Outline

- Polarizers and Retarders
- Polarimeters
- Scattering Polarization
- Zeeman Effect
- Hanle Effect

Polarization Summary

- polarization is an intrinsic property of light
- polarization properties and intensity of light can be described by 4 parameters:
 - coherent Jones calculus
 - incoherent Stokes/Mueller calculus
- degree of polarization is the fraction of the intensity that is fully polarized
- typical values for degree of polarization:
 - 45 degree reflection off aluminum mirror: 5%
 - clear blue sky: up to 75%
 - 45 degree reflection off glass: 90%
 - LCD screen: 100%
 - solar scattering polarization: 1% to 0.001%
 - exoplanet signal: 0.001%

Polarizers

- polarizer: optical element that produces polarized light from unpolarized input light
- linear, circular, or in general elliptical polarizer, depending on type of transmitted polarization
- linear polarizers by far the most common
- large variety of polarizers

Jones Matrix for Linear Polarizers

Jones matrix for linear polarizer:

$$\mathsf{J}_{oldsymbol{
ho}}=\left(egin{array}{cc} oldsymbol{
ho}_{X} & 0 \ 0 & oldsymbol{
ho}_{Y} \end{array}
ight)$$

• $0 \le p_x \le 1$ and $0 \le p_y \le 1$, real: transmission factors for *x*, *y*-components of electric field: $E'_x = p_x E_x$, $E'_y = p_y E_y$

- $p_x = 1$, $p_y = 0$: linear polarizer in +Q direction
- $p_x = 0$, $p_y = 1$: linear polarizer in -Q direction
- $p_x = p_y$: neutral density filter

Mueller Matrix for Linear Polarizers

Mueller Matrix for Ideal Linear Polarizer at Angle θ

Poincare Sphere

- polarizer is a point on the Poincaré sphere
- transmitted intensity: cos²(1/2), 1 is arch length of great circle between incoming polarization and polarizer on Poincaré sphere

Retarders

en.wikipedia.org/wiki/Wave_plate

General Retarders or Wave Plates

 retarder: retards (delays) phase of one electric field component with respect to the orthogonal component

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Solar Physics, Lecture 6: Polarimetry 2

Retarder Properties

- does not change intensity or degree of polarization
- characterized by two (not identical, not trivial) Stokes vectors of incoming light that are not changed by retarder ⇒ *eigenvectors* of retarder
- depending on polarization described by eigenvectors, retarder is
 - linear retarder
 - circular retarder
 - elliptical retarder
- linear, circular retarders are special cases of elliptical retarders
- circular retarders sometimes called *rotators* since they rotate the orientation of linearly polarized light
- linear retarders by far the most common type of retarder

Jones Matrix for Linear Retarders

linear retarder with fast axis at 0° characterized by Jones matrix

$$\mathsf{J}_{r}\left(\delta\right) = \left(\begin{array}{cc} e^{i\delta} & 0\\ 0 & 1\end{array}\right), \quad \mathsf{J}_{r}\left(\delta\right) = \left(\begin{array}{cc} e^{i\frac{\delta}{2}} & 0\\ 0 & e^{-i\frac{\delta}{2}}\end{array}\right)$$

- δ: phase shift between two linear polarization components (in radians)
- absolute phase does not matter

Mueller Matrix for Linear Retarder

$$M_r = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \delta & -\sin \delta \\ 0 & 0 & \sin \delta & \cos \delta \end{pmatrix}$$

Retarders on the Poincaré Sphere

- retarder eigenvector (fast axis) in Poincaré sphere
- points on sphere are rotated around retarder axis by amount of retardation

Variable Retarders

Introduction

- sensitive polarimeters requires retarders whose properties (retardance, fast axis orientation) can be varied quickly (*modulated*)
- retardance changes (change of birefringence):
 - liquid crystals
 - Faraday, Kerr, Pockels cells
 - piezo-elastic modulators (PEM)
- fast axis orientation changes (change of *c*-axis direction):
 - rotating fixed retarder
 - ferro-electric liquid crystals (FLC)

Liquid Crystals

- liquid crystals: fluids with elongated molecules
- at high temperatures: liquid crystal is isotropic
- at lower temperature: molecules become ordered in orientation and sometimes also space in one or more dimensions
- liquid crystals can line up parallel or perpendicular to external electrical field

Liquid Crystal Retarders

- dielectric constant anisotropy often large \Rightarrow very responsive to changes in applied electric field
- birefringence δn can be very large (larger than typical crystal birefringence)
- liquid crystal layer only a few μ m thick
- birefringence shows strong temperature dependence

Temporal and Spatial Modulation

General Polarimeters

- polarimeters: optical elements (e.g. retarders, polarizers) that change polarization state of incoming light in controlled way
- detectors always measure only intensities
- intensity measurements combined to retrieve polarization state of incoming light
- polarimeters vary by polarization modulation scheme
- polarimeter should also include polarization calibration optics

- simple linear polarimeter: polarizing beam-splitter producing 2 beams corresponding to 2 orthogonal linear polarization states
- full linear polarization information from rotating assembly
- spatial modulation: simultaneous measurements of two (or more) Stokes parameters

Rotating Waveplate Polarimeter

- rotating retarder, fixed linear polarizer
- measured intensity is function of retardance δ , position angle θ
- only terms in θ lead to modulated signal
- temporal modulation: sequential measurements of I± one or more Stokes parameters

Comparison of Temporal and Spatial Modulation Schemes

Modulation	Advantages	Disadvantages
temporal	negligible effects of flat field and optical aber- rations	influence of seeing if modulation is slow
	potentially high polari- metric sensitivity	limited read-out rate of array detectors
spatial	off-the-shelf array de- tectors	requires up to four times larger sensor
	high photon collection efficiency	influence of flat field
	allows post-facto re- construction	influence of differential aberrations

schemes rather complementary \Rightarrow modern, sensitive polarimeters use both to combine advantages and minimize disadvantages

SOLIS Vector-Spectro-Magnetograph (VSM)

Science Goals

Provide unique observations to understand

- the solar activity cycle
- sudden energy releases in the solar atmosphere (flares, coronal mass ejections)
- solar irradiance changes and relationship to global change

Magnetic field

- Line-of-sight component of photospheric magnetic field: Averaged over 2 Mm², sensitivity = 1 gauss, zero point stable to 0.1 gauss, time for a full disk map = 15 minutes
- Transverse component of the photospheric magnetic field: Same parameters as line-of-sight component except sensitivity ≥ 20 gauss.

Science Requirements

Parameter	Specification
angular element	1″125 by 1″125
angular coverage	2048" by 2048"
geometric accuracy	<0".5 rms after remapping
motion in RA	$\pm 0.25^\circ$ for flat-fielding
scan rate in Dec	0.2-5.0 s/″
timing accuracy	better than 1 ms
spectral resolution	200,000
wavelength ranges	630.2 ± 0.1 nm
polarimetry	630.2 nm: I,Q,U,V
polarimetric sensitivity	0.0002 per pixel in 0.5 s
polarimetric accuracy	0.001
image stabilization	>40 Hz to improve spatial resolution

Design Challenges

- compact instrument no longer than 2.5 m
- athermal optical design that is stable at varying ambient temperatures
- high guiding accuracy of better than 0["]/₅ rms
- low instrumental polarization of less than $1 \cdot 10^{-3}$
- large wavelength range (630 to 1090 nm) with constant magnification
- high spectral resolution of 200,000
- highest possible throughput
- high energy densities of up to 20 W/cm²
- high data rate of up to 300 MByte/s

Concept in Proposal

Vector Spectromagnetograph

On the Computer

From the Welders

Aligning the Optics

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Ready for Science

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Single Particle Scattering

- light is absorbed and re-emitted
- if light has low enough energy, no energy transferred to electron, but photon changes direction ⇒ elastic scattering
- for high enough energy, photon transfers energy onto electron \Rightarrow inelastic (Compton) scattering
- Thomson scattering on free electrons
- Rayleigh scattering on bound electrons
- based on very basic physics, scattered light is linearly polarized

Polarization as a Function of Scattering Angle

- same variation of polarization with scattering angle applies to Thomson and Rayleigh scattering
- scattering angle θ
- projection of amplitudes:
 - 1 for polarization direction perpendicular to scattering plane
 - cos θ for linear polarization in scattering plane
- intensities = amplitudes squared
- ratio of +Q to -Q is $\cos^2 \theta$ (to 1)
- total scattered intensity (unpolarized = averaged over all polarization states) proportional to $\frac{1}{2}(1 + \cos^2 \theta)$

Limb Darkening

Solar Continuum Scattering Polarization

- due to anisotropy of the radiation field
- anisotropy due to limb darkening
- limb darkening due to decreasing temperature with height
- last scattering approximation without radiative transfer

Solar Spectral Line Scattering Polarization

resonance lines exhibit "large" scattering polarization signals

Zeeman Effect

photos.aip.org/

Splitting/Polarization of Spectral Lines

- discovered in 1896 by Dutch physicist Pieter Zeeman
- different spectral lines show different splitting patterns
- splitting proportional to magnetic field
- split components are polarized
- normal Zeeman effect with 3 components explained by H.A.Lorentz using classical physics
- splitting of sodium D doublet could not be explained by classical physics (*anomalous Zeeman effect*)
- quantum theory and electron's intrinsic spin led to satisfactory explanation

Quantum-Mechanical Hamiltionian

• classical interaction of magnetic dipol moment $\vec{\mu}$ and magnetic field given by magnetic potential energy

$$U = -\vec{\mu} \cdot \vec{B}$$

 $\vec{\mu}$ the magnetic moment and \vec{B} the magnetic field vector

- magnetic moment of electron due to orbit and spin
- Hamiltonian for quantum mechanics

$$H = H_0 + H_1 = H_0 + rac{e}{2mc} \left(\vec{L} + 2\vec{S}
ight) \vec{B}$$

- H₀ Hamiltonian of atom without magnetic field
- H₁ Hamiltonian component due to magnetic field
 - e charge of electron
- m electron rest mass
- \vec{L} the orbital angular momentum operator
- \vec{S} the spin operator

Energy States in a Magnetic Field

- energy state $\langle E_{NLSJ} |$ characterized by
 - main quantum number N of energy state
 - L(L+1), the eigenvalue of \vec{L}^2
 - S(S+1), the eigenvalue of \vec{S}^2
 - J(J + 1), the eigenvalue of \vec{J}^2 , $\vec{J} = \vec{L} + \vec{S}$ being the total angular momentum
 - *M*, the eigenvalue of J_z in the state $\langle NLSJM |$
- for the magnetic field in the z-direction, the change in energy is given by

 $\Delta E_{NLSJ}(M) = \langle NLSJM | H_1 | NLSJM \rangle$

The Landé g Factor

 based on pure mathematics (group theory, Wiegner Eckart theorem), one obtains

$$\Delta E_{NLSJ}(M) = \mu_0 g_L B M$$

with $\mu_0 = \frac{e\hbar}{2m}$ the Bohr magneton, and g_L the Landé g-factor

in LS coupling where B sufficiently small compared to spin-orbit splitting field

$$g_L = 1 + rac{J(J+1) + L(L+1) - S(S+1)}{2J(J+1)}$$

hyperphysics.phy-astr.gsu.edu/hbase/quantum/sodzee.html

Spectral Lines -Transitions between Energy States

- spectral lines are due to transitions between energy states:
 - lower level with $2J_l + 1$ sublevels M_l
 - upper level with $2J_u + 1$ sublevels M_u
- not all transitions occur

Selection rule

- not all transitions between two levels are allowed
- assuming dipole radiation, quantum mechanics gives us the selection rules:
 - $L_u L_l = \Delta L = \pm 1$
 - $M_u M_l = \Delta M = 0, \pm 1$
 - $M_u = 0$ to $M_l = 0$ is forbidden for $J_u J_l = 0$
- total angular momentum conservation: photon always carries $J_{\text{photon}} = 1$
- normal Zeeman effect: line splits into three components because
 - Landé g-factors of upper and lower levels are identical
 - $J_u = 1$ to $J_l = 0$ transition
- anomalous Zeeman effect in all other cases

Effective Landé Factor and Polarized Components

- each component can be assigned an effective Landé g-factor, corresponding to how much the component shifts in wavelength for a given field strength
- components are also grouped according to the linear polarization direction for a magnetic field perpendicular to the line of sight
 - $\pi\,$ components are polarized parallel to the magnetic field (**p**i for *parallel*)
 - σ components are polarized perpendicular to the magnetic field (sigma for German *senkrecht*)
- for a field parallel to the line of sight, the π-components are not visible, and the σ components are circularly polarized

Bernasconi et al. 1998

Zeeman Effect in Solar Physics

- discovered in sunspots by G.E.Hale in 1908
- splitting small except for in sunspots
- much of intensity profile due to non-magnetic area ⇒ filling factor
- a lot of strong fields outside of sunspots
- full Stokes polarization measurements are key to determine solar magnetic fields
- 180 degree ambiguity

Fully Split Titanium Lines at $2.2\mu m$

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Solar Physics, Lecture 6: Polarimetry 2

Hanle Effect

Bianda et al. 1998

Depolarization and Rotation

- scattering polarization modified by magnetic field
- precession around magnetic field depolarizes and rotates polarization
- sensitive $\sim 10^3$ times smaller field strengths that Zeeman effect
- measureable effects even for isotropic field vector orientations