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ABSTRACT

We have employed a penumbral model, that includes the Evershed flow and convective motions inside
penumbral filaments, to reproduce the azimuthal variation of the net circular polarization (NCP) in
sunspot penumbrae at different heliocentric angles for two different spectral lines. The theoretical net
circular polarization fits the observations as satisfactorily as penumbral models based on flux-tubes.
The reason for this is that the effect of convective motions on the NCP is very small compared to the
effect of the Evershed flow. In addition, the NCP generated by convective upflows cancels out the NCP
generated by the downflows. We have also found that, in order to fit the observed NCP, the strength of
the magnetic field inside penumbral filaments must be very close to 1000 G. In particular, field-free or
weak-field filaments fail to reproduce both the correct sign of the net circular polarization, as well as its
dependence on the azimuthal and heliocentric angles.

Subject headings: Sun: sunspots – Sun: magnetic fields – Sun: polarimetry

1. introduction

Several investigations have proposed the presence of
convective motions within the sunspot penumbra (Daniel-
son 1961, Grosser 1989, Márquez et al. 2006, Langhans
2006, Sánchez Almeida 2005, 2006, Sánchez Almeida et
al. 2007), but only very recently have those motions been
observationally pinpointed as occurring within penumbral
filaments (Ichimoto et al. 2007; Rimmele 2008; Zakharov
et al. 2008; cf. Bellot Rubio et al. 2005). Zakharov and
co-workers have found that these convective flows appear
similar to the upper part of convective rolls proposed by
Danielson (1961), with an upflow at the filament’s cen-
ter that turns into downflowing lanes at its edges. The
measured speed of these motions is about 1 km s−1. Su-
perposed to this convective flow is the Evershed flow, with
typical speeds of about 4 − 5 km s−1, although much
larger values have been reported (del Toro Iniesta et al.
2001; Penn et al. 2003; Bellot Rubio et al. 2004; Borrero
et al. 2005; Sánchez Almeida 2005). Recent 3D MHD
simulations (Scharmer et al. 2008a; Rempel et al. 2009)
suggest a relation between these two velocity fields, with
the Evershed flow being formed by the deflection of the
convective flow along the horizontal magnetic field inside
penumbral filaments.

It is also well established that as the observer’s line-
of-sight penetrates through the penumbral ambient field
and into the penumbral filament, the magnetic inclina-
tion and line-of-sight velocity undergo large variations.
These are widely accepted as being responsible for creat-
ing the anomalous (i.e. asymmetric or even multi-lobed)
polarization profiles observed in the penumbra (Sánchez
Almeida & Lites 1992, Solanki & Montavon 1993; see
Solanki 2003 for a review). Models incorporating such
variations have successfully reproduced the azimuthal and
Center-to-Limb variation of the net circular polarization
(NCP) in visible and infrared Fe I lines (Sánchez Almeida
1996, 2005; Mart́ınez Pillet 2000, 2001; Schlichenmaier &

Collados 2002; Schlichenmaier et al. 2002; Müller et al.
2002; Borrero et al. 2007).

However, the effect that the newly-discovered convec-
tive component of the velocity field inside penumbral fila-
ments has on the net circular polarization (azimuthal and
center-to-limb variation) has not been studied. The con-
vective flow can potentially have important consequences
for the NCP observed at disk center, or at all disk posi-
tions at locations perpendicular to the line-of-symmetry
of the sunspot. In both cases the Evershed flow is almost
perpendicular to the line-of-sight, which should enhance
the contribution of the convective flow. Furthermore, the
NCP generated by the convective flow could be detected
by spectropolarimeters operating at extremely high spatial
resolution (Scharmer et al. 2008b) and it could be related
to the non-zero NCP observed at the edges of penumbral
filaments (Ichimoto et al. 2008).

In this paper we address this possibility and study the ef-
fect of the combined magnetic and convective flow pattern
reported by Zakharov et al. inside penumbral filaments,
on the azimuthal and center-to-limb variations of the net
circular polarization in sunspot penumbrae.

2. mhs model for penumbral filaments

We will adopt a 2.5D model for penumbral filaments
similar to that of Scharmer & Spruit (2006) and Borrero
(2007). We assume that the properties of the filament do
not change along its axis, i.e. directed radially outwards in
the sunspot (y-axis). Therefore we can restrict ourselves
to the XZ plane. In this plane the filament is located at
the bottom of the domain: z = 0. Hereafter we employ
the indexes ’f’ and ’s’ to refer to the filament and its sur-
roundings, respectively. The filament’s boundary has a
semi-circular shape of radius R. Using polar coordinates
(r,θ), the magnetic field vector for the filament’s interior,
Bf , and its surroundings Bs are prescribed as follows:
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Bs(r, θ) =B0 sin γ0ey + B0 sin θ cos γ0(1 − R2

r2
)er+

B0 cos θ cos γ0(1 +
R2

r2
)eθ if r > R ,

(1)

Bf (r, θ) = Bf0ey if r < R , (2)

where B0 and γ0 refer to the strength and inclination (with
respect to the z-axis) of the surrounding magnetic field far
away from the tube (r → ∞). Bf0 refers to the magnetic
field inside the penumbral filament, which we assume to
be aligned with the filament’s axis and homogeneous. We
do not attempt to model what happens below z = 0 and
therefore, throughout this paper, the polar angle coordi-
nate is constrained to θ ∈ [0, π] (see Figure 1). Following
Spruit & Scharmer (2006) we have adopted a potential
configuration for the surrounding magnetic field Bs. Sim-
ilarly, the velocity field is prescribed as follows:

Vs = 0 if r > R , (3)

Vf (r, θ) =Veey + Vfr(r)er+

Vfθ(r, θ)eθ if r < R ,
(4)

where Ve refers to the Evershed flow (radial flow along the
y-axis). Superposed to it, we allow for the possibility of a
convective flow pattern in the XZ plane. The radial, Vfr,
and angular Vfθ components of the convective velocity flow
are given by:

Vfr(r) = Vc

{

1 − e−β(r−R)2
}

(5)

Vfθ(r, θ) =

[

ρ0 exp{−r sin θ/Hs} + rδ sin θ

]

−1{
∂(rVr)

∂r
×

[

ρ0

(

θ − π

2

)

+ αr cos θ
]

+ rVr

[

α cos θ+

rρ0

2H2
s

(

θ − π

2
− cos θ sin θ

)

]}

(6)

where ρ0 refers to the density in the surrounding atmo-
sphere at z = 0: ρ0 = ρs(0). In addition, α and δ can be
written as:

α = ρ0

Hs
− δ , (7)

δ =
B2

0
cos2 γ0

πgR2 , (8)

where g represents the Sun’s gravitational acceleration at
the surface (g = 2.74× 104 cm s−2) and Hs is the density
scale height for the surrounding atmosphere in which the
filament is embedded. The value of β in Eq. 5 can be cho-
sen to allow for a more rapid/slow drop of the radial (in the
XZ plane) velocity profile within the penumbral filament.
In our case we have chosen it such that βR2 >> 1. This
ensures that at r = 0, Vfr(0) ≃ Vc. Thus Vc can be iden-
tified with the magnitude of the convective upflow at the
filament’s center. The complicated functional dependence
of the velocity field comes from the fact that is has been de-
rived fully analytically under the following constraints: (a)

Mass conservation inside the filament: ∇(ρfVf) = 0; (b)
Hydrostatic equilibrium inside the filament: ∇Pgf = ρfg;
(c) Total pressure balance between the filament and its
magnetic surrounding; and (d) The overall configuration
must be convective-like. The rather tedious derivation of
Vf(r, θ) is described in the Appendix of this paper.

The resulting flow pattern inside the filament in the XZ
plane is presented in Figure 1, where it can be seen that it
features an upflow at the filament’s center, with downflow-
ing lanes at the filament’s edges. This convective pattern
resembles the flows inside penumbral filaments in the sim-
ulations from Heinemann et al. (2007) and Rempel et al.
(2009), as well as the pattern deduced from observations
by Zakharov et al. (2008).

Fig. 1.— Vertical cut (XZ plane) showing the density config-
uration for a penumbral filament in a surrounding potential field.
This configuration was obtained with the following model parame-
ters: B0 = Bf0 = 1000 G, R = 75 Km, γ0 = 60◦. The field lines
outside the filament (r > R) correspond to the magnetic field lines
in the surrounding atmosphere (Eq. 1) projected onto the XZ plane,
while the field lines inside the filament denote the convective flow
pattern (Eq. 4-8) in the same plane. The blue dashed line shows
the location of the τ5 = 1 level (Wilson depression) and the dashed
red line denotes the location of the constant (1.3 × 105 dyn cm−2)
gas pressure level.

Our model can be used to mimic the magnetostatic
solutions for the gappy penumbral model presented by
Scharmer & Spruit (2006). This can be achieved by sim-
ply reducing the magnetic field inside the filament until it
becomes a field-free gap Bf0 = 0. It can also mimic the
classical flux-tube picture (Borrero 2007; Borrero et al.
2007) by removing the convective flow inside the filament
Vc = 0. The later two papers will be hereafter referred to
as papers I and II.

Once the velocity and magnetic field have been pre-
scribed, we can obtain the pressure and density stratifi-
cation of the surrounding atmosphere, Pgs(z) and ρs(z),
from a tabulated atmosphere. Here we use the hot umbral
model from Collados et al. (1994; other models are dis-
cussed in Sect. 6). Note that, since the external magnetic
field is potential, the adopted pressure and density stratifi-
cation are also valid everywhere outside the filament. The
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boundary layer between the filament and the surround-
ing field is located at (R, θ) ≡ (±

√
R2 − z2, z) (in polar

and cartesian coordinates, respectively) and denoted by a
∗ throughout this paper. At this boundary the following
relation links the external and internal gas pressures:

P ∗

gf +
B∗2

f

8π
= P ∗

gs +
B∗2

s

8π
(9)

This equation is valid irrespective of the external and
internal velocity and magnetic fields, as long as their ra-
dial components vanish at the filament’s boundary: V ∗

fr =
V ∗

sr = B∗

sr = B∗

fr = 0. As in paper I, we can take deriva-
tives with respect to θ in Eq. 9 and apply the θ-component
of the momentum equation. This yields the following re-
lation for the density across the filament’s boundary:

ρ∗f

{

Rg cos θ +
1

2

∂V ∗2
fθ

∂θ

}

= ρ∗sRg cos θ − 1

8π

∂B2∗
sθ

∂θ
(10)

Note that the velocity we have prescribed (Eq. 6) satis-
fies V ∗

fθ = 0. Therefore Eq. 10 can be simplified into:

ρ∗f = ρ∗s +
1

πRg

[

B2
0 sin θ cos2 γ0

]

(11)

These boundary conditions must be applied, together
with the general stationary momentum equation, in or-
der to obtain the pressure and density structure inside the
filament:

ρ(v∇)v = −∇Pg +
1

c
j × B + ρg (12)

In this equation (ideal MHD without viscosity) the left-
hand-side term corresponds to the advection term, where
the right-hand-side terms correspond to the gas pressure
gradient, the Lorentz force and the gravity, respectively.
Since the magnetic field inside the filament is constant
(Eq. 2), the Lozentz force (j × B) plays no role in the
pressure and density equilibrium for r < R. In addition,
the convective velocities are much smaller than the sound
speed: Vfr, Vfθ ≃ 1 km s−1 (see Ichimoto et al. 2007; Za-
kharov et al. 2008) and therefore the advection term can
be neglected. This yields a pressure and density balance
that conforms with hydrostatic equilibrium inside the fil-
ament: ∇Pgf = ρfg. The horizontal (x-axis) component
of this equation yields the pressure. Once it is obtained,
the vertical (z-axis) component of the momentum equation
gives the density:

Pgf(z) = Pgs(z) +
1

8π

[

4B2
0 cos2 γ0

(

1 − z2

R2

)

+ B2
0 sin2 γ0 − B2

f0

] (13)

ρf(z) = ρs(z) + z
B2

0 cos2 γ0

πgR2
(14)

Figure 1 shows the density configuration for a penum-
bral filament and its surroundings, along with the mag-
netic field lines outside the filament and the convective

flow pattern inside it. Once the gas pressure and the den-
sities are known, the temperature can be evaluated using
the ideal gas law with a variable molecular weight to ac-
count for the ionization of the different species. As a result,
we now have the temperature, density, gas pressure, and
the velocity and magnetic field vector at every point in the
XZ plane.

Note that our approach to the magneto-hydrostatic
equilibrium is slightly different from Scharmer & Spruit
(2006). This yields a different thermodynamic structure.
For example, in Scharmer & Spruit (2006) the density in-
side the gap is larger than the density outside by a con-
stant factor at all depths. In our case, the density differ-
ence changes linearly with depth (Eq. 14), and it peaks
at the top of the filament while vanishing at z = 0. Our
approach is also different from the flux-tube MHS equilib-
rium presented in Borrero (2007) in that we do not model
the lower half of the filament, as we do not know if deeper
down the filament has the shape of a flux-tube or an elon-
gated plume. This in turn means that we do not have to
deal with possible negative densities in the lower half of
the filament as in the flux-tube case (see Eq. 14 in paper I).
It also allows us to have an uniform magnetic field inside
the filament (Eq. 2). All these details about the ther-
modynamics, however, play a secondary role for radiative
transfer calculations. In particular, they are negligible for
the net circular polarization since this quantity depends
mostly on the magnetic field and velocity configurations.

Finally it is also important to mention that Equations 2
and 4 (Bf(r, θ) and vf(r, θ)) imply, through the induction
equation, that the magnetic field along the filament’s axis,
Bf0, changes in time. This incovenience could have been
avoided by postulating a magnetic field inside the filament
that is parallel to the velocity field. Since the magnitude
of the Evershed effect is much larger than that of the con-
vective velocities: Ve >> Vc, it immediatelly follows that
the magnetic field in the XZ plane is much smaller than
the magnetic field along the filament axis.

3. reference frame and azimuthal variation of
the ncp

The thermodynamic, kinematic and magnetic config-
uration for a penumbral filament has been obtained in
the previous section in the Local Reference Frame: S =
{ex, ey, ez} (where the z-axis corresponds to the direction
perpendicular to the solar surface), but in order to study
the azimuthal variation of the net circular polarization
at different heliocentric angles we need to place ourselves
in the observer’s reference frame: S ′′

= {ex

′′

, ey

′′

, ez

′′},
where now the z

′′

-axis points towards the observer. To
that end, we perform a double rotation of the velocity
and magnetic field vectors. First a rotation by angle Ψ
along ez. This allows us to place the filament at any az-
imuthal position within the sunspot. Ψ = 0 refers to the
line-of-symmetry of the sunspot on the center-side penum-
bra (i.e. it points towards the center of the solar disk).
Secondly, a rotation by angle Θ (heliocentric angle) along

the resulting ey

′

. This allows us to locate the sunspot
at any position on the solar disk (see Eq. 1 in paper II).
After performing these rotations, the inclination of the
magnetic field vector with respect to the observer can be
obtained as: γ = cos−1(B

′′

z /B), the azimuth of the mag-
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netic field in the plane perpendicular to the observer as:
φ = tan−1(B

′′

x /B
′′

y ), and finally the line-of-sight velocity

as: vlos = v
′′

z .
The equations describing the ray paths (lines-of-sight)

along which the radiative transfer equation is to be solved,
is given by:

x = x0 + (zmax − z) tanΘ sin Ψ (15)

y = y0 + (zmax − z) tanΘ cosΨ , (16)

where (x0, y0, zmax) is the point where the line-of-sight
pierces the uppermost boundary of our computational do-
main. Note that our model is 2.5D which means there
are no variations along the filament’s axis (y-coordinate)
which implies that Equation’s 16 role can be simply sub-
tituted by a modification in the optical depth scale as
dτlos = dτ/ cosβ, with β = tan−1(tan Θ cosΨ). With this
information, we can now calculate the paths of each line-of-
sight piercing the XZ plane in Figure 1 at different x0’s. In
our calculations we use 64 ray-paths with x0 = −2R, ..., 2R
. The radiative transfer equation is solved using the syn-
thetis module in the SIR code (Ruiz Cobo & del Toro
Iniesta 1992) for each ray path. Stokes V profiles as a
function of wavelength of two widely used spectral lines:
Fe I 6302.5 Å and Fe I 15648.5 Å are computed. The
net circular polarization for each ray, Nm is obtained as
the wavelength integral of Stokes V , with the final NCP
(denoted as N ) being the mean over the ray-paths that
pierce the filament (only M rays out of 64)1

N =
1

M

M
∑

m
Nm =

1

M

M
∑

m

∫

Vm(λ)dλ (17)

Figure 2 (top panel) shows examples (dashed lines) of
the indiviudal 64 Stokes Vm profiles generated by each of
the ray paths when looking at a penumbral filament lo-
cated along the line-of-symmetry in the limbward-side of
the penumbra (Ψ = π) of a sunspot located at an heliocen-
tric angle of Θ = 45◦. Only half of the ray-paths actually
pierce the filament and produce a non-vanishing NCP (M
out of 64). In color we also plot the averaged Stokes V
profiles. The lower panel of Fig. 2 shows an example of
the NCP generated by individual ray-paths (Nm) in the
two considered spectral lines, at an heliocentric angle of
Θ = 45◦, and at two different azimuthal angles: Ψ = 0
(center side penumbra) and Ψ = π (the limb-ward side of
the penumbra). This example was obtained using the fol-
lowing model parameters: B0 = Bf0 = 1000 G, Ve = 6 km
s−1, Vc = 1 km s−1, γ0 = 60◦ and R = 75 km.

Fig. 2.— Top panel: individual Stokes Vm profiles (black dashed
lines) generated by each of the ray-paths for Θ = 45◦ and Ψ = π.
The averaged profile (over all 64 individual rays) is also showed in
color. Bottom panel: net circular polarization generated by differ-
ent ray-paths, Nm, piercing the filament at different points. Solid
lines correspond to the center side penumbra on the line of symme-
try of the sunspot (Ψ = 0), while dashed lines correspond to the
limb side penumbra also over the line of symmetry (Ψ = π). Blue
lines correspond to the Fe I line at 6302.5 Å and red lines are for
Fe I 15648.5 Å . Model parameters are the same as in Figure 1:
B0 = Bf0 = 1000 G, R = 75 Km, γ0 = 60◦. In addition, we have
employed: Ve = 6 km s−1, Vc = 1 km s−1.

We have repeated the same calculations for 25 different
azimuthal positions between Ψ = 0, 2π and at 4 heliocen-
tric angles: Θ = 15, 30, 45, 60◦. Results are presented in
Figure 3 (top panel for Fe I 6302.5 Å and bottom panel
for Fe I 15648.5 Å ). Example of theoretical and observed
N (Ψ)-curves are overplotted in Figure 4 for two cases:
ASP (Advanced Stokes Polarimeter; Elmore et al. 1992)
observations of Fe I 6302.5 Å at Θ = 38◦ (AR 8545;
May 21, 1999) and TIP (Tenerife Infrared Polarimeter;
Mart́ınez Pillet et al. 1999) observations of Fe I 15648.5
Å at Θ = 60◦ (AR 8706, September 21, 1999). Fig-
ure 4 clearly demonstrates that the total amount of NCP
and its sign are well reproduced as a function of the az-
imuthal position at the displayed heliocentric angles. It
is particularly gratifying to see the model reproducing the
multi-peak shape of the NCP curve of Fe I 15648.5 Å. The
theoretical N (Ψ) curves compare satisfactorily with the
observed ones also at other heliocentric angles for these

1 By averaging only over the lines-of-sight that pierce the filament we are ensuring that the filling factor of the filament is always one or,
in other words, that our resolution element is fully occupied by the filament irrespective of Θ and Ψ. Failing to do this would allow us to
arbitrarily change the filling factor at each azimuthal position to create more or less net circular polarization. Note that the same results would
be obtained if we assume that there are several filaments lying next to each other within the resolution elements as long as it is fully filled with
filaments and they at located at the same height.
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two spectral lines (compare Fig. 3 with Figs. 3-4 of paper
II).

Fig. 3.— Predicted azimuthal variation of the net circular po-
larization, N (Ψ), for two different neutral iron atomic lines: 6302.5
Å (top) and 15648.5 Å (bottom) for sunspots located at differ-
ent heliocentric angles. They have been obtained using the model
for penumbral filaments described in this paper, which includes
both the Evershed flow and convective motions inside the fila-
ment. The model parameters used are the same as in Figure 2:
B0 = Bf0 = 1000 G, R = 75 Km, γ0 = 60◦, Ve = 6 km s−1,
Vc = 1 km s−1.

It is important to mention here that the observed NCP
curves have been obtained mainly for points located in
the middle penumbra. It may seem that the model pa-
rameters: B0 = Bf0 = 1000 G and γ0 = 60◦ chosen to
reproduce them are more typical of the outer penumbra.
This is not the case since these model parameters refer
to locations far away from the flux-tube. In fact, in the
vicinity of the flux-tube the field strength and inclination
of the external magnetic field reaches values closer to 1500
G and 45◦ respectively (see for example Fig. 1 in paper 1),
which is more representative of the mid-penumbra.

4. effect of a convective flow on the ncp

As demonstrated in the previous section, the model for
penumbral filaments employed here produces very similar
N (Ψ)-curves as the round horizontal flux-tube model em-
ployed by Borrero et al. 2007 (see Figs. 3-4) to describe
penumbral filaments. In order to understand the reason
for this we need to investigate the similarities and differ-
ences between our current model for penumbral filaments
and the model from paper II.

Fig. 4.— Same as Figure 3 but for and Fe I 6302.5 Å and
Θ = 38◦ (top panel) and Fe I 15648.5 Å and Θ = 60◦ (bottom
panel). Observations of N (Ψ) for two different sunspots observed
at those heliocentric angles in these two spectral lines are displayed
by the dots (same data as underlying Figs. 3-4 in paper II).

The magnetohydrostatic equilibrium for horizontal flux-
tubes imposes large temperatures in the tube’s lower half.
This yields a τ = 1 level that is always formed within the
upper middle-half of the flux tube (see Fig. 2 in paper I),
just as in our Fig. 1. Therefore, the lower half of the flux-
tube does not significantly affect the emergent radiation,
so that the main difference between the model employed
in this work and the horizontal flux-tube model is the ad-
dition of the convective flow (Eqs. 3 through 8).

To investigate the effect that these convective motions
have on the generated NCP, we have calculated the NCP
produced by individual rays cutting through a penumbral
filament (in the same way as in Figure 2) but switching off
the Evershed effect: Ve = 0. An example is presented in
Figure 5 for a filament located at disk center (Θ = 0◦) and
at the line-of-symmetry of the sunspot (Ψ = 0◦). We have
carried out the experiment for two different convective ve-
locities: Vc = 1 (solid lines) and 3 km s−1(dashed lines).
Note that, in this particular example the results would
have been the same even if a horizontal Evershed flow was
present, Ve 6= 0 (Eq. 4), since it does not contribute to the
LOS-velocity.

According to Figure 5, the amount of NCP does not ex-
actly scale linearly with Vc. This is due to the fact that
Vc does not necessarily represent the convective velocities
seen in spectropolarimetric observations, but rather the
strength of the convective upflow at the filament’s center
(see discussion in Section 2), which is partly hidden be-
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low the τ = 1 level (see Fig. 1). For Vc = 1 km s−1 the
generated NCP is always smaller than 3 mÅ (absolute
value). The results for the Fe I 6302.5 Å line show that,
at the center of the filament (where the upflow is present)
the NCP is negative, but it turns positive closer to the
filament’s edge (at the downflow lanes).

Hinode/SP (Ichimoto et al. 2008) has not so far pro-
vided a clear correlation between convective velocities and
NCP in sunspots penumbrae close to disk center in the
Fe I 6302.5 Å line, probably due to the limited spatial
resolution of the observations, which smears out the NCP
variation across the filament. For Fe I 6302.5 Å this makes
the effect of the convective velocity field negligible, since
the NCP generated by the upflow cancels out with the
NCP generated by the downflowing lanes. Due to the ∆φ-
mechanism (Müller et al. 2002) Fe I 15648.5 Å does not
show such a correlation between upflows/downflows and
NCP, however, we can see in Fig. 5 that the regions with
positive net circular polarization are roughly equal to the
regions with negative one. Therefore the spatially aver-
aged NCP also tends to cancel out in this near-infrared
spectral line. It is also worth noticing, in Figures 2 and
5, that the curves Nm(x) are not symmetric even though
the filament is located at disk center. The asymmetry
is again due to the ∆φ-mechanism which is affects more
the infrared lines (red curves) than the visible lines (blue
curves).

Fig. 5.— Net circular polarization produced by different ray-
paths, Nm, cutting a penumbral filament at different x0’s. This test
was performed with the following model parameters: B0 = Bf0 =
1000 G, γ0 = 60◦, R = 75 km, Ve = 0 km s−1, Θ = Ψ = 0◦,
Vc = 1 km s−1(solid lines) or Vc = 3 km s−1(dashed).

In Figure 6 we present different N (Ψ)-curves for
sunspots located at different heliocentric angles. The first
thing one realizes is that for Θ = 0◦ a flat curve is ob-
tained. This was to be expected because at disk center it
does not matter where the filament is located within the
sunspot (Eq. 15). In addition, the total NCP is very small
(|N (Ψ)| < 1 mÅ). This is in agreement with our previous
discussion, and is due to the fact that the upflow at the
filament’s center produces an NCP opposite in sign as the
downflowing lanes at its edges, yielding very small values
once we calculate the spatial average.

Fig. 6.— Azimuthal variation of the NCP N (Ψ) predicted at
different heliocentric angles Θ, for a penumbral filament harbor-
ing no Evershed flow (Ve = 0) and a convective flow Vc = 3 km
s−1. The rest of the model parameters are the same as in Fig. 4:
B0 = Bf0 = 1000 G, γ0 = 60◦, R = 75 km. Top panel shows the
NCP calculated for Fe I 6302.5 Å and the bottom panel for Fe I
15648.5 Å.

The NCP decreases towards the limb along the line-of-
symmetry of the spot (Ψ = 0, π). This is because the pro-
jection of the convective velocity field along the observer’s
line-of-sight decreases, and therefore we expect the NCP
at this azimuthal position to decrease with increasing Θ.
Note that this is not necessarily the case for regions per-
pendicular to the line-of-symmetry (Ψ = π/2, 3π/2) since
the overturning upflow would become aligned with the ob-
server. Indeed we observe that, for Fe I 6302.5 Å (Fig. 6;
top panel), at Ψ = π and Ψ = 3π/2 the NCP decreases
by a smaller amount with Θ than at Ψ = 0, π. In the case
of Fe I 15648.5 Å (Fig. 6; bottom panel), the additional
contribution of the ∆φ-mechanism produces an increase
in the NCP, perpendicular to the line-of-symmetry, as Θ
increases.

We stress that in these experiments we neglected the
contribution of the Evershed flow (Ve = 0). If we had
included it, its effect would have become larger with in-
creasing Θ, making the effect of Vc even more negligible by
comparison. Consequently the NCP generated by convec-
tive velocities inside penumbral filaments is easily masked
by the lack of spatial resolution, projection effects, and the
additional effect of the Evershed flow.

Finally it is important to bear in mind that the model
presented here does not transport any net energy since the

2 Equations 13 and 14 show that neither the density nor gas pressure, and thus also not the temperature, depend on the x-coordinate.
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temperature in the downflowing lanes is the same as in the
central upflow2. To test what would happen in a more re-
alistic situation where real convection would be present
we have repeated our experiments in this section (Figs. 5
and 6) but artificially increasing the temperature in the
upflowing lane according to:

∆T (x, z) = ∆T0

(

1 − z√
R2 − x2

)

if

{

Vz(x, z) < 0√
x2 + z2 < R

,(18)

where ∆T0 = 3000 K. This value for ∆T0 has been chosen
such that upflows provides sufficient energy to explain a
penumbral brightness that is about 70 % of the quiet Sun.
Note that Equation 18 only applies to upflows inside the
filament: Vz < 0 and r =

√
x2 + z2 < R. Equation 18

shows that the temperature difference vanishes at the fil-
ament’s edge, where convective-like motions are no longer
present. Under this new configuration, the results show
that the actual shape for the NCP-curve (Figs. 5-6) in
Fe I 6302.5 Å does not change, whereas for Fe I 15648.5
Å does. On the one hand, these changes are at the level of
∼ 1 mÅ, which supports our previous claim that the ther-
modynamic structure plays only a secondary role in the
generation of NCP. On the other hand, after modifying
the temperature in the upflow, density and gas pressure
have not been modifyed in a way that is consistent with
the equilibrium of the filament (Eq. 13-14), therefore these
claims need further investigation with a model that allows
for these differences self-consistently.

5. effect of the filament’s magnetic field
strength on the ncp

Another model with distinct similarities to the structure
we have studied here is the gappy penumbral model (Spruit
& Scharmer 2006; Scharmer & Spruit 2006), which postu-
lates that the penumbral filaments are formed by field-free
gaps that penetrate the penumbral magnetic field from
below. Inside such field-free gaps overturning convective
motions occur. This is an advantadge, as compared to
horizonal flux-tube models (Solanki & Montavon 1993),
since convective motions are able to carry enough energy
to heat the penumbra, which in turn could explain its en-
hanced brightness relative to the umbra (cf. Schlichen-
maier & Solanki 2003; Ruiz Cobo & Bellot Rubio 2008).
In the context of the gappy penumbral model, the Ever-
shed flow would be produced by the deflection of these
convective motions along the inclined field lines above the
gap (Schamer et al. 2008b), although it has not yet been
shown that in this model the Evershed flow would be re-
stricted to material threaded by a magnetic field (Solanki
et al. 1994).

In the previous examples (Sects. 3 and 4) we have as-
sumed that the magnetic field inside the penumbral fila-
ment is as strong as the external field far away from the
filament (Bf0 = B0 = 1000 G). However, our model for
penumbral filaments would present a very similar config-
uration, both in the magnetic field and the velocity field,
to the gappy penumbral model if we set the field strength
inside the filament to zero: Bf0 = 0. Very recently, how-
ever, Scharmer (2008) has acknowledged the possibility of
a non-zero (although strongly reduced) magnetic field in-
side the field-free gap (cf. Brummell et al. 2008; Rempel
et al. 2009).

The azimuthal variation of the NCP, N (Ψ), for a
penumbral filament observed away from disk center for
various field strengths inside the filament is presented in
Fig. 7 for Fe I 6302.5 (top panel, for Θ = 38◦) and Fe
I 15648.5 Å (bottom panel, for Θ = 60◦). The case of
Bf0 = 1000 G is indicated by solid lines in this figure,
which are identical to the solid lines in Fig. 4, which re-
produce very well the observations. However, when the
field strength inside the filament drops below 1000 G the
discrepancy between theoretical and observed curves be-
comes clear. Similar discrepancies appear also at other
heliocentric angles.

In particular, for Bf0 < 500 G, the NCP produced by
an almost field-free filament is always negative at all az-
imuthal angles in both spectral lines, and therefore does
not reproduce the correct sign of the NCP. In addition,
the multi-peak structure observed in Fe I 15648.5 Å dis-
appears completely for Bf0 < 500 G, which is contrary to
observations. These computations imply a value of Bf0 not
much below 1000 G, which in agreement with the findings
of Borrero & Solanki (2008) who found that in the outer
penumbra, the magnetic field inside penumbral filaments
is not weaker than in the external field.

Fig. 7.— Azimuthal variation of the NCP N (Ψ) predicted at
Θ = 38◦ for Fe I 6302.5 Å (top panel), and at Θ = 60◦ for Fe I
15648.5 Å (bottom panel). Note that solid lines (Bf0 = 1000 G) are
the same as in Figure 4. This case corresponds to a strong magnetic
field inside the filament, and is able to reproduce the observations
satisfactorily. The other curves refer to different values of Bf0, as
marked in the upper panel. The model parameters employed here
are: B0 = 1000 G, R = 75 Km, γ0 = 60◦, Ve = 6 km s−1, Vc = 1 km
s−1.
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6. effect of other model parameters

In order to investigate whether our results are effected
by our particular choice of model parameters we have stud-
ied the effect of these parameters on the N (Ψ) curves.
For example, the effect of the inclination of the exter-
nal field. The idea behind this is that a smaller γ0 in-
creases the gradient in the inclination along the line-of-
sight, so that a larger NCP should be generated through
the ∆γ-mechanism (Sánchez Almeida & Lites 1992). Us-
ing γ0 = 45◦ indeed increases the amount of NCP (for Fe
I 6305.5 Å only), however it did not have any significant
impact on the overall shape of the N (Ψ) curves.

We have also employed other models for the external at-
mosphere. Instead of the hot umbral model from Collados
et al. (1994) we adopted the mean penumbral model by
del Toro Iniesta et al. (1994), which is about 1200 K hotter
than the former at τ5 = 1 and possesses a steeper gradient
in temperature. Again, no significant differences were ob-
served, supporting our earlier statement (Sect. 2) that the
thermodynamic details play only a minor role. Of course,
if the thermodynamics change dramatically noticeable dif-
ferences do appear. For example, using the cool (instead
of hot) umbral model from Collados et al. (1994) has the
effect of yielding very small, |N (Ψ)| < 1 mÅ, values for
the net circular polarization in Fe I 6302.5 Å, in clear dis-
agreement with observations. This happens because this
umbral model is very cold and therefore the lower level of
the atomic transition depopulates, which produces spec-
tral lines that are far from their saturation point, becom-
ing less sensitive to the gradients along the line-of-sight
(Grossmann-Doerth et al. 1989; Borrero et al. 2004).

We have also studied the effects of other possible con-
vective velocity fields. For example, consider:

Vf(r, θ) = Veey + Vc

{

1 − r

R

}

er − Vc cos θeθ (19)

This velocity field produces a very similar convective
pattern as the one described in Eqs. 3-8 (see also Fig. 1),
but it does not satisfy mass conservation inside the penum-
bral filament. In spite of this, we have repeated most of
the calculations presented in this paper using this veloc-
ity field and found that it produces essentially the same
results as the more realistic flow that conserves mass.

Another parameters that affects the NCP-curves is the
percentage of the resolution element that is assumed to
be occupied by the penumbral filament (filling factor; see
footnote in Section 3). A smaller filling factor will scale the
N (Ψ)-curves proportionally. However, on the one hand
the model parameters we have chosen are meant to model
the conditions in the middle-penumbra, where the filling
factor of the filament is seen to peak (see Bellot Rubio
et al. 2004, Borrero et al. 2005). On the other hand a
decrease of a 25 % in the filling factor can be compesated
by an similar increase in the magnitude of the Evershed
flow Ve or a decrease in the inclination of the external field
γ0 (that increases in the gradient in the inclination of the
magnetic field as the line-of-sight passes from the external
atmosphere to the inside of the filament).

7. conclusions

We have developed a magnetohydrostatic model of a
penumbral filament embedded in a surrounding potential
field. The MHS equilibrium imposes a density, pressure
and temperature structure inside the penumbral filaments
such that the τ = 1-level is formed inside the filament.
Consequently, we do not need to specify its sub-surface
structure, which could be in the form of a flux-tube (fila-
ment with circular cross section) or in the form of a ver-
tically elongated plume. Inside the filament we assume
the presence of the Evershed flow along its axis and of
a convective velocity field perpendicular to it. The fila-
ment’s magnetic field is imposed to be homogeneous in its
interior.

By means of Stokes radiative transfer calculations, we
have shown that this model is able to reproduce the ob-
served azimuthal variation of the net circular polarization
N (Ψ), observed at different heliocentric angles for two dif-
ferent (visible and near-infrared) Fe I lines.

We have also studied the effect of the convective veloc-
ity field on the generated N (Ψ)-curves. We have found
that its effect is much smaller than the NCP generated
by the Evershed flow. In addition, the NCP generated
by the convective downflows (N > 0) partly cancels with
the NCP generated by the upflow at the filament’s center
(N < 0).

Finally, we have employed our model to study the NCP
generated by field-free gaps (Spruit & Scharmer 2006) and
have found that this model does not reproduce satisfacto-
rily the observed NCP. For that to happen, the magnetic
field inside the filament should be around 1000 G, which
is not compatible with the concept of a field-free gap.

Our results do not, by themselves, rule out the field-free
gap model, since the model employed here is still rather
simple, although it does account for the main features of
the penumbral fine structure. A more elaborate model
based on field-free gaps could still yield NCP curves closer
to the observed ones.

In summary, our investigation confirms that the net cir-
cular polarization is produced mainly by the Evershed flow
in filaments filled with a rather strong horizontal field,
and embedded in an inclined magnetic field, as originally
proposed by Solanki & Montavon (1993) and worked out
in greater detail by Mart́ınez Pillet (2000), Müller et al.
(2002), Schlichenmaier et al. (2002), Borrero et al. (2007)
and others.

More elaborate models are already available thanks to
recent 3D MHD simulations (Schüssler & Vögler 2006,
Heinemann et al. 2007, Rempel et al. 2008, 2009). These
simulations, reveal a complex picture that shares similari-
ties and differences with both the flux-tube and the gappy
penumbral model (see Borrero 2009, Schlichenmaier 2009).
In a next step it is important to introduce non-grey radia-
tive energy transfer into such simulations, so that similar
analyses as carried out here can be performed.

This work was partly supported by the WCU grant No.
R31-10016 from the Korean Ministry of Education, Sci-
ence and Technology
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determination of the filament’s convective flow through mass conservation

In this section we derive a velocity field inside penumbral filaments that conforms with mass conservation for a pre-
scribed density and gas pressure stratification inside the filament. Gas pressure and density have been obtained under
hydrostatic equilibirum in Section 2 of this paper and are given by Eqs. 13 and 14, respectively. In addition, in order to
satisfy the boundary conditions at the filament’s boundary (Eqs. 9-10) the radial and angular component of the velocity
field must vanish at the filament’s boundary: V ∗

fr = V ∗

fθ = 0. The final requirement is that the velocity flow must be
convective, that is, with an upflow at the filament’s center and downflowing lanes at its edges.

We start by writing down the condition: ∇(ρfVf) = 0 in polar coordinates. Unless otherwise specified we will always
refer to the filament and therefore the subindex ’f’ is implied throughout this section.

Vr
∂ρ

∂r
+

Vθ

r

∂ρ

∂θ
+

ρ

r

{

∂(rVr)

∂r
+

∂Vθ

∂θ

}

= 0 . (A1)

We now rewrite A1 as:

∂Vθ

∂θ
+ q(r, θ)Vθ = m(r, θ) , (A2)

where q(r, θ) and m(r, θ) are:

q(r, θ) =
1

ρ

∂ρ

∂θ
, (A3)

m(r, θ) = −
{

∂(rVr)

∂r
+

rVr

ρ

∂ρ

∂r

}

. (A4)

Equation A2 is a first order linear partial differential equation that can be solved with the help of an integrating factor
i(r, θ), given by:

i(r, θ) = exp

{
∫

q(r, θ)dθ

}

= exp

{
∫

1

ρ

∂ρ

∂θ
dθ

}

= ρ(r, θ) , (A5)

Equation A5 shows that the integrating factor is indeed the density. Multiplying the left and right hand sides of Eq. A2
by the density, yields the solution for Vθ as:

Vθ(r, θ) =
1

ρ(r, θ)

{
∫

ρ(r, θ)m(r, θ)dθ + C(r)

}

=
1

ρ(r, θ)

{

−
∫

∂(rρVr)

∂r
dθ + C(r)

}

(A6)

where C(r) is an integration constant that can depend of the radial coordinate. For simplicify we will now make the
further assumption that Vr depends only on the radial distance from the filament’s center: Vfr(r). With this, we can
simplify Eq. A6 to:

Vθ(r, θ) =
−1

ρ(r, θ)

{

rVr

∫

∂ρ

∂r
dθ +

∂(rVr)

∂r

∫

ρdθ − C(r)

}

. (A7)

Now, according to Eq. 14 in Section 2 of the paper, the filament’s density is given by:

ρf(r, θ) = ρs(z) + rδ sin θ , (A8)

where we have only subtituted z = r sin θ and δ =
B2

0
cos2 γ0

πgR2 (Eq. 8). Now, the denstity stratification of the external

atmosphere ρs(z) can be written in terms of the density at z = 0: ρ0 and its density scale-height Hs:

ρs(z) = ρ0e
−z/Hs = ρ0e

−r sin θ/Hs = ρs(r, θ) (A9)

In general, the density scale-height varies with height, however, over the range of heights we are interested in: z ∈ [0, R],
Hs can be considered to be constant. When subtituting Eq. A9 into A8 and then into A7 we are left with two integrals
that can be solved analitically, in terms of the hypergeometric function 2F1(1/2; (1 − k)/2; 3/2; cos2 θ), but only if we
perform a Taylor expansion of the density in the surrounding atmosphere ρs(r, θ).

ρs(r, θ) = ρ0

[

1 +

∞
∑

k=1

(−1)krk

k!Hk
s

sink θ

]

= ρ0

[

1 − r

Hs
sin θ +

r2

2H2
s

sin2 θ + O(sin3 θ)

]

(A10)

Fortunately, for typical penumbral conditions we have that Rδ > ρ0. In this case the term rδ sin θ in Equation A8 is
the main contributor to the filament’s density ρf(z), which in turn means that we can truncate the Taylor expansion of
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ρs(z) (Eq. A10) to include only the first two terms. In this way we can avoid dealing with hipergeometric functions and
transform the integrals inside Eq. A7 into:

∫

∂ρf(r, θ)

∂r
dθ ≈

∫
[−ρ0 sin θ

Hs

(

1 − r sin θ

Hs

)

+ δ sin θ

]

dθ = α cos θ +
rρ0

2H2
s

(θ − cos θ sin θ) (A11)

∫

ρf(r, θ)dθ ≈
∫

[

ρ0 − ρ0
r sin θ

Hs
+ rδ sin θ

]

dθ = ρ0θ + αr cos θ (A12)

where α and δ had already been defined in Eqs. 7 and 8 in Section 2 of the paper. The integration constant C(r) in
Eq. A7 is determined by imposing that across the center of the filament the velocity field takes the form of an upflow:
Vfθ(r, π/2) = 0. Finally, subtituting Eqs. A11 and A12 into A7 yields the final result for Vfθ(r, θ) given by Eq. 6. Note
that Equations 6 and A7 are completely general as long as the radial component of the velocity field depends only on r:
Vfr(r).

For the determination of Vfr(r) we are free to choose any function that vanishes at the filament’s boundary: V ∗

fr = 0
such that there is total pressure balance between the filament and the surrounding atmosphere (Eq. 9). Our choice of
Vfr(r) will also affect the functional form of Vfθ(r, θ) (through Eq. 6). According to the discussion in Section 2 we are
looking for solutions that verify: V ∗

fθ = 0 such that the velocity term in Eq. 10 disappears. This is guaranteed if V ∗

fr = 0
(which we are already looking for) but also ∂V ∗

fr/∂r = 0. Note that our choice of Vfr(r) (Eq. 5) satisfies both conditions:
both Vfr(r) and its derivative vanish at the filament’s boundary.

Vfr(r) = Vc

{

1 − e−β(r−R)2
}

(A13)
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