive load is associated not only with the corona, but with the
chromosphere/transition region as well. This leads to appearance of an equivalent
mutual resistance in the circuit equation derived from the global electrodynamics.
This in fact is equivalent to appearance of mutual inductance (as Zi = ωLi , cf.
Figs. 16.6b and 16.7b).

The nonlinear circuit equation with mutual inductance acquires the form of
the Van der Pol oscillator. Depending on the coefficients, determined by the loop
parameters, this equation describes various regimes which include long living
steady loops, periodically flaring and exploding loop systems. A crucial element
of the problem is a measure of an energy supply and the capacitance of a loop,
reflected by parameter μ = MS0 − RC. The sign of this coefficient determines the
solution of the circuit equation, and thus the actual behavior of the loop. Physically,
μ < 0 corresponds to the situation when the energy supply is less than the current
generation threshold. For μ > 0 the additional energy supply exceeds the generation
threshold; the range of parameters near μ � 0 corresponds to the state when the
system bifurcates from one regime to another.

Table 16.4 briefly summarizes typical regimes of coronal loop evolution. A0 is in
dimensional units, and for individual loop system is given by (16.64) with |A| = 2.
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Table 16.4 Linear and nonlinear regimes of the coronal loop dynamics

μ = MS0 − RC < 0 μ = MS0 − RC > 0

Linear regime Long living loops showing a
weakly damped, over-damped,
or critically damped
oscillations of intensity

Long living loops gradually gain
and then lose energy
periodically resulting a flare-like
events

Nonlinear regime, A0 < 2 The oscillating loops gradually
lose the energy (Fig. 16.8,
solid curves)

Poincare limit cycle: currents
grow until they reach a limiting
value to establish a quasi-stable
long living system

Nonlinear regime, A0 > 2 Explosive instability leading to
(1) a violent energy release
and disruption of a system, or
(2) repetitive flare-like events

Poincare limit cycle: currents
drop to a limiting value releasing
the excess of energy and
approaching a quasi-stable state

Thus the physical parameters for realization of different scenarios of loop
evolution form a simple system and most of them are directly observable. It is
important to note that the circuit model also predicts that the EUV loops must have
a small-scale filamentary structures. A critical radius of elemental filament for each
individual structure is also a simple function of the observed parameters and can be
used for diagnostic goals.

One can say that the equivalent circuit model is a very efficient tool to study
the physical processes that couple the subsurface and photospheric energy reservoir
with the energy dissipation region in the upper layers of atmosphere. The advantage
and broadness of this approach is that it includes several important issues in the
coronal dynamics and structure formation:

1. connection between the remote parts of energy production region and regions of
energy flow and release,

2. combination of both, magnetic and electric current viewpoints,
3. the natural explanation of the diversity of a coronal loop’s behavior from

oscillatory to periodically flaring and exploding states,
4. simple relations between the physical parameters of a system, most of which are

observable.

The model of energetically open circuit is quite general and can be applied to other
astrophysical objects consisting of a dynamic magnetized plasma with continuous
flow energy and its dissipation.

16.9 Problems

16.1 Establish the connection between current drive by plasma waves and helicity
conservation in the presence of viscous and resistive losses.
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16.2 Obtain nonlinear equation for electrical transmission line with variable-
capacitance. Show that the equation has a solitary wave solution.

Appendix: Method of Slow Variables for Van der Pol Equation

In a real time Eq. (16.48) has a form

d2i

dt2
− μ(1 − i2)

di

dt
+ ω2

0i = 0 (16.70)

and belongs to the class of nonlinear equations of the type

d2i

dt2 + ω2
0i = f

(

i,
di

dt

)

(16.71)

with

f (i,
di

dt
) = −μ(i2 − 1)

di

dt
(16.72)

The method of slowly varying phase and amplitude is based on the usage of
transformation (see, e.g., Hagedorn 1988):

i = A(t)sin(ω0t + ψ),

di

dt
= A(t)ω0cos(ω0t + ψ) (16.73)

which replaces Eq. (16.71) by the system of a simple integro-differential equations:

dA

dt
= 1

2πω0

∫ 2π

0
f (A,ψ) cos(φ + ψ) dφ,

dψ

dt
= − 1

2πω0A

∫ 2π

0
f (A,ψ) sin(φ + ψ) dφ (16.74)

With Eq. (16.72) we have

dA

dt
= μA

2π

∫ 2π

0
(1 − A2sin2φ) cos2φ dφ,

dψ

dt
= − μ

2π

∫ 2π

0
(1 − A2sin2φ) cosφ sinφ dφ (16.75)
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or, equivalently,

dA

dt
= μ

A

2

(

1 − A2

4

)

,

dψ

dt
= 0 (16.76)

With the nondimensional time τ = t/
√

LC and ε = μ/
√

LC, Eq. (16.76) becomes
Eq. (16.51).
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Chapter 17
Fine Structure of Penumbrae: Formation
and Dynamics

Abstract In this chapter we shall study amazing properties of sunspot penumbra—
a beautiful “crown” surrounding mature sunspots and being one of the long-standing
mysteries of solar magnetism. High-resolution observations with the Swedish
1-m Solar Telescope (SST) on La Palma revealed earlier unavailable features of
penumbral filaments showing their fine substructure and new properties in their
dynamics (Scharmer et al., Nature 420:151, 2002). We shall see that these properties
are associated with the nature of umbra which itself is a dense conglomerate of
twisted flux tubes. Being more or less vertical in the center of sunspots, twisted
and interlaced flux tubes branch out at the periphery from the “trunk” due to an
ongoing reconnection processes, and arc downward to the photosphere forming the
penumbral “umbrella.” The twist of individual filaments, and resulted distribution of
magnetic fields and temperature inside them are consistent with the onset of screw
pinch instability, which in large explains the properties and behavior of penumbral
filaments.

17.1 Peculiarities of Sunspot Penumbrae: Observations

Penumbrae consist of an uncombed system of thin magnetic filaments arcing
radially outward from the umbra and terminating in the photosphere. The inclination
of the magnetic field is found to vary across the penumbra from 45◦ to 90◦ to the
sunspot normal (Title et al. 1993). There are also strong intensity inhomogeneities
across the penumbra, resulting in a visual effect of interlaced dark and bright
filaments.

The Evershed flow (unsteady plasma outflow at the photospheric level) is also
found to be structured on the scale of the penumbral filaments. The flow is more
horizontal than the mean magnetic field at all radii in the penumbra and has a spatial
correlation with dark penumbral filaments (Shine et al. 1994). The bright filaments
are usually less horizontal making thus some angle with the direction of Evershed
flows.

© Springer Nature Switzerland AG 2018
M. Ryutova, Physics of Magnetic Flux Tubes, Astrophysics and Space Science
Library 455, https://doi.org/10.1007/978-3-319-96361-7_17

465

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96361-7_17&domain=pdf
https://doi.org/10.1007/978-3-319-96361-7_17


466 17 Fine Structure of Penumbrae: Formation and Dynamics

1 arcsec

Fig. 17.1 Left: Dark-cored filaments first reported by Scharmer et al. (2002); Right: Temporal
evolution of a dark-cored filaments, that includes splitting of filaments. Credit: Sütterlin et al.
(2004), reproduced with permission copyright ESO

Livingston (1991), comparing images of sunspot with different exposures, came
to the conclusion that the sunspot umbra also has a filamentary structure, and may
exhibit presence of vertical, diverging, and horizontal filaments.

Observations with the 1-m Swedish Solar Telescope (Scharmer et al. 2002) in
the different wavelength bands (e.g., 4305 Å G-band and 4368 Å continuum) have
revealed unprecedented details in the penumbral structure and dynamics. It was
found that many of individual filaments show dark cores surrounded by bright
walls. The footpoints of the dark cores are mostly adjacent to the bright dots
or grains. Filament often looks twisted. High cadence movies show continuous
filament branching into several filaments which also have dark cores. Figure 17.1
shows an example of a typical appearance of penumbral filaments at the highest
possible resolution of about 70 km. Left panel is one of the first reported images
showing dark-cored filaments of different shapes that include twisted configuration
as well (Scharmer et al. 2002). Four right panels show temporal evolution of a
system of an exemplary dark-cored filaments showing their growth, merging and
splitting processes (Sütterlin et al. 2004). After the first results all the persistent
features were confirmed and complemented in subsequent observations with the
SST (Berger et al. 2004; Rouppe van der Voort et al. 2005; Bellot Rubio et al. 2005;
Langhans et al. 2005; Rimmele and Marino 2006). These may be summarized as
follows:

1. The widths of filaments close to their point of origin are 150–180 km.
2. The width of dark cores may be below the resolution (≤70 km).
3. Filament lengths range from 300 to 3000 km.
4. The average lifetime of individual filaments is 1–2 h.
5. The inclination of the dark-cored filaments with respect to the normal varies from

35◦ in the inner penumbra to about 60◦ toward the outer penumbra.
6. The magnetic signal is lower in the dark (cooler) cores than in the lateral

(warmer) brightenings.
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June 7, 2006 UT 08:30
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Fig. 17.2 Images of the 2006 June 6 sunspot. Top: G-band filtergram in the beginning of
the observation. Bottom: Simultaneous G-band/4396 Å continuum difference image. Along the
filamentary penumbra one can see well-defined small scale structures in the middle of the umbra,
which are especially prominent in the difference image. These tiny black dots are the individual
flux tubes forming the sunspot umbra

The SST observations of a sunspot obtained on 2006 June 6, in 4305 Å G-band
and 4364 Å continuum lines confirmed the basic properties of penumbral filaments
listed above and extended the analysis to their temporal evolution (Ryutova et al.
2008a).

Figure 17.2 shows two simultaneous images of the studied sunspot. The obser-
vations covered a 23.8 × 16.8 Mm2 area of active region (AR 10892) near the
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disk center with the period of observation of 1 h 25 min. The data were taken
simultaneously every 5–7 s in the 4305 Å G-band and a nearby “pseudo-continuum”
bandpass centered at 4364 Å. The G-band, commonly used to trace small scale
photospheric magnetic elements, is excellent bandpass to reveal high contrast (and
brightness) in penumbral filaments. Continuum images also show bright contrast in
the observation of penumbral filaments continuum.

The fact that continuum images show a contrast by a factor of 10 less than in
the G-band turns out to be quite useful. Given the precise alignment of the G-band
and continuum images and a contrast difference, a subtraction of the two images
intensifies the structures having the magnetic origin. The top panel in Fig. 17.2
shows the sunspot in the 4305 Å G-band. The bottom panel shows the result of
subtraction of the 4364 Å continuum image from the G-band. Note that the umbral
dots show up in the difference image with reversed contrast. The typical size of the
umbral dots is ∼70 km and may be below the resolution limit.

A closer look from these observations is shown in Fig. 17.3.
In addition to already established properties (listed above) these observations

revealed new properties of penumbral filaments. Most important of them are
illustrated in Fig. 17.3 and listed below:

1. All filaments, whether or not they show obvious dark cores, are associated with
a bright point which may be found anywhere along their length, and often inside
umbra.

2. The umbral end of the filaments often splits into a series of bright dots, each
having its own tails (left panel, thick arrow).

3. Filaments with or without dark core may branch into several filaments anywhere
in the penumbra. The branching region is always brighter than the filament itself
(small vertical arrows).

4. Several filaments may twist around each other into a bunch resembling multiwire
cable. When unwinding, the individual filaments often keep their identity, but
the process itself is accompanied by localized sporadic brightenings (right panel,
thick arrow).

5. Many filaments exhibit twist along their lengths, resembling cylindrical helices
having various pitch (thin long arrows). Strongly twisted filaments are usually
short-lived.

6. The ratio of filament radius and pitch is about the same for the majority of the
long-lived filaments.

The temporal variability of penumbral filaments studied by space-time procedure
shows the motions of various bright and dark patches revealing the true nature of an
apparent twisting of filaments. It was found that the twisting motion is an intrinsic
property of penumbral filaments. Screw-type motion is well observed in the majority
of filaments, including those which do not show a clear twist in single snapshots.
This property of penumbral filaments determines in large the observed peculiarities
of penumbral filaments.
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Fig. 17.3 Eastward and westward parts of the sunspot showing various topological structures in
penumbral filaments. Small downward arrows show the apparent splitting of filaments. Note that all
the branching points show enhanced brightening. Three arrows marked by a, b, and c show multiple
branching of one filament. Although the snapshot caught them together, the branching occurred in
different times. The thick arrow in the left panel shows a regular series of intense bright points that
may represent a strongly twisted individual filament or branching points of several filament below
the surface; In the right panel the thick arrow shows multiwire view of filaments. The westward
part of the penumbra (right) is center-side and therefore shows more dark-cored filaments than the
eastward part of the penumbra. See text for discussion of dotted boxes marking several ubiquitous
events

17.2 Dynamics of Penumbral Filaments and Ongoing
Reconnections

Before we discuss the details of the observed regularities in the temporal behavior
of penumbral filaments, let us recall a well-known fact from basic plasma physics:
long, cylindrical magnetic structures are subject to helical instabilities, and a long
magnetic flux tube with both azimuthal and axial components twists into a kinked
helical shape, forming the screw pinch configuration (Shafranov 1956; Kruskal and
Kulsrud 1958; Kadomtsev 1966; Parker 1979).
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In other words, long penumbral filaments, as any other long magnetic flux tubes,
are intrinsically unstable unless they wind into a helical shape with nonzero field-
aligned current components that provide their dynamic stability in twisted shape.
The magnetic field lines are therefore helices of some radius r . The pitch angle θ(R),
i.e., the angle between a line of force and the direction of flux tube axis (z-direction)
is: tan θ(R) = Bφ/Bz, where Bz and Bφ are axial and azimuthal components of
magnetic field. The pitch of the helices, i.e., the distance in which the field line
makes one revolution around the flux tube is:

h(R) ≡ 2πR

tanθ
= 2πRBz

Bφ

(17.1)

The twisted state is characterized by the safety factor defined as follows:

q = 2πRBz

LBφ

≡ h

L
(17.2)

where R is the radius of the flux tube, L is its length. The screw pinch instability
turns on when the safety factor becomes less than one:

q ≡ h

L
< 1 (17.3)

The most readily excited configuration is usually the kink mode (m = 1), when the
flux tube winds along the screw direction together with the axis. It is interesting that
in the case of penumbral filaments the safety factor is observed directly, and it is
such that (17.3) is applicable virtually to all the penumbral filaments.

Examples of space-time slices made in the G-band and G-band/4364 Å contin-
uum difference movies are shown in Fig. 17.4. The top panels are snapshots of
penumbra segments, where the space time cuts are made. The paths of these cuts
are marked by numbers 1–4. The corresponding space-time images are shown in
the lower panels. One can see that the twists seen in the snapshots indicate “cork
screw” motions, which may be either right-handed or left-handed. In any case,
twisting motion remains regular for a long time, probably during the entire lifetimes
of filaments. Duration of these observations is 85 min.

Not all the filaments show a helical shape in single snapshots, while movies
reveal the twisting motions much more readily. In any case the pitch of the helical
structure is directly measurable.

To measure the pitch using the movies, one needs to make at least two nearby
cuts over a filament at some distance from each other, Δx. A pitch, h, will be then
h = Δx(T/Δt), where T is a period, e.g., time between maxima of intensity in the
space-time image, and Δt is the time shift between the maxima in the neighboring
cuts.

Examples of such a procedure are shown in Fig. 17.4. Cuts 1a and 1b are made
in the G-band movie, and cuts 1c and 1d in the G-band/Continuum difference
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Fig. 17.4 Space-time images revealing helical structure and corkscrew motions of the penumbral
filaments (see text for details). The tick marks on the time axis have 5 min spacing, t0 = UT
08:30:05, tf = UT 09:55:05

movie (the corresponding snapshot is not shown). One can see immediately that the
maximum intensities in cuts 1a and 1b are phase shifted, while in cuts 1c and 1d

they are in phase. The distance between cuts 1a and 1b is Δx � 300 km, measured
times are T � 22 and Δt � 12 min. For the pitch, we have then h � 550 km.
To confirm this result we made cuts 1c and 1d about 550 km apart. Indeed, the
corresponding space-time images are perfectly synchronous. The same is true for
cuts 2a and 2b (cut 2c made in the G-band/Continuum difference movie is located
in the same place as 2a). All three twists are in phase. In this case, T = 20 min, and
Δx � 700 km. Thus the pitch h � 700 km.

Cuts 3a and 3b made in the G-band and G-band/Continuum difference movies in
the same place over the multiwired filaments show the coexistence of closely located
filaments. This cluster of filaments remains quite sturdy during the observation
period. One can see, however, signs of interaction between the individual filaments
accompanied by the enhanced brightening.

Signs of interaction are also seen in panel 4 of Fig. 17.4. Cut 4, made in the
G-band/Continuum difference movie shows the birth of a strong twist occurring
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at about 09:20 UT (double arrows). The newly generated twist is quite strong
and oriented in such a way that is well recognized even in the snapshot (marked
by double arrows in upper third panel). One should bear in mind that different
orientations of a cut show different patterns in motions of bright and dark patches
lying along this cut. Cut 4 is made to reveal a birth of twist but does not clearly
show interaction of filaments which could result in it. One can see several interlaced
filaments in the first half of observing period before the appearance of a twist,
changing their locations and intensities.

The most pervasive kind of interaction seen in high-cadence movies, is apparent
splitting of filaments. Most importantly, this process is always accompanied by the
enhanced brightening of splitting region. Some examples are highlighted by small
arrows in Fig. 17.3.

To see more details we selected three regions marked by dotted boxes in right
panel, Fig. 17.3. Boxes 1 and 2 contain filaments that are protruding deep into umbra
and are therefore well seen on its background. The third box represents bunch of
dark-cored filaments. All three groups of filaments are shown in Fig. 17.5 in three
instances of time.

Panels 1a–c in Fig. 17.5 are simultaneous G-band and G-band/Continuum dif-
ference images of the “first couple” of filaments. One can clearly see that at UT
08:30:05 longer (“upper”) filament overlays the shorter one. This is especially
well noticeable in the G-band/Continuum difference image. At this instant of time
(beginning of the observations) an enhanced brightening is quite prominent in the
small region marked by arrows. This region becomes the place where left parts
of two filaments “exchange” their places, now the longer filament is overlaid by
the shorter one. This process is sketched in white boxes embedded in the G-
band images, 1a–c. By its nature such a process can obviously be understood as
reconnection of filaments.

Panels 2a–c show another example of filament interaction. The beginning of this
process has occurred before the observations started. The enhanced brightening of
the region of intersection (marked by arrow in panel 2a and 2c) is still visible. As
in the previous case, this region becomes the place where filaments separate from
each other. Note that in about 20 min filaments seem to disappear (panel 2c). There
might be several reasons for this: one is that orientation of filaments has changes, or
that they indeed started to decay.

Panels 3a–d show the complex behavior of the filaments as a dense conglomerate.
Here we highlight two splitting processes, marked by arrows a and b. In both cases,
after splitting, the filaments acquire a twisted shape. In case a splitting is seen in
both G-band and difference images, while the arrow b splitting is noticeable only in
the difference image. The dashed line in panel 3a is the cut passing through several
dark-cored filaments. The corresponding space time image (panel 4) shows several
splitting events during the time of observation, as well as the major “survival”: the
filament strongly protruding into the umbra, marked by arrow c in panels 3c and 4.

Obviously, the apparent splitting of penumbral filaments, helical shape, and
enhanced brightening of the region of splitting are caused by ongoing reconnections.
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Fig. 17.5 Examples of interacting filaments in three instances of time. Panels 1a–1c show
simultaneous G-band and G-band/Continuum difference images of two neighboring filaments;
initially, the longer filament overlays the shorter one. In subsequent instances it seems that
filaments have exchanged their left ends. This process is sketched in the white boxes. Panels 2a–
2c show another example of filaments in the later stage of their interaction. In both cases the
interaction is accompanied by enhanced brightening (marked by arrows). Panels 3a–3d show the
evolution of the system of filaments. Arrows a and b show the regions where filaments possibly
reconnect, and acquire the twisting shape. The dotted line in panel 3a is the cut passing through
several filaments. Corresponding space time image (panel 4) shows several splitting events

In the next section, we discuss specifics of the reconnection and post-reconnection
processes in the penumbra and their relevance to the observed regularities.

17.3 Formation of Filamentary Penumbrae

Fine structures seen at the visible surface suggest that physical processes in deeper
layers also occur at small spatial scales: the nature of the surface umbra-penumbra
is determined by the sub-photospheric structures. One of the ways to visualize a
sunspot (in a vertical cut) is a tree-trunk analogue with branches of tree running
along the length of a trunk and gradually deviating outward, forming an umbrella-
like ensemble of thin magnetic filaments.

It is important to emphasize that not only penumbra, but the umbra itself
is highly inhomogeneous (Fig. 17.2). Observations of filamentary structure of
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umbrae go back to 50s, leading to studies of an umbral fine structures long
before the recent high-resolution observations became available. For example,
Papathanasoglou (1971) showed that widths of umbral filaments are <1′′, and dark
spacing between them is about 0.6′′. As mentioned in the Introduction (Livingston
1991), a filamentary structure of umbrae is quite complex, and may exhibit
presence of vertical, diverging, and horizontal filaments. Such random alternation
of magnetic fluxes and almost nonmagnetic spacing between them is indicative that
the umbrae consist of a dense conglomerate of noncollinear flux tubes that are in
constant motion relative to one another. Among fundamental processes in such a
conglomerate are reconnection and post-reconnection processes.

17.3.1 Phenomenology of Basic Mechanism

The penumbral filaments are obviously of the same polarity as the parental sunspot.
However, they are strongly noncollinear, and being in such vicinity to each other,
they are subject of frequent reconnections.

The reconnection and post-reconnection processes in penumbra, as well as their
observed signatures strongly depend on the orientation of filaments and the bisector
of the collision angle between the interacting flux tubes.

If the bisector is close to vertical, situation most typical to the sunspot center
(Fig. 17.6a), the magnetic force acting in the plane perpendicular to the bisector,
straightens the reconnection products and drags them away from each other
(see Chap. 12). Line-of-sight picture will show a fragmentation process. Toward
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Fig. 17.6 Visualization of photospheric and sub-photospheric reconnections between the same
polarity flux tubes: (a) Reconnection between the umbral (almost vertical) flux tubes colliding at
the angle with the bisector close to the line of sight; in this case, the post-reconnection slingshot
drags away the fragmented parts; (b) Reconnection between the peripheral filaments when the
bisector of the collision angle strongly deviates from the vertical; in this case, the upper slingshot
generations shocks and subsequent jets; the appearance of the bright point in the reconnection
region is always in place
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Post−reconnection screw pinchPrior reconnection

Fig. 17.7 The post-reconnection screw pinch resulted from an inevitable twist inherited by the
reconnection products

periphery, penumbral filaments deviate from vertical, so does the bisector of their
collision angle. In this case along the magnetic tension the reconnection products
experience action of the buoyancy force. For upper part of the reconnection product
(Fig. 17.6b) the magnetic tension and buoyancy force are acting in the same, upward
direction, which leads to the generation of shocks, and eventually the appearance of
lateral jets (Tarbell et al. 1999; Ryutova et al. 2003; Ryutova and Tarbell 2003;
Katsukawa et al. 2007; Ryutova et al. 2008b). Besides, region of reconnection
always has some excess of energy, which manifests itself in enhanced brightening,
usually observed as bright points (BP).

Most importantly, the reconnection generates an inevitable twist (Fig. 17.7). This
fact plays a crucial role in the topological features of penumbral filaments, and
in particular, in the appearance of dark cores along their axes, first observed by
Scharmer et al. (2002).

It is important that only a limited portion of flux participates in each elemental
reconnection. Recall (Chaps. 12–13) that the effective radius is determined mainly
by the magnetic Reynolds number, Rmax < L/2lnRem. With Rem � 103–106, and
a typical length of L � 103 km, we have Rmax ∼ 36–70 km. As discussed earlier,
this means that magnetic flux tubes having a radius as small as 150–200 km may
be the sites of multiple reconnection processes. Good illustration of such a process
is an example of multiple branching of penumbral filament shown, e.g., by vertical
arrows in Fig. 17.3. As mentioned in the figure caption, although the snapshot caught
all these branching together, they did not appear simultaneously, i.e., interaction of
a given filament occurred with different neighbors in different times. This process is
ubiquitous and is well observed both in G-band and G-band/continuum difference
movies, suggesting that it just these continuous reconnections, fragmentation, and
branching are responsible for the formation of filamentary structure of penumbra
and the sunspot as a whole.
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Fig. 17.8 Schematic of the sunspot illustrating the formation of a filamentary umbra/penumbra

17.3.2 Filamentary Structure of Sunspot

A schematic of the formation of the fine structures of the sunspot and the branching
out of the peripheral flux tubes that form the penumbra is shown in Fig. 17.8.

Thus the process of fragmentation in the sunspot, and branching out of the
newborn flux tubes will occur repeatedly until the reconnection products reach
their critical radii. As flux tubes have different parameters, branching occurs at
different heights. In the central region of sunspot fragmented flux tubes remain
mostly vertical, but may also diverge (Livingston 1991).

Toward the edge of the umbra flux tubes deviate more and more from the vertical.
So does the bisector of the collision angle between the interacting flux tubes. In this
case, the upward slingshot generates oblique shocks and leads to the appearance
of a lateral jets. Note that the reconnection region is always marked by enhanced
brightening corresponding to the bright points seen throughout the penumbra. The
larger the deviation, the stronger the shocks leading to stronger jets. In addition, the
reconnection of noncollinear flux tubes leads naturally to a twist in the reconnected
filaments. This twist as already mentioned plays a crucial role in stability, dynamics,
and properties of penumbral filaments. This will be discussed in the next section.

17.3.3 Properties of Individual Filaments

Thus, the ongoing reconnection and fragmentation processes that determine the
morphology and properties of a sunspot, shape as well the penumbral filaments. All
the observed properties of the penumbral filaments listed in Sect. 17.2, are natural
consequences of these processes: the very formation of the filamentary penumbra,
the multiple splitting of individual filaments and their footpoints, the enhanced
brightening of the footpoints (region of reconnection), a twist of filaments, and as
we will see below, the presence of dark cores in most of the filaments.
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A simple phenomenological approach allows one to make a reasonable quantita-
tive analysis.

We start with the most readily excited, a kink mode configuration (m = 1).
The condition (17.3) for safety factor, defined by (17.2), puts a constraint on the
azimuthal electric current known as the Kruskal-Shafranov limit:

Iφ > IKS = 2πRc

L
Bz, (17.4)

where IKS is the Kruskal-Shafranov current below which the magnetic field is
supposed to be stable with respect to screw pinch instability. Laboratory experi-
ments, however, show that the screw pinch configuration is surprisingly stable far
below the Kruskal-Shafranov limit. Theoretical studies show that there are indeed
many factors (such as finite plasma β, nonzero resistivity, the finite length of the
plasma column, the presence of plasma flows, field reversal, and others) that provide
realization and stability of a screw pinch configuration far below the expected limit
(Schuurman et al. 1968; Goedbloed and Zwart 1975; Miyamoto 1988; Lehnert and
Scheffel 1992; Martynov and Medvedev 2003; Ryutov et al. 2006; Bergerson et al.
2006).

In case of the penumbral filaments, the safety factor, q = h/L, is observed
directly and allows infer Bφ from the direct measurements of the pitch and Bz.
As we know, along the most common m = 1 kink mode, the current-carrying
magnetic flux tubes are subject to higher modes of MHD instabilities, ∼ exp(imφ).
The mode m determines the entry of helical perturbations (Fig. 17.9, left; cf.
Fig. 3.3). For qualitative comparison, we illustrate possible high azimuthal modes
of twisted filaments in Fig. 17.9, right panels. The next step in observations is
obtaining vector field maps with high spatial resolution that became available with
spectropolarimetric measurements with the SOT aboard the Hinode satellite and

m=1 m=4m=3m=2
2

1

Fig. 17.9 Screw pinch configurations. Left panel: Various modes of helical perturbations. Right
panel: Possible observational evidence for various modes shown in the fragments of penumbra—
G-band (top), and G-band/4396 Å continuum difference image (bottom). The arrows show strongly
twisted filaments; pitch/radius ratio for the first helical structure is slightly larger than unity, and
for the second structure it is between 1.5 and 2
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Fig. 17.10 Stability boundary determined by the critical current and azimuthal magnetic field.
There is a significant range of parameters below the line m = 1 where the screw pinch
configuration with one of the higher modes may be formed (after Ryutov et al. 2004)

the SDO instruments. Detection of higher modes in the observations, which will
allow a direct measurement of the basic parameters in the screw pinch provides an
additional means to infer the electric currents and other physical parameters.

Theoretically, it is shown that there is a considerable range of parameters for
higher modes of the screw pinch configuration (Ryutov et al. 2004). We use here
their calculations to plot the stability boundary for various magnetic field profiles
(Fig. 17.10). The ratio Icr ≥ IKS demarcates the stability boundary as a function of
the azimuthal component of the magnetic field. The kink mode, m = ±1, e.g.,
develops for Icr ≥ IKS, i.e., above the straight line m = 1 in Fig. 17.10 (see
(17.4)). Below this line, there is a significant range of parameters where screw pinch
configuration with one of the higher modes may be formed.

The excitation of other modes, as well as the manifestation of the individual
properties of a given filament, depends on the actual distribution of the magnetic
fields and currents inside it. It is important that the helical shape of the magnetic
field has a significant effect on the temperature distribution inside a magnetic flux
tube that naturally accounts for the appearance of dark-cored filaments.

17.4 Screw Pinch Instability and Dark Cores

To see how the screw pinched flux tube acquires the dark cores, let us find profiles
of the temperature, magnetic fields, and currents in a twisted flux tube. We start with
a stationary form of the energy balance equation, which can be written as:

κ‖
∂2T

∂z2 = −j2

σ
+ Qrad − Hvisc (17.5)
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where κ‖ is the parallel thermal conductivity, j is a current density, σ is the electric
conductivity, and Qrad and Hvisc are the radiative loss function and viscous heating,
respectively.

In order to isolate the effect of the helical structure on the temperature and electric
current distributions, we assume that the filament is kept in radiative equilibrium
by viscous heating. Roughly, this can be justified by estimating the two last terms
in Eq. (17.5).

The radiative cooling time, τrad (Spiegel 1957), calculated for a photospheric
magnetic flux tube of radius R = 50 km, plasma density ρ = 2 × 10−7 g cm−3,
and temperature change from 12,000 to 4800 K is about τrad = 200 s (Schlicht-
enmaier 1999). The estimate for radiative heat flux at T = 4800 K is Qrad �
(3/2)nkT /τrad = 413 erg cm−3s−1. Viscous heating is provided mostly by
turbulent motions, and may be estimated as Hvisc � ηturb e2

ij , where eij =
[(∂vi/∂rj ) + (∂vj /∂ri)], and ηturb � ρvR. For the above parameters with a
turbulent velocity v � 2 km s−1, we have Hvisc � 320 erg cm−3s−1.

Profiles of equilibrium magnetic fields and currents in twisted magnetic flux
tubes are calculated by balancing the Lorentz force and the pressure gradient:

1

c
j × B = �p (17.6)

where p, j, and B are the pressure, current density, and magnetic field. For a simple
axisymmetric state, magnetic field profiles can be expressed through a generating
function f (r) defined as the total pressure, f (r) = p + (B2

φ + B2
z )/8π (see, e.g.,

Parker 1979):

p(r) + B2
z

8π
= f (r) + 1

2

df

dr
,

B2
φ

8π
= −1

2
r
df

dr
(17.7)

The generating function is arbitrary except that in order that Bφ and Bz are real, f (r)

should decline monotonically with r , but not faster than 1/r2, i.e., 0 ≥ df/dr ≥
−2f (r)/r . For illustrative purpose we consider a force-free field, j × B = 0 (p =
constant), with a simple generating function:

f (r) = P0
1 + R2μ2

1 + r2μ2 , (17.8)

where μ is the inverse pitch of a helical flux tube,

μ ≡ 2π

h
(17.9)

Corresponding solutions for magnetic fields and currents are shown in Fig. 17.11.
We use here typical observed parameters of penumbral filaments, e.g., R = 4 ×
101 km, h = 5 × 102 km, Bz = 1500 G.
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Fig. 17.12 A helical flux tube: (a) Flux tube and a plot of length of helix, S(r). (b) Sketch of the
temperature profile across the flux tube

The individual magnetic lines of force are helices of radius r . The entire length
of the helix, S (the connection length between the ends of flux tube), depends on
the pitch angle, θ(r), defined as tan θ(r) = Bz/Bφ at a given flux surface. Simple
geometrical considerations show that the length of the helix, S considerably exceeds
the physical length of a tube, L:

S = L

√
1 + B2

φ/B2
z (17.10)

For the magnetic field distribution shown in Fig. 17.11, S is minimum at the axis
(where Bφ = 0), and rapidly grows toward periphery (Fig. 17.12a).

If according to the above estimates the filament is kept in radiative equilibrium
by the viscous heating, the effect of helical structure on the temperature distribution



17.4 Screw Pinch Instability and Dark Cores 481

can be evaluated by the approximate equation for the temperature in the middle of
the flux tube (along the axis) determined by the balance of the Joule heating and
parallel thermal conductivity. Then along the field line we have:

κ‖
∂2T

∂z2 = −J 2

σ
(17.11)

This gives an estimate

T � Tmax(1 − 4z2/S2), (17.12)

with Tmax as

Tmax(r) � j2(r)S2(r)

8σκ‖
, (17.13)

The presence of the factor S2(r) makes the hollow temperature profiles a natural
occurrence (Fig. 17.12b). The fact that these are rotating, axially flowing plasma
fluid structures (i.e., plasma vortex tubes) means that the density profile increases
from its minimum along the tube axis to a maximum at the walls. This fact again
supports the occurrence of the dark cores and their consistency with the optically
thin radiative transfer.

17.4.1 More on Substructures of Filaments

Now we turn to a more general solution of (17.6). The simplest solution in
cylindrical geometry is known to be a Lundquist field (Lundquist 1951), having
form of Bessel functions (Fig. 17.13):

Bz(r) = B0J0(μr), Bφ(r) = B0J1(μr)

jz(r) = B0c

2π
μJ0(μr), jφ(r) = B0c

2π
μJ1(μr) (17.14)

where μ is the inverse pitch of a helix, defined by (17.9). Note that the solution
shown in Fig. 17.11 is qualitatively the same if μr is less than the first zero of
J0(μr). The above field configuration, often met in laboratory plasmas, has been
extensively studied both theoretically and in advanced experiments. Similar studies
of solar and space magnetic fields with helical configurations have been carried out
(Van Hoven et al. 1977; Parker 1979; Lothian and Hood 1989; Rust and Kumar
1994; Linton et al. 1996; Li 2000; Wissink et al. 2000).

A characteristic feature of the Lundquist solution is the reversal of the magnetic
field and electric currents (Fig. 17.13), first emphasized by Taylor (1974) and later
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Fig. 17.13 Oscillatory character of the Bessel functions. Shown are several regimes determined by
the critical current and azimuthal magnetic field. The inset shows the cross-section of the reversed
pinch in the interval 3.85 < 2πR/h < 5.5 with formation of a reversed core and its dynamics
(after Miyamoto 1988)

observed in numerous laboratory experiments. The oscillatory character of the
Bessel functions provides several regimes of magnetic field distribution inside flux
tubes. Depending on the magnetic field geometry inside flux tubes represented by
parameter μR, and the degree of twist, there are several regimes of magnetic field
configuration:

1. The parameter μR is below the first zero of J0(μR), i.e., 2πR/h < 2.4, which
translates into a condition for a pitch/radius ratio, (h/R) > 2.62. In this case the
magnetic field components preserve their initial direction and chirality.

2. The parameter μR exceeds the first zero of J0(μR) but is below the first zero of
J1(μR), i.e., 2.4 < 2πR/h < 3.85, or 1.63 < (h/R) < 2.62. In this case the
axial magnetic field reverses, but the chirality of the filament remains the same.

3. In the interval 3.85 < 2πR/h < 5.5 (1.14 < (h/R) < 1.63) the axial magnetic
field reversal is accompanied by reversed chirality. The interval with higher zeros
is unlikely, as it leads to strong twist and a likely disruption of the filament.

Field reversal configurations, well studied in laboratory plasmas, have clear mor-
phological effects that can be observed. For example, the internal reconnections
lead to a typical magnetic field rearrangement, shown in the inset of Fig. 17.13. This
corresponds to a pitch/radius ratio in the interval 3.85 < 2πR/h < 5.5. With high-
resolution observations, such multicomponent configurations of the magnetic field
can be observed as local reversals in the direction of the field in the penumbra. If
the filament twist is very strong (see filaments marked by white arrows in Fig. 17.9,
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bottom right), the core per se may not be visible, but the effect of the small-scale
local field reversals may be observationally detectable.

In many cases, the force-free approximation gives a reasonable qualitative
picture. However, for most of the problems associated with the solar atmosphere,
especially in the lower layers with high plasma β and nonzero resistivity, the
equilibrium magnetic field must depart from the force-free configuration. And
yet, under reasonable conditions, a modified non-force-free magnetic field is still
described by the Bessel functions of the Lundquist solution (Chiuderi et al. 1977;
Rust and Kumar 1994).

17.4.2 Effects of Axial Flows

Here we briefly discuss the effects of axial flows on the twisted flux tubes.
This problem is extremely important for solar flux tubes, and, in particular, for
umbra/penumbral filaments where mass flows are the necessary accomplice of their
dynamics. However, this problem did not receive much attention, and yet there are
some specific effects that can be directly observed. These will be described below.

Laboratory studies (Ryutov et al. 2006; Furno et al. 2006) show that the presence
of an axial flow causes rotation of the kink in the flux tube, and the perturbation
amplitude increases in the flow direction. An axial flow causes the advection of
perturbations and results in a skewing and wreathing of the eigenfunction toward
the outer edges of filaments (Fig. 17.14). If both ends of the filament are line-tied
(Fig. 17.14, top), skewing occurs in such a way that the line-of-sight magnetic field
will be observed to be opposite to the parental sunspot polarity. This may explain

Fig. 17.14 Revolution over
which the axis of filament is
wound. Top: Both ends of a
filament are line-tied.
Bottom: Only the inner foot is
line-tied (after Ryutov et al.
2006)
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why the majority of penumbral filaments dive into the moat region at the outer edge
of the penumbra, naturally showing an opposite polarity.

We may conclude that all the observed properties of the penumbral filaments,
and the formation of the penumbra itself, are natural consequences of the ongoing
reconnection processes in a conglomerate of random, interlaced flux tubes forming
the sunspot.

In the central umbra, the flux tubes are close to vertical, and thus the bisector
of their collision angle is also close to vertical. Therefore in the central region of
sunspot fragmenting flux tubes remain mostly vertical. Toward the periphery, flux
tubes deviate more and more from the vertical, and branch out from the parental
sunspot. As flux tubes have different parameters, branching occurs at different
heights thus forming the observed uncombed penumbra. Most importantly, the
bisector of the collision angle between the interacting flux tubes deviates from
the vertical as well providing conditions for shock formation and their subsequent
evolution.

The process of fragmentation in the sunspot, and branching out of the newborn
flux tubes occurs repeatedly until the reconnection products reach their critical radii
∼ 20–40 km), determined by the local Reynolds number.

The reconnection processes that take place continually in sunspot penumbra lead
to twisting of the post-reconnection flux tubes. The inherent twist of individual
filament facilitates the onset of a screw pinch instability, which determines the
distribution of electric currents and temperature inside the filaments. These in turn
lead to the appearance of dark cores surrounded by bright walls. Moreover, all
the observed properties are not only qualitatively understood but may be used for
quantitative estimates. These again, are:

1. The sunspot umbra is a dense conglomerate of random flux tubes where the
reconnection of same polarity neighbors leads to their further fragmentation
accompanied by bright points.

2. The formation of filamentary penumbra by means of peripheral flux tubes
continuously reconnecting and branching out from the “trunk.”

3. Occurrence of multiple splitting of individual filaments and their footpoints.
4. Enhanced brightening of footpoints (region of reconnection).
5. Generation of post-reconnection twist of filaments.
6. Occurrence of dark cores associated with the redistribution of magnetic field and

temperatures inside filaments due to the onset of screw pinch configuration.
7. The fact that filaments with or without dark core may branch into several

filaments anywhere in penumbra, with branching region being always brighter
than the filament itself.

8. The visual effect that not all filaments show the dark-cored structure is pure
geometrical one.

9. The fact that several filaments may spin around each other into a bunch resem-
bling multiwire cable (high azimuthal modes). When unwinding the individual
filaments often keep their identity, but the process itself is accompanied by the
localized sporadic brightenings.
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It is important to note that the simplicity of screw pinch physics, based on directly
measurable parameters, such as pitch, radius, and magnetic field, allows quantitative
analysis of the penumbral properties.

The next obvious question is: what is the impact of the penumbral dynamics on
the overlying atmosphere. We shall address this problem in the next chapter, and
see that the reconnection between the penumbral filaments leads to expected post-
reconnection jets and sporadic brightenings in the overlying chromosphere.

17.5 Problems

17.1 Find the equilibrium condition for the infinitely long current carrying cylinder
embedded in the external magnetic field. Assume that all quantities vary in the r

direction only, i.e., ∂/∂z = ∂/∂θ = 0. Current flowing through a plasma tends to
squeeze the plasma causing a pinch effect. Specify conditions of a pinch effect for
a long magnetic flux tube.

17.2 Obtain the equilibrium conditions when magnetic field has only z-component.

17.3 The same for the flux tube having only θ component of magnetic field, Bθ �=
0.The current then has z-component and nonzero j × B force must be balanced by
the pressure gradient. Such configuration is known as z-pinch.

17.4 The same for the case when both Bz and Bθ components are nonzero.
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Chapter 18
Bow Shocks and Plasma Jetting over
Penumbrae

Abstract Penumbral filaments being in constant motion, reconnecting, splitting,
and twisting, strongly affect the overlying atmosphere. In this chapter we shall study
the response of the chromosphere to penumbral dynamics, which shows spectacular
cascades of bow shocks and plasma jetting. These spectacular events are produced
by the ongoing reconnection processes between neighboring penumbral filaments,
basically at the periphery of sunspot where penumbral filaments become more
and more horizontal. There post-reconnection products moving upward quickly
accelerate. At transonic velocities a bow(detached) shock is formed in front of the
accelerated flux tube, as it usually occurs in cases of blunt bodies moving with
supersonic velocities. In the chromosphere bow shocks are seen in the form of
elongated transients moving as a whole in a direction almost perpendicular to their
long axes. On some much more rare occasions compared to “drifting” bow shock-
type transients, there appear compact “true” microjets moving in the radial direction,
and having much higher velocities compared to bow shocks.

18.1 Response of the Overlying Atmosphere to Penumbral
Dynamics

High cadence observations with the Solar Optical Telescope (SOT) on Hinode
have led to the discovery of frequent transient brightenings in the penumbral
chromosphere with lifetimes of ∼ 1 min (Katsukawa et al. 2007), referred to as
penumbral microjets. They are seen in Ca II H line observations in the form of bright
strokes abundantly covering the entire chromosphere above penumbra. Their typical
length is found to be between 1000 and 4000 km, some may reach 10,000 km.
Their width is ∼ 400 km. It was found also that microjets are almost parallel
to the penumbral filaments in the radial direction (which makes them difficult to
identify when the sunspot is close to disk center), but are more vertical to the
surface than penumbral filaments. The estimated elevation angles range from 20◦
to 60◦. Katsukawa et al. (2007) suggested that the observed microjets could be
associated with magnetic reconnection in the penumbra. As the physical nature of
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these phenomena at time of their discovery was not clear, the authors left room for
two possible, but different explanations:

1. One is that “the jetlike brightenings are a signature of plasma transiently heated
to much higher temperatures.”

2. The other is that transients represent true mass motion with supersonic velocities,
i.e., microjets.

We will see below that both explanations are true, but are related to two
different classes of events. One class includes bright elongated transients drifting
as a whole in a direction almost perpendicular to their long axes. Their properties
are well represented by bow shocks and we classify them as bow shock-type
transients. The other class includes compact, short lived, and much faster bright
transients exhibiting true plasma motion “along” their axes. We classify these
events as microjets. The triggering mechanism for either kind of transient is the
reconnection between the neighboring penumbral filaments but it is the post-
reconnection processes and local physical conditions that determine their specific
nature.

18.1.1 Penumbral Transients: Double Structures and Jets

To demonstrate the observed properties of radiative transients above sunspot
penumbrae, we present the observations obtained during the disk passage of active
region (AR 10923) on November 10–20, 2006. The data were taken with the SOT
instrument on Hinode in 4305 Å G-band and 3968 Å Ca II H line (Ryutova et al.
2008). Movies taken at 8 s cadence show detailed dynamics of jetlike phenomena
under different angles as sunspot takes various positions when it passes the solar
disk from limb to limb. Such a favorable circumstance allowed to perform detailed
analysis of observation and reveal the nature of the impact of penumbral dynamics
to the overlying atmosphere.

Figure 18.1 shows the target region on November 10 when sunspot was located
at a heliospheric angle of 55◦ toward the east of the disk center. At any moment of
time, the penumbra is covered with bright elongated transients that last from 30 s to
several minutes. Their appearance always correlates with the appearance of bright
points in the corresponding G-band image. Some examples are marked with white
arrows in Fig. 18.1. White boxes demarcate two regions whose time sequences are
shown in Figs. 18.2 and 18.3. Transients marked by broken arrows are in the decay
phase, while their parental bright points in G-band are still prominent.

Figure 18.2 shows evolution of three well-shaped transients during a 4 min 30 s
period. The first frame at UT 13:13:36 shows when transient 1 has just appeared.
Transient 2 appeared 30 s earlier. Transient 3 is seen here during its entire lifetime
(UT 13:15:06–13:16:37). Note that all three transients are quite similar. They have
the same position angle in the plane of the sky. Their intensity increases in time, and
then either gradually decreases (as in cases 1 and 2), or vanishes abruptly, as in case
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Fig. 18.1 Snapshots of the sunspot on November 10, 2006. Left: G-band filtergram. Right: 3968 Å
Ca II H line. Usually, transients (seen in the Ca II H line) are closely related to bright points seen in
the G-band image (some are marked by arrows). Transients marked by broken arrows are decaying,
while their “parental” bright points in G-band are still prominent. White boxes demarcate regions
shown in Figs. 18.2, 18.3, and 18.4 at several instances in time. Note that event shown in Fig. 18.3
occurred about 45 min earlier (its area is marked by a dashed box)

3. Lifetimes are ≥ 6 min (transient 1), 2 min (transient 2), and 90 s (transient 3). All
three transients seem to be almost motionless. In fact, they are slowly drifting in the
direction perpendicular to their long axes, with velocities v1 = 0.6 km s−1, v2 =
−1.3 km s−1 (a minus sign formally means that, unlike the other two transients,
transient 2 is drifting “downward”), and v3 = 3.3 km s−1, indices correspond to
prescribed numbers. This is, however, a visual effect associated with the angle
between the line of sight and the direction of motion of the transients. So that the
true velocities of transients must be considerably higher.

These three examples represent the vast majority of the transient brightenings
that always move as a whole in the direction perpendicular to their long axes. Their
visual velocities range from ≤ 1 km s−1 to 20 km s−1. We shall see below that this
type of transient have all the properties of bow shocks.

Another set of slowly drifting transients is shown in Fig. 18.3. We focus on two
of them marked as 1 and 2 in a middle frame (UT 12:38:05). The lifetime of both
transients is about 5 min. The black dashed arrow in lower left panel shows the
spacetime cut. The corresponding spacetime image is shown in the vertical panel.
The cut is made from top to bottom, which together with the vertical panel indicates
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Fig. 18.2 Examples of three transients, from the upper white box in Fig. 18.1, slowly drifting in a
direction perpendicular to their long axes
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Fig. 18.3 Slowly drifting transients with specific feature showing a double structure. The black
dashed arrow in the lower left panel shows the path along which a spacetime cut is made. The
vertical panel is the corresponding spacetime image. The velocities in the direction of the cut
are v1 = 3.9 km s−1, v2 = 3.1 km s−1. Black solid arrows show a new feature found in these
observations: the double structure of chromospheric transients
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that transients are moving downward. Measured velocities are v1 = 3.9 km s−1 and
v2 = 3.1 km s−1.

A remarkable new feature revealed in these observations is that some transients,
in particular, the transient 1 in Fig. 18.3, have a double structure. This structure starts
to develop soon after the transient has appeared (i.e., just 30 s after its “first light”)
and, in this particular example, is easily visible during its maximum phase. This
important feature turned out to be quite pervasive: many elongated transients show
a double structure and patterns similar to those seen in Fig. 18.3.

Hence, a double structure turns out to be a basic property of drifting transients
and, in fact, has a natural explanation in the frame of the theory based on post-
reconnection processes. Before we discuss the details of the theory, it is useful to
study other observed properties of chromospheric transients that show up under
different viewing angles, namely when sunspot is located at the disk center, and
then when it moves toward the west limb.

18.1.2 Viewing Under Different Angles

The main feature of transients described in previous section is that their direction of
motion is perpendicular to their long axis. This fact makes them easily observable.
There are other types of transients whose behavior is similar to jets, i.e., when a
collimated plasma moves along its axis. Such transients oriented in radial directions
usually coincide with underlying penumbral filaments and are barely detectable. On
some occasions though, if the transient exhibits proper motion, it can be observed.
An example of such event is shown in Fig. 18.4.

The same sunspot, AR 10923, is now shown on November 14, 2006 when it
moved closer to the disk center. Shown are a G-band and Ca II H line images of
the chromosphere above the sunspot. A tiny microjet with proper motion is shown
in a Ca II H line image. It originates at the base of the fork (marked by black
arrows in the upper images) and first appears as an enhanced brightening in the
Ca II H line at about UT 10:22:34 (bottom left panel). It slowly accelerates and
moves during the first 5 min with an average velocity � 9 km s−1. Starting from
UT 10:27:55, it quickly accelerates reaching a velocity of � 30 km s−1, and then
suddenly disappears. This is one of the examples of collimated plasma streaming
which can be classified as a true microjet. Generation of collimated plasma flows
requires special conditions (Tarbell et al. 1999; Ryutova et al. 2003; Ryutova and
Tarbell 2003). The key elements, as we have discussed throughout the book, are
associated with the geometry of a shock profile and environmental magnetic fields,
which may provide conditions for self-focusing of the shock, and generation of
microjets.

As the sunspot moves toward the limb, the transients become clearly visible and
appear elevated with respect to penumbral filaments with angles ranging from 30◦
to 50◦. Figure 18.5 shows the same sunspot (approaching the West limb) at two
heliographic locations: 42◦ W, 6◦ S on November 17, 2006 (left) and 85◦ W, 6◦ S
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Fig. 18.4 Same sunspot, AR 10923, near the disk center. Shown are a G-band image of the sunspot
and the enlarged Ca II H image of its upper east quarter. The birth and evolution of a supersonic
microjet is shown in Ca II H images at four instances of time. The microjet originated at the base
of a fork made by penumbral filaments (marked by black arrows). Its average velocity during the
first 5 min is � 9 km s−1 reaching � 30 km s−1 during the last minute

on November, 20 2006 (right). White arrows imitate the azimuthal direction of some
transients showing their fan-like distribution with quite regular position angles. All
of the marked examples belong to bow shock-type transients drifting as a whole in a
direction perpendicular to their long axes. As already mentioned, the overwhelming
majority of bright transients seen at any given instance of time belong to this class
of events. On some occasions there appear true “microjets”—collimated plasma
streaming. White boxes in Fig. 18.5 are drawn in solid and dotted lines to emphasize
that the events shown in these boxes occur at different times.

Figure 18.6 shows the evolution of two transients during about a 3 min period.
The area with these events is demarcated by a solid box “a” in the snapshot of 17
November 2006 (Fig. 18.5 left panel). The transient marked by a black arrow is
oriented in quite a favorable way to show the formation of a double structure. This
is a very typical process that starts with an enhanced brightening already having an
elongated form. Soon after formation, the double structure gets quickly stretched
until the dissipation process turns on.

This example is a good illustration of the process associated with the post-
reconnection flux tube moving upward with supersonic velocity. Note that the flux
tube, still being cold inside, is not visible in Ca II H, but the shock, generated by a
slingshot effect resulting from its straightening, heats the plasma. This is a regular
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Fig. 18.5 Sunspot at two Western hemisphere locations: 42◦W 6◦S on November 17, 2006 (left)
and 85◦ W 6◦ S on November, 20 2006 (right). White arrows imitate a position angle of some
transients showing their fan-like distribution in the plane of the sky. White boxes a, b, c, and d
demarcate regions shown in the subsequent figures

occurrence of behind-shock heating which appears as a “first light,” and should
manifest itself in a way similar to that shown in the upper left frame, including its
elongated form (at UT 08:03:26).

It is important to note that the flux tube is still a “body” which continues to travel
with supersonic velocity. As such, it creates a bow shock in front of it, as any solid
object that moves with supersonic velocity. Indeed, soon after the appearance of
the first behind-shock brightening, the double structure starts to form and becomes
visible at UT 08:04:14. In this particular case, the bow shock appears in about 48 s
after the behind-shock brightening.

As the original shock propagates faster than the flux tube, the bow shock always
appears after the regular behind-shock heating. This pattern, with various time
delays, is confirmed in all the observed cases of double structures. We will return to
this process in the next section and present quantitative analysis.

It must be noted that a standoff distance, i.e., the space between the bow shock
and the object created it, which is necessary attribute of bow shocks, is clearly
visible during entire evolution of the bow shock until the whole structure starts
to dissipate. The velocity of the structure in the plane at a given orientation is
5.6 km s−1 (directed from top-left to bottom-right). A true velocity of the transient,
however, should be transonic. If the measured velocity of a transient is vobs, then its
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Fig. 18.6 Formation and evolution of a bow shock

true velocity can be estimated as v � vobs/sinθ , where θ is an angle between the line
of sight and the trajectory plane of the transient. For example, if angle θ = 20−40◦,
v � 16.4 − 10.1 km s−1.

Another transient in Fig. 18.6, marked with a white arrow, shows only its
“thermal” evolution, and slow drifting with velocity 1.5 km s−1. The velocity
component of the apparent motion of the transient in the plane of the sky is only
2.24 km s−1. To be supersonic, the angle between the plane of motion and line of
sight should be ≤ 16◦. Nothing contradicts such an orientation; the plane may be
parallel to the line of sight, in which case the transient will appear motionless and
will only exhibit its thermal evolution. Given their abundance, quite a large number
of transients, however, have a favorable orientation to show their double structure.

Some other examples of transients differently orientated and having thus different
velocities are shown in Fig. 18.7. These were taken on November 20, 2006 when the
sunspot moved quite close to the western limb. The first column (the area marked
by a solid white box b in Fig. 18.5 right panel) shows the most typical occurrence
of several transients (marked 1–8); they are appearing, evolving, and disappearing
in time intervals less than 3 min. In this orientation none of the transients barely
show a double structure and the highest drift velocity measured (transient 2) is
4.2 km s−1. This time series shows transient 2 during its entire life (� 2 min 15 s).
At UT 11:24:51, the transient 1 is in its final stage. Transient 3, which seems
practically motionless, shows its thermal evolution, reaching maximum brightness
at UT 11:26:51. From this moment on, it quickly dissipates energy and disappears.
Its lifetime is about 3 min. At the end of this time sequence (UT 11:26:51) a
strong transient appears (transient 4), which quickly gains energy and disappears
in 2 min. About this time (UT 11:27:23), in the small area of a given frame, four
new transients appear almost simultaneously, showing a typical abundance of “one
type” of transients.
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Fig. 18.7 Examples of three bright transients under different viewing angles. See text for details.
The images are rotated by 90◦

The central column (the area marked by dotted white box c in Fig. 18.5) shows
evolution of two fast “conveniently” oriented transients. In other words, their
orientation is such that their measured velocities are, indeed, supersonic, v1 =
16.8 km s−1 (transient 1), and v2 = 8.8 km s−1 (transient 2), and a double structure
of transient 1 is well observable.

The right column (the area marked by dotted white box d in Fig. 18.5ad and
located on the farther side of the penumbra) shows the evolution of two other
supersonic transients. Their measured velocities exceed v1 = 14 km s−1. Both
transients show vague but recognizable double structures. Their lifetimes are less
than 1 min. Again, all the events shown in Fig. 18.7, as well as an overwhelming
majority of transients at any moment of time, belong to the bow shock class.
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Contrary to this, events that may be classified as true microjets—collimated plasma
streaming (cf. Fig. 18.4)—are much more rare. For comparison of their observed
signatures, we show one more example seen in the November 20 data set.

Figure 18.8 shows snapshots of the upper penumbra at two instances of times,
with a 10.2 × 16.2 Mm2 field of view. The white box at UT 12:06:12 demarcates
the region with a fast transient that clearly exhibits proper, jetlike motion. A time
series of the microjet is shown in a middle row. Its lifetime is a little over 30 s
and velocity exceeds 50 km s−1. Its motion is directed along its axis unlike the
“transverse” motion of bow shock-type transients. For comparison, the lower row
shows an example of a “favorably” oriented bow shock-type transient. Its measured
velocity is � 20 km s−1, lifetime about 2 min, and its double structure is clearly
visible.

The white dotted box in Fig. 18.8 (upper right panel) and three arrows marked by
asterisks are related to Fig. 18.9 which is used to illustrate the process of bow shock
formation (see next section). The position of the bow shock is marked by a white
dashed arc. It appears around UT 13:29:26 (half an hour earlier than the snapshot
shown in Fig. 18.8). Similar events under less favorable angles showing only bright
arcs are marked by arrows with a star.

18.1.3 Brief Summary of Properties

Briefly, the above observational results can be summarized as follows.

1. The chromosphere above penumbrae is highly dynamic and shows an abundance
of bright, elongated transients at any given moment of time.

2. Transients are always associated with bright points seen in G-band images.
3. Bright points are usually located at the Y-shaped fork made by neighboring

penumbral filaments but may be found anywhere in the penumbra.
4. There are two different types of chromospheric transients. One type shows

strongly elongated brightenings that move almost perpendicular to their long
axes. Their measured velocities range from ≤ 1.5 km s−1 to � 20 km s−1.
They have clear properties of bow shocks. The other type is collimated plasma
motion directed along their long axis. These are true mass motions representing
supersonic microjets. Their measured velocities are well above 20 km s−1.

5. The bow shock-type transient makes the vast majority of chromospheric bright-
enings above the penumbra. Many of them exhibit a double structure.

6. The lifetime of bow shocks ranges from ≤ 40 s to ≥ 6 min. Their apparent length
is between 2000 and 10,000 km and their width is 300–600 km. The lifetime of
microjets is usually ≤ 1 min, and their length is ≤ 1000 km.

7. The appearance of bow shocks (from the observers point of view), whether or
not their double structure is seen, their spatial scale, and apparent (measurable)
velocities strongly depend on their location, the position of the sunspot, and the
orientation of their trajectory planes with respect to the line of sight.
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Fig. 18.8 Comparison of true microjet and bow shock. Top: snapshots of the upper part of the
penumbra at two instances of time. Middle row: a true microjet with a lifetime of about 30 s,
traveling in the radial direction with velocity ≥ 50 km s−1. Bottom: more favorably oriented
transient of a bow shock nature—its measured velocity is � 20 km s−1, lifetime about 2 min, and
its double structure is quite visible. The meaning of the dotted box and white arrows marked by
stars in the upper right panel is explained in the text
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Fig. 18.9 Bow shock formation. Left: Sketch of the straightening
⋃

-shaped reconnection product
with an opening angle 2α. Right: A possible observational analogy. The image, rotated by 90◦, is
located on the side of penumbra closest to disk center and marked by the dotted box in Fig. 18.8
(top right). Similar events are marked in the same snapshot by white arrows and asterisks

In the next section, we address the phenomenology of post-reconnection pro-
cesses in penumbral filaments and associated mechanism of formation of the bow
shocks and microjets.

18.2 Phenomenology and Quantitative Analysis

As discussed in Chaps. 12 and 13, the specific character of post-reconnection
dynamics at the photospheric level is determined basically by finite plasma beta and
sharp stratification of the low atmosphere. Pressure equilibrium in a high plasma β

environment implies that, after reconnection, magnetic field lines remain confined
in thin flux tubes. Straightening, the reconnection products create a slingshot effect.
At the periphery of a sunspot, flux tubes strongly deviate from the vertical as
does the bisector of their collision angle (see Fig. 17.6, Chap. 17). In this case, the
reconnection products acquire

⋃
- and

⋂
-shaped forms with respect to gravity.

We focus here on further dynamics of the
⋃

-shaped reconnection product. In
this case, two major forces, the magnetic tension and buoyancy force, both act in the
upward direction leading to shock formation. Also, under specific conditions, this
leads to the appearance of lateral jets (Tarbell et al. 1999; Ryutova et al. 2003). The
process is always accompanied by an enhanced brightening of a small reconnection
region.

One more important effect associated with finite plasma β and sharp stratification
occurs when a

⋃
-shaped post-reconnection product straightens and accelerates

upward itself, exceeding the sound speed, i.e., moving with transonic velocity. In
this case, a bow shock is formed in front of the flux tube, as it behaves as a usual
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blunt body moving with supersonic velocity. It is just this macroscopic effect which
is observed in the form of bright, elongated transients all over penumbrae.

The formation of bow shocks is as ubiquitous as the ongoing reconnection pro-
cesses between penumbral filaments. More importantly, unlike special conditions
required for the generation of true plasma jetting, the formation of bow shocks
requires only that flux tube, still having well-defined boundaries, reaches transonic
velocities. This simple condition makes bow shocks appear easily and densely
occupy the chromosphere above penumbrae.

Below we detail some basic calculations of the formation of bow shocks and
perform quantitative analysis.

18.2.1 Dynamics of
⋃

-Shaped Filaments

We follow the energy analysis carried out by Ryutova et al. (2003) and evaluate
major forces acting on the

⋃
-shaped reconnection product (see Chap. 12). As

mentioned above, magnetic and buoyancy forces act in the same, upward direction
accelerating the straightening segment of a flux tube. On the other hand, the
flux tube, as well-defined body moving with velocity u in the ambient plasma,
experiences the action of a frictional force, Fdrag = (1/2)CDρu2Ssrf, where CD is
drag coefficient, and Ssrf is the flux tube area transverse to the direction of motion.

It is important that the drag force is negligibly small at large Reynolds numbers
(small CD) and small velocities, e.g., in the parameter domain Re ≥ 103, u < cs ,
is CD � 0.1 − 0.2 (see, e.g., Parker 1979). However, when u exceeds the sound
speed, the frictional force increases abruptly. At the velocity u � 1.5 − 2cs , CD

becomes the order of unity (Landau and Lifshits 1987) and the drag force becomes
strong enough to restrict the upward motion of the flux tube to values not exceeding
M = u/cs � 1.5 − 2.5. At the same time, conditions for bow shock formation are
met.

In the following, we adopt an isothermal model of the atmosphere, ρ =
ρ0 exp(−z/Λ), with a constant scale height, Λ = p/ρg. The subscript “0” refers
to the point where reconnection occurred. Consider first, a

⋃
-shaped flux tube

with vertical axis of symmetry as shown in the left panel of Fig. 18.9. The right
panel of the figure contains snapshots of Ca II H brightenings whose configuration
may illustrate the process shown in the left sketch. It should be noted that such
a configuration is seen repeatedly in the observations. Some examples are marked
by asterisks in Fig. 18.8. Dashed box in this figure is the area shown in Fig. 18.9,
right panel. The location of the bow shock itself is marked by the dashed arc: at UT
13:59:10 it was already gone.

At some height, z, above the reconnection level, the length of the straightened
segment is 2ztanα (Fig. 18.9 left). Its cross-section is S = S0 exp(z/2Λ). Recall
that the upward motion of

⋃
-shaped reconnection product is governed by action

of magnetic tension and gravity forces. Using results of energy consideration,
from Eqs. (12.36)–(12.39), Chap. 12, we have the following expression for the total
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variation of the potential energy of the system, ΔWpot = 2ΔWmag + ΔWgr,

ΔWpot = −ρ0v
2
A0

4ΛS0

cos α
exp(−h/2Λ) (18.1)

× {(1 + sin α)[exp(h/Λ) − 1] − (h/Λ) sin α}

Respectively, a total force acting upward on the ascending segment at height h is:

Fup = ρ0v
2
A0

4ΛS0

h cos α
exp(−h/2Λ) (18.2)

× {(1 + sin α)[exp(h/Λ) − 1] − (h/Λ) sin α}

It is important to note that, when the velocity of the ascending flux tube, u, exceeds
the sound speed, the friction coefficient, CD , becomes the order of unity, and the
drag force increases abruptly restricting the upward motion of the flux tube. The
tip of the straightening segment reaches transonic velocities quite quickly, only in
a few scale heights. From then on, the motion of the flux tube is determined by the
balance of upward acting forces, (18.2) and the drag force:

Fdrag = 1

2
CDρu2Ssrf (18.3)

where Ssrf = πR 2htanα = S(2h/R)tanα is the flux tube area transverse to the
direction of motion, S = πR2. With this, the drag force at height h becomes

Fdrag = 1

2
CDρ0u

2S0 exp

(

− 3h

4Λ

)
2h tan α

R0
(18.4)

From Eqs. (18.2) and (18.4), we find the velocity at the tip where these forces are
balanced (which implies CD � 1) to be:

uf = vA0

{
4ΛR0 exp(h/4Λ)

h2 sin α

[
(1 + sin α)[exp(h/Λ) − 1] − (h/Λ) sin α

]
}1/2

(18.5)

The height where the bow shock is expected to form corresponds to a final velocity
of the flux tube of the order of uf � 1.5 − 2 cs .

For quantitative estimates, assuming the reconnection occurs close to the surface,
we take ρ0 = 2.25 10−7 gcm−3, scale height Λ = 150 km, and sound speed cs =
8 km s−1. We assume a filament radius of R0 = 40 km. The Alfvén velocity in a
magnetic field of B = 1000 G is vA = 6 km s−1. For these parameters, Table 18.1
shows estimated heights where the Mach number, M = uf /cs , reaches values of
1.5–2 for different angles of collision, and corresponding opening angles, 2α.
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Table 18.1 Final velocity of a shock at different heights and angles

h = 800 km h = 1000 km h = 1100 km

α 60◦ 50◦ 40◦ 60◦ 50◦ 40◦ 60◦ 50◦ 40◦

M 1.35 1.42 1.5 1.9 2 2.1 2.3 2.4 2.5

uf (km s−1) 10.8 11.36 12 16.2 16 16.8 18.4 19.2 20

18.2.2 Nature of Double Structures

Let us now return to the phenomenology of the observed double structure and,
in particular, look at the connection between the regular behind-shock heating
and bow shock. As mentioned earlier, a regular shock produced by a slingshot
effect propagates faster than the flux tube, and must therefore appear before the
straightened flux tube reaches transonic velocities, and becomes able to generate a
bow shock.

In Chap. 14 we have studied photospheric reconnections and shock formation
in various magnetic environments, and calculated corresponding heights of shock
formation and shock velocities. In case of the chromospheric transients, shocks
evolve in the magnetic environment, i.e., correspond to the case 3 shown in
Figs. 4.3 and 4.4, Chap. 14. Now we need to compare the shock velocity from
expression (14.16), Chap. 14, with velocity of ascending flux tube (18.5). The
expression for the shock velocity (solution of Eq. (14.16), Chap. 14) has the form:

ush(z) = vA0

√
(3z0/Λ) exp(z/2Λ)[1 − exp(−3z/4Λ) − 3z0/4Λ]

1 − exp(−3z/4Λ)
(18.6)

where z0 is the height of shock formation in an homogeneous atmosphere:

z0 = 2

γ + 1

c2
s0

v2
A0

R (18.7)

Plots of ush and uf , Eq. (18.5), for three opening angles, are shown in Fig. 18.10.
We use the same parameters as those used above for construction of Table 18.1.

One can see that the regular shock reaches the transonic region earlier than the
bow shock is formed. Note that for chosen parameters, cs = 8 km s−1, vA0 =
6 km s−1, Mach one, M = u/cs = 1, corresponds to u/vA0 = 1.5 (Fig. 18.10).

To estimate times needed for regular shocks and bow shocks to reach approx-
imately the same height, we need to integrate (18.5) and (18.6), i.e., evaluate the
integral t = ∫ b

a dz/u(z). Vertical dashed lines in Fig. 18.10 intersecting the plots
mark end points for numerical integration. We choose for lower limit of integrals
a1 = 0.5, i.e., z � 75 km (half of the scale length, Λ) above the reconnection
point. b1 = 1.1 corresponds to the height of a regular shock formation, M = 1
(u/vA0 = 1.5). Corresponding heights for bow shock are c1 = 4 at α = 40◦, and
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Fig. 18.10 Shock amplitudes as a function of height: the upper curve, marked as ush/vA0,
corresponds to the shock resulting from post-reconnection slingshot. Three lower curves, marked
as uf /vA0, correspond to the velocity of the ascending flux tube for three opening angles, 40◦, 50◦,
60◦—from top to bottom. For the meaning of dashed lines and letter marks see the text

d1 = 4.55 at α = 60◦. Numerical integration of ush (18.6) between a1 and b1, gives
a time of tb1 = 16.5 s.

Numerical integration of uf (18.5) with end points a1 = 0.5 and c1 = 4, a1 =
0.5 and d1 = 4.55 gives the estimates of time when the velocity of the ascending
portion of flux tubes reaches M = 1: tc1 = 65.5 s (α = 40◦), td1 = 74 s (α = 60◦).
These estimates show that there is a finite time interval, Δt between the appearance
of a regular shock and following bow shock. Thus, for M = 1, the delay times are,
respectively, Δt = 49 s (α = 40◦) and Δt = 57.5 s (α = 60◦).

For higher Mach numbers, the delay times slightly drop. A similar procedure for
M = 1.5 (u/vA0 = 2) gives the following estimates. The regular shock reaches this
level in tb2 = 39 s. The flux tube reaches this velocity in tb2 = 83.5 s, for α = 40◦,
and in tb2 = 88.7 s, for α = 60◦. Respectively, “delay times” are Δt = 44.5 s and
Δt = 49.7 s.

The observed delay times for the appearance of a bow shock range from tens of
seconds to minutes. For the examples given above, we have the following numbers.
The bow shock shown in Fig. 18.3 appears in 29 s after a regular behind-shock
heating. The time delay in the case of the bow shock shown in Fig. 18.4 is about
1 min. In the case shown in Fig. 18.6, the time delay is 48 s. In the example shown
in Fig. 18.7a, the bow shock appears in about 40 s and, in the last example (Fig. 18.8
bottom), time delay is only 24 s. Thus, the observed and estimated time delays are
in good agreement.
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18.3 Bow Shocks

Thus, formation of bow (detached) shocks in front of accelerating flux tubes is a
natural occurrence. Parameters of bow shock are determined by Mach number and
relation between pressure, p, density, ρ, and temperature, T relations across the
shock (Landau and Lifshits 1987):

p2

p1
= 2γM2 − (γ − 1)

γ + 1
,

ρ2

ρ1
= (γ + 1)M2

2 + (γ − 1)M2
(18.8)

v2 = v1
2 + (γ − 1)M2

(γ + 1)M2
(18.9)

T2 = T1
[2γM2 − (γ − 1)][2 + (γ − 1)M2]

(γ + 1)2M2 (18.10)

Subscript “2” refers to the region behind the bow shock and subscript “1” denotes
parameters of the incident stream associated with the flux tube; γ is a specific
heat ratio. These are determined by the standard expressions for the variation of
quantities along the streamline (Landau and Lifshits 1987, Par. 83), e.g., T1 =
T0[1 + (1/2)(γ − 1)M2].

A standoff distance of the bow shock, Δ (distance between the bow shock and
the body creating it) is known to be proportional to the inverse density ratio across
the shock, Δ ∼ h(ρ1/ρ2):

Δ

h
= ζ

2 + (γ − 1)M2

(γ + 1)M2 (18.11)

Coefficient of proportionality, ζ , is usually of the order of unity. For cylindrical
objects it can be approximated as (see, e.g., Hayes and Probstein 1966):

ζ = ln
4

3ε
, ε = 2 + (γ − 1)M2

(γ + 1)M2 (18.12)

With (18.8)–(18.12) one can estimate the position of the bow shock, hbow = h+ Δ,
temperature, and velocity. In addition, given that the lateral extension of the bow
shock is of the same order of magnitude as the straightened segment of the flux
tube, the “length” of the bow shock, Lbow, can be estimated as 2h tanα, and its
thickness should be on the order of the standoff distance, dbow � Δ.

In Table 18.2 we estimate bow shock parameters at different Mach numbers for
three different angles. In principle, most of the transient parameters are observable.
The observed length of transients (ranging from 2000 to 10,000 km), their width
(300–600 km), and lifetime are in good order of magnitude agreement with the
calculated quantities given in Table 18.2. There are of course uncertainties in
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Fig. 18.11 Orientation of the plane in which the bow shock travels depends on the orientation of
the upper post-reconnection flux tube producing a slingshot effect and may be arbitrary. This in
turn determines the appearance, velocity, and dimensions of the bow shock from the observer’s
point of view. Point “o” is a reconnection region, “ab” is bisector of a collision angle between
interacting penumbral filaments. If the plane is in position 1, the transient appears as a single
elongated brightening; but, with increasing angle θ , the double structure of the transient becomes
visible

measuring velocities and linear scales of transients which are largely due to the
uncertainty of their true orientation with respect to the line of sight. This is
illustrated in Fig. 18.11.

Thus, when penumbral filaments reconnect, the reconnection region may have
arbitrary orientation with respect to observer, depending on the heliographic
location of sunspot and the azimuthal location of the reconnecting filaments in the
penumbra. The orientation and location of the penumbral bisector is also essential.
If the final orientation of the plane in which the bow shock moves is similar to plane
“1” in Fig. 18.11, i.e., if the line of sight lies almost in the same plane, the transient
will appear almost motionless, as is often seen in observations.

With arbitrary angle θ , the velocity of the transient from the observer’s point
view may range from almost zero to its maximum value. In these data sets (showing
the sunspot traveling from limb to limb) the maximum measured velocities,
perpendicular to the transient long axis, are found to be 19–20 km s−1. Calculated
velocities show a strong dependence on height of the transient formation and range
from 11 km s−1 to 20 km s−1.

The image of the transient, in addition to the direction of motion, is also affected
by its orientation. When the line of sight is parallel to the plane of transient motion,
(θ = 90◦), the transient appears as a single elongated brightening. With a finite
angle θ , the double structure of the transient becomes visible and may appear to
be moving either away from or toward the observer (Fig. 18.11). Obviously, the
longer and more horizontal are penumbral filaments, the more chance they have
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Fig. 18.12 Relation between magnetic field inclination and filament lifetime and length. The left
panel shows a map of the magnetic field inclination from LTE inversion of the Ca II 8542 Stokes
data. 180◦ is a vertical, negative polarity field; 90◦ is a horizontal field. The right panel shows a
continuum Ca II 8542 image with the paths drawn on the top of 460 filaments. The color of the
paths indicates the duration of the filaments. Reprinted from Rouppe van der Voort and de la Cruz
Rodriguez (2013) by permission from IOP, copyright AAS

to produce multiple shocks and multiple bright transients in the chromosphere.
Luckily, the penumbra is organized in such a way that shocks are abundantly
observed. Figure 18.12 shows example of the relation between the magnetic field
inclination in filaments and filament parameters (Rouppe van der Voort and de la
Cruz Rodriguez 2013).

For theoretical estimates of the lifetimes, we shall consider shock-related
dissipation as the dominant process at this spatial scales. First, we find the released
thermal energy, and then the corresponding dissipation rate. This is done in the next
section.



18.4 Energy Release and Lifetime of Bright Transients 507

18.4 Energy Release and Lifetime of Bright Transients

In this section we perform the energy analysis and estimate the lifetime of transients.
In fact, one of the most accurate parameters for comparison with observations is just
the lifetime of transients.

For theoretical estimates of the lifetimes, we shall consider shock-related
dissipation as the dominant process. First, we find the released thermal energy, and
then the corresponding dissipation rate.

Energy release during the final stage of the straightening flux tube, when its
velocity reaches uf , can be estimated from the difference between the potential
energy (18.1) and the kinetic energy of the flux tube at the corresponding height h:

ΔWtherm = −ΔWpot − ρ0u
2
f

2
2h tanα S0 exp

(

− h

2Λ

)

. (18.13)

Using (18.1) and (18.5) one obtains

ΔWtherm = δ ρ0v
2
A0

4ΛS0

cos α
exp

(

− h

2Λ

)

×
[

(1 + sin α)

(

exp

(
h

2Λ

)

− 1

)

− h

Λ
sin α

]

δ (18.14)

here

δ =
[

1 − R0

h
exp

(
h

4Λ

)]

(18.15)

Using the same parameters as above (ρ0 = 2.25 10−7 gcm−3, Λ = 150 km, R0 =
40 km, vA = 6 km s−1), for the chosen heights (or equivalently, Mach numbers), and
angles, (18.14) gives the estimates for thermal energy shown in Table 18.3. One can
see that the released energy is in range of 3×1026−6×1026 erg. This is comparable
with the energy of blinkers, microflares, and other short-lived transients observed in
the chromosphere/transition region.

To calculate the lifetimes of bow shocks, we recall the fact that the strength of a
weak shock and its energy, E(t), are known to diminish as 1/t2 (Landau and Lifshits
1987) namely,

E(t) = E0

(1 + αnut/h)2 (18.16)

Table 18.3 Thermal energy at different heights and angles

α 60◦ 50◦ 40◦ 60◦ 50◦ 40◦ 60◦ 50◦ 40◦

M = ubow/cs 1.35 1.42 1.5 1.9 2 2.1 2.3 2.4 2.5

Wtherm(1026 erg) 5.5 6.0 6.13 4.12 4.48 4.56 3.26 3.53 3.57
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Fig. 18.13 Decay of bow shock energy. Characteristic lifetimes range from 40 s to 3 min

where αn = (1/2)(γ + 1) is a coefficient of nonlinearly for a polytropic gas,
αn = 4/3. Plots of E(t) normalized by the initial energy carried by a shock are
shown in Fig. 18.13.

For illustrative purposes, we use an example with α = 50◦. The solid line
corresponds to a bow shock at h � 1200 km, velocity ubow = 11.36 km s−1, and
temperature T = 1.4 × 104 K. The dashed line corresponds to h � 1500 km,
ubow = 16 km s−1, and T = 2.9 × 104 K. The dash-dotted line to h = 1625 km,
velocity ubow = 19.2 km s−1, and T = 4.6×104 K. The characteristic time in which
the energy of the bow shock drops by factor of e = 2.7 is in range of 40–50 s. For
the chosen example, the average thermal energy is Wtherm = 4 × 1026 erg, which
drops to � 1.5 × 1026 erg in about 1 min. A more significant order of magnitude
decay occurs in 130–180 s. Thus, roughly, the lifetime of the bow shock may be
from 40 s to 3 min. This is the time interval corresponding to the observed lifetimes
of transient brightenings.

Concluding this chapter it is useful to summarize the observational results
and their interpretation. These results represent one of the clear picture of a
particular phenomena in the solar atmosphere that are well observed and quite well
understood. Moreover, as other events that are quantitatively interpretable, they can
be used for diagnostic goals.

Thus, high-resolution and high cadence observations of sunspot penumbrae
reveal an abundant population of highly dynamic transient phenomena in the
overlying chromosphere and show clear regularities in their properties. Very useful
details in chromospheric dynamics were obtained, thanks to observations of the
sunspot at different locations during its passage from the east to west limb, showing
the penumbra at various angles.

There are basically two different classes of bright elongated transients above
penumbrae. The first discriminator that stands out is a difference in the direction
of their motion with respect to their long axes.
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One class includes the transients that move as a whole in a direction almost
perpendicular to their long axes. These are classified as bow shocks. It is just this
type of transients that make up the vast majority of all observed transients over the
penumbrae.

Their measured velocities range from ≤ 1.5 km s−1 to � 20 km s−1. As the
orientation of the plane of the transient motion may be arbitrary, measured velocities
may range from almost zero (when the plane of transient motion is parallel to the
line of sight) to their maximum values (when the plane of transient motion is normal
to line of sight). This explains a wide range of velocities measured when the sunspot
was in various locations on the disk.

A remarkable property of the bow shock-type transients is their double structure,
which usually develops soon after the appearance of the “first light” at a characteris-
tic standoff distance from it. The double system then travels as a whole until it starts
to dissipate. This feature strongly supports the bow shock nature of transients. The
fact that not all the transients show a double structure is, like apparent velocities,
affected by the orientation of the plane of the transient motion with respect to the
line of sight.

Lifetimes of bow shock-type transients range from ≤ 40 s to ≥ 6 min. Their
apparent length is between 2000–10,000km and their width is 300–600 km. In
double structures, the standoff distance is on the order of, or less than, the width
of the “secondary” transient (the bow shock itself).

The other type, representing the minority of chromospheric transients, falls into
class of microjets. They have properties of collimated plasma streaming directed
along their axes.

Their measured velocities range from 20 km s−1 to 50 km s−1. Lifetimes of
microjets are ≤ 1 min. Their apparent length hardly exceeds 1000 km. As already
mentioned, the number of microjets is significantly less than the ubiquitous bow
shock-type transients covering the entire penumbra at any instance of time.

The observed properties of chromospheric transients can be well understood
in the framework of penumbral model based on the filamentary structure of
sunspots where the most natural processes are the ongoing reconnections among
interlaced filaments (Ryutova et al. 2008). The specific character of photospheric
reconnection and post-reconnection processes (provided by high plasma β and
strong stratification of the low atmosphere) lead to macroscopic effects that are
consistent with all observed properties of individual filaments, and explain the very
formation of penumbrae.

The most striking and well-observed effects produced by reconnecting filaments
are shocks resulting from a slingshot effect associated with the straightening

⋃
-

shaped reconnection product. Besides, under the action of magnetic tension and a
buoyancy force acting in the same upward direction, a

⋃
-shaped flux tube itself

quickly accelerates. At transonic velocities in front of it a bow (detached) shock
is formed as it usually occurs in cases of blunt bodies moving with supersonic
velocities (Fig. 18.14).

In case of the flux tubes moving with supersonic velocities, i.e., reaching Mach
numbers � 1.5 − 2, the bow shock, once formed, tends to remain at the initial
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bow shock bow shock

Fig. 18.14 Bow shocks in front of blunt objects moving with supersonic velocities. Left:
Reprinted from http://www.galex.caltech.edu. Credit NASA/JPL-Caltech/C. Martin/M. Seib-
ert(OCIW); Right: Reprinted from http://www.gettyimages.com. Credit: R. Grapes-Michaud

standoff distance until the whole system starts to dissipate. The lifetimes, spatial
scales, velocities, and even temperatures of bow shocks are directly observable
quantities. This fact allows to verify the validity of theory of entire process, and
use the observed quantities for parameter studies.

For the time being, bright radiative transients and jets in the sunspot chromo-
spheres were studied from various points of view (Louis et al. 2009; Katsukawa and
Jurcak 2010; Nishizuka et al. 2011; Reardon et al. 2013; Rouppe van der Voort and
de la Cruz Rodriguez 2013; Anan et al. 2014).

It was found, for example, that transients propagating upward above penumbrae
are associated with supersonic downflows close to umbra–penumbra boundary,
detected in high-resolution spectropolarimetric observations (Louis et al. 2011). The
orientation of the penumbral filaments at the site of the downflows was found to
be consistent with those resulted from the post-reconnection process in penumbral
filaments (Ryutova et al. 2008). It is interesting that some observations show that
outer penumbra filaments are associated with running waves. Moreover the redshift
ridges seen in the time-distance plots of velocity often merge, forming a fork-like
pattern (Chae et al. 2014). Extremely rich picture of penumbral dynamics, shocks,
jets, and evolutionary waves that became well observable opens rich possibilities to
study farther the sunspot dynamics and energy production sources.

18.5 Problems

18.1 Consider the bow shock formed in front of the body having a cylindrical form.
Calculate the standoff distance (cf. (18.11)–(18.12)) (Hayes and Probstein 1966).

18.2 We have already discussed properties of cumulative jets that are relative to
shaped charges capable to pierce the armor. It is interesting that mathematically even
a real armor-piercing problem is modeled by collision of two liquid jets. In solar

http://www.galex.caltech.edu
http://www.gettyimages.com
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atmosphere ubiquitous plasma jets can hardly avoid mutual collisions. Consider here
a classical problem of formation of cumulative jets and their characteristics.
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Chapter 19
Self-organization in the Corona and Flare
Precursors

Abstract Exploding loop systems producing X-ray flares often, but not always,
bifurcate into a long-living, well-organized system of multithreaded loop arcades
resembling solenoidal slinkies. The subject of this chapter is to look into the physical
conditions that cause or prevent this process. We shall see that the X-class flares
that bifurcate into long-living slinky arcades have different signatures than those
which do not produce such structures. The most striking difference is that, in all
cases of slinky formation, a high-energy proton (HEP) flux becomes significantly
enhanced 10–40 h before the flare occurs. No such effect was found prior to the
“non-slinky” flares. This fact is found to be associated with the difference between
energy production by a given active region and the amount of energy required to
bring the entire system into the form of self-organized loop arcades. One of the
important features is that post-flare coronal slinky formation is preceded by scale-
invariant structure formation in the underlying chromosphere/transition region. The
observed regularities may serve as long-term precursors of strong flares and may
help to study predictability of system behavior, and in particular, flare occurrence.
We shall also discuss some aspects of recurrence of coronal microflares and flares
which have signatures consistent with spatial and temporal plasma echoes.

19.1 Well-Organized Multithreaded Coronal Arcades:
Slinkies

We have discussed throughout this book that coronal structures above the Sun’s
active regions appear in various forms, have lifetimes ranging from days to minutes,
and show different behaviors from subtle oscillations of large-scale quasi-steady
loops to exploding loop systems producing strong EUV flares. In this chapter we
shall study some systematic peculiarities in major X-ray flares that often bifurcate
into a long-living, well-organized system of multithreaded loop arcades resembling
the winding in a curved solenoid or a funnel. Due to this resemblance, these
solenoidal structures were dubbed slinkies. Examples of two different slinkies one at
6.4×105 K and other at 0.2–1.6×106 K are shown in Fig. 19.1. Slinkies are usually
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Fig. 19.1 Snapshots of the most typical post-flare slinkies at two different temperatures. Left:
The SDO/AIA image of corona in Fe IX line at 6.4 × 105 K taken on August 31, 2012; Right: The
image of a slinky at a temperature range of 0.2–1.6×106 K taken by TRACE. A regular filamentary
structure of slinkies turns out to be a backbone of their long-term dynamic stability

associated with X-class flares, but they may well be produced by the M-class and
even by C-class flares.

High-resolution and high cadence observations show coronal structures and
dynamics in great details (Gibson et al. 2002; Ryutova and Shine 2006; Kosugi
et al. 2007; Aschwanden and Aschwanden 2008; Cirtain et al. 2013; Brooks et al.
2013; Winebarger et al 2014). One of the most important facts revealed in recent
observations is that all coronal formations, regardless of their size, shape, and
lifetime, have filamentary structure. Individual filaments and their clusters are in
constant motion reflecting various stages of coronal activity.

Figure 19.2 shows an example of three stages in the evolution of corona overlying
a large active region (AR 10792 on July 30, 2005). Figure 19.2a is a typical picture
of a strongly inhomogeneous conglomerate of coronal loops in its “regular” state,
characterized by the quasi-steady behavior of long-living loops (marked by green
and blue arrows), periodic brightening and dimming of individual filaments, and
the appearance of frequent microflares (marked by small white arrows). No matter
how complicated an inhomogeneous conglomerate is, it may remain for h and days
in such a chaotic state until some sudden increase in activity causes an explosive
release of energy, leading to a major flare.

Figure 19.2b shows a pre-flare phase of the coronal system around the time
of its growing activity accompanied by the appearance of a strong coronal mass
ejection, CME (marked by the thick white arrow), and several moderate flares, such
as the one that occurred at UT 05:29 (highlighted by the white box). The major
X1.3 flare occurs at UT 06:35, in the location marked by the white star (not shown,
note the time difference). When this happens, within a few minutes of the explosive
phase/flare, the “messy” corona bifurcates into dynamically stable, well-organized
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UT 04:55 a b cUT 05:29 UT 07:58

ongoing small–scale events long–term selforganized state

*

pre–explosive phase

CME

Fig. 19.2 Image of the corona in the TRACE Fe IX/X (0.2–1.6 × 106 K), overlying a large
active region. Field of view is 230 × 230 Mm2. (a) Large and small-scale loops of different forms
show well-defined filamentary structure. Snapshots represent a long-term dynamic state of coronal
structures being in constant motion and harboring numerous microflares that appear continuously
in different places. (b) At some point, the corona shows a sudden increase in pre-flare activity
including several moderate flares (one of them occurring around UT 05:29 is highlighted by the
white box) and strong CME (marked by the white arrow). The major X1.3 flare occurs at UT
06:35, in the location marked by the white star. (c) Within a few minutes after the major flare, a
huge “chaotic” conglomerate of coronal structures bifurcates into a well-organized dynamic state
having the form of a multithread solenoid and remains in this state for many h

arcades of thin flux tubes (Fig. 19.2c). This regime usually lasts for many h or/and
days, signifying the self-organized character of the state.

This pattern, i.e., when a long-lasting chaotic state that turns into a well-
organized system of self-similar loop arcades due to the increased activity and flare,
being quite typical, is not, however, universal. Not all of the major X-class flares end
up with the formation of long-living, well-organized structures. In many cases, post-
flare loops quickly cool down and disappear from the EUV images. The physical
conditions that determine or prevent the formation of long-living, well-organized
structures are to be addressed in this chapter.

Our goal here is twofold. One objective is to investigate the nature of well-
organized systems of self-similar loops and their formation. The other is to look
into the question of why, among seemingly similar flares, some may bifurcate into a
long-living, well-organized slinky stage and others not. These problems also include
an important fact: the regularities observed in the corona must have their precursors
in the underlying chromosphere/transition region whose topological and functional
relations need to be also identified.

To address these problems we follow studies of the most prominent (major X-
class and some C-class) flares occurred in about a decade period (Ryutova et al.
2011). It was found that the flares that bifurcate into long-living slinky arcades differ
significantly from those that do not produce such structures. As mentioned above,
the most striking difference is that, in all cases of slinky formation, the GOES high-
energy proton (HEP) flux becomes significantly enhanced many h before the flare
occurs. There is also a correlation between the occurrence of slinky formation and
an active region size.
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To illustrate the process of post-flare slinky formation, first, we use Hinode
observations of a large active region (NOAA AR 10930) during the time period
of December 5–13, 2006. Events associated with this active region show extremely
well a time sequence of pre-flare and flare activity, and the formation of dynam-
ically stable, well-organized structures. These observations have also provided a
unique opportunity to compare data taken simultaneously at different heights of
the solar atmosphere. As a result, it was revealed that post-flare coronal slinky
formation is preceded by scale-invariant structure formation in the underlying
chromosphere/transition region. Such a pattern is characteristic to process of self-
organization that takes place simultaneously at several special and timescales
(Prigogine 1961; Gaponov-Grekhov and Rabinovich 1992). This will be discussed
in more details in subsequent sections.

It must be emphasized that any system that is potentially subject of self-
organization need to be treated as an energetically open, dissipative system. In case
of slinky formation, the system must include coupling between photospheric energy
reservoir and the overlying chromosphere/corona, assuming also the back-reaction
of coronal activity on the underlying atmosphere. In previous chapters, we have
already encountered the necessity of applying the method of energetically open
systems (see, e.g., in Chap. 16). In electrodynamics such a system, as we saw,
may be driven into various dynamic forms that include the Poincare limit cycle,
and a spontaneous process of self-organization, characterized by scale-invariant
structure formation. It must be noted that small-scale, current-carrying filaments
arise automatically in the model (Ryutova and Shine 2006; Ryutova 2006).

19.2 Essential Difference Between “Regular” and
Slinky-Producing Flares

One of the established classifications of solar flares is their arrangement into B, C,
M, and X classes, which is based on their X-ray output measured by the GOES
spacecraft. Although flares in general exhibit common physical phenomena such as
particle acceleration, radiation of electromagnetic waves, association with shocks
and others, individual flares are quite unique and may exhibit their own set of
specific events.

Many individual flares have been studied in great detail, especially with the
opportunity given during the last decades by excellent satellite data sets. These were
complemented by several survey works that have brought together some general
properties of flares (Bai and Sturrock 1989; Battaglia et al. 2005; LaBonte et al.
2007). The existence of common properties naturally indicates common sources
and origins of flares, thus facilitating the search for possible predictability criteria.

In this chapter, our primary goal is to study the nature and formation of post-flare
well-organized loop arcades by analyzing general signatures observed in the major
flares that occurred during a decade period (1998–2007). These analysis revealed
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quite puzzling fact indicating that among quite congruent flares, some bifurcate into
self-organized state, while others do not.

A search for the observational properties distinguishing flares producing long-
living slinkies from “non-slinky” flares led to several well-defined differences.
For example, the non-slinky flares are usually characterized by short post-flare
relaxation period, while post-flare slinky configuration has long lifetime. The
enhancement of high-energy proton flux, typical to pre-flare period of slinky-
producing flares, is absent in case of non-slinky flares.

Several examples of slinky and non-slinky flares together with their specific
properties are shown in Table 19.1. The first column contains dates of the chosen
examples; second and third columns are the start and peak times of the flare.
The fourth column shows the scale of the event in GOES X-ray classification;
fifth column contains the enhancement factor of particle fluxes long before the
flare occurs. The approximate duration of these precursors is given in the next,
sixth column. The enhancement of particle fluxes only occurs for those flares
that bifurcate into self-organized slinkies. This is reflected in the seventh column,
where “Yes” designates a slinky structure formation. Once the post-flare self-similar
loop arcades are formed, they remain in this dynamically stable state for h. The
approximate lifetime of the self-organized loop arcade is shown in the eighth
column. The last column represents parental active region and its size. By size we
mean a gross estimate of a visual area occupied by the active region, roughly defined
as small (S, ∼100–500 Mm2), medium (M, ∼600–103 Mm2), large (L, ∼ 2 × 103–
104 Mm2), and extra large (XL, ∼ 2 × 104–105 Mm2).

Four examples in Table 19.1 have “No” in the seventh column meaning that,
soon after the flare, coronal loops quickly cool down without forming a long-living,
self-similar loop arcades. In other words, after a short relaxation regime, the system
returns almost to its pre-flare chaotic state. One can immediately see two major
differences between this type of flares and slinky-producing ones: (1) they are not
preceded by the early enhancement of high-energy proton fluxes and (2) they are
usually associated with large, or super-large active regions.

To visualize more details of these differences and reveal others, we show three
examples of the evolution of flares in Figs. 19.3, 19.4, and 19.5. It is interesting to
note that although the 2004/03/30 UT 22:53 event was preceded by the enhancement
of >1 Mev protons, the energy liberated by the flare was not enough to bring the
system into the self-organized state. One can hardly determine why, but there are
several factors that could be involved here: (1) the higher energy proton fluxes
remain normal, (2) the active region is too large, and (3) the fact that >1 Mev proton
flux may not be relevant here because usually the cutoff energy at geostationary
orbit is typically of the order of several Mev, and therefore the response of
>1 Mev protons may be primarily due to trapped protons of the outer zone of the
magnetosphere (http://www.swpc.noaa.gov/).

We now turn to the description of figures listed above. Figure 19.3 shows two
neighboring active regions, AR 10581 and AR 10582, and their overlying corona
in the TRACE 195 Å line. Of these active regions the much larger and much more
complicated AR 10582 has produced seventeen C-class flares in the 24 h interval

http://www.swpc.noaa.gov/
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Fig. 19.3 Two neighboring active regions, AR 10581 and AR 10582, give an excellent example
of absolutely different patterns in their coronal dynamics. Explanation of images shown in panels
(a)–(f) is given in text
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Fig. 19.4 A major, Oct 28, 2003 X17-class flare originating at the periphery of a large active
region, AR 10486, synchronizes the entire active region, and causes bifurcation of a large chaotic
conglomerate of coronal loops into a huge regular solenoid with a lifetime exceeding 4 h. Note that
the flare kernel first appears in the chromosphere (panel c). The events shown in panels a–f are
described in text

(from UT 05:30, 2004/03/30 to UT 05:30, 2004/03/31). One of these flares is
marked by white arrows in Fig. 19.3b, c. Each of these flares has been followed
by a short relaxation regime, after which the system of coronal loops returned
approximately to the same, pre-flare chaotic configuration.

A totally different situation eventuates in the southern AR 10581 which, by its
topology and size, is far more simple and smaller than AR 10582. Besides these
visual properties, AR 10581 had been inactive for many h. It is remarkable, however,
that a single flare of a C3.2 class, occurring during the same 24 h time interval
(Fig. 19.3d, white arrow), resulted in an abrupt bifurcation of the entire system
of coronal loops into a self-organized loop arcade (Fig. 19.3e, white arrow). The
lifetime of this arcade exceeded 10 h. Figure 19.3f shows the corona in the TRACE
Fe XII line at 2004/03/31 UT 05:14:55. At this time, the corona above AR 10582
which produced seventeen C-class flares remains as complex as it was before all of
these flares occurred. Contrary to this, the post-flare loop arcades above AR 10581,
formed after a single C3.2 class flare, once acquired, keep their well-organized form.

These observed regularities clearly agree with the difference between energy
production by a given active region and the amount of energy required to bring
the entire system into a self-organized form (cf. Table 19.1). Obviously, none
of the seventeen C-class flares have produced enough energy to unify the huge



19.2 Essential Difference Between “Regular” and Slinky-Producing Flares 521

560 Mm 280 Mm
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Fig. 19.5 Coronal activity above a huge conglomerate of three active regions. White dashed box
in panel a shows the TRACE field of view. Numerous flares occurring during the disk passage of
this active region conglomerate were not able to synchronize the system, leaving the coronal loops
in their chaotic state. Panels a–e containing the image of magnetogram (a) and time sequence of
associated corona ((b)–(e)) are described in text

conglomerate of coronal loops above the large active region 10582, and bring it
to a self-organized stage; whereas, the energy accumulated before and released after
the C3.2 class flare was enough to reorganize the loop system above the compact
active region 10581.

Similar regularities were observed in all studied cases (see Table 19.1). Fig-
ures 19.4 and 19.5 show two other examples of totally different outcome. Fig-
ure 19.4a, b shows a large and complex active region, AR 10486, with a very
irregular and complicated system of coronal loops overlying it. During about a 24 h
period before UT 11:00 on Oct 28, 2003 several top C-class, M-class, and low X-
class flares were continuously shaking the system. None of these flares, however,
was able to change the intricate shape of the huge coronal system (Fig. 19.4b) until
before UT 11:00 when the system was struck by a super-major X17 class flare
(the famous Halloween flare). The Halloween event started with energy release
first recorded in the TRACE 1600 chromospheric line (Fig. 19.4c) and escalated
quickly to produce a rare X17-class flare (Fig. 19.4d). A few minutes after the
X-ray intensity peak, the huge disarranged system of loops bifurcated into a well-
organized, self-similar loop system having the form of a beautiful solenoid (panels
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e and f in Fig. 19.4). It is remarkable that the energy release, in the form of a major
flare and its photospheric counterpart, is associated with a magnetically rarefied
peripheral region marked by a white box in Fig. 19.4a and by arrows in panels a,
c, d, and e. The shortest distance between the region of flare energy release and
the solenoid axis exceeds 80 Mm; yet, the blow produced by the X17 flare and the
amount of associated energy were enough to synchronize the entire active region,
and cause bifurcation of a large chaotic conglomerate of coronal loops into a huge
regular solenoid with a lifetime exceeding 4 h.

Figure 19.5 shows an example of a post-flare outcome opposite to that of the
Oct 28, 2003 flare. This case, dated July 16, 2004, also involves an extra large
active region stretched over 360×162 Mm2 area, consisting of three “subdivisions,”
AR 10649, AR 10650, and AR 10651. The complexity of the overlying corona is,
therefore, not surprising. The TRACE field of view of the corona is restricted by
the 280 × 280 Mm2 area (marked by the white dashed square in panel a). This huge
ensemble of active regions produced during its disk passage numerous flares of all
calibers.

For example, during 3 days, from 2004 July 15 UT 01:00 to July 17 UT 21:00,
there were 12 low and mid X-class flares recorded, plus many more C-class and M-
class events. Neither individual nor sequences of flares were able to synchronize the
huge conglomerate of coronal loops to bring them into a self-organized state. After
each and every one of the flares, the corona quickly relaxed back to its chaotic state.
Panels b, c, d, and e in Fig. 19.5 show the corona soon after some of the X-class
flares. The general character of the corona did not appear to change much from July
15 to July 17. This pattern was held throughout the disk passage of the active region.

19.3 Precursors and Predictability

The fact that high-energy proton (HEP) flux gets enhanced before the slinky-
producing flares and vice versa is obviously associated with the ratio between energy
production by a given active region and the amount of energy required to bring the
entire system into the self-organized form.

Figure 19.6 shows example of the GOES high-energy proton fluxes around the
2003 October 28 X17-class flare (panel a) and series of flares during 2004 July 13–
15 associated with AR 10649 (panel b). For the GOES plots we use a collection
at the web site http://goes.ngdc.noaa.gov/data/plots/ and also the SolarSoft GOES
Data available at http://www.lmsal.com/SXT/ (developed by S. Freeland).

One can see a striking difference between the two cases shown in Fig. 19.6: in
the case of the 2003 Oct 28 flare, high-energy proton fluxes are strongly enhanced.
More than 40 h prior to the flare, the fluxes of protons with energy higher than 1,
5, and 10 Mev are close to the post-flare level; moreover, even protons with energy
higher than 50–100 Mev are significantly enhanced.

http://goes.ngdc.noaa.gov/data/plots/
http://www.lmsal.com/SXT/
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Fig. 19.6 Comparison of GOES high-energy proton fluxes for two cases. Panel a: 2003 Oct 28
X17 flare occurrence that peaked at UT 11:10. High-energy proton fluxes are strongly enhanced
more than 40 h prior to the flare. Protons with energy higher than 1, 5, and 10 Mev are close to the
post-flare level and even protons with energy higher than 50–100 Mev are significantly enhanced.
Panel b: Series of X-class and M-class flares during a limited time interval. The level of high
energy particles remained normal throughout the chosen time interval

A totally different picture is seen in the case of the long series of 2004 July 13–15
flares: throughout this time period, the level of high-energy proton fluxes remained
normal. Obviously, there was no preliminary accumulation of energy associated
with AR 10649 and its neighbors. Therefore, even a long series of X- and M-
class flares could not reorganize their associated corona. Contrary to this, the energy
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content and its earlier accumulation in AR 10486 was so high that, despite its huge
size, a single X17-class flare was enough to reorganize the entire system and bring
it to a self-organized state (Fig. 19.4f).

It should be emphasized again that the enhancement of particle fluxes only occurs
for those flares that bifurcate into self-organized slinkies. The beginning of the
enhancement process, or in other words, the first signs of the precursors develop
from several h to several days prior to the flare, as is shown, for the given examples
listed in the sixth column of Table 19.1.

For illustrative purposes, we show in Fig. 19.7 the transition from a normal level
of particle fluxes to their enhanced state for the October 28, 2003 flare (the fifth
example in Table 19.1). The precursor appears at about UT 18:00 on October 26,
i.e., over 40 h before the start of the flare at UT 09:51 on October 28. These instances
of time are shown by arrows on the lower panel in Fig. 19.7. During many days prior
to the appearance of the precursor, the level of high-energy particle fluxes remained

X17 Flare

Peak time

p > 1 Mev
p > 5 Mev
p > 10 Mev 
p > 30 Mev

p > 50 Mev

UT 11:10
UT 18:00

Significant enhancement

of a HEP flux

Fig. 19.7 Plots of high-energy proton (HEP) fluxes 10 days prior to the flare that started at UT
09:51 on October 28, 2003. High-energy particle fluxes (>5 Mev and higher) stay at low level.
Precursor shows up at about UT 18:00 on October 26, i.e., about 40 h prior the flare, and appears as
a sudden elevation of all channels including even the >50 Mev protons (purple line). The >1 Mev
proton flux is shown to emphasize the absence of higher energy proton fluxes during several days
prior to the precursor and flare (see the text for more details)
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normal. It should be noted, however, that the elevated level of the >1 Mev protons
(light brown curve) can hardly be considered as a precursor, because this channel is
mainly due to trapped protons of the outer zone of the magnetosphere. This channel
is shown in Fig. 19.7 to emphasize the absence of higher energy proton fluxes prior
to the precursor.

The two major components of regularities were observed in all cases of major
flares during the last decade, i.e.: (1) The occurrence of an early enhancement of
high-energy particle flux was inevitably followed by the bifurcation of pre-flare
chaotic loop systems into post-flare self-organized loop arcades; (2) When early
enhancement of high-energy particle flux was absent, the pre-flare and post-flare
corona remained in its chaotic state divided only by a short post-flare relaxation
period.

These regularities indicate that any system must be characterized by some critical
parameters and, in particular, by some critical energy level above which the system
must undergo a phase transition from one energetic and morphological state to
another. In our case, spontaneous transition of a dynamic system of coronal loops
from a chaotic state to a state characterized by coherent structure formation is
a typical process of self-organization observed in all dynamic systems in nature
(Mandelbrot 1967; Gaponov-Grekhov and Rabinovich 1992), including the solar
atmosphere (Mogilevsky and Shilova 2006; Golovko et al. 2009; Nishizuka et al.
2009).

Additional strong support for identifying the spontaneous formation of slinkies
as a process of self-organization is the observation of a scale invariance associated
with it. This became possible with simultaneous multiwave observations taken by
the Hinode spacecraft. Hinode shows the formation of self-organized structures not
only at two levels of temperature in the corona (Fe IX 171 and Fe XI 195), but also
at chromospheric and transition region temperatures. In the next section, we give an
example of a corresponding case study and show that post-flare coronal structure
formation is preceded by scale-invariant structure formation in the underlying
chromosphere/transition region.

19.4 Exemplary Case of X-Class Flare and Formation of
Slinkies

In this section, we will show step by step process that starts from energy production
in the photosphere, passes through pre-flare stage, resulting a strong flare, and ends
up with the formation of long-living well- organized multithread arcades of coronal
loops. We will address here the following questions: (1) How the multithread
arcades are formed; (2) Why they live so long; (3) What determines energy inflow
and outflow; (4) What role is played by photospheric activity; and (5) How the
energy release by coronal flare affects the lower layers of atmosphere.
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Fig. 19.8 SOT magnetogram
of an exemplary active region
(top) and its overlying
chromosphere in Ca H line at
∼104 K (bottom). The arrow
points to the polarity
inversion line surrounded by
the most active clusters of
opposite polarity elements

110 Mm

SOT Mgrm

13 December 2006 UT 01:20

SOT Ca H

For this purpose we use the uninterrupted sets of the SOT magnetograms and
chromospheric images in Ca II λ 3968 H line (�104 K) combined with simultaneous
images of the corona taken with the TRACE spacecraft in Fe XII λ 195 line (1.2–
2.6 × 106 K), showing the step by step evolution of the entire system.

The target is a complex active region consisting of closely located opposite
polarity sunspots surrounded by a mixed polarity plage. Figure 19.8 shows the
SOT magnetogram of the region and chromosphere above it in Ca H line. While
the sunspots do not show a drastic changes with time, the clusters of small-scale
magnetic concentrations around the polarity inversion line (marked by arrows in
Fig. 19.8) are extremely dynamic.
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A continuous energy supply coming from permanent interactions among small-
scale mixed polarity elements in the polarity inversion region is uniquely felt by
the overlying chromosphere. As we saw throughout this book, every small region
of mixed polarity elements is reflected in Ca H line in the form of enhanced
brightenings. The magnetogram movies showing the ubiquitous disappearance of
small-scale opposite polarity neighbors obviously represent the ongoing reconnec-
tion processes.

The co-aligned Ca II and TRACE Fe XII 195 movies show, as expected, that
the disappearance of opposite polarity couples uniquely precedes the appearance of
chromospheric bright transients, frequently followed by coronal microflares. Note
that, during this long-term stage, the general topology of the active region does not
vary noticeably.

The situation changes when significantly larger elongated magnetic structures
of opposite polarities emerge in the polarity inversion region. This newly emerged
magnetic fluxes provide a significant supply of additional energy. This energy
soon shows up as a strong chromospheric flare (Fig. 19.9). A hot overlying
corona remains for a while in a “modest” shape compared to raging chromo-
sphere/transition region. In other words, a strong chromospheric flare develops
earlier than and independently of upcoming coronal flare.

Energy released in the chromosphere affects significantly both, the underlying
low atmosphere and the overlying corona. In low atmosphere the chromospheric
flare generates a huge blast wave which first appears in the Ca H line, then at lower
temperatures in the G-band, and finally it reaches the photosphere.

In chosen case, the process starts at about UT 02:20 and reaches its maximum
at UT 02:30. Figure 19.10 shows the impact of the chromospheric flare on the
underlying layers of atmosphere at UT 02:28, with well-developed shock front of
finite thickness seen in the south segment of umbra (marked by arrows in Fig. 19.10).

SOT Ca H

13 Dec 2006  UT 02:20

Fig. 19.9 Snapshot of Ca H developing flare at UT 02:20. The maximum phase will peak at UT
02:32. Field of view is 79 × 110 Mm
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13 December 2006 UT 02:28

G−band

Mgrm

Fig. 19.10 The impact of the chromospheric flare to underlying photosphere and lower chromo-
sphere regions. The arrows point to the shock front, part of which is clearly seen at the south
segment of umbra

In the corona the blast wave triggers explosive release of energy lasting from UT
02:16 to UT 02:28.

Here we come across very important event: the explosive growth of energy is
directly associated with the blast wave adding more power to energy production
region located at the photospheric level. Thus due to this “last drop,” the explosive
growth of energy quickly evolves into a major coronal flare that reaches its
maximum at UT 02:40. Figure 19.11 shows GOES X-ray intensity curves for the
1.8 keV (upper curve) and for 3.1 keV (lower curve) particles.



19.4 Exemplary Case of X-Class Flare and Formation of Slinkies 529

X3.4 major flare

explosive phase
02:16 − 02:28

peak time 02:40

Fig. 19.11 GOES X-ray intensity curves for the 1.8 keV (upper curve) and for 3.1 keV (lower
curve) particles. Peak time of a major (X3.4) flare is UT 02:40. The red dashed time interval
corresponds to pre-flare explosive energy release

Thus the main steps of the process of energy production, transfer, and release
can be briefly described as follows. The energy supply coming from reconnection
between small-scale mixed polarity elements continues to accumulate and grow. At
some point cumulative effects lead to the explosive release of energy. We see it
to happen first in the chromosphere. Starting at about UT 01:40, the Ca H flare
becomes so strong that, at UT 02:26, it generates a blast wave and triggers the
explosive phase at coronal temperatures (Fig. 19.10). This additional supply of
energy leads to further enhancement of explosive release of energy characterized
as a major flare of X3.4 class.

After a short phase of flare maximum, the system bifurcates into a well-organized
arcade of thin flux tubes at all chromospheric and coronal temperatures (Fig. 19.12).
The self-organized regime lasts in the corona over 5 h, until a new flare destroys the
structure at about UT 08:02. The chromospheric structures, however, remain in this
state only about an hour. In other words, the higher the energy content, the longer
the lifetime of the self-organized structures.

It must be emphasized that the peak of energy release in the corona lags the peak
in the chromosphere by about 8 min, as does the bifurcation of the system into the
self-organized state (Fig. 19.13). This uniquely indicates that the energy supply and
its flow occurs from the photosphere throughout the chromosphere/transition region.

It is also important to note that the magnetic shear of the whole active region
and accompanying helicity injection rate started to increase long before the flare
occurred; moreover, the energy and helicity injection rates reached a saturation level
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UT 03:02

UT 03:03

UT 05:17

Fe XII

Ca H

Fe XII

Fig. 19.12 Upper panel: Well-developed multithread system in the chromosphere at 104 K; Lower
panels: Self-organized arcade in the corona in the initial stage of its formation (UT 03:03) and in
the “mature” stage at UT 05:15. The coronal self-organized arcades outlive its chromospheric
counterpart by more than 5 h. The white arrow in a middle panel indicates still flaring heart of the
system

almost 24 h prior to the flare (Kubo et al. 2007; Harra et al. 2009). As these processes
are directly connected with the energy injection into the system, the observed facts
are consistent with the expected enhancement of high-energy proton flux long before
the flare occurs.
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Fig. 19.13 GOES X-ray curves co-aligned with the SOT Ca H intensity curve. Top: The explosive
phase and long-term, self-organized state of coronal plasma; Bottom: Ca H intensity curve which
shows that the peak of energy release in the chromosphere (line c) precedes the peak in the corona
(line x) by about 8 min. Post-flare regime is significantly shorter in the chromosphere than in the
corona

19.5 Phenomenology of Energy Buildup and Quantitative
Analysis

The mechanisms governing such a diverse observed regularities as ongoing small-
scale sporadic events, the explosively growing pre-flare activity ending with a major
flare, and bifurcation of systems into a self-organized state must have a common
origin, and need to be explained by unified model. The theory that may unify
description of various forms of coronal activity must also explain a ubiquitous
filamentary structure of the coronal formations. Such a theory and its quantitative
application is the subject of this section.

At all the diversity of coronal structures, they have several properties in common,
e.g.,

1. the energy source lies in an intense hydromagnetic activity of photospheric
magnetic fields,

2. any coronal formation has a small-scale filamentary structure, and
3. elemental filaments must carry electric currents.

Together, these properties indicate modus operandi is a typical energetically
open, dissipative system. Therefore, various processes in formation and evolution
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of coronal structures can be consolidated and understood by employing a method of
dissipative systems based on global electrodynamics with source and sink of energy
as discussed in Chap. 16.

Thus, the system consists of current-carrying magnetic loops that interconnect
the photosphere—a high β energy-production region with an overlying low β

dissipation region. Source is photospheric driver associated with the turbulent and
electromagnetic stresses which generate a Pointing flux of energy and magnetic
helicity that propagate upward, get accumulated, and subsequently dissipate.

The high conductivity of the chromosphere/coronal plasma causes dissipative
effects to turn on at small transverse scales, Δxr = a/Re

1/3
m , where a is the

width of an elemental loop, Rem = vAa/ηD is the magnetic Reynolds number
(ηD = c2/4πσ is magnetic diffusivity, with σ = 1.96ne2/(meνei) being the plasma
conductivity (Ionson 1982; Ryutova and Habbal 1995)).

The dissipative stresses that operate at very small scales of generalized skin
depth, Δxr , determine the width of a local cross-field shear and cause a filamentation
process in magnetic structures.

The system of electrodynamic equations, i.e., Maxwell’s equations together with
the generalized Ohm’s law fully represent the ability of a magneto-plasma to pro-
duce the energy, represented by driving electromotive force ( e.m.f.), the ability to
store electric and kinetic energy (system capacitance), the ability to store magnetic
energy (system inductance), and the ability to release the accumulated energy
(resistive loads). Below we follow analysis of an energetically open circuit presented
in Chap. 16, and reproduce here a logic and some equations for convenience.

As shown in Chap. 16, with the use of the Heaviside step function of plasma beta,
H(1 − β), the set of electrodynamic equations describing the system of current-
carrying magnetic loops that interconnect a high β energy-production region, with
an overlying low β corona, is reducible to a single 3D equation for longitudinal
electric current, jl (cf. Eq. (16.24), Chap. 16):

4π

c2

∂2jl

∂t2
− H(1 − β)

1

σ

∂3jl

∂x2
r ∂t

− H(1 − β)
4πv2

A

c2

∂2jl

∂l2
= H(β − 1)

1

c

∂3(vB)

∂xr∂l∂t

(19.1)

The first term in this equation is, indeed, an inductive reactance of a system, the
second term is associated with the resistance, the third term is a capacitive reactance
of the overlying plasma, and the term on the right-hand side is the source of driving
electromotive force (e.m.f.), with v being a turbulent velocity. The competition,
balance and imbalance of these parts in an active region and its coronal counterparts
determine the system behavior.

For an adequate description of the energy flow, it is necessary to take into account
the resistive losses that are associated not only with the corona, but also with the
chromosphere/transition region which is the first to amass the energy coming from
below and “transport” it into the corona (Kjeldseth-Moe et al. 1988; Dere et al.
1989; Golub et al. 1999; Ryutova and Tarbell 2000, 2003).
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The feedback between the corona and the underlying atmosphere is also trans-
mitted through the transition region. This leads to the appearance of nonlinear terms
in the equation for the electric current. With this in mind, integrating (19.1) over the
volume of elemental loop, laΔxr , one obtains the equation for a total longitudinal
current flowing along the elemental loop, I = jaΔxr , which after some algebra
(Ryutova 2006), acquires the form of the forced Van der Pol equation (Van der Pol
1927):

1

ω2
0

d2I

dt2 −
(
μ − ZMQI 2

) dI

dt
+ I = 0 (19.2)

Here ω0 = πvA/l is the natural frequency of the elemental loop, l being the length
of the loop, and ZM = (4vA/c2)

√
lT R/l is mutual resistance, with lT R being the

height of the transition region. The parameter ZMQ reflects the nonlinear effects
associated with the back-reaction of a system to the induced currents, Q ∼ τjΦ

−2,
where τj is the characteristic current buildup time, and Φ = (vBa)/c is the driving
e.m.f.

The evolution of the system is determined by the interplay between the coef-
ficients in (19.2), i.e., by the amount of energy supply and its accumulation
(associated with the driving e.m.f. and capacitive reactance), and ability of the
system to build up the electric currents.

The important role in the realization of various scenarios of the current loop
evolution is played by the sign of parameter μ (16.59),

μ = νei

ω2
0

me

mp

[√
lT R

l
− 1.06 × 107 T

n

(vA

a2

)2/3
]

(19.3)

which is a measure of the excess of energy supply or its deficiency with respect
to the current generation threshold. It is important to note that (19.2), along the
“individual” loops, contains parameters that interconnect the entire system in the
photosphere (e.g., via e.m.f.), and realize the interpenetration of elemental loops
and their environment through the cross-field share (Δxr). As Δxr is very small, the
signal quickly propagates throughout the entire system of loops united by a common
active region.

The solution to (19.2) for time varying current amplitude I (τ ) is:

I (τ ) = 2I0
√

I 2
0 + (4Icr − I 2

0 )exp(−ετ)

, (19.4)

where τ = tω0 is dimensionless time, ε = μω0, and Icr a critical current threshold,
at which the system may bifurcate to one or another regime depending on the initial
current amplitude, i.e., whether I0 > 2Icr or I0 < 2Icr.

Icr = 5 × 10−3 nevA

Re
1/6
m

√
|μ|ω2

0

˜νei

l

lT R

πal (19.5)
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It is important that the (19.4) acquires different forms depending on the parameter
ε and the sign and value of coefficient in front of the exponent in the denominator.
In fact, the way how the system approaches a quasi-stationary state is especially
sensitive to ε, or in other words, to the sign and value of μ. Depending on the system
parameters, μ may be positive, negative, or close to zero. In each case, the solution
of the Van der Pol equation (19.4) describes different regimes of system behavior,
including the Poincare limit cycle and a spontaneous process of self-organization.

In Chap. 16 we have studied in detail the behavior of currents in different regimes
determined by the sign of μ. It is useful to recall some basic properties of system
evolution here.

If μ > 0, the current loops evolve in accordance with a typical Poincare limit
cycle, approaching a quasi-stationary regime characterized by a critical current, Icr.
There are two major subregimes across the “border line” defined by Icr/I0 = 2 (see
Figs. 16.8 and 16.9, Chap. 16). In the case of I0 > 2Icr, the system periodically
releases the energy excess in the form of microflares (e.g., numerous bright “dots”
in Fig. 19.2a) or moderate flares (boxed area in Figs. 19.2b and 19.5) approaching a
quasi-stationary regime. The opposite regime, I0 < 2Icr, corresponds to long-living
systems that gradually accumulate energy approaching a stationary regime. In this
case, coronal loops can even survive the neighboring flares (such as blue and green
arrows in Fig. 19.2 and white arrows in Fig. 19.4).

In other words, at μ > 0, regardless of the initial current amplitude, the currents
asymptotically tend to a stationary value of Icr: currents with initial amplitude
I0/Icr < 2 increase until they reach the limiting value, while currents with initial
amplitude I0/Icr > 2 evolve in a decreasing regime. The larger the initial amplitude,
the faster it drops, i.e., the shorter its limiting cycle, and the excess energy gets faster
released. Several solutions for both subregimes at μ > 0 are shown in Fig. 16.8
(Chap. 16). Numbers correspond to the ratio I0/Icr.

If μ < 0, (19.2) describes several qualitatively different regimes of current
evolution depending, again, on the amount of the initial energy supply. If the initial
energy supply provides the value of injected currents below their critical values,
I0 < 2Icr, the currents are in the decay regime and loops gradually (and very slowly)
lose their energy. This regime corresponds to last stage of diffusively disappearing
loop systems. The plots of corresponding currents are shown in Fig. 16.9 (Chap. 16),
for several factors (1.5–1.98 I0/Icr).

On the other hand, in the case when the energy supply exceeds the generation
threshold and I0 > 2Icr, the system becomes subject to explosive instability. In
finite time, the currents reach infinitely large values, growing explosively in time,
I (t) = I0/

√
1 − (t/texpl), with

texpl = 1

|μ|ω2
0

ln
I 2

cr

I 2
0 − I 2

cr
. (19.6)
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Fig. 19.14 Evolution of coronal loop currents for the explosive and post-explosive regime at μ ≈
0 (μ approaching to zero from negative values). The upper curve corresponds to I0 = 2.2Icr and
lower curve is for I0 = 2.4Icr; the higher the initial current, the shorter is the “explosive” time (cf.
Fig. 19.13)

Table 19.2 Estimates of critical currents

T (104 K) n (109 cm−3) vA (cm s−1) l (108 cm) acr (106 cm) ω0 (s−1) |μ| Icr(A m−2)

200 1.4 8 × 107 20 21 0.13 0.12 3.2

2 23 9.1 × 106 2 1.9 0.143 0.15 1.1

In the vicinity of t = texpl, the system quickly releases energy producing a
major flare. The corresponding plots for factors, 2.05–2.3, are shown in Fig. 16.9
(Chap. 16).

At this strongly nonlinear stage, higher nonlinear effects turn on and stabilize
the further growth of the currents leading to the bifurcation of a system into a
self-organized state. This process is illustrated by the theoretical curve shown in
Fig. 19.14, which is well representing the observed HEP curve shown in Fig. 19.13.
A parameter range where the system bifurcates from one regime to another
corresponds to proximity of μ � 0, or to proximity of the critical current to
value, determined by condition, μ − ZMQI 2

cr � 0 (coefficient of the first derivative
in (19.2)).

It is important, that parameter μ, which reflects the physical properties of a
system both at macro- and microscales, and determines the actual behavior of a
system, is expressed through the physical quantities most of which are observable,
e.g., temperature, density, magnetic field, and spatial scales of coronal loops. This
allows quantitative analysis and usage of observational data for modeling and
studies the predictability of different regimes.

Table 19.2 contains the quantitative estimates of critical current densities for
loops at coronal and chromospheric temperatures. Alfvén velocity here is calculated
through the temperature and plasma β, vA = 1.82 × 104√T/β. We adopt β = 0.1
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and lT R = 2.2 × 108 cm. The aspect ratio (for the critical value of a loop radius,
acr) is of the order of (acr/l) � 0.01 at both temperatures, consistent with the scale
invariance typical of self-organization. Now we can estimate the explosive times for
the two regimes shown in Fig. 19.11.

In the first case, when j0 = 1.1jcr, tcor
expl � 19 min, for coronal loops, and tchr

expl =
12 min 23 s for the chromospheric ones. In the second case, when j0 = 1.2jcr, we
have respectively, tcor

expl � 13 min and tchr
expl = 8 min 30 s. Thus, in agreement with

observations, the onset of the explosive phase and bifurcation of a system into a
self-organized state occurs in the corona later then in the chromosphere (Figs. 19.12
and 19.13). The measured explosive times and duration of the explosive phase also
agree well with the observations.

Due to flexibility of the system parameters and wide range of their combinations
various scales, this approach has a great potential in studying the overall behavior
of coronal structures.

19.6 Recurrent Flares and Echoes

Highly intermittent corona consisting of a regular ensemble of a thin magnetic loops
and harboring frequent impulsive bursts is the most natural place for the occurrence
of plasma echoes. Before we discuss this spectacular echo-like phenomena seen in
the high-resolution observations of corona, let us recall the features of echo effect.

Along the familiar sound echo, sonic navigation, and a Greek legend about a
nymph echo, there are many echo-like phenomena in macro- and microworlds.
Some were discovered and put in practical use long, some only in modern times.

In microworlds, first was a spin echo observed by Hahn (1950) in nuclear
magnetic resonance experiment. Two short radiofrequency pulses satisfying the
resonance condition and separated by a time interval τ were applied to an ensemble
of spins in a liquid placed in a static magnetic field. After removal of the pulses
(τ being much larger than the duration of a pulse), in the same time interval τ

after the second pulse, when the ensemble of spins relaxed to thermal equilibrium, a
spontaneous nuclear induction signal has been observed. The effect was dubbed spin
echo. Soon after first results, Hahn performed experiments with multiple echoes and
using the Bloch theory explained the effect. Hahn concluded that the echo technique
appears to be highly suitable as a fast and stable method in searching for unknown
resonances, and suggested that it is of technical interest to consider the possibility
of applying echo pattern as a type of memory device. This modest prediction turned
out to be shortly a key element in biomedical nuclear resonance diagnostics and a
computer technology.

Most importantly, any physical system with the “memory” and hidden reso-
nances may produce the echo effect, and thus be a subject of reliable diagnostics.

Along the diagnostics, the echo may be used in many different ways. For
example, the echo effect provides a unique opportunity for electromagnetic field to
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overpass the skin depth and penetrate through a metal (Kemoklidze and Pitaevskii
1970a). Consider this example for illustrative purpose. Let the thickness of the
metal plate, d , be much larger than the skin depth, δ, d � δ. By the definition
an electromagnetic field cannot penetrate a metal deeper than δ. If, however,
the electron mean free path, l, in the metal is l � d , then by applying two
electromagnetic fields at both sides of a plate, the echo effect arises and generates the
third signal inside the metal. Namely, let an electromagnetic field E1 of frequency
ω1 is applied to the left side of metal. If now a field E2 of frequency ω2 is applied at
both sides of the plate, the much stronger echo field will appear with the amplitude
Ee ∼ E1E

2
2 , at ω2 = 3ω1 inside the metal. The key role here, as in all cases of echo

effect, is played by the memory of electrons flying through the metal. Note, that the
amplitude of echo field Ee does not decrease with increasing plate thickness, but
increases. The example of the penetration of the electromagnetic field into the metal
is a spatial echo, while the Hahn’s echo effect is a temporal.

Very rich echo-like phenomena were found in plasmas. There were identified
and experimentally verified conditions for a temporal, spatial, and spatiotemporal
echoes. The main condition for realization of a plasma echo is the ability of a system
to maintain the reversible processes for which the medium having filamentary
structure is extremely favorable. First plasma echoes were described and tested
in collisionless plasmas, where the Landau damping operates and provides the
necessary attributes of “memory” (O’Neal 65; Gould 1965; Gould et al. 1967;
Malmberg et al. 1968a,b; Kemoklidze and Pitaevskii 1970b).

19.6.1 Landau Damping, Memory, and Spatiotemporal Echoes

By its nature, the Landau damping occurs in collisionless plasma due to the phase
memory of particles resonantly interacting with the wave (Landau 1946). As Landau
damping is not connected directly with dissipative effects, it may be considered as
a reversible process. In other words, although the macroscopic quantities such as
an amplitude of the wave pulse (e.g., electric field) and mass density are damped
exponentially, the distribution function becomes only distorted, and may oscillate
indefinitely, i.e., a damped wave in a collisionless plasma retains the “memory”
of the preceding oscillatory motion. This means that the direction of the phase
evolution of the perturbed distribution function can be reversed by the application of
a second wave pulse. As a result, a macroscopic field subsequently reappears after
both the previously applied fields have Landau damped away.

The basic mechanism of the plasma echo can be easily understood (O’Neal and
Gould 1968; Malmberg et al. 1968a,b; Kadomtsev 1968).

When an electric field of spatial dependence exp(−ik1x) is excited in a plasma
and then Landau damps away, it modulates the distribution function leaving a
perturbation of the form f1(v)exp(−ik1x + ik1vt). For large time, t , there is no
electric field associated with this perturbation, since an integral over velocity will
phasemix to zero. If after a time τ a wave ∼ exp(−ik2x) is excited and then damps
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away, it will modulate the unperturbed part of the distribution function leaving a
first-order term of the form f2(v)exp[−ik2x + ik2v(t − τ )]), but it also modulates
the perturbation leaving a second-order term of the form f1(v)f2(v)exp[−i(k2 −
k1)x + ik2vτ − i(k2 − k1vt]). The coefficient of v in the exponent will vanish when

t = τ
k2

k2 − k1
. (19.7)

At this time an integral over velocity will not phasemix to zero, and an electric
field reappears in the plasma. This is a temporal second-order echo. In addition to
this, higher order echoes can also be observed. For example, a third-order echo is
produced when the velocity space perturbation from the first pulse is modulated
by the second spatial harmonic of the electric field. The echo then occurs at t =
τ [2k2/(2k2 − k1)].

The mechanism of the spatial echo is quite similar to the temporal echo. In this
case if an electric field of frequency ω1 is continuously excited at one point in a
plasma and an electric field of frequency ω2 > ω1 is continuously excited at a
distance l from this point, then a second-order spatial echo of frequency ω2 − ω1
will be produced at a distance lω2/(ω2 − ω1). Higher order spatial echoes are also
easily produced and observed. For example, the spatial echo of frequency (O’Neal
and Gould 1968)

ω3 = mω2 − nω1. (19.8)

will appear at a distance

l∗ = l
nω1

ω3
(19.9)

provided that

mω2 > nω1 (19.10)

Here integers m and n (m > n) correspond to the order of an echo in the perturbation
theory, namely m + n = 2, 3, 4, 5 correspond to second-, third-, fourth-, and fifth-
order echoes. For small-amplitude initial waves, the amplitude of the echo Aecho is
estimated as

Aecho ∼ An
1A

m
2 . (19.11)

The existence of various echos, associated with second-, third-, and higher order per-
turbation theory, has been demonstrated experimentally (Malmberg et al. 1968a,b;
Ikezi and Takahashi 1968; Yugami et al. 1994). The echoes always appear at
the predicted positions. The frequency and wavelength of the echo wave and the
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Fig. 19.15 Experimental results on a plasma wave echo. (a) Echo position versus transmitter
separation obtained by Malmberg et al. (1968a): the slope of the curves is theory (19.9), the circle
are experimental measurements; the numbers on the curves are frequencies f1, f2, and f3 in MHz.
(b) Relation between the position of the echo and the frequencies f1 and f2 obtained by Ikezi
and Takahashi (1968); the solid line is theoretical slope x = lf1/(f2 − f1); the echo frequencies
f = f2 − f1 are given for three sets of experiment. Reprinted with permission, copyright APS

dependence of its amplitude on the amplitude of the initial waves are totally
consistent with theory.

Figure 19.15 shows examples of earliest experiments on plasma echoes. Fig-
ure 19.15a is a plot of the position of a third-order (m = 2, n = 1) echo as function
of the separation of the two Transmitters obtained for several values of frequency
ratio f1/f3 (Malmberg et al. 1968a). The slopes of the straight lines are computed
with (19.9). For small signals, as expected from (19.11), the echo amplitude is
Aecho ∼ An

1A
m
2 . At large signal levels the echo amplitude saturates. Figure 19.15b

shows results obtained by Ikezi and Takahashi (1968) also for the third-order plasma
echo. Shown are the experimental values of the echo position l∗ for several sets of
frequencies f2 > f1.

Since the pioneering works on the plasma echoes, the subject obtained a great
attention for various diagnostics. For example, the diffusion of plasma electrons in
velocity space has been measured using the plasma wave echo as an experimental
tool (Jensen et al. 1969). The study of spatial–temporal echoes generated in a
magnetized plasma by low frequency external perturbations led to temperature
diagnostics of the electrons and ions, and allowed to diagnose their distribution over
longitudinal velocities in thermonuclear devices (Gromov and Revenchuk 1990).
Plasma echo as diagnostic tool is used in wide range of near-earth and space
instruments as well (Fung et al. 2003; Benson and Osherovich 2004; Mahmoudian
et al. 2011).

The plasma echoes in the solar atmosphere, where they are the most anticipated
phenomena, did not get much attention (Frank and Ryutova 2007). Although there
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were some attempts made before the sun’s “space era” when only the ground-
based observations were available. For example, Erokhin et al. (1975) explained
a series of small-scale mottles—sporadic brightenings, observed to appear during a
chromospheric flare almost simultaneously in different places, as an effect of plasma
echo. They also suggested that plasma echo may operate in an often observed
phenomena when a coronal flare above one active region triggers a new flare above
another active region. Today, having excellent solar missions, the similar studies
may open great diagnostic facilities.

19.6.2 Echo Effects in Slinkies

The solar atmosphere, in general, with its ubiquitous filamentary magnetic fields,
and well-organized coronal arcades of thin magnetic filaments, in particular, are
indeed the most natural places where the realization of Landau damping and
subsequent appearance of plasma echoes must be expected.

Elemental filaments in arcades being in highly dynamic state show not only
subtle oscillations, but also are harboring frequent microflares. These microflares,
having various intensities, often appear simultaneously in different places, i.e., sev-
eral elemental filaments far removed from each other show synchronous lighting up.

Figure 19.16 shows snapshots of the corona at four instances of time taken by
the TRACE in the Fe XII 195 line at 2 × 106 K. The upper left panel is the July
14, 2000 flare at its maximum phase (UT 10:23). In several minutes (around UT
10:31) the system of loops relaxes to well-shaped state. Note that in this stage no
threads at given resolution are yet seen. By UT 10:49 the system bifurcates into
fully developed self-organized slinky consisting of slim self-similar filaments. A
frequent sporadic brightenings appearing soon after formation of arcades (marked
by arrows) have a clear properties of both, spatial and temporal echoes. The echoes
occur continuously in various places in the system until the arcades preserve their
filamentary structures.

Time intervals between the first two brightenings and their successors follow a
pattern typical to either temporal or spatiotemporal echos. Besides, many individual
filaments produce homologous microflares, i.e., strong localized brightenings may
occur repetitively along the same elemental flux tube. It is also important that the
larger the system the longer it lives, and respectively harbors larger number of
echoes.

Another example of self-organized slinky that may used to observe the echo
effects is shown in Fig. 19.17. We have already encountered this slinky as an
exemplary evidence of post-flare self-organization (see Fig. 19.2).

Before the first major flare the system of coronal loops represents a huge chaotic
conglomerate. The flare occurred at UT 05:29 which generated a powerful CME
brought the system into a “quasi”-organized state (Fig. 19.17a). Already at this
stage, the system consists of enough filamentary structure to support series of
echoes. Recall that the energy released in the first major flare did not lead to
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Spatial Echoes

UT 10:49 UT 10:59

Fig. 19.16 Snapshots of the active region corona of 14 July, 2000 at four instances of time. The
major flare that occurred at UT 10:23 relaxes to well- shaped confined state (e.g., UT 10:31) and
by UT 10:49 bifurcates into fully developed self-organized system of thin filaments harboring
numerous microflares with the spatial and temporal echo pattern

formation of a solenoid, but has been clearly distributed between the loop system
and a powerful CME (cf. Fig. 19.2b). In other words, part of energy coming from the
first flare was not enough for the system to bifurcate into self-organized state. This
job was done by the second major flare (Fig. 19.17b). Soon after this flare the system
acquired a form of fully developed solenoid of self-organized loops and remained in
this state for many h. During the entire period of existence, the observations showed
a multiple echoes traveling back and forth along the solenoid. It must be noted again
that timescales of these events are fraction of minutes while lifetime of the entire
dynamic system may be h and days.

The observation of the systematic echoes in slinkies is quite a straightforward
matter. One only needs to observe and measure times of their occurrence and dis-
tances between different events. This makes the echo observations very promising
for development of diagnostic tools and an important addition to verify basic physics
of plasma echoes in action.
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c d

Second flare
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Fig. 19.17 Snapshots of an active region corona taken on July 30, 2005 in Fe IX/X 171 line.
Panel a shows the system of coronal loops after the first major flare which occurred at UT 05:29
(see Fig. 19.2); at this stage the system already harbors multiple echoes; at UT 06:33 a second
flare (panel b) brings the system in a long-living well-organized system with sequences of echoes
traveling back and forth along the solenoid; the series of echoes generated soon after UT 06:33
flare, propagate in both directions from the flare kernel (panel c) during the mature state of slinky,
echoes are seen all over the slinky (panel d)

19.6.3 Spatial and Temporal Recurrences in Flares

The echo effects may occur, of course, at much larger spatial and temporal scales.
These are usually characteristic of coronal flares that include all the classes, from
the weakest C-class flares to largest X-class flares. As a rule, the larger are the flares
the larger are the times between the successive flares and larger are the distances
between them.

Figure 19.18 contains additional evidence of echo occurrence in large flares.
Shown are GOES X-ray plots of 24 h duration measured during the occurrence of
two sets of recurrent flares. One was produced by the active region AR 10718 on Jan
13, 2005 (top panel) and the other by the AR 11882 on Oct 25, 2013. In both cases
we deal with the temporal echoes. The case of 13 Jan 2005 shows multiple echoes
producing C-class flares. The characteristic time interval between the repetitive
bursts is about 3 h. In case of 25 Oct 2013, the M2.9-class flare occurring at UT
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Fig. 19.18 Occurrence of temporal echoes in coronal flares illustrated by the GOES X-ray flux.
Top: Multiple echoes in a C-class flares occurring in a characteristic time interval of about 3 h
(small arrows); the recurrent flares were produced by the same active region AR 10718 on Jan 13,
2005; Bottom: The temporal echo (large arrows) in large M2.9 (UT 02:48), X1.7 (UT 08:03), and
X2.1 (UT 14:51) flares produced by the active region 11882 on Oct 25, 2013

02:48 and the X1.7 occurring at UT 08:03 with third X2.1-class flare appearing in
about 7 h (UT 14:51) show a typical pattern of the temporal echo. Note that, as
expected, the time interval between the successive flares is significantly larger in
case of a stronger X-class flares than in weaker C-class flares.

The fact that the flares show recurrence has been realized decades ago. Richard-
son (1951), classifying solar flares and their characteristics, describes the pattern in
flare occurrence which is consistent with a spatial and temporal echo phenomena.
He writes: “A region has been called “recurrent” if 5 or more distinct flares are
observed at one station in one transit time” (temporal recurrence). The analogue
of a spatial echo is presented as follows: “The question has been investigated of
whether two or more flares occur nearly simultaneously over widely separated spot
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groups more often than would be expected by chance. The number of multiple
flares observed was found to be higher than the number calculated, if they occurred
at random, from Poisson’s law.” Since then number of authors studied recurrent
flares, where the recurrent flares were called “sympathetic,” “simultaneous,” and
“homologous” (Fritzova-Svestkova et al. 1976; Cheng and Pallavicini 1987; Zhang
and Wang 2002; Wheatland and Craig 2006; Chandra et al. 2011).

The subject of solar echoes requires farther studies and development of unified
basis for their description and utilization. Using the simple relations in spatiotem-
poral echoes based on directly measurable quantities opens broad opportunities in
understanding not only flare characteristics but also their precursors and outcome.
And, again, due to the “arithmetically” simple relations between the spatial and
timescales of simultaneous and homologous flares, it must not be a distant future
when solid diagnostic tools will be developed.

Concluding this chapter it is useful to overview some key elements of its subject.
A survey of major X-ray flares shows that a complex pre-flare system of coronal
loops often, but not always, bifurcate into a long-living, well-organized system
of multithreaded loop arcades having a fundamental scale. Analyzing physical
conditions that cause or prevent this process, it was found that those flares which
bifurcate into long-living slinky arcades, and those that do not produce such
structures, have very different signatures. The most striking difference is that, in all
cases of slinky formation, the GOES high-energy proton flux becomes significantly
enhanced 10–40 h before the flare occurs. No such effect was found prior to the
“non-slinky” flares. One of the important features revealed is that post-flare coronal
slinky formation is preceded by scale-invariant structure formation in the underlying
chromosphere/transition region.

The formation of well-organized loop structures, having a fundamental scale, and
occurring subsequently at different temperatures, is consistent with a spontaneous
process of self-organization that naturally follows from general electrodynamics
of nonlinear energetically open systems. Thus, a method of an energetically open,
dissipative system, which describes coupling of the photospheric energy reservoir
with the overlying chromosphere and corona, and includes the back-reaction of
coronal activity to the underlying atmosphere, proved to be very reliable tool for
understanding a wide range of observed regularities. The set of electrodynamic
equations reduces to a single equation having the form of a Van der Pol oscillator,
which, depending on the system parameters, describes various dynamic forms of
the system evolution. This includes, in particular, two major regimes studied in
this chapter: (1) the Poincare limit cycle, when systems experience the explosive
release of energy, returning to a physically similar state in a short relaxation time;
this regime corresponds to “regular” flares that do not produce slinkies, and (2) a
spontaneous process of self-organization, characterized by scale-invariant structure
formation, usually having form of solenoidal slinkies.

The observations show a clear pattern of continuously appearing microflares
traveling back and forth throughout the body of the solenoidal system of filaments.
The timing and spatial distribution of microflares are consistent with multiple
spatial and temporal plasma echoes. The echo pattern is also a regular appearance
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in recurrent (simultaneous and homologous) flares. These observations may be
used for reliable “micro” diagnostic of physical parameters, such as electron and
ion temperatures and their anisotropies, local electric currents and velocities, and
microturbulence associated with them.

Simple relationships between the physical parameters of a system, most of which
are observable, may provide reliable diagnostic tools. The observed regularities may
serve as a long-term precursor of strong flares. Future observations of precursory
events may allow the study of the predictability of system behavior.

19.7 Problems

19.1 Using the model of two combs describe the echo effect.

19.2 Consider the basic mechanism for the temporal plasma echo in the case of
one-dimensional electrostatic perturbations in a collisionless plasma.

19.3 As discussed earlier, a solar flare in one active region will often triggers a
new flare in another active region. It has also been observed that the initial phase
of a chromospheric flares is associated with small “mottles” appearing almost
simultaneously at different places. This phenomena can be interpreted as a plasma
echo effect. Describe phenomenology of plasma-echo effect in the repetitive flare
phenomena (Erokhin et al. 1975).
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Chapter 20
Quiescent Prominences

Abstract In this chapter we shall consider dynamics of quiescent prominences.
These amazing phenomena offer excellent opportunity to study fundamental prop-
erties of various plasma instabilities, and also address to some of the most enigmatic
features of solar atmosphere. We shall combine the observational evidence and
theory to identify such instabilities as: (1) prominence cavity formation and its
evolution, associated with a screw pinch instability; (2) development of regular
series of plumes and spikes typical to the Rayleigh-Taylor (RT) instability; and
(3) the appearance of growing ripples at the prominence/corona interface, often
followed by a sudden collimated mass up- and downflows, attributed to the Kelvin-
Helmholtz instability. We shall specify the conditions for transition from a linear,
rippling mode to nonlinear stage of the KH instability, known to have an explosive
character. We show examples of a practical use of direct measurements of the
instability parameters and also briefly discuss the natural occurrence of greenhouse-
like effect under prominence body.

20.1 Background: Problem of Stability

A great astronomer and photographer Ferdinand Ellerman said: “He who has never
seen a solar prominence has missed one of the most fascinating objects in the
Heavens’.’

Quiescent prominences are clouds of cool dense plasma, suspended over a hot
rarefied plasma of corona, akin to heavy dumbbells floating in a thin air or Kellar’s
Princess Karnac beautifully levitating (Fig. 20.1).

The prominence enigma includes not only their stability, i.e., the questions
what keeps such a heavy material on top of much lighter substance of coronal
plasma and why their lifetime, reaching sometimes several solar rotations, is so
long, but the very formation of prominences and their highly dynamic behavior.
During their lifetimes, prominences show all kinds of irregular motions, changes,
and structure formations on a wide range of spatial and timescales, from small-
scale downflows and oscillatory motions to the formation of large-scale prominence
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Fig. 20.1 Miracle of power. Reprinted from http://www.loc.gov/ Credit Library of Congress

cavities, characterized by sudden disruptions of large portions of the prominence
body leading to explosive coronal mass ejections (CMEs).

Projected on the sky, the prominences appear in so many faces that people began
to call them names, like Hedgerow, Loop-kind, Twirl, Fan, etc. (Fig. 20.2). Simplest
of them were chosen to guess at least the magnetic field geometry that could support
heavy prominence material.

Extensive studies of prominences have been roughly centered on two classes
of closely related problems, their stability and disruption. Work done on the first
problem leads to general understanding of the magnetic field topology able, in
principle, to support the heavy plasma against gravity (Kippenhahn and Schlueter
1957; Kuperus and Raadu 1974; Vrsnak et al. 1988; Priest 1988; van Ballegooijen
and Martens 1990; Low 1993; Kuperus 1996), providing a basis and requirements
for improving or reconsidering prominence models. A key issue of the magnetic
field topology and a major stumbling block is the fact that the magnetic field
embodied by quiescent prominences overlies the neutral (polarity inversion) line.
Experiencing the action of photospheric shear motions, it must have a helical
structure and carry electric currents. Signs of helical structures, direct or indirect,

http://www.loc.gov/


20.1 Background: Problem of Stability 549
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Fig. 20.2 A few examples of many faces of quiescent prominences as seen at chromospheric
temperatures (∼5 × 104 K)

have been observed decades ago (Severny and Khokhlova 1953; Rothschild et al.
1955; Sakurai 1976; Tandberg-Hanssen 1995).

Severny and Khokhlova (1953) reported that one of the most prominent features
of quiescent prominences are persistent irregular motions. With frozen-in magnetic
field, this was obviously indicative of a complex magnetic field and current
topology.

Rothschild et al. (1955) directly measured motions of 47 knots on a limb
prominence. They found knots moving “downward” with an acceleration that was
much smaller than gravitational acceleration and a tendency for the acceleration to
reverse at a certain point in the trajectory. The authors cautiously concluded that this
could be explained by helical motions. They also refer to earlier findings indicating
that “accelerations are smaller than gravitational, with little or no relationship even
to the direction of gravity.”
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Rotational motions have been observed in prominences by Ohman (1972) who
also reported the possibility of “ring shaped” objects with helical motions ejected
from prominences.

Rust and Kumar (1994) re-examining the Kippenhahn-Schlueter and the
Kuperus-Raadu models conclude: “All models known to us, even those with helical
fields, rely on some initial distortion of the bordering fields. . . They predict either
normal or inverted cross-filament components, but the axial component is always
incorrect. We conclude that such models are defective’.’ They propose a model
based on observations which clearly indicated that magnetic fields have helical
nature, the mass in the filament is supplied during the emergence of helical flux
ropes, and that the prominence is lifted bodily out of the chromosphere. To further
describe the dynamics and stability of prominences, Rust and Kumar also invoked
the screw pinch instability. This provided criteria for a stable helical configuration,
determined the distribution of magnetic fields and currents, and resulted in quite a
good agreement with observations.

The problem of disruption of prominences, directly related to their stability
conditions, includes a wide range of plasma instabilities that must arise in such an
environment. To consolidate the problems of prominence equilibrium and stability
with respect to various MHD modes, Fong et al. (2001) studied prominence
equilibria with respect to pressure- and gravity-driven instabilities using ballooning
formalism and found conditions and growth rates for these instabilities. Under
prominence conditions, this formalism includes the Rayleigh-Taylor instability,
Parker instability, and any unstable modes characterized by long parallel and short
cross-field dependencies. For the time being many aspects of plasma instabilities
associated with prominence dynamics have been revealed and clarified in analytical
and numerical studies (Dolginov and Ostryakov 1980; Matsumoto et al. 1993; De
Bruyne and Hood 1993; Strauss and Longcope 1994; Magara 2001; Low and Petrie
2005; Mackay and van Ballegooijen 2009).

New data obtained from space observations (Berger et al. 2010; Ryutova et al.
2010; Xing et al. 2012; Dudík et al. 2012; Feng et al. 2013; Druckmüller et al.
2014; Carlyle et al. 2014) offer a unique opportunity to study fundamental plasma
instabilities in more detail. Here we address this problem and investigate the
occurrence and evolution of various instabilities to reveal their role in the dynamics
of quiescent prominences. Our approach is twofold. First, we use the observational
data to identify a particular kind of instability and its observed signatures. These data
allow direct measurements of spatial and temporal parameters of various events. We
then compare the measured spatiotemporal characteristics of particular event with
corresponding results given by basic plasma theory. We will see that the fundamental
plasma instabilities, expected and predicted earlier, continuously develop during the
prominence lifetime. Quantitative analysis not only allows reliable identification of
plasma instabilities, but may also be used for inference of physical parameters that
are not directly measurable.
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20.2 Large-Scale Observed Regularities

The necessary conditions for prominence formation is accumulation of opposite
polarity small-scale magnetic elements each forming unipolar ensembles with clear
boundary between the areas of their population. Such a process naturally occurs
when dispersed magnetic elements drift toward high latitudes in course of the solar
cycle evolution, and encounter the opposite polarity remnants from the previous
cycle. This is a regular process and serves as a basis for the majority of the quiescent
prominences to encircle near-polar latitudes and endure for several solar rotations.

The focal point of the observations of quiescent prominences has always been
the time when part of prominence body passes through the limb, displaying its
structure and dynamics at the best viewing angle (Fig. 20.2). Obviously, the portion
of prominence positioned at the limb and projected on the sky is only a two-
dimensional picture of small part of a huge solenoidal body of prominence.

Wrapped by 3D magnetic field and currents, the body of prominence is usually
stretched over the entire polarity inversion line. Figure 20.3 shows example of
quiescent prominence taken by the SDO at three temperatures. Lower panel is
the magnetogram showing northern high latitude part of solar surface covered by
ensembles of opposite polarity small-scale flux tubes. One can see a clear polarity
inversion line made between near pole region dominated by negative polarity
magnetic elements and southern adjusted region dominated by positive polarity
elements. Middle panel is the same area in He II 304 at 5 × 104 K. Chromosphere
shows here a huge quiescent prominence overlying entire polarity inversion line
with its beautiful limb portion on the East. Top panel is overlying corona in Fe
IX at 6.3 × 105 K. A hot corona seems to be intact by presence of prominence.
In fact, one can see darkened 171 Å emission on the disk caused by the presence
of prominence shadowing EUV emission. Usually, the prominence shadow is seen
throughout entire corona up to temperatures exceeding 107 K. This is shown in
Fig. 20.4. One can see how the prominence following exactly the polarity inversion
line blocks the hot EUV emission up to the outermost corona.

Global three-dimensional magnetic field and currents (j × B �= 0), overlying the
highly inhomogeneous photosphere with crooked polarity inversion line, acquire the
shape of quite uneven solenoid. With solar rotation a prominence projection on the
sky varies quite significantly. The shape and character of its limb portion depends
on the orientation of a solenoidal body of prominence approaching the limb.

Figure 20.5 shows a cartoon illustrating several different possibilities. If the
prominence approaches the limb with such an orientation as shown by dashed
arrows that portion of prominence will appear as hedgerow shaped. In case of the
prominence orientation as shown by a solid arrow, the limb portion will appear as a
system of loops, which may simply arched, or form the dips and rings.

Accordingly, the details of prominence behavior observed on the limb may vary
to a great degree depending on the orientation of a limb portion of prominence. The
same is true for manifestation of fundamental plasma instabilities. These limitations
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SDO AIA/HMI      1 August 2010 UT 03:30
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Fe IX 171
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Fig. 20.3 Example of quiescent prominence taken by AIA instrument in He II 304 line (middle
panel), simultaneously with underlying photosphere (lower panel) and overlying corona in Fe IX
line (upper panel). Dashed line highlights the polarity inversion line which serves as a path to a
gigantic solenoid with twisted axis and skewed body. Eastern portion of prominence projected on
the sky appears in He II 304 line as a typical loop-type prominence

however do not hinder the regularity of certain events which makes them an intrinsic
attribute of prominence dynamics.

Thus, as the prominences survive several solar rotations, experiencing permanent
changes, gaining and losing the energy, their projection on the sky may acquire
infinitely diverse, never duplicating forms. Often the prominence projection on sky
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Fig. 20.4 Note how diligently the prominence demarcates the magnetic shear between two
opposite polarity quiet regions. Red curve in the magnetogram demarcates the polarity inversion
line. The fact that the prominence shadow is seen throughout entire corona up to its highest
temperatures shows its enormous body and height
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Fig. 20.5 Cartoon illustrating different forms of the visible portion of prominence situated near
the limb. Depending on the orientation of the prominence body at the moment of time when it
passes through the limb, the observer may see either the hedgerow shape (dashed arrows), or loop
shaped prominence (solid arrow), or their combination. White star indicates the prominence cavity
filled by a hot coronal plasma

combines several named shapes simultaneously (cf. Fig. 20.2). Example of such
prominence is shown in Fig. 20.6. This is a huge prominence observed on November
30, 2006 by the Hinode. One can see a hedgerow-type body in the middle, a loop-
like system on the northern part, and twisted structures in the southern part that
overlies a hot corona represented by black “cavities” under the prominence body.
These are marked by white stars. To distinguish these “cavities,” i.e., hollow space
under prominence body filled by a hot coronal plasma from coronal cavities which
are usually understood as a coronal voids above the prominences, we shall call them
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Fig. 20.6 Limb portion of prominence at N 50◦ latitude, observed on November 30, 2006 showing
a complex twisted form which has a loop-like system on the northern part, a hedgerow-type body
in the middle, and twisted structures in the southern part. White stars indicate location of a hot
prominence cavities filled by coronal plasma

prominence cavities or just cavities. It is important to bare in mind that plasma in
these cavities is at coronal temperatures and has much lower densities than those in
the prominence body.

To demonstrate some basic properties of quiescent prominences, we use the data
sets for six prominences taken with the SOT instrument on Hinode. The images are
taken with 10–30 s cadence with the spatial resolution corresponding to a pixel size
of 0”.16 in Hα, and 0”.108 in Ca II H line. The advanced procedures were used to
highly improve the row data (Berger et al. 2008, 2010; Ryutova et al. 2010).

Data were compiled in movies to study temporal variation of chosen events.
Duration of the observation usually exceeded 4 h, that allowed to study both, slow
processes and short-living events including their possible long-term recurrences.
There were found several persistent features that occur at different stages of the
prominence evolution and that are common for all the chosen cases. Here we discuss
three classes of events.

I. Formation of large-scale arch-shaped prominence cavities expanding up to 30–
50 Mm, and lifting the body of prominence to these heights and beyond. Interior
of growing cavity consists of coronal material, and may be characterized as
growing hot bulbs under the prominence body. Observed regularities in growth
and collapse of such cavities can be well understood as a result of screw pinch
instability in their early phase of formation (Sakurai 1976; Rust and Kumar
1994), and as a cavity dynamics under the influence of gravity and magnetic
field during their further evolution.

II. Development of a regular series of plumes and spikes seen at any moment
of time at any possible orientation of a limb portion of prominence. This
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ubiquitous phenomena have all the attributes of Rayleigh-Taylor (RT) insta-
bility (Rayleigh 1883; Taylor 1950; Chandrasekhar 1981). Using the above-
mentioned data sets allowed for the first time to identify several branches
of RT instability, and measure their spatiotemporal characteristics. These are:
(a) Single mode regime which in its nonlinear stage may produce jets or be
stabilized by formation of a mushroom cap analogous to explosive instability;
(b) Multimode regime characterized by formation of regular series of plumes
and spikes; (c) Two plume competition. Hinode data allowed also to verify the
influence of magnetic field on the RT instability.

III. Development of growing ripples at the lower prominence/corona interface often
followed by a sudden appearance of a collimated mass upflows, which can be
attributed to the Kelvin-Helmholtz (KH) instability; high cadence data have
provided the means to determine conditions for transition of a linear phase
(rippling mode) to nonlinear stage of KH instability which is known to have
an explosive character.

20.3 Formation of Prominence Cavity and Helical Structures

Formation of cavities under prominence body filled by the coronal plasma is an
integral part of the 3D helical structure of the prominence and its evolution. It is
only natural to expect that quiescent prominences stretched below the polar cap
are indeed supported by solenoidal magnetic field composed of a thin arcades
formed over the opposite polarity small scale magnetic fragments dispersed at high
latitudes.

Uneven distribution of magnetic elements provides quite uneven shape of
magnetic solenoid. This, on the other hand, causes various shapes of the limb
portion of prominence. In most cases, i.e., almost at any orientation of a limb
portion of prominence, cavity formation is a regular phenomenon. Their dynamics
and lifetime, however, may be very different. This is determined by the set of
local physical parameters. The very fact of a cavity formation, however, is a
natural consequence of a solenoidal shape of a twisted prominence body, which,
as mentioned above, approaching the limb may appear in various shapes.

In Chap. 17 we have already used the basic property of magnetized plasma
associated with Kruskal-Shafranov law (Shafranov 1956; Kruskal and Kulsrud
1958; Kadomtsev 1966). According to this law long magnetic field configurations
having low aspect ratio, i.e., with radius of a magnetic tube being much smaller
than its length, are intrinsically unstable unless they wind into a helical shape with
nonzero field-aligned current. Accordingly, screw-pinch configuration acquired by
long magnetic filament is dynamically stable if a pitch angle of a kinked helical
structure, θ = Bφ/Bz, is such that the safety factor; see (17.1)–(17.3),

q ≡ h/L < 1 (20.1)
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Here L is the length of the structure, and h is the pitch, i.e., a distance in which the
field line at running radius R makes one revolution around the axis of filament:

h(R) ≡ 2πR

tanθ
= 2πRBz

Bφ

(20.2)

It is important to note that Kruskal-Shafranov condition and Eqs. (20.1) and (20.2)
hold on wide range of scales from the Tokamak devices and penumbral filaments to
a huge body of prominence. For high latitude quiescent prominences safety factor is
always less than unity, i.e., condition for long magnetic configuration to acquire
the skewed shape and remain in it is always satisfied. This explains longevity
of quiescent prominences. If, however, structure becomes short, i.e., the aspect
ratio R/L increases, or Bφ weakens, safety factor approaches unity, q � 1, and
the prominence loses its global stability. This may occur if the prominence body
brakes, which may be caused by disappearance of underlying photospheric magnetic
elements, served as roots of given portion of prominence. Or, by some reason, the
radius of structure (or large part of prominence) increases and reaches a critical
point. Global shape of quiescent prominences as a skewed helical solenoid has been
captured as early as in 1950s (Severny and Khokhlova 1953; Rothschild et al. 1955).

Sakurai (1976) has measured transverse and line of sight velocity distribution
in the prominence observed on 30 August 1971 (Fig. 20.7). These measurements
clearly showed a three-dimensional helical structure of prominence body.

Prominence cavity

Fig. 20.7 Velocity distribution in the prominence of August 30, 1971 in its remnant loop-system
phase. Unit is km s−1 and arrows indicate the direction of transverse velocities. This distribution of
velocities suggests a three-dimensional helical structure of the prominence. Reprinted from Sakurai
(1976) by permission of Oxford University Press/on behalf of the PASJ
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Especially prominent signs were seen near the top of the prominence where
the upper part exhibited red shifts, while the lower part exhibited violet shifts.
He also observed large-scale ascending motions of prominences and, making a
direct connection between the ascending motion and rotational motions, inter-
preted them unilaterally as a result of a screw-pinch instability. In particular, to
explain the observed ascending motion of the semi-spherical cavity and its growth,
he performed numerical analysis and found a good qualitative agreement with
observations. Quantitatively, the range of physical parameters was found also very
reasonable.

For illustrative purposes we show some results of Sakurai’s numerical calcu-
lations in Fig. 20.8, which contains examples of three values of a safety factor,
q = 0.08; 0.14; 0.31. The unit of time is R/vA. As expected, the growth of cavity
formed by the skewed kink depends on the safety factor, q: a smaller safety factor
corresponds to a longer lifetime of the cavity, and respectively the kink may reach
higher altitudes.

To address the problem of prominence dynamics and structure formation using
high resolution observations, we choose here several exemplary prominences. Some
of them are shown in Fig. 20.9. During the observations (of about 5–6 h), each
prominence showed various types of cavities, from long-living cavities that reach
significant heights (Fig. 20.9 panels a, c, d), to very low lying shallow cavities (panel
b). Recall also a huge prominence shown in Fig. 20.6 with series of cavities under
its stretched body (marked by white stars).

Despite quite different spatial and temporal characteristics, the dynamics of each
cavity’s growth and collapse obey simple laws imposed by screw pinch dynamics,
providing solid ground for solenoidal helical structures. Note how prominent is a
filamentary structure of prominence in all shown cases.

20.3.1 The Case of the August 16 2007 Prominence

In order to follow typical regularities seen in all studied cases, we consider the
detailed dynamics of the cavity formation and evolution observed on August 16,
2007 prominence. The duration of the observation was about 6 h, cadence 25 s.

Figure 20.10 shows the location of the cavity formation at six intervals. The first
panel at UT 16:16 shows the growth phase of the prominence, already noticeable at
the beginning of the observation at UT 16:04. The cavity retained its semi-spherical
shape as it grew (panel b), until about UT 18:50 when small scale ripples started
to appear at the western edge of the prominence/cavity boundary (arrow on panel c
shows already well-developed ripples). These quite regular ripples turned out to be
an unstable mode that evolved into growing disturbances, resulting in an explosive
collapse of the cavity. A full-scale avalanche and collapse of the cavity is shown in
panel d. Within about 80 min, a new cavity started to form in about the same area
(panel e). Panel f shows the new cavity in its mature phase. The dynamics of new
cavity was amazingly similar to its predecessor’s behavior.
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Fig. 20.8 Computed motion of magnetic flux tube with a uniform pinch and no gravity force. The
top panel shows a portion of flux tube in the initial time, t0. The growth of a kinked helical structure
depends on the safety factor, q. A smaller safety factor corresponds to a higher tip of the kinked
flux tube (i.e., to a larger cavity). tf is the time when the cavity stops growing. The unit of time
R/vA. Reprinted from Sakurai (1976) by permission of Oxford University Press/on behalf of the
PASJ

To study the temporal variability of the cavity, as a first step, we measure the
velocity of a tip of the cavity using the space-time procedure. Figure 20.11 shows
August 16, 2007 cavity in its well-developed stage. The red line in panel a is the path
and direction of a cut. The lower panel b shows space-time image of the motion
of the cavity apex. The cavity grew almost linearly during the first 2 h and then
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29 Sep 2008 Ca H
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Fig. 20.9 Snapshots of exemplary prominences with various bubble/cavity formations. (a) Limb
portion of the 25 April 2007 prominence located at the West limb, S 36◦; to the south of the well-
defined cavity (red arrow) there is another cavity hindered by the frontal hedgerow part of the
prominence body (blue arrow); (b) Small cavity on the East limb, N 49◦ having a much shorter
lifetime due to the sudden development of an explosive instability; (c) Highly dynamic cavity
having an almost circular shape observed on 29 September 2008 at the West limb, N 56◦; (d)
Long-lived, “classical” recurring cavity, observed on 16 August 2008 at the West limb, N 54◦

started to accelerate. The dotted line corresponds to UT 17:47, the moment when
quasilinear growth of the cavity moves into a nonlinear regime.

At about UT 18:48 the height of the cavity apex reaches a maximum and the
cavity collapses. In other words, when a semi-spherical cavity with growing radius,
R, reaches its maximum, Rmax, and its velocity reaches the so-called terminal
velocity, Ṙterm, the cavity quickly collapses. The velocity of the ascending motion in
the linear regime is v1 � 2.1 km s−1, average velocity during the acceleration phase
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52.4 Mm

Fig. 20.10 Classical example of cavity formation, dynamics and recurrences, observed on 16
August 2007. The duration of the observation was about 6 h, cadence 25 s. Meaning of images
shown in panels from a through f is explained in text

is v2 � 15 km s−1, and collapsing velocity is v3 � −25.6 km s−1. As mentioned
above, about 90 min after the total collapse a new cavity started to form at the same
place (see Fig. 20.10e, f). Recurrence of cavities is quite common and, as we will
see below, has a natural explanation.
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Fig. 20.11 Dynamics of a 16 August 2007 long-lived cavity: (a) Snapshot of a well-developed
stage just before a linear growth of cavity turned into the accelerated phase; (b) Space-time image
of the motion of the cavity apex. Dotted line corresponds to UT 17:47, the start of acceleration.
Velocity of ascending motion is v1 � 2.1 km s−1, average velocity during the acceleration phase is
v2 � 15 km s−1, and collapsing velocity is v3 � −25.6 km s−1

20.3.2 Phenomenology of Cavity Formation

To describe the later stages of an already established semi-spherical cavity and
its unsteady motions, we need to consider gravitational forces, nonlinearity, and
dissipative effects. Since the semi-spherical shape of the cavity is persistent, even
during unsteady motion, it may be described in terms of the Rayleigh-Plesset
equation (Rayleigh 1917; Plesset 1949).
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The Rayleigh-Plesset equation is the most common nonlinear equation describ-
ing the cavitation and bubble dynamics in diverse media including hydrodynamics,
laboratory and space plasmas, nuclear reactions and biology. It follows from
the compressible Navier-Stokes equations and, being universal, is applicable to
various types of cavities, from spherical and semi-spherical bubbles to cavities of
very different forms, requiring only minor adjustments mainly related to system
parameters (Brennen 1995; Franc and Michel 2004).

Modified for magnetized plasma the Rayleigh-Plesset equation reads as follows:

RR̈ + 3

2
Ṙ2 = gR − 2σ

ρR
− 4ν

R
Ṙ, (20.3)

here R is variable radius of cavity (Fig. 20.12a), ρ is the density of the prominence
plasma, σ is the surface tension dominated by the magnetic field, σ � (B2/8π2)hq ,
and ν = η/ρ is the viscosity. As earlier, h is the pitch and q is the safety factor.
Together they represent a combination of poloidal and toroidal components of
magnetic field and the aspect ratio of a solenoidal structure, (20.1) and (20.2).

To see the meaning of the terms in (20.3) as they stand in the Navier-Stokes
equation, one can multiply it by a factor ρ/R:

ρR̈ + 3

2
ρ

Ṙ2

R
= ρg − 2σ

R2 − 4ρν

R2 Ṙ, (20.4)

it is now evident that the two terms on the left-hand side represent acceleration
and inertia, and the three terms on the right-hand side are the gravity force, surface
tension, and viscous forces, respectively.

Neglecting the viscosity and using the identity,

RR̈ + 3

2
Ṙ2 ≡ 1

2

1

R2Ṙ

d

dt
(R3Ṙ2), (20.5)

(20.3) reduces to a directly integrable form:

d

dt
(R3Ṙ2) = 1

2
g

dR4

dt
− 2σ

ρ

dR2

dt
, (20.6)

or

R3Ṙ2 = 1

2
gR4 − 2σ

ρ
R2 + const (20.7)

The integration constant is determined by the initial conditions of the cavity
provided by the initial screw pinch configuration and corresponding safety factor.

Equation (20.7) can be further integrated to obtain R(t). Plots of R(t) for two
values of safety factor, q = 0.12 and q = 0.14 are shown in Fig. 20.12b.
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Fig. 20.12 (a) Sketch of the kinked shape of a solenoidal prominence; (b) Solution of the
Rayleigh-Plesset equation for the prominence Parameters. R is the radius of a semi-spherical
cavity, q is the safety factor

It is important to emphasize that one can estimate the minimum radius of a cavity,
Rmin, necessary for the cavity to grow. The point is that the appearance of kinks is
an integral part of the dynamics of the prominence body but, in order to survive and
grow the initial radius must be above some critical value, Rmin � √

σ/ρg. Taking,
e.g., B = 6 G, h = 20 Mm, q = 0.12, ρ = 8.5 × 10−14 g cm−3, we get vA =
58 km s−1, and Rmin � 2.17 Mm. Using the plot corresponding to q = 0.12 we see
that a cavity with an initial radius of 2.17 Mm would reach terminal velocity and a
maximum radius of 17.36 Mm in about 3 h, which agrees well with the measured
parameters of August 16, 2007 cavity dynamics.

Note that the presence of d2R(t)/dt2 in (20.3) is responsible for the recurrent
nature of cavity formation.
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20.4 Regular Series of Plumes: Multimode Regime of
Rayleigh-Taylor Instability

The Rayleigh-Taylor (RT) instability develops when two fluids of different densities
accelerating toward each other come into contact (Rayleigh 1883; Taylor 1950). The
exemplary case is when a heavy substance with mass density ρH lies in a gravity
field over a lighter substance with ρL < ρH . The interface between the two media
becomes unstable with respect to perturbation with a wave vector k = 2π/λ, such
that the growth rate of the instability is

ν =
√

gk

[

A − kσ

g(ρH + ρL)

]

(20.8)

Here σ is the surface tension, and A is the Atwood number:

A = ρH − ρL

ρH + ρL

(20.9)

The RT instability is ubiquitous in a wide range of media from the Earth’s
atmosphere and soil to laboratory and space plasmas. It is especially evident in
quiescent prominences.

The specifics of the RT instability in prominences as in magnetized plasmas are
influenced by supporting three-dimensional magnetic fields. Magnetic field effects
can be briefly described as follows (Chandrasekhar 1981):

I. The magnetic field parallel to gravity (B||g) has different effects on long and
short wavelengths. Long wavelengths are unaffected. The growth rate is

ν = √Agk (20.10)

Short wavelengths are restricted by the following growth rate:

ν = (g/VA)[√ρH/(ρH + ρL) −√ρL/(ρH + ρL)] (20.11)

II. The magnetic field transverse to gravity (B ⊥ g) has a strong effect on the RT
instability and may well stabilize it. The growth rate is as follows:

ν2 = gk

[
ρH − ρL

ρH + ρL

− B2k2
x

2π(ρH + ρL)gk

]

, k2 = k2
x + k2

y (20.12)

In this case, the magnetic field creates a “surface tension” and limits the
instability (ν2 > 0) at a critical wavelength, λc:

λ2
c = B2

g(ρH − ρL)
cosθ (20.13)
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where θ is the inclination of the wave vector k(kx, ky) to the direction of B,
kx = kcosθ , ky = ksinθ . Note that the orientation of the x, y plane was chosen
in such a way that the uniform magnetic field be along the x-axis (Chandrasekhar
1981).

Thus, perturbations with wavelengths λ < λc are stable with respect to the RT
instability. Instability on a scale L parallel to the field thus requires that magnetic
field be below some critical value:

B < Bc ≡ √Lg(ρH − ρL)/cosθ (20.14)

A magnetic field component stronger than Bc that is transverse to gravity suppresses
the RT instability. This fact is very useful to estimate the magnetic field in cases
when the RT instability is fully developed.

Depending on system parameters, the instability may evolve in several branches,
most typically in a multimode regime where the interface between the heavy
and light components breaks into a series of plumes and spikes separated by the
characteristic wavelength. Examples of a multimode regime are shown in Fig. 20.13
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Fig. 20.13 Examples of Rayleigh-Taylor instability with necessary attributes: self-similarity of
plumes in family, similarity of the wavelength/height ratio in different families. Inset in last
panel shows a way to directly measure the growth rate from observations. Meaning and notations
presented in panels a through d are explained in text
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(see also Fig. 20.14 below). One can see that all of the necessary features of a
classical RT instability are in place:

1. A multimode front (seen in all four panels, a–d in Fig. 20.13 and marked by
arrays of small arrows);

2. Self-similarity of plumes in one family;
3. Similarity ratio of wavelength/height in different families (i.e., larger wavelength,

higher plumes);
4. Suppression of the regular oscillations of filaments comprising the prominence

(see Fig. 20.14).

20.4.1 Practical Use

The universality of the RT instability in prominences allows direct comparison of
observations and theory. The most reliable parameter is the growth rate. The height
of the plume during its linear and quasilinear growth changes with time as

h(t) = h0exp[−νobs(t − t0)] (20.15)
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Fig. 20.14 Effect of Rayleigh-Taylor instability on regular oscillatory motions of filaments
comprising prominences. (a) Sept. 2008 prominence with space-time cuts. (b), (c) Cuts 1 and 2
show a regular oscillatory pattern seen in all observed prominences. (d), (e) Cuts 3 and 4 show the
region where the RT instability broke into plumes (array of small arrows) and destroyed the regular
oscillatory pattern (curved arrow)
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Measuring the heights of the plume, hi , at an arbitrary times, ti , one finds the growth
rate:

νobs = 1

t2 − t1
ln(h2/h1) (20.16)

The inset in Fig. 20.13 illustrates this simple procedure. High cadence data easily
allow to measure dozens of (hi , ti ) pairs in each family of plumes and accurately
calculate growth rates.

The beauty of this procedure is that one can do these measurements many
times during the lifetime of a regular array of finger-like plumes, and compare
the calculated growth rates. As a result, one may easily find when the linear or
quasilinear regime ends and the system goes to a weak nonlinear regime. This
happens when the growth rate, being quite constant during the linear regime, starts
to change. If a strong nonlinear regime develops, this will correspond to turbulence
in the medium and the disappearance of the vertical, finger-like structures from the
plasma.

In order to compare the measured value of νobs with the theoretical growth rate,
one can use (20.12) written in the form

νth =
√

2πg

λ
A

[

1 − B2cos2θ

(ρH − ρL)gλ

]

(20.17)

where the magnetic field is perpendicular to the gravity force. It is important to note
that νth itself contains directly measurable parameters, primarily the wavelength, λ.
Also, the Atwood number, A, can be quite accurately estimated as it only varies
between 0.8–0.96.

Consider two examples shown in Fig. 20.13a, b. Empirical measurements for case
1 give ν1 = 8.06 × 10−3 s−1 and for case 2 ν2 = 6.07 × 10−3 s−1. For theoretical
estimates, we take ρH = 8.5×10−14 g cm−3, ρL = 1.7×10−15 g cm−3, |B| = 6 G,
and θ = 85◦; then, for λ1 = 1.2 Mm, νth � 9.2 × 10−3 s−1, and for λ2 = 1.8 Mm,
νth � 7.5 × 10−3 s−1, which are in good agreement with the measured values.

Note that, as measurements of the growth rate are simple and reliable, compari-
son of νobs and νth may be used to infer magnetic field and its direction.

The relationship between the RT plumes and the regular oscillatory pattern
observed in the body of a prominence can also be used for quantitative analysis.
This approach has a wide and very rich applications for prominence studies. Here we
only demonstrate the relationship between the RT plumes and the regular oscillatory
pattern. Figure 20.14 shows a typical example, represented by a prominence
observed on September 29, 2008 (panel a). Panels b and c and the lower parts of
panels d and e show typical oscillations of thin filaments comprising the prominence
body.

Prominences with a large projection on the sky show filament oscillations in
a wide range of frequencies. In this particular example periods are as follows:
T1 � 380 s (panel b), T2 � 680 s (panel c), and T3 � 1040 s (panels d and e).
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Note that in all cases, the period of oscillations in one “neighborhood” is nearly
constant reflecting more or less uniform physical conditions in a given area (arrows
1, 2, 3). The last two panels show the effect of the RT instability on the long-
lasting oscillations of the filamentary medium: the appearance of RT plumes quickly
destroys the regular oscillatory pattern (curved arrow in panel e).

20.5 Fast-Growing Plumes: Nonlinear Regime

The Kelvin-Helmholtz (KH) instability develops in the presence of shear flows at the
interface of two media with different densities and has several branches depending
on the dispersion, dissipation, and other physical parameters of the medium (see
Chap. 5). Obviously, the highly dynamic cavity/prominence interface as border line
between two very different media must be a subject of shear flows and thus various
instabilities. The cavity/prominence interface therefore is a natural place to expect,
in particular, a manifestation of the KH instability. The most readily excitable mode
that may lead to a KH instability is a kink mode, m = ±1. The corresponding
dispersion relation in presence of shear flows with velocity u has a form:

D(ω, k) ≡ ω± − k

1 + η

[

u ±
√

η[(1 + η)v2
A − u2]

]

= 0 (20.18)

Here η = ρL/ρH , with indices L and H indicating “light” and “heavy” plasmas.
Note that in the corona, the scale height is Λ ≥ 50 Mm and the linear amplitude of
oscillations is �0.5–1 Mm. This means that the effect of gravity is negligible.

A gross, linear KH instability, when the square root term in the dispersion
relation (20.18) becomes imaginary, requires super-Alfv’enic shear flows:

u > u(2)
c = vA

√
1 + η (20.19)

A much more dangerous branch of the KH instability produces negative energy
waves (see Chap. 5). NEWs occur when the system is stable with respect to a
linear KH instability, i.e., at sub-Alfv’enic velocities when u < vA

√
1 + η, but

∂D/∂ω < 0. In this case, the energy of kinked perturbations becomes negative and
the damping rate turns into a growth rate.

Indeed, the energy density of kink perturbations in the presence of flows has a
form:

W = 1

2
ρHζ 2k2

[

(1 + η)
ω2

k2 + ηv2
A − u2

]
v2 ± uv

1 + η
(20.20)

where ζ is the amplitude of perturbations. For convenience, we have defined

v =
√

η[(1 + η)v2
A − u2]. Substituting the expression ω2/k2 from the dispersion
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relation into this equation and taking the lower sign, i.e., considering the case when
the system is stable with respect to the linear KH instability, we have:

W = ρH ζ 2k2(ηv2
A − u2)

v

v + u
(20.21)

Obviously, the energy of the wave becomes negative as soon as u > vA
√

η; thus,
the interval of shear flow velocities, vA

√
η < u < vA

√
1 + η, corresponds to a

branch of NEWs that are subject to explosive growth (Ryutova 1988).
Recall that the most remarkable property of NEWs is that the action of any

dissipative mechanism which provides an energy loss leads to growth of their
amplitudes (Coppi et al. 1969; Ryutova 1988, 2006). In this regime, any dissipative
effects turn linear perturbations into explosively growing disturbances. In a few
inverse growth rates of explosive instability, higher nonlinear effects are initiated
and provide stability. This competition often leads to the formation of a classical
mushroom cap.

20.5.1 Mushroom Formation

An example of this regime is shown in Hinode Hα data of the August 8,
2007 prominence (Fig. 20.15). The perturbed cavity/prominence boundary shows
a regular rippling mode that lasts over 3 min. In general, the duration of the linear
regime is arbitrary and may last much longer. In this particular case at about UT
20:02:33, a strong distortion of the interface appears. The distortion starts to grow
while still remaining close to the quasilinear regime. At UT 20:03:04, enhanced
disturbances become dominant, suppressing the rippling mode (shown by arrows a

20:01:4420:01:13

2.
8 

M
m

20:03:04

a

b
a

20:07:33

Hinode  H        8 August 2007α

Fig. 20.15 Growth of ripples into explosively growing disturbances and their stabilization phase
taking a typical mushroom form
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and b in Fig. 20.15). Just before UT 20:06:04, slowly growing disturbances show
explosive growth and, in about 90 s, acquires a mushroom form, typical to the
explosive phase of the KH instability (UT 20:07:33).

The growth rate of the explosive instability is (Ryutova 1988, 2006):

νexpl � α
ν̃ei

ln(|W |/|W0|) (20.22)

where α is a parameter of the order of unity, α(T , l, n) � 1, and ν̃ie = (me/mp)νie

is the inverse slowing-down time of particles via electron-ion collisions. For T =
106 K, and n = 5 × 1010 cm−3, ν̃ie = 2.7 × 10−2 s−1. The logarithmic energy
increase may be estimated by measuring the initial (linear) and final (explosive)
amplitudes of the perturbation: ln(|W |/|W0|) � ln(ζ 2/ζ 2

0 ) (cf. Eq. (20.21)). For
our chosen example, ζ0 � 0.5 Mm (Fig. 20.15, UT 20:01:44), ζ � 2.2 Mm (UT
20:07:33). This gives:

νexpl � 9.07 × 10−3 s−1, (20.23)

and the characteristic time of the explosive growth of a single plume acquiring e-
times amplitude is 110 s, very close to the observed times in general and to the
measured time of August 8, 2007 explosive event, in particular. We can also estimate
ranges of shear velocities leading to the development of the explosive phase:

vA
√

η < u < vA

√
1 + η (20.24)

With nL = 5 × 1010 cm−3, nH = 109 cm−3, η = nL/nH = 0.02, and for magnetic
field values such that B = 4; 6; 10 G, vA = 39; 58.6; 97.7 km s−1, we find at any
u

(1)
c = vA

√
η = 5.5, 8.3, 13.8 km s−1, rippling modes are subject to the explosive

branch of the KH instability.
One must bear in mind that there are several important differences between

the KH (both linear and explosive branches) and RT instabilities. The main
feature of the RT instability is the development of a series of self-similar plumes,
characterized by the specific wavelength, that corresponds to the distance between
family “members.” The KH instability, especially in its nonlinear explosive phase is
characterized by the dominance of a single plume, breaking through the prominence
body. Another typical example of this is shown in Fig. 20.16.

The growth rates of such single disturbances, as well as their dimensions,
significantly exceed those formed by the RT instability. Their energy content as
well is much higher than the energy content of individual plumes in the RT case. We
believe that under some extreme conditions, an explosive phase of the KH instability
may be responsible for triggering CMEs associated with quiescent prominences.

It is important that the observation of prominence dynamics offers one of the
most efficient and reliable diagnostic tools. This is provided by the fact that the
details of the prominence dynamics is easy to distinguish and analyze them, using
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 01:26:06

01:42:15 01:56:09

 01:31:46

Hinode  Ca H                                            30 Nov 2006

Fig. 20.16 One of the 30-Nov-2006 prominence cavities, partially blocked by the bright gable
(shown by thick yellow arrows). The linear growth of a single plume lasted over 10 min. At about
UT 01:40:06, it started to accelerate taking the form of a post-explosion mushroom cap (denoted
by red arrows)

directly measurable parameters. It is interesting that determination of prominence
plasma β from the dynamics of plumes is also possible (Hill et al. 2012).

20.5.2 Bubble Competition

Neighboring bubbles being at close vicinity must inevitably interact. Competition
between the neighboring bubbles is natural process and can also serve as a
diagnostic tool. Example of such an event is shown in Fig. 20.17. One can see in
fact three neighboring bubbles, but their life history shows that interaction between
two of them (marked by solid arrows, 1 and 2) turns out to be dominant and
eventually destroys the lower bubble (marked by dashed arrow, 3). The measured
(average) velocities of bubbles 1 and 2 are, respectively, u(1) � 5.1 km s−1 and
u(2) � 14.8 km s−1. The merging tome, τ = 5 min 54 s.
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19.2 Mm

4
3

.9
 M

m

01:19:35 01:22:1501:20:05 01:25:29

Hinode Ca H        3 October 2007

Fig. 20.17 Two bubble competition captured by Hinode on 3 September 2007. Bubbles 1 and 2
eventually merge destroying the third neighbor bubble 3. See details in text

Theoretical merger time is

τmerg = Δu

0.1Ag
(20.25)

where Δu is the velocity difference of the neighboring bubbles, A is an Atwood
number (20.9), and g is the gravitational constant. Using measured difference of
velocities, Δu = 9.7 km s−1, for A = 0.9, we get for the merging time τ = 6 min
33 s which is reasonably close to observed time.

20.6 Greenhouse-Like Effect

Unlike previous observations limited by the two-dimensional view of the promi-
nence projection on the sky, new space missions opened the opportunity to observe
the central portion of prominence body, located on the disk, in high resolution and
contrast. These observations give unprecedented information on the prominence
nature and dynamics.

Figure 20.18 shows the prominence body stretched across the disk at two
instances of time: in its initial raising phase at UT 06:50:03 (top), and at UT
08:46:03, when prominence material is high enough to create a huge cavity
underneath (bottom, dotted area, see also Fig. 20.3). Formation of cavities under
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Fig. 20.18 Snapshots of 1 August 2010 prominence at two instances of time: in its initial raising
phase at UT 06:50:03 (top), and at UT 08:46:03, when prominence material is high enough to
create a huge cavity underneath (bottom, dotted area)

the prominence body filled by the coronal plasma is an integral part of the three-
dimensional helical structure of the prominence.

To reveal the true helical structure of the prominence body, it is useful to make a
difference movie subtracting images taken at different time intervals. Figure 20.19
shows examples extracted from the movie made in the AIA 171 Å with 120 s
difference between the consequent images. The fragments of two snapshots are
shown at UT 08:14:13 and UT 08:54:13. At UT 08:14:13 the prominence has been
already lifted high enough to leave underneath a well-developed cavity.

Strongly curved prominence body clearly shows a well-preserved three-
dimensional helical structure. Raising higher, the prominence solenoid grows
further with enhanced twist of its solenoidal body (cf. a sketch shown in
Fig. 20.12a).

At about UT 11:38:13 the prominence disappears from 171 wavelength
(Fig. 20.20 bottom), which means that plasma with temperatures around 6.3×105 K
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UT 08:14 UT 08:54

AIA Fe IX 171  120 s Difference Snapshots

Fig. 20.19 Three-dimensional picture of the prominence clearly exhibiting a solenoidal filamen-
tary structure. The snapshots are obtained from AIA 171 Å movie made with 120 s difference
between the consequent frames

is replaced by the plasma having much higher temperatures. This is seen in
the top panel of Fig. 20.20. Here, in a huge cavity left behind, the plasma,
concentrated under the prominence body, has the temperature in the range of
1.26 × 106 − 2 × 107 K. Thus, the prominence body covering the cavity works as a
lid over the boiling substance.

In other words, when the space where cavity is formed gets quickly filled by the
surrounding coronal plasma, the prominence body acting as a lid, and producing the
effect similar to greenhouse effect, leads to significant increase of the temperature
of the captured plasma. Note that a compact coronal loop arcades overlying the
polarity inversion line (black dashed line in Fig. 20.18) are clearly seen in whole
range of temperatures from 6.5 × 105 to 1.26 × 106–2 × 107 K.

Concluding this chapter we note again that high-resolution and high cadence
data from satellites allow to study the dynamics of quiescent prominences and,
in particular, to identify manifestation of fundamental plasma instabilities. Data
compiled in movies of several hours duration show both slow processes and short-
lived events and their possible long-term recurrences. Many processes occurring at
different stages of prominence evolution are found to be common for all studied
cases. Having universal character, these processes can be related to fundamental
plasma instabilities. One can combine the observational evidence and theory to
identify these instabilities and perform quantitative analysis.

A fundamental puzzle associated with the dynamic stability of quiescent promi-
nences suspended in rarefied coronal plasma seems to be only natural occurrence.
If we consider, however, only the part of the prominence projected on the sky when
observed at the limb, this puzzle can hardly be solved. On the other hand, if we
look at the problem as being part of the global structure of the prominence body
stretched along the entire latitude over the polarity inversion line, we immediately
come to a simple solution. Indeed, in accordance with well-known facts from basic
plasma physics, a three-dimensional magnetic field configurations with small aspect
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AIA 171
6.3 10   K

AIA 171
1.26 10   −  2 10   K

6 7

5

1 August 2010 UT 11:38:13

Fig. 20.20 Greenhouse-like effect: A curved prominence body moving upward (white dashed
curves) leaves behind a cavity which is quickly filled by the surrounding coronal plasma. But
the prominence body acts as a lid to captured plasma whose temperature quickly raises. Top panel
shows a million degree plasma under cavity (read lines), while cooler, 171 Å plasma fills the entire
disk more or less evenly (bottom). Black dashed line is a polarity inversion line. The white dashed
line shows earlier location of lifted prominence

ratios (R/L � 1) are intrinsically unstable with respect to screw pinch instabilities,
and, to survive, must wind into a helical shape with pitch angle determined by the
aspect ratio, and magnetic field components.

Once the helical shape is acquired, the screw pinch configuration is dynamically
stable and long-lived as long as a safety factor q < 1. Most importantly, a skewed
helical structure in a gravitational field is subject to kinking. The process of skewing
leads to formation of prominence cavities under the prominence body which are
quickly filled by hot coronal plasma. This creates the illusion of levitation of a heavy
prominence material above the rarefied coronal plasma. In other words, formation
of kinks observed as under-prominence cavity formation is only natural occurrence.
The maximum height of a kink is, again, determined by a safety factor: the smaller
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the safety factor, the “taller” the kink grows. Note this process does not contradict
previous models of prominences based on arcades of three-dimensional magnetic
field supporting prominence material.

Process of cavity formation and raising motion of prominence body is also asso-
ciated with phenomenon similar to greenhouse effect: when the space where cavity
is formed gets quickly filled by the surrounding coronal plasma, the prominence
body “sitting” over the cavity holds additional energy coming from below acting as
a stopper and leading to further increase of the temperature of underlying, already
hot plasma.

20.7 Problems

20.1 Derive Rayleigh-Plesset equation for spherical bubble pulsating in the field
of sound. Consider the case of an incompressible fluid. Use the bubble radius R(t)

as the dynamic parameter. The temperature and pressure far from the bubble being
T∞ and p∞(t). The fluid temperature, density, ρL. and the dynamic viscosity, μL

are assumed to be constant. The temperature, TB(t), and pressure, pB(t), within the
bubble are uniform (Brennen 1995).

20.2 Consider an analogy between the prominence levitating over much hotter
coronal plasma and the liquid droplets levitating on their own vapor over extremely
hot surface (Leidenfrost drops).
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Chapter 21
Laboratory Experiments Scaled to Solar
and Space Plasmas

Abstract Modern experimental facilities with their precision diagnostic tools and
ability to accurately control the system parameters may be used to mimic various
astrophysical processes and applying high repetitive rate, change parameters of a
system, and identify missing elements in physics of studied phenomena. In order to
apply laboratory results to astrophysical phenomena one needs to satisfy similarity
criteria (Ryutov et al., Plasma Phys Control Fusion 54:105021, 2012). In this
chapter we first describe the MHD type similarities and then briefly discuss several
exemplary experiments, such as studies of magnetically driven plasma jets, bow
shocks, magnetic field generation and self-organization, instabilities, and formation
of solar tadpoles. The main goal of this chapter is to bring attention of solar
physicists to excellent results obtained in laboratory astrophysics and, using simple
scaling criteria, apply these results to observational data.

21.1 Criteria for Scaled Laboratory Experiments
of Astrophysical MHD Phenomena

Similarity theory has many aspects and uses, such as dynamical Euler similarity
for hydrodynamics and Euler-Alfvén similarity for MHD processes, Sedov-Taylor
similarity, self-similarity, and others. In laboratory experiments, the spatial and
temporal scales are 10–20 orders of magnitude less than that in the astrophysical
objects. An important question arises about the degree of confidence with which
one can apply the laboratory results to astrophysical phenomena (Ryutov et al.
2000, 2001, 2012; Remington et al. 2006). There are two main conditions that
need to be satisfied for reliable similarity criteria. First, dissipative processes such
as viscosity, thermal conductivity, and radiative cooling should be unimportant
(although the presence of shocks is allowed). Second, regarding thermodynamics,
the gas in both systems should be polytropic, that is, the internal energy should be
proportional to the pressure. This is so-called Euler similarity, as it directly follows
from the Euler equations for the polytropic gas (Ryutov et al. 1999). The similarity
between two systems can be established also within the framework of ideal MHD,
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i.e., Euler-Alfv’en similarity given the same limitations on the thermodynamic
properties of the systems hold.

21.1.1 Similarity Criteria in the Ideal MHD

For convenience we bring here again the ideal MHD equations

∂ρ

∂t
+ ∇ · ρv = 0 (21.1)

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p + 1

4π
(∇ × B) × B (21.2)

∂B
∂t

= ∇ × (v × B) (21.3)

and the energy equation for the polytropic gas,

∂p

∂t
+ v · ∇p = −γp∇ · v (21.4)

It is easy to verify that the set of (21.1)–(21.4) remains invariant under the
following transformation of variables (transformed quantities are marked with the
subscript “1”):

r = ar1, ρ = bρ1, p = cp1, (21.5)

B = √
cB1, t = a

√
b

c
t1 v =

√
c

b
v1

Consider the initial value problem for some MHD system with initial state:

ρ|t=0 = F(r), p|t=0 = G(r) (21.6)

v|t=0 = H(r), B|t=0 = K(r)

where the functions in the right-hand side are known. Consider now another
system, where the initial state is geometrically similar to the first system, and the
initial distributions of the density, pressure, velocity, and the magnetic field satisfy
transformations (21.5), i.e.

ρ1|t=0 = 1

b
F(ar1), p1|t=0 = 1

c
G(ar1) (21.7)

v1|t=0 =
√

b

c
H(ar1), B1|t=0 = 1√

c
K(ar1)
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The geometrical similarity means that the functions F , G, etc., are the same as
in (21.6). The invariance of MHD equations with respect to the transformation
presented by (21.5) means that the second system will evolve similarly to the first
one, with a time changed by the scale factor a

√
b/c. More explicitly, if the evolution

of the density in the first system is described by some function ρ(r, t), the density
in the second system will be

ρ(r, t) �⇒ 1

b
ρ(ar1, a

√
b/c t1), (21.8)

and similarly for the other functions.
Hence, we can indeed establish a direct correspondence between two MHD

systems, no matter how different the spatial scales of the problems are, provided
the initial conditions match one another in the sense of (21.6)–(21.7). The timescale
of the evolution of the two systems is then uniquely related to each other.
This understanding provides the basis for comparison of MHD phenomena in
astrophysics and in laboratory experiments.

21.1.2 Invariance of Shock Boundary Conditions

One of the important questions in scaling of laboratory experiment to astrophysical
plasma is whether the invariance can be established between the systems when
they contain shocks. As dissipative structures, shocks connect regions of adiabatic
flows by shock boundary conditions. If these boundary conditions “survive” the
transformation described by Eq. (21.5), the similarity between the two systems will
exist and can be used.

The Rankine-Hugoniot conditions in the MHD are (see, e.g., Landau and Lifshitz
1987):

{ρvn} = 0 (21.9)

{

vn

(
ρv2

2
+ γp

γ − 1

)

+ 1

4π
[(vnB

2 − Bn(v · B)]
}

= 0 (21.10)

{

p + ρv2
n + 1

8π
B2

t

}

= 0 (21.11)

{

ρvnvt − 1

4π
BnBt

}

= 0 (21.12)

{Bnvt − Bt vn} = 0, {Bn} = 0 (21.13)
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where the curled brackets denote the difference of the corresponding quantities
between two sides of the shock discontinuity, and the subscripts “n” and “t” mean
the normal and tangential components of the vector with respect to the shock front.
Equations (21.9) and (21.10) are the continuity of the mass and energy flux, (21.11)
and (21.12) describe the continuity of the normal and tangential components of the
momentum flux, and (21.13) are electrodynamic conditions of the continuity of the
tangential component of the electric field and the normal component of the magnetic
field.

The invariance of the conditions (21.9) and (21.13) under the transforma-
tion (21.5) is obvious, because the left-hand sides of these conditions are homo-
geneous functions of vectors v and B. With regard to conditions (21.10)–(21.11),
one can check their invariance by direct substitution of transformation (21.5). Let
us, for example, check the invariance of the condition (21.10). According to (21.5),
one has

vn

(
ρv2

2
+ γp

γ − 1

)

= c3/2

b1/2 vn1

(
ρ1v

2
1

2
+ γp1

γ − 1

)

, (21.14)

and

(vnB
2 − Bn(v · B)) = c3/2

b1/2
(vn1B

2
1 − Bn(vn1 · B1)) (21.15)

As the right-hand side of (21.10) is zero, this means that it is invariant under
the transformation. In the same fashion one can prove the invariance of (21.11)
and (21.12).

21.1.3 Applicability Conditions for the MHD Similarity

In above sections, the analysis was set for the equations of nondissipative MHD. In
order for the hydrodynamic approach to be valid, the particles must be well localized
on the length scale of the problem. This localization may be produced either by
collisions or by some combination of magnetic fields and turbulence. In addition,
the applicability of (21.1)–(21.4) requires that dissipative processes, the heat sources
and/or sinks be negligible. The quantitative criteria can be formulated in terms of
dimensionless parameters like the Reynolds number and the Peclet number. As an
example let us briefly discuss conditions under which Ohmic dissipation can be
neglected.

The role of Ohmic dissipation can be conveniently characterized by the magnetic
Reynolds number :

Rem = uL

Dm

, Dm = c2

4πσ
(21.16)
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A large magnetic Reynolds number (high electrical conductivity) corresponds
to small dissipation. Typically, in the astrophysical environment the magnetic
Reynolds number is large and, hence the Ohmic dissipation can be neglected.

Take, for example astrophysical processes where the hot plasma is produced by
the shock compression, and where a natural measure of the characteristic velocity u

is the sound speed cs . Then (21.16) can be rewritten as Rem � csL/Dm. For solar
corona, e.g., Rem � 1012.

In laboratory experiments, as a result of smaller length scales, the magnetic
Reynolds number is typically much smaller. Still, at high enough plasma temper-
atures it can be much higher than 1. Taking as an example a fully ionized plasma of
an element with the atomic number A and the charge of the nucleus Z, one has

cs =
√

5(Z + 1)

3A

T

mp

(21.17)

or with the temperature in eV

cs � 1.3 × 106

√
Z + 1

A

√
T (21.18)

The magnetic diffusivity for such a plasma is given by

Dm � 1.5 × 107 Z

T 3/2
, (21.19)

and the expression for Rem becomes

Rem � 0.08

√
Z + 1

Z2A
LT 2 (21.20)

As an example, the lines Rem = const are shown in Fig. 21.1 for a fully stripped
carbon in the range of parameters potentially achievable in laboratory experiments.

21.2 Jets, Bow Shocks, and Instabilities

Magnetically driven plasma jets of various speeds and characteristics are observed
throughout the universe, from large-scale galactic jets to solar outflows and explo-
sive events. The relevance of laboratory experiments to astrophysics rests on the
capability of reproducing in the laboratory both the dynamics of the astrophysical
system and, more importantly, a valid set of dimensionless scaled parameters.
Various laboratory experiments have been performed in recent years using high-
intensity lasers (Remington et al. 1997; Keilty et al. 2000; Foster et al. 2005; Park
et al. 2012; Ryutov et al. 2013), pulsed power facilities (Lebedev et al. 2002, 2005;
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Fig. 21.1 Lines
Rem = const for a fully
stripped carbon in the L − T

plane (Ryutov et al. 2001).
Courtesy of D. Ryutov
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Ciardi et al. 2009), spheromacs (Stenson and Bellan 2012), and others. This list is
only a small part of laboratory experiments successfully studying the astrophysical
jets and their underlying physics. In what follows we will give some examples of a
laboratory representation of astrophysical jets.

21.2.1 Magnetically Driven Plasma Jets

The exemplary results were obtained in a series of experiments using the pulsed
power machine (MAGPIE) in the Blackett Laboratory, Imperial College (Suzuki-
Vidal et al. 2013, 2009; Lebedev et al. 2005).

To create jets whose properties can be scaled to real astrophysical systems,
in accordance with similarity criteria, it is required in the first place that the
Reynolds numbers Re, Rem, and Peclet Pe number be much larger than unity. This
implies that the transport of momentum, magnetic fields, and thermal energy occurs
predominantly through advection with the flow. In addition, the dimensionless
parameters that describe a flow need to be similar between both systems, i.e., the
Mach number M , the density ratio of the jet and the ambient medium η = nj /ne,
and the cooling parameter, the ratio of the radiative cooling time and a characteristic
time scale of jet, χ = εth/Prτj (εth and Pr being the thermal energy density and the
power radiated per unit volume, respectively).

In one series of experiments the plasma jets are produced by the ablation of
aluminium plasma from a radial foil, which is subjected to a 1.4 MA, 250 ns current
pulse from the MAGPIE pulsed-power generator. The ablated plasma converges on
axis, producing a collimated plasma flow. Example of the experimental setup is
shown in Fig. 21.2a. The morphology of a plasma jet in the absence of an ambient
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Fig. 21.2 Generation of a tower jet in vacuum: (a) Schematic of the experimental setup: the radial
foil setup showing the current path through the foil (JR), toroidal magnetic field (Bφ ), and the
net JR × Bφ force acting on the plasma produced from the foil; (b) Electron density distribution
measured by interferometry (Suzuki-Vidal et al. 2009, 2013). Reprinted with permissions from
Springer Science and Business Media and Elsevier

gas is illustrated in Fig. 21.2b by the map of electron density obtained from laser
interferometry.

The jet is highly collimated and the flow is sustained for 450 ns. The tip of the
jet reaches a height of 35 mm above the foil, which corresponds to an aspect ratio of
the jet L/R exceeding 20. The jet has a well-defined smooth boundary and a high
degree of collimation with a half-opening angle of ∼2◦. Although the degree of jet
collimation does not decrease with time, the measurements show a slow increase
of the jet’s diameter employing a characteristic radial expansion velocity of vr ∼
5 km s−1. The axial velocity of the tip of the jet is estimated as vz > 100 km s−1.
The measured electron temperature in the jet body is Te ∼ 15–20 eV (with Z ∼ 4),
and an internal Mach number is in the range M = vz/cs ∼ 2.5–3.

The parameters of the jet, its velocity, ∼100 km s−1, estimated Mach number
M ∼ 10–30, and the aspect ratio, L/R ∼ 20 are comparable to those of the
astrophysical jets, where often v > 100 km s−1, M > 20 and L/R ∼ 20. Conditions
on Re, Rem, and Pe to be much larger than unity are valid for both systems.
These studies were extended to more sophisticated scaled experiments, aiming, in
particular, to evolution of supersonic jets under conditions when radiative cooling is
playing a significant role (Suzuki-Vidal et al. 2012, 2013).
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21.2.2 Bow Shocks

A great number of plasma jets observed throughout the solar atmosphere at any
moment of time, as well as various gallactic jets often lead to development of bow
shocks and may be associated with some irregular structures (see, e.g., Chap. 18).
The characteristics of bow shocks and associated clumpy features can be attributed
to interaction of jet with the ambient medium. In order to vary critical dimensionless
parameters for astrophysical applications and study these phenomena, in the above
mentioned experiments the jet–ambient plasma interaction has been performed in
two different geometries for different gases. First, gas was injected by the nozzle
placed above the foil, and, second, gas was injected transverse to the direction of the
jet propagation at a certain height from the foil. The ambient medium was created
by injection of cold, neutral gas into the region above the foil.

Figure 21.3 shows example of the jet interaction with medium in case when gas
was injected above the foil. Left panel is 2D map of electron density in the plasma
at 430 ns obtained with optical laser interferometry. A well- collimated jet was
observed to have several new features compared to the case without ambient gas.
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Fig. 21.3 Results of jet–ambient argon gas interaction in case when ambient gas is released in
the same direction as the jet (the ambient gas velocity is much smaller then that of the jet ant it
can be considered as static): (a) Electron density at t = 430 ns (fully developed bow-shock); (b)
Optical dark-field laser schlieren imaging revealing the formation of small-scale structures on the
bow-shock front (Suzuki-Vidal et al. 2013). Reprinted with permission from Elsevier
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The interaction of the plasma ablated from the surface of the foil with the ambient
argon forms a shock extending from the tip of the jet towards large radii (labeled as
ablation shock).

The numerical calculations indicate that a toroidal magnetic field is generated
between the foil and the ablation shock. This produces a radial component of the
Lorentz force near the shock, redirecting the plasma flow towards the axis and
converging into the tip of the jet resulting in the formation of a dense, highly
emitting region at the tip of the jet. The accumulation of plasma in this region
leads to a local increase of pressure and acceleration of the flow, which starts
propagating into undisturbed ambient argon leading to the formation of a bow-
shock. Figure 21.3b shows the optical dark-field laser schlieren revealing the
presence of small scale structures at the front of the bow shock.

Example of jet–ambient interaction dynamics for the second case, when gas is
injected transverse to the direction of the jet propagation is given in Fig. 21.4. Shown
is an optical dark-field laser schlieren of a jet propagating into argon at 420 ns (the
view of this diagnostic is perpendicular to the direction of the gas injection). This
time, the jet is formed below the gas cloud in the same way as in the absence of
ambient gas. As the jet and the halo plasma surrounding the jet, reach the region
where gas is present, an ablation shock is formed. Unlike the previous case, now the
ablation shock is asymmetric with respect to the axis of the jet. The formation of a
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Fig. 21.4 Results from the interaction of the jet with a localized gas ambient cloud (argon),
transverse to the direction of propagation of the jet. Optical dark-field laser schlieren image
(Suzuki-Vidal et al. 2013). Reprinted with permission from Elsevier
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high density region at the tip of the jet is still present. However its formation does
not appear on the axis of the jet and instead is shifted towards the nozzle, i.e., where
the gas density is higher. In addition, with this configuration the formation of a bow
shock ahead of the jet is less evident. Instead a propagating against the jet is formed.

Experimental studies of bow shock formation and properties in presence of the
arrays of cylindrical obstacles (very useful for solar applications!) also showed
that the orientation of the embedded field with respect to cylindrical obstacles
has a dramatic effect on the bow shock structure (Burdiak et al. 2017). When the
field is aligned with the cylinders, a sharp bow shock is formed with a structure
determined by the fast magnetosonic Mach number. When the field is orthogonal
to the cylinders, magnetic draping occurs. This leads to the growth of a magnetic
precursor and the subsequent development of a magnetized bow shock that is
mediated by two-fluid effects, with an opening angle and a stand-off distance, that
are both many times larger than in the parallel geometry. By changing the field
orientation, one can change the regime in a system and, thus, physical mechanisms
that are responsible for the development of the bow shocks.

Given that the jet formations, shocks, bow shocks, and reverse shocks are only
natural occurrence throughout the solar atmosphere, these results are extremely
useful to analyze and, using the scaling laws, study their characteristics. These
studies can also be used for developing the diagnostic tools.

21.3 Shock–Shock Interaction, Magnetic Field Generation
and Self-organization

Shocks, supersonic, and super-alfvénic flows and their interactions are ubiquitous
in solar atmosphere and space plasma. Because of the low density of astrophysical
plasmas the particle mean free path is typically very large, and, therefore, shock
waves are collisionless. Of the nonlinear plasma processes involved in the colli-
sionless shock formation and their properties, a crucial role is played by plasma
instabilities and self-generated magnetic fields. A series of experiments at the
Omega and Omega-EP laser facilities (Boehly et al. 1995; Maywar et al. 2008)
revealed an important features of the shock–shock interactions, allowing to clarify
the role of the filamentation, Weibel instabilities in collisionless shock formation,
the self-generation of magnetic fields in shocks, the influence of external magnetic
fields on shock formation, as well as conditions for the onset of self-organization
process (Gregori et al. 2012; Kugland et al. 2012; Park et al. 2012; Ross et al. 2012;
Huntington1 et al. 2015).
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21.3.1 Weibel Instability and Filamentation

Weibel instability operates in unmagnetized plasma with an electron velocity space
anisotropy. In the process of restoration of plasma isotropy it leads to the exponential
growth filamentation of electromagnetic fields. In astrophysical plasmas, there is no
way to directly measure the key quantities to investigate the shock dynamics and
particle acceleration by collisionless shocks, whereas scaled laboratory experiments
allow to reach the collisionless plasma regime and study the instability dynamics.

In experiments performed at the Omega Laser Facility, one can directly image
the magnetic fields associated with the Weibel instability in counter-streaming
plasma flows. The flows were established by laser ablation of opposing foils, as
shown in Fig. 21.5a. The foils were oriented opposite to each other and irradiated
simultaneously, such that the expanding plasma flows interacted near the mid-plane
between the foils. The plasma density in the counter-propagating flows increased
by the factor of two, whereas the electron and ion temperatures increased rapidly
mainly due to ion two-stream instability, which quickly stabilizes. The ions remain
directed throughout the process, allowing to develop the Weibel instability and
grow due to the energy supplied by the flows. Magnetic fields were detected by
using proton imaging. An isotropically emitting proton source is generated by the
implosion of a capsule filled with mixture of deuterium (D) and 3He. The protons
that pass through the plasma interaction region are deflected by the electric and
magnetic fields in the system, and are recorded using a nuclear track detector at a
magnification of approximately 30.

The proton radiography data, taken at three different times during the interaction
of the flows, are shown in side panels of Fig. 21.5b, d. One can see a clear pattern
of filamentary structures, oriented along the flow direction, and consistent with
Weibel filamentation in the counter-propagating flows. In addition to the filaments,
horizontal “plate” features are seen near the mid-plane of the drive plasmas. These
large-scale magnetic features are presumably the magnetic fields generated by the
Biermann battery effect (∂B/∂t ∼ ∇ne × ∇Te).

Note that the battery mechanism leads to generation of quite a weak magnetic
fields. However, unlike all the dynamo mechanisms that require some initial
magnetic field which then gets amplified by plasma motions, the Biermann battery
does not require presence of magnetic field providing generation of a seed field,
which depending on the environmental dynamics can be further amplified by the
appropriate dynamo mechanisms.

21.3.2 Magnetic Field Generation by Biermann Battery Effect

Magnetic field generation by the Biermann battery effect has been successfully
demonstrated in an experiment with the laser-produced shocks (Gregori et al. 2012).
Using scaling relations these results were successfully applied to the intergalactic



590 21 Laboratory Experiments Scaled to Solar and Space Plasmas

Fig. 21.5 Schematic for generation of counter-streaming plasma flows and example of generated
magnetic field structures. (a) A pair of CH2 plastic foils of diameter 2 mm and thickness 500 μm,
oriented face-on and separated by 8 mm were irradiated with eight overlapped laser beams. Protons
produced at energies of 3.0 and 14.7 MeV were detected by a nuclear track detector positioned on
the mid-plane of the CH2 target foils, such that the protons traverse the central interaction region
as shown; (b)–(d) 14.7 MeV D-3He proton images of plasma interaction region. In each case the
plasma flows enter the frame from the top and bottom. At early time (about 3 ns after the drive
begins, panel b), only initial traces of filamentation are observed. At later times (panels c and d)
the filaments become more coherent and increase in extent along the flow direction. In each case
extended magnetic “plates” are formed above and below the mid-plane as a result of the large-scale
Biermann battery fields generated in the laser-ablation process (shown by pink arrows in panel b).
The persistence and evolution of these fields perforated by the Weibel filaments are clearly seen
in panel c–d (Huntington1 et al. 2015). Reprinted with permission from Springer Science and
Business Media

medium, to produce a seed magnetic field which can then be amplified by
turbulence.

The intense laser was used to illuminate a small carbon rod inside a low-pressure
gas-filled interaction chamber. Schematic of the experimental setup is shown in
Fig. 21.6a. The large energy density accumulated on the carbon target over the
relatively short laser pulse duration caused a ballistic expansion of the heated solid
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Fig. 21.6 Experimental setup showing (a) The laser beams and diagnostics configuration. Either
one or two frequency-doubled (527 nm), 1.5 ns long laser beams are focused on the tip of a 500 mm
diameter carbon rod. At focus, each laser beam has a 400 mm flat-top distribution, achieving a
peak intensity of 2 × 1014 W cm−2, delivering around 350 J. The interaction chamber is filled
with helium gas. The shock wave evolution was monitored using transverse interferometry and
Schlieren shadowgraphy with an optical probe and (b) The Schlieren image showing laser and
magnetic pick-up coil configuration as well as the shock position (Gregori et al. 2012). Reprinted
with permission from Springer Science and Business Media

matter. When the shocked mass was roughly equal to the ejected mass, the shock
evolved into to a Sedov-Taylor blast wave.

The shock evolution over time was monitored using transverse interferometry
and Schlieren shadowgraphy with an optical probe. In Fig. 21.6b, the Schlieren
image shows laser and magnetic pick-up coil configuration as well as the shock
position. The Schlieren image indicates when the refractive index of the plasma
changes rapidly, thus tracking the position of the shock.

The measurement of the magnetic field was performed with three-axis magnetic
induction coils, giving both the magnetic field components along the shock, B||, and
perpendicular to the shock, B⊥ (Fig. 21.7). At a radius r � 3 cm from the initial
blast, peak values of B⊥ were in the range 10–30 G.

Magnetic field generated through vorticity by Biermann’s battery effect is
estimated as:

Bvort = mi

e
Ω � (ρcmp − 1)2

ρcmp

mi

e

∣
∣
∣
∣
∂vsh

∂S

∣
∣
∣
∣ (21.21)

where Ω = ∇ × v is the vorticity, ρcmp � 3 is the shock compression ratio
and ∂vsh/∂S � κvsh/r , where κ is the tangential gradient scale coefficient. The
approximate value for κ was obtained from the asymmetry in the shape of the shock
wave, κ � 0.1–0.3. Estimates obtained with (21.21) give at r � 3 cm, Bvort � 10–
30 G, which is in agreement with the measured values.

Note that the vorticity-generated magnetic field is perpendicular to the shock
normal, which is consistent with the experimental traces shown in Fig. 21.7, B⊥ �
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Fig. 21.7 Example of Biermann-generated magnetic-field measurements from induction coils.
Left: B⊥ (lines) and B|| (symbols) traces taken at P = 0.8 mbar. The rise and gradual decay of B⊥
was consistent with the shock front crossing the coil and the subsequent evolution of the shocked
material; Right: The measured shock radius along the laser axis for P = 0.8 mbar (Gregori et al.
2012). Reprinted with permission from Springer Science and Business Media

B||. In a perfectly spherical shock no magnetic field can be produced because in
this case ∂vsh/∂S = 0. Magnetic fields can thus only be generated in non-spherical
shock expansions, which are expected to occur during structure formation under
spatially inhomogeneous astrophysical conditions.

21.3.3 Self-organization in Laser-Produced
Counter-Streaming Plasmas

Long living well-organized structures that emerge in dynamic systems and show
all the properties of self-organization can be studied in laboratory and scaled
to astrophysical environment. The experiments performed at the OMEGA EP
laser facility have demonstrated that stable magnetic structures can arise within
counter-streaming supersonic plasmas. These structures were predominantly ori-
ented transverse to the primary flow direction, extended for much larger distances
than the intrinsic plasma spatial scales and persisted for much longer than the plasma
kinetic timescales.

The schematic of the experiment is shown in Fig. 21.8a (for more detailed exper-
imental setup, see Fig. 21.5). Two kilojoule-class lasers irradiated two polyethylene
(CH2) plastic discs that faced each other at a distance of 8 mm, creating a system of
high-velocity laser-ablated counter-streaming plasma flows.
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Fig. 21.8 Time sequence of proton images showing the evolution of self-organized electromag-
netic field structures (side-view): (a) Two long-pulse lasers (purple) created counter-streaming
plasmas from CH2 disc targets. The orange arrows show the direction of counter-streaming flows.
The magenta dot marks the target chamber center. At this early time the plasmas are still close
to the targets; (b) By 3.7 ns well-developed caustics appear; (c) Transition to large-scale caustics
and appearance of two horizontal large swaths; (d) Nearly closed caustic contours connecting the
two horizontal features, suggesting a cellular field structure (Kugland et al. 2012). Reprinted with
permission from Springer Science and Business Media

The electric and magnetic field structures have been visualized with short-pulse
laser-generated proton beam imaging. After about 3 ns (Fig. 21.8b), proton images
showed development of well-defined caustics (large-intensity variations), indicating
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Fig. 21.9 Caustic detail: (a) A detail of the proton image from Fig. 21.8d, with the dashed line
indicating a nearly closed contour suggestive of a cellular field structure; (b) A line profile (in units
of optical density, OD) taken along the dotted line in (a), from a separate scan of the film with a
photometric densitometer. The sharp features, circled, are caustics made by self-organized field
structures (Kugland et al. 2012). Reprinted with permission from Springer Science and Business
Media

the formation of strong field zones within the plasma. By 4 ns (Fig. 21.8c, d), the
features have changed markedly into two large swaths of straight transverse caustics
that extend for up to 5 mm.

Here we arrive to very important point: the swaths extent is large compared with
the fundamental scale lengths of the plasma, e.g., it is 50,000 times larger than
the Debye length, and nearly 100 times larger than the ion inertial length. The
structures show a high degree of stability. Their lifetime was found to be much
longer than fundamental plasma timescales: 75,000 times longer than the electron
plasma period, nearly 3000 times longer than the ion plasma period indicating a
high degree of self-organization.

It is interesting that in the established state (Fig. 21.8d) there are nearly closed
caustic contours connecting the two horizontal features, suggesting a cellular field
structure. Details of this caustics are shown in Fig. 21.9. The horizontal swaths
themselves consist of multiple caustics clustered together (Fig. 21.9b). The positions
of the caustics remain the same for different proton energies. The main caustic
features are summarized in Table 21.1.

The origin of the fields that create the horizontal swaths of caustics is still
unknown. These swaths of caustics could be from planar field structures, or the
rims of conical or cylindrical discontinuities. Detailed analysis of proton imaging
suggests that two widely separated layers of fields are required to create two widely
separated swaths of caustics.
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Table 21.1 Proton image features, properties and possible origins

Spatial Most
Caustic feature scale visible Possible origins

Striation 10 μm 2 ns Shocks in a sheared flow

Turbulent circular
caustics

0.5 mm 2–3 ns Hydrodynamic instabilities (e.g., laser
ablative or Rayleigh-Taylor)

Dual swaths of
horizontal caustics

1 mm 4–7 ns Requires a highly self-organizing inverse
cascade mechanism. The field structure
could be dual planar, cylindrical/conical or a
single wavy blob

Nearly closed
contours

1 mm 4–7 ns Cellular field structures

21.4 Rayleigh-Taylor Instability and Self-generated
Magnetic Fields

The Rayleigh-Taylor instability and its influence on dynamic properties of a system
is subject of intense experimental and theoretical studies which span from pure
hydrodynamic problems in laboratory and nature to inertial confinement fusion and
astrophysics. In this section, we discuss some results obtained on OMEGA Laser
System. We mention here some experiments that seem to be of particular interest for
solar physics. One series of experiments were devoted to studies of the RT unstable
(laser-seeded) 3D perturbations that resulted nonlinear regime of bubble formation
and evolution. Next, as the RT instability in plasmas can produce seed vorticity that
generates magnetic fields, the experiments were performed to study magnetic field
generation during RT instability growth (Smalyuk et al. 2005; Sadot et al. 2005;
Gao et al. 2013; Nilson et al. 2015).

21.4.1 Nonlinear Rayleigh-Taylor Instability

In linear regime of classical RT instability, small initial perturbations develop
independently of each other and grow exponentially with growth rates of ν = √

Agk

(cf. (20.8)). For ablatively driven RT instability, the growth rate is reduced to
ν = a1

√
gk − a2kVab. Here k is the modulation wave number, g is the target

acceleration, A is the Atwood number, Vab is the ablation velocity, a1 and a2
are constants. The growth rate can be stabilized by the ablation term a2kVab. The
first indication of nonlinear RT effects appear when the mode amplitude becomes
comparable to its wavelength, the modulations develop into bubbles and spikes,
where lighter material rises through heavier material and heavier material falls
through light material.

In fully nonlinear regime, bubbles merge and evolve self-similarly prior to more
complex behavior, where the interaction between neighboring bubbles governs
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the modulation evolution. In this regime smaller bubbles (with smaller nonlinear
velocities) are overcome by larger bubbles (with higher nonlinear velocities)
through bubble competition and bubble merger processes. At the same time the
average size of modulations is expected to be shifted to longer wavelengths as the
modulations grow.

These regularities were successfully studied in the experiments on the OMEGA
Laser Facility where a high-energy laser ablates a solid target (Boehly et al.
1995; Sadot et al. 2005). Initial 3D, broadband modulations were created by the
nonuniformities of the individual laser drive beams. As the hot, light plasma, created
by laser ablation, accelerates, the interface between the light and dense plasma (the
ablation surface) becomes unstable and the modulations on this interface grow due
to RT instability. The growing target modulations were measured using X-ray face-
on radiography.

Figure 21.10 shows the central portions of the recorded images of the target
modulations at different times and different target distances. The light areas

Raw images

a

b

Processed images

Fig. 21.10 X-ray radiographs of growing 3D broadband modulations (left panels) with dis-
tributions of the bubble sizes and their rms amplitudes (right panels). Growing modulation
was measured with X-ray radiography at traveled distances of 18 μm (a) and 67 μm (b). The
corresponding Wiener-filtered images with imposed bubble borders (found using the watershed
algorithm) are shown on the right-hand side. The light areas (more X-ray transmission) represent
bubbles, while dark areas (less X-ray transmission) represent spikes (Sadot et al. 2005). Repro-
duced with permission from AAS
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(higher X-ray transmission) represent bubbles, while the dark areas (lower X-
ray transmission) represent spikes. As the modulations grow, the average bubble
size shifts to longer wavelengths, big bubbles become bigger, and small bubbles
eventually disappear.

To measure bubble characteristics such as size and amplitude, the images were
processed with the watershed algorithm to determine the bubble edges. Examples
of this procedure are shown in the right-hand side of Fig. 21.10 where the bubble
borders are superimposed on the Weiner-filtered images. Studies of the distribution
of bubble sizes in time showed that as modulations grow, the number of bubbles
decreases while their average size and average rms amplitude increase. Both
bubble size and amplitude distributions are in the self-similar regime because the
normalized distributions do not change in time.

As the modulations grow, new bubbles are born as a result of the bubble
competition and merger processes. Because the measured bubble sizes and rms
amplitude distributions are in a self-similar regime, their evolution can be described
by a very simple form based on their measured normal distributions. The number
of bubbles N evolves as N(t) � (wt

√
g + 2C)−4, where w is the scaled average

merging rate, and constant C = 2
√

< λ >0 is related to the initial average bubble
size < λ >0. Both, the average bubble size and average rms amplitude grow
proportionally to gt2, as predicted by the self-similar growth and scaling theory.
These results and possible scaling to such a diverse regions as solar convective zone
and quiescent prominences could be very useful.

21.4.2 Self-generation of Magnetic Field by RT Instability

In this section, we will discuss another experimental result obtained at OMEGA EP
Laser Facility devoted to generation of magnetic field in plasmas that is subjected
to RT instability (Stamper et al. 1971; Gao et al. 2012, 2013).

Magnetic fields generated during the nonlinear growth phase of the RT instability
in an ablatively driven plasma were observed using ultrafast laser-driven proton
radiography. Thin plastic foils were irradiated with ∼4 kJ, 2 ns laser pulses focused
to an intensity of ∼1014 W/cm2. Target modulations were seeded by laser nonuni-
formities that were amplified during target acceleration by the RT instability.

Figure 21.11 shows a schematic of the experimental setup. Two long-pulse beams
irradiated a 15 or 25 μm thick CH foil. Each laser beam delivered ∼2 kJ pulse with a
wavelength of 351 nm at 23◦ to the target normal. The laser beams were focused to
∼850 μm diameter focal spots. The CH foil was probed in a direction orthogonal to
the main interaction with an ultrafast proton beam. The proton source was generated
by irradiating a planar, 20 μm thick Cu foil. The laser pulse was focused with a 1 m
focal length parabolic mirror onto the Cu foil at normal incidence, providing an
intensity of ∼5 × 1018 W/cm2.



598 21 Laboratory Experiments Scaled to Solar and Space Plasmas

Fig. 21.11 Experimental setup (Gao et al. 2012). Reproduced with permission from AAS

Fig. 21.12 Proton radiographs of a CH foil taken with 13 MeV protons at t = t0 + 2.56 ns. The
laser drive and the undriven foil horizon are indicated: (a) Proton radiograph of a 25 μm thick CH
foil which is unbroken by the RT instability formation; (b) Proton radiograph of a 15 μm thick CH
foil showing development of RT instability and the formation of sheath field (Gao et al. 2012).
Reproduced with permission from AAS

The high-energy protons that passed through the driven CH target were detected
with a stack of radiochromic film interleaved with aluminum filters. Soft X-rays
were filtered with an additional aluminum foil on the front surface of the stack.

Figure 21.12 shows a typical proton radiograph of a 25 μm thick CH foil (panel
a) and 15 μm thick CH foil (panel b). The radiographs were obtained with 13 MeV
protons at time t = t0 + 2.56 ns, where t0 is the arrival time of the long-pulse beams
at the target surface. The location of the undriven foil horizon is indicated.

The long-pulse beams irradiated the target from the left and the blowoff plasma
accelerated the central part of the foil toward the right. The foil had a velocity of
(3 ± 1) × 107 cm/s. Left panel shows proton radiograph of a 25 μm thick CH foil,
right panel shows proton radiography for a 15 μm thick CH foil. Unlike the “thick”
foil, thinner-foil targets were broken by instability formation during the acceleration
phase. Besides, in this case, one can clearly see that the target has broken apart and
bubble-like structures, growing in time are formed.
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Further evidence for the broken foil is provided by the appearance of plasma
beyond the driven target. Figure 21.12 right panel shows a sheath ahead electric
field formed at the plasma–vacuum interface, indicating that the electromagnetic
fields are generated during the RT instability growth.

Estimates for the magnitude of the generated magnetic field is made by mea-
suring the angular deflection of protons from their original trajectory while passing
through the field region. The proton path-integrated magnetic field field caused by
the Lorentz force acting upon the proton probe beam is

∫

B × dl = mpv

e
sinθ, (21.22)

where v and mp are the proton velocity and mass. In the experiments, the protons are
deflected by azimuthal magnetic fields generated around the RT spikes. Assuming
an integration path length slightly larger than the target thickness gives a magnetic
field strength of 1.4 MG.

Hence, at the RT–unstable interface, narrow spikes are formed where the dense
matter falls through the light matter, and bubbles are generated when the light
material rises into the dense material. This process generates magnetic fields
wrapping around the troughs of the spikes. The growth of the spatial scale length
of the perturbed features is caused by magnetic field evolution as the RT instability
develops.

21.5 Arched Magnetic Flux Tubes and Plasma Flows

In this section, we will discuss an exemplary laboratory experiment aimed to study
the formation and properties of arched magnetic flux tubes (loops) typical to solar
atmosphere and other astrophysical objects (Stenson and Bellan 2012). In particular,
solar coronal loops rooted in the photosphere exhibit well-defined collimated shape.
And the question is how magnetic flux supplied by the photosphere/subphotosphere
regions is transported into the corona and being confined in flux tubes with axial
uniformity even as they lengthen and kink.

The experimental setup is a pulsed, magnetized plasma gun mounted on the end
of a vacuum chamber (Hsu and Bellan 2003; Hansen et al. 2004). The chamber is
much larger than the plasma thus simulating a half-infinite space. Two magnetic
field coils are pulsed to produce an arched vacuum potential magnetic field. The
field strength has a temporal FWHM of 7 ms and spatially varies from 3.5 × 103 G
near the footpoints to 102 G near the apex of the loop. At each footpoint is a gas
nozzle, connected to a fast gas valve. Shortly after the fast gas valve is pulsed,
a strongly divergent flow of neutral gas (sound speed 3 × 105–1.3 × 106 cm s−1)
enters the chamber. At this time high voltage from a 59 μF capacitor is applied to
the electrodes, thereby ionizing the gas to form an initial low density plasma. This
quickly evolves into a current-carrying flux rope (Fig. 21.13).
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Fig. 21.13 (a) Two sets of vacuum magnetic field lines link a pair of solenoids (only the last few
coils of which are drawn). Dashed lines show the projection of the magnetic field lines onto the
three orthogonal planes; arrows indicate lines’ separation, which is 5–8 times greater at the top of
the arch than at the footpoints. (b) A hydrogen flux tube (shown with a red temperature color table)
exhibits a comparatively narrow, uniform cross section both shortly after its formation (0:05 s) and
even as its axis lengthens and kinks at later times (0:75; 1:45; 2:15 s) (Stenson and Bellan 2012).
Reproduced with permission from AAS

The measurements show that about one tenth of the total current output flows
through the flux tube and that the magnetic field peaks at 103–2 × 103 G. Plasma
densities inside the flux tube are 1014–1015 cm−3, corresponding to β � 0.01–0.1.
The configuration evolves over 3–5 μs.

Although the plasma-filled loop is semi-toroidal when it forms, magnetic forces
drive a rapid evolution toward more complex structures. Two parameters charac-
terize the loop geometry: the flux tube minor radius and the locus of the flux tube
axis. Plasma is confined inside the minor radius, corresponding to a force balance
condition. By contrast, the axis is observed to evolve dramatically, increasing to as
much as 10 times its initial length and undergoing a kink instability. Note that the
flux tube volume increases substantially while the brightness remains approximately
constant. This means that there must inflow of plasma into the structure. If this were
not the case, the tenfold increase in loop length would produce a tenfold decrease in
loop density, and the brightness would significantly drop.

To determine the source of material entering the plasma loop, experiments are
performed using a different gas at each of the two footpoint nozzles. High repetitive
rate of the experiment allows to take the shots with optical filters chosen to transmit
only the optical line emission of one species. The images can then be combined
digitally. The typical images produced by this color-coding technique are shown
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Fig. 21.14 (a) A nitrogen-hydrogen plasma loop at four consecutive times. Color pictures were
produced by combining images from three different shots; two of the images were taken through
optical filters, then used to color the third, unfiltered image. Nitrogen sections of the plasma
(originating from the left footpoint) are tinted blue and hydrogen sections of the plasma (originating
from the right footpoint) are tinted red. (b) Locus of the loop axis at 14 different times, all overlaid
on top of the 3:30 s frame. Thin green and white contours indicate the nitrogen and hydrogen
sections of the loop, respectively (Stenson and Bellan 2012). Reproduced with permission from
AAS

in Fig. 21.14a. These images show that plasma flows into the loop from both
footpoints, and that the flow dynamics depends strongly on the mass density.

To quantify the flow dynamics, image sequence were made for various combina-
tions of gas species. The locus of the flux tube axis was manually traced out in each
frame, as was the fraction of the loop length occupied by each species. Example
of the resulting sets of traces for a nitrogen-hydrogen plasma loop is shown in
Fig. 21.14b.

The measurements of the time-dependent loop length made from plasma shots
taken at different times and with different gas species combinations show that
the length of each subsection (i.e., filled with different species) of the loop is
independent of the other subsection. It was found that each species flows from a
footpoint into the flux tube at a particular rate.

The experiment has also allowed to determine relationship between loop dynam-
ics and electric current. Increasing the capacitor charge voltage increases both the
electric current and the rate at which the plasma loop expands. At all charging
voltages, the expansion of loop was found to be as time squared. The constant
acceleration of each loop is directly proportional to the initial rate at which
the electrical current increases, with the same proportionality for all loops of a
given species. The described laboratory processes are governed by the MHD, and
thus may be scaled to various astrophysical processes and, in particular, to well-
collimated solar loops from low atmosphere to solar corona.
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21.6 On the Magnetic Reconnection

Magnetic reconnection per se and its role in various astrophysical phenomena have
been broadly studied for decades in many laboratories, from early simple devices
(Syrovatskii et al. 1973, 1981; Stenzel and Gekelman 1981; Gekelman et al. 1982)
to highly sophisticated ones (Bergerson 2006; Fiksel et al. 2014; Forest et al. 2015;
Frank et al. 2006; Furno et al. 2007; Yamada et al. 1997). Excellent reviews on
the fundamental physics of magnetic reconnection in laboratory and space plasmas
and literature therein provide a rich source to study the subject for both theorists,
observers and experimenters (Yamada et al. 2010; Shibata and Takasao 2016;
Zweibel and Yamada 2016; Myers et al. 2015).

Here we consider an example of well-scaled laboratory experiment aimed to
reproduce a magnetic reconnection topology similar to that observed in solar flares,
namely a loop-top reconnection (Masuda et al. 1994; Nitta et al. 2001). The
experiment was performed at the Shenguang (SG) II laser facility (Zhong et al.
2010, 2016). Eight laser beams, with wavelength of λL = 0.351 μm, are divided
into four bunches with each bunch consisting of two laser beams. The configuration
is designed to be similar to the scheme of a loop-top X-ray source in the solar flares
depicted in Fig. 21.15a.

Two synchronized laser bunches separated by 400–600 μm are focused onto
one side of the aluminium foil with the other two laser bunches simultaneously
irradiating the other side. Each bunch is focused to a focal spot diameter, giving
an incident laser intensity of ∼ 5 × 1015 W cm−2. A copper target is set 250 μm
away from one foil edge. The X-ray emission is measured using three X-ray pinhole
cameras in the forward, side and reverse directions, to investigate the reconnection
jets as well as their impact on the copper target.

Two bright X-ray spots resulted from the laser heating of the Al foil are clearly
seen in Fig. 21.15b. The spontaneous magnetic field has an estimated MG strength.
When two plasma bubbles expand on the Al foil surface, toroidal MG magnetic
fields merge resulting appearance of a diffusion region which can be clearly seen
with two significant X-ray patterns signifying the release of magnetic energy. In this
region electrons and ions are decoupled, and magnetic reconnection takes place.

A similar experiment was carried out with two imbalanced laser beams separated
by 400 μm. The result is shown in Fig. 21.15c. One can see that the upflow is not
vertical. The measured inclination is about 10◦. This kind of effect is quite typical to
the plasma jets associated with the solar coronal flares. At the same time, the X-ray
intensity in this setting is greatly enhanced in comparison with the previous case
shown in Fig. 21.15b. Note also that in both experiments a bright X-ray spot at the
center of the Cu target is observed just below the downward outflow.

The position and the arc shape of the spot is clearly resembling the loop-top X-
ray source in solar flare observations. Moreover, for example, the inclined upflow
seen in Fig. 21.15c extends more than for 2 mm and has an average width 300 μm,



21.6 On the Magnetic Reconnection 603

Fig. 21.15 The X-ray source and outflows similar to the solar coronal loop-top case observed in
the laboratory. (a) Sketch of magnetic reconnection and the loop-top X-ray source in a compact
solar flare; (b) The pinhole X-ray image observed forward of the Al foil target. Magnetic field
lines are illustrated based on the flux surface of the plasma bubbles. The Al and Cu targets are
the rectangles enclosed by white dotted lines. The red arrows indicate directions of outflow; (c)
X-ray image with two laser spots separated by 400 μm and with a foil thickness of 10 μm. The
asymmetry of the laser intensity on the Al target causes an imbalance of the laser spots as well as
of the magnetic fields B1 and B2, and further induces the inclination of the upward outflow. The
downward outflow impinges on the Cu target and results in a hot X-ray source (Zhong et al. 2010).
Reprinted with permission from Springer Science and Business Media

which translates to 2 × 105 km in length and 3 × 104 km in width when scaled
to a solar parameters, which are on the order of the typical lengths and widths of
X-ray jets observed in solar flares. The measured flow velocity in the experiment,
400(±50)km s−1, agrees well with the typical Alfvén speed of vA � 400 km s−1,
in a magnetic field of 106 G for the experiment. A similarity criteria hold also well
for the transverse velocity for bi-directional plasma jets of �150–300 km s−1.

The MHD similarity in solar flares and laser-produced plasmas is shown in
Table 21.2, with the transformation coefficients a = 10−11, b = 108 and c = 1010.
The scaled parameters of the solar coronal plasmas in the third column are very
similar to those of the laser-produced plasmas in the second column.



604 21 Laboratory Experiments Scaled to Solar and Space Plasmas

Table 21.2 The similarity of solar flares and laser-produced plasmas, with a = 10−11, b = 108,
c = 1010

Parameters Flare plasma Laser plasma Scaled for flare plasma

Length (cm) ∼109–1010 ∼10−1 ∼10−2–10−1

Times (s) ∼102–103 ∼10−9 ∼10−9–10−10

Pressure (Pa) ∼10−3–10 ∼107 ∼107–1011

Density (cm−3) ∼109–1011 ∼1019–1020 ∼1019–1021

Velocity (km s−1) ∼10–100 ∼100 ∼100–1000

Magnetic field (G) ∼10–100 ∼106 ∼106–107

21.7 Laboratory Simulation of Solar Coronal Plasmoids

The small-scale (sub-arcsec) coronal mass ejection (CME) phenomena, plasmoids,
often having the shape of tadpoles are believed to play an important role in the
coronal dynamics. The observations of small plasmoids propagating in the solar
corona (Koutchmy et al. 1994; Alexander and Fletcher 1999) revealed details of
dynamic behavior of plasmoid and lead authors to the plausible model of plasmoid
as a toroidal vortex. A tadpole-shaped jets in galactic clusters have been observed
for decades.

Figure 21.16 shows examples of a classical tadpole-shaped gallactic clusters
(left) and solar coronal plasmoid which, in a few minutes, develops the thick head
and a weak tail (right). The origin of coronal plasmoids was successfully associated
with the coronal reconnections (Yokoyama and Shibata 1995; Shibata et al. 1995).

Formation and evolution of solar plasmoids can be simulated in the scaled
laboratory experiment using an accelerated spheromak-like compact toroid (CT)
injected into a tokamak magnetized target region. The UC Davis Compact Toroid
accelerator (CTIX) is designed to study the formation and acceleration of a compact
toroid under repetitive operation, with well-developed diagnostics of interaction and
thermalization of the plasmoid as it is injected into a target region (Hwang et al.
1999, 2000, 2002).

The CT is excited by a combination of dynamo action and externally produced
static magnetic field in a magnetized coaxial plasma gun. The resultant magnetic
field structure is in a nearly force free state (i.e., ∇ × B = λB). The accelerator con-
sists of two sections, the formation section and the acceleration section (Fig. 21.17).

In the coaxial (injection) region the accelerated CT interacts with the pre-existing
magnetic field, generated by the solenoidal coils. The coils are also used to change
the geometry of the ambient magnetic field. The accelerating force is the magnetic
field pressure gradient generated across the CT. The plasma and poloidal field
are driven into an expansion region. During the motion of the accelerated CT, its
internal magnetic field can be measured using magnetic probes based on the Faraday
induction effect. Once the CT has detached from the central accelerating electrode,
magnetic probes can measure the tilting of the CT in the azimuthal direction.
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Fig. 21.16 Cosmic tadpoles: Gallactic clusters observed by the Hubble in the IC-410 nebula (left)
Courtesy of NASA; a tadpole originated in the solar chromosphere/corona in two instances of time
observed with the SDO/AIA (right)
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Fig. 21.17 Stages of CT formation and acceleration (Hwang et al. 1999). Courtesy of D. Hwang

Figure 21.18 shows a sample 2D images of the CT as it is accelerated towards the
mirror. The different range of parameters and geometries of the external magnetic
field allows to reproduce the various conditions of the propagation of the compact
toroid in the target chamber.

In most cases the field reversal in the shell between the compact toroid and
ambient field occurs, suggesting a strong coupling between the toroid and the
ambient field that may eventually lead to the reconnection and “braking” of the CT.
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Fig. 21.18 Sample 2D images of the CT as it is accelerated towards the mirror. Time sequence of
the SCT images shows the dynamic changes in its magnetic field and density during acceleration
(variation of the intensity) (Hwang et al. 1999). Reprinted with permission from IOP

In this case, the “broken” CT acquires the shape of tadpole having a strong head and
weak tail.

Examples of such process is shown in Fig. 21.19. The CT interacting with the
weak external magnetic field of 280 G acquires the shape of a tadpole. Panel a
shows the CT evolution in case when its poloidal field is antiparallel to the external
magnetic field, and panel b shows the evolution of CT when its magnetic field is
parallel to external field. One can see that in the second case the effect is more
pronounced. The outcome also depends on the electric currents. Inlets in panels
a-b show color codes for five sets of electric current ranging from zero (red lines
with circles) to j = 200 A (red dashed lines with plus signs). One can see that the
stronger is current the stronger becomes the tail of tadpole and weaker is its head
and v.v.

Physical conditions in the CTIX experiment can be reliably scaled to solar
conditions: the main requirements for a proper scalings are well achievable. Indeed,
thermodynamically both systems, the solar photosphere and tokamak plasma, are
polytropic with γ = 5/3. The Lundquist number, S = τR/τA, the ratio of the
resistive diffusion time τR = L2/Dm and the Alfvèn time, τA, are much larger than
unity.

In the laboratory, along the condition S � 1, the duration of the experiment, texp,
on the one hand must be short compared to resistive time, and, on the other hand it
must be much larger than the Alfvèn time, providing the force-free equilibrium of
the plasma, i.e.

τA � texp � τR, S � 1 (21.23)
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Fig. 21.19 Interaction of the CT with external magnetic field. (a) The CT evolution in case when
its poloidal magnetic field is antiparallel to the external magnetic field; (b) the case when the
poloidal magnetic field of CT is parallel to the external field. In both cases there appears negative
signal in the CTs magnetic field indicating change of its shape into the tadpole shape; (c) schematic
of a tadpole (Hwang et al. 2002). Courtesy of D. Hwang

For the CT L = 20 cm, density n = 1015 cm−3, and the temperature T = 10 eV.
Then for the resistive diffusion time, τR = L2/Dm, where Dm = 0.824 ×
106λ/t3/2 cm2 s−1, we have τR = 1.54 × 10−3 s (with λ = 10). The Alfvèn time,
τA = 5.8 × 10−7 s, while the duration of the experiment is texp = 20 μs, much
longer than τA providing the force-free equilibrium of the plasma. The Lundquist
number S = τR/τA for this particular example is 2.6×103. For the coronal plasmoid
L = 1.4 × 109 cm, n = 109 cm−3, B = 2–4 G, average lifetime τobs = 250 s.
And we arrive to the following estimates: τR = 3.7 × 1010 s, τA = 17.5 s. Hence,
τA � τobs � τR and S = 2 × 109.

Thus, the conditions (21.3) are well satisfied for both, laboratory and coronal
plasmoids. Now, and, most importantly, we need to find the scaling parameters,
determined by relations (21.5). Note that the parameters a, b, and c are interdepen-
dent, ensuring thus the reliability of the scaling. Using the physical parameters of
the CT and solar plasmoid, we get a = 3 × 10−8, b = 5 × 105, c = 2.9 × 105. The
similarity of the CT and solar tadpole-like plasmoid is shown in Table 21.3.

The similar procedure can be applied to the tadpoles observed in the sunspot
penumbra. Observations of magnetic fields and flows in sunspot penumbrae at
a spatial resolution of 0.1–0.2′′ revealed amazing details in the fine structure of
penumbral filaments and their dynamics (Scharmer et al. 2002; Langhans et al.
2005). Some properties the fine structure of penumbrae briefly may be characterized



608 21 Laboratory Experiments Scaled to Solar and Space Plasmas

Table 21.3 The similarity of the CT and solar tadpole-like plasmoid, with a = 3 × 10−8, b =
5 × 105, c = 2.9 × 105

Parameters Solar tadpole Lab plasmoid Scaled for sun

Length (cm) 5 × 108–109 20 15–30

Pressure (Pa) 5.5 × 10−2–10−1 1.6 × 104 (1.6–2.9) × 104

Density (cm−3) 2 × 109–1010 1015 (1.1–5.5) × 1015

Velocity (km s−1) 150–300 200 115–230

Magnetic field (G) 2–4 1.5 × 103 (1.2–2.15) × 103

as a dense ensemble of dark-cored and bright magnetic filaments, highly dynamic
at short time scales and preserving their general properties for hours. Topologically,
dark-cored filaments surrounded by bright walls have a peculiar shape of penumbral
tadpoles with a thick head “diving” into the umbra and a long tail reaching the outer
edge of penumbra. It was found (Ryutova and Hagenaar 2005) that differences
in the inclination of magnetic fields and sheared velocities result in the nonlinear
instabilities associated with the vortex motion and interaction of the poloidal and
toroidal components of magnetic fields. This, in turn, leads to a filamentation
process, as well as formation of the structures having the appearance of tadpoles.
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Chapter 22
What to Observe in Low Atmosphere

Abstract In this chapter, we shall discuss some aspects of solar phenomena that
can be described as “what to observe in low atmosphere.” New space and ground
based instruments with ever increasing spatial resolution and time cadence allow to
observe amazing details of solar phenomena. Examples of the observational results
will be presented in about the same order as the content of the book. When possible,
the frames for quantitative analysis discussed throughout the book will be given.

22.1 Wave Phenomena

We start with the sunspots. Before 1990s there were only a few observational
papers arguing that the sunspot umbra has a filamentary structure (Papathanasoglou
1971; Livingston 1991). By now, high resolution data revealed not only filamentary
structure of umbra but also show the infrastructure of various small-scale elements
in sunspots. As discussed throughout the book, it is just this highly intermittent
nature of sunspots that provides occurrence of physical effects that would not be
there had the sunspot a monolithic nature (Ryutova and Persson 1984). Here we
mention a few of them and, in particular, the wave phenomena. Even in linear
stage, filamentary structure of sunspot leads to strong absorption of the wave power,
just like perforated sealing and wall make the room quieter (Chap. 8). In nonlinear
stage, not only shocks and solitons may develop, but they have their only specifics
associated with highly inhomogeneous nature of sunspots (Chap. 9). With modern
instruments details of the wave phenomena in sunspots and their impact on the
overlying atmosphere can be studied in detail.

Figure 22.1 shows an example of umbral oscillations studied by chromospheric
imaging of a sunspot with the NST instrument at BBSO. The images were acquired
every 23 s by scanning of the Hα spectral line from the blue wing −1 Å to the
red wing +1 Å with a step of 0.2 Å. Images in the TiO 7057 Å line, that forms at
temperatures below 4000 K, were used to identify the boundary between umbra and
penumbra. The propagating velocities of umbral and penumbral waves are shown in
Fig. 22.2. The space-time image corresponds to the vertical slit marked in Fig. 22.1.
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Fig. 22.1 Left: Image of the sunspot NOAA 12132 taken with TiO filter at 7075 Å on Aug. 5
2014. Right: the power map of the dominant oscillation frequencies in the umbra. The red contours
show the cosines of magnetic field inclinations with levels of 0.85, 0.95, and 0.99. The dotted line
marks a slit position for the space-time analysis (see Fig. 22.2 below). The white contour outlines
the umbral boundaries (Su et al. 2016). Reproduced with permission of the AAS

Calculating the gradient of the ridges, one obtains the wave velocities. In these
observations the velocity distribution for umbral waves was found to range from
∼15 to 50 km s−1 , and for the penumbral waves from 6 to 20 km s−1. It is interesting
that these observations allowed to study a global rotation of wavefronts having a
spiral nature. Besides, the shock waves in the central part of umbra were clearly
identified.

Temporal pattern of shock waves are well observed in space-time images as
well as in temporal series of spectropolarimetric observations. Figure 22.3 shows
an example of the shock velocity observations in sunspot umbra simultaneously
in two spectral lines: Si I 1082.7 Å (photosphere) and He I 1083 Å line multiplet
(chromosphere). The observations were carried out at the VTT, the Observatory del
Teide on October 1, 2000, using the Tenerife Infrared Polarimeter (TIP).

Temporal evolution of Stokes V inside the umbra having a saw-tooth shape is a
clear evidence of shock formation above the umbra. This pattern has been observed
on a regular basis with different instruments (see, e.g., also earlier (Christopoulou
et al. 2001; Chae et al. 2015; Madsen et al. 2015; Yurchyshyn et al. 2015)). Note that
observations of the small-scale umbral brightenings were also found to be directly
associated with shock formation above the sunspot umbrae (Rouppe van der Voort
et al. 2003; Yang et al. 2015; Zhang et al. 2017; Song et al. 2017; Nelson et al. 2017).
These shocks may cause a surge-like oscillations in the overlying chromosphere
and transition region. Example of such event is shown in Fig. 22.4. It was found,
for example, that the Si IV 1402.77 Å (T ∼ 105 K, middle of the transition region)
is generally enhanced and broadened in the bright front, and the oscillation period
stays almost unchanged over a long time, indicating that the surge-like oscillations
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Fig. 22.2 The space-time map showing the mass motions with a clear wave pattern in the umbra
and penumbra.The solid lines mark the umbral/penumbral boundary (Su et al. 2016). Reproduced
with permission of the AAS

above light bridges are caused by shocks produced in underlying photosphere. It is
interesting that in the chromosphere, the Mg II K 2796 Å line first shows a large
blueshift, and then gradually decreases to zero before increasing to a redshift of
comparable magnitude. Such a behavior suggests that the oscillations are highly
nonlinear.

When studying shocks, one of the necessary thing is to measure the intensity
of spectral line vs wavelength, especially for several consecutive time steps, e.g.,
in Figs. 13.11, 13.12 and 13.13. Such measurements allow a simple quantitative
analysis described in Chap. 13 (based on Eqs. (13.14)–(13.15)).

The IRIS instrument allows to make such measurements directly. Example is
shown in Fig. 22.5. Upper panels show a regular saw-tooth shock pattern. Lower
panels depict the intensity profiles vs wavelength. A double-humped profiles typical
of shocks are well seen in the transition region (Si IV 1393.76 Å) and in the
chromosphere (Mg II 2796.35 Å) . Most importantly, the left peak of chromospheric
line is higher than the right one, which means that the shock is upward propagating.
In case of the transition region line, at t = 33.4 min (blue curve), the left peak
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Fig. 22.3 Temporal evolution of Stokes V inside the umbra. The Si I profile (lower part of the
figure) shows no apparent change with time, while He profiles (upper part) show periodic Doppler
shifts with a clear saw-tooth shape (Centeno et al. 2006). Reproduced with permission of the AAS
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Fig. 22.4 Space-time image of the IRIS 2796 Å SJI images along the slit crossing the center of
umbra and light bridge. The upper part shows the surge-like activities and light wall oscillations.
The lower part shows umbral oscillations (Zhang et al. 2017). Reproduced with permission of the
AAS

is also higher than the right peak, i.e., around this time the shock is propagating
upward, whereas at t = 33.7 min (red) line, the left peak is lower than the right one
indicating appearance of a reverse shock.

As described in Chap. 13, this kind of data allow full quantitative analysis and
estimate of the energetics of the event. To study further the stochastisity of umbral
oscillations and upward-downward propagating shocks, it is important to investigate
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Fig. 22.5 Upper panels: Wavelength-time plots for Si IV 1393.76 Å and Mg II 2796.35 Å at the
slit crossing the center of the umbra (shown is part of the time range). Lower panels: Profiles of
the two line intensities vs wavelength. Colors are related to different time. Typical profiles in the
plage are shown as the dashed lines. Courtesy of H. Tian

their dependence on several factors and compare results obtained under various
conditions such as: (1) character of the sunspot: whether the sunspot is isolated
or it is a part of active region; (2) how strong is activity of MMFs and, by contrast,
are there long-living coronal loops rooted; (3) what is the activity in the overlying
chromosphere/transition region which are the first to respond to the sunspot activity.

One can also search for appearance of solitons in accordance with Eq. (9.67) that
predicts both regimes, generation of shock waves in case of prevailing nonlinearity
and solitons in case of the balanced non-linearity and dispersion. From the
observational point of view the solitons may be less bright but will have much longer
lifetimes, and their propagation velocities may be close but below the local sound
speed.
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22.2 Magnetosonic Streaming and Fragmentation
of Magnetic Flux Tubes

Photospheric flux tubes buffeted by convective motions undergo a complex evolu-
tion. In particular, nonlinear coupling of surrounding motions and flux tube resulting
in magnetosonic streaming causes fragmentation of a flux tube which continues until
the individual fragments reach the critical radii and get diffusively dissolved into
the ambient plasma. At the same time, the process of fragmentation is accompanied
by the generation of secondary mass flows and current drive. In Chap. 10 we have
discussed these effects in detail. Below, we will demonstrate for convenience results
of some more numerical experiments (for description of numerical experiment and
theory, see Sect. 10.5).

Figures 22.6 and 22.7 show two regimes of flux tube evolution. Figure 22.6 shows
a final stage of flux tube evolution that first splits into two major elements still
surrounded by the peripheral magnetic field (cf. Figs. 10.4 and 10.5, Chap. 10)

Note that in the experiment shown in Fig. 22.6 the perturbation frequency is twice
as high as in the experiment shown in Fig. 10.4, Chap. 10 (Model 1). Although we
again witness the splitting of the initial flux tube, but this time into two major
satellites, while in Model 1 along two major newborn flux tubes there were two
weaker elements. In both cases, the process, of course, proceeds further until the
structure disappears, but it is important to investigate dependence of the process of
fragmentation on the oscillation frequency.

Another example of the flux tube evolution, showing dependence on the viscos-
ity, is given in Fig. 22.7 (only magnetic field evolution is shown). In this experiment
we deal with higher viscosity of medium.

One can see that at the time step t = 38 (i.e., much earlier then in previous cases),
flux tube acquires quite complicated shape that could be seen in the observation as
several satellites and a sigmoidal magnetic structure. Let us see how experimental
parameters translate into solar scales. The area of the frame is 20/H × 20/H . The
scale height in the photosphere is about 130 km, then we deal with the area of 2600×
2600 km. The small satellites marked by arrows 1 and 2 in the fourth panel have
roughly diameters D1 = 2.3H � 300 km and D2 = 2.7H � 350 km. This means
that with the resolution of about 100–200 km not only these satellites will be well
resolved, but their further evolution will be seen as well.

It is important to emphasize that the fragmentation process described above
may also be accompanied by generation of the upflow/downflows and aligned them
currents (see Sect. 10.4). The corresponding equations are quite simple, and contain
mostly directly observable parameters. With modern instruments one can verify
many aspects of these phenomena, and using simple theoretical estimates perform
quantitative analysis. High resolution data allow to better resolve the small-scale
magnetic elements and, making high cadence movies reveals more details of their
evolution (Vargas Dominguez et al. 2015; Martinez Gonzalez et al. 2016; Park et al.
2016; Requerey et al. 2017; Ermolli et al. 2017). For example, individual flux tubes
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Fig. 22.6 Nonlinear evolution of flux tube buffeted by acoustic field and convective motions
(Ryutova et al. 1996). Upper panels (t = 0): undisturbed contour lines of longitudinal magnetic
field, Bz(r), and the density [logρ(r)]. Four lower panels show results of final time step of the
experiment: the contour lines of magnetic field, the density contours, the generated current density
j = (jx , jy ), and the velocity field V = (Vx , Vy). Total illustrated area is (20 × 20) in units of
photospheric scale height H . The maximum values of the current density and velocity vectors are
in units of (ρc2

s /H)1/2 and sound speed cs , respectively. The time is in units of H/cs

seen at the resolution of, say 1′′, show at the resolution of 0′′.15–0′′.18 continuously
evolving complex internal structure in compliance with physics described above.
Recall that flux tubes may experience fragmentation until they reach a diffusively
vanishing limit which is about 40–70 km, i.e., 0′′.06–0′′.1.
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Fig. 22.7 Time evolution of flux tube in case of higher viscosity of medium: multiple fragmenta-
tion process proceeds faster and satellites acquire quite a complex shape
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arcsec

Fig. 22.8 Evolution of a multi-cored magnetic structure. First row: Longitudinal magnetic field,
Bz in kG; second row: line-of-sight velocity, vz in within the black contours remains equal to
2.9 × 1017 Mx. Overplotted blue arrows outline the horizontal flow field. The length of the blue
bar at the origin corresponds to 1.8 km s−1. Blue contours mark the periphery of the multi-cored
magnetic structure (Requerey et al. 2015). Reproduced with permission of the AAS

Figure 22.8 shows an example of the observations of flux tube evolution obtained
with the SUNRISE instrument (Solanki et al. 2010). This instrument allows to
study the dynamics of solar convection and magnetic fields in the quiet sun at a
resolution of about 110–130 km. The above example comes from high cadence
(33 s) time series of data obtained for a quiet Sun region close to disk center. A
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group of individual flux tubes having a common canopy in the upper photosphere
and behaving as a multi-cored entity evolves in a complex way: the individual flux
tubes continually intensify, fragment, and disappear during the observing interval of
about 23 min. Figure 22.8 shows an example of an uneven shaped magnetic structure
which during a short interval of time (shown only 4.4 min) fragments, intensifies,
and almost losses the smallest fragments, just in a way described by theory and
numerical experiments.

Note that along the horizontal velocity field (third row in Fig. 22.8) the appear-
ance of a significant line-of-sight (LOS) velocities was observed during the
evolution of “multi-cored” structures. It was found that LOS velocities could grow
from nearly 0 to 1.1 km s−1, reaching sometimes 3 km s−1.

It is interesting that the observed evolution of magnetic structures is accompanied
by the oscillatory behavior of a magnetic flux area (black contours in Fig. 22.8),
as well as of the magnetic field strength, LOS velocities and, the intensity.
Figure 22.9 shows the oscillatory character of the evolution of magnetic field

Fig. 22.9 Evolution of the magnetic field and line-of-sight velocities during the 23 min observing
time. Red and green lines stand for the leftmost and rightmost magnetic cores, respectively; the
black line is used when a single magnetic core is observed (Requerey et al. 2015). Reproduced
with permission of the AAS
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and LOS velocities. The observed oscillations are most probably associated with
the action of nonlinear oscillatory ponderomotive force which leads eventually to
nonlinear fragmentation process and generation of mass flows accompanied by the
current drive.

These studies complemented with newly developed feature-tracking algorithm
used for a statistical study of flux emergence, splitting, merging, and disappearance
(Anusha et al. 2017) would provide deeper insight into the fundamental processes
of magnetic flux evolution.

22.3 Penumbra and Moving Magnetic Features

In this section, we will discuss some developing aspects of moving magnetic
features (MMFs) and their impact to overlying atmosphere. Before doing this, it
is important to emphasize that the MMFs by their nature manifest the properties
of an energetically open system, i.e., dynamic system with unbalanced sources
and sinks of energy, so that locally their energy is not conserved. In the frame
of conservative systems it is impossible to understand their basic properties that
include their stability (and longevity), various forms that they make take, the fact
that they travel faster than the background flows, and that they can travel even
upstream. As discussed in Chap. 11, all their diverse properties are well explained
in the frame of nonconservative system sustaining the origin evolutionary kink
that acquires the properties of traveling solitons and/or shock-like formations. This
theory not only explains the origin and behavior of all types of MMFs, but allows
very simple quantitative analysis and comparison of the observations with theory
(Ryutova et al. 1998; Ryutova and Hagenaar 2007). What is studied less is the
impact of the MMFs on the overlying atmosphere.

In what follows we will discuss the observed correlation between the MMF
population and formation of large-scale coronal loops. In Sect. 11.9 we have already
discussed that as an ensemble, the families of MMFs have an essential influence on
the dynamics of the overlying atmosphere from nearest layers of the chromosphere
to corona. One of the essential findings was that an intense formation of a large
number of MMFs strictly correlates with the absence of large-scale “stable” coronal
loops (Ryutova et al. 2007). Such loops are usually rooted at the side of the sunspot
with no or few MMFs.

Multiwave observations of MMFs in and above the photosphere performed with
the Hinode/SOT instrument revealed more details in coupling of the MMFs and
overlying atmosphere (Hagenaar et al. 2012). The SOT observations of the large
sunspot, in NOAA AR 10933 (2007, Jan 4), in G-band, Ca II H, and Fe 6302 Å, were
complemented by the TRACE images in 171 Å (Fig. 22.10). An automatic object
recognition method (Hagenaar et al. 1999) revealed more than 200 MMFs. The
population of MMFs on the East side of the sunspot was found to be much higher
than on the opposite side Fig. 22.10 (dashed white semi-circle). Accordingly, the
chromosphere shows strongly enhanced brightenings with a clear pattern: enhanced
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Fig. 22.10 The SOT magnetogram (left) aligned with TRACE 171 Å corona (right). White dashed
semicircle demarcates the region of an intense MMF formation, while short black arrows outline
the regions of MMF deficiency. Accordingly, the corona (right panel) shows the systems of large-
scale loops rooted in “quasi-calm” regions with the deficit of MMFs and their absence at the side
of strong MMF activity (Hagenaar et al. 2012). Courtesy of H. Hagenaar

brightenings in Ca H outline the locations where opposite polarity MMFs meet,
suggesting their possible reconnections and subsequent shocks leading to enhanced
brightenings. The other side, with MMF deficiency, shows rooted there long living
“open” coronal loops.

The reasons that may cause the observed correlation between the preferable site
of coronal loops and the deficiency of MMFs were discussed in Chap. 11. The
model allows quantitative analysis and comparison with observations. In particular,
one can use high cadence movies to study (1) appearance of brightenings when
the opposite polarity MMFs meet, and (2) the brightenings that may appear above
unipolar MMFs. In the first case, the most probable effect is the reconnection
and subsequent post-reconnection processes that involve shocks and shock–shock
interactions (Chap. 13). In the second case, we deal with unipolar MMFs akin
the shock-like formation that in the overlying atmosphere result in strong behind-
shock heating (cf. Fig. 11.6). One can easily distinguish the brightening triggered
by these two different mechanisms. In the first case brightenings may take form of
microflares and their associated jets, whereas in the second case the brightenings
should be weaker.

The very fact of different response of the corona to the population of MMFs
is not clear. Most probably, the interaction of MMFs with each other producing
elevated activity in the overlying atmosphere may prevent formation of the long-
living coronal loops. This subject calls for further studies and may shed light on the
basic phenomena associated with sunspots.

More aspects of the MMFs coupling with overlying atmosphere can be studied
observing details of magnetic flux emergence around active regions and response of



622 22 What to Observe in Low Atmosphere

the overlying atmosphere to their activity. Example of such studies showed a cor-
relation between the activity among the MMFs and occurrence of the homologous
flares that triggered coronal mass ejections (Zhang and Wang 2002). Time-series of
high-resolution MDI magnetograms of the AR 9236 (November 24–26, 2000) were
used to follow the evolution of hundreds of MMFs from their birth to death. It was
found that the most visible magnetic changes around one of the sunspots (positive)
in the AR was the high rate of emergence of the MMFs. Three major peaks in their
number were clearly identified. Comparison with the subsequent homologous flares
and associated CMEs lead to conclusion that they were triggered in about the same
sequence as peaks of the MMF’s activity. This kind of observations are absolutely
“must” given an ample opportunities of modern instruments.

Interesting results were obtained by the observations of the MMFs interaction
with the larger scale emerging flux showing the generation of surges (Brooks et al.
2007). Studies of coronal jets associated with the MMFs and other small-scale
magnetic activity at the umbra/penumbra region were performed with the most
advanced solar instruments as well. Part of such works is systematized in Innes
et al. (2016).

Here we mention one more important aspect of the MMF’s signatures in the
overlying transition region/corona. Time series of data taken simultaneously by the
MDI on SOHO, TRACE 1600 Å and EIT He II 304 Å and the Normal Incidence
Spectrometer (NIS) of CDS/SOHO were aligned to study oscillatory behavior of
the transition region counterpart of the MMF (Lin et al. 2006). The wavelet analysis
was used to examine and compare the periodicities of time-series signals in different
regions. It was found that the chromospheric and transition region brightenings
associated with the MMFs exhibit the oscillations with a multitude of frequencies.
The region of the brightenings shows a tendency to be blue-shifted when compared
to the average motion of the entire field of view.

Figure 22.11 shows the correlation between the MMFs and the dynamics of the
transition region brightening. In the intensity time series (left panels) there is a
strong brightening above the MMFs area marked by the white box. Here, the de-
trended intensity variations clearly show a periodic oscillatory pattern. The dotted
horizontal line marks 0 km s−1. The bright patch over the MMF is between 35 min
and 60 min marks. One can see that this 35–60 min region is relatively blue-shifted
at y = 0 and y = 3.

These results indicate the presence of waves and/or flows associated the MMFs
that carry energy to the higher atmosphere. Recall that Type II MMFs that appear
as unipolar features have a shock-like nature. On the other hand, the other types
of MMFs representing a stable solitary features traveling in an inhomogeneous
environment may also evolve into the shock. Any shock in strongly stratified solar
atmosphere quickly reaches the transition region and coronal heights depositing
their energy at heights determined by the shock properties. The energy release of
along a strong brightening by shocks, as discussed throughout this book, may be
accompanied by generation of flows and oscillatory motions. The corresponding
theory contains directly observable parameters, and can be used for quantitative
analysis.
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Fig. 22.11 The O V 629.7 Å time series of the intensity variation (left), and the Doppler velocities
in the same line along the slit passing the region over the MMF (right): (a) the intensity variation;
(b) the de-trended intensity variation, the white rectangle marks the location of the MMF. The y

axis corresponds to coordinates of the pixels along the detector slit. Panels (c) and (d) show the
blue shift represented by negative velocities (Lin et al. 2006). Reproduced with permission from
A&A, Copyright ESO

Finally, as far as the MMFs are concerned, we mention here that to be born
the MMFs do not at all require the fully developed penumbra. They may appear
around the “naked” sunspot as well. These were observed during the analysis of
the short-lived sunspot group NOAA 10977, consisting of a following polarity pore,
that emerged first and then followed by the formation of a preceding polarity naked
spot depleted of penumbra. The observations were performed using G-band and Hα

visible lines co-aligned with the MDI and SOT magnetograms, the SOT/HINODE
Ca II, and the TRACE Fe 171 Å coronal line.

While measuring a moat flow around the naked spot, there appeared several
MMFs streaming out from it during the decay phase. According to their charac-
teristics, these MMFs were classified as type I (U-shaped) MMFs. It is important
that all the MMFs were found to be co-spatial with sites of increased brightness
both in the photosphere and in the chromosphere. Figure 22.12 shows four bipolar
MMFs around the naked spot. It is interesting that the SOT G-band images show
brightening spatially coincident with MMFs A and B only, while in the Ca II H line
images, all the MMFs are co-spatial with brightness enhancements. Even this fact
may be used in quantitative analysis in identification of MMF properties and for the
inference of the system parameters (see below).

Why the naked sunspot, not having a penumbral filaments, may give birth to
MMFs. The thing is that any sunspot, regular or naked has an internal filamentary
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Fig. 22.12 From left to right: (a) Hinode magnetogram showing the MMFs flowing out of the
negative polarity sunspot associated with the preceding naked spot. The circles indicate the
locations of MMFs A, B, C, and D. (b) Hinode G-band image showing the position of the
MMFs; MMFs A and B coincide with sites of brightness increase; black (white) contours indicate
negative (positive) polarities. (c) Hinode Ca ii H line image, showing that at this wavelength all the
observed MMFs are associated with an increased emission. The FoV field of view is 30×30 arcsec
(Zuccarello et al. 2009). Reproduced with permission from A&A, Copyright ESO

structure (see, e.g., Fig. 17.8). Any kind of filamentation of magnetic field under the
appropriate conditions may generate solitary kink. It is important that the birth of
the MMFs is not limited by the penumbral filaments. All is needed is the existence
of magnetic filaments and associated mass flows such that dispersion properties of
the system and nonlinear effects balance each other. Presence of gravity provides
additional properties, but even in case of a weak or no gravity, e.g., corona and solar
wind, conditions for solitons can be easily met. Hence, the observation of the MMFs
and measurements of their properties may be used to infer physical parameters of
the medium that are not directly observable. For quantitative analysis of the MMFs,
see Sect. 11.6.

22.4 Post-reconnection Processes

Now we turn to discussion of post-reconnection processes associated with the
photospheric reconnections. As we already know, 90% of solar magnetic field is
concentrated in small-scale magnetic flux tubes, and the entire supply of the “pepper
and salt” magnetic flux, forming quiet sun magnetic carpet, is replaced in about 40 h
(Title and Schrijver 1997; Schrijver et al. 1997). This estimate has been obtained for
network elements (NE) at scales of more than a few supergranules using a sequence
of early MDI magnetograms.

The next generations of solar instruments with higher spatial resolution opened
a platform for further improvement to investigate the behavior of small-scale flux
tubes and their ensembles.

The important contribution into studies of the appearance and disappearance
rates of flux tubes and the estimate of the recycling time of quiet sun magnetic carpet
was done by using high resolution Hinode magnetograms (see, e.g., Gošić et al.
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Fig. 22.13 Example of individual supergranular cell from 20–21 January 2010 data sets (left).
Left: The cell and its surrounding network; interior is outlined by pink contours and the
surrounding NE flux features are marked with blue contours. Red contours show IN elements
that appear in situ. Fading elements are marked by orange contours, apparently canceling elements
by green contours, those that enter the NE and interact with NE features by purple contours. IN
patches that do not undergo any of those processes are indicated with yellow contours; Right: inlet
shows zoomed out portion of network/inter-network boundary for further discussion (see text)
(Gošić et al. 2016). Reproduced with permission of the AAS

2014, 2016). The new aspect here was consideration of the inter-network magnetic
elements (IN) and their role in the total replacement of the quiet sun magnetic carpet.
Note that the internetwork magnetic elements are mostly less than 1′′ and therefore
were beyond the MDI resolution. Example of a target region is shown in Fig. 22.13.

All the elements were counted individually, regardless of their nature. In
tracking magnetic elements, 5 major processes were taken into account: (1) In-situ
appearance; (2) The coalescence of two or more elements of the same polarity into a
larger structure; (3) Fragmentation, when an element splits into two or more smaller
features; (4) Cancellation of a magnetic element in the vicinity of an opposite-
polarity feature; (5) In-situ disappearance, the process whereby magnetic elements
disappear from the solar surface without an obvious interaction with any other
feature.

It was found that the IN magnetic elements modify the flux budget of the
network, either by adding flux through merging processes or by removing it through
cancellations. Merging was found to be dominant, thus increasing the net magnetic
flux.
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Our goal here is not to go into more details of the above-mentioned results, but
clarify the processes occurring during lifetime of magnetic elements and what could
be observed next. Each of the processes listed above, i.e., appearance of magnetic
elements, their merging, fragmentation, cancellation, and in-situ disappearance, is
accompanied by the physical processes that can be identified and observed.

One of the major processes is the reconnection, which occurs inevitably, be the
magnetic elements of the opposite or the same polarities (see Figs. 12.6 and 12.7).
As discussed in Chap. 12, the outcome of photospheric reconnection in high plasma
β environment is totally different than that in the low β plasma. The most important
difference is that in low atmosphere the reconnection does not lead to the immediate
heating like in corona, but sets the system in strongly nonlinear stage, triggering at
later stage appearance of jets, microflares, and their combinations (Tarbell et al.
2000).

The strongest activity in the photospheric reconnection is observed, as expected,
at the network boundaries and especially at the vertices where several supergranules
converge (see, e.g., Fig. 13.9). As described in Chap. 13, in case of “merging” or
“cancellation” of the opposite polarity fluxes, in the overlying chromosphere and
transition region one systematically observes appearance of blinkers/microflares and
plasma jets. Example similar to those discussed in Chap. 13 is shown in Fig. 22.14.
Hence, both, in cell interior and at the boundaries reduction of magnetic flux
accompanied by appearance of bright transients in the chromosphere/transition
region, thus providing a permanent energy supply to the upper layers of atmosphere.
Although the expectation of jets and microflares above the network/internetwork
boundary is much higher than above the cell interior, it is not at all negligible. Note
that in case of coalescence of the same polarity fluxes, the reconnection leads to
fragmentation process (cf. Fig. 12.7).

Such studies complemented by the statistical analysis of network and internet-
work magnetic elements and associated energetic events will provide better under-
standing of the processes of energy production and its transport. Some steps have
been already done in the direction of an automatic detection of small-scale brighten-
ings in the corona and evolution of their underlying magnetic elements in the photo-
sphere. For example, tracing of photospheric flux tubes and corresponding appear-
ance of soft X-ray brightenings that could be blinkers, microflares or jets were per-
formed simultaneously using time series of high resolution HMI magnetograms and
the SDO/AIA Fe IX line (Honarbakhsh et al. 2016). Snapshots of the corona and its
underlying magnetogram are shown in Fig. 22.15. Green asterisks in the upper panel
correspond to 85 detected microflare/jets. Lower panel is the snapshot of the track-
ing of the photospheric magnetic elements. It was found that 27% of the events had
slight changes and 73% showed considerable changes in magnetic flux. Note that
most of the brightenings/dimming took place above the supergranular boundaries.

A direct connection of the Hα surges with cancellation of photospheric magnetic
fields and subsequent appearance of UV jets and compact flares have been observed
in quite regular basis (see e.g. Young and Muglach 2014). For example, the Hα

surges were found to appear repeatedly in those locations where the photospheric
longitudinal fluxes of opposite magnetic polarities emerged and were canceled
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Fig. 22.14 Examples of magnetic activity in the cell interior and at the network/internetwork
boundary. Left: the 60′′ × 120′′ MDI magnetogram with uneven circles marking the supergranular
pattern; Upper right: The evolution of magnetic flux and intensities in the TRACE CIV and
SUMER OVI at the network/internetwork boundary—reduction of magnetic flux is followed by
appearance of a strong transition region microflares (T � 105 K, red line) and jets (T � 3×105 K,
blue line). Bottom right: reduction of magnetic flux here is also followed by microflares, that is
significantly weaker than their counterparts located at the boundaries

by each other (Chen et al. 2008). The dynamic properties of surges were found
to vary in wide ranges, as well as the intensities of their associated microflares
and corresponding energy release. In 1600 Å, some surges showed the composite
structures of bright jets and nearby small flaring loops (Fig. 22.16). A projected
maximum lengths of surges range from 38 to 220 Mm, and their transverse velocities
are 30–200 km s−1 with lifetimes from several to tens of minutes. It was found that
each surge was accompanied by an Hα brightening. These observations indicate
that origin of the surges is the direct result of photospheric magnetic reconnection.

Photospheric reconnection in complex active regions and their accompanied
phenomena were also studied using high-quality Hα imaging spectrometry from
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Fig. 22.15 Snapshots of the soft X-ray corona (upper panel) and its underlying quiet sun (lower
panel). Green asterisks show location of coronal brightenings associated with a dimming or wave-
like features traveling with velocities of tens of km s−1. Yellow asterisks in lower panel are the
locations where a significant reduction of photospheric magnetic fluxes has been observed. Inlet in
the upper panel corresponds to the field of view of the underlying magnetogram (lower panel)
(Honarbakhsh et al. 2016). Reproduced with permission from Springer Science and Business
Media

the Swedish 1-m Solar Telescope (SST). The observed transient brightenings in
the wings of the Balmer Hα line were found to mark strong-field reconnections
in the photosphere. These brightenings are similar but smaller and less intense that
those occurring in quiet areas away from active regions. Their typical lifetimes are
less than a minute. The authors emphasize that in lesser-quality data they cannot
be distinguished from more ubiquitous facular brightenings, nor in the ultraviolet
diagnostics currently available from space platforms.

The appearance and morphology of these small bright Hα flames is illustrated in
Fig. 22.17, including comparison with larger and brighter Elerman Bombs flames.
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Fig. 22.16 BBSO full-disk Hα images of the surges occurred at the same location in different
times (shown in each frame) (Chen et al. 2008). Reproduced with permission from Springer
Science and Business Media

Fig. 22.17 Examples of Elerman Bombs and quiet sun brightenings around the active region AR
11778 near the limb. The axis are in arc secs. Right panels contain examples of a quiet sun, A and
B, and inlets C and D sample the active region. Quiet sun brightenings are visible as bright flames
in the Hα wings, as smaller and weaker features in A and B, and as larger and brighter Elerman
Bombs in C and D (Rouppe van der Voort et al. 2016). Reproduced with permission from Springer
Science and Business Media

The right panels show enlarged cutouts in quiet areas (A and B) and, for comparison,
two areas in the active region (C and D). It was clearly shown that there is an
extended range of small reconnection events in the low atmosphere, with variation in
magnetic topography, released energy, and penetration into the higher atmosphere.
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Observation and statistical analysis of events occurring above the internetwork and
network regions paying special attention to the boundary region can give reliable
estimate for the energy supply provided by photospheric small-scale magnetic
network to overlying atmosphere.

22.5 Misuse of Reconnection Physics

Now it is useful to discuss the problem associated with misuse of reconnection
physics. The word “reconnection” is now used in most observational papers
describing high energetic events that include chromospheric and coronal jets, CMEs,
bursts in the active regions, violent eruption of quiescent prominences, etc.

Important: the reconnection itself cannot explain a great variety of active
phenomena observed throughout the solar atmosphere. But careful insight into the
time steps of a particular event may provide better understanding of the process and
even its quantitative picture.

The process of magnetic reconnection in the solar atmosphere from its visible
surface to solar wind occurs everywhere at any moment of time. Intrinsic filamen-
tary structure of solar magnetic field at all scales ensures the universality of the
reconnection process that occurs both, between the opposite and the same polarity
fluxes (see Figs. 12.6 and 12.7). Hence, the reconnection can be called atmospheric
breathing of the Sun. But despite its pervasive nature, the reconnection alone cannot
explain the majority of large-scale burst, eruptions and flares. By its nature, the
reconnection is quite a local process with its characteristic spatial and time scale.
For example, under the photospheric conditions cross section of magnetic flux
participating in one elemental act of reconnection is about 40 km. On the other
end of extremes is the time scale of coronal reconnection that is too large, for
example, the time scales are too large to rely on the reconnection process alone.
For example, Fig. 22.18 shows quite an ordinary environment and its activity. Two
neighboring active regions, the decaying AR 12030 and still young AR 12027, are
covered by permanent brightenings and jets in the overlying chromosphere. A large
area of quiet sun (scattered white arrows) and plage (black arrow) are covered by
permanent brightenings. Because of the smaller filling factor in the quiet sun area,
chromospheric brightenings here are less intense than over the plage region.

Higher magnetic filling factor of active regions and, respectively, large supply of
magnetic field provide larger energy supply to overlying chromosphere. Here, one
requires continuous elemental acts of reconnections that occur until “supplies last.”
Accordingly, bright patches and jets remain in place, again, as long as “supplies
last.” Now the spatial and time scale of reconnection is only a constituent part of
many spatial and time steps determined by the amount of magnetic flux.

Using the above example, it is instructive to discuss some details and obvious
differences in the chromospheric brightening above the young (AR 12027) and
decaying active region (AR 12030). The chromosphere above AR 12027 is less
brighter than above the AR 12030. Moreover, during 24 h the AR 12030 produced
five C1 flares, whereas the AR 12027 gave off the accumulated energy in form of
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Fig. 22.18 Chromospheric activity above the active regions 12027 and 12030 on April 04, 2014,
taken by SDO/HMI (upper panel showing a magnetogram) and SDO/AIA in 304 Å at three
instances of time. Credit: SDO/NASA

a single C8 flare accompanied by a strong post-flare mass ejection (lower panels in
Fig. 22.18). This kind of regularities are quite natural. The young AR 12027, which
is much less “wearied out” than the decaying active region can withstand to more
reconnection events and accumulate more energy until it reaches the saturation limit
and bifurcates into the lower energy state releasing the energy excess.

Here we come to the most important conclusion: it is the post-reconnection
processes triggered by multiple-reconnections that are responsible for a great variety
of solar energetic phenomena. Hence, when analyzing the data, it is important to
study details of the process with highest possible resolution and time steps.
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22.6 Explosive Instability and Post-reconnection Jets

Now we turn to one of the major processes associated with the post-reconnection
processes: the explosive instability that quickly develops in energetically open
dynamic system like solar atmosphere. Such systems are usually subject of non-
linear evolution associated with continuous pump of energy into them. When the
system reaches the saturation regime, it explosively releases the accumulated energy
and bifurcates into the lower energy state.

Explosive instability of multiple erupting flux tubes in a magnetized plasma has
been proposed as a mechanism for fast (at Alfvénic timescales) energy release
(Cowley et al. 2015). It was shown that just above their linear stability threshold
all fine scale pressure and gravitational instabilities obey a generic equation that
yields explosive dynamics. Studying a particular mechanism that leads to explosive
release of stored magnetic and gravitational energy in a slowly evolving system that
suddenly erupts, the authors leave several questions that are still without quantitative
answers. Such as:

1. What triggers the instability?
2. What sets the timescale? How much energy is released?
3. How much energy is converted into heat and energetic particles?

These questions call or detailed studies both in theory and by observations.
Now we move to the problem of energy supply provided by the photospheric

network. We start with the practical use of high cadence multi-wavelength data
compiled in movies that show the entire process from the reconnection of pho-
tospheric flux tubes, shock formation, their evolution and resulted generation of
microflares and jets in the overlying chromosphere/transition region (cf. Sect. 13.4).
Recall that a double-humped peak in the spectra is the signature of a shock. If the
higher peak is on the left of the shorter one (i.e., on the shorter wavelength), the
shock is propagating upward towards higher temperatures, and v.v.

Using the spectra obtained from observations, and applying shock relations
one can infer physical parameters, such as Mach number, direction of the shock
propagation, shock velocities, and others. In particular, as discussed in Sect. 13.4,
the difference Δλ∗ is a measure of shock velocity. Indeed, Δλ∗ is a difference
between the Doppler shifted spectral lines resulted from mass motions, v2 (left peak)
and v1 (right peak). The velocity difference is

v∗cosθ = Δλ∗

λ0
c (22.1)

where θ is the angle between the direction of flow and line of sight, λ0 is the
wavelength of unshifted line. For example, for SUMER CII, λ0 = 1037.06 Å and
for O VI, λ0 = 1037.656 Å.
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The velocity in front of the shock v1 and behind the shock velocity v2 are related
by Mach number:

v2 − v1 = cs
2(M2 − 1)

(γ + 1)M
(22.2)

which can be used to estimate first the Mach number M = vsh/cs , and then the
shock velocity:

vsh � γ + 1

2
(v2 − v1) (22.3)

For usage of these simple calculations, see Fig. 13.12 and its accompanying text.
Below we show one more time that even shock–shock collision is easy to observe
and using above equations perform quantitative analysis Fig. 22.19.

As discussed in Sect. 13.5, explosive events are usually preceded by the shock–
shock collision. It is instructive to show how easily such an event can be observed
(see Fig. 13.12). Quantitative analysis of such data would not only provide the
physical parameters of the process but will also make possible to estimate the energy
content of such events.

The explosive events are readily observable over the photosphere covered by the
mixed polarity flux tube and form basis to study an avalanches of post-reconnection
shocks. As already discussed, especially rich are of such events the vertex regions
where the supergranular boundaries meet. For the same reason, frequent events
can be observed at the coronal hole boundaries. Here, the presence of opposite
polarity magnetic field concentrations and co-existence of closed and open magnetic
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Fig. 22.19 Example of the observed shock–shock collision. Red is the chromospheric CII spectral
line and blue is the transition region O VI line. Shock O VI line profile shows the right peak
exceeding the left peak signifying that the shock is propagating downward (only one line for each
temperature is shown). In fact the O VI shocks interact with a series of upward propagating C II
shocks leading to generation of strong explosive events (Ryutova and Tarbell 2003)
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Fig. 22.20 Sequence of the explosive events in SUMER O VI line observed at a coronal hole
boundary. Upper panels from top to bottom are the O VI integrated flux (logarithmic scale), line
widths (logarithmic scale), and the Doppler velocity (linear scale, 20 km s−1). The bottom panel
shows the spectral radiance, L, integrated over 30 s for an interval of 5 min, showing how rapidly it
changes during the sequence of explosive events. The thin black contour on these images represents
the average spectral radiance in a quiet sun (Doyle et al. 2006). Reproduced with permission from
A&A, Copyright ESO

fields provide favorable conditions for frequent reconnections at various heights, and
hence for generation of post-reconnection shocks and explosive events.

Figure 22.20 shows an example of recurrent explosive events observed at a
coronal hole boundary (Doyle et al. 2006). The SUMER O VI 1032 Å data with
spatial resolution of 1 arcsec and an exposure time of about 10.5 s were taken during
several hours. When slit passed coronal hole boundary the sequence of recurrent
explosive events were detected. The space-time map of biggest concentration of
explosive events is shown in three upper panels of Fig. 22.20 which includes the O
VI integrated flux, FWHM, and the Doppler velocity.The Doppler map is however
only an indication of excess blue/red wings in the line. Single line profiles of spectra
are shown, as an example, for a short period time of 5 min (lower panel). The spectra
clearly show double humped profiles typical to shocks and accompanying them
explosive events.

It is important to emphasize that jets and explosive events resulted from the post-
reconnection process have an obvious tendency to recurring: recall that when flux
tubes reconnect, only a small part of each flux tube participates in one elemental
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act of reconnection (see Chap. 12, e.g., Figs. 12.6 and 12.7). Maximum radius
participating in the elemental act of reconnection is estimated as

Rmax <
L

2lnRem

(22.4)

where L is the characteristic length of the system, and Rem is the magnetic Reynolds
number. For the photospheric flux tubes we get the estimate Rmax ∼ 40–70 km.
Hence, the flux tubes having radii of several hundred km are the subject of multiple
reconnections. Thus, it is only natural to expect the appearance of the avalanche of
shocks and subsequent generation of recurrent jets and explosive events.

Observation of the recurrent jets can provide additional information about the
system parameters (see e.g. Mulay et al. 2017; Sterling et al. 2016). For example,
the periodicity of their recurrence may be associated with reconnection time, which
is

τrec � R

wmax
= RlnRem

vA

(22.5)

One could say that the solar atmosphere from its visible surface to outer corona and
winds is pierced by plasma jets, just like it is pierced by threaded magnetic fields.
As discussed in Chap. 14, the jets must be generated continuously over the entire
small-scale network as a result of post-reconnection processes occurring from the
bottom of the photosphere to the upper chromosphere (Fig. 14.3).

Figure 22.21 shows example of the chromosphere/transition region jetting
above the quiet sun observed with IRIS (Tian et al. 2014). These data reveal the

Fig. 22.21 An unsharp masked 1330 Å slit-jaw image (a); Maps of intensity and line width from
a Gaussian fit of Si IV 1393.77 Å line profiles. The vertical line indicates the slit location (b and c)
(Tian et al. 2014). Reproduced by permission of the AAS
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Fig. 22.22 Photospheric reconnection and post-reconnection jets observed on 13 Nov 2012 in
the quiet sun region. Panel (a): The yellow box shows the area of reconnection; the red dashed
line shows the space-time cut shown in panel (e); Panel (b): A pre-jet microflare in AIA 304 Å;
Overlaid black and white contours represent negative and positive polarities; Panel (c) Developed
jet in AIA 171 Å; Panel (d) “Consumption” of positive flux with the dashed line showing onset of
the jet eruption; Panel (e): The space-time cut showing the tracks of positive and negative fluxes;
the red line marks the moment shown in Panel (c) (Panesar et al. 2016). Reproduced by permission
of the AAS

ubiquitous nature of small-scale jets with speeds of 80–250 km s−1 associated with
the narrow bright network lanes of the chromosphere/transition region. These jets
have lifetimes of 20–80 s and widths of about 300 km. They originate from small-
scale bright regions, often preceded by footpoint brightenings. Many jets reach
temperatures of at least ∼105 K.

High resolution observation shows also the direct connection between the
photospheric reconnection and formation of strong coronal jets. Example of the
coronal jets associated with the photospheric reconnections is shown in Fig. 22.22.
It is only natural that in this case the process of multiple reconnections takes much
longer time than for generation of ubiquitous chromospheric jets. During this time,
i.e., from the significant cancellation of photospheric magnetic fluxes to appearance
of coronal jets, that took several hours, there were continuous brightenings over the
future location of coronal jet. One can use quantitative analysis described above to
all the steps of the process that starts with reconnection of photospheric flux tubes
and proceeds to formation of jets and microflares.
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Chapter 23
What to Observe in the Upper
Atmosphere

Abstract In this chapter, we shall discuss some aspects of solar phenomena that can
be described as “what to observe in upper atmosphere.” As in the previous chapter,
examples of the observational results will follow the content of the book. And, again,
when possible, quantitative analysis based on theoretical aspects presented in the
book will be discussed.

23.1 Braided Magnetic Structures and Screw Pinch
Instability

We start with the amazing phenomena of braidlike structures observed in the corona.
Braidlike structures in the X-ray emission were discovered by Richard Shine (Shine
et al. 1999) while studying the photosphere/corona coupling using the data taken
simultaneously by the TRACE, MDI/SOHO, and the Swedish Vacuum Solar Tower
(SVST) at La Palma. Eventually, like in laboratory plasmas, magnetic braiding
turned out to be ubiquitous for solar atmosphere, from sunspot penumbrae to outer
corona. As the magnetic braiding is described by the basic physical parameters of
a system and, in principle, allows quantitative analysis, its observation is extremely
useful.

For convenience we will show below one of the episodes from those discussed
in Chap. 15. Figure 23.1 shows an exemplary event of the coronal braiding seen
above the unipolar plage. It is important to emphasize that it is a true braiding
structure and not the X-ray emission of twisted flux tubes. In other words, it consists
of two independent interlaced “bodies” forming a long zigzagging structure. For
clarity, small square segments marked by “1” and “2” in left panel are made in
order to follow intensity borders of two “ropes” aligned with their apexes. One
can see that “left” and “right” apexes are shifted with respect to each other. The
measured intensity variations over these areas are shown in the right panel of
Fig. 23.1. Both peaks appear with about 15 min periodicity. Eventually the coronal
emission strongly intensifies presumably due to the collapse of self-organized
braidlike structures that leads to concentration of energy in a small volume and
thus to the dramatic increase of the temperature in squeezed volume (cf. Fig. 15.14).

© Springer Nature Switzerland AG 2018
M. Ryutova, Physics of Magnetic Flux Tubes, Astrophysics and Space Science
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Fig. 23.1 Space-time behavior along the cut made over a spongy coronal emission in TRACE Fe
IX/X 171 line above the rarefied plage region (see Chap. 15). The vertical scale marks 177 min
time interval. Tiny white boxes of 2.2 Mm × 2.2 Mm area are aligned along “left” (1) and “right”
(2) apexes of braids and will serve for the measurement of the intensities of braids. Two middle
panels show a blown up image of marked segment with lines that follow the emission pattern.
Last panel contains the intensity curves measured for regions of the “left” (1) and “right” (2) apex.
The coronal emission strongly intensifies leading to explosive growth of energy (right panel). Thin
curve represents an integrated background intensity (Ryutova and Shine 2004)

Note that, although line-of-sight snapshots of the corona show only a spongy
emission, under a favorable angle, the braids can be observable in space as well. A
spatiotemporal braids are naturally formed by twisted flux tubes that often wrap
around each other. High-resolution observations reveal the ubiquitous nature of
twisted shape of magnetic flux tubes that wrap around each other. Excellent exam-
ples were given, from sub-arcsec observations of penumbral filaments (Scharmer
et al. 2002; Sutterlin et al. 2004; Rimmele and Marino 2006; Ryutova et al. 2008)
to coronal structures (Ravindra et al. 2011; Cirtain et al. 2013; Pant et al. 2015;
Wang et al. 2017). Figure 23.2 shows high resolution (of about 70 km) image of
penumbra where majority of filaments are clearly twisted (Ryutova et al. 2008) and
some show braiding (see Chap. 17). Left panel is taken in G-band and the right panel
is G-band/4396 Å continuum difference. On the G-band image among number of
twisted filaments, the filament marked by arrow “1” does not show a clear twist
whereas G-band/4396 Å continuum difference image clearly reveals a screw pinch
configuration with easily measurable pitch. Moreover, the space-time cut made close
to the “bottom” of the filament shows a twisted motion with well kept period. Such
measurements allow full quantitative analysis and comparison with theory.

Note that, as discussed in Chap. 17, screw pinch instability is often facilitated by
reconnection (Ryutova et al. 2008). Thereby, when observing the twisted structures
they must be accompanied by the energy release that can be observed in form of
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Fig. 23.2 Screw pinch configuration of penumbral filaments: (a) G-band and (b) G-band/4396 Å
continuum difference image of 3 Mm area of penumbra, arrows 1 and 2 show clearly twisted
filament and filaments braiding, respectively; (c) Space-time image along the cut on the G-
band/4396 Å continuum difference image showing cork-screw motion of a filament 1 (not in scale)

(a)  1-Nov-2014 05:20:11.340 UT (b)  1-Nov-2014 05:37:35.340 UT

Fig. 23.3 The braidlike structure (marked by a rectangle in left panel) and its unraveling phase
(right panel) (Wang et al. 2017). Courtesy of W. Wang

microflares, jets, or their combinations. This process is quite general and may occur
at any height and at any temperatures in system of structured magnetic fields.

For example, the appearance of braidlike structure has been reported while
observing the formation and evolution of a quiescent prominence (Wang et al. 2017).
In time, the prominence body rose upward and formed an arch-shaped structure
which then writhed in counterclockwise direction. At some point a braidlike
structure appeared at the edge of the skewed arch (Fig. 23.3). Figure 23.4 shows
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Fig. 23.4 Transient brightening associated with the unraveling of the braidlike structure. The plot
shows temporal variation of the normalized average intensity from the rectangle in left panel of
Fig. 23.3 with the seven AIA EUV passbands. The vertical dotted lines indicate the time interval
during which the braidlike structure was clearly visible (Wang et al. 2017). Courtesy of W. Wang

the process of unraveling that was observed to be accompanied by the brightening
of the prominence material in 304, 171, and 131 Å.

Note again that it is important to distinguish between the temporal braidlike
behavior which, among other properties, allows to follow independent ropes
forming the braids (like in Fig. 23.1), from the screw pinched ropes performing the
corkscrew motion (like in Fig. 23.1). One of the major difference of these visually
similar phenomena is that the “true” braiding is a long process that may last hours,
and has clear properties of self-organized state. Such self-organized structures are
long-living and carry a significant amount of energy. Collapse in the system will
produce strong heating and violent energy release.

The ropes and flux tubes subjected to screw pinch instability have shorter
lifetimes and may be accompanied by the axial mass flows leading skewing of
the twisted ropes. The most reliable tool in studying these phenomena is space-
time analysis and quantitative estimates. Note that in the above-mentioned examples
(Wang et al. 2017), several very clear signs indicate that the part of the prominence
experienced the action of screw pinch instability. These are, e.g., a short spatial
twist, the axis of twisted structure showed skewing, and enhanced brightening was
most probably associated with reconnection (cf. Fig. 17.7).

The dynamic braiding, as natural phenomena in energetically open systems, may
be observed in wide range of spatial scales. For example, a large-scale braiding in
the erupting prominence is shown in Fig. 23.5.

Fine-scale coronal loop braiding, practically unresolved by the SDO instruments
having 1.0 arcsec resolution, is well detected by the High-resolution Coronal Imager
(Hi-C) having ∼ 0.2 arcsec resolution. Figure 23.6 shows snapshots of a narrow
coronal loop braided along its length (Cirtain et al. 2013). Observation of the
intensity of emission in a loop at several AIA wavelengths revealed that the twist
in the braided structures increased with time. At some moment, a small flare,
accompanied by strong (150 km s−1) outflows, was observed at the intersection of
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Fig. 23.5 A violent coronal mass ejection observed on 2015, Feb 24, UT 10:17. The prominence
mass started to lift at about UT 08:30, showing during its active phase showed a clear braided
structure. At about UT 10:35 the structure started to collapse. Field of view is 3.2 × 4.0 Mm2.
Courtesy of NASA/SDO

Hi−C unsharp masked
image

AIA 304 A

UT 18:55:20 UT 18:56:04 UT 18:56:04

Hi−C 193 A

Fig. 23.6 A coronal loop at several temperatures. Left: the AIA image in 304 Å; Middle:
“unsharp mask” version of Hi-C data constructed by smoothing the original image and subtracting
the processed image to enhance the shapes of fine-scale structures; Right: the Hi-C image in
193 Å (Cirtain et al. 2013). Reprinted with permission from Springer Science and Business Media

the converging strands. AIA data in several passbands showed repeated impulsive
events. This braided bundle of loops were observed for over 12 h and with repeated
brightening occurring during the entire observation period.

Note that (Parker 1972) put forward a coronal heating mechanism associated
with magnetic braiding assuming that the corona responds quasi-statically to the
footpoint motions, and due to the random walk of the footpoints the coronal
field lines become tangled and braided. Then, in ideal MHD the magnetic free
energy builds quadratically with time (see also Berger 1993). Comparison with
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observations lead to establishing the role of the reconnection between the tangled
magnetic threads (Berger et al. 2015). It was shown that the reconnected field lines
evolve to a self-organized critical state. In this state, the frequency distributions of
coherent braid sequences as well as flare energies follow power law distributions.
Theory of self-organization is quite well developed for quantitative analysis and can
be effectively applied to high-resolution data.

23.2 Electrodynamic Coupling of Corona and Underlying
Photosphere

Energetically open systems of currents may be driven into various dynamic forms
via nonlinear processes with continuous flow of matter and energy. Depending
on the system parameters these may be long-living steady loops showing subtle
oscillations, loops in the, and the periodically flaring and exploding loop systems.
The theory predicts that the EUV loops must have a filamentary structure and
allows one to estimate the limiting currents and critical radii of elemental filaments
associated with the stability criteria. Addressing these problems in Chap. 16, we
paid special attention to the following issues:

1. How do the coronal loops formed.
2. What determines their shape, size, and lifetime.
3. Why one loop system produces X-ray flares and relaxes to long-living system

of self-organized slinky structure, while other loop systems gradually decay
producing only occasional weak flares or no flares at all.

4. What determines the filamentary structure of coronal loops and their physical
parameters. Are there some critical parameters like the radius of elemental loop,
electric currents, etc.

Figure 23.7 shows snapshots of the “initial” and “developed” states of the target
region. One can see a group of the positive polarity flux tubes that form in the
beginning of the observation, a pattern resembling a kitten paw. The corona above
this region shows a quiet amorphous emission typical of regions overlying unipolar
magnetic plages. A global changes start with strong subsurface disturbances that
grow fast and pierce a whole overlying atmosphere including corona. What we learn
in a few minutes is that this surge was a precursor of emerging magnetic field that
eventually formed a bipolar pore. By that time a surge flows “calm down” and a
system of small coronal loops was formed. This example shows the birth of the
coronal loop systems. In the same way, studying the emergence of surges one can
predict and observe the formation of coronal loops.

Farther, it was shown that various regimes of the evolution of coronal loops can
be described by the Van der Pol equation. Depending on the system parameters
the Van der Pol equation describes a long-living steady loops showing subtle oscil-
lations, loops in the relaxation regime, and the periodically flaring and exploding
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Fig. 23.7 Emergence of a strong surge and loop formation (Ryutova and Shine 2004)

loop systems. Most importantly, solutions of equation are expressed through directly
observable parameters, allowing thus quantitative analysis.

The theory also predicts that the EUV loops must have a filamentary structure and
allows one to estimate the limiting currents and critical radii of elemental filaments
associated with the stability criteria. A critical radius of elemental filament for each
individual structure is also a simple function of the observed parameters and can
be used for diagnostic goals. Comparing the observed radius of elemental coronal
loops and using other observed parameters, one can predict the behavior of the loop
systems.

The same procedure can be applied to observations similar to those that study
post-flare coronal loops which become filled with evaporated chromosphere plasma
and become detectable in Hα. It was found, for example, that post-flare loops
have multi-thermal, multi-stranded substructures (Scullion et al. 2014). Many cool
strands were found to fully extend intact from loop-top to footpoint. The estimate of
the strand number density versus cross- sectional width was found to peak at well
below 100 km.

The flare studied with the 1.6 m New Solar Telescope (NST) equipped with
high order adaptive optics at Big Bear Solar Observatory (BBSO) also revealed
unprecedented details, coronal rain streaming down along the post-flare loops, and
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Fig. 23.8 Panel (a) a snapshot of Hα + 1.0 Å image taken in the decay phase of the flare. Six
short slits show where the cross-section of six loops were measured. Panels (b–g): the normalized
Hα + 1.0 Å intensity profiles (black dots) along the slits and the Gaussian fits (black curves).
The Gaussian FWHM and its ±3σ are provided in each panel (Jing et al. 2016). Reprinted with
permission from Springer Science and Business Media

the response of the chromosphere to the impact of coronal rain, showing fine-scale
brightenings at the footpoints of the falling plasma (Jing et al. 2016). The measured
cross-sectional widths of flare ribbons, post-flare loops, and footpoint brightenings
were found in the range of 80–200 km.

Figure 23.8a shows a Hα + 1.0 Å snapshot of the post-flare loop system. Six
short cross-cut slits in Fig. 23.8a single out the loops (marked by letters b–d) for
which the cross-sectional Gaussian FWHM has been measured. These were found
to be within a range of 89–133 km (Fig. 23.8b–g).

Note that the analysis of the same data sets (Wang et al. 2017) showed that
the M6.5 flare that occurred in the system had precursors observed as small pre-
flare brightenings in various wavelengths. These precursors were also found to
be associated with small-scale magnetic configurations such as opposite-polarity
fluxes.

The observed regularities fit well the scheme described by Van der Pol oscillator
that includes the photospheric driver, magnetic field that interconnects the β ≥ 1
energy source region with the β � 1 dissipation region, feedback between the
current generation and dissipation regions, and formation of small-scale threads
comprising coronal structures.

A useful example of application of the Van der Pol equation is given in
connection of weakly damping kink oscillations of coronal loops observed in non-
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flaring active regions (Wang et al. 2012; Anfinogentov et al. 2015; Nakariakov
et al. 2016; Liu et al. 2016). The oscillations of multi-stranded loops with growing
amplitudes and internal coupling observed with the SDO/AIA revealed the presence
of multi-thermal strands, whose dynamic behavior showed differences in their
oscillation amplitudes, phases, and emission. Most importantly these oscillations
not only kept their amplitude undamped but at some point showed growing pattern
(Wang et al. 2012).

Figure 23.9 shows the magnetic flux evolution of the three bands along a cut
at the loop’s apex. During the first 20 min, the loop in 171 Å already shows a
weakly damped oscillations that become more prominent and gradually split into
two strands that continue the undamped oscillating behavior. The loops in 193 and
211 Å, composed of several close strands, also show the oscillations with no clear
change in amplitude in each strand.

Studies of low amplitude weakly damped coronal loop oscillations performed for
dozens of sunspots showed their common character. The oscillation periods were
found to lie in the range from 1.5 to 10 min with the apparent increase of periods
with the length of the oscillating loops (Anfinogentov et al. 2015).

More detailed view of undamped oscillations in 171 Å of the same data set is
shown in Fig. 23.10.

Fig. 23.9 Observations of the transverse loop oscillation event on 2011 March 8, with SDO/AIA.
Left panel: the object of the observations in 193 Å, the red narrow box marks the space-time cut;
Right panels: Space-time images along a cut at the loop apex as shown in Panel (a) (averaged over
the narrow width) in three bands: (b) 171 Å, (c) 193 Å, and (d) 211 Å (Wang et al. 2012). Reprinted
with permission of the AAS
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Fig. 23.10 Example of undamped oscillations of coronal loops, illustrated by a time-distance map
made for a slit directed across the oscillating loop. The oscillation was measured on the 8th of
March 2011, beginning at 19:40 UT in AR 11165 at 171 Å with SDO/AIA (Nakariakov et al.
2016). Reproduced with permission from A&A, Copyright ESO

As discussed earlier, undamped and/or growing oscillations are natural occur-
rence in dissipative, energetically open systems with the source and sink of energy.
One of the equations arising in such system (Chap. 16) is Van der Pol oscillator.

Hence undamped oscillations in coronal loops in order to exist require continuous
energy supply and any kind of dissipation. One of the most natural sources of energy
supply is the appearance of surges that are observed at footpoints of coronal loops.
Association of the photosphere/chromosphere surges reaching in the corona the
velocities up to 200–300 km s−1 has been reported in various papers (Tian et al.
2014; Doschek et al. 2015). It is important to note, however, that the conditions on
magnetic field, electric currents and kinetic coefficients, and other parameters of a
system, determined, e.g., by the Van der Pol equation and boundary conditions, must
be met. Most of the parameters are directly observable or can be calculated using
the model description.

As an example, let us estimate electric currents generated by the upward
propagating waves from a limited surface area, S. In strongly stratified atmosphere,
as we know, these waves quickly evolve into a sequence of shocks.

At the transition region heights plasma is strongly collisional and the particle
mean free path is small:

l ∼ (kT )2

ne4 ln Λ
(23.1)

Thus, for T = 105 K and n = 1010 cm−3, we have l ∼ 2.19 104 cm. Under these
conditions half of the mechanical momentum carried by the waves is transferred to
electrons and a half to the ions, which leads to the generation of currents (Ryutov
and Ryutova 1990).
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Fig. 23.11 Current drive by the acoustic or MHD waves. Left: The upward motions generated
from a limited surface area, S, quickly accelerate in the upper layers of atmosphere and generate
a sequence of shocks and create a strong absorption region at shock front discontinuity, Δ (blue
shaded area); Right: Ion and electron temperature profiles at the shock front, zsh is the height of
shock formation (Ryutov and Ryutova 1990)

The mean force acting on the electron gas, Fe. When the wave acquires the saw
tooth profile, the mean force acting on the electron gas, Fe, becomes nonpotential.
Therefore, it will have a large (of the order of unity) solenoidal component due
to the spatial variations in the intensity, the plasma density, and temperature. The
schematic of absorption region and current lines is shown in Fig. 23.11, left panel.

At the shock front hot ions remain behind the shock, while hot electrons move
ahead as their velocity is (mi/me)

1/2 times higher than the ion and shock front
velocities. Ion and electron temperature profiles at a shock front are shown in
Fig. 23.11, right panel. The thickness of the relaxation region where Ti and Te

equilibrate is δ ∼ √
mi/mel, where l is the particle mean free path. Detailed

estimate of current generation has been already discussed in Sect. 16.3. It was shown
that acoustic wave flux from the photosphere reaching as small Mach numbers as
M � 1.2 − 1.4 may generate currents at transition region with T = 105 K and
n = 1010 cm s−3 of the order of j � 10−2 A/cm2. The governing equations given
in Sect. 16.3.2 can be used for quantitative analysis. Besides, as currents generated
by the oscillations are associated with the ion temperature jump, this fact can also
be observed.

23.3 Evolution of Rudimentary Penumbra and Response
of the Overlying Atmosphere

We have discussed throughout the book that filamentary structure of sunspot and
the umbra itself yield numerous unsteady phenomena in wide range of physical
parameters. Most of which are triggered by continuous multiple reconnections
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between the neighboring filaments (Alissandrakis et al. 2017; Kirk et al. 2017).
In particular, the very formation of penumbra and shredding of umbra are directly
associated with these reconnections, as illustrated in Fig. 17.8.

The question arises, what could be reason of the fact that some pores and compact
sunspots do not develop penumbra or loose it quickly.

Figure 23.12 shows Hinode magnetogram of the pore (NOAA 10940) and the
temporal evolution of its overlying atmosphere in the G-band and Ca II H lines

Fig. 23.12 Evolution of the pore and formation of penumbra. Upper left: Hinode magnetogram
of NOAA 10940; the black rectangle shows the cropped 18”×24” FOV of area displayed in the
bottom images. Upper right: Temporal variation of the area (in Mm2) of pore + penumbra in the
G-band (black diamond), pore + penumbra in Ca II H (red triangle), and dark umbra in the G-band
(black plus). The solid lines show smoothed variation with about a 1 h width. The black arrows
at the top of the plot indicate the timing of the frames shown in the bottom panels. Bottom: time
sequence of the pore in the G-band (upper row) and Ca II H (lower row). The yellow and red
contours on the G-band images show the thresholding for the pore/penumbra of 0.4Iqs and 0.7Iqs.
The yellow contours on the Ca II H images show the chromospheric penumbral thresholding of
0.1Iqs (Watanabe et al. 2014). Reproduced with permission of the AAS
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(Watanabe et al. 2014). At some point, the rudimentary penumbra to the north
of the pore started to form. The apparent speed of the elongation of a single
penumbral filament reached 2–3 km s−1, while the overall penumbral structure
extended its boundary with a speed of about 0.5 km s−1. In the chromosphere,
frequent brightenings at the outer edge of the penumbra were observed. In the
decay phase, multiple opposite polarity patches were observed to appear outside the
pore void of newborn penumbra and, simultaneously, many small-scale fragmented
patterns were seen in the intensity images.

All the details of this process fit well the model of filamentary structure of
sunspot and continuous reconnection processes. Depending on the angle at which
neighboring filaments reconnect, in post-reconnection phase they may be either
scattered or produce shocks and subsequent brightenings. This process in young
developing pore may stop formation of penumbra and destabilize the farther growth
of sunspot.

Penumbral sub-arcsecond penumbral brightening and shocks observed simulta-
neously with the NST, IRIS, and SDO showed that the brightening, whose thermal
energy is in the range of nanoflares, have signatures from the chromosphere to the
corona.

Figure 23.13 shows the snapshots of an exemplary event near the maxima. NST’s
Hα channel reveals the fine structure of the event of about 101 km. The transient
brightening can be characterized as a “doublet” with two maxima at UT 17:16:14
and UT 17:19:20, lasting for about 3 min, as seen in significantly enhanced and
broadened chromosphere and transition region lines. Moreover, the event is seen
in all the extreme-ultraviolet passbands of the AIA. The Hα images in Fig. 23.13b
reveal the same order fine structures of the brightening event, as penumbral filaments
with widths as small as 101 km.

The transient appeared at the outside edge of the penumbra and then moved
toward the sunspot umbra with a speed of about 87 km s−1. The maximum
brightening was seen almost simultaneously at all coronal temperatures. It was
also found to be associated with a redshift of about 17 km s−1, as seen in the Si
IV 1402.77 Å line.

Figure 23.14 shows the IRIS spectra before and during the event. One can see
that the TR line profiles, both C II 1334.53 Å and Si IV 1402.77 Å, are enhanced by
a factor of about 3, and more than 20 during the event and significantly broadened
relative to the average penumbral profiles. Besides, in the Si IV 1402.77 Å line a
redshift of about 17 km s−1 averaged along the line of sight was found during the
brightening. Before the appearance of the chromospheric transient, at 17:00 UT,
a negative magnetic feature has been emerged at near location of the upcoming
transient brightening that was observed to move outward and decay at UT 17:36:00.

What we witness here is a clear demonstration of the effects described in
Chaps. 13 and 14 and elsewhere throughout the book: reconnections in low atmo-
sphere, due to the finite plasma β, do not give an immediate release of energy. It
is a post-reconnection sling shot created by straightening flux tubes first generate
upward and downward shocks. Farther interaction of shocks as shown in Fig. 13.5
leads to appearance of either microflare (brightening), or plasma jets or the
combination of brightenings and jets.
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Fig. 23.13 Temporal evolution of the penumbral transient brightening in NST/TiO (a), NST/Hα

(b), and IRIS 1400 Å (c) images (Bai et al. 2016). Reproduced with permission of the AAS

Let us now look at Mg II k 2796.35 Å images in panels a–b, Fig. 23.14, and
the plot in panel c. At UT 17:14:52 not long before the brightening occurred, the
chromospheric line already shows enhancement and brightening. At the same time,
line profiles show clear signatures of shocks in the shape of double humped peaks.
The red and blue lines show downward propagating shocks: higher peaks are on the
right, toward longer wave-length. The green and orange lines show the signatures of
upward propagating shocks. A symmetric broadening in Mg II k line corresponds
to behind-shock heating accompanied later by symmetric up and down mass flows.
In the hotter, C II 1334.53 Å shock signatures are less distinguishable, except the
peak time at UT 17:16:14 when a strong shock signatures and broad widening of
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Fig. 23.14 Spectral characteristics of the penumbral transient. (a) The position of the slit in IRIS
1400 Å images; (b) Spectra of Mg II K 2796.35 Å, C II 1334.53 Å and Si IV 1402.77 Å, along
the slit before and after the enhanced brightening; (c) Line profiles at four different times at the
cross point between cut 3 and the brightening region. The normalized average line profiles in the
penumbral before the event are represented by the dashed lines (Bai et al. 2016). Reproduced with
permission of the AAS

the peak appear. Corresponding velocities and Mach numbers are quite easy to
estimate (see Eqs. (13.3)–(13.15)). The entire picture would be more complete with
the measurement of underlying magnetic field changes in time.

Of many properties of penumbral filaments, observation of their twisting motions
provides very rich information. Thus, penumbral filaments, along the twisting
motion, show also a chirality change. Besides, in the presence of mass flows that are
always observed in penumbra, body of filament is subject writhing and skewing(see
Sect. 17.4.2). Example of such observations is shown in Fig. 23.15 (Su et al. 2010). It
was found, for example, that penumbral filaments often showing unwinding motions
are associated with the decrease of their, say, right-handed twists. After unwinding,
they get twisted again but now with the left-handed chirality, and vice versa. This
process is a natural occurrence during screw pinch instability.
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Fig. 23.15 The part of the AR NOAA 10930 in the G-band (a). White arrow singles out an
exemplary penumbral filament whose evolution is shown in panel (b); The dotted rectangle in
panel (a) highlights the area where the filaments with a right-handed chirality disappear and new
filaments with left-handed chirality appear; Examples of space-time images of left-handed and
right-handed chirality filaments from this box are shown in panels (c) and (d) (Su et al. 2010).
Reproduced with permission of the AAS

Chirality injection into the overlying atmosphere and its variation may have well-
observed effects in the chromosphere and corona, as well as skewing and writhing
which must occur in the presence of axial flows (see Fig. 17.14). These effects are
well described by the basic plasma theory and allow quantitative estimates.

It is important to emphasize that physical effects described in application to
penumbral filaments are universal for any magnetic filamentary structure. In other
words, if the safety factor, q , is less than unity (Eqs. 17.2–17.3) the magnetic
structure is subject to screw pinch instability and necessarily acquires the twisted
shape with further development of specific internal structure (e.g., dark cores),
skewing, writhing and chirality change, and other accompanying phenomena.

23.4 Plasma Jetting and Bow Shocks

In Chap. 18 we have discussed the observed properties of bow shocks and their
associated bright transients above penumbrae. We have emphasized that the “true”
microjets, i.e., the bright transients moving along their “body” as do projectiles, are
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Fig. 23.16 Double structure of the elongated transient drifting with velocity ∼ 1.5 km s−1. Its true
motion, if measured in its trajectory plane, may well be supersonic (Ryutova et al. 2008)

essentially different from the bright transients associated with bow shocks. Unlike
microjets/projectiles these transients move rather in the transverse direction or under
some angle to their body, and they have double structure as it usually occurs in case
of bow shocks. For convenience, example of transient associated with bow shocks
and exhibiting double structure is shown in Fig. 23.16.

One can see that at UT 13:13:36 the transient seen as a single bright stroke soon
develops a clear double structure. The transient is drifting from top-left to bottom-
right with velocity ∼ 1.5 km s−1 preserving its double structure during the most of
its lifetime (≥ 5 min). As discussed in Chap. 18, a double structure turns out to be
a basic property of drifting transients and has a natural explanation in the frame of
post-reconnection theory.

Very useful proved to be spectroscopic observations of penumbral transients with
a high cadence co-temporal data taken with the SOT instrument on Hinode and the
IBIS (Imaging by Interferometric Survey) on DOT (Reardon et al. 2013).

Spectroscopic data, in addition to studies of character and temporal evolution of
transients, allow to estimate the height of their formation. I was found, e.g., that
the enhanced emission of brightenings was coming from the wings of the Ca II
8542 Å line, indicating that the energy deposition could occur in the lower layers of
atmosphere, around the temperature minimum. Examples of two type of transients
are shown in Fig. 23.17. Both events show a greater blue-shifted wing, while no
strong Doppler shifts are seen in the core of the Ca II 8542 Å line. In both cases
there occurred a pre-event brightening that triggered the impulsive brightening of the
transient that occurred uniformly over the length of a structure. These precursors are
the most probably associated with the bow shocks. The evolution of the precursor
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Fig. 23.17 Spatio-temporal behavior of two events (#1 and #2). Upper panels: images at four
different wavelengths (SOT Ca II H, blue line wing, line core, and red line wing of the IBIS Ca
II 8542.1 Å line) at the peak time of the event. The event location is indicated by the intersection
point of the red and orange tick marks. Lower panels: Space-time plots of the running difference of
the blue-wing intensity along the length of Events #1 and #2 around the time of peak brightening.
The enhanced spreading of enhanced emission begins 1 min prior to the peak intensity (Reardon
et al. 2013). Reproduced with permission of the AAS

brightening can be more clearly seen by making space-time slices from the running
difference images in the blue wing Ca II 8542 Å line, as shown in two lower panels
in Fig. 23.17.

Rich data can be obtained from high cadence spectroscopic observations of
drifting transients and penumbral jets, especially under various viewing angles, i.e.,
observing penumbrae at various locations from disc center to peripheries. With such
observations it will be easier to perform classification of various types of transients
like drifting transients and their precursors in form of bow shocks, true plasma jets,
Ellerman bombs, and other. Most importantly, all these features can be put in the
frame of quantitative analysis described in Sect. 18.2.
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Fig. 23.18 Examples of two active regions NOAA 10923 (upper row) and NOAA 10955 (bottom).
Left panels: Line-of-sight velocities derived from the SIR inversion. The diamonds represent
regions of strong downflows. Middle panels: Ca II H filtergrams with blue contours showing
regions of the LOS velocity greater than 2 km s−1. The white dashed contours correspond to the
continuum intensity at 6300 Å. BE is brightness enhancement, MJ is penumbral microjet, and UT
is bright umbral thread. Right panels: Ca II H maps with the bar showing number of events (Louis
et al. 2011). Reproduced with permission of the AAS

High-resolution spectropolarimetric observations have also revealed the exis-
tence of supersonic downflows at or close to the umbra–penumbra boundary
(Louis et al. 2011). Figure 23.18 shows example of two active regions showing
strong, long-lived brightenings in the neighborhood of the downflows. In Ca II
H filtergrams (middle panels) one can identify penumbral microjets as well as
brightness enhancements in the vicinity of the strong downflow areas according
to the process shown in Figs. 17.6 and 17.7. The right panels of Fig. 23.18 show
the number of events for both active regions. The counts for two large patches
in the AR 10923 indicate that brightness enhancements persisted for nearly one-
third of the 1 h sequence. The strongest chromospheric brightenings observed in
AR 10953 was confined to a region between the two downflow patches. These
kind of observations can be directly used for quantitative analysis using the models
described in Chaps. 13 and 18.

The important work was done on the statistical analysis of penumbral microjets
using observations in the Ca II 8542 Å line obtained with the SST (Drews and
Rouppe van der Voort 2017). In this work in all over the penumbra a total of 453
tracked microjets were detected, with peak downward velocities of −10.4 km s−1

and upward velocities of 10.2 km s−1. Their lifetimes ranged in 90–117 s. It was
found that there are regions of penumbra with significantly higher occurrence rates
of penumbral microjets than in other parts of penumbra.
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Fig. 23.19 Penumbral microjet densities, with all pixel detection summed over 202 time frames,
overlain a frame at the midpoint in time of the observations, at an offset of −275 mÅ in the Ca
II 8542 Å line. The arrow indicates the direction toward disk-center (Drews and Rouppe van der
Voort 2017). Reproduced with permission from A&A, Copyright ESO

Figure 23.19 shows a density map of all the individual microjets detection-pixels,
summed over all time frames. One can see a clear clustering of penumbral microjets
in certain regions, and two distinct regions in the upper right corner in particular.

There are two most probable reasons for increased density of microjets at some
particular site of penumbra. One is associated with inclination of the neighboring
penumbral filaments with respect to each other: the more filaments intersect with
sharper angle the better is condition for generation of post-reconnection jets (see
Fig. 17.6b, Chap. 17). The other obvious reason is associated with the number
of magnetic elements with the opposite to the parental sunspot polarity, such as
unipolar or even bipolar moving magnetic features. The more such elements wonder
around the sunspot, the higher is probability of reconnections between the opposite
polarity elements and direct generation of jets. Both these processes are easily
observable and could be done in future observations of the penumbrae.

23.5 Self-organization and Recurrent Flares

We have discussed throughout the book that the solar atmosphere is intrinsically
nonlinear dynamic system with unbalanced sources and sinks of energy. As such,
it exhibits a chaotic behavior, practically at all scales. This includes, for example,
fractals, energetically open periodic processes and bifurcation, limit cycles, and
self-organization (see e.g. Aschwanden 2011). Moreover, these processes are not
only observed on a regular basis, but most of them can quantitatively analyzed.
Figures 23.20 and 23.21 illustrate the self-organized states in the solar atmosphere
from its surface through the corona.
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Fig. 23.20 Self-organization in low atmosphere. (a) Just like an ice pattern on window: solar
chromosphere in Hα taken by the DOT, field of view is about 700 × 400 Mm (courtesy of R
Rutten); (b) The SST/CRISP image of solar photosphere in 5100 Å (courtesy of G. Sharmer)

Spectacular example of self-organization is the formation of long-living post-
flare arcades, slinkies. As discussed in Chap. 19, when the energy supplied to a
system reaches its limiting value, the system experiences the explosive release of
energy and may bifurcate into self-organized state. The example of such process is
the formation of long living slinkies after the solar flare. In Figs. 23.22 and 23.23
we show two more examples of this process. Figure 23.22 shows a typical
slinky-producing flare. Hours before the major flare, the system exhibits series of
homologous flares in a strict time periodicity corresponding to evolution of system
approaching a limit cycle (cf. Chap. 16). At about UT 20:10 the system releases the
accumulation energy and relaxes to previous state. From this moment the system
gains energy again and at UT 21:50 releases it again. The process repeats with the
same ∼ 300 min periodicity: at about UT 23:30 new burst puts the system back.
This time, supposedly more energy is pumped into the system which releases it at
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AIA 171 A                        2013 June 4

AIA 193 A                       2016 May 21 AIA  211−193−171 A          2015 Dec 16

Hinode Ca H                   2007 Aug 16

(a)

(b)

(c)

(d)

Fig. 23.21 Self-organization in the upper atmosphere. (a) Very regular long-living tornado-like
prominences like solders move and live in harmony for tens of hours; (b) 106 K coronal loops
having a peacock-style of self-organized pattern, harbors numerous microflares during more than
4 days; (c) Quiescent prominence, harboring all kind of plasma instabilities also lives for days; (d)
Post-flare slinky in combined wavelength of 211-193-171 Å courtesy of NASA/SDO

UT 01:07, July 14 in form of M 2.4 flare, reaching its limit cycle, approaching to
bifurcation into the self-organized state. Self-organized state lasts about 19 h until
the new cycle begins.

Similar process is shown in Fig. 23.23 with some differences in detail. This
time we face much stronger, X 4.9 flare and its bifurcation into the self-organized
slinky. The main difference here is that the homologous precursor flares occur in
this case with significantly longer intervals (shown is only the last pre-flare energy
release at UT 21:40 Feb 23). A strict periodicity of the process and possibility
to measure intensities allows to perform reliable quantitative analysis of these
processes. Besides, these periodicities can be used for prediction of upcoming flare
events.

Time series of date taken for slinkies can provide the information regarding
the echo effects as well. In Sect. 19.6 we have discussed nonlinear plasma wave
echoes that can be harbored by post-flare slinkies. By their amazing regularity,
slinkies are the perfect system to observe the echo effects, which may be temporal,
spatial, and spatio-temporal. As an example we show four snapshots of slinky
exhibiting the plasma wave echoes (Fig. 23.24). The lifetime of the slinky is
about 8 h. In four consecutive snapshots we see, e.g., that enhanced brightening
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M 2.4

Approaching

Beginning of 

a new  cycle

the limit cycle Selforganized State

GOES X−Ray Flux, 2017 July 13−15

AIA 171 A 2017 July 14, UT 08:38:09

   15:00      20:00       01:00       06:00      11:00      16:00      21:00      02:00      07:00

Fig. 23.22 M 2.1 flare and post-flare self-organized slinky. Upper panel: Fe 171 Å emission of the
post-flare loops already bifurcated into long-living self-organized arcades. Start time: UT 01:07,
peak time: UT 02:09. Lower panel: GOES X-ray curves from July 13, 15:00 UT to July 15, UT
07:00, showing intense pre-flare recurrent flushes organized in a regular echo pattern and post-flare
echoes started at about UT 18:30 that lead to spatio-temporal scale-invariance. GOES curves are
reprinted from Andreas Möller
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GOES X−Ray Flux 2014 Feb 24−25

Selforganized State

X 4.9

20:00             22:00              00:00              02:00              04:00              06:00               08:00

UT 01:49

Selforganized State

AIA 171 A

Fig. 23.23 X 4.9 flare and post-flare self-organized slinky. Upper panel: Fe 171 Å emission of the
post-flare loops bifurcated into the state of self-organized slinky. Start time: 01:07 UT, peak time:
02:09 UT. Lower panel: GOES X-ray curves from Feb 24, UT 20:00 to Feb.25, UT 08:50. GOES
curves courtesy of Andreas Möller

of loops 1 and 2 (panel a) excites (clockwise) the enhanced brightening in loops
3, 4, 5, and 6 (panel b). It is important that these loops are evenly spaced, which
is one of the characteristics of the echo effect. Example of similar process, now in
counterclockwise direction is shown in panels c–d: now loops 5 and 6, dimming
down, pump energy into loops 4 (panel c), and 7–8 (panel d).

A natural and frequent occurrence of echo effect can be observed everywhere
through the solar atmosphere and at all possible spatial and timescales. For years
the solar physics vocabulary contains such term as “sympathetic” and sequential
flares and mass ejections meaning the events occurring in nearby locations, during a
short period of time (see e.g. Romano et al. 2015; Polito et al. 2017). These effects
were observed for decades but they were not association with simple regularities of
plasma echoes. And yet, looking on the spatial and timescales of an event, it is easy
to distinguish the echo pattern from seemingly regular sequential pattern.
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UT 20:05

(a)

(d)
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SDO/AIA 171 A,    2014 Jan. 7

Fig. 23.24 Plasma wave echoes in post-flare self-organized arcade formed after a major X1.2 class
flare on January 7, 2014. Shown are four examples of echo propagation. (a)–(b): Multiple echoes
travel from right to left igniting loops 1–6; (c)–(d): Wave echo travels back igniting again 4 and 2,
and then 7 and 8

Figure 23.25 shows snapshots of the active regions producing M-class flares
and filament eruptions on Feb 17, 2000 (Wang et al. 2001). Two successive flares
occurred first in the AR 08869 and shortly after that in the AR 8872. Upper
right panel shows the filaments F1, F2, and F3 associated with active regions and
dense plage at a pre-flare stage. At UT 18:51 in place of F1 the M2.5 flare is in
progress. This flare generated a surge that was observed to quickly turn into a set
of disturbances that propagated at a speed of about 80 km s−1. These disturbances
first caused appearance of brightenings in the loop structures above F3 filaments and
then triggered the M1.3 flare in the AR 8872. The observed regularities clearly fall
into the spatio-temporal echo pattern.

The nonlinear wave echoes can be observed even at larger scales than that
discussed above. Figure 23.26 shows an example of three active regions at large but
equal distances from each other. The AR 12445 approaching the NW limb exhibited
two successive short-duration C1 and M1.9-class flares, associated with spray-like
eruptions of filament material. Following the first such eruption, a small trailing AR
12441 destabilizes producing the flare, which in turn ignites a flare-like brightenings
in the AR 12446. A strong flares can ignite sequential flares almost at the distances
comparable with the solar disc.

These regularities are often explained as consequence of shocks generated by
explosive behavior of flares. Such effects undoubtedly exist. However, there is
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Fig. 23.25 Sequence of Hα images from BBSO showing the evolution of the active regions
producing sympathetic flares. Filaments F1 and F2 are associated with active regions 08869 and
08872, respectively. Filament F3 is located at dense unipolar plage between two ARs. The field of
view is 600 × 400 arcsec (Wang et al. 2001). Reproduced with permission of the AAS

essential difference between the event produced by shocks and nonlinear wave
echoes. The echo effects, spatial or/and temporal, exhibit a strict spatial and
temporal regularities and there must be at least two sequential events. One can
say that the echo effects, often and naturally occurring in solar atmosphere, are the
easiest to observe and quantitatively analyze.

23.6 Exotics in Prominences

Quiescent prominences, named thus because of their long lifetimes, are, by all
means, far from quiescent. Subjected to gravity, ever evolving, they are highly
dynamic and harbor a wide range of gravitational and plasma instabilities. Combina-
tion and competition of different instabilities leads to various spectacular events in
the evolution of prominences. Especially fascinating are the events associated with
the bifurcation of the “quiescent” state into a violent and explosive state, leading to
an abrupt prominence body crush, explosive mass ejections, appearance of tornado-
like formations, and others. All these events are not only well observed, but they
can be quantitatively analyzed. Most importantly, the prominences provide excellent
illustration of fundamental physical processes (Ryutova et al. 2010).
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SDO/HMI

SDO/AIA 211−193−171 A

2015−11−04 UT 02:36

2015−11−03 UT 21:32

12441
12446

12445

Fig. 23.26 Three active regions at large but equal distances from each other. The AR 12445 was
first to exhibit two successive flares which resulted destabilization of the trailing AR 12441. This
in turn ignites a loop brightening in the AR 12446 and associated with flare. The field of view is
1000 × 550 arcsec

Figures 23.27 and 23.28 show example of twisted prominence threads in natural
accordance with Kruskal-Shafranov theorem, that any elongated magnetic structure
with safety factor q > 1, in order to exist, must acquire the twisted shape. This is a
universal property valid for all spatial scales from laboratory to space plasmas.

A huge prominence shown in Fig. 23.27 exhibits continuous motions of threads
and their brightenings. The motion of threads appeared as sinusoidal space-time
trajectories with a typical period of ∼ 390 s, which is consistent with plane-of-sky
projections of rotational motions (Fig. 23.28). Phase delays at different locations
suggest propagation of twists along the threads at phase speeds of 90–270 km s−1.
Of about 15 episodes of such motions observed during two days, none was found to
be associated with any eruption. This means that the twisting shape and motions are
intrinsic properties of magnetic threads and necessary condition for their dynamic
stability lasting as long as strong instabilities take over and lead to violent disruption
of prominences.
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2007 Feb. 08, UT 17:14:10 Ca II H
2

0
 M

m

0                                  20                                   40                               60 (Mm)

Fig. 23.27 Snapshot of the prominence observed in the Ca II H line by Hinode/SOT at 17:14:10
UT. The solar north is to the left and the west is up. The blue brackets mark the region for rotational
motions shown in Fig. 23.27 (Okamoto et al. 2016). Reproduced with permission of the AAS

Fig. 23.28 Snapshot (left panel) showing prominence threads in the blue box of figure 2 and
space-time plots (right panel) obtained from a vertical cut (dashed line on the left) located on a
bright blob. A bundle of threads expands radially at a rate of 4.5 km s−1, its rotation period is about
390 s (Okamoto et al. 2016). Reproduced with permission of the AAS

Of many instabilities, as discussed in Chap. 20, the Rayleigh-Taylor instability is
one of the most frequent to observe. We saw that in magnetized plasma the RT insta-
bility has its own specifics described by the Rayleigh-Plesset equation (Eq. 20.3).
Recall that it naturally reflects the intrinsic helical structure of the prominence and
that its nonlinear character ensures the description of both, explosive growth of the
prominence and its violent collapse. Above all, the Rayleigh-Plesset equation allows
reliable quantitative analysis.
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In case of “classical” RT instability, the main driving force is expected to be
gravity, leading to appearance of “ripples.” In addition to gravity, given that the
prominence magnetic field has a complex curved shape, there arises a centrifugal
force on the plasma due to the particle motions along the curved field-lines,
that acts like a gravitational force. Theoretical and laboratory studies of the RT
instabilities driven only by field curvature showed that centrifugal instability is
the most aggressive type of MHD instabilities in nonuniform plasmas (Lehnart
1974). The main approach here is based on the equilibrium and stability studies
of a fully ionized rotating magnetized plasma in terms of plasma beta and basic
measurable plasma parameters (Lehnart 1974). The obtained results have been
directly applied to laboratory plasma for quantitative estimates and, interestingly,
to solar prominences as well.

Obviously, the action of centrifugal force together with gravity should result in a
strong rotation of the prominence body that may exhibit even tornado-like behavior.
This kind of behavior has been observed back in 1920s when (Pettit 1925) making
amazingly full classification of types of prominences, assigned rotating prominences
a separate tornado-like class. Ohman (1969) added a smoke ring prominence class.
Liggett and Zirin (1984) studying motions in quiescent prominences found that
along the proper motion of prominence material, in some cases part of prominence
showed rotation. In any case, dynamics and disruption of prominences occurs either
in balance between the gravity and centrifugal forces or in prevalence of gravity
over centrifugal force and vice versa. In those cases when the centrifugal force
takes over the gravity, the prominence develops centrifugal instability and acquires
tornado-like behavior. We have already encountered tornado type behavior that
shows multi-tornado self-organized behavior (Fig. 23.21a).

One of the studies of tornado-like prominences showed that a total number of 201
giant tornadoes were detected in a period of 25 days, suggesting that, on average,
about 30 events must be present across the whole Sun at a time close to solar
maximum (Wedemeyer et al. 2013, see also Li et al. 2012).

Modern instruments allow to observe amazing details of prominence behavior,
its Evolution, and disruption. Figure 23.29 shows two snapshots from the life of
tornado prominence at chromospheric temperature. This tornado has been acquiring
various rotational shapes for hours, until about UT 03:21:25 when bullwhip, fire
hose instability turned on and caused disruption of prominence and mass ejection.

Figure 23.30 shows another example of tornado prominence and its bullwhip
behavior. Using the approach described in Sect. 4.3 one can perform qualitative
analysis and some cases make quantitative estimates.

We will conclude this chapter by one more amazing phenomena in outer corona
which, in fact, belongs to class of quite ordinary events in hydro- and gas dynamics:
vortex rings. They were observed in white light during eclipse observations.
Figure 23.31 shows examples of beautifully shaped vortex rings captured during
three eclipses (Druckmüller et al. 2014). Studies on prominence-corona dynamic
interface not only reveal the extraordinary dynamics of corona but also allow to
study input of the coronal dynamics into the solar wind.
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AIA 304 A     2011 July 12
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0
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UT 03:11:25 UT 03:21:25

Fig. 23.29 Images of tornado type prominence at two instances of time, behaving in a bullwhip
manner. Courtesy of NASA/SDO

Fig. 23.30 SDO/AIA composite image from 171 Å emission (green), 193 Å (blue), and 304 Å
(red) of the northeast section of the corona on 2010 July 11 at 15:49 UT showing a snapshot of the
whipping prominence past the “elbow-shaped” projection (Habbal et al. 2014). Courtesy of Shadia
Habbal
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Fig. 23.31 Vortex rings detected during eclipse observations: White light images of 2008 August 1
showing the northwest prominence (a) and the southeast prominence complex (b), (c) Neighboring
vortex rings captured during the 2010 July 11 (Habbal et al. 2014; Druckmüller et al. 2014).
Courtesy of M. Druckmüller
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Chapter 24
Solutions

Abstract This chapter contains solutions of problems covering subjects of
Chaps. 2–20. The problems and their solutions can be used as tools for further
studies of related topics. Most problems are made out of original papers containing
fundamental results. This way, practical use of these results and their application for
quantitative analysis becomes easier. At the same time reader can always go back to
a full version of the paper and fill the gap if necessary. The problems are arranged
in the same order as book chapters.

24.1 Problems of Chap. 2

2.1 The plasma equilibrium conditions expressed through the energy-momentum
tensor have a form:

∂

∂xi

Tik = 0 (24.1)

with

Tik = P⊥
(

δik − BiBk

B2

)

+ P‖
BiBk

B2 (24.2)

where

P⊥ = p + B2

8π
, P‖ = p − B2

8π
(24.3)

Let us use the identity

∂

∂xi

(xkTik) = Tikδik + xk
∂

∂xi

Tik (24.4)
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According to (24.1) the second term on r.h.s, of this equation must vanish.
Integrating the remaining expression over the volume V bounded by the surface
S, we obtain

∫

V

TiidV =
∮

S

TikxkdSi (24.5)

On the other hand, for the tensor (24.2) we can write

∫

(2P⊥ + P‖)dV =
∮ [

P⊥(rdS) + (P‖ − P⊥)
(Br)
B2 (rdS)

]

(24.6)

or, taking into account (24.3), we can write

∫ (

3p + B2

8π

)

dV =
∮ [(

p + B2

8π

)

rdS − (Br)
4π

(BdS)

]

(24.7)

Let us apply this relation to a plasma occupying a bounded volume outside of which
the pressure p = 0. If there are no current-carrying conductors inside or outside
the plasma, we may put the surface of integration to infinity. Since B ∼ 1/r3, the
surface integral vanishes. Thus, relation (24.7) cannot hold. This means that any
bounded equilibrium plasma configuration with a magnetic field can exist only in
the presence of current-carrying conductors. The r.h.s. of (24.7) then reduces to an
integral over the surfaces of these conductors.

This is well known Shafranov’s virial theorem implying that nontrivial MHD
equilibrium configurations must be supported by externally supplied currents.

2.2 For the variation of Hm we have

dHm

dt
=
∫

V

(
∂A
∂t

· δB + A · ∂B
∂t

)

dV (24.8)

or

dHm

dt
=
∫

V

[
∂A
∂t

· (∇ × A) + A ·
(

∇ × ∂A
∂t

)]

dV (24.9)

This immediately reduces to

dHm

dt
=
∫

V

∇
(

∂A
∂t

· ×A
)

dV =
∮

n
(

∂A
∂t

· ×A
)

dS (24.10)

As (∂A/∂t) ⊥ B, and, in our case B · n = 0, then ∂A/∂t‖n, and from (24.10) we
have dHm/dt = 0. If B · n �= 0, the local helicity is not conserved.
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2.3 For thin flux tubes B = ∇ × A is approximately normal to the cross section of
flux tube, S. Helicity of tube 1 is:

H1 =
∫

A · BdV =
∮

ds · A
∫

n · ∇ × Ads (24.11)

Here, by their physical meaning,

Φ1 =
∫

n · ∇ × Ads Φ2 =
∮

ds · A (24.12)

Thus, H1 = Φ1Φ2. Similarly H2 = Φ1Φ2. And the total helicity is H = 2Φ1Φ2. If
the tubes are wound N times around each other, H = NΦ1Φ2.

2.4 From the Faraday’s law, ∇B = 0, we have

1

r

∂

∂r
rBr(r, z) + ∂Bz(r, z)

∂z
= 0 (24.13)

Assuming that field configuration inside flux tube remains potential, the flux tube
may be considered almost uniform across its cross section. Then we can put
Bz(r, z) = Bz(0, z) and perform series expansion of r-component around axis of
symmetry

Br(r, z) = Br(0, z) + r
∂Bz(r, z)

∂r

∣
∣
∣
∣
r=0

(24.14)

At the axis Br(0, z) = 0, so that

Br(r, z) = r
∂Br(0, z)

∂r
(24.15)

Combining this with (2.16) we obtain

2
Br

r
= −∂Bz

∂z
, (24.16)

Taking now into account that Bz = B exp(−z/2Λ), we obtain

Br

B
= R

4Λ
, (24.17)

where R is the effective radius of flux tube. Thus, thin flux tube approximation in
a simplest case of a static flux tube requires that its effective radius be significantly
smaller than the scale height: R < 4Λ.
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24.2 Problems of Chap. 3

3.1 The fluid equations describing the flow around the sphere in linear approxima-
tion are

ρ
∂v
∂t

= −∇δp, ∇ · v = 0 (24.18)

Let us denote the velocity of sphere by vs(t). In spherical coordinates, the points on
the surface of the sphere (of radius R) will have only two velocity components, r

and θ ,

vsr |r=R = −vscosθ, vsθ |r=R = vssinθ (24.19)

On the other hand, at the solid surface the normal component of fluid velocity must
equal to the normal component of the surface velocity, i.e.,

vr |r=R = vsR|r=R = −vscosθ (24.20)

As the fluid velocity is curl-free, it can be represented via scalar potential, v =
−∇ψ . The second equation of (24.18) then becomes

∇2ψ = 1

r2

∂

∂r
r2 ∂ψ

∂r
+ 1

r2sinθ

∂

∂θ
sinθ

∂ψ

∂θ
= 0 (24.21)

The boundary condition (24.20) in terms of ψ is:

∂ψ

∂r
|r=R = vscosθ (24.22)

The solution can be found by the separation of variables, with dependence on θ

specified by (24.22): ψ = f (r)cosθ , where function f (r) satisfies the equation:

d

dr
r2 df

dr
− 2f = 0 (24.23)

There are two solutions to this equation: f = const/r2 and f = const r2, of which
the second solution corresponds to perturbations diverging at large r and can be
dropped. For the first solution, we can determine a constant, using (24.22):

ψ(r, θ) = vsR
3cosθ/2r2 (24.24)

For the pressure perturbation from the first equation of (24.18) we have:

δp = ρ
∂vs

∂t

R3

2r3
cosθ (24.25)
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On the surface of sphere the pressure perturbation is then

δp|r=R = 1

2
ρ

∂vs

∂t
cosθ (24.26)

The net pressure force Fp acting on the sphere can be found by multiplying δp by
−cosθ and integrating over the surface of the sphere:

Fp = −2πR2
∫ π

0
sinθcosθδp|r=Rdθ = −2πR3

3
ρ

∂vs

∂t
(24.27)

The equation of motion of the sphere under the action of the external force F is then
M(∂vs/∂t) = F + Fp, or taking into account (24.27), we have

(M + m)
∂vs

∂t
= F, (24.28)

where m is a half of the mass of the liquid displaced by the sphere:

m = 2πR3ρ

3
(24.29)

Thus we obtained expression for the added mass that appears due to the inertia added
to the system executing unsteady motions. Now, using (24.29) we find the velocity
of the established oscillations

vs = F0

(M + m)ω
cosωt (24.30)

3.2 The (24.18) are now to be solved in cylindrical coordinates r, φ with the z axis
directed along the cylinder. The points on the surface of the cylinder will have two
velocity components

vsr |r=R = vscosφ, vsφ |r=R = −vssinφ (24.31)

where the subscript s, as earlier, refers to the surface. The boundary condition for
the fluid velocity is

vr |r=R = vsR|r=R = −vscosφ (24.32)

And, with scalar potential, v = −∇ψ , we have the equation:

∇2ψ = 1

r

∂

∂r
r
∂ψ

∂r
+ 1

r2

∂2ψ

∂φ2
= 0 (24.33)
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with boundary condition (24.32), written in terms of ψ:

∂ψ

∂r
|r=R = vscosφ (24.34)

As earlier, we take ψ = f (r)cosφ, where f (r) satisfies the equation:

d

dr
r
df

dr
− f

r
= 0 (24.35)

Out of two solutions of this equation, f = const/r and f = const r , only
nondiverging one is valid. Using now (24.34) we obtain

ψ(r, φ) = vsR
2cosφ/r (24.36)

For the pressure perturbation the first equation of (24.18) gives:

δp = ρ
∂vs

∂t

R2

r
cosφ (24.37)

On the surface of the cylinder

δp|r=R = ρ
∂vs

∂t
Rcosφ (24.38)

As in the previous problem, we find the net perpendicular force Fp acting on the
surface of the cylinder:

Fp = −R

∫ 2π

0
cosφδp|r=Rdφ = −πR2ρ

∂vs

∂t
(24.39)

Now, the equation of motion of the cylinder under the action of the force F is
M(∂vs/∂t) = F + Fp, or with (24.39),

(M + m)
∂vs

∂t
= F, (24.40)

where m is a mass of the liquid displaced by the cylinder:

m = πR2ρ (24.41)

Hence, we arrived to the expression for the added mass of cylinder: the cylinder is
reacting to the external force as if its mass were M + m (per unit length), and for
the established oscillations we have:

vs = F0

(M + m)ω
cosωt (24.42)
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3.3 With z-axis directed along the gravity, the density and gas pressure in the blob
raised at small height, δz > 0 is

ρi,e(z + δz) = ρ0(z) + δρi,e

pi,e(z + δz) = p0(z) + δpi,e (24.43)

Initially, pressure and density inside blob are the same as outside, and are determined
by the balance between a pressure gradient and gravity:

dp0

dz
= −ρ0g (24.44)

Thus, outside the blob,

δpe = −ρ0gδz, δρe = dρ0

dz
δz (24.45)

Inside the blob, from the entropy conservation, S � pρ−γ = const, we have

δpi

pi
= γ

δρi

ρi
(24.46)

Taking into account the pressure balance, δpi = δpe, from (24.45) and (24.46) we
obtain

δρi = δpi

c2
s

= − 1

c2
s

gρ0δz (24.47)

Since at new height the density inside the blob differs from that of outside, the blob
experiences the action of buoyancy force, g(δρi − δρe),

ρ0
d2δz

dt2
= g(δρe − δρi) (24.48)

Substituting here δρi and δρe, we arrive to the following equation:

d2δz

dt2 = −N2δz (24.49)

where N is known as Brünt-Väisälä frequency,

N2 = −g

(
1

ρ0

dρ0

dz
+ g

c2
s

)

(24.50)
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It is useful to express it in terms of temperature. Using (24.44) and the equation of
state, one gets

N2 = g

T0

(
dT0

dz
+ (γ − 1)

T0g

c2
s

)

(24.51)

Thus, if N2 > 0, the plasma blob experiences harmonic oscillations with frequency
N , generating internal gravity waves, ∼ exp(−iNt). If the temperature is uniform,

N2 = (γ − 1)g2

c2
s

(24.52)

On the other hand, if N2 < 0, δz ∼ exp(iNt), and we have an instability.

3.4 When flux tube rises into rarefied atmosphere, it expands. With

δBi

Bi

= δρi

ρi

, (24.53)

pressure balance equation becomes:

δpi + BiδBi

4π
= δpe + BeδBe

4π
(24.54)

With (24.53)–(24.54) and the entropy conservation, δpi/pi = γ δρi/ρi , we obtain

(
γpi

ρi

+ B2
i

4πρi

)

δρi = δpe + BeδBe

4π
(24.55)

Taking into account that δpe + BeδBe/4π = −ρegδz we have from (24.54)

δρi = ρeg

c2
s + v2

A

δz (24.56)

The equation of motion for magnetized blob takes the form similar to (24.48)–
(24.49):

d2δz

dt2 = −N2δz (24.57)

with the modified expression for Brünt-Väisälä frequency

N2 = −g

(
1

ρ0

dρ0

dz
+ g

c2
s + v2

A

)

(24.58)
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In case of a uniform temperature,

N2 = g2

c2
s

(

γ − c2
s

c2
s + v2

A

)

(24.59)

It is interesting that in this particular case, for γ = 5/3, there is no parameter range
for instability, and magnetic flux tube executes the oscillatory motions.

24.3 Problems of Chap. 4

4.1 The MHD equations for Alfvén waves can be reduced to a single equation of
motion

∂2vy

∂t2 − (η + ν)

(
∂2

∂x2 + ∂2

∂z2

)
∂vy

∂t
+ ω2

A(x)vy = A(x)ei(kzz−ωd t) (24.60)

where ωA = kzB0/
√

4πρ0(x) is the Alfvén frequency. The second term in (24.60)
reflects the fact that the resonance occurs at small scales where the dissipative
effects turn on and must be taken into account. Seeking a solution for the form
vy = V0exp[i(kx + kz − ωd)], one obtains

V0 = A(x)

[ω2
A(x) − ω2

d ] − iωd(η + ν)k2
x + k2

z )
(24.61)

Thus, the resonance occurs at the location xres where ωA(x) = ωd . In the steady
state, ∂/∂z � ∂/∂x and a Taylor expansion of ωA(x) about xres in (24.60) yields a
length-scale and time-scale for resonant absorption as follows:

lres ∼
(

η + ν

2ω′

)1/3

, τres = l2
res

η + ν
∼ 1

(η + ν)1/3ω
′2/3
A0

(24.62)

where ω′
A0 ≡ (dωA/dx)x=x0. Note that in the photosphere the driving frequencies

have a broad range for each field line, but on each field line, only the energy
associated with its particular resonant frequency is dissipated This is much less than
the total energy input and so it is unlikely to be a reliable coronal heating mechanism
by itself.

4.2 In case of a short coronal loop, standing waves have their wavenumber, kz,
fixed by the geometry (Priest 2014). Hence, each magnetic surface with x = const
oscillates independently of its neighbor with a frequency ω(x) = kzvA(x) ≡ ωA(x)

and a velocity

vy(x, z, t) = V (x)ei[kzz−ωA(x)t ] (24.63)
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With time the field lines become more and more out of phase, thus causing phase
mixing. At the same time the x-gradients grow

∂vy(x, z, t)

∂x
= i

dωA

dx
tvy (24.64)

and the phase mixing results in an effective wavenumber kk,eff = (dωA/dx)t ,
which grows in time. The effective wavelength becomes smaller and smaller until
dissipative effects turn on and convert the wave energy into heat. This as earlier is
described by phase-mixed solution of visco-resistive equation

∂2vy

∂t2
− v2

A(x)
∂2vy

∂z2
− (η + ν)

∂2

∂x2

∂vy

∂t
= 0, (24.65)

having the form vy = V (x, z, t)exp[i(kzz−ωA(x)t)]. Here, the amplitude V (x, t) is
slowly varying function. Thus, for V (x, t) (retaining the dominant terms) we arrive
to the following equation

− 2iωA
∂V

∂t
= i(η + ν)ωA

(
dωA

dx

)2

t2V, (24.66)

Solution of this equation gives the amplitude which decays in time as

V (x, t) = V (x, 0)exp

[

−η + ν

6

(
dωA

dx

)2

t3

]

(24.67)

Hence, the time-scale for dissipation by phase-mixing is

τphase = 1

ωA

(
12πRem

a

λ

)1/3
, (24.68)

where ω−1
A is the Alfvén time, and Rem = avA/(η + ν) is the magnetic Reynolds

number. At this phase-mixing time, the x-scale becomes a fraction of the original
scale of magnetic structure, a:

1

kx,effa
=
(

12πRem

a

λ

)1/3
. (24.69)

4.3 Let the lash move with velocity u. The energy conservation requires that

1

2
(M + m)u2 = 1

2

(

M
L + x

2L
+ m

)

v2 (24.70)
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This gives for the velocity of the lash-tip

v(x) = u

√
M/(m + 1)√

(M/m)(L + x)/2L + 1
(24.71)

At the beginning, the cracker is positioned at x = +L, and the whip-tip has the same
translation velocity as the lash, i.e., v = u. However, with increasing propagation in
the x-direction v(x) grows and, approaching the free end at x → −L, reaches the
maximum velocity

vmax = u

√
M + m

m
(24.72)

which increases without limit for an infinitesimal mass of cracker, m → 0. Note
that the real model of bullwhip effect requires much more sophisticated approach
that includes drag and gravity forces, and, of course, the variable mass density of a
whip as function of its length. This simple approach only shows that the tempered
shape of magnetic or any other whip causes the unlimited growth of the tip velocity.
See Krehl et al. (1998).

24.4 Problems of Chap. 5

5.1 Let an incompressible fluid of density ρ1 in the region z > 0 move with velocity
U in x-direction, and the fluid with density ρ2 in the region z < 0 is at rest. The
gravity force acts in the negative z-direction. For the perturbations of the form

ξ(x, t) = A(t)cos(kx − ωt), (24.73)

the hydrodynamic equations, including the effect of surface tension τ , give the
following dispersion relation:

D(ω, k) = (ρ1 − ρ2)g − k2τ + (ω − kU)2 ρ1

k
+ ω2 ρ2

k
(24.74)

The wave energy per unit area is

W = 1

4
ω

∂D(ω, k)

∂ω
A2 (24.75)

The derivative of dispersion relation by ω is

∂D(ω, k)

∂ω
= 2(ω − kU)

ρ1

k
+ 2ω

ρ2

k
(24.76)
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and the wave energy, respectively, is

W = ω

2

[ωρ2

k
+ ρ1

k
(ω − kU)

]
A2 (24.77)

The solution of the dispersion relation (24.74) gives for frequencies the following
expression

ω = ρ1kU

ρ1 + ρ2
±
{

C2
0

u2 − ρ1ρ2

(ρ1 + ρ2)2

}1/2

kU (24.78)

where

C2
0 = ρ2 − ρ1

ρ2 + ρ1

g

k
+ kτ

ρ2 + ρ1
(24.79)

The usual KH instability occurs when square root in (24.78) becomes imaginary,
i.e., when

U >
C0(ρ1 + ρ2)√

ρ1ρ2
(24.80)

On the other hand, one can see that when ω < ku(ρ1/ρ1 + ρ2), ∂D(ω, k)/∂ω <

0, and the energy of the wave for positive frequencies becomes negative. Hence, the
instability of negative energy waves occurs at frequencies corresponding to lower
sign in (24.78).

Hence, at the critical velocity

Ucr = C0(ρ1 + ρ2)√
ρ1ρ2

, (24.81)

and the frequency,

ωcr = ρ1kU

ρ1 + ρ2
, (24.82)

for which the wave energy, W = 0, the coalescence of a positive energy root
with a negative energy root occurs. Thus, relations (24.81) and (24.82) determine
a bifurcation point. See e.g. Cairns (1979).

5.2 A three-wave interaction where one of the waves has negative energy can be
described by the following set:

∂u1

∂t
= c1u2u3cosφ,

∂u2

∂t
= c2u1u3cosφ,

∂u3

∂t
= c3u1u2cosφ (24.83)
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where ui are normalized velocities, cik are the matrix elements of three-wave
interactions, and φ is determined by mutual phase relations of the interacting
waves. The conditions (5.76) are automatically satisfied. The constant of motion
corresponding to the above set has a form

u1u2u3sinφ + 1

4
(α1u

4
1 + α2u

4
2 + α3u

4
3) = Γ (24.84)

where αi = const and Γ are parameters associated with the frequency relations and
nonlinear phase shifts.

Consider the simplest case when initially all three waves have the same ampli-
tude, i.e., when ui(x, 0) = u(x, 0) and, therefore, cik = c and αi = α, and Γ = 0
Then the system (24.83)–(24.84) reduces to the well-known Rate equation

∂u(x, t)

∂t
= cu2(x, t)cosφ (24.85)

with the constant of motion having a form

Γ = u3sinφ + 3

4
αu4 (24.86)

Substituting (24.86) into (24.85) we get

∂u(x, t)

∂t
= ±u2(x, t)

√
1 − α2u2 (24.87)

One can see that at u = 1/α, ∂u/∂t = 0, i.e., |u|max = 1/α is the maximum
amplitude, and the distribution acquires the hump-shaped form. The solution
of (24.87) (integrating ∂t/∂u over u) is

u(x, t) = 1
√

α2 + (tm − t)2
(24.88)

The plus and minus signs in (24.87) correspond to t < tm and t > tm, respectively,
and the time of maximum is

tm(x) = 1

u(x, 0)

√
1 − α2u2(x, 0) (24.89)

Thus, for different values of x, the amplitudes experience different rates of
evolution. The first maximum in the distribution develops at the time of saturation

tm(0) = 1

u0

√
1 − α2u2

0 (24.90)
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This will be followed by a decrease in the center, accompanied by an increase in the
neighboring part. Hence, the peak first developed to reach a maximum at x = 0 will
move in x-direction in such a way that the next peak occurs with a delay time

tm(x) − tm(0) = 1

u(x, 0)

√
1 − α2u2(x, 0) − 1

u0

√
1 − α2u2

0 (24.91)

If, for example, the initial shape of distribution has a soliton shape (a single hump),

u(x, 0) = u0

1 + κx2
(24.92)

where κ is a positive constant. For the time of explosion we have:

tm(x) = 1

u0
(1 + κx2). (24.93)

If the time-dependence of initial amplitude is oscillatory, the peaks will become
repeated in time for each x value. Figure 24.1 shows the examples of numerical
solution for the development of repetitive explosive instability, (a), and occurrence
of the explosive instability due to interaction of the negative energy wave with two
positive energy waves, (b).

u j

u

φ

φ

t
(a) (b)

t

Fig. 24.1 Evolution of repetitive explosive instabilities in space and time. (a) Amplitude and
phase development for Γ = 0 in the presence of dissipation; (b) Explosively unstable interaction
between waves of positive and negative energy (Weiland and Wilhelmsson 1977; Wilhelmsson
1984). Courtesy of J. Weiland
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24.5 Problems of Chap. 6

6.1 (a) Let us search the solution of the form

x(t) = a(t)cosωt + b(t)sinωt (24.94)

where a(t) and b(t) are slowly varying functions of time, which according to (6.142)
satisfy the following equations:

da

dt
+
(
ω − ω0 + αω0

4

)
b(t) = 0

db

dt
−
(
ω − ω0 − αω0

4

)
a(t) = 0 (24.95)

If |ω − ω0| < αω0/4, the solutions of the above system are

a(t) = A1
(
C1e

−γ t + C2e
γ t
)
, b(t) = A2

(
C1e

−γ t − C2e
γ t
)

(24.96)

where

γ = 1

4

√
(αω0)2 − 16(ω − ω0)2, A1,2 = √αω0 ± 4(ω − ω0) (24.97)

Now solution of (24.94) takes the form

x(t) = D1e
γ tcos(ωt − φ) + D2e

−γ tcos(ωt + φ) (24.98)

with tgφ = A1/A2. Thus, the oscillations show unlimited growth in time
(Fig. 24.2a). In reality, of course, the stabilization of growing modes will occur
due to nonlinear effects, dissipation or appearance of anharmonic terms.

tt

x x

a b

Fig. 24.2 Wave packets: (a) Growing wave packet in region of parametric resonance; (b) Beat
waves and slowly varying envelope in the region close to instability
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(b) Close to instability threshold |ω−ω0| ≥ αω0/4, and solution of (6.142) takes
the form

x(t) = CB1sin(Ωt + ψ)cosωt + CB2cos(Ωt + ψ)sinωt, (24.99)

where

Ω = 1

4

√
16(ω − ω0)2 − (αω0)2 (24.100)

and

B1,2 =
{ √

4(ω − ω0) ± αω0, ω > ω0

±√
4(ω0 − ω) ± αω0, ω > ω0

}

(24.101)

In this case oscillations represent the beat waves:

x(t) = C
√

4|ω − ω0| − αω0cos(2Ωt + ψ)cosωt + cos(ωt + θ), (24.102)

where θ is the slowly varying phase (Fig. 24.2b). If the frequency approaches to
instability threshold, the depth of modulated oscillations approaches to full height
and a period of modulation grows infinitely. See Kadomtsev (1968).

6.2 Assume that the wave amplitude is small, so that higher harmonics are small.
In this case the main nonlinear effect is the dependence of the phase velocity or
the frequency on the amplitude a (Lighthill 1965; Kadomtsev and Karpman 1971).
Thus to the first nonvanishing correction we can write for frequency:

ω(k, a) = ω0 + αa2, (24.103)

As k and a2 vary with x, the phase φ(x, t) = kx − ωt will no longer be a linear
function of space and time. Using k = ∂φ/∂x, ω = −∂φ/∂t , and (24.103) we can
write

∂k

∂t
= −∂ω

∂x
= −vg

∂k

∂x
− α

∂a2

∂x
, (24.104)

where vg = ∂ω0/∂k is the group velocity. Recalling that the energy of the wave
packet is transported with the group velocity, the energy conservation law can be
written as

∂a2

∂t
+ ∂

∂x
(vga2) = 0 (24.105)

From (24.104)–(24.105) it follows that under certain conditions a plane wave is
unstable against breakdown into individual wave packets. Indeed, let us apply a
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small perturbation to a monochromatic wave with wave number k0 and ampli-
tude a0:

k = k0 + k′exp(−iνt + iκx), a = a0 + a′exp(−iνt + iκx) (24.106)

where ν � ω and κ � k0 are the frequency and wavenumber of the modulation. In
the linear approximation from (24.104)–(24.105) we obtain

ν = vgκ ±
√

α
∂vg

∂k
a2

0κ (24.107)

One can see that when

α
∂vg

∂k
< 0 (24.108)

the system is subject to instability and the wave brakes into individual packets. At
later stage the wave packets experience self-contraction, i.e., with the growth of the
modulation amplitude the depth of modulation grows. This may lead to breaking
of the wave into a separate packets (Fig. 24.3). The exemplary case is that of the
gravitational waves on the surface of a deep water. The dispersion relation being in
linear stage ω = √

gk in weakly nonlinear case becomes

ω(k, a2) = √gk

(

1 + a2k2

2
+ · · · .

)

(24.109)

where a is the amplitude of the oscillations of the surface. For the phase velocity we
have

vg = ∂ω

∂k
= 1

2

√
g√
k

+ 5

4
√

gk3/2a2 (24.110)

Fig. 24.3 Breaking of the
beat wave into separate wave
packets

x

t
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From here for parameter α (24.109) we have

α = 1

2

√
gk5/2k3/2a2 (24.111)

Now in the first approximation

α
dvg

dk
= −1

8
gk < 0 (24.112)

Thus, the gravitational waves on the surface of deep water are unstable against
the longitudinal perturbations. This simple fact is the basics of formation of rogue
waves. See also Vedenov and Rudakov (1964).

24.6 Problems of Chap. 7

7.1 The generalization of results described in Sect. 7.1 to the case of a finite number
of grid points is quite straightforward. One should replace the integral forms ((7.2)–
(7.3)) by their discrete analogue:

τ̄ (n)
c = 1

N

N∑

i=1

τi(θi) cos nθi (24.113)

τ̄ (n)
s = 1

N

N∑

i=1

τi(θi) sin nθi (24.114)

where θi stands for a polar angle of the i-th grid point within the annulus. Let N =
2k be the number of points at circle. Denote the angle θk = 2πk/N with k =
0, 1, 2, 3, . . .N − 1. Let the flow velocity have a direction θu. “Correct” distribution
of propagation times is

τk = τ0 + Δτ cos(θk − θu) (24.115)

Assume that the measured values of τ have small errors, Δτk , i.e., the measured
values of τk are:

τk = τ0 + Δτ cos(θk − θu) + Δτk (24.116)

Using (24.116) as input data for (24.113) and (24.114) we can find what the values
of θu and u, and θB and B will be.

It is also important to discuss some problems that may appear in analyzing
the observational data with a “coarse” grid, when only a few points are situated
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within the annulus and/or they are distributed unevenly. In this case, even in the
absence of mass flows and magnetic field one could find nonzero values of τ

(n)
s

and τ
(n)
c . This, however, may have hidden errors. To avoid these errors one must

first subtract the average value of τ from the measurements and only then apply
relationships (24.113)–(24.114). After that one could apply a further smoothing
procedure, by making all calculations in a set of frames turned with respect to the
initial one by a sequence of slightly different angles,

θk = k

N
2π, k = 0, 1, . . . N − 1 (24.117)

Note that this problem will not arise if the grid-points, though distributed unevenly
over the azimuth of the annulus, are distributed in a symmetric way with respect to
the axes 0x and 0y. See Ryutova and Scherrer (1997).

24.7 Problems of Chap. 8

8.1 Let us represent the velocity u in two parts:

u = 〈u〉 + ũ (24.118)

where 〈u〉 is the average velocity and ũ is the small fluctuating part. The velocity
fluctuations must lead to some pressure fluctuations

p = 〈p〉 + p̃ (24.119)

The velocity and pressure are related by Bernoulli’s equation,

p + ρu2

2
= const (24.120)

Substituting (24.118)–(24.119) into (24.120) we have

〈p〉 + p̃ + ρ 〈u〉2

2
+ ρ〈u〉ũ + ρũ2

2
= const (24.121)

For the average values 〈u〉 and 〈p〉 themselves, Bernoulli’s equation must also hold

〈p〉 + ρ〈u〉2

2
= const (24.122)
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The quantity ρũ2/2 may be neglected since ũ is small compared with 〈u〉. Thus, the
pressure fluctuations p̃ are of the order

p̃ � ρ〈u〉ũ (24.123)

The pressure fluctuations cause a turbulent fluctuations of frequencies. Note also
that in a turbulent stream the acceleration also fluctuates. See Ryutova and Persson
(1984).

24.8 Problems of Chap. 9

9.1 The original form of KdV equation for long waves on shallow water (λ � h0
with h0 being the depth of the layer) has a form

∂u

∂t
+ u

∂u

∂x
+ βdisp

∂3u

∂x3 = 0, (24.124)

Here βdisp = c0/k2
0 is the dispersion parameter, determined by the phase velocity,

c0, and wavenumber, k0. Note that 1/k0 has meaning of the “dispersion length.”
For very long waves, when the wavelength is much larger than the depth of water,

1/k0 � h0, the phase velocity does not depend on the wave number, and is simply
equal to

√
gh0. For the traveling-wave type, when u = u(x − ct), we have

∂u

∂t
= −c

∂u

∂x
, (24.125)

and (24.124) changes from a partial differential equation to an ordinary one

− c
du

dx
+ 1

2

∂u2

∂x
+ βdisp

∂3u

∂x3
= 0 (24.126)

This equation can be immediately integrated once leading to the following equation

βdisp
∂2u

∂x2 = A + cu − 1

2
u2, (24.127)

where A is the integration constant, which can be set to zero, say, by changing over
to a moving system of coordinates.

Equation (24.127) can be represented in the form

βdisp
∂2u

∂x2 = −∂W

∂u
, (24.128)
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Fig. 24.4 A potential well (a) and Multi-solitons (b)

where

W = −cu2

2
+ u3

6
(24.129)

(24.128) has the form of the equation of motion for a nonlinear oscillator—a
material point of mass βdisp, moving in a potential well W(u), with the coordinate
x playing the role of the time. The plot of W(u) is shown in Fig. 24.4a. It vanishes
at u = 0, u = 3c and reaches a minimum at u = 2c. In case of oscillations about
the minimum of the potential energy W(u), the wave is practically harmonic:

u = 2c + u0exp

[

i

√
c

βdisp
(x − ct)

]

(24.130)

One can see that at small amplitudes, u oscillates about the value 2c. As the
oscillation amplitude increases, the wave becomes more and more asymmetric.
When the amplitude increases to such an extent that values u = 0 become possible,
the solution describes a single solitary pulse—a soliton. The corresponding solution
is of the form

u = Asech2
(

x − ct

Δ

)

(24.131)

where the amplitude A and the width of a soliton Δ are as follows:

A = 3c, Δ = 2

√
βdisp

c
= 2

k0

√
c0

c
(24.132)

Thus, the larger the soliton velocity c, the larger its amplitude and the smaller its
width. It is interesting that if the wave amplitude A is close to 3c (but smaller),
then the solution takes a form of multi-solitons: sequence of pulses, close in shape,
follow one another periodically (Fig. 24.4b). See Kadomtsev and Karpman (1971).
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9.2 The KdV-Bürgers equation

∂u

∂t
+ u

∂u

∂x
+ βdisp

∂3u

∂x3 = μ
∂2u

∂x2 (24.133)

for a traveling wave, u = u(x −ct), after integrating this equation once with respect
to x, we get

β
∂2u

∂x2 − μ
∂u

∂x
= −∂W

∂u
(24.134)

Now we have an equation for nonlinear damping (μ) oscillator in the same
potential, (24.129):

W = − c

2
u2 + 1

6
u3, (24.135)

and a “friction force” with coefficient μ. As earlier, u plays the role of coordinate
and the time τ is played by −x. If we assume that for τ = −∞ (i.e., x = ∞) the
“particle” was located at the coordinate origin (u = 0), then at time τ = ∞ (i.e.,
x = −∞) it appears at the point u(−∞) = 2c (Fig. 24.4a), corresponding to the
minimum energy. Thus (24.134) describes a shock wave whose velocity c is related
to the extreme values u(∞) = 0 and u(−∞) = um by

c = u(−∞) − u(∞)

2
= Δu

2
(24.136)

and a solution, bounded at ∞:

u(x − ct) = c0 + Δu

1 + exp[Δu/2μ)(x − ct)] , c = c0 + Δu

2
(24.137)

where c0 and Δu are constants, and Δu = u(−∞)−u(∞). This solution represents
a shock wave with a discontinuity Δu and a transition region width δ = 2M/Δu. In
a reference frame where the medium is at rest, the velocity of the shock wave is

c = c0 + Δu

2
(24.138)

The corresponding Mach number is

M = 1 + Δu

2c0
(24.139)

Because of dissipation, the oscillations in potential W(u) will be damping. Hence,
instead of a periodic wave, the solution may take shape of an asymmetric wave
train. Altogether the nature of the shock wave depends on the relation between
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a

u
μ < μ cr β > 0

x b

u μ < μ cr β < 0

x

Fig. 24.5 Structure of shock wave in dispersive and dissipative medium with partial soliton
regime, i.e., at μ < μcr: (a) at positive dispersion—the initial phase consists of train of regular
solitons; (b) at negative dispersion—the initial phase consists of a train of negative solitons

the dispersive and dissipative parameters, βdisp and μ. At small dissipation, the
“particle” will fall to the bottom of the potential well (Fig. 24.4a), and perform the
oscillations between its walls. The energy of the “particle” decreases quite slowly,
and first few oscillations at the wave front will be close to solitons moving with
velocity (Fig. 24.5a)

u � 3csech2
[√

c

4βdisp
(x − x0 − ct)

]

(24.140)

If the dissipation coefficient is larger than some critical value μcr, the motion of
“particle” will be aperiodic and the shock front will have a monotonic structure as
in normal gas dynamic (Fig. 24.5b).

9.3 First, we investigate the asymptotic behavior of the solution of (24.133) for
x → −∞. Let us represent u(x) as follows:

u(x) = Δu + f (x) (24.141)

where f (x) is a small quantity. Substituting this expression into (24.133) and
linearizing it, we obtain for the function f (x) equation:

β
∂3f

∂x3
− μ

∂f

∂x
+ cf = 0 (24.142)

The solutions of this equation are proportional to exp(px), where

p = μ

2βdisp
±
(

μ2

4β2
disp

− c

βdisp

)1/2

(24.143)
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We see that expression in brackets may have positive or negative sign providing thus
condition for μcr:

μcr =
√

4βdispc =
√

2βdispΔu (24.144)

Thus the shock wave has a monotonic profile for μ > μcr and an oscillating profile
for μ < μcr.

If μ � μcr, the asymptotic form of the solution at τ → ∞ is as follows:

u = Δu + Aexp

(
μx

2βdisp

)

cos

(√
Δu

2βdisp
x

)

(24.145)

For βdisp > 0 this expression corresponds to the plots shown in Fig. 24.5a, i.e., the
oscillatory structure is ahead of the wave front. In case of negative dispersion βdisp <

0, solitons are dark and the largest soliton travels with maximum velocity, while the
oscillating tail remains behind the shock front. Such a structure is characteristic,
for example, of an oblique shocks in a magnetized plasma (see e.g. Sagdeev 1966).
Note that both types of shock waves were observed in laboratory, as well as in the
solar atmosphere (see Chaps. 11 and 21).

24.9 Problems of Chap. 10

10.1 Because of the geometry of the problem, the equation of motion has a form:

∂v
∂t

+ 1

ρ
∇p − νΔv = 0 (24.146)

It follows from the z-component of (24.146) that ∂p/∂z = 0, i.e., p = const, and
its x -component becomes (vx = v)

∂v

∂t
= ν

∂2v

∂z2 (24.147)

This is in fact one-dimensional heat conduction equation. For a periodic in z and t

solution of the form

v = v0exp[i(kz(−ωt)] (24.148)

we have from (24.146)

iω = νk2 (24.149)
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or

k = 1 + i

δp

, δp =
√

2ν

ω
(24.150)

so that the velocity is

v = v0e
−z/δpei(z/δp−ωt) (24.151)

The choice of the sign
√

i corresponds to the requirement that the velocity must
decrease into the fluid. The quantity δp is the depth of penetration. One can see
that this depth decreases with increasing frequency of the wave and increases with
the kinematic viscosity of the fluid. It is interesting that in the nonlinear stage of
generation of mass flows by the oscillating surface, the effect is independent on the
viscosity. This is considered in the next problem.

10.2 To study non-steady flow one needs to include time-derivative terms in the
Prandtl’s equation. In chosen geometry we have

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
− ν

∂2vx

∂y2 = U
∂U

∂x
+ ∂U

∂t
(24.152)

Here

U = v0coskx · cosωt (24.153)

where k = ω/cs . The velocity v in the boundary layer can be expressed in terms of
a stream function ψ(x, y, t):

vx = ∂ψ/∂y, vy = −∂ψ/∂x (24.154)

We will solve (24.152) by successive approximations with respect to the velocity
fluctuations in the sound wave. In the first approximation we have

∂v
(1)
x

∂t
− ν

∂2v
(1)
x

∂y2
= −iωv0coskxe−iωt (24.155)

The solution of this equation which satisfies the necessary conditions at y = 0 and
y = ∞ is

v(1)
x = Re

[
v0coskxe−iωt (1 − e−ky)

]
(24.156)
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where

k =
√−iω

ν
= 1 − i

δp

(24.157)

δp being a penetration depth (cf. (24.150). Note that the acoustic streaming is the
most efficient when the characteristic length in the problem l is much less than the
sound wavelngth, λ, but much larger than the penetration depth δp = √

2ν/ω. The
stream function corresponding to (24.150) is

ψ(1) = Re
[
v0cos(kx) · ζ (1)(y)e−iωt

]
, ζ (1)(y) = y + 1

k
e−ky (24.158)

This solution satisfies the condition ψ(1) = 0 at y = 0, which is equivalent to
v

(1)
y = 0. In the next approximation, v = v(1) + v(2), for v

(2)
x we have

∂v
(2)
x

∂t
− ν

∂2v
(2)
x

∂y2 = U
∂U

∂x
− v(1)

x

∂v
(1)
x

∂x
− v(1)

y

∂v
(1)
x

∂y
(24.159)

The right-hand side contains terms with frequencies ω1 = 2ω and ω2 = 0. It is
just ω2 = 0 that leads to time-independent terms in v(2) which correspond to the
secondary steady flow generated by the sound.

In what follows, we will consider only this part of velocity under v(2). Using
corresponding stream function

ψ(2) = v2
0

cs

sin(2kx) · ζ (2)(y) (24.160)

we obtain the equation for ζ (2)(y):

δ2
pζ (2)′′′ = 1

2
− 1

2
|ζ (1)′ |2 + 1

2
Re[ζ (1)ζ (1)′′ ] (24.161)

the primes denote differentiation with respect to y. The solution of this equation
must satisfy conditions ζ (2) = 0, ζ (2)′ = 0, which are equivalent to v

(2)
x =

v
(2)
y = 0 on the solid surface. Far from the surface v

(2)
x tends to finite value.

Substituting (24.158) in (24.161) and integrating twice one gets for the derivative
ζ (2)′:

ζ (2)′(y) = 3

8
− 1

8
e−2y/δp

− e−y/δp

{

sin(y/δp) + 1

4
cos(y/δp) − y

4δp

[
cos(y/δp) − sin(y/δp)

]
}

(24.162)
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As y → ∞, it tends to

ζ (2)′(∞) = 3/8 (24.163)

corresponding to a velocity

v(2)
x (∞) = 3v2

0

8cs

sin2kx (24.164)

Important: outside the boundary layer there is a steady flow whose velocity is
independent of the viscosity, whereas the generation of the secondary flows is the
result of the action of Reynolds stresses. Flow portrait of Schlichting’s solution and
corresponding experimental results are shown in Fig. 10.1. The value of v

(2)
x (∞)

serves as a boundary condition for determining the main acoustic flow (see the next
problem Schlichting (1932); Rayleigh (1883)).

10.3 Since the velocity v(2) of a steady flow is much less than the sound speed, the
flow may be regarded as incompressible. Moreover, since v0 is assumed to be also
small, such that v0/cs � δp/h (as well as v(2) ∼ v2

0/cs � δp/h), the quadratic
terms in the equation of motion may be neglected. Then equation for the stream
function reduces to

(
∂2

∂x2
+ ∂2

∂y2

)2

ψ(2) = 0 (24.165)

We shall seek ψ(2) in the form (24.160). As h � λ, the derivatives with respect to
y are much larger than those with respect to x. Neglecting the latter, we obtain for
ζ (2)(y) the equation

ζ (2)′′′(y) = 0 (24.166)

Because of the symmetry of the problem, the flow is symmetrical with respect to the
plane y = (1/2)h). Hence

v(2)
x (x, y) = v(2)

x (x, h − y), v(2)
y (x, y) = −v(2)

y (x, h − y) (24.167)

and therefore

ζ (2)(y) = −ζ (2)(h − y) (24.168)

A solution of (24.166) having this property is

ζ (2)(y) = A(y − h/2) + B(y − h/2)3 (24.169)
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The constants A and B are determined from the boundary conditions

ζ (2)(0) = 0, ζ (2)′(0) = 3/8 (24.170)

Thus for the stream function we have

ψ(2) = 3v2
0

16cs

sin2kx

[

−(y − h/2) + 1

4
h2(y − h/2)3

]

, (24.171)

from which follow the velocity distributions:

v(2)
x = − 3v2

0

16cs

sin2kx

[

1 − 3

4
h2(y − h/2)2

]

, (24.172)

and

v(2)
y = 3v2

0k

8cs

cos2kx

[

y − h/2 − 1

4
h2(y − h/2)3

]

(24.173)

The velocity v
(2)
x changes sign at a distance (1/2)h(1−1/

√
3) = 0.423(1/2)h from

the wall. The flow described by these expressions consists of two series of vortices
lying symmetrically about the median plane y = (1/2)h and being periodic in
the x-direction, with period (1/2)λ. One of the examples of numerous experiments
illustrating the acoustic streaming is shown in Fig. 24.6.

Fig. 24.6 Visualization of acoustic streaming. Ten superimposed images taken at 200 ms interval,
created by a transducer 4 mm in diameter (seen at image top center (Reprinted from Nowicki et al.
(1998). Copyright (1998), with permission from Elsevier)
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24.10 Problems of Chap. 11

11.1 Equation (11.33) can be written in the divergence form as follows:

∂u

∂t
+ ∂

∂x

(
u2

2
+ βuxx

)

= 0 (24.174)

which can be written in form of the “momentum” conservation law:

I1 =
∫ ∞

−∞
u(x, t)dx (24.175)

Multiplying both sides of (24.174) by u and making a simple rearrangements we
obtain equation which also has the form of an energy conservation law

∂

∂t

(
u2

2

)

+ ∂

∂x

[
u3

3
+ β

(

uuxx − 1

2
u2

x

)]

= 0 (24.176)

In the same way, multiplying both sides of (24.174) by u2, after some algebra we
get another conservation law:

∂

∂t

(
u3

3
− βuxx

)

+ ∂

∂x

[
u4

4
+ β(u2uxx + 2utux) + β2u2

xx

]

= 0 (24.177)

Although (24.177) does not have such a simple physical interpretation as two
previous conservation laws, it leads to amazing discovery that there exists an infinite
number of invariants corresponding to the KdV equation,

Im =
∫ ∞

−∞
Qm(x, t)dx (24.178)

whose densities Qm(x, t) satisfy the equation

∂Qm(x, t)

∂t
+ ∂Pm(x, t)

dx
= 0, m = 1, 2, 3, . . . (24.179)

Qm(x, t) and Pm(x, t) are polynomials of β and the spatial derivatives of u(x, t).
Thus, for example, the first three densities of the conserved quantities are:

Q1[u] = u, Q2[u] = u2

2
, Q3[u] = u3

3
− βu2

x (24.180)
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Note finally that to the first order of dispersion coefficient β, the expression for
Qm[u] for the infinite number m is quite simple:

Qm[u] = um

m
− β

(m − 1)(m − 2)

2
u2

xu
m−3 + O(β2), (24.181)

demonstrating a remarkable structural stability of the KdV solutions. See e.g. Miura
et al. (1968).

11.2 Like the KdV equation, the MKdV equation is fully integrable, and also has
an infinite number of integrals. Consider first a solitary solutions of (11.34) with
negative cubic nonlinearity, i.e., when α < 0. In this case

u = Asech2
[

1

2

√
2A(x − 2At − x0)

]

(24.182)

where A = c/2, c being the soliton velocity. This solution describes a single family
of solutions such that A > 0. As the wave amplitude increases, it remains bounded
by an upper limit given by

Amax = 1

|α| (24.183)

In the limiting case the solution (24.182) describes the so-called thick or table-
top solitary wave. The family of the solutions of (24.182) for negative cubic
nonlinearity, α < 0 is shown in Fig. 24.7, left panel. One can see that entire family
consists of the

⋂
-shaped, bright solitons. Blue line corresponds to Amax of a table-

top soliton.
In case of positive cubic nonlinearity, when α > 0 there are two possible families

of solitary waves having opposite polarities:

u(x, t) = Asech[√αA(x − αA2t − x0)] (24.184)

Fig. 24.7 The shape of solitary wave solutions of the dimensionless Gardner equation. Left panel:
case of negative cubic nonlinearity; Right panel: case of positive cubic nonlinearity (Grimshaw
et al. 1999). Reprinted with permission from IOP publishing
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where A can take either sign. In case of negative value of the amplitude we have
the
⋂

-shaped, dark solitons. The amplitude of these solitons is bounded by a lower
limit of

Alim = − 2

|α| , (24.185)

and the wave tends to the soliton shape given by

u(x) = 12αAlim

12α + x2 (24.186)

The family of solitons at α > 0 is shown in Fig. 24.7, right panel. The limiting
solutions are shown by the blue line.

11.3 In case of a strong dispersion the wave profile becomes highly oscillatory
and instead of the “wave front” we deal with the series of solitons (so-called Low-
Frequency Instability). Thus, we need to analyze a behavior of solitons under the
conditions

β
∂3u

∂x3
∼ u

∂u

∂x
� γ u ∼ ν

∂2u

∂x2
(24.187)

We will use again the method of averaging over stationary waves. The solution
of (11.35) is a soliton having an amplitude, A(t), width, Δ(t) and velocity, v(t) that
vary slowly in time (cf. Eqs. (11.7)–(11.9)):

u = A(t)sech2
[

1

Δ(t)

(

x −
∫ t

0
v(t)dt

)]

(24.188)

where

v(t) = 1

3
A(t), Δ2(t) = 12β

A(t)
(24.189)

i.e., the parameters of the soliton are related to one another in the same way as
in the conventional KdV (akin magnetic solitons). Multiplying (11.35) by u and
integrating over a distance large compared with the size of a soliton (in fact from
−∞ to ∞) we obtain the equation for the amplitude:

dA

dt
= 2γA − 4

45

ν

β
A2 (24.190)

Solution to this equation is

A(t) = A0A∞exp(αt)

A0[exp(αt) − 1] + A∞
(24.191)
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where A0 is the initial amplitude, A∞ = 5γ /nu, and α = 4γ /3. From the
solution (24.191) it follows that solitons having an initial amplitude A0 < A∞
are accelerated to the velocity v∞ = (1/3)A∞ and amplified to the amplitude A∞.
On the other hand, solitons having A0 > A∞ are decelerated and dump out to
the value A∞. Hence, for t → ∞ low-amplitude solitons have a large width and
low-frequency instability leads to their amplification, while narrow solitons, having
a large amplitude, dump out due to high-frequency. See Rabinovich and Fabrikant
(1976).

24.11 Problems of Chap. 12

12.1 Assume that all magnetic elements have the same radius r0 and the same field
strength B0 at the photosphere. The magnetic flux of each element is then

Φph = πr2
0 B0 (24.192)

The density n of magnetic elements in the cell, assumed circular, may be found from
the conservation equation

1

r

d

dr
(rvn) = Sc (24.193)

where Sc is the rate of generation of magnetic elements per unit area. Let magnetic
elements appear uniformly at a rate Sc over a supergranular cell of radius R. If
the radial outflow velocity v increases linearly from zero at the center to vc at the
boundary of the cell, so that

v = vcr/R, (24.194)

(24.193) is satisfied by the following value of the density:

nc = 1

2

RSc

vc

(24.195)

The rate of generation of flux elements in the cell Jc is given by

Jc = πR2Sc (24.196)

We assume that, once flux elements arrive at the network (“boundary”) region, they
move randomly with mean speed vb . Denote the “collision cross section” of each
magnetic element as λr0, where λ is of the order of unity. If the mean density of flux
elements in the network region is nb, the rate of annihilation of flux elements, per
unit area, will be

Ab = 1√
2
vbn

2
bλr0 (24.197)
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since the mean relative speed is
√

2vb and only one-half of the collisions are between
elements of opposite polarity. If the width of the network is 2W , the total rate of
annihilation in the network region associated with a single cell will be

Jb = 2πRWAb (24.198)

to lowest order in W/R. Hence, the balance between the flux generation rate Jc and
the annihilation rate Jb leads to the following expression for nb:

n2
b = 1√

2

RSc

λWr0vb

(24.199)

When a pair of magnetic elements “collide” and reconnect, the energy in the upper
atmosphere is reduced by approximately 2Uph in each collision, where

Uph = 1

8π
B2

0πr2
0 ηr0 (24.200)

here ηr0 � Λ is the effective scale height. The total energy generation rate is then
JcUph, so that the average coronal energy flux is given by

F = ScUph (24.201)

Similarly, the mean magnetic field strength may be calculated by dividing the total
magnetic flux by the total area, which leads to

B = (nc + 2R−1Wnb)Φph (24.202)

If we normalize the mean magnetic field strength according to

b = B/B∗ (24.203)

where

B∗ =
√

2πB0Wr0vc

λR2vb

(24.204)

and normalize the energy flux according to

f = F/F ∗ (24.205)

where

F ∗ = 2−3/2ηB2
0Wr2

0 v2
c

λR3vb

(24.206)



704 24 Solutions

we find that the energy flux is related to the mean field strength by

f = [√1 + b − 1]2 (24.207)

One can see that the relationship between the photospheric magnetic flux and energy
flux in the upper atmosphere is not a simple power law. For weak magnetic fields,
the slope of the log-log relationship (α = d[logf ]/d[logb]) is in the range 1.5–2.0.
For strong magnetic fields it is in the range 1.2–1.5. See Rabinovich and Fabrikant
(1976).

12.2 The speed of magnetic reconnection is usually defined by the speed of inflow,
vin, or by the Alfvén Mach number at the inflow region

Mi ≡ vin/vAi (24.208)

vAi = Bi/
√

4πρ. Denoting the observed specific rate of cancellation of magnetic
field by w we can express it through the magnetic field in the inflow region, Bi , and
the inflow speed:

w = vinBi (24.209)

Let us now find the inflow speed for both models.
In the Sweet-Parker reconnection model the magnetic field lines are carried by

plasma toward the current sheet at the same speed as the magnetic field lines diffuse
outward: vin = η/l. The speed of outflow in the inflow region is equal to the Alfvén
speed, vout = vAi . The incoming flow of matter must balance the outgoing flow,
Lvin = lvout. Thus for the inflow speed we get

vin =
[

ηw

L
√

4πρ

]1/3

(24.210)

In the Petschek reconnection model the conversion of magnetic energy into kinetic
energy occurs in the current layer and is accompanied by the slow shocks that
develop outside the reconnection region, Le � L. The reconnection rate is
measured accordingly as the inflow into the shocks, vext. The maximum rate of
reconnection is now measured by:

Mext = π

8ln(8v2
extRem/v2

Ae)
(24.211)

where Rem is the magnetic Reynolds number. Using now the observed cancellation
rate w we can write

vext =
{

πw

8
√

4πρln[8(vext/ṽ)3]
}1/2

(24.212)
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Fig. 24.8 Theoretical inflow
speeds of magnetic
reconnection in the
Sweet-Parker and Petschek
models. The observed specific
cancellation rate is being
w = 1.2 × 106 G cm s−1

(Chae et al. 2002). Reprinted
with permission from Korea
Institute of Science and
Technology Information

where

ṽ =
[

ηw

Le

√
4πρ

]1/3

(24.213)

For observational comparison of the reconnection rates one needs to specify the
parameters L, Le, ρ, and η. Assume (Chae et al. 2002) that both, L used in Sweet-
Parker model and Le used in Petschek model, are of the order of the local scale
height. The velocities vin and vext may be computed using chromosphere model.

The calculated inflow speeds are shown in Fig. 24.8. One can see that the inflow
speed in Sweet-Parker model is less than 0.1 km s−1 everywhere throughout the
photosphere and chromosphere, and is significantly less than the observed one,
vobs � 0.27 km s−1. As to the Petschek model, here the reconnection rates are,
as expected, much faster, and range from 1 km s−1 near the photosphere to a few
km s−1 in the chromosphere. It is interesting that theoretical inflow speed becomes
equal to the observed one at about 700 km height, i.e., at about the temperature
minimum.

24.12 Problems of Chap. 13

13.1 Let the gas-kinetic pressure be much less than the magnetic pressure. The
damping of a fast magnetosonic wave is caused mainly by Ohmic and viscous losses.
Let us estimate these effects separately. General equations governing the problem
are given by

∂v

∂t
= j

B0

ρc
(24.214)

j = σ
(
E + v

c
B0

)
(24.215)
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∂E

∂x
= −1

c

∂B0

∂t
(24.216)

∂B

∂x
= 4π

c
j (24.217)

Hence, the equation for the fast wave with Ohmic losses has a form

− ∂

∂t

(
∂B

∂t
+ c2

4πσ

∂2B

∂x2

)

= B2
0

4πρ

∂2B

∂x2 (24.218)

The viscous losses in a laminar plasma can be found from the equations

∂v

∂t
= ν

∂2v

∂x2
+ j

B0

ρc
, E + (v/c)B = 0, (24.219)

and the wave equation is

∂2B

∂t2 − ν
∂2

∂x2

∂B

∂t
= B2

0

4πρ

∂2B

∂x2 (24.220)

Taking into account both, Ohmic and viscous losses, the approximate damping rate
at the frequency ω = vAk is as follows:

γ =
(

ν + c2

4πσ

)

k2 (24.221)

The corrugation instability will appear at γ < ω, i.e., if

(

ν + c2

4πσ

)

k < vA (24.222)

If we choose for the value of the wave vector the inverse of the width of shock front
(with viscous losses), namely if

k → vA

ν(M − 1)
, (24.223)

then the condition for the shock front instability becomes as follows:

M − 1 > 1 + c2

4πνσ
. (24.224)



24.12 Problems of Chap. 13 707

13.2 We will assume the gas to be perfect, so that its pressure and specific internal
energy may be expressed by the simple relations

p = kb

μ
ρT , E = 1

γ − 1

kbT

μ
(24.225)

kb being a Boltzmann constant and μ is molecular weight. We shall assume that
the shock propagates from left to right. The x-coordinate will be measured from the
shock front compression. The conservation laws in hydrodynamic approximation
take the form

ρu = ρ0vsh (24.226)

p + ρu2 = ρ0v
2
sh (24.227)

E + p

ρ
+ u2

2
+ Srad

ρ0vsh
= v2

sh

2
(24.228)

Here Srad is the radiation energy flux, which is directed opposite to the gas flow, so
that Srad < 0, whereas vsh > 0 and u > 0. Introducing the relative specific volume
η = V/V0 which is equal to the reciprocal of the density ratio or to the velocity
ratio,

η = V

V0
= ρ0

ρ
= u

vsh
, (24.229)

we find from (24.226)–(24.227) that in the regions where flow variables are
continuous, the pressure changes along the straight line

p = ρ0v
2
sh(1 − η) (24.230)

The dependence of temperature and flux on the density ratio is obtained from
(24.226)–(24.228):

T = T1
η(1 − η)

γ̃ (1 − γ̃ )
(24.231)

Srad = −ρ0vshkbT1

2μ

(1 − η)(1 − γ̃ )

γ̃ 2(1 − γ̃ )
(24.232)

where γ̃ = (γ − 1)/(γ + 1).
Radiation in shock wave plays an important role at high temperatures when

the gas is strongly ionized. In the solar atmosphere this effect must be taken into
account. For this the energy flux of the shock vshρE and σsT

4 must be comparable,
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Fig. 24.9 Shock wave profile: (a) temperature, density and pressure in a shock front when radiant
heat flux is taken into account; (b) the same for a “classical” shock

i.e., the condition

σsT
4 � 1

γ − 1
vshnkbT (24.233)

must be met; n being the gas density.
Figure 24.9a shows qualitative profiles of temperature, density and pressure

accounting the radiant heat exchange at the shock front. The preheating temperature
ahead of the discontinuity T− is proportional to the radiation flux emerging from the
discontinuity surface, −S � σT 4

1 . Therefore, it increases rapidly with increasing
wave strength. To the right the shock profile of a “classical” shock is shown for
comparison.

Let us now make a rough estimate for solar atmosphere. At about 3–4 scale-
height shocks are easily formed (see Chap. 12). Take, e.g., a chromospheric
conditions. At a few scale heights post-reconnection shocks quickly form (see
Figs. 14.6 and 14.7). For the temperature T = 5000 K and density n = 1016 cm−3,
with σs = 5.67 × 10−5 erg cm2 s deg4 we get from (24.233) that the shock velocity
should be vsh = 34 km/s. At this parameter one should expect the influence of the
radiation flux on the shock parameters.

13.3 We will follow the method described in Sedov (1959). (a) The gas motion
is determined only by two dimensional parameters, the energy E, with dimensions
ml2/t2 and the initial density ρ0 with dimensions m/l3. These parameters cannot
be combined to yield scales with dimensions of either length or time. The quantity
r/t therefore cannot serve as the similarity variable. The only parameter involving
dimensions of length and time is E/ρ0 or some function of it. The flow is headed
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by a shock at r = R(t), where R(t) is a shock front. The only possible form of its
dependence on time can be given by

R(t) = ξ0

(
E

ρ0

)1/5

t2/5 (24.234)

Here ξ0 is a dimensionless parameter. The propagation velocity of the shock wave,
Ush = dR(t)/dt , is then

Ush = 2

5
ξ5/2

(
E

ρ0

)1/2

R−3/2 (24.235)

Using the strong shock relations

ρ1 = ρ0
γ + 1

γ − 1
, p1 = 2

γ + 1
ρ0u

2
sh, u1 = 2

γ + 1
ush (24.236)

we can find the pressure and velocity immediately behind the blast front:

p1 = 8

25

ξ5

γ + 1

E

R3 , u1 = 4

5

ξ5/2

γ + 1

(
E

ρ0

)1/2 1

R3/2 (24.237)

(b) For the rough estimate we start with the Rankine-Hugoniot relations in a form

ρ0

ρ1
= u1

u0
= γ − 1

γ + 1
+ 2

(γ + 1)M2
(24.238)

where M = u0/cs is the Mach number, which in case of a strong explosion will
tend to infinity as the background sound speed is infinitely small. For pressure the
Rankine-Hugoniot relations are

p1

p0
= 2γM2

γ + 1
− γ − 1

γ + 1
(24.239)

and in the limit of a strong shock we have

p1 � 2ρ0u
2
0

γ + 1
(24.240)

The estimate for the thermal energy is then

Etherm ∼ p1R
3 ∼ ρ0v

2
0R3 ∼ ρ0

R5

t2
(24.241)
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Suggesting that the thermal energy is of the same order as the kinetic energy, for the
total energy E = Etherm + Ekin, which is a conserved quantity, we have

E ∼ ρ0
R5

t2 , (24.242)

which for the radius R(t) gives a familiar expression (24.234):

R(t) ∼
(

E

ρ0

)1/5

t2/5. (24.243)

24.13 Problems of Chap. 14

14.1 Consider first the adiabatic shock. Denote the downstream (behind the shock)
parameters by 1 and upstream (in front of the shock) by 0. In the frame moving with
the shock, the Rankine-Hugoniot relations are given by

ρ0u0 = ρ1u1 = j (24.244)

p0 + ρ0u
2
0 = ρ1u1 + ρ1u

2
1 (24.245)

1

2
u2

0 + ε0 + p0

ρ0
= 1

2
u2

1 + ε1 + p1

ρ1
(24.246)

where ε is the internal energy. For a polytropic gas ε = p/ρ(γ − 1). Using this
expression for ε, (24.245)–(24.246) become

p1 + j2

ρ1
= p0 + j2

ρ0
(24.247)

1

2

j2

ρ2
1

+ γ

γ − 1

p1

ρ1
= 1

2

j2

ρ2
0

+ γ

γ − 1

p0

ρ0
(24.248)

Eliminating j in above equations, one obtains

ρ1

ρ0
= (γ + 1)p1 + (γ − 1)p0

(γ + 1)p0 + (γ − 1)p1
(24.249)

In the limit of a strong shock, the upstream pressure, p0 is much smaller than the
behind shock pressure p0,� p1, and can be neglected. From (24.249) we then have

ρ1

ρ0
= γ + 1

γ − 1
(24.250)
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Fig. 24.10 Isothermal jump
(Landau and Lifshitz 1987)

1/ρ 1/ρ 1/ρ~ 1/ρ
1 0

T
~

=T1

T0

1T

T

Hence, for γ = 5/3:

ρ1

ρ0
= 4 (24.251)

Thus, we arrived to the well-known result that the compression factor in adiabatic
shock is limited by factor 4. Note that u1/u0 = ρ0/ρ1, and upstream density
increases by factor 4 (or less), and the velocity falls by the same factor.

In case of an isothermal shock transition from the initial state to final state is
considerably different. First, the gas is compressed gradually from the initial density
ρ0 to some density ρ̃. This value corresponds to T (ρ̃) = T1. The thickness of this
region is determined by thermal conductivity. Further, the compression from ρ̃ to ρ1
occurs discontinuously at the constant temperature T1 (Fig. 24.10). In the isothermal
shock, gas still flows into a shock front for which the Rankine-Hugoniot conditions
for mass and momentum flux conservation are the same, but in the energy condition
we have to put T0 = T1. The isothermal sound speed is c2

s = p/ρ. The conditions
isothermality across the discontinuity then give:

p0

ρ0
= p1

ρ1
= c2

s (24.252)

With this in mind from (24.244)–(24.245) we get

(u1 − u0)c
2
s = uiu0(ui − u0) (24.253)

As u1 �= u0, from (24.253) we get

ρ1

ρ0
= u0

u1
=
(

u0

cs

)2

= M2 (24.254)

Hence, in an isothermal shock, the shock strength (or compression ratio) is the
square of the Mach number of the pre-shocked flow and can be arbitrarily high.
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14.2 We follow here Zababakhin and Nechaev (1958). In case of cylindrical
symmetry, Maxwell’s equations (B being parallel to the x axis, and E is circular,
are given by

1

c

∂E

∂t
= −∂B

∂r
,

1

c

∂B

∂t
= −1

r

∂(rE)

∂r
(24.255)

Cross eliminating in these equations B and E, we obtain

1

c2

∂2E

∂t2 − ∂

∂r

[
1

r

∂(rE)

∂r

]

= 0 (24.256)

1

c2

∂2B

∂t2 − 1

r

∂

∂r

[

r
∂B

∂r

]

= 0 (24.257)

The equation for B is simply the wave equation in the cylindrical symmetry, while
the equation for E is not the wave equation. Consider the variation of the cylindrical
wave amplitude as it moves towards the axis, treating a wave, as mentioned above,
within a cylindrical volume of radius Rcyl of an ideal conductor. The total magnetic
flux in the cavity is conserved, so that

Φ = 2π

∫ Rcyl

0
Brdr = const (24.258)

Differentiating (24.258) twice with respect to time and using (24.257) we obtain the
following equation

c

[

2Rsh
d(Bsh − B0)

dt
− c(Bsh − B0)

]

+ c2Rcyl
∂B

∂r

∣
∣
∣
cyl

+ d(BcylRcylU)

dt
= 0

(24.259)

We used here notations,

dRsh

dt
= −c,

dRcyl

dt
= −U (24.260)

The second and third terms in (24.259) are the quantities at the boundary of region
and must vanish:

c

[

2Rsh
d(Bsh − B0)

dt
− c(Bsh − B0)

]

= 0, (24.261)

which gives

Bsh − B0 = const
1√
Rsh

(24.262)
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Hence the amplitude of the converging cylindrical wave increases without bound as
R

−1/2
sh .
Although we obtained this result for the special case of a wave within a cavity

in an ideal conductor, the result is valid for any cylindrical shock wave. Since
waves from the surface of the cylinder do not catch up with the shock wave, the
wave amplitude on the front is determined entirely by its magnitude (i.e., the initial
amplitude at the point at which the wave is formed) and is independent of other field
changes on the boundary of the cylinder. On the cylindrical wave front Esh−E0 also
changes according to

Esh − E0 = const
1√
Rsh

(24.263)

Note that (24.262) and (24.263) are not approximations valid only for large or
small amplitudes; they describe the behavior of a field with the same accuracy as
do Maxwell equations.

Finally, the qualitative property of cylindrical cumulation is not only charac-
teristic property of the electromagnetic waves, but it is also a general property of
converging cylindrical waves described by any wave equation. It is interesting that
for a spherical acoustical wave one may obtain a solution without the assumption
that it is self-similar (Zel’dovich and Raizer 1967).

24.14 Problems of Chap. 15

15.1 The finite amplitude Alfvén waves propagating along the uniform magnetic
field are described by the derivative nonlinear Schrödinger equation (DNLS)

i
∂ψ

∂τ
− ∂2ψ

∂ξ2 + i
∂

∂ξ
(|ψ|2ψ) = 0 (24.264)

where ψ is defined as

ψ = 1

2B0
(By + iBy) (24.265)

and the coordinates (ξ, τ ) are related to the space and time coordinates (x, t) by

ξ = 2
x − vAt

d
, τ = 2ωit (24.266)

where vA is the Alfvén velocity, ωi is the ion gyro frequency, and d = vA/ωi . It is
assumed that waves are propagating along the x-axis.
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Let us express the complex function ψ(ξ, τ ) in terms of a real amplitude and a
phase

ψ(ξ, τ ) = b(ξ, τ )exp[iφ(ξ, τ )] (24.267)

so that the derivative nonlinear Schrödinger equation (24.264) is decomposed into a
pair of equations

bφτ = −bξξ + bφ2
ξ − b3φξ (24.268)

bτ = 2bξφξ + bφξξ − 3b2bξ (24.269)

where the suffixes indicate a partial derivative with respect to the variables.
Introducing a moving coordinate

z = ξ − uτ (24.270)

we search a solution of the form

b(ξ, τ ) = b(z) (24.271)

φ(ξ, τ ) = Kξ − Ωτ + θ(z) (24.272)

in which the nonlinear amplitude b(z) and phase modulation θ(z) are subject to the
boundary conditions at z → +∞

db

dz
= d2b

dz2 = 0,
dθ

dz
= 0 (24.273)

Now, (24.268) for the phase can be integrated to give

dθ

dz
= −1

2
(u + 2K) + 3

4
b2, (24.274)

which leads to the nonlinear phase modulation. This equation and the boundary
condition b = 0 at z → +∞ determine the arbitrary velocity to be

u = −2K. (24.275)

Substituting (24.274) and (24.275) back into the equation for the real amplitude
b, (24.269), and carry out integration, one obtains

b2 = 4(Ω + K2)√
Ω + 2K2cosh(z/Δ) + K

(24.276)
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which is a stationary Alfvén soliton with the width given by

Δ = 1

2
√

Ω + K2
(24.277)

It is important to note that the wavenumber K may be either positive or negative. The
positive sign, K > 0 corresponds to the bright soliton (

⋂
-shaped kink), and K <

0 corresponds to the dark soliton (
⋃

-shaped kink). The bright and dark solitons
behave differently as the width parameter γ = √

Ω + K2 tends to zero. For bright
solitons, the amplitude and energy tend to zero as γ → 0, while for the dark solitons
the energy tends to a finite limit.

As an illustration of some properties of Alfvén solitons it is instructive to
demonstrate the evolution of the Alfvén solitons for a given shape of an initial pulse.
Take for example:

ψ(ξ, τ = 0) = A0sech(ξ/D)expiK0ξ (24.278)

where D is the width of the initial pulse. The Alfvén solitons may be decomposed
into a series of solitons whose number is found to be (Ichikawa and Abe 1988, see
also Mjølhus and Wyller 1986):

N = 1

2
√

2
Dψ0

√
K0 + 1

4
(24.279)

Note that the number of solitons depends on the width of the initial pulse D,
although it does not play a crucial role in the conservation laws. In Fig. 24.11 the
initial pulse is shown in graphical (left panel) and its three-dimensional view. For
chosen parameters, Fig. 24.12 illustrates three solitons decomposed from the initial
pulse of Fig. 24.11 at the time τ = 2.

40−4

5

0

−5

ψ(ξ,0)

Fig. 24.11 The initial pulse with ψ0 = 4, K0 = 6, and D = 1. Left: graphical image, right: 3D
image (Ichikawa and Abe 1988)
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Fig. 24.12 Three solitons at τ = 2, evolved out of the initial pulse shown in Fig. 24.11

15.2 (a) First we consider the magnetic braids with an “infinite” curvature, R � ∞.
In other words we deal with the magnetic braid whose radius of curvature is much
larger than the radius of its cross section, a: R � a. The force acting along the
radius of curvature is given by (Shafranov 1966)

FR = −V

R

{

Pex − P̄in − B2
φ,ex(a)

4π

[

ln
8R

a
− 1 − 1

2

B2
φ,in

B2
φ,ex(a)

]

+ B̄2
z,in

8π

}

(24.280)

Here V is the volume of a structure. As Bφ,ex � 1/r we may assume that
Bφ,ex → 0. A bar denotes the average value of magnetic field components.
Rearranging (24.280) we may write for the force acting along the radius of curvature
(per unit volume)

fR = − 1

R

B̄2
z,in

8π

(

2 − B̄2
φ,in

B2
φ,in(a)

)

= − 1

R

B̄2
z,in

8π
(2 − κ) (24.281)

For very long magnetic loops with R � ∞, we may replace R by the length of the
rope, l

fl = −1

l

B̄2
z

8π
(2 − κ) (24.282)

We see that for a long loops there is only one equilibrium state with respect to
l in which fl = 0: κ = 0. Let us investigate its stability with respect to small
perturbations:

δfl = (κ0 − 2)δ

(
B̄2

z

8πl

)

+
(

B̄2
z

8πl

)

0

δκ (24.283)
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or

δfl = 1

l0

B̄2
z,0

8π

(
∂κ

∂l

)

0
δl (24.284)

From this it follows that the general condition for stability of a magnetic braid can
be written in the form

(
∂κ

∂l

)

0
< 0 (24.285)

Using the definition of κ and the equilibrium condition

B̄2
z = 8π(Ptot − P̄ ), (24.286)

where Ptot = P + B2/8π is the total pressure and P̄ is the cross-sectional average
of gas-kinetic pressure in the braid, we can write the inequality (24.285) as follows:

[
∂

∂l

(
B̄2

φ

Ptot − P̄

)]

< 0. (24.287)

(b) To investigate the stability criterion for some given case one should know all
the quantities entering in the above condition, i.e., B̄2

φ, Ptot, P̄ which may vary in
quite a complex ways.

As an example let us consider the Alfvén model of a magnetic braid (Alfvén and
Falthammar 1963). If a magnetic flux tube of length l and radius a is twisted at one
end through the angle φ, then the azimuthal field is created of a strength

Bφ(r) = rφ

l
Bz (24.288)

Here Bz does not depend on r . For such braid the twisting index is

κ = φ2

2

(a

l

)2
. (24.289)

The flux of azimuthal field is given by

Φφ = l

∫ a

0
Bφdr = φ

2
Bza

2 ≡ φ

2π
Φz (24.290)

where Φz = Bzπa2 is the flux of longitudinal field. If the magnetic field fluxes
in braid are conserved, then obviously φ = const. Let the external medium be
homogeneous, Ptot = const. Then with (24.286) we have

δPm = −δP̄ , (24.291)
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where Pm = B̄2
z /8π . Assuming a politropic law, P̄ V n = const, from (24.288)–

(24.291) one finds

δl

l
= −δa

a

(

2 + 4Pm
Pm

P̄

)

(24.292)

Now, since

δκ = φ2 a2

l2

(
δa

a
− δl

l

)

, (24.293)

we find that δκ < 0 for δl > 0, i.e., the system is stable. For magnetic braiding in
laboratory and space plasmas see e.g. Stix 1973; Berger et al. 2015; Pontin et al.
2016.

24.15 Problems of Chap. 16

16.1 Consider a circularly polarized transverse wave in a uniform plasma and
uniform magnetic field (0, 0, B0) described by the vector potential

A = (A, iA, 0)exp[i(kz − ωt)] (24.294)

where ω is real and k = k0(ω) + ik1(ω). The helicity density associated with the
wave is

Hω = 〈A · B〉 = k0A
2exp(−2k1z) (24.295)

For a simple viscous fluid the Ohm’s law reads E + v × B = ηJ. Then for the wave
equations we have

− ωB = (kB0)v + iηk2B (24.296)

− ωρv = (kB0)B + iρμk2v (24.297)

where η and μ are the resistivity and viscous coefficients, respectively. The
corresponding dispersion equation is

(ω + iηk2)(ω + iμk2) = k2v2
A (24.298)

When η and μ are small, k0 � ω/vA and the wave damping is given by

k1 = (η + μ)
k2

0

2vA

(24.299)
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The mean current induced by the wave can be calculated directly from Ohm’s law:

η〈jz〉 = 〈v × B〉, (24.300)

and if we use (24.296), which itself follows from Ohm’s law, we can express v in
terms of B. Then we have

η〈jz〉 = (ωk1 − η|k|2k0)
A2(z)

B0
(24.301)

In (24.301), any non-resistive damping appears only through k1. Using the value of
k1 given by (24.299) we obtain the expression for the wave-driven current:

ηjω = k0A
2(z)

B0

(μ − η)k2
0

2
. (24.302)

The helicity balance equation becomes

− vA
∂Hω

∂z
= 2η〈jz〉B0 + 2η〈jω · Bω〉 (24.303)

Here, the input of helicity by the wave is

− vA
∂Hω

∂z
= 2k1vAHω = (η + μ)k2

0Hω (24.304)

while the helicity dissipated by the fluctuating currents is

2η〈jz〉B0 = (μ − η)k2Hω, (24.305)

which fully agrees with (24.302).
These results show that the current driven by wave absorption is not directly

related to the helicity input. Other sources of helicity loss must be accounted for. In
the present example, current drive depends on the difference between viscous and
resistive damping, whereas helicity input depends on their sum. The balance is made
up by the helicity lost in fluctuating currents.

It is remarkable that, if only resistivity is important, the loss through fluctuations
is exactly twice the input and the helicity dissipated in the current drive is equal in
magnitude but opposite in sign to the helicity input. See Taylor (1989).

16.2 Consider the elementary LC network shown in Fig. 24.13 with linear inductors
L and nonlinear capacitors C(V ) Remoissenet (1999). The equations for current and
voltage for each element (including dispersion) are given by

L
dIn

dt
= Vn−1 − Vn, C

dVn

dt
= In−1 − In (24.306)
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I In n+1

Vn−1 Vn
L

C

Δ

V(x,t)

x−ut(b)

(a)

Fig. 24.13 Soliton in the equivalent circuit: (a) Equivalent network circuit with linear inductance
L and nonlinear capacitance C(Vn) in each unit section; (b) sketch of the soliton solution V (x, t)

given by (24.313) traveling with velocity u

These equations reduce to the following equation

d2Vn

dt2 = 1

LC
(Vn+1 + Vn−1 − 2Vn) (24.307)

let us consider the effect of nonlinearity (ignoring first the dispersion). Now the
equations for current and voltage become

L
∂I

∂t
= −∂V

∂x
, C(V )

∂V

∂t
= −∂I

∂x
(24.308)

Expanding the capacitance in V ,

C(V ) = C0(1 + a1V + a2V
2 + · · · ) (24.309)

we can approximate the capacitance-voltage as follows:

C(Vn) = C0(1 − 2bVn), b ≡ −2a1 (24.310)

With this we find that

LC0
∂2V

∂t2 − LC0b
∂2V

∂t2 = Vn+1 + Vn−1 − 2Vn, n = 1, 2, . . . (24.311)

To get approximate solutions, it is convenient to employ the continuum limit and set
x = nδ. Combining now (24.307)–(24.311) after a simple algebra we get

∂2V

∂t2 − δ2

LC0

∂2V

∂x2 = 1

12

δ4

LC0

∂4V

∂x4 + b
∂2V

∂t2 (24.312)
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This is weakly dispersive, nonlinear wave equation. It describes waves that can
travel both to the left and to the right. To order of δ2 it is just a linear wave equation.

If the nonlinear term is balanced by the dispersive term the solution will be a
solitary wave which propagates with constant velocity u. Setting u0 = δ/

√
LC, we

have:

V = 3

2b

u2 − u2
0

u2 sech2

⎡

⎣

√
3(u2 − u2

0)

u0

(

n − ut

δ

)
⎤

⎦ (24.313)

Note that (n − ut/δ) = (x − ut)/δ. The amplitude of the soliton is given by

Vm = 3

2b

u2 − u2
0

u2 (24.314)

Let us now find a width of a soliton, Δ, which is defined as a width of pulse at half
height, Vm/2. Assuming that at t = 0 and x/δ = Δ/2, we have

V

(
Δ

2
, 0

)

= Vmsech2

⎛

⎝

√
3(u2 − u2

0)

u0

Δ

2

⎞

⎠ = Vm

2
(24.315)

Substituting here Vm and evaluating sech−1(1/
√

2) = 0.88 we obtain

Δ � u0
√

u2 − u2
0

. (24.316)

24.16 Problems of Chap. 17

17.1 The plasma equilibrium is described by magnetostatic equations

∇ × B = 4π

c
j (24.317)

∇p = 1

c
[j × B] (24.318)

For the chosen geometry we obtain

− ∂p

∂r
= 1

c
(jzBφ − jφBz) (24.319)
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or

− ∂p

∂r
= Bφ

∂rBφ

r∂r
+ Bz

∂Bz

∂r
(24.320)

Let us multiply (24.320) by r2 and integrate with respect to r from 0 to expected
pinch radius R. Taking into account that at the surface of the pinch p(R) = 0 and
Bφ(R) = 2J/cR, where J is the total current, we obtain the equilibrium condition
for the pinch in the following integral form (Braginskii and Shafranov 1959):

2c2(neT̄e + ni T̄i) = J 2 + c2R2

4
[B2(R) − B̄2

z ], (24.321)

where ne and ni are the number of electrons and ions per unit length of the pinch,
T̄e and T̄i are the mean temperatures, and

B̄2
z = 1

πR2

∫ R

0
B2

z 2πrdr (24.322)

We may now conclude that the “self-magnetic” field associated with the current J

always acts toward pinching the plasma column. The longitudinal magnetic field
squeezes the plasma only if the external field is smaller than the internal field.

17.2 If the magnetic field has only z-component, current flows in θ direction
and crossed with axial magnetic field can balance a radial pressure gradient. Such
configuration is known as θ -pinch. In this case from (24.317)–(24.318) we have

dBz

dr
= 4π

c
jθ (24.323)

and

d

dr

(

p + B2
z

8π

)

= 0 (24.324)

Thus, total pressure P = (p + B2/8π) is constant for any radial profile of gas-
kinetic and magnetic pressure, p + B2/8π = const. The θ -pinch provides a strong
stability to plasma column with some restrictions on plasma parameters. One can
find the current that holds the plasma column in equilibrium. Indeed, taking cross
product of (24.318) and B,

∇p × B = 1

c
[j × B × B], (24.325)

one obtains

jθ = c

Bz

dp

dr
(24.326)
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This is diamagnetic current generated automatically by the pressure gradient and by
the non-uniform spatial distribution of the magnetic moments of the electrons and
ions.

17.3 In this case (24.317)–(24.318) give

1

r

d

dr
(rBθ ) = 4π

c
jz (24.327)

and

dp

dr
= − 1

4π

Bθ

r

d

dr
(rBθ ) (24.328)

Let us integrate these equations over the flux tube cross section. From (24.327) we
obtain

∫ R

0

1

r

d

dr
(rBθ )2πrdr = 4π

c

∫ R

0
rjz2πrdr (24.329)

or

Bθ (R) = 2π

c
j̄zR (24.330)

where j̄z is the average value of current across the flux tube. Multiplying
now (24.328) by r and integrating one obtains

∫ R

0

dp

dr
r2dr = − 1

4π

∫ R

0
rBθ

d

dr
(rBθ )dr (24.331)

or

p̄ = 1

8π
B2

θ (R) (24.332)

where we again used the average value of pressure, p̄, across the flux tube.
Equations (24.330) and (24.332) determine the radius of z-pinch:

R2 = 2c2

π

p̄2

j̄z
2 (24.333)

which shows that the higher the current, the stronger is pinching effect.
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17.4 In this case the flux tube acquires screw pinch configuration, which is a
combination of θ and z pinches. Equations (24.317)–(24.318) now become

jθ = − c

4π

dBz

dr
, jz = − c

4π

1

r

d

dr
rBθ (24.334)

dp

dr
= 1

c
(jθBz − jzBθ ) (24.335)

Combining (24.334) and (24.335) we obtain

d

dr

(

p + B2
θ + B2

z

8π

)

+ 1

4π

B2
θ

r
= 0 (24.336)

Magnetic field lines are now helices of radius r with the trajectories

dr

dz
= Br(r)

Bz(r)
= 0,

dθ

dz
= Bθ (r)

rBz(r)
= 0 (24.337)

When magnetic field line makes one revolution, Δz = 2πλ, the change in angle
Δθ , i.e., the pitch angle is

Δθ =
∫ Δθ

0
dθ =

∫ 2πλ

0

dθ

dz
(24.338)

or

Δθ = rBz(r)

2πλBθ

(24.339)

A “measure of twist,” q = 2πΔθ(r), called the safety factor, is expressed as

q(r) = rBz(r)

2πλBθ

(24.340)

The safety factor plays an important role in laboratory devices and space plasmas.
The most important feature of q is that the magnetic flux tube or torus is stable with
respect to screw pinch instability if q > 1. On the other hand, at q < 1, the plasma
column inevitably takes the form of screw pinch configuration (Kruskal-Shafranov
limit). In solar atmosphere and space plasmas, magnetic flux tube being thin long
filaments is always twisted.
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24.17 Problems of Chap. 18

18.1 Assume that the body creating a bow shock has a radius of curvature Rb, and
that the bow shock is also in a shape of a circular cylinder with radius Rsh (24.341).
In two-dimensional cylindrical coordinates R and φ with axis φ = 0 directed
upstream, the outward mass flow can be expressed through the stream function ψ

(Hayes and Probstein 1966):

ρUvr = ∂ψ

∂r
(24.341)

ρUvφ = −1

r

∂ψ

∂φ
(24.342)

where U is the shock velocity. The stream function immediately behind the shock
equals to that immediately in front of it, and we have the condition:

ψsh = ρ∞URshsinφ. (24.343)

Here ρ∞ is the gas density ahead (upstream of) of the shock. The vorticity, ζ =
∂vx/∂y − ∂vy/∂x immediately behind the shock (in polar coordinates) is given by

ζsh = −U(1 − ε)2sinφ

εRsh
(24.344)

where ε = ρ∞/ρsh is the density ratio across the shock, which in terms of Mach
number is given by (18.12). Since in a steady two-dimensional flow with constant
density the vorticity is a function of the stream function alone, we may write

ζ = − (1 − ε)2

ερ∞R2
sh

ψ (24.345)

Note that the vorticity ζ must be zero if ψ is zero, and will be zero at the surface of
the body.

The stream function satisfies the eqaution

∂2ψ

∂r2 + 1

r

∂ψ

∂r
+ 1

r2

∂2ψ

∂φ2 = (1 − ε)2

εR2
sh

ψ (24.346)

One can see from (24.343) that ψ should be a function of R sinφ. The corresponding
general solution may be expressed as follows:

ψ = 1

ε
ρ∞URshsinφ[AI1(kR) + BK1(kR)], (24.347)
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where I1(kR) and K1(kR) are modified Bessel functions of the first order, and the
parameter k is

k = 1 − ε

εRsh
(24.348)

The boundary condition on the velocity component normal to the shock is equivalent
to (24.343), and the condition on the tangent component (24.341) is

ψRsh = 1

ε
ρ∞Usinφ. (24.349)

The two boundary conditions (24.343) and (24.349) give

AI1(kRsh) + BK1(kRsh) = ε, AI ′
1(kRsh) + BK ′

1(kRsh) = ε

1 − ε
, (24.350)

from which the constants A and B may be evaluated:

A = K1

(
1 − ε

ε

)

− (1 − ε)K ′
1

(
1 − ε

ε

)

(24.351)

B = (1 − ε)I ′
1

(
1 − ε

ε

)

− I1

(
1 − ε

ε

)

(24.352)

The boundary condition and the standoff distance are determined from a condition
on the body where ψ = 0, which as seen from Fig. 24.14 occurs on the splitting
streamline and on the radius Rb, where

AI1(kRb) + BK1(kRb) = 0 (24.353)

Fig. 24.14 Geometry of the
bow shock formation in front
of a cylindrical body

Body

Shock

Δ

Rsh

Rb

ϕ
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Fig. 24.15 Formation of
cumulative jet, akin shaped
charge
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1 2
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The approximate solution for small ε, i.e. for

ε = 2 + (γ − 1)M2

(γ + 1)M2 < 1, (24.354)

the expression for the standoff distance, Δ, is obtained using the asymptotic
expansion of the Bessel function which gives:

Δ = Rsh − Rb = 1

2
εRsh

[

ln
4

3ε
+ εln

4

3ε
+ O

(

ε2ln
1

ε

)]

. (24.355)

18.2 Statement of the problem is illustrated in Fig. 24.15 (Lavrent’ev 1957). Two
jets are moving along the x-axis (line of symmetry). The jet moving from left to
right (i.e., from −∞) with velocity V1 has density ρ1 and diameter 2r1. The jet
moving from right to left (i.e., from ∞) has density ρ2 and diameter 2r2, and it has
the same velocity, V1.

Mass flows shown in Fig. 24.15 have free surfaces S1 and S2. On the separation
surface σ the pressure must be continuous

ρ1V
2
1 = ρ2V

2
2 (24.356)

Thus the velocity along the surface S2 is given by

V2 =
√

ρ1

ρ2
V1 (24.357)

From the existence of an asymptotic cone (marked by red line in Fig. 24.15) and the
conservation of momentum, one can obtain an important relationship between the
diameters of the flows, their densities, and the angle α. Indeed, consider two unit
lengths of the jet elements in direction ±∞; their total momentum will be directed
along the x axis and is given by

J1 = π[ρ1r
2
1V1 − ρ2r

2
2 V2] (24.358)
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These elements after collision and a sufficiently long time will be near the
asymptotic cone, and projection of their momentum on the axis x will be

J2 = π[ρ1r
2
1 V1 + ρ2r

2
2V2]cosα (24.359)

Due to the momentum conservation, J1 = J2, we have

cosα = 1 − ηk2

1 + ηk2 , k2 = 1

η

1 − cosα

1 + cosα
(24.360)

where

η =
√

ρ2

ρ1
, k = r2

r1
(24.361)

Let us now consider the collision of two jets in a moving coordinate system with
respect to which a thick, left jet is stationary. In this coordinate system, the velocity
of the right moving jet will be

v = V1 + V2 = (1 + η)V2 (24.362)

The velocity of the collision line will at the same time be the velocity of penetration
(i.e., the velocity of the shaped charge). Denoting it by u, we have

u = V1 = ηV2 = η

1 + η
v (24.363)

One can see that the penetration velocity is always less than the velocity of the jet.
From (24.363) also follows important fact: if some fixed cross section of the jet
advances on length l, the shaped charge will penetrate through the distance lj :

lj = l
u

v
= ηL2 (24.364)

Let us now establish dependence of the velocity of penetrating jet on the apex half-
angle α. To do so we choose a new coordinate system in which the cone moves along
its normal to its surface. In such a system the observer will be moving from right
to left with the velocity V/cosα. In new coordinate system the conical veil moves
along its normal to its surface with the velocity v0 = V tgα. Then the velocity of the
cumulative jet is given by

u = V + V

cosα
= V

1 + cosα

cosα
(24.365)

This expression shows that at small angles α one may get jets with very high
velocities.
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24.18 Problems of Chap. 19

19.1 Consider two rasters with different periods (say two combs with different
number of teeth per unit length Kadomtsev (1982)). Let the wave numbers of these
rasters (related to the main harmonics) be equal to k1 and k2, respectively. Now,
if you cast scattered light on them, then at some distance x from each raster the
intensity modulation over the angle θ will obviously have a form

Γ0(θ) = eiky+ikθxf (θ) (24.366)

where k = k1 or k = k2, and f (θ) is the distribution of light in front of rasters
(Fig. 24.16).

As we move away from the raster, the shadow from it will be more and more
blurred as the distribution of intensity of light, that is proportional to Γ (θ), will
approach the uniform distribution, due to spreading over the angle. But if we make
rasters parallel to each other and place them on the distance d between them so that
the shadow from one raster falls on the other, then the distribution of intensity of
light will be given by

Γ =
∫

eik1y+ik1θx±[ik2y+ik2θ(x−d)]f (θ)dθ (24.367)

(24.367) shows that at the distance

xecho = k2d

k2 − k1
(24.368)

Fig. 24.16 Echo effect
produced by scattered light

x

d
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from the first raster, the exponent in the integrand becomes independent on θ . While
on the screen there appears a clear moireé on the wavenumber difference k2 − k1.
As one can see from (24.368), the echo effect arises in this problem only if k2 > k1.

19.2 We assume that the background electron distribution fe0(v) is stable within
the contest of a linear Landau analysis. Suppose that at some instant τ1 an external
pulse with potential

φext
1 (x, t) = Φ1cos(k1x)δ[ωpe(t − τ1)] (24.369)

is applied to the plasma , where k1 > 0, ωpe is the electron plasma frequency,
and Φ1 = const. Since fe0(v) is stable, the electric field excited in the plasma
by φext

1 (x, t) Landau-damps and is negligibly small after a damping time 1/|γk1|.
The electron distribution function, however, is left with a first-order free-streaming
modulation of the form

F1(k1, v)exp{±ik1(x − v[t − τ1])}. (24.370)

The free-streaming modulation has no electric field associated with it for large t

since the velocity integral of (24.370) phase-mixes to zero. After the electric field
associated with the first pulse has Landau-damped, we apply a second pulse at time
τ2 of the form

φext
2 (x, t) = Φ2cos(k2x)δ[ωpe(t − τ2)] (24.371)

where τ2 −τ1 � 1/|γk1|. The electric field associated with φext
2 (x, t) Landau-damps

as in the case of the first pulse, leaving the zero-order electron distribution with a
free-streaming modulation of the form

F2(k2, v)exp{±ik2(x − v[t − τ2])}. (24.372)

In addition, the second pulse modulates the free streaming perturbation from the
first pulse, giving second-order contributions to the distribution function which
includes terms of the form

F1(k1, v)F2(k2, v)exp{±i([k2 − k1]x − k2v[t − τ2] + k1v[t − τ1])}. (24.373)

for t > τ2. The velocity integral of above expression phase-mixes to zero except
when the coefficient of v in the exponential is near zero. Provided k2 > k1, this
occurs at a time t � τ ′ > τ2, where τ ′ is the echo time,

τ ′ ≡ [k1/(k2 − k1)](τ2 − τ1) + τ2. (24.374)

At this time, a second-order electric field, i.e., echo, is generated in the plasma.
Here we have a temporal echo. The above arguments may of course be extended to
the case of spatial plasma wave echo, as well as to the spatio-temporal echo. See
Davidson (1972).
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19.3 Consider for illustration the following example. Suppose that there are two
sources in a plasma separated by a distance L, generating transverse oscillations of
frequencies ω1 and ω2, with the fluctuations in the magnetic field having amplitudes
B1 and B2.

If plasma with an electron density ne contains a certain amount of super-thermal
particles with a density nth, such that their mean free path is much larger than the
distance between the sources, one should expect occurrence of the following effect.
Fast particles traversing regions of both magnetic fields will be modulated by the
oscillations. If the transit time of particles is short, there will be no “uncoupling” of
phases and the particles will “remember” both modulations. As a result, at a distance

Lecho = Lω1

ω2 − ω1
(24.375)

from the second source a strong new disturbance with a frequency ω3 = ω2 − ω1
will develop (spatial echo). Longitudinal electric field in the new disturbance will
now appear with the amplitude El given by

El

B1
= ωB2L

c

ω2
pe

ω2ω3

ne

nth
(24.376)

where ωB2 = eB2/mc is the gyrofrequency in the magnetic field of disturbance,
and ωpe is the Langmuir frequency.

In a fully developed flare region we may accept nth/ne � 10−6. For the
amplitude of fluctuation of the magnetic field, we may roughly take 10 G. Adopting
L � 108 cm, we find that if ω2 � 0.1ωpe, the amplitude of the plasma echo will be
comparable to the amplitudes of the initial sources, B1 and B2.

24.19 Problems of Chap. 20

20.1 Because of fluid incompressibility the velocity of fluid u(r, t) decreases
according to an inverse square law with the distance from the bubble:

u(r, t) = F(t)

r2 (24.377)

where F(t) is related to R(t) by kinematic boundary condition at the bubble surface.
In the idealized case of zero mass transport across the interface, u(R, t) = dR/dt

and

F(t) = R2 dR

dt
(24.378)
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The Navier-Stokes equation for motion in r direction,

− 1

ρL

∂p

∂r
= ∂u

∂t
+ u

∂u

∂r
− νL

[
1

r2

∂

∂r

(

r2 ∂u

∂r

)

− 2u

r2

]

(24.379)

yields, after substituting u from (24.377):

− 1

ρL

∂p

∂r
= 1

r2

dF

dt
− 2F 2

r5 (24.380)

Note that the viscous terms vanish. Indeed, the only viscous contribution to the
Rayleigh equation comes from the dynamic boundary condition at the bubble
surface. Equation (24.380) can be integrated to give

p − p∞
ρL

= 1

r

dF

dt
− 1

2

F 2

r4
(24.381)

where p∞ is the pressure at r → ∞.
Now we need to evaluate a dynamic boundary condition on the bubble surface.

For this purpose consider a control volume consisting of a small, infinitely thin
lamina containing a segment of interface (Fig. 24.17).

The net force on lamina in radially outward direction per unit area is

σrr |r=R + pB − 2S

R
(24.382)

or, since σrr = −p + 2μL∂u/∂r , the force per unit area is

pB − p|r=R − 4μL

R

dR

dt
− 2S

R
(24.383)

In the absence of mass transport across the boundary (evaporation or condensation)
this force must be zero. Hence, substitution of the value for p|r=R from Eq. (24.381)

Fig. 24.17 Portion of the
spherical bubble surface

(σrr )r=R

PB
Liquidsurface

Bubble

Gas
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with F = R2dR/dt yields the generalized Rayleigh-Plesset equation for bubble
dynamics:

R
d2R

dt2 + 3

2

(
dR

dt

)2

= pB(t) − p∞(t)

ρL

− 2S

ρLR
− 4νL

R

dR

dt
(24.384)

This is a basic nonlinear equation describing the response of a gas bubbles to action
of the field of sound or any other oscillatory field. See Davidson (1972).

20.2 For simplicity we will consider a classical case of a liquid droplet formed
above an extremely hot surface (Biance et al. 2003; Linke et al. 2006; Brennen
1995). The heat Q brought to the liquid per unit time is proportional to the contact
area πr2

c , the thermal conductivity of the vapor κ , and the temperature gradient
ΔT/λ, where λ is the thickness of the vapor layer (Fig. 24.18).

Note that if the drop of radius R is smaller than the capillary length a = √
σ/ρg

(σ being the liquid surface tension and ρ its density), the drop will be nearly
spherical, except at the bottom where it is flattened. Denoting the lowering of the
center of mass by δ, we can write: σδ ∼ ρgR3. For the contact area we can write
an estimate as πr2

c ∼ πδR, which yields

rc ∼ R2/a (24.385)

Introducing the latent heat of evaporation Lq , we may write for the rate of
evaporation

dm

dt
= κ

L

ΔT

λ
πr2

c , (24.386)

The drop weight induces a radial Poiseuille flow of vapor outside the layer. We can
calculate its rate from the Navier-Stokes equation and lubrication approximation,
which can be used due to the small thickness of the vapor layer. Thus, the flow rate
scales as λ3ΔP/ηrc, where ΔP is the pressure imposed by the drop and η is the

T1

T2 >> T1

vapor layer

o o o
o o o o oo ooooo o o o o o o

o
o

o
o o o o

o

o o

(a) (b)

λ

Fig. 24.18 A liquid droplets levitating on their own vapor over extremely hot surface: (a) a small
droplet over the smooth surface; (b) a levitating droplet over the uneven surface is subject of self-
propelling
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vapor viscosity. Integrated over the contact, and written as a mass per unit time, it
gives

dm

dt
= ρv

2πλ3

3η
ΔP, (24.387)

where ρv is the vapor density.
From (24.386)–(24.387) we can determine the film thickness. For small drops,

R < a, the temperature gradient should be of the order of ΔT/R, and the
evaporation process takes place over the whole drop surface R2. This gives for the
rate of evaporation,

dm

dt
= κ

L

ΔT

R
R2, (24.388)

Using (24.387), for the flow rate given by the film thickness we obtain

λ �
[
κΔT ηρg

Lqρvσ 2

]1/3

R4/3 (24.389)

Note that the film thickness is found to increase monotonically with the drop radius,
but differently according to the drop size.

Using the similarity criteria between laboratory physics and astrophysics (Ryutov
et al. 1999), these estimates can be used for quantitative analysis of the prominence
dynamics.
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-shaped Flux Tube, 344⋂
-shaped kink, 290, 320⋃
-shaped Flux Tubes, 342⋃
-shaped kink, 290, 320

Ablation shock, 587
Ablation velocity, 595
Abrikosov vortices, 38
Accelerating mass flow, 429
Acceleration of jets, 374
Acoustic noise, 152
Acoustic opacity, 225, 231
Acoustic streaming, 261, 285, 286, 698
Acoustic wave packet, 175
Acoustic wave-trains, 165
Active filament, 14
Added mass, 45, 69
Added-mass effect, 337
Added mass of cylinder, 676
Additional heating, 357
Adiabatic approach, 222
Advection, 12
After-shock heating, 360
Alfvén resonance, 78
Alfvèn shocks, 390
Alfvén solitons, 423
Alfvén velocity, 52
Alfvén waves, 277
Ambipolar diffusion, 295
Amorphous emission, 428, 644
Amorphous structure, 402
Anaxagoras, 2
Anomalous dispersion, 111
Anomalous resonance, 78

Anti-Stokes satellites, 200
Archimedes force, 45
Archimedian force, 227
Arc-like flows, 438
Ascending flux tube, 500
Attracting centers, 367
Atwood number, 595
Axisymmetric modes, 155
Axisymmetric oscillations, 60
Azimuthal current, 279

Back-reaction, 448
Battery mechanism, 589
Beam-particle interactions, 433
Beat wave(s), 200, 686
Behind-shock brightening, 493
Behind-shock flows, 369
Behind-shock heating, 364, 368, 493
Behind shock temperature, 396
Bernoulli effect, 28
Bernoulli’s equation, 325
Bessel function, 55
Bi-directional jets, 371
Bi-directional plasma jets, 603
Biermann battery effect, 589
Bifurcate, 524
Bifurcation, 449, 658
Bifurcation point, 111, 297
Blast wave, 527
Blinkers/microflares, 626
Bottom of the fast wind, 399
Boundary layer, 262, 280
Boundary value problem, 86, 142
Bow (detached) shock, 487
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Bow shock(s), 337, 343, 510, 586, 587, 654,
725

Bow shock formation, 496
Braided bundle of loops, 643
Braidlike behavior, 402
Braidlike coherent structures, 406
Braidlike structures, 639
Braid period, 408, 420
Braking sonic barrier, 105
Branching, 484
Branching points, 469
Brightening of splitting region, 472
Brightenings, 240
Bright filaments, 9, 465
Bright jets, 627
Brightness enhancements, 623
Bright point(s), 31, 258, 299, 475
Bright soliton(s), 293, 309, 700, 715
Bright transients, 351
Bright walls, 33, 466
Brünt-Väisälä frequency, 307, 677
Bubble competition, 571, 597
Bubble formation, 595
Bulk viscosity, 269
Bullwhip, 90, 105
Bullwhip behavior, 667
Buoyancy force, 301, 345, 498

Cancellation, 367
Capacitance, 426
Capacitive reactance, 442
Cascade of shocks, 333, 380
Cascade of shock waves, 361
Catastrophic growth, 69
Cauchy problem, 51
Cavity formation, 555
C-class, 514
Centrifugal instability, 667
Chaos, 176
Chaotic conglomerate, 522
Chaotic state, 514, 517
Character of nonlinearity, 99
Cherenkov condition, 160
Cherenkov resonance, 50
Chirality, 482
Chirality change, 653, 654
Chirality injection, 654
Chromosphere, 13
Chromospheric bright points, 133
Chromospheric flare(s), 324, 527
Chromospheric oscillations, 409
Circuit currents, 426
Circuit equation, 440

Circularly polarized kink, 275
Classes of explosive events, 371
Climatological heat flux, 195
Clouds of energy, 147, 162
Cloudy corona, 148
Clustering of penumbral microjets, 658
Coalescence, 626
Coefficient of nonlinearity, 384
Coherent braidlike structures, 406
Collapse, 315, 557
Collapse in soliton gases, 422
Collapse of self-organized braidlike structures,

639
Collective phenomena, 45, 147
Collimated flows, 433
Collimated mass upflows, 555
Collimated plasma flow(s), 427, 459, 584
Collinear, 157, 335
Collision layer, 325
Collisionless plasmas, 537
Collisionless shock formation, 588
Collisionless shocks, 589
Collision rate, 335
Compact flares, 626
Compressional shock, 256
Computed map, 191
Concave form, 354
Concentrated cumulative energy, 392
Condition of steepening, 245
Confined in loops, 380
Conservation laws for the KdV equation , 320
Conserved quantities, 194
Continuous fragmentation, 333
Continuous multiple reconnections, 649
Continuous pump of energy, 632
Convective cell, 8
Convective heat flux, 199
Convective motions, 271
Converging shock fronts, 355
Corkscrew motions, 471
Coronal braiding, 639
Coronal bright points, 132
Coronal cavities, 553
Coronal dissipation region, 426
Coronal flares, 426, 602
Coronal hole, 383
Coronal jets, 415, 636
Coronal loop braiding, 642
Coronal loop formation, 318
Coronal mass ejections (CMEs), 514, 548
Coronal rain, 646
Correlation function, 215
Correlation length, 198
Corrugation instability, 377, 706
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Counerstreaming plasma flows, 590
Counter-propagating flows, 589
Coupling, 353
Covariance, 195, 197
Critical energy level, 525
Critical incident angle, 359
Critically damped oscillations, 449
Critical parameters, 525
Critical radius, 458, 476, 616, 644, 645
Critical reflection angle, 359
Critical wavelength, 564
Critical wavenumber, 224
Cross-field shear, 532
Cubic nonlinearity, 419
Cumulative jet(s), 510, 728
Current carrying systems, 426
Current density, 617
Current drive, 264, 278, 433, 461, 620
Current drive rate, 448
Current generation, 264
Current sheets, 328
Cylindrical cumulation, 713
Cylindrical focusing, 360
Cylindrical helices, 468

Damping rate, 51, 118
Dark-cored filaments, 478
Dark cores, 466
Dark filaments, 9, 288
Dark, negative soliton, 293
Dark penumbral filaments, 465
Dark soliton(s), 309, 701, 715
Decay of bow shock, 508
Decay regime, 534
Deficiency of MMFs, 318
Deficit of MMFs, 312
Deficit of outgoing power, 229
Degree of twisting, 423
Delay times, 502
Democritus, 2
Dense conglomerate(s), 39, 147, 207, 239
Dense plasma jets, 357
Density of jet, 360
Developing flare, 527
Diagnostic goals, 235, 454, 461
Diagnostic tool(s), 307, 348, 541, 570, 588
Diamagnetic current, 723
Diffuse boundary layer, 117
Diffusive Broadening, 271
Diffusive dissolution, 264
Diffusively vanishing limit, 617
Diffusive regime, 274
Diffusive vanishing, 284

Dipole mode, 56
Direction of energy transport, 383
Direction of the shock, 632
Discord of organ, 261
Dispersion of the wave, 249
Dispersion relation, 50, 214
Dispersive media, 103, 259
Dispersive stretching, 293
Disruption of prominences, 550
Disruption of the circuit, 452
Dissipation rate, 129, 507
Dissipation region, 427
Dissipative instabilities, 112
Dissipative stresses, 441
Dissolution, 284
Distribution function, 48
Doppler gram(s), 12, 203
Doppler shifted spectral lines, 632
Double humped peaks, 652
Double-humped spectrum, 371
Double structure, 491, 655
Downward shock, 371
Drag coefficient, 337
Drag force, 341, 500
Drifting transients, 491, 655
Driving emf, 442
Dynamic braiding, 642
Dynamic equation, 251
Dynamic systems, 525
Dynamo action, 604
Dynamo mechanisms, 589

Echo effect(s), 425, 545, 660
Echo observations, 541
Eckart flows, 262
Eclipses, 1
Eddy fluxes, 196, 198
Effective distance, 202
Effective viscosity, 273
Effects of gravity, 193
Elasticity, 49
Electrical transmission line, 462
Electromagnetic coupling, 19, 426
Electromagnetic stresses, 532
Electro-mechanical coupling, 365
Electron heating rate, 81
Electron inertia, 80
Elemental coronal loops, 645
Elemental current filaments, 456
Emerging bipole, 362
Emitted acoustic power, 202
Energetically open circuit, 441
Energetically open oscillator, 450
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Energetically open systems, 110, 287, 642, 648
Energetically open turbulence, 421
Energies of different signs, 125
Energy analysis, 114, 339
Energy avalanche, 361
Energy build up, 415
Energy build up process, 392
Energy consideration, 49
Energy distribution, 357
Energy excess, 631
Energy extraction, 412
Energy-production region, 532
Energy transfer, 57
Enhanced absorption, 207
Enhanced brightening, 469
Enhanced emission, 328
Enhanced twist, 573
Enhancement factor, 224, 234
Enhancement of particle fluxes, 524
Ensemble of flux tubes, 46
Ensemble of spins, 536
Entropy, 210
Entropy inhomogeneities, 210
Entry of helical perturbations, 477
Equation of state, 221
Equivalent LRC, 439
Equivalent mutual resistance, 443
Escape channels, 132
Euler-Alfvén similarity, 579
Euler similarity, 579
Evershed flow, 9, 288, 465
Evolutionary equation, 102, 293, 419
Evolutionary kink, 620
Evolutionary soliton, 304
Evolution of coronal structures, 429
Evolution of Current Systems, 449
Evolution of magnetic structures, 619
Evolution of shock(s), 330, 370
Excess of energy supply, 448
Exploding loop systems, 644
Explosion time, 294
Explosive events, 352, 353, 583
Explosive growth, 141, 294, 313, 569
Explosive instability, 109, 125, 371, 451, 569,

570, 632
Explosive phase, 303
Explosive release of energy, 659
Explosive time(s), 457, 536
Extinction, 154

Families of MMFs, 316
Fast magnetosonic waves, 60
Fast solar wind, 379

Fast wind, 397
Feature-tracking algorithm, 620
Fibrills, 14
Field-aligned current, 470
Field reversal, 477, 605
Filamentary structure of sunspot, 611
Filamentary structure of sunspot umbra, 25
Filamentary penumbrae, 9
Filamentary ray-like structures, 383
Filamentation of electromagnetic fields, 589
Filamentation process, 281, 532, 608
Filament branching, 466
Finger-like plumes, 567
Finite amplitude wave, 153, 244
Finite curvature, 341
Finite dispersion, 251
Fire hose instability, 667
Flares, 1, 414
Flux emergence, splitting, merging and

disappearance, 620
Flux tube oscillations, 43
Flux tube shredding, 333
Footpoint brightenings, 636
Forced Van der Pol equation, 533
Forerunner, 433
Formation of a moat, 312
Formation of the EUV structures, 459
Form-factor, 97
Fourier-transformation, 214
Fractals, 658
Fragmentation, 54, 283, 329, 616
Fragmentation process(es), 261, 264, 626
Frequency detuning, 82
Frequency shift, 160, 201
Frictional force, 499
Friction force, 337
Frozen-in condition, 122
Frozen in magnetic field, 268
Fuzzy emission, 403

Gardner equation, 320
Gas discharge filaments, 37
Gauss’s theorem, 29
Generalized skin depth, 128, 143, 441
Generated flows, 364
Generated twist, 472
Generation of a seed field, 589
Generation of currents, 427, 648
Generation of electric currents, 426
Generation threshold, 448
Generation upflow/downflows, 616
Geometrical acoustics, 129, 181
Geometry of a shock profile, 491
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Geometry of the collision, 336
Gradient acceleration, 379, 391
Granular, 12
Gravitational waves, 687
Greenhouse-like effect, 547, 572
Growing hot bulbs, 554
Growing oscillations, 648
Growing ripples, 555
Growing shock front, 91
Growing wave packet, 685
Growth rate, 118
Guderley’s effect, 360

Hα flames, 628
Hα surges, 430
Hankel function, 55
Head-on collision, 355
Heat flux, 197
Heating power, 85
HEAT-JET, 359
HEAT-JET regime, 365
HEAT regime, 365
Hedgerow, Loop-kind, Twirl, Fan, 548
Height of energy release, 127, 130
Height of shock formation, 387
Helical instabilities, 469
Helical motions, 549
Helices, 470
Helicity, 40

conservation, 461
injection, 529
input, 719
loss, 719
of two flux tubes, 40

Helioseismology effects, 189
Helmholtz resonator, 262
High β reconnection, 323
High degree of self-organization, 594
High-energy particles, 325
High frequency waves, 176
High plasma beta, 354
High quality resonator, 449
Hodograph, 68
Hollow temperature profiles, 481
Homologous flares, 659
Homologous microflares, 540
Homologous precursor flares, 660
Hydrodynamic cumulation, 354
Hydrodynamic instabilities, 141

Impulsive brightening, 655
Impulsive phenomena, 459

Independent solitons, 252
Induced coronal flow, 454
Induced emf, 446
Induced flows, 265
Induced power, 434
Inductance, 426
Inductive circuit, 426
Inductive reactance, 442
Injected current, 452
Instability dynamics, 589
Intensity variation, 410
Interaction of shocks, 651
Interlaced flux tubes, 465
Intermittent emission, 144
Intermittent streamers, 397
Internetwork magnetic elements (IN), 625
Inverse damping rate, 85
Inverse pitch, 479
Inversion procedure, 195
Inverted flow and temperature, 197
Ion heating rate, 81
Ion temperature jump, 649
Ion two-stream instability, 589
Irreversible heating, 80
Isothermal jump, 711
Isothermal shock(s), 399, 711

Jet-ambient plasma interaction, 586
Jet formation, 359
Jets, 352
Joule heating, 481

KdV-Bürgers equation, 239, 259
KdV equation, 251, 259
Kelvin-Helmholtz (KH) instability, 107, 140,

291, 547
rolls, 108

Kinetic coefficients, 277
Kinetic energy, 340
Kinked helical shape, 469
Kink instability, 600
Kink oscillations, 46, 117, 121
Kink solitons, 103
Kruskal-Shafranov, 26
Kruskal-Shafranov current, 477
Kruskal-Shafranov law, 555
Kruskal-Shafranov limit, 477, 724

Laboratory plasma, 34
Landau damping, 50, 163
Laplace inversion, 83
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Laplace transform, 83
Large wave packet, 166
Larmor radius, 278
Lateral jets, 475, 476
Lax-Wendroff scheme, 253
Lazy motions, 407
Left-handed chirality, 653, 654
Leidenfrost drops, 576
Level of fluctuations, 213
Lifetime distribution, 33
Lifetime of transients, 507
Light bridges, 258
Limit cycles, 658
Limiting currents, 644
Limiting value, 456
Linear KH instability, 568
Linear resonance, 154
Line-tied, 483
Local helioseismology, 179
Localized transients, 407
Longitudinal electric current, 532
Longitudinal inhomogeneity, 75
Longitudinal resonances, 87
Long-lasting explosive events, 374
Loop-top reconnection, 602
Lorentz force, 479
Loss of radial equilibrium, 87
Low-frequency Instability, 701, 702
Lundquist field, 481

Mach number, 357, 391
Macroscopic force, 48
Macroscopic quantum phenomena, 36
Magnetically driven plasma jets, 579, 584
Magnetic braid, 717
Magnetic braiding, 423, 639, 643
Magnetic buoyancy instability, 69
Magnetic carpet, 8, 624
Magnetic cluster, 240
Magnetic diffusivity, 141
Magnetic draping, 588
Magnetic energy avalanche, 398
Magnetic field generation, 579, 589, 595
Magnetic field reversal, 482
Magnetic filling factor, 7, 161, 408
Magnetic helicity, 438, 532
Magnetic knots, 24
Magnetic loop arcades, 380
Magnetic reconnection, 323

in laboratory, 602
topology, 602

Magnetic shear, 24, 529
Magnetic skeleton, 1

Magnetic solitons, 701
Magnetized bow shock, 588
Magnetosonic streaming, 261, 616
Mass ejection(s), 98, 667
Maxwell equations, 28
M-class, 514
MDFs, 290, 311
Measure of shock velocity, 632
Measure of twist, 724
Mechanical stressing, 460
Memory device, 536
Memory of soliton, 304
Memory of the system, 169
Merger processes, 597
Merging, 284, 367, 405, 466
Method of characteristics, 383
Mezogranular, 12
MHD approximation, 28, 216
MHD shocks, 360
MHD similarity in solar flares, 603
Microflares, 414
Microjets, 487
Misuse of reconnection physics, 630
Mixed polarity plage(s), 10, 401, 417
Moat region, 484
Modified sound speed, 250
Modulated MKdV soliton, 419
Modulated oscillations, 450
Modulation instabilities, 419
Molecular transport, 224
Momentum flux, 48
Morphological effects, 162, 417
Morphology of a heated area, 140
Mottles, 24, 540
Mounder Minimum, 5
Moving Magnetic Features (MMFs), 287,

620
deficiency, 621

Multi-cored entity, 619
Multiple azimuthal modes, 56
Multiple branching, 469, 475
Multiple echoes, 663
Multiple flares, 544
Multiple flows, 353
Multiple fragmentation process, 618
Multiple reconnection, 332, 635
Multiple reconnection processes, 475
Multiple shocks, 506
Multi-solitons, 691
Multi-stranded substructures, 645
Multi-thermal strands, 647
Multithreaded loop arcades, 513
Multitude of frequencies, 622
Multiwired filaments, 471
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Mushroom cap, 555
Mutual Inductance, 441

Naked sunspot, 623
Narrow resonances, 95
Navier-Stokes equations, 562
Negative dispersion, 310
Negative energy kink, 308
Negative energy waves (NEWs), 107, 109,

114, 140, 291, 371, 568, 684
Net flow of power, 228
Network elements (NE), 624
Newborn flux tube, 264
New-born kink, 297
Newborn penumbra, 651
Next generation bipole, 347
Non-collinear, 330, 335
Non-collinear flux tubes, 396
Non-conservative systems, 12, 287
Non-inductive current drive, 433
Non-slinky flares, 517
Noncollinearity, 31, 53
Nonconformity, 308
Nonconservative system, 620
Nonconvoluted times, 199
Nonlinear distortions, 384
Nonlinear evolution of flux tube, 617
Nonlinear frequency shift, 152
Nonlinear kink oscillations, 419
Nonlinear oscillations, 98
Nonlinear oscillator, 691
Nonlinear plasma wave echoes, 660
Nonlinear processes, 330
Nonlinear Rayleigh-Taylor Instability, 595
Nonlinear Schrödinger equation (DNLS), 713
Nonlinear unsteady processes, 444
Normal dispersion, 111
N-soliton solution, 420
Nyquist criterion, 69

Oblique shocks, 476, 694
Observable morphological effects, 132
Observational spectroscopy, 207
Ocean tomography, 195
Ohmic dissipation, 217
Ohmic losses, 84
Ongoing reconnection, 469, 472, 527
Onset of absorption, 231
Opposite parity properties, 184
Optical depth, 203
Origin of spicules, 277
Oscillating shock profiles, 259

Oscillatory ponderomotive force, 620
Outgoing waves, 64
Overdamped oscillations, 449
Overturning, 244

Pancakes, 409
Parametric resonance, 176, 685
Parental bright points, 488
Parity of Negative and Positive Energy Waves,

123
Parity property(ies), 183, 189
Patchy brightenings, 133
Penetrating jet, 728
Penumbral jets, 14
Penumbral microjets, 657
Penumbral tadpoles, 608
Penumbral waves, 611
Periodically flaring, 425, 644
Petcheck’s mechanism, 326
Petschek reconnection, 704
Phase memory of particles, 537
Phase-mixed Torsional Waves, 83
Phase mixing, 82, 105, 126, 140
Phase transition, 525
Phase velocity, 49
Photospheric driver, 427, 532
Photospheric Reconnections, 329
Piercing plasma flow, 430
Pinch effect, 485
Pitch, 468, 556
Pitch of the helices, 470
Plages, 7
Plasma β, 217
Plasma blob, 69
Plasma echoes, 513, 536
Plasma heating, 343
Plasma instabilities, 16
Plasma jets, 602
Plasma streaming, 264, 491
Plasma turbulence, 127
Plasmoids, 604
Plato, 2
P-mode ridges, 203
Poincare limit cycle, 450, 455, 534
Polarity inversion, 526
Polarity inversion line, 551
Polarity reversal, 5
Polar plumes, 12, 17
Ponderomotive force, 264, 266
Population of MMFs, 312
Pores, 10
Positive dispersion, 293, 309
Post-flare cooling regime, 457
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Post-flare relaxation, 517
Post-flare slinky, 660
Post-reconnection phase, 651
Post-reconnection processes, 134, 379, 621,

624
Post-reconnection products, 323, 331, 351
Post-reconnection shocks, 364, 377, 415, 634
Potential energy, 340
Potential well, 346
Power spectra, 203
Power spectrum, 229
Poynting flux, 442
Prandtl’s eqaution, 695
Precursor of emerging magnetic field, 644
Precursors, 392, 410, 513
Predictability, 522, 535

criteria, 516
tools, 122

Pre-flare brightenings, 646
Pre-flare energy release, 660
Pre-flare recurrent flushes, 661
Pre-flare stage, 525
Preshock plasma, 357
Pre-shock velocity, 394
Pressure equilibrium, 46
Probability distribution, 97
Probability distribution functions, 33
Prominence body crush, 664
Prominence cavities, 548
Prominence levitating, 576
Prominences, 1
Prominence shadow, 551
Pure JET regime, 365
Pythagoras, 1

Quantitative analysis, 227
Quartz wind, 262
Quasilinear growth, 566
Quasi-longitudinal waves, 60
Quasi-periodic driving force, 444
Quasi-simple wave, 384
Quiescent prominences, 14, 16, 547, 597

Radial inhomogeneity, 75
Radiant heat exchange, 377, 708
Radiated energy flux, 59
Radiation in shock wave, 707
Radiation of negative-energy waves, 124
Radiative cooling time, 479
Radiative damping, 57, 119, 163
Radiative heat flux, 479
Radiative transients, 392, 412, 414

Radio occultation, 383
Radius of curvature, 339
Raman spectroscopy, 200
Raman spectroscopy of p-modes, 179
Random phases, 164
Rankine-Hugoniot conditions, 581
Rankine-Hugoniot relations, 710
Rarefied ensemble(s), 39, 147, 157
Rayleigh equation, 267
Rayleigh-Plesset equation, 561, 576, 666
Rayleigh-Taylor instability, 547, 595, 666
Ray trajectory, 129
Reactance, 442
Reciprocal travel times, 197
Reconnecting flux tubes, 361
Reconnection, 54, 134

of filaments, 472
outcome, 327
rate, 327

Recurrence of cavities, 560
Recurrences, 554
Recurrent explosive events, 634
Recurrent flares, 536, 542, 658
Recurrent jets, 635
Recurrent nature, 563
Recycling time, 360, 399
Reflected shocks, 356
Relaxation regime, 425, 644
Released thermal energy, 507
Remnant active regions, 7
Repeated impulsive events, 643
Repercussions, 345
Repetition rate, 141
Repetitive bursts, 542
Repetitive explosive events, 367
Repetitive explosive instability, 684
Repetitive flare phenomena, 545
Repetitive pulses, 141
Resistance, 426, 442
Resistive coupling, 446
Resistive load(s), 443, 532
Resistive stresses, 443
Resonance condition, 50
Resonance layer, 266
Resonance point, 78
Resonant denominator, 50
Resonant absorption, 104, 115, 148
Resonant damping, 78
Resonant excitation, 70
Resonant flux tubes, 161
Resonant interaction, 417
Resonant layer, 75
Resonant scattering, 58
Reverse shock, 588, 614
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Reversed chirality, 482
Reversible process, 537
Reynolds number, 127
Reynolds stresses, 263
Riemann equation, 384
Right-handed chirality, 654
Rippling mode, 547, 555, 569
Rogue waves, 176, 688
Rotating prominences, 667
Rotational mass flows, 264
Rotational motions, 550
RT instability growth, 599
RT-unstable interface, 599
Rudimentary penumbra, 651
Running waves, 90

Safety factor, 26, 470, 555, 724
Saturation limit, 447, 631
Saturation regime, 234
Sausage oscillations, 121
Sausage mode, 61, 155
Saw tooth

profile, 649
Saw-tooth shock, 613
Sawtooth, 394

shock, 254
weak shocks, 435

Scale height, 30
Scale invariance, 525
Scale-invariant structure, 516
Scaling, 35
Scaling criteria, 579
Scattering centers, 201
Schlichting’s solution, 697
Schrödinger equation, 419
Screw pinch configuration, 640
Screw pinch instability, 26, 478, 550, 642, 653
Screw-type motion, 468
Sea-serpent, 289
Secondary waves, 56, 115
Second-order spatial echo, 538
Sedov-Taylor similarity, 579
Sedov-Taylor solution, 377
Seed vorticity, 595
Self-excited oscillations, 448
Self-focusing, 355, 371, 420
Self-generation of magnetic fields, 588, 597
Self-modulation, 420
Self-organization, 36, 423, 579, 592, 658
Self-organized critical state, 644
Self-organized loop arcades, 513
Self-organized slinky, 644, 661
Self-organized structures, 421, 642

Self-similar growth, 597
Self-similarity, 566, 579
Self-similarity of Solution, 337
Self-similar loop arcades, 515
Self-similar regime, 597
Sequence of energy transfer, 151
Sequence of shocks, 648
Sequences of flares, 522
Sequential flares, 662
Series of echoes, 540
Series of plumes, 554
Series of reconnection(s), 367, 433
Series of solitons, 701
Shafranov’s virial theorem, 672
Shallow soliton, 305
Shaped charge(s), 510, 728
Sharp temperature jump, 376
Shear Alfvén waves, 126
Shear flow instabilities, 109, 291
Shear flows, 188
Shear viscosity, 269
Shock evolution, 591
Shock formation, 90
Shock front, 527
Shock-like regime, 296
Shock-related dissipation, 507
Shock relations, 632
Shocks, 239
Shock-shock collision, 633
Shock-shock interaction, 367, 372, 588
Shock signatures, 368
Shock velocity, 396
Shock waves, 89, 612
Short-living MMFs, 288
Short-living UV flashes, 410
Short wave packet, 166
Shredding of the magnetic field, 299
Sigmoidal magnetic structure, 616
Sign of dispersion, 293
Signs of the precursors, 524
Similarity criteria, 579, 734
Similarity ratio, 566
Similarity solution, 377
Similarity theory, 579
Simple waves, 247
Singularity, 267
Singular point, 75
Sink of wave power, 228
Skewed shape, 556
Skewing, 483
Skewing of the twisted ropes, 642
Skin-effect, 435
Slingshot, 386
Sling-shot effect, 330
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Slinky, 513
Slinky-producing flare, 659
Sloshing mode, 226
Slow magnetosonic mode, 182
Slow magnetosonic waves, 60
Slow solar wind, 10
Slow wind, 397
Small-scale flux tubes, 8
Smoke ring prominence, 667
Solar Coronal Plasmoids, 604
Solar cycle, 5
Solar interior, 4
Solar surface driver, 426
Solar tadpoles, 579
Solitary wave, 98
Soliton-like kinks, 296
Soliton(s), 176, 239, 615

in the equivalent circuit, 720
formation, 251
gas, 420
in non-equilibrium media, 320

Source of emf, 442
Source region, 427
Sources and sinks, 201
Space-time cuts, 44, 312, 404
Spacetime tracks, 406
Spatial echo, 537
Spatial plasma wave echo, 730
Spatio-temporal braids, 640
Spatio-temporal echo, 537, 730
Spatio-temporal echo pattern, 663
Spatio-temporal periodicity, 425
Spatio-temporal scale-invariance, 661
Spectral density, 215
Spheromak, 36
Spicules, 14, 402
Spin echo, 536
Splitting, 367, 466

processes, 405
regime, 264

Spontaneous magnetic field, 602
Sporadic events, 403
Sporadic microflares, 408
Spreading of energy, 168, 176
Stability boundary, 478
Stability criteria, 644
Stability of the KdV solutions, 700
Stable solitary features, 622
Stable solitary wave, 297
Stable soliton, 314
Stagnation, 137
Standoff distance, 493, 510, 726
Stationary vortices, 274
Statistical analysis, 626, 657

Statistical properties of MMFs, 317
Steady energy input, 399
Steady-state reconnection, 325
Steepening, 244
Stochastic field lines, 127
Stochastisity of umbral oscillations, 614
Stokes, 200
Stokes 1st problem, 285
Strand number density, 645
Stratified atmosphere, 307, 388
Stream function, 266
Stretched variables, 99
Strong explosive events, 633
Strong-field reconnections in the photosphere,

628
Strongly collisional, 435
Strong shock signatures, 652
Subsurface flow, 189
Subsurface layers, 181
Subsurface motions, 459
Subtle oscillations, 425, 644
Sunspot penumbra, 465
Sunspots, 1
Superconductivity, 36
Superfluidity, 36
Supergranular, 12
Supernova remnant, 37
Supersonic jets, 380
Surface tension, 562
Surge-like oscillations, 612
Swaths of caustics, 594
Sweet-Parker, 326
Sweet-Parker reconnection, 704
Symmetry properties, 188
Sympathetic, 662
Synchronous lighting, 540

Table-top soliton, 700
Tadpole(s), 604, 606
Tadpol-shaped jets, 604
Tangential discontinuity, 108
Tangential motion, 262
Temperature jump, 94
Temperature minimum, 356
Temporal echo, 537
Temporal plasma echo, 545
Temporal second-order echo, 538
Terminal velocity, 559
Thermal energy, 256
Thermal losses, 84
θ-pinch, 722
Third-order echo, 538
3D helical structure, 555
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Three-wave processes, 125
Time-distance analysis, 179
Time-distance helioseismology, 205
Time-distance tomography, 179
Timescale for the steepening, 254
Tokamak, 34, 433
Topographical studies, 236
Topological effects, 127
Tornado-like formations, 664
Tornado-like prominences, 660
Toroidal currents, 433
Toroidal vortex, 604
Torsional Alfvén waves, 83
Torsional oscillations, 61
Train of negative solitons, 693
Transition region, 14
Transonic velocity, 498
Transsonic Motion, 340
Transverse caustics, 594
Transverse loop oscillation, 647
Transverse oscillations, 405
Trapped protons, 525
Traveling soliton, 292
Traveling wave, 259
Triggering mechanism, 415
True braiding, 639
True microjet(s), 497, 654
Turbulent fluctuations of frequencies, 690
Turbulent pumping, 27
Turbulent stressing, 440
Turbulent viscosity, 224
Turnout time, 272
Twisted configuration, 466
Twisted flux tubes, 26
Twisting motion, 468
Type I MMFs, 288
Type I∗ MMFs, 289
Type II MMFs, 288
Type III MMFs, 289
Type IV MMFs, 289
Types of MMFs, 309

Umbral dots, 468
Umbral oscillations, 611
Unaccounted energy, 109
Unbalanced sources and sinks of energy, 620
Uncombed penumbra, 484
Uncombed system, 465
Undamped oscillations, 647
Underdamped oscillations, 449
Uneven shock front, 355
Unified model, 531
Unipolar features, 311
Unipolar plages, 10, 401

Unlimited cumulation, 399
Unsteady mass flows, 285
Unsteady wave packets, 162
Unwinding motions, 653
Upcoming transient brightening, 651
Upward and downward shocks, 651
UV jets, 626

Validity of soliton solution, 294
Van der Pol oscillator, 646
Van der Pol equation, 450, 462, 644, 646
Van der Pol oscillator, 648
Varying envelope, 170
Velocity gradients, 193
Velocity potential, 55
Velocity shear maps, 193
Vibrating plate, 262
Viscous dissipation, 217
Viscous friction, 227
Viscous losses, 84, 141
Volt-ampere characteristic, 447
Volume force, 45, 53, 156
Vortex core, 36
Vortex rings, 667

Wave-driven current, 719
Wave Extinction, 137
Wave front, 245
Wave-induced currents, 459
Wave momentum, 435
Wave-particle interactions, 433
Wave phenomena, 611
Wave train, 263
Weak Inhomogeneities, 186
Weakly nonlinear waves, 75
Weak shocks, 252
Weibel filamentation, 589
Weibel filaments, 590
Weibel instabilities, 588
Well organized coherent structures, 406
Whip cracker, 93
Width of dark cores, 466
Width of elemental loop, 441
Width of soliton, 300
Wreathing, 483
Writhing and skewing , 653

X-class, 514
X-ray bright points, 404

z-pinch, 485
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