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and occasional extreme drought, coincident with
fires in the tropics, represent the greatest risks
to the continued large C sink in the world’s for-
ests (21, 24, 30, 37). A better understanding of
the role of forests in biosphere C fluxes and mech-
anisms responsible for forest C changes is critical
for projecting future atmospheric CO, growth
and guiding the design and implementation of
mitigation policies.
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Detection of Emerging Sunspot
Regions in the Solar Interior

Stathis llonidis,* Junwei Zhao, Alexander Kosovichev

Sunspots are regions where strong magnetic fields emerge from the solar interior and where major
eruptive events occur. These energetic events can cause power outages, interrupt telecommunication
and navigation services, and pose hazards to astronauts. We detected subsurface signatures of
emerging sunspot regions before they appeared on the solar disc. Strong acoustic travel-time anomalies
of an order of 12 to 16 seconds were detected as deep as 65,000 kilometers. These anomalies were
associated with magnetic structures that emerged with an average speed of 0.3 to 0.6 kilometer per
second and caused high peaks in the photospheric magnetic flux rate 1 to 2 days after the detection of
the anomalies. Thus, synoptic imaging of subsurface magnetic activity may allow anticipation of large
sunspot regions before they become visible, improving space weather forecast.

nderstanding solar magnetism is among
the most important problems of solar phys-
ics and astrophysics (/—5). Modem theo-
ries assume that sunspot regions are generated by
a dynamo action at the bottom of the convection
zone, about 200 Mm below the photosphere. How-
ever, there is no convincing observational evidence
to support this idea, and dynamo mechanisms op-
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erating in the bulk of the convection zone or even
in the near-surface shear layer have been pro-
posed as well (6, 7). Investigation of emerging
magnetic flux could possibly determine the depth
of this process and set the foundations for a better
understanding of sunspots and active regions.

Active regions on the Sun produce flares and
mass eruptions that may cause power outages
on Earth, satellite failures, and interruptions of
telecommunication and navigation services. Moni-
toring solar subsurface processes and predict-
ing magnetic activity would also improve space
weather forecasts.

Time-distance helioseismology (8) is one of
the local helioseismology techniques that image
acoustic perturbations in the interior of the Sun
(9). Acoustic waves are excited by turbulent con-
vection near the surface, propagate deep inside
the Sun, and are refracted back to the surface
(Fig. 1). Time-distance helioseismology measures
travel times of acoustic waves propagating to dif-
ferent distances by computing cross-covariances
between the oscillation signals observed at pairs
of locations on the solar photosphere. Varia-
tions in acoustic travel times are caused mainly
by thermal perturbations, magnetic fields, and
flows. Previous studies of emerging sunspot re-
gions (/0—-14) have found difficulties in detect-
ing signals deeper than 30 Mm and before the
initial magnetic field becomes visible on the sur-
face because of the fast emergence speed and low
signal-to-noise ratio (15). Here, we present a deep-
focus time-distance measurement scheme, which
allows us to detect signals of emerging magnetic
regions in the deep solar interior (16, 17).

We have used Doppler observations (/8) from
Michelson Doppler Imager (MDI) (/9) onboard
the Solar and Heliospheric Observatory (SOHO)
and computed travel-time maps of four emerging
flux regions and nine quiet regions. In Fig. 2, we
present the results of our analysis for Active Re-
gion (AR) 10488, which started emerging on the
solar disc at 09:30 UT, 26 October 2003, about
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30° east of the central meridian. Soon after the
start of emergence, the magnetic flux rate steeply
increased and had a strong peak on 27 October at
about 08:00 UT. A travel-time map, computed
from an 8-hour data set and centered at 03:30 UT,
26 October, about 28.5 hours before the peak in
flux rate, shows a strong negative travel-time
perturbation at the same solar coordinates but
deep inside the convection zone. This feature,
with maximum travel-time anomaly of 16.3 s
(relative to the quiet Sun), was initially observed
in the travel-time maps centered at 23:30 UT,
25 October, 10 hours before the start of the active
region emergence. During the next 4 to 5 hours

(20), the perturbation increased in size and strength
and then gradually weakened over the next 3 to
4 hours (Fig. 2D). No other strong perturbations
were detected at the same location before or
after the appearance of this perturbation.

ARs 8164 and 8171 emerged in the north-
ern and southern hemispheres at 04:00 UT,
23 February 1998 and 09:30 UT, 27 February
1998, respectively. They were both smaller and
less active than AR 10488. The total unsigned
magnetic flux and the flux rate of AR 8164 reveal
that most of the flux emerged during a period
of 2 days, with a strong peak in the flux rate
around 08:00 UT, 24 February (Fig. 3D). The

Fig. 1. Acoustic ray
paths with lower turning
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Fig. 2. (A) Mean travel-time perturbation map (in seconds) of AR 10488 at a depth of 42 to 75 Mm,
obtained from an 8-hour data set centered at 03:30 UT, 26 October 2003. (B) Photospheric magnetic field
(in gauss) at the same time as (A). The whole map corresponds to the region where the computations were
carried out, whereas the squared area at the center corresponds to the region shown in (A). (C) Photospheric
magnetic field (in gauss) at the same location as (A) but 24 hours later. (D) Total unsigned magnetic flux (red
line) and magnetic flux rate (green line) of AR 10488. The vertical blue line marks the start of emergence.
The pink line shows the temporal evolution of the perturbation index (in units of 125 s Mm?), which is
defined as the sum of travel-time perturbations with values lower than —5.4 s, within the signature of (A).
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travel-time map of Fig. 3A, computed from an
8-hour data set centered at 00:00 UT, 23 February,
shows a strong signature of the emerging flux,
with the maximum travel-time anomaly of 14.0 s.
A similar signature, with the peak value of 12.5 s,
appeared in the travel-time map of AR 8171 for
a data set centered at 04:30 UT, 27 February (fig.
S2). These signatures first appeared several hours
before the start of magnetic field emergence in
the photosphere and at least 30 hours before
the corresponding peaks in the flux rate.

Active Region 7978 emerged in the southern
hemisphere at 17:00 UT, 06 July 1996. It contin-
ued to grow for the next 3 days, even though the
magnetic flux rate (Fig. 4D) was not as steep as in
the previous cases. The travel-time map of Fig. 4A,
centered at 11:30 UT, 06 July, displays a strong
perturbation at the location of the emergence with
a maximum travel-time anomaly of 11.9 s.

All of our measurements were carried out
either in quiet-Sun regions, before the start of
emergence, or in emerging flux regions where
magnetic fields higher than 300 G had been
masked. The travel-time anomalies of Figs. 2 to 4
were all detected before the start of emergence,
and therefore they could not have been caused by
surface magnetism effects (27, 22). The sample
of four emerging flux events includes sunspot
regions of different size and total magnetic flux,
which were observed at different locations on the
solar disc during different phases of the solar
cycle. In all of these cases, the perturbation index
shows high peaks only for a narrow time interval
of the pre-emergence phase, but it stays very low
after the start of emergence (Figs. 2D, 3D, and
4D and fig. S2D). This indicates that strong emerg-
ing flux events are detectable by our method. In-
deed, our results show that 1 to 2 days after the
detected anomalies, the magnetic structures asso-
ciated with these anomalies reach the surface and
cause high peaks in the photospheric magnetic
flux rates. An emerging time of ~2 days from a
depth of ~60 Mm is also consistent with numerical
simulation models of emerging flux [figure 18 of
(2)]. Our results also show an anticorrelation be-
tween the height of the perturbation index peak and
the time lag between this peak and the peak in the
flux rate. Thus, higher peaks in the perturbation
index may be caused by stronger magnetic fields
that are more buoyant and rise to the surface faster.

In order to test the statistical significance of
our results, we used the same method to analyze
nine data sets of quiet-Sun regions, with no
emerging flux events. The sample of nine regions
was sclected from three different phases of the
solar cycle and covers several locations of the solar
disc up to 45° away from the disc center. These
regions did not show substantial travel-time
anomalies. The measured travel-time perturbations
follow a Gaussian distribution with a SD of ~3.3
s (fig. S3), which is 3.6 to 4.9 times smaller than
the peak signal of emerging flux regions. Such
perturbations can be caused by realization noise,
thermal variations, and weaker magnetic field struc-
tures that did not emerge soon in the photosphere.
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The detection of sunspot regions deep inside
the convection zone, by means of local helio-
seismology, has scientific as well as practical
implications. Maps of the travel-time anomalies
show that the signatures of emerging flux are
mostly concentrated in circular areas with a typ-

Fig. 3. (A) Mean travel-time perturbation map (in
seconds) of AR 8164 at a depth of 42 to 75 Mm,
obtained from an 8-hour data set centered at
00:00 UT, 23 February 1998. (B) Photospheric
magnetic field (in gauss) at the same time as (A).
The whole map corresponds to the region where
the computations were carried out, whereas the
squared area at the center corresponds to the
region shown in (A). (C) Photospheric magnetic
field (in gauss) at the same location as (A) but 24
hours later. (D) Total unsigned magnetic flux (red
line) and magnetic flux rate (green line) of AR
8164. The lines and units are as in Fig. 2.

Fig. 4. (A) Mean travel-time perturbation map (in
seconds) of AR 7978 at a depth of 42 to 75 Mm,
obtained from an 8-hour data set centered at
11:30 UT, 06 July 1996. (B) Photospheric mag-
netic field (in gauss) at the same time as (A). The
whole map corresponds to the region where the
computations were carried out, whereas the squared
area at the center corresponds to the region shown
in (A). (C) Photospheric magnetic field (in gauss) at
the same location as (A) but 24 hours later. (D) Total
unsigned magnetic flux (red line) and magnetic flux
rate (green line) of AR 7978. The lines and units are
as in Fig. 2.

ical size of 30 to 50 Mm. The horizontal wave-
length of the acoustic waves at this depth is
about 35 Mm, which poses limits on the size
of subsurface structures that can be resolved as
well as on the accuracy of the location of de-
tected perturbations. This may also explain the
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an elongated bipolar feature. The travel-time
perturbations caused by the four events are all
negative, with the maximum amplitude of 16.3 s.
This is surprisingly strong. Recent theoretical
studies, based on numerical simulations of emer-
ging magnetic flux tubes, estimate the magnitude
of travel-time anomalies at these depths to be of
an order of 1 s (23). This discrepancy may imply
that the magnetic field deep inside the convection
zone is much stronger than in the models or that
the magnetic field effects in the acoustic travel
times are not yet well understood. However, the
nature of the perturbations are not known, and
the detected anomalies can be due to thermal
rather than magnetic effects. In addition, a weak
magnetic flux at large depths is probably unde-
tectable by our method. Therefore, the disappear-
ance of the travel-time anomalies after the start of
emergence does not necessarily imply that sun-
spots are disconnected from their roots.

Our measurements and tests with several
phase-speed filters also show that acoustic waves
focused at depths of about 57 to 66 Mm have the
biggest contribution to the signatures of emerging
flux. The detection of such signatures at a depth
of about 60 Mm possibly poses a low limit on
the depth of generation of large magnetic regions.
The average emergence speed from this depth up
to the surface is estimated to be ~0.3 and 0.6 km/s
for the analyzed weakest and strongest emerging
flux events, respectively.

Predicting solar magnetic activity is a valu-
able tool for space weather forecasts. Our tech-
nique of imaging the deep solar interior, combined
with uninterrupted helioseismic observations of
the Solar Dynamics Observatory and the far-side
imaging technique (24-26), can monitor the
Sun’s activity in a synoptic way, both in the near
and the far sides, and allow detection of large
sunspot regions before their appearance on the
solar disc. Strong emerging flux events can now
be anticipated 1 to 2 days in advance.
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Quantum Simulation of
Frustrated Classical Magnetism
in Triangular Optical Lattices

]. Struck,* C. Olschliger,* R. Le Targat,® P. Soltan-Panahi,* A. Eckardt,> M. Lewenstein,*>

P. Windpassinger,* K. Sengstock™*

Magnetism plays a key role in modern technology and stimulates research in several branches of
condensed matter physics. Although the theory of classical magnetism is well developed, the
demonstration of a widely tunable experimental system has remained an elusive goal. Here, we
present the realization of a large-scale simulator for classical magnetism on a triangular lattice
by exploiting the particular properties of a quantum system. We use the motional degrees of
freedom of atoms trapped in an optical lattice to simulate a large variety of magnetic phases:
ferromagnetic, antiferromagnetic, and even frustrated spin configurations. A rich phase diagram is
revealed with different types of phase transitions. Our results provide a route to study highly
debated phases like spin-liquids as well as the dynamics of quantum phase transitions.

rustrated spin systems belong to the most
demanding problems of magnetism and
condensed matter physics (7, 2). The sim-
plest realization of geometrical spin frustration is

the triangular lattice (Fig. 1) with antiferromag-
netic interactions: The spins cannot order in the
favored antiparallel fashion and instead must
compromise. The rich variety of possible spin
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