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The Sun continually ejects matter into space, blowing a huge bubble of super-
sonic plasma: the solar wind, which engulfs the Earth and the other planets,
shaping their environments.

Basics of the Solar Wind presents a modern introduction to the subject,
starting with basic principles and including the latest advances from space ex-
ploration and theory. The book discusses the structure of the solar interior
and atmosphere, the production of the solar wind, and its perturbations. It ad-
dresses the basic physics of the objects of the Solar System, from dust to comets
and planets, and their interaction with the solar wind. The final sections ex-
plore the subject from an astrophysical point of view, including the interaction
with the interstellar medium, cosmic rays and winds from other stars. The book
contains a historical survey and a short introduction to plasma physics.

This volume is the first to present a comprehensive basic coverage of this
subject. The topics are discussed at various levels of difficulty, by including
qualitative as well as quantitative treatments and emphasising physical processes
rather than mathematics or observation. This book will appeal to students and
researchers in physics, astronomy, space physics and engineering, geophysics and
atmospheric sciences.
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Preface

Why chase the wind?
J. Cocteau, Antigone

For science-fiction writers and some space engineers, the ‘wind from the Sun’1 is
a wind of photons – the light we see, whose pressure might allow solar sailing and
drive space windjammers through the solar system. Yet the Sun blows another
kind of wind, made of material particles, whose importance is considerable since
it bathes the whole Solar System and shapes all planetary environments.

This wind has many faces. To the layman, it sounds rather mysterious, being
made of a strange medium, a plasma: the fourth state of matter. Not only do
its tempests affect our everyday technology by disrupting communications and
power stations, but it drives two bewildering sky displays: comet tails and
auroras. To the space scientist, in contrast, the solar wind is a close companion,
and the challenge is to explore and tame a jungle where his or her instruments
reveal a strange fauna. The plasma physicist is delighted to find there a number
of stunning surprises and extreme properties which are virtually impossible to
simulate in the laboratory. And to the astronomer who is trying to understand
how cosmic bodies – from planets and comets to stars and galaxies – eject
particles into space, it is the only stellar wind that can be studied in detail.

The solar wind has been explored in situ by numerous space probes, from
inside Mercury’s orbit to far beyond the distance of Neptune, and, quite recently,
at virtually all heliocentric latitudes. The last decade has seen an explosion in
the volume of data, and the solar wind is now measured in almost embarrassing
detail. Yet, from the beginning of modern physics to the present epoch, its
origin has motivated – and still motivates – much debate.

This book explores the physics involved, from the solar origin, to the frontier
of the Solar System. The object of the game is to retrieve (in a quantitative,
albeit approximate, way) the basic properties from first principles, within the
limits of our incomplete understanding, keeping in mind that Nature always
turns out to be subtler than we had imagined.

This book is intended for scientists, for technical workers involved in space
missions, for science students and teachers, and more generally for those who
enjoy the application of basic physics to a realm unattainable in Earth’s labo-
ratories. The emphasis is aimed at physical intuition rather than mathematical

1Clarke, Arthur C. 1972, The Wind from the Sun, London, Victor Gollancz.
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xiv Preface

rigour. The calculations only require a basic background in physics and math-
ematics and assume no prior knowledge of plasma physics, for which a first-aid
kit is given in Chapter 2.

This subject has hideously complicated aspects, and I had to make gross
simplifications in order to avoid the fundamental ideas being lost in a morass
of details. Resisting the temptation of replacing basic understanding by classi-
fication, detailed mathematics, and/or computer modelling, creates a dilemma:
how be useful to non-specialists, without angering the specialists too much. I
therefore made no attempt to be comprehensive, either in the topics, or in the
references. Instead, I have tried to follow Victor Weisskopf, who used to say at
the start of a course: ‘I will not cover the subject, I will try to uncover part of
it.’2 In the same spirit, the references are meant to help the readers, not to give
credit to the authors. Unless otherwise stated, units are SI.

Although I take full responsibility for the errors that have crept in,3 I should
not give the impression that this book was written by me alone. Many people
of diverse languages and cultures have contributed, either personally or through
their writings. It is impossible to acknowledge all of them properly and to
give credit to the scientists whose viewpoints influenced me. I offer my warm
thanks to the generous friends and colleagues who have scrutinised sections of
the manuscript and provided suggestions for improvements, or contributed in
other ways, especially to Jean-Louis Steinberg (who got me started on space
research), Alex Dessler (who got me started on this book), Marcia Neugebauer,
Ludwik Celnikier, Joseph Lemaire, Marco Velli, Serge Koutchmy, Jorge Sanchez-
Almeida, Pascal Démoulin, Dominique Bockelée, Karine Briand, Darrell Strobel,
Rosine Lallement, Guillaume Aulanier, Françoise Launay, Milan and Antonella
Maksimovic and Danielle Briot. I owe much to my friends and colleagues of
the Observatoire de Paris at Meudon for the warm environment and numer-
ous discussions, and to several outstanding former graduate students for their
insightful and stimulating questions. This work would not have been possible
without the kind help of the efficient staffs of the library at Meudon (Observa-
toire de Paris) and of the laboratory LESIA (CNRS and Universities Paris 6 and
7). The students who endured my lectures on the solar wind at the University
Paris 11, and on astrophysical plasmas at the Observatoire de Paris (and the
Universities Paris 6, 7 and 11) have contributed in no small way too. Thanks to
all of them! Last but not least, I am very grateful to my family and my friends
for their encouragement and help. Special thanks are due to my son François
Meyer for the drawings he made to illustrate this book.

Nicole Meyer-Vernet
CNRS
Observatoire de Paris (Meudon, France)

2Weisskopf, V. F. 1989, The Privilege of Being a Physicist, New York, W. H. Freeman,
p. 32.

3I encourage readers to send me typographical or other errors at nicole.meyer@obspm.fr.
I intend to post an updated list of errors at www.lesia.obspm.fr/∼meyer/BSW.html.



1

The wind from the Sun: an
introduction

‘First accumulate a mass of Facts: and then construct a Theory.’
That, I believe, is the true Scientific Method. I sat up, rubbed my
eyes, and began to accumulate Facts.

Lewis Carroll, Sylvie and Bruno

Not only does the Sun radiate the light we see – and that we do not see – but it
also continually ejects into space 1 million tonnes of hydrogen per second. This
wind is minute by astronomical standards; it carries a very small fraction of
the solar energy output, and compared to the violent explosions pervading the
universe it blows rather gently. Yet it has amazing effects on the solar surround-
ings. It blows a huge bubble of supersonic plasma – the heliosphere – which
engulfs the planets and a host of smaller bodies, shaping their environments. It
also conveys perturbations that can be seen in our daily life.

The object of this chapter is twofold. To give a concise historical account
of the key ideas and observations that made our modern view of the solar wind
emerge; and introduce the main properties of the Sun and of its wind, and their
interpretation in terms of basic physics. The latter goal requires some tools of
plasma physics, and will be developed in the rest of the book.

1.1 A brief history of ideas

The idea that planets are not moving in a vacuum is very old. In some sense
our modern view of a solar wind filling interplanetary space has replaced the
Aristotelian quintessence, the impalpable pneuma of the Stoic philosophers, and
the swirling ‘sky’ introduced two thousand years later by Descartes. In some
sense only, as there is a major difference: the solar wind is made of normal matter
whose behaviour is – to some extent – understood, even though this matter is in
a special state, a plasma, having unusual properties as we will see in Chapter 2.

1



2 The wind from the Sun: an introduction

Figure 1.1 An early photograph of the Sun showing sunspots, made by Jules
Janssen at the Meudon Observatory on 22 June 1894. (Observatoire de Paris,
Meudon heritage collections.)

Ironically enough, the solar wind contains vortices – as did Descartes’ sky and
also the luminiferous ether imagined later by Maxwell – and even though those
vortices have nothing in common with their ethereal ancestors, they are barely
better understood. And not only does the solar wind transmit sound and light
as did the ancient ether, but it also carries a host of waves that Maxwell could
not have dreamt of.

Even though the idea is an ancient one, most of the solar wind story took
place over little more than a century. At the end of the nineteenth century, only
a couple of far-seeing scientists had imagined that a solar wind might exist. At
the beginning of the twenty-first century, hordes of space probes have explored
the solar wind and it is honoured with a secure place in astronomy textbooks.

Since there are eminent accounts of how this concept emerged and developed
(see for example [9], [25]), it is not my intention here to trace a detailed history.
I shall only give a few hints1 as to how the ideas evolved to fit reasonably well
into the logical structure of modern physics and astronomy.

1.1.1 Intermittent particle beams?

When did the story begin? Perhaps around the middle of the nineteenth century,
when the British amateur astronomer Richard Carrington, who was drawing
sunspots (see Fig. 1.1) from a projected image of the Sun,2 suddenly saw two
patches of peculiarly intense light appear and fade within 5 minutes in the largest
sunspot group visible [7], [5]. Carrington had witnessed what we now call a

1Partly taken from Meyer-Vernet, N. 2005, Bul. Inst. d’Astron. et de Géophys. Georges
Lemaître (Université Catholique de Louvain, Louvain-La-Neuve, Belgium).

2By far the safest way for amateurs to observe the Sun.
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Figure 1.2 Auroral display seen from the ground in Lapland. (Photo courtesy
of C. Molinier.) For hints on auroral physics see Section 7.3.

solar flare: a giant explosive energy release on the Sun – and a very strong one.
Some time later, the magnetic field at Earth was strongly perturbed (Fig. 7.22),
large disturbances appeared in telegraph systems, and intense auroras spread
over much of the world (see Fig. 1.2). The connection between geomagnetic
perturbations and auroras was already known, and Carrington suggested that
both phenomena might be due to the special event he had seen on the Sun; but
he was careful to point out that his single observation did not imply a cause-
and-effect relationship. Carrington was correct; we will see later that solar flares
are sometimes, although not always, followed by geomagnetic disturbances and
auroras; this happens when the Sun releases a massive cloud of gas that reaches
the Earth’s environment and perturbs it.

Carrington was not the first to suspect the Sun of producing auroras and
magnetic effects on Earth, as a correlation between the number of sunspots and
geomagnetic disturbances had already been noted. The cause, however, was
unclear. And the aurora was not better understood, even though its electric
and magnetic nature had been identified a century before – a major improve-
ment over the ingenious scheme based on the firing of dry gases proposed by
Aristotle. To summarise the state of auroral physics around the mid 1880s
(see [10]): ‘The scientific theories . . . are more abstruse than the popular ones,
but equally fail . . . ’, as the Norwegian scientist Sophus Tromholt put it with
splendid irreverence.

All that pointed to a connection between the Sun and terrestrial magnetic
disturbances, and the idea was taken seriously by some physicists near the end
of the nineteenth century. Assuming ‘that the Sun is powerfully electrified, and
repels similarly electrified molecules with a force of some moderate number of
times the gravitation of the molecules to the Sun’, George Fitzgerald suggested
that [12]: ‘matter starting from the Sun with the explosive velocities we know
possible there, and subjected to an acceleration of several times solar gravitation,
could reach the Earth in a couple of days’. In other words, the Earth was
bombarded by intermittent beams of charged particles coming from the Sun
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Figure 1.3 Birkeland on two of his fronts [4]. Left: with his terella apparatus –
a magnetised sphere subjected to a beam of electrons in a vacuum chamber.
Right: with some of his instruments for aurora detection.

and accelerated by an electrostatic field, just as an electrode in a giant vacuum
tube.3

1.1.2 Permanent solar corpuscular emission?
In this context, an essential step was taken by the Norwegian physicist Kristian
Birkeland, who worked in the closing years of the nineteenth century and the
opening years of the twentieth (Fig. 1.3). These were fabulous times for a physi-
cist: X-rays and radioactive decay were just being discovered, J. J. Thomson was
unveiling the electron, Hendrik Lorentz was developing the electron theory and
building steps on the route which led Einstein to change our vision of the Uni-
verse and Max Planck was explaining the spectrum of radiation, among other
major accomplishments. Applied science was rising, too: the first aeroplane
was close to being born, and Guglielmo Marconi made the first long-distance
radio transmission, an engineering performance which led to the discovery of
the Earth’s ionosphere.

Birkeland worked on three fronts: theory, laboratory experiments with a
model Earth and observation [11]. Not only did he develop the ideas put forward
by Fitzgerald and others, but in order to test them he organised several polar
expeditions and made the largest geomagnetic survey up to that time [4]. He
also put forward a number of ingenious ideas that stand up well today, and
above all, he submitted a crucial point: since auroral and geomagnetic activity
was produced by solar particles and was virtually permanent, the inescapable
conclusion was that the Earth environment was bombarded in permanence by
‘rays of electric corpuscles emitted by the Sun’.

3This was written 5 years before J. J. Thomson’s 1897 paper on ‘cathode rays’ (Phil.
Mag. 44 293), and showed remarkable insight. The solar wind is made of charged particles –
protons and electrons – and we will see later in this book that indeed the heliospheric electric
field pushes the protons outwards with a force of a few times the solar gravitational attraction.
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Figure 1.4 An old drawing of Donati’s comet, shown over Paris on 5 October
1858. (From A. Guillemin, 1877, Le Ciel, Paris, Hachette.) A modern view of
cometary physics may be found in Section 7.5.

Put in modern terms, Birkeland was suggesting that the Sun emits a contin-
uous flux of charged particles filling up interplanetary space: nearly our modern
solar wind. This was a great change of perspective from the picture of the Sun
emitting sporadic beams separated by a vacuum. However, many of these ideas
were far ahead of the time, some were incorrect, and above all, the revered Lord
Kelvin submitted impressive arguments showing that the Sun could not produce
geomagnetic disturbances.4 As a result, Birkeland’s work was largely ignored
by the scientific community.

These ideas lay in obscurity for many years. And when the solar corpuscular
radiation (as it was called) resurfaced – albeit on independent grounds – to
explain geomagnetic activity, it was once again in the form of occasional beams
emitted by the Sun by some exotic process in a (slightly dusty) vacuum.

This remained the leading view until the middle of the twentieth century,
when the concept of a continuous solar emission was to re-emerge through an
entirely separate line of work. Comets have two classes of tails, one class nearly
straight, made of gas, the other curving away, made of dust (Fig. 1.4). The

4On 30 November 1892, he concludes in his Presidential Address to the Royal Society: ‘It
seems as if we may also be forced to conclude that the supposed connection between magnetic
storms and sun-spots is unreal, and that the seeming agreement between the periods has been
a mere coincidence’ (Kelvin, Thompson, W. 1892, Proc. Roy. Soc. London A 52 300).
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curved shape of dust tails is produced by solar radiation pressure and gravity
acting on the dust grains. But the gaseous tails raised an intriguing problem:
they were observed to always point straight away from the Sun (with a slight
aberration angle)5 and to exhibit irregularities that appeared to be accelerated
away from the Sun. What caused these properties? The current explanation in
terms of solar radiation pressure acting on the cometary gas failed by several
orders of magnitude.

This problem was brilliantly solved by the German physicist Ludwig
Biermann in the early 1950s: solar photons could not do the job, but perhaps
solar corpuscular radiation would? Biermann thus developed a model for the
interaction of cometary particles with those coming from the Sun, that neatly
explained the comets’ gaseous tails if they were subjected to a permanent flux
of charged particles coming from the Sun (see [3] and references therein).

Although Biermann’s original arguments regarding the interaction process
between particles are now known to be incorrect, this was again a crucial change
of perspective from the current view. Since comets’ orbits pass at all heliolat-
itudes, the inescapable conclusion was that the Sun was emitting particles in
all directions at all times. Half a century after Birkeland’s work, the concept of
a continuous solar corpuscular emission was resurfacing, with stronger observa-
tional and theoretical support.

But at the same time a different conclusion was reached by the English
physicist Sydney Chapman through a completely different path. The outer
atmosphere of the Sun – called the corona (see Fig. 1.12) – was known to be
very hot. Chapman, who had pioneered the calculation of the kinetic properties
of gases, found that this hot ionised atmosphere conducted heat so well that it
should remain hot out to very large distances. As a result, particles have such
large thermal speeds even far from the Sun that they can go very far against
its gravitational attraction; this makes the density decline very slowly, so slowly
that the solar atmosphere should extend well beyond the Earth’s orbit [6]. In
other words, the Earth was to be immersed in the static atmosphere of the Sun.

1.1.3 The modern solar wind

How could the ubiquitous solar corpuscular flux found by Biermann coexist with
this static solar atmosphere? Both are plasmas and, as we will see later, the
coexistence of plasmas having such different bulk velocities has very nasty con-
sequences. The great achievement made by Eugene Parker in 1958 was to realise
that [24]: ‘however unlikely it seemed, the only possibility was that Biermann
and Chapman were talking about the same thing’. So Biermann’s continuous
flux of solar particles was just Chapman’s extended solar atmosphere expanding
away in space as a supersonic flow. This comes about because this atmosphere
is so hot, even far away from the Sun, that neither the solar gravitational at-
traction nor the pressure of the tenuous interstellar medium can confine it. At

5With hindsight, the aberration angle of comet plasma tails, determined by the relative
speeds of the radially moving solar wind plasma and the comet, yielded a correct solar wind
speed of about 400 km s−1. For details, see Brandt, J. C. 1970, cited in Chapter 5.
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Figure 1.5 Mariner 2, the spacecraft that served to identify the solar wind, and
the first one to have reached a planet other than the Earth. (Image by National
Aeronautics and Space Administration (NASA).)

last the modern solar wind concept was born. Parker’s theory was not only
an eminently elegant solution which brought together existing evidences, but
it made numerous testable predictions: in particular the wind was to flow at
several hundreds of kilometres per second radially away from the Sun. Irony of
ironies, these ideas were so novel that the paper presenting them [23] encoun-
tered difficulty in being published in the eminent Astrophysical Journal, on the
grounds that the author was not familiar with the subject [25]. The referees
of the Astrophysical Journal were not the only scientists to be displeased by
Parker’s theory, and a hot debate followed as to whether or not the Sun was
capable of emitting a supersonic wind.

Observation was needed to settle the debate. But measuring the solar wind
was a heroic challenge in those years when space technology was just springing
up. It took four Russian missions and seven American ones – most of which
failed due to problems of launching – to get an unambiguous result. The most
successful of the Russian spacecraft, Lunik II, launched in 1959 (only 2 years
after the first Russian Sputnik went up and the United States launched their
first satellite in reply) detected a flux of positive ions; however, this observa-
tion was not entirely conclusive because the direction of the particles’ velocity
was unknown. The ultimate proof came in 1962 from the American spacecraft
Mariner 2 [22], which was en route for Venus after having miraculously survived
an impressive series of failures (Fig. 1.5). As Marcia Neugebauer superbly puts
it [20]: ‘We had data! Lots of it! There was no longer any uncertainty about
the existence and general properties of the solar wind.’

So ended the first age of the solar wind story. With these results Parker’s
ideas rose to prominence, and within a few years, in spite of some dissenting
voices, the solar wind concept acquired the respected state of a physical reality.
Even now, decades later, Parker’s ideas serve as a reference for a large part of
what is understood on the subject. However, the very elegance of this theory
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Figure 1.6 Cartoon published in the French journal Le Grelot (March 1873).

masked a number of fundamental difficulties that we will examine later, and of
which an historical account may be found in [18]. As we will see in this book,
the story has many other chapters and there is still a long way ahead.

1.2 Looking at the Sun

My Sun, the golden garden of your hair
Has begun to flame
And the fire has spread over our corn field

Already the green ears are parched
Pressed by the presence of your breath
And the last drop of their sweet is wrung for them

Strike us with the rain of your arrows,
Open to us the door of your eyes,
Oh Sun, source of beneficent light.

(Quecha poem to the Sun6)

To us the Sun is no longer a god, and we do not have to feed it with hearts
and blood to keep it moving across the sky, as did the Aztecs. Modern scientists
(Fig. 1.6) worship it by building beautifully instrumented observatories scattered
over the Earth’s surface, far underground and in space, to analyse its radiation.

6Ferguson, D. 2000, Tales of the Plumed Serpent, London, Collins & Brown.
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Table 1.1 Basic solar properties

Mean distance to the Earth d⊕ = 1.5 × 1011 m
Mass M� = 2. × 1030 kg
Radius R� = 7. × 108 m
Luminosity L� = 3.84 × 1026 W

The last quarter of the twentieth century saw the vertiginous growth of the
scope and quality of solar data. A number of new techniques have emerged,
making a revolution in the achievements of ground-based telescopes, while sev-
eral beautifully instrumented spacecraft have been launched, enabling one to
study wavelengths inaccessible from the ground. Among others, the satellites
Yohkoh (launched in 1991), SoHO (launched in 1995), TRACE (launched in
1998) and RHESSI (launched in 2002) are currently in operation and devoted
to solar observations.

We outline below some characteristics of the Sun and make a short survey of
what its radiation tells us. We shall try to complete and unify this impression-
istic picture later, equipped with the tools of plasma physics. A very accessible
survey of solar physics is [13]; general accounts aiming at physical processes are
given in [17], [14], [33].

1.2.1 Basic solar properties

Some basic properties of the Sun are listed in Table 1.1. Although these are
rounded figures, they are exact to better than 1%, and may be considered as
nearly constant by human standards; indeed, as we shall see later, many years
will pass before changes in solar properties may oblige human beings to transfer
the Earth to a more convenient star (see [2] and references therein).

The solar distance is called the astronomical unit (AU); it is used as a basic
unit in the Solar System and beyond. So is the solar mass, which is negligibly
altered by the solar wind ejection. Indeed, the solar wind pours out in space
roughly 109 kg s−1, which amounts to only 10−4M� over the Sun’s age of a
few 109 years. Note that the wind is not the only source of solar mass loss; the
mass–energy equivalence tells us that the luminosity L� – the energy lost by the
Sun per second via electromagnetic waves – yields a mass loss of L�/c2 = 4.3×
109 kg s−1; this amounts to about four times the mass carried away by the solar
wind, and thus barely alters the Sun’s mass either; we will return later to the
solar energy source.

The Sun’s radius is that of the visible disc, which is almost perfectly round
and whose diameter is a little more than half a degree as seen from Earth; it is
sharply defined because virtually all the light we receive from the Sun originates
in a thin layer a few hundred kilometres thick: the photosphere, where – going
outwards – matter changes rapidly from completely opaque to almost completely
transparent, letting radiation escape freely into space.
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At the mean distance d⊕ of the Earth (but outside its atmosphere), the flux
received from the Sun in the form of electromagnetic radiation by a surface
perpendicular to the rays of sunlight is

S = L�/(4πd2
⊕) (1.1)

= 1.37 × 103 W m−2

which is called the solar constant. One square metre of the Earth’s surface
receives, however, much less: around 200 W in average, partly because only
half the surface is sunlit and the radiation does not arrive at right angles, and
partly because some of the incident energy is absorbed in the atmosphere. This
energy sustains virtually all life on Earth; it may also harm it, as the Quecha
poem reminds us. Despite its name, the solar constant is more variable than the
other basic solar properties; it may vary by up to a few thousandths over several
days and even more over long periods; it shows in fact variability at virtually
all timescales, thereby raising a strong interest in climatology circles [15].

The solar luminosity enables one to derive one more basic property. If the
Sun were radiating as a blackbody, that is if the Sun’s disc emitted thermal radi-
ation of temperature Teff , the luminosity would be given by Stefan–Boltzmann
law as

L� = σST 4
eff × 4πR2

� (1.2)

where σS = 5.67 × 10−8 is the Stefan–Boltzmann constant in SI units. Putting
the figures given in Table 1.1 into (1.2), we deduce the effective temperature of
the Sun

Teff = 5800 K. (1.3)

This is about 20 times hotter than the temperature at the Earth’s surface, and it
is this temperature difference that sustains life there. The effective temperature
Teff would be the actual temperature of the emitting outward layer of the Sun –
the photosphere – if the radiation were thermal. We will see later that the
actual photospheric temperature is close to this value.

1.2.2 The solar spectrum
The solar radiation has been studied at virtually all wavelengths, from gamma
rays on the short wavelength side of the spectrum, to radio waves on the long
wavelength side. How close to thermal is it?

Spectral distribution

Figure 1.7 shows the spectral distribution Sλ of the energy received from the Sun
at Earth (outside the Earth’s atmosphere) per unit wavelength per unit sunlit
surface area perpendicular to the Sun’s direction per unit time, at wavelengths
ranging from 10−13 m to a few metres; in this range the intensity spans over
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Figure 1.7 The measured spectrum of solar radiation (continuous line, with
the contribution of bursts dotted), compared with the blackbody spectrum (1.4)
(dashed).

23 orders of magnitude. The visible and near-infrared spectrum, which makes
only a minute part of the wavelength range, takes the lion’s share of the energy.
The solar constant S introduced in (1.1) is the integral of Sλ over wavelengths.

On this measured spectrum we have superimposed (dashed line) the spec-
trum of thermal radiation:

STλ = πBλR2
�/d2

⊕ (1.4)

where

Bλ =
2hc2

λ5

1
ehc/λkB T − 1

(1.5)

is the Planck emissivity at wavelength λ (per unit wavelength per unit surface
area perpendicular to the Sun’s direction per unit solid angle per unit time),
calculated with T = Teff given by (1.3).7

One sees that the continuous and dashed lines are rather close to each other
in the near and middle ultraviolet (UV), and nearly indistinguishable in the
visible and in the infrared. This means that the solar spectrum is close to
thermal in that range which is the one contributing most to the total flux. This
gives some sense to the value of Teff we derived from Stefan–Boltzmann’s law.

7Beware that the spectra in Fig. 1.7 are plotted in W m−2 µm−1, i.e. not in SI units.
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In contrast, one sees in Fig. 1.7 that the UV radiation below about 0.1 µm
greatly exceeds that of a 5800 K blackbody; instead of falling almost expo-
nentially the level remains of the order of 3 × 10−2 W m−2µm−1. This UV
emission below 0.1 µm is of great importance. Integrated over wavelengths it
amounts only to about 3 × 10−3 W m−2, less than 10−5th of the total solar
flux. Yet, this radiation has a crucial property: at λ = 10−7 m the frequency is
f = c/λ = 3×1015 Hz, so that the characteristic energy hf of a photon is about
12 eV. We will see later that this is close to the binding energy of the hydrogen
atom, which sets the order of magnitude of the energy needed to strip atoms of
their outer electron. It is this part of the solar spectrum that is responsible for
most ionised environments in the inner solar system, from planetary ionospheres
(Section 7.1) to comets (Section 7.5).

At these short wavelengths, the spectral level is far from constant and be-
comes increasingly variable at shorter wavelengths. The largest variations can
reach several orders of magnitude and occur during flares – those giant erup-
tions that Carrington described for the first time, and to which we will return
in Section 4.5. We have sketched this variable component as a dotted line.

One sees in Fig. 1.7 that the long wavelength part of the spectrum behaves
very differently. In the radio range, one can distinguish two superimposed com-
ponents. The first one is a smooth spectrum – the so-called quiet sun radiation,
which continues smoothly from the infrared with an amplitude deviating more
and more from the 5800 K thermal spectrum as the wavelength increases; near
λ � 1 m, it would correspond to an effective temperature about 200 times hot-
ter, that is of the order of 106 K. The second component is made of intermittent
bursts whose amplitude may exceed the quiet level by several orders of magni-
tude, and whose spectrum does not even have a small resemblance to Planck’s
law; it is sketched as a dotted line.

Spectral lines

On the continuous spectrum shown in Fig. 1.7 are superimposed a huge number
of spectral lines, which do not appear clearly on the figure because its resolution
is too low; spectral lines even dominate the ultraviolet range. Millions of lines
are observed in the solar spectrum, of which only a very small fraction have been
analysed with the sophisticated tools of atomic and molecular physics. Since no
two chemical elements have the same spectrum, spectral lines act as bar codes
which enable spectroscopists to determine the chemical composition of the outer
layers of the Sun, in addition to a number of physical properties. Practically all
known chemical elements have been detected on the Sun. Hydrogen is by far
the most abundant, about 92% in number density; the rest is mostly helium,
the other elements making up only about 0.1% of the total. On the whole, and
apart from a few significant exceptions, this is rather similar to the rest of the
universe. We will return to this point in Section 6.5.

These lines still reveal more information. As particles are moving, the lines
are Doppler-shifted, which enables one to derive the particle velocities. The
random speeds produce a random frequency shift which broadens the lines,
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Figure 1.8 A modern photograph of the solar disc in white light, taken with the
Swedish 1-metre Solar Telescope on La Palma, Canary Islands (left panel) on
15 July 2002, and a detailed view of a part of the group of sunspots visible near
the centre of the disc (right panel). (Photographs courtesy of Royal Swedish
Academy of Sciences.)

so that the line shapes reveal both the particle thermal speeds (that is the
temperature) and the turbulent motions of the medium. A further quantity can
be derived: the bulk velocity of the medium, which produces a net shift of the
lines.

The spectral lines still reveal more. As the medium is magnetised, the
Zeeman effect modifies the lines, which may enable one to derive the strength
and direction of the magnetic field. As we shall see below, the magnetic field
plays a major role in solar properties; in fact it is a key to understanding most
phenomena occurring in the solar atmosphere.

1.2.3 The solar disc

Figure 1.8 is a modern image of the solar disc in white light, showing a group
of sunspots (left panel) and an enlarged view of this group (right panel). Apart
from sunspots, the figure shows two main features:

• the whole disc (left panel) appears darker near the edge than near the
centre,

• at small scales (right panel), the space outside sunspots is covered with a
granular pattern.

Both features reveal important properties of the solar surface. Let us consider
in turn the disc as a whole, and its small-scale structure.
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The disc as a whole

Why does the disc appear darker near the edge? To understand this limb dark-
ening, we must consider where the observed light comes from and how it travels.
The observed light comes from some depth within the Sun, a depth that is lim-
ited by absorption of light along its trajectory. When we look at the edge of the
disc, light is travelling towards us at a small angle to the solar surface, so that
it encounters more absorbing solar material than when it comes from the centre
of the disc, in which case it is travelling normal to the surface. Hence we can see
deeper into the Sun when we look at the centre than when we look at the edge.
Therefore, the greater brightness near the centre means that deeper regions are
hotter. This is not surprising; as radiation escapes into space, energy is lost so
that the temperature decreases outwards.

From the variation in brightness from centre to limb, one can calculate that
the temperature decreases outwards by more than 2000 K over a distance of
a few hundred kilometres, where light absorption by the solar material varies
from almost complete to negligible.

Why does light absorption by the solar material decrease so sharply out-
wards? This is because the density drops sharply; furthermore we have seen
that the temperature also falls off, so that the ionisation changes. But why
does the density drop so sharply? The answer lies in two simple properties of
the solar material. First, it behaves as a perfect gas. We have seen that it is
essentially made of hydrogen atoms, whose mass is about the proton’s mass mp;
hence the pressure P and mass density ρ are related by the perfect gas law

P = ρkBT/mp. (1.6)

Second, the gas is close to hydrostatic equilibrium in the solar gravitational
field. Thus at distance r from the Sun’s centre, the outward pressure force per
unit volume dP/dr balances the gravitational attraction per unit volume ρg;
writing dP/dr = ρg and substituting (1.6), we deduce

dP/P = (mpg/kBT ) dr.

Integrating over r in a small range of distance above the solar surface over which
g and T do not vary much, we find

P ∝ exp(−r/H) (1.7)

H = kBT/mpg. (1.8)

Since the Sun’s gravitational acceleration at distance r � R� is

g = M�G/R2
�, (1.9)

equations (1.7) and (1.8) show that the pressure and mass density decrease
outwards with the scale height

H =
kBTR2

�
mpM�G

. (1.10)
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With the parameters in Table 1.1 and T = Teff (given in (1.3)), this yields
H = 1.8 × 105 m.8 Hence over a distance of a few hundred kilometres the
density falls by a large factor; this corresponds to the width of the photosphere.
We shall study the photosphere in more detail in Section 3.3.

Small-scale structure

Let us now examine the solar disc at small scales (right panel of Fig. 1.8, which
includes a large sunspot region). Outside sunspots, it is covered with bright
irregular ‘granules’ of different sizes, more or less polygonal in shape, separated
by darker lines. These granules have a maximum size of about 2000 km, and
detailed observation shows that they seem to have a life of their own: they
appear, fragment or explode, living typically for a few minutes. What is their
origin? They are believed to be the uppermost signature of convective motions
arising below the photosphere. As we said, the Sun is hotter in the interior,
and, somewhat like water in a kettle heated from below, the solar material
develops convective patterns. Spectroscopy shows that the bright central regions
of granules are moving upwards, while the darker edges move downwards, with
speeds of the order of 1 km s−1. Granules can be thought of as fountains where
hot solar material is rising near the centre, and then flows horizontally towards
the edges; in doing so the material cools by radiating to outer space so that
upon arriving at the edges it is cooler, and thus appears darker than the central
part of the granules. Having cooled, the material is denser and sinks back into
the Sun. The upward flow in the central region of the granules compensates for
this disappearing cold material.

Granulation is not the only structure presumably convective in origin ob-
served at the photosphere. It is the most conspicuous of what may be a con-
tinuum of convective flow scales. In particular, a large-scale velocity pattern –
the so-called supergranulation – is observed, albeit with little if any intensity
contrast. These large cellular structures, of scale ∼ (2–3) × 104 km and living
for about a day, are identified as horizontal flows moving at about 0.5 km s−1

towards the periphery of the cells, with much slower vertical upflows at the
centre of the structures and downflows at their boundaries.

Convection plays a major role in the Sun’s behaviour: on a large scale, it
transports heat to the photosphere from the hotter layers below; it also drives
small-scale motions of the solar material. We will return to this phenomenon in
Chapter 3, and shall see that it plays an important role in the generation and
structure of the magnetic field.

1.2.4 Sunspots, magnetic fields and the solar cycle

Sunspots

Let us now examine sunspots – the kind of structure Carrington was observing
when he witnessed a solar flare. Sunspots can be observed with simple tools;

8We will see in Section 3.2 that the scale height is slightly smaller because the presence of
a small quantity of atoms heavier than hydrogen increases the mean mass per particle.
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in some cases they are big enough to be seen by the unaided eye.9 Sunspots
have a remarkable property: their number varies in a nearly cyclic way, with
a period of about 11 years. They generally occur in groups on the solar disc.
Figure 1.8 (right panel) shows a detailed view of such a group,10 where individual
spots appear as a dark umbra about 104 km across surrounded by a filamentary
penumbra.

Some sunspots may last for weeks; this has enabled early observers to follow
their motion and to find that the Sun appears to rotate about its axis once in
about 27 days (as seen from Earth). Detailed observation shows that the Sun
does not rotate as a solid body: its outer layers rotate more slowly in polar
regions than at the equator. Correcting for the Earth’s motion which changes
the Sun’s apparent rotation speed when it is observed from Earth, one finds
that in an inertial frame, the Sun’s outer layers rotate once in 25 days near the
equator and only about once in 30 days near 60◦ solar latitude.

Sunspots appear dark because they are colder than the normal photosphere;
since radiation varies as the fourth power of temperature (1.2), they radiate
much less than their surroundings. What makes them cold? An answer was
suggested in 1941 by Biermann. We have said that the normal photosphere is
heated by convective motions that mix the surface and the hotter layers below.
However, sunspots have a special property: they are permeated with an intense
magnetic field, and as we will see later, this magnetic field holds matter so tightly
that it can inhibit convective motions, thereby preventing heat from reaching
them.

To summarise, sunspots exhibit three basic properties:

• they are colder than their surroundings by about 2000 K,

• their magnetic field is strong: about 0.3 T (nearly vertical at the centre);
they often appear in pairs with opposite magnetic field polarities,

• their number and location on the solar disc follow regular laws, with a
cycle of 11 years.

The opposite magnetic field directions observed in nearby sunspots are illus-
trated in Fig. 1.9; this structure is not surprising since from Maxwell equations
the total magnetic flux through the solar surface must remain zero. We will
return to sunspot physics in Section 3.3.

The sunspot cycle is illustrated in Fig. 1.10, which shows the number of
sunspots visible on the Sun as a function of time.11 Sunspots are not the only
solar feature observed to follow such a cycle. They are the most conspicuous
of a variety of structures having virtually all scales, which are governed by the
magnetic field and often follow the same 11-year cycle.

9A warning for absent-minded readers: the Sun is by far the most dangerous astronomical
object to observe; it should never be looked at, either directly or through an optical device,
without an appropriate filter.

10Details on the structure of these sunspots may be found in Scharmer, G. B. et al. 2002,
Nature 420 151.

11Computed with the international sunspot number convention, till daily observations of
sunspots were started at the Zurich observatory.
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Figure 1.9 Magnetogram of the solar disc (middle panel) taken from the SoHO
spacecraft on 16 July 2002; white represents upward magnetic field along the
line of sight, black downward. The left panel is a white-light image of the solar
surface taken a few minutes before, showing a few sunspots; the right panel is
an enlarged magnetogram. (Images from SoHO/MDI, European Space Agency
(ESA) and NASA, Stanford-Lockheed Institute for Space Research.)
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Figure 1.10 Monthly mean sunspot numbers from 1750 to 2003.

Magnetic field on the Sun

What does the photospheric magnetic field look like far away from sunspots?
On a large scale and very roughly, it can be thought of as produced by a giant
bar magnet whose polarity reverses every 11 years (so that the true period is
22 years). On the whole, this yields opposite average fields of the order of per-
haps (1–5)×10−4 T near the solar poles at the minimum of the cycle, when the
solar magnetic dipole is roughly aligned with the rotation axis and the num-
ber of sunspots is minimum. This dipolar field gradually weakens and reverses
its direction near the maximum of the cycle, when the number of sunspots is
maximum; at that time the large-scale field is no longer dipole-like and has a
complex multipolar structure.

However, observation at smaller scales reveals a more complicated pattern
(Figs. 1.9 and 1.11) and shows a remarkable phenomenon: the magnetic field at
the photosphere has an intermittent structure, showing concentrations as small
as perhaps 100 km across,12 where the field can be as high as about 0.15 T and is
changing rapidly; since these thin structures cover only a very small fraction of

12Or less, since the best angular resolution achieved at present is not less than 0.1 arc–sec,
and detecting smaller features requires extremely subtle techniques.
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Figure 1.11 A time sequence of magnetograms of a small area on the solar sur-
face, taken with the Swedish telescope at La Palma; the resolution is roughly 200
km on the solar surface. White represents upward vertical magnetic field, black
downward. The displayed area on the Sun is approximately 7000 × 9000 km2

and the magnetograms are taken at intervals of 1 min. (From [29].)

the solar surface, the average field is much smaller. Furthermore, one observes
nearly everywhere a kind of magnetic carpet of fields having opposite vertical
directions (Fig. 1.11), so that in ‘quiet’ regions the mean magnetic field may be
much smaller than the average absolute value [29]. An important observational
clue is that the small field concentrations generally evolve at the same timescale
as convective flows, tending to accumulate at the edge of the convective cells.

What causes the solar magnetic field and its cycle? What determines the
scale of its structures and their relation to one another? A hint may be obtained
by comparing the energies of the magnetic field and of the particle thermal
motions. The thermal energy per particle at temperature T is 3kBT/2; with
a particle number density of about n � 1023 particles/m3 at T � 5000 K
in the photosphere, the density of thermal energy is 3nkBT/2 ∼ 104 J m−3.
In small magnetic structures having a strong magnetic field B ∼ 0.15 T, the
magnetic energy density B2/2µ0 ∼ 104 J m−3, so that both types of energy
are in equilibrium. In sunspots, whose magnetic field is much stronger (and
temperature weaker), the magnetic field dominates and tends to hold matter,
whereas in normal regions of smaller magnetic field, matter should drive the
field. We shall put this rough argument on a sounder footing in Section 3.3 and
will try to unveil part of the enigma of solar magnetic fields, using the tools of
plasma physics. However, more than three centuries after the time of Galileo,
when sunspots were first observed with a telescope, their structure is still not
fully understood.

1.2.5 Around the Sun: chromosphere and corona

Chromosphere

Were the density to continue to decrease outwards at the rate estimated above,
the solar atmosphere would not extend very far away . . . and there would be no
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solar wind. But a striking phenomenon occurs above the photosphere: instead
of continuing to decrease outwards, the temperature starts to increase; over an
altitude of 2000 km or so the temperature rises to 104 K or so. This relatively
high temperature enables atoms to be excited to energy levels from which they
emit spectral lines which should not be observed otherwise. In particular the
red Hα line – the less energetic of the Balmer series of hydrogen – contributes
to the bright purplish-red crescent seen during total solar eclipses that is at the
origin of the name of this region: the chromosphere.

Corona

At the top of the chromosphere a still more striking phenomenon occurs: the
temperature T jumps by two orders of magnitude; the density ρ decreases by
roughly the same factor to prevent too large changes in the pressure, which is
proportional to ρT ; above this transition region the temperature profile flattens
and remains of the order of 106 K over a few solar radii. This hot atmosphere
is called the corona – the Sun’s crown; not only is it very extended because the
scale height increases with temperature, but it is at the origin of the solar wind.

How can the corona be hotter than the photosphere? Normally, heat should
flow from the hot corona to the cold photosphere, not the opposite; how then
does the Sun manage to heat the corona? This question has worried several
generations of physicists who have attacked it on many fronts, but nobody has
yet come out with a satisfying answer. The fundamental gaps are so important
that: ‘we cannot state at the present time why the Sun is obliged by the basic
laws of physics to produce the heliosphere’, as Eugene Parker put it not long
ago [26]. We will discuss this question in Section 4.6.

We have seen that the density decreases exponentially outwards with a small
scale height at the photosphere; this density decrease continues in a gentler
way in the chromosphere, with a somewhat greater scale height – due to the
greater temperature (cf. (1.10)); and a further density decrease by two orders of
magnitude occurs in the transition region. Hence the corona is a very tenuous
medium that does not radiate much.

Visible coronal radiation

The brightness of the brighter inner part of the corona in visible radiation is
indeed only 10−6th of the solar disc’s brightness. This faint radiation is pro-
duced by scattering of sunlight in the Earth’s atmosphere and barely reaches
10−4th of the sky luminosity; hence, the corona cannot be seen from Earth
under normal conditions. However, by a happy accident, the Sun and the
Moon are seen from the Earth with virtually the same angular size, so that
the Moon occults precisely the whole solar disc during total eclipses. Since
this occultation occurs above the Earth’s atmosphere, the sky brightness is also
lowered, so that the corona can be seen on these occasions, even by the un-
aided eye. Total eclipses are rare, and other techniques have been developed
to study the corona and the chromosphere, in particular by devising artificial
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Figure 1.12 The solar corona after solar activity minimum (left panel) and near
solar activity maximum (right panel). The images are composites of eclipse
photographs taken respectively in Guadeloupe on 26 February 1998 (left, obs.
C. Viladrich) and in Angola on 21 June 2001 (right, obs. J. Mouette), and
nearly simultaneously from the LASCO-C2 coronagraph on the spacecraft SoHO
(ESA and NASA). (Composites by Institut d’Astrophysique de Paris – CNRS;
by courtesy of S. Koutchmy.)

eclipses inside optical instruments. Figure 1.12 is a composite obtained with
both techniques, at different epochs of solar activity. The inner part shows the
visible appearance of the corona observed from Earth during an eclipse; the
outer part is obtained by making an artificial eclipse aboard a spacecraft on
the same days.13

These images raise a number of questions. In the first place, what produces
the observed radiation?

This question can be addressed, up to a point, in a very simple way. At
T � 106 K, the mean kinetic energy of a particle, 3kBT/2, amounts to 130 eV –
roughly ten times more than the binding energy of the hydrogen atom. Hence
not only do ambient electrons have enough energy for ionising hydrogen atoms
by collisions and knocking out the outer electron of heavier atoms, but they can
also knock out a large part of the more strongly bound inner electrons. The
corona is thus a mixture of ions, including several-times ionised ones, and free
electrons: a plasma. These free electrons are subjected to the solar radiation, are
accelerated by the wave electric field, and in turn radiate at the same frequency;
this is called Thomson scattering. Thomson scattering of sunlight is responsible
for the visible radiation of the corona at altitudes up to a few solar radii.

From analysis of this radiation, one can deduce the density of electrons in
the corona. Let us perform a simple estimate. The lower part of the corona is

13An opaque disc is put into the telescope to mask out the bright central emitting region.



Looking at the Sun 21

close to hydrostatic equilibrium, hence the density is expected to fall roughly
in an exponential way with a scale height given by (1.10); H is in fact twice
larger because the medium is essentially made of protons and electrons, so that
the mean mass per particle is µ � (mp + me) /2 � mp/2 instead of mp; we will
return to this point later. With T � 106 K, we find H � 0.1 × R�. With such
a small scale height, most of the scattered radiation comes from the electrons
lying low in the corona, at distances from the Sun’s centre close to R�, so that
the flux of solar radiation they receive is about L�/4πR2

�.
The ratio of the power radiated by one electron to the incident flux of radi-

ation is given by Thomson’s cross-section

σT = 8πr2
e/3 (1.11)

where the so-called classical electron radius is

re =
e2

4πε0mec2
= 2.8 × 10−15 m (1.12)

so that each electron radiates per second:

σT × L�/4πR2
� � L�r2

e/R2
� (radiation of one electron) (1.13)

from (1.11). We have seen that the coronal brightness at low altitudes is about
10−6th of the solar value. Therefore the total number of scattering electrons is
about

N ∼ 10−6 × R2
�/r2

e ∼ 6 × 1040.

A large fraction of this number lies close to the base of the corona, thus within
a thin shell of surface 4πR2

� and width H; we deduce the mean electron number
density near the base of the corona

ne ∼ N

4πR2�H
∼ 1014 m−3.

We will see in Section 4.1 that the actual electron density there is indeed of this
order of magnitude.

Coronal structure

The appearance of the corona in Fig. 1.12 raises another question. Near solar
activity minimum, one sees bright complex structures at small and mid latitudes,
with bright streamers extending more or less radially above them, whereas the
polar regions appear rather uniform. In contrast, near solar activity maximum
bright structures are seen all around the Sun.

What is the origin of these structures and of their variation with solar
activity?

The observed emission is produced by particles, which we have seen to be
electrically charged. Charged particles act as tracers of magnetic field lines,
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Figure 1.13 Images of the Sun from the Extreme Ultraviolet Imaging Telescope
(at 195 Å) on the spacecraft SoHO on respectively 5 May 1996, when solar
activity was minimum (left panel), and on 2 November 2001, when solar activ-
ity was maximum (right panel). (Images by SoHO/EIT consortium, ESA and
NASA.)

somewhat as do iron filings sprinkled on a sheet of paper placed near a magnet.
Indeed, as we will see in Section 2.3, the plasma and the magnetic field are inti-
mately linked together, and one may ask whether the magnetic field might drive
the plasma, somewhat as a magnet drives iron filings. A hint can be obtained
by comparing the energy densities. We have seen that at the photosphere, the
thermal energy of the particles is normally greater than the magnetic energy,
except in the localised regions where the magnetic field is very strong. How-
ever, the fast density decrease with altitude makes the particle energy fall more
rapidly than does the magnetic energy. In the upper chromosphere and the lower
corona, therefore, magnetic energy tends to dominate, so that the magnetic field
is expected to drive the plasma. Hence the changes in the plasma structures are
driven by changes in the solar magnetic field during the sunspot cycle.

Coronal emission of ultraviolet and X-rays

We saw that the radiation responsible for the white light images of the corona
shown in Fig. 1.12 is mainly produced by scattering of solar radiation by free
electrons. It is interesting to compare these images to images taken in the X-
ray or the extreme ultraviolet range.14 Figure 1.13 shows such images, obtained
in a narrow spectral band in the extreme ultraviolet when solar activity was
respectively minimum (left panel) and maximum (right panel).

How is this emission produced? We have seen that the coronal temperature
is so high that heavy elements are stripped of many of their electrons. The

14These images must be taken from space since radiation at X-ray and extreme ultraviolet
wavelengths is absorbed by the upper atmosphere of the Earth.
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Figure 1.14 Image taken by the Transition Region and Coronal Explorer
(TRACE) in April 2001 in a narrow spectral band around 171 Å, containing
emission lines of eight- and nine-times ionised iron atoms that reveal structures
having a temperature of about 106 K. (Image by Stanford-Lockheed Institute
for Space Research and NASA.)

collisions with ambient electrons that ionise these elements can also knock their
bound electrons into higher energy levels from which they radiate, producing
spectral lines. Since the mean energy of electrons is 3kBT/2 and that of photons
of wavelength λ is hc/λ, the plasma at T � 106 K (or more) should radiate
strongly at wavelengths of the order of λ � 2hc/3kBT � 10−8 m (or less),
which corresponds to the extreme ultraviolet or the X-ray range. Furthermore,
the emission is proportional to the number of emitting ions and to the number of
exciting electrons, so that it increases as the density squared, thereby increasing
the contrast of the structures.

Another reason for the contrast of those images taken in a narrow spectral
band is that different spectral lines are emitted by different ions, which in turn
are abundant in different temperature ranges. Hence a given spectral line reveals
plasma at a particular temperature. For example, the spectral line in which
the images of Fig. 1.13 have been obtained is emitted by iron atoms that are
ionised 11 times and are abundant around 1.5 × 106 K; at lower temperatures,
ambient electrons have not enough energy to produce such a high degree of
ionisation, whereas at higher temperatures, they tend to produce a higher degree
of ionisation.

Figure 1.13 shows two extreme types of large-scale structures: bright and
dark. Bright regions appear highly structured and are especially numerous at
activity maximum. As on images in the visible range, these bright structures
outline the lines of force of the magnetic field. These lines emerge from the Sun
and close back to its surface, forming large arches or loops, which are generally
located above sunspot groups. Figure 1.14 is an image of such loops; one sees
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that they have a fibril or thread-like structure. On the other hand, dark regions
appear more uniform (although they do contain small-scale structures), and they
radiate less essentially because they are less dense. Near solar activity minimum
these dark coronal holes are located around the solar poles; over each coronal
hole the large-scale vertical field is observed to have a uniform direction that is
opposite in the north and south polar caps. Around activity maximum, when
the predominant magnetic field polarity around the poles is being reversed, the
polar coronal holes disappear but smaller ones appear throughout the disc.

On these basic structures are superimposed a host of time-varying phenom-
ena having virtually all scales from the solar radius down to the smallest ob-
servable scale. What produces these features? We shall tackle this intriguing
question in Chapter 4.

1.3 Observing the solar wind

2nd witch I’ll give thee a wind.
1st witch Th’art kind.
3rd witch And I another.
1st witch I myself have all the other,

And the very ports they blow,
All the quarters that they know . . .

W. Shakespeare, Macbeth

A solar astronomer is like a child in a toy museum, who can look but not touch
(even via instruments) – until some bold and insightful space agency sends a
probe to the Sun (Fig. 5.15). This involves the difficult art of determining where
the radiation comes from and how it has been altered by propagation. The solar
wind physicist has an easier task: he or she can make direct measurements with
space probes that analyse in situ the solar wind particles and fields. Since
the beginning of the space age, several tens of spacecraft have explored the
heliosphere at virtually all latitudes up to the outskirts of the solar system, and
returned a host of data (Fig. 1.15). Strangely enough, they have found that
there is not a single wind but several – albeit one is more basic than the others.

1.3.1 Observing near the ecliptic
Some subtleties of space exploration

Most space probes lie close to the ecliptic – the plane in which the Earth and
most of the planets orbit the Sun. There is a simple reason for that. A spacecraft
leaving the Earth starts with a velocity vector equal to the Earth’s orbital
velocity plus that provided by the launcher; since the Earth’s velocity is about
30 km s−1 and lies in the ecliptic plane, one must give to the spacecraft a velocity
perpendicular to the ecliptic of at least this amount to put it into an orbit angled
far from this plane; this is outside the capabilities of existing rocket technology
(Fig. 1.16). As a result, there is an armada of space probes exploring the solar
wind near the ecliptic.
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Figure 1.15 Some notable spacecraft that have explored the solar wind, with
their dates of launch, and their main targets. (Images by NASA and ESA.)

Figure 1.16 The difficulty of sending a spacecraft outside the ecliptic: because
the Earth speed vE is much greater than the launch speed vL, the spacecraft
velocity vL + vE in the solar frame makes a very small angle to the ecliptic.
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Figure 1.17 Simplified ‘strawman payload’ of the space agencies: the minimum
required for solar wind in situ observation. (Drawing by F. Meyer.)

At the extremes of distances, the spacecraft Helios 1 and 2, launched respec-
tively in 1974 and 1976, have approached the Sun up to about 0.3 AU, whereas
Pioneer 10 and 11 (launched respectively in 1972 and 1973) and Voyager 1 and
2 (launched in 1977) are aiming at the outskirts of the Solar System. A horde
of spacecraft are or have been watching the solar wind impinging on the Earth
at 1 AU from the Sun. For doing so, they lie between the Sun and the Earth,
at the right position for the Sun’s and the Earth’s gravitational attractions to
combine to make the spacecraft orbit the Sun at the same angular speed as does
the Earth.15

The solar wind, as the corona, is essentially made up of electrons and protons
plus a small proportion of heavier ions, and it carries a magnetic field. As we
shall see in Section 2.3, particles and fields are intimately coupled in plasmas,
so that in order to explore them, space probes should carry at least a particle
detector, a magnetometer and an electric antenna measuring waves, in addition
to power and communication resources and to the necessary software (Fig. 1.17);
most spacecraft generally carry additional instruments.

Several winds

Figure 1.18 shows typical measurements of key solar wind parameters: the mean
velocity of protons (top panel) and the mean number density of electrons16

(middle panel) obtained by the spacecraft WIND (operated by NASA [16]) in
June 1995, close to solar activity minimum.17

15The so-called L1 Lagrange point, located at about 250 Earth’s radii from the Earth
towards the Sun.

16Because protons and electrons are the main constituents and carry opposite charges, their
number densities and mean velocities must be roughly equal to keep the plasma electrically
neutral.

17The mean velocity of protons (roughly equal to their mean radial velocity) and the density
of electrons are plotted as (about) 10 minutes averages of data from respectively the ion
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Figure 1.18 Mean proton velocity (top panel) and mean electron density (mid-
dle panel) measured on the spacecraft WIND in June 1995, at 1 AU from the
Sun in the ecliptic. The bottom panel shows the radial component (Sun-centred)
of the magnetic field and the latitude of WIND with respect to the heliospheric
current sheet (HCS), that we will discuss in Sections 1.3.3 and 6.2. (Data cour-
tesy of C. Salem.)

What does Fig. 1.18 tell us? In addition to small fluctuations at short
timescales, the speed and the density exhibit a characteristic pattern: the speed
varies by up to a factor of two or more and the density varies by up to a factor
of ten, nearly simultaneously at intervals of about a week. The abrupt speed
increases are followed by slow decreases; the density peaks when the speed
changes abruptly, and (apart from the density peaks) the density is low (and
uniform) when the speed is high and vice versa. This pattern of alternate fast
and slow streams is repeated – with some modification – at the rotation period
of the Sun, and is accompanied by changes in the magnetic field and in other
properties. One sees in the bottom panel of Fig. 1.18 that the sign of the radial
component of the magnetic field changes as a new fast stream is encountered,
and remains constant within it.

electrostatic analyser (Lin, R. P. et al. 1995, Space Sci. Rev. 71 125) and the thermal
noise (Meyer-Vernet, N. et al. 1998, in Measurement Techniques in Space Plasmas: Fields,
Geophys. Monogr. Ser. 103, ed. R. F. Pfaff, et al., Washington, DC, American Geophysical
Union, p. 205) part of the WAVES receiver (Bougeret, J.-L. et al. 1995, Space Sci. Rev.
71 231), which are the best instruments for measuring these respective properties on WIND
(Salem, C. et al. 2003, Ap. J. 585 1147).
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This pattern has been observed by all spacecraft orbiting near the ecliptic
at moderate distances from the Sun. It suggests the existence of several wind
states: one slow/dense/structured and one fast/tenuous/uniform, in addition to
transient and intermediate stages where the wind properties are still different
(Section 6.3).

What is the origin of these states and of the changes between them? To
understand this, we must realize that all these observations were performed
near the ecliptic plane. This plane is very peculiar because the solar spin axis
makes an angle of only 7.25◦ with the normal to the ecliptic. Furthermore near
solar activity minimum, the dipolar component of the solar magnetic field is also
nearly parallel to the spin axis, but not exactly so (making an angle generally
larger than 7.25◦). As the Sun spins, rotation of the Sun’s dipolar magnetic
pattern places an in-ecliptic observer alternatively in two opposite magnetic
hemispheres. In contrast, a spacecraft sufficiently far from the ecliptic would
remain in the same solar magnetic hemisphere as the Sun spins.

1.3.2 Exploring the third dimension with Ulysses

O frati, dissi, che per cento milia
Perigli siete gicenti all’occidente,
A questa tanto picciola vigilia
De’ vostri sensi, ch’è del rimanente
Non vogliate negar l’esperienza,
Diretro al sol, del mondo senza gente.
La Divina Commedia di Dante Alighieri,

Canto XXVI18

So did Ulysses encourage his sailors in Dante’s version of the Odyssey. Less
famous is the record of a round-table discussion that gathered a lot of distin-
guished scientists in 1959, at a symposium on the exploration of space [28]:

Mr Hibbs: I should like to ask whether there is a particular impor-
tance in performing experiments out of the plane of the ecliptic.

The fortitude of the scientists and engineers who made this dream come true
in spite of the difficulties and sent the spacecraft Ulysses (Fig. 1.19) where no
probe had ever flown is reminiscent of the mythical Greek warrior.

When the idea of an out-of-ecliptic mission arose, nobody knew how to
realise it, and only in the 1970s did the idea appear technically feasible. The
American and European space agencies then proposed a joint package of two
spacecraft that were to be launched in 1983, and to sweep towards opposite
sides of the ecliptic plane – using Jupiter’s assist19 – in order to pass nearly

18Tell me brothers, would you,/who braved a hundred thousand perils/to go ever farther
to west,/now be loath to roam a realm/which reaches to the Sun/and harbours not a single
living soul? (Trans. L. M. Celnikier.)

19Gravity assist from a planet is like playing billiards with a spacecraft, using the planetary
gravitational field to deviate the spacecraft, as the edges of a billiard table deviate the ball.
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Figure 1.19 An artist’s view of Ulysses, the first and only spacecraft to have
reached high heliocentric latitudes (ESA and NASA).

simultaneously over opposite solar poles and to achieve a stereoscopic view of
the solar wind [31]. But in the early 1980s, the National Aeronautical and Space
Administration (NASA) decided to cancel the US spacecraft because of financial
and technical difficulties. The project was reduced to a single spacecraft, to be
built by the European Space Agency (ESA), launched by NASA with the Space
Shuttle, and equipped with European and American instruments. In late 1983,
however, the mission had still to wait: the spacecraft was ready but the launcher
was not. And 1986 saw a catastrophic event: the Space Shuttle Challenger blew
up, a few months before the planned launch of Ulysses, once more delaying the
mission.

The launch took place at last in October 1990 – close to solar activity max-
imum. In 1991 the probe travelled in the ecliptic towards Jupiter. In February
1992 it swung around Jupiter into an elliptic orbit inclined by 80◦ to the ecliptic
(Fig. 1.20). It then travelled into the Sun’s southern hemisphere, passed over
the south polar region in late 1994, crossed the ecliptic plane at 1.3 AU from
the Sun, and passed over the north polar region in 1995 – near solar activity

Since the planet is moving, the spacecraft’s speed with respect to the Sun changes upon
reflection, even though the reflection is elastic in the frame of the planet; in this way, the
spacecraft can not only change direction, but also gain or lose kinetic energy at the expense
of the planet (see Gurzadyan, G. A. 2002, Space Dynamics, New York, Taylor & Francis).
We will encounter a similar effect in Section 2.1, with the electromagnetic fields replacing
gravitation, and charged particles replacing spacecraft.
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Figure 1.20 Sketch of Ulysses’ trajectory. The dates of the first two passages
over the solar poles are indicated on the left, along with solar activity. The
orbital period is such that the fast pole-to-pole transits, covered in less than a
year on the perihelion side, take place alternatively near sunspot minimum and
maximum.

minimum. The second orbit took it over the polar regions once more in 2000–
2001, this time near solar activity maximum. And a third orbit will take it again
over the polar regions in 2007, near solar activity minimum. Ulysses carries a
panel of instruments measuring the charged and neutral particles over a wide
range of energies, the dust grains, the magnetic field and waves, including X-
and gamma rays [32].

The orbit is especially suitable for studying the heliosphere. The orbital
period is nearly half a solar activity cycle, and the pole-to-pole transit near
perihelion takes less than a year – a time-span during which solar activity and
distance do not change much. Hence at each passage along this part of the orbit,
which take place alternately near solar activity minimum and maximum, Ulysses
measures how the solar wind varies with heliocentric latitude, other parameters
being roughly constant. On the other hand, the distance, latitude and solar
activity vary simultaneously during the aphelion phase, when the spacecraft is
moving less rapidly.

The solar wind in three dimensions

What did Ulysses find?
First of all, did Ulysses observe the recurrent pattern of two wind states

observed by in-ecliptic spacecraft? Figure 1.21 shows the mean proton veloc-
ity (top panel) and the electron density (middle panel) measured by Ulysses in
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Figure 1.21 Mean proton velocity (top panel) and mean electron density (mid-
dle panel) measured on Ulysses in June 1995. The density is normalised to 1
AU by multiplying by Ulysses’ distance (in AU) squared. The radial magnetic
field (not shown) has a constant (positive) sign. The bottom panel shows the
spacecraft heliocentric distance (thick line) and latitude (dashed line) in solar
co-ordinates. (Data courtesy of K. Issautier.)

June 1995, the same month as the WIND observations plotted on Fig. 1.18
were acquired.20 Figure 1.21 does not show any trace of the two-state wind pat-
tern observed by in-ecliptic spacecraft. The speed remains close to 750 km s−1,
while the density (normalised to the distance of 1 AU) is also roughly constant
at 2.5 cm−3, as expected from conservation of particles expanding radially at
a constant speed. Note that the density scale in Fig. 1.21 is enlarged by a
factor of five with respect to that in Fig. 1.18, to emphasise the small vari-
ations. In June 1995, Ulysses was at about 1.6 AU from the Sun and 65◦

heliolatitude, i.e. very far from the equatorial plane of the solar magnetic
dipole.

What did it observe elsewhere?
This is best summarised in Fig. 1.22, which shows how the speed changes

with latitude and with solar activity. On this figure, the speed is plotted in

20The speed is from the SWOOPS particle electrostatic analyser (Bame, S. J. et al. 1992,
Astron. Astrophys. Suppl. Ser. 92 237), and the density from thermal noise analysis of data
from the URAP instrument (Stone, R. G. et al. 1992, Astron. Astrophys. Suppl. Ser. 92
291), that are the best ways of measuring these respective properties on Ulysses (Issautier, K.
et al. 1999, J. Geophys. Res. 104 6691).
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Figure 1.22 Solar wind speed as a function of heliocentric latitude, plotted
in polar co-ordinates during Ulysses’ first two orbits. The data are plotted
over solar images obtained on 17 August 1996 (near activity minimum; left)
and 7 December 2000 (near activity maximum; right), with SoHO EIT(195 Å),
and LASCO instruments and the Mauna Loa K coronameter (0.7–0.95 µm).
(Adapted from [19].)

polar co-ordinates, i.e. the distance from the centre is proportional to the speed
at each latitude. The left and right panels show the first and second orbits,
which took place respectively around solar activity minimum and maximum.
The data are superimposed on images of the corona typical of these periods of
solar activity. In both panels, time starts on the left-hand side (southwards)
and progresses counter-clockwise along the orbit as indicated by the arrows and
the dates.

Consider first the structure near solar activity minimum (left-hand panel of
Fig. 1.22). The coronal image on which the data are superimposed shows the
simple structure we have already seen in the left-hand panel of Fig. 1.12, with
dark coronal holes on the polar caps and bright streamers extending outwards
near the equatorial plane. The solar wind structure reflects this simplicity: the
speed is nearly constant at all latitudes except in a narrow band of ±20◦ around
the equator where the speed pattern resembles the two-state structure seen by
near-ecliptic spacecraft. This simplicity is shared by the other properties. The
sign of the radial component of the magnetic field remains constant within each
hemisphere (except for some brief reversals), being outwards in the north and
inwards in the south, except in a narrow equatorial band where polarities are
alternating.

Around solar activity minimum, therefore, the heliosphere has an outstand-
ingly simple structure, essentially made of a quiet, fast and tenuous wind where
the radial component of the magnetic field has a constant sign (opposite in op-
posite hemispheres). Comparison with solar observations shows that this fast
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Table 1.2 Occurrence and variability of the fast and slow winds

Fast wind Slow wind

At activity minimum Ubiquitous outside equator Only near equator
At activity maximum Occurs as narrow streams Ubiquitous outside streams
Variability Low Large

Table 1.3 Basic properties of the fast and slow winds

Mass loss through
Speed Electron a sphere

[
ρv × 4πr2

]
1AU

Ram pressure
v (m s−1) density n (m−3) (kg s−1)

[
ρv2

]
1AU

(Pa)

Fast 7.5 × 105 2.5 × 106 109 2.6 × 10−9

Slow 4 × 105 7 × 106 1.5 × 109 2.1 × 10−9

wind arises from the inactive solar regions, especially the large coronal holes sur-
rounding each pole, where the magnetic field has a constant polarity (opposite
at opposite poles). The pattern of fast and slow winds recurring at the solar
rotation period is restricted to a narrow latitude band surrounding the solar
equatorial plane, that is akin to the equatorial region where bright streamers
are observed in the corona. This picture is consistent with observations by
near-ecliptic spacecraft, which are located at low latitudes.

Consider now the structure near activity maximum (right-hand panel of
Fig. 1.22). The superimposed coronal image shows the complex picture typical
of solar activity maximum, which we have already seen in the right-hand panel of
Fig. 1.12, with bright streamers extending radially all around the Sun. The solar
wind structure reflects this complexity, with alternating fast and slow streams
of small scale – observed at all latitudes, in addition to transients. This complex
structure is shared by the magnetic field, whose polarity alternates, and by other
properties. Near activity maximum, therefore, the pattern of alternating fast
and slow streams is observed at all latitudes, with, however, somewhat smaller
speeds and scales than near activity minimum.

We have summarised in Tables 1.2 and 1.3 the basic properties of these wind
states (see [21], [19]).21

1.3.3 A simplified three-dimensional picture

These Ulysses observations bear out – albeit with some modifications – a simple
picture of the heliosphere near solar activity minimum, that had already been

21The values of ρv and ρv2 are slightly greater than nmpv and nmpv2 respectively because
there is a small proportion of helium.
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Figure 1.23 Magnetic field lines of a magnetic dipole aligned with the vertical
axis. The black disc sketches the region (here the solar interior) where the
currents producing the magnetic field are flowing.

hinted at from remote-sensing observations, and from data of previous spacecraft
that had gone slightly outside the ecliptic.

Dipolar magnetic field

To begin with, let us assume that the Sun behaves as a huge magnetic dipole,
producing a magnetic field as sketched on Fig. 1.23. The actual solar magnetic
field is more complicated, but the dipole is a reasonable starting approximation
because the farther out from the Sun, the smaller are the effects of the solar
non-dipolar components. Indeed, outside the region containing electric currents,
Maxwell’s equations

∇× B = µ0J (1.14)

∇ · B = 0

with J = 0, imply B = −∇ψ, with the Laplace equation ∇2ψ = 0; hence the
magnetic field can be developed in a multipolar series where the term of order
n decreases with distance as r−(n+2) (e.g. [8]). The dipolar term corresponds
to n = 1 and becomes dominant with increasing distance.

With the components of the dipolar magnetic field in the radial (Br) and lati-
tudinal (Bθ) directions (Appendix), the field lines are solutions of the differential
equation dr/ (rdθ) = Br/Bθ = −2 sin θ/ cos θ, where r and θ are respectively
the distance and latitude in a spherical co-ordinate system whose symmetry
axis (vertical) is aligned with the magnetic dipole axis. Putting u = cos θ, this
yields dr/r = 2du/u, whose integration gives r ∝ u2 = cos2 θ. Hence, a field
line crossing the magnetic equatorial plane (cos θ = 1) at heliocentric distance
L is given by r = L cos2 θ.

In this geometry, all field lines are closed; each one leaves the surface, extends
outwards to a maximum distance L in the magnetic equatorial plane and then
returns towards the surface on the other side (Fig. 1.23).
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Figure 1.24 Simple model of how a dipolar magnetic field imposed at the solar
surface is modified by a wind flowing along the field lines. At large distances the
oppositely directed magnetic fields imply an electric current flowing in a thin
sheet perpendicular to the figure, a picture that will be refined in Section 6.2.
(Adapted from [27].)

A dipole plus a wind

This nicely simple picture, however, concerns a magnetic dipole in a vacuum,
which the Sun is certainly not; the electric charges of the plasma around the
Sun produce currents that change the magnetic field according to Maxwell’s
equations (1.14). Furthermore this plasma manages to flow outwards, with
an energy density greater than that of the magnetic field, as we will see in
Chapters 5 and 6. How does this modify the picture? We have already said
(and shall explain in Section 2.3) that the plasma and the magnetic field lines
are strongly tied together, so that the plasma can move along the field lines
but not across them, just as beads on a necklace. Near the poles, where the
magnetic lines extend nearly radially, the outgoing wind can flow unimpeded
along them. In the equatorial regions, however, the situation is different because
an outgoing wind would have to flow perpendicularly to the dipolar field lines
(Fig. 1.23).

What happens in that case? Since the wind energy density exceeds that of
the magnetic field, the wind pushes out the field, drawing the field lines out-
wards to the extent that they become nearly parallel to the equator and no
longer return to the surface. In this way, the outgoing wind can flow along
the field lines everywhere. This is sketched in Fig. 1.24, which shows a simpli-
fied solution of this problem [27]. Because the lines parallel to the equatorial
plane come from opposite ends of the dipole, they represent magnetic fields hav-
ing opposite directions. Hence, at large distances, the magnetic field direction
changes abruptly at the equator. This implies that a thin sheet of current flows
along the magnetic equatorial plane in a direction normal to the figure; in three
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Figure 1.25 Drawing of the appearance of the corona at the 30 June 1954
eclipse, near solar activity minimum. (Adapted from [30].)

dimensions, it forms an annular current sheet that separates the magnetic fields
originating at opposite poles.

Although Fig. 1.24 refers to a highly idealised situation, the real corona
might sometimes resemble it, as suggested by Fig. 1.25, which is an old drawing
of the visual appearance of the corona during a solar eclipse [30]. One must be
cautious in interpreting such visual appearances since they result from different
structures lying along the line of sight of the observer, and projection effects
can be misleading. However, the figure suggests a current sheet extending into
space near the solar magnetic equatorial plane, that separates regions of opposite
magnetic polarities. We will see in Section 6.2 that this sheet is not a simple
plane, having a complex warped shape which has been likened to the skirt of a
spinning ballerina [1].

How does this picture change with solar activity? During a few years near
minimum, when the solar magnetic field is not far from that of a dipole making a
small angle with the rotation axis, the current sheet is a (slightly warped) plane
making a small angle with the solar equator. As solar activity rises, the solar
magnetic field becomes more complicated, making the sheet warp and thread
its way towards polar regions, finally sometimes breaking up near activity max-
imum, when the large-scale solar magnetic field becomes rather disorganised.
As solar activity decreases, the large-scale magnetic field reorganises itself to-
wards a dipolar structure whose axis is again close to the spin axis, but with a
direction opposite to the one in the previous cycle.

How is the wind velocity related to this magnetic structure? Naively, one
expects that the flow of the wind will be unimpeded and stationary everywhere
except near the current sheet where complex geometry-dependent effects should
occur. In this sense, this simple picture, conceived in the mid 1970s, gives a
straightforward explanation for the basic geometric structure of the heliosphere,
sketched in Fig. 1.26. Returning to the WIND observations of Fig. 1.18, we can
now relate them to the position of the spacecraft with respect to the heliospheric
current sheet, which is shown in the bottom panel. We can see that the sign of
the radial component of the magnetic field is the same as that of the latitude
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Figure 1.26 Simplified picture of the large-scale structure of the solar wind
near sunspot minimum, when the solar magnetic dipole makes a small angle
with the spin axis (dotted line). The velocity and field lines are sketched in
bold and thin lines respectively. The magnetic polarity is the one that existed
when the WIND and Ulysses observations shown in Figs. 1.18 and 1.22 were
acquired; this polarity reverses every 11 years.

with respect to the current sheet, as expected from the sketch in Fig. 1.26. As
the Sun spins, the WIND spacecraft in the ecliptic lies alternately above and
below the heliospheric current sheet. At each crossing of the sheet, the direction
of the magnetic field changes and a slow and variable wind is observed. This
picture is also consistent with observations from Ulysses, which spends most of
its trajectory far from the current sheet near solar minimum, and measures a
fast stationary wind with a constant magnetic polarity in each solar hemisphere
except at low latitudes.

We shall revisit this grossly simplified picture later. Before doing so, we have
to introduce some basic plasma physics.
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2

Tool kit for space
plasma physics

Most of the Universe is made of plasma. And yet, plasmas are very rare on
the Earth, where solids, liquids and gases – the three primary states of mat-
ter – are ubiquitous (Fig. 2.1). These states are the result of a competition
between thermal energy and intermolecular forces. In solids, the latter win,
maintaining the atoms and/or molecules at nearly fixed positions, whereas ther-
mal energy merely produces vibrations around these positions [9]. In gases on
the contrary, thermal energy wins, making the particles almost completely free.
Liquids are in between: the intermolecular forces are sufficiently strong to re-
sist compression, but sufficiently weak to enable deformation and flow; it is not
surprising that this intermediate state is less well understood than the other
two [19].

Common experience and elementary physics tell us that we may transform
a solid into a liquid by heating it; this weakens the bonds between molecules so
that they may move slightly, enabling matter to change shape. This requires an
amount of energy per molecule somewhat smaller than the binding energy. If the
energy furnished exceeds the binding energy, the bonds break out completely,
producing a gas of free atoms and/or molecules.

The plasma is the next state: the fourth, reached by furnishing enough
energy to break the atoms themselves, or rather to kick off at least the outer
atomic electron, producing a mixture of electrons and ions. For doing so, one
has to heat or to compress, to bombard with energetic radiation or particles, or
to subject the medium to high electric fields, as we shall see in more detail in
Section 2.4. One (or several) of these ionisation agents acts in most regions of
the Universe.

But (generally) such is not the case in the thin atmospheric layer of the small
planet Earth, where human beings live. This medium is not ionised because
it is a very special place: it is relatively cold; it is protected from the solar
ionising radiation by an atmosphere; and when an atom happens nevertheless
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Figure 2.1 Solids, liquids and gases abound on the Earth, but most of the
Universe is made of plasma: the fourth state of matter. (Production of vapour;
drawing by Jean Effel, La Création du Monde, 1971, copyright Adagp, Paris,
2007.)

to be ionised, the particle concentration is so high that ions and electrons meet
frequently enough to recombine into neutral atoms. This is why our everyday
experience of plasmas is so limited: we can see them occasionally in lightning,
in some flames, inside fluorescent tubes or neon signs, but most of the visible
plasmas lie farther away and are seen in sky displays, in auroras, comets and
stars.

This chapter introduces briefly some tools of plasma physics that are essential
for understanding the solar wind and its interaction with objects. In addition
to introducing classical concepts, we give some hints on two subjects that lie at
the frontier of traditional plasma physics: non-Maxwellian distributions, which
are ubiquitous in the heliosphere – fooling our intuition and raising questions
still unanswered – and ionisation processes. The aim is to furnish a tool kit for
dealing with the major processes at work in the heliosphere, with the necessary
limitations – in space and scope – of such a kit. We have privileged insight, at
the expense of rigor and completeness. More may be found in several excellent
texts, for example [17], [6], [10], [4], [18], [16] and [7].

2.1 What is a plasma?

In any gas there are always a few atoms or molecules that manage to lose one
electron, producing some small degree of ionisation. Being ionised is therefore
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not sufficient to qualify as a plasma. A useful definition may be instead that a
plasma is:

• a gas1 containing charged particles (together with neutral ones), which

• is quasi-neutral

• and exhibits collective behaviour.

We will explain these three properties below. For simplicity, we consider a
plasma made of electrons (charge −e, mass me) and one species of singly charged
ions (charge +e, mass mi) of equal concentrations n. We do not consider com-
plex plasmas containing a large quantity of heavily charged ions or of dust
particles, which are rare in the heliosphere. We also assume the particles to be
non-relativistic and non-degenerate; relativistic and degenerate plasmas will be
discussed briefly later.

The concentration n is the average number of electrons (or ions) per unit
volume. This assertion assumes implicitly that there are many particles in
any volume considered, i.e. we shall consider spatial scales L greater than the
average distance between particles, whose order of magnitude is

〈r〉 ∼ n−1/3 (average distance between particles). (2.1)

The temperature T characterises the agitation of the particles. In thermal
equilibrium, the particles’ velocities along each space co-ordinate (x, y, z) are
Gaussian distributed around zero (in the frame where the bulk of them is at
rest), with mean square values 〈v2

x〉 = 〈v2
y〉 = 〈v2

z〉 = kBT/m for a particle
species of mass m; in this case, the average kinetic energy per particle is

m〈v2〉/2 = 3kBT/2. (2.2)

However, an important property of space plasmas is their frequent lack of ther-
mal equilibrium, even locally. Not only may electrons and ions have different
bulk velocities and temperatures, but the particles’ velocities may not be Gaus-
sian distributed. In that case, one may still formally define a kinetic temperature
for each particle species from (2.2), even though it is not a thermal equilibrium
temperature. We shall return later to this point, which has basic applications in
the solar corona (Section 4.6) and the solar wind (Section 5.5 and Problem 5.7.6).
Meanwhile, we will assume that, even in the absence of thermal equilibrium, the
particles have a typical random speed of the order of magnitude of

√
kBT/me,i

(for the electrons and ions respectively).2

1This restrictive definition is adequate for space plasmas. We do not consider plasma
crystals [15].

2This assumption is not as trivial as it might seem. Consider for example a power law
velocity distribution, so that the probability for the speed to lie in the range [v, v + dv] varies
as v−α (with α > 0) for v1 < v < v2, with v1 � v2. The most probable speed is v1,
whereas you can show as an exercise that the root mean square speed – from which the
kinetic temperature is defined – is of the order of magnitude of v1 or v2 depending on whether
α is greater or smaller than 3, and the median speed is still very different. This example is
extreme, since power law distributions are par excellence scale-free, but it is not academic
since many processes produce similar distributions, as we shall see later in this book.
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For each species of (non-relativistic and non-interacting) particles of number
density n and mass m, the pressure is determined by the average random kinetic
energy as

P = nm〈v2〉/3 = 2wth/3 pressure (v � c) (2.3)

where wth is the energy density of the particles; this is just the average flux of
momentum along one space direction. This is equivalent to

P = nkBT (2.4)

with the kinetic temperature defined in (2.2). This definition of the pressure
does not require the particles to be necessarily in thermal equilibrium. Note that
in the simple plasma defined above (in which electrons and ions have the same
number density n), the total particle pressure is the sum of the pressure of
electrons and ions, that is P = 2nkBT , where T is their kinetic temperature (or
the average of them if they are not equal).

2.1.1 Gaseous plasma
For an assembly of charged particles to qualify as a gas, the particles must
move freely, which means that random motions should largely overrun mutual
interactions. The latter involve the Coulomb force; for two particles of charge
±e distant by r, the energy of interaction is of modulus e2/4πε0r. The plasma
thus behaves as a gas if the energy of interaction of two particles distant by
the average interparticle distance 〈r〉 is much smaller than the average kinetic
energy per particle, i.e.

e2/4πε0〈r〉 � kBT.

Substituting 〈r〉 ∼ n−1/3, and introducing the coupling parameter Γ defined as
the ratio of the average energy of interaction to kBT , we deduce the condition

Γ ≡ n1/3e2

4πε0kBT
� 1 (gaseous plasma). (2.5)

In the solar wind, Γ is of the order of magnitude of 10−8 − 10−7 at 1 AU, and
varies weakly with heliocentric distance.

2.1.2 Quasi-neutrality
Debye shielding

Since charges of opposite signs attract each other, whereas charges of like signs
repel each other, the Coulomb force tends to establish electric neutrality. The
random agitation, however, mixes the particles, destroying this neutrality. The
competition between both effects produces small regions that are non-neutral.
The hotter the plasma, the greater the agitation and therefore the larger the
maximum size of the non-neutral regions. On the other hand, the denser the
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medium, the greater the Coulomb force that keeps the plasma neutral, and
therefore the smaller the size of the non-neutral regions.

To estimate this size, consider a region of size L in which the electrons are
strongly depleted, so that it contains a total electric charge of order of magnitude
Q ∼ ne×L3. This produces an electric potential at the boundary of the region,
of order of magnitude

φ ∼ Q/ (ε0L) ∼ neL2/ε0.

For random agitation to produce spontaneously such a structure, the corre-
sponding energy per particle ∼ kBT must be at least equal to the potential
energy per particle eφ, i.e. kBT ≥ ne2L2/ε0. We deduce (in order of magni-
tude) the maximum size of non-neutral regions

LD =
(

ε0kBT

ne2

)1/2

, (2.6)

the so-called Debye length.
Detailed calculations show that indeed when a charge is put in an equilib-

rium plasma, it attracts ambient charges of opposite signs and repels charges of
like signs, so that it is surrounded by a region of size LD where the attracted
particles are concentrated and the repelled ones are depleted, producing a charge
distribution that shields the electrostatic field of the original charge. More pre-
cisely, the electrostatic potential at distance r of a charge q in an equilibrium
plasma is

Φ(r) =
q

4πε0r
e−r/LD ∗ (2.7)

where LD∗ = LD/
√

2 (because electrons and ions both contribute to the shield-
ing). At distances r � LD, the electric potential around the charge q is nearly
the Coulomb one, whereas at r � LD, the charge is completely shielded by the
charges of the ambient plasma, and the potential vanishes. Thus the plasma is
quasi-neutral at scales greater than LD.

This holds also for the charges of the plasma itself, and we have here a
first hint as to a fundamental plasma property: its collective behaviour. Any
charge in the plasma is ‘dressed’ by the other ones – a dressing of far-reaching
consequences.

Numerically, LD � 69
√

T/n in SI units, which comes to about 10 m in the
solar wind at 1 AU from the Sun (n ∼ 5 × 106 m−3, T ∼ 105 K). Therefore,
we have not to worry about the quasi-neutrality of the solar wind, except when
dealing with scales smaller than tens of metres – a problem that occurs in the
environment of space probes (Section 7.2).

It is worth noting that the Debye shielding requires several conditions to be
met:

• a region of size LD must contain many particles, i.e. nL3
D � 1; with the

definition (2.5) of Γ and the expression (2.6) of LD, this condition reads:
(4πΓ)3/2 � 1;
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• the electric disturbance produced by the charge q on the ambient particles
must not be greater than their average kinetic energy, otherwise they are
not capable of shielding it;

• the charge q is at rest;

• the plasma is in thermal equilibrium.

Non-equilibrium plasma

The latter condition is in practice rarely met in space plasmas. Consider first the
case of partial equilibrium, namely when the different particle species are each in
equilibrium but at different temperatures. Since the quasi-neutrality is ensured
by the Coulomb force and destroyed by the random agitation, Debye shielding
is mainly produced by the less agitated particles, so that LD is determined by
the colder species.

In complete absence of equilibrium, the shielding is mainly provided by the
slower particles of each species. More precisely (Problem 2.5.1), if the charge
produces a sufficiently small perturbation, then the shielding length LD∗ is
determined by the average of 1/v2 for each species, as

1/L2
D∗ = 1/L2

De
+ 1/L2

Di
(2.8)

with

1/L2
De,i

= ne2〈v−2〉e,i/ (ε0me,i) (2.9)

where the subscripts e and i stand for electrons and ions respectively. At equilib-
rium at temperature T , 〈v−2〉 = m/ (kBT ), so that the shielding length reduces
to LD∗ = LD/

√
2 with LD given in (2.6).3

In essence, Debye shielding is not determined by the random kinetic energy
of the particles, but by the average of the inverse of that kinetic energy.

Non-linear shielding

What happens when, in addition to the plasma not being in equilibrium, the
electric disturbance produced by the charge is large, i.e. the Coulomb potential
energy is not small compared to the kinetic energy? In that case, we shall
see later that the particles produce a different contribution to the shielding,
depending on whether they are attracted or repelled.4 The resulting distribution
of the attracted particles then depends on the geometry of the problem (see for

3For each species of mass m and temperature T, 〈v−2〉 =
∫ ∞
0

dve−mv2/2kB T /∫ ∞
0

dvv2e−mv2/2kB T .
4This is so because in order to shield the charge q, repelled particles have just to decrease

their number density, which can be achieved by a mere deviation of their trajectories; attracted
particles, on the other hand, have to increase their number density in order to shield the charge
q, which requires some of them to change their incoming trajectories into closed orbits around
q – a performance that requires collisions and cannot be achieved in the absence of equilibrium.
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example [11] and [8]). We shall return to this point in Section 2.3, and shall see
examples of application in Section 7.2, when calculating the electric charge of
objects immersed in the solar wind.

Shielding of a moving charge

What happens if the charge q is moving? The answer depends on the value
of its speed v compared to the most probable speeds of the plasma particles,
whose order of magnitude is (kBT/me,i)

1/2 for respectively electrons and ions.
Because electrons are much lighter than ions, these speeds satisfy the inequality
vthi � vthe. If the speed v � vthi, then the plasma electrons and ions are fast
enough to keep up with the charge motion, so that the shielding is not affected.
On the other hand, if vthi � v � vthe, then the plasma electrons are still fast
enough to keep up with the charge motion, but the ions move too slowly to
do so. In that case, the shielding is provided by the electrons only. Finally,
if the charge q moves faster than the electrons (and the ions), then the bulk
of the plasma particles cannot catch up with it, and therefore cannot shield it.
Instead, the charge motion produces plasma waves, a novel kind of dressing to
which we shall return in Section 2.3.

Timescale for shielding

This disappearance of Debye shielding (or rather its transformation into a new
kind of dressing) occurs when the charge moves fast from the point of view of the
electrons. A related problem is what happens when a charge q is suddenly put
in a plasma initially at equilibrium. The plasma particles will take some time
to distribute themselves in order to provide shielding. How long? Electrons,
moving faster than ions, are the first to shield the charge. For doing so they
must travel a distance of the order of LD. At the most probable speed vthe,
this takes the time τ ∼ LD/vthe. With the expression (2.6) of LD and vthe ∼
(kBT/me)

1/2, we find τ ∼ (
ε0me/ne2

)1/2 ≡ 1/ωp, where ωp is the so-called
(angular) plasma frequency, a basic plasma parameter to which we shall return
later.

We get here a second hint as to the collective behaviour of plasmas. Not only
are the charges dressed, but this dressing is highly dynamic, with a timescale of
the order of magnitude of 1/ωp.

This has an important implication. Consider an electromagnetic wave inci-
dent on a plasma. The variable electric field of the wave tends to destroy the
plasma quasi-neutrality. But if the wave frequency is smaller than the plasma
frequency, the disturbance has a timescale large enough that the plasma par-
ticles are capable of catching up with it and of restoring the quasi-neutrality.
If they succeed, the electric field is cancelled and the wave does not propagate
in the plasma. We shall see in Section 2.3 that, indeed, electromagnetic waves
propagate in a plasma only at frequencies greater than the plasma frequency.
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2.1.3 Collisions of charged particles

We now come to a further plasma property, which concerns collisions between
particles.

Collisions serve to achieve equilibrium. They determine not only the time
required to restore thermal equilibrium after a perturbation, but also the trans-
port coefficients which control the response of the medium to various gradients
in macroscopic properties:

• the diffusion coefficient, which determines the transport of particles in
response to a gradient of concentration;

• the viscosity, which determines the transport of momentum in response to
a gradient of velocity;

• the thermal conductivity, which determines the transport of heat in re-
sponse to a gradient of temperature;

• the electric conductivity, which determines the transport of electric charge
in response to an electric field.

The collisions thus play an important role, and a major difference between
plasmas and neutral gases is the cross-section for particles’ collisions. This
has profound implications for plasma behaviour, which contradict the intuition
acquired with neutral gases.

A reminder on collisions in neutral gases

Collisions between neutral particles have much in common with those of billiard
balls. Macroscopic neutral particles collide when they come into contact, namely
when they come closer than about their physical size. More precisely, two
spheres of radius r collide when their centres come closer than 2r, so that their
cross-section for collision is the area of a circle of radius 2r, i.e. 4πr2. The
‘size’ of an atom or a molecule relevant for collisions is not so clear-cut as
the one of a billiard ball since the interaction involves induced dipoles in the
distribution of electrons, a distribution determined by quantum mechanics. So,
the cross-section for collisions between neutral atoms or molecules is somewhat
greater than the ‘billiard ball’ value (taking for r a typical atomic size – see
Section 2.4.1), but not by more than one order of magnitude. This yields the
crude estimate

σcol ∼ 10−19 m2. (2.10)

As in the case of billiard balls, most collisions between neutral atoms and
molecules result in a large variation in momentum and energy (Fig. 2.2, left).

The mean collisional free path of particles is the average distance they have to
travel in order to undergo one collision. A particle of cross-section σcol travelling
a distance l encounters all the particles contained in a cylinder of section σcol
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Figure 2.2 Collisions between neutral particles (left panels) and between
charged particles (right panels). Collisions between neutrals occur, crudely,
when they come into contact, and generally produce a large change in trajec-
tory (top left panel). In contrast, charged particles interact even at large (but
smaller than LD) distances, via the Coulomb force (top right panel). The cor-
responding trajectories are sketched in the bottom panels.

Figure 2.3 The collisional free path is the average distance travelled by a par-
ticle to undergo one collision. A particle of cross-section σcol for collisions with
particles of concentration n has the free path lf = 1/ (nσcol).

and length l (Fig. 2.3), i.e. n × σcol × l particles of number density n. The
collisional free path lf corresponds to one collision, i.e.

lf = (nσcol)
−1 collisional free path. (2.11)

Near the surface of the Earth, the typical distance between particles is about
3×10−9 m, so that with the cross-section (2.10), the mean free path for collisions
is of the order of magnitude 1 µm.

The collision frequency is the inverse of the average time between two col-
lisions, that is the time for travelling the distance lf . With a relative speed v,
this yields

νcol = v/lf = nvσcol. (2.12)
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Collisions between charged particles and neutrals

The cross-section for collisions between electrons and neutrals is given in order
of magnitude by the above value (2.10). Because of their small mass, electrons
move much faster than neutrals, so that the relative velocity is about their
most probable speed vthe � (2kBT/me)

1/2. Hence the frequency of collision of
electrons with neutrals of concentration nn is given by substituting v ∼ vthe

and the cross-section (2.10) in (2.12), which yields

νen ∼ 5 × 10−16 nn

√
T , (2.13)

a result we shall use in the context of planetary ionospheres (Section 7.1).
For collisions of ions with neutrals, the induced dipoles play a more impor-

tant role, and the cross-section depends somewhat on the particle energy. At
a small enough temperature (as for example near comets), the cross-section is
proportional to the inverse of the relative speed, and a useful approximation for
the frequency of collisions of ions with neutrals of concentration nn is

νin ∼ 3 × 10−15 nn

√
mp/mi. (2.14)

Coulomb collisions

The mutual interaction of charged particles is basically very different. Consider
two charges approaching each other (Fig. 2.2, right-hand panel). Since they
interact via the Coulomb force, each ‘encounter’ generally deviates their trajec-
tories, provided the particles come closer than the Debye length. (Farther away,
the charges are shielded by the ambient plasma and no longer interact.) Each
such encounter may thus be considered as a ‘collision’.

What is the distance of closest approach required to produce a large pertur-
bation in trajectory? Whatever the relative sign of the charges (in Fig. 2.2 the
two charges are of like sign), the perturbation is large if the potential energy of
interaction is at least equal to the average kinetic energy, i.e. e2/4πε0r ≥ kBT ,
hence if the distance of closest approach is smaller than

rL ≡ e2

4πε0kBT
(Landau radius) (2.15)

in order of magnitude. Any encounter closer than this distance will result in a
large perturbation in trajectory. We deduce that the effective cross-section for
collisions producing a large perturbation is σC ∼ πr2

L, and the corresponding
free path is

lf ∼ (
nπr2

L

)−1
(mean free path for large perturbations). (2.16)

What happens if the plasma is not in equilibrium? We may apply the same
reasoning, but now kBT has to be replaced by the kinetic energy of the particle,
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mv2/2, for a particle of (relative) speed v and (reduced) mass m. The effective
distance for collisions producing a large perturbation is therefore in that case

ref =
e2

4πε0 × mv2/2
∝ v−2.

An important result emerges: the faster the particle, the smaller the cross-
section for collisions ∼ πr2

ef ∝ v−4. Hence, fast particles undergo very few
collisions. We shall return later to this point, which has basic consequences
for plasma behaviour. Another interesting result is that if electrons and ions
have similar temperatures, their collision cross-sections are similar, so that they
have similar mean free paths. Since the collision frequency varies as v/lf and
electrons (being much lighter) move much faster, they have a much greater
collision frequency.

How frequent are these close encounters producing large perturbations?
Most particle encounters occur at distances of closest approach of the order
of magnitude of the average distance between particles 〈r〉 ∼ n−1/3. From the
expression (2.15) of rL and the definition (2.5) of the coupling parameter Γ, we
have

rL/〈r〉 = Γ. (2.17)

Since Γ � 1, the distance rL for producing a large perturbation is much smaller
than the average interparticle distance, so that close encounters are very rare.
Most encounters occur at much larger distances, resulting in small perturba-
tions, so that the trajectory of charged particles is made of a succession of small
deviations, rather than the zigzag path of neutrals (Fig. 2.2, bottom).

Figure 2.4 illustrates this property in a more realistic way. It shows the
trajectory (projected on a plane) of a typical electron in a plasma with Γ = 0.02,
from a numerical simulation [1] handling 2 × 106 particles in a box of size 102

times larger than the average distance between electrons.

Mean free path for collisions of charged particles

As a result of the numerous encounters at large distances, the cross-section for
collisions of charged particles is greater than the value πr2

L, which takes into
account only the rare close encounters producing a large perturbation.

Consider the simple case of an electron that passes near a positive ion, with
impact parameter p and velocity ve and undergoes a small deviation (Fig. 2.5).
Because of the large ion mass, we suppose it to be at rest. Most of the deviation
of the electron takes place in the part of its trajectory where it is closest to
the ion, i.e. at a distance of order of magnitude p from the ion, namely as it
travels a distance of about p on each side of the ion, i.e. the distance 2p parallel
to ve; this takes the time δt = 2p/ve. In this part of the path, the Coulomb
force on the electron is F⊥ � e2/4πε0p

2, roughly perpendicular to the original
electron velocity ve. During the time δt, this force produces a change δv⊥ in the
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Figure 2.4 Typical trajectory (projected on a plane) of an electron in a plasma
with Γ = 0.02, from a numerical simulation [1]: a box of size 110 arbitrary units
contains 2×106 Maxwellian particles (electrons and ions); the trajectory shown
is that of an electron having roughly the most probable speed. The mean free
path (2.22) is nearly equal to the size of the box. (Courtesy A. Beck.)

Figure 2.5 An electron of velocity ve passing at distance p from an ion (of
negligible velocity) and undergoing a small deviation.

electron velocity (perpendicular to ve) given by meδv⊥ � F⊥δt. Rearranging,
this yields5

δv⊥ = ve × rLe/p with rLe =
e2

4πε0 × mev2
e/2

. (2.18)

Statistically, the deviation may be in either sense with equal probability;
hence the individual deviations do not add, but their squares do, as in a random
walk. We thus calculate the mean total variation 〈∆v2

⊥〉 during a given time
∆t, by integrating over encounters of various impact parameters p occurring
during this time. From (2.18), each encounter of impact parameter p produces
δv2

⊥ = (verLe/p)2. The number of encounters of impact parameter in the range

5An exact calculation turns out to yield the same result.
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[p, p + dp] (crossing the area 2πpdp) during the time ∆t is dN = nve × 2πpdp×
∆t, so that

〈∆v2
⊥〉 =

∫
δv2

⊥ × dN = 2π nr2
Le v3

e∆t

∫
dp/p. (2.19)

For impact parameters p < rLe, the deviation is large, contrary to our assump-
tion, whereas for p > LD the charges do not interact because of Debye shielding.
Hence the integral (2.19) must be calculated in the range rLe < p < LD, which
yields the factor ln(LD/rLe).

The collision frequency is the inverse of the time ∆t needed to produce a
large deviation, i.e. to produce 〈∆v2

⊥〉 � v2
e . Substituting this value into (2.19)

yields the collision frequency 1/∆t between electrons and (singly charged) ions

νei � nve × 2πr2
Le ln(LD/rLe) (2.20)

whence the collisional free path

lf � [
n × 2πr2

Le ln(LD/rLe)
]−1

. (2.21)

The mean value at equilibrium may be estimated by replacing mev
2
e/2 by the

average kinetic energy 3kBT/2. From (2.15) and (2.18), we have rLe � 2rL/3
and LD/rLe � 3/

(
4
√

πΓ3/2
)
, so that (2.21) yields the mean electron free path

for collisions

lf � [
n × (4π/3) r2

L ln(1/Γ)
]−1

(2.22)

where rL is given by (2.15) and Γ by (2.5).6 One can verify (Problem 2.5.2)
in Fig. 2.4 that for a typical electron the velocity direction indeed changes
significantly when the particle has travelled a distance given roughly by (2.22).
This equation yields approximately (in SI units)

lf � 109

ln (1/Γ)
× T 2

n
. (2.23)

Comparing (2.22) with (2.16), we see that the cumulative effect of the numerous
small deviations decreases the free path (and increases the collision frequency)
by a factor of order of magnitude ln(1/Γ). For typical space plasmas that we
shall encounter in this book, this factor lies approximately between 10 and 20.

In the solar wind at 1 AU from the Sun, we have n ∼ 5 × 106 m−3 and
T ∼ 105 K, so that the typical distance between particles is about 5 mm, whereas
the mean free path is about 1 AU; collisions are thus very rare in the solar wind.

We considered for simplicity an electron encountering a singly charged ion.
For an electron encountering an ion of charge Ze, the Coulomb force is greater
by the factor Z, and therefore so is the radius rL, producing an electron-free
path smaller by the factor 1/Z2.

6We have approximated ln(0.6/Γ) by ln(1/Γ), which yields a very small error since Γ � 1.
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Timescales for equilibrium

The scales 1/νei and lf represent respectively the average time and distance for
an average electron to change significantly the direction of its velocity due to the
collisions with ions. Because of the large difference in mass between electrons
and ions, this barely changes the particle energy.

Consider now collisions between electrons themselves. The calculation is
slightly different since one can no longer assume one particle to be at rest, but
we can make the calculation in the frame of the particles’ centre of mass (using
the reduced mass me/2), and the collision frequency is of the same order of
magnitude. The major difference is that for particles of like mass, the collision
now changes also the particle energy. Hence the values of νei and lf calculated
above represent respectively (in order of magnitude) the collision frequency and
the free path of electrons for change in speed direction (because of encounters
with ions and electrons) and in energy (because of encounters with electrons).

Consider now the collisions between two ions. The result is the same as for
collisions between two electrons, just replacing the electron properties by those
of ions. Hence, if the temperatures are similar, the mutual collision frequency
of ions is smaller than the above value by a factor equal to the ratio of their
most probable speeds, that is about (me/mi)

1/2, whereas the free path is the
same as above.

Photon mean free path versus particle mean free path

It is interesting to compare the effective cross-section of electrons for colli-
sions with charged particles σC , which is about one order of magnitude greater
than πr2

L (because of the numerous large-distance encounters), with the effec-
tive cross-section of electrons for interaction with photons (the Thomson cross-
section), given in (1.11). From (1.12) and (2.15), the ratio of both cross-sections
is

σC

σT
>

(
rL

re

)2

�
(

mec
2

kBT

)2

(2.24)

where we have substituted the so-called classical electron radius re =
e2/

(
4πε0mec

2
)
. This ratio is much greater than unity for non-relativistic plas-

mas. Hence, plasmas interact more with plasmas than with radiation, and
photon mean free paths in plasmas are generally much greater than charged
particle free paths.

2.1.4 Plasma oscillations

Consider a volume of plasma that is initially quasi-neutral, and imagine that
you displace all the electrons along the x axis by a distance x (Fig. 2.6). This
produces a charge per unit volume equal to ±ne in two slabs of width x at the
extremities; the electric field is equal to that between two capacitor plates of
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Figure 2.6 When electrons (in a plasma of density n) are displaced by x, the
charge separation produces the electric field of a capacitor whose plates carry
the charge of the electrons (or ions) contained in a plasma slab of width x, i.e.
±nex per unit area.

charge per unit area ±nex, i.e

E = nex/ε0.

Each displaced electron is subject to a force −eE along x, and moves according
to

me∂
2x/∂t2 = −eE ⇒ ∂2x/∂t2 = −ω2

px

with

ωp =
(

ne2

ε0me

)1/2

(plasma (angular) frequency). (2.25)

This is the motion of a harmonic oscillator of (angular) frequency ωp.
Charge separation in a plasma therefore makes electrons oscillate at the

(angular) frequency ωp. Ions, being much heavier, would oscillate more slowly
(by the factor (mi/me)

1/2), so that at the scale of the frequency ωp, they barely
move. Numerically, the plasma frequency is

fp =
1
2π

(
ne2

ε0me

)1/2

� 9
√

n plasma frequency (2.26)

in SI units, i.e. with fp in Hz and n in m−3. In the solar wind at 1 AU
from the Sun, we have fp ∼ 2 × 104 Hz; we shall see a direct illustration of the
plasma frequency in Section 6.4. In the Earth’s ionosphere (see Section 7.1), the
plasma frequency is a few 106 Hz; electromagnetic waves of smaller frequency are
reflected, a property which enabled early long-distance radio communications.

This oscillating behaviour holds under two conditions. First, the collisions
between particles should not suppress the plasma oscillations. This requires the
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electron collision frequency to be much smaller than the plasma frequency. If
the (gas) plasma is nearly completely ionised, this condition is always met since
ωp ∼ vthe/LD, so that we have approximately

νei

ωp
∼ LD

lf
� Γ3/2 × ln(1/Γ) (2.27)

which is much smaller than unity in a gaseous plasma (Γ � 1). On the other
hand, in a weakly ionised plasma, the collective behaviour requires that the col-
lision frequency of electrons with neutrals be smaller than the plasma frequency,
which requires the degree of ionisation to be large enough.

The second hypothesis made is that electrons move as a whole, i.e. that their
random agitation is negligible. During a period of plasma oscillation ∼ 1/ωp,
the agitation displaces an electron by a distance equal to the most probable
speed ∼ (kBT/me)

1/2 times 1/ωp, i.e. the distance LD. Hence, the plasma bulk
oscillations occur only at scales much greater than the Debye length. It is only
at such scales that a large number of particles can contribute cumulatively to
produce a collective behaviour. We shall see in Section 2.3 that the electron
random motion makes the plasma oscillations propagate as plasma waves, and
also damps them if the scale becomes comparable with (or smaller than) the
Debye length.

The origin of that collective behaviour is very different from the one in a
neutral gas. In a neutral gas, the coupling between particles is due to their
mutual collisions. In a plasma, the coupling is due to the mean electric field
produced by particles. The collective behaviour therefore requires that the close
encounters yielding large perturbations to this mean field be rare enough.

2.1.5 Non-classical plasmas
Quantum degeneracy

The above estimates are based on the assumption that the plasma behaves
classically. If the concentration of particles is too high, however, their distance
may involve scales so small that quantum effects act. Basically this is because,
from Heisenberg’s uncertainty relations, localising the particles in a small region
∆x gives them a momentum ∆p ∼ h̄/∆x. If the density is high, then ∆x is
small, and the corresponding ∆p yields a high energy.

Let us estimate this effect. Pauli’s exclusion principle tells us that two
plasma particles (which are fermions) cannot be in the same quantum state;
hence each particle must be localised within a region of size smaller than about
half the average interparticle distance, i.e. ∆x ∼ n−1/3/2. A compression at
density n therefore produces the momentum p ∼ h̄/∆x ∼ 2h̄n1/3 per particle.
The corresponding energy is p2/ (2m) ∼ 2h̄2n2/3/m per (non-relativistic) parti-
cle of mass m. Because of the small electron mass, this energy is much greater
for electrons than for ions.

Hence, compressing a plasma gives to each electron an energy of about
2h̄2n2/3/me, where n is their number density. A detailed calculation confirms
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this order of magnitude estimate; the exact values are pF = h̄
(
3π2n

)1/3
for the

largest momentum, whence the so-called Fermi energy WF = p2
F /(2me):

WF = h̄2(3π2n)2/3/(2me). (2.28)

The greater the particle density, the smaller the region that is available to an
electron, and the higher the resulting Fermi energy. If the Fermi energy becomes
greater than kBT , then the total energy is determined by the Fermi energy in-
stead of kBT , and the electrons are said to be degenerate. This occurs if the
temperature is smaller than WF /kB ≡ TF , the so-called Fermi temperature. In
that case, the Fermi temperature (instead of the kinetic temperature) deter-
mines the particle pressure, the coupling parameter Γ and the Debye length, so
that these quantities become independent of the kinetic temperature, and only
depend on the density.

We shall not encounter degenerate plasmas in this book, except when de-
termining the limits of stellar (see Section 3.1) and planetary masses (see Sec-
tion 7.1), which involve the Fermi energy.

Relativistic particles

Finally, to determine whether the particles are relativistic, we have to compare
the average kinetic energy ∼ kBT (or kBTF if they are degenerate) with the
rest mass energy mc2.

For relativistic particles, the Fermi energy and temperature must be cal-
culated with the relativistic energy–momentum relation. In particular if the
particles are ultra-relativistic (v � c), the energy of a particle of momentum p is
W � pc (instead of p2/2m), so that the electron Fermi energy is now WF � pF c
(instead of p2

F / (2me)). The Fermi energy of ultra-relativistic particles therefore
varies as n1/3 instead of n2/3.

Likewise, the pressure of ultra-relativistic particles is 1/3 of their energy
density (instead of the factor 2/3 relevant in the non-relativistic case). We shall
not encounter relativistic plasmas in this book (but only individual relativistic
particles), but we shall use the pressure of photons (which are par excellence
relativistic particles) when studying the solar interior (Section 3.1) and the
dynamics of heliospheric dust grains (Section 7.4).

2.1.6 Summary
Gaseous plasmas have Γ � 1, i.e. the (Coulomb) interaction energy of the par-
ticles is much smaller than the kinetic energy. The slow decrease with distance
of the Coulomb force has two major consequences. First, any particle interacts
simultaneously with a large number of particles and modifies the medium so
that each particle may be regarded as being ‘dressed’ by the other particles.
This dressing makes plasmas quasi-neutral on large spatial (L > LD) and tem-
poral (t > ω−1

p ) scales, and produces a collective behaviour. Second, the particle
collisional free path increases strongly with speed, so that fast particles tend to
be nearly collisionless.
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2.2 Dynamics of a charged particle

In this section, we consider briefly the dynamics of a charged particle in electric
(E) and magnetic (B) fields which are given a priori, i.e. which are negligibly
modified by the moving charge itself. Most of the results will therefore be
applicable to a small minority of particles which do not affect the bulk of the
plasma, for example cosmic rays. The coupling between the magnetic field and
the bulk plasma will be considered later.

Magnetic fields are ubiquitous in the Universe, and we shall focus on them.
But why is this so? Indeed, relativity theory tells us that electric and magnetic
fields are symmetrical in that they transform into each other upon a change of
reference frame.

2.2.1 The key role of the magnetic field

As we shall see below, the key role of the magnetic field stems from two facts:

• plasmas (made of electric charges) are ubiquitous in the Universe, whereas
magnetic charges (the so-called magnetic monopoles) are absent,

• one generally considers non-relativistic (V � c) changes of reference
frames.

The absence of magnetic monopoles7 – whereas electric charges are ubiqui-
tous – is at the origin of the asymmetry in Maxwell’s equations:

 · E = ρe/ε0 ×E = −∂B/∂t (2.29)

 · B = 0 ×B = µ0J +
(
1/c2

)
∂E/∂t (2.30)

which contain electric charges (ρe) and currents (J), but no magnetic charges
and currents.

We have seen that plasmas are quasi-neutral on large-scales, so that the
large-scale electric field nearly vanishes in the reference frame where the plasma
is at rest. On the other hand, positive and negative electric charges moving
differently yield electric currents, which produce magnetic fields.

Consider a plasma of (non-relativistic) bulk velocity V with respect to a
‘laboratory’ frame R, where the electric and magnetic fields are respectively E
and B. The fields in the plasma frame R′ are given by the Lorentz transforma-
tions as

E′ = E + V × B B′ = B − V × E/c2 (2.31)

where we have neglected terms of order V 2/c2. Since we have E′ = 0 in the

7You would get a magnetic charge if you could separate the two poles of a bar magnet.
If these magnetic monopoles do exist, they have not yet been detected, which sets an upper
limit on their concentration; see for example [13].
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plasma frame R′, the fields in the frame R are from (2.31)

E = −V × B B = B′ − V × (V × B) /c2 � B′, (2.32)

again neglecting terms of order V 2/c2.8

Hence the magnetic field plays a privileged role: it is independent of the
reference frame; in contrast, the electric field depends on the reference frame
and is nearly zero in the plasma frame.9 The latter therefore appears as a natural
reference frame, and the Faraday concept of magnetic field lines acquires a basic
physical meaning since if two points are connected by a field line in this frame,
they are so connected in another reference frame (for non-relativistic Lorentz
transformations). Magnetic field lines – the pillars of magnetohydrodynamics –
have still more interesting properties, which we shall study in the next section.

Another basic property of B is that it is a pseudo-vector, since its sense
depends on the usual convention of right-handed co-ordinate systems. If one
changes the co-ordinate system according to x → x′ = −x (a reflection about
the origin, making the co-ordinate system left-handed), the components of true
vectors (as a velocity or a force) transform as v′

x = −vx, leaving the physical
direction of the vectors unchanged. The Lorentz force F = qv × B is also a
true vector, so that the inversion of the co-ordinate changes the components of
both F and v; therefore it does not change the components of B, whose physical
direction is thus reversed. Formally, the magnetic field is analogous to a vortex.
Mirror asymmetry plays a key role in magnetic field generation, and we shall
encounter applications of this property in Sections 3.3 and 4.2.

2.2.2 Basic charge motion in constant and uniform fields

The basic equation of motion for a particle of charge q and velocity v subjected
to the fields E and B is

d (mv)
dt

= q (E + v × B) (2.33)

with the relativistic mass

m = γm0 γ =
(
1 − v2/c2

)−1
(2.34)

where m0 is the particle rest mass and γ the Lorentz factor.

Uniform magnetic field

If E = 0 and B is constant, the Lorentz force reduces to qv×B, perpendicular
to the velocity; it produces a curvature of the particle path, but no change in

8We shall sometimes consider particles moving individually at relativistic velocities, but
we shall not consider reference frames moving at relativistic velocities with respect to the bulk
plasma.

9By ‘nearly zero’, we mean of amplitude small with respect to | V × B |, and on a large
scale.
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Figure 2.7 Components of the velocity parallel and perpendicular to the mag-
netic field; v⊥ = v sin θ, where θ is the so-called pitch angle.

Figure 2.8 Gyration of a charge in a magnetic field (pointing out of the paper).

the speed v and thus in the relativistic mass m. Therefore in this case the
motion of a relativistic particle is the same as that of a non-relativistic particle
of (constant) mass m = γm0. Since the force vanishes along B, v‖ is constant;
since v is constant too, so is the angle θ between v and B (Fig. 2.7). On the
other hand, in the plane ⊥ B, the force produces a circular motion of radius
rg and (angular) frequency ωg = v⊥/rg, given by equating the acceleration
qv⊥B/m to the centrifugal acceleration v2

⊥/rg, so that

rg =
mv⊥
| q | B

(Larmor radius) (2.35)

ωg =
| q | B

m
((angular) gyrofrequency) (2.36)

with particles of negative (positive) charge gyrating in the direct (opposite to
direct) sense. Hence the magnetic field generated by the particle is opposite to
the imposed field (Fig. 2.8): the plasma is diamagnetic.

The Larmor radius (or radius of gyration) and the gyrofrequency (or cyclotron
frequency) set the scales below which the individual particle gyration plays an
important role. Numerically, the cyclotron frequency is fg = ωg/2π � 2.8 ×
1010B in SI units for electrons (and smaller by the factor me/mp for protons).
In the Earth’s environment, the Larmor radius is about a few centimetres for
electrons and 1 m for protons; it is greater by more than five orders of magnitude
in the solar wind.

The resulting path is a helix of constant pitch around a magnetic line of
force. Since particles having the same value of mv/q and pitch angle have the
same trajectory, high-energy particles (see Section 8.2) are often quantified by
their so-called rigidity defined as pc/ | q | (with p = mv), expressed in volts
since it has the dimension of energy per charge.
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Figure 2.9 A force F ⊥ B accelerates the particles along one half of the orbit
and decelerates them along the other half. This makes the Larmor radius
(rg ∝ v/B) greater near the bottom of the orbit than near the top (when
F is downwards), which deforms the orbit, producing a drift. A gradient of B
in the direction ⊥ B has a similar effect.

Electric field or applied force

How is this trajectory changed if the electric field does not vanish? Let E⊥
be the electric field in the direction ⊥ B in some frame R. Consider now the
reference frame R′ moving at velocity

VD =
E × B

B2
(2.37)

with respect to R. In R′ the electric field ⊥ B is E′
⊥ = E⊥ +VD ×B = 0, since

from (2.37) VD × B = −E⊥. Hence the motion in the plane ⊥ B reduces to
the gyration found above. Going back to the frame R, the motion in the plane
⊥ B is therefore the superposition of the gyration found above and a drift of
velocity VD given by (2.37). This velocity is the same for all charged particles,
making the plasma move as a whole.

This drift velocity may be interpreted in either of two ways. The first way is
that it produces a Lorentz force qVD ×B which balances the electric force qE⊥,
so that for an observer moving at VD the electric field has been transformed
away. The other interpretation is sketched in Fig. 2.9. The force qE⊥ accelerates
the particle during the part of the circular orbit where it moves in the same sense
as the force, and decelerates it when it moves the other way. Hence the particle
gyrates faster (thus with a greater Larmor radius) near the bottom of the orbit
than near the top (when the force is downwards), producing a drift to the left
when the gyration is clockwise; reversing either B, the force or q reverses the
drift.

This result can be applied to other forces by replacing in (2.37) qE by a
general force F, which therefore produces a drift

VD = (F/q) × B/B2. (2.38)
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2.2.3 Non-uniform magnetic field
The magnetic field is generally non-uniform. If the non-uniformity is weak,
namely if the field does not change much over a distance equal to the gyro-
radius (or during a time equal to the inverse of the gyrofrequency), the motion
can be approximated by the gyration found above, around a point which is
moving. This instantaneous centre of gyration is called the guiding centre of
the particle. We calculate below its motion by considering separately the varia-
tion in magnetic field strength perpendicular and parallel to the magnetic field
direction.

Drift produced by a variation of B ⊥ B

If the magnetic field strength varies in the direction ⊥ B, the magnetic field
lines are curved, which forces the particles to follow curved paths along B.
If the radius of curvature of the field line is Rc, the centrifugal force on a
particle of parallel velocity v‖ is F = mv2

‖/Rc, pointing opposite to the centre
of curvature. This effective force produces a drift velocity given by (2.38). The
particle gyration produces an additional drift because the gradient in B causes
the Larmor radius (rg ∝ 1/B) to be larger during one half of the orbit than
during the other half, which deforms the orbit. This has a similar effect as
an applied force (Fig. 2.9) and produces an additional drift velocity. If the
magnetic field is essentially produced by exterior currents, we have ×B = 0,
whence 1/Rc =| ⊥B | /B, where the symbol ⊥ denotes the component of the
gradient in the direction ⊥ B, and ⊥B points towards the centre of curvature.
Finally one finds a total drift velocity equal to

VD =
(

mv2
⊥

2
+ mv2

‖

)
B ×⊥B

qB3
. (2.39)

For a particle of energy W , we have in order of magnitude VD ∼ W | B×⊥B |
/qB3 ∼ W/ (qBRc). Electrons and ions drift in opposite senses, producing an
electric current.

Variation of B ‖ B

Consider now a magnetic field oriented primarily along z with approximate
cylindrical symmetry, and whose strength varies along B. Let us assume for ex-
ample dB/dz > 0 (Fig. 2.10). Magnetic flux tubes, whose surface is everywhere
parallel to B, have approximate cylindrical symmetry, and since the magnetic
flux is a constant along a flux tube (because  ·B = 0), the field lines converge
towards positive z, i.e. the radial component Br < 0 . Hence the Lorentz force
has a component along z

Fz = | qv⊥ | Br (2.40)

which has the same sign as Br (here negative) whatever the sign of q (since the
gyration speed v⊥ changes of sense as q changes of sign).
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Figure 2.10 When the magnetic field strength varies along B, the Lorentz force
on a gyrating particle has a component that decelerates (accelerates) it when it
moves towards increasing (decreasing) B.

Hence, the motion is slowed down if the charge moves towards stronger B,
and is accelerated if the charge moves towards smaller B. From  · B = 0, we
have Br = − (r/2) dB/dz at distance r,10 which we substitute into (2.40) with
r = rg = mv⊥/qB to yield the force ‖ B

F‖ = −µ ‖ B (2.41)

where the symbol ‖ denotes the component of the gradient in the direction of
B, and

µ =
mv2

⊥/2
B

(magnetic moment). (2.42)

Magnetic moment

The force (2.41) is the usual force on a small diamagnetic magnet lying in a
gradient of magnetic field strength. Similarly, the drift velocity produced by a
gradient of B in the direction ⊥ B (ignoring the effect of curvature) corresponds
to a force that may be written from (2.38)–(2.39) as F⊥ = −µ ⊥ B.

The quantity µ is called the magnetic moment of the particle. Indeed, the
gyration of the charge averaged over one gyration corresponds to an electric
current I =| q | / (2π/ωg); since the loop area is s = πr2

g and ωgr
2
g = mv2

⊥/qB,
the magnetic moment (2.42) is equal to µ = I × s; furthermore, since opposite
charges gyrate in opposite senses, the sense of the current is independent of
the sign of q. Hence, in average over one rotation, the particle gyration is
equivalent to a current loop of magnetic moment µ given by (2.42) and pointing
always opposite to B (Fig. 2.11). This illustrates the already mentioned plasma
diamagnetism.

The potential energy of a magnetic dipole in a magnetic field B is −µ · B,
and the corresponding force is formally  (µ · B) = −  (µB) since µ points
opposite to B; hence the result found above that the force is −µB in a (weak)
gradient of magnetic strength suggests that µ = constant. In fact, one may prove

10To prove this, draw a cylinder of radius r and length dz along the z axis. The outward
magnetic flux crossing its bounded surface is (2πrdz) Br + πr2 [Bz (z + dz) − Bz (z)], which
is equal to zero since � · B = 0.
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Figure 2.11 Magnetic moment produced by the gyration of a charge in a mag-
netic field. Whatever the sign of the charge, the current has the same direction
and is equivalent (in average over one gyration) to a magnetic moment opposite
to the imposed magnetic field.

a stronger result: the magnetic moment of a particle gyrating in a magnetic field
remains nearly constant in both space and time when the magnetic field varies
slowly at the scale of the gyration. Note that, for a relativistic particle, the
conserved quantity is instead the magnetic flux Br2

g across the loop, so that
the invariant is the quantity γµ rather than µ. This invariance is an example
of Lenz’s law: electrical circuits change their currents in order to counteract
externally caused changes of the enclosed magnetic fluxes.

Magnetic mirrors

This has an important consequence. When a particle is moving towards increas-
ing magnetic field strength (converging magnetic field lines), the Lorentz force
slows down the motion along B. The perpendicular energy mv2 sin2 θ increases
with B, keeping µ constant; since v remains constant because energy is con-
served, θ increases, until θ = π/2; at this point the particle is reflected back
towards the weaker field. A region of increasing magnetic field thus acts as a
mirror for charged particles.

Particles may therefore be trapped between two regions of strong magnetic
field. This occurs close to magnetised planets having a dipolar magnetic field,
where the increasing magnetic field strength in both hemispheres mirrors parti-
cles (see Appendix and Problem 2.5.3). Such particles may be viewed as small
magnets (of magnetic moment pointing locally opposite to B), which are re-
pelled by the large ‘magnet’ responsible of the planetary magnetic field. When
approaching the planet’s positive pole (with their own positive pole pointing
ahead) they are repelled back towards the planet’s negative pole. Since they
approach it with their negative pole ahead, they are again repelled, and keep
on oscillating between the poles.

So the particles not only gyrate around field lines, but also bounce between
regions of high magnetic field. Furthermore, the transverse gradient and curva-
ture of the field lines produces a drift velocity given by (2.39). With a dipolar
magnetic field, B × ⊥B is in the azimuthal direction, making the particles
drift in longitude (Fig. 2.12).
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Figure 2.12 Charged particles can be trapped in the magnetic bottle formed by
a dipolar planetary magnetic field. Their motion is the superposition of three
components: the gyration around a field line, the bounce between magnetic mir-
rors in opposite hemispheres, and an azimuthal drift produced by the transverse
magnetic field gradient.

2.2.4 Adiabatic invariants

The near invariance of µ is a particular case of adiabatic invariance, associated
to periodic generalised co-ordinates of Hamiltonian systems [12]. When a para-
meter varies slowly at the scale of the period, the action integral varies much
less than this parameter, and is called an adiabatic invariant – by analogy with
thermodynamics where entropy is such an invariant in slow adiabatic processes.
A classical example is the oscillating pendulum, whose adiabatic invariant is the
energy divided by the frequency; indeed, if one changes slowly the length of a
pendulum, the frequency varies in proportion to the energy. The same holds
for a particle gyrating in a magnetic field. Since the particle motion has three
degrees of freedom, there may be three adiabatic invariants if the system has
several periodicities.

In this way, a particle trapped in a dipolar magnetic field has three adiabatic
invariants associated to the three periodic motions:

• the gyration around magnetic field lines (speed v⊥, period T1 ∼ rg/v⊥),
whose adiabatic invariant is µ, given by (2.42),11

• the bounce between mirror points (speed v‖, period T2 ∼ r/v‖ � T1,
where r is the distance to the planet), whose adiabatic invariant is the
integral of the longitudinal momentum mv‖ along the path between mirror
points,

• the azimuthal drift produced by the gradient in magnetic field strength
perpendicular to B (speed VD given by (2.39), whence in order of mag-
nitude VD ∼ mv2

⊥/ (qBr) ∼ v⊥rg/r, period T3 ∼ r/VD � T2), whose
adiabatic invariant is the magnetic flux across the area encircled by the
drift path.

11Or rather γµ, if the particles are relativistic.
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This adiabatic invariance has a number a consequences. It enables parti-
cles to remain trapped for a long time on the same magnetic shell in dipolar
planetary magnetic fields; this is responsible for the long life of radiation belts
around planets. We shall apply these concepts to the trapping and acceleration
of particles in the contexts of magnetospheres (Section 7.3) and cosmic rays
(Section 8.2).

2.2.5 Summary

Charged particles gyrate around magnetic field lines, keeping their magnetic
moment invariant when the magnetic field varies weakly at the scale of the
gyration. A weak longitudinal increase in magnetic field strength acts as a
magnetic mirror. A force, or a weak transverse magnetic gradient, produces a
small transverse drift.

2.3 Many particles: from kinetics
to magnetohydrodynamics

A plasma is made of a large number of particles. In classical mechanics, the
state is defined by the position r and velocity v of each particle at time t, and
the evolution is determined by the equation of motion of each particle. To make
the problem tractable, one has to decrease the number of variables. This is done
by making averages, in two main ways:

• the kinetic description retains some microscopic properties by considering
as the basic quantity the velocity distribution (for each particle species);
basically, this amounts to replacing the equations of motion for each par-
ticle by a differential equation on the velocity distribution,

• the fluid description deals with a few macroscopic quantities as the mean
density of particles (or of mass), the mean velocity, the pressure or the
temperature, etc., which represent averages over the velocity distribution
(for each particle species); basically, this amounts to replacing the velocity
distribution – a function generally defined by an infinite number of param-
eters – by a few parameters, which is permissible only near thermodynamic
equilibrium.

2.3.1 Elements of plasma kinetics

We define the particle velocity distribution12 so that the number of particles in
the volume element [x, x + dx],[y, y + dy],[z, z + dz], and with velocities in the
range [vx, vx + dvx],[vy, vy + dvy], [vz, vz + dvz] at time t is

d6N = f (r,v, t) × d3r × d3v (2.43)

12Beware that there are many subtleties in this definition, as discussed for example in [6].
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where

d3r = dxdydz (2.44)

d3v = dvxdvydvz (2.45)

are the volumes in the space of positions and the space of velocities, respectively.
A position r and velocity v thus correspond to a ‘point’ in a phase space of six
dimensions [x, y, z, vx, vy, vz], which we denote [r,v].13

This description is more complete than the fluid description which deals with
averages of f as

n =
∫

d3v f (v) (particle density) (2.46)

V ≡ 〈v〉 =
∫

d3v f (v) × v/n (velocity) (2.47)

and higher-order moments, for each species of particles; we have not written
explicitly the dependence in r and t, to simplify the notations. These moments
are macroscopic quantities defined in the ordinary space of three dimensions
[x, y, z].

A reminder: the Maxwellian distribution

In the special case of thermodynamic equilibrium at temperature T , statistical
mechanics tells us that, as we already noted, the velocity is Gaussian distributed
along each co-ordinate (in the frame where the mean velocity vanishes), as

f (v) = Ae−mv2
x /(2kB T ) × e−mv2

y /(2kB T ) × e−mv2
z /(2kB T )

= A exp[−mv2/(2kBT )] (2.48)

for particles of mass m, where A = n [m/ (2πkBT )]3/2 to ensure the normalisa-
tion (2.46). This is the Maxwell–Boltzmann distribution.

Beware that the probability for the speed v =
(
v2

x + v2
y + v2

z

)1/2
to lie in the

range [v, v + dv] is not f (v) dv but

f (v) × 4πv2dv (2.49)

since this range corresponds to a volume of velocity space equal to that of a
spherical shell of radius v and width dv, that is d3v = 4πv2dv. Throughout
this book, the notation f (v) (which reduces to f (v) when the distribution is
isotropic) denotes the distribution defined by (2.43).

With the Maxwellian distribution (2.48), the distribution in speeds (v) thus
varies as v2e−mv2/(2kB T ), so that the most probable speed (the one at which the
derivative of v2e−mv2/(2kB T ) vanishes) is

vth = (2kBT/m)1/2
. (2.50)

13We consider below non-relativistic motions. In the relativistic case, one represents f in
terms of r and p = mv instead of r and v.
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On the other hand, the mean square speed14 is 〈v2〉 = 3kBT/m, so that, as we
already noted, the average kinetic energy per particle is

W = m〈v2〉/2 = 3kBT/2. (2.51)

Evolution of f

From the definition (2.43), the velocity distribution f is a density in the (six-
dimensional) phase space [r,v], just as n (or ρ) is the particle (or mass) density
in the ordinary (three-dimensional) space of positions. Let us study how f
evolves.

As t varies, the distribution f varies, while the position r and the velocity v
of a particle vary as

dr = vdt (2.52)

dv = adt (2.53)

where the acceleration vector is from the equation of motion (2.33)

a = dv/dt = q (E + v × B) /m (2.54)

for particles of charge q, mass m and velocity v, in the fields E and B, to which
must be added in general a gravitational acceleration.

Therefore, the evolution of f may be seen from two different points of view:
the variation with time at a fixed position and velocity (the so-called Eulerian
point of view), and the variation following particles in their motion (the so-called
Lagrangian point of view). In the latter viewpoint, the variation has two origins:
the time variation proper (at fixed co-ordinates [r,v]), and the variation of the
co-ordinates [r,v] themselves.

The convective derivative

A similar distinction holds in fluid mechanics. Assume for example that you
wish to analyse the composition of water in a river. You may do so in two ways.
You may sit on the bank, and so observe the time evolution at a fixed position;
by convention, we note the variation so observed as ∂/∂t. A second method is to
embark on a boat that drifts following the river motion; the observed variation
is then noted d/dt. Both variations are related in one dimension (x) by the fact
that a quantity n is a function of x and t: n = n (x, t) with x = x0+Vxt (Vx being
the fluid velocity). Hence dn/dt = ∂n/∂t+∂n/∂x×dx/dt = ∂n/∂t+Vx∂n/∂x.
In three dimensions, the time variation as observed following a fluid moving at
velocity V is therefore

d

dt
=

∂

∂t
+ (V · ) (convective derivative) (2.55)

with the usual notation V ·  = Vx∂/∂x + Vy∂/∂y + Vz∂/∂z.

14Defined as 〈v2〉 =
∫

d3v v2 f (v) /n.



Many particles: from kinetics to magnetohydrodynamics 69

Vlasov equation

A basic result of statistical mechanics is Liouville’s theorem, a consequence of
which is that in the absence of collisions, f is invariant following the motion in
the six-dimensional phase space. In other words, df/dt = 0, where the derivative
must be understood as a convective derivative in the six-dimensional phase
space. Just as the convective derivative in ordinary three-dimensional space [r]
is given by (2.55), the convective derivative in the six-dimensional phase space
[r,v] is given by

d

dt
=

∂

∂t
+ v · ∂

∂r
+ a · ∂

∂v
. (2.56)

Substituting (2.56), df/dt = 0 may be written

∂f

∂t
+ v · ∂f

∂r
+ a · ∂f

∂v
= 0 (Vlasov equation). (2.57)

Here the acceleration a is given in (2.54), where in the general case, the electric
and magnetic field are the mean fields produced by all the plasma particles, and
one must add a gravitational acceleration if it is not negligible.

This means that in the absence of collisions, the velocity distribution (the
density in the six-dimensional phase space) behaves as an incompressible (six-
dimensional) fluid. Note that since ∂a/∂v = 0 (any component of a is inde-
pendent on the velocity along the same direction because the Lorentz force
is perpendicular to the velocity),15 we have a∂f/∂v = ∂/∂v (af), so that
(2.57) is equivalent to a continuity equation (in the six-dimensional phase space):
∂f/∂t + ∂ (vf) /∂r + ∂ (af) /∂v = 0.

A reminder: the continuity equation

The most basic equation of fluid mechanics is the continuity equation, which
merely states the conservation of the number of particles or of the mass. It may
be derived as follows. In the absence of creation or destruction of particles, the
time variation of the number of particles in a fixed volume υ is the opposite of
the outward flux of particles crossing the surface Σ bounding this volume

∂

∂t

∫
υ

d3r n = −
∫

Σ

dS · nV = −
∫

υ

d3r  · (nV) (2.58)

where the second equality has been obtained by transforming the surface integral
into a volume integral by Gauss’s theorem. Since this is true for any arbitrary
(fixed) volume υ, we have

∂n

∂t
+  · (nV) = 0 (continuity equation). (2.59)

In the particular case when the fluid is incompressible, we have dn/dt = 0, so
that, using (2.55), the continuity equation is equivalent to  · V = 0.

15By ∂a/∂v = 0, we mean ∂ai/∂vi = 0 for i = x, y, z. This property also holds with a
gravitational force, but not with a friction force.



70 Tool kit for space plasma physics

Other forms of the invariance of f

There are several other equivalent ways of expressing the conservation of f
along particle trajectories. Since the number of particles in a volume of (six-
dimensional) phase space is conserved, and so is f , so is this volume. The total
volume in phase space therefore remains constant, whatever its change of shape
as the system evolves.

Another consequence of the conservation of f along particle trajectories is
that the motion of charges in given electric and magnetic fields (plus possibly a
gravitational field) may be calculated by expressing f in terms of the constants
of motion (energy, magnetic moment, . . . ); this is often called Jeans’ theorem.

One must be careful to apply these results within their limits of application.
In particular, they do not hold in the following cases:

• when the number of particles is not conserved (for example because of
ionisation or recombination),

• when the acceleration varies with the velocity as ∂a/∂v �= 0,

• when collisions act,

• for values of r and v that are not accessible along particle trajectories,
given the constants of motion.

When collisions are not negligible, df/dt �= 0, which produces a non-zero
term (∂f/∂t)c on the right-hand side of (2.57). In neutral gases, collisions
involve two-particle encounters producing large perturbations, and this yields
the Boltzmann equation. In plasmas, collisions act through the accumulation
of small-angle Coulomb encounters, and this yields the Fokker–Planck equation.

Basic illustration: effect of a force on the velocity distribution

Most textbook applications of the Vlasov equation consider waves. We study
here a stationary problem: the effect of a (conservative) force on the distribution
of particles.

In its simplest form, the problem may be stated as follows. We know that
in equilibrium at temperature T the density of particles subjected to a force
deriving from a potential ψ is proportional to e−ψ/kB T – the Boltzmann factor.
How is this result changed in absence of equilibrium? This problem arises when
measuring particles aboard a spacecraft, and on a larger scale (with subtle
differences) when calculating the distribution of particles near a planet or a
star, and the production of a wind.

Let us assume for simplicity that the particle velocity distribution is isotropic
(i.e. depends only on the modulus v of the velocity) at some position. An
isotropic velocity distribution may be expressed as a function of the particle
energy only, which is a constant of motion. To further simplify the problem, let
us assume that the potential depends on one co-ordinate only, for example the
distance r from an object. For a given particle, the total (conserved) energy
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Figure 2.13 How the particle velocity distribution is modified when the poten-
tial energy increases (left) or decreases (right) by | ∆ψ |, in the special case when
the original distribution is a Maxwellian of temperature T . For ∆ψ > 0 (parti-
cles coming against the force, left panel), the translation in energy decreases f
by the Boltzmann factor e−∆ψ/kB T . For ∆ψ < 0 (particles accelerated by the
force, right panel) the translation in energy produces a hole in the distribution
(thick dashed grey line); if collisions did act, they would fill the hole (thin dotted
grey line).

is the sum of the kinetic energy W plus the potential energy ψ(r). If ψ varies
by ∆ψ between r0 and r, then a particle of original kinetic energy W0 at r0

will have at r the kinetic energy W0 −∆ψ, which is smaller or greater than W0

depending on whether ∆ψ > 0 (particles coming against the force) or ∆ψ < 0
(particles coming in the direction of the force). From the conservation of f
along particle trajectories, the velocity distribution at distance r (expressed as
a function of the kinetic energy W ) is thus related to the original distribution
by the relation

f (r,W ) = f (r0,W + ∆ψ(r)) (2.60)

for values of [r,W ] accessible from r0.
Therefore, the distribution f(r,W ) at some distance r is deduced from the

original distribution at r0 by a translation in energy of amplitude ∆ψ(r) –
the variation in potential energy. This is sketched in Fig. 2.13 in the simple
case when the original distribution is a Maxwellian of temperature T , i.e. ∝
e−W/kB T , so that ln(f) as a function of W is originally a straight line.

The final distribution depends strongly on the sign of ∆ψ. When the po-
tential energy increases (particles coming against the force), the particle kinetic
energy decreases, so that the kinetic energy distribution is translated to the left
(Fig. 2.13, left). Therefore, with a Maxwellian original distribution, the particle
density is reduced by the factor e−∆ψ, the usual Boltzmann factor. Hence, in
this case the collisionless kinetic description gives exactly the same result as if
there were enough collisions to ensure equilibrium.
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This is not so, however, when the potential energy decreases (particles mov-
ing in the direction of the force; Fig. 2.13, right). In that case, the translation
in energy produces a hole in the velocity distribution, so that the density of
these particles does not simply increase by the Boltzmann factor e−∆ψ ≡ e|∆ψ|

as in equilibrium. The origin of this hole is that particles of nearly zero kinetic
energy at r0 are accelerated to a kinetic energy equal to | ∆ψ(r) | at distance
r, so that there is no particle of kinetic energy smaller than this value. In con-
trast, with collisions, the redistribution between degrees of freedom populates
the hole, producing the usual Boltzmann factor.

This result illustrates the difference in Debye shielding for attracted and re-
pelled particles in the absence of equilibrium, and has consequences on measure-
ments of velocity distributions in space. We shall encounter a similar problem
when calculating the plasma distribution in the solar corona (Section 4.6), and
the solar wind acceleration (Section 5.5), with important differences: the large
size of the system ensures electric quasi-neutrality; it enables collisions to popu-
late some orbits, suppressing the hole; and the original distribution is generally
not a Maxwellian.

This last point introduces a basic consequence of the rarity of collisions in
space. Consider in more detail the left-hand panel of Fig. 2.13 (∆ψ > 0). The
translation of the original Maxwellian distribution f (W ) ∝ e−W/kB T yields a
straight line (in log co-ordinates) having the same slope, i.e. a Maxwellian of the
same temperature. But think what happens if the original distribution is not
Maxwellian, a frequent situation in space. Then we no longer have a straight
line, i.e. the slope (in log co-ordinates) does depend on the energy, so that
the translation in energy does change the shape, thereby changing the effective
temperature. Indeed, the potential filtrates the particles, letting only the fastest
ones climb the potential barrier (Problem 2.5.4). This is a purely kinetic effect,
completely outside the scope of the usual fluid description, and is of far-reaching
consequences (Section 4.6.4).

2.3.2 First-aid kit for space plasma fluids

The infinite hierarchy of fluid equations

The simplest fluid picture describes each particle species by three macroscopic
quantities:

• the particle density n defined by (2.46),

• the velocity V = 〈v〉 defined by (2.47),

• the pressure.

If the particle velocity distribution is isotropic in the frame where the mean
velocity vanishes, the pressure is a scalar defined by

P =
m

3

∫
d3v f (v) (v − 〈v〉)2 (pressure) (2.61)
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for non-relativistic particles of mass m. The temperature is defined from kBT =
P/n = Pm/ρ, which, for a Maxwellian, coincides with the usual thermodynamic
temperature. This generalises the definitions (2.2) and (2.3) to frames where
the mean velocity does not vanish.

In this simplified picture, for a plasma containing n electrons and n (singly
charged) ions per unit volume at the same temperature, the mass density is
ρ � nmi since the mass is essentially carried by the ions, but both species
contribute equally to the pressure so that P = 2nkBT . Hence P = ρkBT/m
where m � mp/2 is the average mass per particle.

With these three unknowns: ρ, V and P (or equivalently, T , since P =
ρkBT/m), three equations are required to solve the problem. We have already
written the first fluid equation – the continuity equation (2.59), for the par-
ticle number density n; an equivalent equation holds for the mass density ρ.
The continuity equation may be obtained more formally by integrating over
the velocities the equation of evolution of f ; elastic collisions do not change the
result since they do not change the number of particles.

In a stationary case, the continuity equation means that the mass entering a
flow tube (a tube everywhere parallel to the fluid velocity) across a given section
equals the mass leaving across another section. This yields

ρV s = constant (2.62)

if s is the cross-section area. In the particular case when the medium is in-
compressible (ρ = constant), this means that the flow lines diverge (converge)
when the speed decreases (increases), or alternatively that the flow accelerates
in a constricted tube – properties that are well known in hydrodynamics. In
spherical symmetry, where the velocity is radial and the flow tubes vary as the
square of the distance r, this yields ρV r2 = constant.

Similarly, the fluid equation of motion may be derived in two ways. The
most intuitive way is to note that for a fluid parcel of volume unity and mass
ρ, the force ρdV/dt (following the parcel’s motion) is equal to the sum of the
pressure force −P and the gravity force −ρΦG, plus electric and magnetic
forces if charges and currents are not negligible. Substituting the convective
derivative (2.55), this yields the fluid equation of motion

∂V
∂t

+ (V · )V = −P

ρ
−ΦG (fluid equation of motion) (2.63)

(where we have omitted for the moment the electromagnetic force and also the
viscosity force, which will be considered later). This equation of motion may be
obtained more formally by multiplying the equation of evolution of f by V and
integrating over the velocities. With a velocity distribution that is isotropic in
the frame where the mean velocity vanishes, this yields (2.63), to which must
be added electric and magnetic forces if there is a finite density of charge and
current.

An important problem emerges, which is perhaps one of the most difficult
problems of space plasma physics. With the continuity equation and the fluid
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equation of motion, we have only two equations for the three unknowns ρ, V
and P (or equivalently, T , since P = ρkBT/m). One might think naively that
this problem could be solved by going a step further in the averaging process.
Indeed, the continuity equation stems from averaging the equation on f , the
equation of motion stems from averaging the equation on f multiplied by V,
and similarly another equation (involving the energy) stems from averaging the
equation on f multiplied by V2. Unfortunately this does not work, because just
as the continuity equation determines ρ in terms of V, the equation of motion
(2.63) determines V in terms of ρ and P (or T ), a third equation will involve a
moment of higher order, in terms of which P (or T ) will be expressed, and so
on up to an infinite number of moments.

The fluid equations therefore constitute a ladder having an infinite number
of steps. This is not surprising since one cannot replace an infinite number
of unknowns (which a velocity distribution represents effectively in the general
case) by a finite number of unknowns – for example ρ, V and P – without a
miracle. The root of the problem is the transport of energy, which we shall
examine below. Meanwhile, let us examine some cases when the miracle comes
true.

Bernoulli’s theorem

Let us make two assumptions:

• the problem is stationary, so that ∂/∂t = 0,

• P is a function of ρ only (for example P and ρ obey a relation P ∝ ργ),
or the fluid is incompressible.

In this case, we can define the enthalpy

H =
∫

dP/ρ (enthalpy). (2.64)

We deduce P/ρ = H, so that multiplying the equation of motion (2.63) by
V, we obtain

V ·  [
V 2/2 + H + ΦG

]
= 0. (2.65)

This means that we have along flow lines

V 2/2 + H + ΦG = constant (Bernoulli’s theorem). (2.66)

Bernoulli’s theorem is a pillar of fluid dynamics. It may be used to solve a host
of problems, from domestic plumbing to astrophysics, including how wings of
aeroplanes, insects and birds produce lifts (or crashes), how termites and prairie
dogs design the ventilation of their homes,16 or why your shower curtain engulfs
you every morning.17

16See for example Vogel, S. 1998, Cats’ Paws and Catapults, London, Penguin Books.
17The latter explanation is still under debate.



Many particles: from kinetics to magnetohydrodynamics 75

Let us calculate the enthalpy. Consider first an incompressible medium; from
P = ρkBT/m with ρ = constant, we have H = P/ρ = kBT/m.

Then consider the polytrope case P ∝ ργ . The case γ = 1 must be considered
separately; we then have T = constant, so that from P = ρkBT/m

H =
∫

dP/ρ = (kBT/m) ln ρ (isothermal). (2.67)

On the other hand, if P ∝ ργ with γ �= 1, we have P ∝ T γ/(γ−1), so that

H =
∫

dP/ρ =
γ

γ − 1

∫
P

ρ

dT

T
=

γ

γ − 1
kBT

m
. (2.68)

With these values of H, the Bernoulli theorem (2.66) yields along flow lines, for
a polytrope P ∝ ργ :

V 2

2
+

kBT

m
ln ρ + ΦG = constant γ = 1 (2.69)

V 2

2
+

γ

γ − 1
kBT

m
+ ΦG = constant γ �= 1. (2.70)

Equation (2.69) holds when transformations are so slow that isothermal equi-
librium has enough time to establish everywhere.

On the other hand, (2.70) holds in the opposite case when transformations
are so fast that heat has no time to flow: such processes are called adiabatic; in
that case, γ = cp/cv = 1+2/N – the ratio of specific heats for (non-relativistic)
particles having N space degrees of freedom, so that γ = 5/3 for N = 3.
Bernoulli’s theorem then represents the conservation of the fluid energy per unit
mass, which is the sum of the bulk kinetic energy V 2/2, plus the thermal energy
3kBT/2, plus the work kBT expended on compression, plus the gravitational
energy ΦG. Beware that (2.70) holds in the stationary case. In a time-dependent
case, the adiabatic fluid energy equation simply reads d (Pρ−γ) /dt = 0 with
P = ρkBT/m and d/dt the convective derivative. With the help of the continuity
equation and the equation of motion, it may be put under various (more or less
complicated) forms. These three equations are known as the Euler equations.

The same result may be obtained formally by assuming the particle velocity
distribution to be a Maxwellian of temperature T centred on a mean velocity V,
and making averages of the equation of evolution of f multiplied by V2. Since
such a Maxwellian distribution is characterised by only three parameters – the
density, the mean velocity and the temperature (or the pressure) – no miracle is
needed to reduce its evolution to three equations involving these three unknowns.
The establishment of a Maxwellian distribution, however, generally requires
some process – such as collisions between particles – to ensure equilibrium,
and is not so easily achieved in plasmas as in neutral gases, due to the nature
of collisions; we shall return to this point later. Note that the relation P ∝
ργ further reduces the number of independent unknowns to two, so that the
equations of motion and of energy then become equivalent.
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Sound waves and their plasma counterparts

Assume that the only force is the pressure force, and consider small perturba-
tions around the simple solution having the velocity V0 = 0 and uniform mass
density ρ0 and temperature T0 (and pressure P0 = ρ0kBT0/m). Assume the
perturbations to be fast enough for the behaviour to be adiabatic, i.e. P ∝ ργ ,
so that we have P = (dP/dρ)  ρ with

dP/dρ = γP/ρ = γkBT/m. (2.71)

Let us now write the continuity equation and the fluid equation of motion
with the perturbed quantities V = V1, ρ = ρ0 + ρ1, P = P0 + P1, where the
subscript 1 denotes small perturbations of the initial solution. To first order in
the perturbation, this yields

∂ρ1

∂t
+ ρ0  ·V1 = 0 (2.72)

ρ0
∂V1

∂t
= − P1 = −dP

dρ
 ρ1. (2.73)

Taking the time derivative of (2.72) and substituting (2.73), we obtain

∂ρ1

∂t2
= V 2

S 2 ρ1 (2.74)

VS =
(

dP

dρ

)1/2

(2.75)

and equations similar to (2.74) for the perturbations P1 and V1. This has a plane
wave solution varying as ei(k·r−ωt), which propagates at the speed ω/k = VS .
With P ∝ ργ , we have from (2.71)

VS = (γP/ρ)1/2
. (2.76)

This wave produces small perturbations in the fluid mass density and veloc-
ity; it is a sound wave, propagating at the sound speed VS = (γkBT/m)1/2 in
a gas of particles of mass m at temperature T . Note that from (2.73), V1 is
parallel to ρ1. In the Fourier space [ω,k] (see [3]), ∂/∂t transforms into −iω
and  into ik, so that (2.73) yields −iωρ0V1 = −V 2

S ikρ1, whence V1 ‖ k. This
shows that in a sound wave, the velocity perturbation is parallel to the wave
vector: this is called a longitudinal wave.

In a plasma, two major differences arise. First, the pressure is provided
by electrons and ions in proportion of their temperatures, whereas the mass is
essentially provided by the ions. The corresponding wave – called ion–acoustic
wave – behaves differently depending on whether or not the electrons and ions
move together, i.e. whether or not the plasma remains neutral.

If the plasma remains neutral, which holds at scales greater than LD (i.e.
wave numbers k � 1/LD), the wave is a simple generalisation of the sound wave
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in a neutral gas, so that the phase speed is

VS =
(

γePe + γiPi

ρ

)1/2

=
(

γekBTe + γikBTi

mi

)1/2

(2.77)

where the subscripts e and i refer to electrons and ions respectively. If γe ∼
γi ∼ γ and Te ∼ Ti ∼ T , the phase speed reduces to (γkBT/m)1/2 (in order
of magnitude) with m � mi/2 (the average particle mass), as for a neutral
gas. In this case, however, since the wave phase speed is of the same order of
magnitude as the most probable speed of ions, the bulk of the ions move together
with the wave so that they are subjected to a nearly constant force along their
motion; this accelerates them efficiently at the expense of the wave, which is
thus damped; this process is called Landau damping, and we shall return to it
in Section 2.3.4. For the wave not to be damped, the electrons must be much
hotter than the ions, to produce a wave speed much greater than the ion most
probable speed so that the wave is no longer damped.

When the wave number k ≥ 1/LD, the plasma does not remain neutral, i.e.
the electrons and ions do not move together; in the large k limit, the ions then
perform plasma oscillations at their characteristic frequency

ωpi =
(
ne2/ε0mi

)1/2
. (2.78)

The picture is then like ordinary plasma oscillations (Section 2.1.4), but with
the role of electrons and ions reversed.

The second major modification that plasmas introduce in the sound wave
arises when a magnetic field is present. We shall consider this point later.

Shocks

Sound waves (and their plasma generalisations) enable fluids to adapt gently to
compressions. Hence, for motions at a speed smaller than the sound speed, the
fluid behaves as if it were roughly incompressible. On the other hand, for larger
speeds, nasty things may happen. To understand this, suppose you agitate your
hand. In doing so, you compress the surrounding air, and your hand is able
to move because the gas ahead goes out of the way. It can do so because the
compression is transmitted farther away by the sound waves emitted by your
moving hand, thereby transmitting to the gas ahead the information that your
hand is approaching.

But suppose you try to move it faster than the sound speed. In that case,
sound waves do not propagate fast enough to transmit the information that
your hand is moving. Hence the gas far ahead, being not aware of the motion,
is not perturbed. In contrast, close to your hand, the gas is compressed by the
motion and moves at the same speed; the (adiabatic) compression also increases
the local temperature (and sound speed), so that the information propagates
just ahead of your moving hand.

Therefore the gas separates into two regions. Far away, it remains undis-
turbed; in the frame of the moving object that is approaching at the speed −V1,
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Figure 2.14 A simple shock: moving cars, whose drivers are asleep, are im-
pacting a stopped truck. The rows show the state of the system at several con-
secutive times. A shock forms, separating two different states: upstream, the
unperturbed fluid (the row of cars) moving at uniform velocity; downstream,
the fluid that has stopped and undergone an irreversible transition. The shock
moves towards the left, propagating information on the presence of the obstacle.

the gas moves at V1, faster than the local sound speed. On the other hand,
just before the object, the flow adapts gently, moving at a speed that is locally
subsonic, and stopping at the object. In between lies a transition, at some dis-
tance ahead of the object, where the gas velocity changes from supersonic to
subsonic. It is this transition that transmits the information on the presence of
the obstacle ahead, and it does so at a supersonic speed – a performance that
the small amplitude sound waves cannot achieve.

Contrary to the sound waves, this transition – called a shock – is not a
reversible process, and it can transmit information faster than the sound speed.
The irreversibility involves some dissipation, which, in the usual case of neutral
gases, can be achieved via collisions between particles; in this case, the width
of the transition is thus the scale at which the ideal fluid equations no longer
hold, that is the mean free path of particles for collisions.

We have defined a shock as a large amplitude irreversible perturbation en-
abling propagation of information faster than the small amplitude compressible
waves. An extreme case arises when no such waves do exist. Figure 2.14 illus-
trates such an example, that I have borrowed from [2], where an insightful in-
troduction to shocks in space may be found. Imagine a stream of equally spaced
vehicles on a straight freeway. Now assume that the drivers have fallen asleep,
with the speeds of the cars somehow blocked at their original speed V1, whereas
a large truck suddenly stops in the middle of the lane. The system evolves as
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Figure 2.15 A plane shock before a moving object, in the reference frame where
the shock (and the object) is at rest. The unperturbed fluid upstream (left) of
uniform mass density ρ1 moves at the supersonic speed V1 > VS1 (the upstream
sound speed). At the shock, these properties change abruptly to ρ2, V2 < VS2.
Between the shock and the object, the fluid slows down smoothly, stopping at
the object, and being diverted sideways (not shown). The width of the transition
is about the scale lf at which the ideal fluid equations no longer hold.

shown on the successive rows, from top to bottom. The accumulation of crashes
quickly produces two states separated by an abrupt transition: a shock. Up-
stream, the medium (the regular row of cars) is unperturbed, being unaware
of the obstacle ahead. Downstream accumulates a hump of crashed cars. The
transition – a shock – moves to the left as more vehicles stop and crash.

This example is a limiting case when there is no small amplitude (reversible)
wave propagating information, but it has several basic properties of shocks. The
unperturbed medium is supersonic in the sense that it moves faster than the
velocity at which information propagates (which is zero here), and its motion
becomes abruptly subsonic (zero here) at the shock, where it undergoes an irre-
versible dissipative transition. The shock is the only way that information can
propagate, and it does so at a speed that is effectively supersonic (in the above
sense), and is determined by the initial speed of the vehicles, the separation
between them and their compression upon crashing.

A more general case is sketched in Fig. 2.15, which is drawn in the frame
where the shock (and the object ahead of which it lies) is at rest. Upstream
(left), the unperturbed medium has the supersonic speed V1 > VS1 (the sound
speed). At the shock the medium undergoes an abrupt dissipative transition,
becoming subsonic, of speed V2 < VS2 (the sound speed just downstream of the
shock). On this downstream side, the subsonic velocity enables the information
on the presence of the obstacle to propagate, so that the speed can decrease
smoothly up to the surface of the object where it vanishes. Furthermore, the
stream lines are diverted sideways; this is not shown in Fig. 2.15, which is one-
dimensional.18

18Namely, the radius of curvature of the shock (and of the object) is assumed to be much
larger than the scales shown.
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The fluid properties on both sides of the shock are related by the three ideal
fluid equations. First, mass conservation tells us that the mass flux ρV is the
same on both sides of the transition. Second, the equation of motion tells us
that the variation in the flux of momentum ρV 2 between both sides balances
the variation in pressure P . Finally, (adiabatic) energy conservation tells us
that the sum of the density of kinetic energy V 2/2, plus the enthalpy 5P/ (2ρ)
(with γ = 5/3) is the same on both sides. This yields

ρ1V1 = ρ2V2 (2.79)

ρ1V
2
1 + P1 = ρ2V

2
2 + P2 (2.80)

V 2
1

2
+

5P1

2ρ1
=

V 2
2

2
+

5P2

2ρ2
(2.81)

where the subscripts 1 and 2 refer respectively to the values upstream and just
downstream of the shock. These are called the Rankine–Hugoniot relations. The
decrease in speed from upstream to downstream is accompanied by an increase
in density, pressure and temperature. The Mach number M = V/VS , with
the sound speed VS = (γP/ρ)1/2 = (γkBT/m)1/2, changes at the shock from
M1 > 1 to M2 < 1, with from (2.79)–(2.81):

V2

V1
=

ρ1

ρ2
=

1 + 3/M2
1

4
. (2.82)

In the particular case when V1 � VS1, we have

V2/V1 = ρ1/ρ2 � 1/4 (2.83)

V2/VS2 �
√

1/5 (2.84)

kBT2 � mV 2
1 /5. (2.85)

In that case, one sees that most of the upstream kinetic energy is converted
into downstream enthalpy, so that the downstream temperature can be very
large.

This holds for neutral gases. In space plasmas, some complications arise,
requiring tools that we have not yet introduced. We shall consider these com-
plications when studying shocks in the solar wind (in Section 6.3), and its inter-
action with solar system objects (Section 7.2) and with the interstellar medium
(Section 8.2).

Transport of momentum and heat

We now go a step further into the theory and examine how the ideal fluid
equations are modified when the fluid is neither isothermal nor adiabatic. Or,
from a microscopic point of view, when the particle velocity distribution is not
Maxwellian.

Being not Maxwellian has two main consequences.
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The first one concerns the property of isotropy, and is relatively trivial. In
the presence of a magnetic field B, the velocity distribution tends to acquire
a cylindrical symmetry around B, so that the pressure is no longer a scalar,
even to zero order, being different in the directions parallel and perpendicular
to B. This introduces a complication, but does not present basic difficulties if
the velocity distribution remains Maxwellian in the parallel and perpendicular
directions; it is then called a bi-Maxwellian19 and defined by two temperatures:
T‖ and T⊥.

In this case, the (isotropic) adiabatic relation P ∝ ργ may be generalised
in the following way. Just as, for individual particle motions, the ratio of the
particle perpendicular energy to the magnetic field mv2

⊥/2B is an adiabatic
invariant, so the ratio of the fluid perpendicular temperature to the magnetic
field T⊥/B = constant. Similarly, we know that the adiabatic invariant of the
particle bounce motion is the product of the parallel velocity v‖ by the length
L of the bounce path. Let us apply this invariance to a magnetic tube of length
L and section s; conservation of mass yields ρLs = constant, and conservation
of magnetic flux yields Bs = constant. Hence ρL/B = constant, so that the
invariance of v‖L is equivalent to v‖B/ρ = constant. Finally, therefore, for an
anisotropic Maxwellian distribution, the adiabatic isotropic relation P ∝ ργ is
replaced by the so-called CGL relations20

T⊥ ∝ B (2.86)

T‖ ∝ (ρ/B)2 . (2.87)

Unfortunately, this simple scheme does not hold when the velocity distri-
bution is not close to an anisotropic Maxwellian. And still worse, the condi-
tions for the distribution to be an anisotropic Maxwellian are difficult to realise:
there must be enough collisions to produce Maxwellians in both the parallel and
perpendicular directions, but not so many that the parallel and perpendicular
temperatures become equal. Furthermore, even though the gyration around the
magnetic field comes to the rescue of collisions for providing quasi-equilibrium
in the direction ⊥ B, this is not so in the direction ‖ B. Therefore, the velocity
distributions in space plasmas are generally not bi-Maxwellian, except if the free
path for collisions is much smaller than the scale of variation, at least in the
direction ‖ B.

We now come to the second consequence of not being Maxwellian. In or-
dinary gases, small perturbations to the Maxwellian are studied by performing

19The bi-Maxwellian distribution has the form f (v) = Ae
−mv2

‖/2kB T‖ × e−mv2
⊥/2kB T⊥ ,

with A = n (m/2πkB )3/2 T
−1/2

‖ T−1
⊥ , in order to ensure the normalisation n =∫ +∞

−∞ dv‖
∫ ∞
0

2πv⊥dv⊥f (v); v‖ and v⊥ are the velocity components in the directions re-
spectively ‖ B and ⊥ B.

20When B is constant, the CGL relation (2.87) yields T‖ ∝ ρ2, so that the parallel pressure
P‖ ∝ ρT‖ ∝ ργ with γ = 3. Since for particles having N degrees of freedom, the adiabatic
index γ = 1 + 2/N , (2.87) then corresponds to an adiabatic compression with 1 degree of
freedom. This is not surprising since with constant B, the magnetic flux tube must keep a
constant section, and thus can only be compressed (or expanded) along B.
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an expansion in a small parameter: the ratio of the mean free path lf to the
scale L of variation of the medium, which is related to the extent by which
the velocity distribution differs from a Maxwellian. Such an expansion yields
the ideal fluid equations, plus small corrections representing a viscosity force
and a heat flux. The equation of motion and the Bernoulli theorem are then
replaced by

∂V
∂t

+ (V · )V = −P

ρ
−ΦG + Fvis (2.88)

ρV · 
(

V 2

2
+

γ

γ − 1
kBT

m
+ ΦG

)
= − ·Q. (2.89)

The viscosity force Fvis tends to reduce the gradients in velocity. It may be
written approximately

Fvis � ν 2 V + ν′  ( · V) (2.90)

where ν is the kinematic viscosity, and the second term vanishes if the medium
is incompressible. The heat flux tends to reduce the gradients in temperature,
and may be written (in this nearly Maxwellian approximation)

Q = −κ  T (2.91)

where κ is the thermal conductivity. These transport terms are produced by the
particle agitation and collisions which enable them to share their momentum and
energy. The transport terms therefore increase with the gradients, the random
speeds and the free path for collisions. We make below a simplified estimate.

The motion of the particles may be viewed as a random walk at the speed vth,
with individual random steps of length equal to the collision free path lf . The
average distance travelled in this way is zero, but the mean square is not, being
〈d2〉 = p× l2f for p random steps. Travelling a distance L � lf therefore requires
a number of steps given by L2 = p× l2f and therefore a time τ ∼ p× lf/vth, i.e.

τ ∼ L2

vthlf
lf � L. (2.92)

This enables us to estimate the coefficient of viscosity and the thermal conduc-
tivity. Consider first the equation of motion (2.88), and assume that the main
contributions come from the time variation and the shear viscosity, so that in
order of magnitude ∂V/∂t ∼ ν 2 V. For a velocity varying at the scale L, we
have | 2V |∼ V/L2, so that ∂V/∂t ∼ νV/L2. This means that the viscosity
can suppress a velocity variation of scale L in a time τ ∼ L2/ν. Since this is
achieved by the diffusion of particles, which diffuse over a distance L in a time
given by (2.92), both times are equal, so that

ν ∼ vthlf lf � L. (2.93)

The importance of viscosity is quantified by the Reynolds number, which
represents the ratio of the inertial term | (V · )V | in the fluid equation of
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motion (2.88) to the viscosity force. If the velocity varies at the scale L , we have
| (V · )V |∼ V 2/L, while the viscosity force (2.90) is roughly Fvis ∼ νV/L2.
The ratio is therefore

inertia
viscosity

∼ V L/ν ≡ R (Reynolds number). (2.94)

With the expression (2.93) of the viscosity, we have R ∼ (V/vth) × (L/lf ), so
that if V > vth, the Reynolds number must be much greater than unity to
ensure lf � L so that the fluid equation of motion (2.88) holds. Therefore,
viscous forces are generally much less important than inertial effects.21 This is
still more true in space and astronomy, because of the extremely large scales.

Consider now the energy equation (2.89). This equation holds in the simple
case when there is no time variation, so let us consider another simple case: when
the fluid velocity is much smaller than the sound speed so that the dynamical
terms are negligible (and the medium behaves as nearly incompressible). In
that case, the divergence of the heat flux simply balances the variation in the
density of kinetic energy per unit time, so that the energy equation becomes

n
∂

∂t

(
3
2
kBT

)
= κ 2 T for V � VS . (2.95)

With the order of magnitude estimate 2T ∼ T/L2 where L is the scale of
variation, (2.95) shows that the heat flux makes the temperature diffuse over
a distance L in a time τ ∼ 3nkBL2/ (2κ). Since we have seen that particles
diffuse over a distance L in a time given by (2.92), the thermal conductivity is

κ ∼ 3
2
nkBvthlf lf � L. (2.96)

Despite the simplicity of our approach, the above estimates of the viscosity and
of the thermal conductivity turn out to be accurate to a factor of order unity
in a collisional medium.

Transport in plasmas

How do these results apply in space plasmas? Because of the large ion-to-
electron mass ratio, whereas ions and electrons generally have similar tempera-
tures, ions have a much greater kinetic momentum mvth than electrons, but a
much smaller kinetic speed vth, whereas the free paths are similar. Hence:

• ions transport momentum, and determine the viscosity,

• electrons transport heat, and determine the thermal conductivity.

21Beware that the viscosity force, however small quantitatively, may have important qual-
itative consequences, as we shall see in Section 6.4. Furthermore, we must be careful not to
rely too heavily on our intuition, which is based on a familiarity with high Reynolds numbers.
This point is nicely addressed by Purcell, E. M. 1977, Am. J. Phys. 45 3.
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Because the Reynolds number is generally very large in space plasmas, viscosity
is in general negligible.

This is not so, however, for the heat flux. Consider the energy equation
(2.89), and compare the transport of heat by thermal conduction,  ·Q, to the
transport of heat by the fluid bulk motion, ∝ ρV · kBT/m. For variations at
the scale L, we make the order of magnitude estimate  ∼ 1/L , which yields

conduction
advection

∼ κT/L2

ρV kBT/ (mL)
∼ vthlf

V L
(2.97)

where we have substituted the expression (2.96) of κ and n = ρ/m. If the same
particle species did produce the viscosity and the heat conductivity, this ratio
would be roughly the inverse of the Reynolds number, and would thus be very
small. However, heat conduction in plasmas is provided by the electrons, so
that the speed in (2.97) is that of electrons, i.e. much greater than that of ions.
Furthermore, even though space plasmas have often a bulk motion faster than
the ions’ most probable speed, the bulk motion is generally slower than the
most probable speed of electrons. Hence, heat conductivity is often important
in plasmas, even when lf � L.

Let us estimate the thermal conductivity in a (collisional) plasma. Substi-
tuting the numerical values in (2.96), with vth = vthe and the mean free path
(2.22), we have

κ � 10−10

ln 1/Γ
× T 5/2 W m−1 K−1 (2.98)

in SI units, where T is the electron temperature. In space plasmas, we have
ln 1/Γ ∼ 10–20, so that in order of magnitude κ ∼ 10−11 ×T 5/2 W m−1K−1 (SI
units). For example, the solar corona, with T ∼ 106 K, has a heat conductivity
κ � 104 W m−1K−1, of the same order of magnitude as the heat conductivity
of brass [5].

Beware of fluid equations in space plasmas

These results, however, must be applied with extreme caution in space plasmas,
for two reasons. First, the magnetic field has been neglected. The magnetic
field does not affect the thermal conductivity along its direction. However,
since in general the particle gyroradii are much smaller than the free paths,
the conductivity is strongly reduced in the direction ⊥ B. Second, even in the
direction ‖ B, the thermal conductivity (2.96) only holds when the free path is
much smaller than the scales of variation. How much smaller? This question is
still not fully solved, and we shall return to it in Sections 4.6 (in the context of
the solar corona) and 5.5 (in the context of the solar wind). In practice, values
of lf/L as small as about 10−3 are required. The basic reason is the fast increase
of the particle free path with speed. The free path lf given by (2.22) is the value
for particles of speed equal to the most probable speed. Since for a particle of
velocity v, the free path ∝ v4, particles moving, say, three times faster have a
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Figure 2.16 The basic difference between the fluid (left) and the kinetic (right)
picture, and why the former is often inappropriate in space plasmas. The fluid
picture implies a process that enables the particles to transport heat in bulk.
However, heat is mainly carried by the particles moving faster than average,
which are nearly collisionless and require a kinetic description. (Drawing by
F. Meyer.)

free path greater by a factor of 34 ∼ 102. And since heat is transported by the
faster particles, these fast particles must have a small free path for (2.96) to hold.

There lies the difficulty of applying fluid equations in space plasmas. The
particles that transport heat are those for which the classical theory of heat
transport does not apply! Stated in more precise terms, the fast variation of the
free path with speed prevents the expansion of the moment equations in terms of
the small parameter lf/L to converge. Even though the fluid continuity equation
and equation of motion do hold (provided the particle pressure is roughly a
scalar, and including the electromagnetic contribution if it is not negligible),
their solution requires another (local) fluid equation: the energy equation, which
generally does not hold because the heat flux is not a simple function of the local
derivatives. Another way of understanding this point is to note that for the heat
flux to depend on a local derivative, there must be a process – such as collisions –
that effectively localises the particles (Fig. 2.16).22

It is often said that the fluid picture nevertheless applies because the parti-
cles are localised by the gyration around the magnetic field and by the various
plasma instabilities. However, the gyration of the particles only localises them
in the direction perpendicular to the magnetic field, and the instabilities drive
them towards stable configurations, which do not necessarily correspond to local
thermal equilibrium.

2.3.3 Elements of magnetohydrodynamics
So far, we have ignored the contribution of the electromagnetic force to the
fluid motion. This is permissible if the electric charge and currents carried by

22Adapted from Meyer-Vernet, N. 2001, Planet. Space Sci. 49 247.
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the plasma particles are vanishing or negligible. We have seen that the large-
scale electric charge is generally negligible, but this is not necessarily so for
the current. And since currents produce magnetic fields, which themselves act
on the currents, the particles and the magnetic field are closely coupled. This
confers special properties to the medium, which are generally studied with a
fluid description. This is the subject of magnetohydrodynamics (MHD).

We neglect the charge separation, which is permissible at timescales T �
1/ωp and spatial scales L � LD, and consider the plasma as a single fluid moving
at the non-relativistic speed V � c and carrying the electric current J. We also
assume that the transport coefficients are similar in the directions parallel and
perpendicular to B. In the presence of an electric current, a further transport
coefficient acts: electric conductivity, which tends to reduce the gradients in
electric potential.

Plasma electric conductivity

The origin of the electric current is the slight difference in bulk motion of ions
and electrons in the presence of an electric field E. In the absence of a magnetic
field, each electron is accelerated as medv/dt = −eE. The ions, being more
massive, are less easily accelerated, producing a slight difference ∆v between
the electron and ion velocities, and thus an electric current of density

J = −ne∆v (2.99)

for n electrons and n (singly charged) ions per unit volume. Because of electron–
ion collisions, of frequency νei, the electrons lose their velocity excess ∆v in an
average time ∆t � 1/νei. At equilibrium (which requires E weak enough, see
Section 5.4.5), the momentum gained by an electron per second −eE is balanced
by the momentum transferred per second to the ions, me∆v/∆t, so that

−eE = me∆v × νei.

Eliminating ∆v by using (2.99), we deduce J =
(
ne2/meνei

)
E. This may be

written

J = σE (2.100)

σ =
ne2

meνei
(electric conductivity). (2.101)

Substituting νei = vthe/lf with the free path (2.23) and ln(1/Γ) ∼ 10–20, we
find σ ∼ 3 × 10−4 × T 3/2. A more exact calculation yields

σ � 6 × 10−4 × T 3/2 (Ω m)−1
. (2.102)

With a temperature T � 106 K, this yields σ � 0.6 × 106 Ω−1 m−1, nearly
equal to the electric conductivity of mercury. Note that σ depends only on the
temperature, being independent of the density. This is not surprising since with
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more particles, the current increases, but the collisional losses increase in the
same proportion.

An important remark is in order. The above estimate assumes the electrons
to follow straight lines between two collisions, and thus neglects the effects of
the magnetic field. This is permissible only in the direction ‖ B, or if the mean
free path is much smaller than the radius of gyration, so that the curvature
of the trajectories may be neglected. Therefore, (2.101) represents the electric
conductivity:

• in the direction ‖ B,

• in the directions ⊥ B, if lf � rg.

In general, the opposite inequality holds, so that the particle gyration reduces
strongly the electric conductivity in the directions ⊥ B.

Magnetic diffusion

Let us consider an important consequence of the electric conductivity.
For slow time variations and non-relativistic plasma bulk speeds, we may ne-

glect the term
(
1/c2

)
∂E/∂t compared to ×B in Maxwell’s equation (2.30),23

so that we have

× E = −∂B/∂t (2.103)

× B = µ0J (2.104)

in a ‘laboratory’ frame R. In the frame R′ of a plasma moving at velocity V
with respect to R, the electric field is E′ = E + V × B, so that the electric
current is J = σE′, i.e.

J = σ (E + V × B). (2.105)

This yields E = J/σ − V × B, which we substitute into (2.104), to yield

∂B/∂t = −×(J/σ − V × B). (2.106)

Eliminating J with the help of (2.104) and using the vector identity  ×
(× B) = −2 B (since  · B = 0), we deduce

∂B
∂t

=
2B
µ0σ

+ × (V × B). (2.107)

This equation contains two contributions to the magnetic field variation:

• a diffusion, produced by the conductive losses,

• a convection, produced by the plasma bulk motion.
23This requires that the timescale τ , length scale L and mean velocity V satisfy E/τc2 �

B/L, i.e. with E ∼ V B, τ 	 LV/c2.
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For magnetic variations at the scale L, we have | 2B |∼ B/L2, so that the first
term on the right-hand side of (2.107) is of order of magnitude B/

(
µ0σL2

)
. Its

contribution yields ∂B/∂t ∼ B/
(
µ0σL2

)
, making the magnetic field vary on a

timescale

τσ ∼ µ0σL2 (2.108)

proportional to the square of the spatial scale of variation, as in usual diffusion
processes. The second term on the right-hand side of (2.107) is produced by
the bulk speed, and is of order of magnitude VB/L. Either of these two effects
can be dominant, depending on the relevant time and length scales. The ratio
between both terms is the non-dimensional number

convection
diffusion

∼ µ0σLV ≡ Rm (magnetic Reynolds number). (2.109)

Magnetic diffusion is therefore negligible if Rm � 1; Rm is called the mag-
netic Reynolds number, in analogy with the fluid Reynolds number whose value
quantifies the importance of viscosity.

Basically, the magnetic field diffuses in a conductive medium because the
electric currents produce a joule energy loss, which converts magnetic energy into
heat. To understand this, consider the following order-of-magnitude estimate.
The rate of energy dissipation per unit volume is J ·E = J2/σ. From Maxwell’s
equation (2.104), the current corresponding to a magnetic field of scale L is of the
order of magnitude: J ∼ B/µ0L, and dissipates energy at the rate (B/µ0L)2 /σ
per unit volume. During the diffusion time τσ ∼ µ0σL2, the energy dissipated
per unit volume is thus ∼ B2/µ0, equal (in order of magnitude) to the initial
density of magnetic energy.

There is a major difference between laboratory experiments – on which our
intuition is based – and astrophysics. In the laboratory, we have Rm < 1 so
that magnetic diffusion dominates, and diffusion acts so quickly that the electric
currents are mainly determined by the electric conductivity. In astrophysics, the
opposite inequality holds because of the large scales and velocities.

Frozen-in magnetic field

When the magnetic Reynolds number is so large that the electric conductivity
may be considered as infinite, the induction equation (2.107) reduces to24

∂B
∂t

= × (V × B) . (2.110)

Consider a closed contour drawn in the fluid, and the magnetic flux that it
embraces. As the fluid moves, the contour is displaced and deformed, but one
may prove from (2.110) that the flux embraced remains constant. This is known
as Alfvén’s theorem, and is picturesquely expressed by saying that the magnetic

24The vorticity field � × V satisfies the same equation as B in the limit of an infinitely
large Reynolds number (no viscosity).
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Figure 2.17 A consequence of flux freezing. If we try to introduce a piece of
conductor into a magnetic field, the magnetic field lines bend away, avoiding
the conductor (1, 2), until magnetic diffusion lets the magnetic field penetrate
(3). Conversely, if we try to remove the bar from the magnetic field, the field
lines follow the motion, remaining frozen into the conductor (4).

lines of force are ‘frozen’ in the fluid. The fluid can move freely along the
magnetic field lines, but any motion of the fluid perpendicular to the field lines
carries them with the fluid.25

Basically, this is because if the fluid moves across the magnetic field B,
the motion induces an electric field of amplitude proportional to the com-
ponent of the velocity ⊥ B. If the conductivity is infinite, the electric field
must vanish for the electric current to remain finite, and so does this velocity
component.

An important consequence of magnetic flux freezing is that in a conducting
fluid, one may increase the magnetic field by stretching the field lines. Indeed,
consider a small magnetic flux tube of section s and length l, that is carried and
deformed as the fluid moves. Alfvén’s theorem tells us that the magnetic flux
across the tube, which is constant along the tube at each time, remains constant
too as the tube moves with the fluid, so that Bs = constant. Conservation of
mass yields ρsl = constant, so that B ∝ ρl. If the velocity is much smaller than
the sound speed, the density ρ remains roughly constant, so that B ∝ l, i.e. the
magnetic field strength increases with the length of the tube. We shall see in
Section 3.3 that this property has important applications in the production of
the cosmic magnetic fields.

The freezing of the magnetic field in a conductor is a concept that has
important consequences in astrophysics, where we have generally Rm � 1, but
to which we are not accustomed in the laboratory where the opposite inequality
generally holds. However, similar effects hold to a certain extent, albeit on
different scales, with the conductors we encounter in ordinary life (Fig. 2.17). If
we try to insert a copper bar, 0.1 m thick, say, in a magnetic field, the magnetic
field lines do not penetrate it immediately, because the electric currents induced
in the conductor produce a magnetic field opposing the external magnetic field.

25Saying that field lines are moving with the fluid is a way of identifying the motion of
field lines rather than a statement of fact, since this motion cannot be defined unambiguously
from electromagnetic theory alone; the concept of moving magnetic field lines might produce
apparent paradoxes if it is applied without care.
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It takes about 1 s for the currents to die away so that the external field enters
the bar. Meanwhile, the field lines are deformed as shown (Fig. 2.17, left, and
Problem 2.5.5). If you quickly pull the bar out of the magnetic field, electric
currents are again induced, tending to trap the magnetic field within the bar.
The magnetic field lines move with the bar, remaining inside for about 1 s, until
the decay of the currents enables the magnetic field to disappear from the bar
(Fig. 2.17, right).

This manifestation of magnetic field freezing in conductors occurs on much
larger scales in astrophysics, so that the time of field decay is much larger than
the timescale of motion. An important consequence is that plasmas in space,
remaining tied to the magnetic field lines, do not mix easily across the magnetic
field.

In the particular case when the magnetic field does not vary with time,
Maxwell’s equation (2.29) yields  × E = 0, whence E = −  ΦE where ΦE

is the electric potential, so that E is perpendicular to equipotential surfaces.
With the approximation E � −V × B, E is perpendicular to both V and B,
so that V and B lie on equipotential surfaces. Hence in this case, stream lines
and magnetic field lines are equipotential.

Magnetic forces

Consider now the electromagnetic force that must be added in the fluid equation
of motion (2.63), when the plasma electric currents are not negligible.

With a vanishing large-scale electric charge, the electromagnetic force per
unit volume is J×B. Eliminating the current density with the aid of Maxwell’s
equation (2.104), the force per unit volume is

1
µ0

(× B) × B =
1
µ0

(B · )B −
(

B2

2µ0

)
. (2.111)

This is the superposition of:

• a tension force along the field lines equal to B2/µ0 (per unit cross-section
area normal to them),

• the gradient of a magnetic pressure equal to B2/2µ0.

The magnetic force acting on a conducting medium may therefore be pic-
tured in two equivalent ways. The force is the sum of the Lorentz forces qv×B
acting on all the moving charges. Alternatively, since the charges are equivalent
to a current, itself related to the magnetic field, the force can be described in
terms of stresses in the magnetic field. Let us examine these stresses in more
detail.

The magnetic tension arises from the curvature of the field lines, and vanishes
when they are straight since in that case (B · )B = 0. To understand its origin,
consider the simple case of a magnetic field having a cylindrical symmetry, as the
one produced by a current flowing along an axis. In this case, the magnetic field
follows circles perpendicular to the axis, and depends only on the distance r from
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Figure 2.18 The magnetic tension along the field lines may be pictured as a
tension force acting on an elastic wire.

this axis. The contribution of the tension to the volume force is (B · )B/µ0 =
nB2/µ0r, where n is a unit vector pointing towards the axis (Fig. 2.18). This
contribution is produced by the magnetic tension acting along the field lines,
just as for a stretched string. Indeed, when a piece of string of small length l
and cross-section area s is stretched with a tension force Ts, producing a radius
of curvature r (Fig. 2.18), the (downward) vertical force at each extremity is
Ts × sin θ � Tsθ, whereas the net horizontal force vanishes. The net force
(normal to the string) is 2Tsθ � Tsl/r, since the length l � 2rθ, so that the
force per unit volume is T/r. The magnetic tension T = B2/µ0 can therefore
be viewed as the tension force per unit cross-section normal to the field lines.

In the general case when the magnetic field strength varies along the field
lines, the term (B · )B has also a component ‖ B, which balances the com-
ponent ‖ B of the gradient in magnetic pressure, so that the net magnetic force
is ⊥ B (as it should be), and may be expressed as

B2

µ0

n
Rc

−⊥

(
B2

2µ0

)
(magnetic force per unit volume) (2.112)

where n is a unit vector pointing towards the centre of curvature, Rc is the
radius of curvature and ⊥ denotes the component of the gradient in the plane
⊥ B. The magnetic tension tends to oppose the curvature of the field lines and to
shorten them, just as does the tension of an elastic string. The magnetic pressure
tends to oppose the compression of the field lines and to expel the plasma from
regions of high magnetic field, just as the ordinary gas pressure tends to expel
matter from high pressure regions. Hence, the plasma and the magnetic field
conspire to keep the plasma+magnetic pressure constant, by putting matter
where the magnetic field is weak and vice versa.

Finally, therefore, the equilibrium and dynamics of a magnetised plasma are
governed by three terms:

• inertia, corresponding to the density of bulk kinetic energy ρV 2/2,

• thermal pressure, corresponding to the density of random kinetic energy
∼ ρkBT/m,

• magnetic forces, corresponding to the density of magnetic energy B2/2µ0.
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If the first term dominates the third, the motion is not significantly affected by
the magnetic field, and it controls the field lines. In contrast, if the third term
dominates, the magnetic field controls the motion. Equating the first and third
terms gives a speed

V =
B

(µ0ρ)1/2
≡ VA (Alfvén speed). (2.113)

This is the typical speed to which the magnetic field can accelerate the plasma;
we shall return to it later.

On the other hand, when the bulk velocity of the medium vanishes, the
nature of the equilibrium is determined by the ratio of the second to the third
terms:

β =
nkBT

B2/2µ0
. (2.114)

In that case, the equilibrium is governed by the magnetic field if β � 1, and by
the plasma if β � 1.

Magnetohydrodynamic waves

Just as a stretched string supports waves, in which transverse motions produced
by the string’s tension propagate along the string, so a magnetised plasma sup-
ports transverse waves, known as Alfvén waves, in which transverse motions of
the field lines produced by the magnetic tension propagate along the field lines.

On a stretched string, the phase speed is v =
√

T/ρ, where T is the tension
force per unit cross-section area, and ρ is the mass density of the string. Simi-
larly, the phase speed of an Alfvén wave is

√
T/ρ, where the tension T = B2/µ0

is produced by the magnetic field, and the mass density ρ is provided by the
plasma which moves with the field lines because of flux freezing. With this
analogy, the phase speed is

√
B2/µ0ρ, the Alfvén speed defined in (2.113), and

oriented along the field lines. This result may also be found as follows.
Consider a magnetic field oriented along z, i.e. B = Bz, and deform the

field lines as shown in Fig. 2.18. If x (z) is the amplitude of the displacement
normal to z, the magnetic field component along x is

Bx = Bzdx/dz � Bdx/dz. (2.115)

The magnetic tension produces a restoring force per unit volume given by the
first term of (2.112) as Fx = B2/ (µ0Rc) where the radius of curvature Rc =(
d2x/dz2

)−1
. Since the field lines move together with the plasma of mass density

ρ, this yields the equation of motion

ρ
d2x

dt2
=

B2

µ0

d2x

dz2
. (2.116)
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Figure 2.19 Sketch of the magnetic field lines in an Alfvén wave; the undis-
turbed magnetic field lines are shown as dotted lines.

There are two solutions of the form26

x ∝ e−i(ωt−kz) ω/k = ±VA VA ≡ B/
√

µ0ρ (2.117)

which are plane waves propagating along z at the phase speed VA, perturbations
of B that are ⊥B.

The material moves with the field line at right angles to the direction of
propagation at the speed v = dx/dt = −iωx (in Fourier space), so that the
kinetic energy per unit volume is ρ | v2 | /2 = ρω2 | x2 | /2. From (2.115)
and (2.117), the magnetic field variation in the wave is Bx = Bikx, so that the
wave magnetic energy per unit volume is | B2

x | /2µ0 = k2B2 | x2 | /2µ0. Since
ω/k = VA, both energies are equal.

The flux of energy carried by the wave is thus equally shared by the mechanic
and magnetic energies, and equal to twice the flux of mechanical energy VA × ρ
| v2 |.27

Since the wave vector k is normal to the fluid velocity v, we have in Fourier
space  · v = ik · v = 0, so that the continuity equation yields ρ = constant.
Hence, the mass density is not perturbed in these waves, as might be expected
from Fig. 2.19, which shows that the deformation of the field lines does not
change the volume of the flux tubes.

Finally, even though our calculation assumes small perturbations, these
waves can exist with a large amplitude, provided the medium is incompress-
ible and adiabatic. In this case, Alfvén waves may propagate at constant speed
in a homogeneous medium without any distortion or attenuation. These waves
are of great importance in astronomy, as they transport perturbations along the
magnetic field over long distances.

The above calculation assumes a frozen-in magnetic field and non-relativistic
speeds, which require in particular k � 1/rg, ω � ωg and VA � c, and consider
a special geometry: perturbations of speed and magnetic field that are ⊥ B
and propagate along B. For other directions, one finds three MHD modes: a
generalisation of the Alfvén wave propagating at an angle with the magnetic

26In Fourier space, with the usual convention that the physical quantity corresponding to,
say, the displacement noted x in Fourier space is equal to the real part of x.

27We have neglected the terms involving the electric field in Maxwell’s equations, so that
the electric energy is absent. This approximation is acceptable if VA � c.
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field, and two modes which, contrary to the Alfvén mode, involve some plasma
compression, so that the restoring forces are the magnetic stresses plus the gas
pressure gradient.

The generalised Alfvén wave has a wavefront that is not necessarily ⊥ B,
and propagates at the Alfvén speed VA in the direction ‖ B whatever the angle
θ between k and B, so that ω/k = VA cos θ; the perturbations of velocity and
magnetic field are perpendicular to both k and B, so that a given magnetic field
line still looks like a plucked string.

Of the two compressive modes, one propagates faster than the other, so that
they are called the fast and slow magnetosonic waves. In the so-called fast
wave, the particle pressure and the magnetic forces act roughly in phase, and
the propagation depends strongly on the angle θ between k and B:

• When θ → 0 the phase speed ω/k → max (VA, VS).

• When θ → π/2 the velocity perturbation is ‖ k just like a sound wave,
with the effect of the gas pressure supplemented with that of the magnetic
pressure. This is thus a longitudinal wave propagating ⊥ B, in which the
field lines move parallel to themselves, with alternating compressions and
rarefactions of the gas and field, so that the restoring force is produced
by the sum of the gas and the magnetic pressure. The phase speed may
be calculated by generalising our calculation of the sound waves (2.76), as
(γP/ρ + γMPM/ρ)1/2 where PM = B2/2µ0 is the magnetic pressure and
γM is the corresponding adiabatic index (γM = 2 for this two-dimensional
compression normal to B). Therefore, ω/k → (

V 2
A + V 2

S

)1/2
.

The so-called slow wave has the restoring forces acting roughly out of phase:

• When θ → 0 the phase speed ω/k → min (VA, VS).

• When θ → π/2 the phase speed vanishes.

Non-ideal magnetohydrodynamics

The concept of a frozen-in magnetic field has been derived by assuming that the
electric field vanishes in the plasma frame. This is not exactly so, for several
reasons.

First of all, even if the conductivity is very large, it is never infinite. This
point is not a mere semantic distinction because the electric resistivity, however
small, makes the magnetic field diffuse on a timescale that is proportional to the
square of the length scale. Diffusion thus acts very quickly if small scales arise,
even with a very large conductivity. Let L be the typical scale of variation, so
that Rm � 1 and the diffusion term 2B/µ0σ in (2.107) is negligible. Now
suppose that some effect produces a variation at a smaller spatial scale l � L
so that µ0σlV < 1. In that case, the diffusion term 2B/µ0σ ∼ B/

(
µ0σl2

)
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becomes larger than the motional term ×(V × B) ∼ V B/l, so that the electric
conductivity is no longer negligible.28

With a finite electric conductivity, there is an electric field in the frame of the
plasma equal to J/σ. This is not, however, the only component of the electric
field, because in deriving (2.100)–(2.101), we have neglected:

• the gradient of the electron pressure Pe, which produces a contribution to
the electric field in the plasma frame equal to − Pe/ne, which balances
the electron pressure force, to maintain the plasma neutral,

• the effect of the magnetic field on the electron trajectories, which produces
an additional contribution to the electric field equal to J×B/ne, in order
to produce a force on the electrons that balances the Lorentz force,29

• the effects of the electron inertia on the current, which produces an addi-
tional contribution to the electric field of order of magnitude V Bc/ (ωpL),
which is therefore negligible for scales L > c/ωp.30

We shall see that the electron pressure, and the corresponding large-scale
electric field, play an important role in the solar wind.

Another important consequence of the finite electric field is that the break-
down of the frozen magnetic field concept may produce important changes in
the topology of the magnetic field. This is called magnetic reconnection, and
is sketched in Fig. 2.20.31 When field lines of different directions are pushed
together, producing large gradients in a magnetic field, the magnetic field may
disappear quickly in a small region, the magnetic energy being converted into
other forms of energy, and the lines reconnect to form a new topology, so that the
connectivity of plasma parcels by field lines changes. This enables the magnetic
field to pass to a state of lower energy, releasing energy in producing plasma
jets and high-energy particles, in addition to heating. This change in topology
of the field lines enables different plasmas to mix.

Normal magnetic dissipation acts at the timescale τσ ∼ µ0σL2. This may be
compared to the collision time, which may be written, with the aid of (2.101),
as

1
ν

∼ τσ ×
(

c/ωp

L

)2

28A similar effect acts in hydrodynamics with the viscosity. In a non-viscous fluid, objects
move without friction. Nevertheless, the friction force on an object of cross-section S moving
at speed V in a fluid of density ρ is of order of magnitude ρV 2S for a very large range of
fluid viscosities including extremely small ones. We will return to this apparent paradox in
Section 6.4.

29This term is called the Hall electric field. When it is not negligible, but the other terms
are, the electric field in the laboratory frame is E = − (V − J/ne) × B. If Vi and Ve are
respectively the bulk speeds of ions and electrons, the current is J = ne (Vi − Ve), so that
since V 
 Vi because the ions carry the mass, E = −Ve ×B and the frozen-in approximation
holds for the electron gas, instead of holding for the plasma as a whole.

30The so-called electron inertial length.
31Beware that Fig. 2.20 is a simplistic view that not only ignores the three-dimensional

nature of the phenomenon, but uses an MHD concept (moving field lines to which the plasma
is attached) under conditions when it does not apply.
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Figure 2.20 A naive view of magnetic reconnection. Two field lines of opposite
directions are pushed together; the fluid parcels A and B lie on one field line, C
and D lie on the other one (1). After reconnection (2), the fluid parcels A and
C lie on a field line, the fluid parcels B and D lie on another one (3), which are
separating from each other (4).

so that for scales greater than the electron inertial length c/ωp (at which the
electron inertia may be neglected), the collision time is smaller than the time
τσ for magnetic resistive dissipation.

In nearly collisionless plasmas, small scales arise, which may be smaller than
all the plasma characteristic scales: the gyroradii and inertial lengths for all
particle species, and even the Debye length. In this case, all the fluid and MHD
approximations break down, and one must describe the plasma in a kinetic way.
Reconnection then acts faster than the scales τσ and 1/ν, acting instead on
timescales that are typically a fraction of the Alfvén time (the time of displace-
ment at the Alfvén speed)

τA = L/VA = (τσ/RM ) × (V/VA) . (2.118)

2.3.4 Waves and instabilities

We have seen that perturbations in the magnetic field and/or the plasma pres-
sure may drive several kinds of waves. In deriving the properties of these waves,
however, we have neglected the electron inertia, and we have pictured the plasma
as a fluid. Even if the unperturbed medium has Maxwellian velocity distribu-
tions, these approximations are not acceptable at frequencies equal to or greater
than the plasma characteristic frequencies (the gyrofrequencies and the plasma
frequency), or wavelengths smaller than the plasma characteristic scales (the
Debye length, the gyroradii and inertial lengths).

Electromagnetic waves

At frequencies near the plasma frequency or greater, the inertia of the electrons
is no longer negligible, but, because the ions have much greater mass, we may
neglect their motion. We also neglect the electron random motion (which is
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acceptable if the wave phase speed is much greater than the electron most prob-
able speed), and the ambient magnetic field (which is acceptable at frequencies
much greater than the electron cyclotron frequency), and assume that the wave
weakly perturbs the medium. In this case, we may assume all the electrons to
acquire the same velocity v in the wave electromagnetic field, so that they obey
the fluid equation of motion

me∂v/∂t = −eE (2.119)

where E is the wave electric field; we have also neglected the Lorentz force
produced by the wave magnetic field and the term (v · )v since they are
of second order in the (small) perturbation. This electron motion produces a
current density

J = −nev ⇒ ∂J
∂t

= ω2
pε0E (2.120)

where n is the unperturbed electron density, ωp the corresponding plasma fre-
quency, and we have substituted (2.119).

Consider a wave satisfying ·E = 0, so that from Maxwell’s equation (2.29),
the density of electric charge vanishes. In this case, we have  × (× E) =
−2 E, so that Maxwell’s equations (2.29) and (2.30) yield

× ∂B
∂t

= 2E = µ0
∂J
∂t

+
1
c2

∂2E
∂t2

.

Substituting the current (2.120), this yields

∂2E
∂t2

− c2 2 E = −ω2
pE (2.121)

which has a plane wave solution ∝ e−i(ωt−k·r) with

ω2 = ω2
p + k2c2. (2.122)

From Maxwell’s equations (2.29), and since we have assumed  · E = 0, this
is a transverse wave (k ⊥ E ⊥ B) as is light propagating in vacuum, but we

see from (2.122) that the wave has a phase speed ω/k = c/
√

1 − ω2
p/ω2 that

depends on the frequency and wave number, and propagates only at frequencies
greater than the plasma frequency; for ω < ωp, k is imaginary, so that the wave
decays in space, as does light reflected from a mirror. Since the phase speed
ω/k > c, it is generally much greater than the speeds of individual particles,
which can thus be safely neglected. This is why the wave is neither affected by
the pressure of the particles nor damped.32

If the ambient magnetic field is not negligible, the electrons gyrate in this
field. This affects the wave for frequencies of the order of magnitude of the elec-
tron gyrofrequency or smaller. In particular, for propagation along the ambient

32In the absence of collisions.
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magnetic field, the wave is split into two waves in which the electrons and the
wave electric (and magnetic) field gyrate around the ambient magnetic field at
the wave frequency.33 The mode rotating in the same sense as do the electrons
in the ambient magnetic field (the direct sense) is more easily emitted and ab-
sorbed by them. In the frequency range ω < ωge < ωp, one finds that the delay
of propagation increases towards low frequencies, giving rise to a characteristic
whistle, so that this mode is called a whistler.

Langmuir waves

The electromagnetic waves studied above have  · E = 0, so that there is
no variation in the density of electric charge. We have seen in Section 2.1
that variations in the density of electric charge make electrons oscillate in bulk
when the random agitation is negligible. The random agitation has two major
consequences. The first consequence is that it produces a pressure force that
makes these oscillations propagate. This may be understood by picturing the
electrons as a fluid of number density n and pressure P = nkBT , so that their
equation of motion in the wave field is

me∂v/∂t = −eE −P/n (2.123)

in the absence of ambient magnetic field. Because of the small timescale, we
assume the electrons to behave as an adiabatic fluid (with 1 degree of freedom –
the wave direction of propagation), so that P ∝ nγ with γ = 3. This yields
P = 3kBT n. Because of the pressure term, we now have instead of (2.120)

∂J
∂t

= ω2
pε0E +

3
2
v2

thee  n. (2.124)

Because of the small timescale, the ions do not move, so that the variation
in electric charge density is ∂ρe/∂t = −e∂n/∂t; hence the continuity equation
applied to the electric charge and current yields  · J = e∂n/∂t. Taking the
divergence of (2.124) and expressing J, E and n in terms of the charge density
ρe with the help of Maxwell’s equation  · E = ρe/ε0, we find

∂2ρe

∂t2
− 3

2
v2

the 2 ρe = −ω2
pρe. (2.125)

This equation has a plane wave solution ∝ e−i(ωt−k·r) with

ω2 � ω2
p + 3k2v2

the/2 � ω2
p

(
1 + 3k2L2

D

)
. (2.126)

33These waves have respectively a right-hand and a left-hand circular polarisation, with
respect to the direction of the ambient magnetic field. Beware that a number of different
conventions are in use to label these waves, so that the same wave is given a different hand-
edness depending on the context. For physicists, right-hand and left-hand generally refer to
the direction of the wave vector k; for radio astronomers, the same words refer to the direc-
tion from which the wave is coming, i.e. −k, so that plasma physicists and radioastronomers
use the same label only if B and k have opposite directions; furthermore, old textbooks call
these waves respectively ordinary and extraordinary, whereas the latter names now denote
electromagnetic waves of linear polarisation that propagate at an angle to the magnetic field.



Many particles: from kinetics to magnetohydrodynamics 99

The wave electric field (and also the particle velocity perturbation due to the
wave) is parallel to k; it is due to the charge separation as the electrons oscillate
whereas the massive ions are barely set in motion at these high frequencies.
Whereas the electromagnetic wave found previously is a simple generalisation
of the electromagnetic wave in vacuum, with the plasma acting as a dielec-
tric medium (of refractive index

√
1 − ω2

p/ω2 for ω � ωge and a birefringent

medium otherwise), this longitudinal wave is entirely new. It is called a Lang-
muir wave, and is simply the Langmuir oscillation that propagates because of
the electron thermal motion. One sees from (2.126) that the wavelength is
greater than LD for ω ∼ ωp, and tends to infinity as ω → ωp where the wave re-
duces to a plasma oscillation. We shall see an illustration of these properties in
Section 6.4.

Landau damping

The second consequence of the thermal agitation is that the Langmuir waves
are damped. This is called Landau damping. This damping does not appear
in (2.126), which gives a real value of k for any frequency ω > ωp, because our
derivation pictured the electrons as a fluid, while Landau damping comes from
the individual motions of the particles and therefore requires a kinetic picture.
This damping process is subtle since it produces losses without introducing any
explicit damping term in the equation of motion, and appears in a wide range
of problems outside plasma physics, from Saturn’s rings to fireflies.34

A simple way of understanding this process is to picture it as a resonance
between the wave and the electrons whose velocity equals the wave phase speed.
These electrons see a constant electric field, and are therefore in resonance with
the wave. The electrons moving slightly slower than the wave are accelerated,
whereas those moving slightly faster are decelerated. With a Maxwellian ve-
locity distribution (and more generally with a distribution whose derivative is
negative for a velocity equal to the phase speed), there are more slower particles
than faster ones, so that the net effect is to damp the wave. The damping is
greater when there are more electrons having a speed close to that of the wave,
which comes true when the phase speed is smaller than or close to the elec-
tron thermal speed. One sees from (2.126) that this happens when k ≥ 1/LD.
Hence, the Langmuir wave propagates at frequencies above but close to the
plasma frequency, and is heavily damped at larger frequencies.

Conversely, if the velocity distribution has a positive derivative for a velocity
equal to the wave phase speed, the wave grows. This happens for example
when a beam of particles of velocity v propagates in a plasma faster than the
electron thermal speed; the beam excites Langmuir waves of phase speed ω/k �
v directed along v, converting the energy of the beam into wave energy. This
is an example of one of the numerous instabilities that arise in non-equilibrium
plasmas, and we shall see an illustration of it in Section 6.4.

34See for example Meyer-Vernet, N. and B. Sicardy 1987, Icarus 69 157, and Sagan, D.
1994, Am. J. Phys. 62 450.



100 Tool kit for space plasma physics

A similar resonance occurs for other kinds of plasma waves when the phase
speed coincides with that of plasma particles. An example is cyclotron damp-
ing. For particles moving at velocity v‖ along the ambient magnetic field B,
the wave frequency is Doppler-shifted to the frequency ω− k‖v‖ where k‖ is the
component of the wave vector along B, so that at some velocity it may coincide
with the cyclotron frequency (or a harmonic), i.e. ω − k‖v‖ = nωg. The wave
is then damped when it has an electric field component perpendicular to B,
so that particles experience a perturbing force which oscillates at the cyclotron
frequency (or a harmonic).

2.3.5 Summary

The fast increase with speed of the collisional free path makes fast particles vir-
tually collisionless, and therefore easily driven out of equilibrium. Two effects
come to the rescue of collisions for tending to restore equilibrium: the first effect
is the gyration around the magnetic field, but it acts only across the magnetic
field; the second one is due to plasma instabilities which, however, only pre-
vent the velocity distributions from becoming too crazy, but do not oblige them
to be Maxwellian. This is why dilute plasmas have often velocity distributions
which are non-Maxwellian but not too crazy. Since fluid descriptions – including
MHD – assume velocity distributions to be nearly Maxwellian (or bi-Maxwellian),
dilute plasmas often require a kinetic description.

Both fluid and kinetic descriptions involve the conservation of particles, mo-
mentum and energy. Since momentum and energy are carried respectively by
plasma ions and electrons, of which the latter move much faster, thermal con-
ductivity generally plays a more important role than viscosity, and is rarely
negligible. Therefore, the major difficulty of fluid descriptions is to model cor-
rectly the transport of energy. Whereas in kinetic descriptions the heat flux
is calculated self-consistently, fluid descriptions use various approximations of
it. Basically, three kinds of fluid approximations are made, depending on the
conditions: for very slow or very fast changes, the plasma is assumed to be
isothermal or adiabatic respectively, corresponding to a heat flux that is respec-
tively infinite or zero; for intermediate cases, the heat flux is approximated by
the collisional transport. These approximations are valid only if the particle
velocity distributions are close to Maxwellian.

When the electric field in the plasma frame is small enough, the plasma and
magnetic field lines may be pictured as being tied together, so that the plasma
can only move along the magnetic field but not across it. As a consequence,
space plasmas tend to be organised by the magnetic field lines and do not mix
easily across them. The magnetic forces on the plasma may be described as
the superposition of a pressure acting across the field lines, which tend to expel
the plasma from regions of strong magnetic field, plus a tension acting along the
field lines, which tends to shorten and unbend them.
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2.4 Basic tools for ionisation

What is the origin of ionisation in the solar interior, the solar wind and the
planetary environments? A full answer to this question requires highly polished
calculational techniques using the tools of quantum mechanics, and is outside the
scope of this book; we shall give instead order of magnitude estimates based on
elementary considerations [14], [20]. We will do so with the naive point of view of
merely supplementing classical physics by the Heisenberg uncertainty relations.

2.4.1 Energy of ionisation and the size of the
hydrogen atom

Let us estimate the size and energy of the hydrogen atom in its most stable
state: the fundamental one. The H atom is made of a proton and an electron
bound together by an attractive Coulomb force. The potential energy of the
electron at distance r from the proton is WE = −e2/ (4πε0r). Because of the
small size of the system, the kinetic energy of the electron is determined by
Heisenberg’s uncertainty relation, which says that an electron confined in a
small region of size ∆r has the momentum ∆p ∼ h̄/∆r, whence the kinetic
energy Wth = (∆p)2 /2me. Since in the H atom the electron is confined in a
region of size ∆r ∼ r, we have Wth ∼ h̄2/

(
2mer

2
)
, so that the total energy of

the electron is

W ∼ −e2

4πε0r
+

h̄2

2mer2
. (2.127)

The most stable state is the one of minimum energy, which arises for a distance
r so that dW/dr = 0, i.e.

r ∼ 4πε0h̄
2

e2me
≡ rBohr (Bohr’s radius). (2.128)

Substituting the numerical constants, we have

rBohr = h̄/ (αmec) � 0.53 × 10−10 m (2.129)

where

α = e2/ (4πε0h̄c) � 1/137 (fine structure constant). (2.130)

For r = rBohr, we have Wth = −WE/2 in accord with the Virial theorem
(Section 3.1.1), and the total energy (2.127) is equal to minus

e4me

8ε20h
2
≡ WBohr (Bohr’s energy). (2.131)

Substituting the numerical constants, we have WBohr � 2.2 × 10−18 J, which
comes to about 13.6 eV.
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This is the energy required to ionise a hydrogen atom from its fundamental
state. By mere luck, this order-of-magnitude estimate gives the exact result. For
atoms made of a nucleus of charge Ze surrounded by Z electrons, an electron
of the outer shell sees the nucleus charge shielded by the charge of the Z − 1
other electrons, so that the energy required to strip an outer electron is of the
same order of magnitude as for ionising hydrogen.

This is no longer true, however, as more electrons are stripped, so that
producing highly charged ions requires a large energy. Very crudely, stripping
an element of charge Ze of its last electron (of potential energy −Ze2/ (4πε0r)
at distance r), to produce a bare nucleus, requires an energy that is greater than
the Bohr energy by the factor Z2.

2.4.2 Ionisation by compressing or heating
These results furnish hints as to how a medium may be ionised.

One way is to compress, so that the average distance between ions becomes
smaller than the sum of the radii of two atoms; this somehow crashes the
atoms. For hydrogen, this happens when the ion number density n satisfies
n−1/3 < 2rBohr, i.e. when the mass density satisfies ρ > mp/ (2rBohr)

3 � 1.5×
103 kg m−3. We shall see in the next chapter that the density in the central
parts of the Sun largely exceeds this value, producing ionisation.

Less dense media may be ionised by furnishing to atoms the ionisation energy
WBohr. This may be done in several ways. One way is to heat. One might think
naively that significant ionisation requires heating at a temperature so that the
thermal energy kBT > EBohr. This is, however, a classical point of view, and in
fact a smaller energy is required because ionisation increases considerably the
phase space accessible to an electron and therefore its number of possible states.
This may be understood as follows.

At equilibrium, the ratio of the number of free electrons in some volume of
phase space to the number of electrons bound in an H atom is proportional to
e−∆W/kB T (where ∆W is the difference in total energy between both states)
times the ratio of the number of possible states for respectively a free electron
and a bound one. Let ni = ne be the ion (or electron) number density and nn

the number density of neutrals. In the volume V , a recombining electron may
do so with either of the niV ions and have one of two spin states, so that its
number of possible states is 2niV . On the other hand, the number of possible
states of a free electron at temperature T and thermal speed ve ∼ (kBT/me)1/2

is roughly twice the ratio of the available volume V to the ‘private’ volume of
a free electron (that is roughly the cube of its wavelength h/meve). With the
approximation ∆W ∼ WBohr , this yields the degree of ionisation at thermal
equilibrium ne/nn ∼ n−1

i (h/meve)
−3

e−WBohr/kB T . A more exact calculation35

yields nearly the same result:

nine

nn
�

(
2πmekBT

h2

)3/2

e−WBohr/kB T (2.132)

35Integrating over the electron velocity distribution.
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which is a simplified version of the so-called Saha formula. The term before the
exponential is of the order of magnitude of (T/TF )3/2 where TF is the Fermi
temperature (see Section 2.1), which is much smaller than T in non-degenerate
media. Hence, in general, ionisation is already significant at a temperature much
smaller than WBohr/kB � 1.6 × 105 K.36

Let us apply (2.132) to the solar corona. With ne ∼ 1014 m−3 and T ∼ 106 K,
we find ne/nn ∼ 2 × 1016, which shows that the corona is virtually completely
ionised. One must be careful, however, in applying this formula since the corona
is not in thermal equilibrium.

Planetary atmospheres are in general too cold for being thermally ionised.

2.4.3 Radiative ionisation and recombination

Ionisation and recombination

Another way of ionising particles is to subject them to photons of energy greater
than the energy of ionisation.

The ionisation rate per atom is proportional to the flux of ionising photons
F , and may be written

Λion = Fσion (2.133)

in s−1. Since the flux of photons F is expressed in m−2 s−1, σion – the cross-
section for ionisation – has the dimension of an area. With a concentration nn

of neutrals, the ionisation rate per unit volume is therefore dni/dt = nnΛion =
nnFσion.

Once ionised, the ions may recombine with electrons. For hydrogen, the
radiative ionisation and recombination processes may be written

H + ph ⇀↽ H+ + e−.

For a given ion, electrons recombine at a rate proportional to their flux ∼ nevthe

so that the rate of recombination per ion is

Λrec = nevtheσrec = neβ (2.134)

in s−1, where σrec has the dimension of an area, and may be expressed through
the parameter β = vtheσrec, the recombination coefficient. At equilibrium, in the
absence of bulk motion and of other ways of producing or suppressing particles,
the rate of ionisation per unit volume nnΛion balances the rate of recombination
per unit volume niΛrec, so that since ne = ni for singly ionised ions

nnFσion = n2
eβ ⇒ ne =

(
nnFσion

β

)1/2

. (2.135)

36By a factor that is easily shown to be approximately 1/ ln(T/TF )3/2 � 1.
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Cross-sections

To estimate the order of magnitude of the cross-sections, we consider incident
photons of energy Wph ≥ WBohr, but still of the order of magnitude of WBohr,
because, if the energy of the incident photon is much greater than WBohr, con-
servation of both energy and impulsion makes the probability of ionisation very
small. Hence the electron liberated has the energy Wph − WBohr ≤ WBohr.
Likewise, we consider recombining electrons of energy ≤ WBohr. Now,

• in order for a photon to produce ionisation, it must (1) pass ‘close enough’
to an atom, and (2) be absorbed in liberating an electron,

• in order for a free electron to recombine radiatively, it must (1) pass ‘close
enough’ to an ion, and (2) become bound in producing a photon.

In the frame of quantum mechanics, ‘close enough’ means closer than the quan-
tum uncertainty on the position, that is h̄/p for a particle of momentum p.
Therefore,

• for the ionising photon of energy ∼ WBohr and momentum ∼ WBohr/c,
this distance is h̄c/WBohr,

• for the recombining electron of momentum mevthe, this distance is h̄/mevthe.

We deduce the cross-sections for ionisation and recombination

σion ∼ π (h̄c/WBohr)
2 × P (2.136)

σrec ∼ π (h̄/mevthe)
2 × P (2.137)

where P is the probability of absorption or emission of a photon by the electron
during the time uncertainty corresponding to the energy involved, i.e. ∆t ∼
h̄/WBohr.

We estimate P in a semi-classical way, regarding the bound electron as a
harmonic oscillator of angular frequency ω = WBohr/h̄ and momentum h̄/rBohr

so that the velocity is v ∼ h̄/ (merBohr) ≡ αc, where α is the fine structure
constant (2.130). For a harmonic oscillator, the speed varies by ∆v ∼ v in a
quarter of period, that is the time ∆t ∼ 1/ω, and energy is radiated at a rate
given by Larmor’s formula as

dW

dt
=

e2

6πε0c3

(
dv

dt

)2

. (2.138)

Writing dv/dt ∼ ∆v/∆t with ∆v ∼ v ∼ αc and ∆t ∼ 1/ω, we find that the
oscillator radiates during ∆t the energy

∆W ∼ dW

dt
× ∆t ∼ e2α2ω

6πε0c
. (2.139)

Quantum mechanics tells us that it does so in discrete steps by emitting photons
of energy h̄ω with the probability P = ∆W/ (h̄ω). From (2.139), this yields

P ∼ α3. (2.140)
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Correct calculations give cross-sections that are roughly three times greater
than the values (2.136)–(2.137) with our estimate P ∼ α3, i.e.

σion � 10 (h̄c/WBohr)
2 × α3 � 10−21 m2 (ionisation) (2.141)

σrec � 10 (h̄/mevthe)
2 × α3 (recombination). (2.142)

The cross-section (2.141) holds for ionisation of hydrogen by photons of energy
∼ WBohr; for heavier atoms, the cross-section is of the same order of magnitude
for the liberation of an outer electron. The recombination cross-section (2.142)
holds for radiative recombination on the fundamental level of electrons of energy
≤ WBohr. The corresponding recombination coefficient is thus given by

βrec � vtheσrec � 10−17/
√

T m3 s−1 (2.143)

where T is the electron temperature. We shall use this recombination coefficient
to understand why the solar wind is ionised (Section 2.5.7), and the radiative
ionisation cross-section to estimate the basic properties of planetary ionospheres
(Section 7.1), for deriving comet’s properties (Section 7.5) and when studying
the interaction of the solar wind with the interstellar medium (Section 8.1).

2.4.4 Non-radiative ionisation and recombination

Ionisation by particle impact

Another way to produce ionisation is by bombarding with particles. For the
impact of a particle to ionise an atom, the kinetic energy of the relative motion of
the particle must exceed the ionisation energy ∼ WBohr. For an electron of mass
me this requires mev

2/2 > WBohr, i.e. v > αc. In this case, h̄/mev < rBohr,
so that the effective interaction distance between the electron and the atom (of
approximate size rBohr) is no longer h̄/mev but rather rBohr. Hence we expect
that the cross-section be of order of magnitude πr2

Bohr. This holds a fortiori for
a particle heavier than an electron.

However, the condition v > αc is not sufficient for producing ionisation, be-
cause, for the probability of interaction to be significant, the time of interaction
∆t ∼ rBohr/v must ensure that the energy h̄/∆t be roughly equal to WBohr,
i.e. v ∼ rBohrWBohr/h̄ ∼ αc.

For an electron (of mass me), this requires that the electron kinetic energy
be mev

2/2 ∼ WBohr. However, for an ion or an atom, the mass is m � me,
so that the kinetic energy required to ensure v ∼ αc is greater by the factor
m/me � 1.

Hence in space, impact ionisation is generally produced by electrons of energy
of the order of magnitude of WBohr, with an effective cross-section

σion ∼ πr2
Bohr

or by very energetic ions or atoms. With electrons of number density n and
temperature T ∼ WBohr/kB , the electron flux is about nvthe ∼ nαc, and the
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rate of ionisation per atom is Λion ∼ nvthe × πr2
Bohr. Substituting the electron

flux and the Bohr radius (2.129), we find the rate of impact ionisation per atom
per electron (in order of magnitude)

Λion/n ∼ πh̄2

αm2
ec

∼ 2 × 10−14 m3 s−1. (2.144)

Dissociative recombination

We have seen that the cross-section for radiative recombination is extremely
small, smaller by many orders of magnitude than the square of the typical
atomic size, because of the small probability of photon emission. However,
recombination occurs much more easily when the ions can dissociate. Instead of
producing a photon, recombination then produces several atoms, by a reaction
of the form

AB+ + e− �−→ A + B.

The dissociation into several components replaces the emission of a photon to
conserve simultaneously the energy and the impulsion. Since no emission of
photon is required, the cross-section (in order of magnitude) is given by the
value (2.137) with P = 1, i.e.

σrec ∼ π (h̄/mevthe)
2 (2.145)

if h̄/mevthe > rBohr i.e. if mev
2/2 < WBohr. This yields the coefficient of

dissociative recombination

β = vtheσrec ∼ 10−11/
√

T (dissociative recombination) (2.146)

where T is the electron temperature (assumed smaller than WBohr/kB ∼ 1.6 ×
105 K).

This process is more effective than radiative recombination, by a factor of
about six orders of magnitude. Hence it is the dominant process when molecular
ions are present. In particular, it is the dominant recombination process in the
ionospheres of inner planets (Section 7.1.4) and of comets (Section 7.5.2), whose
atmospheres are made of complex molecules.

Charge exchange

Ionisation may also be produced by exchange of an electron between a neutral
and an ion, as

A+ + B �−→ B+ + A

in the simple case when the ion is singly ionised. The atom B gives an electron
to the ion A+, and becomes ionised. This does not change the number of ions
and free electrons, but changes the chemical nature of the ions and their speeds
since the final ion has the properties of the original neutral and vice versa.
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If FA is the incident flux of ions A, the rate of ionisation per atom is FAσex

where σex is the cross-section for charge exchange. As for the collision frequency
for exchange of momentum between ions and neutrals (Section 2.1), the cross-
section is heavily influenced by the electric dipoles induced in the atom and in
the ion. For protons and hydrogen atoms with a relative speed of the order of
magnitude of the typical solar wind speed, this produces a cross-section greater
by two orders of magnitude than the Bohr radius squared, i.e.

σex � 2 × 10−19 m2. (2.147)

This process plays an important role in the heliosphere when the solar wind
encounters a large flux of neutrals; we shall see that this holds with neutrals
of planetary and cometary origin (Section 7.5.6), as well as with interstellar
neutrals (Section 8.1.2), with the interesting further consequence that when the
original ion is highly charged, the final ion is left in a highly excited state whose
de-excitation produces ultraviolet and X-ray emission.

2.5 Problems

2.5.1 Linear Debye shielding in a non-equilibrium plasma
In this problem, we generalise the Debye shielding to a non-equilibrium plasma,
assuming small perturbations, and prove (2.8)–(2.9).

Consider an electron arriving from infinity (where its velocity is v) towards a
point charge at the origin that produces the electrostatic potential ΦE (r) (with
ΦE → 0 for r → ∞). Show that if the point charge perturbs weakly the electron
(i.e. if eΦE � mev

2), then the electron velocity at distance r is changed by δv
given by δv/v = eΦE (r) /

(
mev

2
)
.

This velocity change is associated with a perturbation in electron number
density around the point charge. For example, if ΦE > 0 the electrons are
attracted and their trajectories are bent toward the charge, which increases their
density; since, however, their velocity increases, they spend less time within a
given region, which reduces this effect. Show that the net change in electron
density is given by δne/n = δv/v.

Apply this result to the ions (changing the mass and charge), and deduce
that the perturbations in electron and ion densities are given by

δne/n = eΦE (r) 〈v−2〉e/me δni/n = −eΦE (r) 〈v−2〉i/mi (2.148)

where the brackets denote averages over the velocities at infinity, for electrons
and ions respectively.

Deduce the shielding length from Poisson’s equation.
Think about the limitations of this calculation.37 The relation between δn

and δv depends on the symmetry of the problem. How are the results changed
with a different geometry? Show that if the point charge is replaced by a

37See Meyer-Vernet, N. 1993, Am. J. Phys. 61 249, and references therein.
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long wire, then the shielding disappears, whereas with a plane, there is an anti
shielding. What happens when one takes into account perturbations that are
not small? What kinds of particles are ignored in the above calculation?

Hints

We deduce δv/v from the conservation of total (electrostatic + kinetic) particle
energy between infinity and distance r.

To prove that the perturbations in density and speed are related by δn/n =
δv/v (in spherical symmetry), imagine a fictitious sphere of radius r collecting
particles arriving on its surface. The particles arriving at grazing incidence
with speed v (r) have an impact parameter p = r × v (r) /v, from conservation
of angular momentum between infinity (where the speed is v) and distance r.
The number of particles collected per second is nvπp2. This number is also
equal to n (r) v (r) × πr2 if the particles have density n (r) and speed v (r) at
distance r (because for each surface element of the collector, half the particles
are incident from one side, and their average perpendicular velocity is v (r) /2).
Whence n (r) /n = v (r) /v.

2.5.2 Mean free path in a plasma
Verify from Fig. 2.4, with the plasma properties indicated in the caption, that
for the velocity direction to change appreciably, the particle must travel a dis-
tance given roughly by (2.22).

2.5.3 Particles trapped in a planetary magnetic field
Consider a particle moving along a magnetic line of force near a planet of radius
RP , having a dipolar magnetic field (cf. Appendix and Fig. 2.12). Let θ0 be
the pitch angle in the magnetic equatorial plane at distance r = LRP from
the planet, and BP the magnetic field strength close to the planet in the polar
regions. When the particle comes close enough to the planet, it is absorbed
because of collisions with the atmosphere. When L � 1, the line of force
crosses the planet surface in the polar regions.

Show that particles can be reflected between the north and south polar
regions if

θ0 ≥ arcsin(B0/BP )1/2. (2.149)

Calculate this limit angle for L = 6.
Show that the bounce motion between the north and south regions follows

the equation

mv2
‖ + µB = constant (2.150)

of a one-dimensional oscillator of potential energy µB.
Give an order of magnitude of the expression of the three periods of motion

of a trapped particle (respectively T1, T2, T3 for gyration, bounce, drift), and



Problems 109

show that T1 � T2 � T3. Deduce that, in practice, the adiabatic invariant
associated to the gyration (the particle magnetic moment µ) is more invariant
than the one associated to the bounce motion, itself more invariant than the
one associated to the drift.

With the numerical parameters relevant for the Earth (Appendix), estimate
the drift velocity produced by the planet’s gravitational field, and show that its
ratio to the drift produced by the magnetic gradient is of the order of magnitude
of the particle gravitational potential energy to the thermal energy. Deduce that
it is in practice completely negligible.

2.5.4 Filtration of particles in the absence of equilibrium

In this problem, you will prove a very general result. Let a particle velocity
distribution in some region be made of a superposition of Maxwellians of differ-
ent temperatures. In absence of collisions, the particle velocity distribution in
another region where the potential energy of particles is greater has a greater
effective temperature. This result holds, for example:

• for the velocity distribution measured on a spacecraft, of particles that
are repelled by the spacecraft electrostatic potential (Section 7.2),

• for the environment of a planet or a star, subjected to the body’s gravi-
tational potential (and electrostatic field).

Consider a velocity distribution that is a sum of Maxwellians of densities nα0

and temperatures Tα, and give a formal expression of its effective temperature
T0 (defined from (2.51)).

Show that in the absence of collisions the distribution at a position where
the potential energy of the particles has increased by ∆ψ > 0 is again a sum
of Maxwellians having the same temperatures Tα, but with densities nα =
nα0e

−∆ψ/kB Tα . Deduce that the effective temperature is greater than T0.38

Prove this result graphically, by redrawing Fig. 2.13 with an initial distri-
bution having more fast particles than a Maxwellian, i.e. whose slope flattens
as energy increases.

Hints

The effective temperature of a distribution made of a sum of Maxwellians of
densities nα and temperatures Tα is

T =
∑

α nαTα∑
α nα

. (2.151)

A particular application is studied in detail in Section 4.6.

38A general analytical proof may be found in Meyer-Vernet, N. 1995, Icarus 116 202.



110 Tool kit for space plasma physics

2.5.5 Freezing of magnetic field lines
Consider a bar of copper, of diameter L, and imagine you try to put it in a
region of strong magnetic field (Fig. 2.17, 1, 2, 3). How long will it take for the
magnetic field to penetrate into the bar? Conversely, once the magnetic field
has penetrated into the bar, if you try to remove the bar, how long will it take
for the magnetic field to disappear from the bar? At what speed should you
move the bar for the effects shown on Fig. 2.17 to take place? Figure out the
corresponding length and timescales for a cosmic object.

Hint

The electric conductivity of copper is about 0.6 × 108 mho.

2.5.6 Alfvén wave
Consider a small-amplitude Alfvén wave propagating along the ambient mag-
netic field in a uniform plasma at a speed much smaller than the velocity of light.
Show that the force produced by the gradient in magnetic pressure is negligible.
Show that the electric energy is negligible. Calculate the drift velocity of the
particles, and comment.

2.5.7 Why is the solar wind ionised?
We have seen that the corona is made essentially of hydrogen, and is so hot
that it is virtually completely ionised, and that the solar wind is produced by
the expansion of the corona. Use the radiative recombination coefficient to
understand why the solar wind remains ionised throughout the heliosphere.

Hints

The solar wind density is about n ∼ 5×106 (d⊕/d)2 m−3 at distance d from the
Sun, where d⊕ � 1.5 × 1011 m is the Sun–Earth distance (1 AU); the electron
temperature is about T ∼ 105 K; the size of the heliosphere is of the order of
magnitude of 102 AU.
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3

Anatomy of the Sun

‘′Hλιoς γὰ� o ’υχ ‘υπε�βήσεται µέτ�α. ε ’ι δὲ µή, ’E�ινύες µιν ∆ίκης
’επίκoυ�oι ’εξευ�ήσoυσιν.

Heraclitus of Ephesus1

What makes the Sun behave as it does? How does it shine? What causes
its magnetic activity? And finally, how is its atmosphere produced? We will
address these questions in a simplified way, using fundamental physics and the
tools of plasma physics introduced in Chapter 2. There are large gaps in our
understanding, however. Whereas we understand reasonably well how the Sun
shines, its magnetic activity is still not correctly understood. In the spirit of
this book, I have put aside the non-essential points and tried to highlight the
main physics; far more complete accounts at various levels may be found in [37],
[20], [38], [47], [8], [27], [53] and [11].

3.1 An (almost) ordinary star

The mass of the Sun is 2×1030 kg – a typical value for a normal star, that is an
object which shines steadily for a fairly long time (by astronomical standards)
by burning hydrogen; in the astronomer’s jargon this is called a main-sequence
star [15]. The largest mass observed for a normal star is of the order of 102M�,
while the lower limit is slightly below 10−1M�.

Less massive objects may shine at the beginning of their life, but they rapidly
cool into obscurity. Those lighter objects include brown dwarfs and giant planets
[7]; brown dwarfs are now known to be very common objects, straddling the
realms of planets and stars; in some sense they are aborted stars, while their
physics and chemistry [6] are very similar to those of giant planets [18].2

1The Sun must not break the Law; if it does, the Erinyes, the handmaidens of Justice, will
punish him. (Trans. L. M. Celnikier.)

2The largest giant planet in the solar system (Jupiter) has a mass of about 10−3 × M�;
a large number of objects of mass similar or larger have been discovered around other stars
[18].
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Figure 3.1 Mass–luminosity diagram for main-sequence stars, normalised to
solar values. The lines are theoretical fits to the data. (Adapted from [32].)

Why do the masses of normal stars lie within such narrow limits? Fur-
thermore, normal stars follow well-defined empirical laws; in particular their
luminosity increases with mass as L ∝ Mα, where α is found to vary from 3
to 4 (Fig. 3.1). And normal stars are fairly stable structures: we know from
palaeontological records that the Sun has been shining fairly steadily for more
than 4× 109 years – an appreciable fraction of the age of the Universe. Can we
understand these properties from basic principles?

3.1.1 Hydrostatic equilibrium of a large ball of plasma
Everyday observation tells us that gases tend to fill all the available volume.
This is no longer true at cosmic scales, because of gravitation. Large cosmic gas
clouds tend to contract under their own weight and thus to heat up, eventually
forming stars when the temperature at the centre becomes sufficiently high to
ignite the nuclear fusion of hydrogen. In essence, the Sun is a self-gravitating
fusion reactor – a huge ball of gas, whose hot central part generates most of the
energy output.

Virial theorem

The stability of the Sun and other ordinary stars suggests that they are in hy-
drostatic equilibrium, namely that pressure forces balance gravitational ones.
Consider a spherically symmetric object of mass M and radius R. Let ρ be the
mass density and P the pressure at distance r from the centre. A unit volume
is subjected to the net outward pressure force −dP/dr and to the inward gravi-
tational force ρMrG/r2, where Mr is the mass within the radius r. Hydrostatic
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equilibrium yields

dP/dr = −ρMrG/r2. (3.1)

Multiplying both sides by 4πr3 and integrating by parts the left-hand side be-
tween r = 0 and r = R (where the pressure is negligible), one obtains

3
∫ R

0

P × 4πr2dr =
∫ R

0

ρ (MrG/r) × 4πr2dr. (3.2)

The left-hand side is just three times the product of the average pressure 〈P 〉 in
the object by its volume V . The right-hand side is the opposite of the object’s
gravitational energy Wg, since the energy released when a unit mass comes from
infinity to the distance r is MrG/r. Hence

3〈P 〉V = −Wg. (3.3)

This is a general form of the so-called Virial theorem. We have seen in
Section 2.1 that for an ideal non-relativistic gas, the pressure is related to the
density of particle thermal energy wth by

P = 2wth/3 (3.4)

whose average over the object is

〈P 〉 =
2
3
〈wth〉 =

2
3

Wth

V
,

Wth being the total thermal energy of the object; from (3.3), this yields

2Wth = −Wg (3.5)

so that the total energy is

Wth + Wg = Wg/2 = −Wth.

It is negative, which means that the object is bound.

Temperature within the star

Because of the huge gravity within the star, the pressure is so great that it
produces ionisation, as we saw in Section 2.4. For an order of magnitude esti-
mate, we assume the object of volume V to be made of N protons and N (free)
electrons at uniform temperature T , so that the total pressure P is

P ∼ 2NkBT/V. (3.6)

To estimate the gravitational energy, given by the opposite of the right-hand
side of (3.2), we substitute ρ = mpN/V with V = 4πR3/3, Mr = ρ4πr3/3, and
integrate, which yields

Wg ∼ −3N2m2
pG/5R. (3.7)
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Substituting (3.6) and (3.7) into (3.3) and rearranging, we deduce the temper-
ature of the object as a function of its radius R and total number N of protons

T ∼ m2
pG

10kB

N

R
. (3.8)

Since the object has been assumed uniform, T has the meaning of an average
temperature. Let us apply (3.8) to the Sun, whose mass and radius are given
in Table 1.1, so that the total number of protons is

N� = M�/mp � 1.2 × 1057. (3.9)

Substituting this number and the solar radius in (3.8) yields the Sun’s average
temperature T ∼ 2.3 × 106 K.

This value is several orders of magnitude greater than the effective temper-
ature of 5800 K at the surface. The central temperature Tc is still greater.
How much greater? To get a rough idea, let us approximate the temperature
variation with r by a linear law, that is T (r) � Tc(1 − r/R); this yields for the
average temperature T � Tc

∫ R

0
(1 − r/R)4πr2dr/V , whence T � Tc/4. With

the value of T found above, we find a central temperature Tc ∼ 107 K. Note
that elaborate numerical calculations yield instead Tc � 1.6× 107 K (Fig. 3.2),
and an average temperature in the solar interior about twice greater than our
rough estimate.

By approximating the Sun as a ball of free electrons and protons in hydro-
static equilibrium, we have estimated its central temperature from its mass and
radius; we shall see below that this temperature is sufficient to sustain ther-
monuclear fusion of hydrogen. Let us now try to understand the origin of the
solar luminosity.

3.1.2 Luminosity
Radiative energy

A hot body in thermal equilibrium at temperature T contains photons of energy
density

wph = aT 4 (3.10)

where a = 4σS/c is the radiation constant (σS is Stefan’s constant). The total
radiative energy of an object of volume V is thus

Wph = aT 4V. (3.11)

Because of the outward temperature decrease within the star, the photons mov-
ing outwards carry on average a slightly greater energy than those moving in-
wards, so that there is a net outward radiation flux. This flux is the main agent
of energy transport in most of the solar interior. In some sense, a star can be
thought of as a ‘leaky box’ containing photons. At a temperature slightly above
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107 K, a typical photon transports radiation in the X-ray range, which diffuses
to the surface where it escapes as radiation at the much lower temperature Teff –
in the visible range. This diffusion of photons takes some time, tph, so that the
radiative luminosity is approximately

L ∼ total radiative energy Wph

mean time tph to reach the surface
. (3.12)

Mean free path of photons

If the photons were free to escape, they would take a time of only about R/c to
reach the surface. The solar material is, however, very opaque, so that photons
travel only a short distance before interacting with other particles. When a
beam of photons traverses a layer of thickness dx, whose opacity is κ and mass
density is ρ, scattering removes part of the radiation from the original direction
so that a fraction κρdx is lost from the beam. This means that over a distance x
sufficiently small for κρ to remain constant, the number of photons decreases by
the factor e−κρx. The mean distance travelled by a photon before it is strongly
scattered – its mean free path – is

lph ≡ 1/(κρ). (3.13)

If lph � R, photons execute random walks inside the star, only crossing the
surface by chance; this random walk (see Section 2.3) increases their escape
time by the factor R/lph, so that the mean time to reach the surface is

tph ∼ (R/c) × (R/lph) = R2/(lphc). (3.14)

Substituting the free path (3.13) with the average density ρ = Nmp/V , we find
the order of magnitude of the photon escape time

tph ∼ NR2κmp/(V c) (3.15)

where κ is the mean opacity.

Luminosity versus mass

We deduce an order of magnitude of the luminosity L ∼ Wph/tph by using (3.11),
the mean temperature (3.8), the escape time (3.15), the volume V = 4πR3/3,
and rearranging as

L ∼ (Nmp)
3

(
4π

300

)2
ac

κ

(
mpG

kB

)4

. (3.16)

From the assumption of radiative equilibrium, we have thus derived a simple
luminosity–mass law L ∝ M3 (recalling that the mass of the star is M = Nmp),
when the opacity is independent on mass.

To proceed further, we need to know the opacity of the stellar material, i.e.
how photons interact with stellar matter; this is one of the essential factors in
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stellar structure. The opacity is caused by a multitude of atomic processes; for
relatively massive stars (whose matter is fully ionised), the main opacity agent is
photon scattering by free electrons. Approximating the scattering cross-section
by the Thomson value σT , we have

lph = 1/ (nσT ) (3.17)

where n is the proton (or electron) number density. Using (3.13) with ρ = nmp,
this yields the opacity

κ ∼ σT /mp. (3.18)

Substituting this opacity in (3.16) with σT given by (1.11) and (1.12), we deduce
the luminosity as a function of the total number of protons N in the star.
Normalising to the solar value N� given by (3.9) and substituting the numerical
constants, we obtain finally

L ∼ 3.5 × 1026

(
N

N�

)3

W. (3.19)

For a solar mass object, this yields a luminosity of 3.5 × 1026 W, very close to
the actual solar value given in Table 1.1.

Our simple order-of-magnitude estimate, which is little more than an im-
proved dimensional analysis, turns out to be very good. It should not be so
good, because in most of the solar interior (as in other stars of similar or smaller
mass), photon interaction with heavy ions produces an opacity greater than the
Thomson scattering value by about an order of magnitude, in spite of the low
abundances of these ions;3 in that case (3.18) is a lower limit for the opacity,
rather than an actual value.

From the assumption of hydrostatic and thermal equilibrium, we have es-
timated the luminosity of a normal star as a function of its mass and opacity,
and applied the result to the simple case when the opacity is mainly due to
(Thomson) scattering by free electrons. But we have not yet studied the basic
question: where does the energy lost by radiation come from?

3.1.3 Energy source and timescales
Nuclear fusion

At the core temperature of more than 107 degrees, the large thermal speeds
of nuclei enable them to come sufficiently close together in spite of their elec-
trostatic repulsion, and they undergo thermonuclear fusion; this process is the

3Several effects contribute to stellar opacity: (Thomson) scattering by free electrons, pho-
toionisation (free–bound transitions), free–free transitions of electrons as they pass close to
ions and bound–bound transitions. Thomson scattering dominates in the solar core, which
is virtually completely ionised. However, in most of the interior, photoionisation is dominant
because, even where hydrogen and helium are significantly ionised, heavy elements have still
some strongly bound inner electrons that can be stripped out by X-ray photons.
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most important energy source for normal stars. This might appear surprising,
since the thermal energy of nuclei does not enable them to approach each other
much closer than the Landau radius (2.15), which at this temperature is of
the order of magnitude of 10−12 m – larger by three orders of magnitude than
a nuclear radius. Even though the Landau radius decreases as the inverse of
the particle energy, very few particles will have enough energy to come within
the range of nuclear forces. This reasoning, however, ignores quantum effects.
Quantum uncertainties enable bridging of the gap, in that tunnelling effects
increase considerably the probability of crossing the Coulomb barrier.

The nuclear reaction proceeds in several steps, whose net result is the con-
version of four protons into a helium nucleus – made of two neutrons and two
protons. This yields a net mass change of

∆m = (4mp − mHe) /4 � 7 × 10−3mp per proton (3.20)

releases the energy

∆Wnu = ∆m × c2 per proton (3.21)

and also produces neutrinos which escape, carrying away part of the energy; the
remaining energy, that is most of the energy released, is available for the star’s
energy balance.

Timescales

How long can the Sun radiate its luminosity L� by using this source of energy?
About 10% of the solar mass is available for hydrogen fusion, providing an
energy reservoir of ∆Wnu × N�/10. The solar nuclear lifetime is thus

τnu ∼ ∆Wnu × N�/10
L�

(3.22)

∼ 7 × 10−4 × M�c2

L�
∼ 1010 years.

Hence the present Sun is roughly halfway through its hydrogen burning phase.
In the absence of nuclear reactions, the Sun might still radiate, but this

would be at the expense of its gravitational energy so that it would shrink. We
have seen in Section 3.1 that the gravitational energy varies as Wg ∝ −1/R,
the mean temperature as T ∝ 1/R, while the total energy equals Wg/2. As the
body contracts, therefore, the total energy decreases (escaping as radiation),
whereas the temperature increases. The loss of energy makes the star hotter!
The solar material behaves as if its heat capacity were negative; this is because
only half of the released gravitational energy is radiated, while the other half
heats the body. We shall return to this property later.

How long could the Sun radiate at its present luminosity by consuming its
store of gravitational energy? This time, often called the Kelvin–Helmholtz time,
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is equal to the available gravitational energy divided by the luminosity:

τKH =
| Wg |

L
∼ M2G

RL
(3.23)

∼ 3 × 107 years for the Sun.

Since the thermal and gravitational energies are of the same orders of magnitude
(because of the Virial theorem), this time is also the time needed by the star to
settle to equilibrium after a thermal perturbation. Since energy is transported
by radiation (except in the outer region), this is also the timescale for radiative
transport, which is much greater than the photon random walk time tph be-
cause photons are in equilibrium with particles, whose energy is much greater.
(Problem 3.4.2).

We have assumed the Sun to be in hydrostatic equilibrium. What would
happen otherwise? Suppose that gravitation dominates pressure. A small mass
element at a distance r would fall towards the centre according to d2r/dt2 ∼
−MrG/r2. The star would then collapse in a timescale τhydr whose order of
magnitude is given by R/τ2

hydr ∼ MG/R2, whence

τhydr ∼
(

R3

MG

)1/2

(3.24)

∼ 2 × 103 s for the Sun.

This is the typical time for the star to react to a small perturbation of the
hydrostatic equilibrium; this is also the typical pulsation period of the star.
Note that since the order of magnitude of the sound speed is VS ∼ (kBT/mp)

1/2

and kBT/mp ∼ MG/R, this time is of the order of R/VS – the time for an
acoustic wave to travel across the star; indeed, small departures from hydrostatic
equilibrium are restored at the speed of sound.

Finally, therefore, we have for normal stars

τhydr � τKH ∼ τthermal ∼ τradiation � τnu.

This justifies a posteriori our assumption of hydrostatic and thermal equilibrium,
and also shows that in response to a perturbation, hydrostatic equilibrium is
restored very quickly. This has an important consequence on stellar stability.

Stability of the Sun

We have seen that the solar luminosity is sustained by hydrogen fusion. Why
then does the Sun not explode like an H-bomb? The key is the negative effective
heat capacity. Imagine a perturbation causing the Sun to produce more nuclear
energy than it can radiate; this increases the total energy, equal to Wg/2 in
hydrostatic equilibrium; since Wg ∝ −1/R and T ∝ 1/R, this makes the Sun
expand and cool; and in turn this cooling decreases the production of nuclear
energy and cures the original problem. Conversely, a decrease in nuclear energy
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production would cause the Sun to contract and heat up, thereby increasing the
nuclear energy production and curing the original problem.

Finally, therefore, the fact that the stellar material behaves as an ideal gas
confined by self-gravity provides a safety valve against runaway nuclear reactions
and enables stars to shine quietly. In an apparent paradox, nuclear fusion does
not heat the star; rather it keeps it cool. By replacing the energy lost by
radiation, it prevents the total energy from decreasing which would make the
star contract and heat up. Because of hydrostatic and thermal equilibrium, the
solar radius has just the right value to produce a core temperature adequate
for nuclear energy production to balance the radiated energy. The luminosity
is not determined by the nuclear production rate but by the rate at which the
star can radiate.

3.1.4 The mass of a normal star
The Baroness weighed about 350 pounds and in consequence was
deeply respected.

Voltaire, Candide4

What makes the Sun as big as it is? Why do stellar masses only vary from about
ten times less than the Sun to a hundred times more? In essence, an object that
is too light has not enough self-gravity to compress its central region to the
high temperature required for igniting nuclear fusion. On the other hand, an
object that is too massive is compressed to a temperature so high that radiation
pressure dominates gas pressure, making the structure unstable. Let us put
these arguments on a quantitative basis.

The simplified calculations we made above neglect two contributions to the
pressure:

• the Fermi (electron degeneracy) pressure,

• the radiation pressure.

Fermi pressure is relatively small for normal stars, but it becomes important for
small objects. On the other hand, radiation pressure is negligible for the Sun
(Problem 3.4.2), but it may become important for large objects.

Minimum mass

Let us first estimate the minimum mass of a normal star. In the spirit of
the order of magnitude estimates made in this section, we again picture the
star as a homogeneous ball of radius R containing N protons (and the same
number of electrons). A ball of gas (sufficiently cold for radiation pressure to be
negligible) will remain in equilibrium if its self-gravity is balanced by the sum
of the thermal and Fermi pressures. In this case, the gravitational energy per
particle must be comparable to the thermal energy plus the Fermi energy. The

4Trans. L. M. Celnikier.
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thermal energy is about kBT , the gravitational one Wg/N is given from (3.7),
and we saw in Section 2.1 that the Fermi energy per electron of number density
n is (3π2n)2/3h̄2/ (2me). Substituting n = N/V and rearranging, we get

kBT ∼ 3Nm2
pG/5R − (9πN/4)2/3h̄2/(2meR

2). (3.25)

When R is large, the thermal energy exceeds the Fermi energy, so that T ∝ 1/R
as we found previously. As the radius shrinks, however, the contribution of
the Fermi term rises, and the temperature will reach a maximum when the
derivative with respect to R of the right-hand side of (3.25) is zero; this occurs
at R � 6h̄2/(mem

2
pGN1/3), for which the temperature is

kBTmax ∼ 0.05 × N4/3me

(
m2

pG/h̄
)2

. (3.26)

In essence, contraction increases the Fermi energy at the expense of the gravi-
tational energy, so that the temperature no longer increases.

For the object to become a normal star, the temperature at the centre Tc

must reach a value at least equal to the minimum temperature required for
igniting hydrogen fusion, which is of the order of 107 K. In the spirit of our simple
estimate, Tmax given by (3.26) has the meaning of the average temperature T
in the star’s interior. Using our previous estimate Tc � 4 × T , the ignition
condition Tc > 107 K can be rewritten as Tmax > 107/4 K. Substituting this
value in (3.26) gives the minimum number of protons in a normal star:

Nmin ∼
(

kB × 5 × 107

mec2

)3/4

×
(

h̄c

m2
pG

)3/2

∼ 0.6 × 1056. (3.27)

A more accurate calculation gives Nmin � 0.8 × 1056 protons, that is 0.7 ×
10−1M�.

Maximum mass

At the other end of the mass range, consider now what happens when the
radiation pressure is not negligible. To enlighten the effect of radiation pressure
on stability, let us apply the Virial theorem under the general form (3.3) to a
gas of photons. Photons are par excellence relativistic particles, and we saw in
Section 2.1 that for such particles the pressure is related to the energy density by

Pph = wph/3. (3.28)

Substituting this pressure in (3.3), we find

Wph = −Wg. (3.29)

Hence if the star contained only photons, the total energy would be Wph+Wg =
0. This is in sharp contrast with non-relativistic particles, for which the Virial
theorem has the form (3.5), producing a negative total energy. This means
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that if the energy of photons is dominant over that of non-relativistic particles,
the total energy will be small compared to both Wg and Wph, so that a small
perturbation will be sufficient to make the total energy positive and thus to
destabilise the system.

When does this happen? In order of magnitude, the ratio of radiation and
thermal particle energy densities is

wph

wth
∼ aT 4

nkBT
∼ aT 3 × 4πR3/3

NkB

∼ N2 4πa

3kB

(
m2

pG

10kB

)3

(3.30)

where we have used the photon energy density (3.10), and substituted the mean
temperature (3.8). Very roughly, one expects the star to be stable when ra-
diation is not dominant, i.e. when wph/wth < 1. Using this condition and
substituting the expression of the radiation constant a in (3.30), we deduce the
maximum number of protons in a normal star

Nmax ∼ 20 ×
(

h̄c

m2
pG

)3/2

∼ 4 × 1058. (3.31)

This gives a maximum mass of about 40 solar masses for a normal star. A more
accurate calculation gives a value about twice as great.

Finally, therefore, we can understand from simple quantitative arguments
why the masses of normal stars lie in a narrow range corresponding to a num-
ber of protons around

(
h̄c/m2

pG
)3/2 � 2.2 × 1057 [53], [27]. With many fewer

protons, the Fermi energy prevents the temperature reaching the value required
for igniting hydrogen fusion, whereas with many more protons, the radiative
energy makes the star unstable. And the major difference between normal stars
and brown dwarfs emerges from basic physics: as the infant star contracts, the
contraction is stopped either by electron degeneracy or by hydrogen burning,
whichever comes first; the first case produces a brown dwarf, the second case
produces a star like our Sun [6].

3.2 Structure and dynamics

We have derived order-of-magnitude estimates of the basic solar properties from
simple principles, making drastic approximations to enlighten the basic physics:
we have pictured the Sun as a homogeneous ball of protons and electrons, as-
sumed the equation of state to be that of an ideal gas, and the energy to be
transported by radiation only. This is not perfectly true. In particular, the
Sun contains other elements than hydrogen, it shows some internal structure
and small deviations from the ideal gas law. Furthermore, we shall see below
that in the outer part of the Sun, the energy transport is convective rather than
radiative – a point that has important consequences on the solar atmosphere
and ultimately on the solar wind.
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Figure 3.2 Variation of solar properties with distance from the centre, from
[4] inward of 0.95 solar radii, and from [9] elsewhere. The temperature and
mass density are normalised to the values at the centre: Tc = 1.57× 107 K and
ρc = 1.52× 105 kg m−3. The mass Mr enclosed within r and the luminosity are
normalised to the values at distance R�.

3.2.1 Modelling the solar interior

Figure 3.2 shows how the temperature, mass density, luminosity and mass en-
closed within radial distance r vary with r. It is based on a standard solar
model [4], which we have completed from 0.95 R� outwards with the tempera-
ture given by [9]. The hydrogen mass fraction (not shown) is about X � 0.73
except in the core where nuclear reactions take place.5 The mean particle mass
(not shown) is µ � 0.7mp in most of the solar interior; it increases in the outer
layers as ionisation of H and He decreases, approaching 1.25 close to the surface
where H and He are no longer significantly ionised.

Standard solar models are based on a set of assumptions on the main physics
governing the interior, that include spherical symmetry, hydrostatic and thermal
equilibrium (apart from the slow evolution of the star), composition, equation
of state, production of nuclear energy, and energy transport. A model is then
computed by starting with a chemically homogeneous Sun with some initial

5Due to hydrogen fusion into helium, the hydrogen mass fraction decreases in the core as
the Sun ages; it is presently only 0.34 near the centre [4]; and we have already said that there
is also a small concentration of heavy elements.
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composition, evolving to the present solar age of 4.6 × 109 years, and adjusted
to agree with the radius, luminosity and composition observed at the solar
surface.

Because of the huge opacity, the solar interior is invisible to us, but it can
be probed in two ways. The first one is solar seismology, that is measuring solar
oscillations. Helioseismology reveals the solar interior from its oscillation modes,
somewhat as the sound of a glass can reveal properties of the liquid it contains.
Solar seismology has now reached unprecedented precision and shows a stunning
agreement with current solar models, on which it places strong constraints [3].

The second way (in principle) of probing the solar interior is by measuring
the neutrinos that accompany nuclear fusion and escape from the Sun. Solar
neutrinos have posed a major problem which has haunted solar and particle
physicists for three decades, when the observed fluxes were substantially be-
low model predictions. This question has now been settled in favour of the
standard solar models, the culprit being inadequate neutrino physics. Rather
ironically, solar neutrino observations, which were initially intended to use neu-
trinos (whose properties were thought to be well known) to test solar models,
have finally revealed novel neutrino physics, and the Sun is now sufficiently
well understood to be exploited as a neutrino factory for studying fundamental
physics [2].

What does Fig. 3.2 tell us? One sees that more than 90% of the luminosity
is generated in the inner fifth of the solar radius, which contains one-third of
the mass and whose temperature exceeds 107 K. The temperature decreases
outwards, roughly as the mean density to the power 1/3, up to the outer 30%
of the radius, where the temperature gradient begins to steepen.

In that region, more precisely outwards of 0.71R�, an important change
occurs in the solar properties. Recall that we have assumed strict spherical
symmetry, i.e. that all properties are constant on concentric spheres. Although
this may be true in average, small fluctuations are bound to arise. These per-
turbations may be ignored if they do not grow; if they grow, however, they
give rise to macroscopic local motions that, even if spherically symmetrical
on average, modify the structure in mixing the material and transporting en-
ergy. This is what happens in that region of the Sun where convection develops
(Fig. 3.3).

Convection is common in fluids heated from below, where cold matter over-
lies hot. Since colder fluids tend to be heavier and thus to sink, these structures
may be unstable to overturning motions, producing convection. Even though
the convection region contains only a few per cent of the solar mass, convection
plays a major role in the Sun, by structuring the upper layers, producing a
magnetic field, and ultimately heating the atmosphere.

3.2.2 Convective instability

When do these local perturbations grow? Let us represent a local perturbation
by a small bubble having different properties from its surroundings. Consider a
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Figure 3.3 The Sun sketched as an onion. Most of the luminosity is produced
in the central core. The energy transfer is radiative inward of 0.71R�, and
convective outwards.

bubble slightly hotter; since its internal pressure P must match the exterior one,6

and P ∝ ρT , it is lighter than its surroundings and tends to rise; conversely, a
bubble colder than its surroundings tends to sink. To test the stability, we must
determine whether the displaced bubble will return to its original position or
continue its motion.

The key point is that pressure and temperature decrease upwards, while
gravity acts inwards. Consider a rising hot bubble. In rising it encounters
a smaller external pressure which makes it expand, so that its temperature
decreases. If this temperature decrease is less than the external one, the bubble
remains hotter than its surroundings and continues to rise; if on the other hand
its temperature decrease is greater than the external one, then at some point the
bubble becomes colder than outside, which makes it sink down and return to its
original position. In the former case, the slightest non-uniformity will produce
bulk motions and the structure is unstable. Since hot bubbles rise whereas cold
ones sink, this yields a net upward heat transport without net mass transport.

Criterion for instability

Let us assume that the expansion of a rising bubble is sufficiently fast to be
adiabatic, and that changes in composition are negligible. We then have within
the bubble P ∝ ρT ∝ ργ , whence T ∝ P (γ−1)/γ where γ = cp/cv is the ratio of
specific heats. Thus, along the radial distance r(

dT

dr

)
adiabatic

=
γ − 1

γ

T

P

dP

dr
. (3.32)

The bubble will remain buoyant and continue to rise if it remains hotter than
its surroundings, i.e. if its rate of temperature decrease given by (3.32) is less

6If not, it will quickly expand or contract to restore pressure equilibrium, since the time
to restore pressure equilibrium is much shorter than the time taken to exchange heat.
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than dT/dr outside, i.e., since the derivatives are negative,∣∣∣∣dT

dr

∣∣∣∣ >

∣∣∣∣
(

dT

dr

)
adiabatic

∣∣∣∣ . (3.33)

If this so-called Schwarzschild criterion (named after Karl Schwarzschild7) is
true, then any random motion will precipitate convection.

Substituting in (3.32) the pressure gradient at hydrostatic equilibrium, dP/dr =
−ρg with P = ρkBT/µ, we find the adiabatic temperature gradient(

dT

dr

)
adiabatic

= −γ − 1
γ

T

H
= − g

cp
(3.34)

where

g = MrG/r2 (3.35)

H =
kBT

µg
(3.36)

cp =
γ

γ − 1
kB

µ
(3.37)

are respectively the gravitational acceleration at distance r, the local pressure
scale height and the specific heat at constant pressure; µ is the mean particle
mass; for pure atomic hydrogen, µ = mp, whereas for fully ionised hydrogen
µ = mp/2; for an ideal monoatomic gas, γ = 5/3, which yields (γ − 1)/γ = 0.4.

Applying the criterion

In the absence of convection, the actual temperature variation dT/dr is de-
termined by radiative transfer. To determine the radiative energy flux Fph at
distance r outside the energy production region, we note that the energy scat-
tered per unit time per unit surface in a shell of width dr: κρFphdr is the
difference between the energy fluxes at r and at r+dr. Since the photon energy
is the product of the impulsion by c, the above difference is just the variation in
radiation pressure dPph times c. With a small radiative anisotropy, the pressure
of photons is given by (3.28) with the energy density (3.10), i.e. Pph = aT 4/3.
This yields −κρFph = c×d

(
aT 4/3

)
/dr, whence the radiative flux at distance r

Fph = − 4ac

3κρ
T 3 dT

dr
. (3.38)

In the absence of convection, this radiative flux is related to the luminosity at
r by

Fph =
L

4πr2
(3.39)

7Schwarzschild, K. 1906, Nachr. Kgl. Ges. Wiss. Göttingen, Math.-Phys. Klasse 1 41.
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so that the temperature gradient is finally

dT

dr
= − 3κρL

16πacr2T 3
. (3.40)

Comparing this gradient with the adiabatic value (3.34), we see that convec-
tive instability will be favoured by either a low temperature and a high density
and opacity (which tend to steepen the radiative temperature gradient), or a
large specific heat cp, which tends to make the adiabatic gradient milder. This
happens in the outer 30% of the solar radius, where the opacity becomes far
greater than in the inner region, while ρ/T 3 changes much less. Furthermore
in the upper layers, hydrogen and helium become only partially ionised, which
increases not only the opacity but also the specific heat because the degrees of
ionisation depend on temperature.

In essence, at some distance the huge opacity increase hampers the escape
of radiation, making the outward temperature decrease steepen, up to the value
where the medium becomes convectively unstable; convection then develops and
takes over as the primary mechanism of energy transport.

3.2.3 Convective energy transfer

How effective is convection for heat transport?
Solar convection is a very complex problem, and each of the three fronts

of attack – theory, experiment and numerical simulation – encounters great
difficulties. First of all, the Reynolds number (Section 2.3) is very large.8 The
non-linear inertial term in the fluid equation of motion is far greater than the
one due to viscosity, which is thus unable to damp out small perturbations, so
that the motion becomes turbulent.

And turbulence is not understood, even in cases far simpler than the Sun. In
order not to discourage the reader, we shall sidestep it in this section by using
an old trick, postponing its discussion until Section 6.4. To increase further the
theoretical difficulties, the pressure scale height is significantly smaller than the
size of the system, which is thus strongly stratified. The experimental front en-
counters difficulties, too, because the properties (including the non-dimensional
numbers which determine the physics) are hugely different from those encoun-
tered in our terrestrial laboratories. And finally, the range of relevant scales is
so wide that numerical simulations cannot handle the full problem, even with
the most powerful computers presently available.

The mixing-length approach

The old trick we shall use is the so-called mixing-length picture. This approach
hides the physics that is not understood under global parameters and enables

8At the base of the convection zone, we have from Fig. 3.2: ρ 
 200 kg m−3 and T 

2 × 106 K, so that the coefficient of viscosity νvis ∼ (kB T/mp)1/2 lf ∼ 10−4 in order of
magnitude; with a scale ∼ 0.1R�, this yields a huge Reynolds number.
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one to estimate global properties. It is derived from the traditional view of
turbulence as many swirling ‘eddies’, to which we shall return in Section 6.4.

In this picture, the fluid is viewed as made of blobs that move up or down and
eventually lose their identity by merging with their environment. The vertical
distance l a blob travels before dissolving is called the mixing length. When a
blob dissolves, it shares with its surroundings its heat excess (if it is rising) or
deficiency (if it is sinking), so that energy flows upwards.

The energy delivered by a blob when it dissolves is determined by its tem-
perature difference ∆Tconv with its surroundings. Since the blob has started at
ambient temperature, ∆Tconv is the difference between:

• the change within the blob, which is adiabatic, of temperature gradient
(dT/dr)adiabatic given by (3.34)

• and the change in the ambient medium, of temperature gradient dT/dr,

whence over the distance l

∆Tconv =
[(

dT

dr

)
adiabatic

−
(

dT

dr

)]
× l. (3.41)

Since the blob remains in pressure equilibrium with its surroundings, the energy
transferred is the difference in enthalpy, namely ρcp∆Tconv per unit volume,
which yields the net energy flux

Fconv = ρcp∆Tconv × vconv (3.42)

where vconv is the average speed of the blobs.
The key parameter in this picture is the mixing length l. One generally

assumes that l is roughly equal to the local pressure scale height H, to a factor
of order unity.9 A heuristic justification is to note that when matter has moved
upwards by a pressure scale height, its pressure has decreased by a factor of
about three, so that its volume has increased by the same order of magnitude.
Hence blobs whose radial cross-section occupied initially a significant fraction
of the surface of a domain at some altitude will cover entirely this domain after
having risen by one or two scale heights, and will thus mix together (Fig. 3.4).

Let us now estimate the convection speed vconv. If the motion of the blobs
is driven by the buoyancy force produced by their density deficit ∆ρconv with
respect to the ambient medium, the kinetic energy density ∼ ρv2

conv equals the
work of this force along the vertical distance l, i.e. ρv2

conv ∼| ∆ρconv | gl. Since
ρT ∝ P for both the blob and the exterior and their pressures are equal, we
have ∆ρconv/ρ = −∆Tconv/T , whence, substituting l ∼ H and rearranging

vconv ∼
(

kB∆Tconv

µ

)1/2

. (3.43)

9In most models, the value of l/H required to reproduce the solar properties lies between
1 and 2.
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Figure 3.4 Heuristic sketch suggesting why the mixing length l should be of
the order of the pressure scale height.

If ∆Tconv � T , this value is much smaller than the sound speed VS = (γkBT/µ)1/2,
so that convection does not perturb the hydrostatic equilibrium.

Finally, with the convection speed (3.43), the convective energy flux (3.42) is

Fconv ∼ ρ
γ

γ − 1

(
kB∆Tconv

µ

)3/2

. (3.44)

It is smaller by a factor of about (∆Tconv/T )3/2 than the maximum flux F0 ∼
ρcpTVS that could be carried by fluid motion if matter were to move at the
speed of sound.

Application to convection within the Sun

Let us tentatively apply these results to the Sun. First, let us estimate the
temperature excess of a rising blob. An upper limit to the convective energy
flux is the total flux determined by the luminosity, i.e. at distance r

Fconv ≤ L

4πr2
.

Substituting this value into (3.44), we find an order-of-magnitude estimate of
the temperature difference of a convective blob

∆Tconv ≤
(

L

4πr2ργ/(γ − 1)

)2/3
µ

kB
. (3.45)

Near the base of the solar convection zone (r � 0.7R�), we have from Fig. 3.2:
L � L�, ρ � 200 kg m−3, Mr � M� and T � 2×106 K, whence the scale height
H � 0.1R�, so that (3.45) yields ∆Tconv ≤ 0.5 K (in order of magnitude), which
is very small compared to the temperature itself.

Let us compare:
• the excess of the actual temperature gradient over the adiabatic value,

equal to | dT/dr − (dT/dr)adiabatic |≡ ∆Tconv/l, from (3.41)

• with the temperature gradient itself | dT/dr |∼ 〈T 〉/R�.
We see that the ratio of both quantities is about (∆Tconv/〈T 〉) × R�/l, which
is a very small number since (∆Tconv/〈T 〉) ∼ 10−7 and R�/l ∼ 10.
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Figure 3.5 (Speculative) sketch of thermal convection in a stratified medium.
The white arrows illustrate the widening of upflows, whereas the thin black
arrows show the narrowing and successive merging of downflows; the boxes
illustrate how the same process might occur on different scales. (Reprinted
with permission from [44] c© 1990 by Annual Reviews.)

We conclude, therefore, that when convection takes place, the actual tem-
perature gradient remains very close to the adiabatic value. This means that
convection is so effective at transporting heat that a very small super adiabatic-
ity is enough to carry out the whole energy flux. In short, the temperature
gradient has to be steeper than the adiabatic value for convection to begin, but
once begun, convection keeps the actual gradient close to the adiabatic one.
Hence, the adiabatic gradient (3.34) is not only a limiting value, but a roughly
actual value, convection acting in some sense as a valve.

This has a fortunate consequence: our lack of detailed understanding of con-
vection has no dramatic effect on stellar models since in most of the convective
zone, convection keeps the temperature gradient close to adiabatic. We shall
see below that this is no longer true in the close vicinity of the solar surface,
where the density and opacity become so small that a large superadiabadicity
is required to transport the energy flux.

With the above value of ∆Tconv, the convective speed near the base of the
convection zone is from (3.43): vconv ∼ 70 m s−1. The lifetime of a blob is thus
τconv ∼ l/vconv ∼ 106 s; this is very short compared to the timescale of stellar
evolution, so that convection is very effective at mixing stellar material.

Beyond the mixing-length picture

One should not get the impression that the mixing-length picture is the key
for understanding solar convection. It is only a convenient way of deriving
scaling properties and introducing convection into stellar models. Detailed nu-
merical simulations, which are beginning to acquire a high degree of sophisti-
cation, draw a somewhat different picture. In particular the simulation of the
subsurface layers show a large asymmetry between upward and downward mo-
tions, with concentrated downflows extending over the whole convective domain
(Fig. 3.5).
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This asymmetry between ascending and descending matter is mainly due to
the strong density stratification of the medium, which causes the cross-section
of a flow tube to decrease with depth in order to conserve mass. As a result, a
tube of rising material diverges, whereas a tube of sinking material converges.
Matter whose radial cross-section occupied initially some fraction of a surface
will cover it entirely after having risen by a few scale heights (Fig. 3.5), so that
upflows cannot extend very far in height. In contrast, sinking matter contracts
to a small fraction of its initial cross-section, which tends to produce extended
filamentary downflows; they may merge into fewer flows, on successively larger
scales at successively larger depths, forming a tree-like structure [44].

Conservation of angular momentum introduces an effect akin to what
is observed in a bath tub. Small cyclonic motions around the centres of the
downdrafts have their circular velocity amplified as sinking matter contracts.
This implies that downflows should be highly turbulent, whereas, by the
same argument, upflows may be smooth since expansion smoothes out the
irregularities.

Finally, we found a lifetime for a convective cell of the order of τconv ∼ 106 s
at the base of the convective zone. This is of the same order of magnitude as
the solar rotation period of about 25 days. Hence solar rotation and convective
motions should significantly influence each other. We shall examine below the
motions induced by solar rotation.

3.2.4 The quiet photosphere

We said that the solar convective zone occupies the outer 30% of the solar
radius. But first of all, how is the solar radius, that we took for granted up to
now, defined from a basic point of view? And can we understand some observed
aspects of the photosphere surveyed in Chapter 1 from the above estimates?

The solar surface

We have seen that the density of the solar material decreases outwards, without
undergoing any abrupt transition. And yet we see a well-defined solar surface,
the photosphere, where the solar interior ‘ends’ and the atmosphere ‘begins’. As
we noted in Section 1.2, the sharpness of this transition is due to the smallness
of the pressure scale height H: with a mean molecular mass µ � 1.25mp near
the surface, (3.36) yields H � 150 km � 2× 10−4R�. Virtually all the light we
receive from the Sun comes from there, because the material below is essentially
opaque, whereas the material above is essentially transparent.

Let us see how this property determines the position of this layer. Un-
derstanding this region is important, because most of what we know about
the Sun is based on analysis of radiation coming from there. The task is dif-
ficult, however, because most of the simplifications made to model the solar
interior fail there (see [22]). A detailed treatment involving radiation transfer
calculations [23] is outside the scope of this book, and we shall only make ele-
mentary estimates.
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The temperature is small there – smaller than the mean temperature in the
solar interior by about three orders of magnitude (see Fig. 3.2); this is why the
scale height is so small, causing the density to fall sharply with altitude so that
the medium becomes nearly transparent to radiation. Going outwards, photons
encounter fewer and fewer particles – their free path increases – and at some
level, they have a fair probability of escaping directly, so that the light we see
comes essentially from that level and those above. This means that between
this radius rs and infinite distance, the mean number of particles encountered
by a photon is of order of magnitude unity, i.e.∫ ∞

rs

dr/lph(r) ∼ 1 (3.46)

where lph(r) is the average free path of photons at distance r. Substituting from
(3.13): lph = 1/κρ with κ ∼ κ(rs) and ρ ∝ e−r/H , we find

1 ∼ κ(rs)ρ(rs)
∫ ∞

rs

dre−(r−rs )/H

∼ κ(rs)ρ(rs)H(rs) ∼ H(rs)/lph(rs).

Hence at the photosphere, the mean free path of photons is of the order of
magnitude of the pressure scale height; equivalently, this is the level from which
the radiation we receive is attenuated by e−1 by the overlying material.

We have based our estimate on the sharp outward density decrease. In fact,
κ drops off with altitude even more rapidly than ρ because the opacity in the
outer solar layers is produced by the negative ion H−, that is atomic hydrogen
with a second electron loosely attached to it.10 This opacity falls dramatically at
the photosphere, because ionisation becomes negligible (the electron-to-neutral
density ratio is only about 10−4), so that free electrons are no longer available
for H− formation.

With this opacity, the photosphere level is found at a mass density of ρ �
3 × 10−4 kg m−3.

Convection near the surface

What happens to convection near the solar surface? The sharp decrease in
density and opacity is expected to change its nature.

Let us try to estimate the average temperature excess of a convective blob
at the photosphere level. If convection were to transfer a significant part of the
solar flux, i.e. if Fconv ∼ L�/4πR�2, then with ρ � 3 × 10−4 kg m−3, (3.45)
would yield ∆Tconv ∼ 2×103 K – a value that is not very small compared to the
temperature itself; this suggests that convection becomes ineffective as a heat-
transport process near the solar surface. As the medium becomes transparent,

10H− ions play an important role there because hydrogen is mostly in its neutral atomic
form, so that many H atoms are available, and heavy elements are partly ionised, making free
electrons available for H− formation.
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the temperature excess of the blobs disappears quickly because of radiation,
making convection less and less efficient, so that both radiation and convection
compete to carry the energy; ultimately, very close to the surface, the medium
becomes convectively stable.

With a convectively stable photosphere, why do we observe some convection
at the surface in the form of granulation, as described in Section 1.2? This is
because the convective motions have a finite velocity at the boundary of the
convective layer, making them intrude into the stable layer above, so that the
boundary of the convective zone is not sharp.

Let us try to interpret the observed properties of granulation as a surface
extrapolation of convection in the upper convective zone, keeping in mind that
the traditional mixing-length picture is expected to yield only scaling properties,
and that the phenomenon is inherently non-local, being driven essentially by
radiative cooling at the surface. To begin with, let us estimate the convection
speed. With ∆Tconv ∼ 2 × 103 K, (3.43) yields vconv ∼ 5 × 103 m s−1, which
agrees in order of magnitude with the observed vertical velocity in granulation
of about 2 km s−1.

Granules

Can we understand the observed pattern of bright granules of rising material
surrounded by dark narrow lanes of sinking matter described in Section 1.2? As
we noted previously, conservation of mass implies that a tube of rising matter
diverges. Because of the small scale height near the surface, this divergence
must be strong, with the horizontal velocity increasing rapidly with distance
from the axis of a flow tube. Since there is no force in the horizontal direction
(because gravity acts vertically) this velocity increase must be accompanied by
a pressure decrease (according to Bernoulli’s theorem, cf. Section 2.3).

Hence one expects a pressure excess near the axis of the rising material,
which deflects the flow into a nearly horizontal expansion (Fig. 3.4). The same
is true in the intergranular regions to reduce the horizontal speed and deflect
matter downwards. Bernoulli’s theorem tells us that this pressure excess is
∆P ∼ ρv2

x in order of magnitude, vx being the maximum horizontal speed.
Since the order of magnitude of the pressure is P ∼ ρV 2

S where VS is the local
sound speed, we have ∆P/P ∼ v2

x/V 2
S . Now, since the density ρ ∝ P/T , we

have for small perturbations

∆ρ/ρ = ∆P/P − ∆T/T. (3.47)

Recall that the fluid rise is driven by the buoyancy force which requires ∆ρ < 0.
Therefore if vx is not small compared to VS , the (positive) term ∆P/P coun-
teracts the temperature term, thereby braking the buoyancy. Hence, upflows
are braked, which increases their widening because of mass conservation. The
same effect accelerates the downflows since the positive ∆P increases the den-
sity excess; this acceleration increases their narrowing. The greater speed in
downflows than in upflows must be compensated for by a smaller cross-section,
since upflows and downflows must carry the same mass on average, and their
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density difference is not very large. These arguments, however naive, explain
why we see wide bright upflows (granules) separated by dark narrow downflows
(intergranules).

Since the opacity decreases strongly as the temperature decreases, we can
see deeper where the temperature is low. Hence the dark lanes are seen deeper
than the bright granules; this effect reduces the contrast between bright and dark
structures, since the latter are seen at deeper levels, whose average temperature
is greater.

The above elementary considerations on dynamics might also explain the
maximum size observed for the granules. Consider a flow tube of rising material
with cylindrical symmetry. We have seen that the tube widens; the rising mass
entering the tube at altitude z where the tube’s radius is x equals that at z +dz
where the radius is x + dx (if ∂/∂t = 0). Neglecting the variation in vertical
velocity vz, we thus have d

(
ρπx2

)
/dz = 0, whence

x2dρ/dz + 2ρxdx/dz = 0.

Substituting dρ/dz ∼ −ρ/H and noting that the tube shape follows flow lines,
so that the horizontal and vertical velocities satisfy dx/dz = vx/vz, we deduce

vx/vz ∼ x/2H. (3.48)

Hence the horizontal velocity grows with the size of the granule. But we have
seen that when this velocity becomes of the order of the sound speed, the excess
pressure brakes the flow. Thus vx < VS � 10 km s−1, so that with the observed
vertical velocity vz ∼ 2 km s−1, (3.48) gives the maximum granule size

x ≤ 2H × VS/vz ∼ 10H.

Substituting the scale height found above, we obtain 1.5 × 103 km, reasonably
close to observation.

Sophisticated numerical simulations are now able to reproduce impressively
most of the observed properties of granulation [46]. The patterns observed
at larger scales, however, are more difficult to explain; in particular, the most
conspicuous large-scale pattern – the supergranulation, of about (2 − 3)×104 km
in size and one day in duration – to which we shall return later.

3.2.5 Solar rotation

Before addressing the magnetic field, we must discuss the solar rotation, which
plays a major role in its generation.

How the Sun rotates

As we said in Section 1.2, the Sun is rotating, with the equatorial regions rotating
faster than the polar ones. Even though the solar rotation has been studied for
centuries, how the solar interior rotates has remained a mystery until recently,
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Figure 3.6 Solar rotation frequency (time-averaged) plotted against radius at
different latitudes, deduced from helioseismic data (dashed lines represent 1 σ
error bounds; reprinted with permission from [17]). The inner part of the Sun
(not shown) is inferred to rotate approximately as a solid body. Copyright 2000
AAAS.

when observation of global solar oscillations opened a new window to the solar
interior.

These solar oscillations result from standing waves, produced as waves –
mainly acoustic waves – propagate within the Sun and are refracted and re-
flected due to the variations of properties with depth. This yields oscillations
at discrete frequencies, somewhat as in musical instruments, and these eigen-
frequencies reveal properties of the material where the waves are propagating.
Rotation causes some modes to split into multiplets, whose analysis reveals how
the rotation varies within the Sun [40].

Recent observations are shown in Fig. 3.6. One sees that the angular fre-
quency observed near the solar surface, where rotation is faster at the equator
than near the poles, extends through much of the convection zone (the outer
30% by radius), with little radial dependence except at the boundaries. Most of
the radial variation takes place in a thin layer at the base of the convection zone,
where the angular velocity adjusts to that of the deeper interior, which appears
to rotate roughly as a solid body, at a rate somewhere between the equatorial
and polar surface rates.

What produces the latitude dependence of rotation in the convective zone,
and how is operated the transition between this region and the deeper inte-
rior which appears to be rotating quasi-uniformly? Conservation of angular
momentum would suggest that the angular velocity should vary as a function
of the lever arm, r cos λ (at distance r and latitude λ), implying a cylindrically
symmetric rotation pattern (Problem 3.4.3). Figure 3.6 shows that this
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argument is inadequate. Solar differential rotation is far from being understood,
even though numerical simulations yield promising results [12].

Some consequences of solar rotation

Solar rotation has many consequences. First of all, it affects the shape of the
Sun, as the centrifugal force acts against gravity near the equator, and tends to
transform it into an oblate spheroid. A hint as to the importance of this effect
may be obtained by comparing the centrifugal force Ω2R� to the gravitational
force M�G/R2

� (per unit mass)

χ =
centrifugal force

gravitational force
=

Ω2R3
�

M�G
∼ (Ωτhydr)

2 (3.49)

∼ 2 × 10−5

where Ω is the angular rotation frequency and τhydr is the hydrostatic timescale
(3.24). This is expected to produce a small oblateness, and calculations yield a
relative difference of about 10−5 between the equatorial and polar solar radii,
which comes to only 14 km – less than can be resolved with the best solar
telescopes, so that measurements require sophisticated techniques [14].

Another basic effect of solar rotation is that it induces large-scale motions
in the solar interior, because the centrifugal force modifies the hydrostatic equi-
librium; the pressure gradient must change to compensate, and in turn this
modifies the temperature gradient and the energy flux. The only way for the
Sun to maintain a steady state despite this difference between equatorial and
polar regions is by circulating matter and energy between them.

And finally, solar rotation is a key factor to solar magnetism.

3.3 Some guesses on solar magnetism

The title of this section is inspired by Richard Feynman (speaking of the origin
of the Earth’s magnetic field): ‘Nobody really knows – there have only been
some good guesses.’11

The origin of cosmic magnetic fields is a long-standing problem, and the
solar system is no exception. Significant advances in our understanding of the
Earth’s magnetic field (and of planetary magnetic fields in general) have been
made over four decades; this is due in a large part to major improvements in
computational tools [19], and the basic mechanism is perhaps understood. This
is not so, however, for the solar magnetism. A large part of the difficulty lies
in the huge magnetic Reynolds number (Section 2.3) in the Sun, which makes
the range of scales involved so wide that it cannot be handled by numerical
simulations, even with the best computers available at the beginning of the
twenty-first century.

11Feynman, R. P., R. B. Leighton and M. Sands 1964, The Feynman Lectures on Physics,
New York, Addison-Wesley.



138 Anatomy of the Sun

Many problems have to be solved. The first one is the origin of the solar cycle:
what produces the large-scale magnetic field, which reverses every 11 years? A
related issue is the phenomenology observed along the cycle, for example the
pattern of appearance of sunspots – a point that we shall not address in detail
(see [21]). A fundamental question is the origin of the intermittent structure
of the magnetic field, which appears and disappears in permanence at the solar
surface, and exhibits small regions of huge magnetic field.

To begin with, let us examine how a magnetic field might be produced
and sustained in the conducting solar interior. The Sun is not special in this
respect; this problem is generic for cosmic bodies that are both fluid and rotating
[24], [30], [55]. This question is full of subtleties [34], and the treatment below
captures only a minute part of it.

3.3.1 Elements of dynamo theory
Might the solar magnetic field be the remnant of some primordial field, dating
back to the birth of the Sun? Let us apply naively the results of Section 2.3. A
magnetic field of spatial scale L in a medium of electric conductivity σ decays
at the timescale

τσ =
L2

η
with η =

1
µ0σ

(3.50)

where η = (µ0σ)−1 plays the role of a magnetic diffusivity. Estimating the
conductivity from (2.102) with the temperature at the base of the convection
zone, we find σ ∼ 106 Ω−1 m−1, whence the ohmic diffusivity η ∼ 1 m2 s−1.
With L ∼ 7 × 108 m (the solar radius), the decay time is τσ ∼ 1018 s, that is
3 × 1010 years. We know, however, that the solar magnetic field reverses every
11 years, and that smaller structures change much faster. Even with L of the
order of the granule’s scale (∼106 m), the ohmic decay time is still vastly greater
than the observed timescales. Clearly, we need a mechanism to destroy the field
much faster and also to recreate it, for producing a cycle.

A current view is that some kind of dynamo process is at work, convert-
ing mechanical energy into magnetic energy. Indeed, ample kinetic energy is
available in the solar rotation and convective motions. One may imagine that,
starting from some small seed magnetic field, fluid motions induce electromotive
forces that create just those currents required to generate the initial magnetic
field. This would not be a perpetual motion machine since the energy lost via
joule dissipation is furnished by the fluid motion.

How could such a dynamo work? From our school days, a dynamo evokes
memories of a rotating frame placed between magnetic poles to produce an
electric current. More practically, it evokes the bicycle dynamo, in which some
of the work done by pedalling is used to spin a conducting coil in the presence of
a magnetic field, producing a current in the lamp filament. The solar problem
is basically different, for two reasons. First, the magnetic Reynolds number is
huge:

Rm = µ0σvL � 1. (3.51)
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Indeed, taking for the length L and the speed v the characteristic values we
derived at the base of the convection zone, we find Rm ∼ 1010. We saw in
Section 2.3 that in this case the magnetic field is frozen in the plasma; the
opposite is true in our home dynamos, whose vastly smaller size generally yields
Rm < 1, letting the magnetic field lines slip through the conductors. The second
difference is that the Sun holds no magnets, discs or wires, but a continuous
fluid, so that the electric current path cannot be prescribed a priori.

Basically, a self-excited solar dynamo should involve two items. First, fluid
motions should be capable of increasing an initial magnetic field and of pro-
ducing a cycle, with a much shorter timescale than the absurdly large diffusion
time τσ estimated above. Second, these motions have to be maintained against
the Lorentz force.

Hints on kinematic dynamos

Let us forget for the moment the back reaction of the Lorentz force on the
motion, even though this is the most difficult part of the problem. Let us
concentrate on the first point: finding fluid motions capable of producing an
adequate magnetic field. This problem is formalised in the induction equation
(Section 2.3)

∂B
∂t

=
2B
µ0σ

+ × (v×B) (3.52)

which enables one to calculate the magnetic field B(r, t) from the fluid velocity
field v(r, t). Since this equation is linear in B, a magnetic field cannot be created
‘from nothing’ but can only be amplified (or reduced). For the same reason, this
equation alone cannot determine how large the magnetic field can grow, and the
solution (if any) will only be applicable if the magnetic field is sufficiently small
to perturb negligibly the motion.

Let us recall the physical significance of the induction equation. Diffusive
magnetic decay is embodied in the first term of the right-hand side, and acts
at the timescale τσ = µ0σL2 for magnetic variations at scale L. If the velocity
does not vary at smaller scales, the second term changes the field in a time L/v,
which is shorter than τσ if µ0σvL > 1. A large value of Rm thus means that
ohmic diffusion acts more slowly than fluid motion, so that the field may (not
necessarily will) be amplified by fluid motions.

How can fluid motions amplify the magnetic field? We saw in Section 2.3
that this can be done by stretching the field lines. Imagine a tube of magnetic
flux in a conducting fluid and assume that the fluid motion perpendicular to
the field is not uniform (Fig. 3.7). For Rm � 1, the field lines are frozen in
the fluid and thus dragged along by the flow. If the stretching does not change
the mass density (which holds true if the speed is small compared to the sound
speed), flux freezing implies that the magnetic field increases in proportion to
the length of the tube. The increase in magnetic energy stems from the work
done in stretching the tube against the tension of the field lines.
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Figure 3.7 Distortion of a magnetic field by a non-uniform perpendicular
velocity.

Figure 3.8 Increasing magnetic diffusion by producing magnetic variations at
small scales; the field lines are pushed together locally, making them reconnect,
followed by decay of the detached loop.

This is not the whole story, because the tube cannot be stretched indefi-
nitely; to produce a dynamo, we should return (more or less) to the initial tube
geometry, albeit with a greater magnetic field. Achieving this, however, would
mean that the magnetic flux through a surface moving with the fluid could in-
crease, in contradiction with flux freezing. There is a way out, however. Since
the first term in (3.52) – which embodies magnetic diffusion – involves a sec-
ond derivative, magnetic diffusion might proceed much faster if the transverse
magnetic field gradients are much greater than those of the flow (Fig. 3.8).

We thus see that two basic ingredients enter in a kinematic fluid dynamo.
First, amplification of the large-scale magnetic field by stretching the field lines.
Second, magnetic diffusion and reconnection via the production of large mag-
netic gradients. Whether the dynamo works depends on the relative effectiveness
of these two competing processes; in other words, an efficient dynamo requires
a little magnetic field diffusion, but not too much.

Unfortunately, these two ingredients are not sufficient; in particular it has
been proved that dynamos having a high degree of symmetry do not work; in
particular neither a stationary axisymmetric dynamo nor a centrally symmetric
one works; the same is true for a dynamo whose velocity field is restricted to
a plane. Hence a successful dynamo has to be complicated . . . and so is its
analysis.
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Figure 3.9 Two thought experiments based on a loop of magnetic field frozen
in a conductor. Top panel: one increases the magnetic field by stretching the
loop; the loop is then pinched to promote diffusion and reconnection, producing
two loops which are superimposed and packed together. Bottom panel: the
stretched loop is twisted, folded over itself and repacked.

Two prototype dynamos

Figure 3.9 (top) shows a dynamo imagined by Alfvén [1]. Consider a loop
of magnetic field immersed in a conducting fluid and stretch it to, say, twice
its length; this halves the cross-section s and doubles the value of B. One
then pinches the loop to produce large magnetic gradients, which accelerates
magnetic diffusion. Reconnection of the field lines produces two separate loops,
each resembling the initial one. Superposing these loops and packing them
together reproduces the original loop, but with B amplified by a factor of two.
The magnetic energy has increased, at the expense of the work done in driving
the motion. This process can be repeated, but it is very slow since it cannot
work faster than ohmic decay because of the central role played by magnetic
diffusion.

The bottom panel of Fig. 3.9 shows an ingenious device which has been
suggested to produce a faster dynamo, because its timescale appears to depend
less critically on diffusion [49]. Instead of pinching the loop and having to wait
for diffusion to cut the loop in two, we twist it to form a figure of eight and then
fold it back to merge with itself. As in the above example, the total cross-section
s is restored to its original value and contains twice the original magnetic flux.
The process can be repeated, each step doubling the magnetic flux, so that after
n steps the flux is amplified by a factor of 2n = en ln 2. Since the number n of
steps plays the role of time, the magnetic flux grows in an exponential way. If
the typical length and speed are respectively L and v, the doubling time is L/v,
so that this dynamo may proceed much faster than the previous one.
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But does it really? The apparent simplicity masks a number of subtleties
which embody many basic problems of dynamo action [25].

First of all, the topology of the field lines changes at each step, and a little
diffusion around the point D (indicated by the arrow) is necessary to eliminate
small-scale variations and reconnect the loops in order to recover the original
topology.

A paper tape can enable one to visualise what happens: the twist out of the
plane of the loop induces a twist of the tape around its own centre line; hence
when the loop is broken and reconnected at D, the two loops thus created have
the form of Möbius strips, each one having a twist of π. This intrinsic twist
means that the magnetic field has acquired a component perpendicular to the
plane of the loop, and therefore an helicity. Helicity is a basic feature of solar
magnetic fields, to which we shall return in Section 4.2. In addition, the stretch
in the plane of the loop flattens its cross-section into an ellipse whose short
axis is perpendicular to the loop’s plane, and decreases at each step, until the
large gradients thus produced promote magnetic diffusion. Finally, consider two
elements initially close to each other on the original loop. The stretch–twist–fold
operations quickly separate them in a way that mimics turbulence.

This prototype dynamo may nevertheless be fast (i.e. act at the timescale
L/v instead of τσ) since one can repeat each step without having to wait for
diffusion to take place. Its major interest is that despite its apparent simplic-
ity it captures several features that are thought to be essential in a dynamo
process:

• magnetic amplification through the stretching of field lines produced by
differential motions,

• twist and linkage of the field lines,

• appearance of fine structures that accelerate field diffusion,

• non-stationary motion (albeit stationary upon averaging),

• lack of symmetry and complex fluid trajectories at small scales.

Could a similar dynamo work in the Sun?

3.3.2 Solar kinematic dynamos

The alpha and the omega

The first step of our prototype dynamo can be achieved rather easily. Since the
Sun does not rotate as a solid body, the solar rotation stretches the field lines,
generating a large magnetic field. Figure 3.10 sketches how an initially vertical
magnetic field line is distorted as it is drawn by the solar differential rotation in
the simple case where the rotation varies only with latitude. The field lines are
stretched along the rotation, and the net result is the production of an azimuthal
magnetic field from a magnetic field roughly parallel to the rotation axis. In
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Figure 3.10 Producing a large azimuthal magnetic field by stretching a poloidal
field on a rotating sphere that rotates faster at the equator than at the poles.

the Sun, the stretching is believed to be mainly realised near the layer where the
rotation varies strongly with depth (Section 3.2.5), at the base of the convection
zone.

Once a large-scale azimuthal magnetic field is produced from a poloidal one
(i.e. oriented in meridian planes) through differential rotation (this step is known
as the omega part of the dynamo process), we need a mechanism to reproduce
a poloidal field from an azimuthal one, in order to complete the cycle.

This might be done as follows. Consider a large-scale azimuthal field line
in a plane parallel to the equator (Fig. 3.11, left), and assume that there are
small-scale motions – for example turbulence – lacking reflectional symmetry;
the mean fluid helicity is in this case generally non-zero, i.e. the velocity satisfies
〈v · (×v)〉 �= 0. In other words, we have a set of small screw-like vortices –
somewhat like cyclones in the Earth’s atmosphere – with unequal numbers of
right-handed and left-handed ones.12 These motions produce small loops that
are twisted as the one shown on Fig. 3.11 (middle). Diffusion acts faster than
elsewhere at the base of the twisted loop (indicated by D in Fig. 3.11), because
the gradients are large, finally making the loop detach from the parent line. Each
detached loop corresponds, by Ampère’s law, to an azimuthal current jφ, and
many of these taken together around the large-scale field Bφ are equivalent to
a large-scale azimuthal current Jφ (right), which in turn produces a large-scale
poloidal magnetic field.13

Finally, therefore, from a large-scale azimuthal magnetic field, small helical
motions may produce a large-scale poloidal magnetic field, completing the cycle.

12This might be a consequence of solar rotation and convection. An old argument says that
a rising blob expands laterally, producing a small loop of magnetic field. The Coriolis force
(or conservation of angular momentum) makes the loop rotate more slowly, so that it acquires
a spin opposite to that of the Sun. Sinking blobs acquire an opposite twist, but since their
velocity is also opposite, the helicity 〈v · (�×v)〉 has the same sign.

13In Fig. 3.11 the helicity is negative in a right-handed frame of reference and the twist
angle is smaller than π (which may be true if the disturbances are short-lived); in this case
Jφ is along Bφ , so that the component Bz is opposite to the one of Fig. 3.10.
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Figure 3.11 Producing a large-scale poloidal magnetic field from an azimuthal
one through small-scale helical motions. A localised velocity disturbance having
a helicity – for example a rising spinning blob – distorts a large-scale field Bφ

(left), producing a small twisted loop (middle), which detaches and is equiv-
alent to an electric current jφ. Many such small loops located along a large
circumference yield a large-scale current Jφ, producing a poloidal field (right).

This concept, originally due to Parker [29] and known as the alpha effect in the
jargon of dynamo experts, is formalised with various refinements in the so-called
mean-field electrodynamics. In this scheme, the velocity and magnetic field are
split into a large-scale part which remains after averaging over the small-scales,
and a fluctuating part having a much smaller scale and a zero average, which
may come from turbulence. If the small-scale flow has a non-zero helicity, a
large-scale poloidal component is produced, as found above in a heuristic way.
This yields a periodic solution which some think might explain the solar cycle.14

Turbulent magnetic diffusion

As we have said, an efficient dynamo requires significant magnetic diffusion,
which may occur if small enough scales are produced. Turbulence might solve
this problem, by entangling the field lines, making the mean field spread rapidly
over a large volume, while bringing together fields of opposite polarity (Fig. 3.12).

Turbulence may even do more. When the flow is chaotic, the trajectories
of two neighbouring parcels separate exponentially, thereby stretching the field
lines and increasing the magnetic field amplitude [13]; this entanglement of the
field lines is accompanied by a decrease in spatial scales which promotes field
diffusion. The small-scale flow has thus the major features of a dynamo device
and may be a dynamo in its own right [31]; we shall return to this point later.

Let us consider the large-scale mean field. How fast can turbulence make
it spread and decay? We may get some hints by noting that at large Rm, the
magnetic field behaves in some way as a vector connecting two neighbouring
fluid parcels. Consider a scale lT and a speed vT associated with turbulence,
and assume that the fluid parcels separate as in a random walk of step length
lT and speed vT . The time τT for diffusing over a distance L � lT is of the
order of τT ∼ L2/(vT lT ) (from the same reasoning as in Section 2.3). Since

14Although the method encounters many difficulties when the Reynolds number calculated
with a scale and speed corresponding to turbulence is large, as is the case for the Sun.
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Figure 3.12 A naive sketch showing how turbulence entangles the magnetic
field lines and enhances magnetic diffusion.

the entanglement of field lines mixes together lines of opposite polarity until
the length scale is so small that ordinary diffusion operates and makes them
annihilate, a magnetic field of spatial scale L will decay in the time

τT =
L2

ηT
with ηT ∼ vT lT . (3.53)

This rough picture suggests that turbulence strongly increases the magnetic
diffusivity, reducing the magnetic decay time (3.50) by a factor of µ0σvT lT ,
which is just the magnetic Reynolds number calculated with the scale and speed
associated to turbulence. Taking for vT and lT the scales we determined at the
bottom of the convection zone, we find ηT ∼ 5 × 109 m2 s−1. With L equal to
the solar radius, (3.53) yields τT ∼ 108 s, about 3 years – a significant fraction
of the solar cycle. It is thus no coincidence that this enhanced diffusion plays
an important role in the mean-field dynamo theory.

This is not the whole story, however, because turbulent diffusion cannot be
applied without caution to the magnetic field as if it were a scalar, and we
have not yet addressed the more difficult question: how large can the magnetic
field grow before the growth is halted by the effects of the Lorentz force? For
doing so, let us first examine some subtle consequences of the induction equation
(3.52) at small scales when Rm � 1.

3.3.3 Concentrating and expelling the magnetic field
Consider a very simple situation: a uniform magnetic field B0 in a conducting
fluid where a cylindrical region r ≤ r0 is rotating as a solid body around its
axis perpendicular to B0 (Fig. 3.13). How does this local rotation distort the
magnetic field?

Let ω be the angular speed; the speed at distance r0 from the axis is ωr0,
and the corresponding magnetic Reynolds number is Rm = µ0σωr0

2. When
Rm ≤ 1, the diffusion term in the induction equation (3.52) dominates, so that
the magnetic distortion cannot build up before diffusion counteracts it. As Rm

increases, the magnetic distortion increases; Fig. 3.13 shows the shape of the
field lines in the steady state, for values of Rm still sufficiently moderate to
enable matter to stream significantly across the field [24].
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Figure 3.13 Distortion and partial expulsion of a magnetic field from a rotating
cylinder. The rotation axis is perpendicular to the figure. The field distortion
is small when Rm ≤ 1; it increases with Rm, and for large Rm the field tends
to be excluded from the rotating region. (Adapted from [24].)

Figure 3.14 Magnetic flux amplification at the boundary of a rotating region.

When Rm increases more, the dragging of the field lines wraps them more
and more until the gradients become so large that diffusion and field line recon-
nection tend to eradicate the field from the rotating region (Fig. 3.14). This field
expulsion is related to the skin effect in electrical engineering. To understand
this, consider a frame of reference rotating at the angular velocity ω; in this
frame we have a magnetic field rotating at −ω outside a cylindrical conductor.
Such a rotating field may be decomposed into two perpendicular components
oscillating out of phase at the (angular) frequency ω. It is well known that at
high frequencies the field is excluded from the conductor, penetrating only a
small ‘skin depth’ δ = 2/(µ0σω)1/2.

At high Rm therefore, the magnetic field penetrates only a small distance δ
into the rotating fluid. Expressing the above value of the skin depth in terms
of the magnetic Reynolds number Rm = µ0σωr0

2, we have

δ ∼ l/R1/2
m (3.54)

where l is the spatial size of the rotating region (r0 in this case). The small
width δ of the region where the magnetic field accumulates results in the balance
between magnetic diffusion – acting with the timescale µ0σδ2, and advection –
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acting with the timescale ∼ 1/ω; the value (3.54) of δ ensures that both timescales
are comparable.

This result is a general property of fluid differential motion at large mag-
netic Reynolds numbers [51]. The magnetic flux concentrates in a thin layer of
thickness given by (3.54), with

Rm = µ0σvl (3.55)

in terms of the typical dimension l and speed v. The thickness δ adjusts to
be small enough for the diffusion time µ0σδ2 to match the timescale l/v for
magnetic line motion over the structure (its turnover time), so that the two
corresponding terms in the induction equation (3.52) balance each other.

This accumulation of field lines at the boundaries of the region corresponds
to an increase in magnetic field amplitude. Let us estimate this increase with
a (very) rough argument. Consider the field lines at some time t (Fig. 3.14).
Let B0 be the undisturbed magnetic field strength far from the eddy and Bδ

the value in the thin region of thickness δ where the magnetic flux accumulates.
Roughly speaking, two magnetic lines separated by about the eddy size l at a
large distance from the eddy, where the magnetic field strength is B0, become
separated by only about δ in the concentration region at the edge of the eddy.
In the two-dimensional problem studied here, the cross-section of a flux tube
is proportional to the distance between the field lines. Hence flux conservation
along a flux bundle yields B0l ∼ Bδδ with δ ∼ lR

−1/2
m , whence

Bδ ∼ B0R
1/2
m . (3.56)

In this two-dimensional problem, the flux is concentrated over one dimension
only – producing a sheet. In a three-dimensional problem, if the velocity field
concentrates the magnetic flux along two dimensions, it produces a small tube,
whose cross-section varies as the square of the width δ, so that the magnetic
field is amplified by a factor of Rm instead of R

1/2
m .

In conclusion, for Rm � 1 a rotating eddy excludes the magnetic field from
its interior. The magnetic flux accumulates at the boundaries, forming thin
sheets or tubes of width smaller than the eddy’s by a large factor, where the
magnetic field strength is amplified by the same factor; from the above elemen-
tary argument, this factor is of the order of magnitude of R

1/2
m if the contraction

acts over one dimension, producing sheets, and even greater with other geome-
tries. This magnetic field amplification near the boundaries takes place very
rapidly: in about a turnover time.

This result may give a hint as to why the magnetic flux at the solar surface
is concentrated into small regions of large magnetic field, at the boundaries of
convective structures, where convection sweeps the magnetic field. The length
δ is a major parameter in the dynamo process; it is the scale at which the
field is no longer frozen and topological changes may occur, letting the lines of
force sever and coalesce, so that the field may reassemble itself to produce the
large-scale cycle.
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How large can the magnetic field grow in this way? When the magnetic field
increases, so does the Lorentz force; this may stop the motions that concentrate
the magnetic flux. How does this affect dynamo action?

3.3.4 Lorentz force restriction on dynamo action
The Lorentz force is expected to modify the dynamics when the magnetic energy
density at small scales B2

δ/2µ0 becomes comparable to the kinetic one ρv2/2;
in this case, convective motions will no longer be capable of compressing the
magnetic flux. Equating both values gives an upper limit to the small-scale
field:

Bδ ≤ (µ0ρ)1/2
v ≡ Beq. (3.57)

Once this limit is reached, the Lorentz force produced by the small-scale field
should prevent any motion across itself.15

Using the relation (3.56) between the field at small and large scales, we
deduce from (3.57) the limit on the large-scale field

B0 ≤ (µ0ρ)1/2
v

R
1/2
m

≡ Beq

R
1/2
m

. (3.58)

This figure is smaller by a factor of R
1/2
m than the limit Beq obtained if the

large-scale field itself were allowed to reach equipartition; note that if magnetic
compression acts over two dimensions, the limit is even smaller.

What happens if the large-scale field B0 becomes greater than the limit
(3.58)? The stretching properties of the small-scale flow are expected to be
strongly affected, leading to a decrease in the turbulent diffusivity and in the
effectiveness of the turbulent dynamo. Given the huge values of Rm in the Sun,
(3.58) yields B0 � Beq, so that the Lorentz force is expected to shut down the
turbulent dynamo process when the field produced at large scales is well below
the equipartition value.

And yet the solar magnetic fields manage to be much above the equipartition
values (Table 3.1). Even though there are possible solutions to this problem (we
shall see one below) and the above reasoning is oversimplified, this raises some
doubts on the capabilities of a turbulent dynamo to generate the solar cycle
[50]. There is indeed considerable controversy over this question [31], to such an
extent that other explanations of the solar cycle have been proposed. Magnetic
turbulence is indeed far from being understood, and much of our present beliefs
may turn out to be erroneous.

The essential conclusion of all this is that in the present state of the art,
an efficient solar dynamo requires three ingredients: rotation, convection
and . . . optimism. Much remains to be done, even at the basic level, since even
the very nature of the dynamo process itself is not known with certainty.

15This is expected to occur after a time of the order of the turnover time l/v; hence smaller
eddies are affected first since, as we shall see in Section 6.4.2, smaller turbulent eddies have a
smaller turnover time.
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Table 3.1 Dynamic properties at the bottom of the convective zone and at the
photosphere, and corresponding equipartition fields compared to the actual values

Location 0.7 R� 1.0 R�

ρ 200 kg m−3 3 × 10−4 kg m−3

v 70 m s−1 103 m s−1

Beq = (µ0ρ)1/2
v 1 T 0.02 T

Bactual 10 T (presumed) 0.1–0.3 T (measured)

3.3.5 Elementary physics of magnetic flux tubes
How can the observed solar fields (Table 3.1) be much above the equipartition
values that should stop convection? Furthermore, the magnetic activity ob-
served on the Sun strongly suggests continual emergence of magnetic field lines
through the solar surface. How does this come about?

Solar flux tubes

The solar magnetic field often appears in small regions of great magnetic field,
so that it can often be viewed as made of thin tubes of large magnetic flux,
isolated from each other in a background of a much smaller field.

If the tube thickness is small compared to the other scales, the properties
can be assumed to be uniform across it, and at equilibrium the total pres-
sure inside (particle plus magnetic) matches the one outside. Furthermore, if
the magnetic field is greater than the equipartition value Beq, the tube cannot
be deformed passively by turbulence and may be pictured as having an existence
of its own. Elementary MHD at large magnetic Reynolds numbers (Section 2.3)
tells us that an isolated flux tube has a number of interesting properties:

• its large magnetic field produces a large magnetic pressure, which tends
to make it expand and become lighter (and colder) than its surroundings,

• magnetic tension tends to make it shorter, so that it can be pictured as a
stretched rubber band,

• the matter within can flow along it but not across it,

• when twisted or knotted, it cannot easily get rid of its helicity (see Sec-
tion 4.2), much like a garden hose.

These properties make flux tubes amenable to quite subtle gymnastics
(Fig. 3.15) [30]; a detailed review may be found in [33]. The birth of regions
of opposite magnetic polarities on the solar surface – which vary in size from
packets of sunspots to much smaller field concentrations – may be interpreted
as the emergence of flux tubes through the Sun’s surface (Fig. 3.16), magnetic
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Figure 3.15 A favourite pet of solar physicists: the isolated magnetic flux tube.
(Drawing by F. Meyer.)

Figure 3.16 Naive picture of the emergence of a bipolar magnetic structure
through the solar surface.

structures being pictured as the footprint areas where the tubes pierce the sur-
face. Sunspots and related structures may form as azimuthal flux tubes emerge
from deep within the Sun, which may explain why sunspots appear in pairs
having opposite vertical magnetic fields, and (from Fig. 3.10) why they are
concentrated near the equator, with pairs oriented roughly along the azimuthal
direction; and finally why these pairs have opposite polarities in the two hemi-
spheres, which reverse at each cycle. The observed pattern of emergence can be
explained to some extent by detailed analysis, but a full comprehension would
require understanding the solar dynamo itself, and the whole three-dimensional
structure of solar convective flows.16

16In particular, it has been suggested that a meridional flow deep in the Sun might set the
solar cycle period (see [16]).
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Figure 3.17 A tube of magnetic flux oriented in the horizontal direction.

Magnetic buoyancy

What makes flux tubes emerge from the solar interior? Just as for an emerging
submarine, the starting physics is simple – being based on buoyancy – but the
plumbing is complex.

Consider a thin flux tube immersed in the convection zone and oriented lo-
cally perpendicular to the solar gravity (Fig. 3.17), for example in the azimuthal
direction. If its magnetic field amplitude B is much greater than the one out-
side, lateral pressure equilibrium between the interior (whose matter pressure is
P ) and the exterior (at pressure Pext) yields

P + B2/2µ0 = Pext. (3.59)

The term B2/2µ0 which compensates for the difference in internal and external
matter pressures is the Lorentz force per unit surface on the thin current sheet
bounding the tube (see Section 2.3.) If the temperature T in the tube is not too
different from that outside, we have P/ρ � Pext/ρext � kBT/µ. Substituting
this equality in (3.59), we find that the tube has a mass density smaller than
outside by

ρext − ρ � B2/2µ0

kBT/µ
. (3.60)

The tube of volume V is thus subjected to an upward buoyancy force

FB = (ρext − ρ) V g ∼
(
B2/2µ0

)
a2L

H
(3.61)

where H is the local pressure scale height (3.36), and we have approximated the
tube volume by a2L.

This buoyancy force, equal to the ratio of the tube’s magnetic energy to
the local pressure scale height, pushes it upwards. A portion of buoyant tube
rising at vertical speed v is subjected to an aerodynamic drag force from the
surrounding fluid that is of the order of

FD ∼ 1
2
ρextv

2aL (3.62)
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where we have approximated the tube’s longitudinal cross-section by aL, and
assumed a drag coefficient of roughly unity. When this force balances the buoy-
ancy force (3.61), the rising speed is therefore

v ∼ vA (a/H)1/2 (ρ/ρext)
1/2 (3.63)

where vA =
(
B2/µ0ρ

)1/2
is the Alfvén speed in the tube.

Actual tubes, if they do exist, are not expected to have the convenient linear
shape of Fig. 3.17; a curvature will produce additional magnetic forces.

Furthermore the tubes are subjected to a number of instabilities, which make
them break in parts or move as a whole. First, an untwisted magnetic tube,
unlike a submarine or a gas bubble in water, has nothing to make it maintain
its shape, and should break up rapidly. Hence, stable tubes are expected to be
twisted, i.e. to have an azimuthal magnetic field component, which produces
an inward Lorentz force helping the tube to maintain its shape (Problem 3.4.4)
as does surface tension for bubbles in water. Second, the tubes are subjected
to the convective instability we studied in Section 3.2.2, since in the convective
zone a small upward displacement of a tube as a whole leads to an increase
in its buoyancy. Since this kind of instability is driven by the buoyancy force,
it is expected to arise with the timescale of normal convection. We found in
Section 3.2.3 that this time is of the order of a month at the bottom of the
convection zone; this is far smaller than the period of the solar cycle. Hence
these tubes are not expected to remain there for a significant fraction of the
solar cycle.

There is, however, a place where the tubes have enough time for being
stretched before rising, so that the magnetic field can be amplified: the bot-
tom of the convection zone, where the medium is expected to be convectively
stable (although there are overshooting motions from the convective zone just
above), and the strong variation of solar rotation with depth (Fig. 3.6) can
stretch the flux tubes (see [10]).

This is not, however, the whole story. We can understand how the flux tubes
may be stored, and how they may erupt, but we have assumed in the first place
that the tubes have an existence of their own. For this to be so, their magnetic
field must be significantly above the equipartition value, for the magnetic forces
to dominate the other ones. This may be understood by comparing the drag
force produced on a tube by convective motions to other forces, for example
to the magnetic buoyancy force (3.61). The convective drag force is given by
(3.62), where v now stands for the convection speed; expressing v as a function
of Beq = (µ0ρext)

1/2
v, the drag force produced by convection can be written

as FD ∼ B2
eqaL/ (2µ0). In order for the tube not to be dragged passively by

convection, we must have FD < FB, whence in order of magnitude17

B > Beq

(
H

a

)1/2

. (3.64)

17This condition is equivalent to requiring that the convection speed be smaller than the
buoyancy speed (3.63).
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Table 3.2 Convective, thermal and magnetic energy densities at the bottom of
the convection zone and at the photosphere (in J m−3)

Location 0.7 R� 1.0 R�

ρv2/2 5 × 105 1.5 × 102

ρkBT/µ 7 × 1012 1.5 × 104

B2/2µ0 4 × 107 (presumed) (0.4 − 4) × 104 (measured)

Since the flux tube has (by hypothesis) a radius much smaller than the scale
height, we see that its magnetic field must be greater than the equipartition
value by at least an order of magnitude for the convective drag force to be
negligible. From the value of Beq in Table 3.1 we thus expect an actual field
magnitude of at least 10 T in the generating region. Other arguments based on
flux tube dynamics give a value of that same order of magnitude [39].

Convective collapse

We have seen that convective motions can concentrate the magnetic flux and
increase locally the magnetic energy, but no more than the value corresponding
to the kinetic energy density. And yet both the values observed at the surface
and those presumed deep in the Sun are greater by an order of magnitude than
the equipartition values (Table 3.1). One key to the solution, which we hinted
at in Chapter 1, lies in Table 3.2, which shows that the energy available in
thermal motions (and in the potential energy of gravitation, since we saw that
both are comparable) is of the same order or larger than the actual magnetic
energy. How can the magnetic field be amplified to such a level?

Consider a thin vertical tube of flux below the solar surface, where the
medium is convectively unstable. We have seen that the temperature strati-
fication is strongly superadiabatic there, so that a small adiabatic downward
displacement of matter within the tube makes it less hot than the (superadia-
batic) surroundings. Because of its small width, the tube is in pressure balance
with the outside at each altitude. Suppose that the magnetic energy in the
tube is much smaller than the thermal energy. This means that the magnetic
contribution to the total pressure in the tube is negligible. Just as we found in
Section 3.2.2, lateral (total) pressure balance implies that the (cooler) displaced
fluid is denser than its surroundings, which accelerates its downward motion,
making the motion unstable. As matter moves downward in the tube and cools,
the scale height is reduced, and the top of the tube is evacuated. This decrease
in matter pressure at the top of the tube must be accompanied by an increase
of the same amount in magnetic pressure to conserve (total) horizontal pressure
balance with the exterior. This makes the magnetic field in the tube increase.

When the magnetic pressure in the tube becomes comparable to matter
pressure, the instability is suppressed because the magnetic field can compensate
for the changes in matter pressure. As a result, in the final state the magnetic
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pressure in the upper part of the tube should be comparable to matter pressure,
i.e. the magnetic and thermal energy densities are comparable. Note that an
upward displacement of matter within the tube is also unstable, but it makes
the field decrease, so that in that case the instability tends to behave as ordinary
convection and persists, finally dispersing the field [43].

Finally, therefore, this instability tends to produce either thin tubes with
a large field strength – of energy roughly equal to the thermal energy – or a
vanishing field.

3.3.6 Surface magnetic field

Small-scale magnetic field

The convective collapse of flux tubes might thus take over the job of magnetic
energy concentration begun by convective motions (which is limited by the ki-
netic energy of convection), and produce structures of much greater magnetic
energy density – comparable to the thermal energy density (Table 3.2). Note
that other mechanisms may produce large magnetic fields. In particular, in
the cold regions separating granules, the small scale height and the mechanical
balance across vertical field lines tend to produce magnetic field structures of
energy density equal to the ambient thermal energy density [35]. Furthermore,
elaborate theoretical studies and simulations show a more complicated and sub-
tler interaction between convection and magnetic fields, which – as we have
already noted – may even produce a dynamo in its own right [52], [31].

These effects help us to understand the ubiquitous network of intense mag-
netic fields observed at the solar surface, which are concentrated at the edges of
the convective structures. Magnetic concentration is especially effective at the
edges of the supergranulation cells, which are larger than the granulation cells
by about one order of magnitude in size and two orders of magnitude in dura-
tion, and are more deeply seated (Fig. 3.18, left). These fields appear to emerge
at the solar surface, to be transported by bulk motions and to accumulate at
the stagnation points in the flow, and finally to disperse as the convection cells
evolve and disappear, whereas fields of opposite directions can merge and anni-
hilate when they come close together (see [41]). Magnetic concentrations also
accumulate at the boundaries of the granules, but because of the short lifetime
of these structures, the resulting magnetic concentrations are not so conspicuous
(see [36]).

How do these small magnetic structures appear on white-light images of
the solar surface? Do they appear brighter or darker than the surrounding
photosphere? Because of their large magnetic field (B > Beq), the convective
heat transport which brings heat from the solar interior is reduced in their
vicinity since matter can move along the magnetic field but not across it, and
thus cannot mix freely. This should make these tubes slightly colder than their
surroundings, making them appear dark. A little reflection, however, shows that
this is not so for two reasons. First, we have seen that these magnetic tubes
are less dense than their surroundings; they are therefore more transparent, so



Some guesses on solar magnetism 155

Figure 3.18 Left panel: magnetogram (dark corresponds to strong magnetic
field) of a part of the solar surface, showing magnetic concentration at the edges
of supergranulation structures. Right panel: high-resolution images, taken with
the Swedish 1-metre solar telescope on La Palma, showing bright structures
in the dark lanes bounding granules (top), and a magnetogram on which are
superimposed contours delineating the brightest structures of the upper panel
(bottom). (Adapted from [5].)

that when we look at them we can see much deeper into the Sun than when
looking at the normal photosphere; we thus see a greater temperature and a
greater brightness. Second, thin tubes can be heated effectively by radiation,
which increases their temperature.

And indeed, these small magnetic structures do appear bright, as can be
seen in Fig. 3.18 (right). It shows high-resolution (∼70-km) images of the
region delineated by the white box on the left-hand magnetogram. The up-
per image shows intensity in the so-called G-band18 and the lower image is a
magnetogram (darkest regions indicate ∼0.1-T magnetic field), showing that
the bright optical structures (delineated by the white contours on the magne-
togram) generally coincide with large magnetic flux densities. High-resolution
magnetic measurements show a wide range of magnetic flux densities and spatial
sizes [5].

18The so-called G-band (around 0.43 µm) is dominated by lines of the CH molecule and
shows brightenings that coincide with high magnetic fields with an especially large contrast
(Sanchez-Almeida, J. et al. 2001, Ap. J. 555 978).
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Sunspots

The Sun is often pictured as a kind of human figure, but this has
not any foundation. Other pictures show it covered with volcanoes
or bubbling foam; but in actual fact we only see a plain yellow sur-
face, on which appear from time to time several dark blotches that
are called solar spots; they may be smoke or cinders from this huge
furnace ...

J. de Lalande, Ladies’ Astronomy19

From our twenty-first-century vantage point, we can find one truth in this cita-
tion. Sunspots owe ultimately their existence to convection, even though their
darkness stems from lack of convection, and convection is driven by the solar
furnace. But the road to explaining them is tortuous and still not fully cleared.

Sunspots are the most spectacular of the relatively large and intense mag-
netic structures associated with the solar cycle and known as active regions.
Sunspots are very large, of a size greater than the scale height by one or two
orders of magnitude. Their magnetic field is great, with a magnetic pres-
sure even larger than the particle thermal energy in the surrounding photo-
sphere. They are colder by nearly 2 × 103 K than the surrounding photo-
sphere. And finally they are (relatively) stable – often lasting for more than a
month – so that they can be thought of as being in close to magnetohydrostatic
equilibrium.

Sunspots are now measured in such detail that empirical knowledge on them
far exceeds theoretical understanding, and has led to a whole taxonomy. One
also measures oscillations and waves, and can even infer their internal structure
using solar seismology. Sunspots may be growing by agglomeration of thin
intense flux tubes. But how the tubes coalesce is not fully understood, nor is
the apparent stability of the whole structure.

However, we may understand some of their basic properties with the help
of the concepts introduced in this chapter. Let us first try to understand their
most basic property: the huge magnetic field, of energy density greater than the
thermal value in the normal photosphere. How can this be so?

Consider a simplified picture: a (large) vertical flux tube at the Sun’s sur-
face, with a magnetic field of much greater amplitude than outside. Horizontal
pressure balance between the interior and the exterior yields

Pint(z) + B(z)2/2µ0 = Pext(z). (3.65)

The great magnetic field amplitude requires that Pint � Pext. Hence the de-
crease of Pext with altitude must be matched by a decrease in B, making the
tube fan out to conserve magnetic flux. Now, vertical pressure balance yields

dPint

dz
= −ρintg

dPext

dz
= −ρextg.

19Jérôme Lefrançois de Lalande, Bidault, Paris (1785). I am indebted to Peter Hingley, at
the Royal Astronomical Society, for the copies dating back to this epoch he kindly provided.
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Taking the derivative of (3.65) with respect to z, and substituting the above
equations, we see that dB/dz < 0 requires ρint < ρext. This means that the
structure is not only colder than its surroundings, but also less dense. It is
therefore less opaque, so that we observe deeper layers in sunspots than when
we look outside. Indeed, it has been known for a long time that sunspots appear
as depressions in the Sun’s surface.20 (They do not appear bright as do thin
flux tubes because their coolness is too important to be compensated by the
fact that we see deeper.)

The lower geometric altitude of sunspots has an important consequence.
The large magnetic field observed in them refers to a deeper altitude than the
normal photosphere; hence in the equation of horizontal balance (3.65) we must
put for Pext the pressure at a lower altitude than the normal photosphere, and
thus a greater Pext, since pressure increases with depth. This may explain why
the magnetic pressure in sunspots can be greater than matter pressure at the
normal photosphere level.21

Finally, what makes them so cold? As we have already noted, their large
magnetic field impedes convection at their bottom, so that less heat arrives to
them from the solar interior; furthermore, the fanning out of the tube with
height spreads the heat flux over a greater area. With less heat arriving per
unit surface, sunspots must be cooler than their surroundings.

The near blocking of the heat flux below sunspots raises an interesting ques-
tion. Due to their low temperature, sunspots radiate only about one-fifth of
the energy radiated by a similarly sized area of the normal photosphere. Do
sunspots make the Sun radiate less, or does the blocked energy emerge else-
where on the solar surface? In the former case, since the radiation of a star
determines its internal structure (Section 3.1), does the emergence of a sunspot
change the solar structure?

This question is addressed in Problem 3.4.5, where we can see that the
solar convective zone conducts and stores heat very effectively. The great heat
conductivity ensures that the energy diverted by sunspots is dispersed relatively
rapidly in the convective zone; the large heat capacity ensures that the global
Sun is not affected because the timescale for a global temperature variation in
the convection zone is extremely large.

A kitchen analogy may be useful [45]. Imagine an electric heater plate made
of a very thick piece of copper. Now, put on it a small piece of heat insulator
material, for example a small ceramic tile, and wait until the heat lost from
the plate balances the incident power. What happens? The blocking of heat
transport makes the top of the insulating tile colder than the rest of the plate,
but no hot ring forms around it because the heat blocked by the tile spreads
quickly throughout the whole copper plate, making it slightly hotter than before.
Contrary to the Sun, our heater plate has not a large enough heat capacity for
its temperature to remain roughly constant; we may however simulate the solar
case by removing the ceramic tile before the plate has had enough time to reach
equilibrium.

20This is known as Wilson depression.
21The picture is complicated by the curvature of the field lines and by the variation in

sunspot properties in the horizontal direction.
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One should not conclude, however, that the solar irradiance decreases as
solar activity increases and more sunspots emerge; this is quite the reverse,
because other structures come into play [42] in a way that is not fully understood
[28].

3.4 Problems

3.4.1 Conductive heat transfer in the solar interior

Show that the energy transfer by thermal conduction is negligible in the solar
interior.

3.4.2 Timescale for radiative transport

Why is the timescale for radiative transport in the Sun given by the thermal
timescale τKH instead of the time tph photons need to random walk to the
surface?

Hints

Show that in order of magnitude

tph

τKH
∼ Wph

| Wg | (3.66)

and that Wph is smaller than Wg by roughly three orders of magnitude. Deduce
that in the solar interior, particles contain much more energy than photons.
Since photons are in thermodynamic equilibrium with particles – a heat reser-
voir containing much more energy than themselves – they cannot random-walk
independently of the particles [48]. Therefore, radiation ultimately diffuses at
the timescale determined by the particle thermal energy τKH , which is much
greater than the photon random-walk timescale τph.

3.4.3 Solar differential rotation

Show that the fluid momentum equation in a frame rotating with angular ve-
locity Ω0 is

dv
dt

= −P ′

ρ
−Φ − 2Ω0 × v (3.67)

where Φ is the gravitational potential, viscosity and magnetic forces are neg-
lected and P ′ = P − ρ (Ω0 × r)2 /2 is an effective pressure incorporating the
centrifugal force. Show that in the absence of meridian velocities (i.e. with v in
the azimuthal direction) the left-hand-side term would vanish for a stationary
flow. Assume that the left-hand-side term can be neglected and take the curl of
the resulting equation; show that with an adiabatic structure in the convective
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zone, the azimuthal component of the velocity, vφ is independent of the co-
ordinate z parallel to Ω0. Since this is contradicted by Fig. 3.6, one or several
of the above hypotheses should be wrong [40].

3.4.4 Twisted magnetic flux tube
Consider a flux tube where the field is: B = arφ + z for r < R and zero
elsewhere (in cylindrical coordinates, where φ and z are unit vectors). Show that
the azimuthal magnetic field component is responsible for a magnetic tension
equal to −a2r/µ0 and a magnetic pressure force having the same value, pointing
radially inward. Interesting numerical simulations of the behaviour of such flux
tubes in the Sun can be found in [54] and [26].

3.4.5 The heat flux blocked by sunspots
What is the fate of the energy flux blocked at the bottom of sunspots? The en-
ergy diverted does not seem to emerge as bright rings around them; on the con-
trary, dips in solar luminosity have been observed at the birth of large sunspots
groups. Where does the blocked energy go?

To begin with, use Sections 3.1 and 3.2 to estimate how long a thermal
disturbance takes to diffuse through the whole convective zone.

The convective zone contains so much matter that even a large amount of
heat would produce a very small global temperature change. In other words,
its huge thermal energy content WthC , that is proportional to the product of
its temperature by its mass, makes its thermal timescale τthC ∼ WthC/L� very
large. Calculate this timescale.

Hints

Timescale for heat to spread through the convective zone
Convective heat transport can be thought of as a random walk of convective
eddies travelling at a speed equal to the convection speed vconv, with a free
path equal to the mixing length l. We know that the time for travelling a
distance D is in this case Tconv ∼ (D/vconv) × (D/l). Putting the values we
found at the base of the convection zone: vconv ∼ 70 m s−1 and l ∼ 0.1R�, with
D ∼ 0.3R� (the width of the convection zone), we find Tconv ∼ 3 × 107 s.

Timescale for global temperature change in the convective zone
We have seen that (because of hydrostatic equilibrium) the thermal timescale
for the whole Sun is roughly equal to the Kelvin–Helmholtz time τKH (3.23)
(originally introduced in terms of the gravitational energy). For the convective
zone, this time is about two orders of magnitude smaller than for the whole Sun
because it contains only a few per cent of the solar mass, at a temperature some-
what smaller (Fig. 3.2), i.e. τthC ∼ 10−2 × τKH . This yields a few 105 years –
much larger than both the time Tconv for energy to disperse in the convective
zone, and the lifetime of sunspots [45].
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4

The outer solar atmosphere

To study the corona and chromosphere requires a firm optimism.
H. C. Van de Hulst, 19501

danger!! enter at your own risk!!
J. Newmark, 20032

Not only does the Sun try to hide its interior, but it seems to take perverse
pleasure in disguising its atmosphere. Van de Hulst’s remark, which refers to
solar eclipses (that invariably occurred by cloudy weather or after observers
have contracted nasty diseases) remains true half a century later, albeit for
quite different reasons. And the latter citation reminds us that observation
of the outer solar atmosphere is still a difficult art; in opening new windows,
progress in techniques has revealed a hierarchy of intricate patterns, reminis-
cent of a rainforest in which there is a profusion of insects, birds, flowers and
trees that we can see but not touch, and whose understanding requires much
subtlety.

We took a quick tour of the solar atmosphere in Section 1.2, and we shall
now enter into more detail. We will have to complement our plasma physics tool
box with some additives, in order to find intellectual coherence in the baroque
architecture revealed by observation. By necessity, however, I shall draw an
outrageously simplified picture, keeping only a few basic aspects. Far more
complete accounts are given for example in [22], [48], [4] and references therein;
a lucid survey can be found in [33] for solar activity – of which a nice historical
point of view is given in [1].

1Kuiper, G. P. ed. 1953, The Sun, Chicago IL, University of Chicago Press, p. 207.
2Heading of the web page on plasma diagnostics in the user’s guide of the Extreme Ul-

traviolet Imaging Telescope on the spacecraft SoHO in 2003 (http://umbra.nascom.nasa.gov/
eit/eit_guide/).
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4.1 From the photosphere to the corona

4.1.1 The atmosphere in one dimension

Figure 4.1 shows how the average density and temperature vary with height
above the photosphere, as inferred from observation.

At low heights the temperature, which we have seen to be significantly
smaller than 104 K, is too small for producing significant ionisation (Section 2.4).
I have plotted the number densities of neutral hydrogen and of electrons, to-
gether with the gas temperature, from a semi-empirical model of the average
(undisturbed) solar chromosphere and transition region.3

At high heights, the large temperature ensures virtually complete ionisation,
and I have plotted the electron density4 and temperature.5 I have chosen to plot
the values observed in polar regions, near solar activity minimum, because the
diagnostics there is relatively free from perturbations (and these regions furnish
the major contribution to the fast wind); other regions are generally denser and
hotter.

To fill the gap between the low-height and high-height models, I have devised
an outrageously crude interpolation.6

A quick look at Fig. 4.1 reveals a roughly 2000-km thick (weakly ionised)
chromosphere at a temperature of 4–7 ×103 K, ending with a sharp jump into
the million-degree corona (virtually fully ionised).

This apparent simplicity, however, masks a number of difficulties, so much
so that Fig. 4.1 should be viewed as a starting point for reflection rather than a
realistic description. There are two major reasons for that. For one thing, the
densities and temperatures are not measured directly, but rather adapted by
modellers in order to reproduce the diagnostics available. This is an uncertain
game, because the diagnostics is based on radiation involving a large number of
chemical species in various ionisation states, whereas the medium is not in lo-
cal thermodynamic equilibrium. The problem is especially severe in the corona,
where we shall see that the free path of particles is greater than the scale height,
so that different species have different temperatures; in particular, some (still
controversial) measurements suggest that protons may be hotter than electrons,
and that heavier ions are still hotter; we shall return to this point later. Further-
more, the medium is not static, and in particular the plasma has a significant

3Model C in [20]; this model includes heights up to 2219 km, which corresponds to a
normalised radial distance from the Sun’s centre r/R� 
 1.003.

4I have plotted ne = a1ea2R�/r
[
(R�/r)2 + a3(R�/r)3 + a4(R�/r)4 + a5(R�/r)5

]
for

r/R� > 1.02, where ne is in m−3, r is the radial distance to the Sun’s centre, a1 = 1.3 ×
1011, a2 = 4.8, a3 = 0.3, a4 = −7.2, a5 = 12.3, based on [53]; I have rounded up the
parameters, multiplied the published value of a1 by 108 (E. Sittler, personal communication),
and transformed in SI units.

5I have plotted Te = 1.65× 106/
[
(r/R�)0.7 + (r/R�)−4

]
for 0.02 < r/R� − 1 < 1.1, and

Te = 1.3 × 106(r/R�)−0.4 for r/R� − 1 > 1.1.
6In the range 0.0033 < ζ < 0.02, where ζ = r/R� − 1, I have plotted Te = 0.85 × 106 −

102/(ζ −0.003)−1.5×109 (ζ − 0.02)2, and ne = 8×1013 exp
[
−1.4 × 107 (ζ − 0.02) /Te

]
; the

constant in the exponential is the numerical value of µM�G/kB R�.
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Figure 4.1 Density and temperature above the solar surface outside active
regions versus the normalised height r/R�−1, from empirical models3,4,5 (elec-
tron density ne, solid lines; hydrogen density nH , dotted lines; temperature T
and electron temperature Te, dashed lines). The coronal parameters apply to
polar coronal holes. The grey bars show the range of values from alternative
models. The thin lines represent a crude interpolation filling the gap between
the inner and outer models,6 and the question mark reminds us of the inade-
quacy of a one-dimensional static model, especially in the transition between
the chromosphere and the corona.

mean outflow velocity at distances of a few solar radii. Finally, there is no
agreement even on the basic mechanisms that determine the energy balance; we
shall also return to this later. It is not an exaggeration to say that the outer
solar atmosphere is neither adequately measured, nor correctly understood.

The second major reason to have doubts on the validity of Fig. 4.1 is that it
is one-dimensional, and thus represents an atmosphere spherically symmetrical
and time-stationary. This is not true (especially at low heights) as we shall see
in detail below, and an average is of little significance, since the medium is full
of structures whose scales are smaller than the resolution of observation.

For both of these reasons there is no agreed-upon model, and I have sketched
with grey bars on the figure the scatter of measured or inferred values (see for
example [2], [18], [58] and references therein).
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Figure 4.2 A two-dimensional sketch of magnetic field lines above the solar sur-
face. The thin vertical bundles of large magnetic field located at the boundaries
of the supergranular cells in the photosphere diverge rapidly with height (as the
pressure of the surrounding gas drops), until they fill all the space available and
confine each other.

4.1.2 One more dimension

Let us therefore drop the one-dimensional picture and consider one more dimen-
sion. We must remember that the magnetic field at the solar surface is far from
uniform; we have seen in Section 3.3 that in the normal photosphere it tends to
be concentrated at the boundaries of the granular cells, and especially in lanes
at the boundaries of the supergranular cells. Figure 4.2 sketches a vertical cross-
section above the solar surface, perpendicular to such a lane; regions of great
magnetic field are roughly a distance D apart (the supergranular scale) along
the horizontal direction shown. In this simplified picture, the other horizontal
direction (normal to the figure) is along a lane so that the structure is approx-
imately two-dimensional. It is also roughly plane-parallel because we consider
heights much smaller than the solar radius.

As thin vertical flux bundles of large magnetic field emerge at the photo-
sphere, the pressure in the surrounding gas, which decreases upwards, becomes
insufficient to maintain their concentration, so that the bundles fan out with
height. To make an order-of-magnitude estimate, we note that horizontal pres-
sure balance requires the bundles’ magnetic pressure B2/2µ0 to vary roughly
as the gas pressure P ∝ e−z/H , so that B ∝ e−z/2H . Since the magnetic flux
does not change along the bundle (because  · B = 0), the section varies as
1/B; since in this two-dimensional picture the width of the bundle varies in pro-
portion to the section, it increases as ez/2H . The bundle encounters its closest
neighbours at the height z where its width matches the distance D. This takes
place at z ∼ 2H ln(D/d) if the initial bundle’s width is d. Taking D ∼ 30 000 km
(the supergranular scale), d ∼ 100 km and H ∼ 150 km (from Section 3.2), we
find that the bundles merge at a height of about 2000 km. Referring to Fig. 4.1,
this corresponds to the upper chromosphere.
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At this altitude the magnetic field, which varies inversely as the bundles’
section, has decreased by a factor of about d/D from its value at the base of
the tubes, which we saw in Section 3.3 to be of the order of magnitude of 0.1 T.
This yields a magnetic field ∼ 0.1 × d/D ∼ 3 × 10−4 T.7

Above this height, the funnels fill all the space available and confine each
other, so that the configuration is expected to be more uniform. Since the
gas pressure continues to drop (though with a greater scale height since the
temperature increases), while the magnetic field should no longer decrease much
up to z ∼ D, the magnetic energy is expected to dominate that of the particles
from the upper chromosphere to at least several 10−2R�.

The canopy of nearly horizontal field lines shown in Fig. 4.2 above the regions
of the photosphere that are less magnetised has an important consequence.
We saw in Section 2.3 that heat conduction takes place predominantly along
magnetic field lines. Hence heat conduction can easily take place above the
photospheric flux bundles of vertical magnetic field, but it is hampered in the
regions where the field is roughly horizontal. This means that conduction takes
place mainly above the lanes of concentrated magnetic flux at the edges of
supergranular cells. Therefore, one-dimensional models making an average over
horizontal co-ordinates cannot handle correctly heat transport in the upper
chromosphere [21].

This picture makes an important point, but it is grossly oversimplified. In
particular we have assumed the flux bundles to be of like polarity (magnetic field
pointing outwards in Fig. 4.2). However, when a magnetic flux tube emerges at
the photosphere (Fig. 3.17), the magnetic field points outwards at one end and
inwards at the other one, so that there is a salt-and-pepper mix of regions having
different polarities on the Sun. Moreover, the lanes where the photospheric
magnetic flux accumulates do have a finite width, and the magnetic field does
not vanish outside them. To deal with these effects, we must consider one more
space dimension.

4.1.3 Three dimensions in space

Figure 4.3 is an attempt to sketch the magnetic field in three dimensions above
the solar surface. Regions of opposite magnetic polarity that are close together
must be connected by magnetic field lines. Hence, in addition to funnels of open
field lines, which remain open at least up to coronal altitudes, there are loops
or arches of magnetic field closing on the Sun.8 Indeed, loops are observed to
be ubiquitous in the solar atmosphere (Figs. 1.13, 1.14 and 4.8); we shall return
to them later.

4.1.4 . . . and one dimension in time

The picture drawn in Fig. 4.3 still misses an important point. We have seen
in Section 3.4 that the photosphere is a very dynamic place. In particular, the

7This holds outside active regions; we have seen that in active regions, the size of the
magnetic field concentrations at the photosphere is much greater; this greater value of d
yields a smaller merging altitude, and thus a greater magnetic field there.

8We shall see in the next section that this picture is still grossly oversimplified: the field
lines are not so neatly aligned but are braided and twisted, which has further consequences.
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Figure 4.3 Sketch of field lines above the solar surface, with loops and arches
connecting regions of opposite magnetic polarity, and open magnetic field
funnels.

Figure 4.4 Magnetohydrodynamic simulation of the large-scale magnetic struc-
ture resulting from shearing motion at the photosphere (velocity parallel to x,
varying along y). (Courtesy of G. Aulanier, based on [7].)

supergranular cells at the edges of which the magnetic flux accumulates are not
permanent structures; they change over a few hours – having a lifetime of about
a day – as the fluid motions make new magnetic field lines emerge, and draw
and shuffle them in permanence. Shear motions distort the field lines, producing
at higher altitudes helical structures as shown in Fig. 4.4 [7]. This has subtle
consequences that we shall discuss in Section 4.2.

When the motions draw close together field lines of like polarity, this merely
increases locally the magnetic field. When the lines have opposite directions,
however, this produces geometries as sketched in Fig. 4.5 (continuous lines) in
simple cases. The field then tends to relax to a new equilibrium having less
energy (Fig. 4.5, dotted lines), by reconnection of field lines within a thin region
(sketched in grey), as we saw in Section 2.3.

This has two major consequences. First, as we already saw in Section 3.3,
this enables the magnetic field to slip through the plasma – through transient
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Figure 4.5 Schematic illustration of magnetic field merging in simple cases: two
loops (right) and one loop and one unipolar field (left). The magnetic field lines
before and after reconnection are shown respectively in continuous and dotted
lines, and the reconnection site is sketched in grey.

formation of small scales – so that the topology of the field lines can change
(for example, in Fig. 4.5 (right), two small loops give way to a large one). This
takes place on a timescale whose order of magnitude may be as small as a few
transit times L/VA (L being a typical size and VA the Alfvén velocity), thus
much faster than ordinary ohmic diffusion.

Second, the magnetic energy so liberated goes into the particles; this not only
heats the medium but drives bulk motions, ejecting the plasma in an explosive
way. A large variety of explosive events are indeed observed at various spatial
scales in the solar atmosphere; we shall return to them in Section 4.5.

The permanent dragging of the base of the field lines by photospheric fluid
motions has another, gentler, consequence. Acting somewhat as a bow on the
strings of a rudimentary musical instrument, it excites Alfvén waves which, as
we have seen in Section 2.3, propagate along magnetic field lines in the form
of motions at right angles to the lines, that bend and unbend them; we shall
return to these waves in Section 4.6.3.

What should one conclude from all this? We have seen that above the
chromosphere – in the low corona – the magnetic energy dominates, so that
it is the main driver of the medium. The thermal pressure forces are thus not
sufficient to balance any gradient in magnetic pressure, so that the magnetic field
is left to its own devices: magnetic pressure forces must be balanced by magnetic
tension; we shall examine this point more thoroughly below. As a result, regions
of very different gas densities and temperatures may coexist without disturbing
the mechanic equilibrium, because the magnetic field has only to vary by a very
small amount to maintain the global balance of forces (the structures shown in
Fig. 4.9 below are a good illustration of this property).9

The predominance of magnetic energy makes the solar atmosphere highly
structured in space and variable in time; it does not share the nice (approximate)
spherical symmetry characteristic of the solar interior, which is governed by
gravitation. The chromosphere and its transition to the corona must therefore be

9This gentle adaptation works, however, up to a point, which we shall examine more
thoroughly in Section 4.5, and of which Fig. 4.10 is an illustration.
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Figure 4.6 ‘White tongue today, bad weather on the way.’ (Drawing by Cham,
from Grand Album de caricatures par Cham, Cours d’Astronomie, Plon, Paris.)

thought of not as well-defined physical layers but rather as temperature regimes,
consisting of a number of varying structures, including small (unresolved) ones.
Indeed, though most of the solar surface is called the quiet Sun, it is everything
but quiet. In this respect, the main difference with the so-called active regions –
which are located above sunspots and adjacent structures where the magnetic
field is correlated on a large scale – is in the reduced size and energy (and
helicity, too, as we shall see below) of the structures.

4.1.5 A (tentative) look at the solar jungle
I looked below, and saw with my physical eye all that domestic
individuality which I had hitherto merely inferred with the under-
standing. And how poor and shadowy was the inferred conjecture
in comparison with the reality which I now beheld!
Edwin A. Abbott, Flatland – A Romance of Many Dimensions, 1884

Unfortunately, contrary to the hero of Flatland transported to the Land of
Three Dimensions, solar observers do not yet have three-dimensional pictures
at their disposal. Since the medium is nearly transparent in most of the wave-
length range, any image integrates the emission along the line of sight; hence
three-dimensional structures can only be inferred, and it is crucial to resist the
temptation of over-interpreting the data (Fig. 4.6).

These observations reveal a forest of structures having virtually every size
and lifetime. A flavour of them may be appreciated in recent reviews [4] and
[19] and by looking at Figs. 4.7, 4.8 and 4.9.
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30000 km

Figure 4.7 Three pictures of size 144 000 × 280 000 km2 on the Sun north
polar cap (taken nearly simultaneously on 31 August 1996 with the ultraviolet
spectrograph SUMER on SoHO), thought to reveal gas near temperatures re-
spectively just below 3×104 K (lower panel), 2.4×105 K (middle) and 1.1×106 K
(upper panel). (Adapted from [59].)

Figure 4.7 shows a very quiet region seen at three different wavelengths
(revealing matter in three different temperature ranges) [59]. The pictures, taken
at solar activity minimum, show a part of the polar region and encompass a large
coronal hole.

The lower panel is thought to represent matter just below 3×104 K; it shows
a ubiquitous pattern – known as the chromospheric network – that outlines the
edges of supergranular cells where the photospheric magnetic flux accumulates;
it may be made of open funnels and loops in the chromosphere, as sketched in
Figs. 4.2 and 4.3.

The middle panel, thought to reveal matter around 2 × 105 K, has a com-
pletely different aspect. A number of luminous spikes, somewhat like blades of
grass in a meadow, shoot up on the limb, whereas darker bush-like structures
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Figure 4.8 Image taken by TRACE in November 1999 in a narrow spectral band
around 171 Å, revealing plasma around 106 K. (Image by Stanford-Lockheed
Institute for Space Research and NASA.)

outline the boundaries of the supergranular cells; these individual spikes, that
continuously emerge and disappear, are generically known as spicules; we shall
return to them in Section 4.4.1.10

A still different picture emerges from inspection of the upper panel, around
106 K, i.e. at coronal temperatures. The network has been washed out (recall
Fig. 4.2), but a number of bright points appear, some of which seem to be at
the base of luminous plume-like structures extending roughly radially outwards.
These bright points lie above the boundaries of supergranular cells, have life-
times in the range of a few hours (but vary on timescales of minutes) and are
inferred to be clusters of miniature loops [23]. This time variability is part of a
whole spectrum of phenomena to which we shall return in Section 4.5.

Figure 4.7 shows the quieter part of the Sun. Active regions exhibit larger
structures, including huge loops (Fig. 4.8), magnetically levitated cold ribbons
called prominences (Fig. 4.9), and time variability on larger scales, including
giant eruptions in the form of flares and/or coronal mass ejections (Fig. 4.10).

In order to try to understand these pictures, let us assemble a few basic
tools.

4.2 Force balance and magnetic structures

Table 4.1 summarises the physical parameters in the solar atmosphere outside
active regions, estimated with the density and temperatures of Fig. 4.1 and
magnetic field amplitudes inferred in Section 4.1.2. Active regions have a greater
density, temperature and magnetic field, but the ratio β of gas pressure to
magnetic forces is not too different in order of magnitude. The question marks
accompanying the values of B are a reminder of the difficulty of measuring the
small coronal magnetic fields (see [30], [43]) far from regions that are active or

10Figure 4.7 (middle) shows what specialists call macrospicules.



Force balance and magnetic structures 175

Figure 4.9 Image taken on the spacecraft SoHO with the EIT telescope in
a narrow spectral band around 304 Å, revealing plasma around 7 × 104 K,
on 11 January 1998 showing several prominences. (Image from SoHO/EIT
consortium, ESA and NASA.)

special. Note that in both the photosphere and the low chromosphere, which are
weakly ionised, the gas pressure, and thus also the parameter β, is dominated
by neutrals (which are closely coupled to charged particles by collisions).11

Most of the observed structures have elongated shapes and appear to delin-
eate magnetic field lines. This is because the particle gyroradii are much smaller
than the major scales of variation, and the large electrical conductivity makes
the magnetic Reynolds number huge for typical sizes and speeds. Hence the
plasma tends to move along the field lines, but not across them. Furthermore,
we have seen that heat flows essentially along magnetic field lines; this makes the
gas more isothermal along field lines than across them, so that the temperature
also tends to delineate them.

4.2.1 Forces
The tendency of both plasma and heat to flow along the field lines enables one
to make one-dimensional estimates along the direction of the magnetic field B.
Consider first the balance of forces and assume the plasma to be in local thermal
equilibrium, i.e. all particle species have Maxwellian velocity distributions with
the same temperature T . Since the magnetic forces are perpendicular to B, the
balance along it is only determined by:

• the gradient in gas pressure dP/ds, where s is the length along B,

• the projected gravitational force −ρg cos θ, where θ is the angle of B to
the (outward) radial, and g = M�G/r2.

11The number density of neutrals is typically 102 and 104 times greater than the electron
density respectively in the low chromosphere and the photosphere.
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Figure 4.10 Coronal mass ejection observed in white light with the LASCO
coronagraph on the spacecraft SoHO on 27 February 2000. The shaded disc is
a mask making an artificial eclipse in the instrument; the white circle sketches
the size of the Sun. (Image from SoHO/LASCO consortium, ESA and NASA.)

With the pressure P = ρkBT/µ varying at the scale L, the pressure gradient is
of the order of P/L ∼ ρV 2

S /L, VS being the sound speed. If the fluid motion
has typical speed v, the inertial term in the equation of motion is of the order
of ρv2/L; hence, the inertia can be neglected if the speed satisfies v � VS . In
this quasi-static case, the balance of forces along B may thus be written

−dP

ds
=

P cos θ

H
with H =

kBT

µg
. (4.1)

This yields P ∝ e−s cos θ/H , i.e. the pressure decreases exponentially with height
(s cos θ) on the scale H. In the presence of perturbations, this pressure equilib-
rium takes some time to be established – the time for sound waves to propagate.
For a structure of size L, this time is (in SI units)

τP ∼ L/VS ∼ (L/150) T−1/2.

From Table 4.1, we see that for either a 103 km (∼ 10−3R�) sized structure in
the chromosphere or a ten times greater one in the corona, this time is around
1 min.

The situation is different across B, since magnetic tension and magnetic pres-
sure provide forces of the order of B2/µ0L per unit volume, L being the curva-
ture radius of the line or the scale of variation across the field (see
Section 2.3). Once again, the inertia term – of order ρv2/L – may be ne-
glected if ρv2 � B2/µ0, which is equivalent to v � VA where VA is the Alfvén
speed. If the opposite inequality holds, the magnetic field has not enough time
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Table 4.1 Evolution of physical parameters in the solar atmosphere outside ac-
tive regions

Upper
Photosphere chromosphere Lower corona Corona

Height (R�) 0.0 2–5 × 10−3 10−2–10−1 10−1–1
Temperature T (K) 6 × 103 104 106 106

Scale height
H = kBT/(µg) (m) 1.5 × 105 5 × 105 5 × 107 108

Sound speed
VS = (γkBT/µ)1/2 (m/s) 0.8 × 104 1.2 × 104 1.5 × 105 1.5 × 105

Magnetic field
amplitude B (T) 0.1 (strong B) (2−10) × 10−4 ? (2−10) × 10−4 ? 10−4 ?

Ratio of pressure forces
to magnetic forces
β = 2V 2

S /γV 2
A ∼1 ∼1 <1 <1

to adapt to a velocity perturbation, which thus acts as an antenna exciting MHD
waves.

What is the structure of the magnetic field when the medium moves so slowly
(v � VA) that it has ample time to adjust to perturbations? This problem of
magnetostatic equilibrium and of the corresponding instabilities [24] is classic
in laboratory devices, and its mastering is vital for achieving controlled nu-
clear fusion. The solar case, however, is different and encounters three major
difficulties.

First, due to the large spatial scales, both the Reynolds number and the
magnetic Reynolds number are so large that dissipation is negligible except in
small localised regions. Second, gravity is responsible for a decrease of more
than seven orders of magnitude in density between the photosphere and the
low corona (see Fig. 4.1), so that the coronal magnetic structures have their
feet anchored in the photosphere where matter energy dominates (gravity also
produces instabilities). Third, the system has no rigid walls; not only can it
exchange matter and energy with the dense photosphere (and the layers below),
but it is open to infinity.

4.2.2 Force-free magnetic field

In the low corona, where magnetic forces dominate, the magnetic force J × B
cannot be balanced by other terms than itself, so that it must be close to zero
at equilibrium. The magnetic field must arrange itself for the curvature force to
approximately balance the magnetic pressure force. In order to have J×B = 0
with B �= 0, we must have either:

• J = 0. In this case, as we saw in Section 1.3.3, the magnetic field derives
from a scalar potential obeying the Laplace equation, so that one can apply
the well-known techniques and results of potential theory; in particular,
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the field within a volume is uniquely defined by the values of its normal
component Bn on the bounding surface; furthermore, if Bn is prescribed
on that closed surface, this potential field – which has no local currents –
is the one having the minimum possible energy.

• or: J ‖ B, i.e. the lines of current and magnetic field are everywhere
parallel. This may be written

× B = µ0J (4.2)

= αB (force-free magnetic field) (4.3)

where α is a scalar function of position and time. Taking the divergence
of (4.3) and using  · × = 0, we deduce  · (αB) = 0, or B · α = 0
(since  · B = 0), i.e. α is constant along a field line.

To summarise, when magnetic forces are dominant, either the local current
is zero and B derives from a scalar potential obeying Laplace’s equation, or the
local current is along B.

What is the physical meaning of α? Let us integrate (4.3) over a surface S
and transform the left-hand side surface integral into a line integral along the
circumference C of S, by using Stokes’ theorem; this yields∫

C

B · ds =
∫
S

α B · dS (4.4)

where ds is a line element along the contour C, and dS is normal to the element
dS of the surface S, oriented as a right-handed screw with respect to the con-
tour C. Equation (4.4) means that α measures approximately the ratio of the
magnetic field integrated along a given circumference C, to the flux through the
surface bounded by C. It is thus related to the twist in the magnetic field, in
both amplitude and sense; positive (negative) α means that the field lines follow
a right-handed (left-handed) screw. Let us put this on a quantitative footing.

Twist

To quantify the relation between the twist and the force-free parameter α, let us
consider a magnetic field having a cylindrical and longitudinal symmetry about
an axis z, i.e. being a function of r (the distance to the axis) only, so that B
has only longitudinal (Bz) and azimuthal (Bφ) components. The field lines are
helices lying on cylindrical surfaces (Fig. 4.11, left).

The curvature of the field lines yields a radial force B2
φ/µ0r (per unit volume)

at distance r, pointing inwards, which tends to uncurl the field lines; since this
tension must be balanced by the magnetic pressure force −d/dr

(
B2/2µ0

)
, the

magnetic field must decrease away from the axis. Because of Maxwell’s equation
(4.2), Bφ is related to the component Jz of the current density, while Bz is
related to Jφ, so that if J and B are to be everywhere parallel, they must have
both azimuthal and longitudinal components, i.e. the field must be twisted.
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Figure 4.11 Left: a cylindrically symmetric flux tube, with a magnetic field line
twisted by the angle ψ. Right: a sketch of the kink instability: the azimuthal
field Bφ of a curved tube produces a magnetic pressure force which tends to in-
crease the curvature; the axial field Bz is stabilising since its curvature produces
a tension force which tends to uncurl the tube.

Let us calculate the angle ψ through which a line at radial distance r is
twisted on going a distance L along z. We write the equation of field lines:
rdφ/Bφ = dz/Bz, and integrate over φ and z; this gives rψ/Bφ = L/Bz, i.e.

ψ = (Bφ/Bz) (L/r) . (4.5)

How is the twist angle ψ related to the force-free parameter α? Let us apply
(4.4) to a cross-section of a tube of radius r, C being a circle of radius r and S
the enclosed disc; since B · dS = Bz × 2πrdr, we get

Bφ × 2πr =
∫ r

0

αBz × 2πrdr.

We may deduce an order-of-magnitude estimate by factoring α and Bz out of
the integral (though they generally depend on r), to obtain Bφr ∼ αBzr

2/2,
whence

α ∼ Bφ/rBz ∼ ψ/L (4.6)

where we have substituted (4.5). Hence, with this geometry, α measures – in
order of magnitude and in an average sense – the amount of twist ψ gained by
a field line per unit length. Formal calculations of twisted structures may be
found in [41].

Kink

Magnetic flux tubes cannot be twisted too much, because if the azimuthal com-
ponent of the magnetic field becomes too large, an instability arises. Consider a
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Figure 4.12 Top: how the extra twist of a flux tube appears as writhe. Bottom:
three elementary examples of helicity of different signs, coming respectively from
twist, writhe and linkage (from left to right); note that with a single tube (left
and middle), changing the sense of B does not change H; with two tubes (right),
changing the sense of B in both tubes does not change H. (The top sketch is
adapted from Berger’s paper in [10] and the bottom one from [38].)

magnetic field that is nearly azimuthal (Bφ), and suppose that the tube is bent
slightly (Fig. 4.11, right). The field lines are pressed together on the concave
side, and spaced out on the convex side. As a result, the magnetic field – and
thus the magnetic pressure – increases on the concave side and decreases on
the convex side. The greater magnetic pressure on the concave side produces a
force normal to the tube axis which tends to increase the initial bending. This
is known as the kink instability.

However, if the magnetic field has a component Bz along the axis, the bend-
ing produces an inward magnetic tension force which tends to counteract this
effect. Whether or not the tube is unstable depends on the value of Bφ/Bz,
on the geometry and on the boundary conditions. In practice, the tube will
generally kink if the average twist angle ψ is greater than a few π radians, i.e.
if it is twisted by significantly more than one full turn.

Hence, just as with an ordinary rope, twisting a magnetic tube tends to
produce a screwed structure somewhat as in a phone cord. Such kinked helical
structures are indeed observed. The kinking enables the tube to get rid of its
unwanted extra twist, but the twist reappears in disguise: the axis of the tube
coils into an helicoidal shape, i.e. the tube becomes writhed (Fig. 4.12, top).
Suppose that the ends of the tube are fixed, being for example anchored at the
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photosphere. We can change both the twist of the tube around its axis and the
coiling of the axis itself, but these deformations transform into each other. This
introduces a fundamental notion: the magnetic helicity.

4.2.3 Magnetic helicity
Magnetic helicity derives from a topological concept whose applications are cen-
turies old. The Incas had devised an ingenious method based on coloured knot-
ted cords, called quipus, for recording information.12 Applications of helicity in
physics date back to Gauss, and to Kelvin’s idea of describing atoms as knotted
tubes of a fluid aether. If Kelvin had been correct, the topological invariance13

and diversity of knots would have made them perfect tools to build a periodic
table of elements. As often happens in science, this failed theory inspired rich
developments in other fields, from particle physics to biology. Helicity plays
an important role in solar plasmas for reasons we shall explain below. A clear
topological discussion can be found in [38], and applications to space magnetic
fields are nicely surveyed in the monograph [10].

Helicity – and more generally a lack of reflectional symmetry – is everywhere
around us. We are made of left-handed proteins, and a DNA molecule can be
viewed as a long curve that is intertwined millions of times, linked to other
curves, and coiled in order to fit into a small space. We have already encountered
helicity when discussing solar dynamos models: the density of fluid helicity is
v · ω, the scalar product of velocity and vorticity ω = × v.

Definition

In MHD, the density of magnetic helicity is defined as A · B, where B is the
magnetic field and A is a vector potential which gives rise to it as B = ×A.
We shall see that the integral of A · B in a volume that wholly contains the
magnetic field measures the degree of linkage of the field lines, how they are
braided, twisted and knotted. Its importance lies in the fact that in an ideal
conductor, magnetic field lines are frozen in the medium, so that their topology
cannot change; if two closed field lines are initially linked together p times, they
must remain so linked for ever. Furthermore, we shall see that slight departures
from perfect conductivity, that may change locally the linkage of flux tubes
through reconnection events, do not change appreciably the global magnetic
helicity, so that magnetic helicity is a very robust invariant in the solar interior
and atmosphere.

Formally, the helicity in a volume V is defined as

H =
∫

V

d3r A · B (4.7)

12The Inca recording system was based on combinations of colours, types and number of
knots and their places on the cords. It was a base 10 positional system. For example, a cord
with three cluster positions containing in order: 4 single knots, 5 single knots, and a long knot
of 3 turns respectively might be interpreted in our notation as 453 (4× 100 + 5× 10 + 3× 1);
Ascher, M. and Ascher, R. 1981, Mathematics of the Incas: Code of the Quipu, New York,
Dover.

13Two structures are topologically invariant if they can be continuously deformed into each
other.
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where the volume V is simply connected (no holes) and completely contains B,
whose normal component is assumed to vanish on the surface bounding V .14

This reflects the non-local nature of helicity; clearly, the vector potential at a
point cannot be determined by the field at that point alone, and in this sense it
is non-local; in a more subtle way, the linkage of curves involves the behaviour
of these curves at points that may be very far from each other. Without this
constraint, one could choose an integration volume so small that it contained
no linkage.

The strict invariance of H can be proved formally from the frozen field
equation of MHD.

Twist, writhe and linkage

Helicity is easy to calculate in the simple case illustrated in Fig. 4.12 (bottom
right, adapted from [24] cited in Chapter 3) of two thin flux tubes following the
closed curves C1 and C2 and having respective fluxes Φ1 and Φ2. The helicity
(4.7) is the sum of an integral over the volume of the tube number 1, plus an
integral over the volume of the tube number 2. Since B follows the contours C1

and C2 and the magnetic flux (product of B by the tube’s section) is infinitesimal
and invariant along each of them, B d3r may be replaced by Φ1dl on C1 and
by Φ2dl on C2, so that (4.7) takes the form

H = Φ1

∫
C1

A · dl + Φ2

∫
C2

A · dl. (4.8)

Now, by Stokes’ theorem, the line integral of A along a contour C is equal to
the flux of B across the surface delimited by C and oriented as a right-handed
screw. Hence, for the geometry shown, where each tube encircles the other in
the right-handed sense, we have

∫
C1

A · dl = Φ2 and vice versa, so that (4.8)
yields H = 2Φ1Φ2. This can be generalised to tubes having a finite cross-section
and winding several times around each other; the helicity is then proportional to
the number of linkages of the lines, each having a sign determined by the relative
orientation of the winding. The helicity is thus proportional to a topological
invariant – the linkage coefficient – which does not change under continuous
deformation.

This concept also holds for a single tube being twisted or writhed, as shown
in Fig. 4.12 (left and middle) or having knots (Problem 4.8.2). To understand
this, let us imagine a simple torus-like tube carrying flux Φ, whose field lines
are unlinked circles parallel to the torus circular axis C. Such a tube has zero
helicity. Now, let us cut it along a cross-section perpendicular to C, producing

14This is because the potential vector A is defined up to the gradient of an arbitrary
function f , and adding �f to A changes H by

∫
V

d3r � · (fB) (since � · B = 0), which,
by Stokes’ theorem, vanishes if the normal component of B vanishes on the surface bounding
V . Otherwise, some subtle variants are required to define gauge invariant quantities (see the
paper by M. A. Berger in [10]).
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free ends; then let us twist these free ends through a relative angle 2π and
reconnect them. Each field line in the new flux tube is a closed curve in the
shape of an helix wrapped around the axis C. This is sketched in Fig. 4.12
(left), where the twist is left-handed, so that the helicity is H = −Φ2. More
generally, twisting the free ends through a relative angle ψ (in the right-handed
sense) increases H by ∆H = Φ2ψ/2π.

Now, let us try a little experiment with a tape of paper (as we did in
Section 3.3), or preferably with a rubber tape. Twist the free ends by a rel-
ative angle of 2π, and glue the ends as for the flux tube shown in Fig. 4.12
(left). Then try to remove the twist; you obtain a figure whose flattened shape
is sketched in Fig. 4.12 (middle), namely you have transformed the twist of
the tape about its centre line into a deformation of the centre line itself. This
happens every day with our telephone cords. The interesting point is that the
helicity has not changed. More generally, one can build an extremely complex
knot having twist, torsion and linkage, and deform it. The helicity will be dis-
tributed differently, but the total value will not change [38]. Note that zero
helicity does not mean an absence of twist, writhe or linkage, but that these
different contributions cancel out in the expression of H.

Twists, writhes and linkages of magnetic field lines are associated with field-
aligned currents. A simple case is illustrated by the magnetic flux tube of
Fig. 4.11 (left). Since it is twisted by the angle ψ, its helicity is H = (ψ/2π) Φ2,
and from (4.6) the parameter α = µ0J/B is ∼ ψ/L. Hence in this case
H ∼ (Lα/2π) Φ2 in order of magnitude. In more general cases, the force-free
parameter α is related to H in a non-trivial way.

Magnetic helicity as a robust invariant

Given the huge magnetic Reynolds number in the solar environment, magnetic
topology is conserved except during brief moments and in small regions where
large magnetic gradients occur, that enable dissipation and reconnection of field
lines. These events change not only the energy but also the magnetic topology,
so that the magnetic helicity is no longer strictly conserved. However, and this
is a very interesting point, it can be shown that H changes very little during
such events (whose timescale is vastly smaller than the huge resistive dissipation
timescale). This may be understood from dimensional arguments. In a volume
V where the magnetic field is B, the magnetic energy scales as WB ∝ B2V ,
whereas the helicity scales as H ∝ Φ2 ∝ B2S2 where S is a typical cross-section.
Since S2 = V L, we deduce that the magnetic helicity scales as

H ∝ WBL. (4.9)

The medium contains structures spanning a large range of scales (see a dis-
cussion of turbulence in Section 6.4), and for large Rm, dissipation occurs at
small scales. Since (4.9) suggests that in small-scale processes (L small), the
helicity H should vary much less than the magnetic energy WB , H is expected
not to vary significantly during dissipation events.
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The scaling (4.9) has another consequence: it should take much less energy
to put helicity into large scales than into small scales; hence H should have
a preference for being transferred to large scales in transformation processes.
This suggests that helicity might play an important role in producing large-
scale magnetic fields; we shall see later the importance of this property for
building the large-scale structures involved in coronal mass ejections. (Note
that magnetic helicity has a very different behaviour from the hydrodynamic
helicity v ·  × v, which scales as v2/L, i.e. as the kinetic energy Wk divided
by L.)

The invariance of helicity, even in the presence of resistive effects, provides a
constraint to find equilibrium states having the lowest possible energy. It can be
inferred in this way that the state of minimum magnetic energy – in a volume V
containing all the magnetic energy – is a force-free field for which α has the same
value for all field lines [55]. This means that as field lines are deformed and even
broken and reconnected, the helicity tends to spread out, with its distribution
becoming more uniform.

Helicity transfers

This robust invariance of helicity raises a problem: if it is so difficult to remove –
and to create – how can it be produced in the first place? To answer that
question, two facts are crucial. First, the definition (4.7) of helicity concerns
a volume at the boundary of which the normal component of B vanishes, so
that it cannot be applied as such to the whole solar atmosphere because of the
vertical magnetic field at the photosphere (some subtle variants are required).
Second, since helicity can have both signs, one can easily create positive and
negative helicities without changing the total value; for example, take a rope
whose extremities are tied, and twist the middle; this is equivalent to transferring
helicity from one half of the rope to the other.

Indeed, the solar atmosphere is far from being a closed system and helicity
may be transferred from one region to the other and even locally from some
scales to other ones. It can exchange helicity in three ways. First, flux tubes are
emerging in permanence from the solar interior, thereby transferring helicity.
Second, motions at the photosphere (where the magnetic field is not force-free)
may twist and braid the flux tubes, thereby changing their helicity. Third, the
corona is open to ‘infinity’, with which it may exchange helicity, for example by
ejecting matter.

Helicity segregation in the Sun and its atmosphere

A simple case of helicity segregation arises through the solar differential rotation.
Look at Fig. 3.10, which is an elementary picture of how differential rotation
produces an azimuthal magnetic field Bφ from a poloidal one. Starting from an
essentially dipolar magnetic field with positive Bz, differential rotation distorts
the field lines into a left-handed screw – having a negative helicity – in the
northern solar hemisphere, and to a right-handed screw – having a positive
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helicity – in the southern hemisphere. The amplitude of these helicities increases
as the field winds up. One solar cycle later, the sense of the dipole has reversed,
but the handedness of each screw has not changed.

Hence, while the magnetic flux through each hemisphere changes sign at
each cycle as the dipolar magnetic field reverses, the solar differential rotation
always produces negative magnetic helicity in the northern solar hemisphere
and positive helicity in the southern one. Only the amplitude of these helicities
changes during the solar cycle, not the sign.15

As magnetic loops emerge in permanence through the photosphere, they
carry magnetic helicity, and since global helicity is conserved as they evolve (and
even reconnect), coronal structures are expected to have a preferred negative
helicity in the northern corona and a preferred positive helicity in the southern
corona. Since the sign of the helicity should be still more strongly conserved
than the helicity itself, it may survive the adventures endured by the structures
during their life, and should therefore be observed in the corona and the solar
wind. And this is indeed observed (see the review by D. Rust in [14] and
references therein).

4.2.4 Inferences on magnetic structure in the low corona

What is the essential conclusion of all this? We have discussed (Section 3.4) the
importance of intense magnetic flux tubes for the solar magnetism. As these
tubes penetrate into the corona, they lose their great intensity and are left to
their own devices, except at their feet, where various motions stress and shuffle
them, so that they become twisted and braided. The associated field-aligned
currents produce an excess of magnetic energy with respect to the potential
field, so that both energy and helicity accumulate in the magnetic field.16 Since
helicity is virtually globally invariant in reconnection processes, it tends to build
up as new tubes emerge, are stressed and interact. Furthermore, since helicity
scales as magnetic energy times size, it tends to evolve towards larger helical
structures as magnetic energy is dissipated.

In regions where the flux tubes have all the same sense (outwards or inwards),
the field lines tend to open to ‘infinity’, and can therefore get rid relatively easily
of their helicity (through wave emission), just like a bunch of ropes with free
ends.

In other regions, the field lines form loops anchored at both ends, in which
helicity builds up and tends to form large complicated flux ropes. What happens
next? Before looking at this question, let us forget the magnetic field for a while,
except for its providing a privileged direction along which heat can flow, and let
us study the large-scale energy balance.

15Another source of helicity involves the action of the Coriolis force on rising loops within
the Sun.

16In fact, the magnetic helicity does not fully characterise the topological complexity of the
magnetic field, and other invariants can be defined.
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Figure 4.13 The radiative loss function of the solar atmosphere F (T ), from a
number of studies cited in the text (labelled by first letters of author’s name).
The straight line is the analytical approximation used here.

4.3 Energy balance

In the absence of bulk speeds and of unspecified heating processes, energy bal-
ance in an (optically thin) atmosphere is determined by:

• conductive heat transport along the magnetic field, towards the cooler side
(from (2.91) and (2.98))

Qc = −q0T
5/2dT/ds W m−2 where q0 � 10−11 (4.10)

• radiative losses

WR = n2F (T ) W m−3 (4.11)

where F (T ) is shown in Fig. 4.13 and n is the electron or proton density.

Conductive heat transport acts either as an energy supply or as an energy
loss, depending on the sign of dQc/ds, whereas radiative losses always cool the
gas down. Let us study this in more detail.

4.3.1 Radiative losses
In a collisional plasma, radiative losses are proportional both to the density of
the radiating ions and to that of the electrons that ionise and excite them, so
that the power radiated by unit of volume, WR, is proportional to the square
of the plasma density n. When the plasma is close to thermal equilibrium, the
so-called radiative loss function F (T ) = WR/n2 can be calculated as a function
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of temperature from the abundances of the radiating elements and from their
ionisation fractions. Figure 4.13 shows values published in [45]17 and a more
recent curve from J. Raymond (thick grey line).18 One sees that the radiative
losses jump sharply near 104 K, mainly due to hydrogen Lyα radiation, and
peak around 105 K. At higher temperatures, the curve has a complex shape
with several bumps due to the contribution of spectral lines of several heavy
elements, and falls progressively as prominent atomic transitions disappear with
increasing ionisation. Above 107 K, the radiation losses increase again due to
bremsstrahlung radiation.

Substituting n = P/(2kBT ) for a fully ionised gas of pressure P , the radia-
tion loss rate may be written as

WR =
(

P

2kBT

)2

F (T ). (4.12)

We see in Fig. 4.13 that in the temperature range from 5× 104 K to 5× 107 K,
the radiative loss function is fairly well approximated by

F (T ) � 10−32/
√

T W m3. (4.13)

We deduce an approximation of the radiation rate in this temperature range

WR � W0P
2T−5/2 W m−3 where W0 = 1.3 × 1013 (4.14)

in SI units.19

The decrease of radiative losses with increasing temperature above 5×104 K
has an interesting consequence. Imagine that for some reason, heat conduction
is suppressed and that some perturbation heats the gas, making the temperature
increase above its equilibrium value; this temperature growth reduces the radia-
tive losses, making the temperature grow further. Hence, heating the plasma
above a few 104 K produces a runaway increase in temperature. Conversely,
imagine that some perturbation makes the temperature fall off; this increases
the radiative losses, so that the gas cools more, and finally collapses to a lower
temperature. These instabilities, however, occur only when heat conduction
may be neglected, because these variations in temperature strongly change heat
conduction, which may stabilise the gas by enabling it to get rid of its heat
excess or deficit.

4.3.2 Radiative and conductive timescales
In order to compare the relative importance of these processes, let us estimate
how fast structures cool off by radiation and by heat conduction. Since the gas

17With values from Raymond, J. and Smith B. W. 1977, Ap. J. Suppl. 35 419 (continuous
line), [35] (dashed) and Pottasch, S. R. 1965, B.A.N. 18 8 (dash-dotted).

18From Raymond and Smith 1977, with updated abundances.
19Recent calculations using abundances of elements relevant for closed coronal structures

yield a similar approximation, but with a value of W0 twice as great (Martens, P. C. H.
et al. 2000, Ap. J. 537 471) – a change of no important consequence on our order-of-
magnitude estimates.
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energy density is 3nkBT (for electrons and protons), the timescale for temper-
ature change due to radiation is given from (4.12) by (in SI units)

τR =
3nkBT

WR
=

6 (kBT )2

PF (T )
∼ T 5/2

W0P
. (4.15)

Using Table 4.1 and (4.14), we find in the low corona outside active regions:
τR ∼ 4 × 104 s, that is roughly 11 h. In active regions, which are typically
hotter by a factor of two or three, and denser by a factor of ten or more, (4.15)
yields a timescale of only 1–2 h.

On the other hand, the timescale for temperature change due to heat con-
duction is, from (4.10),

τc =
3nkBTL

q0T 5/2 × T/L
∼ PL2

q0T 7/2
(4.16)

where L is the length of the structure and we have approximated dT/ds by
T/L. Contrary to τR, τc depends on the scale of the structure; heat conduction
tends to suppress small-scale temperature variation along the magnetic field.
Consider a large coronal structure of height L ∼ 108 m; with the values of
Table 4.1 outside active regions (4.16) yields τc ∼ 3×103 s – i.e. roughly 1 h, so
that τc � τR. In active regions, the numerator and denominator in (4.16) are
greater in similar proportions, so that the timescale τc is similar and is therefore
of the order of magnitude of τR. Shorter structures cool even more rapidly.

4.3.3 Temperature structure
We conclude, therefore, that in a static corona heat conduction is the main
cooling process outside active regions, whereas heat conduction and radiative
losses are both important in active regions.

To get a feeling about the temperature structure from the chromosphere to
the corona, let us consider the energy balance along a radial magnetic field line,
where the geometry requires the flux tube cross-section to increase as the square
of the radial distance r to the Sun. In the absence of macroscopic speeds and of
any unspecified heating process, energy balance then yields, from the expression
(4.10) of the heat flux,

q0

r2

d

dr

(
r2T 5/2 dT

dr

)
= WR. (4.17)

Consider this equation together with Fig. 4.1. Integrating it from some
radius rin located in the upper chromosphere (where dT/dr > 0) to some radius
rout in the outer corona (where dT/dr < 0), we get

r2
outT

5/2
out

[
dT

dr

]
rout

− r2
inT

5/2
in

[
dT

dr

]
rin

=
1
q0

∫ rout

rin

r2WRdr.

Since dT/dr is negative at rout and positive at rin , the left-hand side of this
equation is negative, whereas the right-hand side is positive. Clearly, something
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is missing; we must add a negative term on the right-hand side to balance
radiation and to produce the temperature gradients shown in Fig. 4.1. This
means that something should heat the gas, producing an additional term in the
energy balance (4.17), which should be replaced by

q0

r2

d

dr

(
r2T 5/2 dT

dr

)
= WR − Wheat. (4.18)

There is no agreement as to the identity of this heating term, nor as to how
and where it operates. We shall return to this point in Section 4.6. Meanwhile,
let us proceed with as few hypotheses as possible. Although the heating term
cannot be dispensed with near the temperature maximum, we may try to neglect
it at smaller and greater distances to the Sun.

Chromosphere–corona transition

Consider first the vicinity of the chromosphere–corona transition region, which
takes place over a small altitude range, in which the distance to the Sun and
the pressure do not change much. We may factorise r from the derivative in
(4.17) and substitute the expression (4.14) of WR, to obtain

d

dr

(
T 5/2 dT

dr

)
=

W0P
2
0

q0
T−5/2 (4.19)

where P0 is an average plasma pressure in this region. Rearranging, we get

R2
�

d2

dz2
T 7/2 = AT−5/2 with A =

7W0P
2
0 R2

�
2q0

� 1038 (4.20)

where z is the height measured from some arbitrary base point, and we have
substituted the numerical values of q0 (4.10) and W0 (4.14) with P0 ∼ 10−2 Pa
(from Fig. 4.1). The dimensional form of (4.20) suggests that the temperature
should vary approximately as T 6 ∼ Az2/R2

�.
This has two interesting consequences. First, the huge value of A indicates

that the temperature should increase rapidly with altitude, in agreement with
the sharp transition region shown in Fig. 4.1, and with our small altitude range
approximation. Second, since T varies as A1/6, our results are weakly sensitive
to the approximations made for the radiative losses and for the plasma pressure.
To go a step further, let us substitute a trial solution T = T∗ (z/R�)1/3 into
(4.20) [35]; this yields T∗ = (36A/7)1/6, whence

T = 2.5 × 106 (z/R�)1/3 K (at low heights). (4.21)

This yields a temperature jump to about 2 × 105 K at a height of 10−3R�
above the base point (that is located at the base of the transition region), to
5×105 K at 10−2R� and to 106 K at 10−1R�. Compared to Fig. 4.1, this is not
too bad a result for so simple a calculation. At greater heights, it is no longer
permissible to neglect the heating term and the decrease in pressure, even to
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make an order of magnitude estimate. In particular, we have dT/dz = 0 at the
temperature maximum, and the heating term is essential there to balance the
radiative losses.

Outer corona

Consider now the outer corona (outside active regions), significantly above the
maximum in temperature. We have seen that we may neglect radiation there,
so that (4.17) reduces to

d

dr

(
r2T 5/2 dT

dr

)
= 0 (4.22)

which can be integrated to give r2T 5/2dT/dr = constant, whence

d

dr
T 7/2 =

constant
r2

. (4.23)

Since from Fig. 4.1 the temperature at large distances is much smaller than in
the low corona, we assume

T → 0 for r → ∞

so that (4.23) can be integrated to yield

T ∝ r−2/7. (at large distances). (4.24)

Comparing again to Fig. 4.1, this is not too bad a result.

4.4 Some prominent species

Let us now examine more closely the population of the solar jungle, whose most
prominent species are shown in Section 4.1.5.

4.4.1 Spicules

The tallest spike in the middle panel of Fig. 4.7 extends roughly 40 000 km
(0.06 R�) above the surface; referring to Fig. 4.1, this means that it extends from
the chromosphere to the corona, through a medium whose average parameters
vary by many orders of magnitude; the other spikes, which are more typical,
extend roughly four times less.

What are spicules? Detailed studies show that what appears as a burning
‘prairie’ when seen on the solar limb is actually made of clumps20 clustered along
the magnetic network at the boundaries of the supergranular cells. Individual
spicules appear as sharp jet-like structures, with an average lifetime τ ∼ 600 s;

20They are then called mottles.
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they are thought to be made of gas and plasma with ne ∼ 1017 m−3 and (per-
haps) Te ∼ 104 K; individual spicules are inferred to be (perhaps) d ∼ 150 km
across or more, to start at about 1500 km above the solar surface, and rise at
an apparent speed of v ∼ 30 km s−1 along magnetic field lines to an altitude of
about 104 km, where the material dissolves and falls off. A number N ∼ 7×104

of them (with heights greater than 5000 km) have been estimated to be present
on the Sun at any time.

Nobody knows what exactly spicules are. Might their energy be provided by
the magnetic field in some way or another? With the order of magnitude B ∼
10−3 T estimated above, the magnetic energy density is B2/2µ0 ∼ 0.4 J m−3.
The energy required to lift a spicule to a height h ∼ 107 m is nempgh ∼
0.4 J m−3. This suggests that the available magnetic energy is sufficient to lift
spicules. The detailed mechanism, however, remains elusive, despite more than
a century of observation and a large variety of theoretical models (see [54]).
Growing them in our gardens is still a theoretician’s dream.

4.4.2 Magnetic loops
Magnetic loops are observed – or rather inferred – virtually everywhere in the
solar atmosphere, with a large range of temperatures and sizes, hotter loops
generally extending to greater heights. They have a threaded structure; as
resolution increases, each loop can be resolved into several finer ones (Fig. 4.8),
down to the limit of resolution.

In some sense, the three regions empirically defined on the Sun may be distin-
guished by their loops. The so-called active regions have the most conspicuous
and hottest loops, many of which seem fairly stable, lasting for days or weeks,
even though their appearance may change over minutes; most of them tend to
have a twisted structure, with a tendency to have a negative (positive) helicity
in the northern (southern) hemisphere – in accordance with the discussion of
Section 4.2.3. In contrast, the so-called coronal holes, which appear relatively
dark on images, have a dominant direction of field lines, that extend far away
without returning to the Sun; they have only small loops which in general do
not reach coronal heights. The rest of the Sun – the so-called quiet Sun which
occupies much of the surface – has a large variety of loops.

This ubiquity of loops in ultraviolet and X-ray images raises a question:
why do we see them as discrete entities? In other words, since magnetic lines
pervade the solar atmosphere, why do we see only some of them, and not a plain
continuum? To answer this question, let us try to derive some basic properties of
loops at equilibrium. Because transport processes take place along the magnetic
field that delineates the loops, we may picture them as being thermally isolated –
except at their foot points – and varying only along their length, which permits
one-dimensional modelling.

Consider energy balance along a static loop of constant cross-section:

−dQc/ds = WR − Wheat (4.25)

where s is the arc length along the loop, and Wheat is the already mentioned
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unidentified heating rate. For a loop of constant cross-section, with the conduc-
tive heat flux (4.10) and the radiation rate (4.14), this yields

q0
d

ds

(
T 5/2 dT

ds

)
= W0P

2T−5/2 − Wheat. (4.26)

This equation enables us to derive an order-of-magnitude scaling between the
length L of the loop (from one foot to the apex) and its average temperature 〈T 〉
and pressure P – assumed not to change much along the loop except near its
foot points (a reasonable approximation if the height is not much greater than
the scale height H corresponding to 〈T 〉). For an order-of-magnitude estimate,
we drop the heating term and write dT/ds ∼ 〈T 〉/L, to obtain

〈T 〉7/2/L2 ∼ (7W0/2q0) P 2T−5/2

whence

〈T 〉 ∼ 1.4 (W0/q0)
1/6 (PL)1/3 ∼ 1.4 × 104 (PL)1/3 (4.27)

where we have substituted the numerical values of q0 (4.10) and W0 (4.14).
Recall that we are working in SI units; cgs afficionados should divide the con-
stant by 10. Our simple order of magnitude estimate (4.27) is very close to the
well-known scaling law derived by [45] with a particular model for the loop and
the heating rate, and observed to describe rather well quiescent coronal loops
in active regions (see [16] and references therein).

Let us consider a typical active region loop, with a density of about 1015 m−3

and length L ∼ 107–108 m. The scaling relation (4.27) yields a temperature
〈T 〉 ∼ (0.9–2.8) × 106 K, which is in the ballpark of the observed values.

We can derive a further property from (4.26). Just as we saw previously
for the general corona, the loops must be heated by some process if they are to
exist at all. Indeed, consider the global energy balance along a loop, from one
foot to the other. The loop loses energy by radiation from its entire volume,
whereas heat conduction between the loop and the exterior acts only at its feet;
since these feet are colder than the rest of the loop, normal heat conduction
evacuates heat from the loop, not the reverse. Hence some heating process
must compensate for these losses. In order of magnitude, (4.26) shows that the
heating rate Wheat per unit volume should vary as

Wheat ∼ W0P
2〈T 〉−5/2 ∼ 103P 7/6L−5/6 ∼ 3 × 10−12〈T 〉7/2L−2 (4.28)

where we have substituted the numerical value of W0, and the scaling (4.27).21

In other words, the energy furnished to the loop by a – still unspecified –
process is essentially radiated away. Equation (4.28) might help to explain
why loops are observed as discrete entities. Increasing the heating rate of a loop
of given length L increases its pressure and its density (because from (4.28)
and (4.27), P varies with Wheat as a higher power law than does T ), making it
radiate more than its surroundings and thus emerge as a discrete loop.

21In cgs units the constant 103 becomes 104.5 and 3 × 10−12 becomes 3 × 10−7.
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Note, finally, that loops may not be in hydrostatic equilibrium, and that they
have been observed to oscillate, opening the way to a new discipline, coronal
seismology; see the sobering discussion in [57] and references therein.

4.4.3 Prominences
Solar images taken in the Hα line of hydrogen (which is a traditional way of
observing the chromosphere) reveal great elongated structures floating above the
Sun’s surface, that may last for weeks and even months, and quite often erupt.
When seen above the limb, they appear as bright prominences. On the other
hand, when seen on the disc, they show up as dark filaments (since they are
between us and the bright disc). Prominences and filaments are the two names
of ribbon-like structures made of dense and cool gas, that float approximately
vertically at heights up to about 50 000 km in the corona (Fig. 4.9). Their typical
inferred electron density is n ∼ 1016 m−3, with a neutral density roughly 10
times greater so that the mass density ρ ∼ 10nmp ∼ 2×10−10 kg m−3, and their
temperature is around T ∼ 104 K; they appear to be of thickness δ ∼ 5000 km,
with other dimensions at least 10 times larger, so that their typical mass is
ρδ(10δ)2 ∼ 1012 kg.

In short, prominences are bits of (dense and cold) chromosphere – having
the mass of a small mountain – floating in the 100 times less dense and hotter
corona. Furthermore, their vertical extent is far greater than the gravitational
scale height corresponding to their temperature (Table 4.1). How can this be
so?

As for most problems concerning the solar atmosphere, the key lies in the
magnetic field. We have already seen that the magnetic energy is so large that
the magnetic field can easily accommodate large variations in plasma param-
eters. And indeed, prominences are always observed where the magnetic field
is roughly horizontal, connecting regions where the vertical component of the
photospheric magnetic field changes sign. Furthermore, the field is observed to
have some helicity.

Figure 4.14 (left) is a simple view of such a structure, where the magnetic
field lines form a hammock where the prominence is resting. The curvature of
the magnetic field lines produces a tension force that balances the weight of
the prominence. In the region where the magnetic field lines make up a small
hammock-shaped hollow, of curvature radius R, the balance of forces (per unit
volume) yields

B2/µ0R = ρg.

The radius of curvature of the lines supporting the prominence is thus about
R ∼ B2/µ0ρg. Substituting the prominence mass density indicated above,
g � 260 m s−2 and B ∼ 10−3 T measured in these structures [29], we find
R ∼ 2 × 107 m – greater than the typical width of prominences.

We conclude that the coronal magnetic field is amply able to support promi-
nences, with a relatively small deformation. But how are the curved field lines
kept in place? Probably not by the matter lying there, whose mass is grossly
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Figure 4.14 How a prominence may be supported against gravity in a cradle
of twisted magnetic field lines connecting magnetic patches of opposite polarity
on the Sun. Left: basic helical hammock, whose magnetic tension supports a
weight. Right: helical hammock (light grey) supporting weights, magnetic ar-
cade (dark grey) that prevents it from blowing away and the field line delineating
the axis of the helix (white). (Courtesy G. Aulanier.)

insufficient. An answer is suggested in Fig. 4.14 (right), which symbolises (in
black) the magnetic arcade that prevents the hammock from blowing away.
And how do prominences form in the first place? How do they accommodate
their radiation losses? These questions are still under debate (see [3], [33] and
references therein.)

4.5 Time variability

4.5.1 Empirical facts

We have already mentioned the importance of time variability in the solar atmo-
sphere, even outside the so-called active regions. Most of the observed variability
involves the brightening, fading or deformation of loops, and/or transient mat-
ter ejection and energisation of particles, taking place in a wide range of space,
temporal and energy scales.

These transient events have been given various names according to their
size, appearance and wavelength of observation. The difficulties of observation,
however, especially projection effects, often make similar phenomena appear
different, and vice versa. Furthermore, there is some ambiguity in the definition
of an ‘event’ since not all authors agree on what they mean by ‘event’ (see [11]).

Small scales

At small scales, one observes in permanence on the Sun, of total surface

S� = 4πR2
� � 6 × 1018 m2 (4.29)
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about N ∼ 4 × 104 short-lived (τ ∼ 60 s) explosive events. They are inferred
to be jets of average speed V ∼ 100 km s−1, temperature T ∼ 104 − 105 K
and mass m ∼ 106 kg [17], i.e. an average kinetic energy W ∼ mV 2 ∼ 1016 J
per event. Since the kinetic energy of a proton moving at this speed satisfies
mpV

2 � kBT , these events are highly non-thermal.
Recent measurements [60] have detected far more similar events, over a

greater energy range, and the number22 of events dN , arising per second per
surface unit of the Sun in the energy range dW (and going outwards), as a
function of their energy W follows the approximate power law

dN

dW
� 2 × 1017

W 3
s−1 m−2 J−1 for 1015.7 < W < 1018.1 J. (4.30)

Since these jets have temperatures typical of the chromosphere, it may be
interesting to see whether chromospheric spicules (Section 4.4.1) follow a similar
distribution. If the energy per unit mass of a spicule is mainly the gravitational
potential gh, the average energy is W ∼ nempV gh ∼ 1017 J, where we have
substituted the volume V ∼ d2 × h, with the parameters and notations of
Section 4.4.1. The observed number N of spicules, of duration τ , on the solar
surface S�, yields a point on the energy distribution at N/ (τS�W ) ∼ 2 ×
10−34 s−1 m−2 J−1, for W ∼ 1017 J (taking ∆W ∼ W ). We have put it in the
figure, and one can see that it is in close agreement with the distribution (4.30)
– a result that may not be a coincidence.

Energy distribution

Jets and brightenings are observed at widely different energies, ranging from
about 1016 to 1025 J or more, over the whole solar surface. The low-energy
events are detected from Doppler shifts in ultraviolet lines, which are attributed
to bulk flows of matter; on the other hand, the high-energy events are detected
as X-ray brightenings, which are attributed to Bremsstrahlung radiation from
energetic electrons. The energy distributions of all these events follow power
laws of indices ranging from −1.5 to −3. This is illustrated in Fig. 4.15, on
which we have plotted results from a number of studies, obtained in both quiet
and active regions ([15], [51], [5], [6], [27] and [60]). Note that the event rate in
active regions drops by about a factor of 20 near solar activity minimum [15]
(when the surface of these regions also drops), but the power law index remains
approximately the same.

Although these power laws tend to be systematically steeper at smaller en-
ergies, it is interesting that a single power law distribution

dN

dW
∼ 3

W 2
s−1 m−2 J−1 for 1016 < W < 1025 J (4.31)

approximates the superposition of all these results over nearly 10 orders of
magnitude in energy, to better than a factor of 10. This distribution has several

22The value dN is the number of events of energy between W and W + dW present per
square metre of solar surface, divided by the duration of one event.
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Figure 4.15 Frequency distribution of transient events in the solar upper at-
mosphere as a function of energy, in quiet and active regions, from a number of
studies cited in the text (labelled by first letter of author’s name). All events
appear to follow power laws of index between 1 and 3 (dark grey lines); the
superposition of them is close to a power law of index −2 (thick light grey line).

fundamental properties. It is scale-free (a fundamental property of power laws),
and its first moment, i.e. the total energy that would be produced if the energy
range extended from 0 to infinity:

∫ ∞
0

dW W dN/dW ∝ ∫ ∞
0

dW/W , diverges
logarithmically at both ends. In practice, this means that the total energy
depends on both the smaller and larger energies, but that this dependence is
extremely weak. Stated otherwise, with a smaller power law index, most of the
energy would be concentrated in large events, whereas with a larger index, most
of the energy would be concentrated in small events.

Integrating (4.31) over the range covered by the statistics, from Wmin =
1015.7 J to Wmax = 1025 J, we find for the total energy output the modest value
of : 3 × ln(Wmax/Wmin) � 60 W m−2 . We shall return to this figure later.
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Large scales

At the large end of the energy distribution lie the most powerful transient phe-
nomena in the solar system; these events far outreach their solar birthplace,
affecting the outskirts of the heliosphere, and we shall return to them in later
chapters.

Observation shows essentially two classes of phenomena, that occur both
separately and together. The first class is a coronal mass ejection, in which
a gargantuan loop containing up to 1013 kg of matter rushes outwards from
the Sun at several hundreds of kilometres per second; it may reach the Earth’s
environment in a few days if it travels in the right direction, sometimes with
dramatic consequences. These events are responsible for the most damaging
disturbances associated to what is commonly known as space weather. They are
often associated with the eruption of a prominence and typically occur twice
a day or more at solar activity maximum [14]. We shall return to them in
Sections 6.3.2 and 7.3.3.

The second class is a large flare, which is detected as high-energy particles
and radiation, and releases roughly the same energy: up to 1025 J (and some-
times more), in a time that may be as small as a few minutes (with variations at
scales down to milliseconds) in a region of typically 20 000 km size, i.e. a volume
V ∼1022 m3. The plasma is heated and some particles are accelerated to high
energies, emitting radiation in most of the electromagnetic spectrum, from (kilo-
metric) radio wavelengths to gamma rays (of wavelength ∼10−13 m) – a range
of wavelengths extending over more than 17 orders of magnitude. Whereas ra-
dio emission comes from moderately energetic electrons, gamma spectral lines
reveal that nuclear reactions are taking place. Analysis of the emitted radiation
strongly suggests that a very large part of the energy released in a large flare
goes initially into accelerating electrons and ions [37].

An amount of 1025 J is what the Sun radiates normally in 1025/L� ∼ 0.02 s;
hence these large flares do not change significantly the mean total solar output
(even though the more energetic ones – as the one reported by Carrington – do
increase the visible solar luminosity during an appreciable fraction of a second).
This is not true in the X-ray and gamma-ray ranges, where flare emission is
much greater than the normal value.

What is the maximum energy released by flares? The answer is unknown
because the statistics is poor for giant flares and they tend to saturate the
(X-ray) detectors; energies as great as 1027 J have been tentatively reported
[25].

4.5.2 Hints from physics

These giant phenomena are powered by the magnetic field. This is strongly sug-
gested by the unavailability of any other significant energy source, and by three
observational clues [62]. First, large eruptions always occur at the boundary of
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large adjacent patches having opposite vertical magnetic fields; when such re-
gions are pushed together, reconnection arises and liberates energy; if the region
is large, so is the energy. Second, large eruptions occur in regions where the mag-
netic field has a complicated twisted and/or sheared large-scale structure; there
is no way to get rid of the magnetic helicity, except by ejecting the whole struc-
ture. Third, these events are followed by a large-scale reorganisation of the struc-
ture, which presumably reveals a similar reorganisation of the magnetic field.

Let us make an order of magnitude estimate. In or near active regions, where
these large events occur, we may assume a magnetic field of, say, 3 × 10−2 T
in a volume V ∼ 1022 m3; this produces a magnetic energy of (B2/2µ0)V ∼
4 × 1024 J, which is close to the energy liberated in a large eruption.

In practice, however, not all the energy available can be released. In the
absence of mass ejection, conservation of magnetic helicity puts a constraint on
the final state, which tends to be a force-free field with a constant value of α,
so that the energy available for dissipation is only the energy in excess of such a
state. On the other hand, a coronal mass ejection ultimately transfers helicity
in the interplanetary medium, so that the total energy available in that case is
the one in excess of that of a potential field, and is thus larger.

The detailed process is far from being understood, and three major questions
arise:

• how is the magnetic energy accumulated and stored?

• how is the eruption triggered?

• how is the released energy transferred to particles?

Just as in the case of a compressed spring, direct observation from outside does
not tell us how energy is accumulated and stored in the stressed material, and
finally released. Hence one can only make educated guesses as to the mechanisms
at work [26], [32].

There is little doubt that the magnetic energy comes from solar rotation and
convection, through emergence of magnetic flux tubes from the solar interior,
and their stressing and tangling by motions at their feet in and below the pho-
tosphere. The basic state might be a magnetic flux rope, i.e. a twisted tube
of flux (Fig. 4.16, top right), possibly formed from a sheared magnetic arcade
(Fig. 4.16, top left).23

Energy is expected to build up slowly in the electric currents as the field
lines are stressed. The energy cannot leak out because the feet of the lines

23The complexity of structures may enable magnetic energy and helicity to accumulate
more rapidly. This is because with only one or two (unknotted) tubes, the twists and braids
commute with each other; for example, when a tube is twisted by an angle ψ, twisting it
by an opposite angle cancels this action (however much you have twisted it in the interval),
just as in a linear random walk. This is not so with three tubes or more, that are braided
or interwoven. In that case, removing the braiding requires performing all the operations in
reverse without commuting them, which has a very small probability of occurring by chance.
As a result, random motions of the feet of the tubes might increase the magnetic energy more
rapidly than in a normal random walk process [9].
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Figure 4.16 Basic topologies inferred in models of coronal mass ejections (top),
and mechanical analogue of some models of energy accumulation and release
(bottom). A spring is slowly compressed by being pushed from below while it
is held by overlying rope tethers. The strain builds up until the tethers break,
letting the spring uncoil explosively. (Adapted from [26].)

sink into dense regions whose characteristic scale of variation is much smaller
than the wavelength of Alfvén waves. A flux rope such as the one in Fig. 4.16
(top right) would tend to grow in size and rise, but it is maintained by ar-
cades of overlying magnetic field (see Fig. 4.14, right). At equilibrium, mag-
netic tension balances the magnetic pressure force. The structure finally breaks
when the balance is tipped in favour of the outward pressure gradient, to pro-
duce a state that is energetically more favourable. This involves breaking and
reconnection of the field lines [26]. Figure 4.16 (bottom) shows a mechan-
ical analogue: a compressed spring, that uncoils when the ropes holding it
break.

However, whereas in an impulsive flare, energy is rapidly released into heat
and energetic particles, in a coronal mass ejection, magnetic energy is often pro-
gressively transferred to particles as matter progresses outwards. Indeed, the
ejection of matter often starts at speeds much below the Sun’s escape speed
of (2M�G/R�)1/2 ∼ 500 km s−1 and accelerates progressively, pushed by the
Lorentz force, magnetic energy being used to lift matter against solar gravity
and to give it bulk motion (and also heat) [56]. How can magnetic energy
be progressively transferred to particles as the ejected matter travels and ex-
pands? Two hints can help us to answer this question: one observational, one
theoretical. The observational hint is that these ejections show up as a giant
expanding magnetic rope having a significant helicity travelling from the corona
(Fig. 4.10) to interplanetary space [14]. The theoretical hint is the conservation
of magnetic helicity. We have seen that for a twisted loop of size L, helicity
and magnetic energy are related in order of magnitude by H ∝ WBL. Hence,
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as the loop expands, conservation of helicity requires that the magnetic energy
decreases, making energy available to the particles. Note finally that since the
helicity of the coronal ejections is ultimately transferred to interplanetary space,
these events enable each hemisphere of the corona to shed some of the helicity
continually provided to it [33].

Returning to the image of mass ejection shown in Fig. 4.10, one may inter-
pret the bright core of the structure as prominence material that is trapped at
the bottom of the helical field lines and dragged upward.

4.5.3 Further difficult questions
Let us return to the flare energy distribution (Fig. 4.15). All classes of events
tend to be distributed as a power law of index between −1.5 and −3 over
nearly 10 orders of magnitude in energy. Furthermore, despite the difficulties
of observing small events, some hints indicate that small flares may be scaled
down versions of larger ones. This suggests that similar mechanisms may be
operating at different scales, and raises four basic questions:

• are the observed differences in power laws genuine or are they due to
observational bias?

• what produces the power law distributions?

• what is the total flux of particles provided and is it relevant to aliment
the solar wind?

• what is the total flux of energy provided and is it relevant for heating the
corona and powering the solar wind?

Power law distribution

Are the reported differences in power law indices genuine? There are two obvious
observational biases: first, the number of events detected depends on how an
‘event’ is defined, and second, one is never sure that all the energy produced
has been detected. Indeed, the measured power law index has been found to
vary with the observational scheme (see for example [27], [6] and [11]).

What produces the power law distribution(s)? This problem arises in a num-
ber of contexts, and its ubiquity has aroused much interest in widely different
fields [39]. Prominent examples in the solar system are cosmic rays and earth-
quakes. Despite their widely different microscopic physics, their energy distri-
butions are rather similar, exhibiting power law shapes of index about −2.5 and
−2 respectively, over nearly 10 orders of magnitude in energies. The same is
true of a number of other phenomena.

Several tentative explanations have been proposed. One of these is the so-
called Yule process, which concerns quantities which increase in proportion to
their number, as for example taxonomic species and cities. It is widely used
in biology, but may be applied in a modified form to magnetic structures and
plasma particles. A simple related version is the mechanism proposed by Fermi
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a long time ago to explain the power law distribution in energy of cosmic rays
[31].24 For solar flares [46], let us assume that energy tends to accumulate at
a rate proportional to itself above some reference energy (introduced to avoid
divergence), below which the rate tends to become constant, i.e. dW/dt =
α (W + W0). The energy accumulated at time t is

W = W0

(
eαt − 1

)
(4.32)

where W0 is the reference energy. From time to time, this energy is released,
with the (Poisson) probability of flaring at time t

P (t) = dN/dt = νe−νt. (4.33)

The probability of flaring with energy W is thus

dN/dW = (dN/dt) / (dW/dt) = P [t (W )] / (dW/dt) (4.34)

where t (W ) is obtained from (4.32).
Note that the rates of energy accumulation (α) and release (ν) act only

through their ratio κ = ν/α, which measures how much energy accumulates
during the average time 1/ν separating two releases, since when κ � 1, the en-
ergy accumulated during the time 1/ν is (from (4.32) with eα/ν � 1+α/ν) about
W0/κ. The smaller the value of κ the greater the energy
accumulated.

Calculating t(W ) from (4.32) we have e−νt(W ) = (1 + W/W0)
−κ, which we

substitute into (4.33)–(4.34) to obtain the flare energy distribution (normalised
to unity)

dN

dW
= W−1

m

(
1 +

W

κWm

)−(κ+1)

(4.35)

where Wm = W0/κ.
The distribution (4.35) is called a kappa distribution. It has two interesting

properties. First, as κ → ∞ (infinitely small accumulation of energy between
two average releases), it tends to a Boltzmann distribution W−1

m e−W/Wm , which
is no surprise. Second, at high energies, it is proportional to the power law
W−(κ+1). The mean energy is25

〈W 〉 =
∫ ∞

0

dW W
dN

dW
=

κ

κ − 1
Wm. (4.36)

Only if κ is large does the average energy 〈W 〉 roughly equal the energy
Wm accumulated during the average time separating releases. If κ is not much
greater than unity, energy is not liberated sufficiently fast and the average energy
〈W 〉 can be extremely large. It becomes infinite when κ → 1, i.e. when the

24In this model, cosmic rays are accelerated at a constant rate in some confining volume,
for example a galaxy, from which they escape by diffusion at a constant rate.

25Easily calculated by using the identity: W = κWm [(1 + W/κWm) − 1].
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release rate ν equals the rate α of energy accumulation. In practice, however,
there is a limit on the time during which energy can build up according to (4.32),
and to the value it may reach.

This kind of distribution is often encountered in space physics, and we shall
encounter it again later in this book.

In answering one question, however, we raise three further ones. How can
magnetic energy accumulate in the solar atmosphere at the same rate at all
scales? And how can the rate of energy accumulation be proportional to the
flare rate, over such a wide energy range? And finally, what physical process in
the corona determines the energy Wm?

Another popular scheme avoids these difficulties by picturing eruptions as
sand avalanches or other critical phenomena, for which no privileged scale
exists, and where most of the changes take place through catastrophic events
[34] (see [8] and references therein for applications in other contexts). Basically,
this scheme assumes the magnetic field to be in a self-organised critical state
analogous to a sand pile. As sand is added to a sand pile, the average slope in-
creases until a state is reached where it remains approximately constant. When
this critical state is achieved, addition of more sand triggers avalanches that
readjust the local shape. As a grain of sand moves locally, it disturbs the
equilibrium in its vicinity, so that the perturbation propagates in a chain reac-
tion. As a result, small local perturbations give rise to avalanches of all sizes,
whose probability distribution has no privileged scale – whence the power law
shape.

Applying this scheme to the magnetic field of the solar atmosphere involves
three ingredients. First, a forcing of the system by addition of energy – anal-
ogous to adding sand grains; this role might be played by random motions of
the field lines at the photosphere and below, which transform solar convective
energy into atmospheric magnetic energy. Second, a local instability arising
when some local parameter – playing the role of the local slope in a sand pile –
exceeds a critical value; this role might be played by magnetic reconnection,
which arises when the local field gradient exceeds some threshold value (or by
another kind of plasma instability). Third, a transport process which enables
the instability to change the value of this parameter at nearby sites; this role
might be played by the reorganisation of the magnetic field whose connectivity
changes during reconnections.

But what value should the power law index have? And what determines the
absolute amplitude of the distribution, i.e. how many events occur in a given
energy range? Answering these questions should require a deeper understanding
of the physics, of how the energy of flares scales with their size, and of their
space filling factor – more precisely of their fractal dimensions.26

Even though a huge number of scenarios have been proposed, based on a
still greater number of plasma instabilities and wave modes, none of them is
basic enough to have a predictive value.

26Recent experiments with sand piles show that, despite early claims to the contrary, the
power index does depend on the nature of the grains. For example, just as do risotto recipes,
piles of rice grains behave differently depending on whether the rice is long-grain or short-grain
(Frette, V. et al. 1996, Avalanche dynamics in a pile of rice, Nature 379 49).
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Mass flux

What is the total mass involved in flares of all sizes? Instead of introducing
model-dependent scaling factors, let us make an estimate in a few cases where
the mass can be estimated from observation. Consider first spicules. With the
notations and parameters of Section 4.4.1, the mass that may be supplied to
the corona via spicules is Nnemphd2/τ ∼ 4 × 109 kg s−1. This is much greater
than the mass loss through the solar wind. In other words, spicules supply to
the corona much more material than escapes through the wind, so that most
of it must return to the Sun. Next, consider the explosive events discussed in
Section 4.5.1; the mass supplied is of the order of Nm/τ ∼ 0.7×109 kg s−1; this
is roughly equal to the solar wind mass flux.

Both estimates indicate that only a small proportion of the mass available
is required to sustain the wind. This suggests that the mass flux of the solar
wind is not determined by the availability of solar material, but rather by other
processes.

Energy flux

We have seen in Section 4.5.1 that with a flare energy distribution varying as
W−2, the total energy provided in the range covered by observation is only
about 60 W m−2, with a large uncertainty.

How is this figure affected by uncertainties on the power index and on the
energy range? Let us assume the distribution (4.30) that varies as W−3 to con-
tinue down to some minimum energy Wmin. In this case, the total energy would
be Wtot =

∫
Wmin

dW W dN/dW � [
2 × 1017/Wmin

]
W m−2. If Wmin were

smaller by one order of magnitude than the lower end of the present observa-
tional range, the total energy would be multiplied by 10. We conclude that small
flares might easily provide much energy to the corona if the power law index is
close to −3. This is not so, however, if the index is ≥ −2. With the distribution
(4.31) of index −2, producing the modest value of Wtot � 600 W m−2 would
require Wmax/Wmin � e200 � 1087. Taking Wmin ∼ 10−19 J (the thermal en-
ergy of a particle at T ∼ 104 K), this would require Wmax ∼ 1068 J – greater by
more than 20 orders of magnitude than the total mass energy of the Sun!

4.6 Coronal heating: boojums at work?

We have seen that the solar corona is very hot, even outside the so-called active
regions, and that this high temperature cannot be explained with the fluid
energy equation without introducing an extra heating term, as yet unspecified.

There is still no agreement on this term, despite an unreasonable increase of
the literature on the subject during the last decades, both in size and stodginess.
The theories are so numerous that a new discipline has emerged: classification of
theories; a recent record lists seven classes, each involving up to eight different
processes [4]. Although this suggests irresistibly some ‘anti-Ockham razor’27

27William of Ockham was a fourteenth-century philosopher, whose approach was – put
simply – economy of hypotheses, i.e. to put aside complicated explanations when a simple
one would do; this principle is known as Ockham’s razor.
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principle, some of these theories are perhaps right. Balanced reviews may be
found in [63] and [57].

4.6.1 The energy budget and how to balance it

Let us first estimate the energy required, by assuming conservatively that the
heat flux is given by (4.10).

Consider first the corona outside active regions. We have seen that the
energy budget is dominated by the heat flux. From (4.10) and the temperature
profile sketched in Fig. 4.1, we see that the major losses of the corona take
place at its base, towards the chromosphere, since it is in this part of the profile
that T 5/2dT/ds is greatest; from Fig. 4.1, we have in order of magnitude Qc ∼
102 W m−2.

On the other hand, in active regions, we may evaluate the heating re-
quirements from the scaling (4.28); the flux required for a loop of length L
is Wheat ×L; eliminating L with the aid of (4.27), we get WheatL ∼ 10×T 1/2P .
With the parameters given in Section 4.4.2 we find, in order of magnitude, a few
103 W m−2; more accurate calculations yield values of the same order of mag-
nitude [61]; heating the top of the chromosphere requires a still greater energy
flux, because the density and the radiation losses are greater (recall Fig. 4.13).
However, active regions represent a very small fraction of the total solar surface.
Their greater heating is not surprising: the magnetic energy available is much
greater, and, since they are essentially made of loops protruding from the solar
vicinity, energy can accumulate without being steadily evacuated outwards as
it does elsewhere along magnetic field lines open to the interplanetary medium.

Comparing these values to the total solar radiative flux L�/S� � 6.3×
107 W m−2, we see that the heating of the solar atmosphere involves a very
small fraction of the solar output.

Three main basic mechanisms have been proposed to explain the high tem-
perature of the solar upper atmosphere:

• heating by dissipation of electric currents through small reconnection events,

• production of waves, and heating by dissipation of the associated energy,

• production of non-Maxwellian particle velocity distributions, and filtration
of the particles by the solar gravitational potential.

The first two mechanisms rely ultimately on the transformation of magnetic
and kinetic energy into heat through viscous and ohmic dissipation. Some vari-
ants invoke MHD turbulence, either for producing small scales that enable dis-
sipation, or for producing MHD waves. In contrast, the third mechanism is
non-dissipative: it relies on the non-equilibrium state of the atmosphere in the
form of fast (non-thermal) particles, which are filtered by the solar gravitational
potential.

While controversies are raging as to how the corona is heated, it is sobering
to remark that, ultimately, all the proposed mechanisms may be based on the
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Figure 4.17 Solving the coronal heating problem. (Drawing by F. Meyer.)

same phenomenon: accumulation of energy in the tortured magnetic field, and
subsequent release, and indeed, it has been inferred that the heating increases in
proportion to the magnetic energy density [16]. The release of magnetic energy
is expected to produce heating, Alfvén waves and magnetic turbulence, and
suprathermal particles. These effects are at the basis of the three mechanisms
proposed, and might all be in action – although not necessarily in the same
place and at the same time.

A similar sobering remark applies to the controversies about the proper way
of describing the medium. Most schemes are based on fluid equations, whereas
other ones are kinetic, and even sometimes collisionless; indeed, the most pop-
ular heating mechanism involving waves is kinetic, as is also the mechanism
based on the filtration of particles. As we saw in Section 2.3, whether a fluid or
a kinetic description is more adequate depends on the availability of thermali-
sation processes and on the role they play. Whereas the photosphere is highly
collisional and can be adequately described by the usual fluid equations, this is
not so in the outer atmosphere because of the strong density decrease and tem-
perature increase with height. Each description of the medium may be right, if
applied in the proper way and in the proper place.

4.6.2 Heating through reconnection events

This scheme, championed by E. Parker [40], is based on dissipation of magnetic
energy through transient reconnection events. More precisely, if the low end of
the flare energy distribution shown in Fig. 4.15 is extrapolated downwards, the
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individual events become so small and so numerous that the result is essentially
continuous, and might hopefully heat the corona.

This speculation raises two questions. First, is there enough energy avail-
able? As we have seen in Section 4.5.3, the total energy provided depends
strongly on the slope of the power law distribution at low energies. If the index
is in the ballpark of −3, a minor extrapolation of the measurements downwards
in energy may be sufficient. If, on the other hand, the index is ≥ −2, the
prospect of heating by these events is poor. As we already noted, however, it
is by no means certain that all the energy released can be detected. Whereas
smaller flares are detected through jets of matter, larger flares are detected
through the radiation produced by high-energy electrons. It would be surpris-
ing if lower-energy (but still non-thermal) particles would not also be produced,
as also MHD waves, and, as we shall see below, both might be responsible for
the large coronal temperature.

This raises a second question. If these small events heat the upper atmo-
sphere, how do they manage to do so? What is the role played by bulk jets,
which should produce shocks, with subsequent heating, acceleration of particles
and wave emission? And what is the role played by waves and suprathermal
particles?

Finally, the temperature profile in the solar atmosphere (Fig. 4.1) is remi-
niscent of the one in a granular fluid with inelastic collisions that is subjected
to gravity and injection of energy at the base [42]. A similar effect might possi-
bly occur in the low solar atmosphere with ionisation and recombination play-
ing the role of inelastic collisions, and reconnection events being the heating
agent.28

4.6.3 Heating by waves

Heating the corona through transient reconnection events assumes the atmo-
sphere to respond to photospheric motions through quasi equilibrium states,
separated by reconnection events arising when some threshold is reached. This
requires the photospheric driving motions to act at timescales greater than the
response time of the atmospheric magnetic field, i.e., roughly speaking, the driv-
ing speeds should satisfy the condition v < VA (VA is the Alfvén speed). The
values in Table 3.1 suggest that this might be so. If the opposite inequality holds,
however, the driving motions excite Alfvén waves. Furthermore, reconnection
events themselves are expected to emit Alfvén waves.

If these waves manage to propagate to great altitudes and dissipate there,
they might heat the outer atmosphere. For this to be so, however, three con-
ditions have to be met. First, enough wave energy must be produced. Second,
this wave energy must reach the right places; in particular, heating has to be
provided rather high in the atmosphere, where the temperature has a maxi-
mum. Third, enough energy must be transferred to the particles. Unfortunately,
meeting all these constraints turns out to be difficult.

28Pantellini, F., personal communication, 2004.



Coronal heating: boojums at work? 207

Alfvén waves carry transverse perturbations in velocity and magnetic field,
without density and pressure variations. They are not, however, the only waves a
priori capable of heating the corona. Perturbations in pressure and longitudinal
speed produce acoustic waves, which involve the compressibility of the medium,
and carry variations in density and pressure.

Acoustic waves

In a non-magnetic medium, acoustic waves can propagate in any direction at
the speed VS . In the solar atmosphere, the magnetic field provides a privileged
direction and additional forces, so that these waves are modified as outlined in
Section 2.5. Furthermore, at low heights, strong magnetic flux tubes may guide
the waves.

Suppose that such compressive waves manage to be emitted. What is the
energy flux transported, and what happens to these waves as they propagate
outwards?

Sound waves of speed amplitude δv carry an energy flux
(
ρδv2/2

)
VS . With

the parameters of Section 3.3 and the sound speed from Table 4.1, we find that
this flux might reach a few 105 W m−2, much more than is needed for heating
purposes. Because the viscosity is so small, there is no dissipation, so that this
energy flux should remain constant. Hence, as these waves propagate in the
low chromosphere, where the temperature changes very little whereas ρ drops
sharply, the wave amplitude grows sharply as δv ∝ ρ−1/2. This makes the waves
steepen rapidly into shocks, so that they quickly dissipate within a small region.
In doing so, however, they are absorbed and do not reach the corona. Hence
these waves might heat the low chromosphere, but there is little prospect for
them to heat the corona.

Alfvén waves

Consider now Alfvén waves, which carry transverse velocity and magnetic field
disturbances. The simplest way of generating them is to shake the field lines
faster than the Alfvén speed; they may also be excited by reconnection events
of geometry sketched in Fig. 4.5 (left) (see [47]), and by turbulence.

Alfvén waves are expected to traverse the solar atmosphere with little at-
tenuation, because they are difficult to dissipate. This resistance to dissipation
stems from their non-compressive nature, and from the small values of the vis-
cosity and of the resistivity. In short, whereas compressible waves deliver easily
their energy through formation of shocks, but (because of this property) cannot
reach the remote place where they are needed, Alfvén waves, in contrast, easily
reach the corona, but they stubbornly tend to keep their energy for themselves.
Subtle scenarios must thus be invoked to enhance their damping. For example,
transforming them (by non-linear coupling) into waves that damp more easily,
and/or invoking subtle variants or adequate plasma instabilities.

This resistance of Alfvén waves to dissipation, however, is only true in
the context of MHD. And indeed, a popular heating scheme involves resonant
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damping of kinetic Alfvén waves. A little digression is needed here, because
such a collisionless dissipation mechanism appears at odds with ordinary MHD.
Alfvén waves are driven by the elasticity of the field lines, whose inertia is pro-
vided by the particles attached to them by flux freezing – a pillar of MHD
(Section 2.3). So, what kind of stuff are kinetic Alfvén waves? The answer lies
in the realisation that flux freezing only holds at scales greater than the radius
of gyration of the particles. Kinetic Alfvén waves are Alfvén waves whose wave-
length is not greater than the radius of gyration of the particles, and which are
thus outside the scope of MHD. Resonant damping of waves is also a kinetic
effect (Section 2.5). A resonance occurs when a particle moves in such a way
that it experiences nearly constant wave electric and magnetic fields in its own
rest frame, so that energy can be exchanged very easily.

For heating ions, one must find a resonance with their own motion. Since
ions gyrate around magnetic field lines, a cyclotron resonance occurs when the
field of the wave rotates in the same sense and at the same frequency as do
ions (as seen in their own rest frame). Since positively charged ions gyrate in
the left-hand sense, the wave must be a (left-hand) circularly polarised Alfvén
wave. An ion of velocity vi sees the field of a wave of (angular) frequency ω
and wave vector k at the frequency ω − k · vi, so that the resonance condition
reads

ω − k · vi = ωgi (4.37)

where ωgi is the ion frequency of gyration. At this resonance, ions surf on the
waves and can spin up, at the expense of them [12].

With a magnetic field of the order of 10−3 T in the low corona, the (angular)
frequency of gyration is ωgp = eB/mp ∼ 105 Hz for a proton; it is somewhat
smaller for heavy ions, since ωgi = Zωgp/A for ions of charge Ze and mass mi =
Amp. Hence, though the magnetic field decreases with altitude, making the
gyrofrequencies decrease accordingly, the resonant waves have still frequencies
greater by many orders of magnitude than the typical values observed at the
photosphere, where the observed periods are in the range of minutes. The wave
generation mechanism has thus to be very subtle to bridge this gap, and this
process should heat preferentially heavy ions, whose frequency of gyration is
smaller.

The popularity of models based on this mechanism is due to their prefer-
ential heating of heavy ions perpendicular to the magnetic field – because the
resonance involves the particle gyration – which agrees with observational in-
ferences. Indeed, heavy ions of mass mi are inferred to have temperatures (in
the direction normal to the magnetic field) that may be greater than the proton
one by a factor even larger than the mass ratio mi/mp. Furthermore, as we
shall see in Section 6.4, Alfvén waves are routinely observed in the solar wind,
suggesting that they may also be present in the corona. The major drawback
of these models, however, is that despite much effort, adequate waves have not
been observed at the place where they are needed for the models to work, and
the mechanism responsible for their generation remains unknown (see [13]).
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4.6.4 Filtration of a non-Maxwellian velocity distribution

As is the heating process discussed above, this one is also kinetic, involving the
individual speeds of the particles. The key point is the realisation that there
are not enough collisions in the outer solar atmosphere for the particle velocity
distributions to be Maxwellian distributed. This implies a radical revision of
ideas, since this assumption is a pillar of analyses in astrophysics, from ionisation
and radiation loss calculations to spectroscopic diagnostic procedures and energy
balance equations. Let us explain how this comes about.

Beware of the assumption of local thermal equilibrium

The key point is that the corona is a plasma, and we have seen in Section 2.1
that the collisional free path of charged particles increases strongly with energy.
The mean free path of particles in the transition region is a few per cent of the
scale of variation, and somewhat greater farther out. Naively, one might think
that this should ensure local thermal equilibrium. But no! As we already noted,
charged particles whose speed is, say, three times greater than average, have a
free path greater by a factor of 34, and is therefore of the order of magnitude
of the scale of variation. These particles thus traverse one or more scale heights
before thermalising, so that local thermal equilibrium fails for them.

Put another way, even though particles of average speed ∼ vth have a free
path lf < H, this is not so for faster particles, so that the usual expansion
in power series of lf/H, that work so well for neutral gases, now fails to con-
verge uniformly. As a result, the local Maxwellian approximation is badly in
error for speeds v satisfying (v/vth)4 > H/lf . With H/lf ∼ 102 in the tran-
sition region (and still smaller farther out), the velocity distributions should
have non-Maxwellian tails at speeds greater than a few times the thermal
speed [52].

This raises grave doubts as to the validity of a number of calculations. In
particular, the heat flux (see Section 2.3) might be completely different from
the usual collisional one; it may even flow from the cold side to the warm side –
in sharp contrast with our deeply ingrained prejudices. It is fair to say that
there is much controversy on this subject and that different calculations give
conflicting results (see [28] and references therein).

There are two ways to solve the problem. One way, which is the simplest
and the most popular, is to cling to the fluid description and use an empirical
value of either the heat flux or the temperature variation. The other way, which
(in theory) is the most satisfactory, is to give up the fluid description and to
adopt a kinetic picture; the problem, however, is so difficult that nobody has
yet come up with a complete solution.

In order to get a feeling of what happens, let us consider a simplified version
of the problem: no collisions at all.

This is the basis of an elegant reasoning invented by J. Scudder [49], [50],29

which builds on the following basic points:

29A more digestible version, in a different context, may be found in [36].
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• the numerous non-thermal processes taking place in the solar atmosphere
should prevent the (nearly collisionless) fast particles from relaxing to-
wards Maxwellians, producing tails in the velocity distributions;

• in this case, the solar gravitational potential filters the particles by over-
populating these tails, making the temperature increase with distance.

How can the solar gravitational potential filter the particles? To understand
this, let us first consider how particles behave when subjected to an attracting
force in the absence of collisions.

A simple toy model

Consider particles that are attracted by a central object, so that their poten-
tial energy ψ(r) is negative and increases with the distance r. How does the
temperature vary with r? Let us first assume that the distribution at r0 is a
Maxwellian (of density n0 and temperature T0). We saw in Section 2.3 that
when the potential energy varies, the particle energy distribution is translated
by the same amount, which yields Boltzmann’s law, even though there are no
collisions; this holds only for attracted particles, for which there is no accessi-
bility impeachment between r0 and r whatever the energy.

Hence at distance r, where the potential has varied by ∆ψ = ψ (r)− ψ (r0),
the distribution is still a Maxwellian of temperature T0, but the density has
decreased to

n (r) = n0 × e−∆ψ/kB T0 . (4.38)

What happens when the distribution at r0 is no longer a Maxwellian (Prob-
lem 2.5.4)? The simplest case is a sum of two Maxwellians: one of number den-
sity nC and temperature TC , and a second one which is a minor constituent –
of number density nH � nC , but of greater temperature TH � TC . This is a
simple representation of a distribution having a suprathermal tail (Fig. 4.18).
In that case, the total number density is nC + nH � nC , and the average tem-
perature is

T (r0) =
nCTC + nHTH

nC + nH
(4.39)

� TC if nHTH � nCTC .

Between r0 and r, each Maxwellian evolves according to (4.38) with its own
temperature (which remains constant), so that the number densities of each
Maxwellian decrease with distance as

nC(r) = nC × e−∆ψ/kB TC ; nH(r) = nH × e−∆ψ/kB TH (4.40)

(Fig. 4.18). The average temperature at distance r is

T (r) =
nC(r)TC + nH(r)TH

nC(r) + nH(r)
. (4.41)
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Figure 4.18 Filtration of particles by a potential well, for a distribution (con-
tinuous line) made of a sum of Maxwellian distributions (dotted lines). Black
and grey lines denote respectively the original and filtered distributions. The
variation in potential ∆ψ produces a translation towards smaller energies, mak-
ing the cold component nearly disappear (the particles cannot surmount the
potential well), whereas the hot component is barely affected and is the only
surviving population at high altitudes.

Since TC � TH , there is some distance at which the variation in potential
∆ψ satisfies ∆ψ/kBTH � 1 – so that the hot component is barely affected
by the variation in potential, whereas on the contrary, ∆ψ/kBTC � 1 – so
that the cold component barely survives the variation in potential. This arises
when the distance is large enough to ensure e∆ψ/kB TC > nCTC/nHTH , while
e−∆ψ/kB TH � 1. Then, substituting (4.40) into (4.41) yields the average tem-
perature at distance r: T (r) � TH .

The remarkable thing is that the temperature has increased with altitude
from TC to TH , without any heat being furnished. How can this be so? The
answer is that the particles are hotter, but are much less numerous; they
have not been heated, but rather filtered by the potential well, which lets
only the most energetic ones go upwards. This ‘velocity filtration’ effect [49] is
generic, provided that the distribution has a suprathermal tail and is subjected
to a monotonous confining potential, without collisions. The result obtained
with our unrealistic distribution may be generalised to a sum of any number
of Maxwellian distributions (Problem 2.5.4), and to distributions having power
law tails, as kappa distributions.

Elementary application to the Sun

Let us calculate the confining potential in the case of the Sun. Since the at-
mosphere is not neutral, the gravitational force is not the only one acting on
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−eE

Figure 4.19 In a hydrostatic electron–proton atmosphere with equal tempera-
tures, the tendency of the (light) electrons to escape from the (heavy) protons
sets up a restraining electric field which reduces the net attractive force on a
proton to half the solar gravitational force.

the particles. To keep the problem simple, consider a static atmosphere made
of electrons and protons having similar velocity distributions. In the absence of
electric field, the proton pressure gradient should equilibrate the gravitational
attraction Fg = mpg per proton. But since the gravitational attraction on the
electrons is negligible, there is nothing to equilibrate the electron pressure gradi-
ent (which equals that of the protons in this simple case), so that the electrons
tend to be displaced outwards with respect to the protons. This produces a
minute space charge which induces a radial electrostatic field E directed out-
wards. If the atmosphere is to remain static, this electrostatic field must adjust
itself to ensure that the total attraction on a proton (Fg − eE) equals the elec-
trostatic attraction on an electron (eE), where e is the elementary charge. This
occurs when eE � Fg/2, so that the force on the protons is halved and equals
the force on the electrons. This enables the pressure gradients to be equilibrated
for each species (Fig. 4.19).

The total potential to which the particles are subjected at distance r is
thus approximately half the gravitational potential, i.e. ψ (r) � −mpM�G/2r.
Hence, over a small distance ∆r near the Sun, this potential varies by30

∆ψ � mp

2
g∆r ; g =

M�G

R2�
. (4.42)

Let us use our toy model, and assume that the velocity distribution near the
Sun (for both electrons and protons) is made of a Maxwellian of temperature
TC � 104 K plus a small (Maxwellian) tail of temperature and density satisfying,
say, TH/TC � 102, nH/nC � 10−3. In this case, the average temperature
near the Sun is roughly TC , and we have seen that it increases to roughly
TH over a distance satisfying the conditions e−∆ψ/kB TH � 1 and e∆ψ/kB TC >
nCTC/nHTH . Substituting (4.42), this yields

3HC < ∆r < HCTH/TC

where HC = 2kBTC/mpg is the scale height at the temperature TC .

30A simple generalisation to the case when there are other ions than protons, so that the
mean mass per particle is different from µ 
 mp/2, and when different particle species have
different velocity distributions, can be found in [36].
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Hence, the temperature increases from TC � 104 K to TH � 106 K over
a distance of a few scale heights HC . The large temperature achieved is the
remnant of the high-energy tail of the original distribution, and is produced by
filtration of the particles by the confining potential. We have devised this toy
model for enlightening the physics; a realistic distribution should rather have a
power law energy tail, as in [49], which produces a more regular temperature
increase.

As other heating schemes based on kinetic processes, this one produces ion
temperatures that increase roughly proportionally to their mass, since the filter-
ing potential acting on a minor ion species is roughly proportional to its mass.31

The heavier the ion, the more effective the filtration making the temperature
rise.

Difficulties

This elegant scheme, however, has several worrisome points. For one thing,
this process replaces the problem of heating the corona in bulk by another one:
producing a small quantity of suprathermal particles. Indeed, it is not proven
that the velocity distributions in the solar atmosphere have suprathermal tails
adequate for producing the observed temperature increase. The arguments for
the presence of such tails are rather similar to those invoked for Alfvén waves.
First, the numerous acceleration processes acting in the solar atmosphere are
expected to produce suprathermal tails. Whereas large flares are known to
produce very high-energy particles, of which the tail needed by the filtration
mechanism might be the low-energy side, the by-products of small flares are
largely unknown. Second, just as the solar wind exhibits Alfvén waves, it also
shows up velocity distributions having high-energy tails. And finally, there are
some (still controversial) observational hints as to the presence of such velocity
distributions in the corona.

A more serious cause for concern is that collisions between particles are not
negligible in the transition region and in the low corona. Even though collisions
are not sufficiently numerous for the usual energy equation with the (collisional)
heat flux to hold, collisions cannot be neglected either, and are expected to
modify significantly the velocity filtration in the transition region (see [28] and
references therein). And finally, the above derivation ignores the energy loss by
radiation.

To conclude this section on coronal heating, we must admit that neither of
the mechanisms proposed is without difficulties; the process at work is elu-
sive, to say the least, and it seems finally that all clues are pointing to a
boojum.32

31More precisely, the potential acting on a minor ion of mass mi and number of elementary
charges Zi varies as mi/〈m〉 − Zi/ (1 + 〈Z〉), where 〈m〉 and 〈Z〉 are respectively the average
ion mass and number of elementary charges.

32Many thanks to David Mermin for his efforts in making Lewis Carroll’s boojum an inter-
nationally accepted technical term (see Mermin, N. D. 2003, Am. J. Phys. 71 296).
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4.7 Hydrostatic instability of the corona

Let us take for granted the high temperature of the corona and examine the
consequences. Consider first the simplest case of a radial magnetic field, which
does not produce forces along the radial direction.

4.7.1 Simplified picture of a static atmosphere
We assume a spherical symmetry, all quantities depending only on the radial
distance r to the Sun, and a static atmosphere made of electrons and protons
having equal number density n and temperature T , immersed in the solar grav-
itational field. Since the gas is electrically neutral, there is no electromagnetic
force in average, so that for the atmosphere to be static, the radial pressure
gradient must balance the gravitational attraction, i.e.

dP

dr
= −ρM�G

r2
(4.43)

where the gas mass density is ρ � nmp (since the electron mass is negligible),
and the pressure is P = 2nkBT = ρkBT/µ, where µ � mp/2 is the average
mass per particle. Eliminating ρ, this yields

1
P

dP

dr
= −µM�G

kBTr2

whose integration gives the pressure at distance r

P = P0 exp
[
−µM�G

kB

∫ r

r0

dr

Tr2

]
. (4.44)

Since the coronal temperature increases only weakly from the low corona to
the temperature maximum (Fig. 4.1), and decreases slowly outwards, we first
assume a constant temperature. Substituting into (4.44) T = T0, which may be
factored out of the integral, we obtain

P = P0 exp
[
µM�G

kBT0

(
1
r
− 1

r0

)]
. (4.45)

Close to r0, we put r = r0 + z, so that r0/r � (1 + z/r0)
−1 � 1 − z/r0 for

z � r0, and (4.45) reduces to the familiar exponential decrease P ∝ e−z/H0 ,
with the scale height at r0: H0 = kBT0/µg0, where g0 = M�G/r2

0. On the
other hand, at large distances satisfying r/r0 � r0/H0, (4.45) yields

P → P∞ = P0 e−r0/H0 ;
r0

H0
=

µM�G

kBT0r0
. (4.46)

Substituting the solar parameters at the coronal temperature maximum, i.e.
r0 � R�, T0 � 1.5 × 106 K and P0 � 4 × 10−4 Pa (from Fig. 4.1), we find
r0/H0 � 8, so that farther than a few tens R�, the pressure is roughly equal to
P∞ ∼ 10−7 Pa.
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Is this reasonable? We know that at a distance of a hundred AU or so, the
solar atmosphere encounters the interstellar medium which exerts a pressure
of order of magnitude Pins ∼ 10−13 Pa (see Section 8.1). Hence Pins � P∞
(even taking into account the large uncertainty on P∞), so that the interstellar
pressure is far too small to be able to confine the solar atmosphere. We conclude
that the solar atmosphere cannot remain static and tends to blow out.

Is this conclusion inescapable? We made a bold approximation in assuming a
constant temperature, since we know that this temperature actually decreases.
How does this change our conclusion? You can show in Problem 4.8.3 that
taking into account the temperature decrease still yields a pressure P∞ that is
far too large to be matched by the one of the interstellar medium.

How fast should the temperature decrease for the atmosphere not to
blow out? For this to be so, the atmospheric pressure at large distances P∞
should be of the order of magnitude of Pins, which is so small that it is
nearly zero compared to P0. Now, look at (4.44). For the pressure to tend
to zero at large distances, the integral

∫ r

r0
dr/

(
Tr2

)
should tend to infinity

as r → ∞, i.e. 1/
(
Tr2

)
should decrease more slowly than 1/r. In other

words, for the atmosphere not to blow up, T must decrease faster than 1/r as
r → ∞.

We know that this is not so. The conclusion is that the solar atmosphere
blows up. Here comes the wind!

4.7.2 Magnetic field effects
Our simple derivation neglects the magnetic field. It only holds either when
the magnetic forces are negligible – which is not true in the outer corona, or
along the magnetic field direction, i.e. when B is approximately radial. In
other directions, magnetic pressure enhances the plasma’s tendency to expand
outwards, whereas magnetic tension tends to retain the plasma if the field lines
have both feet anchored at the photosphere (Fig. 4.20). As a result, and very
roughly, we expect the outer corona to be in two basic states:

• pockets of plasma retained by magnetic field lines whose both ends are
anchored at the photosphere, over active regions,

• plasma expanding along open (nearly radial) magnetic field lines, over
regions where the photosphere magnetic field has a dominant polarity.

This is not, however, the whole story. Look at the closed magnetic field
lines that retain pockets of plasma (left-hand side of Fig. 4.20), and imagine
what should happen farther out. As the magnetic forces decline rapidly with
distance, they are no longer able to confine the plasma; hence this plasma will
expand. In turn, this expansion drags the field lines into an open configuration,
so that finally the wind blows everywhere (right-hand side of Fig. 4.20). We
shall refine this picture in Section 6.1.

During the solar activity minimum, when the solar magnetic field is not
too far from that of a dipole, the pockets of trapped plasma extend only near
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Figure 4.20 Schematic picture of the low (left) and high (right) corona in solar
minimum and maximum of activity, showing two fundamental states.

the equatorial magnetic plane, whereas the unhampered flow occupies most of
the heliosphere (Fig. 4.20, top). As solar activity increases during the cycle,
huge loops of magnetic field emerge nearly everywhere on the Sun and the mag-
netic field becomes non-dipolar; one then finds both states: pockets of trapped
plasma, with expanding plasma above, and regions of unhindered flow, scattered
all over the Sun (Fig. 4.20, bottom).

This sheds some light on the different states of the corona revealed by obser-
vation, and on the wind picture outlined in Section 1.3. The large homogeneous
regions of open magnetic field having a dominant polarity are the so-called coro-
nal holes, which extend around magnetic poles at solar activity minimum, but
are smaller and dispersed over the Sun when solar activity is near maximum
and the solar magnetic field is no longer dipole-like. It is not surprising that
these ‘open’ coronal regions have a smaller density and electron temperature
than ‘closed’ regions. The wind coming from there is unimpeded, and has a
simple geometry: this is the fast and regular solar wind.

On the other hand, the large pockets of trapped plasma are related to the
so-called active regions (of greater density and electron temperature); therefore
the expanding plasma above them depends strongly on the changing geometry
and is variable: this is the slow and unsteady wind. The region in between is
the not-so-quiet quiet corona, and the kind of wind it emits is not fully clear for
everyone.

We shall refine this picture in Chapter 6. But before doing so, let us study
the most basic aspects of how the solar atmosphere produces a wind.
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4.8 Problems

4.8.1 Elementary temperature profile
Assume that energy balance in the solar atmosphere is governed by (4.22).
Integrate this equation from the upper chromosphere to the outer corona, and
show that energy balance is not satisfied. Nevertheless, go ahead and try to find
a solution. Since this is an homogeneous second-order differential equation, it
tells nothing about absolute values of distance and temperature, and you need
adequate boundary conditions. Find reasonable ones and deduce a solution for
the temperature as a function of distance.

Hints

Since the temperature both close to the Sun and at large distances is much
smaller than the value of its maximum, we can assume

T → 0 for r → R� and r → ∞.

Since (4.22) is homogeneous, we need an additional condition, say

T = TM for r = rM .

With these boundary conditions, the solution is given by

T = TM

[
1 − R�/r

1 − R�/rM

]2/7

for r < rM (4.47)

T = TM (rM/r)2/7 for r > rM . (4.48)

(This solution is depicted in Figure 9.15 of [47] cited in Chapter 3.) Show
that dT/dr has a discontinuity at rM . What happens there? Why is (4.22)
unreasonable in this region?

4.8.2 Helicity of a string wrapped around a doughnut
Wrap a string around a doughnut by making three warps around the small
radius of the torus for two warps around the large radius, and join the two ends
of the string. Then eat the doughnut, leaving a knotted string that you can chew
(but not break). Now, imagine that the string is a magnetic flux tube carrying
the flux Φ (and that the wrapping you have done is, say, right-handed), and
calculate the helicity. (To keep the problem simple, do not take into account a
possible twist of the tube.) [44].33

Then, deform the knot to explore how the helicity distribution can be changed
along the string without changing the total value. Try to put all the knot into
the smallest region possible. How can the same knot be made more simply,

33The dynamics of such knots in ideal fluids has interesting properties (see Keener, J. P.
1990, J. Fluid Mech. 211 629).
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without the aid of a doughnut? Imagine again that this is a tube of magnetic
flux. What is likely to happen when the knot is squeezed too much? Finally,
cut the string and imagine several different ways of increasing the total helicity.

Hint

To calculate the helicity, deform the knot to give it a trefoil shape and then
decompose it into two linked tubes having the topology of Fig. 4.12 (right) by
inserting two self-cancelling flux elements.

4.8.3 A static solar atmosphere?

Consider a static atmosphere whose temperature decreases with distance as
expected from the standard plasma heat conductivity.

Calculate the variation of pressure with distance. What is the value of the
pressure at infinity? Compare with the interstellar pressure in the solar sur-
roundings.

Show that the density has a minimum at some distance.
Show that the atmosphere becomes superadiabatic at some distance, so that

it is convectively unstable.

Hints

Substitute (4.24) into (4.44) to find P
P0

= exp
[

7r0
5H0

((
r0
r

)5/7 − 1
)]

so that with

r0 = R� and the above parameters we have P∞ � P0e
−11 � 10−8 Pa.

The density n ∝ P/T . Close to the Sun, the exponential term makes P
decrease more rapidly than T , so that n decreases. On the other hand, far
away, P is nearly constant, whereas T given by (4.24) still decreases, so that
P/T increases.

Compare dT/dr from (4.24) to the adiabatic gradient (3.33), and find that
it becomes superadiabatic at a distance r = r0 (7r0/5H0)

7/5. With the above
parameters this yields a distance of about 28R�.34
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5

How does the solar
wind blow?

. . . such were the facts accumulated by the Scientific Researcher.
And now, what deep, far-reaching Theory was he to construct from
them?

Lewis Carroll, Sylvie and Bruno

We have seen that the solar atmosphere is so hot, out to so large a distance,
that it cannot be held back by the Sun’s gravity nor confined by the pressure of
the interstellar medium. The interstellar medium therefore sucks it, somewhat
as a vacuum cleaner – a nice illustration of Aristotle’s horror vacui doctrine,
but a pack of puzzles for the modern physicist.

There are essentially two ways of addressing the problem. One way is to
view the solar atmosphere as a fluid, flowing out under the action of the pressure
imbalance between the Sun and the interstellar medium. Historically, this was
the first theory of the solar wind, and even now it remains the one on which
most theoretical attempts are based.

The fluid description, however, requires the medium to be close to local ther-
modynamic equilibrium, which does not hold in the outer solar atmosphere. As
we already noted, the basic difficulty is that the fluid picture requires an assump-
tion on heat transport. However, the flow is far from adiabatic, and indeed we
shall see that if it were adiabatic, there would be no solar wind. Therefore,
the heat conductivity plays an important role, but its classical expression (see
Section 2.3) is not valid because there are not enough collisions to ensure an
approximate equilibrium. The essence of the problem is that heat is transported
by the fast electrons, and because the collisional free path of charged particles
is proportional to the fourth power of their speed, these electrons undergo vir-
tually no collisions, so that they are outside the scope of the usual fluid picture;
in that case heat may flow in a completely unexpected way (see Section 4.6).
Parker’s pioneering theory assumed a uniform temperature, which requires an
infinite heat conductivity. However, even with this extreme assumption, the
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Figure 5.1 How does the solar wind blow? (Drawing by F. Meyer.)

fluid theory cannot explain the fast solar wind without assuming that some
additional energy is furnished.

The other way of addressing the problem is a kinetic picture, which considers
particles instead of fluids, and therefore bypasses the heat transport problem
since the heat flux is calculated within the theory instead of being postulated a
priori or calculated with an invalid approximation. The solar wind is then viewed
as the evaporation of a hot atmosphere in the near vacuum of the interstellar
medium. There is, however, a fundamental difference with a neutral atmosphere:
the medium is made essentially of electrons and protons, of very different masses.
Whereas the protons’ thermal speed is smaller than their speed of escape from
the solar gravitational attraction, the reverse is true for the electrons, which
are much lighter. Electrons therefore tend to escape and leave ions behind,
producing an outward electric field which adjusts itself in order to ensure electric
quasi-neutrality (see Section 4.6). This produces an outward electric force on
the protons, which outweighs the gravitational attraction at some distance from
the Sun, producing a supersonic wind.

Historically, the kinetic picture was disregarded because the electric field
was estimated incorrectly, with too small a value, producing a slow breeze [4] –
an error that had large consequences on the subsequent evolution of the ideas
because it took a decade to be corrected [26], [29]. The kinetic approach has
the major advantage of enabling one to calculate the heat flux and to address
non-equilibrium plasmas, which are perhaps the clue to the problem as we shall
see later – but the disadvantage of more complexity.
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This chapter is an attempt to address the physics, starting from first princi-
ples. In order to concentrate on basics, I shall consider a simple geometry and
assume time independence, keeping geometrical and temporal aspects for the
next chapter. Section 5.1 considers the simplest theory: an isothermal flow, and
raises some basic questions. The following sections deal with these questions,
introducing the corresponding complications step by step. To simplify the no-
tations and conform to practical usage, the fluid velocity (the average velocity
of particles) is noted v (modulus v), up to Section 5.5, where it is noted vw, to
avoid confusion with the velocity of individual particles.

5.1 The basic problem

Let us first try to understand the acceleration of the solar wind by treating
the solar atmosphere as a fluid, as did E. N. Parker in the late 1950s, when
remarkably few facts were known about the solar wind.

We assume that all quantities are independent of time and depend only on
the radial distance r (Fig. 5.2); the magnetic force is neglected (it vanishes if
both the magnetic field and the velocity are radial). The medium is pictured
as a single fluid that is electrically quasi-neutral so that the total electric force
vanishes, is non-viscous, and behaves as a perfect gas of mean mass per particle
m = µ and (local) temperature T , so that the pressure P and mass density ρ
are related by P = ρkBT/µ.

5.1.1 The solar wind on the back of an envelope

Let us start from Bernoulli’s theorem, assuming the pressure and mass density
to follow a polytrope relation P ∝ ργ (Section 2.3). The simplest cases to
which this relation applies are the two extreme cases: adiabatic and isothermal.
The flow is adiabatic when changes are too fast for heat conduction to act,

Figure 5.2 Simple problem addressed in Sections 5.1 and 5.2.
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so that γ = 5/3 for a gas made of classical non-relativistic particles having 3
(space) degrees of freedom, which holds for electrons and protons. The flow
is isothermal when, on the contrary, changes are sufficiently slow that heat
conduction suppresses the temperature gradient, so that the perfect gas law
yields γ = 1.

Let us first assume the flow to be adiabatic. Bernoulli’s theorem then tells
us that along flow lines:

w =
v2

2
+

γ

γ − 1
kBT

µ
+ ΦG = constant ; ΦG = −M�G

r
. (5.1)

This is just conservation of energy (and mass), where the energy w per unit
mass is made of:

• the bulk kinetic energy v2/2,

• the enthalpy, that is the thermal energy 3kBT/2 per particle (with 3 de-
grees of freedom), plus kBT per particle (the potential for work through
adiabatic expansion),

• the gravitational energy ΦG.

At the base of the corona (distance r0 � R�), we have v0 � 0, whereas at
large distances both the gravitational energy ΦG and the enthalpy are negligible.
An upper limit to the kinetic energy at large distances v2

∞/2 is therefore the
sum of:

• bulk kinetic energy at r0: v2
0/2 � 0,

• enthalpy at r0: 5kBT0/2µ � 0.5 × 1011J kg−1,

• gravitational energy at r0: ΦG0 = −M�G/r0 � −1.9 × 1011J kg−1,

where we have substituted the Sun’s parameters, an average temperature of
particles at the base of the corona of T0 � 1.5× 106 K and the average particle
mass µ � 0.6mp.1 The sum is negative, so that there is no wind! And this
remains true with any realistic value of the parameters put into (5.1).

What is wrong? Producing a wind requires a much greater value of the
energy w, which may be achieved with a much greater enthalpy at r0, namely
a value of γ much closer to unity than the adiabatic value of 5/3.

Consider the isothermal case γ = 1. The enthalpy is then H = V 2
S ln ρ

(Section 2.3), where VS = (dP/dρ)1/2
isothermal is the isothermal sound speed2

VS = (kBT/µ)1/2 ; T = constant. (5.2)
1This temperature is some average of the badly known electron and ion temperatures at the

base of the corona. The mass is a small refinement with respect to the simple proton–electron
value of µ = (mp + me) /2 
 0.5mp , to account for the small quantity of helium present in
the mixture.

2Beware that this is not the speed of sound waves propagating adiabatically, which is
(∂P/∂ρ)

1/2
adiabatic

= (γkB T/µ)1/2 with γ = 5/3 for a classical gas made of particles having 3
degrees of freedom (see Section 2.3).
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In this isothermal case, Bernoulli’s theorem yields instead of (5.1)

v2

2
+ V 2

S ln ρ + ΦG = constant. (5.3)

The density ρ may be eliminated by using conservation of mass through a sphere
of surface 4πr2, i.e.

ρvr2 = constant (5.4)

so that (5.3) yields

v2

2
− V 2

S ln(vr2) + ΦG = constant ; ΦG = −M�G

r
. (5.5)

The constant is the value at r0, which is finite, whereas at large distances the
dominant term is ∼ v2/2 − V 2

S ln(r2) (since v varies much less rapidly than
r2). Hence the speed at large distances increases indefinitely with r as v �
2VS (ln r)1/2. A wind blows!

5.1.2 Nasty questions, or why it is complicated
This simple derivation embodies a large part of the solar wind acceleration
problem. No wind blows in the adiabatic case, which means that producing a
wind requires heat transport, or a slow temperature decrease. In contrast, a
wind blows if the medium is isothermal, and we shall consider in detail this case
in Section 5.2, including the subtle question of how the Sun manages to choose
between a wind, a breeze or an accretion.

The isothermal case, however, is unphysical since the speed increases with-
out limit with distance, which requires an infinite amount of energy. We shall
address this question in Section 5.3, considering the simplest generalisation of
an isothermal fluid: a polytrope of arbitrary index 1 < γ < 5/3; we will also
examine the effects of a non-spherical geometry, energy addition and viscosity.

The polytrope approximation, however, is not satisfying. It hides the physics
within a single parameter: the polytrope index, which is set to a constant ad hoc
value; it also ignores a fundamental point: the solar wind is essentially made of
electrons and protons, whose large difference in mass makes them behave very
differently; as we said, the (massive) protons tend to be trapped by the Sun’s
gravitational attraction, whereas the (light) electrons tend to escape, producing
an electrostatic field to preserve electric neutrality. Furthermore, (massive)
protons carry momentum, whereas (fast) electrons carry heat; since exchanges
between protons and electrons are insufficient to equalise their temperatures,
they cannot be treated as a single fluid. How does this mixture behave? This
problem is addressed in Section 5.4.

We shall see that this raises a further question. The medium is weakly
collisional, and the particle velocity distributions are not close to Maxwellians.
As a result, not only does the medium not behave as one fluid, but each particle
species itself may not behave as a fluid, so that a kinetic picture is required. We
shall address this problem in Section 5.5, but it is fair to say that it is not fully
solved.
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5.2 Simple fluid theory

This theory and its early refinements can be found in the book [39] and in a
series of papers cited in [40].

5.2.1 The isothermal approximation
Consider in more detail the isothermal case, assuming time stationarity and
spherical symmetry, with a radial velocity v (Fig. 5.2). The amplitudes along
the radial direction are counted positive (respectively negative) when directed
away from (respectively towards) the Sun. Taking the derivative with respect
to r of Bernoulli’s equation (5.5) and rearranging yields

1
v

dv

dr

(
v2

V 2
S

− 1
)

=
2
r

(
1 − M�G

2V 2
S r

)
. (5.6)

This is equivalent to writing the radial equation of motion, driven by the pressure
gradient working against the solar gravitational attraction, i.e.

v
dv

dr
= −1

ρ

dP

dr
− M�G

r2
(5.7)

and substituting the (isothermal) perfect gas law P = ρkBT/µ and mass con-
servation (5.4).

Equation (5.6) has a special form: the left-hand side member vanishes when
either dv/dr = 0, or v = VS , whereas the right-hand side member vanishes at
the distance

rC =
M�G

2V 2
S

(5.8)

where the particle escape speed vesc = (2M�G/r)1/2 equals twice the sound
speed VS = (kBT/µ)1/2. With the solar parameters introduced above we have
rC � 4.5R�.

With this notation, (5.6) takes the form

1
v

dv

dr

(
v2

VS
2
− 1

)
=

2
r

(
1 − rC

r

)
. (5.9)

At low heights v and r are small, so that (v2/V 2
S − 1) and (1 − rC/r) are both

negative, yielding dv/dr > 0. This acceleration stems from two effects: fast
density decrease and mass conservation. The density decreases fast because the
speed is so small near the Sun that the atmosphere has nearly the hydrostatic
profile found in Section 4.7.1:

ρ ∝ P ∝ eµM�G/(kB Tr) ; v = 0. (5.10)

With ρ therefore decreasing faster than 1/r2, v must increase in order to conserve
ρvr2. How far does it continue to do so? As r and v increase together, either
member of (5.9) may vanish, and the behaviour of the solution depends upon
which vanishes first. There are three possibilities:
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Figure 5.3 Sketch of the radial expansion speed for an isothermal flow starting
subsonic at r0. The solution crossing C is a wind that accelerates continuously,
becoming supersonic at rC . The other physical solutions are breezes whose
speed is everywhere subsonic and vanishes far away.

• v = VS arises for r < rC , so that (5.9) yields dv/dr → ∞ as v → VS ; this
infinite derivative of the speed is outside the scope of the theory;

• r = rC is reached when v < VS , so that dv/dr = 0; for r > rC the right-
hand side of (5.9) becomes positive, whereas

(
v2/V 2

S − 1
)

is still negative;
hence dv/dr < 0, i.e. the flow slows down, producing a subsonic breeze;

• v = VS arises at r = rC , so that both sides of (5.9) change sign together,
yielding dv/dr > 0; the flow continues to accelerate, producing a super-
sonic wind beyond rC .

These solutions are sketched in Fig. 5.3, where r0 is some start-off distance
where the flow speed is v0 � VS . To calculate the speed v as a function of the
distance r, we write Bernoulli’s equation (5.5). Since the constant is the value
at r0 where the speed is v0, we have

v2 − v2
0

2
= −V 2

S ln
r2
0v0

r2v
+ (ΦG0 − ΦG). (5.11)

Let

a ≡ −ΦG0

V 2
S

≡ M�G/r0

kBT/µ
≡ 2rC

r0
≡ r0

H0
≡ v2

esc (r0)
2V 2

S

(5.12)

where H0 = kBTr2
0/µM�G is the pressure scale height and vesc = (2M�G/r0)

1/2

is the particle escape speed at r0. Rearranging (5.11), we obtain the speed v at
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distance r in implicit form

v

v0
e−v2/2V 2

S =
r2
0

r2
exp

[
a

(
1 − r0

r

)
− v2

0

2V 2
S

]
(5.13)

whereas conservation of mass yields ρ0v0r
2
0 = ρvr2, so that the pressure P = ρV 2

S

is given by

P

P0
=

ρ

ρ0
= exp

[
a

(r0

r
− 1

)
+

v2
0 − v2

2V 2
S

]
. (5.14)

What is the value of the start-off distance r0? For the theory to be consistent,
r0 must be chosen so that the temperature does not vary too much, whereas the
bulk speed is small. Since some observations suggest that the speed may already
be significant at a few tenths of solar radii above the photosphere, we must put
r0 within the corona, somewhere between a hundredth (or less) and a few tenths
of solar radius above the photosphere.3 Hence we may take r0 � R� (to within
50%). With the value of rC found above, this yields a � 1, which means that
the escape speed at r0 is much greater than the thermal speed, namely the fluid
is tightly bound.

With the start-off speed v0 < VS at r0, (5.13)–(5.14) yield the two classes of
physical solutions already mentioned: breezes and supersonic wind.

Breezes

With v < VS everywhere, the flow equation (5.9) shows that the speed increases
with distance below rC and decreases beyond. There are an infinity of breezes,
each starting with a different speed v0.

With v < VS , the pressure (5.14) is close to the one of a static atmosphere.
In particular, since v → 0 for r → ∞, the large distance pressure is

P → P∞ = P0 exp
( − a + v2

0/2V 2
S

)
; r → ∞ (5.15)

and mass conservation ensures that since ρ ∝ P = constant, v ∝ 1/r2 for
r → ∞.

One sees that the large distance pressure (5.15) is slightly greater than the
one of a static atmosphere by the factor ev2

0/2V 2
S . This reveals a very counter-

intuitive behaviour: the greater the initial speed v0, and therefore (from Fig. 5.3)
the greater the speed everywhere, the greater the terminal pressure – which
should match that of the interstellar medium (if such solutions do exist). Hence
if one increases the external pressure applied to the breeze, expecting to slow it
down, pressure equilibrium requires it to accelerate instead! We shall return to
this puzzling point later.4

3Parker’s original derivation assumed r0 
 1.4R� and µ = mp/2.
4Another difficulty is that with ρ = constant, the total mass within a sphere of radius r

surrounding the Sun increases without limit for large r, which would change the gravitational
potential. As an exercise, you may calculate the distance at which this occurs, and find that,
with the parameters used in this section, it is much larger than the size of the heliosphere.
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Transonic wind

This solution accelerates everywhere – becoming supersonic at the critical dis-
tance rC . Note that no information on the state of the fluid can propagate
upstream from any point beyond rC , since the speed there is greater than the
sound speed – the speed at which pressure disturbances propagate (within the
frame of this simple theory). This means that the upstream part of this flow
cannot be altered by what happens beyond rC .

With v → ∞ for r → ∞, (5.14) shows that P → 0 at large distances, a
behaviour that departs significantly from that of a breeze or of a static atmo-
sphere. So, at large distances, the flow speed increases indefinitely whereas the
density and pressure vanish.

Another important difference from the breezes is that there is not an infinity
of such wind solutions, but only one. This is because the initial speed v0C of this
‘critical’ solution is not arbitrary, but is determined by the condition: v = VS

at r = rC ≡ ar0/2, i.e. from (5.13)

v0C

VS
e−v2

0C /2V 2
S =

a2

4
e−a+3/2. (5.16)

Note that for the flow to pass through the critical distance rC , this distance must
be above the base of the flow, i.e. rC > r0, or a > 2; this condition is amply
satisfied for the Sun. If the opposite inequality a ≤ 2 were to hold instead, the
atmosphere would not be tightly bound at the base and would ‘explode’, with
a start-off speed of the order of magnitude of the sound speed, and would not
necessarily follow the critical solution since in that case rC < r0.

It is easily seen that (5.16) has two solutions for v0C , one subsonic, the other
supersonic (reducing to a single one in the limiting case a = 2). For a � 1 the
subsonic solution satisfies v0C � VS and is approximately given by

v0C

VS
� a2

4
e−a+3/2. (5.17)

Substituting this value of v0 into (5.11) yields the flow speed of the transonic
wind at distance r

v2

V 2
S

= 2 ln
(

r2v

r2
CVS

)
− 3 + 4

rC

r
. (5.18)

Since at large distances v/VS � 1 and ln
(
r2/r2

C

) � ln(v/VS), the speed is
roughly

v ∼ 2VS (ln r/rC)1/2 ; r → ∞ (5.19)

(in agreement with our ‘back-of-the-envelope’ estimate).
The speed increases with VS , i.e. with the temperature, and does not depend

on r0 – a satisfying result, since in this simple theory r0 is not precisely defined.
What physical effects determine the continuous speed increase? We have

seen that below rC , the fast density decrease forces the speed to increase in
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order to conserve mass. On the other hand, above rC , gravity becomes less
important, so that the gas expands nearly freely into a (near) vacuum. This
behaviour is akin to the flow in a de Laval nozzle – a key ingredient of rocket
engines (Problem 5.7.1).

The mass loss rate produced by the wind is M ′ = 4πr2
0ρ0v0C ; substituting

v0C from (5.17), this yields

M ′ � πr2
0ρ0VSa2e−a+3/2

=
(
πe3/2

) (M�G)2

(kBT/µ)3/2

[
ρ0e

−µM�G/(kB Tr0)
]
. (5.20)

Note that the term in brackets is, from (5.10), equal to the density the (isother-
mal) atmosphere would have at large distances if it were in hydrostatic equilib-
rium. Hence the mass flux does not depend on the exact location r0 of the base
of the wind, provided the density there is nearly that of a static (isothermal)
atmosphere; indeed in this case, the bracket in (5.20) is independent of r0 since
changing the value of r0 changes ρ0 = ρ (r0) according to (5.10).

Tentative application to the Sun

Let us set the base of the wind at a low height above the photosphere, i.e.
r0 � R�. We saw that the results do not depend sensitively on this choice.
With the parameters of Section 5.1.1, we have the escape speed at the base:
(2M�G/R�)1/2 � 6.2× 105 m s−1, the sound speed (5.2): VS � 1.4× 105 m s−1,
the critical distance: rC � 4.5R�, whence a = 2rC/r0 � 9, and the initial
speed (5.17) of the transonic wind is V0C � 6 × 10−4VS . We deduce from
(5.18) the flow speed at 1 AU from the Sun, that is at r � 214R� � 48rC :
v � 3.9 VS � 5.5 × 105 m s−1. To estimate the mass flux, we need the mass
density ρ0 at r0; from Fig. 4.14, we have ρ0 � 1014×mp kg m−3 at r0 = 1.01R�;
the mass loss rate (5.20) is thus M ′ � 1.6 × 109 kg s−1.

These figures are within 50% of the observed values (Table 1.3) – an as-
toundingly good result for so simple a model. Increasing the temperature T by
30% would increase the speed at 1 AU by merely 20%; however, if ρ0 were not
changed, this would also increase the mass flux by a factor of six – putting it
outside the range of observed values. We shall return to this point later.

Before trying to improve this model, we must clarify an important point:
how does the Sun choose among the different mathematical solutions of (5.9)?
Why a supersonic wind rather than one of the gentle breezes sketched in Fig. 5.3?

5.2.2 Breeze, wind or accretion?

A simple answer is that the breezes have a pressure at large distances that is
too large to be matched by the pressure of the interstellar medium, so that the
transonic wind is the only acceptable solution starting at a low speed near the
Sun (Fig. 5.3). Indeed, the terminal pressure of breezes (5.15) is even greater
than the one of a static atmosphere, which we saw in Section 4.7 to be far too
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Figure 5.4 Topology of the solutions of (5.9). Parker’s transonic wind (bold)
and Bondi’s transonic accretion (bold dotted; cf. Problem 5.7.3) cross at the
sonic point C. In addition to these (unique) solutions, there are an infinity of
breezes (one of which is drawn as a thin line) which are everywhere subsonic,
and three other families of solutions discussed in the text.

great to be matched by the interstellar medium. In contrast, the wind solution
has a vanishing pressure at large distances, so that it can easily accommodate to
the small pressure of the interstellar medium with the help of a shock transition
(see Section 2.3 and [22]).

A little reflection shows that this answer is not fully satisfying. First of all, it
does not explain how the transonic wind is established, and whether it is stable.
Furthermore, the argument for choosing the transonic solution relies on the
terminal pressure of breezes (5.15), which depends strongly on the temperature,
through a. A static corona of temperature a few times smaller than the actual
value would have a terminal pressure of the order of the one of the interstellar
medium; in that case, would it remain static, or would it blow a breeze? Are
these solutions stable? Note also that (5.9) is invariant by changing v into −v,
and should thus describe accretion of matter as well as ejection. How then does
the Sun choose between ejection and accretion? And finally, what would happen
if the Sun entered a denser or thinner region of the galaxy, so that the external
pressure would change? The answer to these questions is subtler than generally
thought, as discussed in [53] and references therein.

To understand what happens, we must first complete Fig. 5.3, which sketches
only the physical solutions starting subsonic close to the Sun. It is easily seen
from (5.9) that the transonic wind is not the only solution crossing the sonic
point C. There is another solution, for which v → 0 at large distances, whereas
v � VS at small distances (Fig. 5.4). This solution, discovered by Bondi [2],
represents a transonic accretion (Problem 5.7.3).

At C, the wind and accretion curves cross with opposite slopes[
dv

dr

]
rC

= ±VS

rC
(5.21)
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– a result we shall demonstrate in Section 5.3.2 for a more general case. Two
other classes of solutions (dashed) have a slope that is infinite at v = VS , so that
the fluid theory is expected to break down there; a part of the lower branch of
these solutions, however, can be connected to respectively the transonic wind
and to the transonic accretion, if a shock transition is allowed; we shall return to
this point later. Finally, there are also solutions that are everywhere supersonic,
just as the breezes are everywhere subsonic (Fig. 5.4).

Note also that all the breezes lie between the horizontal axis (v = 0) and
the fastest breeze, which is made of a superposition of the subsonic parts of the
wind (bold continuous curve) and of the accretion curves (dotted), which meet
at C; this critical breeze has a slope that is discontinuous at C.

Stability and time reversal

To complete the picture, we must distinguish between outward and inward
solutions and investigate their stability, which requires reintroducing the time
into the problem. Indeed, we have assumed the problem to be time invariant,
so that the term ∂v/∂t has been dropped in the fluid equation of motion (Sec-
tion 2.3) to obtain (5.7); changing v into −v in this term does not change it
only if we also change t into −t. This reveals that the symmetry between v and
−v exhibited by (5.6) is an artificial feature that results from our choosing a
stationary solution.

This has a major consequence on stability. Since stability and instability
mean respectively that a small perturbation decreases or increases with time,
the transformation t → −t generally changes stability into instability and vice
versa. Hence, if a solution is stable for an outward velocity, the symmetrical
inward solution is expected to be unstable, and vice versa. Now, it is known
that a continuous transition from supersonic to subsonic speed is unstable to
the formation of shocks. Hence, the transonic solution that is supersonic at large
distances is expected to be stable only for an outward flow.5 From the same
argument, the transonic solution that is subsonic at large distances is stable only
for inward flow, i.e. accretion.

What about the stability of breezes? Assume that an outward breeze has
somehow managed to be established; since it is subsonic, there is no shock
and it must be in pressure equilibrium with the exterior medium exerting some
pressure. Let this applied pressure decrease. The resulting pressure gradient
makes the gas expand more rapidly, which in turn increases the breeze terminal
pressure, according to (5.15). This increases the pressure mismatch, worsening
the problem. A similar instability arises if we increase the applied pressure
instead of decreasing it. Hence, outward breezes are expected to be unstable.
This is not so with an inward breeze, because a decrease (or respectively, an
increase) in the applied pressure decreases (respectively, increases) the speed,
which in turn according to (5.15) decreases (respectively, increases) its terminal

5A simple stability analysis may be found in [40].
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pressure and cures the original pressure mismatch. Finally, therefore, breezes
are stable only if the speed is inwards.

We conclude that, even when the applied pressure matches the terminal
pressure of a breeze, an outward breeze is not expected to flow because it is
unstable.

Choosing how to blow

When does the pressure applied at large distances match that of a breeze? One
sees in Fig. 5.4 that the breezes lie between the horizontal axis and the critical
breeze which is made of the subsonic parts of both the transonic wind and the
transonic accretion, and whose start-off (outward) speed is therefore the same
as that of the transonic wind, i.e. v0C given by (5.17). Hence, breezes have
speeds at r0 in the range 0 < v0 ≤ v0C , and their large distance pressure P∞
given by (5.15) therefore lies in the range

P∞static < P∞ ≤ P∞C (breezes) (5.22)

where

P∞static = P0e
−a (static atmosphere)

P∞C = P0 exp
(−a + v2

0C/2V 2
S

)
(critical breeze). (5.23)

Outside this range of applied pressure, there is no matching breeze, so that there
is only one solution: a transonic wind if the applied pressure P∞ < P∞static, a
transonic accretion if the applied pressure P∞ > P∞C . But what happens when
the applied pressure lies in the range (5.22) where matching breezes do exist?

Let us assume that a supersonic wind is established, with a very small pres-
sure at large distances, and let the applied pressure P∞ increase (Fig. 5.5).
The wind accommodates to this increase with a terminal shock, as usually oc-
curs when a supersonic flow encounters an obstacle (in this case, the interstellar
medium). At the shock, the flow becomes subsonic and continues along a part
of the subsonic downward branch of one of the double-valued solutions appear-
ing beyond rC (one of these is shown as a dotted line on the right-hand side of
Fig. 5.4). The location of the shock is determined by the requirement that the
increase in pressure across the shock plus the one downstream of the shock al-
lows to match the applied pressure P∞ (Fig. 5.5(2)). We shall see in Section 8.1
that this happens at the distance where the ram pressure of the wind (ρv2) is
roughly equal to the total interstellar pressure. As the applied pressure P∞
continues to increase, the shock is pushed inwards and decreases in amplitude,
until it reaches the critical point C.

Then, the flow remains unchanged below rC , i.e. it still follows the subsonic
part of the wind solution, but above rC the flow must follow the only solu-
tion going through C and having a large terminal pressure: the critical breeze
(Fig. 5.5(3)). The shock has disappeared, the discontinuity in speed being re-
placed by a discontinuity in the derivative of the profile at C. The pressure at
large distances is P∞C and it must match the applied pressure since no shock
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Figure 5.5 How the isothermal wind accommodates to an increase in the applied
pressure P∞ (from 1 to 6), as first predicted in [52]. As P∞ increases, the
terminal shock moves inwards (1–2). When the shock reaches rC , the wind
turns into the outward critical breeze (3). As P∞ continues to increase, the
flow collapses into the critical accretion breeze (4), and to a transonic accretion
having a shock that moves inwards (5–6) as P∞ increases.

can exist in a subsonic flow. Now, what happens if we increase the applied
pressure above P∞C? Since the breezes have P∞ ≤ P∞C , no breeze will do,
even the accretion breeze (4) – whose terminal pressure is still P∞C , so that the
flow must collapse into a transonic accretion (5) having a shock below rC . As
the applied pressure continues to increase, the shock moves inwards (6) [53].

In this case, therefore, a transonic wind blows when the applied pressure
P∞ < P∞C , and it collapses into a transonic (shocked) accretion when the
applied pressure P∞ > P∞C .

What happens if we apply the transformation in reverse? Namely, we begin
by applying a large pressure, producing a transonic accretion, and we decrease
continuously this applied pressure. The only stable neighbouring solution when
P∞ reaches P∞C is an inward breeze – a state which persists as P∞ is decreased,
until P∞ = P∞static, at which point the flow turns into the only possible solution
compatible with P∞ < P∞static: the transonic wind (with a shock, in order to
accomodate the pressure). In that case, therefore, there is an inward breeze in
the range of applied pressure (5.22).

The conclusion of all this is that in the pressure range (5.22) where several
solutions are possible, two of which are stable, the state of the system depends on
its history; it is either an outward transonic (shocked) wind or an inward breeze
(Problem 5.7.2). This behaviour has been confirmed by numerical simulations
([53] and reference therein).
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5.3 Letting the temperature vary

Let us now consider a question that has been swept under the rug: the varia-
tion in temperature. Not only does the isothermal approximation neglect the
outward temperature decrease, but it produces a speed that diverges at a large
distance, implying infinite addition of energy to the flow, which is clearly un-
physical. Furthermore, a proper theory should derive the temperature radial
profile (as well as the bulk speed), from the physical processes at work, and
should not impose it a priori.

Since the variation in temperature is determined by the energy flow in the
gas, let us consider in detail the energy balance.

5.3.1 Energy balance
The energy of the gas

We saw in Section 5.1.1 that (for particles having 3 degrees of freedom) the
energy per unit mass is

w =
v2

2
+

5
2

kBT

µ
+ ΦG. (5.24)

At the base of the flow, where the speed is small, the energy consists mainly
of the large (negative) gravitational energy ΦG, so that w < 0. On the other
hand, at large distances where ΦG is negligible, the energy of a supersonic wind
is of the order of the bulk kinetic energy v2/2, and is therefore positive. This
difference in energy is the central problem of the solar wind acceleration.

Energy flux

In the absence of radiation,6 the total energy flux (per metre squared per second)
is the sum of:

• the energy carried by the flow, equal to the energy per unit mass (w) times
the mass flux (ρv),

• the heat flux Q produced by heat conduction (due to individual particle
motions in the frame where the gas is at rest).

The total energy crossing a sphere of radius r per second is thus

W ′ = M ′w + 4πr2Q (5.25)

where

M ′ = 4πr2ρv (mass loss rate). (5.26)
6We have seen in Section 4.3 that the typical timescale of cooling by radiation in the corona

is of the order of 10 h outside active regions. This is far greater than other timescales – a
property that is true at larger distances, too. Radiation can thus be safely neglected in both
the corona and the wind.
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It is a constant in the absence of additional heating or loss process. Substituting
the energy per unit mass (5.24), we get

v2

2
+

5
2

kBT

µ
+ ΦG +

Q

ρv
=

W ′

M ′ = constant ; ΦG = −M�G/r. (5.27)

Note that derivating this equation and subtracting the momentum equation
(5.7), we obtain

kBT 5/2

µρ

d

dr

(
ρT−3/2

)
=

d

dr

(
Q

ρv

)
(5.28)

which is the usual relation between the variation in entropy and that of the heat
flux normalised to the mass flux.

Terminal speed

Writing the energy balance (5.27) between the base r0, where the speed is negli-
gible, and a large distance, where both the enthalpy and the gravitational energy
are negligible compared to the values at r0, we find the kinetic energy at large
distances

v2
∞
2

� 5
2

kBT0

µ
+ ΦG0 +

[
Q

ρv

]
0

−
[

Q

ρv

]
∞

(5.29)

where the indices 0 and ∞ refer respectively to the base and to large distances.
Let us apply this equation to the solar wind. The values at r0 � R� have been
estimated in Section 5.1.1 and we have (per unit mass):

• enthalpy at r0: 5kBT0/2µ � 0.5 × 1011J kg−1,

• gravitational energy at r0: ΦG0 = −M�G/r0 � −1.9 × 1011J kg−1,

• kinetic energy at large distances: v2
∞/2 � (1 ↔ 3)×1011J kg−1, for typical

solar wind speeds of 400↔800 km s−1.

Required heat flux

Accelerating the solar wind therefore requires the heat flux per particle at r0:7[
Q

ρv

]
0

≥ [−0.5 + 1.9 + 1 ↔ 3] × 1011 � (2.5 ↔ 4.5) × 1011 J kg−1 (5.30)

the lower and larger limits corresponding respectively to the slow and fast wind.
With a total mass loss rate M ′ � 109 kg s−1 (typical of the fast wind), the mass
flux averaged over the solar surface is

[ρv]0 � M ′

4πr2
0

� 1.6 × 10−10 kg m−2 s−1. (5.31)

7The inequality accounts for the possibility that [Q/ρv]∞ may not be negligible in (5.29).
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So that the total heat flux required at the base of the corona to accelerate the
fast solar wind is, from (5.30) with the larger value

Q0 ≥ 70 W m−2 (5.32)

if the expansion is radial.8 Where does this heat flux come from?
In the fluid scheme, the heat flux stems from the heat conductivity produced

by collisions (Section 2.3), i.e.

Qc = −q0T
5/2
e dTe/dr (5.33)

with q0 � 10−11. This is the heat flux that would exist if the medium were
sufficiently collisional. For an order of magnitude estimate, we assume Te ∝
r−2/7 (see Section 4.3), which yields

Qc0 � (2/7) q0T
7/2
e0 /r0.

With r0 � R� and Te0 � 1.5 × 106 K, we have Qc0 � 17 W m−2, which is far
too small compared to (5.32). This conclusion is especially robust for the fast
wind, despite the great sensitivity of Qc to Te, because the electron temperature
in coronal holes (where the fast wind comes from) may be smaller – but not
greater – than the value used in the above estimate, which is therefore an upper
limit.

We conclude that the collisional heat flux is not large enough to power the
solar wind. From our modern vantage point [49], this conclusion may appear
irrelevant since we now know that the corona is not sufficiently collisional for this
estimate of the heat flux to be correct (see Section 4.6). However, this inability
of the collisional heat flux to power the solar wind had major consequences
on early theoretical studies, because it focused the efforts on finding external
energy supplies instead of finding a proper way of calculating the heat flux.

This problem is connected to a major unsolved problem encountered in Sec-
tion 4.6: the origin of the large coronal temperature. The energy required to
accelerate the fast wind is of the same order of magnitude as that required to
heat the corona outside active regions.

What about the slow wind? Equation (5.30) yields a smaller value for the
normalised heat flux required at the base, but the mass loss rate is greater (see
Table 1.3), so that the required heat flux Q0 is the same (assuming again radial
expansion). Interestingly, we shall see in Section 8.3 that a comparison of winds
blown by a large sample of stars suggests that they require a similar value of
the heat flux Q0 at the base of the wind.

5.3.2 Polytrope approximation
A convenient heat flux

What is the actual value of the heat flux in the corona and in the solar wind?
We have seen that the usual collisional value might be inapplicable, and that,

8We shall see in Section 5.3.3 that local deviations from spherical expansion that might
change this estimate (by changing the particle flux at r0) would still increase the heat flux
requirements.
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anyway, it is too small. If we insist on building a simple fluid theory, we may
try using an empirical heat flux proportional to the number density of particles,
to their temperature, and to the bulk speed, as

Q = αρvkBT/µ. (5.34)

We shall see later that such a heat flux with α in the range [1 ↔ 10] has some
basis on both empirical and theoretical grounds.

Substituting this expression of Q into the energy equation (5.28) yields

αρ
dT

dr
= T 5/2 d

dr

(
ρT−3/2

)

whose integration yields Tα ∝ ρT−3/2. Since the pressure P ∝ ρT , this yields
the polytrope law:

P ∝ ργ ; γ =
5 + 2α
3 + 2α

or: α =
γ

γ − 1
− 5

2
. (5.35)

A positive value of (Q/v) requires α to be positive, i.e. 1 < γ < 5/3, with the
limiting cases:

• isothermal: γ = 1 or α → ∞ (infinite heat flux),

• adiabatic: γ = 5/3 or α = 0 (zero heat flux).

Note that the equation of energy balance (5.1) may be obtained by taking
the integral of the momentum equation (5.7) in which one substitutes P ∝ ργ ∝
T γ/γ−1 with P = ρkBT/µ. With γ given in (5.35), the energy balance (5.1)
may also be obtained by substituting the expression (5.34) of Q into the energy
balance (5.27), which yields

v2

2
+

(
5
2

+ α

)
kBT

µ
+ ΦG = constant. (5.36)

Returning to the energy equation (5.27), we see that the expression (5.34) of
Q is formally equivalent to assuming that (1) the enthalpy H = (5/2 + α) kBT/µ
instead of (5/2)kBT/µ, and (2) the heat flux is zero (i.e. the flow is adiabatic).
For particles having N degrees of freedom, the thermal energy per particle is
NkBT/2, whence the enthalpy H = (1 + N/2) kBT/µ per unit mass. Hence the
heat flux (5.34) is formally equivalent to assuming an adiabatic flow of particles
having an effective number of degrees of freedom N satisfying 5/2+α = 1+N/2,
i.e.

N = 3 + 2α = 2/ (γ − 1) . (5.37)

Thus γ < 5/3 corresponds formally to N > 3, which requires the particles to
have internal degrees of freedom in addition to the three space co-ordinates of
their centre of mass. This is so for non-colinear molecules, which have three
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free angles of rotation and may also vibrate and have electron transitions if
the temperature is adequate. We shall see an application to the expansion of
cometary atmospheres in Section 7.5. A similar effect occurs in a weakly ionised
plasma, through electron ionisation and recombination,9 because when the heat
furnished may serve to ionise atoms instead of raising the temperature, the
specific heat is greater. Note that γ = 1 corresponds formally to an infinite
number of degrees of freedom.

What is the significance of a polytrope fluid having γ < 5/3, though it is
fully ionised and made of point-like particles? In some sense, the particles of
such a plasma might be viewed as being coupled to a number of wave modes and
turbulent fluctuations, that produce additional effective degrees of freedom. In
some sense only, as the number of modes available for storing energy depends on
the temperature, so that the index γ should not be a constant. An application
may be found in [45]. Another interpretation, to which we shall return later,
involves the absence of equilibrium.

Polytrope flow

It is easy to generalise the isothermal calculations performed in Section 5.1 to
a polytrope flow. With P ∝ ργ , the sound speed10 is defined as

VS = (dP/dρ)1/2 = (γP/ρ)1/2 = (γkBT/µ)1/2
. (5.38)

Writing dP/dr = V 2
S dρ/dr and substituting dρ/dr from the conservation of

mass (5.4), we have

1
ρ

dP

dr
=

V 2
S

ρ

dρ

dr
= −V 2

S

(
1
v

dv

dr
+

2
r

)
. (5.39)

Substituting into the equation of motion (5.7), we get

1
v

dv

dr

(
v2

VS
2
− 1

)
=

2
r

(
1 − rC

r

)
; rC =

M�G

2V 2
S

=
µM�G

2γkBT
. (5.40)

At first sight, this looks like the equation (5.9) obtained in the isothermal case,
so that the solutions might be expected to have a similar topology, with a critical
point where v = VS at distance rC = M�G/2V 2

S . This similarity, however, is
only formal, because VS and rC are no longer constants, being instead auxiliary
variables that depend on the temperature, as defined in (5.38)–(5.40).

Let the flow start at r0 with the speed v0, and use similar notations as
previously, i.e.

a ≡ −µM�G

kBT0r0
; VS0 =

(
γkBT0

µ

)1/2

. (5.41)

9We have seen in Section 3.2.2 an application of this effect in the weakly ionised outer part
of the solar interior.

10Beware that for classical particles having 3 degrees of freedom, only for γ = 5/3 does this
definition correspond to the speed of (adiabatic) sound waves (dP/dρ)

1/2
adiabatic

.
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With a subsonic speed at r0, we have
(
v2/V 2

S − 1
)

< 0, so that dv/dr > 0 only
if the right-hand side member of (5.40) is negative, i.e.

1 − µM�G

2γkBT0r0
< 0 or: a > 2γ, (5.42)

namely, if the gas is strongly bound at the base. This is similar to the condition
we found in the isothermal case (γ = 1), with, however, a major difference.
Now, as r and v increase together, a critical point in (5.40) may be reached only
if

(
M�G/2V 2

S r
)

decreases with distance, i.e. if T decreases more slowly than
1/r. Such a slow decrease in temperature requires a significant heat flux, i.e. a
value of γ significantly smaller than 5/3. We shall return to this point later.

To proceed further, we use:

• energy balance (5.1) (or the integral of the equation of motion),

• mass conservation (5.4) with the polytrope law T ∝ ργ−1, so that

T ∝ (
vr2

)1−γ
. (5.43)

These two equations, with the unknowns v and T , enable one to calculate v and
T at any distance as a function of their values at r0.

Transonic wind

Contrary to the isothermal case, energy conservation now ensures that the poly-
trope wind has a finite asymptotic speed v∞. From the polytrope law (with mass
conservation), the asymptotic parameters therefore vary with the distance r as

P∞ ∝ ργ
∞ ∝ (

v∞r2
)−γ ∝ r−2γ ; T∞ ∝ ργ−1

∞ ∝ r2(1−γ)

so that the pressure, density and temperature of the wind all vanish at infinite
distance. Hence, the energy balance (5.1) between r0 and large distances where
both T and ΦG are negligible yields

v2
∞
2

=
v2
0

2
+

γ

γ − 1
kBT0

µ
+ ΦG0 (5.44)

or:

v2
∞ − v2

0

V 2
S0

=
2
γ

[
γ

γ − 1
− a

]

since from (5.41) a = −γΦG0/V 2
S0. For the terminal speed to be greater than the

start-off speed, one must therefore have γ/ (γ − 1) > a. This ensures that the
heat and enthalpy fluxes are sufficient to lift the gas out of the Sun’s gravitational
well. This inequality together with (5.42) may be written

2γ < a <
γ

γ − 1
(5.45)

which are compatible only if γ < 3/2.
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We conclude that a transonic polytrope flow whose speed starts subsonic and
increases with distance requires inequalities (5.45) to hold, which require that
γ < 3/2.11 Let us calculate the corresponding mass flux. Since this solution
crosses the sonic point, the start-off speed v0C may be calculated by writing
the conservation equations (5.1) and (5.4), with the polytrope relation (5.43),
between the base r0 (where the temperature is T0) and the critical distance
(where, from (5.40), v = VS and r = M�G

2V 2
S

). A little manipulation yields

v2
0C

2V 2
S0

+
1

γ − 1
− a

γ
=

(
1

γ − 1
− 3

2

)[
4γ2

a2

v0C

VS0

]( 1
γ −1− 3

2 )
−1

. (5.46)

If v0C is small enough, the first term on the left may be neglected, whence

v0C

VS0
� a2

4γ2

[
2
γ
× γ − a (γ − 1)

5 − 3γ

] 1
γ −1− 3

2

so that the mass flux M ′ = 4πr2
0ρ0v0C is given by

M ′ � 4πr2
0ρ0VS0

a2

4γ2

[
2
γ

γ − a (γ − 1)
5 − 3γ

] 1
γ −1− 3

2

. (5.47)

A closer examination of the critical point

How does the speed behave at the critical point? To address this question, we
may use the de l’Hopital rule which gives the slope of the solution of a differential
equation near a critical point. The flow equation (5.40) is of the form:

f (r)
dv

dr
= g (r) ; f (rC) = g (rC) = 0.

If the derivatives f ′ and g′ of respectively f and g do not vanish at rC , the slope
of the velocity profile at rC is given by[

dv

dr

]
rC

=
g′ (rC)
f ′ (rC)

. (5.48)

Multiplying both sides of (5.40) by V 2
S , we have

f = v − V 2
S

v
; g =

2V 2
S

r
− M�G

r2
; V 2

S ∝ (
vr2

)1−γ
(5.49)

11With similar arguments, it is easily shown that in the remaining range 3/2 < γ < 5/3, a
transonic flow does exist for γ/ (γ − 1) < a < 2γ, but its speed now declines with distance,
(albeit less rapidly than does the sound speed, so that v/VS still increases) [7]. In the limiting
case γ = 3/2, there is a solution for which T ∝ r−1 so that, from (5.43), v = constant.
Putting dv/dr = 0 into (5.40) yields M�G/2V 2

S = r everywhere, which implies in particular
a = 2γ = 3. In the adiabatic limit γ = 5/3, the energy balance (5.1) yields a special solution for
which the (constant) fluid energy is zero [5]. With the constant equal to zero, (5.1) and (5.43)
imply v2 ∝ T ∝ r−1, so that the ratio v/VS is a constant, and the pressure P ∝ T γ/(γ−1)

vanishes at large distances. With the energy of the gas equal to zero at r0, v2
0/V 2

S0 = 6a/5−3
so that v0 < VS0 requires a < 10/3.
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where the latter equation stems from the polytrope law with mass conservation.
At the critical point r = rC , we have

v2 = V 2
SC =

M�G

2rC
with VSC = VS(rC). (5.50)

Let

y =
rC

VSC

[
dv

dr

]
rC

. (5.51)

Using (5.48), and derivating f and g with respect to r with (5.49)–(5.50), we
have

y =
rC

VSC

g′ (rC)
f ′ (rC)

(5.52)

f ′ (rC) =
VSC

rC
[2 (γ − 1) + (1 + γ) y] (5.53)

g′ (rC) = 2
(

VSC

rC

)2

[3 − 2γ + (1 − γ)y]. (5.54)

Substituting (5.53)–(5.54) into (5.52) we obtain a (non-dimensional) quadratic
equation for y. From the solution y, we deduce from (5.51) the slope of the
speed profile at rC :

[
dv

dr

]
rC

=
VSC

rC

[
±√

2 (5 − 3γ) − 2 (γ − 1)
1 + γ

]
. (5.55)

In the range 1 ≤ γ < 3/2, the ± signs yield respectively a positive and a
negative slope, corresponding respectively to the transonic wind and to the
transonic accretion with the topology shown in Fig. 5.4. As an exercise,12 one
may verify that in this range of γ, the temperature falls off less rapidly than
1/r. In the limiting case γ = 1 (isothermal), the slopes (5.55) reduce to the
values (5.21).

Breezes

For breeze solutions whose terminal speed vanishes, energy balance (5.1) be-
tween r0 and large distances yields

V 2
S∞

V 2
S0

=
γ − 1

2
v2
0

V 2
S0

+ 1 − a
γ − 1

γ
(breezes) (5.56)

=
(

P∞
P0

) γ −1
γ

(5.57)

12Using T ∝
(
vr2

)1−γ
, we calculate the derivative of T from the one of v, and deduce that

(dT/dr)rC
= −TC /rC times a factor that is smaller than unity in this range of γ.
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where the latter equation stems from the polytrope law. This shows that, for
a < γ/ (γ − 1), the terminal pressure of breezes is finite and increases with the
base speed, as it does in the isothermal case. Hence, both the large pressure and
the instability of outward breezes are expected to hold true also for a polytrope
fluid.

Tentative application to the Sun

Let us apply these results to the Sun. With r0 � R� and T0 � 1.5 × 106 K,
we have a � 1, so that a transonic wind requires, from the inequalities (5.45),
a value of γ rather close to unity, equivalent to a large heat flux. With, say,
γ = 1.08, we find v∞ � 400 km s−1, v0C/VS0 � 4 × 10−4, whence a mass
flux M ′ � 109 kg s−1. The temperature at large distances is given by T =
T0 (ρ/ρ0)

γ−1 with ρ/ρ0 � (
v0Cr2

0/v∞r2
)
, which yields T/T0 � 0.2 at 1 AU

from the Sun. Obtaining a speed twice as great would require γ = 1.06, which
yields a mass flux roughly four times greater, i.e. outside the range of measured
values, and a temperature at 1 AU greater by roughly 30%. The agreement
with observation is not too bad – given the simplicity of the model – but (as
with the isothermal approximation) it is difficult to reproduce simultaneously
the fast wind speed and mass flux observed.

Conclusion on polytrope winds

A polytrope model P ∝ ργ is the simplest extension of the (unphysical) isother-
mal assumption. This is formally equivalent to a heat flux

Q =
(

γ

γ − 1
− 5

2

)
ρv

kBT

µ
.

The flow behaves qualitatively as if it were isothermal (γ = 1), except that the
terminal speed is finite and that the condition for having a transonic wind is
stricter. Indeed, a transonic isothermal wind only requires that the parameter
a, which measures the tightness of the particle binding at the base of the wind,
satisfies a > 2 (if a is smaller, the sonic point lies below the base). In contrast,
producing a transonic polytrope wind whose speed increases outwards requires
a to lie in a narrow range given by (5.45), and γ to be small enough. Stated
another way, the (finite) heat flux powering the wind must be large enough to
lift the gas out of the gravitational well and to provide it with a large bulk
speed.

The major interest of this model is its simplicity, which enables one to study
analytically how the flow depends on the parameters. However, it does not
solve the major problem of heat transfer, since the relevant physics is hidden
in the adiabatic index γ, whose value is not explained, and, in any case, is not
expected to be independent of distance.
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5.3.3 Changing the geometry

Does the flow depend critically on the assumed spherical geometry? This is an
important question because the expansion may not be strictly radial near the
Sun. We shall return to this question in Section 6.2. In particular, at solar
activity minimum, the expansion may be faster than radial in the polar regions,
whereas near the equator it should vary in a non-monotonous way.

Consider the simple case of a stream line that is parallel to a locally radial
magnetic field, and imagine that the neighbouring stream lines diverge non-
radially, so that the cross-sectional area A of a flow tube is no longer proportional
to r2. Let

A ∝ f (r) r2

where the function f (r) denotes the deviation of the cross-section A from a
spherical expansion. Since the expansion is known to be spherical at large
distances, f (r) tends to a constant: f∞, as r → ∞.

Neither the equation of motion (5.7) nor the energy equation in the form
(5.27) are changed, but mass conservation now reads

ρvA = constant. (5.58)

Let us consider briefly the consequences. A detailed study may be found for
example in [20].

Consider first the simple isothermal case (infinite heat flux). One sees easily

that the large distance speed varies as
[
ln(f1/2(r)r)

]1/2
rather than [ln r]1/2,

and is therefore greater (smaller) if the expansion is faster (slower) than radial.
Consider now the case when a given heat flux is provided at the base, so

that the terminal speed is given by (5.29). A change in the cross-sectional area
changes the base mass flux [ρv]0 deduced from the mass loss observed at large
distances M ′ =

[
ρv × 4πr2

]
∞, since mass conservation now yields

[ρv]0 =
[ρvA]∞

A0
=

M ′

4πr2
0

× f∞
f0

. (5.59)

With an expansion faster than spherical, we have f∞ > f0, so that [ρv]0 is
greater than with spherical expansion. Indeed, if most of the solar mass loss
comes from only a fraction of the solar surface, the mass flux per unit surface at
r0 must be greater. In that case, a greater heat flux at the base is required to
produce the observed solar wind speed, which worsens the problem of furnishing
enough heat flux at the base to accelerate the wind.

Another question is how the speed profile and the topology of the solution
are affected. The variation in f introduces an additional term f−1df/dr in
the right-hand side of the flow equation (5.40). At first sight it might seem
that this changes only the location of the critical distance, and perhaps the
topology of the solution in this vicinity. More subtle consequences may arise,
however, since the additional term may make the right-hand side of the equation
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vanish at several locations, so that additional critical points may arise. The
continuous transonic solution passes through one critical point only. However,
if discontinuous shock transitions may occur between solutions passing through
different sonic points, then transonic flows involving several shock transitions
may have the same parameters as the normal continuous transonic flow, at both
the base and large distances. This opens the interesting possibility of having
multiple wind states (see [15]).

These geometry-dependent effects are only a part of the numerous physical
effects determined by the structure of the magnetic field. We shall take up this
subject in Chapter 6.

5.3.4 Further pushing or heating the wind
We have seen that the acceleration of the solar wind requires the gas to con-
duct heat very efficiently at the base of the wind. However, if some additional
process did manage to furnish an adequate amount of energy, this require-
ment would be relaxed. Hence it may be interesting to imagine that some
(yet unspecified) process pushes and/or heats the gas, and to examine the
consequences.

Since a large majority of the literature on the solar wind is based on such
an assumption, let us assume that some boojum conspiration not only heats
the corona but also heats and/or pushes the solar wind, and examine the con-
sequences.

Balance equations with deposition of energy

Let us assume that:

• the fluid is subjected to an additional outward force Fext (r) per unit mass,

• some additional process puts heat into the fluid at the rate Qext (r) per
unit volume.

In that case, the mass balance is still given by (5.4), but the momentum (5.7)
and energy (5.27) balance equations per unit mass become:

• momentum balance:

v
dv

dr
= −1

ρ

dP

dr
− M�G

r2
+ Fext (5.60)

• energy balance:

d

dr

[
v2

2
+

5
2

kBT

µ
+ ΦG +

Q

ρv

]
= Fext +

Qext

ρv
. (5.61)

The first term on the right-hand side of (5.61) stems from the work done by the
force (which adds energy to the fluid at the rate Fextρv per unit volume); the
second term corresponds to the energy added via heating.
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Mass loss rate

Let us first consider the simple case of an atmosphere that is approximately
isothermal below the sonic point. The outward force Fext introduces an addi-
tional (positive) term in the right-hand side member of the flow equation (5.9),
making it positive at the distance rC defined in (5.8) instead of vanishing. This
means that the critical distance where this member vanishes (and therefore
v = VS) is no longer given by (5.8) but lies closer to the Sun. Denoting by rC

this new critical distance, the mass loss rate M ′ may be calculated as:

M ′ = 4πr2
CVSρ(rC). (5.62)

To calculate ρ (rC), we substitute the (isothermal) perfect gas law into the
momentum balance equation (5.60), to obtain

d

dr

[
v2

2
+ V 2

S ln ρ − M�G

r

]
= Fext (isothermal).

We deduce ρ (rC) by integrating this equation between r0 and rC (where v = VS)
and rearranging, to obtain the mass loss rate

M ′ � 4πr2
CVSρ0 exp

[
−M�G

r0V 2
S

(
1 − r0

rC

)
+

∫ rC

r0

dr
Fext

V 2
S

− 1/2
]

. (5.63)

Hence the action of the external force Fext below rC increases the mass loss rate
by the factor: exp

(∫ rC

r0
dr Fext/V 2

S

)
; the inward displacement of the critical

point produces a further increase in M ′ since the exponential term
exp(M�G/rCV 2

S ) varies faster than the factor r2
C . Therefore an outward force

acting in the subsonic region increases M ′, as does an increase in temperature.
This is easily understood, as the outward force counteracts gravity, and thus
both raises the effective scale height and moves the sonic point inward, thereby
increasing the density at the critical distance. These results remain qualitatively
true if the atmosphere is not isothermal. In that case, the mass flux can also
be increased by heat addition (Qext) in the subsonic region since this raises the
temperature. Finally, therefore, adding energy in whatever form in the subsonic
region increases the mass loss rate.

On the other hand, since the mass flux M ′ is determined by the structure
of the flow below the critical point, adding energy (in whatever form) in the
supersonic region does not change M ′. This is easily understood from basic
considerations. Since the loss rate is already determined at the critical point, it
cannot be changed by what happens farther out, since this information cannot
travel upstream.

Terminal speed

Now let us consider the speed at large distances, where the gravitational energy
and enthalpy are both negligible. The energy balance (5.61) yields (neglecting
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the start-off speed):

v2
∞
2

� 5
2

kBT0

µ
+ ΦG0 +

[
Q

ρv

]
0

−
[

Q

ρv

]
∞

+
∫ r∞

r0

dr

[
Fext +

Qext

ρv

]
. (5.64)

At first sight it might seem that, because of the right-hand side term, addition
of energy in whatever form always increases the terminal speed. However we
have seen that if this energy is furnished below the critical point, the mass loss
rate increases; one sees on (5.64) that this increase in ρv may balance or even
overbalance the speed increase produced by energy deposition. This can be
understood on simple grounds: if there is more energy available but also more
particles, then there is not necessarily more energy per particle. On the other
hand, we have seen that depositing energy above the critical point barely changes
the mass loss rate, so that in that case the terminal speed always increases.

Conclusion on energy addition

We conclude that in order to increase the terminal speed, one should add energy
to the flow (by pushing or heating) in the supersonic region. Depositing energy
in the subsonic region only increases the mass loss rate (and might even decrease
the terminal speed if energy is furnished via a force). Basic discussions of these
points may be found in [21] and [27].

Note, finally, that the external force introduces an additional term Fext/V 2
S

into the equation of motion (5.40), just as the deviation of the expansion from
spherical introduces a term f−1df/dr. One may thus expect similar effects to
arise in both cases. Some forms of the function Fext (r) may indeed produce
multiple critical points, and thus – as do some shapes of the flow tubes – open
the possibility of multiple wind solutions and bi-stability, if either the zeros are
close to each other or if shock transitions are possible (see for example [15]).

Before returning to the energy problem, let us consider another point.

5.3.5 What about viscosity?
We have ignored the viscosity of the medium, as do virtually all modern solar
wind models – a question that has raised many disputes (see [44] and refer-
ences therein). A rough justification is that the ratio of the diffusion coeffi-
cients associated respectively to viscosity and to heat transport13 (Section 2.3) is
significantly smaller than unity, so that thermal conductivity acts much faster
than does viscosity.

Basically, this is because viscosity is associated with momentum, which is
transported by protons, whereas heat is transported by electrons – which move
much faster. The kinematic viscosity is of order of magnitude ν ∼ vthplf , where
vthp is the proton thermal speed and lf the mean free path. On the other hand,
the thermal diffusivity is of order of magnitude χ ∼ vthelf , where vthe � vthp is
the electron thermal speed, while the free path has the same order of magnitude
as the one of protons. Hence χ � ν.

13The so-called Prandtl number.
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This rough argument, however, must be used with caution for two reasons.
First, viscosity yields an additional term in the equation of motion, as

v
dv

dr
= −1

ρ

dP

dr
− M�G

r2
+

1
ρr3

d

dr

[
r3 × 4

3
νρr

d

dr

(v

r

)]
. (5.65)

The term v/r arises because of lateral momentum transfer in the radially diverg-
ing flow. We see that viscosity introduces a second order derivative in the flow
equation, which removes the singularity at the critical point. Let us evaluate its
importance. Making the approximations d/dr ∼ 1/L, L being a characteristic
scale, vthp ∼ VS , and P ∼ ρV 2

S , we find that the ratio of the viscous force to the
pressure force is of order of magnitude

v

VS
× lf

L
(5.66)

which is a priori not negligible since we shall see that the mean free path lf is
of the order of magnitude of the characteristic scale L in the solar wind.

Second, since viscosity acts through second derivatives in the equation of
motion, it may have important effects even when it is small on large scales,
because velocity gradients may produce small scales at which the second deriva-
tive becomes large. This is basically why water produces on moving boats a
drag force that does not depend on viscosity, whereas this force vanishes in the
absence of viscosity; in other words, the limit ν → 0 may not coincide with the
case ν = 0. We will find another illustration of this point in Section 6.4 when
studying turbulence.

Nevertheless, viscosity is expected to make a relatively small contribution to
the energy balance, due to the small Prandtl number. Finally, a sobering remark
is that, since the solar wind is not collisional enough for the usual (collisional)
transport coefficients to be valid (Section 2.3.2), the viscosity term in (5.65)
is extremely dubious. One should use a kinetic description instead of a fluid
one, making the viscosity question irrelevant. We shall return to this point in
Section 5.5.

5.4 A mixture of fluids

The simple fluid picture considered above has a major drawback. Since the
medium (1) is made of electrons and protons (plus heavier ions in lesser concen-
tration), and (2) is weakly collisional, it should not be pictured as a single fluid
but as (at least) two fluids. This question was first addressed long ago [16], and
early reviews may be found in [3] and [25].

To make things simple, we neglect the ions heavier than protons because
their concentration is too small for them to affect the overall dynamics much.
We therefore consider a plasma made of electrons and protons pictured as two
different fluids, rather than a single fluid made of ‘average’ particles. How does
this change the physics? Or rather does this bring about qualitatively new
results?
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Electrons and protons have opposite charges, but their masses differ by the
factor mp/me � 1837, so that electrons have a thermal speed greater than
protons by a factor of order of magnitude (mp/me)

1/2 � 43 (because their
temperatures have generally the same order of magnitude). This has several
consequences:

• whereas protons are strongly bound close to the Sun, electrons barely
feel gravity; indeed, at a temperature of 106 K, their thermal speed �
5.5 × 106 m s−1 is nearly 10 times greater than the escape speed;

• the greater thermal speed of electrons is expected to make them carry
heat much faster than do protons;

• collisions between electrons and protons exchange energy at a rate ∼
(mp/me) slower than the rate of momentum exchange, which is itself slow
since the medium is weakly collisional; hence electrons and protons may
have different temperatures;

• since electrons and protons are subjected to very different forces (and may
have different temperatures), an electric field sets up to preserve electric
quasi-neutrality.

Since electrons and protons have opposite charges, electric quasi-neutrality
requires them to have roughly the same number density n. Furthermore, since
the radial electric current must vanish otherwise electric charge would accumu-
late indefinitely on the Sun, electrons and protons should have also the same
radial bulk speed. The simplest generalisation of the one-fluid picture is there-
fore to consider two fluids having the same bulk velocity but different particle
masses, temperatures and heat fluxes.

5.4.1 Simple balance equations

We have seen in Section 4.6 that in a static isothermal atmosphere with equal
proton and electron pressures, the gravitational attraction – acting essentially
on protons – tends to displace them inwards with respect to electrons. The
corresponding space charge induces a radial electric field E directed outwards,
which adjusts itself so that the total attraction on a proton mpM�G/r2 − eE is
equal to the attraction on an electron eE, whence E = mpM�G/2er2. We shall
see later that when the plasma is moving and the proton and electron pressures
are not equal, the electric field has a somewhat different value.

Let ΦG = −M�G/r and ΦE be respectively the gravitational and electro-
static potential, set equal to zero at infinite distance. As a fluid, protons are
subjected to the Sun’s gravitational force −mpdΦG/dr and to the (outward)
electric force −edΦE/dr (per particle), in addition to the pressure force. On
the other hand, because of the small mass of electrons, both inertia and gravity
are negligible for them, so that they are only subjected to the (inward) electric
force edΦE/dr (per particle) in addition to the pressure force.
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The collisions do not produce any mutual force on the proton and electron
fluids because they have the same velocity v, so that there is no direct momen-
tum transfer between them. We deduce the fluid momentum equations in the
radial direction (in the absence of viscosity):

mpv
dv

dr
+

1
n

d

dr
(nkBTp) = − d

dr
(eΦE + mpΦG) (protons) (5.67)

1
n

d

dr
(nkBTe) = e

dΦE

dr
(electrons). (5.68)

Let us neglect the (small) collisional transfer of energy between protons and
electrons; we shall estimate its role later. The energy equations are then a trivial
generalisation of the one-fluid equation (5.27) applied to each species, where we
add the electrostatic energy and neglect the small electron mass (in the absence
of exterior heating):14

mp
v2

2
+

5
2
kBTp + mpΦG + eΦE +

Qp

nv
= constant (protons) (5.69)

5
2
kBTe − eΦE +

Qe

nv
= constant (electrons). (5.70)

where the indices p and e refer respectively to protons and electrons.
Since the proton heat flux is expected to be much smaller than the electron

one, let us neglect it. Subtracting the derivative of the energy equations from the
momentum equations, we then find the equivalent form of the energy equation,
for respectively protons and electrons

d

dr

(
nT−3/2

p

)
= 0 (5.71)

kBT
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(
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=

d

dr

(
Qe

nv

)
, (5.72)

a generalisation of the one-fluid equation (5.28) applied to each species.
The proton energy equation expresses that Tp ∝ n2/3, i.e. the proton fluid

is adiabatic (because we have neglected the proton heat flux and the collisional
energy transfer between protons and electrons). In this case, at large distances
where the flow speed is constant so that conservation of particles implies n ∝
r−2, the proton temperature falls off as

Tp ∝ r−4/3 ; n ∝ r−2 (adiabatic protons). (5.73)

In contrast, if the electron heat flux falls off more rapidly than the particle
flux nv, the electron temperature falls off less rapidly than in the adiabatic case.

14One may verify that when the proton and electron equations are added together, the elec-
tric field contribution cancels, and one recovers the one-fluid momentum and energy equations
(5.7) and (5.27), with the total mass density ρ 
 nmp , pressure P = nkB (Te + Tp), and heat
flux Q = Qe + Qp ; the single fluid has the average particle mass µ 
 mp/2 and the average
temperature T = (Te + Tp) /2, so that P = ρkB T/µ.
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For example, if the electron heat flux is of the polytrope form

Qe = αenvkBTe ≡ Qepoly (5.74)

then, as we found previously for one fluid, (5.72) implies the polytrope law
P ∝ nγe for electrons with

γe =
5 + 2αe

3 + 2αe
. (5.75)

In this case, at large distances where the speed is constant so that n ∝ r−2, the
electron temperature falls off as

Te ∝ r−2(γe−1). (5.76)

5.4.2 Observed proton and electron temperatures
How do the temperatures actually vary in the solar wind? This is a difficult
question because the temperature is one of the most difficult to measure quan-
tities in space plasmas. The main reason is the already mentioned absence of
local thermodynamic equilibrium. Not only do different species have different
temperatures, but these temperatures are difficult to define because the velocity
distributions are not close to Maxwellians. Indeed, not only are the pressures
not exactly isotropic – but in fact tensorial – and not only is there an excess of
fast particles over the Maxwellian amount, but each particle species is made up
of several populations having different properties, as we shall see below. Worse
still, the notion of thermodynamic equilibrium is so deeply ingrained in the
mind that it is implicit in most measuring schemes, and different measurements
of the temperature often yield results that depend on the measurement method
(see Problem 5.7.6).

Table 5.1 shows the number density and mean temperatures of protons and
electrons in the low corona (see for example [9] and references therein) and
at 1 AU from the Sun, together with the polytrope indices measured at that
distance, for the fast wind, as deduced from a number of studies15 (see [14], [50],
[43], the reviews [46], [34], and that by M. Neugebauer cited in Chapter 1). The
slow wind is more difficult to define because it is very variable in both space
and time, and its observation generally deals with a mixture of different states;
on the whole, it is denser by roughly a factor of three than the fast wind, its
electrons are roughly twice as hot in the corona, and about 50% hotter at 1 AU,
with a polytrope index somewhat greater, whereas the protons are cooler by a
factor of six at 1 AU and closer to adiabatic, compared to the fast wind values
in Table 5.1. Owing to the above-mentioned limitations, the temperatures are

15To be consistent with the fluid description, which considers all particles of a given species
as a single entity, we only give the mean temperature measured for each species, even though
most measurements concern the temperatures of parts of the velocity distributions; we shall
return to this point later. The polytrope index γ is generally obtained by measuring the
variation of the density n and temperature T as a function of a parameter; for example if
n ∝ r−2 and T ∝ r−β , then nT ∝ r−(β+2) ∝ n1+β/2 so that γ = 1 + β/2.
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Table 5.1 Density and temperatures of protons and electrons measured in the
low corona and the fast wind at 1 AU from the Sun, with the corresponding
polytrope indices

Fast wind n0 (corona) T0 (corona) n (1 AU) T (1 AU) γ (1 AU)

Protons 1014 m−3 2 × 106 K 3 × 106 m−3 3 × 105 K 1.5 ↔ 1.7
Electrons 1014 m−3 106 K 3 × 106 m−3 105 K 1.2

known hardly better than to within a factor of two (see the careful discussion
of errors in [43]); furthermore, some observations (but not all) suggest that the
slope of the electron temperature profile – and therefore the polytrope index –
declines with distance, in agreement with kinetic calculations [37].

One sees in Table 5.1 that the protons have a polytrope index slightly smaller
than the adiabatic value of 5/3, while the one of electrons is much closer to unity.
This raises these basic questions:

• what is the importance of collisions and do they significantly affect the
temperatures?

• what produces the heat flux responsible for the observed strong departure
of electrons from the adiabatic law?

Let us first examine the role of collisions. Their primary role is to tend
to make the velocity distributions relax to Maxwellians. If they were frequent
enough, they would also tend to equalise the proton and electron temperatures.
Furthermore, their rate determines whether the heat flux is given by the usual
(collisional) Fourier law, as already mentioned.

5.4.3 The role of collisions
What is the importance of the exchange of energy by collisions between protons
and electrons? Collisional exchange of energy acts at the rate νE = (2me/mp) νe

where νe is the collision frequency estimated in Section 2.1; this adds an energy
exchange term in the energy equations (5.71)–(5.72), which become
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. (5.78)

This shows that the distance over which collisions significantly affect the
temperatures is of the order of magnitude of (v/νE) (T/∆T ) where T is the
temperature of the species considered, and ∆T is their difference in temperature.
With ∆T ∼ T , this distance is of the order of magnitude of (mp/me) (v/vthe) lf ,
where lf ∼ vthe/νe is the mean free path defined in Section 2.1 and vthe =
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Figure 5.6 Electron density, temperature and mean free path (normalised to the
scale height), as a function of distance from the solar surface, in the fast wind
(the region where no measurements are available is shown by dashed lines).

√
2kBTe/me. Since the mean free path at distance r is of the order of magnitude

of r in most of the solar wind (Fig. 5.6), and the terminal speed is not very much
smaller than vthe, we conclude that collisional exchange is not expected to affect
the energy balance very much, except at small distances.16

Now, let us examine whether collisions are sufficiently frequent for the heat
flux to be given by the usual collisional value. This question is addressed through
the Knudsen number, that is the ratio of the particle free path to the scale height
of variation in temperature. Since, however, the temperature gradient is even
less well known than the temperature itself, we shall rather compare the mean
collisional free path of particles with the density scale height

H = | [d (lnn) /dr]−1 |

which is known reasonably well. Figure 5.6 shows the ratio of the electron mean
free path lf to H as a function of distance, estimated with the parameters of
Fig. 4.1 close to the Sun, and of Table 5.1 at large distances where n ∝ r−2 so
that the scale height is H = r/2. The slow wind is more collisional, but weakly
so.

One sees that lf/H is greater than 10−3 in the corona and is of the order
of unity or greater in the solar wind. As we already noted, the medium is not
sufficiently collisional in this case for the classical heat conduction formula to
be justified (cf. [49]). Indeed, with lf ∝ v4 and lf/H > 10−3, the electrons of
speed v > 103/4vthe have lf/H > 1. There are grave doubts on the applicability
of the usual collisional heat flux in the corona, and it should certainly not apply
in the solar wind, where lf/H > 1.

16However, plasma waves and instabilities (Section 6.4) might affect the energy balance.
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5.4.4 Heat flux
What, then, determines the electron heat flux?

Polytrope electron heat flux

Let us estimate the value of the electron heat flux required to explain the large
observed deviation of electrons from the adiabatic law. The polytrope index
γe � 1.2 observed near 1 AU corresponds to a heat flux given by (5.74), with,
from (5.75)

αe =
γe

γe − 1
− 5

2
. (5.79)

With γe � 1.2 (from Table 5.1) this yields αe � 3.5, with a large uncertainty
since γe is badly known and changing it by merely 10% would change αe by a
factor of two.

The polytrope electron heat flux (5.74) is therefore

Qepoly ≡ αenvkBTe � αe × 0.3 × 10−5 W m−2 (5.80)

where we have substituted the parameters of the fast wind at 1 AU given in
Table 5.1 and v = 750 km s−1. With the above value of αe, this amounts to
about 10−5 W m−2; if v and αe are roughly constant, the polytrope heat flux
Qepoly varies as nTe ∝ r−2γe = r−2.4.

Note that if this empirical heat flux is interpreted in terms of degrees of
freedom as given in (5.37), the solar wind electrons have N ∼ 10 degrees of
freedom.

Collisional electron heat flux

Since many solar wind fluid models use the collisional heat flux, whose full
expression is (Section 2.3)

Qc = −3
2
nkBvthelf

dTe

dr
, (5.81)

despite the strong doubts on its applicability, it is interesting to compare Qc and
Qepoly. With a temperature varying as Te ∝ r−β , so that dTe/dr = −βTe/r, we
have

Qc/Qepoly = (3β/2αe) × (lf/r) × (vthe/v) . (5.82)

In the fast solar wind, with the parameters from Fig. 5.6 and Table 5.1, this ratio
is close to unity near 1 AU, and varies weakly with distance. In the more variable
slow wind, this ratio is somewhat greater but not much so. We conclude that
it is not easy to distinguish between the two expressions on empirical grounds;
this numerical coincidence (and the observational problems indicated below)
may explain the conflicting views that pervade the literature on the subject.



A mixture of fluids 257

Observed electron heat flux

What does observation tell us about the heat flux? The electron heat flux is
obtained by calculating the moment of order three of the electron velocity dis-
tribution – i.e. the total energy flux – measured in its rest frame. This requires
in situ measurements, which up to now have only been performed farther than
about 0.3 AU from the Sun. Since the heat flux is a vector (aligned with the
local magnetic field and varying relatively rapidly, as do the fast electrons car-
rying it), its precise measurement requires a three-dimensional detector having
a good resolution – a luxurious item of equipment that is often not available
on space probes. As a result, heat flux measurements are in general extremely
inaccurate.

The electron heat flux is observed to lie in the range:

Qeobs ∼ (0.5 ↔ 1) × 10−5 W m−2 ; observed electron heat flux at 1 AU

with a variation with distance Qeobs ∝ r−δ with δ ∼ 1.5 ↔ 3, depending on the
time, distance, wind properties, etc. and measurement method [43], [47].

This is close to the polytrope heat flux estimated above from the observed
variation in electron temperature in the regular fast wind. This might indicate
that the electron energy balance (5.72) is approximately correct in the solar wind
in the range covered by these observations, without introducing any unidentified
heating term. Given the large uncertainty on the measured value of γe and on
its variation with distance, however, this does not prove that the heat flux has
the polytrope form (5.74) with a constant value of αe.

On the contrary, a flow having such a polytrope index all the way out from
the base of the corona cannot produce the wind observed if it is left to its own
devices. Indeed, we have seen in Section 5.3.2 that the value of γ that a single
polytrope should have in order to produce the observed speeds is much closer
to unity than the value observed in the solar wind for electrons near 1 AU
(Table 5.1). This result remains qualitatively true with two polytrope fluids –
a question that is addressed explicitly in Problem 5.7.4. This may also be seen
directly from the value of the total normalised heat flux Q/ρv (5.30) required in
the low corona to produce the observed wind speed; dividing by kBTe with the
observed coronal electron temperature (Table 5.1) and substituting ρ � nmp, we
find that the value of Q/ (nvkBTe) required at the base of the corona to produce
the fast wind is roughly αe0 � 50, i.e. greater by one order of magnitude than
the value observed near 1 AU.

5.4.5 The electric field
With protons and electrons behaving as two different (charged) fluids, the elec-
tric field plays a major role.

Estimates of the electrostatic field and potential

The electric field serves to balance the electron pressure force (cf. (5.68)), and
it is directly related to the electron heat flux since applying the electron energy



258 How does the solar wind blow?

balance (5.70) between r and infinite distance yields

eΦE (r) =
[
Qe

nv
+

5
2
kBTe

]
r

−
[
Qe

nv
+

5
2
kBTe

]
∞

. (5.83)

Neglecting in (5.83) the value of the bracket at infinite distance, we find that
the electrostatic potential at r is roughly determined by the sum of the enthalpy
and of the heat flux per particle:

eΦE � Qe

nv
+

5
2
kBTe at any distance r. (5.84)

Applying the proton energy equation (5.69) between the base r0 (where the
speed is negligible) and infinite distance (where the temperature is negligible),
and neglecting the proton heat flux (which is small compared to the electron
heat flux and therefore compared to the contribution of the electric potential),
the terminal speed is approximately given by

v2
∞
2

� 5
2

kBTp0

mp
+ ΦG0 +

e

mp
ΦE0. (5.85)

Estimating the electric potential at r0 from (5.84), where the heat flux dominates
the enthalpy, we see that the terminal wind speed may be thought of as being
produced by either the electric potential or the electron heat flux.

What is the electric potential required at the coronal base for producing a
terminal speed of 400↔800 km s−1, with Tp0 � 2×106 K, and r0 � R�? Putting
these numbers in (5.85), we find ΦE0 � (2 ↔ 5)× 103 V. Note that this value is
greater than that of a static atmosphere, which we have seen to correspond to an
electric potential energy equal to half the modulus of the gravitational proton
energy, i.e. ΦE0 = mpM�G/2r0e � 103 V at r0. If the base of the corona is
viewed as a surface of radius R�, it can be thought of as carrying a positive
electric charge Q0 � 4πε0R�ΦE0, which amounts to a few hundred coulombs.
Given the huge size of the object, this charge is extremely small. A spacecraft
(of radius smaller by nine orders of magnitude) or a dust grain (of radius smaller
by 15 orders of magnitude) in the Earth’s magnetosphere can be at a similar
electrostatic potential (though of opposite sign), and the electrostatic field in
their vicinity is greater by the same huge factors.

How does the electrostatic potential vary with distance? In the case of
polytrope electrons, the heat flux is given by (5.74)–(5.75), so that (5.84) yields

eΦEpoly =
γe

γe − 1
kBTe. (5.86)

In that case the electrostatic potential varies proportionally to the electron tem-
perature, and the electrostatic field amplitude satisfies, in order of magnitude
eE ∼ eΦ/r ∼ kBTe/r. It is interesting to verify that this electric field is com-
patible with the plasma quasi-neutrality. Let ∆n be the difference between the
proton and electron number densities. Writing Poisson equation .E = ρ/ε0
and substituting the charge density ρ = ∆n × e yields in order of magnitude
∆n ∼ ε0kBTe/ (er)2. It is easy to see that this amounts to an extremely minute
fraction of n, so that the plasma remains quasi-neutral.
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Particle viewpoint

Even though it is extremely small from the point of view of electric quasi-
neutrality, the electric field is huge from the point of view of the particles. This
can be seen from a simple order of magnitude estimate. Since the electron tem-
perature varies much more slowly than the density in both the corona and the
wind, we may estimate the electric field from the electron momentum equation
(5.68) by putting the temperature outside the derivative to obtain

eE ∼ −kBTe

n

dn

dr
∼ kBTe/H (5.87)

where H is the density scale height. A particle moving radially is accelerated
by the field, whereas collisions tend to brake it on a scale length equal to its
free path. The energy gained by a particle across one mean free path is

eE × lf ∼ kBTe × lf/H. (5.88)

Since lf/H is of order unity in the wind (including its acceleration region),
the energy gained by a particle across one mean free path is of the order of
the mean particle energy. In other words, the electric field is of the order of
magnitude of the so-called Dreicer electric field [8], which accelerates particles
moving faster than thermally more rapidly than they are braked by collisions.
Since the free path of a particle of speed v increases as v4, fast particles have
a huge free path and are therefore negligibly braked by collisions, so that the
electric field can accelerate them to very high speeds.

The great importance of the electric field for the particles may be seen an-
other way. The time for the electrostatic force to change significantly the mean
electron speed is equal to their thermal speed vthe =

√
2kBTe/me divided by

their acceleration eE/me, i.e.

τdyn ∼ mevthe

eE
; electron dynamic time.

This can be compared to the collision timescale:

τc ∼ lf/vthe ; electron collision time.

Equation (5.88) with lf/H ∼ 1 expresses the fact that the two timescales are
roughly equal, which means that while the coherent electric field and collisions
are of similar importance in the dynamics of thermal electrons, the field hugely
dominates for faster-moving particles.

This shows another difficulty of the fluid approximations, which ignore the
dynamics of single particles, in addition to being unable to determine the heat
flux in this weakly collisional medium (see [48] and references therein). We shall
return to this point in Section 5.5.

Total force on individual protons

To investigate further the particle dynamics, it is interesting to examine how
the force on individual protons varies with distance from the Sun. Individual
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Figure 5.7 One-dimensional sketch showing that, for most of the particles of
a typical distribution to be moving in the same direction (shaded in grey), the
mean must be greater than the width.

protons are subjected to the total force mpM�G/r2 − eE. Close to the Sun,
where they are strongly bound, the gravitational attraction dominates. How-
ever, we see from either (5.86) or (5.87) that since the temperature decreases
more slowly than r−1 in a transonic wind, the electric field E decreases more
slowly than r−2, i.e. than the gravitational force. Hence, there is some dis-
tance where both forces balance, so that the total potential energy of a proton
ΦE − mpM�G/r has a maximum. Farther out, the slowly decreasing outward
electric force on protons dominates, accelerating them outwards. Hence, the
electric field furnishes an interesting interpretation to the wind acceleration,
in terms of individual particles: at large distances, protons – which carry the
mass of the wind – are propelled outwards by the electric field, which dominates
gravity.

At what distance rM is this maximum of energy located, compared to the
critical distance rC where the wind becomes supersonic? Above rM , the de-
creasing potential energy means that the total force on a proton is directed
outwards; since collisions are not dominant, most of the protons are therefore
escaping from the Sun there, i.e. have a velocity directed outwards as seen
from the Sun. Now, consider a velocity distribution whose mean velocity is
vw, directed outwards. If vw = 0, only half the protons are moving outwards.
For most of them to be moving outwards, their mean bulk velocity vw must be
greater than the width of the distribution, or the mean square speed 〈v2〉1/2 of
protons, which is of the order of magnitude of vthp (Fig. 5.7). Hence vw > vthp

above the distance rM , so that vw is greater than the sound speed VS there
(because VS ∼ vthp). This means that the distance rM where the proton poten-
tial energy has a maximum is located in the supersonic region, i.e. above the
critical distance where the wind becomes supersonic; this is proved explicitly in
Problem 5.7.4 for a polytrope fluid (see [37]).17 We shall see the consequences
of this property in Section 5.5.

17Where it is also proved that in a transonic wind, the potential energy of protons has
necessarily a maximum.
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5.4.6 Fluid picture balance sheet and refinements

The two-fluid description improves the fluid picture by taking into account the
huge difference in mass between protons and electrons, which makes them feel
different forces, carry heat differently and have few mutual energy exchanges.
Basically, ions carry momentum (because of their large mass), whereas electrons
carry heat (because of their large individual speeds).

To preserve zero electric charge and flux, an electric field sets up, whose
amplitude is greater than implicitly assumed in the fluid theories that close the
infinite ladder of moment equations (Section 2.3) by using the usual (collisional)
heat flux. Note that, contrary to a frequent misconception, the electric field does
not make ions and electrons behave as if they were glued together; rather they
distribute themselves so that there is no significant average charge accumulation.

Observations of the electron temperature and heat flux yield Qe/nvkBTe ∼
5 ↔ 10 in the solar wind. This value is compatible with the observed variation
of Te with distance in the wind, without having to invoke unidentified heating
processes. However, not only is this value unexplained in the frame of the
fluid picture, but it is much smaller than the normalised heat flux Qe/nvkBTe

required in the corona to power the wind (in the absence of additional energy
sources).

Put differently, electrons behave in the fluid picture as if they had N ∼
2/ (γe − 1) ∼ 10 degrees of freedom in the fast wind, but roughly 10 times more
at the base of the wind. Why is this so?

There are two ways out of this dilemma. The easiest way is to circumvent
the difficult problem of calculating the heat flux by assuming that the energy is
instead mainly furnished by plasma waves; the fluid models (equipped with the
usual collisional heat flux) are then rescued by postulating ad hoc heating and
pushing functions supposed to mimic a local deposit of wave energy; the corre-
sponding terms are added to the balance equations as indicated in Section 5.3.4.
The alternative – and more difficult – way is to return to the basics and adopt a
kinetic description that calculates properly the heat flux; we shall discuss such
attempts in the next section.

The easiest refinement of the simple two-fluid model considered above is to
allow the pressures to be anisotropic – with different temperatures in the direc-
tions parallel and perpendicular to the magnetic field – and to consider many
particle species – pictured as separate fluids (see for example [23], [24]). Note
that, just as the classical fluid models implicitly assume the particle velocity dis-
tributions to be nearly Maxwellians, these extensions assume them to be nearly
bi-Maxwellians.18

Since it is relatively straightforward to build such multi-fluid constructions
that reproduce the observations if the heating and pushing functions are suitably
chosen and if enough arbitrary parameters are put into the recipe, there is a
host of such models. These models have been adorned with more and more
refinements as more computational power has become available, in order to

18I.e. Maxwellians having different temperatures in the directions parallel and perpendicular
to the magnetic field.
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rescue them in the face of contradicting and more accurate observations. In
some sense, these ingenious schemes are reminiscent of the elaborate theory
of planetary motions known as the Ptolemaic system, which was ingeniously
adorned with epicycles that became more and more complicated to rescue it
in the face of contradicting observations, until Kepler’s brilliant construction
pulled it to pieces.

These fluid models use the conservation of mass, momentum and energy –
including sources terms – to calculate the density, mean velocity and temper-
ature, with a (local) hypothesis on the heat flux. A further refinement is to
consider higher-order moments (see for example [31]). The price to be paid is
a great increase in complexity, and the benefits are not evident because these
schemes do not alleviate the major problem encountered by fluid models: their
doubtful validity when the particle distributions are not close to Maxwellians (or
bi-Maxwellians), because in that case, only the infinite set of moment equations
is correct. Ironically enough, just as adding more terms in a divergent asymp-
totic series may worsen the approximation, considering higher-order moments
of the velocity distributions may not improve the theory because the higher the
order of the moment, the greater the role of the fast particles which are the least
collisional and are thus the most easily driven out of equilibrium.

5.5 Kinetic descriptions

We discuss in this section the other alternative: the kinetic description. Basi-
cally, a kinetic description deals with particles and their equations of motion. As
we saw in Section 2.3, a convenient method, which is in some sense intermediate
between the particle and the fluid concepts, deals with the velocity distributions
of the particles; more exactly, one first calculates the evolution of the velocity
distributions – a very difficult task, and then deduces their moments – which
is straightforward. The difficulty of calculating the evolution of the velocity
distribution is linked to the special character of collisions in a plasma and to
the lack of local thermal equilibrium.

5.5.1 Some notations
When collisions are rare, the velocity distributions may be very different from
Maxwellians. The number density n and mean velocity vw of a particle species
are given by the first two moments of the velocity distribution f (v) as

n =
∫

d3v f (v) ; nvw =
∫

d3v v f (v).

The mean velocity vw coincides with the fluid velocity of the fluid picture.19

The mean temperature represents the width of the distribution as

T = m

∫
d3v | v − vw |2 f (v) /3nkB . (5.89)

19We noted its modulus v in the previous sections.
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The heat flux vector quantifies the skewness of the distribution, through the
moment of order three in the frame where the mean velocity is zero

Q =
m

2

∫
d3v f (v) (v − vw) | v − vw |2 . (5.90)

The particle gyration generally ensures some symmetry around the magnetic
field. In the simple case when the magnetic field is parallel to the mean velocity
vw, the temperatures in the parallel and perpendicular directions are defined
from the widths of the distribution in these directions as

nkBT‖ = m

∫
d3v v2

‖ f (v) − nmv2
w ; nkBT⊥ =

m

2

∫
d3v v2

⊥ f (v)

where the factor 1/2 takes into account that there are two perpendicular direc-
tions (but only one parallel direction). The mean temperature is

T =
(
T‖ + 2T⊥

)
/3.

In this case, the mean velocity and heat flux amplitudes may be written

nvw =
∫

d3vv‖f (v)

Q =
m

2

∫
d3vv‖v2f (v) − nvw

[
3kBT‖/2 + kBT⊥ + mv2

w/2
]
. (5.91)

In the expression of the heat flux Q, the first term is the total energy flux in the
frame where f (v) is defined, whereas the rest represents the flux of enthalpy
and of bulk kinetic energy, in accord with energy balance (see (5.27)).

5.5.2 Observed proton and electron velocity distributions
Velocity distributions are at the basis of kinetic descriptions. They have been
measured in detail over a large range of distances in the solar wind, farther than
about 0.3 AU. Their main property is their strong deviation from local thermal
equilibrium, especially in the regular fast wind.

Solar wind protons

For protons, the main deviation from a Maxwellian in the plasma frame is a lack
of isotropy, with a beam and different temperatures in the directions parallel
and perpendicular to the magnetic field. Figure 5.8 shows a typical proton
velocity distribution measured in the fast wind at 1 AU from the Sun (see for
example [13]20). The non-thermal character appears to decrease with distance

20This is one among the large number of publications reproducing this distribution (see also
[12]), measured aboard the venerable spacecraft IMP 7 on 22 March 1973. This distribution
was modelled as a sum of two bi-Maxwellian distributions having different mean speeds and
temperatures, namely a cold distribution moving at about 700 km s−1, plus a hotter and faster
beam of smaller density (we do not reproduce this modelisation because it is not unique). In
contrast, in the direction perpendicular to the magnetic field, the distribution is roughly
symmetrical, and the main component is generally hotter.
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Radial velocity (km s−1)

Figure 5.8 Typical proton velocity distribution measured in the fast solar wind
at 1 AU from the Sun (projection on the radial direction). (Adapted from [13].)

to the Sun, and is much less conspicuous in the slow wind, which may be due
to the smaller value of the particle mean free path (see [34]).

Solar wind electrons

Electron velocity distributions have different properties. First of all, they are
never close to Maxwellians or bi-Maxwellians, even in the (more collisional) slow
wind, since there is always a large excess of electrons moving faster than two to
three times the thermal speed. At speeds smaller than the thermal speed, the
distribution is generally close to a Maxwellian (or rather a bi-Maxwellian), but
at greater speeds, the distribution decreases much more slowly with energy – de-
creasing as W−p (with p ∼ 3−6 at 1 AU) rather than as an exponential (see [13]).

In the high-speed wind, the distribution is still farther from equilibrium, as
it carries also an excess of particles moving outwards roughly parallel to the
magnetic field, faster than the mean of the distribution; the temperature of
this component – called the strahl – is nearly 106 K (see [42] and references
therein). This is illustrated in Fig. 5.9, which shows a typical electron velocity
distribution measured in the fast wind,21 which is close to a Maxwellian at low
speeds, but has a power law shape at large speeds and a flux of escaping fast
electrons [32].

As we already noted, this excess of high-speed particles is not surprising,
especially in the fast wind where collisions are rare, since the faster the parti-
cles, the smaller their collisional cross-section, hence the slower they relax to a
Maxwellian, and therefore the more easily they are driven out of equilibrium.

21Measured aboard the spacecraft WIND, at 1 AU from the Sun.
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Figure 5.9 Typical electron velocity distribution measured in the fast solar
wind at 1 AU from the Sun (projections parallel (circles) and perpendicular
(squares) to the magnetic field), compared to a Maxwellian (continuous line).
Along both directions, the distribution approaches a Maxwellian at low speeds
but has more high-speed particles than a Maxwellian. Furthermore, there is
a flux of fast electrons escaping along the magnetic field. (Data courtesy of I.
Zouganelis.)

The kappa distribution

How to model a distribution that is nearly Maxwellian at low speeds, but de-
creases as a power law at high speeds? In the menagerie of mathematical func-
tions, a convenient choice is the generalised Lorentzian, or kappa function:

fκ(v) ∝
[
1 +

v2

κv2
th

]−(κ+1)

(5.92)

with a normalisation factor ensuring that
∫

d3v f (v) equals the number
density.22

Whereas the shape of the Maxwellian distribution is characterised by only
one quantity: the temperature (the density acting as a normalisation factor), the
kappa distribution has one more parameter, κ, which measures how it deviates

22The normalisation factor in (5.92) is the product of the number density by Aκπ−3/2v−3
th

with Aκ = κ−3/2Γ (κ + 1) /Γ (κ − 1/2). The gamma function is defined in the Handbook of
Mathematical Functions, ed. M. Abramowitz and I. A. Stegun (New York, Dover, 1970),
p. 253. For κ integer, it may be easily calculated by using Γ (κ + 1) = κ!, Γ (1/2) =

√
π, and

Γ (κ + 1/2) = Γ (1/2) × 1 × 3 × 5 × · · · × (2κ − 1) /2κ . When κ → ∞, Aκ → 1.
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Figure 5.10 A kappa distribution (normalised so that f (0) = 1) with κ = 3,
compared to its Maxwellian low-speed approximation: exp− [

(κ + 1) v2/κv2
th

]
and to its high-speed limit:

(
v2/κv2

th

)−κ−1
.

from a Maxwellian; the larger the value of κ, the fewer suprathermal particles,
and the closer the distribution to a Maxwellian; in the limit κ → ∞[

1 +
v2

κv2
th

]−(κ+1)

→ e−v2/v2
th ; κ → ∞

i.e. the kappa distribution tends to a Maxwellian of temperature T = mvth
2/2kB .

Furthermore:

• at speeds v � √
κvth, fκ has the same series expansion – to first order –

as a Maxwellian of temperature T = (κ/ (κ + 1)) × (
mv2

th/2kB

)
• in the opposite limit v � √

κvth, fκ ∝ (
v2/κv2

th

)−κ−1
.

Figure 5.10 shows a kappa distribution together with the Maxwellian and the
power law approximating it at respectively low and high speeds.

The probability that the speed will lie between v and v+dv is fκ (v)×4πv2dv,
so that the most probable speed (the speed at which the derivative of v2fκ (v)
vanishes) is vth, whatever the value of κ – including the Maxwellian limit κ → ∞.
However, the kinetic temperature23

T ≡ m〈v2〉
3kB

=
κ

κ − 3/2
mvth

2

2kB
(5.93)

is greater than the one in the Maxwellian limit, the more so as κ decreases –
due to the increasing importance of the tail. Note that κ is constrained by the
inequality κ > 3/2 for the temperature to remain finite. For any finite value of

23The angular brackets denote an average over the distribution, i.e. 〈v2〉 =
∫

d3v v2f(v)/∫
d3v f (v).
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κ, there are only a limited number of finite moments, so that this distribution
must be handled with care.

At speeds greater than the most probable speed vth, the kappa distribution
has more particles than a Maxwellian – an excess that increases with speed
(Fig. 5.1024). It is not surprising that such a property is often observed of
particles in space. Indeed, we have already noted that the faster the particles,
the more easily they are driven out of equilibrium; furthermore, many acceler-
ation processes produce a distribution of particles decreasing as a power law at
high speeds. We have seen in Section 4.5 a simple way of generating a kappa
distribution, and a number of more ingenuous methods have been devised (see
[51], [6] and references therein). Problem 5.7.5 invites you to torture a kappa
distribution, and Problem 5.7.6 examines different empirical determinations of
the temperature for non-equilibrium distributions.

5.5.3 Non-collisional electron heat flux
We saw that the concept of temperature, which lies at the heart of classical
macroscopic physics, must be applied with extreme caution in a weakly colli-
sional plasma. The same holds for the heat flux.

What determines the heat flux in the absence of collisions? Since the heat
flux is an odd moment of the velocity distribution, the question may be reformu-
lated as: what determines the observed skewness of the electron distribution?

A hint may be found by studying the trajectories of individual electrons. In
the absence of collisions, the particle energy is conserved. At distance r where
the speed is v and the electrostatic potential is ΦE(r), the total electron energy
is

mev
2/2 − eΦE(r) = constant

along the trajectory. Let the electrostatic potential be positive, decreasing
monotonously with distance and vanishing at infinity, and define the speed

vE = (2eΦE/me)
1/2

.

We deduce that at distance r:

• an electron of speed v < vE has not enough energy to go to infinity, and
is therefore trapped by the Sun,

• an electron of speed v > vE moving outwards is able to reach infinity.

A little reflection tells us more. An electron trapped by the Sun may have
a speed directed either inwards or outwards. An electron of speed v > vE ,
however, is necessarily escaping from the Sun because otherwise, it would be
coming from infinity – a possibility that we may ignore because the Sun is
immersed in a very dilute medium.

24In Fig. 5.10, the kappa and the Maxwellian distributions are normalised so as to be both
equal to unity at v = 0. When normalised so as to have the same number density, the kappa
has fewer particles than the Maxwellian at low speeds and more at high speeds.
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Figure 5.11 One-dimensional sketch of a velocity distribution in an attractive
potential. Slow particles are trapped and can therefore be moving inwards or
outwards, whereas because no particles come from infinity, fast particles are all
escaping, and produce both the mean outward velocity and the heat flux.

Finally, therefore, the velocity distribution is made of the trapped electrons,
of speed v < vE , whose distribution is symmetrical with zero mean velocity
and heat flux, and the escaping ones, of speed v > vE , which are responsible
for both the particle flux and the heat flux. Figure 5.11 sketches a cut of the
distribution along the radial. The particle flux and the heat flux are respectively
the moments of order one and three of the part of the velocity distribution shown
in grey. These values are calculated in Problem 5.7.7 when the escaping electrons
are assumed to consist of all the electrons having an outward velocity v > vE ,25

and the distribution is either a Maxwellian or a kappa.26

In this kinetic collisionless picture, the wind speed and the heat flux per
particle have a similar origin: the electrons escaping from the electrostatic po-
tential. This is in sharp contrast with the usual (collisional) view of the heat
flux in the fluid picture.

5.5.4 Exospheric models

Particle orbits and how to deal with them

We have seen that in the absence of collisions the bulk speed and the heat flux
are produced by the escaping tail of the electron velocity distribution, which is
determined by the electrostatic potential. However, contrary to a frequent mis-
conception, the above calculation does not yield the true collisionless flux. This
is because it includes all the electrons having an outward velocity of modulus
v > vE , i.e. all velocity directions in a whole half-space 0 < θ < π/2, where
θ is the inclination of the velocity to the radial. Without collisions, however,
escaping electrons cannot have any outward velocity direction because their

25An assumption that is not consistent with the absence of collisions, as we shall see in the
next section.

26In the particular case when the electrostatic potential energy eΦE 	 kB Te , this net flux
is Qe ∼ nvweΦE , as already found from energy balance (see (5.83)).
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trajectories are constrained by the invariants of motion. Namely, both their
energy mev

2/2− eΦE and their magnetic moment ∝ v2 sin2 θ/B (θ is the pitch
angle)27 are conserved along the trajectory from the base of the wind r0 (Section
2.2). With a radial magnetic field satisfying from flux conservation B ∝ r−2,
we thus have

mev
2/2 − eΦE = mev

2
0/2 − eΦE0 (5.94)

v2r2 sin2 θ = v2
0r2

0 sin2 θ0. (5.95)

The pitch angle θ of an electron at r is therefore determined by the value θ0

at r0, the speed v and the difference of electric potential between r and r0.
Since an escaping electron at r0 may have any pitch angle between 0 and π/2,
(5.95) shows that the pitch angle of escaping electrons at distance r must satisfy
sin θ < (v0r0/vr) with v0 given in (5.94). Hence θ < θM with

sin θM =
r0

r

[
1 +

2e (ΦE0 − ΦE)
mev2

]1/2

(5.96)

which is very small for fast electrons far from the Sun.
The particle and heat fluxes at distance r are thus produced by particles

whose velocities lie in a small cone of half-angle θM , instead of the whole half-
space of outward velocities that was considered in deriving (5.119).

Let the electron velocity distribution at r be f (v); the escaping flux is
therefore

nvw = 2π
∫ ∞

(2eΦE /me )1/2
dvv3

∫ θM

0

dθ sin θ cos θ f (v). (5.97)

Conservation of energy and magnetic moment enables one to calculate the whole
velocity distribution at r from Liouville’s theorem (Section 2.3). The distribu-
tion f (v) at distance r of particles coming from r0 where the distribution is
f0 (v0) is given by f0 (v0) = f (v) with the velocities related by the conserva-
tion equations (5.94)–(5.95). Substituting the above value of θM , making the
change of variables v0 =

[
v2 + 2e (ΦE0 − ΦE) /me

]1/2
, (5.97) yields28

nvw = π
(r0

r

)2
∫ ∞

(2eΦE 0/me )1/2
dvv3f0(v). (5.98)

Since the integral depends only on the values at r0, this equation expresses flux
conservation between r0 and r through flux tubes whose cross-section increases
as r2.

What about the electrons that are not escaping? With no particles coming
from infinity, they may be divided in two classes. Those coming from the base
r0 with a speed too small to reach infinity are reflected on a ballistic trajectory.
The second category are those trapped between two reflection points: one due

27The angle between v and B.
28For simplicity, we assume f0(v0) to be isotropic in the velocity range where it is not zero.
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Figure 5.12 Sketch of electron orbits around the Sun. The outward electric
field E is produced by the small electron to proton mass ratio, which tends to
make electrons escape more easily than protons. Some electrons coming from
the corona are reflected by E on a ballistic trajectory. Some are trapped by E
and the magnetic mirror force. Those having a large enough speed are escaping.

to inward reflection by the electrostatic field, the other due to outward reflection
by the magnetic mirror force (see Section 2.2) produced by the increase in B
towards the Sun (Fig. 5.12). Since, without collisions, no electrons can be put
on or leave such trapped orbits, this population is arbitrary. However, even
a very small number of collisions can populate these orbits after a sufficiently
long time; hence one may assume them to be in equilibrium with the ballistic
electrons, so that the distribution at r is symmetrical for energies smaller than
eΦE(r). These trapped particles represent the vast majority of electrons and
are therefore essential to ensure electric quasi-neutrality [57].

How about protons? A similar scheme holds, except that the gravitational
attraction is not negligible. We saw in Section 5.3 that their total potential
energy has a maximum somewhere in the supersonic region, so that all the
protons present at greater distances are escaping. Hence, in contrast to the
electrons, reflected protons cannot be found at any distance, but only closer to
the Sun than this maximum.

Following this scheme, one can calculate the particle velocity distributions
everywhere from Liouville’s theorem as a function of the electrostatic potential,
deduce the number densities and fluxes, and finally deduce the potential itself
at any distance by imposing equal densities and fluxes of electrons and protons;
once the electrostatic potential is calculated, the wind properties are deduced.

Consequences of the electric potential

The total potential energy of an electron and of a proton are given respectively by

ψe = −eΦE (5.99)

ψp = eΦE − mpM�G/r (5.100)
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Figure 5.13 Sketch of the total potential energy of electrons and protons as a
function of heliocentric distance.

and sketched in Fig. 5.13. One can easily understand how the electrostatic
potential arises to prevent permanent electric charge accumulation. Let ψe0

and ψp0 be the values of ψe and ψp at the base r0. There, the flux of escaping
electrons is that of all outward-going electrons of energy greater than the depth
of the potential well | ψe0 |. With a Maxwellian distribution, this flux is given
by (5.119) with b = eΦE0/kBTe (Problem 5.7.7).

The case of escaping protons is subtler, because their potential energy does
not vary monotonously with distance but has a maximum if the wind is tran-
sonic, as we saw in Section 5.3.5.29 This maximum of potential satisfies ψM >
(0, ψp0), so that the escaping protons are those of energy greater than the well
depth ψM − ψp0. With a Maxwellian distribution, this flux is given by (5.119)
with b = (ψM − ψp0) /kBTp, and vthe replaced by vthp. Both fluxes must be
equal. (The electron and proton densities must be equal, too, which means
that their values of n0 in (5.119) are not strictly equal.) Since electrons have
a much greater thermal speed than protons, the potential well retaining them
must therefore be much greater than the one retaining protons, in order to en-
sure density and flux balance. This means that the electrostatic potential at r0

is significantly greater than the value of a static atmosphere30 – in agreement
with what we found from energy balance considerations in Section 5.3.5. It is
the failure to recognise this fact that was responsible for the failure of early exo-
spheric theories [4]. The exospheric point of view resurfaced when self-consistent
calculations showed that the actual electrostatic field is greater than in a static
atmosphere, and can produce a supersonic (albeit slow) solar wind if the wind

29Indeed, if ψp is monotonously decreasing (and therefore positive) then all protons present
at r0 are escaping (Fig. 5.7), so that their mean velocity there is close to their thermal speed,
i.e. the wind starts nearly supersonic.

30Because with the same value at r0 as in a static atmosphere, one would have ψp0 = ψe0 <
0, whence ψM − ψp0 = ψM − ψe0 = ψM + | ψe0 |>| ψe0 |, so that the potential well retaining
electrons would be smaller than the one retaining protons.
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Figure 5.14 In the exospheric picture, the electrons that escape from the corona
are the fast ones (left). If the velocity distribution there has an excess of such
electrons, the escaping electron flux tends to increase (right), making the electric
potential rise in order to keep that flux equal to the proton one; the greater
electric field accelerates the protons and thus increases the wind speed.

starts at a distance r0 of a few solar radii (see [26], [29], [30]). In retrospect,
it is amusing to note, from our twenty-first-century vantage point, that George
Fitzgerald was right: this electric field produces an outward force on protons
equal in magnitude to a few times the gravitational force to the Sun.

In this view, the solar wind is the evaporation of the high-speed tail of a
Maxwellian particle distribution in the corona, with, however, a major differ-
ence with respect to the evaporation of a neutral exosphere. The protons are
accelerated outwards by the electric field induced by the tendency of electrons
to escape because of their small mass. This approach does not contradict the
fluid picture, since the wind is pushed by the electrons, whereas the fluid picture
has to assume by brute force a large heat conductivity which ultimately must
be carried by the electrons.

Now, assume that the electron velocity distribution in the corona has a
greater proportion of high-speed electrons than a Maxwellian, being for example
close to a kappa distribution. If the electrostatic potential remains the same as
with a Maxwellian, the escaping flux of electrons increases, whereas the flux
of protons does not change. This produces an accumulation of positive charge
at the base of the corona, making the electrostatic potential increase, until it
traps enough electrons to keep their escaping flux equal to the proton one. And
in turn, this greater electrostatic field accelerates the protons outward, thereby
increasing the wind speed (Fig. 5.14). Another way of understanding this effect
is to note that increasing the number of high-speed electrons increases the heat
flux, which in turn produces a greater terminal wind speed because of the global
energy balance (see [57] and references therein; a simple analytic estimate is
given in [36] in a simpler case31).

31The problem is simpler when the proton thermal speed at the base is of the order of
(or greater than) the escape speed. In that case, the proton (positive) electrostatic energy
dominates everywhere the (negative) gravitational one, so that protons are all escaping; hence
their mean velocity is roughly equal to the thermal one, so that the wind starts nearly at
the sonic speed. This may occur under conditions relevant for the slow wind, which is more
collisional than the fast one, so that the collisionless region starts at a few solar radii from the
Sun.
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Balance sheet of the exospheric picture

The exospheric picture provides insights into two physical processes that are
not accounted for by fluid models. First, studying the individual particle tra-
jectories, governed by the electrostatic field, reveals the existence of different
classes of particles that lead different lives, although they belong to the same
species. This suggests that treating all particles of a given species as a fluid
obliterates a major aspect of the physics. Second, the role of suprathermal elec-
trons in increasing the escaping electron flux and the heat flux, and therefore
the wind speed, reveals a major weakness of the fluid picture which ignores these
particles. Instead of being determined by collisions and being proportional to
the temperature gradient, the fast wind heat flux is due in the exospheric pic-
ture to the nearly collisionless fast electrons, and governed by the electrostatic
potential.

The exospheric picture may provide a key to explaining the fast wind speed,
and provides a direct interpretation for the observed electron velocity distribu-
tions that have a nearly Maxwellian cold component – presumably made of the
electrons trapped by the electrostatic potential well, and a suprathermal tail
that is strongly skewed in the direction away from the Sun – presumably made
of the escaping electrons.

However, the observed distributions differ from the theoretical predictions
in several aspects (see for example [42]), so that a better picture is required.32

5.5.5 Kinetic models with collisions and
wave–particle interactions

Even though the exospheric picture provides insights into the behaviour of the
velocity distributions and may enable one to evaluate bulk properties of the
wind, it does not account properly for the measured velocity distributions.

Explicitly incorporating collisions into the theory does not change drastically
the wind speed and heat flux [57], and still produces velocity distributions that
disagree with observation and may drive plasma instabilities (see [13] and ref-
erences therein). This suggests that both particle collisions and plasma waves
produced by instabilities should be incorporated into the theory, which is a

32First, according to the collisionless picture, the trapped electrons should be at rest with
respect to the Sun; this is not observed. Second, the observed pitch angle of escaping electrons
is broader than predicted by (5.96). Third, since ions are all escaping far from the Sun in
the collisionless picture, their velocity distribution should be strongly anisotropic. This is
because, from conservation of the magnetic moment (v2

⊥ ∝ B), the perpendicular temperature
of escaping particles should decrease as T⊥ ∝ B ∝ r−2 (with a radial magnetic field). In
contrast, their T‖ should not vary with distance, because both their parallel pressure and
their number density vary as the inverse of the flux tube cross-section, so that the ratio
is constant. Hence, the theory predicts Tp‖ 	 Tp⊥. That such a large anisotropy is not
observed is not surprising, because it should drive the plasma unstable. Indeed, when the
pressure parallel to the magnetic field exceeds the perpendicular one by an amount greater
than the restoring magnetic curvature force B2/µ0, the plasma becomes unstable – the so-
called fire-hose instability. This produces waves, which interact with the particles, decreasing
the anisotropy and keeping the distribution stable (see [35] and references therein).
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difficult task. Because of the complexity of the calculations, and because no-
body has yet come up with a satisfying solution, we refer the reader to the
literature (see for example [11], [13], [41], [28] and references therein).

5.6 Building a ‘full’ theory?

The difficulty of understanding energy transport in both the corona and the solar
wind, whereas energy must be transmitted to the wind in some way or another
in order to explain the observed acceleration, is reminiscent of the unsolved
coronal heating problem. This suggests that both problems should be treated
simultaneously.

Treating coronal heating and the solar wind as a single problem requires
placing the base of the wind not in the corona but in the chromosphere. This
involves in particular:

• the radiative losses, which are important at low heights and involve a huge
number of particle species out of equilibrium,

• the heat conductivity, which is unknown in a weakly collisional medium,

• a source of energy presumably involving the magnetic field, of which there
is no predictive theory nor unambiguous measurements, and which may
produce waves and/or non-thermal velocity distributions,

• a hideously complicated geometry at low heights (see Section 4.1), as well
as temporal variations.

Given the complexity of the problem, building a proper theory for the ori-
gin of the solar wind requires understanding the physical processes having a
dominant effect, and doing observations capable of constraining the theory.

5.6.1 More and better observations (beware of
hidden assumptions)

As we saw in Sections 4.1–4.2, the density and temperature are difficult to
measure in the wind acceleration region, that is the corona (and the magnetic
field is even more so), where no spacecraft has yet been sent. The available data
rely on a multitude of unsecured assumptions, and different measurements give
conflicting results. Among the dubious assumptions are:

• Maxwellian (or bi-Maxwellian) particle velocity distributions, which are
implicit in most spectral measurements,

• the homogeneity – or lack of homogeneity – of the medium, generally
accounted for by an arbitrary ‘filling factor’,

• the factor by which the flow lines deviate from the radial, generally ac-
counted for by an arbitrary ‘expansion factor’. This factor is generally
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Figure 5.15 A scale model of a NASA project for a solar probe, which should
make a near-Sun fly-by: an age-old dream of space scientists, which is within
the reach of twenty-first-century technology.

inferred to be large on the basis of extrapolations of the magnetic field
measured at the photosphere (see [12] and references therein), whereas
other studies show on the contrary that the fast wind flows mainly ra-
dially (see [56] and references therein). We shall return to this point in
Section 6.2.

Observation of helium and minor ions might give some further indications as
to the physics at work. The temperature of these ions is found to be at least pro-
portional to their mass in the corona – a fact that favours most kinetic theories.
Furthermore, they flow faster than protons and may exhibit a large anisotropy,
with greater temperatures in the direction perpendicular to the magnetic field –
a fact that supports cyclotron heating, but is still controversial (see [9] and
references therein). We shall return to these ions in Section 6.5.

In this context, a major step will be achieved when a space agency
launches a solar probe, to measure the coronal physical parameters in situ
(Fig. 5.15).

5.6.2 Difficult theoretical questions

Understanding the physical processes involved requires answering several fun-
damental questions.

What are the shapes of the velocity distributions in the corona, and
might the wind be ‘suprathermally driven’ ?

Three arguments suggest that the particle velocity distributions in the corona
(and even below) may have high-speed tails. First, it is relatively easy to produce
such tails from the magnetic energy present in the solar atmosphere (see [54],
[55] and references therein). Second, some observations suggest that this might
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be so [10] (though other observations disagree). Third, we have seen that this
is so in the solar wind. If the particle velocity distributions in the corona are
found to have high-speed tails, then not only will a large part of the observations
have to be re-examined, but this tail might accelerate the solar wind through
the increased heat flux at the base (see [57] and references therein), as suggested
long ago [38]. This question is still open.

If waves or turbulence do push and heat, how and where do they act?

Waves and magnetic field fluctuations are fashionable candidates for heating the
corona and accelerating the wind, and the literature on this subject would fill
several books (see [19] and references therein). There are several reasons for that.
First, it is relatively easy to produce such waves in the solar atmosphere, and
to incorporate them into fluid models through ad hoc macroscopic parameters.
Second, some observations can be interpreted as a signature of such waves (see
however [33] and references therein). Third, such waves and fluctuations are
observed in the solar wind, as we shall see in Section 6.4.

However, the question of their role in heating the corona and accelerating
the wind is still open, and one does not understand what form the magnetic
fluctuations take (waves, shocks, turbulence, or all forms together?), how and
where they are generated, which modes are important, and finally, how and
where their energy is used to heat the medium and produce the wind. A recent
review may be found in [18].

Are spatial and temporal inhomogeneities a ‘detail’ ?

We have seen in the previous chapter that the solar atmosphere is far from
homogeneous and stationary, exhibiting jets and explosive events in permanence.
Furthermore, some observations suggest the nascent wind to be made of micro
streams. One may seriously ask, therefore, whether it is permissible to ignore
these irregularities in wind theories (see [12] and references therein). We shall
return to this point in the next chapter.

How is energy transported, and should fluid theories be pensioned off?

Energy transport is perhaps the most important unsolved problem in weakly
collisional space plasmas, where, as we have already said, the usual (collisional)
heat conductivity is invalid because heat is mainly transported by the fast (col-
lisionless) electrons. Put another way, these electrons make the conductivity
non-local, whereas fluid models involve local parameters and their local deriva-
tives. The solution of this problem may require concepts of non-equilibrium
thermodynamics, a subject still in its infancy. Preliminary results suggest that
in a weakly collisional plasma, the heat flux is indeed extremely different from
the classical one (see [28] and references therein).

Does this mean that the old fluid theories should be pensioned off?
Not necessarily so, since – hopefully – kinetic studies may enable one to
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understand the relevant physics, and then perhaps build a properly modified fluid
theory.

5.7 Problems

5.7.1 Transonic flows in ducts: the de Laval nozzle
Consider a stationary flow along some co-ordinate z, through a tube whose
cross-section S varies with z. Assume that the parameters are uniform across
S so that the problem is one-dimensional and mass conservation yields ρvS =
constant along z. Assume that the pressure P of the flowing gas is a function
of ρ only, so that variations in pressure and density follow dP = V 2

S dρ, with VS

the sound speed. Neglect all forces except the pressure gradient. Show that the
flow speed varies in the duct according to

dv

v

(
1 − v2

V 2
S

)
= −dS

S
. (5.101)

Show that when the gas is subsonic, it accelerates only if the duct is conver-
gent. Can you explain this property without writing any equation?

Show that when the gas is supersonic, it accelerates only if the duct is
divergent. Again, try to explain this from physical arguments.

Show that for the gas to change smoothly from subsonic to supersonic, the
duct must have a throat where S reaches a minimum value (Fig. 5.16). Is this
condition sufficient to obtain a supersonic exhaust?

Assume that the gas is adiabatic, i.e. P ∝ ργ . Show that the maximum
speed of the gas vmax at the exit of the duct is given by

µv2
max

2
=

γ

γ − 1
kBT0 (5.102)

where T0 is the temperature at the entrance of the duct and µ is the mean mass
per particle.

Comment on the analogy between this problem and the solar wind. What
is the major difference?

Could the duct be used in reverse, for changing from a supersonic to a
subsonic flow?

Hints

Convergent duct
The Mach number v/VS provides a measure of the importance of compressibility.
In a subsonic flow ρ varies less than v. Hence an increase in v requires a
decrease in S to maintain a constant flux of mass. This corresponds to usual
experience: for example, the speeding up of a river as the channel narrows, or
the fact that the wind blows faster at the top of hills, where the flow lines are
convergent.
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Figure 5.16 The de Laval nozzle used in rocket engines. The juxtaposition of a
convergent duct and a divergent duct enables the flow to accelerate continuously,
becoming supersonic at the throat.

Divergent duct
The counter-intuitive result that at supersonic speeds, an increase in velocity
requires an increase in the cross-section S is also due to mass conservation.
An increase in S decreases the product ρv. In a supersonic flow, however, the
density varies faster than the speed and in the opposite sense (see Section 2.3).
As a result, a decrease in ρv requires an increase in v.

Nozzle
From (5.101), dv/dz remains finite when v = VS only if dS/dz = 0. To ob-
tain a supersonic exhaust, therefore, the gas should flow through a converging–
diverging nozzle. This condition, however, is not sufficient. If you own such a
nozzle and place it on a table, nothing happens, unless you provide adequate
boundary conditions, in particular an adequate pressure difference between
both ends. These principles are at the basis of the design of jet engines and
rockets.

Maximum speed
Write the Bernoulli equation (or conservation of energy)

µv2

2
+

γ

γ − 1
kBT = constant (5.103)

between the entrance of the duct where the flow is subsonic and the exit where
it is supersonic, and note that the maximum speed is obtained when both the
entrance speed and the exit temperature are very small.

Solar wind analogy
The converging part of the tube replaces gravity for making the speed increase
in order to conserve mass. The flaring out part of the tube replaces the radial
expansion of the solar wind at large distances where gravity is no longer domi-
nant. However, in the solar wind the sonic transition would not occur if the gas
were adiabatic, because energy is needed to lift it out of the solar gravitational
well.
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Figure 5.17 The hysteresis cycle of an isothermal flow in response to changes
in the applied pressure P∞ (the dashed lines show unstable solutions). The
transition from a transonic wind (W) to a transonic accretion (A→) when
P∞ is increased occurs at P∞C (left). In contrast when P∞ is decreased, the
transition from a transonic (shocked) accretion (A←) to a transonic wind (W)
involves an inward breeze in the range P∞static < P∞ < P∞C (right).

A nozzle in reverse
In practice, shocks form, which require a very subtle design of the nozzle. This
is related to the extreme sensitivity of the speed on variations in S at the sonic
point, exhibited by (5.101).

A very good survey of compressible flows, including an extensive discussion
of the de Laval nozzle33 is [1].

5.7.2 The hysteresis cycle of an isothermal flow
Assume that a transonic isothermal wind flows from a star immersed in a
medium whose pressure is extremely small, and that this applied pressure P∞
increases continuously. Sketch the flow speed at distance r0 close to the star as
a function of P∞, and the transition through different types of flow. Conversely,
assume that the external pressure is large, producing an accretion, and that
it decreases continuously. Sketch again the flow speed at r0 versus P∞, and
explain the transition through different types of flow.

Hint

Figure 5.17 (left) sketches the speed v0 at r0 versus the applied pressure P∞,
with the transonic wind starting at v0C , the transonic (shocked) accretion flow-
ing faster than −v0C at r0, and the unstable breezes (dashed) in the intermediate
range (see [53]).

33Carl G. P. de Laval was a very inventive engineer and a successful businessman. In the late
nineteenth century, he designed a steam turbine which incorporated a convergent–divergent
nozzle, upstream of the turbine blades. He is better known in Europe, however, for the design
and manufacture of centrifugal machines for the separation of cream in milk, of which he sold
more than a million. It is interesting to note that de Laval and other contemporary engineers
were not certain that the flow was actually supersonic in the de Laval nozzle.
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5.7.3 Spherical accretion by a star: the Bondi problem

Consider a star of mass M immersed in a medium of density ρ∞, and study
how the star accretes the surrounding matter. Assume the problem to have
spherical symmetry and to be stationary, so that the parameters depend only
on the distance r from the star. Assume a polytrope flow P ∝ ργ (with γ �= 1)
and let VS∞ be the sound speed in the distant medium. A characteristic length
scale is rB = MG/V 2

S∞ [2].
Show that energy balance between large distances (where the flow speed van-

ishes), and distance r (where the flow speed and the sound speed are respectively
v and VS) yields

v2

2V 2
S∞

+
1

γ − 1

[
V 2

S

V 2
S∞

− 1
]
− rB

r
= 0. (5.104)

From (5.40), the transonic solution satisfies v = VS at the critical distance
r = MG/2V 2

S . Show that for this solution, the sound speed at the critical
distance is equal to VS∞

√
2/ (5 − 3γ). Deduce that the critical distance is

rC = rB (5 − 3γ) /4. (In particular, the sonic transition occurs at the origin in
the limit γ = 5/3.)

Use mass conservation and the adiabatic law to show that the accretion rate
is

M ′ = πr2
Bρ∞VS∞

(
2

5 − 3γ

) 5−3γ
2(γ −1)

. (5.105)

Deduce that the order of magnitude of the accretion rate is M ′ = πr2
Bρ∞VS∞,

and that this value is exact in the limit γ = 5/3.
Now consider a breeze accretion, whose speed is very small at close

distances. Show that the density at a close distance r satisfies ρ/ρ∞ =
[1 + (γ − 1) rB/r]1/(γ−1).

Estimate this ratio near the surface of the star, assuming that it has the
same radius and mass as the Sun, and is immersed in an interstellar medium
made of hydrogen of number density 106 m−3 and temperature 102 K, if γ = 1.1.

Deduce that such a solution is unphysical, so that in this case, the accretion
will be transonic.

Hint

The density near the star satisfies ρ/ρ∞ = [1 + (γ − 1) rB/R�]1/(γ−1) for the
accretion breeze. We have rB/R� = 2.3 × 106/γ, so that ρ/ρ∞ � 2 × 1040,
which would give a number density of 2 × 1046 m−3! With this huge density,
there would be about 1074 atoms in a shell of width of R� around the star; this
number is much more than the number of particles in a whole galaxy! (Anyway,
at such a density, the physics would be different; in particular, the gas would
be degenerate and would have a different value of γ.)
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5.7.4 A wind with polytrope protons and electrons

Consider a plasma made of protons and electrons having polytrope indices equal
respectively to γp and γe, i.e. the proton and electron temperatures vary with
the number density n as

Tp ∝ nγp−1 ; Te ∝ nγe−1.

Show that the flow speed follows the same formal equation (5.40) as a single
polytrope, but with

VS = [kB (γpTp + γeTe) /mp]
1/2

. (5.106)

Deduce from this equation that, for the flow to be accelerating at the base
r0, one must have there

2 (γpTp0 + γeTe0) < mp | ΦG0 | /kB . (5.107)

Deduce from the energy balance that, for the terminal speed to be greater
than the start-off speed, one must have

γp

γp − 1
Tp0 +

γe

γe − 1
Te0 > mp | ΦG0 | /kB . (5.108)

Show that in the particular case when Tp0 = Te0 and the protons are adi-
abatic, a transonic accelerating wind must have an electron polytrope index
satisfying −0.3 < γe < 1.38.

Compare this result with the case of a single polytrope and comment.
Show that the total potential energy of a proton in the electric and gravita-

tional fields is at distance r:

ψ =
γe

γe − 1
kBTe − mpM�G

r
. (5.109)

In the particular case when electrons and protons have the same temperature
T and polytrope index γ, show that if a transonic wind does exist, then ψ has a
maximum at some finite distance rM . In the usual case when γ > 1, show that
this maximum is located above the critical distance rC where the wind becomes
supersonic.

Hints

First, prove that if 1 < γ < 3/2, dψ/dr is negative at large distances. Second,
prove that dψ/dr is positive at rC ; for doing so, you may calculate dT/dr as a
function of dv/dr by using the polytrope law and the conservation of particles,
and use the value of dv/dr at rC calculated in Section 5.3.2 (note that in this
case, µ = mp/2). This shows that ψ has a maximum somewhere between rC

and infinite distance [37].
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5.7.5 Playing with the kappa distribution
Poisson, Maxwell and . . . kappa

Show that the kappa distribution fκ(v) is related to the Maxwellian distribution
through the Poisson distribution34 Pκ(t) = tκe−t/Γ(κ + 1) by

fκ(v) = Aκ

∫ ∞

0

dtPκ(t) × 1
π3/2v3

th

e−tv2/κv2
th . (5.110)

(Aκ is defined in (5.118).)

Hint

Write the Laplace transform35 of tκ∫ ∞

0

dte−sttκ = Γ(κ + 1)/sκ+1

and substitute s = 1 + v2/κv2
th.

A modified kappa distribution

One often encounters a modified kappa distribution defined as

fκmd(v) ∝
[
1 +

v2

κv2
thmd

]−κ

(5.111)

which tends to the Maxwellian e−v2/v2
thmd in the limit κ → ∞, and has the same

series expansion to first order as this Maxwellian.
Show that the most probable speed depends on κ, being equal to vthmd ×

(κ/κ − 1)1/2.
Show that the kinetic temperature is

T =
κ

κ − 5/2
mvth

2

2kB

Show that the normalisation factor in (5.111) is Aκmdπ
−3/2v−3

thmd with Aκmd =
κ−3/2Γ (κ) /Γ (κ − 3/2).

Hint

This distribution is formally equivalent to the normal kappa distribution con-
sidered in Section 5.4, changing the values of κ and vth as fκmd(v, vthmd) =
fκ−1(v, (κ/κ − 1)1/2

vthmd).
34The probability of κ events during time t if the average is one event per unit time.
35The required Laplace transform may be found in the Handbook of Mathematical Functions,

ed. M. Abramowitz and I. A. Stegun (New York, Dover, 1970), p. 1022.
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5.7.6 ‘Temperature’ or ‘temperatures’ ?
At local thermodynamic equilibrium, the velocity distributions are Maxwellian
with f(v) ∝ e−v2/v2

th , where the temperature is T = mv2
th/2kB for particles of

mass m. In this case, temperature measurements generally yield (hopefully) the
actual value T . When the velocity distributions are not Maxwellian, however,
the measured temperatures depend on the measuring scheme if the observers are
not careful enough. Some examples are given below for an isotropic distribution.

Kinetic temperature and other moments

The kinetic temperature is T = m〈v2〉/3kB (where the angular brackets denote
an average on the distribution). Its determination involves an integration over
the measured distribution, which gives the correct result if the accuracy and
resolution of the measurements are sufficient over the full velocity range that is
relevant in the integration. Aboard space probes, measurements at small speeds
are generally spoiled by the electrostatic potential of the space probe (which
affects the detected particle speeds) and by the particles it ejects (which mix
with the genuine ones). Some devices are biased towards either small or large
speeds, and give instead a generalised temperature deduced from a different
moment of the distribution. One may define a ‘generalised temperature’ as

kBTq/m = (〈vq〉/cq)
2/q (5.112)

with

cq = (q + 1)!! ; q even (5.113)

cq =
21+q/2

√
π

×
(

q + 1
2

)
! ; q odd (5.114)

where q > −3. The greater the index q the faster the particles responsible for
this ‘temperature’; T2 is the usual kinetic temperature.

Show that with a Maxwellian distribution, all Tq are equal to the true tem-
perature. How about a kappa distribution?

Show that the mean random speed is related to T1 by 〈v〉 = (8kBT1/πm)1/2,
whereas the mean square speed is 〈v2〉 = 3kBT2/m.

Show that the Debye length relative to the species considered is given by
LD =

(
ε0kBT−2/ne2

)1/2
, where n is the particle number density.

What error results if one deduces the temperature from the mean square
speed, thinking that the distribution is a Maxwellian, whereas it is in fact a
kappa distribution?

Differential temperature

The temperature is sometimes determined from the log derivative of the mea-
sured velocity distribution as

Tdiff = −kB [d (ln f) /dW ]−1 (5.115)

where W = mv2/2 (see [42]).
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Show that if f (v) is a Maxwellian, Tdiff coincides with the true temperature.
Show that for a Kappa distribution

Tdiff =
mv2

th

2kB

κ + v2/v2
th

κ + 1
(5.116)

which coincides with the value of its Maxwellian low-speed limit at low speeds,
but is no longer a constant at high speeds and increases with energy.

5.7.7 Non-collisional heat flux

Calculate the particle flux and the heat flux due to the electrons of speed v >

vE = (2eΦE/me)
1/2 whose velocity is pointing away from the Sun, ΦE being

the electrostatic potential at distance r. Consider first a Maxwellian velocity
distribution

f (v) =
n0

π3/2v3
the

e−(v/vthe)
2

(5.117)

having density n0, temperature Te = mev
2
the/2kB , and zero mean velocity and

heat flux.
Because of the fast decrease of the Maxwellian distribution at high speeds,

the bulk speed and heat flux produced by the escaping electrons are small. This
is not so, however, with a distribution decreasing less rapidly at high speeds.
To see this, replace the Maxwellian by a kappa distribution

fκ(v) =
n0Aκ

π3/2vthe
3

[
1 +

v2

κvthe
2

]−(κ+1)

; Aκ =
Γ(κ + 1)

κ3/2Γ(κ − 1/2)
(5.118)

where the gamma (factorial) function Γ ensures the normalisation.36 Calculate
again the electron flux.

Hints

Remove from the Maxwellian distribution the particles having both a negative
radial velocity and a speed modulus v > vE . This removal distorts the distribu-
tion in the outward direction (see Fig. 5.11), so that the mean velocity and the
heat flux no longer vanish. Calculate the outward particle and energy fluxes by
integrating in spherical co-ordinates [v, θ, φ], over v > vE and 0 < θ < π/2 (i.e.
outward directions) with vr = v cos θ, d3v = v2 sin θdθdφ, to obtain

nvw =
∫

d3vvrf (v) = π

∫ ∞

vE

dvv3f (v) =
n0vthe

2
√

π
(b + 1) e−b (5.119)

QSF =
me

2

∫
d3vvrv

2f (v) =
πme

2

∫ ∞

vE

dvv5f (v)=
n0mev

3
the

4
√

π

[
(b + 1)2 + 1

]
e−b

36In the limit κ → ∞, (5.118) reduces to (5.117).
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where n is the density, vw the modulus of the mean (radial) speed, QSF the
energy flux in the solar frame and

b = (vE/vthe)
2 = eΦE/kBTe.

The heat flux – which should be calculated in the frame where the mean velocity
vanishes – is deduced from the one in the solar frame (QSF ) by subtracting the
enthalpy and bulk energy fluxes (see (5.91)). Note that our removing of some
electrons from the initial Maxwellian has changed slightly the particle density
and temperature, so that n0 and Te do not represent the exact density and
temperature. If, however, the potential is large enough so that vE � vthe, the
number of removed electrons is a small fraction of the total, so that the number
density n and the temperature – determined mainly by the symmetrical part of
the distribution – are roughly equal respectively to n0 and Te; furthermore, in
this case the bulk speed vw – determined by the non-symmetrical part – is small
compared to vthe, and the heat flux Qe – determined by the non-symmetrical
part, too – is approximately given by its value in the solar frame QSF , minus
the enthalpy flux 5nvwkBTe/2 ((5.91) where vw is negligible and T‖ � T⊥). In
this case, we deduce from (5.119) that the electron heat flux may be written as

Qe � αenvwkBTe ; αe =
[
b + 1 +

1
b + 1

− 5
2

]
. (5.120)

Note that this yields, for b � 1, Qe � nvsw

(
eΦE − 5

2kBTe

)
as already found

from energy balance arguments. In this picture, a large value of αe requires a
large electrostatic potential. An exact calculation may be found in [17].

With a kappa distribution, removing the particles coming inwards with v >
vE yields the electron flux

nvw =
n0Aκκvthe

2
√

π(κ − 1)
(1 + b)

(
1 +

b

κ

)−κ

; b =
(

vE

vthe

)2

. (5.121)

When b is large, this yields greater electron flux and heat flux than with a
Maxwellian. Note that since the heat flux is a moment of order three, a finite
heat flux requires that v3 × v2−2(κ+1) decreases faster than v−1, i.e. that κ > 2.

Note that this calculation does not yield the true collisionless heat flux,
except at the base r0, because conservation of energy and magnetic momentum
decrease the inclination of the particle velocity to the radial as the particle moves
outwards, so that in the absence of collisions the velocity of escaping electrons
at large distances points in a small cone instead of the whole half-space (see
Section 5.5.4).

5.7.8 An imaginary wind with charges of equal masses
Assume a star made of positive and negative charges of equal mass m (and
temperatures) . . . just for the purpose of this problem, and don’t bother about
the other consequences. The fluid and kinetic points of view yield in that case
very different winds – thereby enlightening some aspects of the physics.
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Consider the simple Parker’s picture of an isothermal wind. Show that if
the ratio of the escape speed to the thermal speed of an ‘average’ particle is
the same as for the Sun (and the large distance pressure is small enough), the
wind is similar to that found in Section 5.1. Answer the same question for a
polytrope wind with a sufficiently small γ, comparing to Section 5.2.

Now, adopt a kinetic point of view. Show that the (large-scale) radial elec-
trostatic field is zero, and that charges of both signs are strongly bound to the
star. Show qualitatively from energy arguments that there is in that case no
supersonic wind.37

Why do the fluid and kinetic points of view give so different results?

Hint

The key point is the isothermal or polytrope assumption made in the fluid
models, which implicitly assumes the heat flux to be large (even infinite in the
isothermal case). It is because of the small electron mass that this approximation
is not bad for the solar wind.
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6

Structure and perturbations

The researcher looked round him once more:
and now the Facts accumulated in such bewildering profusion, that
the Theory was lost among them.

Lewis Carroll, Sylvie and Bruno

In order to concentrate on the basic physics of the solar wind acceleration, we
considered in Chapter 5 a spherically symmetric and stationary problem, with
a radial magnetic field. Unfortunately, the solar wind is more complicated.
We now introduce some of these complications, trying however to keep a bias
towards basics. More details may be found in the books [29], [1], [3], with some
updates in [38] and [7]. Most of this chapter considers the wind having already
been accelerated to a large velocity, which we note vw.

6.1 Basic large-scale magnetic field

6.1.1 Parker’s spiral

Figure 6.1 (left) reminds us of the geometry considered in the previous chapter: a
radially expanding solar wind with a radial magnetic field. This is an application
of the frozen-in magnetic field concept (see Section 2.3). Since the magnetic
Reynolds number is extremely large,1 any magnetic flux tube in the steady
plasma flow will hold the same fluid parcels later on, so that the magnetic field
lines are dragged by the flow and tend to be aligned with the radial flow lines.
Conservation of the magnetic flux then yields a radial magnetic field varying as
B ∝ r−2.

1With an electron temperature of 106 K in the corona, the conductivity is σ ∼ 3 × 105

mhos, so that with a scale L ∼ 1R� and a bulk speed v ∼ 100 km s−1 near the sonic point, the
magnetic Reynolds number RM ∼ µ0σvL ∼ 1013. In the solar wind proper, the temperature
is smaller, but both the typical scale and the speed are greater, so that RM is still greater.
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Figure 6.1 Magnetic field lines drawn by the radially expanding solar wind. On
the left, the Sun is not rotating – a reasonable approximation in polar regions
and/or at relatively close distances. On the right, the solar rotation draws
the field lines into a spiral shape. The arrows materialise the trajectory of fluid
parcels ejected at radial velocity vw by a fixed source on the rotating Sun, which
was at A (respectively C) when the first (respectively last) parcel was ejected.

Simple derivation

There is, however, a complication to this nicely simple picture: we have seen
in Section 3.2 that the Sun is rotating. How does this change the magnetic
field structure? Basically, the change is associated with the velocity due to the
solar angular rotation Ω. At radial distance r and latitude θ, the distance to
the rotation axis is r cos θ, so that the rotation speed is Ωr cos θ. Therefore, the
change in the magnetic field is expected to vary in order of magnitude as the
ratio of this speed to the solar wind speed vw =| vw |, i.e. as Ωr cos θ/vw. With
Ω � 2.7 × 10−6 rad s−1 (Fig. 3.6) and vw � 400 km s−1, we have

Ωr cos θ/vw � rAU × cosθ. (6.1)

We thus expect the effect of the solar rotation on the magnetic field to be
negligible closer than about 1 AU from the Sun, and/or at high latitudes where
cos θ � 1.

What is the structure of the magnetic field elsewhere? Figure 6.1 (right)
illustrates what happens. Consider a fixed source on the rotating Sun that is
ejecting fluid parcels of radial velocity vw, and is initially, say, at point A. As
the ejected parcel travels along the arrow starting from A, the source rotates, so
that it ejects the following parcels from different locations; the arrows indicate
the trajectories of parcels ejected at regular time intervals ∆t. When the parcel
ejected at A has travelled to A′, the parcels ejected later have had less time to
travel, and are thus closer to the Sun but along different arrows, whereas the
last parcel has just been ejected and is still at C; the location of these parcels
materialises a magnetic flux tube at this time (bold lines). Consider the parcel
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Figure 6.2 Spiral magnetic field lines frozen in the radially expanding solar
wind in the equatorial plane, drawn at two different scales. Left, six magnetic
field lines, drawn up to a distance of about 1 AU. Right, one field line, drawn
up to about 40 AU. At 1 AU, the field makes an angle of less than about 45◦

to the radial, but it is tightly wound at large distances.

ejected ∆t later than the one ejected from A; during ∆t, the Sun has rotated by
the angle ∆ϕ = Ω∆t, so that the parcel follows a (straight) trajectory making
the angle ∆ϕ to AA′, but – having started later – it has travelled less by the
amount ∆r = −vw∆t. The field lines thus follow the equation

dϕ/dr = −Ω/vw (6.2)

so that they take the shape of Archimedes spirals of equation r = −vwϕ/Ω.
Since by definition B is along the field lines, its radial and azimuthal components
satisfy Bϕ/Br = rdϕ/dr in the equatorial plane, so that from (6.2)

Bϕ/Br = −Ωr/vw. (6.3)

The magnetic field inclination to the radial: arctan(−Ωr/vw) thus increases with
distance. Substituting the numerical values of Ω and vw, we find Ωr/vw � rAU

when the wind is slow and twice less when it is fast. Hence the magnetic field
inclination to the radial is about 25–45◦ at 1 AU (in the equatorial plane), but
nearly 90◦ beyond 10 AU, so that at large distances the field lines roughly follow
circles around the Sun (Fig. 6.2).

The solar rotation therefore winds up the magnetic field, the more so as dis-
tance increases, rather as streams of water ejected by a rotating water sprinkler.

What is the magnetic structure outside the equatorial plane? The field lines
satisfy Br/Bϕ = dr/ (r cos θdϕ) with the latitude θ = constant (Fig. 6.3, left),
so that (6.2) yields

Bϕ/Br = −Ωr cos θ/vw (6.4)
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Figure 6.3 Spherical co-ordinate system (left); θ is the latitude; because of
the sense of the solar rotation, when Br is positive (pointing outwards), Bϕ is
negative (opposite to direct sense). Right, the magnetic field lines are spirals
wrapped on cones of half-angle the colatitude.

and the component Bθ vanishes. The field lines are spirals wound up on the
surface of cones whose half-angle is the colatitude π/2−θ (Fig. 6.3, right). From
magnetic flux conservation, the radial component of B satisfies

Br ∝ r−2. (6.5)

Rotating frame

Another way of understanding this magnetic structure – the so-called Parker’s
spiral – is to consider a reference frame rotating with the angular velocity of
the Sun, as in Parker’s original (1958) paper.2 With respect to the stationary
frame, or more precisely to the inertial frame of the Sun, the frame rotating
with the Sun moves at the azimuthal speed

vΩ = Ωr cos θ (azimuthal) (6.6)

at distance r and latitude θ.
In this rotating frame, the source ejecting the plasma is no longer rotating, so

that the path followed by fluid parcels from a given source area – which defines
a magnetic field line – is simply a flow stream line. The plasma velocity is equal
to the (radial) solar wind velocity vw transformed to the rotating frame, so that
its radial and azimuthal components are

vr = vw

vϕ = −vΩ (6.7)

at distance r and latitude θ. Since the magnetic field follows the path of the
plasma, which coincides with the stream lines in this rotating frame since the
source is fixed, we have Bϕ/Br = vϕ/vr. Substituting (6.6) and (6.7) yields

2Cited in Chapter 1.



Basic large-scale magnetic field 295

(6.4). The magnetic field lines thus follow Parker’s spiral – a result that is not
changed by transforming back to the stationary frame because B is invariant
for non-relativistic velocity transformations (see Section 2.2).

To summarise, in the frame rotating with the Sun, the flow stream lines fol-
low Archimedean spirals, and so do the dragged magnetic field lines; transform-
ing back to the stationary frame does not change the magnetic field (whereas
the speed becomes radial). Two comments are in order. First, we have swept
under the carpet the difficult problem of the structure near the ‘source’ of the
wind, and assumed implicitly that its distance r0 to the Sun’s centre is very
small compared to the heliocentric distances considered, so that Ωr0 is much
smaller than vw whereas Ωr is not. We shall return to this problem later.

Second, what about the electric field? Consider the solar wind frame, that
is moving radially at vw but non-rotating. Standard MHD (see Section 2.3)
tells us that the electric field vanishes in this frame because of the large electric
conductivity of the plasma. Consider now the frame that is rotating with the
Sun (it has zero radial velocity and the azimuthal speed vΩ). Transforming
the electric field from the plasma frame (where E = 0) to that frame yields
E = vrel × B, where vrel = −vw + vΩ is the relative velocity, so that E has
only a θ component: Eθ = vwBϕ + vΩBr = 0, from (6.4) and (6.6).

Therefore the (MHD) electric field vanishes not only in the solar wind frame
but also in the frame rotating at the angular velocity of the Sun. The spiral
magnetic pattern might also be viewed as rotating with the Sun (even though the
plasma does not) – just as the grooves in an old gramophone record are rotating,
whereas the gramophone needle moves (roughly) in the radial direction – as does
the solar wind plasma.

Consider finally the stationary frame (non-rotating, no radial motion). Trans-
forming the zero electric field of the plasma frame or of the rotating frame to
that stationary frame yields an electric field E = −vw × B = −vΩ × B. Since
vw is radial and vΩ azimuthal, this yields Eθ = vwBϕ = −vΩBr. Because of
the sense of the solar rotation (vΩ > 0), Bϕ and Br have opposite signs, so
that the electric field in the stationary frame points northwards (respectively
southwards) if Br > 0 (respectively Br < 0).

To summarise:

• solar wind frame (velocity vw, radial): E = 0, because of the high
conductivity,

• rotating frame (velocity vΩ, azimuthal): E = (−vw + vΩ) × B = 0,

• stationary frame (velocity = 0): E = −vw × B = −vΩ × B �= 0.

Estimating the magnetic field

These results enable one to estimate the solar wind magnetic field as a function
of distance and latitude as

Br = B0 × (r0/r)2 (6.8)

Bϕ = −B0 × Ωcos θ × r2
0/vwr (6.9)
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where B0 is the magnetic field at the source’s location r0, assumed to be radial
there and independent of latitude. To get a rough estimate, let us start in the
low corona at r0 � R� with an average magnetic field B0 ∼ 2 × 10−4 T (see
Table 4.1). This yields

| Br | � 4 × 10−9/r2
AU T (6.10)

| Bϕ | � 4 × 10−9 × cos θ/rAU T (6.11)

where rAU is the distance in AU (1 AU � 214 R�), and we have used the
estimate (6.1), so that the value of Bϕ holds for a slow solar wind speed of
vw � 400 km s−1 and is roughly twice less in the fast wind. The corresponding
electric field in the stationary frame is

Eθ = vwBϕ ∼ 1.6 × 10−3 × cos θ/rAU V m−1. (6.12)

We shall see later that this simple model is a rather good approximation to the
observations, up to a very large distance.

A small aside is in order. When calculating the electric field in the stationary
frame Eθ = vwBϕ, we used the standard MHD approximation that the large-
scale electric field is roughly zero in the plasma frame. But what about the
large-scale electric field discussed in Sections 5.3–5.4, which compensates for the
difference in electron and proton masses? From (5.87), its order of magnitude
is E‖ ∼ kBTe/er at radial distance r, so that in the equatorial plane at r ∼ 1
AU, we have E‖/vwBϕ ∼ 3× 10−8 for Te ∼ 105 K. This means that the parallel
electric field is indeed very small compared to the MHD value Eθ, even though
it has important physical consequences.

This simple picture of the magnetic field structure has two important limi-
tations: one in distance, the other in latitude. The limitation in distance arises
because we have assumed that the solar wind velocity is constant and radial.
This hypothesis is incorrect near the Sun, for two reasons. First, we saw in
Chapter 5 that it is only somewhat farther than the sonic point – located at a
few solar radii – that the solar wind speed approaches sufficiently its asymptotic
value to remain approximately constant. Second, since the magnetic field is an-
chored in the rotating Sun, the plasma and field near the Sun tend to rotate
with it as they do at its surface. For the radially moving solar wind to be able
to drag the field lines out of corotation, it must overpower the magnetic field.
This requires that the kinetic energy density surpasses the magnetic one, i.e.
that (in the supersonic wind) ρv2

w/2 > B2/2µ0, or vw > vA – the Alfvén speed.
We shall see later that this inequality holds true farther from about 10 solar
radii.

6.1.2 Basic heliospheric current sheet and other currents
The limitation in latitude of the above picture is related to our hypothesis that
the magnetic field B0 at the source’s location is independent of latitude. We
shall see in Section 6.2.2 that this approximation is reasonable, except for one
important point: in the simplest configuration (which holds approximately true
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Figure 6.4 Basic structure of the heliospheric magnetic field at small distances,
assuming that the Sun’s rotation and magnetic axes coincide. The reversal of
B near the equatorial plane corresponds to a thin sheet of current that is nearly
azimuthal at relatively small distances, where B is nearly radial. The right
panel shows a rectangular cut across this sheet.

near solar activity minimum), the sense of the solar radial magnetic field is
opposite in both solar hemispheres – reversing at the equator, as we saw in
Section 1.3.3.

To derive Parker’s spiral, we sketched in Fig. 6.1 a magnetic flux tube point-
ing radially outwards at the solar surface, and viewed from above the Sun’s
north pole. Figure 6.4 completes the picture in three dimensions, near solar
activity minimum – when the solar magnetic dipole is nearly aligned with the
rotation axis. The magnetic field in both hemispheres follows spirals that are
wound up in the same sense, but have opposite B. The figure corresponds to a
case when B points outwards in the northern hemisphere, as occurred near the
last solar activity minimum of 1996 – a direction that reverses every 11 years.

This magnetic field distribution corresponds to volume currents flowing in
both hemispheres according to Maxwell’s equation

× B = µ0J (6.13)

that may be calculated from the expressions (6.10)–(6.11) of B. With the basic
geometry sketched in Fig. 6.4, something peculiar takes place in the equato-
rial plane: the reversal of the magnetic field direction there corresponds to a
thin sheet of electric current flowing in this plane, as already mentioned in
Section 1.3.3. Let us calculate this current.

Consider first relatively small distances, so that Ωr/vw � 1, making the
magnetic field nearly radial. Imagine a rectangle (perpendicular to the equa-
torial plane) of length l along the radial and thin (vertical) width ε (Fig. 6.4,
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Figure 6.5 At large distances, the magnetic field is nearly azimuthal; in that
case, the reversal of B near the equatorial plane corresponds to a thin sheet of
nearly radial current.

right), and integrate Maxwell’s equation (6.13) across the surface of this rectan-
gle. Using Stokes’ theorem to transform the surface integral of the left member
of (6.13) into a line integral, we find 2Brl = µ0Jϕ × lε. The current density
Jφ corresponds to a thin sheet of azimuthal current Iϕ = Jϕlε in the equatorial
plane,3 i.e.

Iϕ = 2Br/µ0 per unit of radial length. (6.14)

At greater distances, B is no longer roughly radial, so that the current is no
longer roughly azimuthal, but its azimuthal component is still given by (6.14).
Let us calculate its amplitude at 1 AU. Substituting the magnetic field (6.10)
into (6.14), we find Iϕ ∼ 6 × 10−3 A m−1, which yields roughly 109 A across a
radial length of 1 AU.

Consider now the other extreme: large distances, so that Ωr/vw � 1, making
B nearly azimuthal.

To calculate the current flowing in the equatorial sheet, we draw a rectangle
still perpendicular to the equatorial plane and of thin (vertical) width ε, but
now of length l along the azimuthal direction (Fig. 6.5). Integrating Maxwell’s
equation (6.13) over this rectangle as above and using Stokes’ theorem, we now
find −2Bϕl = µ0Jr × lε, whence the radial current4 Ir = Jrlε, i.e.

Ir = −2Bϕ/µ0 per unit circumference length. (6.15)

Since at radial distance r the length of the circumference is 2πr, the total radial
current flowing through the sheet is

Ir = −4πrBϕ/µ0. (6.16)

3With Br > 0 in the northern hemisphere, (6.14) yields Iϕ > 0, i.e. the current flows in
the direct sense.

4Here Bϕ is the magnetic field in the northern hemisphere, which is negative in the case
considered, so that Ir > 0, i.e. the current flows outwards.
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At smaller distances, B is no longer roughly azimuthal, so that the current is
no longer roughly radial, but its radial component is still given by (6.16). To
calculate its amplitude, we substitute the magnetic field (6.11) into (6.16), to
find a total radial current Ir ∼ 5×10−9 A, independent of distance. This current
flows outwards in the case considered in the figures, where the radial magnetic
field points outwards in the northern hemisphere, so that Bϕ is negative there –
a configuration that reverses every 11 years.

We conclude that in this simple picture the vicinity of the equatorial plane
carries a current that is nearly azimuthal at small distances (where B is nearly
radial), and nearly radial at large distances (where B is nearly azimuthal). At
intermediate distances, this current is still perpendicular to B, so that it also
follows a spiral shape.

Now, a question arises. The current flowing radially outwards in the equa-
torial sheet must return to the Sun somewhere, otherwise the Sun would charge
indefinitely; how does it manage to do so? The answer is simple. The current
flowing radially along the sheet balances the sum of all the volume currents that
flow radially inward in both hemispheres (Problem 6.6.2).

6.1.3 Magnetic field effects on the wind
We have seen how the solar wind affects the magnetic field, drawing the field
lines along spirals near the solar equatorial plane, and roughly radially at high
latitudes (where the rotation plays a smaller role). But how does the magnetic
field affect the wind? At the microscopic level, the particles are forced to follow
helical paths along the field lines. At the macroscopic level, this yields two main
effects: a macroscopic magnetic force acting on the plasma, and an inhibition of
the transport processes in the direction perpendicular to the field, so that the
heat flux is directed along the magnetic field.

The magnetic forces were ignored in the previous chapter because we as-
sumed spherical symmetry with both the magnetic field and the velocity oriented
radially, so that vw×B = 0. The above results indicate that this approximation
is acceptable at distances smaller than about 1 AU, and/or at high latitudes,
where B is roughly radial. Elsewhere, the magnetic forces may be neglected
only if the magnetic energy B2/2µ0 is negligible compared to either the kinetic
energy ρv2

w or the thermal energy, i.e. if vw � vA (the Alfvén speed), or if

β ≡ nkB (Tp + Te)
B2/2µ0

� 1. (6.17)

Table 6.1 shows the values of vA and β estimated with the parameters of Fig. 4.1
and of Table 5.1, and the magnetic field given by (6.10)–(6.11), at the distances
of 10 R� and 1 AU. Much farther out, both the density n and B2 decrease
roughly as r−2, so that vA is roughly constant with distance; furthermore, since
from Section 5.3 the sum of temperatures decreases relatively slowly, the pa-
rameter β decreases slowly with distance beyond 1 AU.

One sees in Table 6.1 that the parameter β is generally of order unity or
smaller, but the ratio of the flow speed to the Alfvén speed – which is far
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Table 6.1 Orders of magnitude of the Alfvén speed and of the plasma β (ratio
of thermal to magnetic energy) at the heliocentric distances of 10 R� and 1 AU

Distance r 10 R� 1 AU

vA (km s−1) ∼ 103 ∼ 102

β ∼ 10−2 − 10−1 ∼ 1

smaller than unity in the low corona – increases strongly with distance, so that
vw becomes greater than vA beyond 10–20 R�. In fact, since only the magnetic
field component perpendicular to the flow speed acts, and (outside solar active
regions) the magnetic field is nearly radial close to the Sun, the magnetic forces
may be neglected already at distances from the Sun significantly smaller than
the one where vw = vA.

At large distances, the magnetic field is nearly perpendicular to the flow
velocity, but the magnetic forces are nevertheless of minor importance there
because the solar wind speed far surpasses the Alfvén speed. In contrast, the
magnetic forces are expected to play a major role closer than the distance where
vw = vA if B is not close to the radial there.

The solar wind ejection by the rotating Sun has another consequence: the
Sun ejects not only mass but also angular momentum. Indeed, a unit mass
of matter rotating at the angular speed Ω has the angular momentum Ωr2 at
distance r. If matter were ejected directly from the solar surface at the rate
of M ′ kg s−1, the Sun would lose angular momentum at the rate M ′ × ΩR2

�.
However, we have seen that the matter around the Sun tends to rotate rigidly
with it when magnetic forces dominate, i.e. roughly out to a distance rA at
most equal to the one where vw = vA. Hence the rate of angular momentum
loss by the Sun is instead about

J ′ ∼ M ′ × Ωr2
A. (6.18)

More correct calculations yield roughly the same result (see [40]).
With the mass loss rate given in Table 1.3, Ω � 2.7 × 10−6 rad s−1, and

rA ≤ 20R�, we find J ′ ≤ 1024 kg m2 s−2. Since the angular momentum of the
Sun is roughly J ∼ 2M�ΩR2

�/5 ∼ 1042 kg m2 s−1, the solar wind will brake
the solar rotation in a time J/J ′ ≥ 1018 s, or about 3×1010 years – significantly
more than the solar nuclear life time (see Section 3.1.3).

6.2 Three-dimensional structure during
the solar cycle

The simple model of Section 6.1 must be refined in several aspects, even though
it embodies a large part of the physics.



Three-dimensional structure during the solar cycle 301

6.2.1 Warped heliospheric current sheet

To begin with, even in the simplest configuration, which holds near solar activity
minimum, the solar rotation axis is not exactly aligned with the magnetic axis,
making a small angle α with it, as we mentioned in Section 1.3. As a result,
the latitude θ0 of a fixed point on the solar magnetic equator varies with the
azimuthal angle ϕ0 as sin θ0 = sin α sin ϕ0. As the Sun rotates, this yields

sin θ0 = sin α sin(ϕ0 − Ωt) (6.19)

so that the fixed point on the magnetic equator is alternately above and below
the rotational equator. The magnetic equator gives the position of the current
sheet close to the Sun, before being drawn outwards by the solar wind flow.
This flow transforms the initial angular co-ordinates (θ0, ϕ0) related by (6.19)
into values at a large distance r (Fig. 6.6, left) given by

θ = θ0

ϕ = ϕ0 − Ωr/vw

from Section 6.1. Substituting these values into (6.19), we deduce that when
α � 1 so that sin θ0 � θ0, the current sheet is a surface of equation

θ � α sin(ϕ + Ωr/vw − Ωt) (6.20)

where θ is the latitude, ϕ the azimuthal angle and r the radial distance (assumed
much greater than the radius of the magnetic equator from which the sheet
is drawn). Equation (6.20) represents a surface whose intersection with the
rotational equatorial plane (θ = 0) is an Archimedean spiral rotating at angular
speed Ω, whereas the intersection with a meridian plane (ϕ = constant) has a
wavy shape, varying in time at the frequency Ω and in distance at the wavelength
2πvw/Ω ∼ 6 AU for vw ∼ 400 km s−1.

The solar magnetic equatorial plane is thus deformed as it is carried outwards
by the solar wind, and takes the form of a wavy current sheet resembling a
spinning ballerina’s skirt, whose latitudinal extension (see 6.20) is equal to the
angle between the solar rotation and magnetic axes (Fig. 6.6, right).

This wavy current sheet serves as a magnetic equator separating two regions
of inward and outward Archimedean spiral fields, and organising the large-scale
structure of the solar wind. This simple picture should be refined in many
ways, to take into account further dynamic effects in the wind and complexities
of the solar magnetic field; furthermore, as solar activity increases, the tilt of
the magnetic axis increases, and the Sun’s magnetic structure becomes more
complex (see [23]). Finally, the whole pattern reverses every 11 years.

6.2.2 Observed large-scale structure

How does this picture compare with observation? On the whole, reasonably
well. Detailed reviews may be found in [21] and [30].
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Figure 6.6 Deformation of the current sheet by a (small) tilt α of the Sun’s
magnetic axis (M) with respect to the rotation axis (Ω), with a constant solar
wind radial velocity. The picture shown (right, from [16]) is calculated according
to (6.20) with α = 15◦; the co-ordinate system is indicated on the left.

Observations at moderate distances

As we said in Section 1.3, the only spacecraft having reached high heliographic
latitudes is Ulysses, which made a snapshot of the solar wind latitudinal struc-
ture at a distance of 1–2 AU, at both solar activity minimum and maximum
(Fig. 1.20). When it passed from high southern latitudes to high northern
latitudes near solar activity minimum, it found two hemispheres of opposite
magnetic polarities with a magnetic field direction very close to Parker’s spiral,
and a high-speed and dilute wind (see Figs. 1.21–1.22), except in a latitude
band of ±20◦ around the equator, where it crossed the current sheet several
times (see [6]).

This is illustrated in Fig. 6.7, which shows magnetic measurements from the
Ulysses magnetometer.5 Except in the low-latitude band, the radial component
of B times r2 (top panel) is found to be remarkably constant, not only with
distance (as expected from conservation of magnetic flux), but also with latitude,
with Br � 3.1×10−9/r2

AU T – a result rather close to our rough estimate (6.10).
The tilt of B to the radial (bottom panel) is found to be rather close to the
one of the expected spiral, whose tilt is from (6.8)–(6.9): arctan (Ωr cos θ/vw),
with vw � 750 km s−1 – the mean solar wind speed measured during this period
(curved dashed lines) [8].

On this large-scale structure are superimposed other variations. To begin
with, in the low-latitude band where Ulysses encountered the heliospheric cur-
rent sheet and a variable wind, the changes in direction of the magnetic field
were accompanied by large increases in amplitude. These increases in magnetic

5Described in Balogh, A. et al. 1992, Astron. Astrophys. Supp. 92 221.
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Figure 6.7 Ulysses magnetic field observations during the pole-to-pole transit
at solar activity minimum: radial component of B normalised to the inverse
distance squared (top) and angle between B and the radial direction (bottom);
the vertical dashed lines indicate the low-latitude boundaries of the high-speed
wind. (Adapted from [8].)

field are accompanied by increases in particle density (Fig. 1.18) and are pro-
duced by plasma compression as streams of different speeds interact; we shall
return to these effects in Section 6.3. The other major feature seen in Fig. 6.7
is a large level of fluctuation in the magnetic field direction, especially near the
poles; we shall return to these fluctuations in Section 6.4.

This simple structure becomes more complex as solar activity increases
and the solar magnetic structure changes. Not only does the magnetic dipo-
lar axis shift in direction, but multi-polar terms become important (see [26]).
Near the maximum of activity, the heliospheric current sheet is highly warped
and tilted to the equator. As a result, near solar activity maximum, even
though the product |Br| × r2 was still observed to be (on average) roughly
independent of position and the (average) magnetic field direction was close
to Parker’s spiral, Ulysses crossed a current sheet many times at virtually all
latitudes [32].

These observations concern moderate distances from the Sun. What is
observed farther away?
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Observations at large distances

A fleet of four spacecraft has explored the solar wind at large distances. Pioneer
10 and 11, launched respectively in 1972 and 1973 by NASA, were the first mis-
sions to navigate the asteroid belts, visit outer planets and explore the distant
solar wind. They can no longer be counted upon to return data, although they
will continue their journey towards deep space for an indeterminate period of
time, at speeds of a few AU per year.6

The next members of the remote fleet are the two Voyager probes, sent in
1977. Designed and operated by the Caltech Jet Propulsion Laboratory and
NASA, they are among the best scientific achievements of unmanned space
exploration. Equipped with a battery of sophisticated instruments collecting
radiation and particles over a wide energy range and managed by flexible in-
board systems, they provided considerable knowledge and understanding on the
four outer planets, their atmospheres, magnetospheres, satellites and rings, and
a lot of data on the outer heliosphere near the fringes of the solar system, to
which we shall return in the next chapter. Using planetary gravity assist7 – a
trick already used to enable Pioneer 11 to meet Saturn after having encountered
Jupiter – the two Voyagers made sophisticated jumps from planet to planet.8 In
this way, Voyager 1 was able to return wonderful images and data from Jupiter’s
and Saturn’s environments, whereas Voyager 2 did so for Jupiter, Saturn, Uranus
and Neptune, taking advantage of a rare alignment of these planets and the
Earth.

Having completed their planetary service with honours, both Voyagers are
now travelling away from the Sun at speeds of about 3 AU per year. They
are heading towards the incoming interstellar wind, that we shall study in Sec-
tion 8.1. As of January 2006, Voyager 1 was at roughly 98 AU from the Sun and
34◦ heliographic latitude, and Voyager 2 at 78 AU and −26◦ heliographic lati-
tude. Hopefully, they have enough electrical power and thruster fuel in reserve
to operate until the late 2010s. The gravity assist manoeuvres have pushed
them outside the ecliptic plane, so that their heliographic latitudes are larger
than that of in-ecliptic spacecraft, but not very much so.

Figure 6.8 (right) shows the magnetic field amplitude measured by Voyager
1 up to very large distances, along the trajectory plotted in the left panel from
1978 to 1997. It agrees well with the value calculated from Parker’s spiral,
taking into account the variations in solar magnetic field and in wind speed
measured during this period (solid line); to illustrate the effect of variations in
wind speed, the dotted lines are calculated with a constant solar wind speed of
400 and 800 km s−1 respectively [4].

6The venerable Pioneer 10 sent its last signal in January 2003 when it was at about 82
AU from the Sun, presumably because it could no longer send transmissions to Earth, due to
degradation of its radioisotope power source. The last signal from Pioneer 11 was recorded in
November 1995, when it was at about 44 AU from the Sun; shortly after, the Earth went out
of the view of its telemetry antenna in spite of the efforts at manoeuvring the spacecraft.

7Gurzadyan, G. A. 2002, Space Dynamics, New York, Taylor & Francis.
8Kohlhase, C. ed. 1989, The Voyager Neptune Travel Guide, JPL Pub. 89-24, Pasadena

CA, NASA.
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Figure 6.8 Magnetic field strength observed by Voyager 1 versus time (right
panel, solid dots) compared with Parker’s model (solid curve) taking into ac-
count variations in solar magnetic field and wind speed; the dotted curves show
Parker’s model assuming constant solar wind speeds of 400 and 800 km s−1

respectively. The spacecraft trajectory (distance and heliographic latitude) is
shown in the left panel. (Adapted from [4].)

Voyager 1 has suffered from its close encounter with Saturn’s environment
and its plasma instrument has been damaged. But Voyager 2 is still in relatively
good shape. Figure 6.9 shows the mean speed (roughly equal to the mean radial
velocity) and the mean number density of protons measured by the plasma sci-
ence instrument9 on Voyager 2 from 1977 to 2003. The data, covering more than
25 years, are plotted as daily averages. There is not much systematic variation
in wind speed with distance, except that small-scale fluctuations decrease with
increasing distance; the mean wind speed is 440 km s−1. With a radial speed
roughly constant on a large scale, conservation of mass implies that the proton
number density should vary roughly as the inverse squared distance; hence we
have plotted the density multiplied by Voyager’s distance (in AU) squared. As
expected, this normalised density does not vary much with distance on large
scales; the mean value is 6.6 cm−3.

6.2.3 Connecting the Sun and the solar wind, or: where
do the fast and slow winds come from?

To derive the estimates (6.8)–(6.9), we assumed the magnetic field to be drawn
at constant radial speed from a rotating source located at some distance r0. For

9Described in Bridge, H. S. et al. 1977, The plasma experiment on the 1977 Voyager
mission, Space Sci. Rev. 21 259.
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Figure 6.9 Mean proton velocity (top) and density (middle) measured on the
spacecraft Voyager 2 from 1977 to 2003. Densities are normalised to 1 AU
by multiplying by Voyager’s distance squared. The bottom panel shows the
distance (thick line) and latitude (dashed line) in solar co-ordinates. (Courtesy
of the MIT Space Plasma Group.)

this assumption to be reasonable, r0 must be somewhat greater than the so-
lar radius R� for two reasons: first, near the solar surface, the atmosphere
corotates with the Sun, and, second, it has not yet reached its asymptotic
speed there. But how does the magnetic field vary between R� and r0? And
how is the solar wind structure connected to the magnetic structure on the
Sun?

This is a difficult problem, because (except for solar active regions10) the
magnetic field is measured essentially at the solar surface, albeit with not enough
resolution, and at large distances in the solar wind. In between, our knowledge
of the magnetic field in the source of the wind is based on a few uncertain
measurements and on models of unproven validity.

A standard, but far from satisfying, method for relating the magnetic field
at the Sun and in the solar wind consists of two steps. First, one maps any point
in the wind inward back to some ‘source’ distance taken somewhat arbitrarily
near 2.5 R� to determine a foot point, by assuming radial flow at constant

10The large magnetic field in solar active regions is measured best, but of little use for
modelling the regular fast wind.
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Figure 6.10 Heliospheric magnetic field calculated by extrapolating the mea-
sured photospheric and solar wind fields at solar activity minimum (left) and
maximum (right). Fields pointing outwards (respectively, inwards) are plotted
as black lines (respectively, grey). (Adapted from [20].)

speed as outlined in Section 6.1. Second, one calculates the field between this
distance and the solar surface, by assuming that it derives from a potential, with
its radial component equal to that measured at the photosphere, and forcing
it to be radial at the ‘source’ surface (see [28], [39] and references therein).
Figure 6.10 shows the resulting open magnetic field lines calculated near solar
activity minimum and maximum [20].

Near solar activity minimum, the heliospheric magnetic field exhibits the
simple bipolar structure already discussed, with oppositely directed fields in
both hemispheres (see Fig. 6.4), in contrast to the complex structure exhibited
near activity maximum.

An important feature of this kind of modelling is that the field lines diverge
faster than radial above the coronal holes, so that most of the fast wind origi-
nates from relatively small source regions, as seen in Fig. 6.10 (left). This feature
has important consequences on solar wind models, as it affects the solar wind
speed and the energy balance (see Sections 5.2.3 and 5.5.1), but it is still contro-
versial. Indeed, as we noted in Section 5.5, some studies claim instead that the
magnetic field lines extend radially as sketched in Fig. 6.11 except above active
regions, and that comparison of the density measured in the corona and in the
solar wind show that the fast wind expands radially, coming from a large part of
the solar surface near activity minimum, and not solely from the coronal holes
(see [43] and references therein), whereas the slow wind only comes from the
vicinity of active regions (which are near the magnetic equator at solar activity
minimum).
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Figure 6.11 An alternative view of the geometry of magnetic field lines around
the Sun. The small-scale magnetic field at short distances is essentially radial
and the fast wind flows along it, except in the vicinity of active regions [43].
(Courtesy of S. R. Habbal.)

6.3 Major perturbations

6.3.1 Interaction between the fast and slow winds

Consider our observer lying in the wind, equipped with the necessary instru-
ments (Fig. 1.17). Assume first that it lies close to the ecliptic near Earth’s
distance, at a time where solar activity is close to minimum. Once every week
or so, it observes large perturbations as the one that can be seen in Fig. 1.18,
which shows the speed, density and magnetic field as a function of time, during
nearly a month.

These large perturbations occur when fast and slow wind meet. When does
this happen? We have seen that near solar activity minimum the slow wind –
coming mainly from the vicinity of (equatorial) active regions – flows along the
vicinity of the equatorial sheet, whereas the fast wind flows elsewhere. Because
of the inclination and warping of the sheet, the observer encounters it – and
therefore the corresponding slow wind – from time to time as the Sun rotates.
This means that the observer encounters now and again an interface between
slow wind and fast wind, that lies approximately along an Archimedean spiral
rotating with the Sun as does its source. This interface is thus called a corotating
interaction region in the jargon of solar wind specialists. There, the leading edge
of the fast wind collides with the slower wind ahead of it. Because each kind
of wind originates on different field lines which cannot easily cross, and tends
to be frozen to them, the two kinds of wind do not mix freely. The advance of
the fast wind towards the slow wind therefore compresses the medium and the
frozen in magnetic field.
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What is the structure of the interaction region? On the forward side lies the
undisturbed slow wind, whereas on the rear side lies the undisturbed fast wind.
Consider first the forward side. As time passes and the wind flows, the pressure
increases within a small region that moves outwards and pushes the slow wind
ahead. In contrast, on the trailing side, a pressure perturbation propagates in
the reverse sense – sunward with respect to the fast wind, tending to decelerate
it. The net effect is to tend to decrease the speed difference between the fast
and slow flows.

How does the interaction region evolve farther from the Sun? As distance
increases, the Alfvén speed decreases (because the magnetic energy decreases
faster than the particle density), and the sound speed decreases, too (because
the temperature decreases), so that the speed of pressure waves (the so-called
fast speed calculated in Section 2.3) decreases. When this wave speed becomes
too low with respect to the fast/slow speed difference, the pressure waves steepen
into shocks. This happens typically farther than a few AU from the Sun. As
distance increases still more, the compression regions expand and tend to merge
with other ones, while the shocks tend to damp out the fast/slow speed differ-
ence. We shall return to shocks in Section 6.3.3.

How does this picture change during the solar cycle? Near activity minimum,
the heliospheric current sheet has a small inclination to the rotational equator
and is weakly warped, so that corotating interaction regions occur only at very
small latitudes. When activity is greater, so is the sheet inclination to the
equator, producing interaction regions in a greater latitude range. Finally, close
to activity maximum, there are few large fast wind streams and they do not
persist for long, so that there are few conspicuous corotating interaction regions.

These structures and their associated shocks have three important conse-
quences: first, they may form barriers to cosmic rays, which tend to inhibit
them from entering the inner heliosphere, second, they accelerate particles to
high energies, and third, they are responsible for perturbations at Earth. We
shall return to these points in the following chapters.

6.3.2 Coronal mass ejections in the solar wind

The other kind of large scale perturbations is produced by coronal mass ejections
from the Sun (see Fig. 4.10). We have seen that now and then the Sun ejects
a huge plasma pocket of 1012 − 1013 kg, moving as fast as a few 103 km s−1 in
the corona. On average over the whole Sun, this happens roughly once a week
at solar activity minimum, and three times per day at maximum. These huge
bullets produce large perturbations along their trajectory in the solar wind.

These perturbations have features in common with those studied above:
the interaction of two different plasmas moving at different velocities, and the
production of shocks when the difference in speeds is large compared to the
speed of pressure waves. However, the very transitory nature of interplanetary
coronal mass ejections makes them difficult to study. Furthermore, close to the
Sun, we have only a global knowledge of these objects, inferred from photographs
and measurements from a large distance. On the other hand, in the solar wind,
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Figure 6.12 There is still no agreement as to the structure of interplanetary
coronal mass ejections. (Drawing by F. Meyer.)

we can make detailed in situ measurements at a few locations, but we have not
enough of them to deduce the whole structure. As a result, not only do we
ignore the physics of their initiation, as we saw in Section 4.5, but we do not
even know with precision:

• their basic geometry,

• their signature and their effects on the wind.

Even though ideas on coronal mass ejections in the interplanetary medium pre-
date the ones on the solar wind, because of their major consequences on our
close environment (as we saw in Section 1.1), there is still no agreement on these
basic questions.

These events are frequently observed in the ecliptic, where the Earth and
most spacecraft lie. This is because their coronal sources, the solar active re-
gions, lie close to the solar magnetic equator near activity minimum, whereas
at maximum, where they are much more frequent, they lie virtually everywhere
on the Sun.

Their structure is threaded by magnetic field lines and generally carries
magnetic helicity, appearing as a twisted flux tube that is nearly force-free (see
Section 4.2.3). Near the Sun, they generally appear as closed magnetic field
lines attached to the Sun at both ends, but as the structure moves forward, the
lines may presumably detach from the Sun. As a consequence of this geome-
try and of the expansion, these structures exhibit in general (but not always)
suprathermal electrons that move towards the Sun along the magnetic field, and
low temperatures.

When these structures move faster than the ambient wind, they push it and
compress the medium and its magnetic field. Indeed, a large magnetic field
often (but not always) characterises them, and when the field is large enough,
they are called magnetic clouds. On the other hand, when they move slower
than the ambient wind, they are pushed ahead by it. When the speed difference
is sufficiently large, these pressure perturbations produce shocks, as in the case
of corotating interaction regions. Therefore, disturbances moving faster than
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the ambient solar wind tend to be decelerated, those moving slower tend to be
accelerated, so that in most cases their speed lies in the range of those of the
ambient solar wind.

Finally, what are their global effects on the heliosphere? We noted in Chap-
ter 4 that they may enable the Sun to get rid of the excess of magnetic helicity
produced in each hemisphere by the solar differential rotation. On a large scale,
coronal mass ejections in the interplanetary medium form barriers to cosmic
rays, accelerate particles, and perturb the Earth’s environment, rather as do
corotating interaction regions – and perhaps to a greater extent. We shall re-
turn to these points in the next chapters. On average over the solar cycle and
in order of magnitude, they contribute about a tenth of the total solar wind
mass flux in the ecliptic – a proportion that varies by a large factor during the
activity cycle.

6.3.3 Associated shocks
As we noted, the large-scale perturbations of the solar wind often involve com-
pressions at speeds greater than the phase speed of the associated waves, produc-
ing shocks. Basic references on this kind of shocks, although somewhat outdated,
are [34] and [2]. More specialised accounts may be found in the monographs
[35] and [36], with updates in the volume [25], while recent advances based on
numerical simulations are reviewed in [17] and [14].

Heliospheric shocks, as do most shocks in space plasmas, are fundamentally
different from the classical shocks of gas dynamics (Section 2.3) because they
are magnetised, and – most importantly – they are collisionless.

Magnetised collisionless shocks

Since the particle and magnetic pressures are of the same order of magni-
tude, as are the sound and Alfvén speeds (since from Table 6.1, β ∼ 1 in
order of magnitude), the magnetic field affects considerably the compressional
waves. There are two wave modes involving compression that can steepen into
shocks, and none of them is the usual sound wave of ordinary fluid dynamics.
The mode generally involved in heliospheric shocks is the so-called fast wave
(Section 2.3). This wave makes the particle and magnetic pressures vary in
phase, and propagates at a phase speed that depends on the direction of prop-
agation:

(
V 2

A + V 2
S

)1/2
normal to B, and the larger of VA and VS along B

(Section 2.3).11

The other compressional wave, called the slow wave (Section 2.3), makes
the particle and magnetic pressures vary out of phase; it gives rise to shocks
relatively rarely. It does not propagate across B; in this direction it yields merely
a tangential discontinuity, in which both the velocity and the magnetic field are
parallel to the boundary; without plasma flow across the boundary, the total
pressure must be conserved across it in order to ensure dynamic equilibrium;

11Across such a shock, B increases downstream, so that since the normal component is
constant, the downstream field turns away from the shock normal.
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Figure 6.13 Basic geometry of the boundaries that are the most frequent in
the heliosphere: fast shocks and tangential discontinuities. The subscripts n (t)
denote the components normal (parallel) to the boundary, and u (d) denote the
upstream (downstream) values.

hence the particle and magnetic pressure vary in opposite senses. Tangential
discontinuities are ubiquitous in the heliosphere, where the (total) pressure has
ample time to reach equilibrium.

We shall see in the next chapter that fast shocks and tangential discontinu-
ities (Fig. 6.13) form systematically as the solar wind encounters planets and
other large bodies.

Since the Alfvén wave does not change the particle pressure, it does not
steepen into shocks.12 Its steepening yields instead a rotational discontinuity
where B and v change in direction but not in magnitude, with a flow across the
boundary but no compression or dissipation; this structure propagates with a
speed Bn/

√
µ0ρ along B.

The second – and the greatest – difference with classical shocks is that the
free path is larger than the other scales by many orders of magnitude, making
these structures virtually collisionless. A basic property of shocks, however, is
that some dissipation acts to transform the bulk kinetic energy into particle
random motions. Since binary collisions cannot do the job, something else must
come to the rescue. This involves collective particle interactions with the electric
and magnetic field, including wave instabilities and turbulence, in a way that
is still not fully understood, in spite of several decades of research involving
observation, theory and simulation.

The particle motion in the mean fields of the shock modifies the velocity dis-
tributions and increases the kinetic temperature across the shock, but it does not
formally provide dissipation since the equations of motion are reversible. Dis-
sipation is produced by kinetic micro-instabilities, which yield some anomalous
resistivity producing Joule heating. However, this process becomes insufficient
when the speed exceeds some critical speed (typically v/VA > 1 − 3), and an
additional dissipation mechanism is then needed. This additional dissipation

12Except in very special cases.
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Table 6.2 Typical orders of magnitude of the basic scales in the solar wind at
1 AU from the Sun

Debye length LD 10 m
Electron gyroradius rge 3 km
Proton inertial length c/ωpi ≡ VA/ωgi 102 km
Proton convected gyroradius vw/ωgi 103 km
Collisional free path lf 1 AU

mechanism is thought to be provided by the reflection of protons by the shock
electric and magnetic fields, which converts upstream bulk motion into gyra-
tion motion, and ultimately into random kinetic energy through scattering by
waves and turbulence. The irreversibility may be thought of as coming from
the development of finer and finer structures, which after some time exceed the
resolution of any measurement, so that some spatial and temporal average of
the velocity distribution is observed instead of the local instantaneous value.

The rarity of binary collisions has too other consequences. First, the shock
drives the plasma far from equilibrium; not only do the electrons and pro-
tons have different temperatures, but the velocity distributions are far from
Maxwellians – much farther than in the undisturbed solar wind. Not only is the
bulk of the velocity distribution driven out of equilibrium, but a few particles
are accelerated to very high energies, contributing to the dissipation in the shock
via the plasma wave instabilities they generate. This acceleration of particles
to high energies makes shocks basic acceleration structures in the Universe, as
we shall see in Section 8.2.

Second, the dissipation takes place in a rather large region, so that the shock
thickness is not clearly defined. Whereas in classical shocks the shock thickness
is of the order of magnitude of the collisional free path, in collisionless shocks
it is determined instead by other basic scales of the plasma, defined by the
dissipative mechanism at work. Table 6.2 shows typical orders of magnitude of
some scales: the Debye length, and the electron and proton gyroradii (note that
since β ∼ 1, the gyroradius of a particle moving at the thermal speed is roughly
equal to its so-called skin depth or inertial length13).

Because of the role of the magnetic field, the shock structure – and in par-
ticular its thickness – is strongly dependent on the geometry (Fig. 6.14). When
the magnetic field is roughly perpendicular to the shock surface (the shock is
called quasi-parallel, in reference to the shock normal n), the motion of the par-
ticles along B carries them through the shock (and away from it) very easily;
this makes the width of the shock fairly large. In contrast, when the mag-
netic field is roughly parallel to the shock surface (the shock is then called

13The electron gyroradius is rge ∼ vthe/ωge , and with a little manipulation we find
ωge/ωp 
 (mp/me)

1/2 VA/c. Hence rge ∼ (vthp/VA) × c/ωp , so that rge ∼ c/ωp if β ∼ 1.
Similarly, c/ωpi ≡ VA/ωgp – the gyroradius of a proton moving at the Alfvén speed (equal in
order of magnitude to the proton thermal speed in the solar wind).
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Figure 6.14 One-dimensional sketch showing the extreme cases when the mag-
netic field is roughly normal to the shock (left) and roughly parallel to it (right).
When B is normal to the shock, the particles can easily cross its surface, pro-
ducing a large shock width, whereas when B is parallel to the shock, the particle
gyration keeps them close to its surface, producing a small width.

quasi-perpendicular), the motion of the particles along B keeps them close to
the shock surface, making the shock thickness fairly small – typically of the
order of magnitude of the ion gyroradius.

These various parameters produce a wide range of shock structures. What-
ever the details, however, the basic conservation relations of mass, momentum
and energy hold.

Conservation relations at MHD discontinuities

In the ideal case when the shock is stationary, when the particle distributions
are not too far from Maxwellians, and when the waves do not carry away an
appreciable part of the energy, the MHD generalisation of the fluid equations
yields conservation relations that generalise the Rankine–Hugoniot relations
(Section 2.3).

Consider the simple case of a one-dimensional steady shock, as in Section 2.3,
in the frame where the shock is stationary. Mass conservation yields, as for an
ordinary shock

[ρvn] = 0. (6.21)

Here the subscripts n (and t respectively) denote the normal (and tangential
respectively) components, and the symbol [ ] denotes the discontinuity at the
shock. From Maxwell equations, we have

[Bn] = [Et] = 0. (6.22)

With E = −v × B, this yields [vnBt − Bnvt] = 0, whence

[vnBt] = Bn [vt] . (6.23)

Momentum balance yields in the normal direction[
ρv2

n + P + B2/2µ0

]
= 0 (6.24)



Waves and turbulence 315

and in the transverse direction: [ρvnvt − BnBt/µ0] = 0, whence, using (6.21)–
(6.22)

ρvn [vt] = Bn [Bt] /µ0. (6.25)

Finally, energy conservation yields[
ρvn

(
v2

2
+

γ

γ − 1
P

ρ

)
+ vn

B2

µ0
− v · BBn

µ0

]
= 0 (6.26)

where the first term is the flux of bulk kinetic energy and enthalpy, and the last
two terms stem from the energy flux E × B/µ0, with E = −v × B.

These relations hold for any MHD discontinuity, of which shocks are a special
case which requires a flow through the surface (vn �= 0) and some compression
and dissipation. In the case of tangential discontinuities (Fig. 6.13), one sees
immediately that the conservation relations reduce to the continuity of the total
(particle plus magnetic) pressure.

Applying these conservation relations to a shock, one can show that the
upstream and downstream magnetic field and the shock normal all lie in the
same plane (Problem 6.6.3).

In the vicinity of shocks, the menagerie of plasma waves and instabilities is
extremely active, as is turbulence, and the electric field accelerates particles in
an efficient way.

We shall consider the acceleration of particles in Section 8.2, and make below
a short incursion into the menagerie of plasma waves, which are ubiquitous in
the solar wind, with a population that is extremely variable – depending as
expected on the energy resources.

6.4 Waves and turbulence

Let us return to our solar wind observer (Fig. 1.17). In addition to the large-
scale structures discussed above, and to some other ones that we shall spare
the reader, it observes in permanence small-scale variations. There is a whole
continuum of variations of virtually all scales and amplitudes, from the ubiqui-
tous quasi-thermal fluctuations to large disturbances. Because of the coupling
between waves and particles, these perturbations may be investigated with em-
phasis either on particles, waves or turbulence, depending on their properties
. . . and on the bias of the investigator. These perturbations are especially con-
spicuous in the vicinity of the large-scale perturbations studied in the previous
section.

6.4.1 Waves

A huge number of wave modes can propagate in a magnetised plasma. Many of
these modes may become unstable under some circumstances, and an interest-
ing zoo has yet to be interpreted [27]. In particular, we have seen in Section 5.4



316 Structure and perturbations

that even in the stationary solar wind the electron velocity distribution exhibits
a large skewness – responsible for a large heat flux – and that the proton distri-
bution tends to be anisotropic. This can drive many plasma wave instabilities;
although these instabilities may be viewed as providing additional interacting
degrees of freedom which may come to the rescue of particle collisions for pro-
viding dissipation, they only prevent the velocity distributions from becoming
too crazy, but do not keep them close to Maxwellian.

In the solar wind, the plasma frequency fp is much greater than the elec-
tron cyclotron frequency fge. For example at 1 AU from the Sun, with a density
∼ 5×106 m−3, and a magnetic field amplitude ∼ 5×10−9 T, we have fp ∼ 2×104

Hz and fge ∼ 150 Hz. Hence the waves of frequency near and above fp are
virtually unaffected by the magnetic field. We have seen that high-frequency
electromagnetic waves are virtually undamped, so that they may go to a large
distance from their region of production, and may therefore be observed very
far from it. In contrast, electrostatic waves are in general heavily damped, so
that they must be observed close to their place of emission. Since unstable elec-
trostatic waves are generally intermittent, they are therefore difficult to observe
directly, and are more frequently inferred from the electromagnetic waves they
generate, which fill a far larger space.

The solar wind velocity vw introduces a complication: the wave frequency is
measured on a spacecraft that is generally moving at a small velocity (compared
to vw) with respect to the Sun, and therefore at a velocity of about −vw relative
to the medium. As a result, a wave of angular frequency ω and wave vector k
is observed at a frequency ω − k · vw, so that the relative Doppler frequency
shift is ∆ω/ω ∼ vw/vφ, where vφ is the phase speed. This shift is especially
important for acoustic and MHD waves whose phase speeds – of the order of
magnitude of the sound and Alfvén speeds – are much smaller than vw.

The waves observed most frequently in the solar wind are:

• electromagnetic waves, of k =
√

ω2 − ω2
p/c, that propagate nearly as in

vacuum at f � fp,

• electrostatic Langmuir waves, of k =
√

ω2 − ω2
p/

(√
3/2vth

)
, so that ω/k ∼

vth in order of magnitude – producing Landau damping – except at ω � ωp,
where ω/k � vth so that they interact with suprathermal electrons,

• acoustic waves, whose Doppler shift carries them up to frequencies much
above the proton plasma frequency,

• whistler waves (below the electron gyrofrequency in the plasma frame),

• electromagnetic MHD waves (Alfvén and magnetosonic) below the proton
gyrofrequency in the plasma frame, of which only the Alfvén waves are
not strongly damped.

Figure 6.15 (top) is a typical wave spectrogram at frequencies of the order of
magnitude of fp in the solar wind near solar activity minimum. It is displayed as
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Figure 6.15 Typical electric spectrogram near solar activity minimum in the
ecliptic, with the ubiquitous quasi-thermal spectrum of the plasma, plus a few
bursts of acoustic waves. It was measured on Ulysses with the 70-m tip-to-tip
electric antennae of the URAP instrument in March 1995, near the ecliptic at �
1.3 AU. The bottom panel shows the electron density and temperature during
this day, deduced in routine from analysis of the quasi-thermal spectrogram.
(Courtesy of M. Moncuquet.)

frequency versus time with intensity indicated by the grey bar chart on the right;
hence each vertical cut represents the spectral density of the squared voltage
on the electric antenna at a given time. The spectrogram essentially shows a
broad line peaking close to the local plasma frequency, which represents the
quasi-thermal (electrostatic) fluctuations of the local plasma. The shape of the
spectrum is due to the fact that the electric antenna selects the wavelengths of
the order of magnitude of its proper length; therefore if this length is greater than
the Debye length LD ∼ vth/ωp, the antenna selects the Langmuir waves near ωp,
whose wavelength is greater than LD and which are excited in permanence by
the quasi-thermal motions of the electrons. This makes the spectrum peak at the
local plasma frequency. The spectral shape can be calculated from the velocity
distributions of the particles, and its inversion furnishes a diagnostics of these
particles (Fig. 6.15, bottom) [18]. Indeed, apart from bursts of acoustic waves,
the spectra observed in the solar wind can be quantitatively explained with an
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Figure 6.16 Typical electric spectrogram near solar activity maximum in the
ecliptic, showing a number of radio emissions produced by electrons accelerated
in solar flares, in addition to the ubiquitous plasma quasi-thermal spectrum
around fp. This spectrum was measured on the spacecraft WIND with the 100-
m tip-to-tip electric antennae of the WAVES instrument in December 2001, in
the ecliptic at 1 AU. (Data courtesy of C. Perche.)

accuracy of a few per cent by the theory of plasma quasi-thermal fluctuations
[15].

The relatively large fluctuations observed in the plasma parameters (Fig. 6.15,
bottom) are typical of those observed near solar activity minimum in the eclip-
tic, where we have seen that different kinds of winds interact (compare with
Fig. 1.21, obtained at high latitudes where the spacecraft is permanently im-
mersed in fast wind).

We have seen in Section 4.5 that solar flares are frequent near solar activ-
ity maximum. The corona then ejects packets of electrons travelling at high
speeds, which produce a wave instability at the local plasma frequency along
their trajectory in the solar wind. This produces electromagnetic waves at both
fp and its harmonic along their trajectory. Such waves can be seen in Fig. 6.16,
which is a typical spectrogram acquired near solar activity maximum in the
ecliptic at 1 AU. Particles accelerated in the vicinity of shocks can also produce
electromagnetic waves. A review of these emissions may be found in [12].

At low frequencies, the figures also show a few bursts of acoustic waves.
Bursts of various low frequency waves are ubiquitously observed in the solar
wind. In particular, whistler waves are observed nearly in permanence below
the electron gyrofrequency, and (Doppler-shifted) acoustic waves are observed
below the plasma frequency and are strongly intermittent.

6.4.2 Turbulence
Magnetohydrodynamic waves are ubiquitous in the solar wind, in the form of
Alfvén waves, and their distribution has much in common with fluid turbulence.
But what is turbulence?

Oddly enough, there is no precise answer to this question. Turbulent flows
are all around us – and even inside us – in both air and water, and have fas-
cinated minds for ages (Fig. 6.17). Yet, despite more than a century of active
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Figure 6.17 A sketch by Leonardo da Vinci, of what he called ‘turbolenza’.

research on many fronts, including mathematics, modern statistical and non-
linear physics, engineering and computer simulations, turbulence is still not
properly understood [33]. Rather surprisingly, ‘less is known about the fine
scale of turbulence – for example, the scale of 1 mm in the Earth atmosphere –
than about the structure of atomic nuclei’ [9]. Turbulence is often considered
as the last great problem of modern physics that remains unsolved.

Yet turbulence has innumerable practical applications. It enhances enor-
mously the transport of matter, momentum and heat. Life as we know it would
not be possible without turbulence, and we have seen in Chapter 3 the impor-
tance of turbulence for heat transport and magnetism in the Sun. It has also
undesirable consequences, and its control would bring considerable progress in
our technology.

Elements of fluid turbulence

Leonardo’s sketch illustrates beautifully a cheap experiment that can be per-
formed in your kitchen. Open a water tap slightly, and you get a regular sta-
tionary water column; open it a little more, and you may see regular structures
or periodicities, which become irregular as you open more the tap, to yield a
complex ‘turbulent’ structure, both in the jet and in the sink. Turbulence has
a very special character: it is disordered, but not completely so, showing both
order and disorder; namely, small fluctuations and macroscopic structure do
coexist.

At first sight, the basic problem appears simple, being based on fluid equa-
tions (Section 2.3) that have been known for much more than a century, and
seem benign enough. The physics neither involves small scales requiring quan-
tum mechanical concepts, nor large scales requiring general relativity concepts,
and the experiments do not involve great energies requiring giant particle
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accelerators. The equations are, however, far from benign, having singularities,
and containing a non-dimensional parameter – the Reynolds number R (the ra-
tio of inertial to viscous forces) that is generally much greater than unity. The
problem is simple only at low Reynolds numbers; as R increases, the flow under-
goes a sequence of instabilities and becomes turbulent. Due to the large value
of the non-dimensional parameter R, there is a wide range of relevant scales, so
that numerical simulations require desperately long computer times.

The problem is non-linear and dissipative, has chaotic solutions (it exhibits
great sensitivity to the initial conditions) and shows intermittency. A review of
these concepts may be found in [9], the subtleties of which are nicely discussed
at a simple level in a book by David Ruelle [24],14 and in more detail, in the
book [44].

Chaos means that you cannot predict the long-term evolution (although the
governing equations are deterministic), because any small variation in the initial
conditions (or any small perturbation) produces a change that increases expo-
nentially with time. A popular image is that a butterfly may change drastically
the weather at some future time and distant place – a valid excuse to the in-
ability of meteorologists to predict the weather over more than a few days, first
noted by Edward Lorenz.15

The intermittency of turbulence manifests itself in the fact that turbulent
activity is more and more localised as one observes smaller scales. Large fluc-
tuations are far more probable than expected from Gaussian statistics, so that
the probability distributions of the fluctuation amplitude have tails (as do the
kappa functions introduced in Section 5.5), the more so as the scale considered
in the statistics decreases. This behaviour can be described with the tools used
to study fractals16 – a popular example of which is the length of a coast: as you
measure it with a tool of smaller size, you see smaller details, so that the total
measured length increases.

Let us return to our tap. The viscosity of water in normal conditions is
ν ∼ 10−6 m2 s−1. With a diameter L ∼ 1 cm, the Reynolds number R = vL/ν ∼
104 × v, where v is the flow speed in m s−1; this yields R � 1 even at modest
speeds. In astronomy, the Reynolds numbers are often still greater because of
the huge scales. Since virtually every three-dimensional flow of large Reynolds
number exhibits turbulence, the ubiquity of turbulence is not surprising.

We have seen in Section 2.3 that fluids behave as incompressible at small
speeds. In this case, the continuity equation reduces to  · v = 0, so that the
equation of motion (Section 2.3) reduces to

∂v/∂t + v · v = − p/ρ0 + ν 2 v with  ·v = 0, (6.27)

the incompressible Navier–Stokes equations.
14Who first introduced chaos in the theory of the transition to turbulence, with the paper:

Ruelle, D. and F. Takens 1971, On the nature of turbulence, Comm. Math. Phys. 20 167.
It is amusing to note that, as often occurs for seminal papers and as nearly occurred for
E. Parker’s seminal paper on the solar wind, this paper was rejected by the editor to which it
was first submitted.

15Lorenz, E. N. 1963, Deterministic non periodic flow, J. Atmos. Sci. 20 130.
16More precisely, multifractals (i.e. the scaling to smaller scales is not self-similar).
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Figure 6.18 Kolmogorov’s scheme. Left, sketch of the cascade in which energy
is injected at large scales and is transferred through a series of steps to small
scales where it is dissipated (assuming that turbulence fills all space, i.e. no
intermittency). Right, corresponding wave number spectrum of the turbulent
energy.

Kolmogorov’s law

To compensate for our inability to solve these equations, one may use their
form to derive universal similarity laws. Assume that mechanical energy is
injected at some large scale L across which the velocity difference is V and let
R = V L/ν � 1 be the corresponding Reynolds number. Differential motions
create shear and eddies, and in steady state, the energy fed into the fluid cannot
accumulate; it cannot dissipate either because R � 1 makes viscosity negligible
at the scale L.

There is, however, a way for energy to dissipate: producing scales so small
that viscosity becomes efficient. What is the limiting scale ld at which this
happens? Let vd be the velocity difference at this scale (i.e. the difference in
speed between two points distant by ld). With the order of magnitude estimate
 ∼ 1/ld, the corresponding inertial term in (6.27) is ∼ v2

d/ld, whereas the
viscous force is ∼ νvd/l2d. Viscosity becomes efficient when the latter dominates,
i.e. for scales smaller than

ld ∼ ν/vd. (6.28)

Since energy is injected at scale L and cannot dissipate except at scales
smaller than ld, it is progressively transferred via non-linear interactions to
eddies of smaller and smaller scale (Fig. 6.18, left); this continues down to the
scale ld where the cascade ends because viscous forces become important. In the
range between L and ld (the so-called inertial range, for which inertia dominates
viscosity), viscosity is negligible, so that the system is ruled by Euler equations,
which contain no parameter. The solution is therefore scale invariant, and if it is
steady, homogeneous and isotropic, one can deduce how the velocity difference
vl across an eddy of size l varies with l.

Indeed, when viscosity may be neglected, the only relevant physical param-
eter for an eddy is the energy ε that cascades through it per unit time per unit
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mass. From energy conservation, ε is the rate of energy injection at large scales,
the rate of energy dissipation by viscosity at scales below ld, and the rate of en-
ergy cascading through eddies of intermediate size. Dimensional analysis yields
ε ∼ v3

l /l; indeed, the energy per unit mass ∼ v2
l is transferred during a time

∼ l/vl, so that the energy per unit time per unit mass is ε ∼ v2
l /(l/vl). Hence

the velocity fluctuation at scale l varies as

vl ∼ (lε)1/3 ∝ l1/3 (6.29)

where we have dropped ε out of the parenthesis since it does not depend on the
size l in the absence of viscous dissipation (i.e. for ld < l < L).

This is the classical Kolmogorov’s law: the velocity fluctuation varies with
the scale as l1/3 – a universal scaling that does not depend on the type of flow,
nor on the Reynolds number. By the same argument, the moments of order n
of the velocity differences vl at scale l (the so-called structure functions) obey
the relation

〈vn
l 〉 ∝ (lε)n/3

. (6.30)

One can deduce how the energy fluctuations at a given location are dis-
tributed over spatial scales. This is generally plotted as the spectral density of
the energy fluctuations as a function of wave number: Wk(k). Since the energy
in the fluctuations at scale l varies as v2

l ∝ l2/3 from (6.29), the fluctuation
energy per unit wave vector (in one direction) k ∼ l−1 varies as l2/3 × l ∝ l5/3,
i.e. as k−5/3. Hence the (one-dimensional) spectrum of the fluctuation energy
varies as

Wk ∝ k−5/3 for L−1 < k < l−1
d (inertial range). (6.31)

Note that applying Kolmogorov’s law (6.29) to both ld and the largest scale L

yields (ld/L)1/3 = vd/V . Substituting into (6.28), we get17

ld ∼ L × (ν/V L)3/4 ∼ L × R−3/4. (6.32)

Consequences and limitations

These scaling laws are universal (within the framework of the hypotheses made)
and are indeed found to hold in a host of systems in which the Reynolds number
is large. This brings about three important points. First, in order to solve nu-
merically a three-dimensional problem, the computational work must vary as the
third power of the ratio of the outer to the inner scale: L/ld; from (6.32), this
means that the required computational work increases as R9/4, for a single time
step. In order to study the temporal evolution, computational times are thus
expected to be extremely long for large Reynolds numbers.

17Beware that this estimate may be out by a large factor, given the drastic hypotheses
made.
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Second, since the dissipation rate ε ∼ v3
l /l is independent of viscosity, it

should remain finite as ν → 0. Therefore, dissipation acts even in the limit
of infinitely small viscosity, whereas there is no dissipation in the absence of
viscosity. This apparent paradox is related to the well-known crucial differ-
ence between an ideal inviscid fluid (a fluid without viscosity, which John von
Neumann nicely called dry water to emphasise its unrealistic character) and a
real fluid having a small viscosity.18

This may be illustrated with a simple example. Consider the flow past an
object (Fig. 6.17, top). This is equivalent to the same object moving through
the fluid, and we know that if the Reynolds number is large, the object is
subjected to a drag force FD ∼ ρv2/2 per unit cross-section, where ρ is the fluid
mass density and v the velocity; the formula is correct to a factor of order unity
that depends very weakly on the Reynolds number. For a three-dimensional
object of size L, the total force is FDL2, so that the power dissipated by the
flow past the object is FDL2×v ∼ ρv3L2/2. Since the mass involved is ρL3, the
power dissipated by unit mass of the flow is ∼ ρv3/2L – roughly independent
of the Reynolds number provided it is large. In other words, the dissipation is
indeed finite in the limit of zero viscosity. Basically, this is because as viscosity
decreases, vortices of smaller and smaller size appear, so that the viscous term
in the dynamic equation (6.27) does not tend to zero when viscosity does.

This brings about a third consequence. Turbulence is expected to enhance
considerably diffusion and the other transport coefficients.

A detailed review of Kolmogorov’s ideas and modern ones may be found in
the book [10].

This old Kolmogorov picture is based on several assumptions; in particular it
assumes turbulence to be steady, homogeneous and isotropic, which is not fully
true. Turbulence is highly intermittent, becoming less and less space-filling as
the scale decreases, which produces deviations from the Kolmogorov scaling law
that increase with the order of the moment considered in the statistics. This
intermittency often involves highly anisotropic vortex tubes, whose dynamics is
not well understood; stretching vortex lines in a three-dimensional flow enhances
vorticity, which, however, requires some viscosity to be created.

Turbulence in the solar wind

The application of these concepts in the solar wind is far from straightforward,
for several reasons. First of all, the solar wind is compressible. In supersonic
compressible turbulence, the fluctuations tend to steepen into shock waves, in
which dissipation may occur in one jump, without having to go through an
intermediary cascade as in the Kolmogorov scheme. Second, the solar wind
viscosity (Section 2.3) yields a Reynolds number R ∼ vwL/vthplf , which is not
very large, contrary to ordinary turbulent fluids; the dissipation is expected to
be driven by waves and instabilities rather than the ordinary viscosity. Third,
the solar wind is magnetised; the magnetic field introduces an anisotropy and

18Feynman R. P., R. B. Leighton and M. Sands 1964, The Feynman Lectures on Physics,
vol. 2, New York, Addison-Wesley, p. 3.
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Figure 6.19 Power spectra of magnetic field fluctuations at 0.3 AU from the
Sun (measured on the Helios spacecraft) and at 10 AU (measured on Voyager
2). (Adapted from [13].)

additional forces, so that the turbulent ‘eddies’ are MHD waves (more precisely
Alfvén waves since the other ones are in general damped); since pure Alfvén
waves are solutions of the ideal MHD equations, non-linear interactions yielding
an energy cascade are not inevitable. Furthermore, in this MHD problem the
cascade itself might be expected to yield a scaling relation different from the one
in an ordinary fluid (Problem 6.6.4). And finally, we have seen in the previous
chapters that the MHD description itself is very dubious, the more so as the
scales of turbulence are ridiculously much smaller than the particle mean free
path.

What does observation tell us? At frequencies below the local proton gy-
rofrequency, where fluid Alfvén waves propagate, one observes fluctuations of
the magnetic field B and the velocity v that are highly correlated, as

δv ∼ ±δB/
√

µ0ρ (6.33)

with the individual components of B fluctuating much more than the modulus
B. This reveals Alfvén waves, and for the dominant wave population the sign
is found to correspond to waves propagating away from the Sun in the plasma
frame; this strongly suggests a solar origin.

Whereas large-scale perturbations are more frequent in the slow wind, these
small-scale turbulent fluctuations in both the magnetic field and the velocity
are of greatest amplitude in the fast wind; there the magnetic field fluctuations
are of the order of magnitude as the average field itself.

Figure 6.19 shows the energy spectrum of fluctuations measured at both
relatively small and large distances from the Sun. The spectra were obtained
as a function of frequency, because the magnetic field was measured aboard
spacecraft as a function of time. Since the spacecraft are moving with re-
spect to the medium at roughly −vw (producing a Doppler shift k · vw), much
greater than the phase speed of MHD waves, the spectra in frequency may be
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transformed into spectra in the wave vector component k along vw by the trans-
formation k � ω/vw � 2πf/vw; this means that 1 second corresponds to a
wavelength of the order of several hundreds kilometres – the solar wind speed.
For example, the slow to fast wind changes that occur roughly once every 10
days (Fig. 1.18) contribute to the spectral density of fluctuations at frequencies
around 10−6 Hz.

Figure 6.19 shows the power spectrum of magnetic fluctuations at greater
frequencies, i.e. smaller scales. One sees that the spectrum has a power law
shape with index −5/3, above a frequency that decreases with increasing helio-
centric distance. This frequency varies from about 4 × 10−3 Hz at 0.3 AU to
around 10−5 Hz at 10 AU [13]. At 1 AU, it is observed to lie around 10−4 Hz,
which corresponds to a length scale lout ∼ vw/f ∼ 2 × 10−2 AU.

We shall see in Section 8.2 that this scale has important consequences on
the propagation of cosmic rays through the heliosphere. This Kolmogorov-like
spectrum, corresponding to the inertial range of fully developed fluid turbu-
lence, holds up to very large frequencies or wave numbers (very small scales),
corresponding roughly to the inverse of the proton gyroradius, where dissipation
is presumed to take place. Detailed measurements also indicate that the turbu-
lence is strongly intermittent and anisotropic, depending on the inclination of
the wave vector to the magnetic field.

Several important questions arise. First, what produces the injection of
energy at large scales where the non-linear cascade starts, and what determines
the value lout of the corresponding outer scale, to which corresponds the small
frequency limit of the −5/3 spectrum? In order for this spectrum to derive from
the non-linear energy cascade discussed above, the typical time for a turbulent
eddy to interact non-linearly (tNL ∼ l/vl) should be smaller than the solar wind
expansion time (∼ r/vw) at distance r, which yields an outer limit on the scale
l: lout ∼ rvl/vw; with vl ∼ VA for l ∼ lout, this yields lout ∼ rVA/vw, which is
of the same order of magnitude as the value observed.19

Second, what produces the dissipation whose scale sets the inner spatial scale
(i.e. outer frequency limit) of the −5/3 power spectrum at about the proton gy-
roradius (i.e. about the proton gyrofrequency)? The mechanism should involve
kinetic effects, since MHD is out of the question at such scales. And why does
the spectrum generally vary as f−5/3 as in isotropic fluid turbulence? These
questions are far from being understood, and involve the shape and geometry
of the structures, which are strongly intermittent. The observed intermittency
is greater than in ordinary fluid turbulence and has a different character; in-
stead of occurring mainly as filament vortices, the large perturbations are one-
dimensional, in the form of current sheets and shocks (see [5] and references
therein); furthermore again, the intermittency of magnetic field fluctuations is
different from the velocity ones.

19A. Mangeney and C. Salem, personal communication 2005. Note that using (6.29), lout ∼
rvl/vw , and vl ∼ VA for l ∼ lout , we have lout ∼ ε1/2 (r/vw )3/2 and ε ∼ V 2

A × vw/r, i.e. the
cascading energy per unit mass corresponds to the square of the Alfvén speed divided by the
expansion time.
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6.5 Minor constituents

The solar corona and the wind are made of protons and electrons, plus minor
constituents that change the mean particle mass by at most 20%, so that they
are not expected to change the basic behaviour of the medium.

Minor constituents, however, are not always of minor importance. For exam-
ple, we saw above that viscosity cannot be ignored even when it is infinitesimally
small; another example of the importance of minor constituents is catalysis in
chemistry. Furthermore, as we already mentioned, the different charges and
masses of minor ions in the solar corona and wind enable them to act as tracers
for testing the validity of some theories.

Charge transfer collisions of heavy solar wind ions with neutral atoms of
various origins leave the ions in a highly excited state, whose de-excitation
produces emission in extreme ultraviolet and X-ray wavelengths (Section 2.4.4).
This takes place in particular near comets (Section 7.5.6), planets (Section 7.2)
and in the outer heliosphere (Section 8.1.2).

And finally, the knowledge of the composition of the Sun and the solar wind
is essential for understanding the evolution of the stars and of the universe.

6.5.1 Abundances: from the Universe to the solar wind

When the solar system formed, some 4− 5× 109 years ago, it captured a bit of
the interstellar medium, which subsequently evolved to produce the Sun, planets
and smaller bodies, and their environments. How are these productions typical
of the universe as a whole?

The question is not simple. To begin with, the bit of the interstellar medium
that gave birth to the solar system was not necessarily ‘typical’. Second, we have
seen that the Sun processes elements in its core, and the interstellar medium
is expected to have evolved chemically since the formation of the solar sys-
tem. Indeed, while hydrogen, helium and other light elements were produced
at the beginning of the universe, elements heavier than lithium are produced
in stars. Third, gravitational and electrostatic forces in the solar atmosphere
and wind act differently on elements of different charge and mass, which may
modify their concentrations. And finally, the system is not closed, since parti-
cles are penetrating it from outside and leaving, too, as we shall see in Section
8.1 (see [41]). Nevertheless, for reasons that are not fully understood, the so-
lar and galactic abundances appear to be relatively similar, apart from a few
exceptions.

The solar composition [11] is essentially determined from the spectroscopy
of solar radiation – which yields the composition of the photosphere, and also
from analysis of a class of meteorites20 – that are supposed to have retained
most of the elements present in the primitive solar nebula, and to yield more
accurate measurements. The agreement between both methods is remarkably
good.

20The CI carbonaceous chondrites.
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The composition of the solar wind [42] is somewhat different, being altered
by several mechanisms that involve ionisation processes and dynamics in the
solar atmosphere and the solar wind.

6.5.2 Helium and heavier solar wind ions

Helium

Apart from hydrogen, helium is the most abundant element in the Sun and
the solar wind. Essentially all solar wind helium is in the doubly ionised state
He++ – i.e. alpha particles. Its relative abundance relative to protons is nα/n �
0.04 − 0.05; because its atomic mass is nearly 4mp, helium constitutes nearly
20% of the solar wind mass. The helium concentration is somewhat smaller and
variable in the slow wind, and somewhat greater and rather constant in the fast
wind. It is extremely small near the heliospheric current sheet, and is often
considerably enhanced in the interplanetary coronal mass ejections.

Ionisation states

Heavier elements are in various ionisation states, that reveal the physical con-
ditions in the corona, in the region where frequent collisions between particles
ensure that ionisation and recombination balance each other; at larger distances,
the ionisation state is expected to remain frozen in since there are not enough
collisions to change it.

The freezing-in is expected to occur at a distance where the timescale for
ionisation change equals the time for the particle to travel a scale height. Since
ionisation depends on the electron temperature, the electron temperature in this
region of the corona may be estimated from charge-state measurements, as about
1 million degrees in the fast wind and 50% more in the slow wind – consistent
with measurements in the corona which yield smaller electron temperatures in
the regions where the fast wind comes from.

Abundances of heavy ions

Elements heavier than helium together make up only 0.1% by number. Their
concentrations are modified with respect to the photosphere according to their
energy of ionisation and to the dynamics of the flow. Atoms having a low
first ionisation potential, such as metals, are easily ionised. Those whose first
ionisation potential is smaller than the ionisation energy of hydrogen (the Bohr
energy) tend to be more abundant with respect to the photosphere than harder-
to-ionise elements, in particular helium – a difference that is greater in the slow
wind than in the fast wind.

A large part of this fractionation is expected to occur in the chromosphere,
where most of the ionisation takes place, but the observations are not yet ex-
plained, although a large number of models have been proposed.
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Temperatures and speeds of ions

All ions have temperatures roughly proportional to their mass in the fast wind,
whereas they are rather similar in the more collisional low-speed wind.

This means that their thermal speeds, rather than their temperatures, are
roughly equal in the fast wind. In particular, He++ ions are roughly four times
hotter than protons.

Likewise, in the fast wind, alpha particles and heavier ions are observed
to move faster than protons, with a speed difference that is roughly along the
magnetic field and equal to the Alfvén speed (or smaller), and decreases with
heliocentric distance. In contrast, in the more collisional slow wind, all ions
move at approximately the same speed.

Measuring ions having temperatures roughly proportional to their mass and
moving faster than protons is not a surprise if kinetic effects are at work in
the absence of collisions. Explaining the observations in a self-consistent way,
however, is a difficult task. The most popular interpretation involves wave
particle interactions at cyclotron resonance (see [37] and references therein).
However, velocity filtration (see [22] and references therein) may produce a
behaviour qualitatively similar since the gravitational potential that makes the
temperature increase (Section 4.6) is proportional to the particle mass (and
heavier ions are subjected to a greater electric force since they carry a greater
electric charge). However, none of the proposed theory is fully satisfying.

6.5.3 Pick-up ions

The above picture concerns the bulk of the ions. There is, however, another
component of the ion distribution: the pick-up ions. Pick-up ions are produced
when neutral particles are ionised locally in the solar wind, either by photoion-
isation or by charge exchange with a solar wind proton. These neutrals come
from diverse sources: essentially the dust and the various bodies present in the
wind (Chapter 7), and the interstellar medium (Section 8.1). The importance
of pick-up ions lies in the fact that they can reveal their sources, and when
they are sufficiently numerous – as happens near some bodies and in the outer
heliosphere – they affect the dynamics. We shall return to this later. Far from
their sources, however, the concentration of pick-up ions is extremely small –
10−3 (or less) smaller than the one of protons.

Pick-up ions are easily distinguished from genuine ions coming from the
corona with the solar wind by three main properties. First, contrary to heavy
ions of coronal origin, heavy pick-up ions are in general singly charged (except
He, whose double ionisation cross-section is very small), because their sources
are much colder than the corona. Second, their spatial distribution is very
different from the one of normal solar wind ions, revealing their origin. And
finally, their velocity distribution is extremely different.

The difference in velocity distribution may be understood qualitatively from
simple analysis. Pick-up ions are generally produced from neutrals moving with
respect to the Sun at a speed that is much smaller than the solar wind speed vw.
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These neutrals are thus roughly at rest in the solar frame. Once ionised, they
are subjected to the solar wind magnetic field and to the electric field −vw ×B
in the solar frame. Hence, whereas they keep their initial velocity parallel to B
(which is roughly zero in the solar frame), they begin to gyrate in the magnetic
field and acquire a drift velocity equal to vw⊥ – the projection of vw normal to
B (Section 2.2). This happens very quickly, in a time of the order of the inverse
of their gyrofrequency. In other words, they are picked up by the solar wind in
the direction perpendicular to B.

Hence in the solar wind frame, they have a velocity � −vw‖ (the projection
of vw on B) parallel to B, and a gyration at a speed equal to their initial
perpendicular velocity in the solar wind frame, which is roughly vw⊥because
their initial velocity in the solar frame is roughly zero. The resulting velocity
distribution has both a beam and a ring, and is therefore highly unstable. It
is thus quickly isotropised, producing in the solar wind frame a spherical shell
distribution, of speed vw (because of energy conservation).

Therefore, in the solar frame (moving at −vw with respect to the solar wind),
the speed of the particles varies from zero (particles whose velocity is −vw in
the solar wind frame) to 2vw (particles whose velocity is vw in the solar wind
frame). The velocity distribution in the solar frame is thus relatively flat, up to
a speed of twice the solar wind speed, and falls off quickly for greater speeds [19].

The maximum energy of pick-up ions is therefore 4 × mpv
2
w/2 for protons

with a solar wind speed of 400 km s−1 – which comes to about 3 keV, and tens
of keV for heavy ions.

We shall see examples of pick-up ions produced from neutrals ejected by
dust, comets and planets in Chapter 7, and produced from interstellar neutrals
streaming through the heliosphere in Section 8.1.

6.6 Problems

6.6.1 Parker’s spiral

Find an approximation of the heliospheric distance where an average magnetic
field line near the solar equatorial plane has wrapped itself around the Sun once.
How many times has the magnetic field wound around the Sun by a distance
of 100 AU? To perform these estimates, choose a reasonable solar wind speed.
Answer these questions for high latitudes, too; in that case, what solar wind
speed will you assume near solar activity minimum?

6.6.2 Heliospheric currents

Show that the total radial current flowing in the heliosphere in both hemispheres
is exactly the opposite of the radial current flowing along the current sheet [31].
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Hint

Calculate the radial current density from Maxwell’s equation (6.13) with the
magnetic field given in (6.11), and integrate it over a sphere of radius r.

6.6.3 Coplanarity in MHD shocks

Prove that the upstream (Bu) and downstream (Bd) magnetic fields and the
normal to the shock all lie in the same plane. Deduce that the normal to the
shock is parallel to the vector (Bu − Bd) × (Bu × Bd).

Hints

The conservation relations imply that if Bn �= 0, then [vnBt] and [Bt] are parallel
since they are both parallel to [vt]. From [vnBt]× [Bt] = 0, write explicitly the
discontinuities as the difference between upstream and downstream quantities,
to find [vn] (Btu × Btd) = 0. Hence with [vn] �= 0, Btu and Btd are parallel, so
that Bu, Bd and n all lie in the same plane. Thus (Bu − Bd) and (Bu × Bd)
both lie in the plane of the shock, so that their scalar product is parallel to n.

6.6.4 Kraichnan’s spectrum in magnetofluid turbulence

The magnetic field destroys the isotropy of turbulence. Let us picture the fluid
‘eddies’ whose interaction produces the energy cascade as Alfvén waves moving
at opposite Alfvén speeds vA. In this case, they interact only during the time
taken by an Alfvén wave to travel their size, i.e. tl ∼ l/vA. The energy cascading
through an eddy of size l during this time tl is

∆El ∼ v2
l

l/vl
× l

vA
∼ v3

l

vA
. (6.34)

The energy v2
l (per unit mass) exchanged with a number N of such interactions

is (assuming a random walk process): v2
l ∼ √

N∆El, whence (substituting the
above value of ∆El) N ∼ (vA/vl)

2. Since N interactions of duration tl require
the time Ntl, the energy cascading per unit time is

ε ∼ v2
l / (Ntl) ∼ v4

l / (lvA) . (6.35)

Show that this yields vl ∝ l1/4 instead of Kolmogorov’s law (6.29), so that
the spectral density of turbulent energy should vary as k−3/2 instead of the
Kolmogorov value k−5/3.
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7

Bodies in the wind: dust,
asteroids, planets and comets

We are no other than a moving row
Of Magic Shadow-shapes that come and go
Round with the Sun-illumined Lantern held
In Midnight by the Master of the Show;

Omar Khayyam, Rubaiyat1

The light of the Sun heats the bodies of the Solar System, making them evap-
orate, and driving their atmospheres, while photons of adequate energy ionise
the surfaces and atmospheres. But the wind of the Sun does much more: it
carves these environments, producing elaborate structures and powering mighty
engines.

The Solar System bodies are extremely diverse, from dust grains to asteroids,
comets, planets – and space probes. Even though the interactions are extremely
diverse, too, depending on the flow properties, on the nature of the object,
and on its size relative to the basic plasma scales, they illustrate similar basic
processes. We survey in this chapter the different kinds of bodies and the basic
physics of their interaction with the solar wind.

The range of sizes is very large: from small dust grains made of minute
assemblages of atoms, to the largest planet, Jupiter. The small dust grains
respond to a number of forces: the solar gravitational and radiative forces,
electrostatic and Lorentz forces (since they carry an electric charge), and the
ram pressure of the solar wind. Because these objects are much smaller than the
basic scales of the medium, they do not perturb it significantly, except through
the exchange of particles that are absorbed on their surface or emitted.

Larger bodies, on the other hand, may produce significant perturbations,
depending on their size, electric conductivity, magnetic field and atmosphere.
Bodies like our Moon, which are made of insulating material and nearly devoid

1Trans. E. FitzGerald.
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of atmosphere, interact weakly, essentially in absorbing the incident solar wind
particles and in creating a wake depleted of plasma. In contrast, objects having
either a conspicuous atmosphere (for example comets, Venus and Mars) and/or
magnetic field (for example the Earth and the giant planets) are capable of
halting the solar wind, producing a bow shock and a cavity containing matter
of their own that is elongated in a long tail. While the plasma tail of comets
may be seen as a blue straight tail oriented in the anti-solar direction, the tails
of planets are too tenuous to be observed remotely, but they are responsible for
accelerating the particles that produce the auroras.

Solar wind perturbations on planets have instigated the emergence of a new
discipline: space meteorology – how the Sun affects the Earth environment,
and how this can be predicted. And, finally, a growing number of space probes
carrying various instruments travel in the solar wind; understanding how they
interact is essential for interpreting the observations, and for designing propul-
sion and navigation.

7.1 Bodies in the wind

7.1.1 Various bodies

Solar wind dust particles are released by comets and other bodies, and produced
by collisions between asteroids; another contribution comes from the interstellar
medium. Reviews may be found in the books [52] and [34], and in [53] and [54].

Their properties are deduced from a combination of observation techniques.
Small particles reflect and scatter sunlight, producing what is seen as the so-
called zodiacal light when observation points away from the sun, and as the
so-called solar F-corona when observation points close to the Sun.2 Zodiacal
light appears to the naked eye on dark clear nights as a faint band of light
distributed about the ecliptic. When they penetrate into the Earth’s atmo-
sphere, dust grains and larger bodies may be observed as meteors, which can
be analysed with various techniques – improving in many ways over the age-old
observation of ‘shooting stars’. Additional measurements come from statistics
of craters produced by impacts on the Moon, as the size of the crater is related
to the size of the projectile. And finally, accurate in situ measurements of small
dust grains are acquired from space probes, which carry detectors of increasing
sophistication [77].

The distribution of large bodies includes comets and asteroids [43]. It is
watched with special attention because of potential hazards on the Earth. The
great majority of asteroids lies in the region between Mars and Jupiter – the
asteroid belt – but an increasing number of bodies are being discovered near
the orbit of Neptune and beyond: the so-called Kuiper belt objects [51].

Finally, at the far end of the mass distribution lie the Moon and planets.
While most of these bodies and their environments have been studied from long

2The latter is observed during solar eclipses, when the contribution of Thompson scattering
by the coronal electrons (Section 1.2) is called the K-corona.
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Table 7.1 Some basic characteristics of the Moon and the planets (rounded up
to a few per cent)

d/d⊕ M/M⊕ R/R⊕ Ω/Ω⊕ µ/µ⊕ Atmosphere H/H⊕
Moon 1.00 0.0122 0.27 0.036 ∼ 0 Na 20
Mercury 0.39 0.055 0.38 0.017 3 − 6 × 10−4 Na 8
Venus 0.72 0.81 0.95 0.0041 < 10−5 CO2 1.9
Earth 1.0 1.0 1.0 1.0 1.0 N2 1.0
Mars 1.5 0.107 0.53 1 < 10−6 CO2 1.3
Jupiter 5.2 318. 11.2 2.4 2.0 × 104 H2 2.9
Saturn 9.5 95 9.4 2.3 5.8 × 102 H2 5.8
Uranus 19 14.5 4.0 1.4 48 H2 3.1
Neptune 30 17.1 3.9 1.3 28 H2 2.2
Pluto 39 0.0022 0.18 0.16 N2 5

Notes: The mean heliocentric distance d, mass M , equatorial radius R, rotation
rate Ω and magnetic moment µ � (4π/µ0) B0R

3 A m2 (B0 is the planet’s
magnetic field amplitude at equator) are normalised to the Earth’s values,
respectively equal to d⊕ � 1.5 × 1011 m (1 AU), M⊕ � 6. × 1024 kg, R⊕ �
6.4 × 106 m, Ω⊕ � 7.3 × 10−5 rad s−1 and µ⊕ � (4π/µ0) 7.9 × 1015 A m2.
The last two columns indicate the main constituent of the atmosphere, and
its approximate scale height H � kBT/mg (with m the mass of the main
constituent and g = MG/R2), normalised to the Earth’s value H⊕ � 8×103 m.

ago through their radiation, with increasing sophistication and in an increasing
range of wavelengths, from radio to X-rays and gamma rays, long-range space
exploration has enabled us to study them in situ with a luxury of details. The
properties relevant for interaction with the solar wind are listed in Table 7.1,
and will be discussed in this section. Far more may be found in the books [17]
and [6].

Basically, planets lie in two families (Fig. 7.1). The four inner planets are
small and rocky, being made mainly of iron and silicates. The four outer ones
(not including Pluto, which is now recognised as a large Kuiper-belt object but
is nevertheless listed as a planet for historical reasons) are relatively large and
consist mainly of gaseous material, essentially hydrogen.3 Many planets have
satellites, which generally lie in the planetary environment, but some of them –
such as the Earth’s Moon which orbits at �60R⊕ from the Earth – lie in the
solar wind proper. All planetary orbits are nearly circular and close to the
ecliptic plane, with an eccentricity smaller than 0.1 and an inclination smaller
than 4◦, except the innermost (Mercury: eccentricity 0.21, inclination 7◦) and
the outermost (Pluto: eccentricity 0.25, inclination 17◦).

3For the gaseous planets, the ‘radius’, i.e. the base of the atmosphere, is arbitrarily defined
as the level where the atmospheric pressure is 1 bar, i.e. 105 Pa.
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Figure 7.1 From ‘Un autre Monde’ by Granville (Ed. H. Fournier, Paris, 1844).

The most fundamental properties of these bodies are their mass and size:
how mass is distributed among them, and how the mass of a body is related to
its size. This is examined below. We shall then examine their atmosphere and
other properties that are crucial from the point of view of the solar wind.

7.1.2 Mass distribution

Figure 7.2 shows the cumulative flux of bodies from minute 10−2 µm grains
to several kilometres-sized asteroids, moving in the interplanetary medium at
about 1 AU from the Sun. The plot (thick dashed) is based on the cumulative
impact rate per year on the Earth compiled in [15] from various data, that we
have divided by the factor 1.63 × 1022 (the Earth’s surface, times the duration
of a year).4 In these data, the values for m < 10−9 kg are from [33], whose in-
terplanetary dust distribution is superimposed as a thin continuous line.5 The

4Not taking into account any concentration effect by the Earth’s gravitation, which would
yield a factor of about two – smaller than the uncertainties on the overall distribution.

5FG85 =
(
a1m0.306 + 15

)−4.38
+ a2

(
m + 1014m2 + 1033m4

)−0.36
+ a3

(
m + 109m2

)−0.85

with a1 = 1.8 × 104, a2 = 1.1 × 10−10, a3 = 3.7 × 10−19, for 10−21 < m < 0.1 kg, based on
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Figure 7.2 Cumulative flux of bodies of mass greater than m plotted versus
m (log–log co-ordinates) at 1 AU from the Sun. The curve labelled C98 (thick
dashed) is based on [15]; G85 (thin continuous) is the interplanetary flux by
[33]. The superimposed power law F ∝ m−5/6 (thin dotted) corresponds to
fragmentation equilibrium. The (cumulative) number density is N ∼ 2×10−4F .
The radius scale is for spheres of mass density 2.5 × 103 kg m−3.

flux F plotted for mass m is the mean number of particles of mass greater than
m that are impinging per unit time per unit area on one side of a flat detector
if the particle velocity distribution is isotropic.6 We have also indicated on
the figure the corresponding radii, assuming spheres of mass density 2.5 ×
103 kg m−3, i.e. m � 104 × r3 kg.

The flux F may be converted into a number density N by assuming an
average impact speed 〈v〉, so that for an isotropic velocity distribution we have
F = N〈v〉/4 (where 〈v〉 ∼ 20 km s−1 in order of magnitude near 1 AU). The
factor 1/4 is the product of two factors 1/2: one because half the particles
are coming from one side of the detector; the other because of averaging over
the angle of incidence.6

These values are cumulative ones. Namely, the total number density of
objects in the mass interval [mmin,mmax] is N (mmin) − N (mmax), where

the formula A3 in [33] converted so that m is in kilograms.
6The effective solid angle is then Ω =

∫ π/2

0
cos θ × 2π sin θdθ = π. Indeed, 2π would

represent a half-space (one side of a plane) in the absence of projection effects, but the flux
is determined from the average of v cos θ (the projection of the speed v on the normal to the
plane) over directions, i.e. 〈v cos θ〉 = v/2 if the distribution is isotropic.
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N (m) ∼ 4F (m) /〈v〉, whereas the differential number density is dN/dm. For
example, one sees on Fig. 7.2 that the number density of dust grains with radii
larger than 1 µm (m > 10−14 kg) is a few particles per km3.

Although the distribution across this vast range of scales cannot be expressed
by a single power law, a power law F ∝ m−5/6 (thin dotted line on Fig. 7.2)
appears to account reasonably well for masses greater than 10−5 kg (and even for
m < 10−15 kg); however, it does not fit the conspicuous dust grain population
in the mass range 10−13 < m < 10−7 kg.

A power law decreasing as m−5/6 for the cumulated flux or density distribu-
tion (i.e. a differential distribution dN/dm ∝ m−11/6) has a special property:
it should ensure fragmentation equilibrium, i.e. the number of particles created
in unit mass interval by fragmentation of larger objects equals the number of
particles in that mass interval which are destroyed by collisions [25]. The basic
effect of collisions on the mass distribution may be understood by noting that
with a typical relative speed v ∼ 20 km s−1, the kinetic energy per nucleon is
mpv

2/2 ∼ 3×10−19 J, i.e. roughly 2 eV – an amount sufficient to vaporise mat-
ter. Collisions between two objects may therefore vaporise the smaller object
and cause cratering and/or fragmentation of the larger one.

A simple dimensional analysis may be instructive. We use the basic fact that
the cross-section for collision of two objects of masses m and m′ is proportional
to

(
m1/3 + m′1/3

)2 ∼ m′2/3 if m′ > m, and assume that a target of mass m
will be catastrophically disrupted by a projectile of mass m′ if m′ > km, where
k is some factor (in practice much smaller than unity). The number of objects
destroyed by catastrophic collisions (per unit time per unit volume) in the mass
range [m,m + dm] is thus

dν ∝ dm dN/dm

∫ mmax

km

dm′ dN/dm′ m′2/3.

With dN/dm ∝ m−α, this yields dν ∝ dm m5/3−2α if α > 5/3. The total mass
crushed from objects in a given mass range [m1,m2] is thus

∫ m2

m1
dm m dν/dm ∝∫ m2

m1
dm m5/3+1−2α. For the result to depend only (and weakly) on the ratio

m2/m1, and not to be sensitively dependent on the extremes m1 and m2, the
integrant must vary as m−1. This requires that α = 11/6, whence N ∝ F ∝
m−5/6. With this distribution, the mass crushed from objects in a given loga-
rithmic interval of mass is independent of the mass.

The whole mass distribution shown in Fig. 7.2 cannot be modelled by this
process only, especially the dust grains, whose distribution involves a number of
other processes which are not necessarily in equilibrium, making the distribution
vary. In particular, we shall see in Section 7.4 that small dust grains are braked
by the Poynting–Robertson force, making the size of their heliocentric orbit
decrease until they pass close enough to the Sun to evaporate. Other dust
grains are blown out of the solar system by the solar radiation pressure, and
comets may replenish the losses.

Note that a differential mass distribution of the form dN/dm ∝ m−α is
equivalent to a differential size distribution dN/dr = dN/dm × dm/dr ∝ r−q
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with q = 3α − 2; for example α = 11/6 corresponds to q = 3.5.
To keep some perspective, note that the plot is far from complete. The

smaller mass plotted contains about 6 million nucleons, whereas the larger mass
plotted is less massive than Ceres – the most massive asteroid of the asteroid
belt – by nearly six orders of magnitude, and than the biggest planet – Jupiter –
by more than 12 orders of magnitude.

From Fig. 7.2, one sees that one body larger than 10 m in diameter (i.e.
m > 106 kg) impacts the Earth in average every year, whereas bodies larger
than 100 m imperil the Earth’s biosphere on a timescale about 300 times greater.

The distribution shown in Fig. 7.2 is based on measurements at 1 AU from
the Sun, close to the ecliptic plane, where the majority of the bodies lie. The
amount of bodies decreases with heliocentric distance d, (very) roughly as d−1;
since the mean speed of bodies orbiting the Sun varies as d−1/2, the flux falls
off (very) roughly as F ∝ d−3/2.

7.1.3 Mass versus size

Dust grains are generally inferred to have a mass density of (2 − 3)×103 kg m−3,
with smaller values for icy dust and fragile porous aggregates. The mass density
of planets lies in the range (0.6 − 6)×103 kg m−3, the smaller values correspond-
ing to the outer planets (mainly made of hydrogen). What is the origin of these
densities? We shall derive a crude relation between radius and mass from simple
basic arguments, in a similar way as we did in Section 3.1 for stars.

These solid bodies are so cold (and dense) that the electrons are fully de-
generate, i.e. the thermal pressure is negligible. They are also sufficiently dense
for the electrostatic attraction between nuclei and electrons to be important. In
the general case, they are thus held together by three forces:

• the electrostatic attraction between electrons and nuclei,

• the Fermi pressure of electrons, which acts against compression, the cor-
responding energy per electron being (3π2n)2/3h̄2/5me times 3/2
(Appendix), where n is the electron number density (Section 2.1),

• the gravitational attraction, which, unlike electricity, is not neutralised by
neighbouring particles, so that it is cumulative with increasing mass, and
becomes important for large bodies.

This means that solid bodies are held together by the balance of electrostatic
attraction and Fermi pressure if they are not too large, whereas bigger bodies
tend to be further compressed by the gravitational force.

Consider a spherical object of mass M and radius R made of atoms having
mass number A and Z bound electrons. Hence the body contains M/ (Amp)
nuclei and N � ZM/ (Amp) electrons. This amounts to N = M/mp electrons
in the volume V = 4πR3/3 if the body is made of hydrogen, and about half
as much if it is made of other elements since in that case A ∼ 2Z in order
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of magnitude.7 With the electron number density n = N/V , the total Fermi
energy in the body is

WF �
(
3π2

)2/3
h̄2

5me

N5/3

V 2/3
∼ h̄2

mem
5/3
p

M5/3

R2
(7.1)

where we have dropped a factor of order of magnitude unity.
Let us now evaluate the electrostatic energy. Each neighbouring attracting

pair of charges roughly neutralises each other force on the remaining particles.
Hence the electrostatic energy per nucleus is about −Z2e2fA,Z/4πε0r, where
r ∼ R/ (N/Z)1/3 is the average separation between electrons and nuclei, and
fA,Z is a function of A and Z roughly equal to unity for A = Z = 1 to account
for the electron distribution. With N/Z nuclei, the total electrostatic energy is
therefore

WE ∼ −N4/3 e2Z2/3fA,Z

4πε0R
∼ −e2Z2/3fA,Z

4πε0m
4/3
p

M4/3

R
(7.2)

where we have dropped again a factor of order of magnitude unity. To this
accuracy, this is equivalent to the result of Ref. [20] of Chapter 3.

The gravitational energy is

WG � −M2G/R (7.3)

and Virial theorem (Section 3.1) tells us that WF = − (WE + WG) /2. Substi-
tuting (7.1), (7.2), (7.3) and rearranging, we obtain a relation between the mass
M and the radius R of the body (in order of magnitude)

rBohr/R ∼ (M/mp)
−1/3

Z2/3fA,Z + (M/mp)
1/3 (

4πε0m
2
pG/e2

)
(7.4)

where rBohr = 4πε0h̄
2/mee

2 � 0.53 × 10−10 m is the Bohr radius. The dimen-
sionless number

4πε0m
2
pG/e2 � 0.8 × 10−36

which arises from the gravitational contribution, has a fundamental significance:
it is the ratio of the strength of gravitational to electric forces between protons.

Let us examine the radius–mass relation R (M) given by (7.4). One sees
that it behaves very differently for small and large masses. When M is small,
the first term (the electrostatic one) on the right-hand side of (7.4) dominates,
yielding R ∝ M1/3; in contrast, when M is large enough, the second term (the
gravitational one) dominates, yielding R ∝ M−1/3, a shrinking produced by
gravitational compression; for intermediate masses, R has a maximum. Let us
see this in more detail.

7Because nuclei have roughly the same number of protons and neutrons, and there are as
many electrons as protons.
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When the mass is small enough that the gravitational term in (7.4) is neg-
ligible, this equation reduces to a balance between electrostatic attraction and
electron degeneracy pressure, yielding

M ∼ f3
A,Z Z2 mp

(rBohr)
3 R3 ∼ 104f3

A,Z Z2R3. (7.5)

This gives a mass density of about 2 × 103 kg m−3 for hydrogen (fA,Z ∼ 1),
which increases with Z. These figures are of the order of magnitude of the mass
densities observed for these objects – a reasonably good agreement given the
crudeness of this estimate.

When the mass is large enough that the gravitational term in (7.4) is no
longer negligible, the radius no longer increases as M1/3, and reaches a maxi-
mum when the two terms on the right-hand side of (7.4) are equal in order of
magnitude. For hydrogen (fA,Z ∼ 1), this occurs at the mass

M ∼ mp

(
e2/4πε0m

2
pG

)3/2 � 2.3 × 1027 kg ≡ MM (7.6)

and therefore the radius

R ∼ rBohr (MM/mp)
1/3 ≡ rBohr

(
e2/4πε0m

2
pG

)1/2 � 6 × 107 m (7.7)

which are close to those of Jupiter. So Jupiter’s mass and radius are close to
the values corresponding to the maximum radius for planets made essentially of
hydrogen.

What happens for more massive objects? Since the gravitational term then
dominates the right-hand side of (7.4), this equation yields

M/mp ∼ (rBohr/R)3 (MM/mp)
2 (7.8)

where we have substituted the definition (7.6) of MM ; this is the classic R ∝
M−1/3 relationship holding for low-mass white dwarfs, which results from the
balance between gravitational attraction and electron degeneracy pressure. Let
us calculate the distance between nuclei in that case. For a body made of
hydrogen, it is about R (mp/M)1/3; substituting the relation (7.8) between M

and R, this yields a distance of about rBohr (MM/M)2/3. Hence for M > MM ,
the average distance between nuclei becomes smaller than rBohr, making the
atomic structure break down. The mass MM thus sets the order of magnitude of
the mass above which compression of matter produces ionisation (Section 2.5),8

but it is still below the minimum mass of stars (Section 3.2). Note, incidentally,
that around the maximum of the function R (M) given by the balance equation
(7.4), lies a mass range where the radius is roughly constant; this corresponds
to brown dwarfs (see the references cited in Section 3.1).

8This is the case for white dwarfs.
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7.1.4 Atmospheres and how they are ionised

Atmospheres

The last two columns of Table 7.1 give the main detected constituent of the
atmosphere of each planet, and its approximate pressure scale height H =
kBT/mg. Here, T is the temperature at the base of the atmosphere, g =
MG/R2, and m is the mass of the main atmospheric constituent.3 The scale
height H would represent the order of magnitude of the width of the atmosphere
if the temperature would remain constant with altitude (see (1.8)); since

√
R/H

is the ratio of the escape speed to the thermal speed, it is an indication of the
binding of the atmosphere.

The Moon and Mercury have atmospheres so tenuous that particles have
practically no collisions and are thus very far from equilibrium, making the scale
heights indicated of limited practical value;9 these exospheres are thought to
consist mainly of atoms liberated from the body’s surface by solar radiation and
solar wind particles. Pluto may have an escaping atmosphere that sublimates
from the surface rather as in a comet, with seasonal changes.10 The other
planets have relatively dense and stable atmospheres.

Planetary atmospheres are subjected to solar radiation, which ionises them,
producing ionospheres. Basically, solar ionising radiation is that part of the solar
flux whose energy per photon is greater than about the Bohr energy WBohr, i.e.
whose wavelength λ < hc/WBohr. This radiation comes from regions of the
solar atmosphere where the particle thermal energy ∼ kBT > WBohr, i.e. the
chromosphere and corona.

Although the structure of ionospheres is a complicated balance between
ionisation, recombination, chemical reactions and transport [16], simple order-
of-magnitude estimates may be obtained from the physics introduced in Sec-
tion 2.4, when one may assume local equilibrium between ionisation and recom-
bination of a single atmospheric constituent.

Chapman layers

When solar ionising radiation penetrates through a planetary atmosphere, it
dissociates and ionises its constituents. In doing so, it is progressively absorbed,
making the ionising flux decrease as altitude decreases, so that little ionising
radiation reaches the bottom of the atmosphere. However, the number of neu-
trals available for ionisation varies in the opposite sense, being maximum at
the bottom. Since the rate of ionisation is proportional to the product of both
quantities, ionisation is weak at the bottom because there is little ionising radi-
ation, and weak at the top, too, because there are few neutrals. This produces
a maximum of ionisation at some altitude, if the ionosphere is determined by
ionisation equilibrium.

9With a number density at the surface of the order of magnitude of n0 ∼ 108 m−3 for the
Moon (see for example [75] and references therein), and n0 ∼ 1011 m−3 for Mercury [44], on
the sunlit side, the particle mean free path for collisions ∼ (n0σ0)−1 (where σ0 is a typical
collisional cross-section given in Section 2.1) is much greater than the scale height.

10See [73], [27] and references therein.
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We saw in Section 1.2 that the flux of solar ultraviolet radiation amounts to
about 3 × 10−3 W m−2 at Earth on average over the solar cycle, and varies as
the inverse squared heliocentric distance d−2. This corresponds to an average
flux of ionising photons of order of magnitude

F� ∼ 3 × 1014 (d⊕/d)2 photons m−2 s−1 (7.9)

incident at the top of the atmosphere. The flux varies with solar activity, being
typically twice as small at activity minimum, and twice as great at activity
maximum.

How does this flux vary as radiation penetrates through the atmosphere?
At altitude z (assumed much smaller than the radius of the planet so that
the problem is one-dimensional), where the density of neutrals is nn and the
ionising flux is F , the ionisation rate per unit volume is Fnnσion , where σion is
the cross-section for ionisation (Section 2.4). The decrease in flux dF over an
altitude decrease dz is equal to the ionisation rate in a volume of section unity
and height dz, i.e.

dF/dz = F nn σion . (7.10)

The density of neutrals varies as nn ∝ e−z/H , if it is not significantly altered
by ionisation (which holds true if the density of charged particles n � nn).
Substituting this variation in (7.10) and integrating between z and infinity where
F → F� (the flux incident at the top of the atmosphere, assuming normal
incidence), we find

ln(F�/F ) =
∫ ∞

z

dz nn σion =⇒ F/F� = e−nn σionH . (7.11)

The ionisation rate is maximum at the altitude zmax where nnF is maximum,
i.e. where

d

dz

[
nne−nn σionH

]
= 0 =⇒ dnn

dz
− nnσionH

dnn

dz
= 0

which yields

nn (zmax) = 1/ (σionH) . (7.12)

The altitude zmax is given by

nn (zmax) /n0 = e−zmax /H = 1/ (n0σionH)

where n0 is the density of neutrals at z = 0 (assuming n0σionH > 1). We
deduce the altitude of the maximum of ionisation

zmax ∼ H × ln(n0σionH). (7.13)
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The ionising flux (7.11) at this altitude is from (7.12) F (zmax) = F�e−1.
The corresponding density n (zmax) of ions or electrons is determined by equi-
librium between ionisation and recombination, which occurs at the rate βrecn

2,
βrec being a typical recombination coefficient (Section 2.4). This yields

F nn σion = βrec n2 (7.14)

in which we substitute (7.11) and (7.12) to deduce the maximum electron
density

n (zmax) ∼
(

F�e−1

βrecH

)1/2

. (7.15)

This is a remarkable result: the maximum plasma density of the ionospheric
layer does not depend on the density of the neutral atmosphere (provided its
value at the bottom n0 > 1/σionH). This is because the more neutrals, the
more particles available for ionisation, but the more absorption of the ionising
radiation. Such an ionisation layer is known as a Chapman layer.

With the solar ionising flux (7.9), this yields the electron density

n (zmax) ∼ 2 × 1011
(
H

1/2
⊕ d⊕/H1/2d

)
m−3 (7.16)

where H and d are respectively the planet’s scale height and heliocentric dis-
tance, and we have estimated the dissociative recombination coefficient βrec

from Section 2.4 (the variation of βrec with the temperature has not much con-
sequence here since it produces a density variation ∝ T 1/4).

Planetary ionospheres

How does this simple model compare with observation? To begin with, it can-
not be applied to the tenuous exospheres of the Moon and Mercury, for which
n0σionH < 1 and which are far from equilibrium. Consider then the three in-
ner planets having a significant atmosphere. The concentration of neutrals at
the bottom is about n0 � 2 × 1025 m−3 at Earth (T � 300 K), roughly 50
times more at Venus (T � 700 K) and 100 times less at Mars ( T � 200 K).
With the scale height and distances given in Table 7.1, we find from (7.16):
n (zmax) ∼ 2× 1011 m−3 at Earth and Venus, and about half as much at Mars,
in order of magnitude. With the above parameters, we find from (7.13) that
the altitude of the ionisation layer is zmax ∼ 1.6 × 105 m for the Earth and
Mars, and is about twice as large for Venus. In these three cases, the time for
recombination (nmaxβrec)

−1 amounts to tens to hundreds of seconds, so that
these ionospheres should disappear at night.

Such an ionisation layer is indeed observed at these three planets. However,
there is another ionisation layer at Earth, at a somewhat higher altitude, which
is 10 times denser and does not disappear at night. It cannot be explained by this
simple model because it is made essentially of ions O+, which are monoatomic



Bodies in the wind 347

so that they cannot recombine dissociatively; they have thus a much greater
lifetime, letting other physical processes act [16].

What about the giant planets? Their atmospheres being made mainly of
hydrogen, the major ion is H+, which cannot recombine dissociatively and has
therefore a very long lifetime; hence chemical reactions and transport play a ma-
jor role [3]. And what about Pluto? If the escape rate is small and (7.15) holds,
we deduce with the parameters of Table 7.1 the plasma density at ionisation
maximum: n (zmax) ∼ 2 × 109 m−3 in order of magnitude.

What is the temperature of the ionospheres? During ionisation, the photon
energy in excess of the ionisation energy is given to the released electron,11 which
subsequently shares it with the other electrons (and, albeit more slowly, with
ions and also neutrals). This heats the electrons to temperatures that increase
with altitude up to 103 − 104 K on the sunlit side.

Finally, with the above parameters, the density (7.12) of neutrals at ionisa-
tion maximum is of the order of magnitude of 1017 m−3 for the Earth, Venus
and Mars; it is therefore much greater than the plasma density. Ionospheres
are therefore weakly ionised plasmas near and below the altitude of ionisation
maximum. However, as altitude increases, the plasma density decreases, so
that the recombination time (nβrec)

−1 ultimately becomes greater than the
time of hydrostatic adjustment ∼ (H/g)1/2 ∼ H/VS , making the plasma den-
sity determined essentially by gravity. As a result, the plasma density falls off
exponentially at high altitudes, with a scale height ∼ 2kBT/mg (m being the
mean ion mass and T an average plasma temperature), that is greater than the
one of the neutrals. At high enough altitudes, therefore, the plasma becomes
the major constituent of the environment.

7.1.5 Planetary magnetic fields and
ionospheric conductivity

Each planet rotates about an axis making a small angle (less than 24◦) with the
normal to its orbit, with the exceptions of Venus (177◦), Uranus (98◦) and Pluto
(∼120◦). All planets rotate in the same sense about themselves and about the
Sun.

For planets having a suitable electrically conducting part, a dynamo may
result (see Section 3.3), and indeed, all the explored planets have been found to
have a significant global magnetic field, except Venus and Mars.12 The Earth,
Jupiter and Saturn have magnetic fields relatively close to dipolar, with mag-
netic dipole axes close to their spin axis. They are believed to have highly
conducting dynamo regions, made of iron for the Earth, and of metallic hy-
drogen for Jupiter and Saturn. In contrast, the magnetic fields of Uranus and
Neptune both have large quadrupole moments and large tilts between their spin

11The ion shares a much smaller fraction because of its large mass.
12Mars has been recently discovered to have strongly magnetised regions in its crust, even

though there is virtually no global field at present [1].
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and magnetic axes. The latter planets are not large enough to have a core of
metallic hydrogen, and have poorly conducting interiors. Detailed reviews may
be found in [69] and [18].

Ionospheres conduct electricity – a property that is crucial for their inter-
action with the solar wind. The electric conductivity depends on the mean
collision frequency of the charged particles (Section 2.1). Since ionospheres are
weakly ionised, we must take into account the collisions with neutrals. With the
parameters found above, we may estimate the electric conductivity from (2.101),
replacing the electron–ion collision frequency νei by the electron–neutral colli-
sion frequency (2.13), which yields σ0 ∼ 1 − 10 mho m−1 near the maximum
of ionisation of the Chapman layers. At higher altitudes, since the neutral den-
sity falls off more rapidly than the plasma density, the conductivity increases,
and when the atmosphere is sufficiently ionised for the electron–ion collision
frequency νei to become larger than νen, the electric conductivity is given by
(2.102), which yields σ0 ∼ 102 mho m−1 at high altitudes.

These values, however, do not account for the magnetic field. The magnetic
field does not change the conductivity in the direction parallel to itself, but
it reduces it considerably in the perpendicular directions (Section 2.3). As a
result, the electric field is small along the magnetic field, but may be large in
the perpendicular directions.

7.2 Basics of the interaction

The interaction of an object with the solar wind depends on the solar wind flow
and on three major properties of the object:

• its size, compared to the basic plasma scales,

• its physical nature and the nature of its environment,

• its magnetic field.

Detailed reviews of these interactions may be found in [4], [70], [5], [49] and [12].

7.2.1 Properties and spatial scales of the flow

Flow properties

The flow properties that play an important role in the interaction are the Mach
number, the plasma particle flux nwvw and ram pressure ρwv2

w (with ρw �
nwmp),13 the kinetic pressure P , the magnetic pressure Pm and the orientation
of the magnetic field. With the parameters of Sections 1.3, 5.4 and 6.1, we have

13With an additional contribution from the helium ions.
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in average at heliocentric distance d

nwvw ∼ [3 − 2] × 1012 (d⊕/d)2 m−2s−1 (7.17)

ρwv2
w � [2.1 − 2.6] × 10−9 (d⊕/d)2 Pa (7.18)

P ∼ nwkB (Te + Tp) ∼ 2 × 10−11 (d⊕/d)2+α Pa α ∼ 0 − 1 (7.19)

Pm ∼ B2
w/2µ0 ∼ 6 × 10−12 (d⊕/d)2

[
1 + d2

⊕/d2
]

Pa (7.20)

Bφ/Br ∼ cos θ (d/d⊕) at latitude θ (7.21)

where the extreme values of the brackets in (7.17) and (7.18) correspond to slow
and fast wind respectively, and the index α in (7.19) accounts for the poorly
known radial dependence of the temperatures (Section 5.4). In the ecliptic,
where most bodies lie, the average particle flux and ram pressure are close to
the first values of the brackets. The particle and magnetic pressures are similar
in order of magnitude, and therefore so are the speed of compressive waves and
the Alfvén speed. The Mach number M is of the order of magnitude of 10 for
both Alfvén waves and sonic waves (and therefore smaller by a factor of about
1/
√

2 for magnetosonic waves).
Close to the ecliptic (θ = 0), the average solar wind magnetic field is rela-

tively close to the velocity direction inward of the Earth distance d⊕ = 1 AU,
makes an angle of about 45◦ at d⊕ in the ecliptic, and becomes more and more
perpendicular to the velocity farther away in the ecliptic plane. On average in
the ecliptic plane, where most of the bodies lie, its component perpendicular
to the ecliptic is zero. However, we have seen that there are permanent fluc-
tuations, in addition to large perturbations produced by interactions between
slow and fast wind and by coronal mass ejections – which we have seen to occur
frequently near the ecliptic plane.

The ‘thermal’14 speed of electrons is

vthe = (2kBTe/me)
1/2 ∼ 2 × 106 (d⊕/d)α/2

α ∼ 0 − 1 (7.22)

⇒ nwvthe ∼ 1013 (d⊕/d)2+α/2
. (7.23)

The electron thermal speed is greater than the solar wind speed, itself much
greater than the proton thermal speed, i.e.

vthp � vw � vthe.

Hence an object lying in the solar wind sees a typical electron moving at a speed
∼vthe, and a typical proton moving at ∼vw.

Since most of the solar wind energy lies in bulk motion, the major parameter
governing the interaction with bodies is the ram pressure ρwv2

w given in (7.18).
As other parameters, it exhibits large fluctuations. This is illustrated in Fig. 7.3,
which shows measurements made aboard the spacecraft Ulysses during the fast
latitude scans performed around solar activity minimum and maximum, along

14We use this usual notation, even though the velocity distribution is not Maxwellian; the
temperature is then the kinetic temperature, defined in (5.89).
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Figure 7.3 Solar wind ram pressure ρwv2
w (scaled to 1 AU by multiplying the

data by (d/d⊕)2) measured on Ulysses during the fast latitude scans performed
near solar activity minimum and maximum. The speed is shown to identify the
fast and slow winds. (K. Issautier, personal communication, based on data from
the instruments SWOOPS and URAP).

the trajectory shown in Fig. 1.20. The main cause of variation are the fast/slow
wind transitions and the coronal mass ejections (Section 6.3), which take place
essentially at low heliolatitudes near solar activity minimum, and at virtually all
latitudes at activity maximum. Since most bodies lie near the ecliptic plane (i.e.
at small heliolatitudes), they see relatively large fluctuations of ρwv2

w during all
the solar cycle, with a variance that is barely less than the mean value. However,
one sees in Fig. 7.3 that despite these large fluctuations, the average value is
extremely stable, varying only from about 2.1 × 10−9 Pa in the slow wind to
2.6 × 10−9 Pa in the fast wind.

Spatial scales

The main plasma scales determining the interaction are the mean distance be-
tween particles n

−1/3
w , the Debye length LD, the particle gyroradii in the solar
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wind magnetic field and their mean free path for collisions lf . The mean electron
gyroradius is rge ∼ vthe/ωge; for the protons, we have indicated the gyroradius
of a proton moving at the solar wind speed, vw/ωgp, and at the Alfvén speed,
VA/ωgp ≡ c/ωpp (also called the proton inertial length) respectively.15 With the
parameters given in Sections 5.4 and 6.1, we have at heliocentric distance d

n−1/3
w ∼ 5 × 10−3 (d/d⊕)2/3 m (7.24)

LD ∼ 10 × (d/d⊕)1−α/2 m α ∼ 0 − 1 (7.25)

rge ∼ 3 × 103 (d/d⊕)1−α/2(
1 + d2⊕/d2

)1/2
m (7.26)

VA/ωgp ≡ c/ωpp ∼ 105 × d/d⊕ m (7.27)

vw/ωgp ∼ 106 d/d⊕(
1 + d2⊕/d2

)1/2
m (7.28)

lf ∼ d⊕ × (d/d⊕)2(1−α) m (7.29)

n−1/3
w � LD � rge � c/ωpp � vw/ωgp � lf .

Consider first the objects smaller than the mean electron gyroradius; this
includes dust particles, space probes and small asteroids. These objects are also
much smaller than the collision-free paths. At these small scales, the interaction
with the wind involves the trajectories of individual particles, so that we must
adopt a kinetic point of view. Space probes and larger objects, whose size
is larger than the interparticle distance, trail (in the solar wind frame) a wake
depleted of particles. Their size compared to the Debye length (∼10 m at 1 AU)
plays an important role in the building of the charge on the surface of the object
and around it. We address these questions in the next section.

Next, consider objects larger than the ion gyroradius, as our Moon and
large asteroids. At this scale, some MHD concepts may be useful, although
not necessarily sufficient. Assume first that the body has no atmosphere and
no magnetic field, and is made of insulating matter, as our Moon and most
asteroids. The surface of the body absorbs the solar wind particles, creating a
wake on the rear side, with minor magnetic field perturbations. If, however, the
object is either electrically conducting, or has an ionosphere or a magnetic field
of its own, and the size involved is large enough that the magnetic Reynolds
number is large, then the solar wind magnetic field and the plasma frozen to
it are stopped by the obstacle. A bow shock forms ahead, whereas the plasma
sweeps around the object, stirring the magnetic field into a long tail. This
happens for planets and comets, with differences that depend on the kind of
atmosphere and on the magnetic field. We shall examine these interactions in
more detail in the following sections.

15As we already noted, since we have in order of magnitude in the solar wind VA ∼ vthp

and Te ∼ Tp , the electron gyroradius is of the same order of magnitude of the electron
inertial length c/ωp . Likewise, the gyroradius of a proton moving at the thermal speed,
vthp/ωgp , is roughly equal to its inertial length c/ωpp , where ωgp = ωge(me/mp) and ωpp =

ωp(me/mp)1/2.
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The intermediate scale, between the electron and ion gyroradii, requires some
care, since the complicated geometry makes kinetic calculations difficult, and
usual MHD cannot be used.16

7.2.2 Being small: electrostatic charging and wakes

The surface of an object immersed in a plasma collects and emits charged parti-
cles. In general, the incoming and outgoing electric currents do not balance each
other, making the net surface electrostatic charge (and potential) vary, which
in turn changes the currents. This proceeds until the charge and potential set
up so as to ensure the balance of the currents. How can this charge be esti-
mated? And what is the electric field around the object? These questions are
important for understanding the behaviour of dust grains, and for the design of
instruments carried by space probes. We give below simple estimates; detailed
reviews may be found in [86] and [36].

Consider an object of size much smaller than the gyroradii – and therefore
than the free paths (but still greater than the atomic scales) lying in the solar
wind. At this scale, the plasma particles do not feel the magnetic field and have
no collisions. To keep the problem simple, we approximate the body by a sphere
of radius R having a conducting surface. Let us estimate the electrostatic charge
Q on the surface and its electrostatic potential Φ with respect to the distant
unperturbed plasma.

Charging on the back of an envelope

We can get an order-of-magnitude estimate in the following way (Fig. 7.4). A
sunlit surface is subjected to the solar ionising radiation. The surface thus
ejects a flux of photoelectrons, that is somewhat smaller than the flux of ion-
ising photons (7.9), but not by much more than one order of magnitude. On
the other hand, the surface collects solar wind electrons and ions. Since the
thermal speeds satisfy vthp � vw � vthe, the electron flux is of the order of
magnitude of the random flux nwvthe given in (7.23), whereas the ion flux is
about nwvw (on the projected surface) – much smaller than the electron flux.
Comparing the photoelectron and the solar wind electron fluxes, we see that
with typical parameters, an uncharged surface ejects many more photoelectrons
than it collects electrons from the ambient plasma. Hence it charges positively,
until this positive charge binds sufficiently the photoelectrons to make their flux
balance the one of solar wind electrons. For doing so, the electric potential Φ of
the surface must provide the photoelectrons with a potential energy −eΦ that
outweighs their typical kinetic energy of a few electronvolts. We deduce that
a sunlit surface must charge to a positive potential of several volts in the solar
wind.

16The interaction of asteroids with the solar wind has been modelled using the so-called
Hall MHD, which assumes that electrons are frozen to the magnetic field, whereas ions are
not (Baumgärtel, K. et al. 1994, Science 263 653).
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Figure 7.4 Charging of a sunlit (conductive) body in the solar wind. If the
surface is uncharged, the flux of ejected photoelectrons far outweighs the flux
of incoming plasma electrons (itself much larger than the flux of plasma ions).
This charges the body positively, until the electrostatic potential traps enough
photoelectrons to make the net current vanish.

What about a shadowed surface? It does not emit photoelectrons, but it
collects solar wind electrons and ions, with fluxes about nwvthe and nwvw re-
spectively. Because vthe � vw, an (uncharged) shadowed surface collects many
more electrons than protons, and therefore charges negatively. This proceeds
until the negative charge repels sufficiently the incoming electrons to make their
flux balance the proton one. For doing so, the electrostatic potential must en-
sure that the potential energy −eΦ outweighs the typical kinetic energy kBTe

of the solar wind electrons, which is about 10 eV. We deduce that a shadowed
surface must charge to a negative potential of several tens of volts in the solar
wind.

Charging currents and electrostatic potential

Let us put these estimates on a more quantitative footing, and address some
complications that have been swept under the rug. Consider first the photoelec-
trons ejected from an uncharged sunlit surface. The ejection rate is smaller than
the flux F� given in (7.9) by an amount that depends on the physical and chemi-
cal structure of the surface; with typical sunlit materials, the photoemission rate
is

Nph0 ∼ δ F� S⊥ s−1 δ ∼ 0.07 − 0.7 (7.30)

where S⊥ is the projected sunlit area perpendicular to the solar direction, and
δ the integrated yield that depends on the surface material; the smaller figure is
relevant for low-yield materials such as graphite, the larger for high-yield pho-
toemitters such as insulators, including silicates (see [32] and references therein).
Photoelectrons are ejected with a typical energy of 1–2 eV, which may be
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approximated by a temperature

Tph ∼ 1 − 2 × 104 K. (7.31)

This holds for a surface that is not electrically charged. For a charged surface
whose potential Φ with respect to the distant undisturbed plasma is positive,
the escaping photoelectrons are those emitted with a kinetic energy greater than
eΦ. Integrating over the velocities, this yields (Problem 7.6.1) the photoemission
rate

Nph = Nph0 (1 + eΦ/kBTph) exp(−eΦ/kBTph) Φ > 0 (7.32)

in spherical symmetry, which holds for a small (roughly spherical) object; just
how small the object has to be is derived below. In plane geometry (which is
relevant for large bodies), the limitation in energy for the escaping photoelec-
trons concerns only the ones perpendicular to the plane, so that the escaping
photoelectron flux is in this case Nph = Nph0e

−eΦ/kB Tph (Problem 7.6.1).
Consider now the fluxes of incoming solar wind electrons and protons. Sup-

pose that the surface is not charged and that it absorbs all the charged particles
impinging on its surface. The electron impact rate is then roughly equal to the
electron random flux

Ne0 ∼ nw〈v〉e S/4 ∼ 1.5 × 103n T 1/2
e S s−1 (7.33)

where 〈v〉e = (8kBTe/πme)
1/2 � 2vthe/

√
π is the average electron speed and S

is the surface of the object (as already noted in another context, the factor 1/4
in (7.33) arises because for a given infinitesimal surface element, nw/2 electrons
per unit volume are approaching from one side with an average perpendicular
velocity 〈v〉e/2). Note that electrons that are energetic enough do penetrate
into the object and excite electrons within it, producing secondary emission of
electrons; to keep the problem simple, we neglect this effect, which is impor-
tant only for impinging electrons of energy greater than several hundreds of
electronvolts.17

This holds for an uncharged surface. A positively charged surface attracts
electrons, so that it collects more of them than the above value. If there are
no intervening barriers of effective potential, the potential of the body increases
its effective radius for collecting particles to a value reff that is given from

conservation of energy and angular momentum by reff /R =
(
1 + 2eΦ/mev

2
)1/2

for an electron of speed v. Integrating over the velocities with a Maxwellian
distribution yields (Problem 7.6.1)

Ne = Ne0 (1 + eΦ/kBTe) Φ > 0. (7.34)

Note again that this holds for a three-dimensional geometry. The same reasoning
yields Ne = Ne0 for a plane geometry (relevant for large bodies, as we shall see
below), and Ne = Ne0 (1 + eΦ/kBTe)

1/2 for a long cylinder (Problem 7.6.1).
17However, it should be kept in mind that under some circumstances, secondary electron

emission may be important even from a qualitative point of view, in producing multiple charge
equilibrium states and bifurcations (see Meyer-Vernet, N. 1982, Astron. Astrophys. 105 98
and references therein).
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We neglect for simplicity the solar wind proton contribution, which is smaller
than the electron one.

Compare the outgoing and ingoing electron fluxes. From (7.23)–(7.30) and
(7.9), we have

Nph0/Ne0 � (2 − 20) (d/d⊕)α/2
α ∼ 0 − 1 (7.35)

so that the balance of the photoelectron current (7.32) and the solar wind elec-
tron current (7.34) yields the electric potential at equilibrium

Φ � (kBTph/e) ln
[
(2 − 20)

1 + eΦ/kBTph

1 + eΦ/kBTe

]
(7.36)

∼ 1 − 10 V

where we have assumed a three-dimensional geometry, and dropped the weak
radial variation in (7.35). In a planar geometry (relevant for large bodies), the
bracket in (7.36) reduces to its value for Φ = 0.

There are two main complications to this simple picture. First, if the sur-
face is not conductive, it should not be necessarily equipotential,18 so that the
balance of currents must be made separately for the sunlit and the shadowed
parts. Second, a shadowed surface is generally in the wake of the object, where
protons are depleted; this reduces the proton flux on the surface, making the
potential even more negative, as we shall see below.

We can see in these estimates an echo of the kinetic calculations made in
Section 5.5 for studying the solar wind acceleration. In the latter case, the
electrostatic potential had to be greater than in a static atmosphere, because
otherwise, the escaping electron flux would have been too large compared to
the proton one because of the differences in masses. In the present case, the
gravitational force is absent, and the scale is vastly smaller so that the plasma
is not quasi-neutral, but the basic principle remains the same.

Deducing the electric charge

Having estimated the electric potential of the surface, we can now calculate its
electric charge. In vacuum, the (radial) electrostatic field around a body of
charge Q is given from Poisson’s equation as Q/4πε0r

2 at distance r. Since,
however, the solar wind is a plasma, the body is surrounded by a Debye sheath
which shields the field farther than a distance of about LD. Hence for a small
object of radius R � LD, the field is nearly equal to the Coulomb field out to a
fraction of LD – which amounts to several radii R, so that the capacitance has
roughly the same value as in vacuum, i.e. for a sphere

R � LD : C = Q/Φ � 4πε0R. (7.37)

18Note that among the various causes of potential difference, the electric field vw × B
amounts to a difference of potential of about 3 × 10−3 V m−1 at 1 AU, which is negligible,
except for very large bodies.
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With the typical potential found above, we deduce that a small object of radius
R in the solar wind carries a number of elementary charges

Q/e ∼ a few 109 × R.

This amounts to a hundred electrons for a dust grain of size 0.1 µm.
Consider now a large object, of radius R � LD. Since the potential decreases

with distance at the scale LD, the electric field at the surface is roughly E ∼
Φ/LD; on the other hand, from Gauss’s law, it is equal to E = Q/4πε0R

2, and
so

R � LD : C = Q/Φ ∼ 4πε0R
2/LD. (7.38)

For these large objects, the geometry is roughly plane, so that the charging is
one-dimensional.

Note that the photoelectrons contribute to the shielding with their proper
Debye length. The photoelectron density near the object is about nph ∼
Nph0/ (〈v〉ph S/4) (with the mean speed 〈v〉ph = (8kBTph/me)

1/2 � 7 ×
105 m s−1); substituting the photoemission rate (7.30) and temperature (7.31),
this gives a photoelectron Debye length of about

(
ε0kBTph/nphe2

) ∼ d/d⊕ m.
Dust grains are very small at this scale, but spacecraft are not.

Charging timescale

The above estimates are equilibrium values. How much time does the charging
process take? This may be estimated by viewing the object in the plasma as an
electric circuit of capacitance C and resistance R ∼ 1/ | dI/dΦ |, where I is the
current flowing between the object and the plasma in absence of equilibrium.
Since each charging process of rate N contributes to a current eN , and, from
(7.32) and (7.34), has a derivative of the order of magnitude of eN/kBT , we have
roughly | dI/dΦ |∼| edN/dΦ |∼ e2N/kBT , where N and T are respectively the
rate and temperature of the charging process that yields the greatest derivative.
For a sunlit object in the solar wind, the charging timescale is thus in order of
magnitude

τ ∼ RC ∼ CkBTph/
(
Nph0e

2
)
. (7.39)

Substituting the values found above, we find

τ ∼ 5
Rµm

d2

d2⊕
s (7.40)

for a dust grain of radius Rµm. On the other hand, for a large object we find
by substituting (7.38) and (7.25) a timescale of a few 10−6 s at distance d⊕,
independent of size, since both C and N then vary as R2.
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Figure 7.5 The wake of a body in the solar wind. Top: if all the particles
had speeds smaller than a maximum value vmax (in the solar wind frame) their
velocities as seen by the body would lie in a cone of half-angle θ, producing a
conic cavity devoid of particles (hatched). Bottom: with a Maxwellian velocity
distribution of thermal speed vthp � vw, the cavity is only partially depleted.

Wakes

Let us consider in more detail what happens downstream of an object like a
spacecraft in the solar wind. The incoming solar wind particles are absorbed on
the front side, which tends to create a depleted wake behind. Since the thermal
electrons move much faster than the bulk solar wind, they tend to fill the wake,
but the protons cannot easily do so. What is the length of this wake?

For simplicity, let us neglect the speed of the object with respect to the Sun,
which is generally much smaller than vw. Imagine that all the particles have
speeds smaller than some value vmax � vw; in this case, their speeds in the
frame of reference of the object lie in a cone of half-angle vmax/vw, so that the
object trails a cone of this half-angle devoid of particles (Fig. 7.5, top). With
a Maxwellian distribution for protons, the cone is not perfectly defined nor
empty, but the outline of the picture remains true, producing a cone-like region
devoid of protons, of length ∼ Rvw/vthp (Fig. 7.5, bottom). This simple picture
neglects the electric field which has two effects. First, it curves the ion paths
if the energy eΦ is not small compared to their kinetic energy mpv

2
w/2; second,

the ion depletion produces a negative space charge which repels the electrons,
so that they are also somewhat depleted in the wake, though less so than the
ions. This picture holds mostly for large bodies since the Coulomb field prevails
near small bodies.

The wake has important effects on the potential distribution on large objects
if their surface is not conductive. To avoid this, space probes are generally
covered with a conductive coating (Fig. 7.6).

This simplified picture neglects the magnetic field of the solar wind, which
introduces complications, as does the intrinsic magnetic field of the body if it
has one (see for example [63]).



358 Dust, asteroids, planets and comets

Figure 7.6 The spacecraft Ulysses before launch, covered with a conductive
coating. (Photograph by Dornier GmbH.)

7.2.3 Being large: the importance of conductivity
Consider now scales that are not smaller than the particle gyroradii, so that the
magnetic field comes into play. This has several consequences, that depend in
a major way on the electric conductivity of the body.

To begin with, consider a solid body having no atmosphere nor a large-scale
magnetic field of its own.19

Insulating body: the Moon example

Assume first that the body has a negligible electrical conductivity. In this case,
no current can flow in the body, so that it does not react to the solar wind
magnetic field which therefore penetrates it with few perturbations.

Let us put this rough argument on a quantitative footing. The time for
the magnetic field to diffuse through a body of radius R and conductivity σ is
τdiff ∼ µ0σR2; if it is smaller than the timescale for changes in the ambient
magnetic field, or for the solar wind to flow past the body – which is roughly
R/vw – the solar wind magnetic field penetrates the body without being much
perturbed. This holds if

µ0σRvw < 1 (7.41)

which is the condition for the magnetic field not to be frozen into the body.
For an object of the size of the Moon (Table 7.1) and the typical solar

wind speed vw, (7.41) reads: σ < 106. This inequality should hold in much of
19We neglect here for simplicity the small-scale crustal magnetic fields, as do exist for

example on the Moon and Mars.
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Figure 7.7 Sketch of the interaction of a large insulating body with the solar
wind. Since VA ∼ VS , the magnetosonic wave speeds are all equal in order
of magnitude, and so are the angles θ ∼ 1/M that the depleted cone and the
expansion region make to the wake axis.

the interior of the Moon, since the solar wind magnetic field has indeed been
observed to be relatively unperturbed in its vicinity. This seems to agree with
other inferences on the Moon’s internal structure [76].

So the solar wind impinges on the insulating body, largely unperturbed.
Incidentally, the absorption of solar wind particles by the surface of the Moon
enables one to infer the past solar wind composition from the analysis of lunar
rock samples.

The absorption of particles on the upstream surface creates downstream a
cavity depleted of plasma, somewhat as outlined in the previous section. We
have seen that when the scales are smaller than the particle gyroradii so that
the magnetic field does not play a role, the plasma moves sideways to fill the
cavity at the typical speed vthp ∼ VS , whereas the body moves at −vw in the
plasma frame; this produces a conical cavity of half-angle θ ∼ 1/M ∼ vthp/vw,
whose edge is diffuse because of the thermal spread of the particle speeds
(Fig. 7.7). Furthermore, since the electrons tend to fill the cavity faster than
the (slower-moving) protons, the cavity tends to charge negatively, producing
an electric field that accelerates protons from the edge of the cavity towards the
axis.

The magnetic field changes this picture, because at scales larger than the
gyroradii it affects the penetration of particles into the cavity, by preventing
them diffusing across it. If B is perpendicular to vw (which coincides approx-
imately with the wake axis),20 the particles can still diffuse along field lines
to fill the cavity, which is therefore not much modified. But if the magnetic
field is parallel to vw, i.e. to the cavity axis, it does not let the particles dif-
fuse across itself to fill the cavity, whose size is therefore significantly increased
(Fig. 7.8).

In that case, a further effect arises. Since the plasma pressure is severely
reduced within the cavity, the magnetic field must increase with respect to the
ambient solar wind value for the total (plasma + magnetic) pressure in the
cavity to balance the ambient value sideways. In the extreme case of a void

20We neglect the heliocentric speed of the body compared to the solar wind speed.
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Figure 7.8 How the magnetic field modifies the cavity downstream of an insu-
lating body. If B ⊥ vw, the particles can fill the cavity by moving along the
magnetic field lines, but they cannot do so if B ‖ vw; in the latter case, the
plasma-depleted cavity is of larger size.

cavity, the total pressure there is ∼ B2
cavity/2µ0; in order to balance the total

solar wind pressure, which is roughly twice the magnetic pressure ∼ B2
w/2µ0

since the plasma and magnetic pressures are roughly equal in the solar wind,
the magnetic field in the cavity must increase to the value Bcavity ∼ √

2Bw.
In addition, the plasma expands on the flanks of the cavity, making the

particle density and the magnetic field decrease there, in a way that depends on
the relative orientation of the solar wind magnetic field and speed, since Alfvén
waves carry magnetic perturbations along B (in the plasma frame), whereas
compressional modes may propagate in different directions at different speeds.
Because of this anisotropy, the perturbations do not have a circular symmetry
around the wake axis, but since all these waves propagate in the solar wind at
speeds having the same order of magnitude, the angles made by the depleted
conic cavity and the expansion region (Fig. 7.7), which are determined by the
ratio of the distances travelled by the waves and by the solar wind, as θ ∼
arctan 1/M ∼ 1/M , are not very different, being all in the ballpark of 6◦. The
actual interaction is more complex than this rough picture, as shown by early
observations of the lunar wake, and by recent ones performed with modern
instruments on the spacecraft WIND (see for example [61]).

Note, finally, that since the body absorbs solar wind particles and emits
photoelectrons, it acquires an electrostatic charge, somewhat as outlined in the
previous section for scales greater than LD (with minor changes due to the pref-
erential collection of particles along the magnetic field). Because the body does
not conduct electricity, the balance of currents must be made on each point of
the surface, producing large differences of potential between the sunlit and shad-
owed sides (the latter being furthermore within the cavity). The electrostatic
charging of the Moon has interesting consequences (Problem 7.6.1.).21

21The electrostatic charging of the Moon might be responsible for the transient dust clouds
observed lying above the lunar surface (see for example Horanyi, M. et al. 1995, Geophys.
Res. Lett. 22 2079 and references therein).
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Figure 7.9 Sketch of the interaction of a large conducting body with the solar
wind. The solar wind magnetic field cannot penetrate the body, forcing the
incoming plasma to slow down ahead and be diverted sideways, whereas the
magnetic field lines pile up ahead and a magnetic tail forms downstream. Since
the solar wind flow is supersonic far upstream, a shock (not shown) is generally
produced upstream. (Adapted from a sketch of a comet plasma tail by Alfvén
[2].)

Large conducting body

Consider now a body of radius R (still larger than the gyroradii) with a con-
ductivity σ large enough that

µ0σRvw � 1. (7.42)

In this case the magnetic diffusion time through the body is much longer than
the time for the solar wind to sweep past it, so that the solar wind magnetic field
cannot penetrate it. Since the solar wind plasma is frozen to the magnetic field,
it must slow down ahead of the body and stop just before it. As the plasma
slows down, the magnetic field lines pile up, just as do cars in a traffic jam.
Because the magnetic field continues to be convected by the unperturbed flow
sideways, the magnetic field lines bend around the object to form a magnetic
tail downstream. Figure 7.9 is adapted from a sketch by Alfvén of the formation
of comets’ tails; we shall see later that in that case, the conducting body is the
ionosphere of the comet, and that the wind is slowed down at large distances
by picking up freshly ionised cometary molecules.

The magnetic field increase as the plasma slows down in approaching the
object is related to the frozen-in induction equation. In a stationary state,
this equation yields  × (v × B) = 0. The problem is most easily visualised
in the simple case when the solar wind speed and magnetic field are roughly
perpendicular to each other. In this case, the above induction equation reads
(in a one-dimensional approximation)

v (x)B (x) = constant (7.43)

where x is the distance from the front of the body.
Hence, as the body is approached, the amplitude of the magnetic field

increases – an increase that stops close to the body, because the frozen-in
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approximation breaks down at small scales (as does the one-dimensional ap-
proximation). What is the strength of the peak magnetic field Bmax? Basically,
it must be large enough that the Lorentz force stops the incoming plasma at the
front of the body and deflects it on the flanks. For this to be so, the magnetic
energy must be roughly equal to the ram pressure of the incoming flow, i.e.

B2
max/2µ0 ∼ ρwv2

w (7.44)

⇒ Bmax ∼ 7 × 10−8 d⊕/d T (7.45)

where we have used (7.18). This means that the magnetic pile-up does increase
the ambient solar wind magnetic field by a factor of

Bmax/Bw ∼
√

2 vw/VA (7.46)

i.e. by one order of magnitude. The vanishing of the magnetic field inside the
object, in spite of the large magnetic field ahead of it, is ensured by a sheet of
electric current J flowing perpendicular to the plane of the figure; this current
is driven by the electric field induced in the frame of the body by the motion of
the magnetised solar wind: E = −vw × Bw (Problem 7.6.2).

Finally, the above picture misses an important point: since the solar wind
plasma is supersonic, it generally cannot stop without forming firstly a shock, so
that the sketch shown in Fig. 7.9 holds downstream of a bow shock, where the
solar wind plasma has become subsonic. Since the solar wind ram pressure is
not lost in the shock (see Section 6.3), but somehow converted into plasma and
magnetic pressures, the balance equation (7.44) still holds, and so does the value
(7.46) of the pile-up magnetic field. We shall consider planetary bow shocks in
more detail in Section 7.2.6.

How does this picture apply to actual solar system bodies? We have seen
that most planets have a ionosphere and/or a magnetic field. In that case, the
environment may provide the required conductivity instead of the body itself.
In the case of comets (and some planets, too, albeit more weakly), the picture
is modified by the ejection of neutrals from the body, which are subsequently
ionised and picked up by the solar wind (Section 6.5), making it slow down, but
the basic picture remains true. For planets having a magnetic field of their own,
the magnetic field deflects the solar wind particles and is itself modified by the
interaction. We examine these cases below.

7.2.4 Large objects with a conducting atmosphere

We have seen that most planets have ionospheres, whose conductivity is very
large at high altitudes. The solar wind magnetic field therefore cannot penetrate
it, and wraps around it as illustrated in Fig. 7.9, except that now the obstacle
to the flow is the ionosphere rather than the body itself. Just as we saw above,
the solar wind slows down ahead of the ionosphere and stops, being diverted
sideways, while the magnetic field lines pile up ahead and are pulled downward
to form a magnetic tail. The vanishing of the magnetic field is ensured by
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Figure 7.10 Sketch of the interaction of a non-magnetised planet having an
ionosphere. The flow (not shown) slows down ahead of the object and is di-
verted sideways, while the magnetic field lines pile up against the ionosphere
and are stirred downstream into a magnetic tail rather as in Fig. 7.9. The slow-
ing down of the supersonic solar wind flow is mediated by a bow shock ahead
(Section 7.2.6).

currents flowing at the top of the ionosphere, forming a complex boundary –
the ionopause (Fig. 7.10) [59].

In the sunward direction, the ionopause is located at the distance from the
planet where the particle pressure in the ionosphere balances the pressure ρwv2

w.
The interaction proceeds somewhat as outlined above, with the pile-up magnetic
field serving as a ‘cushion’ whose magnetic pressure B2/2µ0 on the sunward
side – roughly equal to ρwv2

w – balances the ionospheric pressure. As a result,
the magnetic field and the plasma of solar wind origin tend to be excluded from
the region bounded by the ionopause, i.e. the part of the ionosphere whose
pressure is sufficient to stand off the flow.

This kind of interaction takes place, in a first-order approximation, at Venus
and Mars, which both have no large-scale magnetic field.

In order to be able to stand off the solar wind, the ionospheric plasma pres-
sure must be equal to at least ρwv2

w. We have seen that when the ionosphere is
a Chapman layer, the electron density at the maximum of ionisation is given in
order of magnitude by (7.16), so that the plasma pressure P ∼ 2nkBT is

Pmax ∼ 10−11T
(
H

1/2
⊕ d⊕/H1/2d

)
. (7.47)

Comparing with the solar wind ram pressure (7.18), we see that if the iono-
spheric temperature is greater than a few times 100 K, the ionosphere of an
Earth-like (but non-magnetised) planet can stand off the solar wind in normal
conditions. Since the ionospheric pressure decreases with altitude above the
maximum of ionisation, the smaller the solar wind ram pressure, the higher
the altitude of the ionopause. This is illustrated in Fig. 7.11, which shows how
the interaction changes with the solar wind ram pressure at Venus. When ρwv2

w
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Figure 7.11 Interaction of the solar wind with Venus. Electron density and
magnetic field strength versus altitude measured on the Pioneer Venus Orbiter
spacecraft, for three values of the solar wind ram pressure (increasing from left
to right). As the solar wind ram pressure increases, so does the magnetic pile-up,
pushing the ionopause downwards. For too large a ram pressure, the ionosphere
becomes partly magnetised. (Adapted from [68].)

increases (from left to right), the magnetic field strength increases according to
(7.44), and the ionopause goes downward where the plasma pressure is greater
(Problem 7.6.4). When the solar wind ram pressure is so large that the iono-
spheric pressure alone cannot stand off it, the magnetic field penetrates into the
ionosphere.22

Figure 7.12 shows the magnetic strength near Mars, as the spacecraft Mars
Global Surveyor moves from the solar wind to the ionosphere, and returns to
the solar wind again. One sees that the magnetic field starts to pile up at some
distance above the ionopause, forming an abrupt boundary where the solar wind
plasma is replaced by plasma of planetary origin [10]. This feature is outside the
scope of the traditional fluid description, for two basic reasons; first, the solar
wind and planetary particles have properties that are too different for them to
be treated as a single fluid; second, each kind of particle itself does not behave
as a fluid; in particular, the planetary heavy ions have a gyroradius larger than
the size of the planet.

For various reasons (Problem 7.6.4), the Mars environment has more diffi-
culty in standing off the solar wind, so that the interaction at Mars resembles

22In that case, the additional pressure needed is supplied by the magnetic field that has
penetrated and by the drag of ion–neutral collisions associated with some downward motion
of the ionospheric plasma. If these contributions are not enough, the solar wind may impinge
on the planet’s surface.
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Figure 7.12 Interaction of the solar wind with Mars. Magnetic field strength
measured on the Mars Global Surveyor spacecraft during part of the orbit, as
it approaches the planet and goes away, showing the bow shock, the magnetic
pile-up and the region of reduced magnetic field. (Adapted from [10].)

the one at Venus when the solar wind ram pressure is large, with the magnetic
field penetrating somewhat into the ionosphere.

The solar wind has still another effect on the planetary environment. Disso-
ciative recombination taking place in the ionosphere ejects atoms, that become
ionised outside the ionosphere – mainly by photoionisation and by charge ex-
change with solar wind ions – and are then picked up by the flow (Section
6.5.3). This has several consequences. First, this contributes to slowing down
the flow – a process that is most important in comets. Second, since these par-
ticles are lost from the planet, this process makes it lose part of its atmosphere.
Third, the pick-up process produces plasma instabilities and waves, especially
at the proton cyclotron frequency. And finally, the charge exchange (Sec-
tion 2.4.4) produces X-ray emission – a process we shall study in detail for comets
(Section 7.5.6).

7.2.5 Large magnetised objects

Many planets have magnetic fields of their own. We consider in this section the
basic points of the interaction of the solar wind with a body (again of radius
larger than the gyroradii) carrying a magnetic moment µ. We assume here for
simplicity that the solar wind velocity is roughly perpendicular to µ (Fig. 7.13),
and to begin with we forget the solar wind magnetic field, concentrating on
the magnetic field of the planet; we shall consider the role of the solar wind
magnetic field later.

The solar wind particles tend to be reflected by the planetary magnetic field,
making the wind slow down and stop. This is easily seen by considering the sim-
plified case of a non-magnetised region on the sunward side of some boundary,
and a large magnetic field on the planet’s side. The incident particles entering
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Figure 7.13 Sketch of the (sunward side) interaction of a magnetised planet
with the solar wind. In order to confine inwards the planet’s magnetic field,
the boundary (the magnetopause) carries a current sheet producing a magnetic
field BJ that roughly cancels the planet’s dipole field outside the magnetopause,
and therefore adds to it just inside, doubling it. The inward confined magnetic
field stands off the incoming flow. The slowing down of the supersonic solar
wind flow is mediated by a shock ahead (Section 7.2.6). This picture will be
completed in Section 7.3.

the magnetised region make half a gyro turn and exit back in the field-free region
(this requires that the gyroradii be smaller than the distance between the planet
and the boundary). The difference in the gyroradii of electrons and protons pro-
duces a current perpendicular to both the initial velocity and the magnetic field,
which makes for the discontinuity in magnetic field (Problem 7.6.3).

Since the stagnation of the solar wind is produced by the planet’s magnetic
field, it takes place at the distance from the planet where the pressure of the
planet’s magnetic field (which is generally much greater than the plasma pres-
sure of the planetary environment there) balances the solar wind ram pressure;
this yields ρwv2

w ∼ B2
µ/2µ0, where Bµ is the magnetic field inward of the stagna-

tion region.23 This boundary, which particles do not cross,24 is typically a few
ion gyroradii thick; it is known as the magnetopause. It separates the plasma of
solar wind origin from the planetary environment – made of both the planet’s
magnetic field and its plasma – called the magnetosphere.

Let us estimate the distance rM of the magnetopause to the planet, in the
magnetic equatorial plane (Fig. 7.13). A first approximation may be obtained
by simply substituting into the balance equation the planet’s magnetic field
strength at rM :

Bµ = (µ0/4π) µ/r3
M . (7.48)

A little reflection, however, shows that the magnetic field strength just inside
the magnetopause is greater than the dipole value Bµ. This is because in order

23As we already noted, the equivalent pressure just outside the boundary is actually made of
plasma and magnetic pressure – resulting from the conversion of the solar wind ram pressure
at a shock and downstream of it.

24With some notable exceptions, discussed in Section 7.3.
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to confine inwards the planet’s dipole magnetic field, the magnetopause must
carry a current sheet producing a magnetic field that cancels Bµ on the outward
side (Problem 7.6.3). It must therefore produce, by Ampère’s law, an equal but
oppositely directed field on the inward side, which adds to Bµ, doubling it
(Fig. 7.13). Hence the total magnetic field just inside the boundary is roughly
twice larger than Bµ, so that the balance equation becomes

ρwv2
w � (2Bµ)2 /2µ0. (7.49)

Substituting (7.48), we deduce the stand-off distance

rM �
(

µ

4π

√
2µ0

ρwv2
w

)1/3

. (7.50)

Introducing the planet’s radius R and its magnetic field at equator B0 =
(µ0/4π) µ/R3, we get the relative distance of the magnetopause on the sun-
ward side

rM

R
�

(
2B2

0

µ0ρwv2
w

)1/6

� 9
(

µ

µ⊕
d

d⊕

)1/3
R⊕
R

(7.51)

(which may be rewritten as rM/R � 21/6 (B0VA/Bwvw)1/3 as a function of the
solar wind Alfvén speed VA and its magnetic field Bw).

The magnetopause separates the flow of solar wind origin and the
magnetospheric plasma, which are slipping past each other via a tangential
discontinuity.25

How does this picture compare with observation? Table 7.2 shows the dis-
tances of the nose of the magnetopause for the magnetised planets, from ob-
servation and from (7.51) (using the solar wind ram pressure (7.18) and the
planets’ properties listed in Table 7.1). One sees that the agreement is quite
good, except for Jupiter, whose magnetosphere is observed to be much larger
than the estimate.

Mercury has by far the smallest magnetosphere, due to the combination of
two factors: the greatest solar wind dynamic pressure (because of the proximity
to the Sun), and the smallest magnetic moment. At the other extreme lies
Jupiter’s magnetosphere, which is greater by three orders of magnitude than the
volume of the Sun; if it were visible, its angular size as seen from Earth would be
twice that of the Sun even though it is more than four times farther away. This
huge size is due to three factors: a small solar wind dynamic pressure (because it
is far from the Sun), the largest magnetic moment and a relatively dense plasma,
supplied by the volcanoes of the satellite Io, which rotates with the planet and
further inflates the magnetosphere in the equatorial plane. This latter effect,
not included in our simple estimate, is responsible for most of the discrepancy
between the observed and calculated stand-off distances. Note, finally, that the

25Just as a wind blowing over a lake induces ripples on its surface, the solar wind produces
ripples in the magnetopause, by the Kelvin–Helmholtz instability.
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Table 7.2 The sunward distance of the magnetopause: calculated from (7.50)
and observed (or inferred)

d/d⊕ R/R⊕ rM/R (calc.) rM/R (obs.)

Mercury 0.39 0.38 1.2-1.5 1.4
Earth 1.0 1 9 8–12
Jupiter 5.2 11.2 38 50–100
Saturn 9.5 9.4 17 16–22
Uranus 19 4 22 18–25
Neptune 30 3.9 22 23–26

large tilts of the axes of Uranus and Neptune make their magnetospheres vary
considerably during their rotation.

Despite the order-of-magnitude agreement of the magnetopause location
given by (7.50)–(7.51) and observation, Table 7.2 shows a systematic difference:
the calculated values are about 10% too small. Four factors contribute to this
slight discrepancy: first, the solar wind does not necessarily arrive at a normal
angle to the magnetopause; second, even if it arrives normal, the solar wind ram
pressure to be put in the balance equation (7.49) is slightly smaller than ρv2

w,
because of the diversion of the flow around the magnetopause (as we shall see
below); third, the dipole magnetic field is compressed by the interaction. And
finally, when the solar wind magnetic field has a component directed opposite
to the dipole’s field, the planet’s field is weakened, so that the magnetopause
must move inwards to keep standing off the solar wind, and further effects arise,
as we shall see in Section 7.3.

The Earth’s magnetopause is by far the most extensively studied, and a
concise recent review may be found in [72], while early research is nicely reviewed
in [30].

7.2.6 Bow shocks

As we noted, a large body that is either conducting, or surrounded by a con-
ducting atmosphere, or has an intrinsic magnetic field, does stop the solar wind.
This generally requires a shock, where the flow becomes subsonic and changes
direction to divert around the body. At the shock, the solar wind bulk kinetic
energy is converted into particle and magnetic pressure, with some dissipation.

As the shocks we encountered in the solar wind proper (see Section 6.3),
the planetary bow shocks are collisionless, and the dissipation involves complex
microscopic plasma processes. When the shock is quasi-perpendicular and of
large Mach number, the width of the shock is roughly equal to the proton
gyroradius (calculated with the plasma speed in the shock frame), which is
close to vw/ωgp (where ωgp is the proton angular gyrofrequency downstream of
the shock) [7]. As for interplanetary shocks, the compressive wave involved is
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Figure 7.14 Sketch summarising the generic interaction between the solar wind
and a body having either a conducting atmosphere or a magnetic field of its
own. A bow shock is formed ahead, where the solar wind becomes subsonic,
delimiting a magnetosheath where the subsonic flow slows down smoothly, stop-
ping and being diverted sideways at a boundary. This boundary separates from
the incoming wind the planetary plasma and its magnetic field (if it has one),
either of which provides the required pressure at the boundary.

the fast magnetosonic wave. The bow shock is nearly stationary with respect
to the planet (except for a small velocity mainly due to changes in the solar
wind dynamic pressure), and defines a transition region – the magnetosheath –
containing heated solar wind plasma (Fig. 7.14). It is in this region that the –
now subsonic – flow slows down smoothly.

Figure 7.15 shows the flow speed and magnetic field measured on one of the
Cluster spacecraft as the spacecraft moves from the magnetosheath to the solar
wind. The speed and magnetic field jumps are close to a factor of four: the
value expected at high Mach numbers when γ = 5/3 (see Section 2.3).

From the point of view of the interaction of the solar wind with the planet’s
magnetosphere or ionosphere, two important questions arise. First, we have
assumed in the previous sections that the pressure in the stagnation region
just before the obstacle (where the flow speed vanishes) is roughly equal to the
solar wind ram pressure. Is this assumption correct? Second, how far from the
obstacle (i.e. the magnetopause or the ionopause) does the shock lie?

Consider the first question, in the simple case of a quasi-perpendicular shock
of large Mach number, with γ = 5/3. Let the subscripts 1 and 2 denote respec-
tively the upstream (solar wind) and downstream (magnetosheath) values of the
plasma parameters, and P the total (plasma + magnetic) pressure. We have
from the Rankine–Hugoniot relations (Section 2.3)

ρ2v
2
2 � ρ1v

2
1/4 (7.52)

ρ1v
2
1 � P2 + ρ2v

2
2 (7.53)

where (7.52) comes from ρ1v1 = ρ2v2 with v2 � v1/4 (since M1 � 1), and (7.53)
uses the fact that since M1 � 1, ρ1v

2
1 + P1 � ρ1v

2
1 . The upstream momentum
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Figure 7.15 Speed and magnetic field measured on one of the Cluster spacecraft
near the Earth’s bow shock on 31 March 2001 (the time origin is 22.13.00). Clus-
ter prime parameter data: speed from the ion spectrometer [67], and magnetic
field from the flux gate magnetometer [8]. (Courtesy of M. Maksimovic.)

flux ρ1v
2
1 is just the solar wind ram pressure. Consider how the flow manages to

slow down between the downstream side of the shock (where the parameters are
ρ2, v2, P2) and the stagnation point, where the speed vanishes and the pressure
is P0 (Fig. 7.14). Let us assume for simplicity that the problem is nearly one-
dimensional, depending mainly on the distance x along the Sun–obstacle line.
Momentum conservation yields

ρv
dv

dx
= −dP

dx
. (7.54)

Since the fluid is subsonic in this region (M2 � 1/
√

5 for M1 � 1 and γ = 5/3),
we may neglect its compressibility without making a large error, so that

ρv
dv

dx
� d

dx

(
ρv2/2

)
and (7.54) may be approximated by

ρv2/2 + P � constant. (7.55)

Applying this equality between the downstream side of the shock (labelled by
the subscript 2) and the stagnation point (where the flow speed is v0 = 0), we
have

ρ2v
2
2/2 + P2 � ρ0v

2
0/2 + P0 = P0. (7.56)
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We deduce the total pressure at the stagnation point

P0 � ρ2v
2
2/2 + P2 = −ρ2v

2
2/2 +

(
ρ2v

2
2 + P2

) � −ρ1v
2
1/8 + ρ1v

2
1

� (7/8) ρ1v
2
1 ≡ (7/8) ρwv2

w (7.57)

where we have used (7.52) and (7.53). This shows that we made indeed a small
error in approximating the total pressure at the stagnation point by the solar
wind ram pressure.

Now, let us examine the second question: what is the distance of the shock
from the obstacle? The answer depends on the shape of the obstacle. Indeed,
if the obstacle had a sharp-pointed nose, the shock would not be detached from
it. The magnetosphere has a blunt nose, with a radius larger in the transverse
direction than towards the Sun. In practice, its sunward shape can be modelled
by a conic function whose focus is the planet, so that the distance r from the
focus to a point on the curve is given as a function of the distance x along the
Sun–planet line by

r � rM + ε (rM − x) (7.58)

where rM is the already determined distance of the nose to the planet, and the
eccentricity ε determines the terminator distance as r � (1 + ε) rM at x = 0.
Typically, ε � 0.5, so that the magnetosphere has a transverse radius 50% larger
than the stand-off distance rM .

The shape of the shock may be approximated by a similar curve, whose nose
is located at some distance from the magnetosphere’s nose. This distance is
some fraction of rM : the larger the obstacle, the larger the structure, and the
farther it lies from it. Typically, the distance of the nose of the shock to the
planet is roughly rM (1 + 1.1ρ1/ρ2) � 1.3rM for M1 � 1 and γ = 5/3 (see
[65]).26

In the same way as the heliospheric shocks, planetary shocks are at the
origin of a large variety of plasma waves. In particular, particles reflected by
the shock can reach large distances upstream of the shock along magnetic field
lines, producing instabilities in the region of the solar wind that is connected to
the shock by magnetic field lines – a region known as the foreshock.

7.2.7 Not being constant: sputtering and evaporation
Up to now, we have pictured the bodies as being virtually constant, merely
emitting photoelectrons (as a result of solar irradiation) and a small quantity
of secondary electrons (as a result of solar wind plasma bombardment if any).
Likewise, we considered the atmosphere as virtually constant, too, except for
atoms that are picked up by the solar wind.

26When the upstream Mach number is not much greater than unity, the shock is weaker,
so that it needs to stand further upstream of the obstacle to be able to divert the flow. On
the other hand, when the adiabatic index γ is smaller (i.e. closer to 1), the plasma is more
compressible, so that the shock can stand closer to the obstacle and still be able to divert the
flow.
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In some cases, however, the body loses so much matter that the nature of
its interaction with the solar wind and its evolution are considerably modified.
This happens in two main situations:

• when solar wind particles hitting the body (or its atmosphere if any)
produce the ejection of a large quantity of atoms and molecules; this is
referred as sputtering;

• when the body loses large quantities of matter by sublimation; this is the
basis of cometary physics.

The latter case will be addressed in Section 7.5, and here we only comment
briefly on the former case: sputtering [11]. Sputtering is a process by which an
energetic particle deposits its energy in a material, leading to the ejection of
particles. For this to happen, two conditions must be met:

• particles must reach the object (or its atmosphere) and deposit enough
energy;

• the sputtered particles must be able to escape, i.e. their energy must
exceed the binding energy of the body’s surface (for sputtering from the
body) or of the body’s gravitational attraction (for sputtering from the
atmosphere).

Sputtering of various bodies by solar wind particles has a number of con-
sequences. For example, sputtering of the dust grains contributes to produc-
ing solar wind particles. Sputtering of the surfaces of the Moon and Mercury
contributes to their environments. Sputtering of the atmosphere of Mars con-
tributes to its atmospheric loss.

The impact of solar wind particles also affects the surface properties of bod-
ies, producing a space weathering (see for example [84] and references therein).

7.3 The magnetospheric engine

‘What are fireworks like?’ . . . asked the little Princess in an Oscar Wilde fairy
tale. ‘They are like the Aurora Borealis,’ said the King . . . ‘only much more
natural.’

For the layman and the expert alike, the aurora (Fig. 1.2) remains one
of the most mysterious of Nature’s displays. It is now quite well understood
how energetic electrons, precipitating into the Earth’s atmosphere, excite its
constituents and produce the majestic draperies of light that have fascinated
humans for ages and fostered a variety of myths. Likewise, the source of the
huge energy involved – the solar wind – is well identified. Nevertheless, the
complex chain of events that produces the precipitating electrons is still a source
of debate.

In a sense, the polar atmosphere can be thought of as a giant cathode tele-
vision tube on which is displayed the aurora; we understand how electrons
impinging on this screen produce images; we know that the television set is
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Figure 7.16 Looking after the draperies of the sky . . . (Jean Effel, Turelune le
Cornepipeux, 1975, Copyright Adagp, Paris, 2007.)

plugged into the solar wind. But we neither understand nor master the basic
electronics driving the machine.

And yet, for all its mystery, this phenomenon remains insignificant on a
cosmic scale. Auroras are only one of the numerous effects that solar wind
perturbations produce on Earth. Basically, when the planet is hit by an in-
terplanetary mass ejection, or encounters a transition between slow and fast
wind or – more frequently – a gentler perturbation, the magnetosphere is dis-
torted and electric currents are induced, producing changes in the magnetic field
(the geomagnetic activity), radio emissions, and a number of nuisances, such as
breakdowns of power stations and loss of orbiting satellites. Other planets hav-
ing an intrinsic magnetic field and a conspicuous atmosphere, such as Jupiter,
Saturn, Uranus and Neptune, are subjected to similar processes,27 which are
also expected to occur in extrasolar planetary systems. And much the same
physics acts at incomparably larger scales in the universe.

Figure 7.17 illustrates such perturbations, on a rare occasion when the Sun
and the planets Earth, Jupiter and Saturn were nearly aligned. According to

27Auroras have also been observed on Venus, and, recently, on Mars – controlled by the
crustal magnetic field [9].
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Figure 7.17 How an interplanetary shock associated with a coronal mass ejec-
tion from the Sun may have triggered auroral disturbances on Earth, Jupiter
and Saturn. The three planets were nearly aligned with the Sun, and the tem-
poral succession of events is consistent with a disturbance travelling at a speed
of 600–700 km s−1. The auroral oval at Earth was recorded on the spacecraft
Polar, the radioemission at Jupiter was measured on Cassini, and the auroral
oval at Saturn by the Hubble Space Telescope. (Adapted from [66].)

the authors [66], a coronal mass ejection at the Sun produced auroral storms
at Earth three days later, enhanced radio emission at Jupiter about 13 days
later and enhanced auroral emission at Saturn about 29 days later – i.e. time
intervals consistent with the propagation of an interplanetary disturbance at a
speed of 600–700 km s−1.

How are these perturbations produced? Today’s scientists have arguably im-
proved the ingenious explanation of auroras based on the firing of dry gases pro-
posed by Aristotle; they have built beautiful instruments and implemented them
on a horde of space vehicles for performing in situ measurements –
arguably improving on Birkeland’s terella laboratory experiments. And yet,
they still do not agree on the mechanism responsible for accelerating the parti-
cles producing auroras.

In this section, we shall derive some order-of-magnitude estimates on the
structure of magnetospheres of magnetised planets, the energy provided by the
solar wind, the coupling process and finally the products of the interaction.
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Figure 7.18 Sketch of the magnetosphere of a magnetised planet (cross-section
in the noon–midnight meridian). The tail has two lobes of opposite magnetic
field, of cross-section sketched in Fig. 7.21, separated by a plasma sheet that
carries a current connecting with the currents flowing on the flanks of the tail,
in the sense indicated by the symbols � and ⊗. (The orientation corresponds
to the present Earth’s magnetic field.)

Among the huge (and often self-contradictory) literature on this difficult subject,
accessible reviews aimed at physical processes may be found for example in [38],
[39] and [19]; a tutorial on the difficult art of mapping the Earth’s magnetosphere
may be found in [79]; and a recent detailed review of auroral phenomena may
be found in [64].

7.3.1 Basic structure

Simple picture

Figure 7.18 is a sketch of the magnetosphere in a plane containing the Sun
and the planet’s magnetic moment, when the latter is roughly perpendicular to
the solar wind velocity. The picture assumes that two conditions are met: the
scales are larger than the solar wind particle gyroradii, and the distance of
the nose of the magnetopause (estimated in (7.50)) is comfortably larger than
the planet’s radius. This holds for the six planets listed in Table 7.2, although
marginally so for Mercury.28

As we saw in the previous section, the solar wind becomes subsonic at the
bow shock and is further decelerated and diverted in the magnetosheath, to pass
round the magnetopause (dotted line) which confines the planet’s magnetic field

28Due to the large dipole tilt angles of Uranus and Neptune, the orientation of their magnetic
fields with respect to the solar wind varies considerably over a planetary rotation period,
making their magnetospheres highly asymmetric and time variable.
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and its plasma. The magnetopause has two neutral points on the sunward side,
where the magnetic field turns and vanishes, forming two cusps. The solar
wind drags the planet’s magnetic field lines in the anti-solar direction, forming
an elongated tail which has two lobes, the top one pointing to the planet, the
bottom one pointing away.

The tail lobes of oppositely directed magnetic fields require a current sheet
between them, just as the confinement of the planet’s magnetic field requires
currents flowing on the magnetopause. The sketch on the right-hand side of
Fig. 7.18 shows how the current flowing along some length L of a sheet is related,
by Ampère’s law, to the magnetic field strength B produced on both sides, as
I ∼ 2BL/µ0. Other currents flow, but for the moment we spare them from the
reader.

Opening the magnetosphere

Figure 7.18 does not tell the whole story. If it would, the planet’s magnetic
field would be nearly perfectly confined by the current sheets flowing along
the magnetopause, and there would be virtually no connection between the
magnetosphere and the solar wind.29 For such a ‘closed’ magnetosphere, the
formation of the magnetic tail requires, from a fluid point of view, some friction
between the solar wind and the flanks of the magnetosphere, since, contrary to
the case sketched in Fig. 7.9, the field lines of the tail do not belong to the solar
wind flow.

The additional point in the story comes from the fact that the solar wind
magnetic field has often a significant component antiparallel to the planet’s
magnetic field at the nose of the magnetopause (Fig. 7.19). In that case, the
flow pushes together oppositely directed magnetic fields, favouring field line
reconnection, so that the planet’s magnetic field may become connected to the
solar wind one (at X1 on Fig. 7.19).

In this picture [26], reconnection produces field lines having one end attached
to a polar region while the other end is connected to the solar wind, so that,
because of flux freezing and magnetic tension, they are convected from the
day side to the night side magnetosphere. The magnetic field lines therefore
open up, forming a tail attached to the planet. No anomalous viscosity at
the magnetopause is required to stir them, since they are simply drawn by the
solar wind at their ‘ends’ belonging to it. Note the basic difference from the
geometry of Fig. 7.9, where the magnetic tail entirely belongs to the solar wind,
being made of solar wind field lines folded up as an umbrella around the obstacle.
Beware that the terminology of ‘moving magnetic field lines’ should not be over-
interpreted other than a convenient shorthand notation for picturing the plasma
particles frozen into the magnetic flux tubes, and that the above picture is open
to much criticism [37]. Indeed, the velocity of a magnetic field line is not a
clear-cut concept and cannot be measured, contrary to the one of particles, and
the MHD description on which it is based is not properly justified.

29Except at the cusps, and through diffusion of particles, and transfer processes associated
in particular with the Kelvin–Helmholtz instability.
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X X1
X2

Figure 7.19 Fluid picture of an open magnetosphere. When the solar wind
magnetic field has a large component along the planet’s magnetic moment (and
in the same sense), the planet’s magnetic field becomes connected with the solar
wind one, opening the magnetosphere through field lines that cross the planet’s
surface on polar caps (dark grey). Merging of magnetic field lines occurs on the
day side (at X1 – of which an enlarged view as a function of time is shown in
the left-hand panel), whereas a disconnection occurs on the night side (at X2).
This drives a circulation pattern (big arrows.) To avoid excessive ‘geobias’, the
planet’s magnetic moment is here opposite to the Earth’s present one. (Adapted
from [26].)

This produces the steady state magnetic pattern sketched in Fig. 7.19,
(where only a part of the tail’s length is shown.) The magnetic field lines
connected to the solar wind cross the planet in oval-shaped regions surrounding
the magnetic poles – the polar caps (shown in dark grey). The anti-sunward flow
driven by the solar wind over the polar caps requires a compensating return flow
at lower latitudes, so that a disconnection of field lines must occur somewhere
in the tail (X2 in Fig. 7.19). The corresponding large-scale convection pattern
postulated in this picture is shown by big arrows.

This gives a hint as to the location of the auroras. Convection towards the
planet drives particles from the tail along the field lines towards the demarca-
tion between closed and open lines, i.e. the ovals bounding the polar caps. It
is therefore not surprising that particles precipitate there to produce auroras
(Fig. 7.17). The question of their acceleration is another matter, which we shall
examine later.

This picture must be taken with a large pinch of salt. Indeed, the figure
might suggest that the process is steady; this is not so (see for example [47]),
as the opening of the magnetosphere depends critically on the component of
the solar wind magnetic field along the planet’s magnetic moment. As we have
seen, many planets have their magnetic moment not far from the normal to the
ecliptic, and we saw in Section 6.1 that the average solar wind magnetic field is
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zero along this direction, whereas the variance is not. Hence the pattern shown
represents some time average of a process that is highly sporadic as it depends
critically on solar wind disturbances. When the solar wind magnetic field has a
large enough component along the planet’s magnetic moment (i.e. a southward
component at Earth, or a northward one at Mercury,30 Jupiter and Saturn31),
magnetic energy builds up in the tail, to be released later, producing magnetic
substorms, auroras and associated phenomena, as we shall see below.

Magnetospheres being complex engines powered by the solar wind, their
behaviour depends not only on the energy available, but on the efficiency of
the mechanics (compare the fuel consumption of a French Citroën 2CV and of
a modern car) and on the relative timescales of the driving process and of the
engine itself (think of Earth-based technicians driving a vehicle on a remote
planet through a radio link).

7.3.2 Energy, coupling and timescales
Energy from the solar wind

The solar wind provides the kinetic energy flux vw

(
ρwv2

w/2
)
, to which the mag-

netosphere presents the cross-sectional area SM ∼ π (1.5rM )2 (from (7.58) with
ε ∼ 0.5). The maximum energy available is therefore

PK ∼ (
ρwv3

w/2
)
SM . (7.59)

For a planet of magnetic moment µ at heliocentric distance d, this yields from
(7.18) and (7.50)

PK ∼ 1013

(
µ

µ⊕

)2/3 (
d⊕
d

)4/3

W. (7.60)

This energy serves mainly to produce the magnetosphere, drawing the tail, and
only a small fraction is dissipated within, producing the various perturbations
observed. The latter occur via friction with neutrals near the planet, and electric
currents, so that one expects them to be driven by the electric field Ew =
−vw × Bw induced by the flow of the magnetised solar wind, of magnitude

Ew ∼ 1.6 × 10−3d⊕/d V m−1 (7.61)

from Section 6.1. The corresponding flux of electromagnetic energy is the Poynt-
ing vector Ew × Bw/µ0. Over the magnetosphere cross-section, this yields the
electromagnetic power

PEM ∼ B2
w

µ0
vwSM ∼ 1.5 × 1011

(
µ

µ⊕

)2/3 (
d⊕
d

)4/3

W (7.62)

30The case of Mercury requires some care, because of the small scales involved, and of the
scarcity of the exosphere.

31As already noted, the cases of Uranus and Neptune depend on the phase along a planetary
rotation.



The magnetospheric engine 379

(hereafter, Bw is the component of the solar wind magnetic field perpendicular
to the velocity, and magnetic compression is not taken into account). This
electromagnetic power PEM is smaller than the kinetic value PK by roughly the
factor (VA/vw)2, which amounts to at most a few per cent.

It is interesting to compare these figures to the solar radiative energy
impinging on the planet

P� � L�
πR2

4πd2
∼ 2 × 1017

(
R

R⊕
d⊕
d

)2

W. (7.63)

This radiative input P� is far greater than the kinetic input PK , itself much
greater than PEM . This puts into perspective any possible effects on the Earth’s
climate due to solar wind magnetosphere interactions, but does not exclude them
since the nature of the system makes it extremely sensitive to small changes, as
we already noted in Section 6.4.2.

Another interesting figure is the total magnetic energy of the planet’s dipolar
magnetic field, i.e. the magnetic energy density B2/2µ0 of the dipole field (see
Appendix) integrated above the planet’s surface

Wmag =
B2

0

µ0

4πR3

3
� 1018

(
µ

µ⊕

)2 (
R⊕
R

)3

J. (7.64)

This is roughly equal to the power PK available during one day.

Coupling

How much of the incident energy available is used by the magnetosphere, and
how does it manage to use it?

The coupling is thought to act through electric currents, driven by the elec-
tric field Ew induced by the solar wind (which is approximately conserved at
the shock and in the magnetosheath), producing some kind of dynamo. Let us
consider the case when the coupling is expected to be large, i.e. when the solar
wind magnetic field at the planet has a large component parallel to its magnetic
moment (and in the same sense), so that the magnetosphere is open. The elec-
tric field Ew drives large-scale currents, as illustrated in Fig. 7.20, which close
in the ionosphere (Jion) and along the planet’s magnetic field (J‖),32 in addi-
tion to the currents on the magnetopause and across the plasma sheet shown in
Fig. 7.18, and also circuits closing the ionosphere to the tail (not shown).

Because the electric conductivity is very large along B, the currents J‖ flow
with almost no resistance, so that the difference of potential on the solar wind
side (more precisely, on the magnetosheath side) maps to the one on the iono-
sphere side. Most of the dissipation occurs in the latter region, where the dense
atmosphere brakes the ion motion by collisional coupling, producing a greater
electric resistance. In this picture, the power dissipated by the current Jion is
provided by the ‘generator’ current J that draws energy from the solar wind
flow acting on the open magnetic field lines.

32The latter are called Birkeland currents, as K. Birkeland first inferred their existence.
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Figure 7.20 Driving current system (heavy lines) that couples the solar wind
to the polar-cap ionosphere. The sketch is in a plane perpendicular to the Sun–
planet axis (as viewed from the Sun, if the planet is the Earth). (Adapted from
[38].)

Therefore the oval-shaped caps surrounding the poles, where these open field
lines cross the planet’s surface, play an important role. These caps are driven
by the solar wind, whose perturbations modify them, and, as we already noted,
it is near their boundary that most auroral phenomena are observed to occur.
Indeed, one sees in Fig. 7.19 that, on the night side, particles coming along
magnetic field lines from the centre of the tail to the planet tend to impact the
ionosphere near the (night side) boundary of each polar cap, whereas on the
day side, particles may precipitate along newly reconnected field lines, near the
(day side) boundary of each cap.

To estimate the size of these ovals, we shall approximate them by circles – a
drastic approximation which is justified for order-of-magnitude estimates only;
indeed, the polar caps should be smaller on the sunward side and larger in the
anti-solar direction because the field lines are stretched out towards the tail.
Figure 7.19 sketches the geometry in a meridian plane, showing that the closed
field lines cross the tail axis between the points X1 and X2; we therefore see that
the magnetic flux through a polar cap (i.e. passing along the open field lines)
is close in order of magnitude to the magnetic flux of the dipole magnetic field
along field lines that cross the equatorial plane farther than rM (the distance
of the nose of the magnetopause). If θPC is the colatitude of the equatorward
edge of a polar cap, the magnetic flux through a polar cap is

ΦPC ∼ 2πR2θ2
PCB0 (7.65)

where R is the planet’s radius, B0 is the surface magnetic field at equator (half
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the polar value) and the angle θPC is assumed to be small. On the other hand,
the flux along magnetic field lines closing farther than rM is∫ ∞

rM

B0(R/r)3 2πr dr = 2πB0R
3/rM . (7.66)

Equating both fluxes, we deduce

θPC ∼
√

R/rM . (7.67)

For the Earth, this yields θPC ∼ 18◦.33

We may use this result to estimate the difference of potential available for
driving the ionospheric currents across the polar caps, producing energy dissipa-
tion through atmospheric friction. From Fig. 7.20 (and because there is almost
no resistance along the path of J‖), this is roughly the difference of potential
available on the solar wind side of the electric circuit. In order of magnitude,
this is equal to the electric field Ew integrated along the arc length subtended
by the angle 2θPC at the distance rM , i.e. ϕ ∼ 2EwθPCrM . This yields,
using (7.67),

ϕ ∼ 2Ew

√
RrM ∼ 1.6 × 104 R

R⊕
d⊕
d

(rM

R

)1/2

(7.68)

∼ 5 × 104

(
µ

µ⊕

)1/6 (
d⊕
d

)5/6 (
R

R⊕

)1/2

V (7.69)

where we have substituted (7.61) and (7.50). For the Earth, this yields about
50 kV, in agreement with observation. The estimate (7.69), however, should not
be taken too seriously, as it builds on a coupling process that is not fully un-
derstood, and on several unproven assumptions.34 Recall that we have assumed
that the solar wind magnetic field is oriented adequately for the magnetosphere
to be ‘open’ to the solar wind.

Let us make some order-of-magnitude estimates about the magnetic tail. We
approximate it by a cylinder of radius RT where the magnetic field strength is
BT , in opposite directions in the north and south lobes (Fig. 7.21); because of
the variation along the tail, this approximation is acceptable for the near part
of the tail only, up to lengths not too much greater than the diameter.

In order of magnitude, the magnetic flux through a tail lobe ΦT ∼ BT πR2
T /2

is equal to the flux ΦPC through a polar cap. Using (7.65) and (7.67), we deduce
(BT /B0) (RT /R)2 ∼ 4R/rM . Because of the flaring, the radius of the tail is
typically RT ∼ 2rM , which yields BT /B0 ∼ (R/rM )3. With the value (7.51) of
rM , we deduce B2

T /µ0 ∼ ρwv2
w/2, whence, substituting (7.18),

BT ∼ 2 × 10−8d⊕/d T. (7.70)
33A more correct but still accessible estimate may be found in [40].
34We have also implicitly assumed that the total ionospheric current corresponding to Jion

is not strong enough to perturb significantly the magnetic field at the magnetopause, i.e.
that B2

ion/µ0 < ρwv2
w with Bion ∼ µ0Iion/rM and Iion = Σionϕ where Σion is the electric

conductance across the magnetic field integrated over the height of the ionosphere where the
current density jion is significant (see [41]). See also [83].



382 Dust, asteroids, planets and comets

Figure 7.21 Sketch of the cross-section of the near part of the tail (looking
towards the Sun, if the planet is the Earth).

This enables one to get an estimate of the cross-tail current flowing in the plasma
sheet separating the lobes

I ∼ 2
µ0

BT L ∼ 4 × 106

(
µ

µ⊕

d2
⊕

d2

)1/3
L

RT
A (7.71)

per length L along the tail, where we have substituted (7.70), and RT ∼ 2rM

with rM given by (7.51).
With these values of RT and BT , the magnetic flux across a tail lobe is

ΦT ∼ 5 × 106 d⊕
d

(
R

R⊕

)2 (rM

R

)2

Wb (7.72)

and the magnetic energy in a length L of the tail is

WLtail ∼ B2
T

2µ0
πR2

T L ∼ 1015 d⊕
d

µ

µ⊕
L

RT
J. (7.73)

This means that at Earth for example, the magnetic energy is about 1015 J in
a length of the tail equal to its radius; this is roughly equal to the solar wind
electromagnetic power PEM tapped during two hours.

Let us estimate the power furnished by the solar wind to draw the magnetic
tail. The magnetic tension B2

T /2µ0 applied to the tail cross-sectional area πR2
T ,

with the driving velocity ∼ vw, produces the work PT ∼ πR2
T

(
B2

T /2µ0

)
vw.

Substituting RT and BT , this yields PT ∼ πρwv3
wr2

M ∼ PK . This suggests that
most of the kinetic power incident on the magnetosphere is used to draw the
tail, producing a flux of magnetic energy along the tail. A fraction of this power
is dissipated in driving the flow towards the planet and in its vicinity (against
atmospheric friction), and is converted through tail reconnection at the tail
current sheet (X2 in Fig. 7.19) – accelerating particles in various processes –
and the remainder is lost to the downstream solar wind wake.

Note that, since an appreciable part of the ionospheric currents connect to
the tail, the potential drop φ is expected to hold also (in order of magnitude)
across the tail’s diameter (2RT ). Since the induced electric field Ew across the
same distance would produce a potential drop ∼ Ew2RT , (7.68) implies that
only about 10% of the available electric field maps onto the magnetosphere.
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Timescales

How long does the magnetosphere take to react to solar wind perturbations?
Since the magnetosphere’s behaviour in the changing solar wind seems to in-
volve phases of energy build-up until the stress reaches some critical level, upon
which energy is released, an order-of-magnitude estimate may be obtained by
calculating the time tT required for the induced potential φ to build up a mag-
netic flux equal to ΦT through the cross-section of a tail’s lobe. From Faraday’s
law, we have φ ∼ ∂ΦT /∂t ∼ ΦT /tT , whence

tT ∼ ΦT

φ
∼ 250

R

R⊕

(rM

R

)3/2

∼ 7 × 103

(
µ

µ⊕
R⊕
R

d

d⊕

)1/2

s (7.74)

using the expressions (7.72) for ΦT , (7.69) for φ and (7.51) for rM . For the
Earth, this amounts to about two hours. Since the magnetic tail probably cannot
tolerate a doubling of the magnetic flux because its dynamics is constrained by
the solar wind, one expects it to reconfigure itself after a perturbation on a
timescale smaller than the above value.

During this time, the solar wind – and the extremity of the field lines con-
nected to it – travels the distance LT ∼ vwtT , i.e., in units of the planet’s
radius,

LT /R ∼ 16 (rM/R)3/2
. (7.75)

This may tentatively be taken as an estimate of the length of that part of the
tail that is connected to the planetary magnetic field. For the Earth, this comes
to LT ∼ 500R⊕. For Jupiter, this yields a length of several astronomical units,
and indeed, on some occasions, the planet Saturn happens to be engulfed in
Jupiter’s magnetic tail.

Note that at the distance LT , the magnetic field in the lobes is no longer
equal to BT , having decreased to match the solar wind value, because the linkage
of the tail’s field lines to the solar wind makes the magnetic flux decrease along
the tail, while the flaring of the tail increases the tail’s diameter.

Rotation and drift

Additional energy is furnished to magnetospheres by satellites and by planetary
rotation, a process that is especially important for rapidly rotating magnetised
planets. Both sources of energy play a major role on Jupiter, which spins rapidly,
and has satellites that are conducting (or having a conducting ionosphere) and
ejecting copious amounts of matter. The same holds to a lesser extent on Saturn.
The tapping of the planetary rotational energy slows down the planet’s spin;
the amount, however, is imperceptible, contrary to what occurs in some other
astrophysical systems, as for example pulsars.

The atmosphere of a rotating planet is put into corotation with the planet
by frictional forces. So is the ionosphere, which is collisionally coupled to the
atmosphere. Because the ionosphere is magnetised and the plasma cannot move
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in bulk across the field lines, the magnetosphere tends to corotate, too. To what
distance corotation holds depends on the other factors controlling the dynam-
ics, in particular the mechanical stresses produced by the electromagnetic fields
and by matter ejected along field lines, in relation to the ability of the iono-
sphere to conduct sufficient current for the Lorentz forces to ensure mechanical
equilibrium (see [82] and references therein).

Relatively close to the planet, the gradient and curvature of the magnetic
field are important. The planetary dipolar magnetic field provides a geometry
adequate for confining charged particles on shells around the planet, while they
gyrate around field lines, oscillate along them and drift azimuthally around
the planet (Section 2.2). Since ions and electrons drift in opposite senses,
this produces a ring current, flowing as an annulus circling the planet,
whose most energetic particles constitute the radiation belts (the so-called Van
Allen belts at Earth),35 whose relativistic electrons produce synchrotron
radiation.

Whether the dynamics is governed primarily by the planet’s rotation, the
drifts, or the solar wind, depends on the distance to the planet and on the
particle energy. At small distances (where the rotation speed and the magnetic
gradients are greater), the planet’s rotation and drifts dominate, the latter being
dominant for high-energy particles, whereas at large distances the solar wind
driven circulation dominates.

A rough estimate of the distance r at which the solar wind driven circulation
dominates may be obtained by comparing the corotation speed Ωr to the circu-
lation speed ∼ Ew/B (r). The solar wind circulation is expected to win against
corotation when Ew/B (r) > Ωr. With Ew ∼ vwBw and B (r) ∼ B0 (R/r)3,
this happens at a distance

r >

(
µ0µΩ

4πvwBw

)1/2

or
r

rM
>

(
ΩrM

VA

)1/2

(7.76)

where we have substituted the expression (7.50) of rM , VA is the solar wind
Alfvén speed, and we have neglected a numerical factor close to unity. With the
parameters of Tables 7.1 and 7.2, one finds that at Earth, the solar wind wins
against corotation outward of about 0.4rM ∼ 4R⊕. For Jupiter, on the other
hand, the factor ΩrM is greater by more than two orders of magnitude, so that
(7.76) predicts that the solar wind effect is too weak to dominate corotation
within the magnetosphere. In that case, however, corotation is limited instead
by outward transport of matter which yields too large a torque at large distances
to be supported by Lorentz forces, which are limited ultimately by the current
that the ionosphere is able to carry.

35The most energetic particles (energies > 1 MeV for protons and > several tens of keV for
electrons) are created as a by-product of the interaction of cosmic rays with the atmosphere,
via β decay of neutrons produced by the interaction of cosmic protons with the nuclei of
atmosphere molecules.
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7.3.3 Storms, substorms and auroras

Several factors make planetary magnetospheres powerful accelerators of parti-
cles. First of all, they are very dilute media, since relatively few plasma sources
are available, whereas the volume is large. Some solar wind plasma does pen-
etrate through the magnetopause, but not much, and the ionosphere is not a
large source either, given its small size compared to the magnetosphere.36 Hence
particles undergo few collisions and a large part of the energy available serves
to accelerate a small fraction of the particles to high energies.

The particle drift towards the planet in the tail, due to the global circulation,
may produce Fermi and betatron acceleration (Section 8.2.2). Consider for
example a particle initially in the tail at distance r from the planet; inward
diffusion with conservation of the first adiabatic invariant up to the distance
∼ R (where the magnetic field strength B is about (r/R)3 greater) increases
the energy of its motion perpendicular to B by the factor (r/R)3. An electron
having initially an energy of 10 eV (typical in the solar wind) at a distance of
r ∼ 10R in the tail may acquire in this way an energy of 10 keV, whereas a
proton having initially an energy of 1 keV may acquire 1 MeV.37 The larger
the size of the magnetosphere, the greater the energy acquired in this way.
This process requires, however, the particles’ magnetic moment to be conserved,
which requires their gyroradius to be smaller than the curvature radius of the
magnetic field lines – a condition that is not met by energetic particles.

A great variety of other, not yet fully understood, acceleration processes
are inferred to occur, making magnetospheres powerful laboratories for under-
standing particle acceleration in the Universe. In particular, magnetic field
reconnection transforms magnetic energy into particle kinetic energy. And a
part of the energy of the electrons producing the auroras is thought to be pro-
duced in the region of upward field aligned currents J‖ (Fig. 7.20), by an electric
field parallel to the magnetic field lines (and directed outward).

As we already noted, magnetospheres undergo frequent perturbations, due to
solar wind variations. There are basically two kinds of perturbations: magnetic
storms, which follow large perturbations and energy inputs from the solar wind,
and substorms, which are produced by gentler variations, and whose mechanism
is still under debate. In both cases, the orientation of the solar wind magnetic
field plays an important role (see for example [48]).

Storms

Consider first what happens when a large solar wind perturbation, such as an
interplanetary mass ejection, hits a magnetosphere. The incident ram pres-
sure increases, which compresses the magnetosphere; according to (7.50), an

36Some planets have satellites that are a copious source of particles, as for example Jupiter’s
satellite Io.

37This holds for particles moving roughly across B. Conservation of the second adiabatic
invariant during the motion along B from small latitudes (distance r) to high latitudes (dis-
tance R) would increase the parallel speed by the factor r/R, whence the parallel energy by
(r/R)2.
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increase of the ram pressure by a factor of 10 in a large storm decreases the
distance of the nose by a factor of 2/3; this increases the current at the nose of
the magnetopause, so that the magnetic field at the planet’s surface increases.
These phenomena, however, are only preliminaries, for two reasons. First, be-
cause of the increase in solar wind speed and magnetic field, the electric field
Ew increases, as does the incident energy flux. Second, because of the curved
shape of the field lines at an interplanetary mass ejection (Fig. 6.12), the mag-
netic field encountering the magnetopause has generally a geometry adequate for
opening the magnetosphere. The magnetosphere is thus energised, and particles
are driven inward from the tail by the anti-sunward convection. This populates
the ring current with particles from the tail that are accelerated in the process.

As we saw in Section 2.2, the ring current decreases the planet’s magnetic
field. The amount of magnetic field change at the planet’s equator is related to
the total kinetic energy in the ring particles Wring by ∆B = 2Wring/µ, i.e.

∆B

B0
= −2

3
Wring

Wmag
(7.77)

where B0 is the initial planet’s equatorial magnetic field, Wmag its magnetic
energy (7.64) and the effect of magnetopause and tail currents is neglected;
this is a straightforward consequence of Virial theorem (Problem 7.6.5) ([24],
[62]). During a geomagnetic storm, the energy in the ring current may typically
increase to several times 1015 J. From (7.77), using (7.64), this produces a
magnetic field dip of ∆B ∼ 3 × 10−3B0 ∼ 10−7 T. Note that if the incident
electromagnetic power PEM given in (7.62) is increased by a factor of 10 during
a storm, and the magnetosphere taps it, the time required to put several times
1015 J into the ring current is of the order of magnitude of the timescale tT
given by (7.74).

Energetic electrons coming from the tail not only populate the ring current;
they also come towards the planet along field lines, impacting the atmosphere
in the auroral ovals (Fig. 7.19), producing powerful auroras. These electrons
are observed to have typical energies of a few keV, and to produce a total
auroral power of about 1011 W; this is roughly 10% of the increased power
PEM . Furthermore, the auroral ovals widen because the increased ring current
stretches the magnetic field so as to increase the magnetic flux threading the
tail magnetic field lines. This makes the auroral perturbations observable at
smaller latitudes.38

Figure 7.22 illustrates an extreme case of magnetic storm observed on Earth
[80]. It shows the magnetic field recorded at Bombay (according to a recent
calibration), during the giant magnetic storm of September 1859 that followed
the solar event observed by Carrington (Section 1.1). This is the most intense
geomagnetic storm recorded in history, and the widening of the auroral ovals is
illustrated by the fact that the auroras produced were visible over much of the
Earth’s surface. One sees in the figure that the main phase lasted for a little
more than one hour, which is of the order of magnitude of the time tT , while the

38A simplified estimate may be found in [71].
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Figure 7.22 A giant magnetic storm: magnetic field recorded at Bombay after
the solar event observed by Carrington in 1859. (Adapted from [80].)

maximum negative variation in magnetic field strength was ∆B ∼ −0.016×10−4

T. This corresponds, from (7.64) and (7.77), to an energy in the ring current
of Wring ∼ 6 × 1016 J. This suggests that if the energy was furnished by the
electromagnetic flux PEM , it was at this time 100 times greater than the normal
value given by (7.62).

For comparison, the strongest storm in the last century, which produced a
breakdown of the power station of the Canadian province Quebec during 9 hours
in March 1989, is reported to have caused a magnetic field decrease three times
smaller than the value shown in Fig. 7.22.

Substorms

Magnetic storms are relatively rare. Much more frequent are gentler perturba-
tions in which the incident solar wind power does not change much, but the
direction of the solar wind magnetic field changes so as to open the magneto-
sphere; at Earth, this occurs typically a few times per day. In this case, the
magnetic tail reorganises itself, producing a chain of events known as a sub-
storm, that lasts typically about one hour (∼ tT ). The magnetic pressure in the
lobes increases, the tail is stretched and the plasma sheet gets thinner; when
the structure becomes unstable, a part of the tail collapses, ejecting downward
a piece of the plasma sheet (a plasmoid), and releasing energy. Figure 7.23 is a
sketch of what might possibly occur.

Let us assume that a length L of the tail delivers its magnetic energy WLtail

during the substorm, and that for the tail to rebuild itself, this energy must
be replaced by tapping the solar wind electromagnetic energy PEM during the
timescale tT estimated above. In this case, the length L must ensure WLtail ∼
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Figure 7.23 Sketch of magnetic field lines in the tail just before (left) and during
(right) a magnetospheric substorm. A new reconnection region is formed in the
near tail, which leads to a disconnection of the plasma sheet, which is ejected
as a plasmoid.

PEM × tT . Substituting (7.73), (7.62) and (7.74), we deduce

L

RT
∼

(
µ

µ⊕
d

d⊕

)1/6 (
R⊕
R

)1/2

(7.78)

where µ/µ⊕, d/d⊕ and R/R⊕ are respectively the planet’s magnetic moment,
heliocentric distance and radius normalised to the Earth’s values. This suggests
that a length of the tail equal in order of magnitude to its radius may deliver
its magnetic energy and be rebuilt by the ‘normal’ solar wind during the tail’s
timescale. For the Earth, this corresponds to a length of about 20R⊕, an energy
of about 1015 J (from (7.73)), and a time of about two hours.

This magnetic energy serves to accelerate particles that populate the ring
current and precipitate in the auroral ionosphere near the auroral ovals, power-
ing auroras, while a part is dissipated in the ionospheric currents which increase
dramatically, and another part returns to the solar wind as ejected bullets of
plasmas (Fig. 7.23) or plasma flow.

A major difference with storms is that the solar wind perturbation mainly
serves as a trigger of the reconfiguration of the tail producing the event, whose
energy was already present as magnetic energy in the tail. Solar wind energy
is used afterwards to reconfigure the tail which has been partly destroyed. In
some sense, the building of magnetic energy and its sudden release, producing
particle acceleration and heating, reminds one of solar flares. Both phenomena
involve power law distributions of events (see for example [81]) and are still not
fully understood; they are the subject of much debate (see for example [50]).

Substorms and their associated auroral perturbations occur frequently, and
all planets having an internal magnetic field and an atmosphere exhibit auroral
phenomena. However, the rotation of the planet and the effects of satellites
makes the problem (and in particular the structure of auroral ovals) more com-
plex than outlined above.

The energetic particles in magnetospheres are sources of radiation in vari-
ous frequency ranges. Particles trapped in the radiation belts remain there for
long times and therefore respond with a long timescale to perturbations. In
contrast, the precipitation of particles in the auroral ovals closely follows solar
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wind perturbations.39 They not only produce the visible and ultraviolet light
observed in the auroras; they also produce powerful radioemissions, at frequen-
cies corresponding to the electron gyrofrequency at the planet. This power has
been shown to be closely proportional to the solar wind power incident on the
magnetosphere. For the five planets having an internal magnetic field and a con-
spicuous atmosphere (Earth, Jupiter, Saturn, Uranus and Neptune), the power
emitted in radio is

Pradio ∼ 10−5PK ∼ 10−3PEM (7.79)

in order of magnitude (see [23], [87]), with PK and PEM respectively given in
(7.60) and (7.62). An interesting consequence is that when Saturn happens to
find itself inside the magnetic tail of Jupiter, therefore becoming isolated from
the solar wind, its radioemission drops out.

Space weather

Geomagnetic storms and substorms, in addition to various particles coming from
space – from energetic nuclei to large boulders – in the Earth’s environment,
produce numerous effects that may be very harmful to our modern technology.
This is known as space weather. In Carrington’s times, a solar perturbation
disturbed telegraph systems. Nearly a century later, during the Second World
War, emission of radio waves from the Sun was discovered through the pertur-
bations created on radar signals, a technology that was in rapid development
during the war. More than half a century later, technology has harnessed space,
and its extreme sophistication has made it extremely sensitive to space weather
perturbations (see [35]). Figure 7.24 summarises some of these effects [46].

The electric currents induced in the Earth and in the ionosphere during a
geomagnetic storm affect technological systems involving long conductors. Solar
radio noise affects communications. Energetic particles and radiation harm sen-
sitive electronics on satellites and put severe constraints on human space flight.
In particular, as we already noted, if good electrical connections are not estab-
lished between the various materials on a spacecraft, differential charging may
produce lightning-like breakdown discharges. Variations in magnetic field may
perturb satellites’ attitude control. Impacts of meteoroids and larger objects
may have harmful consequences. Changes in the Earth’s atmosphere produced
by solar perturbations may increase the atmospheric drag on satellites. Hope-
fully, progress in understanding these phenomena will result in capability of
predicting and perhaps preventing them, and space weather forecasting is a
great challenge for twenty-first-century science.

39Additional auroral phenomena are driven by the motion of conductive (or surrounded by
a conductive ionosphere) satellites through the planet’s magnetic field. This occurs near the
footprint in the planet’s ionosphere of the magnetic field lines passing near the satellite orbits.
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Figure 7.24 Some effects of space weather on our technology. (Adapted from
[46].)

7.4 Physics of heliospheric dust grains

Dust grains are intermediate between plasma particles – essentially subjected to
electromagnetic forces, and large bodies – essentially subjected to gravitation.
They interact with the plasma via exchange of particles, which provides them
with a net electric charge (in addition to a change in momentum and energy)
and provides the plasma with a source or loss of particles (and momentum and
energy). Their electric charge also makes them a plasma component, so that in
some cases they contribute to plasma waves and instabilities. This has produced
the emergence of a new discipline: physics of dusty plasmas [31], [56].

7.4.1 Forces

Because of their smallness, dust grains have large size-to-mass and area-to-mass
ratios. They are thus affected by forces that, for larger bodies, are negligi-
ble compared to gravity: radiation forces (due to the momentum carried by
photons), and plasma drag (due to the momentum carried by plasma particles),
both proportional to area, and the Lorentz force (due to the grain electric charge
in the magnetic field), proportional to size.
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As other bodies, dust grains are subjected to the gravitational force. Except
in the vicinity of planets and other massive objects, the gravitational attraction
on a dust grain of mass m is due to the Sun and thus directed radially towards
the Sun and equal to

FG = mM�G/d2 (7.80)

at heliocentric distance d.

Radiation forces

Absorption and/or scattering and reflection of solar radiation by a dust particle
transfers momentum, producing a radiation pressure force directed radially out-
wards. This is easily calculated for a perfectly absorbing object of cross-section
S in circular orbit. It absorbs per unit time the energy P� = L�S/4πd2, and
therefore the momentum P�/c, directed radially outwards, which yields the
radiation pressure force

Frad = P�/c � 4.5 × 10−6 (d⊕/d)2 S N. (7.81)

Since it is antiparallel to the gravitational attraction FG, its magnitude is usually
expressed as the ratio

β =
Frad

FG
=

L�S/
(
4πd2

)
c FG

� 0.2
rµm

(perfectly absorbing) (7.82)

where we have substituted S = πr2, the expression (7.80) of FG with m �
104×r3 kg (for a spherical grain of radius r and mass density 2.5×103 kg m−3),
and the solar parameters.

Radiation pressure is not the only radiative force, because in the particle’s
frame, sunlight is viewed as coming at a small angle v/c to the radial. This
aberration produces a drag force on the orbital motion equal to v/c times the
radiation pressure force. This is known as the Poynting–Robertson drag. This
drag force, antiparallel to the orbital speed, superimposed to the outward ra-
diation pressure force, may also be viewed in the heliocentric frame as coming
from the mass–energy equivalence. Absorption of radiation increases the mass
at the rate dm/dt = P�/c2, so that, in the heliocentric frame, conservation of
angular momentum around the Sun produces to first order a decrease in the or-
bital speed v given by dv/v = −dm/m (for a particle in circular orbit), whence
mdv/dt = −vP�/c2, which yields the Poynting–Robertson drag.

Although it is much smaller than the radiation pressure, this drag has im-
portant consequences because it causes secular changes in the orbital energy
and angular momentum, which cumulate over long periods of time.

In practice, dust particles are not perfectly absorbing and they scatter radi-
ation, so that the radiation forces are reduced by an amount which depends on
the grain material and size (a detailed review may be found in [14].) Scattering
plays an important role for sizes smaller than the wavelength. Since the solar
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spectrum peaks at a wavelength λ0 � 0.5 µm and is relatively narrow, scat-
tering acts, with typical materials, for grain sizes shortward of this value. In
practice, the radiation forces decrease sharply for grain sizes smaller than about
λ0/2π ∼ 0.1 µm. We therefore have

β =
Frad

FG
� βrad

0.2
rµm

(7.83)

with βrad ∼ 1 in order of magnitude for r > 0.1 µm, and decreasing strongly
for smaller sizes.

Radiation pressure is therefore generally smaller than gravity, except for
graphite and metallic grains which strongly backscatter sunlight. These particles
can therefore be ejected from the heliosphere by the radiation pressure. In fact,
ejection may even occur when β < 1, because for a particle to be ejected, all
that is necessary is that its kinetic plus gravitational energy be positive. For
a grain of mass m and speed v at heliocentric distance d, this specific energy
is equal to W = v2/2 − FGd/m (independent on m) per unit mass, in the
absence of radiation pressure. Consider the simple case of a grain in circular
orbit (i.e. v2/d = FG/m), that is suddenly released from a massive parent body.
It suddenly feels the radiation pressure force, which is equivalent to a sudden
decrease of the gravity force by the factor 1 − β, so that the equivalent energy
becomes W ′ = v2/2 − d (1 − β) FG/m. Substituting v2/d = FG/m, this yields
W ′ = v2 (β − 1/2), which is positive if β > 1/2. For elliptic orbits, still smaller
values of β may produce ejection if the grain is released at perihelion.

In contrast, the Poynting–Robertson drag decreases the total energy, making
the orbit shrink. Let us estimate the time to spiral into the Sun, for a particle
initially in circular orbit at speed v. The drag force Frad v/c makes the grain
energy decrease at the rate dW/dt = −Frad v2/c. The grain falls into the Sun
when its energy has decreased by an amount of the order of magnitude of mv2/2,
which occurs after a time of the order of magnitude of

τPR ∼ mv2/2
−dW/dt

∼ mc

2Frad
∼ 3 × 103 rµm

d2

d2⊕
years. (7.84)

Since Frad c is just the rate of radiative energy absorption by the grain, the
time τ ∼ mc/2Frad is about the time for the grain to absorb the equivalent of
its own mass in radiation.

We shall see in Section 7.5 another consequence of the radiation pressure on
dust grains: the cometary dust tails.

Plasma drag

The impact of solar wind ions also exerts an outward pressure on dust particles,
of the order of magnitude of the ram pressure ρwv2

w per unit cross-section.40

40This force is not significantly affected by the temperature of the particles and by the grain
electric charge because both the particle thermal energy and the electrostatic energy due to
the grain electrostatic potential with respect to the plasma are much smaller than the plasma
bulk kinetic energy.



Physics of heliospheric dust grains 393

Comparing (7.18) and (7.81), we see that this force is weaker than the radiation
pressure by more than three orders of magnitude. However, it is not negligible
because a dust grain moving at speed v in circular orbit sees the solar wind
coming at an angle to the radial equal to v/vw, an aberration angle greater
by more than three orders of magnitude than the aberration angle v/c relevant
for incoming sunlight. As a result, even though the solar wind ram pressure is
negligible compared to the radiation pressure, the corresponding drag on the
orbital motion is comparable to Poynting–Robertson drag, and adds to it.

Lorentz force

We have seen in Section 7.2.2 that sunlit objects in the solar wind are charged
to a positive electric potential Φ ∼ 1 − 10 V, and that a dust grain of radius
r carries an electric charge q � 4πε0rΦ. It is thus subjected to the Lorentz
force qvrel ×Bw where Bw is the solar wind magnetic field and vrel the grain’s
speed relative to the solar wind. Since the grain speed with respect to the Sun
is small compared to the solar wind speed, the relative speed is roughly equal
to the solar wind speed vw, so that the Lorentz force is roughly FL ∼ qEw with
Ew given in (7.61). This yields

FL

FG
∼ 10−2

r2
µm

d

d⊕
. (7.85)

The Lorentz force is therefore important for grains of radius 0.1 µm and smaller.
The consequences of the dynamics are indicated by the value of the gyroradius

rg ∼ vw

qBw/m
∼ 2 × 104 r2

µm d. (7.86)

Only for very small grains is the gyroradius smaller than the relevant scales. In
that case, the grain behaves as a plasma particle, gyrating around field lines and
being subjected to magnetic drifts. Even though the Lorentz force is very small
for larger grains, it may have long-term effects, depending on the inclination of
their orbit and on the phase in the solar cycle. At low inclinations, the grains see
alternating signs due to passages on either side of the heliospheric current sheet,
whereas at high inclinations, they see a more constant magnetic field during a
large fraction of their orbit (near solar activity minimum).

Finally, subtle effects are produced by the changes in the charge carried by
the grains. The fluctuations in charge can lead to radial diffusion. In addition,
when the grain’s electric potential varies, the electric charge takes some delay to
reach its equilibrium value. When this delay, given by (7.40), is comparable to
the dynamic timescales, significant energy and momentum may be exchanged
between the grain and the plasma, producing important orbital changes. This
may happen near planets, and may be responsible for the capture of interplan-
etary grains by planetary magnetospheres [42].
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7.4.2 Evaporation

Dust grains are heated by solar radiation. A grain of radius r at heliocentric
distance d receives per unit time the energy P� ∼ L� × πr2/4πd2 on its sunlit
cross-section. If it radiates as a blackbody at temperature T , it loses energy at
the rate σST 4 × 4πr2, so that its blackbody equilibrium temperature is

T ∼
(

L�
16πσSd2

)1/4

∼ 280
(

d⊕
d

)1/2

K. (7.87)

Particles smaller than about 0.1 µm deviate from this value, as do particles
whose material significantly reflects or scatters sunlight.

With melting temperatures in the range 1000–1500 K for many materials,
most dust grains are expected to evaporate inward of 0.05 AU ∼ 10R�. Subli-
mation, however, begins at a much lower temperature; in particular, water ice
begins to sublimate at 1–3 AU.

This releases particles, which are quickly photoionised and picked up by
the solar wind (Section 6.5). Dust particles also recycle solar wind particles
into pick-up ions by adsorption and desorption. Both effects are revealed by
measurements of the velocity distribution of pick-up ions (a recent review may
be found in [54]).

7.5 Comets

Comets are fascinating objects. Left to their own devices, they are mere aggre-
gates of dust and snow about as big as a terrestrial mountain [43]. There are
billions of such objects moving around the Sun in the space beyond the planets.
Whenever some perturbation sends one of these chunks of ice (Fig. 7.25) closer
to the Sun, its surface boils up and the interaction with the solar radiation and
corpuscular emission produces a transient activity, involving a huge variety of

Figure 7.25 The nucleus of comet Tempel 1 (largest dimension about 7 km),
photographed in July 2005 during the Deep Impact mission, just before a pro-
jectile was fired against the nucleus in order to study its structure. (Image by
NASA/JPL-Caltech.)
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Figure 7.26 Comments on Halley’s comet. Top: in 164 BC from a Babylonian
tablet, and in 240 BC from a Chinese text (adapted from [78]). Bottom: inter-
pretation of a photograph of the nucleus, taken on the Giotto spacecraft during
a close fly-by in 1986 AC (adapted from [45]).

physical and chemical processes and offering sky displays that have captured
human imagination and skills throughout the ages (Fig. 7.26).

The surface layers of the body sublimate, liberating molecules and dust.
Molecules blow away, unimpeded by the small gravity of the object, producing
a huge expanding atmosphere in which complex chemistry acts in the presence
of solar ionising radiation. The expanding gas drags out the dust. Dust grains,
subjected to solar radiation pressure, follow curved trajectories – as do tennis
balls submitted to Earth’s gravity – generating a curved dust tail. Ionisation
produces an ionosphere, of a size much larger than the nucleus itself, whose elec-
tric conductivity excludes the solar wind magnetic field, making the wind stop
ahead of the comet and sweep around it. So do the magnetic field lines frozen in
the wind, which bend round and produce a long tail antiparallel to the solar di-
rection, which guides the cometary ions (Fig. 7.9). The solar wind is affected by
the comet far ahead, via the cometary ions that it picks up, which slow it down.
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Figure 7.27 Mr Leverrier, in order to better study the comet, introduces it to
the Institute. (Drawing by Cham, 1848.)

All this makes comets exciting challenges for physicists (Fig. 7.27). One
finds there solids, gases, plasmas and radiation, playing together in surprising
ways, while the nucleus itself, because it is small and spends most of its time
in the distant heliosphere, may represent the most pristine material in the solar
system.

The solar wind interaction with a comet has much in common with that of
a non-magnetised planet we studied in Section 7.2.4. However, the small mass
and large emission rate of the comet produce two main differences. First, the
freshly ionised cometary ions are picked up by the solar wind at so great a rate
that they slow it down considerably, even very far from the comet, producing
an interaction region that is larger than the body itself by many orders of
magnitude. Second, the cometary ions populate the cometary environment,
including the magnetic tail, in such a large concentration that they are visible
from large distances, sometimes with the naked eye (Fig. 1.4).

Comets played a major role in the discovery of the solar wind, thanks to
Ludwig Biermann’s pioneering work on plasma tails (Section 1.1), which behave
as distant solar wind probes. Nearly half a century later, comets surprised
astronomers by revealing a different aspect of their interaction with the solar
wind, producing X-rays that are footprints of minor wind constituents; this
X-ray emission releases a tiny part of the energy of the solar corona stored
into highly ionised atoms, until their journey with the solar wind makes them
encounter a comet. And more surprises are still to come, as, among other
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spacecraft, an ambitious mission – Rosetta – is en route to catch up with a
comet during its journey towards the Sun, and to attempt a soft landing on the
nucleus.

We make below simplified estimates of the main physical processes, focusing
on the interaction with the solar wind. Among the huge literature on the subject,
a classical (though somewhat outdated) account is [55]; a general review may
be found in [28] and [29], while a concise tutorial on plasma processes may be
found in [21].

7.5.1 Producing an atmosphere

Comets are on highly elliptical orbits. They spend most of their life far from
the Sun, according to Kepler’s second law,41 where they are mere boulders
difficult to detect. As they approach the Sun and catch more radiation, their
temperature increases and they melt, or rather directly sublimate (because of
the small vapour pressure) at an increasing rate, which produces the various
aspects of their activity.

The evaporation rate may be easily estimated from basic physics. Let us
approximate a comet’s nucleus by a sphere of radius R made of water ice,42 at
heliocentric distance d. It receives from the Sun the power L�/4πd2 per unit
(sunlit) cross-section. When it is close enough to the Sun that evaporation is
strong, most of this energy serves to evaporate molecules. In this case, since
the energy required to evaporate an H2O molecule is WH2O (the latent heat
of evaporation), the evaporation rate is L�/4πd2WH2O (per unit sunlit cross-
section). With the cross-section πR2, the emission rate is therefore (close enough
to the Sun)

Q ∼ πR2L�
4πd2WH2O

∼ 5 × 1022 R2 ×
(

d⊕
d

)2

molecules s−1 (7.88)

where we have substituted the sublimation energy of an H2O molecule WH2O ∼
0.5 eV ∼ 8×10−20 J. This holds provided the evaporation is strong enough that
the energy radiated by the nucleus (∼ 4πR2 × σST 4) may be neglected, which
occurs typically closer than 2 AU from the Sun. For a body of equivalent radius
R ∼ 5 × 103 m – as Halley’s comet – at heliocentric distance d � d⊕ (1 AU),
(7.88) yields the evaporation rate

Q ∼ 1030 molecules s−1. (7.89)

41The equation of motion (in reduced co-ordinates) yields the angular velocity dθ/dt = L/r2,
with a(1− e2) = L2/M�G (a is the semi-major axis of the ellipse and e the eccentricity), and
L (the angular momentum per unit mass) is a constant. Hence the area swept by the radius
vector joining the Sun and the orbiting body is the same in equal time intervals (Kepler’s
second law). Therefore, the farther the body, the smaller the angular velocity about the Sun.

42Beware that an actual comet’s nucleus rather looks as the sketch of Fig. 7.26. Not only
is the shape far from spherical, because the gravitational force is insufficient to bring it into
hydrostatic equilibrium against the forces ensuring the rigidity, but it is far from homogeneous
and contains numerous chemical species in addition to water ice.
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Figure 7.28 The fleet of spacecraft that encountered Halley’s comet in March
1986. All encounters took place on the sunward side of the comet, at a relative
speed in the range 60–80 km s−1, and a heliocentric distance in the range 0.8–
0.9 AU.

A fleet of spacecraft encountered Halley’s comet in 1986 when it was at 0.8–0.9
AU from the Sun (Fig. 7.28). They found an emission rate of this order of
magnitude.

Consider now what happens to the evaporated molecules. In the spirit of
these simple estimates, we ignore the complex chemistry and assume a single
chemical species, H2O, of molecular mass

m0 � 18 × mp. (7.90)

At 1 AU from the Sun, the temperature of the nucleus’s surface is typically
T0 ∼ 200 K, lower than the blackbody value given in (7.87), mainly because the
nucleus uses most of the absorbed solar energy to evaporate molecules rather
than to radiate. Let us then compare:

• the thermal speed of an H2O molecule vth0 = (2kBT0/m0)
1/2 ∼ 430 m s−1,

• the speed of liberation from the comet’s nucleus (of mass M), vL =
(2MG/R)1/2 ∼ 2 m s−1, for R ∼ 5 × 103 m and M ∼ 200 × 4πR3/3 kg
(using the estimated density of such a loose aggregate [43]).

Since vth0 � vL, the molecules do escape, producing an atmosphere that
is accelerated as it expands. This comes about because the expansion cools
the gas, so that the thermal energy stored in the degrees of freedom of the
molecules is transformed into bulk flow energy (while a part is used to drag the
dust grains).
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The maximum flow speed may be estimated from Bernoulli’s theorem. In
contrast to the fully ionised hot solar atmosphere at the origin of the solar wind
(Section 5.1), the cometary flow transports a negligible heat flux, and expands
in a nearly adiabatic way.43 Another difference from the solar wind acceleration
is that the gravitational energy is negligible, so that Bernoulli’s equation (5.1)
reduces to

v2

2
+

γ

γ − 1
kBT

m0
= constant. (7.91)

Applying (7.91) between the nucleus surface (where the temperature is T0 and
the mean radial speed is v ∼ vth0/

√
π),44 and a distance where the temperature

has decreased significantly and the flow speed is vn, we find

vn

vth0
�

(
1
π

+
γ

γ − 1

)1/2

. (7.92)

This ‘terminal’ speed vn is reached when the adiabatic radial expansion has
significantly cooled the gas, which becomes true at a distance from the nucleus
of several radii R.

The adiabatic index depends on the number N of degrees of freedom of the
molecules as γ = 1+2/N . An H2O molecule has many more degrees of freedom
than a point charge: 3 for translation, plus 3 for rotation (the temperature is
too low for the vibration levels to be populated [22]45). This yields N = 6,
whence γ = 4/3. The terminal speed (7.92) is therefore

vn � (9kBT0/m0)
1/2 � 0.9 × 103 m s−1. (7.93)

Indeed, measurements of the expansion velocity of the atmosphere of Halley’s
comet made aboard the spacecraft Giotto gave just 0.9 km s−1. Note that
this acceleration requires the flow to experience a transition from subsonic to
supersonic speed, and it is amusing to find here another echo of the solar wind
acceleration problem.46

Therefore, farther than the distance where the terminal speed vn is reached,
the gas streams outwards at a constant speed vn of about 1 km s−1. For isotropic
expansion, the density of neutral molecules at distance r from the nucleus is
therefore

nn =
Q

4πvnr2
(7.94)

provided it is not significantly reduced by ionisation.
43A realistic estimate should take into account the energy loss due to the friction by dust

grains (Problem 7.6.7).
44Because of the averaging over direction, the mean radial velocity at the surface is half the

average speed (8kB T0/πm0)1/2, i.e. vth0/
√

π (Section 2.3).
45Otherwise one should add 6 more degrees of freedom since vibration counts double because

the energy includes kinetic and potential energies.
46This transition from subsonic to supersonic speed may be viewed as a nozzle problem.

Here the converging part of the nozzle is produced by the gas–dust drag, whereas for the solar
wind the converging part of the nozzle was produced by gravity (Problem 7.6.7).
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7.5.2 Ionising the atmosphere

The molecules are subjected to the solar ionisation flux F�, which dissociates
and ionises them. Far from the comet, this flux is given by (7.9). Upon arriving
close to the nucleus, however, the solar ionising flux is smaller, because a large
part of it has been used in ionising the atmosphere along its path, as we saw
for planetary ionospheres. The mean free path of photons is lph ∼ 1/nnσion ,
where σion ∼ 10−21 m2 is the cross-section for ionisation (Section 2.4). The
solar ionising flux is reduced significantly when lph becomes smaller than the
distance r. Substituting the neutral density (7.94) in the above expression of lph,
we find that lph < r at distances r < Qσion/4πvn. With the above parameters,
this yields r < 102 km (in order of magnitude) for Halley’s comet near 1 AU.

Farther than this distance, the ionising flux is nearly F�, so that the pho-
toionisation rate of a neutral is F�σion . The solar ionising flux, however, is
not the only cause of ionisation; charge exchange (Section 2.4) with solar wind
particles contribute significantly, with a cross-section σex. With a flux nwvw of
solar wind protons, the charge exchange ionisation rate of a neutral is nwvwσex,
whence the total ionisation rate F�σion + nwvwσex. With the charge exchange
cross-section σex ∼ 2×10−19 m2 given in (2.147) and the solar wind flux (7.17),
we find the average timescale for ionisation at 1 AU

τion = (F�σion + nwvwσex)−1 ∼ 106 s (7.95)

varying as the square of the heliocentric distance since both F� and nwvw vary
as d−2. Since neutrals are moving radially at constant velocity vn and are ionised
at the rate τion , their number density nn is given by the continuity equation as

1
r2

d

dr

(
nnvnr2

)
= − nn

τion
(7.96)

when the plasma concentration is sufficiently small that recombination is neg-
ligible. Making the change of variable nnr2 = x and putting vn out of the
derivative, we find nnr2 ∝ e−r/rion , with

rion � vnτion ∼ 106 km. (7.97)

Since (7.94) holds at short distances, this yields

nn =
Q

4πvnr2
e−r/rion . (7.98)

The neutral density (7.94) is thus significantly reduced by ionisation outwards
of the distance rion , which represents the size of the neutral atmosphere – the
coma – surrounding the comet.

What happens to the ions? First of all, they collide with neutrals, so that
they tend to travel at roughly the same speed vn, and they collide with electrons,
with which they tend to recombine. Farther away, they are picked up by the
solar wind, a point we shall consider later.
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Consider first the collisions between ions and neutrals. The exchange of
momentum couples them, so that the corresponding free path of ions is l �
1/nnσcol, where the cross-section for collisions is (Section 2.1)

σcol ∼ 10−18 m2 (7.99)

for water-group chemical species (at the temperature there). The ions and
neutrals are coupled collisionally when the free path l � r, i.e. when nnσcol ×
r � 1. Substituting the expression (7.94) of nn (which holds for r < rion), we
find that ions and neutrals are collisionally coupled within the radial distance
Qσcol/4πvn. With the above parameters relevant for Halley’s comet at 1 AU,
this yields a distance of about 105 km.

Consider now recombination. The density n of ions is determined by the
balance between ionisation and recombination, as in planetary ionospheres, if
recombination has enough time to operate, i.e. if the timescale for recombination
1/nβrec is much smaller than the dynamic timescale r/v, where v is the ion
speed. In this case, the ion density is given by (7.14), whence

n ∼
(

nn

βrecτion

)1/2

∼
(

Q

4πβrecrion

)1/2 1
r

(7.100)

where we have substituted (7.94) and (7.95). This holds provided 1/nβrec �
r/v, whence, with (7.100), (7.94) and the approximation v ∼ vn:

βrecQ

4πv3
nτion

� 1. (7.101)

With the above parameters, the approximate production rate (7.89) of Halley’s
comet at 1 AU, and the recombination coefficient (from Section 2.5 with Te ∼
103 K)

βrec ∼ 4 × 10−13 m3 s−1 (7.102)

the non-dimensional number in (7.101) is greater than 10, so that the inequality
holds true, and the order of magnitude of the ion density in the comet’s iono-
sphere is given by (7.100) as n ∼ 1016/r. The spacecraft Giotto found indeed a
density of ions varying as 1/r at small distances, roughly equal to 3 × 109 m−3

at r � 4000 km, which agrees with this simplified estimate.

7.5.3 Pick-up of cometary ions

The above estimates hold sufficiently close to the nucleus that the solar wind has
not much effect. Consider now what happens far from the comet, at distances
where the solar wind dominates the problem. The freshly ionised cometary ions
are picked up by the solar wind (Section 6.5.3). This loads the solar wind with
fresh mass, slowing it down, and – as a by-product – produces waves at the
frequency of gyration of the cometary ions.
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To make an order-of-magnitude estimate, let us use a one-dimensional ap-
proximation, assuming that the parameters change essentially along the comet–
Sun axis x. Let ρ and v be respectively the mass density and speed of the
wind at distance x ahead of the comet. The mass added to the solar wind per
unit time in a slice of width dx and section unity is equal to m0 (the ion mass)
times the number of ions produced per unit time in this volume, (nn/τion) dx.
Substituting the neutral density (7.98), and (7.97), this yields

− d

dx
(ρv) =

m0Q

4πrionx2
e−|x|/rion . (7.103)

Integrating between a large distance, where the solar wind mass flux has the
undisturbed value ρwvw, and the distance r, we find

ρ (r) v (r) ∼ ρwvw +
m0Q

4πrionr
(7.104)

where we have neglected the exponential term, so that the result cannot be
applied farther than rion . Not only does the mass flux of the loaded solar wind
increase as the comet is approached, but the pressure increases, too, because
the density increases and the pick-up ions had their bulk speed in the solar
wind frame transformed into kinetic energy, as we saw in Section 6.5.3. This
pressure gradient produces a force that slows down the solar wind. The flow is
significantly modified when the second term on the right-hand side of (7.104) is
roughly equal to the first, i.e. at a distance

rpick-up ∼ m0Q

4πrionρwvw
∼ Q

1030
× 5 × 105 km (7.105)

where we have substituted the above numerical values m0 ∼ 18×mp, rion ∼ 109

m, and the typical solar wind mass flux (from (7.17) with ρw � mpnw).
Since these pick-up ions make the supersonic solar wind aware of the pres-

ence of the comet and make it slow down, one may wonder whether a shock is
necessary to accommodate the obstacle. Detailed analysis shows that a shock
may form at a distance of the order of magnitude of rpick-up, when the plasma is
not sufficiently compressible to put up with an addition of momentum density
of the order of magnitude of the solar wind undisturbed value.

For Halley’s comet, a weak bow shock was indeed observed at about this
distance; since the solar wind had already been significantly slowed down, the
shock was weak. The major role played by cometary ions in the dynamics
makes the physics of this shock differ from the ones near planets, not only be-
cause of mass loading, but also because the ion gyroradius – which sets the
scale of the structure – is much larger for cometary ions than for protons (since
it is proportional to the square root of the mass), so that for comets hav-
ing a small production rate, it is barely smaller than the relevant cometary
scales.
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Figure 7.29 Magnetic field strength measured on the spacecraft Giotto along
the trajectory shown in Fig. 7.28, as it crossed the bow shock, the magnetic pile-
up region and the cavity of vanishing magnetic field (indicated by the arrow at
the bottom). (Adapted from [60].)

7.5.4 Magnetic pile-up

The cometary plasma density is large enough for the electric conductivity (Sec-
tion 7.1) to produce a large magnetic Reynolds number in the plasma–neutral
coupling region, so that the magnetic field is frozen to the plasma at the relevant
speeds and scales. Therefore, as the comet is approached, the solar wind mag-
netic field is expected to behave somewhat as for non-magnetised planets, piling
up ahead while the speed decreases, vanishing in its vicinity while the flow slows
down, and draping around it, producing a tail in the anti-sunward direction.
This behaviour has been observed by the spacecraft that encountered Halley’s
comet on the sunward side (Fig. 7.28), and on the anti-sunward side by the ICE
spacecraft, which crossed the tail of comet Giacobini–Zinner (Fig. 7.30 below).

Figure 7.29 shows the magnetic field strength measured by the magnetometer
aboard Giotto [60] along the trajectory sketched in Fig. 7.28. The similarity to
Fig. 7.12 showing the magnetic field at Mars is striking. The field magnitude
increases at the bow shock, behind which the plasma is extremely turbulent, up
to a transition where the field begins suddenly to pile up, to reach a maximum of
Bmax � 60× 10−9 T. This strength is close to the value (7.45), whose magnetic
pressure balances the solar wind ram pressure. The magnetic field vanishes in
a cavity of radius rcavity ∼ 5000 km.

This distance marks a complex transition since on the nucleus side, the
cometary plasma is flowing outwards with the neutrals, whereas on the solar
side the plasma is made of the loaded solar wind flowing anti-sunwards. This
produces a stagnation region where the plasma speed vanishes and changes in
direction.

What provides the force required to stand off the solar wind, or rather to
balance the magnetic force associated with the ‘magnetic cushion’ produced by
the pile-up? For non-magnetised planets, this is the pressure of the ionosphere.
This is not so for comets, because the ion pressure is far smaller than the
magnetic pressure B2

max/2µ0. Since, however, this interaction takes place in
the region where ions and neutrals are collisionally coupled, the outward moving
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neutrals come to the rescue in providing a friction force to the stagnating ions,
which can balance the magnetic force.

Let us estimate the distance where this takes place. The magnetic force
is of the order of magnitude of the magnetic curvature force FB ; since at
the cavity boundary the curvature of the field lines is ∼ 1/rcavity, we have
FB ∼ B2

max/ (µ0rcavity) per unit volume. It must be balanced by the ion–
neutral friction force, which is of the order of magnitude of the neutral ram
pressure m0nnv2

n times the cross-section σcol per ion (assumed to be at rest),
i.e. m0nnv2

n × σcol × n per unit volume. Substituting nn from (7.94), the ion
density n from (7.100), and rearranging, we deduce the radius of the cavity

rcavity ∼
(

Q

4π

)3/4 (
m0 σcol vn

B2
max/µ0

)1/2 1

(rion βrec)
1/4

(7.106)

∼
(

Q

1030

)3/4

× 4 × 103 km (7.107)

where we have substituted the numerical values determined above. This order
of magnitude estimate is close to the value observed at Halley’s comet.

7.5.5 The plasma tail
The draping of the magnetic field around the nucleus as a windsock channels the
cometary ions within a flat ribbon squeezed between two flux ropes of opposite
magnetic polarity, producing a tail in the anti-solar direction, as first suggested
by Ludwig Biermann (Section 1.1), although the actual agent of the interaction –
the solar wind magnetic field – was identified later by Hannes Alfvén [2] (Fig. 7.9).

The spacecraft ICE crossed the tail of comet Giacobini–Zinner at about
8000 km from the nucleus, at a relative speed of 21 km s−1, when it was at 1
AU from the Sun and emitting Q ∼ 3 × 1028 molecules s−1. Figure 7.30 shows
the magnetic field measured by the inboard magnetometer, superimposed onto
an optical image [74]. The magnetic field is draped around the comet, producing
a magnetic tail 104 km wide (dotted line), where the magnetic field peaks at
about 60 × 10−9 T in each lobe, and vanishes in the 1200 km wide plasma
sheet where the electron density was n � 7 × 108 m−3,47 and the electron
temperature Te � 1.5× 104 K [57].48 Note that if the temperature of the ions –
which was not measured – was similar, the total plasma pressure would be
P = 2nkBTe � 3 × 10−10 Pa, smaller by a factor of five than the magnetic
pressure B2/2µ0 in the adjacent lobes. This suggests that either the tail was
not in dynamic equilibrium, or the plasma sheet ions were much hotter than
the electrons.49

47With thin structures, which may be dynamic phenomena.
48Too cold for the inboard particle analyser to be able to measure the density and

temperature.
49The neutrals cannot come to the rescue to balance the forces as they do at the magnetic

cavity, because this takes place outside the plasma–neutral coupling region, which for comet
Giacobini–Zinner is smaller than Halley’s by a factor roughly equal to the ratio of their
emission rates, i.e. about 1/30.
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Figure 7.30 Magnetic field measured on the spacecraft ICE when it crossed the
tail of comet Giacobini–Zinner at about 1 AU from the Sun, projected onto
an image of the comet taken with the Canada–France–Hawaii Telescope. This
illustrates the draping of the magnetic field, producing two lobes of opposite
polarity. (Adapted from [74].)

The plasma tails of comets exhibit a number of structures. When a comet
encounters a change in solar wind properties, essentially the direction of the
magnetic field and/or the ram pressure, the tail may disconnect from the nu-
cleus, sometimes launching bullets, and reform itself to adapt to new solar wind
conditions. This occurs at slow/fast wind transitions or solar mass ejections,
and may produce multiple tail structures as may be seen in Fig. 1.4. A study
of such tail disconnections may be found for example in [13]. This behaviour is
reminiscent of substorms occurring at magnetised planets, although the comet’s
magnetic tail is made of bona fide solar wind magnetic field lines, contrary to
the one of magnetised planets, whose structure depends on badly understood
processes connecting the magnetic field of the planet to the solar wind one.

How long are comets’ plasma tails? The cometary ions survive to recombi-
nation for a long time and may be detected very far away. The magnetic tail,
however, relies on the draping of solar wind magnetic field lines, which itself
relies on plasma speed gradients. As the draped magnetic field transfers mo-
mentum to the cometary ions via magnetic curvature forces in the tail, these
ions are accelerated; as they catch up with the solar wind, the draping decreases
and vanishes, which sets the end of the magnetic tail.

To estimate the length of the magnetic tail, consider the electric current I
flowing in the plasma sheet that separates the lobes of opposite magnetic fields
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Figure 7.31 Sketch of the cross-section of the magnetic tail. The current in the
plasma sheet separating the lobes of opposite polarity is 2B/µ0 per unit length
perpendicular to the figure.

(of amplitude B). From Ampère’s law, this current is 2B/µ0 per unit length of
the tail (Fig. 7.31), whence I ∼ 2BLT /µ0 for a tail of length LT . If the solar
wind electric field Ew ∼ vwBw acts over the distance 2r, the power dissipated
is P ∼ Ew × 2rI ∼ 4vwBwBLT r/µ0 (Bw denotes the component of the solar
wind magnetic field perpendicular to the velocity).

This electric power cannot exceed the flux of kinetic energy of the solar wind
PK ∼ vw

(
ρwv2

w/2
)
πr2 across the magnetic tail of radius r. Writing P < PK ,

with r ≤ rpick-up and B > Bw, we deduce an upper limit to the length of the
magnetic tail

LT <
π

8
rpick-up × ρwv2

w

B2
w/µ0

∼ m0Qvw/rion
32B2

w/µ0
(7.108)

∼ Q

1030
× 3 × 107 km

where we have substituted rpick-up from (7.105) and the solar wind parameters
(see Section 7.2.1). The length of the magnetic tail is therefore limited to a
distance that is greater than rpick-up by the ratio of the solar wind kinetic
and (perpendicular) magnetic energies, i.e. roughly the square of the magnetic
compression. This ratio is nearly two orders of magnitude at 1 AU from the
Sun. Model calculations yield a similar result, albeit from somewhat different
arguments [85].

7.5.6 X-ray emission

Given the low temperature and density of the cometary plasma, the discovery
that comets emit X-rays came as a surprise. This radiation consists of emission
lines in ‘soft’ X-rays (energies less than 1 keV) and extreme ultraviolet. It is not
produced by scattering and fluorescence of solar X-rays, which occur at Venus
and Mars, but by a subtle interaction between highly ionised solar wind ions
and cometary neutrals ([20] and references therein).
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We have seen that the solar corona is so hot that ions can be stripped of
most of their electrons, and are then carried out with the solar wind.50 When
these ions happen to encounter a neutral molecule, they take one of its electrons,
producing a reaction such as

On+ + H2O −→
(

O(n−1)+
)∗

+ H2O+ (7.109)

for oxygen. Similar reactions take place with other elements and various levels
of ionisation. In the above example, the ion On+ (an oxygen atom stripped of all
its electrons but 8−n) acquires an electron, and is left in a highly excited state,
symbolised by ()∗. Because of the large unscreened nuclear charge, the energy
available is large, and de-excitation down to the ground state results in emission
of X-ray photons. The maximum energy available may be estimated by noting
that the upper electron of O(n−1)+ ‘sees’ an effective charge q = ne and has
therefore a potential energy ∼ −WBohr × n2 in its ground state (Section 2.5).
Since the energy in the excited state has a much smaller modulus because the
electron is nearly free, the transition involves an energy of nearly n2 × WBohr,
which comes to about 900 eV for n = 8 (a fully ionised oxygen atom). The larger
the atomic number and the ionisation level, the greater the energy available. In
practice, the transitions taking place are subtly controlled by the parameters
and by the selection rules of atomic states.

How much power may be emitted in this way? Let α be the (cumulated)
proportion relative to protons of the most effective solar wind ions (α ∼ 10−3),
and let us approximate their speed by the solar wind speed vw. The effective
ion flux is therefore the solar wind flux nwvw times α. If each encounter with a
neutral produces an average energy Wph with an average cross-section σex, the
power emitted per unit volume is

PX ∼ (αnwvw) σex Wph nn. (7.110)

Substituting the neutral density (7.98) and the parameters Wph ∼ 20 × WBohr

(∼ 0.3 keV), σex ∼ 2× 10−19 m2 from (2.147), and integrating over volume, we
get the total X-luminosity

LX =
∫ ∞

0

PX × 4πr2dr ∼ (αnwvw) σex × 20WBohrQ τion (7.111)

∼ α

10−4

Q

1030
× 2 × 109 W (7.112)

where we have substituted the solar wind flux, the cross-section, and the ionisa-
tion radius (7.97) and timescale (7.95) relevant at 1 AU. This order-of-magnitude
estimate agrees with the values observed. Temporal variations of the flux of
heavy ions in the solar wind translate directly into variations of X-ray emission.
Note that this exchange of charge cannot take place when the highly ionised ion

50They are unable to recombine because the timescale for recombination is much greater
than the dynamic timescale (see Section 2.5).
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encounters another ion because of the Coulomb electrostatic repulsion between
charges of equal sign.

We find here an echo of the heating of the solar corona. Some of the energy
available in the corona is used to strip heavy ions of their electrons, which
remain in this highly ionised state during their journey in the solar wind, until
they encounter a neutral particle and deliver the energy. Analysis of the emission
spectra may provide a novel tool for probing the solar wind minor ions in regions
difficult to access.

This effect not only takes place at comets, but also near planets, which are
a source of neutrals, and within the heliosphere, which contains a significant
quantity of interstellar neutrals (Section 8.1.2).

7.5.7 The dust tail

Consider finally what happens to the dust. Close to the nucleus, the moving gas
pushes the grains outwards. When the gas density has sufficiently decreased,
the drag becomes negligible, and the motion of the dust grains is driven by the
solar gravity and radiation pressure. We have seen that the radiation pressure is
equivalent to reducing the effective gravitational attraction. Since the comet’s
nucleus itself follows a trajectory determined mainly by solar gravity, dust grains
follow orbits that are more open than that of the nucleus, the more so as the
grain is smaller, by virtue of (7.83).

It is amusing to find here an echo of a problem we encountered in Section 6.1,
when calculating the shape of solar magnetic field lines produced by the Sun’s
rotation. In the solar case, magnetic field lines follow the trajectories of plasma
parcels ‘launched’ from a rotating point at distances where gravity is negligible,
so that they follow straight lines at the constant solar wind speed. The problem
is similar for the grains for which β � 1, so that the radiation pressure annuls
the gravitational attraction. In this case, once launched at about 1 km s−1 near
the nucleus, the grains continue on straight lines, just as do the plasma parcels in
the solar wind problem. They therefore follow trajectories as shown in Fig. 6.1,
with two main differences: first, the comet’s nucleus does not move on a circular
orbit (contrary to a point on the solar surface), second, the scale with respect
to the object is different because the grain’s ‘launch’ speed is much smaller than
that of the comet’s nucleus (whereas the solar wind speed is much greater than
the rotation speed at the solar surface).

For most grains, however, β �= 1, so that they are subjected to a net force
that curves the trajectory somewhat as does gravity for objects launched at the
surface of a planet. Grains emitted at different times follow different orbits, as
do those of different size, which are subjected to a different force. This produces
the diffuse curved tail of comets, whose visible radiation is essentially sunlight
reflected from the dust grains.

The small grains for which the radiative force is the largest ultimately fill the
whole heliosphere and are ultimately lost. The large ones, which are subjected
to a small radiative force, follow orbits close to that of their comet progenitor;
they give rise to the meteor showers observed at regular intervals when the Earth
happens to cross these orbits, producing the so-called shooting stars.
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7.6 Problems

7.6.1 Electrostatic charging in space

Calculate the current of photoelectrons and of solar wind electrons for an object
with different geometries, as explained in the text. Show that the current of
protons is in general negligible. What happens in the wake for a body having
an insulated surface? Try to estimate the electrostatic charging of the Moon on
both its sunlit and shadowed parts. How does the surface potential of the Moon
vary when it passes from the solar wind environment to the Earth’s magneto-
sphere?

Hints

When calculating the currents, look at Problem 5.7.7. For an insulating surface,
note that the net current must vanish locally on each point. The rear side of the
object is in the wake, which is depleted of protons, but much less so of electrons.
Since the rear side is generally in shadow, the incoming electron and proton
fluxes must balance each other. The potential of the surface must therefore be
sufficiently negative to curve the proton paths sufficiently to make them enter
the wake; this requires eΦ ∼ −mpv

2
w/2, which yields a potential of nearly −103

V; in fact, electrons are also depleted, and barriers of potential are produced,
making the calculation far more complex than this rough estimate. Beware
that when the Moon is immersed in the Earth’s magnetosphere, the presence
of high-energy electrons may result in electron secondary emission playing an
important role in the charging process.

7.6.2 Magnetic pile-up

Imagine a body of size R made up of a material of conductivity σ immersed
in the solar wind flow (Fig. 7.32). Calculate the current density induced in
the cube by the relative motion. What is the current necessary to cancel the
magnetic field in the cube? Show that the magnetic field produced by this
current adds to the ambient magnetic field, doubling it. How do the currents
close?

Figure 7.32 Current sheet in a conducting body immersed in the solar wind
flow, and corresponding magnetic field.
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Hints

The current density is J = −σvwBw (where vw and Bw are the unperturbed
solar wind values), since the product vwBw is conserved as the solar wind slows
down and the magnetic field lines pile up. From Maxwell’s equation × B =
µ0J, a sheet of current density J and width ∆ produces a magnetic field BJ ∼
µ0J∆, whence

BJ ∼ µ0σvwBw∆. (7.113)

Let Bmax be the total magnetic field in front of the cube. To cancel it behind
the sheet requires BJ = Bmax, i.e. σ∆ ∼ Bmax/ (µ0vwBw). Substituting (7.46),
this yields µ0σVA∆ ∼ 1. Since the size of the cube must be R > ∆, we have

µ0σVAR > 1. (7.114)

The lines of current in the body must diverge towards its extremities, to make
the current density decrease sufficiently to enable current closure.

7.6.3 Chapman–Ferraro layer
Consider a very simplified model of the magnetopause, in which solar wind
particles are coming from the left-hand side of the boundary, where the magnetic
field is assumed to be negligible. On the right of the boundary, they suddenly
see a magnetic field B, which makes them turn and reverse their direction of
motion. Because the protons have a much greater gyroradius than the electrons,
they penetrate much farther, producing a current sheet that flows downwards
in a slab perpendicular to Fig. 7.33.

Show that any proton entering the boundary over a region 2rp wide (rp is
the gyroradius in the field B) will cross the plane y = 0.

Figure 7.33 A sketch of the particle trajectories at the magnetopause, with a
simplified model.
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Deduce that with a density n of protons arriving at speed vw, this yields
a current I ∼ 2ρv2

w/B flowing downward per unit thickness perpendicular to
the figure. Since the current sheet serves to cancel the dipolar field B on the
left, while it doubles it on the right-hand side, we have I = 2B/µ0 which yields
(7.49) to a numerical factor of order unity.

Show that with electrons and protons coming both at the solar wind speed,
the geometric mean of the electron and proton radii is equal to the electron skin
depth c/ωp.

How does the actual situation differ from this simplified model?

Hints

What about charge neutrality? What happens when two counterstreaming plas-
mas are in presence? Is the magnetic field in the magnetosheath negligible?

7.6.4 Interaction of the solar wind with Venus and Mars

Deduce from Fig. 7.11 the solar wind dynamic pressure during the measure-
ments, and the approximate temperature of the plasma at the ionopause, for
the three cases shown. Compare the latter with the measured values [58], and
comment. Try to find reasons why the ionosphere of Mars has more difficulty
than that of Venus in standing off the solar wind.

7.6.5 Ring current

Show that the magnetic field produced at the surface of a planet of radius R by
the gradient drift of a charge of energy W in the equatorial plane is (counted
along the axis antiparallel to the planet’s magnetic moment)

∆BD =
−3µ0W

4πR3B0
. (7.115)

Show that the particle (circling at distance r from the planet) has a magnetic
moment µ = −W/B along that same axis, where B = B0 (R/r)3 and produces
at the planet’s equator a magnetic field (along that same axis)

∆Bµ =
µ0W

4πR3B0
. (7.116)

Deduce that the magnetic field decrease produced by a ring of drifting parti-
cles of total kinetic energy Wring is given by (7.77) (the Dessler–Parker–Sckopke
relationship).

Derive this relation from the Virial theorem.
Assume that the energy in the ring current is 1015 J and approximate it by an

annulus circling the Earth at a distance of 5R⊕. Show that the corresponding
current is a few 106 A.
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Hints

To derive (7.77) from the Virial theorem, apply it both to the planet alone
and to the planet + magnetosphere system, neglecting the electrostatic energy,
the mutual gravitational energy of the planet + magnetosphere system, and the
magnetic self-energy of the magnetosphere. Note that the mutual energy of the
planet’s magnetic dipole and the ring current is µ∆B, whereas the magnetic
energy of the planet’s dipole above the surface is Wmag = µB0/3.

7.6.6 Does Vesta have a magnetosphere?
The asteroid Vesta, of diameter � 530 km, is one of the three largest bodies
of the main asteroid belt, and studies of meteorites suggest that it may have
a conductive core and once had an intrinsic magnetic field. Its distance to the
Sun is about 2.4 AU. Measurements of the solar reflectivity of its surface suggest
that it is not subjected to direct impact of the solar wind particles [84]. Propose
possible explanations.

Hints

Compare the size of Vesta to the basic solar wind scales. Vesta has no atmo-
sphere, but might have a significant electric conductivity and/or a significant in-
trinsic magnetic field. In the latter case, what is the magnetic moment required
to possibly stand off the solar wind? Alternatively, calculate the minimum value
of the conductivity in a region of given size for the magnetic Reynolds number
to be greater than unity, so that an induced magnetosphere may possibly exist.
Given the size of Vesta, can the interaction be described by MHD? See [84] and
[63].

7.6.7 Gas–dust drag in a comet: another nozzle problem
Consider the outflow of a dusty gas from a cometary nucleus at small distances.
The gas starts at a subsonic speed at distance r = R (the radius of the nucleus),
and acquires a supersonic speed at some distance where the temperature has
decreased considerably. To estimate how the flow speed varies with distance,
make three (unrealistic) assumptions: first, the flow has a spherical symmetry;
second, the gas (of radial velocity v) is slowed down by collisions with dust,
which produces a drag force equal to νgdv per unit mass (where νgd is the
collision frequency of the neutrals with the dust, approximated by νgd ∼ VS/lgd

with lgd ∼ 1/ndσgd the free path of molecules for collisions with dust grains);
and, third, the flow is adiabatic.

Show that the problem is similar to the de Laval nozzle studies in Prob-
lem 5.7.1, with the nozzle cross-section variation dS/S being replaced by the
factor dr (2/r − v/VSlgd), so that the constriction of the equivalent nozzle is
provided by the drag force.

Deduce the critical distance where the gas becomes supersonic, as a function
of lgd.

Estimate this distance, compare with other scales, and comment.
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8

The solar wind in the
Universe

‘To an astronomer, man is nothing more than an insignificant dot
in an infinite universe,’ someone once said to Einstein. To which
Einstein replied: ‘But I realise that the insignificant dot who is man
is also the astronomer.’

What is the solar wind to an astronomer? I shall not address this question
in detail, but only briefly examine how the solar wind interacts with its cosmic
environment, and how it compares with some other cosmic winds. I also address
briefly the physics of cosmic rays, their acceleration and their interaction with
the solar wind.

8.1 The frontier of the heliosphere

In studying the interaction of the solar wind with objects in Chapter 7, we
omitted one major obstacle: the interstellar medium.

In the long term, the interstellar medium is the direct partner of the Sun
in the galactic system; it served as a source of matter for the formation of the
Sun and the Solar System; in turn the Sun returns matter to the interstellar
medium via the solar wind at a rate of about 106 tonnes per second, a figure
that will change dramatically in the final phase of its life.

In the short term, we saw in Section 5.2 that the interstellar medium plays
a major role in the solar mass ejection, by providing the low-pressure exit of
the solar wind nozzle. We address in this section this aspect of the interaction,
studying the large-scale structure of the cavity – the heliosphere – that the
solar wind carves in the interstellar medium. In the spirit of this book, we
focus on basic physics, and refrain from doing things in full detail. More may
be found in the reviews [17], [14] and [6] and in the older but still excellent
account [19].

419
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Table 8.1 Main physical properties of the local interstellar medium as inferred
in 2005.

Speed relative to
Number density Number the Sun, vI , making
of neutral density of an angle of about Magnetic field
hydrogen, protons, Temperature, 6◦ to the ecliptic strength, BI

nn (m−3) nI (m−3) TI (K) (m s−1) (10−10 T)

0.2 × 106 (0.04 − 0.07) × 106 (6 − 7) × 103 2.6 × 104 2–3

The Sun lies in the remote part of our galaxy, and its motion carries it
in various regions of the interstellar medium, the inhomogeneous and unsteady
medium separating the stars [7]. The Sun is presently travelling through a small
interstellar cloud: our Local Cloud, in which it is expected to remain embedded
for several thousand years more.

8.1.1 The Local Cloud
We penetrate here into unsafe ground, since no spacecraft has ever explored this
medium. Furthermore, being inside the structure, our view is highly biased, and
our knowledge is based on ingenious – but unsecured – inferences from various
observations. As happens in the exploration of new territories, discoveries are
accumulating faster than the digestion rate of textbook writers.1

To a first-order approximation, the Local Cloud is believed to be made of
partially ionised hydrogen of temperature a little under 1 eV, moving at a few
tens of km s−1 with respect to the Sun in a direction making a small angle to the
ecliptic plane, and permeated with a magnetic field of a few 10−10 T (Table 8.1);
nothing being simple, this field is neither roughly parallel nor roughly perpen-
dicular to the velocity. The medium also contains dust grains and relativistic
charged particles – cosmic rays; the latter are negligible in number density, but
represent an appreciable part of the total energy density.

The neutral particles (whose mean free path is comparable to the size of the
heliosphere) and the dust grains interact relatively weakly with the solar wind
plasma; the main agents of interaction are the interstellar charged particles and
magnetic field, which control the large scale structure of the heliosphere via
their pressure, confining it into an elongated bubble with a tail, somewhat as a
planetary magnetosphere. Table 8.2 lists the energy densities of these plasma
constituents. This shows that:

• the kinetic energy of bulk motion, nImpv
2
I/2,

• the thermal energy of protons and electrons, 2 × 3nIkBTI/2,

• and the magnetic energy B2
I /2µ0,

are each in the range of (1 − 4) × 10−14J m−3.

1The Local Cloud in which the heliosphere is presently embedded belongs to a family of
interstellar clouds known as the local fluff, or CLIC (Complex of Local Interstellar Clouds).
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Table 8.2 Energy density of the interstellar plasma near the Sun

Bulk plasma motion, Proton + electron
ρIv

2
I/2, with thermal motion, Magnetic field,

ρI � nImp (J m−3) 3nIkBTI (J m−3) B2
I /2µ0 (J m−3)

(2 − 4) × 10−14 (1 − 2) × 10−14 (2 − 4) × 10−14

The energy density of high-energy particles, the cosmic rays, is estimated to
be about wCR � 3×10−13 J m−3 ([7] and Problem 8.4.1), i.e. of the same order
of magnitude as the total of the above contributions. However, cosmic rays
contribute relatively weakly to controlling the heliosphere because of their large
radius of gyration in the heliospheric magnetic field. We shall see below that
only the lower energy cosmic rays have a sufficiently small gyroradius to interact
significantly with the bulk plasma, and they represent a badly known fraction of
the total cosmic ray energy. Furthermore, for relativistic particles, the pressure
is one-third of the energy density, compared to 2/3 for non-relativistic particles
(Section 2.1). As a consequence, cosmic rays may be estimated to contribute
an equivalent pressure of roughly a tenth of their energy density wCR or less.

As a consequence of the similar energy densities of the plasma bulk motion,
the thermal motion and the magnetic field, the corresponding speeds are com-
parable, too. More precisely, the bulk speed vI of the interstellar plasma is
somewhat smaller than the proton thermal speed (2kBTI/mp) � 104 m s−1 and
the sound speed, but it is close to the Alfvén speed BI/

√
µ0ρI � (2.1 − 2.7) ×

104 m s−1 and to the magnetosonic speed.

8.1.2 Basics of the interaction

The plasma

The interaction of the solar wind with the interstellar plasma has much in
common with its interaction with Solar System bodies (Section 7.2). From the
point of view of the solar wind, the flowing magnetised interstellar plasma is an
obstacle that forces it to stop. Since the solar wind is supersonic, its slowing
down is mediated by a shock, where it becomes abruptly subsonic and can
subsequently slow down smoothly. It stops farther away at a contact surface (the
heliopause), that separates solar from interstellar material. The region between
the solar wind terminal shock and the heliopause contains solar wind plasma
that has been slowed down, heated and compressed at the shock, and continues
to slow down until it encounters the heliopause; this so-called heliosheath is
akin to planetary magnetosheaths (Section 7.2). Since the wind supplies in
permanence new matter towards the frontier, the only way for the flow to exit
is to turn down at the stagnation point and be ejected downward, forming a
heliotail somewhat as the tail of a planetary magnetosphere (Fig. 8.1). The
geometry of the solar wind magnetic field (which is highly wound up at large
distances (Fig. 6.2, right panel)) makes the structure relatively complex.
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Figure 8.1 Simplified sketch of the interaction of the solar wind with the in-
terstellar wind due to the relative motion of the Sun and the local interstellar
medium. Both winds (dark grey arrows) slow down upon encountering each
other, and stagnate at the heliopause (black line). The solar wind becomes sub-
sonic (1–2) at a shock (dashed) and then slows down to stop at the heliopause
(0) and turn sideways to form a tail (light grey arrows). The interstellar wind
slowdown is mediated by a shock if the bulk speed is greater than the com-
pressive wave speeds. The interstellar magnetic field is expected to distort the
structure as shown in Fig. 8.2.

Consider now the point of view of the interstellar medium. It sees the magne-
tised heliosphere as an obstacle on which it arrives at the speed vI (the relative
speed between the local interstellar medium and the Sun). It must stop ahead of
it and sweep around, somewhat as the solar wind encountering a large body of
the solar system, with, however, two main differences. First, since it is presently
not clear whether the bulk speed is larger than the speed of compressive plasma
waves in the interstellar medium (and if it is so, this is by a very small amount),
a plasma bow shock does not necessarily form. Second, the interstellar medium
contains a huge proportion of neutrals.

The neutrals

The interstellar neutrals interact relatively weakly with the solar wind plasma.
The main interaction is by charge exchange between proton and hydrogen atoms,
and the corresponding free path is large enough for the neutrals to flow relatively
freely through the solar wind, to a first approximation.

To a second approximation, however, the charge exchange between protons
and neutrals produces significant effects. This exchange takes place both outside
and inside the heliosphere. Outside the heliosphere, the exchange of one electron
between interstellar H atoms and interstellar protons produces fresh interstellar
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Figure 8.2 A model of the distortion of the heliosphere produced by the inter-
stellar magnetic field (BI). Isolines of the plasma density, and plasma stream
lines, showing the asymmetry of the interstellar pile-up region, of the helio-
spheric shock and of the heliopause. (Courtesy of V. Izmodenov; adapted from
[12].)

neutrals having the properties of the interstellar plasma. Since this plasma
is compressed and heated in slowing down before the heliopause, the charge
exchange produces a ‘wall’ of interstellar hydrogen of relatively large density
and temperature just before the heliopause, on the interstellar side. We shall
see later that similar hydrogen walls have been detected from the absorption
spectra of several other stars, providing an indirect detection of distant stellar
winds. Inside the heliosphere, when an interstellar H atom gives its bound
electron to a solar wind proton, this produces a neutral having the solar wind
speed – which leaves the system – and a proton which is quickly picked up by
the solar wind, making it slow down. Furthermore, when an interstellar H atom
gives its electron to a highly ionised heavy ion of the solar wind, this produces
X-ray emission, just as occurs for planetary and cometary neutrals (Section 7.5).

Since in approaching the Sun, both the solar ionising radiation and the solar
wind density are increasing, the question arises as to how close to the Sun
interstellar atoms can penetrate before being ionised by photoionisation and
by charge exchange. This distance dion may be estimated by noting that the
ionisation timescale τion of neutrals at this distance is of the order of magnitude
of the time they take to travel this distance, i.e. τion ∼ dion/vI . The ionisation



424 The solar wind in the Universe

timescale τion may be estimated as in the case of comets (Section 7.5). Ionisation
is produced by:

• the solar ionising flux F� with the cross-section σion,

• the solar wind flux nwvw with the charge exchange cross-section σex.

The total rate of ionisation per atom is therefore τ−1
ion = F�σion +nwvwσex. We

found in Section 7.5 that τion � 106 s at 1 AU (d⊕) from the Sun, on average
over the solar cycle, varying as the square of the heliocentric distance r. If the
parameters for hydrogen ionisation are of the same order of magnitude as those
for cometary atoms, we have τion ∼ 106 × (r/d⊕)2 at the heliocentric distance
r, so that the heliocentric distance dion is given by 106 × (dion/d⊕)2 ∼ dion/vI ,
whence2

dion/d⊕ ∼ 10−6d⊕/vI ∼ 6. (8.1)

Hence, ionisation near the Sun is sufficiently weak that an interstellar atom
can penetrate down to a few AU from the Sun before being ionised. We shall
return to the fate of these atoms later.

8.1.3 The size of the solar wind bubble
The size of the heliospheric bubble has been the source of speculations for half a
century, mainly because of our ignorance of the state of the interstellar medium.
This fostered a long suspense as to when the distant space probes would en-
counter the boundary, a suspense that ended in December 2004, when Voyager
1, the most distant spacecraft of the remote fleet (Section 6.3), heading towards
the nose of the heliopause, finally encountered the heliospheric shock.

A simple estimate of the heliocentric distance of the shock, where the solar
wind becomes subsonic (labels 1–2 in Fig. 8.1) before slowing down smoothly
and stopping at a stagnation point (label 0 in Fig. 8.1) may be obtained by using
a similar reasoning to that in Section 7.2.6. The total pressure at the solar wind
stagnation point (label 0) is P0 � 7ρwv2

w/8, ρw and vw being the solar wind
mass density and speed just inside the shock (label 1 in Fig. 8.1). Neglecting
the solar wind deceleration due to charge exchange, the solar wind ram pressure
given in (7.18) yields at the shock distance dTS : ρwv2

w � 2.1× 10−9 (d⊕/dTS)2,
whence

P0 � 1.8 × 10−9 (d⊕/dTS)2 . (8.2)

Contrary to the situation in the solar wind, where the bulk kinetic energy
dominates the thermal and magnetic energies, in the interstellar wind, all sources

2This order-of-magnitude estimate gives the same result as a more correct calculation. In-
deed, the probability of ionisation upon travelling the distance dr (which takes the time dr/vI )
is (dr/vI ) /τion , so that the probability of ionisation of a neutral travelling from infinity to
the distance dion is

∫ ∞
dion

dr/ (vI τion ). Substituting the value of τion at distance r, integrating

and equating the result to unity yields (8.1).
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of energy contribute significantly, so that the interstellar equivalent pressure is
made of:

• the ram pressure nImpv
2
I ,

• the ion + electron thermal pressure 2nIkBTI ,

• the magnetic pressure B2
I /2µ0,

• the cosmic ray effective pressure PCR.

As we noted above, we approximate the effective cosmic ray pressure by PCR ∼
3 × 10−14 Pa, and deduce from the values of Table 8.2 the total equivalent
interstellar pressure PI ∼ 1.4 × 10−13 Pa, which must balance the pressure P0.
We deduce from (8.2) the heliocentric distance of the solar wind terminal shock

dTS

d⊕
∼

(
1.8 × 10−9

1.4 × 10−13

)1/2

∼ 102. (8.3)

This puts the distance of the nose of the solar wind terminal shock at about
100 AU in order of magnitude, a value that varies with the solar cycle and the
solar wind perturbations.

The magnetometer of Voyager 1 (whose plasma instrument is no longer op-
erational) found a sudden abrupt magnetic field increase at 94 AU from the
Sun (and a heliocentric latitude of 34◦), a signature of the shock traversal that
was backed up by a simultaneous increase of both the intensity and isotropy of
galactic cosmic rays.

8.2 Cosmic rays

Cosmic rays are charged particles of high energy, which are ubiquitous in the
Universe. The bulk of them are revealed by their electromagnetic radiation,
but those reaching the Solar System play a unique role since we can observe
them directly. Early studies of cosmic rays referred to those arriving in the
Earth’s atmosphere, but they are now measured in various regions, outside
the ecliptic plane (aboard the Ulysses spacecraft), and even at the frontier of
the heliosphere (aboard the Voyager spacecraft). The term high-energy particles
is rather loose. In a wide sense, it might denote the particles of energy greater
than average whose concentration exceeds their normal thermodynamic share,
that is the Maxwellian level. The term, however, is generally used in a stricter
sense, and rather denotes particles of energy greater than about 1 MeV per
nucleon or electron.3 Since for a proton the rest mass is mpc

2 � 0.9 GeV and
for an electron about 0.5 MeV, the above energy range includes but is not limited
to relativistic velocities.

3For example on Ulysses, the range of the detector of ‘low-energy particles’ is 50 keV to 5
MeV for ions and 30–300 keV for electrons, whereas the range of the detector of ‘cosmic ray
particles’ (including those of solar origin) is 0.3–600 MeV per nucleon for ions and 4–2000 MeV
for electrons.
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These particles share a significant part of the energy in the Universe. We
saw in Section 8.1 that their total energy density in the interstellar medium
is estimated to be of the order of magnitude of 3 × 10−13 J m−3 (see Prob-
lem 8.4.1). If this is dominated by particles of energy around 1 GeV, i.e. 109×e ∼
10−10 J, the corresponding number density is of the order of 10−3 m−3, smaller
by many orders of magnitude than the average density of thermal particles in
the interstellar medium.

Most of these particles come from outside the heliosphere, but the heliosphere
produces them, too, since we have seen that the solar atmosphere, the planetary
magnetospheres and the various shock structures in the heliosphere are powerful
accelerators of particles.

We examine in this section the basic observed properties of cosmic rays, how
they may be accelerated, and how the solar wind may affect them, focusing
on basics. One must keep in mind that the question of the origin of cosmic
rays is still an unsolved problem, despite nearly a century of research since the
announcement of their discovery by V. Hess in 1912. Likewise, there is still no
complete theory of how the solar wind affects them, and the available literature
is merely an attempt to decode the as yet mysterious cosmic ray language.
Reviews may be found in the books [15] and [3], and for example in [2] and [17]
and the volumes [9] and [6].

8.2.1 Cosmic rays observed near Earth
Figure 8.3 shows the energy distribution of cosmic rays observed near Earth, by
various methods using space and Earth-based detectors [4].4 The distribution
includes particles of various types, of which about 98% are protons and heavier
nuclei, and the rest are electrons. It is plotted as differential flux (per steradian)
versus energy, and shows two major properties. First, the spectrum is well rep-
resented by a power law over a large range of energies (11 orders of magnitude),
although a comparison with a single power law (dotted line) shows breaks at a
‘knee’ and, to a lesser extent, at an ‘ankle’. Overall, the differential flux may
be expressed as

dF/dW ∝ W−p (8.4)

with the exponent p lying in the range 2.7 − 3.1 for W > 1010 eV. We shall see
below that a relatively straightforward acceleration mechanism predicts indeed
a power law spectrum, which is modified, however, by the particle propagation
and losses throughout the Galaxy.

Second, the curve exhibits a pronounced attenuation at energies less than
about 109 eV. This part of the spectrum is shown in Fig. 8.4 separately for
hydrogen, helium and heavier nuclei, at different phases of the solar cycle; in each

4Because the Earth’s atmosphere shields the primary cosmic rays, their direct observation
must be made from space. However, at energies greater than about 1014 eV, the flux is so
small (see Fig. 8.3) that space-bound detectors run out of statistics, and one must rely on
Earth-based detectors, which yield indirect measurements, via the ionisation produced by
cosmic rays in the atmosphere.
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Figure 8.3 Measured energy spectrum of cosmic rays above 0.1 GeV (plotted
as the differential flux per steradian dF/dW versus energy W ), compared to a
power law of index about −3 (dotted line). (Adapted from [4].)

set of spectra, the top (bottom) curve is relative to solar minimum (maximum)
respectively [21]. One sees that the fluxes are strongly attenuated for energies
per nucleon below about 109 eV, and that the attenuation increases as solar
activity increases.

The modulation with solar activity is illustrated in more detail in Fig. 8.5,
which shows the flux of protons of energy around 2×108 eV as a function of time
from 1972 to 1997 (top), together with the mean sunspot number (bottom). This
behaviour is attributed to cosmic ray propagation through the heliospheric mag-
netic field, whose structure complicates considerably as solar activity increases.
One sees in Fig. 8.5 that the modulation depends not only on the sunspot num-
ber, but also on the parity of the solar cycle, through the direction of the solar
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Figure 8.4 Measured energy spectrum of cosmic rays around 1 GeV (109 eV)
per nucleon, plotted as differential flux versus energy per nucleon, separately for
hydrogen, helium and heavier nuclei, at three epochs of the solar cycle. In each
set of spectra, the top (bottom) curve is relative to solar minimum (maximum).
Solid lines are smoothed fits to the data, dotted lines are sunspot minimum
spectra measured in earlier studies. (Adapted from [21].)

magnetic dipole. This direction is indicated by the sign of the parameter A,
which (by convention) is positive when the magnetic field points away from the
Sun in the north hemisphere (the case shown in the figures of Sections 1.3 and
6.1), a configuration that we have seen to reverse every 11 years. This varia-
tion with the sense of the solar magnetic dipole holds because most cosmic rays
are charged with the same sign (positive), and the Lorentz force reverses with
the heliospheric magnetic field; the modulation then depends on the sign of A.
In particular, the variation with the sunspot number is faster at solar minima
having A < 0 than at those having A > 0. We shall find an explanation later.
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Figure 8.5 Modulation of cosmic rays with solar activity. Flux of protons of
energy 120–239 MeV as a function of time from 1972 to 1997 (top), with the
corresponding sunspot number (bottom). A > 0 (A < 0) denotes time periods
when the solar magnetic field points outwards in the north (south) solar polar
region respectively. (Adapted from [10].)

Figure 8.4 shows another intriguing point: there is an upturn in the cosmic
ray spectra at low energies, and detailed measurements show that the spectra
exhibit a bump at energies around 10–100 MeV (see Fig. 8.10 below). At such
energies, the particles’ properties are found to be different from those of galactic
cosmic rays, whence their name anomalous cosmic rays. They are singly ionised,
as are most pick-up ions, in contrast to the highly stripped galactic cosmic rays,
their composition is similar to that of the interstellar medium, and their flux
increases with heliocentric distance.

At still lower energies lie the particles that have been accelerated by transient
events in the solar atmosphere and in other regions of the heliosphere, up to
energies of the order of a few MeV per nucleon, above the background of solar
wind ions and picked up particles (Section 6.5) whose energy is several keV per
nucleon [16].

We shall examine these points in more detail in the following sections.
At the other extreme of the energy spectrum plotted in Fig. 8.3, near 1020 eV,

the measurements are still inconclusive because of the rarity of the particles.
This motivates a strong observational and theoretical activity because parti-
cles of energy per nucleon greater than 1020 eV pose a serious challenge for
conventional theories.

Not only are those particles so energetic that even the boldest theoreticians
run out of ideas to find a plausible scenario for accelerating them, but any-
way, they would lose most of their energy before reaching the Earth, by collid-
ing with photons of the cosmic microwave background pervading the Universe.
Worse still, their huge energies make their gyroradii so large in the galactic and



430 The solar wind in the Universe

intergalactic magnetic fields that these fields should not perturb them. Their
arrival directions should thus point back to their sources in the sky, which does
not appear consistent with the available observations. All these difficulties are so
serious that they pose a challenge to standard particle physics and cosmology [4].

8.2.2 Rudiments of the acceleration of particles

Let us examine how the particles may be accelerated. A basic requirement for
particles to be accelerated to energies much above thermal is that the energy
be not shared between all constituents of the medium. Namely, collisions and
other equilibration mechanisms must be rare. This usually requires the medium
to be dilute. Plasmas, however, share two properties that facilitate particle
acceleration:

• the particles carry an electric charge and are thus subject to the electro-
magnetic field,

• the collisional free path is proportional to the energy squared and thus
extremely large for energetic particles.

Since the subject of particle acceleration in plasmas may fill several volumes,
we only consider a few basic acceleration mechanisms.

First of all, because the Lorentz force (Section 2.2) does not change the
energy of a particle if the electric field vanishes, any acceleration mechanism
relies ultimately on the electric field.

Consider the simple case of a static electric field. If the electric field am-
plitude is such that the energy gained by a particle of charge e over a mean
collisional free path eE × lf is greater than the thermal energy, then since the
free path increases rapidly with speed, all the suprathermal particles of the ve-
locity distribution (whose free path is still greater) will be accelerated without
any impediment, and will thus run away from the bulk of the distribution. Be-
cause large-scale electric fields of large amplitude are rare in plasmas because of
their large electrical conductivity, this acceleration process works generally only
at small scales, for example at sites of magnetic field reconnection.

In practice, particles are generally accelerated by varying magnetic fields,
which produce electric fields via Maxwell’s equation  × E = −∂B/∂t. They
are ubiquitous in the Universe on large scales, and on small scales too, due to
MHD waves and turbulence.

Rigidity and radius of gyration

We saw in Section 2.2 that the dynamics of charged particles in a magnetic field
is governed by two basic parameters:

• the rigidity R = pc/q = (v/c) (W/q) = (v/c) [(W/e) /Z],

• the radius of gyration rg ∼ p/qB = R/Bc,
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where v is the particle speed, W is the energy, p = vW/c2 the relativistic
momentum, Z = q/e the number of elementary charges and B the magnetic
field strength. In practical units, for a particle made of A nucleons, this may be
written

R � v

c
× A

Z
× W/e

A
≡ v

c
× A

Z
× energy per nucleon (in eV) (8.5)

rg ∼ R

Bc
∼ energy per nucleon (in eV) × v

c
× A

Z
× 3 × 10−9

B(T)
m. (8.6)

Particles of different charges and masses but with the same rigidity have the
same dynamics in a given magnetic field configuration (Section 2.2). If two par-
ticles have the same velocity, and therefore the same Lorentz factor γ, they have
the same energy per nucleon (W/A � γmpc

2), and their rigidity depends only
on their mass to charge ratio A/Z; whereas A/Z = 1 for protons, we have seen
that for most heavy elements stripped of all their electrons, A/Z � 2, so that
all completely ionised elements have the same value of A/Z to a factor of two.

The gyroradius depends on the ratio of the rigidity to the magnetic field
strength. It determines the minimum scale of a magnetic field structure capa-
ble of affecting the dynamics of the particle. From this argument, the galactic
magnetic field B ∼ 10−10 T of spatial scale about 1019 m is expected to confine
the bulk of cosmic rays of energy at least up to the ‘knee’ of Fig. 8.3; some
observations are consistent with the production of these cosmic rays by shocks
produced by the remnants of explosions of massive stars (the so-called super-
novae; see Fig. 8.11 below) in the Galaxy, by a mechanism we shall examine
later.

Betatron acceleration

Consider a particle in a uniform magnetic field, and let the magnetic field in-
crease slowly compared to the particle gyration, so that the magnetic moment
of the particle (the first adiabatic invariant) is conserved (Section 2.2). The
momentum perpendicular to B thus increases as p2

⊥ ∝ B, whereas the parallel
momentum p‖ remains constant, so that the total particle energy increases.

This betatron acceleration, however, is a reversible process. Sooner or later
the magnetic field should decrease, and when it returns to the initial value, the
particle loses its energy gain. Assume, however, that before this happens, some
irregularities scatter the particle faster than the gyration so that the magnetic
moment is not conserved, whereas energy is conserved. This tends to isotropise
the velocity distribution, making the parallel energy increase at the expense
of the perpendicular one. If the magnetic field now decreases and returns to
its original value, the perpendicular energy decreases accordingly, but the par-
ticle keeps the parallel energy gained during the stochastic part of the cycle,
producing a net energy gain during the cycle.

This basic acceleration process appears under many guises, and is known
as magnetic pumping. It is an instructive example of the interplay between a
reversible effect and stochasticity.
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Figure 8.6 Fermi acceleration of a particle trapped between two magnetic mir-
rors (left), and the equivalent acceleration of a particle upon head-on reflection
by a moving mirror (right).

A simple form of betatron acceleration occurs in planetary magnetospheres,
when time variations enable particles to move from a large distance where the
planetary magnetic field is small, to a small distance where it is large. This may
increase the particle perpendicular energy by a factor of the order of the ratio
of the magnetic fields, i.e. the cube of the size of the magnetosphere expressed
in planetary radius.

Magnetic pumping is expected to take place at small scales, in low-frequency
waves.

Fermi acceleration

Fermi acceleration, originally proposed by Fermi in 1949 to explain the acceler-
ation of cosmic rays, is at the basis of most acceleration mechanisms thought to
act in astrophysics; as the betatron mechanism, it requires a stochastic process
to act. Fermi acceleration is based on the scattering of particles on large clumps
of plasma that distort the magnetic field, producing magnetic mirrors which
reflect the particles. The particle’s energy is not changed in the mirror’s rest
frame, but if the mirror is moving towards the incident particle, the particle
gains energy upon reflection, just as does a tennis ball pushed by a racket. Re-
peated scattering of the particles by randomly moving ‘mirrors’ (irregularities of
the turbulent magnetic field) produces a net transfer of energy from the moving
irregularities to the individual charged particles.

Let us study this in more detail. Just as betatron acceleration, Fermi ac-
celeration may be understood from the conservation of an adiabatic invariant
(Section 2.2), in this case the second invariant. Consider a particle trapped
between two magnetic mirrors, which may be formed by plasma clouds of large
magnetic field (Fig. 8.6, left), and of mass much greater than the one of the par-
ticle itself. Let the distance L between the mirrors decrease slowly compared
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to the particle parallel motion, so that the second adiabatic invariant is con-
served. The parallel momentum thus increases as p‖ ∝ 1/L, making the total
energy increase. Note that, as in the case of magnetic pumping, this acceleration
cannot proceed indefinitely unless some isotropisation process acts, because the
increase in p‖ decreases the pitch angle of the particle, so that sooner or later
it will no longer be reflected by the magnetic mirrors. Another difficulty is that
the mirrors cannot approach each other indefinitely. If the mirrors are moving
away instead of approaching each other, L increases, making p‖ ∝ 1/L decrease
and return to its initial value after a cycle. A gain in energy thus requires the
intervention of a stochastic process.

The acceleration by a magnetic mirror moving towards the particle is similar
to that of a tennis ball by a racket. Consider the simple case of a particle of speed
v impinging normally on a mirror (assumed infinitely massive) moving at speed
V � c towards the particle in the same direction (Fig. 8.6, right). Assume first
the particle to be non-relativistic, so that in the frame of the mirror its speed
is simply v + V . Upon elastic reflection, the particle’s speed just changes of
sign in this frame, becoming − (v + V ). Transforming back to the observer’s
frame, the particle’s new speed is − (v + V )−V = − (v + 2V ). The particle has
thus gained the speed ∆v = 2V upon reflection. Generalising the calculation to
relativistic particle velocities, we find that upon head-on reflection, a particle
of momentum p (at normal incidence) gains the energy ∆W � 2V p for V � c.
Using p = vW/c2, and generalising to different velocity directions, we find that
the relative energy gain is

∆W/W = −2 (v · V) /c2 (8.7)

since only the projection of v on V plays a role. This energy variation is positive
for a head-on collision, and negative for a following collision, just as for a tennis
ball.

This would be great, were it not for a severe problem: the particle sees
mirrors that are moving towards it and away from it, which at first sight should
cancel the effect. This is not exactly so, however, because, just as you get
more rain on the front windscreen of your car than on the rear one, there are
slightly more head-on reflections than tail-on ones. To calculate the balance, we
note that the probabilities are proportional to the relative velocities of approach
of the mirror and the particle, which are greater for head-on than for tail-on
reflections. For V � v, the relative excess of head-on collisions over tail-on
collisions is 2V/v, so that the net relative energy gain per reflection is in average
(considering reflection at normal incidence only)

〈∆W 〉
W

� 2V

v
× 2vV

c2
= 4

V 2

c2
. (8.8)

This energy gain is of second order in the small parameter V/c, whence its name:
second-order Fermi acceleration, so that the acceleration rate is in practice very
small. It is generally much smaller than the escape rate of the particles from
the scattering region, making this acceleration process rather ineffective.
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V1 V2

Figure 8.7 First-order Fermi acceleration of a particle near a (quasi-parallel)
shock.

First-order Fermi acceleration at shocks

The original Fermi acceleration process is very slow because of the averaging
between head-on and tail-on reflections, with only a small excess of head-on
reflections, so that it is of second order in the small parameter V/c. The process
would be much more effective if there were only head-on reflections. This is
exactly what happens at shocks under adequate conditions [1]. The trick is
that the medium undergoes a speed decrease from upstream to downstream
at the shock, so that from the point of view of the medium on each side of
the shock, the other side is moving towards it, whereas both the upstream
and downstream regions are full of irregularities that scatter the particles and
isotropise the velocity distributions in each frame.

To understand this, consider a plane shock, in which the velocity decreases
from V1 upstream, to V2 = V1/n downstream, in the frame where the shock
is at rest (Fig. 8.7). For a strong shock of adiabatic index γ = 5/3, we have
seen in Section 2.3 that n = 4. In the frame of reference of the upstream
medium, in which the velocity distribution of the particles is isotropic, the down-
stream medium (and its scattering irregularities) are coming head-on at speed
V1 − V2 (the velocity difference between the scattering centres upstream and
downstream); likewise, from the point of view of the downstream medium, the
upstream medium (and its scattering irregularities) are coming head-on at the
same speed. Therefore, each time an average particle (of velocity randomised
by scattering on the irregularities) traverses the shock, it sees the plasma irreg-
ularities on the other side coming head-on at speed V1 − V2 in average. This
is the basis of the diffusive acceleration at shocks, which is expected to have a
great importance in astrophysics given the ubiquity of shocks in the Universe.

As an average particle of speed v traverses the shock downstream and back
upstream, the total relative energy gain is given by twice the value given in
(8.7), with the velocity V = V1 − V2, and (v · V) = −vV cos θ, θ being the
angle of incidence of the particle to the shock, which satisfies 0 < θ < π/2. For
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ultra-relativistic particles (v � c), this yields

∆W

W
� 4

V1 − V2

c
cos θ. (8.9)

We must average this expression over the directions of incidence. Since the rate
of arrival of the particles to the shock is proportional to the normal component
of the velocity (∝ cos θ), and the energy gain (8.9) is itself proportional to cos θ,
we must average cos2 θ, which yields a factor 〈cos2 θ〉π/2

0 = 1/3. Hence, for a
round trip across the shock and back again, the fractional energy increase of the
particles is finally, on average

〈∆W 〉
W

� 4
3

V1 − V2

c
� 4V1

3c
× n − 1

n
(8.10)

where n = V1/V2 is the shock compression ratio. To work out the resulting en-
ergy distribution of the accelerated particles, we must estimate their probability
of escape from the shock. Ultra-relativistic particles of number density nCR ar-
rive on the shock at the rate nCR × c/4 (the factor 1/4 comes from averaging
over the directions of arrival, as found in Section 7.2.2). On the other hand,
the rate at which they are swept away from the shock (without returning) is,
since this occurs downstream, nCRV2 = nCRV1/n. The escape probability of
particles is thus (V1/n) / (c/4) = 4V1/nc. The ratio of the timescales of energy
release and acceleration is therefore

4V1/nc

〈∆W 〉/W
� 3

n − 1
(8.11)

where we have substituted (8.10). We deduce (Problem 8.4.2, or using the
reasoning of Section 4.5.3) that the differential energy distribution is given by
(4.35), at high energies, i.e. dN/dW ∝ W−(κ+1) with κ = 3/ (n − 1), i.e.

dN/dW ∝ W−(n+2)/(n−1). (8.12)

The particles thus emerge from the acceleration site with a power law spec-
trum, whose index depends on the shock compression ratio, and not on the shock
speed, nor on the detailed geometry or the scattering process, as long as the
shock may be considered as plane.5 This makes this acceleration process univer-
sal.6 For a strong shock with adiabatic index γ = 5/3, we have n = V1/V2 � 4,
so that the high-energy spectrum has the form dN/dW ∝ W−2, which agrees
well with the observed cosmic ray spectrum (above 1 GeV and below the ‘knee’
of Fig. 8.3), when due account is made of particle propagation in the interstellar
medium.

Three important comments are in order. First, the accelerated particles are
expected to be confined within some distance from the shock, with a concentra-
tion that decreases farther away. Second, this mechanism requires the particles

5Namely, the radius of curvature of the shock must be much greater than the other scales.
6However, the timescale of acceleration does depend on the diffusion process.
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to make multiple shock traversals. The scale of diffusion (and the particle gy-
roradius) must therefore be greater than the shock thickness. Since the shock
thickness is of the order of magnitude of the gyroradius of the particles of the
ambient medium, this condition means that the particles must already move
faster than average, in order to pass freely between the upstream and down-
stream sides and be significantly accelerated.7 Third, the average magnetic
field has been implicitly assumed to be quasi-parallel to the shock normal (a
so-called quasi-parallel shock; see Fig. 6.14, left).

Shock drift acceleration

In the opposite case, when the magnetic field makes an appreciable angle to the
shock normal (a quasi-perpendicular shock; see Fig. 6.14, right), the motion of
the plasma across the magnetic field produces an electric field −V × B (con-
served upon shock traversal) in the frame of the shock. Furthermore, particles
drift along the shock surface along B×B for positive charges (and the opposite
for negative charges), perpendicular to both the magnetic field and its gradient
(Section 2.2). Since we have seen that B increases upon traversing the shock
from upstream to downstream (Section 6.3), the drift is in the same sense as the
shock electric field for positive charges (and the opposite for negative charges),
so that the particles are accelerated by the shock electric field whatever the
sign of their charge. We shall see an application of this shock drift acceleration
below.

A review of the physics of particle acceleration at shocks may be found in [13].
These mechanisms are responsible of a large part of particle acceleration in the
Universe, from solar, heliospheric and planetary shocks, to distant astrophysical
objects.

8.2.3 Modulation of galactic cosmic rays by solar activity

Galactic cosmic rays entering the heliosphere are subjected to:

• scattering by magnetic field irregularities due to turbulence, and by larger
transient structures as the solar mass ejections,

• drifts due to the magnetic field gradient and the curvature of the field
lines, determined by the three-dimensional structure of the heliospheric
magnetic field, including the current sheet separating opposite magnetic
polarities,

• outward convection and adiabatic deceleration as they follow the large-
scale magnetic field of the expanding solar wind.

As a result, theoretical models have to consider the detailed structure of
the magnetic turbulence, which we have seen to be far from understood, the

7These particles, however, may simply be the fast-speed particles of an ambient near-
equilibrium velocity distribution.
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full three-dimensional structure of the heliosphere, including the heliospheric
current sheet, the sporadic structures, the terminal shock and the heliopause.
Another difficulty is that the problem is not static; cosmic rays arrive at Earth
after a long journey in the heliosphere where they interact with plasma emitted
from the Sun at different times in the past, so that there is a time lag between
observed cosmic ray properties and solar activity.

Scattering by turbulence

Scattering by magnetic field irregularities produces a diffusion that is maximum
for particles whose gyroradius is of the order of magnitude of the scale of in-
homogeneity. If the gyroradii are smaller, the particles simply conserve their
adiabatic invariants, while in the opposite limit the particles only feel the av-
erage magnetic field. We have seen in Section 6.4 that magnetic turbulence
produces irregularities at scales up to lout ∼ 0.02 AU at 1 AU. We thus expect
that for the particles to be affected by the magnetic irregularities, their gyrora-
dius (8.6) should satisfy rg ≤ lout. With the average magnetic field B ∼ 5×10−9

T (Section 6.1) at 1 AU, the energy per nucleon should therefore satisfy

energy per nucleon <
B

3 × 10−9
× lout (8.13)

∼ 5 × 10−9 × 3 × 109

3 × 10−9
∼ 5 × 109 eV (8.14)

for the cosmic rays observed near Earth to be affected by the heliospheric mag-
netic field. Since at larger heliospheric distances, the average magnetic field
strength and the outer scale of the irregularities vary roughly in opposite ways,
this result should not be very sensitive to the heliocentric distance.

We thus expect turbulence to produce a break in the energy spectrum at
energies below a few GeV, which agrees with the spectra plotted in Figs. 8.3
and 8.4. At these energies, a particle encountering a magnetic irregularity of
amplitude δB and size l changes the inclination of its trajectory to the average
magnetic field (the pitch angle) by about δB/B, so that its guiding centre is
displaced by a distance rgδB/B if l ∼ rg. For the pitch angle to change by 1
radian (so that the particle has lost memory of its initial value), the particle must
encounter a number N of such random deviations, producing a total deviation√

NδB/B ∼ 1 over a path Nrg. The free path is therefore in this simple case
rg × (B/δB)2.

Drift in the large-scale heliospheric magnetic field

Cosmic rays are also affected by the large-scale heliospheric magnetic field.
The gradient and curvature of the magnetic field of Parker’s spiral structure
(Section 6.1) produces a drift velocity of order of magnitude W/ (qBr) at dis-
tance r, oriented along B×B for positive charges (Section 2.2.3). The resulting
trajectories are shown in Fig. 8.8 in a meridional plane for a 2 GeV proton, when
the heliospheric magnetic field B points outwards in the northern hemisphere
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Figure 8.8 Trajectories (in meridional projection) of 2 GeV protons drifting in
the heliospheric magnetic field, when B points outwards (A > 0, left) or inwards
(A < 0, right) in the northern hemisphere. The wavy curve is the heliospheric
current sheet along which the particles exit (qA > 0) or enter (qA <0) the
heliosphere; the parameters are the same as in Fig. 6.6, where A > 0. (Adapted
from reference [16] of Chapter 6.)

(A > 0, left), or inwards (A < 0, right). The bold line is the meridional cross
section of the current sheet, which is given by (6.20) when the angle α between
the solar dipole and rotation axes is small, a configuration that is relevant near
solar activity minimum. One sees that in this case, the cosmic rays circulate
in a quasi-static flow, entering over the poles and exiting along the sheet when
qA > 0 (left), and the reverse when qA < 0 (right). Odd and even solar cycles
are therefore expected to exhibit a different behaviour, as observed. In particu-
lar, when qA > 0, cosmic rays are not very sensitive to the shape and inclination
of the current sheet, since they exit along it; in contrast, in cycles with qA < 0,
cosmic rays are more sensitive to the shape of the current sheet, since they
enter the heliosphere along it, and their observed flux should decrease as solar
activity increases because the increasing complexity of the current sheet leads
to additional scattering. The consequences may be seen on Fig. 8.5.

Figure 8.9 shows the effect of the current sheet that separates magnetic fields
of opposite polarity. Near solar activity minimum, it has the simple wavy struc-
ture sketched in Fig. 6.6, whose tilt (wavy amplitude) and complexity increases
as activity increases. Figure 8.9 sketches the trajectory of a particle of positive
electric charge located at less than a radius of gyration of the current sheet.
The magnetic field changes of sign at the current sheet, and so does the sense of
gyration of the particle, making it drift outward (inward) if the magnetic field
points outwards (inwards) in the northern hemisphere.
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Figure 8.9 Sketch of the drift of cosmic rays along the current sheet. The dots
and crosses show the direction of the azimuthal magnetic field, whose radial
component points outwards (inwards) above (below) the current sheet. The
heavy line sketches the trajectory of a positively charged particle, which gyrates
clockwise around the field above the current sheet; as it crosses the current sheet,
the sense of gyration reverses, so that the particle continues to drift outwards
along the sheet. If either the sense of B or the sign of the charge q reverses, the
drift proceeds inwards rather than outwards.

8.2.4 ‘Anomalous cosmic rays’
Figure 8.10 shows the energy spectrum (plotted as differential energy flux) of
anomalous cosmic rays measured aboard the spacecraft Voyager 1 (at about
57 AU from the Sun and 32◦ heliolatitude). These particles are believed to be
interstellar atoms that entered the heliosphere, and have been ionised either
by charge exchange with the solar wind protons or by photoionisation. They
are then immediately picked up by the solar wind and are carried out to the
termination shock. A small percentage of these may be accelerated in this
vicinity to cosmic ray energies and propagate back into the inner heliosphere,
where they are observed as anomalous cosmic rays.

The maximum energy that may be acquired by the particles in this way
may be estimated by simple arguments. The termination shock (Fig. 8.1) is
approximately spherical so that it lies roughly along the heliospheric magnetic
field, which is highly wrapped at this large distance (Fig. 6.2, right). In this
quasi-perpendicular shock, the particles drift along the shock face, being accel-
erated by the shock electric field. They may therefore gain an energy equal to
their charge times the total electric potential between the equator and the pole.
With the electric field given in (6.12) this voltage is given by

ΦEP =
∫ 0

π/2

Eθ × rdθ = 1.5 × 1011

∫ 0

π/2

Eθ × rAUdθ

� 2 × 108 V. (8.15)

Since the particles are singly ionised, they can gain a maximum energy of about
200 MeV, which is of the order of magnitude of the maximum observed energy
of these particles (cf. Fig. 8.10). Since we have seen in Section 6.1 that the
electric field points north (south) if Br > 0 (< 0) respectively, the particles are
expected to gain energy by drifting along the terminal shock from the equator
to the poles during the A > 0 phase of the solar cycle (when B points outwards
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Figure 8.10 Energy spectrum of anomalous cosmic rays measured aboard the
spacecraft Voyager 1 in 1994 (from days 157 to 365), plotted as differential fluxes
versus energy. The fluxes of different ions are normalised to the one of oxygen
by the factors indicated. (Adapted from [18].)

in the northern hemisphere), and from poles to equator during the A < 0 phase.

8.3 Examples of winds in the Universe

Virtually any object in the Universe is ejecting matter. Depending on the object,
the ejection varies from steady to chaotic, from symmetrical to jet-like, and
involves different physical effects, ranging from thermal evaporation to explosive
events, radiation pressure or centrifugal ejection.

Solar mass ejections are examples of explosive events, which drive huge
shocked balls of magnetised plasma, producing particle acceleration and other
perturbations along their trajectory. We saw in Section 7.3 the consequences of
such perturbations hitting the Earth’s environment.

Farther from us, and rather frequent, are explosions of massive stars at the
end of their life, known as supernovae. When fusion in the star’s core ceases, the
star can no longer resist gravitational attraction and collapses, and then recoils
when the repulsion between nuclei begins to overcome gravity. The energy is
transferred to the envelope of the star, which explodes, producing a shock where
fusion processes act. This yields huge shocks propagating through the interstel-
lar medium, which are revealed by the intense production of energetic particles
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Figure 8.11 Image of the supernova remnant Cassiopeia A by the Chandra
X-ray Observatory. (Adapted from [11].)

and electromagnetic waves (Fig. 8.11).8 Not only may they be responsible for
the acceleration of a part of the observed cosmic rays, as we already noted, but
they supply heavy elements to the interstellar medium, providing the stuff from
which new stars are born.

On the other hand, a host of objects eject matter in a steady way. The fast
solar wind is the best-studied example of relatively steady ejection of stellar
plasma. We have seen that planets and comets also eject matter in a quasi-
steady way. Most stars eject quasi-steady winds, as do galaxies, too [5].

Figure 8.12 shows the cavity carved by the wind of a young bright star in
the surrounding medium. This astrosphere is hugely larger than the heliosphere,
by more than four orders of magnitude. The wind of this young star is flowing
faster than the solar wind by a factor of four, and is inferred to have a mass flux
greater by more than eight orders of magnitude than the solar wind, according to
the scaling of the astrosphere’s size as the square root of the wind ram pressure
(cf. Eq.(8.2) and Problem 8.4.3).

Unfortunately, most of those winds are so distant that observation is not suf-
ficient to fully constrain the proposed theories of their formation. Astronomers
construct hypothetical scenarios, and estimate their validity by comparison with
the observed electromagnetic emission. However, even though modern observa-
tion has considerably widened the spectral extent of the observed radiation,
which ranges from radio waves to gamma rays, the available data leave much
freedom to theoreticians and modellers.

8.3.1 Some basic physical processes in mass outflows
Most steady mass outflows are expected to involve a coronal plasma at the
‘surface’ of the parent object, and a process that drives this gas to supersonic

8In the jargon of astronomy, such an object is known as a Type II supernova.
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Figure 8.12 Image of an astrosphere, the cavity – about 3 × 1017 m across –
carved in the surrounding medium by the wind of a young bright star. (Image
from the Hubble Space Telescope, credit ESA/NASA, Yäel Nazé (University of
Liège, Belgium) and You-Hua Chu (University of Illinois, Urbana, USA).)

speeds and to escape from gravitational confinement. The restraining force is
generally the gravitational attraction of the parent object, MG/r2 (per unit
mass) at radial distance r. The outward push, however, may involve various
agents:

• the thermal pressure gradient producing a force, −p per unit volume, as
occurs at the Sun but we saw is not sufficient to produce the solar wind,

• non-thermal contributions, in the form of various plasma waves or
suprathermal particles or both, probably produced by (turbulent) mag-
netic fields, as is expected to occur at the Sun, in a form still to be
determined,

• radiation pressure, generally acting on atoms, via absorption of photons
producing atomic transitions, and/or on dust grains coupled to the
atmosphere,

• pulsations of the star, which produce shocks propagating in the atmo-
sphere, heating and compressing the gas,

• the centrifugal force, acting via the magnetic field lines which entrain
the plasma frozen to those lines by a ‘sling-shot’ effect produced by the
magnetic tension force.

The three latter mechanisms require conditions far from those occurring at the
Sun.

For radiation pressure on the gas to play an important role, the star’s radi-
ation temperature must be large enough (see Problem 8.4.4), which means that
the star emits most of its radiation in the ultraviolet spectral range, where the
atoms of the atmosphere have many spectral lines. The radiation pressure is
mainly produced by absorption in these lines. The process is effective because
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there is a velocity gradient in the wind, so that atoms see the star’s radiation
Doppler-shifted to a frequency different from the one at which the atoms closer
to the star saw (and absorbed) it.

For radiation pressure on dust grains to play an important role, the grains
must be present at a place where their (collisional) coupling to the gas is suf-
ficient to drive the wind. This requires the temperature to be sufficiently low
to enable grain formation (instead of evaporation) close to the star, and a large
density and mass loss rate. Thus, the star’s effective temperature must be small
enough, whereas its luminosity and mass loss must be large enough. In practice,
this requires stars of very large size.

On the other hand, for the centrifugal force to play an important role in the
wind acceleration, the object must be rapidly rotating and magnetised (unless
the centrifugal force exceeds the gravitational force). This process, which results
in an appreciable loss of angular momentum, may have played an important role
in the young Sun, and explain how it lost most of its initial rotation speed at
the beginning of its life.

In some galaxies, stars in formation and double stars, the geometry is far
from spherical, and the collimation of the flow plays a major role, producing jets
along two opposite directions, which often lie along the rotation axis. An ex-
treme case of radiation pressure driven winds occurs in high-energy objects like
pulsars and galactic nuclei, where a highly magnetised rotating object produces
a large-amplitude electromagnetic wave at the rotation frequency, behaving as
a giant (non-linear) magnetic dipole antenna.

8.3.2 Some empirical results on stellar winds
We have focused in this book on the fast solar wind, for two main reasons. It
occupies most of the heliosphere, at least near solar activity minimum, and its
relative stationarity and simple geometry should make it easier to model. And
yet, we still do not have a proper theory of its origin. As we saw in Chapter
5, most theories stick to a (multi-)fluid description, adorned with more and
more ad hoc refinements to accommodate more and more refined observations,
whereas others claim that the issue is instead in a kinetic description able to
address properly the heat transport, a problem still not fully solved, and whose
solution may ultimately involve both points of view.

The fact that it is not stationary and its complex geometry make the slow
wind’s modelisation more complex, even though its lower speed is easier to
reach. However, despite the differences between the slow and fast winds, and
their different origins on the Sun, we have seen that their basic properties are
similar:

• their particle fluxes differ by only 50%, providing a total mass loss M ′
� �

[1. − 1.5] × 109 kg s−1, which amounts to about 2 × 10−14M� per year,

• their momentum fluxes differ still less, providing a ram pressure ρwv2
w �

[2.1 − 2.6] × 10−9 Pa at 1 AU from the Sun (proportional to the inverse
squared distance),
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• their total energy fluxes – the sum (per unit surface on the Sun) of the
kinetic energy of the wind M ′

�v2
w/2 and the energy M ′

�M�G/R� needed
to lift it out of the Sun’s gravitational potential – are nearly equal to

M ′
�

4πR2�
×

(
v2

w

2
+

M�G

R�

)
� 70 W m−2 (8.16)

� 10−6 × L�
4πR2�

, (8.17)

showing that the engine producing the solar wind has a very small effi-
ciency of about 10−6, whatever the type of wind.

The equality of the energy fluxes is all the more interesting in that since the
enthalpy at the base of the solar wind is much smaller than the other contri-
butions (Section 5.3.1), the above expression is close to the heat flux required
at the base to power the wind in the absence of other energy sources, if the
expansion is spherical.

Still more interesting, the total energy flux to drive the wind is found to be
similar within a factor of ten for a sample of cool stars covering nine orders of
magnitude in mass loss when the Sun is included.9 Namely, for each of these
stars of mass loss M ′, luminosity L, mass M and radius R, one finds

M ′

4πR2
×

(
v2

w

2
+

MG

R

)
∼ 102 W m−2. (8.18)

The same sample of stars also follow a widely quoted empirical relation which
is usually written in the form (Fig. 8.13)10

M ′ ∼ 5 × 10−13 × (L/L�) (R/R�)
(M/M�)

M� per year. (8.19)

It is probably significant that the latter empirical relation is also met by other
kinds of cool stars, albeit with a different numerical factor, and is met by the
Sun, too, within a factor of 20. Such a relation is suggested by dimensional
arguments, and is not unexpected since the wind is ultimately powered by the
star’s luminosity and restrained by the gravitational attraction. Its fundamental
significance, however, is not a trivial matter. A hint may be obtained by noting
that since for these winds, the specific kinetic energy (v2

w/2) is smaller or of
the same order of magnitude as the specific gravitational energy MG/R, the
empirical law (8.19) may be rearranged in physical (SI) units as

M ′ ×
(

v2
w

2
+

MG

R

)
∼ 2 × 10−5 × L. (8.20)

This means that the ratio between the stellar luminosity and the energy required
to power the wind is the same for the stars obeying this relation. This suggests
that the engines powering these stellar winds have a similar efficiency, of order

9From Reimers (1988) in [5], p. 25.
10Details on this relation also proposed by Reimers (1988) may be found in reference [27]

of Chapter 5.
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log[(L /L◎)(R/R◎)/(M/M◎)]
log[(L /L◎)(R/R◎)/(M/M◎)]

log[(L /L◎)(R/R◎)/(M/M◎)]

Figure 8.13 An empirical relation between the mass loss of stars (in units of
M� per year) and the ratio of their luminosity to their gravitational potential
MG/R (normalised to the solar values). Right: comparison with the Sun.

of magnitude 10−5, i.e. of the same order of magnitude as the solar value (cf.
(8.17)).

The data, however, are vastly insufficient. Figure 8.13 illustrates a ma-
jor observational problem. Stars whose mass loss is measured relatively easily
(Fig. 8.13, left) have mass losses greater than the solar one by more than five
orders of magnitude, so that there is a large gap between the solar case and
the other measured stellar winds. This is due to the difficulty of measuring dis-
tant winds of small mass loss; indeed, traditional measurements of winds apply
down to a few times 10−10M� per year, still smaller by more than four orders
of magnitude than the solar wind.

However, recent studies have opened new possibilities, based on the inter-
action of the wind with the neutrals of the surrounding interstellar medium.
We have seen that interstellar neutrals exchange charge with interstellar pro-
tons and with solar wind protons and heavier atoms (Section 8.1), with two
important consequences. First, the charge exchange with highly charged ions
of the solar wind should produce X-rays that may be detected [20]. Second,
the charge exchange with interstellar protons produces a wall of compressed
hot hydrogen atoms just outside the astropause surrounding the star, which
yields a detectable signature in the ultraviolet spectra.11 This has enabled de-
tection of a number of astrospheres, providing an indirect detection of solar-like
winds [22].

8.3.3 The efficiency of the wind engine

Do the above empirical laws imply that the basic properties of winds can be
deduced from the gross properties of the parent object? The answer is far from

11Through absorption of the so-called Lyman-α line – photons of energy hν near the ioni-
sation energy WBohr of the hydrogen atom.
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trivial since we have seen that the wind also depends on the medium surrounding
the object.

A familiar example may be instructive. The weather at any point on the
Earth cannot be predicted from only the gross properties of the Earth and of
its atmosphere, the solar luminosity and the co-ordinates of the point. So it is
for the local mass loss from any point on a cosmic object. However, the typical
velocity of winds on Earth can be deduced from the global properties of the
atmosphere in a simple way [8].

A familiar example: the Earth’s atmospheric wind engine

The kinetic energy involved for raising an atmospheric mass matm to a wind
speed of vw is Ww ∼ matmv2

w/2. With the atmospheric scale height H, the wind
timescale is τ ∼ H/vw, so that the power dissipated is Ww/τ ∼ matmv3

w/2H.
This power is furnished by the solar energy input, which is L�πR2/4πd2 on
a planet of radius R at heliocentric distance d.12 If αef is the efficiency of
the atmospheric engine, the typical wind speed in the planet’s atmosphere is
therefore given (in order of magnitude) by writing

matmv3
w/2H ∼ αefL�R2/4d2. (8.21)

Substituting the mass of the atmosphere matm = ρ0 × 4πR2H where ρ0 is the
mass density at the base of the atmosphere, this yields

vw ∼
(

αefL�
8πd2ρ0

)1/3

. (8.22)

With the solar luminosity L�, the distance d = d⊕ (1 AU) and the mass density
in the Earth’s low atmosphere (ρ0 ∼ n0×28mp; see Section 7.1), we find a typical
speed of atmospheric winds vw ∼ 10 × αef

1/3 m s−1. The wind speed in the
small-scale winds of the lower Earth’s atmosphere is indeed about 10 m s−1 (with
the global circulation involving greater speeds). This crude estimate suggests
that the efficiency of the Earth’s atmospheric engine for producing winds is not
much smaller than unity. This is not too surprising since if this atmosphere
were an ideal heat engine operating between temperatures T and T − ∆T ,
the efficiency would be ∆T/T ; with ∆T equal to the temperature difference
over a scale height in the Earth’s atmosphere, this yields αef

1/3 of order of
magnitude unity. This estimate is little more than an improved dimensional
analysis; obtaining a more precise value would require taking into account the
precise mechanisms at work in the atmosphere, in particular the role of water
vapour in the energy balance, and of the planet’s rotation.

The efficiency of stellar wind engines

This simple example illustrates the difficulty of determining basic wind prop-
erties from first principles. The above order-of-magnitude estimate at Earth

12Approximating the planet’s albedo by 1 in the spirit of this order-of-magnitude estimate.
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Figure 8.14 Producing the winds of the Universe. (Jean Effel, Turelune le
Cornepipeux, 1975, copyright Adagp, Paris, 2007.)

was reasonably successful because the efficiency of the wind engine (a non-
dimensional factor) did not produce a very small (difficult to estimate) factor
in the final result. For the solar wind, however, (8.17) indicates that the effi-
ciency is extremely small.13 And we have seen (cf. (8.20)) that this is so for
the stellar winds of the cool giant stars obeying the relation (8.19). Interest-
ingly, for all their differences, the engines powering the solar wind (8.17) and the
wind of these stars (8.20) have a similar efficiency of order of magnitude 10−6

to 10−5.
Whereas it is relatively easy to estimate from first principles the total power

furnished by the parent object, estimating the efficiency of the engine producing
the wind is a more difficult task, that requires a subtle understanding of the wind
production mechanism. For most cosmic winds, this goal is not yet attained,
despite some imaginative proposals (Fig. 8.14).

13Of the same order of magnitude as the small convective temperature difference at the base
of the convective zone estimated in Section 3.2.3.
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8.4 Problems

8.4.1 Energy density of cosmic rays

From the flux of cosmic rays plotted in Fig. 8.3, estimate the differential energy
spectrum of the number density of cosmic rays. Deduce an estimate of the total
density of energy of cosmic rays, and show that the result is close to the value
given in Sections 8.1–8.2.

8.4.2 Power law distribution of accelerated particles

Consider an acceleration process in which the timescale of energy increase is
1/α, so that the energy increase as a function of time may be written

dW/dt = αW. (8.23)

Show that the particles escape from the acceleration region with a timescale
τ , so that the number density of particles of given energy varies with time as

dN/dt = −αN − N/τ. (8.24)

Deduce that the differential energy spectrum of the accelerated particles has
the form

dN/dW ∝ W−γ with γ = 1 + α−1/τ. (8.25)

Hint

Note that dN/dW = (dN/dt) / (dW/dt).

8.4.3 The size of an astrosphere

The astrosphere shown in Fig. 8.12 has a diameter of about 3×1017 m, and the
wind of the parent star flows at about 2 × 106 m s−1.

Estimate the mass flux of the star.
Compare to Fig. 8.2 and comment.

Hint

Assume that the size of the astrosphere scales as the distance to the star of the
wind terminal shock.

8.4.4 Instability of a star’s atmosphere produced by
radiation pressure

Consider a star of mass M, radius R, surface temperature Teff and luminosity
L, and assume that an optically thin ionised layer of hydrogen lies just above
its surface.
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Show that the outward radiative force on an electron in the ionised layer is

Frad =
1
3
aT 4

eff σT (8.26)

=
σT L

3πcR2
(8.27)

where σT is the Thomson cross-section (1.11)–(1.12).
Since the gravitational attraction on a proton is FG = mpMG/R2, show

that the star will be unstable and explode if

L/M > 3πcmpG/σT . (8.28)

Substitute the numerical constants and show that the star is unstable if
L/M > 5 (in SI units), or, substituting the Sun’s parameters,

L

L�
≥ 3 × 104 M

M�
. (8.29)

Beware that a realistic estimate should take into account the opacity and the
role of line absorption by atoms, and consider the role of convection.

Look at Fig. 3.1 and comment.

Hints

From (3.28), the radiation pressure is aT 4
eff /3, with aT 4

eff the radiative energy
density. From (1.2), the star’s luminosity is L = σST 4

eff × 4πR2 with the Stefan
constant σS = ac/4.
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Appendix

Some fundamental constants and derived parameters

Speed of light c 3 × 108 m s−1

Gravitational constant G 6.67 × 10−11 m3 kg−1 s−2

Boltzmann constant kB 1.38 × 10−23 J K−1

Electron mass me 0.91 × 10−30 kg
Proton mass mp 1.67 × 10−27 kg
Electron charge e 1.6 × 10−19 C
Permittivity of free space ε0 8.85 × 10−12 F m−1

Permeability of free space µ0 = 1/ε0c
2 4π × 10−7 H m−1

Planck constant h 6.63 × 10−34 m2 kg−1 s−1

Reduced Planck constant h̄ = h/2π 1.05 × 10−34 m2 kg−1 s−1

Radiation constant a = π2k4
B/15h̄3c3 7.56 × 10−16 J m−3 K−4

Stefan–Boltzmann constant σS = ac/4 5.67 × 10−8 W m−2 K−4

Binding energy of the H atom WBohr = mee
4/8ε20h

2 2.17 × 10−18 J = 13.6 eV
Bohr radius rBohr = 4πε0h̄

2/mee
2 5.3 × 10−11 m

Solar parameters

Solar radius R� 7 × 108 m
Solar mass M� 2 × 1030 kg
Solar luminosity L� 3.84 × 1026 W
Gravitational acceleration on the Sun g� = M�G/R2

� 272 m s−2

451



452 Appendix

Conversion factors

1 AU (Sun–Earth distance) d⊕ 1.5 × 1011 m
1 Angström 1 Å 10−10 m
1 arc–sec on the Sun 1.54 × 10−6πd� 730 km
Year 1 yr 3.16 × 107 s
Joule (SI unit of energy) 1 J = 1 kg m2 s−2 107 ergs
Electron volt 1 eV 1.6 × 10−19 J
Tesla (SI unit of magnetic field) 1 T 104 G

Commonly used symbols

r, r, t Position, radial distance, time
f , ω = 2πf Frequency, angular frequency
k Wave vector
v Velocity
T , P Temperature, pressure
n, ρ Electron (or ion) number density,

mass density
w, W Density of energy, energy
q, m Charge, mass of a particle
µ Mean particle mass (µ � mp/2 in

H plasma)
µ (associated to B or µ0) Magnetic moment
E, B Electric field, magnetic field

ωp =
(

ne2

ε0me

)1/2

, fp = ωp/2π � 9 × n1/2 Plasma (angular) frequency,

plasma frequency
fge = (eB/me) /2π � 2.8 × 1010 × B Electron gyrofrequency

LD =
(

ε0kB T
ne2

)1/2 � 69 × (T/n)1/2 Debye length
lf ∼ 108 × T 2/n Mean free path of electrons, ions
vthe = (2kBT/me)

1/2 � 5.5 × 103T 1/2 Electron thermal velocity (
√

2LDωp)

VA =
(
B2/µ0ρ

)1/2
Alfvén speed

γ = d ln P/d ln ρ Adiabatic index
VS = (γkBT/µ)1/2 Sound speed
∼ Equal to within an order of magnitude
� Equal to within a factor of two

When dealing with a large scope of subjects and conventions, the choice of symbols
poses a dilemma. Rather than choosing unconventional symbols or multiply subscripts,
I have used the same (conventional) symbol for different entities, when no confusion is
possible. For example, µ denotes the mean mass per particle or the magnetic moment,
depending on the context. The symbol v denotes the fluid velocity or the velocity of
individual particles, depending on the context, except in Chapter 2 where the fluid
velocity is noted V, to avoid confusion.
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Characteristic scales

Dynamics of a charged particle (q, m) in a magnetic field

Change of reference frame with v � c B′ = B; E′ = E + v × B
Cyclotron frequency ωg = |q|B

m , fg = 1
2π

|q|B
m

Radius of gyration (Larmor) rg = mv⊥
|q|B

Relativistic (and F‖ = 0; ∂B/∂t = 0) m → m
(
1 − v2/c2

)−1/2

Electric field E or force F Drift speed: E×B
B2 or F×B

qB2

Weak B gradient (	B
B � 1

rg
) Drift:

(
mv2

⊥
2 + mv2

‖
)

B×	B
qB3

Slow variations (	B
B � 1

rg
, 1

B
∂B
∂t � 1

ωg
) µ = mv2

⊥
2B � constant

(relat.: µm � constant)
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Many particles (density n, temperature T , mass m)

Non-degenerate electrons T � TF = h̄2

2me

(3π2n)2/3

kB
� 4.2 × 10−15n2/3

Non-relativistic electrons T � mec
2/kB � 6 × 109 K

Three-dimensional f(v) = n

(πv2
th)

3/2 e−(v2
x +v2

y +v2
z )/v2

th

Maxwellian distribution
Most probable speed vth = (2kBT/m)1/2 =

√
2/3〈v2〉

Non-degenerate perfect gas

Non-relativistic particles Photons

Energy density w 3nkBT/2 aT 4

Pressure P 2w/3 w/3
Adiabatic transformations P ∝ n5/3 P ∝ n4/3

Fully degenerate electrons

Non-relativistic Ultra-relativistic

Pressure (3π2)2/3h̄2n5/3/ (5me) (3π2)1/3h̄cn4/3/4
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Field of a magnetic dipole
If J = 0, then Maxwell’s equations yield: × B =  · B = 0 ⇒ 2B = 0 ⇒
B = magnetic field of a dipole + terms smaller by 1/rn ( n ≥ 1).

Br =
µ0

4π

µ

r3
× (2 sin θ) µ > 0 if µ points to z > 0

Bθ =
µ0

4π

µ

r3
× (− cos θ)

⇒ Field lines: r = L cos2 θ

Example: the Earth

Magnetic moment µ⊕ Radius R⊕ Magnetic field at equator B0

−8 × 1022 Am2 6.4 × 106 m 3 × 10−5 T



456 Appendix

Useful vector identities

A · (B × C) = B · (C × A) = C · (A × B)
A × (B × C) = (A · C)B − (A · B)C

 · (φA) = A · φ + φ  ·A
× (φA) = φ × A + φ ×A

A × (× A) =  (
A2/2

) − (A · )A

2A =  ( · A) −× (× A)

 · (A × B) = B · (× A) − A · (× B)

× (φ) = 0
 · (× A) = 0

∫
S

dS · A =
∫

v
dV ( · A)∫

S

dS × A =
∫

v
dV (× A)

Surface S encloses volume V ; dS is a unit vector normal to the surface element
and oriented outwards.

∫
C

dl · A =
∫

S

dS · (× A)∫
C

dl × A =
∫

S

(dS ×) × A

Contour C encircles open surface S.

r = r/r

 · r = 3
× r = 0

r is radius vector from the origin.

(B · )A =
∑

j

Bj∂A/∂xj
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acceleration of particles, 430–436
betatron, 431
Fermi, 432–436
first-order Fermi, 434–436
magnetic pumping, 431
magnetospheres, 385–389
runaway, 430
shock drift, 436

accretion, 232–236, 279–280
adiabatic processes, 75

CGL, 81
index, 75, 454
invariants, 65–66
temperature gradient,

127
Alfvén

ballerina, 36, 296–299
theorem, 89
wave, 93

asteroid
belt, 336
magnetised, 357, 412
mass distribution, 339
Vesta, 412

astrosphere, 442, 448
aurora

Earth display, 3, 372–389
at giant planets, 374
ovals, 374, 377, 386,

388
physics, 385–389

belt
asteroid, 336
Kuiper, 336
radiation, 384

Bernoulli theorem, 74–75
Biermann, 6
Birkeland, 4

currents, 379

Bohr
energy, 101
radius, 101

Boltzmann equation, 70
Boojum, 213
breeze, 230, 235

Carrington, 2
CGL relations, 81
chaos, 320
charge exchange, 107

at comets, 407
interstellar neutrals, 422
at planets, 365

collisions, 48–54
comet, 394–408

atmosphere, 397–399
coma, 400
dust tail, 408
Halley, 395
ionosphere, 400–401
magnetic cavity, 404
magnetic pile-up,

403–404
mass loading, 401
nucleus, 394, 395
pick-up, 401–402
plasma tail, 5, 404–406
X-ray emission, 406–408

composition
solar, 326
solar wind, 326

conductivity
electric, 86–87
thermal (collisional),

81–84
continuity equation, 69
convection, 125–135

mixing length, 128
Schwarzschild criterion, 127

457
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convective
collapse, 153
derivative, 68
energy flux, 130

Coriolis force, 143
corona, see solar, corona
coronal mass ejection, 176, 197–203,

309–311, 374
Corotating Interaction Region, 308–309
corotation

magnetosphere, 383
solar atmosphere, 300

cosmic rays, 425–440
anomalous, 429, 439–440
energy density, 421, 425
energy spectrum, 427
modulation, 427, 436–438

cross-section
charge exchange, 107
ionisation

impact, 105
radiative, 104–105

neutrals, 48
recombination

dissociative, 106
radiative, 104–105

Thompson’s, 21
current

Birkeland, 379
Chapman–Ferraro, 410
electrostatic charging, 352–355
heliospheric sheet, 36, 296–299
in magnetosphere, 379, 382,

385
magnetic pile-up, 409
ring, 386, 411

cyclotron
damping, 100
frequency, 60
radius, 60

de Laval nozzle, 277–279
at comets, 412
solar wind, 232

Debye shielding, 44–47, 107
drift velocity, 61–63
dust

evaporation, 394
Lorentz force, 393
plasma drag, 393

at comets, 408
drag on gas, 412

mass distribution, 339
physics, 390–394
Poynting–Robertson drag, 391–392
radiation pressure, 391

dynamos, 138–145

Earth
aurora, 372–375
basic properties, 337
bow shock, 370
climate, 10, 379
ionosphere, 346
magnetopause, 368
magnetosphere, 372–389
wind speed, 446

ecliptic, 24
electric field

Dreicer, 259
Hall, 95
magnetospheres, 381
solar wind, 257–259, 268–272,

295–296
electrostatic charging, 352–356
energy

Bohr, 101
dipolar magnetic field, 379
equation, 75, 82–85
Fermi, 56–57
interstellar medium, 421
ionisation, 101
kinetic

non-relativistic, 43
perfect, non-degenerate gas, 454
ultra relativistic, 57

magnetic, 91
nuclear fusion, 118
radiation, 116

enthalpy, 75
Euler equation, 75

Fermi energy
non-relativistic, 56
planet interior, 342
stellar interior, 122
ultra-relativistic, 57

fluid, 72–85, 100
infinite hierarchy, 73
versus kinetic, 84–85
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Fokker–Planck equation, 70
fragmentation equilibrium, 340
free path

charged particles, 53, 84
neutrals, 48
photons, 117

giant planets
aurora, 374
ionospheres, 347
magnetospheres, 367

guiding centre, 62
gyrofrequency, 60

heat
conductivity (collisional),

81–84
transport, see heat flux
water sublimation, 397

heat flux, 81–85
collisional, 81–84, 256
kinetic, 263
non-collisional, 272, 284–285
observed, 257
polytrope, 239, 256

heating of corona, 203–213
helicity, 143, 181–185, 191, 198–200
heliosphere, 419–425

heliopause, 421
heliosheath, 421
hydrogen wall, 423, 445

helium, 327
hydrogen

binding energy, 101
wall, 423, 445

Inca quipus, 181
induction equation, 87
inertial length, 313
instability

convective, 127
convective collapse, 153
fire-hose, 273
kink, 180
two-stream, 99, 318

intermittency, 320, 325
interstellar medium, 419

energy, 421
Local Cloud, 420

solar wind interaction, 421

local fluff, CLIC, 420
magnetic field, 421
neutrals, 422

ionisation, 101–107
at comets, 400–401
atmospheres, 344–347
by charge exchange, 106
by compression, 102, 343
by impact, 105
Chapman layer, 346
in heliosphere, 424
radiative, 103–105
Saha formula, 103
solar wind, 110

isothermal, 75

Jeans theorem, 70
Jupiter

basic properties, 337
magnetic tail, 383
magnetopause, 368
radioemission, 374

kinetic, 66–72, 100
Kuiper belt, 336

Landau
damping, 99–100
radius, 50

length
Debye, see Debye shielding
inertial, 95

Liouville theorem, 69
Lorentz

factor, 59
force, 59, 90

magnetic
buoyancy, 151–153
bottle, 64
cloud, 310
diffusion, 87–88, 139

turbulent, 144
dipole, 455
energy, 91
flux rope, 198
flux tube, 150
forces, 90–92
helicity, 181–185, 198–200
mirror, 64
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magnetic (cont.)
moment, 63–64
monopoles, 58
pressure, 91

magnetospheres, 366
solar atmosphere, 176
solar wind, 348

storm, 3, 385–387
substorm, 387–389

magnetic field, 58
amplification, 139, 147
dipolar, 34, 455

energy, 379
force-free, 177
freezing, 88–90
interstellar medium, 421
pile-up, 361, 364, 403–404,

409
planets, 347
potential, 177
reconnection, 95, 376
spiral structure, 291–299
twist, 178–179

Magnetohydrodynamics, see MHD
magnetosphere

aurora, 385–389
basic structure, 375–385
Chapman–Ferraro, 410
circulation, 384
corotation, 383
current, 379, 382, 385

Birkeland, 379
ring, 384, 386, 411

cusps, 376
energy input, 378
induced, 361–365
magnetised planets, 365–389
magnetopause, 366
magnetosheath, 368
particle acceleration, 385–389
polar caps, 376
radiation belts, 384
storm, 385–387
substorm, 387–389
tail, 381–383

Mars
aurora, 373
basic properties, 337
interaction with solar wind, 363
ionosphere, 346

mass loss
solar wind, 232, 238, 243, 248
stars, 443–447

Maxwell equations, 58
Mercury, 337

atmosphere, 344
basic properties, 337
magnetopause, 368
magnetosphere, 367

meteors, 336–341
MHD, 85–96, 100

discontinuities, 314–315
non-ideal, 94–96
shocks, 311–315
turbulence, 323–325
waves, 92–94

mirror asymmetry, 59, 143, 181–185
momentum equation, 73, 82
Moon

atmosphere, 344
basic properties, 337
electrostatic charging, 409
wake, 358–360

Navier–Stokes equation, 82, 320
Neptune

basic properties, 337
magnetopause, 368

nuclear fusion, 119

opacity
photosphere, 133
solar interior, 117

Parker, 6
critical point, 228, 233, 243
spiral, 291–299

pick-up, 328–329, 365
at comets, 401–402

pitch angle, 60
Planck emissivity, 11
planets

atmosphere, 344
scale height, 337

basic properties, 337
bow shock, 368–371
ionopause, 363
ionosphere, 344–347

Chapman layer, 344–346
electric conductivity, 348
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magnetic field, 347
dipolar, 455

magnetosheath, 368
magnetosphere, 361–389
mass density, 343
rotation, 347

plasma
beta, 92
collisions, 50–54
coupling parameter, 44, 51
degenerate, 56
diamagnetic, 60
drag, 392–393
free path, 53, 85
frequency, 47, 55
oscillations, 54
transport, 83–85

Pluto, 337
atmosphere, 344, 347
basic properties, 337

polytrope, 75
Poynting–Robertson force, 391–392
pressure, 72

Fermi, 56–57, 454
ionisation, 102
kinetic, 72, 348

ultra-relativistic, 57
magnetic, 91, 348
perfect, non-degenerate gas

non-relativistic, 44, 72,
454

ultra-relativistic, 57, 454
ram, 348

quantum degeneracy, 56

radiation
belts, 384
blackbody, 11
energy density, 116
flux in stars, 127
force, 391–392
G-band, 155
losses, 186–187

radius
Bohr, 101
cyclotron, 60
of gyration, 60
Landau, 50
Larmor, 60

random walk, 82
ratio of specific heats, 75
recombination

dissociative, 106
radiative, 105

Reynolds number, 82
magnetic, 88

rigidity, 430

Saturn
aurora, 374
basic properties, 337
magnetopause, 368

scale height
corona, 21, 177
photosphere, 15, 132, 177
solar atmosphere, 177

shock, 77–80
drift acceleration, 436
Fermi acceleration, 434–436
magnetised collisionless,

311–315
MHD, 311–315
planets, 368–371
Rankine–Hugoniot, 80
terminal, 424–425

shower curtain, 74
solar

activity, 142–158, 191–203
cycle, 16

atmosphere
scale height, 177

basic properties, 9
chromosphere, 19, 166–174

corona transition, 189
density, 166
temperature, 166

constant, 10
convection, 125–135
corona, 19–24, 166–216

coronal holes, 24, 167, 191, 216,
307

density, 166
F, K, 336
filaments, 193
heating, 203–213
temperature, 166, 190
visible radiation, 19
X–UV emission, 22–24, 191,

194–204
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solar (cont.)
disc, 13

limb darkening, 14
eruptions, 195–203
flares, 195–203
granulation, 15, 134–135
interior, 124–125

convection, 125–132
models, 124
nuclear lifetime, 119

ionising radiation, 345
loops, 174, 191
magnetism, 137–158

surface, 15–18, 154–158
neutrinos, 125
opacity, 117, 133
oscillations, 125
photosphere, 10, 13–15, 132

scale height, 15, 132
probe, 275
prominences, 175, 193–194
rotation, 135–137
spectrum, 10
spicules, 174, 191
supergranulation, 15, 154

solar wind
angular momentum, 300
basic properties, 348–351
bubble, 424–425
current sheet, 296–299
electric field, 257–259, 268–272,

295–296
exospheric, 268–274
fast, 27, 30, 253, 308
heat flux, 256–257
interaction with bodies, 349–412
magnetic cloud, 310
magnetic field, 291–305
mass loading, 401
mass loss, 33, 232, 238, 243, 248, 311
minor constituents, 326–329
observations, 24–33
polytrope, 239–245, 281
pressure

kinetic, 348
magnetic, 348
ram, 348

slow, 27, 30, 308
solar connection, 305–307
temperatures, 253

theory, 223–277
turbulence, 323–325
velocity distributions

electrons, 264
protons, 264

waves, 315–318
space weather, 197, 311, 389
spacecraft

early wind observations, 7
Pioneer, Voyager, 24, 304
solar observations, 9
strawman payload, 26
Ulysses, 28–30
wind observations, 24–33

speed
Alfvén, 92
escape

planets, 344
Sun, 228

magnetosonic waves, 94
mean square, 67, 267
most probable, 67, 267, 454
sound, 76

sputtering, 372
star

accretion, 232–236, 279–280
brown dwarf, 113, 123, 343
central temperature, 116
lifetime, 119
luminosity, 116–118
main-sequence, 114
mass, 121–123
pulsation, 120
stability, 121
wind, 440–447

Sun, see solar
sunspot

Janssen’s photograph, 2
modern photograph, 13
physics, 156–158
properties, 15

supernova, 431, 440

temperature, 43, 283–284
adiabatic gradient, 127
comet plasma tail, 404
effective, 10
Fermi, 57
ionosphere, 347
kinetic, 43
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photosphere, 10
solar

corona, 190
interior, 124
wind, 253

stellar interior, 116
Thomson scattering, 20
time

Alfvén, 96
free-fall, 120
Kelvin–Helmholtz, 119
nuclear, 119
pulsation, 120

transport
heat, 81
in plasmas, 83–85
momentum, 81

turbulence, 318–325
Kolmogorov law, 321–323
Kraichnan, 330
MHD, 323–325
solar wind, 323–325

Uranus
basic properties, 337
magnetopause, 368

vector
identities, 456
pseudo, 59

velocity
average, 67
drift, 61
filtration, 72, 109, 209–213

velocity distribution
bi-Maxwellian, 81
kappa, 201, 265, 282
Maxwellian, 67–68, 454

solar wind electrons, 264
solar wind protons, 264

Venus
basic properties, 337
interaction with solar wind,

363
ionosphere, 346

Virial theorem, 115
viscosity, 81–84, 249, 320
Vlasov equation, 69

wake, 357–360
waves

conventions, 98
electromagnetic, 96–98
fast, 94, 311
in solar wind, 315–318
ion–acoustic, 76–77
Langmuir, 98–99
MHD, 92–94
planets, 389
shock, 77
slow, 94, 311
sound, 76
whistler, 98

wind
astrophysics, 442
Earth atmosphere, 446
star, 443–447
Sun, see solar wind

X-ray emission
comets, 406–408
heliosphere, 326, 423
planets, 326, 365
solar corona, 22, 191

zodiacal light, 336


	Half-title
	Series-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	1 The wind from the Sun: an introduction
	1.1 A brief history of ideas
	1.1.1 Intermittent particle beams?
	1.1.2 Permanent solar corpuscular emission?
	1.1.3 The modern solar wind

	1.2 Looking at the Sun
	1.2.1 Basic solar properties
	1.2.2 The solar spectrum
	Spectral distribution
	Spectral lines

	1.2.3 The solar disc
	The disc as a whole
	Small-scale structure

	1.2.4 Sunspots, magnetic fields and the solar cycle
	Sunspots
	Magnetic field on the Sun

	1.2.5 Around the Sun: chromosphere and corona
	Chromosphere
	Corona
	Visible coronal radiation
	Coronal structure
	Coronal emission of ultraviolet and X-rays


	1.3 Observing the solar wind
	1.3.1 Observing near the ecliptic
	Some subtleties of space exploration
	Several winds

	1.3.2 Exploring the third dimension with Ulysses
	The solar wind in three dimensions

	1.3.3 A simplified three-dimensional picture
	Dipolar magnetic field
	A dipole plus a wind


	References

	2 Tool kit for space plasma physics
	2.1 What is a plasma?
	2.1.1 Gaseous plasma
	2.1.2 Quasi-neutrality
	Debye shielding
	Non-equilibrium plasma
	Non-linear shielding
	Shielding of a moving charge
	Timescale for shielding

	2.1.3 Collisions of charged particles
	A reminder on collisions in neutral gases
	Collisions between charged particles and neutrals
	Coulomb collisions
	Mean free path for collisions of charged particles
	Timescales for equilibrium
	Photon mean free path versus particle mean free path

	2.1.4 Plasma oscillations
	2.1.5 Non-classical plasmas
	Quantum degeneracy
	Relativistic particles

	2.1.6 Summary

	2.2 Dynamics of a charged particle
	2.2.1 The key role of the magnetic field
	2.2.2 Basic charge motion in constant and uniform fields
	Uniform magnetic field
	Electric field or applied force

	2.2.3 Non-uniform magnetic field
	Drift produced by a variation of…
	Variation of…
	Magnetic moment
	Magnetic mirrors

	2.2.4 Adiabatic invariants
	2.2.5 Summary

	2.3 Many particles: from kinetics to magnetohydrodynamics
	2.3.1 Elements of plasma kinetics
	A reminder: the Maxwellian distribution
	Evolution of f
	The convective derivative
	Vlasov equation
	A reminder: the continuity equation
	Other forms of the invariance of f
	Basic illustration: effect of a force on the velocity distribution

	2.3.2 First-aid kit for space plasma fluids
	The infinite hierarchy of fluid equations
	Bernoulli's theorem
	Sound waves and their plasma counterparts
	Shocks
	Transport of momentum and heat
	Transport in plasmas
	Beware of fluid equations in space plasmas

	2.3.3 Elements of magnetohydrodynamics
	Plasma electric conductivity
	Magnetic diffusion
	Frozen-in magnetic field
	Magnetic forces
	Magnetohydrodynamic waves
	Non-ideal magnetohydrodynamics

	2.3.4 Waves and instabilities
	Electromagnetic waves
	Langmuir waves
	Landau damping

	2.3.5 Summary

	2.4 Basic tools for ionisation
	2.4.1 Energy of ionisation and the size of the hydrogen atom
	2.4.2 Ionisation by compressing or heating
	2.4.3 Radiative ionisation and recombination
	Ionisation and recombination
	Cross-sections

	2.4.4 Non-radiative ionisation and recombination
	Ionisation by particle impact
	Dissociative recombination
	Charge exchange


	2.5 Problems
	2.5.1 Linear Debye shielding in a non-equilibrium plasma
	Hints

	2.5.2 Mean free path in a plasma
	2.5.3 Particles trapped in a planetary magnetic field
	2.5.4 Filtration of particles in the absence of equilibrium
	Hints

	2.5.5 Freezing of magnetic field lines
	Hint

	2.5.6 Alfvén wave
	2.5.7 Why is the solar wind ionised?
	Hints


	References

	3 Anatomy of the Sun
	3.1 An (almost) ordinary star
	3.1.1 Hydrostatic equilibrium of a large ball of plasma
	Virial theorem
	Temperature within the star

	3.1.2 Luminosity
	Radiative energy
	Mean free path of photons
	Luminosity versus mass

	3.1.3 Energy source and timescales
	Nuclear fusion
	Timescales
	Stability of the Sun

	3.1.4 The mass of a normal star
	Minimum mass
	Maximum mass


	3.2 Structure and dynamics
	3.2.1 Modelling the solar interior
	3.2.2 Convective instability
	Criterion for instability
	Applying the criterion

	3.2.3 Convective energy transfer
	The mixing-length approach
	Application to convection within the Sun
	Beyond the mixing-length picture

	3.2.4 The quiet photosphere
	The solar surface
	Convection near the surface
	Granules

	3.2.5 Solar rotation
	How the Sun rotates
	Some consequences of solar rotation


	3.3 Some guesses on solar magnetism
	3.3.1 Elements of dynamo theory
	Hints on kinematic dynamos
	Two prototype dynamos

	3.3.2 Solar kinematic dynamos
	The alpha and the omega
	Turbulent magnetic diffusion

	3.3.3 Concentrating and expelling the magnetic field
	3.3.4 Lorentz force restriction on dynamo action
	3.3.5 Elementary physics of magnetic flux tubes
	Solar flux tubes
	Magnetic buoyancy
	Convective collapse

	3.3.6 Surface magnetic field
	Small-scale magnetic field
	Sunspots


	3.4 Problems
	3.4.1 Conductive heat transfer in the solar interior
	3.4.2 Timescale for radiative transport
	Hints

	3.4.3 Solar diﬀerential rotation
	3.4.4 Twisted magnetic flux tube
	3.4.5 The heat flux blocked by sunspots
	Hints
	Timescale for heat to spread through the convective zone
	Timescale for global temperature change in the convective zone


	References

	4 The outer solar atmosphere
	4.1 From the photosphere to the corona
	4.1.1 The atmosphere in one dimension
	4.1.2 One more dimension
	4.1.3 Three dimensions in space
	4.1.4 …and one dimension in time
	4.1.5 A (tentative) look at the solar jungle

	4.2 Force balance and magnetic structures
	4.2.1 Forces
	4.2.2 Force-free magnetic field
	Twist
	Kink

	4.2.3 Magnetic helicity
	Definition
	Twist, writhe and linkage
	Magnetic helicity as a robust invariant
	Helicity transfers
	Helicity segregation in the Sun and its atmosphere

	4.2.4 Inferences on magnetic structure in the low corona

	4.3 Energy balance
	4.3.1 Radiative losses
	4.3.2 Radiative and conductive timescales
	4.3.3 Temperature structure
	Chromosphere&#8211;corona transition
	Outer corona


	4.4 Some prominent species
	4.4.1 Spicules
	4.4.2 Magnetic loops
	4.4.3 Prominences

	4.5 Time variability
	4.5.1 Empirical facts
	Small scales
	Energy distribution
	Large scales

	4.5.2 Hints from physics
	4.5.3 Further diffcult questions
	Power law distribution
	Mass flux
	Energy flux


	4.6 Coronal heating: boojums at work?
	4.6.1 The energy budget and how to balance it
	4.6.2 Heating through reconnection events
	4.6.3 Heating by waves
	Acoustic waves
	Alfvén waves

	4.6.4 Filtration of a non-Maxwellian velocity distribution
	Beware of the assumption of local thermal equilibrium
	A simple toy model
	Elementary application to the Sun
	Difficulties


	4.7 Hydrostatic instability of the corona
	4.7.1 Simplified picture of a static atmosphere
	4.7.2 Magnetic field effects

	4.8 Problems
	4.8.1 Elementary temperature profile
	Hints

	4.8.2 Helicity of a string wrapped around a doughnut
	Hint

	4.8.3 A static solar atmosphere?
	Hints


	References

	5 How does the solar wind blow?
	5.1 The basic problem
	5.1.1 The solar wind on the back of an envelope
	5.1.2 Nasty questions, or why it is complicated

	5.2 Simple fluid theory
	5.2.1 The isothermal approximation
	Breezes
	Transonic wind
	Tentative application to the Sun

	5.2.2 Breeze, wind or accretion?
	Stability and time reversal
	Choosing how to blow


	5.3 Letting the temperature vary
	5.3.1 Energy balance
	The energy of the gas
	Energy flux
	Terminal speed
	Required heat flux

	5.3.2 Polytrope approximation
	A convenient heat flux
	Polytrope flow
	Transonic wind
	A closer examination of the critical point
	Breezes
	Tentative application to the Sun
	Conclusion on polytrope winds

	5.3.3 Changing the geometry
	5.3.4 Further pushing or heating the wind
	Balance equations with deposition of energy
	Mass loss rate
	Terminal speed
	Conclusion on energy addition

	5.3.5 What about viscosity?

	5.4 A mixture of fluids
	5.4.1 Simple balance equations
	5.4.2 Observed proton and electron temperatures
	5.4.3 The role of collisions
	5.4.4 Heat flux
	Polytrope electron heat flux
	Collisional electron heat flux
	Observed electron heat flux

	5.4.5 The electric field
	Estimates of the electrostatic field and potential
	Particle viewpoint
	Total force on individual protons

	5.4.6 Fluid picture balance sheet and refinements

	5.5 Kinetic descriptions
	5.5.1 Some notations
	5.5.2 Observed proton and electron velocity distributions
	Solar wind protons
	Solar wind electrons
	The kappa distribution

	5.5.3 Non-collisional electron heat flux
	5.5.4 Exospheric models
	Particle orbits and how to deal with them
	Consequences of the electric potential
	Balance sheet of the exospheric picture

	5.5.5 Kinetic models with collisions and wave–particle interactions

	5.6 Building a 'full' theory?
	5.6.1 More and better observations (beware of hidden assumptions)
	5.6.2 Difficult theoretical questions
	What are the shapes of the velocity distributions in the corona, and might the wind be ‘suprathermally driven’?
	If waves or turbulence do push and heat, how and where do they act?
	Are spatial and temporal inhomogeneities a 'detail'?
	How is energy transported, and should fluid theories be pensioned off?


	5.7 Problems
	5.7.1 Transonic flows in ducts: the de Laval nozzle
	Hints
	Convergent duct
	Divergent duct
	Nozzle
	Maximum speed
	Solar wind analogy
	A nozzle in reverse

	5.7.2 The hysteresis cycle of an isothermal flow
	Hint

	5.7.3 Spherical accretion by a star: the Bondi problem
	Hint

	5.7.4 A wind with polytrope protons and electrons
	Hints

	5.7.5 Playing with the kappa distribution
	Poisson, Maxwell and …kappa
	Hint
	A modified kappa distribution
	Hint

	5.7.6 'Temperature' or 'temperatures'?
	Kinetic temperature and other moments
	Differential temperature

	5.7.7 Non-collisional heat flux
	Hints

	5.7.8 An imaginary wind with charges of equal masses
	Hint


	References

	6 Structure and perturbations
	6.1 Basic large-scale magnetic field
	6.1.1 Parker's spiral
	Simple derivation
	Rotating frame
	Estimating the magnetic field

	6.1.2 Basic heliospheric current sheet and other currents
	6.1.3 Magnetic field e.ects on the wind

	6.2 Three-dimensional structure during the solar cycle
	6.2.1 Warped heliospheric current sheet
	6.2.2 Observed large-scale structure
	Observations at moderate distances
	Observations at large distances

	6.2.3 Connecting the Sun and the solar wind, or: where do the fast and slow winds come from?

	6.3 Major perturbations
	6.3.1 Interaction between the fast and slow winds
	6.3.2 Coronal mass ejections in the solar wind
	6.3.3 Associated shocks
	Magnetised collisionless shocks
	Conservation relations at MHD discontinuities


	6.4 Waves and turbulence
	6.4.1 Waves
	6.4.2 Turbulence
	Elements of fluid turbulence
	Kolmogorov's law
	Consequences and limitations
	Turbulence in the solar wind


	6.5 Minor constituents
	6.5.1 Abundances: from the Universe to the solar wind
	6.5.2 Helium and heavier solar wind ions
	Helium
	Ionisation states
	Abundances of heavy ions
	Temperatures and speeds of ions

	6.5.3 Pick-up ions

	6.6 Problems
	6.6.1 Parker's spiral
	6.6.2 Heliospheric currents
	Hint

	6.6.3 Coplanarity in MHD shocks
	Hints

	6.6.4 Kraichnan's spectrum in magnetofluid turbulence

	References

	7 Bodies in the wind: dust, asteroids, planets and comets
	7.1 Bodies in the wind
	7.1.1 Various bodies
	7.1.2 Mass distribution
	7.1.3 Mass versus size
	7.1.4 Atmospheres and how they are ionised
	Atmospheres
	Chapman layers
	Planetary ionospheres

	7.1.5 Planetary magnetic fields and ionospheric conductivity

	7.2 Basics of the interaction
	7.2.1 Properties and spatial scales of the flow
	Flow properties
	Spatial scales

	7.2.2 Being small: electrostatic charging and wakes
	Charging on the back of an envelope
	Charging currents and electrostatic potential
	Deducing the electric charge
	Charging timescale
	Wakes

	7.2.3 Being large: the importance of conductivity
	Insulating body: the Moon example
	Large conducting body

	7.2.4 Large objects with a conducting atmosphere
	7.2.5 Large magnetised objects
	7.2.6 Bow shocks
	7.2.7 Not being constant: sputtering and evaporation

	7.3 The magnetospheric engine
	7.3.1 Basic structure
	Simple picture
	Opening the magnetosphere

	7.3.2 Energy, coupling and timescales
	Energy from the solar wind
	Coupling
	Timescales
	Rotation and drift

	7.3.3 Storms, substorms and auroras
	Storms
	Substorms
	Space weather


	7.4 Physics of heliospheric dust grains
	7.4.1 Forces
	Radiation forces
	Plasma drag
	Lorentz force

	7.4.2 Evaporation

	7.5 Comets
	7.5.1 Producing an atmosphere
	7.5.2 Ionising the atmosphere
	7.5.3 Pick-up of cometary ions
	7.5.4 Magnetic pile-up
	7.5.5 The plasma tail
	7.5.6 X-ray emission
	7.5.7 The dust tail

	7.6 Problems
	7.6.1 Electrostatic charging in space
	Hints

	7.6.2 Magnetic pile-up
	Hints

	7.6.3 Chapman&#8211;Ferraro layer
	Hints

	7.6.4 Interaction of the solar wind with Venus and Mars
	7.6.5 Ring current
	Hints

	7.6.6 Does Vesta have a magnetosphere?
	Hints

	7.6.7 Gas&#8211;dust drag in a comet: another nozzle problem

	References

	8 The solar wind in the Universe
	8.1 The frontier of the heliosphere
	8.1.1 The Local Cloud
	8.1.2 Basics of the interaction
	The plasma
	The neutrals

	8.1.3 The size of the solar wind bubble

	8.2 Cosmic rays
	8.2.1 Cosmic rays observed near Earth
	8.2.2 Rudiments of the acceleration of particles
	Rigidity and radius of gyration
	Betatron acceleration
	Fermi acceleration
	First-order Fermi acceleration at shocks
	Shock drift acceleration

	8.2.3 Modulation of galactic cosmic rays by solar activity
	Scattering by turbulence
	Drift in the large-scale heliospheric magnetic field

	8.2.4 'Anomalous cosmic rays'

	8.3 Examples of winds in the Universe
	8.3.1 Some basic physical processes in mass outflows
	8.3.2 Some empirical results on stellar winds
	8.3.3 The efficiency of the wind engine
	A familiar example: the Earth's atmospheric wind engine
	The efficiency of stellar wind engines


	8.4 Problems
	8.4.1 Energy density of cosmic rays
	8.4.2 Power law distribution of accelerated particles
	Hint

	8.4.3 The size of an astrosphere
	Hint

	8.4.4 Instability of a star’s atmosphere produced by radiation pressure
	Hints


	References

	Appendix
	Some fundamental constants and derived parameters
	Solar parameters
	Conversion factors
	Commonly used symbols
	Characteristic scales
	Dynamics of a charged particle (q, m) in a magnetic field
	Many particles (density n, temperature T, mass m)
	Non-degenerate perfect gas
	Fully degenerate electrons
	Field of a magnetic dipole
	Example: the Earth

	Useful vector identities

	Index



