
1. Introduction
Intense magnetic storms are hazardous for technological operations and infrastructure (e.g., Cannon 
et al., 2013; Daglis, 2005; Thomson, 2007). The magnetic storm of March 1989, for example, caused the 
collapse of the Canadian Hydro-Québec electricity transmission grid (Bolduc, 2002), caused numerous op-
erational “anomalies” in United States power-grid systems (North American Electric Reliability Corpora-
tion, 1990), and damaged a high-voltage transformer at a nuclear power plant in Salem, New Jersey (Barnes 
et al., 1991; Rossi, 1990). The same storm damaged satellites and interfered with satellite operations, and 
it disrupted over-the-horizon radio communication and geophysical surveys around the world (e.g., Al-
len et al.,  1989; Boteler, 2019). The magnetic storm of May 1921 caused widespread disruption to radio 
communication and telegraph and telephone systems (e.g., Hapgood, 2019; Silverman, 2001), and, nota-
bly, it caused fires in telegraph stations used by railroad companies in New York City and State (e.g., Love 
et al., 2019a). The magnetic storm of September 1909 (e.g., Hayakawa, Ebihara, Cliver, et al., 2019; Love 

Abstract A compilation is made of the largest and second-largest magnetic-storm-maximum 
intensities, −Dst1 and −Dst2, for solar cycles 14–24 (1902–2016) by sampling Oulu Dcx for cycles 19–24, 
using published −Dstm values for 4 intense storms in cycles 14, 15, and 18 (1903, 1909, 1921, 1946), 
and calculating 15 new storm-maximum −Dstm values (reported here) for cycles 14–18. Three different 
models are fitted to the cycle-ranked −Dst1 and −Dst2 values using a maximum-likelihood algorithm: A 
Gumbel model, an unconstrained Generalized-Extreme-Value model, and a Weibull model constrained 
to have a physically justified maximum storm intensity of −Dstm = 2500 nT. All three models are good 
descriptions of the data. Since the best model is not clearly revealed with standard statistical tests, 
inference is precluded of the source process giving rise to storm-maximum −Dstm values. Of the three 
candidate models, the constrained Weibull gives the lowest superstorm occurrence probabilities. Using 
the compiled data and the constrained Weibull model, a once-per-century storm intensity is estimated to 
be −Dst1 = 663 nT, with a bootstrap 68% confidence interval of [497, 694] nT. Similarly, the probability 
that a future storm will have an intensity exceeding that of the March 1989 superstorm, −Dstm > 565 nT, 
is 0.246 per cycle with a 68% confidence interval of [0.140, 0.311] per cycle. Noting (possibly slight) 
ambiguity in the rankings of storm intensities, using the same methods, but storms more intense than 
those identified for cycles 14–16, would yield a higher once-per-century intensity and a higher probability 
for a −Dstm > 565 nT storm.

Plain Language Summary Past and possible future magnetic storm intensities are 
investigated. As part of this work, a dataset is developed of the most intense and second most intense 
storms for each of the past 11 solar cycles (1902–2016)—augmenting a traditional dataset that only covers 
the past 6 solar cycles (1957–2016) with recently published intensities for several magnetic superstorms 
and with new storm intensity estimates, reported here and derived from historical magnetic observatory 
records. These data are analyzed using statistical methods that provide estimates of the probability 
of future magnetic superstorms. A storm as intense as that of March 1989, which caused widespread 
disruption of technological systems and an electricity blackout in Québec, Canada, is predicted to occur, 
on average, about every four solar cycles. This is twice as often as estimated using only the traditional 
shorter dataset. A once-per-century storm is estimated to be substantially more intense than that of March 
1989.
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et al., 2019a; Silverman, 1995) brought interference to telegraph systems, as did the storm of October 1903 
(e.g., Hayakawa, Ribeiro, et al., 2020; Ribeiro et al., 2016) and the Carrington event of September 1859 (e.g., 
Boteler, 2006; Green et al., 2006).

A standard measure of storm-time geomagnetic disturbance is Dst, a scalar time series index formed by 
averaging geomagnetic variation recorded at low-latitude, ground-based observatories (e.g., Mayaud, 1980; 
Menvielle et al., 2011). Dst is often interpreted in terms of the westward-directed magnetospheric ring cur-
rent (e.g., Daglis, 2006). The intensification of this current during main-phase development of a magnetic 
storm causes a decrease in low-latitude, horizontal-component geomagnetic field strength, and, corre-
spondingly, a decrease in Dst from its prestorm, near-zero value (e.g., Loewe & Prölss, 1997). This decrease 
in Dst is sometimes taken as the definition of a magnetic storm (e.g., Gonzalez et al., 1994). Storm-max-
imum −Dstm intensity values sampled from long durations of Dst are often used in statistical analyses of 
storm-occurrence rates (e.g., Love, 2020; Riley, 2018; Tsubouchi & Omura, 2007; Yermolaev et al., 2013). 
The greatest −Dstm values represent the most intense storms. These are usually driven by interplanetary 
coronal-mass ejections (CMEs) (e.g., Gonzalez et al.,  2011; Richardson & Cane, 2012) originating from 
solar active regions and coronal filaments (e.g., Gopalswamy et  al.,  2010; Kilpua et  al.,  2017; Webb & 
Howard, 1994). The occurrence probability of intense storms waxes and wanes in broad correlation with 
solar-cycle increases and decreases in sunspot number (e.g., Chapman et  al.,  2020; Echer et  al.,  2011; 
Le et al., 2012), though the intensity and detailed evolution of each magnetic storm depend, ultimately, 
on the geoeffectiveness of solar-wind coupling with the Earth's magnetosphere (e.g., Lyon, 2000; Zhang 
et al., 2004).

While recognizing that Dst describes only part of each storm's complex evolution (e.g., Borovsky & 
Shprits,  2017; Kamide, 2006; Lanzerotti,  1992), we note that it is often used in projects for estimating 
space-weather hazards. This can be understood in terms of the storm-substorm relationship (e.g., Daglis 
et al., 2003; Kamide et al., 1998). With main-phase intensification of the magnetospheric ring current, as 
approximately measured by Dst, the auroral oval widens and slips to lower latitudes (e.g., Milan et al., 2009; 
Siscoe, 1976b; Yokoyama et al., 1998). Then, with the diversion of substorm currents along field lines from 
the ring current, through the ionosphere, and back out to the ring current (e.g., Ganushkina et al., 2017; 
Welling, 2019), geoelectric fields are induced in the solid Earth across mid-latitudes. Consequently, Dst 
plays an important role, though not a singular role, in projects for estimating magnetic storm hazards for 
electric power grids (e.g., Lucas et al., 2020; Ngwira et al., 2013; Oughton et al., 2017; Pulkkinen et al., 2012; 
Woodroffe et al., 2016). Thermospheric density, which affects drag on low-orbiting satellites, and space-
craft charging, which can damage onboard electronics, are observed to be correlated with intensification 
of −Dst (e.g., Bowman et al., 2008; Ganushkina et al., 2017; Guo et al., 2010; Oliveira & Zesta, 2019) and 
mid-latitude geomagnetic disturbance (e.g., Koskinen et al., 2010; Qian & Solomon, 2012). Disturbances 
of the ionosphere, the source of storm time interference to over-the-horizon radio communication and 
global-positioning systems (GPS), are correlated with abrupt changes in Dst (e.g., Astafyeva et al., 2014; 
Basu et al., 2010).

In light of the history of the impacts of space weather, some scenarios anticipate that future magnetic 
“superstorms,” often defined in terms of extreme values of Dst (e.g., Cliver & Dietrich,  2013; Gonzalez 
et al., 2011; Lakhina & Tsurutani, 2018), could bring widespread interference and damage to technolog-
ical systems (e.g., Kappenman,  2012; Riley et  al.,  2018) and carry significant economic cost (e.g., Baker 
et al., 2008; Eastwood et al., 2017; Schulte in den Bäumen et al., 2014). For this reason, national and inter-
national space-weather projects (e.g., National Science and Technology Council, 2019; Schrijver et al., 2015) 
have identified prediction and long-term forecasting of intense storms as priorities for scientific investiga-
tion (e.g., Baker, 2002; Hapgood, 2011; Morley, 2020). In this context, we assemble and develop a dataset of 
storm-maximum intensities −Dstm for solar cycles 14–24 (1902–2016). We model the statistics of the most 
intense and second most intense storms per solar cycle using the mathematical formalism of extreme-value 
theory for ranked data. We examine possible secular change in the data and possible correlations of the 
−Dstm values with sunspot number. We estimate future storm occurrence probabilities and associated con-
fidence intervals. Results inform projects for improving societal resilience to space-weather hazards (e.g., 
Green et al., 2016; Jonas et al., 2016).
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2. Observatory Data
The foundation of our analysis is historical geomagnetic variation data collected at ground-based observa-
tories (e.g., Love, 2008; Rasson et al., 2010). Since the 1980s, most of these observatories, including those 
considered here, have operated electronic fluxgate magnetometers and digital acquisition systems (e.g., 
Jankowski & Sucksdorff, 1996; Newitt, 2007). The standard products of these observatories are 1-min and 
(more recently) 1-s resolution time series. These data have a wide variety of applications, including for 
monitoring variable space-weather conditions, hazard evaluation, studies of the solid Earth, and geomag-
netic modeling and mapping (e.g., Kerridge, 2001; Love & Chulliat, 2013). Before the 1980s and since the 
mid-19th century, magnetic observatory monitoring relied on analog variometer systems (e.g., Schröder 
& Wiederkehr, 2000). For each geomagnetic vector component, a beam of light was projected onto a tiny 
mirror attached to a freely orienting magnetized needle. As the geomagnetic field varied in time, the light 
beam was deflected back and forth, and this was recorded on a photographic paper mounted onto a cylinder 
that rotated once per 24 h. Each day, the paper was removed from the cylinder, and, when it was developed, 
the light trace provided a time-series magnetogram. Depending on the convention of the observatory in-
stitute, hourly spot values or hourly average values were measured using a gauge (expressed, e.g., in mm). 
Magnetic units were obtained by applying conversion factors (e.g., nT/mm). For many years, it was tradi-
tional to report hourly data in published yearbooks, often along with reproductions of magnetograms for 
major storms. These days, hourly values, and other data resolutions, are reported to the World Data System 
(WDS).

3. Kyoto and Oulu Versions of Dst
The Dst index was developed during the International Geophysical Year (IGY 1957–1958) (Sugiura, 2006; 
Sugiura & Kamei, 1991), when observatory operations around the world were improved and harmonized 
(e.g., Various, 1957). Today, the calculation of the standard version of Dst is a service provided by World Data 
Center for Geomagnetism, Kyoto et al. (2015) (WDC); the index covers years 1957–2016 (most of solar cycle 
19 to cycle 24). In summary, sequential 1-h data vales recording horizontal component geomagnetic field 
variation are obtained from four long-running, low-latitude, ground-based observatories that are widely 
separated in longitude: Hermanus (HER), South African National Space Agency (e.g., Kotzé, 2018), Kakio-
ka (KAK), Japan Meteorological Agency (e.g., Minamoto, 2013), Honolulu (HON) and San Juan (SJG), U.S. 
Geological Survey (USGS) (e.g., Love & Finn, 2011). For 1957–2016, these hourly values are boxcar hour 
averages centered at the bottom of the universal-time (UT) hour (00:30, 01:30, etc.). A nonstormy, quiet-time 
baseline is subtracted from each observatory time series; Dst is a weighted average of the residual distur-
bance time series from the four observatories. Each Kyoto hourly Dst value is centered and timestamped on 
the bottom of the UT hour. Although widely used in the space-physics and space-weather communities, we 
recognize that Kyoto Dst is calculated using an odd normalization of the data streams from the four source 
observatories (e.g., Love & Gannon, 2009, Section 4).

Using digital files of historical hourly observatory data from the WDS, Karinen and Mursula (2005) of Oulu 
University, Finland have reconstructed Dst using a corrected data normalization (Mursula et  al.,  2008). 
This index is sometimes known as Dcx. It is available in different versions, including a four-observatory 
version for 1957–2016 that is calculated using the same source observatory data used to calculate Kyoto 
Dst; other versions of the Oulu Dst index are calculated using data from additional low-latitude observato-
ries, up to 17 for some years. Due to differences in normalization, at storm maximum, the average relative 
difference, | | / | |Dst Dst Dstm

Kyoto
m
Oulu

m
Oulu  (for four-station versions of the indices) is about 3%. Since the 

many- observatory versions of Oulu Dst involve a lot more geographic averaging than a four-observatory 
Dst, the many-observatory version is less affected by localized differences in geomagnetic disturbance. In 
this respect, the many-observatory version of the index is more accurate than a four-station Dst. At storm 
maximum, the average relative difference between the Oulu four-observatory and multiobservatory ver-
sions is about 8%. Mindful of these issues, in our statistical analysis of storm intensities, for cycles 19–24 
(1957–2016), we use the Oulu corrected storm-maximum −Dstm values, and, when available, we use the 
multiobservatory version of Oulu −Dstm, Section 5; we do not use Kyoto Dstm.
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Estimating Dst for years prior to IGY (before 1957) can be challenging due to different and changing da-
ta-reporting conventions and the geographic sparsity of observatories. We have two related quibbles that 
affect the quality of the pre-IGY extension of the four-observatory version of the Oulu Dst index back to 
1932, which is calculated using data from Cape Town (CTO) South Africa, KAK, HON, and SJG. The first 
concerns timestamp conventions. Before and including 1956, for example, KAK observatory data are re-
ported in yearbooks as spot values with timestamps at the top of each UT hour (00:00, 01:00, etc.) (Kakioka 
Magnetic Observatory, 1959, p. 9); on the other hand, the pre-IGY HON and SJG data (all the way back to 
1915) follow the post-IGY convention of hourly averages centered on the bottom of the UT hour (e.g., Haz-
ard, 1918, p. 5); the same is true for all of the CTO data back to 1932 (e.g. Magnetic Observatory, University 
of Cape Town, 1944). These important issues are not recorded in the digital files held by the WDS, but they 
can make a difference when averaging the data to calculate Dst—for given HON, SJG, and CTO data (from, 
say, 00:30 UT), which KAK data value should be used (00:00 or 01:00) in an average? Linear interpolation of 
the KAK data to obtain values at the bottom of the hour results in degraded 2-h resolution. We do not know 
how the KAK timestamp is handled for pre-IGY Oulu Dst. Our second quibble concerns the reporting of 
data gaps. For some magnetic storms, observatory hourly values are fillers intended to indicate that either 
the light trace of the analog magnetometer system had wandered off the edge of the photographic paper 
(as we discuss in Section 2, during periods of great geomagnetic disturbance), or, for whatever reason, an 
hourly value was difficult to estimate. Filler values should be treated as data gaps; they should not be used in 
calculating Dst. The presence of fillers is indicated in observatory yearbooks (such as with footnotes or other 
notations), but this important information is not given in the WDS files. A difficult example of this is seen 
with the HON data for the July 1941 storm, three hourly values are fillers. Unfortunately, the 1941 HON 
yearbook, held in National Oceanic and Atmospheric Administration archives in Boulder, Colorado, was 
never formally published (likely due to priorities brought by the World War); a photograph of the relevant 
yearbook page for HON July 1941 is given in a supplementary file accompanying this report. Inspection of 
the HON July 1941 time series on the Oulu website shows that filler values are not properly treated in the 
calculation of Oulu Dst. Mindful of these issues, for cycles 14–18, we use −Dstm values taken either from 
publications on specific storms, or we calculate −Dst using data values taken from yearbooks and WDS 
digital files, Section 6. We show the Oulu Dst time series from 1932 to 2016 in Figure 1a.

4. Autocorrelation and Sampling
We adopt a statistical approach for analyzing storm-maximum intensity values and predicting future prob-
abilities, but autocorrelation in the Dst time series is incompatible with the data independence that is often 
assumed in statistical analyses. Most obviously, the Dst time series is serially correlated—space-weather 
conditions vary continuously in time, and, as a result, from one hour to the next, a particular Dst value is 
often similar to that of the previous and subsequent hour. This applies during quiet conditions, and it ap-
plies during the one- to three-day durations of magnetic storms, though the hour-to-hour variance in Dst 
is higher during a magnetic storm than it is during quiet times. Over longer timescales, the occurrence of 
one storm is often correlated with the occurrence of other storms due to the nature of the solar wind (e.g., 
Borovsky, 2020). So, for example, a sunspot group might be the source of multiple coronal mass ejections, 
each causing a separate magnetic storm (e.g., Gonzalez et al., 2011), or a high-speed stream of plasma emit-
ted from a long-lasting coronal hole can sometimes cause a pair of magnetic storms separated in time by a 
solar-rotation period (e.g., Richardson & Cane, 2012; Tsurutani et al., 2006).

Data suitable for statistical analysis can be extracted from a time series by down-sampling or averaging 
over timescales longer than those characteristic of the autocorrelations (e.g., von Storch, 1995; Wilks, 2019, 
Chapter 5.2.4). A simple sampling method, often used in extreme-event analysis, is selecting the maximum 
values from ranked sequences of data in blocks of time covering a data time series (e.g., Coles, 2001, Chapter 
1.1; Davison & Huser, 2015, Section 2). Block-maximum sampling removes autocorrelation over timescales 
shorter than the duration of each block; it is used, in particular, in analyses of stochastic processes that are 
modulated periodically or quasi-periodically. So, for example, statistical analyses are made of annual-max-
imum rainfall (e.g., Katz et al., 2002). In our study, the natural modulation to consider is that of the solar 
cycle. Identification of the most intense and second most intense storms, −Dst1 and −Dst2, for each solar 
cycle, is a type of block-maximum sampling.
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5. Storm Intensities: Solar Cycles 19–24
We rank storm-maximum −Dstm value from the Oulu Dst time series within each solar cycle, Figure 1a, 
keeping the most intense −Dstm = −Dst1 and second most intense −Dstm = −Dst2 storms for each of solar cy-
cles 19 to 24 (years 1954–2016). In Table 1, we list these values. The most intense storm of cycle 19 was that 
of February 1958 (−Dst1 = 422 nT), followed closely by that of September 1957 (−Dst2 = 419 nT). For cycle 
20, the most intense storm was that of May 1967 (e.g., Knipp et al., 2016; Webb, 1969) (−Dst1 = 374 nT), 
followed by that of March 1970 (e.g., Pudovkin et al., 1972) (−Dst2 = 283 nT). For cycle 21, the most in-
tense storm was that of July 1982 (−Dst1 = 326 nT) (e.g. Wik et al., 2009), followed by that of April 1981 
(−Dst2 = 273 nT). For cycle 22, the Québec storm of March 1989 was the most intense (−Dst1 = 565 nT), 
indeed, this was the most intense storm since the IGY; the second most intense storm of this cycle was 
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Figure 1. (a) The Oulu Dst time series (black), 1932–2016 (solar cycles 17–24) and the most intense and second most 
intense values, Dst1 (red) and Dst2 (blue), cycles 14–24, used in our statistical analysis (Table 1). (b) The aa (gray) and 
the 24-h running average AA* (orange) time series. (c) Sunspot numbers, daily RD (yellow), monthly RM (gray), and 
13-month running average R13 (red).
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that of November 1991 (−Dst2 = 366 nT). For cycle 23, the most intense storm was that of November 2003 
(−Dst1 = 533 nT), which came after the more vigorous, but in terms of maximum −Dstm, slightly smaller 
Halloween storm of October 2003 (e.g., Balch et al., 2004; Gopalswamy et al., 2005); the second most intense 
storm of this cycle was that of March 2001 (−Dst2 = 367 nT). Cycle 24 was notably weak; the St. Patrick's 
day storm of March 2015 was the most intense (e.g., Wu et al., 2016) (−Dst1 = 237 nT), followed by that of 
June 2015 (−Dst2 = 193 nT).
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SC Year Month Day
−Dstm 
(nT) Rank Observatory data used Source

*
mAA

Rank 
(nT) RD−2 RM (nT) R13

14 1903 10 31 513 2† COI CLA ZKW CUA Hayakawa, Ribeiro, et al., 2020 287.5 2 47 64.8 49.4

1907 02 09 340 SFS VQS This study 160.9 4

1908 09 12 280 SFS API This study 176.8 3

1909 05 14 278 SFS VQS This study 138.3 5

1909 09 25 595 1† SFS MRI API VQS Love et al. (2019a) 291.7 1 92 64.7 63.7

15 1915 06 17 255 SFS TUC VQS This study 176.9 4

1917 08 09 199 HON VQS This study 145.9 5

1919 08 11 300 SFS HON VQS This study 203.1 3

1920 03 23 377 2† SFS HON TUC This study 243.7 2 282 116.9 67.2

1921 05 15 907 1† WAT API VSS Love et al. (2019b) 388.4 1 118 37.0 45.5

16 1926 01 26 194 SFS WAT HON SJG This study 148.5 5

1926 04 15 252 WAT HON TUC This study 177.1 3

1926 10 15 302 2† SFS WAT HON TUC This study 209.7 2 252 119.3 115.9

1927 07 22 200 WAT TUC This study 151.3 4

1928 07 08 379 1† SFS WAT HON TUC This study 304.3 1 83 163.4 128.7

17 1941 03 01 469 1 HER WAT API This study 240.0 4 83 77.5 88.0

1941 07 05 447 2 HER WAT TUC SJG This study 264.5 3 132 111.4 78.5

18 1946 03 28 512 1 COI CLA ZKW CUA Hayakawa, Ebihara, et al., 2020 309.8 1 95 127.7 121.5

1949 01 26 344 2 HER WAT HON SJG This study 190.8 5 211 168.6 193.4

19 1957 09 13 419 2 HER KAK HON SJG Oulu 149.6 17 347 334.0 279.3

1958 02 11 422 1 HER KAK HON SJG Oulu 271.5 4 238 233.6 284.5

20 1967 05 26 374 1 HER KAK HON SJG Oulu 266.2 1 225 122.5 123.9

1970 03 08 283 2 HER KAK HON SJG Oulu 167.8 3 146 145.7 150.3

21 1981 04 13 273 2 HER KAK SJG Oulu 129.2 11 288 225.3 205.7

1982 07 14 326 1 HER KAK HON SJG Oulu 252.9 2 246 139.4 161.5

22 1989 03 14 565 1 HER KAK HON Oulu 433.2 1 182 170.4 203.8

1991 11 09 366 2 HER KAK HON SJG Oulu 217.6 2 198 159.5 191.4

23 2001 03 31 367 2 17 Observatories Oulu 214.4 4 340 165.8 155.1

2003 11 20 533 1 17 Observatories Oulu 233.8 2 64 82.9 86.9

24 2015 03 17 237 1 14 Observatories Oulu 149.7 1 53 54.5 82.1

2015 06 23 193 2 14 Observatories Oulu 116.0 3 61 66.5 72.1

Note: The most intense (Rank 1, −Dst1) and second most intense (Rank 2, −Dst2) storm intensities, for each of solar cycles (SC) 14 to 24 (years 1902–2016); 
inferred storm-intensity ranks are denoted with †. Oulu and previously published intensities (as noted) and new intensity estimates (this study) are derived from 
magnetic observatory data: Apia (API), Coimbra (COI), Colaba (CLA), Cuajimalpa (CUA), Hermanus (HER), Honolulu (HON), Kakioka (KAK), Mauritius 
(MRI), San Fernando (SFS), San Juan (SJG), Tucson (TUC), Vieques (VQS), Vassouras (VSS), Watheroo (WAT), Zi-Ka-Wei (ZKW). Also listed are *

mAA  and their 
solar-cycle ranks, and sunspot number averages, RD−2, RM, R13.

Table 1 
Summary of Magnetic Storm Intensities −Dstm and Related Factors
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6. Storm Intensities: Solar Cycles 14–18

We list, in Table 1, −Dstm intensities for 19 magnetic storms that occurred in solar cycles 14 to 18 (years 
1902–1954); this list helps fill in and extend back in time lists of storms given by other investigators (e.g., 
Bell et al., 1997; Gonzalez et al., 2011; Lakhina & Tsurutani, 2018; Vennerstrom et al., 2016). Four of these 
storm intensities are from published papers: October 1903 (Hayakawa, Ribeiro, et al., 2020), September 1909 
(Love et al., 2019a), May 1921 (Love et al., 2019b), and March 1946 (Hayakawa, Ebihara, et al., 2020). The 
other 15 storm intensities are estimated using methods like those used by others for estimating pre-1957 Dst 
(e.g., Hayakawa, Ribeiro, et al., 2020; Love et al., 2019a,b). In summary, we inspect observatory yearbooks 
and WDS data files. For each storm and for each observatory record, we check timestamp conventions, and 
we check for data gaps and filler values. We make a point of searching for data from low-latitude observa-
tories that are widely separated in longitude to obtain a good circum-global-average measure of storm dis-
turbance. For various reasons, we sometimes use data from observatories that are different from those used 
for calculating standard versions of Dst. For example, we identify three acceptable observatory records for 
the March 1920 storm; noting that no observatory was operated in South Africa until 1932, we use San Fer-
nando (SFS), Spain yearbook data (Instituto y Observatorio de Marina, 1921); we found no suitable records 
for Asian-Australian longitudes, we do not use any KAK data because of incompatibility of timestamps; we 
use HON WDS data files (Hazard, 1922a); we use TUC WDS data files (Hazard, 1922b) in place of Vieques 
(VQS), Puerto Rico (the predecessor observatory to SJG) data, which have a gap (Hazard, 1923). For the Oc-
tober 1926 and July 1928 storms, we use Watheroo (WAT), Australia, WDS data files (Fleming et al., 1947). 
For the March 1941 storm, we use Apia (API), Samoa, WDS data files in place of HON data, which have 
a gap; we found no suitable records for American longitudes. For the July 1941 storm, in place of HON 
data, which have filler values (per yearbook), we use WDS TUC data files. For each observatory record, we 
subtract a pre-storm 24-h quiet period from the storm-time period to obtain disturbance data values. With 
latitude factors, we average the disturbance data to obtain estimates of storm-maximum −Dstm.

We examine the validity of our identification of −Dst1 and −Dst2 for solar cycles 17 and 18 by comparing 
them with the Oulu Dst index. Our cycle-ranked −Dst1 and −Dst2 data values and that of Hayakawa, Ebiha-
ra, et al. (2020) for the March 1946 storm, Table 1, are all slightly greater than the corresponding Oulu −Dst1 
and −Dst2 values. The average relative difference is 5%. This is less than the 8% averaging error we estimate 
for Dst1 and Dst2 in Section 3. Therefore, even though we have some quibbles with parts of the Oulu Dst 
time series, Section 3, we understand that the Oulu Dst time series is accurate enough to allow us to con-
fidently identify which storms are the most intense and second most intense, −Dst1 and −Dst2, for cycles 
17 and 18. For cycle 17, the storm of March 1941 (e.g., Parkinson, 1941; White, 1941) was the most intense 
(−Dst1 = 469 nT), and the storm of July 1941 (e.g., Nelson, 1941; Ogg, 1941) was the second most intense 
(−Dst2 = 447 nT). For cycle 18, the storm of March 1946 (e.g., Ogg, 1946; Parkinson, 1946) was the most 
intense (−Dst1 = 512 nT), and the storm of January 1949 was the second most intense (−Dst2 = 344 nT).

Lacking a time-continuous record of Dst for earlier solar cycles, we seek an objective method for identifying 
each cycle's most intense storms. We turn to the aa index, a mid-latitude measure of the range of geomag-
netic vector variation over 3-h windows of time at two nearly antipodal observatories (one in the northern 
hemisphere and one in the southern hemisphere) (Mayaud, 1980). The aa index is continuous in time from 
1868 to the present, and so it covers our period of interest. Extended durations of high aa represent vigorous 
magnetospheric convection (e.g., Thomsen, 2004) leading up to storm-maximum intensity as measured by 
−Dstm (e.g., Ebihara & Ejiri, 1998; Jordanova et al., 2001). Therefore, using a “homogeneous” version of aa 
(Lockwood, Chambodut, et al., 2018), Figure 1b, we calculate a running 24-h average of the index time series, 
something often called AA*. In Table 1, the listed storms for each of cycles 14–16 have the highest-ranked 
maximum values    * * *

1 5,mAA AA AA , and, from calculated −Dstm for each of those storms, we infer each cy-
cle's −Dst1 and −Dst2. For example, we infer that the most intense and second most intense storms of cycle 
14 were, respectively, those of September 1909 (−Dst1 = 595 nT) and October 1903 (−Dst2 = 513 nT); we 
note that those two storms exhibited the cycle's highest *

1AA  and second-highest *
2AA  levels of mid-latitude 

disturbance. The intensities of three other storms, and notably that of February 1907 (−Dstm = 340 nT), do 
not exceed that of October 1903. We infer that the most intense and second most intense storms of cycle 15 
were those of May 1921 (e.g., Angenheister & Westland, 1921; Parkinson, 1921) (−Dst1 = 907 nT) and March 
1920 (e.g., Faris, 1920; Hazard, 1920) (−Dst2 = 377 nT); for cycle 16, we infer they were the storms of July 
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1928 (e.g., Johnston, 1928) (−Dst1 = 396 nT) and October 1926 (e.g., Johnston, 1927) (−Dst2 = 302 nT). In 
each case, those storms also exhibited their cycle's highest *

1AA  and second-highest *
2AA  levels of mid-latitude 

disturbance.

Though we identify intense storms, there is room for doubt as to whether or not our identification of −Dst1 
and −Dst2 are, in fact, the most intense and second most intense storms of solar cycles 14–16. We would 
like to estimate the confidence we can have in our inferred rankings. We note from Table 1 that, for six of 
the eight of cycles 17–24, the −Dst1 and −Dst2 values are among the storms with the five highest *

mAA ; for 
cycle 19, −Dst2 is associated with the 17th highest *

mAA , and for cycle 21, −Dst2 is associated with the 11th 
highest *

mAA . We might, therefore, estimate that the probability that the correct −Dst1 and −Dst2 are among 
the storms with the five highest *

mAA  for any particular solar cycle is 6/8 or 0.750. From this, the joint prob-
ability that storms with the five highest *

mAA  for all three of cycles 14–16 will be −Dst1 and −Dst2 for each 
cycle is (0.750)3 = 0.422. In other words, under the assumptions made here, there might be a reasonably 
large probability (0.578) that the correct −Dst1 and −Dst2 for cycles 14–16 are greater than those we identify. 
Despite this, we suspect that we have, in fact, identified the most intense storms for these cycles, but because 
of lingering uncertainty, we regard the −Dst1 and −Dst2 intensities listed in Table 1 for solar cycles 14–16 as 
lower bounds on storm intensities for those cycles. This affects our choice of model in Section 12.

7. Secular Change
Qualitatively, the solar-cycle-ranked storm intensities, −Dst1 and −Dst2, shown in Figure 1a and listed in 
Table 1, are not uniformly distributed in time. There were, for example, four so-called superstorms, with 
−Dstm > 500 nT (e.g., Lakhina & Tsurutani, 2018), during solar cycles 14–18 (October 1903, September 
1909, May 1921, March 1946), but only two such storms occurred during cycles 19–24 (March 1989 and 
November 2003). Considering, first, the most intense storms of each cycle, a Kolmogorov-Smirnov test 
(e.g., Bohm & Zech, 2010, Chapter 10.3.5; Press et al., 1992, Chapter 14.3) indicates that the discrepancies 
between the distributions of the −Dst1 intensities for cycles 14–18 and for cycles 19–24 are something that 
would be exceeded by random data with a probability of p = 0.367. For the second most intense storms of 
each cycle, −Dst2, p = 0.367, the same value as for −Dst1 due to small data numbers. These probabilities 
are of marginal significance, insufficient to comfortably dismiss the possibility that the discrepancies are 
only due to random fluctuations in data taken from the same distribution. Still, if any of the estimates of 
−Dst1 or −Dst2 for cycles 14–16 are underestimates, a possibility we discuss in Section 6, then we might 
have statistically significant evidence of secular change in storm intensities; but, for now, we do not have 
such evidence.

For data, such as −Dst1 and −Dst2, that are positive with possible outliers, it is useful to analyze the statistics 
of their logarithms (e.g., Tukey, 1977). The geometric mean, which for a set of n positive data {xi} is



 
  

 


1

1m exp ln( ) .
n

i

i
x

n
 (1)

If we accept the cycle rankings given in Table 1 as they are, then, the geometric mean of − Dst1 for cycles 14–
24 is 457 nT; and this appears to be a relatively well-centered mean; out of 11 cycles, 6 had − Dst1 > 457 nT 
and 5 − Dst1 < 457 nT. For cycles 14–18, the geometric mean of − Dst1 is 547 nT, but for cycles 19–24, it is 
much lower at 393 nT. Student's t test (e.g., Bohm & Zech, 2010, Chapter 3.6.11; Press et al., 1992, Chapter 
6.2) gives p = 0.125 that the means for cycles 14–18 and cycles 19–24 would arise from two distributions 
with the same mean. The geometric mean of −Dst2 for cycles 14–18 is 390 nT, but for cycles 19–24, it is lower 
at 307 nT; Student's t test gives p = 0.153. As with the Kolmogorov-Smirnov tests, these probabilities, for the 
geometric means of either −Dst1 or −Dst2, are of marginal significance, insufficient to comfortably dismiss 
the possibility that it is only a statistical fluke that storms were more intense during cycles 14–18 than dur-
ing cycles 19–24. Again, the data do not provide persuasive statistical evidence of a long-term systematic 
change (over the past 11 solar cycles) in storm intensity.

A related issue is possible correlation between cycle-maximum storm intensity −Dst1 and sunspot num-
ber. As we already noted, and as is well known, the probability of intense storms is modulated roughly 
in correlation with the rise and decline in sunspot number with each solar cycle, though there are excep-
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tions to this rule—notably, the storm of October 1903 came very early in cycle 14 (e.g., Hayakawa, Ribeiro, 
et al., 2020). However, our interest here is not the details of intra-cycle modulation but, rather, a possible 
long-term relationship between cycle-maximum storm intensity and sunspot number. In Figure 1c, we plot 
daily RD, monthly average RM, and 13-month running average R13 sunspot number for solar cycles 14–24 
(Clette et al., 2014; SILSO World Data Center, 1902-2016). In Table 1, we list sunspot number RD−2 for 2 days 
before each −Dstm, and we list RM and R13, for each −Dstm. We calculate the Pearson correlation coefficient 
(e.g., Press et al., 1992, Chapter 14.5) between these sunspot numbers and −Dst1. For RD−2, the correlation 
is small and, possibly surprisingly, negative, −0.154, but the probability that such a correlation coefficient 
could be realized from random data, is large, p = 0.651. For RM (R13) and −Dst1, the correlation coefficient is 
−0.352 (−0.360), and p = 0.288 (p = 0.275). None of these correlations can be deemed significant.

A similar insignificant correlation is found by Kilpua et al. (2015) between aa and sunspot number. They 
interpreted this as due to a small-scale turbulent dynamo process in the Sun, one that is only indirectly 
related to the generation of sunspots. Indeed, we note that energetic solar flares (and, therefore, CMEs) 
most frequently originate in active regions with complex heliomagnetic polarity structures (fragmenta-
tion, helicity) (e.g., Lefèvre et  al.,  2016; Sammis et  al.,  2000). CMEs can also originate in disappearing 
filaments, sometimes at locations in the corona rather far removed from active regions (e.g., Gopalswamy 
et al., 2010; Webb et al., 2000); an example of a storm generated by such a CME is that of November 1991 
(e.g., Cliver et al., 2009), −Dst2 = 366 nT. These several factors are not well measured by sunspot number, 
and, therefore, we appreciate that sunspot number is not likely to be tightly correlated with cycle-maxi-
mum magnetic storm intensity. Multiply this by the fact that the geoeffectiveness of a CME, and, therefore, 
storm intensity, depends on solar-wind velocity, density, and interplanetary magnetic field (IMF) strength 
and orientation, quantities that, themselves, evolve as the CME traverses the Sun-Earth distance. It is, 
therefore, unsurprising that the intensities of the most intense storms are not well correlated with sunspot 
number.

8. Stochastic Processes
Since our dataset of the most intense and second most intense storms, −Dst1 and −Dst2, for each solar cycle 
are ranked samples from a larger set of storm-maximum −Dstm values, in considering candidate statistical 
models of −Dst1 and −Dst2, we first consider candidate statistical models of the source −Dstm values. The 
most conventional model used in extreme-value statistical analyses is the power-law. For positive random 
data {x > μ} that are power-law distributed, the probability density and cumulative functions are
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( ; , ) ( ; ) 1 1 ( ; , )
x xP x p d P x (3)

(e.g., Clauset et  al.,  2009; Newman,  2005; Sornette,  2006), where μ is a location parameter, ξ is a shape 
parameter, ξ > 0, and  ( ; , )P x  is the complementary cumulative. Some physical systems that exhibit pow-
er-law statistics can be described in terms of self-organizing criticality (SOC), whereby a system evolves to 
an unstable state that collapses only to evolve again to a similarly unstable state (e.g., Aschwanden, 2011; 
Sornette, 2006; Turcotte, 1999). In the storm-time magnetosphere, SOC is associated with the buildup of 
magnetic field at the magnetopause and in the magnetotail that is abruptly rearranged with reconnection 
(e.g., Angelopoulos et al., 1999; Chang, 1999). Power-law statistics are found in numerical simulations of 
substorm dynamics (e.g., Klimas et al., 2000; Uritsky & Pudovkin, 1998) and in some analyses of ground-lev-
el geomagnetic data (e.g., Balasis et  al.,  2009; Pulkkinen et  al.,  2006; Wanliss,  2005). Power-law models 
have been used to describe extreme-value storm intensities (e.g., Kataoka,  2013; Riley,  2012; Yermolaev 
et al., 2013), but the occurrence probabilities of the very most extreme intensities are often overestimated by 
power-law models (e.g., Riley, 2018, Figure 2).
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A lognormal model is sometimes assumed to represent the statistics of storm-maximum intensities (e.g., 
Haines et al., 2019; Lockwood, Owens, et al., 2018; Love et al., 2015; Pulkkinen et al., 2012). For positive 
random data {x} that are lognormally distributed, the probability density function is

 


 
  

  

2

22

1 (ln )( ; , ) exp ,
22

xl x
x

 (4)

where lnx is the natural logarithm of x, and μ is the lnx-population mean, a location parameter, and σ2 is the 
lnx-population variance, a scale parameter. The cumulative function is

       


 
     

 

0

1 1 ln( ; , ) ( ; , ) erf 1 ( ; , ),
2 2 2

x xL x l d L x (5)

and where  ( ; , )L x  is the complementary cumulative. Use of a lognormal model is often justified by ap-
pealing to the central limit theorem, under which a lognormal process arises from the multiplication of ran-
dom variables generated by independent underlying processes (e.g., Crow and Shimizu, 1988; Marshall & 
Olkin, 2007; Mitzenmacher, 2004; Sornette, 2006). Recognizing this, we note that the solar-wind variables of 
velocity, density, and IMF magnetic field strength display lognormal properties (e.g., Burlaga, 2001; Burlaga 
& Lazarus, 2000; Veselovsky et al., 2010). It is tempting to imagine a lognormal process for storm-maximum 
intensities as arising from a multiplicative combination of solar-wind variables that plausibly govern the 
geoeffectiveness of solar-wind-magnetospheric coupling (e.g., Newell et al., 2007). However, even if spatial 
and temporal correlations in solar-wind variables could be removed through sampling, so as to render a sta-
tistical subset of the solar-wind data, the response of the magnetospheric-ionospheric system to solar-wind 
forcing is nonlinear (e.g., Vassiliadis et al., 1995), and, therefore, the statistical association of −Dstm with 
solar-wind variables is not straightforward.

Both the power-law and the lognormal functions asymptotically approach zero in the extreme-value limit,

 
 lim ( ) 0 and lim ( ) 0,

x x
L x P x (6)

but the nature of these two distributions is distinctively different as this limit is approached. The distin-
guishing property of the power-law distribution is its “regular-variation” or “self-similarity,” with any one 
part of the distribution resembling another part under rescaling by a multiplicative factor r,
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On the other hand, the lognormal distribution is not regularly varying at infinity,
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and the tail of the lognormal approaches zero more rapidly than that of the power law,


 

( )lim .
( )x

P x
L x

 (9)

In other words, for given fits to data, { μ, ξ } and { μ, σ}, extrapolated occurrence probabilities will be higher 
for power-law models than for lognormal models. Although we regard these observations as important, we 
remain mindful of the possibility that storm statistics are not described by either power-law or lognormal 
processes.
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We can, furthermore, consider the possibility that magnetic storm intensity has an upper limit. Ring-cur-
rent intensity is likely saturated when a balance is attained between plasma pressure within the magne-
tosphere and the pressure of the magnetic dipole (Vasyliūnas, 2011). With such a balance, the greatest 
possible value for −Dstm is approximately 2500 nT, far higher than anything that has been observed. 
Following on from our discussion of a lognormal process, then, we might assume that magnetic storm 
intensities are realized from an upper-limit lognormal process (e.g. Love,  2020), where the variable 
{ln[ / ( )]}x x   is normally distributed, and {0 < x < υ} is domain-right-limited, with probability density 
function,
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x x
u x

x x
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The corresponding cumulative function is
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(Bezdek & Solomon, 1983; Mugele & Evans, 1951). An interesting comparison is of the upper-limit lognor-
mal distribution with a scaled beta distribution, for which the probability density function is
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(e.g. Johnson et al., 1995, Chapter 21), where  ( , )  is the beta function (e.g. Spanier & Oldham, 1987, 
Chapter 58), and where α, β > 0. The corresponding cumulative function is

              
0

( ; , , ) ( ; , , ) ( , ) 1 ( ; , , ),
x

xB x b d I B x (13)

where Ix(α, β) is the regularized incomplete beta function. Near the right endpoint, the properties of the 
upper-limit lognormal,
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are antisymmetric to those of the lognormal (8). On the other hand, near the right endpoint, the beta distri-
bution is regularly varying,
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and so, as the right endpoint is approached, the beta distribution is similar to a power-law (7) (e.g., Embre-
chts et al., 1997, example 3.3.17). And, furthermore, in symmetry with Equation 9,





 


( 1 / )lim .
( 1 / )x

B x
U x

 (16)

In other words, for given fits to data, {α, β, υ} and {μ, σ, υ}, extrapolated occurrence probabilities for in-
tensities approaching the right endpoint will be higher for beta models than for upper-limit lognormal 
models.

LOVE

10.1029/2020SW002579

11 of 25



Space Weather

9. Models for Block-Maximum Samples
As we discuss in Section 4, our ranked −Dst1 and −Dst2 data values are a solar cycle-by-cycle (block-by-
block) down-sampling of the Dst time series. This removes most of the autocorrelation, giving us a dataset 
suitable for statistical analysis. But how are our hypotheses that magnetic storm intensities −Dstm might be 
the result of a lognormal or power-law source processes, or upper-limit lognormal or beta source processes, 
reflected in the statistical properties of the −Dst1 and −Dst2 samples? Extreme-value theory provides us 
with an answer to this question. Under the Fisher-Tippett-Gnedenko theorem (Albeverio & Piterbarg, 2006, 
Section 3.2.1; Davison & Huser, 2015, Section 2; Gomes & Guillou, 2015, Section 2.1), the generalized ex-
treme-value distribution (GEV) (e.g., Bali,  2003; Walshaw, 2013) describes block maxima samples taken 
from an extremely wide variety of source distributions. For positive data {x} that are GEV distributed, the 
probability density function is
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and the cumulative function is
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The GEV distribution has been applied in a diversity of scientific projects (e.g., Ghil et al., 2011), in statisti-
cal analyses of space-weather phenomena (e.g., O'Brien et al., 2007; Tsiftsi & De la Luz, 2018), and, in par-
ticular, in statistical analyses of magnetic storm intensities (e.g., Chen et al., 2019; Elvidge, 2020; Love, 2020; 
Nikitina et  al.,  2016; Woodroffe et  al.,  2016). The GEV distribution is certainly useful for parameter ex-
ploration. Since block-maximum samples taken from the tail of practically any source distribution can be 
modeled by the GEV distribution, it can also be used without hypothesizing a source process (Hewitt, 1970, 
p. 343), but this is something we want to avoid.

Formal statistical hypothesis testing can be performed by comparing special cases of the GEV distribution 
with data. Depending on the shape parameter, ξ, the GEV distribution reduces to one of three special cases,
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We note the scaling properties
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from which we understand that the Fréchet distribution is both domain-unlimited to the right and regu-
larly varying at infinity. And, under the Fisher-Tippett-Gnedenko theorem, block-maximum samples taken 
from a right-unbounded source distribution that is regularly varying at infinity will be Fréchet distribut-
ed. The Weibull distribution is domain-right-limited, with maximum value at υ = μ − σ/ξ, and regularly 
varying at that right endpoint; samples taken from a right-limited source distribution that is regularly 
varying at its right endpoint will be Weibull distributed. The Gumbel distribution is right-unbounded and 
not regularly varying at infinity. Notably, samples taken from a right-unbounded distribution that is not 
regularly varying at infinity, or samples taken from a right-limited distribution that is not regularly varying 
at its right endpoint, will be Gumbel distributed (e.g., Albeverio & Piterbarg, 2006, Chapter 3.2.1; Alves & 
Neves, 2014).

In light of our discussion in Section 8, we understand that block-maximum samples from a power-law 
source distribution will be Fréchet distributed—the power-law distribution is said to be in the “domain 
of attraction” of the Fréchet distribution (e.g., Embrechts et al., 1997, Example 3.3.31; Ferreira, 2009; 
Walshaw,  2013). Block-maximum samples taken from a beta source distribution will be Weibull dis-
tributed—the beta distribution is in the Weibull domain of attraction. Block-maximum samples taken 
from either a lognormal distribution, or a upper-limit lognormal source distribution, will be Gumbel 
distributed—both the lognormal and upper-limit lognormal distributions are in the Gumbel domain of 
attraction. We note that the Fréchet and Gumbel distributions have both been used in some statistical 
analyses of magnetic storms (e.g., Silbergleit,  1997; Weigel & Baker,  2003). The Weibull distribution 
has also been used in some statistical analyses of magnetic storms (e.g., Gopalswamy,  2018; Moriña 
et al., 2019; Watari et al., 2001), though, so far as we can tell, without invoking a specific underlying 
source process.

10. Framework for Ranked Samples
For our statistical analysis, we need to develop a framework for ranked data. For pairs of samples {x1 > x2}, 
each taken from blocks of data, the conditional GEV probability density function for x2 given x1 is
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and the joint density function for x1 and x2 is
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(e.g., Chandler, 1952; Nagaraja, 1982; Solow & Beet, 2004). The marginal density and cumulative functions 
for x1 are just those of the GEV distribution,
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For x2, the marginal density function is
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and the marginal cumulative function is
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11. Maximum-Likelihood Estimation
We fit models to the solar-cycle-ranked −Dst1 and −Dst2 data listed in Table 1 using the maximum-likeli-
hood method (e.g., Bohm and Zech, Chapter 6.5, 2010, Chapter 6.5; Roe, 2001, Chapter 13.2). We consider 
three different types of models: (1) a Gumbel model, obtained by fitting the parameters {μ, σ} with the shape 
parameter ξ = 0, (2) an unconstrained GEV model, obtained by fitting {μ, σ, ξ} with ξ treated as a free pa-
rameter, (3) a constrained Weibull model, obtained, as a special-case of a GEV model, by fitting {μ, σ} with ξ 
determined by μ − σ/ξ = υ = 2500 nT, the theoretical maximum intensity that could possibly be realized for 
a magnetic storm (Vasyliūnas, 2011). Each model fitted to the data maximizes the joint likelihood
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We use a simplex algorithm (e.g., Press et al., 1992, Chapter 10.4) to maximize  and, thereby, obtain the 
maximum-likelihood parameters.

12. Comparisons of Models
In Figure 2, we show complementary cumulatives of the −Dst1 and −Dst2 intensities for the 11 solar cy-
cles 14–24 and complementary cumulatives of the Gumbel, 1G  and 2G , the unconstrained GEV, 1Γ  and 2Γ , 
and the constrained Weibull, 1W  and 2W  models, each fitted using the joint probability density function, 
Equation 24. We also list in Figure 2 in tabular form Gumbel, GEV, and Weibull model estimates of the 
probabilities that solar-cycle maximum intensity −Dst1 will exceed a range of thresholds, 500, 565, 600, …, 
1000 nT. The maximum-likelihood parameters for the Gumbel model are μ = 401 nT, σ = 128 nT. From 
these parameters, we can calculate model moments (e.g., Forbes et  al.,  2011, Chapter 19): the mode of 
−Dst1 (the most likely value) is μ; the mean of −Dst1 is μ  +  ϵσ  =  475  nT, where ϵ ≃  0.577 is the Eul-
er-Mascheroni constant; the median of −Dst1 is μ  −  σ ln(ln 2)  =  448  nT; for this model, the theoretical 
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maximum value is infinite. The maximum-likelihood parameters of the 
unconstrained GEV model are μ = 401 nT, σ = 129 nT, with a tiny shape 
parameter ξ = −0.018. From these parameters, we can calculate model 

moments: the mode of −Dst1 is          ( / ) (1 ) 1 404 nT; the 

mean of −Dst1 is        ( / ) ( ) 1 1 473 nT, where Γ is the Gam-

ma function; the median of −Dst1 is        ( / ) (ln(2)) 1 448 nT; 

each of these GEV moments is very similar to the corresponding Gumbel 
moments. Perhaps more interesting is the fact that the GEV estimated ξ 
is slightly negative. This implies a Weibull-type distribution with a maxi-
mum storm intensity of μ − σ/ξ = 7522 nT, far higher than the theoretical 
maximum of 2500 nT. The maximum-likelihood parameters of the con-
strained Weibull model, with a maximum storm intensity set at 2500 nT, 
are μ = 403 nT, σ = 130 nT, ξ = −0.062, for which the mode is 411 nT, the 
mean is 470 nT, and the median is 450 nT.

Qualitatively, all three models are good representations of the data, espe-
cially when considering the data's scatter. Among the three models, the 
Gumbel shows the heaviest distributional tail. The constrained Weibull 
model shows the lightest distributional tail. The tail of the unconstrained 
GEV model is tucked in between the tails of the Weibull and Gumbel 
models. Given these simple observations, one might reasonably won-
der whether or not standard statistical tests can actually tell us which 
of the three models is best. Bootstrap resampling (e.g. Boos, 2003; Efron 
& Tibshirani, 1993) can quantify model uncertainty. We take solar-cycle 
−Dst1 and −Dst2 pairs as a population, which we sample with replace-
ment. We fit each sample with a GEV model, obtaining, in each case, a 
new estimate of the shape parameter ξ. From numerous resamplings and 
refittings, we obtain a bootstrap set {ξ}. The (centered) 68% confidence 
interval is [−0.429, 0.136]. This statistical spread is wide enough that we 
cannot be especially confident in the ξ = −0.018 estimate for the shape 
parameter. That the 68% interval ranges from negative to positive values 

means that that the cycle-ranked −Dst1 and −Dst2 data are, on a simple statistical basis, insufficient for 
discriminating between a (ξ > 0) right-unbounded, regularly varying Fréchet model, a (ξ < 0) right-limited, 
regularly varying Weibull model, or a (ξ = 0) right-unbounded, nonregularly varying Gumbel model.

The relative goodness of a model fitted to data is often measured by comparing likelihoods (e.g., Bohm & 
Zech, 2010, Chapter 10.3.4). The Gumbel, GEV, and Weibull models, respectively, have ln( )  of 129.007, 
129.002, 129.039 (units, here, are not relevant). The Weibull model has the highest likelihood. To investigate 
whether or not this is significant, as before, we perform a bootstrap analysis, repeatedly sampling with re-
placement the solar-cycle −Dst1 and −Dst2 pairs, fitting models to each sample, and accumulating log-like-
lihood bootstrap sets {ln( )}  for each model type. From these sets, we obtain 68% confidence intervals on 
ln( )  for each model type. For the Weibull model, the interval is [121.921, 131.280], which is very wide 
compared to differences between the log-likelihoods of the three models. The intervals for the other models 
are similarly wide. From this, we understand that all three models are close to equally good representations 
of the cycle-ranked −Dst1 and −Dst2 data.

Next, we consider statistical significance. Would data that are statistically similar to those that we have 
be likely realizations of any of the fitted models? To answer this question, we turn, again, to the Kolmog-
orov-Smirnov test, but we recognize that it is circular to estimate significance with the same data used 
to estimate a model's parameters (e.g. Chave, 2017, Chapter 8.2.4; Corral & González, 2019, Section 3.2; 
Steinskog et al., 2007), therefore, we turn to bootstrap resampling. Treating each model as a “hypothesis,” 
we take multiple random bootstrap samplings with replacements of solar-cycle pairs −Dst1 and −Dst2, each 
time calculating a Kolmogorov-Smirnov p-value against the model. For each model, the median p-value 
of the resamplings is a suitable estimate of significance (e.g., Clauset et  al.,  2009, Section 3.4; Corral & 
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Figure 2. Complementary cumulatives of the cycle-ranked −Dst1 and 
−Dst2 data (solar cycles 14–24) and complementary cumulatives of fitted 
models: Gumbel G (green, brown), GEV Γ (black, gray, with ξ treated as 
a free parameter), and constrained Weibull W (red, blue, with ξ such that 
the right limit ν = 2500 nT), each for parameters μ, σ, ξ that maximize 
the likelihood , Equation 29, for the joint density function given by 24. 
Also listed are the 68% confidence interval for ξ for the GEV model, 
log-likelihoods ln( )  for all three models, Kolmogorov-Smirnov p-values, 
separately for −Dst1 and −Dst2, and model estimates of the probabilities 1G , 

1Γ , and 1W  that solar-cycle maximum intensity −Dst1 will exceed a range of 
thresholds, 500 nT, … 1000 nT.
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González, 2019, Section 3.2; Steinskog et al., 2007). The median p-values 
for −Dst1 and for the Gumbel, GEV, and Weibull models are, respectively, 
0.424, 0.350, 0.386; for −Dst2, they are 0.383, 0.332, 0.336. These probabil-
ities are not small enough to motivate rejection of any of the three models 
as descriptions of the cycle-ranked −Dst1 and −Dst2 data.

Since the statistical tests do not allow us to confidently discriminate be-
tween the various extreme-value models, we understand that we cannot 
draw inferences about the nature of the source distribution. As far as we 
can tell, any one of power-law, lognormal, upper-limit lognormal, or beta 
sources could give the −Dstm from which we block sample for −Dst1 and 
−Dst2 data values. At this point, we recall the challenges we discuss in 
Section 6 in identifying the most intense storms for solar cycles 14–16. 
There, we accepted the fact that our compiled −Dst1 and −Dst2 data val-
ues for cycles 14–16 should be regarded as lower bounds because there 
is a (possibly slim) chance that we missed more intense storms. Bearing 
that in mind, we note, from Figure 2, that this choice makes little differ-
ence for storm intensities across a range of, say, 500–700 nT—all three 
models give similar −Dst1 probabilities across that range. On the other 
hand, for greater storm intensities, such as −Dst1 > 900 nT, differences 
between the three models are more significant. For a storm as intense 
as −Dst1 > 1000 nT, the Gumbel model gives an occurrence probability 
of 0.010/cycle. The constrained Weibull model gives an occurrence prob-
ability of 0.005/cycle, half that of the Gumbel. Therefore, seeking not to 
exaggerate the storm probabilities, in what follows, we chose to empha-
size results from the model that gives the lowest extreme-value storm 
probabilities: the Weibull model that is constrained to be right-limited for 
storm intensities at 2500 nT.

13. Storm Occurrence Rates
In Figure 3a, we show complementary cumulatives of the −Dst1 and −
Dst2 intensities for solar cycles 14–24 and complementary cumulatives of 
the constrained Weibull model, 1W  and 2W , fitted using the joint probabil-
ity density function, Equation 24. We list in tabular form Weibull-mod-
el estimates of the probabilities 1W  that solar-cycle maximum intensity 
−Dst1 will exceed a range of thresholds, 500, 565, 600, …, 1000 nT. We also 
show and list the corresponding 68% confidence intervals obtained from 
bootstrap resampling of −Dst1 and −Dst2 pairs and fitting a Weibull mod-
el to each sampling. Note, in particular, the probability that −Dst1 will 
exceed 500  nT is 1 0.384W /cycle, corresponding to an average return 
rate of just 2.6 solar cycles. The corresponding 68% confidence interval 
is [0.253, 0.456]/cycle. In Figure 3b, we show Weibull models fitted, in-
dependently, to the −Dst1 intensities and the −Dst2 intensities, using a 
likelihood function constructed from the (nonjoint) Weibull density func-
tion given by Equation 17. As noted by Solow and Beet (2004), a nonjoint 
fitting does not exploit the information content of ordering in the data, 
that is, the information content of the conditional probability of −Dst2 
given −Dst1; but this is essentially what was done in some previous inves-

tigations (e.g., Siscoe, 1976a; Willis et al., 1997). For −Dst1 > 500 nT storms, the probability of the nonjoint 
model is 1 0.395W /cycle, which is similar to the 0.384/cycle value obtained for the joint model, Figure 3a. 
Differences are greater farther out on the Weibull tail. For −Dst1 > 1000 nT storms, the nonjoint probability 
is 1 0.010W /cycle, or twice as high as the 0.005/cycle value obtained for the joint model. Evidently, the 
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Figure 3. Complementary cumulatives of the cycle-ranked − Dst1 and − 
Dst2 data and complementary cumulatives of fitted constrained Weibull 
W (red, blue), each for parameters μ, σ, ξ that maximize the likelihood 
, Equation 29, with ξ such that the right limit υ = 2500 nT. (a) Models 
fitted to − Dst1 and − Dst2 (solar cycles 14–24) and using the joint density 
function given by 24. (b) Models are fitted independently to − Dst1 
and − Dst2 (cycles 14–24) using the non-joint density function given 
by 17. (c) Models fitted to − Dst1 and − Dst2 (separately for cycles 14–18, 
cycles 19–24, and cycles 14–24 as dashed line) using the joint density 
function given by 24; here, for purposes of clarity, fits to − Dst2 are not 
shown. Listed are model estimates of the probabilities 1W  that solar-cycle 
maximum intensity − Dst1 will exceed a range of thresholds, 500 nT, 
⋅⋅⋅ 1000 nT, corresponding 68% confidence intervals, and Kolmogorov-
Smirnov p-values, separately for − Dst1 and − Dst2.
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joint-probability model, Figure 3a, gives more conservative estimates of future superstorm occurrence prob-
abilities than the nonjoint model, Figure 3b.

In Figure 3c, we show results for a bisection test, fitting −Dst1 and −Dst2 separately for solar cycles 14–18 
and for cycles 19–24; for clarity, we only show complementary cumulatives for −Dst1 and 1W  even though, 
as in Figure 3a, we are fitting Weibull models using the joint density function that includes −Dst2. We re-
call, from Section 7, that neither a Kolmogorov-Smirnov test nor a Student's t test is sufficient to reject the 
possibility that −Dst1 and −Dst2 values from cycles 14–18 and values from cycles 19–24 are both taken the 
same distribution. Still, in Figure 3c, we see practical differences in the fitted Weibull models. For cycles 
14–18, the probability of a −Dst1 > 500 nT storm is 0.492/cycle, but for cycles 19–24 the probability is 0.216/
cycle. As we have already noted, from Figure 3a, modeling data for cycles 14–24 (inclusive of several intense 
pre-IGY storms) yields a probability for −Dst1 > 500 nT storm of 0.384/cycle. This is 78% higher than the 
probability (0.216/cycle) obtained by only modeling data for cycles 19–24. We recall from Section 6 that −
Dst1 and −Dst2 for cycles 14–16 should be regarded as lower bounds. If there were storms more intense for 
those cycles, more intense than we list in Table 1, then the methods we use here would yield higher −Dst1 
> 500 nT probabilities.

14. Probability of 1859, 1921, 1989 Storms
The Carrington event of September 1859 is recognized as a superstorm (e.g., Cliver & Dietrich, 2013; Hayak-
awa, Ebihara, Wills, et al., 2019). It brought widespread interference to telegraph systems (e.g., Boteler, 2006) 
and caused low-latitude aurora (e.g., Green et al., 2006), but its absolute intensity is uncertain. Only one 
low-latitude observatory, that of Colaba (CLA), India, reported a complete record of the storm (Tsurutani 
et al., 2003). The CLA record has been used to estimate a peak Carrington intensity of −Dst1 = 850 nT (Sis-
coe et al., 2006) and −Dst1 = 1050 nT (Gonzalez et al., 2011), even though it is understood that local-time 
asymmetry in low-latitude geomagnetic disturbance, caused, for example, by field-aligned currents, can re-
sult in local disturbance being low or high relative to a mean disturbance level from multiple observatories. 
If we accept the intensity estimates for the Carrington event, then it and the magnetic storm of May 1921 
are the only two storms over the past 15 solar cycles (10 through 24) with −Dst1 > 900 nT. From our Weibull 
model, a storm of such intensity has an occurrence probability of 1 0.013W /cycle (average return rate of 
76.9 cycles). That is a low probability, something also noted by Moriña et al. (2019).

For perspective, we note that the bootstrap (centered) 68% confidence interval on the Weibull occurrence 
probability for storms with −Dst1 > 900 nT, from Figure 3a, is [0.004, 0.027]/cycle. The upper threshold on 
this interval, 0.027/cycles, corresponds to a return rate of 37.0 cycles. The 68% confidence interval means 
that there is a one-sided probability of 16% that the per-cycle probability is greater than 0.027/cycles (and 
that the return rate is less than 37.0 cycles). A more rigorous check can be obtained with a Kolmogor-
ov-Smirnov test. Here, we use the Weibull model fitted to the −Dst1 and −Dst2 data from cycles 14–24, ex-
actly as in Figure 3a, but, for the Kolmogorov-Smirnov test, we add a 12th −Dst1 value of 850 nT, similar to 
the Carrington intensity. Then, as in Section 12, we obtain a set of bootstrap p-values. The median of these 
is 0.325, only slightly lower than the 0.386 median value obtained using only data from cycles 14–24. This 
is not small enough to motivate the Weibull model's rejection, even for a rare Carrington intensity. In this 
light, and recalling that we chose to focus on Weibull models because they give lower maximum-likelihood 
probabilities than the Gumbel and unconstrained GEV models, we understand that the historical occur-
rence of the Carrington event cannot be viewed as necessarily inconsistent with our modeling.

Regarding the March 1989 storm (−Dst1 = 565 nT), the most intense storm since the IGY, we note from 
Table 1 that, over solar cycles 14–24, only the September 1909 and May 1921 storms had, to our knowledge, 
higher intensities. In extending the span of −Dst1 and −Dst2 from solar cycles 19–24 (IGY and afterward) 
to cycles 14–24 (inclusive of several pre-IGY superstorms), from Figures 3a and 3c, our estimate of the 
probability of a −Dst1 > 565 nT storm is higher by 126%, from 0.118/cycle (average return rate of 8.47 cycles) 
to 0.246/cycle (return rate of 4.1 cycles). We recall from Section 6, that our −Dst1 and −Dst2 intensities for 
cycles 14–16 should be regarded as lower bounds. If there were storms more intense for those cycles, then 
the methods we use here would yield a higher probability for the occurrence of a 1989-like storm. For now, 
we can say that previous suggestions that the March 1989 storm was, essentially, a once-per-century storm 
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(e.g., Boteler, 2019; Love et al., 2018; Pulkkinen et al., 2012) appear to be “optimistic”—a storm of such 
intensity apparently occurs about every 45 years.

15. Once-Per-Century Storm Intensity
To estimate storm intensity for a given exceedance probability, we invert Equation 18 to obtain the quantile 
function,
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We can use this to estimate the intensity of a “once-per-century” storm. Assuming that each solar cycle 
is 11 years in duration, 9 cycles equals about 99 years. For Γ 1 / 9 and using the maximum-likelihood 
parameters for the Weibull model obtained by fitting −Dst1 and −Dst2 for solar cycles 14–24, we obtain a 
once-per-century intensity of −Dst1 = 663 nT and a corresponding bootstrap 68% confidence interval of 
[497, 694] nT. We recall, again, the ambiguity in the rankings of storm intensities for cycles 14–16. Using our 
methods with storms more intense for cycles 14–16 would yield a higher once-per-century storm intensity.

16. Discussion and Conclusions
Our cycle-ranked extreme-event analysis of −Dst1 and −Dst2 represents a more complete exploitation of the 
available data than previous analyses that only use cycle-maxima −Dst1 (e.g., Love, 2020; Silbergleit, 1997). 
Our extension of the number of solar-cycle ranked −Dstm intensities to cover cycles 14–24 (1902–2016) is, 
we might expect, a better representation of extreme-value storm intensities than the −Dstm values taken 
from shorter intervals, such as the post-IGY interval covering cycles 19–24 (1957–2016) and used in some 
previous analyses (e.g., Love, 2020; Riley & Love, 2017; Silbergleit, 1997; Tsubouchi & Omura, 2007; Yer-
molaev et al., 2013). Notably, the extended dataset encompasses several storms with −Dstm > 500 nT (1903, 
1909, 1921, 1946) that occurred before 1957, whereas only two such storms (1989 and 2003) occurred after 
1957. Although significance tests tell us that we cannot reject the possibility that this difference is just a 
statistical fluke, Section 7, the difference is real, and it affects estimates of the occurrence probabilities of 
future intense storms. We recall, for example, from Section 14 and Figure 3, that using the extended dataset 
yields a maximum-likelihood probability for a storm as intense as that of 1989 of 0.246/cycle (return rate 
of 4.1 cycles). This is more than twice as high as the probability obtained using the same methods and the 
shorter standard 1957–2016 dataset.

Such results generate interest in obtaining additional estimates of storm intensities. We recall, from Sec-
tion 6, that there is some (possibly slight) ambiguity in the rankings of storm intensities for cycles 14–16. 
This ambiguity is why we have noted that, using the same methods, but storms more intense than those 
identified for cycles 14–16, would yield a higher once-per-century intensity and a higher probability for a 
−Dstm > 565 nT storm. Opportunities for improvement in statistical analyses like that reported here might 
come by pushing the storm-intensity compilation back to even earlier solar cycles, though this entails chal-
lenges. Consider, for example, solar cycle 13. The storm of February 1892, *

1 249.6AA  nT, was one of that 
cycle's most intense storms (e.g., Superintendent of the U.S. Naval Observatory, 1892). It was completely 
recorded at Colaba (CLA), India (Moos, 1910, Plate 81 D), San Fernando (SFS), Spain (Instituto y Observato-
rio de Marina, 1893), and Zi-Ka-Wei (ZKW), China. In contrast, the storm of August 1894 (e.g., Finn, 1894), 

*
3 193.6AA  nT, was completely recorded at CLA (Moos, 1910, Plate 81 H), but it was not at SFS and not 

at ZKW, per yearbooks. We know of no observatory record for either of these storms from the American 
sector. One could probably reliably estimate −Dstm for the first storm, but, with a recording from only one 
observatory, estimating −Dstm for the second storm is more problematic.

Finally, from Section 8, we recall our discussion of several candidate stochastic source processes that might 
describe storm-maximum intensities. On physical grounds, we prefer those source processes with associat-
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ed distributions that are right-limited—storms of infinite intensity are not possible, and so the distribution 
describing extreme storm intensities should reasonably accommodate an upper limit. Such distributions 
might be either regularly varying, a property that can arise from self-organized critical processes, or they 
might be nonregularly varying, a property that can arise from the multiplicative action of multiple random 
processes. We recall, from Section 9, that block samples of right-limited, regularly varying data are Wei-
bull distributed, while block samples from right-limited, non-regularly varying data are Gumbel distributed 
(though the Gumbel, itself, is not right-limited). And we recall, from Section 12 and Figure 2, that a Gumbel 
model and a Weibull model (one constrained to have a theoretical upper limit of 2500 nT) both provide 
good representations of the cycle-ranked −Dst1 and −Dst2 data, and, therefore, we are not able to discrim-
inate between source processes that are regularly varying or not regularly varying. This issue is important 
for accurately predicting the probabilities of the most extremely intense magnetic storms, differences in 
the far-end tails of the candidate models, for storm intensities of (say) −Dst1 > 1000 nT, can be a factor of 
two. Seeking not to overstate storm probabilities, we chose to emphasize the constrained Weibull model 
in this report since it gives lower probabilities than the Gumbel. We wonder if physics-based theories or 
simulations might better inform the most appropriate statistical model of extreme-value storm intensities 
or the theoretical upper-limit on storm intensity. If we knew that the Gumbel model is appropriate for cycle 
ranked −Dstm, possibly because the source distribution is upper-limit lognormal, then the probabilities of 
the most extreme storms, estimated using the data in Table 1, would be higher than those reported here. On 
the other hand, if we knew that the Weibull model is appropriate, but that the theoretical upper limit on 
storm intensity is less than the 2500 nT that Vasyliūnas (2011) estimates, then the probabilities of the most 
extreme storms, estimated using the data in Table 1, would be lower than those reported here. Either way, 
we see opportunities for physics-based theories to further advance statistical analyses of extremely intense 
magnetic storms and to better predict the probabilities of their future occurrences.

Data Availability Statement
The standard Dst index is available from the Kyoto WDC (wdc.kugi.kyoto-u.ac.jp). The Oulu Dst index is 
available from the University of Oulu, Finland (dcx.oulu.fi). Historical observatory hourly data are available 
from the Kyoto WDC and the Edinburgh WDC (www.wdc.bgs.ac.uk). We used observatory yearbooks from 
the USGS, the National Oceanic and Atmospheric Administration, the Linda Hall Library, Kansas City, Mis-
souri, the National Diet Library Digital Collections, Japan (dl.ndl.go.jp), and google.com. The homogene-
ous aa index is available as a supplement to Lockwood, Chambodut, et al. (2018) (https://doi.org/10.1051/
swsc/2018038). Sunspot numbers are available from the WDC-SILSO (sidc.be/silso), Royal Observatory of 
Belgium, Brussels.
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