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Preface

Nuclear processes generate the energy that makes stars shine. The same nu-
clear processes in stars are responsible for the synthesis of the elements. When
stars eject part of their matter through various means, they enrich the interstel-
lar medium with the nuclear ashes and thereby provide the building blocks
for the birth of new stars, of planets, and of life itself. The theory of this
building of elements is called nucleosynthesis and it is remarkably success-
ful in describing the nuclear processes in stars that are located so far away
from us in space and time. It is equally remarkable how the theory predicts
these processes based on the quantum mechanical properties of atomic nuclei.
Nucleosynthesis, nuclear energy generation in stars, and other topics at the in-
tersection of nuclear physics and astrophysics make up the science of nuclear
astrophysics. Like most fields of physics, it involves both theoretical and ex-
perimental activities. The purpose of this book is to explain these concepts
with special emphasis on nuclear processes and their interplay in stars.

Work on the manuscript for this book started when I was invited to teach
a two-week long graduate-level course on “Nuclear Physics of Stars” at the
Universitat Politècnica de Catalunya in Barcelona, Spain, in June 2003. During
the preparations for the course it became quite obvious that it would be useful
to have an up-to-date textbook available. The encouragement I received from
many colleagues and students to write such a book was instrumental for my
decision to begin work on a manuscript.

After a decade of teaching at the University of North Carolina at Chapel
Hill I learned from my students to take no “well-established” fact for granted.
They wanted to see derivations of equations when I attempted to state “the
obvious.” They insisted on more fundamental explanations when I just tried
to “wave my hands.” The style of the present book is certainly influenced by
my teaching experience. Indeed, most equations are derived in the text and
special emphasis has been placed on the art work. My main intention is to
explain complicated concepts in the simplest and most intuitive manner. In
some instances, more elegant formulations of concepts have been presented
in the literature. For the manuscript these were considered only if I found
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it impossible to come up with a simpler explanation. Colleagues frequently
wanted to know “which review paper” I used in the preparation of a spe-
cific section. My strategy was to consult review articles only after I wrote a
complete first draft of the section. That way I was forced to comprehend the
subject myself from the beginning and to come up with a coherent presenta-
tion.

The present book is directed toward advanced undergraduate students,
graduate students, and researchers in the fields of nuclear physics and as-
trophysics. Chapter 1 starts with the basic concepts in nuclear physics and
stellar evolution. Chapter 2 develops the theory of nuclear reactions starting
from basic quantum mechanical ideas. Nuclear processes in a stellar plasma
are discussed in Chapter 3. Chapter 4 contains the most important experi-
mental information needed in order to perform measurements in nuclear as-
trophysics. Chapter 5 provides a discussion of the theory of stellar nucleosyn-
thesis. The appendices contain sections on basic solutions of the Schrödinger
equation, angular momentum selection rules, kinematics, and the theory of
angular correlations. At the end of the text, physical constants, mathemati-
cal symbols and physical quantities are listed as an aid for the reader. As a
prerequisite, the student should have taken an undergraduate course in mod-
ern physics with elementary coverage of wave functions. An undergraduate
course in quantum mechanics or nuclear physics would also be helpful, but is
not required.

The present book goes into considerable depth and, consequently, restric-
tions in time and space made it unavoidable for me to omit a number of impor-
tant topics. The instructor who is using this book may wish to supplement the
material presented here with information on primordial nucleosynthesis (J.
Rich, Fundamentals of Cosmology, Berlin: Springer, 2001), cosmic-ray spallation
reactions (E. Vangioni-Flam, M. Cassé and J. Audouze, Phys. Rep., Vol. 333, p.
365, 2000), nucleochronology (J. J. Cowan, F.-K. Thielemann and J. W. Truran,
Ann. Rev. Astron. Astrophys., Vol. 29, p. 447, 1991), neutrino astrophysics
(J. N. Bahcall, Neutrino Astrophysics, Cambridge: Cambridge University Press,
1989), ν-process (Woosley et al., Astrophys. J., Vol. 356, p. 272, 1990), presolar
grains (M. Lugaro, Stardust from Meteorites, Singapore: World Scientific, 2005)
and indirect measurements of astrophysically important nuclear reactions. It
is utterly impossible to recommend one, or even a few, references for the last
topic which represents a vast field in its own right.

I would certainly not have written this book without the influence of two
of my colleagues. I am indebted to Jordi José, who invited me to Barcelona
in 2003 and who organized my lectures and my wonderful stay there. I also
wish to express my appreciation to Art Champagne, who supported me pro-
fessionally through all stages during the preparation of the manuscript. A
number of people have read through parts of the manuscript and have pro-



Preface XIII

vided many valuable suggestions and comments. The book benefited sub-
stantially from their input. It is my pleasure to thank Carmen Angulo, Dick
Azuma, Bruce Carney, Gerald Cecil, Art Champagne, Alan Chen, Alessandro
Chieffi, Alain Coc, Pierre Descouvemont, Ryan Fitzgerald, Uwe Greife, Raph
Hix, Jordi José, Franz Käppeler, Karl-Ludwig Kratz, Alison Laird, John Lat-
tanzio, Marco Limongi, Richard Longland, Alex Murphy, Joe Newton, Anuj
Parikh, Helmut Paul, Tommy Rauscher, Paddy Regan, Hendrik Schatz, Sum-
ner Starrfield, and Claudio Ugalde. I should like to thank Daniel Aarhus for
typing the manuscript, and John Kelley for helping with the preparation of
some figures. I would like to acknowledge support from a University Re-
search Council publication grant from the University of North Carolina at
Chapel Hill and I am also grateful for the support I received from the Tri-
angle Universities Nuclear Laboratory. The book is dedicated to my daughter
Alina, my son Kimon, and my wife Andrea, who certainly felt the significant
investment of my private time in this project during the past four years.

Carrboro, September 2006 Christian Iliadis
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1

1
Aspects of Nuclear Physics and Astrophysics

1.1
History

In 1920 Aston discovered that the mass of the helium atom is slightly less than
four times the mass of the hydrogen atom. Immediately afterward, Edding-
ton suggested in his 1920 presidential address to the British Association for
the Advancement of Science that Aston’s discovery would explain the energy
generation of the Sun via the conversion of hydrogen to helium. However, Ed-
dington could not explain the fact that the stellar temperatures inferred from
observation were well below those thought necessary to initiate fusion reac-
tions. In 1928 Gamow, and independently Condon and Gourney, calculated
the quantum mechanical probability for particles to tunnel through potential
barriers and thereby explained the phenomenon of α-particle decay (Gamow
1928, Condon and Gourney 1929). Atkinson and Houtermans used Gamow’s
results to suggest that quantum mechanical tunneling may explain the energy
generation of stars via fusion reactions (Atkinson and Houtermans 1929).

Cockcroft and Walton (1932) initiated the first nuclear reaction using artifi-
cially accelerated particles by bombarding and disintegrating lithium nuclei
with protons accelerated to several hundred keV energy. Incidentally, the dis-
integration of lithium into two α-particles is one of the reactions of what would
later be called the pp chains. Lauritsen and Crane produced in 1934 a 10-min
radioactivity following the bombardment of carbon with protons. It was the
first measurement of one of the reactions of what would later be called the
CNO cycle.

Atkinson (1936) proposed the fusion of two hydrogen nuclei to deuterium
as a source of stellar energy generation. A detailed treatment of this reac-
tion was provided by Bethe and Critchfield who showed that the p + p re-
action gives indeed an energy generation of the correct order of magnitude
for the Sun (Bethe and Critchfield 1938). The energy production in stars via
the CNO cycle was independently discovered by von Weizsäcker (1938) and
Bethe (1939). The latter work, in particular, investigated for the first time the
rate of energy production and the temperature dependence of the CNO cycle.

Nuclear Physics of Stars 

 Christian Iliadis 
 2007 WILEY-VCH Verlag GmbH & Co.



2 1 Aspects of Nuclear Physics and Astrophysics

In the following years some of the pioneering ideas of nuclear astrophysics
were established. In two papers, Hoyle first presented the theory of nucle-
osynthesis within the framework of stellar evolution by using the nuclear data
available at the time (Hoyle et al. 1946, Hoyle 1954). Nuclear experiments had
firmly established that no stable nucleus of mass number 5 or 8 exists in na-
ture. For this reason, it was a mystery how these mass gaps could be bypassed
in the synthesis of heavier nuclei from lighter species. Salpeter suggested in
1951 that a small equilibrium concentration of unstable 8Be could capture an-
other α-particle to form stable 12C and that this “triple-α reaction” could be the
main energy source in red giant stars (Salpeter 1952). Hoyle pointed out that
the capture probability would be far too small unless an excited state with zero
spin and positive parity existed in 12C at about 7.7 MeV excitation energy. His
remarkable theoretical insight was verified when the level was clearly iden-
tified (Dunbar et al. 1953) and its properties determined (Cook et al. 1957),
thereby establishing the triple-α reaction as the mechanism to overcome the
mass 5 and 8 gaps.

In an influential review, Suess and Urey demonstrated the existence of sev-
eral double peaks in a greatly improved distribution of observed solar-system
abundances (Suess and Urey 1956). It became immediately clear that these
abundance peaks were associated with the neutron shell fillings at the magic
neutron numbers in the nuclear shell model that Jensen and Goeppert Mayer
had developed in 1949. The nucleosynthesis processes for the heavy nuclides
beyond iron via neutron captures became later known as the s- and r-process.

Of great importance was the discovery of spectral lines from the element
technetium in evolved red giant stars (Merrill 1952). All of the technetium
isotopes are unstable and the longest lived isotope has a half-life of ≈ 4.2 ×
106 y. Such half-lives are very short on a cosmological time scale (≈ 1010 y)
and, consequently, the discovery showed beyond doubt that the technetium
must have been produced “recently” within the stars and that the products of
nucleosynthesis could indeed reach the stellar surface with the help of mass
loss and mixing.

The available knowledge at the time regarding the synthesis of elements
was presented in a review article by Burbidge et al. (1957), and independently
by Cameron (1957). These papers laid the ground work for the modern theory
of nuclear astrophysics. The field has developed since into an exciting dis-
cipline with impressive achievements, linking the topics of astronomical ob-
servation, nuclear physics experiment, nuclear theory, stellar evolution, and
hydrodynamics.
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1.2
Nomenclature

Atomic nuclei consist of protons and neutrons. The symbol Z denotes the
number of protons and is called atomic number. The number of neutrons is
denoted by the symbol N. The mass number A is defined by the integer quan-
tity A = Z + N. It is sometimes also referred to as nucleon number. Nuclei
with the same number of protons and number of neutrons have the same nu-
clear properties. They can be represented by the symbol A

Z XN , where X is
the element symbol. Any individual nuclear species is called a nuclide. Nu-
clides with the same number of protons, but different number of neutrons
(and hence a different mass number A) are called isotopes. Nuclides of the
same mass number, but with different numbers of protons and neutrons are
called isobars. Nuclides with the same number of neutrons, but with different
number of protons (and hence a different mass number A) are called isotones.
Isotopes, isobars, and isotones have different numbers of protons or neutrons
and, therefore, their nuclear physics properties are different.

Nuclides can be represented in a two-dimensional diagram, called chart of
the nuclides. It displays the number of neutrons and protons on the horizontal
and vertical axes, respectively. Each square in this diagram represents a dif-
ferent nuclide with unique nuclear physics properties. Figure 1.1 displays a
section of the chart of the nuclides, showing the lightest species with Z ≤ 15
and N ≤ 20. The shaded squares represent stable nuclides, while the open
squares correspond to unstable nuclides with half-lives in excess of 1 ms. It
is obvious that many more unstable than stable nuclides exist in nature. It is
also striking that no stable nuclides exist with a mass number of A = 5 or 8.
This circumstance has a profound influence on the nucleosynthesis in stars, as
will be seen in Chapter 5.

Example 1.1

The nuclide of carbon (Z = 6) with 7 neutrons (N = 7) has a mass number of A
= Z + N = 13 and is represented by the symbol 13

6C7. Since the element symbol
and the number of protons (atomic number) carry the same information, both
Z = 6 and N = A − Z = 7 are frequently suppressed in the notation. The
carbon species with mass number A = 13 is then unambiguously described by
the symbol 13C.

The species 12
6C6, 13

6C7, and 14
6C8 are isotopes of carbon (Z = 6); 20

10Ne10, 20
11Na9,

and 20
12Mg8 are isobars of A = 20; 28

14Si14, 29
15P14, and 30

16S14 are isotones of N = 14.
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Fig. 1.1 Section of the chart of the nuclides, showing the lightest
species with Z ≤ 15 and N ≤ 20. The shaded squares represent sta-
ble nuclides, while the open squares correspond to unstable nuclides
with half-lives in excess of 1 ms. The only exceptions are the nuclides
8Be and 9B which have much shorter half-lives. Note that no stable
nuclides exist with a mass number of A = 5 or 8.

1.3
Solar System Abundances

It is commonly accepted that the solar system formed from the collapse of a
gaseous nebula that had an almost uniform chemical and isotopic abundance
distribution. Abundances in the solar system are also similar to those found
in many stars, in the interstellar medium of the Sun’s neighborhood and in
parts of other galaxies. Therefore, it was hoped for a long time that a care-
ful study of solar system abundances would provide a “cosmic” or “univer-
sal” abundance distribution, that is, an average abundance distribution which
is representative for all luminous matter in the universe. A closer compari-
son of abundances in the solar system and other parts of the universe shows,
however, significant compositional differences. Furthermore, the discovery of
presolar grains in primitive meteorites allowed for the first time a very precise
chemical and isotopic analysis of interstellar matter. Measurements of isotopic
abundances in these presolar grains revealed the existence of very large devi-
ations compared to solar system values. Following common practice in the
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recent literature, we will avoid the term “universal” abundances and use in-
stead the expression solar system abundances when referring to the abundance
distribution in the solar system at the time of its formation. The latter distri-
bution provides an important standard to which reference is frequently made.

There are two major, independent and sometimes complementary, sources
of solar system elemental abundances: (i) observations of the solar photo-
sphere, and (ii) analysis of a specific class of meterorites, called CI carbona-
ceous chondrites. The Sun contains most of the mass in the solar system and
is, therefore, representative for the overall composition. On the other hand,
planets contain much less mass but they underwent extensive chemical frac-
tionation over the past 4.5 Gy since their formation (Cowley 1995). Among
the more than 20,000 recovered meteorites, there are only five known CI car-
bonaceous chondrites. Although they contain a minuscule amount of matter,
they are believed to be among the most primitive objects in the solar system.
They show the least evidence for chemical fractionation and remelting after
condensation and thus they retained most of the elements (except for a few
very volatile species) present in the original matter of the solar nebula. De-
tails on how these abundances are obtained will not be repeated here (see, for
example, Arnett 1996, Grevesse and Sauval 1998, Palme and Jones 2003, Lod-
ders 2003). It is sufficient to remark at this point that the abundances derived
from the solar photosphere and from primitive meteorites are in remarkable
overall agreement (better than ± 10% for most elements). Solar system isotopic
abundances are then derived from the elemental abundances by using mainly
terrestrial isotopic ratios (Rosman and Taylor 1998).

The solar system abundances of the nuclides are shown in Fig. 1.2a versus
mass number A. The abundances are normalized to the number of silicon
atoms. In cases where two or more stable isobars exist for a specific mass
number A, the sum of the individual abundances is shown in the figure. Part
b displays the abundances separately for even-A and odd-A nuclides. Almost
all the mass is contained in 1H (71.1%) and 4He (27.4%). There is an abundance
minimum in the A = 5–11 region, corresponding to the elements Li, Be, and
B. More than half of the remaining mass (1.5%) is in the form of 12C and 16O.
The abundances drop slowly with increasing mass number. Another mini-
mum occurs in the A = 41–49 region, around the element Sc. The abundance
curve exhibits a maximum in the A = 50–65 region, near the element Fe. The
nuclides in this region are referred to as the iron peak. Beyond the iron peak,
the abundances in general decrease with increasing mass number, although
pronounced maxima are clearly visible in the A = 110–150 and A = 180–210
regions. Closer inspection of Fig. 1.2b also reveals that even-A nuclides are
generally more abundant than odd-A nuclides. Furthermore, the abundance
curve for odd-A nuclides is considerably smoother than the one for even-A
nuclides.
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The outstanding gross features in Fig. 1.2 are the abundance maxima and
minima. Specifically, the abundances do not scatter randomly, but instead ex-
hibit a certain regularity and systematics. It is reasonable to assume that the
abundances within any group or subgroup of nuclides can be attributed pri-
marily to a specific mechanism of nucleosynthesis. Starting with the work of
Suess and Urey (1956), such tables of solar system abundances had an enor-
mous influence on investigations of the origin of the elements and the devel-
opment of nuclear astrophysics. Not only did it become possible to identify
and study various processes of nucleosynthesis that left their distinctive sig-
natures in the abundance distribution, but a connection could also be made to
the environments in which these sources of nucleosynthesis operated. All nu-
clides, with few exceptions, are synthesized in stars. Therefore, the observed
solar system abundances offer powerful clues to stellar history and evolution,
and by extension, to the chemical evolution of the Galaxy as a whole.

It is fascinating that the structures seen in Fig. 1.2 reflect the nuclear physics
properties of various processes occurring in nature. A few very general com-
ments follow below. All of the hydrogen (1H and 2H) and most of the helium
(3He and 4He) nuclei originated in the Big Bang (Rich 2001). The most abun-
dant of these, 1H and 4He, are the basic building blocks for the synthesis of
heavier and more complex nuclei. A deep abundance minimum occurs in the
Li–Be–B region. These nuclides are easily destroyed in fusion reactions with
protons (that is, their cross sections are very large). Therefore, their observed
solar system abundances must be explained by processes that occur in sites
other than stellar interiors. They are thought to be produced via spallation re-
actions induced by Galactic cosmic rays (Vangioni-Flam, Cassé and Audouze
2000). However, the Big Bang and certain stars did most likely contribute to
the production of 7Li. All of the heavier nuclides with A ≥ 12 are produced
in stars. The nuclides in the region between 12C and 40Ca are synthesized via
charged-particle nuclear reactions in various stellar burning processes. Reac-
tions between charged particles are subject to the Coulomb repulsion. The
larger the charge of the reacting nuclei, the smaller the nuclear reaction prob-
ability will become. This circumstance is reflected in the overall decline of
the abundance curve from 12C to 40Ca. The abundance maximum of the iron
peak is explained by the fact that these nuclides represent energetically the
most stable species (Section 1.5.1). Because of the large Coulomb repulsion,
the synthesis of nuclides beyond the iron peak via charged-particle reactions
becomes very unlikely. These nuclei are instead produced by the capture of
neutrons. The abundances of nuclides in the A > 80 region are on average a
factor of 1010 smaller compared to the hydrogen abundance, as can be seen
from Fig. 1.2. The observed narrow and broad peaks in this mass region pro-
vide unambiguous evidence for the existence of two distinctive neutron cap-
ture processes. All of the above comments are very general and do not explain
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Fig. 1.2 Abundances of the nuclides in
the solar system at its birth. Number abun-
dances are normalized to the number of
silicon atoms (Si = 106). Data from Lodders
(2003). (a) Sum of all nuclidic abundances
at a given value of A versus mass number.

The maximum in the A = 50–65 region is
referred to as the iron peak. (b) Separate
abundance contributions from nuclides with
an even or an odd value of A versus mass
number. Even-A nuclides are in general
more abundant than odd-A nuclides.
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any details of the solar system abundance curve. An extensive discussion of
the various nucleosynthetic processes will be given in Chapter 5. Information
regarding the origin of the solar system nuclides is provided at the end of this
book (Section 5.7).

1.4
Astrophysical Aspects

1.4.1
General Considerations

The study of stars is central to astronomy and astrophysics since stars are
long-lived objects that are responsible for most of the visible light we observe
from normal galaxies. The fusion of light nuclides into heavier species liber-
ates kinetic energy at the expense of mass and serves as the interior source
of the energy radiated from the surface. These very same reactions alter the
composition of the stellar matter. As already pointed out, all nuclides with
masses of A ≥ 12 are produced in stars. When a star ejects part of its mass
into space during certain evolutionary stages, the chemical composition of the
interstellar medium will be altered by the thermonuclear debris. The interstel-
lar medium, in turn, plays a key role in providing material out of which new
generations of stars form. This cycling of matter between stars and the inter-
stellar medium involves countless stars. By comparing the age of the Galaxy
(≈ 14 Gy) with the age of the Sun (≈ 4.5 Gy) we can conclude that the cycling
process that gave rise to the solar system abundance distribution operated for
almost 10 billion years.

There is unambiguous direct evidence for the nucleosynthesis in stars. First,
we already mentioned in Section 1.1 the observation of radioactive technetium
in stellar spectra (Merrill 1952). Second, γ-rays from radioactive 26Al were dis-
covered in the interstellar medium by spectrometers onboard satellites (Ma-
honey et al. 1982, Diehl et al. 1993). The half-life of this nuclide (≈ 7.17× 105 y)
is even shorter than that for radioactive technetium, thus demonstrating again
that nucleosynthesis is currently active in the Galaxy. Third, neutrinos are pre-
dicted to be the byproducts of nuclear processes in stars (Chapter 5). Since
they interact very weakly with matter, they escape essentially unimpeded
from stellar interiors. Neutrinos from the Sun (Bahcall 1989, Hirata et al. 1990)
and from the type II supernova 1987A (Hirata et al. 1987, Bionta et al. 1987)
were detected on the Earth, providing another direct test of stellar nucleosyn-
thesis. Fourth, models of supernovae predict the ejection of radioactive 56Ni
(half-life of 6 days), which then decays to the radioactive daughter nucleus
56Co (half-life of 77 days). The subsequent decay of this nuclide (to stable
56Fe) is predicted to determine the decline of the light emission from these
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stellar explosions. The predictions agree well with the observed light curves
of supernovae. Furthermore, photons from the radioactive decay of 56Co have
been detected directly from supernova 1987A (Matz et al. 1988, Tueller et al.
1990).

The discovery of the existence of two distinct stellar populations by as-
tronomers was also of paramount importance in this respect. The populations
are referred to as population I and population II stars. They differ in their age
and their content of metals, by which astronomers mean any element other
than hydrogen and helium. Population I stars include the Sun and are metal
rich. They are young stars, having formed within the past few billion years,
and can be found in the disk of the Galaxy. Extreme population I stars rep-
resent the youngest, most metal-rich stars and are found in the spiral arms
of the Galaxy. Population II stars, on the other hand, are metal poor. They
are relatively old and are found in the halo and the bulge of the Galaxy. Ex-
treme population II stars represent the oldest, most metal poor stars and are
found in the halo and in globular clusters. Their metal abundance, relative to
hydrogen, is smaller by a factor of 100 or more compared to population I stars.

If one assumes that the initial composition of the Galaxy was uniform and
if there exists no mechanism capable of concentrating the metals in the disk of
the Galaxy, then the Galaxy must have synthesized an overwhelming fraction
of its own metals. This argument provides strong support for the theory that
nucleosynthesis is a natural process to occur during the evolution of stars. It is
then obvious that the metal content of the Galaxy increases with time since the
matter out of which stars form is being cycled through an increasing number
of stellar generations. Therefore, the differences in metallicity between the
two stellar populations suggest that population I stars formed later during
the history of the Galaxy when the interstellar medium became much more
metal rich.

Nuclear reactions not only explain the bulk solar-system abundance distri-
bution, but are also indispensable for explaining the observed chemical com-
position of individual stars. Such observations, even for trace elements, are
crucial for constraining theoretical models of stars and for better understand-
ing the complicated interplay of stellar hydrodynamics, convection, mixing,
mass loss, and rotation. Stellar nucleosynthesis also plays a decisive role for
explaining the chemical composition of the interstellar medium and is thus
interwined with γ-ray astronomy, the study of primitive meteorites, and the
nature of cosmic rays.
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1.4.2
Hertzsprung–Russell Diagram

The total amount of radiation emitted per unit time, or the luminosity, varies
strongly from star to star. The same holds for the effective stellar surface tem-
perature. However, if we plot these two quantities for many individual stars
in a diagram, then the result is not a random scatter of points, but most stars
fall into several distinct groups. This correlation of stellar luminosity and ef-
fective surface temperature represents the single most important relationship
of stellar properties. It is referred to as Hertzsprung–Russell diagram or color-
magnitude diagram. The latter name results from the fact that surface tem-
perature can be expressed in terms of the color of the star, while luminosity is
related to the absolute magnitude. An explanation of these relationships can
be found in any introductory astronomy textbook. The Hertzsprung–Russell
diagram has a profound influence on the theory of stellar evolution and, by
extension, on the history of the Galaxy as a whole.

Consider first Fig. 1.3a, showing a Hertzsprung–Russell diagram for a sam-
ple of ≈ 5000 stars in the solar neighborhood. Each dot corresponds to a single
star. The surface temperature increases from right to left in the figure. The vast
majority of stars occupy the main sequence (MS), stretching diagonally from the
upper left (hot and bright stars) to the lower right (cool and faint stars). The
Sun, for example, belongs to the main sequence. In the low and right part
(cool and faint stars) of the main sequence one finds the red dwarfs (RD). The
subgiant branch (SGB) joins the main sequence and extends in a direction to
cooler and brighter stars, where the populated region turns first into the red
clump (RC), and then into the red giant branch (RGB). In a region corresponding
to smaller luminosity and higher temperature (lower left), one finds a group
of faint and hot stars known as white dwarfs (WD). A well-known example
is Sirius B, the companion of Sirius. Some stars are located below the main
sequence, but are much brighter than white dwarfs. These are known as sub-
dwarfs (SD). A number of star categories do not appear in the figure. Super-
giants (SG) are the brightest stars in the Galaxy and would occupy the upper
end of the Hertzsprung–Russell diagram, but are very rare in the solar neigh-
borhood. The cool and faint brown dwarfs would appear off scale way down
in the lower-right part of the figure, but are too faint to appear in the figure.

A Hertzsprung–Russell diagram for the globular cluster M 3 is shown in
Fig. 1.3b. There are about 200 globular clusters in the Galaxy. They are lo-
cated in a spherical space surrounding the Galactic center, called the halo of
the Galaxy. Each cluster consists of 104–106 graviationally bound stars, which
are highly concentrated toward the cluster center. An image of the globular
cluster M 10 is shown in color Fig. 1 on page 631. Spectroscopic observations
revealed that globular clusters are metal poor compared to the Sun, implying
that they are rather old and that they formed during the early stages of Galac-
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tic evolution. It is commonly accepted that all stars in a typical globular cluster
formed around the same time from material of very similar composition. The
observation that the stars of a globular cluster occupy distinct regions in the
Hertzsprung–Russell diagram must then be explained by differences in the
only other major stellar property, that is, their initial mass. As will be shown
below, the stellar mass is the most important property influencing the evolu-
tion of stars. In fact, the higher the mass, the faster a star will evolve.

Figure 1.3b shows some of the same stellar categories already mentioned in
connection with part (a). The densest region is occupied by main-sequence
stars. The distinctive kink extending from the main sequence toward cooler
and brighter stars is called the turn-off point (TO). The subgiant branch stars
(SGB) are located on a horizontal part stretching toward the right, which
turns upward into the red giant branch (RGB). Three more groups of stars
can be clearly distinguished on the left-hand side of the RGB: the asymptotic
giant branch (AGB), the red horizontal branch (RHB), and the blue horizon-
tal branch (BHB). As will be seen below, the different groups of stars seen in
parts (a) and (b) correspond to different stages of stellar evolution. Globular
clusters in particular play an outstanding role in astrophysics since the distinct
features in their Hertzsprung–Russell diagrams represent strong constraints
for stellar models.

1.4.3
Stellar Evolution of Single Stars

One of the most important goals of the theory of stellar structure and evolu-
tion is to understand why certain stars appear only in specific regions of the
Hertzsprung–Russell diagram and how they evolve from one region to an-
other. Our aim in this section is to summarize without detailed justification
the most important issues related to the nuclear physics of stars. An introduc-
tion to stellar evolution can be found in Binney and Merrifield (1998) or Iben
(1985). A more comprehensive account is given, for example, in Kippenhahn
and Weigert (1990). We will use in this section expressions such as hydrogen
burning, helium burning, pp chain, CNO cycle, and so on, to obtain a general
idea regarding nuclear processes in stars. These will be explained in depth in
Chapter 5.

Theoretical models of stars in hydrostatic equilibrium are constructed in the
simplest case by solving a set of four partial differential equations (for radius,
luminosity, pressure, and temperature) that describe the structure of a star as
a function of the distance from the center and as a function of time. A time se-
quence of such solutions, or stellar models, represents an evolutionary track in
the Hertzsprung–Russell diagram. Stellar structure and evolution calculations
rely heavily on large scale numerical computer codes. The time changes in the
stellar properties are closely related to the energy budget. Energy is generated
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Fig. 1.3 Observational Hertzsprung–
Russell diagrams, showing visual mag-
nitude versus color index B–V. Each dot
corresponds to a star. See the text for an
explanation of the labels. (a) Sample of ≈
5000 stars in the solar neighborhood with
precisely known distances. The data were
acquired by the Hipparcos astrometry satel-
lite. The vast majority of stars occupy the
main sequence, stretching diagonally from
the hot (blue) and luminous upper left to the
cool (red) and faint lower right. The cross
hair indicates the position of the Sun. Cer-

tain categories of stars do not appear in the
figure, for example, supergiants (SG), which
are rare in the solar neighborhood, and
brown dwarfs, which are too faint for detec-
tion by Hipparcos. (b) Data for the globular
cluster M 3. Apparent rather than absolute
magnitude is displayed on the vertical axis
since the stars have the same distance from
the Earth. The RR Lyrae variable stars,
located between the red (RHB) and blue
(BHB) horizontal branches, are omitted.
From Corwin and Carney (2001).
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by the star via nuclear reactions and gravitational contraction, while energy is
continuously lost from the stellar surface via emission of photons and neutri-
nos. As will become clear in the following discussion, a star spends most of its
nuclear burning time fusing hydrogen to helium on the main sequence. Care-
ful observations showed that there is a direct correlation between the mass
and the luminosity of a main-sequence star. The greater the total mass of the
star, the greater the temperature and pressure in the core, the faster nuclear
energy is generated, and the greater the energy output or the luminosity of
the star. For example, a 10 M� main-sequence star has ≈ 3000 times the lumi-
nosity of the Sun. Furthermore, the main-sequence lifetime will also depend
strongly on the stellar mass because a star burns the nuclear fuel at a rate
that is determined by its luminosity. For example, solar-metallicity stars with
masses of 1 M�, 5 M�, and 15 M� spend about 10 Gy, 100 My, and 12 My,
respectively, on the main sequence. Once a star leaves the main sequence, the
evolution speeds up significantly, as will be seen below.

Modern theories have been enormously successful in describing the prop-
erties of stars. Nevertheless, many open questions remain unsolved. Stellar
evolution is an active research field and it is worthwhile to keep in mind the
uncertainties in the model calculations. These reflect our incomplete knowl-
edge of certain processes in stars, including the treatments of energy transport
via convection, mass loss, atomic diffusion, turbulent mixing, rotation, and
magnetic fields. For binary stars (Section 1.4.4), a host of additional problems
is encountered because, first, the model assumption of spherical symmetry
must be relaxed and, second, the interaction between the two stars becomes
important. We will not discuss these effects in any detail other than to mention
that most of them become increasingly important with ongoing stellar evolu-
tion. The effects of nuclear physics are deeply interwined with these issues.
When we discuss in later chapters the impact of nuclear physics uncertainties
on the nuclear energy generation and the nucleosynthesis, it is very important
to keep in mind that we are referring only to one piece in a complex puzzle.
One of the main goals in nuclear astrophysics is to better understand the in-
ner workings of stars. To this end, a reliable knowledge of nuclear physics is
indispensable.

A chart showing the main evolutionary phases for single stars of various ini-
tial masses is shown in Fig. 1.4 and will be helpful for the subsequent discus-
sions. The stellar masses are shown on the left-hand side and time increases
from left to right.

Premain-sequence stars

When an interstellar gas cloud consisting mainly of hydrogen and helium con-
tracts, gravitational potential energy is transformed into thermal energy and
into radiation. The gas is initially in gravitational free fall and most of the lib-
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Fig. 1.4 Major evolutionary stages for single
stars in different mass ranges. The initial
stellar mass is given on the left-hand side.
Time increases from left to right. The nu-
clear fuel in each burning phase is shown
in bold. For example, “H-C” refers to hy-
drogen burning in the core, “He-S” denotes
helium burning in a shell, and so on. For
lower-mass stars, the meaning of the la-
bels in square brackets is described in the
text (see also caption of Fig. 1.5); “DU” de-

notes the different dredge-up events. For
massive stars, the three dots indicate that
there are additional overlying burning shells
(Fig. 1.6); the labels are: “CC” for core col-
lapse, “SN” for supernova, “NS” for neutron
star, and “BH” for black hole. Note that the
mass ranges are approximate estimates
only and depend on the stellar metallicity.
For the evolution of stars in the mass range
of M ≥ 100 M�, see Woosley, Heger and
Weaver (2002), and references therein.

erated energy is not retained but radiated away because the gas is relatively
transparent. With increasing density, the opacity increases as well and some
of the emitted radiation is retained in the cloud. As a result, the temperature
and the pressure begin to rise and the contraction of the central, denser part
of the cloud slows down. The increasing temperature causes first a dissoci-
ation of hydrogen molecules into atoms, and then an ionization of hydrogen
and helium atoms. When a temperature of about 105 K is reached, the gas
is essentially ionized. The electrons trap radiation efficiently and, as a result,
the pressure and temperature increase and the collapse of the central part of
the cloud halts. The premain-sequence star eventually reaches a state of hy-
drostatic equilibrium, while still accreting matter from the outer parts of the
cloud.

The source of energy is gravitational contraction, but the first nuclear reac-
tions start to occur when the central temperature reaches a few million kelvin.
Primordial deuterium fuses with hydrogen, a process that is called deuterium
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burning (Section 5.1.1), and primordial lithium may be destroyed via interac-
tions with protons (7Li + p → α + α; the notation will be explained in Sec-
tion 1.5.2). At this stage, energy is transported via convection and most of the
star’s matter, including surface material, is expected to be processed through
the center. Although the nuclear energy release is very small, the reactions
change the light element abundances and thus provide valuable information
on the central temperatures.

When the temperature reaches several million kelvin, the fusion of hydro-
gen to helium starts to occur and contributes an increasing fraction to the total
energy output. Ultimately, a point will be reached where hydrogen fusion in
the core becomes the only source of energy. The star is now in hydrostatic and
thermal equilibrium and has reached a location in the Hertzsprung–Russell
diagram that is referred to as the zero age main sequence (ZAMS). Stars with
different initial masses reach the main sequence at different times. For ex-
ample, the premain-sequence evolution of a 1 M� star lasts about 75 million
years. Different stellar masses populate different locations on the zero age
main sequence, which thus represents a line in the Hertzsprung–Russell dia-
gram. Massive stars have higher temperatures, initiate nuclear reactions ear-
lier, and are therefore located on the hotter and brighter part (upper left), while
less massive stars will be found on the cooler and fainter part (lower right).

Newly born stars are difficult to observe because they are usually sur-
rounded by a rotating disk of gas and dust. The solar system, for example,
presumably formed from such a disk. An example for premain-sequence ob-
jects is the T Tauri stars. Their lithium abundance is relatively high, indicating
that the central temperature has not yet reached large enough values to de-
stroy lithium via nuclear reactions involving protons.

The subsequent fate of stars depends strongly on their initial mass. We will
consider the different mass ranges in turn. These main divisions are not sharp
but depend somewhat on the chemical composition.

Initial mass of 0.013 M�� M � 0.08 M�
Theory predicts that objects in this mass range never reach the central temper-
atures required to sustain hydrogen fusion in their cores and are thus unable
to generate sufficient nuclear energy to provide pressure support. The search
for these very faint and cool stars provides important constraints for stellar
evolution theory. Such objects have only been discovered in the mid-1990s
and are referred to as brown dwarfs. They are predicted to be very abundant in
the Galaxy and are, therefore, candidates for the elusive (baryonic) dark mat-
ter. Brown dwarfs are fully convective and their energy source in the early
stages is provided by gravitational contraction.

Although brown dwarfs are not true stars, they do have enough mass to
undergo deuterium burning, a fact that sets them apart from massive planets
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like Jupiter. This provides an additional, low-level, source of energy. They also
have a relatively high lithium abundance since temperatures remain too low
to destroy this element. The outer layers of a brown dwarf can be described
by the ideal gas law. The core, however, becomes eventually electron degen-
erate. As a result, the contraction halts and the brown dwarf slowly cools, at
approximately constant radius, by radiating its thermal energy into space. In
the Hertzsprung–Russell diagram, a brown dwarf evolves almost vertically
downward and straight past the main sequence (Fig. 1.3).

A detailed description of the properties of degenerate matter is given in
many modern physics textbooks and is not repeated here. We will summa-
rize a few properties, however, that are also important for our discussion of
other stars. Matter becomes degenerate at relatively high densities as a result
of the Pauli exclusion principle which states that no more than two spin-1/2
particles (such as electrons) can occupy a given quantum state simultaneously.
A degenerate gas strongly resists further compression because electrons can-
not move into lower energy levels that are already occupied. Unlike an ideal
classical gas, whose pressure is proportional to its temperature, the pressure
exerted by a completely degenerate gas does not depend on temperature. Or,
in other words, increasing the temperature of a partially degenerate gas has
only a small effect on the total pressure. It will be seen later that, when the tem-
perature reaches a sufficiently high value, the degeneracy is lifted, by which
we mean that the properties of such a gas revert to those of an ideal classical
gas. Furthermore, there exists an upper limit to the pressure provided by a
degenerate gas. If gravity exceeds this pressure, the star will collapse despite
the presence of the degenerate particles. The maximum value for the mass
of a star that can maintain an equilibrium between degeneracy pressure and
gravity is called the Chandrasekhar limit. Its precise value depends on the com-
position. For an electron degenerate gas and matter characterized by two nu-
cleons per electron (for example, 4He, 12C, or 16O), the limiting value amounts
to ≈ 1.44 M�. Stars that enter a state of electron degeneracy toward the end
of their evolution are called white dwarfs. Indeed, white dwarfs with masses in
excess of the Chandrasekhar limit are not observed in nature.

Initial mass of 0.08 M�� M � 0.4 M�
Stars in this mass range are sometimes referred to as red dwarfs (or M dwarfs).
They are the most common type of star in the neighborhood of the Sun. For
example, the nearest star to the Sun, Proxima Centauri, is a red dwarf. These
stars have sufficient mass to fuse hydrogen to helium (hydrogen burning) in
their cores via the pp chain. Starting from the zero age main sequence, the
red dwarf evolves toward higher luminosity and increasing surface temper-
ature (up and left). All stars that sustain hydrostatic equilibrium by burning
hydrogen in their cores are called main-sequence stars. Theoretical models indi-
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cate that, for example, a 0.1 M� star of solar metallicity remains on the main
sequence for about 6000 Gy. During this time the red dwarf is fully convec-
tive, which implies that its entire hydrogen content is available as nuclear fuel.
Since the age of the Universe is about 14 Gy, all red dwarfs that we observe
must be main-sequence stars. Eventually, they will run out of nuclear fuel,
that is, all their hydrogen will be converted to helium. Red dwarfs do not have
enough mass to produce the higher temperatures required to fuse helium nu-
clei. Thus they contract until electron degeneracy sets in. Their volume is
constant from then on since the degeneracy pressure resists further compres-
sion. They become helium white dwarfs that cool slowly by radiating away
their thermal energy.

Initial mass of 0.4 M� � M � 2 M�
The evolution of stars in this mass range is considerably more complicated
compared to the previous cases. The life of the star starts on the zero age
main sequence when hydrogen begins to fuse to helium in the core. In stars
with masses below M ≈ 1.5 M�, hydrogen fusion proceeds via the pp chains,
while more massive stars burn hydrogen via the CNO cycles. It will be seen
later that these different processes affect the stellar structure since they pos-
sess very different temperature dependences (Section 5.1). In stars with M �
1.5 M�, the strong temperature dependence of the CNO cycles concentrates
the energy production in the center and, as a result, the core transports energy
via convection. In stars with M � 1.5 M�, the energy generated in the core by
the pp chains is transported via radiation.

As an example, we will discuss in the following the evolution of a special
star, the Sun (see color Fig. 2 on page 632). The evolutionary track is shown
schematically in Fig. 1.5a. The arguments given below follow the numeri-
cal results obtained by Sackmann, Boothroyd and Kraemer (1993). The Sun
started central hydrogen burning via the pp chains on the zero age main se-
quence about 4.5 Gy ago. At present the central temperature and density
amount to T ≈ 15 MK and ρ ≈ 150 g/cm3, respectively, and about one half
of the original hydrogen in the core has been consumed so far. The Sun has a
very small convective region at the surface, comprising only ≈ 2% of its entire
mass. About 4.8 Gy from now, the hydrogen in the core will be exhausted.
The Sun will then be located at the bluest and hottest point on the main se-
quence, called the turn-off point. Note that in Fig. 1.5a the track describing
nuclear burning on the main sequence follows an arc. This is one of the rea-
sons for the fact that the main sequence in observational Hertzsprung–Russell
diagrams represents a band rather than a narrow line.

Hydrogen fusion continues in a thick shell near the core where there is still
hydrogen left. The Sun slowly leaves the main sequence at this point. The
Sun’s center begins to contract in order to generate energy that is no longer
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provided by nuclear processes and the contraction causes further heating. As
a result, the temperature in the hydrogen burning shell, and the associated
nuclear energy generation rate, also increase. Initially, the Sun has not yet
developed a fully convective envelope and it is called a subgiant branch star
(SGB). Eventually, the envelope becomes fully convective. The extra energy
output from the hydrogen burning shell results in a dramatic surface expan-
sion and engulfs the planet Mercury. The Sun becomes a red giant star. While
the Sun ascends the red giant branch (RGB), the luminosity increases contin-
uously. Maximum luminosity is achieved on the tip of the red giant branch
after about 0.6 Gy from the time when the Sun left the main sequence. Dur-
ing the red giant phase the Sun starts to experience significant mass loss. The
contraction of the core during the red giant phase increases the central tem-
perature and density by factors of 10 and 104, respectively, compared to the
values at hydrogen ignition. In fact, the core achieves such high densities that
the matter becomes electron degenerate. During the RGB phase, the convec-
tive envelope deepens significantly until it comprises about 75% of the Sun’s
mass. This deep convective envelope dredges up the products of hydrogen
burning from the outer core. The process is referred to as the “first dredge-
up.”

When the temperature reaches about T ≈ 0.1 GK, the helium in the core
starts to fuse to carbon and oxygen (helium burning). In a normal gas, the extra
energy release would cause an expansion. As a result, the temperature would
fall and the nuclear energy generation rate would decrease as well. This is
the usual manner by which stars adjust to an energy increase in their interior,
allowing them to stabilize. However, in a degenerate gas the temperature
increase does not affect the pressure. No expansion occurs and, as a result,
the temperature increases causing an even higher energy generation rate. As
will be seen in Section 5.3, helium burning is highly temperature sensitive.
The sequence of events repeats itself, giving rise to a thermonuclear runaway.
It only terminates after so much energy has been released that the electron
degeneracy is lifted. Thus, the ignition of helium in the core results in a violent
core helium flash (HeF).

It is important to point out that the helium flash does not represent a stel-
lar explosion. The energy during the thermonuclear runaway goes into lifting
the electron degeneracy and into the subsequent expansion of the core. The
surface luminosity of the star does not increase. In fact, the opposite happens.
The surface luminosity declines by two orders of magnitude because the ex-
pansion of the core causes the surrounding hydrogen burning shell, which has
been supplying all the surface luminosity, to cool and to generate less energy.
Eventually, the Sun becomes a horizontal branch star, quietly burning helium in
the core. The temperatures in the hydrogen shell just above the core are high
enough for hydrogen to continue to burn via the CNO cycles. The nuclear
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energy release in helium fusion is considerably less compared to hydrogen fu-
sion. Therefore, the duration of the core helium burning stage is much shorter
than that of the core hydrogen burning stage. The Sun remains on the hori-
zontal branch for about 0.1 Gy, which is typical for all stars in this mass range.

When the helium in the core is exhausted, the core contracts again, heats
up, and ignites the helium in a surrounding shell. The Sun now burns nuclear
fuel in two shells, helium in a shell surrounding the carbon–oxygen core, and
hydrogen in a shell surrounding the helium burning region. The two shells
are separated by an intershell region consisting mainly of helium. This stage
is referred to as the early asymptotic giant branch phase (E-AGB), because the
second ascent of the giant branch merges almost asymptotically with the first
giant branch (at least for some stellar masses). While the Sun ascends the as-
ymptotic giant branch, the helium burning shell becomes thermally unstable
(Schwarzschild and Härm 1965; see also Section 5.6.1). Energy is not gener-
ated at a steady rate, but the hydrogen and helium burning shell alternate as
the major contributor to the overall luminosity. For about 90% of the time, the
hydrogen burning shell provides the Sun’s nuclear energy, while the helium
shell is only marginally active. Hydrogen burning adds continuously to the
mass of the helium zone, however, so that the temperature and density near
this zone rise until energy is generated by helium burning at a rate that is
larger than the rate at which it can be carried outward by radiative diffusion.
As a result, a thermonuclear runaway occurs. The sudden release of energy
pushes out and cools the hydrogen burning shell until it ceases to burn. The
helium burning shell is now the only source of nuclear energy. Eventually,
the expansion quenches the helium shell flash (or thermal pulse) and the Sun
contracts again. The hydrogen burning shell reignites and ultimately takes
over as the dominant nuclear energy source, until the next thermal pulse oc-
curs about 105 y later. The cycle may repeat many times. This evolutionary
stage is called the thermally pulsing asymptotic giant branch (TP-AGB). The
total amount of time the Sun spends on the AGB amounts only to about 20 My
and is thus very short compared to the main-sequence lifetime. The thermal
pulses cause the Sun’s radius to vary periodically by a factor of 4, with the
peak radius reaching close to the Earth.

The Sun suffers an episode of significant mass loss on the asymptotic gi-
ant branch via a strong stellar wind. Thermal pulses are ceasing at this point
as the Sun becomes a postasymptotic giant branch star (P-AGB), with only
a fraction of its initial mass left and the other part returned to the interstel-
lar medium. As more hydrogen of the envelope is ejected into space, hotter
layers are uncovered and the Sun begins to move in the Hertzsprung–Russell
diagram toward higher surface temperatures (horizontally to the left). When
the surface of the Sun becomes hot enough, the intense ultraviolet radiation
ionizes the expanding ejecta, which begin to fluoresce brightly as a planetary
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nebula (PN). Two examples for planetary nebulae, the Dumbbell Nebula and
the Cat’s Eye Nebula, are shown in color Figs. 3 and 4 on page 633 and 634,
respectively. The residual core is called a planetary nebula nucleus (PNN). Even-
tually, there is no hydrogen envelope left and the hydrogen burning shell ex-
tinguishes. The luminosity decreases rapidly causing the evolutionary track
to turn downward and slightly to the right. The Sun will then end its existence
as a white dwarf with a mass of ≈ 0.5 M�, consisting mainly of carbon and
oxygen. It is supported by electron degeneracy pressure and cools slowly by
radiating away its thermal energy.

It must be stressed again that in the above discussion the evolution beyond
the red giant branch is rather uncertain because of our incomplete knowledge
on how to predict convection and mass loss. That these effects will indeed oc-
cur has been demonstrated by stellar observations, but a deeper understand-
ing is lacking at present. It is generally accepted that each thermal pulse dur-
ing the TP-AGB phase provides favorable conditions for another dredge-up
episode after the end of flash-burning in the helium shell. The convective en-
velope reaches deep into the star below the bottom of the hydrogen burning
shell and carries the products from hydrogen and helium shell burning, in
particular helium and carbon, to the stellar surface. This process is referred
to as the “third dredge-up” and increases the carbon abundance in the en-
velope relative to other elements, for example, oxygen. Stars for which the
number ratio of carbon to oxygen exceeds unity are called carbon stars. Many
of these have been observed and most are believed to correspond to stars in
their TP-AGB phase. As will be seen later, AGB stars are also the source of
many heavy nuclides with mass numbers beyond A = 60. Stellar models pre-
dict that these (s-process) nuclei are also dredged up to the surface where they
can be observed in stellar atmospheres. In fact, the first direct evidence that
nucleosynthesis takes place in stars and that the products could be mixed to
the surface was the observation of radioactive technetium in certain (S-type)
carbon stars (Section 1.1). For more information on AGB stars, see Habing and
Olofsson (2004).

We are now in a position to understand some other details in the observa-
tional Hertzsprung–Russell diagrams shown in Fig. 1.3. The precise location
in luminosity and surface temperature of a star on the horizontal branch de-
pends on the chemical composition of the envelope, the size of the helium
core at the time of the helium flash, and the mass of the envelope which is
influenced by the mass loss during the preceding RGB phase. In a globular
cluster, all the stars start out with the same, low-metallicity, composition and
their location on the horizontal branch is mainly influenced by mass loss. The
more the mass lost from the hydrogen envelope, the hotter the layers in the
star are uncovered. Stars with the smallest amount of mass in the hydrogen
envelope populate the blue part (BHB), while stars with more hydrogen left
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in the envelope can be found on the red part (RHB). The horizontal branch
intersects the so-called instability strip (which is not related to nuclear burn-
ing). Stars located in this narrow and almost vertical band, indicated by the
two vertical dashed lines in Fig. 1.5a, are unstable to radial pulsation and are
called RR Lyrae variables. Their luminosity correlates with both their period
(several hours to ≈ 1 day) and their metallicity. Therefore, they are impor-
tant for determining the distances to globular clusters and for establishing a
cosmic distance scale (Binney and Merrifield 1998). Increasing the metallicity
has the overall effect of making a star fainter and cooler. Therefore, stars in
metal-rich clusters or in the solar neighborhood (Fig. 1.3) accumulate at the
red end (right) of the horizontal branch, fairly independent of their envelope
mass. This region is called the red clump (RC).

The metallicity argument also applies to the subdwarfs (SD). These are in
fact main-sequence stars of very low metallicity. They are hotter than solar-
metallicity stars at a comparable evolutionary stage and are thus located to
the left of the main sequence that is occupied by metal-rich stars.

It should also be clear now why the upper part of the main sequence in
Fig. 1.3b is missing. Globular clusters are metal-poor and old, and do not form
new stars. The high-mass stars that were originally located on the upper part
of the main sequence evolved a long time ago into red giants. Only the slowly
evolving low-mass stars are left today on the main sequence. Clearly, with
increasing time lower mass stars will eventually become red giants and the
main sequence will become shorter. It is interesting that the age of the cluster
can be determined from the location of the turn-off point, which is located
at the top of the surviving portion of the main sequence. If the distance to
the cluster is known by independent means, the luminosity of the stars at
the turn-off point can be related to their mass. Stellar evolution models can
predict the main-sequence lifetime of stars with a given mass, which must
then be nearly equal to the age of the cluster. Such investigations yield ages
for the most metal-poor (and presumably oldest) globular clusters of about
12–13 Gy, indicating that these objects formed very early in the history of the
Galaxy. This estimate also represents an important lower limit on the age of
the Universe (Krauss and Chaboyer 2003).

Initial mass of 2 M�� M � 11 M�
We can divide this mass range into several subranges. Stars with initial
masses of 2 M� � M � 4 M� evolve obviously faster than less massive
stars and their tracks will look quantitatively different from the results shown
in Fig. 1.5a. But otherwise they evolve through the same stages as a solar-
like star. A major difference, however, arises from the fact that for stars with
M � 2 M� the helium core during the RGB phase does not become elec-
tron degenerate. Therefore, a helium flash does not occur but instead helium
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Fig. 1.5 Schematic evolutionary tracks of
(a) the Sun, and (b) massive stars of ini-
tial solar composition, in the Hertzsprung–
Russell diagram; the luminosity on the verti-
cal axis is given in units of the present solar
luminosity. The heavy portions define the
locations where major core nuclear burn-
ing phases occur. Details of tracks during
transitions between major nuclear burning
phases are omitted. The meaning of the
labels are: main sequence (MS); zero age
main sequence (ZAMS); subgiant branch
(SGB); red giant branch (RGB); core he-
lium flash (HeF); horizontal branch (HB);
early asymptotic giant branch (E-AGB);
thermally pulsing asymptotic giant branch

(TP-AGB); post asymptotic giant branch (P-
AGB); planetary nebula nucleus (PNN);
carbon–oxygen white dwarf (CO-WD).
Metal-poor stars in the initial mass range
of 0.4 M� � M � 2 M� appear during
core helium burning in a region marked by
the horizontal dashed line in part (a), de-
pending on the mass loss during the RGB
phase. The two dashed diagonal lines indi-
cate the instability strip. In part (b) the core
burning phases are labeled by the nuclear
fuel: hydrogen (H), helium (He), carbon (C),
and so on. The onset of carbon burning is
marked by the full circle. Note the vastly dif-
ferent luminosity scale in parts (a) and (b).
See the text.
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ignites quiescently in the center. Subsequently, these stars make excursions
to the left (toward higher temperatures) in the Hertzsprung–Russell diagram
and some of them are liable to pass into the instability strip. The observational
counterparts of these variable stars are called classical Cepheids. They are im-
portant for establishing a cosmic distance scale since their observed pulsation
period is correlated with their luminosity.

Stars with initial masses of M � 4 M� experience an additional episode
of mixing. Following core helium exhaustion in the core, the structural read-
justment to helium shell burning results in a strong expansion, such that the
hydrogen burning shell is extinguished as the star begins to ascend the early
asymptotic giant branch (E-AGB). At this time the inner edge of the convective
envelope penetrates the dormant hydrogen shell, and the products of hydro-
gen burning are mixed to the surface. This process is referred to as the “second
dredge-up.” Afterward, the hydrogen shell reignites and the star continues to
evolve up the asymptotic giant branch (AGB).

The evolution of stars in the initial mass range of 9 M� � M � 11 M� is
more complicated and less established at present. Models predict a number
of important differences compared to the evolution of lower mass stars. We
will discuss the evolution of a 10 M� star with initial solar composition as an
example (Ritossa, García-Berro and Iben 1996). The star starts out by burning
hydrogen in the core via the CNO cycles for about 10 million years. Following
the exhaustion of hydrogen in its center, the star evolves toward the red giant
branch where eventually the first dredge-up event occurs. Helium burning
starts in the core under nondegenerate conditions and lasts for about 270,000
years. After helium exhaustion, the core contracts and heats up, and the outer
layers of the star expand. Thereafter, the hydrogen burning shell extinguishes,
while helium continues to burn in a shell surrounding a partially electron de-
generate carbon–oxygen core. Eventually, the core becomes sufficiently hot
for the fusion of carbon nuclei (carbon burning). When carbon ignites, the star
enters the super asymptotic giant branch (SAGB). Carbon burning starts with
a thermonuclear runaway (carbon flash) and the energy generation rate from
carbon fusion increases greatly. The energy release causes the overlying lay-
ers to expand, giving rise to a reduction in the helium shell burning energy
generation rate. After a relaxation period, the helium burning shell returns to
its prior energy output. Several of these flashes occur over the carbon burn-
ing lifetime, which lasts for about 20,000 years. When carbon is exhausted in
the center, the electron degenerate core consists mainly of oxygen and neon.
After carbon burning extinguishes, the second dredge-up event occurs. Sub-
sequently, the dormant hydrogen shell on top of the helium burning shell is re-
activated and a complicated interplay between these two burning shells gives
rise to thermal pulses which are driven by helium shell flashes. During this
time, the third dredge-up event occurs. Eventually, the hydrogen-rich surface
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is removed by a strong stellar wind and the star becomes the central object of
a planetary nebula. It ends its existence as a oxygen–neon white dwarf with a
mass of ≈ 1.2 M�.

Initial mass of M � 11 M�
The evolution of stars in this mass range is in many ways fundamentally dif-
ferent compared to our earlier discussion. Schematic evolutionary tracks for
13 M�, 15 M�, 20 M�, and 25 M� stars are shown in Fig. 1.5b. The case of
a 25 M� star with initial solar composition will be discussed in the following
as an example (Chieffi, Limongi and Straniero 1998; Limongi, Straniero and
Chieffi 2000; Woosley, Heger and Weaver 2002). The total life of such a mas-
sive stars is relatively short and amounts only to ≈ 7 My. The star spends 90%
of this time on the main-sequence burning hydrogen to helium via the CNO
cycles in the core. When the hydrogen in the center is exhausted, hydrogen
burning continues in a shell. The core contracts and heats up until helium is
ignited. This new source of nuclear energy heats the overlying hydrogen shell
and the outer layers of the star expand greatly. The star becomes a super-
giant. These stars show up in the Hertzsprung–Russell diagram at the highest
observed luminosities. Examples are Rigel (blue supergiant) and Betelgeuse
(red supergiant) in the constellation Orion.

Core helium burning lasts for about 800,000 years and some of the heavy
nuclides with masses of A > 60 are synthesized during this stage via neutron
captures (s-process; Section 5.6.1). When helium is exhausted in the center,
helium burning continues in a shell located beneath the hydrogen burning
shell. Eventually, carbon burning starts in the core. These burning stages
have already been discussed above.

Stars with initial masses exceeding ≈ 11 M� are capable of igniting succes-
sive burning stages in their cores using the ashes of the previous core burning
stage as fuel. Three distinct burning stages follow carbon burning. They are
referred to as neon burning, oxygen burning, and silicon burning, and will be
discussed in detail in Section 5.5. There is a fundamental difference between
the initial and the advanced burning stages in the manner by which the nu-
clear energy generated in the stellar interior is transformed and radiated from
the surface. For hydrogen and helium burning, nuclear energy is almost ex-
clusively converted to light. During the advanced burning stages energy is
almost entirely radiated as neutrino–antineutrino pairs and the light radiated
from the star’s surface represents only a very small fraction of the total energy
release. Since the neutrino losses increase dramatically during the advanced
burning stages and because the nuclear burning lifetime scales inversely with
the total luminosity, the evolution of the star rapidly accelerates. For example,
silicon burning will last for only about 1 day (Chapter 5). Since the advanced
burning stages transpire very quickly, the envelope has insufficient time to re-
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Fig. 1.6 Schematic structure of a presu-
pernova star (not to scale). The upper-left
side shows the one or two most abundant
nuclear species in each region (according
to Limongi, Straniero and Chieffi 2000).
Nuclear reactions are very temperature de-
pendent. Thus the nuclear burning takes

place in relatively thin shells at the interface
between layers of different composition. The
nuclear burning shells are labeled on the
lower-left side; for example, “H-B” stands for
hydrogen burning. This model is sometimes
referred to as the “onion shell structure” of a
massive star.

act to the structural changes in the stellar interior. Thus, from carbon burning
onward, the star will no longer move in the Hertzsprung–Russell diagram,
but remains at the position indicated by the solid circle in Fig. 1.5b. Further-
more, since the star spends most of its life burning either hydrogen or helium
in the core, these are typically the only phases that we can observe.

The approximate structure of the massive star after the silicon has been ex-
hausted in the core is shown in Fig. 1.6. The star consists now of several lay-
ers of different composition that are separated by thin nuclear burning shells.
The details of the nucleosynthesis are complicated and will be discussed in
Chapter 5. It is sufficient to mention at this point that the heaviest and most
stable nuclei (that is, the iron peak nuclei; Section 1.3) are found in the core.
In fact, the most abundant nuclide in the core is 56Fe. It should also be noted
that the luminosity during the red giant phase is so large that the star un-
dergoes a significant mass loss. The effect is more pronounced for stars with
M � 30–35 M� that lose eventually most of their hydrogen envelope. The ob-
servational counterparts of such stars are the hot and massive Wolf–Rayet stars,
which have been observed to lose mass at a rate of ≈ 10−5 M� per year at stel-
lar wind speeds of ≈ 2000 km/s. An image of a Wolf–Rayet star is shown in
color Fig. 5 on page 635.
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The electron degenerate stellar core has at this point no other sources of
nuclear energy to its disposal and grows in mass as the overlying burning
shells contribute nuclear ashes. When the mass of the core exceeds the Chan-
drasekhar limit (≈ 1.4 M�), the electron degeneracy pressure is unable to
counteract gravity, and the core collapses. The core collapse is accelerated by
two important effects. First, as the electron density increases, electrons cap-
ture onto iron peak nuclei (Section 1.8.4). This removes electrons that were
contributing to the pressure. Second, at temperatures of ≈ 5 GK, the ther-
mal radiation becomes sufficiently energetic and intense that the iron peak
nuclei are photodisintegrated into lighter and less stable nuclei. This process
removes energy that could have provided pressure. At this stage the core of
the star is essentially collapsing in free fall. When the density reaches values
on the order of the nuclear density (≈ 1014 g/cm3), the nuclei and free nu-
cleons begin to feel the short-range nuclear force, which is repulsive at very
short distances. The inner collapsing core reaches high inward velocities and
overshoots the nuclear density. The nuclear potential acts as a stiff spring that
stores energy in the compressive phase until it rebounds. The rebounding
part of the core encounters infalling matter and thus gives rise to an outward
moving shock wave. The very hot and dense inner core has become a proto-
neutron star with a mass of ≈ 1.5 M�.

While the shock wave moves outward through the outer core region, it loses
energy by photodisintegrating the iron peak nuclei. Furthermore, energy is
removed from the shock wave by the emission of neutrinos. It takes about 1 s
after core collapse, and about 10 ms after the core has bounced, for the shock
wave to reach the outer edge of the core. At this time the shock wave has lost
all of its kinetic energy and it stalls. How exactly the shock is revived and how
it will ultimately propagate through the stellar layers beyond the iron core and
disrupt the star in a core collapse supernova explosion is still unknown. The
stalled shock wave is thought to be revived by the neutrinos and antineutrinos
that emerge from the hot and dense proto-neutron star, a fraction of which is
absorbed by protons and neutrons behind the shock (Bethe and Wilson 1985).

Once the shock wave is revived by the neutrino energy deposition, it prop-
agates outward beyond the iron core and compresses and heats each of the
overlying shells of the star. Some of the shells experience, after hydrostatic
burning prior to core collapse, another episode of nucleosynthesis which pro-
ceeds on timescales of a few seconds and is called explosive nuclear burning.
The silicon (28Si) and oxygen (16O) in the first layers that the shock wave en-
counters (Fig. 1.6) are quickly converted to iron peak nuclei at high temper-
atures (≈ 5 GK). It will be shown in Section 5.5.5 that under such conditions
the most abundant product nuclide originating from these layers is 56

28Ni28. By
the time the shock wave reaches the other layers of the star, the temperatures
achieved are much smaller and hence these are ejected into space with less
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nuclear processing. Nevertheless, some species are predominantly made in
these layers, among them the 26Al observed in the interstellar medium (Sec-
tion 1.7.5). The deepest regions that are ejected are characterized by a large
abundance of free neutrons. These possibly give rise to the nucleosynthesis of
many heavy nuclei in the A > 60 mass range via neutron capture (r-process;
Section 5.6.2).

The above scenario for the core collapse of a massive star is responsible for
supernovae of types II and Ib/Ic. It must be stressed that the explosion mech-
anism is far from understood at present. It is also not clear if a neutron star or,
after fallback of material onto the core, a black hole is left behind as the cen-
tral remnant. These issues are the subject of active current research. In many
respects, however, current models of core collapse supernovae agree with ob-
servation. In particular, observations of supernova 1987A, which exploded
in the Large Magellanic Cloud in 1987, were of outstanding importance in
this respect (see color Fig. 6 on page 636). Since it was located so close to us,
the event could be studied in much greater detail than any other supernova.
For example, a burst of neutrinos had long been predicted by theory and was
indeed detected in this event (Section 1.4.1). Furthermore, current models cor-
rectly predict the amount of the ejected radioactive 56Ni which, after decay
first to 56Co and then to stable 56Fe, gives rise to the tail in the light curves
of core collapse supernovae. A famous type II supernova remnant, the Crab
Nebula, is shown in color Fig. 7 on page 637.

The association of massive stars with supernovae of type II and type Ib/Ic
was made some time ago. The different supernova types are classified obser-
vationally according to their spectra. Spectra of type II supernovae contain
hydrogen lines, while those of type I supernovae do not. Type I supernovae
whose spectra show absorption caused by the presence of silicon are referred
to as type Ia supernovae; otherwise they are classified as type Ib or Ic super-
novae (the latter distinction is based on a helium line feature in the spectrum).
Type II supernovae tend to occur in the arms of spiral galaxies, but not in
early-type galaxies. Type Ib or Ic supernovae also seem to occur in spiral arms.
On the other hand, type Ia supernovae show no such preference. Since the spi-
ral arms contain many massive (and thus young) stars and early-type galaxies
do not contain such objects, the observations suggest that massive stars are
the progenitors of type II and type Ib/Ic supernovae, but not of type Ia super-
novae. Type Ib/Ic supernovae are thought to result from the core collapse of
Wolf–Rayet stars that lost their hydrogen envelope to a strong stellar wind or
to a companion star before the explosion. The supernova rate in our Galaxy
amounts to about two events per century. Most of them are predicted to be
type II and type Ib/Ic supernovae, while the contribution from type Ia su-
pernovae amounts only to ≈ 15%. The latter objects will be discussed below.
For more information on these issues, and the related topic of the evolution of
stars with M � 100 M�, see Woosley, Heger and Weaver (2002).
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1.4.4
Binary Stars

Perhaps as many as one half of all stars are members of binary star systems
according to recent statistics. If the stars are members of a close binary system,
then they will significantly influence each other’s evolution. In a close binary
system, the separation may range from a few times the radii of the stars to a
situation where both stars share a common envelope (contact binaries). Con-
sider the binary star system shown in Fig. 1.7. Each star is surrounded by a
hypothetical surface marking its gravitational domain. This surface is referred
to as the Roche lobe and its intersection with the equatorial plane is shown as
a dashed figure-eight curve. The location where the two Roche lobes touch
(that is, where the effects of gravity and rotation cancel each other) is called
the inner Lagrangian point. When one of the stars evolves off the main sequence
and becomes a red giant, it may fill its Roche lobe. Material is then free to flow
from that star through the inner Lagrangian point onto its companion. Many
different kind of stars may be members of close binary systems and the trans-
fer of mass from one star to another gives rise to very interesting phenomena
(Iben 1991). In the following we will focus on binary systems that contain a
compact object, either a white dwarf or a neutron star.

Type Ia supernovae

Type Ia supernovae are among the most energetic stellar explosions in the
Universe. They sometimes even outshine their host galaxies. An image of
the type Ia supernova 1994D is shown in color Fig. 8 on page 638. Their light
curves—which are powered by the decay of radioactive 56Ni—and spectra
are in general homogeneous. However, there are important differences. For
example, the spread in peak luminosity among type Ia supernovae amounts
to a factor of ≈ 15. It turns out that the peak luminosity is correlated with the
rate of brightness decline (Phillips 1993). Since this correlation can be used to
compensate for the peak luminosity spread, type Ia supernovae are important
candidates for establishing a cosmological distance scale (see below). There
are other important differences, such as a spread in the expansion velocity at
the photospheres even for similarly bright events, that support the conclusion
that type Ia supernovae represent a class of a certain diversity (Leibundgut
2000).

A detailed understanding of type Ia supernovae is still lacking. Many dif-
ferent models have been proposed to explain these events. It is also not clear
if a single model can account for all observations. We will focus here on one
of the most popular models that may describe at least the majority of type Ia
supernovae.

The favored scenario involves a carbon–oxygen white dwarf in a close bi-
nary star system that accretes matter via Roche lobe overflow from a com-
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panion main-sequence or red giant star. The rate of mass accretion must be
relatively large (≈ 10−7 M� per year) in order to avoid mass loss through a
nova-like event (see below). When the white dwarf grows to a critical mass
near the Chandrasekhar limit, carbon ignites under degenerate conditions and
a thermonuclear runaway occurs (Section 1.4.3). The energy release from the
nuclear burning (≈ 1044 J) is so large that it disrupts the white dwarf at high
velocity within a time scale of seconds. A significant fraction of the initial
carbon and oxygen is consumed and, in general, neither a neutron star nor a
black hole is left behind in the explosion. For SN 1572 (Tycho’s supernova;
see color Fig. 9 on page 639) the likely companion has been identified as a
solar-like star, supporting the above scenario (Ruiz-Lapuente et al. 2004).

The nucleosynthesis depends on the temperatures and densities achieved
in different layers of matter. In the hottest and densest regions, the explosion
converts most of the matter to radioactive 56Ni (via nuclear statistical equi-
librium at low neutron excess; see Section 5.5.5). The decay of this nuclide,
and the subsequent decay of the daughter nucleus 56Co, then gives rise to the
observable emission of type Ia supernovae. In other words, the amount of
56Ni synthesized determines the absolute brightness of the event. The outer
regions that attain smaller temperatures and densities may undergo explosive
silicon or oxygen burning and give rise to the production of intermediate-mass
nuclei. Elements from oxygen to calcium are indeed observed in the spectral
evolution during the peak phase of type Ia supernovae.

An important unresolved issue is related to the propagation of the ther-
monuclear burning front. Two burning modes can be distinguished. One pos-
sibility is a detonation in which the nuclear flame propagates as a supersonic
front. In this case, the flame compresses the material and increases the tem-
perature to the point of ignition. The energy release from the ignited material
behind the flame supports its propagation. Another possibility is a deflagra-
tion in which the nuclear burning proceeds subsonically. Here, the energy re-
lease from the burning material heats the next layer and ignites it. These two
modes are not exclusive and a transition from one mode to another may occur
during the explosion. Related to this issue is the question of where precisely
(near or off center) and at how many locations the ignition occurs.

Type Ia supernovae are fascinating objects in their own right, but a deeper
understanding of the explosion is also important for cosmology. Their light
curves are relatively homogeneous, that is, their intrinsic brightness is known
to within some range. By measuring their apparent luminosity it becomes
hence possible to estimate their distance. Furthermore, since type Ia super-
novae are so bright they can be observed across billions of light years. For
these reasons, type Ia supernovae are used as ”standard candles” for estab-
lishing cosmological distances. By recording both their apparent luminosity
and their redshifts, observations of very distant type Ia supernovae provide a
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measure for the expansion history of the Universe. It is found that the expan-
sion is accelerating, driven by the elusive dark energy (Riess et al. 1998, Perl-
mutter et al. 1999). The profound cosmological implications provide strong
motivation for improving models of type Ia supernovae. For more informa-
tion on the stellar models, see Höflich (2006), and references therein.

Classical novae

Classical novae are stellar explosions that occur in close binary systems. In
this case, hydrogen-rich matter is transferred via Roche lobe overflow from a
low-mass main-sequence star to the surface of a compact white dwarf. The
transferred matter does not fall directly onto the surface but is accumulated in
an accretion disk surrounding the white dwarf. Typical accretion rates amount
to ≈ 10−10–10−9 M� per year. A fraction of this matter spirals inward and ac-
cumulates on the white dwarf surface, where it is heated and compressed by
the strong surface gravity. At some point, the bottom layer becomes electron
degenerate. Hydrogen starts to fuse to helium (via the pp chains) during the
accretion phase and the temperature increases gradually. The electron degen-
eracy prevents an expansion of the envelope and eventually a thermonuclear
runaway occurs near the base of the accreted layers. At this stage the nuclear
burning is dominated by explosive hydrogen burning via the (hot) CNO cy-
cles. Both the compressional heating and the energy release from the nuclear
burning heat the accreted material until an explosion occurs.

The classical nova rate in the Galaxy is about ≈ 35 per year and thus they
occur much more frequently than supernovae (Section 1.4.3). Contrary to type
Ia supernovae, which disrupt the white dwarf, all classical novae are expected
to recur with periods of ≈ 104–105 years. The luminosity increase during
the outburst amounts to a factor of ≈ 104. A classical nova typically ejects
≈ 10−5–10−4 M� of material, with mean ejection velocities of ≈ 103 km/s.
Note that there are other types of novae, such as dwarf novae or nova-like
variables. However, these are not related to thermonuclear burning.

Optical, infrared, and ultraviolet spectra of classical novae reveal the pres-
ence of many elements in the expanding nova shells that are strongly over-
abundant compared to solar system values. For example, the observed over-
abundances of carbon and oxygen in all classical novae demonstrate that at
some time during the evolution of the outburst the accreted material must
have been mixed to a certain degree with matter from the white dwarf. This
dredge-up of material, in fact, gives rise to a more energetic explosion (by
increasing the number of CNO catalyst nuclei; Section 5.2). The observation
of an overabundance of neon in some classical novae showed that these out-
bursts do not involve a carbon–oxygen white dwarf, but a more massive white
dwarf of oxygen–neon composition. The latter objects result from the evolu-
tion of intermediate mass stars with initial masses of 9 M� � M � 11 M�
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(Fig. 1.4). The presence of large amounts of matter from the white dwarf core
in the ejecta may imply that the white dwarf in a classical nova system is los-
ing mass as a result of subsequent outbursts. Thus these objects are unlikely to
become progenitors of type Ia supernovae. Other observed overabundances,
for example, of nitrogen, silicon, or sulfur, are the result of nuclear processing
during the explosive burning of hydrogen. An image of Nova Cygni 1992 is
shown in color Fig. 10 on page 640.

Stellar model calculations indicate that the peak phase of explosive nuclear
burning in classical novae lasts typically for several hundred seconds. The
characteristics of the outburst depend on the white dwarf mass and luminos-
ity, the mass accretion rate, and the chemical composition for both the accreted
and the white dwarf material. For example, it has been demonstrated that the
lower the mass accretion rate, the larger the amount of accreted mass before
the thermonuclear runaway is initiated. A more massive accreted layer, in
turn, gives rise to a higher pressure in the bottom layers and hence a more
violent explosion. On the other hand, if a too large accretion rate is assumed,
no thermonuclear runaway is initiated. Simulations also indicate that classi-
cal nova outbursts on the surface of the heavier oxygen–neon white dwarfs
achieve higher peak temperatures than those exploding on carbon–oxygen
cores. For more information on classical novae, see José, Hernanz and Iliadis
(2006) and Starrfield, Hix and Iliadis (2006).

Type I X-ray bursts

A number of close binary star systems involve a neutron star as a compact
object. A neutron star has a mass of ≈ 1.4 M�, a radius of about 10–15 km,
and a density on the order of 1014 g/cm3. These binary star systems belong to
a class of objects that are called X-ray binaries. The accretion of matter from the
companion on the surface of the neutron star gives rise to a large gravitational
energy release. As a result, the temperatures near the neutron star surface are
high (≈ 107 K) and the persistent thermal emission occurs at X-ray energies.

In high-mass X-ray binaries, the companion is a massive (� 5 M�) popu-
lation I star, while the neutron star has a strong magnetic field. The matter is
accreted at relatively high rates and is funneled along the magnetic field lines
onto the magnetic poles. This creates a hot spot of X-ray emission and, if the
rotational axis of the neutron star is inclined with respect to the magnetic axis,
this gives rise to an X-ray pulsar. Typical rotation periods range from 0.1 s to
a fraction of an hour. The rotational periods for some X-ray pulsars have been
observed to decrease, indicating that the neutron stars spin up as a result of
accretion of matter.

In low-mass X-ray binaries, the companion is a low mass (� 1.5 M�) pop-
ulation II star and matter is transferred to a weakly magnetized neutron star
via Roche lobe overflow. Many of these systems produce, apart from the per-
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sistent X-ray emission, bursts in the X-ray intensity (Lewin, van Paradijs and
Taam 1993). In a rare variety, called type II X-ray bursts, the bursts occur in
rapid succession and are separated by a few minutes. The profile of each burst
rises and falls abruptly. They are most likely associated with a sudden increase
in the mass transfer rate caused by instabilities in the accretion disk.

The large majority of bursts belong to the class of type I X-ray bursts. In this
case, the X-ray luminosity typically increases by an order of magnitude. They
are believed to be of thermonuclear origin, unlike the X-ray binary varieties
discussed above. When hydrogen- and helium-rich matter from the low-mass
companion is first accreted in a disk and then falls onto the surface of the neu-
tron star, the temperatures and densities are high enough to fuse hydrogen
continuously to helium via the (hot) CNO cycles. The accreted or synthesized
helium, however, is not fusing yet but sinks deeper into the neutron star atmo-
sphere. Eventually the helium is ignited via the triple-α reaction under elec-
tron degenerate conditions and a thermonuclear runaway occurs. The helium
flash triggers the explosive burning of the outer region consisting of a mixture
of hydrogen and helium. This is just one possible scenario. In other mod-
els the ignition occurs in pure helium or in mixed hydrogen–helium accreted
material. The details of the nucleosynthesis depend on the temperatures and
densities achieved in the various burning layers. Calculations show that in the
innermost and hottest layers elements up to—and perhaps beyond—the iron
peak are synthesized. After the termination of a burst, a new shell of matter is
accreted and the cycle repeats.

The above model explains the basic features of type I X-ray bursts. A burst
lasts typically for less than 1 min and repeats after several hours to days. The
luminosity profile shows a rapid rise within ≈1–10 s, caused by the sudden
nuclear energy release, and a slower decline on the order of ≈5–100 s, reflect-
ing the cooling of the neutron star surface. Some bursts show millisecond os-
cillations of the X-ray flux. These have been suggested to arise from a surface
wave in the nuclear burning layer or perhaps from anisotropies in the nuclear
burning caused by a spreading hot spot on the surface of a rapidly spinning
neutron star.

Stellar models of type I X-ray bursts are sensitive to a number of parame-
ters and assumptions, such as the mass accretion rate, rotation, the number of
ignition points, the propagation of the burning front across the neutron star
surface, and the composition of the accreted matter.

It is unlikely for any significant amount of accreted and processed matter
to escape the large gravitational potential of the neutron star. Therefore, type
I X-ray bursts are probably not important contributors to the chemical evolu-
tion of the Galaxy. They are important, however, for probing the properties
of neutron stars, such as the mass, radius, and the composition. For more
information, see Schatz and Rehm (2006) and references therein.
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Fig. 1.7 Binary star system. Each star is surrounded by a hypothetical
surface, called the Roche lobe, that marks its gravitational domain.
The intersection of the equatorial plane with the Roche lobes is shown
as a dashed curve. The location where the two Roche lobes touch is
called the inner Lagrangian point. See the text.

1.5
Masses, Binding Energies, Nuclear Reactions, and Related Topics

1.5.1
Nuclear Mass and Binding Energy

The most fundamental property of the atomic nucleus is its mass. Early mass
measurements showed that the total nuclear mass, mnuc, is less than the sum
of masses of the constituent nucleons. We may write

mnuc = Zmp + Nmn − ∆m (1.1)

According to the Einstein relationship between mass and energy, the mass de-
fect ∆m is equivalent to an energy of ∆E = ∆m · c2. The quantity ∆E is referred
to as nuclear binding energy. It is defined as the energy released in assembling
a given nucleus from its constituent nucleons, or equivalently, the energy re-
quired to separate a given nucleus into its constituent nucleons. We may ex-
press the binding energy as

B(Z, N) =
(
Zmp + Nmn − mnuc

)
c2 (1.2)

A plot of measured binding energies per nucleon, B(Z, N)/A, of the most
stable isotope for each mass number A is shown in Fig. 1.8. Most of these
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nuclides (which are stable in the laboratory) have binding energies between
7 and 9 MeV per nucleon. Nuclides with mass numbers in the range of A =
50–65 have the largest binding energies per nucleon. They are the iron peak
species which we already encountered in Section 1.3. It appears that nature
favors the abundances of the most tightly bound and most stable nuclides, as
will be explained in detail in later chapters. The most tightly bound nuclides
of all are 62Ni, 58Fe, and 56Fe with binding energies per nucleon of B(Z, N)/A
= 8794.549 ± 0.010 keV, 8792.221 ± 0.012 keV, and 8790.323 ± 0.012 keV, re-
spectively (Audi, Wapstra and Thibault 2003). Lighter or heavier nuclei are
less tightly bound. It follows that nuclear processes liberate energy as long
as the binding energy per nucleon of the final product(s) exceeds the binding
energy per nucleon of the initial constituents. Consequently, nuclear energy
can be liberated by the fusion of nuclei lighter than iron, or by the fission of
nuclei heavier than iron. For example, if a star consists initially of pure hy-
drogen (1H), an energy of ≈ 7 MeV per nucleon can be liberated by fusing
hydrogen to helium (4He), or more than 8 MeV per nucleon is liberated by
fusing hydrogen to 56Fe.

Example 1.2

The binding energies per nucleon of deuterium (2H or d) and helium (4He or
α) are given by B(d)/A = 1.112 MeV and B(α)/A = 7.074 MeV. Calculate the
energy released when two deuterium nuclei are combined to form one 4He
nucleus.

First, we calculate the binding energies of deuterium and 4He:

B(d) =
B(d)

A
A = (1.112 MeV) · 2 = 2.224 MeV

B(α) =
B(α)

A
A = (7.074 MeV) · 4 = 28.296 MeV

By combining two deuterium nuclei to one 4He nucleus, the total energy re-
lease amounts to

(28.296 MeV) − (2.224 MeV)− (2.224 MeV) = 23.85 MeV

corresponding to a value of 5.96 MeV per nucleon.

1.5.2
Energetics of Nuclear Reactions

A nuclear interaction may be written symbolically as

0 + 1 → 2 + 3 or 0(1, 2)3 (1.3)
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Fig. 1.8 (a) Experimental binding energies per nucleon, B(Z, N)/A,
of the most stable nuclide for each mass number A. (b) Expanded
section showing the region of the iron peak. The nuclides with the
largest binding energies per nucleon are 62Ni, 58Fe, and 56Fe. Data
from Audi, Wapstra and Thibault (2003).

where 0 and 1 denote two colliding nuclei before the interaction, while 2 and
3 denote the interaction products. Most nuclear interactions of astrophysical
interest involve just two species before and after the interaction. If species 0
and 1 are identical to species 2 and 3, then the interaction is called elastic or
inelastic scattering. Otherwise, the above notation refers to a nuclear reaction.
Photons may also be involved in the interaction. If species 2 is a photon, then
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the interaction is called radiative capture reaction. If species 1 is a photon, then
we are considering a photodisintegration reaction. All of these interactions will
be discussed in later chapters.

Figure 1.9 shows schematically the energetics of nuclear reactions and can
be used to illustrate a number of relationships that will be employed fre-
quently in the following chapters. The vertical direction represents energy.
Consider first part (a), showing a reaction 0 + 1 → 2 + 3, where all species
involved in the interaction are particles with rest mass. The rest masses of 0
and 1 (before the reaction) and of 2 and 3 (after the reaction) are indicated by
horizontal solid lines. The total relativistic energy in a nuclear reaction must
be conserved. Thus, one may write

m0c2 + m1c2 + E0 + E1 = m2c2 + m3c2 + E2 + E3 or

Q01→23 ≡ m0c2 + m1c2 − m2c2 − m3c2 = E2 + E3 − E0 − E1 (1.4)

where Ei are kinetic energies and mi are rest masses. The difference in masses
before and after the reaction, or the difference in kinetic energies after and be-
fore the reaction, is equal to the energy release and is referred to as the reaction
Q-value. If Q is positive, the reaction releases energy and is called exothermic.
Otherwise the reaction consumes energy and is called endothermic. Apart from
a few exceptions, the most important nuclear reactions in stars are exothermic
(Q > 0). Note that Eq. (1.4) is applicable in any reference frame. The differ-
ence between center-of-mass and laboratory reference frame is discussed in
Appendix C. The quantities E01 and E23 in Fig. 1.9a represent the total kinetic
energies in the center-of-mass system before and after the reaction, respec-
tively. It is apparent that the center-of-mass kinetic energies and the Q-value
are related by

E23 = E01 + Q01→23 (1.5)

Part (b) shows a radiative capture reaction 0 + 1 → γ + 3. In this case we find
accordingly

m0c2 + m1c2 + E0 + E1 = m3c2 + E3 + Eγ or

Q01→γ3 ≡ m0c2 + m1c2 − m3c2 = E3 + Eγ − E0 − E1 (1.6)

Center-of-mass kinetic energies and the Q-value are now related by

Eγ3 = E01 + Q01→γ3 (1.7)

where Eγ3 denotes the sum of the energy of the emitted photon (Eγ) and the
center-of-mass kinetic energy of the recoil nucleus 3. The latter contribution is
usually very small so that one can frequently set Eγ3 ≈ Eγ (see Appendix C).

The reaction Q-value for a radiative capture reaction is equal to the energy
released when nuclei 0 and 1 combine to form a composite nucleus 3. If one
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would add this very same amount of energy to nucleus 3, then it becomes
energetically possible for nucleus 3 to separate into the fragments 0 and 1.
Thus, the particle separation energy of nucleus 3 is equal to the Q-value of the
reaction 0 + 1 → γ + 3, that is, S3→01 = Q01→γ3. Separation energies will be
used frequently in the following chapters. Their values depend on the nuclear
properties of species 0, 1, and 3. For example, suppose we start out with a
stable nucleus in Fig. 1.1 and remove one neutron at a time. As a result, we
move in the chart of the nuclides to the left toward increasingly proton-rich
nuclei. The farther we move away from the group of stable nuclei, the larger
the proton–neutron imbalance becomes, and the less energy is required to re-
move a proton from a given nucleus. In other words, the proton separation
energy Sp decreases. After a certain number of neutrons have been removed,
a nuclide is eventually reached for which Sp becomes negative. Such nuclides
are called proton unstable since they decay via the emission of a proton. The
line in the chart of the nuclides with Sp = 0 (on the proton-rich side) is re-
ferred to as proton dripline. Similarly, if we remove from a given stable nucleus
protons instead of neutrons, then we would move in the chart of the nuclides
downward. The neutron–proton imbalance increases while the neutron sepa-
ration energy Sn decreases with each removal of a proton. The line with Sn = 0
(on the neutron-rich side) defines now the neutron dripline. Particle driplines
play an important role in certain stellar explosions (Chapter 5).

1.5.3
Atomic Mass and Mass Excess

Direct measurements of nuclear masses are complicated by the presence of the
atomic electrons. Atomic masses, on the other hand, can be measured with
very high precision. For this reason, experimental mass evaluations tabulate
atomic rather than nuclear masses. These quantities are related by

matom(A, Z) = mnuc(A, Z) + Zme − Be(Z) (1.8)

where me and Be denote the electron mass and the electron binding energy in
the atom, respectively. Nuclear reactions conserve the total charge. Therefore,
one may replace nuclear by atomic masses since the same number of electron
rest masses is added on both sides of a reaction equation. An error is intro-
duced by this approximation because of the difference in the electron binding
energies in the atom. However, this contribution is very small compared to
the nuclear mass differences and can usually be neglected. In the following
we will be using atomic rather than nuclear masses, unless noted otherwise.

Frequently, a quantity called atomic mass excess (in units of energy) is intro-
duced, which is defined by

M.E. ≡ (matom − Amu)c2 (1.9)
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Fig. 1.9 Energy level diagrams to illustrate the energetics of nuclear
reactions. The vertical direction represents an energy scale. Part (a)
corresponds to a situation where all species participating in the re-
action are particles with rest mass. In part (b) one of the species is a
photon. See the text.

where the integer A is the mass number. The quantity mu denotes the (uni-
fied) atomic mass unit, u, which is defined as one-twelfth of the mass of the
neutral 12C atom. Numerically, one finds muc2 = 931.494 MeV. The Q-value
for a reaction 0 + 1 → 2 + 3 can be expressed in terms of the mass excess as

Q = m0c2 + m1c2 − m2c2 − m3c2

= (m0c2 + m1c2 − m2c2 − m3c2) + (A2muc2 + A3muc2 − A0muc2 − A1muc2)

= (M.E.)0 + (M.E.)1 − (M.E.)2 − (M.E.)3 (1.10)

Clearly, using atomic masses or atomic mass excesses gives precisely the same
result when calculating reaction Q-values. If positrons are involved in a reac-
tion, then the Q-value obtained by using atomic masses (or atomic mass ex-
cesses) includes the annihilation energy 2mec2 = 1022 keV of the positron with
another electron from the environment, as will be shown below. In numerical
expressions, we will frequently be using the quantity

Mi =
mi

mu
(1.11)
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which is called relative atomic mass of species i and is given in atomic mass
units, u. The relative atomic mass for a given species is numerically close to
its (integer) mass number, but for accurate work the former quantity should
be used. An evaluation of atomic masses is presented in Audi, Wapstra and
Thibault (2003). Mass measurement techniques and various theoretical mass
models are reviewed in Lunney, Pearson and Thibault (2003).

Experimental values for atomic mass excesses, binding energies, and rel-
ative atomic masses for the light nuclides are listed in Table 1.1. Note that
(M.E.)12C ≡ 0 by definition. The following example illustrates their use for
calculating Q-values.

Example 1.3

Calculate the Q-values for the reactions (i) 17O + p → α + 14N and (ii) p + p
→ e+ + ν + d by using the information listed in Table 1.1. (The symbols e+

and ν denote a positron and a neutrino, respectively).

(i) For the 17O(p,α)14N reaction we find from Eq. (1.10)

Q = (M.E.)17O + (M.E.)1H − (M.E.)14N − (M.E.)4He

= [(−808.81) + (7288.97) − (2863.42) − (2424.92)] keV = 1191.83 keV

Exactly the same result is obtained if atomic masses are used. (ii) For the
p(p,e+ν)d reaction one obtains

Q = (m1H + m1H − m2H)c2 = (M.E.)1H + (M.E.)1H − (M.E.)2H

= 2 × (7288.97 keV)− (13135.72 keV) = 1442.22 keV

This value includes the annihilation energy 2mec2 = 1022 keV of the positron
with another electron from the environment, as can be seen from

Q = [m1H + m1H − m2H]c2 = [(mp + me) + (mp + me)− (md + me)]c2

= [mp + mp − md + me]c2 = [(mp + mp − md − me) + 2me]c2

The symbols 1H, 2H and p, d in the above expression denote atomic and nu-
clear masses, respectively.

1.5.4
Number Abundance, Mass Fraction, and Mole Fraction

The number density of nuclei i in a stellar plasma, Ni, is equal to the total
number of species i per unit volume. Avogadro’s number NA is defined as the
number of atoms of species i which makes Mi grams, that is, NA = Mi/mi =
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Tab. 1.1 Experimental values of the atomic mass excess (M.E.), binding energy per nucleon
(B/A), and relative atomic mass (M) for some light nuclides in the A ≤ 20 mass region. Er-
rors are not listed. From Audi, Wapstra and Thibault (2003).

A Elt. M.E. (keV) B/A (keV) M (u)
1 n 8071.3171 0.0 1.0086649157

H 7288.97050 0.0 1.00782503207
2 H 13135.7216 1112.283 2.0141017778
3 H 14949.8060 2827.266 3.0160492777

He 14931.2148 2572.681 3.0160293191
4 He 2424.91565 7073.915 4.00260325415
6 Li 14086.793 5332.345 6.015122795
7 Li 14908.14 5606.291 7.01600455

Be 15770.03 5371.400 7.01692983
8 Li 20946.84 5159.582 8.02248736

Be 4941.67 7062.435 8.00530510
B 22921.5 4717.16 8.0246072

9 Li 24954.3 5037.84 9.0267895
Be 11347.6 6462.76 9.0121822

10 Be 12606.7 6497.71 10.0135338
B 12050.7 6475.07 10.0129370

11 Be 20174. 5952.8 11.021658
B 8667.9 6927.71 11.0093054
C 10650.3 6676.37 11.0114336

12 B 13368.9 6631.26 12.0143521
C 0.0 7680.144 12.0000000

13 B 16562.2 6496.40 13.0177802
C 3125.0113 7469.849 13.0033548378
N 5345.48 7238.863 13.00573861

14 C 3019.893 7520.319 14.003241989
N 2863.4170 7475.614 14.0030740048
O 8007.36 7052.308 14.00859625

15 C 9873.1 7100.17 15.0105993
N 101.4380 7699.459 15.0001088982
O 2855.6 7463.69 15.0030656

16 N 5683.7 7373.81 16.0061017
O −4737.00141 7976.206 15.99491461956

17 N 7871. 7286.2 17.008450
O −808.81 7750.731 16.99913170
F 1951.70 7542.328 17.00209524

18 N 13114. 7038.5 18.014079
O −781.5 7767.03 17.9991610
F 873.7 7631.605 18.0009380

19 O 3334.9 7566.39 19.003580
F −1487.39 7779.015 18.99840322
Ne 1751.44 7567.375 19.0018802

20 F −17.40 7720.131 19.99998132
Ne −7041.9313 8032.240 19.9924401754
Na 6848. 7298.6 20.007351
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6.022 × 1023 mol−1. The mass density is then given by ρ = Nimi = Ni Mi/NA
if only species i is present, or by ρ = (1/NA) ∑i Ni Mi for a mixture of species.
We write

∑
i

Ni Mi

ρNA
=

N1M1

ρNA
+

N2M2

ρNA
+

N3M3

ρNA
+ · · ·

= X1 + X2 + X3 + · · · = ∑
i

Xi = 1
(1.12)

where the quantity

Xi ≡ Ni Mi

ρNA
(1.13)

represents the fraction of the mass that is bound in species i and, therefore, is
called the mass fraction. A related quantity is the mole fraction, defined by

Yi ≡ Xi

Mi
=

Ni

ρNA
(1.14)

In a stellar plasma, the number density Ni will change if nuclear transmuta-
tions take place. But it will also change as a result of variations in the mass
density caused by compression or expansion of the stellar gas. In situations
where the mass density of the stellar plasma varies, it is of advantage to ex-
press abundances in terms of the quantity Yi instead of Ni. In a simple ex-
pansion of matter without nuclear reactions or mixing, the former quantity
remains constant, whereas the latter quantity is proportional to the mass den-
sity ρ.

Strictly speaking, the mass density ρ is not a conserved quantity even if
no compression or expansion of the stellar gas occurs. The reason is that nu-
clear transmutations transform a fraction of the nuclear mass into energy or
leptons (for example, electrons or positrons) and vice versa. To avoid this dif-
ficulty, the density is sometimes defined as ρA = (1/NA) ∑i Ni Ai in terms
of the number of nucleons (that is, the mass number Ai) instead of the rel-
ative atomic mass Mi, since the number of nucleons is always conserved in
a nuclear transmutation. The mass fraction of Eq. (1.13) should in principle
be replaced by the nucleon fraction Xi = Ni Ai/(ρANA). However, the dif-
ference between mass density and nucleon density, or between mass fraction
and nucleon fraction, is very small and the distinction is usually not impor-
tant numerically. In order to avoid confusion, we will be using in this book
mass densities and mass fractions. For more information on abundances see,
for example, Arnett (1996).
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Example 1.4

The mass fractions of 1H and 4He at the time of the Sun’s birth are equal to
0.71 and 0.27, respectively. Calculate the ratio of the corresponding number
densities.

From Eq. (1.13) and Table 1.1 we find

N(1H)
N(4He)

=
ρNAX(1H)

M(1H)
ρNAX(4He)

M(4He)

=
M(4He)
M(1H)

X(1H)
X(4He)

=
(4.0026 u)
(1.0078 u)

0.71
0.27

= 10.4

1.5.5
Decay Constant, Mean Lifetime, and Half-Life

The time evolution of the number density N (or of the absolute number of
nuclei N ) of an unstable nuclide is given by the differential equation

(
dN
dt

)
= −λN (1.15)

The quantity λ represents the probability of decay per nucleus per time. Since
it is constant for a given nuclide under specific conditions (constant temper-
ature and density), it is referred to as decay constant. Integration of the above
expression immediately yields the radioactive decay law for the number den-
sity of undecayed nuclei remaining after a time t,

N = N0e−λt (1.16)

where N0 is the initial number density at t = 0. The time it takes for the num-
ber density N to fall to one-half of the initial abundance, N0/2 = N0e−λT1/2 , is
called the half-life T1/2, with

T1/2 =
ln 2
λ

=
0.69315

λ
(1.17)

The time it takes for N to fall to 1/e = 0.36788 of the initial abundance, N0/e =
N0e−λτ, is called the mean lifetime τ, with

τ =
1
λ

= 1.4427 T1/2 (1.18)

If a given nuclide can undergo different competing decays (for example, γ-
and β-decay, or different γ-ray transitions), then the total decay probability in
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Eqs. (1.15)–(1.18) is given by the sum of the decay probabilities for the indi-
vidual processes. Hence

λ = ∑
i

λi or
1
τ

= ∑
i

1
τi

(1.19)

where the quantities λi and τi are called partial decay constant and partial half-
life, respectively. The product of the absolute number of nuclei, N , and the
decay constant determines the number of decays per unit time and is referred
to as the activity, A ≡ λN = −dN/dt. Common units of the activity are
the curie (1 Ci = 3.7 × 1010 decays per second) and the becquerel (1 Bq = 1
decay per second). It must be emphasized that Eqs. (1.15)–(1.19) apply to any
nuclear decay, such as β-decay, α-particle decay, γ-ray decay of excited levels,
and the destruction of nuclei via nuclear reactions in a stellar plasma, as will
be shown later.

1.6
Nuclear Shell Model

A detailed treatment of the nuclear shell model is beyond the scope of this
book. Basic discussions are presented in many introductory nuclear physics
texts (for example, Krane 1988). For a more detailed account, the reader is
referred to DeShalit and Talmi (1963) or Brussaard and Glaudemans (1977).
In the following we will summarize some of the important assumptions and
predictions of the model. Our aim is to better understand how nuclear prop-
erties, such as binding energies, spins, and parities, can be explained from the
underlying configurations of the nucleons. These considerations are also im-
portant because a number of nuclear structure properties that are mentioned
in this text, for example, reduced γ-ray transition strengths, weak interaction
matrix elements, and spectroscopic factors, are frequently computed by using
the shell model.

The atomic shell model has been enormously successful in describing the
properties of atoms. In the case of an atom, the heavy nucleus represents a
center for the Coulomb field in which the light electrons move independently
in first-order approximation. The spherical Coulomb potential is given by
VC = Ze2/r, with Z the atomic number, e the electron charge, and r the dis-
tance between nucleus and electron. Solving the Schrödinger equation for this
system yields the electron orbits, or shells, that are characterized by various
quantum numbers. In general, several of these (sub-)shells are almost degen-
erate in energy and together they form major shells. The rules for building
up the atomic electron configuration follow immediately from the Pauli ex-
clusion principle, stating that no more than two spin-1/2 particles can occupy
a given quantum state simultaneously. The shells are then filled up with elec-
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trons in order of increasing energy. We thus obtain an inert core of filled shells
and some number of valence electrons that primarily determine the atomic
properties. Atoms with all states of the major shells occupied exhibit a high
stability against removal or addition of an electron. These are the inert gases.

The application of a similar model to the atomic nucleus encounters a num-
ber of obvious complications. First, the nuclear interaction is very differ-
ent from the Coulomb interaction and, moreover, the nature of the nucleon-
nucleon interaction is not precisely known. Second, there are two kinds of ele-
mentary particles present in the nucleus (protons and neutrons) as opposed to
the atomic case (electrons). Third, there is no heavy center of force for the nu-
cleons. Despite these complications, the nuclear shell model has been highly
successful in describing many properties of nuclei. Its basic assumption is
that the interaction of each nucleon with all the other protons and neutrons
in the nucleus is well approximated by some average potential V(r). A sin-
gle nucleon moves independently in this potential and can be described by a
single-particle state of discrete energy and constant angular momentum.

The independent motion of the nucleons can be understood qualitatively
in the following manner. According to the Pauli exclusion principle, no more
than two protons or neutrons can exist in a given quantum state. The single-
particle levels are filled with nucleons up to some level, depending on how
many nucleons are present. Consider now a single nucleon, occupying some
intermediate single-particle level, moving through the nucleus. It is well
known that the nuclear force has a short range and, therefore, we expect that
the actual nuclear potential will strongly fluctuate. The nucleon may collide
with other protons or neutrons, but it cannot gain or lose energy easily since
the neighboring levels are already occupied and thus cannot accept an addi-
tional nucleon. Of course, it may gain a large amount of energy and hence
move to a higher lying, unoccupied single-particle level. But such collisions
with a significant energy transfer are less likely to occur. Consequently, the
motion of the nucleon will often be fairly smooth.

1.6.1
Closed Shells and Magic Numbers

We will start from the assumption that the interaction between one nucleon
and all the other nucleons in the nucleus can be approximated by a suitable
single-particle potential. In the simplest case, it consists of a central poten-
tial (for example, a harmonic oscillator potential or a Woods–Saxon potential)
and a strong spin–orbit coupling term. The solutions of the Schrödinger equa-
tion for such a potential are bound single-particle states that are characterized
by the values of the radial quantum number n, orbital angular momentum
quantum number �, and total angular momentum quantum number j (the
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latter is obtained from the coupling �j = �� +�s where s denotes the intrin-
sic spin equal to 1/2 for protons or neutrons). In particular, the energies of
the single-particle states depend explicitly on the values of n, �, and j. The
single-particle states are energetically clustered in groups and thus reveal a
shell structure. Each state of given j can be occupied by a maximum num-
ber of (2j + 1) identical nucleons, corresponding to the number of magnetic
substates (mj = −j,−j + 1, . . . , j − 1, j), and thus represents a subshell. Several
different subshells lying close in energy can be grouped together and form a
major shell. Furthermore, each single-particle state possesses a definite parity
(Appendix A), given by π = (−1)�. The shells are filled up according to the
Pauli exclusion principle.

The single-particle levels for either protons or neutrons are shown in
Fig. 1.10 where the horizontal direction represents an energy scale. The left-
hand side (a) displays the single-particle energies of a harmonic oscillator
potential as a function of the oscillator quantum number N = 2(n − 1) + �,
corresponding to the total number of oscillator quanta excited. Part (b)
shows the single-particle energies of a Woods–Saxon potential. This po-
tential is more realistic but mathematically less tractable. It is defined by
V(r) = V0[1 + e(r−R0)/a]−1, where V0, R0, and a denote the potential depth,
the potential radius, and the diffuseness, respectively. Note that in part (a)
each single-particle state of given N consists in general of states with different
values of �. These have the same energies and are thus called degenerate. The
degeneracy does not occur for the more realistic Woods–Saxon potential, that
is, states with different values of � possess different energies. It is customary
to use the spectroscopic notation s, p, d, f, g, . . . for states with orbital angular
momenta of � = 0, 1, 2, 3, 4, . . ., respectively. If an additional spin–orbit term is
added to the potential, then each state of given � value (except � = 0) can have
a total angular momentum of either j = � + 1/2 or j = � − 1/2 (Appendix B).
Since � is an integer, j must be of odd half-integer value. Part (c) shows how
the spin–orbit term splits each state with � > 0 into two levels. The number
of identical particles (protons or neutrons) that can occupy a state of given j
amounts to (2j + 1) and is presented in part (d). Part (e) displays the single-
particle states in spectroscopic notation as n�j. Note that the quantum number
n corresponds to the order in which the various states of given � and j appear
in energy. Thus, 1s1/2 is the first � = 0, j = 1/2 state, 2s1/2 is the second, and
so on. The parities of the single-particle levels are shown in part (f), and part
(g) indicates the subtotal of the number of identical nucleons that can fill all
the states up to a given level.

It is important to point out that the spin–orbit coupling term is so strong that
it changes the energies of the single-particle states significantly. For example,
consider the N = 3 and 4 oscillator shells. The g-state (� = 4) in part (b) splits
into two levels, 1g7/2 and 1g9/2. Since the spin–orbit coupling is strong the
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1g9/2 state is depressed and appears to be close in energy to the 2p1/2, 1f5/2,
and 2p3/2 states that originate from the N = 3 oscillator shell. There is now
an energy gap at a subtotal nucleon (or occupation) number of 50 and, conse-
quently, this group of states forms a major shell. Similar arguments apply to
other groups of levels. It can be seen from Fig. 1.10 that gaps (or major shell
closures) in the single-particle energy spectrum appear at occupation numbers
of 2, 8, 20, 28, 50, 82, and 126. These are referred to as magic numbers.

It should be obvious that nuclei with filled major shells of protons or neu-
trons exhibit an energetically favorable configuration, resulting in an extra sta-
bility compared to neighboring nuclei with only partly filled shells. The magic
numbers manifest themselves in many observed nuclear properties, such as
masses, particle separation energies, nuclear charge radii, electric quadrupole
moments, and so on. As an example, Fig. 1.11 shows the difference of the mea-
sured ground-state atomic mass excess from its mean value that is calculated
by using a smooth semiempirical mass formula. At the locations of magic neu-
tron numbers, the atomic mass excess is smaller, resulting in a smaller atomic
mass and a larger binding energy according to Eqs. (1.2) and (1.9). Another
example will be given later in connection with neutron capture cross sections
(Fig. 5.61). Such observations provide unambiguous evidence for the shell
structure of nuclei. As will become apparent in Section 5.6, the synthesis of
the heavy elements is strongly influenced by the magic neutron numbers of
N = 50, 82, and 126. It has to be emphasized again that the magic numbers
as they are observed in nature can only be reproduced if a strong spin–orbit
coupling term is introduced into the independent-particle potential.

1.6.2
Nuclear Structure and Nucleon Configuration

The shell model not only predicts the properties of closed shell nuclei, but
also the properties of nuclei with partly filled shells. The nuclear properties
follow directly from the configuration of the nucleons: (i) the binding energy
or mass of the nucleus is determined by the single-particle energies (due to
the independent motion of the nucleons in an average potential) and by the
mutual interaction of the valence nucleons (that is, those located outside a
closed major shell); (ii) the total angular momentum of the nucleus (or the
nuclear spin) is obtained by coupling the angular momenta of the independent
single-particle states according to the quantum mechanical rules for vector
addition (Appendix B); and (iii) the total parity of the nucleus is determined
by the product of the parities for all nucleons.

Consider first a nucleus with completely filled subshells. In each subshell j
all magnetic substates mj are occupied and thus the sum of jz over all nucle-
ons in the subshell must be zero. In other words, the nucleons in a completely
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Fig. 1.10 Approximate sequence of single-
particle states for identical nucleons (pro-
tons or neutrons). See the text. The magic
numbers (given in boxes on the right-hand
side) appear at the energy gaps and corre-
spond to the cumulative number of nucleons
up to that state. The level pattern repre-
sents qualitative features only. This holds

specifically for states with N ≥ 4 where the
level order differs for protons (which are
subject to the Coulomb interaction) and
neutrons. Reprinted with permission from
P. J. Brussaard and P. W. M. Glaudemans,
Shell-Model Applications in Nuclear Spec-
troscopy (Amsterdam: North-Holland, 1977).
Copyright by P. J. Brussaard.

filled subshell must couple to an angular momentum of zero. Furthermore,
since (2j + 1) is an even number, the total parity of the nucleons amounts to
π = +1. Indeed, the observed spin and parity of nuclei with closed subshells
(or closed major shells) amount to Jπ = 0+ (for example, 4

2He2, 12
6C6, 14

6C8,
14
8O6, 16

8O8, 28
14Si14, 32

16S16, or 40
20Ca20). A closed-shell nucleus can only be excited

by promoting at least one nucleon to a higher lying, unoccupied, subshell.
This is consistent with the observation that the first excited states of such nu-
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Fig. 1.11 Difference between experimental ground-state atomic mass
excess (Audi et al. 2003) and the mass excess predicted by the spher-
ical macroscopic part of the finite-range droplet (FRDM) mass formula
(Möller et al. 1995) versus neutron number.

clei are usually found at relatively high excitation energies. Nuclei with partly
filled shells may have excited states that result from a recoupling of the angu-
lar momenta only. This explains why in such cases the observed excitation
energies are significantly smaller.

By considering Fig. 1.10 we can easily explain the quantum numbers for
the ground states of nuclei when a single nucleon is located outside a closed
subshell. In this case, the ground-state spin and parity is given by the lowest
single-particle state available to the valence nucleon. For example, we find
Jπ = 1/2− for 13

6C7, Jπ = 5/2+ for 17
8O9, Jπ = 1/2+ for 29

14Si15, or Jπ = 3/2+

for 33
16S17. A single valence nucleon outside a closed subshell behaves in this

respect the same as a single “hole” in an otherwise filled subshell. The ground-
state spin and parity, for example, of 27

14Si13 amounts to Jπ = 5/2+ because it
has a single neutron hole in the 1d5/2 shell.

The situation is not as obvious when the subshells are only partly filled.
We observe experimentally that the ground states of all doubly even nuclei
possess a spin and parity of Jπ = 0+. For example, this applies to 26

12Mg14 al-
though neither the protons nor the neutrons completely fill the subshells. We
can explain this observation by assuming that it is energetically favorable for
pairs of protons or neutrons to couple to a total spin and parity of Jπ

pair = 0+.
This pairing effect also influences the proton and neutron separation energies of
neighboring nuclei, as will be seen in Section 5.6. The shell model can then be
used to predict the ground-state spins and parities for odd-A nuclei. For ex-
ample, consider 23

10Ne13. All the protons couple pairwise to quantum numbers



1.7 Nuclear Excited States and Electromagnetic Transitions 49

of 0+, as do 12 of the neutrons. The lowest available level for the odd neutron
is the 1d5/2 state (Fig. 1.10) and thus the ground-state spin of 23Ne amounts to
Jπ = 5/2+. These simplistic considerations reproduce many of the observed
ground-state spins, but fail in some cases. According to the above arguments
one would expect a ground-state spin and parity of Jπ = 5/2+ for 23

11Na12, but
instead we observe Jπ = 3/2+. The discrepancy is explained by the fact that
the interplay of many nucleons in an unfilled shell is rather complicated so
that an even number of protons or neutrons does not always couple to a total
angular momentum of J = 0 for the ground state. This is especially true for
excited nuclear levels.

In all but the simplest situations, the nucleon configuration must be taken
into account explicitly. Further complications arise since a given nuclear level
may be described by a mixed configuration, that is, by different nucleon con-
figurations that couple to the same value of Jπ . In such cases, large-scale
shell model calculations must be performed with numerical computer codes.
The shell model has been enormously successful in explaining the structure
of nuclei. It is frequently used in nuclear astrophysics in order to calculate
nuclear quantities that have not yet been measured in the laboratory. Re-
duced γ-ray transition strengths (Section 1.7.2) or weak interaction transition
strengths (Section 1.8.3), for instance, depend on nuclear matrix elements that
connect an initial (decaying) state with a final state. The matrix elements can
be calculated numerically with the shell model in a straightforward manner
once an appropriate form for the transition operator (for the electromagnetic
or weak interaction) is assumed. Another important quantity in nuclear as-
trophysics is the spectroscopic factor. It will be explained in Section 2.5.7 how
this property can be used for estimating an unknown cross section of a nuclear
reaction A + a → B. The spectroscopic factor is defined in terms of the overlap
integral between the final state wave function of B and the initial state wave
function of A + a. It does not depend on a transition operator, but only on
a wave function overlap, and thus can be calculated rather reliably for many
nuclei.

1.7
Nuclear Excited States and Electromagnetic Transitions

1.7.1
Energy, Angular Momentum, and Parity

Every nucleus exhibits excited states. They can be populated by many dif-
ferent means, for example, nuclear reactions, β-decays, thermal excitations
(see below), inelastic electron or particle scattering, and Coulomb excitation.
Each nuclear level is characterized by its excitation energy Ex, which is de-
fined as the binding energy difference between the level in question and the
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ground state of the nucleus. For the ground state we have, as per definition,
Ex = 0. In the laboratory, each excited level of energy Ei can make a transi-
tion to a lower lying state of energy Ef via three different processes that are
all induced by the electromagnetic interaction: (i) γ-ray emission, (ii) internal
conversion, and (iii) internal pair formation. Internal conversion refers to a pro-
cess where an excited nucleus de-excites by transferring its energy directly,
that is, in a single step, to an orbital electron. Internal pair formation denotes
the de-excitation of a nucleus by creating an electron-positron pair, in which
case the de-excitation energy must exceed twice the value of the electron rest
energy (2mec2). Although the three processes can in principle compete with
each other, the emission of a γ-ray is by far the most important one for nuclear
astrophysics and will be discussed in the following.

In a γ-ray transition between two nuclear levels, the energy of the emitted
photon is given by

Eγ = Ei − Ef − ∆Erec (1.20)

where the origin of the recoil shift ∆Erec is described in Appendix C.1. We are
mainly concerned here with γ-ray energies in the range of 100 keV to 15 MeV.
For such energies the recoil shift is very small and can usually be neglected.
Hence we may use in most cases Eγ ≈ Ei − Ef . This assumes that the excited
nucleus decays from rest. If the decaying level is populated via a nuclear
reaction, then another correction (the Doppler shift) must also be taken into
account (Appendix C.1). In any case, the emitted γ-rays will exhibit discrete
energies. If Ef corresponds to the ground state, then no further emission of
γ-rays is possible. Otherwise, de-excitation of the nucleus by emission of one
or more photons before reaching the ground state is likely to occur.

The emitted (or absorbed) electromagnetic radiation can be classified ac-
cording to the angular momentum L� which is carried by each photon, and
according to its parity (Appendix B). The angular momentum carried away
by the photon determines the multipolarity of the radiation. A value of L for
the angular momentum corresponds to 2L-pole radiation with its character-
istic angular distribution for the emitted intensity. For example, L = 1 and
L = 2 correspond to dipole (21) and quadrupole (22) radiation, respectively.
Two identical radiation patterns for a given value of L may correspond to dif-
ferent waves, “electric” 2L-pole radiation and “magnetic” 2L-pole radiation,
which differ through their parity. For example, E2 and M1 correspond to elec-
tric quadrupole radiation and magnetic dipole radiation, respectively. In a
γ-ray transition between two nuclear levels the total angular momentum and
parity of the system (nucleus plus electromagnetic field) are conserved. The
conservation laws give rise to certain selection rules that must be fulfilled for
an emission (or absorption) of radiation of given character to occur. The quan-
tum mechanical rules are explained in Appendix B.
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1.7.2
Transition Probabilities

A detailed discussion of the quantum theory for the interaction of nuclei with
electromagnetic radiation is beyond the scope of this book. We will instead
summarize the most important steps in the derivation of the transition proba-
bility. For more information, see Blatt and Weisskopf (1952).

The decay constant (that is, the probability per unit time) for the emission
of electromagnetic radiation of a given character (for example, E1 or M2) in a
transition connecting two given nuclear levels can be calculated using pertur-
bation theory. The result is (Blatt and Weisskopf 1952)

λ(ωL) =
8π

L[(2L + 1)!!]2
1
�

(
Eγ

�c

)2L+1

B(ωL) (1.21)

with Eγ and L the energy and multipolarity of the radiation, respectively; ω

denotes either electric (E) or magnetic (M) radiation and the double factorial is
defined as (2L + 1)!! ≡ 1 · 3 · 5 · . . . · (2L + 1). The quantity B(ωL) is called the
reduced transition probability. It contains the wave functions of the initial and
final nuclear states, and the multipole operator, that is, the operator respon-
sible for changing the initial to the final state while simultaneously creating
a photon of proper energy, multipolarity, and character. Reduced transition
probabilities can be calculated by using nuclear structure models, for exam-
ple, the shell model (Section 1.6). In the simplest case one may assume that
the nucleus consists of an inert core plus a single nucleon, that the γ-ray transi-
tion is caused by this nucleon changing from one shell-model state to another,
and that the radial wave functions of the initial and final states are constant
over the nuclear interior and vanish outside the nucleus. With these assump-
tions one obtains the Weisskopf estimates for the γ-ray transition probabilities,
which are given below for the lowest—and as will be seen, most important—
multipolarities:

λW(E1)� = 6.8 × 10−2A2/3E3
γ, λW(M1)� = 2.1 × 10−2E3

γ (1.22)

λW(E2)� = 4.9 × 10−8A4/3E5
γ, λW(M2)� = 1.5 × 10−8A2/3E5

γ (1.23)

λW(E3)� = 2.3 × 10−14A2E7
γ, λW(M3)� = 6.8 × 10−15A4/3E7

γ (1.24)

In these numerical expressions, A denotes the mass number of the decaying
nucleus, the photon energy Eγ is in units of MeV, and the Weisskopf estimates
are in units of eV. (It will be shown later that the product λ� is equal to a γ-ray
partial width).

The Weisskopf estimates for the γ-ray decay probability are shown in
Fig. 1.12 versus γ-ray energy for emitted radiations of different multipolar-
ity and character. It is apparent that the quantity λW rises strongly with
increasing γ-ray energy. We will be using in later chapters the relation
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Γ = λ� ∼ E2L+1
γ , as predicted by the Weisskopf estimates, when describing

the energy dependence of γ-ray partial widths. Also, the decay probability
depends strongly on the multipolarity L and the character ω of the radia-
tion. Furthermore, according to the selection rules (Appendix B), electric and
magnetic radiations of the same multipolarity cannot be emitted together in a
transition between two given nuclear levels. For a transition connecting two
levels of opposite parities, we find from Fig. 1.12 the inequalities

λW(E1) � λW(M2) � λW(E3) � · · · (1.25)

In this case, the lowest multipole permitted by the selection rules usually dom-
inates. In particular, if E1 radiation is allowed it will dominate the transition
strength in the vast majority of astrophysical applications. For a transition
connecting two levels of the same parity, one obtains

λW(M1) � λW(E2) � λW(M3) � · · · (1.26)

However, experimentally measured γ-ray transition strengths do not support
the conclusion that M1 transitions are always faster than E2 transitions if both
radiations are allowed by the selection rules. In fact, the actual decay strengths
may deviate strongly from the Weisskopf estimates since the latter are ob-
tained by using rather crude assumptions. It turns out that for many transi-
tions the observed decay constants are several orders of magnitude smaller
than the theoretically predicted value of λW , indicating a poor overlap in the
wave functions of the initial and final nuclear levels. On the other hand, for E2
transitions it is found that the observed decay probability frequently exceeds
the Weisskopf estimate by large factors. This indicates that more than one nu-
cleon must be taking part in the transition and that the excitation energy of the
decaying level is stored in the collective in-phase motion of several nucleons.

The Weisskopf estimates are very useful since they provide a standard
against which to compare observed transition strengths. The latter are fre-
quently quoted in Weisskopf units, defined as

M2
W(ωL) ≡ λ(ωL)

λW(ωL)
=

Γ(ωL)
ΓW(ωL)

or λ(ωL) = M2
W(ωL) W.u. (1.27)

This definition removes the strong energy dependence of the decay probabil-
ity. Several thousand observed γ-ray transitions were analyzed in this manner
and their transition strengths in Weisskopf units have been presented sepa-
rately according to the multipolarity and character of the radiation (Endt 1993
and references therein). The resulting distributions of transition strengths ex-
tend from some small value of M2

W(ωL), which is strongly influenced by the
sensitivity of the detection apparatus, to the largest observed transition proba-
bility. The latter value defines for each combination of ωL a recommended upper
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Fig. 1.12 Weisskopf estimate of the γ-ray decay probability for pure
electric (E) and magnetic (M) multipole radiations emitted in transitions
between two nuclear levels of energy difference Eγ. The γ-ray partial
width ΓW is equal to the product λW�. The curves are calculated for
A = 20 and a nuclear radius of R = 1.20A1/3 fm = 3.3 fm.

limit (RUL). For the mass region A = 5–44 the following values have been re-
ported (Endt 1993)

RUL(E1) = 0.5 W.u., RUL(M1) = 10 W.u.

RUL(E2) = 100 W.u., RUL(M2) = 5 W.u.

RUL(E3) = 50 W.u., RUL(M3) = 10 W.u.

These values are important for estimating the maximum expected γ-ray de-
cay probability for an unobserved transition (Problem 1.5). It is tempting to
estimate average decay strengths based on the centroids of the observed tran-
sition strength distributions (see Fig. 2 in Endt 1993). However, one has to be
very careful since the “averages” (as well as the “lower limits”) depend on the
γ-ray detection limit and thus may be expected to decrease with an improve-
ment in the sensitivity of the detection equipment.

1.7.3
Branching Ratio and Mixing Ratio

So far we discussed γ-ray transitions of specific multipolarity L and char-
acter ω. In practice, however, a given initial state may decay to a number
of different final states. Furthermore, each transition connecting two given
states may proceed via a mixture of radiations according to the selection rules.
These complications can be described by introducing two new quantities, the
branching ratio and the mixing ratio. In the following we will express these
quantities in terms of the γ-ray decay probability in units of energy, Γ = λ�,
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which is also referred to as the γ-ray partial width. Consider Fig. 1.13 showing
the γ-ray decay of an initial excited level i. The total γ-ray width of the initial
state can be expressed in terms of partial γ-ray widths that each correspond to
a transition to a specific final state j as

Γtot = ∑
j

Γj (1.28)

Assuming that the initial state decays only by γ-ray emission, the γ-ray branch-
ing ratio is defined by

Bj ≡
Γj

Γtot
× 100% (1.29)

and is usually given in percent. Each γ-ray branch may result from radiations
of different multipolarities L and characters ω. Although the selection rules
may allow for three or more possibilities (for example, a 2+ → 1+ transition
may proceed via M1, E2, or M3 radiations), in most practical cases not more
than the lowest two values of ωL need to be taken into account. If we assume
that only radiations with ω′L and ωL + 1 contribute to the transition (M1 and
E2 in the above example), the partial γ-ray width is given by

Γj(ωL + 1; ω′L) = Γj(ωL + 1) + Γj(ω′L) (1.30)

The γ-ray multipolarity mixing ratio is defined as

δ2
j ≡ Γj(ωL + 1)

Γj(ω′L)
(1.31)

By combining Eqs. (1.28)–(1.31) we may express the individual widths in
terms of the total width as

Γj(ω′L) =
1

1 + δ2
j

Bj

100
Γtot (1.32)

Γj(ωL + 1) =
δ2

j

1 + δ2
j

Bj

100
Γtot (1.33)

A highly excited nuclear state with many different decay probabilities to lower
lying levels will preferably decay via those transitions that correspond to the
largest decay strengths, that is, via emission of radiations with the smallest
multipoles. If a given level is located, say, above at least 20 lower lying states,
then the observed γ-ray decays from this level are in almost all instances either
of dipole (E1 or M1, depending on the parity of the initial and final level) or E2
character. This empirical finding is called the “dipole or E2 rule” (Endt 1990)
and is useful for estimating unknown spin and parities of nuclear levels.
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Fig. 1.13 Energy level diagram showing the γ-ray decay of an initial
state i to the ground state (0) and to two excited states (1, 2). The
branching ratio Bj represents the relative intensity of a particular de-
cay branch as a percentage of the total intensity and δj denotes the
multipolarity mixing ratio.

1.7.4
Gamma-Ray Transitions in a Stellar Plasma

In a hot plasma, excited states in a given nucleus are thermally populated, for
example, through absorption of photons (photoexcitation), Coulomb excita-
tion by surrounding ions, inelastic particle scattering, and other means. The
time scale for excitation and de-excitation (for example, via emission and ab-
sorption of photons) in a hot stellar plasma is usually—with the important
exception of isomeric states (see below)—much shorter than stellar hydrody-
namical time scales, even under explosive conditions (Fowler, Caughlan and
Zimmerman 1975). These excited levels will participate in nuclear reactions
and β-decays, as will be explained later, and thus their population must in
general be taken into account. For a given nuclide in a nondegenerate plasma
at thermodynamic equilibrium, the ratio of the number density of nuclei in
excited state µ, denoted by Nµ, and the total number density of nuclei, N, is
given by a Boltzmann distribution (Ward and Fowler 1980)

Pµ =
Nµ

N
=

gµe−Eµ/kT

∑
µ

gµe−Eµ/kT =
gµe−Eµ/kT

G
(1.34)

with gµ ≡ (2Jµ + 1), Jµ and Eµ the statistical weight, spin and excitation en-
ergy, respectively, of state µ; the quantity k denotes the Boltzmann constant
and T is the plasma temperature. The sum over µ in the denominator in-
cludes the ground state and is referred to as the partition function G. Note that
Eq. (1.34) follows directly from statistical thermodynamics and encompasses
all the different processes for the excitation and de-excitation of levels (that
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is, not only the emission and absorption of photons). Clearly, the thermal
population of excited nuclear levels becomes more important with increasing
temperature and lower excitation energy. These properties of Eq. (1.34) are
explored in Problem 1.6.

1.7.5
Isomeric States and the Case of 26Al

In most cases the nuclear levels decaying by γ-ray emission have very high
transition probabilities, corresponding to half-lives that are generally less than
10−9 s. However, quite a few cases have been observed where the half-lives
are longer by many orders of magnitude, sometimes amounting to seconds,
minutes or even days. Such long-lived excited nuclear levels are referred to as
isomeric states (or isomers, or metastable states) and the corresponding γ-ray
decays are called isomeric transitions. We will denote these levels with the
superscript ”m” (AXm).

The two aspects that are mainly responsible for the long half-lives of iso-
meric states are (i) a large difference for the spins of the isomeric and the final
nuclear level, and (ii) a relatively small energy difference between the two
levels. The first aspect implies a large γ-ray multipolarity (for example, M4 or
E5). The second aspect implies a small γ-ray energy. According to Eq. (1.21),
both of these effects have the tendency to reduce the decay probability sub-
stantially).

We will illustrate some of the complexities that arise from the presence of
an isomer by discussing the important case of 26Al. An energy level diagram
is displayed in Fig. 1.14. Focus first only on the left-hand part, showing the
ground state (Ex = 0, Jπ = 5+) and three excited states (Ex = 228 keV, Jπ = 0+;
Ex = 417 keV, Jπ = 3+; and Ex = 1058 keV, Jπ = 1+) in 26Al. According
to the selection rules, the direct γ-ray de-excitation of the first excited state
at Ex = 228 keV would require the emission of M5 radiation. The γ-ray decay
probability for such a high multipolarity is very small and thus the first excited
state is an isomer (26Alm). It decays via a β-transition (which is much more
likely to occur than the M5 γ-ray transition) to the ground state of 26Mg with
a half-life of T1/2(26 Alm) = 6.34 s. The 26Al ground state is also β-unstable and
decays with a half-life of T1/2(26 Alg) = 7.17 × 105 y mainly to the first excited
state at Ex = 1809 keV in 26Mg. This level, in turn, de-excites quickly via γ-ray
emission of E2 character.

Interestingly, photons with an energy of 1809 keV originating from the inter-
stellar medium have been detected first by the HEAO-3 spacecraft (Mahoney
et al. 1982), and subsequently by other instruments. The Ex = 1809 keV level in
26Mg decays so quickly (within a fraction of a second) that, if it is populated
via nuclear reactions in the interiors of stars, the emitted 1809 keV photons
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would immediately be absorbed by the surrounding matter and would never
be able to escape from the stellar production site. However, suppose instead
that 26Alg is synthesized via nuclear reactions in the stellar interior. The long
half-life of the ground state provides ample opportunity for this species to
be expelled from a star into the interstellar medium, where it then decays so
that the emitted photons can reach the Earth. Note that only the decay of the
ground state, but not the decay of the isomer, in 26Al gives rise to the emission
of 1809 keV γ-rays.

An all-sky map of the 1809 keV γ-ray line, obtained by the COMPTEL tele-
scope aboard the Compton Gamma Ray Observatory (CGRO), is shown in
color Fig. 11 on page 641. The discovery of 26Alg in the interstellar medium
is of paramount importance, as already pointed out (Section 1.4.1). It clearly
demonstrates that nucleosynthesis is currently active since the 26Alg half-life
is short compared to the time scale of Galactic chemical evolution (≈ 1010 y).
From the observed γ-ray intensity it is estimated that the production rate of
26Alg in the Galaxy amounts to ≈ 2M� per 106 y. The origin of the Galactic
26Alg is still controversial at present. However, the observational evidence fa-
vors massive stars as a source. For example, the all-sky map of the 1809 keV
γ-ray line shows that 26Alg is confined along the Galactic disk and that the
measured intensity is quite clumpy and asymmetric. Furthermore, the mea-
surement of the Doppler shift of the 1809 keV line demonstrated clearly that
the 26Alg co-rotates with the Galaxy and hence supports a Galaxy-wide origin
for this species (Diehl et al. 2006). Recent stellar model calculations for mas-
sive stars suggest that 26Alg is mainly produced in type II supernovae during
explosive carbon and neon burning (Section 1.4.3). A smaller fraction is pos-
sibly synthesized in Wolf–Rayet stars during core hydrogen burning and in
the subsequent type Ib/Ic supernova explosion. For more information, see
Limongi and Chieffi (2006).

We noted above that in a hot stellar plasma most nuclear levels quickly
achieve thermal equilibrium since the time scales for excitation and de-
excitation are very short. However, this is not necessarily the case for isomeric
states. For example, the γ-ray transition probabilities for the de-excitation of
the 26Al isomer at Ex = 228 keV and for its population from the ground state
via absorption of radiation depend on the same reduced transition strength.
Since the emission or absorption of M5 radiation is unlikely, the ground and
isomeric states in 26Al cannot achieve thermal equilibrium directly (that is,
Eq. (1.34) is not generally valid in this case). Thermal equilibrium may nev-
ertheless be achieved indirectly via transitions involving higher lying levels
in 26Al.

Consider again Fig. 1.14. In this case, the ground state and the isomer can
communicate via the Ex = 417 keV state (0 ↔ 417 ↔ 228) or via the Ex =
1058 keV state (0 ↔ 417 ↔ 1058 ↔ 228). Higher lying 26Al states also play
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a role as the temperature is increased, but have been omitted in the figure
for clarity. The thermal equilibration of 26Al can be calculated by solving nu-
merically a set of linear differential equations that describe all possible γ-ray
and β-decay transitions. For some of these (indicated by thick arrows) the
experimental transition strengths are known, while for others (thin arrows)
the transition strengths have to be calculated by using the shell model (Sec-
tion 1.6). The procedure is described in detail in Coc, Porquet and Nowacki
(1999) and Runkle, Champagne and Engel (2001) and is not repeated here. The
resulting effective lifetime of 26Al versus temperature is displayed in Fig. 1.15.
The solid line is obtained numerically by taking explicitly the equilibration of
the ground and isomeric states via thermal excitations involving higher lying
levels into account. The dashed curve is calculated analytically by assuming
that the ground and isomeric states are in thermal equilibrium (Example 1.5).
Below T = 0.1 GK, the effective lifetime is given by the laboratory lifetime of
26Alg (τ = 1.4427 T1/2 = 3.3 × 1013 s). Above T = 0.4 GK, the ground and iso-
meric states are in thermal equilibrium. At intermediate temperatures, T =
0.1–0.4 GK, the equilibration of 26Al via higher lying levels results in an effec-
tive lifetime that differs significantly from the thermal equilibrium value.

We focussed here on the case of 26Al. Other important examples of isomers
in nuclear astrophysics are 176Lum (Zhao and Käppeler 1991) and 180Tam (Wis-
shak et al. 2001). For a distinction between the kind of isomer discussed above
(also called spin-isomer) and other types of isomers (shape- and K-isomers), see
Walker and Dracoulis (1999).

1.8
Weak Interaction

The strong nuclear force and the electromagnetic force govern the nuclear re-
actions that are of outstanding importance for the energy generation and the
nucleosynthesis in stars. However, weak interactions also play an important
role in stars for several reasons. First, when a radioactive nuclide is produced
during the nuclear burning, its decay via weak-interaction processes will com-
pete with its destruction via nuclear reactions, as will become apparent in
Chapter 5. Second, weak interactions determine the neutron excess parameter
during the nucleosynthesis, which is defined as

η ≡ ∑
i
(Ni − Zi)Yi = ∑

i

(Ni − Zi)
Mi

Xi with − 1 ≤ η ≤ 1 (1.35)

where Ni, Zi, Mi, Yi, and Xi denote the number of neutrons and protons, the
relative atomic mass (in atomic mass units), the mole fraction, and the mass
fraction, respectively. The sum runs over all nuclides i in the plasma. Note
that η = 0 if only N = Z nuclei (4He, 12C, 16O, and so on) are present. The
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Fig. 1.14 Energy level schemes of 26Al
and 26Mg, showing the lowest lying states
in each nuclide. The vertical arrows rep-
resent γ-ray decays, while the diagonal
arrows indicate β-decay transitions. Only
the transitions indicated by the thick arrows
have been observed experimentally. The
transitions shown as thin arrows play an im-
portant role in the equilibration of the ground
state and the isomer at Ex = 228 keV in 26Al.

Note that the direct γ-ray de-excitation of
the isomer is strongly inhibited by the selec-
tion rules. The presence of 26Alg in the inter-
stellar medium is inferred from the observed
intensity of the 1809 keV γ-ray, originating
from the de-excitation of the first excited
state in 26Mg. A small β-decay branch of
the 26Al ground state to the Ex = 2938 keV
(Jπ = 2+) level in 26Mg is omitted in the
figure for clarity. See the text.

quantity η represents physically the number of excess neutrons per nucleon in
the plasma and can only change as a result of weak interactions. The neutron
excess must be monitored carefully in stellar model computations, since it is
important for the nucleosynthesis during the late burning stages in massive
stars and during explosive burning (Section 5.5). Furthermore, we already
mentioned that electron capture is very important for the dynamic behavior
of the core collapse in massive stars before a type II supernova explosion be-
cause it reduces the number of electrons available for pressure support (Sec-
tion 1.4.3). Third, neutrinos emitted in weak interactions affect the energy
budget of stars and thus influence models of stellar evolution and explosion.

We will focus here on the process of nuclear β-decay, which involves the
proton, neutron, electron, positron, neutrino, and antineutrino, and will sum-
marize some concepts that are important in the present context. For more in-
formation on weak interaction processes in stars see, for example, Langanke
and Martínez-Pinedo (2000).
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Fig. 1.15 Effective lifetime of 26Al as a
function of temperature. The solid line is
adopted from Coc, Porquet and Nowacki
(1999) and Runkle, Champagne and Engel
(2001). It was obtained numerically by tak-
ing explicitly the equilibration of the ground
and isomeric states via thermal excitations
involving higher lying levels into account.
At each temperature, the calculation was

started with a given amount of pure 26Alg.
The value of τeff(26Al) is then defined by
the time necessary for the total (ground plus
isomeric state) 26Al abundance to decline
by 1/e. The dashed curve is calculated an-
alytically by assuming that the ground and
isomeric states are in thermal equilibrium
(Example 1.5).

1.8.1
Weak Interaction Processes

Consider first the free neutron. It decays into a proton under the influence of
the weak interaction via

n → p + e− + ν (1.36)

where e− and ν denote an electron and antineutrino, respectively. The half-
life of the free neutron amounts to T1/2 = 10.2 min. This decay is slower by
many orders of magnitude compared to typical nuclear reaction time scales
or electromagnetic decay probabilities and demonstrates that the interaction
causing β-decay is indeed very weak. The most common weak interaction
processes in nuclear β-decay are listed below:

A
Z XN → A

Z+1X′
N−1 + e− + ν β−-decay (electron emission) (1.37)

A
Z XN → A

Z−1X′
N+1 + e+ + ν β+-decay (positron emission) (1.38)

A
Z XN + e− → A

Z−1X′
N+1 + ν electron capture (1.39)

A
Z XN + ν → A

Z+1X′
N−1 + e− neutrino capture (1.40)

A
Z XN + ν → A

Z−1X′
N+1 + e+ (1.41)
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Here e+, ν, and ν denote a positron, neutrino, and antineutrino, respectively.
In each of these interactions, the decaying nuclide changes its chemical iden-
tity, but the mass number A remains the same. The light particles e−, e+, ν,
and ν are leptons, that is, they do not interact via the strong nuclear force.

The first three decays represent the most common weak interaction pro-
cesses of radioactive nuclei in the laboratory. Consider as an example the β-
decay of 64

29Cu35. It may proceed via 64
29Cu35 → 64

30Zn34 + e− + ν (β−-decay),
64
29Cu35 → 64

28Ni36 + e+ + ν (β+-decay), or 64
29Cu35 + e− → 64

28Ni35 + ν (electron
capture). When the electron is captured from the atomic K-shell, the process
is called K capture. Neutrino capture is observed, for example, in the reac-
tion 37

17Cl20 + ν → 37
18Ar19 + e−, which has been used for the detection of solar

neutrinos (Davis, Harmer and Hoffman 1968). Antineutrinos produced by nu-
clear power plants have been observed via the process p + ν → e+ + n (Reines
and Cowan 1959).

Positron emission and electron capture populate the same daughter nu-
clide. In later chapters, both of these decays will sometimes be considered
together, while at other times it will be important to distinguish between
these processes. We will be using the following abbreviated notation. The β-
decay of 64Cu to 64Ni, irrespective of the specific process, will be denoted by
64Cu(β+ν)64Ni. When we would like to make specific reference to the positron
emission or electron capture, we write 64Cu(e+ν)64Ni or 64Cu(e−,ν)64Ni, re-
spectively. The β−-decay of 64Cu to 64Zn will be denoted by 64Cu(β−ν)64Zn,
irrespective of the fact that an antineutrino rather than a neutrino is emitted
in this decay.

1.8.2
Energetics

The total energy release in nuclear β-decay can be expressed by the difference
of the atomic masses before and after the interaction. We find (Problem 1.7)

Qβ− =
[
m(A

Z XN) − m( A
Z+1X′

N−1)
]

c2 β−-decay (1.42)

Qe+ =
[
m(A

Z XN) − m( A
Z−1X′

N+1)− 2me

]
c2 positron emission (1.43)

QEC =
[
m(A

Z XN) − m( A
Z−1X′

N+1)
]

c2 − Eb electron capture (1.44)

where me and Eb denote the electron mass and the atomic binding energy
of the captured electron, respectively. The released energy is almost en-
tirely transferred to the emitted leptons. For example, in β−-decay we have
Qβ− = Ke + Eν, where Ke and Eν denote the kinetic electron energy and the
total neutrino energy, respectively. Since there are three particles after the in-
teraction, the electron and neutrino energy distributions must be continuous,
ranging from zero to Qβ− for each lepton. In electron capture, only one lepton
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is emitted and thus the neutrino is monoenergetic, with QEC = Eν. Further-
more, this decay mode is accompanied by X-ray emission since the vacancy
in the atomic shell caused by the captured electron is quickly filled by other
atomic electrons. Electron capture competes in general with positron emission
since both decay modes populate the same daughter nucleus. However, if the
difference in atomic masses amounts to [m(A

Z XN)− m( A
Z−1X′

N+1)]c
2 < 2mec2 =

1022 keV, then only electron capture is energetically allowed.
It must be emphasized that for positron emission in a stellar plasma, the

energy release calculated from the mass difference of parent and daughter
nucleus alone, Q′

e+ = [m(A
Z XN) − m( A

Z−1X′
N+1)]c

2, includes the annihilation
energy 2mec2 = 1022 keV of the positron with another electron from the envi-
ronment, as can be seen by comparison with Eq. (1.43). Therefore, the quantity
Q′

e+ rather than Qe+ is of primary interest when calculating the energy release
of positron emission in a stellar plasma. Of course, Q′

e+ must be properly
corrected for neutrino losses (see below).

We considered so far only β-decay transitions involving nuclear ground
states. If a transition proceeds to an excited state in the daughter nucleus,
then we have to replace Qi by Qgs

i − Ex in Eqs. (1.42)–(1.44), where Qgs
i and Ex

denote the ground-state energy release and the excitation energy, respectively.
Sometimes a β-decay populates levels in the daughter nucleus that are un-
stable by emission of light particles (protons, neutrons, or α-particles). These
transitions give rise to β-delayed particle decays. They compete with transitions
to bound states in the daughter nucleus. Therefore, both of these processes
have to be distinguished carefully when modeling the nucleosynthesis in cer-
tain scenarios. For example, consider the β-decay of 29S which proceeds with
about equal probability to bound states in 29P and to excited 29P levels that are
unbound by proton emission. In the first case, 29S decays to the final nucleus
29P via 29S → e+ + ν + 29P, while in the second case 29S decays to the final
nucleus 28Si via 29S → e+ + ν + 29P∗ and 29P∗ → 28Si + p. These processes
can be distinguished by using the notations 29S(e+ν)29P and 29S(e+νp)28Si.

The neutrinos released in nuclear β-decay interact so weakly with mat-
ter that they are lost from the star unless the density is very large (ρ ≥
1011 g/cm3). Consequently, the average neutrino energy must usually be sub-
tracted from the total nuclear energy liberated when considering the energy
budget of a star. An approximate expression for the average neutrino energy
loss in β−-decay or positron emission is given by (Fowler, Caughlan and Zim-
merman 1967)

Eβ
ν ≈ mec2

2
w

(
1 − 1

w2

) (
1 − 1

4w
− 1

9w2

)
(1.45)

where w = (Qβ + mec2)/mec2. The energy release of the β-decay, Qβ, is given
by Eqs. (1.42) and (1.43), and may need to be corrected for the excitation en-
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ergy if the transition proceeds to an excited state in the daughter nucleus. As
already noted above, the neutrinos emitted in electron capture are monoener-
getic.

Neutrino emission is also important for the transport of energy from the
stellar interior to the surface, from which the energy can be radiated. During
the early evolutionary stages of stars, internal energy is mainly transported by
mechanisms such as radiative diffusion or convection. As a result, the rate of
energy outflow is related to the temperature gradient of the star. At high tem-
perature (T > 109 K), however, a relatively large number of photons have ener-
gies in excess of the threshold for pair production, γ → e+ + e− (Section 4.2.2).
The positron and electron, in turn, may either annihilate via e+ + e− → 2γ or
via e+ + e− → ν + ν. These neutrinos emerge directly from their point of ori-
gin and will escape from the star. In fact, during the late evolutionary stages
of massive stars, this (non-nuclear) production of neutrino–antineutrino pairs
represents the dominant energy loss mechanism. The energy outflow is in
this case directly determined by the neutrino production rate. Neutrino en-
ergy losses rise strongly with temperature and have a profound influence on
the stellar evolution of massive stars (Section 1.4.3 and Chapter 5).

1.8.3
Beta-Decay Probabilities

A detailed discussion of the theory of weak interactions in nuclei is beyond the
scope of the present book. A modern account can be found, for example, in
Holstein (1989). Here we will focus on the elementary Fermi theory of β-decay
which explains satisfactorily lifetimes and the shapes of electron (or positron)
energy distributions. Fermi’s theory of β-decay is discussed in most intro-
ductory nuclear physics texts (see, for example, Krane 1988). We will initially
assume that the β-decay occurs under laboratory conditions. Beta-decays in
stellar plasmas will be addressed afterward. The rate of nuclear β-decay can
be calculated from Fermi’s golden rule of time-dependent, first-order pertur-
bation theory (Messiah 1999). In order to illustrate the most important results,
we will first discuss β−-decay, although the derived expressions are equally
valid for positron emission. The case of electron capture is subsequently dis-
cussed.

Electron or positron emission

The probability N(p) dp per unit time that an electron (or positron) with linear
momentum between p and p + dp is emitted can be written as

dλ = N(p) dp =
2π

�

∣
∣∣
∣

∫
Ψ∗

f HΨi dV
∣
∣∣
∣

2 dn
dE0

=
2π

�

∣
∣∣Hf i

∣
∣∣
2 dn

dE0
(1.46)



64 1 Aspects of Nuclear Physics and Astrophysics

where Ψi and Ψ f are the total wave functions before and after the decay, re-
spectively, H is the Hamiltonian associated with the weak interaction, and dV
is a volume element. The factor dn/dE0 denotes the number of final states per
unit energy. A given transition is obviously more likely to proceed if there is a
large number of accessible final states. The experimental evidence shows that
the shapes of many measured electron (or positron) energy distributions are
dominated by the factor dn/dE0. The integral Hf i (or matrix element), which
depends only very weakly on energy, determines the overall magnitude of the
decay probability. It can be expressed in terms of the separate wave functions
of the final nuclear state (ψ f ) and of the leptons (φe, φν) after the decay as

Hf i = g
∫ [

ψ∗
f φ∗

e φ∗
ν

]
ΩΨi dV (1.47)

where the constant g determines the strength of the interaction. For electron
(or positron) decay, the total wave function before the transition is equal to
the wave function of the parent nucleus, Ψi = ψi. The operator Ω describes
the transition from nuclear level ψi to level ψ f . The emitted neutrino (or an-
tineutrino) can be treated as a free particle because it interacts only weakly.
The emitted electron (or positron) can also be treated as a free particle because
it has a relatively high velocity and is little affected by the nuclear Coulomb
field. Thus we may approximate the lepton wave functions by plane waves,
normalized within the nuclear volume V, and expand the exponentials ac-
cording to

φe(�r) =
1√
V

e−i�p·�r/� ≈ 1√
V

(
1 +

i�p ·�r
�

+ · · ·
)

(1.48)

φν(�r) =
1√
V

e−i�q·�r/� ≈ 1√
V

(
1 +

i�q ·�r
�

+ · · ·
)

(1.49)

where �p and �q are the linear momenta of the electron (or positron) and the
neutrino (or antineutrino), respectively. Consider, for example, the emission of
an electron in β−-decay with a typical kinetic energy of 1 MeV. The relativistic
electron momentum amounts in this case to p = 1.4 MeV/c. For a nuclear
radius of r ≈ 5 fm we find then a value of pr/� = 0.035. Hence, the second
term in the expansion of Eq. (1.48) is usually very small and, therefore, the
electron wave function is approximately constant over the nuclear volume.
Similar arguments apply to the neutrino wave function. In the simplest case,
one may then retain just the first, leading, term in Eqs. (1.48) and (1.49). It
follows

|Hf i|2 =
1

V2

∣
∣
∣∣g

∫
ψ∗

f Ωψi dV
∣
∣
∣∣

2

=
1

V2 g2M2 (1.50)

The nuclear matrix element M describes the transition probability between
the initial and final nuclear levels. A proper relativistic treatment of β-decay
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shows that there are in fact two different matrix elements with different
strengths that may contribute to the overall transition probability. Thus, we
have to replace Eq. (1.50) by

|Hf i|2 =
1

V2

(
G2

V M2
F + G2

A M2
GT

)
(1.51)

where GV and GA are the vector and axial-vector coupling constants, and MF
and MGT are referred to as Fermi and Gamow–Teller matrix element, respec-
tively. It can be shown that no interference term between vector and axial-
vector interaction occurs. The two matrix elements depend on the structure
of the initial and final nuclear states and can be calculated by using the shell
model (Section 1.6).

The above nonrelativistic treatment of the nucleons and the assumption of
constant lepton wave functions over the nuclear volume results in nuclear
matrix elements that are independent of the lepton energies and define the
so-called allowed β-decay transitions. In some decays, however, it turns out that
angular momentum and parity selection rules prevent allowed transitions. In
such cases, the next terms in the plane wave approximations of Eqs. (1.48)
and (1.49) have to be taken into account and the nuclear matrix element is
no longer independent of energy. These transitions are termed forbidden since
they are much less likely to occur than allowed decays. The degree by which
a transition is forbidden depends on how many terms in the plane wave ap-
proximation need to be taken into account until a nonvanishing nuclear matrix
element is obtained. The second term gives rise to first-forbidden transitions,
the third to second-forbidden, and so on. We will consider in the following only
allowed β-decay transitions.

The density of final states, dn/dE0, in Eq. (1.46) determines for allowed tran-
sitions the shape of the electron (or positron) energy distribution. It is given
by (Problem 1.10)

dn
dE0

=
dnednν

dE0
=

(4π)2V2

h6 p2 dp q2 dq
1

dE0
(1.52)

The final state (or total decay) energy is E0 = Q = Ke + Eν, where Q is the en-
ergy release for the transition under consideration (see Eqs. (1.42) and (1.43);
if the decay proceeds to an excited state, Q must account for the excitation
energy). Since the neutrino mass is very small, we may use mνc2 ≈ 0, so
that q = Eν/c = (E0 − Ke)/c and dq/dE0 = 1/c. A correction must be ap-
plied to Eq. (1.52) that takes into account the Coulomb interaction between
the daughter nucleus and the emitted electron or positron. The electron in
β−-decay feels an attractive Coulomb force, while the positron in β+-decay
experiences a repulsive force. Hence, the electron or positron plane wave in
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Eq. (1.48) has to be replaced by a distorted wave. The correction factor is re-
ferred to as Fermi function, F(Z′, p), and depends on the electron or positron
momentum and the charge of the daughter nucleus. The function F(Z′, p) can
be calculated numerically and is tabulated in Gove and Martin (1971).

It follows from Eqs. (1.46), (1.51), and (1.52) that

dλ = N(p) dp =
1

2π3�7c3

(
G2

V M2
F + G2

A M2
GT

)
F(Z′, p)p2(E0 −Ke)2 dp (1.53)

This distribution vanishes for p = 0 and at the endpoint where the maxi-
mum electron or positron kinetic energy is equal to the total decay energy,
Kmax

e = E0 = Q. Hence, a measurement of the momentum or energy distri-
bution in a given decay yields a value for the total energy release in β-decay.
Total relativistic energy, kinetic energy, and linear momentum of the electron
or positron are related by

Ee = Ke + mec2 =
√

(mec2)2 + (pc)2 (1.54)

The total decay constant is then given by the integral

λ =
ln 2
T1/2

=
(
G2

V M2
F + G2

A M2
GT

)

2π3�7c3

∫ pmax

0
F(Z′, p)p2(E0 − Ke)2 dp

=
m5

ec4

2π3�7

(
G2

V M2
F + G2

AM2
GT

)
f (Z′, Emax

e ) (1.55)

The dimensionless quantity

f (Z′, Emax
e ) =

1
m5

ec7

∫ pmax

0
F(Z′, p)p2(Emax

e − Ee)2 dp (1.56)

is referred to as the Fermi integral and depends only on the charge Z′ of the
daughter nucleus and on the maximum total energy of the electron, Emax

e .
Numerical values of f (Z′, Emax

e ) have also been tabulated. For the deriva-
tion of Eq. (1.55) we used the relationships pmaxc =

√
(Emax

e )2 − (mec2)2 and
E0 − Ke = Kmax

e − Ke = Emax
e − Ee that are obtained from Eq. (1.54).

We can rewrite Eq. (1.55) as

f (Z′, Emax
e )T1/2 =

2π3�7

m5
ec4

ln 2
(
G2

V M2
F + G2

AM2
GT

) (1.57)

The quantity f (Z′, Emax
e )T1/2 is called the ft-value and is experimentally ob-

tained from measurements of the half-life and the maximum energy of the
emitted electrons or positrons. The ft-value is a standard measure for the
strength of a particular β-decay transition and yields information about the
nuclear matrix elements and the coupling constants.
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Electron capture

The decay constant for allowed electron capture can be obtained in a similar
manner. Recall that in this case the energy spectrum of the emitted neutrino is
not continuous, but monoenergetic with QEC = E0 = Eν. Instead of Eq. (1.46)
we write

λ =
2π

�

∣∣
∣
∣

∫
Ψ∗

f HΨi dV
∣∣
∣
∣

2 dn
dE0

=
2π

�
|Hf i|2 dnν

dE0
(1.58)

The density of final states in this case is given by (Problem 1.10)

dnν

dE0
=

Vq2

2π2�3
dq

dE0
=

VE2
ν

2π2�3c3 (1.59)

where we used Eν = qc. The total wave functions before and after the decay
are now given by Ψi = ψiφe and Ψ f = ψ f φν (the subscripts have the same
meaning as before). Usually an electron from the atomic K shell is captured
because these have the largest probability of being near the nucleus. But the
electron is now in a bound state and cannot be described by a free-particle
plane wave. One can approximate φe by the electron wave function φK of the
K orbit at the location of the nucleus,

φe(�r) = φK(�r) =
1√
π

(
Z
a0

)3/2

e−Zr/a0

≈ φK(0) =
1√
π

(
Z
a0

)3/2

=
1√
π

(
Zmee2

�2

)3/2

(1.60)

with Z the atomic number of the parent nucleus. The constant a0 denotes the
Bohr radius, a0 = �2/(mee2) = 0.0529 nm. For the neutrino wave function φν

we use again only the first (constant) term in the plane wave approximation.
From Eqs. (1.49), (1.58)–(1.60) one finds for the decay constant of allowed

electron capture

λK = 2
Z3m3

ee6

π2�10c3

(
G2

V M2
F + G2

AM2
GT

)
E2

ν (1.61)

where the matrix elements are defined as before in terms of initial and final
state nuclear wave functions. Note that these are identical to the matrix el-
ements that occur in Eq. (1.51) for positron emission since they connect the
very same nuclear states. The additional factor of 2 in Eq. (1.61) arises because
either of the two electrons in the K shell can be captured. The transition prob-
ability for the weaker L-capture can be calculated in a similar manner. It is ob-
vious that the electron capture probability increases strongly with the charge
Z of the parent nucleus. This is the reason for the fact that electron capture is
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greatly favored over positron emission in heavy nuclei. The above expression
must be corrected for relativistic effects and the influence of the shielding of
the nuclear Coulomb field by the outer electrons. Such corrections have been
calculated numerically and are tabulated, for example, in Gove and Martin
(1971).

Fermi and Gamow–Teller transitions

We already commented on the classification of β-decays into allowed and for-
bidden transitions. In the first case, the leptons do not remove any orbital
angular momentum. In the latter case, the radiations are inhibited because
angular momentum conservation requires the leptons to carry off orbital an-
gular momentum or because the parities of the initial and final nuclear states
are mismatched. The allowed radiations are further subdivided into Fermi
transitions and Gamow–Teller transitions. They can only occur (that is, the cor-
responding matrix elements MF or MGT are nonzero only) if certain selection
rules are satisfied for the nuclear spins (Ji, J f ) and parities (πi, π f ) of the initial
and final nuclear states connected by the transition:

∆J ≡ |Ji − J f | = 0, πi = π f for Fermi transitions (1.62)

∆J ≡ |Ji − J f | = 0 or 1, πi = π f for Gamow–Teller transitions

(but not Ji = 0 → J f = 0) (1.63)

It follows that one can study these cases separately since decays with 0 → 0
(∆J = 0) and πi = π f represent pure Fermi transitions (MGT = 0), while
decays with ∆J = 1 and πi = π f are pure Gamow–Teller transitions (MF = 0).
Examples for pure Fermi and Gamow–Teller transitions are 14O → 14N + e+

+ ν (Ji = 0+ → J f = 0+) and 6He → 6Li + e− + ν (Ji = 0+ → J f = 1+). The
decay of the free neutron in Eq. (1.36), on the other hand, represents a mixed
transition. From studies of such decays, the values of the coupling constants
GV and GA can be deduced (see, for example, Wilkinson 1994).

In the laboratory, where the parent nucleus is usually in its ground state, β-
decay transitions proceed to all energetically accessible states in the daughter
nucleus. The total decay constant is given by the sum of transition probabil-
ities for all of these β-decay branches. Such laboratory β-decay constants or
half-lives are independent of temperature and density. Experimental values
of T1/2 are tabulated in Audi et al. (2003) and this reference will be used as a
source of terrestrial half-lives throughout this book, unless mentioned other-
wise.
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1.8.4
Beta-Decays in a Stellar Plasma

Consider now the weak interaction processes that take place when β-decays
occur in a stellar plasma at elevated temperature T and density ρ. In a hot
plasma, excited states in the parent nucleus are thermally populated and these
excited levels may also undergo β-decay transitions to the ground state or
to excited states in the daughter nucleus. The total β-decay rate in a stellar
plasma, λ∗

β, is given by the weighted sum of the individual transition rates,
λij, according to

λ∗
β = ∑

i
Pi ∑

j
λij (1.64)

The sum on i and j is over parent and daughter states, respectively. The pop-
ulation probabilities, Pi, of excited states in a nondegenerate plasma at ther-
modynamic equilibrium are given by Eq. (1.34). Since the quantity Pi is tem-
perature dependent, it follows immediately that λ∗

β will also depend on tem-
perature. In fact, if the decay constants for excited state β-decays are larger
than the one for ground-state β-decay, then the total decay constant λ∗

β may
become strongly temperature dependent. Clearly, even if the ground state of
the parent nucleus is stable in the laboratory, it may nevertheless undergo β-
decay in a hot stellar plasma. Similar considerations apply to the β-decay of
the daughter nucleus. In the laboratory, it cannot decay back to the parent nu-
cleus because the transition is energetically forbidden. In a hot plasma, how-
ever, β-decay transitions may occur from thermally populated excited states in
the daughter nucleus to the ground state or to excited states in the parent nu-
cleus. The situation is schematically shown in Fig. 1.16. In practice, one finds

Fig. 1.16 Beta-decays (a) in the labora-
tory, and (b) in a hot stellar plasma. The
vertical direction corresponds to an energy
scale. For reasons of clarity, only two lev-
els are shown in the parent nucleus X and
the daughter nucleus X′. The ground and
first excited state are labeled by 0 and 1,

respectively. In the laboratory, the β-decay
proceeds from the ground state of nucleus
X to levels in nucleus X′, while far more
β-decay transitions are energetically acces-
sible in a stellar plasma owing to the thermal
excitation of levels (dashed vertical arrows).
See the text.
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that most of the transition probability for β−-decay or positron emission in a
hot stellar plasma arises from the first few levels in a given parent nucleus.
Note that the β−-decay rate becomes also density dependent at sufficiently
large values of ρ when the electron gas is degenerate. In fact, the decay rate
decreases with increasing density since the number of final states available
for the emitted electron to occupy is reduced (Langanke and Martínez-Pinedo
2000).

Example 1.5

In the laboratory, β+-decays of the nuclide 26Al have been observed both from
the ground state (Jπ = 5+) and from the first excited (isomeric) state (Jπ = 0+)
located at an excitation energy of Ex = 228 keV (Fig. 1.14). The ground state
decays via positron emission to excited levels in the daughter nucleus 26Mg
(we will neglect a small electron capture branch) with a half-life of Tgs

1/2 =
7.17 × 105 y, while the first excited state decays to the 26Mg ground state with
a half-life of Tm

1/2 = 6.345 s. Above a temperature of T = 0.4 GK, both of these
26Al levels are in thermal equilibrium (Fig. 1.15). Calculate the stellar half-life
of 26Al when the plasma temperature amounts to T = 2 GK.

According to Eq. (1.64), the decay constant of 26Al in the stellar plasma is given
by

λ∗
β = Pgsλgs + Pmλm = Pgs

ln 2
Tgs

1/2

+ Pm
ln 2
Tm

1/2

where the subscripts ”gs” and ”m” denote the ground state and the first ex-
cited state, respectively. The thermal population probability Pi (that is, the
fraction of 26Al nuclei residing in either the ground or first excited state) can
be calculated from Eq. (1.34) (a numerical expression for the quantity kT is
given in Section 3.1.1). Thus

λ∗
β =

ln 2
ggse−Egs/kT + gme−Em/kT

[
ggse−Egs/kT

Tgs
1/2

+
gme−Em/kT

Tm
1/2

]

=
ln 2

(2 · 5 + 1) + (2 · 0 + 1)e−0.228/kT

[
(2 · 5 + 1)

Tgs
1/2

+
(2 · 0 + 1)e−0.228/kT

Tm
1/2

]

=
ln 2

11 + e−0.228/0.0862 T9

[
11

Tgs
1/2

+
e−0.228/0.0862 T9

Tm
1/2

]

≈ ln 2
11

[
e−0.228/0.0862 T9

6.345 s

]

= 9.93 × 10−3e−2.646/T9 (s−1)

Hence we find at T = 2 GK (T9 = 2)

λ∗
β = 9.93 × 10−3e−2.646/2.0 s−1 = 0.0026 s−1
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and the stellar half-life of 26Al amounts to T∗
1/2 = ln 2/λ∗

β = 270 s. The result

is only valid for densities of ρ ≤ 106 g/cm3, since at higher densities electron
capture needs to be taken into account (see below). The results from the above
method for calculating the stellar half-life of 26Al are shown as the dashed line
in Fig. 1.15. The values are only correct for temperatures in the range of T =
0.4–5 GK. At lower temperatures, the ground and isomeric states are not in
thermal equilibrium (Section 1.7.5), while at higher temperatures the thermal
populations of other excited states in 26Al have to be taken into account.

We will now discuss the interesting case of electron capture. It will be
shown later (Section 3.1.1) that the average thermal energies at the temper-
atures typical for the interior of main-sequence stars and red giants amount
to ≈ 1 keV and a few tens of keV, respectively. For most atoms, however,
the ionization energies are smaller than these values. Therefore, most nuclei
in these environments possess few, if any, bound electrons. The decay con-
stant for bound electron capture, given by Eq. (1.61), may thus be very small
or even zero. In the hot interiors of stars, however, there is an appreciable
density of free electrons. Hence, β-decays can proceed by capture of (free)
electrons from the continuum. The probability of continuum electron capture
is proportional to the free electron density at the location of the nucleus and is
inversely proportional to the average electron velocity which depends on the
plasma temperature. Consequently, the rate of continuum electron capture
depends on the local electron temperature and the density. At lower stellar
temperatures, a given parent nucleus may not be completely ionized. In that
case, both bound and continuum electron capture contribute to the total decay
constant.

At low densities, the kinetic energies of the free electrons are usually small.
At very high densities, however, the (Fermi) energy of the degenerate elec-
trons may become sufficiently large to cause nuclei to undergo continuum
capture of energetic electrons, even if they are stable under laboratory con-
ditions. Of course, electron capture transitions involving thermally excited
nuclear levels must also be taken into account according to Eq. (1.64).

Moreover, at high temperature (T > 1 GK) quite a large number of pho-
tons have energies in excess of the threshold energy for pair production (Sec-
tion 4.2.2). Although a positron annihilates quickly in the stellar plasma with
an electron, the pair production rate becomes eventually so large at high tem-
peratures that the positron density is a significant fraction of the electron den-
sity. Thus, capture of continuum positrons by nuclei must be considered in
addition to continuum electron capture.

The decay constant for continuum electron capture can be obtained easily
for a given nuclide if its laboratory decay constant for bound electron capture
is known. The ratio of stellar to laboratory decay constant is approximately
equal to the ratio of the electron densities at the nucleus for the stellar and lab-
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oratory environments, that is, the ratio of probabilities for finding an electron
at the nucleus where it can be captured. An order of magnitude estimate for
the ratio of electron capture probabilities is given by

λstar

λlab
≈ ne−〈F(Z, p)〉

2NA|φe(0)|2 (1.65)

where ne−/NA = ρ(1 − η)/2 is the electron density (Fowler, Caughlan and
Zimmerman 1967), η is the neutron excess parameter given by Eq. (1.35), and
|φe(0)|2 is given by Eq. (1.60). The Fermi function F(Z, p) accounts for the
fact that the wave function of the captured electron is distorted by the nuclear
Coulomb field. Since the electron velocities in the plasma are given by a dis-
tribution, the Fermi function must be averaged over the electron velocities. It
can be seen from Eq. (1.65) that the ratio λstar/λlab depends on the density
and composition (through ne− ), and on the temperature (through 〈F(Z, p)〉).
Note that the above expression is independent of nuclear matrix elements.
For more information, including a discussion of induced continuum electron
capture (that is, when a nuclide is stable in the laboratory), see Bahcall (1964).

It is obvious from the above considerations that many different transitions
contribute to the stellar decay rate of a given nucleus. In the laboratory, the
decay proceeds from the ground state of parent nucleus X to energetically ac-
cessible states in the daughter nucleus X′. In a stellar plasma, the labels “par-
ent”and “daughter” can alternatively apply to both nuclei. For example, in
the laboratory 56Mn decays to the stable nuclide 56Fe via 56Mn(β−ν)56Fe. At
high temperatures and densities, however, 56Fe decays via continuum elec-
tron capture, 56Fe(e−,ν)56Mn, and via positron emission through thermally
populated 56Fe states, 56Fe(e+ν)56Mn.

The estimation of stellar β-decay rates essentially reduces to the calculation
of (i) nuclear matrix elements by using some model of nuclear structure (for
example, the shell model; Section 1.6), and (ii) the appropriate Fermi functions
and integrals for all energetically accessible transitions from the parent to the
daughter nucleus. The calculations can be constrained and tested by experi-
mental measurements of half-lives and Gamow–Teller strength distributions.
Stellar weak interaction rates and the associated neutrino energy losses for a
range of temperatures and densities are tabulated in Fuller, Fowler and New-
man (1982) (for the proton, neutron, and nuclides with A = 21–60), Oda et
al. (1994) (for A = 17–39), and Langanke and Martínez-Pinedo (2001) (for A =
45–65). Figure 1.17 shows as an example the temperature dependence of the
stellar decay constants for the electron capture (solid line) and positron emis-
sion (dashed line) of 56Co. Note that 56Co decays in the laboratory to 56Fe by
bound state electron capture with a half-life of T1/2 = 77.2 d.

Finally, we will briefly discuss a neutrino energy loss mechanism that be-
comes important at very high temperatures and densities. It is referred to as
the Urca process (Gamow and Schoenberg 1940) and consists of alternate elec-
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Fig. 1.17 Stellar decay constants versus temperature for the elec-
tron capture (solid line) and positron emission (dashed line) of 56Co.
The electron capture decay constant is calculated for the condition
ρ(1 − η)/2 = 107 g/cm3 and increases with rising density. In the lab-
oratory, 56Co decays to 56Fe by bound electron capture with a decay
constant of λlab = 1.0×10−7 s−1 (T1/2 = ln 2/λlab = 77.2 d). Data from
Langanke and Martínez-Pinedo (2000).

tron captures and β−-decays involving the same pair of parent and daughter
nuclei

A
Z XN(e−, ν) A

Z−1X′
N+1(β−ν)A

Z XN . . . (1.66)

The net result of two subsequent decays gives A
Z XN + e− → A

Z XN + e− + ν + ν.
A neutrino–antineutrino pair is produced with no change in the composition,
but energy in the form of neutrinos is lost from the star. It is obvious from en-
ergy arguments that both the electron capture and the β−-decay cannot occur
spontaneously. The first step may be induced by continuum electron capture
of energetic electrons when the density is high, while the second step may pro-
ceed from thermally populated excited states when the temperature is high.
In the end, thermal energy is lost every time a pair of interactions goes to com-
pletion. The mechanism represents an efficient cooling process that will not
only depend on temperature and density, but also on the composition of the
stellar plasma. The Urca process is thought to be vital for understanding the
explosion mechanism in some models of type Ia supernovae (Section 1.4.4).

Problems

1.1 Determine the number of protons, Z, and the number of neutrons, N, for
the nuclides 18F, 56Ni, 82Rb, 120In, 150Gd, and 235U.
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1.2 How much energy is released in the following reactions: (i) 3He(d,p)4He;
(ii) 17O(p,γ)18F; (iii) 12C(α,γ)16O; and (iv) 13C(α,n)16O? Assume that the reac-
tions involve nuclei in their ground states only. Use the results presented in
Table 1.1.

1.3 Consider the chain of radioactive decays, 1 → 2 → 3, where 1, 2, and 3 de-
note a parent, daughter, and final nuclide respectively. Assume that initially
only the parent nuclei are present, that is, N1(t = 0) = N0, N2(t = 0) = 0,
N3(t = 0) = 0, and that species 3 is stable. (i) Set up the differential equation
describing the abundance change of species 2 and find the time evolution of
the daughter abundance, N2(t). (ii) Find the time evolution of the final nuclide
abundance, N3(t). (iii) Examine the abundances N1, N2, and N3 at small val-
ues of t. Keep only linear terms in the expansion of the exponential function
and interpret the results.

1.4 With the aid of Fig. 1.10, predict the spins and parities of 19O, 31P, and 37Cl
for both the ground state and the first excited state. Compare your answer
with the observed values. These can be found in Endt (1990) and Tilley et al.
(1995).

1.5 Suppose that an excited state with spin and parity of 2+ in a nucleus of
mass A = 20 decays via emission of a γ-ray with a branching ratio of 100% to
a lower lying level with spin and parity of 0+. Assume that the γ-ray energy
amounts to Eγ = Ei − Ef = 6 MeV. Estimate the maximum expected γ-ray
transition probability Γ = λ�.

1.6 Consider a nucleus in a plasma at thermal equilibrium. Calculate the pop-
ulation probabilities of the ground state (E0 = 0) and of the first three excited
states (E1 = 0.1 MeV, E2 = 0.5 MeV, E3 = 1.0 MeV). Perform the computations
for two temperatures, T = 1.0 × 109 K and 3.0 × 109 K, and assume for sim-
plicity that all states have the same spin value.

1.7 Derive the relationships of Eqs. (1.42)–(1.44) from the differences in nuclear
masses before and after the decay.

1.8 How much energy is released in the following β-decays: (i) 7Be(e−,ν)7Li;
(ii) 14C(β−ν)14N; and (iii) 18F(e+ν)18O? Assume that the decays involve nuclei
in their ground states only. Use the results presented in Table 1.1.

1.9 Calculate the average neutrino losses in the decays 13N(e+ν)13C and
15O(e+ν)15N. Assume that the positron emissions involve the ground states
of the parent and daughter nuclei only. Use the results presented in Table 1.1.

1.10 Derive Eq. (1.52) for the density of final states. Recall that the final state
contains both an electron and a neutrino. You have to count the states in the
six-dimensional phase space that is defined by three space and three linear mo-
mentum coordinates. The unit volume in phase space is h3.
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2
Nuclear Reactions

2.1
Cross Sections

The cross section σ is a quantitative measure for the probability that an in-
teraction will occur. In the following we define several quantities which are
displayed in Fig. 2.1. Suppose that a beam of Nb particles per unit time t, cov-
ering an area A, is incident on a target. The number of nonoverlapping target
nuclei within the beam is Nt. We assume that the total number of interactions
that occur per unit time, NR/t, is equal to the total number of emitted (non-
identical) interaction products per unit time, Ne/t. If the interaction products
are scattered incident particles, then we are referring to elastic scattering. If
the interaction products have an identity different from the incident particles,
then we are referring to a reaction. The number of interaction products emit-
ted at an angle θ with respect to the beam direction into the solid angle dΩ is
N dΩ

e . The area perpendicular to the direction θ covered by a radiation detector
is given by dF = r2 dΩ. The cross section is defined by

σ ≡ (number of interactions per time)
(number of incident particles per area per time)(number of target nuclei within the beam)

=
(NR/t)

[Nb/(tA)]Nt
(2.1)

We will use this general definition to describe reaction probabilities in astro-
physical plasmas and in laboratory measurements of nuclear reactions. In the
latter case, two situations are frequently encountered: (i) if the beam area, A,
is larger than the target area, At, then

NR

t
=

Nb

tA
Ntσ (2.2)

and the number of reactions per unit time is expressed in terms of the incident
particle flux, Nb/(tA), the number of target nuclei, Nt, and the cross section;
(ii) if the target area, At, is larger than the beam area, A, then

NR

t
=

Nb

t
Nt

A
σ (2.3)
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and the number of reactions per unit time is expressed in terms of the incident
particle current, Nb/t, the total number of target nuclei within the beam per
area covered by the beam, Nt/A, and the cross section. Of course, for a homo-
geneous target, Nt/A is equal to the total number of target nuclei divided by
the total target area At. The latter quantity is easier to determine in practice.
We can also express the total cross section, σ, and the differential cross section,
dσ/dΩ, in terms of the number of emitted interaction products

Ne

t
= σ

(Nb/t)
A

Nt (2.4)

N dΩ
e
t

=
(

dσ

dΩ

)
(Nb/t)

A
Nt dΩ (2.5)

If we define Net ≡ Ne/Nt, that is, the number of emitted interaction products
per target nucleus, then we obtain

σ =
(Net/t)

(Nb/t)(1/A)
and

(
dσ

dΩ

)
=

(N dΩ
et /t)

(Nb/t)(1/A)
1

dΩ
(2.6)

With the definition of a flux or current density j as the number of particles per
time per area, we can write for the beam and emitted interaction products

jb =
(Nb/t)

A
(2.7)

jet =
(N dΩ

et /t)
dF

(2.8)

For the total and differential cross section one finds

σ =
(Net/t)

jb
(2.9)

(
dσ

dΩ

)
=

jet dF
jb dΩ

=
jetr2 dΩ

jb dΩ
=

jetr2

jb
(2.10)

These quantities are related by

σ =
∫ ( dσ

dΩ

)
dΩ (2.11)

Common units of nuclear reaction and scattering cross sections are

1 b ≡ 10−24 cm2 = 10−28 m2

1 fm2 = (10−15 m)2 = 10−30 m2 = 10−2 b

In this chapter, all kinematic quantities are given in the center-of-mass system
(Appendix C), unless noted otherwise.
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Fig. 2.1 Typical nuclear physics counting experiment, showing a beam
of Nb particles per unit time, Nt nonoverlapping target nuclei within
the beam area A, Ne interaction products and a detector of area dF.
The detector is located at an angle of θ with respect to the incident
beam direction. The two situations correspond to as follows: (a) the
target area is larger than the beam area; and (b) the beam area is
larger than the target area.

2.2
Reciprocity Theorem

Consider the reaction A + a → B + b, where A and a denote the target and
projectile, respectively, and B and b are the reaction products. The cross sec-
tion of this reaction is fundamentally related to that of the reverse reaction,
B + b → A + a, since these processes are invariant under time-reversal, that
is, the direction of time does not enter explicitly in the equations describing
these processes. At a given total energy, the corresponding cross sections
σAa→Bb and σBb→Aa are not equal but are simply related by the phase space
available in the exit channel or, equivalently, by the number of final states per
unit energy interval in each case. The number of states available for momenta
between p and p + dp is proportional to p2 (Messiah 1999). Hence

σAa→Bb ∼ p2
Bb and σBb→Aa ∼ p2

Aa (2.12)
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The linear momentum and the de Broglie wavelength are related by λ = h/p.
The wave number k of the free particle is defined in terms of the de Broglie
wavelength by λ ≡ 2π/k. Hence, we have p = mv = �k. It follows (Blatt and
Weisskopf 1952) that

k2
AaσAa→Bb

(1 + δAa)
=

k2
BbσBb→Aa

(1 + δBb)
(2.13)

This expression is called reciprocity theorem and it holds for differential as well
as total cross sections. The factors (1 + δij) account for the fact that cross sec-
tions between identical particles in the entrance channel are twice those be-
tween different particles, other factors being equal.

When particles with spin are involved in the reactions, then the above equa-
tion must be modified by multiplying the density of final states by their sta-
tistical weights. Since there are (2ji + 1) states of orientation available for a
particle with spin ji, we can write for unpolarized particles

k2
Aa(2jA + 1)(2ja + 1)σAa→Bb

(1 + δAa)
=

k2
Bb(2jB + 1)(2jb + 1)σBb→Aa

(1 + δBb)
(2.14)

σBb→Aa

σAa→Bb
=

(2jA + 1)(2ja + 1)
(2jB + 1)(2jb + 1)

k2
Aa(1 + δBb)

k2
Bb(1 + δAa)

(2.15)

It follows that the cross section σBb→Aa can be easily calculated, indepen-
dently from any assumptions regarding the reaction mechanism, if the quan-
tity σAa→Bb is known experimentally or theoretically. Equation (2.15) is appli-
cable to particles with rest mass as well as to photons. It must be emphasized
that the symbols A, a, b, and B do not only refer to specific nuclei but, more
precisely, to specific states. In other words, the reciprocity theorem connects
the same nuclear levels in the forward as in the reverse reaction.

The reciprocity theorem has been tested in a number of experiments. An
example is shown in Fig. 2.2. Compared are differential cross sections for the
reaction pair 24Mg(α,p)27Al (open circles) and 27Al(p,α)24Mg (crosses), con-
necting the ground states of 24Mg and 27Al. Both reactions were measured at
the same center-of-mass total energy and angle. The differential cross sections
exhibit a complicated structure, presumably caused by overlapping broad res-
onances. Despite the complicated structure, it can be seen that the agreement
between forward and reverse differential cross section is excellent. Such re-
sults support the conclusion that, to this accuracy, nuclear reactions are in-
variant under time-reversal. See also Blanke et al. (1983).
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Fig. 2.2 Experimental test of the reciprocity
theorem for the reaction pair 24Mg(α,p)27Al
(open circles) and 27Al(p,α)24Mg (crosses),
connecting the ground states of 24Mg and
27Al. The differential cross sections of both
reactions are shown for the same total en-
ergy and detection angle in the center-of-

mass system. The cross sections have
also been adjusted to compensate for dif-
ferences in spins. Reprinted with permis-
sion from W. von Witsch, A. Richter and P.
von Brentano, Phys. Rev., Vol. 169, p. 923
(1968). Copyright (1968) by the American
Physical Society.

2.3
Elastic Scattering and Method of Partial Waves

2.3.1
General Aspects

The interactions between nucleons within a nucleus and between nucleons
participating in nuclear reactions have to be described using quantum me-
chanics. The fundamental strong interaction is very complicated and not pre-
cisely known. We know from experiments that it is of short range. Further-
more, it exhibits a part which is attractive at distances comparable to the size
of a nucleus and another part which is repulsive at very short distances. Be-
cause of the complexity of this nucleon–nucleon interaction it is necessary to
employ approximations. Instead of calculating all the interactions between all
nucleons exactly, one frequently resorts to using effective potentials. These de-
scribe the behavior of a nucleon, or a group of nucleons (such as an α-particle),
in the effective (average) field of all the other nucleons. Because of the approx-
imate nature of this approach, the resulting effective potentials are usually
tailored to specific reactions and energies and thus lack generality. The most
widely used approximate potentials are called central potentials. They depend
only on the magnitude of the radius vector, but not on its direction, that is,
V(�r) = V(r). Since the nuclear potential is of short range, we will consider
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here only potentials that for large distances (r → ∞) approach V(r) → 0 faster
than 1/r.

In this section, we will initially focus on the problem of elastic scatter-
ing. The formalism is then extended to include nuclear reactions. A gen-
eral treatment of nuclear scattering involves solutions of the time-dependent
Schrödinger equation, that is, the scattering of wave packets. However, the
most important physics aspects can be derived by considering the much sim-
pler stationary problem of solving the time-independent Schrödinger equa-
tion. No further assumptions about the nuclear potential are made here. We
will derive the general formalism which relates the observed scattering cross
section to the wave function far away from the scattering center. The cross
section will be expressed in terms of so-called phase shifts. In order to deter-
mine the latter quantity, knowledge of the wave function in the nuclear region
is necessary. These considerations will be discussed in subsequent sections.

The scattering process is schematically shown in Fig. 2.3. Consider a beam
of monoenergetic particles incident on a target along the z-direction. The
value and the uncertainty of the z-component of the linear momentum are
given by pz = const and ∆pz = 0, respectively. It follows immediately from
the Heisenberg uncertainty principle (∆pz∆z ≈ �) that ∆z → ∞. Hence, the in-
coming wave has a large extent in the z-direction, that is, the process is nearly
stationary. Furthermore, we assume for the x- and y-components of the lin-
ear momentum px = py = 0. This implies, according to λi = h/pi, that
λx = λy → ∞. In other words, the incoming particles are represented by a
wave of very large wavelength in the x- and y-directions, that is, an incident
plane wave.

The stationary scattering problem is described by the time-independent
Schrödinger equation
[
− �2

2m
∇2 + V(�r)

]
ψ(�r) = Eψ(�r) (2.16)

At the position of the target nucleus we cannot specify the total wave function
further without assuming an explicit nuclear potential. However, far away
from the scattering center, at the position of our detector, we can express the
total wave function as a sum of two stationary waves: an incoming plane
wave and an outgoing spherical wave. Therefore, we start for the total wave
function at large distances with the ansatz

ψT(�r) = N

[

ei�k·�r + f (θ)
eikr

r

]

, r → ∞ (2.17)

The term ei�k·�r represents a plane wave traveling in the z-direction (a free par-
ticle). The second term contains a spherical wave (eikr), a quantity f (θ) called
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Fig. 2.3 Schematic representation of the scattering process. A plane
wave is incident along the z-direction on a scattering center (target)
which gives rise to an outgoing spherical wave. Note the significant
differences in the dimensions of the collimator (≈ mm), target nuclei
(≈ fm), and detector distance (≈ cm), which are typical for nuclear
physics experiments.

scattering amplitude, and the factor 1/r since the scattered intensity must obey
an inverse square law; N is an overall normalization factor.

2.3.2
Relationship Between Differential Cross Section and Scattering Amplitude

The particle density (in units of inverse volume) is given by P = ψ∗ψ and
the current density (in units of inverse area per time) of beam particles or
scattered particles with velocity v can be written as j = vP. For the incoming
plane wave we can write

jb = vb(Ne−ikz)(Neikz) = vbN2 (2.18)

whereas we obtain for the scattered spherical wave

js = vs

[
N f ∗(θ)e−ikr 1

r

] [
N f (θ)eikr 1

r

]
= vsN2| f (θ)|2 1

r2 (2.19)

Substitution of jb and js into Eq. (2.10) yields
(

dσ

dΩ

)
=

jsr2

jb
= | f (θ)|2 (2.20)

since for elastic scattering we can assume that vb = vs. The important result
here is that the differential cross section is equal to the square of the scattering
amplitude.
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2.3.3
The Free Particle

It is instructive to consider first the force-free particle. The plane wave ei�k·�r
represents a free particle of momentum �p = ��k and energy E = �2k2/(2m).
The potential is V(r) = 0 and, therefore, we have f (θ) = 0. If we choose the z
axis along�k (see Fig. 2.4), the plane wave can be written as

ei�k·�r = eikr cos θ = eikr(z/r) = eikz (2.21)

which is independent of the angle φ. Since�L =�r×�p, we only need to consider
values of m = 0 for the magnetic quantum number. In this case, the spherical
harmonics are given by (see Eq. (A.9))

Y�0 =

√
2� + 1

4π
P�(cos θ) (2.22)

where P�(cos θ) is a Legendre polynomial. With the substitutions E =
p2/(2m) = �2k2/(2m) and ρ ≡ kr, the radial equation for the free particle can
be written as (see Eq. (A.23))

d2u�

dρ2 +
[

1 − �(� + 1)
ρ2

]
u� = 0 (2.23)

The solutions, j�(kr), are called spherical Bessel functions (Section A.2) and we
can write for the asymptotic values

uf.p.
� = (kr)j�(kr) = sin (kr − �π/2) , r → ∞ (2.24)

The eigenfunctions of the free particle, j�(kr)P�(cos θ), form a complete or-
thonormal set. Therefore, we expand the plane wave according to

eikz =
∞

∑
�=0

c� j�(kr)P�(cos θ) (2.25)

The derivation of the expansion coefficients, which is not repeated here (see,
for example, Messiah 1999), yields c� = (2� + 1)i�. Thus

eikz =
∞

∑
�=0

(2� + 1)i� j�(kr)P�(cos θ) (2.26)

It can be seen that the plane wave with linear momentum kr has been ex-
panded into a set of partial waves, each having an orbital angular momentum
of �

√
�(� + 1), an amplitude of (2� + 1), and a phase factor of i�. For very

large distances appropriate for any experimental detector geometry, we find
for the free particle

ψ
f.p.
T = eikz =

∞

∑
�=0

(2� + 1)i�
sin (kr − �π/2)

kr
P�(cos θ), r → ∞ (2.27)
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Fig. 2.4 Linear and angular momenta of the free particle. The vector
�p points along the z axis, while the projection of�L on the z axis is zero
(m = 0).

Using the relationship sin x = (i/2)(e−ix − eix) we write

ψ
f.p.
T =

1
2kr

∞

∑
�=0

(2� + 1)i�+1
[
e−i(kr−�π/2) − ei(kr−�π/2)

]
P�(cos θ), r → ∞

(2.28)

For the special case of s-waves (� = 0), we have uf.p.
0 = sin(kr) instead of

Eq. (2.24) (see also Eq. (A.26)). Consequently, Eqs. (2.27) and (2.28) are not
only valid for r → ∞, but apply in this case to all distances.

2.3.4
Turning the Potential On

For a central potential (Section 2.3.1) with V(r) �= 0 and f (θ) �= 0, only the
solution to the radial equation will change. Instead of uf.p.

� we have to write

u�. The two functions uf.p.
� and u� essentially differ only for small r where

V(r) �= 0. For large distances r we have V(r) = 0 and both functions must
satisfy the same radial equation. We write

u� = sin(kr − �π/2 + δ�), r → ∞ (2.29)

This solution can differ at most from the radial wave function of the free parti-
cle (Eq. (2.24)) by a phase shift δ�, which arises from the different r dependence
in the region where V(r) �= 0. Note that for s-waves (� = 0), Eq. (2.29) applies
again to all distances outside the potential.

Similar to the case of the free particle (see Eq. (2.25)), we can expand the
total wave function into partial waves

eikz + f (θ)
eikr

r
=

∞

∑
�=0

b�
u�(kr)

kr
P�(cos θ) (2.30)
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The expansion coefficients are given by b� = (2� + 1)i�eiδ� (Problem 2.1). Thus

ψT = eikz + f (θ)
eikr

r

=
∞

∑
�=0

(2� + 1)i�eiδ�
sin(kr − �π/2 + δ�)

kr
P�(cos θ), r → ∞ (2.31)

Using the relation sin x = (i/2)(e−ix − eix) we write

ψT =
1

2kr

∞

∑
�=0

(2� + 1)i�+1
[
e−i(kr−�π/2) − e2iδ�ei(kr−�π/2)

]
P�(cos θ), r → ∞

(2.32)

Comparison to the total wave function of the free particle (Eq. (2.28)) clearly
shows that the potential modifies at large distances each outgoing spherical
wave by a factor of e2iδ� and thereby shifts each outgoing spherical wave by a
phase δ�.

2.3.5
Scattering Amplitude and Elastic Scattering Cross Section

We solve first for the scattering amplitude f (θ) by writing

f (θ)
eikr

r
= ψT − ψ

f.p.
T =

1
2kr

∞

∑
�=0

(2� + 1)i�+1
[
ei(kr−�π/2)

(
1 − e2iδ�

)]
P�(cos θ)

(2.33)

Using eiπ�/2 = cos(π�/2) + i sin(π�/2) = i� and the identity eiδ sin δ ≡
(i/2)(1 − e2iδ) yields

f (θ) =
i

2k

∞

∑
�=0

(2� + 1)
(

1 − e2iδ�

)
P�(cos θ) =

1
k

∞

∑
�=0

(2� + 1)eiδ� sin δ�P�(cos θ)

(2.34)

It is again apparent that the effect of the scattering potential is to shift the
phase of each outgoing partial wave.

The differential elastic scattering cross section can be written as

(
dσ

dΩ

)

el
= f ∗(θ) f (θ) =

1
4k2

∣
∣∣
∣
∣

∞

∑
�=0

(2� + 1)
(

1 − e2iδ�

)
P�(cos θ)

∣
∣∣
∣
∣

2

=
1
k2

∣
∣∣
∣
∣

∞

∑
�=0

(2� + 1) sin δ�P�(cos θ)

∣
∣∣
∣
∣

2

(2.35)
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The interference terms involving different functions P�(cos θ) generally give
rise to nonisotropic angular distributions. Using the orthogonality relation for
Legendre polynomials,
∫

dΩ
P�(cos θ)P�′ (cos θ)dΩ =

4π

2� + 1
δ��′ (2.36)

where δ��′ denotes a Kronecker symbol, we obtain for the total elastic scatter-
ing cross section

σel =
∫ ( dσ

dΩ

)

el
dΩ =

∞

∑
�=0

σel,� (2.37)

σel,� =
π

k2 (2� + 1)
∣
∣∣1 − e2iδ�

∣
∣∣
2

=
4π

k2 (2� + 1) sin2 δ� (2.38)

For the special case of s-waves (� = 0) we find
(

dσ

dΩ

)

el,0
=

1
k2 sin2 δ0 (2.39)

σel,0 =
4π

k2 sin2 δ0 (2.40)

and the angular distribution becomes isotropic (that is, independent of θ). It
follows that the cross section is entirely determined by the phase shifts δ�. It
is also apparent that δ� → 0 as V(r) → 0 for all �.

So far we assumed that at least one particle participating in the interaction
is uncharged. If both nuclei are charged, then we have to replace the phase
δ� for the short-range nuclear potential by δ� + σ�, where σ� is the phase shift
due to the long-range Coulomb potential. The Coulomb phase shift can be
calculated analytically (see Eq. (D.13)). We write

1 − e2i(δ�+σ�) =
(

1 − e2iσ�

)
+ e2iσ�

(
1 − e2iδ�

)
(2.41)

and the scattering amplitude can be expressed as

f (θ) =
i

2k

∞

∑
�=0

(2� + 1)
[
1 − e2i(δ�+σ�)

]
P�(cos θ)

=
i

2k

∞

∑
�=0

(2� + 1)
(

1 − e2iσ�

)
P�(cos θ)

+
i

2k

∞

∑
�=0

(2� + 1)e2iσ�

(
1 − e2iδ�

)
P�(cos θ) (2.42)

The first term describes the scattering from a pure Coulomb field (Rutherford
scattering). The second term contains the phase shifts δ� and σ�. It is obvi-
ous that the cross section will exhibit interference terms corresponding to the
scattering from both the nuclear and the Coulomb potential.
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2.3.6
Reaction Cross Section

We can now consider the possibility that a nuclear reaction occurs, that is, any
process which is different from elastic scattering (for example, particle cap-
ture or inelastic scattering). A specific set of conditions (momentum, quantum
numbers, and so on) for the outgoing particle is called a channel. A more pre-
cise definition of this concept will be given in later sections. Elastic scattering,
inelastic scattering to a final excited state x, inelastic scattering to a different
excited final state y, and so on, all correspond to different channels.

Suppose first that elastic scattering is the only possible process. In that case
as many particles enter as exit from an imaginary sphere surrounding the tar-
get nucleus (Fig. 2.5a). As a result, the integral over the current density jT,
corresponding to the total wave function ψT for elastic scattering, is zero
∫

dΩ
jT dΩ = 0 (2.43)

Suppose now that nonelastic processes occur as well. In that case a fraction
of the incoming particles will either change kinetic energies, for example, in
inelastic scattering (n,n’), or change identity, for example, in particle capture
(n,γ). A number of incoming particles will disappear and, consequently, there
will be a net current of particles into the sphere (Fig. 2.5b). The rate of dis-
appearance from the elastic channel corresponds to the reaction cross section.
Formally, we can write

σre =
r2

jb

∫

dΩ
jT dΩ (2.44)

Recall that the wave function ψT, corresponding to the current density jT, rep-
resents the wave function for elastic scattering only. In the following, an ex-
pression is derived which relates the reaction cross section to the phase shifts.
We start from the quantum mechanical expression for the current density
(Messiah 1999),

j =
�

2mi

(
ψ∗ ∂ψ

∂r
− ∂ψ

∂r

∗
ψ

)
(2.45)

From this expression we find for the incoming plane wave eikz

jb =
�

2mi

[
e−ikz(eikzik) − e−ikz(−ik)eikz

]
=

�k
m

(2.46)

Substitution of the total elastic scattering wave function ψT (see Eq. (2.32)) into
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Fig. 2.5 Representation of the current density if (a) scattering is the
only possible process, and (b) both elastic and nonelastic processes
occur. In part (a) the same number of particles enter and exit from an
imaginary sphere surrounding the target nucleus and the integral over
the total current density is zero. In part (b) a number of incoming parti-
cles disappear because of reactions and thus there is a net current of
particles into the sphere.

Eq. (2.45) yields, after some algebra,

jT =
�

4mkr2






∣
∣
∣∣
∣

∞

∑
�=0

(2� + 1)i�+1ei�π/2P�(cos θ)

∣
∣
∣∣
∣

2

−
∣
∣
∣∣
∣

∞

∑
�=0

(2� + 1)i�+1e2iδ�e−i�π/2P�(cos θ)

∣
∣
∣∣
∣

2




(2.47)

With the orthogonality relation for Legendre polynomials (see Eq. (2.36)), one
finds

σre =
∞

∑
�=0

σre,� (2.48)

σre,� =
π

k2 (2� + 1)
(

1 −
∣∣
∣e2iδ�

∣∣
∣
2
)

(2.49)

We require |e2iδ� |2 ≤ 1 since otherwise σre becomes negative. In general, the
phase shift δ� will be a complex number, that is, δ� = δ�1

+ iδ�2 . For the special
case that δ� is real, one finds |e2iδ� |2 = 1. In other words, reactions cannot
occur and elastic scattering is the only possible process. The allowed range of
values for σre,� and σel,� is represented by the shaded region in Fig. 2.6. Recall
that the expression for the elastic scattering cross section (see Eq. (2.38)) holds
only for uncharged particles. The maximum elastic scattering cross section
occurs at e2iδ� = −1, yielding

σmax
el,� =

4π

k2 (2� + 1) and σre,� = 0 (2.50)

The maximum reaction cross section is obtained for e2iδ� = 0, leading to

σmax
re,� = σel,� =

π

k2 (2� + 1) (2.51)
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Fig. 2.6 Upper and lower limit of elastic scattering cross section for
a given reaction cross section. Values inside the shaded region are
allowed, while those outside the shaded region are impossible. The
quantity e2iδ� is real for all points located on the solid curve.

It follows that elastic scattering may occur without any reactions taking place,
but reactions can never occur without elastic scattering being present. When
the reaction cross section is at maximum, its value is equal to the elastic scat-
tering cross section.

Traditionally, the theory of scattering has been applied in order to study the
nature of the nuclear potential. Usually, the differential cross section dσ/dΩ is
given by experiment and it is desired to find the corresponding potential V(r).
The experimental phase shifts δ� are obtained by fitting the cross section for-
mula to experimental angular distribution data, provided that a satisfactory
fit is achieved by means of a small number of terms in the partial wave expan-
sion. This procedure is repeated for several values of the incident energy. One
then attempts to find a potential V(r), which reproduces the observed phase
shifts, by solving the Schrödinger equation numerically for each value of �.
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2.4
Scattering by Simple Potentials

The cross section is determined by the phase shifts. The latter can be obtained
from the wave function in the nuclear region that is generated by an explicit
nuclear potential. In this section, we will consider the case of s-wave (� = 0)
scattering of neutral and spinless particles. Two simple potentials will be dis-
cussed explicitly: (i) an attractive square-well potential, and (ii) an attractive
square-well plus square-barrier potential. Although very simple, these mod-
els contain qualitatively most of the physics that will be encountered later in
the discussion of far more complex situations. We will specifically calculate
the phase shifts δ0 and the intensity of the wave function in the region of the
potential by solving the radial Schrödinger equation. It will be seen how the
properties of the potential determine the phase shift and the wave function
intensity.

2.4.1
Square-Well Potential

The potential is displayed in Fig. 2.7. For � = 0 the radial equation becomes
(Appendix A.1)

d2u
dr2 +

2m
�2 [E − V(r)]u = 0 (2.52)

For a constant potential, V(r) = const, we obtain with k̂2 = (2m/�2)(E − V)
the radial equation

d2u
dr2 + k̂2u = 0 (2.53)

The general solution in terms of complex exponentials is given by

u = αeik̂r + βe−ik̂r (2.54)

We will consider the two regions r < R0 and r > R0 separately. For r < R0 we
have E − V > 0 and, therefore,

uin = A′eiKr + B′e−iKr, K2 =
2m
�2 (E + V0)

= A′[cos(Kr) + i sin(Kr)] + B′[cos(Kr) − i sin(Kr)] (2.55)

At the boundary we require uin(0) = 0, otherwise the radial wave function
u(r)/r will diverge at r = 0. It follows immediately that uin(0) = A′ + B′ = 0
and the cosine terms in Eq. (2.55) disappear. Hence

uin = A′i sin(Kr) − A′[−i sin(Kr)] = 2iA′ sin(Kr) = A sin(Kr) (2.56)
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Fig. 2.7 Three-dimensional square-well potential of radius R0 and po-
tential depth V0. The horizontal line indicates the total particle energy
E. For the calculation of the transmission coefficient, it is necessary
to consider a one-dimensional potential step that extends from −∞ to
+∞. See the text.

where we used the definition A ≡ 2iA′. In the region r > R0, one finds again
E − V > 0, and the general solution is given by

uout = C′eikr + D′e−ikr, k2 =
2m
�2 E

= C′[cos(kr) + i sin(kr)] + D′[cos(kr) − i sin(kr)]

= i[C′ − D′] sin(kr) + [C′ + D′] cos(kr) = C′′ sin(kr) + D′′ cos(kr)
(2.57)

It is convenient to rewrite this expression. The sum of sin x and cos x gives
again a sine function which is shifted along the x-axis. Using C′′ = C cos δ0
and D′′ = C sin δ0 we can formally write

uout = C [sin(kr) cos δ0 + cos(kr) sin δ0] (2.58)

With sin(x ± y) = sin x cos y ± cos x sin y one finds

uout = C sin(kr + δ0) (2.59)

The solutions uin (see Eq. (2.56)) and uout (see Eq. (2.59)) will be used below.

Transmission probability

We are interested in the transmission probability from the outer to the inner
region. It is convenient to start from the wave function solutions in terms of
complex exponentials (see Eqs. (2.55) and (2.57)). It should be pointed out that
for real potentials, the transmission probability is only defined for the one-
dimensional case (see, for example, Messiah 1999). Instead of considering the
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three-dimensional potential shown in Fig. 2.7, we will assume that the par-
ticles are incident from the right-hand side, that a one-dimensional potential
steps down at a distance of x = R0 by an amount of V0, and that the potential
step extends to −∞. We obtain for the one-dimensional radial wave functions

uin = A′eiKx + B′e−iKx (2.60)

uout = C′eikx + D′e−ikx (2.61)

Although we do not have to consider the time-dependent Schrödinger equa-
tion here, it is instructive to investigate the full time-dependent solution,
which is obtained by multiplying the complex exponentials by the factor e−iωt,
with ω = E/�. It can easily be seen, for example, that the second term of uin
corresponds to a plane wave that propagates into the negative x direction.
The first and second terms of uout correspond to plane waves reflected from
the boundary at R0 and moving toward R0, respectively. We are interested in
the scattering process. The particle density of incident projectiles, for exam-
ple, is given by |D′e−ikx|2 = |D′|2. The current density (or flux) of incident
particles is given by the product of particle density and velocity in the outer
region, jinc = vout|D′|2 (Section 2.3.2). Similarly, one finds for the transmitted
or reflected particle flux jtrans = vin|B′ |2 or jrefl = vout|C′|2, respectively. It
follows for the probability that an individual particle will be transmitted from
the outer to the inner region

T̂ =
jtrans

jinc
=

vin|B′ |2
vout|D′|2 =

K|B′ |2
k|D′|2 (2.62)

The quantity T̂ is called the transmission coefficient.
The continuity condition requires that the wave functions and their deriva-

tives are continuous at the boundary x = R0,

(uin)R0
= (uout)R0

(2.63)
(

duin

dx

)

R0

=
(

duout

dx

)

R0

(2.64)

We obtain

A′eiKR0 + B′e−iKR0 = C′eikR0 + D′e−ikR0 (2.65)
K
k

(
A′eiKR0 − B′e−iKR0

)
=
(

C′eikR0 − D′e−ikR0
)

(2.66)

Setting A′ = 0, since there is no plane wave approaching the boundary R0
from the left-hand side, and eliminating C′ yields

K
k

(
−B′e−iKR0

)
= B′e−iKR0 − 2D′e−ikR0 or

B′

D′ = 2
e−ikR0

e−iKR0

k
K + k

(2.67)
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For the transmission coefficient we find with Eqs. (2.62) and (2.67)

T̂ =
K
k
|B′ |2
|D′|2 = 4

kK
(K + k)2 = 4

2m
�2

√
(E + V0)E

[√
2m
�2 (E + V0) +

√
2m
�2 E

]2 (2.68)

We will use this result later in connection with the continuum theory of nu-
clear reactions (Section 2.6).

Phase shift and resonance phenomenon

The quantity T̂ describes the transmission probability from the right- to the
left-hand side in Fig. 2.7. We have considered so far only the amplitude ratio
of two waves: one approaching the boundary R0 from the right, the other
one receding from R0 to the left. We will now consider the full radial wave
function solution for the three-dimensional case. We start from Eqs. (2.56) and
(2.59),

uin = A sin(Kr) (2.69)

uout = C sin(kr + δ0) (2.70)

From the continuity condition (see Eqs. (2.63) and (2.64)) one finds

A sin(KR0) = C sin(kR0 + δ0) (2.71)

AK cos(KR0) = Ck cos(kR0 + δ0) (2.72)

First, we divide both equations to solve for the phase shift δ0. The result is

1
K

tan(KR0) =
1
k

tan(kR0 + δ0) (2.73)

δ0 = −kR0 + arctan
[

k
K

tan(KR0)
]

(2.74)

This expression can be rewritten in terms of the total energy as

δ0 = −
√

2mE
�

R0 + arctan

[√
E

E + V0
tan

(√
2m(E + V0)

�
R0

)]

(2.75)

It can be seen that the phase shift is determined by the properties of the po-
tential (R0,V0) and the properties of the particle (E,m). For V0 → 0 one finds
δ0 → 0, as already pointed out above. The cross section can be calculated sim-
ply from the phase shift (see Eq. (2.40)). Second, one can solve for |A|2/|C|2,
that is, the ratio of wave function intensities in the interior (r < R0) and exte-
rior regions (r > R0). By squaring and adding Eqs. (2.71) and (2.72) we obtain

|A|2
|C|2 =

k2

k2 + [K2 − k2] cos2(KR0)
=

E

E + V0 cos2
(√

2m(E+V0)
�

R0

) (2.76)

where the identity sin2(kr + δ) + cos2(kr + δ) = 1 has been used.
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Plots of |A|2/|C|2 and δ0 versus E for the scattering of a neutron by a square-
well potential are shown in Fig. 2.8. A potential depth of V0 = 100 MeV and a
potential radius of R0 = 3 fm are assumed. The quantity |A|2/|C|2 measures
the relative intensity of the wave function in the interior region r < R0. It
is apparent that |A|2/|C|2 oscillates between extreme values. This remark-
able behavior is referred to as resonance phenomenon. At certain discrete en-
ergies Ei (resonance energies) the probability for finding the particle inside
the boundary r < R0 is at maximum. It can also be seen that each resonance
shifts the phase δ0 by some amount. The resonances occur at energies at which
cos2(KR0) = 0 in Eq. (2.76), that is, KR0 = (n + 1/2)π. Hence

K =

(
n + 1

2

)
π

R0
=

2π

λin
(2.77)

λin =
2R0(

n + 1
2

) =
R0(

n
2 + 1

4

) (2.78)

with λin the wavelength in the interior region. Since (n/2 + 1/4) = 1
4 , 3

4 , 5
4 ,. . .

it follows that resonances occur when precisely (n/2 + 1/4) wavelengths fit
into the interior region. At those wavelengths, the derivative of the interior
wave function (a sine function; see Eq. (2.69)) at the radius R0 is zero. As can
be seen in Fig. 2.9, n also corresponds to the number of wave function nodes
in the region r < R0. For the resonance energies we obtain from Eq. (2.77)

En =
�2

2m
π2

R2
0

(
n +

1
2

)2

− V0 (2.79)

In the above example of neutron scattering by a square-well potential of depth
V0 = 100 MeV and radius R0 = 3 fm, one has (�π)2/(2mR2

0) = 22.648 MeV. We
obtain

E2 = 41.5 MeV, E3 = 177.4 MeV, E4 = 358.6 MeV, . . . (2.80)

No physical solution exists for n = 0 or 1, that is, for the potential depth chosen
it is not possible to match the interior and exterior wave functions by fitting
either 1/4 or 3/4 wavelengths into the region r < R0. In other words, there
are no solutions with either no node or only one node in the interior region.

The results obtained from the above formalism are illustrated qualitatively
in Fig. 2.10 showing radial wave functions for different depths of an attractive
square-well potential. The bombarding energy is low (that is, the wavelength
is large compared to R0) and held constant. In part (a) the potential depth
is zero (free particle) and the wave function is given by a sine function. In
part (b), the potential depth increases and, therefore, the wavelength in the
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Fig. 2.8 (a) Ratio of wave function intensities in the interior (r < R0)
and exterior (r > R0) region, |A|2/|C|2, and (b) phase shift δ0
versus total energy E for the scattering of neutrons (2m/�2 =
0.0484 MeV−1fm−2) by a square-well potential (Fig. 2.7). For the po-
tential depth and the radius, values of V0 = 100 MeV and R0 = 3 fm,
respectively, are assumed. The curves show the resonance phenome-
non.

interior decreases according to

λin

2π
=

1
K

=
1

√
(2m/�2)(E + V0)

, λin =
h

√
2m(E + V0)

(2.81)

The values and derivatives of the inside and outside wave functions can only
be matched by shifting the outside solution inward. This is the physical mean-
ing of a phase shift. If the potential depth is increased further, the wavelength
in the interior becomes smaller and the exterior wave must shift inward, until
exactly 1/4 wavelength fit into the interior region. When this happens, the de-
rivative of the wave function at R0 becomes zero corresponding to a maximum
amplitude inside the potential region. The system is in resonance as shown in
part (c). A further increase in the potential depth results in: a decreasing am-
plitude in the interior (part d); a minimum interior amplitude because of poor
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Fig. 2.9 Two simplest solutions for the radial wave function inside the
square-well potential. Both solutions give rise to a resonance since the
derivative of the wave function at the potential radius R0 is zero. The
solutions are characterized by the number of wave function nodes n in
the interior region (r < R0). They are shown here for illustrative pur-
poses. Note that neither of these functions represent physical solutions
for the conditions adopted in Fig. 2.8.

wave function matching conditions (part e); and the appearance of the first
node in the interior region (part f).

A plot of |A|2/|C|2 versus potential depth V0 is shown in Fig. 2.11. A total
energy of E = 1 MeV and a potential radius of R0 = 3 fm are assumed. Solving
Eq. (2.79) for the potential depth V0 yields

V0,n =
�2

2m
π2

R2
0

(
n +

1
2

)2

− E (2.82)

Thus, we expect resonances to occur at V0,0 = 4.7 MeV, V0,1 = 49.9 MeV, V0,2
= 140.5 MeV, V0,3 = 276.4 MeV, V0,4 = 457.6 MeV, and so on (with n = 0, 1, 2,
3, 4 nodes in the interior region, respectively), in agreement with the results
displayed in Fig. 2.11.

2.4.2
Square-Barrier Potential

In the following we will again consider the simple case of s-wave (� = 0)
scattering. In addition to an attractive square well, the potential displays a
repulsive square barrier. This is a simple model for a nuclear reaction if a
barrier is present. For example, the Coulomb potential provides a barrier in
reactions involving charged particles. By solving the Schrödinger equation
explicitly, we will find the probability for transmission through the potential
barrier and the intensity of the wave in the interior region. The potential is
displayed in Fig. 2.12. We will consider the three regions I, II, III separately.
In each region, the potential is constant and, assuming � = 0, we again obtain
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Fig. 2.10 Square-well potential (left) and corresponding radial wave
function solutions (right) for different potential depths. For a given
depth of the potential, the values and derivatives of the inside and
outside wave functions must be matched by shifting the outside so-
lution. The phase shift is a measure for this displacement. In part (c)
the derivative of the wave function at R0 is zero and the system is in
resonance.

with k̂2 = (2m/�2)(E − V) the radial equation (Appendix A.1)

d2u
dr2 + k̂2u = 0 (2.83)

For region I, we have E − V > 0 and, therefore,

uI = AeiKr + Be−iKr, K2 =
2m
�2 (E + V0)

= A′ sin(Kr) (2.84)

The solution is the same as the one obtained in the study of the square-well
potential (see Eq. (2.56)). In region II, we have E − V < 0 and kII becomes
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Fig. 2.11 Plot of |A|2/|C|2 versus potential depth V0 for the scattering
of neutrons by a square-well potential. For the total energy and the
potential radius, values of E = 1 MeV and R0 = 3 fm are assumed. The
maxima show resonances corresponding to n = 0, 1, 2, 3, and 4 radial
wave function nodes in the interior region.

imaginary. The solution can be written in terms of real exponentials as

uII = CeikIIr + De−ikIIr, k2
II =

2m
�2 (E − V1) = i2

2m
�2 (V1 − E) ≡ i2κ2

= Ce−κr + Deκr (2.85)

In region III, we have again E − V > 0, and the general solution is given by

uIII = Feikr + Ge−ikr, k2 =
2m
�2 E

= F′ sin(kr + δ0) (2.86)

The solution is the same as the one obtained in the study of the square-well
potential (see Eq. (2.59)).

Transmission through the barrier

First, we are interested in the transmission probability through the potential
barrier. It is convenient to start from the wave function solutions in terms
of complex exponentials (see Eqs. (2.84)–(2.86)). We must again perform the
calculation for the one-dimensional case. Instead of considering the three-
dimensional potential shown in Fig. 2.12, we will assume that the particles are
incident from the right-hand side, that they encounter at a distance of x = R1
a one-dimensional step barrier of height V1, that at a distance of x = R0 the
potential steps down to −V0, and that this potential continues to −∞. We
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Fig. 2.12 Three-dimensional square-well potential of radius R0 and
potential depth V0 and a repulsive square-barrier potential of thickness
R1 − R0 and height V1. The total particle energy (horizontal line) is
smaller than the barrier height, E < V1. For the calculation of the
transmission coefficient, it is necessary to consider a one-dimensional
potential that extends from −∞ to +∞. See the text.

obtain for the one-dimensional radial wave functions

uI = AeiKx + Be−iKx (2.87)

uII = Ce−κx + Deκx (2.88)

uIII = Feikx + Ge−ikx (2.89)

The second term of uI corresponds to a plane wave that propagates into the
negative x direction, whereas the first and second terms of uIII correspond
to plane waves reflected from the barrier and moving toward the barrier, re-
spectively. The transmission coefficient is then given by T̂ = jtrans/jinc =
(K|B|2)/(k|G|2) (see Eq. (2.62)).

The continuity condition (see Eqs. (2.63) and (2.64)) requires that the wave
functions and their derivatives are continuous at the boundaries x = R0 and
x = R1

(uI)R0
= (uII)R0

(uII)R1
= (uIII)R1

(2.90)
(

duI

dx

)

R0

=
(

duII

dx

)

R0

(
duII

dx

)

R1

=
(

duIII

dx

)

R1

(2.91)
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We obtain specifically

AeiKR0 + Be−iKR0 = Ce−κR0 + DeκR0 (2.92)

i
K
κ

(
AeiKR0 − Be−iKR0

)
= −Ce−κR0 + DeκR0 (2.93)

Ce−κR1 + DeκR1 = FeikR1 + Ge−ikR1 (2.94)

− Ce−κR1 + DeκR1 = i
k
κ

(
FeikR1 − Ge−ikR1

)
(2.95)

Adding and subtracting pairs of equations yields

A
(

1 + i
K
κ

)
eiKR0 + B

(
1 − i

K
κ

)
e−iKR0 = 2DeκR0 (2.96)

A
(

1 − i
K
κ

)
eiKR0 + B

(
1 + i

K
κ

)
e−iKR0 = 2Ce−κR0 (2.97)

2DeκR1 = F
(

1 + i
k
κ

)
eikR1 + G

(
1 − i

k
κ

)
e−ikR1 (2.98)

2Ce−κR1 = F
(

1 − i
k
κ

)
eikR1 + G

(
1 + i

k
κ

)
e−ikR1 (2.99)

Elimination of the coefficients C and D, and using the definitions α ≡ 1 + iK/κ

and β ≡ 1 + ik/κ gives

AαeiKR0 + Bα∗e−iKR0 = e−κ(R1−R0)
(

FβeikR1 + Gβ∗e−ikR1
)

(2.100)

Aα∗eiKR0 + Bαe−iKR0 = eκ(R1−R0)
(

Fβ∗eikR1 + Gβe−ikR1
)

(2.101)

Of interest is the transmission coefficient T̂ of a wave incident from the right-
hand side on the potential barrier. Since there is no wave approaching the
barrier from the left-hand side, we set A = 0. We can also eliminate F and
obtain

B
[
α∗β∗eκ∆ − αβe−κ∆

]
= G

[
(β∗)2 − β2

]
e−i(kR1−KR0) = −2i

k
κ

Ge−i(kR1−KR0)

(2.102)

where we used ∆ ≡ R1 − R0. The transmission coefficient is then given by

T̂ =
K
k
|B|2
|G|2 =

4Kk/κ2

|α∗β∗eκ∆ − αβe−κ∆|2
(2.103)

Using the relation sinh2 z = (1/4)(e2z + e−2z)− 1/2 yields after some algebra

T̂ =
Kk

[K + k]2 + [κ2 + K2 + k2 + K2k2/κ2] sinh2(κ∆)
(2.104)
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Fig. 2.13 Transmission coefficient T̂ versus energy E for the scattering
of neutrons by the square-barrier potential shown in Fig. 2.12. The
potential properties are (a) V0 = 100 MeV, V1 = 10 MeV, R0 = 3 fm,
R1 = 8 fm, and (b) V0 = 50 MeV, V1 = 10 MeV, R0 = 3 fm, R1 = 8 fm.
The drastic drop of the transmission coefficient at small energies is
apparent.

In terms of energies one finds explicitly

1
T̂

=
1

√
E(E + V0)

{[
2E + V0 + 2

√
E(E + V0)

]

+
[

E + V0 + V1 +
E(E + V0)

V1 − E

]
sinh2

[√
(2m/�2)(V1 − E) ∆

]}
(2.105)

This result is remarkable since it shows that a particle approaching the po-
tential barrier from the right-hand side can reach the left-hand side even if its
total energy is less than the barrier height. This is referred to as the tunnel effect
and is of central importance for charged-particle reactions in stars, as will be
shown in Chapter 3.

Plots of T̂ versus E for the scattering of neutrons are shown in Fig. 2.13.
The values used are (a) V0 = 100 MeV, V1 = 10 MeV, R0 = 3 fm, R1 = 8 fm,
and (b) V0 = 50 MeV, V1 = 10 MeV, R0 = 3 fm, R1 = 8 fm. It can be seen
that the transmission coefficient drops rapidly with decreasing energy E. It is
also apparent from the absolute magnitude of T̂ that the intensity of the wave
receding from the barrier to the left-hand side is much smaller compared to
the intensity of the wave approaching the barrier from the right-hand side.

Frequently, the case of a low bombarding energy or a thick barrier is of
interest,

κ∆ =
√

2m(V1 − E)
�

(R1 − R0) � 1 (2.106)
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In this case we can approximate the denominator in Eq. (2.103) by

∣
∣
∣α∗β∗eκ∆ − αβe−κ∆

∣
∣
∣
2 ≈

∣
∣
∣α∗β∗eκ∆

∣
∣
∣
2

(2.107)

After some algebra we obtain

T̂ ≈ 4

√
E(E + V0)(V1 − E)

V1(V0 + V1)
e−2κ(R1−R0) (2.108)

The energy dependence of the transmission coefficient is entirely dominated
by the exponential factor. For physically reasonable values of E, V0, and V1,
the coefficient in front of the exponential is of the order of unity. Hence we
find

T̂ ≈ e−(2/�)
√

2m(V1−E)(R1−R0) (2.109)

This important result, which strictly applies to the s-wave (� = 0) scatter-
ing of neutral particles, will be used later in connection with the transmission
through the Coulomb barrier (Section 2.4.3).

Resonances

In the previous section, we derived the transmission probability for a one-
dimensional square-barrier potential. The full radial wave function solution
for the three-dimensional case will now be considered. It is interesting to have
a closer look at the situation. For region I we expect again a resonance phe-
nomenon due to good wave function matching conditions. For region III we
expect again a phase shift in order to match the solutions smoothly at r = R1.
The barrier in region II provides an extra complication. Here, the wave func-
tion uII is given by real exponentials and, depending on the relative magni-
tude of the coefficients C and D, may represent a decreasing, an increasing, or
a more complicated function of the radius r.

As we did in the study of the square-well potential, we will calculate the
energy dependence of the phase shift δ0 and of |A′ |2, the intensity of the wave
in the interior region r < R0. We start from the wave function solutions (see
Eqs. (2.84)–(2.86))

uI = A′ sin(Kr) (2.110)

uII = Ce−κr + Deκr (2.111)

uIII = F′ sin(kr + δ0) (2.112)
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and apply again the continuity condition (see Eqs. (2.63) and (2.64)) to the
boundaries r = R0 and r = R1. It follows that

A′ sin(KR0) = Ce−κR0 + DeκR0 (2.113)

A′ K
κ

cos(KR0) = −Ce−κR0 + DeκR0 (2.114)

Ce−κR1 + DeκR1 = F′ sin(kR1 + δ0) (2.115)

− Ce−κR1 + DeκR1 = F′ k
κ

cos(kR1 + δ0) (2.116)

Solving for δ0 by eliminating A′, F′, C, and D yields

δ0 = −kR1 + arctan

[
k
κ

sin(KR0)
(
e−κ∆ + eκ∆)+ K

κ cos(KR0)
(
eκ∆ − e−κ∆)

sin (KR0) (eκ∆ − e−κ∆) + K
κ cos(KR0) (e−κ∆ + eκ∆)

]

(2.117)

For k → 0 (or E → 0) we obtain δ0 → 0.
The wave intensity in the interior region, |A′|2, is found by eliminating the

constants C, D, and the phase shift δ0. Furthermore, we use the expressions
e2x + e−2x = 4 sinh2 x + 2 and ex − e−x = 2 sinh x. The tedious algebra is not
given here explicitly. The result is

|F′ |2
|A′|2 = sin2(KR0) +

(
K
k

)2

cos2(KR0)

+ sin2(KR0) sinh2(κ∆)
[

1 +
(κ

k

)2
]

+ cos2(KR0) sinh2(κ∆)

[(
K
κ

)2

+
(

K
k

)2
]

+ sin(KR0) cos(KR0) sinh(2κ∆)
[(

K
κ

)
+
(

K
κ

)(κ

k

)2
]

(2.118)

The energy dependence of the quantities |A′|2/|F′|2, |A′|2/(|F′ |2T̂) and δ0
for neutron scattering by a square-barrier potential is shown in Fig. 2.14,
where the transmission coefficient T̂ is obtained from the approximation of
Eq. (2.109). We assume values of V0 = 100 MeV, V1 = 10 MeV, R0 = 3 fm, R1 =
8 fm (dashed lines) and V0 = 50 MeV, V1 = 10 MeV, R0 = 3 fm, R1 = 8 fm (solid
lines). The figure reflects both the effects of the barrier transmission and the
resonance phenomenon. For a potential depth of V0 = 100 MeV, no resonance
occurs over the energy range shown and the plot looks almost identical to the
corresponding part in Fig. 2.13. Consequently, the quantity |A′|2/(|F′ |2T̂) is
almost constant with energy. Furthermore, the phase shift varies smoothly
with energy. For a potential depth of V0 = 50 MeV, on the other hand, the
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interior wave function solution has a large amplitude due to good matching
conditions. The resulting resonance is clearly seen in part (a). The shape of the
resonance is distorted by the barrier transmission coefficient. In part (b), the
effects of the barrier transmission are removed and, consequently, the shape of
the resonance becomes symmetric. It is also evident that the resonance shifts
the phase by a significant amount. This method of removing the transmission
coefficient from the wave function intensity or the cross section is of crucial
importance in nuclear astrophysics, as will be seen in Chapter 3.

A plot of |A′|2/|F′|2 versus potential depth V0 in the region r < R0 is shown
in Fig. 2.15. The graph is obtained for the potential parameters V1 = 10 MeV,
R0 = 3 fm, R1 = 8 fm, and E = 5 MeV. Several resonances are apparent which
become broader with increasing value of V0. By changing V0 we change the
wavelength in the interior region (see Eq. (2.81)). As was the case for the sim-
ple square-well potential (Section 2.4.1), the resonances result from favorable
wave function matching conditions at the boundaries. The first resonance cor-
responds to a wave function with no node in the region r < R0. The second
resonance corresponds to one node, the third resonance to two nodes, and so
on. Comparison to Fig. 2.11 shows that the resonances are much narrower
because of the repulsive square-barrier potential.

As a final example, Fig. 2.16 shows schematically the radial wave functions
for three cases. In part (a) the potential depth is zero. The amplitude of the
wave function in the interior is very small and reflects primarily the trans-
mission through the barrier. In part (b), the amplitude in the interior is at
maximum due to favorable matching conditions. The system is in resonance
with no wave function node in the interior. Part (c) displays the wave function
for the second resonance, showing one node in the interior region.

2.4.3
Transmission Through the Coulomb Barrier

The low-energy s-wave transmission coefficient for a square-barrier potential
(see Eq. (2.109)) can be easily generalized since a potential barrier of arbitrary
shape may be divided into thin slices of width dr. The total s-wave transmis-
sion coefficient is then given by the product of the transmission coefficients
for each slice,

T̂ = T̂1 · T̂2 · . . . · T̂n ≈ exp

[

− 2
�

∑
i

√
2m(Vi − E)(Ri+1 − Ri)

]

−−−→
n large

exp
[
− 2

�

∫ Rc

R0

√
2m[V(r) − E] dr

]
(2.119)
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Fig. 2.14 Energy dependence of the quan-
tities (a) |A′|2/|F′|2, (b) |A′ |2/(|F′|2T̂) and
(c) δ0 for neutron scattering by a square-
barrier potential (Fig. 2.12). The properties
of the potential are V1 = 10 MeV, R0 = 3 fm
and R1 = 8 fm. The dashed and solid lines
are obtained for potential depths of V0 =

100 MeV and V0 = 50 MeV, respectively.
The curves represent the effects of both
the barrier transmission and the resonance
phenomenon. In part (b), the effects of the
barrier transmission are removed and the
shape of the resonance becomes symmetric
(solid line).

For the important case of the Coulomb potential, displayed in Fig. 2.17, we
obtain

T̂ ≈ exp

(

− 2
�

√
2m

∫ Rc

R0

√
Z0Z1e2

r
− E dr

)

(2.120)

with Z0 and Z1 the charge of the projectile and target, respectively. The
quantity R0 is the radius of the square-well potential and defines the height
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Fig. 2.15 Plot of |A′ |2/|F′|2 versus potential depth V0 in the interior
region for the scattering of neutrons by a square-barrier potential. The
curve is calculated for the parameters V1 = 10 MeV, R0 = 3 fm, R1 =
8 fm and E = 5 MeV. The maxima correspond to resonances which
result from favorable wave function matching conditions at the bound-
aries.

of the Coulomb barrier, VC = Z0Z1e2/R0. Numerically, one finds VC =
1.44Z0Z1/R0 (MeV), with R0 in units of femtometers. The quantity Rc is
the distance at which the incoming particle would be reflected classically. It
is referred to as classical turning point and is defined by E = Z0Z1e2/Rc or
E/VC = R0/Rc. The integral in Eq. (2.120) can be solved analytically. Rewrit-
ing the above expression by using the definition of the classical turning point
yields

T̂ ≈ exp

(

− 2
�

√
2mZ0Z1e2

∫ Rc

R0

√
1
r
− 1

Rc
dr

)

(2.121)

Substitution of z ≡ r/Rc gives

T̂ ≈ exp

(

− 2
�

√
2mZ0Z1e2

∫ 1

R0/Rc

√
1

zRc
− 1

Rc
Rc dz

)

= exp

(

− 2
�

√
2m
E

Z0Z1e2
∫ 1

R0/Rc

√
1
z
− 1 dz

)

(2.122)

The result is

T̂ ≈ exp

(

− 2
�

√
2m
E

Z0Z1e2

[

arccos

√
E

VC
−
√

E
VC

(
1 − E

VC

)])

(2.123)
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Fig. 2.16 Schematic representation of radial wave functions (thin solid
lines) for the scattering of neutral particles by a square-barrier potential
(thick solid line) of different potential depths V0. The wave functions
are appropriate for (a) no resonance, (b) the first resonance with no
wave function node in the interior region (r < R0), and (c) the second
resonance with one node in the interior.

For low energies compared to the Coulomb barrier height, E/VC � 1, we use
the expansion arccos

√
x −√x(1 − x) ≈ π/2 − 2

√
x + x3/2/3 and obtain

T̂ ≈ exp

(

− 2
�

√
2m
E

Z0Z1e2

[
π

2
− 2

√
E

VC
+

1
3

(
E

VC

)3/2
])

= exp

(

−2π

�

√
m
2E

Z0Z1e2

[

1 +
2

3π

(
E

VC

)3/2
]

+
4
�

√
2mZ0Z1e2R0

)

(2.124)

The first term in the exponential is larger than the third term by a factor of
(π/4)

√
VC/E and therefore dominates the transmission coefficient. The third

term vanishes in the limit R0 → 0 and represents a correction due to a fi-
nite radius to which the projectile must penetrate. The larger the radius R0,
the smaller the penetration distance (Fig. 2.17) and the larger the transmis-
sion coefficient will become. The second term represents a correction factor to
the first term when the energy becomes a significant fraction of the Coulomb
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Fig. 2.17 Attractive nuclear square-well
potential (r < R0) plus repulsive Coulomb
potential (r > R0), shown as thick solid line.
The transmission coefficient can be calcu-
lated analytically by dividing the Coulomb
barrier of height VC = Z1Z2e2/R0 into
infinitesimally thin square-barrier poten-
tials. The radius Rc at which the total parti-
cle energy E (thin solid line) is equal to the

Coulomb potential, E = Z1Z2e2/Rc, is re-
ferred to as the classical turning point. The
thick dashed line indicates a small negative
(attractive) potential Us that results from
the polarization of the electron–ion plasma
(electron screening), giving rise to a modifi-
cation of both the Coulomb potential and the
energetics of the reaction (Section 3.2.6).

barrier height. The leading term of the s-wave Coulomb barrier transmission
coefficient for small energies compared to the Coulomb barrier height,

T̂ ≈ exp
(
−2π

�

√
m
2E

Z0Z1e2
)
≡ e−2πη (2.125)

is called the Gamow factor and will play an important role in the discussion of
thermonuclear reaction rates for charged particles (Section 3.2.1). The quantity
η is the Sommerfeld parameter. Numerically, we find

2πη = 0.989534Z0Z1

√
1
E

M0M1

M0 + M1
(2.126)

where the energy E is in MeV and the relative atomic masses Mi are in units
of u.
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2.5
Theory of Resonances

2.5.1
General Aspects

Up to now we have discussed wave function intensities, phase shifts, and
transmission probabilities for simple nuclear potentials. In the following, the
resulting cross sections will be considered. Initially, we will restrict ourselves
again to the case of s-wave scattering of neutral particles, that is, the complica-
tions of the Coulomb and centripetal barriers are disregarded. The total elastic
scattering and reaction cross sections are then given by Eqs. (2.40) and (2.49),

σel,0 =
π

k2

∣
∣
∣1 − e2iδ0

∣
∣
∣
2

=
4π

k2 sin2 δ0 (2.127)

σre,0 =
π

k2

(
1 −

∣∣
∣e2iδ0

∣∣
∣
2
)

(2.128)

The cross sections are entirely determined by the phase shift δ0.
It is interesting to plot the total elastic scattering cross sections for the poten-

tial models considered in Sections 2.4.1 and 2.4.2. They are shown in Fig. 2.18
for (a) a square-well potential with R0 = 3 fm, V0 = 100 MeV; (b) a square-
barrier potential with R0 = 3 fm, R1 = 8 fm, V0 = 100 MeV, V1 = 10 MeV; and
(c) a square-barrier potential with R0 = 3 fm, R1 = 8 fm, V0 = 50 MeV, V1 =
10 MeV. We expect resonances in parts (a) and (c), as is apparent from Figs. 2.8
and 2.14. However, a resonance is clearly observed only in Fig. 2.18c. And
even in this case the resulting shape of the total elastic scattering cross section
looks complicated.

Up to now we considered single-particle potentials. The spacing of reso-
nances, referred to as single-particle resonances, calculated by these models
amounts to many MeV. However, experiments performed since the 1930s fre-
quently showed closely spaced resonances (sometimes a few keV or less apart)
of very narrow widths. For example, Fig. 2.19 shows the experimental elas-
tic scattering cross section of neutrons on 16O. In contrast to our theoretical
results obtained so far, a very complicated structure consisting of several res-
onances with different widths is clearly observed. The solid line in Fig. 2.19
represents a calculation using a single-particle potential. It reproduces only
one of the many resonances shown. Although some observed resonances can
indeed be described by single-particle potentials, in the vast majority of cases
the single-particle picture is clearly not appropriate for the explanation of the
observed rapid cross section variations.

At this point we suspect that the interactions of many nucleons inside the
nucleus are complicated and cannot be expressed in terms of a single radial
wave function generated by a single-particle potential. In the following, we
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Fig. 2.18 Elastic scattering cross sections for s-wave neutrons ver-
sus energy for the simple potentials discussed in Sections 2.4.1
and 2.4.2: (a) square-well potential with R0 = 3 fm, V0 = 100 MeV;
(b) square-barrier potential with R0 = 3 fm, R1 = 8 fm, V0 = 100 MeV,
V1 = 10 MeV; (c) square-barrier potential with R0 = 3 fm, R1 = 8 fm,
V0 = 50 MeV, V1 = 10 MeV. A resonance is clearly observed only in
part (c).

will develop a different model in order to describe a nuclear resonance in gen-
eral terms without using an explicit assumption for the nuclear potential. In
fact, a specific assumption regarding the many-particle nuclear potential may
even be undesirable since at this point neither the nuclear forces between the
nucleons nor their motion in the nuclear interior are precisely known.

2.5.2
Logarithmic Derivative, Phase Shift, and Cross Section

Since we will not make reference to a specific nuclear potential, this model will
not be able to predict the absolute magnitude of cross sections. In fact, most
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Fig. 2.19 Experimental total cross section for the elastic scattering
16O(n,n)16O (data points) and calculated elastic scattering cross sec-
tion using a (Woods–Saxon) single-particle potential (solid line). The
potential reproduces only one of the observed resonances but can-
not account for the entire observed structure. Reprinted with permis-
sion from G. D. Westin and J. L. Adams, Phys. Rev. C, Vol. 4, p. 363
(1972). Copyright (1972) by the American Physical Society.

resonance theories reformulate the cross sections in terms of known quantities
of the nuclear exterior (penetration and shift factors) and unknown quantities
of the nuclear interior (reduced widths). Our goal is to predict relative cross
sections “near” a resonance. The only assumptions we make regarding the
nuclear potential is the existence of a relatively well-defined spherical nuclear
surface at r = R and that the projectile and target have no nuclear interaction
outside of this radius.

At this boundary the interior and exterior wave functions and their deriva-
tives have to be matched,

uin
� (R) = uout

� (R) and

(
duin

� (r)
dr

)

r=R

=

(
duout

� (r)
dr

)

r=R

(2.129)

By dividing both expressions and by introducing a dimensionless quantity,
called the logarithmic derivative at the boundary,

f� ≡ R
(

1
u�(r)

du�(r)
dr

)

r=R
= R

(
d ln u�(r)

dr

)

r=R
(2.130)

we can rewrite the conditions of Eq. (2.129) as

f�(uin
� ) = f�(uout

� ) (2.131)

In other words, the calculation of f� with uin
� and uout

� must yield the same
value. Obviously, the quantity f is related to the slope of the wave function at
the radius r = R.
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We start from the expression for the total wave function in the exterior re-
gion r > R (see Eq. (2.32)). For s-waves (� = 0) it reduces to

ψT,out = Aeikr + Be−ikr, k2 =
2mE
�2

= − i
2kr

e2iδ0eikr +
i

2kr
e−ikr =

i
2kr

(
e−ikr − e2iδ0eikr

)

=
1

2kr
eiδ0
[
e−i(kr+δ0) − ei(kr+δ0)

]
=

1
kr

eiδ0 sin(kr + δ0) (2.132)

where the first expression (Aeikr + Be−ikr) generally holds in the force-free re-
gion (Eqs. (2.57) and (2.86); see also Appendix A.1). Recall the meaning of the
above equation. The outgoing spherical wave eikr is multiplied by a factor e2iδ0

which effectively shifts the wave by an amount of δ0.
As already implied in Sections 2.3.3 and 2.3.4, for the special case of s-waves,

Eq. (2.32) (and thus Eq. (2.132)) is not only valid at large distances but applies
to all distances r > R. Furthermore, the spherical harmonic for � = 0 is
constant (see Eq. (A.9)) and, therefore, the total wave function is given by the
radial wave function

ψT,out =
i

2kr

(
e−ikr − e2iδ0eikr

)
=

uout(r)
r

(2.133)

The cross section is determined by the phase shift δ0. We will first find a rela-
tionship between δ0 and f0 and will then express the cross section in terms of
f0. From Eqs. (2.130) and (2.133) one obtains

f0

R
=
(

1
uout(r)

duout(r)
dr

)

r=R
=

−ike−ikR − ike2iδ0 eikR

e−ikR − e2iδ0eikR (2.134)

Solving for e2iδ0 gives

e2iδ0 =
f0 + ikR
f0 − ikR

e−2ikR (2.135)

For the elastic scattering cross section (see Eq. (2.127)) we find

σel,0 =
π

k2

∣
∣
∣∣1 −

f0 + ikR
f0 − ikR

e−2ikR
∣
∣
∣∣

2

=
π

k2

∣
∣
∣∣e

2ikR − f0 + ikR
f0 − ikR

∣
∣
∣∣

2

=
π

k2

∣
∣∣
∣−

2ikR
f0 − ikR

+ e2ikR − 1
∣
∣∣
∣

2

=
π

k2

∣∣Ares + Apot
∣∣2 (2.136)

with

Ares = − 2ikR
f0 − ikR

and Apot = e2ikR − 1 (2.137)
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It can be seen that Ares has a maximum if f0 = 0, consistent with our iden-
tification of resonances as a slope of zero for the radial wave function at the
boundary r = R.

Similarly, using f0 = Re f0 + i Im f0 = g + ih, one obtains for the reaction
cross section (see Eq. (2.128))

σre,0 =
π

k2

(

1 −
∣∣
∣
∣

f0 + ikR
f0 − ikR

e−2ikR
∣∣
∣
∣

2
)

=
π

k2

[
1 −

(
g + ih + ikR
g + ih − ikR

)(
g − ih − ikR
g − ih + ikR

)]

=
π

k2
−4hkR

g2 + h2 − 2hkR + k2R2 =
π

k2
−4kR Im f0

(Re f0)2 + (Im f0 − kR)2 (2.138)

Only Ares depends on the interior region r < R through f0. Consequently,
only this term can give rise to resonances and Ares is called resonance scattering
amplitude. The term Apot can be interpreted as follows. Suppose that f0 → ∞.
In that case Ares = 0. From the definition of f0 (see Eq. (2.130)) this implies
u(R) = 0 and, therefore, an infinitely high potential for r < R (that is, the
sphere of radius R is impenetrable). Thus, the quantity Apot is called hard-
sphere potential scattering amplitude. Note also that Im f0 ≤ 0; otherwise σre,0
becomes negative. For the special case that f0 is real (Im f0 = 0), the reaction
cross section disappears, σre,0 = 0. Therefore, f0 must be complex for reactions
to occur.

It is also interesting to consider the elastic scattering phase shift δ0. From
Eq. (2.135) one finds

2iδ0 = ln( f0 + ikR) − ln( f0 − ikR) − 2ikR (2.139)

Assuming Im f0 = 0 (or σre,0 = 0) we find by using the identity ln(a + ib) =
(1/2) ln(a2 + b2) + i arctan(b/a)

δ0 =
1
2i

[
1
2

ln
(

f 2
0 + k2R2

)
+ i arctan

(
kR
f0

)]

− 1
2i

[
1
2

ln
(

f 2
0 + k2R2

)
+ i arctan

(−kR
f0

)]
− kR

= arctan
(

kR
f0

)
− kR = β0 + ϕ0 (2.140)

with

β0 = arctan
(

kR
f0

)
and ϕ0 = −kR (2.141)

The phase shift δ0 is expressed as a sum of two terms. The first term, β0,
depends on the scattering potential through f0 and can give rise to resonances.
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The second term, ϕ0, is independent of the scattering potential. It corresponds
to the phase shift for hardsphere scattering, since δ0 = ϕ0 for f0 → ∞ (or
u(R) = 0).

2.5.3
Breit–Wigner Formulas

The logarithmic derivative at the boundary, f0, has to be known in order to cal-
culate σel,0 and σre,0. For the derivation of f0 we need to make some assump-
tions regarding the wave function in the nuclear interior (r < R). Remember
that the general solution with constant wave number K in the interior (see
Eqs. (2.55) and (2.84))

uin = AeiKr + Be−iKr (2.142)

only applies for the simple assumption of a constant potential V(r) = const
(Section 2.4). Clearly, the actual nuclear potential will be rather complicated
since for r < R the wave function of the incident particle will depend on the
variables of all the other nucleons involved. Nevertheless, we will approxi-
mate the interior wave function, in the closest vicinity of the nuclear boundary
only, by the above expression.

The complex amplitudes A and B depend on the properties of the nuclear
system. We have to allow for a phase difference ζ between incoming (e−iKr)
and outgoing (eiKr) spherical waves. Furthermore, one has to account for the
possibility that the particle is absorbed in the nuclear interior due to reaction
processes, that is, the amplitude of the outgoing wave eiKr will generally be
smaller than the amplitude of the incoming wave e−iKr. We start with the
ansatz

A = Be2iζe−2q (2.143)

where both ζ and q are real numbers. We also require q ≥ 0 since no more
particles can return than entered the nucleus originally. From Eqs. (2.142) and
(2.143) one finds

uin = Be2iζe−2qeiKr + Be−iKr =
B
2

[
e−i(Kr+ζ+iq) + ei(Kr+ζ+iq)

]
2e(iζ−q)

= 2Be(iζ−q) cos(Kr + ζ + iq) (2.144)

The logarithmic derivative of the radial wave function must be continuous at
r = R. Substitution of Eq. (2.144) into Eq. (2.130) yields

f0 = R
(

1
uin(r)

duin(r)
dr

)

r=R
= R

−2Be(iζ−q)K sin(KR + ζ + iq)
2Be(iζ−q) cos(KR + ζ + iq)

= −KR tan(KR + ζ + iq) (2.145)
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Clearly, f0 depends on the energy-dependent quantities K, ζ, and q. If one
knew these variables, then one could calculate resonance energies and cross
sections directly from the properties of the nuclear interior. Unfortunately, this
is not the case. Thus, our strategy will be to express the cross sections σel and
σre near a single resonance in terms of measurable quantities.

We will assume that the argument of the tangent, KR + ζ + iq, is a smooth
function of energy E. Furthermore, if q = 0 then f0 becomes real, and the re-
action cross section disappears. Recall that a resonance corresponds to a large
wave function amplitude in the nuclear interior, implying a slope of zero for
the radial wave function at r = R (Fig. 2.10). One can define formal resonance
energies Eλ by the condition

f0(Eλ, q) = −KR tan(KR + ζ + iq) = 0 (2.146)

Of course, there is a whole set of such energies. Let us consider any one of
them and study the behavior of f0 near Eλ.

In the following it is assumed that the absorption in the nuclear interior is
weak compared to the elastic scattering process, that is |q| � 1. Expansion of
f0(E, q) near Eλ and q = 0 into a Taylor series in both q and E gives

f0 ≈ f0(Eλ, q) + (E − Eλ)
(

∂ f0

∂E

)

Eλ,q=0
+ q

(
∂ f0

∂q

)

Eλ,q=0
(2.147)

For the last term, one finds with Eq. (2.145)

q
(

∂ f0

∂q

)

Eλ,q=0
= −qKR

[
∂

∂q
tan(KR + ζ + iq)

]

Eλ,q=0
= −iqKR (2.148)

since at the resonance energy Eλ one has tan x = 0 (see Eq. (2.146)) and thus
d(tan x)/dx = cos−2 x = 1. It follows

f0 ≈ (E − Eλ)
(

∂ f0

∂E

)

Eλ,q=0
− iqKR = Re f0 + i Im f0 (2.149)

Recall that (∂ f0/∂E)Eλ ,q=0 is a real quantity since q = 0 implies a vanishing
reaction cross section. Substitution of Eq. (2.149) into Eqs. (2.137) and (2.138)
gives for the resonance scattering amplitude and the reaction cross section

Ares =
− 2ikR

(∂ f0/∂E)Eλ ,q=0

(E − Eλ) − i(kR+qKR)
(∂ f0/∂E)Eλ ,q=0

(2.150)

σre,0 =
π

k2

(2kR)(2qKR)
(∂ f0/∂E)2

Eλ ,q=0

(E − Eλ)2 + (qKR+kR)2

(∂ f0/∂E)2
Eλ ,q=0

(2.151)
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We introduce the following definitions (the subscripts e and r stand for “elas-
tic” and “reaction,” respectively):

Γλe ≡ − 2kR
(∂ f0/∂E)Eλ,q=0

(particle width) (2.152)

Γλr ≡ − 2qKR
(∂ f0/∂E)Eλ,q=0

(reaction width) (2.153)

Γλ ≡ Γλe + Γλr (total width) (2.154)

Only the quantity Γλr depends on the parameter q describing absorption in
the nuclear interior. The new quantities Γλe, Γλr, and Γλ have units of energy
since f0, kR, and KR are dimensionless. All widths refer to the resonance λ

of interest. Also, f0 depends on the channel through which the reaction is
initiated. Rewriting Eqs. (2.150) and (2.151) in terms of the newly defined
quantities yields, after some algebra, for the elastic scattering and reaction
cross sections (see Eqs. (2.136) and (2.138))

σel,0 =
π

k2

∣∣
∣∣

iΓλe

(E − Eλ) + iΓλ/2
+ e2ikR − 1

∣∣
∣∣

2

=
π

k2

[
2 − 2 cos(2kR)

+
Γ2

λe − ΓλeΓλ + ΓλeΓλ cos(2kR) + 2Γλe(E − Eλ) sin(2kR)
(E − Eλ)2 + Γ2

λ/4

]
(2.155)

σre,0 =
π

k2
ΓλeΓλr

(E − Eλ)2 + Γ2
λ/4

(2.156)

The last two expressions are referred to as Breit–Wigner formulas for s-wave
neutrons.

Plots of σel,0 and σre,0 for incident neutrons versus energy E near a resonance
are shown in Fig. 2.20. We use the values R = 3 fm and Eλ = 1 MeV and as-
sume energy-independent partial widths of Γλ = 10.1 keV and Γλe = 10 keV.
Several interesting aspects can be noticed. First, the full width at half maxi-
mum of the σre,0 curve (FWHM = 10.1 keV) corresponds precisely to the value
of Γλ. Therefore, we identify this parameter with the total resonance width.
The quantities Γλe and Γλr correspond then to partial widths for the scatter-
ing and reaction channel, respectively. Second, far away from the resonance
(|E − Eλ| � Γλ) only the hardsphere potential scattering amplitude Apot will
contribute to the cross section. We obtain from Eq. (2.155) a value of σel,0 ≈
(2π/k2)[1 − cos(2kR)] ≈ 100 fm2, shown as dashed line in Fig. 2.20. Third,
the numerator in the expression for σel,0 (see Eq. (2.155)) contains an interfer-
ence term 2Γλe(E − Eλ) sin(2kR) which will change sign below and above the
resonance. Clearly, the structure seen in Fig. 2.20a is caused by destructive
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(E < Eλ) and constructive (E > Eλ) interference of Ares and Apot. This in-
terference also causes the full width at half maximum in the elastic scattering
cross section at the resonance to be different from the value of Γλ. Fourth,
remember that a resonance corresponds to a value of zero for the logarithmic
derivative f0 at the nuclear boundary. The implication is that in the scattering
process the particle enters the nucleus with significant probability only near
resonance. Off resonance the particle is almost entirely reflected at the bound-
ary, and the wave function inside is weak. The resonance scattering is thus
ascribed to the inside of the nucleus and the potential scattering to its surface.

The present results help us understand the complicated structures observed
in the scattering cross sections for an explicit nuclear potential, as shown in
Fig. 2.18. The structures are caused, in part, by interference effects between
the re-emission of the incident particle by the nucleus and the scattering near
the nuclear surface. An additional complication is introduced by the fact that
single-particle potential models predict several resonances that may interfere
with each other.

We consider now the elastic scattering phase shift near a resonance, δ0 =
β0 + ϕ0 ≈ β0. For Im f0 = 0 (q = 0) we obtain from Eqs. (2.140), (2.149), and
(2.152)

β0 ≈ arctan
[

kR
(E − Eλ)(∂ f0/∂E)Eλ ,q=0

]
= arctan

[
Γλe

2(Eλ − E)

]
(2.157)

At the resonance energy, E = Eλ, the argument of the arctan function becomes
infinite and thus β0 = π/2. Furthermore, since d(arctan x)/dx = (1 + x2)−1,
one finds for the energy derivative of the resonance elastic scattering phase
shift at E = Eλ

(
dβ0

dE

)

Eλ

=
1
2

[
(dΓλe/dE)(Eλ − E) + Γλe

(Eλ − E)2 + (Γλe/2)2

]

Eλ

=
2

(Γλe)Eλ

(2.158)

Hence, the resonance phase shift at E = Eλ amounts to π/2 while its en-
ergy derivative determines the particle width. For the special case that Γλe
is nearly constant with energy (for example, for a narrow resonance), we
find from Eq. (2.157) that β0 = π/4 at E = Eλ − Γλe/2 and β0 = 3π/4 at
E = Eλ + Γλe/2. Thus the particle width Γλe becomes equal to the energy
interval over which β0 increases from π/4 to 3π/4. The above techniques in-
volving the resonance phase shift are frequently employed for the calculation
of particle partial widths.

Let us now consider the particle width Γλe in more detail. We define (see
Eq. (2.152))

Γλe = − 2kR
(∂ f0/∂E)Eλ ,q=0

≡ 2P0γ2
λe with γ2

λe ≡ −
(

∂ f0

∂E

)−1

Eλ,q=0
(2.159)
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Fig. 2.20 Plots of (a) σel,0 and (b) σre,0 versus energy E for incident
neutrons near a resonance at Eλ = 1 MeV. A value of R = 3 fm is cho-
sen for the radius. The widths are assumed to be energy independent
with values of Γλ = 10.1 keV and Γλe = 10 keV. See discussion in the
text.

where the particle width has been split into two factors. The first factor,
P0 = kR, depends on the channel energy through the factor kR and on the con-
ditions outside the nucleus. The second factor, γ2

λe, is called the reduced width
and it incorporates all the unknown properties of the nuclear interior. The
quantity γ2

λe is characteristic of the resonance and the channel under consid-
eration, and is independent of the channel energy E. The energy dependence
of the partial widths Γλe and Γλr has to be taken into account when calculating
the cross section for broad resonances, as will be explained in later sections.

2.5.4
Extension to Charged Particles and Arbitrary Values of Orbital Angular Momen-
tum

The one-level Breit–Wigner formulas (see Eqs. (2.155) and (2.156)) have been
obtained near a formal resonance energy Eλ assuming (i) neutrons as incident
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particles, (ii) an orbital angular momentum of � = 0, and (iii) interactions of
spinless particles. The basic structure of the cross section expressions derived
here is also applicable to the much more general case. Although the general
expressions are more complicated in appearance compared to the results for
s-wave neutrons, no new physical ideas are involved. The properties of the
nuclear interior enter into the cross sections only through the logarithmic de-
rivative f� of the wave function u�(r) at the nuclear boundary r = R.

In the following, the formulas will be generalized to arbitrary values of �
and to interacting charged particles. We will not derive the results in detail
here (see, for example, Blatt and Weisskopf 1952) but will only sketch some
results of the derivation. Of special interest to us is the modified reaction
cross section σre,�.

The radial wave function solutions of the Schrödinger equation outside
the nuclear surface are no longer given by incoming and outgoing spherical
waves (e−ikr and eikr), as in the case of � = 0 neutrons (see Eq. (2.132)), but
are given in terms of the functions F� and G�. For neutrons, these represent
spherical Bessel and Neumann functions, F� = (kr)j�(kr) and G� = (kr)n�(kr),
respectively, while for charged particles they correspond to the regular and ir-
regular Coulomb wave functions (Appendix A.3). The radial wave function
outside the nuclear boundary is given in terms of F� and G� by

u�(r) = Au+
� (r) + Bu−

� (r), r > R

= Ae−iσ� [G�(r) + iF�(r)] + Beiσ� [G�(r) − iF�(r)] (2.160)

where u−
� and u+

� correspond, for large distances, to incoming and outgoing
spherical waves, respectively. The quantity σ� denotes the Coulomb phase
shift and determines the purely Rutherford (electrostatic) scattering. For � = 0
neutrons, the above expression reduces to our previous result (Eq. (2.132); see
Problem 2.4).

It is of advantage to introduce two real quantities, called shift factor S� and
penetration factor P�, which are completely determined by the conditions out-
side the nucleus. We obtain with Eqs. (2.160) and (A.18)

R

(
1

u+
� (r)

du+
� (r)
dr

)

r=R

= R

[
G�(dG�/dr) + F�(dF�/dr) + iG�(dF�/dr)− iF�(dG�/dr)

F2
� + G2

�

]

r=R

≡ S� + iP� (2.161)
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where

S� = R

[
F�(dF�/dr) + G�(dG�/dr)

F2
� + G2

�

]

r=R

and

P� = R

(
k

F2
� + G2

�

)

r=R

(2.162)

The new quantities depend on the wave number k, the channel radius R, the
orbital angular momentum �, and on the charge parameter η (see Eq. (A.32)).
For � = 0 neutrons, F� = (kr)j0(kr) = sin(kr) and G� = (kr)n0(kr) = cos(kr)
(Appendix A.2), and we obtain from Eq. (2.161) P0 = kR and S0 = 0. In other
words, the shift factor vanishes if there is no barrier. With the quantities P�

and S�, the reaction cross section can be derived in a similar way as presented
in the previous section. The calculation is not repeated here (see Blatt and
Weisskopf 1952). The result is the Breit–Wigner formula

σre,� = (2� + 1)
π

k2
ΓλeΓλr

(E − Er)2 + Γ2
λ/4

(2.163)

with

Γλe ≡ − 2P�(E)
(∂ f�/∂E)Eλ ,q=0

= 2P�(E)γ2
λe (particle width) (2.164)

Γλr ≡ − 2qKR
(∂ f�/∂E)Eλ ,q=0

(reaction width) (2.165)

Γλ = Γλe + Γλr (total width) (2.166)

Er ≡ Eλ +
S�(E)

(∂ f�/∂E)Eλ ,q=0
= Eλ − S�(E)γ2

λe (observed resonance

energy) (2.167)

The similarity between Eq. (2.163) and the result obtained earlier for s-wave
neutrons (see Eq. (2.156)) is apparent. The meaning of P� and S� becomes clear
now. The penetration factor appears in the particle width expression since an
incident particle must penetrate to the nuclear surface for a reaction to occur.
The shift factor appears in the level shift expression and it causes the observed
resonance energy Er to be different from the formal resonance energy (or level
energy) Eλ. Both the resonance energy shift and the particle width also de-
pend on the properties of the nuclear interior through the reduced width γ2

λe.
The penetration factor is closely related to the transmission coefficient. Both

quantities describe the same physical concept, but are defined in slightly dif-
ferent ways. The former quantity is independent of the nuclear interior while
the latter is defined in terms of the ratio of current densities in the interior
and exterior regions (see Eqs. (2.62) and (2.103)). However, the energy depen-
dences of both quantities should be very similar. The penetration factor can
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be calculated analytically for neutrons. The expressions are not repeated here
(see Blatt and Weisskopf 1952). It is sufficient to mention that for small neutron
energies the neutron partial widths behave as Γ�(E) ∼ P�(E) ∼ (kR)2�+1 ∼
E�+1/2. For charged particles, on the other hand, the calculation of penetration
factors is much more involved. Various analytical approximations exist for es-
timating P�(E) (see, for example, Clayton 1983). The reader should be aware,
however, that some of these approximations are not always accurate and that
it is more reliable to compute penetration factors directly from numerical val-
ues of the Coulomb wave functions (Appendix A.3). The energy dependence
of the s-wave penetration factor at low energies compared to the Coulomb
barrier height (E � VC) is given by Eqs. (2.124) and (2.125). For higher orbital
angular momenta, the charged-particle penetration factors behave at low en-
ergies as P�(E) ∼ exp [−a/

√
E − b�(� + 1)] (Problem 2.2), where the first ex-

ponential term represents the Gamow factor.
Numerical values for the factors P� and S� are displayed in Fig. 2.21 for 12C

+ p and 12C + n in order to illustrate some important points. The curves are
obtained by using a radius of R = 1.25(121/3 + 1) = 4.1 fm. The different energy
dependences of P� for protons and neutrons is striking. The penetration fac-
tors for both protons and neutrons drop for decreasing energy, but the former
values drop significantly faster since the Coulomb barrier has to be penetrated
in addition to the centripetal barrier (for � > 0). The energy dependence of
P� is similar for protons of all � values, while for neutrons the energy depen-
dence varies for different � values. At higher energies (E ≈ 3 MeV) we obtain
P� ≈ 1 for protons and neutrons. Note that the curve for the s-wave (� = 0)
penetration factor of 12C + n is simply given by P0 = kR (see earlier). The
shift factors vary far less with energy compared to the penetration factors. In
fact, for both neutrons and protons, S� is almost constant below an energy of
a few hundred keV. Of course, one finds S0 = 0 for neutrons as already noted
above.

The straight lines for P�(E) at low neutron energies in the log–log plot of
Fig. 2.21 are a consequence of the energy dependence P�(E) ∼ E�+1/2. The
slopes of the curves are equal to � + 1/2 since log P�(E) ∼ log E�+1/2 =
(� + 1/2) log E. A similar procedure can be applied to charged particles. A
graphic illustration of the energy dependence of the penetration factors for
12C + p is given in Fig. 2.22. Since we have log P�(E) ∼ −a/

√
E − b�(� + 1),

straight lines are obtained at low energies when log P�(E) is plotted versus
−1/

√
E. The slopes are similar at low energies where they are determined by

the tunneling probability through the Coulomb barrier, while the intercepts
depend on the value of �. The straight lines shown in Fig. 2.22 represent a
useful tool when checking or interpolating values of P�(E) that are obtained
numerically from computer codes.
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Fig. 2.21 Penetration (top) and shift factors (bottom) for 12C + p (left)
and 12C + n (right). In each panel, the curves show the results for
orbital angular momenta of � = 0, 1, 2, and 3. All curves are calculated
for a radius of R = 1.25(121/3 + 1) = 4.1 fm. The much stronger energy
dependence of the penetration factor for protons compared to neutrons
is apparent.

Fig. 2.22 Penetration factor versus −1/
√

E for the 12C + p reaction.
At low energies compared to the Coulomb barrier height (E � VC),
straight lines are obtained for each value of �.
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Up to now we have not specified the reaction channel. Suppose that there
are only two channels open for the resonance λ of interest, channel α and
channel β. According to Eq. (2.163), the reaction cross sections near resonance
in channels α and β are given by

σα,re,� = (2� + 1)
π

k2
α

ΓλαΓλrα

(Eα − Erα)2 + (Γλα + Γλrα)2/4
= σ(α,β) (2.168)

σβ,re,� = (2� + 1)
π

k2
β

ΓλβΓλrβ

[(Eα + Q)− (Erα + Q)]2 + (Γλβ + Γλrβ)2/4
= σ(β,α)

(2.169)

It follows directly from the reciprocity theorem, k2
ασ(α,β) = k2

βσ(β,α) (see
Eq. (2.13)), that the reaction width of the (α,β) reaction is equal to the en-
trance channel width of the (β,α) reaction, and vice versa.

2.5.5
R-Matrix Theory

It is important to summarize the assumptions we made in the derivation of
the reaction cross section formula (see Eq. (2.163)): (i) the spins of the interact-
ing nuclei are zero, (ii) the nucleus has a sharp radius, and (iii) a specific reso-
nance corresponds to a logarithmic derivative of zero at the nuclear boundary.
In the formal theory of resonance reactions (R-matrix theory) all of these as-
sumptions are relaxed. We will not derive the formalism in any detail (see, for
example, Breit 1959, or Lane and Thomas 1958) but will instead present some
of the main results. We are specifically interested in the application of the gen-
eral theory to the case of a single and isolated resonance. As will be seen, the
main physical ideas of the formalism developed so far will not change in the
formal theory.

Consider again Eq. (2.149), but in order to describe the simplest possible
case we will assume that elastic scattering is the only allowed process (q = 0).
In that case

f0 = (E − Eλ)
(

∂ f0

∂E

)

Eλ,q=0
(2.170)

By using the definitions of the logarithmic derivative f0 (see Eq. (2.130)) and of
the reduced width γ2

λe (see Eq. (2.159)) we find near a particular level energy
Eλ

1
f0

=
1
R

(
uin(r)

duin(r)/dr

)

r=R
=

(∂ f0/∂E)−1
Eλ ,q=0

E − Eλ
=

γ2
λe

Eλ − E
≡ � (2.171)

The quantity � is called R-function. When the energy E is not close to Eλ,
the R-function is obtained by summing over all resonances λ. In general,
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elastic scattering will not be the only possible process, but other channels are
present as well. In order to take these into account, the R-function becomes
the R-matrix,

�c′c = ∑
λ

γλc′γλc

Eλ − E
(2.172)

Physically, the R-matrix relates the value of the wave function in the inter-
nal region to its derivative at each channel entrance. The above equation
gives the energy dependence of the R-matrix explicitly in terms of the energy-
independent parameters γλc and Eλ. The poles of the R-matrix, that is, the
energies Eλ, are real and hence each of the elements �c′c represents a real num-
ber. Furthermore, the energies Eλ are independent of the channels c and c′. In
other words, the poles of every matrix element �c′c occur at the same ener-
gies Eλ.

We need to be more precise when defining a reaction channel c. The quantity c
denotes a set of quantum numbers {α(I1 I2)s�, JM} with

α(I1 I2) a specific pair of nuclei 1 and 2, with spins of I1 and I2,

in a specific state of excitation (thus an excited state of

1 or 2 would correspond to a different α)

�s = �I1 +�I2 channel spin, with |I1 − I2| ≤ s ≤ I1 + I2

� orbital angular momentum

�J, M total spin and its component, with �J =�s +��

For the entrance channel consisting of a projectile and a target nucleus, we set
�I1 = �jp and �I2 =�jt. Conservation of the total angular momentum restricts the
possible J values of the resonance which can be populated in the reaction to
(Appendix B)

�J =�� +�jp +�jt (2.173)

Each of these spins has (2I + 1) orientations in space, which are determined
by the magnetic quantum number mI = 0, 1, . . . ,±I. Thus there are (2� +
1)(2jp + 1)(2jt + 1) different sets of spin orientations, corresponding to dif-
ferent quantum states of the system. For an unpolarized beam and target,
each such state has the same probability, that is [(2� + 1)(2jp + 1)(2jt + 1)]−1.
Therefore, the cross section has to be multiplied by the relative probability that
the unpolarized projectiles and target nuclei will be found to have a total spin
of J, which is given by

g(J) =
2J + 1

(2jp + 1)(2jt + 1)(2� + 1)
(2.174)
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From the R-matrix, the cross sections and phase shifts can be derived for any
number of resonances and channels (Lane and Thomas 1958). In the following,
we will only focus on a particularly simple but useful case, that is, the reaction
cross section near an isolated resonance λ of spin J. The one-level, many chan-
nel approximation of R-matrix theory (or generalized one-level Breit–Wigner
formula) for the cross section of a reaction (α,α′), involving charged or neutral
particles with projectile and target spins of jp and jt, is given by

σre(α, α′) =
π

k2
2J + 1

(2jp + 1)(2jt + 1)

(
∑
�s

Γλc

)(
∑
�′s′

Γλc′

)

(E − Eλ − ∆λ)2 + Γ2
λ/4

(2.175)

with

Γλc(E) = 2Pc(E)γ2
λc (particle width) (2.176)

Γλ(E) = ∑
c′′

Γλc′′(E) (total width) (2.177)

∆λ(E) = ∑
c′′

∆λc′′(E) (total level shift) (2.178)

∆λc(E) = −[Sc(E) − Bc]γ2
λc (partial level shift) (2.179)

β(E) = arctan
Γλ(E)

2[Eλ − E + ∆λ(E)]
(resonance elastic scattering

phase shift) (2.180)

The parameter Bc will be described later. The penetration and shift factors
refer to the nuclear radius. In principle, one can chose an arbitrary radius
beyond the range of the nuclear force so that the external wave functions re-
flect the solutions of the wave equation containing only the Coulomb inter-
action. However, it is also desirable to chose R as small as possible so that
the characteristic quantities of the resonance theory contain primarily infor-
mation concerning the nuclear interaction. Commonly, the interaction radius
R is the smallest separation distance of the nuclear pair at which the nuclear
potential is negligible. This radius is customarily chosen in R-matrix theory as
R = r0(A1/3

t + A1/3
p ), with a radius parameter in the range of r0 = 1.0–1.5 fm.

The above expression for the reaction cross section (see Eq. (2.175)) contains
certain complications with respect to practical applications. This comes about
because, in general, the energy dependence of the penetration and shift factor
has to be taken into account. The quantity Pc is strongly energy dependent,
but the energy dependence of Sc is weak (Fig. 2.21). The usual approximation
procedure, called the Thomas approximation (Thomas 1951), is to expand the
level shift linearly with respect to energy. We call the energy at which the
cross section σre(α, α′) has a maximum the observed resonance energy Er. It is
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defined by the requirement

Er − Eλ − ∆λ(Er) = 0 (2.181)

The boundary condition parameter Bc in Eq. (2.179), defined as the real and
arbitrary value of the logarithmic derivative of the radial wave function in
channel c at the radius R, determines the eigenvalues Eλ (in previous sections,
we used implicitly the zero derivative condition, Bc = 0). It is customarily
chosen as Bc = Sc(Er) so that the level shift ∆ at the observed resonance en-
ergy Er becomes zero,

∆λc(Er) = −[Sc(Er)− Sc(Er)]γ2
λc = 0 and Er = Eλ (2.182)

With the expansion

∆λ(E) ≈ ∆λ(Er) + (E − Er)
(

d∆λ

dE

)

Er

(2.183)

we obtain by using Eq. (2.181)

Eλ + ∆λ − E ≈ Er − E + (E − Er)
(

d∆λ

dE

)

Er

= (Er − E)

[

1 −
(

d∆λ

dE

)

Er

]

(2.184)

Substitution into Eq. (2.175) yields

σre(α, α′) =
π

k2
2J + 1

(2jp + 1)(2jt + 1)

(
∑
�s

Γλc

)(
∑
�′s′

Γλc′

)

(Er − E)2[1 − (d∆λ/dE)Er ]2 + Γ2
λ/4

Dividing the numerator and denominator by [1 − (d∆λ/dE)Er ]
2 gives

σre(α, α′) =
π

k2
2J + 1

(2jp + 1)(2jt + 1)

(
∑
�s

Γo
λc

)(
∑
�′s′

Γo
λc′

)

(Er − E)2 + (Γo
λ)2/4

(2.185)

where the “observed” widths Γo
λi are given in terms of the previously defined

“formal” widths Γλi (see Eq. (2.176)) by

Γo
λc ≡

Γλc

1 − (d∆λ/dE)Er

=
Γλc

1 +
(

∑
c′′

γ2
λc′′

dSc′′
dE

)

Er

(2.186)

The main advantage of using Eq. (2.185) compared to Eq. (2.175) is that the
complication of an energy-dependent shift factor in the denominator is absent.
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Since the former expression has a simpler (Lorentzian) structure, it is used
in the vast majority of applications. However, we had to introduce a new
quantity. The reader must be careful when applying Eq. (2.185) in the analysis
of experimental data. It has to be understood that the partial widths thus
obtained represent “observed” widths. As can be seen from Eq. (2.186), the
difference between “observed” and “formal” partial width may be substantial
for levels with a large reduced width. We can also introduce an “observed”
reduced width by writing

Γo
λc =

2Pc(E)γ2
λc

1 +
(

∑
c′′

γ2
λc′′

dSc′′
dE

)

Er

= 2Pc(E)(γo
λc)

2 (2.187)

As a general guide, partial widths have to be interpreted as “observed” quan-
tities whenever a Lorentzian structure is assumed for the cross section (for
example, in reaction rate calculations, mean lifetime measurements, or thick
target yields).

Finally, we express the resonance phase shift and its energy derivative in
terms of the “observed” total width. We obtain from Eqs. (2.180) and (2.184)
immediately

β = arctan
Γλ/[1 − (d∆λ/dE)Er ]

2(Er − E)
= arctan

Γo
λ

2(Er − E)
(2.188)

and, similar to Eq. (2.158),
(

dβ

dE

)

Er

=
2

(Γo
λ)Er

(2.189)

This expression is frequently used in calculations of “observed” particle par-
tial widths (see Section 2.5.7).

2.5.6
Experimental Tests of the One-Level Breit–Wigner Formula

The total cross section for neutrons incident on a target consisting of a natural
isotopic mixture of cadmium is shown in Fig. 2.23. The data are fitted by a one-
level Breit–Wigner formula, superimposed on a 1/v background (Section 2.6).
It is obvious that the agreement with the data is extremely accurate. The Breit–
Wigner formula describes reliably the shape of resonances if their widths are
small compared to their energy separation.

The resonance reaction theory developed so far does not only apply to un-
bound states, but to bound states as well. In the latter case, the Breit–Wigner
formula allows for the calculation of the cross section wing of a subthreshold
resonance (Example 2.1). The Breit–Wigner formula has important applications
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Fig. 2.23 Total cross section for neutrons
incident on a target consisting of a natu-
ral isotopic mixture of cadmium. The data
are fitted by a one-level Breit–Wigner for-
mula, superimposed on a 1/v background.
The deduced resonance parameters are
Eλ = 0.176 eV, Γ = 0.115 eV, and σmax =
7.2×10-21 cm2. The Breit–Wigner formula

reproduces the shape of resonances ac-
curately if their widths are small compared
to their energy separation. Reprinted with
permission from H. H. Goldsmith, H. W. Ib-
ser and B. T. Feld, Rev. Mod. Phys., Vol.
19, p. 259 (1947). Copyright (1947) by the
American Physical Society.

in nuclear astrophysics, especially in cases where the cross section of interest
cannot be measured directly and has to be estimated theoretically. For ex-
ample, consider the following situation which is frequently encountered in
practice. Data have been obtained in some higher lying bombarding energy
range. The energy range of interest for stellar fusion, however, is located out-
side the range for which data have been measured. By fitting the existing data
to a Breit–Wigner formula, one obtains the resonance energy and widths as
phenomenological parameters which are then used to extrapolate the cross
section to the energy region of interest.

Frequently, the widths of astrophysically important resonances are rather
small (less than a few eV) and it is experimentally no longer feasible to mea-
sure the cross section directly at specific energies near the resonance. What
is directly measured in such cases is the integral under the resonance cross
section curve. The Breit–Wigner formula provides an accurate equation for
integrating the resonance cross section, resulting in convenient analytical ex-
pressions for narrow-resonance reaction rates (Section 3.2.4) and thick-target
yields (Section 4.8.1).

The total cross section for several overlapping resonances of different spins
and parities can be described by an incoherent sum of one-level Breit–Wigner
formulas. If two resonances have the same Jπ value, however, they may in-
terfere and the resulting expressions become more complicated. Also, the dif-
ferential cross sections of two broad resonances may interfere even if their Jπ

values are different.
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It must be emphasized again that the resonance theory described here is
not capable of predicting resonance energies and widths. These quantities are
treated as phenomenological parameters. Absolute cross sections can only be
obtained either by fitting resonance data, or if the resonance energies and par-
tial (or reduced) widths are independently known from other sources (Sec-
tion 2.5.7). In the following numerical example, the one-level Breit–Wigner
formula will be applied to a subthreshold resonance.

Example 2.1

The Q-value of the 20Ne(p,γ)21Na reaction amounts to Q = 2431.3 keV. The
21Na level at Ex = 2425 keV (Jπ = 1/2+) is located just below the proton
threshold and corresponds to a subthreshold s-wave (� = 0) resonance at a
center-of-mass energy of Er = −6.4 keV (Fig. 2.24a). The (formal) reduced pro-
ton width for this level can be obtained from (d,n) proton transfer reaction
measurements (Terakawa et al. 1993). The value is γ2

p,�=0 = 1.41 × 106 eV. The
Ex = 2425 keV level decays to the ground state with a probability (branch-
ing ratio) of 1 (100%) via emission of M1/E2 radiation (Appendix B). The
value of the (formal) γ-ray partial width at Er, obtained from the measured
mean lifetime of the state (Anttila, Keinonen and Bister 1977), amounts to
Γγ(Er) = 0.30 eV. Calculate the contribution of this level to the astrophysi-
cal S-factor (the S-factor is defined in Section 3.2.1) versus bombarding energy
below 2 MeV.

In this case only two channels are open. The level can decay via emission
of either a proton or a γ-ray. We may write the Breit–Wigner formula (see
Eq. (2.175)) as

σ20Ne+p(p, γ) =
π

k2
2J + 1

(2jp + 1)(2jt + 1)
Γp,�=0Γγ,M1/E2

(E − Eλ − ∆λ)2 + (Γp,�=0 + Γγ,M1/E2)2/4

The cross section has a maximum at the observed resonance energy Er =
Eλ + ∆λ(Er) = Eλ (see Eqs. (2.181) and (2.182)) since we chose the boundary
condition as ∆λ(Er) = 0. Therefore, we set Eλ = −6.4 keV. We find the energy-
dependent proton width from the expression Γp,�=0(E) = 2P�=0(E)γ2

p,�=0 (see
Eq. (2.176)). The energy dependence of the γ-ray partial width is given by
Γγ,L ∼ E2L+1

γ (see Eq. (1.21)), with Eγ the γ-ray energy and L the γ-ray mul-
tipolarity. The M1/E2 multipolarity mixing ratio (see Eq. (1.31)) for this level
is not known. It is sufficient to assume here that the transition to the ground
state (Ef = 0) proceeds via pure M1 emission. Thus

Γγ,M1(E)
Γγ,M1(Er)

=
[

Eγ(E)
Eγ(Er)

]2L+1

=

[
E + Q − Ef

Er + Q − Ef

]2L+1

=
[

E + Q
Er + Q

]3
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The influence of the γ-ray channel on the level shift can be neglected. From
Eqs. (2.178) and (2.179) one finds

∆λ(E) ≈ ∆p,�=0(E) = −[S�=0(E) − S�=0(Er)]γ2
p,�=0

We obtain from the definition of the astrophysical S-factor (see Eq. (3.70))

S20Ne+p(p, γ) = E e2πησ20Ne+p(p, γ)

=
Ee2πη π

k2
2J+1

(2jp+1)(2jt+1)2P�=0(E)γ2
p,�=0Γγ,M1(Er)

(
E+Q
Er+Q

)3

{
E − Er + [S�=0(E) − S�=0(Er)]γ2

p,�=0

}2
+ [Γ(E)]2/4

with Γ(E) = Γp,�=0(E) + Γγ,M1(E). Numerically we find (with E in MeV and
Mi in u)

2πη = 0.989534 ZpZt

√
1
E

MtMp

Mt + Mp

E
π

k2 = 6.56618216 × 10−1 Mt + Mp

Mt Mp
(MeV b)

2J + 1
(2jp + 1)(2jt + 1)

=
2 · 1

2 + 1
(

2 · 1
2 + 1

)
(2 · 0 + 1)

= 1

S�=0(Er) = −1.537

The penetration and shift factors are directly computed from the Coulomb
wave functions (see Eq. (2.162)). The resulting calculated S-factor for the
ground-state transition in the 20Ne(p,γ)21Na reaction is shown as a solid line
in Fig. 2.24b. The data points display the experimental S-factor. These re-
sults represent one of the very few examples in nuclear physics where a tail
of a subthreshold resonance is observed without interference from unbound
states or direct radiative capture.

It must be emphasized that the solid line does not represent a fit to the data.
It is calculated by using the Breit–Wigner formula with parameters (resonance
energy, proton and γ-ray partial widths) that are obtained from independent
experiments (that is, not from capture measurements). It should also be noted
that the total width at the resonance energy amounts to Γ(Er) = Γγ(Er) =0.3 eV.
In other words, the S-factor is extrapolated over 1500 keV/0.3 eV = 5× 106 res-
onance widths. The agreement between experiment and calculation is remark-
able and provides strong support for the applicability of the Breit–Wigner for-
mula to isolated resonances.
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Fig. 2.24 (a) Level scheme of 21Na showing
a subthreshold s-wave (� = 0) resonance in
20Ne + p, corresponding to a level at Ex =
2425 keV (Jπ = 1/2+) which is located just
below the proton threshold. (b) Astrophys-
ical S-factor of the 20Ne(p,γ)21Na reaction
versus center-of-mass proton energy for the
γ-ray transition to the ground state of 21Na.
The data points display the measured S-

factor (from Rolfs and Rodney 1975), while
the solid line shows the result of the calcula-
tion explained in the text. Note that the solid
line is not a fit to the data. The agreement
between data and calculation is remarkable
since the Breit–Wigner formula had to be
extrapolated over more than 106 resonance
widths.

2.5.7
Partial and Reduced Widths

We have seen how the resonance cross section can be expressed in terms of res-
onance energies and reduced widths. For some reactions, however, no cross
section data are available. In such cases it becomes important to estimate the
cross section theoretically. The Breit–Wigner formula can only be used for this
purpose if the resonance energies and reduced widths are known from inde-
pendent sources (see Example 2.1).
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Resonances that are generated by simple explicit potentials are discussed
in Section 2.4. Such single-particle resonances are generally broad at higher
bombarding energies and their energy separation is large. In contrast to
these, many measured resonances are very narrow and their spacing is small
(Fig. 2.19). These resonances could not be explained by single-particle poten-
tials and it was therefore necessary to develop a theory of resonances without
reference to a specific nuclear potential (Section 2.5.1). The reduced widths
depend on, as yet unknown, properties of the nuclear interior and are treated
as phenomenological parameters.

According to Bohr (1936), the observed resonances correspond to virtual
states in the nucleus. These virtual states are not single-particle levels, but are
the result of the interactions of many nucleons. This many-nucleon picture
is also referred to as compound nucleus description. The close spacing of the
observed resonances is then explained by the fact that there are many differ-
ent ways by which a large number of nucleons can be excited. The observed
resonances are then caused by the rapid variation of the total nuclear wave
function of the target-plus-projectile system with energy. In the following we
will develop this picture quantitatively. Our goal will be to relate the reduced
widths to nuclear properties which can be estimated by using models of nu-
clear structure.

Consider the total wave function of the target-plus-projectile system, Ψ,
with HΨ = EΨ. The total Hamiltonian H, although unknown, may be written
as

H = Ht
ξ + Ep

K(r) +
A

∑
i=1

Vi(ξi, x)

=
[

Ht
ξ + Ep

K(r) + V(r)
]

+

[

−V(r) +
A

∑
i=1

Vi(ξi, x)

]

= H0 + H′ (2.190)

with Ht
ξ the Hamiltonian of the target nucleus consisting of A nucleons, Ep

K(r)
the kinetic energy of the projectile, Vi(ξi, x) the interactions between each tar-
get nucleon with the projectile, and V(r) an average potential of the projectile
in the field of the target nucleus. The quantity H0 is the single-particle Hamil-
tonian, and H′ describes the residual interaction (that is, the deviation from an
average potential). Without the residual interaction, the potential V(r) would
give rise to single-particle resonances, corresponding to single-particle lev-
els in the target-plus-projectile system. However, the quantity H′ causes the
single-particle levels to split into a large number of distinct levels. Each of
these states corresponds to a complicated mixture of configurations and is
described by a complicated sum of wave functions. Consequently, the loga-
rithmic derivative of the radial wave function at the nuclear boundary, that
is, the reduced width γ2

λc, will in general be different for each virtual state.
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Fig. 2.25 Level scheme and cross section versus energy. A single-
particle Hamiltonian H0 generates the single-particle levels p1, p2, p3,
p4. The actual Hamiltonian H gives rise to a splitting of each single-
particle level into many actual states. The latter show up as a fine
structure in the cross section versus energy curve. See the text.

Such levels which are described by the configurations of many nucleons are
referred to as compound-nucleus levels.

The situation is shown schematically in Fig. 2.25. The single-particle Hamil-
tonian H0 gives rise to the single-particle levels p1, p2, p3, p4. The levels
p1 and p2 are bound states. The actual Hamiltonian H causes a splitting of
each single-particle level into many actual states. These can be observed as
resonances in the cross section (thin solid line). However, the single-particle
character does not get entirely lost. If the measured cross section curve is av-
eraged over the observed fine structure, then the single-particle resonances
are approximately recovered (thick solid line). We may also say that, in this
picture, each reduced width γ2

λc of an actual level belongs to a definite single-
particle level pi. The entire set of reduced widths can then be split up into
groups, each group corresponding to a definite value of pi.

In the following, we will consider the simple case of only one open nucleon
channel (elastic only) for compound nucleus formation or decay. It is useful at
this point to express the particle width in a different way. We have seen that Γλ

corresponds to the total width of a resonance λ, or the total width of a virtual
level in the compound nucleus. A finite level width, in turn, implies a finite
mean lifetime τ of the level, since Γλτλ ≈ �. Therefore, we can identify 1/τλ ≈
Γλ/� with the decay (or formation) probability of the level per unit time. A
partial width Γλc corresponds then to the decay (or formation) probability of
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Fig. 2.26 Level scheme of compound nucleus C showing a single un-
bound (or virtual) state λ which may decay by emission of particles
(a) or photons (γ). The full width at half maximum (FWHM) of the res-
onance in the cross section versus energy curve corresponds to the
total width Γλ which is equal to the sum of all partial widths. The lat-
ter quantities are a measure for the decay (or formation) probability of
level λ through a particular channel c.

level λ through a particular channel c. The decay of a compound nucleus state
into two channels is shown schematically in Fig. 2.26.

The partial width Γλc will now be determined from the flux of the particles
through the only open channel c. The probability per unit time, Γλc/�, for the
emission of a particle is given by the number of particles per second leaving
the channel. This number can be calculated by integrating the current (see
Eq. (2.45)) through a sphere of radius R over the full solid angle,

Γλc

�
=
∫

dΩ
R2 j dΩ =

∫

dΩ
R2 �

2mi

(
ψ∗ ∂ψ

∂r
− ∂ψ

∂r

∗
ψ

)

r=R
dΩ (2.191)

With ψ = Y(θ, φ)Rc(r) = Y(θ, φ)uc(r)/r (Appendix A) we find

Γλc

�
=

�

2mi

∫

dΩ
R2
[

u∗
c

r
d
dr

(uc

r

)
− uc

r
d
dr

(
u∗

c
r

)]

r=R
|Y|2 dΩ

=
�

2mi

∫

dΩ
R2 1

R2

(
u∗

c
duc

dr
− uc

du∗
c

dr

)

r=R
|Y|2 dΩ (2.192)

The radial wave function uc of the compound state can be expanded in terms
of single-particle radial eigenfunctions upc, which form a complete set of or-
thonormal functions. The eigenfunctions upc describe a single nucleon mov-
ing in a single-particle potential. We may write

uc(R) = ∑
p

Aλpcupc(R) (2.193)
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The above discussion of compound levels implies that, at a given energy, one
particular single-particle state p contributes mainly to the width of level λ.
This means that for a given level λ one of the terms in the sum of Eq. (2.193)
is much larger than the others. Hence

uc(R) ≈ Aλpcupc(R) (2.194)

By using the normalization of the spherical harmonic Y and the definition of
the logarithmic derivative, fpc(E) = R(u−1

pc dupc/dr)r=R (see Eq. (2.130)), we
obtain from Eqs. (2.192) and (2.194)

Γλc =
�

2

2mi
A2

λpc

(
u∗

pc
dupc

dr
− upc

du∗
pc

dr

)

r=R

=
�2

2miR
A2

λpc

(
u∗

pcupc fpc − upcu∗
pc f ∗pc

)

r=R
=

�2|upc(R)|2
2miR

A2
λpc( fpc − f ∗pc)

(2.195)

Since we describe a decaying compound state, the radial wave function for
r > R is given by upc(r) = Au+

pc(r), that is, we have B = 0 for a purely
outgoing wave (see Eq. (2.160)). This condition is equivalent to fpc(E) = Sc +
iPc (see Eq. (2.161)). It follows that

Γλc =
�2|upc(R)|2

2miR
A2

λpc[(Sc + iPc)− (Sc − iPc)] = 2
�2

mR2 Pc A2
λpc

R
2
|upc(R)|2

(2.196)

This can be expressed as

Γλc = 2
�2

mR2 Pc C2S θ2
pc (2.197)

with

C2S = A2
λpc (spectroscopic factor) (2.198)

θ2
pc =

R
2

∣
∣upc(R)

∣
∣2 (dimensionless single-particle reduced width) (2.199)

Comparison to Eq. (2.176) shows that the reduced width γ2
λc has been refor-

mulated in terms of a constant (�2/mR2) and the quantities θ2
pc and C2S.

Strictly speaking, the quantities S and C2 denote a spectroscopic factor (Sec-
tion 1.6.2) and the square of an isospin Clebsch–Gordan coefficient, respec-
tively. The former quantity is frequently calculated using the nuclear shell
model (Section 1.6), while the latter depends on the nuclear reaction (see, for
example, Brussaard and Glaudemans 1977). In the present context of partial
widths, only the product C2S is of interest. The spectroscopic factor depends
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on the many-nucleon structure of level λ and is a measure for the relative
probability that an actual compound state λ can be described by the single-
particle state p. The structure of Eq. (2.197) emphasizes that the partial width
for nucleon emission from a compound level can be thought of as a product of
three factors: (i) the probability that the nucleons will arrange themselves in a
configuration corresponding to the final state, C2S, (ii) the probability that the
single nucleon will appear at the boundary, |upc(R)|2, and (iii) the probability
that the single nucleon will penetrate the Coulomb and angular momentum
barriers, Pc. By introducing a single-particle partial width

Γλpc = 2
�2

mR2 Pcθ2
pc (2.200)

we may also express Eq. (2.197) as

Γλc = C2S Γλpc (2.201)

In other words, the spectroscopic factor can be written as the ratio of the two
quantities Γλc and Γλpc. Since both of these partial widths are strongly energy
dependent through the penetration factor Pc, they have to be calculated at the
same incident energy E.

It is apparent that there are two different methods of estimating partial
widths for nucleon channels once the spectroscopic factor C2S has been ob-
tained by independent means. If Eq. (2.197) is used, then the penetration fac-
tor Pc and the dimensionless single-particle reduced width θ2

pc must be com-
puted. On the other hand, if Eq. (2.201) is employed, then the single-particle
partial width Γλpc has to be calculated. This can be achieved, for example, by
solving the Schrödinger equation numerically for the elastic scattering of nu-
cleons by an appropriate single-particle potential (Schiffer 1963, Iliadis 1997).
The single-particle partial width is then directly obtained from the slope of
the resonance phase shift at the resonance energy (see Eq. (2.189)). The for-
mer method is computationally more convenient if values of θ2

pc are already
available.

Numerical values of the dimensionless single-particle reduced width θ2
pc for

protons are reported in Iliadis (1997) (Fig. 2.27) and Barker (1998). The results
were obtained by calculating upc for a Woods–Saxon single-particle potential
(Section 1.6.1). The value of θ2

pc depends on the interaction radius R, the orbital
angular momentum �, and the number of nodes of the radial wave function
in the nuclear interior. The numerical values shown in Fig. 2.27 have been
obtained with R = 1.25(A1/3

p + A1/3
t ) fm. Obviously, for estimates of Γλc the

quantities θ2
pc and Pc have to be computed at the same radius R. The θ2

pc val-
ues from Iliadis (1997) represent “observed” quantities, while the results from
Barker (1998) represent “formal” quantities. Unfortunately, the dimensionless
single-particle reduced width θ2

pc is frequently set equal to unity in the litera-
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Fig. 2.27 “Observed” dimensionless single-particle reduced width θ2
pc

for 12C + p, 22Na + p, 31P + p, and 40Ca + p versus center-of-mass
proton energy. In each panel, the curves correspond to different orbital
angular momenta (� = 0, 1, 2, and 3) and have been computed for a
radius of R = 1.25(A1/3

p + A1/3
t ) fm. Reprinted from C. Iliadis, Nucl.

Phys. A, Vol. 618, p. 166 (1997). Copyright (1997), with permission
from Elsevier.

ture. In this case, a significant error is introduced in the estimation of partial
widths.

Frequently, a resonance cannot be observed directly. This happens, for ex-
ample, if the cross section is too small or if the target is radioactive. In such
cases, the formalism discussed above can be used to estimate the absolute re-
action cross section. Once the spectroscopic factor is either calculated using
the nuclear shell model (Section 1.6), or measured using transfer reactions, the
particle partial width can be estimated in a straightforward way. The reaction
cross section is then obtained by applying the Breit–Wigner formula.

It is interesting to investigate the reliability of Eq. (2.197) for the calculation
of proton partial widths. Figure 2.28 shows a comparison of measured and
estimated proton partial widths for compound levels in 25Al, 27Al and 31P. The
ratio of partial widths, Γexp/Γλc, is shown in part (a) versus the value of C2S,
and in part (b) versus the observed resonance energy Er. The values of Γλc are
estimated from Eq. (2.197) by using proton spectroscopic factors measured
in (3He,d) transfer reactions and by computing θ2

pc and Pc numerically. The
experimental proton widths Γexp were directly measured in resonance elastic
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Fig. 2.28 Ratio of measured and estimated proton partial widths,
Γexp/Γλc, for levels in 25Al, 27Al, and 31P (a) versus the value of C2S,
and (b) versus the observed resonance energy Er. The experimental
proton widths Γexp were directly measured in resonance elastic proton
scattering or proton capture reactions. The calculated values Γλc are
obtained from Eq. (2.197) by using spectroscopic factors measured in
(3He,d) transfer studies.

proton scattering or proton capture reactions. The error bars of the displayed
ratios consider only the uncertainties of the experimental proton widths. It
can be seen that experimental and estimated proton partial widths agree on
average within ≈50%. In fact, we expect that the parametrizations of Γλc (see
Eqs. (2.197) and (2.201)) are more accurate than this since we have entirely
neglected the errors in the measured transfer spectroscopic factors. Further
systematic studies are needed.

Example 2.2

An important resonance in the 17F(p,γ)18Ne reaction occurs at a center-of-
mass energy of Er = 600 keV (Jπ = 3+). The spectroscopic factors for
this resonance are known from independent measurements (that is, neutron-
stripping on the mirror target nucleus 17O). Their values are (C2S)�=0 = 1.01
and (C2S)�=2 ≈ 0. Estimate the “observed” proton partial width for this reso-
nance.
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We write with Eq. (2.197)

Γo
p,�=0 = 2

�2

mR2 P�=0(C2S)�=0(θo
p,�=0)

2

= 2(2.22 × 106 eV)(8.10 × 10−3)(1.01)(0.45) = 16.3 keV

Γo
p,�=2 = 2

�2

mR2 P�=2(C2S)�=2(θo
p,�=2)

2

= 2(2.22 × 106 eV)(7.90 × 10−5)(≈ 0)(0.45) ≈ 0

The values of (θo
p,�=0)

2 and (θo
p,�=2)

2 are obtained by interpolating the results

for 12C + p and 22Na + p shown in Fig. 2.27. The estimated “observed” proton
partial width is

Γo
p = Γo

p,�=0 + Γo
p,�=2 = 16.3 keV

The calculated result is in excellent agreement with the experimental value of
Γp = (18 ± 2) keV that was directly measured in 17F(p,p)17F elastic scattering
studies (Bardayan et al. 2000).

Example 2.3

The “observed” proton partial width for the s-wave (� = 0) resonance at a
center-of-mass energy of Er = 214 keV (Jπ = 1/2+) in 24Mg(p,γ)25Al was di-
rectly measured. The result is Γo

p,�=0 = (1.40 ± 0.12) × 10−2 eV (Powell et al.
1999). Estimate the proton spectroscopic factor for the corresponding com-
pound state.

First, we calculate the “observed” single-particle proton width from Eq. (2.200),

Γo
λpc = 2

�2

mR2 Pc(θo
pc)

2 = 2(1.84 × 106 eV)(4.56 × 10−8)(0.59)

= 9.90 × 10−2 eV

We obtain from Eq. (2.201)

(C2S)�=0 =
Γo

p,�=0

Γo
λpc

=
(1.40 ± 0.12)× 10−2 eV

9.90 × 10−2 eV
= 0.14 ± 0.01

The result is in excellent agreement with the value of (C2S)�=0 = 0.14 mea-
sured independently in the proton transfer reaction 24Mg(3He,d)25Al (Peter-
son and Ristinen 1975).
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2.6
Continuum Theory

It is interesting to discuss the extreme case where a projectile approaching the
target in a particular channel α is very unlikely to reappear in the entrance
channel once it has penetrated into the nuclear interior. The condition is ful-
filled, for example, if the number of open channels is very large. This is typ-
ically the case when the energy of the incident particle is much higher than
the first few excitation energies of the target nucleus (say, E > 3 MeV for tar-
get masses of A > 50). The condition may also be fulfilled at low energies if
the incident particle initiates a reaction with a large positive Q-value (say, Q
> 2 MeV). In these cases we expect that, once the incident particle is inside
the nucleus, it exchanges its energy rapidly with the other nucleons and the
probability that it leaves by the same channel α is very small.

For simplicity, s-wave neutrons are considered again as incident particles.
For the interior wave function we find from Eq. (2.142)

uin ∼ e−iKr (2.202)

It has the form of an ingoing wave only since it does not return. This is only a
rough approximation since it is impossible to represent the motion of the inci-
dent particle inside the nucleus as a function of r only. However, it represents
the main features of the dependence of the wave function on r. The logarith-
mic derivative of the radial wave function must be continuous at r = R. Hence
(see Eq. (2.130))

f0 = R
(

1
uin(r)

duin(r)
dr

)

r=R
= R

[
d
dr (Be−iKr)

]

r=R
Be−iKr = −iKR (2.203)

Substitution into Eq. (2.138) yields immediately for the reaction cross section
(since Re f0 = 0 and Im f0 = −KR)

σre,0 =
π

k2

(
1 −

∣
∣∣e2iδ0

∣
∣∣
2
)

=
π

k2
4kK

(K + k)2 (2.204)

The wave number inside the nucleus, K, is the only information regarding the
interior which enters into this expression. Comparison to Eqs. (2.51) and (2.68)
shows that the reaction cross section for s-wave neutrons can be interpreted as
the product of the maximum cross section, π/k2, and the s-wave transmission
coefficient, T̂0,

σre,0 = σmax
re,0 T̂0 (2.205)

where

T̂0 = 1 −
∣
∣
∣e2iδ0

∣
∣
∣
2

(2.206)
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Since we assumed that the projectile is not re-emitted by the compound nu-
cleus into the entrance channel α, the reaction cross section σre here is identical
with the cross section σαC for the formation of the compound nucleus through
channel α. Also, disregarding the possibility that the incident particle can
return via the entrance channel means that Eq. (2.204) cannot give rise to res-
onances. For this reason, the above method for determining the cross section
is referred to as continuum theory.

From Eq. (2.204) we can also estimate the s-wave reaction cross section for
neutrons at low incident energies E. For k � K, the wave number K in the
interior does not change much with variations in k (see Fig. 2.7) and one finds

σre,0 =
π

k2
4kK

(K + k)2 ≈ 4π

Kk
∼ 1

k
∼ 1

v
∼ 1√

E
(2.207)

where p = �k and v is the velocity of the incident neutron. The result is
independent of the reaction mechanism and is referred to as 1/v law for re-
actions induced by s-wave neutrons. Reaction cross sections for 3He(n,p)3H,
6Li(n,α)3H and 10B(n,α)7Li are displayed in Fig. 4.15a. Below a neutron energy
of ≈ 1 keV, the cross sections follow the 1/v law.

Equations (2.204)–(2.206) are obtained under the assumption of s-wave neu-
trons as incident particles. They can be easily generalized for any projectile
and orbital angular momentum (Blatt and Weisskopf 1952). The cross section
for the formation of the compound nucleus through channel α is then given
by

σαC =
π

k2 ∑
�

(2� + 1)T̂�(α) (2.208)

where

T̂�(α) = 1 −
∣
∣∣e2iδα�

∣
∣∣
2

(2.209)

is the transmission coefficient of channel α for orbital angular momentum �
and δα� is the corresponding phase shift in channel α for elastic scattering by
an appropriate potential. The potential must be complex for reactions to occur;
otherwise the phase shift will be real and the transmission coefficient vanishes.
This is consistent with our earlier discussion in Section 2.3.6. Transmission
coefficients are usually calculated numerically from so-called optical model po-
tentials which represent the average nuclear potential. For more information
on optical model potentials, see Satchler (1990).
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2.7
Hauser–Feshbach Theory

In Section 2.5 we considered the case where a reaction proceeds through an
isolated narrow resonance. We will now discuss the other extreme situation.
With increasing excitation energy in the compound nucleus, the resonances
become broader and are located closer together. There is a continuous transi-
tion from sharp, isolated levels to the so-called continuum where levels over-
lap so much that little structure remains in the cross section. In other words,
the cross section varies smoothly with energy. The reaction cross section, av-
eraged over any resonance structure, is derived in the following.

The total angular momentum J and parity π of the compound nucleus will
be conserved in a reaction (α,α′). The average cross section is then given by a
sum of contributions from separate J and π,

〈σre(α, α′)〉 = ∑
Jπ

〈σre(α, α′)〉Jπ (2.210)

Recall that α denotes a pair of particles (including their state of excitation)
in a particular channel (Section 2.5.5). Unprimed and primed quantities re-
fer to the incoming and outgoing channel of the reaction, respectively. Next,
we factor each term 〈σre(α, α′)〉Jπ into a cross section for compound nucleus
formation through channel α and a branching ratio for decay into channel α′,

〈σre(α, α′)〉Jπ = σJπ
αC

GJπ
α′

∑
α′′

GJπ
α′′

(2.211)

The quantities GJπ
α represent probabilities for the decay into a specific outgo-

ing channel, where the sum over α′′ in the denominator is over all channels
to which the compound nucleus can decay (∑α′′ GJπ

α′′ = 1). The factorization
of the cross section in Eq. (2.211) reflects the independence of formation and
decay of the compound nucleus while still fulfilling the requirement of total
angular momentum and parity conservation. Substitution of the reciprocity
theorem (see Eq. (2.14))

(2I1 + 1)(2I2 + 1)k2
α〈σre(α, α′)〉Jπ = (2I′1 + 1)(2I′2 + 1)k2

α′ 〈σre(α′, α)〉Jπ (2.212)

into Eq. (2.211) gives

GJπ
α′

GJπ
α

=
(2I′1 + 1)(2I′2 + 1)k2

α′σ
Jπ
α′C

(2I1 + 1)(2I2 + 1)k2
ασJπ

αC

(2.213)
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where I1 and I2 are the spins of the particles in channel α. Summation over all
channels α′′ yields (since ∑α′′ GJπ

α′′ = 1)

GJπ
α′ =

(2I′1 + 1)(2I′2 + 1)k2
α′σ

Jπ
α′C

∑
α′′

(2I′′1 + 1)(2I′′2 + 1)k2
α′′σ

Jπ
α′′C

(2.214)

For the formation of the compound nucleus one can use Eq. (2.208),

σαC = ∑
Jπ

σJπ
αC =

π

k2
α

∑
�

(2� + 1)T̂�(α) (2.215)

Since the cross section is averaged over many overlapping resonances, we
expect that the transmission coefficient does not depend on J. Therefore

σαC =
π

k2
α

∑
�

(2� + 1)
�+s

∑
J=|�−s|

I1+I2

∑
s=|I1−I2|

2J + 1
(2I1 + 1)(2I2 + 1)(2� + 1)

T̂�(α) (2.216)

The quantities I, s, and � have the same meanings as in Section 2.5.5 and refer
to a specific channel α. The factor in front of the transmission coefficient takes
the number of different spin orientations into account (Section 2.5.5). Rear-
ranging the order of summation yields

σαC =
π

k2
α

∑
Jπ

2J + 1
(2I1 + 1)(2I2 + 1)

I1+I2

∑
s=|I1−I2|

J+s

∑
�=|J−s|

T̂�(α) (2.217)

Comparison of Eqs. (2.215) and (2.217) then gives

σJπ
αC =

π

k2
α

2J + 1
(2I1 + 1)(2I2 + 1) ∑

s�
T̂�(α) (2.218)

Combining Eqs. (2.210), (2.211), (2.214), and (2.218) results in

〈σre(α, α′)〉 = ∑
Jπ

(2I′1 + 1)(2I′2 + 1)k2
α′

σJπ
αCσJπ

α′C

∑
α′′

(2I′′1 + 1)(2I′′2 + 1)k2
α′′σ

Jπ
α′′C

=
π

k2
α

∑
Jπ

2J + 1
(2I1 + 1)(2I2 + 1)

[
∑
s�

T̂�(α)
] [

∑
s′�′

T̂�′(α′)
]

∑
α′′

∑
s′′�′′

T̂�′′(α′′)
(2.219)

This is the Hauser–Feshbach formula for energy-averaged cross sections (Hauser
and Feshbach 1952, Vogt 1968). The quantity α refers to the incoming channel
of the reaction and thus I1 and I2 are the spins of the target and projectile,
respectively. The sum over α′′ is again over all channels that are energetically
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accessible for the decay of the compound nucleus at the total energy in the
entrance channel. The sums over Jπ , �, and s run over all values allowed
by the selection rules for angular momentum coupling (Appendix B): π is
positive or negative; J = 0, 1, 2, . . . for A even, or J = 1

2 , 3
2 , 5

2 , . . . for A odd;
s takes on all integer values between |I1 − I2| and I1 + I2; � takes on all even
values between |J − s| and J + s if the pair α has the same parity as π and all
odd values otherwise. We assume here that the transmission coefficients are
independent of the channel spin (that is, the potential has no spin–orbit term)
and, therefore, the sum over s in Eq. (2.219) becomes a simple multiplicative
factor. See Problem 2.6.

The transmission coefficients T̂�(α) are determined by complex phase shifts
δα� (see Eq. (2.209)) that are usually calculated numerically from optical model
potentials (Section 2.6). Recall that these represent the average nuclear poten-
tial only. Consequently, the transmission coefficients describe the formation
probability of single-particle levels. In other words, the reaction cross sec-
tion calculated from Eq. (2.219) cannot account for the fine structure shown in
Fig. 2.25, but corresponds to the average cross section shown as the thick solid
line.

The Hauser–Feshbach theory is also applicable if a channel involves the
emission or absorption of γ-rays (Cowan, Thielemann and Truran 1991). A
correction must be applied to Eq. (2.219) because the processes of compound
nucleus formation and decay are not completely independent of each other
as can be shown by a more involved derivation of the Hauser–Feshbach for-
mula using the resonance theory (Vogt 1968). This width-fluctuation correction
enhances the cross section for weak reaction channels at the cost of stronger
ones and is most important near thresholds, where additional channels be-
come energetically accessible, and for reactions with few open channels.

Recall that α also specifies the state of excitation of a pair of particles in
a particular channel. In practical applications one is mostly interested in
cross sections obtained by summing or averaging over specific sets of excited
states. For example, what is usually measured in the laboratory is the quan-
tity 〈σre(α, α′)〉, with α representing the ground states of target and projectile,
summed over excited states in the outgoing channel α′. Or, if the reaction
takes place in a hot stellar plasma, 〈σre(α, α′)〉 must be averaged over excited
states in the entrance channel α (Section 3.1.5). In such cases, Eq. (2.219) is
still valid if each of the transmission coefficients in the numerator is replaced
by sums of transmission coefficients over the excited states in question. In
exceptional cases, all the final states for compound nucleus decay and their
quantum numbers are experimentally known. The Hauser–Feshbach formula
can then be applied with essentially no adjustable parameters. In most cases
of practical interest, however, the compound nucleus may decay to levels be-
yond the highest excited state for which energy, spin, and parity are explicitly
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known. The transmission coefficients in the numerator and denominator of
Eq. (2.219) must then be modified to include terms that integrate a nuclear
level density over the energy region beyond the known levels. This requires
the development of expressions for the density of states as a function of exci-
tation energy, spin, and parity. The evaluation of the overall cross section is
then reduced to the problem of determining the required transmission coeffi-
cients and nuclear level densities. For a detailed discussion of these quantities
in connection with the Hauser–Feshbach model see, for example, Rauscher et
al. (1997) or Arnould and Goriely (2003).

Figure 2.29 shows as an example the cross section for the 64Ni(p,γ)65Cu re-
action at bombarding energies between 1 and 4 MeV. The 64Ni(p,n)64Cu re-
action has a Q-value of ≈ −2.5 MeV, which means that at a bombarding en-
ergy close to 2.5 MeV the neutron channel opens and the (p,n) reaction will
start to compete with the (p,γ) reaction. Since the total incoming flux must
be constant, the opening of a new reaction channel corresponds to a reduction
of flux into all other reaction channels. As a result, the cross section of the
(p,γ) reaction drops substantially at the neutron threshold, giving rise to a so-
called competition cusp. The dashed curve in Fig. 2.29 was obtained by using
Eq. (2.219) and is in qualitative agreement with the measurements. The the-
oretical description of the data is significantly improved if width fluctuation
corrections are taken into account (solid line). A discussion of the Hauser–
Feshbach model in the context of thermonuclear reaction rates is given in Sec-
tion 3.2.7.

Fig. 2.29 Cross section versus bombard-
ing energy for the 64Ni(p,γ)65Cu reaction.
Beyond an energy of ≈ 2.5 MeV the en-
dothermic 64Ni(p,n)64Cu reaction is energet-
ically allowed. The sharp drop in the cross
section at the neutron threshold reflects
the decrease of the flux in all other decay
channels of the compound nucleus 65Cu.

The curves show the results of Hauser–
Feshbach statistical model calculations with
(solid line) and without (dashed line) width
fluctuation corrections. Reprinted from F. M.
Mann et al., Phys. Lett. B, Vol. 58, p. 420
(1975). Copyright (1975), with permission
from Elsevier.
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Problems

2.1 Show by substituting Eq. (2.27) into Eq. (2.30) that the expansion coeffi-
cients are given by b� = (2� + 1)i�eiδ� . It is helpful for the derivation to write
the sine functions as complex exponentials and to group separately the terms
with eikr and e−ikr.

2.2 The s-wave (� = 0) transmission coefficient at low energies compared to
the Coulomb barrier height is given by Eq. (2.124). Derive the transmission
coefficient at low energies for the Coulomb and centripetal potentials by sub-
stituting V(r) = Z0Z1e2/r + �(� + 1)�2/(2mr2) into Eq. (2.119). The simplest
procedure is to expand the square root in the integrand before integration.

2.3 Suppose that a hypothetical resonance occurs in the A(p,γ)B reaction. The
“observed” proton and γ-ray partial widths amount to Γo

p = 50 meV and Γo
γ =

50 meV, respectively. Assume that no other reaction channels are open. Use
the one-level Breit–Wigner formula to calculate the ratio of reaction cross sec-
tions at Er and Er + Γo (Γo denotes the total resonance width). Disregard the
small energy dependence of the wave number k and of the partial widths.

2.4 Show explicitly that the general solution of Eq. (2.160) reduces for � = 0
neutrons to u0(r) = Aeikr + Be−ikr (see Eq. (2.132)).

2.5 The Ecm
r = 518 keV (Jπ = 1−) s-wave resonance (Fig. 3.11) in the

13C(p,γ)14N reaction (Q = 7550 keV) has an “observed” proton and γ-ray
partial width of Γo

p = 37 keV and Γo
γ = 9.4 eV, respectively, at the resonance

energy. Both values are given here in the center-of-mass system. They are
derived from the results reported in King et al. (1994). The latter value corre-
sponds to the γ-ray partial width of the E1 transition to the 14N ground state
(Jπ = 1+). By using the energy dependences of the partial widths, find for this
particular resonance the center-of-mass energy at which Γo

p ≈ Γo
γ. Approx-

imate the s-wave penetration factor by the Gamow factor and disregard the
small energy dependence of the dimensionless single-particle reduced width.

2.6 Consider the 23Na(p,α)20Ne reaction, leading to the 20Ne ground state
(Jπ = 0+), at a center-of-mass proton energy of Ep ≈ 0.4 MeV [Jπ(23Na) =
3/2+, Jπ

p = 1/2+]. The proton separation energy of 24Mg (or the Q-value for
the 23Na(p,γ)24Mg reaction) is Sp = 11.693 MeV (Audi, Wapstra and Thibault
2003). Hence, the compound nucleus 24Mg has an excitation energy near
11.7 MeV + 0.4 MeV ≈ 12 MeV. At this energy, 24Mg can decay by proton emis-
sion to the 23Na ground state and by α-particle emission to the 20Ne ground
state or the 20Ne first-excited state (Ex = 1.63 MeV, Jπ = 2+). Determine the
energy-averaged cross section by writing down all terms of Eq. (2.219) up to
and including J = 2.



Nuclear Physics of Stars. Christian Iliadis
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40602-9

147

3
Thermonuclear Reactions

3.1
Cross Sections and Reaction Rates

The Q-value represents the energy released in a particular nuclear reaction. Of
importance in a stellar environment, however, is the total nuclear energy lib-
erated in a stellar plasma per unit volume. The latter aspect depends on two
additional factors, the nuclear cross section and the velocity distribution of the
particles in the plasma. The nuclear cross section is a measure for the proba-
bility per pair of interacting nuclei 0 and 1 that a nuclear reaction will occur.
The total cross section (in units of area) is defined by Eq. (2.1). In general, nu-
clear cross sections depend on the relative velocity of the target-plus-projectile
system, that is, σ = σ(v).

Using Eq. (2.1), we may write the rate of a nuclear reaction (number of re-
actions per time t and unit volume V) as

NR

V · t
= (σNt)

( Nb

V · A · t

)
= σ

Nt

V
Nb

A · t
= σ

Nt

V
v
Nb

V
(3.1)

with the current density (number of particles per time and per area) given by
jb = Nb/(At) = vNb/V.

3.1.1
Particle-Induced Reactions

Consider a reaction involving four species, 0 + 1 → 2 + 3, where both the
projectile (0) and the target (1) are represented by particles with rest mass (that
is, neither 0 nor 1 represents a photon). With the definition r01 ≡ NR/(Vt),
we obtain for the reaction rate

r01 = N0N1vσ(v) (3.2)

where N0 ≡ Nt/V and N1 ≡ Nb/V are the number densities of the interacting
particles (in units of particles per volume). In a stellar plasma at thermody-
namic equilibrium, the relative velocity of the interacting nuclei 0 and 1 is not
constant, but there exists a distribution of relative velocities, described by the
probability function P(v). In this case P(v) dv is the probability that the rel-
ative velocity of the interacting nuclei is in the range between v and v + dv,

Nuclear Physics of Stars 

 Christian Iliadis 
 2007 WILEY-VCH Verlag GmbH & Co



148 3 Thermonuclear Reactions

with
∫ ∞

0
P(v) dv = 1 (3.3)

We may generalize the reaction rate for a distribution of relative velocities by
writing

r01 = N0N1

∫ ∞

0
vP(v)σ(v) dv ≡ N0N1〈σv〉01 (3.4)

where 〈σv〉01 is the reaction rate per particle pair and N0N1 is the total number
density of pairs of nonidentical nuclei 0 and 1. For identical particles, the total
number density of pairs is given by

N0(N0 − 1)
2

−−−−→
N0 large

N2
0

2
(3.5)

and we obtain for the reaction rate the general expression

r01 =
N0N1〈σv〉01

(1 + δ01)
(3.6)

where δ01 is the Kronecker symbol. The number of reactions per unit volume
and time is given by the product of the number of particle pairs and the re-
action rate per particle pair. The latter quantity contains the nuclear physics
information. In practice, it is the quantity NA〈σv〉01 (where NA denotes the
Avogadro constant) in units of cm3mol−1s−1 rather than 〈σv〉01 which is tab-
ulated and presented in the literature. For the case of three-particle reactions
or decays, see Fowler, Caughlan and Zimmerman (1967). In a stellar plasma,
the kinetic energy available to nuclei is that of their thermal motion. There-
fore, the reactions initiated by this motion are called thermonuclear reactions.
With few exceptions, nuclei in a stellar plasma move nonrelativistically and
are nondegenerate (see, for example, Wolf 1965). Thus in most cases the ve-
locities of nuclei can be described by a Maxwell–Boltzmann distribution. The
probability for the occurrence of a nuclear reaction depends on the relative
velocities between the interacting nuclei. If the velocity distributions of the
interacting nuclei at thermodynamic equilibrium are separately described by
Maxwell–Boltzmann distributions, then it follows that the relative velocities
between the two species of nuclei will also be Maxwellian (Clayton 1983).

We may write for the Maxwell–Boltzmann distribution

P(v) dv =
( m01

2πkT

)3/2
e−m01v2/(2kT) 4πv2 dv (3.7)

which gives the probability that the relative velocity has a value between v
and v + dv. The Boltzmann constant is given by k = 8.6173 × 10−5 eV/K,
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T is the temperature, and m01 is the reduced mass m01 = m0m1/(m0 + m1)
(Appendix C.2). With E = m01v2/2 and dE/dv = m01v we may write the
velocity distribution as an energy distribution,

P(v) dv = P(E) dE =
( m01

2πkT

)3/2
e−E/kT 4π

2E
m01

dE
m01

√
m01

2E

=
2√
π

1
(kT)3/2

√
E e−E/kT dE (3.8)

The velocity distribution has a maximum at vT =
√

2kT/m01, corresponding
to an energy of E = kT. The energy distribution has a maximum at E = kT/2.
For the reaction rate per particle pair we obtain

〈σv〉01 =
∫ ∞

0
vP(v)σ(v) dv =

∫ ∞

0
vσ(E)P(E) dE

=
(

8
πm01

)1/2 1
(kT)3/2

∫ ∞

0
E σ(E) e−E/kT dE (3.9)

Numerically we obtain for the reaction rate at a given temperature T

NA〈σv〉01 =
3.7318 × 1010

T3/2
9

√
M0 + M1

M0M1

∫ ∞

0
E σ(E) e−11.605 E/T9 dE

(cm3 mol−1 s−1) (3.10)

where the center-of-mass energy E is in units of MeV, the temperature T9 in
GK (T9 ≡ T/109 K), the relative atomic masses Mi in u and the cross section
σ in b (1 b ≡ 10−24 cm2). Clearly, the reaction rate depends critically on the
cross section σ which differs for each nuclear reaction.

Figure 3.1a shows the factor (kT)−3/2E e−E/kT, which contains mainly the
Maxwell–Boltzmann distribution, versus energy E for three different scenar-
ios: (i) the Sun’s core (T = 15 MK), (ii) a nova (T = 300 MK), and (iii) a su-
pernova (T = 5 GK). Each displayed curve increases linearly at small ener-
gies, reaches a maximum at E = kT, and then decreases exponentially and
approaches zero for large values of E. The term kT is numerically given by
kT = 86.173 T9 (keV) = 0.086173 T9 (MeV), and is displayed in Fig. 3.2. The
maxima of the curves in Fig. 3.1a occur at Emax = kT = 1.3 keV, 26 keV, and
431 keV.

For neutron-induced reactions, such as (n,γ) or (n,α), the reaction rate is
frequently expressed in terms of a Maxwellian-averaged cross section,

NA〈σ〉T ≡ NA〈σv〉
vT

=
1

vT
NA

∫ ∞

0
vP(v)σn(v) dv

=
4√
π

NA

v2
T

∫ ∞

0
vσn(v)

(
v

vT

)2

e−(v/vT)2
dv (3.11)



150 3 Thermonuclear Reactions

Fig. 3.1 (a) The factor (kT)−3/2E e−E/kT

that occurs in the rate expression for reac-
tions induced by particles with rest mass
(see Eq. (3.10)) at three different temper-
atures, T = 0.015 GK, 0.3 GK and 5 GK;
these conditions are encountered in the
Sun, in classical novae and in type II su-

pernovae, respectively; (b) The factor
E2

γ/(eEγ/kT − 1) that occurs in the expres-
sion of the decay constant for photodisinte-
gration reactions (see Eq. (3.18)) at three
different temperatures, T = 1 GK, 2.5 GK,
and 5 GK.

Fig. 3.2 The energy maximum of the Maxwell–Boltzmann velocity
distribution as a function of temperature.

with vT =
√

2kT/m01 being the thermal velocity (that is, the maximum of
the velocity distribution). The quantity 〈σ〉T rather than 〈σv〉 is frequently pre-
sented in the literature. The usefulness of the above expression will become
apparent in later sections.
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3.1.2
Photon-Induced Reactions

If species 2 is a photon, then the process γ + 3 → 0 + 1 is called a photodis-
integration reaction. The current density may be written as jb = Nb/(At) =
cNb/V, with c being the speed of light. With the definitions rγ3 ≡ NR/(Vt),
N3 ≡ Nt/V, Nγ ≡ Nb/V we obtain from Eq. (3.1)

rγ3 = N3Nγcσ(Eγ) (3.12)

The cross section depends on the γ-ray energy. Furthermore, in a stellar
plasma at thermodynamic equilibrium, the number density of photons is not
constant, but depends on the stellar temperature and on the γ-ray energy. We
may generalize the reaction rate by writing

rγ3 = N3

∫ ∞

0
cNγ(Eγ)σ(Eγ) dEγ (3.13)

For the decay constant (probability of decay per nucleus per second) we find

λγ(3) =
rγ3

N3
=

∫ ∞

0
cNγ(Eγ)σ(Eγ) dEγ (3.14)

The energy density of electromagnetic waves with frequencies between ν and
ν + dν at temperature T is given by the Planck radiation law

u(ν) dν =
8πhν3

c3
1

ehν/kT − 1
dν (3.15)

With the substitution Eγ = hν we find for the energy density

u(Eγ) dEγ =
8π

(hc)3

E3
γ

eEγ/kT − 1
dEγ (3.16)

The number of photons with energies between Eγ and Eγ + dEγ per unit vol-
ume at a temperature T is then

Nγ(Eγ) dEγ =
u(Eγ)

Eγ
dEγ =

8π

(hc)3

E2
γ

eEγ/kT − 1
dEγ (3.17)

With Eq. (3.14) we obtain for the photodisintegration decay constant at a given
temperature

λγ(3) =
8π

h3c2

∫ ∞

0

E2
γ

eEγ/kT − 1
σ(Eγ) dEγ (3.18)

Since most photodisintegration reactions are endothermic (Qγ3→01 < 0) the
lower integration limit is actually given by the threshold energy, Et = Q01→γ3,
of the reaction. Note that λγ(3) does not depend on the stellar density.
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Fig. 3.3 Energy level diagram comparing photodisintegration reac-
tions of different threshold energies, Et. The right-hand side shows
schematically the factor E2

γ/(eEγ/kT − 1) (see Fig. 3.1b). Only pho-
tons with energies above the threshold (Et = Q01→γ3 for photon γ;
E′

t = Q45→γ3 for photon γ′) can initiate a photodisintegration reaction
and contribute to the decay constant given by Eq. (3.18).

Figure 3.1b shows the factor E2
γ/(eEγ/kT − 1) versus γ-ray energy for

three different scenarios: (i) T = 1 GK (kT = 86 keV), (ii) T = 2.5 GK (kT =
215 keV), and (iii) T = 5 GK (kT = 431 keV). The maxima of the curves occur
at Eγ,max ≈ 1.6 kT = 140 keV, 349 keV and 700 keV. The number of photons
is not conserved, but is determined by the conditions of thermal equilibrium.
For many important photodisintegration reactions, the threshold energies are
much larger than the location of the maxima of the factor E2

γ/(eEγ/kT − 1),
that is, Et � Eγ,max. Figure 3.3 compares the situation for two photodis-
integration reactions of different threshold energies and with Et � Eγ,max.
Clearly, the integral λγ(3) ∼ ∫ ∞

Et
E2

γ(eEγ /kT − 1)−1σ(Eγ) dEγ will be smaller
for the reaction with the larger threshold energy if both reactions have similar
photodisintegration cross sections.

3.1.3
Abundance Evolution

Consider first a reaction between two nuclei 0 and 1, and disregard other pro-
cesses. The reaction rate for 0 + 1 is related to the mean lifetime τ of the nu-
clear species in the stellar plasma. The rate of change of the abundance (in
terms of the number density) of nucleus 0 due to reactions with nucleus 1 can
be expressed as

(
dN0

dt

)

1
= −λ1(0)N0 = − N0

τ1(0)
(3.19)
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where λ ≡ 1/τ is the decay constant. By using the reaction rate (see Eq. (3.6)),
we may also write

(
dN0

dt

)

1
= −(1 + δ01)r01 = −(1 + δ01)

N0N1〈σv〉01

(1 + δ01)
= −N0N1〈σv〉01 (3.20)

The Kronecker symbol appears since for identical nuclei each reaction de-
stroys two particles. From Eqs. (3.19), (3.20), and (1.13) we obtain the relations

r01 =
λ1(0)N0

(1 + δ01)
=

1
(1 + δ01)

N0

τ1(0)
(3.21)

τ1(0) =
N0

(1 + δ01)r01
=

1
N1〈σv〉01

=
(

ρ
X1

M1
NA〈σv〉01

)−1

(3.22)

λ1(0) =
1

τ1(0)
= N1〈σv〉01 = ρ

X1

M1
NA〈σv〉01 (3.23)

The decay constant of a nucleus for destruction via a particle-induced reaction
depends explicitly on the stellar density and, as will be seen later, implicitly
on stellar temperature through the reaction rate. If species 0 can be destroyed
by several different reactions, its total lifetime is given by

1
τ(0)

= ∑
i

1
τi(0)

(3.24)

The above expressions are very useful and will be applied frequently in the
discussion of nuclear burning stages (Chapter 5). The following example
shows their use in determining the preferred process (reaction or β-decay)
by which a particular nucleus is destroyed in a stellar plasma.

Example 3.1

In a stellar plasma, the nucleus 25Al may be destroyed by the capture reaction
25Al(p,γ)26Si or by β+-decay (T1/2 = 7.18 s). Neglecting other processes, deter-
mine the dominant destruction process at a stellar temperature of T = 0.3 GK
assuming a reaction rate of NA〈σv〉 = 1.8 × 10−3 cm3 mol−1 s−1. Assume a
stellar density of ρ = 104 g/cm3 and a hydrogen mass fraction of XH = 0.7.

Using Eqs. (1.18) and (3.22) we obtain for the mean lifetime of both processes

β+-decay: τβ+(25Al) =
T1/2

ln 2
=

7.18 s
0.693

= 10.36 s

p capture: τp(25Al) =
(

ρ
XH

MH
NA〈σv〉

)−1

=
[
(104 g/cm3) · 0.7

1.0078 u
· (1.8 × 10−3 cm3 s−1 mol−1)

]−1

= 0.08 s
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Thus the proton capture reaction is the dominant destruction mechanism of
25Al under these conditions.

Consider now the influence of several nuclear processes (reactions, photo-
disintegrations, β-decays) together on the abundance evolution of a particu-
lar nucleus in a stellar plasma. As a specific example we will choose again
25Al (Fig. 3.4). It may be produced by a number of processes that are repre-
sented by solid lines, including 24Mg(p,γ)25Al, 22Mg(α,p)25Al, 25Si(β+ν)25Al,
26Si(γ,p)25Al, and so on. On the other hand, it is destroyed by the processes
shown as dotted lines, such as 25Al(p,γ)26Si, 25Al(α,p)28Si, 25Al(β+ν)25Mg,
25Al(γ,p)24Mg, and so forth. The time evolution of the 25Al abundance is de-
scribed by the expression

d(N25Al)
dt

= NHN24Mg〈σv〉24Mg(p,γ) + N4HeN22Mg〈σv〉22Mg(α,p)

+ N25Siλ25Si(β+ν) + N26Siλ26Si(γ,p) + · · ·
− NHN25Al〈σv〉25Al(p,γ) − N4HeN25Al〈σv〉25Al(α,p)

− N25Alλ25Al(β+ν) − N25Alλ25Al(γ,p) − · · · (3.25)

In general, if the only sources of abundance change are nuclear processes (that
is, no expansion or mixing of matter), then the abundance evolution of nu-
cleus i is given by the differential equation

dNi

dt
=

[

∑
j,k

NjNk〈σv〉jk→i + ∑
l

λβ,l→iNl + ∑
m

λγ,m→iNm

]

−
[

∑
n

NnNi〈σv〉ni + ∑
o

λβ,i→oNi + ∑
p

λγ,i→pNi

]

(3.26)

The terms in the first and second parentheses represent all processes produc-
ing and destroying nucleus i, respectively. In the first parenthesis, the three
terms stand for: the sum over all reactions producing nucleus i via reactions
between j and k; the sum over all β-decays of nuclei l leading to i; and the
sum over all photodisintegrations of nuclei m leading to i. Similar arguments
apply to the terms in the second parenthesis. If a reaction between noniden-
tical particles (j 
= k) creates two nuclei i (for example, 7Li + p → α + α), then
NjNk〈σv〉jk→i has to be replaced by 2NjNk〈σv〉jk→i. If a reaction between iden-
tical particles (j = k) produces only one particle i (for example, p + p → d), then
NjNk〈σv〉jk→i must be replaced by N2

j 〈σv〉jj→i/2. The above expression holds
without modification for all other reactions involving identical particles. For
the inclusion of three-particle reactions see, for example, Chieffi, Limongi and
Straniero (1998). Note that it is of advantage to express Eq. (3.26) in terms
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Fig. 3.4 Relevant part of the chart of the nuclides showing processes
that create (solid arrows) or destroy (dashed arrows) the species 25Al.

of mole fractions Y (Section 1.5.4) instead of number densities N if the mass
density changes during the nucleosynthesis. In most discussions of nuclear
burning stages and processes in Chapter 5 we will make the assumption of
constant density ρ and thus the use of either N or Y is appropriate.

In any realistic situation, we have to consider the evolution of not just one
nuclide, but of several (sometimes many) species simultaneously. For each
nuclide we can set up an expression of the form given by Eq. (3.26). Such a
system of coupled, nonlinear ordinary differential equations is called a nuclear
reaction network. In the simplest cases, we will solve the reaction network ana-
lytically. In more complex situations, however, the system of equations must
be solved numerically. We do not concern ourselves with the numerical tech-
niques of solving a reaction network. These are described in detail by Arnett
(1996), Timmes (1999), or Hix and Meyer (2006).

Sometimes the solutions of nuclear reaction networks reveal certain funda-
mental properties which simplify the interpretation of the results. The most
important of these properties are called steady state and equilibrium. A steady-
state solution exists if for some part of the reaction network the time deriva-
tives of all abundances, dNi/dt, are zero or nearly zero. This implies that in
Eq. (3.26) the sum of all destruction terms is balanced by the sum of all creation
terms. An equilibrium solution is more restrictive and applies to a situation
where the abundances of a pair of nuclei (or of a group of nuclei) are locally
balanced because of (almost) equally strong forward and reverse reactions (see
Section 3.1.4). We will make frequent use of both concepts in discussions of
nucleosynthesis.

3.1.4
Forward and Reverse Reactions

It was shown in Section 2.2 that the cross sections of a forward and a reverse
reaction are fundamentally related by the reciprocity theorem. Here, we will
derive a number of expressions for the corresponding reaction rates. For a
reaction involving only particles with rest mass, 0 + 1 → 2 + 3, we obtain
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from Eq. (2.15) with p2 = 2mE

σ23→01

σ01→23
=

(2j0 + 1)(2j1 + 1)
(2j2 + 1)(2j3 + 1)

m01E01

m23E23

(1 + δ23)
(1 + δ01)

(3.27)

For a reaction involving photons, 0 + 1 → γ + 3, we obtain with p2 = E2
γ/c2

σγ3→01

σ01→γ3
=

(2j0 + 1)(2j1 + 1)
2(2j3 + 1)

2m01c2E01

E2
γ

1
(1 + δ01)

(3.28)

where (2jγ + 1) = 2 since the photon has only two polarization directions
(Messiah 1999).

If the forward reaction 0 + 1 → 2 + 3 and corresponding reverse reaction
2 + 3 → 0 + 1 involve only particles with rest mass, then we find for the
reaction rates

NA〈σv〉01→23 =
(

8
πm01

)1/2 NA

(kT)3/2

∫ ∞

0
E01 σ01→23 e−E01/kT dE01 (3.29)

NA〈σv〉23→01 =
(

8
πm23

)1/2 NA

(kT)3/2

∫ ∞

0
E23 σ23→01 e−E23/kT dE23 (3.30)

The kinetic energies are related by E23 = E01 + Q01→23 (see Eq. (1.5)). It fol-
lows (see also Fowler, Caughlan and Zimmerman 1967)

NA〈σv〉23→01

NA〈σv〉01→23
=

(
m01

m23

)1/2 ∫ ∞
0 E23 σ23→01 e−E23/kT dE23∫ ∞
0 E01 σ01→23 e−E01/kT dE01

=
(2j0 + 1)(2j1 + 1)(1 + δ23)
(2j2 + 1)(2j3 + 1)(1 + δ01)

(
m01

m23

)3/2

e−Q01→23/kT (3.31)

Obviously, NA〈σv〉01→23 and NA〈σv〉23→01 refer to the same stellar tempera-
ture T.

To find the relationship between forward and reverse reactions if species 2
is a photon, we start from Eqs. (3.9) and (3.18),

λγ(3) =
8π

h3c2

∫ ∞

0

E2
γ

eEγ/kT − 1
σγ3→01 dEγ (3.32)

NA〈σv〉01→γ3 =
(

8
πm01

)1/2 NA

(kT)3/2

∫ ∞

0
E01 σ01→γ3 e−E01/kT dE01 (3.33)

From Eq. (3.28) we find

λγ(3)
NA〈σv〉01→γ3

=
8π

h3c2

∫ ∞
0

E2
γ

eEγ/kT−1
(2j0+1)(2j1+1)
(2j3+1)(1+δ01)

m01c2E01
E2

γ
σ01→γ3 dEγ

(
8

πm01

)1/2 NA
(kT)3/2

∫ ∞
0 E01 σ01→γ3 e−E01/kT dE01

(3.34)
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Fig. 3.5 Comparison of the exact expression E2
γ/(eEγ/kT − 1) (solid

line) and the approximation E2
γ/eEγ/kT (dashed line) at a stellar tem-

perature of T = 5 GK. For a sufficiently large threshold energy (in this
case, for Et > 1.5 MeV), the difference between both expressions is
negligible.

The energies are related by E01 + Q01→γ3 = Eγ, as shown in Fig. 3.3. Note that
most capture reactions have positive Q-values (that is, Q < 0 for the corre-
sponding reverse photodisintegration reactions), otherwise nucleus 3 would
be unstable by particle emission. Furthermore, many capture reactions have
large Q-values, on the order of several MeV. In this case, the integration over
γ-ray energy Eγ will not start at 0 but at a threshold energy of Et = Q01→γ3
as explained above (Fig. 3.3). Since this implies Eγ � kT, we may use the ap-
proximation eEγ/kT − 1 ≈ eEγ/kT. Figure 3.5 shows the factor E2

γ/(eEγ/kT − 1)
(solid line) and the approximation E2

γ/eEγ/kT (dashed line) versus γ-ray en-
ergy for a stellar temperature of T = 5 GK. Clearly, if the threshold energy
Et = Q01→γ3 is sufficiently large, then the difference between the two expres-
sions is negligible. The approximation also holds for smaller Q-values below
1 MeV if charged particles are involved in the process. The photodisintegra-
tion cross section is then suppressed at low energies (due to the tunnel effect)
where the deviation between the solid and dashed lines in Fig. 3.5 is largest.
However, the approximation may not be valid for (n,γ) reactions with small
Q-values.
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Fig. 3.6 (a) Reaction rate ratio of forward and reverse reactions versus
temperature. The curves correspond to different values of Q01→23. (b)
Ratio of decay constants for photodisintegration reaction and corre-
sponding capture reaction versus temperature for different values of
Q01→γ3.

With the approximation eEγ/kT − 1 ≈ eEγ/kT we obtain from Eq. (3.34) (see
also Fowler, Caughlan and Zimmerman 1967)

λγ(3)
NA〈σv〉01→γ3

=
8π

h3c2 (kT)3/2m01c2

(
8

πm01

)1/2
NA

(2j0 + 1)(2j1 + 1)
(2j3 + 1)(1 + δ01)

×
∫ ∞

0 E01 e−(E01+Q01→γ3)/kTσ01→γ3 dEγ∫ ∞
0 E01 e−E01/kTσ01→γ3 dE01

=
(

2π

h2

)3/2 (m01kT)3/2

NA

(2j0 + 1)(2j1 + 1)
(2j3 + 1)(1 + δ01)

e−Q01→γ3/kT (3.35)

Figure 3.6a shows the ratio of reaction rates, NA〈σv〉23→01/NA〈σv〉01→23 ≈
e−Q01→23/kT, for reactions involving particles with rest mass, where the factor
containing the spins and reduced masses in Eq. (3.31) is set equal to unity.
The different curves correspond to different values of Q01→23. For a posi-
tive Q-value, the ratio NA〈σv〉23→01/NA〈σv〉01→23 is always less than unity.
It is apparent that the reverse reaction becomes important at sufficiently large
temperatures and at small Q-values. Figure 3.6b shows the ratio of decay
constants, λγ(3)/λ1(0) = λγ(3)/[ρ(X1/M1)NA〈σv〉01→γ3], for reactions in-
volving photons, where the factor containing the spins in Eq. (3.35) and the
term X1/M1 are set equal to unity. For the density an arbitrary value of
ρ = 103 g/cm3 has been chosen. For all curves shown, the value of Q01→γ3
(that is, for the capture reaction) is positive. It can be seen that the ratio of
photodisintegration and capture reaction decay constants can exceed unity
and may become very large, depending on the values of temperature and re-
action Q-value.
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Fig. 3.7 Sections of the nuclidic chart indicating interactions between
nuclei. Arrows that point vertically up show (p,γ) reactions; those
pointing vertically down represent (γ,p) photodisintegrations and those
pointing diagonally down to the right correspond to β+-decays. (a) The
reaction chain 11B+p↔12C and 12C+p↔13N at elevated temperatures.
(b) A situation depicting an equilibrium between the forward reaction
A+a → γ+B and the reverse reaction B+γ → a+A; see Section 3.1.6.

The strong Q-value dependence of the ratio λγ(3)/λ1(0) in Fig. 3.6b has
an important consequence. Capture reactions involving target nuclei with an
even number of protons and neutrons usually have small Q-values, while the
Q-values are larger for capture reactions involving an odd number of protons
or neutrons. In other words, a relatively large amount of energy is released
if an energetically favorable even–even structure can be achieved as a result
of the capture process. As an example, consider the reaction chain 11B + p ↔
12C and 12C + p ↔ 13N shown in Fig. 3.7a. The corresponding Q-values are
Q11B+p = 16 MeV and Q12C+p = 2 MeV. Clearly, at elevated temperatures the
photodisintegration of 12C will be a relatively slow process while the photo-
disintegration of 13N will be much faster. As a consequence, the abundance
of 12C will be enhanced over that of the neighboring (and less stable) nuclei
11B and 13N. The net effect of photodisintegration processes in stellar plasmas
at elevated temperatures is to convert nuclei to more stable species. These
considerations will be especially important for the advanced burning stages
of massive stars (see Section 5.5).

3.1.5
Reaction Rates at Elevated Temperatures

Until now we considered only reactions involving nuclei in their ground
states. However, at elevated stellar temperatures the nuclei will be thermally
excited, for example, through photoexcitation, inelastic particle scattering,
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and other means. These excited states may also participate in nuclear reac-
tions. We already mentioned in Section 1.7.4 that for a nondegenerate plasma
in thermodynamic equilibrium, the ratio of the number density Niµ of nuclei i
in excited state µ and the total number density Ni of nuclei i is given by a
Boltzmann distribution

Piµ =
Niµ

Ni
=

giµe−Eiµ/kT

∑µ giµe−Eiµ/kT =
giµe−Eiµ/kT

Gi
(3.36)

where the symbols have the same meaning as in Eq. (1.34).
Of primary astrophysical importance is the reaction rate involving ther-

mally excited nuclei, NA〈σv〉∗, rather than the rate involving nuclei in the
ground state, NA〈σv〉. For the reaction 0 + 1 → 2 + 3 the rate including ther-
mally excited states is obtained by summing over all transitions to relevant
excited states in nuclei 2 and 3, and by appropriately averaging over combi-
nations of excited states in nuclei 0 and 1. The number densities Ni entering
the reaction rate expression, r01 = N0N1〈σv〉∗01→23, refer to the total number
of nuclei i per unit volume. For the sake of simplicity, we will disregard in
the following excited states of the light particles 1 and 2 in the entrance or exit
channel (which is a valid assumption for the proton, neutron, and α-particle).
We write

NA〈σv〉∗01→23 = ∑
µ

P0µ ∑
ν

NA〈σv〉µ→ν
01→23

=
∑µ g0µe−E0µ/kT ∑ν NA〈σv〉µ→ν

01→23

∑µ g0µe−E0µ/kT

(3.37)

where µ and ν are labels for states in the target nucleus 0 and the residual
nucleus 3, respectively. Note that laboratory experiments usually provide in-
formation for the calculation of the quantity

NA〈σv〉01→23 = ∑
ν

NA〈σv〉g.s.→ν
01→23 (3.38)

that is, the rate involving all transitions from the ground state of the target
nucleus 0 to the ground state and to excited states of the residual nucleus 3.
Usually, cross sections involving excited target nuclei cannot be measured di-
rectly in the laboratory and have to be calculated by using theoretical models.
From Eqs. (3.37) and (3.38) we find

NA〈σv〉∗01→23 =
NA〈σv〉∗01→23
NA〈σv〉01→23

NA〈σv〉01→23 = RttNA〈σv〉01→23

=
∑µ g0µe−E0µ/kT ∑ν NA〈σv〉µ→ν

01→23

∑ν NA〈σv〉g.s.→ν
01→23

∑µ g0µe−E0µ/kT NA〈σv〉01→23 (3.39)



3.1 Cross Sections and Reaction Rates 161

Numerical values for the stellar enhancement factor Rtt, estimated by using the
Hauser–Feshbach statistical model (Section 2.7), are given in Angulo et al.
(1999) and Rauscher and Thielemann (2000). The above expressions are also
valid if general thermodynamic equilibrium has not been attained, as long as
the excited states are in equilibrium with the ground state (Fowler, Caughlan
and Zimmerman 1967, 1975). Of primary astrophysical interest are the abun-
dances of all levels which will decay to the ground state after the final cool-
ing of the stellar event. Therefore, the sums over µ and ν include all bound
states up to an energy at which the levels become unbound and decay pri-
marily via particle emission. Similar statements apply to the reverse reaction
2 + 3 → 0 + 1. An explicit expression for NA〈σv〉∗01→23 that is applicable to the
special case of narrow resonances will be derived in Section 3.2.4.

The relationships between forward and reverse reaction rates derived in
Section 3.1.4 assume that all interacting nuclei are in their ground states. They
also need to be modified in order to take thermally excited states into account.
As a simple example, consider the situation shown in Fig. 3.8. A laboratory
measurement of the cross section for the reaction 0 + 1 → 2 + 3 at a constant
bombarding energy E considers only target nuclei 0 in their ground state and
sums over all transitions to the ground state or to excited states in the final nu-
cleus 3. In a stellar plasma, on the other hand, both the target and the residual
nucleus may be thermally excited, and all possible transitions between excited
states µ and ν in nuclei 0 and 3, respectively, have to be taken into account.

Suppose that there are a number of excited states in nucleus 0 and in nu-
cleus 3 which are all in thermal equilibrium with their respective ground
states. Furthermore, assume that the light particles 1 and 2 have no excited
states. The stellar rates for forward and reverse reactions are then obtained
by appropriately averaging over initial states and summing over final states.
The expression for the forward stellar rate is given by Eq. (3.37), while for the
reverse stellar rate one has

NA〈σv〉∗23→01 = ∑
ν

P3ν ∑
µ

NA〈σv〉ν→µ
23→01

=
∑ν g3νe−E3ν/kT ∑µ NA〈σv〉ν→µ

23→01

∑ν g3νe−E3ν/kT

(3.40)

Into this expression we substitute our earlier result (see Eq. (3.31))

NA〈σv〉ν→µ
23→01

NA〈σv〉µ→ν
01→23

=
g0µg1(1 + δ23)
g3νg2(1 + δ01)

(
m01

m23

)3/2

e−Qµ→ν
01→23/kT (3.41)

We also make the nonrelativistic approximations m01 = mµ
01 and m23 = mν

23.
For the ground states, we have e−E0/kT = e−E3/kT = 1. By using Q01→23 =
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Fig. 3.8 Reactions between the pairs of nuclei 0 + 1 and 2 + 3. (a)
In the laboratory the nuclei 0 and 1 are usually in their ground states
and transitions may occur to excited levels of nuclei 2 and 3. (b) In
the stellar plasma, excited levels participate in the reaction in both the
entrance and the exit channel. Only a single excited state is shown in
each channel for reasons of clarity.

Qµ→ν
01→23 + E3ν − E0µ (Fig. 3.8b) one obtains from Eqs. (3.37), (3.40), and (3.41)

NA〈σv〉∗23→01
NA〈σv〉∗01→23

=
(1 + δ23)
(1 + δ01)

(
m01

m23

)3/2 g0g1Gnorm
0

g2g3Gnorm
3

e−Q01→23/kT (3.42)

The quantity Q01→23 denotes the Q-value connecting the ground states and
Gnorm

i is the normalized partition function

Gnorm
i =

Gi

gi
=

∑µ giµe−Eiµ/kT

gi
(3.43)

with giµ and Eiµ the statistical weight and excitation energy of state µ in nu-
cleus i, respectively; gi is the statistical weight of the ground state of nucleus i.
Numerical values of Gnorm

i versus temperature are tabulated in Angulo et al.
(1999) and Rauscher and Thielemann (2000).

Equation (3.42) holds for any number of excited states in the target and
residual nucleus. It is also independent of the reaction mechanism (for ex-
ample, nonresonant versus resonant process, number and properties of nar-
row resonances, and so on). We can easily generalize this result by allowing
for excitations in the nuclei 1 and 2. Numerically, we find from Eq. (3.42) for
reactions involving only particles with rest mass

NA〈σv〉∗23→01
NA〈σv〉∗01→23

=

(2j0 + 1)(2j1 + 1)(1 + δ23)
(2j2 + 1)(2j3 + 1)(1 + δ01)

(
Gnorm

0 Gnorm
1

Gnorm
2 Gnorm

3

) (
M0M1

M2M3

)3/2

e−11.605 Q/T9

(3.44)



3.1 Cross Sections and Reaction Rates 163

and from Eq. (3.35) for reactions involving photons

λ∗
γ(3 → 01)

NA〈σv〉∗01→γ3
=

9.8685 × 109 T3/2
9

(2j0 + 1)(2j1 + 1)
(2j3 + 1)(1 + δ01)

(
Gnorm

0 Gnorm
1

Gnorm
3

) (
M0M1

M3

)3/2

e−11.605 Q/T9

(3.45)

with ji and Mi being the ground-state spins and masses (in u) of the nuclei,
Q the ground-state Q-value of the forward reaction 0 + 1 → 2 + 3 or 0 + 1 →
γ + 3 (in MeV), and T9 ≡ T/109 K. In the following sections we will mostly
suppress the asterisk, with the understanding that rates or decay constants
must take into account the effects of thermally excited states if appropriate.

Example 3.2

Evaluations of experimental thermonuclear reaction rates (Angulo et al. 1999,
Iliadis et al. 2001) list laboratory reaction rates and have to be modified for
use in stellar model calculations. Consider as an example the 32S(p,γ)33Cl
reaction at a stellar temperature of T = 10 GK (T9 = 10). For the laboratory
reaction rate (assuming that the 32S target nuclei are in the ground state) a
value of NA〈σv〉32S+p = 1.05 × 104 cm3 mol−1 s−1 is reported in Iliadis et al.
(2001). Calculate the stellar rate for the forward reaction and the stellar decay
constant for the reverse reaction.

The stellar reaction rate (considering thermally excited 32S nuclei) is given by

NA〈σv〉∗32S+p = RttNA〈σv〉32S+p

= 0.83 · 1.05 × 104 cm3 mol−1 s−1 = 8.72 × 103 cm3 mol−1 s−1

with a value of Rtt = 0.83 adopted from Rauscher and Thielemann (2000).
The corresponding stellar decay constant for the photodisintegration of

33Cl is obtained from the spins j32S = 0, jp = 1/2, j33Cl = 3/2, the value
Q32S+p = 2.2765 MeV, and from the normalized partition functions Gnorm

32S = 1.6,
Gnorm

p = 1, Gnorm
33Cl = 1.9 (Rauscher and Thielemann 2000)

λ∗
γ(33Cl → 32S + p) =

λ∗
γ(33Cl → 32S + p)

NA〈σv〉∗32S+p
NA〈σv〉∗32S+p

= 9.8685 × 109 · 103/2 1 · 2
4 · 1

(
1.6 · 1

1.9

) (
32.0 · 1.0

33.0

)3/2

× e−11.605·2.2765/10 · 8.72 × 103 cm3 mol−1 s−1

= 7.79 × 1013 s−1
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3.1.6
Reaction Rate Equilibria

Consider a forward and reverse reaction involving four particles with rest
mass, 0 + 1 → 2 + 3 and 2 + 3 → 0 + 1. The overall reaction rate for
0 + 1 ↔ 2 + 3 is then given by

r = r01→23 − r23→01 =
N0N1〈σv〉01→23

(1 + δ01)
− N2N3〈σv〉23→01

(1 + δ23)
(3.46)

For equilibrium conditions (r = 0) we find from Eqs. (3.44) and (3.46) for the
ratio of nuclidic abundances

N2N3

N0N1
=

(1 + δ23)
(1 + δ01)

〈σv〉01→23

〈σv〉23→01

=
(2j2 + 1)(2j3 + 1)
(2j0 + 1)(2j1 + 1)

Gnorm
2 Gnorm

3
Gnorm

0 Gnorm
1

(
m23

m01

)3/2

eQ01→23/kT (3.47)

Similarly, for reactions involving photons we find for the overall reaction rate
0 + 1 ↔ γ + 3

r = r01→γ3 − rγ3→01 =
N0N1〈σv〉01→γ3

(1 + δ01)
− λγ(3)N3 (3.48)

and for equilibrium conditions (r = 0) we obtain from Eqs. (3.23), (3.45), and
(3.48) the expression

N3

N0N1
=

1
(1 + δ01)

〈σv〉01→γ3

λγ(3)
=

1
(1 + δ01)

1
N1

λ1(0)
λγ(3)

=
(

h2

2π

)3/2 1

(m01kT)3/2
(2j3 + 1)

(2j0 + 1)(2j1 + 1)
Gnorm

3
Gnorm

0 Gnorm
1

eQ01→γ3/kT

(3.49)

The last expression is referred to as the Saha statistical equation.
The equilibrium condition can also be expressed in terms of abundance evo-

lutions. Suppose that 0 and 3 denote heavy nuclei and 1 and 2 represent light
particles (protons, neutrons or α-particles). The partial rates of change of iso-
topic abundances N0 and N3 that are caused by the processes 0 + 1 → 2 + 3
and 2 + 3 → 0 + 1, respectively, are given by (see Eq. (3.20))

(
dN0

dt

)

01→23
= −r01→23 (3.50)

(
dN3

dt

)

23→01
= −r23→01 (3.51)
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We may visualize these processes by flows of material from species 0 to
3 and vice versa. Therefore, the partial rates of change of abundances,
(dN0/dt)01→23 and (dN3/dt)23→01, are referred to as abundance flows. The
net abundance flow f between two species 0 and 3 is given by the difference
between forward and reverse abundance flow

f03 ≡
∣
∣
∣∣

(
dN0

dt

)

01→23
−

(
dN3

dt

)

23→01

∣
∣
∣∣ = |r01→23 − r23→01|

= |N0N1〈σv〉01→23 − N2N3〈σv〉23→01| (3.52)

The equilibrium condition can be expressed by either of the following rela-
tions:

(
dN0

dt

)

01→23
≈

(
dN3

dt

)

23→01
� f03 ≈ 0 (3.53)

φ03 ≡ |r01→23 − r23→01|
max(r01→23, r23→01)

≈ 0 (3.54)

In this case the net abundance flow is much smaller in absolute magnitude
than either the forward flow or the reverse flow. Contrary to the steady-state
assumption (Section 3.1.3), the equilibrium condition does not imply constant
abundances N0 or N3. Those may indeed change if nuclei 0 and 3 are linked
to other species by nuclear processes. The equilibrium condition refers to the
(near) equality of forward and reverse abundance flows between a pair of
nuclei. When a group of several pairs of nuclei comes into equilibrium, for
example, via the processes (p,γ) ↔ (γ,p), (n,γ) ↔ (γ,n) and (α,γ) ↔ (γ,α), the
resulting solution of the reaction network is called a quasiequilibrium. For more
information on equilibria, see Arnett (1996).

In the following we will discuss reactions involving photons in more de-
tail. During the complex interplay involving several different nuclear reac-
tions and β-decays it happens frequently that a particular reaction converting
nucleus A by particle capture to nucleus B (A + a → B) exhibits a small Q-
value. If the stellar plasma can attain sufficiently high temperatures, then the
photodisintegration of nucleus B has to be taken into account and may signif-
icantly alter the nucleosynthesis.

Consider Fig. 3.7b, showing a number of different nuclei involved in proton
captures, photodisintegrations, and β+-decays. Suppose now that the Q-value
for the capture reaction A(a, γ)B is relatively small (less than a few hundred
keV) and that the stellar temperature is high. An equilibrium between the
abundances of nuclei A and B is established for two necessary conditions,

λA→B > λA→A′ (3.55)

λB→A > λB→C + λB→B′ (3.56)
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If the first condition is not fulfilled, then nucleus B is bypassed altogether.
If the second condition is not fulfilled, then there is no process that creates
nucleus A after it has been destroyed. We will also assume that the photo-
disintegration of C is negligible (that is, λC→C′ > λC→B), so that C does not
come into equilibrium with A and B. It is now of interest to determine which
path the nucleosynthesis will follow, either bypassing nucleus B via β+-decay
(A → A′), or via the competing reaction sequence through nucleus B to either
C or B′ [A → B → (C or B′)]. The latter process, A → B → C, is referred to as
sequential two-particle capture. (For a distinction between sequential and direct
two-particle capture, see Grigorenko and Zhukov 2005.)

Suppose that an equilibrium between the abundances of nuclei A and B has
been established. The reaction rate for conversion of nucleus A to either C (via
capture of particle a) or B′ (via β+-decay) is then given by the expressions (see
Eq. (3.21))

rA→(C or B′) = Ne
BλB→C + Ne

BλB→B′ (3.57)

rA→(C or B′) = Ne
AλA→B→C + Ne

AλA→B→B′ = Ne
AλA→B→(C or B′) (3.58)

where Ne
A and Ne

B denote the equilibrium abundances of A and B, respec-
tively. From Eqs. (3.57) and (3.58) we obtain

λA→B→(C or B′) =
Ne

B
Ne

A
(λB→C + λB→B′) (3.59)

For the equilibrium abundance ratio Ne
B/Ne

A we use the Saha equation (see
Eq. (3.49))

NB

NANa
=

〈σv〉A→B

λB→A
=

1
Na

λA→B

λB→A

=
(

h2

2π

)3/2 1

(mAakT)3/2
(2jB + 1)

(2jA + 1)(2ja + 1)
Gnorm

B
Gnorm

A Gnorm
a

eQA→B/kT

(3.60)

Thus

λA→B→(C or B′) =
λA→B

λB→A
(λB→C + λB→B′)

= Na

(
h2

2π

)3/2 1

(mAakT)3/2
(2jB + 1)

(2jA + 1)(2ja + 1)

× Gnorm
B

Gnorm
A Gnorm

a
eQA→B/kT (λB→C + λB→B′) (3.61)
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Numerically, we find

λA→B→(C or B′) = 1.0133 × 10−10ρ
Xa

Ma

(
MB

MA Ma

)3/2 gB

gAga

(
Gnorm

B
Gnorm

A Gnorm
a

)

× T−3/2
9 e11.605 QA→B/T9 (λB→C + λB→B′) (3.62)

where the normalized partition functions account for the influence of ther-
mally excited levels and the Q-value is in MeV. Note that the quantity
λA→B→(C or B′) introduced in Eq. (3.58) has a slightly different meaning from
the usual decay constant of Eq. (3.19). The latter describes the decay probabil-
ity of a particular nucleus per time, while the former represents the probability
for the conversion of nucleus A along a specified path (A → B → (C or B′),
in this case). This distinction becomes important for identical particles. If the
process A → B → (C or B′) destroys two (or three) identical particles A, then
the right-hand sides of Eqs. (3.61) and (3.62) must be multiplied by a factor of
2 (or 3) in order to calculate the decay constant of nucleus A.

Obviously, the path A → B → (C or B′) becomes more important with in-
creasing values of λA→B, λB→C, or λB→B′ , and decreasing values of λB→A. It
must be emphasized that the ratio λA→B/λB→A is independent of the cross
section, and depends mainly on the value of QA→B. Also, note that we re-
placed the equilibrium abundance Ne

B/Ne
A by the ratio λA→B/λB→A which in

turn is determined by the reciprocity theorem (Section 3.1.4). Thus we made
no assumptions regarding the specific processes occurring between nuclei A
and B. Those include, for example, particle capture and photodisintegration,
or particle inelastic scattering and particle decay. Consequently, the above ex-
pression is also valid for negative values of QA→B, that is, if nucleus B decays
by (direct) particle emission. The factor ρ eQA→B/T implies that λA→B→(C or B′)
becomes smaller for decreasing Q-value or increasing temperature, but be-
comes larger for increasing density. It will be shown in Chapter 5 how the
interplay of temperature, density, Q-values, half-lives and reaction rates influ-
ences sensitively the most likely nucleosynthesis path. The decay constant for
the case that three nuclei A, B and C come into equilibrium will be addressed
in Problem 3.1. See also Schatz et al. (1998).

Example 3.3

The following situation occurs in hydrogen burning environments at high
temperatures (thermonuclear explosions). Consider the specific case shown
in Fig. 3.9a. The reaction 21Mg + p → γ + 22Al has a small estimated Q-
value of Q21Mg+p = 163 keV. At T = 0.6 GK, ρ = 104 g/cm3 and XH/MH =
0.7 the following decay constants are obtained from tabulated reaction rates
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and β-decay half-lives:

λA→B = λ21Mg→22Al = 1.1 × 103 s−1

λA→A′ = λ21Mg→21Na = 5.6 s−1

λB→A = λ22Al→21Mg = 3.4 × 107 s−1

λB→C = λ22Al→23Si = 3.1 × 104 s−1

λB→B′ = λ22Al→22Mg = 26.2 s−1

The above decay constants fulfill the conditions of Eqs. (3.55) and (3.56). Thus,
an equilibrium between the abundances of 21Mg and 22Al is quickly estab-
lished. We would like to determine if the nucleosynthesis proceeds via 21Mg
β+-decay or via sequential two-proton capture to 23Si. From Eq. (3.61) we
obtain

λ21Mg→22Al→(23Si or 22Mg) =
λ21Mg→22Al

λ22Al→21Mg

(
λ22Al→23Si + λ22Al→22Mg

)

=
1.1 × 103 s−1

3.4 × 107 s−1

(
3.1 × 104 s−1 + 26.2 s−1

)
= 1.0 s−1

which has to be compared to

λ21Mg→21Na = 5.6 s−1

Hence, the nucleosynthesis path via 21Mg(β+ν)21Na is favored by a factor of
5.6/1.0 = 5.6.

Example 3.4

One of the most important reactions involving α-particles is the triple-α reaction
(3α). It proceeds in two steps: (i) α + α → 8Be, and (ii) 8Be + α → 12C. The Q-
value for the first step is Qα+α→8Be = −92.1 keV and, therefore, 8Be is particle
unstable (that is, it decays by breaking up into two α-particles). This breakup
is much faster compared to the fusion of two α-particles into 8Be and, conse-
quently, an equilibrium is established between the abundances of 4He and 8Be.
The second step involves the capture of another α-particle on the small equi-
librium abundance of 8Be, as shown in Fig. 3.9b. Estimate the decay constant,
λα+α+α→12C, for the 3α reaction at a temperature of T = 0.3 GK and density
of ρ = 105 g/cm3, assuming a mass fraction of Xα = 1 and NA〈σv〉α+8Be→12C =
1.17 × 10−2 cm3 mol−1 s−1 (Caughlan and Fowler 1988).
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Fig. 3.9 Sections of the nuclidic chart depicting reaction rate equilibria
involving (a) (p,γ)↔(γ,p) reactions and (b) the 3α reaction. In each
case, equilibrium has been achieved between the two nuclei shown as
gray squares.

From Eqs. (3.61) and (3.62) one finds

λα+α+α→12C = 3Nα

(
h2

2π

)3/2 1

(mααkT)3/2

g8Be

gαgα
eQ

α+α→8Be/kT
λ8Be+α→12C

= 1.0133 × 10−10ρ
Xα

Mα
3

( M8Be

Mα Mα

)3/2 g8Be

gαgα
T−3/2

9

× e11.605 Q
α+α→8Be/T9 λ8Be+α→12C

Since three identical particles are destroyed by the 3α reaction, we have
3rααα = Nαλααα and a factor of 3 has been included in the above expression.
At this temperature we adopt for all normalized partition functions a value of
Gnorm

i = 1 (Rauscher and Thielemann 2000). The spins of the α-particle and of
8Be are ji = 0, thus gi = 1.

With the substitution λ8Be+α→12C = ρ(Xα/Mα)NA〈σv〉8Be+α→12C (see Eq.
(3.23)) we find

λα+α+α→12C = 1.0133 × 10−10(105)2
(

1
4.0

)2

3
(

8.0
4.0 · 4.0

)3/2

(0.3)−3/2

× e−11.605·0.0921/0.3 · 1.17 × 10−2 = 1.35 × 10−4 s−1

At very low (T < 100 MK) and very high (T > 2 GK) stellar temperatures,
the decay constant for the 3α reaction cannot be calculated with the above
expression and the formalism becomes more involved (Nomoto, Thielemann
and Miyaji 1985; Angulo et al. 1999).
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3.1.7
Nuclear Energy Generation

Suppose that the forward reaction 0 + 1 → 2 + 3 is exothermic. The nuclear
energy released per reaction is given by the Q-value. The energy production
per unit time and unit mass is then given by

ε01→23 =
Q01→23r01→23

ρ
=

Q01→23

ρ

N0N1〈σv〉01→23

(1 + δ01)
(3.63)

Similarly, for the endothermic reverse reaction we obtain

ε23→01 = −Q01→23

ρ

N2N3〈σv〉23→01

(1 + δ23)
(3.64)

εγ3→01 = −Q01→23

ρ
N3λγ(3) (3.65)

At higher temperatures the reverse reaction has to be taken into account and
the overall energy generation for the process 0 + 1 ↔ 2 + 3 is ε01→23 +
ε23→01 for reactions involving particles with rest mass and ε01→γ3 + εγ3→01
if species 2 is a photon.

If reactions produce electrons, positrons, or γ-rays, then their energy is re-
tained in the stellar plasma. Neutrinos, on the other hand, interact so weakly
with the medium that they escape from the site of thermonuclear burning,
with the important exceptions of the big bang and supernova core collapse.
Since the neutrino energy is usually not deposited in the star, it has to be sub-
tracted from the Q-value when calculating the nuclear energy generation.

The energy generation rate can also be expressed by using Eqs. (3.20), (3.21),
and (3.63) as

ε01→23 =
Q01→23

ρ

N0λ1(0)
(1 + δ01)

= − Q01→23

ρ(1 + δ01)

(
dN0

dt

)

1
(3.66)

The total (time-integrated) released energy is obtained from

∫
ε01→23 dt = −

N0,final∫

N0,initial

Q01→23

ρ(1 + δ01)
(dN0)1 =

Q01→23

ρ(1 + δ01)
(∆N0)1 (3.67)

with (∆N0)1 = N0,initial − N0,final the change in the abundance of nucleus 0
because of reactions with nucleus 1. Numerically we find from Eq. (1.13)

∫
ε01→23 dt =

NAQ01→23

M0(1 + δ01)
(∆X0)1 (MeV/g) (3.68)

where Q01→23 and M0 are in units of MeV and u, respectively.
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3.2
Nonresonant and Resonant Thermonuclear Reaction Rates

In previous sections we defined thermonuclear reaction rates, derived expres-
sions for reaction rate ratios for forward and reverse reactions, and discussed
reaction rate equilibria. In none of the expressions derived so far have we
made specific reference to the nuclear reaction cross section σ(E). However,
this quantity is essential for calculating the reaction rate. In the following we
will discuss how to derive the thermonuclear reaction rate for particle- and
photon-induced reactions.

The reaction rate for a particle-induced reaction is given by (see Eq. (3.10))

NA〈σv〉 =
(

8
πm01

)1/2 NA

(kT)3/2

∫ ∞

0
E σ(E) e−E/kT dE (3.69)

Once the cross section σ(E) has either been measured or estimated theoreti-
cally, the quantity NA〈σv〉 can always be found by solving the above integral
numerically. In fact, if the cross section has a complicated energy dependence
there is usually no alternative to this procedure. On the other hand, if the en-
ergy dependence of the cross section is relatively simple, then the reaction rate
can be calculated analytically. In this section we will discuss such analytical
expressions for several reasons. First, an analytical rather than numerical de-
scription provides additional insight into stellar fusion reactions. Second, in
certain situations (for example, for narrow resonances) the cross-section curve
is not known explicitly, and hence the rate cannot be integrated numerically.
Third, an analytical description also allows for improved estimates in cases
where the reaction rate has to be extrapolated to the region of interest.

Two extreme cases will be discussed in detail, which apply to a large num-
ber of nuclear reactions. The first case refers to cross sections that vary
smoothly with energy (nonresonant cross sections). The second case applies to
cross sections which vary strongly in the vicinity of a particular energy (reso-
nant cross sections).

3.2.1
Nonresonant Reaction Rates for Charged-Particle-Induced Reactions

The measured cross section for the 16O(p,γ)17F reaction is shown in Fig. 3.10a.
The cross section varies smoothly at higher energies, but drops at low energies
by several orders of magnitude due to the decreasing transmission probability
through the Coulomb barrier. The reaction rates may be obtained either by
numerical integration or by using analytical expressions that will be derived in
this section. At this point we introduce the astrophysical S-factor, S(E), defined
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by

σ(E) ≡ 1
E

e−2πη S(E) (3.70)

This definition removes both the 1/E dependence of nuclear cross sections
(see Eq. (2.49)) and the s-wave Coulomb barrier transmission probability (see
Eq. (2.125)). Recall that the Gamow factor e−2πη is only an approximation
for the s-wave transmission probability at energies well below the height of
the Coulomb barrier. However, even if a particular fusion reaction proceeds
via p- or d-partial waves, the removal of the strongly energy-dependent s-
wave transmission probability from the cross section will result in an S-factor
with a greatly reduced energy dependence. This is demonstrated in Fig. 3.10b,
showing the S-factor for the 16O(p,γ)17F reaction. Clearly, the S-factor varies
far less with energy compared to the cross section. For reasons that will be-
come clear later in this section, the S-factor is also a useful concept in the
case of broad resonances. As an example, Fig. 3.11a shows the cross section
for the 13C(p,γ)14N reaction, while the corresponding S-factor is displayed in
Fig. 3.11b. The much reduced energy dependence of the S-factor compared to
the cross section is again evident. The above arguments are analogous to those
we made in Section 2.4.2 in connection with the simple square-barrier poten-
tial and the removal of the transmission probability from the wave intensity
in the nuclear interior (Fig. 2.14).

With the definition of the S-factor, we write for the nonresonant reaction
rate (see Eqs. (2.125) and (3.69))

NA〈σv〉 =
(

8
πm01

)1/2 NA

(kT)3/2

∫ ∞

0
e−2πη S(E) e−E/kT dE

=
(

8
πm01

)1/2 NA

(kT)3/2

∫ ∞

0
exp

(
−2π

�

√
m01

2E
Z0Z1 e2

)
S(E) e−E/kT dE

(3.71)

with Zi the charges of target and projectile. First, suppose that the astrophys-
ical S-factor is constant, S(E) = S0. We find

NA〈σv〉 =
(

8
πm01

)1/2 NA

(kT)3/2 S0

∫ ∞

0
e−2πη e−E/kT dE (3.72)

with

kT = 0.086173 T9 (MeV)

2πη = 0.989534 Z0Z1

√
M0M1

M0 + M1

1
E
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Fig. 3.10 (a) Experimental cross section and (b) astrophysical S-factor
of the 16O(p,γ)17F reaction. Note the strongly varying cross section on
a logarithmic scale in part (a) and the smooth behavior of the S-factor
on a linear scale in part (b). Data from Angulo et al. (1999).

where the relative atomic masses Mi and the energy E are in units of u
and MeV, respectively. The integrand has an interesting energy dependence.
The factor e−E/kT, originating from the Maxwell–Boltzmann distribution, ap-
proaches zero for large energies, whereas the term e−1/

√
E, reflecting the

Gamow factor, approaches zero for small energies. Clearly, the major con-
tribution to the integral will come from energies where the product of both
factors is near its maximum.

Figure 3.12a illustrates the situation for the reaction 12C(α,γ)16O at T =
0.2 GK. The dashed and the dashed-dotted lines show the factor e−E/kT and
e−2πη, respectively. The solid line shows the integrand e−E/kT e−2πη. Note the
logarithmic scale, indicating the small magnitude of the integrand compared
to the Gamow and Maxwell–Boltzmann factors. The solid line in Fig. 3.12b
shows the integrand on a linear scale, displaying a relatively sharp peak.
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Fig. 3.11 (a) Experimental cross section and (b) astrophysical S-factor
of the 13C(p,γ)14N reaction. Note the much-reduced energy depen-
dence in part (b). The low-energy S-factor tail of the broad resonance
at E ≈ 0.5 MeV can also be described by the nonresonant reaction
rate formalism, as shown in this section. A narrow resonance at E =
0.45 MeV has been omitted from the figure. Data from Angulo et al.
(1999).

Part (b) also indicates the maximum of the Maxwell–Boltzmann distribution
(arrow), which occurs at kT = 17 keV. However, the integrand peaks at an en-
ergy of E0 = 315 keV, which is much larger than kT, indicating that most of
the reactions occur in the high-energy tail of the Maxwell–Boltzmann distri-
bution. It appears that the Gamow factor effectively shifts the integrand to
higher energies and, therefore, the integrand is commonly referred to as the
Gamow peak. The Gamow peak represents the relatively narrow energy range
over which most nuclear reactions occur in a stellar plasma.
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Fig. 3.12 (a) Maxwell–Boltzmann factor
(e−E/kT ; dashed line) and Gamow factor
(e−2πη ; dashed-dotted line) versus energy
for the 12C(α,γ)16O reaction at a temperature
of T = 0.2 GK. The product e−E/kTe−2πη ,
referred to as the Gamow peak, is shown
as solid line. (b) The same Gamow factor

shown on a linear scale (solid line). The
maximum occurs at E0 = 0.32 MeV while
the maximum of the Maxwell–Boltzmann
distribution is located at kT = 0.017 MeV
(arrow). The dotted line shows the Gaussian
approximation of the Gamow peak.

The location E0 of the maximum of the Gamow peak can be found from the
first derivative of the integrand in Eq. (3.72) with respect to E,

d
dE

(
−2π

�

√
m01

2E
Z0Z1 e2 − E

kT

)

E=E0

=
π

�
Z0Z1 e2

√
m01

2
1

E3/2
0

− 1
kT

= 0 (3.73)
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Thus

E0 =
[(π

�

)2 (
Z0Z1 e2

)2 (m01

2

)
(kT)2

]1/3

= 0.1220
(

Z2
0Z2

1
M0M1

M0 + M1
T2

9

)1/3

(MeV) (3.74)

where in the numerical expression Mi are the relative atomic masses of pro-
jectile and target in units of u.

The energy E0 is the most effective energy for nonresonant thermonuclear
reactions. Figure 3.13 shows the Gamow peak energy E0 versus temperature
for a number of proton- and α-particle-induced reactions. It is obvious that
the Gamow peak energy increases with increasing target–projectile charge.
The open circles indicate the height VC of the Coulomb barrier. It is important
to point out that, except for the highest temperatures near T = 10 GK, we find
E0  VC and thus the interacting charged nuclei must always tunnel through
the Coulomb barrier.

Figure 3.14 shows the Gamow peak at a temperature of T = 30 MK for three
reactions: (i) p + p, (ii) 12C + p, and (iii) 12C + α. It demonstrates a crucial aspect
of thermonuclear burning in stars. Not only does the Gamow peak shift to
higher energies for increasing target and projectile charges, but the area under
the curves decreases rapidly as well. Suppose, for example, that a mixture of
different nuclei is present in the stellar plasma at a particular time. Then those
reactions with the smallest Coulomb barrier account frequently for most of the
nuclear energy generation and will be consumed most rapidly, while reactions
with larger Coulomb barriers usually do not contribute significantly to the
energy production.

The Gamow peak may be approximated by a Gaussian function having a
maximum of the same size and of the same curvature at E = E0. From Eq. (3.74)
we write

exp
(
−2π

�

√
m01

2E
Z0Z1e2 − E

kT

)
= exp

(

− 2E3/2
0√

EkT
− E

kT

)

≈ exp
(
−3E0

kT

)
exp

[

−
(

E − E0

∆/2

)2
]

(3.75)

where the 1/e width ∆ of the Gaussian is obtained from the requirement that
the second derivatives match at E0. Thus

d2

dE2

(
2E3/2

0√
EkT

+
E

kT

)

E=E0

=
3
2

1
E0kT

(3.76)

d2

dE2

(
E − E0

∆/2

)2

E=E0

=
2

(∆/2)2 (3.77)
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Fig. 3.13 Location of the Gamow peak maximum versus temperature
for a number of proton-induced (upper part) and α-particle-induced
(lower part) reactions. The open circles on the right-hand side show
the Coulomb barrier height, VC = 1.44 Z0Z1/R0, with VC and R0 in
units of MeV and fm, respectively.

Setting the right-hand sides of the last two expressions equal and solving for
∆ gives

∆ =
4√
3

√
E0kT = 0.2368

(
Z2

0 Z2
1

M0M1

M0 + M1
T5

9

)1/6

(MeV) (3.78)

Since usually kT  E0, it is apparent that the width ∆ of the Gamow peak
is smaller than E0. Figure 3.15 shows the Gamow peak width ∆ versus tem-
perature for a number of proton- and α-particle-induced reactions. It can be
seen that the Gamow peak width increases with increasing Coulomb barrier.
Thermonuclear reactions occur mainly over an energy window from E0 −∆/2
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Fig. 3.14 The Gamow peaks for the p + p, 12C + p, and 12C + α reac-
tions at a temperature of T = 0.03 GK.

to E0 + ∆/2, except in the case of narrow resonances (see later). For increas-
ing charges of target or projectile, this window shifts to higher energies and
becomes broader.

The nonresonant thermonuclear reaction rates can be calculated by replac-
ing the Gamow peak with a Gaussian. From Eqs. (3.72) and (3.75) one finds

NA〈σv〉 =
(

8
πm01

)1/2 NA

(kT)3/2 S0

∫ ∞

0
e−2πηe−E/kT dE

≈
(

8
πm01

)1/2 NA

(kT)3/2 S0e−3E0/kT
∫ ∞

0
exp

[

−
(

E − E0

∆/2

)2
]

dE

(3.79)

The lower integration limit can be extended to −∞ without introducing a sig-
nificant error. The value of the integral over the Gaussian is then

√
π∆/2. For

a constant S-factor we obtain

NA〈σv〉 = NA

√
2

m01

∆
(kT)3/2 S0e−3E0/kT (3.80)

Alternatively, one finds with the substitution τ ≡ 3E0/(kT) and Eqs. (3.74)
and (3.78)

NA〈σv〉 = NA

√
2

m01

∆
(kT)3/2 S0e−ττ2 (kT)2

9E2
0

=
(

4
3

)3/2
�

π

NA

m01Z0Z1e2 S0τ2e−τ

(3.81)
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Fig. 3.15 The width of the Gamow peak versus temperature for a
number of proton-induced (upper part) and α-particle-induced (lower
part) reactions.

One of the most striking features of thermonuclear reaction rates is their
temperature dependence. The temperature dependence of NA〈σv〉 (and of
the energy production rate ε) near some energy T = T0 can be derived by
introducing a power law

NA〈σv〉T = NA〈σv〉T0(T/T0)n (3.82)

where

ln NA〈σv〉T = ln NA〈σv〉T0 + n(ln T − ln T0) (3.83)

∂ ln NA〈σv〉T

∂ ln T
= n (3.84)
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With τ = 3E0/(kT) = cT2/3/T = cT−1/3 and NA〈σv〉T = c′T−2/3e−τ, we
may also write

ln NA〈σv〉T = ln c′ − 2
3

ln T − τ (3.85)

n =
∂ ln NA〈σv〉T

∂ ln T
= −2

3
− ∂τ

∂ ln T
= −2

3
− τ

∂ ln(cT−1/3)
∂ ln T

= −2
3

+
τ

3
(3.86)

Hence

NA〈σv〉T = NA〈σv〉T0(T/T0)(τ−2)/3 (3.87)

The parameter τ = 3E0/(kT) is numerically given by

τ = 4.2487
(

Z2
0Z2

1
M0M1

M0 + M1

1
T9

)1/3

(3.88)

Values of τ are shown in Fig. 3.16 versus temperature for a number of reac-
tions. For example, at T = 15 MK one obtains τ = 13.6 for the p + p reaction,
yielding for the exponent of T a value of n ≈ 3.9. On the other hand, at T
= 200 MK we obtain τ = 54.88 for the 12C + α reaction, resulting in n ≈ 17.6.
Clearly, the striking temperature dependence of thermonuclear reaction rates
has an important impact on stellar models. Small temperature fluctuations,
which are likely to occur during the course of stellar evolution, will cause dra-
matic changes in energy production. Therefore, either an effective mechanism
must exist in order to stabilize the star, or in circumstances where this is not
possible, a thermonuclear explosion is likely to occur.

Two corrections to the nonresonant reaction rate formalism derived so far
will now be considered. The first correction is necessary since we have re-
placed the asymmetric Gamow peak by a symmetric Gaussian (see Eq. (3.75))
where the area under the latter function is given by e−τ

√
π∆/2 (see Eq. (3.80)).

Figure 3.12b compares the two functions for the reaction 12C(α,γ)16O at T =
0.2 GK. The solid line shows the Gamow peak while the dotted curve dis-
plays the Gaussian approximation. The reaction rate must be multiplied by a
correction factor that represents the ratio of the areas under these two curves,

F(τ) =

∫ ∞
0 exp

(
− 2π

�

√
m01
2E Z0Z1e2 − E

kT

)
dE

e−τ
√

π∆/2

=
2√

π
√

E0kT

√
3

4
eτ

∫ ∞

0
exp

(

−2E3/2
0

kT
1√
E0ε

− E0ε

kT

)

E0 dε

=
√

τ

π

eτ

2

∫ ∞

0
exp

[
−τ

3

(
ε +

2√
ε

)]
dε (3.89)

where we have introduced the dimensionless variable ε ≡ E/E0. It can be
seen that the correction factor F is a function of τ only. It is also clear from
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Fig. 3.16 Numerical values of the parameter τ versus temperature for
a number of proton- and α-particle-induced reactions. Note that τ is
dimensionless.

Fig. 3.16 that τ is usually a relatively large number. Therefore, it is of advan-
tage to expand F in terms of a small parameter that varies inversely with τ.
The result is (see Problem 3.2)

F(τ) ≈ 1 +
5

12τ
(3.90)

Figure 3.17 shows values of F(τ) versus temperature for a number of reac-
tions. It can be seen that the correction factor is usually small (less than a few
percent) at low temperatures. Its magnitude increases with rising temperature
and lowering of the Coulomb barrier.

A second correction is necessary since for many nonresonant reactions the
S-factor is not constant, but varies with energy. In most cases, it is sufficient
to expand the experimental or theoretical S-factor into a Taylor series around
E = 0,

S(E) ≈ S(0) + S′(0)E + 1
2 S′′(0)E2 (3.91)

where the primes indicate derivatives with respect to E. Substitution of this
expansion into Eq. (3.71) yields a sum of integrals, where each integral can be
expanded into powers of 1/τ. As a result of this procedure, which is not given
explicitly here, one has to replace in Eq. (3.81) the constant S0 by an effective
S-factor. The result is (Fowler, Caughlan and Zimmerman 1967)

NA〈σv〉 =
(

4
3

)3/2
�

π

NA

m01Z0Z1e2 Seffτ
2e−τ (3.92)
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Fig. 3.17 Correction factor F(τ) versus temperature for a number of
reactions.

Seff(E0) = S(0)
[

1 +
5

12τ
+

S′(0)
S(0)

(
E0 +

35
36

kT
)

+
1
2

S′′(0)
S(0)

(
E2

0 +
89
36

E0kT
)] (3.93)

The first terms in the square bracket correspond to the factor F(τ) due to the
asymmetry of the Gamow peak, while the other terms arise from corrections
due to the S-factor variation with energy. Numerically, one finds (Lang 1974)

NA〈σv〉 =
C1

T2/3
9

e−C2/T1/3
9

(
1 + C3T1/3

9 + C4T2/3
9

+ C5T9 + C6T4/3
9 + C7T5/3

9

)
(cm3 mol−1 s−1) (3.94)

C1 = 7.8324 × 109
(

Z2
0 Z2

1
M0M1

M0 + M1

)1/6

S(0)

√
M0 + M1

M0M1

C2 = 4.2475
(

Z2
0Z2

1
M0M1

M0 + M1

)1/3

C3 = 9.810 × 10−2
(

Z2
0Z2

1
M0M1

M0 + M1

)−1/3

C4 = 0.1220
S′(0)
S(0)

(
Z2

0Z2
1

M0M1

M0 + M1

)1/3

C5 = 8.377 × 10−2 S′(0)
S(0)
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C6 = 7.442 × 10−3 S′′(0)
S(0)

(
Z2

0 Z2
1

M0M1

M0 + M1

)2/3

C7 = 1.299 × 10−2 S′′(0)
S(0)

(
Z2

0 Z2
1

M0M1

M0 + M1

)1/3

where Mi is the relative atomic mass in u, and the quantities S(0), S′(0), and
S′′(0) are in units of MeV·b, b, and b/MeV, respectively.

Figure 3.18 shows schematically three situations that are frequently encoun-
tered in practice. The data shown in part (a) display a very slowly varying
S-factor. In this case, a linear Taylor expansion (solid line) seems appropri-
ate for describing the data. If the Gamow peak is located, say, around E =
0.7 MeV, then the nonresonant reaction rates may be calculated from the fit
coefficients S(0) and S′(0) to high accuracy. Depending on the hydrodynam-
ical conditions at the astrophysical environment, however, the Gamow peak
may be located at energies which are not directly accessible with present ex-
perimental techniques (say, below E = 0.3 MeV in part (a) of the figure). In this
case, the Taylor expansion may be used to extrapolate the S-factor to the en-
ergy range of the Gamow peak at low energies. This procedure represents the
simplest way to estimate the reaction rates from cross section data obtained
at higher energies if no data are available in the Gamow peak region. Al-
though frequently applied in practice, one has to be careful with this method,
and a more reliable S-factor extrapolation based on theoretical nuclear models
(Chapter 2) is desirable in this case.

A different situation is shown in part (b). Here, the data below E = 0.65 MeV
may be best described by a quadratic Taylor expansion and the reaction rates
are then evaluated using Eq. (3.94). However, at higher energies the Taylor
expansion will diverge (in this case positively) and does no longer describe
the data. Thus, the calculated reaction rates become inaccurate at tempera-
tures at which a substantial fraction of the Gamow peak is located beyond
E = 0.65 MeV. For this reason, the nonresonant reaction rate expression (see
Eq. (3.94)) is sometimes multiplied by a cutoff factor (Fowler, Caughlan and
Zimmerman 1975)

fcutoff ≈ e−(T9/T9,cutoff)2
(3.95)

where T9,cutoff corresponds to the temperature at which a substantial fraction
of the Gamow peak lies in an energy region at which the S-factor parametriza-
tion starts to deviate from the data (the vertical dotted line in Fig. 3.18b). Be-
yond this temperature, the reaction rates have to be evaluated by different
means.

Consider now the situation shown in Fig. 3.18c. In this case, the data display
a resonance at E = 0.8 MeV corresponding to an S-factor which varies strongly
with energy. However, it can be seen that below E ≈ 0.55 MeV the wing of the
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Fig. 3.18 Schematic representation of the S-factor versus energy for
(a) a very slowly varying S-factor curve; (b) an energy-dependent S-
factor; and (c) a broad resonance. See discussion in the text.

resonance varies rather slowly. Therefore, if one is mainly interested in stellar
temperatures at which the Gamow peak is located below E = 0.55 MeV, then
one may apply the nonresonant reaction rate formalism to the low-energy tail
of the broad resonance (see Eq. (3.94)). As was the case before, the calculated
reaction rate has to be cut off at higher temperatures corresponding to ener-
gies at which the S-factor expansion deviates from the data (dotted line in
Fig. 3.18c).

The S-factor for nonresonant reactions sometimes shows a strong energy de-
pendence so that a Taylor series expansion is no longer applicable. Although
analytical descriptions are reported in the literature for such cases (see, for ex-
ample, Fowler, Caughlan and Zimmerman 1975), it is usually more reliable to
integrate the reaction rates numerically (see Eq. (3.69)).
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Example 3.5

The measured S-factor for the reaction 12C(p,γ)13N below E = 0.5 MeV is
shown in Fig. 3.19. A broad resonance appears at E ≈ 0.4 MeV. The S-
factor below E = 0.23 MeV varies smoothly with energy and has been ex-
panded around E = 0 into a quadratic Taylor series, with coefficients of S(0)
= 1.34 × 10−3 MeV·b, S′(0) = 2.6 × 10−3 b, and S′′(0) = 8.3 × 10−2 b/MeV
(Adelberger et al. 1998). (i) For a temperature of T = 0.03 GK, determine the
location and width of the Gamow peak, and the temperature sensitivity of the
reaction rates. (ii) Determine the maximum temperature at which the reaction
rates can be calculated reliably with the S-factor parametrization given above.

From Eqs. (3.74), (3.78), (3.87), and (3.88) we find

E0 = 0.1220
(

1262 1.0 · 12.0
1.0 + 12.0

0.032
)1/3

MeV = 0.038 MeV

∆ = 0.2368
(

1262 1.0 · 12.0
1.0 + 12.0

0.035
)1/6

MeV = 0.023 MeV

τ = 4.2487
(

1262 1.0 · 12.0
1.0 + 12.0

1
0.03

)1/3

= 44.0

and thus NA〈σv〉T ∼ (T/T0)(44.0−2)/3 = (T/T0)14.0

The quadratic S-factor expansion describes the data reliably only below E =
0.23 MeV. We ask for the temperature range at which an insignificant fraction
of the Gamow peak lies beyond E = 0.23 MeV, that is, E0(T)+ ∆(T) = 0.23 MeV.
From Figs. 3.13 and 3.15 it can be seen that this condition is fulfilled only at T ≤
0.2 GK. Therefore, we expect that the reaction rates calculated with the given
S-factor parameterization are reliable below this temperature. The situation is
illustrated in Fig. 3.19.

3.2.2
Nonresonant Reaction Rates for Neutron-Induced Reactions

Neutrons that are produced in a star quickly thermalize and their velocities are
given by a Maxwell–Boltzmann distribution. For a smoothly varying neutron
cross section, the reactions are most likely to occur near the maximum of the
Maxwell–Boltzmann distribution, that is, at thermal energies of ET = kT or
thermal velocities of vT =

√
2kT/m01 (see Section 3.1.1 and Fig. 3.1a). For

s-wave neutrons (� = 0) of low velocity, the reaction cross section is inversely
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Fig. 3.19 Experimental S-factor versus energy for the 12C(p,γ)13N re-
action. The solid line represents an S-factor expansion that describes
the data below E = 0.23 MeV. The dashed line shows the Gamow peak
for a temperature of T = 0.2 GK. Data are from Angulo et al. (1999).

proportional to the neutron velocity (see Eq. (2.207)),

σ ∼ 1
v
∼ 1√

E
(3.96)

Strictly speaking, if charged particles are released in neutron-induced pro-
cesses, the cross section is modified by the transmission probability of the
emitted particle through the Coulomb and centripetal barriers. However,
since many neutron-induced reactions are exothermic with Q-values in excess
of several MeV, the transmission coefficient of the charged particle is approx-
imately constant. Under these circumstances the 1/v law applies not only to
(n,γ) reactions but also to reactions such as (n,p) or (n,α) (Fig. 4.15a). Further-
more, the 1/v law is also valid in certain cases where resonant contributions
give rise to a smoothly varying reaction cross section for s-wave neutrons. As
an example, suppose that a neutron-induced reaction proceeds through the
low-energy wing of a broad resonance. Setting E  Er in the Breit–Wigner
formula (see Eq. (2.185)) and using the low-energy dependence of the neu-
tron partial width (assuming that the partial width for the exit channel is ap-
proximately constant) yields σ�=0 ∼ (1/v2)Γ�=0 ∼ (1/v2)v ∼ 1/v. Neutron
capture by heavy nuclei with large Qnγ values is another important exam-
ple. In this case, the reaction proceeds through many broad and overlapping
resonances. These resonances are difficult to resolve experimentally so that
a measurement yields an average cross section that varies smoothly with en-
ergy. The cross section is then given by σ�=0 = σmax

�=0 · T̂ ∼ 1/v (see Eq. (2.207)),
where T̂ is the s-wave transmission coefficient.
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For σ ∼ 1/v, or S ≡ σv = const, we obtain (see Eqs. (3.3) and (3.4))

NA〈σv〉 = NA

∫ ∞

0
vP(v)σ(v) dv = NAσv = NAS = const (3.97)

The reaction rate is independent of temperature and, in principle, could be de-
termined from σ measured at any velocity v. In practice, however, the nonres-
onant neutron cross section does not always follow the simple 1/v law for any
of the following reasons: (i) the s-wave neutron energies are no longer small,
(ii) a new reaction channel becomes energetically accessible, or (iii) higher par-
tial waves may contribute to the neutron cross section.

In the latter case, the velocity or energy dependence can be found from the
expression σ� ∼ (1/v2)Γ�. At low energies we can use Γ�(E) ∼ (vR)2�+1 ∼
E�+1/2 (Section 2.5.4) and obtain σ� ∼ v−1, v, v3 (or σ� ∼ E−1/2, E1/2, E3/2) for
� = 0, 1, 2, respectively. Again, the above dependences on v (or E) do not apply
in exceptional situations where the neutron binding energy (or Qnγ) becomes
comparable to the neutron kinetic energy since in such cases the influence
of the exit channel must also be taken into account. With the above energy
dependences of the different partial waves, the reaction rate is

NA〈σv〉 =
(

8
πm01

)1/2 NA

(kT)3/2

∫ ∞

0
Eσ(E) e−E/kT dE ∼

∫ ∞

0
E�+1/2e−E/kT dE

(3.98)

The integrand, E�+1/2e−E/kT, represents the stellar energy window in which
most of the nonresonant neutron-induced reactions take place. It is plotted in
Fig. 3.20 for different �-values (solid lines) and is compared to the Maxwell–
Boltzmann factor, E e−E/kT (dashed line). All curves are plotted for kT =
30 keV and are normalized to the same maximum value. It can be seen that
the centripetal barrier shifts the window of effective stellar energies. The
maximum of the integrand occurs at Emax = (� + 1/2)kT. The influence of
the centripetal barrier on nonresonant neutron-induced reaction rates is far
smaller compared to the influence of the Coulomb barrier on nonresonant
charged-particle reactions. As an approximate rule it can be assumed that the
Maxwell–Boltzmann distribution provides a reliable estimate for the effective
energy window in the case of nonresonant neutron-induced reactions.

If the product S ≡ σv is not constant but varies with velocity, it may be
expanded into a Taylor series around E = 0 in terms of v or

√
E,

σv = S(
√

E) ≈ S(0) + Ṡ(0)
√

E + 1
2 S̈(0)E (3.99)

where the dots indicate derivatives with respect to
√

E ∼ v and S(0), Ṡ(0),
S̈(0) are empirical constants. The energy dependence of the cross section is
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Fig. 3.20 The factor E�+1/2e−E/kT versus neutron energy, repre-
senting the stellar energy window in which most of the nonresonant
neutron-induced reactions take place, for different values of the or-
bital angular momentum �. The dashed curve shows the Maxwell–
Boltzmann factor Ee−E/kT for comparison. All curves are calculated for
kT = 30 keV.

then given by

σ(E) ≈
√

m01

2E

(
S(0) + Ṡ(0)

√
E +

1
2

S̈(0)E
)

(3.100)

Substitution into Eq. (3.10) yields for the reaction rate (Problem 3.3)

NA〈σv〉 = NA

(
S(0) +

2√
π

Ṡ(0)
√

kT +
3
4

S̈(0)kT
)

(3.101)

Numerically we find

NA〈σv〉 =

6.022 × 1023S(0)
(

1 + 0.3312
Ṡ(0)
S(0)

√
T9 + 0.06463

S̈(0)
S(0)

T9

)
(cm3 mol−1 s−1)

(3.102)

with Ṡ(0)/S(0) and S̈(0)/S(0) in units of MeV−1/2 and MeV−1, respectively.
For many neutron-induced reactions, especially neutron captures, the reac-

tion rate is expressed in terms of the Maxwellian-averaged cross section (Sec-
tion 3.1.1),

NA〈σv〉 = NA〈σ〉TvT = NA
4

vT
√

π

∫ ∞

0
vσ(v)

(
v

vT

)2

e−(v/vT)2
dv (3.103)
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For s-wave neutrons at low energy, σv = vTσ(vT) = vTσT = const, it follows

NA〈σ〉TvT = NA
4

vT
√

π
vTσ(vT)

∫ ∞

0

(
v

vT

)2

e−(v/vT)2
dv = NAvTσ(vT)

(3.104)

and the Maxwellian-averaged cross section, 〈σ〉T , is equal to the cross section
measured at thermal velocity, σT. For different velocity dependences, for ex-
ample, σ = const or σ ∼ 1/v2, direct substitution into the above equation
yields 〈σ〉T = 1.13σT, while for p-wave capture (σ ∼ v) one obtains 〈σ〉T =
1.5 σT. Thus, for a smoothly changing cross section, a measurement of σ at
a single velocity, vT , provides a reaction rate that is not too far off from its
true magnitude. However, in order to obtain precise values for the reaction
rate, the cross section is measured in practice over a range of neutron ener-
gies in the effective stellar window that is given by the Maxwell–Boltzmann
distribution. For more details, see Beer, Voss and Winters (1992).

3.2.3
Nonresonant Reaction Rates for Photon-Induced Reactions

The majority of astrophysically important photodisintegration reactions, γ +
3 → 0 + 1, have not been measured directly. Their reaction rates are most
conveniently derived from the corresponding reverse particle-induced reac-
tion rate by applying the reciprocity theorem (Section 3.1.4). Nevertheless, a
number of photodisintegration reactions have been measured directly and it
is interesting to investigate some general properties of their decay constants.
From Eqs. (3.18) and (3.28) we find

λγ(3) =
8πm01

h3
(2j0 + 1)(2j1 + 1)

(2j3 + 1)

∫ ∞

0

Eγ − Q01→γ3

eEγ/kT − 1
σ01→γ3 dEγ (3.105)

with E01 = Eγ − Q01→γ3. Recall that the above expression applies only to the
forward and reverse reaction for a specific pair of initial and final states (Sec-
tion 3.1.4). For simplicity we will assume that the photodisintegration pro-
ceeds between the ground states of nuclei 3 and 0, while nucleus 1 denotes a
light particle (p, n or α). In this case, Q01→γ3 is the ground-state Q-value of the
forward reaction. With the approximation eEγ/kT − 1 ≈ eEγ/kT (Section 3.1.4)
one obtains

λγ(3) =
8πm01

h3
(2j0 + 1)(2j1 + 1)

(2j3 + 1)

∫ ∞

0
(Eγ − Q01→γ3) e−Eγ/kTσ01→γ3 dEγ

(3.106)
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We must distinguish between the emission of charged particles, (γ,p) or (γ,α),
and the emission of neutrons, (γ,n). For nonresonant charged-particle emis-
sion, the cross section is given by Eq. (3.70). For a nearly constant S-factor the
decay constant is

λγ(3) ∼
∫ ∞

0
(Eγ − Q01→γ3) e−Eγ/kT e−2πη

E01
S(E01) dEγ

∼ S(E0) e−Q01→γ3/kT
∫ ∞

0
e−2πηe−E01/kT dE01 (3.107)

The integrand is equal to the Gamow peak (Section 3.2.1) for the forward reac-
tion. Clearly, the concept of a Gamow peak is also useful for photodisintegra-
tion reactions involving the emission of charged particles. Since the Gamow
peak is located at E0 and has a 1/e width of ∆ (see Eqs. (3.74) and (3.78)),
we expect that for the photodisintegration reaction the γ-ray energy range of
effective stellar burning is centered at

Eeff
γ = E0 + Q01→γ3 (3.108)

and has a width of ∆. For rising temperature, E0 will increase and thus Eeff
γ

will shift to a larger value. It is also apparent from Eq. (3.107) that, compared
to the rate of the forward capture reaction (see Eq. (3.72)), the decay constant
λγ(3) has an additional temperature dependence through the term e−Q/kT.

The situation is very different if a neutron is emitted in a nonresonant photo-
disintegration reaction. For small neutron energies, we found that the energy
dependence of the (n,γ) cross section is given by σ� ∼ E�−1/2 (Section 3.2.2).
This cross section behavior was derived under the assumption of relatively
small neutron energies compared to the neutron binding energy. Most (n,γ)
reactions have relatively large Q-values and, therefore, we can substitute this
expression into Eq. (3.106). Thus

λγ(3) ∼
∫ ∞

0
(Eγ − Q01→γ3) e−Eγ/kTE�−1/2

01 dEγ

∼
∫ ∞

0
e−Eγ/kT(Eγ − Q01→γ3)�+1/2 dEγ (3.109)

It was already mentioned that for neutron-capture reactions the energy win-
dow of effective stellar burning is located at Eeff

n = (� + 1/2)kT (Fig. 3.20).
Hence we expect that the effective energy window for the reverse (γ,n) reac-
tion is located at Eeff

γ = (� + 1/2)kT + Qnγ (Problem 3.4). As an example,
Fig. 3.21 shows the integrand in Eq. (3.109) for the 148Gd(γ,n)147Gd reaction.
The two curves correspond to temperatures of T = 2 and 3 GK and are cal-
culated assuming emission of s-wave neutrons (� = 0). The Q-value for the
147Gd(n,γ)148Gd reaction amounts to Qnγ = 8.984 MeV. Thus, the photodisin-
tegration reaction can only proceed for γ-ray energies in excess of the thresh-
old value Eγ = Qnγ. Between T = 2 and 3 GK, the maximum of the integrand
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Fig. 3.21 Integrand in Eq. (3.109) versus
γ-ray energy at two temperatures (T = 2
and 3 GK) for the photodisintegration re-
action 148Gd(γ,n)147Gd. The ground-state
Q-value for the (forward) capture reaction
amounts to Qnγ = 8.984 MeV (Audi, Wap-

stra and Thibault 2003). This value is equal
to the neutron separation energy of 148Gd.
Both curves are plotted for the emission of
s-wave neutrons (� = 0). The integrand rep-
resents the γ-ray energy window of effective
stellar burning.

shifts by only ≈ 43 keV, a value which is barely noticeable in the figure. There-
fore, the effective energy window for (γ,n) reactions of astrophysical interest
is located closely to the reaction threshold, independent of the temperature.
This behavior is in stark contrast compared to the much larger energy shift
of the Gamow peak in (γ,p) or (γ,α) reactions. Also, note that the magnitude
of the integrand increases by more than a factor of 107 between T = 2 and
3 GK, emphasizing the dramatic temperature dependence of decay constants
for (γ,n) reactions.

3.2.4
Narrow-Resonance Reaction Rates

In the previous sections, reaction rates for smoothly varying S-factors were
discussed. In this section we will discuss the other extreme case, that is,
strongly varying S-factors caused by resonances. We will consider here res-
onances which are isolated and narrow. The first condition implies that the
level density in the compound nucleus is relatively small so that the reso-
nances do not overlap significantly in amplitude. Several different definitions
are used in the literature for a narrow resonance. Here, a resonance is called
narrow if the corresponding partial widths are approximately constant over
the total resonance width (or, Γ less than a few keV).
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An isolated resonance is conveniently described by the one-level Breit–
Wigner formula (see Eq. (2.185))

σBW(E) =
λ2

4π

(2J + 1)(1 + δ01)
(2j0 + 1)(2j1 + 1)

ΓaΓb

(Er − E)2 + Γ2/4
(3.110)

where ji are the spins of target and projectile, J and Er are the spin and en-
ergy of the resonance, Γi are the resonance partial widths of entrance and
exit channel, and Γ is the total resonance width. Each partial width has to
be summed over all possible values of orbital angular momenta and chan-
nel spins. The wave number is substituted by the de Broglie wavelength
λ = 2π/k = 2π�/

√
2m01E in order to avoid confusion with the symbol for

the Boltzmann constant. The factor (1 + δ01) is included since the cross section
for identical particles in the entrance channel increases by a factor of 2. Note
that in the above expression the widths are expressed in terms of “observed”
quantities (that is, the Thomas approximation is used; see Section 2.5.5) since
it will simplify the calculations substantially. For most narrow resonances, this
approximation introduces a negligible error.

The reaction rates for a single narrow resonance can be calculated using
Eqs. (3.10) and (3.110),

NA〈σv〉 =
(

8
πm01

)1/2 NA

(kT)3/2

∫ ∞

0
EσBW(E)e−E/kT dE

= NA

√
2π�2

(m01kT)3/2 ω
∫ ∞

0

ΓaΓb

(Er − E)2 + Γ2/4
e−E/kTdE (3.111)

where ω ≡ (2J + 1)(1 + δ01)/[(2j0 + 1)(2j1 + 1)]. For a sufficiently narrow
resonance, the Maxwell–Boltzmann factor e−E/kT and the partial widths Γi
are approximately constant over the total width of the resonance. They may
be replaced by their value at Er and the integral can be calculated analytically.
Thus

NA〈σv〉 = NA

√
2π�2

(m01kT)3/2 e−Er/kTω
ΓaΓb

Γ
2

∫ ∞

0

Γ/2
(Er − E)2 + Γ2/4

dE

= NA

√
2π�2

(m01kT)3/2 e−Er/kTω
ΓaΓb

Γ
2π

= NA

(
2π

m01kT

)3/2

�
2e−Er/kTωγ (3.112)

where we used the definition ωγ ≡ ωΓaΓb/Γ. The quantity ωγ is proportional
to the area under the resonance cross section, or equivalently, to the product
of maximum cross section, σBW(E = Er) = (λ2

r /π)ωΓaΓb/Γ2, and the total
width Γ of the resonance,

Γ · σBW(E = Er) = Γ · λ2
r

π
ω

ΓaΓb

Γ2 =
λ2

r
π

ωγ (3.113)
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Therefore, ωγ is referred to as the resonance strength. It is clear from the above
expressions that the reaction rates for narrow resonances depend only on the
energy and the strength of the resonance, but not on the exact shape of the
cross section curve. This is a fortunate circumstance since, as will be seen later,
for most narrow resonances the partial and total widths are experimentally not
known.

If several narrow and isolated resonances contribute to the cross section,
then their contributions to the reaction rate add incoherently. Numerically,
one finds

NA〈σv〉 =
1.5399 × 1011

(
M0 M1

M0+M1
T9

)3/2 ∑
i
(ωγ)ie

−11.605 Ei/T9 (cm3mol−1s−1) (3.114)

where i labels different resonances, (ωγ)i and Ei are in units of MeV, and Mi
are the relative atomic masses in u.

The temperature dependence of the reaction rate for a single narrow reso-
nance can be found by performing a calculation similar to the one that was
applied to the nonresonant case. Starting from Eqs. (3.82) and (3.84) we find
with NA〈σv〉T = cT−3/2e−c′Er/T

ln NA〈σv〉T = ln c − 3
2

ln T − c′ Er

T
(3.115)

n =
∂ ln NA〈σv〉T

∂ ln T
= −3

2
− c′Er

∂(T−1)
∂ ln T

=
c′Er

T
− 3

2
(3.116)

Hence

NA〈σv〉T = NA〈σv〉T0(T/T0)c′Er/T−3/2 = NA〈σv〉T0(T/T0)11.605 Er/T9−3/2

(3.117)

where Er in the last term is given in units of MeV. Figure 3.22 shows the
exponent n versus temperature for several values of the resonance energy
Er. Clearly, the temperature sensitivity of narrow-resonance reaction rates
increases for decreasing temperatures and increasing resonance energies. De-
pending on the values of T and Er, narrow-resonance reaction rates may even
be more temperature sensitive than nonresonant reaction rates.

In the following we will discuss the influence of the partial widths Γa and
Γb on the reaction rates of a single narrow resonance by using a capture re-
action (0 + 1 → γ + 3) as an example. Suppose further that only two chan-
nels are open, the particle channel (Γa) and the γ-ray channel (Γγ). The total
width is Γ = Γa + Γγ. Experimental γ-ray partial widths typically amount
to ≈ 1 meV–eV. Most neutron partial widths are in the range of ≈ 10 meV–
keV. Neither of these partial widths are extremely sensitive to the value of Er.
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Fig. 3.22 The temperature sensitivity of narrow-resonance reaction
rates for various values of the resonance energy.

Charged-particle partial widths, on the other hand, are governed by the trans-
mission probability through the Coulomb barrier and are very sensitive to the
resonance location, especially at low energies (Section 2.5.4).

Suppose first that the charged-particle width is smaller than the γ-ray par-
tial width, a situation which is typical for low resonance energies (say, below
Er ≈ 0.5 MeV). Since Γa  Γγ we obtain from the definition of the resonance
strength

ωγ = ω
ΓaΓγ

Γa + Γγ
≈ ω

ΓaΓγ

Γγ
= ωΓa (3.118)

Thus the resonance strength depends only on the charged-particle partial
width. Depending on the precise value of the resonance energy, and to a lesser
extent, on the spectroscopic factor (see Eq. (2.197)), the resonance strength may
become very small. Experimental studies of such low-energy resonances in
charged-particle reactions represent a serious challenge for the nuclear exper-
imentalist (Chapter 4). For a very narrow resonance, only the small energy
region near Er contributes to the reaction rate. Nevertheless, the concept of
a Gamow peak is also useful for narrow resonances if the resonance strength
is determined by the charged-particle partial width. This can be seen by ex-
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pressing the narrow-resonance reaction rates for Γa  Γγ (and Γ ≈ Γγ) as

NA〈σv〉 ∼
∫ ∞

0
EσBW(E)e−E/kT dE ∼

∫ ∞

0
E

1
E

ΓaΓγ

(Er − E)2 + Γ2
γ/4

e−E/kT dE

∼
∫ ∞

0

P�(E)Γγ

(Er − E)2 + Γ2
γ/4

e−E/kT dE

∼
∫ ∞

0

Γγ

(Er − E)2 + Γ2
γ/4

e−2πηe−E/kT dE (3.119)

where the energy dependence of the penetration factor P�(E) is approximated
by the Gamow factor e−2πη. Hence, the integrand can be written as the prod-
uct of two factors: (i) the Gamow peak e−2πηe−E/kT, and (ii) a resonant S-factor
curve of Lorentzian shape. Note that the Lorentzian has a FWHM of Γγ and a
maximum height of 4/Γγ. Thus, for a narrow resonance a change in Γγ has no
influence on the area under the Lorentzian curve. It is obvious from Eq. (3.119)
that, if a reaction cross section exhibits a number of narrow resonances, then
those resonances located in the region of the Gamow peak (at energies be-
tween E0 − ∆/2 and E0 + ∆/2) will be the major contributors to the total re-
action rates. In other words, if there are resonances located in the Gamow
peak, then other resonances located either below or above the Gamow peak
are of minor importance. The situation is represented in Fig. 3.23a. The dashed
line shows the Maxwell–Boltzmann factor e−E/kT, calculated for T = 0.4 GK,
whereas the dashed-dotted line displays the Gamow factor. The solid lines
show the Gamow peak and the narrow resonance S-factors. In this example,
the narrow resonances at Er = 0.2, 0.4 and 0.6 MeV will dominate the total
reaction rates, while the resonances at Er = 0.05 and 0.8 MeV will be far less
important.

Suppose now that the γ-ray partial width is smaller than the particle width,
Γa � Γγ. This situation typically occurs for charged particles at higher res-
onance energies (say, above Er ≈ 0.5 MeV where the particle partial width is
frequently Γa � 1 eV), or for neutrons (except perhaps at very low energies).
In this case we obtain from the definition of the resonance strength

ωγ = ω
ΓaΓγ

Γa + Γγ
≈ ω

ΓaΓγ

Γa
= ωΓγ (3.120)

The resonance strength depends only on the γ-ray partial width and will typ-
ically be on the order of 1 meV–eV. The precise value is determined by the
complicated nuclear configurations involved in the reaction. It is important to
realize that “a most important energy window,” such as the Gamow peak for
charged particles or the Maxwell–Boltzmann distribution for neutrons, does
not exist if Γa � Γγ. Figure 3.23b shows as an example the factor e−E/kT at
T = 0.4 GK (dashed line) together with three narrow resonances (solid lines) at
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Fig. 3.23 The influence of narrow resonances on reaction rates for the
case (a) Γγ � Γa; (b) Γγ  Γa. The Maxwell–Boltzmann and Gamow
factors are shown as dashed and dashed-dotted lines, respectively.
The solid line in part (a) displays the Gamow peak. The sharp peaks
indicate only the position of narrow resonances. Note that in part (a)
the displayed resonances have different strengths, while those in part
(b) are assumed to have similar strengths.

locations of Er = 0.2, 0.4 and 0.6 MeV. The resonances are assumed to have sim-
ilar strengths ωγ ≈ Γγ. For each resonance, only the region over the narrow
resonance peak will contribute to the reaction rate. The reaction rate contribu-
tion of a narrow resonance increases rapidly for decreasing resonance energy,
according to the factor e−E/kT. Hence, the resonance at Er = 0.2 MeV will
clearly dominate the total reaction rate (note the vertical logarithmic scale in
Fig. 3.23b). The smaller the resonance energy, the larger the reaction rate con-
tribution will be, as long as Γa � Γγ. Consequently, it becomes very important
to locate all the low-energy resonances.

It is often stated in the literature that in charged-particle reactions all res-
onances located within the Gamow peak (E0 ± ∆/2) may contribute signifi-
cantly to the total reaction rates. It should be obvious from the above consid-
erations that this assumption represents an oversimplification, since it applies
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Fig. 3.24 The fractional contribution of narrow resonances to the to-
tal reaction rate versus resonance energy for (a) 27Al(p,γ)28Si at T =
3.5 GK and (b) 24Mg(α,γ)28Si at T = 2.5 GK. The main contribution
arises in both cases from resonances with energies of Ei < E0. The
Gamow peak is shown as dotted line. The resonance energies and
strengths are adopted from Endt (1990) and Iliadis et al. (2001).

only to resonances for which the total width is dominated by the γ-ray par-
tial width (Γa  Γγ). With increasing energy a point will be reached in any
capture reaction where the particle partial width will dominate over the γ-
ray partial width (Γa � Γγ), and for these resonances a Gamow peak does
not exist. Therefore, one should in general not assume that all resonances
located throughout the region E0 ± ∆/2 contribute significantly to the total
rates. The assumption is especially unjustified at higher stellar temperatures.
This is demonstrated in Fig. 3.24, showing the fractional contribution of each
resonance to the total rate, NA〈σv〉i/NA〈σv〉total, versus resonance energy for:
(i) 27Al(p,γ)28Si at T = 3.5 GK, and (ii) 24Mg(α,γ)28Si at T = 2.5 GK. All known
resonances with center-of-mass energies in the range of Ei = 0.2–3.8 MeV in
part (a) and Ei = 1.1–4.3 MeV in part (b) are included in the figure. The dotted
curves show the corresponding Gamow peaks. Clearly, the main contribution
to the total reaction rate derives from resonances that are located below the
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center of the Gamow peak, that is, Ei < E0. The same applies to other (p,γ)
and (α,γ) reactions on targets in the mass range A = 20–40 at temperatures of
T = 0.5–10 GK. A survey reveals that a better estimate of an effective energy
window for resonant capture reactions at T ≥ 0.5 GK is the energy region
from ≈ 0.3 E0 to ≈ E0. In the following chapters, we will still use the Gamow
peak (E0 ± ∆/2) as the conventional effective energy window, but the reader
should keep in mind that this represents a crude estimate, especially at higher
temperatures.

It is demonstrated above that narrow resonances in the range of effective
stellar energies have a dramatic effect on reaction rates. Therefore, it is im-
portant to locate all narrow resonances that could contribute to the total re-
action rates. The situation is shown in Fig. 3.25. As a first step, one typically
measures the reaction of astrophysical interest, 0 + 1, down to an energy of
Emin, representing the smallest energy achievable in the laboratory (the dotted
line in Fig. 3.25). Charged-particle cross sections below an energy of Emin be-
come so small due to Coulomb barrier considerations that present experimen-
tal techniques are not sensitive enough for direct measurements. In a second
step, therefore, the energy range between E = 0 and Emin is investigated by
means of indirect measurements. Such studies populate the astrophysically
important levels in the compound nucleus C by using reactions X+x other

Fig. 3.25 Energy level diagram, showing narrow resonances in the
reaction 0 + 1 (left-hand side) and the corresponding levels in the
compound nucleus C. The locations of two Gamow peaks at differ-
ent temperatures are displayed as hatched bars. Below an energy of
Emin (dotted line) charged-particle measurements are not feasible. In
this case one may estimate the reaction rates by measuring nuclear
structure properties of levels in nucleus C via a reaction X + x.
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than the one of direct astrophysical interest (Section 4.1). From the measured
nuclear properties (excitation energies, spins, parities, spectroscopic factors,
and so on) of the compound levels close to the particle threshold, the reso-
nance energies and strengths of astrophysically important resonances can be
estimated.

For the influence of experimental uncertainties of Er, ωγ, and C2S on the
resulting narrow-resonance reaction rates, the reader is referred to Thompson
and Iliadis (1999).

Example 3.6

Suppose that four hypothetical narrow s-wave resonances occur at low ener-
gies in the 20Ne(p,γ)21Na reaction. The resonance energies are Er = 10 keV,
30 keV, 50 keV, and 100 keV. The corresponding resonance strengths are
ωγ = 7.24 × 10−33 eV, 3.81× 10−15 eV, 1.08× 10−9 eV, and 3.27× 10−4 eV. Each
of these values has been obtained by assuming Γp  Γγ and C2S = 1. Which
resonance do you expect to dominate the total reaction rates at T = 0.02 GK
and 0.08 GK?

At T = 0.02 GK, the Gamow peak location (see Eqs. (3.74) and (3.78)) is
E0 ± ∆/2 = 40 ± 10 keV. Only the resonances at Er = 30 keV and 50 keV are
located in the Gamow peak and, therefore, these will dominate the reaction
rates. At T = 0.08 GK, we obtain E0 ± ∆/2 = 100 ± 30 keV. Only the resonance
at Er = 100 keV is located in the Gamow peak and thus will dominate the total
reactions rates. See also Problem 3.5.

We will now consider two issues that are important at elevated temper-
atures when a capture reaction, for example, (p,γ), (n,γ) or (α,γ), proceeds
through narrow resonances. The first concerns the influence of excited target
states on the reaction rates. From Eq. (3.37) we find for the stellar rate of the
capture reaction 0 + 1 → γ + 3

NA〈σv〉 = ∑
µ

P0µ NA〈σv〉µ =
∑µ g0µe−E0µ/kT NA〈σv〉µ

∑µ g0µe−E0µ/kT (3.121)

where µ sums over the levels in the target nucleus 0 including the ground
state, while excited states in the light particle 1 are neglected (a safe assump-
tion for protons, neutrons or α-particles). The subscript “01 → 23” is sup-
pressed for clarity and it is assumed that the reaction rate NA〈σv〉µ has already
been properly summed over transitions to excited final states ν in nucleus 3.
All other symbols have exactly the same meaning as in Section 3.1.5. Suppose
now that the reaction rate NA〈σv〉µ for a specific target state µ is determined
by a number of narrow resonances that are labeled by ρ. From Eq. (3.112) we
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find

NA〈σv〉µ = ∑
ρ

NA〈σv〉µ
ρ = ∑

ρ

NA

(
2π

m01kT

)3/2

�
2e−Eρµ/kT(ωγ)ρµ

= ∑
ρ

NA

(
2π

m01kT

)3/2

�
2e−Eρµ/kT gρ

g0µg1

ΓρµΓργ

Γρ
(3.122)

where gρ, g0µ, and g1 are the statistical weights of the resonance, of the
level in target nucleus 0 and of the light particle 1, respectively, with ωρµ ≡
gρ/(g0µg1); Γρµ, Γργ, and Γρ are the particle partial width for resonance forma-
tion from target level µ, the (decay) γ-ray partial width, and the total width,
respectively, of resonance ρ; Eρµ is the energy of resonance ρ for target level µ

and Eρµ0 = Eρµ + E0µ is the energy of resonance ρ for the target ground state
µ0. An energy level diagram is shown in Fig. 3.26. From Eqs. (3.36), (3.43),
(3.121), and (3.122) we obtain

NA〈σv〉 =
∑µ g0µe−E0µ/kT ∑ρ NA

(
2π

m01kT

)3/2
�2e−Eρµ/kT gρ

g0µg1

ΓρµΓργ

Γρ

∑µ g0µe−E0µ/kT

=
1

Gnorm
0

∑
ρ

NA〈σv〉µ0
ρ ∑

µ

Γρµ

Γρµ0

(3.123)

Hence, the total stellar rate is given by a sum over narrow resonance ground-
state rates, NA〈σv〉µ0

ρ , where each resonance term is modified by a factor of
(1 + Γρµ1 /Γρµ0 + Γρµ2 /Γρµ0 + · · · ), with Γρµ/Γρµ0 denoting the ratio of parti-
cle partial widths for excited target level µ and the target ground state µ0. The
inclusion of excited target states in the total reaction rate introduces no ad-
ditional temperature dependence other than a weak dependence through the
quantity Gnorm

0 . For charged-particle reactions and low resonance energies,
the penetration factor (and hence the particle partial width) varies strongly
with energy (Section 2.5.4). Therefore, we expect in this case a negligible in-
fluence of excited target states on the total rate, that is, Γρµ  Γρµ0 , unless the
target excitation energy E0µ is very small, implying Eρµ ≈ Eρµ0 or Γρµ ≈ Γρµ0

(for similar values of the corresponding reduced widths; see Fig. 3.26). It is
also clear that in charged-particle reactions at higher resonance energies or in
neutron-induced reactions, where the particle partial widths are less sensitive
to energy variations, the ratio Γρµ/Γρµ0 can be relatively large. Under such
conditions, excited target states may in fact dominate the total stellar reaction
rates. See, for example, Vancraeynest et al. (1998) and Schatz et al. (2005).

The second issue concerns photodisintegration rates. Forward and reverse
rates are related by Eqs. (3.35) or (3.45). Rewriting that expression by using
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the above notation yields

λγ(3)
NA〈σv〉 =

(
2π

h2

)3/2 (m01kT)3/2

NA

g0µ0 g1

g3ν0

(
Gnorm

0
Gnorm

3

)
e−Q01→γ3/kT (3.124)

where for simplicity we omitted the Kronecker delta (that is, we assume non-
identical nuclei 0 and 1 and set Gnorm

1 = 1 (we disregard excited states in
the light particle 1); g0µ0 , g1, and g3ν0 are the statistical weights of the target
ground state, of light particle 1, and of the ground state of the residual nucleus,
respectively; Q01→γ3 denotes the Q-value for the ground states of nuclei 0, 1,
and 3. If the forward reaction proceeds predominantly through isolated and
narrow resonances, then the rates for the (reverse) photodisintegration can be
found by substitution of Eq. (3.123) into Eq. (3.124),

λγ(3) =
(

2π

h2

)3/2 (m01kT)3/2

NA

g0µ0 g1

g3ν0

1
Gnorm

3
e−Q01→γ3/kT ∑

ρ

NA〈σv〉µ0
ρ ∑

µ

Γρµ

Γρµ0

=
1
�

g0µ0 g1

g3ν0

1
Gnorm

3
∑
ρ

e−Eρx/kT gρ

g0µ0 g1

Γρµ0 Γργ

Γρ
∑
µ

Γρµ

Γρµ0

=
1.519 × 1021

Gnorm
3

g0µ0 g1

g3ν0
∑
ρ

e−11.605 Eρx/T9(ωγ)ρµ0 ∑
µ

Γρµ

Γρµ0

(cm3mol−1s−1)

(3.125)

where the excitation energy in the compound nucleus 3 (corresponding to res-
onance ρ) is equal to the sum of the resonance energy for the target ground
state and the ground-state Q-value, Eρx = Eρµ0 + Q01→γ3 (see Fig. 3.26). In
the above numerical expression, the resonance energies and strengths are in
units of MeV. The photodisintegration rate depends exponentially on the exci-
tation energies Eρx of the compound levels that correspond to the resonances
through which the forward reaction proceeds. The excitation energies also
enter implicitly via the particle partial widths Γρµ and Γρµ0 , and via the reso-
nance strengths (ωγ)ρµ0 for the target ground state. A numerical example is
given in Problem 3.6.

3.2.5
Broad-Resonance Reaction Rates

The results derived in the last section are independent of the precise shape
of the resonance cross section. The formalism of narrow-resonance reaction
rates is not applicable in cases for which the explicit energy dependence of
the cross section is important. As an example, a charged-particle reaction will
be discussed in the following. Three common situations are schematically
displayed in Fig. 3.27, showing in each case the Maxwell–Boltzmann factor
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Fig. 3.26 Energy level diagram for narrow resonances in the 0 + 1 →
γ + 3 capture reaction, showing thermally excited states in the target
and the final nucleus. For clarity, only a single narrow resonance (ρ)
and one excited state is shown for the target 0 and the final nucleus 3.
All vertical arrows represent γ-ray transitions. In the forward reaction
0 + 1 → γ + 3, the level ρ may be populated either from the target
ground state or from the excited target state.

(dashed line), the Gamow factor (dashed-dotted line), the Gamow peak (dot-
ted line), and the cross section of a broad resonance (upper solid line). The
reaction rates are proportional to the area under the lower solid line, that is,
the product of the Maxwell–Boltzmann distribution and the cross section. The
curves are obtained for the 24Mg(p,γ)25Al reaction at T = 0.05 GK. For simplic-
ity, the resonant cross sections are calculated using an arbitrary constant γ-ray
partial width; angular momenta are neglected and the penetration factor is
approximated by the Gamow factor e−2πη.

Part (a) shows a broad resonance at Er = 0.1 MeV with a width of Γ = 5 keV,
located inside the Gamow peak. Clearly, it can no longer be assumed that the
partial widths, the de Broglie wavelength, and the Maxwell–Boltzmann distri-
bution are constant over the width of the resonance. The energy dependence
of these quantities has to be taken into account. The product of Maxwell–
Boltzmann distribution and cross section is now a complicated function of
energy (lower solid line) and can no longer be integrated analytically. Instead,
the reaction rates have to be calculated numerically by solving (see Eqs. (3.69)
and (3.110))

NA〈σv〉 =
√

2π
NAω�2

(m01kT)3/2

∫ ∞

0
e−E/kT Γa(E)Γb(E + Q − Ef )

(Er − E)2 + Γ(E)2/4
dE (3.126)

where the partial width for the exit channel, Γb, has to be calculated at the
energy E23 = E01 + Q01→23 − Ef available to the pair 2 + 3. The above ex-
pression involves a transition from the resonance to a specific final state Ef . If
the reaction involves transitions to several final states, then the different con-
tributions to the total cross section add incoherently. As a useful rule, if the
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resonance width is small compared to the width of the Gamow peak, Γ  ∆,
then the reaction rates may be calculated by using the narrow resonance for-
malism (Section 3.2.4). Otherwise, the reaction rates have to be obtained from
a numerical integration of Eq. (3.126).

Part (b) shows a resonance at Er = 0.25 MeV with a width of Γ = 0.6 keV. It
can be seen that the resonance is located outside the Gamow peak. We con-
cluded in the last section that in such cases the contribution of this resonance
to the total reaction rates is negligible compared to other narrow resonances
that are located in the Gamow peak. But suppose that no other narrow res-
onances exist below E = 0.25 MeV. It is important to realize that it would be
incorrect in this case to calculate the reaction rates using the narrow resonance
formalism (see Eq. (3.112)). The latter equations have been derived assuming
a negligible energy dependence of the partial widths, de Broglie wavelength,
and Maxwell–Boltzmann distribution over the total width of the resonance.
The value of the Maxwell–Boltzmann distribution at the resonance energy Er

appears in the narrow-resonance reaction rate expression which takes only
the reaction rate contribution at the resonance energy into account. However,
the product of Maxwell–Boltzmann distribution and cross section (lower solid
line) gives rise to another maximum at lower energies which is caused by the
low-energy wing of the resonance. For the example chosen it is apparent that
this first maximum gives a far larger contribution to the reaction rates than
the second maximum at Er. The reason is that the Maxwell–Boltzmann dis-
tribution has a stronger energy dependence than the cross section, as can be
seen by comparing the magnitude of both functions at the positions of the
two maxima of the lower solid line. As an approximate rule, if a resonance
at Er is located within the energy range between E0 − 2∆ and E0 + 2∆, then
the narrow resonance formalism is applicable (Section 3.2.4). Otherwise, the
wing of the resonance has to be taken into account explicitly even if the reso-
nance is narrow in the sense that Γ  ∆. In the latter case, the reaction rates
can be calculated either by numerical integration or, if the S-factor of the res-
onance wing varies smoothly over the energy range of interest, by expanding
the S-factor into a Taylor series and by applying the nonresonant reaction rate
formalism.

Part (c) shows a subthreshold resonance, corresponding to a compound nu-
cleus level which is located below the proton threshold. For reasons of clarity,
the lower solid line displays the S-factor rather than the cross section. It is ob-
vious that in this case the high-energy wing of the resonance has to be taken
into account explicitly. The S-factor (or cross section) can be calculated by
using the one-level Breit–Wigner formula (see Eq. (2.185) and Example 2.1).
Again, the reaction rates are then evaluated either by numerical integration
or, if the S-factor varies smoothly over the energy range of interest, by using
the nonresonant reaction formalism.
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Fig. 3.27 The influence of broad reso-
nances on reaction rates for (a) a broad
resonance located in the Gamow peak;
(b) a broad resonance located outside the
Gamow peak; and (c) a high-energy wing
of a subthreshold resonance. In each panel
the Maxwell–Boltzmann factor, Gamow fac-
tor, and Gamow peak are shown as dashed,
dashed-dotted, and dotted lines, respec-

tively. The Breit–Wigner cross sections are
displayed as upper solid lines and the prod-
uct of cross section and Maxwell–Boltzmann
factor as lower solid lines. The latter prod-
uct determines the reaction rates (see
Eqs. (3.69) and (3.126)). The curves are
obtained for the 24Mg(p,γ)25Al reaction at T
= 0.05 GK. In part (c) the S-factor instead of
the cross section is shown for clarity.
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For the explicit calculation of broad-resonance reaction rates it is of advan-
tage to express the S-factor in terms of measured quantities. Using the one-
level Breit–Wigner formula the cross section can be written as

σBW(E) =
π�2ω

2m01E

Γa(E)Γb(E + Q − Ef )
(Er − E)2 + Γ(E)2/4

(3.127)

Numerically, we find π�
2/(2m01) = 0.6566 (M0 + M1)/(M0M1) MeV·b. Sup-

pose first that the partial widths of the broad resonance at Er, Γa(Er) and
Γb(Er), are known experimentally. We may parametrize the particle partial
width by using Γi(E) ∼ Pi(E) (see Eq. (2.176)) and the γ-ray partial width by
Γγ(Eγ) ∼ E2L+1

γ , where Eγ and L denote the energy and multipolarity, respec-
tively, of the emitted γ-ray (see Eq. (1.21)). Although approximate expressions
exist for the calculation of the penetration factors (see, for example, Clayton
1983), it is more reliable to obtain Pi(E) directly from numerical computations
of Coulomb wavefunctions (Section 2.5.4 and Appendix A.3). For reactions
involving particles with rest mass one finds from Eq. (3.127)

σBW(E) =
π�2ω

2m01E

Pa(E)
Pa(Er)

Γa(Er)
Pb(E+Q−Ef )
Pb(Er+Q−Ef )

Γb(Er + Q − Ef )

(Er − E)2 + Γ(E)2/4
(3.128)

and for reactions involving photon emission

σBW(E) =
π�

2ω

2m01E

Pa(E)
Pa(Er)

Γa(Er)
[

E+Q−Ef
Er+Q−Ef

]2L+1
Γγ(Er + Q − Ef )

(Er − E)2 + Γ(E)2/4
(3.129)

For many broad resonances the partial widths Γi have not been measured,
but only the resonance strength ωγ and the total width Γ, both measured at
Er, are known experimentally. With the definition of the resonance strength

ωγ ≡ ω
Γa(Er)Γb(Er + Q − Ef )

Γ(Er)
(3.130)

the cross section is given by

σBW(E) =
π�2

2m01E
Pa(E)
Pa(Er)

Γb(E + Q − Ef )
Γb(Er + Q − Ef )

ωγΓ(Er)
(Er − E)2 + Γ(E)2/4

(3.131)

where the ratio of partial widths Γb is given as before: either by the ratio of
penetration factors, Pb(E + Q − Ef )/Pb(Er + Q − Ef ), for reactions involving
particles with rest mass, or by the factor [(E + Q − Ef )/(Er + Q − Ef )]2L+1

for reactions emitting photons. The cross section for subthreshold resonances
is calculated similarly (Example 2.1). It can be seen from the Breit–Wigner
expression (see Eq. (3.127)) that broad resonances with an energy Er close to
E0 and with large partial widths (that is, a large value of C2S and a small
value of orbital angular momentum �) will make the largest contributions to
the total reaction rates.
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Example 3.7

The s-wave resonance at Er = 214 keV (Jπ = 1/2+) in 24Mg(p,γ)25Al has
a measured strength of ωγ = 1.3 × 10−2 eV, a proton width of Γp = 1.4 ×
10−2 eV, a γ-ray partial width of Γγ = 1.4 × 10−1 eV, and a total width of Γ
= 1.5 × 10−1 eV (Powell et al. 1999). All widths are observed quantities. No
other channels are open, hence Γ = Γp + Γγ. Suppose that the resonance de-
cays via a dipole transition (L = 1) to the Ef = 452 keV state (Jπ = 1/2+) in
25Al with a branching ratio of 100%. A level diagram is shown in Fig. 3.28a.
Calculate the reaction rate contribution of this resonance at temperatures be-
tween T = 0.01 GK and 1 GK by using: (i) the narrow resonance formalism,
and (ii) the broad resonance formalism (that is, by explicitly taking the energy
dependence of the S-factor into account).

To calculate the narrow-resonance reaction rate, only the resonance energy Er

and strength ωγ is needed. The numerical results are shown as the dashed line
in Fig. 3.28b and have been obtained directly from Eq. (3.114). The resonant
S-factor is calculated from Eqs. (3.70) and (3.129),

SBW(E) = EσBW(E)e2πη

=
π�2

2m01
e2πηω

Pa(E)
Pa(Er)

Γa(Er)
[

E+Q−Ef
Er+Q−Ef

]2L+1
Γγ(Er + Q − Ef )

(Er − E)2 + Γ(E)2/4

The penetration factors are obtained from numerically computed Coulomb
wavefunctions for � = 0 (s-wave), using a radius parameter of r0 = 1.25 fm.
The broad-resonance reaction rates may then be calculated by numerical inte-
gration of Eq. (3.69). The results are shown as the solid line in Fig. 3.28b.

It can be seen that above a temperature of T = 0.05 GK the narrow- and
broad-resonance reaction rates are in agreement. The result is expected since
for this temperature region the Er = 214 keV resonance is located inside the
Gamow peak. Below T = 0.05 GK, the resonance is located outside the en-
ergy window E0 ± 2∆ and, therefore, the narrow resonance formalism under-
estimates the reaction rates substantially. The low-energy wing of the reso-
nance provides a much larger reaction rate contribution compared to the con-
tribution at Er. Figure 3.28b displays at T = 0.05 GK a change in the slope
of the reaction rates, reflecting the different temperature dependences of the
narrow-resonance reaction rate expression (because of the contribution at the
resonance energy Er alone) and the broad-resonance reaction rate formalism
(because of the additional contribution from the Gamow peak near E0).
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Fig. 3.28 (a) Level diagram of 25Al and (b) reaction rates for
24Mg(p,γ)25Al versus temperature. The solid and dashed curves in
part (b) are calculated with the reaction rate formalism for broad reso-
nances and narrow resonances, respectively.

3.2.6
Electron Screening

The formalism discussed so far for calculating thermonuclear reaction rates
involving two charged particles is based on the assumption that Coulomb
interactions with electrons or with other nuclei are negligible. However, in
the fully ionized stellar plasma electrons are attracted to a particular nucleus
while other nuclei are repelled. In other words, each nucleus will polarize
its neighborhood to some extent. We may imagine that each nucleus is sur-
rounded by an imaginary sphere containing an inhomogeneously charged
cloud. Therefore, in a nuclear reaction the potential seen by either one of the
colliding nuclei is modified from the simple Coulomb form. The effective bar-
rier for the nuclear fusion reaction becomes thinner and, therefore, both the
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tunneling probability and the reaction rate increase over their values which
are obtained for the same reaction taking place in a vacuum. This effect is re-
ferred to as electron screening. The ratio of the actual reaction rate in the plasma
to the vacuum rate is called the screening factor fs and will be derived in the
following.

Consider a nearly perfect gas at relatively low density for which the average
Coulomb energy between two neighboring nuclei is much smaller than their
thermal energy. In this case, the screened potential for two colliding nuclei 0
and 1 is given by (Salpeter 1954)

Vs(r) =
Z0Z1e2

r
e−r/RD (3.132)

where RD is the Debye–Hückel radius

RD =

√
kT

4πe2ρNAζ2 = 2.812 × 10−7ρ−1/2T1/2
9 ζ−1 (cm) (3.133)

and

ζ ≡
√√
√
√∑

i

(Z2
i + Ziθe) Xi

Ai
(3.134)

with θe being the electron degeneracy factor. The sum is over all types of pos-
itive ions present in the plasma and the density in the numerical expression is
in units of g/cm3.

The Debye–Hückel radius is a measure for the size of the charged cloud
surrounding each nucleus. Beyond a distance of r = RD the screened poten-
tial vanishes quickly. The condition of a weak Coulomb energy compared to
the thermal energy defines the weak screening regime. It is equivalent to the
assumption that the Debye–Hückel radius is much larger than the average
distance between neighboring nuclei. This condition, which holds for most
thermonuclear reactions in stars, can be numerically expressed as (Clayton
1983)

T � 105ρ1/3ζ2 (3.135)

with T and ρ in units of K and g/cm3, respectively.
Consider now a nonresonant reaction for which the cross section is given

by Eq. (3.70). The energy dependence of σ(E) is mainly given by the Gamow
factor exp(−2πη), while the S-factor varies smoothly with energy. The s-wave
transmission coefficient for the unscreened Coulomb potential can be found
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from

T̂ ≈ exp

(

− 2
�

√
2m

∫ Rc

0

√
Z0Z1e2

r
− E dr

)

= exp

(

− 2
�

√
2m
E

Z0Z1e2
∫ 1

0

√
1
z
− 1 dz

)

= exp
(
−2π

�

√
m
2E

Z0Z1e2
)
≡ e−2πη (3.136)

This derivation is simpler than that in Section 2.4.3 because we assume here
that, for low bombarding energies compared to the Coulomb barrier height,
the classical turning point is much larger than the radius of the square-well po-
tential, Rc � R0 (Fig. 2.17). The lower integration limit for r is then R0 → 0,
while that for z is R0/Rc → 0. Consequently, the Gamow factor is directly
obtained without the correction of Eq. (2.124). For the screened Coulomb po-
tential, the classical turning point is defined by

E = (Z0Z1e2/Rc)e−Rc/RD (3.137)

Proceeding in exactly the same manner as in Section 2.4.3, we find for the
modified transmission coefficient (Problem 3.7)

T̂ ≈ exπη−2πη (3.138)

where the variable x = x(E) = Rc/RD depends explicitly on energy through
Rc. Equation (3.138) is derived assuming that x is a small number, RD � Rc,
which is frequently the case (see below). Substitution of the modified trans-
mission coefficient into the expression for nonresonant reaction rates (see
Eq. (3.71)) gives

NA〈σv〉 =
(

8
πm01

)1/2 NA

(kT)3/2

∫ ∞

0
S(E) exπηe−2πηe−E/kT dE (3.139)

Both x and η depend on energy but the above expression can be approximated
by evaluating the factor exπη at the most effective energy of the interaction in
the plasma, that is, the Gamow energy E0. With exπη ≈ e(xπη)E0 ≡ fs one
obtains

NA〈σv〉 =
(

8
πm01

)1/2 NA

(kT)3/2 fs

∫ ∞

0
S(E) e−2πηe−E/kT dE (3.140)

and consequently the screened reaction rate is simply obtained by multiplying
the unscreened reaction rate by the screening factor fs = e(xπη)E0 . The small
corrections introduced by a more rigorous calculation, in which the integral in
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Eq. (3.139) is evaluated by taking the energy dependence of the factor exπη into
account, are discussed in Bahcall et al. (1998) and Liolios (2000). Numerically
one finds

x(E0) = (Rc/RD)E0 =
Z0Z1e2

E0

√
4πe2ρNA

kT
ζ

= 4.197 × 10−6(Z0Z1)1/3
(

M0M1

M0 + M1

)−1/3 √
ρ T−7/6

9 ζ (3.141)

(xπη)E0 = (Rc/RD)E0(πη)E0 =
Z0Z1e2

RD

(πη)E0

E0
=

Z0Z1e2

RDkT

= 5.945 × 10−6√ρ Z0Z1T−3/2
9 ζ (3.142)

fs = e(xπη)E0 = eZ0Z1e2/(RDkT) = e5.945×10−6√ρ Z0Z1T−3/2
9 ζ (3.143)

where it is assumed that the classical turning points for the screened and un-
screened potentials are approximately equal. All nonresonant rate expressions
for charged-particle reactions derived in this chapter have to be multiplied by
fs if the nuclear reaction takes place under the conditions of weak screening.

For increasing densities at a given temperature a point is eventually reached
where the average Coulomb energy of neighboring nuclei, 〈Ec〉, is no longer
small compared to the thermal energy kT. The condition 〈Ec〉 ≈ kT defines
the intermediate screening regime while strong screening refers to the regime
〈Ec〉 � kT. Approximate expressions for the corresponding screening fac-
tors can be found, for example, in DeWitt, Graboske and Cooper (1973) and
Graboske et al. (1973).

Example 3.8

Calculate the electron screening correction for the nonresonant reaction p +
p → e+ + ν + d (Section 5.1.1) in the region where the Sun’s nuclear energy
production is at maximum. Assume for the temperature and density values of
T = 0.0135 GK and ρ = 93 g/cm3, respectively. The mass fractions of hydrogen,
helium, and oxygen in this region amount to X(1H) = 0.52, X(4He) = 0.46, and
X(16O) = 0.01. For the electron degeneracy factor assume a value of θe = 0.92.

First, the parameter ζ is computed

ζ ≡
√√
√
√∑

i

(Z2
i + Ziθe) Xi

Ai

=

√
(12 + 1 · 0.92)0.52

1
+

(22 + 2 · 0.92)0.46
4

+
(82 + 8 · 0.92)0.01

16
=

√
0.998 + 0.672 + 0.045 = 1.31
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Since 105ρ1/3ζ2 = 8 × 10−4 GK  0.0135 GK, the condition for the weak
screening regime is fulfilled. For the Debye–Hückel radius we find a value
of

RD = 2.812× 10−7(93)−1/2(0.0135)1/2(1.31)−1 = 2.58× 10−9 cm = 25, 800 fm

The parameter x(E0) amounts to

x(E0) = 4.197 × 10−6(1 · 1)1/3
(

1 · 1
1 + 1

)−1/3 √
93(0.0135)−7/61.31 = 0.010

It is small compared to unity and thus the linear expansion of Eq. (3.138) is
justified in this case. The screening factor is

fs = exp[5.945 × 10−6
√

93 · 1 · 1(0.0135)−3/21.31] = e0.0479 = 1.049

Other examples are given in Liolios (2000).

We have discussed so far only nonresonant reactions. The electron screen-
ing correction for a narrow resonance depends on the relative magnitude of
the incoming (Γa) and outgoing (Γb) partial widths. Consider for example a
capture reaction A(a,γ)B. If Γa � Γγ, then exactly the same screening cor-
rection factor as in Eq. (3.143) is obtained, despite the fact that in this case
the reaction rate is completely independent of the penetration factor for the
incoming channel. This counterintuitive result can be explained by revisit-
ing the derivation of the narrow-resonance reaction rate (Section 3.2.4). The
screening potential (see Eq. (3.132)) can be approximated by

Vs(r) =
Z0Z1e2

r
e−r/RD ≈ Z0Z1e2

r
− Z0Z1e2

RD
=

Z0Z1e2

r
+ Us (3.144)

The first term is the Coulomb potential while the second term represents a
perturbing potential which is caused by the shielding charge density. The
latter potential is negative (attractive) and thus effectively increases the kinetic
energy of the projectile by an amount |Us| = Z0Z1e2/RD (Fig. 2.17). Without
electron shielding, only those projectiles with energies near E = Er will be
able to excite the resonance. But in a plasma it is the projectiles with smaller
energies near E′ = Er + Us that give rise to the population of the resonance.
Hence, for the condition Γa � Γγ, Eq. (3.112) must be replaced by

NA〈σv〉 = NA

(
2π

m01kT

)3/2

�
2e−(Er+Us)/kTωΓb (3.145)

Obviously, this expression differs from Eq. (3.112) only by a screening fac-
tor fs = e−Us/kT = eZ0Z1e2/(RDkT), that is, the same result as obtained in
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Eq. (3.140). An example for the applicability of this result is the 3α reaction
where the condition Γa � Γb holds for each of the two successive interactions
(Example 3.4 and Section 5.3.1). For the opposite case, Γa  Γb, the screening
factor has a more complicated form. See Salpeter and Van Horn (1969) and
Mitler (1977).

We end the discussion by noting that the electrons of target nuclei also in-
troduce screening effects in laboratory measurements of nuclear reactions if
the bombarding energy is sufficiently low. As was the case for a plasma, the
screened laboratory cross section is larger compared to the unscreened one. In
cases where such effects are found to be significant, the measured cross sec-
tions have to be multiplied by the appropriate screening factors, which differ
from those derived for a stellar plasma, in order to calculate the laboratory
cross section for bare nuclei (Assenbaum, Langanke and Rolfs 1987, Raiola et
al. 2002, and references therein). In a second step, the latter cross section may
then be corrected for plasma screening effects when computing the screened
reaction rates.

3.2.7
Total Reaction Rates

For the calculation of the total reaction rates, all processes contributing signif-
icantly to the reaction mechanism in the effective stellar energy range have to
be taken into account. The effective energy range is given by the Gamow peak
or the Maxwell–Boltzmann distribution for reactions induced by charged par-
ticles or neutrons, respectively. The details will be different for each nuclear
reaction, but some general statements are useful at this point. We will use a
capture reaction as an example.

Consider first low stellar temperatures corresponding to effective energies
close to the particle threshold. For light target nuclei, the density of resonances
in this energy region is relatively small and they can be resolved experimen-
tally. For charged particles, the resonance strengths are usually determined
by the small charged-particle partial width Γa (since ωγ ≈ ωΓa). For neu-
trons, on the other hand, ωγ ≈ ωΓγ. All contributions of narrow resonances
have to be measured or estimated, since they may strongly influence the to-
tal reaction rates. If the resonances are too weak or if none are located at the
effective stellar energies, then other processes, such as high-energy wings of
subthreshold resonances, low-energy wings of broad resonances located at
higher energies, and nonresonant reaction contributions, are likely to domi-
nate the total rates. As already noted, charged-particle measurements are typ-
ically performed down to an energy of Emin. Direct measurements at lower
energies are difficult, if not impossible, with present experimental techniques.
In this case, any expected narrow resonances have to be investigated indi-
rectly by nuclear structure studies (Fig. 3.25), while nonresonant cross sections
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or wings of broad resonances have to be extrapolated from measurements at
higher energies. In neutron-induced reactions, on the other hand, an experi-
mental cutoff energy Emin does not exist since the Coulomb barrier is absent.
Hence, the cross section can in principle be measured directly at the effective
stellar energies.

For increasing stellar temperatures, the density of resonances in the effec-
tive energy range will become larger. These resonances are located at higher
energies so that, for charged-particle reactions, the particle partial width may
exceed the γ-ray partial width (Γa � Γγ), and hence ωγ ≈ ωΓγ. The strengths
or cross sections of narrow or broad resonances with energies of up to a few
MeV have been measured for many reactions.

At even higher energies, corresponding to effective energies in excess of a
few MeV, the number of resonances and their total widths become so large that
they strongly overlap. Note that this situation pertains already at low energies
in the case of neutron-induced reactions on heavy target nuclei when the Qnγ

value is large. In some reactions, individual resonances are no longer resolved
and the total cross section gives rise to a continuum that varies smoothly with
energy. In other reactions, individual resonances may still be resolved, but
their density in the effective stellar energy window is so large that only the
energy-averaged cross section is of interest. Cross sections for some reactions
have been measured directly in this energy regime.

As will be explained in Chapter 5, the nucleosynthesis in certain burning
processes can involve a large number of reactions (from several hundred in
the case of silicon burning to several thousands in the case of the p-process),
many of which proceed on unstable target nuclei. Clearly, only a small frac-
tion of these reactions has been measured and in the vast majority of cases the
cross sections need to be estimated by using theoretical models. The most suc-
cessful among these is the Hauser–Feshbach statistical model (Section 2.7). It
assumes that near the incident energy there is a large number of levels for each
Jπ value in the compound nucleus through which the reaction can proceed.
The Hauser–Feshbach formula (see Eq. (2.219)) predicts a cross section reli-
ably if the input parameters, such as transmission coefficients and level densi-
ties, are fine-tuned for the reaction of interest. In reality, however, the number
of unmeasured reactions is very large and it becomes therefore important to
compute the desired cross sections with global instead of local parameters. For
proton- and neutron-induced reactions, such global Hauser–Feshbach calcu-
lations are found to yield cross sections and reaction rates that are reliable
within a factor of ≈ 2–3, provided that the level density in the compound nu-
cleus is sufficiently large (say, at least ten compound levels in the effective
stellar energy window). For α-particle-induced reactions, however, the the-
oretical predictions are less reliable due to difficulties in constructing appro-
priate global optical model potentials. For comparisons of Hauser–Feshbach
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predictions with measured cross sections, see Rauscher et al. (1997), Sargood
(1982) and Arnould and Goriely (2003). Another obvious advantage of the
Hauser–Feshbach model is that it can include the effects of thermally excited
target states in a straightforward manner (Section 3.1.5).

The various contributions to the total reaction rates may be added incoher-
ently if interferences are negligible, so that

NA〈σv〉total = ∑
i

NA〈σv〉i
narrow
resonances

+ ∑
k

NA〈σv〉k
broad
resonances

+ NA〈σv〉nonresonant + NA〈σv〉continuum (3.146)

To a good approximation, interference effects are negligible for narrow reso-
nances (Γ < 1 eV). No interference effects are expected between two broad
resonances of different Jπ values, or between a resonance and a nonresonant
process of different incoming orbital angular momenta. In other situations,
interference effects may need to be taken into account in Eq. (3.146).

Examples for measured charged-particle-induced reaction cross sections
have already been discussed in connection with the (p,γ) reactions on 13C and
16O (Figs. 3.10 and 3.11). Both of these cross sections have relatively simple
energy dependences. In many other charged-particle reactions, however, the
total cross section has a complex structure. A schematic example for a typical
S-factor is displayed in Fig. 3.29, showing nonresonant contributions, narrow
and broad resonances, and a continuum at higher energies caused by many

Fig. 3.29 Schematic representation of an S-factor versus energy for
a charged-particle-induced reaction. At low energies, narrow reso-
nances (NR), wings of subthreshold resonances (SR), tails of broad
resonances (TBR), and nonresonant processes (NNR) may typically
contribute to the total S-factor. At higher energies, the S-factor is typi-
cally dominated by broad resonances (BR) and by overlapping narrow
and broad resonances (OBR + ONR).
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Fig. 3.30 Cross sections for neutron capture on 7Li, 31P, and 90Zr ver-
sus energy. The curve in the upper panel shows a 1/v behavior, while
resonances are visible in the middle and lower panels.

overlapping contributions. The S-factor rather than the cross section is shown
in Fig. 3.29 since the latter quantity drops rapidly for decreasing energy. Total
reaction rates NA〈σv〉 of charged-particle-induced reactions depend strongly
on temperature, as shown in Sections 3.2.1 and 3.2.4. The reaction rates fall
rapidly for decreasing temperature in most reactions of astrophysical inter-
est when the effective energies are below the height of the Coulomb barrier.
Examples for reaction rates have already been discussed (Fig. 3.28b).

Examples of cross sections for neutron capture on a light, medium and
heavy target nucleus are shown in Fig. 3.30. The cross section for the
7Li(n,γ)8Li reaction (Qnγ = 2.0 MeV) follows the 1/v law over the entire neu-
tron energy range shown (En = 1–100 keV). For 31P(n,γ)32P (Qnγ = 7.9 MeV)
the cross section varies smoothly up to about E = 20 keV where a few nar-
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row isolated resonances start to appear. For 90Zr(n,γ)91Zr (Qnγ = 7.2 MeV)
many narrow and broad resonances are apparent. The density of resonances
increases for larger neutron energies and they start to overlap strongly be-
yond an energy of ≈ 10 keV. The vastly different energy dependence of
neutron reaction cross sections compared to charged-particle-induced reac-
tions (Figs. 3.10 and 3.11) is caused by the absence of the Coulomb barrier.
The corresponding Maxwellian-averaged cross sections, 〈σv〉/vT , versus kT
are displayed in Fig. 3.31. It is apparent that neutron reaction rates are far less
temperature sensitive compared to charged-particle reaction rates.

Fig. 3.31 Maxwellian-averaged cross sections versus kT for
7Li(n,γ)8Li, 31P(n,γ)32P, and 90Zr(n,γ)91Zr. Data from Bao et al. (2000).

Problems

3.1 Consider a situation where the three species A, B and C achieve equilib-
rium at elevated temperatures via the reactions A + a ↔ B + γ and B + b ↔
C + γ (Fig. 3.7). In addition to Eqs. (3.55) and (3.56), the two conditions
λC→B > λC→C′ and λB→C > λB→B′ must be fulfilled in order for such an equi-
librium to be established. Derive an expression for λA→B→(C→C′ or B′), that is,
the decay constant of species A for consumption via the paths A → B → C →
C′ or A → B → B′.
3.2 Derive the correction factor F(τ) for nonresonant charged-particle-
induced reaction rates (see Eq. (3.90)). Start by expressing F in terms of
the new variables y ≡ √

ε − 1, β ≡ √
3/τ and ζ ≡ y/β. Then expand F(β)

into a quadratic Taylor series.
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3.3 Derive the thermonuclear rate for nonresonant neutron-induced reactions
when S ≡ σv depends on velocity (see Eq. (3.101)).

3.4 For an arbitrary value of �, find the γ-ray energy at which the decay con-
stant for nonresonant (γ, n) reactions (that is, the integrand in Eq. (3.109)) has
a maximum.

3.5 Consider the narrow resonances described in Example 3.6. Calculate the
reaction rates numerically for T = 0.02 GK and T = 0.08 GK and show that the
arguments based on the Gamow peak concept are valid.

3.6 Consider the 20Ne(γ,α)16O photodisintegration reaction at a tempera-
ture of T = 1.5 GK. The lowest lying narrow resonances in the forward
16O(α,γ)20Ne reaction (Q = 4730 keV) are located at Ecm

r = 891 keV, 1058 keV,
and 1995 keV, corresponding to 20Ne levels at Ex = 5621 keV, 5788 keV, and
6725 keV, respectively (Fig. 5.46). Their (ground-state) strengths amount to
ωγ = 1.9 × 10−3 eV, 2.3 × 10−2 eV, and 7.4 × 10−2 eV, respectively (Angulo
et al. 1999). Which level do you expect to dominate the stellar 20Ne(γ,α)16O
reaction rates? Calculate and compare the individual level contributions to
the total photodisintegration reaction rates. The spins of 4He, 16O, and 20Ne
are all ji = 0; the normalized partition functions for these nuclei are equal
to unity at T = 1.5 GK (see Rauscher and Thielemann 2000). Also, the first
excited state in 16O is located at a relatively high energy (Ex = 6049 keV; Tilley,
Weller and Cheves 1993) and, therefore, the (forward) capture reaction from
excited target states is negligible at this temperature.

3.7 Derive the transmission coefficient (see Eq. (3.138)) for the screened
Coulomb potential (see Eq. (3.132)). Assume that the variable x = x(E) =
Rc/RD is a small number and use the expansions ex ≈ 1 + x and

√
1 − x ≈

1 − x/2. In the derivation retain only terms that are linear in x.

3.8 Calculate the electron screening correction for the 12C + 12C reaction
under typical hydrostatic carbon burning conditions (T = 0.9 GK and ρ =
105 g/cm3; Section 5.5.1). The mass fractions of carbon, oxygen, and neon
are given by X(12C) = 0.25, X(16O) = 0.73, X(20Ne) = 0.01, and X(22Ne) =
0.01. Assume that the reaction is nonresonant and disregard the electron
degeneracy factor (θe = 1).
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4
Nuclear Physics Experiments

4.1
General Aspects

In this chapter, experimental techniques and procedures are discussed that are
frequently applied in investigations of astrophysically important reactions.
A vast number of different experimental procedures are used in the field of
nuclear astrophysics. These can be divided into two groups, that is, direct
and indirect measurements. A measurement of a cross section or a resonance
strength in a given reaction of astrophysical interest is referred to as direct
measurement. All other studies that are performed in order to improve the
thermonuclear rates of this particular reaction, for example, elastic scatter-
ing, particle transfer, charge-exchange, and so on, represent indirect measure-
ments (see also Section 3.2.4 and Fig. 3.25). Here, we will focus our attention
on direct measurements of nuclear reactions and a number of topics will be
discussed in some depth. In most of this chapter, with the exception of Sec-
tions 4.8 and 4.9, all quantities are given in the laboratory system, unless men-
tioned otherwise. Expressions that relate kinematic quantities in the center-
of-mass system and the laboratory system can be found in Appendix C.

Figure 4.1 shows schematically some major experimental components in-
volved in nuclear reaction measurements. An accelerator provides collimated
beams of well-defined energy. The beam is directed to a target which contains
the target nuclei involved in the nuclear reaction. The target has to be sta-
ble under beam bombardment. The nuclear reaction takes place in the target.
Radiative capture reactions, A(a,γ)B, are among the most important types of
reactions occurring in stars, but reactions involving only particles with rest
mass, A(a,b)B, are of importance as well. The reaction products (for example,
γ-rays or light particles) emitted from the target are measured by a suitable
detector of high efficiency. From the measured energies and intensities the
nuclear properties of interest (resonance and excitation energies, cross sec-
tions, spins and parities, lifetimes, branching ratios, angular correlations, and
so on) are deduced. Frequently, unwanted background will contribute to the
signal count rate of interest. It is important to reduce this background through
various means to tolerable levels.
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Fig. 4.1 Basic components for the measurement of astrophysically
important nuclear reactions. See the text. The shield must surround
the detector as completely as possible.

A discussion of sources, accelerators and beam transport systems can be
found in Rolfs and Rodney (1988). Here, we will briefly summarize some of
the key requirements for beams in nuclear astrophysics measurements.

4.1.1
Charged-Particle Beams

The effective ion energies in a stellar plasma depend both on the tempera-
ture and the charges of the projectile and target nucleus involved in the re-
action. It has been shown in Section 3.2 that thermonuclear reactions most
likely proceed at energies below the Coulomb barrier height (Figs. 3.12 and
3.13). Therefore, accelerators have to cover the energy range below a few MeV
for direct measurements of reactions. Indirect measurements, which investi-
gate the structure of astrophysically important nuclei, are typically performed
above the Coulomb barrier (that is, in the tens of MeV range). Most measure-
ments of charged-particle reactions in nuclear astrophysics have been carried
out using ion beams from electrostatic accelerators. Different types of electro-
static accelerators, such as Van de Graaff, Cockroft–Walton, Dynamitron, and
Pelletron, are widely used.

It must be remembered that cross sections of charged-particle reactions
in general decrease rapidly with decreasing beam energy because of the
Coulomb barrier (Figs. 3.10 and 3.11). Therefore, measurements far below
the Coulomb barrier require relatively large ion beam currents up to the mA
range in order to initiate a statistically significant number of nuclear reactions.
For example, a 1 mA current of singly charged protons or α-particles corre-
sponds to Ni/t = I/e = (1 × 10−3 A)/(1.6 × 10−19 C) = 6.25 × 1015 incident
particles per second, where e = 1.6 × 10−19 C is the elementary charge. At
higher energies (say, above 1 MeV) smaller currents in the 0.1–10 µA range
are of advantage if detector count rates become limited by the intense radia-
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tion from contaminant reactions. Ion energy spreads of about 1 keV or better
are usually necessary to resolve complex resonance structures.

The ion beam energy should be variable in steps of at least a few 100 eV
in order to measure precise resonance energies. The beam should also be well
collimated. Low-energy measurements far below the Coulomb barrier require
a beam spot size of a few square centimeters cross-sectional area (for solid
targets) in order to reduce target heating and degradation to tolerable levels.
Indirect measurements at higher energies usually require beam spots of much
smaller size (a few square millimeters). The beam should also be as free of
contaminants as possible.

The absolute energy calibration of the electrostatic accelerator is an impor-
tant quantity for the determination of thermonuclear reaction rates. The pre-
cise energy of narrow resonances enters sensitively in the narrow resonance
reaction rate formalism (see Eq. (3.114)). Furthermore, nonresonant cross sec-
tions are a steep function of energy below the Coulomb barrier and, thus, sys-
tematic shifts in absolute beam energy may cause large errors in the nonreso-
nant reaction rates. We will illustrate this effect with two examples.

Consider first the Er = 151 keV resonance in the 18O(p,γ)19F reaction corre-
sponding to an energy of 143 keV in the center-of-mass system (see Eq. (C.24)).
Suppose, that a measurement of Er yields an erroneous value of 148 keV (or
140 keV in the center-of-mass system). At a temperature of T = 0.06 GK, the re-
sulting narrow resonance reaction rates (see Eq. (3.114)) will then be too high
by a factor of

NA〈σv〉Er−∆E

NA〈σv〉Er

=
e−11.605(0.143−0.003)/0.06

e−11.605·0.143/0.06 ≈ 1.80 (4.1)

corresponding to a variation of 80%. The variation will increase for lower
temperatures.

As an example for a nonresonant reaction, consider 16O(p,γ)17F at 100 keV
in the center-of-mass system. If the measurement is erroneously performed at
a center-of-mass energy of 103 keV, then the cross section (see Eqs. (2.126) and
(3.70)) will be too high by a factor of

σ(E + ∆E)
σ(E)

=
1

0.103 exp
(
−0.9895 · 1 · 8

√
16·1

16+1
1

0.103

)

1
0.100 exp

(
−0.9895 · 1 · 8

√
16·1

16+1
1

0.100

) = 1.40 (4.2)

corresponding to a variation of 40%. For this estimate we assumed a negligible
energy dependence of the S-factor (see Eq. (3.10)).

Frequently, a magnetic analyzer with input and output slits is used to define
the beam energy. For an ideal system, the magnetic field strength B and the
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particle energy E are related by (Marion 1966)

B =
k
q

√
2mc2E + E2 (4.3)

where mc2 and q are the rest energy and the charge state of the ion, respec-
tively. The calibration constant k cannot be calculated precisely from the mag-
net geometry since B is not necessarily constant along the particle trajectory
through the magnet and, furthermore, the magnetic field along the trajectory
may not be proportional to the field measured at some reference point (for ex-
ample, using a NMR or a Hall probe). Therefore, k must be obtained through a
calibration of the magnet by using energies of well-known nuclear reactions.
For this purpose, narrow resonances are frequently used below E ≈ 2 MeV,
while (p,n) threshold energies are utilized at higher energies.

Absolute resonance energies of selected resonances below 1.5 MeV energy
are listed in Table 4.1. It is interesting to point out that almost all published
resonance energies are directly or indirectly related to the energy of the Er =
992 keV resonance in 27Al(p,γ)28Si. The table also lists total resonance widths,
which should be small (less than 1 keV) for energy calibration standards. The
determination of precise resonance energies from measurements of the reac-
tion yield versus energy will be discussed in Section 4.8.

Tab. 4.1 Laboratory energies and widths of narrow resonances commonly used for ion beam
calibrations. Data from (a) Uhrmacher et al. (1985), (b) Bindhaban et al. (1994), (c) Becker et
al. (1995), and (d) Endt (1998). Errors are given in parentheses and refer to the last significant
digit(s). For example, 150.82(9) stands for 150.82 ± 0.09.

Reaction Elab (keV) Γ (eV)
18O(p,α)15N 150.82(9)c 130(10)c

19F(p,αγ)16O 223.99(7)a 985(20)a

483.91(10)a 903(30)a

23Na(p,γ)24Mg 308.75(6)a <36a

24Mg(p,γ)25Al 222.89(8)a <32a

26Mg(p,γ)27Al 292.06(9)a <37a

27Al(p,γ)28Si 222.82(10)a <34a

293.08(8)a 59(16)a

326.97(5)a <38a

405.44(10)a <42a

991.756(17)b 70(14)d

1316.87(3)b 35(4)d

4.1.2
Neutron Beams

For measurements of neutron-induced reactions on stable or long-lived target
nuclei (Section 5.6.1), neutron beam energies between a fraction of a keV and
several hundred keV are of primary interest. Neutrons can be produced using
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a variety of techniques, including linear electron or proton accelerators, and
electrostatic accelerators.

At linear electron accelerators, neutrons are produced via (γ,n) reactions
by bombarding heavy metal targets with pulsed electron beams of ≈ 50 MeV
energy and repetition rates of ≈ 0.5 kHz. The neutrons are released with en-
ergies ranging from the subthermal region up to 50 MeV. They are slowed
down by a moderator (Section 4.2.3) and are collimated before they impinge
on the sample of interest. The primary electron beam produces a very intense
background caused by bremsstrahlung and thus the metal target area needs
to be shielded well. The astrophysically important neutron energy range cor-
responds only to a small window of the entire neutron spectrum. Neutrons
with a similar broad energy distribution are produced with high-energy pro-
ton beams at linear accelerators. In this case, the primary beam is incident on
a suitable target and neutrons are produced via spallation reactions. Fluxes
on the order of ≈ 106 neutrons s−1 cm−2, integrated over an energy range of
1–300 keV, are typically achieved at both kinds of facilities (Koehler 2001). Re-
action measurements with these moderated neutron sources are performed by
using time-of-flight techniques (Section 4.6.3).

Charged-particle beams from electrostatic accelerators can be utilized to
produce neutrons via nuclear reactions (Hanson, Taschek and Williams 1949).
For relatively low neutron energies of astrophysical interest, a frequently em-
ployed reaction is 7Li(p,n)7Be (Q = −1.644 MeV). It follows from the kine-
matics of this endothermic reaction that at the threshold (Ethresh

p ≈ −Q(mn +
m7Be)/M7Be = 1.881 MeV; Eq. (C.8)) neutrons are released with an energy of
30 keV and they are emitted in the forward direction only. For proton bom-
barding energies up to Ep = 1.92 MeV, neutrons are emitted into a cone of
limited angle in the forward direction. At each angle within this cone, two
groups of neutrons with different energies are emitted. The cone widens with
increasing proton energy until it includes the forward hemisphere. For Ep >
1.92 MeV, neutrons of only one discrete energy are emitted at each angle in the
complete sphere about the target. The kinematics of endothermic reactions is
discussed in more detail in Appendix C.1. The energy resolution of the re-
leased neutrons depends on the energy spread of the incident protons, the
finite thickness of the 7Li target, and the finite angle subtended by the sample
to be irradiated.

An interesting technique has been applied in a number of neutron-induced
reactions by bombarding a ≈ 10 µm thick metallic lithium target with pro-
tons of energy Ep = 1912 keV, only 31 keV above the reaction threshold. The
released neutrons are emitted in the forward direction in a cone with an open-
ing angle of 120◦. In this case, the angle-integrated energy distribution of
emitted neutrons closely resembles a Maxwell–Boltzmann distribution at kT
= 25 keV, as shown in Fig. 4.2. If the irradiation sample is mounted very close
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Fig. 4.2 Angle-integrated neutron energy
distribution resulting from the bombard-
ment of a ≈ 10 µm thick metallic lithium
target with Ep = 1912 keV protons. The neu-
trons are emitted in the forward direction
in a cone with an opening angle of 120◦.
The angle-integrated energy distribution

of emitted neutrons closely resembles a
Maxwell–Boltzmann distribution at kT =
25 keV. Reprinted with permission from W.
Ratynski and F. Käppeler, Phys. Rev. C, Vol.
37, p. 595 (1988). Copyright (1988) by the
American Physical Society.

to the lithium target, then the energy distribution of neutrons incident on the
sample is given by the same Maxwell–Boltzmann distribution. The measured
average cross section gives then directly the Maxwellian-averaged cross sec-
tion or the reaction rate (Section 3.2.2), as will be shown in Section 4.9.3. With
typical proton beam currents of 50–100 µA, integrated yields of ≈ 108–109

neutrons/s are achieved (Beer and Käppeler 1980). This technique is useful
because the energy of kT = 25 keV is close to the effective energy range of
some s-process scenarios (Section 5.6.1). A similar procedure, but using the
3H(p,n)3He or 18O(p,n)18F reactions instead of 7Li(p,n)7Be, yields Maxwell–
Boltzmann distributions of neutron energies at kT = 52 keV (Käppeler, Naqvi
and Al-Ohali 1987) or 5 keV (Heil et al. 2005), respectively. Direct measure-
ments of Maxwellian-averaged cross sections are frequently performed by us-
ing the activation method (Section 4.6.2).

Cross sections of neutron-induced reactions are usually much larger com-
pared to those of charged-particle-induced reactions (Figs. 3.10, 3.11, and
3.30), thus compensating for the fact that neutron beam intensities are much
lower compared to the intensities that are available for the study of charged-
particle-induced reactions.
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4.2
Interaction of Radiation with Matter

Radiation interacts with matter and thereby loses part or all of its energy. This
aspect is important for a number of experimental considerations. First, a par-
ticular incident particle may lose energy in the target prior to initiating a nu-
clear reaction. An exact knowledge of the energy loss is required in order
to determine the effective energy and the probability with which the reac-
tion takes place. Second, the energy or intensity of emitted reaction products
may be influenced by interactions in the target or the surrounding material.
Third, the reaction products have to be detected in order to determine the re-
action cross section, that is, the probability with which the reaction occurs.
Thus, knowledge of the processes by which radiation interacts with matter is
of paramount importance for the design and performance of radiation detec-
tors.

Figure 4.3 indicates schematically some experimental locations where radi-
ation typically interacts with matter: (i) incident particle energy loss in the
target, (ii) reaction product energy or intensity loss in the target, target holder,
detector dead layer, and so on, and (iii) energy deposition of reaction prod-
ucts in the active volume of the detector. The processes responsible for the
interaction of radiation with matter depend on the type of radiation. In the
following, interactions of heavy charged particles (for example, protons and
α-particles), photons, and neutrons are discussed in more detail. We will refer
to the material in which the interactions occur as absorber.

A frequently used quantity for the considerations of the present chapter is
the number density N of atoms (in units of atoms per cubic centimeter). For
a solid absorber with mass density ρ, consisting of atoms with relative atomic
mass M (in units of u), there are NA/M atoms per gram of absorber material.
The number density of atoms is then given by

N = ρ
NA

M
(4.4)

For an absorber gas at pressure P and temperature T, the number density of
atoms can be calculated from

N = νL
P

760 torr
273 K

T
(4.5)

with the Loschmidt constant L = 2.68677 × 1019 cm−3 and ν the number of
atoms per molecule.

4.2.1
Interactions of Heavy Charged Particles

Heavy charged particles, such as protons or α-particles, interact with matter
primarily through: (i) inelastic collisions with atomic electrons of absorber
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Fig. 4.3 Schematic setup showing a beam incident on a target. The
locations at which the primary (beam) or secondary (emitted particle or
photon) radiation typically interacts with matter are circled.

atoms, and (ii) elastic scattering on absorber nuclei. These interactions cause
an energy loss of the incident particle and a deflection of the particle from
its incident direction. The former interaction occurs much more frequently
compared to the latter, except at very low projectile energies where the contri-
bution of elastic scattering on absorber nuclei has to be taken into account.

A heavy (positively) charged particle moving through matter interacts si-
multaneously with many electrons. Cross sections for these collisions are typ-
ically in the 10−17–10−16 cm2 range (corresponding to 107–108 b). In each en-
counter, an electron feels the attractive Coulomb force as the charged particle
passes in close vicinity. Energy is transferred from the particle to an absorber
atom, causing either excitation of an atomic electron to higher lying shells
(soft collision) or complete removal of an electron, that is, ionization (hard
collision). The maximum energy that can be transferred in each collision is
a small fraction of the particle’s total energy, but the number of collisions
per path length is very large. At any given time the particle interacts with
many electrons, causing an almost continuous energy loss until the particle is
stopped. The paths of heavy particles in matter are relatively straight because
the particle is not strongly deflected by any one collision. After ionization, the
electrons tend to recombine with positive ions. Most types of radiation de-
tectors suppress the recombination process and utilize the number of created
electron–ion pairs as a basis for the detector response (see Eq. (4.4)). In certain
very close encounters, sufficient energy may be transferred to an electron that
it can create electron–ion pairs in subsequent collisions. These high-energy
electrons are referred to as δ (or knock-on) electrons.
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Stopping power

The collisions of heavy charged particles with absorber atoms are statistical
in nature. Since the number of collisions per path length is very large, the
fluctuations in the total energy loss are small. Thus, the slowing down process
may be described in terms of an average energy loss per unit path length.
The ratio of differential energy loss and differential path length is called linear
stopping power, and is defined by

SL(E) ≡ −dE
dx

(4.6)

in units, for example, of eV/cm. The linear stopping power depends on the
number density of electrons in the absorber or, equivalently, the absorber mass
density ρ. The related quantity

SM(E) ≡ −1
ρ

dE
dx

(4.7)

is called mass stopping power with units, for example, of eV cm2/g. The stop-
ping power may also be given per absorber atom. For an absorber of number
density N (in units of atoms per cubic centimeter) we obtain

SA(E) ≡ − 1
N

dE
dx

(4.8)

in units, for example, of eV cm2/atom. The quantity SA(E) is called stopping
cross section. For a given projectile of energy E, it is found that SM(E) and
SA(E) vary relatively little over a wide range of absorber materials. In numer-
ical calculations, we will mainly be using the quantity SA(E) and simply refer
to it as stopping power.

The theoretical calculation of stopping powers is complicated. For high pro-
jectile energies (> 0.6 MeV/u) the Bethe–Bloch formula, with a few empiri-
cally determined parameters, describes the energy loss accurately. For non-
relativistic projectile energies, the electronic stopping power (that is, the con-
tribution due to inelastic collisions between projectile and atomic electrons) is
given by (Knoll 1989)

−dE
dx

≈ 4πe4

me

Z2
p

v2

(
NAρ

Zt

Mt

)
ln
(

2mev2

I

)
(4.9)

where Zp, v, Zt, and Mt are the charge and velocity of the projectile, the atomic
number and the relative atomic mass of the absorber, respectively; me is the
electron rest mass, e the electron charge, and I represents an average excita-
tion and ionization potential of the absorber which is treated as an empirical
parameter. The equation holds if the projectile velocity is large compared to
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the electron velocities in the absorber atoms. Over a wide energy range, ex-
cluding very high energies where the logarithmic term in Eq. (4.9) dominates,
the magnitude of the stopping power decreases with increasing projectile en-
ergy as 1/v2 or 1/E. This behavior can be explained by the fact that the pro-
jectile spends a greater time in the vicinity of a given electron if its velocity
is small and, consequently, the energy transfer becomes large. The stopping
power increases with Z2

p. Hence, α-particles will experience a larger energy
loss compared to protons in the same absorber medium. The stopping power
also depends linearly on the absorber density ρ.

At very low projectile energies (E < 30 keV/u), where the projectile velocity
is smaller than the electron velocities in the absorber atoms, the Bethe–Bloch
formula is no longer applicable. This situation occurs in the slowing down
process of recoil nuclei (for example, implantation or lifetime measurements).
In this case, the projectile energy is too small to cause significant ionization
of the absorber atoms. Also, the positively charged projectile tends to pick
up electrons from the absorber. As a result, its effective charge and the stop-
ping power are reduced. For this energy range, the electronic stopping power
is usually calculated by the LSS theory (Lindhard, Scharff and Schiott 1963)
which is not as accurate as the Bethe–Bloch formula. The electronic stopping
power is given by

−dE
dx

= k
√

E (4.10)

where the constant k is a function of the masses and charges of projectile and
absorber atoms. In addition, the contribution from elastic scattering of projec-
tiles on absorber nuclei (nuclear stopping power) has to be taken into account
at low energies. The intermediate energy range (30 keV/u < E < 0.6 MeV/u)
is poorly covered by theory and a number of different formulas are in use.

The stopping power is shown schematically in Fig. 4.4. At very low ener-
gies, it is influenced by the nuclear component (dotted line) and, with increas-
ing energy, follows the

√
E behavior predicted by the LSS theory (dashed–

dotted line). A maximum occurs where the velocities of the projectile and
the atomic electrons of the absorber are comparable. For higher energies be-
yond the maximum, the stopping power is given by the Bethe–Bloch formula
(dashed line). For nonrelativistic projectile energies, the stopping power is
dominated by the 1/E dependence and decreases until v ≈ 0.96c, where a
minimum is reached. At this point, the projectiles are called minimum ionizing.
This minimum value of dE/dx is approximately constant for all particles of
the same charge Zp. Beyond this point, the stopping power increases due to
the logarithmic term in the Bethe–Bloch formula.

In practice, measured values of stopping powers are fit over a broad energy
range by expressions containing the proper low- and high-energy behaviors.
These fits may then be used for interpolations to obtain stopping powers for
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Fig. 4.4 Schematic representation of total stopping power (solid line)
and different components (dashed or dotted lines) versus particle en-
ergy. See the text.

absorbers for which no experimental information exists. Tabulated stopping
powers, including compilations of experimental values, can be found in Paul
and Schinner (2002) or Ziegler (2003). As an example, Fig. 4.5 shows stop-
ping powers in units of eV cm2/atom for hydrogen and helium projectiles in
various absorber elements versus energy.

It will become apparent later in this chapter that stopping power values en-
ter in most experimental determinations of charged-particle cross sections and
resonance strengths. Therefore, a reliable estimate of stopping power errors is
very important. Errors of stopping powers calculated by using the computer
code SRIM (Ziegler 2003) amount to a few percent at higher energies where the
Bethe–Bloch formula is applicable. However, at lower energies, which are im-
portant for direct nuclear astrophysics measurements, the errors are typically
larger. The uncertainties of calculated stopping powers for a given projectile-
absorber combination can be estimated from the average deviation between
calculated and measured values and from the scatter in the measured data. Ta-
ble 4.2 provides some useful information. It lists stopping power uncertainties
for several projectiles and absorbers. The errors are estimated by considering
tabulated stopping powers, obtained with the code SRIM, together with all
measured data in a projectile energy range that is of primary importance for
direct measurements in nuclear astrophysics. The results are given in terms
of the quantities ∆ and σ (both given in percent), which are defined in Paul
and Schinner (2005). In brief, ∆ represents the systematic difference between
tabulated and experimental stopping powers, while σ is the random error that
provides information regarding the experimental scatter. It can be seen that
in most cases ∆ is close to zero and thus the SRIM tabulation is quite reliable.
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Fig. 4.5 Stopping power (in units of 10−15 eV cm2/atom) of hydrogen
(top) and helium (bottom) projectiles versus particle energy in various
absorber elements. Both the projectile energy and the stopping power
are given in the laboratory system. The curves are calculated by using
the computer code SRIM (Ziegler 2003).

Only in the case of heavy projectiles incident on H2 gas is there indeed a sys-
tematic deviation, amounting to ∆ ≈ −3%. The experimental scatter is seen
to depend on the physical state of the absorber. For protons and α-particles
incident on gaseous absorbers one finds values of σ ≈ 3 − 4%, while for solid
absorbers the experimental scatter amounts to σ ≈ 5 − 8%. Similar values
are obtained for heavy projectiles incident on H2 gas. Obviously, the stopping
power errors are expected to be larger for projectile-absorber combinations for
which no data exist.

Figure 4.6b shows schematically a beam of projectiles with energy E0 inci-
dent on an infinitely thick absorber, that is, the projectiles are stopped in the
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Tab. 4.2 Errors of stopping powers. The quantity ∆ represents the systematic difference be-
tween tabulated and experimental values, while σ is the random error that provides information
regarding the experimental scatter (Paul and Schinner 2005). Tabulated and measured stop-
ping power values are considered here only for the indicated projectile energy ranges that are
appropriate for direct nuclear astrophysics measurements. Courtesy of Helmut Paul.

Projectile Energy Absorber Number ∆ σ
(MeV/u) of points (%) (%)

Protons 0.01–1.0 Al, B, Be, C, Ca, Co, Cr, Fe, 2518 0.7 8.0
Li, Mg, Mn, Ni, Se, Si, Ti, V

Protons 0.01–1.0 Ar, Cl2, N2, Ne, O2 504 0.1 3.9
α-particles 0.1–1.0 Al, B, Be, C, Ca, Co, Cr, Fe, 975 0.7 4.7

Li, Mg, Mn, Ni, Si, Ti, V
α-particles 0.1–1.0 Ar, Cl2, N2, Ne, O2 428 −0.1 3.2
Ar, B, C, Cl, Li, Mg, 0.2–20 H2 gas 136 −3.0 8.4
N, Na, Ne, S

medium. Part (a) displays the stopping power versus energy. As the charged
projectiles slow down in matter, their stopping power increases, that is, more
energy is deposited per path length for an increasing length of the track. This
may also be seen in a plot of dE/dx versus distance (part c). Near the end of
the track (at energy E1) the charge of the projectile is reduced due to electron
pickup and the curves fall off. The maximum, called the Bragg peak, indicates
that projectiles lose the largest part of their energy toward the end of their
path. Part (d) shows the intensity of the projectiles in the absorber versus dis-
tance. For the largest distance over the projectile path, the intensity is constant.
In other words, the projectiles slow down but their number does not change.
Toward the end of the path, the intensity does not drop immediately to zero,
but slopes down over a certain path length. This phenomenon is known as
range straggling. It is caused by the statistical nature of the slowing down pro-
cess, since two projectiles of the same mass and energy will, in general, not
penetrate the absorber to exactly the same distance. The distance at which the
projectile intensity falls by 50% is called the mean range.

The mean path length traveled by projectiles of incident energy E0 can be
calculated from

R =
∫ E0

0

dE
(dE/dx)

(4.11)

Note that the value thus obtained will differ in general from the straight-line
penetration distance because each projectile is deflected slightly in each of
the many collisions with absorber atoms. Figure 4.7 shows ranges versus in-
cident energy for light ions in a silicon absorber. For example, if a silicon
counter is used for measuring the total energy of incident charged particles
(Sections 4.4.2 and 4.5.1), then its active thickness must be larger than the par-
ticle range.
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Fig. 4.6 Schematic representation of a
beam of projectiles with energy E0 incident
on an infinitely thick absorber (part b). (a)
Stopping power versus projectile energy.
(c) Stopping power versus distance. (d) In-
tensity of projectiles in absorber versus
distance; the mean range corresponds to
the distance at which the projectile intensity

falls to 50% of its initial value. The projec-
tiles lose the largest part of their energy
toward the end of the path. The maximum
in parts (a) and (c), corresponding to an en-
ergy E1, is called the Bragg peak. Note that
in general the mean range is not equal to
the straight-line penetration distance; see
the text.

The stopping power is also useful in cases where the projectiles lose only
a fraction of their energy in an absorber. The thickness d of the absorber (in
units of length) is related to the total energy loss of projectiles with incident
energy E0 by

d =
∫ E0

E0−∆E

dE
(dE/dx)

(4.12)

For a very thin absorber (target or detector), the energy lost by the projectile
is relatively small and the stopping power is approximately constant over the
absorber thickness. We obtain in this case

d =
1

(dE/dx)E0

∫ E0

E0−∆E
dE =

∆E
(dE/dx)E0

(4.13)

or

∆E =
(

dE
dx

)

E0

d =
(

1
N

dE
dx

)

E0

Nd =
(

1
ρ

dE
dx

)

E0

ρd (4.14)
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Fig. 4.7 Range in silicon versus incident laboratory energy of light
ions. Reprinted from D. J. Skyrme, Nucl. Instrum. Methods, Vol. 57,
p. 61 (1967). Copyright (1967), with permission from Elsevier.

where N denotes the number density of atoms and Nd is the number of atoms
per square centimeter.

Compounds

We have discussed so far stopping powers for pure elements. For compounds,
approximate stopping powers may be obtained by a weighted average over
the individual stopping powers according to the fraction of electrons belong-
ing to each element. This approximation is called Bragg’s rule. For a compound
XaYb consisting of two elements X and Y, where a and b are the number of
atoms per molecule of element X and Y, respectively, one obtains for the stop-
ping power per molecule

1
Nc

(
dE
dx

)

c
= a

1
NX

(
dE
dx

)

X
+ b

1
NY

(
dE
dx

)

Y
(4.15)

where Nc is the number density of molecules and (1/Ni)(dE/dx)i is in units,
for example, of eV cm2 per atom (for pure elements) or per molecule (for the
compound). Equivalently, we find with Eq. (4.4)

1
ρc

(
dE
dx

)

c
=

aMX

Mc

1
ρX

(
dE
dx

)

X
+

bMY

Mc

1
ρY

(
dE
dx

)

Y
(4.16)

where (1/ρi)(dE/dx)i is in units, for example, of eV cm2/g, with Mc =
aMX + bMY . Caution should be exercised when using Bragg’s rule since for
certain compounds experimental stopping powers differ by as much as 10–
20% from those calculated with Eqs. (4.15) and (4.16) (Knoll 1989).
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For projectiles of incident energy E0, the energy loss in a thin absorber con-
sisting of a compound XaYb is obtained from Eqs. (4.14) and (4.15) as

∆Ec =
1

Nc

(
dE
dx

)

c,E0

Ncd = a
1

NX

(
dE
dx

)

X
Ncd + b

1
NY

(
dE
dx

)

Y
Ncd

=
1

NX

(
dE
dx

)

X
NXd +

1
NY

(
dE
dx

)

Y
NYd (4.17)

where NX = aNc and NY = bNc.

Example 4.1

Calculate the energy loss of a 500 keV proton beam moving through a 1 µm
thick layer of ice. The stopping powers at E0 = 500 keV, calculated with the
computer code SRIM (Ziegler 2003), amount to (1/NH)(dE/dx)H = 1.8 ×
10−15 eV cm2 and (1/NO)(dE/dx)O = 8.1 × 10−15 eV cm2. Assume that the
stopping powers are approximately constant over the thickness of the ab-
sorber. All of the above quantities are given in the laboratory system.

The density of ice (H2O) is about 1 g/cm3, corresponding to 3.3 × 1022

H2O molecules/cm3 (since 18 g contain 6.022 × 1023 H2O molecules). Equa-
tion (4.17) gives

∆E = a
1

NH

(
dE
dx

)

H
NH2Od + b

1
NO

(
dE
dx

)

O
NH2Od

= 2(1.8 × 10−15 eV cm2)(3.3 × 1022 cm−3)(10−4 cm)

+ 1(8.1 × 10−15 eV cm2)(3.3 × 1022 cm−3)(10−4 cm) = 39 keV

The same result is obtained from the number densities of H and O atoms, NH
= 2 · NH2O = 6.6 × 1022 cm−3 and NO = 1 · NH2O = 3.3 × 1022 cm−3. Hence

∆E =
1

NH

(
dE
dx

)

H
NHd +

1
NO

(
dE
dx

)

O
NOd

= (1.8 × 10−15 eV cm2)(6.6 × 1022 cm−3)(10−4 cm)

+ (8.1 × 10−15 eV cm2)(3.3 × 1022 cm−3)(10−4 cm) = 39 keV

Energy straggling

So far, we considered the mean energy loss of a projectile passing through
an absorber. Suppose that the projectiles are represented by an initially mo-
noenergetic beam. When a projectile penetrates into the absorber, it will un-
dergo a large number of independent interactions, causing the projectile to
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slow down. Statistical fluctuations in the number of collisions and in the en-
ergy transferred per collision give rise to an energy distribution of the beam,
centered around a value of E0 − ∆E, that is, the incident energy minus the
mean energy loss.

The maximum energy that a nonrelativistic heavy charged particle of mass
m and kinetic energy E can transfer to a free atomic electron with mass me in
a single collision is of the order (Problem 4.2)

4E[mem/(me + m)2] ≈ 4E(me/m) ≈ 4E/(2000 M) = 2 × 10−3E/M (4.18)

with M in units of u. For example, a 10 MeV proton losing a total en-
ergy of 1 MeV in an absorber can transfer a maximum energy of 20 keV to
a single electron and undergoes at least, and very likely many more than,
(1 MeV)/(20 keV) = 50 collisions. If the number of collisions is large, the en-
ergy distribution function will approach a Gaussian shape (Leo 1987). If the
number of collisions is not very large, the energy distribution function of pro-
jectiles passing through an absorber of a certain thickness will be skewed. A
schematic representation of energy distribution functions f (E, x) as the pro-
jectiles move through the absorber is shown in Fig. 4.8, where x denotes the
path length of the projectiles. A beam of projectiles with a small initial energy
spread shows a broad and skewed distribution early on in the slowing down
process. For increasing path length, corresponding to an increasing number
of collisions between each projectile and the atomic electrons of the absorber,
the energy spread increases, but the skewness weakens so that the energy dis-
tribution function resembles a Gaussian shape after a certain path length. Fur-
ther energy loss close to the end of the projectile range results in a decreasing
energy spread until all projectiles come eventually to rest in the absorber.

A useful approximation for the width of the Gaussian energy distribution
function was derived by Bohr, assuming that the number of collisions between
a nonrelativistic projectile and the absorber electrons is very large and that, at
the same time, the mean energy loss is small compared to the initial projectile
energy (that is, for relatively thin absorbers). The full width at half maximum
(FWHM) of the energy distribution function is then given by (Bohr 1915)

FWHM = 2
√

2 ln 2
√

4πe4Z2
pZtNd = 1.20 × 10−12

√
Z2

pZtNd (MeV)

(4.19)

where in the numerical expression N and d are in units of atoms/cm3 and cm,
respectively.
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Fig. 4.8 Schematic representation of energy distribution functions
f (E, x) for a beam of charged particles with a small initial energy
spread as they move through an absorber along a path of length x;
E is the particle energy. From G. F. Knoll, Radiation Detection and
Measurement, 2nd edn., John Wiley & Sons (1989). Reprinted with
permission. Copyright ©1989 John Wiley & Sons, Inc.

4.2.2
Interactions of Photons

Photons interact with matter through processes that are fundamentally differ-
ent from those involving charged particles. The main interactions of γ-rays in
matter are: (i) the photoelectric effect, (ii) Compton scattering, and (iii) pair
production. All of these processes may transfer either the entire energy or a
substantial fraction of the photon energy to an electron of an absorber atom
in a single interaction. Therefore, the photon either disappears or is signif-
icantly deflected from its original direction of motion. These considerations
have two important consequences. First, γ-rays are far more penetrating in
matter compared to charged particles. Second, a beam of photons passing
through matter is reduced in intensity depending on the absorber thickness.
However, the photons that pass straight through the absorber did not undergo
any interactions and hence possess their original energy.

The energetic electron, leaving the atom after the interaction, slows down
in the absorber and thereby creates more charge carriers (electron–ion or
electron–hole pairs). Gamma-ray detectors take advantage of these charge
pairs in order to determine, for example, the total energy deposited by the
incident photon in the absorber. Interaction processes involving photons are
discussed in more detail below.



4.2 Interaction of Radiation with Matter 237

Photoelectric effect

In the photoelectric effect, a photon transfers its entire energy to a single elec-
tron of an absorber atom and hence it disappears. The electron, called photo-
electron, is ejected from the atom with an energy of

Ee = Eγ − Eb (4.20)

where Eγ and Eb are the incident photon energy and the binding energy of
the photoelectron, respectively. A free electron cannot absorb a photon and
at the same time conserve linear momentum. Hence, the photoelectric effect
always involves bound electrons, with the whole atom absorbing the recoil
momentum. For photon energies above 100 keV the photoelectron most likely
originates from the K shell (the most tightly bound shell) of the atom.

The photoelectric effect transforms a neutral atom into an electron–ion pair.
The vacancy in the ion is quickly filled through the capture of a free electron
originating from other absorber atoms or by the rearrangement of electrons
from other shells in the ion. During these secondary processes, characteristic
X-ray photons or Auger electrons may be generated. In most cases, the X-rays
undergo further photoelectric absorption near the primary photon–electron
interaction site and thus their energy is retained in the absorber (Knoll 1989).

The photoelectric effect is difficult to treat theoretically. A useful approxi-
mation for the probability per absorber atom of photoelectric absorption for
photon energies above 100 keV is given by (Evans 1955, Knoll 1989)

pphoto ∼ Zn

E7/2
γ

(4.21)

where Z is the atomic number of the absorber and n varies between 4 and 5
over the γ-ray energy region between 0.1 and 5 MeV. As will be seen later,
the photoelectric effect is the predominant interaction process for photons of
relatively low energy. The strong Z-dependence in Eq. (4.21) is the reason for
the fact that high-Z materials, such as lead, are used for the shielding against
background γ-rays. For the same reason, high-Z materials are preferred as the
active volume of γ-ray detectors.

A graph of the photoelectric absorption probability (in units of cm2/g; see
later) for lead is shown in Fig. 4.9. For decreasing photon energies, the prob-
ability increases while the photon energy approaches the electron binding en-
ergy of the most tightly bound shell (the K shell) in the absorber atom. For
slightly smaller photon energies, the probability drops drastically since the K
electrons are no longer available for the photoelectric effect. This rapid de-
crease is called the K absorption edge. For even smaller photon energies, the
probability increases again while the next shell (the L shell) is approached.
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Fig. 4.9 Mass attenuation coefficient of lead versus γ-ray energy. The
solid line corresponds to the total mass attenuation coefficient while
the dashed lines show the individual components for Compton effect,
photoelectric effect, and pair production. Data from Boone and Chavez
(1996).

Compton effect

The scattering of a photon by a free electron is referred to as the Compton
effect. Although the absorber electrons are bound to atoms, they can be con-
sidered to be nearly free if the γ-ray energy is large compared to the electron
binding energy. The process is shown schematically in Fig. 4.10a. The electron
is assumed to be initially at rest. A photon of incident energy Eγ transfers a
fraction of its energy to the electron and is deflected by an angle θ with respect
to its original direction, while the recoil electron emerges from the scattering
center under an angle φ. All scattering angles are possible and, therefore, the
transferred energy varies from zero to a large fraction of the incident photon
energy.

The energies of the scattered photon and recoil electron can be obtained
by solving simultaneously the equations for the conservation of energy and
linear momentum. One finds (Leo 1987)

E′
γ =

Eγ

1 + Eγ

mec2 (1 − cos θ)
(4.22)

Ke = Eγ − E′
γ = Eγ

Eγ

mec2 (1 − cos θ)

1 + Eγ

mec2 (1 − cos θ)
(4.23)

where mec2 = 511 keV is the electron rest energy. For the special case of a pho-
ton scattering angle of θ = 0◦ the recoil electron energy is zero and, therefore,



4.2 Interaction of Radiation with Matter 239

the scattered photon loses no energy. The maximum energy transfer occurs
at θ = 180◦, where the energies of the recoil electron and scattered photon are
given by

Kmax
e = Eγ

2 Eγ

mec2

1 + 2 Eγ

mec2

(4.24)

(E′
γ)min =

Eγ

1 + 2 Eγ

mec2

(4.25)

The cross section for Compton scattering is given by the Klein–Nishina for-
mula (see, for example, Leo 1987). A polar plot of the angular distribution
of scattered photons is shown in Fig. 4.11a for different energies of incident
photons that approach the scattering center from the left. It can be seen that
the distribution is symmetric around θ = 90◦ for small photon energies (Eγ

< 1 keV), whereas scattering into the forward direction is strongly preferred
for large γ-ray energies. The Klein–Nishina formula also predicts the energy
distribution of recoil electrons. The result is shown in Fig. 4.11b for incident
photons with energies of Eγ = 0.5, 1.0, and 1.5 MeV. Each curve displays a max-
imum recoil electron energy Kmax

e , called the Compton edge, corresponding to a
photon scattering angle of θ = 180◦. These recoil electrons are usually stopped
in the absorber and, therefore, the graphs also represent the distribution of en-
ergy deposited by the incident photons in the absorber (for example, a γ-ray
detector). For Eγ 	 mec2, the energy difference between incident photon and
maximum recoil electron energy amounts to Eγ − Kmax

e ≈ mec2/2 = 256 keV.
It has been assumed so far that the Compton scattering process involves an
electron that is initially free. A proper consideration of the electron binding
energy prior to scattering results in a rounding-off of the sharp Compton edge
displayed in Fig. 4.11b.

The probability per absorber atom of Compton scattering increases with the
number of electrons available as scattering targets and is approximately given
by

pCompton ∼ Z
Eγ

(4.26)

This probability (in units of cm2/g) is shown for lead in Fig. 4.9. The Compton
scattering probability varies moderately with incident photon energy. At an
energy of Eγ ≈ 500 keV (for lead) it becomes comparable to the photoelectric
absorption probability and dominates over the latter at higher energies.

Pair production

The process involving the transformation of a photon into an electron–
positron pair is referred to as pair production, and is shown schematically
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Fig. 4.10 Representations of the (a) Compton effect, and (b) pair pro-
duction. Note that in part (b) neither the electron nor the positron ex-
isted before the interaction. The atom is a spectator only and facilitates
the simultaneous conservation of energy and linear momentum.

in Fig. 4.10b. The photon must have at least an energy of twice the electron
rest energy (2 · 511 keV = 1022 keV) for this process to occur. Also, pair pro-
duction must involve a third body (usually the nucleus of an absorber atom).
Otherwise total energy and linear momentum are not simultaneously con-
served. The fraction Eγ − 2mec2 of the incident photon energy is transferred
to the kinetic energies of the electron and positron, that is,

Eγ = (Ke− + mec2) + (Ke+ + mec2) (4.27)

Both of these particles slow down in the absorber. The positron will subse-
quently annihilate with another electron. Thus, two annihilation photons of
511 keV energy, emitted into opposite directions, are produced as a byproduct
of the interaction.

Theoretical expressions for the probability of the pair production process
are rather complicated (Leo 1987). The probability is approximately propor-
tional to Z(Z + 1) and rises with increasing incident photon energy. The pair
production probability (in units of cm2/g) for lead is shown in Fig. 4.9. It
can be seen that pair production dominates over photoelectric absorption and
Compton scattering above an energy of Eγ ≈ 5 MeV.

Photon attenuation

So far, we considered individual photon interaction processes. We will now
discuss the combined effect of multiple interactions for monoenergetic inci-
dent photons. Consider Fig. 4.12 showing the interaction processes discussed
in the previous sections for photons incident on an absorber. Cases (a), (b), and
(d) correspond to photons which undergo photoelectric absorption, Compton
scattering, and pair production, respectively. More complicated interaction
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Fig. 4.11 (a) Polar plot of the angular dis-
tribution of Compton-scattered photons for
different incident energies. The incident
photons approach the scattering center from
the left. (b) Schematic graph of the energy
distribution of recoil electrons after Compton
scattering (solid lines). The dashed lines

indicate the energies of the corresponding
incident, monoenergetic photons (Eγ = 0.5,
1.0, and 1.5 MeV). The maxima of the distri-
butions are referred to as Compton edges.
They correspond to a photon scattering an-
gle of θ = 180◦.

sequences are possible. For example, the Compton scattered photon in case
(b) may in turn undergo photoelectric absorption, producing an X-ray pho-
ton which leaves the absorber (case e). Clearly, a complete description of all
possible interactions involving the directions and energy distributions of scat-
tered photons and electrons is rather complicated and can only be achieved
by a Monte Carlo calculation. However, the most important information fre-
quently of interest is the fraction of monoenergetic photons that traverse the
absorber without any interaction (case c). As already noted, these photons



242 4 Nuclear Physics Experiments

possess their original energy and direction. The fraction of attenuated photons
refers to those γ-rays that are either absorbed or scattered in the absorber.

Each process is characterized by the probability for the occurrence of the
interaction, or equivalently, by the probability per unit path length in the ab-
sorber that a photon is removed from the incident beam by an interaction. This
probability is called linear absorption coefficient. The total linear absorption co-
efficient µ is given by the sum of the partial absorption coefficients involving
the different photon processes. Thus

µ = µphoto + µCompton + µpair (4.28)

If a beam of monoenergetic photons is incident perpendicular to the surface
of an absorber, the fractional intensity loss, dI/I, in traversing a thickness dx
is

dI
I

= −µ dx (4.29)

Hence, we obtain for the ratio of the number of transmitted and incident pho-
tons

I
I0

= e−µx (4.30)

where µ has dimensions of inverse length. The absorption coefficient is re-
lated to the mean free path λ, defined as the average distance traversed in the
absorber before an interaction takes place, by

λ =

∫ ∞
0 xe−µx dx
∫ ∞

0 e−µx dx
=

1
µ

(4.31)

Values of λ typically amount to ≈ 10−3–10−1 m in solid absorbers for common
γ-ray energies.

The probability for any photon interaction to occur depends on the ab-
sorber density, for example, whether the absorber is present in solid, liquid, or
gaseous form. The density dependence is removed by introducing the quan-
tity µ/ρ, called mass attenuation coefficient, which is widely used in the litera-
ture. Equation (4.30) can be written as

I
I0

= e−(µ/ρ)ρx (4.32)

where µ/ρ is in units, for example, of cm2/g. The product ρx is called mass
thickness and is in units of mass per area.

If the absorber consists of a compound XaYb, the mass attenuation co-
efficient can be calculated from an expression similar to Bragg’s rule (see
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Fig. 4.12 Possible interactions of monoenergetic photons incident on
an absorber. See discussion in the text.

Eq. (4.16)) by replacing the mass stopping power by the mass attenuation co-
efficient,
(

µ

ρ

)

c
=

aMX

Mc

(
µ

ρ

)

X
+

bMY

Mc

(
µ

ρ

)

Y
(4.33)

where Mc = aMX + bMY. Total mass attenuation coefficients for two common
γ-ray shielding materials (Fe and Ta) and two common γ-ray detector crystal
materials (NaI and Ge) are displayed in Fig. 4.13.

Certain geometrical considerations require careful consideration when us-
ing photon attenuation coefficients. Figure 4.14a shows γ-rays that are emit-
ted from a point source and traverse an absorber. It can be seen that the γ-rays
traverse the absorber at different angles. Therefore, the average path length
through the absorber, rather than the absorber thickness, must be estimated
and used in the calculation of the γ-ray attenuation. Figure 4.14b shows a
typical detector arrangement. Gamma rays from a point source are detected
in the active volume of a detector. With the knowledge of the crystal size, the
distance between source and crystal, and the number of photons emitted from
the source, the total number of photons detected in the crystal can be calcu-
lated by using the attenuation coefficient. However, massive absorbers such
as lead are frequently used in order to shield the detector from unwanted γ-
ray background. Consequently, the detector may respond not only to γ-rays
coming directly from the source, but also to those reaching the detector after
scattering in the shielding material, or to other types of secondary radiations
induced by the source γ-rays in the shielding material. Thus, the number of
photons counted in the detector will be larger compared to a setup without the
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Fig. 4.13 Total mass attenuation coefficients for the common γ-ray
shielding materials Fe and Ta (top) and the common γ-ray detector
crystal materials NaI and Ge (bottom). Data from Boone and Chavez
(1996).

shielding material. This effect has to be taken into account when estimating
detector efficiencies (Section 4.5.2).

4.2.3
Interactions of Neutrons

Neutrons carry no charge and, therefore, cannot interact in matter via the
Coulomb force. Instead, neutrons interact with absorber nuclei via the strong
force. The range of this force is short and an interaction can only occur if the
neutron comes within ≈ 10−15 m of a nucleus. As a result, neutron interac-
tions are relatively rare and thus they can penetrate absorbers of many cm
thickness without interaction. A neutron may interact with a nucleus via a
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Fig. 4.14 (a) Photons emitted by a point source traversing an ab-
sorber at different angles. (b) Photons reaching the detector after
scattering in nearby shielding material.

number of different processes including: (i) elastic scattering (n,n), (ii) inelas-
tic scattering (n,n’), (iii) radiative capture (n,γ), and (iv) reactions that produce
charged particles such as (n,p) or (n,α). The relative importance of the various
interaction types depends strongly on the neutron energy. In the following,
neutrons with energies above and below ≈ 0.5 eV will be designated as fast
neutrons and slow neutrons, respectively (Knoll 1989).

Slow neutrons that are incident on an absorber may undergo elastic scatter-
ing. After many collisions have occurred, the neutrons are in thermal equilib-
rium with the absorber material before other types of interactions take place.
These neutrons are referred to as thermal neutrons, corresponding to an aver-
age energy of kT = 0.025 eV at room temperature (Section 3.1.1). For many
absorber materials, radiative capture is the most likely neutron-induced reac-
tion which has important implications for neutron shielding considerations.
The majority of slow neutron detectors, on the other hand, are based on the
detection of secondary charged particles that are emitted in reactions of type
(n,p), (n,α), and so on.

The cross section for the majority of neutron-induced reactions decreases
rapidly with increasing neutron energy. Therefore, elastic scattering becomes
the most likely process for fast neutrons. In this case, the neutron can transfer
in each interaction a significant amount of energy to the recoil nucleus. As
a result of many collisions, the incident neutron slows down. This process
is referred to as moderation. Hydrogen is the most efficient moderator since,
according to scattering kinematics (Appendix C), the neutron can lose all its
energy in a single collision. Most fast neutron detectors rely on the detection
of the (charged) recoil nuclei. For sufficiently high neutron energies, inelastic
scattering may also occur. In this case, the recoil nucleus is left in an excited
state and de-excites quickly via emission of secondary γ-rays. Inelastic scat-
tering is an important process for the shielding of high-energy neutrons.
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The total cross section for the interaction of neutrons with matter is given
by the sum of cross sections for the individual interactions,

σT = σ(n,n) + σ(n,n′) + σ(n,γ) + σ(n,p) + σ(n,α) + · · · (4.34)

Cross sections versus neutron energy for some reactions of interest to neutron
detection are shown in Fig. 4.15a. Below a neutron energy of En ≈ 100 keV,
the cross sections follow the 1/v law (see Eq. (2.207)). Total cross sections for
common neutron shielding materials are displayed in Fig. 4.15b.

The product of the total cross section and the number density of atoms in
the absorber, NσT , has dimensions of inverse length. This quantity represents
the probability per path length in the absorber medium that any type of inter-
action will occur, or equivalently, that a neutron is removed by an interaction
from the incident beam. It has the same physical meaning for neutrons as the
linear absorption coefficient has for photons (Section 4.2.2). In analogy to pho-
tons, a beam of monoenergetic neutrons incident perpendicular to the surface
of an absorber of thickness x will be attenuated exponentially. The transmis-
sion T (which is not related to the transmission coefficient T̂ of Chapter 2) is
given by

T =
I
I0

= e−NσTx (4.35)

where I and I0 are the measured intensities with and without absorber, re-
spectively, between incident neutron beam and detector. The neutron mean
free path is accordingly (see Eq. (4.31)

λ =
1

NσT
(4.36)

Values of λ in solid absorbers typically amount to ≈ cm and ≈ 10 cm for
slow and fast neutrons, respectively. As was the case for γ-rays, the exponen-
tial attenuation (see Eq. (4.35)) only applies to a collimated beam of neutrons.
For situations in which neutrons can reach a detector after scattering in the
material surrounding the active volume, corrections are necessary in order to
predict the true number of transmitted neutrons.

If the incident neutrons are not monoenergetic, but are represented by a
distribution where f (E) is the fraction of incident neutrons having energies
between E and E + dE per unit energy interval with

∫
f (E) dE = 1, then the

transmission is given by

T =
∫ ∞

0
f (E)e−nσT(E) dE (4.37)

where n = Nx is the number of sample (or absorber) nuclei per unit area. If
σT(E) = const over the neutron distribution, then we obtain again Eq. (4.35).
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If, on the other hand, σT(E) 
= const and the sample is very thin (nσT � 1),
then one obtains from an expansion of the integrand in Eq. (4.37)

T ≈
∫ ∞

0
f (E)[1 − nσT(E)] dE = 1 − n

∫ ∞

0
f (E)σT(E) dE

≈ exp
(
−n

∫ ∞

0
f (E) σT(E) dE

)
= e−nσT (4.38)

where we defined an average total cross section by σT ≡ ∫ f (E)σT(E) dE.
If the absorber consists of a compound, the transmission is given by the

product of the transmissions for hypothetical absorbers made of the individ-
ual elements alone, each containing the same number of nuclei per area as
are present in the compound. The same procedure applies for pure elements
containing more than one isotope.

Example 4.2

Calculate the attenuation of thermal neutrons (En = 0.025 eV) in a 10BF3 gas
region of 30 cm length. The gas pressure and temperature are P = 600 torr
and T = 20 ◦C, respectively. Assume that the only process absorbing neutrons
from the incident beam is the 10B(n,α)7Li reaction, which has a cross section of
3840 b for thermal neutrons.

The number of 10B atoms per cubic centimeter is calculated from Eq. (4.5),

N = 1 · (2.68677 × 1019 cm−3) ·
(

600 torr
760 torr

)(
273 K
293 K

)
= 1.98 × 1019 cm−3

It follows

I
I0

= e−(1.98×1019 cm−3)(3840×10−24 cm2)(30 cm) = 0.10

Thus, about 90% of the incident neutrons are absorbed in the gas by the (n,α)
reaction, while 10% traverse the absorber without undergoing an interaction.

4.3
Targets and Related Equipment

In the laboratory, a nuclear reaction is initiated by a beam bombarding a suit-
able target and the nuclear reaction takes place at the target position. Tar-
gets and associated equipment (target holders, chambers, and backings) have
to be prepared and designed carefully for nuclear astrophysics experiments.
Solid targets or backings can either be sufficiently thin for an ion beam to
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Fig. 4.15 (a) Cross section versus neutron
energy for reactions of interest to neutron
detection. Below a neutron energy of En
≈ 100 keV, the cross sections follow the
1/v law (Eq. 2.207). From G. F. Knoll, Ra-
diation Detection and Measurement, 2nd
edn., John Wiley & Sons (1989). Reprinted
with permission. Copyright ©1989 John

Wiley & Sons, Inc. (b) Total cross section
versus neutron energy for common neu-
tron shielding materials. Reprinted from
W. R. Leo, Techniques for Nuclear and Par-
ticle Physics Experiments, Springer-Verlag
(1987). Copyright (1987), with kind per-
mission of Springer Science and Business
Media.

pass through, or can be relatively thick and stop the ion beam. These targets
are referred to as transmission and beamstop targets, respectively. Targets in
gaseous form are also being used. In order to avoid confusion, we will be us-
ing the term sample instead of target for neutron-induced reaction studies. The
type of target or sample to be used in an experiment depends on the nuclear
reaction and the observable to be measured. In the following, issues related to
targets or samples for nuclear astrophysics experiments will be discussed in
more detail.
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4.3.1
Backings

The vast majority of targets that are used for charged-particle reaction studies
are prepared by depositing the target material on some sort of backing. Ex-
ceptions are self-supporting targets and gas targets. There are several require-
ments for the backing material: (i) the target material should adhere uniformly
to the backing, (ii) the backing should not cause unwanted background radi-
ation if exposed to the ion beam, and (iii) for beamstop targets, the backing
must provide efficient cooling to prevent target degradation.

Common materials used for beamstop target backings are tantalum, nickel,
and copper. They have a high atomic number and thus do not initiate nu-
clear reactions at low bombarding energies. Their melting points are high
and hence they are stable under intense ion bombardment. Before the depo-
sition of the target material, the backing has to be cleaned to reduce surface
contaminations. Common procedures are the etching of backings by a suit-
able mixture of acids to remove part of the surface (Vermilyea 1953), and the
subsequent resistive heating to temperatures above ≈ 1200 ◦C to drive out
remaining contaminants. Backings for beamstop targets are typically ≈ 0.5–
2 mm thick. These are especially convenient for the study of capture reactions
since they attenuate the capture γ-rays very little. For example, a 0.5 mm
thick tantalum sheet has a 90% and 96% transmission for 0.5 MeV and 5 MeV
γ-rays, respectively (Problem 4.3). This circumstance simplifies the setup con-
siderably, since the γ-ray detector can be placed outside the vacuum chamber
in very close geometry to the target, thus optimizing the counting efficiency.

Beamstop target backings produce a large number of Coulomb-scattered
ions and, therefore, are not suitable for measurements of elastic scattering
cross sections. Furthermore, at bombarding energies in excess of several MeV,
nuclear reactions induced by contaminants in the backing become significant.
In such instances, the use of transmission targets can be of advantage. How-
ever, these targets are difficult to cool and, therefore, they have to be suf-
ficiently thin so that the heat deposited by the ion beam does not damage
either the target or the backing. On the other hand, the backing has to be
thick enough to allow for the deposition of the target material without dam-
age. Frequently used backings for transmission targets are carbon foils of ≈
5–40 µg/cm2 thickness, mounted on suitable metal frames.

In certain instances the backing may be eliminated altogether. Examples
are gas targets or self-supporting transmission targets. However, these can
only be prepared for a restricted number of target elements. In the latter case,
they are also easily destroyed in experiments at low energies involving high
intensity ion beams since they cannot be cooled efficiently.

For studies of neutron-induced reactions, requirements on sample backings
are not as stringent since neutrons are far more penetrating than charged par-
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ticles (Section 4.2.3) and the number of incident neutrons is much smaller
compared to typical charged-particle beam currents. A variety of materials
is used to support or contain the sample material, including carbon foils, thin-
walled aluminum or stainless steel cans, adhesive tape, and pressurized stain-
less steel spheres for noble gas samples. The material of the backing or the
containment vessel should not contribute significantly to the background and
should be sufficiently thin to minimize neutron attenuation, scattering, and
absorption of the reaction products. Also, self-supporting samples are more
common in neutron work compared to charged-particle measurements.

4.3.2
Target Preparation

The yield of a nuclear reaction induced by charged particles is obtained by
integrating the ratio of cross section and stopping power over the thickness
of the target, as will be shown in Section 4.8. In most cases the ion beam is
not completely stopped, but loses only a fraction of its energy (typically <
10%) moving through the target. Such targets are relatively thin and, as a
consequence, the nuclear reaction of interest takes place in a localized region
within the target with a rather well-defined interaction energy.

In neutron-induced reaction studies, on the other hand, each depth in a thin
sample is exposed to the same neutron energy distribution. In general, sam-
ples can be made thicker (see below) to increase count rates. Requirements for
the preparation of samples for neutron irradiation are less restrictive, resulting
in a larger variety of sample materials in use, including metal foils, powders,
compressed tablets and pellets, and implanted samples. If the sample reacts
with air, then it may be sealed in a tight thin-walled can.

Evaporated and sputtered targets

Solid targets are frequently prepared by evaporating or sputtering a thin layer
of material containing the target nuclei in vacuum onto suitable backings
(Holland 1956, Maxman 1967). Target preparation by evaporation or sput-
tering is an extensive subject and different researchers have different recipes.
An 27Al target, for example, is easily prepared by evaporating a thin layer of
Al metal onto a backing. Aluminum targets are rather stable under ion bom-
bardment and, furthermore, contain only a single isotope (27Al). The prepa-
ration of suitable 23Na targets, on the other hand, is more complicated. In
this case compounds, such as NaCl, NaBr or Na2WO4, have to be used for
evaporation. All these targets degrade to a certain degree at low bombarding
energies with beam currents in excess of 100 µA. Also, the “inactive” atoms
in these compounds (that is, the atoms of elements other than the target ele-
ment of interest) will also contribute to the slowing down process of the beam.
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Thus, for the same value of target thickness (in energy units) there will be
fewer target atoms present in a chemical compound compared to a pure tar-
get. Consequently, the nuclear reaction yield will decrease. This undesirable
effect becomes more pronounced with increasing number and charge of in-
active atoms in the compound. On the other hand, the smaller the charge of
the inactive atoms, the larger the probability that they contribute to unwanted
beam-induced background radiation. Depending on the circumstance, a com-
promise has to be found.

Similar arguments hold for elements with more than one stable isotope. For
example, the evaporation of natural magnesium will produce a target con-
taining 24Mg (79%), 25Mg (10%), and 26Mg (11%). Even if a pure Mg target
is fabricated, the ion beam will very likely induce nuclear reactions involving
the isotopes other than the one of interest. In order to avoid these unwanted
contributions to the count rate, targets may be fabricated by using isotopically
enriched material which is commercially available. Obviously, such targets
will also produce a higher reaction yield compared to a target made from a
natural isotopic mixture. It is important to point out that when chemical com-
pounds are evaporated, one may not assume that the composition of the target
is the same as that of the original compound. A number of cross sections and
resonance strengths reported in the literature are erroneous because of this
unjustified assumption, as will be shown in Section 4.8.4.

Implanted targets

Evaporated targets are in certain situations unsuitable for nuclear reaction
studies. First, it may be that none of the targets produced by evaporating
chemical compounds are sufficiently stable under bombardment with a high-
intensity ion beam. Second, even if the targets are stable and consist of a single
element, isotopes other than that of interest may cause intolerable background
radiation. Third, certain elements cannot be evaporated at all (for example,
noble gases). These problems are frequently solved by using implanted tar-
gets. In this case, the target ions of interest are accelerated and mass separated
by using an electromagnetic isotope separator. Only ions of the isotope of
interest are directed onto a suitable backing. These target nuclei are hence im-
planted into the backing. The accelerating voltage determines the range of the
ions in the substrate and thus the effective target thickness for the subsequent
nuclear reaction study. Both implanted transmission targets and beamstop tar-
gets have been used extensively in nuclear reaction studies. In the latter case,
the backings are usually directly water cooled if high-intensity ion beams are
used during the implantation process. Implanted samples are also employed
in studies of neutron-induced reactions.

Several factors limit the number of ions that can be implanted into a sub-
strate. These include the sputtering yield, the range and mobility of the ions
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in the substrate, the number of incident ions per unit area, and the substrate
temperature. Sputtering, which releases atoms from the substrate upon ion
impact, is the dominant limiting mechanism at low substrate temperatures.
Tantalum is frequently chosen as a substrate for beamstop targets since it has
a relatively low sputtering yield (Almen and Bruce 1961), and since diffusion
velocities of various elements are small in tantalum. For transmission targets,
carbon foils with thicknesses of ≈ 10–40 µg/cm2 can be used as substrates.
During the implantation process the beam power deposited in the carbon foil
has to be limited (< 25 mW/cm2; see Smith et al. 1992) in order to avoid rup-
ture of the foil. Several procedures may be applied to extend the lifetime of
thin carbon foils during implantation (Fifield and Orr 1990, Smith et al. 1992).

Table 4.3 provides information about some implanted targets and samples
used in nuclear astrophysics studies. It lists incident ion energies and doses,
as well as the measured number of implanted ions (either as stoichiometry
for beamstop targets or in units of atoms per square centimeter for transmis-
sion targets or samples). The table also includes a few examples of implanted
radioactive targets and samples. Many targets or samples become saturated
during implantation. In other words, they reach a stage at which target atoms
are lost due to sputtering and diffusion at the same rate as they are implanted
into the substrate. On the other hand, for a number of ion species the sputter-
ing ratio (the number of released atoms per incident ion) is small for collisions
between ions and substrate atoms, and at the same time it is less than unity for
ion–ion collisions (self-sputtering). In such cases, saturation is never reached
and a pure layer of target material builds up on the substrate surface (for ex-
ample, for C, Si, and Ca implantation into tantalum; Almen and Bruce 1961).

It has also been shown that for relatively small incident ion energies, the
distribution of implanted atoms extends to the front surface of the backing
(Selin, Arnell and Almen 1967). Hence, in the nuclear reaction study there is
usually no substrate dead layer in which charged projectiles lose energy or
neutrons are attenuated before hitting the target material. Implanted targets
can also be stored for years without noticeable loss of target material (Selin,
Arnell and Almen 1967, Geist et al. 1996).

Gas targets

In certain situations it is desirable to use gaseous instead of solid targets. First,
it can be seen from the Table 4.3, that the stoichiometries achieved for im-
planted noble gas targets are unfavorable since they contain more substrate
atoms than target nuclei. Therefore, the reaction yield will be reduced com-
pared to a pure target. Second, the backing may produce intolerable beam-
induced background radiation. Third, in nuclear reaction studies that are per-
formed in inverse kinematics (by directing a heavy ion beam onto hydrogen or
helium target nuclei), it may prove impossible to prepare targets of sufficient
purity other than gaseous targets.
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Tab. 4.3 Properties of implanted targets and samples. (a) For beamstop targets, the range
of backing thicknesses was 0.1–0.5 mm; for transmission targets, 30–75 µg/cm2 carbon foils
were used; the 33S and 135Cs ions were implanted into 0.7 mm and 0.1 mm thick C disks, re-
spectively. (b) Incident dose of singly charged ions in mC/cm2; for 22Na and 33S the incident
beam current is quoted (in nA). (c) For beamstop targets the stoichiometry is given, while for
transmission targets (and for 33S) the total number of implanted target nuclei per square cen-
timeter is listed. (d) Iliadis (1996). (e) Giesen (1995). (f) Powell et al. (1999). (g) Fifield and Orr
(1990). (h) Seuthe et al. (1987). (i) Smith et al. (1992). (j) Schatz et al. (1995). (k) Schmidt et
al. (1995). (l) Patronis et al. (2004). (m) Ugalde (2005).

Target Backinga Doseb (mC/cm2) Energy (keV)
Stoichiometry
or (ions/cm2)c Ref.

12C Ta 400 110 12C3Ta2 h
14N Ta 784 120 14N3Ta2 h
19F Fe 31 37 19F1Fe8 m
20Ne C 15–40 2.2×1017 i
22Ne Ta 57 25 22Ne1Ta4 e
22Na Ni 25–80 nA 60 5.7×1015 k
22Na C 25–80 nA 60 7.6×1016 k
23Na Ni 96 50 23Na5Ni1 h
24Mg Ta 426 100 24Mg3Ta1 f
28Si Ta 190 80 28Si3Ta1 d
31P Ta 180 80 31P3Ta2 d
32S Ta 108 80 32S1Ta1 d
33S C 400 nA 300 1.6×1016 j
36S C 50 2×1017 g
35Cl Ta 180 80 35Cl1Ta6 d

C 70 60 1×1017 d
36Ar Ta 44 80 36Ar1Ta5 d
135Cs C 1.8×1015 l

Early gas target designs involved small cells containing a pure gas, with thin
entrance and exit window foils for transmitting the ion beam.These foils have
the undesirable effects of reducing the ion beam energy and of broadening
the beam spread. Furthermore, they are sources of unwanted beam-induced
background radiation. More sophisticated designs involve windowless gas
targets. The ion beam is usually stopped sufficiently far away behind the
target and detector region that the beam-induced background is kept small.
Windowless gas targets involve several stages of high pumping speed in or-
der to lower the gas pressure from typical target chamber pressures (≈ 10−2

to 10 torr) down to 10−6 torr in the beamline. Therefore, gas target designs are
very complex compared to solid targets. High pumping speeds are achieved
by using large roots blowers and turbo pumps (Rolfs and Rodney 1988). Gas
targets are either of the extended type (that is, the gas is contained in a differ-
entially pumped chamber) or are nearly point-like (for example, a gas jet of
small diameter streaming from a nozzle perpendicular to the beam direction).
They have been used in several charged-particle reaction studies that would
have been difficult to perform with solid targets (Rolfs and Rodney 1988). Us-
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ing gas jets, target thicknesses of ≈ 1019 atoms/cm2 for H, N, and Ar have
been achieved (Bittner, Kretschmer and Schuster 1979).

For neutron-capture studies, pressurized gas samples in stainless steel
spheres of 2 cm diameter and 0.5 mm wall thickness have been employed,
with sample masses amounting to a few grams (Beer 1991).

Target thickness and stability

The choice of target thickness for a particular experiment depends on the
type of experiment one wishes to perform. There is no apparent advantage
of choosing a target thickness (in energy units) that is smaller than the ion
beam resolution (≈ 1 keV). If a charged-particle reaction is measured over
an energy range containing previously observed resonances, then the target
thickness should be chosen to be smaller than the energy separation of the
resonances. Below an ion energy of 1 MeV, typical target thicknesses amount
to ≈ 5–20 keV, while at E = 1–2 MeV the density of resonances increases and
target thicknesses are usually smaller (≈ 1–5 keV). In searches for expected,
yet unobserved, resonances at low bombarding ion energies, it is frequently
of advantage to use thicker targets (≈ 20–40 keV) in order to study the en-
ergy range of interest in a reasonable amount of time. Target thicknesses are
conveniently determined by measuring yield curves of narrow, well-known
resonances in charged-particle-induced reactions, as will be explained in Sec-
tion 4.8.3. The target thickness should also be uniform if the ion beam spot
has a smaller diameter than the target.

The stability of a particular target depends not only on the ion beam inten-
sity, but also on the ion type. Targets that are stable under bombardment with
high intensity (> 100 µA) proton beams will likely degrade to some degree if
bombarded with a high intensity α-particle beam. Blistering is a particularly
troublesome effect where the beam α-particles are implanted in the target and
then move quickly to lattice defects. Eventually, high pressure gas blisters
are formed which rupture and thereby degrade the target locally (Cole and
Grime 1981). In some cases, there may be no alternative other than replacing
the target after substantial degradation.

For neutron-induced reaction studies, the physical stability of the sample is
usually of lesser concern. Samples must be thick enough in order to provide
sufficiently high count rates, but have to be thin enough to minimize the at-
tenuation and scattering of incident neutrons and the absorption of reaction
products. Sample thicknesses for neutron work are typically in the range of
≈ mg/cm2–g/cm2, which is significantly thicker than the target thicknesses
used in charged-particle reaction studies.
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4.3.3
Contaminants

Studies of nuclear reactions are frequently hampered by the presence of con-
taminants in either the target or the backing. Although the concentration of
contaminants is usually very small, their cross section for reactions induced by
the incident beam may be very large. Therefore, they may either contribute to,
or obscure altogether, the count rate of interest. If both the reaction of interest
and a given contaminant reaction proceed through narrow resonances of dif-
ferent energies, then it may be possible to adjust the beam energy so that the
contaminant resonance is not excited. Alternatively, if the reaction of interest
proceeds through a narrow resonance and the contaminant reaction proceeds
either through a broad resonance or a nonresonant process, then it is often
possible to measure the count rate just below, on top, and just above the res-
onance of interest. The difference between the on- and off-resonance spectra
can then be used to estimate the contaminant contribution. This procedure
is not applicable if both the reaction of interest and the contaminant reaction
proceed through broad resonances or nonresonant processes. In such cases
it is useful to estimate the background contributions by comparing the count
rates from different runs involving the target-plus-backing and the backing
alone (or gas in–gas out for gas targets).

For proton-induced reactions, one of the most troublesome contaminants is
19F which gives rise to γ-rays and α-particles through the 19F(p,αγ)16O reac-
tion. Another common contaminant is 11B which produces α-particles through
the 11B(p,α)2α reaction and γ-rays via 11B(p,γ)12C. Experience shows that the
concentration of 19F and 11B, which remains in the backing after common
cleaning procedures, varies greatly. Therefore, it is useful to test backing mate-
rials from different suppliers for minimum 19F and 11B concentrations. Proton
captures on 12C and 13C also contribute to γ-ray background. Considerable
care needs to be taken in preparing, storing, and handling targets to ensure
that no additional contaminants are added to their surface.

An important contaminant for reactions induced by α-particles is 13C which
produces neutrons via the 13C(α,n)16O reaction. The neutrons contribute ei-
ther directly to the detector background count rate, or indirectly by producing
secondary γ-rays in the surrounding material via neutron inelastic scattering
or neutron capture.

Carbon contamination generally builds up on the target during ion bom-
bardment. Hydrocarbons from organic components of the vacuum system
(for example, vacuum sealing O-rings) diffuse into the beam and are subse-
quently transported onto the target. This carbon layer not only contributes
to beam-induced γ-ray background, but will also cause a reduction of the
incident beam energy before the projectiles strike the target. Carbon de-
position can be reduced substantially by having the beam move through a
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liquid-nitrogen cooled metal tube which is placed close to the target (Sec-
tion 4.3.4). Table 4.4 lists common contaminant reactions induced by low-
energy (E < 1 MeV) proton and α-particle beams and, if present, the energies
of their characteristic discrete γ-rays.

In studies of neutron-induced reactions, accurate cross section and trans-
mission measurements require precise knowledge of the sample composition.
Oxidization is a potential problem when metal samples are used. The com-
position may also change as a result of hygroscopy, that is, the absorption of
moisture from the air. Increases in sample weight by 16% due to hygroscopy
have been observed for powdered samples (Mizumoto and Sugimoto 1989).
The water does not only increase the weight of the sample, but also gives rise
to an additional energy loss for charged particles that are emitted in a neutron-
induced reaction, causing an increased tailing in the pulse height spectrum.
In neutron-capture studies, a fraction of the incident neutrons slows down via
scattering on hydrogen. For the scattered neutrons, the reaction is induced at
lower energies where either the capture cross section is higher, or the cross
section fluctuates rapidly because of resonances. In both cases, the capture
rate may increase drastically. In some instances the moisture can be removed
by heating in vacuum, as indicated by the weight loss of the sample.

Tab. 4.4 Common contaminant reactions and their discrete characteristic γ-ray energies.

Contaminant Reaction Eγ (keV)
19F 19F(p,αγ)16O 6130
11B 11B(p,γ)12C 4439

11B(p,α)2α
15N 15N(p,αγ)12C 4439
12C 12C(p,γ)13N
13C 13C(p,γ)14N 2313

13C(α,n)16O
16O 16O(p,γ)17F 495
23Na 23Na(p,γ)24Mg 1369

23Na(p,αγ)20Ne 1634
27Al 27Al(p,γ)28Si 1779

4.3.4
Target Chamber and Holder

Targets are mounted in a target chamber which represents the location where
the nuclear reactions take place. The specific design of the chamber depends
on the type of target used (beamstop target, transmission target, or irradiation
sample) and the type of detector employed (γ-ray detector, charged-particle
detector, or neutron counter). For charged-particle-induced reaction studies,
target chambers must provide an accurate measurement of the integrated ion
beam charge and they also have to accommodate radiation detectors. The
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chamber has to hold a vacuum of ≈ 10−6 torr or lower in order to minimize
the interaction of the ion beam with residual gas molecules and to reduce the
condensation of contaminants on the target surface. Figure 4.16 shows a target
chamber designed for (p,γ) and (α,γ) reaction measurements at low energies
(E < 1 MeV) with high intensity beams (currents of I ≈ 0.1–1 A). The design
will be discussed below because it takes several important considerations into
account. Examples of experimental setups used for studies of other charged-
particle-induced reactions or of neutron-induced reactions will be discussed
in later sections.

The target shown in Fig. 4.16 is a beamstop target. The beam loses its entire
energy in the target and backing. The beam power (energy per time) deposited
by the beam is given by the product of voltage and current, that is, P = U · I.
For example, for a singly charged ion beam of 100 keV energy and 1 mA cur-
rent, the power amounts to P = (0.1 MV)(1000 µA) = 100 W. If the beam spot
on the target is too small, say, only a few square millimeters, then the locally
produced heat will quickly destroy the target or backing. Therefore, it is im-
portant to defocus the beam sufficiently. Even with a defocussed beam, the
heat produced by the ion beam will degrade the target, unless efficient cool-
ing is provided. Therefore, the backside of the target backing is directly water
cooled. The water reservoir has to be large enough and the water flow strong
enough to provide efficient cooling. On the other hand, the target holder thick-
ness should be kept small so that the γ-ray detector can be placed as close as
possible to the target in order to maximize counting efficiency. Furthermore,
capture γ-rays are not attenuated substantially in a thin target holder before
reaching the detector.

The chamber design shows several features that minimize beam-induced γ-
ray background. A beam-defining aperture is mounted some distance away
from the target and ensures that the beam hits only the target, but not other
parts of the target holder or chamber. The buildup of contaminants, such as
12C and 13C, on the target is reduced by having the beam move through a
metal tube which is directly cooled by liquid nitrogen. Thus, troublesome
hydrocarbons that are released by vacuum O-ring seals condense on the cold
surface of the metal tube instead of the target. Since the target holder design
involves several O-ring seals, it is important that this tube extends as close as
possible to the target without touching it.

The target chamber also represents a Faraday cup for integrating the ion
beam current. If the charge state of the ion beam, q, is known, the total number
of ions incident on the target, Ni, can be easily calculated from Ni = Q/(qe),
where Q is the total accumulated charge (or integrated beam current). The
most important systematic error in the beam current integration arises from
secondary electrons that are emitted from surfaces hit by the beam. For exam-
ple, a singly charged positive ion hitting the target will deposit one elementary
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Fig. 4.16 Typical target chamber design
used in radiative capture reaction studies.
The beam passes through a defining col-
limator and is incident on a directly water-
cooled beamstop target. A copper tube,
cooled to liquid-nitrogen (LN2) temperature,
reduces the buildup of contaminants (such
as 12C and 13C) on the target. The chamber

is electrically insulated from the rest of the
beamline and thus acts as a Faraday cup for
the integration of the total charge accumu-
lated by the beam on the target. A negative
voltage is applied to the copper tube in or-
der to suppress the emission of secondary
electrons. The small (full and open) circles
show the location of vacuum O-ring seals.

charge on the Faraday cup. At the same time, however, secondary electrons
are emitted and these may move away from the target without being collected
on the Faraday cup. Thus, the measured current will yield an overestimate
for the number of positive ions hitting the target (since removing an electron
from the Faraday cup has the same effect as adding a positive charge). For this
reason, a reliable target chamber design must account for secondary electron
suppression. In Fig. 4.16, a negative voltage of several hundred volts (Rolfs
and Rodney 1988) is applied to the metal tube, thus repelling secondary elec-
trons that are emitted from the target or the collimator. Also, possible current
losses through the target cooling water need to be checked carefully.

4.4
Radiation Detectors

4.4.1
General Aspects

Nuclear reactions are studied by measuring the reaction products (for exam-
ple, protons, neutrons, α-particles, or γ-rays) with suitable detectors. Differ-
ent types of radiation interact differently with matter and, therefore, the type
of detector to be used will depend on the identity of the radiation of inter-
est. Most detectors produce, directly or indirectly, a given amount of electric
charge as a result of energy deposition by the radiation. The charge is col-
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lected by applying an electric field and, as a result, an electric signal is pro-
duced. The precise shape of this signal depends, among other things, on how
and where the charge is produced in the active volume, how fast the charge is
collected, and the characteristics of the electric circuit to which the detector is
connected (for example, preamplifier or photomultiplier tube). Although the
signal shape varies strongly from one detector type to another, the amplitude
of the signal pulse is usually directly proportional to the charge generated
within the active volume or, equivalently, the energy deposited by the radia-
tion in the detector. Furthermore, the rate at which such pulses occur depends
on the corresponding rate of radiation interactions within the active volume.
This rate is directly proportional to the number of nuclear reactions occurring
per time interval. If a large number of such pulses is examined, their ampli-
tudes will not all be the same. Variations in pulse heights are caused by a
number of effects: (i) the radiation incident on the detector may not be mo-
noenergetic; (ii) even for incident monoenergetic radiation, different amounts
of energy may be deposited in the detector; and (iii) fluctuations in the intrin-
sic detector response.

In practice, the output signal from a preamplifier or a photomultiplier tube
is further amplified and shaped by additional electronic circuits (spectroscopy
amplifiers) while still preserving the pulse height information. The data are
then displayed as a differential pulse height distribution (or pulse height spec-
trum), showing the pulse height on the horizontal axis and the number of
pulses observed within a pulse height interval, divided by the interval width,
on the vertical axis. Physical interpretations almost always involve areas
under the spectrum, or total counts, between two given pulse height val-
ues. Through careful (energy and efficiency) calibrations, the information dis-
played in a differential pulse height distribution can be related to the energies
and intensities of the incident radiation. The latter information is then used to
determine nuclear reaction cross sections.

A schematic pulse height spectrum (differential number of pulses per pulse
height interval, dI/dH, versus pulse height, H) is shown in Fig. 4.17a. The
shape of the spectrum can be very complicated and depends on the nature
and energy of the incident radiation as well as the intrinsic detector response.
The latter has to be well understood in order to relate the spectrum shape to
properties of the incident radiation. Relatively narrow peaks in a spectrum
frequently indicate that incident α-particles, protons, neutrons, or photons de-
posited their entire discrete energy in the active detector volume. Suppose
that a sharp peak occurs at a pulse height of H0, which is proportional to
the energy of the incident radiation. The peak is superimposed on a back-
ground, representing a relatively flat part of the spectrum. The net intensity
of the peak (shaded area labeled N ), which is proportional to the number of
radiation quanta of specific incident energy, is calculated by subtracting the
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Fig. 4.17 (a) Schematic pulse height spec-
trum. The net intensity of the peak centered
around pulse height H0 (area labeled N )
is obtained by subtracting the number of
background counts (area labeled B) from
the total number of counts between H1 and
H2. The FWHM of the peak, as measured
relative to the background level (dashed hor-
izontal line) indicates the detector energy

resolution. (b) Pulse height spectrum illus-
trating the difference between total and peak
efficiencies. The former and latter quantity
is calculated by dividing Ntotal and Npeak,
respectively, by the total number of quanta
emitted by the source. Below the detection
threshold (leftmost vertical dashed line) the
spectrum is dominated by noise.

background (area labeled B) from the total number of counts in the region of
interest between H1 and H2,

N = T − B (4.39)

The background B can be estimated from the number of counts in regions
on the left- and right-hand side of the peak. Counts in nuclear physics are
distributed according to a Poisson probability function, with the standard de-
viation given by the square root of the number of counts. Thus, we obtain for
the error (one standard deviation) in the number of net counts

∆N =
√

(∆T)2 + (∆B)2 =
√

T + B (4.40)

In more complicated cases, including overlapping peaks and nonlinear back-
ground structures, sophisticated fitting programs are usually employed. Elab-
orate discussions of statistical data analysis in nuclear counting experiments
can be found in Leo (1987) and Knoll (1989).

The full width at half maximum of the narrow peak (FWHM), as measured
from the background level, is in general determined by the energy distribu-
tion of the incident radiation as well as the intrinsic response of the detector.
Suppose that the spectrum shown in Fig. 4.17a has been obtained by mea-
suring monoenergetic incident radiation so that the observed FWHM of the
peak is a measure for the intrinsic energy resolution of the detector. It is highly
desirable that this peak width is as small as possible for two reasons. First,
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Fig. 4.18 Gamma-ray spectra measured
with different detector resolutions (1.75, 5.6,
and 10.8 keV). Each spectrum contains a
signal of the same net intensity. The loss
in detection sensitivity with decreasing res-
olution is evident. In the bottom spectrum,
corresponding to the poorest energy reso-

lution, a statistically significant peak above
background can no longer be discerned.
Reprinted with permission from G. A. Ar-
mantrout, A. E. Bradley, and P. L. Phelps,
IEEE Trans. Nucl. Sci. NS-19(1), p. 107
(1972). ©1972 IEEE.

the detector will be able to better separate closely spaced peaks. Second, the
detector will have a better sensitivity for observing weak peaks in the pres-
ence of a broad (background) continuum. The latter effect is demonstrated
in Fig. 4.18, showing three different γ-ray spectra. Each spectrum contains a
signal of the same net intensity, superimposed on a continuous background,
but with different energy resolution. In the bottom spectrum, corresponding
to the poorest energy resolution, a statistically significant peak above back-
ground can no longer be discerned.

The energy resolution is quantitatively defined by the ratio of FWHM and
the location of the peak centroid H0,

R ≡ FWHM
H0

(4.41)

and is frequently expressed in percent. The energy resolution is influenced by
a number of factors which are present even if each incident radiation quantum
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deposits precisely the same amount of energy in the detector. These include
pulse height drifts during the course of the measurement, random noise from
the detector and associated electronics, and statistical fluctuations in the num-
ber of created charge carriers. The last contribution sets an inherent limit on
the detector performance (Knoll 1989). For example, semiconductor detectors
generate a very large number of charge carriers per event. Since this implies
relatively small statistical fluctuations in the number of charge carriers, these
types of detectors have excellent energy resolutions. In general, if several in-
dependent factors contribute to the intrinsic detector energy resolution, then
the overall detector response function will tend toward a Gaussian shape ac-
cording to the central-limit theorem of statistics.

Another important detector property, called detection efficiency, is related to
the probability of detecting a quantum of radiation emitted by a source (for
example, a radioisotope or a nuclear reaction). Efficiencies can be determined
from the information presented in pulse height spectra. Suppose that the spec-
trum shown in Fig. 4.17b is obtained by measuring a source that emits N0
monoenergetic radiation quanta. Some incident quanta deposit their entire
energy in the spectrum, corresponding to the observed sharp peak, while oth-
ers deposit only a fraction of their energy giving rise to a continuum below
the full-energy peak. The leftmost vertical dashed line indicates a threshold
below which electronic noise dominates the spectrum. The total efficiency is
then defined by the ratio of total counts recorded in the spectrum above the
threshold and the number of radiation quanta emitted by the source,

ηtot ≡ Ntotal

N0
(4.42)

It is assumed that any background contributions unrelated to the source have
been subtracted from Ntotal. Furthermore, we can also define a (full-energy)
peak efficiency as the ratio of counts recorded only in the full-energy peak and
the number of quanta emitted by the source,

ηpeak ≡ Npeak

N0
(4.43)

It is again assumed that any background contributions have been subtracted
from Npeak. Sometimes efficiencies are obtained by replacing the total number
of emitted quanta in Eqs. (4.42) and (4.43) by the number of quanta that are
incident on the detector. The resulting quantity is referred to as intrinsic (total
or peak) detection efficiency. We write

η = ηint
Ω
4π

(4.44)

with Ω being the solid angle of the detector in steradian. Note that ηtot and
ηpeak include the effective solid angle subtended by the detector as an implicit
factor and, therefore, are of primary interest for our considerations.
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In the following, we will briefly address certain detector types that are fre-
quently employed in nuclear astrophysics measurements. Extensive discus-
sions of radiation detectors can be found in Leo (1987) and Knoll (1989).

4.4.2
Semiconductor Detectors

The operating principle of semiconductor detectors relies on the formation of
a semiconductor junction. The junction is formed by using doped semicon-
ductors, with silicon and germanium being the most widely used materials.
For example, at the interface of a p-type and a n-type semiconductor mate-
rial, a region is created which is devoid of mobile charge carriers (electrons or
holes). If a reverse bias voltage is applied to the junction, for example, a neg-
ative voltage on the p-side, the depletion zone representing the active volume
of a radiation detector is significantly enlarged. Incident ionizing radiation
will deposit a certain amount of its energy in this zone and thereby create
electron–hole pairs. These are swept out by the electric field and a current
signal proportional to the amount of the deposited energy is produced.

A main advantage of semiconductors over other detector types is the very
small average energy needed for the creation of an electron–hole pair. This
energy amounts to only 3.8 eV and 3.0 eV for Si and Ge, respectively, at liquid-
nitrogen temperature (77 K). These values are smaller by more than an order
of magnitude compared to other types of radiation detectors, such as gas ion-
ization chambers or scintillators. Therefore, for the same deposited radiation
energy, the number of created charge carriers will be much larger in semicon-
ductors and the energy resolution is significantly improved. Furthermore, the
average energy needed for the creation of an electron–hole pair is independent
of the radiation energy. Thus, the signal pulse height given by the total num-
ber of created electron–hole pairs is proportional to the amount of deposited
energy and the response of a semiconductor detector is highly linear.

Silicon is the most common semiconductor material used for the detection
of charged particles. The intrinsic efficiency amounts to about 100% since few
incident particles will fail to produce some ionization in the active detector
volume. For measurements of the incident particle energy, the depth of the de-
pletion zone has to be larger than the particle range. For example, α-particles
of 10 MeV energy have a range of ≈ 70 µm in silicon (Fig. 4.7).

For the detection of photons, germanium is preferred over silicon because
of the much larger atomic number. However, the average energy for creating
an electron–hole pair is smaller in germanium. As a result, the leakage current
through the semiconductor junction is larger at room temperature, thus con-
tributing to electronic noise at the detector output. Therefore, the germanium
crystal must be cooled to liquid-nitrogen temperature.
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The bias voltage determines the thickness of the depletion zone. Typical
values for silicon charged-particle detectors amount to 50–300 V, while bias
voltages of a few 1000 V are used for germanium photon detectors.

Semiconductor detectors are subject to radiation damage. Incident ionizing
radiation causes lattice defects by knocking atoms out of their normal posi-
tion. These defects can trap charge carriers, leading to incomplete charge col-
lection. As a result, the leakage current increases and the energy resolution
degrades. For example, significant deterioration in the performance of silicon
charged-particle detectors has been observed for integrated incident fluxes of
1012–1013 protons/cm2 and 1011 α-particles/cm2 (Knoll 1989). For germanium
photon detectors, significant degradation in energy resolution occurs for inte-
grated fast neutron fluxes in excess of 107–109/cm2, depending on the detector
specifications.

Silicon charged-particle detectors

The most widely used silicon detectors for charged-particle measurements are
silicon surface barrier detectors. In this case, a junction is formed between
a doped semiconductor region and a metal, for example, n-type silicon and
gold. Such junctions are called Schottky barriers. The situation is similar to
the pn junction described above and a depletion zone extending over the en-
tire semiconductor region is formed. The outer housing and the front surface
of a silicon surface barrier detector are grounded, while the output signal is
extracted from the back surface of the silicon wafer. Since usually n-type sili-
con is used for the production of surface barrier detectors, a positive voltage is
required for the reverse bias voltage of the junction. Surface barrier detectors
of various depletion zone thicknesses (between several micrometers and a few
millimeters) and active areas (up to several tens of square centimeters) have
been produced. They are of compact size and can be placed conveniently in
scattering chambers.

Junctions are also produced by forming heavily doped n- or p-layers in
semiconductor material via ion implantation. The depth profile and concen-
tration of the impurity ions are controlled by adjusting the implantation en-
ergy and current. Ion-implanted detectors have improved properties for mea-
suring charged particles compared to surface barrier detectors. The former
have thinner entrance windows (several tens of nanometers), and the active
area is less sensitive to surface contamination.

A typical pulse height spectrum of an implanted silicon detector, obtained
with a 241Am source, is shown in Fig. 4.19. This source emits several discrete
α-particle groups with energies around 5.5 MeV. The detector has an active
surface area of 50 mm2 and a resolution of 10 keV (for α-particles of 5.5 MeV).
It resolves most of the α-particle groups. While energy resolutions of ≈ 10 keV
(0.2%) are routinely achieved with such small silicon charged-particle detec-
tors, resolutions for larger detectors typically amount to ≈ 15–20 keV.
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Fig. 4.19 Pulse height spectrum of α-particles from an 241Am source,
measured by using a high-resolution implanted silicon detector (of
50 mm2 active area and 10 keV resolution). The source emits several
discrete α-particle groups. Their energies (in keV) are adopted from
the National Nuclear Data Center, Brookhaven National Laboratory.
Most of the known α-particle groups are resolved in the spectrum.
Courtesy of Joseph Newton.

Germanium photon detectors

The depletion depths of the semiconductor detectors discussed above amount
at most to a few millimeters and thus are too thin for the detection of more
penetrating radiation, such as photons. In this case, much larger active de-
tector volumes are necessary. Gamma-ray detectors are produced from high-
purity p- or n-type germanium (HPGe), with impurity concentrations below
1010 atoms/cm3. In coaxial, closed-ended HPGe detectors, one of the elec-
trical contacts is produced by forming a heavily doped n-type region of sev-
eral 100 µm thickness (usually via lithium evaporation and diffusion), while
the other contact represents a heavily doped p-type region of less than 1 µm
thickness (formed, for example, by ion implantation). The active volume is
the entire region between the electrical contacts. The regions of the contacts
do not produce charge carriers and, therefore, are called dead layers. The
detector capsule includes the germanium crystal and the preamplifier. The
germanium crystal is in thermal contact with liquid nitrogen contained in an
insulated dewar, keeping the crystal at a temperature of 77 K.

The excellent energy resolution of semiconductor detectors compared to
other types of γ-ray spectrometers is demonstrated in Fig. 4.20. The spec-
tra are obtained with a 152Eu source by using a HPGe detector (part a) and a
NaI(Tl) scintillator (part b). Scintillators will be discussed in Section 4.4.3. The
superior energy resolution of the HPGe detector is striking. The 152Eu source
emits γ-rays of many discrete energies (Table 4.6). Clearly, the excellent en-
ergy resolution in the HPGe detector spectrum allows the separation of many
closely spaced γ-ray peaks which remain unresolved in the NaI(Tl) spectrum.
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Fig. 4.20 Pulse height spectra of γ-rays from a 152Eu source, mea-
sured by using a (a) HPGe detector, and (b) NaI(Tl) detector. This
particular γ-ray source emits photons of many discrete energies that
are listed in Table 4.6. Far more peaks are visible in the top compared
to the bottom spectrum, demonstrating the superior energy resolution
of germanium detectors compared to scintillators. Courtesy of Richard
Longland.

For this reason, germanium detectors are used in the majority of γ-ray spec-
troscopy studies. The energy resolution varies with energy and, therefore,
the values are specified at a fixed energy. For germanium photon detectors,
energy resolutions are usually quoted for a γ-ray energy of 1333 keV (as pro-
vided by a 60Co source). Measured values of the FWHM typically amount to
≈ 2–3 keV, corresponding to ≈ 0.2% (see Eq. (4.41)).

The output pulse shape of germanium detectors depends on a number of
factors, including the charge collection process and the location in the crystal
at which an incident radiation quantum deposits its energy. The latter effect
is shown in Fig. 4.21. The results were obtained by a Monte Carlo simula-
tion and indicate, for a germanium detector, the fraction of the full-energy
peak contributed by different interaction mechanisms. Above an energy of a
few 100 keV, which is of main importance in nuclear astrophysics measure-
ments, the photoelectric effect is much less likely to occur compared to Comp-
ton scattering (Section 4.2.2). Thus, events contributing to the full-energy peak
in this energy range arise mainly from multiple interactions, for example, one
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Fig. 4.21 Fraction of full-energy peak contributed by different interac-
tion mechanisms. The results are obtained from Monte Carlo simula-
tions of photon interactions in a germanium detector. Reprinted with
permission from J. Roth, J. H. Primbsch, and R. P. Lin, IEEE Trans.
Nucl. Sci. NS-31(1), p. 367 (1984). ©1984 IEEE.

or more Compton scattering events followed by photoelectric absorption of
the scattered γ-ray, rather than a single photoelectric interaction. Such effects
result in a large variation of the pulse rise time and make germanium detec-
tors sometimes less suitable for measurements in which the precise arrival
time difference of two events is of interest.

4.4.3
Scintillation Detectors

Radiation incident on a scintillator deposits energy in the active volume and
thereby excites atoms and molecules. The atoms de-excite mainly by prompt
emission (within ≈ 10−8 s) of light, but delayed emission may also occur if
some excited states are metastable. These processes are referred to as fluo-
rescence and phosphorescence, respectively. The light strikes a photosensi-
tive surface (photocathode), releasing at most one photoelectron per incident
photon. These secondary electrons are accelerated and multiplied through a
series of electrodes, called dynodes. They are finally collected on the anode
and form the output pulse of the photomultiplier tube. These processes are
shown in Fig. 4.22. Scintillator detectors must have a high probability for con-
verting absorbed energy into fluorescent light. They must be transparent to
their own light, and the light emission spectrum has to be consistent with the
response of the photomultiplier. For many scintillators, the light output, and
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hence the amplitude of the electrical output signal, is nearly proportional to
the absorbed energy. Therefore, scintillators are suitable as devices for energy
measurements, although their energy resolution and linearity is far inferior
compared to semiconductor detectors (Fig. 4.20). On the other hand, scintil-
lators have certain advantages over semiconductors. First, they have fast re-
sponse and recovery times and hence are frequently used if the measurement
of the time differences between two events is of interest. Second, scintillators
can be produced in a variety of sizes and shapes.

For any scintillator, it is important to collect a large fraction of the light emit-
ted from the track of the ionizing radiation. However, many light photons are
reflected one or more times at the scintillator surface before reaching the pho-
tomultiplier tube. If the angle of incidence of the light is less than a certain
value (called the critical angle), then only partial reflection takes place and
some light will escape from the surface. For a given scintillator shape, the frac-
tion of light lost will in general depend on the location of the radiation track
with respect to the photomultiplier tube. The uniformity of the light collection
determines the variation in signal pulse amplitude and thus the energy reso-
lution of the scintillator. Therefore, scintillator crystals are usually surrounded
by a reflecting surface (for example, paint, powder or foil) in order to recap-
ture some of the escaping light. In certain instances, light collection may also
be improved by viewing the scintillator with more than one photomultiplier
tube. On the other hand, any internal reflection must be minimized at the in-
terface between scintillator and the glass end window of the photomultiplier
tube. This is usually achieved by using silicon oil of high viscosity as an opti-
cal coupling fluid. Furthermore, scintillation detectors must be shielded from
room light for obvious reasons.

Many different types of scintillators in solid, liquid, or gaseous form are
used in radiation detection studies. Here, we will focus on inorganic scin-
tillators for photon detection and organic scintillators for counting charged
particles and fast neutrons.

Inorganic scintillator photon detectors

The most common inorganic scintillators are single crystals of alkali halides,
such a NaI. A polycrystalline scintillator would cause light reflections and ab-
sorptions at crystal surfaces and thus a single crystal is needed to achieve light
transparency. To increase the probability for light emission and to reduce self-
absorption of light, small amounts of impurities, called activators, are added
to the crystal, with thallium being a common choice. For NaI(Tl), the high
atomic number of thallium (ZTl = 53) results in a larger γ-ray efficiency com-
pared to germanium detectors (ZGe = 32). Therefore, inorganic scintillators
are preferred in certain types of experiments, even though they have an infe-
rior energy resolution (Fig. 4.20b). A disadvantage of NaI(Tl) is the fact that
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Fig. 4.22 Schematic diagram of a scintillation detector. Incident ra-
diation produces light in the scintillator material. The light strikes the
photocathode and the few emitted secondary electrons are multiplied
in the photomultiplier tube by a series of dynodes. The output pulse is
extracted from the anode. See the text.

the crystal degrades quickly in the presence of moisture (hygroscopy). Conse-
quently, these scintillators must be contained in air tight protective closures.

The energy resolution of NaI(Tl) detectors is customarily quoted at an en-
ergy of 662 keV as provided by a 137Cs source. For smaller cylindrical detec-
tors, resolutions of 6–7% can be achieved, while for more complicated crystal
shapes the light collection is less uniform and the energy resolution becomes
worse.

Two pure inorganic scintillators, that do not require the presence of an ac-
tivator element to promote the scintillation process, are bismuth germanate
(Bi4Ge3O12 or BGO) and barium fluoride (BaF2). The very high atomic num-
ber of bismuth (ZBi = 83) in the BGO material has major advantages for the
detection of γ-rays above 10 MeV energy compared to other detector types,
although the energy and time resolution of BGO detectors is inferior com-
pared to NaI(Tl). The scintillation light of barium fluoride contains a very fast
component with a decay time of less than 1 ns, which is smaller than decay
times achieved even in the fastest organic scintillators. Therefore, BaF2 detec-
tors are attractive for applications in which large efficiencies and fast timing
are required, for example, for the time-of-flight technique in neutron-capture
studies (Section 4.6.3).

Organic scintillator charged-particle and neutron detectors

Organic scintillators consist of aromatic hydrocarbon compounds that contain
benzene-ring structures. Their most outstanding feature is a very rapid signal
pulse decay time of about 1–2 ns. They can be used in many physical forms,
such as liquid or solid solutions, without loss of their scintillating properties.
The most widely used organic radiation detectors are organic scintillators in
a solid plastic solvent, called plastic scintillators. These are easily shaped and
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fabricated to desired forms. Plastic scintillators are produced as sheets, blocks,
cylinders, and thin films of a few µg/cm2 thickness. They are rugged and re-
sistant to lower alcohols, but not to acetone and body acids and, therefore,
must be handled with care. Liquid solutions of organic scintillators in an or-
ganic solvent, called liquid scintillators, are also widely used. They have the
advantage that they can be loaded easily with certain materials in order to
increase their efficiency for specific applications. Liquid scintillators are, how-
ever, very sensitive to impurities in the solvent.

It is sometimes of advantage if the scintillator is not directly coupled to the
photomultiplier tube. This may be, for example, because of geometrical con-
siderations or an unusual shape of the scintillator. The coupling can then be
achieved by using a transparent solid with a high refractive index, such as lu-
cite, which acts as a guide for the scintillation light and hence is called light
guide. In principle, a light guide should transmit all the light that enters at its
input but in practice some light loss will occur. Alternatively, optical fibers
may be used as light guides, allowing for a flexible connection between scin-
tillator and photomultiplier tube (Longland et al. 2006).

Organic scintillators are not suitable as high-resolution γ-ray spectrometers
because their small atomic number results in greatly reduced γ-ray interaction
probabilities for photoelectric effect and pair production. Recall, that either of
these processes has to occur besides Compton scattering in order to contribute
to the full-energy peak count rate. Gamma-ray pulse height spectra of organic
scintillators show pronounced Compton edges, but virtually no full-energy
peaks. Organic scintillators are very useful for the detection of γ-rays when
fast timing rather than pulse height resolution is of primary interest, such as
in time-of-flight measurements of neutron-capture reactions (Section 4.6.3).

Figure 4.23 shows a room background spectrum measured with a plastic
scintillator detector. The counter is viewed by a single photomultiplier tube.
The surfaces of plastic scintillators are highly polished in order to increase
internal reflection. The scintillator was wrapped first with aluminum foil to
increase external reflection and then with black tape to provide a light-tight
layer. A thin layer of air, having a small refractive index, between scintillator
and aluminum foil also increases internal reflection. The spectrum shown was
measured over a period of 14 h. The structures at low pulse heights represent
the Compton edges of various room background γ-ray lines, while the broad
peak at large pulse heights is caused by cosmic-ray muons that deposit a small
fraction of their energy traversing the scintillator. Plastic scintillators are fre-
quently used as muon anticoincidence shields around a primary detector (for
example, a germanium crystal). In such an arrangement, the output of the
primary detector is only accepted if, during a certain time window, there is no
coincident pulse at the output of the plastic scintillator. With this method, the
background induced by cosmic rays in the primary detector can be reduced
significantly (Section 4.7).
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Fig. 4.23 Room background spectrum measured with a plastic scin-
tillator detector over a period of 14 h at sea level. The detector dimen-
sions for the length, width, and thickness are 30, 20, and 5 cm, respec-
tively. Compton edges of photons dominate the spectrum at low pulse
heights, while the broad peak at larger pulse heights is caused by
cosmic-ray muons that deposit a small fraction of their energy travers-
ing the scintillator. From Longland et al. (2006).

Liquid organic scintillator detectors are frequently employed for the detec-
tion of fast neutrons. Incident neutrons elastically scatter on the hydrogen
contained in the active detector volume. In each scattering process a neutron
transfers energy to a recoil proton. The latter particle, in turn, is detected in
the scintillator like any other energetic proton as it slows down in the active
volume. Depending on the scattering angle, the transferred energy can range
between zero and the total incident neutron energy. Furthermore, for inci-
dent neutron energies below 10 MeV, the elastic scattering from hydrogen is
nearly isotropic. As a result, the energy distribution of the recoil protons, and
hence the detector response function, should have a rectangular shape. In re-
ality several factors distort this simple rectangular distribution (Knoll 1989).
Some organic scintillators consist of special liquids that have the characteris-
tic of producing different pulse shapes in response to different types of inci-
dent radiation. For example, a scintillator loaded with NE213 will give rise
to different pulse shapes for neutrons and γ-rays (Lynch 1975). Based on the
measured pulse shape differences, events from various radiation types can be
distinguished electronically. This procedure is referred to as pulse shape dis-
crimination. It allows for a substantial reduction of an unwanted γ-ray back-
ground in the detection of fast neutrons. The efficiency of liquid scintillator
detectors for MeV neutrons can be as high as 50%.
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4.4.4
Proportional Counters

A proportional counter consists of a vessel with conducting walls, acting as a
cathode, and an anode (for example, a metal wire) located inside the vessel.
The vessel is filled with a suitable gas and a large positive voltage is applied to
the anode. Incident radiation deposits energy in the counter gas and thereby
creates a certain number of electron–ion pairs. For most gases, on average
about one electron–ion pair is created per 30 eV of energy lost. The mean
number of ion pairs created depends then on the energy deposited by the in-
cident radiation quantum in the gas. The electrons and ions are accelerated
toward the anode and cathode, respectively. If the electric field strength is
sufficiently large, the primary electrons are accelerated toward the anode to
energies at which they are also capable of ionizing gas molecules in the detec-
tor. The created secondary electrons, in turn, are also accelerated and give rise
to still more ionization and so on. The result is an ionization avalanche, with a
total number of electron–ion pairs that is directly proportional to the number
of primary electron–ion pairs.

A frequently used counter gas is a mixture of 90% Ar and 10% CH4
(methane). The excited Ar ions in the avalanche de-excite by emission of
visible or ultraviolet photons capable of ionizing the cathode and causing
further avalanches. This effect is undesirable since it leads to a loss of propor-
tionality. The methane molecules act as a quencher by absorbing the emitted
photons and then by dissipating this energy through dissociation or elastic
collisions. With such a gas mixture, the factor of proportionality, or multipli-
cation factor, can be as high as 106. The gas is usually at atmospheric pressure,
but higher pressures are sometimes used in order to increase the detection
efficiency. A potential problem is the relatively large number of quencher
molecules depleted in each detected event, causing changes in the operational
characteristics after a certain total number of events has been observed. This
problem can be avoided by using a continuous gas flow instead of a sealed
vessel.

Proportional counters are used for detecting charged particles and low-
energy X-rays. They are less useful for detecting γ-rays since the probability
of interaction between a photon and the detector gas is very small. Propor-
tional counters can also be used for neutron detection by choosing a fill gas
with a large cross section for a neutron-induced reaction. The most frequently
used fill gases for converting incident neutrons to directly detectable charged
particles are 10BF3 and 3He. These take advantage of the reactions 10B(n,α)7Li
and 3He(n,p)3H, respectively. If slow neutrons are incident on such a detector,
the neutron energy is negligible compared to the energy release per reaction.
Therefore, the total energy imparted to the charged reaction products (7Li + α

or 3H + p) for each event is equal to the Q-value, while any information about
the incident neutron energy is lost.
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4.4.5
Microchannel Plate Detectors

Microchannel plates consist of a lead glass plate with a large number (≈107)
of microscopic channels, typically 10–50 µm in diameter, oriented parallel to
each other (Wiza 1979). The inner surfaces of the channels are treated so as to
act as secondary electron emitters. The front and rear surfaces of the plate
are coated with a metallic alloy, such as nichrome (Ni7Cr2Fe3), and act as
electrodes so that a voltage can be applied along the length of the channels
(Fig. 4.24). This device has a direct sensitivity for detecting charged particles
(electrons, ions) and energetic photons. A radiation quantum incident on the
front face enters one of the microchannels and produces secondary electrons
upon impact with the channel wall. The secondary electrons are accelerated
along the channel until they eventually strike the wall again, releasing further
electrons and so on. Typical electron multiplication factors amount to ≈ 104

for a single microchannel plate. This avalanche of secondary electrons is col-
lected at the anode and results in a large output pulse. Each microchannel acts
as an independent electron multiplier. Several plates may be used together to
provide a higher overall gain. Figure 4.24 shows two plates in the common
“chevron” geometry. Here, the microchannels are oriented at an angle with
respect to the plate surface and to each other in order to reduce troublesome
feedback effects from positive ions that occasionally form in the channels and
that drift back to the plate front face. In the chevron geometry, these ions are
made to strike the channel wall before their energy is high enough to create
secondary electrons.

Microchannel plate detectors are not very useful for energy measurements
because relatively few secondary electrons are emitted upon impact of the in-
cident radiation. A main advantage is their excellent timing property. The
total transit time of the secondary electrons through a channel is only a few
nanoseconds. The timing performance depends on the spread in transit time
and amounts to only ≈ 100 ps, a value that is much smaller compared to
even the fastest plastic scintillators. Microchannel plate detectors are very
robust and have been used in experiments with count rates of up to ≈ 107 s−1

(Mosher et al. 2001). Their intrinsic efficiency varies according to the energy
and type of the incident radiation (Wiza 1979). For ions with masses of A =
3–16 and energies of E = 0.3–10 MeV, measured intrinsic efficiencies amount
to 65–90% (Mosher et al. 2001).
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Fig. 4.24 Microchannel plate detector. (Left
panel) Single lead glass plate with a large
number of microscopic channels (each with
a diameter of 10–50 µm). (Right panel) De-
tector consisting of two microchannel plates
in a “chevron” geometry. Incident charged
particles (electrons, ions) or energetic pho-
tons entering one of the channels give rise
to the emission of secondary electrons.
Each microchannel acts as an indepen-

dent electron multiplier because of the large
voltage applied between the front and back
faces of the two plates. The avalanche of
secondary electrons is collected on the
metal anode and results in a large output
pulse. Reprinted from J. L. Wiza, Nucl. In-
strum. Methods, Vol. 162, p. 587 (1979).
Copyright (1979), with permission from El-
sevier.

4.5
Nuclear Spectroscopy

The science and study of spectra is called spectroscopy. We will be mainly
concerned with detector pulse height spectra induced by nuclear radiation.
Most important is the analysis of relatively sharp peaks in the spectrum. The
energy of a discrete line corresponds frequently to the energy difference be-
tween the initial and final nuclear states involved in the transition and thus
reflects the origin of the measured radiation. The intensity of a discrete line
is proportional to the number of decaying nuclear states and hence allows for
the determination of nuclear cross sections. The quantitative interpretation
of pulse height spectra requires the knowledge of certain detector properties.
First, the signal pulse height (or channel number) has to be calibrated and
expressed in terms of the radiation energy. Second, the measured peak in-
tensity needs to be corrected for the detector efficiency. These procedures are
referred to as energy and efficiency calibrations. In the following, we will
discuss some typical experimental situations encountered in charged particle,
γ-ray, and neutron spectroscopy.
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4.5.1
Charged-Particle Spectroscopy

Energy calibrations

Consider first a radioactive source that emits charged particles. The most
common radioactive charged-particle sources emit α-particles since long-lived
proton emitting sources do not exist. Suppose further that an α-particle source
is placed at some distance from a charged-particle detector, such as a silicon
counter. The α-particles from the nuclear source are emitted with discrete
energies. If the thickness of the active detector volume is larger than the α-
particle range (R < 100 µm for Eα < 10 MeV; Fig. 4.7) and since processes that
backscatter the incident particle or otherwise result in partial energy deposi-
tion are usually negligible, the incident radiation will deposit its entire energy
in the silicon detector. As a result, discrete peaks of nearly Gaussian shape ap-
pear in the pulse height spectrum, each corresponding to an α-particle group
of discrete energy (Fig. 4.25). If the energies of the α-particles are well known
from previous measurements, the horizontal axis of the pulse height spectrum
can be calibrated by relating channel numbers Ci to energies Ei. As already
noted, semiconductor detectors respond nearly linearly to the energy of the
incident radiation and, therefore, a useful expression for the calibration is

Ei = aCi + b (4.45)

where a and b are empirical constants. Properties of some α-particle cali-
bration sources are listed in Table 4.5. For precise energy calibrations, the
α-particle energy loss in the detector dead layer may need to be taken into ac-
count. The thickness of the dead layer can be determined by measuring the
energy of a monoenergetic charged-particle group at several different angles
of incidence (Knoll 1989). The energy loss in the source itself may also need to
be considered. Most α-particle calibration sources are prepared by depositing
a thin layer of the isotope on the surface of a backing in order to minimize
energy losses and α-particle absorption. These sources are also protected with
a very thin layer of foil.

It is important to point out that there are small differences in the pulse
heights observed for different incident light charged particles (for example,
protons and α-particles) of the same energy in semiconductor detectors (Knoll
1989). These differences are on the order of 1% (≈30 keV for 3 MeV total de-
posited energy). Therefore, the pulse height spectrum should be calibrated,
if possible, by using the same species of particles as is emitted in the actual
reaction measurement. For heavy ions the pulse height differences are much
larger. The effect is referred to as pulse height defect.
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Fig. 4.25 Measurement of charged particles emitted by an α-particle
source. (a) Setup showing the source and the charged-particle de-
tector; d and a are the source–detector distance and the radius of the
active detector area, respectively. (b) Typical pulse height spectrum
showing peaks at discrete channel numbers. An energy calibration of
the spectrum is performed by relating the discrete channel numbers to
known energies of the α-particle groups emitted by the source.

Tab. 4.5 Properties of some α-particle calibration sources. (a) From Nichols (1996). Errors
are given in parentheses and refer to the last significant digit(s).

Isotope Half-lifea Energiesa (keV) Branchinga (%)
148Gd 75(3) y 3182.68(2) 100.0
241Am 432.7(5) y 5442.90(13) 12.8(2)

5485.60(12) 85.2(8)
230Th 7.54(3) y 4620.5(15) 23.4(1)

4687.0(15) 76.3(3)
242Cm 162.94(6) d 6069.42(12) 25.0(5)

6112.72(8) 74.0(5)

Efficiencies

The intrinsic efficiency of silicon counters for detecting charged particles is
close to unity and, therefore, the peak efficiency is given by the solid angle Ω
subtended by the detector. The efficiency can be measured by using a calibra-
tion source of well-known activity. Assuming that the source emits radiation
isotropically and that no attenuation takes place between source and detector,
we obtain for the peak efficiency (see Eqs. (4.43) and (4.44))

ηpeak =
Ω
4π

=
Npeak

N0
=

Npeak

AtB
(4.46)

where the solid angle Ω is in units of steradians and Npeak is the net area
of the full-energy peak; A, t, and B are the activity of the source at the time
of the measurement, the measuring time, and the branching ratio of the ra-
diation, respectively. Branching ratios, defined as the fraction of a specific
transition per nuclear decay, for some common calibration sources are listed
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in Table 4.5. As a test of consistency, it is often useful to estimate the efficiency
without relying on the activity of radioactive sources. For the common case of
a point-like source and a circular detector positioned with its face normal to
the source–detector axis, the peak efficiency is given by (Knoll 1989)

ηpeak =
1
2

(
1 − d√

d2 + a2

)
(4.47)

where d and a are the distance between source and detector and the detector
radius, respectively. If the distance d is large compared to the radius, d 	 a,
the peak efficiency reduces to

ηpeak ≈ πa2

4πd2 =
a2

4d2 (4.48)

Elastic scattering studies

An example of a setup for the study of elastic scattering is shown in Fig. 4.26a.
A proton beam of energy Ep = 440 keV is incident on a transmission target
consisting of a thin MgO layer evaporated onto a thin carbon foil. A silicon
detector with a resolution of ≈ 10 keV, positioned at an angle of θ = 155◦
with respect to the beam direction, is used for detecting elastically scattered
protons. The measured pulse height spectrum is shown in Fig. 4.26b. Three
peaks are observed in the spectrum, corresponding to elastic scattering from
Mg, O, and C, the three elements present in the target.

The observed peak centroids can be used for calibrating the proton energy
in the spectrum if the target is relatively thin so that energy loss effects are neg-
ligible. In this case, the widths of the peaks resulting from proton scattering
on Mg and O are given by the detector resolution. The peak centroids corre-
spond to the energy Ep′ of the elastically scattered protons which, for a given
bombarding energy Ep and detector angle θ, are determined by the kinematics
of the scattering process (Appendix C.1).

In general, however, the target thickness has to be taken into account and
the widths and centroids of the measured peaks are influenced both by the
proton energy loss in the target and the detector resolution. Note that the
energy calculated from kinematics only applies to those protons that are elas-
tically scattered from the first target layers. For protons scattered from Mg or
O deeper inside the target, not only the energy loss of the projectiles has to be
considered, but that of the scattered protons on their path through the target
as well. The location of the carbon elastic scattering peak is also influenced by
energy loss. In order to reach the carbon layer, the projectiles have to traverse
the MgO target, while the scattered protons also lose a fraction of their energy
moving through the target on their way to the detector.

The measured peak areas may be used to calculate the differential cross
sections of elastic scattering, if the number of target nuclei (or the target thick-
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Fig. 4.26 Typical elastic scattering study.
(a) Setup showing a proton beam, a MgO
transmission target evaporated on a thin
carbon backing, and a particle detector
mounted at a back-angle. Detected pro-
tons that are scattered from the backside
of the target will have a smaller energy (E2)
compared to those scattered from the front
side (E1) because of energy loss effects.

(b) Measured spectrum of elastically scat-
tered protons at an incident proton energy of
Ep = 440 keV. The peaks correspond to pro-
tons scattered from the target (Mg and O)
and the backing (C). Reprinted from D. C.
Powell et al., Nucl. Phys. A, Vol. 660, p. 349
(1999). Copyright (1999), with permission
from Elsevier.

ness) and the detector efficiency are known. Expressions relating measured
yields to cross sections are given in Section 4.8. At sufficiently low bom-
barding energies, the cross section will be dominated by Coulomb scatter-
ing. This circumstance is frequently taken advantage of in order to determine
the number of target nuclei from the measured peak intensity and the calcu-
lated Rutherford cross section (see Eq. (4.136)). At higher energies, resonances
may contribute to the elastic scattering process. In this case, the measured
elastic scattering cross section provides information on the resonance param-
eters, such as resonance energies, partial widths, and quantum numbers (Sec-
tion 2.5).

Nuclear reaction studies

Figure 4.27a shows an experimental arrangement for measuring the reaction
31P(p,α)28Si at a bombarding energy of Ep = 390 keV. Cross sections of as-
trophysical interest at low energies are usually small. The charged-particle
detector for measuring the reaction α-particles has to cover as large a solid
angle as possible in order to maximize the count rate. The active area of the
silicon detector and the distance between detector and target are 450 mm2

and 5 cm, respectively. The energy resolution of the detector amounts to ≈
20 keV. A directly water-cooled beamstop target is used to allow for high pro-
ton beam currents of several 100 µA. The target is produced by implanting 31P
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ions into a tantalum sheet and consists of a 31P–Ta layer with a stoichiometry
of 3:2 (Table 4.3). For a given beam energy (Ep = 390 keV) and detector angle
(θ = 145◦), the energy of the emitted α-particles is determined by the kinemat-
ics of the nuclear reaction (Appendix C.1) and amounts to ≈ 2 MeV.

Since the beamstop target consists of a high-Z material (tantalum), the num-
ber of elastically scattered protons becomes very large (> 106 s−1). Note that
the protons are scattered both from the relatively thin 31P–Ta target layer as
well as the thick tantalum backing. Hence, their energies range from a maxi-
mum of ≈ 350 keV (protons scattered by the first target layers without energy
loss) down to zero (protons scattered inside the tantalum backing and losing
energy on the path to the detector). As a result, the detector count rate in
the region of the expected reaction α-particles would be overwhelmed by the
pileup of signals caused by the unwanted scattered protons. Therefore, a foil
is placed in front of the charged-particle detector, which is sufficiently thick to
stop the elastically scattered protons, but at the same time is thin enough to
transmit the reaction α-particles.

The measured pulse height spectrum is shown in Fig. 4.27b. The α-particles
from the 31P(p,α)28Si reaction have lost a significant fraction of their energy in
the foil and are observed in the first part of the spectrum (Eα ≈ 0.5 MeV).
Furthermore, the α-particle peak is significantly broadened due to energy
straggling in the foil (∆E ≈ 100 keV). The steep background at low ener-
gies is mainly caused by elastically scattered protons leaking through the
foil. At higher energies, the spectrum displays contributions from the (p,α)
reactions on 11B, 15N, and 18O contaminants in the target and backing (Sec-
tion 4.3.3). These contaminants give rise to discrete peaks, except in the case
of the 11B(p,α)2α reaction which emits three particles in the exit channel and
thus produces a continuous background.

The total number of induced reactions, NR, can be calculated from the mea-
sured peak intensity by using an expression similar to Eq. (4.46). In general,
the intensity of the reaction products is not isotropic (Appendix D) and, there-
fore, the angular correlation W has to be taken into account. One finds

NR =
Npeak

ηpeakBW
(4.49)

The quantities ηpeak and W are usually obtained at a laboratory detection an-
gle of θ and have to be expressed in the center-of-mass system (Appendix C.2).
The branching ratio, B, is now defined as the fraction of a specific transition
per nuclear reaction.
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Fig. 4.27 Study of the 31P(p,α)28Si reaction.
(a) Setup showing the proton beam, the
beamstop target consisting of 31P implanted
into Ta, and the particle detector covered
by a foil in order to reduce the large num-
ber of elastically scattered protons reaching
the detector. (b) Measured pulse height
spectrum at a bombarding energy of Ep =
390 keV. The α-particle peak of interest,
arising from a resonance in 31P(p,α)28Si,

occurs at relatively small pulse heights in a
region which is dominated by protons leak-
ing through the foil (caused by foil thickness
inhomogeneities). Alpha-particles originat-
ing from (p,α) reactions on the contaminants
11B, 15N, and 18O are visible at higher ener-
gies. Reprinted from C. Iliadis et al., Nucl.
Phys. A, Vol. 533, p. 153 (1991). Copyright
(1991), with permission from Elsevier.

4.5.2
Gamma-Ray Spectroscopy

Response function

The response of γ-ray detectors to incident radiation is more complicated
compared to charged-particle detectors. As already noted, γ-rays interact
with matter via the photoelectric effect, Compton scattering and pair produc-
tion (Section 4.2.2). The influence of these effects on the measured pulse height
distribution is shown in Fig. 4.28. In the following, we will assume that mo-
noenergetic photons of energy Eγ are incident on the detector.

In case (a), an incident photon undergoes photoelectric absorption. The
emitted photoelectron travels typically a distance of at most a few millimeters
and loses its energy through ionization and excitation of atoms in the active
detector volume and through the emission of bremsstrahlung. For a suffi-
ciently large active volume, the entire energy of the photoelectron is absorbed
in the detector and, therefore, the resulting pulse height appears in the region
of the full-energy peak (FEP), corresponding to a photon energy of Eγ.

In case (b), the incident photon undergoes Compton scattering. The scat-
tered photon escapes from the active volume and thus only a fraction of the
incident photon energy is deposited in the detector. The precise energy trans-
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Fig. 4.28 Response of a γ-ray detector to monoenergetic incident
radiation. (a) Representation of different photon histories. (b) Pulse
height spectrum; the meanings of the labels are: full-energy peak
(FEP), multiple-site events (MSE), Compton edge (CE), single-escape
peak (SEP), double escape peak (DEP), Compton continuum (CC)
and back-scattering peak (BSP).

ferred to the recoil electron depends on the scattering angle. All scattering an-
gles are possible and, therefore, the energy distribution of the recoil electrons
gives rise to the Compton continuum (CC). The maximum possible value of
Kmax

e , that is, the Compton edge (CE), corresponds to a photon scattering an-
gle of θ = 180◦ (Section 4.2.2). The continuous Compton background is clearly
an unwanted contribution to the pulse height spectrum. It reduces the signal-
to-noise ratio for the detection of weak discrete peaks and it also makes the
interpretation of complex γ-ray spectra that result from incident photons of
different energies more difficult.

In case (c), the incident photon is Compton scattered several times at dif-
ferent locations in the active volume until eventually photoabsorption occurs.
The duration of this more complex history amounts to < 1 ns, a value that is
smaller than the inherent response time of present day γ-ray detectors. Con-
sequently, the different Compton scattering events and the final photoabsorp-
tion occur essentially in time coincidence and exactly the same total energy
is deposited in the detector as if the incident photon had undergone a single
photoelectric absorption. Such events appear then in the region of the full-
energy peak. In fact, for incident photon energies above a few 100 keV, most
events in the full-energy peak are caused by such multiple scattering histories
(Fig. 4.21). It has been pointed out in Section 4.2.2 (see also Fig. 4.11) that an
energy gap exists between the full-energy peak and the Compton edge. In
actual measurements this gap is partially filled in by multiple Compton scat-
tering events (MSE) that are followed by photon escape.

In case (d), an incident photon with an energy of Eγ > 2mec2 undergoes pair
production. The created electron and positron lose all their kinetic energy in
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the active detector volume. Subsequently, the positron will annihilate with an-
other electron and two photons, each of 511 keV energy, are produced. Again,
the annihilation radiation appears virtually in time coincidence with the orig-
inal pair production event. If both 511 keV photons are absorbed by the detec-
tor (for example, via photoelectric effect), then the resulting pulse height will
appear in the region of the full-energy peak at Eγ. If only one 511 keV pho-
ton is absorbed while the other one escapes detection, then the resulting pulse
height will give rise to a discrete peak at an energy of Eγ − 511 keV, which is
called the single-escape peak (SEP). If both 511 keV photons escape from the
detector, a discrete peak appears at an energy of Eγ − 1022 keV, which is called
the double-escape peak (DEP). More complicated histories involving Comp-
ton scattering of the annihilation quanta occur as well. Such events contribute
to a continuum in the pulse height spectrum between the double-escape and
full-energy peaks.

Finally, a broad peak is frequently observed in pulse height spectra at an
energy of ≈ 200–250 keV. It is caused by photons that Compton scatter in
material surrounding the active volume before detection. The peak is referred
to as back-scattering peak (BSP).

The response of a real γ-ray detector will depend on the size, shape, and
composition of the active volume. It can be simulated theoretically by using
Monte Carlo calculations which track numerically the histories of many dif-
ferent events taking place in the detector. Calculated response functions for
a germanium detector to monoenergetic incident radiation below 3 MeV en-
ergy are displayed in Fig. 4.29. Many of the features described above can be
observed in the spectra. It is apparent that for increasing γ-ray energy the in-
tensity of the escape peaks becomes gradually larger as the pair production
cross section increases.

Energy calibrations

Full-energy peaks are of major interest in γ-ray spectroscopy studies. They
correspond to full-energy deposition of the incident photon energy and, there-
fore, their location in the spectrum is not influenced by any photon energy
losses. The pulse heights in a γ-ray spectrum can be calibrated by using ab-
solute energy standards. Some useful γ-ray energy standards are provided in
Table 4.6. Note the small errors of the calibration energies which amount to
less than 0.001%. The listed radioactive sources are all commercially available
and cover an energy range up to ≈ 3.5 MeV. Furthermore, the two γ-ray lines
from 40K and 208Tl (1460.8 and 2614.5 keV, respectively) are the most promi-
nent room background peaks in γ-ray spectra and thus provide a convenient
internal calibration without using radioactive sources. The energy range may
be extended up to ≈ 5 MeV by using the radioisotope 66Ga (Helmer and van
der Leun 2000), although its half-life is rather short (T1/2 = 9.5 h). Therefore,
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Fig. 4.29 Response functions for a germanium detector to monoener-
getic incident radiation of energies below 3 MeV, obtained from Monte
Carlo simulations of photon histories. All energies are in units of keV.
Reprinted from C. Meixner et al., Nucl. Instrum. Methods, Vol. 119, p.
521 (1974). Copyright (1974), with permission from Elsevier.

the region above 3.5 MeV is frequently calibrated by using γ-rays emitted in
nuclear reactions. These energies can be calculated precisely from the kine-
matics of the reaction (Appendix C.1) if certain quantities (such as the bom-
barding energy, the masses of projectile and target, and the detector angle)
are well known. The resulting calibration energies are not as precisely de-
termined as those from radioisotopes. One also has to be careful since many
γ-rays emitted in nuclear reactions are Doppler shifted (see Eq. (C.12)). If cap-
ture reactions (for example, (p,γ) or (α,γ) reactions) are used for the energy
calibration, it is of advantage to position the detector at an angle of θ = 90◦
where the Doppler shift is zero to first order. Sometimes it may be possible
to use the single- and double-escape peaks for calibrations since their ener-
gies relative to the location Eγ of the corresponding full-energy peak are well
known (Eγ − mec2 and Eγ − 2mec2, respectively). However, small systematic
shifts in the location of the escape peaks have been observed. The deviations
can amount to several 100 eV and seem to depend on the type and geome-
try of the detector (Endt et al. 1990). This effect has to be considered if γ-ray
energies of high precision are of interest.
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Tab. 4.6 Properties of common γ-ray calibration sources. (a) From Helmer and van der Leun
(2000), unless noted otherwise. (b) From Debertin and Helmer (1988). (c) From Greenwood,
Helmer and Gehrke (1979). (d) Half-life and γ-ray yield per disintegration; from Lorenz and
Nichols (1996). Errors are given in parentheses and refer to the last significant digit(s).

Source Half-lifed (days) Energya (keV) Branching ratiod (%)
152Eu 4933(11) 121.7817(3) 28.37(13)

244.6974(8) 7.53(4)
344.2785(12) 26.57(11)
411.1165(12) 2.238(10)
778.9045(24) 12.97(6)
867.380(3) 4.214(25)

1085.837(10) 10.13(5)
1089.737(5) 1.731(9)
1112.076(3) 13.54(6)
1212.948(11) 1.412(8)
1299.142(8) 1.626(11)
1408.013(3) 20.85(9)

56Co 77.31(19) 846.7638(19) 99.933(7)
1037.8333(24) 14.13(5)
1175.0878(22) 2.239(11)
1238.2736(22) 66.07(19)
1360.196(4) 4.256(15)
1771.327(3) 15.49(5)
2015.176(5) 3.029(13)
2034.752(5) 7.771(27)
2598.438(4) 16.96(6)
3201.930(11) 3.13(9)
3253.402(5) 7.62(24)
3272.978(6) 1.78(6)
3451.119(4) 0.93(4)

57Co 271.79(9) 122.06065(12) 85.60(17)
136.47356(29) 10.68(8)

198Au 2.6943(8) 411.80205(17) 95.57(47)
137Cs 1.102(6)×104 661.657(3) 85.1(2)
54Mn 312.3(4) 834.838(5) 99.9758(24)
88Y 106.630(25) 898.036(4) 94.0(3)

1836.052(13) 99.36(3)
60Co 1925.5(5) 1173.228(3) 99.857(22)

1332.492(4) 99.983(6)
22Na 950.8(9) 1274.537(7) 99.935(15)
40K 1460.830(5)b

208Tl 2614.533(13)c

When several energy calibration points have been established over the re-
gion of interest, a calibration curve relating energies to channel numbers may
be derived from a least-squares fit. With germanium detectors it is frequently
sufficient to represent the energy as a linear function of the channel. De-
viations from linearity depend primarily on nonlinearities of the electronic
amplifier–analyzer system and may amount to several hundred electron volts.
It is sometimes even appropriate to use for a linear energy calibration only two
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well-known peaks with energies E1 and E2 and channel centroids C1 and C2,

Ei = aCi + b = E1 +
E2 − E1

C2 − C1
(Ci − C1) (4.50)

If higher precision is desired, the energy calibration can be obtained from a
cubic least-squares fit. Higher order polynomials may be necessary if NaI(Tl)
detectors are used since their response is far less linear compared to germa-
nium detectors.

Efficiency calibrations

Measurements of cross sections require knowledge of detection efficiencies.
Furthermore, the accuracy of the derived cross sections depends directly on
the uncertainty of the efficiencies. Full-energy peak efficiencies may be calcu-
lated with Monte Carlo procedures if the crystal dimensions and the geometry
of the setup are precisely known. However, for germanium detectors this is
rarely the case. Crystals are not standardized to any degree and, furthermore,
crystal dimensions supplied by manufacturers have been found to be inaccu-
rate by several millimeters (Helmer et al. 2003). Also, long-term changes in the
charge collection process can cause the detector efficiency to vary with time.
Consequently, it is recommended that users perform their own efficiency mea-
surements. It is important that the measurements of the efficiency and of the
actual cross section are carried out in the same geometry (that is, the same dis-
tance and orientation of the detector with respect to the source or target). The
same argument applies to any γ-ray absorbing material between source or tar-
get and detector (for example, the target holder). Such effects are expected to
be most important at relatively low γ-ray energies (<1 MeV; Section 4.2.2).

Typically, detector efficiencies are needed for an energy range between ≈
100 keV and ≈ 15 MeV. Since no single process covers this entire energy re-
gion, γ-rays from several different processes have to be used. The peak ef-
ficiency is related to the full-energy peak intensity by Eq. (4.46). It is obvi-
ous from that expression that a reliable determination of detector efficiencies
requires accurate knowledge of the γ-ray branching ratios, B, which are de-
fined as the fraction of a specific γ-ray transition per nuclear decay. Several
radioactive sources for which very precise branching ratios are known (with
relative errors of < 1% for most transitions) are listed in Table 4.6. Especially
useful are the radioisotopes 152Eu and 56Co which cover the energy ranges
of 0.1–1.4 MeV and 0.8–3.5 MeV, respectively. For higher energies, efficiencies
have to be obtained by using γ-rays from nuclear reactions. If charged-particle
beams are available, frequently used calibration standards are provided by the
655 and 992 keV resonances in 27Al(p,γ)28Si, covering the energy range of 1–
11 MeV. The errors in the reported branching ratios are < 3% (Endt 1990). At
lower bombarding energies, the 293 and 327 keV resonances in the same re-
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action may be used, although the reported branching ratio errors are larger
(<10%; Iliadis et al. 1990). The relevant data are summarized in Table 4.7. The
278 keV resonance in the 14N(p,γ)15O reaction is also useful in this respect.
This particular resonance emits photons in the range of 0.8–7 MeV and has
a simple γ-ray decay scheme, with all decays proceeding via cascades that
consist of two γ-rays only. Since the number of photons for each transition
in a given cascade is the same, the measured intensity ratio of the two γ-rays
is equal to the ratio of the corresponding efficiencies. The branching ratio
data and the relevant decay scheme are shown in Table 4.8 and Fig. 4.30, re-
spectively. Furthermore, the γ-ray emission from this resonance is isotropic
(J=1/2) and hence angular correlation effects are negligible (Appendix D). If
thermal neutrons are available, precise γ-ray efficiencies can be obtained from
the 14N(n,γ)15N capture reaction. The prompt γ-ray emission probabilities
per neutron-capture event from this reaction are listed in Table 4.9.

The following strategy is frequently employed in order to determine a com-
posite γ-ray efficiency curve. The data from radioactive calibration sources
are analyzed and plotted first. Their well-known activity also provides a nor-
malization of the absolute efficiency scale. In a subsequent step, the reaction
data are analyzed. The resulting efficiencies from each reaction measurement
are vertically adjusted until they agree with the radioactive source values in
the overlap region. An efficiency curve obtained in this manner is shown in
Fig. 4.31a. In this case, a HPGe detector of 582 cm3 volume is positioned at a
distance of 1.6 cm between source or target and detector. It can be seen that
the peak efficiency drops drastically with increasing energy, reflecting the fact
that both photoelectric absorption and Compton scattering become less likely
at higher energies (Section 4.2.2).

Once the efficiency of a detector has been measured at several energies, a fit
to the data can be performed in order to determine efficiency values between
measured points by interpolation. Frequently used analytical fitting functions
are polynomials, but more complicated functions are also in use (Debertin and
Helmer 1988).

The full-energy peak efficiency cannot be calculated analytically since it de-
pends on the γ-ray energy in a complicated way. We already mentioned that
Monte Carlo techniques may be used to calculate individual photon histo-
ries. Although in the end peak efficiencies should be measured directly for
the reasons given above, the Monte Carlo calculations are useful for estimat-
ing relative peak efficiencies. Uncertainties in crystal dimensions or interac-
tion parameters (that is, cross sections for photoelectric absorption, Compton
scattering and pair production) have a relatively small effect on these rela-
tive values. Therefore, Monte Carlo calculations can provide the shape of the
peak efficiency curve and aid in the interpolation between calibration points.
An interesting application of the Monte Carlo method in order to obtain very
precise germanium detector efficiencies can be found in Helmer et al. (2003).
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Tab. 4.7 Gamma-ray branching ratios (fraction of a specific transition per proton capture
event) of low-energy resonances in 27Al(p,γ)28Si. Branching ratios are given in percent.
(a) Resonance energy in keV. (b) Excitation energy of final state in keV. (c) Excitation energy
of initial state in keV. (d) From Iliadis et al. (1990). (e) From Endt et al. (1990). Errors are given
in parentheses and refer to the last significant digit(s).

Er
a: 293d 327d 655e 992e

Ex f
b: Exi

c: 11867 11900 12216 12541
0

1779 42.1(10) 76.4(4)
4618 60.4(14) 72.2(8) 4.09(12)
6276 4.5(2) 2.15(7)
6879 1.63(9) 0.70(2)
6889 12.4(8) 12.1(5) 0.294(9)
7381 0.187(6)
7416 1.82(10) 0.297(9)
7799 8.5(3)
7933 6.4(2) 3.96(12)
8259 1.60(9)
8328 1.27(7)
8413 5.9(4)
8589 5.3(5) 3.36(13) 0.173(6)
9165 5.1(3) 0.147(5)
9316 2.09(9) 0.047(2)
9382 29.1(9)
9417 2.8(2) 0.79(3)
9479 1.11(4)
9765 3.2(3) 0.195(7)

10182 0.085(3)
10209 0.146(5)
10311 0.061(3)
10376 0.52(3)
10540 2.3(2)
10596 1.39(7)
10668 0.288(9)
10900 0.63(4)
11195 0.089(3)
11265 0.082(3)

Tab. 4.8 Branching ratios (in percent) of 15O levels (from Ajzenberg-Selove 1991 and Runkle
et al. 2005); Exi and Ex f denote the excitation energies (in keV) of the initial and final states,
respectively, involved in the transition. The level at Exi = 7556 keV corresponds to a resonance
at Er = 278 keV in 14N(p,γ)15O. See also Fig. 4.30a. Errors are given in parentheses and refer
to the last significant digit(s).

Ex f : Exi : 5183 5241 6176 6793 6859 7276 7556
0 100 100 100 100 <10 3.8(12) 1.70(7)

5183 <2.5 <3 <4 <4 17.3(2)
5241 <2.5 <3 100 96.2(12)
6176 <7 <0.4 <2 58.3(5)
6793 22.7(3)
6859 <5.8
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Fig. 4.30 Energy level diagrams of (a) 15O and (b) 60Ni. The γ-ray
branching ratios of 15O levels are presented in Table 4.8. The β-decay
and γ-ray branching ratios for the 60Co → 60Ni decay are adopted from
Firestone and Shirley (1996).

Tab. 4.9 Gamma-ray emission probabilities per neutron-capture event from the 14N(n,γ)15N re-
action induced by thermal neutrons (from Raman et al. 2000). Errors are given in parentheses
and refer to the last significant digit(s).

Eγ (keV) B (%) Eγ (keV) B (%)
1678 7.96(9) 5269 29.94(20)
1885 18.72(20) 5298 21.27(18)
2000 4.05(5) 5533 19.66(21)
2520 5.68(7) 5562 10.66(12)
2831 1.72(3) 6322 18.45(14)
3532 9.09(9) 7299 9.56(9)
3678 14.70(15) 8310 4.17(5)
4509 16.63(17) 10829 14.0(3)

So far, we have only discussed the determination of full-energy peak effi-
ciencies. There are situations where the precise knowledge of total efficiencies
becomes also important. For example, total efficiencies are typically needed
for estimating coincidence summing corrections for germanium detectors (see
below) or coincidence efficiencies for γγ-detection techniques (Section 4.7.3).
In contrast to peak efficiencies, the calculation of total efficiencies is in prin-
ciple straightforward. The probability that an incident photon traversing a
path length x in the active volume is not detected, that is, does not undergo
any interaction in the crystal, is given by P = N/N0 = e−µx (see Eq. (4.30)),
where N and N0 denote the total number of transmitted and incident quanta,
respectively. Equivalently, we may calculate the probability that this incident
photon will undergo any interaction and deposit any energy in the crystal
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Fig. 4.31 Efficiencies for a HPGe detector
of 582 cm3 volume, positioned at a distance
of 1.6 cm between source or target and de-
tector. (a) Experimental peak efficiencies;
the curve is constructed by using calibra-
tion sources (56Co and 152Eu) and calibration
resonances [14N(p,γ)15O and 27Al(p,γ)28Si].
The displayed efficiencies are corrected
for coincidence summing. Data courtesy

of Robert Runkle. (b) Calculated total effi-
ciencies; the solid line is obtained from an
expression similar to Eq. (4.52), but addi-
tionally taking into account the insensitive
detector core. The results agree with those
from Monte Carlo simulations (shown as
diamonds) using the computer code MCNP
(Briesmeister 1993). Data courtesy of Chris
Fox and Richard Longland.

from P = 1 − P = 1 − e−µx. In general, the path length x will depend on the
angle of photon emission with respect to the crystal. Therefore, the total effi-
ciency can be found by integrating over the solid angle Ω subtended by the
detector,

ηtot =
1

4π

∫ (
1 − e−µx) dΩ (4.51)

For the case of a cylindrical detector of radius R and length t, and a point
source located on the detector axis at a distance d (Fig. 4.32) we obtain (De-
bertin and Helmer 1988)

ηtot =
1
2

∫ θ1

0

[
1 − e−(µt/ cos θ)

]
sin θ dθ

+
1
2

∫ θ2

θ1

[
1 − e−(µR/ sin θ)+(µd/ cos θ)

]
sin θ dθ (4.52)
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with θ1 = arctan[R/(d + t)] and θ2 = arctan(R/d). An unscattered photon
emitted at an angle of θ1 (as measured from the detector axis) passes through
the detector backside, while an unscattered photon emitted at angles between
θ1 to θ2 passes through the detector sides. The above integrals can be solved
numerically.

Frequently, the detector crystal geometry is not a simple cylinder. For exam-
ple, coaxial germanium detectors have an insensitive cylindrical core which
reduces the calculated total efficiency. Or, sources may be placed inside an-
nular NaI(Tl) detectors (Section 4.7.3) in order to maximize counting rates.
In these cases, total efficiencies can be calculated by using more complicated
analytical expressions (Longland et al. 2006). Interactions in any absorbing
material located between source or target and detector can additionally be
taken into account by calculating the γ-ray attenuation. The total efficiency
of a HPGe detector, estimated in this manner, is displayed in Fig. 4.31b. The
detector crystal has a length and diameter of 93 mm and 90 mm, respectively,
and the insensitive core a length and diameter of 79 mm and 9 mm, respec-
tively. The detector–source distance is 16 mm. The solid line is obtained from
an analytical expression, while the diamonds represent the results of a Monte
Carlo simulation. It can be seen that ηtot varies smoothly beyond a γ-ray en-
ergy of ≈ 3 MeV. The results from the analytical expression agree with those
from the Monte Carlo calculation within 3% (Longland et al. 2006).

The above considerations apply only to an ideal measuring geometry with
no photon scattering in the surroundings of the detector. Clearly, photons
that are originally emitted in a direction outside the solid angle of the detector
could be scattered in the surrounding material and may thus reach the active
detector volume. These photons will then contribute to the total efficiency (but
not to the full-energy peak efficiency; see also Fig. 4.14b). Although calculated
values of ηtot are useful for estimates of relative total efficiencies, it is prefer-
able to measure absolute total efficiencies in a geometry identical to that used
for the actual cross section measurement. Experimental ηtot values can be ob-
tained by using single-line γ-ray emitters, such as 137Cs or 54Mn. In the data
analysis, the background intensity (without source) needs to be subtracted ap-
propriately and, in addition, the spectrum has to be extrapolated beyond the
discriminator threshold to zero pulse height (Fig. 4.17b). Alternatively, two-
line γ-ray emitters, such as 60Co, may be used to measure total efficiencies (see
below). Multiple-line γ-ray emitters are not as useful for this purpose because
of coincidence summing effects, which will be described below.

Coincidence summing

In many cases of practical interest, nuclear levels de-excite to the ground state
via the sequential emission of two or more photons, rather than by emitting
only a single γ-ray. Suppose that two coincident photons, belonging to the



4.5 Nuclear Spectroscopy 291

Fig. 4.32 Geometry for the calculation of the total γ-ray efficiency of a
cylindrical detector according to Eq. (4.52); d is the distance between
source and detector front face, t the length of the detector crystal, and
R the crystal radius.

same γ-ray cascade, interact simultaneously with the detector. The resulting
summed pulse will appear in the spectrum in a region which is different from
the full-energy peak of either photon. Furthermore, the coincident photons
that give rise to the summed signal are missing from the full-energy peaks
of the individual photons. The effect is referred to as coincidence summing and
has to be properly accounted for in order to avoid errors when efficiencies and
cross sections are measured. It is particularly severe for a nuclear level with
a complicated decay scheme, that is, if the level can decay through a large
number of lower lying states.

It is important to point out that coincidence summing is not related to the
phenomenon of pulse pileup. The latter effect is also referred to as random
summing and occurs when photons belonging to different cascades sum their
energies randomly because of relatively high pulse rates (Knoll 1989). Coinci-
dence summing, on the other hand, is independent of the pulse rate, but de-
pends on the distance between detector and source. In principle, coincidence
summing effects can always be reduced to insignificant levels by increasing
the detector–source distance. This procedure, however, may decrease the
counting efficiency to intolerable levels, especially in measurements of very
weak cross sections. The experimentalist has frequently little choice but to
maximize the counting efficiency by minimizing the detector–source distance
and, at the same time, to properly account for coincidence summing effects.

As a simple example, consider Fig. 4.33 showing a decay scheme involving
three levels in nucleus Y. Level 2 is populated, say, by a capture reaction. It
may either decay directly to the ground state (2 → 0) via emission of pho-
ton γ20 with a branching ratio of B20, or to level 1 (2 → 1) via emission of
photon γ21 with a branching ratio of B21. Subsequently, level 1 decays to the
ground state (1 → 0) via emission of photon γ10 with a branching ratio of
100% (B10 = 1). Note that B20 + B21 = 1. Angular correlations between γ-rays
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will be neglected in the following. With the total number of decaying levels
2 given by N , the number of detected photons γ21 in the full-energy peak is
equal to

N21 = N B21ηP
21 −N B21ηP

21ηT
10 = N B21ηP

21(1 − ηT
10) (4.53)

with ηP
21 and ηT

10 the (full-energy) peak and total efficiency of photon γ21 and
γ10, respectively. The intensity of the full energy peak is reduced by the amount
N B21ηP

21ηT
10, which corresponds to the probability that photon γ21 is fully de-

tected and, at the same time, the coincident photon γ10 leaves any measurable
amount of energy in the detector (for example, through Compton scattering).
Equivalently, the term N B21ηP

21(1 − ηT
10) corresponds to the probability that

photon γ21 is fully detected and, at the same time, photon γ10 escapes detec-
tion. If both photons γ21 and γ10 are detected simultaneously, then counts are
removed from the full energy peak of photon γ21. This effect, which depends
on both the peak and total detector efficiency, is referred to as summing-out.
Similarly, we obtain for the number of detected photons γ10 in the full-energy
peak

N10 = N B21ηP
10 −N B21ηP

10ηT
21 = N B21ηP

10(1 − ηT
21) (4.54)

On the other hand, the number of detected photons γ20 in the full energy peak
is

N20 = N B20ηP
20 + N B21ηP

21ηP
10 (4.55)

The intensity of the full energy peak is increased by the amount N B21ηP
21ηP

10,
which corresponds to the probability that both photons γ21 and γ10 are fully
absorbed in the detector. This effect, which depends only on the peak effi-
ciency of the detector, is referred to as summing-in.

Coincidence summing effects become significant for large efficiency values
or, equivalently, for close detector–source geometries. For example, if the
ground-state transition via emission of photon γ20, is weak (B20 ≈ 0), the
measured intensity N20 may arise entirely from summing-in. Consequently,
neglecting coincidence summing corrections may cause large systematic er-
rors in the interpretation of the γ-ray decay scheme. If the decay shown in
Fig. 4.33 is used for determining the peak efficiencies of photons γ21 and γ10,
then we obtain from Eqs. (4.53) and (4.54)

ηP
21 =

N21

N B21(1 − ηT
10)

, ηP
10 =

N10

N B21(1 − ηT
21)

(4.56)

A comparison of Eqs. (4.43) and (4.56) shows that, in the presence of coin-
cidence summing, the efficiency expression has to be modified by the total
detection efficiency factor (1 − ηT

ij ). Similar arguments hold if this decay is
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Fig. 4.33 Coincidence summing of γ-rays. (a) Scheme of three lev-
els (0, 1, 2). Level 2 is populated either in a capture reaction or by β-
decay. It can γ-decay either to level 1 or to the ground state 0. The
intermediate level 1 can only decay to the ground state. (b) Pulse
height spectrum. The peaks labeled “γ21” and “γ10” are affected by
summing-out, while the peak labeled “γ20, γ21 + γ10” is influenced by
summing-in.

used for determining the number N of decaying levels 2 (proportional to the
source activity or the cross section) from the measured peak intensities of γ21
or γ10. A proper account for summing corrections gives (see Eqs. (4.53) and
(4.54))

N =
N21

B21ηP
21(1 − ηT

10)
=

N10

B21ηP
10(1 − ηT

21)
(4.57)

In more complicated cases involving different multiple-γ-ray cascades, β-
decays to intermediate levels, internal conversion transitions, angular correla-
tions and so on, summing corrections can no longer be calculated analytically.
Positron decays to excited levels in the daughter nucleus give rise to annihi-
lation quanta that are coincident with γ-rays from the de-excitation of those
levels and thus have to be considered carefully as well (even for single-line γ-
ray sources). General numerical methods have been developed for such cases
(Debertin and Helmer 1988, Semkow et al. 1990).

Coincidence summing effects are frequently apparent from a visual inspec-
tion of the (uncorrected) full-energy peak efficiency curve if data are taken
in close geometry. Some efficiency values will lie on a smooth curve, corre-
sponding to noncoincident photons, while other data points that are affected
by coincidence summing will lie away from the curve. Based on this informa-
tion, the experimentalist can decide if corrections need to be applied in order
to achieve the desired precision. Note that coincidence summing not only in-
fluences peak intensities in the pulse height spectrum, but also total intensities
since two (or more) photons are registered by the detector as one pulse.
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Sum peak method

The importance of absolute normalization of the peak and total efficiency
curves has been stressed in previous sections. For some commercially avail-
able γ-ray sources, absolute activities can be quoted to about 1% precision. In
many cases, however, a set of absolutely calibrated sources may not be avail-
able to the experimentalist. Here we will describe a method that not only
provides simultaneously absolute peak and total efficiencies without knowl-
edge of the source activity, but the derived results will also be automatically
corrected for coincidence summing effects. The technique is referred to as the
sum peak method and utilizes the coincidence summing of photons that belong
to a two-γ-ray cascade.

Consider again the decay scheme in Fig. 4.33. Level 2 is populated by some
process (for example, β-decay of a parent nucleus), but assume now that it
decays exclusively to the intermediate level 1 (B21 = 1, B20 = 0) and, sub-
sequently, to the ground state 0 (B10 = 1). The measured intensities of the
full-energy peaks (N21, N10), the sum peak (N20), and the total intensity in the
spectrum (Nt) are given by

N21 = N ηP
21

(
1 − WηT

10

)
(4.58)

N10 = N ηP
10

(
1 − WηT

21

)
(4.59)

N20 = N ηP
21ηP

10W (4.60)

Nt = N
(

ηT
21 + ηT

10 − ηT
21ηT

10W
)

(4.61)

These relationships take explicitly the angular correlation W of photons γ21
and γ10 into account, but otherwise the first three expressions are identical to
Eqs. (4.53)–(4.55). The term ηT

21ηT
10W in the last expression corresponds to the

probability that each of the coincident photons deposits some amount of en-
ergy in the detector. In this case, the two photons are registered in the detector
as one pulse and, consequently, the total intensity in the spectrum is reduced.
As already pointed out, it is assumed that the intensity Nt has been corrected
for the background (without source) and is extrapolated to zero pulse height.

The above equations can be solved iteratively until convergence in the so-
lutions is achieved. However, in certain important cases (for example, 60Co;
see below) the energies of the two emitted photons are very similar. Hence we
can replace in the above expressions the total efficiencies ηT

21 and ηT
10 by their

average value ηT ≈ (ηT
21 + ηT

10)/2. With this approximation one obtains after
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some algebra

N =
(N21N10

N20
+ Nt

)
W (4.62)

ηP
21 =

1
W

√
N21N 2

20

N10N20Nt + N21N 2
10

(4.63)

ηP
10 =

1
W

√
N10N 2

20

N21N20Nt + N10N 2
21

(4.64)

ηT =
1

W
− 1

W

√
N21N10

N20Nt +N21N10
(4.65)

These expressions for the total number of decaying nuclei (N ) and the abso-
lute peak and total efficiencies (ηP

21, ηP
10, ηT) depend, apart from the factor W,

only on the measured intensities N21, N10, N20, and Nt.
As a specific example, consider the decay scheme of the radioisotope 60Co

(Fig. 4.30b). The β-decay populates the 2506 keV level in the daughter nucleus
60Ni. This level, in turn, γ-decays to the first excited state at 1333 keV by
emission of a 2506 keV − 1333 keV = 1173 keV photon. Subsequently, this state
de-excites to the ground state by emission of a 1333 keV photon. Other β- and
γ-decays are very weak and, therefore, this decay represents an almost ideal
realization of the schematic case discussed above. The angular correlation for
the two coincident photons from the decay of 60Co is given by (Example D.1)

W(θ) = 1 +
5
49

Q21
2 Q10

2 P2(cos θ) +
4

441
Q21

4 Q10
4 P4(cos θ) (4.66)

where Pn(cos θ) denotes a Legendre polynomial of order n and Qab
n is the solid

angle attenuation factor for photon γab; θ is the angle between the directions
of the two photons. In this case, θ = 0◦ and hence P2(cos θ) = P4(cos θ) = 1 (see
Eqs. (A.12) and (A.14)). The factors Qab

n can be estimated from the efficiency
and the detector crystal geometry by using, for example, Monte Carlo simu-
lations (Appendix D.5). Strictly speaking, the factors Qab

n also depend on the
type of event (“full-energy peak efficiency” solid angle attenuation factor ver-
sus “total efficiency” solid angle attenuation factor). For example, Eq. (4.58)
must in principle be replaced by

N21 = N ηP
21

[
1 −

(
1 +

5
49

Q21,P
2 Q10,T

2 +
4

441
Q21,P

4 Q10,T
4

)
ηT

10

]
(4.67)

In practice, the distinction between the factors Qab,P
n and Qab,T

n is found to
have a negligible effect on the final results if the distance between detector and
source is small (< 1% change in the derived efficiencies for distances < 1 cm).
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However, at larger distances this distinction may need to be taken into account
(Kim, Park and Choi 2003; Longland et al. 2006).

Gamma-ray branching ratios

The γ-ray decay probability for a transition from a given initial state to a spe-
cific lower lying final state, normalized to the total γ-ray decay probability of
the initial level, is called the γ-ray branching ratio. It is defined by the ratio
of the γ-ray partial width for a specific transition and the total γ-ray partial
width of the initial state (see Eq. (1.29)). Branching ratios contain important
information regarding the nuclear structure of the initial and final nuclear
states. They are also needed in order to calculate from the measured inten-
sities of specific transitions the total number of populated compound levels.
This number is equal to the total number of reactions that occurred and thus
determines the reaction cross section (Sections 4.8 and 4.9).

Consider the schematic level diagram shown in Fig. 4.34. An initial level
i in nucleus Y is populated by some fusion reaction X + a. The initial state
can directly decay either to the ground state (0) or to three lower lying excited
states (1, 2, 3). These transitions (thick solid arrows) are referred to as primary
γ-ray decay branches. The corresponding primary γ-ray branching ratios are
experimentally given by

Bij ≡
Nij/(ηP

ijWij)

∑
j
Nij/(ηP

ijWij)
(4.68)

with Nij, ηP
ij , and Wij the measured full-energy peak intensity, peak efficiency,

and angular correlation, respectively, for the transition leading from the ini-
tial level i to a specific final state j. It is assumed that Nij and ηP

ij have been
corrected for coincidence summing effects. There are further decay possibili-
ties involving levels other than the initial state i. These transitions (indicated
by thin solid and dashed arrows) are referred to as secondary γ-ray decay
branches.

The total number of compound nuclei created in the fusion reaction, that is,
the total number of initially populated levels i, can be obtained either from the
primary branching ratios (thick solid arrows),

Ni = ∑
j=0,1,2,3

Nij

ηP
ijWij

=
Nij

Bijη
P
ijWij

(4.69)

or from all transitions leading to the ground state (thin solid arrows plus the
primary ground-state branch),

Ni = ∑
j=1,2,3,i

Nj0

ηP
j0Wj0

(4.70)
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The proper interpretation of a γ-ray spectrum can be challenging if the de-
cay scheme is complex. Sometimes it is found that peaks originating from
the reaction of interest overlap with escape peaks, room background lines, or
peaks from reactions involving target or beam contaminants. For the analy-
sis of reaction data it is frequently of advantage to compare spectra obtained
with beam on target with those measured without beam (room background)
or with beam on a blank backing.

It is sometimes possible to determine ratios of partial widths from the ob-
served intensity balance of primary and secondary γ-ray transitions. As an
example, consider Fig. 4.35 showing a level scheme of 25Al and a germanium
γ-ray spectrum measured in the 24Mg(p,γ)25Al reaction. The reaction popu-
lates a resonance located at Er = 1616 keV, corresponding to a level at Ex =
3823 keV in the compound nucleus. This level decays via several primary
γ-ray transitions. One of these primary transitions proceeds to the proton un-
bound Ex = 2485 keV level. This state, in turn, has three possibilities of decay:
(i) a γ-ray transition to the Ex = 452 keV state; (ii) a γ-ray transition to the Ex

= 945 keV state, and (iii) a transition to the 24Mg ground state via emission of
a proton. The partial width ratio Γγ/Γ of the Ex = 2485 keV state is then given
by the ratio of the total number of γ-ray transitions decaying from this level
(2485 → 452, 2485 → 945) and the number of γ-ray transitions feeding this
level (3823 → 2485),

Γγ

Γ
=

Γγ

Γp + Γγ
=

(N2485→452/ηP
2485→452) + (N2485→945/ηP

2485→945)
(N3823→2485/ηP

3823→2485)

= 0.91 ± 0.04 (4.71)

Angular correlation effects are negligible in this case. The measured value pro-
vides important input information for the extrapolation of the 24Mg(p,γ)25Al
cross section to low energies (Powell et al. 1999).

4π detection of γ-rays

It is obvious that the interpretation of a complex γ-ray spectrum in order to de-
termine branching ratios of individual γ-ray transitions, and eventually cross
sections, can be a very time-consuming task. Such investigations are espe-
cially tedious if a large number of resonances has to be measured in a specific
reaction. Furthermore, if the Q-value of the capture reaction is large and if
the target nucleus is heavy, then incident charged-particles or neutrons may
excite a number of overlapping resonances simultaneously, giving rise to a
multitude of capture γ-rays lines in the pulse height spectrum. It must be em-
phasized that the experimental information on individual γ-ray transitions is
not necessarily required in order to determine the number of nuclear reactions
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Fig. 4.34 Level scheme showing primary (thick solid arrows) and sec-
ondary (thin solid and dashed arrows) γ-ray transitions. The thick solid
arrows originate from level i which is directly populated in the capture
reaction X + a → Y. The thin solid arrows correspond to those sec-
ondary transitions that proceed to the ground state of nucleus Y.

Fig. 4.35 Study of the 24Mg(p,γ)25Al reac-
tion at a proton bombarding energy of Ep
= 1620 keV. (a) Level scheme of 25Al. The
capture reaction populates directly a level
at Ex = 3823 keV which γ-ray decays to a
state at Ex = 2485 keV. The latter state ei-
ther decays via proton emission or via γ-ray
transitions to lower lying levels (Ex = 452 or

945 keV). (b) Measured pulse height spec-
trum. The γ-ray transitions populating or
decaying from the Ex = 2485 keV state are
indicated by solid circles. See discussion
in the text. Reprinted from D. C. Powell et
al., Nucl. Phys. A, Vol. 660, p. 349 (1999).
Copyright (1999), with permission from El-
sevier.

that took place during the experiment. All that is needed from the astrophysi-
cal point of view is the total number of γ-ray cascades initiated by the reaction
of interest.
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Consider as an example the setup shown in Fig. 4.36. The target or sam-
ple is located at the center of a large detector crystal that covers a solid angle
of nearly 4π. If every single γ-ray of a specific cascade emitted by the tar-
get is fully absorbed by the detector, then each radiative capture would result
in a single pulse. The system would have a detection efficiency of unity for
each radiative capture, independent of the cascade structure. The pulse height
spectrum will show a peak at an energy equal to the sum of the Q-value and
the center-of-mass bombarding energy, Esum

γ = Q + Ecm. Not only does such
a technique greatly simplify the data analysis, but it has the additional advan-
tage that angular correlation effects are negligible. Furthermore, contaminant
reactions will give rise to sum peaks at different locations in the spectrum
since their Q-values are likely to differ from the Q-value of the reaction of
interest. This technique, in fact, takes advantage of coincidence summing.

The 4π detection method has been successfully applied in a number of
investigations, including charged-particle and neutron-capture reactions
(Lyons, Toevs and Sargood 1969; Wisshak et al. 1990; Harissopulos 2004).
Complications arise since any crystal of finite dimensions has a total detec-
tion efficiency of less than unity for any given photon. Some photons may
escape through openings of the detector (for example, the beam pipe). Others
may be absorbed by the target chamber or may simply traverse the detector
without interaction. Such effects cause incomplete summing and give rise to
a continuum of pulses below the sum peak. Also, the efficiency for detecting
a cascade (summing efficiency) is no longer constant and will depend on the
γ-ray decay scheme. In practice it is found, with sufficiently large detector
crystals, that the summing efficiency depends only slightly on the cascade
structure and that this dependence can be modeled using Monte Carlo codes
(Tsagari et al. 2004). Figure 4.37 shows three pulse height spectra, measured
with a summing crystal near the Er = 992 keV resonance in 27Al(p,γ)28Si. The
on- and off-resonance spectrum is shown in parts (a) and (b), respectively.
The difference spectrum, shown in part (c), clearly displays the sum peak re-
sulting from coincidence summing of complete γ-ray cascades emitted in the
27Al(p,γ)28Si reaction (Q = 11.6 MeV). The continuum and all the other peaks
visible below the sum peak in part (c) are caused by incomplete coincidence
summing.

4.5.3
Neutron Spectroscopy

Neutrons must be observed through nuclear interactions (reactions or scat-
tering) in the detection medium that result in energetic charged-particles
(Section 4.2.3). The cross section for these processes depends in most cases
strongly on neutron energy. Consequently, very different devices are in use
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Fig. 4.36 4π detection of cascading γ-rays. (a) Level scheme showing
a cascade consisting of three photons (γ1, γ2, and γ3). (b) Summing
crystal covering a solid angle close to 4π. The target is located at the
center of the detector. Photons emitted in the direction of the beam
pipe escape detection. (c) Schematic pulse height spectrum showing a
sum peak corresponding to an energy of E(γ1) + E(γ2) + E(γ3).

for detecting neutrons in different energy regions. A detailed discussion of
the various types of neutron detectors can be found in Knoll (1989). It has
already been pointed out that astrophysically important reactions frequently
have very small cross sections and thus detectors with high efficiencies are
required for these measurements. Most neutron measurements in nuclear as-
trophysics have been performed by using moderated proportional counters.
In the following, we will focus on this detector type. Scintillators also have
high efficiencies for neutron detection (Section 4.4.3) but are also sensitive
to beam-induced and room-background γ-rays. Although it is possible with
scintillators to suppress unwanted γ-ray signals via pulse shape discrimina-
tion techniques, the remaining γ-ray background is not negligible. For this
reason, moderated proportional counters achieve in general higher sensitivi-
ties compared to scintillators in measurements of weak cross sections.

Response function

We start with a discussion of the response function of proportional counters.
As a specific example, a detector filled with 3He gas is chosen. Similar argu-
ments will hold for 10BF3 proportional counters. Suppose that thermal neu-
trons (En = 0.025 eV) are incident on such a detector, as shown in Fig. 4.38a.
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Fig. 4.37 Pulse height spectra, mea-
sured with a summing crystal near the Er
= 992 keV resonance in 27Al(p,γ)28Si. (a)
On-resonance spectrum. (b) Off-resonance
spectrum. (c) Difference spectrum display-
ing the sum peak that results from coinci-
dence summing of complete γ-ray cascades
emitted in the 27Al(p,γ)28Si reaction (Q =

11.6 MeV). The continuum and all other
peaks visible below the sum peak in part
(c) are caused by incomplete coincidence
summing. Reprinted from S. Harissopulos
et al., Eur. Phys. J. A, Vol. 9, p. 479 (2000).
Copyright (2000), with kind permission of
Springer Science and Business Media.

The Q-value of the 3He(n,p)3H reaction amounts to 764 keV. Since the incom-
ing neutron momentum is very small, the reaction products (protons and tri-
tons) are emitted in opposite directions and the total reaction energy is im-
parted to the fragments as kinetic energy according to the ratio of their masses
(Ep = 573 keV, Et = 191 keV). If both particles are stopped in the counter
gas (case a), then the magnitude of the current output pulse corresponds to
764 keV. These events appear in the full-energy peak (FEP) of the pulse height
spectrum (Fig. 4.38b). However, if one of the particles strikes the counter wall,
then a smaller pulse is produced. This phenomenon is referred to as the wall
effect. For example, case (b) shows a reaction occurring close to the counter
wall. The proton is completely stopped in the gas, while the entire energy of
the triton is absorbed by the wall. The corresponding event then appears in
the pulse height spectrum at an energy of 573 keV. If the reaction occurs at
some distance from the wall (case c), so that the triton can deposit at least a



302 4 Nuclear Physics Experiments

Fig. 4.38 Measurement of thermal neutrons (En = 0.025 eV) with a
3He gas proportional counter. (a) Histories of neutron interactions in
the detector. (b) Pulse height spectrum. The full-energy peak occurs
at the Q-value of the 3He(n,p)3H reaction (Q = 764 keV). The steps at
191 keV and 573 keV are caused by the wall effect (see the text). The
discriminator threshold is indicated by the vertical dashed line.

fraction of its energy in the gas, then a larger pulse is produced. Similar ar-
guments hold for the opposite case (case d), that is, when the energy of the
triton is fully absorbed in the gas while only partial proton energy deposition
occurs. The wall effect gives rise to steps at 191 keV and 573 keV in the pulse
height spectrum, corresponding to the individual energies of the proton and
triton fragments. It also depends on the geometry and size of the counter and
is less pronounced for larger detectors and for higher gas pressures. The wall
effect can be reduced by adding a small amount of a heavier gas (for example,
Kr) to the 3He since then the ranges of the charged particles become smaller.

The resolution of the full-energy peak measured with 3He or 10BF3 propor-
tional counters amounts typically to several percent for thermal neutrons. It
should be clear from the above considerations that for incident thermal neu-
trons, the pulse height spectrum measured with proportional counters pro-
vides no information regarding the neutron energy.

An important property of proportional counters is their ability to discrim-
inate neutrons from room or beam-induced background γ-rays. Photons in-
teract mainly with the counter walls by creating secondary electrons. These
electrons have relatively large ranges in gases and thus will deposit only a
small fraction of their energy in the active volume before reaching the counter
wall. As a result, most γ-rays will produce pulses of much smaller amplitude
compared to those induced by neutrons. In practice, a discriminator thresh-
old level (dashed line in Fig. 4.38b) is set just below the structure caused by
the wall effect. By accepting only events located above the threshold, all the
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neutrons are counted while low amplitude events caused by electronic noise,
γ-rays and so on, are rejected.

Moderated proportional counters

In analogy to the case of γ-rays (Section 4.5.2), the detection probability for an
incident neutron traversing a path length of x in the active detector volume
is given by P = 1 − e−Nσx, with σ being the cross section of the reaction that
converts the incoming neutron to charged particles and N being the num-
ber density of active detector nuclei (10B or 3He). For example, for a 30 cm
long cylindrical 10BF3 proportional counter of 600 torr gas pressure we obtain
a total efficiency of about 90% for thermal neutrons that are incident along
the detector axis (Example 4.2). However, in astrophysically important re-
actions the neutrons are typically emitted with energies in the keV to MeV
range rather than with thermal energies. The cross sections of the reactions
3He(n,p)3H and 10B(n,α)7Li decrease rapidly for increasing neutron energies,
as can be seen from Fig. 4.15a. Consequently, the efficiency of proportional
counters for directly detecting fast neutrons is rather small, making such de-
tectors unsuitable for measuring weak cross sections of astrophysical interest.
The detection efficiency of proportional counters for fast neutrons can be sub-
stantially improved by surrounding the detector with a suitable moderator,
such as polyethylene or paraffin. The incident fast neutrons slow down in
the moderating medium before reaching the counter and are detected with a
much higher efficiency.

Figure 4.39 shows a typical setup of a system with a high efficiency for
detecting fast neutrons. It consists of several 3He- or 10BF3-filled propor-
tional counters, arranged in a concentric ring around the target chamber. The
counters are embedded in a cylindrical polyethylene moderator and are sur-
rounded by layers of boron–paraffin and cadmium. The latter materials act
as shields by moderating room background neutrons in the paraffin and by
absorbing the moderated neutrons in the boron or cadmium layer before they
can reach the active detector volume. The (beam-induced) reactions of interest
take place in the target chamber, located close to the center of the entire detec-
tor. The total efficiency of such devices can amount to ≈ 20–30% for neutron
energies between 0.5 and 10 MeV (Section 4.7.4). The choice between 3He and
10BF3 as fill gas is usually governed by considerations of efficiency and γ-ray
sensitivity (East and Walton 1969). For cases in which the largest detection
efficiency is required, 3He counters are preferable to 10BF3 tubes since the for-
mer can be operated at much higher pressures. On the other hand, the latter
are much less sensitive to γ-ray background because the 10B(n,α)7Li reaction
has a far higher Q-value compared to the 3He(n,p)3H reaction.
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Fig. 4.39 Moderated proportional counter.
Several 3He or 10BF3 proportional detectors
(open circles) are arranged in a concentric
ring around the target chamber (shown as
full circle). The detectors are embedded
in polyethylene, which acts as a modera-
tor for beam-induced fast neutrons. After
moderation, these neutrons are much more
efficiently detected. The inner detector core

is surrounded by layers of cadmium and
boron–paraffin. These act as shields for
unwanted contributions from background
neutrons (see the text). The entire assem-
bly may be surrounded by plastic scintil-
lator veto shields (Section 4.4.3) in order
to reduce the background from cosmic-ray
muons.

Efficiency calibrations

Most efficiency calibrations of neutron detectors are performed with cali-
brated neutron sources. Radioisotopes that emit neutrons with discrete en-
ergies are practically not available as sources and thus laboratory neutron
sources are based either on spontaneous fission or on nuclear reactions.

Many transuranium elements decay by spontaneous fission and thereby re-
lease fast neutrons, fission fragments, β- and γ-radiation. The material is usu-
ally encapsulated in a relatively thick container so that only neutrons and γ-
rays emerge from the source. The most common type of this source is 252Cf
(T1/2 = 2.65 y). The energy spectrum of the neutrons is continuous up to about
10 MeV with a maximum at ≈ 0.6 MeV. The neutron yield amounts to about
2.3 × 106 s−1µg−1 (Knoll 1989). Compared to other neutron sources, 252Cf can
be made in relatively small sizes.

Neutron sources can also be produced by mixing an α-emitting isotope with
a substance such as 9Be, which exhibits a relatively large (α,n) reaction cross
section. One of the most common sources of this type consists of a 239Pu–Be
mixture in which α-particles of 5.14 MeV energy from the decay of 239Pu initi-
ate the reaction 9Be(α,n)12C. The neutron transitions occur either to the ground
state or to various excited states in 12C. The α-particles lose some of their ini-
tial energy in the source before reacting with the 9Be nuclei and, therefore,
the neutron energy spectrum is continuous up to about 11 MeV. Similar argu-
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ments hold for other (α,n) neutron sources. A 239Pu–Be source yields about
60 neutrons per 106 primary α-particles. The neutron yield of these sources
should decay according to the half-life of the α-emitting nuclei. However, this
assumption does not necessarily hold if the source contains contaminants that
either emit directly α-particles or decay to α-emitting daughter nuclei. Such
contaminants can even cause the neutron yield to increase with time (Knoll
1989).

Similarly, γ-ray emitters are sometimes used in order to produce neutrons
via the photoneutron reactions 9Be(γ,n)8Be (Q = −1.66 MeV) or 2H(γ,n)p (Q =
−2.23 MeV). Suitable γ-ray emitters must provide photons of relatively large
energies in order to initiate (γ,n) reactions. An example for such a neutron
source is a mixture of 88Y–Be. Since the γ-rays are emitted with discrete en-
ergies and are not slowed down in the source, the emitted neutrons will also
be monoenergetic, apart from a small kinematic energy spread. The disad-
vantage of (γ,n) neutron sources is that high γ-ray activities are required to
achieve reasonable neutron intensities. As a result, the neutrons are accompa-
nied by a large γ-ray background.

Specific examples for the types of sources discussed above, together with
their neutron energy regions, are listed in Table 4.10. Neutrons can also be pro-
duced directly at accelerators in reactions such as D(d,n)3He (Q = 3.27 MeV)
and 7Li(p,n)7Be (Q = −1.64 MeV). In addition, theoretical calculations of neu-
tron detector efficiencies are routinely performed by using Monte Carlo simu-
lations (Briesmeister 1993).

Tab. 4.10 Properties of neutron calibration sources. (a) From Knoll (1989), unless mentioned
otherwise. (b) From Lorch (1973).

Source Type Half-lifea En
a (MeV)

252Cf s.f. 2.65 y < 10b

239Pu–Be (α,n) 24000 y < 11
241Am–Be (α,n) 433 y < 10b

88Y–Be (γ,n) 107 d 0.152
0.949

124Sb–Be (γ,n) 60.2 d 0.023

4.6
Miscellaneous Experimental Techniques

A number of experimental techniques are used in direct measurements of as-
trophysically important reactions that require special equipment and proce-
dures. In this section, we will focus on three particularly important exam-
ples: (i) radioactive ion beams, (ii) the activation method, and (iii) the time-of-
flight technique. The last two are used both in charged-particle and neutron-
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induced reaction studies, but in nuclear astrophysics their main (although not
exclusive) application is in the field of neutron-induced reactions. For other
interesting techniques, such as accelerator mass spectrometry (Wallner et al.
2006) or the use of etched track detectors (Somorjai et al. 1998), the reader is
referred to the literature.

4.6.1
Radioactive Ion Beams

Proton- and α-particle-induced reactions in a stellar plasma at elevated tem-
peratures do not only involve stable nuclides, as will become apparent in the
next chapter, but unstable nuclides also participate in the nucleosynthesis. The
instability of one of the interacting nuclei represents a significant challenge for
the experimentalist. If the half-life exceeds a few days, then it may be possible
to fabricate a radioactive target and to measure directly the reaction of interest
by bombarding the target with protons or α-particles using the experimental
techniques and procedures described so far. Examples for such studies are
the measurements of proton capture reactions on the radioactive species 22Na
(Seuthe et al. 1990, Stegmüller et al. 1996) and 26Alg (Buchmann et al. 1984,
Vogelaar 1989) with half-lives of T1/2 = 2.6 y and 7.2 × 105 y, respectively.
However, if the half-life of a species amounts to a few minutes or less, then
the fabrication of a radioactive target is not feasible. A direct measurement
of such reactions is nevertheless possible if the role of target and projectile
are interchanged. Consider a reaction between a light particle x (proton or
α-particle) and a short-lived heavy nucleus X. The bombardment of target X
with projectiles x may not be feasible, but it may be possible to produce a
beam of radioactive nuclei X which is then directed onto a stationary target
consisting of the light nuclei x. Such measurements are referred to as inverse
kinematics studies. For example, suppose one would like to measure the pro-
ton capture cross section of the p + X reaction at a center-of-mass energy of
Ecm = 0.5 MeV, where the short-lived nucleus X has a mass number of A = 20.
The laboratory beam energy of X must then be Elab(20X) = Ecm(mp + mX)/mp
= 10.5 MeV (see Eq. (C.24)). The time of flight of X over a distance of ≈ 100 m
amounts only to ≈ 10 µs and, therefore, a measurement of the reaction p + X
is in principle feasible if the half-life of X is not too short (say, in this example,
T1/2 > 10 µs).

The production, transport, and acceleration of radioactive ion beams suit-
able for nuclear astrophysics measurements requires substantial resources and
efforts. Several different techniques have been developed which are comple-
mentary in their capabilities. In the simplest case, the radioactive material
of interest is produced offline at a nuclear reactor or accelerator and is then
converted into a suitable chemical form before installation in an ion source of
a second accelerator capable of accelerating the radioactive heavy ions. This
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method, called the batch mode technique, is only suitable for beams of relatively
long-lived nuclei. It has been applied, for example, in studies of the 7Be(p,γ)8B
and 44Ti(α,p)47V reactions (Gialanella et al. 2000, Sonzogni et al. 2000). The
most direct approach, however, is the online production of radioactive nuclei,
their ionization and extraction from an ion source, and their subsequent accel-
eration. This method, referred to as the isotope separator online (ISOL) technique,
has been used extensively in nuclear astrophysics measurements. In the fol-
lowing we will briefly describe this method. More specific information can be
found in Smith and Rehm (2001) and Blackmon, Angulo and Shotter (2006).
Other techniques involving measurements with (low-energy) unaccelerated
radioactive ion beams or with high-energy radioactive beams produced via
projectile fragmentation are mainly used in indirect studies of important nu-
clear structure properties. Since they are usually not suitable for direct mea-
surements of low-energy nuclear reactions, they will not be discussed here.
The reader can find more information on the latter topics in Kratz (1988) and
Mueller and Sherrill (1993).

The isotope separator online (ISOL) technique is shown schematically in
Fig. 4.40. A beam of stable nuclei from a production accelerator bombards a
thick target and produces radioactive nuclei. These diffuse out of the target,
through a transfer tube, and into an ion source where they are ionized and
continuously extracted. The radioactive ions are then mass separated from
other, undesired, isotopes. At this stage they represent a beam of unacceler-
ated, low-energy radioactive ions. Subsequently, they are accelerated by a post
accelerator which allows a tuning of the beam energy to the desired value.
This accelerated radioactive ion beam is finally incident on a hydrogen or he-
lium target. The radiation emitted in the reaction of interest is then observed
using suitable detectors. Beams from ISOL facilities, which are operational
for example at Louvain-la-Neuve, Oak Ridge National Laboratory, CERN and
TRIUMF, have excellent beam qualities (resolution and spread). The success
of an experiment depends obviously on the radioactive ion beam intensity,
which is limited by the primary production cross section, the diffusion veloc-
ity of the radioactive ions in the production target, the effusion of radioactive
ions out of the target, and the ionization efficiency in the ion source. Unfor-
tunately, there is no single combination of production beam, thick target, and
ion source that can produce all radioactive species of astrophysical interest.
More typically, each radioactive ion beam experiment requires an extensive
and time-consuming effort of beam development where the composition and
chemistry of the production target is varied until the intensity of the radioac-
tive species of interest is maximized. Beams of some elements, for example,
noble gases or alkali metals, can be produced with relatively high intensities,
while beams of refractory elements are difficult to extract from the produc-
tion target and are thus available only with much lower intensities. Some of
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Fig. 4.40 Basic components of an iso-
tope separator online (ISOL) facility for the
production of accelerated radioactive ion
beams. The dashed square marks the loca-
tion of the actual reaction measurement of
astrophysical interest. In a reaction of type
X(a,b)Y, counters 1 or 3 detect the emitted
light particle b. Alternatively, the light parti-
cle b and the corresponding heavy residual

nucleus Y may be detected in coincidence.
In a capture reaction, X(a,γ)Y, the heavy
residual nucleus Y may be detected in a re-
coil separator (counter 2). Alternatively, the
residual nuclei may be detected by counter
2 in coincidence with the corresponding
prompt γ-rays in counters 1 or 3. See the
text.

the issues related to the production of radioactive beams at ISOL facilities are
discussed in Dombsky, Bricault and Hanemaayer (2004). It is important to em-
phasize that at present, even under favorable circumstances, the radioactive
beam intensities delivered to an experiment amount to at most ≈ 1010 ions/s.
Comparison to a value of 6 × 1014 particles/s for a 100 µA proton beam in
a typical normal kinematics experiment reveals that a radioactive ion beam
facility must be carefully designed and optimized in order to avoid any inten-
sity losses of the precious radioactive beam. In addition, it is imperative that
the detection system has a large detection efficiency and large discriminating
power against unwanted beam-induced background contributions.

We will first briefly discuss some important components of ISOL facili-
ties before describing a specific experiment in more detail. In a star, most
charged-particle reactions involving radioactive ions are induced by protons
or α-particles. Therefore, hydrogen and helium are the most important tar-
get materials in direct radioactive ion beam measurements. The target re-
quirements differ somewhat from those appropriate for normal kinematics
experiments (Section 4.3). In the case of hydrogen, thin polyethylene [(CH2)n]
foils have been employed successfully in several measurements. They are me-
chanically stable, even if stretched to thicknesses of 20–1000 µg/cm2, and they
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have been used with beam intensities of up to 109 particles/s without signif-
icant degradation. However, the carbon content may give rise to an intense
beam-induced background dominated by elastic scattering. Gas targets are
the obvious choice for helium, and are also advantageous for hydrogen. Gas
cells with thin entrance and exit windows are easy to handle but the window
foils degrade the beam energy resolution and induce background reactions.
Windowless gas targets are the preferred choice (Section 4.3.2) although they
are bulky and expensive since they require many pumping stations in order
to reduce the pressure to the 10−7 torr range.

The fact that radioactive beam experiments are performed in inverse kine-
matics has for the reaction products the interesting consequence that the solid
angle in the center-of-mass system is compressed into a significantly smaller
solid angle in the laboratory reference frame (Appendix C.2). Detection sys-
tems used in radioactive ion beam experiments take advantage of this cir-
cumstance in order to increase the efficiency and sensitivity. Light charged
particles from (p,α) or (α,p) reactions have been measured using arrays of sil-
icon strip detectors, arranged to cover a large solid angle around the target.
These are highly segmented, with well over 100 elements, and provide excel-
lent energy and angle resolution. Thicknesses for these counters amount to
50–1000 µm and arrays can be stacked to allow for particle identification by
measuring both energy loss (∆E) and total energy (E). In some cases the heavy
reaction products Y have been detected in coincidence by using additional de-
tectors placed downstream of the target. Such experiments require typically
radioactive ion beam intensities in excess of 105 particles/s in order to achieve
sufficient counting statistics.

Radiative capture reactions of type (p,γ) or (α,γ) can in principle be stud-
ied by the in-beam measurement of γ-rays (Section 4.5.2) or by the activation
method (Section 4.6.2). Both of these techniques have drawbacks. The di-
rect detection of γ-rays alone is especially difficult for proton-rich radioactive
beams which give rise, after scattering and positron decay in and near the
target chamber, to a high background from 511 keV photons. The activation
measurement is useful only in those cases where the observed decay is in-
deed a signature of the reaction of astrophysical interest. The best method
of studying capture reactions is by directly detecting the recoil nuclei Y. This
technique is particularly well suited to radioactive ion beam measurements in
inverse kinematics. The outgoing γ-ray transfers a very small momentum to
the compound nucleus which is therefore typically emitted within an angle of
φlab ≈ 1◦ with respect to the beam direction (Problem 4.8). This allows for an
efficient detection of the heavy reaction products provided that they can be
separated from the incident radioactive beam which of course moves into the
same direction. In fact, the incident projectiles and the heavy reaction prod-
ucts have the same linear momentum and differ in mass and velocity by only
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a few percent. In addition, the cross sections of interest are usually small and
thus the number of beam projectiles exceeds the number of reaction products
by very large factors (1010–1015). Recoil separators are sophisticated devices
that facilitate the detection of reaction products in the presence of an over-
whelming background of beam particles. Mass separation and beam rejection
are accomplished by using an arrangement of dipole magnets, electrostatic de-
flectors, or Wien filters. The reaction products are collected at the focal plane
of the device and are dispersed according to their mass-to-charge ratio. A
variety of detection schemes may be employed, for example, time-of-flight,
Z identification or delayed activity detection. The detection sensitivity may
be significantly improved by measuring the heavy recoils at the focal plane
of the separator in coincidence with prompt γ-rays detected near the target.
Typically, radioactive ion beam intensities in excess of ≈ 107 particles/s are
required for such experiments in order to accumulate sufficient counting sta-
tistics.

The first nuclear astrophysics experiment with an accelerated radioactive
ion beam was the measurement of the 13N(p,γ)14O reaction at Louvain-la-
Neuve (Delbar et al. 1993). Since this pioneering study, several astrophysically
important reactions have been measured directly or indirectly at a number of
different radioactive ion beam facilities worldwide. A discussion of some of
these experiments is given in Smith and Rehm (2001) and Blackmon, Angulo
and Shotter (2006) and will not be repeated here. Radioactive ion beam facil-
ities have opened a window of previously unavailable capabilities in nuclear
astrophysics. The results obtained from these measurements have a crucial
impact on predictions of explosive nucleosynthesis. Therefore, it is worth-
while to discuss as an example one particular experiment in more detail.

The 21Na(p,γ)22Mg reaction is important for the production of the long-
lived γ-ray emitter 22Na in classical novae (Section 5.2.2). The reaction was
directly measured (D’Auria et al. 2004) at the TRIUMF-ISAC facility (see color
Fig. 12 on page 642), located in Vancouver, Canada, in the energy range of
the nova Gamow peak (E0 ± ∆/2 = 270 ± 100 keV at T = 0.3 GK). A 500 MeV
proton beam of ≤ 30 µA intensity from the TRIUMF cyclotron bombarded a
thick SiC production target. Spallation reactions on Si produced 21Na which
diffused from the hot target through a transfer tube and was ionized in a sur-
face ionization source. After mass separation, the low-energy 21Na beam was
accelerated to energies variable between 0.15 and 1.5 MeV/u by using a ra-
diofrequency quadrupole (RFQ) accelerator and a drift-tube linac. The inten-
sity of the 21Na beam delivered to the experiment amounted up to 109 21Na
ions per second. The radioactive 21Na beam was then incident on a window-
less hydrogen gas target. Prompt γ-rays were detected in an array of 30 BGO
scintillator detectors, packed tightly around the gas target, with an almost 4π

coverage of the solid angle. The 22Mg nuclei were separated from the intense
beam by using the DRAGON recoil separator (Engel et al. 2005) and were de-
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Fig. 4.41 Pulse height spectrum of heavy
ions detected at the focal plane of a recoil
separator in the study of the Ecm

r = 207 keV
resonance in 21Na(p,γ)22Mg. The dashed
histogram shows the singles spectrum and
is dominated by 21Na beam particles leaking
through the separator. The shaded spec-
trum displays those heavy ions which are
in coincidence with prompt γ-rays detected

in a BGO array surrounding the hydrogen
gas target. These correspond to the reac-
tion products 22Mg since 21Na beam par-
ticles are not in coincidence with prompt
γ-rays. Reprinted with permission from J. M.
D’Auria et al., Phys. Rev. C, Vol. 69, 065803
(2004). Copyright (2004) by the American
Physical Society.

tected in the focal plane by a double-sided silicon strip detector. A coincidence
requirement between the 22Mg nuclei detected at the focal plane and the cor-
responding γ-rays measured near the target by the BGO array allowed for a
very high detection sensitivity, even though the 22Mg nuclei had rather low
energies. A pulse height spectrum of heavy ions detected at the focal plane of
the recoil separator at a bombarding energy in the region of the lowest lying
resonance (Ecm

r = 207 keV) in 21Na(p,γ)22Mg is shown in Fig. 4.41. The dashed
histogram displays the singles spectrum and is dominated by unwanted 21Na
beam particles leaking through the separator. The shaded histogram shows
only those heavy ions that are in coincidence with γ-rays (Eγ ≥ 3 MeV) de-
tected in the BGO array. These correspond to 22Mg ions since the 21Na beam
particles are not expected to be in coincidence with prompt γ-rays. The clean
identification of 22Mg recoils allowed for a precise measurement of the en-
ergy and strength of this resonance which dominates the total 21Na(p,γ)22Mg
reaction rates at typical nova temperatures.

4.6.2
Activation Method

We already discussed the prompt detection of reaction products, that is, the
direct detection of the emitted particles or γ-rays in reactions of type X(a,b )Y
or X(a,γ)Y, respectively. From their measured intensity we can infer the to-
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tal number of reactions that took place. This information is used to calculate
cross sections or resonance strengths (Sections 4.8 and 4.9). There are instances
where such a reaction will produce a radioactive nucleus Y in its ground state
(or a long-lived isomeric state). Instead of detecting the prompt radiation b,
one could count the number of nuclei Y by observing the delayed residual
radioactivity after the bombardment of the target or sample with projectiles
has stopped. This technique is referred to as the activation method. In nuclear
astrophysics measurements, it is mainly used for studies of neutron-capture
reactions (Käppeler 1999). For applications to charged-particle-induced reac-
tion studies see, for example, Sauter and Käppeler (1997) or Gyuerky et al.
(2003).

The activation method has certain advantages over other techniques. For
example, consider a capture reaction that gives rise to a complicated γ-ray
decay scheme. The determination of prompt γ-ray intensities and branch-
ing ratios in order to infer the number of nuclear reactions that took place
may become very challenging in this case (Section 4.5.2). However, all these
γ-ray cascades will eventually make transitions to the ground state (or a long-
lived isomeric state) of nucleus Y. Counting the number of radioactive nuclei
Y via the activity provides directly the information of astrophysical interest,
independent of the details of decay branchings or angular correlation effects.
Furthermore, since the activity is measured after the irradiation took place,
there is no prompt beam-induced background and the counting setup can be
optimized more easily for efficiency since geometrical complications, such as
target chambers and beam pipes, are absent in the offline measurement. Fi-
nally, the activation method is selective for specific reactions, that is, by mea-
suring the energies of the radioactive decay products or the time evolution of
the radioactive decay, one can infer the identity of the radioactive nuclei Y.
It is sometimes even possible to determine cross sections for several different
reactions in a single measurement. The activation method is suitable for ra-
dioactive reaction products with half-lives between several years and fractions
of a second (Beer et al. 1994).

The rate of change in the number of radioactive nuclei Y is given by the
difference of production and decay rates,

dNY(t)
dt

= P(t) − λYNY(t) (4.72)

with NY and λY = ln 2/T1/2 the number and decay constant of nuclei Y,
respectively. The production rate is given by

P(t) = NX

∫
σ(E)φ(E, t) dE = NXσ̂

∫
φ(E, t) dE = NXσ̂φ(t) (4.73)

with NX the number of target nuclei X, σ the cross section for the X(a,b )Y re-
action, and φ(t) the incident particle flux (in particles per area per time). A
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number of assumptions have been made in the above expression: (i) the num-
ber of target or sample nuclei X does not change during the irradiation (that
is, the target does not deteriorate and the fraction of target nuclei destroyed is
negligible), and (ii) the target or sample is sufficiently thin so that the energy
loss of incident charged particles in the target, or the attenuation of incident
neutrons in the sample, is small. Note that σ̂ represents a cross section which
is averaged over the energy distribution of incident projectiles (and over the
target thickness for charged particles). For the general case of a varying inci-
dent particle flux, Eq. (4.72) has to be integrated numerically. For the special
case of a constant flux, φ(t) = const, we can solve Eq. (4.72) analytically. For
the initial condition NY(t = 0) = 0 the solution is

NY(t) =
NXσ̂φ

λY

(
1 − e−λYt

)
(4.74)

If λYt � 1, we find NY(t) ≈ NX σ̂φ[1− (1−λYt)]/λY = NXσ̂φt, that is, NY(t)
increases linearly for small irradiation times. For λYt 	 1, we obtain NY(t) ≈
NXσ̂φ/λY = NXσ̂φT1/2/ ln 2 = N S

Y , and NY(t) reaches a saturation value,
N S

Y , where the production rate becomes equal to the destruction rate. At the
end of the irradiation period, t = t0, the number of nuclei NY is NY(t0) =
NXσ̂φ(1 − e−λYt0)/λY . Since nuclei Y are no longer produced for t > t0, the
production rate is zero and the time evolution of NY(t) is given by

NY(t) = NY(t0)e−λY(t−t0)

=
NXσ̂φ

λY

(
1 − e−λYt0

)
e−λY(t−t0) for t > t0

(4.75)

If the sample is counted between t1 and t2, the number of disintegrations in
that period is given by the integral over the activity AY(t) = NY(t)λY ,

D(t1, t2) =
∫ t2

t1

λYNY(t) dt = NXσ̂φ
(

1 − e−λYt0
) ∫ t2

t1

e−λY(t−t0) dt

=
NXσ̂φ

λY

(
eλYt0 − 1

) (
e−λYt1 − e−λYt2

)
(4.76)

Hence, the cross section σ̂ can be determined from the number of disintegra-
tions, the number of target nuclei, and the total flux of incident particles. Ob-
viously, Eq. (4.76) can also be used to determine an unknown neutron flux
from a well-known cross section.

Figure 4.42 shows schematically the time evolution of the number of ra-
dioactive nuclei Y. In this example, the incident particle flux is constant, φ(t)
= const. The irradiation of the target starts at t = 0 and stops at t0 = 6T1/2,
where NY(t) is close to the saturation value [NY(t)/N S

Y = 0.984]. After some
waiting period between t0 and t1, the activity is counted between t1 and t2,
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Fig. 4.42 Evolution of the number of radioactive nuclei Y (in units of
the saturation value N S

Y ) versus time (in units of the half-life T1/2).
Here, the incident particle flux is assumed to be constant. The irradia-
tion of the target starts at time t = 0 and stops at t0 = 6T1/2, when the
ratio NY(t)/N S

Y is close to unity. After some waiting period, t1 − t0,
the activity is counted between t1 and t2 when NY(t) decays exponen-
tially.

when NY(t) decays exponentially. The relationship between the number of
disintegrations (or the measured number of counts) and the cross section is
discussed in Sections 4.8 and 4.9.

Targets or samples must be sufficiently thick in order to achieve reasonable
counting statistics. But they should not be too thick or otherwise: (i) incident
neutrons may be attenuated significantly or undergo multiple scattering while
effects may be difficult to correct for; (ii) the cross section for incident charged
particles will be integrated over too large an energy range and cannot be deter-
mined with reasonable energy resolution; and (iii) the self-absorption of the
emitted delayed radiation (for example, electrons or photons) may become
significant. The loss of radioactive nuclei Y due to sputtering or backscat-
tering is another problem when targets are bombarded with intense charged-
particle beams. Such losses can be measured and accounted for by surround-
ing the target with a catcher foil. Furthermore, one must ensure that the
radioactive nuclei Y of interest are not produced during the irradiation via
some other nuclear reaction, Z(c,d)Y, involving contaminants in the beam or
the target. For example, a measurement of the 27Al(n,γ)28Al reaction may be
complicated by the presence of a 28Si contamination in the aluminum sample
since the 28Si(n,p)28Al reaction also produces 28Al and hence interferes with
the actual measurement.
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Fig. 4.43 Results of an activation mea-
surement of the 175Lu(n,γ)176Lum capture
reaction. The incident neutron energy
distribution closely resembles a Maxwell–
Boltzmann distribution. Shown are relevant
parts of γ-ray spectra in the vicinity of the
88 keV γ-ray line from the (delayed) decay
of the isomeric state 176Lum (T1/2 = 3.68 h).

The different spectra were observed in 1 h
intervals. The exponential decay, shown in
the inset, serves as an additional check on
the possible presence of radioactive con-
taminants. Reprinted with permission from
H. Beer and F. Käppeler, Phys. Rev. C, Vol.
21, p. 534 (1980). Copyright (1980) by the
American Physical Society.

Results of an activation measurement are shown in Fig. 4.43. The capture
reaction 175Lu(n,γ)176Lum was studied by using an incident neutron energy
distribution that closely resembled a Maxwell–Boltzmann distribution (Sec-
tion 4.1.2). The figure shows relevant parts of γ-ray spectra in the vicinity of
the 88 keV γ-ray line from the (delayed) decay of the isomeric state 176Lum

(T1/2 = 3.68 h). The spectra were observed in 1 h intervals and clearly reveal
a decline in activity. The exponential decay, shown in the inset, serves as an
additional check on the possible presence of radioactive contaminants.

4.6.3
Time-of-Flight Technique

The time-of-flight method provides neutron beams with a resolution that is
far superior compared to most other techniques. Consider Fig. 4.44 showing
a pulsed proton or electron beam incident on a neutron production target,
as described in Section 4.1.2. With each pulse, a group of neutrons with a
broad energy distribution is produced. The neutrons travel to the irradiation
sample which is located at a distance of L from the neutron-producing target.
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Neutron-induced reactions take place in the sample and the prompt radiation
produced in the interaction is detected by using a suitable counter. For exam-
ple, detector 1 in Fig. 4.44 is a γ-ray detector for the study of a (n,γ) reaction.
The neutron velocity is determined by the measured length of the flight path
and the time difference, t = tstop − tstart, between the arrival time of the pri-
mary electron or proton pulse at the neutron-producing target and the time
of detection of the prompt reaction products (provided that the latter time is
practically simultaneous with the arrival of the neutrons at the sample). The
neutron energy is given by

E =
1
2

mnv2 =
1
2

mn

(
L
t

)2

(4.77)

with mn the neutron mass. The use of this nonrelativistic expression intro-
duces an error of less than 0.2% at E = 1 MeV. In practice, the events are
sorted electronically into a histogram displaying the flight time on the hori-
zontal axis (that is, a particular channel corresponds to flight times between ti
and ti+1). Subsequently, the flight time scale is converted to a neutron energy
scale. From Eq. (4.77) we find numerically

t
L

=
72.3√

E
(4.78)

with t, L, and E in units of µs, m, and eV, respectively. For example, for a
flight path of 10 m and neutrons of 1 keV energy the flight time amounts to
≈ 23 µs. For a broad energy distribution of incident neutrons, the time-of-
flight technique allows a measurement of the intensity of reaction products as
a function of the incident neutron energy in a single experiment.

According to Eq. (4.77), the energy resolution of the neutron beam is given
by

∆E
E

= 2

√(
∆L
L

)2

+
(

∆t
t

)2

(4.79)

The uncertainty in the flight path (for example, due to the finite sizes of the
neutron-producing target and the detector) can be reduced by increasing L, al-
though the intensity of the neutron beam at the sample position will decrease
at the same time. In most cases, the uncertainty in flight time will dominate
the energy resolution. One finds numerically

∆E = 0.028
∆t
L

E3/2 (4.80)

The uncertainty ∆t is influenced by a number of factors, including the time
width of a neutron group after a particular proton or electron burst (< 100 ns),
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Fig. 4.44 Neutron time-of-flight technique.
A pulsed proton or electron beam is inci-
dent on a neutron production target. With
each pulse, a neutron group with a broad
energy distribution is produced. The neu-
trons travel a distance of L to the irradia-
tion sample. Prompt radiation, for example,
γ-rays from an (n,γ) reaction induced in
the sample, is detected by counter 1, while
counter 2 represents a neutron detector for

measuring the transmission (Section 4.2.3).
The incident neutron energy is given by the
flight path length L and the time difference,
t = tstop − tstart, between the primary
electron or proton pulse arrival time at the
neutron-producing target and the detec-
tion time of the prompt reaction products in
counter 1 (or of the transmitted neutrons in
counter 2).

the pulse rise time of the detector (< 5 ns), and the uncertainty in the neutron
slowing down time if the neutron-producing target is surrounded by a mod-
erator. The primary requirements for the detector are fast timing properties,
relatively high efficiency and low sensitivity to neutron-induced background
radiation. For neutron-capture studies, organic scintillators or BaF2 detectors
are frequently used, while ionization chambers or solid-state counters are the
detectors of choice for (n,p) or (n,α) type experiments. With time-of-flight tech-
niques, energy resolutions of better than 1 eV have been obtained for neutron
energies up to a few keV (that is, ∆E/E ≈ 0.001). As an example, Fig. 4.45
shows the measured count rate versus time of flight in the vicinity of the 4.9 eV
resonance in the 197Au(n,γ)198Au reaction. Other examples of transmission
and neutron-capture yield curves obtained with the time-of-flight technique
are shown in Fig. 4.65.

4.7
Background Radiation

All radiation detectors used in fusion reaction measurements will record a
certain number of pulses that are caused by natural radioactivity in the envi-
ronment or by cosmic radiation. For relatively large reaction cross sections,
the background count rate may be negligible compared to the signal count
rate. However, astrophysically important reactions have frequently very small
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Fig. 4.45 Measured count rate versus time of flight in the vicinity of the
4.9 eV resonance in the 197Au(n,γ)198Au reaction. Reprinted from R. L.
Macklin, J. Halperin and R. R. Winters, Nucl. Instrum. Methods, Vol.
164, p. 213 (1979). Copyright (1979), with permission from Elsevier.

cross sections at the energies of interest. In such cases, the experiment has to
be designed carefully so that the signal is not obscured by the background. It
has to be kept in mind that in nuclear counting experiments the sensitivity for
detecting a signal above background is approximately directly proportional
to the signal count rate, but inversely proportional to the square root of the
background count rate (Knoll 1989). For example, a background reduction by
a factor of 100 corresponds to an improvement in sensitivity by only a factor
of 10. Thus, a substantial effort of reducing the background is required in or-
der to observe very weak cross sections or resonance strengths. In order to
develop detection techniques that reduce the background, it is first necessary
to understand the nature of the background in more detail. A comprehensive
review of these issues can be found in Knoll (1989) and Heusser (1995). Here,
we will discuss the influence of natural radioactivity and cosmic rays on de-
tectors that are used in nuclear astrophysics measurements. We are especially
interested in methods of background suppression. Other important sources
of background, for example, from electronic noise or from beam-induced pro-
cesses (Section 4.3.3 and Table 4.4), are not a topic of the present section.

4.7.1
General Aspects

Figure 4.46 shows a typical experimental setup consisting of accelerator, target
chamber, detector, and shielding. The most important sources of background
radiation are indicated. Terrestrial radiation near the Earth’s surface and in
ordinary construction materials (walls, detector, shielding materials, air, and
so on) is caused by naturally occurring radioisotopes. In particular, Th, U,
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and Ra are members of radioactive decay series and lead to a large number
of daughter nuclei that emit α-, β-, and γ-radiation. Among these daughter
products are the short-lived radioactive gases 220Rn and 222Rn that are present
in the ambient air. The background from radon and progenitors may be re-
duced by replacing the air surrounding the detection setup with a radon-free
gas (for example, nitrogen). Furthermore, spontaneous fission (in particular
of 238U) contributes to the γ-ray and neutron background. Another impor-
tant source of terrestrial β- and γ-radiation originates from the decay of 40K
(T1/2 = 1.3× 109 y). The activity of certain fission products that originate from
past nuclear weapons testing also contributes to the background (for example,
137Cs).

The activity levels in common materials vary substantially (Knoll 1989). In
demanding low-background applications, the construction and shielding ma-
terials have to be selected carefully. One may ordinarily expect that the back-
ground count rate is inversely proportional to the thickness of the detector
shield. However, beyond a certain optimum thickness the background will
not decrease any further because a more massive shield represents a larger
target for cosmic-ray-induced background (see below).

Primary cosmic radiation consists mainly of protons and α-particles with
extremely high kinetic energies. They hit the upper atmosphere with an in-
tensity of about 103 m−2 s−1. Through interactions with air molecules, a large
number of different (secondary) elementary particles with energies extending
into the 100 MeV range are produced. Among the secondary radiation, pro-
tons, electrons, and pions are easily absorbed by the concrete floors of a build-
ing. The most relevant components for low level background measurements
are muons and neutrons.

The muon-induced background arises from direct ionization events in the
detector volume, radioisotope production via interactions with nuclei (for ex-
ample, spallation), muon bremsstrahlung, production of δ electrons, muon
decay (µ± → e± + ν + ν), and electron–positron pair production. The latter
three processes also give rise to bremsstrahlung. Secondary neutrons originate
from primary cosmic radiation, while tertiary neutrons are produced by slow
muons via the capture reaction p(µ−,νµ)n and by fast muons via (γ,n) reac-
tions and photofission. Neutron background not only originates from cosmic-
ray interactions but also from terrestrial radioisotopes via (α,n) reactions and
spontaneous fission of 238U. Fast neutrons react with nuclei via (n,n’γ) reac-
tions, while thermal neutrons interact via (n,γ) reactions.

Muons are very penetrating particles and large shielding depths (for exam-
ple, several 100 m of earth) are required to attenuate their intensity substan-
tially. For this reason, low-level detection systems are sometimes operated
deep underground. Such a laboratory, dedicated to nuclear astrophysics ex-
periments, is described in Bemmerer et al. (2005). Alternatively, in measure-
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Fig. 4.46 Sources of environmental background in a typical nuclear
physics counting experiment. Other sources, such as electronic noise
or beam-induced background radiation, are not shown. See discussion
in the text.

ments at sea level, it is usually possible to surround the primary detector (for
example, germanium) with a secondary (guard) counter (for example, plastic
scintillator). If both detectors are operated in anticoincidence mode, that is,
if events are rejected when both counters respond at the same time, then the
background is significantly reduced.

Note that the magnitude of some background components can change with
time. Such fluctuations may arise from variations in cosmic-ray intensity or
in airborne radioactivity depending on the meteorological conditions. For the
analysis of pulse height spectra obtained with beam on target it is therefore
helpful to carry out background measurements (without beam) before and
after the actual experiment.
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4.7.2
Background in Charged-Particle Detector Spectra

We will focus in this section on semiconductor charged-particle detectors. The
extreme degree of purity required of semiconductor crystals results in rela-
tively low levels of inherent radioactivity. However, radioactive impurities
in the construction materials of the setup (detector holder, target chamber,
shielding, and so on) will contribute to the measured background. This back-
ground will extend to several MeV, corresponding to typical energies of α-
particles from terrestrial radioisotopes. For example, commercial aluminum
shows a low-level α-activity of ≈ 0.3 α-particles h−1 cm−2 above 250 keV en-
ergy (Knoll 1989). The α-particle emission rate of stainless steel is about an
order of magnitude lower. For low-level background measurements it is thus
important to select the construction materials carefully.

Terrestrial γ-radiation and cosmic-ray-induced γ-rays, charged particles,
and neutrons will also contribute to the background in charged-particle de-
tector spectra. These components can effectively be reduced through the
use of appropriate shielding such as low-activity lead or mercury. Cosmic-
ray muons, on the other hand, are only weakly absorbed in the shield. The
muons are minimum ionizing (Section 4.2.1) and lose energy in silicon at a
rate of dE/dx ≈ −400 keV/mm. The spatial distribution of the muons is
at maximum in a direction perpendicular to the Earth’s surface. Therefore,
the energy deposited by the muons in the detector is approximately equal
to the product of dE/dx and the effective thickness of the active detector
volume. Since some muons will pass at oblique angles through the sensi-
tive region, the background peak in the pulse height spectrum will exhibit a
high-energy tail. This general behavior is displayed in Fig. 4.47a, showing a
background spectrum measured with a silicon detector of 300 µm thickness,
with its active surface positioned parallel to the surface of the Earth. In or-
der to reduce terrestrial background, the detector was mounted in a high-
purity aluminum oxide insulator and the detector container was made from
low-contamination copper. The muon peak in the spectrum is expected to oc-
cur at about (400 keV/mm)(0.3 mm) = 120 keV, consistent with observation.
The spectrum in Fig. 4.47b was obtained by rejecting all events corresponding
to simultaneous signals from the silicon detector and a NaI(Tl) active shield
counter that was positioned above the silicon detector. Clearly, the muon
background is substantially reduced by using anticoincidence techniques.

Figure 4.48 shows the measured background of a 300 µm thick silicon de-
tector in the energy range of 50–400 keV versus mode of operation. The re-
sults are given in units of counts per minute (cpm) and per square centime-
ter of the active detector surface which is oriented parallel to the Earth’s sur-
face. The background count rate amounts to ≈ 3.5 cpm/cm2 without pas-
sive or active shielding. Surrounding the setup with lead of 2.5 cm thickness
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Fig. 4.47 (a) Background spectrum mea-
sured with a silicon charged-particle detec-
tor of 300 µm thickness. The active detector
surface is positioned parallel to the surface
of the Earth. The muon peak, which has the
same origin as the one shown in Fig. 4.23,
occurs at about 120 keV. (b) Same as part
(a), but rejection of all events correspond-

ing to simultaneous signals from the silicon
detector and a NaI(Tl) active shield counter
that was positioned above the silicon detec-
tor. The substantial reduction of the muon
background is evident. Reprinted from F. J.
Walter and R. R. Boshart, Nucl. Instrum.
Methods, Vol. 42, p. 1 (1966). Copyright
(1966), with permission from Elsevier.

shields the detector from terrestrial and cosmic-ray-induced γ-radiation and
reduces the background count rate to ≈ 1.4 cpm/cm2. A further improve-
ment is achieved by using 5.1 cm of low-background lead for a passive shield
(≈ 0.97 cpm/cm2). Finally, the additional use of an anticoincidence shield re-
duces the background count rate to ≈ 0.16 cpm/cm2. We can infer from these
results that the muon-induced background rate at sea level amounts to (0.97–
0.16) cpm/cm2 ≈ 0.8 cpm/cm2 in the energy range of 50–400 keV.

In certain reactions with relatively large Q-values it is sometimes of advan-
tage to use two instead of one silicon detector. The nuclear reaction products
of interest deposit a fraction of their energy in a thin front (“∆E”) detector and
are completely stopped in a thick rear (“E”) counter. By requiring a coinci-
dence between the two detector signals, events that are caused by terrestrial
α-, β-, and γ-radiation and that deposit energy in only one of the detectors
are rejected. The muon-induced background can then be suppressed either by
locating the setup deep underground (Junker et al. 1998) or by surrounding
the setup with a suitable active veto counter. This technique is not applicable
to the study of reactions with Q-values of less than several MeV since in this
case the emitted nuclear reaction products will have insufficient energies to
penetrate even the thinnest commercially available ∆E detectors.
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Fig. 4.48 Measured background (in counts
per minute and per square centimeter) of a
300 µm thick silicon detector in the energy
range of 50–400 keV versus mode of op-
eration: (1) no passive or active shielding;
(2) Passive shield of 2.5 cm thick lead; (3)
Passive shield of 5.1 cm thick low-activity

lead; (4) Additional use of an (active) antico-
incidence shield. The muon-induced back-
ground rate, given by the difference of his-
togram heights in mode 3 and 4, amounts to
≈ 0.8 cpm/cm2 in the energy range of 50–
400 keV at sea level. Data from Walter and
Boshart (1966).

4.7.3
Background in γ-Ray Detector Spectra

The background in γ-ray spectra is usually much higher compared to charged-
particle spectra for two reasons. First, γ-ray detectors have a much larger vol-
ume and second, the nature of the γ-ray background is rather complex. A
typical background γ-ray spectrum, recorded without beam on target with a
HPGe detector of 582 cm3 volume for about 15 h, is shown in Fig. 4.49. A
large number of discrete peaks can be observed. Most of these originate from
radionuclides that occur naturally in the material of the detector and the sur-
roundings. The two most intense room background γ-ray peaks occur at 1461
and 2615 keV and originate from the decays of the radioisotopes 40K and 208Tl,
respectively (Table 4.6 and Fig. 4.50). The nucleus 40K β-decays to the 1461 keV
level in 40Ar which, in turn, decays to the ground state by emission of a sin-
gle photon. The nucleus 208Tl β-decays to several 208Pb levels with excitation
energies between 3 and 4 MeV. Subsequently, these states decay through the
first excited state at 2615 keV to the ground state via γ-ray cascades (that is,
by emission of two or more coincident photons). Compilations of other back-
ground peaks can be found in Debertin and Helmer (1988) and Knoll (1989).
The analysis of a spectrum obtained with beam on target requires a careful
identification of room background peaks. Furthermore, the peaks are super-
imposed on a continuous background, caused by Compton scattering of room
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Fig. 4.49 Background γ-ray spectrum, recorded for about 15 h without
beam on target by using a HPGe detector of 582 cm3 volume. Two
prominent peaks occur at 1461 and 2615 keV. They originate from the
decays of the radioisotopes 40K and 208Tl, respectively. All the other
peaks originate from the sources shown in Fig. 4.46. Note that the γ-
ray background beyond Eγ ≈ 2.6 MeV is continuous and shows no
discrete peaks.

background photons and by cosmic-ray-induced processes. In nuclear astro-
physics measurements the cross sections are frequently very small and, there-
fore, it is ultimately this continuous background which is the major obstacle
in observing the peaks from the nuclear reactions of interest.

As was the case for silicon detectors, the inherent activity of high-purity
germanium is very small. However, radioimpurities in construction materi-
als including the aluminum crystal housing, stainless steel and copper cool-
ing rod, electrical solder in the preamplifier, and so on, may contribute to the
γ-ray background. In scintillation counters, the glass envelope of the pho-
tomultiplier tube and the tube base are a potential source of background. In
low-background detectors, the contribution from these sources is substantially
reduced by a careful selection of the construction materials.

The vast majority of γ-rays from terrestrial or cosmogenic background
sources have energies of less than 3.0 MeV, although some γ-rays with en-
ergies of up to 7 MeV are produced in the spontaneous fission of 238U. Contri-
butions from these sources can be reduced by surrounding the detector with
metal shields of high purity. Because of its high density and large atomic
number, specially refined lead with a low concentration of the radioisotope
210Pb (T1/2 = 22.3 y) is the best choice for a γ-ray shield. Iron and copper are
also used but have higher cross sections for the cosmogenic production of ra-
dionuclides compared to lead. Beyond a certain optimum shielding thickness
(≈ 10–15 cm for lead), the background is not reduced any further due to an in-
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Fig. 4.50 Level schemes of (a) 40Ar and (b) 208Pb. The decay of 40K
produces a single photon (1461 keV), while the decay of 208Tl gives
rise to the emission of two or more coincident photons. Data from Fire-
stone and Shirley (1996).

crease of secondary radiation caused by cosmic-ray interactions in the shield.
Most γ-rays from neutron inelastic scattering and radiative neutron capture
on the detector material have energies of less than about 3 MeV, although neu-
tron capture on iron can produce γ-rays with energies of about 10 MeV. The
neutron-induced component is sometimes reduced by an additional neutron
absorber in the shield (for example, borated polyethylene). When the detector
shield contains hydrogen (for example, concrete), neutron capture sometimes
gives rise to a discrete γ-ray of 2.2 MeV energy in the spectrum.

The continuous γ-ray background caused by cosmic-ray muons arises from
several different types of interactions and it is not apparent which of the pro-
cesses discussed in Section 4.7.1 dominates. Monte Carlo simulations have
been performed in order to investigate this issue. It is found (Vojtyla 1995) that
bremsstrahlung from δ electron production dominates the background at en-
ergies below E ≈ 5 MeV. At higher energies, the background is dominated by
direct ionization events that give rise to a broad peak between 10 and 40 MeV,
with the exact location depending on the crystal size. The observed broad
peaks in Figs. 4.23 and 4.47a are caused by the same process.

Gamma-ray background count rates, measured by specially designed low-
background germanium detector systems, are compared in Fig. 4.51. The hor-
izontal axis displays the location (shielding depth) of the apparatus in units of
meter water equivalent (m w.e.) and the vertical axis shows the measured to-
tal count rate in the energy region below 3 MeV in units of counts per hour per
100 cm3 detector volume. The construction materials for all of these detection
systems were carefully selected in order to reduce radioimpurities. Passive
shields consisted of several layers of different low-activity materials (Pb, Cu,
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Fig. 4.51 Comparison of γ-ray background
count rates in the energy region below Eγ

= 3 MeV (in units of counts per hour per
100 cm3 detector volume) versus shielding
depth (in units of meter water equivalent).
The data indicated by the circles (passive
shielding only) and triangles (passive and
active shielding) are adopted from Semkow
et al. (2002). All these spectrometers are
specially designed for ultralow background

measurements. The two dashed lines are
to guide the eye. It is obvious that the γ-ray
(singles) background in this energy range
can be reduced by at least two orders of
magnitude by placing the apparatus deep
underground. Results from γγ-coincidence
measurements using conventional detec-
tors (Rowland et al. 2002b) are shown as
square (no shielding) and diamond (active
shielding).

Fe, and so on). In some cases (shown as triangles) plastic scintillators or multi-
wire proportional chambers have been used for active cosmic-ray background
discrimination. It can be seen that in laboratories located at sea level (shield-
ing depths < 1 m w.e.) the lowest achieved background count rates amount to
≈ 1000 counts/h. Note that this represents already an improvement by orders
of magnitude compared to the background shown in Fig. 4.49, which was ob-
tained using a conventional detector and setup. At moderate shielding depths
of 10–15 m w.e., background count rates of ≈ 100 counts/h have been mea-
sured. Another order of magnitude can be gained by locating the apparatus
deep underground (shielding depths of several 1000 m w.e.), where measured
background count rates amount to ≈ 10 counts/h.

γγ-coincidence techniques

In many nuclear reactions of astrophysical interest, two or more photons are
emitted in a cascade. In such cases, the background can be reduced substan-
tially through the use of coincidence techniques. Consider a simple setup con-
sisting of two γ-ray detectors. Most background events will occur in only one
detector at a time and, therefore, are eliminated by demanding a coincidence
between the signal outputs of both detectors.
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An example for a setup is shown in Fig. 4.52a. A HPGe detector is posi-
tioned in very close geometry to the target in order to maximize the peak ef-
ficiency and a NaI(Tl) annulus surrounds both the target and the germanium
crystal. Figure 4.52b shows for coincidence events the energy deposited in the
HPGe detector versus the energy deposited in the NaI(Tl) detector. We will
first discuss the simple case of a two-γ-ray cascade. Assume that a capture re-
action populates an initial state of 9 MeV excitation energy and that this state
decays through an intermediate level at 1 MeV to the ground state. The two
diagonal lines correspond to a total energy deposition (in both the HPGe and
NaI(Tl) detector) of 4 MeV and 9.5 MeV. Events located above the dashed line
(EGe

γ + ENaI
γ > 9.5 MeV) can immediately be excluded from the analysis since

any event that originates from the capture reaction of interest can at most have
a total energy of 9 MeV (apart from a small energy spread caused by the finite
detector resolutions). Such high-energy events originate, for example, from
cosmic-ray muons that traverse and deposit energy in both detectors. Most
room background coincidence events appear in the region below the solid line
(EGe

γ + ENaI
γ < 4 MeV). These include 1461 keV photons from 40K decay that

deposit energy in both detectors via Compton scattering, as well as coincident
γ-rays (including 2615 keV photons) from 208Tl decay (Fig. 4.50). By accepting
only events located in the region between the solid and the dashed lines, the
background is significantly reduced.

Suppose now that the primary 8 MeV γ-ray is observed in the NaI(Tl) de-
tector, while the secondary 1 MeV photon is counted in the HPGe detector.
Events corresponding to the full-energy peaks of both incident photons are lo-
cated in the dark-shaded oval region of the two-dimensional energy spectrum.
The oval shape is caused by the far better energy resolution of the HPGe detec-
tor. If only these events are accepted in the data analysis, then the background
is indeed drastically reduced. However, at the same time the efficiency of the
coincidence apparatus, given by the product of HPGe and NaI(Tl) peak effi-
ciencies, is significantly reduced compared to the peak efficiency of a single
detector. This result is undesirable in view of the very weak cross sections of
astrophysical interest. The problem is solved by accepting all events located
between the two diagonal lines, including those caused by Compton scatter-
ing and pair production in the NaI(Tl) detector. In this particular mode, the
HPGe detector provides the spectroscopic information of interest (peak en-
ergies and intensities), while the main function of the NaI(Tl) annulus is to
provide a large coincidence efficiency.

The power of the coincidence method is demonstrated in Fig. 4.53. It shows
three HPGe pulse height spectra in the energy range between 0.8 and 2.5 MeV,
measured at the weak Er = 227 keV resonance in the 26Mg(p,γ)27Al reaction.
Each spectrum was recorded with a proton beam intensity of only 1.5 µA for
a measuring time of 10 h. The vertical dashed lines indicate the locations of
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Fig. 4.52 γγ-Coincidence technique. (a)
Setup consisting of a HPGe detector and
a NaI(Tl) annulus surrounding the target
chamber. (b) Two-dimensional histogram
displaying the energy deposited in the
HPGe detector (horizontal axis) and the
NaI(Tl) detector (vertical axis). The inset
shows a simple decay scheme consisting
of a two-photon cascade (Eγ1 = 9 MeV −
1 MeV = 8 MeV; Eγ2 = 1 MeV). If two (or

more) of these photons are detected in co-
incidence, and if only those events located
between the solid and dashed lines are ac-
cepted, then the environmental background
is substantially reduced. The events lo-
cated below the solid line are mainly caused
by room background (Eγ < 4 MeV), while
those located above the dashed line origi-
nate from cosmic-ray interactions.

expected secondary γ-ray transitions in 27Al at 1014 keV and 2211 keV. The
upper spectrum was obtained without detector shielding. All observed γ-ray
peaks are caused by environmental background contributions. The middle
spectrum was measured by shielding the detector with 5 cm thick lead. The
background is reduced by about one order of magnitude, but still no peaks
originating from the 26Mg(p,γ)27Al reaction can be identified. The lower spec-
trum was measured in coincidence with γ-rays observed in a NaI(Tl) annulus.
The coincidence requirement was 4 MeV < EGe

γ + ENaI
γ < 9 MeV. No shielding

was used in this case. Compared to the unshielded singles HPGe spectrum
(top), the γ-ray background is reduced by more than three orders of magni-
tude and all the discrete peaks originating from environmental radioactivity
have disappeared. The resonant γ-rays from the decays of the 1014 keV and
2211 keV levels in 27Al are now clearly observed.

The remaining continuous background in the coincidence spectrum is
caused by cosmic-ray-induced bremsstrahlung and by muons that directly
ionize both detectors. The measured coincidence background count rate,
shown as a square in Fig. 4.51, compares favorably with singles background
count rates measured with specially designed low-level detection systems
that are located deep underground. The coincidence background count rate
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Fig. 4.53 HPGe γ-ray spectra in the energy
range between 0.8 and 2.5 MeV, measured
at the weak Er = 227 keV resonance in the
26Mg(p,γ)27Al reaction (Q = 8271 keV). Each
spectrum was recorded with a proton beam
intensity of 1.5 µA for a running time of 10 h.
The vertical dashed lines indicate the loca-
tion of expected secondary γ-ray transitions
in 27Al at 1014 keV and 2211 keV. (a) No
detector shielding; (b) passive 5 cm thick
lead shielding; (c) coincidence requirement
of 4 MeV < EGe

γ + ENaI
γ < 9 MeV (but no

shielding). The background is reduced by
more than three orders of magnitude and
the expected secondary transitions induced
by the weak 26Mg(p,γ)27Al resonance are
clearly observed. Note that the peak close
to a γ-ray energy of 2211 keV shown in
parts (a) and (b) originates from room back-
ground (214Bi) and not from decays in 27Al.
Reprinted from C. Rowland et al., Nucl. In-
strum. Methods A, Vol. 480, p. 610 (2002).
Copyright (2002), with permission from El-
sevier.

can be further reduced by using a muon veto shield (for example, plastic scin-
tillators; see Rowland et al. 2002b), as indicated by the diamond in Fig. 4.51.
It is important to point out that coincidence techniques will not improve the
detection sensitivity significantly if the background is mainly induced by con-
taminant reactions that produce two or more photons of sufficient energy in
coincidence (as is the case for the troublesome 11B(p,γ)12C reaction; Table 4.4).
The need for targets and backings that are almost free of contaminants has
already been stressed in Section 4.3.3.

The total number N of compound nuclei created in a fusion reaction can
be calculated from the peak intensity measured in a coincidence spectrum by
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using an expression similar to Eq. (4.69). The factor BηW has to be replaced
by the quantity f (B, η, W), which is a function of branching ratios, detection
efficiencies, and angular correlations. Consider as an example the level dia-
gram displayed in Fig. 4.54a, showing the decay of a compound nucleus to the
ground state via several different γ-ray cascades. First, suppose that photon
γ10 is fully absorbed in a HPGe detector and that other photons belonging to
the same cascade are detected in coincidence in a NaI(Tl) annulus. Neglect-
ing angular correlation effects (that is, assuming W = 1), the contribution of
the two-γ-ray cascade (a) to the peak intensity of γ10 in the HPGe coincidence
spectrum is given by

NGe,C,a
10 = N B31B10ηGe,P

10 ηNaI,T
31 = N B31B10ηGe,P

10

[
1 −

(
1 − ηNaI,T

31

)]
(4.81)

where the product of branching ratios B31B10 represents the probability that
the compound nucleus decays via the cascade 3 → 1 → 0; ηNaI,T

31 is the to-
tal NaI(Tl) efficiency for a particular energy range selected by the gate in the
two-dimensional spectrum of EGe

γ versus ENaI
γ . Similarly, we obtain for the

contribution of the three-γ-ray cascade (b)
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(4.82)

The term ηNaI,T
32 (1 − ηNaI,T

21 ) corresponds to the probability that photon γ32 is
observed in the NaI(Tl) annulus with an energy consistent with the selected
coincidence gate and, at the same time, photon γ21 escapes detection in the
NaI(Tl) annulus. The term (1 − ηNaI,T

32 )(1 − ηNaI,T
21 ) is equal to the probability

that neither photon γ32 nor γ21 is detected in the NaI(Tl) annulus. Equiva-
lently, the term 1 − (1 − ηNaI,T

32 )(1 − ηNaI,T
21 ) corresponds to the total probabil-

ity of detecting photon γ32 or γ21. Cascade (c) does not contribute to the peak
intensity of γ10.

The above expressions can be generalized (Fig. 4.54b) to find the total full-
energy peak intensity of photon γij in the HPGe coincidence spectrum,

NGe,C
ij = N ηGe,P

ij ∑
k
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(4.83)

where the sum is over all cascades k containing the transition i → j. The
first product is over the branching ratios of all transitions in cascade k and
represents the probability that the initial level will decay via this particular
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cascade. The second product is over the total NaI(Tl) detector efficiencies for
all transitions in cascade k except the branch i → j which is observed in the
HPGe detector. Hence, we obtain for the total number N of compound nuclei
created in the fusion reaction

N =
NGe,C

ij

ηGe,P
ij f (Bi′ j′,k, ηNaI,T

i′ j′,k )
=

NGe,C
ij

ηGe,P
ij ∑

k






[

∏
i′>j′

Bi′ j′ ,k

]



1 − ∏

i′>j′
i 
→j

(
1 − ηNaI,T

i′ j′,k

)











(4.84)

The total NaI(Tl) efficiency for a particular energy range selected by a gate
in the two-dimensional spectrum of EGe

γ versus ENaI
γ , ηNaI,T

i′ j′,k , can be obtained
in the following way. As an example, consider again a two-γ-ray cascade
3 → 1 → 0 (Fig. 4.54a). The intensities of photons γ10 and γ31 observed in the
singles and coincidence HPGe spectrum are given by expressions similar to
Eqs. (4.53) and (4.81). Neglecting coincidence summing corrections, we find

NGe
10 = N B31B10ηGe,P

10 , NGe
31 = N B31ηGe,P

31

NGe,C
10 = N B31B10ηGe,P

10 ηNaI,T
31 , NGe,C

31 = N B31B10ηGe,P
31 ηNaI,T

10 (4.85)

and thus

ηNaI,T
31 =

NGe,C
10

NGe
10

and ηNaI,T
10 =

NGe,C
31

NGe
31

(4.86)

In the derivation of Eq. (4.86) we explicitly assumed that cascades consisting
of three or more γ-rays do not contribute to the measured intensities in the
HPGe coincidence spectrum (that is, B31 = 1 and B10 = 1). It can be seen that
the above relations provide absolute total NaI(Tl) detector efficiencies with-
out using the activity of calibrated radioactive sources or the cross section of
capture reactions. If the γ-ray source or the target is located very close to both
detectors, then Eq. (4.86) may become inaccurate due to coincidence summing
(Section 4.5.2). In this case, a Monte Carlo simulation of the detection setup
must be performed.

4.7.4
Background in Neutron Detector Spectra

The neutron background originates from (α,n) reactions induced by terrestrial
α-particle emitters, spontaneous fission of 238U, and cosmic-ray-induced pro-
cesses. Different principles apply to the shielding of neutrons compared to the
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Fig. 4.54 (a) Level scheme showing three different γ-ray decays from
excited level 3 to the ground state 0. It is assumed that the transition
1 → 0 is observed in a HPGe detector and that other photons of the
same cascade are detected in coincidence in a NaI(Tl) annulus. (b)
General case; the transition i → j is observed in a HPGe detector,
while coincident photons are detected in a NaI(Tl) detector. See the
text.

shielding of charged particles or γ-rays. Neutrons need to be quickly moder-
ated and absorbed in a medium of a high absorption cross section. The most
effective moderators consist of light nuclei and contain preferably hydrogen
(Section 4.2.3). Frequently used materials include paraffin, polyethylene, or
water. Mean free paths of fast neutrons amount typically to several tens of
centimeter and, therefore, thicknesses of about 1 m are required to moderate
fast neutrons effectively. After moderation, the neutrons have to be captured.
Since the capture cross section of hydrogen is relatively low, another compo-
nent with a large neutron absorption cross section (for example, 10B, 6Li, or
Cd) is added, either as a homogeneous mixture with the moderator or as an
absorbing layer between moderator and detector. The (n,α) reaction on 10B
and the (n,γ) reaction on Cd produce secondary γ-rays, while the (n,α) reac-
tion on 6Li proceeds directly to the ground state. Thus, 6Li is preferred as
neutron absorption material in applications that are sensitive to γ-ray back-
ground. The importance of other background sources depends on the type
and the constructional details of the neutron detector. For example, for 10BF3
or 3He proportional counters (Section 4.5.3) the intrinsic α-radioactivity of the
detector itself may cause a significant background counting rate if the con-
struction materials have not been selected carefully.
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Fig. 4.55 Neutron fluxes (number of neu-
trons per second per square centimeter)
from various sources (solid lines) versus
shielding depth (in units of meter water
equivalent). The muon flux is shown as a
dashed line. Secondary neutrons are those
that are produced by primary cosmic rays.
The solid line labeled “Tertiary neutrons”

represents the flux of neutrons produced
by muons in a typical lead shield; the label
“S.F.” refers to neutrons from spontaneous
fission. From Heusser (1995). Reprinted
with permission from the Annual Reviews of
Nuclear and Particle Science, Volume 45.
Copyright ©1995 by Annual Reviews.

Figure 4.55 shows the neutron flux (number of neutrons per second per
square centimeter) from various sources, together with the muon flux, ver-
sus shielding depth in meter water equivalent. Without any shielding, the
contribution from secondary neutrons dominates the background. This inten-
sity decreases rapidly with increasing shielding depth and becomes smaller
than the neutron intensity from (α,n) reactions and spontaneous fission be-
yond a moderate shielding depth of ≈ 10 m w.e. The figure also shows for
comparison the intensity of tertiary neutrons produced by muons in a typical
lead shield. This background contribution clearly dominates the neutron flux
at shielding depths of 2–100 m w.e. Consequently, the use of massive shields
should be avoided in this shielding depth region, if possible.

The actual background count rate measured by a neutron detector depends
strongly on the location, the measuring geometry, and constructional details.
Thus, one has to be very careful when comparing experimental background
rates measured by different detectors. Nevertheless, such a comparison is in-
teresting since relatively little information on this subject is given in the lit-
erature. Table 4.11 compares background count rates measured in four dif-
ferent studies. Other parameters such as efficiency, location, and the type of
shielding are also given. In each case, the setup consisted of 3He proportional
counters moderated by either polyethylene or paraffin. At sea level and with-
out active shielding, the measured background count rate is ≈ 10 cpm. With
active shielding, the background is substantially suppressed and amounts to



334 4 Nuclear Physics Experiments

≈ 2 cpm. It is likely that a further reduction can be achieved by locating the
setup underground, although the results listed in the table are inconclusive if
adjusted for differences in total efficiencies or the size of the analyzed region
in the spectrum.

Finally, a word may be added regarding the suppression of muon-induced
neutrons via anticoincidence techniques. With polyethylene or paraffin as
moderator, it takes on average ≈ 200 µs for a fast neutron to be thermalized
and captured in the neutron detector. Thus, if the anticoincidence counter in-
dicates a muon hit, the signals from the neutron detector have to be vetoed for
several 100 µs in order to suppress such events effectively.

Tab. 4.11 Comparison of low-background neutron spectrometers. (a) Full detector consists
of seven 10BF3 and two 3He counters; the 10BF3 counters are not listed here for comparison
because of their much higher background count rate. (b) Result of Monte Carlo simulation.
(c) At Gran Sasso underground laboratory. (d) On a conventionally powered submarine. (e)
Plastic scintillator. (f) Total counts above discriminator threshold. (g) Counts in a region of the
spectrum representing 95% of thermal neutron peak intensity. (h) Counts in a region of the
spectrum representing 70% of thermal neutron peak intensity.

Reference Giesen et al.
(1993)

Wang, Vogelaar and
Kavanagh (1991)

Stella et al.
(1995)

Mayer et al.
(1993)

Detector 3He 3He 3He 3He
Moderator Polyethylene Polyethylene Polyethylene Paraffin
Number of counters 31 12 2a 18
Efficiency (%) 20 22 6a 22
Calibration source Am-Li 252Cf M.C.b natUO
Location (m w.e.) Sea level Sea level 3950c 50d

Passive shield Yes Yes Yes yes
Active shield No Yese No No
Background (cpm) 11f 2f 0.6f (0.06g) 0.06h

4.8
Yields and Cross Sections for Charged-Particle-Induced Reactions

The calculation of thermonuclear reaction rates requires knowledge of the nu-
clear reaction cross section. However, what is usually determined experimen-
tally is the total number of nuclear reactions that occurred and the total num-
ber of incident beam particles. The ratio of these two quantities,

Y ≡ total number of nuclear reactions
total number of incident beam particles

=
NR

Nb
(4.87)

is called the yield of the reaction. Comparison to Eq. (2.1) shows that the yield
is related, but not equal, to the cross section σ. In this section, we will de-
rive relationships for these two quantities. We will also discuss how to derive
resonance strengths (that is, integrated cross sections) from measured yields.
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A function of yield versus bombarding energy is referred to as yield curve or
excitation function.

The following definitions will be used for the stopping power (in units of
eV cm2/atom),

ε(E) ≡ SA(E) = − 1
N

dE
dx

(4.88)

and for the concentration of target nuclei,

n ≡ Nd =
Nt

A
(4.89)

The quantities Nt and N denote the total number of target nuclei and the
number density of target nuclei (atoms per unit volume), respectively (Sec-
tion 4.2.1); d is the target thickness (in units of length). Hence, n is the number
of target nuclei per unit area. All quantities in this section will be expressed in
the center-of-mass system, unless mentioned otherwise.

4.8.1
Nonresonant and Resonant Yields

Suppose that a beam of energy E0 is incident on a target. The target can be
divided into a number of slices of thickness ∆xi, and it can be assumed that
the energy lost by the beam in each slice, ∆Ei, is small. In other words, both
the cross section, σi, and the stopping power, εi, are constant over ∆xi. With
Eqs. (2.1), (4.87), and (4.89) we obtain for the yield from a particular slice in
the target

∆Yi =
NR,i

Nb
= σi

Nt,i

A
= σi Ni∆xi (4.90)

The total yield is given by integrating over all target slices,

Y(E0) =
∫

σ(x)N(x) dx =
∫

σ(x)N(x) dx
dE(x)

dx
dx

dE(x)

=
∫ E0

E0−∆E

σ(E)
ε(E)

dE (4.91)

The quantity ∆E is the total energy lost by the beam in the target (that is,
the target thickness in energy units). Note that the above expression neglects
the effects of beam resolution and straggling which will be discussed later.
The cross section σ = σ(E) can always be found from the measured yield
by solving Eq. (4.91) numerically. In special cases, which occur frequently in
practice, the above integral can be evaluated analytically. Such cases will be
addressed below.
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Constant σ and ε over target thickness

Suppose that the cross section is approximately constant over the target thick-
ness. This may be the case, for example, if the reaction proceeds via a non-
resonant mechanism or a broad resonance. Furthermore, we assume that the
energy lost by the beam in the target is small so that the stopping power is
nearly constant as well. The situation is displayed as case (a) in Fig. 4.56. The
yield follows directly from Eqs. (4.14) and (4.91),

Y(E0) =
σ(Eeff)
ε(E0)

∫ E0

E0−∆E
dE =

∆E(E0)
ε(E0)

σ(Eeff) = nσ(Eeff) (4.92)

The mean effective energy in the target is Eeff = E0 − ∆E/2 and, therefore,
we may assign this energy to the cross section obtained from Eq. (4.92). Note
that the above assumption of a constant cross section implies that reactions
will occur over the entire thickness of the target. Furthermore, the shapes
of the measured yield curve and the cross section will be similar. The situ-
ation is schematically shown as case (a) in Fig. 4.56. The above expression
applies to total cross sections σ and total yields Y. For differential cross sec-
tions, (dσ/dΩ)θ , and differential yields, (dY/dΩ)θ , one finds
[

dY(E0)
dΩ

]

θ

=
∆E(E0)
ε(E0)

[
dσ(Eeff)

dΩ

]

θ

= n
[

dσ(Eeff)
dΩ

]

θ

(4.93)

We assumed so far that the target consists of a pure element. If instead the
target consists of a compound XaYb with nX active nuclei per square centime-
ter (the target nuclei of interest) and nY inactive nuclei per square centimeter
(nuclei that do not participate in the reaction of interest), then we obtain from
Eqs. (4.17), (4.88), and (4.89)

∆Ec

nX
=

εXnX + εYnY

nX
= εX +

nY

nX
εY ≡ εeff (4.94)

where nY/nX = b/a. The quantity εeff, which is different from the total stop-
ping power for a compound (see Eq. (4.15)), is referred to as the effective stop-
ping power. The total and differential yields are given by Eqs. (4.92)–(4.94) as

Y(E0) = nXσ(Eeff) =
∆Ec(E0)
εeff(E0)

σ(Eeff) (4.95)
[

dY(E0)
dΩ

]

θ

= nX

[
dσ(Eeff)

dΩ

]

θ

=
∆Ec(E0)
εeff(E0)

[
dσ(Eeff)

dΩ

]

θ

(4.96)

As long as the stopping power is constant over the target thickness, it follows
that the yield is calculated in the same way as for a pure target (see Eqs. (4.92)
and (4.93)), except that the stopping power is replaced by εeff. Similar argu-
ments apply to yield expressions obtained for other assumptions (for example,
resonances) as will be seen below.
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Example 4.3

Suppose that a beam of singly charged protons with a laboratory energy of
200 keV and 1 µA intensity is incident on a 5 keV thick (in the laboratory sys-
tem) natural carbon target for a period of 1 h. Calculate the total number of
photons originating from the 13C(p,γ)14N capture reaction, assuming that one
photon is emitted per reaction. Assume further that both the cross section
and the stopping power are approximately constant over the target thickness.
The cross section amounts to σ13C(p,γ)(Elab = 200 keV) = 10−7 b and the stop-
ping power of protons in carbon, calculated by using the computer code SRIM
(Ziegler 2003), is given by εp→C(Elab = 200 keV) = 11.8× 10−15 eV cm2/atom.

The target consists of active 13C (1.1%) and inactive 12C (98.9%) nuclei. If we
assume that the stopping power of hydrogen in 12C and 13C is the same, we
obtain for the effective stopping power (see Eq. (4.94))

εeff = εp→13C +
98.9
1.1

εp→12C = εp→C

(
1 +

98.9
1.1

)

= (11.8 × 10−15 eV cm2/atom)
(

1 +
98.9
1.1

)
= 1.0 × 10−12 eV cm2/atom

The yield is then given by

Y =
∆Ec

εeff
σ =

5 × 103 eV
1.0 × 10−12 eV cm2/atom

(10−7 · 10−24 cm2)

= 5.0 × 10−16 =
Nγ

Np

The total number of incident protons can be calculated from the total accumu-
lated charge Q and the elementary charge e (Section 4.3.4). The value of Q is
given by the beam intensity and the measuring time,

Np =
Q
e

=
It
e

=
(1 × 10−6 A)(3600 s)

1.6 × 10−19 C
= 2.25 × 1016

Thus, for a measuring time of 1 h, we obtain for the number of emitted pho-
tons at a laboratory bombarding energy of Elab = 200 keV

Nγ = YNp = (5.0 × 10−16)(2.25 × 1016) ≈ 11

Note that in this example the yield is obtained from the ratio of the two quan-
tities ∆Ec and εeff that are both given in the laboratory system. Obviously, the
ratio ∆Ec/εeff = nX is independent of the reference frame. Multiplication of
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the numerator and denominator by the center of mass to the laboratory frame
conversion factor MX/(MX + Mp) (see Eq. (C.24); MX and Mp are the rela-
tive atomic masses of the active target nuclei and the projectiles, respectively)
shows that the tabulated effective stopping power has to be multiplied by this
factor if the yield is calculated from the target thickness in the center-of-mass
system.

Moderately varying σ and constant ε over target thickness

If the stopping power is constant, but the cross section varies over the target
thickness, then the yield is given by (see Eq. (4.91))

Y(E0) =
1

ε(E0)

∫ E0

E0−∆E
σ(E) dE (4.97)

We will assume that the cross section does not vary drastically, that is, we ex-
clude narrow-resonance cross sections which will be discussed later. The sit-
uation is shown as case (b) in Fig. 4.56. The above integral can be replaced by
the product σ(Eeff)∆E(E0) and we obtain again the expression (see Eq. (4.92))

Y(E0) =
∆E(E0)
ε(E0)

σ(Eeff) (4.98)

The quantity Eeff is now the effective beam energy between E0 − ∆E and E0 at
which 50% of the total yield is obtained (that is, the energy which divides the
shaded region under the cross section curve into two equal areas). In general,
the effective beam energy must be obtained numerically, but in special cases
analytical expressions may be used. For example, if the cross section varies
linearly between σ1 = σ(E0) and σ2 = σ(E0 − ∆E), then the effective beam
energy is given by (Rolfs and Rodney 1988)

Eeff = E0 − ∆E + ∆E



− σ2

σ1 − σ2
+

√
σ2

1 + σ2
2

2(σ1 − σ2)2



 (4.99)

As was the case before, reactions occur over the entire thickness of the target,
but the number of reaction products emitted from different target depths is no
longer constant.

Breit–Wigner resonance σ and constant ε over resonance width

Suppose that a resonant cross section is given by the Breit–Wigner formula
(see Eq. (2.185)). It is also assumed that the stopping power ε, the Broglie
wavelength λ, and the partial widths Γi of the resonance are independent of
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Fig. 4.56 Yield for a (a) constant cross sec-
tion, (b) weakly energy-dependent cross
section. The yield is given by the area under
the cross section curve (shaded areas in the
top part). The integration is performed from
the bombarding energy E0 to an energy of
E0 − ∆E, with ∆E the target thickness in en-

ergy units. In situation (a), the shape of the
yield and cross section curves are identical.
In situation (b), the energy which divides
the shaded region under the cross section
curve into two equal areas corresponds to
the effective beam energy.

energy over the resonance width. Hence, these quantities can be evaluated at
the resonance energy Er. With the substitutions ω ≡ (2J + 1)(1 + δ01)/[(2j0 +
1)(2j1 + 1)] and ωγ ≡ ωΓaΓb/Γ (Section 3.2.4), we obtain from Eqs. (3.110)
and (4.91) (Fowler, Lauritsen and Lauritsen 1948)

Y(E0) =
E0∫

E0−∆E

1
ε(E)

λ2

4π
ω

ΓaΓb

(Er − E)2 + Γ2/4
dE

=
λ2

r
2π

ωγ

εr

Γ
2

E0∫

E0−∆E

dE
(Er − E)2 + (Γ/2)2

=
λ2

r
2π

ωγ

εr

[
arctan

(
E0 − Er

Γ/2

)
− arctan

(
E0 − Er − ∆E

Γ/2

)]
(4.100)

where λr and εr denote the de Broglie wavelength and the stopping power
at the resonance energy Er, respectively. With the expressions tan(x − y) =
[tan(x) − tan(y)]/[1 + tan(x) tan(y)] and d(arctan x)/dx = 1/(1 + x2) one
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finds after some algebra

E0,max = Er +
∆E
2

(4.101)

Ymax = Y(E0,max) =
λ2

r
π

ωγ

εr
arctan

(
∆E
Γ

)
(4.102)

E0,50% = Er +
∆E
2

± 1
2

√
Γ2 + ∆E2 (4.103)

FWHM =
√

Γ2 + ∆E2 (4.104)

with E0,max, Ymax, E0,50%, and FWHM the location of the maximum, the max-
imum yield, the energies corresponding to one half of the maximum yield,
and the FWHM of the resonance yield curve, respectively. For the de Broglie
wavelength (in the center-of-mass system) we find numerically

λ2
r

2
= 2π2 �

2

2m01Er
=
(

M0 + M1

M1

)2 4.125 × 10−18

M0Elab
r

(cm2) (4.105)

with m01, M0, and M1 the reduced mass of the projectile–target system, the
projectile mass (in u), and the target mass (in u), respectively; Elab

r is the labo-
ratory resonance energy in units of eV.

These results are illustrated in Fig. 4.57, showing a Breit–Wigner cross sec-
tion (part a) and the corresponding yield (part b) of a resonance at Er = 500 keV
with a total width of Γ = 15 keV for different values of the target thickness
∆E. If the target thickness is much smaller compared to the resonance width,
∆E � Γ, then the shape of the yield curve corresponds to the shape of the
cross section (that is, a Lorentzian shape). The maximum yield is located close
to the resonance energy, E0,max ≈ Er, and the width of the yield curve is given
by the resonance width, FWHM ≈ Γ. For example, at a bombarding energy
of E0 = 495 keV and a target thickness of ∆E = 5 keV (shaded area on the left-
hand side in part a) the target integrates only over a small region of the cross
section (that is, between 490 and 495 keV). The resulting yield is shown as the
open circle at 495 keV in part (b). In this case, reactions occur over the en-
tire thickness of the target. On the other hand, if the target thickness is much
larger compared to the total resonance width, ∆E 	 Γ, then the shape of the
yield curve is determined by the arctan function. The yield curve shows a
flat plateau with a maximum located at E0,max = Er + ∆E/2 and the width is
FWHM ≈ ∆E. For example, at E0 = 550 keV and ∆E = 50 keV (shaded region
on right-hand side in part a) the target integrates over almost half of the en-
tire cross section curve (that is, between 500 and 550 keV). The resulting yield,
shown as the open circle at 550 keV in part (b), represents then about 50% of
the maximum yield at the plateau height. In this case, the number of reactions
varies strongly over the thickness of the target.
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Fig. 4.57 (a) Cross section and (b) yield
curve for a Breit–Wigner resonance with
energy-independent partial widths. The res-
onance is located at E = 500 keV and has
a width of Γ = 15 keV. The yield depends
strongly on the bombarding energy and the
target thickness. The shaded areas (part

a) and corresponding open circles (part b)
depict the situation for two different sets of
conditions (E0 = 495 keV, ∆E = 5 keV on
the left-hand side and E0 = 550 keV, ∆E =
50 keV on the right-hand side). The symbol
∞ in part (b) labels the resonant yield for an
infinitely thick target.

For an increasing target thickness ∆E, both the maximum yield Ymax and
the width of the yield curve will increase since the target integrates the cross
section over a larger energy region. In the limit of an infinitely thick target,
∆E → ∞, the yield in Eq. (4.100) becomes

Y∆E→∞(E0) =
λ2

r
2π

ωγ

εr

[
arctan

(
E0 − Er

Γ/2

)
+

π

2

]
(4.106)

and Eqs. (4.102) and (4.103) give

Ymax,∆E→∞ =
λ2

r
2

ωγ

εr
(4.107)

E0,50%,∆E→∞ = Er (4.108)

The yield Y∆E→∞ for a resonance at E0 = 500 keV with a total width of Γ =
15 keV is also shown in Fig. 4.57b. The difference between the energies at
which the yield for an infinitely thick target is at 75% and 25% of its maximum
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Fig. 4.58 Ratios Ymax/Ymax,∆E→∞, FWHM/∆E and (Er − E0,50%)/Γ
as a function of ∆E/Γ for a Breit–Wigner resonance with energy-
independent partial widths.

value is equal to the total resonance width, that is,

E0,75%,∆E→∞ − E0,25%,∆E→∞ = Γ (4.109)

It is interesting to investigate the ratios Ymax/Ymax,∆E→∞, FWHM/∆E, and
(Er − E0,50%)/Γ as a function of ∆E/Γ. The results are shown in Fig. 4.58.
Obviously, the thicker the target, the closer the yield resembles that of an in-
finitely thick target. For example, suppose that the target thickness is ten times
larger than the total resonance width (∆E/Γ = 10). The maximum yield at the
plateau is then 94% of the yield for an infinitely thick target and the FWHM
is equal to the target thickness within 0.5%. Furthermore, the difference of en-
ergies at which the yield is at 50% of its maximum and the resonance energy
amounts to 0.025Γ (see Eq. (4.103)). This deviation amounts only to 0.37 keV
for a total resonance width of Γ = 15 keV.

4.8.2
General Treatment of Yield Curves

We neglected so far the influence of certain experimental factors on the mea-
sured yield. These include the finite beam energy resolution, beam straggling
in the target, target nonuniformities, and the thermal motion of target atoms.
In order to account for such effects, we have to replace Eq. (4.91) by the general
expression (Gove 1959)

Y(E0) =
∫ E0

E0−∆E
dE′

∫ ∞

Ei=0
dEi

∫ Ei

E=0

σ(E)
ε(E)

g(E0, Ei) f (Ei, E, E′) dE (4.110)
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where g(E0, Ei) dEi is the probability that a particle in the incident beam of
mean energy E0 has an energy between Ei and Ei + dEi; f (Ei , E, E′) dE is the
probability that a particle incident on the target at an energy Ei has an energy
between E and E + dE at a depth inside the target corresponding to the energy
E′ (that is, E0 − ∆E < E′ < E0). The functions g(E0, Ei) and f (Ei, E, E′) are
assumed to be normalized. The cross section σ(E) can be found numerically
from the measured yield Y(E0) by using deconvolution procedures (see, for
example, McGlone and Johnson 1991).

For a constant cross section and stopping power, the triple integral reduces
to our earlier result (see Eq. (4.92)) as can be seen by using the normalizations
of g and f , and by carrying out the integrations in the order E, Ei, and E′.
It follows that the yield for nonresonant cross sections (σ ≈ const) and thin
targets (ε ≈ const) is not affected by the beam resolution and beam straggling.
In other words, all projectiles in the beam can in principle contribute to the
yield.

In the following, resonance yield curves will be discussed in more detail.
We will make a few assumptions that apply frequently in practice: (i) the
energy distribution of particles in the beam is a function of E0 − Ei only,
g(E0, Ei) = g(E0 − Ei). That is, the beam spread is independent of the mean
energy E0; (ii) the distribution describing energy loss and straggling is a func-
tion of Ei − E and E′ only, f (Ei, E, E′) = f (Ei − E, E′). That is, the spread
in f is independent of the energy Ei; (iii) the functions g, f , and σ vanish on
both sides of their maximum values; (iv) the stopping power is constant over
the total width of the resonance and the total width of the target, ε(E) = εr.
The latter condition implies that the target is uniform. Otherwise, if the target
consists of a compound with changing stoichiometry, the energy and depth
dependence of the effective stopping power, εeff(E), has to be taken explicitly
into account. With the above assumptions, Eq. (4.110) becomes

Y(E0) =
1
εr

∫ E0

E0−∆E
dE′

∫ ∞

Ei=0
dEi

∫ Ei

E=0
σ(E)g(E0 − Ei) f (Ei − E, E′) dE (4.111)

A typical situation is represented in Fig. 4.59. A beam of initial mean energy
E0, with an energy distribution given by g(E0 − Ei), traverses a target of thick-
ness ∆E. The energies E and E′ represent the projectile energy at a fixed depth
x in the target and the mean energy of the beam, respectively. The vertical
thick line indicates the position of a narrow resonance with Er < E0. At posi-
tion (a) near the target surface, all projectile energies are too large to excite the
resonance and the yield will be negligible. At position (b) inside the target,
the beam has slowed down so that the maximum of the projectile energy dis-
tribution coincides with the resonance energy and, consequently, the largest
contribution to the yield arises from this depth in the target. At position (c)
near the back side of the target, most projectiles have slowed to energies be-
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Fig. 4.59 Slowing down process of a beam
with initial mean energy E0 and an energy
distribution given by g(E0 − Ei), traversing a
target of thickness ∆E. The energies E and
E′ represent the projectile energy at a fixed
depth x in the target and the mean energy
of the beam, respectively; E′ decreases
as the target is traversed. The z-axis rep-

resents the magnitude of the probability
distribution f . The vertical thick line indi-
cates the position of a narrow resonance
with Er < E0. Positions (a), (b), and (c) in-
dicate different depths within the target. The
largest contribution to the resonance yield
arises from position (b).

low Er. Only a few projectiles on the high-energy tail of the distribution f can
excite the resonance. The contribution of this target depth to the yield is larger
than for position (a), but less than for position (b).

Target of infinite thickness

For an infinitely thick target, ∆E → ∞, the lower integration limit of E′ in
Eq. (4.111) is zero. The shape of the yield curve can be obtained using the
normalization of the function f since the probability of finding a projectile
that experienced a specific energy loss of Ei −E anywhere in the target is unity.
Thus

Y∆E→∞(E0) =
1
εr

∫ E0

E′=0
f (Ei − E, E′) dE′

∫ ∞

Ei=0
dEi

∫ Ei

E=0
σ(E)g(E0 − Ei) dE

=
1
εr

∫ ∞

Ei=0
g(E0 − Ei) dEi

∫ Ei

E=0
σ(E) dE (4.112)

The yield depends on both the cross section (for example, the total resonance
width) and the beam spread, but is independent of beam straggling. The max-
imum yield for an infinitely thick target can be obtained in the limit E0 → ∞.
In this case the only contribution from the integration over Ei results from
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Ei → ∞. Using the normalization of the distribution g we find

Ymax,∆E→∞ =
1
εr

∫ ∞

E=0
σ(E) dE (4.113)

It follows that the maximum yield for an infinitely thick target is not affected
by the beam resolution, beam straggling, or the total resonance width. The
value of Ymax,∆E→∞ depends only on the stopping power and the integrated
cross section. If the target consists of a compound, then εr has to be replaced
by εeff,r (see Eq. (4.94)) and, consequently, Ymax,∆E→∞ depends on the stoi-
chiometry of the target compound. If the cross section is given by the Breit–
Wigner formula with constant partial widths and de Broglie wavelength over
the width of the resonance, the integration over σ yields

Ymax,∆E→∞ =
1
εr

λ2
r

2
ωγ (4.114)

which is identical to our earlier result (see Eq. (4.107)).

Target of finite thickness

For a target of finite thickness the area under the resonance yield curve is
obtained by evaluating the expression

AY =
∫ ∞

E0=0
Y(E0) dE0

=
1
εr

∫ ∞

E0=0
dE0

∫ E0

E0−∆E
dE′

∫ ∞

Ei=0
dEi

∫ Ei

E=0
σ(E)g(E0 − Ei) f (Ei − E, E′) dE

(4.115)

The multiple integral can be solved by using the normalizations of g and f and
by carrying out the integrations in the order E0, Ei, and E′. The integral over
E can be taken with an upper limit of infinity since the beam energy varies
between 0 and ∞. Thus

AY =
1
εr

∫ ∞

E0=0
g(E0 − Ei) dE0

∫ E0

E0−∆E
dE′

∫ ∞

Ei=0
dEi

∫ Ei

E=0
σ(E) f (Ei − E, E′) dE

=
1
εr

∫ ∞

Ei=0
f (Ei − E, E′) dEi

∫ E0

E0−∆E
dE′

∫ ∞

E=0
σ(E) dE (4.116)

The probability that, at a target depth corresponding to E′, a projectile of en-
ergy E has an initial energy of Ei anywhere between 0 and ∞ is unity and,
therefore,

AY =
1
εr

∫ E0

E0−∆E
dE′

∫ ∞

E=0
σ(E) dE

=
∆E
εr

∫ ∞

E=0
σ(E) dE = n

∫ ∞

E=0
σ(E) dE

(4.117)
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We obtain the important result that the area under a resonance yield curve for
a target of finite thickness is independent of beam resolution, straggling, target
thickness, stopping power, and total resonance width. The value of AY only
depends on the total number of target nuclei per square centimeter and the
integrated cross section. If the target consists of a compound, then n has to be
replaced by the number of active target nuclei, nX = ∆Ec/εeff (see Eq. (4.94)).
It has been shown (Palmer et al. 1963) that the above expression also holds
for nonuniform targets (for example, targets of varying stoichiometry). From
Eqs. (4.113) and (4.117) we find that the area under the resonance yield curve
is equal to the product of maximum yield for an infinitely thick target and the
target thickness,

AY = Ymax,∆E→∞∆E (4.118)

For example, for a Breit–Wigner cross section with constant partial widths
and de Broglie wavelength over the width of the resonance, one obtains with
Eq. (4.114)

AY =
∆E
εr

λ2
r

2
ωγ = n

λ2
r

2
ωγ (4.119)

We will now turn our attention to the influence of beam resolution and
straggling on the shape of resonance yield curves for targets of finite thick-
ness. We are specifically interested to investigate by how much the quantities
Ymax, E0,50%, and FWHM (see Eqs. (4.102)–(4.104)) change because of these ef-
fects. In the following, results will be discussed that are obtained by solving
Eq. (4.111) numerically, assuming specific distributions for σ, g, and f . For
these calculations, the following assumptions will be made: (i) the cross sec-
tion is given by the Breit–Wigner formula with constant partial widths and de
Broglie wavelength over the total resonance width; the resonance is located at
an energy of Er = 500 keV and the area under the resonance cross section (that
is, the resonance strength) is fixed; (ii) the beam profile is approximated by a
Gaussian with a full width at half maximum of ∆beam; and (iii) the distribu-
tion f is also approximated by a Gaussian, an assumption which is appropri-
ate if the number of collisions is large. The full width at half maximum of f
can be approximated by Eq. (4.19), which is applicable for relatively thin ab-
sorbers. Assuming a constant stopping power over the total resonance width,
one finds from Eqs. (4.14) and (4.19)

∆stragg = 1.20 × 10−9
√

Z2
pZt(E0 − E′)/ε (keV)

= const
√

E0 − E′ (keV) (4.120)

We adopt here arbitrary values of Zp = 1, Zt = 10, and ε = 10×10−15 eV cm2/atom,
yielding const = 1.2. The resulting calculated yield curves are shown in
Fig. 4.60.
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Part (a) shows the effect of varying the beam energy spread ∆beam. For the
target thickness, total resonance width, and beam straggling, values of ∆E =
10 keV, Γ = 0, and ∆stragg = 0, respectively, are adopted. The curves are
obtained for values of ∆beam = 0, 1, 3, 5, and 8 keV. The rectangular yield curve
corresponds to the case of Γ = 0, ∆stragg = 0, and ∆beam = 0. It can be seen that
the beam spread causes a decrease in the slope of both the low-energy and the
high-energy edge of the yield curve. If the beam spread is small compared to
the target thickness, ∆beam/∆E < 0.5, then the beam resolution is equal to the
difference of energies at which the yield reaches 12% and 88% of its maximum
value (assuming ∆beam 	 Γ), as is appropriate for a Gaussian distribution.
For ratios in excess of ∆beam/∆E ≈ 0.5, the quantities Ymax, E0,50%, and FWHM
are all influenced by the beam resolution. The maximum yield decreases, the
energy at which the yield reaches 50% of its maximum value shifts below the
resonance energy Er, and the value of FWHM becomes larger than the target
thickness. For example, for ∆beam = 8 keV the energy difference Er − E0,50%
amounts to ≈ 0.5 keV. The influence of the beam spread on the shape of the
yield curve has to be taken into account if the resonance strength ωγ is derived
from the observed value of Ymax by using Eq. (4.102).

Part (b) demonstrates the influence of beam straggling. For the total res-
onance width, beam energy resolution, and straggling constant, values of
Γ = 0, ∆beam = 0, and const = 1.2, respectively, are adopted. The curves
are obtained for target thicknesses of ∆E = 1, 3, 5, and 10 keV. The rectangular
yield curve corresponds again to the case Γ = 0, ∆beam = 0 and ∆stragg = 0. It
can be seen that straggling has no effect on the low-energy edge of the yield
curve and, therefore, the energy difference Er − E0,50% is negligible (assuming
Γ = 0). However, straggling causes a decrease in the slope of the high-energy
edge of the yield curve. The value of ∆stragg (at E0 − E′ = ∆E) is approxi-
mately equal to the difference of energies at which the yield reaches 12% and
88% of its maximum value (assuming ∆stragg 	 Γ and ∆stragg 	 ∆beam). It is
obvious that straggling will reduce the maximum yield if the target becomes
too thin (∆E < 3 keV in our specific case). As was the case for the beam spread,
the effects of straggling have to be taken into account if ωγ is derived from the
observed value of Ymax. Note that the value of FWHM is relatively insensitive
to straggling.

Part (c) shows the combined effects of the total resonance width, beam reso-
lution, and beam straggling on the shape of a resonance yield curve for specific
sets of parameters. For the target thickness a value of ∆E = 10 keV is adopted.
The rectangular profile is obtained with the values Γ = 0, ∆beam = 0, and
∆stragg = 0. Since ∆E/Γ → ∞, the plateau height corresponds to the max-
imum yield for an infinitely thick target (see Eq. (4.107)). The dotted line is
calculated by using the values Γ = 0.5 keV, ∆beam = 0, and ∆stragg = 0. Since
∆E/Γ = 20, the plateau height decreases to 0.97Ymax,∆E→∞, consistent with the
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results shown in Fig. 4.58. In addition, the slopes of the high- and low-energy
edges of the yield curve decrease. The solid line obtained with the values of Γ
= 0.5 keV, ∆beam = 1.5 keV, and ∆stragg = 0 includes the effects of a finite beam
energy resolution. Since we have ∆beam � ∆E, the maximum yield Ymax is
little affected by the beam spread but the low- and high-energy edges become
less steep. Finally, the solid line calculated with Γ = 0.5 keV, ∆beam = 1.5 keV,
and const = 1.2 for the straggling constant shows the effects of straggling. It
causes the high-energy edge of the yield curve to become less steep. Since
we have ∆stragg � ∆E, the value of Ymax is little affected by beam straggling.
The values of E0,50% and FWHM are very close to Er and ∆E, respectively.
Note that the areas under all curves shown in Fig. 4.60c have the same value
according to Eq. (4.119).

4.8.3
Measured Yield Curves and Excitation Functions

We will now discuss what kind of information may be extracted from the
properties of a measured yield curve, that is, its observed width (FWHM), the
slope of the low-energy edge, the maximum yield (Ymax), the energy at which
the yield reaches 50% of its maximum value (E0,50%), and the area under the
yield curve (AY). In order to properly interpret the experimental information,
some information must be known a priori. We will assume in the following
that the data represent the yield curve of an isolated, well-resolved resonance
and that the total resonance width Γ is known from independent sources.

Consider as a first example Fig. 4.61a, showing a yield curve for the 151 keV
resonance in the 18O(p,γ)19F reaction. The yield is obtained from the mea-
sured intensity of a specific primary transition. This resonance has a total
width of Γ = 130 ± 10 eV (Table 4.1). The target was produced by anodizing a
tantalum backing in 18O-enriched water. Such targets are known to consist of
a 18O–Ta compound (Vermilyea 1953).

The yield curve shows a structure with an observed width of FWHM =
34 keV. The beam spread influences the slopes of the low-energy and high-
energy edges of the yield curve, while straggling contributes only to the slope
of the high-energy edge. It can be seen that both edges extend over energy
regions that are smaller than the observed width of the yield curve. In ad-
dition, the flat plateau indicates that the plateau height is not influenced by
the beam resolution or by straggling. Otherwise the yield maximum would
show a round shape (Fig. 4.60). From these arguments it follows that FWHM
	 ∆beam and FWHM 	 ∆stragg. Furthermore, we have FWHM 	 Γ, and thus
we conclude that the observed width is equal to the target thickness, FWHM
= ∆E = 34 keV.

The low-energy edge extends over an energy range of several keV. Since Γ
is very small, the slope reflects the resolution of the beam. From the difference
of energies at which the yield reaches 12% and 88% of its maximum value, we
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Fig. 4.60 General shape of resonance yield
curves, obtained by solving Eq. (4.111)
numerically. See the text for specific as-
sumptions. The curves are obtained for the
following conditions of target thickness ∆E,
total resonance width Γ, beam straggling
∆stragg, and beam energy spread ∆beam:
(a) ∆E= 10 keV, Γ = 0, ∆stragg = 0, ∆beam
= 0, 1, 3, 5, 8 keV; (b) Γ = 0, ∆beam = 0,

const = 1.2, ∆E = 1, 3, 5, 10 keV; (c) the
target thickness amounts to ∆E = 10 keV
for each curve; Γ = 0, ∆beam = 0, ∆stragg =
0; Γ = 0.5 keV, ∆beam = 0, ∆stragg = 0; Γ =
0.5 keV, ∆beam = 1.5 keV, ∆stragg = 0; Γ =
0.5 keV, ∆beam = 1.5 keV, const = 1.2. The
areas under all curves shown in part (c) are
identical.

find ∆beam = 4.0 keV. Note that the Doppler effect due to the thermal motion of
the target atoms also contributes to the slopes of yield curve edges (Rolfs and
Rodney 1988). The beam spread together with the Doppler broadening can be
described by a Gaussian with a full width at half maximum of ∆beam+Dopp =
(∆2

beam + ∆2
Dopp)1/2. In practice, one finds ∆Dopp ≤ 100 eV and, unless beams
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of very high resolution are used, we have ∆beam+Dopp ≈ ∆beam. The energy
at which the yield reaches 50% of its maximum value is in this case neither
influenced by the total resonance width (since ∆E 	 Γ; see Eq. (4.103)), nor
by the beam spread (since the ratio ∆beam/∆E = 4.0 keV/34 keV = 0.11 is small;
see Fig. 4.60). Thus, we find E0,50% = Er = 150.5 keV.

We concluded that the plateau height is not influenced by beam spread
and straggling effects. From the ratio ∆E/Γ = 34 keV/130 eV ≈ 260 we
find with Eqs. (4.102) and (4.107) that the maximum yield Ymax is equal to
0.998Ymax,∆E→∞ and, therefore, represents the yield of an infinitely thick tar-
get to within 0.2%. Furthermore, the area AY under the yield curve in general
only depends on the number of active target nuclei (18O) and the resonance
strength ωγ (see Eq. (4.119)).

Similar arguments apply to the data displayed in Fig. 4.61b, showing a yield
curve of the 918 keV resonance in 36Ar(p,γ)37K. The yield is obtained from the
intensity of the primary transition to the 37K ground state. This resonance has
a total width of Γ = 300 ± 50 meV (Endt 1998). The target was prepared by
implanting 36Ar ions into a tantalum sheet. Consequently, the target consists
of an 36Ar–Ta compound (Table 4.3). The width of the structure (FWHM =
6.5 keV) is much larger than the total resonance width. The energy region
of the leading edge is small compared to the value of FWHM and, therefore,
the beam spread neither reduces the maximum yield nor contributes to the
observed width of the yield curve. Furthermore, straggling does not influence
the leading edge or the observed value of FWHM . Thus, we extract from the
yield curve the values ∆E = 6.5 keV, ∆beam = 1.0 keV, and Er = 917.5 keV.

There is an important difference between the two yield curves shown in
Fig. 4.61. In part (b), a flat plateau is not observed and the high-energy edge
displays a pronounced tail. This effect, which is partly caused by proton beam
straggling, also reflects the range straggling of the implanted 36Ar ions in the
tantalum backing. Although these straggling effects will not influence the
deduced values of ∆E, ∆beam, and Er, we may no longer conclude that the
influence of straggling on the maximum yield height Ymax is negligible.

Narrow resonance yield curves also provide information on the number of
active target nuclei and on the stoichiometry of the target compound if the res-
onance strength is well known. According to Eq. (4.119), the number of active
target nuclei per square centimeter for pure targets or compounds is given by
nX = 2AY/(λ2

r ωγ). For a target compound XaYb, the effective stopping power
can be found from the measured target thickness by using Eq. (4.94). Note
that this procedure does not rely on the maximum yield Ymax, which may be
influenced by straggling effects. The stoichiometry nY/nX can then be derived
from the effective stopping power (see Eq. (4.94)).

It is obvious from the above considerations that a yield curve over a narrow
resonance provides a wealth of information, including the resonance energy,
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Fig. 4.61 (a) Measured yield curve of the
Elab

r = 151 keV resonance in the 18O(p,γ)19F
reaction, obtained from the intensity of the
primary transition to the Ex = 3908 keV
state. The total resonance width is Γ = 130
± 10 eV (Table 4.1). The target was pro-
duced by anodizing a tantalum backing in
18O-enriched water (Vermilyea 1953). (b)

Measured yield curve of the Elab
r = 918 keV

resonance in 36Ar(p,γ)37K, obtained from the
intensity of the primary transition to the 37K
ground state. The total resonance width is
Γ = 300 ± 50 meV (Endt 1998). The target
was prepared by implanting 36Ar ions into a
tantalum sheet (Table 4.3).

beam energy resolution, target thickness, number of active target nuclei per
square centimeter, and the target stoichiometry. Alternatively, if the beam en-
ergy spread is small compared to the total resonance width (∆beam � Γ) and
if Γ � ∆E, then the difference in energies at which the yield reaches 25% and
75% of its maximum value will be equal to Γ (see Eq. (4.109)). Such techniques
are frequently applied for measuring the quantities Er, ∆beam, ∆E, nX , nY/nX ,
and Γ.

As a final example, consider the yield curve displayed in Fig. 4.62, which
was measured in the 24Mg(p,γ)25Al reaction at bombarding energies near
1.6 MeV. The yield was obtained from the intensity of a secondary transition.
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Fig. 4.62 Measured yield versus laboratory
bombarding energy for the 24Mg(p,γ)25Al re-
action at energies near 1.6 MeV. The yield
is obtained from the intensity of the sec-
ondary 945 keV → 0 transition in 25Al. The
target was produced by evaporating 24Mg
onto a tantalum backing. The narrow struc-
ture at ≈ 1.65 MeV shows the yield curve

over a narrow resonance (Elab
r = 1654 keV,

Γ = 0.1 keV) while the broad structure at
≈ 1.62 MeV corresponds to the yield curve
of a broad resonance (Elab

r = 1616 keV, Γ
= 36 keV). Reprinted from D. C. Powell et
al., Nucl. Phys. A, Vol. 660, p. 349 (1999).
Copyright (1999), with permission from El-
sevier.

The measurement was performed using an evaporated, enriched 24Mg target.
The narrow structure at ≈ 1.65 MeV shows the yield curve over a narrow res-
onance (Er = 1654 keV, Γ = 0.1 keV), similar to the examples discussed above.
The full width at half maximum of about 3 keV, as measured with respect to
the underlying continuum, reflects the target thickness, since ∆E 	 Γ. The
broad structure at ≈ 1.62 MeV corresponds to the yield curve of a broad reso-
nance (Er = 1616 keV, Γ = 36 keV). Since in this case we have ∆E � Γ, the yield
curve reflects the shape of the cross section curve, as discussed in Section 4.8.1.

4.8.4
Determination of Absolute Resonance Strengths and Cross Sections

The importance of absolute cross sections and resonance strengths for the cal-
culation of thermonuclear reaction rates has been stressed in Chapter 3. What
is directly measured in experiments are yields rather than cross sections or res-
onance strengths, as we have seen in previous sections. We will now discuss
methods of deriving absolute values of σ and ωγ from measured yields. It
is again assumed that the stopping power is approximately constant over the
width of the target. The assumption is justified if the target thickness is less
than a few tens of keV. In this case, the target thickness and stopping power
are related by Eqs. (4.14) or (4.17).
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Experimental yields

Yields of nuclear reactions are usually measured with detectors that are lo-
cated at a certain detection angle θ with respect to the incident beam direc-
tion and cover a solid angle Ω. The total yield is experimentally given by
Eqs. (4.49), (4.69), and (4.87),

Y =
NR

Nb
=

N
NbBηW

(4.121)

with NR the total number of reactions that occurred, Nb the total number of
incident projectiles, and B, N , η, and W the branching ratio (probability of
emission per reaction), the total number of detected particles or photons, the
detector efficiency, and the angular correlation, respectively, for a specific nu-
clear transition. The latter three quantities depend, in general, on the detection
angle θ. If the reaction proceeds to only one final state, or if the yield is pre-
sented for a specific transition rather than for the total number of reactions,
then B = 1.

The differential yield for a nonresonant cross section is usually given for a
specific transition (B = 1). With Eqs. (4.44) and (4.121) we write
(

dY
dΩ

)

θ

=
N

NbηintΩ
(4.122)

where ηint denotes the intrinsic detection efficiency (for example, ηint = 1 for
silicon charged-particle detectors; Section 4.5.1) and Ω is the detector solid
angle in steradians.

Absolute resonance strengths and cross sections

With few exceptions, most experimental resonance strengths have been deter-
mined using the plateau height of thick targets (see Eq. (4.107)),

ωγ =
2εr

λ2
r

Ymax,∆E→∞ =
2εr

λ2
r

Nmax,∆E→∞

NbBηW
(4.123)

where the subscript r indicates that the corresponding quantities relate to the
resonance energy Er. The quantities B, η, and W are usually constant over a
given resonance yield curve. It is important to point out that the resonance
strength in the above expression does not depend on the absolute number of
target nuclei, but only on the stopping power, and the stoichiometry if the
target consists of a compound. When using Eq. (4.123), one has to verify care-
fully that the maximum observed yield is not affected by the beam spread,
straggling, or the total resonance width. Since the area under the yield curve
is independent of such effects (see Eq. (4.117)), it is usually more reliable to
deduce the resonance strength from Eq. (4.119) instead of Eq. (4.123). From
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Eqs. (4.119) and (4.121) one finds

ωγ = 2
AY

nλ2
r

=
2

λ2
r

εr

∆E

∫ ∞

0
Y(E0) dE0 =

2
λ2

r

εr

∆E
1

BηW

∫ ∞

0

N (E0)
Nb(E0)

dE0 (4.124)

Note that the subscript r is omitted for the target thickness ∆E although this
quantity also refers to an energy near Er. Similarly, we may use Eqs. (4.92) and
(4.121) for determining slowly varying absolute cross sections,

σ(Eeff) =
Y(E0)

n
= Y(E0)

ε(E0)
∆E(E0)

=
ε(E0)

∆E(E0)
N (E0)

Nb(E0)B(E0)η(E0)W(E0)
(4.125)

Determinations of absolute ωγ and σ values by using Eqs. (4.124) and (4.125)
are difficult. These procedures require knowledge of the absolute number
of incident particles, absolute detector efficiencies, absolute branching ratios,
and so on. In particular, absolute stopping powers carry relatively large errors
(Section 4.2.1). Furthermore, if the target consists of a compound, then the ef-
fective stopping power εeff has to be used in the above expressions and, con-
sequently, the target stoichiometry has to be accurately known (see Eq. (4.94)).

Uncertainties of measured ωγ and σ values are typically in the 15–20%
range, where the effective stopping power contributes frequently the major
fraction of the error. It is important to realize that in many cases the ωγ

values for a given resonance measured by different research groups deviate
from each other by factors of 2–4. Similar arguments apply to some cross
sections. These deviations reflect the difficulties in measuring the absolute
magnitudes of quantities entering into the resonance strength or cross section
calculations. For example, the absolute beam intensity is usually determined
from the total charge deposited by the beam on a Faraday cup, but systematic
errors are likely if secondary electron emission is not properly accounted for
(Section 4.3.4).

A major problem for the determination of absolute ωγ and σ values is the
incomplete knowledge of the target stoichiometry. If evaporated targets are
used (Section 4.3.2) it is frequently assumed that the composition of the tar-
get during the nuclear reaction measurement is the same as the composition
of the raw material used before the actual evaporation took place. This as-
sumption is rarely valid since the target composition may change either dur-
ing evaporation or later during ion beam bombardment. For example, Mg
targets are frequently prepared by reductive evaporation of MgO (Takayangi
et al. 1966) and, therefore, such targets are expected to consist of a pure layer of
Mg. However, measurements have shown (Iliadis et al. 1990) that these targets
consist of a compound Mg5O, indicating either incomplete oxygen reduction
during target preparation or oxidization in air before the actual experiment.
Another striking example is NaCl targets. It has been shown (Paine, Kennett
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and Sargood 1978) that such targets change their stoichiometry during proton
bombardment from NaCl to Na17Cl10 after an accumulated charge of only ≈
1 × 10−4 C.

Relative resonance strengths and cross sections

It is much simpler and more reliable to obtain resonance strengths and cross
sections relative to some absolute, carefully measured, standard resonance
strength or cross section. Using the expression for the maximum yield of an
infinitely thick target (see Eq. (4.123)) we obtain

ωγ1

ωγ2
=

εr,1

εr,2

λ2
r,2

λ2
r,1

Ymax,∆E→∞,1

Ymax,∆E→∞,2
=

εr,1

εr,2

λ2
r,2

λ2
r,1

Nmax,∆E→∞,1

Nmax,∆E→∞,2

Nb,2

Nb,1

B2

B1

η2

η1

W2

W1
(4.126)

where the subscripts 1 and 2 correspond to the resonance of interest and the
standard resonance, respectively. The error of the resonance strength ωγ1 de-
pends on the accuracy of the ωγ2 value of the standard resonance. Otherwise,
only ratios of stopping powers, efficiencies, numbers of incident particles, and
so on, enter in Eq. (4.126), thus minimizing the influence of potential sources
of error. If we use instead the respective areas under the yield curves (see
Eq. (4.124)), then

ωγ1

ωγ2
=

AY,1

AY,2

λ2
r,2

λ2
r,1

εr,1
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∆E2
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B2η2W2

B1η1W1

∫ ∞
0

N1(E0,1)
Nb,1(E0,1)

dE0,1
∫ ∞

0
N2(E0,2)
Nb,2(E0,2)

dE0,2

(4.127)

Note that the above expression does not depend on the stopping power or the
target thickness if ωγ1 is determined relative to a standard resonance in the
same reaction and using the same target, since then εr,1/∆E1 = εr,2/∆E2 = n.

Similarly, we find from Eq. (4.125) for slowly varying cross sections

σ1(Eeff,1)
σ2(Eeff,2)

=
ε1(E0,1)
ε2(E0,2)

∆E2(E0,2)
∆E1(E0,1)
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Y2(E0,2)

=
ε1(E0,1)
ε2(E0,2)

∆E2(E0,2)
∆E1(E0,1)

N1(E0,1)
N2(E0,2)

Nb,2(E0,2)
Nb,1(E0,1)

B2(E0,2)
B1(E0,1)

η2(E0,2)
η1(E0,1)

W2(E0,2)
W1(E0,1)

(4.128)

where the subscripts 1 and 2 refer to the nonresonant cross section of inter-
est and the standard cross section, respectively. Again, the stopping powers
and target thicknesses cancel if both cross sections are measured in the same
reaction using the same target.
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A nonresonant cross section σ can also be determined relative to a well-
known resonance strength ωγ (or vice versa). We obtain, for example, from
Eqs. (4.123) and (4.125)

σ1(Eeff,1)
ωγ2

=
λ2

r,2

2∆E1(E0,1)
ε1(E0,1)
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× Nb,2

Nb,1(E0,1)
B2

B1(E0,1)
η2

η1(E0,1)
W2

W1(E0,1)
(4.129)

or from Eqs. (4.124) and (4.125)
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2
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0
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(4.130)

where in the last two expressions the subscripts 1 and 2 refer to the nonreso-
nant cross section and the resonance, respectively.

Example 4.4

For the narrow Elab
r = 317 keV resonance in the 25Mg(p,γ)26Al reaction (Γ <

40 eV), a yield curve is measured by using the intensity of the primary γ-ray
transition to the 417 keV state in 26Al (R → 417 keV). An evaporated 25Mg5O
target has a thickness of ∆E = 15 keV. The beam spread amounts to ∆beam
= 0.5 keV. Calculate the resonance strength from the measured values given
below. Neglect angular correlation effects (WR→417 = 1).

Nmax,R→417 = 3480 ± 63 γ-ray intensity on the yield curve plateau

Q = (0.090 ± 0.005) C accumulated ion beam charge on target

ηR→417 = (7.34 ± 0.30)× 10−4 peak efficiency for R → 417 keV

BR→417 = (33 ± 1)% branching ratio of R → 417 keV

Assume that the stopping power is constant over the thickness of the tar-
get. Use the following values (with 10% errors) for protons in Mg and O,
as obtained from the computer code SRIM (Ziegler 2003): εp→Mg(Elab

r =
317 keV) = 12.8 × 10−15 eV cm2/atom, εp→O(Elab

r = 317 keV) = 10.6 ×
10−15 eV cm2/atom.
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With a stoichiometry of nMg : nO = 5 : 1 we obtain for the effective stopping
power (see Eq. (4.94))

εeff =
M25Mg

M25Mg + MH

[

ε25Mg +
nO

nMg
εO

]

=
24.985

24.985 + 1.008

[
(12.8 × 10−15 eV cm2/atom)

+
1
5
(10.6 × 10−15 eV cm2/atom)

]

= 1.43 × 10−14 eV cm2/atom (±10%)

The de Broglie wavelength is given by (see Eq. (4.105))

λ2
r

2
=
(

Mp + Mt

Mt

)2 4.125 × 10−18

MpElab
r

(cm2)

=
(

1.008 + 24.985
24.985

)2 4.125 × 10−18

(1.008)(317000)
cm2 = 1.40 × 10−23 cm2

The total number of incident protons (assuming a positively charged proton
beam, q=1) amounts to

Np =
Q
qe

=
(0.090 ± 0.005) C
1 · (1.6 × 10−19 C)

= 5.63 × 1017 (±6%)

If we neglect the influence of the beam spread (which is small compared to the
target thickness), straggling, and the total resonance width (Γ � ∆E) on the
maximum yield, then the observed plateau height corresponds to the maxi-
mum yield of an infinitely thick target, Ymax,∆E→∞. With Eq. (4.123) one finds

ωγ =
2εeff,r

λ2
r

Nmax,∆E→∞

NbBηW

=
1.43 × 10−14 eV cm2

1.40 × 10−23 cm2
3480

(5.63 × 1017)(0.33)(7.34 × 10−4)

= 2.61 × 10−2 eV (±13%)

Note that all energies in the general yield expression of Eq. (4.91) are given in
the center-of-mass system. Obviously, the quantity dx = dE/(dE/dx) is inde-
pendent of the reference frame. Multiplication of numerator and denominator
by the center of mass to laboratory frame conversion factor Mt/(Mt + Mp)
(see Eq. (C.24); Mt and Mp are the relative atomic masses of the active tar-
get nuclei and the projectiles, respectively) shows that the effective stopping
power measured in the laboratory or calculated with SRIM must be multiplied
by this factor before it can be used in yield calculations.
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Determination of resonance strengths and cross sections relative to Rutherford
scattering

It is apparent from the above discussion that measurements of absolute res-
onance strengths and cross sections are difficult to perform since a variety of
experimental artifacts, such as beam spread, straggling, stoichiometries, stop-
ping powers, integrated beam charge, and so on, may lead to substantial sys-
tematic errors. Nevertheless, for a number of resonances, careful measure-
ments of their absolute strengths have been performed. The results are given
in Table 4.12. This set of recommended ωγ values may be used as an absolute
standard for the determination of other resonance strengths or of nonresonant
cross sections according to Eqs. (4.126)–(4.130).

Almost all the ωγ values listed in the table have been determined relative to
the intensity of Rutherford-scattered projectiles. The experimental details vary
from study to study, but such techniques essentially eliminate the influence of
at least some artifacts on the ωγ values. Consequently, we expect that these
results are more reliable compared to those obtained from Eqs. (4.123)–(4.125).
In the following, a method will be discussed which eliminates almost all ex-
perimental artifacts. This technique provides absolute resonance strengths
and cross sections that depend almost exclusively on measured intensities
and, in particular, does not require knowledge of beam or target properties.
The method is based on the fact that certain quantities cancel in the determi-
nation of ωγ if the nuclear reaction products and Rutherford-scattered beam
particles are measured simultaneously.

We start with Eq. (4.124) which relates the resonance strength to the area
under the resonance yield curve,

ωγ1 = 2
AY,1

nλ2
r,1

=
2

nλ2
r,1

1
B1η1W1

∫ ∞

0

N1(E0,1)
Nb,1(E0,1)

dE0,1 (4.131)

where the subscript 1 is used for all quantities related to the measurement of
the resonance. As already noted, the above expression is independent of the
beam spread, straggling, and the total resonance width. For the derivation of
this result we used the assumptions that the resonant cross section is given by
the Breit–Wigner formula with constant partial widths and de Broglie wave-
length over the total resonance width, and that the stopping power is approx-
imately constant over the width of the target (Section 4.8.2).

Suppose now that the projectiles that are Rutherford-scattered by the active
target nuclei are measured in a second detector located at an angle of θ2 with
respect to the incident beam direction. If the target is sufficiently thin (say, less
than 10 keV), so that the variation of the Rutherford-scattering cross section
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Tab. 4.12 Recommended resonance strengths. (a) Rowland et al. (2002a); (b) Paine and Sar-
good (1979); (c) Powell et al. (1999); (d) Powell et al. (1998); (e) Anderson et al. (1980); (f)
weighted average of Goosman and Kavanagh (1967) and Mohr et al. (1999); (g) weighted av-
erage of Wiescher et al. (1980), Becker et al. (1982), and Vogelaar et al. (1990); (h) weighted
average of Becker et al. (1982), Formicola et al. (2004), and Runkle et al. (2005). Absolute
errors are given in parentheses and refer to the last significant digit(s).

Reaction Elab
r (keV) Jπ ωγcm (eV) Error (%) Reference

14N(p,γ)15O 278 1/2+ 1.37(7)× 10−2 5.1 h
18O(p,γ)19F 151 1/2+ 9.7(5)× 10−4 5.2 g
23Na(p,α)20Ne 338 1− 7.16(29)× 10−2 4.0 a
23Na(p,γ)24Mg 512 (1,2+) 9.13(125)× 10−2 13.7 b
24Mg(p,γ)25Al 223 1/2+ 1.27(9)× 10−2 7.1 c

419 3/2+ 4.16(26)× 10−2 6.2 d
25Mg(p,γ)26Al 435 4− 9.42(65)× 10−2 6.9 d

591 1+ 2.28(17)× 10−1 7.4 e
26Mg(p,γ)27Al 338 3/2− 2.73(16)× 10−1 5.9 d

454 1/2+ 7.15(41)× 10−1 5.7 d
1966 5/2+ 5.15(45) 8.7 b

27Al(p,γ)28Si 406 4+ 8.63(52)× 10−3 6.0 d
632 3− 2.64(16)× 10−1 6.1 b
992 3+ 1.91(11) 5.7 b

30Si(p,γ)31P 620 1/2− 1.95(10) 5.1 b
31P(p,γ)32S 642 1− 5.75(50)× 10−2 8.7 b

811 2+ 2.50(20)× 10−1 8.0 b
34S(p,γ)35Cl 1211 7/2− 4.50(50) 11.1 b
35Cl(p,γ)36Ar 860 3− 7.00(100)× 10−1 14.3 b
36Ar(p,γ)37K 918 5/2+ 2.38(19)× 10−1 8.0 f
37Cl(p,γ)38Ar 846 1− 1.25(16)× 10−1 12.8 b
39K(p,γ)40Ca 2042 1+ 1.79(19) 10.6 b
40Ca(p,γ)41Sc 1842 7/2+ 1.40(15)× 10−1 10.7 b

over the target thickness is small, then we obtain from Eq. (4.93)
[

dY2(E0,2)
dΩ

]Ruth

θ2

= n
[

dσ2(Eeff,2)
dΩ

]Ruth

θ2

(4.132)

where the subscript 2 refers to all quantities related to the measurement of
the Rutherford-scattered beam particles by the second detector. Solving for
n, one finds with Eq. (4.122) (assuming ηint,2 = 1 for silicon charged-particle
detectors)

n =

[
dY2(E0,2)

dΩ

]Ruth

θ2
[

dσ2(Eeff,2)
dΩ

]Ruth

θ2

=

N2(E0,2)
Nb,2(E0,2)Ω2

[
dσ2(Eeff,2)

dΩ

]Ruth

θ2

(4.133)

It follows that the ratio of differential yield and differential cross section for
Rutherford scattering is constant (that is, equal to n) and thus may be mea-
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sured at any bombarding energy. If the resonant reaction products are mea-
sured simultaneously with the Rutherford-scattered particles, so that E0,1 =
E0,2 ≡ E0 and Nb,2(E0,2) = Nb,1(E0,1), then we obtain from Eqs. (4.131) and
(4.133)

ωγ1 =
2

λ2
r,1

1
B1W1

Ω2

η1

∫ ∞

0

N1(E0)
N2(E0)

[
dσ2(Eeff,2)

dΩ

]Ruth

θ2

dE0 (4.134)

The resonance strength in this expression is independent of the properties of
the target (stoichiometry, stopping power, uniformity) and the beam (current
integration, straggling). It depends on (i) the observed number of resonant
reaction products (particles or photons) and Rutherford-scattered particles,
N1(E0) and N2(E0); (ii) the calculated Rutherford scattering cross section,
[dσ2(Eeff,2)/dΩ]Ruth

θ2
; and (iii) the de Broglie wavelength, branching ratio, and

angular correlation of the resonant reaction products (λ2
r,1, B1, W1). Also, note

that ωγ1 depends on the ratio Ω2/η1 and, consequently, is independent of the
knowledge of absolute detection properties.

If a nonresonant reaction cross section is measured relative to Rutherford
scattering, we find in complete analogy

σ1(Eeff,1) =
1

B1(E0)W1(E0)
Ω2

η1

N1(E0)
N2(E0)

[
dσ2(Eeff,2)

dΩ

]Ruth

θ2

(4.135)

For (p,α) or (α,p) type reactions we may substitute in Eqs. (4.134) and (4.135)
η1 = Ω1/(4π), assuming that the intrinsic efficiency for detecting the resonant
particles is unity (ηint,1 = 1). In general, we have Eeff,1 
= Eeff,2 as can be seen,
for example, from Eq. (4.99).

The theoretical Rutherford scattering cross section is given by (Evans 1955)

[
dσ(E)

dΩ

]Ruth

θ

=

(
ZpZte2

4E

)2
1

sin4(θ/2)

= 1.296
(

ZpZt

E

)2 1
sin4(θ/2)

(mb/sr) (4.136)

with Zp and Zt the atomic numbers of projectile and target, respectively. In
the numerical expression, the energy E is in units of MeV.

The method of measuring absolute resonance strengths and cross sections
described above depends on the assumption that the intensity of elastically
scattered beam particles at the energy of the resonance, or in the region of the
nonresonant cross section, is well described by the Rutherford formula. How-
ever, at higher bombarding energies (E > 0.5 MeV) and for relatively broad
resonances (Γ > 1 keV) the elastic scattering cross section generally deviates
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from Rutherford scattering since it is influenced by resonant scattering (Sec-
tion 2.5.3). The above technique is most useful at low bombarding energies
and for relatively narrow resonances, a situation which is frequently of inter-
est for thermonuclear reactions. In any case, one has to verify experimentally
through careful measurements that the elastic scattering cross section is in-
deed given by the Rutherford formula.

As an example, consider the measurement of the Elab
r = 338 keV resonance

(Γ = 0.7 keV) in the 23Na(p,α)20Ne reaction. The setup is shown in Fig. 4.63a.
It consists of two silicon charged-particle detectors (ηint = 1). The first de-
tector, positioned at 140◦, covers a relatively large solid angle and is used for
measuring the resonant α-particles. A thin metal foil is placed in front of this
counter to prevent the large number of elastically scattered protons from inter-
fering with the detection of the α-particles (Section 4.5.1). The second detector,
placed at 155◦, covers a very small solid angle and is used for measuring the
elastically scattered protons. A proton beam of a few 100 nA intensity is in-
cident on a transmission target that was prepared by evaporating NaCl on a
thin carbon foil.

Typical α-particle and proton spectra, measured at Elab
p = 341 and 400 keV,

respectively, are shown in Figs. 4.63b and c. In the proton spectrum, only the
intensity of the peak corresponding to protons elastically scattered from (the
active) 23Na nuclei is of interest here. The resonant α-particle yield curve is
displayed in Fig. 4.64a. It can be seen that the target is about 6 keV thick.
Figure 4.64b shows the measured yields of elastically scattered protons from
23Na at a fixed detector angle as a function of bombarding energy over the
region of the Elab

r = 338 keV resonance. The solid line represents the calculated
Rutherford yield, normalized to the data. It is apparent that the data are well
described by the Rutherford formula.

The value of the resonance strength measured with this technique and de-
rived from Eq. (4.134) is listed in Table 4.12. It is significantly smaller com-
pared to previous ωγ values that have been determined by using the maxi-
mum yield of thick targets (see Eq. (4.123)). The disagreement is explained by
the fact that previous studies have erroneously assumed a target stoichiome-
try of Na1Cl1, whereas the technique described above is independent of the
target stoichiometry (Rowland et al. 2002a).

4.9
Transmissions, Yields, and Cross Sections for Neutron-Induced Reactions

In this section, the relationships between directly measured quantities (yields
and transmissions) and cross sections or resonance strengths are given for
neutron-induced reactions. Examples for measured transmission and yield
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Fig. 4.63 Measurement of the Elab
r =

338 keV resonance (Γ = 0.7 keV) in the
23Na(p,α)20Ne reaction. (a) Setup showing
the proton beam (≈ 100 nA), the transmis-
sion target prepared by evaporating NaCl
(6 keV thick) on a thin carbon foil, and two
silicon charged-particle detectors. The first
detector is used for measuring resonant α-
particles and is covered by a thin metal foil.
The second detector is used for measuring

elastically scattered protons. (b) α-Particle
spectrum measured in the region of the
resonance at a laboratory proton energy of
341 keV. (c) Spectrum of elastically scat-
tered protons, measured at a laboratory
proton energy of 400 keV. Reprinted with
permission from C. Rowland et al., Phys.
Rev. C, Vol. 65, 064609 (2002). Copyright
(2002) by the American Physical Society.

curves will be presented, and the determination of absolute cross sections is
briefly discussed.

4.9.1
Resonance Transmission

Of particular interest are transmission measurements of resolved resonances.
In actual measurements, the shape of the transmission curve depends not
only on the total cross section, but is influenced by other factors, such as the
Doppler effect or the resolution of the neutron detector (Beckurts and Wirtz
1964). The quantity of interest, however, is usually not the energy depen-
dence of the total resonance cross section, but the determination of the res-
onance properties that enter in the expression for the resonant reaction rate
(Section 3.2.4).

Consider the simplest case of an isolated resonance. Suppose that (i) the
resonance cross section is given by the Breit–Wigner formula, (ii) only the
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Fig. 4.64 (a) Resonant α-particle yield versus proton energy for the
Elab

r = 338 keV resonance in 23Na(p,α)20Ne; (b) yield of elastically scat-
tered protons from 23Na versus energy; the solid line represents the
calculated Rutherford yield, normalized to the data. Both yield curves
were measured with the setup shown in Fig. 4.63.

neutron and γ-ray channels are open, and (iii) the energy dependence of the
partial widths over the total resonance width can be neglected. In the vicinity
of an isolated resonance, the total neutron-induced cross section can be written
as (Section 2.5.5)

σT,BW(E) =
λ2

4π
ω

ΓnΓ
(Er − E)2 + Γ2/4

= σT,max
Γ
2

Γ/2
(Er − E)2 + Γ2/4

(4.137)

with σT,max = σT,BW(E = Er) = (λ2
r /π)ωΓn/Γ the maximum total cross sec-

tion. For an incident beam of monoenergetic neutrons, the transmission is
(see Eq. (4.37))

T(E) = exp
[
−nσT,max

Γ
2

Γ/2
(Er − E)2 + Γ2/4

]
(4.138)

with n the number of sample nuclei per unit area. For the area above the trans-
mission curve one finds

AT =
∫ ∞

0

{
1 − exp

[
−nσT,max

Γ
2

Γ/2
(Er − E)2 + Γ2/4

]}
dE (4.139)
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which reduces for the limiting case of a thin sample (nσT,max � 1) to

AnσT,max�1
T =

∫ ∞

0
nσT,max

Γ
2

Γ/2
(Er − E)2 + Γ2/4

dE

=
π

2
nσT,maxΓ =

λ2
r

2
nωΓn

(4.140)

Hence, a measurement of the transmission curve provides an estimate of the
neutron partial width Γn. This expression also holds if the instrumental reso-
lution and the Doppler effect change the shape of the transmission curve. For
thin samples, the area above the transmission curve is independent of these
effects. More information on transmission curves can be found in Lynn (1968).

4.9.2
Resonant and Nonresonant Yields

The general expression for the yield of a neutron-induced reaction can be de-
rived from the expression for the transmission (see Eq. (4.37))

Y =
∫ ∞

0
f (E)

[
1 − e−nσT(E)

] σ(E)
σT(E)

dE (4.141)

with σ(E) and σT(E) the cross section for the reaction of interest and the total
cross section (see Eq. (4.34)), respectively, and f (E) the fraction of incident
neutrons having energies between E and E + dE per unit energy interval. For
either a monoenergetic incident neutron beam or for constant cross sections
σT(E) and σ(E) one finds

Y =
(
1 − e−nσT

) σ

σT

∫ ∞

0
f (E) dE =

(
1 − e−nσT

) σ

σT
(4.142)

If the cross sections σT(E) and σ(E) are not constant, but if the sample is very
thin (nσT � 1), then Eq. (4.141) becomes

YnσT�1 =
∫ ∞

0
f (E) [1 − (1 − nσT(E))]

σ(E)
σT(E)

dE = n
∫ ∞

0
f (E)σ(E) dE = nσ

(4.143)

where we defined an average reaction cross section by σ ≡ ∫ f (E)σ(E) dE. A
few specialized expressions for the thin-sample yield are given below.

Constant σ over neutron energy distribution

This situation occurs, for example, for a smoothly varying cross section and a
nearly monoenergetic neutron beam. The yield is given by

YnσT�1 = nσ
∫ ∞

0
f (E) dE = nσ (4.144)
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This expression also applies to an isolated resonance when the total width is
large compared to the neutron beam resolution (Γ 	 ∆En). The yield is then
directly proportional to the cross section and the resulting excitation function
has a resonance shape. In the latter case, we may describe the resonance by
the Breit–Wigner formula. Suppose that only the neutron and γ-ray channels
are open, as is frequently the case, and that the partial widths are energy inde-
pendent. The area under the resonance neutron-capture yield curve for a thin
sample follows from Eq. (4.144),

AnσT�1
Y = n

∫ ∞

0
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∫ ∞
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r
2
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Exactly the same result was obtained for the area under a resonance yield
curve in charged-particle-induced reactions (see Eq. (4.119)).

Narrow resonance with Γ � ∆En

If a narrow resonance located at Er has a small total width compared to the
neutron beam resolution, then one finds from the Breit–Wigner formula

YnσT�1 = n
∫ ∞

0
f (E)σBW(E) dE = n f (Er)

∫ ∞
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r
2

f (Er)ωγ (4.146)

with f (Er) the fraction of neutrons per unit energy interval at the resonance
energy. In contrast to charged-particle reaction studies (see Eq. (4.114)), the
narrow resonance yield for neutron-induced reactions depends on the abso-
lute number of sample nuclei per unit area.

4.9.3
Effective Cross Section

If the incident neutrons are not monoenergetic, then an effective cross section
is sometimes introduced which is defined in terms of the neutron current den-
sity, or neutron flux, instead of the number density of neutrons. If we divide
the neutron energy distribution into thin slices, then the number of reactions
per volume and per time from each slice is given by Eq. (3.1),

(NR,i/V)
t

=
Nt

V
σivi

Nν,i

V
(4.147)
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with Nt/V and Nν,i/V the target density and neutron density, respectively.
Integrating over all energies, we find

(NR/V)
t

=
Nt

V

∫ ∞

0
σ(E)v

Nν(E)
V

dE =
Nt

V

∫ ∞

0
σ(E)φ(E) dE (4.148)

The neutron flux is defined by φ(E) ≡ vNν(E)/V and the total flux for all
neutron energies is φ =

∫
φ(E) dE (in units of neutrons per area per time).

Alternatively, we may express the total number of reactions per volume and
per time in terms of an effective reaction cross section σ̂ by

(NR/V)
t

=
Nt

V
σ̂
∫ ∞

0
v
Nν(E)

V
dE =

Nt

V
σ̂
∫ ∞

0
φ(E) dE =

Nt

V
σ̂φ (4.149)

Equating the above two expressions, we obtain for the effective cross section

σ̂ =

∫ ∞
0 σ(E)vNν(E)

V dE
∫ ∞

0 vNν(E)
V dE

=

∫ ∞
0 σ(E)φ(E) dE
∫ ∞

0 φ(E) dE
=

Nn
∫ ∞

0 σ(E)v f (E) dE

Nn
∫ ∞

0 v f (E) dE
(4.150)

where we used Nν(E)/V = f (E)Nn, with Nn the total number density of
neutrons.

If the energies of the incident neutrons are given by a Maxwell–Boltzmann
distribution (Section 4.1.2 and Fig. 4.2), then one finds with Eq. (3.8) for the
flux

φ =
∫ ∞

0
φ(E) dE = Nn

∫ ∞

0
v f (E) dE

= Nn

∫ ∞

0

√
2E
m01

2√
π

1
(kT)3/2

√
Ee−E/kT dE = Nn

2√
π

√
2kT
m01

=
2√
π

NnvT

(4.151)

The effective cross section is given by Eqs. (3.8), (3.69), (4.150), and (4.151),

σ̂ =
Nn
∫ ∞

0 σ(E)v f (E) dE

Nn
2√
π

vT
=
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0
σ(E)

√
2E
m01

1
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√
Ee−E/kT dE

=
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(kT)2

∫ ∞

0
σ(E)Ee−E/kT dE =

√
π

2
〈σv〉
vT
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Hence, the measured effective reaction cross section gives directly the reaction
rate (Section 4.1.2).

4.9.4
Measured Yields and Transmissions

The transmission can be expressed either in terms of intensities (see Eq. (4.35))
or in terms of counting rates,

T ≡ I
I0

=
dC/dt
dC0/dt

(4.153)
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where dC/dt and dC0/dt are the measured counting rates with and without
sample, respectively, between incident neutron beam and detector. The trans-
mission is obviously independent of absolute detection efficiencies. The ex-
pressions for T given above is strictly valid only if neutrons that undergo an
interaction in the sample are not counted by the detector. However, for any
sample and detector of finite size, neutrons scattered forward in the sample
toward the detector will be counted as if no interaction had occurred. Cor-
rections for this in-scattering effect (Miller 1963) can be obtained most reliably
from Monte Carlo simulations.

In terms of experimental quantities, the yield can be expressed by

Y =
NR

Nν
=

C
ηB fNν

=
C

ηB f ΦA
(4.154)

where Nν and C are the total number of incident neutrons and the measured
total number of counts induced by the nuclear reaction of interest, respec-
tively; Φ =

∫
φ(t) dt is the time-integrated neutron flux (in units of particles

per area); A is the area of the sample exposed to the beam; η is the detec-
tion efficiency; B is the branching ratio (probability of emission per nuclear
reaction); and the factor f takes any necessary corrections into account (for
example, for multiple neutron scattering in the sample, self-absorption of re-
action products, and so forth). Depending on the experimental procedure, the
yield may also need to be corrected for angular correlation effects (Appen-
dix D). Multiple elastic scattering of neutrons may become a serious problem
for thicker samples. Scattered neutrons have a much higher chance of un-
dergoing a reaction than the incident neutrons because of an increase in the
average path length in the sample. The situation becomes even more complex
when the total and the reaction cross section exhibit a narrow resonance struc-
ture. In this case, incident neutrons with energies somewhat higher than the
location of the narrow resonance are scattered and thereby lose a fraction of
their energy. These scattered neutrons may then undergo reactions in the re-
gion of the resonance. Consequently, the measured reaction yield can become
much larger than the true reaction yield caused by the incident (unscattered)
neutrons. Such effects can be corrected for by using Monte Carlo procedures
(Poenitz 1984).

Examples of a yield curve and a transmission curve, both measured in the
144Sm + n reaction, are shown in Fig. 4.65. The data have been obtained with
the time-of-flight technique (Section 4.6.3) using the Oak Ridge Electron Ac-
celerator (ORELA). The neutron-capture data are fitted with Breit–Wigner ex-
pressions, while the transmission data are analyzed using an R-matrix code to
account for the additional complication of potential scattering (Section 2.5).
Necessary corrections caused by Doppler broadening, multiple scattering,
and instrumental resolution were applied to both data sets. The shapes of the
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Fig. 4.65 (Top) Yield curve for the
144Sm(n,γ)145Sm reaction; (bottom) Trans-
mission curve for 144Sm + n. The data
have been obtained with the time-of-flight
technique (Section 4.6.3) using the Oak
Ridge Electron Accelerator (ORELA). The
neutron-capture data (top) are fitted with

Breit–Wigner expressions, while the trans-
mission data (bottom) are analyzed using an
R-matrix code. Reprinted with permission
from R. L. Macklin et al., Phys. Rev. C, Vol.
48, p. 1120 (1993). Copyright (1993) by the
American Physical Society.

narrow resonance at the lowest energy are dominated by the instrumental res-
olution and by Doppler broadening, while the shapes of the broad resonances
at higher energies are dominated by their total widths.

4.9.5
Relative and Absolute Cross Sections

We will first discuss the determination of an unknown cross section relative
to a standard value. The activation method (Section 4.6.2) will be chosen as
an example. The situation is shown in Fig. 4.66. A proton beam is incident on
a Li target which is mounted on a water-cooled Cu backing. The irradiation
sample is mounted close to a foil consisting of a material relative to which
the neutron cross section is being measured (for example, a gold foil). For the
sake of simplicity, we will assume that the incident neutron flux is constant,
φ(t) = const (see Beer and Käppeler (1980) for a time-dependent flux). After
the irradiation period is over (at t = t0), the samples are moved to an off-line
detector system for the counting of the delayed activity between t1 and t2.
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The number of disintegrations between t1 and t2, D(t1, t2), is related to the
net number of counts, C, in the region of interest in the off-line pulse height
spectrum by

D(t1, t2) =
C

ηB f
(4.155)

with η and B the detection efficiency and the branching ratio of a particular
transition, respectively; the factor f takes any necessary corrections into ac-
count (self-absorption of γ-rays in the sample, multiple elastic scattering of
neutrons, and so on). Using Eqs. (4.76) and (4.155) and solving for the effec-
tive cross section gives

σ̂ =
Cλ

ηB f φN (
eλt0 − 1

) (
e−λt1 − e−λt2

) (4.156)

where λ denotes the decay constant of the residual radioactive nuclei and N
is the number of sample nuclei. The ratio of effective cross sections for the
sample of interest, i, and the standard material, s, is then

σ̂i

σ̂s
=

CiλiηsBs fsNs
(
eλst0 − 1

) (
e−λst1 − e−λst2

)

CsλsηiBi fiNi
(
eλi t0 − 1

) (
e−λi t1 − e−λi t2

) (4.157)

The relative determination of an effective cross section according to
Eq. (4.157) has the advantage that the total neutron flux, φ(t) = Φ/t0 = const,
cancels if the sample of interest and the standard sample are irradiated simul-
taneously (corrections are necessary for a time-dependent flux). Furthermore,
only relative detection efficiencies are required if the sample of interest and the
standard sample are measured with the same experimental setup. However,
the number of nuclei in the two samples, Ni and Ns, have to be determined
carefully. The number of sample nuclei is given by (see Eq. (1.13))

N =
msampleNA

M
X (4.158)

with msample and M the mass and relative mass of the sample, respectively. If
the sample consists of a compound, then msample, M, and the mass fraction X
refer to the active sample nuclei, that is, the nuclei participating in the reaction
of interest. Masses of self-supporting samples are frequently determined by
weighing, whereas masses of deposited samples can be found from the weight
difference between the backing and the combined sample-plus-backing. For
compounds or samples consisting of more than one isotope, a chemical or
isotopic analysis is required to obtain the number of nuclei N (Wagemans
1989).

The 197Au(n,γ)198Au capture reaction provides one of the most widely used
absolute cross section standards in the keV neutron energy range, that is, the
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region of astrophysical interest. We will describe in the following an elegant
method for determining this cross section standard by using the activation
method. For more information, see Ratynski and Käppeler (1988). Suppose
that in Fig. 4.66 a proton beam of Ep = 1912 keV energy is incident on a thick
Li target which is mounted on a water-cooled Cu backing. As pointed out
previously (Section 4.1.2), under such circumstances the neutron energy dis-
tribution closely resembles a Maxwell–Boltzmann distribution at kT = 25 keV
(Fig. 4.2) and all the neutrons are kinematically focussed in the forward direc-
tion into a cone with an opening angle of 120◦. A gold sample covers the entire
solid angle of the neutron emission cone. It consists of a homogeneous spher-
ical segment instead of a flat foil, so that the sample appears equally thick for
all neutrons passing through it. The number of Au nuclei is determined by
carefully measuring the weight and the thickness of the sample. The half-life
of 198Au amounts to T1/2 = 2.6 d and the decay produces a γ-ray of 412 keV
energy. We will again assume for simplicity that the neutron flux is constant,
that is, φ(t) = const. According to Eqs. (4.76) and (4.155), we find for the total
number of disintegrations during the measuring interval between t1 and t2

DAu(t1, t2) =
CAu

(ηB f )Au

=
(NAu/A)σ̂AuNν(t0)

λAut0

(
eλAut0 − 1

) (
e−λAutAu

1 − e−λAutAu
2

)
(4.159)

where we used φ = Φ/t0 = Nν(t0)/(At0). The quantity Nν(t0) is the total
number of incident neutrons after irradiation time t0 and A denotes the area
covered by the sample.

Since the 7Li(p,n)7Be reaction is used as a source of neutrons, there is one
7Be nucleus (T1/2 = 53 d) produced for each emitted neutron. Hence, the total
number of neutrons emitted from the Li target, and that are incident on the Au
foil, can be deduced by measuring the 478 keV γ-rays emitted by the radioac-
tive decay of 7Be in the Li target. The proton energy loss in the Li production
target amounts to about 100 keV. Therefore, the production rate of 7Be is given
by Eq. (4.110) rather than Eq. (4.73). We will simply assume that the incident
proton current, and hence the production rate of 7Be, is constant. The total
number of neutrons, or the total number of 7Be nuclei, produced after a time
t0 is then given by NBe(t0) = Nν(t0) = PBet0. For the number of disintegra-
tions during a measuring interval between t1 and t2 we obtain from Eqs. (4.76)
and (4.155)

DBe(t1, t2) =
CBe

(ηB f )Be
=

PBe

λBe

(
eλBet0 − 1

) (
e−λBetBe

1 − e−λBetBe
2

)

=
Nν(t0)
λBet0

(
eλBet0 − 1

) (
e−λBetBe

1 − e−λBetBe
2

)
(4.160)
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Fig. 4.66 Example for the measurement of
a neutron cross section using the activation
technique (Section 4.6.2). A proton beam is
incident on a Li target which is mounted on
a water-cooled Cu backing. The irradiation
sample is mounted close to a foil consisting

of a material relative to which the neutron
cross section is measured (for example, a
gold foil). After the irradiation period is over,
the samples are moved to an offline detec-
tor system for the counting of the delayed
activity (bottom part).

From Eqs. (4.159) and (4.160) one finds for the 197Au(n,γ)198Au cross section

σ̂Au =
1

(NAu/A)
CAu(ηB f )BeλAu

CBe(ηB f )AuλBe

(
eλBet0 − 1

) (
e−λBetBe

1 − e−λBetBe
2

)

(
eλAut0 − 1

) (
e−λAutAu

1 − e−λAutAu
2

) (4.161)

In this expression the number of neutrons cancels and only relative detection
efficiencies are needed if the same setup is used for counting the delayed ac-
tivities of 198Au and 7Be. The measured average cross section amounts to
σ̂197Au(n,γ)198Au = 586 ± 8 mb (Ratynski and Käppeler 1988) and corresponds
to a (quasi-)Maxwellian neutron energy distribution at kT = 25 keV. The error
represents an uncertainty of only 1.4%. This standard has been used for the
determination of a large number of astrophysically important neutron-capture
cross sections. Other standard cross sections are provided by the 6Li(n,α)3H,
10B(n,α)7Li, and 10B(n,αγ)7Li reactions. More information can be found in Bao
et al. (2000).
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Problems

4.1 The energy loss of charged particles is calculated in Example 4.1 by us-
ing the “thin-absorber approximation,” that is, by assuming that the stopping
power is approximately constant over the absorber thickness. If the stopping
power is not constant, the energy loss can always be obtained from a numer-
ical integration of Eq. (4.12). If a graph of range versus energy is available,
however, a much simpler method can be used by expressing Eq. (4.12) in terms
of ranges. Explain this method and use it to estimate from Fig. 4.7 the energy
loss of a 10 MeV cosmic-ray proton incident on a 400 µm thick silicon detector.

4.2 Derive Eq. (4.18) from the expressions for energy and linear momentum
conservation (see Eqs. (C.1)–(C.3)) in the elastic scattering of an incident par-
ticle on an electron at rest. Assume a head-on collision for maximum energy
transfer.

4.3 Calculate the attenuation of 0.5 MeV and 5 MeV γ-rays in (i) a tanta-
lum absorber (ρTa = 16.7 g/cm3) of 0.5 mm thickness, and (ii) a lead ab-
sorber (ρPb = 11.4 g/cm3) of 1.3 cm thickness. Assume the following numer-
ical values for the mass attenuation coefficients: (µ/ρ)Ta,0.5 MeV = 0.13 cm2/g,
(µ/ρ)Ta,5.0 MeV = 0.041 cm2/g, (µ/ρ)Pb,0.5 MeV = 0.16 cm2/g, (µ/ρ)Pb,5.0 MeV =
0.041 cm2/g.

4.4 Estimate the thickness of water (ρ = 1.0 g/cm3) necessary in order to re-
duce the intensity of incident neutrons with an energy of 300 keV by a factor of
1010. Assume for the total neutron cross section at this energy a value of 60 b.

4.5 Solve the equations for total energy and linear momentum conservation
in α-decay when the decaying nucleus is at rest. Apply the expressions to
the α-decay of 241Am and calculate the total energy release (or the Q-value)
by using the information given in the α-particle spectrum shown in Fig. 4.19.
Assume that the α-particle group with the largest kinetic energy populates the
ground state of the daughter nucleus 237Np and consider only this particular
transition. What is the kinetic energy of the daughter nucleus?

4.6 Suppose that an excited nuclear level (2) decays to the ground state (0) via
a two-γ-ray cascade through an intermediate state (1), that is, B21 = B10 = 1
and B20 = 0 (Fig. 4.33). The energies of the photons are E21 = 1 MeV and
E10 = 2 MeV. Their measured peak intensities are N21 = 357 and N10 = 237.
The values for the peak and total efficiencies amount to ηP

21 = 0.043, ηT
21 = 0.21,

ηP
10 = 0.030, ηT

10 = 0.17. (i) Calculate the total number N of decaying levels 2
with and without coincidence summing corrections. (ii) What do you expect
for the intensity of the sum peak at 3 MeV?

4.7 A gold sample with a mass of 10 g is irradiated with a thermal neutron flux
of 1014 cm−2 s−1. The cross section for the 197Au(n,γ)198Au reaction amounts
to 99 b and the half-life of 198Au is T1/2 = 2.7 d. (i) Calculate the saturation
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value for the number of radioactive 198Au nuclei. (ii) What is the irradiation
time necessary until the number of 198Au nuclei achieves 90% of the saturation
value?

4.8 Consider a measurement of the 21Na + p → 22Mg + γ radiative capture
reaction in inverse kinematics, that is, by bombarding a stationary hydrogen
target with radioactive 21Na nuclei. The Q-value amounts to Q = 5504.2 keV.
Suppose that the reaction excites the astrophysically important resonance at
Ecm

r = 206.8 keV. Calculate for the γ-ray transition to the ground state (branch-
ing ratio of 14%): (i) the laboratory bombarding energy disregarding any en-
ergy losses in the target; (ii) the energy of the photon which is emitted at a
laboratory angle of θ = 0◦. What are the magnitudes of the full Doppler and
recoil energy shifts? Neglect any energy losses of the 22Mg recoil nuclei in
the target; (iii) the maximum laboratory angle φmax of the 22Mg recoil emis-
sion direction. Use the following values for the masses: M(1H) = 1.0078250 u,
M(21Na) = 20.9976546 u, M(22Mg) = 21.9995706 u (Mukherjee et al. 2004).

4.9 Calculate the number of p(p,e+ν)d reactions that occur if a pure hydrogen
target with a thickness of 1020 protons/cm2 is bombarded with a proton beam
of 1 MeV laboratory energy and 1 A intensity. The S-factor is given by Eq. (5.2).

4.10 An α-particle beam of 15 MeV bombarding energy and 1 µA intensity
is incident on a 1 µm thick, pure 12C target (ρ = 1.9 g/cm3) for a duration
of 1 h. Each incident α-particle has a charge of 2+ (4He2+). Neutrons are
produced via the 12C(α,n)15O reaction. The cross section at this bombarding
energy amounts to 25 mb. A neutron detector has an efficiency of 1%. Assume
that both the cross section and the stopping power are constant over the target
thickness. How many neutrons are detected?
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5
Nuclear Burning Stages and Processes

In the previous section, we considered the thermonuclear rate of individual
nuclear reactions and the relationship of forward and reverse reactions. A
particular reaction destroys particles in the incoming channel and creates new
particles in the exit channel. In general, however, a number of different nu-
clear processes take place simultaneously in the stellar plasma. Nuclei that
are created by some fusion reactions are destroyed by other reactions. Thus,
when discussing stellar nucleosynthesis, it is more appropriate to consider a
network of nuclides which are linked by different, and frequently competing,
nuclear processes. In this chapter, we will discuss this interplay of different
nuclear processes in the stellar plasma.

It was pointed out in Section 1.4.3 that the energy released by thermonuclear
reactions supplies the power that is radiated from the stellar surface. At the
same time, these nuclear reactions provide the necessary internal pressure that
prevents stars from collapsing gravitationally. In fact, all stable stars maintain
a hydrostatic equilibrium between the internal pressure and the force of grav-
ity. We showed earlier (Fig. 3.14) that, for a given temperature and composi-
tion of the stellar plasma, those reactions with the smallest Coulomb barrier
will proceed most rapidly and will account for most of the nuclear energy
generation. Consequently, we expect nuclear reactions involving hydrogen
and helium to be the main energy sources in most stars. It is tempting to con-
sider the simplest processes among these nuclei, for example, p + p → 2He,
p + 4He → 5Li, and 4He + 4He → 8Be, as the most likely nuclear reactions.
However, the newly created nuclei 2He, 5Li, and 8Be are particle unstable and
decay back into the entrance channel after very short time periods. Therefore,
we have to consider more complicated processes.

It is important to realize that thermonuclear reactions change the compo-
sition of the stellar gas. When the nuclei with the smallest Coulomb barrier
have been consumed, a star will contract under the influence of gravity. The
temperature steadily increases to a point where nuclei with the next lowest
Coulomb barrier, which were previously inactive, are consumed. The nuclear
energy produced by the burning of the new fuel stabilizes the star against fur-
ther contraction. Depending on its total mass, a star may experience several
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of these nuclear burning stages, which are referred to as hydrogen burning,
helium burning, carbon burning, neon burning, oxygen burning, and silicon
burning (Section 1.4.3). When the ignition of the new fuel gives rise to a more
advanced burning stage in the stellar core, the previous burning stage may
not completely disappear, but may still continue in a shell surrounding the
core. We will discuss in the next sections the nuclear physics aspects of the
most important burning stages in detail. The advanced burning stages, carbon
through silicon burning, will be described with the aid of reaction network
calculations performed at constant temperature–density conditions represen-
tative of the hydrostatic core burning stages for a star with an initial mass
of M = 25 M�. Stars with this mass have been shown to produce elemen-
tal abundances similar to the observed solar system abundances. Hydrostatic
shell burning or the explosive burning of carbon, neon, oxygen, and silicon
are quantitatively different, although the nucleosynthesis products frequently
resemble those of the corresponding hydrostatic core burning stage. In any
case, the physical principles will become apparent in the discussion of the re-
spective hydrostatic core burning stages.

The different nuclear burning stages have a profound influence on the struc-
ture and evolution of the entire star. The temperature–density evolution
for the center of a star with solar initial composition and an initial mass of
M = 25 M� is shown in Fig. 5.1a. The circles indicate the T–ρ conditions that
are representative of a particular burning stage in the core. Most of the burn-
ing occurs near the location of the circles, since this is where the star spends
most of its time during a particular burning stage. It can be seen that the
temperature and density vary by about two and eight orders of magnitude,
respectively, between hydrogen and silicon burning.

Hydrogen burning releases far more energy per unit fuel consumed (≈ 6 ×
1024 MeV/g or ≈ 1019 erg/g) compared to helium burning (≈ 6× 1023 MeV/g
or ≈ 1018 erg/g) or more advanced burning stages (≈ 3 × 1023 MeV/g or
≈ 5 × 1017 erg/g for carbon and oxygen burning). Thus, a star will consume
its hydrogen fuel much more slowly than other fuel in order to balance both
gravity and the energy radiated from its surface. There is also a fundamental
difference in the manner in which the nuclear energy generated in the stellar
interior is transformed and radiated from the surface. For hydrogen and he-
lium burning, nuclear energy is almost exclusively converted to light. In later
burning stages, when the temperature exceeds T = 0.5 GK, the thermonuclear
energy released is almost entirely radiated as neutrino–antineutrino pairs and
the light radiated from the star’s surface represents only a very small fraction
of the total energy release. Neutrino energy losses rise strongly with tempera-
ture (Clayton 1983). Since the temperature increases from one advanced burn-
ing stage to the next (Fig. 5.1a), the fuel consumption rapidly accelerates dur-
ing carbon, neon, oxygen, and silicon burning. This can be seen in Fig. 5.1b,
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showing the duration of various burning stages in the stellar core versus ini-
tial stellar mass for solar metallicity models. For example, silicon burning in
the core of a 25 M� star lasts only for ≈ 1 d. In fact, the advanced burn-
ing stages in the stellar core proceed so quickly that the stellar surface cannot
keep pace with the evolution of the interior. Frequently, the appearance of
the massive star—luminosity and effective emission temperature—does not
change until the end of hydrostatic silicon burning. It also follows from these
considerations that hydrogen burning lasts much longer than helium burning
or any of the advanced burning stages. Thus, perhaps as many as ≈ 90% of
the observed stars are burning hydrogen. In other words, there is only a small
probability of observing stars in their advanced stages of evolution. Although
most of a star’s life is spent in the hydrogen burning stage, it is the later burn-
ing stages that account for the synthesis of the majority of heavy elements in
the A = 16–64 mass range.

The synthesis of the majority of the heavier nuclei (A > 60) requires a
drastically different mechanism. Their observed abundances cannot be ex-
plained by charged-particle fusion reactions since the transmission probability
through the Coulomb barrier becomes negligibly small at these higher nuclear
charges. Such nuclei are synthesized instead, unhindered by the Coulomb re-
pulsion, via the capture of neutrons. Two distinct neutron capture processes,
the s- and the r-process, are discussed toward the end of this chapter. A sub-
sequent section describes the synthesis of those heavy nuclides (p-nuclides)
that cannot be accounted for by neutron capture processes. The last section
contains information on the origin of the solar system nuclides.

Numerical values of the reaction rates used in this chapter are adopted from
the literature. The survey of the literature was concluded in 2006. Many of
the reaction rates used here are adopted from published evaluations (Caugh-
lan and Fowler 1988, Angulo et al. 1999, Iliadis et al. 2001). They are based
on all available experimental information (cross sections, resonance energies
and strengths, excitation energies, spectroscopic factors). These evaluations
do not only present reaction rates versus stellar temperature, but also report
uncertainties for each individual rate. It is important to emphasize that rate
uncertainties of some reactions may strongly influence certain stellar model
predictions and, therefore, significant experimental efforts are underway to
improve the accuracy of many important reaction rates. An investigation of
how reaction rate uncertainties influence predictions of isotopic abundances
or energy generation is beyond the scope of this book (see, for example, Bah-
call et al. 1982, The et al. 1998, Hoffman, Woosley and Weaver 2001, Iliadis et
al. 2002, Jordan, Gupta and Meyer 2003). Unless noted otherwise, we are not
concerned here with reaction rate errors, but will use the latest published rec-
ommended reaction rates in order to illustrate how the different burning stages
influence nuclidic abundances and the nuclear energy generation.
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Fig. 5.1 (a) Central temperature–density
evolution of an M = 25 M� star with solar
initial composition. The circles indicate con-
ditions that are representative of a particular
hydrostatic burning stage in the stellar core.
(b) Durations of various hydrostatic burning

stages in the stellar core versus initial stellar
mass for solar metallicity models. Reprinted
with permission from S. E. Woosley, A.
Heger and T. A. Weaver, Rev. Mod. Phys.,
Vol. 74, p. 1015 (2002). Copyright (2002) by
the American Physical Society.

Values for mass differences, Q-values, and particle separation energies used
in this chapter are adopted from Audi, Wapstra and Thibault (2003). Those
reaction rates, stellar enhancement factors, and normalized partition functions
that are derived from the Hauser–Feshbach statistical model are adopted from
Rauscher and Thielemann (2000), unless noted otherwise.

5.1
Hydrostatic Hydrogen Burning

Hydrogen is the most abundant isotope in the Universe. The fusion of four 1H
nuclei to the tightly bound 4He nucleus is called hydrogen burning. Indepen-
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dently from the details of this transformation, the process releases an energy
(Section 1.5.3) of

Q = 4(M.E.)H − (M.E.)4He = 4 · (7288.97 keV) − (2424.92 keV)

= 26.731 MeV (5.1)

The obvious question arises as to precisely how this fusion process takes place.
Early estimates showed that the probability for the simultaneous interaction
of four protons in the stellar plasma is far too small to account for the observed
luminosity of stars. Instead, sequences of interactions involving two particles
in the entrance channel are much more likely to occur. The two principle ways
by which hydrogen is converted to helium in hydrostatic hydrogen burning
are called the proton–proton chains and the CNO cycles. These processes were
first suggested more than 60 years ago (Atkinson 1936, Bethe and Critchfield
1938, von Weizsäcker 1938, Bethe 1939) and are described in this section. It
is useful for the following discussion to keep in mind that, depending on the
stellar mass and metallicity, typical temperatures in core hydrogen burning
are in the range of T ≈ 8–55 MK, while the hydrogen burning shells in AGB
stars achieve temperatures of T ≈ 45–100 MK. The central temperature of the
Sun, for example, is T = 15.6 MK (Bahcall 1989). On the other hand, far higher
temperatures are attained in explosive hydrogen burning, which will be dis-
cussed in later sections. As will be seen, the details of the nuclear processes
depend sensitively on the temperature.

5.1.1
pp Chains

The following three sequences of nuclear processes are referred to as proton–
proton (or pp) chains:

pp1 chain pp2 chain pp3 chain

p(p,e+ν)d p(p,e+ν)d p(p,e+ν)d

d(p,γ)3He d(p,γ)3He d(p,γ)3He
3He(3He,2p)α 3He(α,γ)7Be 3He(α,γ)7Be

7Be(e−,ν)7Li 7Be(p,γ)8B
7Li(p,α)α 8B(β+ν)8Be

8Be(α)α

T1/2: 8B (770 ms)

The different pp chains are also displayed in Fig. 5.2. Each of these chains
starts from hydrogen and converts four protons to one 4He nucleus (or α-
particle). The first two reactions are the same for each chain. Other nuclear
reactions involving the light nuclei 1H, 2H, 3He, and so on, are less likely to
occur in stars (Parker, Bahcall and Fowler 1964).
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Fig. 5.2 Representation of the pp chains in the chart of the nuclides.
Each arrow represents a specific nuclear interaction connecting the
initial with the final nucleus. For example, the reaction 3He(α,γ)7Be
is represented by an arrow extending from 3He to 7Be (middle and
bottom panel). Each of the pp chains effectively fuses four protons to
one 4He nucleus. Stable nuclides are shown as shaded squares.

The p(p,e+ν)d reaction

The first reaction of each pp chain, 1H + 1H → 2H + e+ + ν, fuses two protons
to one deuterium nucleus. The reaction releases an energy of Q = 1.442 MeV,
including the annihilation energy of the positron with another electron from
the environment (Example 1.3). The p(p,e+ν)d reaction represents a special
case since it converts a proton into a neutron, a process that closely resem-
bles a β-decay. Thus, unlike almost all other stellar fusion reactions which are
governed exclusively by the strong nuclear force and the Coulomb force, the
p(p,e+ν)d reaction is influenced by the weak nuclear force as well. Since this
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process involves two charged particles in the entrance channel, the overall
energy dependence of the cross section is mainly determined by the trans-
mission through the Coulomb barrier. The absolute magnitude of the cross
section, however, is relatively small due to the influence of the weak nuclear
force. A calculation of the p(p,e+ν)d cross section is presented, for example,
in Bahcall and May (1969) and is not repeated here. The theoretical S-factor is
varying smoothly with energy and is given by (Angulo et al. 1999)

S(E) = 3.94 × 10−25 + 4.61 × 10−24E + 2.96 × 10−23E2 (MeV b) (5.2)

For example, at a center-of-mass energy of 0.5 MeV (corresponding to a labo-
ratory proton bombarding energy of 1 MeV) the above S-factor translates into
a cross section of about σpp = 8 × 10−48 cm2. With this cross section, a 1 MeV
proton beam of 1 A intensity (6.3 × 1018 protons/s) incident on a dense pro-
ton target (1020 protons/cm2) will produce a single p + p reaction in about
6 years (Problem 4.9). Such a small event rate seems immeasurably small in
the forseeable future and, therefore, the S-factor is based entirely on theory.
Nevertheless, the different factors that determine the S-factor can be calcu-
lated with substantial confidence. The quoted reaction rate errors (Angulo et
al. 1999) amount to a few percent only and are significantly smaller compared
to the rate errors of most measured stellar fusion reactions.

The energy of 1.442 MeV released in the p + p reaction is shared among
the reaction products. The neutrino, however, has a large probability for es-
caping from the star and, hence, its energy is carried away and is not con-
verted into heat. From the detailed shape of the neutrino energy spectrum
one obtains an average neutrino energy of about 265 keV (Bahcall 1989). The
nuclear energy available from this reaction for conversion into heat is thus
1442 keV − 265 keV = 1177 keV.

Alternative processes to the p(p,e+ν)d reaction have been proposed. For
example, the reaction 1H + 1H + e− → 2H + ν, which is referred to as the
pep reaction, also fuses two hydrogen nuclei to one deuterium nucleus. Cal-
culations have shown that this process can compete with p(p,e+ν)d only at
stellar densities in excess of 104 g/cm3 (Bahcall and May 1969) and, therefore,
the pep reaction plays no significant role in hydrostatic hydrogen burning.
However, it may contribute to the energy production in the early stages of
explosive hydrogen burning (Section 5.2).

The d(p,γ)3He reaction

The deuterium produced in the p(p,e+ν)d reaction may, in principle, be de-
stroyed by a number of different interactions. The d(p,γ)3He reaction is by
far the most important among these. Other reactions, such as d + d → p + t
or d + d → n + 3He, may have higher cross sections. However, recall that
the reaction rate does not only depend on the cross section but also on the
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abundances of the interacting nuclei (see Eq. (3.6)). Since there are far more
protons available compared to the few deuterium nuclei that are produced by
the very slow p + p reaction, the d + p interaction is much more likely to occur
compared to the d + d interaction.

The d(p,γ)3He reaction (Q = 5.493 MeV) has been measured at center-of-
mass energies above Ecm ≈ 10 keV. For the calculation of the reaction rates at
all temperatures of practical interest, the data can be reliably extrapolated to
zero energy by using, for example, the direct capture model of nuclear reac-
tions. The S-factor is given by (Angulo et al. 1999)

S(E) = 0.20 × 10−6 + 5.60 × 10−6E + 3.10 × 10−6E2 (MeV b) (5.3)

This reaction depends only on the electromagnetic and the strong nuclear
force. Consequently, the S-factor and the reaction rate are larger by many
orders of magnitude compared to the p + p reaction. Reaction rate uncertain-
ties amount to about 30–40%. Such errors are typical for many stellar fusion
reactions.

pp1 chain

The 3He nuclei created by the two processes discussed above may, in princi-
ple, fuse with the abundant protons to form 4He via the process 3He + p →
γ + 4Li → γ + 4He + e+ + ν. However, the 4Li nucleus is particle unstable,
with a proton separation energy of about −2.5 MeV, and decays back to 3He
after a very short time period. It turns out that the 3He(3He,2p)4He reaction is
the most likely 3He destroying process and it completes the conversion of four
protons to one 4He nucleus in the pp1 chain. It is not so obvious to see why
the 3He(3He,2p)4He reaction is much more important compared to another
3He destroying reaction, 3He(d,p)4He, especially in view of the fact that both
of these reactions have similar cross sections. This question will be addressed,
among other issues, in this section. The S-factor of the 3He(3He,2p)4He reac-
tion is given by (Angulo et al. 1999)

S(E) = 5.18 − 2.22 E + 0.80 E2 (MeV b) (5.4)

Although this S-factor is much larger compared to the one for the d(p,γ)3He
reaction (see Eq. (5.3)), the 3He(3He,2p)4He reaction rate per particle pair is ac-
tually much smaller because of the larger value of the product ZpZt, resulting
in a much reduced transmission through the Coulomb barrier. This circum-
stance has an important consequence for the mean lifetimes of deuterium and
3He in the stellar plasma, as will be shown below.

In the following, we will investigate how the 2H and 3He abundances
evolve in the pp1 chain. The isotope 2H is created by the p + p reaction and is
destroyed via the d + p reaction, while 3He is created by the d + p reaction and
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destroyed via the 3He + 3He reaction. Disregarding at first other reactions, we
find by using Eqs. (3.20) and (3.26) for the time dependence of the 2H and 3He
abundances the differential equations

dD
dt

= rpp − (1 + δdp)rdp =
H2〈σv〉pp

(1 + δpp)
− (1 + δdp)

HD〈σv〉dp

(1 + δdp)

=
H2

2
〈σv〉pp − HD〈σv〉dp (5.5)

d(3He)
dt

= rdp − (1 + δ3He3He)r3He3He

= DH〈σv〉dp − (3He)2〈σv〉3He3He (5.6)

In order to avoid confusion, we use italic symbols H, D, and 3He for the num-
ber densities of the isotopes 1H (or p), 2H (or d), and 3He, respectively. Note
that no Kronecker symbol occurs in front of the first term on the right-hand
side of the above equations since a single p + p reaction or a single d + p re-
action creates only one 2H or 3He nucleus, respectively.

We start with the abundance of 2H. If there is initially no deuterium present
in the stellar plasma, then the second term on the right-hand side of Eq. (5.5)
is zero. With increasing time the deuterium abundance builds up because
of the p + p reaction. The more deuterium is created, the larger the second
term describing the destruction of deuterium via the d + p reaction will be-
come. Eventually, an equilibrium, dD/dt = 0, is established. Alternatively, if
for some reason the initial deuterium abundance is very large, then the sec-
ond term on the right-hand side of Eq. (5.5) will dominate over the first term.
The deuterium abundance, and hence the second term, will decrease. The
more deuterium is depleted, the smaller the second term will become. This
continues until an equilibrium, dD/dt = 0, is established. The above equation
has been called self-regulating (Clayton 1983) since the deuterium abundance
always seeks an equilibrium value. The equilibrium ratio (D/H)e, which is
obtained for the condition dD/dt = 0, is given by
(

D
H

)

e
=

〈σv〉pp

2〈σv〉dp
=

NA〈σv〉pp

2NA〈σv〉dp
=

τp(d)
2τp(p)

(5.7)

The quantity (D/H)e is determined by the ratio of the p + p and d + p reaction
rates and is shown in Fig. 5.3a versus stellar temperature. It can be seen that
the (D/H)e value amounts to about (D/H)e ≈ 10−18–10−17 over most of the
relevant temperature range.

We can be more specific and ask how long it takes for the deuterium abun-
dance to achieve equilibrium. It has been shown above that the deuterium
lifetime against destruction via the d + p reaction is very short compared to
the hydrogen lifetime against destruction via that p + p reaction. Thus, the
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Fig. 5.3 (a) Equilibrium abundance ratio (D/H)e versus stellar tem-
perature. (b) Time evolution of the abundance ratio (D/H) for the
conditions T = 15 MK, ρ = 100 g/cm3, and XH = 0.5. The dashed and
solid lines are obtained for initial deuterium abundances of (D/H)0
= 0 and (D/H)0 = 10−5, respectively. In either case, the deuterium
abundance reaches equilibrium in a time which is negligible compared
to the lifetime of stars.

deuterium abundance will change much more quickly compared to the hy-
drogen abundance. In fact, the difference in the respective lifetimes is so large
that it is safe to assume that the deuterium abundance achieves equilibrium
in a time too short for the hydrogen abundance to change significantly. With
this approximation of a constant hydrogen abundance, Eq. (5.5) can be solved
and we obtain

d(D/H)
dt

=
H
2
〈σv〉pp − H

(
D
H

)
〈σv〉dp (5.8)

With the substitutions x = (D/H), a = (H/2)〈σv〉pp, and b = H〈σv〉dp, we
write

dx
dt

= a − bx (5.9)

With y = a − bx and dy/dx = −b we obtain, assuming y = y0 at t = 0,

dy
y

= −b dt and y = y0e−bt (5.10)

Thus, with Eqs. (3.23) and (5.7) one finds

H〈σv〉dp

(
D
H

)

t
=

H
2
〈σv〉pp −

[
H
2
〈σv〉pp − H〈σv〉dp

(
D
H

)

0

]
e−H〈σv〉dpt

(
D
H

)

t
=
(

D
H

)

e
−
[(

D
H

)

e
−
(

D
H

)

0

]
e−t/τp(d) (5.11)
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The deuterium abundance approaches its equilibrium value exponentially
with a 1/e time of τp(d). The time evolution of the quantity (D/H) for the
conditions T = 15 MK, ρ = 100 g/cm3, and XH = 0.5 is shown in Fig. 5.3b. The
two lines are obtained for (i) a zero initial deuterium abundance, (D/H)0 = 0,
and (ii) a value of (D/H)0 = 10−5. Clearly, the deuterium abundance reaches
equilibrium in a time which is negligible compared to the lifetime of stars.

The very small deuterium-to-hydrogen ratio of (D/H)e = 10−18–10−17 that
is established in the hydrogen burning cores of stars has interesting astro-
physical implications. Any significant deuterium abundance that might be
present when a star forms will be quickly depleted during the hydrogen burn-
ing stage. Since there are no other stellar sites that produce deuterium in sig-
nificant amounts, deuterium is destroyed as the Universe evolves and inter-
stellar gas is cycled through generations of stars. Observations of the deu-
terium abundance in the Universe will thus provide lower limits on the pri-
mordial deuterium abundance which was established before stellar formation
took place. Recent observations indicate a primordial deuterium abundance
of about (D/H)prim ≈ 3× 10−5 (Kirkman et al. 2003). It is commonly assumed
that the primordial deuterium was produced during the nucleosynthesis in
the early Universe and, therefore, the observed (D/H)prim value provides an
important test of standard Big Bang nucleosynthesis. Furthermore, if stars are
born from interstellar matter with a (D/H) ratio on the order of 10−5, then the
deuterium abundance is sufficiently large for initiating the d(p,γ)3He reaction
already at relatively low temperatures during the stellar contraction phase,
that is, before the actual hydrogen burning stage. Therefore, it appears that
the d(p,γ)3He reaction is in fact the first thermonuclear energy source of some
stars. This process is referred to as deuterium burning and will not only slow
the contraction of the newly forming star, but may also provide an important
source of 3He in the young star.

We will next discuss the evolution of the 3He abundance. Since the deu-
terium abundance achieves equilibrium in a negligible amount of time,
Eq. (5.6) can be simplified using Eq. (5.7),

d(3He)
dt

=
H2

2
〈σv〉pp − (3He)2〈σv〉3He3He (5.12)

This expression is also self-regulating in the sense that the 3He abundance will
seek an equilibrium value. The equilibrium ratio (3He/H)e is again obtained
for the condition d(3He)/dt = 0, with the result
( 3He

H

)

e
=

√
〈σv〉pp

2〈σv〉3He3He
=

√
NA〈σv〉pp

2NA〈σv〉3He3He
(5.13)

The quantity (3He/H)e is determined by the ratio of the p + p and 3He +
3He reaction rates and is shown in Fig. 5.4a versus stellar temperature. Since
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Fig. 5.4 (a) Equilibrium abundance ratio (3He/H)e versus stellar
temperature. (b) Time required for 3He to reach 99% of its equilibrium
abundance versus temperature. The curve is calculated for the condi-
tions ρ = 100 g/cm3 and XH = 0.5.

the 3He(3He,2p)4He reaction rate is much smaller compared to the d(p,γ)3He
reaction rate, the 3He abundance builds up to a much larger value compared
to the deuterium abundance in order to achieve equilibrium.

The time it takes for the 3He abundance to achieve equilibrium can be cal-
culated assuming that the hydrogen abundance stays nearly constant. It can
be seen from Fig. 5.4a that this is a reasonable assumption for temperatures
above T = 6 MK where (3He/H)e < 0.01. With the approximation of a con-
stant hydrogen abundance, Eq. (5.12) can be solved and we obtain

d(3He/H)
dt

=
H
2
〈σv〉pp − H

( 3He
H

)2

〈σv〉3He3He (5.14)

Using the substitutions x = (3He/H), a = (H/2)〈σv〉pp, and b = H〈σv〉3He3He
we write

dx
dt

= a − bx2 or
1
a

dx
dt

= 1 − b
a

x2 (5.15)

From y = x
√

b/a and dy/dx =
√

b/a, we obtain, assuming y = 0 at t = 0,

dy
1 − y2 = a

√
b
a

dt or y = tanh(t
√

ab) (5.16)

From Eqs. (3.23) and (5.13) we find
( 3He

H

)

t
=

√
〈σv〉pp

2〈σv〉3He3He
tanh

(

t

√
H
2
〈σv〉ppH〈σv〉3He3He

)

=
( 3He

H

)

e
tanh

(
t

[τ3He(3He)]e

)

(5.17)
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Note that we have explicitly assumed that the initial 3He abundance is zero
(y = 0 at t = 0). The quantity [τ3He(

3He)]e denotes the mean lifetime of
3He against destruction via the 3He(3He,2p)4He reaction after 3He has reached
its equilibrium value. The time required for the 3He abundance to achieve a
fraction f = (3He/H)t/(3He/H)e of its equilibrium abundance is obtained
from

t f = [τ3He(
3He)]e arctanh( f ) =

arctanh( f )

ρ XH
MH

NA〈σv〉3He3He

(
3 He
H

)

e

(5.18)

This time is shown in Fig. 5.4b at temperatures above T = 6 GK (where the
hydrogen abundance is approximately constant) for the conditions f = 0.99,
ρ = 100 g/cm3, and XH = 0.5. It can be seen that the value of t f exceeds
109 years below T ≈ 8 MK and becomes comparable to the lifetime of some
stars. For sufficiently small temperatures, the 3He abundance will never reach
equilibrium. For a temperature of T = 15 MK, on the other hand, the 3He abun-
dance increases gradually and reaches an equilibrium of (3He/H)e = 10−5 af-
ter about 106 years.

It is interesting to compare the mean lifetimes τp(p), τp(d), τα(3He),
[τd(d)]e, [τd(3He)]e, [τ3He(d)]e, and [τ3He(

3He)]e. The first three quantities are
given by the usual relation (see Eq. (3.22)), while, for example, the fifth quan-
tity denotes the mean lifetime of 3He against destruction via the 3He(d,p)4He
reaction after the deuterium abundance has reached an equilibrium value. From
Eqs. (3.22), (5.7), and (5.13) we find

[τd(d)]e =

(
NA〈σv〉pp

2NA〈σv〉dp
ρ

XH

MH
NA〈σv〉dd

)−1

(5.19)

[τd(3He)]e =

(
NA〈σv〉pp

2NA〈σv〉dp
ρ

XH

MH
NA〈σv〉3He d

)−1

(5.20)

[τ3He(d)]e =

(√
NA〈σv〉pp

2NA〈σv〉3He3He
ρ

XH

MH
NA〈σv〉3He d

)−1

(5.21)

[τ3He(
3He)]e =

(√
NA〈σv〉pp

2NA〈σv〉3He3He
ρ

XH

MH
NA〈σv〉3He3He

)−1

(5.22)

The subscripts pp, dp, dd, 3Hed, and 3He3He denote the reactions p(p,e+ν)d,
d(p,γ)3He, d(d,n)3He, 3He(d,p)4He, and 3He(3He,2p)4He, respectively. The
mean lifetimes are calculated for the conditions ρ = 100 g/cm3, XH = XHe =
0.5 and are shown in Fig. 5.5a. Several important points can be made. First,
it can be seen that τp(d) � [τ3He(d)]e � [τd(d)]e and hence the assump-
tion of Eq. (5.5) that deuterium is predominantly destroyed via the d(p,γ)3He
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Fig. 5.5 Mean lifetimes versus stellar temperature, calculated for the
conditions ρ = 100 g/cm3 and XH = XHe = 0.5. In (a) the operation of
only the pp1 chain is considered, while in (b) all three pp chains are
assumed to operate simultaneously. Note that for hydrostatic hydrogen
burning only temperatures below T = 0.1 GK are of interest.

reaction is justified. Second, we have [τ3He(
3He)]e � [τd(3He)]e and thus

3He is predominantly destroyed via the 3He(3He,2p)4He reaction, while the
3He(d,p)4He reaction plays no significant role after 3He has reached its equi-
librium value. We suspect that the 3He(d,p)4He reaction is more likely to occur
than the 3He(3He,2p)4He reaction only before 3He reaches equilibrium when
its abundance is still very small. Under such conditions, however, the produc-
tion rate of 3He via the two reactions p(p,e+ν)d and d(p,γ)3He is much larger
compared to the destruction rate so that the latter can be neglected. Therefore,
the assumption of Eq. (5.6) that 3He is predominantly destroyed in the pp1
chain via the 3He(3He,2p)4He reaction is justified.

The energy production rate in the pp1 chain may be expressed as a sum of
two parts. The first step involves the p(p,e+ν)d and d(p,γ)3He reactions. Their
cumulative effect is to convert three protons to one 3He nucleus at a rate that
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is given by the much slower p(p,e+ν)d reaction. The energy produced is cal-
culated according to Eq. (1.10) from the atomic mass excesses and amounts to
6.936 MeV. Subtracting an average neutrino energy of 0.265 MeV (see above)
yields an energy of 6.671 MeV, that is available to the star. In the second step,
the 3He(3He,2p)4He reaction releases an energy of 12.861 MeV. The total en-
ergy production rate in the pp1 chain is then given by (see Eq. (3.63))

εpp1 =
6.671 MeV

ρ
rpp +

12.861 MeV
ρ

r3He3He

=
6.671 MeV

2ρ
H2〈σv〉pp +

12.861 MeV
2ρ

H2
( 3He

H

)2

〈σv〉3He3He (5.23)

The energy generation rate depends on whether the 3He abundance has
achieved equilibrium or not. In the general case, when equilibrium has not
been reached yet, the 3He abundance and the corresponding energy gener-
ation rate are changing with time and both quantities have to be computed
numerically. Alternatively, for the conditions of a constant temperature, for
(3He/H)e < 0.01 (that is, a constant hydrogen abundance) and a zero initial
3He abundance, the ratio (3He/H) can be approximated by Eq. (5.17). The
expression for the energy generation rate simplifies considerably after the 3He
abundance has achieved equilibrium. From Eqs. (5.13) and (5.23) we find

εe
pp1 =

6.671 MeV
2ρ

H2〈σv〉pp +
12.861 MeV

2ρ

H2

2
NA〈σv〉pp

NA〈σv〉3He3He
〈σv〉3He3He

= 6.551 NA〈σv〉pp

(
XH

MH

)2

ρNA (MeV g−1 s−1) (5.24)

The energy generation rate in the pp1 chain at 3He equilibrium is determined
by the p + p reaction rate. The temperature dependence of εe

pp1 is thus given
by Eq. (3.87). For example, near T0 = 15 MK we obtain τ = 13.6 for the
p(p,e+ν)d reaction, implying

εe
pp1(T) = εe

pp1(T0) (T/T0)
(τ−2)/3 = εe

pp1(T0) (T/T0)
3.9 (5.25)

The quantity εe
pp1 will be presented versus temperature in Section 5.1.2 and

will be compared to the energy generation rate from the CNO cycles.

pp2 and pp3 chains

So far we have neglected reactions other than 3He(3He,2p)4He that destroy
3He. Figure 5.5a also compares the quantity [τ3He(

3He)]e with the lifetime of
3He against destruction via the 3He(α,γ)7Be reaction, τα(3He). It can be seen
that the 3He(α,γ)7Be reaction becomes the dominant destruction mechanism
for 3He if the temperature and the 4He abundance are sufficiently large. The
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4He may either be produced during hydrogen burning or may be of primor-
dial origin. Following the 3He(α,γ)7Be reaction, the 7Be nucleus may β-decay
to 7Li and the subsequent 7Li(p,α)4He reaction completes the conversion of
four protons to one 4He nucleus. This reaction sequence is referred to as the
pp2 chain (Fig. 5.2). The β-decay of 7Be has interesting properties. In the lab-
oratory, 7Be has a half-life of T1/2 = 53 d and decays by capture of an atomic
electron, 7Be + e− → 7Li + ν. In the stellar plasma, on the other hand, 7Be
is partially ionized and the decay can occur either by capture of one of the
remaining atomic electrons or of a free electron from the surrounding contin-
uum (Section 1.8.4). A calculation of the electron capture rate of 7Be in the stel-
lar environment can be found in Bahcall and Moeller (1969). In order to calcu-
late the decay constant, the tabulated values for the rate have to be multiplied
by ne−/NA, where ne− denotes the electron density (see Eq. (1.65)). It will
be shown below that this decay rate depends only weakly on temperature, in
contrast to the strong temperature dependence of charged-particle reactions.
In particular, at sufficiently high temperatures, the 7Be(p,γ)8B reaction instead
of 7Be(e−,ν)7Li becomes the dominant 7Be destruction mechanism. The β+-
decay of 8B to 8Be and the subsequent breakup of the particle-unstable 8Be
nucleus, 8Be → α + α, complete the so-called pp3 chain (Fig. 5.2).

The pp2 and pp3 chains have an output of two α-particles, but require an
input of one α-particle. The net effect is the fusion of one 4He nucleus per
reaction sequence and hence one of the α-particles acts only as a catalyst which
allows the 3He(α,γ)7Be reaction to take place. The total energy released in any
of the chains is the same (26.731 MeV) but the amount of energy carried away
by the neutrinos will be different in each case. The nuclear energy available to
the star for conversion to thermal energy for each chain is given by

Qpp1 = 26.73 MeV − 2Epp
ν = 26.19 MeV (5.26)

Qpp2 = 26.73 MeV − E
pp
ν − E

7Be
ν = 25.65 MeV (5.27)

Qpp3 = 26.73 MeV − Epp
ν − E

8B
ν = 19.75 MeV (5.28)

The average neutrino energies Ei
ν are adopted from Bahcall (1989). The neu-

trino losses in the pp1, pp2, and pp3 chains amount to 2%, 4%, and 26%, re-
spectively.

In a hydrogen-burning star that contains a significant 4He abundance, all
three pp chains will operate simultaneously. The contributions of the differ-
ent chains to the energy production and the nucleosynthesis depend on the
conditions of temperature, density, and composition. If we consider a situ-
ation where convection, expansion and mixing in the stellar plasma can be
disregarded, then nuclear transformations are the only source of abundance
changes. In this case one obtains the following set of nonlinear coupled differ-
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ential equations

dH
dt

= 2
(3He)2〈σv〉3He3He

2
− 2

H2〈σv〉pp

2
− HD〈σv〉pd

− H(7Be)〈σv〉p7Be − H(7Li)〈σv〉p7Li (5.29)

dD
dt

=
H2

2
〈σv〉pp − HD〈σv〉pd (5.30)

d(3He)
dt

= HD〈σv〉pd − 2
(3He)2〈σv〉3He3He

2
− (3He)(4He)〈σv〉α3He (5.31)

d(4He)
dt

=
(3He)2〈σv〉3He3He

2
+ 2H(7Be)〈σv〉p7Be + 2H(7Li)〈σv〉p7Li

− (3He)(4He)〈σv〉α3He (5.32)

d(7Be)
dt

= (3He)(4He)〈σv〉α3He − (7Be)λe7Be − H(7Be)〈σv〉p7Be (5.33)

d(7Li)
dt

= (7Be)λe7Be − H(7Li)〈σv〉p7Li (5.34)

Note the factor of 2, for example, in the numerator of the first term on
the right-hand side of Eq. (5.29) because two protons are created in one
3He(3He,2p)4He reaction. The term λe7 Be denotes the decay constant for 7Be
electron capture. The 8B and 8Be abundances have been eliminated because
both decays have very short mean lifetimes (1.1 s and 4 × 10−22 s, respec-
tively). Therefore, the sequence 7Be(p,γ)8B(β+ν)8Be(α)α can be considered
as a single step, 7Be + p → 2α + ν. This set of equations can be solved nu-
merically. It is instructive, however, to calculate analytical solutions by using
certain approximations. We have seen in the discussion of the pp1 chain that
several important results can be expressed in terms of the 3He equilibrium
abundance. Therefore, we will first focus on this quantity in the following
and then estimate the overall energy generation in the pp chains.

It is again safe to assume that the deuterium abundance will achieve equi-
librium in a negligible amount of time (seconds to hours) compared to the
evolution of the star. Hence, dD/dt = 0 in Eq. (5.30) and HD〈σv〉pd can be
replaced in Eq. (5.31) by H2〈σv〉pp/2,

d(3He)
dt

=
H2

2
〈σv〉pp − 2

(3He)2〈σv〉3He3He

2
− (3He)(4He)〈σv〉α3He (5.35)

We will also assume that the 3He abundance has reached an equilibrium. The
(3He)e abundance will be smaller compared to what it was in the operation of
the pp1 chain alone because now there is an additional 3He destroying reac-
tion. With d(3He)/dt = 0 we find

(3He)2
e 〈σv〉3He3He =

H2

2
〈σv〉pp − (3He)e(4He)〈σv〉α3He (5.36)
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Fig. 5.6 Values of (3He)e obtained from the operation of all three pp
chains, divided by (3He)e values derived from the operation of the pp1
chain only. The curve is obtained for a composition of XH = Xα = 0.5.
The ratio of (3He)e values shown amounts to unity below T = 10 MK
and decreases rapidly for increasing temperatures due to the operation
of the pp2 and pp3 chains.

Solving for (3He)e yields the expression

(3He)e =
−(4He)〈σv〉α3He +

√
(4He)2〈σv〉2

α3He + 2H2〈σv〉pp〈σv〉3He3He

2〈σv〉3He3He
(5.37)

It is apparent that for a zero hydrogen abundance (H → 0), the (3He)e abun-
dance also vanishes. Furthermore, for a zero 4He abundance, implying no
destruction of 3He via the 3He(α,γ)7Be reaction, the above expression reduces
to Eq. (5.13). The ratio of (3He)e values obtained from Eq. (5.37) to that re-
sulting from the operation of the pp1 chain alone (see Eq. (5.13)) is shown in
Fig. 5.6 for a composition of XH = Xα = 0.5. The ratio amounts to unity for tem-
peratures below T = 10 MK and decreases rapidly for increasing temperature
because of the operation of the pp2 and pp3 chains (see below).

We are now in a position to investigate the competition between the pp1,
pp2 and pp3 chains. The pp2 and pp3 chains will dominate over the pp1 chain
when the 3He(α,γ)7Be reaction becomes more likely than the 3He(3He,2p)4He
reaction. Similarly, the pp3 chain will dominate over the pp2 chain when the
7Be(p,γ)8B reaction becomes more likely than the competing electron capture
7Be(e−,ν)7Li. According to Eqs. (3.22) and (5.37), the corresponding mean life-
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times are

τα(3He) =
(

ρ
Xα

Mα
NA〈σv〉α3He

)−1

(5.38)

[τ3He(
3He)]e =

(
−ρ

2
Xα

Mα
NA〈σv〉α3He

+
ρ

2

√
X2

α

M2
α
(NA〈σv〉α3He)2 + 2

X2
H

M2
H

NA〈σv〉ppNA〈σv〉3He3He

)−1

(5.39)

τp(7Be) =
(

ρ
XH

MH
NA〈σv〉p7Be

)−1

(5.40)

τe− (7Be) = (λe7Be)
−1 (5.41)

The mean lifetimes are calculated from the above expressions for the condi-
tions ρ = 100 g/cm3 and XH = XHe = 0.5. In order to calculate λe7Be, the ap-
proximation ne−/NA ≈ ρ(1 + XH)/2 is used (Fowler, Caughlan and Zimmer-
man 1975), which is applicable for a fully ionized gas. The results are shown
in Fig. 5.5b. We find that, for the conditions assumed, τα(3He) ≈ [τ3He(

3He)]e
at T ≈ 18 MK. Above this temperature, the pp2 and pp3 chains will domi-
nate over the pp1 chain. Furthermore, we obtain τp(7Be) ≈ τe− (7Be) at T ≈
25 MK, implying that the pp3 chain will dominate over the pp2 chain at tem-
peratures in excess of this value. Note that these two temperature values are
independent of density as can be seen from Eqs. (5.38)–(5.41).

Finally, the nuclear energy generated by all the pp chains operating to-
gether is estimated under the assumption that 3He has achieved an equilib-
rium abundance. Remember that the neutrino losses are different in each
chain. The energy generation rate, corrected for neutrino losses, can be written
as the product

εpp =
Q4H→4He

ρ

d(4He)
dt

(
fpp1Fpp1 + fpp2Fpp2 + fpp3Fpp3

)
(MeV g−1 s−1)

(5.42)

with Q4H→4He = 26.73 MeV the energy release per 4He nucleus produced and
d(4He)/dt the production rate of 4He. The factor fppi is the fraction of the
total energy Q4H→4He which is retained in the star if the 4He nucleus is pro-
duced in the ppi chain ( fpp1 = 0.98, fpp2 = 0.96, fpp3 = 0.74; see above). The
quantity Fppi denotes the fraction of 4He nuclei produced by the ppi chain
(Fpp1 + Fpp2 + Fpp3 = 1). The production rate of 4He is given by Eq. (5.32).
The mean lifetimes of 7Be and 7Li amount to less than a year at most temper-
atures and densities of interest. Thereafter, both abundances will follow the
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buildup of 3He. With d(7Be + 7Li)/dt ≈ 0 one finds from Eqs. (5.33) and (5.34)

H(7Be)〈σv〉p7Be + H(7Li)〈σv〉p7Li = (3He)(4He)〈σv〉α3He (5.43)

This expression is satisfied long before 3He achieves equilibrium. Substitution
of Eq. (5.43) into Eq. (5.32) yields a much simplified expression for the 4He
production rate,

d(4He)
dt

=
(3He)2〈σv〉3He3He

2
+ (3He)(4He)〈σv〉α3He (5.44)

When 3He achieves equilibrium, we obtain with Eq. (5.36)

d(4He)
dt

=
H2

4
〈σv〉pp +

1
2
(3He)e(4He)〈σv〉α3He (5.45)

The fraction of 4He nuclei produced by the pp1 chain can be written as the
ratio of reaction rates (see Eq. (3.6)),

Fpp1 =
r3He3He

r3He3He + rα3He
=

(3He)e〈σv〉3He3He
(3He)e〈σv〉3He3He + 2(4He)〈σv〉α3He

(5.46)

Similarly, one finds for the fraction of 4He nuclei produced in the pp2 chain

Fpp2 = (1 − Fpp1)
re7Be

re7Be + rp7Be
= (1 − Fpp1)

λe7Be
λe7Be + H〈σv〉p7Be

(5.47)

with (1− Fpp1) the probability that the 4He nucleus is not produced in the pp1
chain. Furthermore, the fraction of 4He nuclei produced by the pp3 chain is
given by Fpp3 = 1 − Fpp1 − Fpp2. The fractions Fppi, which are independent of
density, are shown in Fig. 5.7a assuming a composition of XH = Xα = 0.5 and a
fully ionized gas. It is again apparent that for temperatures below T = 18 MK
the 4He nuclei are mainly produced via the pp1 chain. The pp2 chain takes
over above this temperature value, while for T > 25 MK the pp3 chain is the
main producer of 4He nuclei.

The energy production rate of the pp chains after 3He has achieved an equi-
librium abundance, εe

pp, can now be calculated from Eqs. (5.42), (5.45), (5.46),
and (5.47) as a function of temperature and composition. The ratio of the en-
ergy generation rate by the pp chains to that by the pp1 chain alone, εe

pp/εe
pp1,

is displayed in Fig. 5.7b for a composition of XH = Xα = 0.5 and a fully ionized
gas. The ratio is independent of density and amounts to unity at tempera-
tures below T = 10 MK where the pp1 chain is the dominant process. Recall
that in the pp1 chain two p + p reactions are necessary for the production of
one 4He nucleus. On the other hand, in the pp2 and pp3 chains, the creation
of one 4He nucleus requires only one p + p reaction, causing an increase in
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Fig. 5.7 (a) Fraction of 4He nuclei produced
by the pp1, pp2, and pp3 chains. The pp1,
pp2, and pp3 chains are the main produc-
ers of 4He at temperatures of T < 18 MK,
T = 18–25 MK, and T > 25 MK, respec-
tively. (b) Ratio of the energy generation
rate by all three pp chains to that by the pp1
chain alone versus temperature. The ratio
amounts to unity for T < 10 MK where the

pp1 chain dominates. The maximum at T ≈
23 MK is caused by the dominant operation
of the pp2 chain. About 90% of the Sun’s
energy is produced by the pp1 chain. All
curves shown in parts (a) and (b) are inde-
pendent of density and are calculated for
a composition of XH = Xα = 0.5 and a fully
ionized gas.

d(4He)/dt (by a factor of 2) and in εe
pp (by a factor of 2 minus neutrino losses)

compared to the operation of the pp1 chain alone. This can clearly be seen
at temperatures above T = 40 MK, where the pp3 chain dominates, yielding
a ratio of εe

pp/εe
pp1 = 2( fpp3/ fpp1) = 2(0.74/0.98) = 1.51. The maximum at

T ≈ 23 MK is caused by the dominant operation of the pp2 chain, for which
the neutrino losses are much less compared to those of the pp3 chain. In the
center of the Sun, the temperature amounts to T = 15.6 MK. Averaged over
the entire hydrogen burning region, it turns out that about 90% of the Sun’s
energy is produced in the pp1 chain.

We conclude the discussion of the pp chains with a few final remarks. The
evolution of the 3He abundance is much more complicated than that of deu-
terium. We already discussed that any initial deuterium nuclei are quickly
converted inside stars to 3He, thus increasing the 3He abundance. Compared
to the deuterium destroying d(p,γ)3He reaction, the 3He consuming reactions
3He(3He,2p)4He and 3He(α,γ)7Be involve higher Coulomb barriers and, there-
fore, have smaller cross sections. In the cooler outer layers of most stars, and
specifically throughout most of the volume of cooler low-mass stars, 3He will
thus survive. However, in the hotter stellar regions, 3He is converted to 4He
via the pp chains. The situation becomes more complex because the outer
cooler layers of a star may be mixed to the hotter interior regions, a process
that will contribute to the destruction of 3He. Clearly, there is a delicate bal-
ance between stellar 3He production and destruction. Whether or not this 3He
will survive and, after ejection, enrich the interstellar medium is controversial
(see the review by Tosi 2000).
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The isotope 7Li is produced in the pp2 chain. However, the cross section
of the 7Li(p,α)α reaction is very large and hence the 7Li abundance at any
time during the operation of the pp chains becomes very small [(7Li/H)pp ≈
2× 10−9; Parker, Bahcall and Fowler 1964]. There is evidence that a large frac-
tion of the 7Li abundance observed in the solar system [(7Li/H)� ≈ 2× 10−9]
is not produced in stars, but originates from high-energy spallation reactions
involving cosmic rays and the interstellar medium, and from primordial nu-
cleosynthesis. Nevertheless, models of Galactic chemical evolution require
a stellar source that produces the remaining, unexplained fraction of the 7Li
abundance (Romano et al. 2001). In these sources, 7Be is produced by the
3He(α,γ)7Be reaction and is transported via convection from the hot burning
zone to the outer, cooler layers where it decays by electron capture to 7Li. This
beryllium transport process is referred to as the Cameron–Fowler mechanism
(Cameron and Fowler 1971) and explains the lithium enrichments observed
in certain red giants and AGB stars.

Finally, we comment on the cross sections of the reactions that are part of
the pp chains. All these reactions exhibit nonresonant cross sections in the
energy range important for hydrostatic hydrogen burning. Direct cross sec-
tion measurements for d(p,γ)3He, 3He(3He,2p)4He, 3He(α,γ)7Be, 7Be(p,γ)8B,
and 7Li(p,α)α have been performed down to center-of-mass energies of 10 keV,
15 keV, 100 keV, 70 keV, and 10 keV, respectively (Angulo et al. 1999). In com-
parison, the centers of the solar Gamow peaks (T� = 15.6 MK; see Eq. (3.74))
for these reactions are located at 7 keV, 22 keV, 23 keV, 18 keV, and 15 keV,
respectively. Thus, measurements of the d(p,γ)3He, 3He(3He,2p)4He, and
7Li(p,α)α reactions cover directly the energy range important for hydrogen
burning in stars with masses of M ≥ M�. In other cases (for example, for
3He(α,γ)7Be and 7Be(p,γ)8B at solar temperature, or for all the above reactions
at lower temperatures that are typical of stars with M < M�) the astrophysi-
cal S-factor has to be extrapolated down to the energy range of interest, either
by a polynomial expansion or by using a suitable nuclear reaction model (Sec-
tion 3.2.1).

5.1.2
CNO Cycles

If a star consists exclusively of hydrogen and helium, then significant energy
can only be generated during the hydrogen burning stage via the operation
of the pp chains. Most stars, however, consist of gas that contains heavier
nuclides, particularly those in the C, N, and O mass region. Hence, these
nuclei can participate in hydrogen burning. The resulting four sets of reactions
through which hydrogen can be converted to helium are referred to as the



5.1 Hydrostatic Hydrogen Burning 397

CNO cycles. The reactions of the CNO cycles are listed below (together with
the β-decay half-lives) and are shown in Fig. 5.8.

CNO1 CNO2 CNO3 CNO4

12C(p,γ)13N 14N(p,γ)15O 15N(p,γ)16O 16O(p,γ)17F
13N(β+ν)13C 15O(β+ν)15N 16O(p,γ)17F 17F(β+ν)17O
13C(p,γ)14N 15N(p,γ)16O 17F(β+ν)17O 17O(p,γ)18F
14N(p,γ)15O 16O(p,γ)17F 17O(p,γ)18F 18F(β+ν)18O
15O(β+ν)15N 17F(β+ν)17O 18F(β+ν)18O 18O(p,γ)19F
15N(p,α)12C 17O(p,α)14N 18O(p,α)15N 19F(p,α)16O

T1/2: 13N (9.965 min); 15O (122.24 s); 17F (64.49 s); 18F (109.77 min)

These cycles have interesting properties. The end result of each process is the
same as for the pp chains, that is, 4H → 4He + 2e+ + 2ν. In each cycle, C,
N, O, or F nuclei act only as catalysts, in the sense that the total abundance
of the heavy nuclei is not altered while only hydrogen is consumed. There-
fore, a substantial amount of nuclear energy can be generated even if the total
abundance of the heavy nuclei is relatively low. Of course, the operation of
a particular cycle will change the abundance of the individual heavy nuclei.
Consider as an example the CNO1 cycle. If there are initially only 12C nuclei
present in the stellar gas, then some of these will be converted to other CNO
nuclei and the individual abundances will evolve depending on the magni-
tude of the reaction rates involved. The energy generation rate depends on
the abundance of the catalysts and the time it takes to complete the cycle.

The various CNO cycles exist because for the proton-induced reactions on
the nuclei 15N, 17O, 18O, and 19F both the (p,γ) and (p,α) channels are ener-
getically allowed, in contrast to the proton-induced reactions on the nuclei
12C, 13C, 14N, and 16O that can only proceed via the (p,γ) reaction. The (p,α)
reaction will convert a heavier nucleus back to a lighter one, thereby giving
rise to a cycle of nuclear processes. At each of the branch point nuclei 15N,
17O, 18O, and 19F, the (p,α) reaction will compete with the (p,γ) reaction. The
branching ratio, or the ratio of probabilities for the occurrence of the (p,α)
and (p,γ) reaction, is then given by the ratio of the corresponding reaction
rates, Bpα/pγ = NA〈σv〉(p,α)/NA〈σv〉(p,γ). The branching ratios versus tem-
perature are displayed in Fig. 5.9. The solid lines show the upper and lower
limits of Bpα/pγ, caused by presently unknown contributions to the reaction
rates (for example, unobserved resonances). Despite the rate uncertainties, it
is obvious that for the target nuclei 15N, 17O, 18O, and 19F the (p,α) reaction
is faster than the (p,γ) reaction over the entire temperature range (except per-
haps for 17O and 18O at very low temperatures of T < 20 MK). An impression
on the relative likelihood of the various CNO reactions can be obtained from
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Fig. 5.8 Representation of the four CNO cycles in the chart of the
nuclides. Stable nuclides are shown as shaded squares. Each reaction
cycle fuses effectively four protons to one 4He nucleus.

Fig. 5.10, showing the reaction rates normalized to the rate of the slowest re-
action, 16O(p,γ)17F.

A few important points need to be stressed before continuing the discus-
sion. First, at relatively low temperatures characteristic of hydrostatic hydro-
gen burning (T ≤ 55 MK), β+-decays of unstable nuclei in the CNO mass
range proceed on much faster time scales compared to the competing proton-
induced reactions. Thus, reactions involving unstable nuclei are unimportant
under such conditions. At temperatures above T = 100 MK, additional reac-
tions not listed above (those involving unstable target nuclei) take place in the
CNOF mass region and the characteristics of the cycles change substantially.
In this section we will concentrate on the temperature range T < 100 MK,
while hydrogen burning in the CNOF mass region at higher temperatures is
discussed in Section 5.2.1. Second, the relative initial abundance of the var-
ious CNOF isotopes is obviously important in order to describe the detailed
operation of the CNO cycles. These seed nuclei are produced at the helium
burning stage in a previous generation of stars. The most abundant nuclides
produced during helium burning (see Section 5.3.2) are 12C, 16O, and, to a
lesser extent, 14N. For example, the solar ratio of these isotopes is 12C:14N:16O
= 10:3:24. Hence, the CNO cycles will most likely operate with 12C and 16O
as seed nuclei. Third, consider now the different fate of these two nuclides.
The 12C nuclei will initiate the CNO1 sequence of reactions. At 15N, there is a
small chance of about 1:1000, according to Fig. 5.9, that catalytic material leaks
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Fig. 5.9 Branching ratio Bpα/pγ = NA〈σv〉(p,α)/NA〈σv〉(p,γ) versus
temperature for the reactions (a) 15N + p, (b) 17O + p, (c) 18O + p, and
(d) 19F + p. The two solid lines in each panel represent the currently
accepted upper and lower limits of Bpα/pγ . The area between the solid
lines represents the uncertainty in Bpα/pγ that is caused by unknown
contributions to the (p,γ) and (p,α) reaction rates.

Fig. 5.10 Reaction rates in the CNO cycles versus temperature. For a
better comparison, the values of NA〈σv〉 are normalized to the rate of
the slowest reaction, 16O(p,γ)17F.
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into the CNO2 cycle via the 15N(p,γ)16O reaction. However, most of the cat-
alytic material will be transformed back to 12C via the dominant (p,α) reaction.
On the other hand, 16O is transformed to 17O, but the subsequent processing
is more complicated. A large fraction of 17O nuclei will be destroyed by the
(p,α) reaction, leading to the formation of 14N and the further operation of the
CNO1 and CNO2 cycles. But another fraction, depending on the stellar tem-
perature, will be converted to 18F, thus initiating the CNO3 and CNO4 cycles.

In order to gain some insight into the operation of the CNO cycles, we will
proceed as follows. It is first assumed that only 12C, 13C, 14N, or 15N seed nu-
clei are present in the stellar plasma and that the CNO1 cycle is closed, that is,
the (p,γ) reaction on 15N is negligible compared to the competing (p,α) reac-
tion. The corresponding set of differential equations describing the evolution
of isotopic abundances will then be solved for the equilibrium operation of the
CNO1 cycle. In a second step, the interplay of all CNO cycles is considered
for different assumptions of initial seed abundances by solving numerically
the equations describing the abundance changes.

Steady-state operation of the CNO1 cycle

Assuming that nuclear transformations are the only source of abundance
changes, the following set of coupled differential equations can be obtained
for a closed CNO1 cycle (also called CN cycle):

d(12C)
dt

= H(15N)〈σv〉15 N(p,α) − H(12C)〈σv〉12C(p,γ) (5.48)

d(13N)
dt

= H(12C)〈σv〉12C(p,γ) − (13N)λ13 N(β+ν) (5.49)

d(13C)
dt

= (13N)λ13 N(β+ν) − H(13C)〈σv〉13C(p,γ) (5.50)

d(14N)
dt

= H(13C)〈σv〉13C(p,γ) − H(14N)〈σv〉14 N(p,γ) (5.51)

d(15O)
dt

= H(14N)〈σv〉14 N(p,γ) − (15O)λ15O(β+ν) (5.52)

d(15N)
dt

= (15O)λ15O(β+ν) − H(15N)〈σv〉15 N(p,α) (5.53)

At the temperatures of interest here (T < 0.1 GK), the β-decay lifetime of 13N
is much shorter compared to the lifetime of 12C versus destruction by the (p,γ)
reaction (the preceding step). For all practical purposes, the abundances of H
and 12C will be constant over the short time it takes 13N to reach steady state.
Hence, Eq. (5.49) can be solved with the same method used to derive Eq. (5.8).
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Using (13N)t=0 = 0 we obtain

(13N)t =
H〈σv〉12C(p,γ)

λ13N(β+ν)
(12C) −

[
H〈σv〉12C(p,γ)

λ13N(β+ν)
(12C)

]

e
−λ13N(β+ν) t

=
τβ(13N)
τp(12C)

(12C)
[
1 − e−t/τβ(13N)

]
(5.54)

The result shows that the 13N abundance approaches its steady-state value
(13N/12C)e = τβ(13N)/τp(12C) in times on the order of τβ(13N), that is, a
few minutes. The same arguments hold for the 15O abundance. Therefore, we
may set Eqs. (5.49) and (5.52) equal to zero and eliminate 13N and 15O from the
system of equations. After a few minutes, the nuclear burning in the CNO1
cycle is then described by the system of equations

d(12C)
dt

= H(15N)〈σv〉15N(p,α) − H(12C)〈σv〉12C(p,γ) (5.55)

d(13C)
dt

= H(12C)〈σv〉12C(p,γ) − H(13C)〈σv〉13C(p,γ) (5.56)

d(14N)
dt

= H(13C)〈σv〉13C(p,γ) − H(14N)〈σv〉14N(p,γ) (5.57)

d(15N)
dt

= H(14N)〈σv〉14N(p,γ) − H(15N)〈σv〉15N(p,α) (5.58)

Several observations are immediately apparent. First, it is obvious that
d(12C)/dt + d(13C)/dt + d(14N)/dt + d(15N)/dt = 0 and, consequently,
the sum of CNO1 abundances is constant, ∑ CNO1 = const. Second, after
the CNO1 cycle has reached steady state, all time derivatives in the above ex-
pressions are zero. As a result, the rates of all CNO1 reactions become equal,
while the ratio of any two nuclidic abundances is simply given by the inverse
ratio of their reaction rates (or the ratio of mean lifetimes). For example,

( 14N
12C

)

e
=

〈σv〉12C(p,γ)

〈σv〉14N(p,γ)
=

τp(14N)
τp(12C)

(5.59)

The fractional abundance, for example, for 12C is

(12C)e

∑ CNO1
=

(12C)e

(12C)e + (13C)e + (14N)e + (15N)e

=

(

1 +
〈σv〉12C(p,γ)

〈σv〉13C(p,γ)
+

〈σv〉12C(p,γ)

〈σv〉14N(p,γ)
+

〈σv〉12C(p,γ)

〈σv〉15N(p,α)

)−1

=
τp(12C)

τp(12C) + τp(13C) + τp(14N) + τp(15N)
(5.60)
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Fig. 5.11 (a) Abundance ratios and (b) fractional abundances versus
temperature. The curves are calculated by assuming steady-state
operation of a closed CNO1 cycle.

The CNO1 abundance ratios and fractional abundances are shown in Fig. 5.11
versus temperature.

The net effect of the CNO1 cycle operation is the conversion of carbon and
nitrogen seed nuclei to 14N, which becomes by far the most abundant heavy
nuclide when steady state is reached. This result is a consequence of the fact
that the 14N destroying reaction 14N(p,γ)15O is the slowest process in the
CNO1 cycle for temperatures of T < 0.1 GK, as can be seen from Fig. 5.10.
Note that not all abundances in the CNO1 cycle are constant with time, even
under steady-state conditions, since hydrogen is continuously converted to
helium [dH/dt < 0 and d(4He)/dt > 0].

The energy generation rate from the operation of the CNO1 cycle at constant
temperature and density can be expressed as (see Eq. (3.63))

εCNO1 = ∑
i→j

εi→j =
1
ρ ∑

i→j
(Qi→j − E

i→j
ν )ri→j (5.61)

where the sum is over all relevant processes i → j and Eν denotes the average
energy of the neutrinos released in the β-decays. Since the β+-decays of 13N
and 15O occur on negligible small time scales, we can consider them together
with the preceding reactions 12C(p,γ)13N and 14N(p,γ)15O, respectively. The
reaction and decay energies available to the star are given by

Q12C(p,γ)13N(β+ν) − E
13N(β+ν)
ν = (1.944 + 2.220 − 0.706) MeV

= 3.458 MeV (5.62)

Q13C(p,γ) = 7.551 MeV (5.63)
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Q14N(p,γ)15O(β+ν) − E
15O(β+ν)
ν = (7.297 + 2.754 − 0.996) MeV

= 9.055 MeV (5.64)

Q15N(p,α) = 4.966 MeV (5.65)

The average neutrino energies Ei
ν are adopted from Bahcall (1989) (see also

Eq. (1.45) and Problem 1.9). For the equilibrium operation of the CNO1 cycle
we obtain from Eq. (5.61)

ρεe
CNO1 = (3.458 MeV)H(12C)e〈σv〉12C(p,γ) + (7.551 MeV)H(13C)e〈σv〉13C(p,γ)

+ (9.055 MeV)H(14N)e〈σv〉14N(p,γ) + (4.966 MeV)H(15N)e〈σv〉15N(p,α)

= (3.458 MeV)
(12C)e

τp(12C)
+ (7.551 MeV)

(13C)e

τp(13C)

+ (9.055 MeV)
(14N)e

τp(14N)
+ (4.966 MeV)

(15N)e

τp(15N)
(5.66)

From Eq. (5.60) we obtain

(12C)e

τp(12C)
=

(13C)e

τp(13C)
=

(14N)e

τp(14N)
=

(15N)e

τp(15N)

= ∑ CNO1
τp(12C) + τp(13C) + τp(14N) + τp(15N)

(5.67)

Hence, the energy generation rate at equilibrium can be written as

εe
CNO1 =

25.030 MeV
ρ

∑ CNO1
τp(12C) + τp(13C) + τp(14N) + τp(15N)

(5.68)

The sum of the lifetimes in the denominator is called the cycle time, and is
almost entirely dominated by the long 14N lifetime. Hence

εe
CNO1 ≈ 25.030 MeV

ρ

∑ CNO1
τp(14N)

=
25.030 MeV

ρ
(∑ CNO1)H〈σv〉14N(p,γ)

= 25.030 NA〈σv〉14N(p,γ)

(

∑
i

Xi

Mi

)
XH

MH
ρNA (MeV g−1 s−1) (5.69)

where the sum is over all CNO1 isotopes. Clearly, the energy generation rate
in the CNO1 cycle at steady state is determined by the 14N(p,γ)15O reaction
rate. This reaction is nonresonant for temperatures below T = 0.1 GK and,
therefore, the temperature dependence of the energy generation rate is ob-
tained from Eq. (3.87). For example, at T = 25 MK, which is roughly charac-
teristic of CNO burning on the upper main sequence, we obtain τ = 51.96 and
hence

εe
CNO1(T) = εe

CNO1(T0) (T/T0)
(τ−2)/3 = εe

CNO1(T0) (T/T0)
16.7 (5.70)
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We are now in a position to compare the equilibrium energy generation
rates of the pp1 chain and the CNO1 cycle. These processes will compete with
each other in hydrogen-burning stars that contain initial CN seed nuclei. In
Fig. 5.12, the quantities εe

pp1/(ρX2
H) from Eq. (5.24) and εe

CNO1/(ρX2
H) from

Eq. (5.69) are displayed versus temperature. The former expression is a func-
tion of temperature only (through the p(p,e+ν)d reaction rate), while the latter
depends both on temperature (through the 14N(p,γ)15O reaction rate) and on
the mass fractions of the CNO1 isotopes relative to the hydrogen mass frac-
tion. For illustration purposes, values of XH = 0.711, X12C = 2.46 × 10−3, X14N
= 7.96 × 10−4, and X13C = 2.98 × 10−5 are chosen which are representative of
the solar system and population I stars (Lodders 2003). Note that these initial
seed abundances can be used in Eq. (5.69) since we assumed a closed CNO1
cycle [∑(X/M) = const]. For other values of Xi/Mi, the CNO1 curve shown
in Fig. 5.12 will shift vertically. For the conditions chosen, the pp1 chain gener-
ates most of the nuclear energy for temperatures below T = 20 MK. At higher
temperatures most of the energy is produced in the CNO1 cycle. The tempera-
ture in the stellar interior depends on the stellar mass. Therefore, we conclude
that the pp chains dominate the energy production in all hydrogen burning
stars with insignificant CNO seed abundances. In stars with significant CNO
seed abundances, the pp chains will dominate in low-mass stars, while in stars
of higher mass (slightly more massive than the Sun; Section 1.4.3) the CNO cy-
cles are the dominant source of energy.

The very different temperature dependence for the energy generation rate
of the pp chains compared to the CNO cycles has a profound influence on the
internal structure of a star. For example, if helium is mainly synthesized by
the pp chains, then energy is transported through the central regions by radia-
tion. In contrast, the rate of the CNO cycles is so sensitive to temperature that,
when it is the dominant process, the energy-generating regions are unstable
to convection, which becomes the main energy transport mechanism to the
outer regions of the star.

Approach to steady state in the CNO cycles

We have so far considered only the steady state operation of the CNO1 cycle.
We will now investigate nonequilibrium situations. Two aspects are of spe-
cial interest: (i) the approach to steady state in the CNO1 cycle, and (ii) the
simultaneous operation of all CNO cycles. The system of coupled differential
equations describing the abundance changes of all CNO nuclei is similar in
structure to Eqs. (5.48)–(5.53), but it is more complex because of the inclusion
of oxygen and fluorine isotopes. Such a system of equations represents an
example of a nuclear reaction network (Section 3.1.3). It can only be solved
analytically if a number of simplifying assumptions are made (Clayton 1983).
With one exception, we will not make such assumptions but will instead com-
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Fig. 5.12 Equilibrium energy generation
rates of the pp1 chain and the CNO1 cycle.
The curve for the CNO1 cycle is calculated
for a solar system composition (Lodders
2003). For a different composition, the
CNO1 curve shifts vertically. The rate of

the 14N(p,γ)15O reaction is adopted from
Runkle et al. (2005). The pp1 chain and the
CNO1 cycle dominate for temperatures be-
low and above T = 20 MK, respectively. The
pp1 chain is the primary energy source in
the Sun.

pute the time evolution of CNO abundances numerically. For the numerical
calculations described in this section, the assumption of constant temperature
and density conditions is made. It is important to emphasize that the inter-
nal temperature of a real star is actually changing during its evolution on the
main sequence. However, in hydrostatic burning environments these changes
occur slowly over long time periods. Therefore, the assumption of constant T
and ρ, although not correct for a real star, is quite useful for obtaining physical
insight into the nucleosynthesis and energy production.

We first consider the approach to steady state in the CNO1 cycle. The tem-
perature and density are assumed to be T = 25 MK and ρ = 100 g/cm3. Such
values are typical of CNO burning on the upper main sequence. For the initial
composition we assume X0

H = 0.70, X0
4He = 0.28, and X0

12C = 0.02, that is, only
12C is initially present as a CNO seed nucleus. The reaction network, includ-
ing all four CNO cycles, is solved until hydrogen is exhausted, that is, until the
hydrogen concentration falls below XH = 0.001. The time evolution of abun-
dances is shown in Fig. 5.13a. As expected from the operation of the CNO
cycles, the hydrogen abundance declines from its initial value, while the he-
lium abundance increases. Hydrogen is exhausted after 30 million years. The
initial carbon abundance is steadily depleted and converted to other nuclides.
It can be seen that, for the chosen temperature and density conditions, steady
state in the CNO1 cycle is reached after only 4000 years. From then on until
the end of the calculation, the abundances of 12C, 13C, 14N, and 15N remain
constant. The most abundant CNO isotope in equilibrium is 14N, while the
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least abundant one is 15N because of its small lifetime versus destruction by
the (p,α) reaction. For example, from the numerical results shown in Fig. 5.13a
one obtains (X12C/X14N)e = 0.008, and thus the ratio of number abundances
is (12C/14N)e = 0.008(M14N/M12C) ≈ 0.01, in agreement with the results ob-
tained analytically (Fig. 5.11a).

The conversion of initial 12C seed nuclei to 14N must proceed at a rate de-
termined by the 12C lifetime, which, for the chosen conditions, amounts to
τp(12C) = 350 y. It is apparent from Fig. 5.13a that the 12C abundance decays
away with a 1/e time that is approximately equal to τp(12C), while the CNO1
cycle reaches steady state after several 12C half-lives. There is indeed a small
leakage of material from the CNO1 to the CNO2 cycle, as can be seen from the
increasing 16O abundance. However, it remains insignificant compared to the
14N abundance. The time evolution of the nuclear energy generation rate is
shown in Fig. 5.13b. The energy generation rate drops by more than an order
of magnitude until equilibrium is reached after about 4000 years. For exam-
ple, at t = 104 y we obtain from the numerical results presented in Fig. 5.13b
a value of εCNO ≈ 2.2 × 1010 MeV g−1 s−1, in agreement with the analytical
steady state value calculated from Eq. (5.69). For times beyond t = 3 × 105 y
the energy production rate drops because the abundance of the hydrogen fuel
decreases.

We consider next the effects caused by a change in composition. The tem-
perature and density are the same as before (T = 25 MK, ρ = 100 g/cm3). For
the initial composition we assume X0

H = 0.70, X0
4He = 0.28, X0

12C = 0.01, and
X0

16O = 0.01, that is, both 12C and 16O are now present with equal concentra-
tions as seed nuclei. The reaction network is again solved until hydrogen is
exhausted (XH < 0.001). The results are displayed in Fig. 5.13c. The hydro-
gen and helium abundance evolves similar as before. The abundances of 12C,
13C, and 14N reach again steady state after about 4000 years, with 14N being
by far the most abundant species. The 15N abundance is omitted in Fig. 5.13c
since it is very small. At t = 104 y, the ratio of 12C to 14N mass fractions is
the same as in the previous network calculation [(X12C/X14N)e = 0.008]. At
this point, only vanishingly small amounts of 16O have been consumed and
little else has changed due to the presence of 16O as seed nucleus. Recall that
the 16O(p,γ)17F reaction is one of the slowest processes in the CNO cycles
(Fig. 5.10). Therefore, it takes a significant time for 16O to be depleted. Small,
but noticeable, changes occur after t = 104 y. The 16O abundance starts to de-
cline, while at the same time the 17O, 18O, and 19F abundances start to increase.
After t = 105 y the 12C, 13C, and 14N abundances increase, indicating a transfer
of catalytic material from the CNO2 cycle to the CNO1 cycle by means of the
strong 15N(p,α)12C reaction. After t = 107 y, individual CNO abundances stay
constant and steady state has been achieved in all CNO cycles. At this point,
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Fig. 5.13 Time evolution of abundances
and nuclear energy generation rate for two
different compositions: (a), (b) X0

H = 0.70,
X0

4He = 0.28, X0
12C = 0.02, and (c), (d) X0

H
= 0.70, X0

4He = 0.28, X0
12C = X0

16O = 0.01.
For the temperature and density, constant

values of T = 25 MK and ρ = 100 g/cm 3 are
assumed in both cases. All curves shown
are obtained by solving the reaction network
numerically. The calculations are terminated
when the hydrogen mass fraction falls below
XH = 0.001.

the abundance ratios obtained from Fig. 5.13c agree with those calculated an-
alytically from the ratio of lifetimes (see Eq. (5.59)). For example, one finds
(17O/16O)e = 〈σv〉16O(p,γ)/[〈σv〉17O(p,γ) + 〈σv〉17O(p,α)] = 0.025, consistent with
the value derived from Fig. 5.13c. Note that the 18O and 19F abundances are
very small, indicating a small leakage from the CNO2 cycle to the CNO3 and
CNO4 cycles at T = 0.025 GK. The presence of 16O seed nuclei has changed the
final 12C, 13C, and 14N abundances by less than 20% compared to the earlier
network calculation with only 12C as seed nucleus (Fig. 5.13a). These results
show that, in spite of the simultaneous operation of all CNO cycles, the initial
12C and 16O seed nuclei are essentially transformed to 14N if there is sufficient
time to achieve steady state.
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The time evolution of the energy generation rate is shown in Fig. 5.13d.
Only about half of the energy per unit time is produced compared to the
results shown in Fig. 5.13b since only half of the initial 12C seed nuclei
are present. At times of t = 105, 106, and 107 y, the energy generation
rate displayed in Fig. 5.13d amounts to εCNO = 1.2 × 1010 MeV g−1 s−1,
1.3 × 1010 MeV g−1 s−1 and 2.7 × 109 MeV g−1 s−1, respectively. Interest-
ingly, these values are very close (within 10%) to those calculated analytically
from Eq. (5.69) assuming a closed CNO1 cycle in steady state, with only 12C
as initial seed nuclei. Hence, after the CNO1 cycle reaches steady state, the
energy generation rate of the simultaneous operation of all CNO cycles is
approximately equal to that of the CNO1 cycle alone, that is, εCNO ≈ εe

CNO1.
This circumstance is explained by several factors. First, the (p,α) reactions on
the branching point nuclei 15N, 17O, 18O, and 19F are much faster compared
to the competing (p,γ) reactions (Fig. 5.9) which tends to increase the CNO1
abundances, and specifically that of 14N, at the expense of the abundances in
the other cycles. Second, the CNO1 cycle reactions involve lower Coulomb
barriers and, therefore, are generally faster compared to the reactions of the
other cycles (Fig. 5.10). Third, the Q-values in the CNO1 cycle are much
larger compared to the energy released by processes that complete the CNO2
cycle (Q16O(p,γ) = 0.600 MeV; Q17F(β+ν) = 2.761 MeV; Q17O(p,α) = 1.192 MeV).
Only in special cases when the initial oxygen abundance is overwhelmingly
larger than the initial carbon or nitrogen abundance, and if oxygen has not yet
reached steady state, will the assumption of εCNO ≈ εe

CNO1 be invalid.
The results of two network calculations, performed for different constant

temperatures of T = 20 and 55 MK, a constant density of ρ = 100 g/cm3 and a
solar initial composition (X0

H = 0.706; ∑ X0
CNO = 0.0137; 12C:14N:16O = 10:3:24),

are displayed in Fig. 5.14. The abundance evolutions are shown versus the
amount of hydrogen consumed, ∆XH = X0

H − XH(t), with time increasing
from left to right. Some similarities between the two calculations can be no-
ticed. All CNO abundances reach steady state at the end of the calculations
(when XH < 10−3), although this is not readily apparent in Fig. 5.14a if the 16O,
17O, 18O, and 19F abundances are plotted versus ∆XH. The 14N abundance in-
creases steadily, first as a result of 12C to 14N conversion in the operation of the
CNO1 cycle, and at a later time because of 16O to 14N conversion in the CNO2
cycle. Thus, 14N is enhanced while 12C and 16O are depleted at the end of the
calculation. The abundances of 18O and 19F are also depleted during the nu-
clear burning, while the final 13C abundance changes by less than a factor of 2
compared to its initial abundance. The evolution of 17O is interesting. At T =
20 MK, the nuclear burning strongly enhances the 17O abundance by the time
hydrogen is exhausted, while at T = 55 MK its abundance is depleted. The
two calculations predict final 17O abundances that differ by more than three
orders of magnitude, that is, the 17O abundance is very sensitive to the hy-
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Fig. 5.14 Abundance evolutions versus the amount of hydrogen con-
sumed for two different constant temperatures: (a) T = 20 MK, and
(b) T = 55 MK. The density (ρ = 100 g/cm3) and the initial composition
(solar) is the same for both cases. All curves shown are obtained by
solving the reaction network numerically. The calculations are termi-
nated when the hydrogen mass fraction falls below XH = 0.001.

drogen burning temperature. Note that the higher the temperature, the larger
the reaction rates and hence the time it takes to reach hydrogen exhaustion is
much shorter at T = 55 MK compared to T = 20 MK.

There is significant observational evidence for the operation of the CNO
cycles in hydrogen burning. In many stars, the products of the nucleosyn-
thesis have been carried by turbulent convection from the stellar interior to
the surface. Consider as an example the isotopes of carbon. Stars that form
from matter with a solar composition will initially exhibit an abundance ra-
tio of (13C/12C)� = 0.011 at their surface. Once CNO steady state has been
achieved, we expect, according to Fig. 5.11a, an abundance ratio of (13C/12C)e

= 0.25 in the hydrogen burning region. Note that the latter value is insensi-
tive to temperature below T < 0.1 GK. Many stars show (13C/12C) surface
abundance ratios between these two values, indicating that a fraction of the
hydrogen burning matter has been transported to the stellar surface. Some
stars even display (13C/12C) surface abundance ratios close to the steady state
value (Sneden, Pilachowski and Vandenberg 1986). Such observations not
only provide evidence for CNO burning, but also demonstrate that most of
the matter at the stellar surface must have been cycled through the hydrogen
burning region in the stellar interior. The operation of the CNO cycles in AGB
stars is believed to be the main source of 13C and 14N in the Universe.

We will now briefly summarize the experimental situation regarding mea-
surements of CNO-cycle reactions. At the upper temperature range character-
istic of hydrostatic hydrogen burning (T ≈ 55 MK), the Gamow peaks for the
12C + p and 19F + p reactions are located at E0 ± ∆/2 = 60 ± 20 keV and
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80 ± 24 keV, respectively. From the experimental point of view, the CNO
reactions can be divided into two groups, depending on whether measured
cross sections exist in the Gamow peak or not. For example, the reactions
13C(p,γ)14N, 14N(p,γ)15O, 15N(p,γ)16O, and 16O(p,γ)17F have been measured
down to center-of-mass energies of 100, 93, 130, and 130 keV, respectively (An-
gulo et al. 1999). In these cases, no data exist in the Gamow peak for hy-
drostatic hydrogen burning (T ≤ 55 MK) and hence the S-factor has to be
extrapolated down to the energy range of interest, either by a polynomial ex-
pansion or by using a suitable nuclear reaction model (Section 3.2.1). The S-
factors for the above reactions are determined by nonresonant contributions
(tails of broad resonances or direct capture) at E < 100 keV. Recent studies
of the important 14N(p,γ)15O reaction are reported in Formicola et al. (2004)
and Runkle et al. (2005). The 17O(p,γ)18F, 18O(p,γ)19F, and 19F(p,γ)20Ne reac-
tions have also not been measured down to the relevant Gamow-peak region.
In these cases, the reaction rates at T ≤ 55 MK are expected to be dominated
by unobserved (low-lying) narrow resonances. These contributions have been
estimated by using all the available nuclear structure information on the corre-
sponding states in the compound nuclei. On the other hand, the 12C(p,γ)13N,
15N(p,α)12C, and 18O(p,α)15N reactions have all been measured down to ener-
gies of about 70 keV, covering at least part of the Gamow peak for the higher
temperatures near T ≈ 55 MK. The first two reactions are nonresonant, while
the latter process is influenced both by resonant and nonresonant contribu-
tions to the reaction mechanism. The 17O(p,α)14N reaction represents an ex-
ceptional case. At temperatures of T = 18–55 MK, the most important con-
tribution to the reaction rates originates from a narrow resonance located at
Ecm

r = 65 keV. This particular resonance has been observed and, in fact, repre-
sents the weakest resonance measured to date in the laboratory (with ωγpα =
(4.7 ± 0.8)× 10−9 eV; Blackmon et al. 1995). For errors in CNO reaction rates,
the reader is referred to Angulo et al. (1999). A discussion of the influence of
reaction rate uncertainties on the evolution of CNO abundances is presented
in Arnould, Goriely and Jorissen (1999).

5.1.3
Hydrostatic Hydrogen Burning Beyond the CNO Mass Region

The nucleosynthesis in hydrostatic hydrogen burning not only involves nuclei
in the CNO mass range, but heavier nuclei as well. The most likely reactions
to occur in the mass region above A = 20 are shown in Fig. 5.15. In the follow-
ing, we will discuss some general properties of hydrostatic hydrogen burn-
ing involving heavier nuclei and will explain why some processes are more
likely to occur than others. It is important to stress that there is no connec-
tion between the CNO and A ≥ 20 mass ranges. In other words, pre-existing
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CNO seed nuclei will be transformed to other nuclei in the CNO mass range
only. In principle, the 19F(p,γ)20Ne reaction could provide a link between the
CNO and A ≥ 20 mass ranges. However, its reaction rate is at least three
orders of magnitude smaller compared to the competing 19F(p,α)16O reaction
(Fig. 5.9). Consequently, hydrostatic hydrogen burning beyond the CNO mass
range must start from pre-existing seed nuclei with masses of A ≥ 20.

These nuclei are transformed by β-decays, (p,γ), and (p,α) reactions and
the competition between these processes defines the resulting nucleosynthesis
paths in the nuclidic chart. As was the case in the previous section, proton-
induced reactions involving unstable target nuclei play no significant role in
hydrostatic hydrogen burning since the competing β-decays are much faster
(with τβ of seconds to minutes in most cases). This conclusion applies even to
long-lived nuclei, such as 22Na with a half-life of T1/2 = 2.6 y. The mean life-
time of 22Na versus destruction by the (p,γ) reaction is compared in Fig. 5.16
with the mean lifetime of the 22Na β+-decay (Example 3.1). A density of ρ

= 100 g/cm3 and XH/MH = 1 are assumed. The quantity τβ(22Na) is inde-
pendent of temperature and density for the conditions considered here (Sec-
tion 1.8.4), while τp(22Na) decreases with increasing T and ρ (see Eq. (3.22)).
The 22Na(p,γ)23Mg reaction dominates over the competing β+-decay only at
T > 0.065 GK, well above the temperature range characteristic of most hydro-
static hydrogen burning environments. The nucleus 26Al represents an impor-
tant exception. The half-life of the ground state amounts to T1/2 = 7.2 × 105 y,
a time sufficiently long for proton capture to compete with the β+-decay. The
mean lifetimes τβ(26Alg) and τp(26Alg) are also shown in Fig. 5.16 (the super-
script g labels the ground state). It is apparent that below T = 37 MK the 26Alg

nucleus is mainly destroyed by β+-decay, while the (p,γ) reaction dominates
at higher temperatures. In other words, both processes will be important in
hydrostatic hydrogen burning. An additional complication arises due to the
existence of an isomeric state in 26Al at Ex = 228 keV (Fig. 1.14). This level,
with a half-life of T1/2 = 6.3 s, is also produced in hydrogen burning. As ex-
plained in Section 1.7.5, the ground state, 26Alg, and the isomeric state, 26Alm,
do not come into equilibrium at temperatures below T = 0.4 GK and hence
have to be treated as two separate species in the reaction network describing
hydrostatic hydrogen burning.

For a number of nuclei in the mass A = 20–40 range, most notably 23Na,
27Al, 31P, and 35Cl, the (p,α) reaction channel is energetically allowed and the
(p,γ) and (p,α) reactions on these nuclei will compete. If the reaction rate
branching ratio Bpα/pγ = NA〈σv〉(p,α)/NA〈σv〉(p,γ) is sufficiently large, then
reaction cycles similar to the CNO cycles may develop. These processes are
sometimes referred to in the literature as NeNa, MgAl, SiP, and SCl cycles.
However, the current (p,γ) and (p,α) reaction rate uncertainties have to be
considered carefully before drawing such conclusions. The quantity Bpα/pγ is
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Fig. 5.15 Nuclear interactions in the mass A ≥ 20 region during hy-
drostatic hydrogen burning. Stable nuclides are shown as shaded
squares. The key relates an arrow to a specific interaction (proton
capture, (p,α) reaction, or β+-decay). The nuclide 26Al can be formed
either in its ground state or in its isomeric state (Ex = 228 keV).

Fig. 5.16 Mean lifetimes of 22Na (solid lines) and 26Alg (dashed lines)
versus temperature. The curves are calculated for the conditions ρ =
100 g/cm3 and XH/MH = 1. The mean lifetimes for the β+-decays,
τβ(22Na) and τβ(26Alg), are independent of temperature and density
for the conditions of hydrostatic hydrogen burning.

displayed in Fig. 5.17 for the branching point nuclei 23Na, 27Al, 31P, and 35Cl.
The solid lines in each panel indicate the upper and lower limits of Bpα/pγ

caused by unobserved narrow resonances in the (p,γ) and (p,α) reactions. Be-
low T = 55 MK, the (p,α) reaction on 23Na dominates over the competing (p,γ)
reaction and hence a NeNa cycle may develop (but only if the cycling time
is shorter than the duration of the hydrogen burning stage). The situation is
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Fig. 5.17 Branching ratio Bpα/pγ = NA〈σv〉(p,α)/NA〈σv〉(p,γ) versus
temperature for the reactions (a) 23Na + p, (b) 27Al + p, (c) 31P + p, and
(d) 35Cl + p. The two solid lines in each panel represent the currently
accepted upper and lower limits of Bpα/pγ . The area between the solid
lines represents the uncertainty in Bpα/pγ that is caused by unknown
contributions to the (p,γ) and (p,α) reaction rates.

not as clear for the other branching point nuclei. For 27Al the quantity Bpα/pγ

ranges from about 0.04 to 100 below T = 55 MK and, therefore, current reac-
tion rate uncertainties do not permit an unambiguous conclusion regarding
the existence of a MgAl cycle. For the nuclei 31P and 35Cl, on the other hand,
we obtain Bpα/pγ < 1 at temperatures characteristic of hydrostatic hydrogen
burning and hence closed SiP and SCl cycles do not exist.

The rates of various reactions in the A ≥ 20 mass range are compared in
Fig. 5.18 to the 16O(p,γ)17F reaction rate. Recall that the latter process repre-
sents the slowest reaction in the CNO mass region (Fig. 5.10). It can be seen
that below T = 55 MK, as a result of the increasing Coulomb barrier, most re-
actions involving heavier target nuclei are much slower than the 16O(p,γ)17F
reaction. The only two exceptions are the proton captures on 21Ne and 22Ne.
Therefore, we expect reactions in the A ≥ 20 mass range to be insignificant
contributors to the overall nuclear energy generation rate in hydrostatic hy-
drogen burning. Nevertheless, an understanding of the nucleosynthesis is
important for the interpretation of certain abundance observations that are
discussed below.
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Fig. 5.18 Rates of proton-induced reactions versus temperature in
two mass regions: (a) NeNa, and (b) MgAlSi. For a better comparison,
the values of NA〈σv〉 are normalized to the rate of the 16O(p,γ)17F
reaction.

The evolution of abundances in the mass range A ≥ 20 versus the amount
of hydrogen consumed is displayed in Fig. 5.19. The results are obtained
from two network calculations that are performed for constant temperatures
of T = 25 and 55 MK, a constant density of ρ = 100 g/cm3, and a solar initial
composition (X0

H = 0.706; ∑ X0
A=20–40 = 0.00375). The most abundant seed nu-

clei in the A = 20–40 mass range are 20Ne, 28Si, 24Mg, 32S, and 22Ne. We will
first discuss the situation at T = 25 MK. At this temperature, hydrogen is ex-
hausted (XH < 10−3) after t ≈ 5 × 107 y. According to Fig. 5.18, the fastest
reactions in the A ≥ 20 mass range are 22Ne(p,γ)23Na and 25Mg(p,γ)26Al.
Therefore, the abundances of 22Ne and 25Mg are depleted, while those of 23Na
and 26Alg increase with time. At this temperature, the nuclide 26Alg is mainly
destroyed via β+-decay (Fig. 5.16). Thus, its abundance, after reaching a max-
imum, starts to decline. As a result, the abundance of the daughter nucleus
26Mg increases. The 20Ne abundance stays almost constant during the cal-
culation since the 20Ne(p,γ)21Na reaction is relatively slow. Nevertheless, a
small amount of 20Ne is depleted, giving rise to a noticeable increase in the
abundance of the rare isotope 21Ne, which is produced via 21Na(β+ν)21Ne.
Other reactions, including 24Mg + p and 27Al + p, are too slow to cause any
abundance changes. The same applies to the 23Na + p reactions. At T =
25 MK the mean lifetime of 23Na versus destruction by the (p,α) reaction is
τp(23Na) ≈ 2 × 109 y. This lifetime far exceeds the time after which hydro-
gen is exhausted. Hence, 20Ne is not produced and, in particular, no NeNa
cycle develops despite the fact that the 23Na(p,α)20Ne reaction is much faster
than the 23Na(p,γ)24Mg reaction (Fig. 5.17). Also note that under the assumed
conditions, no significant nuclear transformations occur in the A ≥ 28 mass
range. At the end of the network calculation, 21Ne, 23Na, and 26Mg are over-
produced, while 22Ne and 25Mg have been depleted.
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We will now discuss the situation at T = 55 MK. At this temperature, hy-
drogen is exhausted after only t ≈ 510 y. The temperature is sufficiently high
for more nuclear reactions to take part in the nucleosynthesis. As was the
case before, 22Ne is converted to 23Na. It can be seen that, contrary to the
results obtained at T = 25 MK, the 22Ne abundance is not entirely destroyed.
This is explained by the fact that the 20Ne(p,γ)21Na reaction, although still
the slowest process in the NeNa region (Fig. 5.18), is now fast enough to ini-
tiate the chain 20Ne(p,γ)21Na(β+ν)21Ne(p,γ)22Na(β+ν)22Ne. Indeed, the 20Ne
abundance is slightly depleted, as can be seen in Fig. 5.19b. The mean life-
time of 23Na versus destruction by protons is τp(23Na) ≈ 100 y. A fraction
of 23Na nuclei is transformed to 20Ne, although the total 20Ne abundance de-
clines because of the destruction via 20Ne(p,γ)21Na. Nevertheless, a closed
NeNa cycle does not develop since the mean lifetime of 20Ne is τp(20Ne) ≈
600 y, close to the time at which hydrogen is exhausted. The leakage out of
the NeNa mass region via 23Na(p,γ)24Mg is clearly seen in Fig. 5.19b as an
increase in the 24Mg abundance. The isotope 24Mg is not destroyed, because
the 24Mg(p,γ)25Al reaction is the slowest process in the A ≤ 27 range, with a
mean lifetime of τp(24Mg) ≈ 75000 y. On the other hand, 25Mg is converted
to 26Alg via the 25Mg(p,γ)26Al reaction. At this temperature, 26Alg is mainly
destroyed by the 26Alg(p,γ)27Si reaction. However, the mean lifetime of 26Alg

amounts to τp(26Alg) ≈ 1000 y and, therefore, it has little time to decay to
26Mg. The 26Mg(p,γ)27Al reaction is now fast enough to cause the depletion
of 26Mg and the production of 27Al, as can be seen in Fig. 5.19b. The 27Al +
p reactions play only a minor role [τp(27Al) ≈ 10000 y]. As was the case at T
= 25 MK, nuclear transformations in the A ≥ 27 mass range are unimportant.
In summary, 23Na, 26Alg, and 27Al are enhanced, while 21Ne, 22Ne, 25Mg, and
26Mg are depleted at the end of the network calculation.

Hydrostatic hydrogen burning in the mass A ≥ 20 range is important for
the interpretation of Ne, Na, Mg, and Al abundance observations in stars.
The relative isotopic and elemental abundances depend, as shown above, on
the conditions of temperature and density in the hydrogen burning region.
In order for these species to be observed, either in stellar atmospheres or in
presolar grains, they have to be transported from the hydrogen burning re-
gion to the stellar surface. Hence, such abundance observations provide im-
portant clues regarding stellar evolution and stellar mixing processes. It is
obvious that accurate thermonuclear reaction rates are required when com-
paring abundances from stellar models with those from observations. Hy-
drostatic hydrogen burning in the mass A ≥ 20 range is also of interest for
the Galactic origin of the radioisotope 26Al. It seems likely that a fraction of
the observed 26Al originates from Wolf–Rayet stars where it is synthesized
during hydrostatic core hydrogen burning at temperatures of T = 35–45 MK
(Section 1.7.5).
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Fig. 5.19 Abundance evolutions in the A ≥ 20 mass region versus the
amount of hydrogen consumed for two different constant temperatures:
(a) T = 25 MK, and (b) T = 55 MK. The density (ρ = 100 g/cm3) and
the initial composition (solar) is the same for both cases. All curves
shown are obtained by solving the reaction network numerically. The
calculations are terminated when the hydrogen mass fraction falls
below XH = 0.001.

Finally, we will summarize the experimental situation regarding measure-
ments of reactions in the NeNa and MgAl region. At the upper tempera-
ture range characteristic of hydrostatic hydrogen burning (T ≈ 55 MK), the
Gamow peaks for the 20Ne + p and 27Al + p reactions are located at E0 ± ∆/2
= 80 ± 23 keV and 95 ± 25 keV, respectively. None of the NeNa or MgAl re-
actions have been measured directly down to such low energies. In order
to estimate the total reaction rates at low temperatures, it becomes therefore
important to measure directly at higher energies as many different resonant
and nonresonant reaction components as possible (narrow resonances, broad
resonances, and direct processes). In addition, indirect reaction studies popu-
lating compound levels which are located between the proton threshold and
the lowest lying observed resonance are of crucial importance in order to es-
timate reaction rate contributions of still undetected narrow resonances. De-
spite these time-consuming experimental efforts, it must be realized that the
rates of certain reactions in the mass A = 20–40 range still have appreciable
errors. The 20Ne(p,γ)21Na reaction rate is determined by the tail of a sub-
threshold state (Example 2.1) and by direct radiative capture. The present
reaction rate errors range from 40% to a factor of 2 below T = 55 MK (Angulo
et al. 1999). The 24Mg(p,γ)25Al reaction proceeds mainly through an observed
narrow resonance at Ecm

r = 214 keV (Example 3.7 and Fig. 3.28) and via direct
radiative capture. With an error of ≤ 20% below T = 55 MK, the rate of this
reaction is among the most precisely known in the A = 20–40 region (Powell
et al. 1999). All other reaction rates in the NeNa and MgAl region are strongly
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influenced by unobserved narrow resonances, with rate errors amounting in
some cases to orders of magnitude. Significant efforts are at present underway
to detect the most important of these unobserved resonances. Their resonance
strengths are expected to be far smaller compared to the strength of the Ecm

r =
149 keV resonance in 26Mg(p,γ)27Al, which represents the weakest measured
(p,γ) resonance to date [ωγpγ = (8 ± 3) × 10−8 eV; Iliadis et al. 1990]. Such
experiments are clearly a challenge to the nuclear experimentalist (Chapter 4).
An evaluation of reaction rates and their associated errors in the A = 20–40
mass range can be found in Iliadis et al. (2001). A discussion of the influence
of reaction rate uncertainties on the evolution of abundances in the NeNa and
MgAl regions is given in Arnould, Goriely and Jorissen (1999).

5.2
Explosive Hydrogen Burning

In Section 5.1 we discussed hydrogen burning in the stellar temperature range
of T < 0.06 GK. If, under such conditions, the stellar gas consists of pure hy-
drogen, then hydrogen burning must proceed via the pp chains (with perhaps
a contribution from the pep reaction; Section 5.1.1). On the other hand, if a
significant fraction of CNO nuclei is present in the stellar gas, then the CNO
cycles will generate most of the energy above a certain value of the tempera-
ture (for example, above 20 MK for a solar mass fraction of CNO nuclei; see
Fig. 5.12). There are two important points that need to be kept in mind re-
garding hydrogen burning at temperatures below 0.06 GK. First, a specific
radioactive nucleus that is produced during the burning will be destroyed by
its relatively fast β-decay rather than by the much slower competing proton-
induced reaction (with the exceptions of 7Be in the pp3 chain and 26Al in the
region of A ≥ 20; see Fig. 5.2 and Section 5.1.3). Second, in the reaction net-
work of the pp chains or the CNO cycles, all the radioactive decays are much
faster compared to the slowest proton-induced reaction and, consequently, the
energy generation rate does not depend on the half-lives of the radioactive
decays. At elevated temperatures typical of explosive hydrogen burning, the
situation described above changes substantially. In the following we will dis-
cuss the explosive nucleosynthesis in the A < 20 and A ≥ 20 mass regions at
temperatures of T = 0.1–0.4 GK. Another important point needs to be stressed.
So far, we explored the nucleosynthesis in hydrostatic burning environments
analytically by considering equilibrium burning conditions or numerically by
performing reaction network calculations assuming a constant temperature
and density. These considerations provide a qualitative picture of the inter-
play between different nuclear processes. However, the above assumptions
are not necessarily valid for explosive events. First, the time to approach equi-
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librium conditions is often comparable to the macroscopic hydrogen burning
time scale. Second, temperatures and densities in an explosive event change
dramatically with time. The time evolution of T and ρ depends strongly on
the properties of the exploding star. In this section, the reaction networks for
explosive hydrogen burning are solved numerically, first with the assumption
of constant T–ρ conditions, and then by using temperature and density evo-
lutions that describe specific models of stellar explosions.

5.2.1
Hot CNO Cycles

If a star consists of gas that contains a significant fraction of nuclei in the CNO
mass region, then at elevated temperatures (T = 0.1–0.4 GK) most of the nu-
clear energy is generated by the hot CNO cycles (or HCNO cycles). The re-
actions of the HCNO cycles are listed below and are shown in the Fig. 5.20.

Hot CNO1 Hot CNO2 Hot CNO3

12C(p,γ)13N 15O(β+ν)15N 15O(β+ν)15N
13N(p,γ)14O 15N(p,γ)16O 15N(p,γ)16O
14O(β+ν)14N 16O(p,γ)17F 16O(p,γ)17F
14N(p,γ)15O 17F(β+ν)17O 17F(p,γ)18Ne
15O(β+ν)15N 17O(p,γ)18F 18Ne(β+ν)18F
15N(p,α)12C 18F(p,α)15O 18F(p,α)15O

T1/2: 14O (70.61 s); 15O (122.24 s); 17F (64.49 s)

The hot CNO cycles have a number of important properties in common
with the CNO cycles discussed in Section 5.1.2: (i) each of the hot CNO cycles
converts four hydrogen nuclei to one helium nucleus; (ii) the CNOF nuclei in-
volved in the hot CNO cycles act as catalysts and their total number is nearly
constant; and (iii) the energy generation rate of the hot CNO cycles depends
on the abundances of the catalysts. It will be shown in Section 5.4.1 that, above
a certain temperature (T ≥ 0.4 GK), catalytic material is lost from the hot CNO
cycles by various breakout reactions. In this section, we will discuss the oper-
ation of the hot CNO cycles in the temperature region of T = 0.1–0.4 GK.

We will start our discussion by considering the CNO1 cycle (Fig. 5.8) and
how that cycle is modified when the temperature gradually increases. The 13N
nucleus has the longest half-life (T1/2 = 9.96 min) among all the β+-decays in
the CNO1 cycle. For increasing temperature, a point will be reached where the
destruction of 13N by proton-capture competes favorably with the β+-decay
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Fig. 5.20 Representation of the three hot CNO cycles in the chart of
the nuclides. Stable nuclides are shown as shaded squares. Each
reaction cycle fuses effectively four protons to one 4He nucleus. Note
that in explosive hydrogen burning the CNO2 cycle (Fig. 5.8) is more
likely to occur than the HCNO2 cycle since the 17O(p,α)14N reaction
rate dominates over the 17O(p,γ)18F rate (Fig. 5.9).

of 13N. Hence, instead of the sequence that occurs in the CNO1 cycle,

13N(β+ν)13C(p, γ)14N (5.71)

the alternative path

13N(p, γ)14O(β+ ν)14N (5.72)

becomes more likely. The half-life of 14O (T1/2 = 70.6 s) is less than that of 13N.
Thus 13N is converted to 14N on a faster time scale for the latter path. Further-
more, it is shown in Section 5.1.2 that the 14N(p,γ)15O reaction is the slowest
process in the CNO1 cycle and, therefore, determines the energy generation
rate. For increasing temperature, all the rates for proton-induced reactions



420 5 Nuclear Burning Stages and Processes

will increase strongly. Eventually a point is reached at which all the (p,γ) and
(p,α) reactions, including the 14N(p,γ)15O reaction, are faster compared to the
β+-decays of 14O and 15O. As a result of these two modifications, the CNO1
cycle transforms at higher temperatures into the hot CNO1 cycle (Fig. 5.20).
It was mentioned earlier that the energy generation rate of the CNO1 cycle is
highly sensitive to the temperature (see Eq. (5.69)). The HCNO1 cycle, on the
other hand, has the interesting property that the energy generation rate de-
pends on the β+-decays of 14O and 15O (that is, the slowest links in the cycle)
and hence is independent of temperature. For this reason, the HCNO1 cycle is
also referred to as β-limited CNO cycle. The time around one HCNO1 cycle is
then at least τβ(14O) + τβ(15O) = T1/2(14O)/ ln 2 + T1/2(15O)/ ln 2 ≈ 278 s. It
follows that a significant fraction of the CNO nuclei will be transformed into
14O and 15O. Note that proton captures on 14O and 15O are unlikely to occur
since the corresponding compound nuclei 15F and 16F are unstable by proton
emission.

The transition from the CNO1 cycle to the HCNO1 cycle can be represented
in a temperature-density diagram (Fig. 5.21). The lifetimes of the 13N, 14O
and 15O β+-decays are given by τβ = T1/2/ ln 2, while the lifetimes of 13N
and 14N versus destruction by protons are τp = [ρ(XH/MH)NA〈σv〉]−1. The
solid curve represents the T–ρ conditions at which the 13N β+-decay lifetime
is equal to the lifetime of 13N destruction via proton capture, that is

1
ρ(XH/MH)NA〈σv〉13 N(p,γ)

=
T1/2(13N)

ln 2
(5.73)

The dashed (or dashed-dotted) curve is obtained for the condition that the 13N
(or 14N) lifetime versus destruction by proton capture is equal to the sum of
14O and 15O lifetimes,

1
ρ(XH/MH)NA〈σv〉x N(p,γ)

=
T1/2(14O)

ln 2
+

T1/2(15O)
ln 2

(5.74)

All curves are calculated for a solar value of XH/MH = 0.70. On the left-hand
side of each curve, the β+-decays are more likely to occur than the proton-
induced reaction, while the opposite situation prevails on the right-hand
side. The CNO1 cycle operates in region 1 where 13N β+-decays [τβ(13N) <

τp(13N)] and where 14N(p,γ)15O is the slowest link in the cycle [τβ(14O) +
τβ(15O) < τp(14N)]. Suppose we start out in region 1 and slowly increase the
temperature by keeping the density constant, for example, at ρ = 500 g/cm3.
When the solid curve is crossed at T ≈ 0.100 GK, we have τβ(13N) > τp(13N)
and the slow 13N β+-decay is bypassed by the sequence 13N(p,γ)14O(β+ν)14N
(region 2a). When the dashed curve is crossed at T ≈ 0.113 GK, the 13N proton-
capture reaction becomes faster than the 14O and 15O β+-decays [τβ(14O) +
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τβ(15O) > τp(13N)]. At this stage (region 2b), the 14N(p,γ)15O reaction
is still the slowest link in the cycle and determines the energy generation
rate. Finally, when the dashed-dotted curve is crossed at T ≈ 0.128 GK,
the proton capture on 14N becomes faster than the 14O and 15O β+-decays
[τβ(14O) + τβ(15O) > τp(14N)]. We have now reached region 3, where the
β-limited HCNO1 cycle operates.

For other densities, the situation is similar when increasing the temperature,
although the curves may be crossed in different order. For example, at a lower
density of ρ = 5 g/cm3 the solid curve is crossed at T ≈ 0.161 GK (region 2a),
while the dashed-dotted curve is crossed at T ≈ 0.174 GK. At this stage (region
2c) the sequence 13N(p,γ)14O(β+ν)14N dominates over the 13N β+-decay and
the proton capture reaction on 14N is faster than the 14O and 15O β+-decays.
However, the dashed curve has not been crossed yet, that is, the 13N(p,γ)14O
reaction is slower than the 14O and 15O β+-decays. In fact, the proton-capture
reaction on 13N is now the slowest link in the cycle and determines the energy
generation rate. Finally, the dashed curve is crossed at T ≈ 0.185 GK and the
CNO cycle becomes again β-limited (region 3).

The HCNO1 cycle discussed above represents a nearly closed reaction se-
quence, in the sense that very little catalytic material is lost. This comes about
since the branching ratio Bpα/pγ at 15N exceeds a factor of 1000 (Fig. 5.9).
Hence, if 12C seed nuclei are present in the gas, they will be converted mostly
to 14O and 15O assuming that hydrogen is not near exhaustion (see later). We
already pointed out in Section 5.1.2 that besides 12C other seed nuclei, such
as 16O, may be present in the stellar gas. The 16O nuclei are processed in a
number of different, competing reaction cycles. One possibility of processing
is the CNO2 cycle which was introduced in Section 5.1.2,

16O(p, γ)17F(β+ν)17O(p, α)14N(p, γ)15O(β+ν)15N(p, γ)16O (5.75)

Inspection of Fig. 5.9 reveals that the 17O(p,α)14N reaction dominates over the
competing 17O(p,γ)18F reaction at temperatures of T = 0.1–0.4 GK by a factor
of ≈ 200. A small fraction of the 16O seed nuclei will be processed via the
17O(p,γ)18F reaction, giving rise to the HCNO2 cycle,

16O(p, γ)17F(β+ν)17O(p, γ)18F(p, α)15O(β+ν)15N(p, γ)16O (5.76)

The branching ratio Bpα/pγ at 18F is shown in Fig. 5.22a. In the tempera-
ture range of T = 0.1–0.4 GK, the 18F(p,α)15O reaction is faster than the com-
peting 18F(p,γ)19Ne reaction by more than a factor of 1000. Under condi-
tions of explosive hydrogen burning, the 18F(p,α)15O reaction is also much
faster than the 18F β+-decay. This is demonstrated in Fig. 5.22b. The dashed
line shows the T–ρ conditions (for XH/MH = 0.70) at which the 18F β+-
decay lifetime is equal to the lifetime of 18F destruction via the (p,α) reac-
tion [τpα(18F) = τβ(18F)]. For example, at a density of ρ = 500 g/cm3 the
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Fig. 5.21 Temperature–density diagram
showing the transition from the CNO1 cycle
(region 1) to the HCNO1 cycle (region 3).
The solid curve represents the T–ρ condi-
tions at which the 13N β+-decay lifetime is
equal to the lifetime of 13N destruction via
proton capture. The dashed (or dashed-
dotted) curve is obtained for the condition
that the 13N (or 14N) lifetime versus destruc-

tion by proton capture is equal to the sum
of the 14O and 15O β+-decay lifetimes. All
curves are calculated for the solar value
XH/MH = 0.70. On the left-hand side of
each curve, the β+-decay is more likely
to occur than the proton-induced reaction,
while the opposite applies on the right-hand
side.

18F(p,α)15O reaction dominates over the competing β+-decay for tempera-
tures of T > 0.058 GK. Consequently, once the nucleosynthesis path in ex-
plosive hydrogen burning reaches 18F, the (p,α) reaction is the dominant de-
struction mode. The solid line in Fig. 5.22b shows the T–ρ conditions at which
the 17F β+-decay lifetime is equal to the lifetime of 17F destruction via the (p,γ)
reaction [τp(17F) = τβ(17F)]. Considering again, as an example, a density of
ρ = 500 g/cm3, it can be seen that the 17F(p,γ)18Ne reaction dominates over
the competing β+-decay at temperatures of T > 0.23 GK. Hence, the HCNO3
cycle develops, bypassing the isotope 17O,

16O(p, γ)17F(p, γ)18Ne(β+ν)18F(p, α)15O(β+ν)15N(p, γ)16O (5.77)

Network calculations at constant temperature and density

In order to gain a better understanding of the nucleosynthesis, we will first
solve the reaction network of the HCNO cycles numerically for constant tem-
perature and density conditions. The extra complications that arise from the
much more realistic assumptions of time-dependent temperatures and den-
sities will be dealt with later. We assume for the initial abundances val-
ues of X0

H = 0.60, X0
4He = 0.20, and X0

12C = 0.20, that is, only 12C is initially
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Fig. 5.22 (a) Branching ratio Bpα/pγ =
NA〈σv〉(p,α)/NA〈σv〉(p,γ) versus temper-
ature for the 18F + p reactions. The two
solid lines represent the currently accepted
upper and lower limits of Bpα/pγ (from de
Séréville, Berthoumieux and Coc 2005).
The area between the solid lines represents
the uncertainty in Bpα/pγ that is caused by
unknown contributions to the (p,γ) and (p,α)
reaction rates. (b) Temperature–density

diagram showing the competing destruc-
tion modes of 17F and 18F. The dashed line
represents the conditions at which the 18F
β+-decay lifetime is equal to the lifetime of
18F destruction via the (p,α) reaction. The
solid line corresponds to the conditions at
which the 17F β+-decay lifetime is equal to
the lifetime of 17F destruction via the (p,γ)
reaction. The curves in part (b) are calcu-
lated assuming XH/MH = 0.70.

present as seed for the hot CNO cycles. The reaction network is solved un-
til hydrogen exhaustion (XH < 0.001). The time evolution of 1H and the
HCNO1 abundances (12C, 13N, 14O, 14N, 15O) is shown in Fig. 5.23 for tem-
peratues of T = 0.15 GK and T = 0.3 GK. For both calculations, a density of
ρ = 200 g/cm3 has been chosen. Although all reactions of the HCNO cycles
have been included in the network, the graphs represent mainly the operation
of the HCNO1 cycle, since the leakage to the other cycles via the 15N(p,γ)16O
reaction is very small. For the initial conditions chosen, the abundances of
16O, 17O, 17F, and 18F never exceed a value of Xi = 10−4. Also, the abundance
of 15N is very small because of its strong destruction via the (p,α) reaction and
is not displayed in Fig. 5.23.

For a temperature of T = 0.15 GK (Fig. 5.23a), 12C is initially converted to
13N via the 12C(p,γ)13N reaction. The 13N abundance reaches a maximum af-
ter t = 20 s. The subsequent 13N(p,γ)14O reaction causes the 14O abundance
to peak after about t = 80 s. The slow 14O β+-decay increases the 14N abun-
dance, while the subsequent 14N(p,γ)15O reaction is responsible for the grow-
ing abundance of 15O. At a time around t = 500 s the hydrogen abundance has
dropped to XH = 0.5 and all CNO isotopes achieve equilibrium abundances.
The ratio of any two number abundances is then given by Eq. (5.59),
(

A
B

)

e
=
(
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XB

)

e

(
MB

MA

)
=

τA

τB
(5.78)
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At this stage, the sum of mean lifetimes in the HCNO1 cycle amounts to

∑ τCNO1 ≡ τp(12C) + τp(13N) + τβ(14O) + τp(14N) + τβ(15O)

= (13 + 63 + 102 + 91 + 176) s = 445 s (5.79)

The nuclide 15O is the most abundant species in the CNO mass range because
its mean lifetime has the largest value. Although the 14O and 15O β+-decays
represent the slowest links in the HCNO1 cycle, the contribution from proton-
induced reactions to the sum of mean lifetimes is substantial. Further process-
ing of matter is influenced by the fact that the hydrogen abundance decreases
substantially until exhaustion. As a result, all the lifetimes for proton-induced
reactions increase (see Eq. (3.22)). For example, at a time of t = 3000 s, the
hydrogen abundance has dropped to a value of XH = 0.18 and we obtain

∑ τCNO1 = (34 + 168 + 102 + 252 + 176) s = 732 s (5.80)

with 14N(p,γ)15O representing the slowest link in the cycle. With decreasing
hydrogen abundance, the 14O and 15O abundances also decline since their β+-
decays are now faster than their production via 13N(p,γ)14O and 14N(p,γ)15O.
The nuclide 14N becomes the most abundant species and its abundance in-
creases further until the end of the calculation is reached. It is remarkable that
hydrogen is exhausted after only t = 8400 s, a time period that is significantly
shorter compared to the situation prevailing in hydrostatic hydrogen burning
environments. This result is a direct consequence of the strong temperature
sensitivity of charged-particle reaction rates.

At a higher temperature of T = 0.3 GK (Fig. 5.23b), the abundances evolve
initially similar to the previous case. The nuclide 12C is first converted to 13N,
then further processed to 14O. The β+-decay of the latter nucleus feeds the in-
creasing 15O abundance via the sequence 14O(β+ν)14N(p,γ)15O. Equilibrium
CNO abundances are reached after t = 300 s. At that stage, the hydrogen
abundance has dropped to XH = 0.5 and the sum of all mean lifetimes in the
HCNO1 cycle amounts to

∑ τCNO1 = (0.035 + 0.15 + 102 + 0.016 + 176) s

≈ τβ(14O) + τβ(15O) = 278 s (5.81)

with a negligible contribution from proton-capture reactions. The reaction
cycle is β-limited and the most abundant species are 15O and 14O. For their
number abundance ratio, we obtain
( 15O

14O

)

e
=
(

X15O
X14O

)

e

(
M14O
M15O

)
=

τβ(15O)
τβ(14O)

=
176 s
102 s

= 1.7 (5.82)

in agreement with the numerical results displayed in Fig. 5.23b. This situation
prevails almost until the end of the calculation. Only at times very close to hy-
drogen exhaustion do the mean proton-capture lifetimes sufficiently increase
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to cause a slight drop in the 14O and 15O abundances, with a corresponding
rise in 12C, 13N, and 14N abundances. Nevertheless, even at hydrogen exhaus-
tion (XH = 0.001) we have

∑ τCNO1 = (18 + 77 + 102 + 8 + 176) s = 381 s (5.83)

and the 14O and 15O β+-decays are still the slowest links in the HCNO1 cycle.
Hydrogen is exhausted after a time of t = 2400 s. This value is significantly
shorter compared to the result obtained in the previous network calculation
since the proton-capture reactions become much faster with increasing tem-
perature.

We will now consider the nucleosynthesis resulting from a change in initial
composition. We assume values of X0

H = 0.60, X0
4He = 0.20 and X0

16O = 0.20,
that is, only 16O instead of 12C is initially present as seed for the hot CNO
cycles. For the temperature and density we have again assumed values of
T = 0.3 GK and ρ = 200 g/cm3, respectively. The results of a network calcula-
tion are displayed in Figs. 5.23c and d. The 16O(p,γ)17F reaction quickly de-
stroys the 16O seed nuclei and converts them to 17F, whose abundance peaks
after t = 8 s. For the T–ρ conditions chosen, the 17F(p,γ)18Ne reaction dom-
inates over the competing 17F β-decay (see Fig. 5.22b). Hence, the HCNO3
cycle operates, as can be seen from the rising 18Ne abundance. Subsequent to
18Ne(β+ν)18F, the fast 18F(p,α)15O reaction feeds the abundance of 15O which
increases steadily. Note that a small abundance flow also proceeds through the
CNO2 and HCNO2 cycles, as indicated by the evolution of the 17O abundance.
Further processing of matter is similar to the previous case of T = 0.3 GK and
only 12C present as seed (see Fig. 5.23b). All HCNO1 abundances achieve
equilibrium after t ≈ 300 s, with 15O and 14O being the most abundant species.
In effect, the HCNO3 cycle feeds the HCNO1 cycle and most of the 16O seed
nuclei are transformed to 14O and 15O. Hydrogen is exhausted after t = 3170 s,
which is longer than the result obtained in the previous calculation. The delay
is caused by the additional initial processing of matter through the HCNO3
cycle. Finally, it can be seen that the 16O, 17F, and 17O abundances increase
toward the end of the calculation, indicating that a small fraction of matter
leaks out of the HCNO1 cycle via the 15N(p,γ)16O reaction.

The total energy generated per HCNO1 cycle that is available to the star is

Q4H→4He − E
14O(β+ν)
ν − E

15O(β+ν)
ν = 24.827 MeV (5.84)

with Q4H→4He = 26.731 MeV and E
i
ν the average neutrino energies released

in the β+-decays (see Eq. (1.45) and Problem 1.9). Since four hydrogen atoms
have a mass of 4 MH/NA g, the total energy generated per gram of consumed
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Fig. 5.23 Time evolution of abundances during the operation of the hot CNO cycles for dif-
ferent conditions: (a) T = 0.15 GK, X0

H = 0.60, X0
4He = 0.20 and X0

12C = 0.20; (b) T = 0.30 GK,

X0
H = 0.60, X0

4He = 0.20 and X0
12C = 0.20; (c), (d) T = 0.30 GK, X0

H = 0.60, X0
4He = 0.20 and

X0
16O = 0.20. For the density a constant value of ρ = 200 g/cm3 is assumed in all panels. All

curves shown are obtained by solving the reaction network numerically. The calculations are
terminated when the hydrogen mass fraction falls below XH = 0.001.

hydrogen is

Q4H→4He − E
14O(β+ν)
ν − E

15O(β+ν)
ν

4MH/NA g
=

24.827 MeV
4 · 1.0078/6.022 × 1023 g

= 3.71 × 1024 MeV/g (5.85)

For the previously discussed network calculations we assumed X0
H = 0.60

and, therefore, the total energy generated until hydrogen exhaustion is 0.60 ·
(3.71× 1024 MeV/g) = 2.2× 1024 MeV/g (or 3.5× 1018 erg/g). The same value
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Fig. 5.24 Time until hydrogen exhaustion (XH < 0.001) during the
operation of the HCNO cycles. The solid lines correspond to different
assumptions for the initial CNO abundances. For the initial hydrogen
abundance and the density, values of X0

H = 0.60 and ρ = 200 g/cm3

are used. The curves are obtained by performing a series of numerical
reaction network calculations, with T and ρ are held constant in each
calculation.

is directly obtained from Eq. (3.68). This result does not depend on the values
assumed for the density ρ or the initial CNO mass fraction, as long as most of
the hydrogen is converted to helium via the HCNO1 cycle. The latter quanti-
ties do, however, influence the time it takes until hydrogen is exhausted. This
time is displayed in Fig. 5.24 as a function of temperature, with the density
held constant at a value of ρ = 200 g/cm3. The curves correspond to dif-
ferent assumptions for the initial CNO abundances. In each case, the time
until hydrogen exhaustion increases with decreasing temperature since the
contribution of proton-induced reactions to the sum of mean lifetimes in the
HCNO1 cycle becomes increasingly important, as explained in the previous
examples. All curves are approximately constant at temperatures in excess of
T = 0.25 GK where the β+-decays of 14O and 15O alone determine the time
scale for the HCNO1 cycle. Consider now a fixed value of temperature, say, T
= 0.3 GK. The longest time until hydrogen exhaustion (t = 3170 s) is obtained
when only 16O is initially present (X0

12C = 0.00, X0
16O = 0.20). This is explained

by the fact that it takes some additional time until 16O is consumed and its
abundance can feed the HCNO1 cycle. Adding even a small amount of 12C
(X0

12C = 0.01, X0
16O = 0.20) decreases noticeably the time until hydrogen exhaus-

tion (t = 2965 s). The rate of hydrogen consumption increases substantially (t
= 2398 s) when only 12C instead of 16O is initially present (X0

12C = 0.20, X0
16O =

0.00). Finally, hydrogen is consumed even faster (t = 1294 s) if equal amounts
of 12C and 16O are initially present (X0

12C = X0
16O = 0.20).
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Network calculations with temperature–density profiles

We will now discuss the more realistic situation of changing temperature and
density during the nucleosynthesis. Classical novae (Section 1.4.4) represent
an example for explosive hydrogen burning in the temperature region of T
= 0.1–0.4 GK. Figure 5.25a shows a temperature and density profile which is
adopted from hydrodynamic studies (José and Hernanz 1998) of a thermonu-
clear runaway caused by the accretion of solar-like matter onto the surface of
a 1.0 M� white dwarf of CO composition. The curves represent the tempera-
ture and density evolution of the hottest hydrogen-burning zone, that is, the
region in which most of the nucleosynthesis takes place. This particular nova
model achieves a maximum temperature of T = 0.17 GK after a time of t ≈
360 s. At t = 1700 s, the temperature has fallen to a value of T ≈ 0.12 GK.
The density evolves from ρ = 870 g/cm3 before the outburst to a value of ρ

= 21 g/cm3 at t = 1700 s. The reaction network of the HCNO cycles will be
solved numerically by using this T–ρ profile. For the initial composition, val-
ues of X0

H = 0.35, X0
4He = 0.15, X0

12C = X0
16O = 0.25 are assumed. These are similar

to those used for the calculation of the T–ρ profile displayed in Fig. 5.25a. The
network calculation is terminated after t = 1700 s.

The abundance evolutions are displayed in Figs. 5.26a and b. The results
are more complicated compared to the earlier calculations since the rapidly
changing temperature and density keep the CNO abundances far from equi-
librium. Nevertheless, the operation of the HCNO1 cycle is apparent. The
isotope 12C is first transformed into 13N and further processed to 14O, 14N,
and 15O. In contrast to the previous calculations for constant T–ρ conditions,
a 13C abundance builds up since for t > 1000 s the temperature and density
evolve in a region in which the decay 13N(β+ν)13C is more likely to occur
than the 13N(p,γ)14O reaction (Figs. 5.21 and 5.25a). For the peak temperature
achieved in this nova model, the 16O(p,γ)17F reaction is rather slow and, there-
fore, only a small fraction of 16O is converted, first to 17F and then to 17O. Note
that for the adopted T–ρ profile the HCNO3 cycle never operates since the de-
cay 17F(β+ν)17O is always faster than the 17F(p,γ)18Ne reaction (Figs. 5.22b
and 5.25a). At the end of the calculation, the hydrogen abundance has fallen
to XH = 0.24 and the most abundant CNO isotopes are 14N, 16O, 13N, 12C, 17O,
and 13C with mass fractions of 0.21, 0.20, 0.046, 0.030, 0.026, and 0.017, respec-
tively. The results agree qualitatively with observations of large nitrogen and
oxygen abundances in the shells of several classical novae (Warner 1995).

It is important to realize that the final CNO abundances differ substantially
from the steady state values achieved in hydrostatic hydrogen burning. If we
assume that short-lived nuclides present at the end of the network calculation
decay to their stable daughter nuclei (13N to 13C, 14O to 14N, and so on), then
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Fig. 5.25 Temperature and density evolution of the hottest hydrogen-
burning zone during the thermonuclear runaway on the surface of a
white dwarf with (a) M = 1.0 M� and CO composition, and (b) M =
1.25 M� and ONe composition. The curves are adopted from hydro-
dynamic simulations of classical nova explosions (José and Hernanz
1998).

Fig. 5.26 Explosive hydrogen burning dur-
ing the thermonuclear runaway on the sur-
face of a CO white dwarf. The results show
the operation of the HCNO cycles and are
obtained by performing a numerical reaction
network calculation using the temperature
and density evolution for the hottest zone

displayed in Fig. 5.25a. (a), (b) Abundance
evolutions in the A < 20 mass region; (c)
ratios of final mass fractions, after all β+-
decays have been completed, and the cor-
responding solar system mass fractions; (d)
time evolution of the energy generation rate.
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we obtain, for example,
( 13C

12C

)
=

X13C + X13N
X12C

12
13

=
0.017 + 0.046

0.030
12
13

= 1.9 (5.86)

( 15N
14N

)
=

X15 N + X15O
X14N + X14O

14
15

=
4.6 × 10−6 + 0.0019

0.21 + 0.00076
14
15

= 0.0085 (5.87)

compared to (13C/12C)e ≈ 0.25 and (15N/14N)e ≈ (1–5) × 10−5 for the equi-
librium values in hydrostatic hydrogen burning at temperatures of T < 0.1 GK
(Fig. 5.11a). It is also interesting to point out that certain nuclides are strongly
overproduced compared to their solar values. Ratios of final mass fractions,
after all β+-decays have been completed, and the corresponding solar mass
fractions, (X/X�), are shown in Fig. 5.26c. The three most overproduced
nuclides are 13C, 15N, and 17O, with overproduction factors in the range of
(X/X�) ≈ 500–6000. It has been suggested (Kovetz and Prialnik 1997) that
classical novae are the predominant source of the latter two nuclides in the
Universe. Significant amounts of 18F (X18F = 1.4× 10−5) are produced as well.
The decay of 18F (T1/2 = 110 min) produces photons of 511 keV energy at a
time when the expanding nova shell becomes transparent to γ-rays (Hernanz
et al. 1999). This signature from nearby classical novae may be detectable in
the future with detectors onboard satellites.

The time evolution of the energy generation rate is shown in Fig. 5.26d.
It is characterized by a continuous increase, a maximum of ε = 1.3 ×
1021 MeV g−1 s−1 close to the time of peak temperature (t ≈ 360 s), and
afterward a steady decline as the temperature drops.

The experimental situation regarding reactions involving CNOF nuclei is
summarized below. We already pointed out in Section 5.1.2 that the reactions
13C(p,γ)14N, 14N(p,γ)15O, 15N(p,γ)16O, and 16O(p,γ)17F have been measured
down to center-of-mass energies of 100, 93, 130, and 130 keV, respectively.
Compared to the situation in hydrostatic hydrogen burning, the Gamow
peaks in explosive hydrogen burning are obviously located at higher ener-
gies. For example, for the 14N + p reaction we obtain E0 ± ∆/2 = 149± 59 keV
near T ≈ 0.2 GK. Hence, for reactions involving stable CNO nuclei, data do
generally exist in the Gamow peak and, as a consequence, the reaction rates
at T = 0.1–0.4 GK have relatively small errors (typically < 30%; Angulo et al.
1999). The situation is different for reactions involving unstable nuclei. We
have seen that the HCNO cycles are initiated by the reactions 13N(p,γ)14O,
18F(p,α)15O, and 17F(p,γ)18Ne. Our knowledge of the corresponding reaction
rates has improved substantially as a result of experiments with radioactive
ion beams (Section 4.6.1). The proton capture on 13N was the first astrophys-
ically important reaction that was directly measured with a radioactive ion
beam (Delbar et al. 1993). In that study, the strength of the broad Ecm

r =
528 keV resonance was obtained. However, the 13N + p Gamow peak for



5.2 Explosive Hydrogen Burning 431

temperatures of T ≤ 0.4 GK is located far below this resonance. Hence, the
S-factor has to be extrapolated to astrophysically important energies. Cur-
rent reaction rate uncertainties in the range of T = 0.1–0.4 GK amount to a
factor of ≈ 2. For the 18F(p,α)15O reaction, at least some data exist in the
Gamow peak at T = 0.3–0.4 GK since the strength of a low-lying resonance at
Ecm

r = 330 keV has been measured directly (Graulich et al. 1997, Bardayan et
al. 2002). These studies represent the first direct measurements in the nova
Gamow peak using radioactive ion beams. Nevertheless, the current reaction
rate uncertainties are relatively large and amount to factors of 6–30 at temper-
atures of T = 0.1–0.4 GK because of additional contributions from unobserved
resonances (Fig. 5.22a). The 17F(p,γ)18Ne reaction, on the other hand, has not
been directly measured yet. In this case, experiments have been performed
(some involving radioactive beams) that measure nuclear quantities, like ex-
citation energies, level widths, and Jπ-values, from which the reaction rates
are partially inferred. The current reaction rate uncertainties in the range of
T = 0.1–0.4 GK amount to at least a factor of two.

5.2.2
Explosive Hydrogen Burning Beyond the CNO Mass Region

Hydrogen burning at elevated temperatures also involves nuclei in the A ≥ 20
mass range. As was the case in hydrostatic hydrogen burning environments
(Section 5.1.3), there is almost no leakage of material from the CNO region to
the A ≥ 20 mass range at temperatures of T = 0.1–0.4 GK. Reactions which
may provide a link between both regions at T ≥ 0.4 GK will be discussed in
Section 5.4. Therefore, the nucleosynthesis must start from pre-existing seed
nuclei with masses of A ≥ 20. The character of the burning, however, changes
drastically since proton-induced reactions on short-lived nuclei may success-
fully compete with their β+-decays. Reactions that may occur in the mass
region A ≥ 20 are shown in Fig. 5.27. Comparison to Fig. 5.15 clearly shows
that far more proton-capture reactions and β+-decays have to be taken into
account at elevated temperatures. The most likely nucleosynthesis paths will
depend on the detailed temperature–density history of the explosion.

At temperatures of T = 0.1–0.4 GK, reaction cycles play a less prominent role
in the A ≥ 20 range compared to their outstanding importance in the CNO
mass region. From Fig. 5.17 it is apparent that the branching ratios Bpα/pγ

for 27Al, 31P, and 35Cl are less than unity and, hence, closed MgAl, SiP, and
SCl cycles do not exist for this temperature range. For 23Na, the branching
ratio amounts to Bpα/pγ ≈ 30 at T ≈ 0.1 GK, but it is only Bpα/pγ ≈ 1 in the
range of T ≈ 0.2–0.4 GK. Thus, a closed NeNa cycle may develop only at the
lower temperature end. It will be shown in the following that reactions in the
mass A ≥ 20 range may also contribute substantially to the energy generation
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Fig. 5.27 Nuclear interactions in the mass
A ≥ 20 region during explosive hydrogen
burning. Stable nuclides are shown as
shaded squares. The key relates an ar-
row to a specific interaction (proton capture,
(p,α) reaction, or β+-decay). The nuclide
26Al can be formed either in its ground state

or in its isomeric state (Ex = 228 keV). Many
unstable nuclei may undergo proton-induced
reactions at elevated temperatures. The
most likely nucleosynthesis path depends
on the detailed temperature–density history
of the explosion.

rate. This energy is generated by building up heavier nuclei from lighter seed
nuclei via proton-captures and β+-decays, rather than by the conversion of
four protons to one 4He nucleus which takes place in the HCNO cycles.

The nucleosynthesis in the A ≥ 20 mass range will be explored by consider-
ing again classical novae as an example (Section 1.4.4). Heavier white dwarfs
are likely to consist of oxygen and A ≥ 20 nuclei, while the carbon abundance
is relatively small since it was consumed in the progenitor star during core
carbon burning (Section 1.4.3 and Fig. 1.4). Thermonuclear runaways involv-
ing such white dwarfs achieve in general higher peak temperatures compared
to those involving CO white dwarfs because the strength of the explosion
scales with the surface gravity and the amount of accreted material. Obvi-
ously, the heavier mass nuclei, mainly Ne, Na, and Mg, will participate in
hydrogen burning. Figure 5.25b shows temperature and density profiles that
are adopted from hydrodynamic studies (José and Hernanz 1998) of a classi-
cal nova explosion caused by the accretion of solar-like matter onto the sur-
face of a 1.25 M� white dwarf of ONe composition. The curves represent
again the temperature and density evolution in the hottest hydrogen-burning
zone. This nova model achieves a maximum temperature of T = 0.25 GK after
a time of t ≈ 420 s. Temperature and density evolve from T = 0.10 GK and
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ρ = 2800 g/cm3 before the outburst to values of T = 0.12 GK and ρ = 38 g/cm3

at t = 1140 s. The reaction network is much more extensive compared to those
described in earlier sections since many more reactions and β+-decays par-
ticipate in the nucleosynthesis. The network is solved numerically for the
temperature–density evolution shown in Fig. 5.25b and is terminated after t
= 1140 s. For the initial composition, values of X0

H = 0.35, X0
4He = 0.15, X0

16O

= 0.26, X0
20Ne = 0.16, X0

23Na = 0.04, X0
24Mg = 0.03, X0

25Mg = 0.01 are assumed.
These are similar to those adopted in hydrodynamic studies (José and Her-
nanz 1998).

We will summarize only briefly the nucleosynthesis in the CNO region
and then discuss in more detail the hydrogen burning in the A ≥ 20 re-
gion. Since there are no 12C seed nuclei, hydrogen burning in the A < 20
mass range has to start with 16O. The temperatures achieved in this nova
model are sufficiently high for 16O to be destroyed by the 16O(p,γ)17F reaction.
Further processing via 17F(β+ν)17O(p,α)14N, 17F(β+ν)17O(p,γ)18F(p,α)15O and
17F(p,γ)18Ne(β+ν)18F(p,α)15O initiates quickly the HCNO1 cycle. Although
there are quantitative differences in the evolution of A < 20 nuclei compared
to the CO nova model, the overall final results are qualitatively similar. At
the end of the calculation, the hydrogen abundance has fallen to XH = 0.19,
and the most abundant CNO isotopes are 14N, 13N, 12C, 15O, and 17O with
mass fractions of 0.081, 0.052, 0.041, 0.020, and 0.014, respectively. For the
carbon and nitrogen isotopic ratios we obtain values of (13C/12C) = 1.3 and
(15N/14N) = 0.22. The most overproduced isotopes are 13C, 15N, and 17O,
with overproduction factors of (X/X�) ≈ 1600, 4500, and 3600, respectively.

The abundance evolutions in the A ≥ 20 range are displayed in Figs. 5.28a
and b. For the following discussion, it is useful to keep in mind that a peak
temperature of T ≈ 0.25 GK is maintained for about 50 s before the temper-
ature starts to decrease again (Fig. 5.25b). During this time, the hydrogen
abundance is about XH ≈ 0.30, while the density amounts to ρ ≈ 300 g/cm3.
It can be seen in Fig. 5.28 that 23Na seed nuclei are quickly destroyed. Proton-
induced reactions start to deplete 23Na noticeably at t = 200 s when the tem-
perature amounts to T ≈ 0.1 GK, that is, long before peak temperature is
reached. At T ≈ 0.1 GK, the 23Na(p,α)20Ne reaction dominates over the com-
peting 23Na(p,γ)24Mg reaction (Fig. 5.17). Therefore, the largest fraction of the
23Na seed nuclei is converted to 20Ne. Its abundance increases from an initial
value of X0

20Ne = 0.16 to 0.19, giving rise to the small bump seen at t = 400 s in
Fig. 5.28a. Around peak temperature, a fraction of the 20Ne abundance is de-
stroyed by the 20Ne(p,γ)21Na reaction and the flow reaches again 23Na. At T =
0.25 GK, the branching ratio for 23Na is about Bpα/pγ ≈ 1 (Fig. 5.17) and hence
about one half of the 23Na nuclei are transformed to 24Mg. Note that very little
material is processed via 23Mg(p,γ)24Al(β+ν)24Mg since the 23Mg β+-decay is
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far more likely to occur at T ≈ 0.25 GK than the competing (p,γ) reaction
[τβ(23Mg) = T1/2/ ln 2 = 16 s versus τp(23Mg) = [ρ(XH/MH)NA〈σv〉]−1 ≈
1370 s]. Once 24Mg is reached, there is no process that can feed this material
back to the NeNa mass region. At the end of the calculation most of the 23Na
seed nuclei have effectively been transformed to A ≥ 24 nuclei, while the 20Ne
abundance has not changed from its initial value. This is a consequence of the
fact that the 20Ne(p,γ)21Na reaction is relatively slow [τp(20Ne) ≈ 200 s at
T = 0.25 GK]. The other seed nuclei, 24Mg and 25Mg, are rapidly transformed
via proton captures and β+-decays to heavier nuclides. We can estimate the
nucleosynthesis path by considering the competition between β+-decays and
proton captures of certain key nuclei. For the nuclei 25Al and 27Si, the mean
lifetimes versus β+-decay amount to τβ ≈ 10 and 6 s, respectively. The mean
lifetimes versus proton capture at T = 0.25 GK are τp = 60 and 24 s, respectively.
Thus both 25Al and 27Si will preferentially β+-decay rather than undergo pro-
ton captures. Consequently, around peak temperature, the most likely nucle-
osynthesis path is

24Mg(p, γ)25Al(β+ ν)25Mg(p, γ)26Al(p, γ)27Si(β+ ν)27Al(p, γ)28Si (5.88)

The sum of mean lifetimes for this sequence is

τp(24Mg) + τβ(25Al) + τp(25Mg) + τp(26 Alg) + τβ(27Si) + τp(27 Al)

= (0.014 + 10.4 + 0.39 + 0.43 + 6.0 + 1.2) s = 18.4 s (5.89)

and is dominated by the β+-decays of 25Al and 27Si. The sequence does not
delay the transformation from 24Mg to 28Si significantly since the sum of mean
lifetimes is much smaller than the duration for which hydrogen burning takes
place at peak temperature (50 s). The mean lifetime of 28Si versus proton cap-
ture at T = 0.25 GK, however, amounts to τp(28Si) = 69 s and represents a
significant delay. Nevertheless, there is a substantial abundance flow beyond
28Si. The flow ends at 32S since the proton capture on 32S is a very slow pro-
cess [τp(32S) = 11 100 s at T = 0.25 GK]. At the end of the calculation, most of
the 23Na, 24Mg, and 25Mg seed nuclei have been converted to 28Si, 32S, 30Si,
and 31P with final mass fractions of 0.056, 0.024, 0.013, and 0.0084, respec-
tively. The large 20Ne, 28Si, and 32S final abundances are a consequence of
the fact that the 20Ne(p,γ)21Na, 28Si(p,γ)29P, and 32S(p,γ)33Cl reactions are the
slowest proton captures involving stable target nuclei in the A = 20–32 mass
range. These results agree qualitatively with observations of large neon, sil-
icon, and sulfur abundances in the shells of several classical novae (Warner
1995). Ratios of final mass fractions, after all β+-decays have been completed,
and the corresponding solar mass fractions are shown in Fig. 5.28c for A = 20–
33 nuclei. The two most overproduced isotopes in this mass range are 31P and
30Si, with overproduction factors of (X/X�) ≈ 1000 and 590, respectively.
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Fig. 5.28 Explosive hydrogen burning dur-
ing the thermonuclear runaway on the sur-
face of a ONe white dwarf. The results show
the operation of nuclear processes in the A
≥ 20 region and are obtained from a numer-
ical reaction network calculation using the
temperature and density evolution for the

hottest zone displayed in Fig. 5.25b. (a), (b)
abundance evolutions in the A ≥ 20 mass
region; (c) ratios of final mass fractions, af-
ter all β+-decays have been completed,
and the corresponding solar system mass
fractions; (d) time evolution of the energy
generation rate.

The explosive burning of hydrogen also produces interesting amounts of the
radioisotopes 22Na (T1/2 = 2.6 y) and 26Alg (T1/2 = 7.4× 105 y), with mass frac-
tions of X22 Na = 8 × 10−5 and X26 Alg = 2 × 10−4. The decay of 22Na produces
γ-rays with an energy of Eγ = 1275 keV and this signature from nearby clas-
sical novae may be observed in the future with detectors onboard satellites.
Novae may also contribute to the abundance of Galactic 26Alg.

We will next discuss the energy generation. The total energy produced
amounts to 5.4 × 1023 MeV/g. About 70% of the total energy is generated
via reactions and decays involving CNOF nuclei while the A ≥ 20 mass range
contributes ≈ 30%. The evolution of the energy generation rate is shown in
Fig. 5.28d. Its shape is more complex compared to the case of accretion onto a
CO white dwarf (Fig. 5.26d). The heavy solid line represents the total energy
generation rate, while the thinner solid and dotted lines correspond to the en-
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ergy generated per time by processes in the CNOF and A ≥ 20 mass regions,
respectively. Although the CNOF mass range generates the largest fraction
of the total energy, the A ≥ 20 mass region gives rise to a larger energy gen-
eration rate before and near peak temperature. In fact, before peak tempera-
ture is achieved (t < 360 s), most of the energy is produced by the reactions
23Na(p,α)20Ne, 23Na(p,γ)24Mg, and 24Mg(p,γ)25Al. These processes are rather
fast and, in particular, their reaction rates at T = 0.1–0.4 GK are larger than the
rate for 16O(p,γ)17F, as shown in Fig. 5.18. At later times, two maxima are vis-
ible near peak temperature (t = 360–430 s). The first one is narrow and high,
indicating a rapid release of energy within a short period of time. It is caused
by the sequence 25Mg(p,γ)26Alg(p,γ)27Si(β+ν)27Al(p,γ)28Si which consists of
relatively fast processes. The second one, at later times, is broader and lower
in magnitude. It is caused by reactions and decays in the NeNa mass region.
These are significantly delayed by the slow 20Ne(p,γ)21Na reaction. Around
t ≈ 460 s, similar amounts of energy are produced in the CNOF and A ≥ 20
mass regions. At later times, reactions and decays in the CNOF mass range
generate most of the energy. Note that the half-lives of 14O and 15O sensi-
tively influence the evolution of the energy generation rate in the CNOF mass
region. If both half-lives were shorter, the shape of the energy generation rate
curve would become narrower and higher.

The nova model discussed above achieves a peak temperature of Tpeak =
0.25 GK. In this case, the β+-decays of 23Mg, 25Al, and 27Si are faster than
the competing proton-capture reactions and, therefore, the nucleosynthesis
path runs close to the line of stable nuclei. Some models of classical novae
involve white dwarfs of higher masses and achieve larger peak temperatures.
For example, at Tpeak = 0.35 GK, ρ = 300 g/cm3, and XH = 0.3, we obtain for
the 23Mg(p,γ)24Al, 25Al(p,γ)26Si, and 27Si(p,γ)28P reactions mean lifetimes of
τp(23Mg) = 4.3 s, τp(25Al) = 0.35 s, and τp(27Si) = 0.44 s. Consequently, the
nucleosynthesis path will run closer to the proton dripline. Clearly, the exact
path depends on the temperature history during the explosion.

We will now comment on the experimental situation. For a representative
peak temperature of 0.25 GK the Gamow peaks for the 20Ne + p and 32S + p
reactions are located at E0 ± ∆/2 = 220 ± 80 keV and 304 ± 94 keV, respec-
tively. The 20Ne(p,γ)21Na reaction has already been discussed in Section 5.1.3.
It was measured down to an energy of about Ecm = 350 keV and hence the
data do not quite reach the Gamow peak. The reaction rates are determined
by the tail of a subthreshold state and by direct capture. The reaction rate
error at T = 0.25 GK amounts to about ±50% (Angulo et al. 1999). The low-
est lying resonance in the 28Si(p,γ)29P reaction occurs at Ecm

r = 358 keV. It is
located in the Gamow peak and determines the reaction rates at nova tem-
peratures. Reaction rate errors amount to about ±15% at T = 0.25 GK (An-
gulo et al. 1999). No resonances are expected to occur in the nova Gamow
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peak of the 32S(p,γ)33Cl reaction and, therefore, this reaction is very slow. The
three lowest lying resonances, located at Ecm

r = 409, 563, and 570 keV, dom-
inate the reaction rates at nova temperatures. Reaction rate errors amount
to ±15% at T = 0.25 GK (Iliadis et al. 2001). With one exception, none of the
reactions involving unstable target nuclei in the A = 20–40 range have been
measured directly. Their reaction rates are estimated indirectly from nuclear
structure information. Hence, rate errors for reactions such as 23Mg(p,γ)24Al,
25Al(p,γ)26Si, and 27Si(p,γ)29P may amount to an order of magnitude or more.
The exception is the 21Na(p,γ)22Mg reaction which influences the production
of 22Na in novae. It is the first (and at present only) radiative capture reaction
that has been measured directly in the nova Gamow peak by using radioac-
tive ion beams (see Section 4.6.1). All the important resonances in the energy
range Ecm

r ≥ 206 keV have been observed and the reaction rate errors amount
to about ±20% at T = 0.25 GK.

5.3
Hydrostatic Helium Burning

The second most abundant nuclide in the Universe is 4He. In Section 5.1 we
discussed how 4He is synthesized during the hydrogen burning phase. When
all the hydrogen is consumed in the core, the star will contract and the central
temperature will increase. At some point, the helium in the core is ignited and
undergoes nuclear transformations. The end products of these processes are
12C and 16O which represent the fourth and third most abundant nuclides, re-
spectively, in the Universe. How exactly the transformation from 4He to 12C
and 16O comes about has not been understood for some time. The fact that
no stable nuclides with mass numbers of A = 5 and A = 8 exist represented a
major hurdle in this regard (Section 1.1). For example, we have seen in Sec-
tion 5.1.1 that the 3He(α,γ)7Li reaction may bridge the A = 5 instability in the
pp2 and pp3 chains, giving rise to the synthesis of small amounts of 7Be, 7Li,
8B, and 8Be. But at typical hydrogen burning temperatures none of these nu-
clei survive since they are all transformed back into 4He (Fig. 5.2). Other ideas
involved the formation of 12C as a result of the simultaneous fusion of three
α-particles. However, it was shown that such a many-particle collision has a
very small probability and cannot account for the fusion of 4He to 12C and
16O. The problem was solved by taking into account some curious nuclear
properties, as will be seen in this section.



438 5 Nuclear Burning Stages and Processes

Fig. 5.29 Representation of helium-burning reactions in the chart
of the nuclides. Stable nuclides are shown as shaded squares. The
key relates an arrow to a specific interaction. The 3α reaction and the
(α,γ) reactions on 12C and 16O are displayed as thick arrows. Other
helium-burning reactions are shown as thinner arrows. The reaction
14N(α,γ)18F is represented by an arc for reasons of clarity.

The following reactions take place during helium burning:

4He(αα, γ)12C (Q = 7274.7 keV) (5.90)
12C(α, γ)16O (Q = 7161.9 keV) (5.91)
16O(α, γ)20Ne (Q = 4729.8 keV) (5.92)
20Ne(α, γ)24Mg (Q = 9316.6 keV) (5.93)

These processes are shown schematically in Fig. 5.29 and will be discussed in
more detail in the following. It is worth keeping in mind that, depending on
the stellar mass and metallicity, the ranges of temperature and density during
hydrostatic helium burning in massive stars amount to T = 0.1–0.4 GK and
ρ = 102–105 g/cm3, respectively. The last reaction listed above only plays a
role at the higher temperatures. Helium burning in massive stars is believed
to be the main origin of 16O and 18O in the Universe, while helium burning
in massive stars and AGB stars contributes similar amounts to the cosmic 12C
abundance.
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5.3.1
Helium-Burning Reactions

The triple-α reaction

Helium burning starts with the 3α reaction which we already encountered in
the discussion of reaction rate equilibria (Example 3.4). The 3α reaction rep-
resents a (sequential) two-step process (Salpeter 1952). In the first step, two
α-particles interact to form 8Be in its ground state. This nucleus is unstable by
an energy of only 92 keV and disintegrates back into two α-particles with a
half-life of T1/2 = 6.7 × 10−17 s (Audi et al. 2003). Over time, a small concen-
tration of 8Be will build up until the rate of 8Be formation becomes equal to its
decay rate,

4He + 4He ↔ 8Be (5.94)

In the second step, a third α-particle interacts with the 8Be nucleus to form 12C
via

8Be(α, γ)12C (5.95)

It was pointed out (Hoyle 1954) that the overall conversion of three α-particles
to one 12C nucleus during helium burning would be too slow unless the sec-
ond step proceeds via an s-wave resonance (Jπ = 0+) corresponding to a com-
pound level near the α-particle threshold in 12C (Sα = 7367 keV). This predic-
tion and the subsequent experimental verification of this resonance (Dunbar
et al. 1953, Cook et al. 1957) represents a remarkable interplay of astrophysics
theory and nuclear experimental work. The 3α reaction bypasses the stable
nuclides in the mass A = 6–11 region. Therefore, these nuclei are not synthe-
sized in stars through thermonuclear reactions. Their extremely low observed
abundances are the result of other processes, such as the Big Bang or cosmic-
ray spallation.

The energy level diagram for this reaction sequence is shown in Fig. 5.30.
The Q-value for the α + α → 8Be reaction amounts to −91.84 ± 0.04 keV
and, therefore, 8Be is unstable to α-particle emission. The Q-value of the
8Be(α,γ)12C reaction amounts to 7366.59 ± 0.04 keV. With a value of Ex =
7654.20 ± 0.15 keV (Ajzenberg-Selove 1990) for the excitation energy of the
astrophysically important 12C level, we obtain a center-of-mass energy of Er

= Ex − Q = 287.6 ± 0.2 keV for the corresponding resonance in 8Be(α,γ)12C.
The resonance is formed by α-particle capture and decays to the 12C ground
state either by emission of γ-rays or by internal pair formation (Section 1.7.1
and Example B.4). The partial widths for these processes are given by Γα =
8.3 ± 1.0 eV and Γrad = Γγ + Γpair = (3.7 ± 0.5) × 10−3 eV (Ajzenberg-Selove
1990). With J(12C) = j0(α) = j1(8Be) = 0, we obtain for the resonance strength
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(Section 3.2.4)

ωγ8Be(α,γ) ≡
(2J + 1)

(2j0 + 1)(2j1 + 1)
ΓαΓrad

Γ
≈ Γrad = (3.7± 0.5)× 10−3 eV (5.96)

In order to derive the decay constant for the 3α reaction, we start by using the
expression from Example 3.4,

λα+α+α→12C = λ3α = 3Nα

(
h2

2π

)3/2 1
(mααkT)3/2 eQ

α+α→8Be/kT λ8Be(α,γ) (5.97)

The decay constant for the second step, λ8Be(α,γ), can be expressed by using
Eq. (3.23),

λ8Be(α,γ) = λα(8Be) = Nα〈σv〉8Be(α,γ) (5.98)

where 〈σv〉8Be(α,γ) is given by the expression for the reaction rate of a narrow
resonance (see Eq. (3.112))

〈σv〉8Be(α,γ) =
(

2π

mα8BekT

)3/2

�
2e−Er/kTωγ8Be(α,γ) (5.99)

From Eqs. (5.97)–(5.99) it follows

λ3α = 3Nα

(
h2

2π

)3/2 eQ
α+α→8Be/kT

(mααkT)3/2 Nα

(
2π

mα8BekT

)3/2

�
2e−Er/kTωγ8Be(α,γ)

= 3N2
α 33/2

(
2π

mαkT

)3

�
5e−E′/kTωγ8Be(α,γ) (5.100)

where we defined E′ ≡ Er − Qα+α→8Be. Numerically, one finds

λ3α = 0.23673
(ρXα)2

T3
9

e−11.6048E′/T9 ωγ8Be(α,γ) (s−1)

= 8.7590 × 10−10 (ρXα)2

T3
9

e−4.4040/T9 (s−1) (5.101)

where we used E′ = 287.6 keV − (−91.84 keV) = 379.4 keV and ωγ8Be(α,γ) =
Γrad = 3.7 × 10−3 eV. Note that this expression is valid only for temperatures
of 0.1 ≤ T9 ≤ 2. For lower and higher temperatures, additional contributions
to the reaction rates have to be taken into account (Angulo et al. 1999).

The temperature dependence of the decay constant for the 3α reaction can
be found from a calculation similar to the one described in Section 3.2.1. One
obtains (see Problem 5.2)

(λ3α)T = (λ3α)T0(T/T0)(4.4040/T9)−3 (5.102)
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Fig. 5.30 Energy level diagrams for the most important nuclides par-
ticipating in helium burning. The numbers in square brackets represent
the energy of the ground state of the system A

ZXN + 4
2He2 with respect

to the ground state of the nucleus A+4
Z+2YN+2 (that is, the Q-value of the

(α,γ) reaction on A
ZXN or the α-particle separation energy of A+4

Z+2YN+2).
All information is adopted from Ajzenberg-Selove (1990) and Audi,
Wapstra and Thibault (2003).

The energy generation rate of the 3α process is given, according to Eq. (3.63),
by the product of the reaction rate (the number of reactions per second and per
cubic centimeter) and the energy released per reaction, Q3α = (3m4He −m12C)c2

= 7.275 MeV. Each 3α reaction consumes three α-particles and, therefore, the
decay constant (the number of α-particles disappearing each second) is related
to the reaction rate by r3α = Nαλ3α/3. It follows

ε3α =
Q3α

ρ
r3α =

Q3α

ρ

Nαλ3α

3

=
7.275 MeV

ρ

1
3

8.7590 × 10−10
(

ρNA
Xα

Mα

)
(ρXα)2

T3
9

e−4.4040/T9

= 3.1771 × 1014 ρ2X3
α

T3
9

e−4.4040/T9 (MeV g−1s−1) (5.103)
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The 3α reaction has a remarkable temperature dependence. For example, near
T0 = 0.1 GK, we obtain for the energy generation rate

ε3α(T) = ε3α(T0) (T/T0)
(4.4040/T9)−3 = ε3α(T0) (T/T0)

41.0 (5.104)

Therefore, energy generation via the 3α reaction in a helium-burning star oc-
curs predominantly in the regions of highest temperature. Furthermore, if the
helium gas is electron degenerate, then a small rise in temperature will cause
a large release of energy. As a result, the temperature rises faster, producing
even more energy. The cycle continues until the degeneracy is lifted in a ther-
monuclear explosion. This so-called helium flash is believed to occur at the
onset of hydrostatic helium burning in some stars (Section 1.4.3).

We will briefly comment on the experimental situation. The 3α reaction rep-
resents a two-step sequential process and has not been measured yet directly
in the laboratory. Even the second step, the 8Be(α,γ)12C reaction, has not been
measured directly since the 8Be half-life is very short (T1/2 ≈ 10−16 s). Further-
more, the reverse reaction, 12C(γ,α)8Be, cannot be measured either because
the direct γ-ray transition from the 12C ground state (Jπ = 0+) to the level
at Ex = 7654 keV (Jπ = 0+) is forbidden (Fig. 5.30 and Example B.4). How-
ever, the quantities E′ and ωγ8Be(α,γ) = Γrad entering the expression for the 3α

reaction decay rate (see Eq. (5.100)) have been measured by indirect studies
(see, for example, Rolfs and Rodney 1988). In the temperature range impor-
tant for hydrostatic helium burning, 0.1 ≤ T9 ≤ 0.4, the total reaction rate of
the 3α reaction (or, equivalently, the decay constant) has an error of only 15%
(Angulo et al. 1999). This precision is remarkable for a process that cannot be
measured directly in the laboratory. The error is mainly caused by the present
uncertainty in the partial width Γrad = Γγ + Γpair = (3.7 ± 0.5) × 10−3 eV. Al-
though the quantity E′ = [Ex(12C) − Q8Be(α,γ)] − Qα+α→8Be = 379.4 ± 0.2 keV
enters exponentially in Eq. (5.100), its uncertainty has a negligible effect on the
total decay constant.

The 12C(α,γ)16O and 16O(α,γ)20Ne reactions

If the subsequent 12C(α,γ)16O reaction would be sufficiently rapid, then most
α-particles would be converted to 16O or perhaps heavier nuclei, with no 12C
left at the end of helium burning. However, the fact that the ratio of number
abundances of 12C and 16O in the Universe amounts to about N(12C)/N(16O)
≈ 0.4 suggests that the 12C(α,γ)16O reaction is rather slow and that, as a re-
sult, some 12C remains after helium is exhausted. The presence of comparable
amounts of 12C and 16O also implies that the 12C(α,γ)16O reaction gives rise
to a sensitive balance of these two species, or equivalently, the precise mag-
nitude of the 12C(α,γ)16O reaction rate will have a strong influence on the
relative production of 12C and 16O.
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At a typical temperature of T = 0.2 GK, the location and width of the Gamow
peak for the 12C(α,γ)16O reaction are E0 = 315 keV and ∆ = 170 keV, respec-
tively. The lowest lying resonance occurs at Ecm

r ≈ 2.4 MeV and corresponds
to the broad Ex = 9585 keV (Jπ = 1−) level in 16O (Fig. 5.30). Although a
lower lying level exists in 16O at Ex = 8872 keV (Jπ = 2−), it cannot be excited
as a resonance in the 12C + α reaction because it has unnatural parity (Ex-
ample B.1). Thus, no narrow resonance is located in the Gamow peak and
the 12C(α,γ)16O reaction must proceed through other reaction mechanisms
that will be necessarily slower. These mechanisms include the capture into
the low-energy wing of the Ecm

r ≈ 2.42 MeV resonance and the capture into
the high-energy wings of the subthreshold resonances (Example 2.1) at Ecm

r =
−45 keV and Ecm

r = −245 keV, corresponding to 16O levels at Ex = 7117 keV
(Jπ = 1−) and 6917 keV (Jπ = 2+), respectively (Fig. 5.30). Another contribu-
tion arises from the wings of distant levels (also sometimes referred to as the
direct-capture process).

The 12C(α,γ)16O reaction has been measured down to a center-of-mass en-
ergy of ≈ 1 MeV. The Gamow peak for most situations of astrophysical in-
terest is located far below this energy (for example, E0 ≈ 0.3 MeV for T =
0.2 GK). It has been estimated (Kunz et al. 2002) that the cross section of the
12C(α,γ)16O reaction at energies important for helium burning is of the order
of σ ≈ 10−17 b, that is, orders of magnitude below present experimental ob-
servation thresholds. Therefore, the cross section measured at higher energies
needs to be extrapolated down to the astrophysically important energy range
by using a suitable nuclear reaction model (usually an R-matrix description;
Section 2.5.5). This extrapolation is not straightforward because several differ-
ent amplitudes contribute to the reaction mechanism, as pointed out already.
Some of these amplitudes can interfere with each other, further complicating
the picture. More reliable cross section extrapolations are obtained if the di-
rectly measured data are supplemented with other information for the 12C +
α system. This includes, for example, α-particle reduced widths (or α-particle
spectroscopic factors; Section 1.6.2) of the important 16O levels that are pop-
ulated in α-particle transfer studies, or phase shifts measured in 12C(α,α)12C
elastic scattering. An overview of some of the techniques can be found in Rolfs
and Rodney (1988), and Wallerstein et al. (1997). At present, different rates of
the 12C(α,γ)16O reaction are in use by stellar modelers. Current reaction rate
uncertainties amount typically to about ±35% (Kunz et al. 2002) at temper-
atures of T = 0.12–0.35 GK. The magnitude of the 12C(α,γ)16O reaction rate
determines the relative amounts of 12C and 16O at the end of helium burning,
as will be shown below. Subsequent advanced burning stages rely on the 12C
and 16O fuel. Consequently, the 12C(α,γ)16O reaction has a profound influence
on the abundances of many elements up to iron and even on the evolution of
massive stars that explode as supernovae (Weaver and Woosley 1993). There-
fore, a more precise rate for this reaction is highly desirable.
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If the subsequent 16O(α,γ)20Ne reaction would be fast, then 16O is converted
to 20Ne or heavier nuclei and little 16O would survive during hydrostatic he-
lium burning. Since 16O is relatively abundant in the Universe, however, we
suspect that this reaction must be rather slow. For example, the Gamow peak
for a temperature of T = 0.2 GK is located at E0 ± ∆/2 = 390 ± 90 keV. The
Q-value of 16O(α,γ)20Ne is Q = 4.73 MeV. The lowest lying resonance, located
at Ecm

r = 893 keV (Tilley et al. 1998), is formed via incoming f-waves (� = 3)
and corresponds to the 20Ne level at Ex = 5621 keV (Jπ = 3−). A lower lying
compound level exists at Ex = 4967 keV (Jπ = 2−), but this state cannot be
excited as a 16O + α resonance because it has unnatural parity (Example B.1).
The subthreshold resonance located closest to the α-particle threshold occurs
at Ecm

r = −482 keV, and is formed via incoming g-waves (� = 4). These reso-
nances are not only located far away from the Gamow peak for T = 0.2 GK,
but their formation is also inhibited by the centripetal barrier. The cross sec-
tion contributions arising from the wings of these resonances are so small
that the direct-capture process, although inherently slow for (α,γ) reactions
on even–even N = Z target nuclei, dominates the 16O(α,γ)20Ne reaction rates
for temperatures of T < 0.25 GK. At higher temperatures, resonances with
Ecm

r ≥ 893 keV move into the Gamow peak and dominate the total reaction
rates.

The lowest lying resonance in the 16O(α,γ)20Ne reaction has been ob-
served at Ecm

r = 893 keV. As already mentioned above, the reaction rates
at T < 0.25 GK are determined by direct capture. However, this process has
not been measured yet in the 16O(α,γ)20Ne reaction, neither at energies below
Ecm

α = 1 MeV nor at higher energies. Therefore, the reaction rates at these
temperatures are largely based on theoretical model calculations. At temper-
atures below T = 0.2 GK, the present ratio of upper and lower reaction rate
limits amounts to about an order of magnitude (Angulo et al. 1999). Above
this temperature, the reaction rate uncertainties are less than 30%.

Comparison of mean lifetimes

The mean lifetimes of 4He, 12C, and 16O versus destruction by α-particles
as a function of temperature are displayed in Fig. 5.31 for values of ρXα =
500 g/cm3 and ρXα = 104 g/cm3. Although we have not discussed explicitly
the next α-particle capture reaction, 20Ne(α,γ)24Mg, the corresponding mean
lifetime τα(20Ne) is also included in Fig. 5.31. The curves are obtained from
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Fig. 5.31 Mean lifetimes of 4He, 12C, 16O, and 20Ne versus destruction
by α-particles as a function of temperature for (a) ρXα = 500 g/cm3,
and (b) ρXα = 104 g/cm3. The mean lifetime τ3α(4He) depends on
(ρXα)−2 while the mean lifetimes of 12C, 16O, and 20Ne depend on
(ρXα)−1.

the expressions

τ3α(4He) = 1/λ3α(4He) =

[

8.7590 × 10−10 (ρXα)2

T3
9

e−4.4040/T9

]−1

(5.105)

τα(12C) =
[
(ρXα)

Mα
NA〈σv〉12C(α,γ)

]−1

(5.106)

τα(16O) =
[
(ρXα)

Mα
NA〈σv〉16O(α,γ)

]−1

(5.107)

τα(20Ne) =
[
(ρXα)

Mα
NA〈σv〉20Ne(α,γ)

]−1

(5.108)

Note that the mean lifetime τ3α(4He) depends on (ρXα)−2, while the mean
lifetimes of 12C, 16O, and 20Ne depend on (ρXα)−1. Hence, carbon produc-
tion via the 3α reaction is favored by higher density or, equivalently, by lower
stellar mass, as will be shown later. It can be seen in Fig. 5.31 that the mean
lifetime τ3α(4He) is the shortest for a wide range of temperatures. Only at very
low temperatures (T < 0.14 GK for ρXα = 500 g/cm3, or T < 0.12 GK for ρXα

= 104 g/cm3) is the mean lifetime τα(12C) shorter than τ3α(4He). It is also ap-
parent that τ3α(4He) and τα(12C) are much smaller than τα(16O) and τα(20Ne)
at temperatures of T < 0.3 GK. Consequently, the destruction of 16O is very
slow and most 16O nuclei will survive under these conditions. At relatively
high temperatures of T > 0.3 GK all four mean lifetimes become comparable
in magnitude.
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5.3.2
Nucleosynthesis During Hydrostatic He Burning

In this section, we discuss the evolution of abundances at hydrostatic helium
burning conditions. Early in the burning, helium will be consumed by the
3α process. As the helium abundance decreases, and since the mean lifetime
τ3α(4He) depends on (ρXα)−2, α-particle captures on 12C and beyond will be-
come increasingly important. The differential equations for the abundances
are

d(4He)
dt

= −3r3α − (4He)(12C)〈σv〉12C(α,γ) − (4He)(16O)〈σv〉16O(α,γ) (5.109)

d(12C)
dt

= r3α − (4He)(12C)〈σv〉12C(α,γ) (5.110)

d(16O)
dt

= (4He)(12C)〈σv〉12C(α,γ) − (4He)(16O)〈σv〉16O(α,γ) (5.111)

d(20Ne)
dt

= (4He)(16O)〈σv〉16O(α,γ) − (4He)(20Ne)〈σv〉20Ne(α,γ) (5.112)

d(24Mg)
dt

= (4He)(20Ne)〈σv〉20 Ne(α,γ) (5.113)

The factors of 3 and 1 in the first term on the right-hand sides of the first
two equations are explained by the fact that each 3α reaction consumes three
4He nuclei and creates one 12C nucleus. The reaction rate r3α (in units of re-
actions per second and per cubic centimeter) is related to the decay constant
and the mean lifetime by 3r3α = (4He)λ3α = (4He)/τ3α. We included here the
20Ne(α,γ)24Mg reaction to account for the destruction of 20Ne. As will be seen
below, this reaction plays a minor role in most hydrostatic helium burning
environments.

The above network is numerically solved for constant temperatures and
densities of: (i) T = 0.15 GK, ρ = 5000 g/cm3, and (ii) T = 0.2 GK, ρ = 800 g/cm3.
Such conditions occur typically in core helium burning of stars with initial
masses of 5 M� and 20 M�, respectively, and are fairly independent of the
initial metallicity of the star (Schaller et al. 1992). It is important to point out
that our calculations do not represent the situation in real stars. As the he-
lium fuel is consumed, the energy production rate would also decrease with
time if the burning would take place under constant temperature and density
conditions. In order to maintain a certain luminosity, the stellar core contracts
gravitationally and, consequently, the temperature and density must increase
from the start to the end of helium burning in a realistic stellar model. Never-
theless, a reasonable qualitative estimate of helium burning nucleosynthesis
can be obtained by reducing a complex situation to its simplest form by as-
suming constant temperatures and densities. Furthermore, we will assume
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a pure 4He gas (X0
4He = 1) at the beginning of helium burning. The reaction

network is solved until helium exhaustion (X4He < 0.001).
The abundance evolutions of 12C and 16O at T = 0.15 GK and ρ = 5000 g/cm3

versus the amount of helium consumed, ∆X4He = X0
4He − X4He(t), are shown

in Fig. 5.32a as solid lines (time is increasing from left to right). Initially, as 4He
is depleted by the 3α reaction, the 12C abundance increases linearly. Even-
tually, the 12C abundance reaches a maximum and then declines because of
the increasing importance of α-particle captures on 12C. At the same time,
the 16O abundance increases toward the end of the calculation. The end
products are 12C and 16O, with a number abundance ratio of (12C/16O) =
(X12C/X16O)(M16O/M12C) ≈ 0.89. The final mass fractions of heavier nuclei,
such as 20Ne and 24Mg, amount to ≈ 10−6 and ≈ 10−14, respectively, em-
phasizing the very slow destruction of 16O via α-particle capture. The total
nuclear energy generated amounts to 4.8 × 1023 MeV/g (or 7.6 × 1017 erg/g).
The relative contributions of the 3α reaction and the 12C(α,γ)16O reaction to
the total energy production are 66% and 34%, respectively. It is interesting
to consider how the abundances change when current reaction rate errors of
the 12C(α,γ)16O reaction (±35%; Kunz et al. 2002) are taken into account. The
results are indicated by the dotted and dashed lines, obtained by using the
lower and upper limit for the 12C(α,γ)16O reaction rate, respectively. At he-
lium exhaustion, the number abundance ratio (12C/16O) varies significantly,
between 0.65 and 1.23. The current errors in the rates of the 3α reaction (±15%;
Angulo et al. 1999) have a much smaller influence on the 12C/16O ratio.

The abundance evolutions of 12C and 16O at T = 0.2 GK and ρ = 800 g/cm3

versus the amount of helium consumed, ∆X4He, are shown in Fig. 5.32b as
solid lines. Again, the 12C abundance increases, reaches a maximum, and then
starts to decline, while at the same time the 16O abundance grows steadily.
However, at this higher burning temperature and lower density, more 16O
and less 12C is produced compared to the previous case. By the end of the
calculation, we obtain a value of (12C/16O) = 0.57. The 3α reaction and the
12C(α,γ)16O reaction provide again all the nuclear energy, with relative contri-
butions of 62% and 38%, respectively. The influence of the 16O(α,γ)20Ne and
20Ne(α,γ)24Mg reactions is small. The final mass fractions of 20Ne and 24Mg
amount only to ≈ 10−5 and ≈ 10−11, respectively. The dotted and dashed lines
display the abundance evolutions when the 12C(α,γ)16O reaction rate errors
are taken into account. At helium exhaustion, the abundance ratio (12C/16O)
varies between 0.39 and 0.85. Much smaller variations are caused by current
errors in the 3α reaction rate.
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Fig. 5.32 Evolution of 12C and 16O versus
the amount of helium consumed during
hydrostatic helium burning for constant tem-
peratures and densities of (a) T = 0.15 GK
and ρ = 5000 g/cm3, and (b) T = 0.2 GK and
ρ = 800 g/cm3. The results are obtained by
solving the reaction network numerically,
assuming a pure 4He gas at the beginning

of helium burning. The calculation is ter-
minated when the helium mass fraction
falls below X4He = 0.001. The solid lines
are obtained by adopting recommended
12C(α,γ)16O reaction rates, while the dotted
and dashed lines result from using the lower
and upper limit of the 12C(α,γ)16O reaction
rates, respectively.

5.3.3
Other Helium-Burning Reactions

The previous sections showed that the end products of helium burning are
mainly 12C and 16O. The precise abundance ratio depends on the helium-
burning conditions (for example, temperature and density) which, in turn,
are determined by the stellar mass. The more massive the star, the more 16O is
produced relative to 12C. The precise abundance ratio (12C/16O) is influenced
by the rate of the 12C(α,γ)16O reaction. We assumed so far that helium burning
starts exclusively with 4He as fuel in the stellar core. However, at the end of
hydrogen burning most stars contain a small, but significant, fraction of 14N
as a result of CNO-cycle operation (Section 5.1.2). During helium burning,
14N will be consumed via the reaction sequence (Cameron 1960)

14N(α, γ)18F(β+ν)18O(α, γ)22Ne (5.114)

as shown in Fig. 5.29. Subsequently, some of the 22Ne nuclei will be con-
verted by the competing reactions 22Ne(α,γ)26Mg (Q = 10.62 MeV) and
22Ne(α,n)25Mg (Q = −0.48 MeV). The latter reaction has a negative Q-value
and is rather slow in the lower temperature region of T ≈ 0.1–0.2 GK. How-
ever, toward the end of helium burning, when the temperature exceeds T ≈
0.25 GK, the 22Ne(α,n)25Mg reaction provides an important source of neu-
trons. These neutrons undergo reactions and influence sensitively the syn-
thesis of neutron-rich nuclei in the mass A = 60–90 range. The resulting
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network of neutron-induced reactions and β-decays will be discussed in Sec-
tion 5.6. The above reaction sequence is also important because it significantly
increases the neutron excess parameter η during core helium burning (Sec-
tion 1.8). Helium burning in massive stars and in AGB stars is the main source
of 22Ne production in the Universe. It is also an important contributor to the
cosmic production of 25Mg and 26Mg.

During shell helium burning in massive stars, the sequence of Eq. (5.114)
does not go to completion. The surviving 18O is the main source of 18O in the
Universe. Helium burning also contributes to the synthesis of fluorine via the
sequence (Fig. 5.29)

18O(p, α)15N(α, γ)19F (5.115)

with the protons supplied by the 14N(n,p)14C reaction (Meynet and Arnould
2000).

5.4
Explosive Hydrogen-Helium Burning

It was argued in Section 3.2.1 that if a mixture of different nuclei is present in
the stellar plasma, then usually those reactions involving the nuclear fuel with
the smallest Coulomb barrier will account for most of the nuclear energy gen-
eration and nucleosynthesis. Therefore, we considered in previous sections
burning stages that were characterized by the consumption of one particular
type of fuel (either hydrogen or helium). Interesting situations arise, however,
if the stellar temperature is sufficiently large for two different types of fuels,
for example, hydrogen and helium, to burn at the same location. In this sec-
tion we will discuss the burning of a mixture of hydrogen and helium fuel
at temperatures in excess of those considered so far (T > 0.4 GK). At such
high temperatures several effects, that played no important role in previous
sections, are shown to have a sensitive influence on the nucleosynthesis. Fore-
most among these are photodisintegration reactions and the precise location
of the proton dripline, the line that separates proton-bound (Sp ≥ 0) from
proton-unbound (Sp < 0) nuclei. It will become apparent that the presence of
two different types of fuels, together with photodisintegration reactions and
the location of the proton dripline, will change the character of the nucleosyn-
thesis entirely.

The nucleosynthesis in hydrogen–helium burning at elevated temperatures
involves many nuclear processes and is very complex. First, we will dis-
cuss how, with increasing temperature, certain reaction sequences (breakout
sequences) convert nuclei from the HCNO cycle region to the A = 20–21 mass
range. Second, by performing reaction network calculations for a number of
different constant temperatures, we will investigate the location of nucleosyn-
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thesis paths between the group of stable nuclei and the proton dripline. Of
interest are the nucleosynthesis time scales, the heaviest nuclei synthesized
(endpoints of nucleosynthesis) and the dependence of the nuclear energy gen-
eration rate on the assumed initial composition. Finally, as an example for a
more realistic situation, we will discuss the results of a postprocessing net-
work calculation that is representative for the nucleosynthesis occurring dur-
ing a type I X-ray burst (Section 1.4.4).

5.4.1
Breakout from the HCNO Cycles

For stellar temperatures of T ≤ 0.4 GK, very little material is lost from the
operation of either the cold or the hot CNO cycles (Sections 5.1.2 and 5.2.1,
respectively). This is explained by the fact that the heaviest nuclei synthe-
sized in the CNO and the HCNO cycles are 19F and 18F, respectively. As can
be seen from Figs. 5.9d and 5.22a, the branching ratios Bpα/pγ of these two
isotopes amount to factors of 103–104 in the temperature ranges of the CNO
and HCNO cycles (T < 0.1 GK and T = 0.1–0.4 GK, respectively). Thus, both
19F and 18F are predominantly converted to lighter nuclei via (p,α) reactions.
Since α-particle-induced reactions are unlikely to occur at temperatures of T
≤ 0.4 GK in the presence of hydrogen fuel, the above reaction cycles are es-
sentially closed.

The situation changes substantially at higher temperatures. At T > 0.5 GK, a
number of reaction sequences involving α-particle-induced reactions convert
14O or 15O to nuclei in the mass range A = 20–21. These nuclei are permanently
lost as catalysts for the HCNO cycles since there are no nuclear processes that
can transform them back to the HCNO mass range. The three main breakout
sequences are listed below and are displayed in Fig. 5.33.

Sequence 1 Sequence 2 Sequence 3

15O(α,γ)19Ne 14O(α,p)17F 14O(α,p)17F
19Ne(p,γ)20Na 17F(p,γ)18Ne 17F(γ,p)16O

18Ne(α,p)21Na 16O(α,γ)20Ne

In order to obtain a first impression, consider Fig. 5.34a showing the rates
for these reactions, normalized to the 16O(p,γ)17F reaction rates. It is im-
mediately apparent that the 19Ne(p,γ)20Na reaction rates exceed those of
the preceding 15O(α,γ)19Ne reaction by orders of magnitude. Hence, we
suspect that the time scale for breakout sequence 1 is determined by the
slower 15O(α,γ)19Ne reaction. Furthermore, both the 18Ne(α,p)21Na and
16O(α,γ)20Ne reaction rates are smaller than those of the preceding 14O(α,p)17F
reaction. Thus, the former reactions will be more important compared to the
latter reaction for setting the time scale of breakout sequence 2 or 3. Fig-
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Fig. 5.33 Representation of the three
breakout sequences (BOS) from the A
< 20 mass region (thick arrows) during
hydrogen–helium burning. Nuclear interac-
tions that are part of the HCNO cycles are
displayed as thin arrows. Stable nuclides

are shown as shaded squares. Once a nu-
cleus has been transformed to a species
beyond the dotted line (A = 20) it is perma-
nently lost for the HCNO cycles since there
are no processes that can transform the
species back to the A < 20 region.

ure 5.34a also displays reaction rates of some alternative breakout sequences.
It can be seen that the 14O(α,γ)18Ne reaction rate is negligible compared to
the rate of the competing 14O(α,p)17F reaction. Similarly, the rates of the
17F(α,p)20Ne reaction are far smaller compared to those of the competing
17F(p,γ)18Ne reaction, except at high temperatures (T > 1.2 GK) where both
rates become comparable. However, even at T > 1.2 GK, the 17F(α,p)20Ne re-
action will play a role only in the extreme case when the helium mass fraction
substantially exceeds the hydrogen mass fraction (X4He/M4He > XH/MH).
For the considerations of the present section, none of these alternative break-
out sequences are of importance.

Next, consider Fig. 5.34b showing the temperature–density conditions for
the competition between β+-decay and nuclear reaction for those nuclides
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Fig. 5.34 (a) Rates that are part of the
three breakout sequences versus tem-
perature. For a better comparison, the
values NA〈σv〉 are normalized to the
rate of the 16O(p,γ)17F reaction. Rates for
the 14O(α,γ)18Ne and 17F(α,p)20Ne reac-
tions are also shown for comparison, but
are negligible in the present context. (b)
Temperature–density conditions for the com-
petition between β+-decay and nuclear
reaction for unstable nuclides that partici-
pate in the three breakout sequences (solid
and dashed lines). The β+-decay domi-

nates in the region to the left of a solid or
dashed line, while on the right-hand side
the competing proton- or α-particle-induced
reaction is more likely to occur. The dotted
line shows the conditions at which the decay
constants for the competing 17F(p,γ)18Ne
and 17F(γ,p)16O reactions are of equal mag-
nitude. The 17F(p,γ)18Ne reaction dominates
on the left-hand side of the dotted curve,
while on the right-hand side, the 17F(γ,p)16O
reaction is more likely to occur. All curves
are calculated assuming XH = 0.7 and
X4He = 0.3.

that participate in the three breakout sequences. The solid and dashed curves
represent T–ρ conditions for which the decay constants (or mean lifetimes) of
the two competing processes are of equal magnitude, λ1(0) = λβ(0). They are
calculated from the expression (see Eq. (5.73))

ρ =
ln 2

T1/2(0)(X1/M1)NA〈σv〉01
(5.116)

with 0 the nuclide of interest and 1 denoting either hydrogen or helium, de-
pending on the type of reaction. The relevant β+-decay half-lives are given
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by T1/2(14O) = 70.61 s, T1/2(15O) = 122.24 s, T1/2(17F) = 64.49 s, T1/2(18Ne) =
1.67 s, and T1/2(19Ne) = 17.22 s (Audi et al. 2003). The β+-decay dominates
in the region to the left of a solid or dashed line, while on the right-hand side
the competing proton- or α-particle-induced reaction is more likely to occur.
Furthermore, the dotted line in Fig. 5.34b shows the T–ρ conditions at which
the decay constants for the competing 17F(p,γ)18Ne and 17F(γ,p)16O reactions
are of equal magnitude, λp(17F) = λγ(17F). The dotted line is obtained from
the expression (see Eqs. (3.23) and (3.45))

ρ = 9.8685 × 109T3/2
9

(2j16O + 1)(2jp + 1)
(2j17F + 1)

(
Gnorm

16O Gnorm
p

Gnorm
17F

)(
M16OMH

M17F

)3/2

×
(

XH

MH

)−1

e
−11.605Q16O(p,γ)/T9

NA〈σv〉16O(p,γ)

NA〈σv〉17 F(p,γ)
(5.117)

with Q16O(p,γ) = 0.600 MeV. The 17F(p,γ)18Ne reaction dominates on the left-
hand side of the dotted curve, while on the right-hand side the competing
17F(γ,p)16O reaction is faster. All the curves in Fig. 5.34b are calculated by
using the values of XH = 0.7 and X4He = 0.3. For the following considerations,
it is assumed that 14O and 15O are the most abundant CNO nuclei as a result
of prior HCNO cycle operation (Section 5.2.1). A density of ρ = 104 g/cm3 is
chosen as a representative value and we are particularly interested in the fate
of 14O and 15O when the temperature is slowly increased.

First, consider only breakout sequence 1 (the two solid curves in Fig. 5.34b).
We start at T ≈ 0.1 GK, where the HCNO cycles operate (Fig. 5.21), and
slowly increase the temperature. The line corresponding to the condition
τp(19Ne) = τβ(19Ne) is crossed at T = 0.23 GK. Beyond this temperature,
the 19Ne(p,γ)20Na reaction becomes more likely than the competing 19Ne β+-
decay. However, no breakout from the hot CNO cycles occurs yet because
the 15O β+-decay still dominates over the competing 15O(α,γ)19Ne reaction
[τα(15O) > τβ(15O)]. Further increasing the temperature, the line correspond-
ing to the condition τα(15O) = τβ(15O) is crossed at T ≈ 0.46 GK. Beyond
this temperature, 15O nuclei are lost from the HCNO cycles as a result of the
operation of the breakout sequence 1.

Next, the breakout sequences 2 and 3 (dashed and dotted lines in Fig. 5.34b)
will be discussed. For T > 0.18 GK, the nuclide 17F is preferentially de-
stroyed by the (p,γ) reaction rather than by β+-decay (that is, the HCNO3
cycle starts to operate beyond T ≈ 0.18 GK; see Fig. 5.22b). Increasing the
temperature, we cross the line corresponding to the condition τα(14O) =
τβ(14O) at T ≈ 0.43 GK. Beyond this point the 14O(α,p)17F reaction domi-
nates over the competing 14O β+-decay. Although the breakout sequences
2 and 3 do not operate yet, the 14O(α,p)17F reaction is already important
at this stage because it provides an additional link between the HCNO1
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and HCNO3 cycles (Fig. 5.20). In other words, 14O is converted to 15O
via the sequence 14O(α,p)17F(p,γ)18Ne(β+ν)18F(p,α)15O. Consequently, at T >
0.46 GK the 14O(α,p)17F reaction increases the fraction of CNO nuclei that is
lost through breakout sequence 1. Further increasing the temperature, we next
cross the dotted line, which is defined by the condition τp(17F) = τγ(17F), at T
≈ 0.5 GK. For T > 0.5 GK, 17F is preferentially destroyed by the (γ,p) reaction
and one is tempted to assume that the breakout sequence 3 starts to operate
at this point. This is not the case, however, since the subsequent breakout re-
action 16O(α,γ)20Ne is much slower than the competing 16O(p,γ)17F reaction
(Fig. 5.34a). The low Q-value of the 16O(p,γ)17F reaction (Q = 0.600 MeV) en-
sures that an equilibrium is quickly established between the abundances of
17F and 16O. The breakout sequences 2 and 3 must then proceed from these
equilibrium abundances. For example, the rate at which 14O nuclei are lost
from the HCNO cycles through breakout sequence 3 depends on the equilib-
rium number of 16O nuclei, given by the temperature (see Eq. (3.49)), and the
magnitude of the rate for the subsequent 16O(α,γ)20Ne reaction. Therefore,
breakout sequence 3 will become increasingly important for higher temper-
atures. It will be shown in the next subsection that the breakout sequence 3
operates at T > 1.0 GK (for ρ = 104 g/cm3).

Finally, the line corresponding to the condition τα(18Ne) = τβ(18Ne) is
crossed at T ≈ 0.81 GK. Beyond this point the 18Ne(α,p)21Na reaction dom-
inates over the competing 18Ne β+-decay. Consequently, 14O nuclei are lost
from the HCNO cycles as a result of the operation of the breakout sequence 2.
Qualitatively similar results are obtained for other values of the density, al-
though the various lines are crossed at different temperature values.

5.4.2
Network Calculations at Constant Temperature and Density

We will now turn our attention to the nucleosynthesis that results after break-
out from the HCNO cycles has occurred. A representative value of ρ =
104 g/cm3 is again chosen for the density. Numerical network calculations are
performed for three different temperatures (T = 0.5, 1.0, and 1.5 GK) and the
results will be discussed below. In order to account properly for the nuclear
activity at such high temperatures, the network has to be expanded dramat-
ically in size compared to our earlier calculations. It now consists of ≈ 520
nuclides, including all stable and proton-rich β+-unstable (but proton-stable)
nuclei up to the element palladium. Some proton-unstable nuclei are also in-
cluded in order to account for sequential two-proton captures involving nuclei
at and beyond the proton dripline (Section 3.1.6). Neutron-rich β−-unstable
nuclei are not included in the network since they cannot be synthesized via
hydrogen or helium-induced reactions on stable or proton-rich β+-unstable
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nuclei. The different nuclides in the network are linked by ≈ 5500 nuclear
processes, including β+-decays, (p,γ), (p,α), (α,γ) reactions and inverse pro-
cesses such as photodisintegrations, (α,p) reactions, and so on. For the initial
composition, values of X0

H = 0.73, X0
4He = 0.25, X0

14O = 0.01, and X0
15O = 0.01

are assumed. This assumption is consistent with the earlier result that during
the rise to temperatures of T ≥ 0.5 GK, 14O and 15O are the most abundant
products as a result of HCNO cycle operation (Section 5.2.1). The network is
solved numerically until a time of t = 100 s is reached. This is much shorter
compared to our previous network calculations, but it is consistent with the
assumption that stellar explosions at elevated temperatures have rather short
durations.

Since there are so many different nuclear processes taking part in the nucle-
osynthesis, it is useful to visualize the nucleosynthesis paths by introducing
a quantity called the time-integrated net abundance flow between two specific
nuclei i and j,

Fij =
∫

fij dt =
∫ [(dNi

dt

)

i→j
−
(

dNj

dt

)

j→i

]

dt (5.118)

with (dNi/dt)i→j the partial rate of change of the number density Ni induced
by all processes converting nucleus i to j (Section 3.1.3). For example, if we
are interested in the nuclear activity due to transformations between 24Mg
and 25Al (Fig. 3.4), then we only need to take into account the 24Mg(p,γ)25Al
capture reaction and the (reverse) 25Al(γ,p)24Mg photodisintegration. Hence

F24 Mg25 Al =
∫ [(d24Mg

dt

)

24Mg(p,γ)
−
(

d25Al
dt

)

25Al(γ,p)

]

dt (5.119)

Large values of Fij indicate an enhanced nuclear activity between two species
and, therefore, help in identifying important links. It is of advantage to ex-
press Eqs. (5.118) and (5.119) in terms of mole fractions, Yi = Ni/(ρNA), rather
than number densities, Ni, if the density ρ changes during the nucleosynthe-
sis. Variations in Yi (or Xi) are independent of density and reflect only nuclear
transformations, as pointed out in Section 1.5.4. In this and the following sec-
tions we will mostly consider net abundance flows that are integrated over the
entire duration of the network calculation. Such flows represent gross proper-
ties of the nucleosynthesis, but do not reveal details at any particular instant
in time. Nevertheless, they are very useful for providing an overview over the
nucleosynthesis.

In the A ≤ 40 mass range, we adopt for the majority of reactions the exper-
imental rates of Angulo et al. (1999) and Iliadis et al. (2001). Above A = 40,
however, very few nuclear reactions have been measured directly or indi-
rectly. For most reactions in the latter mass region, there is no alternative
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but to use theoretically estimated reaction rates. The 56Ni(p,γ)57Cu reaction
represents an exception (see below). We will adopt in the A > 40 range theo-
retical rates that are calculated by using the Hauser–Feshbach statistical model
of nuclear reactions (Section 2.7). This is the first nucleosynthesis scenario we
encounter that employs theoretical rather than experimental rates for the vast
majority of reactions in the network. It must be emphasized that, except in
special cases like p(p,e+ν)d, reaction rates based on theory carry much larger
uncertainties compared to rates based on experimental input. It is frequently
even difficult to assign a value to the uncertainty of a specific theoretical reac-
tion rate.

Before discussing the results of the reaction network calculations, it is
instructive to consider Fig. 5.35, showing the chart of the nuclides from
Sc (Z = 21) to Sr (Z = 38). The heavy solid line represents the proton dripline.
Nuclides that are shaded grey are β+-unstable and have half-lives in excess of
T1/2 ≈ 10 s. All other nuclides shown have half-lives of less than T1/2 ≈ 3 s.
In general, we expect the nucleosynthesis paths to be located somewhere
between the dripline and the group of grey shaded nuclei, with the exact loca-
tions determined by the relative probability of various processes, such as (p,γ)
reactions, photodisintegrations, β+-decays, and so on. If, for some reason, the
abundance flow reaches one of the grey shaded nuclei and can only proceed
via a slow β+-decay, presumably because proton capture is inhibited, then the
nucleosynthesis will be significantly delayed, or in extreme cases, may halt
altogether. The most obvious reason for an inhibited proton capture is a small
Qpγ-value since the reverse photodisintegration process will then quickly
remove the proton that was just added to the target nucleus. Nuclei with
negative or small positive Qpγ-values and relatively long β+-decay half-lives
are referred to as waiting point nuclei and are marked by circles in Fig. 5.35.

Interestingly, the proton dripline runs very close to the group of grey shaded
nuclei in the Ge–Rb mass region. In particular, the abundance flow must pass
through the potential waiting point nuclei 64Ge, 68Se, 72Kr, and 76Sr (T1/2 =
64, 36, 17, and 9 s, respectively). Their slow β+-decays may, however, be
bypassed via sequential two-proton captures. For example, the negative Q-
value for 64Ge(p,γ)65As ensures that an equilibrium is quickly established be-
tween 64Ge and 65As. The relative probability of the two alternative paths,
64Ge(β+ν)64Ga and 64Ge(p,γ)65As(p,γ)66Se, will then depend on the magni-
tude of the quantities T1/2(64Ge), ρ exp[Q64Ge(p,γ)/kT], and NA〈σv〉65As(p,γ),
as explained in Section 3.1.6. For the following reaction network calculations,
all reverse (γ,p) reaction rates are calculated from experimental or theoreti-
cal forward (p,γ) rates by using Qpγ-values from Audi, Wapstra and Thibault
(2003).

For nuclides marked with a solid triangle in Fig. 5.35, both the (p,γ) and
the (p,α) reaction channels are open (Qpγ > 0 and Qpα > 0). At elevated
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Fig. 5.35 Section of the chart of the nu-
clides between Sc (Z = 21) and Sr (Z = 38)
on the proton-rich side of the stability valley.
The proton dripline according to Audi, Wap-
stra and Thibault (2003) is marked by a thick
solid line. All displayed nuclides are unsta-
ble. Those represented by shaded squares
have half-lives in excess of T1/2 ≈ 10 s,

while all other nuclides have half-lives of
less than T1/2 ≈ 3 s. Nuclides with negative
or small positive Qpγ-values and relatively
long β+-decay half-lives are marked by
circles (waiting point nuclei). The solid tri-
angles indicate nuclides for which both the
(p,γ) and (p,α) reaction channels are open.

temperatures, (p,α) reactions play a much smaller role due to the increasing
Coulomb barrier in the A > 40 mass region compared to the CNO range where
they give rise to reaction cycles. Consider the 71Br(p,α)68Se reaction (Qpα =
2020 keV) as an example. At T = 1.5 GK, the Gamow peak is located at E0
= 1700 keV. Furthermore, suppose that a fictitious resonance is located in the
middle of the Gamow peak, Er ≈ E0. Reaction α-particles from the decay
of this resonance have energies of Eα = Er + Qpα ≈ 3720 keV. For an orbital
angular momentum of �α = 0, the single-particle α-width amounts to a value
of Γ

68Se+α
�α=0 (Eα = 3720 keV) ≈ 10−5 eV. This is smaller than typical γ-ray partial

widths and, hence, we find Γγ  Γα or Bpα/pγ � 1. On the other hand, at
very high temperatures T ≥ 2 GK, the α-particle widths Γα increase and may
become comparable to, or even exceed, typical values of Γγ.

Nucleosynthesis at T = 0.5 GK, ρ = 104 g/cm3, and t = 100 s

Net abundance flows, integrated over a time of t = 100 s, are displayed in
Fig. 5.36. Major flows (those with Fmax ≥ Fij > 0.1Fmax) are shown as thick
solid arrows, while minor flows (0.1Fmax ≥ Fij > 0.01Fmax) are indicated as
thin solid arrows. The direction of the arrows corresponds to the direction
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of the abundance flows. The heavy solid line represents the proton dripline,
while stable nuclides are shown as shaded squares. Under these conditions,
the breakout from the HCNO cycles proceeds via 15O(α,γ)19Ne(p,γ)20Na (se-
quence 1; Fig. 5.33). After the initiation of breakout, sequences of (p,γ) reac-
tions and β+-decays transform CNO nuclei within t = 100 s to the Fe–Co re-
gion. The resulting network is referred to as the r(apid)p(roton capture)-process
(Wallace and Woosley 1981). Recall that the amount of energy generated by
the HCNO cycles is independent of temperature since it is limited by the slow
14O and 15O β+-decays (beyond a certain value of temperature and for a given
composition; see Fig. 5.24). The rp-process is important since it circumvents
these slow β+-decays. It will be shown below that the processing of CNO
seeds to much heavier nuclei can lead to a significantly larger energy genera-
tion rate than given by the HCNO cycles alone.

The most likely nucleosynthesis path in the rp-process is defined by the
competition between β+-decays, (p,γ), and (γ,p) reactions. During explosive
burning, a specific nucleus will add progressively more protons. With each
proton addition, a nucleus is synthesized that is located closer to the proton
dripline. Eventually an isotope is reached that β+-decays rather than under-
going another proton capture. The process of proton addition and β+-decay
repeats itself until the end of the network calculation. Why does the probabil-
ity of β+-decay increase compared to proton capture when the proton dripline
is approached? First, by approaching the proton dripline for a fixed neu-
tron number, one moves away from the valley of stability and, therefore, the
β+-decay half-lives become progressively shorter. Eventually, a β+-decay be-
comes more likely than another proton capture, that is, λβ > λpγ. Second, nu-
clei right at the proton dripline have, per definition, negative Q-values, while
some (but not the majority of) nuclei close to the dripline have small positive
Q-values. In either case, photodisintegration will inhibit the addition of an-
other proton. The nucleosynthesis must then proceed with a β+-decay, even
if the condition λβ < λpγ applies.

It can also be seen that below Ti the nucleosynthesis path reaches a number
of nuclei that are located right at the proton dripline (24Si, 29S, 33Ar, 37Ca, 38Ca,
41Ti, and so on). Above Ti, however, the major abundance flows do not reach
the dripline anymore. This is a consequence of decreasing proton capture rates
as the Coulomb barrier increases. The interplay of β+-decays, (p,γ), and (γ,p)
reactions near 30S is addressed in Problem 5.3. See also Example 3.3.

The evolution of the most abundant nuclides is shown in Fig. 5.37a. Only
a small amount of hydrogen is consumed over a period of t = 100 s. The
protons are used to produce heavier nuclei via capture reactions, while
the fusion of protons to helium via reaction cycles plays only a minor role
under these burning conditions. Hence, the helium abundance stays con-
stant. The 15O abundance increases until about t = 20 s due to the oper-
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ation of the 14O(α,p)17F(p,γ)18Ne(β+ν)18F(p,α)15O sequence. Around this
time, a significant fraction of material breaks out of the CNO region via the
15O(α,γ)19Ne(p,γ)20Na sequence. The abundance flow quickly reaches the
A ≈ 50 region. The most abundant nuclides at the end of the calculation in
the A > 20 region are 52Fe, 56Ni, and 55Co. These nuclides have long labora-
tory β+-decay half-lives (T1/2 = 8.3 h, 6.1 d and 17.5 h, respectively), although
their stellar β+-decay half-lives are expected to be somewhat smaller (Sec-
tion 1.8.4). At the same time, their proton-capture rates are relatively small,
yielding mean lifetimes of τpγ = 120 s, 24 s, and 14 s, respectively, for the
burning conditions adopted here. The latter values are significant in magni-
tude compared to the total burning time and, therefore, these three nuclides
represent endpoints for the nucleosynthesis.

Nucleosynthesis at T = 1.0 GK, ρ = 104 g/cm3, and t = 100 s

Flows and time evolutions of the most abundant species are displayed in
Figs. 5.36 and 5.37b. The hydrogen abundance declines slightly with pro-
gressing time whereas the 4He abundance stays almost constant. The break-
out from the CNO mass region proceeds through both the sequence 1 and
sequence 2 (Fig. 5.33). In fact, 14O and 15O are transformed so fast (within a
fraction of a second) to 21Na and 20Na, respectively, that the operation of the
HCNO cycles is not discernible anymore in Fig. 5.36. At this higher temper-
ature, the proton capture rates become much faster and, consequently, nuclei
up to the A ≈ 80 region are synthesized via the rp-process. Compared to the
previous case, the abundance flow reaches the dripline at a number of loca-
tions over the entire mass region shown. All the material initially in the form
of 14O and 15O is converted to heavier mass nuclei, with 60Zn, 64Ge, and 68Se
being the most abundant nuclei in the A > 20 region at the end of the calcula-
tion.

It is apparent from Fig. 5.36 that the network of nuclear processes is quite
complex. However, it should be pointed out that the time scale of the nu-
cleosynthesis is mainly determined by processes involving only a handful of
waiting point nuclei: 22Mg, 26Si, 30S, 34Ar, 56Ni, 60Zn, 64Ge, and 68Se. What
these nuclei have in common are relatively long β+-decay half-lives and small
Qpγ-values (between −450 keV for 68Se and 861 keV for 26Si). In fact, their
Qpγ-values are so small that the proton-capture rate is much smaller than the
reverse photodisintegration rate. Hence, photodisintegration will inhibit the
proton capture reaction and the abundance flow is significantly delayed. The
abundance of each waiting point nucleus increases until some maximum is
reached. Eventually the abundance flow continues via a β+-decay (although
the competing (α,p) and (p,γ) reactions are also important for 22Mg and 26Si,
respectively) until the next waiting point nucleus reached. The isotope 60Zn
has the largest abundance, apart from hydrogen and helium, at the end of the
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Fig. 5.36 Results of numerical reaction net-
work calculations for hydrogen–helium burn-
ing at a constant temperature of T = 0.5 GK
(top), 1.0 GK (middle) and 1.5 GK (bottom).
The same constant density (ρ = 104 g/cm3)
and initial composition (see text) is used
in the calculations. The reaction network
consists of all nuclides shown as squares.
The arrows represent net (forward minus re-
verse) abundance flows, integrated over the
entire computation time of t = 100 s. Thick
arrows show the strongest time-integrated
net flows, Fmax ≥ Fij > 0.1Fmax, where

Fmax corresponds to the reaction with the
maximum net flow. Thin arrows represent
flows that are weaker by an order of mag-
nitude (0.1Fmax ≥ Fij > 0.01Fmax). The
key indicates the type of reaction repre-
sented by a specific arrow. The heavy solid
line marks the proton dripline (Audi, Wap-
stra and Thibault 2003). Stable nuclides
are shown as shaded squares. A particular
nuclide can be identified from the element
symbol (vertical axis) and neutron number
(horizontal axis).

calculation because it possesses the longest half-life (T1/2 = 2.4 min) among the
heaviest waiting point nuclei (Fig. 5.35). The nucleus 56Ni represents an excep-
tion. Since its half-life is so long compared to the burning time, the flow must
continue exclusively via the (p,γ) reaction. This case is discussed in detail be-
low. It can be seen in Fig. 5.37b that it takes about 10 s until 60Zn becomes
the most abundant isotope. This time is approximately equal to the sum of
the mean lifetimes of the waiting point nuclei below 60Zn. For t ≥ 40 s, the
abundances of 22Mg, 26Si, 30S, 34Ar, and 56Ni stay constant. This is caused by
the operation of the 3α reaction as the abundance flows between 4He and 56Ni
attain equilibrium.

Nucleosynthesis at T = 1.5 GK, ρ = 104 g/cm3, and t = 100 s

Results of a network calculation at this higher temperature are shown in
Figs. 5.36 and 5.37c. The hydrogen and helium abundances are almost con-
stant over the duration of the burning. It can be seen that all three breakout
sequences operate under these conditions (Fig. 5.33). Once breakout from the
A ≤ 20 region is initiated, the abundance flow initially follows two sequences
of (α,p) and (p,γ) reactions,

20Na(p, γ)21Mg(α, p)24Al(p, γ)25Si(α, p)28P (5.120)
21Na(p, γ)22Mg(α, p)25Al(p, γ)26Si(α, p)29P(p, γ)30S(α, p)33Cl (5.121)

This part of the network is referred to as the αp-process (Wallace and Woosley
1981). In the previously discussed network calculation, the abundance flow
in the A ≤ 30 region had to wait for slow β+-decays of waiting point nuclei
since photodisintegration impeded further proton captures. Therefore, the
mean lifetime of the waiting point nuclei, and hence the overall time scale
of the nucleosynthesis in this mass region, was independent of temperature
and density. The significance of the αp-process lies in the fact that it bypasses
the slow β+-decays. The nucleosynthesis in the A ≤ 33 region becomes now
sensitive to temperature and, consequently, the burning of hydrogen and he-
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Fig. 5.37 Abundance evolutions during hydrogen–helium burning at
a constant temperature of (a) T = 0.5 GK, (b) T = 1.0 GK, and (c) T
= 1.5 GK. The same constant density (ρ = 104 g/cm3) and initial com-
position is used in all the three cases. The results are extracted from
the same numerical reaction network calculations that are displayed in
Fig. 5.36.

lium proceeds at an accelerated pace and larger energy generation rates can be
achieved. For the burning conditions adopted here, the αp-process switches
to the rp-process above mass A = 33 where the Coulomb barrier impedes re-
actions induced by α-particles.
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The most important waiting point nuclei are 34Ar, 39Ca, 56Ni, and 60Zn.
In each case, with the exception of 56Ni, the reverse photodisintegration rate
dominates over the forward rate and the abundance flow must proceed via a
slow β+-decay. At the end of the calculation the most abundant nuclei, besides
hydrogen and helium, are 56Ni, 60Zn, and 64Ge. The large final abundance of
56Ni is striking, especially when compared to the previous calculation where
only a small 56Ni abundance was left over at t = 100 s. Related to this observa-
tion is the fact that the main abundance flow extends only to 60Zn, whereas in
the previous calculation at T = 1.0 GK the main flow reached much farther (to
68Se; see Fig. 5.36). This issue will be discussed in detail below. It is also appar-
ent that for t ≥ 20 s the abundances of 30S, 34Ar, 39Ca, and 56Ni stay constant
because of the operation of the 3α reaction (see discussion at T = 1.0 GK).

It should be pointed out that the nucleosynthesis in the A ≥ 20 region
depends neither on the precise values for the rates nor the identity of the
breakout reactions. If we would remove entirely the reactions 19N(p,γ)20Na,
18Ne(α,p)21Na, and 16O(α,γ)20Ne from the network, that is, those reac-
tions which complete the breakout sequences shown in Fig. 5.33, then the
A < 20 and A ≥ 20 regions would be bridged by slower reactions, such
as 19Ne(α,p)22Na, 19Ne(α,γ)23Mg, 18Ne(α,γ)22Mg and 17F(α,p)20Ne, and the
abundance evolutions in the A ≥ 20 region would closely resemble the results
shown in Figs. 5.37b and c.

The 56Ni bottleneck

To understand why the abundance flow is significantly delayed at 56Ni, we
need to consider the unique nuclear properties of this waiting point nucleus.
It has a relatively long half-life of T1/2 = 6.1 d in the laboratory and decays
with 100% probability by electron capture. At elevated temperatures and den-
sities, the β-decay half-life will change somewhat (Section 1.8.4; see also Fuller,
Fowler and Newman 1982). Values of Qpγ and T1/2 for nuclei in the vicinity
of 56Ni are given in Fig. 5.38a. The Q-value for the 56Ni(p,γ)57Cu reaction
amounts to only Qpγ = 695 keV. The subsequent 57Cu(p,γ)58Zn reaction has a
Q-value of Qpγ = 2280 keV. At a density of ρ = 104 g/cm3, the abundance flows
will pass through the 56Ni(p,γ)57Cu reaction (Fig. 5.36). We are interested in
the effective mean lifetime (or decay constant) of 56Ni. For temperatures be-
low T = 0.77 GK, the photodisintegration of 57Cu is less likely to occur than
the competing β+-decay of 57Cu, that is, λ57Cu(γ,p) < λ57Cu(β+ν), as can be cal-
culated from numerical values of NA〈σv〉56Ni(p,γ) and T1/2(57Cu) (Fig 5.38a).
Since photodisintegration plays only a minor role in this temperature range,
we obtain the effective mean lifetime of 56Ni, τeff = 1/λeff, simply from (see
Eq. (3.23))

λeff(56Ni) = ρ
XH

MH
NA〈σv〉56Ni(p,γ) (5.122)
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Values of the effective mean lifetime are plotted in Fig. 5.38b versus tem-
perature for ρ = 104 g/cm3 and XH = 0.73. At T = 0.4 GK, we obtain
τeff(56Ni) = 185 s. This value is much shorter than the laboratory lifetime
of 56Ni, but is large compared to typical macroscopic explosion time scales
(t ≤ 100 s). The 56Ni(p,γ)57Cu reaction rate increases for higher tempera-
tures and thus the effective mean lifetime decreases. For example, at T =
0.77 GK, one obtains a value of τeff(56Ni) = 1.7 s. At temperatures of T =
0.77–1.27 GK, the photodisintegration of 57Cu cannot be neglected anymore.
In fact, the 57Cu(γ,p)56Ni reaction is now faster than the competing processes
57Cu(p,γ)58Zn and 57Cu(β+ν)57Ni [λ57Cu(γ,p) > λ57Cu(p,γ) + λ57Cu(β+ν)]. The
conditions of Eqs. (3.55) and (3.56) are fulfilled and, consequently, the abun-
dances of 56Ni and 57Cu quickly achieve equilibrium. The effective mean
lifetime of 56Ni is then given by Eq. (3.61),

λeff(56Ni) =
λ56Ni(p,γ)

λ57Cu(γ,p)
[λ57Cu(p,γ) + λ57Cu(β+ν)] (5.123)

As the temperature increases from 0.77 to 1.27 GK, the ratio of decay con-
stants in Eq. (5.123) becomes smaller (see Eq. (3.61)). Simultaneously, the
57Cu(p,γ)58Zn reaction rate increases and, as a result, the effective mean
lifetime is approximately constant, τeff(56Ni) ≈ 3.0 s (Fig. 5.38b). The use
of Eq. (5.123) implies that the photodisintegration of 58Zn plays a minor
role compared to the decay 58Zn(β+ν)58Cu (see condition λC→C′ > λC→B;
Section 3.1.6). At temperatures in excess of T = 1.27 GK, however, the
58Zn(γ,p)57Cu reaction becomes faster than the competing β+-decay of 58Zn.
Furthermore, the 57Cu(p,γ)58Zn reaction is faster than the competing β+-
decay 57Cu(β+ν)57Ni. For these conditions, the abundances of 56Ni, 57Cu, and
58Zn achieve quickly equilibrium. The effective mean lifetime of 56Ni is then
obtained from (Problem 3.1)

λeff(56Ni) =
λ56Ni(p,γ)

λ57Cu(γ,p)

(
λ57Cu(p,γ)

λ58Zn(γ,p)
λ58Zn(β+ν) + λ57Cu(β+ν)

)

(5.124)

The decay constants for the two β+-decays are constant with temperature,
but both ratios of decay constants for forward and reverse reaction are pro-
portional to eQi/kT and hence decrease rapidly with increasing temperature
values. Therefore, the effective mean lifetime of 56Ni increases steeply beyond
T = 1.27 GK, as can be seen in Fig. 5.38b. For example, one obtains τeff(56Ni) ≈
246 s at T = 1.5 GK. It is interesting that a window exists at intermediate tem-
peratures (T = 0.77–1.27 GK) where 56Ni does not represent a major waiting
point. Consequently, the abundance flow reaches far beyond the Ni region in
the middle panel of Fig. 5.36. At lower and higher temperatures, the Coulomb
barrier of 56Ni + p and two sequential photodisintegration reactions, respec-
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Fig. 5.38 (a) Section of the chart of nu-
clides in the vicinity of the bottleneck 56Ni.
Nuclides that eventually may reach equilib-
rium are shown as shaded squares. Values
of Qpγ (left-hand side) and T1/2 (right-hand
side) are adopted from Audi, Wapstra and
Thibault (2003) and Audi et al. (2003), re-

spectively. (b) Effective mean lifetime of 56Ni
versus temperature for the conditions ρ =
104 g/cm3 and XH = 0.73. A window exists
at intermediate temperatures (T = 0.77–
1.27 GK) where 56Ni does not represent a
major waiting point for the abundance flow.
See the text.

tively, are responsible for a substantial increase in the value of τeff(56Ni) and
the abundance flow does not reach as far (Fig. 5.36; top and bottom panels).

Energy generation

The rp- and αp-processes generate energy in a completely different manner
compared to the HCNO cycles. The former processes consist of sequences of
capture reactions and β+-decays. Note that an (α,p) reaction followed by (p,γ)
has the same product as a single (α,γ) reaction. Reaction cycles play only a mi-
nor role, and, therefore, none of the nuclides involved in the nucleosynthesis
will act as catalysts. Energy is generated not by the fusion of four protons
to one 4He nucleus, but by using protons and α-particles to build up heavier
nuclides starting from CNO seed nuclei. Also, at these higher temperatures,
the 3α reaction operates and supplies a fraction of the CNO seeds. The energy
generation rate is sensitive to the total mass fraction of CNO seed nuclei and
the initial hydrogen-to-helium abundance ratio (X0

H/X0
4He), but is relatively

insensitive to the exact initial CNO composition or the manner by which the
breakout from the CNO region proceeds.

Energy generation rates for the previously discussed network calculations
at T = 0.5, 1.0, and 1.5 GK are shown in Fig. 5.39. The density (ρ = 104 g/cm3)
and initial composition are the same for each calculation. The solid lines
are obtained with the full reaction network. The final hydrogen abundances
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amount to XH = 0.70, 0.67 and 0.69 at T = 0.5, 1.0, and 1.5 GK, respectively.
The main abundance flow eventually reaches the waiting point nucleus 52Fe
(T = 0.5 GK), 60Zn (T = 1.0 GK), or 56Ni (T = 1.5 GK). The flow slows signifi-
cantly down and material accumulates at the waiting point nucleus (Fig. 5.37).
As a result, the energy generation rate drops, giving rise to the broad maxima
displayed in Fig. 5.39. Furthermore, the higher the temperature the faster the
CNO seed nuclei are transformed to the final, most abundant, waiting point
nucleus. As a result, the maximum in the energy generation rate occurs at
earlier times (tpeak = 33, 7.0, and 4.3 s at T = 0.5, 1.0, and 1.5 GK, respectively).
The dashed lines in Fig. 5.39 correspond to the energy generation rate if the
reaction rates of all possible breakout processes are set equal to zero so that
the HCNO cycles and the 3α reaction are the sole sources of nuclear energy.
It is apparent that the rp- and αp-processes enhance the energy generation
rate substantially. For T = 0.5, 1.0, and 1.5 GK, the maximum enhancement
amounts to a factor of 6, 33, and 25, respectively.

If one would repeat the above calculations at T = 1.0 or 1.5 GK by setting
all initial CNO abundances equal to zero, then the nucleosynthesis must start
with the 3α reaction. The newly created CNO nuclei are the seeds for the sub-
sequent rp- and αp-processes and the resulting abundance flow patterns in the
A ≥ 20 region would closely resemble those shown in the middle and bottom
panels of Fig. 5.36. Eventually, the energy generation rate will stay constant
with time as the abundance flows between 4He, 56Ni, and heavier nuclei attain
equilibrium. Of course, the energy generation rate would be much smaller in
magnitude compared to the results shown as solid lines in Fig. 5.39.

For more information on the rp- or αp-processes at constant temperature
and density conditions see, for example, Schatz et al. (1998).

5.4.3
Nucleosynthesis for Temperature–Density Profiles

We will now consider the more realistic situation of changing temperature and
density during the nucleosynthesis. Type I X-ray bursts (Section 1.4.4) repre-
sent examples for explosive (thermally unstable) hydrogen–helium burning
at temperatures in excess of T = 0.5 GK. Figure 5.40 shows a temperature and
density profile that is similar to those obtained in stellar model studies of a
thermonuclear runaway caused by the accretion of hydrogen and helium onto
the surface of a 1.3 M� neutron star with a radius of 8 km (Koike et al. 2004).
The curves represent the temperature and density evolutions in the hottest
nuclear burning zone. In this particular example, the nuclear burning starts
with temperature and density values of T = 0.4 GK and ρ = 106 g/cm3. At
t = 4 s, a maximum temperature of Tpeak = 1.36 GK and a minimum density of
ρpeak = 5 × 105 g/cm3 are achieved. After t = 100 s, the temperature has fallen
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Fig. 5.39 Evolution of energy generation
rate during hydrogen–helium burning at a
constant temperature of (a) T = 0.5 GK and
(b) T = 1.0 GK. The same constant den-
sity (ρ = 104 g/cm3) and initial composition
is used in each case. The results are ex-
tracted from the same numerical reaction
network calculations that are displayed in
Fig. 5.36. Results for T = 1.5 GK are very

similar to those shown in part (b) and are
not displayed in the figure. The solid lines
are obtained with the full reaction network.
The dashed lines correspond to the energy
generation rate if the reaction rates of all
possible breakout processes are set equal
to zero so that the HCNO cycles and the
3α reaction are the sole sources of nuclear
energy generation.

to T = 0.7 GK and the density increased to ρ = 1.4 × 106 g/cm3. The density
is about two orders of magnitude larger compared to the constant value as-
sumed in the previous section. Recall that the forward reaction rates depend
on the density, but the photodisintegration rates are independent of ρ (see
Eqs. (3.23) and (3.45)). The reaction network is solved numerically by using
this T–ρ profile. For the initial composition, values of X0

H = 0.73, X0
4He = 0.25,

X0
14O = X0

15O = 0.01 are assumed. The network calculation is terminated after
t = 100 s.

The major abundance flows extend from helium all the way up to the
end of the network (palladium), as can be seen from Fig. 5.40. Break-
out from the CNO mass region proceeds via sequences 1 and 2 (Fig. 5.33).
The latter sequence is more important since the 14O abundance is fed by
α(2α)12C(p,γ)13N(p,γ)14O. After breakout, matter is processed via the αp-
process (below the chlorine region) and the rp-process. The abundance flow
reaches the dripline at many locations over the entire mass region shown. The
major flow then has to wait in most cases for a β+-decay before continuing.
The waiting point nuclei 64Ge, 68Se, 72Kr, and 76Sr represent interesting cases.
Their Qpγ-values are predicted to be negative (Audi, Wapstra and Thibault
2003) while their half-lives amount to T1/2 = 64 s, 36 s, 17 s, and 9 s, re-
spectively. It can be seen that at 64Ge the major flow continues via sequential
two-proton capture instead of the very slow β+-decay which otherwise would
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terminate the nucleosynthesis. For the other three waiting point nuclei, the
β+-decay is more likely to occur, for the conditions assumed here, than the
competing sequential two-proton capture. Hence, the abundance flow will be
delayed significantly and we expect an accumulation of material especially at
68Se and 72Kr toward the end of the calculation.

A significant fraction of 1H and 4He nuclei is consumed during the ther-
monuclear explosion. Their abundances decrease gradually with time until
they reach values of XH = 0.16 and X4He = 0.02 at the end of the calculation.
Figure 5.41a shows the abundance evolution of the most important waiting
point nuclei, that is, for those nuclides that are most abundant at any given
time. It is evident how the flow reaches nuclei such as 18Ne, 24Si, 25Si, and
so on, in sequence. In each case, the abundance flow is delayed by a slow
process that consumes the waiting point nucleus (for example, the (α,p) reac-
tion on 18Ne; β+-decays of 24Si, 25Si, and so on; sequential two-proton cap-
tures on 64Ge). As a result, the abundance of a particular waiting point nu-
cleus increases until a maximum is reached and then decreases with time. At
t = 4 s, when the peak temperature is attained, the most abundant nuclei (be-
sides 1H and 4He) are 60Zn, 55Ni, 38Ca, 59Zn, and 64Ge, with similar mass
fractions of X ≈ 0.03. Note that 56Ni is not a major waiting point nucleus.
For the densities adopted here, one finds from Eq. (5.124) a mean lifetime of
only τeff(56Ni) = 0.02 s. Therefore, the 56Ni abundance stays relatively small
throughout the calculation. Also, 56Ni cannot be bypassed via the sequence
55Ni(p,γ)56Cu(p,γ)57Zn, as is sometimes erroneously assumed (Forstner et al.
2001), since 57Zn decays preferentially (Audi et al. 2003) by β-delayed pro-
ton emission [57Zn(β+νp)56Ni] rather than by β+-decay [57Zn(β+ν)57Cu]. At
t = 10 s, 68Se has by far the largest abundance (X68Se = 0.35) among all nuclides
except 1H since the abundance flow must wait for its slow β+-decay, as noted
earlier. With progressing time, 68Se is slowly depleted and the abundances
of a number of nuclides in the A > 68 region are building up. At t = 100 s,
the most abundant nuclides (besides 1H) are 68Se, 72Kr, 76Sr, and 64Ge. These
nuclei will quickly decay to 68Ge (T1/2 = 271 d), 72Se (T1/2 = 8.4 d), 76Kr (T1/2
= 14.8 h), and 64Zn (stable), respectively, after the thermonuclear explosion
has ceased. A significant fraction of matter (ΣXi = 0.20) has been converted to
nuclei in the Zr–Ru mass region. The total mass fraction of nuclides located
at the end of the network (Rh and Pd) amounts to ΣXi = 0.16. This material
would be converted to even heavier nuclei if we would not have truncated
the network artificially. For a discussion of abundance evolutions in the mass
range above Pd, see, for example, Schatz et al. (2001) or Koike et al. (2004).

It is important to point out that the nucleosynthesis in the mass range
A ≥ 64 depends sensitively on the Q-values for the (p,γ) reactions on 64Ge,
68Se, and 72Kr, and on the reaction rates for the (p,γ) reactions on 65As, 69Br,
and 73Rb. Consider the waiting point 64Ge as an example. We adopted a value
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of Qpγ = −80 ± 300 keV (Audi, Wapstra and Thibault 2003) for 64Ge(p,γ)65As
and the 65As(p,γ)66Se reaction rate from Goriely (1998). With these values, the
mean lifetime of 64Ge versus destruction by sequential two-proton capture at
T = 1.34 GK and ρ = 5.9 × 105 g/cm3 (when the 64Ge abundance reaches a
maximum; Fig. 5.41a) amounts to τ2p(64Ge) = 1.5 s. Clearly, two-proton cap-
ture is much more likely to occur than the competing β+-decay [τβ(64Ge) =
T1/2(64Ge)/ ln 2 = 92 s] and the relatively short effective lifetime of 64Ge al-
lows for a significant production of nuclei in the A > 64 range, as discussed
above. Repeating the calculation by using instead a value of Qpγ = −380 keV
yields τ2p(64Ge) = 21 s and 64Ge rather than 68Se would be the most abun-
dant nuclide at the end of the network calculation, with a much-reduced total
abundance of nuclei in the A > 80 range. See also Problem 5.4.

The time evolution of the energy generation rate is displayed in Fig. 5.41b.
Two narrow and two broad maxima are clearly visible. They are correlated
with the abundance evolution of waiting point nuclei. The first narrow max-
imum (t ≈ 0.29 s) is caused by the evolution of 18Ne. Shortly after the 18Ne
abundance increases most rapidly, the flow is temporarily delayed and the
18Ne abundance peaks. Consequently, the energy generation rate decreases,
giving rise to the first maximum. The second (t ≈ 0.33 s) and third (t ≈ 0.74 s)
maxima are similarly caused by the abundance evolutions of 24Si and 29S, re-
spectively. The transformation of the bulk material from 29S to 38Ca via the
rp-process takes only ≈ 1.6 s, while the major abundance flow reaches the
isotope 55Ni after an additional ≈ 1.3 s. Subsequently, matter starts to accu-
mulate at the major waiting point nuclei 64Ge and 68Se. The energy generation
rate decreases and, as a result, the fourth maximum (t ≈ 3.0 s) is produced.

For an extensive investigation of type I X-ray burst nucleosynthesis, see
Woosley et al. (2004). A discussion of thermally stable hydrogen–helium
burning on accreting neutron stars can be found in Schatz et al. (1999). For a
different site of the αp-process (sub-Chandrasekhar white dwarf explosions),
see Goriely et al. (2002).

Experimental nuclear physics information

Among the processes that are part of the breakout sequences (Section 5.4.1 and
Fig. 5.33), the 19Ne(p,γ)20Na and 18Ne(α,p)21Na reactions have been measured
directly using radioactive ion beams (Groombridge et al. 2002, Couder et al.
2004). These difficult experiments provided only partial information, how-
ever, and thus the present errors in the reaction rates amount to 1–2 orders
of magnitude at T = 0.5–1.0 GK (with the larger error at the lower tempera-
ture value). The 14O(α,p)17F reaction rate has been estimated by measuring
the reverse 17F(p,α)14O reaction (Harss et al. 2002, Blackmon et al. 2003), but
the reaction rate errors still amount to orders of magnitude. The 15O(α,γ)19Ne
reaction rate was obtained indirectly by using experimental nuclear structure



470 5 Nuclear Burning Stages and Processes

Fig. 5.40 Time-integrated net abundance
flows during a thermonuclear runaway
caused by the accretion of hydrogen and
helium onto the surface of a 1.3 M� neu-
tron star with a radius of 8 km. The evolution
of temperature and density in the nuclear
burning zone during explosive hydrogen–
helium burning, shown in the inset, is similar
to the result obtained from hydrodynamic

simulations of type I X-ray bursts (Koike et
al. 2004). The reaction network calculation
is terminated after t = 100 s. The arrows,
shaded squares, and thick solid line have
the same meanings as in Fig. 5.36. The
abundance flows are defined here in terms
of mole fractions rather than number densi-
ties since the mass density varies.

information (Davids et al. 2003 and references therein). The current reaction
rate uncertainties at T = 0.5 and 1.0 GK amount to a factors of 280 and 3, re-
spectively. The experimental situations for the 17F(p,γ)18Ne and 16O(α,γ)20Ne
reactions have already been described in Sections 5.2.1 and 5.3.1, respectively.

After breakout from the HCNO cycles has been achieved, a large num-
ber of nuclear processes (several thousand) takes part in the nucleosynthe-
sis (rp- and αp-processes). The nuclear physics information necessary to de-
scribe quantitatively the nuclear burning consists of: (i) reaction Q-values;
(ii) thermonuclear reaction rates; and (iii) β-decay half-lives. Precise Q-values
are especially needed for pairs of nuclei that achieve an equilibrium between
forward and backward reaction at elevated stellar temperatures. For exam-
ple, the Q-value for 56Ni(p,γ)57Cu is known to reasonable precision (Qpγ =
695 ± 19 keV), but the Q-values for the (p,γ) reactions on the waiting point
nuclei 64Ge, 68Se, 72Kr, and 76Sr carry large uncertainties. We adopt here
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Fig. 5.41 Abundance evolutions of the most important waiting point
nuclei, and (b) time evolution of the energy generation rate during
explosive hydrogen–helium burning. The results are extracted from
the same numerical reaction network calculation that is displayed in
Fig. 5.40. The narrow and broad maxima of the energy generation rate
shown in part (b) are correlated with the abundance evolution of the
waiting point nuclei displayed in part (a).

the values of Qpγ = −80 ± 300 keV, −450 ± 100 keV, −600 ± 150 keV, and
−50± 50 keV, respectively. The present errors are substantial, especially since
these Q-values enter exponentially in Eq. (3.62). It should also be pointed
out that the errors quoted above do not represent experimental uncertainties,
but have been derived from systematic trends of measured masses (see Audi,
Wapstra and Thibault 2003 for details). Hence, the true uncertainties are ex-
pected to be somewhat larger than the quoted values. With the exception
of the 21Na(p,γ)22Mg reaction (D’Auria et al. 2004), none of the thermonu-
clear rates for reactions along the rp- or αp-process paths have been measured
directly. Some of the rates have been estimated by using experimental nu-
clear structure information (see, for example, Iliadis et al. 2001 or Forstner
et al. 2001), but the vast majority of reaction rates are based on the Hauser–
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Feshbach statistical model (Rauscher and Thielemann 2000, Goriely 1998). It
must be pointed out that not all the reactions that are part of the network have
an influence on the nucleosynthesis (Iliadis et al. 1999). Of particular impor-
tance are (α,p) reactions on waiting point nuclei, for example, 22Mg(α,p)25Al,
25Si(α,p)28P, 30S(α,p)33Cl, and second-step (p,γ) reactions in sequential two-
proton capture, for example, 57Cu(p,γ)58Zn, 65As(p,γ)66Se, 69Br(p,γ)70Kr, and
73Rb(p,γ)74Sr. The half-lives of the (most-likely proton-unbound) nuclei 65As,
69Br, and 73Rb are predicted to be very short (128 ms, < 24 ns, < 30 ns, respec-
tively; Audi et al. 2003) and, therefore, direct measurements of the proton-
capture reactions on these target nuclei seem very challenging. All these reac-
tion rates carry at present large uncertainties. With very few exceptions, labo-
ratory half-lives of all proton-rich β-unstable nuclei up to mass A = 100 have
been measured (Audi et al. 2003) and their current uncertainties have no ma-
jor influence on the nucleosynthesis in explosive hydrogen–helium burning.
For an investigation of the impact of stellar β-decay half-lives on the nucle-
osynthesis during type I X-ray bursts, see Woosley et al. (2004).

5.5
Advanced Burning Stages

5.5.1
Carbon Burning

When the helium is consumed in the center of the star, the core contracts grav-
itationally and the central temperature simultaneously rises until the next nu-
clear fuel begins to burn. The ashes of helium burning consist overwhelm-
ingly of 12C and 16O (Section 5.3.2). Of all the possible fusion reaction involv-
ing these two nuclei, 12C + 12C, 12C + 16O, and 16O + 16O, the first process has
the smallest Coulomb barrier and, therefore, initiates the next burning stage.
We mentioned already in Section 5.3.1 that the precise abundance ratio of 12C
to 16O that is obtained at the end of core helium burning sensitively influences
the future evolution of the star.

The 12C + 12C fusion reaction is the first process we encounter that involves
two heavy nuclei in the entrance channel, as opposed to one reaction partner
being a light species such as a proton, neutron, or α-particle. The 24Mg com-
pound nucleus formed in the fusion of two 12C nuclei is highly excited, with
the mass difference between 12C + 12C and 24Mg amounting to ≈ 14 MeV.
At such high excitation energies, the reaction will proceed through a large
number of overlapping 24Mg states, and we expect that for these levels the
particle partial widths (for proton, neutron, and α-particle emission) domi-
nate over the γ-ray partial width. In other words, the excess energy of the
highly excited 12C + 12C system is most effectively removed by emission of
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light massive particles. The most likely primary reactions are (Salpeter 1952,
Hoyle 1954)

12C(12C, p)23Na (Q = 2241 keV) (5.125)
12C(12C, α)20Ne (Q = 4617 keV) (5.126)
12C(12C, n)23Mg (Q = −2599 keV) (5.127)

with the other possibilities, such as 12C(12C,γ)24Mg or 12C(12C,8Be)16O, being
much less important at energies of astrophysical interest (see, for example,
Patterson, Winkler and Zaidins 1969). Note that the 12C(12C,n)23Mg reaction
is endothermic, that is, it can only occur above a threshold energy of Ecm ≈
2.6 MeV. The liberated protons, α-particles, and neutrons will be quickly con-
sumed at elevated temperatures by initiating secondary reactions involving,
for example, the ashes of helium burning (12C and 16O) and the heavy prod-
uct nuclei of the primary reactions (23Na and 20Ne). This network of primary
and secondary reactions is referred to as carbon burning. Typical temperatures
in core carbon burning amount to T = 0.6–1.0 GK, depending on the mass of
the star, while slightly higher temperatures are achieved in hydrostatic shell
carbon burning. Explosive carbon burning takes place in the range of T =
1.8–2.5 GK.

The total S-factor for 12C + 12C is shown in Fig. 5.42. The reaction has been
measured down to a center-of-mass energy of Ecm ≈ 2.5 MeV. The height of the
Coulomb barrier is ≈ 8 MeV (Section 2.4.3). Since the measured energies are
not far below the Coulomb barrier, the Gamow factor (see Eq. (2.125)) will not
remove entirely the energy dependence of the cross section and, consequently,
the S-factor shown in Fig. 5.42 varies rather strongly (see also Eq. (2.124)). The
open bar indicates the location of the Gamow peak for T ≈ 0.85 GK, a tem-
perature that is typical of core carbon burning (E0 ± ∆/2 = 2169 ± 460 keV).
It can be seen that data for the 12C + 12C reaction barely touch the Gamow
peak region. However, for explosive carbon burning (T ≈ 2.0 GK) data exist
throughout the Gamow peak. The cross section at the lowest measured energy
amounts only to a few nanobarns and hence measurements at even lower en-
ergies represent an experimental challenge. It was already mentioned that
the 12C + 12C reaction will most likely proceed through many overlapping
levels of the highly excited 24Mg compound nucleus. It is reasonable to ex-
pect that the cross section or S-factor varies smoothly with energy. However,
this behavior is not reflected in the data which show a strongly fluctuating
cross section up to an energy of Ecm ≈ 6 MeV. The origin of this structure re-
mains obscure although many suggestions have been made (see the summary
given in Rolfs and Rodney 1988). It must also be pointed out that the vari-
ous measurements are in poor agreement at the lowest energies. The average
trend of the data, disregarding the fluctuations, has been described by a vari-
ety of methods in order to extrapolate the cross section to energies important
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Fig. 5.42 Total S-factor for the 12C + 12C
reaction. The data are adopted from Patter-
son, Winkler and Zaidins (1969), Mazarakis
and Stephens (1973), and High and Cujec
(1977). The data of Becker et al. (1981) are
not shown. The open bars indicate the loca-
tion of the Gamow peaks for T ≈ 0.85 GK

(core carbon burning) and T ≈ 2.0 GK (ex-
plosive carbon burning). The origin of the
strong fluctuation in the S-factor (or cross
section) remains obscure. The solid line
shows the fitted total S-factor adopted by
Caughlan and Fowler (1988).

for core carbon burning. The fitted total S-factor adopted by Caughlan and
Fowler (1988) is shown in Fig. 5.42 as a solid line.

The 12C + 12C reactions populate not only the ground states of the resid-
ual 23Na, 20Ne, and 23Mg nuclei but proceed to several excited states as well.
Hence, the various reaction channels may be studied by applying several dif-
ferent experimental techniques, including the direct measurement of the emit-
ted light massive particles (Patterson, Winkler and Zaidins 1969, Mazarakis
and Stephens 1973, Becker et al. 1981), the detection of γ-rays emitted from
excited levels in the residual nuclei (High and Cujec 1977, Kettner, Lorenz-
Wirzba and Rolfs 1980), and the activation method (Dayras, Switkowski and
Woosley 1977). The data reveal that the 12C(12C,p)23Na and 12C(12C,α)20Ne
reactions dominate the total 12C + 12C fusion cross section, with about equal
probabilities for the proton and α-particle channels to occur. The branching
ratios amount to Bp ≈ Bα ≈ (1 − Bn)/2, with Bn being a small number.
The measured neutron branching ratios Bn amount to 2–10% at energies of
Ecm = 3.5–5.0 MeV. For lower energies the Bn values decrease, as predicted
by an extrapolation of the data using the Hauser–Feshbach model (Dayras,
Switkowski and Woosley 1977).

The thermonuclear reaction rates for the various 12C + 12C reaction chan-
nels (Caughlan and Fowler 1988, Dayras, Switkowski and Woosley 1977) are
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Fig. 5.43 Reaction rates for various 12C + 12C, 12C + 16O, and 16O
+ 16O reaction channels (from Caughlan and Fowler 1988, Dayras,
Switkowski and Woosley 1977). For better comparison, the NA〈σv〉
values are given relative to the 12C(12C,α)20Ne reaction rate. The dis-
played results disregard electron screening corrections.

displayed in Fig. 5.43 where, for better comparison, the results are normalized
to the 12C(12C,α)20Ne reaction rates. The 12C(12C,α)20Ne and 12C(12C,p)23Na
rates are approximately equal while the 12C(12C,n)23Mg reaction rate is far
smaller and declines rapidly for decreasing temperatures. The latter behavior
is expected since the lower integration limit of zero in Eq. (3.69) must be re-
placed by the threshold energy for endothermic reactions (Et = 2.6 MeV in this
case). The reaction rates displayed in Fig. 5.43 neglect corrections for electron
screening (Section 3.2.6). Such corrections can be significant at temperature
and density conditions of advanced burning stages. The present uncertain-
ties in the rates of the primary carbon burning reactions near T ≈ 0.85 GK
are difficult to quantify. A crude estimate is a factor of ≈ 3. Note that the
rates per particle pair, NA〈σv〉, of most (secondary) proton-, neutron- or α-
particle-induced reactions exceed the rates of all the primary carbon burning
reactions by many orders of magnitude. For comparison, the rates for the var-
ious 12C + 16O reaction channels are also shown in Fig. 5.43. Due to the larger
Coulomb barrier, these are much smaller compared to those of the primary
carbon burning reactions and are thus of interest only in special circumstances
(Arnett 1996).

The secondary reactions contribute significantly to the nuclear energy re-
leased by the primary carbon burning reactions. It can be estimated that each
12C + 12C reaction liberates on average an energy of QC ≈ 10 MeV (see later).
The energy generation rate during hydrostatic carbon burning is then given
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by Eq. (3.63),

εC =
QC
ρ

r12C+12C =
QC
ρ

(N12C)2〈σv〉12C+12C
2

=
NAQC

288
X2

12CρNA〈σv〉12C+12C

= 2.09 × 1022X2
12CρNA〈σv〉12C+12C (MeV g−1 s−1) (5.128)

with NA〈σv〉12C+12C the total 12C + 12C reaction rate. The temperature de-
pendence of the rates for the 12C + 12C reaction and of the energy generation
during carbon burning is obtained by using the expression for nonresonant
reactions (see Eq. (3.87)). From Eq. (3.88) we find near a typical temperature
of T0 = 0.9 GK a value of τ = 87 and thus, neglecting electron screening,

εC(T) = εC(T0) (T/T0)
(87−2)/3 = εC(T0) (T/T0)

28 (5.129)

The total energy released during carbon burning can be found from Eq. (3.68),
∫

εC(t) dt =
NAQC
2M12C

∆X12C = 2.51 × 1023∆X12C (MeV/g) (5.130)

where ∆X12C is the mass fraction of the consumed carbon fuel.
We will discuss in the following the results obtained by solving an appro-

priate reaction network for constant temperature and density. In a given star,
carbon burning will take place over a range of temperatures and densities,
but during most of the carbon consumption the variations in temperature and
density are relatively small (Fig. 5.1a). This simplification will provide a rea-
sonable estimate of the nucleosynthesis (see also Arnett and Truran 1969). Val-
ues of T = 0.9 GK and ρ = 105 g/cm3 are chosen for the temperature and den-
sity, respectively. These are close to the results obtained by stellar model calcu-
lations for core carbon burning in stars with an initial mass of M = 25 M� and
with initial solar metallicity (Woosley, Heger and Weaver 2002). The initial
abundances at the beginning of carbon burning are given by the composition
of the ashes of the preceding core helium helium-burning stage (Section 5.3).
We expect mainly 12C and 16O, with smaller amounts of 20Ne (Section 5.3.2)
and 22Ne (Section 5.3.3). Small traces of other elements may also be present
but will be neglected in the following for the sake of simplicity. We assume
values of X0

12C = 0.25, X0
16O = 0.73, X0

20Ne = 0.01, and X0
22Ne = 0.01 that are sim-

ilar to those reported in Arnett (1996). The network is solved until the carbon
fuel is exhausted (X12C < 10−3). The electron screening correction factor for
the 12C + 12C reaction amounts to ≈ 1.2 for the T–ρ conditions adopted here
(Problem 3.8).

Net abundance flows and the abundance evolutions of selected nuclides
are shown in Fig. 5.44. The dominant abundance flows are due to the primary
12C(12C,p)23Na and 12C(12C,α)20Ne reactions and a large fraction of the liber-
ated protons and α-particles are consumed by the secondary 23Na(p,α)20Ne
and 16O(α,γ)20Ne reactions. Weaker, but still substantial, flows are due to
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the (p,γ) reactions on 21Ne, 22Ne, 23Na, 25Mg, 26Mg, the (α,γ) reaction on
20Ne, the (α,n) reactions on 13C, 21Ne, 22Ne, the (n,p) reaction on 22Na,
and the β+-decay of 26Alm. The primary 12C(12C,n)23Mg reaction is too
weak to influence the nucleosynthesis significantly. Removing this link
from the network has only minor effects on the abundances of the major
isotopes. However, this reaction may become important at higher temper-
atures typical of shell carbon burning. The most important source of neu-
trons is the 22Ne(α,n)25Mg reaction, with a smaller contribution coming from
21Ne(α,n)24Mg. The liberated neutrons initiate a number of neutron-induced
processes, including (n,γ) reactions on 12C, 20Ne, 23Na, 24Mg, and 25Mg. On
the other hand, the 13C(α,n)16O reaction is not a net producer of neutrons
since the species 13C is mainly produced via 12C(n,γ)13C and hence one neu-
tron is consumed for each neutron liberated by the (α,n) reaction on 13C.
Neutron-induced nucleosynthesis will be discussed in Section 5.6. The neu-
tron excess parameter η (Section 1.8) increases slightly because of the sequence
20Ne(n,γ)21Ne(p,γ)22Na(n,p)22Ne(α,n)25Mg(p,γ)26Al(β+ν)26Mg. Note that
even in a star with zero initial metallicity the neutron excess will increase dur-
ing core carbon burning because of the sequence 12C(12C,n)23Mg(β+ν)23Na.

The number of free protons, α-particles, and neutrons is very small during
carbon burning. At maximum, their mass fraction is only XH = 5 × 10−16,
X4He = 2× 10−11, and Xn = 2 × 10−19. This circumstance has important impli-
cations. First, nuclear reactions involving radioactive target nuclei are unim-
portant during the nucleosynthesis (Fig. 5.44) despite the fact that the tem-
perature is relatively high and, thus, the rates NA〈σv〉 for many proton and
α-particle-induced reactions are rather large. The decay constant for the de-
struction of nucleus 0 by a reaction with light particle 1 depends on the mass
fraction X1 (see Eq. (3.23)). Since X1 is a very small number, a radioactive
nucleus will β-decay rather than undergo a reaction, that is, λβ(0)  λ1(0).
Second, for the T–ρ conditions adopted here, the photodisintegration of 13N
prevents 13C production via the sequence 12C(p,γ)13N(β+ν)13C (Q12C+p =
1944 keV). The decay constants for the β+-decay and the photodisintegration
of 13N amount to λβ(13N) = 1.2 × 10−3 s−1 and λγ(13N) = 5.2 × 101 s−1, re-
spectively. Hence, an equilibrium between 12C and 13N is quickly established.
The equilibrium abundance ratio and the decay constant λ12C→13N→13C are di-
rectly proportional to the mass fraction of protons (see Eqs. (3.49) and (3.62)).
Since the proton mass fraction is very small at all times during the nucle-
osynthesis, the flow through 12C(p,γ)13N(β+ν)13C becomes negligible. For
lower core carbon burning temperatures typical of stars with smaller masses,
however, the photodisintegration of 13N is less important and the sequence
12C(p,γ)13N(β+ν)13C(α,n) may become the dominant neutron source and may
give rise to a significant increase in the neutron excess parameter η (Arnett
and Thielemann 1985).
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While the 12C fuel is consumed, most of the initially present 16O nuclei sur-
vive until the end of the calculation. The 22Ne abundance also declines but
the abundances of many other isotopes increase steadily (Fig. 5.44). With pro-
gressing time, the number of liberated protons and α-particles that are avail-
able for capture by various nuclides decreases and the nucleosynthesis slows
down. Beyond t = 1010 s, the abundances of the major nuclides change little.
The 12C fuel is exhausted (X12C < 0.001) after ≈ 1600 y (t = 5 × 1010 s). The
total nuclear energy generated amounts to 6.3 × 1022 MeV/g, in agreement
with the value obtained from Eq. (5.130) where we assumed an average en-
ergy release of ≈ 10 MeV per primary 12C + 12C reaction. The most abundant
nuclei at the end of the calculation are 16O (Xf = 0.60), 20Ne (Xf = 0.35), 24Mg
(Xf = 0.023) and 23Na (Xf = 0.014). Many other isotopes with A < 20 and
A ≥ 28 are produced with mass fractions less than X = 5 × 10−4 and their
abundance evolutions are not displayed in Fig. 5.44. Hydrostatic and explo-
sive carbon burning are major sources of the nuclides 20,21Ne, 23Na, 24,25,26Mg,
26,27Al, 29,30Si, and 31P in the Universe (Table 5.2). See also Arnett (1996), and
Chieffi, Limongi and Straniero (1998).

We already commented on the experimental situation for the primary 12C
+ 12C reactions. Some information regarding important secondary reac-
tions is summarized below. The important neutron sources 13C(α,n)16O and
22Ne(α,n)25Mg will be discussed Section 5.6.1. We need to consider first the
location of the Gamow peaks. At a temperature of T = 0.9 GK one obtains, for
example, E0 ± ∆/2 = 555 ± 240 keV and E0 ± ∆/2 = 1250 ± 360 keV for the
23Na + p and 20Ne + α reactions, respectively. Similar values are found for
other proton or α-particle-induced reactions. The rates for the proton-induced
reactions on 21Ne, 22Ne, 23Na, 25Mg, and 26Mg are displayed in Fig. 5.18.
The branching ratio Bpα/pγ for 23Na is shown in Fig. 5.17. The lowest ly-
ing observed resonances in the 21Ne(p,γ)22Na, 23Na(p,γ)24Mg, 23Na(p,α)20Ne,
25Mg(p,γ)26Al, and 26Mg(p,γ)27Al reactions are located at Ecm

r = 120, 241, 170,
190, and 149 keV. Hence, direct measurements cover entirely the region of the
Gamow peak at T ≈ 0.9 GK. (See also the information given at the end of Sec-
tion 5.1.3.) The 22Ne(p,γ)23Na reaction has only been measured directly down
to a resonance energy of Ecm

r = 417 keV but the expected lower lying reso-
nances do no influence the reaction rates at T = 0.9 GK (Hale et al. 2001). The
lowest lying resonances in the 16O(α,γ)20Ne, and 20Ne(α,γ)24Mg reactions are
located at Ecm

r = 893 keV and 799 keV, respectively (Section 5.1.3 and Angulo
et al. 1999), and the region of the Gamow peak has been covered by direct
measurements. At T = 0.9 GK, typical errors for the rates of the above proton-
and α-particle-induced reactions amount to ≈ 10–30%, in contrast to the sit-
uation at much lower temperatures where reaction rate errors can amount to
several orders of magnitude (Section 5.1.3).
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Fig. 5.44 Time-integrated net abundance
flows (top) and abundance evolutions (bot-
tom) for a constant temperature and density
of T = 0.9 GK and ρ = 105 g/cm3, respec-
tively. Such conditions are typical of core
carbon burning in stars with an initial mass
of M = 25 M� and with initial solar metal-
licity. The reaction network is solved nu-
merically until the carbon fuel is exhausted
(X12C < 10-3 after ≈ 1600 y). The magni-
tude of the abundance flows is represented

by arrows of three different thicknesses:
Fmax ≥ Fij > 0.1Fmax (thick arrows),
0.1Fmax ≥ Fij > 0.01Fmax (intermediate
arrows), and 0.01Fmax ≥ Fij > 0.001Fmax

(thin arrows). The key indicates the type
of reaction represented by a specific ar-
row. Stable nuclides are shown as shaded
squares. The 16O(α,γ)20Ne reaction is ob-
scured by 12C(12C,α)20Ne in the top part of
the figure.
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5.5.2
Neon Burning

At the end of core carbon burning, when most of the 12C nuclei have been
consumed, the core consists mainly of 16O, 20Ne, 23Na, and 24Mg. Other
nuclides will be present as well, but with much smaller abundances (Xi <
5 × 10−3; see Fig. 5.44). The core contracts gravitationally and the tempera-
ture and density both increase (Fig. 5.1a). It is reasonable to assume that the
next nuclear fuel to ignite is oxygen via the 16O + 16O fusion reaction. How-
ever, before this happens the temperature has risen to values where photo-
disintegration reactions will become important (T > 1 GK). The proton, neu-
tron, and α-particle separation energies of the above nuclei are in the range
of ≈ 7–17 MeV and, therefore, they are rather inert against photodisintegra-
tion even at high temperatures. The exception is 20Ne, which has a relatively
small α-particle separation energy of 4.73 MeV. For a typical temperature of
T = 1.5 GK, the photodisintegration decay constant of 20Ne can be calculated
from Eq. (3.45) by using the rate of the (forward) 16O(α,γ)20Ne reaction (An-
gulo et al. 1999). The result is λγ(20Ne) = 1.5 × 10−6 s−1 and hence the 20Ne
nuclei will photodisintegrate. The liberated α-particles, in turn, induce sec-
ondary reactions involving any of the more abundant nuclei. The rates for the
most important α-particle-consuming reactions are shown in Fig. 5.45. Recall
that the decay constant of α-particles for destruction by a reaction with nu-
cleus 1 is given by λ1(α) = ρ(X1/M1)NA〈σv〉α1 (see Eq. (3.23)). For typical
values of temperature and density (T = 1.5 GK and ρ = 5 × 106 g/cm3; see
below) and assuming an isotopic composition obtained at the end of carbon
burning (Fig. 5.44), one finds decay constants of λ16O(α,γ)(α) = 2.3 × 104 s−1,
λ20Ne(α,γ)(α) = 1.6 × 104 s−1, λ23Na(α,p)(α) = 5.7 × 103 s−1, and λ24Mg(α,γ)(α) =
4.1 × 102 s−1. Hence, some of the α-particles will be captured by 16O, synthe-
sizing again 20Ne. But there is also a good chance that the liberated α-particles
will be consumed by reactions such as 20Ne(α,γ)24Mg, 23Na(α,p)26Mg, or
24Mg(α,γ)28Si. A number of other α-particle-induced reactions will occur that
release protons and neutrons, and these light particles will also participate in
the nucleosynthesis. Details will be discussed below.

To summarize, the network of reactions consisting of the primary reaction
20Ne(γ, α)16O (Q = −4730 keV) (5.131)

and subsequent secondary reactions, among which we expect prominantly

20Ne(α, γ)24Mg(α, γ)28Si (Q20Ne(α,γ) = 9316 keV)

(Q24Mg(α,γ) = 9984 keV) (5.132)
23Na(α, p)26Mg(α, n)29Si (Q23Na(α,p) = 1821 keV)

(Q26Mg(α,n) = 34 keV) (5.133)
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Fig. 5.45 Rates for α-particle-induced reactions on 16O, 20Ne, 23Na
and 24Mg versus temperature. The vertical dashed line indicates a
temperature of T = 1.5 GK which is typical for core neon burning in
massive stars.

is referred to as neon burning. The primary reaction is endothermic, that is, it
consumes energy. In combination with the subsequent secondary reactions,
however, there is a net production of energy for each 20Ne nucleus destroyed
by photodisintegration, as will be shown below. Typical temperatures during
core neon burning are in the range of T = 1.2–1.8 GK, with somewhat higher
values during hydrostatic shell neon burning. Explosive neon burning takes
place in the range of T = 2.5–3.0 GK.

The two most important energy-generating reactions are 20Ne(γ,α)16O and
20Ne(α,γ)24Mg. An energy level diagram is displayed in Fig. 5.46. At T =
1.5 GK, the 20Ne(γ,α)16O reaction proceeds mainly through 20Ne levels at Ex

= 5621 keV and 5788 keV (see Problem 3.6), while the most important 24Mg
levels for the 20Ne(α,γ)24Mg reaction are located at Ex = 10680 keV, 10917 keV,
and 11016 keV (Endt 1990). The rearrangement effectively converts two 20Ne
nuclei to 16O and 24Mg. Thus, we have

20Ne + 20Ne → 16O + 24Mg + 4586 keV (5.134)

where the value for the energy release is obtained either from Eq. (1.10) or
from Q20Ne(γ,α) + Q20Ne(α,γ). Other secondary reactions contribute to the en-
ergy production as well. It can be estimated from network calculations that
each 20Ne + 20Ne conversion liberates on average an energy of QNe ≈ 6.2 MeV
near T ≈ 1.5 GK (see below). For the total energy release during neon burning
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Fig. 5.46 Energy level diagrams for the most important nuclides par-
ticipating in neon burning. Numbers in square brackets represent re-
action Q-values (Audi, Wapstra and Thibault 2003; see also caption to
Fig. 5.30). Excitation energies and quantum numbers are from Tilley
et al. (1998) or Endt (1990). Levels that are not important for neon
burning are omitted from the figure.

one finds from Eq. (3.68)

∫
εNe(t) dt =

NAQNe
2M20Ne

∆X20Ne = 9.32 × 1022∆X20Ne (MeV/g) (5.135)

where ∆X20Ne is the mass fraction of the consumed 20Ne fuel. Compared to
carbon burning, the total energy release is a factor of ≈ 3 smaller for the same
amount (by mass) of consumed fuel.

An approximate analytical expression for the energy generation rate dur-
ing hydrostatic neon burning can be found by assuming an 16O + α ↔
20Ne + γ equilibrium. Note that the values of λ16O(α,γ)(α), λ20Ne(α,γ)(α),
and λ23Na(α,p)(α) quoted above were obtained with X16O = 0.60, X20Ne = 0.35,
and X23Na = 0.014, respectively. The 20Ne and 23Na abundances, however,
decline during neon burning while the 16O abundance increases (see later).
Hence, 16O(α,γ)20Ne will be the dominant α-particle consuming reaction and
the assumption of an 16O + α ↔ 20Ne + γ equilibrium is justified. The energy
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generation rate is then given by (see Problem 5.5)

εNe ≈ 6.24 × 1033 (X20Ne)
2

X16O
T3/2

9 e−54.89/T9 NA〈σv〉20 Ne(α,γ) (MeV g−1 s−1)

(5.136)

and is independent of the density. The reaction rate for 20Ne(α,γ)24Mg above
T = 1 GK can be described by the analytical expression NA〈σv〉20Ne(α,γ) =
3.74 × 102T2.229

9 exp(−12.681/T9) (Angulo et al. 1999). For the temperature
dependence of the energy generation rate during neon burning one finds from
Eq. (5.136)

εNe ∼ T1.5
9 T2.229

9 e−54.89/T9 e−12.681/T9 ∼ T3.729
9 T67.57/T9

9 (5.137)

where the term exp(−67.57/T9) is derived according to the method described
by Eqs. (3.82)–(3.87). Near T0 ≈ 1.5 GK we find

εNe(T) = εNe(T0) (T/T0)
49 (5.138)

and thus neon burning is very temperature sensitive.
Network calculations for neon burning are performed for a constant tem-

perature of T = 1.5 GK and density of ρ = 5 × 106 g/cm3. These values are
close to those obtained from stellar model calculations for core neon burning
in stars with an initial mass of M = 25 M� and with initial solar metallicity
(Woosley, Heger and Weaver 2002). For the initial abundances at the begin-
ning of core neon burning we adopt the final abundances obtained at the end
of core carbon burning, that is, mainly 16O (Xi = 0.60) and 20Ne (Xi = 0.35),
with smaller contributions from nuclides in the 21Ne–28Si range (Fig. 5.44).
The network is solved until the neon fuel is exhausted (X20Ne < 0.0015).

Net abundance flows are shown in Fig. 5.47. The dominant flows are
due to the reactions 20Ne(γ,α)16O and 20Ne(α,γ)24Mg(α,γ)28Si, consistent
with our earlier discussion. Smaller, but substantial, flows are caused by
24Mg(α,p)27Al(α,p)30Si, and 23Na(α,p)26Mg. The released protons initiate a
number of different reactions, most notably 26Mg(p,γ)27Al, 23Na(p,α)20Ne,
and 25Mg(p,γ)26Al(β+ν)26Mg. Neutrons are produced by the 21Ne(α,n)24Mg,
25Mg(α,n)28Si, and 26Mg(α,n)29Si reactions. The liberated neutrons undergo
(n,γ) reactions involving mainly 20Ne, 24Mg, and 28Si. At maximum, the mass
fractions of the light particles amount to XH = 2 × 10−17, X4He = 1 × 10−12,
and Xn = 1 × 10−21. Changes in the neutron excess parameter η are relatively
small during neon burning (Thielemann and Arnett 1985). Note that for the
adopted temperature and density conditions the stellar decay constants for
some β-decays differ significantly from their terrestrial values (Section 1.8.4).
For example, the laboratory half-life for 24Na(β−ν)24Mg amounts to T1/2 =
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15 h compared to T1/2 = 0.52 h at neon-burning conditions (Fuller, Fowler and
Newman 1982).

The evolution of the most abundant nuclides, except for 21Ne, 22Ne, and
23Na, is also displayed in Fig. 5.47. The latter three nuclides are quickly
depleted from their initial abundance values. While the 20Ne fuel is grad-
ually consumed, the 16O abundance increases with time. Most of the other
nuclides displayed in Fig. 5.47 also increase in abundance, except 25Mg and
26Mg whose abundances change little during the nucleosynthesis. After t =
2 × 106 s, the number of liberated protons, α-particles, and neutrons that are
available for capture by various nuclides decreases and the nucleosynthesis
slows down. Beyond t = 1.8 × 107 s the abundances of the major nuclides
change little. The 20Ne fuel is exhausted (X20Ne < 0.0015) after 280 d (t =
2.4× 107 s). The total nuclear energy generated amounts to 3.3× 1022 MeV/g.
The most abundant nuclei at the end of the calculation are 16O (Xf = 0.77),
24Mg (Xf = 0.11), and 28Si (Xf = 0.083), while nuclides in the 25Mg–32S region
have final mass fractions in the range of Xf = 0.002–0.01. All other nuclides
that are not shown in the figure have mass fractions of X ≤ 10−4 through-
out the calculation. Similar results are obtained from a more involved stellar
model simulation (Arnett 1996). Explosive neon burning is a major source of
the nuclides 26Al and 33S in the Universe (Table 5.2).

At a temperature of T = 1.5 GK, the Gamow peaks for the reactions
20Ne(α,γ)24Mg, 24Mg(α,γ)28Si, 23Na(p,α)20Ne, and 25,26Mg(p,γ)26,27Al are
located at E0 ± ∆/2 = 1760 ± 550 keV, 2010 ± 590 keV, 780 ± 370 keV, and
830 ± 380 keV, respectively. For the 16O(α,γ)20Ne reaction (that is, the reverse
of 20Ne(γ,α)16O; see Problem 5.5), we obtain E0 ± ∆/2 = 1500± 510 keV at T =
1.5 GK. All these reactions have been measured directly over the Gamow
peak region. Near this temperature, the reaction rates for 16O(α,γ)20Ne,
23Na(p,α)20Ne, 25Mg(p,γ)26Al, and 26Mg(p,γ)27Al have errors of < 20%
(Angulo et al. 1999, Iliadis et al. 2001). The important 20Ne(α,γ)24Mg and
24Mg(α,γ)28Si reaction rates, however, may be subject to systematic errors on
the order of a factor of ≈ 2, as can be seen from the different results reported
by Caughlan and Fowler (1988), Angulo et al. (1999), and Rauscher et al.
(2000).

5.5.3
Oxygen Burning

After the neon fuel has been consumed, the most abundant nuclei in the stellar
core are 16O, 24Mg, and 28Si (Fig. 5.47). The core contracts and the temperature
increases until the burning of the next fuel starts to generate energy. Among
the particle-induced reactions induced by combinations of the above nuclei,
the 16O + 16O fusion reaction is the most likely process to occur since it has the
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Fig. 5.47 Time-integrated net abundance flows (top) and abundance
evolutions (bottom) for a constant temperature and density of T =
1.5 GK and ρ = 5×106 g/cm3, respectively. Such conditions are typi-
cal of core neon burning in stars with an initial mass of M = 25 M�
and with initial solar metallicity. The reaction network is solved numer-
ically until the neon fuel is exhausted (X20Ne < 0.0015 after ≈ 280 d).
The arrows in the top part have the same meaning as in Fig. 5.44.
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lowest Coulomb barrier (Hoyle 1954, Cameron 1959). The situation resembles
carbon burning, in the sense that a reaction induced by two heavy nuclei in
the incoming reaction channel (16O + 16O) is the primary process sustaining
the nuclear burning. The 32S compound nucleus formed in the fusion of two
16O nuclei is highly excited, with the mass difference between 16O + 16O and
32S amounting to ≈ 16.5 MeV. The fusion reaction will then involve many
overlapping 32S compound levels. Excess energy is most effectively removed
by emission of light massive particles (as opposed to the emission of primary
γ-rays). In contrast to the 12C + 12C reaction, there are many more exit channel
possible for the 16O + 16O reaction since the 32S compound nucleus achieves
much higher excitation energies (Spinka and Winkler 1974). The most likely
primary reactions are

16O(16O, p)31P (Q = 7678 keV) (5.139)
16O(16O, 2p)30Si (Q = 381 keV) (5.140)
16O(16O, α)28Si (Q = 9594 keV) (5.141)
16O(16O, 2α)24Mg (Q = −390 keV) (5.142)
16O(16O, d)30P (Q = −2409 keV) (5.143)
16O(16O, n)31S (Q = 1499 keV) (5.144)

The 16O(16O,d)30P and 16O(16O,2α)24Mg reactions are endothermic, that is,
they can only occur above a threshold energy of Ecm = −Q. Note that the
deuterons released in the 16O(16O,d)30P reaction will be immediately photo-
disintegrated (d + γ → p + n) at elevated stellar temperatures. The liberated
light particles are quickly consumed by secondary reactions involving, for ex-
ample, the ashes of neon burning and the heavy product nuclei of the primary
reactions. This network of primary and secondary reactions is referred to as
oxygen burning. Typical temperatures during core oxygen burning are in the
range of T = 1.5–2.7 GK, depending on the stellar mass, with somewhat higher
values during shell oxygen burning. In explosive oxygen burning, tempera-
tures of T = 3–4 GK are achieved.

It should be pointed out that the photodisintegrations of the nuclei 16O,
24Mg, and 28Si do not contribute significantly to the nuclear energy genera-
tion during hydrostatic oxygen burning. Their proton, neutron, and α-particle
separation energies exceed ≈ 9 MeV, except the α-particle separation energy
of 16O which amounts to 7.2 MeV. Hence, the 16O(γ,α)12C reaction is the most
likely process to occur among these photodisintegrations. The decay constants
λi(16O) for the reactions 16O + 16O and 16O(γ,α)12C are shown in Fig. 5.48 ver-
sus temperature. The decay constant for 16O + 16O is obtained from λ16O(16O)
= ρ(X16O/M16O)NA〈σv〉 (see Eq. (3.23)), assuming values of ρ = 3× 106 g/cm3

and X16O = 0.5, whereas λγ(16O) is calculated from the forward 12C(α,γ)16O
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Fig. 5.48 Decay constants λi(16O) for the 16O + 16O and 16O(γ,α)12C
reactions versus temperature. The curve for 16O + 16O is calcu-
lated assuming ρ = 3×106 g/cm3 and X16O = 0.5, while the one for
16O(γ,α)12C is derived from the 12C(α,γ)16O reaction rate and is inde-
pendent of ρ and X16O. The dashed vertical line indicates a tempera-
ture of T = 2.2 GK, which is typical for core oxygen burning in massive
stars.

reaction rate and is independent of ρ and X16O (see Eq. (3.45)). Under these
conditions, the 16O + 16O fusion is more likely to occur at temperatures below
T = 4 GK and thus will be the dominant 16O depleting process during hydro-
static oxygen burning. During explosive oxygen burning, however, the 16O +
16O and 16O(γ,α)12C reactions can occur at comparable rates.

The total 16O + 16O S-factor is shown in Fig. 5.49. The reaction has been
measured down to a bombarding energy of Ecm ≈ 6.8 MeV. The height of the
Coulomb barrier is ≈ 13 MeV and, as was the case in Section 5.5.1, the total S-
factor varies strongly with energy because the Gamow factor does not remove
the energy dependence of the cross section entirely at the measured energies
(see Eq. (2.124)). The two shaded bars indicate the locations of the Gamow
peaks at temperatures typical for core oxygen burning (T ≈ 2.2 GK; E0 ± ∆/2
= 6600 ± 1290 keV) and explosive oxygen burning (T = 3.6 GK; E0 ± ∆/2 =
9170 ± 1950 keV). It can be seen that the data reach down to the center of
the Gamow peak (Ecm ≈ E0) for T = 2.2 GK, whereas the data cover entirely
the Gamow peak region for T = 3.6 GK. As expected, the total S-factor varies
smoothly with energy since the 16O + 16O reaction proceeds through many
overlapping resonances at each bombarding energy. In particular, the unex-
plained cross-section fluctuations observed in the total S-factor of 12C + 12C
(Fig. 5.42) are absent in the 16O + 16O data. The various measurements are
in poor agreement at the lower energies (Ecm < 8 MeV). The data have been
fitted by a number of methods (see, for example, Wu and Barnes 1984). The
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Fig. 5.49 Total S-factor for the 16O +
16O reaction. The data are adopted from
Spinka and Winkler (1974), Hulke, Rolfs
and Trautvetter (1980), Wu and Barnes
(1984), and Thomas et al. (1986). The data
from Thomas et al. (1986) are extracted

from their Figs. 9 and 10. The open bars
indicate the location of the Gamow peaks
for T ≈ 2.2 GK (core oxygen burning) and
T ≈ 3.6 GK (explosive oxygen burning).
The solid line shows the fitted total S-factor
adopted by Caughlan and Fowler (1988).

fitted total S-factor adopted by Caughlan and Fowler (1988) at the lower ener-
gies is shown in Fig. 5.49 as a solid line.

The 16O + 16O reaction populates many levels in the residual nuclei. The
different reaction channels have been investigated by using a variety of tech-
niques, including the direct detection of emitted light particles (Spinka and
Winkler 1974), detection of γ-rays emitted from excited levels in the resid-
ual nuclei (Spinka and Winkler 1974, Wu and Barnes 1984, Thomas et al.
1986) and the activation method (Spinka and Winkler 1974, Wu and Barnes
1984). The cross-section data suggest significant contributions from reactions
involving three particles in the exit channel, for example, 16O(16O,2p)30Si
or 16O(16O,2α)24Mg. Such three-particle exit channel contributions may ac-
count perhaps for a fraction of ≈ 20% of the total cross section at the lowest
measured energy of Ecm ≈ 6.8 MeV (Spinka and Winkler 1974). The avail-
able data on the partial cross sections are in poor agreement. Furthermore,
little information is available on the competition between two- and three-
particle exit channels that produce the same kind of particles, for example
between 16O(16O,p)31P and 16O(16O,2p)30Si, or between 16O(16O,α)28Si and
16O(16O,2α)24Mg. The average values of the reported branching ratios at Ecm
≈ 6.8 MeV amount to ≈ 60% for 16O(16O,p)31P and 16O(16O,2p)30Si, ≈ 25% for
16O(16O,α)28Si and 16O(16O,2α)24Mg, ≈ 10% for 16O(16O,d)30P, and ≈ 5% for
16O(16O,n)31S.
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The thermonuclear reaction rates for different 16O + 16O exit channels are
shown in Fig. 5.43 (Caughlan and Fowler 1988). The individual rates are
normalized to the yields of the respective emitted light particles (p,α, n)
rather than the actual number of reactions. For example, the curve la-
beled “16O(16O,α)” represents the reaction rate for the production of as
many α-particles as are produced by the actual reactions 16O(16O,α)28Si
and 16O(16O,2α)24Mg combined. Similar arguments hold for the proton-
and neutron-producing reaction channels. In particular, the curve labeled
“16O(16O,n)” represents the reaction rate for neutron production from both
16O(16O,n)31S and from deuteron breakup after 16O(16O,d)30P. It can be seen
in Fig. 5.43 that the proton exit channel dominates at all temperatures. At T =
2.2 GK, the reaction rate contributions for the emission of protons, α-particles,
and neutrons are ≈ 62%, ≈ 21%, and ≈ 17%, respectively (Caughlan and
Fowler 1988). The present uncertainties in the rates of the primary oxygen
burning reactions are difficult to quantify. Considering the poor agreement
in the reported total 16O + 16O cross section below Ecm = 8 MeV and our
incomplete knowledge of the branching ratios for the different exit channels,
one can conclude that the rates of the primary oxygen burning reactions at
temperatures below T = 3 GK are uncertain by at least a factor of ≈ 3.

As was the case in carbon burning (Section 5.5.1), the secondary reactions
contribute significantly to the nuclear energy released by the primary oxygen
burning reactions. The result of a reaction network calculation near T = 2.2 GK
(see below) yields an average energy release of QO ≈ 17.2 MeV for each
16O + 16O reaction (see also Woosley, Heger and Weaver 2002). The energy
generation rate in hydrostatic oxygen burning is then given by Eq. (3.63),

εO =
QO
ρ

r16O+16O =
QO
ρ

(N16O)2〈σv〉16O+16O
2

=
NAQO

512
X2

16OρNA〈σv〉16O+16O

= 2.03 × 1022X2
16OρNA〈σv〉16O+16O (MeV g−1 s−1) (5.145)

with NA〈σv〉16O+16O the total 16O + 16O reaction rate. The temperature de-
pendence of the 16O + 16O rate and of the energy generation rate during oxy-
gen burning can be found from the expression for nonresonant reactions (see
Eq. (3.87)). Near a typical temperature of T0 = 2.2 GK one finds a value of
τ = 104.5 (see Eq. (3.88)) and thus, neglecting electron screening,

εO(T) = εO(T0) (T/T0)
(104.5−2)/3 = εO(T0) (T/T0)

34 (5.146)

The total energy released during oxygen burning can be found from Eq. (3.68),

∫
εO(t) dt =

NAQO
2M16O

∆X16O = 3.24 × 1023∆X16O (MeV/g) (5.147)
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where ∆X16O is the mass fraction of the consumed oxygen fuel. This value ex-
ceeds the total amount of energy released during either carbon or neon burn-
ing (see Eqs. (5.130) and (5.135)).

The results of a network calculation for a constant temperature T = 2.2 GK
and density ρ = 3× 106 g/cm3 are shown in Fig. 5.50. These values are similar
to those obtained from stellar model calculations for core oxygen burning in
stars with an initial mass of M = 25 M� and initial solar metallicity (Woosley,
Heger and Weaver 2002). For the initial abundances at the start of core oxy-
gen burning we adopt the final abundances obtained at the end of core neon
burning: 16O (Xi = 0.77), 24Mg (Xi = 0.11), and 28Si (Xi = 0.083), with smaller
contributions from nuclides in the 25Mg–32S range (Fig. 5.47). The network is
solved until oxygen exhaustion (X16O < 0.001). The electron screening correc-
tion factor for the primary 16O + 16O reaction amounts to ≈ 1.3 for the T–ρ

conditions adopted here.
It can be seen from Fig. 5.50 that many different nuclear processes oc-

cur during oxygen burning. First, those links with the largest net abun-
dance flows (represented by the thickest arrows) will be described. The
primary 16O + 16O reactions produce 28Si and 32S via different sequences:
(i) 16O(16O,p)31P(p,γ)32S, (ii) 16O(16O,p)31P(p,α)28Si, (iii) 16O(16O,α)28Si, and
(iv) 16O(16O,n)31S(γ,p)30P(γ,p)29Si(α,n)32S. The two (γ,p) reactions occur be-
cause the proton separation energies of 31S and 30P are relatively small (Sp =
6133 and 5595 keV, respectively) and, consequently, the photodisintegrations
dominate over the competing β+-decays. The decay 31S(β+ν)31P, although
weaker than 31S(γ,p)30P, is nevertheless significant, as will be seen below.
Some of the 28Si nuclei are converted to 32S via 28S(α,γ)32S. A fraction of the
32S nuclei is either transformed back to 31P via 32S(n,γ)33S(n,α)30Si(p,γ)31P or
is converted to heavier nuclei via 32S(α,p)35Cl(p,γ)36Ar, and so on. Some of
the liberated α-particles deplete the initially abundant 24Mg nuclei via the
reactions 24Mg(α,γ)28Si and 24Mg(α,p)27Al. Reactions such as 16O(p,γ)17F,
16O(α,γ)20Ne, 28Si(p,γ)29P, 32S(p,γ)33Cl, and 36Ar(p,γ)37K do not give rise to
significant net flows. Their Q-values are so small (Q = 600, 4730, 2749, 2277,
and 1858 keV, respectively) that in each case the forward rate is much smaller
compared to the reverse photodisintegration rate.

The evolution of the most abundant nuclides is also shown in Fig. 5.50. For
reasons of clarity, the nuclides 16O, 24,25,26Mg, and 27Al are not displayed in
the figure. They are quickly depleted with progressing time. While the oxy-
gen fuel is being consumed, the abundances of 28Si and 32S increase with time.
The abundances of 34S, 35Cl, 36Ar, 38Ar, 39K, 40Ca, and 42Ca also increase,
while those of 29,30Si and 31P decrease from their initial values. The 16O fuel
is exhausted after about 162 days (t = 1.4 × 107 s). The total nuclear energy
generated amounts to 2.5 × 1023 MeV/g. The most abundant nuclei at the
end of the calculation are 28Si (Xf = 0.54), 32S (Xf = 0.28), 38Ar (Xf = 0.084),
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34S (Xf = 0.044), 36Ar (Xf = 0.027), and 40Ca (Xf = 0.021), while nuclides in
the 29Si–42Ca region have final mass fractions in the range of Xf = 10−4–10−3

(see also Arnett 1996, Chieffi, Limongi and Straniero 1998). All other nuclides
not shown in the figure have mass fractions of X < 6 × 10−5 throughout the
calculation.

The neutron excess increases significantly (by a factor of 5 in the above
calculation) during core oxygen burning. The most important weak interac-
tions that influence η are the positron decays 31S(e+ν)31P and 30P(e+ν)30Si
and the electron captures 33S(e−,ν)33P, 35Cl(e−,ν)35S and 37Ar(e−,ν)37Cl. In
fact, the neutron excess becomes so large (η ≈ 0.007) that the composition
of the core matter deviates strongly from a solar system abundance distribu-
tion. The products of hydrostatic oxygen burning are completely reprocessed
in the subsequent explosive oxygen (and explosive silicon) burning phase be-
fore being ejected into the interstellar medium at the end of the massive star
evolution. Explosive oxygen burning is believed to be a major source of 28Si,
32,33,34S, 35Cl, 36,38Ar, 39,41K, and 40,42Ca in the Universe (Table 5.2).

It is also interesting that some of the weak interactions compete with nu-
clear reactions that link the same pair of nuclei. For instance, the net abun-
dance flow between 33S and 33P is determined by the individual flows from
33S(e−,ν)33P, 33S(n,p)33P, and 33P(p,n)33S. In the above network calculation, the
latter reaction gives rise to the largest individual flow among these processes,
but the first two processes have a larger combined flow. Hence, the arrow in
Fig. 5.50 points from 33S to 33P.

At temperatures typical of core oxygen burning, the influence of thermally
excited levels on the rates of the majority of reactions is relatively small. Most
reactions involve stable (or long-lived) target nuclei (Fig. 5.50) for the reasons
given in Section 5.5.1 and, with few exceptions, their stellar enhancement fac-
tors Rtt and normalized partition functions Gnorm

i are close to unity at T ≈
2 GK (see also Section 3.1.5). The situation is quite different for the weak
interactions. At T = 2.2 GK and ρ = 3 × 106 s the half-life, for example, of
30P(e+ν)30Si is reduced from a laboratory value of T1/2 = 150 s to a stellar value
of T1/2 = 84 s. As expected, even more drastic changes occur for electron cap-
tures. The stellar half-lives for 33S(e−,ν)33P, 35Cl(e−,ν)35S, and 37Ar(e−,ν)37Cl
at the above conditions amount to T1/2 = 4 × 105 s, 2 × 105 s, and 2 × 104 s,
respectively, while in the laboratory 33S and 35Cl are stable and 37Ar is long-
lived (T1/2 = 3.0 × 106 s).

It was already pointed out that oxygen burning resembles carbon burning in
the sense that the nucleosynthesis is mainly driven by the fusion of two heavy
nuclei. There is, however, a fundamental difference between these two hy-
drostatic burning stages that is caused by the significantly higher temperature
achieved in oxygen burning. In carbon burning, the number of protons, neu-
trons and α-particles that can be captured by various nuclei decreases toward
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Fig. 5.50 Time-integrated net abundance
flows (top) and abundance evolutions (bot-
tom) for a constant temperature and density
of T = 2.2 GK and ρ = 3×106 g/cm3, respec-
tively. Such conditions are typical of core
oxygen burning in stars with an initial mass
of M = 25 M� and with initial solar metal-

licity. The reaction network is solved nu-
merically until the oxygen fuel is exhausted
(X16O < 0.001 after ≈ 162 d). The arrows
in the top part have the same meaning as
in Fig. 5.44. The 24Mg(α,γ)28Si reaction is
obscured by 16O(16O,α)28Si in the top part of
the figure.
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the end as the 12C fuel is consumed and, consequently, the nucleosynthesis
ceases. In hydrostatic oxygen burning, on the other hand, the temperature is
sufficiently high that photodisintegrations of nuclei with the smallest particle
separation energies provide another source of light particles, even when the
16O fuel has been consumed. In the above network calculation, the proton
and α-particle abundances are approximately constant (XH ≈ 10−13, X4He ≈
10−11) throughout the nucleosynthesis. There is a steady supply of light par-
ticles that undergo reactions so that less tightly bound nuclei are transformed
to more stable species, as discussed in Section 3.1.4. This aspect is reflected in
Fig. 5.50 where, toward the end of the calculation, the abundances of most nu-
clides do not stay constant but change as a result of the nuclear rearrangement.
As oxygen burning proceeds, many pairs of nuclei achieve an equilibrium
between forward and reverse photodisintegration rate. Several of such pairs
eventually come into mutual equilibrium, giving rise to a quasiequilibrium clus-
ter (Section 3.1.6). It has been demonstrated in stellar model calculations that,
for progressing time and increasing temperature, more species join this group
of nuclei (Woosley, Arnett and Clayton 1973, Chieffi, Limongi and Straniero
1998). After oxygen exhaustion and before the ignition of the next nuclear
fuel, the nuclei in the A = 24–46 form one large quasiequilibrium cluster. A
second cluster consisting of iron peak nuclei also starts to form at the end of
oxygen burning. It originates from much heavier nuclei initially present in the
star that were disregarded in the above discussion. Most of these nuclei take
part in neutron-induced reactions, especially during core helium burning, but
also during carbon and neon burning (Section 5.6.1). At the temperatures at-
tained in core oxygen burning, all these heavy nuclei are destroyed by (γ,p),
(γ,α), and (γ,n) reactions and are transformed to the most tightly bound nu-
clei, that is, those in the region of the iron peak (Sections 1.5.1). The physics of
quasiequilibrium clusters will be described in more detail in the next section.
See also Woosley, Arnett and Clayton (1972).

The experimental information for the primary 16O + 16O reaction has al-
ready been presented. The secondary reactions are too numerous to be dis-
cussed in detail here. We will focus on a few secondary reactions that give rise
to the largest net abundance flows (Fig. 5.50). The following discussion will
at least provide an impression on the sources and the reliability of the nuclear
physics information entering oxygen burning calculations. The rates of reac-
tions such as 31P(p,γ)32S, 31P(p,α)28Si, 35Cl(p,γ)36Ar,30Si(p,γ)31P, 32S(α,p)35Cl,
24Mg(α,p)27Al, and 30P(γ,p)29Si near T = 2.2 GK are based on directly mea-
sured resonance energies and strengths (see Iliadis et al. 2001). The rates of the
latter three reverse reactions are calculated from the corresponding forward
rates. Branching ratios for 31P + p and 35Cl + p are displayed in Fig. 5.17.
Typical errors of the above reaction rates at T = 2.2 GK amount to ±25%, ex-
cept for the 32S(α,p)35Cl reaction for which the rates are uncertain by a factor
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of ≈ 2. The rates for the α-capture reactions 24Mg(α,γ)28Si, 28Si(α,γ)32S, and
32S(α,γ)36Ar are also based on direct experimental information, but may be
subject to systematic errors on the order of factors of ≈ 2–3, as can be seen
from the differences in the results reported by Caughlan and Fowler (1988),
and Rauscher et al. 2000. Somewhat larger errors are expected for the rates
of reactions such as 31S(γ,p)30P, 33S(n,α)30Si and 29Si(α,n)32S that are based on
Hauser–Feshbach statistical model calculations (Goriely 1998, Rauscher and
Thielemann 2000).

5.5.4
Silicon Burning

Near the conclusion of core oxygen burning, when the 16O fuel is depleted,
the most abundant nuclei are 28Si and 32S (Fig. 5.50). The stellar core contracts
and the temperature increases. Fusion reactions such as 28Si + 28Si or 28Si +
32S are too unlikely to occur because of Coulomb barrier considerations, even
at the elevated temperatures achieved at the end of the evolution of a mas-
sive star. Instead, the nucleosynthesis proceeds via photodisintegrations of
less tightly bound nuclei and the capture of the liberated light particles (pro-
tons, neutrons, and α-particles) to create gradually heavier and more tightly
bound species, as described in Section 3.1.4. In the process, many forward
and reverse reactions achieve equilibrium and with increasing temperature
and progressing time several pairs of nuclei link together to form quasiequi-
librium clusters. The overall result is another photodisintegration rearrangement
process, similar to neon burning, but on a much more extensive scale. We
will describe below how 28Si, 32S and other nuclei in the A = 24–46 region are
gradually transformed to the most tightly bound species, that is, the iron peak
nuclides (Section 1.5.1). This process provides the star with another source of
energy and is referred to as silicon burning. Temperatures during core silicon
burning are in the range of T = 2.8–4.1 GK, depending on the stellar mass, with
somewhat higher values during hydrostatic shell silicon burning. Explosive
silicon burning takes place in the range of T = 4–5 GK.

In this section, some of the fundamental concepts of silicon burning are dis-
cussed. For more information, the reader is referred to the pioneering work
of Bodansky, Clayton and Fowler (1968) and Woosley, Arnett and Clayton
(1973). Suppose first that 28Si and 32S are the only nuclear species present near
the conclusion of oxygen burning. The decay constants for the photodisinte-
grations of both nuclei are displayed in Fig. 5.51. The curves shown are calcu-
lated from Eq. (3.45) by using the rates of the corresponding forward reactions.
The photodisintegration decay constant depends strongly on the particle sep-
aration energy (or the Q-value of the forward reaction), as explained in Sec-
tion 3.1.4 (Fig. 3.6). The proton, neutron, and α-particle separation energies of
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Fig. 5.51 Decay constants for the photodisintegrations of 28Si (solid
lines) and 32S (dashed lines) versus temperature. The curves are cal-
culated from the rates of the corresponding forward reactions.

32S and 28Si amount to Sp = 8.90 MeV, Sn = 15.00 MeV, Sα = 6.95 MeV and Sp =
11.60 MeV, Sn = 17.20 MeV, Sα = 9.98 MeV, respectively. Hence, 32S is the more
fragile nucleus and is destroyed first. As the core temperature increases above
T ≈ 2 GK, 32S will be consumed via 32S(γ,α)28Si and 32S(γ,p)31P. The latter re-
action is quickly followed by sequences, such as 31P(γ,p)30Si(γ,n)29Si(γ,n)28Si,
converting effectively 32S to 28Si. The destruction of 32S already starts near the
end of oxygen burning, as can be seen from Fig. 5.50.

The temperature increases further until the photodisintegration of 28Si be-
comes substantial. That the separation energy is not the only factor deter-
mining the photodisintegration rate is clearly seen in Fig. 5.51. The decay
constants for 28Si(γ,p)27Al and 28Si(γ,α)24Mg have comparable magnitudes
although the separation energy for the (γ,α) reaction is much smaller than
for the competing (γ,p) reaction. Other factors that influence sensitively
the photodisintegration rate are the transmission probabilities of the photoe-
jected charged particles through the Coulomb barrier and the reduced particle
widths of the resonances through which the photodisintegration process pro-
ceeds.

The resulting nucleosynthesis that transforms Si and other intermediate
mass nuclei to iron peak elements is quite complex. In order to obtain a first
impression, the results of a reaction network calculation, performed at con-
stant temperature and density, will now be discussed. Subsequently, several
analytical expressions are derived in order to gain a deeper understanding of
silicon burning. For the network calculation, we chose a temperature and den-
sity of T = 3.6 GK and ρ = 3× 107 g/cm3, respectively. These values are similar
to those obtained from stellar evolution calculations for core silicon burning
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in stars with an initial mass of M = 25 M� and with initial solar composition
(Chieffi, Limongi and Straniero 1998, Woosley, Heger and Weaver 2002). The
stellar evolution models also predict significant abundance variations at ele-
vated temperatures (T > 2.2 GK) between the termination of oxygen burning
and the ignition of silicon burning in the stellar core (Chieffi, Limongi and
Straniero 1998). In particular, the 32S abundance decreases while the abun-
dances of 30Si and 34S, and hence the neutron excess parameter η, increase.
It will be seen below that it is the initial value of η at the beginning of silicon
burning rather than the exact initial abundance distribution that sensitively in-
fluences silicon burning nucleosynthesis. For the network calculation, initial
abundances of Xi(28Si) = 0.70 and Xi(30Si) = 0.30 are chosen. These translate
into a value of ηi = 0.02 for the initial neutron excess parameter, in approxi-
mate agreement with the results presented by Thielemann and Arnett (1985)
and Chieffi, Limongi and Straniero (1998). Thermally excited levels have a
profound effect at these elevated temperatures, not only on weak interaction
decay constants, as already mentioned in Section 5.5.3, but also on the rates
of many forward and reverse reactions through stellar enhancement factors
and normalized partition functions that differ significantly from unity (Sec-
tion 3.1.5). The network is solved until silicon exhaustion (X28Si < 0.001). The
results are shown in Fig. 5.52.

The time-integrated net abundance flows Fij show an interesting pattern.
Recall that the flows Fij are integrated over the entire time until silicon ex-
haustion and thus present only the gross properties of the nucleosynthesis
(Section 5.4.2). Nevertheless, some of the most outstanding features of sil-
icon burning are reflected in the global flow pattern. The fuel consists ini-
tially only of 28Si and 30Si. These nuclei are photodisintegrated, producing
a net downward flow from 24Mg to 4He. The recapture of the liberated pro-
tons, α-particles and neutrons gives rise to a net upward flow via a multitude
of secondary reactions. A dense flow pattern in the A = 25–40 mass range,
consisting of reactions such as (p,γ), (α,γ), (n,γ), (α,p), (α,n), (n,p) and their
reverses, is apparent. Nuclei in the region A = 46–64 are also linked by nu-
merous processes, giving rise to another dense flow pattern. There is much
less nuclear activity between these two groups of nuclei in the A = 40–46 re-
gion. The reader may already suspect that the two groups of nuclei referred to
above (A = 25–40 and A = 46–64) represent quasiequilibrium clusters, which
are linked by reactions involving nuclei in the A = 40–46 region.

The evolution of the most abundant nuclides is shown in Fig. 5.52. It is
apparent how the abundances of nuclei in the A < 40 range gradually decrease
(dashed lines), while at the same time the abundances of nuclei in the iron
peak region increase (solid lines). Clearly, heavier and more tightly bound
nuclei build up as a result of a relatively small leakage of abundance flows
from the intermediate mass region toward the iron peak. The silicon fuel is
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Fig. 5.52 Time-integrated net abundance
flows (top) and abundance evolutions (bot-
tom) for a constant temperature and density
of T = 3.6 GK and ρ = 3×107 g/cm3, respec-
tively. Such conditions are typical of core
silicon burning in stars with an initial mass of
M = 25 M� and with initial solar metallicity.
The reaction network is solved numerically

until the silicon fuel is exhausted (X28Si <
0.001 after ≈ 4000 s). The arrows in the top
part have the same meaning as in Fig. 5.44.
The abundance flows in the top part of the
figure reflect the existence of two quasiequi-
librium clusters in the A = 25–40 and A =
46–64 mass ranges.
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exhausted after t = 4000 s (X28Si < 0.001). At the end of the calculation, most
of the matter (≈ 94% by mass) has been converted to 56Fe (Xf = 0.56), 52Cr (Xf

= 0.19), 54Fe (Xf = 0.11), 55Fe (Xf = 0.050), and 53Mn (Xf = 0.034). Recall, that
56Fe is one of the most tightly bound nuclei (Section 1.5.1). Similar values of
final abundances have been obtained in stellar evolution calculations (Chieffi,
Limongi and Straniero 1998). The abundances of free protons, α-particles and
neutrons amount to Xp ≈ 10−7, Xα ≈ 10−6, and Xn ≈ 10−11, respectively,
during most of the burning.

The neutron excess (Section 1.8) remains initially constant (until t ≈ 200 s),
but increases significantly afterward, as can be seen in Fig. 5.52 from the
transition of 54Fe to 56Fe as the most abundant species. The behavior of
η reflects the fact that the weak interactions are relatively slow. They be-
come mainly important when the iron peak nuclei are reached. The electron
captures 53Mn(e−,ν)53Cr, 54Fe(e−,ν)54Mn, 55Fe(e−,ν)55Mn, 55Co(e−,ν)55Fe and
56Co(e−,ν)56Fe have the largest impact on the evolution of η. The final neutron
excess amounts to η f = 0.067. Exactly the same values of Xf are obtained if
the initial abundances are placed in sulfur or argon instead of silicon isotopes,
as long as ηi is kept constant. On the other hand, a variation of ηi strongly
influences the resulting composition of the iron peak species. In any case, the
neutron excess becomes so large that the composition of the core matter devi-
ates strongly from a solar abundance distribution. The products of hydrostatic
silicon burning are completely reprocessed by the subsequent explosive burn-
ing phase before being (partially) ejected into the interstellar medium at the
end of the massive star evolution. The core collapse and the subsequent super-
nova explosion depend critically on the composition, and hence the neutron
excess, of the matter resulting from core silicon burning. Furthermore, we al-
ready pointed out in the discussion of previous advanced burning stages that
the released thermonuclear energy is almost entirely radiated as neutrino–
antineutrino pairs which are produced by thermal processes. During silicon
burning, however, weak interactions contribute significantly to the neutrino
losses.

The net abundance flows Fij shown in Fig. 5.52 are integrated over the en-
tire running time of the network calculation. Figure 5.52 provides us nei-
ther with information regarding abundance flows at a particular instant in
time nor does it tell us which pairs (or groups) of nuclei are in equilib-
rium. Instead of showing the time-integrated net abundance flows, one can
gain further insight into the nucleosynthesis by plotting the quantity φij ≡
|ri→j − rj→i|/ max(ri→j, rj→i) (see Eq. (3.54)). Recall, that a value of φij ≈ 0
characterizes an equilibrium between a pair of nuclei i and j. On the other
hand, for a pair of nuclei that is far from equilibrium we obtain φij ≈ 1. Fig-
ure 5.53 shows the flows φij at different instants in time (t = 0.01 s, 1 s, and
100 s) for the same reaction network calculation that is displayed in Fig. 5.52.
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In each panel, the thickest lines show flows with φij ≤ 0.01 (approximate equi-
librium), those of intermediate thickness represent flows with 0.01 < φij ≤ 0.1,
and the thinnest lines correspond to flows with 0.1 < φij ≤ 1 (no equilib-
rium). At early times (t = 0.01 s), we see a dense pattern of the thickest lines
in the A = 28–43 range. For each of these pairs of nuclei, the forward reac-
tion is partially balanced by the reverse reaction. The net abundance flow is
much smaller compared to the corresponding total flows or, in other words,
the net abundance flow represents a very small difference between two large
and nearly equal opposing reaction rates (hence φij ≈ 0). These pairs of nuclei
in the A = 28–43 range are linked together. They are in mutual equilibrium
and form a quasiequilibrium cluster (Section 3.1.6). At later times (t = 1 s),
the first cluster has grown in size (A = 24–43), while a second cluster appears
in the iron peak region (A = 50–67). These two quasiequilibrium clusters are
clearly not in mutual equilibrium (they are not linked by the thickest lines).
Closer to the end of the calculation (t = 100 s), the two groups have merged and
form one large quasiequilibrium cluster in the A = 24–67 region. A discussion
of reactions linking the two clusters for a range of temperature and density
conditions or in stellar evolution models can be found in Hix and Thielemann
(1996) or Chieffi, Limongi and Straniero (1998), respectively. Explosive silicon
burning is a major contributor to the cosmic abundances of 48,49Ti, 50,52,53Cr,
and 54,56,57Fe (Woosley, Heger and Weaver 2002, Clayton 2003).

Reaction network calculations similar to those just discussed provide a re-
liable description of silicon burning nucleosynthesis. In order to gain further
insight, we will now derive a number of analytical expressions for constant
temperature and density conditions by focussing our attention mainly on the
reaction links between the even–even N = Z nuclei (or α-nuclei), such as 12C,
16O, 20Ne, 24Mg, and so on. Although the following considerations are very
helpful, the reader should be aware that any truncation of the complex prob-
lem of silicon burning (that is, the restriction to certain nuclides and reactions)
will inevitably give rise to oversimplifications and deviations from the real
situation.

Suppose first, that the fuel consists only of 28Si and that (α,γ) and (γ,α) re-
actions are the only interactions in the ensuing nuclear rearrangement. The
reaction links between 12C and 40Ca are shown in Fig. 5.54b. The numbers
next to the arrows indicate the decay constants λα or λγ (in units of s−1) at T =
3.6 GK for (α,γ) or (γ,α) reactions, respectively. The quantity λα is calculated
from the reaction rates NA〈σv〉 assuming ρ = 3× 107 g/cm3 and Xα = 10−6 (see
Eq. (3.23)). The latter value is adopted from the network calculation shown in
Fig. 5.52. Of course, λα and λγ for a pair of forward and reverse reactions are
related by Eq. (3.45). An interesting point becomes apparent here. The decay
constant for 28Si(γ,α)24Mg is much smaller than the λγ values for all other α-
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Fig. 5.53 Normalized net abundance flows,
φij ≡ |ri→j − rj→i |/ max(ri→j, rj→i), at
three different times (t = 0.01 s, 1 s, 100 s)
for the same reaction network calculation
that is shown in Fig. 5.52. In each panel,
the thick lines show flows with φij ≤ 0.01
(approximate equilibrium), those of inter-

mediate thickness represent flows with
0.01 < φij ≤ 0.1, and the thin lines cor-
respond to flows with 0.1 < φij ≤ 1 (no
equilibrium). Note that the flows φij are not
integrated over time, but provide instead a
snapshot for the evolution of quasiequilib-
rium clusters during the nuclear burning.
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nuclei shown. Some of the liberated α-particles will be captured by 24Mg, a
process that is more likely to occur than the competing photodisintegration
of 24Mg [λα(24Mg)  λγ(24Mg)]. Hence, the 24Mg and 28Si abundances will
quickly seek an equilibrium. Another fraction of the liberated α-particles is
captured by 28Si. The subsequent photodisintegration of 32S is more likely to
occur than the competing 32S(α,γ)36Ar reaction [λα(32S) � λγ(32S)]. As a re-
sult, the 28Si and 32S abundances will also seek quickly an equilibrium. The
number densities of 24Mg and 28Si or of 28Si and 32S are related by the Saha
equation (see Eq. (3.49)),
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1
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with θ ≡ (2πmukT/h2)3/2 = 5.943 × 1033T3/2
9 cm−3; gi denotes the statistical

weights, mu is the atomic mass unit, and the index 1 refers to α-particles for
the pairs of nuclei quoted above (see Problem 5.6).

Similar equilibria are established between pairs of heavier α-nuclei since in
each case the (γ,α) reaction is more likely to occur than the competing (α,γ)
reaction (Fig. 5.54b). Hence, the number densities of 24Mg, 32S, 36Ar, and so
on, are all in quasiequilibrium with 28Si and the free α-particles. Photodis-
integration reactions of the type (γ,p) and (γ,n) do also occur and they give
rise to the synthesis of non-α-nuclei that also come into equilibrium with the
α-nuclei (and with 28Si in particular) and the free nucleons. As a result, a
quasiequilibrium group of nuclei comes into existence which is build around
the tightly bound 28Si nucleus. This conclusion remains unchanged if we take
the 28Si(γ,p)27Al reaction into account, which has been disregarded so far.
According to Fig. 5.51, the 28Si(γ,p)27Al reaction is even more likely to oc-
cur above T = 2.2 GK than 28Si(γ,α)24Mg. Nevertheless, 28Si has by far the
smallest total decay constant, λ = λγα + λγp + λγn, among all nuclei in the
A = 24–67 range. Furthermore, the fact that 24Mg comes into equilibrium
with 28Si greatly slows the disintegration of 28Si (see below). In summary,
the quasiequilibrium with respect to the residual 28Si can be maintained be-
cause the intermediate-mass nuclei capture and emit α-particles, protons or
neutrons at rates much larger than the small net rate of 28Si disintegration.
The time scale of the process is thus determined by the rate at which 28Si can
be decomposed.

The quasiequilibrium abundance of a nucleus A
Z YN relative to 28Si is given

by (Bodansky, Clayton and Fowler 1968; see also Problem 5.7)
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Fig. 5.54 Reaction chains in silicon burning.
(a) The reaction chain 28Si↔32S↔33S↔34S
in equilibrium. (b) (α,γ)↔(γ,α) reaction links
between 12C and 40Ca. The numbers next
to the arrows indicate values of the decay
constants λα and λγ (in units of s-1) for (α,γ)
and (γ,α) reactions, respectively, assuming
a temperature of T = 3.6 GK. The quantity

λα is calculated by using ρ = 3×107 g/cm3

and Xα = 10-6. The latter value is adopted
from the network calculation displayed in
Fig. 5.52. Nuclides located within the re-
gion demarked by the dashed lines are in
quasiequilibrium. (c) The closed reaction
chain 28Si↔32S↔31P↔30Si↔29Si↔28Si in
equilibrium.

where A = Z + N; Nα, Np and Nn are the number abundances of α-particles,
protons and neutrons, respectively; δα, δp and δn specify the number of α-
particles and nucleons of nucleus A

Z YN in excess of their number in 28Si. They
are computed relative to the heaviest α-nucleus contained within A

Z YN . If this
heaviest α-nucleus contains N′ = Z′ protons and neutrons, then the integers δi
are given by δα = (N′ + Z′ − 28)/4, δp = Z − Z′, δn = N − N′. For example,
34S may be considered as being composed of 32S plus two neutrons, hence
δα = (16 + 16 − 28)/4 = 1, δp = 16 − 16 = 0, δn = 18 − 16 = 2. The exponent
B(Y)− B(28Si)− δαB(α) is the energy required to decompose A

Z YN into 28Si +
δα

4He + nucleons, with B(Y) the binding energy of A
Z YN . For example, for the

ratio N56Ni/N28Si we obtain from Eq. (5.149)

N56Ni
N28Si

= N7
α

(
2
47

)3/2 1
θ7 e[B(56Ni)−B(28Si)−7B(α)]/kT (5.150)

where B(56Ni)− B(28Si)− 7B(α) = 49.385 MeV. This result will be used later in
the discussion of the energy generation rate. The free α-particles, protons and



5.5 Advanced Burning Stages 503

neutrons maintain an equilibrium via many different closed reaction chains,
such as 28Si↔32S↔31P↔30Si↔29Si↔28Si (Fig. 5.54c). The light-particle abun-
dances are related by (Problem 5.8)
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n N2

p
1
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(
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M2
pM2

n

)3/2

eB(α)/kT (5.151)

with B(α) = 28.295 MeV the binding energy of the α-particle. From Eqs. (5.149)
and (5.151) one can see that the equilibrium abundance of each nucleus rela-
tive to 28Si is determined by the abundances of any two light particles. We also
conclude that the quasiequilibrium abundance of nucleus A

Z YN is uniquely
specified by the four parameters N28Si, Nα, Np, and T.

The net downward flow from 24Mg to 4He will be considered next
(Fig. 5.52). According to Fig. 5.53, the lower bound of the silicon quasiequilib-
rium cluster is 24Mg. Nuclei lighter than 24Mg are generally not in equilibrium
with 28Si. This can also be seen from the decay constants given in Fig. 5.54b.
The α-captures on 20Ne and 12C are less likely to occur than the compet-
ing (γ,α) reactions [λαγ(20Ne) � λγα(20Ne) and λαγ(12C) � λγ3α(12C)] and
hence the abundances of the pairs 20Ne–24Mg or 12C–16O will not seek quickly
an equilibrium. The effective rate of 28Si destruction is then determined by the
photodisintegration of 24Mg. Net flows fi between pairs of the light α-nuclei
are given by Eqs. (3.23) and (3.52),

f24Mg→20Ne = N24Mgλγα(24Mg) − N20Neλαγ(20Ne) (5.152)

f20Ne→16O = N20Neλγα(20Ne) − N16Oλαγ(16O) (5.153)

f16O→12C = N16Oλγα(16O)− N12Cλαγ(12C) (5.154)

f12C→4He = N12Cλγ3α(12C)− r3α (5.155)

with r3α = Nαλ3α/3 the rate of the 3α reaction which depends on N3
α (see

Eq. (5.100)); λγ3α(12C) is the decay constant for the disintegration 12C → α +
α + α. Since the decomposition of 28Si is so slow, and thus determines the
overall time scale of the process, we conclude that the abundances of the light
α-nuclei are small compared to the 28Si abundance. This also means that the
abundances of the light α-nuclei achieve a steady state, that is, the abundance
flow into each of the nuclei 20Ne, 16O, and 12C is balanced by the flow out.
Therefore, the net flows fi are equal, f24Mg→20Ne = f20Ne→16O = f16O→12C =
f12C→4He ≡ fan. With this assumption the above system of equations can be
solved for fan, with the result (Problem 5.9)

fan =
N24Mgλγα(24Mg)− λαγ(20Ne)

λγα(20Ne)
λαγ(16O)
λγα(16O)

λαγ(12C)
λγ3α(12C) r3α

1 + λαγ(20Ne)
λγα(20Ne)

[
1 + λαγ(16O)

λγα(16O)

(
1 + λαγ(12C)

λγ3α(12C)

)] (5.156)
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The above analytical expression gives the effective photodisintegration rate of
24Mg, and hence the effective rate for the conversion of 28Si into heavier nuclei,
as a function of temperature and α-particle abundance. The 24Mg abundance,
N24Mg, can be obtained from Eq. (5.148).

Figure 5.55 compares the total 28Si photodisintegration rate, r28Si+γ =
N28Si[λγα(28Si) + λγp(28Si)], where λγn(28Si) is negligible, with the effective
rate fan of 28Si consumption. The curves are computed for the conditions T =
3.6 GK and ρ = 3 × 107 g/cm3 as a function of the remaining 28Si abundance.
The α-particle abundance is adopted from the numerical results of a network
calculation (Fig. 5.52). A few interesting points are apparent here. First, it
can be seen that the effective rate of 28Si consumption is 2–3 orders of mag-
nitude smaller than the total photodisintegration rate of 28Si. This is caused
by the 28Si photodisintegration flow being almost exactly balanced by the
flow upward from 24Mg (so that the net flow is small) and supports the above
arguments regarding the very slow conversion of 28Si. Second, it is apparent
that the downward flow fan from 28Si decreases with time as 28Si burns. Since
the liberated light particles are used to build up iron peak nuclei, the upward
flow from 28Si also decreases with time as 28Si burns. Third, the long-dashed
line shows the flow fnum = f24 Mg→20Ne which is directly obtained from a net-
work calculation according to Eq. (5.152). The curves for fan and fnum are in
good agreement. Hence, Eq. (5.156) provides indeed a reliable approximation
for the effective rate of 28Si consumption. This also means that only (γ,α)
or (α,γ) reactions between pairs of α-nuclei are important for the downward
flow from 28Si to 4He. However, for different temperature and density con-
ditions a number of other reactions play an important role as well (Hix and
Thielemann 1996). Finally, for the temperature adopted here, the curve for
fan is almost indistinguishable from the values obtained with the approxima-
tion f ≈ N24Mgλγα(24Mg). For increasing temperature, the α-particle capture
on 20Ne becomes important (see Eq. (5.156)) and, consequently, the above
approximation deviates from fan.

The total energy release during hydrostatic silicon burning can be estimated
approximately from Eq. (3.68) if we assume that for each two 28Si nuclei that
are destroyed, one 56Fe nucleus is produced (see also Fig. 5.52). The photo-
disintegration of the first 28Si nucleus provides a free α-particle which is then
captured by the second 28Si nucleus. With QSi ≈ Q228Si→56Fe = 17.62 MeV, we
find
∫

εSi(t) dt =
NAQSi
2M28Si

∆X28Si = 1.90 × 1023∆X28Si (MeV/g) (5.157)

where ∆X28Si is the mass fraction of the consumed silicon fuel. This value is
smaller than what is expected from either carbon or oxygen burning, but ex-
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Fig. 5.55 Comparison of total 28Si photo-
disintegration rate (r28Si+γ ; short-dashed
line) with the effective rate of 28Si consump-
tion ( fan; solid line). The curves are com-
puted as a function of the remaining 28Si
abundance for the conditions T = 3.6 GK
and ρ = 3×107 g/cm3. The α-particle abun-

dance is adopted from the numerical re-
sults of the network calculation displayed
in Fig. 5.52. The long-dashed line shows
the flow f24 Mg→20Ne = fnum that is directly
obtained from the numerical network calcu-
lation.

ceeds the total energy released during neon burning (see Eqs. (5.130), (5.135),
and (5.147)).

The nuclear energy generation rate cannot be described precisely by an an-
alytical expression since the nuclear transformations during silicon burning
are very complex. Reaction network calculations show that the energy gener-
ation rate is sensitive to the temperature and density conditions, but also to the
neutron excess (Hix and Thielemann 1996). In the simplest case, an order-of-
magnitude estimate can be found if one assumes that the initial neutron excess
is very small (η ≈ 0), that weak interactions are negligible, and that for each
two 28Si nuclei that are destroyed one 56Ni nucleus is produced (Bodansky,
Clayton and Fowler 1968). As explained above, the rate of 28Si consumption
is mainly determined by the 24Mg(γ,α)20Ne reaction. Starting from Eq. (3.63)
one finds

εSi =
Q228Si→56Ni

ρ
r228Si→56Ni ≈

Q228Si→56Ni
ρ

r24Mg(γ,α)20Ne

=
Q228Si→56Ni

ρ
N24Mgλγα(24Mg) (5.158)

The quantity N24Mg can be replaced by the 28Si abundance using Eq. (5.148)
(see also Problem 5.6). The decay constant λγα(24Mg) can be expressed in
terms of the corresponding forward reaction rate by using Eq. (3.45). The nor-
malized partition functions for 20Ne, 24Mg, and 28Si in these two expressions
are close to unity for T ≤ 5 GK. Equation (5.148) contains the α-particle abun-
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dance, which is derived from Eq. (5.150). Substitution of these three expres-
sions into Eq. (5.158) gives

εSi = 9.8685 × 109 23/14

8
Q228Si→56Ni

ρ

(
M20NeM2

α

M28Si

)3/2

N28Si

(
N28Si
N56Ni

)1/7

× e11.605[B(56Ni)−B(28Si)−7B(α)]/(7T9)e
−11.605[Q20Ne(α,γ)+Q24Mg(α,γ) ]/T9

× T3/2
9 NA〈σv〉20Ne(α,γ) (MeV g−1 s−1) (5.159)

If one assumes in addition that most of the matter resides in either 28Si or
56Ni, then X28Si + X56Ni = 1. Inserting the numerical values of Q228Si→56Ni
= 10.918 MeV, Q20Ne(α,γ) = 9.317 MeV, Q24Mg(α,γ) = 9.984 MeV and [B(56Ni) −
B(28Si)− 7B(α)] = 49.385 MeV and replacing the number abundances by mass
fractions (see Eq. (1.13)) yields

εSi = 1.2985 × 1034X28Si

(
2X28Si

1 − X28Si

)1/7

e−142.12/T9 T3/2
9 NA〈σv〉20 Ne(α,γ)

(MeV g−1 s−1) (5.160)

where [2X28Si/(1 − X28Si)]
1/7 ≈ 1 within a factor of 2 between X28Si = 0.01 −

0.99. Equation (5.160) is independent of the density. An analytical expression
for the 20Ne(α,γ)24Mg reaction rate is given in Section 5.5.2. The temperature
dependence of the energy generation rate during silicon burning is then

εSi ∼ T2.229
9 e−12.681/T9 e−142.12/T9 T1.5

9 ∼ T3.729
9 T154.80/T9

9 (5.161)

where the term exp(−154.80/T9) is derived according to the method de-
scribed by Eqs. (3.82)–(3.87). For example, near T0 = 3.6 GK we find

εSi(T) = εSi(T0) (T/T0)
47 (5.162)

Since so many nuclides achieve quasiequilibrium, the thermonuclear rates
of most reactions are not important for the nucleosynthesis and energy pro-
duction during silicon burning. What is mainly needed in terms of nuclear
physics input are binding energies (or Q-values), nuclear masses, spins (see
Eqs. (5.148) and (5.149)) and stellar weak interaction rates. Binding ener-
gies and masses of nuclei close to stability are well known. Where the ther-
monuclear rates are important, however, are for those reactions that are not
in quasiequilibrium for a significant amount of time during the burning. This
applies to reactions that determine the net downward flow from 24Mg and
to those that mediate between the two quasiequilibrium clusters built around
28Si and the iron-peak nuclei. For the reaction network calculation discussed
above, the downward flow from 24Mg is governed by 24Mg(γ,α)20Ne, while
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42Ca(α,γ)46Ti and 45Sc(p,γ)46Ti are among the reactions which link the two
clusters. (Detailed lists of reactions are given in Hix and Thielemann (1996)
and Chieffi, Limongi and Straniero (1998).) The reverse 24Mg(γ,α)20Ne reac-
tion rate can be calculated from the forward 20Ne(α,γ)24Mg rate, which has
already been discussed in connection with carbon and neon burning (Sec-
tions 5.5.1 and 5.5.2). Near T ≈ 3.6 GK, the 20Ne(α,γ)24Mg reaction rate may
be subject to systematic errors of the order of a factor of ≈ 2, as can be seen
from the different results reported by Caughlan and Fowler (1988), Angulo
et al. (1999), and Rauscher et al. (2000). Several, but not all, of the reac-
tions linking the two quasiequilibrium clusters have been measured directly
in the Gamow peaks appropriate for hydrostatic and explosive silicon burn-
ing. Among the measured reactions are 42Ca(α,γ)46Ti, 42Ca(α,p)45Sc (Mitchell
et al. 1985), 42Ca(α,n)45Ti (Cheng and King 1979), 41K(α,p)44Ca (Scott et al.
1991) and 45Sc(p,γ)46Ti (Solomon and Sargood 1978). Typical reaction rate
errors amount to about ±20% where direct data exist. Other mediating reac-
tions, some of which involve radioactive target nuclei such as 41Ca, 44Sc, and
44Ti, have not been measured yet. In these cases, the Hauser–Feshbach statis-
tical model is used to estimate the reaction rates theoretically (Goriely 1998,
Rauscher and Thielemann 2000).

5.5.5
Nuclear Statistical Equilibrium and Freeze-Out

As the 28Si disappears at the end of silicon burning, the temperature in the
stellar core increases steadily (Section 1.4.3 and Fig. 5.1). At some point, the
previously nonequilibrated reactions in the A < 24 region come into equi-
librium as well (Figs. 5.53 and 5.54). The last link to achieve equilibrium is
3α ↔12C. Every nuclide in the network is now in equilibrium via strong and
electromagnetic interactions and one large quasiequilibrium group stretches
from p, n, α to the iron peak nuclei. This situation is referred to as nuclear
statistical equilibrium. For a distinction between nuclear statistical equilibrium
and the related e-process (Burbidge et al. 1957), see Wallerstein et al. (1997).
Note that weak interactions do not participate in the equilibrium. For exam-
ple, the reverse link of electron capture on some parent nucleus is neutrino
capture on the corresponding daughter nucleus. Neutrinos normally escape
from the star without interaction since their mean free path exceeds the stellar
radius. Hence, a true equilibrium involving weak interactions is not achieved.
In nuclear statistical equilibrium, the abundance of any isotope A

π Yν can be de-
termined by repeated application of the Saha equation (see Eq. (5.148)). The
result is (Clifford and Tayler 1965; see also Problem 5.10)

NY = Nπ
p Nν

n
1

θA−1

(
MY

Mπ
p Mν

n

)3/2
gY

2A Gnorm
Y eB(Y)/kT (5.163)
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with θ defined as in Eq. (5.148), B(Y) the binding energy of A
π Yν and A =

π + ν. The symbols π and ν are used instead of Z and N for the number
of protons and neutrons, respectively, in order to avoid confusion with the
number density Ni. The abundance of any isotope is hence given in terms
of its nuclear properties (binding energy, mass, spin, and so on) and the free
nucleon abundances Np and Nn. The above equation is by itself inadequate to
yield the equilibrium abundance NY since Np and Nn are not given. But two
additional constraints can be applied. One unknown quantity (say Np) can be
eliminated by using conservation of mass (see Eq. (1.12))

∑
i

Xi = ∑i Ni Mi

ρNA
= 1 (5.164)

where the sum i is over all nuclei in the network, including free protons, neu-
trons, and α-particles. Recall that the strong and electromagnetic interactions
occur much more rapidly than weak interactions. Thus, nuclei and photons
come into equilibrium in a relatively short time while the total numbers of free
and bound protons and neutrons are essentially constant. Conservation of to-
tal charge is frequently expressed by the requirement that the total number
densities of (free and bound) protons and neutrons must preserve the neutron
excess

∑
i

(νi − πi)
Mi

Xi = ∑i Ni(νi − πi)
ρNA

≡ η (5.165)

It follows immediately from Eqs. (5.163)–(5.165) that the abundance of any nu-
clide in nuclear statistical equilibrium is uniquely specified by only three in-
dependent parameters: temperature, density, and neutron excess. Of course,
weak interactions may also occur. They are assumed to be sufficiently slow
so that nuclear statistical equilibrium at a specific value of η is established
on a much shorter time than the time required for a significant change in the
value of η to occur. Weak interactions must be monitored carefully because
the composition of the iron peak depends sensitively on η, as will be shown
later.

In the following, some interesting properties of Eq. (5.163) will be explored.
First, consider the simplest case when η ≈ 0, that is, assume that weak in-
teractions are negligible, and that, in the iron peak, the decomposition of 28Si
during the preceding silicon burning stage has mainly produced 56Ni. By
combining two equations of the form of Eq. (5.163), one for 4He and the other
for 56Ni, one easily finds

N14
4He

N56Ni
= θ13 242

563/2 e[14B(4He)−B(56Ni)]/kT (5.166)

where g4He = g56Ni = 1 and Gnorm
4He = Gnorm

56Ni = 1. The latter equality holds
within 10% up to T = 5 GK. Furthermore, 14B(4He)− B(56Ni) = −87.853 MeV
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is the energy required to separate 56Ni into 14 α-particles. Now, assume that
the stellar plasma consists entirely of 4He and 56Ni. We would like to know
the T–ρ conditions for which the mass fractions of these two nuclides are
equal (X4He = X56Ni = 0.5). This boundary can be obtained easily by rewrit-
ing Eq. (5.166) in terms of mass fractions and by solving for the density ρ. The
numerical result is

ρ = 3.80 × 1011T3/2
9 e−78.42/T9 (g/cm3) (5.167)

Similarly, another boundary can be obtained assuming instead that the mat-
ter consists entirely of α-particles and (free) nucleons to equal amounts (see
Problem 5.11). These two boundaries are displayed in Fig. 5.56. They reflect
the competition between 56Ni, 4He, and nucleons in a plasma at nuclear sta-
tistical equilibrium for η ≈ 0. In the lower temperature region (to the left
of the solid line), 56Ni dominates the composition. At intermediate tempera-
tures (between the solid and the dotted lines), 4He is the dominant nucleus. At
higher temperatures (to the right of the dotted line), the composition consists
mainly of protons and neutrons. It is apparent that with rising temperatures
and given density, an increasing fraction of the composition resides in light
particles (α, n, p). This circumstance is important both for triggering the col-
lapse of the core of an evolved massive star and for causing energy losses to
the shock wave generated by the core bounce (Section 1.4.3). Also, for decreas-
ing densities and given temperature, an increasing fraction of the composition
resides in light particles.

Consider now temperature–density conditions at which most of the matter
resides in iron peak nuclei (the region to the left of the solid line in Fig. 5.56).
We would like to find the dominant constituents favored by nuclear statistical
equilibrium if the neutron excess parameter is η > 0. Clearly, a value of η > 0
will allow the dominant nucleus to be one with a neutron excess. If the plasma
would consist of only one species, then it is obvious that η must be equal
to the individual neutron excess, (N − Z)/A, of the nuclide in question. It
is then reasonable to assume that the abundance of each nuclide will be at
maximum close to its individual neutron excess. The most abundant nuclide
in a composition of given neutron excess η is then, in general, the one with an
individual neutron excess of (N − Z)/A ≈ η and the largest binding energy
(see Eq. (5.163)).

The abundances of the dominant nuclides versus neutron excess parame-
ter η in a nuclear statistical equilibrium composition at T = 3.5 GK and ρ =
107 g/cm3 are shown in Fig. 5.57. The results are calculated from Eqs. (5.163)–
(5.165) by taking into account individual binding energies, spins and normal-
ized partition functions for a large set of nuclei (from H to Zr). As expected,
for η = 0 the dominant nucleus is 56Ni [(N − Z)/A = (28− 28)/56 = 0], which
in fact is important for the nucleosynthesis and the light curves of supernovae.
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Fig. 5.56 Temperature–density conditions
in a plasma at nuclear statistical equilib-
rium with η ≈ 0 for X56Ni = X4He = 0.5 (solid
line) and X4He = 0.5, Xp = Xn = 0.25 (dot-
ted line). The lines define regions of the
dominant nuclear constituents. The two
boundaries are not sharp since a distribu-
tion of nuclei and nucleons exists at all T–ρ
conditions. The above assumptions are

schematic because a strip exists above the
solid line where nuclear statistical equilib-
rium in fact favors 54Fe + 2p over 56Ni as the
dominant constituent (Clayton 1983). The
point here is that, with rising temperatures
at a given density, or with decreasing den-
sities at a given temperature, an increasing
fraction of the composition resides in light
particles (α,p,n).

Around η = 0.04, 54Fe dominates [(28− 26)/54 = 0.037], while 56Fe is the most
abundant nucleus at η ≈ 0.07 [(30 − 26)/56 = 0.071]. For larger values of η

the equilibrium composition shifts to still heavier and more neutron-rich nu-
clei. Note that the most tightly bound nucleus with (N − Z)/A ≈ η is not
always the most abundant one. For example, consider the isotopes 54Fe and
58Ni which have similar values of (N − Z)/A. The binding energies per nu-
cleon, B/A, are almost identical. This means that the binding energy, B, is
in fact much larger for 58Ni. Nevertheless, at η ≈ 0.04 the mass fraction of
54Fe exceeds the 58Ni mass fraction by four orders of magnitude in Fig. 5.57.
Clearly, binding energy is not the only factor influencing the abundance. In
the above example, the A dependences of both θ and ρ also play an important
role (see Eq. (5.163)).

It should be remarked that a system at any temperature and density will
come into equilibrium provided it is maintained long enough. When it is
stated that, at a particular temperature of T, the nuclear reactions are in equi-
librium, what is meant is that it is believed that this temperature exists long
enough for a good approximation to equilibrium to occur. Clearly, the nuclear
gas requires a finite amount of time to adjust to equilibrium. An expression
for the approximate time to reach nuclear statistical equilibrium for given val-
ues of T and ρ has been calculated by Khokhlov (1991). The time is displayed
in Fig. 5.58 versus temperature for two values of the density (ρ = 104 g/cm3
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Fig. 5.57 Abundances of the dominant species versus neutron ex-
cess parameter η in a nuclear statistical equilibrium composition at
T = 3.5 GK and ρ = 107 g/cm3. From Hartmann, Woosley and El Eid
(1985). Reproduced by permission of the American Astronomical Soci-
ety.

and ρ = 1010 g/cm3). At T = 4 GK, for example, nuclear statistical equilib-
rium is established in about 1 h, while at T = 6 GK the time is only ≈ 10−3 s.
At the higher temperatures (say, above T = 6 GK) nuclear statistical equilib-
rium is achieved even in explosive events. At lower temperatures, however,
if thermodynamic conditions vary sufficiently rapidly, nuclear statistical equi-
librium may provide a poor approximation for the abundances.

An extensive discussion of nuclear statistical equilibrium is given in Clif-
ford and Tayler (1965). It is found that abundances vary rapidly with η,
fairly rapidly with temperature T and very slowly with density ρ. Further-
more, at lower temperatures there are fewer nuclides with relatively large
abundances, whereas the abundances are spread more evenly at higher tem-
peratures (which is also apparent from the exponential factor eB(Y)/kT in
Eq. (5.163)).

Until now we have considered what will happen to matter when the tem-
perature and density slowly increase during the evolution in the core of a mas-
sive star. Quasiequilibrium is achieved for sufficiently high values of T and
ρ and, at even more extreme conditions, the matter is described by nuclear
statistical equilibrium. In massive star explosions (Section 1.4.3), however, the
series of events is reversed: the outgoing shock wave heats the inner layers of
the star outside the core to high temperatures and this matter at nuclear sta-
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Fig. 5.58 Approximate time to reach nuclear statistical equilib-
rium versus temperature for two different densities (ρ = 104 g/cm3

and ρ = 1010 g/cm3). The curves are calculated from the expres-
sion τNSE = ρ0.2e179.7/T9−40.5 (s), where ρ is in units of g/cm3

(see Khokhlov 1991).

tistical equilibrium subsequently experiences a rapid decrease in temperature
and density while the shock moves outward. As the matter expands and cools,
certain reaction links will fall out of equilibrium. The subsequent nuclear evo-
lution depends then critically on the density of free light particles (α, n, p) and
the time scale of the expansion. In the following discussion, let us denote the
temperature at which the first reactions begin to fall out of equilibrium by Tα.

Suppose first that the density at Tα is sufficiently large so that the α-particle
abundance is small. Representative values for such a situation are, for exam-
ple, Tα ≈ 3–4 GK, ρ ≈ 107 g/cm3, and Xα < 0.01. Near Tα the (γ,α) rates are
much more temperature sensitive than the forward (α,γ) rates (see Eq. (3.45)).
Therefore, when the temperature falls below Tα, the photodisintegration reac-
tions are not efficient enough in the time available to produce the α-particles
necessary to maintain nuclear statistical equilibrium. As a result, there is a
lack of α-particles which are almost all bound in nuclei. The first reactions
to drop out of equilibrium are 3α ↔12C and the α-particle links among the
lighter α-nuclei (12C, 16O, 20Ne, 24Mg, and so on). Since the equilibrium is
terminated by a lack of α-particles, the process is referred to as particle-poor
freeze-out (Woosley, Arnett and Clayton 1973, Hartmann, Woosley and El Eid
1985). The abundances of free light particles (especially α-particles) is so low
that their subsequent capture during freeze-out does not alter the composition
significantly, that is, the abundances ejected from such environments are close
to those derived from nuclear statistical equilibrium at temperature Tα. Such
abundance distributions produce iron peak nuclei, with the dominant species
determined by the neutron excess. For example, for η ≈ 0, 0.035, or 0.071
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the most abundant species are 56Ni, 54Fe, or 56Fe, respectively. No significant
production of nuclides beyond the iron peak occurs.

Now consider a situation where the density at Tα is sufficiently small so
that the α-particle abundance is large. As the temperature falls toward Tα, the
free α-particles have the tendency to merge into the iron peak (we are moving
from right to left in Fig. 5.56). Most of the α-particles are transformed by the
sequence 3α →12C(α,γ)16O. . .52Fe(α,γ)56Ni where the 3α reaction represents
the slowest link. When the temperature falls below Tα, and if the expansion
time scale is sufficiently rapid, the α-particles cannot be converted fast enough,
in the time available, to iron-peak nuclei through the slow helium burning
reactions in order to maintain nuclear statistical equilibrium. The equilibrium
is terminated by an excess of α-particles and, therefore, the process is called
α-rich freeze-out (Woosley, Arnett and Clayton 1973). Since the material cools in
the presence of a large abundance of free light particles (especially α-particles),
their interactions with nuclei during freeze-out alters the composition. The
abundances ejected from such environments are different from those derived
from nuclear statistical equilibrium at temperature Tα. For example, if the
neutron excess is small (η ≈ 0), the most abundant species in the ejecta is
still 56Ni. On the other hand, material that would have been in the form of
the trace constituent 54Fe ends up mainly as 58Ni. Traces of Zn isotopes are
also formed, but again, the nucleosynthesis does not proceed beyond the iron
peak.

The neutron excess in the silicon and oxygen shells of a massive presu-
pernova star is rather small (η ≈ 0; see for example Section 5.5.3). When
the supernova shock wave heats this matter to nuclear statistical equilibrium,
the subsequent freeze-out will produce mainly iron peak nuclides, with 56Ni
as the main constituent. The radioactive decay of this nuclide, first to 56Co
and then to the stable species 56Fe, gives rise to the tail in the light curves
of core-collapse supernovae. The amount of ejected 56Ni that is predicted
by current massive star explosion models agrees with the empirical values
of 0.07 ± 0.01 M� for SN 1987A and 0.08 ± 0.02 M� for SN 1993J (Woosley,
Heger and Weaver 2002). The α-rich freeze-out is also a major source of the nu-
clides 44Ca (made chiefly as radioactive 44Ti in supernovae), 45Sc and 58,60Ni
in the Universe. For the effects of reaction rate uncertainties on the nucle-
osynthesis during the α-rich freeze-out, see Jordan, Gupta and Meyer (2003).
Furthermore, the light curves of type Ia supernovae are also powered by the
decay of 56Ni, which represents the main product of nuclear statistical equi-
librium at low neutron excess (Section 1.4.4).
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5.6
Nucleosynthesis Beyond the Iron Peak

The transmission through the Coulomb barrier decreases drastically with in-
creasing nuclear charges. For this reason, charged-particle cross sections are
far too small at moderate stellar temperatures to explain the observed solar
system abundances of nuclides with masses beyond A ≈ 60. At very high
temperatures, on the other hand, charged-particle reactions will give rise to
abundances that are described by nuclear statistical equilibrium, either favor-
ing nuclei of the iron peak group or lighter species (see Fig. 5.56). The situation
is quite different when considering neutron-induced reactions as the mecha-
nism for the synthesis of the heavy nuclides. There is no Coulomb barrier
for neutrons and thus the neutron capture cross sections, even at moderate
stellar energies, are frequently quite large. In fact, the cross sections for most
neutron-induced reactions even increase with decreasing incident neutron en-
ergies (Fig. 3.30). It is therefore reasonable to assume that heavy nuclides can
be synthesized by exposing lighter seed nuclei to a source of neutrons. There
is unambiguous evidence for such a mechanism. As will be seen, it provides a
natural explanation for the fact that the solar system abundance curve peaks
near the mass numbers A ≈ 84, 138, and 208 (Fig. 5.59), corresponding to the
neutron magic numbers of N = 50, 82, and 126, respectively (Section 1.6.1). It
should be remembered that neutrons are unstable, with a half-life of T1/2 =
614 s. The interstellar medium does not contain a significant concentration of
free neutrons. They must be produced in stars. In fact, we have already en-
countered some neutron-producing reactions in helium burning (Section 5.3.3)
and carbon burning (Section 5.5.1). We will first concentrate on the proper-
ties of neutron capture nucleosynthesis and afterward discuss the sources of
neutrons in various stellar environments. It should also be noted that, unlike
previously discussed processes, the neutron capture processes do not gener-
ate any significant amount of energy as can be seen from the decline of the
binding energy per nucleon beyond the iron peak (Fig. 1.8).

Consider the nuclear transformations that may occur if a stable nucleus,
for example 156Gd, is exposed to a flux of neutrons (Fig. 5.60). Succes-
sive stable isotopes of the same element (Gd) will capture neutrons, ini-
tiating the sequence 156Gd(n,γ)157Gd(n,γ)158Gd(n,γ)159Gd. The last nu-
clide, 159Gd, is radioactive (T1/2 = 18.5 h). Further suppose that the neu-
tron flux is sufficiently small so that the β-decay constant of any unsta-
ble nucleus created after neutron capture is large compared to the decay
constant of the competing (n,γ) reaction (λβ  λnγ). The path will then
continue via 159Gd(β−ν)159Tb(n,γ)160Tb. The last nuclide, 160Tb, is radioac-
tive (T1/2 = 72.3 d). The process repeats itself, giving rise to the sequence
160Tb(β−ν)160Dy(n,γ)161Dy(n,γ)162Dy, and so on. In summary, successive
neutron captures by a chain of isotopes occur until a radioactive isotope is
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Fig. 5.59 Solar system abundances (relative to 106 Si atoms) of the
heavy nuclides (adopted from Lodders 2003). Abundances of differ-
ent isobars have been added together. Narrow peaks occur at mass
numbers of A ≈ 84, 138, and 208, corresponding to the neutron magic
numbers of N = 50, 82, and 126, respectively. Broader peaks are lo-
cated approximately 10 mass units below the narrow peaks.

reached at which point a β−-decay takes place and another successive chain
of neutron captures is initiated. The resulting path is shown as the solid line
in Fig. 5.60. This mechanism is referred to as s(low neutron capture)-process
(Burbidge et al. 1957). Clearly, the s-process path must run close to the group
of stable nuclides. More specifically, it will reach only those stable nuclides
that are labeled “s” in Fig. 5.60. It will neither reach very neutron-deficient
stable nuclei (such as 158Dy) nor very neutron-rich stable nuclei (such as
160Gd). The abundances synthesized by the s-process will in general depend
on the magnitude of the neutron-capture cross sections involved in the chain.
Nuclei with very small neutron-capture cross sections are expected to pile up
in abundance, while those with large cross sections will be quickly destroyed
and achieve only small abundances. Maxwellian-averaged neutron-capture
cross sections on stable and long-lived nuclides at a thermal energy of kT =
30 keV versus mass number A are shown in Fig. 5.61. Recall that nuclides
with a magic neutron number (N = 50, 82, and 126) have energetically favor-
able configurations (Section 1.6.1). The capture of another neutron produces a
product nucleus with a relatively small neutron separation energy and, there-
fore, the compound nucleus is formed at a relatively small excitation energy in
a region with a small level density. The reaction must then proceed through a
reduced number of compound levels and the cross section becomes relatively
small, as can be seen from the location of the minima in Fig. 5.61. In other
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Fig. 5.60 The s-process path through
the elements Gd, Tb and Dy (solid line).
Shaded squares indicate stable nuclides.
Nuclides reached by the s-process are la-
beled “s.” Stable nuclides that are reached
via the r-process (dotted arrows) through
β−-decay chains along A = const after ter-
mination of the neutron flux are labeled “r.”
Neither process can explain the synthe-

sis of the stable nuclide labeled “p.” Notice
that some stable nuclides can be synthe-
sized only in the s-process or the r-process,
but not by both processes. These are re-
ferred to as s-only or r-only nuclides. The
s-process branchings in this mass region
are weak and have been omitted in the fig-
ure.

words, we expect that the s-process will produce these very same nuclei with
increased abundances. This is precisely the reason for the narrow peaks at the
neutron magic numbers N = 50, 82, and 126 in the solar system abundance
curve (Fig. 5.59).

Consider now the other extreme, that is, a neutron flux so large that the
decay constant of an unstable nucleus created after neutron capture is small
compared to the decay constant of the competing (n,γ) reaction (λβ � λnγ).
In this case, the nucleosynthesis path will run close to the neutron dripline.
When the neutron flux terminates, all neutron-rich radioactive nuclei will un-
dergo successive β−-decays (dashed arrows in Fig. 5.60) along isobaric chains
until the most neutron-rich, stable (or very long-lived) isobar is reached. This
nucleosynthesis process is called the r(apid neutron capture)-process and will
be discussed in more detail in Section 5.6.2. In the example of Fig. 5.60, the
r-process synthesizes all nuclides labeled “r.” It is interesting that certain nu-
clides (for example, 156Gd, 157Gd) can be produced by both the s- and the
r-process. Other nuclei, such as 160Gd, are never reached in the s-process and
are referred to as r-only nuclides. The latter nuclide does not undergo a β−-
decay since it is stable. Hence, 160Dy which is less neutron-rich than 160Gd,
cannot be reached in the r-process. It is called an s-only nuclide because it is
shielded from the r-process.
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Fig. 5.61 Maxwellian-averaged neutron-capture cross sections on sta-
ble and long-lived nuclides at a thermal energy of kT = 30 keV versus
mass number A (from Bao et al. 2000). Nuclides with a magic neutron
number (N = 50, 82, and 126) have energetically favorable configura-
tions and give rise to relatively small neutron capture cross sections
(see the text).

Some of the most neutron-deficient stable nuclides, such as 158Dy in
Fig. 5.60, cannot be synthesized by either the s-process or the r-process. They
are shielded from both neutron-capture processes and are referred to as p-
nuclei. The mechanism responsible for their synthesis is called the p-process
and will be discussed in Section 5.6.3. It is sufficient to remark here that the
abundances of almost all p-nuclei are much smaller compared to those of the
s- and r-nuclei of the same mass number.

Crude estimates for the number densities of neutrons in the s- and r-process
can be obtained by considering typical cross sections for neutron capture. Ac-
cording to Fig. 5.61, the mean value for the Maxwellian-averaged neutron-
capture cross section of nuclei in the A = 60–210 region at a thermal energy of
kT = 30 keV is 〈σ〉T = 〈σv〉/vT ≈ 100 mb. Since average neutron capture cross
sections do not vary drastically with thermal energy (Fig. 3.31), this value
will be adopted as an order-of-magnitude estimate. For the s-process, typi-
cal β−-decay lifetimes of radioactive nuclei near the valley of stability range
from minutes to years. Since τβ � τnγ, the mean lifetime for neutron cap-
ture must then typically be τnγ ≈ 10 y or more. With vT = (2kT/m01)1/2 ≈
[2 · 30 keV · c2/(mnc2)]1/2 ≈ 2.4 × 108 cm/s, we find from Eq. (3.22) a value
of Nn = (τnγ〈σv〉nγ)−1 ≈ 108 cm−3 for the neutron number density in the s-
process. In the r-process, β−-decay lifetimes for radioactive nuclei far from
the valley of stability range from milliseconds to seconds. Since τβ  τnγ,
the mean lifetime for neutron capture must then typically be τnγ ≈ 10−4 s or
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less. For these conditions, a value of Nn ≈ 1021 cm−3 or more is obtained as an
order-of-magnitude estimate of the neutron number density in the r-process.
It is interesting that the gross properties of the solar system abundances in the
A > 60 range can be accounted for in terms of two extreme pictures, that is,
by relatively low neutron densities achieved in the s-process and by very high
neutron exposures characteristic of the r-process. Intermediate exposures be-
tween these two extremes seem to play only a minor role for the solar system
abundance distribution.

5.6.1
The s-Process

Starting from some seed nuclei, the s-process path runs close to the group of
stable nuclei. The majority of neutron captures involves stable target nuclei
and all these reactions are accessible in the laboratory (Chapter 4). The heavi-
est nuclei synthesized by charged-particle reactions are those of the iron peak.
Hence, these nuclei will most likely form the seeds for the s-process. Since
56Fe is by far the most abundant nucleus in the iron peak (Fig. 1.2), we will
assume for the sake of simplicity that it is the sole seed for the neutron cap-
tures. The s-process will eventually reach 209Bi, which is the most massive
stable nucleus. Further neutron captures produce radioactive nuclei that de-
cay by α-particle emission. Thus, heavier nuclei cannot be synthesized by the
s-process and 209Bi represents the termination point.

Consider Fig. 5.62, showing the basic building blocks of the s-process path.
In part (a), the stable nucleus with mass number A, shown as shaded square,
is destroyed by neutron capture. The same nucleus is produced by neutron
capture on nucleus A − 1. The same holds true if nucleus A is radioactive, but
has such a long half-life that it can be regarded as being stable for all practical
purposes concerning the s-process (that is, if λβ � λnγ). In part (b), nucleus A
is again destroyed by neutron capture, but it is also produced by neutron cap-
ture on nucleus A − 1 and the subsequent β−-decay. We will initially assume
that the β−-decay is so fast that the abundance of the radioactive species can
be neglected since it decays immediately to the stable (or very long-lived) nu-
cleus A. Under these assumptions, the abundance at each value of the mass
number A resides in precisely one particular nuclide and thus the s-process
path is uniquely defined by the mass number. The abundance evolution of
any stable (or very long-lived) nuclide with mass number A is then given by

dNs(A)
dt

= −NnNs(A)〈σv〉A + NnNs(A − 1)〈σv〉A−1 (5.168)

where Ns(A) and Nn are the number densities of nucleus A and of free neu-
trons, respectively; 〈σv〉A is the neutron-capture reaction rate per particle pair
of nucleus A. The free neutron density may vary with time, Nn = Nn(t), de-
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Fig. 5.62 Basic building blocks of the s-
process path. Stable (or very long-lived)
nuclei are shown as shaded squares, short-
lived nuclei as open squares. In part (a), the
nucleus with mass number A is destroyed
by neutron capture and is produced by neu-
tron capture on nucleus A − 1. In part (b),

nucleus A is again destroyed by neutron
capture, but is produced by neutron cap-
ture on nucleus A − 1 and the subsequent
β−-decay. In the s-process, it is generally
assumed that the β−-decay is fast com-
pared to neutron capture. Part (c) shows a
simple example for an s-process branching.

pending on the details of the stellar model. The reaction rate depends on the
time only through variations of the stellar temperature T. As a further sim-
plification, we will assume that the temperature is constant during a given
neutron irradiation episode, so that 〈σv〉i = const, until the neutron source
turns off.

The reaction rate per particle pair can be substituted by the Maxwellian-
averaged cross section, 〈σv〉A = 〈σ〉AvT (see Eq. (3.11)). For the heavy tar-
get nuclei participating in the s-process the reduced mass is nearly equal
to the neutron mass (m01 ≈ mn). Therefore, the thermal velocity, vT =
(2kT/m01)1/2, is almost independent of the target mass. Hence

dNs(A)
dt

= −Nn(t)Ns(A)〈σ〉AvT + Nn(t)Ns(A − 1)〈σ〉A−1vT

= vT Nn(t)[−Ns(A)〈σ〉A + Ns(A − 1)〈σ〉A−1] (5.169)

In Section 4.9.3 it was found that for a Maxwell–Boltzmann distribution of
neutron energies, the flux is given by the product of neutron number density
and thermal velocity, φ = (2/

√
π)NnvT. We introduce the neutron exposure

(with units of neutrons per area),

τ = vT

∫
Nn(t) dt or dτ = vT Nn(t) dt (5.170)

which, apart from a factor 2/
√

π, is equal to the time-integrated neutron flux
Φ =

∫
φ(t) dt (Section 4.9.4). Rewriting Eq. (5.169) by replacing the variable t
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with τ yields

dNs(A, τ)
dτ

Nn(t)vT = vT Nn(t) [−Ns(A, τ)〈σ〉A + Ns(A − 1, τ)〈σ〉A−1]

dNs(A, τ)
dτ

= −Ns(A, τ)〈σ〉A + Ns(A − 1, τ)〈σ〉A−1 (5.171)

with the boundary conditions Ns(56, 0) = f Nseed
s (56) and Ns(A > 56, 0) = 0.

The quantity f is the fraction of the number of 56Fe seed nuclei, Nseed
s (56), that

are subjected to an exposure of neutrons. It is clear that Ns(A, τ) decreases if
it becomes too large with respect to Ns(A − 1, τ) and vice versa,

dNs/dτ < 0 for Ns(A, τ) > [〈σ〉A−1/〈σ〉A]Ns(A − 1, τ)

dNs/dτ > 0 for Ns(A, τ) < [〈σ〉A−1/〈σ〉A]Ns(A − 1, τ) (5.172)

The coupled equations (see Eq. (5.171)) are self-regulating in the sense that
they attempt to minimize the difference Ns(A − 1, τ)〈σ〉A−1 − Ns(A, τ)〈σ〉A.
In the mass regions between the magic neutron numbers the Maxwellian-
averaged cross sections are relatively large (Fig. 5.61) so that the difference
Ns(A − 1, τ)〈σ〉A−1 − Ns(A, τ)〈σ〉A becomes much smaller than the magni-
tude of either product Ns(A, τ)〈σ〉A or Ns(A − 1, τ)〈σ〉A−1. In other words,
for any nucleus with a mass number removed from closed neutron shells the
abundance builds up until the destruction rate approximately equals the pro-
duction rate. In these mass regions, a steady flow is achieved along the s-
process path, dNs/dτ ≈ 0, and we find

Ns(A, τ)〈σ〉A ≈ Ns(A− 1, τ)〈σ〉A−1 or Ns(A, τ)〈σ〉A ≈ const (5.173)

This result is called the local (equilibrium) approximation since it is only satisfied
locally in regions between magic neutron numbers.

The prediction of Eq. (5.173) can be tested by considering isotopes of the
element tellurium (Z = 52). Of eight stable isotopes, three belong to the s-
only category (122Te, 123Te, 124Te). Two can be synthesized by both the s- and
r-process (125Te, 126Te), two are r-only isotopes (128Te, 130Te), and 120Te is a p-
nucleus. The product of solar system abundance, N�(A) (Lodders 2003), and
Maxwellian-averaged cross section at kT = 30 keV, 〈σ〉A (Bao et al. 2000), is
shown in Fig. 5.63 versus mass number A. It is apparent that for the s-only
nuclides

N�(122)〈σ〉122 ≈ N�(123)〈σ〉123 ≈ N�(124)〈σ〉124 (5.174)

thus confirming the local approximation for the s-process. It is also clear that
the product 〈σ〉AN�(A) is not constant for 128Te and 130Te which are both
synthesized by the r-process only. Furthermore, 125Te and 126Te are overabun-
dant since both the s- and the r-process contribute to their synthesis, that is,
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N�(A) = Ns(A) + Nr(A). If the averaged neutron capture cross sections are
known, one can use the local approximation in order to estimate the separate
contributions of the s- and r-process to the total observed solar system abun-
dances (see Problem 5.12).

The local approximation is most useful for nuclides with adjacent mass
numbers in regions between closed neutron shells, but does not hold over
the entire A = 56–209 mass range. This is clearly seen in Fig. 5.64, where the
symbols show the product N�(A)〈σ〉A versus mass number A for the s-only
isotopes. The N�(A)〈σ〉A values vary in magnitude by a factor of ≈ 100.
They decrease monotonically with increasing mass number, with particularly
large variations occurring at A ≈ 84, 138, and 208, corresponding to closed
neutron shells. In the following, an expression for Ns(A)〈σ〉A is derived as a
function of neutron exposure. We will again assume a constant temperature.
It was found (Clayton et al. 1961) that a single neutron exposure τ would not
suffice to explain the observed N�(A)〈σ〉A values. Seeger, Fowler and Clay-
ton (1965) showed that much better agreement could be obtained by adopting
an exponential distribution of neutron exposures. Such a distribution reflects
the physically reasonable assumption of decreased probabilities for increasing
neutron exposures, that is, the total exposure experienced by some fraction
of material relates to the number of times that material had been processed
through successive generations of stars (Clayton 1983) or through successive
burning episodes in a specific star (Ulrich 1973).

Suppose that f is the fraction of the number of 56Fe seed nuclei, Nseed
s (56),

that has been subjected to an exponential distribution of neutron exposures,
given by

p(τ) =
f Nseed

s (56)
τ0

e−τ/τ0 (5.175)

where p(τ) dτ is the fraction of 56Fe seed nuclei having received an exposure
in the range between τ and τ + dτ. The parameter τ0 is the mean neutron
exposure and determines how rapidly the exposure distribution falls off. The
total number of irradiated seed nuclei is
∫ ∞

0
p(τ) dτ = f Nseed

s (56)[−e−τ/τ0 ]∞0 = f Nseed
s (56) (5.176)

The resulting abundances are

Ns(A, τ0) =

∞∫

0
Ns(A, τ)p(τ) dτ

∞∫

0
p(τ) dτ

=
∞∫

0

Ns(A, τ)
τ0

e−τ/τ0 dτ (5.177)
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Fig. 5.63 The product N�(A)〈σ〉A (in units
of millibarn per 106 Si atoms) versus mass
number A for nuclides of the element tel-
lurium (Z = 52); 122Te, 123Te, 124Te are s-only
nuclides; 125Te, 126Te are s,r-nuclides; and
128Te, 130Te are r-only nuclides. 120Te is not
synthesized via neutron capture (p-nucleus).
The Maxwellian-averaged cross sections
〈σ〉A (in units of millibarn and appropriate

for a thermal energy of kT = 30 keV) are
adopted from Bao et al. (2000) and the so-
lar system abundances N�(A) are from
Lodders (2003) (these are relative to 106 Si
atoms). Most of the error bars are smaller
than the size of the symbols. It is appar-
ent that Ns(A)〈σ〉A ≈ const for the s-only
nuclides (dashed line).

For the first two nuclides on the s-process path, 56Fe and 57Fe, the abundance
evolutions are given by (see Eq. (5.171))

dNs(56, τ)
dτ

= −Ns(56, τ)〈σ〉56 (5.178)

dNs(57, τ)
dτ

= −Ns(57, τ)〈σ〉57 + Ns(56, τ)〈σ〉56 (5.179)

For an exponential exposure distribution (see Eq. (5.175)) the solutions can be
found analytically. The results are (see Problem 5.13)

〈σ〉56Ns(56, τ0) =
f Nseed

s (56)
τ0

1
[
1 + 1

τ0〈σ〉56

] (5.180)

〈σ〉57Ns(57, τ0) =
f Nseed

s (56)
τ0

1
[
1 + 1

τ0〈σ〉56

]
1

[
1 + 1

τ0〈σ〉57

] (5.181)

and so on. The general solution of Eq. (5.171) is easily deduced from these
results. We find (see also Clayton and Ward 1974)

〈σ〉A Ns(A, τ0) =
f Nseed

s (56)
τ0

A

∏
i=56

1
[
1 + 1

τ0〈σ〉i

] (5.182)
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Fig. 5.64 The product N�(A)〈σ〉A (in units
of millibarn per 106 Si atoms) of solar sys-
tem s-process abundance and Maxwellian-
averaged neutron-capture cross section (at
a thermal energy of kT = 30 keV) versus
mass number A. The symbols correspond
to s-only nuclides. The solid curves are ob-
tained by fitting the data to an expression
similar to Eq. (5.182) but which includes the
effects of significant s-process branchings.
The thick solid line is calculated by using
a single exponential distribution of neutron

exposures (main s-process component). For
A ≤ 90, the main component falls below the
data points and a second distribution (weak
s-process component) must be included
in the fit (thin solid line). The sharp struc-
tures result from s-process branchings. At
these mass numbers the solid lines split into
two parts, one corresponding to the more
neutron-rich nuclide and the other one to the
less neutron-rich nuclide. Courtesy of Franz
Käppeler.

Once the capture cross sections 〈σ〉A are known, a fit of this expression to the
observed solar system values of N�(A)〈σ〉A for the s-only nuclides yields the
parameters f and τ0. The magnitude of these parameters, in turn, is impor-
tant for identifying the sites and the history of s-process nucleosynthesis. It
is interesting that, according to Eq. (5.182), the relative 〈σ〉A Ns(A, τ0) values
for any two nuclei (beyond the last seed nucleus) on the s-process path are
independent of the true distribution of seed nuclei (Clayton and Ward 1974).
Hence, the particular choice of pure 56Fe as seed material is as good as any
other distribution of iron peak nuclei. On the other hand, this also means that
the observed solar system N�(A)〈σ〉A values for the s-only nuclides are not a
sensitive probe of the initial seed distribution. A useful quantity is the average
number of neutrons captured per 56Fe seed nucleus,

nc =

209
∑

A=56
(A − 56)Ns(A, τ0)

f Nseed
s (56)

=
1
τ0

209

∑
A=56

(A − 56)
〈σ〉A

A

∏
i=56

1
[
1 + 1

τ0〈σ〉i

] (5.183)

Its magnitude provides another constraint on the physical environment. For
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two nuclides of adjacent mass numbers one finds immediately from Eq. (5.182)

〈σ〉A Ns(A, τ0) =
〈σ〉A−1Ns(A − 1, τ0)[

1 + 1
τ0〈σ〉A

] (5.184)

Between closed neutron shells the capture cross section 〈σ〉A, and hence the
product τ0〈σ〉A, is large. Therefore, we find from Eq. (5.184) 〈σ〉A Ns(A, τ0) ≈
〈σ〉A−1Ns(A − 1, τ0), consistent with the local approximation discussed
above. Near closed neutron shells the cross section 〈σ〉A, and thus τ0〈σ〉A,
is relatively small. Consequently, the denominator in the above expression
becomes relatively large, producing a step in the distribution of 〈σ〉A Ns(A, τ0)
values. In other words, the small capture cross sections of the neutron magic
nuclei represent bottlenecks for a continuous abundance flow. The resulting
steps are clearly seen in Fig. 5.64 at mass numbers of A ≈ 84, 138, and 208,
corresponding to closed neutron shells. Obviously, the height and shape of
the steps are sensitive to the magnitude of the mean neutron exposure τ0,
while the fraction f acts as an overall scaling factor.

The solid curves in Fig. 5.64 are obtained by fitting the data for N�(A)〈σ〉A
to an expression similar to Eq. (5.182). The sharp structures result from s-
process branchings that will be discussed later. The thick solid line is cal-
culated by using a single exponential distribution of neutron exposures. It
describes all the observed N�(A)〈σ〉A values for s-only nuclides in a wide
range from A = 90 to A = 205 and is called the main s-process component. The
mean square deviation between the thick solid line and the data points in
Fig. 5.64 amounts to only 3% (Käppeler et al. 1990). This excellent agreement
is remarkable in view of the fact that the main component is represented by
a single exponential distribution of neutron exposures with only the scaling
factor and the mean neutron exposure as fitting parameters. The fit gives val-
ues of f ≈ 0.06%, where it is assumed that the number of seed nuclei is equal
to the solar system abundance of 56Fe, τ0 ≈ 0.3 mb−1 (for cross sections 〈σ〉A
at kT = 30 keV), and nc ≈ 10 (Käppeler et al. 1990). These results imply that
the main s-process component was produced by irradiating only 0.06% of the
solar system 56Fe nuclei with neutrons, while each 56Fe seed nucleus captured
on average about 10 neutrons. For mass numbers of A < 90, the thick solid
line falls below the data points. Therefore, a second component is required
in order to explain the synthesis of the s-process nuclides in this lower mass
range. It is called the weak s-process component and is shown as the thin solid
line in Fig. 5.64. Käppeler et al. (1990) find for this component values of f
≈ 1.6%, τ0 ≈ 0.07 mb−1 and nc ≈ 3, that is, a much lower mean neutron ex-
posure and a much higher fraction of irradiated seed nuclei compared to the
main component. Only in the Pb–Bi mass region, close to the termination
point of the s-process, does the two-component model give an unsatisfactory
description. In particular, more than 50% of the solar system 208Pb abundance
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cannot be accounted for in this way. Therefore, a third component has been
postulated (Clayton and Rassbach 1967). It is called the strong s-process com-
ponent, for which parameters of f ≈ 10−4%, τ0 ≈ 7 mb−1, and nc ≈ 140 have
been reported in Käppeler et al. (1990). In this case, the mean neutron ex-
posure is so large that on average about 140 neutrons are captured per seed
nucleus in order to convert a very small fraction of 56Fe nuclei to nuclides in
the mass region between 206Pb and 209Bi. As will be seen below, it is unlikely
that these three vastly different neutron exposures can be obtained in a sin-
gle astrophysical site. It is more reasonable to assume that different sites are
required to explain each of the observed s-process components.

Both the observed N�(A)〈σ〉A values and the calculated solid lines in
Fig. 5.64 are obtained for a constant s-process temperature of kT = 30 keV
(or T = 0.35 GK). This particular value is traditionally used in discussions
of the phenomenological s-process model described here. It is important
to realize, however, that a precise value of the s-process temperature can-
not be deduced easily by matching observed N�(A)〈σ〉A values with cal-
culated 〈σ〉A Ns(A, τ0) curves (except when analyzing branching ratios; see
later) because most of the neutron-capture cross sections vary in a similar
manner with temperature (Section 3.2.2 and Fig. 3.31). Rather, the shape of
the 〈σ〉ANs(A, τ0) curve will give information about the mean neutron expo-
sure τ0 when the temperature has been selected by another means (see also
Seeger, Fowler and Clayton 1965).

In the derivation of Eq. (5.182) it was explicitly assumed that all neutron
capture rates on unstable nuclei are either much faster (λβ � λnγ) or much
slower (λβ  λnγ) than the competing β−-decay rates so that the s-process
path is uniquely defined at each mass number A. At certain locations along
the s-process path, however, the abundance flow encounters unstable nuclei
with unusual decay constants (or half-lives) that are comparable in magnitude
to the competing neutron capture rates, λβ ≈ λnγ. At these locations the s-
process path splits into two branches. These s-process branchings can also be
incorporated into the phenomenological s-process model described above if
one assumes that the neutron density Nn(t), in addition to the temperature,
is constant with time. In this case, the s-process branchings can be described
analytically (Ward, Newman and Clayton 1976). Otherwise, the abundance
evolutions must be solved by numerical integration.

Consider as a simple example the situation shown in Fig. 5.62c. At the un-
stable nucleus of mass number A′, the abundance flow splits into two parts
because its β−-decay rate is comparable in magnitude to the rate of the com-
peting neutron capture. The unstable nucleus A′ becomes a branch point for
the s-process path. Only a fraction of the flow passes through stable nucleus A.
But the entire flow passes through stable nucleus A + 1 since we assume that
the β−-decay of unstable nucleus A′ + 1 is much faster than the competing neu-



526 5 Nuclear Burning Stages and Processes

tron capture. If the branch point is located in a mass region between closed
neutron shells, then Eq. (5.173) has to be replaced by

Ns(A, τ)〈σ〉A + Ns(A′, τ)〈σ〉A′ ≈ Ns(A + 1, τ)〈σ〉A+1 (5.185)

The ratio Ns(A, τ)〈σ〉A/Ns(A + 1, τ)〈σ〉A+1 defines a branching ratio, B,
which can also be expressed in terms of the decay constants of nucleus A′ as

B ≡ Ns(A, τ)〈σ〉A

Ns(A + 1, τ)〈σ〉A+1
=

λβ(A′)
λβ(A′) + λnγ(A′)

=
ln 2/T1/2(A′)

ln 2/T1/2(A′) + Nn〈σ〉A′vT
(5.186)

With Nn〈σv〉A′ = Nn〈σ〉A′vT , we obtain

Nn =
[

Ns(A + 1, τ)〈σ〉A+1

Ns(A, τ)〈σ〉A
− 1
]

1
〈σ〉A′vT

ln 2
T1/2(A′)

=
(

1 − B
B

)
1

〈σ〉A′vT

ln 2
T1/2(A′) (5.187)

Hence, the analysis of branchings gives the neutron density which is an impor-
tant parameter for determining the physical conditions during the s-process.
A precise value of Nn provides a strong constraint for stellar models of s-
process sites.

Equation (5.187) describes the simplest case of an s-process branching. In
reality, more extensive expressions are required for most branchings since
each one has its own complications, for example, the interplay of several
branchings or isomeric states. Nevertheless, Eq. (5.187) contains the important
physics and, in particular, emphasizes the input data that are needed for a re-
liable extraction of the physical conditions from branching analyses. The first
term, (1 − B)/B, depends on the ratio of abundances for the stable nuclides
A and A + 1 and on the ratio of their neutron-capture cross sections. Depend-
ing on the value of B, these input values have to be known to about ±1% for
many branchings so that the neutron density can be extracted with an error
of, say, ±10%. It is of obvious advantage if A and A + 1 are s-only nuclides
since in this case their abundances do not have to be corrected for r-process
contributions. Also, they are isotopes of the same element and, consequently,
their relative abundances are accurately known (Lodders 2003). Very precise
capture cross section measurements involving these stable target nuclei are
crucial as well (Sections 4.6.2 and 4.6.3; see also Käppeler 1999). The second
term in Eq. (5.187) contains the Maxwellian-averaged capture cross section
for the radioactive branching point nucleus A′. In the past, no data existed
for these reactions and the cross sections had to be estimated by using the



5.6 Nucleosynthesis Beyond the Iron Peak 527

Hauser–Feshbach theory. Recently, however, a number of cross section mea-
surements involving radioactive branching point nuclei have been performed
(see, for example, Jaag and Käppeler 1995, Reifarth et al. 2003, Abbondanno et
al. 2004). It should be noted that measured capture cross sections have to be
corrected for (theoretical) stellar enhancement factors since the quantity 〈σ〉A′
in Eq. (5.186) refers to the stellar cross section (Section 3.1.5). The third term
represents the stellar half-life of the branching point nucleus A′ and the cor-
responding stellar enhancement factors are, again, usually based on nuclear
theory (Takahashi and Yokoi 1987). In some cases, there is no difference be-
tween the terrestrial and the stellar half-life value. For other branching point
nuclei, however, the stellar half-life is very sensitive to the precise temperature
or density conditions in the plasma (Section 1.8.4).

There are about 15–20 significant branchings on the s-process path. The fol-
lowing strategy is then employed in order to derive estimates for the physical
conditions of the s-process. First, the mean neutron density is deduced by
analyzing those branchings that are nearly independent of temperature and
density. With this information, the stellar β-decay half-lives are determined
from other branchings that depend sensitively on temperature (or density).
Finally, the known temperature (or density) dependence of these half-lives
yields estimates for the mean s-process temperature (or electron density). By
considering several different branchings together, one may then attempt to
derive a set of parameters that characterizes the average physical conditions
during the s-process. The results thus obtained from the study of s-process
branchings (Nn, T, ρ) and from the global fit to the observed N�(A)〈σ〉A dis-
tribution for s-only nuclides ( f , τ0 or nc) represent important constraints for
stellar models and the identification of the astrophysical sites of the s-process.
For more information, see Käppeler (1999).

The empirical s-process described above is called the classical s-process model.
It is very simple since it disregards the time dependence of s-process parame-
ters, such as neutron density and stellar temperature. It provides a satisfactory
description of most observed N�(A)〈σ〉A values for s-only nuclides over the
entire mass region of interest, requiring only a relatively small number of ad-
justable parameters. The classical s-process model makes no assumption on
the stellar site or the specific reactions which act as neutron sources. In view
of these restrictions, the classical model offers remarkable insight into the s-
process.

We already pointed out that the shape of the N�(A)〈σ〉A distribution for s-
only nuclides is a measure for the total number of neutron captures to which
seed nuclei have been subjected and, therefore, it contains the global history of
the s-process. It must be emphasized that the composition of the interstellar
gas out of which the solar system formed reflects a mixture of the ejecta of
countless stars. The composition has been homogenized by interstellar mixing
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to the degree where it represents the average rate of nucleosynthesis up to the
time of solar system formation. The stars that provided the sites for the s-
process had certainly a range of masses and metallicities. It is clear from these
arguments that a single set of average parameters ( f , τ0, Nn, T, ρ) derived from
the N�(A)〈σ〉A distribution does not correspond directly to the properties of
any single model star. For the same reasons, one must be careful when using
such average parameters to constrain stellar s-process models.

The limitations of the classical s-process model became apparent with
the availability of precisely measured neutron-capture cross sections (Käp-
peler 1999, Bao et al. 2000). It was shown, for example, that the classical
model significantly overproduces 142Nd (Arlandini et al. 1999). Such results
imply that the distribution of neutron exposures during the s-process dif-
fers from a simple exponential function (see Eq. (5.175)). Further evidence
came from branchings. Analyses of the branching point nuclei 147Pm, 185W,
and 192Ir with the classical model gave for the neutron density values of
Nn = (4.94+0.60

−0.50)× 108 cm−3 (Reifarth et al. 2003), (4.7+1.4
−1.1) × 108 cm−3 (Mohr

et al. 2004), and (7.0+0.5
−0.2) × 107 cm−3 (Koehler et al. 2002), respectively. Sim-

ilarly, classical analyses of the temperature-sensitive branching point nuclei
176Lu, 151Sm, and 128I yielded values of T = 0.30 ± 0.05 GK (Doll et al. 1999),
≈ 0.4 GK (Abbondanno et al. 2004), and ≈ 0.093 GK (Reifarth 2002), respec-
tively. Clearly, the classical s-process model provides neither a consistent
solution for the neutron density nor for the temperature. A more sophis-
ticated approach, based on realistic stellar models, is required in order to
reproduce all the observed s-process abundances.

We now turn to a discussion of stellar models that currently best reproduce
the observed s-process abundance pattern. The main s-process component is
thought to originate from thermally pulsing, low-mass (1.5–3 M�) AGB stars
(Section 1.4.3; see also Busso, Gallino and Wasserburg 1999). In this scenario,
some protons are mixed below the H-rich envelope into the top layers of the
intershell which consists mainly of 4He (≈ 75% by mass) and 12C (≈ 25% by
mass). This occurs after the termination of a thermal pulse at a time when the
He-burning shell becomes almost extinct. The star contracts again and the H
shell ignites. The protons that are mixed downward initiate the sequence

12C(p, γ)13N(β+ν)13C(p, γ)14N (5.188)

giving rise to two separate regions in the intershell that are rich in 13C and
14N and are referred to as 13C pocket and 14N pocket, respectively. When
the temperature reaches T ≈ 0.09 GK (or kT ≈ 8 keV), the mean lifetime of
13C versus destruction by the 13C(α,n)16O reaction becomes smaller than the
time between the two thermal pulses. Hence, neutrons are released within
the 13C pocket and are captured by pre-existing seed nuclei (mainly Fe and
s-processed material from the previous pulse) to produce most of the nu-
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clides in the main component of the s-process. The neutron flux lasts typi-
cally ≈ 20000 y and produces locally high neutron exposures (≈ 0.1 mb−1).
Since the time scale is long, however, the neutron density remains low
(Nn ≈ 107 cm−3). Only a small number of reaction branchings occur since
the β−-decay constant exceeds the neutron-capture decay constant in most
cases. During this time, 13C is entirely consumed in the thin 13C pocket. Note
that the temperature achieved at this stage of the evolution is not sufficient
for initiating the 14N(α,γ)18O reaction. During H-shell burning, the mass of
the intershell increases steadily (and so do temperature and density), up to
a point where the He at the bottom of the intershell ignites. This thermal He
pulse grows outward until it almost reaches the H-burning shell. The large
energy release also causes the stellar envelope to expand and extinguishes the
H-burning shell. The thermal pulse engulfs the ashes of H-shell burning. It
gives rise to higher temperatures (T ≈ 0.27 GK or kT ≈ 23 keV), initiating the
sequence

14N(α, γ)18F(β+ν)18O(α, γ)22Ne (5.189)

As a consequence, the 22Ne(α,n)25Mg neutron source is (marginally) activated
and a second neutron burst occurs. Here, the time scale amounts to a few
years, with neutron exposures of ≈ 0.01 mb−1 and a peak neutron density
of Nn ≈ 1010 cm−3. This second neutron burst does not contribute much to
the overall production of s-process nuclides. It does however influence sig-
nificantly the s-process branchings which are operating more efficiently at
the higher temperatures. After the thermal pulse, the He shell becomes in-
active, the envelope contracts, and the H shell ignites again. The cycle may
repeat tens to hundreds of times. For more information, see Busso, Gallino
and Wasserburg (1999) or Habing and Olofsson (2004).

Figure 5.65 demonstrates how well current stellar models of thermally puls-
ing AGB stars reproduce the solar system abundance distribution of s-process
nuclides. The results were obtained for a model star with a mass of 1.5 M�
and a metallicity of Z = 0.01 (Arlandini et al. 1999). Abundances are shown
as overproduction factors, that is, as ratios of predicted abundances and the
corresponding solar system values. The solid circles represent s-only nuclides.
The agreement is remarkable, especially in view of the fact that the solar sys-
tem s-process abundances of the main component must be the products of
countless low-mass AGB stars with a range of masses and metallicities. It is
also evident that these stars cannot account for the weak s-process component
(A < 90).

Stellar model studies of thermally pulsing, low-mass AGB stars (Gallino
et al. 1998) revealed that variations in stellar metallicity have a strong effect
on the resulting total neutron exposure. In this scenario, the 13C(α,n)16O or
22Ne(α,n)25Mg reactions are referred to as primary neutron sources because the
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Fig. 5.65 Abundance distribution resulting
from s-process studies of a thermally puls-
ing AGB star of mass 1.5 M� and metal-
licity Z = 0.01. Abundances are shown as
overproduction factors, that is, as ratios
of predicted abundances and the corre-
sponding solar system values, normalized
to 150Sm. It is evident that the stellar model
reproduces the solar system abundances for
the s-only nuclides (solid circles) of the main

s-process component (A > 90). Even the
abundances of those s-only nuclides are re-
produced that are partially bypassed by the
flow due to nearby branchings. Crosses rep-
resent all the other heavy nuclides produced
in the s-process. Their overproduction fac-
tors are less than unity since they are also
synthesized by the r-process. From Arlan-
dini et al. (1999). Reproduced by permission
of the American Astronomical Society.

13C or 14N (and, hence, 22Ne) are produced in the star itself from the available
hydrogen and 12C. For decreasing metallicity, more neutrons per iron seed
nuclei are available from these sources and, consequently, heavier nuclides
can be synthesized. The increased neutron exposure during s-processing in
early generation, metal-poor AGB stars causes an accumulation of material at
the end of the s-process path (208Pb and 209Bi). These objects provide a natural
explanation for the strong s-process component (Gallino et al. 1998, Travaglio
et al. 2001).

The weak s-process component is believed to originate from the core He
burning stage in massive stars with M ≥ 13 M� (Sections 1.4.3 and 5.3.3;
see also Peters 1968). The 14N nuclei produced by the CNO cycles dur-
ing the preceding H burning stage are rapidly transformed to 22Ne via
14N(α,γ)18F(β+ν)18O(α,γ)22Ne at the beginning of the He burning stage. But
only near helium exhaustion in the core has the temperature risen suffi-
ciently (T ≥ 0.25 GK or kT ≥ 22 keV) to ignite the 22Ne(α,n)25Mg neutron
source. More massive stars burn at higher core temperature and they con-
sume a larger quantity of 22Ne. Therefore, they give rise to a more efficient
s-process compared to less massive stars. Total consumption of 22Ne occurs
only in very massive stars. There are three aspects that are especially impor-
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tant when discussing the neutron economy during s-process nucleosynthesis:
(i) the abundance of the neutron source nuclei (22Ne); (ii) the abundance of
the seed nuclei (56Fe and other iron-peak species); and (iii) the abundances
of any neutron poisons. The latter expression refers to nuclei that capture,
and hence remove, neutrons while not contributing to the production of s-
process nuclei. For example, the neutron source 22Ne(α,n)25Mg is sometimes
called self-poisoning because the product nucleus 25Mg has a relatively high
cross section for neutron capture. In fact, a significant fraction of the pro-
duced neutrons is removed in this way without synthesizing nuclei in the
A = 65–90 region, thus constraining the s-process efficiency. In this scenario,
the 22Ne(α,n)25Mg reaction is also referred to as a secondary neutron source
since 14N, and hence 22Ne, is not produced in the star itself. Both the num-
ber of neutrons released by 22Ne(α,n)25Mg and the amount of iron-peak seed
nuclei (mainly 56Fe) scale with stellar metallicity, while the neutron-to-seed
ratio is metallicity independent. On the other hand, 12C and 16O are primary
nuclides since they are produced within the star itself. Their neutron capture
cross sections are relatively small but their abundances become large during
helium burning. Hence, the 12C(n,γ)13C and 16O(n,γ)17O reactions may rep-
resent important sinks of neutrons, especially if the stellar metallicity is small.
Detailed calculations have shown that, independent of metallicity, 12C does in
fact not represent an important neutron poison because the lost neutrons are
recycled, and thus recovered, by the sequence 12C(n,γ)13C(α,n)16O. The situ-
ation is different for 16O where the sequence 16O(n,γ)17O(α,n)20Ne competes
with 16O(n,γ)17O(α,γ)21Ne. The neutrons are recovered in the former case,
but are lost for the s-process in the latter case. Hence, 16O most likely repre-
sents an important neutron poison in low metallicity massive stars (Rayet and
Hashimoto 2000). The strong metallicity dependence of the weak s-process
component is important because it may be used to study the role of massive
stars in the early phase of galactic chemical evolution.

Some important aspects of the weak s-process component derived from
massive stars will be illustrated in the following. The evolution of central
temperature and density from the end of core hydrogen burning to the end of
core helium burning for a 25 M� star with initial solar system composition is
shown in Fig. 5.66 (The, El Eid and Meyer 2000). At the end of core hydrogen
burning, the most abundant isotopes are 4He (Xα = 0.982), 14N (X14N = 0.0122),
20Ne (X20Ne = 0.0016), and 56Fe (X56 Fe = 0.00117). Most of the other abundances
are given by their respective solar system values (The, El Eid and Meyer 2000).
Using this temperature–density profile and the initial abundances, a core he-
lium burning (postprocessing) reaction network calculation is performed and
the results are presented in Fig. 5.66. The neutron capture rates are adopted
from the compilation of Bao et al. (2000), while temperature- and density-
dependent weak interaction rates are taken from Raiteri et al. (1993). Energy
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is produced via the helium burning reactions α(2α)12C(α,γ)16O (Section 5.3.2).
At the end of the calculation, the mass fractions of 12C and 16O amount to 0.22
and 0.75, respectively. We will now discuss processes related to the production
and consumption of neutrons. As already noted, the nuclide 14N is converted
via the sequence 14N(α,γ)18F(β+ν)18O(α,γ)22Ne (Section 5.3.3) while, subse-
quently, the 22Ne(α,n)25Mg neutron source competes with the 22Ne(α,γ)26Mg
reaction. The most important neutron poison reaction is 25Mg(n,γ)26Mg, fol-
lowed by 22Ne(n,γ)23Ne. The sequence 12C(n,γ)13C(α,n)16O shows a signifi-
cant abundance flow but, in terms of the neutron economy, it is neither a net
producer nor a net destroyer of neutrons (see also Section 5.5.1). Moving up
in mass, a network of (n,γ), (n,α), (n,p) reactions and β−-decays stretches from
Al to the iron-peak group. Although the s-process in massive stars is usually
interpreted as a way to produce the weak component, a number of lighter nu-
clei in the A = 35–45 mass range is also synthesized. In fact, the s-process in
massive stars has been suggested to be the major source of 36S, 37Cl, 40Ar, and
40K in the Universe (Woosley, Heger and Weaver 2002). An increased nuclear
activity is seen in the iron peak region. Starting mainly from 56Fe seed nuclei,
sequences of neutron captures and β−-decays give rise to a typical s-process
flow pattern and synthesize nuclei in the A = 60–90 region, that is, the weak
component of the s-process. Smaller abundance flows extend beyond A = 90
and are not shown in Fig. 5.66. The neutron exposure and peak neutron den-
sity typically amount to ≈ 0.2 mb−1 and Nn ≈ 107 cm−3, respectively. Note
that most of the 22Ne consumption occurs at the end of the burning, with less
than 10% of helium remaining in the core, when the temperature increases
from T ≈ 0.27 to 0.30 GK and the density climbs from ρ = 1800 to 2600 g/cm3

(The, El Eid and Meyer 2000). In Fig. 5.66, this temperature–density range is
labeled “S.”

For stars with masses of M < 30 M�, the partial survival of 22Ne at the
end of core helium burning opens the possibility of another episode of s-
processing during carbon burning. The 22Ne(α,n)25Mg neutron source is re-
activated by α-particles which are released by the primary 12C + 12C reac-
tion (Section 5.5.1). Core carbon burning is not a promising s-process site
since, first, the core matter will not be ejected in the subsequent supernova
explosion and, second, any s-process nuclei will be destroyed later via pho-
todisintegration reactions during core oxygen burning (Section 5.5.3). How-
ever, the situation is quite different for shell carbon burning. The higher
temperatures achieved here (kT ≈ 90) give rise to high peak neutron densi-
ties (Nn ≈ 1011 cm−3) which may significantly alter the weak s-process abun-
dance pattern obtained after core helium burning. Figure 5.67 shows over-
abundances of nuclides relative to their solar system values. The results are
obtained from a stellar model calculation of a 25 M� star with solar initial
metallicity after the completion of core helium and shell carbon burning. The
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Fig. 5.66 Time-integrated net abundance
flows during core helium burning. The evo-
lution of central temperature and density,
shown in the inset, from the end of core H
burning (A) to the end of core He burning
(B) is adopted from stellar model studies of
a 25 M� star with initial solar system com-
position (The, El Eid and Meyer 2000). The
numerical network calculation is terminated
after t = 6×1012 s (the time it takes the star

to evolve from A to B). The arrows have the
same meaning as in Figs. 5.36 and 5.40
except that four different thicknesses are
used, with each thickness representing a
flow range of two orders of magnitude. The
flow pattern in the A = 60–90 region reflects
the weak component of the s-process. Most
of the s-processing occurs toward the end
of He burning for T–ρ conditions that are
marked by “S” in the inset.

diamonds indicate s-only nuclides. The large overproduction values in the
A = 60–90 mass range are evident. The efficiency of the s-process in massive
stars declines rapidly beyond A = 90. Some lighter nuclides (A < 50) are also
overproduced.

The experimental information for reactions important to s-process nucle-
osynthesis is briefly described below. The 13C(α,n)16O reaction (Q = 2216 keV),
responsible for the synthesis of the main s-process component in low-mass
AGB stars, has been measured down to a center-of-mass energy of Ecm

α =
280 keV (Drotleff et al. 1993). The Gamow peak for T ≈ 0.09 GK is located
at E0 ± ∆/2 = 190 ± 40 keV. The reaction rates in the astrophysically impor-
tant temperature range are found by extrapolating the existing low-energy
data, including the high-energy wing of a subthreshold resonance (Ecm

r =
−3 keV). The present uncertainty in this rate amounts to a factor of ≈ 4 at
T = 0.09 GK (Angulo et al. 1999). This uncertainty seems to have a negligible
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Fig. 5.67 Overabundances of heavy nu-
clides relative to their solar system values
after the completion of core helium and
shell carbon burning. The results are ob-
tained from a stellar model calculation of
a 25 M� star with solar initial metallicity.
The diamonds indicate s-only nuclides. The

large overproduction values in the A = 60–
90 mass range are evident. The efficiency
of the s-process in massive stars declines
rapidly beyond A = 90. From Raiteri et al.
(1991b). Reproduced by permission of the
American Astronomical Society.

influence on models of low-mass AGB stars (Cristallo, Straniero and Gallino
2005). The situation is quite different for the 22Ne(α,n)26Mg neutron source
(Q = −478 keV). Here, the Gamow peak near T ≈ 0.25 GK (the lower tem-
perature limit where this neutron source becomes operational) is located at
E0 ± ∆/2 = 540 ± 120 keV, while the lowest lying measured resonance oc-
curs at Ecm

r = 704 keV. Experiments have focussed on the possible contribu-
tion from an undetected natural-parity resonance near Ecm

r = 538 keV, but re-
cent work (Koehler et al. 2002) revealed the existence of several other natural-
parity states in 26Mg between the reaction threshold and the lowest lying mea-
sured resonance. The rates for this reaction are controversial at present. While
Jaeger et al. (2001) and Karakas et al. (2006) estimate a factor of ≈ 2 uncer-
tainty near T ≈ 0.25 GK, the error given in Angulo et al. (1999) amounts to a
factor of ≈ 170. The recommended rates reported by these authors, however,
agree within 50%. Even a factor of 2 uncertainty in the rate has a strong influ-
ence on the nucleosynthesis both in low-mass AGB stars (Pignatari et al. 2005)
and massive stars (The, El Eid and Meyer 2000). The 22Ne(α,γ)26Mg reaction
may also be important in this respect since it competes with the (α,n) reaction
in the destruction of 22Ne without producing neutrons. The recommended rates
for the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reactions are of similar magnitude
at T ≈ 0.25 GK (Angulo et al. 1999, Karakas et al. 2006), but the present errors
are too large to determine which reaction channel dominates near this tem-
perature value. The ratio of rates for 17O(α,n)20Ne and 17O(α,γ)21Ne is also
poorly known at present. These reactions are important for defining the role
of 16O as a neutron poison in massive stars (Rayet and Hashimoto 2000).
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For neutron-induced reactions in various s-process scenarios, Maxwellian-
averaged cross sections have to be known at energies ranging from kT ≈ 8 keV
in low-mass AGB stars to kT ≈ 90 keV during shell carbon burning in massive
stars. The averaged (n,γ) cross reactions for the neutron poisons 12C, 16O,
22Ne, and 25Mg are experimentally known to better than ±10% (Bao et al.
2000). The most important neutron poison reaction in low-mass AGB stars is
14N(n,p)14C (Lugaro et al. 2003). In this case, the present errors in the averaged
cross sections are somewhat larger (see Wagemans et al. 2000 and references
therein) and more accurate values are desirable.

For a large number of nuclides in the mass region A ≤ 210, Maxwellian-
averaged neutron-capture cross sections are compiled in Bao et al. (2000) for
s-process conditions. The data needs in terms of accuracy are quite differ-
ent for charged-particle-induced reaction rates compared to neutron-capture
reaction rates. In the former case, few reaction rates have been determined
experimentally with errors of less than 10%. In the latter case, however, cross
sections with uncertainties of ≤ 5% are essential for modeling s-process sce-
narios. Recall that nuclei near the neutron magic numbers N = 50, 82, and 126
act as bottlenecks for the abundance flow. In this case, the desired accuracy in
the neutron capture cross section is ≤ 3%. Even more accurate capture cross
sections (≤ 1%) are required for s-only isotopes. These nuclides represent cru-
cial normalization points for the s-process abundance distribution and are also
important for the analysis of s-process branchings (see above). For many of
the important neutron-capture reactions the required level in cross section ac-
curacy has been reached and the reliability of current cross section data sets for
modeling s-process scenarios is quite impressive (Bao et al. 2000). Neverthe-
less, additional and more accurately measured cross sections are needed for a
number of reactions. This also applies to (n,γ) reactions on short-lived branch-
ing point nuclei which have only recently become accessible to measurements
(Jaag and Käppeler 1995, Reifarth et al. 2003, Abbondanno et al. 2004). Theo-
retical reaction rates are also indispensible for s-process calculations. First, the
(n,γ) rates for many short-lived branching point nuclei are currently based on
the Hauser–Feshbach theory (Section 2.7). It is worth mentioning that these
rates can be calculated using local nuclear model parameters that are obtained
via interpolation from neighboring nuclei. Such results are regarded as more
reliable compared to neutron capture rates for nuclei far from the stability
valley where global parameter sets must be employed. Second, there is little
alternative but to estimate stellar enhancement factors (Section 3.1.5) using
theoretical nuclear models. The calculations indicate that (n,γ) reactions on
25% of all nuclides involved in the s-process have stellar enhancement factors
in the range of 2–40% at kT = 30 keV (Bao et al. 2000). Corrections at this level
are quite significant for stellar models of the s-process.
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5.6.2
The r-Process

In the previous section it was shown how well models of the s-process re-
produce the solar system abundances of s-only nuclides (Figs. 5.65 and 5.67).
For the majority of the heavy nuclides both the s-process and the r-process
contribute to the observed abundance. Therefore, one may subtract the well-
known s-process contribution from the total solar system abundance of a
given nuclide A

Z X in order to find the corresponding solar system r-process
abundance,

Nr(A, Z) = N�(A, Z) − Ns(A, Z) = N�(A, Z)− 〈σ〉A,Z Ns(A, Z)
〈σ〉A,Z

(5.190)

The resulting Nr values versus mass number A are displayed in Fig. 5.68a. The
s-process contributions are calculated by using the classical model according
to Eq. (5.182) (see also Problem 5.12). It is apparent that the distribution of so-
lar system r-process abundances is rather smooth and that it is also consistent
with the abundances of the r-only nuclides which are shown as solid circles.
Interestingly, a very similar solar system r-process abundance distribution is
obtained if the s-process abundances are calculated by using stellar models
instead of the classical approach (Arlandini et al. 1999). The most outstanding
features in Fig. 5.68a are the two pronounced peaks at mass numbers A = 130
and 195, which are about 10 mass units removed from the s-process peaks near
A = 138 and 208. The existence of the r-process abundance peaks and of the
long-lived radioisotopes 232Th (T1/2 = 1.4 × 1010 y), 235U (T1/2 = 7.0 × 108 y),
and 238U (T1/2 = 4.5 × 109 y), located beyond the endpoint of the s-process,
provide the strongest evidence for the occurrence of a neutron-induced pro-
cess that is quite different from the s-process discussed in the previous sec-
tion. The solar system r-process abundance distribution represents a strong
constraint for models of the r-process. Elemental solar system r-process abun-
dances can be obtained easily by summation over isotopic values. These are
most useful for comparison to results from stellar spectroscopy which, in most
cases, provide only information on elemental abundances. The resulting ele-
mental solar system s- and r-process abundances are displayed in Fig. 5.68b.
It is remarkable that two processes so vastly different as the s- and r-process
provide abundances of similar magnitude.

The most straightforward explanation of the r-process abundance peaks
in Fig. 5.68a is that they are caused, like the s-process abundance maxima
(Fig. 5.59), by the neutron magic numbers N = 50, 82, and 126 (Section 1.6.1).
The large neutron flux drives the matter to the neutron-rich side, far away
from the stability valley, where for reasons to be discussed later the abun-
dances of the neutron magic nuclides accumulate. These neutron magic nu-
clides are proton deficient compared to their counterparts produced in the
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Fig. 5.68 (a) Solar system r-process abun-
dances for A > 90, obtained by subtracting
the s-process contribution from the total
solar system abundance. The s-process
abundance is calculated by using the classi-
cal s-process model (Arlandini et al. 1999).
The full circles show abundances of r-only
nuclides, defined here as those species for

which the s-process contribution amounts
to ≤ 3%. The influence of the p-process on
the displayed abundances is negligible and
has been disregarded. The error bars are
largest in those regions where the s-process
contribution dominates. (b) Elemental solar
system s- and r-process abundances; from
Burris et al. (2000).

s-process which are located close to the valley of stability. After termination
of the neutron flux in the r-process, these neutron magic nuclei undergo se-
quences of β−-decays along isobaric chains (A = const) until the most neutron-
rich stable (or very long-lived) isobar is reached (Fig. 5.60). Consequently, the
r-process produces abundance maxima in mass regions located below the cor-
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responding s-process abundance peaks. It is important to point out that the
observed abundances of the r-process nuclides are not correlated with their
neutron-capture cross sections, contrary to the case for the s-process abun-
dances (Fig. 5.63). Rather, the observed r-process abundances reflect the nu-
clear properties of radioactive progenitors on the neutron-rich side far away
from the stability valley.

We will now discuss a simple model for the r-process. Consider seed nuclei,
say iron, which are exposed to a constant temperature of T ≥ 1 GK and a
constant neutron density of Nn ≥ 1021 cm−3. In such a hot and neutron-rich
environment, both (n,γ) and (γ,n) reactions are much faster than β−-decays.
The abundance evolution of species A

Z X is then given by

dN(Z, A)
dt

= −NnN(Z, A)〈σv〉Z,A + N(Z, A + 1)λγ(Z, A + 1) (5.191)

where N(Z, A) is the number density of nuclide A
Z X; 〈σv〉Z,A and λγ(Z, A + 1)

are the neutron-capture reaction rate per particle pair for A
Z X and the pho-

todisintegration decay constant of A+1
ZX, respectively. For sufficiently large

values of Nn and T, the rates for neutron capture and reverse photodisin-
tegration are large enough to ensure thermal equilibrium along the isotopic
chain [dN(Z, A)/dt ≈ 0 for Z = const]. Under such conditions, the abundance
ratios for two adjacent isotopes A+1

ZX and A
Z X are given by the Saha equation

(see Eq. (3.49))

N(Z, A + 1)
N(Z, A)

= Nn

(
h2

2πmAnkT

)3/2 (2jZ,A+1 + 1)
(2jZ,A + 1)(2jn + 1)

Gnorm
Z,A+1

Gnorm
Z,A

eQnγ/kT

(5.192)

where Qnγ is the reaction Q-value for the (forward) A
Z X(n,γ)A+1

ZX reaction or,
equivalently, the neutron separation energy of A+1

ZX.
It follows from Eq. (5.192) that the abundance ratio N(Z, A + 1)/N(Z, A)

depends mainly on the Q-value (or neutron separation energy) and is a func-
tion only of the temperature T and the neutron density Nn during the r-
process. The situation is shown in Fig. 5.69a. Within a given isotopic chain,
(n,γ)↔(γ,n) equilibria are established. The number abundance of any isotope
in the chain can be found by successive application of the Saha equation, sim-
ilar to the methods described in Section 5.5.4. If Nxm is the number density
of isotope xm which is produced after m neutron captures on (an arbitrary)
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species Nx0 , then (Problem 5.14)

Nxm = Nx0

Nm
n

θm

(
Mxm

Mx0 Mm
n

)3/2 gxm

gx0 gm
n

Gnorm
xm

Gnorm
x0

exp

[
1

kT

m−1

∑
j=0

Qxj(n,γ)

]

≈ Nx0

(
Nn

1.188 × 1034T3/2
9

)m

exp

[
11.605

T9

m−1

∑
j=0

Qxj(n,γ)

]

(5.193)

where the symbols have the same meanings as in Section 5.5.4. In the above
numerical approximation, the number densities and Q-values are in units of
cm−3 and MeV, respectively, while the normalized partition functions and the
spins of the heavy nuclei are set equal to unity. Suppose first that all values of
Qnγ in a given isotopic chain are the same. For a specific temperature and neu-
tron density we can then solve Eq. (5.192) for that value of Qnγ which gives
rise to the same abundances throughout the chain, N(Z, A + 1) ≈ N(Z, A).
For example, with T = 1.25 GK and Nn = 1022 cm−3, and again neglecting
spins and normalized partition functions, we find a value of Qnγ ≈ 3.0 MeV.
Of course, the neutron capture Q-values are not all equal but decrease on aver-
age when moving away from the stability valley toward the neutron dripline.
In other words, closer to the stability valley, where Qnγ > 3 MeV, we have
N(Z, A + 1) > N(Z, A), while closer to the neutron dripline, where Qnγ <
3 MeV, we obtain N(Z, A + 1) < N(Z, A). Consequently, the equilibrium
abundances are not all the same but will show a maximum close to that iso-
tope for which the Qnγ-value amounts to about ≈ 3 MeV. Note that for a given
temperature and neutron density the abundance maxima in all chains will oc-
cur at the same neutron capture Q-value (Qnγ ≈ 3 MeV for the conditions
chosen above). According to Eq. (5.192), an increase in Nn shifts the abun-
dance maxima in all isotopic chains toward the neutron-rich side (to smaller
Qnγ-values), while a higher temperature moves the abundance maxima to-
ward the less neutron-rich side (to larger Qnγ-values). Obviously, T and Nn
are correlated in the sense that a variation in temperature can always be com-
pensated for by a corresponding adjustment in neutron density in order to
keep the location of the abundance maxima unchanged.

The situation just discussed represents an oversimplification because even–
odd effects in nuclear binding energies caused by the pairing effect (Sec-
tion 1.6.2) have been disregarded so far. Nuclides with an even number of
neutrons have relatively small values of Qnγ and those with an odd number
of neutrons have relatively large Qnγ-values. Thus, according to Eq. (5.193),
the abundance maximum in each isotopic chain is identified with nuclides of
even neutron number. A specific example is in order. Equation (5.193) is used
to calculate the abundance distribution for neutron-rich selenium isotopes (A
= 92–99) with the conditions T = 1.25 GK and Nn = 1022 cm−3. The results
are shown in Fig. 5.70a. The horizontal line represents a constant Q-value of
3 MeV. The actual Qnγ values (from Möller, Nix and Kratz 1997) are shown
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Fig. 5.69 Basic building blocks of the r-
process path. Part (a) shows an isotopic
chain in (n,γ)↔(γ,n) equilibrium (waiting
point approximation). For reasons of clarity,
it is assumed that most of the abundance
resides in a single isotope (shaded square).
Part (b) shows how β−-decays of the wait-
ing point nuclei transfer matter from one

isotopic chain to the next. The steady flow
approximation assumes that the abundance
of each element Z is inversely proportional
to the total β-decay constant of the chain.
Part (c) shows the special case when the
r-process path encounters a neutron magic
number (see the text).

as a dashed line and display a pronounced odd–even structure because of the
pairing effect. The abundance distribution (solid line) peaks at that even-N
isotope where the average Qnγ-curve falls below 3 MeV, in this case 96

34Se62
and, to a lesser degree, 94

34Se60. A more quantitative criterion will be derived
in Problem 5.15. In practice it is found that the abundance distributions are
relatively sharp for given T and Nn. Only one or two even-N isotopes exist
in any significant amounts. On the other hand, if the r-process is character-
ized by some spread in temperature and neutron density, then the abundance
distributions will be broadened to include more values of A. It should also
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be noted that thermal equilibrium may not be achieved throughout the en-
tire isotopic chain. In particular, closer to the valley of stability the Q-values
are large and, therefore, the photodisintegration rates become smaller. The re-
verse (γ,n) reactions cannot balance the forward (n,γ) reactions so that these
lighter isotopes are being rapidly destroyed. In general, this does not rep-
resent a problem for the above model since it is found that the (n,γ)↔(γ,n)
equilibrium condition holds for all isotopes with any significant abundance at
equilibrium (Seeger, Fowler and Clayton 1965). Hence, the next step is clear.
The even-N isotopes with significant abundances in each isotopic chain rep-
resent waiting points for the abundance flow. At these locations, the r-process
path must continue via β−-decays which are sufficiently slow as not to affect
the equilibrium distribution in the isotopic chains (Fig. 5.69b). For this rea-
son, the (n,γ)↔(γ,n) equilibrium condition is also referred to as waiting point
approximation.

The β−-decays transfer matter from one isotopic chain to the next, where
again an independent equilibrium within the chain is established (Fig. 5.69b).
This repetitive sequence of events gives rise to the r-process path. The total
β−-decay probability of an isotopic chain with given value of Z can be defined
by

λZ ≡ ∑
A

p(Z, A)λβ(Z, A) (5.194)

where p(Z, A) = N(Z, A)/NZ is the abundance distribution in the chain
for given values of T and Nn, normalized to the total abundance NZ ≡
∑A N(Z, A) belonging to element Z. Note that λZ depends explicitly on T
and Nn through the equilibrium abundances p(Z, A). The time evolution of
the total abundance NZ is given by

dNZ

dt
= −λZ NZ + λZ−1NZ−1 (5.195)

where the first term describes the destruction of element Z via β−-decay to
element Z + 1, while the second term represents the creation of element Z
via β−-decay from element Z − 1. The above expressions (see Eqs. (5.194)
and (5.195)) determine the elemental abundance of each isotopic chain, while
Eq. (5.193) determines the isotopic equilibrium abundances within each iso-
topic chain. For the boundary conditions of Eq. (5.195) one can assume that
initially all nuclei are in a specific isotopic chain Z0: NZ(t = 0) = N0 for
Z = Z0 and NZ(t = 0) = 0 for Z �= Z0. The general solution of the above set
of differential equations is given by (Bateman 1910)

NZ0(t) = N0e−λZ0 t (5.196)

NZ(t) = N0

Z

∑
i=Z0

e−λi t λi

λZ
∏

j=Z0
j �=i

λj

λj − λi
for Z �= Z0 (5.197)
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Fig. 5.70 Neutron capture Q-values
(dashed lines) and abundance distributions
(solid lines) for neutron-rich isotopes of (a)
selenium, (b) palladium, and (c) indium. The
Qnγ-values are adopted from Möller, Nix
and Kratz (1997) and display a pronounced
odd–even structure caused by the pairing
effect. (For some of the isotopes shown,
experimental values exist; see Audi, Wap-

stra and Thibault 2003). The horizontal lines
represent a constant Q-value of 3 MeV. The
abundance distributions are calculated us-
ing Eq. (5.193) assuming the conditions T =
1.25 GK and Nn = 1022 cm−3. They peak at
those even-N isotopes where the average
Qnγ-curve falls below 3 MeV (see the text).
Circles mark isotopes with neutron magic
numbers.

provided that all values of λi are different which is a good assumption if these
values are computed precisely. One sees from Eq. (5.197) that the abundance
NZ varies inversely with the corresponding total β-decay constant λZ. As was
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the case with Eq. (5.171) in the discussion of the s-process, the above cou-
pled equations (see Eq. (5.195)) are self-regulating, in the sense that they at-
tempt to achieve a constant β−-decay flow from one isotopic chain to the next,
dNZ/dt ≈ 0. Hence, after a sufficient time has passed we obtain

λZ NZ ≈ λZ−1NZ−1 or λZ NZ ≈ const (5.198)

This condition is referred to as steady flow approximation.
The importance of nuclides with neutron magic numbers N = 50, 82, and

126 for the r-process path will now be addressed. The situation is sketched in
Figs. 5.69c and 5.71. Suppose the abundance flow reaches the isotopic chain
with the neutron magic nucleus x as a member. This nucleus has an ener-
getically favorable neutron shell configuration. As a result, the Q-value for
the x(n,γ) reaction is relatively small, while the Q-value for the preceding
(n,γ)x reaction is relatively large. The element palladium (Z = 46) is an ex-
ample for this situation. The neutron capture Q-values in the A = 125–131
region are shown in Fig. 5.70b. It is apparent that the neutron magic nucleus
128
46Pd82 coincides with the location at which the average Qnγ-curve falls below

the 3-MeV line. Consequently, 128
46Pd82 is by far the most abundant species in

the chain and represents a waiting point. After the subsequent β−-decay the
process repeats itself in the next isotopic chain: the average Qnγ-value curve
crosses the 3-MeV line at the location of the neutron magic nucleus (in this
specific case, 129

47Ag82) which becomes another waiting point. Therefore, a se-
quence of waiting points is encountered at the same magic neutron number N.
The r-process path has no choice but to move vertically upward in Z toward
the stability valley (Fig. 5.69c). Moreover, the closer the path approaches the
group of stable nuclei the longer the β−-decay half-lives of the neutron magic
nuclei become. Typical half-lives along the r-process path amount to T1/2 ≈
0.01–0.05 s, but near neutron magic waiting point nuclei close to the stabil-
ity valley (for example, 130

48Cd82) they are much longer. Hence, the abundance
flow is significantly delayed and these isotopes will build up to relatively large
abundances. An interesting situation occurs when the neutron magic nucleus
y is reached (Fig. 5.69c). A specific example is the element indium and the
corresponding Qnγ-values are shown in Fig. 5.70c. As was the case before,
the neutron-capture Q-values drop significantly at the location of the neutron
magic nucleus (131

49In82). However, this isotope is located closer to the stabil-
ity line compared to the lighter neutron magic nuclei. The extra stability is
reflected in the larger overall neutron-capture Q-values. In fact, the average
Qnγ-curve now drops below the 3-MeV line at a location beyond the neutron
magic nucleus 131

49In82 (in this case, at 133
49In84). In other words, the r-process

path overcomes the group of isotones with neutron magic number N at a lo-
cation sufficiently close to the region of the stable nuclei (Fig. 5.69c).
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At the cessation of the neutron flux, the neutron-rich nuclei β−-decay along
lines of constant A to their stable isobars. Thus, the r-process produces one
stable (or long-lived) isotope for each value of A. In the simplest case we may
assume that the neutron flux and temperature fall instantly to zero after some
time τ. Then, knowing the isotopic abundances for each Z existing at a time
τ when the r-process is halted, one can find the final r-process abundance at
each A by summing

Nr,A = ∑
Z

NZ(τ)p(Z, A) (5.199)

To summarize, for given values of Nn, T, and τ the r-process path (and hence
the abundances Nr,A) can be calculated precisely if the nuclear properties are
known. The neutron-capture Q-values determine the isotopic equilibrium
abundances for each element (see Eq. (5.193)), while the relative amount of
material at a given element Z depends only on the total β−-decay probabili-
ties of the isotopic chains (see Eq. (5.197)). Cross sections for neutron captures
or photodisintegrations are unimportant since we adopted the waiting point
approximation. Furthermore, the time it takes to establish an (n,γ)↔(γ,n)
equilibrium is negligible compared to the β−-decay half-lives which deter-
mine the time delay of the r-process flow toward heavier nuclei. The closer
the r-process path is located to the neutron dripline, the shorter the β−-decay
half-lives become, resulting in a faster r-process flow. The longest delays for
the abundance flow are expected near the neutron magic waiting point nuclei
that are located closest to stability: 80

30Zn50, 130
48Cd82, and 195

69Tm126. The abun-
dances near these locations accumulate and, after termination of the neutron
flux, give rise to the abundance peaks at A = 80, 130, and 195 in the distribu-
tion of observed Nr,A values (see Fig. 5.68a).

We assumed in Eq. (5.199) that β−-decays are the only processes responsi-
ble for the decay of nuclei from the r-process path back to the stability valley
after freeze-out of the neutron exposure. There are a number of other pro-
cesses, however, that also need to be taken into account. First, β−-decays may
not always populate neutron bound states in the daughter nucleus. If neutron
unbound states are populated, then β-delayed neutron emission may occur
(Section 1.8.2). This process has the tendency to smooth out the strong odd–
even signatures in the equilibrium abundances, caused by the dependence of
Qnγ on the neutron number, that would otherwise be present in the final r-
process distribution. Second, in the higher mass range (Z > 80), spontaneous
and β-delayed fission may become faster than β−-decay and will thus influ-
ence the final abundances. Third, beyond mass A = 210 the decay toward the
stability valley reaches (β-stable) radioactive α-particle emitters. The trans-
mutation of these nuclei along α-decay chains gives rise to the production of
the very long-lived nuclides 232Th, 235,238U, and 244Pu which are important for
nucleochronology (see, for example, Truran et al. 2002).
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The termination of the r-process depends, among other things, on the dura-
tion of the neutron exposure and thus on the astrophysical environment. For
relatively short neutron exposures, the r-process terminates due to a lack of
free neutrons sometime before the mass region A ≈ 260 is reached. For longer
neutron exposures, the successive addition of neutrons will continue until the
Coulomb barrier, which is proportional to Z2, becomes so large that the heavy
nuclei decay via neutron-induced or β-delayed fission. Calculations indicate
that this happens near Amax ≈ 260 and Zmax ≈ 94. The precise location de-
pends sensitively on (yet unmeasured) fission barriers for nuclei far from sta-
bility (Panov et al. 2005). After the fission of a heavy nucleus with mass Amax,
two fragments with masses of roughly Amax/2 are produced, thereby feeding
two seed nuclei back into the neutron-capture chain and giving rise to a fission
cycle. The number of r-process nuclei is doubled with each cycle. The cycle
time, τcycle, required to build an average fission fragment back up to Amax may
only take a few seconds or less. If the neutron supply lasts sufficiently long,
τ  τcycle, the abundances will grow exponentially as nuclei pass around the
fission cycle and large abundances of heavy nuclei can be build up in this way.
Fission can also be incorporated into the phenomenological r-process model
described above by adding a term to Eq. (5.195). Analytical solutions are given
in Seeger, Fowler and Clayton (1965).

The nuclear properties required to describe the r-process include neu-
tron capture Q-values (or neutron separation energies), β−-decay half-lives,
branching ratios for β-delayed neutron emission, normalized partition func-
tions, fission probabilities, and α-decay half-lives. Nuclear masses play a
central role for the r-process since they determine directly or indirectly most
of the properties listed above. Recall also that the Qnγ-values (which are given
by mass differences; see Eq. (1.6)) enter exponentially in the determination of
the equilibrium abundances (see Eq. (5.192)) and, therefore, must be known
rather accurately. It is obvious that the nuclear properties are needed for nu-
clides that are located far away from the valley of stability. The experimental
information will be summarized later in this section. At this point it is suf-
ficient to mention that, with few exceptions, the required information is not
known from experiments since most of the nuclei on the r-process path cannot
be produced at present in the laboratory. There is little alternative but to es-
timate the required nuclear properties by using nuclear models. The various
models will not be discussed here (see, for example, Cowan, Thielemann and
Truran 1991). In practice, attempts are made to derive semiempirical formulas
from the known properties of nuclei close to stability that can be extrapolated
into the region covered by the r-process path. Such extrapolation procedures
are subject to significant uncertainties even for the most sophisticated mod-
els. For example, Möller, Pfeiffer and Kratz (2003) estimate an uncertainty of
±0.5 MeV in calculated values of Qnγ and Qβ, while half-lives and branching
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ratios for β-delayed neutron emission can only be predicted within a factor
of 2–3 for nuclei far from stability. It remains to be seen if new global mass
models can be developed that are not subject to these limitations. Obviously,
any deficiencies in current nuclear models will have a direct impact on r-
process predictions. The associated nuclear physics uncertainties affect most
discussions of the r-process.

The phenomenological model discussed above is referred to as the classical
r-process model. It is rather simple because it assumes: (i) a constant tempera-
ture and neutron density, (ii) an instantaneous termination of the neutron flux
after a duration τ, and (iii) the waiting point and steady flow approximations.
Clearly, the waiting point approximation will only hold for sufficiently large
values of T and Nn (Goriely and Arnould 1996, Rauscher 2004). Otherwise,
the abundance flow in each isotopic chain of given element Z is steadily de-
pleted by β−-decays before the actual waiting point in the chain is reached.
The steady flow approximation is only valid if the duration of the neutron ex-
posure exceeds the β−-decay half-lives of nuclei on the r-process path. Finally,
the assumption of a sudden termination in the neutron density disregards the
fact that (n,γ) and (γ,n) reactions will drop out of equilibrium if Nn decreases
over a short, but finite, time.

How the classical model can provide insight into the astrophysical condi-
tions of the r-process is demonstrated below. The discussion follows the argu-
ments given in Kratz et al. (1988) and Kratz et al. (1993) to which the reader
is referred for details. Consider as an example Fig. 5.71 showing the r-process
path near the neutron magic number N = 82. If the waiting point approxima-
tion holds, then the path moves vertically upward through 127

45Rh82, 128
46Pd82,

129
47Ag82, and 130

48Cd82 before it branches off horizontally toward heavier nuclei.
As discussed earlier, these nuclides are by far the most abundant species in
their respective isotopic chains because of the sudden drop of the Qnγ-value
near neutron magic numbers. For the Z = 49 chain, however, most of the
abundance resides in 131

49In82 and 133
49In84 (Fig. 5.70c). After termination of the

neutron flux, the decays of the nuclides near N = 82 give rise to the observed
A = 130 solar r-abundance peak. The nuclides 130Cd and 131In will β−-decay
to the stable isobars 130Te and 131Xe, respectively. The isotope 133In, on the
other hand, has a large probability for β-delayed neutron decay and thus de-
cays mainly to the stable nuclide 132Xe. Assuming in addition a steady flow
approximation (see Eq. (5.198)) for the Z = 48 (cadmium) and 49 (indium) iso-
topic chains, we can calculate a value for the 130Cd half-life by using the ob-
served solar system r-abundances of 130Te, 131Xe, and 132Xe and the measured
half-lives of 131In and 133In (Problem 5.16). The result is Tcalc

1/2 (130Cd) ≈ 187 ms
which is close to the experimental value of Texp

1/2 = 162 ± 7 ms (Dillmann et
al. 2003). Hence, it appears that the solar system r-process peak at A = 130
was indeed formed under the conditions of an (n,γ)↔(γ,n) equilibrium and
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a steady flow equilibrium. Similar arguments can be applied to the A = 80
r-process peak. We may also estimate the conditions of temperature and neu-
tron density that gave rise to the observed r-abundances. Earlier we calcu-
lated equilibrium abundances from given Qnγ-values assuming values for T
and Nn (Fig. 5.70). The argument can be turned around in order to derive
constraints on T and Nn from known equilibrium abundances in a specific
isotopic chain. As an example, consider again the pair 131In and 133In. From
the observed solar system r-abundances of 131Xe and 132Xe (Arlandini et al.
1999) one may derive, after correcting for β-delayed neutron decays (see Prob-
lem 5.16), the equilibrium abundances of the precursors 131In and 133In on the
r-process path. These determine, according to Eq. (5.193), the temperature and
neutron density if the Qnγ-values are known either from experiment or the-
ory. Results of such a procedure for isotopes near N = 82 (131,133In) are shown
as dashed lines in Fig. 5.72. For example, one finds that a neutron density of
Nn ≈ 1022 cm−3 corresponds to a temperature near T ≈ 1.35 GK. As already
noted, T and Nn are correlated and thus the possible solutions are located
anywhere on the dashed lines.

Attempts to describe the entire observed distribution of solar system r-
abundances by using the classical r-process model with a single set of T–Nn–τ

conditions were unsuccessful (Kratz et al. 1993). Such global descriptions re-
produce three r-abundance peaks, but neither at the correct mass number loca-
tion nor with the correct magnitude. It is also found that at least three different
sets of T–Nn–τ conditions, each corresponding to a specific r-process path, are
required in different mass ranges in order to reproduce the observed solar-
system abundance distribution. Furthermore, the steady flow approximation
applies locally in each of these mass ranges, but not globally over the entire
mass region. Each of the components proceeds up to one of the r-abundance
peaks (A = 80, 130, or 195) and achieves a local steady flow equilibrium. How-
ever, the steady flow equilibrium breaks down beyond the maximum of each
peak where the half-lives of the r-process progenitors are relatively long (≈
seconds). This may indicate that the duration of the neutron exposure is large
compared to most of the relatively short β−-decay half-lives on the r-process
path, but is comparable to the longer half-lives of the neutron magic nuclei
that come closest to stability. The overall implication is that the solar sys-
tem r-abundance distribution results from the superposition of components
representing different r-process conditions. This may be caused by several
different astrophysical r-process sites or by a single site with varying condi-
tions in different zones. An example for the comparison of observed solar
system r-abundances and the results of the classical r-process model is shown
in Fig. 5.73. The model predictions are obtained from a superposition of three
different r-process components: (i) T = 1.35 GK, Nn = 3 × 1020 cm−3, τ = 1.5 s
for A ≈ 80; (ii) T = 1.2 GK, Nn = 1 × 1021 cm−3, τ = 1.7 s for A = 90–130; and
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Fig. 5.71 Schematic r-process path near
A ≈ 130 and N ≈ 82. Numbers near diag-
onal arrows represent β−-decay half-lives
(in seconds) and those near horizontal ar-
rows show branching ratios (in percent) for
β-delayed neutron decay. The quoted val-
ues are adopted from experiment or, when
preceded by “∼”, from nuclear model calcu-
lations. Stable end products of the r-process
(after freeze-out) are shown in circles and
their observed solar system r-abundances
are given in square boxes. More recent
information on nuclear properties and abun-
dances can be found in Audi et al. (2003),

Möller, Nix and Kratz (1997), and Lodders
(2003). Note that 130Cd is the neutron magic
waiting point nucleus with N = 82 that is lo-
cated closest to stability. At the next element
(indium), the r-process path branches off
horizontally toward heavier nuclei (see the
text). The nuclide 130Cd is the progenitor of
the stable isobar 130Te which is situated at
the maximum of the A = 130 peak in the so-
lar system r-process abundance distribution.
Reprinted with permission from K.-L. Kratz
et al., J. Phys. G, Vol. 14, p. 331 (1988).
Copyright (1988) by IOP Publishing Ltd.

(iii) T = 1.2 GK, Nn = 3 × 1022 cm−3, τ = 2.5 s for A = 135–195. The weights
of the components are 10 : 2.6 : 1. Note that the T–Nn values of each com-
ponent do not represent a unique set, but similar r-abundances are obtained
for all values that are located on an extended boundary in the T–Nn diagram
(see Fig. 5.72 and Fig. 12 of Kratz et al. 1993). Some of the deviations between
observed and calculated abundances (lower part of Fig. 5.73) originate from
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Fig. 5.72 Conditions for temperature and
neutron density in the r-process. The
dashed lines are derived from the equilib-
rium abundance ratio of 133In–131In. The
abundance ratio of these isotopes, which
are located on the r-process path, is de-
duced from the observed solar system r-
abundances of 132Xe and 131Xe. The two

dashed lines are obtained from two different
mass formulas. The region between the two
solid lines shows the conditions at which all
N = 82 species between 127Rh and 130Cd
represent waiting point nuclei. Reprinted
with permission from K.-L. Kratz et al., J.
Phys. G, Vol. 14, p. 331 (1988). Copyright
(1988) by IOP Publishing Ltd.

systematic defects of the mass model used to compute the nuclear properties
(Freiburghaus et al. 1999).

There is no obvious reason why the observed solar system r-abundance dis-
tribution should be the result of a superposition of only three components. In
fact, if either a number of astrophysical sites or different zones representing
different conditions in the same site contribute to the observed r-abundances,
then it would be reasonable to assume a superposition of many different com-
ponents. Following this line of thought, some researchers employ many com-
ponents, each with its associated fitting parameters, and thereby achieve an
almost perfect agreement between predicted and observed r-abundances (see,
for example, Goriely and Arnould 1996). However, such results mask defi-
ciencies in calculated nuclear properties and, at the same time, may compro-
mise the predictive power of the model beyond the mass range of fitted abun-
dances. Other researchers employ a continuous superposition of r-process
components, assuming constant temperature and power-law distributions for
component weights and exposure times as a function of neutron density. This
procedure requires only a small number of fitting parameters and yields a
slight improvement in the predicted r-abundances compared to the results
shown in Fig. 5.73 (Freiburghaus et al. 1999). However, neither method seems
to reflect directly the physical properties of a realistic r-process site.

Figure 5.74 shows some results obtained with the second procedure, that is,
by assuming a continuous superposition of r-process components. Each com-
ponent is characterized by constant values of T, Nn, and τ. The component
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Fig. 5.73 Distribution of observed solar sys-
tem r-abundances (data points) compared
to predictions of the classical r-process
model (solid line). The solid line is calcu-
lated from Eqs. (5.193) and (5.197) and
depends only on neutron separation ener-
gies, β−-decay half-lives, β-delayed neutron
decay probabilities, and so on, but not on

cross sections for neutron capture or pho-
todisintegration. The model prediction is
obtained from a superposition of three dif-
ferent r-process components (see the text).
From Kratz et al. (1993). Reproduced by
permission of the American Astronomical
Society.

weights and neutron exposure time scales are given by ω(Nn) = a1Na2
n and

τ(Nn) = a3Na4
n , respectively, where the ai are fitting parameters. The temper-

ature remains constant at T = 1.35 GK. Since different T–Nn conditions cor-
respond to different r-process paths, the overall distribution of waiting point
nuclei (large open or solid squares) in each isotopic chain is broadened com-
pared to the use of a single component. The resulting r-process abundance
flow pattern represents more appropriately a boulevard rather than a narrow
path (Kratz 2006). Nevertheless, it can be seen that the abundance flow for
all components is funneled through the isotones with neutron magic numbers
(N = 82 and 126) before reaching the A ≈ 260 region. At the cessation of the
neutron flux, the short-lived nuclei on the r-process path decay via β−-decay,
β-delayed neutron emission, α-decay and fission (the latter two decays occur
only in the region A > 210) and transmute into stable or long-lived isotopes
(small solid squares).

The phenomenological model described above makes no assumption re-
garding the site of the r-process. It is nevertheless quite useful and provides
insight into several aspects. As we have seen, the classical r-process model de-
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Fig. 5.74 Results of a classical r-process
calculation assuming a continuous super-
position of many components. The com-
ponents are determined by power-law dis-
tributions of component weights and ex-
posure durations as functions of neutron
density (see the text). The large open and
solid squares show all waiting point nuclei
that, after instant freeze-out of the neutron
exposure, contribute more than 1% to the
abundance of any stable or long-lived nu-
clide (small solid squares). The large solid

squares are a subset of waiting point nu-
clei that decay along the path marked with
grey squares and contribute to the produc-
tion of the long-lived chronometers 238U and
232Th. Nuclei that fission after production
via β−-decay are shown as triangles. The
calculation is based on the ETFSI-Q mass
model (Pearson, Nayak and Goriely 1996).
From Schatz et al. (2002). Reproduced by
permission of the American Astronomical
Society.

scribes the gross behavior of the solar system r-abundance distribution. It has
also been applied for reproducing or predicting abundance ratios of neigh-
boring nuclei, for example, for chronometer nuclides or isotopic anomalies in
primitive meteorites. Such abundance ratios are most likely influenced by nu-
clear properties rather than by the details of the astrophysical r-process site.
The classical r-process model also provides a simple framework for studying
the impact of nuclear physics uncertainties on predicted r-abundances. But it
is also clear from the preceding discussion that the classical model does not
account for the observations in terms of a realistic astrophysical site.

It is worthwhile at this point to visualize the results of a dynamic r-process
calculation as opposed to the static models described up to now. Clearly, in re-
ality the temperature and neutron density will change with time. Early during
the r-process, T and Nn will be sufficiently large to ensure that a (n,γ)↔(γ,n)
equilibrium holds in all isotopic chains. Now suppose that the temperature
and neutron density decrease with time. The abundance flow will continu-
ously adjust to the new conditions according to the waiting point approxima-
tion. This means that the r-process path, which is defined by T and Nn, must
continuously move, starting from a location closer to the neutron dripline to
one that is located closer to stability. For each location of the path, the β−-
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decay half-lives are different. Just before termination of the neutron exposure,
when the r-process path is still about 15–35 mass units away from stability, the
waiting point nuclei have neutron capture Q-values of Qnγ ≈ 2–4 MeV. When
the neutron flux disappears, the r-process nuclei decay toward stability. But
it is apparent that only the r-process path just before freeze-out, and in par-
ticular the sections near neutron magic nuclei, matters for the observed final
distribution of r-abundances. In other words, at freeze-out the r-process has
mostly forgotten its earlier history.

Before discussing possible locations of the r-process, we briefly mention
some of the observational evidence. Up to now, we have only focused on
reproducing the observed solar system r-abundance distribution by using the
classical r-process model. In addition, important conclusions can be drawn
from stellar spectroscopy. Figure 5.75 displays the total heavy element abun-
dances (data points) for an extremely metal-poor Galactic halo giant star, com-
pared to the solar system r-abundances (solid line). This star is among the
oldest in the Galaxy. The remarkable agreement between the two abundance
distributions for elements above barium (A ≥ 135) provides strong evidence
that most of the heavy elements observed in this star were synthesized by the
r-process early during the evolution of the Galaxy, with no apparent contribu-
tion from the s-process. Similar results have been found for other ultra-metal
poor halo giants (Truran et al. 2002). The r-process elements were clearly not
synthesized in the halo stars themselves. They must have been produced by
progenitors that evolved very rapidly and that ejected the matter into the in-
terstellar medium before the formation of the currently observed halo giants.
The most likely candidates seem to be associated with massive stars since low-
mass and intermediate-mass stars (the site of the s-process) evolve on much
longer time scales. Note that the abundance pattern in these very old Galactic
halo stars may have received contributions from only one or at most a few
r-process events. The agreement with the solar system r-abundances above
mass A ≈ 135 supports the conclusion that the r-process mechanism is robust
in the sense that a similar abundance pattern is produced in each r-process
event. It can also be seen that the agreement between stellar and solar system
r-abundances does not extend to the lighter elements below barium (A < 135).
This may be explained in different ways. Either there are (at least) two differ-
ent sites for the r-process or a single site with different sets of conditions may
account for the observations. See also Wasserburg, Busso and Gallino (1996)
and Cowan and Sneden (2004).

A major goal of r-process studies is the identification of the astrophysical
site(s) and, by using r-abundances observed in the solar system and in stars,
to draw conclusions regarding its detailed properties. This procedure has been
immensely successful, for example, in the case of the s-process. However, the
site of the r-process remains a mystery. Many different objects have been sug-



5.6 Nucleosynthesis Beyond the Iron Peak 553

gested (see the summary in Cowan, Thielemann and Truran 1991) but only a
few of these seem promising. We already mentioned that observations place
the beginning of r-processing very early in the evolution of the Galaxy and,
therefore, the r-process site is most likely related to massive stars. It is also
clear that the site must provide very high neutron densities (Nn ≥ 1021 cm−3)
over short time scales (≈ seconds). On the other hand, the temperature should
not be too high. Otherwise, the heavy nuclei will either be destroyed by pho-
todisintegration (see Sections 5.5.4 and 5.5.5) or the waiting point abundances
shift too close to the stability valley (see Eq. (5.192)) where the β−-decay half-
lives are far too slow to allow for efficient r-processing.

One possible site is the merger of two neutron stars (Rosswog et al. 1999).
Calculations show that the matter ejected in such events has a solar system
composition in the mass range of A ≥ 140. A problem with this source is that
the event rate is perhaps too low and hence the required mass of r-process
matter ejected per event would be too large to be consistent with observa-
tions (Qian 2000). A second possibility is the ejection of neutronized material
in magnetized jets from asymmetric massive star explosions (Cameron 2003).
Unfortunately, the thermodynamic conditions for this model are at present
poorly determined. The third proposed site, which received the largest atten-
tion in recent years, involves the neutrino-powered wind from a neutron star
resulting from a type II supernova (Woosley et al. 1994, Takahashi, Witti and
Janka 1994).

Although the nature of these sites varies significantly, the basic nuclear rear-
rangements are similar. We already pointed out that any successful r-process
site requires very large neutron densities, sufficiently high temperatures, and
rapid expansion time scales. It is worthwhile to discuss briefly the nucleosyn-
thesis in the last scenario in order to better understand the origin of the neu-
tron flux that may give rise to an r-process. The neutrino-powered wind at late
times has a relatively large neutron excess η. According to nuclear statistical
equilibrium, matter at very high temperatures consists mainly of neutrons and
protons (Fig. 5.56). As the wind expands and cools below T ≈ 10 GK, nucleons
start to combine to α-particles. A few α-particles also reassemble into nuclei
via the strongly density dependent processes

2α + n → 9Be(α, n)12C (5.200)

3α → 12C (5.201)

At T ≈ 7 GK, α-particles become the dominant constituent, leaving behind an
excess of neutrons. By this time, nuclear statistical equilibrium breaks down
because the expansion time scale becomes shorter than the time required to
maintain nuclear statistical equilibrium under conditions of high temperature,
low density, and large α-particle abundance. In fact, the above two sequences
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Fig. 5.75 Total heavy element abundances
(data points) of the metal-poor Galactic
halo star CS 22892-052. The solar system
r-abundances (solid line) are shifted to com-
pensate for the difference in metallicities.
The abundance of element x is defined as
log ε(x) ≡ log(Nx/NH) + 12.0. Residu-
als of the data points and the solid line are
shown in the lower part. The remarkable
agreement between the two abundance

distributions for elements above barium
(A ≥ 135) provides strong evidence that
most of the heavy elements observed in this
star were synthesized by the r-process early
during the evolution of the Galaxy. This fig-
ure originally appeared in the Publications
of the Astronomical Society of the Pacific
(Truran et al. 2002). Copyright 2004, Astro-
nomical Society of the Pacific; reproduced
with permission of the Editors.

are the first reactions to drop out of equilibrium. The situation is very simi-
lar to the α-rich freeze-out that was discussed in Section 5.5.5. There is again
an excess of α-particles and these cannot be consumed fast enough by the
slow helium-induced reactions in the time available. The important differ-
ence, however, is that the neutron excess is now relatively large. Both the
abundant α-particles and the neutrons will participate in the buildup of heav-
ier nuclei, starting with the sequence

12C(n, γ)13C(α, n)16O(α, γ)20Ne . . . (5.202)
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Recall from the discussion in Section 5.5.5 that without the presence of neu-
trons, the α-rich freeze-out produces mainly the N = Z isotope 56Ni, while the
flows beyond the iron peak are negligible. This is so because the Q-values for
(α,γ) reactions beyond 56Ni along the N = Z line are relatively small. These nu-
clei are located on the proton-rich side of the stability valley and little binding
energy is gained by adding another α-particle. As a consequence of the rel-
atively small Q-values, photodisintegration prevents the synthesis of species
beyond the iron peak. The capture of neutrons has the important effect of
shifting the abundance flow toward the stability valley where the nuclei are
more neutron rich and the α-particle separation energies are larger. Hence,
photodisintegration does not terminate the nucleosynthesis anymore and the
abundance flow may extend far beyond the iron peak up to A ≈ 100. The
most important processes in the buildup of these heavy nuclei are (α,n) and
(n,γ) reactions. This neutron rich α-rich freeze-out is sometimes referred to as
the α-process. The same name was originally given by Burbidge et al. (1957)
to a process that in modern terminology is referred to as neon burning (Sec-
tion 5.5.2). At a temperature of T ≈ 2 GK, the α-induced reactions become
too slow to change the composition of the matter. If there are enough neu-
trons left, then an r-process can be launched with nuclei in the A ≤ 100 re-
gion, instead of iron peak species, as seeds. The r-process model described
above has certain advantages. First, the properties of the neutrino wind are
determined by the neutron star, not by the pre-supernova evolution, and thus
r-processing in this site may produce similar abundances for events involving
neutron stars of the same mass. Second, starting from seeds with A ≈ 100
implies that the r-process does not need to overcome the waiting point nuclei
near the closed neutron shell at N = 50 and, therefore, the overall time scale
for r-processing shortens. Furthermore, the presence of these heavier seed nu-
clei reduces the neutron-to-seed ratio that is necessary to reproduce the solar
system r-abundance distribution. For example, in order to explain the abun-
dance peaks at A = 130, 195 and the synthesis of the elements Th, U one re-
quires about 30, 100, and 140 neutrons per seed nucleus, respectively. Third,
the physical properties of the neutrino wind predict an ejected amount of r-
process material per supernova that is about consistent with the total mass of
r-processed material presently existing in the Galaxy (≈ 104 M�). It is impor-
tant for a successful r-process that the preceding α-process is not too efficient.
Otherwise, too many heavy seed nuclei are produced and too many neutrons
are consumed, resulting in insufficient neutron-to-seed ratios. This require-
ment translates into relatively low densities in the neutrino wind so that the
ααn → 9Be(α, n)12C and 3α → 12C reactions are less efficient in converting α-
particles to heavy nuclei. A fast expansion time scale limits the duration over
which the freeze-out operates and is also helpful for reaching a high neutron-
to-seed ratio. A severe problem with the neutrino-powered wind model of
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the r-process is the present difficulty to achieve the necessary low densities
(or high entropies) and short time scales in the ejecta in order to reproduce the
solar system r-abundances in the range of A > 135 (Thompson, Burrows and
Meyer 2001).

It should be clear from the discussion in this section that r-process nucle-
osynthesis simulations require a very large set of nuclear physics quantities,
including nuclear masses, β−-decay half-lives, branching ratios for β-delayed
neutron decay, fission properties, partition functions, and so on. If the freeze-
out from equilibrium is followed explicitly (that is, if the waiting point and
steady flow approximations are not applied and the network is solved nu-
merically) then reaction rates for neutron captures and photodisintegrations
are required as well. All of this information is needed for neutron-rich iso-
topes that are located far away from stability. If the α-process needs to be
followed explicitly, then another large data set consisting of rates for charged-
particle reactions and neutron-induced processes, such as (n,α) and (n,p), is
required. Needless to say that almost all of this information must be obtained
from global, semi-empirical, models for nuclear masses, β−-decays, and fis-
sion, and from Hauser–Feshbach calculations. Information on directly mea-
sured properties of nuclei located on the r-process path has only been ob-
tained in a few exceptional cases near neutron magic numbers where the r-
process path comes closest to the stability valley. For example, pioneering
experiments leading to the identification of the neutron magic waiting point
nuclei 80Zn (Lund et al. 1986, Gill et al. 1985) and 130Cd (Kratz et al. 1986) pro-
vided the first evidence for the existence of a local steady flow equilibrium in
the r-process. Results from experiments on unstable nuclei off the r-process
path are also important since the information gathered can be used to test cur-
rent nuclear models from which properties of nuclei on the r-process path are
derived. Many experimental r-process studies focus on three mass regions:
(i) the neutron-rich Fe, Co, and Ni isotopes up to the double-magic nucleus
78Ni, since these species represent the seed nuclei for the classical r-process
model; (ii) isotopes of Zr and Pd near A ≈ 115 where most r-process calcula-
tions underpredict the observed solar system r-abundances (see Fig. 5.73), an
effect that is possibly caused by deficiencies in present nuclear models; and
(iii) the region near the N = 82 neutron magic number (Fig. 5.71) which gives
rise to the second r-process abundance peak near A ≈ 130. A review of exper-
imental and other issues related to the r-process can be found in Pfeiffer et al.
(2001).

5.6.3
The p-Process

The very neutron-deficient, stable nuclides with mass numbers of A ≥ 74 (be-
tween 74Se and 196Hg) are bypassed by the s- and r-process. These species are
referred to as p-nuclei, where the letter p designates the fact that they contain
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more protons relative to other stable isotopes of the same element. (Recall,
however, that all stable nuclei above 40Ca consist of more neutrons than pro-
tons.) The mechanism responsible for the synthesis of the p-nuclei is called
p-process. A list of the p-nuclei and their associated abundances is given in Ta-
ble 5.1. The solar system abundances of the p-nuclei are displayed in Fig. 5.76
where they are compared to the abundances that originate from the s- and
r-processes. It is apparent that as a group the p-nuclei are the rarest among
the stable nuclides. Their abundances are typically a factor of ≈ 100 smaller
compared to those of adjacent s- and r-nuclei. In fact, no single element has a
p-process isotope as a dominant component. This implies that all knowledge
of abundance systematics of these species is entirely based on measurements
of solar system material. It is generally accepted that the much more abundant
s- and r-nuclei serve as seeds for the p-process.

Important clues regarding the mechanism of the p-process can be obtained
from the general nuclear structure of the about 30 p-nuclei. Almost all of these
have even numbers of protons and neutrons (Table 5.1). The only exceptions
are 113

49In64, 115
50Sn65, 138

57La81, and 180
73Ta107 but their abundances are, except for

115Sn, considerably smaller compared to those of the adjacent p-nuclei. It is
also apparent from Fig. 5.76 that the p-nuclei abundance distribution has max-
ima at 92

42Mo50, 112
50Sn62, and 144

62Sm82. The first and third of these have closed
neutron shells while the second has a closed proton shell. Therefore, the p-
process seems to favor the production of more strongly bound nuclei, that is,
those that have paired protons and neutrons.

There are two kinds of reactions that allow for the production of neutron-
deficient nuclei starting from s- or r-process seeds: (p,γ) reactions and (γ,n)
photodisintegrations. (Note that (p,n) reactions also produce neutron defi-
cient nuclei but their Q-values on the proton-rich side of the stability val-
ley are negative and thus their reaction rates are much smaller compared
to the competing (p,γ) reactions.) Early models placed the p-process in the
hydrogen-rich layers of type II supernovae. During the passage of the super-
nova shock, a combination of (p,γ) and (γ,n) reactions would produce nuclei
that are shielded from the neutron-capture processes at temperatures and den-
sities of T ≈ 2.5 GK and ρ ≈ 100 g/cm3 over an explosive expansion time scale
of 10–100 s (Burbidge et al. 1957). However, it was pointed out by Woosley
and Howard (1978) that the required high densities, temperatures, and rela-
tively long time scales are unlikely to exist in any hydrogen-rich zones of com-
mon stars. An exception are type I X-ray bursts (Section 1.4.4). These objects
have indeed been proposed (Schatz et al. 1998) to produce some of the lighter
p-nuclei via proton captures during the rp-process (Section 5.4). A major ob-
stacle with this scenario is the fact that it is very unlikely for any significant
amount of accreted and processed matter to escape the large gravitational po-
tential of the neutron star.
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Fig. 5.76 Decomposition of the observed solar system abundances
of the heavy nuclides into components that are synthesized by the s-,
r- and p-processes. The contributions from the s- and r-processes are
adopted from Arlandini et al. (1999), while the p-process abundances
are from Anders and Grevesse (1989). The abundance of the rare
species 180Ta is off scale and is omitted from the figure.

Before describing specific sites for the production of the p-nuclei, it is in-
structive to discuss the generally accepted mechanism of the p-process. In-
stead of a hydrogen-rich zone it involves a hot photon environment with tem-
peratures in the range of T ≈ 2–3 GK. Starting from some seed nuclei, the most
likely interactions to occur at elevated temperatures in hydrogen-exhausted stel-
lar zones are photodisintegrations. The decay constants for the photoejection
of neutrons, protons or α-particles can be calculated from Eq. (3.45). At a given
temperature, the decay constants depend strongly on the Q-value for the for-
ward reaction 0 + 1 → γ + 3, or equivalently, on the particle separation energy
of nucleus 3 (see also the discussion in Section 5.5.4).

As an example, consider the chain of tellurium isotopes at a temperature of
T = 2.5 GK, as shown in Fig. 5.77a. Their photodisintegration decay constants
are displayed in Fig. 5.77b. The seed isotope 122Te, which is synthesized by
the s-process (Fig. 5.63), is most likely destroyed by the (γ,n) reaction. The
next isotope, 121Te, will also most likely undergo a (γ,n) reaction. As we move
along the isotopic chain toward more neutron-deficient nuclei, the (γ,n) decay
constants fluctuate strongly. The photoejection of a neutron is far more likely
for an odd-N isotope compared to an even-N one. This behavior is mainly
caused by the pairing effect (Section 1.6.2) which leads to pronounced odd–
even fluctuations in the corresponding neutron separation energies (see also
Fig. 5.70). The (γ,n) decay constants also decrease on average because more
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Tab. 5.1 Nuclides that are mainly produced by the p-process; 180Ta and 180W may also be syn-
thesized by the s-process; see, for example, Arlandini et al. (1999) for s-process contributions
to the solar system abundances. (a) Solar system abundance (from Lodders 2003); the values
are given relative to 106 Si atoms. (b) Errors are given for elemental abundances only.

Nuclide Z N Abundancea Error (%)b

74Se 34 40 0.58 10
78Kr 36 42 0.20 20
84Sr 38 46 0.13124 10
92Mo 42 50 0.386 10
94Mo 42 52 0.241 10
96Ru 44 52 0.1053 20
98Ru 44 54 0.0355 20
102Pd 46 56 0.0146 7
106Cd 48 58 0.01980 7
108Cd 48 60 0.01410 7
113In 49 64 0.0078 7
112Sn 50 62 0.03625 10
114Sn 50 64 0.02460 10
115Sn 50 65 0.01265 10
120Te 52 68 0.0046 10
124Xe 54 70 0.00694 5
126Xe 54 72 0.00602 5
130Ba 56 74 0.00460 7
132Ba 56 76 0.00440 7
138La 57 81 0.000397 15
136Ce 58 78 0.00217 5
138Ce 58 80 0.00293 5
144Sm 62 82 0.00781 10
156Dy 66 90 0.000216 10
158Dy 66 92 0.000371 10
162Er 68 94 0.000350 7
168Yb 70 98 0.000323 7
174Hf 72 102 0.000275 10
180Ta 73 107 0.00000258 7
180W 74 106 0.000153 7
184Os 76 108 0.000133 7
190Pt 78 112 0.000185 7
196Hg 80 116 0.00063 50

energy is required to remove a neutron from increasingly neutron-deficient
nuclei. At the same time, the proton and α-particle separation energies de-
crease when moving along the isotopic chain from the stability valley toward
the proton dripline. In other words, the proton-richer an isotope the less en-
ergy is required to remove a proton or α-particle and the larger the (γ,p) and
(γ,α) decay constants become (Fig. 5.77b). Clearly, at some even-N nucleus
along the isotopic chain, either the (γ,p) or (γ,α) reaction will dominate over
the competing (γ,n) reaction. When this first occurs (at 120Te in Fig. 5.77), the
abundance flow branches off to an isotope of a different element (here 116Sn)
and the sequence of events repeats itself in the chain of Sn isotopes.
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Fig. 5.77 (a) Section of the chart of the
nuclides in the region of neutron-deficient
Sn, Sb, and Te isotopes. Stable nuclides
are shown as shaded squares. The letters
s, r or p refer to their productions in the s-
, r- or p-process, respectively. (b) Decay
constants of neutron-deficient tellurium iso-

topes, calculated for a temperature of T =
2.5 GK (from Rauscher and Thielemann
2000). At 120Te, the (γ,α) reaction dominates
over the competing (γ,n) reaction. As a con-
sequence, the abundance flow branches off
to an isotope of a different element (here
116Sn).

In each isotopic chain of proton number Z, the branch point is defined by
the condition

λγp + λγα > λγn (5.203)

From the arguments presented above it is also clear that in each isotopic chain
the longest photodisintegration lifetimes on the flow path tend to occur near
the branch point. These even-N nuclei become waiting points and material
accumulates at their location. This applies especially to nuclei with closed
neutron or proton shells since they have unusually large separation energies
(Section 1.6.2). On the other hand, little accumulation of material is expected
at odd-N nuclei since their neutron separation energies are relatively small
and, consequently, their (γ,n) decay constants are large. In the above exam-
ple, the branch (and waiting) point occurs at a stable nucleus (120Te) which
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becomes a p-nucleus (Table 5.1). Ultimately, the original seed nucleus (here
122Te) is photodisintegrated into several lighter waiting point nuclei until the
iron peak is reached where further photodisintegrations become energetically
unfavorable. Of course, in any realistic situation there will be a distribution
of s- and r-process seed nuclei extending up to Pb, all subject to the same hot
photon environment. The abundance flow then reaches from lead down to
iron and, along the way, is fed by the destruction of many seed nuclei. The
mean lifetimes for photodisintegration reactions, τγi ≡ 1/λγi, along the p-
process path are < 100 s and thus β-decays, which are typically much slower,
are negligible for the nucleosynthesis as long as relatively high temperatures
of T ≈ 2–3 GK are maintained. In the above discussion, proton- or α-particle-
induced reactions [for example, (p,γ) or (α,γ)] play no role. Because of the
dominance of photodisintegrations, the above mechanism of the p-process is
sometimes referred to as the γ-process (Woosley and Howard 1978). Some of
the neutrons released during the p-process may also contribute to the nucle-
osynthesis. It was shown that these impede at higher temperatures the reverse
(γ,n) reactions, especially in the region of the lighter p-nuclei (Rayet, Prantzos
and Arnould 1990).

A few points must be clarified. First, if the hot photon environment is main-
tained for a too long period of time, then all seed nuclei would be photodisso-
ciated into iron peak nuclei, free protons, neutrons, and α-particles, as dictated
by nuclear statistical equilibrium (Section 5.5.5). Thus, for any realistic site re-
sponsible for the synthesis of the p-nuclei, the values of temperature and time
scales must guarantee the occurrence of some nuclear transformations, yet not
so intense as to entirely reduce all nuclei to iron. These arguments support the
conclusion that the p-process occurs during stellar explosions with an associ-
ated rapid expansion and cooling of material. Thus, the nucleosynthesis dur-
ing the p-process will depend sensitively on the distribution of temperatures
and expansion time scales, the abundances of seed nuclei, and the hydrody-
namic conditions of the explosion. Second, in the above example (Fig. 5.77),
the waiting point coincided with a p-nucleus. This is generally the case for
lighter-mass nuclei. In the region of heavier-mass nuclei, however, the waiting
points correspond to proton-rich progenitors which subsequently transmute
to p-nuclei via β+-decays after cooling, expansion, and ejection of the mate-
rial. For example, the stable p-nucleus 196Hg is produced by the decay of the
unstable waiting point nucleus 196Pb, that is, via 196Pb(β+ν)196Tl(β+ν)196Hg.
Third, the abundance flow at the waiting point nucleus 120Te (Fig. 5.77) contin-
ues via a (γ,α) reaction. This is the preferred path in the region of the heavier-
mass nuclei. On the other hand, most (but not all) decays of waiting point nu-
clei in the lighter mass range proceed via the (γ,p) reaction (Rauscher 2005).
Fourth, since the photodisintegration rates are highly temperature dependent,
the location of the branch point in a given isotopic chain depends on the value
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of the temperature. A branch point has the tendency to shift toward more
proton-rich nuclei for increasing temperatures (Problem 5.17). The question
of why almost all p-nuclei exhibit an even number of protons is explored in
Problem 5.18.

It is interesting to consider the total photodisintegration decay constant,
Λ = λγα + λγp + λγn, of the p-nuclei or, if appropriate, of their proton-rich
progenitors. The results are shown in Fig. 5.78 as a function of mass number
for temperatures of T = 2.0, 2.5, and 3.0 GK. The decay constants λγi are ob-
tained from Hauser–Feshbach reaction rates. The structure seen in the curves
is influenced by nuclear shell effects but will not concern us here. The out-
standing feature shown in Fig. 5.78 is the large variation of Λ at each temper-
ature by several orders of magnitude over the displayed mass range. Suppose
that all the p-nuclei were synthesized at the same single and constant value of
temperature. If that would be the case, then any photon exposure sufficient
to produce the lighter p-nuclei in the A = 70–100 range would completely
destroy all the heavy p-nuclei in the A = 160–200 region. Thus the strong vari-
ation of Λ shown in Fig. 5.78 supports the conclusion that stellar regions of
different temperature are responsible for the synthesis of the p-nuclei. The
heavy p-nuclei are produced at relatively low temperature while the light p-
nuclei are created at relatively high values of T. Note also that Λ is an increas-
ing function of mass number. If the opposite were the case, then any photon
exposure sufficient to destroy the heavy seed nuclei (for example, lead) would
also destroy the photodisintegration products of lead, and so on, until the iron
region is reached. The nucleosynthesis of intermediate-mass nuclei could not
occur and the p-process model described above would be inappropriate.

Most investigations to date have assumed that the p-process occurs in type
II supernovae when the shock wave passes through the O–Ne-rich layer of
a massive star (Section 1.4.3). For a short period of time (≈ 1 s), the shock
wave compresses and heats this stellar region. During the explosion, different
zones in the O–Ne-rich layer will undergo different thermodynamic histories
and thus will achieve different peak temperatures. Calculations show that
during the p-process the range of peak temperatures in these zones amounts
to Tpeak ≈ 1.8–3.3 GK. The weak s-process component operating mainly dur-
ing the preceding core helium burning stage in the pre-supernova star en-
hances strongly the p-process seed abundances in the A ≈ 60–90 region (Sec-
tion 5.6.1). It has been demonstrated that p-nuclei with masses of A ≤ 92,
A ≈ 92–144, and A ≥ 144 are mainly produced in stellar zones with peak tem-
peratures of Tpeak ≥ 3 GK, Tpeak ≈ 2.7–3.0 GK, and Tpeak ≤ 2.5 GK, respec-
tively. In fact, each p-nucleus is synthesized in a relatively narrow temper-
ature range only (Rayet, Prantzos and Arnould 1990). The abundances ob-
tained from such calculations have been weighted and averaged over a range
of stars with different masses. As a result, about 60% of the p-nuclei are repro-
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Fig. 5.78 Total photodisintegration rates Λ for the p-nuclei or their
proton-rich progenitors at stellar temperatures of T = 2.0, 2.5, and
3.0 GK as a function of mass number. The photodisintegration rates
are calculated by using the Hauser–Feshbach model (Rauscher and
Thielemann 2000).

duced within a factor of 3 of their solar system values. This must be regarded
as a remarkable success in view of the complexities of the nuclear physics in-
put (see below) and of the stellar models. However, a number of discrepancies
persist. Most notable among those is the underproduction of the light p-nuclei
92Mo, 94Mo, 96Ru, and 98Ru. The odd-A nuclides 113In, 115Sn and the odd–odd
species 138La are also underproduced in most calculations. On the other hand,
the rarest species occurring naturally in the solar system, the odd–odd nuclide
180Ta, seems to be a product of the p-process, although the s-process during
thermal pulses of certain AGB stars may also contribute to its observed solar
system abundance (Gallino et al. 1998).

Several other sites have also been considered for the production of p-nuclei,
including supernovae of type Ia and Ib/Ic (Section 1.4.3). Interestingly, al-
though the stellar models for all these scenarios are very different, similar
p-abundance distributions are obtained in each case. Most of the p-nuclei are
reproduced within a factor of ≈ 3 of their solar system values, while certain
species (92Mo, 94Mo, 96Ru, 98Ru, 113In, 115Sn, 138La) are significantly under-
produced. Hence, it appears likely that the p-process occurs in a number
of different sites. The underproduction of some nuclides is perhaps caused
by nuclear physics uncertainties or by an unreliable estimate of the s-isotope
seed distribution for the p-process. Alternatively, some of the underproduced
species may be predominantly synthesized in a different site, such as sub-
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Chandrasekhar white dwarf explosions. For more information on sites and
other issues related to the p-process, see Arnould and Goriely (2003).

We now move from a qualitative discussion to a numerical treatment. The
O–Ne layer during a type II supernova (that is, explosive oxygen burning)
is chosen as an example for a p-process site. It was already pointed out that
the p-nuclei, depending on their mass number, are synthesized in different
zones that achieve different peak temperatures. We will discuss below the
results of a network calculation performed for the explosive evolution of a
single zone in a O–Ne layer of a 25 M� star. The temperature–density profile
of the selected zone is shown in Fig. 5.79. The profile starts at point A (T =
1.4 GK, ρ = 1.4 × 105 g/cm3), evolves to point B at the peak of the explosion
(T = 3.0 GK, ρ = 6 × 105 g/cm3) and then settles at point C (T = 1.4 GK, ρ =
7.0 × 104 g/cm3). The entire evolution from A to C lasts for about t = 1.1 s.
The network consists of about 1100 nuclei, stretching from 1H to 209Bi, and in-
cludes ≈ 11000 reactions induced by neutrons, protons, α-particles, and their
reverse reactions. The 3α reaction and the 12C + 12C and 16O + 16O reactions
are also included. Above calcium, all reaction rates are adopted from Hauser–
Feshbach statistical model calculations. For (n,γ) reactions on stable target
nuclei (and, more importantly, for the corresponding reverse (γ,n) reactions),
the statistical model results have been renormalized to experimental values
(Bao et al. 2000). Beta-decays are also included, but are expected to have a
negligible influence, as discussed above, except after the termination of the
explosion when some radioactive progenitors decay to stable p-nuclei. The
network described above is much larger compared to all other burning pro-
cesses discussed so far. It must also be stressed that, contrary to the s-process
or the r-process, the concepts of steady flows or reaction rate equilibria can-
not be used here in order to simplify this complex situation. The p-process
operates far from equilibrium and, as a result, the entire network must be
followed by an explicit computation. Clearly, p-process studies are among
the most complicated nucleosynthesis processes. The initial abundances are
adopted from the pre-supernova evolution models of Rayet et al. (1995). The
most abundant species are 16O (Xi = 0.73), 20Ne (Xi = 0.17), and 24Mg (Xi =
0.05), while the seed abundances in the mass A = 60–90 region are significantly
increased compared to a solar system composition due to the operation of the
weak s-process component during the preceding core helium burning stage
(Section 5.6.1).

Abundance flows integrated over the duration of the network calculation
are presented in Fig. 5.79. We are only interested here in the nucleosynthesis
that takes place in the mass region above germanium. The obtained flow pat-
tern reflects the qualitative arguments presented above. The p-process has the
remarkable property that the abundance flow proceeds from heavy nuclei at
the top of the network down toward lighter nuclei. In other words, a partic-
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ular p-nucleus is synthesized exclusively from those seed isotopes which are
heavier than the p-nucleus itself. The seed nuclei are converted via (γ,n) re-
actions until, in each isotopic chain, a branching point nucleus is reached. For
the chosen conditions, the branching point nuclei above europium are almost
exclusively destroyed via (γ,α) reactions. Also, the p-process path in this re-
gion is located on average 2–4 mass units away from the neutron-deficient side
of the stability valley and, therefore, the branching point nuclei are all radioac-
tive. In the region below europium, the branching point nuclei are destroyed
either via (γ,α) or (γ,p) reactions and frequently coincide with p-nuclei. Apart
from these three photodisintegration reactions and certain (n,γ) reactions, no
other processes are important for the nucleosynthesis. As already mentioned
above, for lower peak temperatures the branching point nuclei have the ten-
dency to shift to a location closer to the stability valley.

The ratio of final abundances obtained at the end of the calculation (t = 1.1 s)
and the initial (seed) abundances is shown in Fig. 5.80. It can be seen that, for
a peak temperature of Tpeak = 3.0 GK achieved in this particular zone, most p-
nuclei (solid dots) in the A = 96–144 region are strongly overproduced, while
other nuclides (open circles) are underproduced. Clearly, the net effect of the
nucleosynthesis is the conversion of s (and r)-process seeds to p-nuclei. At this
high peak temperature all species beyond A = 150 (p-nuclei and others) are de-
stroyed and converted via photodisintegrations to p-nuclei in the A = 96–144
region. A proper analysis of overproduction factors requires an averaging
over all stellar zones (peak temperatures) in the O–Ne layer and a normal-
ization to solar system abundances instead of the initial abundances in the
pre-supernova star. Nevertheless, it is interesting that even this one-zone cal-
culation hints at an unsolved problem of current p-process computations, that
is, the relative underproduction of species such as 92Mo, 94Mo, 113In and 115Sn.

Finally, we will address issues related to the nuclear physics input required
for p-process calculations. A number of charged-particle reactions in the mass
A ≤ 25 range may play an important role. For example, the 12C(α,γ)16O rate
(Section 5.3.1) influences the pre-supernova evolution of the massive star and
hence the composition of the O–Ne layer prior to core collapse (Rayet et al.
1995). The 22Ne(α,n)25Mg reaction is crucial since it is responsible for the weak
s-process component (Section 5.6.1) during core helium burning in massive
stars. An increase in this rate will enhance the s-nuclide seed abundances for
the p-process and may reduce the underproduction of Mo and Ru p-nuclei in
current type II supernova models (Arnould and Goriely 2003).

With relatively few exceptions, almost all rates for a very large number of
reactions (> 10000) in the region of the p-process (A > 60) have to be calcu-
lated by using the Hauser–Feshbach model. As we have seen, the most impor-
tant interactions are (γ,n), (γ,α), and (γ,p) photodisintegrations. Their decay
constants are usually calculated from Eq. (3.45) by using the rates of the cor-
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Fig. 5.79 Time-integrated net abundance
flows in the region above yttrium for the
p-process during explosive oxygen burn-
ing of a type II supernova. The calcula-
tion represents the results from a single
zone of the O–Ne layer for which the T–
ρ profile is shown in the inset (Rapp et al.
2005). The peak temperature achieved
during the explosion in this particular zone
amounts to Tpeak = 3.0 GK. The reaction
network calculation is terminated after

t = 1.1 s (the time it takes for the zone to
evolve from point A to B to C during the
explosion). Abundance flows are repre-
sented by arrows of three thicknesses:
thick, intermediate and thin arrows show
flows of Fmax10−9 ≥ Fij > Fmax10−10,

Fmax10−10 ≥ Fij > Fmax10−11 and

Fmax10−11 ≥ Fij > Fmax10−12, respectively,
where Fmax corresponds to the maximum
flow of a link in the mass A < 60 region
which is not shown in the figure.

responding forward reactions. Note that the p-process path involves neutron-
deficient nuclei that are located close to the stability valley. This is a fortunate
circumstance since the reaction Q-values (and separation energies) in this re-
gion are experimentally well known. It has been demonstrated that different
prescriptions of the Hauser–Feshbach model influence sensitively the final p-
nuclei abundances obtained from type II supernovae. The predicted abun-
dances of the heavier p-nuclei are most sensitive to the α-nucleus optical po-
tential, while the lighter species are mainly affected by uncertainties in nuclear
level densities and nucleon–nucleus optical potentials (Arnould and Goriely
2003).

Experimental (n,γ), (α,γ), and (p,γ) rates on stable target nuclei in the mass
A > 60 range (Bao et al. 2000, Arnould and Goriely 2003) play an important

Fig. 5.80 Ratio of final abundances obtained at the end of the p-
process calculation shown in Fig. 5.79 and the initial (seed) abun-
dances. For a peak temperature of T = 3.0 GK, most p-nuclei (solid
dots) in the A = 96–144 region are strongly overproduced, while other
nuclides (open circles) are underproduced. The underproduction of the
p-nuclei 92Mo, 94Mo, 113In, and 115Sn remains unexplained.
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role for p-process studies for two reasons. First, they are used for adjusting
statistical model parameters and, as a result, Hauser–Feshbach rate predic-
tions for a multitude of unmeasured reactions become more reliable. Second,
the decay constants for the corresponding reverse photodisintegration reac-
tions can be calculated from Eq. (3.45). A number of (γ,n) reactions have also
been measured directly by using real photons. We argued in Section 3.2.3
that the astrophysically most important energy range for a reaction A(γ,n)B is
located at a γ-ray energy of Eeff

γ ≈ Sn + kT/2 (for � = 0 neutrons). The quan-
tity Sn is the neutron separation energy of nucleus A [or the reaction Q-value
of B(n,γ)A]. Consequently, direct (γ,n) measurements relevant to p-process
studies (T < 3 GK or kT/2 < 0.15 MeV) have to be performed in a relatively
narrow energy window close to the reaction threshold. This method has been
applied, for example, in the study of the reaction 181Ta(γ,n)180Ta (Utsunomiya
et al. 2003). Note that Hauser–Feshbach calculations are also needed in or-
der to estimate the contribution from thermally excited states, even if labo-
ratory reaction rates are available. For reaction rate sensitivity studies of the
p-process, see Arnould and Goriely (2003) and Rapp et al. (2005).

5.7
Origin of the Solar System Nuclides

We will close this chapter by briefly summarizing the origin of the nuclides
in nature. It seems, in principle, possible to predict the main astrophysical
source(s) for a given nuclide in the solar system by considering the fraction of
the yield contributed to the interstellar medium by each of the sites mentioned
in this book. Obviously, one would need to know: (i) how many stars of a
given mass and metallicity there are (since stellar evolution depends on both
parameters), (ii) the efficiency of various nucleosynthetic processes in each
star, (iii) the fraction of the expelled matter (via explosion or stellar wind),
and so on. As already mentioned, a large number of nuclides originate from
massive stars. In this case, many of the predicted abundances depend strongly
on the mass cut dividing the material that is ejected in the type II supernova
explosion from material that falls back onto the remnant neutron star or black
hole. There are major uncertainties associated with all of the issues mentioned
above. Nevertheless, the overall picture regarding the origin of the nuclides
in the solar system seems well established and this achievement certainly rep-
resents a triumph for the theory of nucleosynthesis.

The origin of the light nuclides with masses of A ≤ 40 is presented in Ta-
ble 5.2. Only the dominant sources are listed for each species and somewhat
uncertain assignments are placed in square parentheses. Hydrogen (1H, 2H)
and helium (3He, 4He) are made in the Big Bang (BB). Cosmic ray spallation
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(CR) accounts for the abundances of 6Li, 9Be, 10B and perhaps 11B, althouh the
latter nuclide may also be made by the ν-process during the core collapse of a
massive star (Woosley et al. 1990). The species 12,13C and 14N are synthesized
during the asymptotic giant branch phase (AGB) of low-mass stars, while clas-
sical novae have been claimed to contribute substantially to the Galactic abun-
dances of 13C, 15N, and 17O. About half of the 12C and all of 16,18O is produced
during hydrostatic helium burning in massive stars. All of the nuclides in the
A= 20–40 region are made in massive stars during various phases of their evo-
lution, either in hydrostatic carbon burning, explosive carbon, neon or oxygen
burning, or during the weak s-process (hydrostatic helium burning). For a
number of species listed in Table 5.2, notably 7Li, 19F, and 36S, the dominant
sources have not been identified yet with certainty. These may be produced
in a number of sites, although the relative contributions are controversial at
present.

All of the nuclides in the A = 40–60 mass region are most likely produced in
supernovae. For example, the species 56Fe is made chiefly as radioactive 56Ni
in both core-collapse and type Ia supernovae (Section 5.5.5). However, for
many nuclides in this mass range the dominant production site (type II versus
various type Ia scenarios, explosive silicon burning versus α-rich freeze-out,
and so on) is not known with certainty. This can be seen from the differences
in the results presented by Woosley, Heger and Weaver (2002) and Clayton

Tab. 5.2 Origin of the light nuclides. The labels denote: Big Bang (BB); cosmic ray spallation
(CR); asymptotic giant branch stars (AGB); ν-process (ν); classical novae (CN); helium, car-
bon, neon, oxygen burning in massive stars (He, C, Ne, O), where an ”x” in front of the symbol
of a burning stage indicates explosive rather than hydrostatic burning; the weak s-process
component is denoted by He(s). Information from Woosley, Heger and Weaver (2002), Clayton
(2003), José, Lattanzio and Limongi (2006) (private communication). Uncertain or conflicting
assignments are given in square parenthesis.

Nuclide Origin Nuclide Origin Nuclide Origin
1H BB 17O CN 30Si C
2H BB 18O He 31P C
3He BB 19F [AGB, ν,...] 32S xO
4He BB 20Ne C 33S xO, xNe
6Li CR 21Ne C 34S xO
7Li [BB, AGB, CN] 22Ne He, AGB 36S [He(s), xC,...]
9Be CR 23Na C 35Cl xO
10B CR 24Mg C 37Cl [xO, He(s),...]
11B [CR, ν] 25Mg C, AGB 36Ar xO
12C AGB, He 26Mg C, AGB 38Ar xO
13C AGB, CN 26Al xC, xNe 40Ar [He(s), C,...]
14N AGB 27Al C 39K xO
15N CN 28Si xO 40K He(s)
16O He 29Si C 40Ca xO
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(2003), and reflects our incomplete knowledge regarding the issues mentioned
above.

Above mass A = 60 the situation is much clearer since for the overwhelm-
ing number of nuclides the relative contributions of the s-, r-, and p-process
can be estimated in a straightforward manner (Section 5.6). These are shown
in Fig. 5.76. For more information on the origin of the nuclides in nature, see
Woosley, Heger and Weaver (2002) and Clayton (2003).

Problems

5.1 Calculate the lifetime of: (i) a proton against destruction via the p(p,e+ν)d
reaction, and (ii) a deuteron against destruction via the d(p,γ)3He reaction
for a temperature of T = 15 MK, a density of ρ = 100 g/cm3, and a hydro-
gen mass fraction of XH = 0.5. Use the following numerical values for the
reaction rates: NA〈σv〉pp = 7.90 × 10−20 cm3 mol−1 s−1, NA〈σv〉dp = 1.01 ×
10−2 cm3 mol−1 s−1 (Angulo et al. 1999).

5.2 Derive an expression for the temperature dependence of the decay con-
stant for the 3α reaction (see Eq. (5.102)).

5.3 Consider the nucleus 30S for the conditions T = 0.5 GK, ρ = 104 g/cm3

and XH = 0.73 (Fig. 5.81). Explain why, according to the top panel of Fig. 5.36,
the net abundance flow prefers to follow the link 30S(β+ν)30P instead of the
competing 30S(p,γ)31Cl reaction. Use the values of T1/2, Q, and NA〈σv〉 given
in the figure.

Fig. 5.81 (a) Section of the chart of the nuclides in the vicinity of
30S. Nuclides that eventually reach equilibrium are shown as shaded
squares. Values of Qpγ (left-hand side) and T1/2 (right-hand side)
are adopted from Audi, Wapstra and Thibault (2003) and Audi et al.
(2003), respectively. The values given for NA〈σv〉 apply to a tempera-
ture of T = 0.5 GK (Iliadis et al. 2001). See Problem 5.3.
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5.4 Consider the 64Ge(p,γ)65As reaction at T = 1.34 GK and ρ = 5.9 ×
105 g/cm3. Calculate the mean lifetime of 64Ge versus destruction by se-
quential two-proton capture for a value of Q64Ge(p,γ) = −0.38 MeV. Fur-
thermore, assume that the reaction rate for 65As(p,γ)66Se is NA〈σv〉 =
1.0 × 10−2 cm3 mol−1 s−1, that is, a factor of 10 smaller than the value pre-
dicted by a Hauser–Feshbach calculation (Goriely 1998). Assume a hydrogen
mass fraction of XH = 0.47. The half-lives of 65As and 66Se are T1/2 = 0.128 s
(Lopez Jimenez 2002) and T1/2 = 0.033 s (Audi et al. 2003), respectively. The re-
action rate and decay constant for 64Ge(p,γ)65As and 66Se(γ,p)65As are given
by NA〈σv〉 = 0.011 cm3 mol−1 s−1 and λ = 0.29 s−1, respectively (Goriely 1998).
The spins and normalized partition functions are j64Ge = 0, j65As = 3/2, jp = 1/2
and Gnorm

64Ge = 1.005, Gnorm
65As = 1.306 and Gnorm

p = 1 (Rauscher and Thielemann
2000).

5.5 Derive an approximate analytical expression for the energy generation
rate during neon burning. Assume an 16O + α ↔ 20Ne + γ equilibrium
and that the subsequent 20Ne(α,γ)24Mg reaction involves the equilibrium α-
particle abundance. The spins of 4He, 16O, and 20Ne are all ji = 0. The normal-
ized partition functions of these nuclei for typical neon burning temperatures
are equal to unity (Rauscher and Thielemann 2000). Disregard all contribu-
tions to the energy generation rate from other (secondary) reactions.

5.6 According to Fig. 5.52, the mass fractions of 28Si and 24Mg at t = 100 s
amount to X28Si = 0.45 and X24Mg = 0.00011, respectively. Calculate the equi-
librium α-particle mass fraction at t = 100 s for the conditions T = 3.6 GK and
ρ = 3 × 107 g/cm3.

5.7 Derive the quasiequilibrium abundance ratio N34S/N28Si explicitly by suc-
cessive application of the Saha equation (see Fig. 5.54a). Compare your result
to the one obtained directly from Eq. (5.149).

5.8 Prove the relationship for the light particle abundances during silicon
burning (see Eq. (5.151)).

5.9 Derive the expression for the effective photodisintegration rate of 24Mg,
fan, during silicon burning (see Eq. (5.156)).

5.10 Consider the reaction sequence 1H↔2H↔3H↔4He (Fig. 5.82). Calculate
the number abundance of 4He in nuclear statistical equlibrium by repeated
application of the Saha equation. Compare your result to Eq. (5.151). Gener-
alization of your result will yield directly Eq. (5.163).

5.11 Consider nuclear statistical equilibrium at η = 0. Assume that all the mat-
ter consist only of α-particles, protons, and neutrons. Find the temperature–
density conditions at which the α-particle abundance (by mass) is equal to the
total nucleon abundance, that is, Xα = 0.5, Xp = 0.25, and Xn = 0.25 (see dotted
line in Fig. 5.56).
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Fig. 5.82 The reaction chain 1H↔2H↔3H↔4He in equilibrium. See
Problem 5.10.

5.12 Estimate the r-process contribution to the solar system abundance of the
s,r-isotope 125Te. Use values of N�(124) = 0.2319 and N�(125) = 0.3437 for
the number abundances of 124Te and 125Te per 106 Si atoms, respectively (Lod-
ders 2003). The Maxwellian-averaged neutron-capture cross sections at kT =
30 keV for 124Te and 125Te are 〈σ〉124 = 155 ± 2 mb and 〈σ〉125 = 431 ± 4 mb,
respectively (Bao et al. 2000).

5.13 Solve the abundance evolution of 56Fe in the s-process (see Eq. (5.178))
for an exponential distribution of neutron exposures (see Eq. (5.175)), that is,
derive the solution given in Eq. (5.180).

5.14 Derive an expression (see Eq. (5.193)) for the number abundance of an
isotope in the r-process by successive application of the Saha equation to an
(n,γ)↔(γ,n) equilibrium in an isotopic chain of a given element Z.

5.15 Find a quantitative criterion from Eq. (5.193) for predicting the location
of the abundance maximum in an isotopic chain at (n,γ)↔(γ,n) equilibrium
in the r-process. Also, choose the conditions T = 1.25 GK and Nn = 1022 cm−3

together with the Qnγ-values from Möller, Nix and Kratz (1997) in order to re-
produce the abundance maxima shown in Fig. 5.70. Disregard partition func-
tions and the spins of the heavy nuclides.

5.16 By using the waiting point and steady flow approximations of the r-
process, calculate the half-life of 130Cd from the measured half-lives (Audi
et al. 2003) of 131In (T1/2 = 280 ± 30 ms) and 133In (T1/2 = 165 ± 3 ms) and
from the observed solar system r-abundances (Anders and Grevesse 1989, Ar-
landini et al. 1999) of 130Te (1.634), 131Xe (0.946), and 132Xe (0.748). The latter
values are given relative to Si (NSi ≡ 106). Note that the measured branching
ratio for the β-delayed neutron decay of 133In amounts to Pn = 85% (Audi et
al. 2003). Disregard all other β-delayed neutron decays (see Fig. 5.71).

5.17 Explain why, during the p-process, the branch point in a given isotopic
chain has the tendency to shift to more proton-rich nuclei for increasing tem-
perature.

5.18 The location of a branch point nuclide in a given isotopic chain is spec-
ified by the condition of Eq. (5.203). The decay constants for the (reverse)
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photodisintegrations can be calculated from Eq. (3.45) by using Hauser–
Feshbach rates for the (forward) particle-induced reactions. Branch point
nuclides for all elements between selenium (Z = 34) and lead (Z = 82) dur-
ing p-process nucleosynthesis, calculated with this method, can be found in
Rauscher (2005). Use these results together with a nuclidic chart to explain
qualitatively why almost all p-nuclei exhibit an even number of protons.
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Appendix A
Solutions of the Schrödinger Equation in Three Dimen-
sions

The three-dimensional time-independent Schrödinger equation in cartesian
coordinates is given by

− �2

2m

(
∂2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂z2

)
+ V(x, y, z)ψ = Eψ (A.1)

with ψ the total wave function, V the potential, E the total energy, and m
the particle mass. For many quantum mechanical problems, the potential V
depends only on the distance but not on the direction, that is, V(�r) = V(r).
We call this a central potential. For such potentials, we can take advantage of
the symmetry and replace the cartesian coordinates x, y, and z by the spherical
coordinates r, θ, and φ. The wave function ψ for a central potential is separable
into three different functions,

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (A.2)

The Schrödinger equation is then separable as well and one obtains three dif-
ferent equations, one for each of the variables r, θ, and φ. The differential
equation for Φ is

d2Φ
dφ2 + m2

�Φ = 0 (A.3)

where m2
� is the separation constant. The solution is

Φm�
(φ) =

1√
2π

eim�φ (A.4)

with m� = 0,±1,±2, . . ., and so on. The quantity m� is called the magnetic
quantum number. The equation for Θ is

1
sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

[

�(� + 1) − m2
�

sin2 θ

]

Θ = 0 (A.5)

with � = 0, 1, 2, . . ., and so on, and m� = 0,±1, . . . ,±�. The quantity � is
referred to as the orbital angular momentum quantum number. The solutions can

Nuclear Physics of Stars 

 Christian Iliadis 
 2007 WILEY-VCH Verlag GmbH & Co



576 A Solutions of the Schrödinger Equation in Three Dimensions

be expressed in terms of associated Legendre polynomials Pm�
� ,

Θ�m�
(θ) =

√
(2� + 1)

2
(� − m�)!
(� + m�)!

Pm�
� (θ) (A.6)

The product of the two angle-dependent functions gives the spherical harmonics

Y�m�
(θ, φ) = Θ�m�

(θ)Φm�
(φ) (A.7)

which describe the angular part of a wave function for any central potential.
The parity π of a function describes the behavior under the coordinate trans-
formation�r → −�r (space reflection), or in polar coordinates r → r, θ → π − θ,
φ → π + φ. Since two such transformations must yield again the original
function (π2 = 1), the parity can possess only the values π = +1 (positive or
“even” parity) or π = −1 (negative or “odd” parity). The spherical harmonics
have the important property

Y�m�
(π − θ, π + φ) = (−1)�Y�m�

(θ, φ) (A.8)

and hence the parity is even or odd for � even or odd, respectively. In general,
the functions Y�m�

are complex valued. For the special case of m� = 0 the
spherical harmonics are real valued and we obtain

Y�0(θ, φ) =

√
2� + 1

4π
P�(cos θ) (A.9)

where the functions P�(cos θ) are called Legendre polynomials. For the lowest
values of � they are given by

P0(x) = 1 (A.10)

P1(x) = x (A.11)

P2(x) =
1
2
(3x2 − 1) (A.12)

P3(x) =
1
2
(5x3 − 3x) (A.13)

P4(x) =
1
8
(35x4 − 30x2 + 3) (A.14)

The equation for the radial function R is

− �
2

2m

(
d2R
dr2 +

2
r

dR
dr

)
+

[
V(r) +

�(� + 1)�2

2mr2

]
R = ER (A.15)

Note that only the radial equation depends on the central potential. The �(� +
1) term is called the centripetal potential. It keeps the particle away from the
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origin when � > 0. We can rewrite the radial equation by substituting u(r) =
rR(r),

d2u
dr2 +

2m
�2

[
E − V(r) − �(� + 1)�2

2mr2

]
u = 0 (A.16)

Frequently, one writes with E = p2/(2m) = �2k2/(2m)

d2u
dr2 +

[
k2 − �(� + 1)

r2 − 2m
�2 V(r)

]
u = 0 (A.17)

where k is the wave number of the free particle. Applied to nuclear scatter-
ing, this equation is only correct for distances larger than the nuclear radius
(r > R), since the motion inside the nucleus cannot be described by a wave
function which depends on only one coordinate. The two general, linearly
independent, solutions of Eq. (A.17) are denoted by F�(r) and G�(r). These
satisfy the condition that the Wronskian combination is independent of r,

(
dF�

dr

)
G� − F�

(
dG�

dr

)
= k (A.18)

In the following we will discuss three special cases.

A.1
Zero Orbital Angular Momentum and Constant Potential

For � = 0 and V = 0, the radial equation (see Eq. (A.17)) becomes

d2u
dr2 + k2u = 0 (A.19)

Two independent solutions that satisfy this equation are the spherical wave
functions eikr and e−ikr. The general solution is given in terms of the linear
combination

u = αeikr + βe−ikr, k2 =
2m
�2 E (A.20)

If V(r) = const �= 0, then the general solution is given by

u = αeik̂r + βe−ik̂r, k̂2 =
2m
�2 (E − V) (A.21)
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A.2
Arbitrary Orbital Angular Momentum and Zero Potential

For the special case of the free particle or for neutrons, the potential outside
the nucleus is zero (V = 0). We write

d2u�

dr2 +
[

k2 − �(� + 1)
r2

]
u� = 0 (A.22)

With the substitution ρ = kr one finds

d2u�

dρ2 +
[

1 − �(� + 1)
ρ2

]
u� = 0 (A.23)

The solutions to this radial equation depend on ρ. They are given by the spher-
ical Bessel functions j�(kr) and spherical Neumann functions n�(kr) (Abramowitz
and Stegun 1965; note that other authors designate by n� the same function
with the opposite sign)

F� = (kr)j�(kr) = (kr)
(
− r

k

)�
(

1
r

d
dr

)� sin(kr)
kr

(A.24)

G� = (kr)n�(kr) = (kr)
(
− r

k

)�
(

1
r

d
dr

)� cos(kr)
kr

(A.25)

Only the function j� is regular at the origin. For the special case of � = 0
(s-waves) we obtain

j0(kr) =
sin(kr)

kr
and n0(kr) =

cos(kr)
kr

(A.26)

For the asymptotic values one finds

j� −−−→
kr→∞

1
kr

sin(kr − �π/2) and n� −−−→
kr→∞

1
kr

cos(kr − �π/2) (A.27)

A.3
Arbitrary Orbital Angular Momentum and Coulomb Potential

For the Coulomb potential we have to consider the equation

d2u�

dr2 +
[

k2 − �(� + 1)
r2 − 2m

�2 V(r)
]

u� = 0 (A.28)

where

V(r) =
ZpZte2

r
(A.29)
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The quantities Zp and Zt are the charges of the projectile and target, respec-
tively. With the substitutions η = ZpZte2/(�v) = mZpZte2/(�2k) and ρ = kr
we obtain

d2u�

dρ2 +
[

1 − �(� + 1)
ρ2 − 2η

ρ

]
u� = 0 (A.30)

The solutions are called regular and irregular Coulomb wave functions, F�(η, ρ)
and G�(η, ρ) (Abramowitz and Stegun 1965). These solutions cannot be writ-
ten in terms of elementary functions. Tabulation of F�(η, ρ) and G�(η, ρ) is
complicated by the fact that these functions depend both on energy (through
k) and charge (through ZpZt). The functions are best calculated by using avail-
able computer codes (see, for example, Barnett 1982). Numerically, we find for
the arguments

ρ = 0.218735 · r

√
MpMt

Mp + Mt
E (A.31)

η = 0.157489 · ZpZt

√
Mp Mt

Mp + Mt

1
E

(A.32)

where Mi, E, and r are in units of u, MeV, and fm, respectively.
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Appendix B
Quantum Mechanical Selection Rules

The quantum mechanical (selection) rules for the coupling of angular mo-
menta or parities are explained in any quantum mechanics text (see, for exam-
ple, Messiah 1999). Here we give, without proof, the most important results.

Consider a system composed of two parts with angular momentum vectors
of�j1 and�j2. The components have eigenfunctions φj1m1 and φj2m2 that are la-
beled according to their value of the total angular momentum quantum num-
bers j1 and j2. The z-components of their total angular momenta are labeled
by the magnetic quantum numbers m1 and m2, where

mi = −ji,−ji + 1, . . . , ji − 1, ji (B.1)

The composite system of angular momentum �J has an eigenfunction ΦJM la-
beled according to the total angular momentum quantum number J and the
magnetic quantum number M. The eigenfunction of the composite system
can be expanded according to

ΦJM(j1, j2) = ∑
m1,m2

(j1m1 j2m2|JM)φj1m1 φj2m2 (B.2)

The amplitudes (j1m1 j2m2|JM) are called Clebsch–Gordan coefficients. Their
squares represent the probability of finding the coupled state ΦJM(j1, j2) in
the product state φj1m1 φj2m2 . The Clebsch–Gordan coefficients have important
symmetry properties. They vanish unless the coupling of angular momentum
vectors, �J =�j1 +�j2, obeys the following rules:

|j1 − j2| ≤ J ≤ j1 + j2 (B.3)

M = m1 + m2 = −J,−J + 1, . . . , J − 1, J (B.4)

Clebsch–Gordan coefficients are widely tabulated (Rotenberg et al. 1959).
They can also be calculated with readily available computer codes.

The total angular momentum�J and total parity Π are conserved in a nuclear
reaction. While �J can be obtained from the above quantum mechanical rules
of angular momentum coupling, the total parity of the composite system is
given by the product of the parities for the individual parts (Appendix A). If a
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channel contains two nuclei 1 and 2 with spins�j1,�j2 and parities π1, π2, then
�J and Π are given by

�J =�� +�j1 +�j2 =�� +�s (B.5)

Π = π1π2(−1)� (B.6)

where � = 0, 1, 2, 3, . . ., and so on, is the relative orbital angular momentum of
the pair of nuclei and the vector sum�s = �j1 +�j2 is called the channel spin. If a
channel contains only nucleus 1 plus a photon, then one has

�J = �L +�j1 (B.7)

Π = π1(−1)L for electric (E) multipole radiation (B.8)

Π = π1(−1)L+1 for magnetic (M) multipole radiation (B.9)

where L = 1, 2, 3, . . ., and so on, is the multipolarity of the electromagnetic
radiation. Electric and magnetic radiation of the same multipolarity have op-
posite parities and hence cannot be emitted together in a transition connecting
two given nuclear levels. Note also that γ-ray transitions to or from spin-0
states or those between spin- 1

2 -states are pure, that is, they can only proceed
via a single value of L and unique character (either electric or magnetic). A
few examples will be given in the following in order to illustrate angular mo-
mentum and parity conservation in nuclear reactions and decays.

Example B.1

Suppose that excited 32S levels are populated via resonances in the 28Si +
α → 32S reaction. The spin and parity of both the α-particle and of 28Si is
0+. The spins and parities of the populated levels (or, equivalently, of the
resonances) are given by the quantum numbers jr and πr. Conservation of
angular momentum and parity demands (see Eqs. (B.5) and (B.6))

�jα +�j28Si +��α =�jr and παπ28Si(−1)�α = πr

0 0 �α → jr (+1)(+1)(−1)�α = πr

The individual spins�jα,�j28Si can only couple to a unique value of the channel
spin,

s = |jα − j28Si|, . . . , jα + j28Si = |0 − 0|, . . . , 0 + 0 = 0

In this case we simply find jr = �α and πr = (−1)�α . The allowed orbital
angular momentum quantum numbers �α for particular values of jr and πr
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are thus given by

α + 28Si → 32S

0+ 0+ �α → jπr
r

0 0+

1 1−

2 2+

3 3−

...
...

In other words, the resonance spin and parity are uniquely determined by
the orbital angular momentum. For �α = 0, 1, 2, . . ., and so on, the resonance
quantum numbers are jπr

r = 0+, 1−, 2+, . . ., and so on. Levels with this com-
bination of quantum numbers are referred to as natural parity states. In par-
ticular, levels of unnatural parity (jπr

r = 0−, 1+, 2−, . . ., and so on) cannot be
populated in the 28Si + α → 32S reaction (if the target and projectile are in their
ground states). The spin and parities couple in exactly the same manner for
the decay of excited 32S levels into the channel 28Si + α.

Example B.2

Suppose that excited 33Cl levels are populated via resonances in the 32S + p
→ 33Cl reaction. The spin and parity of the proton and of 32S are 1/2+ and
0+, respectively. Conservation of angular momentum and parity demands

�jp +�j32S +��p =�jr and πpπ32S(−1)�p = πr

1
2

0 �p → jr (+1)(+1)(−1)�p = πr

The individual spins�jp,�j32S can only couple to the channel spin value of

s = |jp − j32S|, . . . , jp + j32S =
∣
∣
∣∣
1
2
− 0

∣
∣
∣∣ , . . . ,

1
2

+ 0 =
1
2

Thus we find in this case �jr = �s +�lp and πr = (−1)�p. The allowed orbital
angular momentum quantum numbers �p for particular values of jπr

r are, ac-
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cording to |jr − s| ≤ �p ≤ jr + s (see Eq. (B.3)) and πr = (−1)�p , given by

p + 32S → 33Cl

1
2

+
0+ �p → jπr

r

0
1
2

+

1
1
2

−

2
3
2

+

1
3
2

−

...
...

As was the case in the previous example, a level (or resonance) of given spin
and parity (jπr

r ) can be populated only with a single value of the orbital angu-
lar momentum quantum number (�p).

Example B.3

Suppose that excited 32S levels are populated via resonances in the 31P + p
→ 32S reaction. The spin and parity of both the proton and of 31P is 1/2+.
Conservation of angular momentum and parity demands

�jp +�j31P +��p =�jr and πpπ31P(−1)�p = πr

1
2

1
2

�p → jr (+1)(+1)(−1)�p = πr

The individual spins�jp,�j31P can couple to the channel spin values of

s = |jp − j31P|, . . . , jp + j31P =
∣∣
∣∣
1
2
− 1

2

∣∣
∣∣ , . . . ,

1
2

+
1
2

= 0 or 1

Thus we find in this case �jr = �s +��p and πr = (−1)�p . The allowed orbital
angular momentum quantum numbers �p for particular values of jπr

r are, ac-
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cording to |jr − s| ≤ �p ≤ jr + s (see Eq. (B.3)) and πr = (−1)�p , given by

p + 31P → 32S

1
2

+ 1
2

+
�p → jπr

r

0 (s = 0) 0+

1 (s = 1) 0−

0, 2 (s = 1) 1+

1 (s = 0, 1) 1−

2 (s = 0, 1) 2+

1, 3 (s = 1) 2−

...
...

In this example, some 32S levels are formed with unique values of �p and s
(jr = 0), while other levels can be formed with two different values of either
�p or s (jr = 1, 2). The relative contribution of the two components to the
total cross section is described by parameters referred to as orbital angular
momentum and channel spin mixing ratios (Appendix D).

Example B.4

We will next discuss the situation when a photon is present in a particular
channel. Suppose that an excited level in 32S has been populated by some
means, for example, in an (α,γ) or (p,γ) reaction. The level has a spin and
parity of jπr

r . The angular momentum and parity coupling in the incoming
channel is described in Examples B.1 and B.3. We will now focus on the γ-ray
decay of this level to lower-lying states in 32S with spins and parities of j1 and
π1, respectively. Conservation of angular momentum and parity demands
(see Eqs. (B.7)–(B.9))

�jr =�j1 +�L and πr = π1(−1)L for electric multipole radiation

πr = π1(−1)L+1 for magnetic multipole radiation

First suppose that the decaying 32S level has a spin and parity of jπr
r = 0+.

The allowed values of the γ-ray multipolarity L for given values of jπ1
1 for the

lower lying states are, according to |jr − j1| ≤ L ≤ jr + j1 (see Eqs. (B.3) and
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(B.7)), given by

32S∗ → γ + 32S

0+ L jπ1
1

forbidden 0+

forbidden 0−

M1 1+

E1 1−

E2 2+

M2 2−

...
...

The 0 → 0 transitions are forbidden since monopole radiation (L = 0) does not
exist. In other words, photons must carry at least an angular momentum of �.
Such transitions may still proceed (Section 1.7.1) by internal conversion (de-
excitation of the nucleus via emission of an atomic electron) or internal pair
formation (de-excitation of the nucleus via emission of an electron–positron
pair if the excitation energy exceeds an amount of 2mec2). All other γ-ray
transitions proceed with a unique value of the multipolarity L.

If, on the other hand, the decaying level has a spin and parity of jπr
r = 1−,

then the following values of L are allowed for given values of jπ1
1 for the lower-

lying states:

32S∗ → γ + 32S

1− L jπ1
1

E1 0+

M1 0−

E1, M2 1+

M1, E2 1−

E1, M2, E3 2+

M1, E2, M3 2−

...
...

The 1 → 0 transitions proceed either via electric or magnetic dipole radiation
(L = 1). All other transitions can proceed via radiations of different multi-
polarities. The relative contribution of the individual components to the total
transition probability is described by the γ-ray mixing ratio (see Eq. (1.31)).
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As already noted above, parity conservation implies that electric and mag-
netic radiation of the same multipolarity can never be emitted together in the
same transition. The γ-ray transition probability decreases fast for increasing
multipolarity and in practice one usually encounters the mixing of no more
than the lowest two multipole radiations.
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Appendix C
Kinematics

In the following, expressions are presented that describe the kinematics of a
binary interaction a + A → b + B, where species a, A, and B are particles with
rest mass. For more detailed discussions of the kinematics in nuclear physics,
the reader is referred to Marmier and Sheldon (1969) and references therein.
Kinematics calculations can be conveniently performed by using readily avail-
able computer codes.

The kinematics of a nuclear reaction or of elastic scattering is determined
by the conservation of total energy and linear momentum. Consider Fig. C.1
(left panel), showing a collision between a projectile a and a stationary target
nucleus A in the laboratory. After the collision, the recoil nucleus B moves
into a direction specified by the laboratory angle φ, while species b moves
into a direction given by laboratory angle θ. If species b is a photon, then
the collision represents a radiative capture process. If species a is identical
to b, and species A is identical to B (that is, their state of excition), then the
collision represents elastic scattering. First, expressions are given that relate
quantities appropriate for the laboratory coordinate system only. Afterward,
formulas for the transformation of quantities between laboratory and center-
of-mass coordinate systems are presented.

C.1
Relationship of Kinematic Quantities in the Laboratory Coordinate System

Consider first a collision involving only particles with rest mass. The target
nucleus A is assumed to be stationary in the laboratory system. Conservation
of energy and linear momentum yields the three equations

mac2 + Ea + mAc2 = mbc2 + Eb + mBc2 + EB (C.1)
√

2maEa =
√

2mBEB cos φ +
√

2mbEb cos θ (C.2)

0 =
√

2mBEB sin φ − √
2mbEb sin θ (C.3)

where E and m denote the kinetic energy and the rest mass, respectively. The
linear momenta are given by p =

√
2mE. The second and third expression
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describes the total linear momentum parallel and perpendicular, respectively,
to the incident beam direction. It is usually difficult to detect species B if it
represents a heavy recoil nucleus. By eliminating EB and φ and by using the
definition of the reaction Q-value, Q = (ma + mA − mb − mB)c2 (see Eq. (1.4)),
one finds

Q = Eb

(
1 +

mb

mB

)
− Ea

(
1 − ma

mB

)
− 2

mB

√
mambEaEb cos θ (C.4)

This expression is sometimes used to determine an unknown Q-value by mea-
suring Ea, Eb, and θ if the masses ma, mb, and mB are known. Frequently, one
is interested in the energy Eb of the emitted particle as a function of the bom-
barding energy Ea and the angle θ. From Eq. (C.4) one obtains

√
Eb = r ±

√
r2 + s (C.5)

where

r =
√

mambEa

mb + mB
cos θ and s =

Ea(mB − ma) + mBQ
mb + mB

(C.6)

We assumed above that in low-energy nuclear reactions the speeds of the par-
ticles are sufficiently small to disregard relativistic effects. For very accurate
work, one can take the relativistic correction into account if each mass m in
the above expressions is replaced by m + E/(2c2). Only real and positive so-
lutions of Eb in Eqs. (C.5) and (C.6) are physically allowed. A number of dif-
ferent cases can be distinguished. If the reaction is exothermic (Q > 0) and if
the projectile mass is smaller than the mass of the residual nucleus (ma < mB),
then s > 0 and there will only be one positive solution for Eb. Because of the
cos θ dependence of r, Eb has a minimum at θ = 180◦. For very small projectile
energies, for example, in reactions involving thermal neutrons, we find r → 0
and hence

Eb(Ea ≈ 0) ≈ s ≈ QmB/(mB + mb) (C.7)

This implies that the kinetic energy of the emitted particle b has the same value
for all angles. The situation is more complex if the reaction is endothermic
(Q < 0). For very small projectile energies, Ea ≈ 0, one has again r → 0, but s
becomes negative so that no positive value of Eb exists. Hence, for each angle
θ there will be a minimum energy below which the reaction cannot proceed.
The value of this minimum energy is smallest at θ = 0◦ and is referred to as
the threshold energy, given by

Emin
a (θ = 0◦) = Ethresh

a = −Q
mb + mB

mb + mB − ma
(C.8)
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Fig. C.1 Kinematic properties of a reaction A(a, b)B in the laboratory
coordinate system (left) and the center-of-mass coordinate system
(right). The target nucleus A is assumed to be stationary in the lab-
oratory (vA = 0). Unprimed and primed quantities are used in the
laboratory and center-of-mass frame, respectively. The location of the
center of mass is labeled “c.”

At the threshold energy, the particles are emitted only in the direction θ = 0◦
with an energy of

Eb(Ea = Ethresh
a ) = Ethresh

a
mamb

(mb + mB)2 (C.9)

If one increases the bombarding energy beyond the threshold energy, then the
particles b can be emitted at angles greater than θ = 0◦. It is also interesting
to note that for endothermic reactions Eqs. (C.5) and (C.6) yield two positive
solutions for θ < 90◦. In other words, two particle groups of different dis-
crete energies are emitted in the forward direction. For bombarding energies
exceeding

Ea = −Q
mB

mB − ma
(C.10)

there exists only a single positive solution for Eqs. (C.5) and (C.6).
Consider now a radiative capture process a + A → B + γ. In this case

we have to replace in Eqs. (C.1)–(C.3) the total energy, mbc2 + Eb, and linear
momentum,

√
2mbEb, of species b by Eγ and Eγ/c, respectively. Eliminating

again EB and φ and solving for the energy of the emitted photon yields

Eγ = Q +
mA

mB
Ea + Eγ

vB

c
cos θ − E2

γ

2mBc2 = Q +
mA

mB
Ea + ∆EDopp − ∆Erec

(C.11)
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The photon energy is given by a sum of four terms: (i) the value of Q =
(ma + mA − mB)c2 = EB + Eγ − Ea; (ii) the bombarding energy in the center-
of-mass system (see below); (iii) the Doppler shift since the photon is emitted
by a recoil nucleus B moving at a speed of vB = va(ma/mB); and (iv) the recoil
shift which is caused by the energy shift of the recoiling nucleus. The last two
contributions represent relatively small corrections and are numerically given
by

∆EDopp = 4.63367 × 10−2
√

MaEa

MB
Eγ cos θ (MeV) (C.12)

∆Erec = 5.36772 × 10−4 E2
γ

MB
(MeV) (C.13)

where all energies are in units of MeV and the rest masses are in units of u.
The calculation of the photon energy from Eq. (C.11) is not strictly valid since
Eγ also occurs on the right-hand side. If an answer with a precision of a few
keV or so is sufficient, then one may replace the masses with (integer) mass
numbers and use the approximation Eγ ≈ Q + Ea(mA/mB) on the right-hand
side of Eq. (C.11). For accurate work, however, the masses of a, A, and B in
Eqs. (C.1)–(C.3) should be replaced by the factors mi + Ei/(2c2). The exact
relativistic expression for the photon energy is then given by

Eγ =
Q(mac2 + mAc2 + mBc2)/2 + mAc2Ea

mac2 + mAc2 + Ea − cos θ
√

Ea(2mac2 + Ea)
(C.14)

The relationship between the photon emission angle θ and the recoil angle φ

can be obtained from the ratio of Eqs. (C.2) and (C.3),

φ = arctan

(
sin θ

E−1
γ

√
2mac2Ea − cos θ

)

(C.15)

The maximum angle of φ is obtained when the photon is emitted perpendicu-
lar to the incident beam direction (θ = 90◦),

φmax = arctan

(
Eγ√

2mac2Ea

)

(C.16)

Hence, the recoil nucleus B is emitted in the forward direction into a cone of
half-angle φmax.

A few comments are in order. If the reaction A + a → B + b or A + a →
B + γ populates an excited state in nucleus B, then the Q-value in the above
expressions must account for the energy of the excited state,

Q = Q0 − Ex (C.17)
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where Q0 is the Q-value for the ground state of B. Several excited levels may
be populated in a given reaction. For a fixed angle θ, each of these states will
give rise to a different value for the energy of the reaction products (for exam-
ple, Eb or Eγ), where the largest observed energy corresponds to the popula-
tion of the ground state. From a measurement of Eb or Eγ we may thus deduce
an unknown excitation energy Ex by using Eqs. (C.5), (C.11), or (C.14). Note
that for a radiative capture reaction the maximum emission angle φmax of B
is given by Eq. (C.16), with Eγ denoting the photon energy for the ground
state transition, even if the primary decay proceeds to an excited level (since
subsequent de-excitation photons may also be emitted at θ = 90◦). The above
expressions disregard the beam energy loss in the target and assume that the
reaction is induced with a bombarding energy of Ea in the laboratory. If the
reaction excites a narrow resonance, then the interaction is induced at the res-
onance energy Er rather than at the actual incident beam energy. In this case,
Ea in the above expressions represents Er. Finally, for the case of radiative
capture reactions it is assumed that the γ-ray emission occurs on a sufficiently
short time scale for recoil energy losses in the target to be negligible, that is,
the emitted photon experiences the full Doppler energy shift. If the photon is
emitted after the recoil nucleus experienced an energy loss in the target, then
the Doppler shift is attenuated. It is sometimes possible to deduce the mean
lifetime of a nuclear level by measuring the attenuated Doppler shift (see, for
example, Bertone et al. 2001).

C.2
Transformation Between Laboratory and Center-of-Mass Coordinate System

In experimental nuclear physics, all observations take place in a reference
frame that is at rest in the laboratory. It is referred to as the laboratory coor-
dinate system. From the theoretical point of view, however, the motion of the
center of mass is of no consequence for the properties of a nuclear reaction.
It is then often more convenient to use a moving coordinate frame in which
the center of mass of the two colliding nuclei is at rest. It is called the center-of-
mass coordinate system. Most kinematic quantities in Chapters 3 and 5 are given
in the center-of-mass system. However, in Chapter 4 these quantities are fre-
quently presented in the laboratory system, as is customary in the nuclear
physics literature, since this is where the quantities are directly observed. We
will only consider here the nonrelativistic transformation of kinematic quanti-
ties between these two reference frames. For the relativistic case, see Marmier
and Sheldon (1969) and references therein.

The kinematic properties of a nuclear reaction A(a, b)B in the laboratory and
center-of-mass frames are shown in Fig. C.1. Unprimed and primed quantities
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will be used in this section for the former and the latter coordinate system, re-
spectively. It is assumed that the target nucleus is stationary in the laboratory
(vA = 0). In the center-of-mass frame, the total linear momentum is always
equal to zero and, therefore, the nuclei b and B will recede in opposite direc-
tions. In other words, there is only one scattering angle θ′.

We will first consider the situation before the collision. The velocity �vc of
the center-of-mass is given by the relations

(ma + mA)�vc = ma�va + mA · 0 or �vc =
ma

ma + mA
�va (C.18)

and hence the projectile and target have velocities in the center-of-mass frame
of

�v′a = �va −�vc =
(

1 − ma

ma + mA

)
�va =

mA

ma + mA
�va (C.19)

�v′A = �vA −�vc = −�vc = − ma

ma + mA
�va (C.20)

Since the total linear momentum of a + A is zero in the center-of-mass frame,
we find for the ratio of speeds

ma�v′a = mA�v′A or
v′a
v′A

=
mA

ma
(C.21)

The kinetic energies of the two particles in the center-of-mass system are given
by (see Eqs. (C.19) and (C.20))

E′
a =

1
2

ma(v′a)2 =
1
2

mav2
a

(
mA

ma + mA

)2

= Ea
m2

A
(ma + mA)2 (C.22)

E′
A =

1
2

mA(v′A)2 =
1
2

mAv2
a

(
ma

ma + mA

)2

= Ea
mAma

(ma + mA)2 (C.23)

and the total kinetic energy in the center-of-mass system before the collision
is related to the laboratory bombarding energy by

E′
i = E′

a + E′
A = Ea

m2
A + mAma

(ma + mA)2 = Ea
mA

ma + mA
(C.24)

The laboratory bombarding energy, Ea, can be expressed as the sum of to-
tal kinetic energy in the center-of-mass system before the collision, E′

i , and
the kinetic energy of the center-of-mass motion, Ec, as can be seen from (see
Eqs. (C.18) and (C.24))

Ea =
1
2

mav2
a =

1
2

mAma

ma + mA
v2

a +
1
2

m2
a

ma + mA

ma + mA

ma + mA
v2

a

= Ea
mA

ma + mA
+

1
2
(ma + mA)v2

c = E′
i + Ec (C.25)
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Furthermore, we find from Eq. (C.24)

E′
i =

1
2

mamA

ma + mA
v2

a =
1
2

maAv2
a (C.26)

and thus the total center-of-mass kinetic energy can be expressed in terms of
the laboratory bombarding velocity, va, and the reduced mass of particles a and
A, defined as maA ≡ mamA/(ma + mA). Obviously, the above expressions
apply equally to a radiative capture reaction, A(a, γ)B, or to elastic scattering,
A(a, a)A.

We will now consider the situation after the collision. The total linear mo-
mentum in the center-of-mass system remains zero. For a reaction A(a, b)B,
the two residual particles b and B separate in opposite directions with equal
but opposite linear momenta,

mbv′b = mBv′B (C.27)

The kinetic energies in the center-of-mass system are given by

E′
b =

1
2

mb(v′b)
2 (C.28)

E′
B =

1
2

mB(v′B)2 =
1
2

mb(v′b)
2mB

mb

m2
B

=
mb

mB
E′

b (C.29)

The total kinetic energy in the center-of-mass system after the collision is then

E′
f = E′

b + E′
B = E′

b +
mb

mB
E′

b = E′
b

(
1 +

mb

mB

)
(C.30)

The kinetic energies in the center-of-mass system after the collision can be
expressed in terms of the laboratory bombarding energy by using E′

i + Q = E′
f

(see Eq. (1.5)). The total kinetic energy is given by (see Eq. (C.24))

E′
f = E′

i + Q = Ea
mA

ma + mA
+ Q = Q + Ea

(
1 − ma

ma + mA

)
(C.31)

After some algebra one obtains for the kinetic energies of the particles

E′
b =

mB

mb + mB

[
Q + Ea

(
1 − ma

mb + mB

)]
(C.32)

E′
B =

mb

mb + mB

[
Q + Ea

(
1 − ma

mb + mB

)]
(C.33)

Finally, we will present the transformation equations for the angles and
solid angles in the laboratory and center-of-mass systems. After the collision,
we have for a reaction A(a, b)B (see Eq. (C.19))

�v′b = �vb −�vc (C.34)
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or, in terms of the components parallel with and perpendicular to the beam
direction

v′b cos θ′ = vb cos θ − vc (C.35)

v′b sin θ′ = vb sin θ − 0 (C.36)

From these expressions one can derive either of the following two relation-
ships:

tan θ =
v′b sin θ′

v′b cos θ′ + vc
=

sin θ′

cos θ′ + vc/v′b
=

sin θ′

cos θ′ + γ
(C.37)

cos θ =
γ + cos θ′

√
1 + γ2 + 2γ cos θ′

(C.38)

The parameter γ is defined by the ratio of velocities of the center of mass and
of particle b in the center-of-mass system,

γ ≡ vc

v′b
=

√
mambEa

mB(mb + mB)Q + mB(mB + mb − ma)Ea

≈
√

mamb

mAmB

Ea

(1 + ma/mA)Q + Ea
(C.39)

where the approximation is obtained by setting ma + mA ≈ mb + mB. For a
very heavy target nucleus, one finds γ ≈ 0 and hence the angle of the emit-
ted particle b has about the same value in the laboratory and center-of-mass
systems (θ ≈ θ′). For elastic scattering, ma = mb, mA = mB, Q = 0, and thus
one finds γ = ma/mA. For a radiative capture reaction, A(a, γ)B, the labora-
tory and center-of-mass angle of the emitted photon are related by (given here
without proof)

cos θ =
cos θ′ + β

1 + β cos θ′ (C.40)

where the relativistic parameter β is defined as

β ≡
√

Ea(Ea + 2mac2)
mAc2 + mac2 + Ea

(C.41)

The definition of the differential cross section implies that the same num-
ber of reaction products are emitted into the solid angle element dΩ in the
direction θ (laboratory system) as are emitted into dΩ′ in the corresponding
direction θ′ (center-of-mass system). Thus

(
dσ

dΩ

)

θ

dΩ =
(

dσ

dΩ

)′

θ′
dΩ′ (C.42)
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We assume that the cross section depends on θ or θ′, but not on the azimuthal
angle. Hence

(dσ/dΩ)′θ′
(dσ/dΩ)θ

=
dΩ
dΩ′ =

d(cos θ)
d(cos θ′) (C.43)

From Eq. (C.38) we find for a reaction A(a, b)B

d(cos θ)
d(cos θ′) =

1 + γ cos θ′

(1 + γ2 + 2γ cos θ′)3/2 =

√
1 − γ2 sin2 θ

(
γ cos θ +

√
1 − γ2 sin2 θ

)2 (C.44)

For a radiative capture reaction, A(a, γ)B, one obtains from Eq. (C.40)

d(cos θ)
d(cos θ′) =

1 − β2

(1 + β cos θ′)2 (C.45)

for the relationship of the solid angles of the emitted photon.
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Appendix D
Angular Correlations

Traditionally, angular correlation measurements have been used in nuclear
physics as a powerful tool in order to determine the angular momenta of states
participating in nuclear transitions. It also turns out that angular correlations
are sensitive to the ratios of nuclear matrix elements (that is, mixing ratios; see
later) that correspond to different possibilities of coupling angular momenta
in a specific transition. We will not attempt here to summarize this vast field,
but will focus on aspects that are of primary importance in low-energy nuclear
astrophysics measurements.

Uncertainties in thermonuclear reaction rates are caused by contributions
from resonances or nonresonant reaction processes that are as yet unobserved.
The goal of the experimentalist is to measure such contributions. If the detec-
tion system covers the entire solid angle (4π sr), the measured intensities rep-
resent angle-integrated yields. These may then be converted to cross sections
or resonance strengths (Sections 4.8 and 4.9). However, in most experimental
setups the detector(s) will cover only a fraction of the full solid angle. What is
measured in such cases are differential yields that may be influenced by angu-
lar correlation effects. It should be pointed out that the angular momenta for
many levels participating in astrophysically important reactions are known or,
at least, have been restricted to a certain range of values by previous nuclear
structure studies. Hence, it becomes in principle possible to estimate angu-
lar correlation effects by making reasonable assumptions and, if necessary, to
correct the measured differential yields appropriately.

A comprehensive theory of angular correlations is beyond the scope of the
present work. The interested reader is referred to the specialized literature
(see, for example, Devons and Goldfarb 1957). The focus of this section is on
angular correlations in astrophysically important reactions, that is, processes
such as A(a, b)B or A(a, γ)B, where a and b denote particles with rest mass.
We will briefly explain the origin of angular correlations in such processes
and examples of the application of angular correlations to specific cases will
be given. In this section, all angles θ refer to the center-of-mass system.
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D.1
General Aspects

For the discussions in this section, we will make the following assumptions:
(i) the beam is unpolarized and the target nuclei are randomly oriented; (ii)
the nuclear levels involved in the transitions at each stage have unique spin
and well-defined parity; (iii) the polarization of the detected radiations is not
observed. These assumptions apply to most cases of interest here. The term
radiation denotes bombarding (incident) particles or γ-rays as well as emitted
(outgoing) particles or γ-rays. An angular correlation between two radiations
(for example, between the incident beam and an outgoing radiation, or be-
tween two successive outgoing radiations) is the result of the alignment of a
particular nuclear level. An aligned level of spin J is prepared by some process
that populates its 2J + 1 magnetic substates unequally with the condition that
the population of the +m substate will be equal to the population of the −m
substate (since we assume unpolarized beam and target nuclei). Particles or
γ-rays that are emitted from a specific substate m of the aligned level and that
populate a substate m f of a final level will then have a characteristic radiation
pattern, or angular correlation, with respect to some (z-)axis of quantization,
depending on the value of ∆m = m − m f . The total radiation pattern will
consist of the superposition of all allowed transitions m → m f between sub-
states. The alignment in reactions of type A(a, b)B or A(a, γ)B is achieved by
the fact that the orbital angular momentum carried by the incident radiation
is perpendicular to its direction of motion. This simple circumstance, plus the
additional fact that angular momentum is conserved, forms the foundation of
the angular correlation theory for unpolarized radiations.

As a simple example, we will consider an excited level of spin and parity
Jπ = 1− that decays to a 0+ ground state via emission of electric dipole (E1;
L = 1) radiation (Fig. D.1). The spatial distribution of the emitted photons
will depend on the magnetic quantum numbers m and m f of the decaying
and the final level, respectively, where each allowed value of ∆m = m − m f
gives rise to a different radiation pattern. In our example, the decaying level
consists of (2 · 1 + 1) = 3 substates and the final level has only (2 · 0 + 1) = 1
substate. The allowed transitions are then described by m − m f = 0 − 0 = 0
and m − m f = ±1 − 0 = ±1. The corresponding radiation patterns are given
by W∆m=0(θ) ∼ sin2 θ and W∆m=±1(θ) ∼ (1 + cos2 θ)/2, respectively (Jackson
1975). These are plotted as polar intensity diagrams in Fig. D.1. Suppose first
that the Jπ = 1− level is populated by the β-decay of a parent state and that the
β-particles are not detected. Under such conditions, the β-decay populates the
magnetic substates equally that is, with a probability of p(m) = 1/(2J + 1) =
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1/3. The total photon radiation pattern is thus given by

W(θ) = ∑
m

p(m)Wm→m f (θ)

∼ 1
3
· 1

2
(1 + cos2 θ) +

1
3

sin2 θ +
1
3
· 1

2
(1 + cos2 θ) = const (D.1)

and hence becomes isotropic. Now suppose that the Jπ = 1− level is instead
populated as a resonance in a capture reaction A(a, γ)B involving target and
projectile spins and parities of jA = 0+ and ja = 0+. The resonance can only be
formed by absorption of particles a with an orbital angular momentum of �a =
1 (Example B.1). Provided the incident particle beam is well collimated, the
projection of the orbital angular momentum vector along the incident beam
direction is zero (Fig. 2.4). The allowed range of magnetic substates of the
resonance that can be populated in this type of capture reaction is then given
by mres ≤ jA + ja (see Eqs. (B.3) and (B.4)). It follows that, among the three
different magnetic substates of the resonance, only the m = 0 substate can be
populated in the reaction. In other words, we obtain p(0) = 1 and p(±1) = 0,
and the γ-ray decay must proceed from m = 0 to m f = 0. Consequently, the
total radiation pattern is given by the ∆m = m − m f = 0 transition only

W(θ) = ∑
m

p(m)Wm→m f (θ) ∼ sin2 θ (D.2)

The alignment in this example is exceptionally strong and thus the variation
of the γ-ray counting rate with angle is relatively large. If the beam or tar-
get nuclei have nonzero spin, then the alignment will be weaker, but angular
correlation effects are in general nevertheless observed.

In certain situations involving nuclear reactions, all magnetic substates are
populated equally, independent of the mode of formation. For example, the
capture of unpolarized protons by spin-zero target nuclei leading to a J =
1/2 resonance will always populate the m = ±1/2 magnetic substates of the
resonance uniformly. As a result, the total radiation pattern will be isotropic.
Similar arguments apply to a resonance of spin J = 0. In this case, only one
magnetic substate exists and the transitions to the various substates in the final
state proceed with equal probabilities. As a result, the total radiation pattern
must necessarily be isotropic.

We considered so far only the angular correlation caused by the alignment
of levels produced in nuclear reactions (also termed angular distribution). An-
other type of angular correlation occurs if an excited level de-excites to a final
state through an intermediate level by emitting two successive radiations (for
example, two photons). In this case, measurement of the direction of the first
radiation will produce an aligned intermediate state. The result is again a
nonuniform intensity distribution of the second radiation with respect to the
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Fig. D.1 (a) Level scheme for an excited state (Jπ = 1−) that can be
populated either via β-decay from nucleus B′ or via the capture reac-
tion A + a → B + γ. Both the target and the projectile have spins and
parities of 0+. The state decays via E1 emission to the ground state
(Jπ = 0+). In the first case, the radiation pattern will be isotropic, while
in the second case, the pattern is anisotropic because of a strong
alignment. (b) Dipole radiation pattern for ∆m = 0 (top) and ∆m = ±1
(bottom).

measured direction of the first radiation. We encountered this situation in the
discussion of angular correlation effects for γ-ray detector summing correc-
tions (Section 4.5.2). As will be seen in the following, the angular correlation
formalism is quite general and describes this situation as well.

The summation over magnetic quantum numbers is performed explicitly in
Eq. (D.1). In more complicated situations involving a number of unobserved
or coupled orientations, such a calculation becomes very tedious. Much more
convenient, but equivalent, expressions have been developed where the mag-
netic substates are not explicitly introduced and where the sums over sub-
states are automatically performed. A number of different formalisms and
expressions can be found in the literature. Here, we will follow the work of
Biedenharn (1960).

Any correlation where only two directions of motion are measured can be
expressed as a Legendre polynomial series in the angle between those direc-
tions (see also Eqs. (A.9)–(A.14)). We write

W(θ) =
1
b0

nmax

∑
n=0

bnPn(cos θ)

= 1 +
b2

b0
P2(cos θ) +

b4

b0
P4(cos θ) + · · ·+ bnmax

b0
Pnmax(cos θ) (D.3)
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If the process under consideration is a nuclear reaction, then W(θ) is related
to the differential and total cross section by

(
dσ

dΩ

)

θ

=
1

4π
σ W(θ) (D.4)

An isotropic differential cross section implies W(θ) = 1. The sum in Eq. (D.3)
is restricted to even values of n because we are making the assumption that
the reaction (or the successive decay) involves at each stage nuclear states
of well-defined parity. The wave function describing the exit channel must
then have the same parity as the resonance (or the intermediate state). The
corresponding intensity of the emitted radiation (that is, the square of the
wave function) has even parity and is unchanged by the inversion�r → −�r,
or more specifically, by the substitution θ → π − θ (since for unpolarized
beams and randomly oriented target nuclei the intensity does not depend on
the azimuthal angle φ). The condition W(θ) = W(π − θ) implies that W(θ)
is symmetric about θ = 90◦ and, consequently, all odd Legendre polynomial
terms in Eq. (D.3) must vanish.

The coefficients bn in Eq. (D.3) depend on the angular momenta and nu-
clear matrix elements involved in the process. Theoretical expressions for bn

are given in the following. They can be factored into components referring
separately to each transition. Each of these components, in turn, is expressed
in terms of vector coupling (Clebsch–Gordan and Racah) coefficients. We will
be using the coefficients Fn, defined by (Biedenharn 1960)

Fn(LL′ jJ) ≡ (−)j−J−1
√

(2L + 1)(2L′ + 1)(2J + 1) (L1L′ − 1|n0)W(J JLL′; nj)

(D.5)

where j and J are angular momenta (spins) of nuclear states and L and L′
are orbital angular momenta (for particles) or multipolarities (for photons)
of radiations; (L1L′ − 1|n0) and W(J JLL′; nj) denotes a Clebsch–Gordan and
a Racah coefficient, respectively. A tabulation of the functions Fn(LjJ) ≡
Fn(LLjJ) is given in Biedenharn and Rose (1953). Numerical values of the
mixed correlation coefficients Fn(LL′ jJ) for L �= L′ can be found in Appel
(1968). For n = 0, we obtain F0(LL′ jJ) = 0 and F0(LjJ) = 1. In order
to determine how many terms have to be taken into account in the sum of
Eq. (D.3), it is useful to consider the symmetry properties of the functions
Fn(LL′ jJ) which follow directly from those of the Clebsch–Gordan and Racah
coefficients. For given values of L, L′, and J, we obtain Fn(LL′ jJ) �= 0 only
for |L − L′| ≤ n ≤ min(2J, L + L′). It follows that Fn(LjJ) �= 0 only for
0 ≤ n ≤ min(2J, 2L).
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D.2
Pure Radiations in a Two-Step Process

We start by considering a two-step process, where each step proceeds via a
pure transition. An intermediate state of spin J is formed from an initial state
of spin j1 via absorption or emission of some radiation of angular momentum
L1. The intermediate state decays then to the final state of spin j2 via emission
of radiation with angular momentum L2. We write symbolically j1(L1)J(L2)j2.
The angular correlation function between the directions of the two radiations
is then given in terms of the coefficients An(i) and the particle parameters
an(i) by

W(θ) = ∑
n=0,2,...

[an(1)An(1)][an(2)An(2)]Pn(cos θ) (D.6)

for photons: an(i) = 1; An(i) = Fn(Li ji J)

(D.7)

for s = 0 particles: an(i) =
2Li(Li + 1)

2Li(Li + 1) − n(n + 1)
; An(i) = Fn(Li ji J)

(D.8)

for s �= 0 particles: an(i) =
2Li(Li + 1)

2Li(Li + 1) − n(n + 1)
; An(i) = Fn(Li js J)

(D.9)

For photons or particles, Li denotes the γ-ray multipolarity or the orbital an-
gular momentum, respectively. If a particle has a nonzero spin s, then the
channel spin given by�js = �ji +�s and |ji − s| ≤ js ≤ ji + s replaces the initial
state spin ji. The sum in Eq. (D.6) is restricted to 0 ≤ n ≤ min(2L1, 2L2, 2J).

Example D.1

The β-decay of 60Co populates a 4+ level in the 60Ni daughter nucleus. This
level decays to an intermediate state of spin 2+, which in turn decays to the
ground state of spin 0+ (Fig. D.2a). Calculate the angular correlation between
the two de-excitation γ-rays.

We encountered this case in Section 4.5.2 and Fig. 4.30. The β-decay electron
is emitted into a random direction and is not observed. Thus, the initial 4+

level populated in the daughter nucleus is not aligned. The first γ-ray is also
emitted into a random direction. If it is detected in a counter, then a line
connecting the radioactive source with the detector represents a preferred di-
rection relative to which the second γ-ray is emitted. Both transitions in this
direction–direction correlation are γ-rays and θ represents the angle between
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their correlated emission directions. Both the first and the second γ-ray de-
cay can only proceed via an E2 transition (Example B.4). Thus, we have to
consider the angular momentum sequence j1(L1)J(L2)j2 → 4(2)2(2)0. From
Eqs. (D.6) and (D.7) we obtain

W(θ) = ∑
n=0,2,...

Fn(L1 j1 J)Fn(L2 j2 J)Pn(cos θ) with 0 ≤ n ≤ min(2L1, 2L2, 2J)

Hence

W(θ) = ∑
n=0,2,4

Fn(242)Fn(202)Pn(cos θ)

= 1 + F2(242)F2(202)P2(cos θ) + F4(242)F4(202)P4(cos θ)

= 1 + (−0.1707)(−0.5976)P2(cos θ) + (−0.0085)(−1.069)P4(cos θ)

= 1 + 0.1020P2(cos θ) + 0.0091P4(cos θ)

Example D.2

A resonance with spin and parity of Jπ = 2+ is populated in the 32S(α,γ)36Ar
reaction. The resonance decays to a final state with Jπ = 0+ (Fig. D.2b). Calcu-
late the expected angular correlation between the incident beam (α-particles)
and the emitted γ-radiation.

The 32S target nuclei and the α-particles have both a spin and parity of 0+.
Therefore, the Jπ = 2+ resonance can only be formed from an α-particle
orbital angular momentum of �α = 2 (Example B.1). Furthermore, the γ-
ray transition can only be of E2 character (Example B.4). The angular mo-
mentum sequence is therefore given by j1(L1)J(L2)j2 → j32S(�α)J(Lγ)j36 Ar →
0(2)2(2)0. We obtain from Eqs. (D.6) and (D.8)

W(θ) = ∑
n=0,2,...

2L1(L1 + 1)
2L1(L1 + 1) − n(n + 1)

Fn(L1 j1 J)Fn(L2 j2 J)Pn(cos θ)

From 0 ≤ n ≤ min(2L1, 2L2, 2J) we find n = 0, 2, and 4. Hence

W(θ) = ∑
n=0,2,4

2 · 2(2 + 1)
2 · 2(2 + 1) − n(n + 1)

Fn(202)Fn(202)Pn(cos θ)

= 1 +
12

12 − 6
F2(202)F2(202)P2(cos θ) +

12
12 − 20

F4(202)F4(202)P4(cos θ)

= 1 + 2(−0.5976)(−0.5976)P2(cos θ)+(−1.5)(−1.069)(−1.069)P4(cos θ)

= 1 + 0.7143P2(cos θ)− 1.7143P4(cos θ)
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D.3
Mixed Radiations in a Two-Step Process

Sometimes the angular momentum coupling in a sequential nuclear decay or
in a nuclear reaction allows for different possibilities, each involving a unique
combination of angular momenta. In general, these pure transitions will in-
terfere, that is, their contributions to the total angular correlation add either
incoherently or coherently. In either case, new parameters have to be intro-
duced that describe quantitatively the degree of mixing. These mixing ratios
are usually determined experimentally by fitting the data and are eventually
interpreted in terms of some nuclear model.

Incoherent interference applies, for example, to the channel spin js. Since
we assumed that the beam and target nuclei are unpolarized, the channel spin
is randomly oriented. As a consequence, the total angular correlation is given
by the sum of the individual (pure) correlations, each weighted according to
the probability for a particular channel spin value to occur. We write W(θ) =
Wjs(θ) + δ2

c Wj′s(θ), where the channel spin mixing ratio δ2
c ≡ Pj′s /Pjs is defined as

the ratio of probabilities for forming (or of decay from) the intermediate state
via the channel spins j′s and js, where j′s > js.

Coherent interference occurs when definite phase relationships are impor-
tant. This is the case if several possible values of multipolarites are allowed for
a specific γ-ray transition, or if the intermediate state can be formed (or decay)
by several possible values of orbital angular momenta. In practice, only the
smallest two allowed values of γ-ray multipolarities (Li and Li + 1) or orbital
angular momenta (�i and �i + 2) need to be considered (Example B.4). In such
cases we have to use in Eq. (D.6) the expression

an(i)An(i) = an(Li Li)Fn(Li ji J) + 2δian(LiL
′
i)Fn(LiL

′
i ji J) + δ2

i an(L′
i L

′
i)Fn(L′

i ji J)

(D.10)

for photons: an(i) = 1 (D.11)

for particles: an(LiL
′
i) = cos(ξLi − ξL′

i
)

(Li0L′
i0|n0)

(Li1L′
i − 1|n0)

= cos(ξLi − ξL′
i
)

2
√

[Li(Li + 1)][L′
i(L′

i + 1)]

Li(Li + 1) + L′
i(L′

i + 1)− n(n + 1)
(D.12)

where the primed quantities refer to the higher value of angular momentum
(particle orbital angular momentum or γ-ray multipolarity). For particles with
spin, the channel spin js replaces again the initial state spin ji in Eq. (D.10).

The γ-ray multipolarity mixing ratio δγ is defined by the relation δ2
γ ≡

ΓγL+1/ΓγL, with ΓγL the γ-ray partial width for the transition with multi-
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polarity L (see Eq. (1.31)). The total angular correlation not only depends on
the value but also on the phase (plus or minus) of δγ. Hence, the sign con-
vention (that is, the definition of δγ in terms of the nuclear matrix elements)
becomes important when interpreting the data. We will adopt here the con-
vention used by Biedenharn (1960). See Ferguson (1965) for a different sign
convention.

For the mixing of particle orbital angular momenta, one introduces the or-
bital angular momentum mixing ratio, defined by δ2

a ≡ ΓL+2/ΓL, with ΓL the
particle partial width for orbital angular momentum L. For charged particles,
the phase shifts ξL are given by (Ferguson 1965)

ξL = − arctan
(

FL

GL

)
+

L

∑
n=1

arctan
( η

n

)
(D.13)

where FL and GL are the regular and irregular Coulomb wave functions, re-
spectively, and η is the Sommerfeld parameter (see Section 2.4.3 and Appen-
dix A.3). The first term in the above expression is the hardsphere phase shift
and the second term is the Coulomb phase shift which is absent for neutral
particles. It is obvious that the phase shift ξL is energy dependent.

Note that if a transition is mixed with a mixing parameter of δ2
i , then the

total angular correlation is normalized to (1 + δ2
i ) instead of unity. If two or

more different mixing processes are present with mixing parameters of δ2
i ,

δ2
i+1, δ2

i+2,. . ., and so on, then W(θ) is normalized to the product (1 + δ2
i )(1 +

δ2
i+1)(1 + δ2

i+2) . . ., and so on.

Example D.3

A resonance with spin and parity of Jπ = 1− is formed in the 31P(p,α)28Si
reaction. The α-particle emission populates the ground state in the final 28Si
nucleus (Fig. D.2c). Calculate the angular correlation between the incident
proton beam and the emitted α-particles.

Both the 31P target nucleus and the proton have a spin and parity of Jπ =
1/2+. Thus, the angular momentum coupling of the target and projectile can
produce either one of two channel spin possibilities: |1/2− 1/2| ≤ js ≤ 1/2 +
1/2, hence js = 0 or 1. The value of the orbital angular momentum is unique
for the incoming and outgoing reaction channel (�p = 1 and �α = 1). First, the
angular correlations for the pure transitions will be calculated, that is, each
channel spin case will be treated separately. We have to consider the angular
momentum sequences j1(L1)J(L2)j2 → js(�p)J(�α)j28Si → 0(1)1(1)0 (js = 0)
and → 1(1)1(1)0 (js = 1). For either channel spin the sum in Eq. (D.6) is
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restricted to 0 ≤ n ≤ min(2 · 1, 2 · 1), that is, n = 0 and 2. We obtain

Wjs=0(θ) = ∑
n=0,2

2L1(L1 + 1)
2L1(L1 + 1)− n(n + 1)

Fn(L1 js J)
2L2(L2 + 1)

2L2(L2 + 1) − n(n + 1)

× Fn(L2 j2 J)Pn(cos θ)

= 1 +
2 · 1 · 2

2 · 1 · 2 − 2 · 3
F2(101)

2 · 1 · 2
2 · 1 · 2 − 2 · 3

F2(101)P2(cos θ)

= 1 + (−2)(0.7071)(−2)(0.7071)P2(cos θ) = 1 + 2P2(cos θ)

Similarly

Wjs=1(θ) = 1 +
2 · 1 · 2

2 · 1 · 2 − 2 · 3
F2(111)

2 · 1 · 2
2 · 1 · 2 − 2 · 3

F2(101)P2(cos θ)

= 1 + (−2)(−0.3536)(−2)(0.7071)P2(cos θ) = 1 − P2(cos θ)

The total angular correlation is given by the sum of the correlations for the
individual channel spins, each weighted according to the probability of the
particular js value. Thus

W(θ) = Wjs=0(θ) + δ2
c Wjs=1(θ) = [1 + 2P2(cos θ)] + δ2

c [1 − P2(cos θ)]

= 1 + δ2
c + [2 − δ2

c ]P2(cos θ)

with δ2
c = Pjs=1/Pjs=0 the ratio of the probabilities, or the ratio of the squares

of the matrix elements, of forming the resonance via js = 1 relative to js = 0.

Example D.4

A resonance of spin and parity of Jπ = 1− is populated in the 29Si(p,γ)30P
reaction. The resonance decays via γ-ray emission to a final state in 30P with
spin and parity of Jπ = 1− (Fig. D.2b). Calculate the angular correlation of the
emitted γ-rays with respect to the incident proton beam direction.

The spin and parity of both the 29Si target nucleus and the proton is 1/2+.
Thus, two values for the channel spin are allowed, js = 0 and 1. The only al-
lowed value for the orbital angular momentum of the proton is �p = 1. The
γ-ray decay may proceed either via a M1 or E2 transition. Hence, the angu-
lar correlation expression will contain two additional parameters, the channel
spin mixing ratio δc and the γ-ray multipolarity mixing ratio δγ. We will first
consider the two channel spins separately and write symbolically

j1(L1)J(L2)j2 → js(�p)J(Lγ)j30P → 0(1)1
(

1
2

)
1 and → 1(1)1

(
1
2

)
1
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For either channel spin the sum in Eq. (D.6) is restricted to 0 ≤ n ≤ 2J, that is,
n = 0 and 2. We obtain

Wjs=0(θ) = ∑
n=0,2

[
2L1(L1 + 1)

2L1(L1 + 1) − n(n + 1)
Fn(L1 js J)

]

× [Fn(L2 j2 J) + 2δγFn(L2L′
2 j2 J) + δ2

γFn(L′
2 j2 J)]Pn(cos θ)

= (1 + δ2
γ) +

[
2 · 1(1 + 1)

2 · 1(1 + 1) − 2(2 + 1)
F2(101)

]

× [F2(111) + 2δγF2(1211) + δ2
γF2(211)]P2(cos θ)

= (1 + δ2
γ) + [(−2)0.7071]

× [(−0.3536) + 2δγ(−1.0607) + δ2
γ(−0.3535)]P2(cos θ)

= (1 + δ2
γ) + (0.5 + 3δγ + 0.5δ2

γ)P2(cos θ)

Similarly

Wjs=1(θ) = (1 + δ2
γ) +

[
2 · 1(1 + 1)

2 · 1(1 + 1) − 2(2 + 1)
F2(111)

]

× [F2(111) + 2δγF2(1211) + δ2
γF2(211)]P2(cos θ)

= (1 + δ2
γ) + [(−2)(−0.3536)]

× [(−0.3536) + 2δγ(−1.0607) + δ2
γ(−0.3535)]P2(cos θ)

= (1 + δ2
γ) + (−0.25 − 1.5δγ − 0.25δ2

γ)P2(cos θ)

The total angular correlation is given by the incoherent sum of the expressions
for the individual channel spins,

W(θ) = Wjs=0(θ) + δ2
c Wjs=1(θ)

= (1 + δ2
γ) + (0.5 + 3δγ + 0.5δ2

γ)P2(cos θ)

+ δ2
c [(1 + δ2

γ) + (−0.25 − 1.5δγ − 0.25δ2
γ)P2(cos θ)]

= (1 + δ2
γ) + δ2

c (1 + δ2
γ)

+ (0.5 + 3δγ + 0.5δ2
γ − 0.25δ2

c − δ2
c 1.5δγ − δ2

c 0.25δ2
γ)P2(cos θ)

= (1 + δ2
γ)(1 + δ2

c ) + 0.5(1 + 6δγ + δ2
γ)(1 − 0.5δ2

c )P2(cos θ)

The channel spin and γ-ray multipolarity mixing ratios are given by δ2
c =

Pjs=1/Pjs=0 and δ2
γ = ΓγE2/ΓγM1, respectively.
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Example D.5

Consider the 19F(p,γ)20Ne reaction, populating a resonance with a spin and
parity of Jπ = 2−. The resonance decays to a lower lying state in 20Ne with
a spin and parity of Jπ = 1+ (Fig. D.2b). Calculate the angular correlation of
the emitted γ-rays with respect to the incident proton beam direction.

Both the 19F target nucleus and the proton have a spin and parity of 1/2+. The
channel spin has two allowed values, js = 0 and 1. However, the 2− resonance
cannot be formed from js = 0 since total angular momentum and parity must
be conserved simultaneously. Hence, only the channel spin js = 1 plays a role
in this process. The resonance can be formed via orbital angular momenta of
�p = 1 and 3 and thus this transition is mixed. For the sake of simplicity, we
will assume that the γ-ray decay proceeds via an E1 transition only. We write
symbolically

j1(L1)J(L2)j2 → js(�p)J(Lγ)j20 Ne → 1
(

1
3

)
2(1)1

The sum in Eq. (D.6) is restricted to n ≤ 2 since we assumed Lγ = 1. It follows

W(θ) = ∑
n=0,2

[
cos(ξL1 − ξL1)

2L1(L1 + 1)
2L1(L1 + 1) − n(n + 1)

Fn(L1 js J)

+2δa cos(ξL1 − ξL′
1
)

2
√

[L1(L1 + 1)][L′
1(L′

1 + 1)]

L1(L1 + 1) + L′
1(L′

1 + 1) − n(n + 1)
Fn(L1L′

1 js J)

+δ2
a cos(ξL′

1
− ξL′

1
)

2L′
1(L′

1 + 1)
2L′

1(L′
1 + 1) − n(n + 1)

Fn(L′
1 js J)

]

× Fn(L2 j2 J)Pn(cos θ)

= [1 · 1 · 1 + δ2
a · 1 · 1 · 1] · 1 +

[
1 · 2 · 1 · (1 + 1)

2 · 1 · (1 + 1) − 2(2 + 1)
F2(112)

+2δa cos(ξ�=1 − ξ�=3)
2
√

[1(1 + 1)][3(3 + 1)]
1(1 + 1) + 3(3 + 1)− 2(2 + 1)

F2(1312)

+δ2
a · 1 · 2 · 3(3 + 1)

2 · 3(3 + 1) − 2(2 + 1)
F2(312)

]
F2(112)P2(cos θ)

= 1 + δ2
a +

[
1 · (−2)(0.4183) + 2δa cos(ξ�=1 − ξ�=3)(1.2247)(0.2390)

+δ2
a · 1(1.333)(−0.7171)

]
(0.4183)P2(cos θ)

= 1 + δ2
a + [−0.35 + 0.25δa cos(ξ�=1 − ξ�=3)− 0.4δ2

a ]P2(cos θ)

The orbital angular momentum mixing ratio is given by δ2
a = Γ�=3/Γ�=1.
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D.4
Three-Step Process with Unobserved Intermediate Radiation

It is sometimes of interest in a particle capture reaction to determine the angu-
lar correlation of secondary γ-rays with respect to the incident beam direction.
In this case, we have a three-step process, involving: (i) the formation of a res-
onance with spin J through the capture of an incident particle with orbital
angular momentum L1, (ii) the first (primary) γ-ray decay of multipolarity L
to an intermediate level of spin J, and (iii) finally the subsequent secondary γ-
ray decay of multipolarity L2 to the final state of spin j2 (see Fig. D.2d). Only
the incident beam and the secondary γ-ray transition are observed, while the
primary γ-ray transition is unobserved. We write symbolically

j1

(
L1
L′

1

)
J
(

L
L′

)
J
(

L2
L′

2

)
j2 (D.14)

The angular correlation expression is then given by

W(θ) = ∑
n=0,2,...

[an(1)An(1)]Cn[an(2)An(2)]Pn(cos θ) (D.15)

Cn =
√

(2J + 1)(2J + 1)W(JnLJ; J J) (D.16)

The first link (j1 → J) and last link (J → j2) are described by the terms
an(1)An(1) and an(2)An(2), respectively, and are handled as before. The term
Cn describes the unobserved primary radiation. Unobserved γ-rays of mul-
tipolarities L and L′ mix incoherently, that is, the total correlation is given by
W(θ) = WL(θ) + δ2

γLL′WL′(θ). Furthermore, the sum over n is restricted by the

condition 0 ≤ n ≤ min(2L1, 2L2, 2J, 2J). In particular, the angular correlation
becomes isotropic for either J or J equal to 0 or 1/2. Note that the multipo-
larity L of the unobserved primary radiation does not limit the sum over n.

Example D.6

Consider the 11B(p,γ)12C reaction leading to the formation of a resonance with
spin and parity of Jπ = 2+ (Fig. D.2d). The resonance γ-ray decays to an
intermediate state (Jπ = 2+) which, in turn, decays to the 12C ground state
(Jπ = 0+). Calculate the angular correlation of the second γ-ray transition
with respect to the incident beam direction.

The spin and parity of the 11B ground state is Jπ = 3/2−. The two possible
channel spins are js = 1 and 2. Of the two allowed proton orbital angular
momenta (�p = 1 and 3), we will consider only the lower �p value. Similarly,
of the two γ-ray multipolarities for the unobserved primary transition (M1
and E2) we will only consider the M1 case. Only one possibility is allowed



612 D Angular Correlations

for the multipolarity of the secondary γ-ray transition (E2). Symbolically we
write

js

(
L1
L′

1

)
J
(

L
L′

)
J
(

L2
L′

2

)
j2 → 1(1)2(1)2(2)0 and → 2(1)2(1)2(2)0

For either channel spin, the summation is restricted to n ≤ 2 (because of
�p = 1). The angular correlation is given by

Wjs=1(θ) = ∑
n=0,2,...

[an(1)An(1)]Cn[an(2)An(2)]Pn(cos θ)

= ∑
n=0,2

2L1(L1 + 1)
2L1(L1 + 1)− n(n + 1)

Fn(L1 js J)
√

(2J + 1)(2J + 1)

× W(JnLJ; J J)Fn(L2 j2 J)Pn(cos θ)

= 1 · 1 ·
√

(2 · 2 + 1)(2 · 2 + 1)W(2012; 22) · 1

+
2 · 1 · 2

2 · 1 · 2 − 2 · 3
F2(112)

√
(2 · 2 + 1)(2 · 2 + 1)

× W(2212; 22)F2(202)P2(cos θ)

= 1 · 5 · 0.2 · 1 + (−2)(0.4183) · 5 · 0.1 · (−0.5976)P2(cos θ)

= 1 + 0.25P2(cos θ)

Similarly

Wjs=2(θ) = 1 · 1 ·
√

(2 · 2 + 1)(2 · 2 + 1)W(2012; 22) · 1

+
2 · 1 · 2

2 · 1 · 2 − 2 · 3
F2(122)

√
(2 · 2 + 1)(2 · 2 + 1)

× W(2212; 22)F2(202)P2(cos θ)

= 1 · 5 · 0.2 · 1 + (−2)(−0.4183) · 5 · 0.1 · (−0.5976)P2(cos θ)

= 1 − 0.25P2(cos θ)

The total angular correlation is given by the incoherent sum of the expressions
for the individual channel spins,

W(θ) = Wjs=1(θ) + δ2
c Wjs=2(θ)

= [1 + 0.25P2(cos θ)] + δ2
c [1 − 0.25P2(cos θ)]

= 1 + δ2
c + 0.25(1 − δ2

c )P2(cos θ)
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Fig. D.2 Schematic level diagrams indicating the quantum numbers
involved in various angular correlation schemes. See the text.

D.5
Experimental Considerations

Experimental angular correlations and differential yields measured in the lab-
oratory system must have both their intensities and angles converted to the
center-of-mass system (Appendix C) before they can be compared to the the-
oretical expressions given above. Another important correction has to be per-
formed since, strictly speaking, the theoretical angular correlation of Eq. (D.3)
applies only to an ideal detector of negligible size. In an actual experiment,
the measured intensities are obtained by integrating the theoretical angular
correlation over the finite solid angle subtended by the detector. Hence, the
effect of the finite solid angle is to reduce the anisotropy. For a detector of axial
symmetry and for its symmetry axis pointing toward the source of the emitted
radiation (Fig. 4.32), it can be shown that the form of the angular correlation
function remains unchanged, but each term in the series of Eq. (D.3) becomes
multiplied by a correction factor. For example, if radiation originating from
a nuclear reaction is detected, then the experimental angular correlation mea-
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sured by a specific detector is given by

Wexp(θ) =
1
b0

nmax

∑
n=0

bnQnPn(cos θ) (D.17)

Similarly, the experimental angular correlation between two emitted radia-
tions a and b measured with two different detectors (or with the same detec-
tor, as was the case for coincidence summing in Section 4.5.2) can be written
as

Wexp(θ) =
1
b0

nmax

∑
n=0

bnQ(a)
n Q(b)

n Pn(cos θ) (D.18)

The attenuation factors Qn are given by (Rose 1953)

Qn =

∫ βmax
0 Pn(cos β)η(β, E) sin β dβ

∫ βmax
0 η(β, E) sin β dβ

(D.19)

with β the angle between the radiation incident on the detector and the detec-
tor symmetry axis, βmax the maximum angle subtended by the detector, and
η(β, E) the detector efficiency for the radiation of energy E at angle β. It is ap-
parent that the factors Qn depend on the detector geometry, the energy of the
radiation, and the kind of event that takes place in the detection process (for
example, total versus partial energy deposition for γ-rays; see Section 4.5.2).

If the intrinsic detector efficiency is unity, as is generally the case for charged
particle detectors, then the attenuation factor reduces to (Rose 1953)

Qn =
Pn−1(cos βmax) − cos βmaxPn(cos βmax)

(n + 1)(1 − cos βmax)
(D.20)

Attenuation factors calculated from this expression are displayed in Fig. D.3a
for values of n = 1, 2, 3, and 4.

In the case of γ-ray detectors, where the efficiency for detecting an incident
photon is smaller than unity, the attenuation factors will be larger than given
by Eq. (D.20), that is, they will be closer to unity and, consequently, the dif-
ference between measured and theoretical angular correlation will be smaller.
The total efficiency attenuation factors can be estimated with the same method
used for calculating total efficiencies (Section 4.5.2). One simply substitutes
ηT(β, E) = 1 − e−µ(E)x(β) for the total efficiency in Eq. (D.19) and solves the
integrals numerically. Similarly, the peak efficiency attenuation factors can be
estimated if the peak efficiency ηP(β, E) is first obtained from a Monte Carlo
calculation. Peak efficiency attenuation factors estimated in this way for a
HPGe detector are displayed in Fig. D.3b. The curves show values of Qn ver-
sus γ-ray energy for a fixed source-detector distance of 1.6 cm. As expected,
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Fig. D.3 (a) Attenuation factors for an intrin-
sic detector efficiency of unity (for example,
a silicon charged-particle counter). The hori-
zontal axis displays the ratio r/h, with r and
h the radius of the detector aperture and the
source-detector distance, respectively. Note
that tan βmax = r/h. The curves represent
different values of n. After Gove (1959).

(b) Attenuation factors for a HPGe detec-
tor versus γ-ray energy. The detector vol-
ume and source-detector distance amount
to 582 cm3 and 1.6 cm, respectively. The
curves represent different values of n and
are obtained by calculating peak efficien-
cies in Eq. (D.19) with the Monte Carlo code
GEANT4. Courtesy of Richard Longland.

for decreasing photon energy the peak efficiency ηP(β, E) increases and hence
Qn becomes smaller.

D.6
Concluding Remarks

We conclude this section with a few useful remarks. Since the angular mo-
menta in low-energy nuclear reactions are rather small, the symmetry prop-
erties of the functions Fn restrict the series in Eq. (D.3) to a small number of
terms. In practice, terms beyond n = 4 are rarely encountered. If for some
reason the n = 4 term is zero or negligible, then we obtain W(θ = 55◦) ≈ 1
or W(θ = 125◦) ≈ 1, since the P2(cos θ) term is equal to zero at these angles
(see Eq. (A.12)). Hence, the angle-integrated yield can be measured with a
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single detector located at a center-of-mass angle of θ = 55◦ or θ = 125◦. This
circumstance has major practical advantages if very small yields need to be
measured with a single detector in very close geometry to the target.

It is sometimes possible to simplify the theoretical angular correlation by
making reasonable assumptions about the nuclear transition matrix elements.
Mixtures of M1/E2 γ-ray multipolarites occur frequently, but E1/M2 mix-
tures are rarely important. In the latter case, it is often safe to assume that the
E1 multipolarity dominates the γ-ray transition strength, hence δγM2/E1 ≈ 0.
Similar arguments apply to the mixing of orbital angular momenta. Because of
parity conservation (Appendix B), interfering orbital angular momenta must
differ by two units, that is, �i and �i+2. The penetration factors decrease
strongly for increasing values of orbital angular momentum, as can be seen
from Fig. 2.21. Therefore, unless the reduced width (or spectroscopic factor)
of the �i+2 component is much larger than that of the �i component, the de-
gree of orbital angular momentum mixing will be small, that is, δa�i+2/�i

≈ 0.
Both of these simplifying assumptions should be treated with caution if the
purpose of an angular correlation measurement is the determination of un-
known nuclear spins. However, they are quite useful in nuclear astrophysics
measurements if the level spins are known and if one is mostly interested in
estimating angular correlation corrections for measured differential yields.

Sometimes a single γ-ray detector is placed at θ = 0◦ in very close geom-
etry to the target in order to maximize counting efficiency. Angular correla-
tion effects may be significant for a specific primary γ-ray transition, but it
may prove difficult to calculate the angular correlation if, for example, certain
mixing ratios are unknown. In such cases, it could be of advantage to ana-
lyze instead the intensity of a corresponding secondary γ-ray decay for the
calculation of the total yield. This is especially useful if the secondary γ-ray
transition proceeds from a level with a spin of 0 or 1/2 since then its angular
correlation is isotropic.

We pointed out that the series of Eq. (D.3) will contain only terms with n
= even if the correlation involves an intermediate state of well-defined parity.
However, if a reaction proceeds through two or more overlapping resonances
of opposite parity, then the resulting angular correlation will not be symmet-
ric about 90◦ anymore and terms with n = odd will appear in the series of
Eq. (D.3). We will not consider here the more involved angular correlation
resulting from the interference of two overlapping resonances. The interested
reader is referred to Biedenharn (1960). Expressions for the angular correla-
tion in direct radiative capture, and for the interference between resonant and
direct contributions, are given in Rolfs (1973).
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Example D.7

A resonance at Elab
r = 519 keV is excited in the 17O(p,γ)18F reaction. The

strongest primary transition occurs to the 18F level at Ex = 1121 keV (Eγ ≈
5 MeV, Bγ = 0.55 ± 0.03). The theoretical angular correlation is given by

Wγ(θ) = 1 − 0.10P2(cos θ)

The γ-ray counter is located at θ = 0◦ with respect to the proton beam di-
rection in very close geometry to the target. A (peak) attenuation factor of
Q2 = 0.62 ± 0.05 is estimated from Eq. (D.19) for this geometry. The measured
peak intensity is Nγ = 1530± 47 for a certain total number of incident protons.
The peak efficiency at Eγ ≈ 5 MeV amounts to ηP

γ = 0.015 (±5%). Calculate the
total number of reactions that took place. Ignore coincidence summing effects.

The measured angular correlation is given by

Wexp,γ(θ) = 1 − 0.10Q2P2(cos θ) = 1 − 0.10(0.62 ± 0.05)P2(cos θ)

At θ = 0◦ we obtain P2(cos θ) = 1 and hence

Wexp,γ(0) = 1 − 0.10(0.62 ± 0.05) · 1 = 0.94(±5%)

From Eq. (4.69) we find

NR =
Nγ

BγηP
γWγ

=
1530(±3%)

[0.55(±5%)][0.015(±5%)][0.94(±5%)]
= 197292(±9%)
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Appendix E
Constants, Data, Units, and Notation

The physical constants used in this book are adopted from Mohr and Taylor
(2005) and are listed in Appendix E.1. The mathematical symbols, units, and
prefixes follow common usage and are given in Appendix E.2. Symbols for
physical quantities are summarized in Appendix E.4. In several cases, the use
of the same symbol for different physical quantities was unavoidable. Further
help to the reader is provided by numbers given in parenthesis after a descrip-
tion of a symbol with multiple meanings. These refer to the chapter in which
the specific meaning is used. For example, the symbol N denotes a normaliza-
tion factor (in Chapters 2 or 3), the number density of particles or photons (in
Chapters 3, 4, or 5), and the neutron number (in Chapters 1 or 5). The symbol
N denotes the number (without units) of particles, photons, disintegrations,
or reactions throughout the text.

E.1
Physical Constants and Data

a0 Bohr radius; a0 = 0.5291772108 × 10−10 m

c speed of light in a vacuum; c = 299792458 m/s

e elementary charge; e = 1.60217653 × 10−19 C

h Planck constant; h = 4.13566743 × 10−15 eV s = 6.6260693 × 10−34 J s,
� ≡ h/(2π) = 6.58211915 × 10−16 eV s = 1.05457168 × 10−34 J s,
�c = 197.327 MeV fm

k Boltzmann constant; k = 8.617343 × 10−5 eV/K

L Loschmidt constant; L = 2.6867773 × 1025 m−3

L� luminosity of the Sun (bolometric); L� = 3.826 × 1026 W

me electron mass; me = 9.1093826 × 10−31 kg

mu atomic mass constant; 1 mu ≡ 1
12 m(12C) = 1.66053886 × 10−27 kg

Nuclear Physics of Stars 

 Christian Iliadis 
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mn neutron mass; mn = 1.00866491560 u

mp proton mass; mp = 1.00727646688 u

muc2 energy equivalent of mu; muc2 = 931.494043 MeV

mec2 electron rest energy; mec2 = 0.510998918 MeV

mnc2 neutron rest energy; mnc2 = 939.565360 MeV

mpc2 proton rest energy; mpc2 = 938.272029 MeV

M� mass of the Sun; M� = 1.989 × 1030 kg

NA Avogadro constant; NA = 6.0221415 × 1023 mol−1

E.2
Mathematical Expressions

= equal to

∼ proportional to

≡ defined as

≈ approximately equal to

> greater than

< less than

� much greater than

� much less than

→ limit toward

∞ infinity

∇2 Laplace operator; in Cartesian coordinates ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

∗ complex conjugate; z∗ = Re z − Im z

|z|2 absolute magnitude of z; |z|2 = z∗z

〈x〉 expectation value of x; 〈x〉 =
∫

x xP(x) dx, where P(x) is a normalized
probability distribution of x

δij Kronecker delta; δij = 1 if i = j and 0 otherwise
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e base of natural logarithm; e = 2.71828 . . .

exp(x) exponential function; exp(x) ≡ ex

i imaginary unit; i ≡ √−1

Im z imaginary part of z

j�(kr) spherical Bessel function

ln(x) natural logarithm; ln(x) = loge(x)

log(x) common (base 10) logarithm; log(x) = log10(x)

n�(kr) spherical Neumann function

π ratio of a circle’s circumference to its diameter; π = 3.14159 . . .

P�(x) Legendre polynomial

Re z real part of z

Y�m�
(θ, φ) spherical harmonic

∆a difference; ∆a ≡ a2 − a1

Ω solid angle

E.3
Prefixes and Units

Prefixes

f- femto-; 10−15

p- pico-; 10−12

n- nano-; 10−9

µ- micro-; 10−6

m- milli-; 10−3

c- centi-; 10−2

k- kilo-; 103

M- mega-; 106

G- giga-; 109
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Units

◦ degree of arc; 1◦ = π
180 rad

A ampere; 1 A = 1 C/s

b barn; 1 b = 10−24 cm2 = 10−28 m2

Bq becquerel; 1 Bq = 1 s−1

◦C degree Celsius

C coulomb

Ci curie; 1 Ci = 3.7 × 1010 s−1

erg cgs unit of energy; 1 erg = 10−7 J

eV electron volt; 1 eV = 1.60217653 × 10−19 J

g gram

Hz hertz; 1 Hz =1 s−1

J joule

K kelvin

m meter

min minute

m w.e. meter water equivalent

rad radian; 1 rad = 57.29578◦

s second

sr steradian; solid angle over entire sphere amounts to 4π sr;
1 sr = 3282.80635 deg2

u (unified) atomic mass unit; 1 u = mu = 1
12 m(12C)

V volt

W.u. Weisskopf unit

y year; 1 sidereal year = 3.1558149984 × 107 s
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E.4
Physical Quantities

A activity (4); area (2, 3); mass number (1, 2, 3, 4, 5)

Apot hardsphere potential scattering amplitude

Ares resonance scattering amplitude

a diffuseness of Woods–Saxon potential

(a, b) nuclear reaction involving incoming particle a and emitted particle b

B branching ratio (1, 2, 3, 4, 5); binding energy (1, 5); magnetic field
strength (4)

B(ωL) reduced γ-ray transition probability

C isospin Clebsch–Gordan coefficient (2); net number of counts (4);
peak centroid in pulse height spectrum (4)

c reaction channel

D number density of deuterium or 2H (5); number of disintegra-
tions (4)

d deuteron

d target or absorber thickness (4), distance of point source to detector
front face (4)

E energy

E0 energy location of Gamow peak maximum

Er observed resonance energy

e electron, also e−

e+ positron

e−2πη Gamow factor

(e+ν) nuclear emission of positron

(e−, ν) nuclear electron capture

Fij time-integrated net abundance flow between species i and j

Fppi fraction of 4He nuclei produced in the ppi chain

F(Z, p) Fermi function
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f fraction of the number of 56Fe seed nuclei that have been subjected
to an exponential distribution of neutron exposures

fan effective rate of 28Si consumption

f� logarithmic derivative at the boundary for orbital angular momen-
tum �

fij net abundance flow between species i and j

fppi fraction of total energy retained in the star if 4He nucleus is pro-
duced in ppi chain

fs screening factor

f (θ) scattering amplitude

f (Ei, E, E′) probability that particle incident at energy Ei has energy E at a
depth inside the target corresponding to E′

f (Z, Emax
e ) Fermi integral

FWHM full width at half maximum

G partition function

GA axial-vector coupling constant

GV vector coupling constant

Gnorm normalized partition function

gµ statistical weight of nuclear state µ

g(E0, Ei) probability that particle in incident beam of mean energy E0 has en-
ergy of Ei

H Hamiltonian (2); number density of 1H (5); pulse height (4)

Hf i weak interaction matrix element

I current (4); particle spin (2)

J nuclear spin (1); resonance spin (3); total particle spin (2)

j current density (2); total particle spin (2, 3, 5)

K kinetic energy (4); recoil energy of Compton electron (4); wave num-
ber (2)

k wave number, also κ, k̂, K
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� orbital angular momentum quantum number

L γ-ray multipolarity (1, 2, 3); length of flight path in time-of-flight
experiment (4)

�L angular momentum vector

M relative atomic mass in units of u

MF Fermi matrix element

MGT Gamow–Teller matrix element

M.E. atomic mass excess

M2
W γ-ray transition strength in Weisskopf units

m atomic mass, nuclear mass (1, 2, 3, 4); magnetic quantum num-
ber (1, 2)

mij reduced mass of particles i and j

N harmonic oscillator quantum number (1); neutron number (1, 5);
normalization factor (2, 3); number density of particles or photons
(3, 4, 5)

N number (without units) of particles, photons, disintegrations, or re-
actions

NA〈σv〉 reaction rate per particle pair in units of cm3 mol−1 s−1

n neutron

n exponent in temperature dependence of reaction rate (3, 5); number
of nodes in radial wave function (2); number of target or sample
nuclei per unit area (4); radial quantum number (1)

nc average number of neutrons captured per 56Fe seed nucleus

ne− electron density

P beam power (4); gas pressure (4); Maxwell–Boltzmann distribu-
tion (3); particle density (2); penetration factor (2, 3); population
probability of excited levels (1, 3); probability (4); production rate
of radioactive nuclei (4)

p proton

p linear momentum
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p(τ) exponential probability distribution of neutron exposures

Q angular correlation attenuation factor (4); Q-value (1, 2, 3, 4, 5); total
accumulated charge (4)

q ion charge state (4); neutrino linear momentum (1); parameter de-
scribing absorption in the nuclear interior (2)

R nuclear radius (2, 3); radius of cylindrical detector (4)

R0 radius of square-well potential (2, 3); radius of Woods–Saxon poten-
tial (1)

R1 radius of outer boundary of square-barrier potential

Rc classical turning point

RD Debye–Hückel radius

Rtt stellar enhancement factor

RUL recommended upper limit

� R-function or R-matrix

r reaction rate in units of number of reactions per time per volume

�r radius vector

r0 radius parameter

S astrophysical S-factor (2, 3, 4, 5); shift factor (2); spectroscopic factor
(1, 2, 3); stopping power (4)

Sn, Sp, Sα neutron, proton, and α-particle separation energy

s channel spin

T neutron transmission (4); temperature (3, 4, 5)

T̂ transmission coefficient

T1/2 half-life

T9 temperature in units of GK, T9 ≡ T/109 K

t length of detector crystal (4); time (1, 2, 3, 4, 5)

U electric potential

Us perturbing potential caused by electron shielding charge density
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u(r) radial wave function, u(r) ≡ rR(r)

V potential (2); volume (3, 4)

VC Coulomb barrier

Vs screening potential

v velocity

vT location of the maximum of the Maxwell–Boltzmann velocity distri-
bution

W angular correlation

w parameter w = (Qβ + mec2)/mec2

X mass fraction

x parameter for electron screening, x(E) ≡ Rc/RD

Y mole fraction (1, 3, 5); yield (4)

Z atomic number (1, 4, 5); charge (2, 3, 4, 5)

α alpha-particle

α(I1 I2) specific pair of nuclei 1 and 2 with spins of I1 and I2

β nuclear emission or capture of electron or positron

β+ nuclear emission of positron or electron capture

β− nuclear emission of electron

(βνa) β-delayed emission of particle a

Γ total width of resonance or compound nucleus level

Γa partial width for emission or absorption of particle a

Γγ partial width for emission or absorption of γ-ray

Γo
i “observed” total or partial width

γ γ-ray or photon

γ2 reduced width

∆ level shift (2); parameter ∆ ≡ R1 − R0 (2); systematic difference be-
tween tabulated and experimental stopping power (4); 1/e width of
Gaussian approximation to Gamow peak (3, 5)
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δ mixing ratio (1, 3); scattering phase shift (2); δ electrons (4)

δα, δp, δn number of α-particles, protons, and neutrons of nucleus A
Z YN in ex-

cess of their number in 28Si

ε nuclear energy generation per unit time and per volume (3, 5); stop-
ping power (4)

ε dimensionless parameter, ε ≡ E/E0

ζ parameter for electron screening

η detector efficiency (4); neutron excess parameter (1, 5); Sommerfeld
parameter (2, 3)

θ angle (2, 4); parameter θ ≡ (2πmukT/h2)3/2 (5)

θ2 dimensionless reduced width

θ2
pc dimensionless single-particle reduced width

θe electron degeneracy factor

Λ total photodisintegration decay constant

λ de Broglie wavelength (2, 4); decay constant (1, 3, 4, 5); mean free
path of photons or neutrons (4)

µ linear absorption coefficient for photons (4); muon (4)

ν frequency (3); neutrino (1, 3, 5); neutron number (5)

ν̄ antineutrino

π parity (1, 2, 5); proton number (5)

ρ mass density (1, 3, 4, 5); product ρ ≡ kr (2)

σ cross section (2, 3, 4, 5); experimental stopping power error (4)

σ̂ effective reaction cross section

σ average reaction cross section

〈σ〉T Maxwellian-averaged cross section

σ� Coulomb phase shift

〈σv〉 reaction rate per particle pair

τ duration of r-process (5); mean lifetime (1, 2, 3, 5); neutron exposure
in units of neutrons per area (5); parameter τ ≡ 3E0/(kT) (3, 5)
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τcycle fission cycling time

τNSE time to reach nuclear statistical equilibrium

ω angular frequency (2);
spin factor ω ≡ (2J + 1)(1 + δ01)/[(2j0 + 1)(2j1 + 1)] (3, 4, 5)

ωγ resonance strength

Φ time-integrated neutron flux in units of particles per area

φ angle (2, 4); incident particle flux in units of particles per area and
per time (4, 5); wave function (1)

φij parameter φij ≡ |ri→j − rj→i|/ max(ri→j, rj→i)

Ψ, ψ wave function
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Color Plates

Fig. 1 The bright globular cluster M 10.
It is located at a distance of ≈14 000 light
years from Earth and has an approximate
diameter of ≈80 light years. The bright
reddish-orange stars are red giants that
fuse hydrogen to helium via the CNO-cycles
in a shell surrounding a helium core. The
bright blue stars are horizontal branch stars
that fuse helium to carbon and oxygen in the

core and hydrogen to helium in a shell. Only
the faint, grey-looking stars (that is, those
with the lowest mass) are most likely main
sequence stars that fuse hydrogen to helium
via the pp-chains in the core. The image is
a two color composite. Reprinted with per-
mission. Credit and copyright: T. Credner
and S. Kohle, Observatorium Hoher List,
Sternwarte Bonn.
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Fig. 2 An average, but very special, main
sequence star of spectral class G2 that
fuses hydrogen to helium in its core via the
pp chains. Its mean distance from the cen-
ter of our Galaxy, which hosts more than
100 million similar stars, is 27 000 light
years. The surface temperature amounts
to ≈5800 K and its diameter is about 1.4
million kilometer. The Sun goes through an
11-year activity cycle, which is caused by
variations of its magnetic field. The above
image was taken in 1997 in the ultraviolet

light emitted by a specific type of ionized he-
lium. Particularly hot areas appear in white,
while cooler areas are displayed in red. The
material in the eruptive prominence visi-
ble on the lower left side is at temperatures
of ≈70 000 K and is much cooler than the
surrounding corona which has a tempera-
ture typically in excess of one million kelvin.
Courtesy of SOHO/EIT consortium. SOHO
(SOlar and Heliospheric Observatory) is a
project of international cooperation between
ESA and NASA.
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Fig. 3 The Dumbbell Nebula (M 27). It was
the first planetary nebula ever discovered.
Its distance from Earth is about 1200 light
years. The red and green colors originate
from the emission of hydrogen and oxygen,
respectively. The gas is heated and excited
by the ultraviolet radiation from a star that
is located in the center of the nebula (vis-
ible at the middle of the image). The cen-

tral star has a high surface temperature of
≈85 000 K. Planetary nebulae are the result
of a natural evolutionary stage of low mass
stars (see text). The Sun is expected to be-
come the central star of a planetary nebula
in several billion years. The image is a three
color composite. Reprinted with permission.
Credit and copyright: European Southern
Observatory.
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Fig. 4 The planetary nebula NGC 6543,
known as the Cat’s Eye. It is located in the
constellation Draco, at a distance of ≈3000
light years from Earth. The image is a false-
color composite of an X-ray part (shown in
purple; obtained with the Chandra X-Ray
Observatory) and an optical part (shown
in red and green; obtained with the Hub-
ble Space Telescope), and reveals where
the hot, X-ray emitting gas appears in re-
lation to the cooler material seen at optical
wavelengths. The central star has a surface
temperature of ≈50 000 K and is expected
to collapse to a white dwarf in a few million
years. The fast stellar wind emitted from

the central star shock-heats the gas that
was previously expelled and gives rise to
the X-ray emitting bubble (shown in pur-
ple). Pockets of hot gas seem to border
on cooler gas emitting strongly at optical
wavelengths, which may indicate that the
expanding hot gas is sculpting the visible
filaments and structures. The mechanisms
that produced the complicated morphology
of the planetary nebula are still not well un-
derstood. Credits: (X-ray) NASA/UIUC/Y.
Chu et al.; (optical) NASA/J. P. Harrington,
K. J Borkowski (UMD); (composite) Z. Levay
(STScI).
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Fig. 5 The nebula M1-67 surrounding the
Wolf-Rayet star WR 124, located in the
constellation Sagittarius. The distance
of the nebula from Earth is about 15 000
light years. The central Wolf-Rayet star is
very hot (≈50 000 K). It is also massive
and hence short-lived. Wolf-Rayet stars go
through a phase of enormous mass loss via
a strong stellar wind. The image reveals hot
blobs of ejected gas, indicating that the stel-
lar wind does not flow smoothly into space

but has instabilities which make the neb-
ula appear clumpy. The age of the nebula
is less than 10 000 years. The false color
image was obtained with the Wide Field
Planetary Camera 2 of the Hubble Space
Telescope. Credit: Yves Grosdidier (Uni-
versity of Montreal and Observatoire de
Strasbourg), Anthony Moffat (Universitie de
Montreal), Gilles Joncas (Universite Laval),
Agnes Acker (Observatoire de Strasbourg),
and NASA.
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Fig. 6 Supernova 1987A in the Large Mag-
ellanic Cloud (a nearby small galaxy that is
a satellite of our Galaxy) was the brightest
exploding star seen in 400 years. Its dis-
tance from Earth is ≈160 000 light years.
The supernova was of type II and its pro-
genitor was a massive star (a blue super-
giant). The shock wave from the supernova
has been moving toward a ring of matter,
about two light years across, that was prob-
ably ejected by the central star about 20 000
years before the explosion. The image

shows many hot spots that are created by
the supernova shock compressing and heat-
ing the gas of the ring. (The brightest spot
on the lower right side of the ring is a star
that happens to lie along the Hubble Space
Telescope’s line of sight). The elongated
and expanding object in the middle of the
ring is the debris from the explosion. Credit:
NASA, P. Challis, R. Kirshner (Harvard-
Smithsonian Center for Astrophysics) and B.
Sugerman (STScI).
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Fig. 7 The Crab Nebula (M 1). The nebula
consists of matter ejected in a supernova
explosion. The material is spread over a
volume of 10 light years in diameter and is
still expanding at velocities of ≈1800 km/s.
Its distance from Earth is about 6000 light
years. The supernova explosion was de-
tected on July 4, 1054, by Chinese as-
tronomers. It is one of the very few histor-
ically observed supernovae in our Galaxy.
The remnant of the supernova, located in
the middle of the nebula, is a neutron star
that spins with a period of ≈30 ms (pulsar).

The presence of a remnant neutron star
and of hydrogen in the ejecta supports the
association of the Crab Nebula with a type
II supernova. The image is a three color
composite. The green light is predominantly
produced by hydrogen emission from mate-
rial that was ejected by the exploding star.
The blue light arises mainly from relativistic
electrons that spiral in a large-scale mag-
netic field (synchrotron radiation) and that
are continuously ejected from the rapidly
spinning neutron star. Credit: NASA, ESA,
and J. Hester (Arizona State University).
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Fig. 8 The spiral galaxy NGC 4526 in the constellation Virgo, about
100 million light years away from Earth. The bright spot at the lower
left is Supernova 1994D. (The designation means that it was the fourth
supernova discovered in 1994). The light emitted during the weeks
after the stellar explosion showed that the supernova was of type Ia.
Credit: NASA, ESA, The Hubble Key Project Team, and The High-Z
Supernova Search Team.
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Fig. 9 Tycho’s supernova remnant in the
constellation Cassiopeia, located at a dis-
tance of 7500 light years from Earth. The
supernova was recorded by the Danish as-
tronomer Tycho Brahe on November 11,
1572. The false color X-ray image was
obtained with the Chandra X-ray Obser-
vatory. The colors represent different X-
ray energies (red: 0.95–1.26 keV; green:
1.63–2.26 keV; blue: 4.1–6.1 keV). The
remnant glows at X-ray energies because
of the strong interaction between the high-

velocity expanding matter and the inter-
stellar gas that was swept up by the ex-
plosion. No hot compact object has been
found in the remnant, supporting the the-
ory that the supernova was of type Ia. The
cloud is nearly spherical with a diameter
of about 20 light years, indicating both a
spherical ejection of matter and a rather ho-
mogeneous environment in the explosion.
Credit: NASA/CXC/Rutgers/J. Warren and
J. Hughes et al.
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Fig. 10 Nova V1974 Cygni 1992 erupted
on February 19, 1992 and was one of the
brightest classical novae in 20 years, reach-
ing naked-eye visibility for a brief period
of time. The distance of Nova Cygni from
Earth is about 10000 light years. The im-
age reveals a nearly spherical and slightly
lumpy ring-like structure, which represents
the edge of a bubble of hot gas ejected into
space by the outburst. The shell contains
elements such as nitrogen, oxygen, neon,
silicon and sulfur, which are overabundant

relative to their solar system values. This
implies that the explosion occured on the
surface of an oxygen-neon white dwarf.
These outbursts are also referred to as
“neon novae”. The white dwarf and the
companion star in the center of the image
are so close that they revolve around each
other in about two hours. The image was
taken by the Hubble Space Telescope in ul-
traviolet light 467 days after the explosion.
Credit: F. Paresce, R. Jedrzejewski (STScI),
NASA/ESA.
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Fig. 11 All-sky image of 26Al γ-ray emis-
sion at 1809 keV as derived from a 9-year
survey of the COMPTEL instrument on-
board the Compton Gamma Ray Obser-
vatory (CGRO). The entire sky is seen
projected on a coordinate system that is
centered on our Galaxy with the galactic
plane running horizontally across the mid-

dle of the image. Gamma-ray intensity is
represented by a false color map - green
(low) to yellow (high). It has been estimated
that the Galaxy produces 26Al at a rate of
about two solar masses per million years.
Reprinted with permission from S. Plüschke,
R. Diehl, V. Schönfelder, et al., ESA SP 459,
55 (2001).
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Fig. 12 The nuclear astrophysics facili-
ties of ISAC at the TRIUMF laboratory in
Vancouver, Canada. The radioactive ion
beam exits the accelerator in the top left-
hand corner of the photo and enters either
the DRAGON recoil spectrometer or the
TUDA beamline. For radiative proton- and α-
capture reactions, the 21-m long DRAGON
facility (photo, center) is used. The drawing
shows the major components of DRAGON,
including the windowless gas target sur-
rounded by a 30-element γ-ray detection
array, the two independent stages of elec-

tromagnetic separators that suppress the
beam by a factor of < 1013, and the appro-
priately configured recoil detector. For other
nonradiative-capture measurements, such
as direct reactions and elastic or inelastic
scattering, TUDA is employed. The TUDA
chamber and shielded electronics room
(photo, right-hand side) allow for multiple ar-
rangements of various detectors specifically
chosen for the reaction of interest. Credit:
Dave Hutcheon, Chris Ruiz, Götz Ruprecht,
Mike Trinczek, Christof Vockenhuber and
TRIUMF.
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Planck radiation law 151
plane wave 64, 80, 81, 91, 98
planetary nebula 20, 24
plastic scintillator detector 269
– anticoincidence shield 270, 304
– Compton edge 270, 271
– muon peak 270, 271
– room background spectrum 270, 271
– shapes 270
Poisson distribution 260
positron
– capture 71
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– emission 61, 62
potential
– average 131
– central 79, 83, 575
– centripetal 120, 145, 187, 576
– Coulomb 85, 104, 107, 226, 578
– effective 79
– global parameters 213
– local parameters 213
– nuclear 85, 88, 89, 116
– optical model 140, 567
– screened Coulomb 208, 209, 217
– single-particle 108, 116, 133, 135
– square-well 89, 90, 96, 106–109
– square-well plus square-barrier 95, 98,

108, 109, 172
– Woods-Saxon 45, 110, 135
pp chains 17, 379, 380
– 2H abundance evolution 383, 385
– 3He abundance evolution 383, 385
– comparison of mean lifetimes 387, 388
– competition 392, 395
– experimental situation 396
– history 1
– neutrino energy loss 390
– nuclear energy generation 388, 390, 393,

395
– pp1 chain 382
– pp1 chain operation in Sun 395
– pp2 chain 390
– pp3 chain 390
p-process 557
– abundance flows 564
– branch point nucleus 565, 572
– branching condition 560
– decay constant 562
– experimental situation 565
– final abundances 565
– hot photon environment 558
– network calculation 564
– p-nucleus 517, 556
– sites 562, 563
– solar system abundances 557
– underproduction of nuclides 563, 565
– waiting point nucleus 560
presolar grains 4
primordial deuterium abundance 385
proportional counter 272, 303
– charge carriers 272
– gas mixture 272
– ionization avalanche 272
– moderated 300, 303, 304
– neutron detection 272
– quencher 272
– response function 300
pulse height defect 275

pulse height spectrum 259, 260
– activation method 315
– americium source 264, 265
– charged particles 361
– coincidence 328, 329
– elastic scattering 277, 278
– europium source 265, 266
– heavy ions 311
– neutrons 301, 302
– nuclear reaction 279, 280
– photons 281, 297, 298
– room background 282
– summing crystal 299, 301
pulse pileup 291

q
quantum number
– magnetic 82, 123, 575, 581, 600
– orbital angular momentum 575, 582
quasiequilibrium 165, 493
– cluster 499
Q-value 36, 39, 147, 165, 170, 590

r
Racah coefficient 603
radioactive ion beams 306, 430, 437, 469
– batch mode technique 307
– fragmentation 307
– ISOL technique 307, 308
– production 310
– target chemistry 307
radioactive source
– absolute activity 294
– α-particle 275
– γ-ray 282
– neutron 304, 305
radius parameter 124, 206
range
– in silicon 231, 233
– mean 231, 232, 275
reaction rate 147, 153
– broad resonance 184, 202, 204, 206
– cutoff factor 183
– cutoff temperature 183, 184
– definition 148
– elevated temperatures 159
– equilibrium 159
– errors 199, 377, 410, 417, 456
– evaluation 377
– identical particles 169
– influence of excited states 200
– laboratory 160, 163
– narrow resonance 192, 203, 206
– neutrons 149
– nonresonant charged-particle-induced

172, 178, 182, 203
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– nonresonant neutron-induced 186–188,
217

– numerical integration 171, 184, 202, 203,
217

– particle-induced 171
– per particle pair 149
– ratio 158
– stellar 160, 161, 163, 199
– stellar ratio 162
– temperature dependence 179, 185
– temperature dependence for narrow res-

onance 193, 194
– total 212, 214
reciprocity theorem 78, 79, 122, 141, 155,

167, 189
recoil separator 310
recommended upper limit (RUL) 53
reduced width 117, 119, 122, 126, 128,

131, 132, 134
– dimensionless single-particle 134–136,

145
– observed 126
resonance
– absolute energy 222
– absolute strength 353, 358
– broad 174, 186, 212
– energy 93, 95, 114, 116
– energy derivative of phase shift 135
– formal energy 119
– formal theory 122
– interference 127, 214
– isolated 122, 124, 192, 362
– narrow 116, 127, 222
– observed energy 119, 124
– overlapping 127, 142, 186, 213, 472, 486
– phase shift 116, 124, 126
– phenomenon 93, 94, 96, 102–104, 106,

108, 109
– recommended strength 359
– relative strength 355
– single-particle 108, 131, 132
– strength 193–195, 205, 212, 339
– subthreshold 126, 128–130, 203, 212,

416, 443, 444
– total width 115, 222
– unobserved 417
– weak 410, 417
R-function 122
R-matrix theory 122, 123, 443
– pole 123
Roche lobe 28, 33
rp-process 458, 459, 466, 467, 469
r-process 27, 516
– boulevard 550
– classical model 545, 546

– comparison of observed and calculated
abundances 547

– constant temperature 546
– dynamic model 551
– equilibrium 538
– experimental situation 556
– fission 544
– fission cycle 545
– global description 547
– nuclear mass model 546
– nuclear properties 545
– nucleochronology 544
– path 541, 544
– r-only nuclide 516
– sites 552
– solar abundance peak 536, 544
– solar system abundances 536
– steady flow approximation 543, 547,

556, 572
– stellar abundances 552
– superposition of components 547
– temperature–density conditions 547
– waiting point approximation 541, 544,

546, 572
– waiting point nucleus 541
Rutherford formula 360

s
Saha statistical equation 164, 166, 501,

507, 538, 571
Salpeter 2
sample 248
– composition 256
– gas 254
– hygroscopy 256
– material 250
– neutron attenuation 254
– neutron scattering 254
– oxidization 256
– self-supporting 250, 369
– thickness 254
scattering
– inelastic 35, 167, 245
– photon 243, 245
scattering amplitude 81, 84, 85
– hardsphere 112, 115
– resonance 112, 114
Schottky barrier 264
Schrödinger equation 80, 88, 89, 91, 575
scintillation detector
– anode 269
– BaF2 269
– BGO 269
– components 269
– critical angle 268
– dynode 267
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– energy calibration 285
– fast response 268
– fast timing 270
– fluorescence 267
– light guide 270
– optical fibers 270
– organic 269
– phosphorescence 267
– photocathode 267
– photomultiplier tube 267, 268
– reflective surface 268
– transparency 267
secondary electron emission 257, 258, 354
selection rules
– β-decay 68
– γ-rays 50, 52, 585
self-absorption of radiation 314
self-regulating equation 383, 385, 520, 543
semiconductor detector 263
– bias voltage 264
– charge carriers 263
– energy resolution 263
– junction 263
– linear response 263
– material 263
– radiation damage 264
separation energy 37
shell model 43, 134, 136
– configuration mixing 49
– independent motion of nucleons 44
– single-particle states 47
– spin-orbit coupling 45
– valence nucleon 48
shift factor 118–121, 124, 125
silicon burning 494
– abundance evolution 496, 497
– abundance flows 496, 497
– comparison of decay constants 494, 495
– effective rate of 28Si conversion 504
– electron capture 498
– evolution of quasiequilibrium clusters

499, 500
– experimental situation 506
– final abundances 498
– light particles 498, 503, 571
– neutron excess parameter 496, 498
– nuclear energy generation 504
– photodisintegration 496
– quasiequilibrium abundance 501
– quasiequilibrium cluster 496, 497
– reaction chains 499, 502
– typical temperatures 494
silicon detector
– ion implantation 264
– junction 264
– spectrum 265

– surface barrier 264
single-particle
– eigenfunction 133
– Hamiltonian 131, 132
solar system abundance 5, 7
– heavy nuclides 515
– origin of nuclides 568
– peaks 2, 6, 514
Sommerfeld parameter 107
spectroscopic
– factor 49, 134, 136–138
– notation 45
spectroscopy
– charged particle 275
– γ-ray 280
– neutron 299
spherical
– Bessel function 82, 118, 578
– harmonics 82, 111, 134, 576
– Neumann function 118, 578
– wave 80, 81, 111, 113
spontaneous fission 304, 324
s-process 20, 24, 515
– abundance evolution 572
– basic building blocks 518
– bottleneck 524
– branching 525
– carbon burning 532
– classical model 525, 527
– compilation of neutron cross sections

535
– constant temperature 519, 525
– experimental situation 533
– exponential distribution of neutron expo-

sures 521
– final abundances 532
– flow pattern 532
– local equilibrium approximation 520
– main component 524, 528
– network calculation 531
– neutron poison 531, 532, 534
– neutron source 528–530, 534
– s-only nuclide 516
– seed nuclei 523
– stellar sites 528, 529
– strong component 525, 530
– termination point 518
– weak component 524, 530, 532, 562
stars
– asymptotic giant branch 11, 528
– Betelgeuse 24
– binary 13
– binary system 28
– carbon flash 23
– carbon star 20
– carbon-oxygen white dwarf 20
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– Cat’s Eye Nebula 20
– classical Cepheid variable 23
– classical nova 30, 428, 430, 432, 434
– contact binary 28
– core collapse 509
– Dumbbell Nebula 20
– early asymptotic giant branch 19
– energy loss 63
– evolutionary stages 14
– first dredge-up 18
– helium flash 18
– helium shell flash 23
– helium white dwarf 17
– high-mass X-ray binary 31
– horizontal branch 11, 18, 21
– low-mass X-ray binary 31
– M dwarf 16
– main sequence 10, 12
– mass-luminosity relation 13
– massive 22, 57
– neutron star 31
– neutron star merger 553
– Nova Cygni 1992 31
– oxygen-neon white dwarf 24
– planetary nebula nucleus 20
– population I 9
– population II 9
– post asymptotic giant branch 19
– pre-main sequence 14
– proto-neutron star 26
– Proxima Centauri 16
– red clump 10
– red dwarf 10, 16
– red giant branch 10, 11, 18
– Rigel 24
– RR Lyrae variable 21
– second dredge-up 23
– Sirius B 10
– structure of massive star 25
– subdwarf 10, 21
– subgiant branch 10, 11, 18
– super asymptotic giant branch 23
– supergiant 10, 24
– T Tauri 15
– thermal helium pulse 529
– thermal pulse 19
– thermally pulsing asymptotic giant

branch 19
– third dredge-up 20, 23
– type I X-ray burst 32, 466, 469, 557
– type II X-ray burst 32
– white dwarf 10, 16
– Wolf-Rayet 25, 57
– X-ray binary 31
– X-ray pulsar 31
– zero age main sequence 15

statistical
– data analysis 260
– fluctuations 262
– weight 55, 78
steady state 155, 165
stellar enhancement factor 161, 378, 491,

527, 535
stellar evolution 11
– temperature-density conditions 376,

378
stellar wind 24, 27
stopping cross section 227
stopping power 227, 230, 335
– Bethe–Bloch formula 227–229
– center-of-mass frame 338, 357
– compilation 229
– compound 233
– effective 336, 343, 354, 357
– electronic 227, 228
– interpolation 228
– linear 227
– LSS theory 228
– mass 227
– nuclear 228
– SRIM 229, 230, 337
– tabulation 229
– theoretical calculation 227
– thin absorber 372
– total 229
– uncertainties 229
sum peak method 294
– angular correlation 295
Sun
– age 8
– central temperature 379, 395
– evolution 17, 22
– neutrinos 8
supernova
– classification 27
– Crab Nebula 27
– deflagration 29
– detonation 29
– light curve 8, 27, 29
– neutrino-powered wind 553
– 1987A 8, 27
– 1994D 28
– Phillips relation 28
– rate 27
– revival of shock 26
– shock wave 26, 509, 562
– standard candle 29
– Tycho 29
– type Ia 28, 73, 513
– type Ib/Ic 27, 57
– type II 27, 57, 59
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t
target 247
– active nuclei 336, 350
– anodized 348, 351
– beamstop 248, 249, 257, 279
– blistering 254
– chamber 256, 258
– composition 251, 354
– compound 250, 251
– contaminant 279, 280
– cooling 257
– degradation 221, 249
– evaporated 250, 352, 354, 361
– finite thickness 344
– gas cell 253
– gas jet 253
– gas thickness 254
– gaseous 252, 309, 310
– heating 221
– hydrogen 308
– implanted 280, 350, 351
– inactive nuclei 250, 336
– infinitely thick 341
– isotopic enrichment 251
– oxidization 354
– preparation 250
– radioactive 306
– random orientation of nuclei 600
– self-supporting 249
– sputtering 250
– stability 254
– stoichiometry 354, 361
– thickness 254, 335, 352
– transmission 249, 277, 278
– windowless gas 253
technetium 2, 8, 20
thermal
– equilibrium 57, 58, 60, 74
– excitation 55, 69, 159–162, 202, 496
– population probability 55, 70
– velocity 150
thermally stable hydrogen–helium burning

469
thermonuclear
– explosion 180
– reaction 148
– runaway 18, 19, 23, 29, 32
Thomas approximation 124, 192
threshold energy 151, 152, 157, 190, 590
time-of-flight method 315
– components 317
– detector 317
– neutron energy 316
– neutron energy resolution 316, 317
time-reversal invariance 78
total width 119, 124, 133, 342

– compound state 132
– observed 126
transfer reaction 128, 136, 137
transmission 248
– area above curve 363
– coefficient 91, 92, 98, 100, 103, 107, 119,

139, 140, 143, 145, 208
– Coulomb barrier 107, 171, 194, 381, 382
– curve 367, 368
– modified coefficient 209, 217
– neutrons 363, 366
– probability 90, 102–104, 172, 186
– thin sample 364
triple-α reaction 168, 439, 461, 463, 465
– decay constant 168, 169, 440
– electron screening 212
– equilibrium 168
– experimental situation 442
– history 2
– nuclear energy generation 441
– temperature dependence of decay con-

stant 440, 570
tunnel effect 1, 100, 120, 157, 176, 208
two-particle capture
– direct 166
– sequential 166, 168, 456, 467, 469, 472,

571

u
uncertainty principle 80
Urca process 72

v
von Weizsäcker 1

w
wall effect 301, 302
wave function 575
– derivative 94, 95, 98
– matching 93, 95, 96, 103, 105, 110
– node 93, 95, 97, 103, 106
– radial 576
– slope 110
Weisskopf
– estimate 51, 53
– unit 52
width fluctuation correction 143, 144
Wronskian 577

x
X-ray photons 237

y
yield
– angle-integrated 615
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– area under curve 346, 350, 353, 355, 358,
365

– beam resolution 346, 347
– broad resonance 352
– curve for charged particles 335, 363
– curve for neutrons 367, 368
– curve plateau 340
– definition 334
– differential 336, 353
– Doppler broadening 349
– experimental 348, 351–353
– finite target thickness 350

– general expression 342
– maximum 340, 341, 345
– neutron-induced 364
– nonresonant 336, 337, 339, 343
– resonant 340–343
– shape of curve 349
– slowly varying cross section 338, 339
– straggling 346, 347
– target compound 336
– thin sample 364
– thin target 336, 343, 373
– total 336, 353




